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Chapter 1

Introduction.

1.1 Motivation

Artificial neural networks represent a sea change in computing. They have successfully been used

in a wide range of applications, from protein-folding in Tsaban et al. (2022), knot theory in Davies

et al. (2021), and extracting data from gravitational waves in Zhao et al. (2023).

As neural networks become more ubiquitous, we see that the number of parameters required to

train them increases, which poses two problems: accessibility on low-power devices and the amount

of energy needed to train these models, see for instance Wu et al. (2022) and Strubell et al. (2019).

Parameter estimates become increasingly crucial in an increasingly climate-challenged world. That

we know strict and precise upper bounds on parameter estimates tells us when training becomes

wasteful, in some sense, and when, perhaps, different approaches may be needed.

Our goal in this dissertation is threefold:

(i) Firstly, we will take something called Multi-Level Picard first introduced in E et al. (2019)

and E et al. (2021), and in particular, the version of Multi-Level Picard that appears in

Hutzenthaler et al. (2021). We show that dropping the drift term and substantially simplifying

the process still results in convergence of the method and polynomial bounds for the number of

computations required and rather nice properties for the approximations, such as integrability

and measurability.
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(ii) We will then go on to realize that the solution to a modified version of the heat equation has

a solution represented as a stochastic differential equation by Feynman-Kac and further that

a version of this can be realized by the modified multi-level Picard technique mentioned in

Item (i), with certain simplifying assumptions since we dropped the drift term. A substantial

amount of this is inspired by Beck et al. (2021c) and much earlier work in Karatzas and

Shreve (1991) and Da Prato and Zabczyk (2002).

(iii) By far, the most significant part of this dissertation is dedicated to expanding and building

upon a framework of neural networks as appears in Grohs et al. (2023). We modify this

definition highly and introduce several new neural network architectures to this framework

(Tay,Pwr,Trp,Tun,Etr, among others) and show, for all these neural networks, that the pa-

rameter count grows only polynomially as the accuracy of our model increases, thus beating

the curse of dimensionality. This finally paves the way for giving neural network approxi-

mations to the techniques realized in Item (ii). We show that it is not too wasteful (defined

on the polynomiality of parameter counts) to use neural networks to approximate MLP to

approximate a stochastic differential equation equivalent to certain parabolic PDEs as Feyn-

man-Kac necessitates.

We end this dissertation by proposing two avenues of further research: analytical and al-

gebraic. This framework of understanding neural networks as ordered tuples of ordered

pairs may be extended to give neural network approximation of classical PDE approximation

techniques such as Runge-Kutta, Adams-Moulton, and Bashforth. We also propose three

conjectures about neural networks, as defined in Grohs et al. (2023). They form a bimodule,

and that realization is a functor.

This dissertation is broken down into three parts. At the end of each part, we will encounter

tent-pole theorems, which will eventually lead to the final neural network approximation outcome.

These tentpole theorems are Theorem 2.3.4, Theorem 3.3.1, and Theorem. Finally, the culmination

of these three theorems is Theorem, the end product of the dissertation.
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1.2 Notation, Definitions & Basic notions.

We introduce here basic notations that we will be using throughout this dissertation. Large parts

are taken from standard literature inspired by Matrix Computations by Golub and Van Loan (2013),

and Probability: Theory & Examples by Rick Durrett (2019).

1.2.1 Norms and Inner Products

Definition 1.2.1 (Euclidean Norm). Let ·E : Rd → [0,∞) denote the Euclidean norm defined

for every d ∈ N0 and for all x = {x1, x2, · · · , xd} ∈ Rd as:

xE =


d

i=1

x2i

 1
2

(1.2.1)

For the particular case that d = 1 and where it is clear from context, we will denote  · E as | · |.

Definition 1.2.2 (Max Norm). Let ·∞ : Rd → [0,∞) denote the max norm defined for every

d ∈ N0 and for all x = {x1, x2, · · · , xd} ∈ Rd as:

x∞ = max
i∈{1,2,··· ,d}

{|xi|} (1.2.2)

We will denote the max norm ·max : Rm×n → [0,∞) defined for every m,n ∈ N and for all

A ∈ Rm×n as:

Amax := max
i∈{1,2,...,m}
j∈{1,2,...,n}

[A]i,j
 (1.2.3)

Definition 1.2.3 (Frobenius Norm). Let  ·F : Rm×n → [0,∞) denote the Frobenius norm defined

for every m,n ∈ N and for all A ∈ Rm×n as:

AF =




m

i=1

n

j=1

[A]2i,j





1
2

(1.2.4)

Definition 1.2.4 (Euclidean Inner Product). Let 〈·, ·〉 : Rd × Rd → R denote the Euclidean inner

product defined for every d ∈ N, for all Rd ∋ x = {x1, x2, ..., xd}, and for all Rd ∋ y = {y1, y2, ..., yd}

7



as:

〈x, y〉 =
d

i=1

(xiyi) (1.2.5)

1.2.2 Probability Space and Brownian Motion

Definition 1.2.5 (Probability Space). A probability space is a triple (Ω,F ,P) where:

(i) Ω is a set of outcomes called the sample space.

(ii) F is a set of events called the event space, where each event is a set of outcomes from the

sample space. More specifically, it is a σ-algebra on the set Ω.

(iii) A measurable function P : F → [0, 1] assigning each event in the event space a probability

between 0 and 1. More specifically, P is a measure on Ω with the caveat that the measure of

the entire space is 1, i.e., P(Ω) = 1.

Definition 1.2.6 (Random Variable). Let (Ω,F ,P) be a probability space, and let d ∈ N0. For

some d ∈ N0 a random variable is a measurable function X : Ω → Rd.

Definition 1.2.7 (Expectation). Given a probability space (Ω,F ,P), the expected value of a random

variable X, denoted E [X] is the Lebesgue integral given by:

E [X] =



Ω
XdP (1.2.6)

Definition 1.2.8 (Stochastic Process). A stochastic process is a family of random variables over

a fixed probability space (Ω,F ,R), indexed over a set, usually [0, T ] for T ∈ (0,∞).

Definition 1.2.9 (Stochastic Basis). A stochastic basis is a tuple (Ω,F ,P,F) where:

(i) (Ω,F ,P) is a probability space equipped with a filtration F where,

(ii) F = (Fi)i∈I , is a collection of non-decreasing sets under inclusion where for every i ∈ I, I

being equipped in total order, it is the case that Fi is a sub σ-algebra of F .

Definition 1.2.10 (Brownian Motion Over a Stochastic Basis). Given a stochastic basis (Ω,F ,P,F)

a standard (Ft)t∈[0,T ]-Brownian motion Wt is a mapping Wt : [0, T ]× Ω → Rd satisfying:
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(i) Wt is Ft measurable for all t ∈ [0,∞)

(ii) W0 = 0 with P-a.s.

(iii) Wt −Ws ∼ Norm (0, t− s) when s ∈ (0, t).

(iv) Wt −Ws is independent of Ws whenever s < t.

(v) The paths that Wt take are P-a.s. continuous.

Definition 1.2.11 ((Ft)t∈[0,T ]-adapted Stochastic Process). Let T ∈ (0,∞). Let (Ω,F ,P,F) be a

filtered probability space with the filtration indexed over [0, T ]. Let (S,Σ) be a measurable space.

Let X : [0, T ] × Ω → S be a stochastic process. We say that X is an (Ft)t∈[0,T ]-adapted stochastic

process if it is the case that Xt : Ω → S is (Ft,Σ) measurable for each t ∈ [0, T ].

Definition 1.2.12 ((Ft)t∈[0,T ]-adapted stopping time). Let T ∈ (0,∞), τ ∈ [0, T ]. Assume a

filtered probability space (Ω,F ,P,F). It is then the case that τ ∈ R is a stopping time if the

stochastic process X = (Xt)t∈[0,T ] define as:

Xt :=






1 : t < τ

0 : t  τ

(1.2.7)

is adapted to the filtration F := (Fi)i∈[0,T ]

Definition 1.2.13 (Strong Solution of Stochastic Differential Equation). Let d,m ∈ N. Let µ :

Rd → Rd, σ : Rd → Rd×m be Borel-measurable. Let (Ω,F ,P, (Ft)t∈[0,T ]) be a stochastic basis, and

let W : [0, T ] × Ω → Rd be a standard (Ft)t∈[0,T ]-Brownian motion. For all t ∈ [0, T ], x ∈ Rd, let

X t,x = (X t,x
s )s∈[t,T ] × Ω → Rd be an (Fs)s∈[t,T ]-adapted stochastic process with continuous sample

paths satisfying that for all t ∈ [0, T ] we have P-a.s. that:

X t,x = X0 +

 t

0
µ(r,X t,x

r )dr +

 t

0
σ(r,X t,x

r )dWr (1.2.8)

A strong solution to the stochastic differential equation (1.2.8) on probability space (Ω,F ,P, (Ft)t∈[0,T ]),
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w.r.t Brownian motion W, w.r.t to initial condition X0 = 0 is a stochastic process (Xt)t∈[0,∞) sat-

isfying that:

(i) Xt is adapted to the filtration (Ft)t∈[0,T ].

(ii) P(X0 = 0) = 1.

(iii) for all t ∈ [0, T ] it is the case that P
 t

0 µ(r,X
t,x
r )E + σ(r,X t,x

r )FdWr < ∞

= 1

(iv) it holds with P-a.s. that X satisfies the equation:

X t,x = X0 +

 t

0
µ(r,X t,x

r )dr +

 t

0
σ(r,X t,x

r )dWr (1.2.9)

Definition 1.2.14 (Strong Uniqueness Property for Solutions to Stochastic Differential Equations).

Let it be the case that whenever we have two strong solutions X and X , w.r.t. process W and initial

condition X0 = 0, as defined in Definition 1.2.13, it is also the case that P(Xt = Xt) = 1 for all

t ∈ [0, T ]. We then say that the pair (µ,σ) exhibits a strong uniqueness property.

1.2.3 Lipschitz and Related Notions

Definition 1.2.15 (Globally Lipschitz Function). Let d ∈ N0. For every d ∈ N0, we say a function

f : Rd → Rd is (globally) Lipschitz if there exists an L ∈ (0,∞) such that for all x, y ∈ Rd it is the

case that :

f(x)− f(y)E  L · x− yE (1.2.10)

The set of globally Lipschitz functions over set X will be denoted LipG(X)

Corollary 1.2.15.1. Let d ∈ N0. For every d ∈ N0, a continuous function f ∈ C(Rd,Rd) over a

compact set K ⊊ Rd is Lipschitz over that set.

Proof. By Hiene-Cantor, f is uniformly continuous over set K. Fix an arbitrary  and let δ be from

the definition of uniform continuity. By compactness we have a finite cover of K by balls of radius
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δ, centered around xi ∈ K:

K ⊆
N

i=1

Bδ(xi) (1.2.11)

Note that within a given ball, no point xj is such that |xi − xj | > δ. Thus, by uniform continuity,

we have the following:

|f(xi)− f(xj)| <  ∀i, j ∈ {1, 2, ..., N} (1.2.12)

and thus let L be defined as:

L = max
i,j∈{1,2,...,N}

i ∕=j


f(xi)− f(xj)

xi − xj

 (1.2.13)

L satisfies the Lipschitz property. To see this, let x1, x2 be two arbitrary points within K. Let

Bδ(xi) and Bδ(xj) be two points such that x1 ∈ Bδ(xi) and x2 ∈ Bδ(xj). The triangle inequality

then yields that:

|f(x1)− f(x2)|  |f(x1)− f(xi)|+ |f(xi)− f(xj)|+ |f(xj)− f(x2)|

 |f(xi)− f(xj)|+ 2

 L · |xi − xj |+ 2

 L · |x1 − x2|+ 2

for all  ∈ (0,∞).

Definition 1.2.16 (Locally Lipschitz Function). Let d ∈ N0. For every d ∈ N0 a function

f : Rd → Rd is locally Lipschitz if for all x0 ∈ Rd there exists a compact set K ⊆ Domain(f)

containing x0, and a constant L ∈ (0,∞) for that compact set such that

sup
x,y∈K
x ∕=y


f(x)− f(y)

x− y


E

 L (1.2.14)

The set of locally Lipschitz functions over set X will be denoted LipL(X).
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Corollary 1.2.16.1. A function f : Rd → Rd that is globally Lipschitz is also locally Lipschitz.

More concisely LipG(X) ⊊ LipL(X).

Proof. Assume not, that is to say, there exists a point x ∈ Domain(f), a compact set K ⊆

Domain(f), and points x1, x2 ∈ K such that:

|f(x1)− f(x2)|
x1 − x2

 L (1.2.15)

This directly contradicts Definition 1.2.15.

1.2.4 Kolmogorov Equations

Definition 1.2.17 (Kolmogorov Equation). We take our definition from (Da Prato and Zabczyk,

2002, (7.0.1)) with, u ↶ u, G ↶ σ, F ↶ µ, and ϕ ↶ g, and for our purposes we set A : Rd → 0.

Given a separable Hilbert space H (in our case Rd), and letting µ : [0, T ]×Rd → Rd, σ : [0, T ]×Rd →

Rd×m, and g : Rd → R be at least Lipschitz, a Kolmogorov Equation is an equation of the form:







∂
∂tu


(t, x) = 1

2 Trace (σ (t, x) [σ (t, x)]∗ (Hessx u) (t, x)) + 〈µ (t, x) , (∇xu) (t, x)〉

u(0, x) = g(x)

(1.2.16)

Definition 1.2.18 (Strict Solution to Kolmogorov Equation). Let d ∈ N0. For every d ∈ N0 a

function u : [0, T ]× Rd → R is a strict solution to (1.2.16) if and only if:

(i) u ∈ C1,1

[0, T ]× Rd


and u(0, ·) = g

(ii) u(t, ·) ∈ UC1,2([0, T ]× Rd,R)

(iii) For all x ∈ Domain(A), u(·, x) is continuously differentiable on [0,∞) and satisfies (1.2.16).

Definition 1.2.19 (Generalized Solution to Kolmogorov Equation). A generalized solution to

(1.2.16) is defined as:

u(t, x) = E

g

X t,x


(1.2.17)

Where the stochastic process X t,x is the solution to the stochastic differential equation, for x ∈ Rd,
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t ∈ [0, T ]:

X t,x =

 t

0
µ

X t,x
r


dr +

 t

0
σ

X t,x
r


dWr (1.2.18)

Definition 1.2.20 (Laplace Operator w.r.t. x). Let d ∈ N0, and f ∈ C2

Rd,R


. For every d ∈ N0,

the Laplace operator ∇2
x : C2(Rd,R) → R is defined as:

∆xf = ∇2
xf := ∇ ·∇f =

d

i=1

∂f

∂xi
(1.2.19)

1.2.5 Linear Algebra Notation and Definitions

Definition 1.2.21 (Identity, Zero Matrix, and the 1-matrix). Let d ∈ N. We will define the identity

matrix for every d ∈ N as the matrix Id ∈ Rd×d given by:

Id = [Id]i,j =






1 i = j

0 else
(1.2.20)

Note that I1 = 1.

Let m,n, i, j ∈ N. For every m,n ∈ N, i ∈ {1, 2, . . . ,m}, and j ∈ {1, 2, . . . , n} we define the zero

matrix 0m,n ∈ Rm×n as:

0m,n = [0m,n]i,j = 0 (1.2.21)

Where we only have a column of zeros, it is convenient to denote 0d where d is the height of the

column.

Let m,n, i, j ∈ N. For every m,n ∈ N, i ∈ {1, 2, . . . ,m}, and j ∈ {1, 2, . . . , n} we define matrix of

ones em,n ∈ Rm×n as:

em,n = [e]i,j = 1 (1.2.22)

Where we only have a column of ones, it is convenient to denote ed where d is the height of the

column.
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Definition 1.2.22 (Single-entry matrix). Let m,n, k, l ∈ N and let c ∈ R. For k ∈ N ∩ [1,m] and

l ∈ N ∩ [1, n], we will denote by k
m,n
k,l,c ∈ Rm×n as the matrix defined by:

k
m,n
k,l,c =


k
m,n
k,l



i,j
=






c : k = i ∧ l = j

0 : else

(1.2.23)

Definition 1.2.23 (Complex conjugate and transpose). Let m,n, i, j ∈ N, and A ∈ Cm×n. For

every m,n ∈ N, i ∈ {1, 2, . . . ,m} and j ∈ {1, 2, . . . , n}, we denote by A∗ ∈ Cn×m the matrix:

A∗ := [A∗]i,j = [A]j,i (1.2.24)

Where it is clear that we are dealing with real matrices, i.e., A ∈ Rm×n, we will denote this as A⊺.

Definition 1.2.24 (Column and Row Notation). Let m,n, i, j ∈ N and let A ∈ Rm×n. For every

m,n ∈ N and i ∈ {1, 2, . . . ,m} we denote i-th row as:

[A]i,∗ =


ai,1 ai,2 · · · ai,n


(1.2.25)

Similarly for every m,n ∈ N and j ∈ {1, 2, . . . , n}, we done the j-th row as:

[A]∗,j =





a1,j

a2,j
...

am,j





(1.2.26)

Definition 1.2.25 (Component-wise notation). Let m,n, i, j ∈ N, and let A ∈ Rm×n. Let f : R →

R. For all m,n ∈ N, i ∈ {1, 2, . . . ,m}, and j ∈ {1, 2, . . . , n} we will define f

[A]∗,∗


∈ Rm×n as:

f

[A]∗,∗


:=


f

[A]i,j



i,j
(1.2.27)

Thus under this notation the component-wise square of A is

[A]∗,∗

2
, the component-wise sin is

sin

[A]∗,∗


and the Hadamard product of A,B ∈ Rm×n then becomes A⊙B = [A]∗,∗ × [B]∗,∗.
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Remark 1.2.26. Where we are dealing with a row vector x ∈ Rd×1 and it is evident from the

context we may choose to write f ([x]∗).

Definition 1.2.27 (The Diagonalization Operator). Let m1,m2, n1, n2 ∈ N. Given A ∈ Rm1×n1

and B ∈ Rm2×n2, we will denote by diag (A,B) the matrix:

diag (A,B) =




A 0m1,n2

0m2,n1 B



 (1.2.28)

Remark 1.2.28. diag (A1, A2, . . . , An) is defined analogously for a finite set of matrices A1, A2, . . . , An.

Definition 1.2.29 (Number of rows and columns notation). Let m,n ∈ N. Let A ∈ Rm×n. Let

rows : Rm×n → N and columns : Rm×n → N, be the functions respectively rows (A) = m and

columns (A) = n.

1.2.6 O-type Notation and Function Growth

Definition 1.2.30 (O-type notation). Let g ∈ C(R,R). We say that f ∈ C(R,R) is in O(g(x)),

denoted f ∈ O(g(x)), if there exists c ∈ (0,∞) and x0 ∈ (0,∞) such that for all x ∈ [x0,∞) it is

the case that:

0  f(x)  c · g(x) (1.2.29)

We say that f ∈ Ω(g(x)) if there exists c ∈ (0,∞) and x0 ∈ (0,∞) such that for all x ∈ [x0,∞) it

is the case that:

0  cg(x)  f(x) (1.2.30)

We say that f ∈ Θ(g(x)) if there exists c1, c2, x0 ∈ (0,∞) such that for all x ∈ [x0,∞) it is the case

that:

0  c1g(x)  f  c2g(x) (1.2.31)

Corollary 1.2.30.1 (Bounded functions and O-type notation). Let f(x) ∈ C(R,R), then:
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(i) if f is bounded above for all x ∈ R, it is in O(1) for some constant c ∈ R.

(ii) if f is bounded below for all x ∈ R, it is in Ω(1) for some constant c ∈ R.

(iii) if f is bounded above and below for all x ∈ R, it is in Θ(1) for some constant c ∈ R.

Proof. Assume f ∈ C(R,R), then:

(i) Assume for all x ∈ R it is the case that f(x)  M for some M ∈ R, then there exists an

x0 ∈ (0,∞) such that for all x ∈ (x0,∞) it is also the case that 0  f(x)  M , whence

f(x) ∈ O(1).

(ii) Assume for all x ∈ R it is the case that f(x)  M for some M ∈ R, then there exists an

x0 ∈ (0,∞) such that for all x ∈ [x0,∞) it is also the case that f(x)  M  0, whence

f(x) ∈ Ω(1).

(iii) This is a consequence of items (i) and (ii).

Corollary 1.2.30.2. Let n ∈ N0. For some n ∈ N0, let f ∈ O(xn). It is then also the case that

f ∈ O

xn+1


.

Proof. Let f ∈ O(xn). Then there exists c0, x0 ∈ (0,∞), such that for all x ∈ [x0,∞) it is the case

that:

f(x)  c0 · xn (1.2.32)

Note however that for all n ∈ N0, there also exists c1, x1 ∈ (0,∞) such that for all x ∈ (x1,∞) it

is the case that:

xn  c1 · xn+1 (1.2.33)

Thus taken together this implies that for all x ∈ (max {x0, x1} ,∞) it is the case that:

f(x)  c0 · xn  c0 · c1 · xn+1 (1.2.34)
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Definition 1.2.31 (The floor and ceiling functions). We denote by ⌊·⌋ : R → Z and ⌈·⌉ : R → Z

the functions satisfying for all x ∈ R that ⌊x⌋ = max (Z ∩ (−∞, x]) and ⌈x⌉ = min (Z ∩ (−∞, x]).

1.2.7 The Concatenation of Vectors & Functions

Definition 1.2.32 (Vertical Vector Concatenation). Let m,n ∈ N. Let x = [x1 x2 . . . xm]⊺ ∈ Rm

and y = [y1, y2, . . . , yn]
⊺ ∈ Rn. For every m,n ∈ N, we will denote by x ⌢ y ∈ Rm × Rn the vector

given as:





x1

x2
...

xm

y1

y2
...

yn





(1.2.35)

Remark 1.2.33. We will stipulate that when concatenating vectors as x1 ⌢ x2, x1 is on top, and

x2 is at the bottom.

Corollary 1.2.33.1. Let m1,m2, n1, n2 ∈ N, such that m1 = n1, m2 = n2, and let x ∈ Rm1,

y ∈ Rn1, x ∈ Rm2, and y ∈ Rn2. It is then the case that [x ⌢ x] + [y ⌢ y] = [x+ y] ⌢ [x+ y].
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Proof. This follows straightforwardly from the fact that:

[x ⌢ x] + [y ⌢ y] =





x1

x2
...

xm1

x1

x2
...

xm2





+





y1

y2
...

yn1

y1

y2
...

yn2





=





x1 + y1

x2 + y2
...

xm1 + yn1

x1 + y1

x2 + y2
...

xm2 + yn2





= [x+ y] ⌢ [x+ y] (1.2.36)

Definition 1.2.34 (Function Concatenation). Let m1, n1,m2, n2 ∈ N. Let f : Rm1 → Rn1

and g : Rm2 → Rn2. We will denote by f ⌢ g : Rm1 × Rm2 → Rn1 × Rn2 as the func-

tion given for all x = {x1, x2, . . . , xm1} ∈ Rm1, x ∈ {x1, x2, . . . , xm2} ∈ Rm2, and x ⌢ x =

{x1, x2, . . . , xm1 , x1, x2, . . . , xm2} ∈ Rm1 × Rm2 by:





x1

x2
...

xm1

x1

x2
...

xm2





−−−−−−−→




f(x)

g(x)



 (1.2.37)

Corollary 1.2.34.1. Let m,n ∈ N. Let x1 ∈ Rm,x2 ∈ Rn, and f ∈ C (R,R). It is then the case

that f (x1 ⌢ x2) = f (x1) ⌢ f (x2).

Proof. This follows straightforwardly from the definition of function concatenation.
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Lemma 1.2.35. Let m1,m2, n1, n2 ∈ N. Let f ∈ C (Rm1 ,Rn1) and g ∈ C (Rm2 ,Rn2). It is then

also the case that f ⌢ g ∈ C (Rm1 × Rn1 ,Rm2 × Rn2).

Proof. Let Rm2 × Rn2 be equipped with the usual product topology, i.e., the topology generated

by all products X × Y of open subsets X ∈ Rm2 and Y ∈ Rn2 . In such a case let V ⊊ Rm2 × Rn2

be an open subset. Then let it be that Vf and Vg are the canonical projections to the first and

second factors respectively. Since projection under the usual topology is continuous, it is the case

that Vf ⊊ Rm2 and Vg ⊊ Rn2 are open sets, respectively. As such it is then also the case that

f−1 (Vf ) ⊊ Rm1 and g−1 (Vg) ⊊ Rn1 are open sets as well by continuity of f and g. Thus, their

product is open as well, proving the lemma.
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Chapter 2

Brownian Motion Monte Carlo

2.1 Brownian Motion Preliminaries

We will present here some standard invariants of Brownian motions. The proofs are standard and

can be found in for instance Durrett (2019) and Karatzas and Shreve (1991).

Lemma 2.1.1 (Markov property of Brownian motions). Let T ∈ R, t ∈ [0, T ], and d ∈ N. Let

(Ω,F ,P) be a probability space. Let Wt : [0, T ] × Ω → Rd be a standard Brownian motion. Fix

s ∈ [0,∞). Let Wt = Ws+t−Ws. Then W = {Wt : t ∈ [0,∞)} is also a standard Brownian motion

independent of W.

Proof. We check against the Brownian motion axioms. First note that W0 = Ws+0 −Ws = 0 with

P-a.s.

Note that t → Ws+t −Ws is P-a.s. continuous as it is the difference of two functions that are also

P-a.s. continuous.

Note next that for h ∈ (0,∞) it is the case that:

E [Wt+h −Wt] = E [Ws+t+h −Ws+h −Ws+t +Ws]

= E [Ws+t+h −Ws+t]− E [Ws+h −Ws]

= 0− 0 = 0 (2.1.1)
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We note finally that:

Var [Wt+h −Mt] = Var [Ws+t+h −Ws −Ws+t +Ws]

= Var [Ws+t+h −Ws+t]− Var [Ws −Ws] +
✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭

Cov (Ws+t+h −Ws+t,Ws+h −Ws)

= h− 0 = h

Finally note that two stochastic processes W, X are independent whenever given a set of sample

points t1, t2, . . . , tn ∈ [0, T ] it is the case that the vectors [Wt1 ,Wt2 , . . . ,Wtn ]
⊺ and [Xt1 ,Xt2 , . . . ,Xtn ]

⊺

are independent vectors.

That being the case note that the independent increments property of Brownian motions yields

that, Ws+t1 −Ws, Ws+t2 −Ws, . . . ,Ws+tn −Ws is independent of Wt1 ,Wt2 , . . . ,Wtn , i.e. W and

W are independent.

Lemma 2.1.2 (Independence of Brownian Motion). Let T ∈ (0,∞). Let (Ω,F ,P) be a probability

space. Let X ,Y : [0, T ]× Ω → Rd be standard Brownian motions. It is then the case that they are

independent of each other.

Proof. We say that two Brownian motions are independent of each of each other if given a sampling

vector of times (t1, t2, . . . , tn), the vectors (Xt1 ,Xt2 , . . .Xtn) and (Yt1 ,Yt2 , . . . ,Ytn) are independent.

As such let n ∈ N and let (t1, t2, . . . tn) be a vector or times with samples as given above. Consider

now a new Brownian motion X−Y, wherein our samples are now (Xt1 − Yt1 ,Xt2 − Yt2 , . . . ,Xtn − Ytn).

By the independence property of Brownian motions, these increments must be independent of each

other. Whence it is the case that the vectors (Xt1 ,Xt2 , . . . ,Xtn) and (Yt1 ,Yt2 , . . . ,Ytn) are indepen-

dent.

Lemma 2.1.3 (Scaling Invariance). Let T ∈ R, t ∈ [0, T ], and d ∈ N. Let (Ω,F ,P) be a probability

space. Let Wt : [0, T ] × Ω → Rd be a standard Brownian motion. Let a ∈ R \ {0}. It is then the

case that Xt :=
1
aWa2·t is also a standard Brownian motion.

Proof. We check against the Brownian motion axioms. Note for instance that the function t → Xt

is a product of a constant with a function that is P-a.s. continuous yielding a function that is also

P-a.s. continuous.
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Note also for instance that X0 =
1
a · Wa2·0 = 0 with P-a.s.

Note that for all h ∈ (0,∞), and t ∈ [0, T ] it is the case that:

E [Xt+h − Xt] = E

1

a
Wa2·(t+h) −

1

a
Wa2·t



=
1

a
E

Wa2·(t+h) −Wa2·t



= 0

Note that for all h ∈ (0,∞), and t ∈ [0, T ] it is the case that:

Var [Xt+h − Xt] = Var

1

a
Wa2·(t+h) −

1

a
Wa2·t



=
1

a2
Var


Wa2·(t+h) −Wa2·t



=
1

a2
a
2 (✄t+ h− ✄t)

= h (2.1.2)

Finally note that for t ∈ [0, T ] and s ∈ [0, t) it is the case that Wa2·t − Wa2·s is independent of

Wa2·s. Whence it is also the case that Xt − Xs is independent of Xs.

Lemma 2.1.4 (Summation of Brownian Motions). Let T ∈ R, t ∈ [0, T ] and d ∈ N. Let (Ω,F ,P)

be a probability space. Let Wt,Xt : [0, T ]× Ω → Rd be a standard independent Brownian motions.

It is then the case that the process Yt defined as Yt =
1√
2
(Wt + Xt) is also a standard Brownian

motion.

Proof. Note that t → 1√
2
(Wt + Xt) is P-a.s. continuous as it is the linear combination of two

functions that are also R-a.s. continuous.

Note also that Y0 =
1√
2
(W0 + X0) = 0 + 0 = 0 with P-a.s.
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Note that for all h ∈ (0,∞) and t ∈ [t, T ] it is the case that:

E


1√
2
(Yt+h − Yt)


= E


1√
2
(Wt+h + Xt+h −Wt − Xt)



=
1√
2
E [Wt+h −Wt] +

1√
2
E [Xt+h − Xt]

= 0

Note that for all h ∈ (0,∞), and t ∈ [0, T ] it is the case that:

Var


1√
2
(Yt+h − Yt)


= Var


1√
2
(Wt+h + Xt+h −Wt − Xt)



= Var


1√
2
(Wt+h −Wt) +

1√
2
(Xt+h − Xt)



=
1

2
Var [Wt+h −Wt] +

1

2
Var [Xt+h − Xt] +✭✭✭✭✭✭Cov (W,X )

= h

Definition 2.1.5 (Of k). Let p ∈ [2,∞). We denote by kp ∈ R the real number given by k := inf{c ∈

R} where it holds that for every probability space (Ω,F ,P) and every random variable X : Ω → R

with E[|X |] < ∞ that (E [|X − E [X ])p])
1
p  c (E [|X |p])

1
p .

Definition 2.1.6 (Primary Setting). Let d,m ∈ N, T,L, p ∈ [0,∞), p ∈ [2,∞) m = kp
√
p− 1,

Θ = Z, g ∈ C(Rd,R), assume for all t ∈ [0, T ], x ∈ Rd that:

max{|g(x)|}  L

1 + xpE


(2.1.3)

and let (Ω,F ,P) be a probability space. Let Wθ : [0, T ] × Ω → Rd, θ ∈ Θ be independent standard

Brownian motions, let u ∈ C([0, T ]×Rd,R) satisfy for all t ∈ [0, T ], x ∈ Rd, that E[|g(x+W0
T−t)|] <

∞ and:

u(t, x) = E

g

x+W0

T−t


(2.1.4)
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and let let U θ : [0, T ]× Rd × Ω → R, θ ∈ Θ satisfy, θ ∈ Θ, t ∈ [0, T ], x ∈ Rd, that:

U θ
m(t, x) =

1

m


m

k=1

g

x+W(θ,0,−k)

T−t


(2.1.5)

Lemma 2.1.7. Assume Setting 2.1.6 then:

(i) it holds for all n ∈ N0, θ ∈ Θ that U θ : [0, T ]× Rd × Ω → R is a continuous random field.

(ii) it holds that for all θ ∈ Θ that σ

U θ


⊆ σ


W(θ,V)

V∈Θ


.

(iii) it holds that

U θ


θ∈Θ,


Wθ


θ∈Θ, are independent.

(iv) it holds for all n,m ∈, i, k, i, k ∈ Z, with (i, k) ∕= (i, k) that (U (θ,i,k))θ∈Θ and

U (θ,i,k)


θ∈Θ are

independent and,

(v) it holds that

U θ


θ∈Θ are identically distributed random variables.

Proof. For (i) Consider that W(θ,0,−k)
T−t are continuous random fields and that g ∈ C(Rd,R), we have

that U θ(t, x) is the composition of continuous functions with m > 0 by hypothesis, ensuring no

singularities. Thus U θ : [0, T ]× Rd × Ω → R.

For (ii) observe that for all θ ∈ Θ it holds that Wθ is B

[0, T ]⊗ σ


W θ


/B


Rd


-measurable, this,

and induction on prove item (ii).

Moreover observe that item (ii) and the fact that for all θ ∈ Θ it holds that

W(θ,ϑ)

ϑ∈Θ


, Wθ are

independently establish item (iii).

Furthermore, note that (ii) and the fact that for all i, k, i, k ∈ Z, θ ∈ Θ, with (i, k) ∕= (i, k) it holds

that

W(θ,i,k,ϑ)


ϑ∈Θ and


W(θ,i,k,ϑ)


ϑ∈Θ are independent establish item (iv).

Hutzenhaler (Hutzenthaler et al., 2020a, Corollary 2.5 ) establish item (v). This completes the

proof of Lemma 1.1.

Lemma 2.1.8. Assume Setting 2.1.6. Then it holds for θ ∈ Θ, s ∈ [0, T ], t ∈ [s, T ], x ∈ Rd that:

E
U θ


t, x+Wθ

t−s



+ E

g

x+Wθ

t−s



+

 T

s
E
U θ


r, x+Wθ

r−s



dr < ∞ (2.1.6)
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Proof. Note that (2.1.3), the fact that for all r, a, b ∈ [0,∞) it holds that (a+b)r  2max{r−1,0}(ar+

br), and the fact that for all θ ∈ Θ it holds that E

Wθ

T 

< ∞, assure that for all s ∈ [0, T ],

t ∈ [s, T ], θ ∈ Θ it holds that:

E
g(x+Wθ

t−s)


 E


L

1 + x+Wθ

t−s
p
E



 L

1 + 2max{p−1,0}


xpE + E

Wθ
T


p

E


< ∞ (2.1.7)

We next claim that for all s ∈ [0, T ], t ∈ [s, T ], θ ∈ Θ it holds that:

E
U θ


t, x+Wθ

t−s



+

 T

s
E
U θ


r, x+Wθ

r−s



dr < ∞ (2.1.8)

To prove this claim observe the triangle inequality and (2.1.5), demonstrate that for all s ∈ [0, T ],

t ∈ [s, T ], θ ∈ Θ, it holds that:

E
U θ


t, x+Wθ

t−s



 1

m


m

i=1

E
g


x+Wθ

t−s +W(θ,0,−i)
T−t




(2.1.9)

Now observe that (2.1.7) and the fact that (W θ)θ∈Θ are independent imply that for all s ∈ [0, T ],

t ∈ [s, T ], θ ∈ Θ, i ∈ Z it holds that:

E
g


x+Wθ

t−s +W(θ,0,i)
T−t



= E

g

x+Wθ

(t−s)+(T−t)



= E

g

x+Wθ

T−s



< ∞ (2.1.10)

Combining (2.1.9) and (2.1.10) demonstrate that for all s ∈ [0, T ], t ∈ [s, T ], θ ∈ Θ it holds that:

E
U θ(t, x+Wθ

t−s)


< ∞ (2.1.11)

Finally observe that for all s ∈ [0, T ] θ ∈ Θ it holds that:

 T

s
E
U θ


r, x+Wθ

r−s



 (T − s) sup

r∈[s,T ]
E
U θ


r, x+Wθ

r−s



< ∞ (2.1.12)

Combining (??), (2.1.11), and (2.1.12) completes the proof of Lemma 2.1.8.

25



Corollary 2.1.8.1. Assume Setting 2.1.6, then we have:

(i) it holds that t ∈ [0, T ], x ∈ Rd that:

E
U0 (t, x)

+ E
g


x+W(0,0,−1)

T−t



< ∞ (2.1.13)

(ii) it holds that t ∈ [0, T ], x ∈ Rd that:

E

U0 (t, x)


= E


g

x+W(0,0,−1)

T−t


(2.1.14)

Proof. (i) is a restatement of Lemma 2.1.8 in that for all t ∈ [0, T ]:

E
U0 (t, x)

+ E
g


x+W(0,0,−1)

T−t




< E
U θ


t, x+Wθ

t−s



+ E

g

x+Wθ

t−s



+

 T

s
E
U θ


r, x+Wθ

r−s



dr

< ∞ (2.1.15)

Furthermore (ii) is a restatement of (4.0.7) with θ = 0, m = 1, and k = 1. This completes the

proof of Corollary 2.1.8.1.

2.2 Monte Carlo Approximations

Lemma 2.2.1. Let p ∈ (2,∞), n ∈ N, let (Ω,F ,P), be a probability space and let Xi : Ω → R,

i ∈ {1, 2, ..., n} be i.i.d. random variables with E[|X1|] < ∞. Then it holds that:


E

E [X1]−
1

n


n

i=1

Xi



p 1
p



p− 1

n

 1
2

(E [|X1 − E [X1]|p)]
1
p (2.2.1)

Proof. The hypothesis that for all i ∈ {1, 2, ..., n} it holds that Xi : Ω → R are i.i.d. random

variables ensures that:

E

E [X1]−
1

n


n

i=1

Xi



p
= E


1

n


n

i=1

(E [X1]− Xi)



p
=

1

np
E



n

i=1

(E [Xi]− Xi)



p
(2.2.2)
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This combined with the fact that for all i ∈ {1, 2, ..., n} it is the case that Xi : Ω → R are i.i.d.

random variables and e.g. (Rio, 2009, Theorem 2.1) (with p ↶ p, (Si)i∈{0,1,...,n} ↶ (
i

k=1(E[Xk]−

Xk)), (Xi)i∈{1,2,...,n} ↶ (E[Xi]−Xi)i∈{1,2,...,n} in the notation of (Rio, 2009, Theorem 2.1) ensures

that:


E

E [X1]−
1

n


n

i=1

Xi



p 2
p

=
1

n2


E



n

i=1

(E [Xi]− Xi)



p 2
p

 p− 1

n2


n

i=1

(E [|E [Xi]− Xi|p])
2
p



=
p− 1

n2


n (E [|E [X1]− X1|p])

2
p


(2.2.3)

=
p− 1

n
(E [|E [X1]− X1|p])

2
p (2.2.4)

This completes the proof of the lemma.

Corollary 2.2.1.1. Let p ∈ [2,∞), n ∈ N, let (Ω,F ,P) be a probability space, and let Xi : Ω → R,

i ∈ {1, 2, ..., n} be i.i.d random variables with E [|X1|] < ∞. Then it holds that:


E

E [X1]−
1

n


n

i=1

Xi



p 1
p



p− 1

n

 1
2

(E [|X1 − E [X1]|p])
1
p (2.2.5)

Proof. Observe that e.g. (Grohs et al., 2018, Proposition 2.3) and Lemma 2.3.1 establish (2.2.5).

Corollary 2.2.1.2. Let p ∈ [2,∞), n ∈ N, let (Ω,F ,P), be a probability space, and let Xi : Ω → R,

i ∈ {1, 2, ..., n}, be i.i.d. random variables with E[|X1|] < ∞, then:


E

E [X1]−
1

n


n

i=1

Xi



p 1
p

 kp
√
p− 1

n
1
2

(E [|X1|p])
1
p (2.2.6)

Proof. This a direct consequence of Definition 2.1.5 and Corollary 2.2.1.1.
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2.3 Bounds and Covnvergence

Lemma 2.3.1. Assume Setting 4.0.1. Then it holds for all t ∈ [0, T ], x ∈ Rd


E
U0(t, x+W0

t )− E

U0


t, x+W0

t

p
 1

p

 m

m
1
2


E
g


x+W0

T

p
 1

p


(2.3.1)

Proof. For notational simplicity, let Gk : [0, T ]×Rd×Ω → R, k ∈ Z, satisfy for all k ∈ Z, t ∈ [0, T ],

x ∈ Rd that:

Gk(t, x) = g

x+W(0,0,−k)

T−t


(2.3.2)

Observe that the hypothesis that (Wθ)θ∈Θ are independent Brownian motions and the hypothesis

that g ∈ C(Rd,R) assure that for all t ∈ [0, T ],x ∈ Rd it holds that (Gk(t, x))k∈Z are i.i.d. random

variables. This and Corollary 2.2.1.2 (applied for every t ∈ [0, T ], x ∈ Rd with p ↶ p, n ↶ m,

(Xk)k∈{1,2,...,m} ↶ (Gk(t, x))k∈{1,2,...,m}), with the notation of Corollary 2.2.1.2 ensure that for all

t ∈ [0, T ], x ∈ Rd, it holds that:


E


1

m


m

k=1

Gk(t, x)


− E [G1(t, x)]



p 1
p

 m

m
1
2

(E [|G1(t, x)|p])
1
p (2.3.3)

Combining this, with (1.16), (1.17), and item (ii) of Corollary 2.1.8.1 yields that:


E
U0(t, x)− E


U0(t, x)

p
 1

p

=


E


1

m


m

k=1

Gk(t, x)


− E [G1(t, x)]



p 1
p

(2.3.4)

 m

m
1
2


E

|G1(t, x)|p

 1
p (2.3.5)

=
m

m
1
2


E
g


x+W1

T−t

p
 1

p


(2.3.6)

This and the fact that W0 has independent increments ensure that for all n ∈, t ∈ [0, T ], x ∈ Rd it
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holds that:


E
U0


t, x+W0

t


− E


U0


t, x+W0

t

p
 1

p  m

m
1
2


E
g


x+W0

T

p
 1

p


(2.3.7)

This completes the proof of Lemma 2.3.1.

Lemma 2.3.2. Assume Setting 2.1.6. Then it holds for all, t ∈ [0, T ], x ∈ Rd that:


E
U0


t, x+W0

t


− u


t, x+W0

t

p
 1

p 


m

m
1
2


E
g


x+W0

T

p
 1

p (2.3.8)

Proof. Observe that from Corollary 2.1.8.1 item (ii) we have:

E

U0(t, x)


= E


g

x+W(0,0,−1)

T−t


(2.3.9)

This and (4.0.6) ensure that:

u(t, x)− E

U0(t, x)


= 0

E

U0(t, x)


− u (t, x) = 0 (2.3.10)

This, and the fact that W0 has independent increments, assure that for all, t ∈ [0, T ], x ∈ Rd, it

holds that:


E
E


U0


t, x+W0

t


− u


t, x+W0

t

p
 1

p
= 0 


E
u


t, x+W0

t

p


(2.3.11)

This along with (4.0.6) ensure that:


E
E


U0


t, x+W0

t


− u


t, x+W0

t

p
 1

p
= 0 


E
g


x+W0

T

p
 1

p (2.3.12)
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Notice that the triangle inequality gives us:


E
U0


t, x+W0

t


− u


t, x+W0

t

p
 1

p 

E
U0(t, x+W 0

t )− E

U0(t, x+W0

t )
p

 1
p

+

E
E


U0


t, x+W0

t


− u


t, x+W0

t

p
 1

p

(2.3.13)

This, combined with (1.26), (1.21), the independence of Brownian motions, gives us:


E
U0


t, x+W0

t


− u


t, x+W0

t

p
 1

p 


m

m
1
2


E
g


x+W0

T

p
 1

p

=


m

m
1
2


E
g


x+W0

T

p
 1

p (2.3.14)

This completes the proof of Lemma 2.3.2.

Lemma 2.3.3. Assume Setting 2.1.6. Then it holds for all t ∈ [0, T ], x ∈ Rd that:


E
U0


t, x+W0

t


− u


t, x+W0

t

p
 1

p  L


m

m
1
2


sup

s∈[0,T ]
E

1 +

x+W0
s

p
E

p
 1

p

(2.3.15)

Proof. Observe that Lemma 2.3.2 ensures that:


E
U0


t, x+W0

t


− u


t, x+W0

t

p
 1

p 


m

m
1
2


E
g


x+W0

T

p
 1

p (2.3.16)

Observe next that (4.0.6) ensures that:


m

m
1
2


E
g


x+W0

T

p
 1

p  L


m

m
1
2


E

1 +

x+W0
T

p
E

p 1
p (2.3.17)

Which in turn yields that:

L


m

m
1
2


E

1 +

x+W0
T

p
E

p 1
p  L


m

m
1
2


sup

s∈[0,T ]
E

1 +

x+W0
s

p
E

p
 1

p

(2.3.18)
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Combining 2.3.16, 2.3.17, and 2.3.18 yields that:


E
U0


t, x+W0

t


− u


t, x+W0

t

p
 1

p 


m

m
1
2


E
g


x+W0

T

p
 1

p

 L


m

m
1
2


sup

s∈[0,T ]
E

1 +

x+W0
s

p
E

p
 1

p

(2.3.19)

This completes the proof of Lemma 2.3.3.

Corollary 2.3.3.1. Assume Setting 2.1.6. Then it holds for all t ∈ [0, T ], x ∈ Rd that:


E
U0 (t, x)− u(t, x)

p
 1

p  L


m

m
1
2


sup

s∈[0,T ]
E

(1+x+W0

s

p
E

p
 1

p

(2.3.20)

Proof. Observe that for all t ∈ [0, T − t] and t ∈ [0, T ], and the fact that W 0 has independent

increments it is the case that:

u(t+ t, x) = E

g

x+W0

T−(t+t)


= E


g

x+W0

(T−t)−t)


(2.3.21)

It is also the case that:

U θ(t+ t, x) =
1

m


m

k=1

g

x+W(θ,0,−k)

T−(t+t)


=

1

m


m

k=1

g

x+W(θ,0,−k)

(T−t)−t



Then, applying Lemma 2.3.3, applied for all t ∈ [0, T ], with L ↶ L, p ↶ p, p ↶ p, T ↶ (T − t) is

such that for all t ∈ [0, T ], t ∈ [0, T − t], x ∈ Rd we have:


E
U0


t+ t, x+W0

t


− u


t+ t, x+W0

t

p
 1

p

 L


m

m
1
2


sup

s∈[0,T−t]
E

1 +

x+W0
s

p
E

p
 1

p

 L


m

m
1
2


sup

s∈[0,T ]
E

1 +

x+W0
s

p
E

p
 1

p

(2.3.22)
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Thus we get for all t ∈ [0, T ], x ∈ Rd, n ∈:


E
U0 (t, x)− u (t, x)

p
 1

p
=


E
U0


t, x+W0

0


− u


t, x+W0

0

p
 1

p

 L


m

m
1
2


sup

s∈[0,T ]
E

1 +

x+W0
s

p
E

p
 1

p

(2.3.23)

This completes the proof of Corollary 2.3.3.1.

Theorem 2.3.4. Let T, L, p, q, d ∈ [0,∞),m ∈ N, Θ =


n∈N Zn, let gd ∈ C(Rd,R), and as-

sume that d ∈ N, t ∈ [0, T ], x = (x1, x2, ..., xd) ∈ Rd, v, w ∈ R and that max{|gd(x)|} 

Ldp

1 + Σd

k=1 |xk|

, let (Ω,F ,P) be a probability space, let Wd,θ : [0, T ] × Ω → Rd, d ∈ N,

θ ∈ Θ, be independent standard Brownian motions, assume for every d ∈ N that

Wd,θ


θ∈Θ

are independent, let ud ∈ C([0, T ] × Rd,R), d ∈ N, satisfy for all d ∈ N, t ∈ [0, T ], x ∈ Rd that

E

gx


x+Wd,0

T−t


< ∞ and:

ud (t, x) = E

gd


x+Wd,0

T−t


(2.3.24)

Let Ud,θ
m : [0, T ] × Rd × Ω → R, d ∈ N, m ∈ Z, θ ∈ Θ, satisfy for all, d ∈ N, m ∈ Z, θ ∈ Θ,

t ∈ [0, T ], x ∈ Rd that:

Ud,θ
m (t, x) =

1

m


m

k=1

gd


x+Wd,(θ,0,−k)

T−t


(2.3.25)

and for every d, n,m ∈ N let Cd,n,m ∈ Z be the number of function evaluations of ud(0, ·) and

the number of realizations of scalar random variables which are used to compute one realization of

Ud,0
m (T, 0) : Ω → R.

There then exists c ∈ R, and N : N× (0, 1] → N such that for all d ∈ N, ε ∈ (0, 1] it holds that:

sup
t∈[0,T ]

sup
x∈[−L,L]d


E
ud(t, x)− Ud,0

N(d,)


p 1

p   (2.3.26)

and:

Cd,N(d,ε),N(d,ε)  cdcε−(2+δ) (2.3.27)
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Proof. Throughout the proof let mp =
√
p− 1, p ∈ [2,∞), let Fd

t ⊆ F , d ∈ N, t ∈ [0, T ] satisfy for

all d ∈ N, t ∈ [0, T ] that:

Fd
t =







s∈[t,T ] σ


σ

W d,0

r : r ∈ [0, s]

∪ {A ∈ F : P(A) = 0}


: t < T

σ

σ

W d,0

s : s ∈ [0, T ]

∪ {A ∈ F : P(A) = 0}


: t = T

(2.3.28)

Observe that (2.3.28) guarantees that Fd
t ⊆ F , d ∈ N, t ∈ [0, T ] satisfies that:

(I) it holds for all d ∈ N that {A ∈ F : P(A) = 0} ⊆ Fd
0

(II) it holds for all d ∈ N, t ∈ [0, T ], that Fd
t =


s∈(t,T ] Fd

s .

Combining item (I), item (II), (2.3.28) and (Hutzenthaler et al., 2020b, Lemma 2.17) assures us

that for all d ∈ N it holds that W d,0 : [0, T ]×Ω → Rd is a standard

Ω,F ,P,


Fd
t


t∈[0,T ]


-Brownian

Brownian motion. In addition (58) ensures that it is the case that for all d ∈ N , x ∈ Rd it holds

that [0, T ] × Ω ∋ (t,ω) → x + W d,0
t (ω) ∈ Rd is an


Fd
t


t∈[0,T ]

/B

Rd


-adapted stochastic process

with continuous sample paths.

This and the fact that for all d ∈ N, t ∈ [0, T ], x ∈ Rd it holds that ad(t, x) = 0, and the fact that

for all d ∈ N, t ∈ [0, T ], x,v ∈ Rd it holds that bd(t, x)v = v yield that for all d ∈ N, x ∈ Rd it holds

that [0, T ]× Ω ∋ (t,ω) → x+W d,0
t (ω) ∈ Rd satisfies for all t ∈ [0, T ] it holds P-a.s. that:

x+W d,0
t = x+

 t

0
0ds+

 t

0
dW d,0

s = x+

 t

0
ad(s, x+W d,0

s )ds+

 t

0
bd(s, x+W d,0

s )dW d,0
s

(2.3.29)

This and (Hutzenthaler et al., 2020b, Lemma 2.6) (applied for every d ∈ N, x ∈ Rd with d ↶

d, m ↶ d, T ↶ T , C1 ↶ d, C2 ↶ 0, F ↶ Fd, ξ ↶ x, µ ↶ ad,σ ↶ bd,W ↶ W d,0, X ↶

[0, T ]× Ω ∋ (t,ω) → x+W d,0

t (ω) ∈ Rd


in the notation of (Hutzenthaler et al., 2020b, Lemma

2.6) ensures that for all r ∈ [0,∞), d ∈ N, x ∈ Rd, t ∈ [0, T ] it holds that

E
x+W d,0

t


r

 max{T, 1}


1 + x2
 r

2
+ (r + 1)d

r
2


exp


r(r + 3)T

2


< ∞ (2.3.30)

This, the triangle inequality, and the fact that for all v,w ∈ [0,∞), r ∈ (0, 1], it holds that
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(v + w)r  vr + wr assure that for all p ∈ [2,∞), d ∈ N, x ∈ Rd it holds that:

sup
s∈[0,T ]


E


1 +
x+W d,0

s


q

E

p
 1

p

 1 + sup
s∈[0,T ]


E
x+W d,0

s


qp

E

 1
p

 1 + sup
s∈[0,T ]


max{T, 1}


1 + x2E

 qp
2
+ (qp+ 1)d

qp
2


exp


qp(qp+ 3)T

2

 1
p

 1 + max{T
1
p , 1}


1 + x2E

 qp
2
+ (qp+ 1)d

qp
2


exp


q(qp+ 3)T

2



 2


1 + x2E

 qp
2
+ (qp+ 1)d

qp
2


exp


q(qp+ 3)T

2
+

T

p



 2


1 + x2E

 qp
2
+ (qp+ 1)d

qp
2


exp


[q(qp+ 3) + 1]T

2


(2.3.31)

Given that for all d ∈ N, x ∈ [−L,L]d it holds that xE  Ld
1
2 , this demonstrates for all p ∈ [2,∞),

d ∈ N, it holds that:

L


mp

m
1
2


sup

x∈[−L,L]d
sup

s∈[0,T ]


E


1 +
x+W d,0

s


q

E

p
 1

p



 L


mp

m
1
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sup

x∈[−L,L]d


1 + x2E

 qp
2
+ (qp+ 1)d

qp
2


exp


[q(qp+ 3) + 1]T

2



 L


mp

m
1
2


1 + L2d

 qp
2 + (qp+ 1)d

qp
2


exp


[q(qp+ 3) + 1]T

2


(2.3.32)

Combining this with Corollary 2.3.3.1 tells us that:


E
ud(t, x)− Ud,0

m (t, x)

p 1

p

 L


mp

m
1
2


sup

x∈[−L,L]d
sup

s∈[0,T ]


E


1 +
x+W d,0

s


q

E

p
 1

p



 L


mp

m
1
2


1 + L2d

 qp
2 + (qp+ 1)d

qp
2


exp


[q(qp+ 3) + 1]T

2


(2.3.33)

This and the fact that for all d ∈ N and ε ∈ (0,∞) and the fact that mp  2, it holds that for fixed

L, q, p, d, T there exists an ML,q,p,d,T ∈ R such that Nd,  ML,q,p,d,T forces:

L



 mp

N
1
2
d,






1 + L2d
 qp

2 + (qp+ 1)d
qp
2


exp


[q(qp+ 3) + 1]T

2


 ε (2.3.34)
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Thus (2.3.33) and (2.3.34) together proves (2.3.26).

Note that Cd,Nd,,Nd,
is the number of function evaluations of ud(0, ·) and the number of realizations

of scalar random variables which are used to compute one realization of Ud,0
Nd,

(T, 0) : Ω → R.

Let Nd,ε be the value of Nd,ε that causes equality in (2.3.34). In such a situation the number of

evaluations of ud(0, ·) do not exceed Nd,ε. Each evaluation of ud(0, ·) requires at most one realization

of scalar random variables. Thus we do not exceed 2Nd,. Thus note that:

Cd,Nd,ε,Nd,ε
 2


Lmp


1 + L2d

 qp
2 + (qp+ 1)d

qp
2


exp


[q(qp+ 3) + 1]T

2


ε−1 (2.3.35)

Note that other than d and ε everything on the right-hand side is constant or fixed. Hence (2.3.35)

can be rendered as:

Cd,Nd,ε,Nd,ε
≤ cdkε−1 (2.3.36)

Where both c and k are dependent on L, p,m, L
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Chapter 3

That u is a Viscosity Solution

We can extend the work for the heat equation to generic parabolic partial differential equations.

We do this by first introducing viscosity solutions to Kolmogorov PDEs as given in Crandall &

Lions Crandall et al. (1992) and further extended, esp. in Beck et al. (2021a).

3.1 Some Preliminaries

We take work previously pioneered by Itô (1942a) and Itô (1942b), and then seek to re-apply

concepts first applied in Beck et al. (2021a) and Beck et al. (2021b).

Lemma 3.1.1. Let d,m ∈ N, T ∈ (0,∞). Let µ ∈ C1,2([0, T ] × Rd,Rd) and σ ∈ C1,2([0, T ] ×

Rd,Rd×m) satisfying that they have non-empty compact supports and let S = supp(µ)∪ supp(σ) ⊆

[0, T ] × Rd. Let (Ω,F ,P, (Ft)t∈[0,T ]) be a filtered probability space satisfying usual conditions. Let

W : [0, T ]×Ω → Rm be a standard (Ft)t∈[0,T ] -Brownian motion, and let X : [0, T ]×Ω → Rd be an

(Ft)t∈[0,T ]-adapted stochastic process with continuous sample paths satisfying for all t ∈ [0, T ] with

P-a.s. that:

Xt = X0 +

 t

0
µ(s,Xs)ds+

 t

0
σ(s,Xs)dWs (3.1.1)

It then holds that:

(i) [(P (X0 ∕∈ S) = 1) =⇒ (P (∀t ∈ [0, T ] : Xt = X0) = 1)]

(ii) [(P (X0 ∈ S) = 1) =⇒ (P (∀t ∈ [0, T ] : Xt ∈ S) = 1)]
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Proof. Assume that P(X0 ∕∈ S) = 1, meaning that the particle almost surely starts outside S. It

is then the case that P(∀t ∈ [0, T ] : µ(t,X0)E + σ(t,X0)F = 0) = 1 as the µ and σ are outside

their supports, and we integrate over zero over time.

