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1 Euler’s method and beyond

The following questions are meant to help ensure you have a solid conceptual understanding
of the material from Chapter 1 of Iserles’ textbook.

Setting 1.1. Let T ∈ (0,∞), d ∈ N = {1, 2, 3, . . . }, let ‖·‖ : Rd → [0,∞) be a function
which satisfies for all u, v ∈ Rd, s ∈ R that ‖u+ v‖ ≤ ‖u‖+‖v‖, ‖su‖ = |s|‖u‖, and ‖u‖ = 0
if and only if u = 0, let b·ch : [0, T ]→ [0, T ], h ∈ (0,∞), be the functions which satisfy for all
h ∈ (0,∞), t ∈ [0, T ] that btch = max([0, t] ∩ {0, h, 2h, . . . }), let f : Rd → Rd be a function
which satisfies that [

sup
v∈Rd

∥∥f(v)
∥∥]+

[
sup

v,w∈Rd,v 6=w

‖f(v)− f(w)‖
‖v − w‖

]
<∞, (1.2)

let y : [0, T ]→ Rd be a measurable function which satisfies for all t ∈ [0, T ] that

y(t) = y(0) +

∫ t

0

f
(
y(s)

)
ds, (1.3)

and for every h ∈ (0,∞) let Y0,h, Y1,h, . . . , YbT/hc,h ∈ Rd satisfy for all n ∈ {0, 1, . . . , bT/hc−1}
that Y0,h = y(0) and

Yn+1,h = Yn,h + hf
(
Yn,h

)
. (1.4)

Problem 1.5. Do you understand Setting 1.1 above? Do you understand what each in-
dividual component means and do you see why each component is necessary to present a
well-defined numerical method (i.e., the method in Eq. (1.4))?

Proof of Problem 1.5.

The proof of Problem 1.5 is thus complete.
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Definition 1.6. Assume Setting 1.1. We say that Eq. (1.4) is a convergent numerical method
for Eq. (1.3) if and only if it holds that

lim
h→0+

[
max

n∈{0,1,...,bT/hc}

∥∥y(nh)− Yn,h
∥∥] = 0. (1.7)

Problem 1.8. Do you understand conceptually what the notion of convergence is implying?
Can you see how the topology of the problem would come into play if we were not considering
a problem posed in a finite-dimensional space?

Proof of Problem 1.8.

The proof of Problem 1.8 is thus complete.

Lemma 1.9. Let α ∈ [0,∞) and let a0, a1, a2, . . . ∈ [0,∞) and b0, b1, b2, . . . ∈ [0,∞) satisfy
for all n ∈ N0 = N ∪ {0} that

an ≤ α +
n−1∑
k=0

bkak. (1.10)

Then it holds for all n ∈ N0 that

an ≤ α exp

(
n−1∑
k=0

bk

)
. (1.11)

Proof of Lemma 1.9. First, we claim that for all n ∈ N0 it holds that

an ≤ α

[
n−1∏
k=0

(
1 + bk

)]
. (1.12)

We now prove Eq. (1.12) by mathematical induction on n ∈ N0. For the base case n = 0,
note that Eq. (1.10) ensures that

a0 ≤ α +
−1∑
k=0

bkak = α + 0 = α. (1.13)
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Combining this and the fact that
∏−1

k=0(1 + bk) = 1 establishes Eq. (1.12) in the base case
n = 0. For the induction step N0 3 (n− 1) 99K n ∈ N, let n ∈ N and assume that for every
m ∈ {0, 1, . . . , n− 1} it holds that

am ≤ α

[
m−1∏
k=0

(
1 + bk

)]
. (1.14)

This and Eq. (1.10) assure that

an ≤ α +
n−1∑
k=0

bkak ≤ α +
n−1∑
k=0

bk

(
α

[
k−1∏
j=0

(
1 + bj

)])
= α

(
1 +

n−1∑
k=0

[
k−1∏
j=0

(
1 + bj

)]
bk

)
. (1.15)

Next, observe that

1 +
n−1∑
k=0

[
k−1∏
j=0

(
1 + bj

)]
bk = 1 +

n−1∑
k=0

[
k−1∏
j=0

(
1 + bj

)](
(1 + bk)− 1

)
= 1 +

n−1∑
k=0

[
k∏
j=0

(
1 + bj

)
−

k−1∏
j=0

(
1 + bj

)]

= 1 +
n−1∏
j=0

(
1 + bj

)
−
−1∏
j=0

(
1 + bj

)
=

n−1∏
j=0

(
1 + bj

)
.

(1.16)

Combining this, Eq. (1.16), and mathematical induction establishes Eq. (1.12). Moreover,
note that the fact that for all x ∈ [0,∞) it holds that 1 + x ≤ exp(x), the assumption that
b0, b1, b2, . . . ∈ [0,∞), and Eq. (1.12) imply that for all n ∈ N0 it holds that

an ≤ α

[
n−1∏
k=0

(
1 + bk

)]
≤ α

[
n−1∏
k=0

exp(bk)

]
≤ α exp

(
n−1∑
k=0

bk

)
. (1.17)

This establishes Eq. (1.11). The proof of Lemma 1.9 is thus complete.

Problem 1.18. Assume Setting 1.1. Using Lemma 1.9 above, prove that there exists C ∈
[0,∞) such that for all h ∈ (0,∞) it holds that

max
n∈{0,1,...,bT/hc}

∥∥y(nh)− Yn,h
∥∥ ≤ Ch. (1.19)

Explain how proving Eq. (1.19) holds would relate to the notion of convergence (cf. Defini-
tion 1.6).

Proof of Problem 1.18.
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The proof of Problem 1.18 is thus complete.

Problem 1.20. Can you present the theta method from the textbook in the rigorous format
used in Setting 1.1 above?

Proof of Problem 1.20.

The proof of Problem 1.20 is thus complete.

Setting 1.21. Let Tnew, p ∈ (0,∞), d ∈ N, let ‖·‖ : Rd → [0,∞) be a function which satisfies
for all u, v ∈ Rd, s ∈ R that ‖u + v‖ ≤ ‖u‖ + ‖v‖, ‖su‖ = |s|‖u‖, and ‖u‖ = 0 if and only
if u = 0, let b·ch : [0, Tnew] → [0, Tnew], h ∈ (0,∞), be the functions which satisfy for all
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h ∈ (0,∞), t ∈ [0, Tnew] that btch = max([0, t]∩{0, h, 2h, . . . }), let g : Rd → Rd be a function
which satisfies that

sup
v,w∈Rd,v 6=w

‖g(v)− g(w)‖(
1 + ‖v‖p + ‖w‖p

)
‖v − w‖

<∞, (1.22)

let z : [0, Tnew]→ Rd be a measurable function which satisfies for all t ∈ [0, Tnew] that

z(t) = z(0) +

∫ t

0

g
(
z(s)

)
ds, (1.23)

and for every h ∈ (0,∞) let Z0,h, Z1,h, . . . , ZbTnew/hc,h ∈ Rd satisfy for all n ∈ {0, 1, . . . ,
bTnew/hc − 1} that Z0,h = z(0) and

Zn+1,h = Zn,h + hg
(
Zn,h

)
. (1.24)

Problem 1.25. Can we prove a result similar to that in Problem 1.18 under the assumptions
outline in Setting 1.21 above? If not, can we prove a result that is “similar” to the result in
Problem 1.18? What additional assumptions (if any) are needed to prove either of the above
results?

Proof of Problem 1.25.

The proof of Problem 1.25 is thus complete.
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1.1 An exploration of the linear case

Definition 1.26. We denote by exp: (
⋃
d∈NCd×d)→ (

⋃
d∈NCd×d) the function which satisfies

for all d ∈ N, A ∈ Cd×d that exp(A) =
∑∞

k=0(
1/k!)Ak.

Definition 1.27. For every d ∈ N let Nd = {1, 2, . . . , d}, for every d ∈ N let Sd = {(σ : Nd →
Nd) : σ is a bijection}, let p : (

⋃
d∈NSd) → N0 be the function which satisfies for all d ∈ N,

σ ∈ Sd that p(σ) =
∑d

i=1

∑d
j=i+1 1(0,∞)(σi − σj), and let sgn: (

⋃
d∈NSd) → {−1, 1} be the

function which satisfies for all d ∈ N, σ ∈ Sd that sgn(σ) = (−1)p(σ). Then we denote by
det : (

⋃
d∈NRd×d)→ R the function which satisfies for all d ∈ N, A = (ai,j)i,j∈{1,2,...,d} ∈ Rd×d

that det(A) =
∑

σ∈S[sgn(σ)
∏d

i=1 ai,σi ].

Definition 1.28. We denote by tr : (
⋃
d∈NRd×d) → R the function which satisfies for all

d ∈ N, A = (ai,j)i,j∈{1,2,...,d} ∈ Rd×d that tr(A) =
∑d

i=1 ai,i.

Lemma 1.29. Let d ∈ N, A,B ∈ Rd×d and let ‖·‖ : Rd → [0,∞) be a function which satisfies
for all u, v ∈ Rd, s ∈ R that ‖u+ v‖ ≤ ‖u‖+ ‖v‖, ‖su‖ = |s|‖u‖, and ‖u‖ = 0 if and only if
u = 0. Then

(i) it holds that ‖exp(A)‖ ≤ exp(‖A‖) <∞,

(ii) it holds for all s, t ∈ R that exp(sA+ tA) = exp(sA) exp(tA),

(iii) it holds that exp(A) exp(−A) = idRd×d ,

(iv) it holds that exp(A+B) = exp(A) exp(B) if and only if it holds that AB = BA, and

(v) it holds that det(exp(A)) = exp(tr(A))

(cf. Definitions 1.26, 1.27, and 1.28).

Proof of Lemma 1.29.
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The proof of Lemma 1.29 is thus complete.

Problem 1.30. Let A ∈ R2×2 satisfy

A =

(
−1 1
−2 −4

)
. (1.31)

(i) Show that there exist D = (di,j)i,j∈{1,2} ∈ R2×2, P ∈ R2×2 with det(P ) 6= 0, d1,2 =
d2,1 = 0, and A = PDP−1 (cf. Definition 1.27).

(ii) Use the results from item (i) to show that

exp(A) =

(
2 exp(−2)− exp(−3) exp(−2)− exp(−3)

2 exp(−3)− 2 exp(−2) 2 exp(−3)− exp(−2)

)
(1.32)

(cf. Definition 1.26).

Proof of Problem 1.30.
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The proof of Problem 1.30 is thus complete.

Problem 1.33. Let T ∈ (0,∞), let ‖·‖ : R2 → [0,∞) be the function which satisfies for all
u = (u1, u2) ∈ R2 that ‖u‖ = [|u1|2 + |u2|2]1/2, let b·ch : [0, T ] → [0, T ], h ∈ (0,∞), be the
functions which satisfy for all h ∈ (0,∞), t ∈ [0, T ] that btch = max([0, t] ∩ {0, h, 2h, . . . }),
let A ∈ R2×2, y ∈ C([0, T ],R2) satisfy for all t ∈ [0, T ] that

A =

(
−1 1
−2 −4

)
and y(t) = (1, 1)∗ +

∫ t

0

Ay(s) ds, (1.34)

and for every h ∈ (0,∞) let Y0,h, Y1,h, . . . , YbT/hc,h ∈ R2 satisfy for all n ∈ {0, 1, . . . , bT/hc−1}
that Y0,h = y(0) and

Yn+1,h = Yn,h + hAYn,h. (1.35)

(i) Prove that for all t ∈ [0, T ] it holds that y(t) = exp(tA)y(0) (cf. Definition 1.26).

(ii) Prove that for all h ∈ (0,∞), n ∈ {0, 1, . . . , bT/hc} it holds that

Yn,h =
(
idR2×2 +hA

)n
y(0). (1.36)

(iii) Prove that for all h ∈ (0,∞) it holds that∥∥∥exp(hA)y(0)−
(
idR2×2 +hA

)
y(0)

∥∥∥ =

∥∥∥∥∫ h

0

(h− s)A2 exp
(
sA
)
y(0) ds

∥∥∥∥
≤ h2

2

[
sup

h∈(0,h)

(
sup

v∈R2\{0}

‖exp(hA)v‖
‖v‖

)]∥∥A2y(0)
∥∥ ≤ √17h2

(1.37)

(cf. Definition 1.26).

(iv) Prove that for all h ∈ (0,∞), n ∈ {0, 1, . . . , bT/hc} it holds that

y(nh)− Yn,h

=
n−1∑
k=0

exp
(
khA

)[
exp
(
hA
)
−
(
idR2×2 +hA

)](
idR2×2 +hA

)(n−k−1)
y(0)

(1.38)

(cf. Definition 1.26).
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(v) Prove that

sup
h∈(0,∞)

[
max

n∈{0,1,...,bT/hc}

∥∥y(nh)− Yn,h
∥∥] ≤ T exp

(
9T/2
)√

34h. (1.39)

Proof of Problem 1.33.

The proof of Problem 1.33 is thus complete.

2 Multistep methods

Setting 2.1. Let T ∈ (0,∞), d, s ∈ N, a0, a1, . . . , as ∈ R, b0, b1, . . . , bs ∈ R, let ‖·‖ : Rd →
[0,∞) be a function which satisfies for all u, v ∈ Rd, s ∈ R that ‖u + v‖ ≤ ‖u‖ + ‖v‖,
‖su‖ = |s|‖u‖, and ‖u‖ = 0 if and only if u = 0, let b·ch : [0, T ]→ [0, T ], h ∈ (0,∞), be the
functions which satisfy for all h ∈ (0,∞), t ∈ [0, T ] that btch = max([0, t]∩{0, h, 2h, . . . }), let
A = {g : [0, T ]→ Rd : f is analytic in [0, T ]}, for every h ∈ (0,∞), n ∈ {0, 1, . . . , bT/hc − 1},
g ∈ A let D : A → A and Eh : A → A satisfy(

Dg
)
(nh) =

(
d
dt
g
)
(nh) and

(
Ehg
)
(nh) = g

(
(n+ 1)h

)
, (2.2)
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let f : Rd → Rd be a function which satisfies that[
sup
v∈Rd

∥∥f(v)
∥∥]+

[
sup

v,w∈Rd,v 6=w

‖f(v)− f(w)‖
‖v − w‖

]
<∞, (2.3)

let y : [0, T ]→ Rd be a measurable function which satisfies for all t ∈ [0, T ] that

y(t) = y(0) +

∫ t

0

f
(
y(s)

)
ds, (2.4)

and for every h ∈ (0,∞) let Y0,h, Y1,h, . . . , YbT/hc,h ∈ Rd satisfy for all n ∈ {0, 1, . . . , bT/hc−s}
that Y0,h = y(0) and

s∑
m=0

amYn+m,h = h

s∑
m=0

bmf
(
Yn+m,h

)
. (2.5)

Definition 2.6. Assume Setting 2.1. We say that Eq. (2.5) is a numerical method of order
p ∈ N0 if and only if there exists C ∈ (0,∞) such that for all h ∈ (0,∞), n ∈ {0, 1, . . . , bT/hc}
with h sufficiently close to zero it holds that∥∥∥∑s

m=0 amy
(
(n+m)h

)
− h

∑s
m=0 bmf

(
y
(
(n+m)h

))∥∥∥ ≤ Chp+1. (2.7)

Lemma 2.8. Assume Setting 2.1 and let p ∈ N. Then Eq. (2.5) is of order p if and only if
there exists C ∈ (0,∞) such that for all z ∈ R with z sufficiently close to one it holds that∣∣∑s

m=0 amz
m − ln(z)

∑s
m=0 bmz

m
∣∣ ≤ C|z − 1|p+1 (2.9)

(cf. Definition 2.6).

Proof of Lemma 2.8. Throughout this proof let h ∈ (0,∞) be sufficiently small, let ρ : R→
R and σ : R→ R be the functions which satisfy for all z ∈ R that

ρ(z) =
s∑

m=0

amz
m and σ(z) =

s∑
m=0

bmz
m, (2.10)

and without loss of generality assume that y ∈ A. Note that Taylor’s theorem guarantees
that for all n ∈ {0, 1, . . . , bT/hc}, k ∈ N0 it holds that(

Eh
(

dk

dtk
y
))

(nh) =
(

dk

dtk
y
)(

(n+ 1)h
)

=
∞∑
j=0

hj

j!

(
dk+j

dtk+j y
)
(nh)

=
∞∑
j=0

hj

j!

(
dj

dtj

(
dk

dtk
y
))

(nh)

=
∞∑
j=0

hj

j!

(
Dj
(

dk

dtk
y
))

(nh).

(2.11)
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Combining this and the fact that D is a bounded linear operator (something we have not
shown, but which can be shown) ensures that

Eh = exp
(
hD
)
. (2.12)

Next, observe that Eq. (2.4) assures that for all n ∈ {0, 1, . . . , bT/hc − s} it holds that

s∑
m=0

amy
(
(n+m)h

)
− h

s∑
m=0

bmf
(
y((n+m)h)

)
=

s∑
m=0

amy
(
(n+m)h

)
− h

s∑
m=0

bm
(

d
dt
y
)(

(n+m)h
)

=
s∑

m=0

am
(
Emh y

)
(nh)− h

s∑
m=0

bm

(
Emh
(
Dy
))

(nh).

(2.13)

This, the fact that Eq. (2.12) implies that for all g ∈ A it holds that (D(Ehg)) = (Eh(Dg)),
the fact that D is a linear operator, and the so-called Borel functional calculus guarantee
that for all n ∈ {0, 1, . . . , bT/hc − s} it holds that

s∑
m=0

amy
(
(n+m)h

)
− h

s∑
m=0

bmf
(
y((n+m)h)

)
=

s∑
m=0

am
(
Emh y

)
(nh)− h

(
D

s∑
m=0

bm
(
Emh y

))
(nh)

=

(( s∑
m=0

amEmh − hD
s∑

m=0

bmEmh
)
y

)
(nh) =

((
ρ(Eh)− hDσ(Eh)

)
y
)
(nh).

(2.14)

This shows that for all n ∈ {0, 1, . . . , bT/hc − s} it holds that∣∣∣∣∣
s∑

m=0

amy
(
(n+m)h

)
− h

s∑
m=0

bmf
(
y((n+m)h)

)∣∣∣∣∣ (2.15)

=
∣∣∣((ρ(Eh)− hDσ(Eh)

)
y
)
(nh)

∣∣∣ ≤ [ sup
g∈A\{0}

∣∣((ρ(Eh)− hDσ(Eh))g
)
(nh)

∣∣
|g(nh)|

]∣∣y(nh)
∣∣.

In addition, note that Eq. (2.12), the fact that for all g ∈ A, t ∈ [0, T ] it holds that
limz→0+(Ezg)(t) = g(t) (can you see that this is true?), and the implicit function theorem
demonstrate that for all g ∈ A, t ∈ [0, T ] it holds that

(
hDg

)
(t) =

(
ln(Eh)g

)
(t) =

(
∞∑
k=0

(−1)k

k + 1

(
Eh − id

)k+1
g

)
(t). (2.16)

This and the Borel functional calculus yield that there exists γh ⊆ C (with the spectrum of
Eh contained inside of γh—we can discuss this, if desired) such that for all g ∈ A, t ∈ [0, T ]
it holds that((

ρ(Eh)− ln(Eh)σ(Eh)
)
g
)
(t) =

1

2πi

∫
γh

[
ρ(z)− ln(z)σ(z)

](
(z id−Eh)−1g

)
(t) dz. (2.17)
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Combining Eqs. (2.15) and (2.17) hence proves Eq. (2.9). The proof of Lemma 2.8 is thus
complete.

3 Runge-Kutta methods

4 Stiff equations

Definition 4.1. Let yλ : [0,∞) → C, λ ∈ C, be measurable functions which satisfy for all
λ ∈ C, t ∈ [0,∞) that

yλ(t) = 1 + λ

∫ t

0

y(s) ds, (4.2)

let h ∈ (0,∞), for every λ ∈ C let Y0,λ, Y1,λ, Y2,λ, . . . ∈ R satisfy Y0,λ = 1, and assume there
exists p, C ∈ (0,∞) such that for all λ ∈ C with λ+ λ̄ ∈ (−∞, 0) it holds that

sup
n∈N0

∣∣yλ(nh)− Yn,λ
∣∣ ≤ Chp. (4.3)

Then the set
D =

{
hλ ∈ C : limn→∞ Yn,λ = 0

}
⊆ C (4.4)

is the linear stability domain of the numerical method {Yn,λ}(n,λ)∈N0×C. Moreover, we say
that the numerical method {Yn,λ}(n,λ)∈N0×C is A-stable if it holds that{

z ∈ C : z + z̄ ∈ (−∞, 0)
}
⊆ D. (4.5)

Problem 4.6. Let T ∈ (0,∞), d ∈ N, let ‖·‖ : Rd → [0,∞) be a function which satisfies for
all u, v ∈ Rd, s ∈ R that ‖u + v‖ ≤ ‖u‖ + ‖v‖, ‖su‖ = |s|‖u‖, and ‖u‖ = 0 if and only if
u = 0, let b·ch : [0, T ]→ [0, T ], h ∈ (0,∞), be the functions which satisfy for all h ∈ (0,∞),
t ∈ [0, T ] that btch = max([0, t] ∩ {0, h, 2h, . . . }), let f ∈ C1(Rd,Rd) satisfy[

sup
v∈Rd

∥∥f(v)
∥∥]+

[
sup

v,w∈Rd,v 6=w

‖f(v)− f(w)‖
‖v − w‖

]
<∞, (4.7)

let y : [0, T ]→ Rd be a measurable function which satisfies for all t ∈ [0, T ] that

y(t) = y(0) +

∫ t

0

f
(
y(s)

)
ds, (4.8)

and for every h ∈ (0,∞) let Y0,h, Y1,h, . . . , YbT/hc,h ∈ Rd satisfy for all n ∈ {0, 1, . . . , bT/hc−1}
that Y0,h = y(0) and

Yn+1,h = Yn,h + h
4

[
f
(
Yn,h

)
+ 3f

(
Yn+1,h

)]
. (4.9)

a. Determine whether or not Eq. (4.9) is consistent (cf. Definition 2.6). If Eq. (4.9) is
consistent, determine its order.

b. Determine whether or not Eq. (4.9) is convergent (cf. Definition 1.6).
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c. Determine whether or not Eq. (4.9) is A-stable (cf. Definition 4.1).

Proof of Problem 4.6.

The proof of Problem 4.6 is thus complete.

5 Geometric numerical integration

6 Error control

7 Nonlinear algebraic systems

8 Finite difference schemes

Problem 8.1. Let N ∈ N0, α, β ∈ R, let f ∈ C(R,R) and u ∈ C4([0, 1],R) satisfy for all
x ∈ [0, 1] that u(0) = α, u(1) = β, and(

d2

dx2
u
)
(x) = f(x), (8.2)
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and let h0, h1, . . . , hN , x0, x1, . . . , xN+1 ∈ [0, 1] satisfy for all n ∈ {0, 1, . . . , N} that

0 = x0 < x1 < x2 < . . . < xN < xN+1 = 1 and hn = xn+1 − xn. (8.3)

a. Construct a three-point finite difference scheme for approximating the solution to
Eq. (8.2) on the non-uniform grid {xn}n∈{0,1,...,N+1} ⊆ [0, 1] given by Eq. (8.3).

b. Determine the order of the method constructed in item a. above. Determine what
additional assumptions are necessary (if any) for guaranteeing this order. Compare
these results with the case from Section 8.2 of the textbook (i.e., the case when h0 =
h1 = . . . = hN).

c. Write the finite difference scheme constructed in item a. above in the form of a linear
system (i.e., as a matrix-vector equation).

d. Determine whether the linear system obtained in item c. is always nonsingular. If the
linear system is not always nonsingular, provide sufficient conditions to guarantee that
the linear system is nonsingular.

e. Implement your finite difference scheme (i.e., the difference equations from item a.
above or the linear system from item c. above) in Python. Numerically compare the
approximate solution with the true solution for some “test case.”

Proof of Problem 8.1.
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The proof of Problem 8.1 is thus complete.
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