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Theorem 2.1. Let T,, � 2 (0,1), ⇥ =
S

n2NZn, let ud 2 C1,2
([0, T ] ⇥ Rd,R), d 2 N,

satisfy for all d 2 N, t 2 [0, T ], x = (x1, x2, . . . , xd) 2 Rd that

|ud(t, x)|  d
�
1 +

Pd
k=1|xk|

�
and (

@
@tud)(t, x) = (�xud)(t, x), (2.1)

let (⌦,F ,P) be a probability space, let W d,✓
: [0, T ]⇥ ⌦ ! Rd, d 2 N, ✓ 2 ⇥, be independent

standard Brownian motions, let Ud,✓
m : [0, T ] ⇥ Rd ⇥ ⌦ ! R, d,m 2 Z, ✓ 2 ⇥, satisfy for all

d,m 2 N, ✓ 2 ⇥, t 2 [0, T ], x 2 Rd that

Ud,✓
m (t, x) =

1

m


mP
k=1

ud

�
0, x+

p
2W d,(✓,0,�k)

t

��
,

and for every d, n,m 2 N let Cd,n,m 2 N be the number of function evaluations of ud(0, ·)
and the number of realizations of scalar random variables which are used to compute one
realization of Ud,0

m (T, 0) : ⌦ ! R. Then there exist c 2 R and n : N ⇥ (0, 1] ! N such that
for all d 2 N, " 2 (0, 1] it holds that

⇣
E
⇥
|ud(T, 0)� Ud,0

n(d,")(T, 0)|2
⇤⌘1/2

 " and Cd,n(d,"),n(d,")  cdc"�(2+�). (2.2)
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3 Stochastic solutions to parabolic partial di↵erential
equations

Lemma 3.1. Let T 2 (0,1), let (⌦,F ,P) be a probability space, let ud 2 C1,2
([0, T ]⇥Rd,R),

d 2 N, satisfy for all d 2 N, t 2 [0, T ], x 2 Rd that

(
@
@tud)(t, x) + (�xud)(t, x) = 0, (3.1)

let W d
: [0, T ]⇥⌦ ! Rd, d 2 N, be standard Brownian motions, and let X d,t,x

: [t, T ]⇥⌦ !
Rd, d 2 N, t 2 [0, T ], x 2 Rd, be a stochastic process with continuous sample paths satisfying
that for all d 2 N, t 2 [0, T ], s 2 [t, T ], x 2 Rd we have P-a.s. that

X d,t,x
s = x+

Z s

t

p
2 dW d

r = x+

p
2W d

t�s. (3.2)

Then for all d 2 N, t 2 [0, T ], x 2 Rd it holds that

ud(t, x) = E
⇥
ud

�
T,X d,t,x

T

�⇤
. (3.3)

Proof of Lemma 3.1. The proof of Lemma 3.1 is thus complete.

Lemma 3.2. Let T 2 (0,1), let (⌦,F ,P) be a probability space, let �d : Rd ! Rd⇥d, d 2 N,
be infinitely often di↵erentiable functions, let ud 2 C1,2

([0, T ]⇥Rd,R), d 2 N, satisfy for all
d 2 N, t 2 [0, T ], x 2 Rd that

(
@
@tud)(t, x) + Trace

�
�(x)[�(x)]⇤(Hessx ud)(t, x)

�
= 0, (3.4)

let W d
: [0, T ]⇥⌦ ! Rd, d 2 N, be standard Brownian motions, and let X d,t,x

: [t, T ]⇥⌦ !
Rd, d 2 N, t 2 [0, T ], x 2 Rd, be a stochastic process with continuous sample paths satisfying
that for all d 2 N, t 2 [0, T ], s 2 [t, T ], x 2 Rd we have P-a.s. that

X d,t,x
s = x+

Z t

s

p
2 �(X d,t,x

r ) dW d
r . (3.5)

Then for all d 2 N, t 2 [0, T ], x 2 Rd it holds that

ud(t, x) = E
⇥
ud

�
T,X d,t,x

T

�⇤
. (3.6)

Proof of Lemma 3.2. The proof of Lemma 3.2 is thus complete.

Lemma 3.3. Let T 2 (0,1), let (⌦,F ,P) be a probability space, let µd 2 Rd ! Rd, d 2 N,
be infinitely often di↵erentiable functions, let ud 2 C1,2

([0, T ]⇥Rd,R), d 2 N, satisfy for all
d 2 N, t 2 [0, T ], x 2 Rd that

(
@
@tud)(t, x) + (�xud)(t, x) + [µd(x)]

⇤
(rxud)(t, x) = 0, (3.7)

let W d
: [0, T ]⇥⌦ ! Rd, d 2 N, be standard Brownian motions, and let X d,t,x

: [t, T ]⇥⌦ !
Rd, d 2 N, t 2 [0, T ], x 2 Rd, be a stochastic process with continuous sample paths satisfying
that for all d 2 N, t 2 [0, T ], s 2 [t, T ], x 2 Rd we have P-a.s. that

X d,t,x
s = x+

Z t

s

µd(X d,t,x
r ) dr +

Z t

s

p
2 dW d

r . (3.8)
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Then for all d 2 N, t 2 [0, T ], x 2 Rd it holds that

ud(t, x) = E
⇥
ud

�
T,X d,t,x

T

�⇤
. (3.9)

Proof of Lemma 3.3. The proof of Lemma 3.3 is thus complete.

Lemma 3.4. Let T 2 (0,1), let (⌦,F ,P) be a probability space, let ↵d 2 Rd ! R, d 2 N,
be infinitely often di↵erentiable functions, let ud 2 C1,2

([0, T ]⇥Rd,R), d 2 N, satisfy for all
d 2 N, t 2 [0, T ], x 2 Rd that

(
@
@tud)(t, x) + (�xud)(t, x) + ↵d(x)ud(t, x) = 0, (3.10)

let W d
: [0, T ]⇥⌦ ! Rd, d 2 N, be standard Brownian motions, and let X d,t,x

: [t, T ]⇥⌦ !
Rd, d 2 N, t 2 [0, T ], x 2 Rd, be a stochastic process with continuous sample paths satisfying
that for all d 2 N, t 2 [0, T ], s 2 [t, T ], x 2 Rd we have P-a.s. that

X d,t,x
s = x+

Z t

s

p
2 dW d

r . (3.11)

Then for all d 2 N, t 2 [0, T ], x 2 Rd it holds that

ud(t, x) = E
⇥
exp

�R T

t ↵d(X d,t,x
r ) dr

�
ud

�
T,X d,t,x

T

�⇤
. (3.12)

Proof of Lemma 3.4. The proof of Lemma 3.4 is thus complete.
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