It is then the case that:

Y :=

[0, T ]× Ω ∋ (t,ω) → X0(ω) ∈ Rd


(3.1.2)

is an (Ft)t∈[0,T ] adapted stochastic process with continuous sample paths satisfying that for all

t ∈ [0, T ] with P-almost surety that:

Yt = X0 +

 t

0
0ds+

 t

0
0dWs = X0 +

 t

0
µ(s,X0)ds+

 t

0
σ(s,X0)dWs

= X0 +

 t

0
µ(s,Ys)ds+

 t

0
σ(s,Ys)dWs (3.1.3)

Note that since µ ∈ C1,2([0, T ] × Rd,Rd) and σ ∈ C1,2([0, T ] × Rd,Rd×m), and since continuous

functions are locally Lipschitz, and since this is especially true in the space variable for µ and σ, the

fact that S is compact and continuous functions over compact sets are Lipschitz and bounded, and

(Karatzas and Shreve, 1991, Theorem 5.2.5) allows us to conclude that strong uniqueness holds,

that is to say:

P (∀t ∈ [0, T ] : Xt = X0) = P (∀t ∈ [0, T ] : Xt = Yt) = 1 (3.1.4)

establishing the case (i).

Assume now that P(X0 ∈ S) = 1 that is to say that the particle almost surely starts inside S. We

define τ : Ω → [0, T ] as τ = inf{t ∈ [0, T ] : Xt ∕∈ S}. τ is an (Ft)t∈[0,T ]-adapted stopping time. On

top of τ we can define Y : [0, T ] × Ω → Rd, for all t ∈ [0, T ], ω ∈ Ω as Yt(ω) = Xmin{t,τ}(ω). Y

is thus an (Ft)t∈[0,T ]-adapted stochastic process with continuous sample paths. Note however that

for t > τ it is the case µ(t,Yt) + σ(t,Yt)E = 0 as we are outside their supports. For t < τ it is
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also the case that Yt = Xt. This yields with P-a.s. that:

Yt = Xmin{t,τ} = X0 +

 min{t,τ}

0
µ(s,Xs)ds+

 min{t,τ}

0
σ(s,Xs)dWs

= X0 +

 t

0
{0<sτ}µ(s,Xs)ds+

 t

0
{0<sτ}σ(s,Xs)dWs

= X0 +

 t

0
µ(s,Ys)ds+

 t

0
σ(s,Ys)dWs (3.1.5)

Thus another application of (Karatzas and Shreve, 1991, Theorem 5.2.5) and the fact that within

our compact support S, the continuous functions µ and σ are Lipschitz and hence locally Lipschitz,

and also bounded gives us:

P(∀t ∈ [0, T ] : Xt = Yt) = 1 (3.1.6)

Proving case (ii).

Lemma 3.1.2. Let d,m ∈ N, T ∈ (0,∞). Let g ∈ C2(Rd,R). Let µ ∈ C1,3([0, T ] × Rd,Rd) and

σ ∈ C1,3([0, T ]×Rd,Rd×m) have non-empty compact supports and let S = supp(µ) ∪ supp(σ). Let

(Ω,F ,P, (Ft)t∈[0,T ]) be a stochaastic basis and let W : [0, T ]×Ω → Rm be a standard (Ft)t∈[0,T ]-Brownian

motion. For every t ∈ [0, T ] , x ∈ Rd, let X t,x = (X t,x
s )s∈[t,T ] : [t, T ] × Ω → Rd be an

(Fs)s∈[t,T ]-adapted stochastic process with continuous sample paths satisfying for all s ∈ [t, T ] with

P-almost surety that:

X t,x
s = x+

 s

t
µ(r,X t,x

r )dr +

 s

t
σ(r,X t,x

s )dWr (3.1.7)

also let u : Rd → R satisfy for all t ∈ [0, T ], x ∈ Rd that:

u(t, x) = E

g(X t,x

T )


(3.1.8)

then it is the case that we have:

(i) u ∈ C1,2([0, T ]× Rd,R) and
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(ii) for all t ∈ [0, T ], x ∈ Rd that u(T, x) = g(x) and:


∂

∂t
u


(t, x) +

1

2
Trace (σ (t, x) [σ (t, x)]∗ (Hessx u) (t, x)) + 〈µ (t, x) , (∇xu) (t, x)〉 = 0

(3.1.9)

Proof. We break the proof down into two cases, inside the support S = supp(µ) ∪ supp(σ) and

outside the support: [0, T ]× (Rd \S).

For the case inside S. Note that we may deduce from Item (i) of Lemma 3.1.1 that for all t ∈ [0, T ],

x ∈ Rd \S it is the case that P(∀s ∈ [t, T ] : X t,x
s = x) = 1. Thus for all t ∈ [0, T ], x ∈ Rd \S we

have, deriving from (3.1.8):

u(t, x) = E

g

X t,x
T


= g(x) (3.1.10)

Note that g(x) only has a space parameter and so derivatives w.r.t. t is 0. Inhereting from

the regularity properties of g and (3.1.10), we may assume for all t ∈ [0, T ], x ∈ Rd \ S, that

u|[0,T ]×(Rd\S) ∈ C1,2([0, T ]× (Rd \S)). Note that the hypotheses that µ ∈ C1,3([0, T ]×Rd,Rd) and

σ ∈ C1,3([0, T ] × Rd,Rd×m) allow us to apply Theorem 7.4.3, Theorem 7.4.5 and Theorem 7.5.1

from Da Prato and Zabczyk (2002) for t ∈ [0, T ], x ∈ Rd \S, to give us:

(i) u ∈ C1,2([0, T ]× Rd,R).

(ii)

0 =


∂

∂t
u


(t, x)

=


∂

∂t
u


(t, x) +

1

2
Trace (σ(t, x) [σ(t, x)]∗ (Hessx u) (t, x)) + 〈µ(t, x), (∇xu) (t, x)〉

(3.1.11)

Now consider the case within support S. Note that by hypothesis µ and σ must at least be locally

Lipschitz. Thus (Karatzas and Shreve, 1991, Theorem 5.2.5) allows us to conclude that within S

the pair (µ,σ) for our our stochastic process X t,x
s defined in (3.1.7) must exhibit a strong uniqueness

property.
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Further note that Item (ii) from Lemma 3.1.1 tells us that:

P(∀t ∈ [0, T ] : X t,x
s ∈ S) = 1. (3.1.12)

Note that again the hypotheses that µ ∈ C1,3([0, T ]×Rd,Rd) and σ ∈ C1,3([0, T ]×Rd,Rd×m), and

g ∈ C2(Rd) allow us to apply Theorem 7.4.3, Theorem 7.4.5 and Theorem 7.5.1 from Da Prato and

Zabczyk (2002) for t ∈ [0, T ], x ∈ S, to give us:

(i) u ∈ C1,2([0, T ]× Rd,R).

(ii)


∂

∂t
u


(t, x) +

1

2
Trace (σ(t, x) [σ(t, x)]∗ (Hessx u) (t, x)) + 〈µ(t, x), (∇xu) (t, x)〉 = 0

(3.1.13)

Note that (3.1.7) and (3.1.8) together prove that u(T, x) = g(x). This completes the proof.

3.2 Viscosity Solutions

Definition 3.2.1 (Symmetric Matrices). Let d ∈ N. The set of symmetric matrices is denoted Sd

given by Sd = {A ∈ Sd : A∗ = A}.

Definition 3.2.2 (Upper semi-continuity). A function f : U → R is upper semi-continuous at x0

if for every ε > 0, there exists δ > 0 such that:

f(x) < f(x0) + ε for all x ∈ B (x0, δ) ∩ U (3.2.1)

Definition 3.2.3 (Lower semi-continuity). A function f : U → R is lower semi-continuous at x0

if for every ε > 0, there exists δ > 0 such that:

f(x) > f(x0)− ε for all x ∈ B (x0, δ) ∩ U (3.2.2)

Corollary 3.2.3.1. Given two upper semi-continuous functions f, g : Rd → R, their sum (f + g) :

Rd → R is also upper semi-continuous.
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Proof. From definitions, at any given x0 ∈ Rd, for any ε ∈ (0,∞) there exist neighborhoods U and

V around x0 such that:

(∀x ∈ U) (f(x)  f(x0) + ε) (3.2.3)

(∀x ∈ V ) (g(x)  g(x0) + ε) (3.2.4)

and hence:

(∀x ∈ U ∩ V ) (f(x) + g(x)  f(x0) + g(x0) + 2ε) (3.2.5)

Corollary 3.2.3.2. Given an upper semi-continuous function f : Rd → R, it is the case that

(−f) : Rd → R is lower semi-continuous.

Proof. Let f : Rd → R be upper semi-continuous. At any given x0 ∈ Rd, for any ε ∈ (0,∞) there

exists a neighborhood U around x0 such that:

(∀x ∈ U) (f(x)  f(x0) + ε) (3.2.6)

This also means that:

(∀x ∈ U) (−f(x)  −f(x0)− ε)

(3.2.7)

This completes the proof.

Definition 3.2.4 (Degenerate Elliptic Functions). Let d ∈ N, T ∈ (0,∞), let O ⊆ Rd be a

non-empty open set, and let 〈·, ·〉 : Rd ×Rd → R be the standard Euclidean inner product on Rd. G

is degenerate elliptic on (0, T )×O × R× Rd × Sd if and only if:

(i) G : (0, T )×O × R× Rd × Sd → R is a function, and

(ii) for all t ∈ (0, T ), x ∈ O, r ∈ R, p ∈ Rd, A,B ∈ Sd, with ∀y ∈ Rd: 〈Ay, y〉  〈By, y〉 that
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G(t, x, r, p, A)  G(t, x, r, p, B).

Remark 3.2.5. Let t ∈ (0, T ), x ∈ Rd, r ∈ R, p ∈ Rd, A ∈ Sd. Let u ∈ C1,2([0, T ] × Rd,R),

and let σ : Rd → Rd×d and µ : Rd → Rd be infinitely often differentiable. The function G :

(0, T )× Rd × R× Rd × Sd → R given by:

G(t, x, r, p, A) =
1

2
Trace (σ(x) [σ(x)]∗ (Hessx u) (t, x)) + 〈µ(t, x),∇xu (t, x)〉 (3.2.8)

where (t, x, u(t, x), µ(x),σ(x) [σ(x)]∗) ∈ (0, T )× Rd × R× Rd × Sd, is degenerate elliptic.

Lemma 3.2.6. Given a function G : (0, T ) × O × R × Rd × Sd → R that is degerate elliptic on

(0, T ) × O × R × Rd × Sd it is also the case that H : (0, T ) × O × R × Rd × Sd → R given by

H(t, x, r, p, A) = −G(t, x,−r,−p,−A) is degenerate elliptic on (0, T )×O × R× Rd × Sd.

Proof. Note that H is a function. Assume for y ∈ Rd it is the case that 〈Ay, y〉  〈By, y〉 then

it is also the case by (??) that 〈−Ay, y〉  〈−By, y〉 for y ∈ Rd. However since G is monotoically

increasing over the subset of (0, T ) ×O × R × Rd × Sd where 〈Ay, y〉  〈By, y〉 then it is also the

case that H(t, x, r, p, A) = −G(t, x,−r,−p,−A)  −G(t, x,−r,−p,−B) = H(t, x, r, p, B).

Definition 3.2.7 (Viscosity subsolutions). Let d ∈ N, T ∈ (0,∞), let O ⊆ Rd be a non-empty open

set, and let G : (0, T )×O×R×Rd×Sd → R be degenrate elliptic. Then we say that u is a viscosity

solution of

∂
∂tu


(t, x) +G (t, x, u(t, x), (∇xu) (t, x) , (Hessx u) (t, x))  0 for (t, x, ) ∈ (0, T ) ×O if

and only if there exists a set A such that:

(i) we have that (0, T )×O ⊆ A.

(ii) we have that u : A → R is an upper semi-continuous function from A to R, and

(iii) we have that for all t ∈ (0, T ), x ∈ O, φ ∈ C1,2 ((0, T )×O,R) with φ(t, x) = u(t, x) and

φ  u that:


∂

∂t
ud


(t, x) +G (t, x,φ(t, x), (∇xφ) (t, x) , (Hessx φ) (t, x))  0 (3.2.9)
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Definition 3.2.8 (Viscosity supersolutions). Let d ∈ N, T ∈ (0,∞), let O ⊆ Rd be a non-empty

open set, and let G : (0, T ) × O × R × Rd × Sd → R be degenrate elliptic. Then we say that u

is a viscosity solution of

∂
∂tu


(t, x) +G (t, x, u(t, x), (∇xu) (t, x) , (Hessx u) (t, x))  0 for (t, x, ) ∈

(0, T )×O if and only if there exists a set A such that:

(i) we have that (0, T )×O ⊆ A.

(ii) we have that u : A → R is an upper semi-continuous function from A to R, and

(iii) we have that for all t ∈ (0, T ), x ∈ O, φ ∈ C1,2 ((0, T )×O,R) with φ(t, x) = u(t, x) and

φ  u that:


∂

∂t
ud


(t, x) +G (t, x,φ(t, x), (∇xφ) (t, x) , (Hessx φ) (t, x))  0 (3.2.10)

Definition 3.2.9 (Viscosity solution). Let d ∈ N, T ∈ (0,∞), O ⊆ Rd be a non-empty open set

and let G : (0, T )×O×R×Rd × Sd → R be degenerate elliptic. Then we say that ud is a viscosity

solution to

∂
∂tud


(t, x) +G(t, x, u(t, x),∇x(x, t), (Hessx ud)(t, x)) if and only if:

(i) u is a viscosity subsolution of

∂
∂tud


(t, x) + G(t, x, u(t, x),∇x(x, t), (Hessx ud)(t, x)) = 0 for

(t, x) ∈ (0, T )×O

(ii) u is a viscosity supersolution of

∂
∂tud


(t, x)+G(t, x, u(t, x),∇x(x, t), (Hessx ud)(t, x)) = 0 for

(t, x) ∈ (0, T )×O

Lemma 3.2.10. Let d ∈ N, T ∈ (0,∞), t ∈ (0, T ), let O ⊆ Rd be an open set, let r ∈ O,

φ ∈ C1,2 ((0, T )×O,R), let G : (0, T )×O×R×Rd×Sd → R be degenerate elliptic and let ud(0, T )×

O → R be a viscosity solution of

∂
∂tud


(t, x) + G (t, x, u(t, x), (∇xuD) (t, x) , (Hessx ud) (t, x))  0

for (t, x) ∈ (0, T )×O, and assume that u− φ has a local maximum at (t, r) ∈ (0, T )×O, then:


∂

∂t
φ


(t, r) +G (t, r, u(t, r), (∇xφ) (t, r) , (Hessx φ) (t, r))  0 (3.2.11)

Proof. That u is upper semi-continuous ensures that there exists as a neighborhood U around (t, r)

and ψ ∈ C1,2((0, T )×O,R) where:

(i) for all (t, x) ∈ (0, T )×O that u(t, r)− ψ(t, r)  u(t, x)− ψ(t, x)
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(ii) for all (t, x) ∈ U that φ(t, x) = φ(t, x).

We therefore obtain that:


∂

∂t
φ


(t, r) +G (t, r, u(t, r), (∇x)(t, r), (Hessx φ)(t, r))

=


∂

∂t
ψ


(t, r) +G (t, r, u(t, r), (∇x)(t, r), (Hessx ψ)(t, r))  0 (3.2.12)

Lemma 3.2.11. Let d ∈ N, T ∈ (0,∞), let O ⊆ Rd be a non-empty open set, let un : (0, T )×O → R,

n ∈ N0 be functions, let Gn : (0, T )×O × R× Rd × Sd → R, n ∈ N be degenerate elliptic, assume

that G∞ is upper semi-continuous for all non-empty compact K ⊆ (0, T )×O × R× Rd × Sd that:

lim sup
n→∞


sup

(t,x,r,p,A)∈K
(|un(t, x)− u0(t, x)|+ |Gn(t, x, r, p, A)−G0(t, x, r, p, A)|)


= 0 (3.2.13)

and assume for all n ∈ N that un is a viscosity solution of:


∂

∂t
un


(t, x) +Gn (t, x, un(t, x), (∇xun)(t, x), (Hessx un)(t, x))  0 (3.2.14)

then u0 is a viscosity solution of:


∂

∂t
u0


(t, x) +Gn (t, x, u0(t, x), (∇xu0)(t, x), (Hessx u0)(t, x))  0 (3.2.15)

Proof. Let (to, xo) ∈ (0, T ) ×O. Let φ ∈ C1,2((0, T ) ×O,R) satisfy for all  ∈ (0,∞), s ∈ (0, T ),

y ∈ O that φ0(t0, x0) = u0(t0, x0), φ0(t0, x0)  u0(t0, x0), and:

φε(s, y) = φo(s, y) + ε (|s− t0|+ y − x0E) (3.2.16)

Let δ ∈ (0,∞) be such that {(s, y) ∈ Rd × R : max

|s− t0|2, y − x02E


 δ}. Note that this

and (3.2.27) then imply for all ε ∈ (0,∞) there exists an νε ∈ N such that for all n  νε, and
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max (|s− t0|, y − x0E)  δ, it is the case that:

sup (|un(s, y)− u0(s, y)|) 
εδ

2
(3.2.17)

Note that this combined with (3.2.16) tells us that for all ε ∈ (0,∞), n ∈ N ∩ [ν,∞), s ∈ (0, T ),

y ∈ O, with |s− t0| < δ, y − x0E  δ, |s− t0|+ y − x0E > δ that:

un(t0, x0)− φε(t0, x0) = un(t0, x0)− φ0(t0, x0) (3.2.18)

= un(t0, x0)− u0(t0, x0)

 −εδ

2

 un(s, y)− u0(s, y)− ε (|s− t0|+ y − x0E)

 un(s, y)− φ0(s, y)− ε (|s− t0|+ y − x0E)

= un(s, y)− φε(s, y) (3.2.19)

Note that Corollary 3.2.3.1 implies that for all  ∈ (0,∞) and n ∈ N that un − φε is upper

semi-continuous. There therefore exists for all  ∈ (0,∞) and n ∈ N, a τ εn ∈ (t0 − δ, t0 + δ) and a

ρεn, where ρεn − x0  δ such that:

un(τ
ε
n, ρ

ε
n)− φ(τ

ε
n, ρ

ε
n)  un(s, y)− φε(s, y) (3.2.20)

By Lemma 3.2.10, it must be the case that for all ε ∈ (0,∞) and n ∈ N ∩ [νε,∞):


∂

∂t
φε


(τ εn, ρ

ε
n) +Gn (τ

ε
n, ρ

ε
n, un (τ

ε
n, ρ

ε
n) , (∇xφε) (τ

ε
n, ρ

ε
n) , (Hessx φε) (τ

ε
n, ρ

ε
n))  0 (3.2.21)
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Note however that (3.2.20) along with (3.2.16) and (3.2.27) yields that for all ε ∈ (0,∞) that:

lim sup
n→∞

[un(τ
ε
n, ρ

ε
n)− φ(τ

ε
n, ρ

ε
n)]

 lim sup
n→∞

[un(τ
ε
n, ρ

ε
n)− (φ0(τ

ε
n, ρ

ε
n) + ε (|τ εn − t0|+ ρεn − x0E))]

 lim sup
n→∞

[un(τ
ε
n, ρ

ε
n)− u0(τ

ε
n, ρ

ε
n)− ε (|τ εn − t0|+ ρεn − x0E)]

= lim sup
n→∞

[−ε (|τ εn − t0|+ ρεn − x0E)]  0 (3.2.22)

However note also that since G0 is upper semi-continuous, further the fact that, φ0 ∈ ((0, T )×O,R),

and then (3.2.27), and (3.2.16), imply for all ε ∈ (0,∞) we have that: lim supn→∞
 ∂

∂tφε


(τ εn, ρ

ε
n)−


∂
∂tφ0


(t0, x0)

 =

0 and:

G0 (t0, x0,φ0 (t0, x0) , (∇xφ0) (t0, x0) , (Hessx φ0) (t0, x0) + IdRd)

= G0 (t0, x0, u0 (t0, x0) , (∇xφε) (t0, x0) , (Hessx φε) (t0, x0))

 lim sup
n→∞

[G0 (τ
ε
n, ρ

ε
n, un (τ

ε
n, ρ

ε
n) , (∇xφε) (τ

ε
n, ρ

ε
n) , (Hessx φε) (τ

ε
n, ρ

ε
n))] (3.2.23)

 lim sup
n→∞

[Gn (τ
ε
n, ρ

ε
n, un (τ

ε
n, ρ

ε
n) , (∇xφε) (τ

ε
n, ρ

ε
n) , (Hessx φε) (τ

ε
n, ρ

ε
n))] (3.2.24)

This with (3.2.20) assures for all  ∈ (0,∞) that:


∂

∂t
φ0


(t0, x0) +G0 (t0, x0,φ0 (t0, x0) , (∇xφ0) (t0, x0) , (Hessx φ0) (t0, x0) + εIdRd)  0 (3.2.25)

That G0 is upper semi-continuous then yields that:


∂

∂t
φ0


(t0, x0) +G0 (t0, x0,φ0 (t0, x0) , (∇xφ0) (t0, x0) , (Hessx φ0) (t0, x0) + εIdRd)  0 (3.2.26)

This establishes (3.2.29) which establishes the lemma.

Corollary 3.2.11.1. Let d ∈ N, T ∈ (0,∞), let O ⊆ Rd be a non-empty open set, let un : (0, T )×

O → R, n ∈ N0 be functions, let Gn : (0, T )×O×R×Rd × Sd → R, n ∈ N0 be degenerate elliptic,
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assume that G0 is lower semi-continuous for all non-empty compact K ⊆ (0, T )×O×R×Rd × Sd

that:

lim sup
n→∞


sup

(t,x,r,p,A)∈K
(|un(t, x)− u0(t, x)|+ |Gn(t, x, r, p, A)−G0(t, x, r, p, A)|)


= 0 (3.2.27)

and assume for all n ∈ N that un is a viscosity solution of:


∂

∂t
un


(t, x) +Gn (t, x, un(t, x), (∇xun)(t, x), (Hessx un)(t, x))  0 (3.2.28)

then u0 is a viscosity solution of:


∂

∂t
u0


(t, x) +Gn (t, x, u0(t, x), (∇xu0)(t, x), (Hessx u0)(t, x))  0 (3.2.29)

Proof. Let vn : (0, T ) × O → R, n ∈ N0 and Hn : (0, T ) × O × R × Rd × Sd → R satisfy for

all n ∈ N0, t ∈ (0, T ), x ∈ O, r ∈ R, p ∈ Rd, A ∈ Sd that vn(t, x) = −un(t, x) and that

Hn(t, x) = −Gn(t, x,−r,−p,−A).

Note that Corollary 3.2.3.2 gives us that H0 is upper semi-continuous. Note also that since it is

the case that for all n ∈ N0, Gn is degenerate elliptic then it is also the case by Lemma 3.2.6 that

Hn is degenerate elliptic for all n ∈ N0. These together with (3.2.28) ensure that for all n ∈ N, vn

is a viscosity solution of:


∂

∂t
vn


(t, x) +Hn (t, x, vn (t, x) , (∇xvn) (t, x) , (Hessx vn) (t, x))  0 (3.2.30)

This together with (3.2.27) establish that:

lim sup
n→∞


sup

(t,x,r,p,A)∈K
(|un(t, x)− u0(t, x)|+ |Hn(t, x, r, p, A)−H0(t, x, r, p, A)|)


= 0 (3.2.31)

This (3.2.30) and the fact that H0 is upper semi-continuous then establish that:


∂

∂t
v0


(t, x) +H0 (t, x, v0(t, x), (∇xv0)(t, x), (Hessx v0)(t, x))  0 (3.2.32)

47



for (t, x) ∈ (0, T )×O. Hence v0 is a viscosity solution of:


∂

∂t
u0


(t, x) +H0 (t, x, u0(t, x), (∇xu0)(t, x), (Hessx u0)(t, x))  0 (3.2.33)

This completes the proof.

Corollary 3.2.11.2. Let d ∈ N, T ∈ (0,∞), let O ⊆ Rd be a non-empty set, let un : (0, T )×O → R,

n ∈ N0, be functions, let Gn : (0, T )×O×R×Rd × Sd → R, n ∈ N0 be degenerate elliptic, assume

also that G0 : (0, T )×O ×R×Rd × Sd → R be consinuous and assume for all non-empty compact

K ⊆ (0, T )×O × R× Rd × Sd it is the case that:

lim sup
n→∞


sup

(t,x,r,p,A)∈K
(|Gn (t, x, r, p, A)−G0 (t, x, r, p, A)|+ |un (t, x)− u0 (t, x)|)


= 0 (3.2.34)

and further assume for all n ∈ N, that un is a viscosity solution of:


∂

∂t
un


(t, x) +Gn (t, x, un (t, x) , (∇xun) (t, x) , (Hessx un) (t, x)) = 0 (3.2.35)

for (t, x) ∈ (0, T )×O, then we have that u0 is a viscosity solution of:


∂

∂t
u0


(t, x) +G0 (t, x, u0 (t, x) , (∇xu0) (t, x) , (Hessx u0) (t, x)) = 0 (3.2.36)

Proof. Note that Lemma 3.2.11 gives us that u0 is a viscosity solution of:


∂

∂t
u0


(t, x) +Gn (t, x, u0(t, x), (∇xu0)(t, x), (Hessx u0)(t, x))  0 (3.2.37)

for (t, x) ∈ (0, T )×O. Also note that Corollary 3.2.11.1 ensures that u0 is a viscosity solution of:


∂

∂t
u0


(t, x) +Gn (t, x, u0(t, x), (∇xu0)(t, x), (Hessx u0)(t, x))  0 (3.2.38)

Taken together these prove the corollary.

Lemma 3.2.12. For all a, b ∈ R it is the case that (a+ b)2  2a2 + 2b2.
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Proof. Since for all a, b ∈ R it is the case that (a− b)2  0 we then have that:

(a+ b)2  (a+ b)2 + (a− b)2

 a2 + 2ab+ b2 + a2 − 2ab+ b2

= 2a2 + 2b2

This completes the proof.

Lemma 3.2.13. Let d,m ∈ N, T ∈ (0,∞). Let O ⊆ Rd be a non-empty compact set, and for all

n ∈ N0, µn ∈ C([0, T ]×O,R), σn ∈ C([0, T ]×O,Rd×m) assume also:

lim sup
n→∞


sup

t∈[0,T ]
sup
x∈O

(µn(t, x)− µ0(t, x) E + σn(t, x)− σ0(t, x)F )

= 0 (3.2.39)

Let (Ω,F ,R) be a stochastic basis and let W : [0, T ]× Ω → Rm be a standard (Ft)t∈[0,T ]-Brownian

motion for every t ∈ [0, T ], x ∈ O, let X t,x = (X t,x
s )s∈[t,T ] : [t, T ]×Ω → Rd be an (Fs)s∈[t,T ] adapted

stochastic process with continuous sample paths, satisfying for all s ∈ [t, T ] we have P-a.s.

X n,t,x
s = x+

 s

t
µn(r,X n,t,x

s )dr +

 s

t
σn(r,X n,t,x

r )dWr (3.2.40)

then it is the case that:

lim sup
n→∞


sup

t∈[0,T ]
sup

s∈[t,T ]
sup
x∈O


E
X n,t,x

s − X 0,t,x
s

2
E


= 0 (3.2.41)

for (t, x) ∈ (0, T )× Rd.

Proof. Since O is compact, let L ∈ R be such that for all t ∈ [0, T ], x, y ∈ O it is the case that:

µ0(t, x)− µ0(t, y)E − σ0(t, x) + σ0(t, y)F  Lx− yE (3.2.42)

Furthermore (Karatzas and Shreve, 1991, Theorem 5.2.9) tells us that:

sup
s∈[t,T ]

E

X n,t,x

s E

< ∞ (3.2.43)
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Note now that (3.2.40) tells us that:

X n,t,x
s − X 0,t,x

s =

 s

t
µn(r,X n,t,x

s )− µ0(r,X 0,t,x
s )dr +

 s

t
σn(r,X n,t,x

r )− σ0(r,X 0,t,x
r )dWr (3.2.44)

Minkowski's Inequality applied to (3.2.44) then tells us for all n ∈ N, t ∈ [0, T ], s ∈ [t, T ], and

x ∈ O that:


E
X n,t,x

s − X 0,t,x
s


E

 1
2 

 s

t


E
µn(r,X n,t,x

r )− µ0(r,X 0,t,x
r )

2
E

 1
2
dr+


E


 s

t
(σn(r,X n,t,x

r )− σ0(r,X 0,t,x
r ))dWr


2

E

 1
2

(3.2.45)

Itô's isometry applied to the second summand yields:


E
X n,t,x

s − X 0,t,x
s


E

 1
2 

 s

t


E
µn(r,X n,t,x

r )− µ0(r,X 0,t,x
r )

2
E

 1
2
dr+

 s

t
E
σn(r,X n,t,x

r )− σ0(r,X 0,t,x)
2
F


dr

 1
2

(3.2.46)

Applying Lemma 3.2.12 followed by the Cauchy-Schwarz Inequality then gives us for all n ∈ N,

t ∈ [0, T ], s ∈ [t, T ], and x ∈ O that:

E

X n,t,x

s − X n,t,x
s 2E


 2

 s

t


E
µn(r,X n,t,x

r )− µ0(r,X 0,t,x
r )

2
E

 1
2
dr

2

+ 2

 s

t
E
σn(r,X nt,x

r )− σ0(r,X 0,t,x
r )

2
F


dr

 2T

 s

t
E
µn(r,X n,t,x

r )− µ0(r,X 0,t,x
r )

2
E


dr

+ 2

 s

t
E
σn(r,X n,t,x

r )− σ0(r,X 0,t,x
r )

2
F


dr (3.2.47)

Applying Lemma 3.2.12 again to each summand then yields for all n ∈ N, t ∈ [0, T ] s ∈ [t, T ], and
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x ∈ O it is the case that:

E
X n,t,x

s − X 0,t,x
s

2


 2T

 s

t


2E

µn(r,X n,t,x
r )− µ0(r,X n,t,x

r )
2
E


+ 2E

µ0(r,X n,t,x
r )− µ0(r,X 0,t,x

r )
2
E


dr

+ 2

 2

t


2E

σn(r,X n,t,x
r )− σ0(r,X n,t,x

r )
2
F


+ 2E

σ0(r,X n,t,x
r )− σ0(r,X 0,t,x

r )

F


dr (3.2.48)

However assumption (3.2.42) then gives us that for all n ∈ N, t ∈ [0, T ], s ∈ [t, T ], and x ∈ O that:

E
X n,t,x

s − X 0,t,x
s

2
E


 4L2(T + 1)

 s

t
E
X n,t,x

r − X 0,t,x
r

2
E


dr

+ 4T (T + 1)


sup

r∈[0,T ]
sup
y∈Rd


µn(r, y)− µ0(r, y)2E + σn(r, y)− σ0(r, y)2F



Finally Gronwall's Inequality with assumption (3.2.43) gives us for all n ∈ N, t ∈ [0, T ], s ∈ [t, T ],

x ∈ O that:

E
X n,t,x

s − X 0,t,x
s

2
E



 4T (T + 1)


sup

r∈[0,T ]
sup
y∈Rd


µn(r, y)− µ0(r, y)2E + σn(r, y)− σ)(r, y)2F



e4L

2T (T+1) (3.2.49)

Applying lim supn→∞ to both sides and applying (3.2.39) gives us for all n ∈ N, t ∈ [0, T ], s ∈ [t, T ],

x ∈ O that:

lim sup
n→∞

E
X n,t,x

s − X 0,t,x
s

2
E



 lim sup
n→∞


4T (T + 1)


sup

r∈[0,T ]
sup
y∈Rd


µn(r, y)− µ0(r, y)2E + σn(r, y)− σ0(r, y)2F


e4L

2T (T+1)



 4T (T + 1)


lim sup
n→∞


sup

r∈[0,T ]
sup
y∈Rd


µn(r, y)− µ0(r, y)2E + σn(r, y)− σ0(r, y)2F


e4L

2T (T+1)

 0

This completes the proof.

Lemma 3.2.14. Let d,m ∈ N, T ∈ (0,∞), let O ⊆ [0, T ] × Rd, let µ ∈ C([0, T ] × O,Rd) and

σ ∈ C([0, T ] × O,Rd×m) have compact supports such that supp(µ) ∪ supp(σ) ⊆ [0, T ] × O let
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g ∈ C(Rd,R). Let

Ω,F ,P, (Ft)t∈[0,T ]


be a stochastic basis, let W : [0, T ]×Ω → Rm be a standard

(Ft)t∈[0,T ] Brownian motion, for every t ∈ [0, T ], x ∈ Rd, let X t,x = (X t,x
s )s∈[t,T ] : [t, T ] × Ω → Rd

be an (Fs)s∈[t,T ] adapted stochastic process with continuous sample paths satisfying for all s ∈ [t, T ]

with F-a.s. that:

X t,x
s = x+

 s

t
µ

r,X t,x

r


dr +

 s

t
σ

r,X t,x

r


dWr (3.2.50)

and further let u : [0, T ]× Rd → R satisfy for all t ∈ [0, T ], x ∈ Rd that:

u(t, x) = E

g

X t,x
T


(3.2.51)

Then u is a viscosity solution of:


∂

∂t
u


(t, x) +

1

2
Trace (σ(t, x) [σ(t, x)]∗ (Hessx u) (t, x)) + 〈µ(t, x), (∇xu) (t, x)〉 = 0 (3.2.52)

and where u(T, x) = g(x) for (t, x) ∈ (0, T )×O.

Proof. Let S = supp(µ) ∪ supp(σ) ⊆ [0, T ] × O be bounded in space by ρ ∈ (0,∞), as S ⊆

[0, T ] × (−ρ, ρ)d. This exists as the supports are compact and thus by Hiene-Börel is closed and

bounded. Let sn,mn ∈ C∞([0, T ]×Rd,Rd×n) where


n∈N [supp(sn) ∪ supp(mn)] ⊆ [0, T ]× (−ρ, ρ)d

satisfy for n ∈ N that:

lim sup
n→∞


sup

t∈[0,T ]
sup
x∈R

(mn(t, x)− µ(t, x)E + sn − σ(t, x)F )

= 0 (3.2.53)

We construct a set of degenerate elliptic functions, Gn : (0, T )×Rd×R×Rd×Sd → R with n ∈ N0

such that:

G0(t, x, r, p, A) =
1

2
Trace (σ(t, x)[σ(t, x)]∗A) + 〈µ(t, x), p〉 (3.2.54)

and

Gn(t, x, r, p, A) =
1

2
Trace (sn(t, x)[sn(t, x)]∗A) + 〈µ(t, x), p〉 (3.2.55)
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Also let gn ∈ C∞(Rd,R) for n ∈ N satisfy for all n ∈ N that:

lim sup
n→∞

sup
t∈[0,T ]

sup
x∈Rd

(gn(x)− g(x)E) = 0 (3.2.56)

Further let Xn,t,x = (Xn,t,x
s )s∈[t,T ] : [t, T ]×Ω → Rd be an (Fs)s∈[t,T ]-adapted stochastic process with

continuous sample paths that satisfy:

X n,t,x
s = x+

 s

t
mn(r,X n,t,x

r )dr +

 s

t
sn(r,X n,t,x

r )dWr (3.2.57)

Finally let un : [0, T ]× Rd → R for n ∈ N be:

un = E

gn


Xn,t,x
T


(3.2.58)

and:

u0 = E

gn


X t,x
T


(3.2.59)

Note that (Beck et al., 2021b, Lemma 2.2) with g ↶ gk, µ ↶ mn, σ ↶ sn, X t,x ↶ X n,t,x gives us

un ∈ C1,2([0, T ]× Rd,R), and un(t, x) = gk(x) where:


∂

∂t
un


(t, x) +

1

2
Trace (sn(t, x) [sn(t, x)]∗ (Hessx un) (t, x)) + 〈mn(t, x), (∇xu

n) (t, x)〉 = 0

(3.2.60)

And by Definitions 3.2.7, 3.2.8, and 3.2.9 we have that un is a viscosity solution of


∂

∂t
un


(t, x) +

1

2
Trace (sn(t, x) [sn(t, x)]∗ (Hessx un) (t, x)) + 〈mn(t, x), (∇xu

n) (t, x)〉 = 0

(3.2.61)

for (t, x) ∈ (0, T )× Rd.

Since for all n ∈ N, it is the case that S = (supp(mn) ∪ supp(sn) ∪ supp(µ) ∪ supp(σ)) ⊆ [0, T ] ×

(−ρ, ρ)d and because of (3.2.50) of (3.2.57) we have that (Beck et al., 2021a, Lemma 3.2, Item (ii))

which yields that for all n ∈ N, t ∈ [0, T ], x ∈ Rd \ (−ρ, ρ)d that P(∀s ∈ [t, T ] : Xn,t,x
s = x = X t,x

s ) =
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1. This in turn shows that for all n ∈ N, x ∈ Rd \ (−ρ, ρ)d that un(t, x) = u0(t, x) which along with

(3.2.58) and (3.2.59) yields that:

sup
t∈[0,T ]

sup
x∈Rd

un(t, x)− u0(t, x)
 = sup

t∈[0,T ]
sup

x∈(−ρ,ρ)d

un(t, x)− u0(t, x)


 sup
t∈[0,T ]

sup
x∈(−ρ,ρ)d


E
gk


Xn,t,x
T


− g


X t,x
T




(3.2.62)

Note that Lemma 3.2.13 allows us to conclude that:

lim sup
n→∞


sup

t∈[0,T ]
sup

x∈(−ρ,ρ)d


E

Xn,t,x

T − X t,x
s 


= 0 (3.2.63)

But then we have that (3.2.62) which yields that:

lim sup
n→0


sup

t∈[0,T ]
sup
x∈Rd

un(t, x)− u0(t, x)


= 0 (3.2.64)

However now note that (3.2.55) and (3.2.61) thus yield that for n ∈ N0, un is a viscosity solution

to:


∂

∂t
un


(t, x) +Gn (t, x, un (t, x) , (∇xu

n) (t, x) , (Hessx un) (t, x)) = 0 (3.2.65)

But since we've established (3.2.53) we have that for a non-empty compact set C ⊆ (0, T ) × O ×

R× Rd × Sd that:

lim sup
n→∞


sup

(t,x,r,p,A)∈C

Gn (t, x, r, p, A)−G0 (t, x, r, p, A)



 lim sup
n→∞


sup

(t,x,r,p,A)∈C
µ(t, x)−mn(t, x)E pE



+ lim sup
n→∞


sup

(t,x,r,p,A)∈C
σ(t, x) [σ(t, x)]∗ − sn(t, x) [sn(t, x)]

∗F AF


= 0 (3.2.66)

This, together with (3.2.64), (3.2.65) and Corollary 3.2.11.2 yields that u0 is also a viscosity solution
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to:


∂

∂t
u0

(t, x) +G0


t, x, u0(t, x),


∇xu

0

(t, x) , (Hessx) (t, x)


= 0 (3.2.67)

Finally note that (3.2.53), (3.2.57), (3.2.59), and (3.2.67) yield that u is a viscosity solution of::


∂

∂t
u


(t, x) +

1

2
Trace (σ(t, x) [σ(t, x)]∗ (Hessx u) (t, x)) + 〈µ(t, x), (∇x) (t, x)〉 = 0 (3.2.68)

for (t, x) ∈ [0, T ]× Rd. Finally (3.2.50) and (3.2.51) allows us to conclude that for all x ∈ Rd it is

the case that u(T, x) = g(x). This concludes the proof.

Lemma 3.2.15. Let d,m ∈ N, T ∈ (0,∞), further let O ⊆ Rd be a non, empty compact set. Let ev-

ery r ∈ (0,∞) satisfy the condition that Or ⊆ O, where Or = {x ∈ O :

xE  r and {y ∈ Rd : y − xE < 1

r} ⊆ O

}

let g ∈ C(O,R), µ ∈ C([0, T ] × O,R), V ∈ C1,2([0, T ] × O, (0,∞)), assume that for all t ∈ [0, T ],

x ∈ O that:

sup


µ(t, x)− µ(t, y)E + σ(t, x)− σ(t, y)F
x− yE

: t ∈ [0, T ], x, y ∈ Or, x ∕= y


∪ {0}


< ∞

(3.2.69)


∂

∂t
V


(t, x) +

1

2
Trace (σ(t, x) [σ(t, x)]∗ (Hessx V ) (t, x)) + 〈µ(t, x), (∇xV ) (t, x)〉  0 (3.2.70)

assume that supr∈(0,∞)


infx∈O\Or

V (t, x)

= ∞ and infr∈(0,∞)


supt∈[0,T ] supx∈O\Or


g(x)

V (T,x)


=

0. Let

Ω,F ,P, (Ft)t∈[0,T ]


be a stochastic basis and let W : [0, T ] × Ω → Rm be a standard

(Ft)t∈[0,T ]-Brownian motion, for every t ∈ [0, T ], x ∈ O let X t,x = (X t,x
s )s∈[t,T ] : [t, T ] × Ω → O

be an (Fs)s∈[t,T ]-adapted stochastic process with continuous sample paths satisfying that for all

s ∈ [t, T ], we have P-a.s. that:

X t,x
s = x+

 s

t
µ(r,X t,x

r )dr +

 s

t
σ(r,X t,x

n )dWr (3.2.71)
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also let u : [0, T ]× Rd → R satisfy for all t ∈ [0, T ], x ∈ Rd that:

u(t, x) = E

u(T,X t,x

T )


(3.2.72)

It is then the case that u is a viscosity solution to:


∂

∂t
u


(t, x) +

1

2
Trace (σ(t, x) [σ(t, x)]∗ (Hessx u) (t, x)) + 〈µ(t, x), (∇x) (t, x)〉 = 0 (3.2.73)

for (t, x) ∈ (0, T )×O with u(T, x) = g(x).

Proof. Let it be the case, that throughout the proof, for n ∈ N, we have that gn ∈ C(Rd,R),

compactly supported and that


n∈N supp(gm)

⊆ [0, T ]×O and further that:

lim sup
n→∞


sup

t∈[0,T ]
sup
x∈O


|gn(x)− g(x)|

V (T, x)


= 0 (3.2.74)

Let is also be the case that for n ∈ N, mn ∈ C([0, T ]×Rd,Rd) and sn ∈ C([0, T ]×Rd,Rd×m) satisfy:

(i) for all n ∈ N:

sup
t∈[0,T ]

sup
x,y∈Rd,x ∕=y


mn(t, y)−mn(t, y)E + sn(t, x)− sn(t, y)E

x− yE


= 0 (3.2.75)

(ii) for all all n ∈ N, t ∈ [0, T ], x ∈ O:

{V n}(t, x) [mn(t, x)− µ(t, x)E + sn(t, x)− σ(t, x)F ] = 0 (3.2.76)

and

(iii) for all n ∈ N, t ∈ [0, T ], x ∈ Rd \ {V  n+ 1} that:

mn(t, x)E + sn(t, x)F = 0 (3.2.77)

Next for every n ∈ N, t ∈ [0, T ] and x ∈ Rd let it be the case that Xn,t,x
s = (Xn,t,x

s )s∈[t,T ] : [t, t]×Ω. →
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Rd be a stochastic process with continuous sample paths satisfying:

Xn,t,x
s = x+

 s

t
mn(r,X

n,t,x
s )dr +

 s

t
sn(r,X

n,t,x
s )dWr (3.2.78)

Let un : [0, T ]× Rd → R, k ∈ N, n ∈ N0, satisfy for all n ∈ N, t ∈ [0, T ], x ∈ Rd that:

un,k(t, x) = E

gk(X

n,t,x
T )


(3.2.79)

and

u0,k(t, x) = E

gk


X t,x
T


(3.2.80)

and finally let, for every n ∈ N, t ∈ [0, T ], x ∈ O, there be tt,xn : Ω → [t, T ] which satisfy

tt,xn = inf

{s ∈ [t, T ],max{V (s,Xt,x

s ), V (s,X t,x
s )}  n} ∪ {T}


. We may apply Lemma 3.2.14 with

µ ↶ mn, σ ↶ sn, g ↶ gk to show that for all n, k ∈ N we have that un,k is a viscosity solution to:


∂

∂t
un,k


(t, x) +

1

2
Trace


sn(t, x) [sn(t, x)]

∗


Hessx un,k

(t, x)


+ 〈mn(t, x),


∇x(u

n,k

(t, x)〉 = 0

(3.2.81)

for (t, x) ∈ (0, T ) × Rd. But note that items (i)-(iii) and 3.2.78 give us that, in line with (Beck

et al., 2021a, Lemma 3.5):

P

∀s ∈ [t, T ] : {stt,xn }X

n,t,x
s = {stt,xn }X

t,x
s


= 1 (3.2.82)

Further this implies that for all n, k ∈ N, t ∈ [0, T ], x ∈ O that:

E
gk


Xn,t,x
T )− gk(X t,x

T



= E


{tt,xn <T}

gk(Xn,t,x
T )− gk(X t,x

T )



 2


sup
y∈O

|gk(y)|

P

tt,xn < T



Note that this combined with (Beck et al., 2021a, Lemma 3.1) implies for all t ∈ [0, T ], x ∈ O,
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n ∈ N we have that E

V

tt,xn ,X t,x

tt,xn


 V (t, x), which then further proves that:

un,k(t, x)− u0,k(t, x)
  2


sup
y∈O

|gk(y)|

P

tt,xn < T



 2


sup
y∈O

|gk(y)|

P

V

tt,xn ,X t,x

tt,xn


 n



 2

n


sup
y∈O

|gk(y)|

E

V

tt,xn ,X t,x

tt,xn



 2

n


sup
y∈O

|gk(y)|

V (t, x, )

Together these imply that for all k ∈ N and compact K ⊆ [0, T ]×O:

lim sup
k→∞


sup

(t,x)∈K

un,k(t, x)− u0,k(t, x)



= 0 (3.2.83)

But again note that since have that supr∈(0,∞)


inft∈[0,T ],x∈Rd\Or

V (t, x)

= ∞ and (3.2.76) tell us

that for all compact K ⊆ [0, T ]×O we have that:

lim sup
n→∞


sup

(t,x)∈K
(mn(t, x)− µ(t, x)E + sn(t, x)− σ(t, x)F )


= 0 (3.2.84)

Note that (3.2.81), (3.2.83) and Corollary 3.2.11.2 tell us that for all k ∈ N we have that u0,k is a

viscosity solution to:


∂

∂t
u0,k


(t, x) +

1

2
Trace


σ(t, x) [σ(t, x)]∗


Hessx u0,k


(t, x)


+ 〈µ(t, x),


∇xu

0,k

(t, x)〉 = 0

(3.2.85)

for (t, x) ∈ (0, T ) × O. However note that (3.2.71),(3.2.74), (3.2.80) prove that for all compact

K ⊆ [0, T ]×O we have:

lim sup
k→∞


sup

(t,x)∈K

u0,k(t, x)− u(t, x)



= 0 (3.2.86)
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This together with (3.2.85), (3.2.74), Corollary 3.2.11.2 shows that u0 is a viscosity solution to:


∂

∂t
u


(t, x) +

1

2
Trace (σ(t, x) [σ(t, x)]∗ (Hessx u) (t, x)) + 〈µ(t, x), (∇xu)〉 = 0 (3.2.87)

for (t, x) ∈ (0, T )×O. By (3.2.73) we are ensured that for all x ∈ Rd we have that u(T, x) = g(x)

which together with proves the proposition.

3.3 Solutions, Characterization, and Computational Bounds to

the Kolmogorov Backward Equations

Theorem 3.3.1 (Existence and characterization of ud). Let T ∈ (0,∞). Let (Ω,F ,P) be a prob-

ability space. Let σd ∈ C

Rd,Rd×d


and µd ∈ C


Rd,Rd


for d ∈ N, let ud ∈ C1,2


[0, T ]× Rd,R



satisfy for all d ∈ N, t ∈ [0, T ] , x ∈ Rd that:


∂

∂t
ud


(t, x) +

1

2
Trace (σd(x) [σd(x)]∗ (Hessx ud) (t, x)) + 〈µd(x), (∇xud) (t, x)〉 = 0 (3.3.1)

let Wd : [0, T ] × Ω → Rd, d ∈ N be a standard Brownian motions and let X d,t,x : [t, T ] × Ω → Rd,

d ∈ N, t ∈ [0, T ], be a stochastic process with continuous sample paths satisfying for all d ∈ N,

t ∈ [0, T ], s ∈ [t, T ], x ∈ Rd, we have P-a.s. that:

X d,t,x = x+

 t

s
µd


X d,t,x
r


dr +

 t

s
σ

X d,t,x
r


dWd

r (3.3.2)

Then for all d ∈ N , t ∈ [0, T ], x ∈ R, it holds that:

ud(t, x) = E

ud


T,X d,t,x

t


(3.3.3)

Furthermore, ud is a viscosity solution to (3.3.1).

Proof. This is a consequence of Lemma 3.1.2 and 3.2.14.

59



Corollary 3.3.1.1. Let T ∈ (0,∞), let (Ω,F ,P) be a probability space, let ud ∈ C1,2

[0, T ]× Rd,R


,

d ∈ N satisfy for all d ∈ N, t ∈ [0, T ], x ∈ Rd that:


∂

∂t
ud


(t, x) +

1

2


∇2

xud

(t, x) = 0 (3.3.4)

Let Wd : [0, T ] × Ω → Rd, d ∈ N be standard Brownian motions, and let X d,t,x : [t, T ] × Ω → Rd,

d ∈ N, t ∈ [0, T ], x ∈ Rd, be a stochastic process with continuous sample paths satisfying that for

all d ∈ N , t ∈ [0, T ], s ∈ [t, T ], x ∈ Rd we have P-a.s. that:

X d,t,x
s = x+

 s

t
dWd

r = x+Wd
t−s (3.3.5)

Then for all d ∈ N, t ∈ [0, T ], x ∈ Rd it holds that:

ud(t, x) = E

ud


T,X d,T,x

t


(3.3.6)

Proof. This is a special case of Theorem 3.3.1. It is the case where σd(x) = Id, the uniform identity

function where Id is the identity matrix in dimension d for d ∈ N, and µd(x) = 0d,1 where 0d is the

zero vector in dimension d for d ∈ N.

Lemma 3.3.2. Let T ∈ (0,∞), let (Ω,F ,P), be a probability space, let αd ∈ C2
b


Rd,R


, and

α ∈ O

x2


for d ∈ N , be infinitey often differentiable function, let ud ∈ C1,2


[0, T ]× Rd,R


,

d ∈ N, satisfy for all d ∈ N, t ∈ [0, T ], x ∈ Rd, that:


∂

∂t
ud


(t, x) +

1

2


∇2

xud

(t, x) + αd (x)ud (t, x) = 0 (3.3.7)

Let Wd : [0, T ] × Ω → Rd be standard Brownian motions and let X d,t,x : [t, T ] × Ω → Rd, d ∈ N,

t ∈ [0, T ], x ∈ Rd be a stochastic process with continuous sample paths satisfying that for all d ∈ N,

t ∈ [0, T ], s ∈ (t, T ], x ∈ Rd, we have P-a.s. that:

X d,t,x
s = x+

 t

s

1

2
dWd

r =
1

2
Wd

t−r (3.3.8)
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Then for all d ∈ N, t ∈ [0, T ], x ∈ Rd it holds that:

ud (t, x) = E

exp

 T

t
αd


X d,t,x
r


dr


ud


T,X d,t,x

T


(3.3.9)

Proof. Let vd : Rd → R be continuous. Throughout the proof let ud (t, x) = e−tαd(x)vd(t, x) for all

d ∈ N, t ∈ [0, T ], x ∈ Rd. For notational simplicity, we will drop the d, t, x wherever it is obvious.

Therefore the derivatives become:

ut = −αe−tαv + e−tαvt (3.3.10)
1

2
∇2

xu =
1

2


e−tα∇2

xv + 2〈∇xv,∇xe
−tα〉+ v∇2

xe
−tα


(3.3.11)

This then renders (3.3.7) as:

✘✘✘✘✘−αe−tαv + e−tαvt +
1

2


e−tα∇2

xv + 2〈∇xv,∇xe
−tα〉+ v∇2

xe
−tα


+✘✘✘✘αe−tαv = 0

e−tαvt +
1

2


e−tα∇2

xv − 2te−tα〈∇xv,∇xα〉+ v∇2
xe

−tα

= 0

e−tαvt +
1

2


e−tα∇2

xv − 2te−tα〈∇xv,∇xα〉 − tve−tα∇2
xα


= 0

vt +
1

2


∇2

xv − 2t〈∇xv,∇xα〉 − tv∇2
xα


= 0

vt +
1

2


∇2

xv − 2t〈∇xα,∇xv〉 − tv∇2
xα


= 0

vt +
1

2
∇2

xv + 〈−t∇xα,∇xv〉 −
1

2
tv∇2

xα = 0 (3.3.12)

Let σ(t, x) = Id, i.e. the uniform identity function. Let µ(t, x) = −t∇xα for t ∈ [0, T ], x ∈ Rd, and

for fixed α. Let f(t, x, v) = −1
2 tv∇

2
xα for t ∈ [0, T ], x ∈ Rd.

Claim 3.3.3. It is the case that for for all x ∈ Rd and t ∈ [0, T ] that 〈x, µ(t, x)〉  L (1 + xE)

for some constant L ∈ (0,∞).

Proof. Since α has bounded first and second derivatives let:

B = max


sup
x∈Rd

∇xαE , sup
x∈Rd

∇2
xα




(3.3.13)
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Note that we then have the Cauchy-Schwarz inequality:

〈x, µ(t, x)〉  〈x,−t∇xα〉E  xEt∇xαE

 T (xEB)

 T (B+ d) xE

= LxE  L

1 + x2E


(3.3.14)

It also follows that σ(t, x)F =
√
d  L  L(1 + xE).

Claim 3.3.4. It is the case that for all x, y ∈ Rd, and t ∈ [0, T ] that: µ(t, x)−µ(t, y)E+σ(t, x)−

σ(t, y)E  C (xE + yE) (x− yE) for some constant C ∈ (0,∞).

Proof. The fact that for all x, y ∈ Rd and t ∈ [0, T ] it is the case that σ(t, x)− σ(t, y)F = 0, the

fact that for all x, y ∈ Rd it is the case that (xE +yE)(x−yE)  0 and (3.3.13) tells us that:

µ(t, x)− µ(t, y)E + σ(t, x)− σ(t, y)F = µ(t, x)− µ(t, y)E + 0

= t∇xα(x)− t∇xα(y)E

 T∇xα(x)−∇xα(y)E

 2TB (3.3.15)

Now consider a function f ∈ C

[0, T ]× Rd,Rd


, where for all x, y ∈ Rd it is the case that f(x)−f(y) 

C (xE + yE) (x+ ye). Note then that setting y = x+ h gives us:


f(x+ h)− f(x)

h

  C (xE + x+ hE)

lim
h→0


f(x+ h)− f(x)

h

  lim
h→0

C (xE + x+ hE)

|∇xf (x)|  2C xE = K xE (3.3.16)

This suggests that ∇xf ∈ O (x) and in particular that f ∈ O

x2


. However with f ↶ µ we first notice

that because µ  2TB in (3.3.15) it must also be that case that µ ∈ O(1) by Corollary 1.2.30.1.

However since O(c) ⊆ O(x) ⊆ O

x2


by Corollary 1.2.30.2 it is also the case that µ ∈ O


x2


, and
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hence there exists a C satisfying the claim. This proves the claim.

Claim 3.3.5. It is the case that |f(t, x, v)− f(t, x, w)|  L |v − w|

Proof. Note that by the absolute homogeneity property of norms, we have:

|f(t, x, v)− f(t, x, w)| =

1

2
tv∇2

xα− 1

2
tw∇2

xα



=


1

2
t∇2

xα

 |v − w|

 1

2
T
∇2

xα
 |v − w|

 1

2
TB |v − w|

 T (B+ d) |v − w|

= L |v − w| (3.3.17)

Note that we may rewrite (3.3.12) as:


∂

∂t
v


(t, x) +

1

2
Trace (σ (t, x) [σ (t, x)]∗ (Hessx v) (t, x)) + 〈µ (t, x) , (∇xv) (t, x)〉

+f (t, x, v (t, x)) = 0

We realize that (3.3.12) is a case of (Beck et al., 2021c, Corollary 3.9) where it is the case that:

u(t, x) ↶ v(t, x), where σd(x) = Id for all x ∈ Rd, d ∈ N, where µ(t, x) = −t∇xα for fixed α and

for all t ∈ [0, T ], x ∈ Rd, and where f (t, x, u (t, x)) = −1
2 tu∇

2
xα for fixed α and for all t ∈ [0, T ],

x ∈ Rd.

We thus have that there exists a unique, at most polynomially growing viscosity solution v ∈

C

[0, T ]× Rd,R


given as:

v(t, x) = E

v

T,Yt,x

T


+

 T

t
f

s,Yt,x

s , v

s,Yt,x

s


ds


(3.3.18)

Let V : [0, T ] × Ω → Rm be a standard (Ft)t∈[0,T ]-Brownian motion. Note that this also implies
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that the Y in (3.3.18) is characterized as:

Yt,x
s = x+

 s

t
µ

r,Yt,x

r


dr +

 s

t
σ

s,X t,x

r


dVr (3.3.19)

With substitution, this is then:

Yt,x
s = x+

 s

t
−r∇xα


Yt,x
r


dr +

 s

t
IdVr

Yt,x
s = x−

 s

t
r∇xα


Yt,x
s


dr + Vs−t

Note that our initial substitution tells us: v(t, x) = etα(x)u(t, x). And so we have that:

v(t, x) = E

v

T,X t,x

T


+

 T

t
f

s,X t,x

s , v

s,X t,x

s


ds


(3.3.20)

v(t, x) = E

v

T,X t,x

T


− 1

2

 T

t
tv


s,X t,x

s


∇2

xα

X t,x
s


ds



etα(x)u(t, x) = E

exp


Tα


X t,x
T


u

T,X t,x

T


− 1

2

 T

t
t exp


tα


X t,x
s


u

t,X t,x

s


∇2

xα

X t,x
s


ds



u(t, x) = E

exp


Tα


X t,x
T


− tα(x)


u

T,X t,x

T



− E


1

2etα(x)

 T

t
t exp


tα


X t,x
s


u

t,X t,x

s


∇2

xα

X t,x
s


ds
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Chapter 4

Brownian motion Monte Carlo of the

non-linear case

We now seek to apply the techniques introduced in Chapter 2 on ??. To do so we need a variation

of Setting 4.0.1. To that end we define such a setting. Assume v, f,α from Lemma 3.3.2.

Definition 4.0.1 (Subsequent Setting). Let g ∈ C

Rd,R


be the function defined by:

g(x) = v(T, x) (4.0.1)

Let F : C

[0, T ]× Rd,R


→ C


[, T ]× Rd,R


be the functional defined as:

(F (v)) (t, x) = f (t, x, v (t, x)) (4.0.2)

Note also that by Claim 3.3.5 it is the case that:

|f (t, x, w)− f (t, x,w)|  L |w −w| (4.0.3)

Note also that since f (t, x, 0) = 0, and since by (Beck et al., 2021a, Corollary 3.9), v is growing at

most polynomially, it is then the case that:

max {|f (t, x, 0)| , |g (x)|}  L (1 + xp) (4.0.4)
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Substituting (4.0.1) and (4.0.2) into (3.3.20) renders (3.3.20) as:

v(t, x) = E

v

T,X t,x

T


+

 T

t
f

s,X t,x

s , v

s,X t,x

s


ds



v(t, x) = E

v

T,X t,x

T


+ E

 T

t
f

s,X t,x

s , v

s,X t,x

s


ds



v(t, x) = E

v

T,X t,x

T


+

 T

t
E

f

s,X t,x

s , v

s,X t,x

s


ds


v (t, x) = E

g

X t,x
T


+

 T

t
E

(F (v))


s,X t,x

s


ds

Let d,m ∈ N, T,L, p ∈ [0,∞), p ∈ [2,∞) m = kp
√
p− 1, Θ =


n∈N Zn, f ∈ C


[0, T ]× Rd × R


,

g ∈ C(Rd,R), let F : C

[0, T ]× Rd,R


→ C


[0, T ]× Rd,R


assume for all t ∈ [0, T ], x ∈ Rd that:

|f (t, x, w)− f (t, x,w)|  L |w −w| max {|f (t, x, 0)| , |g(x)|}  L

1 + xpE


(4.0.5)

and let (Ω,F ,P) be a probability space, let uθ : Ω → [0, 1], θ ∈ Θ be i.i.d. random variables,

and suume for all θ ∈ Θ, r ∈ (0, 1) that P

uθ  r


= r, let Uθ : [0, T ] × Ω → [0, T ], θ ∈ Θ

satisty for all t ∈ [0, T ], θ ∈ Θ that Uθ
t = t + (T − t) uθ, let Wθ : [0, T ] × Ω → Rd, θ ∈ Θ be

independent standard Brownian motions, let u ∈ C([0, T ]×Rd,R) satisfy for all t ∈ [0, T ], x ∈ Rd,

that E
g


x+W0

T−t

+
 T
t E


(F (u))


s, x+W0

s−t


< ∞ and:

u(t, x) = E

g

x+W0

T−t


+

 T

t
E

(F (u))


s, x+W0

s−t


ds (4.0.6)

and let let U θ : [0, T ]× Rd × Ω → R, θ ∈ Θ, n ∈ Z satisfy for all θ ∈ Θ, t ∈ [0, T ], x ∈ Rd, n ∈ N0

that:

U θ
n(t, x) =

N (n)

mn


mn

k=1

g

x+W(θ,0,−k)

T−t



+

n−1

i=1

T − t

mn−i




mn−i

k=1


F

U

(θ,i,k)
i


U (θ,i,k), x+W(θ,i,k)

U(θ,i,k)
t



 (4.0.7)
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Part II

A Structural Description of Artificial

Neural Networks
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Chapter 5

Introduction and Basic Notions

About Neural Networks

We seek here to introduce a unified framework for artificial neural networks. This framework

borrows from the work presented in Grohs et al. (2018) and work done by Joshua Padgett, Benno

Kuckuk, and Arnulf Jentzen (unpublished). With this framework in place, we wish to study ANNs

from the perspective of trying to see the number of parameters required to define a neural network to

solve certain PDEs. The curse of dimensionality here refers to the number of parameters necessary

to model PDEs and their growth (exponential or otherwise) as dimensions d increase.

5.1 The Basic Definition of ANNs and instantiations of ANNs

Definition 5.1.1 (Rectifier Function). Let d ∈ N and x ∈ Rd. We denote by r : R → R the function

given by:

r(x) = max {0, x} (5.1.1)

Definition 5.1.2 (Artificial Neural Networks). Denote by NN the set given by:

NN =


L∈N



l0,l1,...,lL∈N


L×

k=1


Rlk×lk−1 × Rlk


(5.1.2)
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An artificial neural network is a tuple (ν,P,D, I,O,H, L,W) where ν ∈ NN and is equipped with the

following functions (referred to as auxiliary functions) satisfying for all ν ∈

×L

k=1


Rlk×lk−1 × Rlk


:

(i) P : NN → N denoting the number of parameters of ν, given by:

P(ν) =
L

k=1

lk (lk−1 + 1) (5.1.3)

(ii) D : NN → N denoting the number of layers of ν other than the input layer given by:

D(ν) = L (5.1.4)

(iii) I : NN → N denoting the width of the input layer, given by:

I(ν) = l0 (5.1.5)

(iv) O : NN → N denoting the width of the output layer, given by:

O(ν) = lL (5.1.6)

(v) H : NN → N0 denoting the number of hidden layers (i.e., layers other than the input and

output), given by:

H(ν) = L− 1 (5.1.7)

(vi) L : NN →


L∈NNL denoting the width of layers as an (L+ 1)-tuple, given by:

L(ν) = (l0, l1, l2, ..., lL) (5.1.8)

We sometimes refer to this as the layer configuration or layer architecture of ν.
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(vii) Wi : NN → N0 denoting the width of layer i, given by:

Wi(ν) =






li i  L

0 i > L

(5.1.9)

Note that this implies that that ν = ((W1, b1), (W2, b2), ...(WL, bL)) ∈

×L

k=1


Rlk×lk−1 × Rlk


.

Note that we also denote by Weight(·),ν : (Weightn,ν)n∈{1,2,...,L} : {1, 2, ..., L} →


m,k∈NRm×k


and also Bias(·),ν : (Biasn,ν){1,2,...,L} : {1, 2, ..., L} →


m∈NRm


the functions that satisfy for all

n ∈ {1, 2, ..., L} that Weighti,ν = Wi i.e. the weights matrix for neural network ν at layer i and

Biasi,ν = bi, i.e. the bias vector for neural network ν at layer i.

We will call l0 the starting width and lL the finishing width. Together, they will be referred to as

end-widths.

Remark 5.1.3. Notice that our definition varies somewhat from the conventional ones found in

Petersen and Voigtlaender (2018) and Grohs et al. (2023) in that whereas the former talk about

auxiliary functions as existing within the set NN we will talk about these auxiliary functions as

something elements of NN are endowed with. In other words, elements of NN may exist whose

depths and parameter counts, for instance, are undefined and non-determinate.

Note that we develop this definition to closely align to popular deep-learning frameworks such as

PyTorch, TensorFlow, and Flux, where, in principle, it is always possible to know the parameter

count, depth, number of layers, and other auxiliary information.

We will often say let ν ∈ NN, and it is implied that the tuple ν with the auxiliary functions is what

is being referred to. This is analogous to when we say that X is a topological but we mean the pair

(X, τ), i.e. X endowed with topology τ , or when we say that Y is a measurable space when we

mean the triple (X,Ω, µ), i.e. X, endowed with σ−algebra Ω, and measure µ.

Definition 5.1.4 (Instantiations of Artificial Neural Networks with Activation Functions). Let

a ∈ C (R,R), we denote by Ia : NN →


k,l∈NC

Rk,Rl


the function satisfying for all L ∈ N,

l0, l1, ..., lL ∈ N, ν = ((W1, b1) , (W2, b2) , ..., (WL, bL)) ∈

×L

k=1


Rlk×lk−1 × Rlk


, x0 ∈ Rl0 , x1 ∈
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Figure 5.1: A neural network ν with L (ν) = (4, 4, 3, 2)

Rl1 , ..., xL−1 ∈ RlL−1 and with ∀k ∈ N ∩ (0, L) : xk = a

[Wkxk + bk]∗,∗


such that:

Ia (ν) ∈ C

Rl0 ,RlL


and (Ia (ν)) (x0) = WLxL−1 + bL (5.1.10)

Remark 5.1.5. For an R implementation see Listings 10.1, 10.2, 10.3, and 10.4

Lemma 5.1.6. Let ν ∈ NN, it is then the case that:

(i) L(ν) ∈ ND(ν)+1, and

(ii) for all a ∈ C (R,R), Ia ∈ C

RI(ν),RO(ν)



Proof. By assumption:

ν ∈ NN =


L∈N



(l0,l1,...,lL)∈NL+1


L×

k=1


Rlk×lk−1 × Rlk


(5.1.11)

This ensures that there exist l0, l1, ..., lL, L ∈ N such that:

ν ∈


L×
j=1


Rlj×lj−1 × RBj


(5.1.12)

This also ensures that L(ν) = (l0, l1, ..., lL) ∈ NL+1 = ND(ν)+1 and further that I(ν) = l0, O(ν) = lL,

and that D(ν) = L. Together with (5.1.10), this proves the lemma.
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5.2 Compositions of ANNs

The first operation we want to be able to do is to compose neural networks. Note that the compo-

sition is not done in an obvious way; for instance, note that the last layer of the first component of

the composition is superimposed with the first layer of the second component of the composition.

5.2.1 Composition

Definition 5.2.1 (Compositions of ANNs). We denote by (·) • (·) : {(ν1, ν2) ∈ NN×NN : I(ν1) =

O(ν1)} → NN the function satisfying for all L,M ∈ N, l0, l1, ..., lL,m0,m1, ...,mM ∈ N, ν1 =

((W1, b1) , (W2, b2) , ..., (WL, bL)) ∈

×L

k=1


Rlk×lk−1 × Rlk


, and ν2 = ((W ′

1, b
′
1) , (W

′
2, b

′
2) , ... (W

′
M , b′M )) ∈


×M

k=1 [R
mk×mk−1 × Rmk ]


with l0 = I(ν1) = O(ν2) = mM and :

ν1 • ν2 =






((W ′
1, b

′
1), (W

′
2, b

′
2), ...(W

′
M−1, b

′
M−1), (W1W

′
M ,W1b

′
M + b1), (W2, b2),

..., (WL, bL)) : (L > 1) ∧ (M > 1)

((W1W
′
1,W1b

′
1 + b1), (W2, b2), (W3, b3), ..., (WLbL)) : (L > 1) ∧ (M = 1)

((W ′
1, b

′
1), (W

′
2, b

′
2), ..., (W

′
M−1, b

′
M−1)(W1, b

′
M + b1)) : (L = 1) ∧ (M > 1)

((W1W
′
1,W1b

′
1 + b1)) : (L = 1) ∧ (M = 1)

(5.2.1)

Remark 5.2.2. For an R implementation see Listing 10.7

Lemma 5.2.3. Let ν, µ ∈ NN be such that O(µ) = I(ν). It is then the case that:

(i) D(ν • µ) = D(ν) + D(µ)− 1

(ii) For all i ∈ {1, 2, ...,D(ν • µ)} that:


Weighti,(ν•µ),Biasi,(ν•µ)



=







Weighti,µ,Biasi,µ


: i < D(µ)


Weight1,ν WeightD(µ),µ,Weight1,ν BiasD(µ),µ+Bias1,ν


: i = D(µ)


Weighti−D(µ)+1,ν Biasi−D(µ)+1,ν


: i > D(µ)

72



Proof. This is a consequence of (5.2.1), which implies both (i) and (ii).

Lemma 5.2.4. Let ν1, ν2, ν3 ∈ NN satisfy that I(ν1) = O(ν2) and I(ν2) = O(ν3), it is then the case

that:

(ν1 • ν2) • ν3 = ν1 • (ν2 • ν3) (5.2.2)

Proof. This is a consequence of (Grohs et al., 2023, Lemma 2.8) with Φ1 ↶ ν1, Φ2 ↶ ν2, and

Φ3 ↶ ν3, and the functions I ↶ I, L ↶ D and O ↶ O.

The following Lemma will be important later on, referenced numerous times, and found in (Grohs

et al., 2023, Proposition 2.6). For completion, we will include a simplified version of the proof here.

Lemma 5.2.5. Let ν1, ν2 ∈ NN. Let it also be that O (ν1) = I (ν2). It is then the case that:

(i) D (ν1 • ν2) = D (ν1) + D (ν2)− 1

(ii) L (ν1 • ν2) =

W1 (ν2) ,W2 (ν2) , . . . ,WH(ν2),W1 (ν1) ,W2 (ν1) , . . . ,WD(φ1) (ν1)



(iii) H (ν1 • ν2) = H (ν1) + H (ν2)

(iv) P (ν1 • ν2)  P (ν1) + P (ν2) + W1 (ν1) · WH(ν2) (ν2)

(v) for all a ∈ C (R,R) that Ia (ν1 • ν2) (x) ∈ C

RI(ν2),RO(ν1)


and further:

Ia (ν1 • ν2) = [Ia (ν1)] ◦ [Ia (ν2)] (5.2.3)

Proof. Note that Items (i)---(iii) are a simple consequence of Definition 5.2.1. Specifically, given

neural networks ν1, ν2 ∈ NN, and D (ν1) = n and D (ν2) = m, note that for all four cases, we have

that the depth of the composed neural network ν1 •ν2 is given by n−1+m−1 = n+m−1 proving

Item (i). Note that the outer neural network loses its last layer, yielding Item (ii) in all four cases.

Finally since, for all ν ∈ NN it is the case that H (ν) = D (ν)− 1, Item (i) yields Item (iii).
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Now, suppose it is the case that ν3 = ν1 • ν2 and that:

ν1 = ((W1,1, b1,1) , (W1,2, b1,2) , . . . , (W1,L1 , b1,L1))

ν2 = ((W2,1, b2,1) , (W2,2, b2,2) , . . . , (W2,L2 , b2,L2))

ν3 = ((W3,1, b3,1) , (W3,2, b3,2) , . . . , (W3,L2 , b3,L2))

(5.2.4)

And that:

L (ν1) = (l1,1, l1,2, . . . , l1,L1)

L (ν2) = (l2,1, l2,2, . . . , l2.L2)

L (ν1 • ν2) = (l3,1, l3,2, . . . , l3,L3) (5.2.5)

and further let x0 ∈ Rl2,0 , x1 ∈ Rl2,1 , . . . , xL2−1 ∈ Rl2,L2−1 satisfy the condition that:

∀k ∈ N ∩ (0, L2) : xk = a

[W2,kxk−1 + b2,k]∗,∗


(5.2.6)

also let y0 ∈ Rl1,0 , y1 ∈ Rl1,1 , . . . , yL1−1 ∈ Rl2,L2−1 satisfy:

∀k ∈ N ∩ (0, L1) : yk = a

[W1,kyk−1 + b1,k]∗,∗


(5.2.7)

and finally let z0 ∈ Rl3,0 , z1 ∈ Rl3,1 , . . . , zL3−1 ∈ Rl3,L3−1 satisfy:

∀k ∈ N ∩ (0, L3) : zk = a

[W3,kzk−1 + b3,k]∗,∗


(5.2.8)
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Note then that by Item (i) of Definition 5.1.2 we have that:

P (ν1 • ν2) =
L3

k=1

l3,k (l3,k−1 + 1)

=


L2−1

k=1

l3,k (l3,k−1 + 1)


+ l3,L2 (l3,L2−1 + 1) +




L3

k=L2+1

l3,k (l3,k−1 + 1)





=


L2−1

k=1

l2,j (l2,j−1 + 1)


+ l1,1 (l2,L−1 + 1) +




L3

k=L2+1

lj−L2+1 (l1,j−L2 + 1)





=


L2−1

k=1

l2,j (l2,k−1 + 1)


+


L1

k=2

l1,j (l1,k−1 + 1)


+ l1,1 (l2,L2−1 + 1)

=


L2

k=1

l2,k (l2,k−1 + 1)


+


L1

k=1

l1,k (l1,k−1 + 1)


+ l1,1 (l2,L2−1 + 1)

− l2,L2 (l2,L2−1 + 1)− l1,1 (l1,0 + 1)

= P (ν1) + P (ν2) + l1,1 · l2,L2−1 (5.2.9)

Thus establishing Item (iv). Note by Definition 5.2.1, and the fact that a ∈ C (R,R) it is the case

that

Ia (ν1 • ν2) ∈ C

RI(ν1),RO(ν2)


(5.2.10)

Next note that by definition, it is the case that:

L (ν1 • ν2) = (l2,0, l2,1, . . . , l2,L2−1, l1,1, l1,2, . . . , l1,L1) (5.2.11)

And further that:

∀k ∈ N ∩ (0, L2) : (W3,k, b3,k) = (W2,k, b2,k)

(W3,L2 , b3,L2) = (W1,1 ·W2,L2 ,W1,1b2,L2 + b1,1)

and ∀k ∈ N ∩ (L2, L1 + L2) : (W3,k, b3,k) = (W1,j+1−L2 , b1,j+1−L2) (5.2.12)

Since for all k ∈ N ∩ [0, L2) it is the case that zj = xj and the fact that y0 = W2,l2xL2−1 + b2,L2
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ensures us that:

W3,L2zL2−1 + b3,L2 = W3,L2xL2−1 + b3,L2

= W1,1W2,L2xL2−1 +W1,1b2,L2 + b1,1

= W1,1 (W2,L2xL2−1 + b2,L2) + b1,1 = W1,1y0 + b1,1 (5.2.13)

We next claim that for all k ∈ N ∩ [L2, L1 + L2) it is the case that:

W3,kzk−1 + b3,k = W1,k+1−L2yk−L2 + b1,k+1−L2 (5.2.14)

This can be proved via induction on k ∈ N ∩ [L2, L1 + L2). Consider that our base case of k = L2

in (5.2.14) is fulfilled by (5.2.13). Now note that for all k ∈ N ∩ [L2,∞) ∩ (0, L1 + L2 − 1) with:

W3,kzk−1 + b3,k = W1,k+1−L2yk−L2 + b1,k+1−L2 (5.2.15)

it holds that:

W3,k+1zk + b3,k+1 = W3,k+1


[W3,kzk−1 + b3,k]∗,∗


+ b3,k+1

= W1,k+2−L2 ([W1,k+1−L2yk−L2 ] + b1,k+1−L2) + b1,k+2−L2

= W1,k+2−L2yk+1−L2 + b1,k+2−L2 (5.2.16)

Whence induction proves (5.2.14). This, along with the fact that L3 = L1 + L2 − 1 then indicates

that:

W3,L3zL3−1 + b3,L3 = W3,L1+L2−1zL1+L2−2 + b3,L1+L2−1 = W1,L1yL1−1 + b1,L1 (5.2.17)
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Finally, the fact that ν3 = ν1 • ν2, in addition with (5.2.6),(5.2.7), and (5.2.8) then tells us that:

[Ia (ν1 • ν2)] (x0) = [Ia (ν3)] (x0) = [Ia (ν3)] (z0) = W3,L3zL3−1 + b3,L3

= W1,L1yL1−1 + b1,L1 = [Ia (ν1)] (y0)

= [Ia (ν1)]

[W2,L2xL2−1 + b2,L2 ]∗,∗



= [Ia (ν1)] ([Ia (ν2)] (x0)) = [Ia (ν1)] ◦ [Ia (ν2)] (x0) (5.2.18)

This and (5.2.10) then prove Item (v), hence proving the lemma.

5.3 Stacking of ANNs of Equal Depth

Definition 5.3.1 (Stacking of ANNs of same depth). Let L, n ∈ N, and let ν1, ν2, . . . , νn ∈ NN,

such that D (ν1) = D (ν2) = · · · = D (νn) = L. As such, for all i ∈ {1, . . . , n}, let it also be the case

that L (νi) =

W i

1, b
i
1


,

W i

2, b
i
2


, . . . ,


W i

L, b
i
L


. We then denote by ⊟n

i=1νi, the neural network

whose layer architecture is given by:

L (⊟n
i=1νi) =


diag


W 1

1 ,W
2
1 , . . . ,W

n
1


, b11 ⌢ b21,⌢ · · · ⌢ bn1


,


diag


W 1

2 ,W
2
2 , . . . ,W

n
2


, b12 ⌢ b22,⌢ · · · ⌢ bn2


,

...

diag


W 1

L,W
2
L, . . . ,W

n
L


, b1L ⌢ b2L,⌢ · · · ⌢ bnL



Remark 5.3.2. For an R implementation see Listing ??

Lemma 5.3.3. Let ν1, ν2 ∈ NN, with D (ν1) = D (ν2), x1 ∈ Rm1, x2 ∈ Rm2, and x ∈ Rm1+m2. Let

Ir (ν1) : Rm1 → Rn1, and Ir : Rm2 → Rn2. It is then the case that Ir (ν1 ⊟ ν2) (x) = Ir (ν1) (x1) ⌢

Ir (ν2) (x2).

Proof. Let L (ν1) = ((W1, b1) , (W2, b2) , . . . , (WL, bL)) and L (ν2) = ((W1, b1) , (W2, b2) , . . . , (WL, bL)),
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and as such it is the case according to Definition 5.3.1 that:

L (ν1 ⊟ ν2) = ((diag (W1,W1) , b1 ⌢ b1) ,

(diag (W2,W2) , b2 ⌢ b2) ,

...

diag (WL,WL) , b

1
L ⌢ bL



Note that for all, a ∈ (R,R), j ∈ {1, 2, . . . , L − 1} and for all x ∈ Rcolumns(Wj)+columns(Wj), x1 ∈

Rcolumns(Wj), x2 ∈ Rcolumns(Wj), y ∈ Rrows(Wj)+rows(Wj), y1 ∈ Rrows(Wj), y2 ∈ Rrows(Wj), where

y1 = a

[Wj · x1 + b1]∗,∗


, y2 = a


[Wj · x2 + bj ]∗,∗


, y = a


[diag (Wj ,Wj) · x+ (bj ⌢ bj)]∗,∗


it is

the case that, Corollary 1.2.34.1 tells us that:

y = a

[diag (Wj ,Wj) · x+ (bj ⌢ bj)]∗,∗


= a


[(Wj · x1 + bj) ⌢ (Wj · x2 + bj)]∗,∗



= a

[Wj · x1 + bj ]∗,∗


⌢ a


[Wj · x2 + bj ]∗,∗



= y1 ⌢ y2 (5.3.1)

Note that this is repeated from one layer to the next, yielding that Ir (ν1 ⊟ ν2) (x) = Ir (ν1) (x1) ⌢

Ir (ν2) (x2).

Remark 5.3.4. Given n,L ∈ N, ν1, ν2, ..., νn ∈ NN such that L = D(ν1) = D(ν2) = ... = D(νn) it

is then the case, as seen from (??) that:

⊟n
i=1νi ∈


L×

k=1


R(

n
j=1 Wk(νj))×(

n
j=1 Wk−1(νj)) × R(

n
j=1 Wk(νj))


(5.3.2)

Lemma 5.3.5. Let n,L ∈ N, ν1, ν2, . . . , νn ∈ NN satisfty that L = D (ν1) = D (ν2) = · · · = D (νn).

It is then the case that:

P ([⊟n
i=1νi]) 

1

2


n

i=1

P (νi)

2

(5.3.3)
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Proof. Note that by Remark 5.5.2 we have that:

P ([⊟n
i=1νi]) =

L

k=1


n

i=1

li,k


n

i=1

li,k−1


+ 1



=

L

k=1


n

i=1

li,k








n

j=1

lj,k−1



+ 1






n

i=1

n

j=1

L

k=1

li,k (lj,k−1 + 1)


n

i=1

n

j=1

L

ℓ=1

li,k (lj,ℓ−1 + 1)

=

n

i=1

n

j=1


L

k=1

li,k


L

ℓ=1

(lj,ℓ−1 + 1)




n

i=1

n

j=1


L

k=1

1

2
li,k (li,k−1 + 1)


L

ℓ=1

lj,ℓ (lj,ℓ−1 + 1)



=

n

i=1

n

j=1

1

2
P (νi)P (νj) =

1

2


n

i=1

P (νi)

2

(5.3.4)

This completes the proof of the lemma.

Corollary 5.3.5.1. Let n ∈ N. Let ν1, ν2, ..., νn ∈ NN satisfy that L (ν1) = L (ν2) = · · · = L (νn). It

is then the case that:

P (⊟n
i=1νi)  n2 P (ν1) (5.3.5)

Proof. Since it is the case that for all j ∈ {1, 2, ..., n} that: L (νj) = (l0, l1, ..., lL), where l0, l1, ..., lL, L ∈

N, we may say that:

P

⊟n

j=1νj

=

L

j=1

(nlj) [(nlj−1) + 1] 
L

j=1

(nlj) [(nlj−1) + n]

= n2




L

j=1

lj (lj−1 + 1)



 = n2 P (ν1) (5.3.6)
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Lemma 5.3.6. Let ν1, ν2 ∈ NN, such that D (ν1) = D (ν2) = L. It is then the case that P (ν1) +

P (ν2)  P (ν1 ⊟ ν2).

Proof. Remark 5.3.4 tells us that:

ν1 ⊟ ν2 ∈


L×
k=1


R(Wk(ν1)+Wk(ν2))×(Wk−1(ν1)+Wk−1(ν2)) × RWk(ν1)+Wk(ν2)


(5.3.7)

The definition of P() from Defition 5.1.2, and the fact that Wi  1 for all i ∈ {1, 2, . . . , L} tells us

then that:

P (ν1 ⊟ ν2) =

L

k=1

[(Wk (ν1) + Wk (ν2))× (Wk−1 (ν1) + Wk−1 (ν2) + 1)]

=

L

k=1

[Wk (ν1)Wk−1 (ν1) + Wk (ν1)Wk−1 (ν2)

+Wk (ν1) + Wk (ν2)Wk−1 (ν1) + Wk (ν2)Wk−1 (ν2) + Wk (ν2)]


L

k=1

[Wk (ν1)Wk−1 (ν1) + Wk (ν1) + Wk (ν2)Wk−1 (ν2) + Wk (ν2)]

=

L

k=1

[Wk (ν1) (Wk−1 (ν1) + 1)] +

L

k=1

[Wk (ν2) (Wk−1 (ν2) + 1)]

= P (ν1) + P (ν2) (5.3.8)

Corollary 5.3.6.1. Let ν1, ν2, ν3 ∈ NN. Let P (ν2)  P (ν3). It is then the case that P (ν1 ⊟ ν2) 

P (ν1 ⊟ ν3).

Proof. Lemma 5.3.6 tells us that:

0  P (ν1) + P (ν3)  P (ν1 ⊟ ν3) (5.3.9)

0  P (ν1) + P (ν2)  P (ν1 ⊟ ν2) (5.3.10)
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Subtracting (5.3.9) from (5.3.10) gives us that:

0  P (ν3)− P (ν2)  P (ν1 ⊟ ν3)− P (ν1 ⊟ ν2)

P (ν1 ⊟ ν2)  P (ν1 ⊟ ν2)

Lemma 5.3.7. Let m1,m2, n1, n2 ∈ N. Let ν1, ν2 ∈ NN, such that Ir (ν1) ∈ C (Rm1 ,Rn1) and

Ir (ν2) ∈ C (Rm2 ,Rn2). It is then the case that (Ia(ν1 ⊟ ν2))








x

x′







 = (Ia(ν2 ⊟ ν1))








x′

x







 for

x ∈ Rm1 , x′ ∈ Rn1, upto transposition.

Proof. Note that this is a consequence of the commutativity of summation in the exponents of

(5.3.2), and the fact that switching ν1 and ν2 with a transposition results in a transposed output

for transposed input.

Lemma 5.3.8. Let a ∈ C (R,R), n ∈ N, and ν = ⊟n
i=1νi satisfy the condition that D(ν1) = D(ν2) =

... = D(νn). It is then the case that Ia (ν) ∈ C

R
n

i=1 I(νi),R
n

i=1 O(νi)


Proof. Let L = D(ν1), and let li,0, li,1...li,L ∈ N satisfy for all i ∈ {1, 2, ..., n} that L(νi) =

(li,0, li,1, ..., li,L). Furthermore let ((Wi,1, bi,1) , (Wi,2, bi,2) , ..., (Wi,L, bi,L)) ∈

×L

j=1


Rli,j×li,j−1 × Rli,j



satisfy for all i ∈ {1, 2, ..., n} that:

νi = ((Wi,1, bi,1) , (Wi,2, bi,2) , ..., (Wi,L, bi,L)) (5.3.11)

Let αj ∈ N with j ∈ {0, 1, ..., L} satisfy that αj =
n

i=1 li,j and let ((A1, b1) , (A2, b2) , ..., (AL, bL)) ∈

×L

j=1 [R
αj×αj−1 × Rαj ]


satisfy that:

⊟n
i=1νi = ((A1, b1) , (A2, b2) , ..., (AL, bL)) (5.3.12)

See Remark 5.3.2. Let xi,0, xi,1, ..., xi,L−1 ∈

Rli,0 × Rli,1 × · · ·× Rli,L−1


satisfy for all i ∈ {1, 2, ..., n}

k ∈ N ∩ (0, L) that:

xi,j = Multli,ja (Wi,jxi,j−1 + bi,j) (5.3.13)
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Note that (5.3.12) demonstrates that I (⊟n
i=1νi) = α0 and O (⊟n

i=1νi) = αL. This and Item(ii) of

Lemma 5.1.6, and the fact that for all i ∈ {1, 2, ..., n}it is the case that I(νi) = li,0 and O(νi) = li,L

ensures that:

Ia (⊟n
i=1) ∈ C (Rα0 ,RαL) = C


R
n

i=1 li,0 ,R
n

i=1 li,L


= C

R
n

i=1 I(νi),R
n

i=1 O(νi)


This proves the lemma.

5.4 Stacking of ANNs of Unequal Depth

We will often encounter neural networks that we want to stack but have unequal depth. Definition

5.3.1 only deals with neural networks of the same depth. We will facilitate this situation by

introducing a form of ``padding" for our neural network. Hence, they come out to the same length

before stacking them. This padding will be via the "tunneling" neural network, as shown below.

Definition 5.4.1 (Identity Neural Network). We will denote by Idd ∈ NN the neural network

satisfying for all d ∈ N that:

(i)

Id1 =












1

−1



 ,




0

0










1 − 1


,


0




 ∈

R2×1 × R2


×


R1×2 × R1


(5.4.1)

(ii)

Idd = ⊟d
i=1 Id1 (5.4.2)

For d > 1.

Remark 5.4.2. We will discuss some properties of Id in Section 6.2.

Definition 5.4.3 (The Tunneling Neural Network). We define the tunneling neural network, de-
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ν1

ν2Tun

Figure 5.2: Diagrammmatic representation of the stacking of unequal depth neural networks

noted as Tunn for n ∈ N and d ∈ N by:

Tundn =






AffId,0 : n = 1

Idd : n = 2

•n−2 Idd n ∈ N ∩ [3,∞)

(5.4.3)

We will drop the requirement for d and Tunn by itself will be used to denote Tun1n.

Remark 5.4.4. We will discuss some properties of the Tundn network in Section 6.2.

Definition 5.4.5. Let n ∈ N, and ν1, ν2, ..., νn ∈ NN. We will define the stacking of unequal length

neural networks, denoted n
i=1νi as the neural network given by:

n
i=1νi = ⊟n

i=1


Tunmaxi{D(νi)}+1−D(νi) •νi


(5.4.4)

Diagrammatically, this can be thought of as:

Lemma 5.4.6. Let ν1, ν2 ∈ NN. It is then the case that:

P

ν1 ν2


 2 · (max {P (ν1) ,P (ν2)})2 (5.4.5)

Proof. This is a straightforward consequence of Lemma 5.3.5.

5.5 Affine Linear Transformations as ANNs and Their Properties.

Definition 5.5.1. Let m,n ∈ N, W ∈ Rm×n, b ∈ Rm.We denote by AffW,b ∈ (Rm×n × Rm) ⊆ NN

the neural network given by AffW,b = ((W, b)).
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Lemma 5.5.2. Let m,n ∈ N, W ∈ Rm×n, b ∈ Rm. It is then the case that:

(i) L(AffW,b) = (n,m) ∈ N2.

(ii) for all a ∈ C(R,R) it is the case that Ia(AffW,b) ∈ C(Rn,Rm)

(iii) for all a ∈ C(R,R), x ∈ Rn we have (Ia(AffW,b))(x) = Wx+ b

Proof. Note that (i) is a consequence of Definition 5.1.2 and 5.5.1. Note next that AffW,b = (W, b) ∈

(Rm×n×Rm) ⊆ NN. Note that (5.1.10) then tells us that Ia(AffW,b) = Wx+b which in turn proves

(ii) and (iii)

Remark 5.5.3. Given W ∈ Rm×n, and b ∈ Rm×1, it is the case that according to Definition (5.1.3)

we have: P(AffW,b) = m× n+m

Remark 5.5.4. For an R implementation see Listing ??

Lemma 5.5.5. Let ν ∈ NN. It is then the case that:

(i) For all m ∈ N, W ∈ Rm×O(ν)

L(AffW,B •ν) =

W0(ν),W1(ν), ...,WD(ν)−1(ν),m


∈ ND(ν)+1 (5.5.1)

(ii) For all a ∈ C(R,R), m ∈ N, W ∈ Rm×O(ν), B ∈ Rm, we have that Ia(AffW,B •ν) ∈

C

RI(ν),Rm


.

(iii) For all a ∈ C(R,R), m ∈ N, W ∈ Rm×O(ν), B ∈ Rm, x ∈ RI(ν) that:

(I (AffW,b •ν)) (x) = W (Ia (ν)) (x) + b (5.5.2)

(iv) For all n ∈ N, W ∈ RI(ν)×n, b ∈ RI(ν) that:

L(ν • AffW,b) =

n,W1(ν),W2(ν), ...,WD(ν)(ν)


∈ ND(ν)+1 (5.5.3)

(v) For all a ∈ C(R,R), n ∈ N, W ∈ RI(ν)×n, b ∈ RI(ν) that Ia (ν • AffW,b) ∈ C

Rn,RO(ν)


and,
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(vi) For all a ∈ C(R,R), n ∈ N, W ∈ RI(ν)×n, b ∈ RI(ν), x ∈ Rn that:

(Ia (ν • AffW,b)) (x) = (Ia (ν)) (Wx+ b) (5.5.4)

Proof. From Lemma 5.5.2 we see that Ia(AffW,b) ∈ C(Rn,Rm) given by Ia(AffW,b) = Wx+ b. This

and Lemma 5.2.5 prove (i)− (vi).

Corollary 5.5.5.1. Let m,n ∈ N, and W ∈ Rm×n and b ∈ Rm. Let ν ∈ NN. It is then the case

that:

(i) for all AffW,b ∈ NN with I (AffW,b) = O (ν) that:

P (AffW,b •ν) 

max


1,

O (AffW,b)

lL


P (ν) (5.5.5)

(ii) for all AffW,b ∈ NN with O (AffW,b) = I (ν) that:

P (ν • AffW,b) 

max


1,

I (AffW,b) + 1

I (ν) + 1


P (ν) (5.5.6)

Proof. Let it be the case that L (ν) = (l0, l1, ..., lL) for l0, l1, ..., lL, L ∈ N. Lemma 5.5.5, Item (i),

and Lemma 5.2.5 then tells us that:

P (AffW,b •ν) =

L−1

m=1

lm (lm−1 + 1)


+ O (AffW,b) (lL−1 + 1)

=


L−1

m=1

lm (lm−1 + 1)


+


O (AffW,b)

lL


lL (lL−1 + 1)



max


1,

O(AffW,b)

lL

L−1

m=1

lm (lm−1 + 1)


+


max


1,

O (AffW,b)

lL


lL (lL−1 + 1)

=


max


1,

O (AffW,b)

lL

 L

m=1

lm (lm−1 + 1)


=


max


1,

O (AffW,b)

lL


P (ν)
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and further that:

P (ν • AffW,b) =


L

m=2

lm (lm−1 + 1)


+ l1 (I (AffW,b) + 1)

=


L

m=2

lm (lm−1 + 1)


+


I (AffW,b) + 1

l0 + 1


l1 (l0 + 1)



max


1,

I(AffW,b) + 1

l0 + 1

 L

m=2

lm (lm−1 + 1)


+


max


1,

I (AffW,b) + 1

l0 + 1


l1 (l0 + 1)

=


max


1,

I (AffW,b) + 1

l0 + 1

 L

m=1

lm (lm−1 + 1)


=


max


1,

I (AffW,b) + 1

I (ν) + 1


P (ν)

This completes the proof of the lemma.

Lemma 5.5.6. Let a1, a2 be two affine neural networks as defined in Definition 5.5.1. It is then

the case that a1 ⊟ a2 is also an affine neural network

Proof. This follows straightforwardly from Definition 5.3.1, where, given that a1 = ((W1, b1)), and

a2 = ((W2, b2)), their stackings is the neural network ((diag (W1,W2) , b1 ⌢ b2)), which is clearly

an affine neural network.

5.6 Sums of ANNs of Same End-widths

Definition 5.6.1 (The Cpy Network). We define the neural network, Cpyn,k ∈ NN for n, k ∈ N as

the neural network given by:

Cpyn,k = Aff
[Ik Ik · · · Ik]T  

n−many

,0nk

(5.6.1)

Where k represents the dimensions of the vectors being copied and n is the number of copies of the

vector being made.

Remark 5.6.2. See Listing ??

Lemma 5.6.3. Let n, k ∈ N and let Cpyn,k ∈ NN, it is then the case for all n, k ∈ N that:

(i) D

Cpyn,k


= 1
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(ii) P

Cpyn,k


= nk2 + nk

Proof. Note that (i) is a consequence of Definition 5.5.1 and (ii) follows from the structure of

Cpyn,k.

Definition 5.6.4 (The Sum Network). We define the neural network Sumn,k for n, k ∈ N as the

neural network given by:

Sumn,k = Aff[Ik Ik · · · Ik]  
n−many

,0k
(5.6.2)

Where k represents the dimensions of the vectors being added and n is the number of vectors being

added.

Remark 5.6.5. See again, Listing ??

Lemma 5.6.6. Let n, k ∈ N and Sumn,k ∈ NN, it is then the case for all n, k ∈ N that:

(i) D (Sumn,k) = 1

(ii) P (Sumn,k) = nk2 + k

Proof. (i) is a consequence of Definition 5.5.1 and (ii) follows from the structure of Sumn,k.

Definition 5.6.7 (Sum of ANNs of the same depth and same end widths). Let u, v ∈ Z with

u  v. Let νu, νu+1, ..., νv ∈ NN satisfy for all i ∈ N ∩ [u, v] that D(νi) = D(νu), I(νi) = I(νu), and

O(νi) = O(νu). We then denote by ⊕n
i=uνi or alternatively νu ⊕ νu+1 ⊕ . . .⊕ νv the neural network

given by:

⊕v
i=uνi :=


Sumv−u+1,O(ν2) • [⊟v

i=uνi] • Cpy(v−u+1),I(ν1)


(5.6.3)

Remark 5.6.8. For an R implementation, see Listing 10.9.
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5.6.1 Neural Network Sum Properties

Lemma 5.6.9. Let ν1, ν2 ∈ NN satisfy that D(ν1) = D(ν2) = L, I(ν1) = I(ν2), and O(ν1) = O(ν2),

and L(ν1) = (l1,1, l1,2, ...l1,L) and L (ν2) = (l2,1, l2,2, ..., l2,L) it is then the case that:

P (ν1 ⊕ ν2) = P


Aff[IO(ν2)
IO(ν2)],0O(ν2)

• [ν1 ⊟ ν2] • Aff
[II(ν1) II(ν1)]

T
,02·I(ν1)


(5.6.4)

 1

2
(P (ν1) + P (ν2))

2

Proof. Note that by Lemma 5.3.5 we have that:

P (ν1 ⊟ ν2) =
1

2
(P (ν1) + P (ν2))

2 (5.6.5)

Note also that since Cpy and Sum are affine neural networks, from Corollary 5.5.5.1 we get that:

P

[ν1 ⊟ ν2] • Cpy2,I(ν1)


 max


1,

I (ν1) + 1

2 I (ν1) + 1


1

2
(P (ν1) + P (ν2))

2

=
1

2
(P (ν1) + P (ν2))

2 (5.6.6)

and further that:

P


Sum2,O(ν1⊟ν2) • [ν1 ⊟ ν2] • Cpy2,I(ν1)




max


1,

O (AffW,b)

2O (ν1)


1

2
(P (ν1) + P (ν2))

2

=
1

2
(P (ν1) + P (ν2))

2 (5.6.7)

Corollary 5.6.9.1. Let n ∈ N. Let ν1, ν2, ..., νn ∈ NN satisfy that L (ν1) = L (ν2) = · · · = L (νn). It

is then the case that:

P


n

i=1

νi


 n2 P (ν1) (5.6.8)

Proof. Let L (ν1) = (l0, l1, ..., lL) where for all i ∈ {0, 1, ..., L} it is the case that li, L ∈ N. Corollary
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5.3.5.1 then tells us that:

P (⊟n
i=1νi)  n2 P (νi) (5.6.9)

Then from Corollary 5.5.5.1, and (5.6.6) we get that:

P

[⊟n

i=1νi] • Cpy2,I(ν1)

 n2 P (ν1) (5.6.10)

And further that:

P


Sum2,O(⊟n
i=1νi)

• [⊟n
i=1νi] • Cpy2,I(ν1)


 n2 P (ν1) (5.6.11)

Lemma 5.6.10. Let ν1, ν2 ∈ NN satisfy that D(ν1) = D(ν2) = L, I(ν1) = I(ν2), and O(ν1) = O(ν2),

and L(ν1) = (l1,1, l1,2, ...l1,L) and L (ν2) = (l2,1, l2,2, ..., l2,L) it is then the case that:

D (ν1 ⊕ ν2) = L (5.6.12)

Proof. Note that D

Cpyn,k


= 1 = D (Sumn,k) for all n, k ∈ N. Note also that D (ν1 ⊟ ν2) =

D (ν1) = D (ν2) and that for ν, µ ∈ NN it is the case that D (ν • µ) = D (ν) + D (µ)− 1. Thus:

D (ν1 ⊕ ν1) = D (ν1 ⊕ ν2) = D


Aff[IO(ν2)
IO(ν2)],0O(ν2)

• [ν1 ⊟ ν2] • Aff
[II(ν1) II(ν1)]

T
,02·I(ν1)



= L

Lemma 5.6.11. Let ν1, ν2 ∈ NN, such that D(ν1) = D(ν2) = L, I(ν1) = I(ν2) = l0, and O(ν1) =

O(ν2) = lL. It is then the case that I(ν1 ⊕ ν2) = I(ν2 ⊕ ν1), i.e., the instantiated sum of ANNs of

the same depth and same end widths is commutative.

Proof. Let ν1 = ((W1, b1), (W2, b2), ..., (WL, bL)) and let ν2 = ((W ′
1, b

′
1), (W

′
2, b

′
2), ..., (W

′
L, b

′
L)). Note
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that Definition 5.3.1 then tells us that:

ν1 ⊟ ν2 =












W1 0

0 W ′
1



 ,




b1

b′1







 ,








W2 0

0 W ′
2



 ,




b2

b′2







 , ...,








WL 0

0 W ′
L



 ,




bL

b′L













Note also that by Claims ?? and ?? and Definition 5.5.1 we know that:

Aff
[II(ν2) II(ν2)]

T
,02 I(ν2),1

=








II(ν2)

II(ν2)



 , 02 I(ν2),1



 (5.6.13)

and:

Aff[IO(ν1)
IO(ν1)],02 O(ν1),1

=


IO(ν1) IO(ν1)


, 02O(ν1),1


(5.6.14)

Applying Definition 5.2.1, specifically the second case, (5.6.3) and (??) yields that:

[ν1 ⊟ ν2] • Aff
[II(ν2) II(ν2)]

T
,02 I(ν2),1

=












W1 0

0 W ′
1








II(ν1)

II(ν1)



 ,




b1

b′1







 ,








W2 0

0 W ′
2



 ,




b2

b′2







 , ...,








WL 0

0 W ′
L



 ,




bL

b′L













=












W1

W ′
1



 ,




b1

b′1







 ,








W2 0

0 W ′
2



 ,




b2

b′2







 , ...,








WL 0

0 W ′
L



 ,




bL

b′L













Applying Claim ?? and especially the third case of Definition 5.2.1 to to the above then gives us:

Aff[IO(ν1)
IO(ν1)],0

• [ν1 ⊟ ν2] • Aff
[II(ν2) II(ν2)]

T
,0

=












W1

W ′
1



 ,




B1

B′
1







 ,








W2 0

0 W ′
2








b2

b′2







 , ...,





IO(ν2) IO(ν2)





WL 0

0 W ′
L



 ,


IO(ν2) IO(ν2)





bL

b′L













=












W1

W ′
1



 ,




b1

b′1







 ,








W2 0

0 W ′
2



 ,




b2

b′2







 , ...,


WL W ′

L


, bL + b′L


(5.6.15)
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Now note that:

ν2 ⊟ ν1 =












W ′

1 0

0 W1



 ,




b′1

b1







 ,








W ′

2 0

0 W2



 ,




b′2

b2







 , ...,








W ′

L 0

0 WL



 ,




b′L

bL













And thus:

Aff[IO(ν2)
IO(ν2)],0

• [ν2 ⊟ ν1] • Aff
[II(ν1) II(ν1)]

T
,0

=












W ′

1

W1



 ,




b′1

b1







 ,








W ′

2 0

0 W2



 ,




b′2

b2







 , ...,


W ′

L WL


,


b′L + bL


(5.6.16)

Let x ∈ RI(ν1), note then that:




W1

W ′
1



x+




b1

b′1



 =




W1x+ b1

W ′
1x+ b′1





The full instantiation of (5.6.15) is then given by:

I





WL W ′

L





WL−1(...(W2 (W1x+ b1) + b2) + ...) + bL−1

W ′
L−1(...(W

′
2 (W

′
1x+ b′1) + b′2) + ...) + b′L−1



+ bL + b′L



 (5.6.17)

The full instantiation of (5.6.16) is then given by:

I





W ′

L WL





W ′

L−1(...(W
′
2 (W

′
1x+ b′1) + b′2) + ...) + b′L−1

WL−1(...(W2 (W1x+ b1) + b2) + ...) + bL−1



+ bL + b′L



 (5.6.18)

Since (5.6.27) and (5.6.18) are the same this proves that ν1 ⊕ ν2 = ν2 ⊕ ν1.

This is a special case of (Grohs et al., 2022, Lemma 3.28).

Lemma 5.6.12. Let l0, l1, ..., lL ∈ N. Let ν ∈ NN with L(ν) = (l0, l1, ..., lL). There then exists a

neural network Zrl0,l1,...,lL ∈ NN such that I(ν ⊕ Zrl0,l1,...,lL) = I(Zrl0,l1,...,lL ⊕ν) = ν.
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Proof. Let ν = ((W1, b1) , (W2, b2) , ..., (WL, bL)), where W1 ∈ Rl1×l0 , b1 ∈ Rl1 , W2 ∈ Rl2×l1 , b2 ∈

Rl2 , ...,WL ∈ RlL×lL−1 , bL ∈ RlL . Denote by Zrl0,l1,...,lL the neural network which for all l0, l1, ..., lL ∈

N is given by:

Zrl0,l1,...,lL =

(0l1,l0 , 0l1) , (0l2,l1 , 0l2) , ...,


0lL,lL−1

, 0lL


(5.6.19)

Thus, by (5.6.27), we have that:

I(Zrl0,l1,...,lL ⊕ν) =


0 WL





0

WL−1(...(W2 (W1x+ b1) + b2) + ...) + bL−1



+ bL

= WL(WL−1(...W2 (W1x+ b1) + b2) + ...) + bL−1) + bL (5.6.20)

I(ν ⊕ Zrl0,l1,...,lL) =

WL 0





WL−1(...(W2 (W1x+ b1) + b2) + ...) + bL−1

0



+ bL

= WL(WL−1(...W2 (W1x+ b1) + b2) + ...) + bL−1) + bL (5.6.21)

And finally:

I(ν) = WL(WL−1(...W2 (W1x+ b1) + b2) + ...) + bL−1) + bL (5.6.22)

This completes the proof.

Lemma 5.6.13. Given neural networks ν1, ν2, ν3 ∈ NN with fixed depth L, fixed starting width of

l0 and fixed finishing width of lL, it is then the case that I ((ν1 ⊕ ν2)⊕ ν3) = I (ν1 ⊕ (ν2 ⊕ ν3)), i.e.

the instantiation with a continuous activation function of ⊕ is associative.

Proof. Let ν1 =

W 1

1 , b
1
1


,

W 1

2 , b
1
2


, ...,


W 1

L, b
1
L


, ν2 =


W 2

1 , b
2
1


,

W 2

2 , b
2
2


, ...,


W 2

L, b
2
L


, and

ν3 =

W 3

1 , b
3
1


,

W 3

2 , b
3
2


, ...,


W 3

L, b
3
L


. Then (5.6.27) tells us that:

I(ν1 ⊕ ν2) =


W 1

L W 2
L





W 1

L−1


...


W 1

2


W 1

1 x+ b11

+ b12


+ ...


+ b1L−1

W 2
L−1


...


W 2

2


W 2

1 x+ b21

+ b22


+ ...


+ b2L−1



+ b1L + b2L
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And thus:

I ((ν1 ⊕ ν2)⊕ ν3) (x) =

I






I W 3

L








W 1

L W 2
L





W 1

L−1


...


W 1

2


W 1

1 x+ b11

+ b12


+ ...


+ b1L−1

W 2
L−1


...


W 2

2


W 2

1 x+ b21

+ b22


+ ...


+ b2L−1



+ b1L + b2L

W 3
L−1


...


W 3

2


W 3

1 x+ b31

+ b32


+ ...


+ b3L−1




+ b3L





(5.6.23)

Similarly, we have that:

Ia (ν1 ⊕ (ν2 ⊕ ν3)) (x) =

I






W 1

L I






W 1
L−1


...


W 1

2


W 1

1 x+ b11

+ b12


+ ...


+ b1L−1


W 2

L W 3
L





W 2

L−1


...


W 2

2


W 2

1 x+ b21

+ b22


+ ...


+ b2L−1

W 3
L−1


...


W 3

2


W 3

1 x+ b31

+ b32


+ ...


+ b3L−1



+ b2L + b3L




+ b1L





(5.6.24)

Note that the associativity of matrix-vector multiplication ensures that (5.6.23) and (5.6.24) are

the same.

Definition 5.6.14 (Commutative Semi-group). A set X equipped with a binary operation ∗ is

called a monoid if:

(i) for all x, y, z ∈ X it is the case that (x ∗ y) ∗ z = x ∗ (y ∗ z) and

(ii) for all x, y ∈ X it is the case that x ∗ y = y ∗ x

Theorem 5.6.15. For fixed depth and layer widths, the set of instantiated neural networks ν ∈ NN

form a commutative semi-group under the operation of ⊕.

Proof. This is a consequence of Lemmas 5.6.11, 5.6.12, and 5.6.13.

Lemma 5.6.16. Let ν, µ ∈ NN, with the same length and end-widths. It is then the case that

Ia (ν ⊕ µ) = Ia (ν) + Ia (µ).
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Proof. Let ν = ((W1, b1) , (W2, b2) , ..., (WL, bL)) and µ = ((W ′
1, b

′
1) , (W

′
2, b

′
2) , ..., (W

′
L, b

′
L)). Note

now that by (5.6.27) we have that:

Ia (ν) = WL a (WL−1(... a(W2 a (W1x+ b1) + b2) + ...) + bL−1) + bL (5.6.25)

And:

Ia (µ) = W ′
L a


W ′

L−1(... a(W
′
2 a


W ′

1x+ b′1

+ b′2) + ...) + b′L−1


+ b′L (5.6.26)

In addition, because of the block matrix structure of the weights of our summands:

Ia (ν ⊕ µ) (x) =


WL W ′

L





a (WL−1(... a(W2 a (W1x+ b1) + b2) + ...) + bL−1)

a

W ′

L−1(... a(W
′
2 a (W

′
1x+ b′1) + b′2) + ...) + b′L−1





+ bL + b′L

= WL a (WL−1(... a(W2 a (W1x+ b1) + b2) + ...) + bL−1) + bL

+W ′
L a


W ′

L−1(... a(W
′
2 a


W ′

1x+ b′1

+ b′2) + ...) + b′L−1


+ b′L

= Ia (ν) (x) + Ia (µ) (x) (5.6.27)

This proves the lemma.

Lemma 5.6.17. Let n ∈ N. Let ν1, ν2, ..., νn ∈ NN. It is then the case that:

Ia


n

i=1

νi


=

n

i=1

Ir (νi) (5.6.28)

Proof. This is the consequence of a finite number of applications of Lemma 5.6.16.

5.6.2 Sum of ANNs of Unequal Depth But Same End-widths

Definition 5.6.18 (Sum of ANNs of different depths but same end widths). Let n ∈ N. Let

ν1, ν2, ..., νn ∈ NN such that they have the same end widths. We define the neural network ♦+n
i=1νi ∈

NN, the neural network sum of neural networks of unequal depth as:

♦+n
i=1νi :=


Sumn,O(ν2) •

 v
i=uνi


• Cpyn,I(ν1)


(5.6.29)
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Lemma 5.6.19. Let n ∈ N. Let ν1, ν2 ∈ NN and assume also that they have the same end-widths.

It is then the case that:

Ir (ν1♦+ν2) (x) = Ir (ν1) + Ir (ν2) (5.6.30)

Proof. Note that Lemma 6.2.3 tellls us that for all n ∈ N it is the case that Ir (Tunn) (x) = x. This

combined with Lemma 5.2.5 then tells us that for all n ∈ N it is the case for all ν ∈ NN that:

Ir (Tunn •ν) (x) = Ir (ν) (x) (5.6.31)

Thus, this means that:

Ir (ν1♦+ν2) (x) =


Sumn,O(ν2) •

ν1 ν2


• Cpyn,I(ν1)



= Ir (ν1) (x) + Ir (ν2) (x) (5.6.32)

This then proves the lemma.

Lemma 5.6.20. Let n ∈ N. Let ν1, ν2, ..., νn ∈ NN. Let it also be the case that they have the same

end-widths. It is then the case that:

Ir (♦+n
i=1νi) (x) =

n

i=1

Ir (νi) (x) (5.6.33)

Proof. This is a consequence of a finite number of applications of Lemma 5.6.19.

5.7 Linear Combinations of ANNs and Their Properties

Definition 5.7.1 (Scalar left-multiplication with an ANN). Let λ ∈ R. We will denote by (·)⊲ (·) :

R× NN → NN the function that satisfy for all λ ∈ R and ν ∈ NN that λ ⊲ ν = AffλIO(ν),0 •ν.

Definition 5.7.2 (Scalar right-multiplication with an ANN). Let λ ∈ R. We will denote by

(·) ⊳ (·) : NN×R → NN the function satisfying for all ν ∈ NN and λ ∈ R that ν ⊳ λ = ν • AffλII(ν),0.

Remark 5.7.3. Note that whereas λ ∈ R, the actual neural network in question, properly speaking,

must always be referred to as λ⊲ or ⊳λ, and we shall do so whenever this comes up in any neural

95



network diagrams. This is by analogy with, for example, logλ or λ
√ for λ ∕= 0, where the argument

λ is generally always written except for λ = 10 for the logarithm or λ = 2 for the root.

Remark 5.7.4. For an R implementation, see Listing 10.8

Lemma 5.7.5. Let λ ∈ R and ν ∈ NN. it is then the case that:

(i) L(λ ⊲ ν) = L(ν)

(ii) For all a ∈ C(R,R) that Ia(λ ⊲ ν) ∈ C

RI(ν),RO(ν)



(iii) For all a ∈ C(R,R), and x ∈ RI(ν) that:

Ia (λ ⊲ ν) = λ Ia(ν) (5.7.1)

Proof. Let ν ∈ NN such that L(ν) = (l1, l2, ..., lL) and D(ν) = L where l1, l2, ..., lL, L ∈ N. Then

Item (i) of Lemma 5.5.2 tells us that:

L


AffIO(ν),0


= (O(ν),O(ν)) (5.7.2)

This and Item (i) from Lemma 5.5.5 gives us that:

L (λ ⊲ ν) = L


AffλIO(ν),0 •ν

= (l0, l1, ..., lL−1,O(ν)) = L(ν) (5.7.3)

Which proves (i). Item (ii) − (iii) of Lemma 5.5.2 then prove that for all a ∈ C(R,R), x ∈ RI(ν),

that Ia (λ ⊲ ν) ∈ C

RI(ν),O(ν)


given by:

(Ia (λ ⊲ ν)) (x) =

Ia


AffλIO(ν),0

•ν


(x)

= λIO(ν) ((Ia (ν)) (x)) = λ ((Ia (ν)) (x)) (5.7.4)

This establishes Items (ii)—(iii), completing the proof.

Lemma 5.7.6. Let λ ∈ R and ν ∈ NN. It is then the case that:

(i) L(ν ⊳ λ) = L(ν)
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(ii) For all a ∈ C (R,R) that Ia(ν ⊳ λ) ∈ C

RI(ν),RO(ν)



(iii) For all a ∈ C (R,R), and x ∈ RI(ν) that:

Ia (ν ⊳ λ) = Ia(ν) (λx) (5.7.5)

Proof. Let ν ∈ NN such that L(ν) = (l1, l2, ..., lL) and D(ν) = L where B1, l2, ..., lL, L ∈ N. Then

Item (i) of Lemma 5.5.2 tells us that:

L


AffII(ν),0


= (I(ν), I(ν)) (5.7.6)

This and Item (iv) of Lemma 5.5.5 tells us that:

L(ν ⊳ λ) = L

ν • AffλII(ν)


= (I(ν), l1, l2, ..., lL) = L(ν) (5.7.7)

Which proves (i). Item (v)--(vi) of Lemma 5.5.5 then prove that for all a ∈ C(R,R), x ∈ RI(ν) that

Ia (ν ⊳ λ) ∈ C

RI(ν),O(ν)


given by:

(Ia (ν ⊳ λ)) (x) =

Ia


ν • AffλII(ν),0


(x)

= (Ia (ν))


AffλII(ν)


(x)

= (Ia (ν)) (λx) (5.7.8)

This completes the proof.

Lemma 5.7.7. Let ν, µ ∈ NN with the same length and end-widths, and λ ∈ R. It is then the case,

for all a ∈ C (R,R) that:

Ia ((ν ⊕ µ) ⊳ λ) (x) = Ia ((ν ⊳ λ)⊕ (µ ⊳ λ)) (x)

= (Ia (ν)) (λx) + (Ia (µ)) (λx)

Proof. Let ν = ((W1, b1) , (W2, b2) , ..., (WL, bL)) and µ = ((W ′
1, b

′
1) , (W

′
2, b

′
2) , ..., (W

′
L, b

′
L)). Then
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from Lemma 5.7.6 and (5.6.27) we have that:

(Ia (ν ⊕ µ) ⊳ λ) (x)

= (Ia (ν ⊕ µ)) (λx)

=


WL W ′

L





Ir (WL−1(...(Ir (W2 (Ir (W1λx+ b1)) + b2)) + ...) + bL−1)

Ir

W ′

L−1(...(Ir (W
′
2 (Ir (W

′
1λx+ b′1)) + b′2)) + ...) + b′L−1





+ bL + b′L

Note that:

(Ia (ν)) (λx) = WL · Ir (WL−1(...(Ir (W2 (Ir (W1λx+ b1)) + b2)) + ...) + bL−1) + bL (5.7.9)

and that:

(Ia (µ)) (λx) = W ′
L · Ir


W ′

L−1(...(Ir

W ′

2


Ir


W ′

1λx+ b′1


+ b′2)

+ ...) + b′L−1


+ b′L (5.7.10)

This, together with Lemma 5.6.16, completes the proof.

Lemma 5.7.8. Let ν, µ ∈ NN with the same length and end-widths, and λ ∈ R. It is then the case,

for all a ∈ C (R,R) that:

Ia (λ ⊲ (ν ⊕ µ)) (x) = Ia ((λ ⊲ ν)⊕ (λ ⊲ µ)) (x)

= λ · (Ia (ν)) (x) + λ · (Ia (µ)) (x)

Proof. Let ν = ((W1, b1) , (W2, b2) , ..., (WL, bL)) and µ = ((W ′
1, b

′
1) , (W

′
2, b

′
2) , ..., (W

′
L, b

′
L)). Then

from Lemma 5.7.6 and (5.6.27) we have that:

Ia (λ (ν ⊕ µ)) (x)

= Ia (λ ⊲ (ν ⊕ µ)) (λx)

= λ ·

WL W ′

L





Ir (WL−1(...(Ir (W2 (Ir (W1x+ b1)) + b2)) + ...) + bL−1)

Ir

W ′

L−1(...(Ir (W
′
2 (Ir (W

′
1x+ b′1)) + b′2)) + ...) + b′L−1





+ bL + b′L
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Note that:

λ · (Ia (ν)) (x) = WL · Ir (WL−1(...(Ir (W2 (Ir (W1x+ b1)) + b2)) + ...) + bL−1) + bL (5.7.11)

and that:

λ · (Ia (µ)) (x) = W ′
L · Ir


W ′

L−1(...(Ir

W ′

2


Ir


W ′

1x+ b′1


+ b′2)

+ ...) + b′L−1


+ b′L (5.7.12)

This, together with Lemma 5.6.16, completes the proof.

Lemma 5.7.9. Let u, v ∈ Z with u  v and n = v − u + 1. Let λu,λu+1, ...,λv ∈ R. Let

νu, νu+1, ..., νv, µ ∈ NN, Bu, Bu+1, ..., Bv ∈ RI(µ) satisfy that L(νu) = L(νu+1) = ... = L(νv) and

further that:

µ =

⊕v

i=u


ci ⊲


νi • AffII(ν1),Bi


(5.7.13)

It then holds:

(i) That:

L(µ) =


I(νu),
v

i=u

W1 (νu) ,

v

i=u

W2 (νu) , ...,

v

i=u

WD(νu)−1 (νu) ,O(νu)



=

I(νu), nW1(νu), nW2(νu), ..., nWD(νu−1),O(νu)



(ii) that for all a ∈ C (R,R), that Ia(µ) ∈ C

RI(νu),RO(νu)


, and

(iii) for all a ∈ C (R,R) and x ∈ RI(νu) that:

(Ia (µ)) (x) =

v

i=u

ci (Ia (νi)) (x+Bi) (5.7.14)

Proof. Assume hypothesis that L(νu) = L(νu+1) = ... = L(νv). Note that Item (i) of Lemma 5.5.2

gives us that for all i ∈ {u, u+ 1, ..., v} that:

L


AffII(νi),Bi


= L


AffII(νu)


= (I (νu) , I (νu)) ∈ N2 (5.7.15)
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This together with Lemma 5.2.5, Item (i), assures us that for all i ∈ {u, u + 1, ..., v} it is the case

that:

L

νi • AffII(νi),Bi


=


I(νu),W1 (νu) ,W2 (νu) , ...,WD(νu) (νu)


(5.7.16)

This and (Grohs et al., 2022, Lemma 3.14, Item (i)) tells us that for all i ∈ {u, u+1, ..., v} it is the

case that:

L

ci ⊲


νi • AffII(νi),Bi


= L


νi • AffII(νi),Bi


(5.7.17)

This, (5.7.16), and (Grohs et al., 2022, Lemma 3.28, Item (ii)) then yield that:

L(µ) = L

⊕v

i=u


ci ⊲


νi • AffII(νi),Bi



=


I(νu),

v

i=u

W1 (νu) ,

v

i=u

W2 (νu) , ...,

v

i=u

WD(νu)−1 (νu) ,O (νu)



=

I(νu), nW1(νu), nW2(νu), ..., nWD(νu)−1(νu),O(νu)


(5.7.18)

This establishes item (i). Items (v) and (vi) from Lemma 5.5.5 tells us that for all i ∈ {u, u+1, ..., v},

a ∈ C(R,R), x ∈ RI(νu), it is the case that Ia

νi • AffII(νi),Bi


∈ C


RI(νu),RO(νu)


and further that:


Ia


νi • AffII(νi),bi


(x) = (Ia (νi)) (x+ bi) (5.7.19)

This along with (Grohs et al., 2022, Lemma 3.14) ensures that for all i ∈ {u, u + 1, ..., v}, a ∈

C (R,R), x ∈ RI(νu), it is the case that:

Ia


ci ⊲


νi • AffII(νi),Bi


∈ C


RI(νu),RO(νu)


(5.7.20)

and:


Ia


ci ⊲


νi • AffII(νi),bi


(x) = ci (Ia (νi)) (x+ bi) (5.7.21)

Now observe that (Grohs et al., 2022, Lemma 3.28) and (5.7.17) ensure that for all a ∈ C (R,R),
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x ∈ RI(νu), it is the case that Ia (µ) ∈ C

RI(νu),RO(νu)


and that:

(Ia (µ)) (x) =

Ia


⊕v

i=u


ci ⊲


νi • AffII(νi),bi


(x)

=

v

i=u


Ia


ci ⊲


νi • AffII(νi),bi


(x)

=

v

i=u

ci (Ia (νi)) (x+ bi)

This establishes items (ii)--(iii); thus, the proof is complete.

Lemma 5.7.10. Let u, v ∈ Z with u  v. Let λu,λu+1, ...,λv ∈ R. Let νu, νu+1, ..., νv, µ ∈ NN,

Bu, Bu+1, ..., Bv ∈ RI(µ) satisfy that L(νu) = L(νu+1) = ... = L(νv) and further that:

µ =

⊕v

i=u


AffII(ν1),bi

•ν

⊳ ci


(5.7.22)

It then holds:

(i) That:

L(µ) =


I(νu),
v

i=u

W1 (νu) ,

v

i=u

W2 (νu) , ...,

v

i=u

WD(νu)−1 (νu) ,O(νu)



=

I(νu), nW1(νu), nW2(νu), ..., nWD(νu−1),O(νu)


(5.7.23)

(ii) that for all a ∈ C (R,R), that Ia(µ) ∈ C

RI(νu),RO(νu)


, and

(iii) for all a ∈ C (R,R) and x ∈ RI(νu) that:

(Ia (µ)) (x) =

v

i=u

(Ia (νi)) (cix+ bi) (5.7.24)

Proof. Assume hypothesis that L(νu) = L(νu+1) = ... = L(νv). Note that Item (i) of Lemma 5.5.2

gives us that for all i ∈ {u, u+ 1, ..., v} that:

L


AffII(νi),Bi


= L


AffII(νu)


= (I (νu) , I (νu)) ∈ N2 (5.7.25)
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Note then that Lemma 5.2.5, Item (ii), tells us that for all i ∈ {u, u+ 1, ..., v} it is the case that:

L


AffII(νi),Bi •ν

=


I(νu),W1 (νu) ,W2 (νu) , ...,WD(νu) (νu)


(5.7.26)

This and Item (i) of Lemma 5.7.6 tells us that for all i ∈ {u, u+ 1, ..., v} it is the case that:

L


AffII(νi),bi
•ν


⊳ ci


= L


AffII(νi),bi

•ν


(5.7.27)

This, (5.7.26), and (Grohs et al., 2022, Lemma 3.28, Item (ii)) tell us that:

L(µ) = L

⊕v

i=u


AffII(νi),bi

•νi

⊳ ci



=


I(νu),

v

i=u

W1 (νu) ,

v

i=u

W2 (νu) , ...,

v

i=u

WD(νu)−1 (νu) ,O (νu)



=

I(νu), nW1(νu), nW2(νu), ..., nWD(νu)−1(νu),O(νu)


(5.7.28)

This establishes Item (i). Items (i) and (ii) from Lemma 5.5.5 tells us that for all i ∈ {u, u+1, ..., v},

a ∈ C(R,R), x ∈ RI(νu), it is the case that Ia

νi • AffII(νi),Bi


∈ C


RI(νu),RO(νu)


and further that:


Ia


AffII(νi),bi

•νi


(x) = (Ia (νi)) (x) + bi (5.7.29)

This along with Lemma 5.7.6 ensures that for all i ∈ {u, u+ 1, ..., v}, a ∈ C (R,R), x ∈ RI(νu), it is

the case that:

Ia


AffII(νi),bi

•νi

⊳ ci


∈ C


RI(νu),RO(νu)


(5.7.30)

and:


Ia


AffII(νi),bi

•νi

⊳ ci


(x) = (Ia (νi)) (cix+ bi) (5.7.31)

Now observe that (Grohs et al., 2022, Lemma 3.28) and (??) ensure that for all a ∈ C (R,R),
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x ∈ RI(νu), it is the case that Ia (µ) ∈ C

RI(νu),RO(νu)


and that:

(Ia (µ)) (x) =

Ia


⊕v

i=u


AffII(νi),bi

•νi


⊳ ci


(x) (5.7.32)

=

v

i=u


Ia


AffII(νi),bi

•νi

⊳ ci


(x) (5.7.33)

=

v

i=u

(Ia (νi)) (cix+ bi)

This establishes items (ii)--(iii); thus, the proof is complete.

Lemma 5.7.11. Let L ∈ N, u, v ∈ Z with u  v. Let cu, cu+1, ..., cv ∈ R. νu, νu+1, ..., νv, µ, I ∈ NN,

Bu, Bu+1, ..., Bv ∈ RI(νu), a ∈ C (R,R), satisfy for all j ∈ N ∩ [u, v] that L = maxi∈N∩[u,v] D(νi),

I(νj) = I(νu), O(νj) = I(I) = O(I), H(I) = 1, Ia(I) = IR, and that:

µ = ⊞v
i=u,I


ci ⊲


νi • AffII(νi),,bi


(5.7.34)

We then have:

(i) it holds that:

L(µ) =


I(νu),
v

i=u

W1 (EL,I (νi)) ,

v

i=u

W2 (EL,I (νi)) , ...,

v

i=u

WL−1 (EI,I (νi) ,O (νu))



(5.7.35)

(ii) it holds that Ia(µ) ∈ C

RI(νu),RO(νu)


, and that,

(iii) it holds for all x ∈ RI(νu) that:

(Ia (µ)) (x) =

v

i=u

ci (Ia (νi)) (x+ bi) (5.7.36)

Proof. Note that Item(i) from Lemma 5.7.9 establish Item(i) and (5.6.25); in addition, items

(v) and (vi) from Lemma 5.5.5 tell us that for all i ∈ N ∩ [u, v], x ∈ RI(νu , it holds that
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Ia


νi • AffII(νi),Bi ∈ C


RI(νu),RO(νu)


and further that:


Ia


νi • AffII(νi),Bi


(x) = (Ia (νi)) (x+ bk) (5.7.37)

This, Lemma 5.7.5 and (Grohs et al., 2023, Lemma 2.14, Item (ii)) show that for all i ∈ N ∩ [u, v],

x ∈ RI(νu), it holds that:

Ia


EL,I


ci ⊲


νi • AffII(νi),bi


= Ia


ci ⊲


νi • AffII(νi),bi


∈ C


RI(νu),RO(νu)


(5.7.38)

and:


Ia


EL,I


ci ⊲


νi • AffII(νi),bi


(x) =


Ia


ci ⊲


νi • AffII(νi),bi


(x)

= ci (Ia (νi)) (x+ bi) (5.7.39)

This combined with (Grohs et al., 2022, Lemma 3.28) and (5.7.17) demonstrate that for all x ∈ RI(νu)

it holds that Ia (µ) ∈ C

RI(νu),RO(νu)


and that:

(Ia (µ)) (x) =

Ia


⊞v

i=u,I


ci ⊲


νi • AffII(νi)


(x)

=

Ia


⊕v

i=u EL,I


ci ⊲


νi • AffII(νi),bi


(x)

=

v

i=u

ci (Ia (νi)) (x+ bi) (5.7.40)

This establishes Items(ii)--(iii), thus proving the lemma.

Lemma 5.7.12. Let L ∈ N, u, v ∈ Z with u  v. Let cu, cu+1, ..., cv ∈ R. νu, νu+1, ..., νv, µ, I ∈ NN,

Bu, Bu+1, ..., Bv ∈ RI(νu), a ∈ C (R,R), satisfy for all j ∈ N ∩ [u, v] that L = maxi∈N∩[u,v] D(νi),

I(νj) = I(νu), O(νj) = I(I) = O(I), H(I) = 1, Ia(I) = IR, and that:

µ = ⊞v
i=u,I


AffII(νi),bi

•νi

⊳ ci


(5.7.41)

We then have:
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(i) it holds that:

L(µ) =


I(νu),
v

i=u

W1 (EL,I (νi)) ,

v

i=u

W2 (EL,I (νi)) , ...,

v

i=u

WL−1 (EL,I (νi) ,O (νu))



(5.7.42)

(ii) it holds that Ia(µ) ∈ C

RI(νu),RO(νu)


, and that,

(iii) it holds for all x ∈ RI(νu) that:

(Ia (µ)) (x) =

v

i=u

(Ia (νi)) (cix+ bi) (5.7.43)

Proof. Note that Item(i) from Lemma 5.7.10 establish Item(i) and (5.6.25); in addition, items

(ii) and (iii) from Lemma 5.5.5 tell us that for all i ∈ N ∩ [u, v], x ∈ RI(νu , it holds that

Ia


AffII(νi),Bi •νi ∈ C


RI(νu),RO(νu)


and further that:


Ia


AffII(νi),Bi •νi


(x) = (Ia (νi)) (x) + bk (5.7.44)

This, Lemma 5.7.6 and (Grohs et al., 2023, Lemma 2.14, Item (ii)) show that for all i ∈ N ∩ [u, v],

x ∈ RI(νu), it holds that:

Ia


EL,I


AffII(νi),bi

•νi

⊳ ci


= Ia


AffII(νi),bi

•νi

⊳ ci


∈ C


RI(νu),RO(νu)


(5.7.45)

and:


Ia


EL,I


AffII(νi),bi

•νi

⊳ ci


(x) =


Ia


ci ⊲


νi • AffII(νi),bi


(x)

= (Ia (νi)) (cix+ bi) (5.7.46)

This and (Grohs et al., 2022, Lemma 3.28) and (5.7.27) demonstrate that for all x ∈ RI(νu) it holds
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that Ia (µ) ∈ C

RI(νu),RO(νu)


and that:

(Ia (µ)) (x) =

Ia


⊞v

i=u,I


AffII(νi)

•νi

⊳ ci


(x)

=

Ia


⊕v

i=u EL,I


AffII(νi),bi

•νi

⊳ ci


(x)

=

v

i=u

(Ia (νi)) (cix+ bi) (5.7.47)

This completes the proof.

5.8 Neural Network Diagrams

Conceptually, it will be helpful to construct what are called ``neural network diagrams''. They

take inspiration from diagrams typically seen in the literature, for instance, Vaswani et al. (2017),

Arik and Pfister (2021), and Chollet (2017). They are constructed as follows. Lines with arrows

indicate the flow of data:

x

x

Named neural networks are always enclosed in boxes with serif fonts:

Affa,b

Where possible, we seek to label the arrows going in and going out of a boxed neural network with

the appropriate operations that take place:

Affa,b
ax+ b x

It is often more helpful to draw the arrows from right to left, as above.

Stacked neural networks are drawn in adjacent boxes.

Affa,b

Affc,d

ax+ b x

cx+ d x
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For neural networks that take in two inputs and give out one output, we use two arrows going in

and one arrow going out:

Sum2,1

x

y

x+ y

For neural networks that take in one input and give out two outputs, we use one arrow going in

and two arrows going out:

Cpy1,2

x

x

x

Thus taking this all together the sum of neural networks Affa,b,Affc,d ∈ NN is given by:

Affa,b

Cpy

Affc,d

Sum

x

x

x

ax+ b

cx+ d

ax+ b+ cx+ d
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Chapter 6

ANN Product Approximations

6.1 Approximation for Products of Two Real Numbers

We will build up the tools necessary to approximate ex via neural networks in the framework

described in the previous sections. While much of the foundation comes from, e.g., Grohs et al.

(2023) way, we will, along the way, encounter neural networks not seen in the literature, such as the

Tay, Pwr, Tun, and finally a neural network approximant for ex. For each of these neural networks,

we will be concerned with at least the following:

(i) whether their instantiations using the ReLU function (often just continuous functions) are

continuous.

(ii) whether their depths are bounded, at most polynomially, on the type of accuracy we want, ε.

(iii) whether their parameter estimates are bounded at most polynomially on the type of accuracy

we want, ε.

(iv) The accuracy of our neural networks.
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6.1.1 The squares of real numbers in [0, 1]

Definition 6.1.1 (The id Network). For all d ∈ N we will define the following set of neural networks

as ``activation neural networks'' denoted id as:

id = ((Id, 0d) , (Id, 0d)) (6.1.1)

Lemma 6.1.2. Let d ∈ N. It is then the case that:

(i) Ir (i4) ∈ C

Rd,Rd


.

(ii) L (id) = (d, d, d)

(iii) P (i4) = 2d2 + 2d

Proof. Item (i) is straightforward from the fact that for all d ∈ N it is the case that Ir (id) =

Id (Ir ([Id]∗) + 0d) + 0d. Item (ii) is straightforward from the fact that Id ∈ Rd×d. We realize Item

(iii) by observation.

Lemma 6.1.3. Let (ck)k∈N ⊆ R, (Ak)k∈N ∈ R4×4, B ∈ R4×1, (Ck)k∈N satisfy for all k ∈ N that:

Ak =





2 −4 2 0

2 −4 2 0

2 −4 2 0

−ck 2ck −ck 1





B =





0

−1
2

−1

0





Ck =


−ck 2ck −ck 1


(6.1.2)

and that:

ck = 21−2k (6.1.3)

Let Φk ∈ NN, k ∈ N satisfy for all k ∈ [2,∞)∩N that Φ1 = (AffC1,0 •i4)•Affe4,B, that for all d ∈ N,

id = ((Id, 0d) , (Id, 0d)) and that:

Φk = (AffCk,0 •i4) •

AffAk−1,B •i4


• · · · • (AffA1,B •i4) • Affe4,B (6.1.4)

It is then the case that:
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(i) for all k ∈ N, x ∈ R we have Ir (Φk) (x) ∈ C (R,R)

(ii) for all k ∈ N we have L (Φk) = (1, 4, 4, ..., 4, 1) ∈ Nk+2

(iii) for all k ∈ N, x ∈ R \ [0, 1] that (Ir (Φk)) (x) = r (x)

(iv) for all k ∈ N, x ∈ [0, 1], we have
x2 − (Ir (ξk)) (x)

  2−2k−2, and

(v) for al k ∈ N , we have that P (Φk) = 20k − 7

Proof. Let gk : R → [0, 1], k ∈ N be the functions defined as such, satisfying for all k ∈ N, x ∈ R

that:

g1 (x) =






2x : x ∈

0, 12



2− 2x : x ∈

1
2 , 1



0 : x ∈ R \ [0, 1]

(6.1.5)

gk+1 = g1(gk)

and let fk : [0, 1] → [0, 1], k ∈ N0 be the functions satisfying for all k ∈ N0, n ∈ {0, 1, ..., 2k − 1},

x ∈

n
2k
, n+1

2k


that fk(1) = 1 and:

fk(x) =


2n+ 1

2k


x− n2 + n

22k
(6.1.6)

and let rk = (rk,1, rk,2, rk,3, rk,4) : R → R4, k ∈ N be the functions which which satisfy for all x ∈ R,

k ∈ N that:

r1 (x) =





r1,1(x)

r2,1(x)

r3,1(x)

r4,1(x)





= r









x

x− 1
2

x− 1

x









(6.1.7)

rk+1 = Ak+1rk(x)

Note that since it is the case that for all x ∈ R that r(x) = max{x, 0}, (6.1.5) and (6.1.7) shows
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that it holds for all x ∈ R that:

2r1,1(x)− 4r2,1(x) + 2r3,1(x) = 2 r(x)− 4 r


x− 1

2


+ 2 r (x− 1)

= 2max{x, 0}− 4max

x− 1

2
, 0


+ 2max{x− 1, 0}

= g1(x) (6.1.8)

Note also that combined with (6.1.6), the fact that for all x ∈ [0, 1] it holds that f0(x) = x =

max{x, 0} tells us that for all x ∈ R:

r4,1(x) = max{x, 0} =






f0(x) : x ∈ [0, 1]

max{x, 0} : x ∈ R \ [0, 1]
(6.1.9)

We next claim that for all k ∈ N, it is the case that:

(∀x ∈ R : 2r1,k(x)− 4r2,k(x) + 2r3,k(x) = g(x)) (6.1.10)

and that:



∀x ∈ R : r4,k(x) =






fk−1(x) : x ∈ [0, 1]

max{x, 0} : x ∈ R \ [0, 1]



 (6.1.11)

We prove (6.1.10) and (6.1.11) by induction. The base base of k = 1 is proved by (6.1.8) and

(6.1.9). For the induction step N ∋ k → k + 1 assume there does exist a k ∈ N such that for all

x ∈ R it is the case that:

2r1,k(x)− 4r2,k(x) + 2r3,k(x) = gk(x) (6.1.12)

and:

r4,k(x) =






fk−1(x) : x ∈ [0, 1]

max{x, 0} : x ∈ R \ [0, 1]
(6.1.13)
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Note that then (6.1.5),(6.1.7), and (6.1.8) then tells us that for all x ∈ R it is the case that:

gk+1 (x) = g1(gk(x)) = g1(2r1,k(x) + 4r2,k(x) + 2r3,k(x))

= 2 r (2r1,k(x)) + 4r2,k + 2r3,k(x))

− 4 r


2r1,k (x)− 4r2,k + 2r3,k(x)−

1

2



+ 2 r (2r1,k(x)− 4r2,k(x) + 2r3,k(x)− 1)

= 2r1,k+1(x)− 4r2,k+1(x) + 2r3,k+1(x) (6.1.14)

In addition note that (6.1.6), (6.1.7), and (6.1.9) tells us that for all x ∈ R:

r4,k+1(x) = r

(−2)3−2(k+1) r1,k (x) + 24−2(k+1)r2,k (x) + (−2)3−2(k+1) r3,k (x) + r4,k (x)



= r

(−2)1−2k r1,k (x) + 22−2krk,2 (x) + (−2)1−2k r3,k (x) + r4,k (x)



= r

2−2k


−2r1,k (x) + 22r2,k (x)− 2r3,k (x)


+ r4,k (x)



= r

−

2−2k


[2r1,k (x)− 4r2,k (x) + 2r3,k (x)] + r4,k (x)



= r

−

2−2k


gk (x) + r4,k (x)


(6.1.15)

This and the fact that for all x ∈ R it is the case that r (x) = max{x, 0}, that for all x ∈ [0, 1] it is

the case that fk (x)  0, (6.1.13), shows that for all x ∈ [0, 1] it holds that:

r4,k+1 (x) = r

−2


2−2kgk


+ fk−1 (x)


= r



−2

2−2kgk (x)


+ x−




k−1

j=1


2−2jgj (x)










= r



x−




k

j=1

2−2jgj (x)







 = r (fk (x)) = fk (x) (6.1.16)

Note next that (6.1.13) and (6.1.15) then tells us that for all x ∈ R \ [0, 1]:

r4,k+1 (x) = max

−

2−2kgx (x)


+ r4,k (x)


= max{max{x, 0}, 0} = max{x, 0} (6.1.17)

Combining (6.1.14) and (6.1.16) proves (6.1.10) and (6.1.11). Note that then (6.1.2) and (6.1.10)
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assure that for all k ∈ N, x ∈ R it holds that Ir (Φk) ∈ C (R,R) and that:

(Ir (Φk)) (x)

=

Ir


(AffCk,0 •i4) •


AffAk−1,B •i4


• · · · • (AffA1,B •i4) • Affe4,B


(x)

= (−2)1−2k r1,k (x) + 22−2kr2,k (x) + (−2)1−2k r3,k (x) + r4,k (x)

= (−2)2−2k


r1,k (x) + r3,k (x)

−2


+ r2,k (x)


+ r4,k (x)

= 22−2k


r1,k (x) + r3,k (x)

−2


+ r2,k (x)


+ r4,k (x)

= 2−2k (4r2,k (x)− 2r1,k (x)− 2r3,k (x)) + r4,k (x)

= −

2−2k


[2r1,k (x)− 4r2,k (x) + 2r3,k (x)] + r4,k (x) = −


2−2k


gk (x) + r4,k (x) (6.1.18)

This and (6.1.11) tell us that:

(Ir (Φk)) (x) = −

2−2kgk (x)


+ fk−1 (x) = −


2−2kgk (x)


+ x−




k−1

j=1

2−2jgj (x)





= x−




k

j=1

2−2jgj (x)



 = fk (x)

Which then implies for all k ∈ N, x ∈ [0, 1] that it holds that:

x2 − (Ir (Φk)) (x)
  2−2k−2 (6.1.19)

This, in turn, establishes Item (i).

Finally observe that (6.1.18) then tells us that for all k ∈ N, x ∈ R \ [0, 1] it holds that:

(Ir (Φk)) (x) = −2−2kgk (x) + r4,k (x) = r4,k (x) = max{x, 0} = r(x) (6.1.20)

This establishes Item(iv). Note next that Item(iii) ensures for all k ∈ N that D (ξk) = k + 1, and:

P (Φk) = 4(1 + 1) +




k

j=2

4 (4 + 1)



+ (4 + 1) = 8 + 20 (k − 1) + 5 = 20k − 7 (6.1.21)
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This, in turn, proves Item(vi). The proof of the lemma is thus complete.

Remark 6.1.4. For an R implementation see Listing 10.13

Figure 6.1: Plot of log10 of the L1 difference between Φk and x2 over [0, 1] for different values of k

Corollary 6.1.4.1. Let ε ∈ (0,∞), M = min{1
2 log2


ε−1


− 1,∞} ∩ N, (ck)k∈N ⊆ R, (Ak)k∈N ⊆

R4×4, B ∈ R4×1, (Ck)k∈N satisfy for all k ∈ N that:

Ak =





2 −4 2 0

2 −4 2 0

2 −4 2 0

−ck 2ck −ck 1





, B =





0

−1
2

−1

0





Ck =


−ck 2c)k −ck 1


(6.1.22)
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where:

ck = 21−2k (6.1.23)

and let Φ ∈ NN be defined as:

Φ =






[AffC1,0 •i4] • Affe4,B M = 1

[AffCM ,0 •i4] •

AffAM−1,0 •i4


• · · · • [AffA1,B •i4] • Affe4,B M ∈ [2,∞) ∩ N

(6.1.24)

it is then the case that:

(i) Ir (Φ) ∈ C (R,R)

(ii) L (Φ) = (1, 4, 4, ..., 4, 1) ∈ NM+2

(iii) it holds for all x ∈ R \ [0, 1] that (Ir (Φ)) (x) = r(x)

(iv) it holds for all x ∈ [0, 1] that
x2 − (Ir (Φ)) (x)

  2−2M−2  ε

(v) D (Φ)  M + 1  max{1
2 log2


ε−1


+ 1, 2}, and

(vi) P (Φ) = 20M − 7  max

10 log2


ε−1


− 7, 13



Proof. Items (i)--(iii) are direct consequences of Lemma 6.1.3, Items (i)--(iii). Note next the fact

that M = min

N ∩


1
2 log2


ε−1


− 1


,∞


ensures that:

M = min

N ∩


1

2
log2


ε−1


− 1


,∞


 min


max


1,

1

2
log2


ε−1


− 1


,∞


 1

2
log2


ε−1


− 1

(6.1.25)

This and Item (v) of Lemma 6.1.3 demonstrate that for all x ∈ [0, 1] it then holds that:

x2 − (Ir (Φ)) (x)
  2−2M−2 = 2−2(M+1)  2− log2(ε−1) = ε (6.1.26)

Thus establishing Item (iv). The fact that M = min

N ∩


1
2 log2


ε−1


− 1,∞


and Item (ii) of
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Lemma 6.1.3 tell us that:

D (Φ) = M + 1  max

1

2
log2


ε−1


+ 1, 2


(6.1.27)

Which establishes Item(v). This and Item (v) of Lemma 6.1.3 then tell us that:

P (ΦM )  20M − 7  20max

1

2
log2


ε−1


, 2


− 7 = max


10 log2


ε−1


− 7, 13


(6.1.28)

This completes the proof of the corollary.

Remark 6.1.5. For an implementation in R, see Listing 10.15

Figure 6.2: Contour plot of the L1 difference between Φ and x2 over [0, 1] for different values of ε.
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Remark 6.1.6. Note that (6.1.24) implies that D (Φ)  4.

Now that we have neural networks that perform the squaring operation inside [−1, 1], we may

extend to all of R. Note that this neural network representation differs somewhat from the ones in

Grohs et al. (2023).

6.1.2 The Sqr network

Lemma 6.1.7. Let δ,  ∈ (0,∞), α ∈ (0,∞), q ∈ (2,∞), Φ ∈ NN satisfy that δ = 2
−2
q−2 ε

q
q−2 , α =


ε
2

 1
q−2 , I r (Φ) ∈ C (R,R), D(Φ)  max


1
2 log2(δ−1) + 1, 2


, P(Φ)  max


10 log2


δ−1


− 7, 13


,

supx∈R\[0,1] | (Ir (Φ)− r(x)| = 0, and supx∈[0,1] |x2 − (Ir (Φ)) (x) |  δ, let Ψ ∈ NN be the neural

network given by:

Ψ =

Affα−2,0 •Φ • Affα,0


Affα−2,0 •Φ • Aff−α,0


(6.1.29)

(i) it holds that Ir (Ψ) ∈ C (R,R).

(ii) it holds that (Ir (Ψ)) (0) = 0

(iii) it holds for all x ∈ R that 0  (Ir (Ψ)) (x)  ε+ |x|2

(iv) it holds for all x ∈ R that |x2 − (Ir (Ψ)) (x) |  εmax{1, |x|q}

(v) it holds that D(Ψ)  max

1 + 1

q−2 + q
2(q−2) log2


ε−1


, 2


, and

(vi) it holds that P (Ψ)  max


40q
q−2


log2


ε−1


+ 80

q−2 − 28, 52


Proof. Note that for all x ∈ R it is the case that:

(Ir (Ψ)) (x) =

Ir


(Affα−2 •Φ • Affα,0)⊕


Affα−2,0 •Φ • Aff−α,0


(x)

=

Ir


Affα−2,0 •Φ • Affα,0


(x) +


Ir


Affα−2,0 •Φ • Aff−α,0


(x)

=
1

α2
(Ir (Φ)) (αx) +

1

α2
(Ir (Φ)) (−αx)

=
1


ε
2

 2
q−2


(Ir (Φ))

ε
2

 1
q−2

x


+ (Ir (Φ))


−
ε
2

 1
q−2

x


(6.1.30)
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This and the assumption that Φ ∈ C (R,R) along with the assumption that supx∈R\[0,1] | (Ir (Φ)) (x)−

r (x) | = 0 tells us that for all x ∈ R it holds that:

(Ir (Ψ)) (0) =
ε
2

 −2
q−2

[(Ir (Φ)) (0) + (Ir (Φ)) (0)]

=
ε
2

 −2
q−2

[r(0) + r(0)]

= 0 (6.1.31)

This, in turn, establishes Item (i)--(ii). Observe next that from the assumption that Ir (Φ) ∈

C (R,R) and the assumption that supx∈R\[0,1] | (Ir (Φ)) (x) − r(x)| = 0 ensure that for all x ∈

R \ [−1, 1] it holds that:

[Ir (Φ)] (x) + [Ir (Φ) (−x)] = r (x) + r(−x) = max{x, 0}+ max{−x, 0}

= |x| (6.1.32)

The assumption that for all supx∈R\[0,1] | (Ir (Φ)) (x)−r (x) | = 0 and the assumption that supx∈[0,1] |x2−

(Ir (Φ)) (x) |  δ show that:

sup
x∈[−1,1]

x2 − ([Ir (Φ)] (x) + [Ir (Φ) (x)])


= max


sup

x∈[−1,0]

x2 − (r(x) + [Ir (Φ)] (−x))
 , sup

x∈[0,1]

x2 − ([Ir (Φ)] (x) + r (−x))



= max


sup

x∈[−1,0]

(−x)2 − (Ir (Φ)) (−x)
 , sup

x∈[0,1]

x2 − (Ir (Φ)) (x)



= sup
x∈[0,1]

x2 − (Ir (Φ)) (x)
  δ (6.1.33)

Next observe that (6.1.30) and (6.1.32) show that for all x ∈ R \

−

ε
2

 −1
q−2 ,


ε
2

 −1
q−2


it holds that:

0  [Ir (Ψ)] (x) =
ε
2

 −2
q−2


[Ir (Φ)]

ε
2

 1
q−2

x


+ [Ir (Φ)]


−
ε
2

 1
q−2

x



=
ε
2

 −2
q−2


ε
2

 1
q−2

x

 =
ε
2

 −1
q−2

|x|
 |x|2 (6.1.34)
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The triangle inequality then tells us that for all x ∈ R \

−

ε
2

 −1
q−2 ,


ε
2

 −1
q−2


it holds that:

x2 − (Ir (Ψ)) (x)
 =

x
2 −

ε
2

 −1
q−2 |x|

 

|x|2 +

ε
2

 −1
q−2 |x|



=


|x|q |x|−(q−2) +

ε
2

 −1
q−2 |x|q |x|−(q−1)





|x|q

ε
2

 q−2
q−2

+
ε
2

 −1
q−2 |x|q

ε
2

 q−1
q−2



=
ε
2
+

ε

2


|x|q = ε |x|q  εmax {1, |x|q} (6.1.35)

Note that (6.1.33), (6.1.30) and the fact that δ = 2
−2
q−2 ε

q
q−2 then tell for all x ∈


−

ε
2

 −1
q−2 ,


ε
2

 −1
q−2



it holds that: x2 − (Ir(Φ)) (x)


=
ε
2

 −2
q−2



ε
2

 1
q−2

x

2

−

[Ir(Φ)]

ε
2

 1
q−2

x


+ [Ir(Φ)] (−y)




ε
2

 −2
q−2


sup

y∈[−1,1]

y2 − [Ir(Φ)] (y) + [Ir(Φ)] (−y)




ε
2

 −2
q−2

δ =
ε
2

 −2
q−2

2
−2
q−2 ε

q
q−2 = ε  εmax{1, |x|q}

(6.1.36)

Now note that this and (6.1.35) tells us that for all x ∈ R it is the case that:

x2 − (Ir (Ψ)) (x)
  εmax{1, |x|q} (6.1.37)

This establishes Item (v). Note that, (6.1.36) tells that for all x ∈

−

ε
2

 −1
q−2 ,


ε
2

 1
q−2


it is the case

that:

|(Ir (Ψ)) (x)| 
x2 − (Ir (Ψ)) (x)

+ |x|2  ε+ |x|2 (6.1.38)

This and (6.1.35) tells us that for all x ∈ R:

|(Ir) (x)|  ε+ |x|2 (6.1.39)

This establishes Item (iv).

Note next that by Corollary 5.5.5.1, Remark 5.5.2, the hypothesis, and the fact that δ = 2
−2
q−2 ε

q
q−2
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tells us that:

D (Ψ) = D (Φ)  max

1

2
log2(δ−1) + 1, 2



= max


1

q − 2
+


q

q − 2


log2 (ε) + 1, 2


(6.1.40)

This establishes Item (v).

Notice next that the fact that δ = 2
−2
q−2 ε

q
q−2 tells us that:

log2

δ−1


= log2


2

2
q−2 ε

−q
q−2


=

2

q − 2
+


q

q − 2


log2


ε−1


(6.1.41)

Note that by , Corollary 5.5.5.1 we have that:

P (Φ • Aff−α,0) 

max


1,

I (Aff−α,0) + 1

I (Φ) + 1


P (Φ) = P (Φ) (6.1.42)

and further that:

P

Affα−2,0 •Φ • Aff−α,0


=


max


1,

O

Aff−α2,0



O (Φ • Aff−α,0)


P (Φ • Aff−α,0)

 P (Φ) (6.1.43)

By symmetry note also that P

Affα−2,0 •Φ • Affα,0


= P


Affα−2,0 •Φ • Aff−α,0


and also that L


Affα−2,0 •Φ • Affα,0


=

L

Affα−2,0 •Φ • Aff−α,0


. Thus Lemma 5.6.9, Corollary 5.3.5.1, and the hypothesis tells us that:

P (Ψ) = P (Φ⊟ Φ)

 4P (Φ)

= 4max

10 log2


δ−1


− 7, 13


(6.1.44)
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This, and the fact that δ = 2
−2
q−2 ε

q
q−2 renders (6.1.44) as:

4max

10 log2


δ−1


− 7, 13


= 4max


10 log2


δ−1


− 7, 13



= 4max

10


2

q − 2
+

q

q − 2
log2


ε−1


− 7, 13



= max


40q

q − 2


log2


ε−1


+

80

q − 2
− 28, 52


(6.1.45)

Remark 6.1.8. We will often find it helpful to refer to this network for fixed ε ∈ (0,∞) and

q ∈ (2,∞) as the Sqrq,ε network.

Remark 6.1.9. For an R implementation see Listing 10.17

Figure 6.3: Left: log10 of depths for a simulation with q ∈ [2.1, 4], ε ∈ (0.1, 2], and x ∈ [−5, 5], all
with 50 mesh-points. Right: The theoretical upper limits over the same range of values

Min. 1st Qu. Median Mean 3rd Qu. Max.

Experimental |x2 − Ir(Sqrq,ε)(x) 0.000003 0.089438 0.337870 3.148933 4.674652 20.00

Theoretical |x2 − Ir(Sqr)q,ε(x) 0.010 1.715 10.402 48.063 45.538 1250.00

Difference 0.001 1.6012 9.8655 44.9141 40.7102 1230

Table 6.1: Theoretical upper bounds for L1 error, experimental L1 error and their forward differ-
ence, with q ∈ [2.1, 4], ε ∈ (0.1, 2], and x ∈ [−5, 5], all with 50 mesh-points.
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6.1.3 The Prd network

We are finally ready to give neural network representations of arbitrary products of real numbers.

However, this representation differs somewhat from those found in the literature, especially Grohs

et al. (2023), where parallelization (stacking) is used instead of neural network sums. This will help

us calculate W1 and the width of the second to last layer.

Lemma 6.1.10. Let δ, ε ∈ (0,∞), q ∈ (2,∞), A1, A2, A3 ∈ R1×2, Ψ ∈ NN satisfy for all x ∈ R

that δ = ε

2q−1 + 1

−1, A1 = [1 1], A2 = [1 0], A3 = [0 1], Ir ∈ C (R,R), (Ir (Ψ)) (0) =

0, 0  (Ir (Ψ)) (x)  δ + |x|2, |x2 − (Ir (Ψ)) (x) |  δ max{1, |x|q}, D (Ψ)  max{1 + 1
q−2 +

q
2(q−2) log2


δ−1


, 2}, and P (Ψ)  max


40q
q−2


log2


δ−1


+ 80

q−2 − 28, 52


, then:

(i) there exists a unique Γ ∈ NN satisfying:

Γ =


1

2
⊲ (Ψ • AffA1,0)


−1

2


⊲ (Ψ • AffA2,0)


−1

2


⊲ (Ψ • AffA3,0)


(6.1.46)

(ii) it that Ir (Γ) ∈ C

R2,R



(iii) it holds for all x ∈ R that (Ir (Γ)) (x, 0) = (Ir (Γ)) (0, y) = 0

(iv) it holds for any x, y ∈ R that


xy − (Ir (Γ))








x

y










 εmax{1, |x|q, |y|q}

(v) it holds that P(Γ)  360q
q−2


log2


ε−1


+ q + 1


− 252

(vi) it holds that D (Γ)  q
q−2


log2


ε−1


+ q



(vii) it holds that W1 (Γ) = 24

(viii) it holds that WH(Γ) = 24
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Proof. Note that:

(Ir (Γ))








x

y







 = Ir


1

2
⊲ (Ψ • AffA1,0)


−1

2


⊲ (Ψ • AffA2,0)


(6.1.47)


−1

2


⊲ (Ψ • AffA3,0)









x

y









= Ir


1

2
⊲ (Ψ • AffA1,0)









x

y







+ Ir


−1

2


⊲ (Ψ • AffA2,0)









x

y









+ Ir


−1

2


⊲ (Ψ • AffA3,0)









x

y









=
1

2
(Ir (Ψ))





1 1





x

y







− 1

2
(Ir (Ψ))





1 0





x

y









− 1

2
(Ir (Ψ))





0 1





x

y









=
1

2
(Ir (Ψ)) (x+ y)− 1

2
(Ir (Ψ)) (x)− 1

2
(Ir (Ψ)) (y) (6.1.48)

Note that this, and the assumption that (Ir (Ψ)) (x) ∈ C (R,R) and that (Ir (Ψ)) (0) = 0 ensures:

(Ir (Γ))








x

0







 =
1

2
(Ir (Ψ)) (x+ 0)− 1

2
(Ir (Ψ)) (x)− 1

2
(Ir (Ψ)) (0)

= 0

=
1

2
(Ir (Ψ)) (0 + y)− 1

2
(Ir (Ψ)) (0)− 1

2
(Ir (Ψ)) (y)

= (Ir (Γ))








0

y







 (6.1.49)

Next, observe that since by assumption it is the case for all x, y ∈ R that |x2 − (Ir (Ψ)) (x) | 
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δ max{1, |x|q}, xy = 1
2 |x+ y|2 − 1

2 |x|
2 − 1

2 |y|
2, triangle Inequality and from (6.1.48) we have that:

|(Ir (Γ) (x, y))− xy|

=


1

2


(Ir (Ψ)) (x+ y)− |x+ y|2


− 1

2


(Ir (Ψ)) (x)− |x|2


− 1

2


(Ir (Ψ)) (x)− |y|2





1

2


(Ir (Ψ)) (x+ y)− |x+ y|2


+

1

2


(Ir (Ψ)) (x)− |x|2


+

1

2


(Ir (Ψ)) (x)− |y|2



 δ

2
[max {1, |x+ y|q}+ max {1, |x|q}+ max {1, |y|q}]

Note also that since for all α,β ∈ R and p ∈ [1,∞) we have that |α + β|p  2p−1 (|α|p + |β|p) we

have that:

|(Ir (Ψ)) (x)− xy|

 δ

2


max


1, 2q−1|x|q + 2q−1 |y|q


+ max {1, |x|q}+ max {1, |y|q}



 δ

2


max


1, 2q−1|x|q


+ 2q−1 |y|q + max {1, |x|q}+ max {1, |y|q}



 δ

2
[2q + 2]max {1, |x|q , |y|q} = εmax {1, |x|q , |x|q}

This proves Item (iv).

By symmetry it holds that P

1
2 ⊲ (Ψ • AffA1,0)


= P


−1

2 ⊲ (Ψ • AffA2,0)

= P


−1

2 ⊲ (Ψ • AffA3,0)


and further that L

1
2 ⊲ (Ψ • AffA1,0)


= L


−1

2 ⊲ (Ψ • AffA2,0)

= L


−1

2 ⊲ (Ψ • AffA3,0)

. Note also

that Corollary 5.5.5.1 tells us that for all i ∈ {1, 2, 3} and a ∈ {1
2 ,−

1
2} it is the case that:

P (a ⊲ (Ψ • AffAi,0)) = P (Ψ) (6.1.50)

This, together with Corollary 5.6.9.1 indicates that:

P (Γ)  9P (Ψ)

 9max


40q

q − 2


log2


δ−1


+

80

q − 2
− 28, 52


(6.1.51)
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Combined with the fact that δ = ε

2q−1 + 1

−1, this is then rendered as:

9max


40q

q − 2


log2


δ−1


+

80

q − 2
− 28, 52



= 9max


40q

q − 2

 
log2


ε−1


+ log2


2q−1 + 1


+

80

q − 2
− 28, 52


(6.1.52)

Note that:

log2

2q−1 + 1


= log2


2q−1 + 1


− log2 (2q) + q

= log2

2q−1 + 1

2q


+ q = log2


2−1 + 2−q


+ q

 log2

2−1 + 2−2


+ q = log2


3

4


+ q = log2 (3)− 2 + q (6.1.53)

Combine this with the fact that for all q ∈ (2,∞) it is the case that q(q−1)
q−2  2 then gives us that:


40q

q − 2


log2


2q−1 + 1


− 28 


40q

q − 2


log2


2q−1


− 28 =

40q(q − 1)

q − 2
− 28  52 (6.1.54)

This then finally renders (6.1.52) as:

9max


40q

q − 2

 
log2


ε−1


+ log2


2q−1 + 1


+

80

q − 2
− 28, 52



 9


40q

q − 2

 
log2


ε−1


+ log2 (3)− 2 + q


+

80

q − 2
− 28



= 9


40q

q − 2


log2


ε−1


+ log2 (3)− 2 +

2

q


− 28



 9


40q

q − 2

 
log2


ε−1


+ log2 (3)− 1


− 28



=
360q

q − 2


log2


ε−1


+ q + log2 (3)− 1


− 252 (6.1.55)

Note that Lemma 5.6.10, Lemma 5.5.5, the hypothesis, and the fact that δ = ε

2q−1 + 1

−1 tell us
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that:

D (Γ) = D (Ψ)  max

1 +

1

q − 2
+

q

2(q − 2)
log2


δ−1


, 2



= max

1 +

1

q − 2
+

q

2(q − 2)


log2


ε−1


+ log2


2q−1 + 1


, 2



= max

1 +

1

q − 2
+

q

2(q − 2)


log2


ε−1


+ q − 1


, 2


(6.1.56)

Since it is the case that q(q−1)
2(q−2) > 2 for q ∈ (2,∞) we have that:

max

1 +

1

q − 2
+

q

2(q − 2)


log2


ε−1


+ q − 1


, 2



= 1 +
1

q − 2
+

q

2(q − 2)


log2


ε−1


+ q − 1



 q − 1

q − 2
+

q

2 (q − 2)


log2


ε−1


+ q



(6.1.57)

Observe next that for q ∈ (0,∞), ε ∈ (0,∞), Γ consists of, among other things, three stacked

(Ψ • AffAi,0) networks where i ∈ {1, 2, 3}. Corollary 5.5.5.1 tells us therefore, that W1 (Γ) = 3 ·

W1 (Ψ). On the other hand, note that each Ψ networks consist of, among other things, two stacked

Φ networks, which by Corollary 5.5.5.1 and Lemma 6.1.7, yields that W1 (Γ) = 6 · W1 (Φ). Finally

from Corollary 6.1.4.1, and Corollary 5.5.5.1, we see that the only thing contributing to the W1 (Φ)

is W1 (i4), which was established from Lemma 6.1.2 as 4. Whence we get that W1 (Γ) = 6 · 4 = 24,

and that WH(Γ) (Γ) = 24. This proves Item (vii)—(viii). This then completes the proof of the

Lemma.

Corollary 6.1.10.1. Let δ, ε ∈ (0,∞), q ∈ (2,∞), A1, A2, A3 ∈ R1×2, Ψ ∈ N satisfy for

all x ∈ R that δ = ε

2q−1 + 1

−1, A1 = [1 1], A2 = [1 0], A3 = [0 1], Ir ∈ C (R,R),

(Ir (Ψ)) (0) = 0, 0  (Ir (Ψ)) (x)  δ + |x|2, |x2 − (Ir (Ψ)) (x) |  δ max{1, |x|q}, D (Ψ) 

max{1+ 1
q−2+

q
2(q−2) log2


δ−1


, 2}, and P (Ψ)  max


40q
q−2


log2


δ−1


+ 80

q−2 − 28, 52


, and finally

let Γ be defined as in Lemma 6.1.10, i.e.:

Γ =


1

2
⊛ (Ψ • AffA1,0)


−1

2


⊛ (Ψ • AffA2,0)


−1

2


⊛ (Ψ • AffA3,0)


(6.1.58)
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It is then the case for all x, y ∈ R that:

Ir (Γ) (x, y) 
3

2

ε
3
+ x2 + y2


 ε+ 2x2 + 2y2 (6.1.59)

Proof. Note that the triangle inequality, the fact that δ = ε

2q−1 + 1

−1, the fact that for all

x, y ∈ R it is the case that |x+ y|2  2

|x|2 + |y|2


and (6.1.48) tell us that:

|Ir (Γ) (x, y)| 
1

2
|Ir (Ψ) (x+ y)|+ 1

2
|Ir (Ψ) (x)|+ 1

2
|Ir (Ψ) (y)|

 1

2


δ + |x+ y|2


+

1

2


δ + |x|2


+

1

2


δ + |y|2



 3δ

2
+

3

2


|x|2 + |y|2


=


3ε

2


2q−1 + 1

−1
+

3

2


|x|2 + |y|2



=
3

2


ε

2q−1 + 1
+ |x|2 + |y|2


 3

2

ε
3
+ |x|2 + |y|2



 ε+ 2x2 + 2y2 (6.1.60)

Remark 6.1.11. We shall refer to this neural network for a given q ∈ (2,∞) and given ε ∈ (0,∞)

from now on as Prdq,ε.

Remark 6.1.12. For an R implementation see Listing ??

Remark 6.1.13. Diagrammatically, this can be represented as:

6.2 Higher Approximations

We take inspiration from the Sum neural network to create the Prd neural network. However, we

first need to define a special neural network called tunneling neural network to stack two neural

networks not of the same length effectively.
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1
2 ⊲ (Φ • AffA1,0)

1
2 ⊲ (Φ • AffA2,0)

1
2 ⊲ (Φ • AffA2,0)

CpySum

Figure 6.4: A neural network diagram of the Sqr.

6.2.1 The Tun Neural Networks and Their Properties

Definition 6.2.1 (R—,2023, The Tunneling Neural Networks). We define the tunneling neural

network, denoted as Tunn for n ∈ N by:

Tunn =






Aff1,0 : n = 1

Id1 : n = 2

•n−2 Id1 n ∈ N ∩ [3,∞)

(6.2.1)

Where Id1 is as in Definition 8.1.1.

Remark 6.2.2. For an R implementation see Listing 10.12

Lemma 6.2.3. Let n ∈ N, x ∈ R and Tunn ∈ NN. For all n ∈ N and x ∈ R, it is then the case

that:

(i) Ir (Tunn) ∈ C (R,R)

(ii) D (Tunn) = n

(iii) (Ir (Tunn)) (x) = x
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(iv) P (Tunn) =






2 : n = 1

7 + 6(n− 2) : n ∈ N ∩ [2,∞)

(v) L (Tunn) = (l0, l1, ..., lL−1, lL) = (1, 2, ..., 2, 1)

Proof. Note that Aff0,1 ∈ C (R,R) and by Lemma 8.1.2 we have that Id1 ∈ C (R,R). Finally, the

composition of continuous functions is continuous, hence Tunn ∈ C (R,R) for n ∈ N ∩ [2,∞). This

proves Item (i).

Note that by Lemma 5.5.2 it is the case that D (Aff1,0) = 1 and by Lemma 8.1.1 it is the case that

D (Id1) = 2. Assume now that for all n  N that D (Tunn) = n, then for the inductive step, by

Lemma 5.2.5 we have that:

D (Tunn+1) = D

•n−1 Id1



= D

•n−2 Id1


• Id1



= n+ 2− 1 = n+ 1 (6.2.2)

This completes the induction and proves Item (i)—(iii). Note next that by (5.1.10) we have that:

(Ir (Aff1,0)) (x) = x (6.2.3)

Lemma 8.1.2, Item (iii) also tells us that:

(Ir (Id1)) (x) = r(x)− r(−x) = x (6.2.4)

Assume now that for all n  N that Tunn (x) = x. For the inductive step, by Lemma 8.1.2, Item
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(iii), and we then have that:

(Ir (Tunn+1)) (x) =

Ir


•n−1 Id1


(x) (x)

=

Ir


•n−2 Id1


• Id1



=

Ir


•n−2 Id1


◦ (Ir (Id1))


(x)

= ((Ir (Tunn)) ◦ (Ir (Id1))) (x)

= x (6.2.5)

This proves Item (ii). Next note that P (Tun1) = P (Aff1,0) = 2. Note also that:

P (Tun2) = P (Id1) = P
















1

−1



 ,




0

0







 ,


1 −1


,


0










= 7

And that by definition of composition:

P (Tun3) = P
















1

−1



 ,




0

0







 ,


1 −1


,


0




 •












1

−1



 ,




0

0







 ,


1 −1


,


0










= P
















1

−1



 ,




0

0







 ,








1 −1

−1 1



 ,




0

0







 ,


1 −1


,


0










= 13

Now for the inductive step assume that for all n  N ∈ N, it is the case that P (Tunn) = 7+6(n−2).
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For the inductive step, we then have:

P (Tunn+1) = P (Tunn • Id1)

= P
















1

−1



 ,




0

0







 ,








1 −1

−1 1



 ,




0

0







 , · · · ,


1 −1


,


0




 • Id1





= P
















1

−1



 ,




0

0







 ,








1 −1

−1 1



 ,




0

0







 , · · · ,








1 −1

−1 1



 ,




0

0







 ,


1 −1


,


0










= 7 + 6(n− 2) + 6 = 7 + 6 ((n+ 1)− 2) (6.2.6)

This proves Item (iv).

Note finally that Item (v) is a consequence of Lemma 8.1.2, Item (i), and Lemma 5.2.5

Definition 6.2.4 (R—, 2023, The Multi-dimensional Tunneling Network). We define the multi-

-dimensional tunneling neural network, denoted as Tundn for n ∈ N and d ∈ N by:

Tundn =






AffId,0d : n = 1

Idd : n = 2

•n−2 Idd : n ∈ N ∩ [3,∞)

(6.2.7)

Where Idd is as in Definition 8.1.1.

Remark 6.2.5. We may drop the requirement for a d and write Tunn where d = 1, and it is evident

from the context.

Lemma 6.2.6. Let n ∈ N, d ∈ N, x ∈ R and Tundn ∈ NN. For all n ∈ N, d ∈ N, and x ∈ R, it is

then the case that:

(i) Ir

Tundn


∈ C (R,R)

(ii) D

Tundn


= n

(iii)

Ir


Tundn


(x) = x
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(iv) P

Tundn


=






8d2 + 5d : n = 1

4d2 + 3d+ (n− 1)

4d2 + 2d


: n ∈ N ∩ [2,∞)

(v) L

Tundn


= (l0, l1, ..., lL−1, lL) = (d, 2d, ..., 2d, d)

Proof. Note that Items (i)–(iii) are consequences of Lemma 8.1.2 and Lemma 5.2.5 respectively.

Note now that by observation P

Tund1


= d2+d. Next Lemma 8.1.4 tells us that P


Tund2


= 4d2+3d

Note also that by definition of neural network composition, we have the following:

P


Tund3


(6.2.8)

= P

















1

−1

. . .

1

−1





,





0

0

...

0

0









,









1 −1

. . .

1 −1




,





0

...

0













• (6.2.9)













1

−1

. . .

1

−1





,





0

0

...

0

0









,









1 −1

. . .

1 −1




,





0

...

0

















= P

















1

−1

. . .

1

−1





,





0

0

...

0

0









,









1 −1

−1 1

. . .

1 −1

−1 1





,





0

0

...

0

0









,









1 −1

. . .

1 −1




,





0

...

0

















= 2d× d+ 2d+ 2d× 2d+ 2d+ 2d× d+ d

= 2d2 + 2d+ 4d2 + 2d+ 2d2 + d

= 8d2 + 5d (6.2.10)

Suppose now that for all naturals up to and including n, it is the case that P

Tundn


= 4d2 + 3d+
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(n− 2)

4d2 + 2d


. For the inductive step, we have the following:

P


Tundn+1


= P


Tundn • Idd



= P













1

−1

. . .

1

−1





,





0

0

...

0

0









,









1 −1

−1 1

. . .

1 −1

−1 1





,





0

0

...

0

0









, . . . ,









1 −1

. . .

1 −1




,





0

...

0









• Idd]

= P













1

−1

. . .

1

−1





,





0

0

...

0

0









,









1 −1

−1 1

. . .

1 −1

−1 1





,





0

0

...

0

0









, . . . ,









1 −1

−1 1

. . .

1 −1

−1 1





,





0

0

...

0

0









,









1 −1

. . .

1 −1




,





0

...

0













= 4d2 + 3d+ (n− 2)

4d2 + 2d


+ 4d2 + 2d

= 4d2 + 3d+ (n− 1)

4d2 + 2d



This proves Item (iv). Finally, Item (v) is a consequence of Lemma 5.5.2

6.2.2 The Pwr Neural Networks and Their Properties

Definition 6.2.7 (R—, 2023, The Power Neural Network). Let n ∈ N. Let δ, ε ∈ (0,∞), q ∈ (2,∞),

satisfy that δ = ε

2q−1 + 1

−1. We define the power neural networks Pwrq,εn ∈ NN, denoted for
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Pwrq,εn−1

Cpy2,1

TunD(Pwrq,εn−1)

Prdq,ε

x

x

x


Ir


Pwrq,εn−1


(x)

x

Figure 6.5: A representation of a typical Pwrq,εn network.

n ∈ N0 as:

Pwrq,εn =






Aff0,1 : n = 0

Prdq,ε •

TunD(Pwrq,εn−1)

⊟Pwrq,εn−1


• Cpy2,1 : n ∈ N

Diagrammatically, this can be represented as:

Remark 6.2.8. For an R implementation see Listing 10.19

Remark 6.2.9. Note that for all i ∈ N, q ∈ (2,∞), ε ∈ (0,∞), each Pwrq,εi differs from Pwrq,εi+1 by

atleast one Prdq,ε network.

Lemma 6.2.10. Let x, y ∈ R, ε ∈ (0,∞) and q ∈ (2,∞). It is then the case for all x, y ∈ R that:

εmax {1, |x|q, |y|q}  ε+ ε|x|q + ε|y|q. (6.2.11)

Proof. We will do this in the following cases:

For the case that |x|  1 and |y|  1 we then have:

εmax {1, |x|q, |y|q} = ε  ε+ ε|x|q + ε|y|q (6.2.12)

For the case that |x|  1 and |y|  1, without loss of generality we have then:

εmax {1, |x|q, |y|q}  ε|y|q  ε+ ε|x|q + ε|y|q : (6.2.13)
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For the case that |x|  1 and |y|  1, and without loss of generality that |x|  |y| we have that:

εmax{1, |x|q, |y|q} = ε|x|q  ε+ ε|x|q + ε|y|q (6.2.14)

Lemma 6.2.11. Let pi for i ∈ {1, 2, ...} be the set of functions defined for ε ∈ (0,∞), and x ∈ R

as follows:

p1 = ε+ 2 + 2|x|2

pi = ε+ 2 (pi−1)
2 + 2|x|2 for i  2 (6.2.15)

For all n ∈ N and ε ∈ (0,∞) and q ∈ (2,∞) it holds for all x ∈ R that:

|Ir (Pwrq,εn ) (x)|  pn (6.2.16)

Proof. Note that by Corollary 6.1.10.1 it is the case that:

|Ir (Pwrq,ε1 ) (x)| = |Ir (Prdq,ε) (1, x)|  p1 (6.2.17)

and applying (6.2.17) twice, it is the case that:

|Ir (Pwrq,ε2 ) (x)| = |Ir (Prdq,ε) (Ir (Prdq,ε (1, x)) , x)|

 ε+ 2 |Ir (Prdq,ε) (1, x)|2 + 2|x|2

 ε+ 2p21 + 2|x|2 = p2 (6.2.18)

Let's assume this holds for all cases up to and including n. For the inductive step, Corollary 6.1.10.1
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tells us that:

Ir

Pwrq,εn+1


(x)

  |Ir (Prdq,ε (Ir (Prdq,ε (Ir · · · (1, x) , x) , x) · · ·))|

 Ir [Prdq,ε (Pwrq,εn (x) , x)]

 ε+ 2p2n + 2|x|2 = pn+1 (6.2.19)

This completes the proof of the lemma.

Remark 6.2.12. Note that since any instance of pi contains an instance of pi−1 for i ∈ N∩ [2,∞),

we have that pn ∈ O

ε2(n−1)



Lemma 6.2.13. For all n ∈ N, q ∈ (2,∞), and ε ∈ (0,∞), it is the case that P


TunD(Pwrq,εn )




P (Pwrq,εn ).

Proof. Note that for all n ∈ N it is straightforwardly the case that P (Pwrq,εn )  P


TunD(Pwrq,εn−1)



because for all n ∈ N, a Pwrq,εn network contains a TunD(Pwrq,εn−1)
network. Note now that for all

i ∈ N we have from Lemma 6.2.3 that 5  P (Tuni+1)−P (Tuni)  6. Recall from Corollary 6.1.4.1

that every instance of the Φ network contains atleast one i4 network, which by Lemma 6.1.2 has 40

parameters, whence the Prdq,ε network has atleast 40 parameters for all ε ∈ (0,∞) and q ∈ (2,∞).

Note now that for all i ∈ N, Pwrq,εi and Pwrq,εi+1 differ by atleast as many parameters as there are in

Prdq,ε, since, indeed, they differ by atleast one more Prdq,ε. Thus for every increment in i, Pwrq,εi

outstrips Tuni by at-least 40− 6 = 34 parameters. This is true for all i ∈ N. Whence it is the case

that for all i ∈ N, it is the case that P (Tuni)  P (Pwrq,εi ).

Lemma 6.2.14 (R—,2023). Let δ, ε ∈ (0,∞), q ∈ (2,∞), and δ = ε

2q−1 + 1

−1. Let n ∈ N0,

and Pwrn ∈ NN. It is then the case for all n ∈ N0, and x ∈ R that:

(i) (Ir (Pwrq,εn )) (x) ∈ C (R,R)

(ii) D(Pwrq,εn ) 






1 : n = 0

n


q
q−2


log2


ε−1


+ q


− 1


+ 1 : n ∈ N

(iii) W1 (Pwrq,εn ) =






1 : n = 0

24 + 2 (n− 1) : n ∈ N
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(iv) P(Pwrq,εn ) 






2 : n = 0

4n+
3
2 +


4n+1−1

3


360q
q−2


log2


ε−1


+ q + 1


+ 372


: n ∈ N

(v) |xn − (Ir (Pwrq,εn )) (x)| 






0 : n = 0

x

xn−1 − Ir


Pwrq,εn−1


(x)

+ ε+ |x|q + pqn−1 : n ∈ N

Where we let pi for i ∈ {1, 2, ...} be the set of functions defined as follows:

p1 = ε+ 2 + 2|x|2

pi = ε+ 2 (pi−1)
2 + 2|x|2 (6.2.20)

And whence we get that:

|xn − Ir (Pwrq,εn ) (x)| ∈ O

ε2q(n−1)


for n  2 (6.2.21)

(vi) WH(Pwrq,εn ) (Pwrq,εn ) =






1 n = 0

24 n ∈ N

Proof. Note that Item (ii) of Lemma 5.5.2 ensures that Ir (Pwr0) = Aff1,0 ∈ C (R,R). Note next

that by Item (v) of Lemma 5.2.5, with Φ1 ↶ ν1,Φ2 ↶ ν2, a ↶ r, we have that:

(Ir (ν1 • ν2)) (x) = ((Ir (ν1)) ◦ (Ir (ν2))) (x) (6.2.22)

This, with the fact that the composition of continuous functions is continuous, the fact the stacking

of continuous instantiated neural networks is continuous tells us that (Ir Pwrn) ∈ C (R,R) for

n ∈ N ∩ [2,∞). This establishes Item (i).

Note next that by observation D (Pwrq,ε0 ) = 1 and by Item (iv) of Lemma 8.1.2, it is the case that

D (Id1) = 2. By Lemmas 5.6.3 and 5.2.3 it is also the case that: D


Prdq,ε •

TunD(Pwrq,εn−1)

⊟Pwrq,εn−1


• Cpy


=

D


Prdq,ε •

TunD(Pwrq,εn−1)

⊟Pwrq,εn−1


. Note also that by Lemma we have that D


TunD(Pwrq,εn−1)

⊟Pwrq,εn−1


=
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D

Pwrq,εn−1


. This with Lemma 5.2.5 then yields for n ∈ N that:

D (Pwrq,εn ) = D


Prd •

TunD(Pwrq,εn−1)

⊟Pwrq,εn−1


• Cpy2,1



= D


Prd •

TunD(Pwrq,εn−1)

⊟Pwrq,εn−1



= D (Prd) + D


TunD(Pwrq,εn−1)


− 1

 q

q − 2


log2


ε−1


+ q


+ D


TunD(Pwrq,εn−1)


− 1

=
q

q − 2


log2


ε−1


+ q


+ D


Pwrq,εn−1


− 1 (6.2.23)

And hence for all n ∈ N it is the case that:

D (Pwrq,εn )− D

Pwrq,εn−1


 q

q − 2


log2


ε−1


+ q


− 1 (6.2.24)

This, in turn, indicates that:

D (Pwrq,εn )  n


q

q − 2


log2


ε−1


+ q


− 1


+ 1

 n


q

q − 2


log2


ε−1


+ q


− 1


+ 1 (6.2.25)

This proves Item (ii).

Note now that W1 (Pwrq,ε0 ) = W1 (Aff0,1) = 1. Further Lemma 5.2.5, Remark 5.5.2, tells us that for

all i, k ∈ N it is the case that Wi (Tunk)  2. Observe that since Cpy2,1,Pwrq,ε0 , and TunD(Pwrq,ε0 )

are all affine neural networks, Lemma 5.5.5, Corollary 5.5.5.1, and Lemma 6.1.10 tells us that:

W1 (Pwrq,ε1 ) = W1


Prdq,ε •


TunD(Pwrq,ε0 )⊟Pwrq,ε0


• Cpy2,1



= W1 (Prdq,ε) = 24 (6.2.26)
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And that:

W1 (Pwrq,ε2 ) = W1


Prdq,ε •


TunD(Pwrq,ε1 )⊟Pwrq,ε1


• Cpy2,1



= W1


TunD(Pwrq,ε1 )⊟Pwrq,ε1



= 24 + 2 = 26

This completes the base case. For the inductive case, assume that for all i up to and including

k ∈ N it is the case that W1 (Pwrq,εi ) 






1 : i = 0

24 + 2(i− 1) : i ∈ N
. For the case of k+1, we get that:

W1


Pwrq,εk+1


= W1


Prdq,ε •


TunD(Pwrq,εk )⊟Pwrq,εk


• Cpy2,1



= W1


TunD(Pwrq,εk )⊟Pwrq,εk



= W1


TunD(Pwrq,εk )


+ W1


Pwrq,εk










2 : k = 0

24 + 2k : k ∈ N
(6.2.27)

This establishes Item (iii).

For Item (iv), we will prove this in cases.

Case 1: Pwrq,ε0 :

Note that by Lemma 5.5.2 we have that:

P (Pwrq,ε0 ) = P (Aff0,1) = 2 (6.2.28)

This completes Case 1.

Case 2: Pwrq,εn where n ∈ N:

Note that Lemma 5.3.5, Lemma 6.2.13, Corollary 5.3.5.1, Lemma 5.3.6, and Corollary 5.3.6.1, tells
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us it is the case that:

P


Pwrq,εn−1⊟TunD(Pwrq,εn−1)


 P


Pwrq,εn−1⊟Pwrq,εn−1



 4P

Pwrq,εn−1


(6.2.29)

Then Lemma 5.2.5 and Corollary 5.5.5.1 tells us that:

P


Pwrq,εn−1⊟TunD(Pwrq,εn−1)


• Cpy2,1



= P


Pwrq,εn−1⊟TunD(Pwrq,εn−1)



 4P

Pwrq,εn−1


(6.2.30)

Note next that by definition for all q ∈ (2,∞), and ε ∈ (0,∞) it is case that WH(Pwrq,ε0 ) Pwrq,ε0 =

WH(Aff0,1) = 1. Now, by Lemma 6.1.10, and by construction of Pwrq,εi we may say that for i ∈ N it

is the case that:

WH(Pwrq,εi ) = WH(Prdq,ε) = 24 (6.2.31)

Note also that by Lemma 6.2.3 it is the case that:

W
H


Tun
D(Pwrq,ε

i−1)




TunD(Pwrq,εi−1)


= 2 (6.2.32)

Furthermore, note that for n ∈ [2,∞) ∩ N Lemma 6.1.10 tells us that:

W
H


Pwrq,εn−1 ⊟Tun
D(Pwrq,εn−1)




Pwrq,εn−1⊟TunD(Pwrq,εn−1)


= 24 + 2 = 26 (6.2.33)

140



Finally Lemma 5.2.5, (6.2.30), and Corollary 5.3.5.1, also tells us that:

P (Pwrq,εn ) (6.2.34)

= P


Prdq,ε •

Pwrq,εn−1⊟TunD(Pwrq,εn−1)


• Cpy2,1



= P


Prdq,ε •

Pwrq,εn−1⊟TunD(Pwrq,εn−1)



 P (Prdq,ε) + 4P

Pwrq,εn−1


+

+ W1 (Prdq,ε) · W
H


Pwrq,εn−1 ⊟Tun
D(Pwrq,εn−1)




Pwrq,εn−1⊟TunD(Pwrq,εn−1)



= P (Prdq,ε) + 4P

Pwrq,εn−1


+ 624

= 4n+1 P (Pwrq,ε0 ) +


4n+1 − 1

3


(P (Prdq,ε) + 624)

= 4n+
3
2 +


4n+1 − 1

3


360q

q − 2


log2


ε−1


+ q + 1


+ 372


(6.2.35)

Next note that (Ir (Pwr0,1)) (x) is exactly 1, which implies that for all x ∈ R we have that |x0 −

(Ir (Pwr0.1) (x)) | = 0. Note also that the instantiations of Tunn and Cpy2,1 are exact. Note next

that since Tunn and Cpy2,1 are exact, the only sources of error for Pwrq,εn are n compounding

applications of Prdq,ε.

Note also that by definition, it is the case that:

Ir (Pwrq,εn ) = Ir



Prdq,ε (Ir [Prdq,ε (· · · Ir [Prdq,ε (1, x)] , · · ·x)] , x)  
n−copies



 (6.2.36)

Lemma 6.1.10 tells us that:

|x− Ir (Prdq,ε (1, x))|  εmax{1, |x|q}  ε+ |x|q (6.2.37)
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The triangle inequality, Lemma 6.2.10, Lemma 6.1.10, and Corollary 6.1.10.1 then tells us that:

x2 − Ir (Pwrq,ε2 ) (x)


= |x · x− Ir (Prdq,ε (Ir (Prdq,ε (1, x)) , x))|

 |x · x− x · Ir (Prdq,ε (1, x))|+ |x · Ir (Prdq,ε (1, x))− Ir (Prdq,ε (Ir (Prdq,ε (1, x)) , x))|

= |x (x− Ir (Prdq,ε (1, x)))|+ ε+ ε |x|q + ε |Ir (Prdq,ε (1, x))|q

 |xε+ xε |x|q|+ ε+ ε |x|q + ε
ε+ 2 + x2

q

= |xε+ xε |x|q|+ ε+ ε |x|q + εpq1 (6.2.38)

Note that this takes care of our base case. Assume now that for all integers up to and including n,

it is the case that:

|xn − Ir (Pwrq,εn ) (x)| 
x · xn−1 − x · Ir


Pwrq,εn−1


(x)

+
x · Ir


Pwrq,εn−1


(x)− Ir (Pwrq,εn ) (x)




x


xn−1 − Ir


Pwrq,εn−1


(x)

+ ε+ ε|x|q + ε
Ir


Pwrq,εn−1


(x)

q


x


xn−1 − Ir


Pwrq,εn−1


(x)

+ ε+ ε|x|q + εpqn−1 (6.2.39)

For the inductive case, we see that:

xn+1 − Ir

Pwrq,εn+1


(x)

 
xn+1 − x · Ir (Pwrq,εn ) (x)

+
x · Ir (Pwrq,εn ) (x)− Ir


Pwrq,εn+1



 |x (xn − Ir (Pwrq,εn ) (x))|+ ε+ ε|x|q + ε |Ir (Pwrq,εn ) (x)|q

 |x (xn − Ir (Pwrq,εn ) (x))|+ ε+ ε|x|q + εpqn (6.2.40)

Note that since pn ∈ O

ε2(n−1)


for n ∈ N ∩ [2,∞), it is the case for all x ∈ R then that

|xn − Ir (Pwrq,εn ) (x)| ∈ O

ε2q(n−1)


for n  2.

Finally note that WH(Pwrq,ε0 ) (Pwrq,ε0 ) = 1 from observation. For n ∈ N, note that the second to last

layer is the second to last layer of the Prdq,ε network. Thus Lemma 6.1.10 tells us that:

WH(Pwrq,εm ) (Pwrq,εn ) =






1 n = 0

24 n ∈ N
(6.2.41)
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This completes the proof of the lemma.

Remark 6.2.15. Note each power network Pwrq,εn is at least as big as the previous power network

Pwrq,εn−1, one differs from the other by one Prdq,ve network.

6.2.3 Pnmq,ε
n,C and Neural Network Polynomials.

Definition 6.2.16 (Neural Network Polynomials). Let δ, ε ∈ (0,∞), q ∈ (2,∞) and δ = ε

2q−1 + 1

−1.

For fixed q, ε, fixed n ∈ N0, and for C = {c0, c1, . . . , cn} ∈ Rn+1 (the set of coefficients), we will

define the following objects as neural network polynomials:

Pnmq,ε
n,C :=

n

i=0


ci ⊲


Tunmaxi{D(Pwrq,εi )}+1−D(Pwrq,εi ) •Pwrq,εi


(6.2.42)

Remark 6.2.17. Diagrammatically, these can be represented as

...

Pwrq,ε0

Pwrq,ε1

Pwrq,ε2

Tun

Pwrq,εn

Tun

Tun
Cpyn+1,1

...

Sumn+1,1

...

...

Figure 6.6: Neural network diagram for an elementary neural network polynomial.

Lemma 6.2.18 (R—,2023). Let δ, ε ∈ (0,∞), q ∈ (2,∞) and δ = ε

2q−1 + 1

−1. It is then the

case for all n ∈ N0 and x ∈ R that:

(i) Ir


Pnmq,ε

n,C


∈ C (R,R)

(ii) D


Pnmq,ε
n,C









1 : n = 0

n


q
q−2


log2


ε−1


+ q


− 1


+ 1 : n ∈ N
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(iii) P


Pnmq,ε
n,C









2 : n = 0

(n+ 1)

4n+

3
2 +


4n+1−1

3


360q
q−2


log2


ε−1


+ q + 1


+ 372


: n ∈ N

(iv)

n

i=0 cix
i − Ir


Pnmq,ε

n,C


(x)

 
n

i=1 ci
x


xi−1 − Ir


Pwrq,εi−1


(x)

+ ε+ |x|q + pqi−1



Where pi are the set of functions defined for i ∈ N as such:

p1 = ε+ 1 + |x|2

pi = ε+ (pi−1)
2 + |x|2 (6.2.43)

Whence it is the case that:



n

i=0

cix
i − Ir


Pnmq,ε

n,C


(x)

 ∈ O

ε2q(n−1)


(6.2.44)

(v) W1


Pnmq,ε

n,C


= 2 + 23n+ n2

(vi) WH(Pnmq,ε
n,C)


Pnmq,ε

n,C









1 : n = 0

24 + 2n : n ∈ N

Proof. Note that by Lemma 5.7.5, Lemma 6.2.14, and Lemma 5.2.5 for all n ∈ N0 it is the case

that:

Ir


Pnmq,ε

n,C


= Ir


n

i=0


ci ⊲


Tunmaxi{D(Pwrq,εi )}+1−D(Pwrq,εi ) •Pwrq,εi



=

n

i=1

ci Ir


Tunmaxi{D(Pwrq,εi )}+1−D(Pwrq,εi ) •Pwrq,εi



=

n

i=1

ci Ir (Pwrq,εi )

Since Lemma 6.2.14 tells us that (Ir (Pwrq,εn )) (x) ∈ C (R,R), for all n ∈ N0 and since the finite sum

of continuous functions is continuous, this proves Item (i).

Note that Pnmq,ε
n is only as deep as the deepest of the Pwrq,εi networks, which from the definition is
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Pwrq,εn , which in turn also has the largest bound. Therefore, by Lemma 5.2.5, Lemma 5.5.5, Lemma

5.6.10, and Lemma 6.2.14, we have that:

D


Pnmq,ε
n,C


 D (Pwrq,εn )








1 : n = 0

n


q
q−2


log2


ε−1


+ q


− 1


+ 1 : n ∈ N

This proves Item (ii).

Note next that for the case of n = 0, we have that:

Pnmq,ε
n = ci ⊲ Pwrq,ε0 (6.2.45)

This then yields us 2 parameters.

Note that each neural network summand in Pnmq,ε
n consists of a combination of Tunk and Pwrk for

some k ∈ N. Each Pwrk has at least as many parameters as a tunneling neural network of that

depth, as Lemma 6.2.13 tells us. This, finally, with Lemma 5.5.5, Corollary 5.5.5.1, and Lemma

6.2.14 then implies that:

P


Pnmq,ε
n,C


= P


n

i=0


ci ⊲


Tunmaxi{D(Pwrq,εi )}+1−D(Pwrq,εi ) •Pwrq,εi



 (n+ 1) · P (ci ⊲ [Tun1 •Pwrq,εn ])

 (n+ 1) · P (Pwrq,εn )








2 : n = 0

(n+ 1)

4n+

3
2 +


4n+1−1

3


360q
q−2


log2


ε−1


+ q + 1


+ 372


: n ∈ N

This proves Item (iii).

Finally, note that for all i ∈ N, Lemma 6.2.14, and the triangle inequality then tells us that it is
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the case for all i ∈ N that:

xi − Ir (Pwrq,εi ) (x)
 

xi − x · Ir

Pwrq,εi−1


(x)

+
x · Ir


Pwrq,εi−1


(x)− Ir (Pwrq,εi ) (x)



(6.2.46)

This, Lemma 6.2.28, and the fact that instantiation of the tunneling neural network leads to the

identity function (Lemma 6.2.3 and Lemma 5.2.5), together with Lemma 5.7.8, and the absolute

homogeneity condition of norms, then tells us that for all x ∈ R, and c0, c1, . . . , cn ∈ R it is the

case that:



n

i=0

cix
i − Ir


Pnmq,ε

n,C (x)


=



n

i=0

cix
i − Ir


n

i=0


ci ⊲ Tunmaxi{D(Pwrq,εi )}+1−D(Pwrq,εi ) •Pwrq,εi


(x)



=



n

i=1

cix
i −

n

i=0

ci


Ir


Tunmaxi{D(Pwrq,εi )}+1−D(Pwrq,εi ) •Pwrq,εi


(x)




n

i=1

|ci| ·
xi − Ir


Tunmaxi{D(Pwrq,εi )}+1−D(Pwrq,εi ) •Pwrq,εi


(x)




n

i=1

|ci| ·
x


xi−1 − Ir


Pwrq,εi−1


(x)

+ ε+ |x|q + pqi−1



Note however that since for all x ∈ R and i ∈ N∩[2,∞), Lemma 6.1.10 tells us that
xi − Ir (Pwrq,εi ) (x)

 ∈

O

ε2q(i−1)


, this, and the fact that f+g ∈ O (xa) if f ∈ O (xa), g ∈ O


xb

, and a  b, then implies

that:

n

i=1

|ci| ·
x


xi−1 − Ir


Pwrq,εi−1


(x)

+ ε+ |x|q + pqi−1


∈ O


ε2q(n−1)


(6.2.47)

This proves Item (iv).

Note next in our construction Aff0,1 will require tunneling whenever i ∈ N in Pwrq,εi . Lemma 5.5.5
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and Corollary 5.5.5.1 then tell us that:

W1 (Pnmq,ε
n ) = W1


n

i=0


ci ⊲


Tunmaxi{D(Pwrq,εi )}+1−D(Pwrq,εi ) •Pwrq,εi



= W1


n

i=0

Pwrq,εi




n

i=0

W1 (Pwrq,εi ) = 2 +
n

2
(24 + 24 + 2 (n− 1)) = 2 + 23n+ n2

(6.2.48)

This proves Item (v).

Finally note that from the definition of the Pnmq,ε
n,C , it is evident that WH(Pwrq,ε0,C)


Pwrq,ε0,C


= 1

since Pwrq,ε0,C = Aff0,1. Other than this network, for all i ∈ N, Pwrq,εi,C end in the Prdq,ε network, and

the deepest of the Pwrq,εi networks is Pwrq,εn inside Pnmq,ε
n,C . All other Pwrq,εi must end in tunnels.

Whence in the second to last layer, Lemma 6.1.10 tells us that:

WH(Pnmq,ε
n,C)








1 : n = 0

24 + 2n : n ∈ N
(6.2.49)

This completes the proof of the Lemma.

6.2.4 Xpnq,ε
n , Csnq,ε

n , Sneq,εn , and Neural Network Approximations of ex, cos(x), and

sin(x).

Once we have neural network polynomials, we may take the next leap to transcendental functions.

Here, we will explore neural network approximations for three common transcendental functions:

ex, cos(x), and sin(x).

Lemma 6.2.19. Let ν1, ν2 ∈ NN, f, g ∈ C (R,R), and ε1, ε2 ∈ (0,∞) such that for all x ∈ R it

holds that |f(x)− Ir (ν1)|  ε1 and |g(x)− Ir (ν2)|  ε2. It is then the case for all x ∈ R that:

|[f + g] (x)− Ir ([ν1 ⊕ ν2]) (x)|  ε1 + ε2 (6.2.50)
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Proof. Note that the triangle inequality tells us:

|[f + g] (x)− Ir [ν1 ⊕ ν2] (x)| = |f (x) + g (x)− Ir (ν1) (x)− Ir (ν2) (x)|

 |f (x)− Ir (ν1) (x)|+ |g (x)− Ir (ν2) (x)|

 ε1 + ε2

Lemma 6.2.20. Let n ∈ N. Let ν1, ν2, ..., νn ∈ NN, ε1, ε2, ..., εn ∈ (0,∞) and f1, f2, ..., fn ∈

C (R,R) such that for all i ∈ {1, 2, ..., n}, and for all x ∈ R, it is the case that, |fi (x)− Ir (νi) (x)| 

εi. It is then the case for all x ∈ R, that:



n

i=1

fi (x)−
n

i=1

(Ir (νi)) (x)

 
n

i=1

εi (6.2.51)

Proof. This is a consequence of a finite number of applications of (6.2.50).

Definition 6.2.21 (R—2023, Xpnq,εn and the Neural Network Taylor Approximations for ex around

x = 0). Let δ, ε ∈ (0,∞), q ∈ (2,∞) and δ = ε

2q−1 + 1

−1, and let Pwrq,εn be as in Lemma 6.2.14.

We define, for all n ∈ N0, the family of neural networks Xpnq,εn as:

Xpnq,εn :=

n

i=0


1

i!
⊲

Tunmaxi{D(Pwrq,εi )}+1−D(Pwrq,εi ) •Pwrq,εi


(6.2.52)

Lemma 6.2.22 (R—,2023). Let δ, ε ∈ (0,∞), q ∈ (2,∞) and δ = ε

2q−1 + 1

−1. It is then the

case for all n ∈ N0 and x ∈ R that:

(i) Ir (Xpnq,εn ) (x) ∈ C (R,R)

(ii) D (Xpnq,εn ) 






1 : n = 0

n


q
q−2


log2


ε−1


+ q


− 1


+ 1 : n ∈ N

(iii) P (Xpnq,εn ) 






2 : n = 0

(n+ 1)

4n+

3
2 +


4n+1−1

3


360q
q−2


log2


ε−1


+ q + 1


+ 372


: n ∈ N
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(iv)



n

i=0


xi

i!


− Ir (Xpnq,εn ) (x)

 
n

i=1

1

i!

x

xi−1 − Ir


Pwrq,εi−1


(x)

+ ε+ |x|q + pqi−1



Where pi are the set of functions defined for i ∈ N as such:

p1 = ε+ 1 + |x|2

pi = ε+ (pi−1)
2 + |x|2 (6.2.53)

Whence it is the case that:



n

i=0


xi

i!


− Ir (Xpnq,εn ) (x)

 ∈ O

ε2q(n−1)


(6.2.54)

(v) W1 (Xpnq,εn ) = 2 + 23n+ n2

(vi) WH(Xpnn
q,ε)

(Xpnq,εn )  24 + 2n

Proof. This follows straightforwardly from Lemma 6.2.18 with ci ↶ 1
i! for all n ∈ N and i ∈

{0, 1, . . . , n}. In particular, Item (iv) benefits from the fact that for all i ∈ N0, it is the case that
1
i!  0.

Lemma 6.2.23 (R—, 2023). Let δ, ε ∈ (0,∞), q ∈ (2,∞) and δ = ε

2q−1 + 1

−1
. It is then the

case for all n ∈ N0 and x ∈ [a, b] ⊊ R, where 0 ∈ [a, b] ⊊ R that:

|ex − Ir (Xpnq,εn ) (x)| 
n

i=0

1

i!

x

xn−1 − Ir


Pwrq,εn−1


(x)

+ ε+ |x|q + pqn−1


+

eb · |x|n+1

(n+ 1)!

(6.2.55)

Proof. Note that Taylor's theorem states that for x ∈ [a, b] ⊊ R it is the case that:

ex =

n

i=0


xi

i!


+

eξ · xn+1

(n+ 1)!
(6.2.56)
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Where ξ is between 0 and x in the Lagrange form of the remainder. Note then, for all n ∈ N0,

x ∈ [a, b] ⊊ R, and ξ between 0 and x, it is the case, by monotonicity of ex that the second summand

is bounded by:

eξ · xn+1

(n+ 1)!
 eb · |x|n+1

(n+ 1)!
(6.2.57)

This, and the triangle inequality, then indicates that for all x ∈ [a, b] ⊊ R, and ξ between 0 and x

that:

|ex − Ir (Xpnq,εn ) (x)| =



n

i=0


xi

i!


+

eξ · xn+1

(n+ 1)!
− Ir (Xpnq,εn ) (x)






n

i=0


xi

i!


− Ir (Xpnq,εn ) (x)

+
eb · |x|n+1

(n+ 1)!


n

i=1

1

i!

x

xn−1 − Ir


Pwrq,εn−1


(x)

+ ε+ |x|q + pqn−1


+

eb · |x|n+1

(n+ 1)!

Whence we have that for fixed n ∈ N0 and b ∈ [0,∞), the last summand is constant, whence it is

the case that:

|ex − Ir (Xpnq,εn ) (x)| ∈ O

ε2q(n−1)


(6.2.58)

Definition 6.2.24 (The Csnq,εn Networks, and Neural Network Cosines). Let δ, ε ∈ (0,∞), q ∈

(2,∞) and δ = ε

2q−1 + 1

−1. Let Pwrq,εn be a neural networks as defined in Definition 6.2.7. We

will define the neural networks Csnq,εn as:

Csnq,εn :=

n

i=0


(−1)i

2i!
⊲

Tunmaxi{D(Pwrq,εi )}+1−D(Pwrq,εi ) •Pwrq,ε2i


(6.2.59)

Lemma 6.2.25 (R—, 2023). Let δ, ε ∈ (0,∞), q ∈ (2,∞) and δ = ε

2q−1 + 1

−1. It is then the

case for all n ∈ N0 and x ∈ R that:

(i) Ir (Csnq,εn ) (x) ∈ C (R,R)
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(ii) D (Csnq,εn ) 






1 : n = 0

2n


q
q−2


log2


ε−1


+ q


− 1


+ 1 : n ∈ N

(iii) P (Csnq,εn ) 






2 : n = 0

(2n+ 1)

42n+

3
2 +


42n+1−1

3


360q
q−2


log2


ε−1


+ q + 1


+ 372


: n ∈ N

(iv)

n

i=0
(−1)i

2i! x2i − Ir (Csnq,εn ) (x)
 

n
i=1

 (−1)i

2i!


x


x2i−1 − Ir


Pwrq,ε2i−1


(x)

+ ε+ |x|q + pq2i−1



Where pi are the set of functions defined for i ∈ N as such:

p1 = ε+ 1 + |x|2

pi = ε+ (pi−1)
2 + |x|2 (6.2.60)

Whence it is the case that:



n

i=0

(−1)i

2i!
x2i − Ir (Csnq,εn ) (x)

 ∈ O

ε2q(2n−1)


(6.2.61)

Proof. Item (i) derives straightforwardly from Lemma 6.2.18. This proves Item (i).

Next, observe that since Csnq,εn will contain, as the deepest network in the summand, Pwrq,ε2n , we

may then conclude that

D (Csnq,εn )  D (Pwrq,ε2n )








1 : n = 0

2n


q
q−2


log2


ε−1


+ q


− 1


+ 1 : n ∈ N

This proves Item (ii).
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A similar argument to the above, Lemma 5.5.5, and Corollary 5.5.5.1 reveals that:

P (Csnq,εn ) = P


n

i=0


(−1)i

2i!
⊲

Tunmaxi{D(Pwrq,εi )}+1−D(Pwrq,εi ) •Pwrq,εi



 (n+ 1) · P (ci ⊲ [Tun1 •Pwrq,ε2n ])

 (n+ 1) · P (Pwrq,ε2n )








2 : n = 0

(n+ 1)

42n+

3
2 +


42n+1−1

3


360q
q−2


log2


ε−1


+ q + 1


+ 372


: n ∈ N

This proves Item (iii).

In a similar vein, we may argue from Lemma 6.2.18 and from the absolute homogeneity property

of norms that:



n

i=0

(−1)i

2i!
x2i − Ir (Csnq,εn (x))



=



n

i=0

(−1)i

2i!
x2i − Ir


n

i=0


(−1)i

2i!
⊲ Tunmax2i{D(Pwrq,ε2i )}+1−D(Pwrq,ε2i )

•Pwrq,ε2i


(x)



=



n

i=1

(−1)i

2i!
x2i −

n

i=0

(−1)i

2i!


Ir


Tunmax2i{D(Pwrq,ε2i )}+1−D(Pwrq,ε2i )

•Pwrq,ε2i


(x)




n

i=1


(−1)i

2i!

 ·
x2i − Ir


Tunmax2i{D(Pwrq,ε2i )}+1−D(Pwrq,ε2i )

•Pwrq,ε2i


(x)




n

i=1


(−1)i

2i!

 ·
x


x2i−1 − Ir


Pwrq,ε2i−1


(x)

+ ε+ |x|q + pq2i−1



Whence we have that:



n

i=0


(−1)i x2i

2i!


− Ir (Csnq,εn ) (x)

 ∈ O

ε2q(2n−1)


(6.2.62)

This proves Item (iv).

Lemma 6.2.26 (R—, 2023). Let δ, ε ∈ (0,∞), q ∈ (2,∞) and δ = ε

2q−1 + 1

−1
. It is then the
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case for all n ∈ N0 and x ∈ [a, b] ⊆ [0,∞) that:

|cos (x)− Ir (Csnq,εn ) (x)| 
n

i=0

(−1)i

2i!

x

xn−1 − Ir


Pwrq,εn−1


(x)

+ ε+ |x|q + pqn−1


++

|x|n+1

(n+ 1)!

Proof. Note that Taylor's theorem states that for all x ∈ [a, b] ⊊ R, where 0 ∈ [a, b], it is the case

that:

cos (x) =
n

i=0

(−1)i

2i!
xi +

cos(n+1) (ξ) · xn+1

(n+ 1)!
(6.2.63)

Note further that for all n ∈ N0, and x ∈ R, it is the case that cos(n) (x)  1. Whence we may

conclude that for all n ∈ N0, x ∈ [a, b] ⊆ R, where 0 ∈ [a, b] and ξ between 0 and x, we may bound

the second summand by:

cos(n+1) (ξ) · xn+1

(n+ 1)!
 |x|n+1

(n+ 1)!
(6.2.64)

This, and the triangle inequality, then indicates that for all x ∈ [a, b] ⊊ [0,∞) and ξ ∈ [0, x]:

|cos (x)− Ir (Csnq,εn ) (x)| =



n

i=0

(−1)i

2i!
xi +

cos(n+1) (ξ) · xn+1

(n+ 1)!
− Ir (Csnq,εn ) (x)






n

i=0

(−1)i

2i!
xi − Ir (Csnq,εn ) (x)

+
|x|n+1

(n+ 1)!


n

i=1


(−1)i

2i!

 ·
x


x2i−1 − Ir


Pwrq,ε2i−1


(x)

+ ε+ |x|q + pq2i−1



+
|x|n+1

(n+ 1)!

This completes the proof of the Lemma.

Definition 6.2.27 (R—, 2023, The Sneq,εn Newtorks and Neural Network Sines.). . Let δ, ε ∈

(0,∞), q ∈ (2,∞) and δ = ε

2q−1 + 1

−1. Let Pwrq,ε be a neural network defined in Definition

6.2.7. We will define the neural network Csnn,q,ε as:

Sneq,εn := Csnq,ε •Aff1,−π
2

(6.2.65)
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Lemma 6.2.28 (R—, 2023). Let δ, ε ∈ (0,∞), q ∈ (2,∞) and δ = ε

2q−1 + 1

−1. It is then the

case for all n ∈ N0 and x ∈ R that:

(i) Ir (Sneq,εn ) ∈ C (R,R)

(ii) D (Sneq,εn ) 






1 : n = 0

2n


q
q−2


log2


ε−1


+ q


− 1


+ 1 : n ∈ N

(iii) P (Sneq,εn ) 






2 : n = 0

(2n+ 1)

42n+

3
2 +


42n+1−1

3


360q
q−2


log2


ε−1


+ q + 1


+ 372


: n ∈ N

(iv)



n

i=0

(−1)i

2i!


x− π

2

2i
− Ir (Sneq,εn ) (x)



=



n

i=0

(−1)i

2i!


x− π

2

2i
− Ir


Csnq,εn •Aff1,−π

2


(x)




n

i=1


(−1)i

2i!





x− π

2


x− π

2

2i−1
− Ir


Pwrq,εi−1

 
x− π

2

+ ε+ |x|q + pqi−1



Where pi are the set of functions defined for i ∈ N as such:

p1 = ε+ 1 + |x|2

pi = ε+ (pi−1)
2 + |x|2 (6.2.66)

Whence it is the case that:



n

i=0

(−1)i

2i!


x− π

2

2i
− Ir (Sneq,εn ) (x)

 ∈ O

ε2q(2n−1)


(6.2.67)

Proof. This follows straightforwardly from Lemma 6.2.25, and the fact that by Corollary 5.5.5.1,

there is not a change to the parameter count, by Lemma 5.2.10, there is no change in depth,
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by Lemma 5.5.2, and Lemma 6.2.25, continuity is preserved, and the fact that Aff1,−π
2

is exact

and hence contributes nothing to the error, and finally by the fact that Aff1,−π
2
→ (·) − π

2 under

instantiation, assures us that the Sneq,εn has the same error bounds as Csnq,εn .

Lemma 6.2.29 (R—, 2023). Let δ, ε ∈ (0,∞), q ∈ (2,∞) and δ = ε

2q−1 + 1

−1
. It is then the

case for all n ∈ N0 and x ∈ [a, b] ⊆ [0,∞) that:

|sin (x)− Ir (Sneq,εn ) (x)|


n

i=1


(−1)i

2i!





x− π

2


x− π

2

2i−1
− Ir


Pwrq,εi−1

 
x− π

2

+ ε+ |x|q + pqi−1



+
|x|n+1

(n+ 1)!
(6.2.68)

Proof. Note that the fact that sin (x) = cos

x− π

2


, Lemma 5.2.5, and Lemma 5.5.2 then renders

(6.2.68) as:

|sin (x)− Ir (Sneq,εn )|

=
cos


x− π

2


− Ir


Csnq,εn •Aff1,−π

2


(x)



=
cos


x− x

2


− Ir Csnq,εn


x− π

2




n

i=1


(−1)i

2i!





x− π

2


x− π

2

2i−1
− Ir


Pwrq,εi−1

 
x− π

2

+ ε+ |x|q + pqi−1


+

|x|n+1

(n+ 1)!

Remark 6.2.30. Note that under these neural network architectures the famous Pythagorean

identity sin2 (x)+cos2 (x) = 1, may be rendered approximately, for fixed n, q, ε as: [Sqrq,ε •Csnq,εn ]⊕

[Sqrq,ε •Sneq,εn ]. A full discussion of the associated parameter, depth, and accuracy bounds are

beyond the scope of this dissertation, and may be appropriate for future work.
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Chapter 7

A modified Multi-Level Picard and

Associated Neural Network

We now look at neural networks in the context of multi-level Picard iterations.

Lemma 7.0.1. Let α,β,M ∈ [0,∞), Un ∈ [0,∞), for n ∈ N0 satisfy for all n ∈ N that:

Un  αMn +

n−1

i=0

Mn−i

max {β, Ui}+ N (i)max


β, Umax{i−1,0}


(7.0.1)

It is then also the case that for all n ∈ N that Un  (2M + 1)n max {α,β}.

Proof. Let:

Sn = Mn +

n−1

i=0

Mn−i

(2M + 1)i + N (i) (2M + 1)max{i−1,0}


(7.0.2)

We prove this by induction. The base case of n = 0 already implies that U0  α  max {α,β}.

Next assume that Un  (2M + 1)n max {α,β} holds for all integers upto and including n, it is then
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the case that:

Un+1  αMn+1 +

n

i=0

Mn+1−i

max {β, Ui}+ N (i)max


β, Umax{i−1,0}



 αMn+1 +

n

i=0

Mn+1−i

max


β, (2M + 1)k max {α,β}



+ N (i)max

β, (2M + 1)max{k−1,0} max {α,β}



 αMn+1 + max {α,β}
n

i=0

Mn+1−i

(2M + 1)i + N (i) (2M + 1)max{i−1,0}



 max {α,β}Sn+1 (7.0.3)

Then (7.0.2) and the assumption that M ∈ [0,∞) tells us that:

Sn+1 = Mn+1 +

n

i=0

Mn+1−i

(2M + 1)i + N (i) (2M + 1)max{i−1,0}



= Mn+1
n

i=0

Mn+1−i (2M + 1)k +

n

i=1

Mn+1−i (2M + 1)i−1

= Mn+1 +M


(2M + 1)n+1 −Mn+1

M + 1


+M


(2M + 1)n −Mn

M + 1



= Mn+1 +
M (2M + 1)n+1

M + 1
+

(2M + 1)n

M + 1
−M


Mn+1 +Mn

M + 1



 Mn+1 +
M (2M + 1)n+1

M + 1
+

(2M + 1)n+1

M + 1
−Mn+1


✘✘✘✘M + 1

✘✘✘✘M + 1



= (2M + 1)n+1 (7.0.4)

This completes the induction step proving (7.0.1).

Lemma 7.0.2. Let Θ =
n∈N Zn


, d,M ∈ N, T ∈ (0,∞), f ∈ C (R,R), g,∈ C


Rd,R


,

F,G ∈ NN satisfy that Ir (F) = f and Ir (G) = g, let uθ ∈ [0, 1], θ ∈ Θ, and Uθ : [0, T ] → [0, T ],

θ ∈ Θ, satisfy for all t ∈ [0, T ], theta ∈ Θ that Uθ
t = t+ (T − t)uθ, let Wθ : [0, T ] → Rd, θ ∈ Θ, for

every θ ∈ Θ, t ∈ [0, T ], s ∈ [t, T ], let Yθ
t,s ∈ R satisfy Yθ

t,s = Wθ
s −Wθ

t and let Uθ
n : [0, T ]×Rd → R,
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n ∈ N0, θ ∈ Θ, satisfy for all θ ∈ Θ, n ∈ N0, t ∈ [0, T ], x ∈ Rd that:

U θ
n (t, x) =

N (n)

Mn


Mn

k=1

g

x+ Y(θ,0,−k)

t,T



+

n−1

i=0

T − t

Mn−i




Mn−i

k=1


f ◦ U (θ,i,k)

i


− N (i)


f ◦ U (θ,−i,k)

max{i−1,0}


U (θ,i,k)
t , x+ Y(θ,i,k)

t,U(θ,i,k)
t





(7.0.5)

it is then the case that:

(i) there exists unique Uθ
n,t ∈ NN, t ∈ [0, T ], n ∈ N0, θ ∈ Θ, which satisfy for all θ1, θ2 ∈ Θ,

n ∈ N0, t1, t2 ∈ [0, T ] that L


Uθ1
n,t1


= L


Uθ2
n,t2


.

(ii) for all θ ∈ Θ, t ∈ [0, T ] that Uθ
0,t = [[0 0 · · · 0] , [0]) ∈ R1×d × R1

(iii) for all θ ∈ Θ, n ∈ N, t ∈ [0, T ] that:

Uθ
n,t =


Mn

k=1


1

Mn
⊛


G • AffId,Y

(θ,0,−k
t,T



⊞I


⊞n−1

i=0,I


T − t

Mn−i


⊛


⊞Mn−i

k=1,I


F • U(θ,i,k)

i,U(θ,i,k)
t


• AffId ,Y

(θ,i,k)

t,U(θ,i,k)
t



⊞I


⊞n−1

i=0,I


(t− T ) N
Mn−i


⊛


⊞Mn−i

k=1,I


F • U(θ,−i,k)

max{i−1,0},U(θ,i,k)
t


• AffId,Y

(θ,i,k)

t,U(θ,i,k)
t



(7.0.6)

(iv) that for all θ ∈ Θ, n ∈ N0, t ∈ [0, T ], that D

Uθ
n,t


= n · H (F) + max {1, N (n)D (G)}

(v) that for all θ ∈ Θ, n ∈ N0, t ∈ [0, T ], that
L


Uθ

n,t


max  (2M + 1)n max {2, L (F)max , L (G)F }

(vi) it holds for all θ ∈ Θ, n ∈ N0, t ∈ [0, T ], x ∈ Rd that U θ
n (t, x) =


Ir


Uθ
n,t


(x), and

(vii) it holds for all θ ∈ Θ, n ∈ N0, t ∈ [0, T ] that:

P


Uθ
n,t


 2nH (F) + max {1, 1N (n)D (G)} [(2M + 1)n max {2, L (F)max , L (G)max}]

2

(7.0.7)
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Chapter 8

ANN first approximations

8.1 ANN Representations for One-Dimensional Identity and some

associated properties

Definition 8.1.1 (One Dimensional Identity Neural Network). We will denote by Idd ∈ NN the

neural network satisfying for all d ∈ N that:

(i)

Id1 =












1

−1



 ,




0

0










1 − 1


,


0




 ∈

R2×1 × R2


×


R1×2 × R1


(8.1.1)

(ii)

Idd = ⊟d
i=1 Id1 (8.1.2)

For d > 1.

Lemma 8.1.2. Let d ∈ N, it is then the case that:

(i) L(Idd) = (d, 2d, d) ∈ N3.

(ii) Ir (Idd) ∈ C

Rd,Rd


.
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(iii) For all x ∈ Rd that:

(Ir (Idd)) (x) = x

(iv) For d ∈ N it is the case that D (Idd) = 2

Proof. Note that (8.1.1) ensure that L(Idd) = (1, 2, 1). Furthermore, (8.1.2) and Remark 5.3.12

prove that L(Idd) = (d, 2d, d) which in turn proves Item (i). Note now that Remark 5.3.12 tells us

that:

Idd = ⊟d
i=1 (Id1) ∈


L×
i=1


Rdli×dli−1 × Rdli


=


R2d×d × R2d


×

Rd×2d × Rd


(8.1.3)

Note that 8.1.1 ensures that for all x ∈ R it is the case that:

(Ir (Id1)) (x) = r(x)− r(−x) = max{x, 0}− max{−x, 0} = x (8.1.4)

And Lemma 5.3.8 shows us that for all x = (x1, x2, ..., xd) ∈ Rd it is the case that Ir (Idd) ∈

C

Rd,Rd


and that:

(Ia (Idd)) (x) =

Ia


⊟d

i=1 (Id1)


(x1, x2, ..., xd)

= ((Ia (Id1)) (x1) , (Ia (Id1)) (x1) , ..., (Ia (Id1)) (xd))

= (x1, x2, ..., xd) = x (8.1.5)

This proves Item (ii)—(iii). Item (iv) follows straightforwardly from Item (i). This establishes the

lemma.

Remark 8.1.3. Note here the difference between Definition ?? and Definition 8.1.1.

Lemma 8.1.4 (R—, 2023). Let d ∈ N. It then the case that for all d ∈ N we have that P (Idd) =

4d2 + 3d

Proof. By observation we have that P (Id1) = 4(1)2 + 3(1) = 7. By induction, suppose that this

holds for all natural numbers up to and including n, i.e., for all naturals up to and including n; it
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is the case that P (idn) = 4n2 + 3n. Note then that Idn+1 = Idn⊟ Id1. For W1 and W2 of this new

network, this adds a combined extra 8n + 4 parameters. For b1 and b2 of this new network, this

adds a combined extra 3 parameters. Thus, we have the following:

4n2 + 3n+ 8n+ 4 + 3 = 4(n+ 1)2 + 3(n+ 1) (8.1.6)

This completes the induction and hence proves the Lemma.

Lemma 8.1.5. Let ν ∈ NN with end-widths d. It is then the case that Ir (Idd •ν) (x) = Ir (ν • Idd) =

Ir (ν), i.e. Idd acts as a compositional identity.

Proof. From (5.2.1) and Definition 8.1.1 we have eight cases.

Case 1 where d = 1 and subcases:

(1.i) Idd •ν where D(ν) = 1

(1.ii) Idd •ν where D(ν) > 1

(1.iii) ν • Idd where D(ν) = 1

(1.iv) ν • Idd where D(ν) > 1

Case 2 where d > 1 and subcases:

(2.i) Idd •ν where D(ν) = 1

(2.ii) Idd •ν where D(ν) > 1

(2.iii) ν • Idd where D(ν) = 1

(2.iv) ν • Idd where D(ν) > 1

Case 1.i: Let ν = ((W1, b1)). Deriving from Definitions 8.1.1 and 5.2.1 we have that:

Id1 •ν =












1

−1



W1,




1

−1



 b1 +




0

0







 ,


1 − 1,


,


0




 (8.1.7)

=












W1

−W1



 ,




b1

−b1







 ,


1 − 1


,


0




 (8.1.8)
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Let x ∈ R. Upon instantiation with r and d = 1 we have:

(Ir (Id1 •ν)) (x) = r(W1x+ b1)− r(−W1x− b1)

= max{W1x+ b1, 0}− max{−W1x− b1, 0}

= W1x+ b1

= Ir(ν)

Case 1.ii: Let ν = ((W1, b1) , (W2, b2) , ..., (WL, bL)). Deriving from Definition 8.1.1 and 5.2.1 we

have that:

Id1 •ν =



(W1, b1) , (W2, b2) , ..., (WL−1, bL−1) ,








1

−1



WL,




1

−1



 bL +




0

0







 ,


1 − 1


,


0






=



(W1, b1) , (W2, b2) , ..., (WL−1, bL−1) ,








WL

−WL



 ,




bL

−bL







 ,


1 −1


,


0






Let x ∈ R. Note that upon instantiation with r, the last two layers are:

r(WLx+ bL)− r(−WLx− bL, 0)

= max{WLx+ bL, 0}− max{−WLx− bL, 0}

= WLx+ bL (8.1.9)

This, along with Case 1. i, implies that the uninstantiated last layer is equivalent to (WL, bL)

whence Id1 •ν = ν.

Case 1.iii: Let ν = ((W1, b1)). Deriving from Definition 8.1.1 and 5.2.1 we have:

ν • Id1 =












1

−1



 ,




0

0







 ,


W1


1 − 1


,W1


0


+ b1






=












1

−1



 ,




0

0







 ,


W1 −W1


, b1
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Let x ∈ R. Upon instantiation with r we have that:

(Ir (ν • Id1)) (x) =

W1 −W1


r








x

−x







+ b1

= W1 r(x)−W1 r(−x) + b1

= W1 (r(x)− r(−x)) + b1

= Wx + b1 = Ir (ν) (8.1.10)

Case 1.iv: Let ν = ((W1, b1) , (W2, b2) , ..., (WL, bL)). Deriving from Definitions 8.1.1 and 5.2.1 we

have that:

ν • Id1 =












1

−1



 ,




0

0







 ,


W1 −W1


, b1


, (W2, b2) , ..., (WL, bL)



 (8.1.11)

Let x ∈ R. Upon instantiation with r, we have that the first two layers are:


W1 −W1


r








x

−x







+ b1

= W1 r(x)−W1 r(−x) + b1

= W1 (r(x)− r(−x)) + b1

= W1x+ b1 = Ir (ν) (8.1.12)

This, along with Case 1. iii, implies that the uninstantiated first layer is equivalent (W1, b1) whence

we have that ν • Id1 = ν.

Observe that Definitions 5.3.1 and 8.1.1 tells us that:
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⊟d
i=1 Idi =









d−many  



WeightId1,1

. . .

WeightId1,1




, 02d





,





d−many  



WeightId1,2

. . .

WeightId1,2




, 0d









Case 2.i Let d ∈ N ∩ [1,∞). Let ν ∈ NN be ν = (W1, b1) with end-widths d. Deriving from

Definitions 5.2.1 and 8.1.1 we have:

Idd •ν =













WeightId1,1

. . .

WeightId1,1




W1,





WeightId1,1

. . .

WeightId1,1




b1




,









WeightId1,2

. . .

WeightId1,2




, 0d









=













[W1]1,∗

−[W1]1,∗
...

[W1]d,∗

−[W1]d,∗





,





[b1]1

−[b1]1
...

[b1]d

−[b1]d









,









WeightId1,2

. . .

WeightId1,2




, 0d









Let x ∈ Rd. Upon instantiation with r we have that:

(Ir (Idd •ν)) (x)

= r([W1]1,∗ · x+ [b1]1)− r(−[W1]1,∗ · x− [b1]1) + · · ·

+ r([W1]d,∗ · x+ [b1]d)− r(−[W1]d,∗ · x− [b1]d)

= [W1]1,∗ · x+ [b1]1 + · · ·+ [W1]d,∗ · x+ [b1]d

= W1x+ b1 = Ir (ν)
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Case 2.ii: Let ν = ((W1, b1) , (W2, b2) , ..., (WL, bL)). Deriving from Definition 8.1.1 and 5.2.1 we

have that:

Idd •ν =





(W1, b1) , (W2, b2) , ..., (WL−1, bL−1) ,









[WL]1,∗

−[WL]1,∗
...

[WL]d,∗

−[WL]d,∗





,





[bL]1

−[bL]1
...

[bL]d

−[bL]d









,


1 −1


,


0







Note that upon instantiation with r, the last two layers become:

r([WL]1,∗ · x+ [bL]1)− r(−[WL]1,∗ · x− [bL]1) + · · ·

+ r([WL]d,∗ · x+ [bL]d)− r(−[WL]d,∗ · x− [bL]d)

= [WL]1,∗ · x+ [bL]1 + · · ·+ [WL]d,∗ · x+ [bL]d

= WLx+ bL (8.1.13)

This, along with Case 2.i implies that the uninstantiated last layer is equivalent to (WL, bL) whence

Idd •ν = ν.

Case 2.iii: Let ν = ((W1, b1)). Deriving from Definition 8.1.1 and 5.2.1 we have:

ν • Idd

=













WeightId1,1

. . .

WeightId1,1




, 02d




,




W1





WeightId1,2

. . .

WeightId1,2




, b1
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Upon instantiation with r we have that:

(Ir (ν)) (x) (8.1.14)

=


[W1]∗,1 − [W1]∗,1 · · · [W1]∗,d − [W1]∗,d


r









[x]1

−[x]1
...

[x]d

−[x]d









+ b1

= [W1]∗,1 r([x]1)− [W1]∗,1 r(−[x]1) + · · ·+ [W1]∗,d r([x]d)− [W1]∗,d r(−[x]d) + b1

= [W1]∗,1 · [x]1 + · · ·+ [W1]∗,d · [x]d

= W1x+ b1 = Ir(ν) (8.1.15)

Case 2.iv: Let ν = ((W1, b1) , (W2, b2) , ..., (WL, bL)). Deriving from Definitions 8.1.1 and 5.2.1 we

have:

ν • Idd

=













WeightId1,1

. . .

WeightId1,1




, 02d




,


[W1]∗,1 − [W1]∗,1 · · · [W1]∗,d − [W1]∗,d


, b1


, ...

(W2, b2) , ..., (WL, bL))
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Upon instantiation with r, we have that the first two layers are:

(Ir (ν)) (x) (8.1.16)

=


[W1]∗,1 − [W1]∗,1 · · · [W1]∗,d − [W1]∗,d


r









[x]1

−[x]1
...

[x]d

−[x]d









+ b1

= [W1]∗,1 r([x]1)− [W1]∗,1 r(−[x]1) + · · ·+ [W1]∗,d r([x]d)− [W1]∗,d r(−[x]d) + b1

= [W1]∗,1 · [x]1 + · · ·+ [W1]∗,d · [x]d

= W1x+ b1 (8.1.17)

This, along with Case 2. iii, implies that the uninstantiated first layer is equivalent to (WL, bL)

whence Idd •ν = ν.

This completes the proof.

Definition 8.1.6 (Monoid). Given a set X with binary operation ∗, we say that X is a monoid

under the operation ∗ if:

(i) For all x, y ∈ X it is the case that x ∗ y ∈ X

(ii) For all x, y, z ∈ X it is the case that (x ∗ y) ∗ z = x ∗ (y ∗ z)

(iii) The exists a unique element e ∈ X such that e ∗ x = x ∗ e = x

Theorem 8.1.7. Let d ∈ N. For a fixed d, the set of all neural networks ν ∈ NN with instantiations

in r and end-widths d form a monoid under the operation of •.

Proof. This is a consequence of Lemma 8.1.5 and Lemma 5.2.4.

Remark 8.1.8. By analogy with matrices, we may find it helpful to refer to neural networks of

end-widths d as ``square neural networks of size d''.
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8.2 Trph, Etrn,h and Neural Network Approximations For the Trape-

zoidal Rule.

Definition 8.2.1 (The Trp neural network). Let h ∈ R0. We define the Trph ∈ NN neural network

as:

Trph := Aff[h2 h
2 ],0

(8.2.1)

Lemma 8.2.2. Let h ∈ (−∞,∞). It is then the case that:

(i) for x = {x1, x2} ∈ R2 that

Ir


Trph


(x) ∈ C


R2,R



(ii) for x = {x1, x2} ∈ R2 that

Ir


Trph


(x) = 1

2h (x1 + x2)

(iii) D

Trph


= 1

(iv) P

Trph


= 3

(v) L

Trph


= (2, 1)

Proof. This a straight-forward consequence of Lemma 5.5.1

Definition 8.2.3 (The Etr neural network). Let n ∈ N and h ∈ R0. We define the neural network

Etrn,h ∈ NN as:

Etrn,h := Affh
2

h h ... h
h

2



  
n+1−many

,0

(8.2.2)

Lemma 8.2.4. Let n ∈ N. Let x0 ∈ (−∞,∞), and xn ∈ [x0,∞). Let x = [x0 x1 ... xn] ∈ Rn+1 and

h ∈ (−∞,∞) such that for all i ∈ {0, 1, ..., n} it is the case that xi = x0 + i · h. Then:

(i) for all x ∈ Rn+1 it is the case that

Ir


Etrn,h


(x) ∈ C


Rn+1,R



(ii) for all n ∈ N, and h ∈ (0,∞) it is the case that

Ir


Etrn,h


(x) = h

2 · x0 + h · x1 + · · · + h ·

xn−1 +
h
2 · xn

(iii) for all n ∈ N, and h ∈ (0,∞) it is the case that D

Etrn,h


= 1
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(iv) for all n ∈ N and h ∈ (0,∞) it is the case that P

Etrn,h


= n+ 2

(v) for all n ∈ N and h ∈ (0,∞) it is the case that L

Etrn,h


= (n+ 1, 1)

Proof. This a straightforward consequence of Lemma 5.5.1.

Remark 8.2.5. Let h ∈ (0,∞). Note then that Trph is simply Etr2,h.

8.3 Maximum Convolution Approximations for Multi-Dimensional

Functions

8.3.1 The Nrmd
1 Networks

Definition 8.3.1 (The Nrmd
1 neural network). We denote by


Nrmd

1


d∈N ⊆ NN the family of neural

networks that satisfy:

(i) for d = 1:

Nrm1
1 =












1

−1



 ,




0

0







 ,


1 1


,


0




 ∈

R2×1 × R2


×


R1×2 × R1


(8.3.1)

(ii) for d ∈ {2, 3, ...}:

Nrmd
1 = Sumd,1 •


⊟d

i=1 Nrm1
1


(8.3.2)

Lemma 8.3.2. Let d ∈ N. It is then the case that:

(i) L

Nrmd

1


= (d, 2d, 1)

(ii)

Ir


Nrmd

1


(x) ∈ C


Rd,R



(iii) that for all x ∈ Rd that

Ir


Nrmd

1


(x) = x1

(iv) it holds H

Nrmd

1


= 1

(v) it holds that P

Nrmd

1


 7d2
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(vi) it holds that D

Nrmd

1


= 2

Proof. Note that by observation, it is the case that L

Nrmd

1


= (1, 2, 1). This and Remark 5.5.2

tells us that for all d ∈ {2, 3, ...} it is the case that L

⊟d

i=1 Nrmd
1


= (d, 2d, d). This, Lemma 5.2.5,

and Lemma 5.5.2 ensure that for all d ∈ {2, 3, 4, ...} it is the case that L

Nrmd

1


= (d, 2d, 1), which

in turn establishes Item (i).

Notice now that (8.3.1) ensures that:


Ir


Nrmd

1


(x) = r (x) + r (−x) = max{x, 0}+ max{−x, 0} = |x| = x1 (8.3.3)

This along with (Grohs et al., 2023, Proposition 2.19) tells us that for all d ∈ {2, 3, 4, ...} and

x = (x1, x2, ..., xd) ∈ Rd it is the case that:


Ir


⊟d

i=1 Nrm1
1


(x) = (|x1| , |x2| , ..., |xd|) (8.3.4)

This together with Lemma 5.2.3 tells us that:


Ir


Nrmd

1


=


Ir


Sumd,1 •


⊟d

i=1 Nrmd
1


(x)

= (Ir (Sumd,1)) (|x1|, |x2|, ..., |xd|) =
d

i=1

|xi| = x1 (8.3.5)

Note next that by observation H

Nrm1

1


= 1. Remark 5.5.2 then tells us that since the number of

layers remains unchanged under stacking, it is then the case that H

Nrm1

1


= H


⊟d

i=1 Nrm1
1


= 1.

Note next that Lemma 5.2.4 then tells us that H (Sumd,1) = 0 whence Lemma 5.2.5 tells us that:

H


Nrmd
1


= H


Sumd,1 •


⊟d

i=1 Nrm1
1



= H (Sumd,1) + H


⊟d
i=1 Nrm1

1


= 0 + 1 = 1 (8.3.6)

Note next that:

Nrm1
1 =












1

−1



 ,




0

0







 ,


1 1


,


0




 ∈

R2×1 × R2


×

R1×2 × R1


(8.3.7)
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and as such P

Nrm1

1


= 7. This, combined with Cor 5.3.5.1, and the fact that we are stacking

identical neural networks then tells us that:

P


⊟d
i=1 Nrm1

1


 7d2 (8.3.8)

Then Lemma Corollary 5.5.5.1, Lemma 5.6.6, and Lemma 5.2.5 tells us that:

P


Nrmd
1


= P


Sumd,1 •


⊟d

i=1 Nrm1
1



 P


⊟d
i=1 Nrm1

1


 7d2 (8.3.9)

This establishes Item (v).

Finally, by observation D

Nrm1

1


= 2, we are stacking the same neural network when we have Nrmd

1.

Stacking has no effect on depth from Definition 5.3.1, and by Lemma 5.2.5, D

Sumd,1 •


⊟d

i=1 Nrm1
1


=

D

⊟Nrm1

1


. Thus we may conclude that D


Nrmd

1


= D


Nrm1

1


= 2.

This concludes the proof of the lemma.

8.3.2 The Mxmd Neural Networks

Given x ∈ R, it is straightforward to find the maximum; x is the maximum. For x ∈ Rd we may

find the maximum via network (8.3.8.1), i.e. Mxm2. The strategy is to find maxima for half our

entries and half repeatedly until we have one maximum. For x ∈ Rd where d is even we may stack

d copies of Mxm2 to halve, and for x ∈ Rd where d is odd and greater than 3 we may introduce

``padding'' via the Id1 network and thus require d−1
2 copies of Mxm2 to halve.

Definition 8.3.3 (Maxima ANN representations). Let

Mxmd


d∈N ⊆ NN represent the neural

networks that satisfy:

(i) for all d ∈ N that I

Mxmd


= d

(ii) for all d ∈ N that O

Mxmd


= 1

(iii) that Mxm1 = Aff1,0 ∈ R1×1 × R1
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(iv) that:

Mxm2 =













1 −1

0 1

0 −1




,





0

0

0








,


1 1 −1


,


0






(8.3.10)

(v) it holds for all d ∈ {2, 3, ...} that Mxm2d = Mxmd •

⊟d

i=1 Mxm2

, and

(vi) it holds for all d ∈ {2, 3, ...} that Mxm2d−1 = Mxmd •

⊟d

i=1 Mxm2

⊟ Id1


.

Remark 8.3.4. Diagrammatically, this can be represented as:

Mxm2

Mxm2

Mxm2

Mxm2

Mxm2

Mxm2

Mxm2

Mxm2

Id1

Mxm2

Mxm2

Figure 8.1: Neural network diagram for Mxm5.

Lemma 8.3.5. Let d ∈ N, it is then the case that:

(i) H

Mxmd


= ⌈log2 (d)⌉

(ii) for all i ∈ N that Wi


Mxmd


 3


d
2i



(iii) Ir

Mxmd


∈ C


Rd,R


and

(iv) for all x = (x1, x2, ..., xd) ∈ Rd we have that

Ir


Mxmd


(x) = max{x1, x2, ..., xd}.
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(v) P

Mxmd





4
3d

2 + 3d
 

1 + 1
2

⌈log2(d)⌉+1


(vi) D

Mxmd


= ⌈log2 (d)⌉+ 1

Proof. Assume w.l.o.g. that d > 1. Note that (8.3.10) ensures that H

Mxmd


= 1. This and (5.3.1)

then tell us that for all d ∈ {2, 3, 4, ...} it is the case that:

H

⊟d

i=1 Mxm2

= H


⊟d

i=1 Mxm2

⊟ Id1


= H


Mxm2


= 1

This and Lemma 5.2.5 tells us that for all d ∈ {3, 4, 5, ...} it holds that:

H


Mxmd

= H


Mxm⌈ d

2⌉

+ 1 (8.3.11)

And for d ∈ {4, 6, 8, ...} with H


Mxm⌈ d
2⌉

=


log2


d
2


it holds that:

H


Mxmd

=


log2


d

2


+ 1 = ⌈log2 (d)− 1⌉+ 1 = ⌈log2 (d)⌉ (8.3.12)

Moreover (8.3.11) and the fact that for all d ∈ {3, 5, 7, ...} it holds that ⌈log2 (d+ 1)⌉ = ⌈log2 (d)⌉

ensures that for all d ∈ {3, 5, 7, ...} with H


Mxm⌈ d
2⌉

=


log2


d
2


it holds that:

H


Mxmd

=


log2


d

2


+ 1 =


log2


d+ 1

2


+ 1

= ⌈log2 (d+ 1)− 1⌉+ 1 = ⌈log2 (d+ 1)⌉ = ⌈log2 (d)⌉ (8.3.13)

This and (8.3.12) demonstrate that for all d ∈ {3, 4, 5, ...} with ∀k ∈ {2, 3, ..., d− 1} : H

Mxmd


=

⌈log2 (k)⌉ it holds htat H

Mxmd


= ⌈log2 (d)⌉. The fact that H


Mxm2


= 1 and induction establish

Item (i).

We next note that L

Mxm2


= (2, 3, 1). This then indicates that for all i ∈ N that:

Wi


Mxm2


 3 = 3


2

2i


. (8.3.14)
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Note then that Lemma 5.2.5 and Remark 5.5.2 tells us that:

Wi


Mxm2d


=






3d : i = 1

Wi−1


Mxmd


: i  2

(8.3.15)

And:

Wi


Mxm2d−1


=






3d− 1 : i = 1

Wi−1


Mxmd


: i  2

(8.3.16)

This in turn assures us that for all d ∈ {2, 4, 6, ..., } it holds that:

W1


Mxmd


= 3


d

2


 3


d

2


(8.3.17)

Moreover, note that (8.3.16) tells us that for all d ∈ {3, 5, 7, ...} it holds that:

W1


Mxmd


= 3


d

2


− 1  3


d

2


(8.3.18)

This and (8.3.17) shows that for all d ∈ {2, 3, ...} it holds that:

W1


Mxmd


 3


d

2


(8.3.19)

Additionally note that (8.3.15) demonstrates that for all d ∈ {4, 6, 8, ...}, i ∈ {2, 3, ...} with

Wi−1


Mxm

d
2


 3


d
2


1

2i−1


it holds that:

Wi


Mxmd


= Wi−1


Mxm

d
2


 3


d

2


1

2i−1


= 3


d

2i


(8.3.20)

Furthermore note also the fact that for all d ∈ {3, 5, 7, ...}, i ∈ N it holds that

d+1
2i


=


d
2i


and

(8.3.16) assure that for all d ∈ {3, 5, 7, ...}, i ∈ {2, 3, ...} with Wi−1


Mxm⌈ d

2⌉


 3


d
2


1

2i−1


it

holds that:

Wi


Mxmd


= Wi−1


Mxm⌈ d

2⌉

 3


d

2


1

2i−1


= 3


d+ 1

2i


= 3


d

2i


(8.3.21)
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This and (8.3.20) tells us that for all d ∈ {3, 4, ...}, i ∈ {2, 3, ...} with ∀k ∈ {2, 3, ..., d − 1},

j ∈ {1, 2, ..., i− 1} : Wj


Mxmk


 3


k
2j


it holds that:

Wi


Mxmd


 3


d

2i


(8.3.22)

This, combined with (8.3.14), (8.3.19), with induction establishes Item (ii).

Next observe that (8.3.10) tells that for x =




x1

x2



 ∈ R2 it becomes the case that:


Ir


Mxm2


(x) = max{x1 − x2, 0}+ max{x2, 0}− max{−x2, 0}

= max{x1 − x2, 0}+ x2 = max{x1, x2} (8.3.23)

Note next that Lemma 8.1.2, Lemma 5.2.5, and (Grohs et al., 2023, Proposition 2.19) then imply

for all d ∈ {2, 3, 4, ...}, x = {x1, x2, ..., xd} ∈ Rd it holds that

Ir


Mxmd


(x) ∈ C


Rd,R


. and


Ir


Mxmd


(x) = max{x1, x2, ..., xd}. This establishes Items (iii)-(iv).

Consider now the fact that Item (ii) implies that the layer architecture forms a geometric series

whence we have that the number of bias parameters is bounded by:

3d
2


1−


1
2

⌈log2(d)⌉+1


1
2

= 3d


1− 1

2

⌈log2(d)⌉+1




3d


1− 1

2

⌈log2(d)⌉+1


(8.3.24)

For the weight parameters, consider the fact that our widths follow a geometric series with ratio 1
2 ,

and considering that we have an upper bound for the number of hidden layers, and the fact that
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W0


Mxmd


= d, would then tell us that the number of weight parameters is bounded by:

⌈log2(d)⌉

i=0


1

2

i

· W0


Mxmd


·

1

2

i+1

· W0


Mxmd



=

⌈log2(d)⌉

i=0


1

2

2i+1 
W0


Mxmd

2


=
1

2

⌈log2(d)⌉

i=0






1

2

i

W0


Mxmd

2


 =
1

2

⌈log2(d)⌉

i=0


1

4

i

d2


(8.3.25)

Notice that this is a geometric series with ratio 1
4 , which would then reveal that:

1

2

⌈log2(d)⌉

i=0


1

4

i

d2


 2

3
d2


1− 1

2

2(⌈log2(d)⌉+1)


(8.3.26)

Thus, we get that:

P


Mxmd

 2

3
d2


1− 1

2

2(⌈log2(d)⌉)+1

+


3d


1− 1

2

⌈log2(d)⌉+1


 2

3
d2


1− 1

2

2(⌈log2(d)⌉)+1

+


3d


1− 1

2

2(⌈log2(d)⌉+1)


(8.3.27)




2

3
d2 + 3d


1 +

1

2

2(⌈log2(d)⌉+1)

+ 1


(8.3.28)

This proves Item (v).

Item (vi) is a straightforward consequence of Item (i). This completes the proof of the lemma.

8.3.3 The MC Neural Network and Approximations via Maximum Convolutions

Let f : [a, b] → R be a continuous bounded function with Lipschitz constant L. Let x0  x1 

· · ·  xN be a set of sample points within [a, b], with it being possibly the case that that for

all i ∈ {0, 1, . . . , N}, xi ∼ Unif([a, b]). For all i ∈ {0, 1, . . . , N}, define a series of functions

f0, f1, . . . fN : [a, b] → R, as such:

fi = f(xi)− L · |x− xi| (8.3.29)
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We will call the approximant maxi∈{0,1,...,N}{fi}, the maximum convolution approximation. This

converges to f , as shown in

Lemma 8.3.6. Let d,N ∈ N, L ∈ [0,∞), x1, x2, . . . , xN ∈ Rd, y = (y1, y2, . . . , yN ) ∈ RN and

MC ∈ NN satisfy that:

MCN,d
x,y = MxmN •Aff−LIN ,y •


⊟N

i=1


Nrmd

1 •AffId,−xi


• CpyN,d (8.3.30)

It is then the case that:

(i) I


MCN,d
x,y


= d

(ii) O


MCN,d
x,y


= 1

(iii) H


MCN,d
x,y


= ⌈log2 (N)⌉+ 1

(iv) W1


MCN,d

x,y


= 2dN

(v) for all i ∈ {2, 3, ...} we have Wi


MCN,d

x,y


 3


N

2i−1



(vi) it holds for all x ∈ Rd that

Ir


MCN,d

x,y


(x) = maxi∈{1,2,...,N} (yi − L x− xi1)

(vii) it holds that P


MCN,d
x,y





2
3d

2 + 3d
 

1 + 1
2

2(⌈log2(d)⌉+1)

+ 1


+ 7N2d2 + 3


N
2


· 2dN

Proof. Throughout this proof let Si ∈ NN satisfy for all i ∈ {1, 2, ..., N} that Si = Nrmd
1 •AffId,−xi

and let X ∈ NN satisfy:

X = Aff−LIN ,y •

⊟N

i=1Si


• CpyN,d (8.3.31)

Note that (8.3.30) and Lemma 5.2.5 tells us that O (R) = O

MxmN


= 1 and I


MCN,d

x,y


=

I

CpyN,d


= d. This proves Items (i)--(ii). Next observe that since it is the case that H


CpyN,d



and H

Nrmd

1


= 1, Lemma 5.2.5 then tells us that:

H (X) = H (Aff−LIN ,y) + H

⊟N

i=1Si


+ H


CpyN,d


= 1 (8.3.32)
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Thus Lemma 5.2.5 and Lemma 8.3.5 then tell us that:

H (MC) = H

MxmN •X


= H


MxmN


+ H (X) = ⌈log2 (N)⌉+ 1 (8.3.33)

Which in turn establishes Item (iii).

Note next that Lemma 5.2.5 and (Grohs et al., 2023, Proposition 2.20) tells us that:

W1


MCN,d

x,y


= W1 (X) = W1


⊟N

i=1Si


=

N

i=1

W1 (Si) =

N

i=1

W1


Nrmd

1


= 2dN (8.3.34)

This establishes Item (iv).

Next observe that the fact that H (X) = 1, Lemma 5.2.5 and Lemma 8.3.5 tells us that for all

i ∈ {2, 3, ...} it is the case that:

Wi


MCN,d

x,y


= Wi−1


MxmN


 3


N

2i−1


(8.3.35)

This establishes Item (v).

Next observe that Lemma 8.3.2 and Lemma 5.5.5 tells us that for all x ∈ Rd, i ∈ {1, 2, ..., N} it

holds that:


Ir


MCN,d

x,y


(x)−


Ir


Nrmd

1


◦ Ir (AffId,−xi)


(x) = x− xi1 (8.3.36)

This an (Grohs et al., 2023, Proposition 2.20) combined establishes that for all x ∈ Rd it holds

that:


Ir


⊟N

i=1Si


• CpyN,d


(x) = (x− x11, x− x21, ..., x− xN1)

(8.3.37)

This and Lemma 5.5.5 establishes that for all x ∈ Rd it holds that:

(Ir (X)) (x) = (Ir (Aff−LIN ,y)) ◦

Ir


⊟N

i=1Si


• CpyN,d


(x)

= (y1 − Lx− x1, y2 − Lx− x2, ..., yN − Lx− xN1) (8.3.38)

178



Then Lemma 5.2.5 and Lemma 8.3.5 tells us that for all x ∈ Rd it holds that:


Ir


MCN,d

x,y


(x) =


Ir


MxmN


◦ (Ir (X))


(x)

=

Ir


MxmN


(y1 − Lx− x11, y2 − Lx− x21, ..., yN − Lx− xN1)

= max
i∈{1,2,...,N}

(yi − Lx− xi1) (8.3.39)

This establishes Item (vi).

For Item (vii) note that Lemma 8.3.2, Remark 5.3.4, Lemma 8.3.2, and Corollary 5.5.5.1 tells us

that for all d ∈ N and x ∈ Rd it is the case that:

P


Nrmd
1 •AffId,−x


 P


Nrmd

1


 7d2 (8.3.40)

This, along with Corollary 5.3.5.1, and because we are stacking identical neural networks, then tells

us that for all N ∈ N, it is the case that:

P

⊟N

i=1


Nrmd

1 •AffId,−x


 7N2d2 (8.3.41)

Observe next that Corollary 5.5.5.1 tells us that for all d,N ∈ N and x ∈ Rd it is the case that:

P


⊟N
i=1


Nrmd

1 •AffId,−x


• CpyN,d


 P


⊟N

i=1


Nrmd

1 •AffId,−x


 7N2d2 (8.3.42)

Now, let d,N ∈ N, L ∈ [0,∞), let x1, x2, . . . , xN ∈ Rd and let y = {y1, y2, . . . , yN} ∈ RN . Observe

that again, Corollary 5.5.5.1, and (8.3.42) tells us that:

P


Aff−LIN ,y •

⊟N

i=1


Nrmd

1 •AffId,−xi


• CpyN,d



 P

⊟N

i=1


Nrmd

1 •AffId,−x


 7N2d2

179



Finally Lemma 5.2.5, (8.3.34), and Lemma 8.3.5 yields that:

P(MCN,d
x,y ) = P


MxmN •Aff−LIN ,y •


⊟N

i=1


Nrmd

1 •AffId,−xi


• CpyN,d



 P


MxmN •

⊟N

i=1


Nrmd

1 •AffId,−x



 P

MxmN


+ P


⊟N

i=1


Nrmd

1 •AffId,−x


+

W1


MxmN


· WH(⊟N

i=1[Nrmd
1 •AffId,−x])


⊟N

i=1


Nrmd

1 •AffId,−x






2

3
d2 + 3d


1 +

1

2

2(⌈log2(d)⌉+1)

+ 1


+ 7N2d2 + 3


N

2


· 2dN (8.3.43)

Remark 8.3.7. We may represent the neural network diagram for Mxmd as:

CpyN,d

AffId−xi

AffId−xi

AffId−xi

AffId−xi

Nrmd
1

Nrmd
1

Nrmd
1

Nrmd
1

... ...Aff−LIN ,yMxmN

Figure 8.2: Neural network diagramfor the Mxm network

180



8.3.4 Lipschitz Function Approximations

Lemma 8.3.8. Let (E, d) be a metric space. Let L ∈ [0,∞), D ⊆ E, ∅ ∕= C ⊆ D. Let f : D → R

satisfy for all x ∈ D, y ∈ C that |f(x)− f(y)|  Ld (x, y), and let F : E → R ∪ {∞} satisfy for all

x ∈ E that:

F (x) = sup
y∈C

[f (y)− Ld (x, y)] (8.3.44)

It is then the case that:

(i) for all x ∈ C that F (x) = f(x)

(ii) it holds for all x ∈ D, that F (x)  f(x)

(iii) it holds for all x ∈ E that F (x) < ∞

(iv) it holds for all x, y ∈ E that |F (x)− F (y)|  Ld (x, y) and,

(v) it holds for all x ∈ D that:

|F (x)− f (x)|  2L


inf
y∈C

d (x, y)


(8.3.45)

Proof. The assumption that ∀x ∈ D, y ∈ C : |f(x)− f(y)|  Ld (x, y) ensures that:

f(y)− Ld (x, y)  f (x)  f(y) + Ld (x, y) (8.3.46)

For x ∈ D, it then renders as:

f(x)  sup
y∈C

[f(y)− Ld (x, y)] (8.3.47)

This establishes Item (i). Note that (8.3.45) then tells us that for all x ∈ C it holds that:

F (x)  f(x)− Ld (x, y) = f (x) (8.3.48)

This with (8.3.47) then yields Item (i).
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Note next that (8.3.46, with x ↶ y and y ↶ z) and the triangle inequality ensure that for all

x ∈ E, y, z ∈ C it holds that:

f(y)− Ld (x, y)  f(z) + Ld (y, z)− Ld (x, y)  f(z) + Ld (x, z) (8.3.49)

We then obtain for all x ∈ E, z ∈ C it holds that:

F (x) = sup
y∈C

[f(y)− Ld (x, y)]  f (x) + Ld (x, z) < ∞ (8.3.50)

This proves Item (iii). Item (iii), (8.3.44), and the triangle inequality then shows that for all

x, y ∈ E, it holds that:

F (x)− F (y) =


sup
v∈C

(f(v)− Ld (x, v))


−


sup
w∈C

(f(w)− Ld (y, w))



= sup
v∈C


f(v)− Ld (x, v)− sup

w∈C
(f(w)− Ld (y, w))



 sup
v∈C

[f(v)− Ld (x, v)− (f(v)− Ld (y, w))]

= sup
v∈C

(Ld (y, v) + Ld (x, v)− Ld (x, v)) = Ld (x, y) (8.3.51)

This establishes Item (v). Finally, note that Items (i) and (iv), the triangle inequality, and the

assumption that ∀x ∈ D, y ∈ C : |f(x)− f(y)|  Ld (x, y) ensure that for all x ∈ D it holds that:

|F (x)− f(x)| = inf
y∈C

|F (x)− F (y) + f(y)− f(x)|

 inf
y∈C

(|F (x)− F (y)|+ |f(y)− f(x)|)

 inf
y∈C

(2Ld (x, y)) = 2L


inf
y∈C

d (x, y)


(8.3.52)

This establishes Item (v) and hence establishes the Lemma.

Corollary 8.3.8.1. Let (E, d) be a metric space, let L ∈ [0,∞), ∅ ∕= C ⊆ E, let f : E → R satisfy

for all x ∈ E, y ∈ C that f(x)− f(y)|  Ld (x, y), and let F : E → R ∪ {∞} satisfy for all x ∈ E
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that:

F (x) = sup
y∈C

[f(y)− Ld (x, y)] (8.3.53)

It is then the case that:

(i) for all x ∈ C that F (x) = f(x)

(ii) for all x ∈ E that F (x)  f(x)

(iii) for all x, y ∈ E that |F (x)− f(y)|  Ld (x, y) and

(iv) for all x ∈ E that:

|F (x)− f (x)|  2L


inf
y∈C

d (x, y)


(8.3.54)

Proof. Note that Lemma 8.3.4 establishes Items (i)—(iv).

8.3.5 Explicit ANN Approximations

Lemma 8.3.9. Let d,N ∈ N, L ∈ [0,∞). Let E ⊆ Rd. Let x1, x2, ..., xN ∈ E, let f : E →

R satisfy for all x1, y1 ∈ E that |f(x1)− f(y1)|  L x1 − x21 and let MC ∈ NN and y =

(f (x1) , f (x2) , ..., f (xN )) satisfy:

MCN,d
x,y = MxmN •Aff−LIN ,y •


⊟N

i=1 Nrmd
1 •AffId,−xi


• CpyN,d (8.3.55)

It is then the case that:

sup
x∈E



Ir


MCN,d

x,y


(x)− f (x)

  2L


sup
x∈E


min

i∈{1,2,...,N}
x− xi1


(8.3.56)

Proof. Throughout this proof let F : Rd → R satisfy that:

F (x) = max
i∈{1,2,...,N}

(f (xi)− L x− xi1) (8.3.57)
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Note then that Corollary 8.3.8.1, (8.3.57), and the assumption that for all x, y ∈ E it holds that

|f(x)− f(y)|  L x− y1 assures that:

sup
x∈E

|F (x)− f(x)|  2L


sup
x∈E


min

i∈{1,2,...,N}
x− xi1


(8.3.58)

Then Lemma 8.3.6 tells us that for all x ∈ E it holds that F (x) = (Ir (MC)) (x). This combined

with (8.3.58) establishes (8.3.56).

Lemma 8.3.10. Let d,N ∈ N, L ∈ [0,∞). Let [a, b] ⊊ Rd. Let x1, x2, ..., xN ∈ [a, b], let

f : [a, b] → R satisfy for all x1, x2 ∈ [a, b] that |f(x1)− f(x2)|  L |x1 − x2| and let MCN,1
x,y ∈ NN

and y = f ([x]∗) satisfy:

MCN,1
x,y = MxmN •Aff−LIN ,y •


⊟N

i=1 Nrm1
1 •Aff1,−xi


• CpyN,1 (8.3.59)

It is then the case that for approximant MCN,1
x,y that:

(i) I

MCN,1

x,y


= 1

(ii) O

MCN,1

x,y


= 1

(iii) H

MCN,1

x,y


= ⌈log2 (N)⌉+ 1

(iv) W1


MCN,1

x,y


= 2N

(v) for all i ∈ {2, 3, ...} we have W1


MCN,1

x,y


 3


N

2i−1



(vi) it holds for all x ∈ Rd that

Ir


MCN,1

x,y


(x) = maxi∈{1,2,...,N} (yi − L |x− xi|)

(vii) it holds that P

MCN,1

x,y


 6 + 7N2 + 3


N
2


· 2N

(viii) supx∈[a,b] |F (x)− f(x)|  2L |a−b|
N

Proof. Items (i)—(vii) is an assertion of Lemma 8.3.6. Item (viii) is an assertion of Lemma 8.3.9

with d ↶ 1.
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Part III

A deep-learning solution for u and

Brownian motions
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Chapter 9

ANN representations of Brownian

Motion Monte Carlo

This is tentative without any reference to f .

Lemma 9.0.1 (R--,2023). Let d,M ∈ N, T ∈ (0,∞) , a ∈ C(R,R), Γ ∈ NN, satisfy that Ia (Gd) ∈

C

Rd,R


, for every θ ∈ Θ, let Uθ : [0, T ] → [0, T ] and Wθ : [0, T ] → Rd be functions , for every

θ ∈ Θ, let U θ : [0, T ] → Rd → R satisfy satisfy for all t ∈ [0, T ], x ∈ Rd that:

U θ(t, x) =
1

M


M

k=1

(Ia (Γ))

x+W(θ,0,−k)


(9.0.1)

Let Uθ
t ∈ NN , θ ∈ Θ satisfy for all θ ∈ Θ, t ∈ [0, T ] that:

Uθ
t =


M

k=1


1

M
⊲


Gd • AffId,W

(θ,0,−k)
T−t


(9.0.2)

It is then the case that:

(i) for all θ1, θ2 ∈ Θ, t1, t2 ∈ [0, T ] that L


Uθ1
t1


= L


Uθ2
t2


.

(ii) for all θ ∈ Θ, t ∈ [0, T ], that D

Uθ
t


 D(Gd)

(iii) for all θ ∈ Θ, t ∈ [0, T ] that:

L


Uθ
t


max

  L (Gd) max


1 +

√
2

M (9.0.3)
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(iv) for all θ ∈ Θ, t ∈ [0, T ], x ∈ Rd that U θ(t, x) =

Ia


Uθ

t


(x) and

(v) for all θ ∈ Θ, t ∈ [0, T ] that:

P


Uθ
t


 2D (Gd)


1 +

√
2

M L (Gd)max

2
(9.0.4)

Proof. Throughout the proof let Pθ
t ∈ NN, θ ∈ Θ, t ∈ [0, T ] satisfy for all θ ∈ Θ, t ∈ [0, T ] that:

Pθ
t =

M

k=1


1

M
⊲


Gd • AffId,Wθ,0,−k
T−t


(9.0.5)

Note the hypothesis that for all θ ∈ Θ, t ∈ [0, T ] it holds that Wθ
t ∈ Rd and Lemma 5.7.9 applied

for every θ ∈ Θ t ∈ [0, T ] with v ↶ M , ci∈{u,u+1,...,v} ↶


1
M


i∈{u,u+1,...,v}, (Bi)i∈{u,u+1,...,v} ↶


W(θ,0,−k)

T−t



k∈{1,2,...,M}
, (νi)i∈{u,u+1,...,v} ↶ (Gd)i∈{u,u+1,...,v}, µ ↶ Φθ

t and with the notation of

Lemma 5.7.9 tells us that for all θ ∈ Θ, t ∈ [0, T ], and x ∈ Rd it holds that: La lala

L


Pθ
t


=


d,M W1 (G) ,M W2 (G) , ...,M WD(G)−1 (G) , 1


= L


P0
0


∈ ND(G)+1 (9.0.6)

and that:


Ia


Pθ
t


(x) =

1

M


M

k=1

(Ia (G))

x+W(θ,0,−k)

T−t



= Uθ (t, x) (9.0.7)

This proves Item (i).

Note that (9.0.6), and (9.0.7) also implies that:

L


Uθ
t


= L


Pθ
t



=

d,W1


Pθ
t


,W2


Pθ
t


, ...,WD(G)


Pθ
t


, t


= L

U0
0


∈ ND(G)+1 (9.0.8)
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This indicates that for all θ ∈ Θ, t ∈ [0, T ] it is the case that:

L


Uθ
t


∞

=
L


U0
0


∞

= max
k∈{1,2,...,D(G)}


Wk


P0
0



This, (9.0.6), and Lemma 5.2.5 ensure that for all θ ∈ Θ, t ∈ [0, T ] it is the case that:

L


Uθ
t


∞

=
L


U0
0


∞ 

L

P0
0


∞  M L (G)∞

 M L (G)∞ +M
L


U0
0


∞


(9.0.9)

Then (Hutzenthaler et al., 2021, Corollary 4.3), with γ ↶ 0, β ↶ M , k ↶ 1, α0 ↶ L (G)∞,

α1 ↶ 0, (xi)i∈{0,1,...,k} ↶
L


U0
0


∞

i∈{0,1,...,n} in the notation of (Hutzenthaler et al., 2021,

Corollary 4.3) yields for all θ ∈ Θ, t ∈ [0, T ] that:

L


Uθ
t


∞

 1

2
(L (G)∞)


1 +

√
2

M

 (L (G)∞)

1 +

√
2

M

Note that Lemma 5.2.5, Item (iii), proves that for all θ ∈ Θ, t ∈ [0, T ] it is the case that:

D


Uθ
t


= D


U0
0


= D (G) (9.0.10)

This proves Items (ii)--(iii) and (9.0.7) proves Item (iv).

Items (ii)--(iii) together shows that for all θ ∈ Θ, t ∈ [0, T ] it is the case that:

P


Uθ
t




D(Uθ
t )

k=1

L


Uθ
t


max

= D


Uθ
t

L


Uθ
t


∞

 D


Uθ
t


(L (G)∞)


1 +

√
2

M

= D (G) (L (G)∞)

1 +

√
2

M

This proves Item (v) and hence the whole lemma.
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9.1 The EN,h,q,ε
n Neural Network

Lemma 9.1.1 (R—, 2023). Let n,N ∈ N and h ∈ (0,∞). Let δ, ε ∈ (0,∞), q ∈ (2,∞), satisfy

that δ = ε

2q−1 + 1

−1. Let a ∈ (−∞,∞), b ∈ [a,∞). Let f : [a, b] → R be continuous and have

second derivatives almost everywhere in [a, b]. Let a = x0  x1  · · ·  xN−1  xN = b such that

for all i ∈ {0, 1, ..., N} it is the case that h = b−a
N , and xi = x0 + i · h . Let x = [x0 x1 · · · xN ] and

as such let f

[x]∗,∗


= [f(x0) f(x1) · · · f(xN )]. Let EN,h,q,ε

n ∈ NN be the neural network given by:

EN,h,q,ε
n = Xpnq,εn •EtrN,h (9.1.1)

It is then the case that:

(i) for all x ∈ RN+1 we have that

Ir


EN,h,q,ε
n


(x) ∈ C


RN+1,R



(ii) D

EN,h,q,ε
n









1 : n = 0

n


q
q−2


log2


ε−1


+ q


− 1


+ 1 : n  1

(iii)

P


EN,h,q,ε
n










N + 2 : n = 0


1
2N + 1


(n+ 1)


4n+

3
2 +


4n+1−1

3


360q
q−2


log2


ε−1


+ q + 1


+ 372


: n ∈ N

(iv) for all x = {x0, x1, . . . , xN} ∈ RN+1, where a = x0  x1  · · ·  xN−1  xN = b we have

that:

exp
 b

a
fdx


− Ir


EN,h,q,ε
n


f

[x]∗,∗



 (b− a)3

12N2
f ′′ (ξ) · n2 ·


Ξ+

(b− a)3

12N2
f ′′ (ξ)

n−1

+

n

i=1

1

i!

Ξ

Ξi−1 − Ir


Pwrq,εi−1


(Ξ)

+ ε+ |Ξ|q + pqi−1


(9.1.2)

(v) it is the case that WH


EN,h,q,ε
n

 EN,h,q,ε
n


 24 + 2n
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Proof. Note that Lemma 8.2.4 tells us that Ir

EtrN,h


∈ C


RN+1,R


, and Lemma 6.2.22 tells us

that Ir (Xpnq,εn ) (x) ∈ C (R,R). Next, note that Lemma 5.2.5 and the fact that the composition of

continuous functions is continuous yields that:

Ir


EN,h,q,ε
n


= Ir


Xpnq,εn •Aff[h2 h ... h h

2 ],0



= Ir (Xpnq,εn ) ◦ Ir


Aff[h2 h ... h h
2 ],0


∈ C


RN+1,R



Since both component neural networks are continuous, and the composition of continuous functions

is continuous, so is EN,h,q,ε
n . This proves Item (i).

Next note that D


Aff[h2 h ... h h
2 ]


= 1, and thus Lemma 5.2.5 and Lemma 6.2.22 tells us that:

D


EN,h,q,ε
n


= D


Xpnq,εn •Aff[h2 h ... h h

2 ],0



= D (Xpnq,εn ) + D


Aff[h2 h ... h h
2 ],0


− 1

= D (Xpnq,εn )








1 : n = 0

n


q
q−2


log2


ε−1


+ q


− 1


+ 1 : n ∈ N

This proves Item (ii).

Next note that by Corollary 5.5.5.1, Lemma 6.2.22, Lemma 8.2.4, and the fact that I

EtrN,h


=

N + 1, and I (Xpnq,εn ) = 1, tells us that, for all N ∈ N it is the case that:

P


EN,h,q,ε
n






max


1,

I

EtrN,h


+ 1

I (Xpnq,εn ) + 1


· P (Xpnq,εn )

=


1

2
N + 1


· P (Xpnq,εn )








N + 2 : n = 0


1
2N + 1


(n+ 1)


4n+

3
2 +


4n+1−1

3


360q
q−2


log2


ε−1


+ q + 1


+ 372


: n ∈ N

This proves Item (iii).
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Note next that:

Aff[h2 h ... h h
2 ],0

= EtrN,h (9.1.3)

Thus the well-known error term of the trapezoidal rule tells us that for [a, b] ⊊ R, and for ξ ∈ [a, b]

it is the case that:


 b

a
f (x) dx−


Ir


EtrN,h


f

[x]∗,∗

 
(b− a)3

12N2
f ′′ (ξ) (9.1.4)

and for n ∈ N0, δ, ε ∈ (0,∞), q ∈ (2,∞) and δ = ε

2q−1 + 1

−1, and for x ∈ [a, b] ⊊ R, with

0 ∈ [a, b] it is the case, according to Lemma 9.1.1, that:

|ex − Ir (Xpnq,εn ) (x)| 
n

i=1

1

i!

x

xn−1 − Ir


Pwrq,εn−1


(x)

+ ε+ |x|q + pqn−1


+

eb · |x|n+1

(n+ 1)!

(9.1.5)

Note now that for f ∈ Cae (R,R),
 b
a fdx ∈ [a, b] ⊊ R, 0 ∈ [a, b], and ξ between 0 and

 b
a fdx it is

the case that:

exp
 b

a
fdx


=

n

i=1


1

i!

 b

a
fdx

i

+

eξ ·

 b
a fdx


n+1

(n+ 1)!
(9.1.6)

And thus the triangle inequality, Lemma 5.2.5, and Lemma 6.2.22, tells us that for x = {x0, x1, . . . , xN},

a = x0  x1  · · ·  xN = b and [a, b] ⊊ R that:

exp
 b

a
fdx


− Ir


EN,h,q,ε
n


f

[x]∗,∗



=



n

i=1


1

i!

 b

a
fdx

i

+

eξ ·
 b

a fdx
n+1

(n+ 1)!
− Ir


Xpnq,εn •EtrN,h


f

[x]∗,∗







n

i=1


1

i!

 b

a
fdx

i

− Ir (Xpnq,εn ) (x) ◦ Ir


EtrN,h


f

[x]∗,∗

+
eξ ·


 b
a fdx


n+1

(n+ 1)!
(9.1.7)

Note that the instantiation of EtrN,h is exact as it is the instantiation of an affine neural network.
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For notational simplicity let Ξ = Ir

EtrN,h

 
f

[x]∗,∗


. Then Lemma 6.2.22 tells us that:



n

i=0


Ξi

i!


− Ir (Xpnq,εn ) (Ξ)

 
n

i=1

1

i!

Ξ

Ξi−1 − Ir


Pwrq,εi−1


(Ξ)

+ ε+ |Ξ|q +

pΞi−1

q (9.1.8)

Where for i ∈ N, let pΞi−1 be the family of functions defined as such:

pΞ1 = ε+ 1 + |Ξ|2

pΞi = ε+ (pi−1)
2 + |Ξ|2 (9.1.9)

This then leaves us with:



n

i=0


1

i!

 b

a
fdx

i

−

n

i=0


Ξi

i!

 
n

i=0




1

i!

 b

a
fdx

i

− Ξi

i!



 (n+ 1) max
i∈{0,1,...,n}




1

i!

 b

a
fdx

i

− Ξi

i!



 n · max
i∈{1,...,n}

1

i!



 b

a
fdx

i

− Ξi

 (9.1.10)

Note that for each i ∈ {1, ..., n} it holds that:

 b

a
fdx

i

− Ξi =

 b

a
fdx− Ξ

 b

a
fdx

i−1

+

 b

a
fdx

i−2

· Ξ+ · · ·+ Ξi−1


(9.1.11)

Note that the well-known error bounds for the trapezoidal rule tell us that Ξ and
 b
a fdx differ by

at most (b−a)3

12N2 f ′′ (ξ) in absolute terms, and thus:

max

Ξ,

 b

a
fdx


 Ξ+

(b− a)3

12N2
f ′′ (ξ) (9.1.12)

This then renders (9.1.11) as:

 b

a
fdx

i

− Ξi  (b− a)3

12N2
f ′′ (ξ) · i ·


Ξ+

(b− a)3

12N2
f ′′ (ξ)

i−1

(9.1.13)
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Note that this also renders (9.1.10) as:



n

i=0


1

i!

 b

a
fdx

i

−

n

i=0


Ξi

i!

 
(b− a)3

12N2
f ′′ (ξ) · n2 ·


Ξ+

(b− a)3

12N2
f ′′ (ξ)

n−1

(9.1.14)

This, the triangle inequality and (9.1.8), then tell us for all x ∈ [a, b] ⊆ [0,∞) that:



n

i=0


1

i!

 b

a
fdx

i

− Ir (Xpnq,εn ) (x) ◦ Ξ






n

i=0


1

i!

 b

a
fdx

i

−

n

i=0


Ξi

i!

+



n

i=0


Ξi

i!


− Ir (Xpnq,εn ) (x) ◦ Ξ



 (b− a)3

12N2
f ′′ (ξ) · n2 ·


Ξ+

(b− a)3

12N2
f ′′ (ξ)

n−1

+

n

i=1

1

i!

Ξ

Ξi−1 − Ir


Pwrq,εi−1


(Ξ)

+ ε+ |Ξ|q +

pΞi−1

q (9.1.15)

This, applied to (9.1.7) then gives us that:

exp
 b

a
fdx


− Ir


EN,h,q,ε
n


f

[x]∗,∗






n

i=1


1

i!

 b

a
fdx

i

− Ir (Xpnq,εn ) (x) ◦ Ir


EtrN,h


f

[x]∗,∗

+
eξ ·


 b
a fdx


n+1

(n+ 1)!

 (b− a)3

12N2
f ′′ (ξ) · n2 ·


Ξ+

(b− a)3

12N2
f ′′ (ξ)

n−1

+

n

i=1

1

i!

Ξ

Ξi−1 − Ir


Pwrq,εi−1


(Ξ)

+ ε+ |Ξ|q +

pΞi−1

q
+

eξ ·

 b
a fdx


n+1

(n+ 1)!
(9.1.16)

This proves Item (iv).

Finally note that Lemma 6.2.22 tells us that:

WH


EN,h,q,ε
n




EN,h,q,ε
n


= WH(Xpnq,ε

n ) (Xpnq,εn )

 24 + 2n (9.1.17)
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Remark 9.1.2. We may represent the EN,h,q,ε
n diagrammatically as follows:

EtrNh

R

R

R

...Cpyn,1

Pwrq0

Pwrq1

Pwrqn

......

Tun

Tun

1
0!
⊲

1
1!
⊲

1
n!
⊲

...
Cpyn,1

Figure 9.1: Diagram of EN,h,q,ε
n .

9.2 The UEN,h,q,ε
n,Gd

Neural Network

Lemma 9.2.1 (R—,2023). Let n,N, h ∈ N. Let δ, ε ∈ (0,∞), q ∈ (2,∞), satisfy that δ =

ε

2q−1 + 1

−1. Let a ∈ (−∞,∞), b ∈ [a,∞). Let f : [a, b] → R be continuous and have second

derivatives almost everywhere in [a, b]. Let a = x0  x1  · · ·  xN−1  xN = b such that for all

i ∈ {0, 1, ..., N} it is the case that h = b−a
N , and xi = x0 + i · h . Let x = [x0 x1 · · ·xN ] and as such

let f

[x]∗,∗


= [f(x0) f(x1) · · · f(xN )]. Let Eexp

n,h,q,ε ∈ NN be the neural network given by:

EN,h,q,ε
n = Xpnq,εn •EtrN,h (9.2.1)

Let Gd ∈ NN be the neural network which instantiates as ud = Ir (Gd) (x) ∈ C

Rd,R


for all x ∈ Rd.

Let UEN,h,q,ε
n,Gd

be the neural network given as:

UEN,h,q,ε
n,Gd

= Prdq,ε •

EN,h,q,ε
n Gd


(9.2.2)
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It is then the case that for all x = {x0, x1, . . . , xN} ∈ RN+1 and x ∈ Rd that:

(i) Ir


UEN,h,q,ε

n,Gd


(f ([x]∗) ⌢ x) ∈ C


RN+1 × Rd,R



(ii) D


UEN,h,q,ε
n,Gd









q
q−2


log2


ε−1


+ q


+ D (Gd)− 1 : n = 0

q
q−2


log2


ε−1


+ q


+ max


D


EN,h,q,ε
n,Gd


,D (Gd)


− 1 : n  1

(iii) It is also the case that:

P


UEN,h,q,ε
n,Gd


 360q

q − 2


log2


ε−1


+ q + 1


+ 324 + 48n

+ 24WH(Gd) (Gd) + 4max


P


EN,h,q,ε
n


,P (Gd)


(9.2.3)

(iv) It is also the case that:

exp
 b

a
fdx


ud (x)− Ir


UEN,h,q,ε

n,Gd


(f([x]∗ ⌢ x)



 3ε+ 2ε |u (x)|q + 2ε

exp
 b

a
fdx


q

+ ε

exp
 b

a
fdx


− e


q

− eu (x)

Where, as per Lemma 9.1.1, e is defined as:

E
N,h,q,ε
n (f ([x]∗))− exp

 b

a
fdx

  e (9.2.4)

Remark 9.2.2. Diagrammatically UEN,h,q,ε
n can be represented as:

EN,h,q,ε
n

Gd

Tun

Tun

Prdq,ε

Rd

RN+1

Proof. Note that from Lemma 5.2.5, and Lemma 5.3.3, we have that for x ∈ RN+1, and x ∈ Rd it is

the case that Ir

Prdq,ε •


EN,h,q,ε
n Gd


(f ([x]∗ ⌢ x)) = Ir (Prdq,ε)◦Ir


EN,h,q,ε
n Gd


(f ([x]∗) ⌢ x).

Then Lemma 6.1.10 tells us that Ir (Prdq,ε) ∈ C

R2,R


. Lemma 9.1.1 tells us that Ir


EN,h,q,ε
n


∈
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C

RN+1,R


and by hypothesis it is the case that Ir (Gd) ∈ C


Rd,R


. Thus, by the stacking

properties of continuous instantiated networks and the fact that the composition of continuous

functions is continuous, we have that Ir


UEN,h,q,ε

n,Gd


∈ C


RN+1 × Rd,R


.

Note that by Lemma 5.2.5 it is the case that:

D


UEN,h,q,ε
n,Gd


= D (Prdq,ε) + D


EN,h,q,ε
n Gd


− 1 (9.2.5)

Lemma 9.1.1 and Lemma 6.1.10 then tell us that:

D


UEN,h,q,ε
n,Gd










q
q−2


log2


ε−1


+ q


+ D (Gd)− 1 : n = 0

q
q−2


log2


ε−1


+ q


+ max


D

EN,h,q,ε
n


,D (Gd)


− 1 : n  1

(9.2.6)

Note that then Lemma 5.2.5, Lemma 6.2.22, and Lemma 9.1.1 tell us that:

P


UEN,h,q,ε
n,Gd


 P (Prdq,ε) + 4max


P


EN,h,q,ε
n


,P (Gd)



+ W1 (Prdq,ε) · WH


EN,h,q,ε
n Gd




EN,h,q,ε
n Gd



 P (Prdq,ε) + 4max


P


EN,h,q,ε
n


,P (Gd)



+ 24

(24 + 2n) + WH(Gd) (Gd)



= P (Prdq,ε) + 4max


P


EN,h,q,ε
n


,P (Gd)



+ 576 + 48n+ 24 · WH(Gd) (Gd)

 360q

q − 2


log2


ε−1


+ q + 1


+ 324 + 48n

+ 24WH(Gd) (Gd) + 4max


P


EN,h,q,ε
n


,P (Gd)


(9.2.7)

Now note that Lemma 5.2.5, and Lemma 5.3.3 tells us that for all x = {x1, x2, . . . , xn} ∈ Rn and

x ∈ Rd:

Ir


Prdq,ε •


EN,h,q,ε
n Gd


(f ([x]∗) ⌢ x) = Ir (Prdq,ε)


Ir


EN,h,q,ε
n


, Ir (Gd)


(f ([x]∗) ⌢ x) .

(9.2.8)
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Note then that the triangle inequality tells us that:

exp
 b

a
fdx


ud (x)− Ir


UEN,h,q,ε

n,Gd


(f ([x]∗) ⌢ x)



=

exp
 b

a
fdx


· ud (x)− Ir (Prdq,ε)


Ir


EN,h,q,ε
n


, Ir (Gd)


(f ([x]∗) ⌢ x)




exp

 b

a
fdx


· ud (x)− Ir (Prdq,ε)


exp

 b

a
fdx


, ud (x)



+

Ir (Prdq,ε)


exp
 b

a
fdx


, ud (x)


− Ir (Prdq,ε)


Ir


EN,h,q,ε
n


, Ir (Gd)


(f ([x]) ⌢ x)

 (9.2.9)

Note that Lemma 6.1.10 bounds the first summand. Note that by hypothesis Ir (Gd) is exactly

ud (x). Note also that by Lemma 9.1.1, Lemma 6.1.10, we realize that the second summand can be

bounded as such:

Ir (Prdq,ε)


exp
 b

a
fdx


, ud (x)


− Ir (Prdq,ε)


Ir


EN,h,q,ε
n


, Ir (Gd)


(f ([x]∗) ⌢ x)



 exp
 b

a
fdx


ud (x) + ε+ ε

exp
 b

a
fdx


q

+ ε |ud (x)|q

−

Ir


EN,h,q,ε
n


(f ([x]∗)) Ir (Gd) (x)− ε− ε

Ir


EN,h,q,ε
n


(f ([x]∗))


q
− ε |Ir (Gd) (x)|q


(9.2.10)

Per Lemma 9.1.1, let e represent the error in approximation of EN,h,q,ε
n , that is to say for all x ∈ RN+1

and corresponding f ([x]∗), let it be the case that:

E
N,h,q,ε
n (f ([x]∗))− exp

 b

a
fdx

  e (9.2.11)

Thus EN,h,q,ε
n (f ([x]∗)) is maximally e+exp

 b
a fdx


and minimally exp

 b
a fdx


−e. Thus (9.2.10)
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is rendered as:

exp
 b

a
fdx


ud (x) + ε+ ε

exp
 b

a
fdx


q

+ ε |ud (x)|q

−

Ir


EN,h,q,ε
n


Ir (Gd) (f ([x]∗) ⌢ x)− ε− ε

Ir


EN,h,q,ε
n


(f ([x]∗))


q
− ε |Ir (Gd) (x)|q



 exp
 b

a
fdx


ud (x) + ε+ ε

exp
 b

a
fdx


q

+ ε |ud (x)|q

−


e+ exp
 b

a
fdx


ud (x)− ε− ε

exp
 b

a
fdx


− e


q

− ε |ud (x)|q


=
✘✘✘✘✘✘✘✘✘✘✘
exp

 b

a
fdx


ud (x) + ε+ ε

exp
 b

a
fdx


q

+ ε |ud (x)|q

− eu (t, x)−
✘✘✘✘✘✘✘✘✘✘✘
exp

 b

a
fdx


ud (x) + ε+ ε

exp
 b

a
fdx


− e


q

+ ε |ud (x)|q

= 2ε+ 2ε |ud (x)|q + ε

exp
 b

a
fdx


− e


q

+ ε

exp
 b

a
fdx


q

− eud (x) (9.2.12)

This, together with (9.2.9), then tells us that:

exp
 b

a
fdx


ud (x)− Ir


UEN,h,q,ε

n,Gd


(f ([x]∗) ⌢ x)




exp

 b

a
fdx


ud (x)− Ir (Prdq,ε)


exp

 b

a
fdx


, ud (x)



+

Ir (Prdq,ε)


exp
 b

a
fdx


, ud (x)


− Ir (Prdq,ε)


Ir


EN,h,q,ε
n


(f ([x]∗)) , Ir (Gd) (x)



 ε+ ε

exp
 b

a
fdx


q

+ ε |ud (x)|q

+ 2ε+ 2ε |ud (x)|q + ε

exp
 b

a
fdx


− e


q

+ ε

exp
 b

a
fdx


q

− eud (x)

= 3ε+ 2ε |ud (x)|q + 2ε

exp
 b

a
fdx


q

+ ε

exp
 b

a
fdx


− e


q

− eud (x)

9.3 The UEXN,h,q,ε
n,Gd,ωi

network

Lemma 9.3.1 (R—,2023). Let n,N, h ∈ N. Let δ, ε ∈ (0,∞), q ∈ (2,∞), satisfy that δ =

ε

2q−1 + 1

−1. Let a ∈ (−∞,∞), b ∈ [a,∞). Let f : [a, b] → R be continuous and have second

derivatives almost everywhere in [a, b]. Let a = x0  x1  · · ·  xN−1  xN = b such that for all

198



i ∈ {0, 1, ..., N} it is the case that h = b−a
N , and xi = x0 + i · h . Let x = [x0 x1 · · · xN ] and as such

let f

[x]∗,∗


= [f(x0) f(x1) · · · f(xN )]. Let Eexp

n,h,q,ε ∈ NN be the neural network given by:

EN,h,q,ε
n = Xpnq,εn •EtrN,h (9.3.1)

Let Gd ⊊ NN be the neural networks which, for d ∈ N, instantiate as ud = Ir (Gd) (x) ∈ C

Rd,R



for all x ∈ Rd.

Let UEN,h,q,ε
n,Gd

⊊ NN be the neural networks given as:

UEN,h,q,ε
n,Gd

= Prdq,ε •

EN,h,q,ε
n Gd


(9.3.2)

Finally let UEXN,h,q,ε
n,Gd,ωi

⊊ NN be given the neural networks given by:

UEXN,h,q,ε
n,Gd,ωi

= UEN,h,q,ε
n,Gd

•

TunN+1

1 ⊟Aff0d,d,Xωi


(9.3.3)

It is then the case that for all x = {x0, x1, . . . , xN} ∈ RN+1 and x ∈ Rd that:

(i) Ir


UEXN,h,q,ε

n,Gd,ωi


∈ C


RN+1 × Rd,R



(ii)

D


UEXN,h,q,ε
n,Gd,ωi


= D


UEN,n,h,q,ε

n,Gd










q
q−2


log2


ε−1


+ q


+ D (Gd)− 1 : n = 0

q
q−2


log2


ε−1


+ q


+ max


D


Eexp,f
N,n,h,q,ε


,D (Gd)


− 1 : n ∈ N

(iii) It is also the case that:

P


UEXN,h,q,ε
n,Gd,ωi


= P


UEN,h,q,ε

n,Gd


 360q

q − 2


log2


ε−1


+ q + 1


+ 324 + 48n

+ 24WH(Gd) (Gd) + 4max


P


EN,h,q,ε
n


,P (Gd)


(9.3.4)
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(iv) It is also the case that:

exp
 T

t
fds


uTd (x)− Ir


UEXN,h,q,ε

n,Gd,ωi


(f ([x]∗) ⌢ x)



 3ε+ 2ε
uTd (t, x)

q + 2ε

exp
 b

a
fdx


q

+ ε

exp
 b

a
fdx


− e


q

− euTd (x)

Where, as per Lemma 9.1.1, e is defined as:

E
N,h,q,ε
n (f ([x]∗))− exp

 b

a
fdx

  e (9.3.5)

Proof. Note that (9.4.9) is an assertion of Feynman-Kac. Now notice that for x ∈ RN+1 × Rd it is

the case that:

Ir


UEXN,h,q,ε

n,Gd,ωi


(x) = Ir


UEN,h,q,ε

n,Gd
•

TunN+1

1 ⊟Aff0d,d,Xωi


(x)

= Ir


UEN,h,q,ε

n,Gd


◦ Ir


TunN+1

1 ⊟Aff0d,d,Xωi


(x)

Note that by Lemma 9.3.1 it holds that Ir


UEN,h,q,ε

n,Gd


∈ C


RN+1 × Rd,R


. Note also that by

Lemma 6.2.6, TunN+1
1 is continuous and by Lemma 5.5.2, Aff0d,d,Xωi

is continuous, and whence by

Lemma 6.2.6 and Lemma 5.5.5 it is the case that Ir


TunN+1
1 ⊟Aff0d,d,Xωi


(x) ∈ C


RN+1 × Rd,RN+1 × Rd


.

Finally, since the composition of continuous functions is continuous, and since we have functions

RN+1 × Rd


→


RN+1 × Rd


→ R we have that Ir


UEXN,h,q,ε

n,Gd,ωi


∈ C


RN+1 × Rd,R


. This proves

Item (i).

Note next that by Lemma 6.2.6, it is the case that D


TunN+1
1


= D


Aff0d,d,Xωi


= 1. Thus by

Lemma 5.2.5 it is the case that D


UEXN,h,q,ε
n,Gd,ωi


= D


UEN,h,q,ε

n,Gd


. This proves Item (ii)

Next note that:

P


UEXN,h,q,ε
n,Gd,ωi


= P


UEN,h,q,ε

n,Gd
•

TunN+1

1 ⊟Aff0d,d,Xωi


(9.3.6)

Note carefully that Definition 6.2.4 tells us that TunN+1
1 = AffIN+1,N+1,0N+1

, and so by Lemma 5.5.6,

it must be the case that TunN+1
1 ⊟Aff0d,d,Xωi

is also an affine neural network. Whence, Corollary
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5.5.5.1 tells us that:

P


UEXN,h,q,ε
n,Gd,ωi


= P


UEN,h,q,ε

n,Gd
•

TunN+1

1 ⊟Aff0d,d,Xωi







max




1,
I


TunN+1
1 ⊟Aff0d,d,Xωi


+ 1

I


UEN,h,q,ε
n,Gd


+ 1








 · P


UEN,h,q,ε
n,Gd



= P


UEN,h,q,ε
n,Gd



 360q

q − 2


log2


ε−1


+ q + 1


+ 324 + 48n

+ 24WH(Gd) (Gd) + 4max


P


EN,h,q,ε
n


,P (Gd)


(9.3.7)

Finally, note that both AffW,b and Tundn are exact and contribute nothing to the uncertainty. Thus

UEXN,h,q,ε
n,Gd,ωi

has the same error bounds as UEN,h,q,ε
n,Gd

. That is to say that:

exp
 T

t
fds


uTd (x)− Ir


UEXN,h,q,ε

n,Gd,ωi


(f ([x]∗) ⌢ x)



 3ε+ 2ε
uTd (t, x)

q + 2ε

exp
 b

a
fdx


q

+ ε

exp
 b

a
fdx


− e


q

− euTd (x)

Corollary 9.3.1.1 (R—, 2024, Approximants for Brownian Motion). Let t ∈ (0,∞) and T ∈

(t,∞). Let (Ω,F ,P) be a probability space. Let n,N ∈ N, and h ∈ (0,∞). Let δ, ε ∈ (0,∞),

q ∈ (2,∞), satisfy that δ = ε

2q−1 + 1

−1. Let f : [t, T ] → R be continuous almost everywhere

in [t, T ]. Let it also be the case that f = g ◦ h, where h : [t, T ] → Rd, and g : Rd → R. Let

t = t0  t1  · · ·  tN−1  tN = T such that for all i ∈ {0, 1, ..., N} it is the case that h = T−t
N ,

and ti = t0 + i · h . Let t = [t0 t1 · · · tN ] and as such let f

[t]∗,∗


= [f(t0) f(t1) · · · f(tN )]. Let

EN,h,q,ε
n ∈ NN be the neural network given by:

EN,h,q,ε
n = Xpnq,εn •EtrN,h (9.3.8)

Let ud ∈ C1,2

[0, T ]× Rd,R


satisfy for all d ∈ N, t ∈ [0, T ], x ∈ Rd that:


∂

∂t
ud


(t, x) +


∇2

xud

(t, x) + αd (x)ud (t, x) = 0 (9.3.9)
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Furthermore, let uTd (x) = ud(T, x). Let Gd ⊊ NN be the neural networks which instantiate as

uTd = Ir (Gd) ∈ C

Rd,R


.

Let Wd : [0, T ] × Ω → Rd, d ∈ N be standard Brownian motions, and let X d,t,x : [t, T ] × Ω → Rd,

d ∈ N, t ∈ [0, T ], x ∈ Rd be stochastic processes with continuous sample paths satisfying that for all

d ∈ N, t ∈ [0, T ], s ∈ [t, T ], x ∈ Rd we have P-a.s. that:

X d,t,x
s = x+

 t

s

√
2dWd

r (9.3.10)

It is then the case that for all d ∈ N, t ∈ [0, T ], x ∈ Rd it holds that:

ud (t, x) = E

exp

 T

t


αd ◦ X d,t,x

r


dr


ud


T,X d,t,x

T


(9.3.11)

Let UEN,h,q,ε
n,Gd

be the neural network given as:

UEN,h,q,ε
n,Gd

= Prdq,ε •

EN,h,q,ε
n Gd


(9.3.12)

Finally let UEXN,h,q,ε
n,Gd,ωi

be given by:

UEXN,h,q,ε
n,Gd,ωi

= UEN,h,q,ε
n,Gd

•

TunN+1

1 ⊟Aff0d,d,Xωi


(9.3.13)

It is then the case that for all x = {x0, x1, . . . , xN} ∈ RN+1 and x ∈ Rd that:

exp
 T

t
fds


uTd (x)− Ir


UEXN,h,q,ε

n,Gd,ωi


(f ([x]∗) ⌢ x)



 3ε+ 2ε
uTd (t, x)

q + 2ε

exp
 b

a
fdx


q

+ ε

exp
 b

a
fdx


− e


q

− euTd (x)

Where, as per Lemma 9.1.1, e is defined as:

E
N,h,q,ε
n (f ([x]∗))− exp

 b

a
fdx

  e (9.3.14)

Proof. Note that for a fixed T ∈ (0,∞) it is the case that ud (t, x) ∈ C1,2

[0, T ]× Rd,R


projects

down to a function uTd (x) ∈ C2

Rd,R


. Furthermore given a probability space (Ω,F ,P) and a
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stochastic process X d,t,x : [t, T ]×Ω → Rd, for a fixed outcome space ωi ∈ Ω it is the case that X d,t,x

projects down to X d,t,x
ωi : [t, T ] → Rd. Thus given αd : Rd → R that is infinitely often differentiable,

we get that αd ◦ X d,t,x
ωi : [t, T ] → R.

Taken together with Lemma 9.3.1 with x ↶ X d,t,x
r,ω , f ↶ αd ◦ X d,t,x

ωi , b ↶ T , a ↶ t, and uTd (x) ↶

ud


T,X d,t,x

ωi


, our error term is rendered as is rendered as:

exp
 T

t


αd ◦ X d,t,x

r,ωi
ds


ud


T,X d,t,x

ωi


− Ir


UEXN,h,q,ε

n,Gd,ωi



 3ε+ 2ε
ud


T,X d,t,x

r,ωi


q
+ 2ε

exp
 b

a
fdx


q

+ ε

exp
 b

a
fdx


− e


q

− eud


T,X d,t,x

r,ωi



This completes the proof of the Lemma.

Remark 9.3.2. Diagrammatically, this can be represented as:

Eexp,f
N,n,h,q,ε

Gd

Tun

Tun

Prdq,ε

Rd

RN+1
TunN+1

1

Aff
0d,d,X d,t,x

r,ωi

9.4 The UESN,h,q,ε
n,Gd,Ω,n

network

Definition 9.4.1 (The Kahane-Kintchine Constant). Let p, q ∈ (0,∞). We will then denote by

Kp,q ∈ [0,∞], the extended real number given by:

Kp,q = sup {c ∈ [0,∞) : [∃ an R− Banach Space]} (9.4.1)

Lemma 9.4.2. Let ν1, ν2, . . . , νn ∈ NN such that for all i ∈ {1, 2, . . . , n} it is the cast that O (νi) = 1,

and it is also the case that D (ν1) = D (ν2) = · · · = D (νn). Let x1 ∈ RI(ν1), x2 ∈ RI(ν2), . . . , xn ∈

RI(νn) and x ∈ R
n

i=1 I(νi). It is then the case that we have that:

Ir (Sumn,1 • [⊟n
i=1νi]) (x) =

n

i=1

Ir (νi) (xi) (9.4.2)
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Proof. Throughout the proof let x1 ∈ RI(ν1), x2 ∈ RI(ν2), . . . , xn ∈ RI(νn) and x ∈ R
n

i=1 I(νi) such

that x = x1 ⌢ x2 ⌢ · · · ⌢ xn. Observe that by Lemma 5.2.5 we have that:

Ir (Sumn,1 • [⊟n
i=1νi]) (x) = Ir (Sumn,1) ◦ Ir (⊟n

i=1νi) (x) (9.4.3)

Note however that Defiition 5.1.4 yields that Ir (Sumn,1) (x) = [1 1 · · · 1] ·x+0 for x ∈ Rn. On the

other hand O (⊟n
i=1νi) = n and furthermore by Lemma 5.3.3 it is the case for x ∈ R

n
i=1 I(νi) that

Ir (⊟n
i=1νi) (x) = Ir (ν1) (x1) ⌢ Ir (ν2) (x2) ⌢ · · · ⌢ Ir (νn) (xn). Thus Ir (Sumn,1 • [⊟n

i=1νi]) (x) is

rendered as:


1 1 · · · 1







Ir (ν1) (x1)

Ir (ν2) (x2)

...

Ir (νn) (xn)





+ 0 =

n

i=1

Ir (νi) (xi) (9.4.4)

This completes the proof of the lemma.

Lemma 9.4.3. Let ν1, ν2, . . . , νn ∈ NN with I (ν1) = I (ν2) = . . . = I (νn) and O (ν1) = O (ν2) =

. . . = O (νn) = 1 such that for all i ∈ {1, 2, . . . , n} it is the case that there exists fi ∈ C

RI(ν1),R


,

and εi ∈ (0,∞), where for all xi ∈ RI(ν1), it is the case that | Ir (νi) (xi) − f (xi) |  εi. It is then

the case that for all x ∈ Rn·I(ν1) and xi ∈ RI(νi) with x = x1 ⌢ x2 ⌢ · · · ⌢ xn that:

Ir (⊟n
i νi) (x)− [⌢n

i=1 fi] (x)1 
n

i=1

εi (9.4.5)

Proof. We will prove this with induction. This is straight-forward for the case where we have just

one neural network where for all x ∈ RI(ν1) it is the case that Ir (ν1) (x)− f (x)1  ε1 =
1

i=1 εi.

Suppose now, that, Ir (⊟n
i νi) (x)− [⌢n

i=1 fi] (x)1 
n

i=1 εi holds true for all cases upto and

including n. Consider what happens when we have a triple, a function fn+1, a neural network νn+1,

and εn+1 ∈ (0,∞) with a maximum error over all x ∈ RI(ν1) of | Ir (νn+1) (x) − fn+1 (x) |  εn+1.
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Then Lemma 5.3.3, Corollary 1.2.33.1, and the triangle inequality tells us that:

Ir

⊟n+1

i νi

(x)−


⌢n+1

i=1 fi

(x)


1

 Ir (⊟n
i νi) (x)− [⌢n

i=1 fi] (x)1 + | Ir (νn+1) (x)− fn+1 (x) |


n+1

i=1

εi (9.4.6)

This proves the inductive case and hence the Lemma.

Lemma 9.4.4. Let, (Ω,F ,P) be a probability space and let X : Ω → Rd be a random variable with

E [X ] = µ < ∞, and probability density function fX . Let g : Rd → R be a measurable continuous

function. It is then the case that

Lemma 9.4.5 (R—, 2024, Approximants for Brownian Motion). Let t ∈ (0,∞) and T ∈ (t,∞).

Let (Ω,F ,P) be a probability space. Let n,N ∈ N, and h ∈ (0,∞). Let δ, ε ∈ (0,∞), q ∈ (2,∞),

satisfy that δ = ε

2q−1 + 1

−1. Let f : [t, T ] → R be continuous almost everywhere in [t, T ]. Let

it also be the case that f = g ◦ h, where h : [t, T ] → Rd, and g : Rd → R. Let t = t0  t1  · · · 

tN−1  tN = T such that for all i ∈ {0, 1, ..., N} it is the case that h = T−t
N , and ti = t0 + i · h .

Let t = [t0 t1 · · · tN ] and as such let f

[t]∗,∗


= [f(t0) f(t1) · · · f(tN )]. Let ud ∈ C


Rd,R


satisfy

for all d ∈ N, t ∈ [0, T ], x ∈ Rd that:


∂

∂t
ud


(t, x) +


∇2

xud

(t, x) + αd (x)ud (t, x) = 0 (9.4.7)

Furthermore, let uTd (x) = ud(T, x). Let Gd ⊊ NN be the neural network which instantiates as

uTd = Ir (Gd) ∈ C

Rd,R


.

Let Wd : [0, T ] × Ω → Rd, d ∈ N be standard Brownian motions, and let X d,t,x : [t, T ] × Ω → Rd,

d ∈ N, t ∈ [0, T ], x ∈ Rd be stochastic processes with continuous sample paths satisfying that for all

d ∈ N, t ∈ [0, T ], s ∈ [t, T ], x ∈ Rd we have P-a.s, that:

X d,t,x
s = x+

 t

s

√
2dWd

r (9.4.8)
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It is then the case that for all d ∈ N, t ∈ [0, T ], x ∈ Rd it holds that:

ud (t, x) = E

exp

 T

t


αd ◦ X d,t,x

r


dr


ud


T,X d,t,x

T


(9.4.9)

Let EN,h,q,ε
n ⊊ NN be neural networks given by:

EN,h,q,ε
n = Xpnq,εn •EtrN,h (9.4.10)

Furthermore, let Gd ∈ NN ⊊ NN be neural networks which instantiate as ud = Ir (Gd) ∈ C

Rd,R


.

Furthermore, let UEN,h,q,ε
n,Gd

⊊ NN be neural networks given by:

UEN,h,q,ε
n,Gd

= Prdq,ε •

EN,h,q,ε
n Gd


(9.4.11)

Futhermore, let UEXN,h,q,ε
n,Gd,ωi

⊊ NN be neural networks given by:

UEXN,h,q,ε
n,Gd,ωi

= UEN,h,q,ε
n,Gd

•

TunN+1

1 ⊟Aff0d,d,Xωi


(9.4.12)

Finally let UESN,h,q,ε
n,Gd,Ω,n ⊊ NN be neural networks which, for ωi ∈ Ω, is given as:

UESN,h,q,ε
n,Gd,Ω,n =

1

n
⊲


Sumn,1 •

⊟n

i=1UEXN,h,q,ε
n,Gd,ωi


(9.4.13)

It is then the case that for all X ∈ Rn(N+1) × Rnd:

(i) Ir


UESN,h,q,ε

n,Gd,Ω,n


∈ C


Rn(N+1) × Rnd,R



(ii) D


UESN,h,q,ε
n,Gd,Ω,n









q
q−2


log2


ε−1


+ q


+ D (Gd)− 1 : n = 0

q
q−2


log2


ε−1


+ q


+ max


D

EN,h,q,ε
n


,D (Gd)


− 1 : n ∈ N

(iii) It is also the case that:

P


UESN,h,q,ε
n,Gd,Ω,n


 n2 ·


360q

q − 2


log2


ε−1


+ q + 1


+ 324 + 48n

+24WH(Gd) (Gd) + 4max


P


EN,h,q,ε
n


,P (Gd)


(9.4.14)
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(iv) It is also the case that:

E

exp

 T

t
f

X d,t,x
r


ds


ud


T,X d,t,x

r,ωi


− Ir


UESN,h,q,ε

n,Gd,Ω,n

 (9.4.15)

 3ε+ 2ε
uTd (x)

q + 2ε

exp
 b

a
fdx


q

+ ε

exp
 b

a
fdx


− e


q

− euTd (x)

Where, as per Lemma 9.1.1, e is defined as:

E
N,h,q,ε
n − exp

 b

a
fdx

  e (9.4.16)

Proof. Note that for all i ∈ {1, 2, . . . , n}, Lemma 9.3 tells us that Ir


UEXN,h,q,ε
n,Gd,ωi


∈ C


RN+1 × Rd,R


.

Lemma 5.6.17 and Lemma 5.6.16, thus tells us that Ir
n

i=1


UEXN,h,q,ε

n,Gd,ωi


=

n
i=1


Ir


UEXN,h,q,ε

n,Gd,ωi


.

The sum of continuous functions is continuous. Note next that 1
n⊲ is an affine neural network, and

hence, by Lemma 5.5.2, must be continuous.

Then Lemmas 5.2.5, 5.3.8, and the fact that by Lemma 9.3 each of the individual stacked UEXN,h,q,ε
n,Gd,ωi

neural networks is continuous then ensures us that it must therefore be the case that: Ir


UESN,h,q,ε
n,Gd,Ω,n


∈

C

Rn(N+1) × Rnd,R


. This proves Item (i).

Next note that by construction each UEXN,h,q,ε
n,Gd,ωi

has the same depth, indeed for each i the only

thing different for each of the UEXN,h,q,ε
n,Gd,ωi

is the parameters themselves and not the count or depth

or layer architecture. Note that D (Sumn,1) = D

1
n⊲

= D


Aff 1

n
,0


= 1.

Whence by Lemma 5.2.5 it is the case that D


UESN,h,q,ε
n,Gd,Ω,n


= D


UEXN,h,q,ε

n,Gd,ωi


. This then proves

Item (ii).

Next, observe that each of the UEXN,h,q,ε
n,Gd,ωi

networks has the same architecture for all ωi ∈ Ω by

construction. Corollary 5.3.5.1 then yields that:

P

⊟n

i=1UEXN,h,q,ε
n,Gd,ωi


 n2 · P


UEXN,h,q,ε

n,Gd,ωi


(9.4.17)

Note for instance also that by Remark 5.5.3, it is the case that P (Sumn,1) = n + 1. Furthermore,

since the output of the Sum neural network has length one, by Definition 5.7.1 it is the case that
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P

1
n⊲

= 2. Then Corollary 5.5.5.1 leads us to conclude that:

P


Sumn,1 •

⊟n

i=1UEXN,h,q,ε
n,Gd,ωi


 P


⊟n

i=1UEXN,h,q,ε
n,Gd,ωi



 n2 · P


UEXN,h,q,ε
n,Gd,ωi



 n2 ·

360q

q − 2


log2


ε−1


+ q + 1


+ 324 + 48n

+24WH(Gd) (Gd) + 4max


P


EN,h,q,ε
n


,P (Gd)


(9.4.18)

and therefore that:

P

1

n
⊲


Sumn,1 •

⊟n

i=1UEXN,h,q,ε
n,Gd,ωi



 P


Sumn,1 •

⊟n

i=1UEXN,h,q,ε
n,Gd,ωi



 P

⊟n

i=1UEXN,h,q,ε
n,Gd,ωi



 n2 · P


UEXN,h,q,ε
n,Gd,ωi



 n2 ·

360q

q − 2


log2


ε−1


+ q + 1


+ 324 + 48n

+24WH(Gd) (Gd) + 4max


P


EN,h,q,ε
n


,P (Gd)


(9.4.19)

Now observe that by the triangle inequality, we have that:

E

exp

 T

t
fds


uTd (x)


− Ir


UESN,h,q,ε

n,Gd,Ω,n

 (9.4.20)

=

E

exp

 T

t
fds


uTd (x)


− Ir


1

n
⊲


Sumn,1 •

⊟n

i=1UEXN,h,q,ε
n,Gd,ωi




E


exp

 T

t
fds


uTd (x)


− 1

n


n

i=1


exp

 T

t
fds


· uTd (x)

 (9.4.21)

+


1

n


n

i=1


exp

 T

t
f

X d,t,x
r,ωi


ds


· uTd


X d,t,x
r,ωi


− Ir


1

n
⊲


Sumn,1 •

⊟n

i=1UEXN,h,q,ε
n,Gd,ωi



(9.4.22)

Observe that by the triangle inequality, the absolute homogeneity condition for norms, the fact

that the Brownian motions are independent of each other, Lemma 9.4.2, the fact that n ∈ N, the

fact that the upper limit of error remains bounded by the same bound for all ωi ∈ Ω, and Lemma
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9.4.3, then renders the second summand, (9.4.22), as:


1

n


n

i=1


exp

 T

t
f

X d,t,x
r,ωi


ds · uTd


X d,t,x
r,ωi


− Ir


1

n
⊲


Sumn,1 •

⊟n

i=1UEXN,h,q,ε
n,Gd,ωi





1

n


n

i=1

exp
 T

t
f

X d,t,x
r,ωi


ds · uTd


X d,t,x
r,ωi


− 1

n


n

i=1


Ir


UEXN,h,q,ε

n,Gd,ωi




✓
✓
✓✓1

n

n

i=1

exp
 T

t
f

X d,t,x
r,ωi


ds · uTd


X d,t,x
r,ωi


− Ir


UEXN,h,q,ε

n,Gd,ωi




exp

 T

t
f

X d,t,x
r,ωi


ds · uTd


X d,t,x
r,ωi


− Ir


UEXN,h,q,ε

n,Gd,ωi



This renders (9.4.20) as:

E

exp

 T

t
fds


uTd (x)


− Ir


UESN,h,q,ε

n,Gd,Ω,n




E


exp

 T

t
fds


uTd (x)


− 1

n


n

i=1


exp

 T

t
fds


· uTd (x)



+

exp
 T

t
f

X d,t,x
r,ωi


ds · uTd


X d,t,x
r,ωi


− Ir


UEXN,h,q,ε

n,Gd,ωi

 (9.4.23)

Taking the expectation on both sides of this inequality, and applying the linearity and monotonicity

of expectation yields:

E
E


exp

 T

t
fds


uTd (x)


− Ir


UESN,h,q,ε

n,Gd,Ω,n




(9.4.24)

 E

E

exp

 T

t
fds


uTd (x)


− 1

n


n

i=1


exp

 T

t
fds


· uTd (x)




(9.4.25)

+ E
exp

 T

t
f

X d,t,x
r,ωi


ds · uTd


X d,t,x
r,ωi


− Ir


UEXN,h,q,ε

n,Gd,ωi




(9.4.26)

Consider now, the Lyapunov inequality applied to (9.4.25), which renders it as:

E

E

exp

 T

t
fds


uTd (x)


− 1

n


n

i=1


exp

 T

t
fds


· uTd (x)









E




E


exp

 T

t
fds


uTd (x)


− 1

n


n

i=1


exp

 T

t
fds


· uTd (x)



2








1
2

(9.4.27)
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Then, (Grohs et al., 2018, Corollary 2.6) applied to (9.4.27), then yields that:



E




E


exp

 T

t
fds


uTd (x)


− 1

n


n

i=1


exp

 T

t
fds


· uTd (x)



2








1
2

 2


1

n


E

E

exp

 T

t
fds


uTd (x)


2
 1

2

(9.4.28)

Looking back at (9.4.26), we see that the monotonicity and linearity of expectation tells us that:

E
exp

 T

t
f

X d,t,x
r,ωi


ds · uTd


X d,t,x
r,ωi


− Ir


UEXN,h,q,ε

n,Gd,ωi




(9.4.29)

 E


3ε+ 2ε

uTd (x)
q + 2ε

exp
 b

a
fdx


q

+ ε

exp
 b

a
fdx


− e


q

− euTd (x)


(9.4.30)

 3ε+ 2ε · E
uTd (x)

q

+ 2ε · E

exp
 b

a
fdx


q

+ ε · E

exp
 b

a
fdx


− e


q

− e · E


uTd (x)



(9.4.31)

Note that:

E

X d,t,x
s


= E


x+

 t

s

√
2dWd

r



 x+
√
2 · E

 t

s
dWd

r


(9.4.32)

= x+
√
2 · E


Wd

t−s


(9.4.33)

= x (9.4.34)
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Consider now:

Var

X d,t,x
s


= Var


x+

 t

s

√
2dWd

r



= E


x+

 t

s

√
2dWd

r − E

x+

 t

s

√
2dWd

r

2


= E


x+

 t

s

√
2dWd

r − x

2


= 2 · E
 t

s
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(9.4.35)

Note now that:

Var

Wd

t−s


= E


Wd

t−s

2

− E


Wd

t−s

2

E


Wd
t−s

2

= (t− s) Id (9.4.36)

2 · E


Wd
t−s

2

= 2 (t− s) Id (9.4.37)

Now note that since Wd
r are standard Brownian motions, and their expectation and variance are

0d and Id respectively. Whence it is the case that the probability density function for Wd
t−s is:

fWd
t−s

(x) = (2π)−
d
2 (t− s)−

1
2 exp


−1

2(t− s)
e1,d · [x]2∗


(9.4.38)

However X d,t,x
s is a shifted normal distribution, specifically shifted by x. Its p.d.f. is thus:

fX d,t,x
s

(X ) = (2π)−
d
2 (t− s)−

1
2 exp


−1

2(t− s)
e1,d · [X + x]2∗


(9.4.39)

The Law of the Unconscious Statistician then says that:

E

uTd


X d,t,x
s


=



Rd

uTd (X ) · fX d,t,x
s

(X ) dX (9.4.40)

211



And further that:

E

αd


X d,t,x
s


=



Rd

αd (X ) · fX d,t,x
s

(X ) dX (9.4.41)

Need to re-examine uTd ,αd Note that Itô's Lemma allows us to conclude that:

d αd


X d,t,x
s


= α

′
d


X d,t,x
s


dXt + α

′′
d (Xt) dt (9.4.42)

Now note this that Fubini's theorem states that:

E
 T

t
αd ◦ X d,t,x

s ds


=

 T

t
E

αd ◦ X d,t,x

s


ds (9.4.43)

Remark 9.4.6. Note that diagrammatically, this can be represented as in figure below.

Remark 9.4.7. It may be helpful to think of this as a very crude form of ensembling.
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Figure 9.2: Neural network diagram for the UES network.
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Chapter 10

Conclusions and Further Research

We will present three avenues of further research and related work on parameter estimates here.

10.1 Further operations and further kinds of neural networks

Note, for instance, that several classical operations are done on neural networks that have yet to

be accounted for in this framework and talked about in the literature. We will discuss two of them

dropout and dilation and provide lemmas that may be useful to future research.

10.1.1 Mergers and Dropout

Definition 10.1.1 (Hadamard Product). Let m,n ∈ N. Let A,B ∈ Rm×n. For all i ∈ {1, 2, . . . ,m}

and j ∈ {1, 2, . . . , n} define the Hadamard product ⊙ : Rm×n × Rm×n → Rm×n as:

A⊙B := [A⊙B]i,j = [A]i,j × [B]i,j ∀i, j (10.1.1)

Definition 10.1.2 (Scalar product of weights). Let ν ∈ NN, L ∈ N, i, j, k ∈ N, and c ∈ R.

Assume also that L (ν) = (l0, l1, l2, . . . , lL). Assume then that the neural network is given by ν =

((W1, b1) , (W2, b2) , . . . , (WL, bL)). We will denote by c⊛i,jν as the neural network which, for i ∈ N∩

[1, L− 1], j ∈ N∩[1, li], is given by c⊛i,jν =

(W1, b1) , (W2, b2) , . . . ,


W̃i, bi


,

W̃i+1, bi+1


, . . . (WL, bL)
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where it is the case that:

W̃i =

k
j,j,c−1
li,li

+ Ili

Wi (10.1.2)

Definition 10.1.3 (The Dropout Operator). Let ν ∈ NN, L ∈ N, i1, i2, . . . , ik, j, k ∈ N, and

c1, c2, . . . , ck ∈ R. Assume also that L (ν) = (l0, l1, l2, . . . , lL). Assume then that the neural network

is given by ν = ((W1, b1) , (W2, b2) , . . . , (WL, bL)). We will denote by DropoutUnif
n (ν) the neural

network that is given by:

0⊛i1,j1

0⊛i2,j2


. . . 0⊛in,jn ν . . .


(10.1.3)

Where for each k ∈ {1, 2, . . . , n} it is the case that i ∼ Unif{1, L− 1} and j ∼ Unif{1, lj}

We will also define the dropout operator introduced in Srivastava et al. (2014).

Definition 10.1.4 (Realization with dropout). Let ν ∈ NN, L, n ∈ N, p ∈ (0, 1), L (ν) =

(l0, l1, . . . , BL), and that NN = ((W1, b1) , (W2, b2) , . . . , (WL, bL)). Let it be the case that for each

n ∈ N, ρn = {x1, x2, . . . , xn} ∈ Rn where for each i ∈ {1, 2, . . . , n} it is the case that xi ∼ Bern(p).

We will then denote IDr (ν) ∈ C

RI(ν),RO(ν)


, the continuous function given by:

IDr (ν) = ρlL ⊙ r

Wl


ρlL−1

⊙ r (WL−1 (. . .) + bL−1)

+ bL


(10.1.4)
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10.2 Code Listings
Parts of this code have been released on CRAN under the package name nnR, and can be found in
Rafi and Padgett (2024), with the corresponding repository being found at Rafi (2024):

Listing 10.1: R code for neural network generation
1 #' Function to generate a random matrix with specified dimensions.
2 #'
3 #' @param rows number of rows.
4 #' @param cols number of columns.
5 #'
6 #' @return a random matrix of dimension rows times columns with elements from
7 #' a standard normal distribution
8

9 generate_random_matrix <- function(rows, cols) {
10 (rows * cols) |>
11 rnorm() |>
12 matrix(rows, cols) -> result
13 return(result)
14 }
15

16 #' @title create_neural_network
17 #' @description Function to create a list of lists for neural network layers
18 #'
19 #' @param layer_architecture a list specifying the width of each layer
20 #'
21 #' @return An ordered list of ordered pairs of \eqn{(W,b)}. Where \eqn{W} is the

matrix
22 #' representing the weight matrix at that layer and \eqn{b} the bias vector. Entries
23 #' on the matrix come from a standard normal distribution. Neural networks
24 #' are defined to be elements belonging to the following set:
25 #' \deqn{
26 #'
27 #' \mathsf{NN} = \bigcup_{L\in \N} \bigcup_{l_0,l_1,...,l_L \in \N}
28 #' \left( \times^L_{k=1} \left[ \mathbb{R}^{l_k \times l_{k-1}} \times \R^{l_k}\right]

\right)
29 #'
30 #'
31 #' }
32 #'
33 #'
34 #'
35 #'
36 #' We will use the definition of neural networks as found in:
37 #'
38 #' @references Grohs, P., Hornung, F., Jentzen, A. et al.
39 #' Space-time error estimates for deep neural network approximations
40 #' for differential equations. Adv Comput Math 49, 4 (2023).
41 #' \url{https://doi.org/10.1007/s10444-022-09970-2}.
42 #' @export
43

44 create_neural_network <- function(layer_architecture) {
45 if (all(sapply(layer_architecture, function(x) is.numeric(x) && x %% 1 == 0 && x >

0)) == FALSE) {
46 stop("Non␣integer␣or␣negative␣neural␣network␣width␣specified.")
47 } else if (layer_architecture |> length() < 2) {
48 stop("Neural␣network␣must␣have␣atleast␣two␣layers.")
49 } else {
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50 layer_architecture |> length() -> L
51

52 # Initialize the list of lists
53 neural_network <- list()
54

55 # Generate matrices W and vectors b for each layer
56 for (i in 1:(L - 1)) {
57 # Set dimensions for W and b
58 layer_architecture[i] -> input_size
59 layer_architecture[i + 1] -> output_size
60

61 # Create matrix W
62 generate_random_matrix(output_size, input_size) -> W
63

64 # Create vector b
65 output_size |>
66 rnorm() |>
67 matrix(output_size, 1) -> b
68

69 # Add W and b to the list
70 list(W = W, b = b) -> neural_network[[i]]
71 }
72

73 return(neural_network)
74 }
75 }

Listing 10.2: R code for auxilliary functions
1 source("R/is_nn.R")
2 #' @title hid
3 #'
4 #' @description The function that returns the number of hidden layers of a
5 #' neural network. Denoted \eqn{\mathsf{H}}
6 #'
7 #' @param nu a neural network of the type generated by create_neural_network()
8 #'
9 #' By definition \eqn{\mathsf{H}(\nu) = \mathsf{D}(\nu) - 1}
10 #'
11 #' @references Definition 1.3.1. Jentzen, A., Kuckuck, B., and von Wurstemberger, P.

(2023).
12 #' Mathematical introduction to deep learning: Methods, implementations,
13 #' and theory. \url{https://arxiv.org/abs/2310.20360}.
14 #'
15 #' @return Integer representing the number of hidden layers.
16 #' @export
17

18 hid <- function(nu) {
19 if (nu |> is_nn() == TRUE) {
20 return(length(nu) - 1)
21 } else {
22 stop("Only␣neural␣networks␣can␣have␣hidden␣layers")
23 }
24 }
25

26 #' @title dep
27 #' @description The function that returns the depth of a neural network. Denoted
28 #' \eqn{\mathsf{D}}.
29 #'
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30 #' @param nu a neural network of the type generated by
31 #' create_neural_network(). Very straightforwardly it is the
32 #' length of the list where neural networks are defined as an odered list of
33 #' lists.
34 #' @references Definition 1.3.1. Jentzen, A., Kuckuck, B., and von Wurstemberger, P.

(2023).
35 #' Mathematical introduction to deep learning: Methods, implementations,
36 #' and theory. \url{https://arxiv.org/abs/2310.20360}.
37 #'
38 #' @return Integer representing the depth of the neural network.
39 #' @export
40

41 dep <- function(nu) {
42 if (nu |> is_nn() == TRUE) {
43 return(length(nu))
44 } else {
45 stop("Only␣neural␣networks␣can␣have␣depth")
46 }
47 }
48

49 #' @title inn
50 #' @description The function that returns the input layer size of a neural
51 #' network. Denoted \eqn{\mathsf{I}}
52 #'
53 #' @param nu A neural network of the type generated by
54 #' create_neural_network().
55 #'
56 #' @references Definition 1.3.1. Jentzen, A., Kuckuck, B., and von Wurstemberger, P.

(2023).
57 #' Mathematical introduction to deep learning: Methods, implementations,
58 #' and theory. \url{https://arxiv.org/abs/2310.20360}.
59 #'
60 #' @return An integer representing the input width of the neural network.
61 #' @export
62

63 inn <- function(nu) {
64 if (nu |> is_nn() == TRUE) {
65 return(dim(nu[[1]]$W)[2])
66 } else {
67 stop("Only␣neural␣networks␣can␣have␣size␣of␣input␣layers")
68 }
69 }
70

71

72 #' @title out
73 #' @description The function that returns the output layer size of a neural
74 #' network. Denoted \eqn{\mathsf{O}}.
75 #'
76 #' @param nu A neural network of the type generated by create_neural_network().
77 #'
78 #' @references Definition 1.3.1. Jentzen, A., Kuckuck, B., and von Wurstemberger, P.

(2023).
79 #' Mathematical introduction to deep learning: Methods, implementations,
80 #' and theory. \url{https://arxiv.org/abs/2310.20360}.
81 #'
82 #' @return An integer representing the output width of the neural network.
83 #' @export
84

85 out <- function(nu) {
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86 if (nu |> is_nn() == TRUE) {
87 return(dim(nu[[length(nu)]]$W)[1])
88 } else {
89 stop("Ony␣neural␣networks␣can␣have␣size␣of␣output␣layers")
90 }
91 }
92

93

94 #' @title lay
95 #' @description The function that returns the layer architecture of a neural
96 #' network.
97 #'
98 #' @param nu A neural network of the type generated by
99 #' create_neural_network(). Denoted \eqn{\mathsf{L}}.

100 #'
101 #' @references Definition 1.3.1. Jentzen, A., Kuckuck, B., and von Wurstemberger, P.

(2023).
102 #' Mathematical introduction to deep learning: Methods, implementations,
103 #' and theory. \url{https://arxiv.org/abs/2310.20360}.
104 #'
105 #' @return A tuple representing the layer architecture of our neural network.
106 #' @export
107

108 lay <- function(nu) {
109 if (nu |> is_nn() == TRUE) {
110 layer_architecture <- list()
111 for (i in 1:length(nu)) {
112 layer_architecture |> append(dim(nu[[i]]$W)[1]) -> layer_architecture
113 }
114 inn(nu) |> append(layer_architecture) -> layer_architecture
115 return(layer_architecture)
116 } else {
117 stop("Only␣neural␣networks␣can␣have␣layer␣architectures")
118 }
119 }
120

121

122 #' @title param
123 #' @description The function that returns the numbe of parameters of a neural
124 #' network.
125 #'
126 #' @param nu A neural network of the type generated by
127 #' create_neural_network(). Denoted \eqn{\mathsf{P}}.
128 #'
129 #' @references Definition 1.3.1. Jentzen, A., Kuckuck, B., and von Wurstemberger, P.

(2023).
130 #' Mathematical introduction to deep learning: Methods, implementations,
131 #' and theory. \url{https://arxiv.org/abs/2310.20360}.
132 #'
133 #' @return An integer representing the parameter count of our neural network.
134 #' @export
135

136 param <- function(nu) {
137 if (nu |> is_nn() == TRUE) {
138 0 -> param_count
139 for (i in 1:length(nu)) {
140 param_count + length(nu[[i]]$W) + length(nu[[i]]$b) -> param_count
141 }
142 return(param_count)
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143 } else {
144 stop("Only␣neural␣networks␣can␣have␣parameters")
145 }
146 }

Listing 10.3: R code for activation functions ReLU and Sigmoid
1 #' @title: ReLU
2 #' @description: The ReLU activation function
3 #'
4 #' @param x A real number that is the input to our ReLU function.
5 #'
6 #' @return The output of the standard ReLU function, i.e. \eqn{\max\{0,x\}}. See also

\code{\link{Sigmoid}}.
7 #' and \code{\link{Tanh}}.
8 #' @export
9

10 ReLU <- function(x) {
11 if (x |> is.numeric() && x |> length() == 1 && x |> is.finite()) {
12 return(x |> max(0))
13 } else {
14 stop("x␣must␣be␣a␣real␣number")
15 }
16 }
17

18 #' @title: Sigmoid
19 #' @description The Sigmoid activation function.
20 #'
21 #' @param x a real number that is the input to our Sigmoid function
22 #'
23 #' @return The output of a standard Sigmoid function,
24 #' i,e. \eqn{\frac{1}{1 + \exp(-x)}}.
25 #' See also \code{\link{Tanh}}.and \code{\link{ReLU}}.
26 #' @export
27

28 Sigmoid <- function(x) {
29 if (x |> is.numeric() && x |> length() == 1 && x |> is.finite()) {
30 return(1 / (1 + exp(-x)))
31 } else {
32 stop("x␣must␣be␣a␣real␣number")
33 }
34 }
35

36 #' @title Tanh
37 #' @description The tanh activation function
38 #'
39 #' @param x a real number
40 #'
41 #' @return the \eqn{tanh} of x. See also \code{\link{Sigmoid}} and
42 #' \code{\link{ReLU}}.
43 #' @export
44

45 Tanh <- function(x) {
46 if (x |> is.numeric() && x |> length() == 1 && x |> is.finite()) {
47 return(x |> tanh())
48 } else {
49 stop("x␣must␣be␣a␣real␣number")
50 }
51 }
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Listing 10.4: R code for realizations
1 source("R/aux_fun.R")
2 source("R/is_nn.R")
3

4 #' @title inst
5 #' @description The function that instantiates a neural network as created
6 #' by create_neural_network().
7 #'
8 #'
9 #' @param neural_network An ordered list of lists, of the type generated by
10 #' create_neural_network() where each element in the
11 #' list of lists is a pair \eqn{(W,b)} representing the weights and biases of
12 #' that layer.
13 #'
14 #' \emph{NOTE:} We will call istantiation what Grohs et. al. call "realization".
15 #'
16 #' @references Grohs, P., Hornung, F., Jentzen, A. et al. Space-time error estimates

for deep
17 #' neural network approximations for differential equations. Adv Comput Math 49, 4

(2023).
18 #' https://doi.org/10.1007/s10444-022-09970-2.
19 #'
20 #' Definition 1.3.4. Jentzen, A., Kuckuck, B., and von Wurstemberger, P. (2023).
21 #' Mathematical introduction to deep learning: Methods, implementations,
22 #' and theory. \url{https://arxiv.org/abs/2310.20360}
23 #'
24 #' @param activation_function A continuous function applied to the output of each

layer
25 #' @param x our input to the continuous function formed from activation. Our input

will
26 #' be an element in \eqn{\mathbb{R}^d} for some appropriate \eqn{d}.
27 #'
28 #' @return The output of the function that is the instantiation of the given
29 #' neural network with the given activation function at the given \eqn{x}.
30 #'
31 #' @export
32 #'
33

34

35 inst <- function(neural_network, activation_function, x) {
36 if (neural_network |> is_nn() == FALSE) {
37 stop("Only␣neural␣networks␣can␣be␣instantiated")
38 } else if (neural_network |> inn() != x |>
39 matrix() |>
40 nrow()) {
41 stop("x␣does␣not␣match␣input␣size␣required␣by␣neural␣network")
42 } else {
43 if (dep(neural_network) == 1) {
44 neural_network[[1]]$W %*% x + neural_network[[1]]$b -> output
45 return(output)
46 }
47

48 x |> matrix() -> output
49

50 for (i in 1:(length(neural_network) - 1)) {
51 neural_network[[i]]$W %*% output + neural_network[[i]]$b -> linear_transform
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52 apply(linear_transform,
53 MARGIN = 1,
54 FUN = activation_function
55 ) -> output
56 }
57 neural_network[[length(neural_network)]]$W %*% output +
58 neural_network[[length(neural_network)]]$b -> output
59 return(output)
60 }
61 }

Listing 10.5: R code for parallelizing two neural networks
1 source("R/aux_fun.R")
2 source("R/Tun.R")
3 source("R/is_nn.R")
4

5

6 #' Function for creating a block diagonal given two matrices.
7 #'
8 #' @param matrix1 A matrix.
9 #' @param matrix2 A matrix
10 #'
11 #' @return A block diagonal matrix with matrix1 on top left
12 #' and matrix2 on bottom right.
13

14 create_block_diagonal <- function(matrix1, matrix2) {
15 nrow(matrix1) -> m1
16 nrow(matrix2) -> m2
17 ncol(matrix1) -> n1
18 ncol(matrix2) -> n2
19

20 # Create a block diagonal matrix
21 0 |> matrix(m1 + m2, n1 + n2) -> block_diagonal_matrix
22 block_diagonal_matrix[1:m1, 1:n1] <- matrix1
23 block_diagonal_matrix[(m1 + 1):(m1 + m2), (n1 + 1):(n1 + n2)] <-
24 matrix2
25

26 return(block_diagonal_matrix)
27 }
28

29 #' @title stk
30 #' @description A function that stacks neural networks.
31 #'
32 #' @param nu neural network.
33 #' @param mu neural network.
34 #'
35 #' @return A stacked neural network of \eqn{\nu} and \eqn{\mu}, i.e. \eqn{\nu \

boxminus \mu}
36 #'
37 #'
38 #' \strong{NOTE:} This is different than the one given in Grohs, et. al. 2023.
39 #' While we use padding to equalize neural networks being parallelized our
40 #' padding is via the Tun network whereas Grohs et. al. uses repetitive
41 #' composition of the i network. We use repetitive composition of the \eqn{\mathsf{Id_

1}}
42 #' network. See \code{\link{Id}} \code{\link{comp}}
43 #'
44 #' \strong{NOTE:} The terminology is also different from Grohs et. al. 2023.
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45 #' We call stacking what they call parallelization. This terminology change was
46 #' inspired by the fact that parallelization implies commutativity but this
47 #' operation is not quite commutative. It is commutative up to transposition
48 #' of our input x under instantiation with a continuous activation function.
49 #'
50 #' Also the work parallelization has a lot of baggage when it comes to
51 #' artificial neural networks in that it often means many different CPUs working
52 #' together.
53 #'
54 #' \emph{Remark:} We will use only one symbol for stacking equal and unequal depth
55 #' neural networks, namely "stk". This is for usability but also that
56 #' for all practical purposes only the general stacking of neural networks
57 #' of different sizes is what is needed.
58 #'
59 #' \emph{Remark:} We have two versions, a prefix and an infix version.
60 #'
61 #' This operation on neural networks, called "parallelization" is found in:
62 #' @references Grohs, P., Hornung, F., Jentzen, A. et al. Space-time error estimates

for deep
63 #' neural network approximations for differential equations. Adv Comput Math 49, 4

(2023).
64 #' https://doi.org/10.1007/s10444-022-09970-2
65 #'
66 #' @export
67

68 stk <- function(nu, mu) {
69 if (nu |> is_nn() && mu |> is_nn()) {
70 if (dep(nu) == dep(mu)) {
71 list() -> parallelized_network
72 for (i in 1:length(nu)) {
73 create_block_diagonal(nu[[i]]$W, mu[[i]]$W) -> parallelized_W
74 rbind(nu[[i]]$b, mu[[i]]$b) -> parallelized_b
75 list(W = parallelized_W, b = parallelized_b) -> parallelized_network[[i]]
76 }
77 return(parallelized_network)
78 }
79

80 if (dep(nu) > dep(mu)) {
81 (dep(nu) - dep(mu) + 1) |> Tun(d = out(mu)) -> padding
82 padding |> comp(mu) -> padded_network
83 nu |> stk(padded_network) -> parallelized_network
84 return(parallelized_network)
85 }
86

87 if (dep(nu) < dep(mu)) {
88 (dep(mu) - dep(nu) + 1) |> Tun(d = out(nu)) -> padding
89 padding |> comp(nu) -> padded_network
90 padded_network |> stk(mu) -> parallelized_network
91 return(parallelized_network)
92 }
93 } else {
94 stop("Please␣try␣stacking␣neural␣networks")
95 }
96 }
97

98 #' The stk function.
99 #'

100 #' @param nu neural network.
101 #' @param mu neural network.
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102 #'
103 #' @return A stacked neural network of nu and mu.
104 #' @export
105

106

107 `%stk%` <- function(nu, mu) {
108 if (nu |> is_nn() && mu |> is_nn()) {
109 if (dep(nu) == dep(mu)) {
110 list() -> parallelized_network
111 for (i in 1:length(nu)) {
112 create_block_diagonal(nu[[i]]$W, mu[[i]]$W) -> parallelized_W
113 rbind(nu[[i]]$b, mu[[i]]$b) -> parallelized_b
114 list(W = parallelized_W, b = parallelized_b) -> parallelized_network[[i]]
115 }
116 return(parallelized_network)
117 }
118

119 if (dep(nu) > dep(mu)) {
120 (dep(nu) - dep(mu) + 1) |> Tun(d = out(mu)) -> padding
121 padding |> comp(mu) -> padded_network
122 nu |> stk(padded_network) -> parallelized_network
123 return(parallelized_network)
124 }
125

126 if (dep(nu) < dep(mu)) {
127 (dep(mu) - dep(nu) + 1) |> Tun(d = out(nu)) -> padding
128 padding |> comp(nu) -> padded_network
129 padded_network |> stk(mu) -> parallelized_network
130 return(parallelized_network)
131 }
132 } else {
133 stop("Please␣try␣stacking␣neural␣networks")
134 }
135 }

Listing 10.6: R code for affine neural networks
1 #' @title Aff
2 #' @description The function that returns \eqn{\mathsf{Aff}} neural networks.
3 #'
4 #' @param W An \eqn{m \times n} matrix representing the weight of the affine
5 #' neural network
6 #' @param b An \eqn{m \times 1} vector representing the bias of the affine
7 #' neural network
8 #'
9 #' @references Grohs, P., Hornung, F., Jentzen, A. et al. Space-time error estimates

for deep
10 #' neural network approximations for differential equations. Adv Comput Math 49, 4

(2023).
11 #' https://doi.org/10.1007/s10444-022-09970-2
12 #'
13 #' Definition 2.3.1. Jentzen, A., Kuckuck, B., and von Wurstemberger, P. (2023).
14 #' Mathematical introduction to deep learning: Methods, implementations,
15 #' and theory. \url{https://arxiv.org/abs/2310.20360}
16 #'
17 #' @return Returns the network \eqn{((W,b))} representing an affine neural network.

Also
18 #' denoted as \eqn{\mathsf{Aff}_{W,b}}
19 #' See also \code{\link{Cpy}} and \code{\link{Sum}}.
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20 #' @export
21

22 Aff <- function(W, b) {
23 if (W |> is.matrix() == FALSE) (W |> matrix() -> W)
24 if (b |> is.matrix() == FALSE) (b |> matrix() -> b)
25 list(list(W = W, b = b)) -> return_network
26 return(return_network)
27 }
28

29 #' @title Cpy
30 #' @description The function that returns \eqn{\mathsf{Cpy}} neural networks.
31 #' These are neural networks defined as such
32 #' \deqn{
33 #' \mathsf{Aff}_{\left[ \mathbb{I}_k \: \mathbb{I}_k \: \cdots \: \mathbb{I}_k\right]^

T,0_{k}}
34 #' }
35 #'
36 #' @param n number of copies to make.
37 #' @param k the size of the input vector.
38 #'
39 #' @return Returns an affine network that makes a concatenated vector that is \eqn{n}
40 #' copies of the input vector of size \eqn{k}. See \code{\link{Aff}} and \code{\link{

Sum}}.
41 #'
42 #' @references Definition 2.4.6. Jentzen, A., Kuckuck, B., and von Wurstemberger, P.

(2023).
43 #' Mathematical introduction to deep learning: Methods, implementations,
44 #' and theory. \url{https://arxiv.org/abs/2310.20360}
45 #'
46 #'
47 #' @export
48

49 Cpy <- function(n, k) {
50 if (n %% 1 != 0 ||
51 n < 1 ||
52 k %% 1 != 0 ||
53 k < 1) {
54 stop("n␣and␣k␣must␣be␣natural␣numbers")
55 } else {
56 k |> diag() -> W
57 for (i in 2:n) {
58 W |> rbind(k |> diag()) -> W
59 }
60 0 |> matrix(n * k) -> b
61 list(list(W = W, b = b)) -> return_network
62 return(return_network)
63 }
64 }
65

66 #' @title Sum
67 #' @description The function that returns \eqn{\mathsf{Sum}} neural networks.
68 #'
69 #' These are neural networks defined as such
70 #' \deqn{
71 #' \mathsf{Aff}_{\left[ \mathbb{I}_k \: \mathbb{I}_k \: \cdots \: \mathbb{I}_k\right

],0_{k}}
72 #' }
73 #'
74 #' @param n number of copies of a certain vector to be summed.
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75 #' @param k the size of the summation vector.
76 #'
77 #' @return An affine neural network that will take a vector of size
78 #' \eqn{n \times k} and return the summation vector that is of length
79 #' \eqn{k}. See also \code{\link{Aff}} and \code{\link{Cpy}}.
80 #'
81 #' @references Definition 2.4.1. Jentzen, A., Kuckuck, B., and von Wurstemberger, P.

(2023).
82 #' Mathematical introduction to deep learning: Methods, implementations,
83 #' and theory. \url{https://arxiv.org/abs/2310.20360}
84 #'
85 #'
86 #' @export
87 #'
88

89

90 Sum <- function(n, k) {
91 if (n %% 1 != 0 ||
92 n < 1 ||
93 k %% 1 != 0 ||
94 k < 1) {
95 stop("n␣and␣k␣must␣be␣natural␣numbers")
96 } else {
97 k |> diag() -> W
98 for (i in 2:n) {
99 W |> cbind(k |> diag()) -> W

100 }
101 0 |> matrix(k) -> b
102 list(list(W = W, b = b)) -> return_network
103

104 return(return_network)
105 }
106 }

Listing 10.7: R code for composition of two neural networks
1 source("R/aux_fun.R")
2 source("R/is_nn.R")
3

4

5 #' @title comp
6 #' @description The function that takes the composition of two neural
7 #' networks assuming they are compatible, i.e., given
8 #' \eqn{\nu_1, \nu_2 \in \mathsf{NN}}, it must be the case that
9 #' \eqn{\mathsf{I}(\nu)_1 = \mathsf{O}(\nu_2)}.
10 #'
11 #' @param phi_1 first neural network to be composed, goes on the left
12 #' @param phi_2 second neural network to be composed, goes on right
13 #'
14 #' @return The composed neural network. See also \code{\link{dep}}.
15 #' Composition of neural networks is the operation defined for \eqn{\nu_1 \in \mathsf{

NN}}
16 #' and \eqn{\nu_2 \in \mathsf{NN}} as:
17 #'
18 #' \deqn{
19 #' \nu_1 \bullet \nu_2 = \begin{cases} (( W'_1,b'_1 ),
20 #' ( W'_2,b'_2 ), ...,( W'_{M-1}, b'_{M-1}), ( W_1W'_M, W_1b'_{M} + b_1), (W_2, b_2 )

,\\...,
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21 #' ( W_L,b_L )) & :( L> 1 ) \land ( M > 1 ) \\((W_1W'_1,W_1b'_1+b_1),(W_2,b_2), (W_3,b
_3),...,

22 #' (W_Lb_L)) & :(L>1) \land (M=1) \\((W'_1, b'_1),(W'_2,b'_2), ...,
23 #' (W'_{M-1}, b'_{M-1})(W_1, b'_M + b_1)) &:(L=1) \land (M>1) \\ ((W_1W'_1, W_1b'_1+b_

1)) &:(L=1)
24 #' \land (M=1)\end{cases}
25 #'
26

27 #' }
28 #'
29 #'
30 #' @references Grohs, P., Hornung, F., Jentzen, A. et al.
31 #' Space-time error estimates for deep neural network approximations
32 #' for differential equations. Adv Comput Math 49, 4 (2023).
33 #' \url{https://doi.org/10.1007/s10444-022-09970-2}.
34 #'
35 #' @references Definition 2.1.1. Jentzen, A., Kuckuck, B., and von Wurstemberger, P.

(2023).
36 #' Mathematical introduction to deep learning: Methods, implementations,
37 #' and theory. \url{https://arxiv.org/abs/2310.20360}
38 #'
39 #' \emph{Remark:} We have two versions of this function, an
40 #' infix version for close resemblance to mathematical notation and
41 #' prefix version.
42

43 #' @encoding utf8
44 #' @export
45 #'
46

47

48 comp <- function(phi_1, phi_2) {
49 if (phi_1 |> is_nn() && phi_2 |> is_nn()) {
50 dep(phi_1) -> L
51 dep(phi_2) -> L_
52

53 if (L > 1 & L_ > 1) {
54 phi_2[-L_] -> beginning
55 phi_1[-1] -> end
56 phi_1[[1]]$W %*% phi_2[[L_]]$W -> mid_W
57 phi_1[[1]]$W %*% phi_2[[L_]]$b + phi_1[[1]]$b -> mid_b
58 list(W = mid_W, b = mid_b) -> mid
59 c(
60 beginning,
61 list(mid),
62 end
63 ) -> composed_network
64 return(composed_network)
65 } else if (L > 1 & L_ == 1) {
66 phi_1[[1]]$W %*% phi_2[[1]]$W -> beginning_W
67 phi_1[[1]]$W %*% phi_2[[1]]$b + phi_1[[1]]$b -> beginning_b
68 list(
69 W = beginning_W,
70 b = beginning_b
71 ) -> beginning
72 phi_1[-1] -> end
73 c(
74 list(beginning),
75 end
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76 ) -> composed_network
77 return(composed_network)
78 } else if (L == 1 & L_ > 1) {
79 phi_2[-L_] -> beginning
80 phi_1[[1]]$W %*% phi_2[[L_]]$W -> end_W
81 phi_1[[1]]$W %*% phi_2[[L_]]$b + phi_1[[1]]$b -> end_b
82 list(
83 W = end_W,
84 b = end_b
85 ) -> end
86 c(
87 beginning,
88 list(end)
89 ) -> composed_network
90 return(composed_network)
91 } else if (L == 1 & L_ == 1) {
92 list() -> composed_network
93 phi_1[[1]]$W %*% phi_2[[1]]$W -> W
94 phi_1[[1]]$W %*% phi_2[[1]]$b + phi_1[[1]]$b -> b
95 list(
96 W = W,
97 b = b
98 ) -> composed_network[[1]]
99 return(composed_network)

100 } else {
101 stop("Dimensionality␣mismatch")
102 }
103 } else {
104 stop("Only␣neural␣networks␣can␣be␣composed.")
105 }
106 }
107

108 #' The `infix version of comp function
109 #'
110 #' @param phi_1 first neural network to be composed, goes on the left
111 #' @param phi_2 second neural network to be composed, goes on right
112 #'
113 #' @rdname comp
114 #' @export
115

116

117 `%comp%` <- function(phi_1, phi_2) {
118 if (phi_1 |> is_nn() && phi_2 |> is_nn()) {
119 dep(phi_1) -> L
120 dep(phi_2) -> L_
121

122 if (L > 1 & L_ > 1) {
123 phi_2[-L_] -> beginning
124 phi_1[-1] -> end
125 phi_1[[1]]$W %*% phi_2[[L_]]$W -> mid_W
126 phi_1[[1]]$W %*% phi_2[[L_]]$b + phi_1[[1]]$b -> mid_b
127 list(W = mid_W, b = mid_b) -> mid
128 c(
129 beginning,
130 list(mid),
131 end
132 ) -> composed_network
133 return(composed_network)
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134 } else if (L > 1 & L_ == 1) {
135 phi_1[[1]]$W %*% phi_2[[1]]$W -> beginning_W
136 phi_1[[1]]$W %*% phi_2[[1]]$b + phi_1[[1]]$b -> beginning_b
137 list(
138 W = beginning_W,
139 b = beginning_b
140 ) -> beginning
141 phi_1[-1] -> end
142 c(
143 list(beginning),
144 end
145 ) -> composed_network
146 return(composed_network)
147 } else if (L == 1 & L_ > 1) {
148 phi_2[-L_] -> beginning
149 phi_1[[1]]$W %*% phi_2[[L_]]$W -> end_W
150 phi_1[[1]]$W %*% phi_2[[L_]]$b + phi_1[[1]]$b -> end_b
151 list(
152 W = end_W,
153 b = end_b
154 ) -> end
155 c(
156 beginning,
157 list(end)
158 ) -> composed_network
159 return(composed_network)
160 } else if (L == 1 & L_ == 1) {
161 list() -> composed_network
162 phi_1[[1]]$W %*% phi_2[[1]]$W -> W
163 phi_1[[1]]$W %*% phi_2[[1]]$b + phi_1[[1]]$b -> b
164 list(
165 W = W,
166 b = b
167 ) -> composed_network[[1]]
168 return(composed_network)
169 } else {
170 stop("Dimensionality␣mismatch")
171 }
172 } else {
173 stop("Only␣neural␣networks␣can␣be␣composed.")
174 }
175 }

Listing 10.8: R code for scalar multiplication
1 source("R/comp.R")
2 source("R/aux_fun.R")
3 source("R/is_nn.R")
4

5 #' @title slm
6 #'
7 #' @description The function that returns the left scalar multiplication
8 #' neural network
9 #'
10 #' @param a A real number.
11 #' @param nu A neural network of the kind created by create_neural_network.
12 #'
13 #' @return Returns a neural network that is \eqn{a \triangleright \nu}. This
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14 #' instantiates as \eqn{a \cdot f(x)} under continuous function activation. More
specifically

15 #' we define operation as:
16 #'
17 #' Let \eqn{\lambda \in \mathbb{R}}. We will denote by \eqn{(\cdot) \triangleright (\

cdot):
18 #' \mathbb{R} \times \mathsf{NN} \rightarrow \mathsf{NN}} the function satisfying for

all
19 #' \eqn{\nu \in \mathsf{NN}} and \eqn{\lambda \in \mathbb{R}} that \eqn{\lambda \

triangleright \nu =
20 #' \mathsf{Aff}_{\lambda \mathbb{I}_{\mathsf{I}(\nu)},0} \bullet \nu}.
21

22 #' @references Definition 2.3.4. Jentzen, A., Kuckuck, B., and von Wurstemberger, P.
(2023).

23 #' Mathematical introduction to deep learning: Methods, implementations,
24 #' and theory. \url{https://arxiv.org/abs/2310.20360}.
25 #'
26 #' \emph{Note:} We will have two versions of this operation, a prefix and an
27 #' infix version.
28 #' @export
29

30

31 slm <- function(a, nu) {
32 if (a |> is.numeric() &&
33 length(a) == 1 &&
34 a |> is.finite() &&
35 nu |> is_nn()) {
36 nu |> out() -> constant_matrix_size
37 list() -> multiplier_network
38 a |> diag(constant_matrix_size) -> W
39 0 |> matrix(constant_matrix_size) -> b
40 list(W = W, b = b) -> multiplier_network[[1]]
41 multiplier_network |> comp(nu) -> return_network
42 return(return_network)
43 } else {
44 stop("a␣must␣be␣a␣real␣number␣and␣nu␣must␣be␣a␣neural␣network")
45 }
46 }
47

48 #' @title srm
49 #' @description The function that returns the right scalar multiplication
50 #' neural network
51 #'
52 #' @param nu A neural network of the type generated by create_neural_network().
53 #' @param a A real number.
54 #'
55 #' @return Returns a neural network that is \eqn{\nu \triangleleft a}. This
56 #' instantiates as \eqn{f(a \cdot x)}.under continuous function activation. More
57 #' specifically we will define this operation as:
58 #'
59 #' Let \eqn{\lambda \in \mathbb{R}}. We will denote by \eqn{(\cdot) \triangleleft (\

cdot):
60 #' \mathsf{NN} \times \mathbb{R} \rightarrow \mathsf{NN}} the function satisfying for

all
61 #' \eqn{\nu \in \mathsf{NN}} and \eqn{\lambda \in \mathbb{R}} that \eqn{\nu \

triangleleft \lambda =
62 #' \nu \bullet \mathsf{Aff}_{\lambda \mathbb{I}_{\mathsf{I}(\nu)},0}}.
63 #'
64 #' @references Definition 2.3.4. Jentzen, A., Kuckuck, B., and von Wurstemberger, P.
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(2023).
65 #' Mathematical introduction to deep learning: Methods, implementations,
66 #' and theory. \url{https://arxiv.org/abs/2310.20360}.
67 #'
68 #' \emph{Note:} We will have two versions of this operation, a prefix
69 #' and an infix version.
70 #' @export
71

72 srm <- function(nu, a) {
73 if (a |> is.numeric() &&
74 length(a) == 1 &&
75 a |> is.finite() &&
76 nu |> is_nn()) {
77 nu |> inn() -> constant_matrix_size
78 list() -> multiplier_network
79 a |> diag(constant_matrix_size) -> W
80 0 |> matrix(constant_matrix_size) -> b
81 list(W = W, b = b) -> multiplier_network[[1]]
82 nu |> comp(multiplier_network) -> return_network
83 return(return_network)
84 } else {
85 stop("a␣must␣be␣a␣real␣number␣and␣nu␣must␣be␣a␣neural␣network")
86 }
87 }
88

89

90 #'
91 #' @param a A real number.
92 #' @param nu A neural network of the type generated by create_neural_network().
93 #'
94 #' @rdname slm
95 #' @export
96

97 `%slm%` <- function(a, nu) {
98 if (a |> is.numeric() &&
99 length(a) == 1 &&

100 a |> is.finite() &&
101 nu |> is_nn()) {
102 nu |> out() -> constant_matrix_size
103 list() -> multiplier_network
104 a |> diag(constant_matrix_size) -> W
105 0 |> matrix(constant_matrix_size) -> b
106 list(W = W, b = b) -> multiplier_network[[1]]
107 multiplier_network |> comp(nu) -> return_network
108 return(return_network)
109 } else {
110 stop("a␣must␣be␣a␣real␣number␣and␣nu␣must␣be␣a␣neural␣network")
111 }
112 }
113

114 #' @param nu A neural network
115 #' @param a A real number.
116 #'
117 #' @rdname srm
118 #' @export
119

120 `%srm%` <- function(nu, a) {
121 if (a |> is.numeric() &&
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122 length(a) == 1 &&
123 a |> is.finite() &&
124 nu |> is_nn()) {
125 nu |> inn() -> constant_matrix_size
126 list() -> multiplier_network
127 a |> diag(constant_matrix_size) -> W
128 0 |> matrix(constant_matrix_size) -> b
129 list(W = W, b = b) -> multiplier_network[[1]]
130 nu |> comp(multiplier_network) -> return_network
131 return(return_network)
132 } else {
133 stop("a␣must␣be␣a␣real␣number␣and␣nu␣must␣be␣a␣neural␣network")
134 }
135 }

Listing 10.9: R code for sum of two neural networks
1 source("R/comp.R")
2 source("R/stacking.R")
3 source("R/aux_fun.R")
4 source("R/Aff.R")
5 source("R/is_nn.R")
6

7 #' @title nn_sum
8 #' @description A function that performs the neural network sum for two
9 #' neural networks of the type generated by
10 #' create_neural_network(). Neural network sums are defined for
11 #' \eqn{\nu_1 \in \mathsf{NN}} and \eqn{\nu_2 \in \mathsf{NN}} as:
12 #' \deqn{
13 #' \oplus^v_{i=u}\nu_i \coloneqq \left( \mathsf{Sum}_{v-u+1,\mathsf{O}(\nu_2)} \bullet

\left[ \boxminus^v_{i=u}\nu_i \right] \bullet \mathsf{Cpy}_{(v-u+1),\mathsf{I}(\nu
_1)} \right)

14 #' }
15 #'
16 #' @references Grohs, P., Hornung, F., Jentzen, A. et al.
17 #' Space-time error estimates for deep neural network approximations
18 #' for differential equations. Adv Comput Math 49, 4 (2023).
19 #' \url{https://doi.org/10.1007/s10444-022-09970-2}.
20 #'
21 #' @param nu_1 A neural network.
22 #' @param nu_2 A neural network.
23 #'
24 #' @return A neural network that is the neural network sum of \eqn{\nu_1} and \eqn{\nu

_2}
25 #' i.e. \eqn{\nu_1 \oplus \nu_2}.
26 #'
27 #' \emph{Note:} We have two versions, an infix version and a prefix version.
28 #' @export
29

30 nn_sum <- function(nu_1, nu_2) {
31 if (nu_1 |> is_nn() &&
32 nu_2 |> is_nn() &&
33 inn(nu_1) == inn(nu_2) &&
34 out(nu_1) == out(nu_2)) {
35 Cpy(2, inn(nu_1)) -> first_third
36 nu_1 |> stk(nu_2) -> mid_third
37 Sum(2, out(nu_1)) -> last_third
38

39 last_third |>
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40 comp(mid_third) |>
41 comp(first_third) -> return_network
42 return(return_network)
43 } else {
44 stop("Only␣neural␣networks␣with␣same␣end-widths␣may␣be␣summed")
45 }
46 }
47

48 #' Function for calculating neural network sums
49 #'
50 #' @param nu_1 A neural network.
51 #' @param nu_2 A neural network.
52 #'
53 #' @rdname nn_sum
54 #' @export
55 #'
56 `%nn_sum%` <- function(nu_1, nu_2) {
57 if (nu_1 |> is_nn() &&
58 nu_2 |> is_nn() &&
59 inn(nu_1) == inn(nu_2) &&
60 out(nu_1) == out(nu_2)) {
61 Cpy(2, inn(nu_1)) -> first_third
62 nu_1 |> stk(nu_2) -> mid_third
63 Sum(2, out(nu_1)) -> last_third
64

65 last_third |>
66 comp(mid_third) |>
67 comp(first_third) -> return_network
68 return(return_network)
69 } else {
70 stop("Only␣neural␣networks␣of␣same␣end␣widths␣may␣be␣summed")
71 }
72 }

Listing 10.10: R code for i

1 #' @title: i
2 #' @description The function that returns the \eqn{\mathbb{i}} network.
3 #'
4 #' @param d the size of the \eqn{\mathsf{i}} network
5 #'
6 #' @return returns the i_d network
7

8 i <- function(d) {
9 list() -> return_network
10 d |> diag() -> W
11 0 |> matrix(d, 1) -> b
12 list(W = W, b = b) -> return_network[[1]]
13 list(W = W, b = b) -> return_network[[2]]
14 return(return_network)
15 }

Listing 10.11: R code for Id neural networks
1 #' @title: Id
2 #' @description The function that returns the \eqn{\mathsf{Id_1}} networks.
3 #' @param d the dimension of the \eqn{Id} network, by default it is \eqn{1}.
4 #'
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5 #' @return Returns the \eqn{\mathsf{Id_1}} network.
6 #' @export
7

8 Id <- function(d = 1) {
9 if (d %% 1 != 0 ||
10 d < 1
11 ) {
12 stop("d␣must␣be␣natural␣numbers")
13 } else if (d == 1) {
14 W_1 <- c(1, -1) |> matrix()
15 b_1 <- c(0, 0) |> matrix()
16 layer_1 <- list(W = W_1, b = b_1)
17 W_2 <- c(1, -1) |> matrix(1, 2)
18 b_2 <- 0 |> matrix()
19 layer_2 <- list(W = W_2, b = b_2)
20 result <- list(layer_1, layer_2)
21 return(result)
22 } else if (d > 1) {
23 Id() -> return_network
24 for (j in 2:d) {
25 return_network |> stk(Id()) -> return_network
26 }
27 return(return_network)
28 } else {
29 stop("Unknown␣error")
30 }
31 }

Listing 10.12: R code for Tun
1 source("R/comp.R")
2 source("R/Id.R")
3

4 #' Tun: The function that returns tunneling neural networks
5 #'
6 #' @param n The depth of the tunnel network where \eqn{n \in \mathbb{N} \cap [1,\infty

)}.
7 #' @param d The dimension of the tunneling network. By default it is assumed to be \

eqn{1}.
8 #'
9 #' @return A tunnel neural network of depth n. A tunneling neural
10 #' network is defined as the neural network \eqn{\mathsf{Aff}_{1,0}} for \eqn{n=1},
11 #' the neural network \eqn{\mathsf{Id}_1} for \eqn{n=1} and the neural network
12 #' \eqn{\bullet^{n-2}\mathsf{Id}_1} for \eqn{n >2}. For this to work we
13 #' must provide an appropriate \eqn{n} and instantiate with ReLU at some
14 #' real number \eqn{x}.
15 #' @export
16 #'
17 Tun <- function(n, d = 1) {
18 if (n %% 1 != 0 ||
19 n < 1 ||
20 d %% 1 != 0 ||
21 d < 1
22 ) {
23 stop("n␣and␣d␣must␣be␣natural␣numbers")
24 }
25 if (d == 1) {
26 if (n == 1) {
27 return(Aff(1, 0))
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28 } else if (n == 2) {
29 return(Id())
30 } else if (n > 2) {
31 Id() -> return_network
32 for (i in 3:n) {
33 return_network |> comp(Id()) -> return_network
34 }
35 return(return_network)
36 }
37 } else if (d > 1) {
38 if (n == 1) {
39 return(Aff(diag(d), 0 |> matrix()))
40 } else if (n == 1) {
41 return(Id(d))
42 } else if (n == 2) {
43 return(Id(d))
44 } else if (n > 2) {
45 Id(d) -> return_network
46 for (i in 3:n) {
47 return_network |> comp(Id(d)) -> return_network
48 }
49 return(return_network)
50 }
51 } else {
52 stop("Unknown␣error")
53 }
54 }

Listing 10.13: R code for Φk

1 source("R/comp.R")
2 source("R/Aff.R")
3 source("R/i.R")
4 source("R/aux_fun.R")
5 source("R/activations.R")
6

7 #' The c_k function
8 #'
9 #' @param k an integer in \eqn{[1,\infty)}
10 #'
11 #' @return the real number \eqn{2^{1-2k}}
12 #' @references Grohs, P., Hornung, F., Jentzen, A. et al.
13 #' Space-time error estimates for deep neural network approximations
14 #' for differential equations. Adv Comput Math 49, 4 (2023).
15 #' https://doi.org/10.1007/s10444-022-09970-2
16 #'
17 #' @references Definition 2.3.4. Jentzen, A., Kuckuck, B., and von Wurstemberger, P.

(2023).
18 #' Mathematical introduction to deep learning: Methods, implementations,
19 #' and theory. \url{https://arxiv.org/abs/2310.20360}.
20

21 c_k <- function(k) {
22 2^{
23 1 - 2 * k
24 } -> result
25 return(result)
26 }
27

28 #' This is an intermediate variable, see reference.
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29 c(0, -1 / 2, -1, 0) |> matrix() -> B
30

31

32 #' C_k: The function that returns the C_k matrix
33 #'
34 #' @param k Natural number, the precision with which to approximate squares
35 #' within \eqn{[0,1]}
36 #'
37 #' @return A neural network that approximates the square of any real within
38 #' \eqn{[0,1]}
39

40 C_k <- function(k) {
41 c(-c_k(k), 2 * c_k(k), -c_k(k), 1) |> matrix(1, 4) -> result
42 return(result)
43 }
44

45

46 #' A_k: The function that returns the matrix A_k
47 #'
48 #' @param k Natural number, the precision with which to approximate squares
49 #' within \eqn{[0,1]}
50 #'
51 #' @return A neural network that approximates the square of any real within
52 #' \eqn{[0,1]}
53 #'
54 A_k <- function(k) {
55 c(2, 2, 2, -c_k(k)) |>
56 c(-4, -4, -4, 2 * c_k(k)) |>
57 c(2, 2, 2, -c_k(k)) |>
58 c(0, 0, 0, 1) |>
59 matrix(4, 4) -> result
60 return(result)
61 }
62

63 #' This is an intermediate variable. See the reference
64 #'
65 c(1, 1, 1, 1) |> matrix(4, 1) -> A
66

67

68 #' The Phi_k function
69 #'
70 #' @param k an integer \eqn{k \in (2,\infty)}
71 #'
72 #' @return The Phi_k neural network
73 #' @references Grohs, P., Hornung, F., Jentzen, A. et al.
74 #' Space-time error estimates for deep neural network approximations
75 #' for differential equations. Adv Comput Math 49, 4 (2023).
76 #' https://doi.org/10.1007/s10444-022-09970-2
77 #'
78 Phi_k <- function(k) {
79 if (k |> is.numeric() &&
80 k |> length() == 1 &&
81 k >= 1 &&
82 k |> is.finite() &&
83 k %% 1 == 0) {
84 if (k == 1) {
85 C_k(1) |>
86 Aff(0) |>
87 comp(i(4)) |>
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88 comp(Aff(A, B)) -> return_network
89 return(return_network)
90 }
91 if (k >= 2) {
92 C_k(k) |>
93 Aff(0) |>
94 comp(i(4)) -> return_network
95 for (j in (k - 1):1) {
96 A_k(j) |>
97 Aff(B) |>
98 comp(i(4)) -> intermediate_network
99 return_network |> comp(intermediate_network) -> return_network

100 }
101 return_network |> comp(A |> Aff(B)) -> return_network
102 return(return_network)
103 }
104 } else {
105 stop("k␣must␣a␣natural␣number")
106 }
107 }

Listing 10.14: R code for simulations involving Φk

1 source("Phi_k.R")
2 source("aux_fun")
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3 source("realization.R")
4 source("activations.R")
5

6 library(ggplot2)
7

8 #' The Phi_k_diff function
9 #'
10 #' @param x the number to be squared in [0,1]
11 #' @param k a parameter for Phi_k in [0, \infty)]
12 #'
13 #' @return the 1-norm error between x^2 and Phi_k approximation
14

15 Phi_k_diff <- function(x, k) {
16 return <- (k |> Phi_k() |> rlz(ReLU, x) - x^2) |>
17 abs() -> result
18 return(result)
19 }
20

21 k_values <- c(1, 2, 5, 10, 15, 20)
22 x_values <- seq(-2, 2, length.out = 200)
23 Phi_k_diff_v <- Vectorize(Phi_k_diff)
24

25 Phi_k_diff_data <- expand.grid(k = k_values, x = x_values)
26 Phi_k_diff_data$diff <- Phi_k_diff_v(Phi_k_diff_data$x, Phi_k_diff_data$k)
27

28 library(ggplot2)
29 ggplot(Phi_k_diff_data, aes(x = x, y = diff, color = factor(k))) +
30 scale_y_log10() +
31 geom_line() +
32 geom_line(aes(y = 2^(-2 * k - 2))) +
33 labs(
34 x = "x",
35 y = "log10␣of␣the␣1-norm␣error␣over␣domain␣[0,1]"
36 ) -> Phi_k_diff_plot
37 ggsave("Phi_k_properties/diff.png", plot = Phi_k_diff_plot, width = 6, height = 5,

units = "in")
38

39 vectorized_Phi_k <- Vectorize(Phi_k)
40 vectorized_param <- Vectorize(param)
41

42 param_data <- data.frame(x = 1:100, y = vectorized_param(vectorized_Phi_k(1:100)))
43

44 ggplot(param_data, aes(x = x, y = y)) +
45 geom_line() +
46 theme_minimal() +
47 xlab("Size␣of␣k") +
48 ylab("Number␣of␣parameters") +
49 ggtitle("Plot␣of␣the␣number␣of␣parameters␣of␣ϕ(k)␣against␣k") +
50 geom_smooth(method = "lm", se = FALSE, color = "blue")
51

52 vectorized_dep <- Vectorize(dep)
53

54 dep_data <- data.frame(x = 1:100, y = vectorized_dep(vectorized_Phi_k(1:100)))
55

56 ggplot(dep_data, aes(x = x, y = y)) +
57 geom_line() +
58 theme_minimal() +
59 xlab("Size␣of␣k") +
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60 ylab("Depth␣of␣network") +
61 ggtitle("Plot␣of␣the␣depth␣of␣ϕ(k)␣against␣k") +
62 geom_smooth(method = "lm", se = FALSE, color = "blue")

Listing 10.15: R code for Φ

1 source("R/Phi_k.R")
2 source("R/i.R")
3 source("R/Aff.R")
4

5

6 #' The Phi function
7 #'
8 #' @param eps parameter for Phi
9 #' @references Grohs, P., Hornung, F., Jentzen, A. et al.
10 #' Space-time error estimates for deep neural network approximations
11 #' for differential equations. Adv Comput Math 49, 4 (2023).
12 #' https://doi.org/10.1007/s10444-022-09970-2
13 #'
14 #' @return neural network Phi that approximately squares a number between
15 #' 0 and 1.
16

17 Phi <- function(eps) {
18 if (eps |> is.numeric() &&
19 eps |> length() == 1 &&
20 eps |> is.finite() &&
21 eps > 0) {
22 (0.5 * log2(1 / eps) - 1) |> ceiling() -> M
23

24 if (M <= 0) 1 -> M
25

26 if (M == 1) {
27 C_k(1) |>
28 Aff(0) |>
29 comp(i(4)) |>
30 comp(Aff(A, B)) -> return_network
31 return(return_network)
32 }
33

34 if (M >= 2) {
35 C_k(M) |>
36 Aff(0) |>
37 comp(i(4)) -> return_network
38 for (j in (M - 1):1) {
39 A_k(j) |>
40 Aff(B) |>
41 comp(i(4)) -> intermediate_network
42 return_network |> comp(intermediate_network) -> return_network
43 }
44 return_network |> comp(A |> Aff(B)) -> return_network
45 return(return_network)
46 }
47 } else {
48 stop("eps␣must␣be␣a␣positive␣real␣number")
49 }
50 }
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Listing 10.16: R code for simulations involving Φ

1 source("Phi.R")
2 source("aux_fun.R")
3 source("realization.R")
4 source("activations.R")
5

6 #' The Phi diff function
7 #'
8 #' @param eps parameter for Phi
9 #' @param x number to be squared
10 #'
11 #' @return the 1-norm error between the result
12 #' and x^2
13

14 diff <- function(eps, x) {
15 (x^2 - eps |> Phi() |> rlz(ReLU, x)) |>
16 abs() -> result
17 return(result)
18 }
19

20 eps_values <- c(1, 0.5, 0.1, 0.01, 0.001, 0.0001)
21 x_values <- seq(0, 1, length.out = 100)
22 vectorized_diff <- Vectorize(diff)
23

24 diff_data <- expand.grid(eps = eps_values, x = x_values)
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25 diff_data$Phi_diff <- vectorized_diff(diff_data$eps, diff_data$x)
26

27 library(ggplot2)
28

29 ggplot(diff_data, aes(x = x, y = eps, z = Phi_diff)) +
30 geom_contour_filled() +
31 ggtitle("Contour␣plot␣of␣the␣1-norm␣difference␣for␣values␣of␣x␣and␣eps") +
32 theme_minimal() -> Phi_diff_contour_plot
33

34 ggsave("Phi_properties/Phi_diff_contour.png", plot = Phi_diff_contour_plot, width = 6,
height = 5, units = "in")

35

36 vectorized_Phi_k <- Vectorize(Phi_k)
37 vectorized_param <- Vectorize(param)
38

39 param_data <- data.frame(x = 1:100, y = vectorized_param(vectorized_Phi_k(1:100)))
40

41 ggplot(param_data, aes(x, y)) +
42 geom_line() +
43 theme_minimal()
44

45

46

47 vectorized_dep <- Vectorize(dep)
48

49 dep_data <- data.frame(x = 1:100, y = vectorized_dep(vectorized_Phi_k(1:100)))
50

51 ggplot(dep_data, aes(x = x, y = y)) +
52 geom_line() +
53 theme_minimal() +
54 xlab("Size␣of␣k") +
55 ylab("Depth␣of␣network") +
56 ggtitle("Plot␣of␣the␣depth␣of␣ϕ(k)␣against␣k") +
57 geom_smooth(method = "lm", se = FALSE, color = "blue")

Listing 10.17: R code for Sqr
1 source("R/comp.R")
2 source("R/Aff.R")
3 source("R/nn_sum.R")
4 source("R/Phi.R")
5 source("R/aux_fun.R")
6

7 #' @title Sqr
8 #' @description A function that returns the \eqn{\mathsf{Sqr}} neural networks.
9 #'
10 #' @param q parameter for the Sqr network. \eqn{2 \in (2,\infty)}
11 #' @param eps parameter for the Sqr network. \eqn{eps \in (0,1]}. You may
12 #' choose epsilon to be greater than 1 but that leads to large errors
13 #'
14 #' @return A neural network that approximates the square of a real number.when
15 #' provided appropriate \eqn{q,\varepsilon} and upon instantiation with ReLU,
16 #' and a real number \eqn{x}
17 #' @references Grohs, P., Hornung, F., Jentzen, A. et al. Space-time error estimates

for deep
18 #' neural network approximations for differential equations. Adv Comput Math 49, 4

(2023).
19 #' https://doi.org/10.1007/s10444-022-09970-2
20 #'

244



21 #'
22 #' @export
23

24

25 Sqr <- function(q, eps) {
26 if (q <= 2 || eps <= 0) {
27 stop("q␣must␣be␣>␣2␣and␣eps␣must␣be␣>␣0")
28 } else {
29 2^(-2 / (q - 2)) * eps^(q / (q - 2)) -> delta
30 (eps / 2)^(1 / (q - 2)) -> alpha
31

32 (0.5 * log2(1 / eps) - 1) |> ceiling() -> M
33

34 if (M <= 0) 1 else M -> M
35

36 (Aff(alpha^(-2), 0) |> comp(Phi(delta))) |>
37 comp(Aff(alpha, 0)) -> first_summand
38

39 (Aff(alpha^(-2), 0) |> comp(Phi(delta))) |>
40 comp(Aff(-alpha, 0)) -> second_summand
41

42 first_summand |>
43 nn_sum(second_summand) -> return_network
44

45 return(return_network)
46 }
47 }

Listing 10.18: R code simulations involving Sqr
1 source("aux_fun.R")
2 source("Sqr.R")
3 source("instantiation.R")
4 source("activations.R")
5 library("tidyverse")
6

7 #' Sqr_diff function
8 #'
9 #' @param q parameter for the Sqr network
10 #' @param eps parameter for the Sqr network
11 #' @param x the number to be squered
12 #'
13 #' @return a neural network that approximately squares x.
14

15 Sqr_diff <- function(q, eps, x) {
16 return <- (Sqr(q, eps) |> rlz(ReLU, x) - x^2) |> abs()
17 return(return)
18 }
19

20 Sqr_diff_v <- Vectorize(Sqr_diff)
21

22 Sqr_data <- expand.grid(
23 q = seq(2.1, 4, length.out = 50),
24 eps = seq(0.01, 2, length.out = 50),
25 x = seq(-5, 5, length.out = 50)
26 )
27

28

29
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30 Sqr_data$diff <- Sqr_diff_v(Sqr_data$q, Sqr_data$eps, Sqr_data$x)
31

32 #' Function to calculate the theoretical upper bounds of the 1-norm error
33 #' over \mathbb{R}
34 #'
35 #' @param q parameter for the Sqr network
36 #' @param eps parameter for the Sqr network
37 #' @param x the number to be squered
38 #'
39 #' @return the maximum 1-norm error over \mathbb{R}
40

41 diff_upper_limit <- function(q, eps, x) {
42 eps * max(1, abs(x)^q)
43 }
44

45 diff_upper_limit_v <- Vectorize(diff_upper_limit)
46

47 Sqr_data$diff_upper_limit <- diff_upper_limit_v(Sqr_data$q, Sqr_data$eps, Sqr_data$x)
48

49 write_csv(Sqr_data, "Sqr_properties/Sqr_data.csv")
50

51 library(plotly)
52

53 fig <- plot_ly(
54 type = "isosurface",
55 x = Sqr_data$x,
56 y = Sqr_data$q,
57 z = Sqr_data$eps,
58 value = Sqr_data$diff,
59 isomin = 0.0001,
60 isomax = 5,
61 colorscale = "RdBu"
62 ) |>
63 layout(scene = list(
64 xaxis = list(title = "x"),
65 yaxis = list(title = "q"),
66 zaxis = list(title = "eps")
67 )) |>
68 layout(scene = list(legend = list(title = "Diff␣from␣x^2")))
69

70 fig
71

72 library(ggplot2)
73

74 Sqr_data_aux <- expand.grid(
75 q = seq(2.1, 10, length.out = 100),
76 eps = seq(0.01, 4, length.out = 100)
77 )
78

79 Sqr_data_aux$param <- 0
80

81 for (k in 1:10000) {
82 Sqr_data_aux$param[k] <- Sqr(Sqr_data_aux$q[k], Sqr_data_aux$eps[k]) |> param()
83 }
84

85 experimental_params <- ggplot(Sqr_data_aux, aes(x = q, y = eps, z = log10(param))) +
86 geom_contour_filled() +
87 theme_minimal() +
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88 labs(fill = "Log␣10␣number␣of␣parameters")
89

90 Sqr_data_aux$dep <- 0
91

92 for (k in 1:10000) {
93 Sqr_data_aux$dep[k] <- Sqr(Sqr_data_aux[k, ]$q, Sqr_data_aux[k, ]$eps) |> dep()
94 }
95

96 experimental_deps <- ggplot(Sqr_data_aux, aes(x = q, y = eps, z = log10(dep))) +
97 geom_contour_filled(alpha = 0.8) +
98 # scale_fill_continuous(breaks = seq(0, max(Sqr_data_aux$dep), by = 1)) +
99 theme_minimal() +

100 labs(fill = "log␣10␣experimental␣depths")
101

102

103 param_upper_limit <- function(q, eps) {
104 (((40 * q) / (q - 2)) * ((1 / eps) |> log(2)) + 80 / (q - 2) - 28) |> max(52)
105 }
106

107 dep_upper_limit <- function(q, eps) {
108 ((q / (2 * q - 4)) * log2(1 / eps) + 1 / (q - 2) + 1 / (q - 2) + 1) |> max(2)
109 }
110

111 Sqr_data_aux$param_upper_limit <- 0
112

113 for (k in 1:10000) {
114 Sqr_data_aux$param_upper_limit[k] <- param_upper_limit(Sqr_data_aux[k, ]$q, Sqr_data

_aux[k, ]$eps) |>
115 ceiling()
116 }
117

118 param_theoretical_upper_limits <- ggplot(Sqr_data_aux, aes(x = q, y = eps, z = log10(
param_upper_limit))) +

119 geom_contour_filled() +
120 theme_minimal() +
121 labs(fill = "Log10␣upper␣limits␣of␣parameters")
122

123 Sqr_data_aux$dep_upper_limit <- 0
124

125 for (k in 1:10000) {
126 Sqr_data_aux$dep_upper_limit[k] <- dep_upper_limit(Sqr_data_aux[k, ]$q, Sqr_data_aux

[k, ]$eps) |>
127 ceiling()
128 }
129

130 dep_theoretical_upper_limits <- ggplot(Sqr_data_aux, aes(x = q, y = eps, z = log10(dep
_upper_limit))) +

131 geom_contour_filled() +
132 theme_minimal() +
133 labs(fill = "Log10␣upper␣limits␣of␣depth")
134

135 ggsave("Sqr_properties/param_theoretical_upper_limits.png", plot = param_theoretical_
upper_limits, width = 6, height = 5, units = "in")

136

137 ggsave("Sqr_properties/dep_theoretical_upper_limits.png", plot = dep_theoretical_upper
_limits, width = 6, height = 5, units = "in")

138

139 ggsave("Sqr_properties/experimental_deps.png", plot = experimental_deps, width = 6,
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height = 5, units = "in")
140

141 ggsave("Sqr_properties/experimental_params.png", plot = experimental_params, width =
6, height = 5, units = "in")

Listing 10.19: R code simulations involving Sqr
1 source("R/Prd.R")
2 source("R/Aff.R")
3 source("R/stacking.R")
4 source("R/Tun.R")
5 source("R/aux_fun.R")
6

7 #' @title Pwr
8 #' @description
9 #' A function that returns the \eqn{\mathsf{Pwr}} neural networks.
10 #'
11 #'
12 #' @param q inside \eqn{(2,\infty)}.
13 #' @param eps inside \eqn{(0,\infty)}.
14 #' @param exponent the exponent which the Pwr network will approximate. Must be
15 #' a non-negative integer.
16 #'
17 #' @return A neural network that approximates raising a number to exponent, when
18 #' given appropriate \eqn{q,\varepsilon} and exponent when isntanatiated
19 #' under ReLU activation at \eqn{x}.
20 #' @export
21

22

23 Pwr <- function(q, eps, exponent) {
24 if (q <= 2) {
25 stop("Too␣small␣q,␣q␣must␣be␣>=␣2")
26 } else if (eps <= 0) {
27 stop("Too␣small␣eps,␣eps␣must␣be␣>=␣0")
28 } else if (exponent %% 1 != 0 || exponent < 0) {
29 stop("Exponent␣must␣be␣a␣non-negative␣integer")
30 } else {
31 if (exponent == 0) {
32 Aff(0, 1) -> return_network
33 return(return_network)
34 } else if (exponent >= 1) {
35 Cpy(2, 1) -> first_third
36 Pwr(q, eps, exponent - 1) |> stk(Pwr(q, eps, exponent - 1) |> dep() |> Tun()) ->

mid_third
37 Prd(q, eps) -> last_third
38 last_third |>
39 comp(mid_third) |>
40 comp(first_third) -> return_network
41 } else {
42 return("Invalid␣exponent,␣must␣be␣non-negative␣integer")
43 }
44 return(return_network)
45 }
46 }

Listing 10.20: R code simulations involving Sqr
1 source("Pwr.R")
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2 library(tidyverse)
3

4 #' Pwr_3_diff function
5 #'
6 #' @param q parameter for Pwr_3
7 #' @param eps parameter for Pwr_3
8 #' @param x the number to be cubed
9 #' @param exponent = 3, i.e. cubing a number
10

11 Pwr_3_diff <- function(q, eps, x, exponent = 3) {
12 return <- (Pwr(q, eps, exponent = 3) |> rlz(ReLU, x) - x^3) |> abs()
13 return(return)
14 }
15

16 Pwr_3_diff_v <- Vectorize(Pwr_3_diff)
17

18 Pwr_3_data <- expand.grid(
19 q = seq(2.1, 4, length.out = 50),
20 eps = seq(0.01, 2, length.out = 50),
21 x = seq(-5, 5, length.out = 50)
22 )
23

24 Pwr_3_data$diff <- Pwr_3_diff_v(Pwr_3_data$q, Pwr_3_data$eps, Pwr_3_data$x)
25

26 library(ggplot2)
27

28 ggplot(Pwr_3_data, aes(diff)) +
29 scale_x_log10() +
30 geom_density() +
31 theme_minimal()
32

33 library(plotly)
34

35 fig <- plot_ly(
36 type = "isosurface",
37 x = Pwr_3_data$x,
38 y = Pwr_3_data$q,
39 z = Pwr_3_data$eps,
40 value = Pwr_3_data$diff,
41 isomin = 0.0001,
42 isomax = 5,
43 colorscale = "RdBu"
44 ) |>
45 layout(scene = list(
46 xaxis = list(title = "x"),
47 yaxis = list(title = "q"),
48 zaxis = list(title = "eps")
49 )) |>
50 layout(scene = list(legend = list(title = "Diff␣from␣x^2")))
51

52 fig
53

54 Pwr_3_data_aux <- expand.grid(
55 q = seq(2.1, 10, length.out = 100),
56 eps = seq(0.01, 4, length.out = 100)
57 )
58

59 Pwr_3_data_aux$param <- 0
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60

61 for (k in 1:10000) {
62 Pwr_3_data_aux$param[k] <- Pwr(Pwr_3_data_aux$q[k], Pwr_3_data_aux$eps[k], exponent

= 3) |> param()
63 }
64

65 experimental_params <- ggplot(Pwr_3_data_aux, aes(x = q, y = eps, z = log10(param))) +
66 geom_contour_filled() +
67 theme_minimal() +
68 labs(fill = "log␣10␣#␣of␣parameters")
69

70 Pwr_3_data_aux$dep <- 0
71

72 for (k in 1:10000) {
73 Pwr_3_data_aux$dep[k] <- Pwr(Pwr_3_data_aux[k, ]$q, Pwr_3_data_aux[k, ]$eps,

exponent = 3) |> dep()
74 }
75

76 experimental_deps <- ggplot(Pwr_3_data_aux, aes(x = q, y = eps, z = log10(dep))) +
77 geom_contour_filled(alpha = 0.8, breaks = seq(0, 10, 1)) +
78 # scale_fill_continuous(breaks = seq(0, max(Pwr_3_data_aux$dep), by = 1)) +
79 theme_minimal() +
80 labs(fill = "log10␣depths")
81

82 #' The param_upper_limit funnction
83 #'
84 #' @param q parameter for the Pwr network
85 #' @param eps parameter for the Pwr network
86 #'
87 #' @return the theoretical upper limit for the number of parameters
88

89 param_upper_limit <- function(q, eps) {
90 4^(4.5) -> first_summand
91 (4^4-1)/3 -> second_summand_a
92 ((360*q)/(q-2))*(log2(1/eps)+q+1)+372 -> second_summand_b
93 first_summand + (second_summand_a * second_summand_b) -> result
94 return(result)
95 }
96

97

98 #' The dep_upper_limit function
99 #'

100 #' @param q parameter for the Pwr_3 network
101 #' @param eps parameter for the Pwr_3 network
102 #'
103 #' @return the theoretical upper limit for the depth
104

105 dep_upper_limit <- function(q, eps) {
106 ((q / (q - 2)) * (log2(1 / eps) + q) - 1) * 3 + 1
107 }
108

109 Pwr_3_data_aux$param_upper_limit <- 0
110

111 for (k in 1:10000) {
112 Pwr_3_data_aux$param_upper_limit[k] <- param_upper_limit(Pwr_3_data_aux[k, ]$q, Pwr_

3_data_aux[k, ]$eps) |>
113 ceiling()
114 }
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115

116 param_theoretical_upper_limits <- ggplot(Pwr_3_data_aux, aes(x = q, y = eps, z = log10
(param_upper_limit))) +

117 geom_contour_filled() +
118 theme_minimal() +
119 labs(fill = "Log10␣upper␣limits␣of␣parameters")
120

121 Pwr_3_data_aux$dep_upper_limit <- 0
122

123 for (k in 1:10000) {
124 Pwr_3_data_aux$dep_upper_limit[k] <- dep_upper_limit(Pwr_3_data_aux[k, ]$q, Pwr_3_

data_aux[k, ]$eps)
125 }
126

127 dep_theoretical_upper_limits <- ggplot(Pwr_3_data_aux, aes(x = q, y = eps, z = log10(
dep_upper_limit))) +

128 geom_contour_filled() +
129 theme_minimal() +
130 labs(fill = "Log10␣upper␣limits␣of␣depth")
131

132 ggsave("Pwr_3_properties/param_theoretical_upper_limits.png", plot = param_theoretical
_upper_limits, width = 6, height = 5, units = "in")

133 ggsave("Pwr_3_properties/dep_theoretical_upper_limits.png", plot = dep_theoretical_
upper_limits, width = 6, height = 5, units = "in")

134 ggsave("Pwr_3_properties/experimental_deps.png", plot = experimental_deps, width = 6,
height = 5, units = "in")

135 ggsave("Pwr_3_properties/experimental_params.png", plot = experimental_params, width =
6, height = 5, units = "in")

Listing 10.21: R code simulations involving Sqr
1 source("R/Aff.R")
2 source("R/stacking.R")
3 source("R/comp.R")
4 source("R/nn_sum.R")
5

6 #' @title Nrm
7 #'
8 #' @description
9 #' A function that creates the \eqn{\mathsf{Nrm}} neural networks.that take
10 #' the 1- norm of a \eqn{d}-dimensional vector when instantiated with ReLU
11 #' activation.
12 #'
13 #'
14 #' @param d the dimensions of the vector being normed.
15 #'
16 #' @return a neural network that takes the 1-norm of a vector of
17 #' size d.under ReLU activation. This is the neural network that is:
18 #' \deqn{
19 #' \mathsf{Nrm}^1_1 = \left( \left( \begin{bmatrix} 1 \\ -1\end{bmatrix},
20 #' \begin{bmatrix} 0 \\ 0 \end{bmatrix}\right), \left( \begin{bmatrix}1 && 1\end{

bmatrix},
21 #' \begin{bmatrix}0\end{bmatrix}\right) \right) \in \left( \mathbb{R}^{2 \times 1} \

times
22 #' \mathbb{R}^2 \right) \times \left( \mathbb{R}^{1 \times 2} \times \mathbb{R}^1 \

right) \quad d=1 \\
23 #' \mathsf{Nrm}_1^d = \mathsf{Sum}_{d,1} \bullet \left[ \boxminus_{i=1}^d \mathsf{Nrm}

_1^1 \right] \quad d>1
24
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25 #' }
26 #'
27 #'
28 #'
29 #' \emph{Note:} This function is split into two cases
30 #' much like the definition itself.
31 #'
32 #' @references Lemma 4.2.1. Jentzen, A., Kuckuck, B., and von Wurstemberger, P. (2023)

.
33 #' Mathematical introduction to deep learning: Methods, implementations,
34 #' and theory. \url{https://arxiv.org/abs/2310.20360}
35

36 #' @export
37 #'
38 Nrm <- function(d) {
39 if (d %% 1 != 0 || d < 1) {
40 stop("d␣must␣be␣a␣natural␣number")
41 } else {
42 if (d == 1) {
43 c(1, -1) |> matrix() -> W_1
44 c(0, 0) |> matrix() -> b_1
45 c(1, 1) |> matrix(1, 2) -> W_2
46 0 |> matrix() -> b_2
47

48 list(W = W_1, b = b_1) -> layer_1
49 list(W = W_2, b = b_2) -> layer_2
50

51 list(layer_1, layer_2) -> return_network
52

53 return(return_network)
54 } else if (d > 1) {
55 1 |> Nrm() -> first_compose
56 for (i in 1:(d - 1)) {
57 first_compose |> stk(Nrm(1)) -> first_compose
58 }
59 Sum(d, 1) |> comp(first_compose) -> return_network
60 return(return_network)
61 } else {
62 stop("Possibly␣taking␣the␣norm␣of␣an␣invalid␣sized␣array")
63 }
64 }
65 }

Listing 10.22: R code simulations involving Sqr
1 source("R/Aff.R")
2 source("R/stacking.R")
3 source("R/comp.R")
4 source("R/nn_sum.R")
5 source("R/Id.R")
6

7 #' @title Mxm
8 #' @description The function that returns the \eqn{\mathsf{Mxm}} neural networks.
9 #' These are neural networks of the type:
10 #' \deqn{
11 #'\mathsf{Mxm}^1 = \mathsf{Aff}_{1,0} \quad d = 1 \\
12 #'\\
13 #'\mathsf{Mxm}^2 = \left( \left( \begin{bmatrix} 1 & -1 \\ 0 & 1 \\ 0 & -1\end{bmatrix

},
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14 #'\begin{bmatrix} 0 \\ 0 \\0\end{bmatrix}\right), \left( \begin{bmatrix}1&1&-1\end{
bmatrix},

15 #'\begin{bmatrix}0\end{bmatrix}\right)\right) \quad d = 2 \\
16 #'\\
17 #'\mathsf{Mxm}^{2d} = \mathsf{Mxm}^d \bullet \left[ \boxminus_{i=1}^d \mathsf{Mxm}^2\

right] \quad d > 2\\
18 #'\mathsf{Mxm}^{2d-1} = \mathsf{Mxm}^d \bullet \left[ \left( \boxminus^d_{i=1} \mathsf

{Mxm}^2 \right)
19 #'\boxminus \mathsf{Id}_1\right] \quad d > 2
20 #'
21 #'}
22 #'
23

24 #' \emph{Note:} Because of certain quirks of R we will have split
25 #' into five cases. We add an extra case for \eqn{d = 3}. Unlike the paper
26 #' we will simply reverse engineer the appropriate \emph{d}.
27 #'
28 #' @param d The dimension of the input vector on instantiation.
29 #'
30 #' @return The neural network that will ouput the maximum of a vector of
31 #' size \eqn{d} when activated with the ReLU function.
32 #'
33 #' @references Lemma 4.2.4. Jentzen, A., Kuckuck, B., and von Wurstemberger, P. (2023)

.
34 #' Mathematical introduction to deep learning: Methods, implementations,
35 #' and theory. \url{https://arxiv.org/abs/2310.20360}
36

37

38 #' @export
39

40 Mxm <- function(d) {
41 if (d %% 1 != 0 || d < 1) {
42 stop("d␣must␣be␣a␣natural␣number")
43 }
44 if (d == 1) {
45 return(Aff(1, 0))
46 } else if (d == 2) {
47 c(1, 0, 0, -1, 1, -1) |> matrix(3, 2) -> W_1
48 c(0, 0, 0) |> matrix() -> b_1
49 c(1, 1, -1) |> matrix(1, 3) -> W_2
50 0 |> matrix() -> b_2
51 list(W = W_1, b = b_1) -> layer_1
52 list(W = W_2, b = b_2) -> layer_2
53 list(layer_1, layer_2) -> return_network
54 return(return_network)
55 } else if (d == 3) {
56 Mxm(2) |> stk(Id()) -> first_compose
57 Mxm(2) |> comp(first_compose) -> return_network
58 return(return_network)
59 } else if ((d %% 2 == 0) & (d > 3)) {
60 d / 2 -> d
61 Mxm(2) -> first_compose
62 for (i in 1:(d - 1)) {
63 first_compose |> stk(Mxm(2)) -> first_compose
64 }
65 Mxm(d) |> comp(first_compose) -> return_network
66 return(return_network)
67 } else if ((d %% 2 != 0) & (d > 3)) {
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68 (d - 1) / 2 -> d
69

70 Mxm(2) -> first_compose
71 for (i in 1:(d - 1)) {
72 first_compose |> stk(Mxm(2)) -> first_compose
73 }
74 first_compose |> stk(Id()) -> first_compose
75 Mxm(d + 1) |> comp(first_compose) -> return_network
76 return(return_network)
77 } else {
78 stop("Possibly␣taking␣max␣of␣vector␣of␣length␣0")
79 }
80 }

Listing 10.23: R code simulations involving Tay
1 source("R/Pwr.R")
2 source("R/nn_sum.R")
3 source("R/scalar_mult.R")
4 source("R/Aff.R")
5

6 #' The Tay function
7 #'
8 #' @param f the function to be Taylor approximated, for now "exp", "sin"
9 #' and "cos". NOTE use the quotation marks when using this arguments
10 #' @param n the extent of Taylor approximations, a natural number
11 #' @param q argument for the Pwr networks \eqn{q \in (2,\infty)}
12 #' @param eps argument for the Pwr networks \eqn{eps \in (0,\infty)}
13 #'
14 #' @return a neural network that approximates the function f
15

16 Tay <- function(f, n, q, eps) {
17 if (n %% 1 != 0 || n < 0) {
18 stop("Number␣of␣Taylor␣iteration␣must␣be␣a␣non␣negative␣integer")
19 } else if (q < 2 || eps < 0) {
20 stop("q␣must␣be␣>␣2␣and␣eps␣must␣be␣>␣0")
21 } else if (f != "exp" && f != "sin" && f != "cos") {
22 stop("For␣now,␣only␣Taylor␣approximations␣for␣exp,␣sin,␣and␣cos␣is␣available")
23 } else {
24 if (f == "exp") {
25 (1 / factorial(0)) |> slm(Pwr(q, eps, 0)) -> return_network
26 if (n == 0) {
27 return(return_network)
28 }
29 for (i in 1:n) {
30 return_network |> nn_sum((1 / factorial(i)) |> slm(Pwr(q, eps, i))) -> return_

network
31 }
32 return(return_network)
33 }
34

35 if (f == "cos") {
36 1 |> slm(Pwr(q, eps, 0)) -> return_network
37 if (n == 0) {
38 return(return_network)
39 }
40

41 for (i in 1:n) {
42 ((-1)^i) / factorial(2 * i) -> coeff
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43 return_network |> nn_sum(coeff |> slm(Pwr(q, eps, 2 * i))) -> return_network
44 }
45 return(return_network)
46 }
47

48 if (f == "sin") {
49 Tay("cos", n, q, eps) -> return_network
50 return_network |> comp(Aff(1, -pi / 2)) -> return_network
51 return(return_network)
52 }
53 }
54 }

Listing 10.24: R code simulations involving Etr
1 #' @title Trp
2 #' @description The function that returns the \eqn{\mathsf{Trp}} networks.
3 #'
4 #' @param h the horizontal distance between two mesh points
5 #'
6 #' @return The \eqn{\mathsf{Trp}} network that gives the area
7 #' when activated with ReLU and two meshpoint values x_1 and x_2.
8 #' @export
9

10 Trp <- function(h) {
11 if (h |> is.numeric() &&
12 h |> length() == 1 &&
13 h |> is.finite() &&
14 h > 0) {
15 c(h / 2, h / 2) |> matrix(1, 2) -> W
16 0 |> matrix() -> b
17 list(list(W = W, b = b)) -> return_network
18 return(return_network)
19 } else {
20 stop("h␣must␣be␣a␣positive␣real␣number")
21 }
22 }
23

24 #' @title Etr
25 #' @description The function that returns the \eqn{\mathsf{Etr}} networks.
26 #'
27 #' @param n number of trapezoids to make. Note this will result in a set of
28 #' trapezoids.
29 #' Note that this will result in n+1 meshpoints including the starting a and
30 #' ending b
31 #'
32 #' \emph{Note: } Upon instantiation with any continuous function this neural
33 #' network must be fed with \eqn{n+1} real numbers representing the values
34 #' of the function being approximated at the \eqn{n+1} meshpoints which are
35 #' the legs of the \eqn{n} triangles as stipulated in the input parameters.
36 #'
37 #' @param h width of trapezoids
38 #'
39 #' @return an approximation for area of the integral
40 #' @export
41

42 Etr <- function(n, h) {
43 if (h |> is.numeric() &&
44 h |> length() == 1 &&
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45 h |> is.finite() &&
46 h > 0 &&
47 n %% 1 == 0 &&
48 n > 1) {
49 c(h / 2, rep(h, n - 1), h / 2) |>
50 matrix() |>
51 t() -> W
52 0 |> matrix() -> b
53 list(list(W = W, b = b)) -> return_network
54 return(return_network)
55 } else {
56 stop("n␣must␣be␣a␣natural␣number␣and␣h␣must␣be␣a␣positive␣real␣number.")
57 }
58 }
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