We prove this by induction. The base case of $n=0$ already implies that $U_0\les\alpha\les\max\left\{\alpha, \beta\right\}$. Next assume that $U_n \les\lp2M+1\rp^n \max\left\{\alpha, \beta\right\}$ holds for all integers upto and including $n$, it is then the case that:
This completes the induction step proving (\ref{7.0.1}).
\end{proof}
\begin{lemma}
Let $\Theta=\lp\bigcup^{n\in\N}\Z^n \rp$, $d,M \in\N$, $T\in\lp0,\infty\rp$, $f \in C \lp\R, \R\rp$, $g,\in C \lp\R^d, \R\rp$, $\mathsf{F}, \mathsf{G}\in\neu$ satisfy that $\real_{\rect}\lp\mathsf{F}\rp= f$ and $\real_{\rect}\lp\mathsf{G}\rp= g$, let $\mathfrak{u}^\theta\in\lb0,1\rb$, $\theta\in\Theta$, and $\mathcal{U}^\theta: \lb0,T \rb\rightarrow\lb0,T \rb$, $\theta\in\Theta$, satisfy for all $t \in\lb0,T \rb$, $theta \in\Theta$ that $\mathcal{U}^\theta_t = t+(T-t)\mathfrak{u}^\theta$, let $\mathcal{W}^\theta: \lb0,T \rb\rightarrow\R^d$, $\theta\in\Theta$, for every $\theta\in\Theta$, $t\in\lb0,T\rb$, $s \in\lb t,T\rb$, let $\mathcal{Y}^\theta_{t,s}\in\R$ satisfy $\mathcal{Y}^\theta_{t,s}=\mathcal{W}^\theta_s -\mathcal{W}^\theta_t$ and let $\mathcal{U}^\theta_n: \lb0,T\rb\times\R^d \rightarrow\R$, $n\in\N_0$, $\theta\in\Theta$, satisfy for all $\theta\in\Theta$, $n\in\N_0$, $t\in\lb0,T\rb$, $x\in\R^d$ that:
&+ \sum^{n-1}_{i=0}\frac{T-t}{M^{n-i}}\lb\sum^{M^{n-i}}_{k=1}\lp\lp f \circ U^{(\theta,i,k)}_i\rp - \mathbbm{1}_\N\lp i \rp\lp f \circ U^{(\theta,-i,k)}_{\max\{ i-1,0\}}\rp\rp\lp\mathcal{U}^{(\theta,i,k)}_t,x+ \mathcal{Y}^{(\theta,i,k)}_{t,\mathcal{U}_t^{(\theta,i,k)}}\rp\rb
\end{align}
it is then the case that:
\begin{enumerate}[label = (\roman*)]
\item there exists unique $\mathsf{U}^\theta_{n,t}\in\neu$, $t \in\lb0,T \rb$, $n\in\N_0$, $\theta\in\Theta$, which satisfy for all $\theta_1,\theta_2\in\Theta$, $n\in\N_0$, $t_1, t_2\in\lb0,T \rb$ that $\lay\lp\mathsf{U}^{\theta_1}_{n,t_1}\rp=\mathcal{L}\lp\mathsf{U}^{\theta_2}_{n,t_2}\rp$.
\item for all $\theta\in\Theta$, $t \in\lb0,T\rb$ that $\mathsf{U}^\theta_{0,t}=\lb\lb0\quad0\quad\cdots\quad0\rb,\lb0\rb\rp\in\R^{1\times d}\times\R^1$
\item for all $\theta\in\Theta$, $n\in\N$, $t \in\lb0,T \rb$ that:
\item that for all $\theta\in\Theta$, $n\in\N_0$, $t\in\lb0,T \rb$, that $\dep\lp\mathsf{U}^\theta_{n,t}\rp= n\cdot\hid\lp\mathsf{F}\rp+\max\left\{1,\mathbbm{1}_\N\lp n \rp\dep\lp\mathsf{G}\rp\right\}$
\item that for all $\theta\in\Theta$, $n\in\N_0$, $t \in\lb0,T \rb$, that $\left\|\lay\lp\mathsf{U^\theta_{n,t}}\rp\right\|_{\max}\les\lp2M+1\rp^n \max\left\{2, \left\|\lay\lp\mathsf{F}\rp\right\|_{\max}, \left\|\lay\lp\mathsf{G}\rp\right\|_F \right\}$
\item it holds for all $\theta\in\Theta$, $n\in\N_0$, $t \in\lb0,T \rb$, $x \in\R^d$ that $U^\theta_n \lp t,x \rp=\lp\real_{\rect}\lp\mathsf{U}^\theta_{n,t}\rp\rp\lp x \rp$, and
\item it holds for all $\theta\in\Theta$, $n \in\N_0$, $t\in\lb0,T\rb$ that: