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Abstract

The classical Feynman–Kac identity builds a bridge between stochastic analysis and partial
differential equations (PDEs) by providing stochastic representations for classical solutions
of linear Kolmogorov PDEs. This opens the door for the derivation of sampling based Monte
Carlo approximation methods, which can be meshfree and thereby stand a chance to approx-
imate solutions of PDEs without suffering from the curse of dimensionality. In this article
we extend the classical Feynman–Kac formula to certain semilinear Kolmogorov PDEs. More
specifically, we identify suitable solutions of stochastic fixed point equations (SFPEs), which
arise when the classical Feynman–Kac identity is formally applied to semilinear Kolmorogov
PDEs, as viscosity solutions of the corresponding PDEs. This justifies, in particular, em-
ploying full-history recursive multilevel Picard (MLP) approximation algorithms, which have
recently been shown to overcome the curse of dimensionality in the numerical approximation
of solutions of SFPEs, in the numerical approximation of semilinear Kolmogorov PDEs.
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1 Introduction

The classical Feynman–Kac identity (see, e.g., [15, 18, 28, 38]) builds a bridge between stochastic
analysis and partial differential equations (PDEs) by providing stochastic representations for clas-
sical solutions of linear Kolmogorov PDEs. The fact that certain solutions of linear Kolmogorov
PDEs can be expressed as appropriate averages of Itô processes associated with these PDEs opens
the door for the derivation of sampling based Monte Carlo approximation methods, which can be
meshfree and thereby stand a chance to approximate solutions of PDEs without suffering from
the curse of dimensionality. Since PDEs in applications are not always linear, an extension of
the classical Feynman–Kac formula to nonlinear PDEs is desirable. One approach to nonlinear
Feynman–Kac type formulas passes through backward stochastic differential equations (BSDEs);
see, e.g., [7, 35] for references on BSDEs and see, e.g., [2, 3, 19, 20, 32, 33, 34, 36, 37, 38, 39, 41, 43]
for references on the connection between BSDEs and PDEs. The approach which is pursued in
this article is to identify suitable solutions of stochastic fixed point equations (SFPEs), which arise
when the classical Feynman–Kac identity is formally applied to semilinear Kolmorogov PDEs by
treating the nonlinearity as mere inhomogeneity, as viscosity solutions of the corresponding PDEs;
see, e.g., [8, 9, 10, 18, 26] for references on viscosity solutions of PDEs. More specifically, we es-
tablish in this article a one-to-one correspondence between viscosity solutions of certain semilinear
Kolmogorov PDEs and solutions of the associated SFPEs (see Theorem 3.7 in Section 3.3 below).
This justifies, in particular, employing full-history recursive multilevel Picard (MLP) approxima-
tion algorithms (see [6, 12, 16, 21, 22, 23, 24, 25] for references on MLP approximation algorithms),
which have been shown to overcome the curse of dimensionality in the numerical approximation
of solutions of SFPEs, in the numerical approximation of semilinear Kolmogorov PDEs. MLP
approximation algorithms are the first and up to now only methods which have been shown to
overcome the curse of dimensionality in the numerical approximation of solutions of semilinear
Kolmogorov PDEs. To illustrate the findings of this article, we now present in Theorem 1.1 below
a special case of Theorem 3.7 which is the main result of this article.

Theorem 1.1. Let d P N, L, T P p0,8q, let µ : Rd Ñ R
d and σ : Rd Ñ R

dˆd be locally Lipschitz
continuous, let f P CpRd ˆ R,Rq, g P CpRd,Rq be at most polynomially growing, let }¨} : Rd Ñ
r0,8q be the standard Euclidean norm on Rd, let x¨, ¨y : Rd ˆ Rd Ñ R be the standard Euclidean
scalar product on Rd, assume for all x, y P Rd, v, w P R that xx, µpxqy ď Lp1 ` }x}2q, }σpxqy} ď
Lp1 ` }x}q}y}, and |fpx, vq ´ fpx, wq| ď L|v ´ w|, let pΩ,F ,P, pFtqtPr0,T sq be a stochastic basis1,
and let W : r0, T s ˆ Ω Ñ R

d be a standard pFtqtPr0,T s-Brownian motion. Then

(i) there exists a unique at most polynomially growing viscosity solution u P Cpr0, T s ˆRd,Rq of

p B
Bt
uqpt, xq ` 1

2
Tracepσpxqrσpxqs˚pHessx uqpt, xqq ` xµpxq, p∇xuqpt, xqy ` fpx, upt, xqq “ 0 (1)

with upT, xq “ gpxq for pt, xq P p0, T q ˆ Rd,

(ii) for every t P r0, T s, x P Rd there exists an up to indistinguishability unique pFsqsPrt,T s-adapted
stochastic process X t,x “ pX t,x

s qsPrt,T s : rt, T sˆΩ Ñ Rd with continuous sample paths satisfying

1Note that we say that a filtered probability space pΩ,F ,P, pFtqtPr0,T sq is a stochastic basis if and only if we
have for all t P r0, T q that tA P F : PpAq “ 0u Ď Ft “ pXsPpt,T sFsq; cf., e.g., Liu & Röckner [31, Definition 2.1.11].
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that for all s P rt, T s we have P-a.s. that

X t,x
s “ x`

ż s

t

µpX t,x
r q dr `

ż s

t

σpX t,x
r q dWr, (2)

(iii) there exists a unique at most polynomially growing v P Cpr0, T s ˆ Rd,Rq which satisfies for

all t P r0, T s, x P R
d that Er|gpX t,x

T q| `
şT

t
|fpX t,x

s , vps,X t,x
s qq| dss ă 8 and

vpt, xq “ E

„

gpX t,x
T q `

ż T

t

fpX t,x
s , vps,X t,x

s qq ds


, (3)

and

(iv) we have for all t P r0, T s, x P Rd that upt, xq “ vpt, xq.

Theorem 1.1 above is an immediate consequence of Corollary 3.9. Corollary 3.9, in turn,
follows from Corollary 3.8 which itself is a special case of Theorem 3.7, the main result of this
article. Let us comment on some of the mathematical objects appearing in Theorem 1.1. The real
number L P p0,8q in Theorem 1.1 above is used to formulate a growth condition, a coercivity
type condition, and a Lipschitz continuity condition on the functions µ : Rd Ñ Rd, σ : Rd Ñ Rdˆd,
and f : Rd ˆ R Ñ R. The real number T P p0,8q specifies the time horizon of the PDE in (1) in
Theorem 1.1 above. The functions µ : Rd Ñ Rd and σ : Rd Ñ Rdˆd in Theorem 1.1 above determine
the random dynamics in (2) and specify the linear part of the PDE in (1). The assumption that
the functions µ : Rd Ñ Rd and σ : Rd Ñ Rdˆd in Theorem 1.1 are locally Lipschitz continuous, the
assumption that σ is at most linearly growing, and the assumption that µ satisfies a coercivity type
condition, i.e., the assumption that for all x P R

d we have that xx, µpxqy ď Lp1 ` }x}2q, roughly
speaking, prevent local solutions of the stochastic differential equation (SDE) in (2) from blowing
up (see, e.g., Gyöngy & Krylov [17]). The function f P CpRdˆR,Rq in Theorem 1.1 represents the
nonlinearity of the semilinear Kolmogorov PDE in (1). The function g P CpRd,Rq in Theorem 1.1,
in turn, specifies the terminal condition of the semilinear Kolmogorov PDE in (1). Theorem 1.1
proves, in particular, the unique existence of an at most polynomially growing viscosity solution u
of the PDE in (1) and, moreover, shows that u is the unique at most polynomially growing solution
of the SFPE in (3). Related results can be found, e.g., in El Karoui et al. [13, Theorem 8.5],
Kalinin [27, Theorem 2.3], Ma & Zhang [33, Theorem 4.2], Pardoux [34, Theorem 4.6], Pardoux
& Peng [36, Theorem 4.3], Pardoux & Tang [39, Theorem 5.1], Pardoux et al. [37, Theorem 4.1],
and Peng [41, Theorem 3.2]. Note that, roughly speaking, these results are, on the one hand,
more general than Theorem 1.1 above with regard to the assumptions on the nonlinearity f in
Theorem 1.1 and, on the other hand, less general than Theorem 1.1 above with regard to the
assumptions on the coefficients µ and σ of the SDE in (2) in Theorem 1.1 above. In addition,
observe that in general the viscosity solution u P Cpr0, T s ˆ Rd,Rq of the PDE in (1) fails to be
a classical solution of the PDE in (1). Indeed, Hutzenthaler et al. [18] implies that there exist
admissible choices for the functions µ, σ, and g in Theorem 1.1 such that the unique at most
polynomially growing viscosity solution of the PDE in (1) with f “ pRd ˆ R Q px, aq ÞÑ 0 P Rq is
not locally Hölder continuous (cf., e.g., Elworthy [14] and Li & Scheutzow [30] for related results).
Next we comment on the proof of Theorem 1.1. Item (ii) is well-known in the scientific literature
(see, e.g., Gyöngy & Krylov [17]) and Item (iii) follows from [5, Corollary 3.10]. In order to prove
Items (i) and (iv) we first show in Proposition 2.23 in Section 2.5 (see also the proof of Theorem 3.7
in Section 3.3) that the unique at most polynomially growing solution of the SFPE in (3) is a
viscosity solution of the PDE in (1) and, thereafter, we show in Proposition 3.5 in Section 3.1
that there is at most one at most polynomially growing viscosity solution of the terminal value
problem in Item (i).
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The remainder of this article is organized as follows. Section 2 is concerned with a Feynman–
Kac representation result for viscosity solutions of linear inhomogeneous Kolmogorov PDEs; see
Proposition 2.23 in Section 2.5. Proposition 2.23 is proved by combining a well-known approxi-
mation argument (see Corollary 2.20 in Section 2.3) with a well-known result for Feynman–Kac
representations of classical solutions of linear inhomogeneous Kolmogorov PDEs (see Lemma 2.2
in Section 2.1) and an essentially well-known approximation result for SDEs (see Lemma 2.21
in Section 2.4). The notion of viscosity solutions as well as some basic properties of viscosity
solutions are recalled in Section 2.2. Section 3 deals with existence, uniqueness, and Feynman–
Kac representation results for viscosity solutions of semilinear Kolmogorov PDEs. In Section 3.1
we establish suitable uniqueness results for suitable viscosity solutions of semilinear Kolmogorov
PDEs (see Proposition 3.5 in Section 3.1). In Section 3.2 we reprove an essentially well-known
existence result for solutions of SDEs which is originally due to Gyöngy & Krylov [17]. Finally, in
Section 3.3, we combine the existence and uniqueness result for SFPEs in [5, Theorem 3.8], the
Feynman–Kac representation result for viscosity solutions of linear inhomogeneous Kolmogorov
PDEs in Proposition 2.23, and the uniqueness result in Proposition 3.5 to establish Theorem 3.7,
the main result of this article. We conclude this article by presenting in Corollary 3.9 and Corol-
lary 3.11 in Section 3.3 below a few illustrative applications of Theorem 3.7.

2 Linear inhomogeneous Kolmogorov partial differential equa-

tions (PDEs)

In this section we recall the definitions of a viscosity subsolution (see Definition 2.5 in Section 2.2
below), of a viscosity supersolution (see Definition 2.6 in Section 2.2 below), and of a viscosity solu-
tion (see Definition 2.7 in Section 2.2 below) in the case of a suitable class of degenerate parabolic
PDEs, which in particular includes linear inhomogeneous Kolmogorov PDEs as special cases, and
we establish in Proposition 2.23 in Section 2.5 below a Feynman–Kac type representation result
for viscosity solutions of such linear inhomogeneous Kolmogorov PDEs. The Feynman–Kac type
representation result in Proposition 2.23 in Section 2.5 will be employed in our proof of Theo-
rem 3.7 in Section 3.3 below, the main result of this article. Our proof of Proposition 2.23, in
turn, is based on the combination of the following three essentially well-known results: (i) the
existence and Feynman–Kac type representation result for classical solutions of certain linear in-
homogeneous Kolmogorov PDEs in Lemma 2.2 in Section 2.1 below, (ii) the approximation result
for viscosity solutions of degenerate parabolic PDEs in Corollary 2.20 in Section 2.3 below, and
(iii) the approximation result for solutions of SDEs in Lemma 2.21 in Section 2.4 below.

In Section 2.1 we establish in the essentially well-known result in Lemma 2.2 that a linear
inhomogeneous Kolmogorov PDE with smooth and compactly supported drift and diffusion coef-
ficients, with a smooth terminal condition, and with a smooth inhomogeneity admits a classical
solution. For the sake of completeness we also provide in Section 2.1 a detailed proof for Lemma 2.2.
In Section 2.2 we specify in Definitions 2.4 and 2.7 below the well-known notions of a degenerate
elliptic function and of a viscosity solution (cf. also, for example, Crandall et al. [9, Sections 2
and 8], Hairer et al. [18, Section 4.1 and Definition 4.1], and Peng [40, Definition 1.2 in Appendix
C]) which are used in this article. In addition, in Section 2.2 we also briefly recall in Lemma 2.8,
Lemma 2.9, Lemma 2.10, Lemma 2.16, and Lemma 2.17 some elementary and well-known prop-
erties of viscosity solutions which are employed later on in this article. In particular, Lemma 2.8
recalls that every classical solution is also a viscosity solution, Lemma 2.9 recalls an equivalent
characterization for the notion of a viscosity subsolution, Lemma 2.10 proves, roughly speaking,
that under suitable assumptions the notion of a viscosity subsolution in Definition 2.5 is consistent
with the notion of a viscosity subsolution in Hairer et al. [18, Definition 4.1], and Lemma 2.16
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and Lemma 2.17 provide an equivalent characterization for the notion of a viscosity subsolution
based on the notion of a parabolic superjet, which we briefly recall in Definition 2.11 (cf. also
Crandall et al. [9, Section 8] and Peng [40, Appendix C]). In Section 2.3 we establish in the essen-
tially well-known results in Lemma 2.18, Corollary 2.19, and Corollary 2.20 (cf., e.g., Crandall et
al. [9, Lemma 6.1], Hairer et al. [18, Lemma 4.8], and Imbert & Silvestre [26, Proposition 2.3.11])
approximation results for viscosity subsolutions, viscosity supersolutions, and viscosity solutions.
Our proof of Lemma 2.18 is strongly inspired by Hairer et al. [18, Lemma 4.8] (cf. also Barles &
Perthame [4, Theorem A.2]), Corollary 2.19 is a rather direct consequence of Lemma 2.18, and
Corollary 2.20 follows immediately from Lemma 2.18 and Corollary 2.19. In Section 2.4 we recall
in Lemma 2.21 an essentially well-known result on the continuous dependence of solutions of SDEs
on their initial values. In Section 2.5 we establish in Proposition 2.23 an existence result for viscos-
ity solutions of linear inhomogeneous Kolmogorov PDEs. Our proof of Proposition 2.23 employs
Lemma 2.22 together with the approximation result for viscosity solutions of degenerate parabolic
PDEs in Corollary 2.20. Lemma 2.22, in turn, uses the existence and Feynman–Kac type repre-
sentation result for classical solutions of linear inhomogeneous Kolmogorov PDEs in Lemma 2.2,
the approximation result for viscosity solutions of degenerate parabolic PDEs in Corollary 2.20,
and the approximation result for solutions of SDEs in Lemma 2.21.

2.1 Existence results for classical solutions of linear inhomogeneous Kol-
mogorov PDEs

Lemma 2.1. Let d,m P N, L, T P p0,8q, ξ P Rd, let }¨} : Rd Ñ r0,8q be the standard Eu-
clidean norm on R

d, let ~¨~ : Rdˆm Ñ r0,8q be the Frobenius norm on R
dˆm, let µ P Cpr0, T s ˆ

Rd,Rdq, σ P Cpr0, T s ˆ Rd,Rdˆmq satisfy for all t P r0, T s, x, y P Rd that }µpt, xq ´ µpt, yq} `
~σpt, xq ´ σpt, yq~ ď L }x´ y}, let g : Rd Ñ R be BpRdq/BpRq-measurable, let h : r0, T s ˆ Rd Ñ R

be Bpr0, T sˆRdq/BpRq-measurable, let O Ď Rd be an open set which satisfies psupppµqYsupppσqq Ď
r0, T s ˆO, assume that suppt|gpxq| ` |hpt, xq| : t P r0, T s, x P Ou Y t0uq ă 8, assume for all x P Rd

that
şT

0
|hpt, xq| dt ă 8, let pΩ,F ,P, pFtqtPr0,T sq be a stochastic basis, let W : r0, T s ˆ Ω Ñ R

m be
a standard pFtqtPr0,T s-Brownian motion, and let X “ pXtqtPr0,T s : r0, T s ˆ Ω Ñ Rd be an pFtqtPr0,T s-
adapted stochastic process with continuous sample paths satisfying that for all t P r0, T s we have
P-a.s. that

Xt “ ξ `
ż t

0

µps,Xsq ds`
ż t

0

σps,Xsq dWs. (4)

Then

E

„

|gpXT q| `
ż T

0

|hpt, Xtq| dt


ă 8. (5)

Proof of Lemma 2.1. To prove (5) we distinguish between the case ξ P RdzO and the case ξ P O.
We first prove (5) in the case ξ P RdzO. Note that the assumption that psupppµq Y supppσqq Ď
r0, T sˆO ensures that Pp@ t P r0, T s : Xt “ ξq “ 1 (cf., e.g., [5, Item (i) in Lemma 3.4]). Combining

this with the assumption that for all x P R
d we have that

şT

0
|hpt, xq| dt ă 8 shows that

E

„

|gpXT q| `
ż T

0

|hpt, Xtq| dt


“ |gpξq| `
ż T

0

|hpt, ξq| dt ă 8. (6)

This establishes (5) in the case ξ P RdzO. Next we prove (5) in the case ξ P O. Observe that the
assumption that psupppµqYsupppσqq Ď r0, T sˆO yields that Pp@ t P r0, T s : Xt P Oq “ 1 (cf., e.g.,
[5, Item (ii) in Lemma 3.4]). Combining this with the assumption that suppt|gpxq| ` |hpt, xq| : t P
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r0, T s, x P Ou Y t0uq ă 8 assures that we have that

E

„

|gpXT q| `
ż T

0

|hpt, Xtq| dt


ď
„

sup
xPO

|gpxq|


` T

«

sup
tPr0,T s

sup
xPO

|hpt, xq|
ff

ă 8. (7)

This establishes (5) in the case ξ P O. This completes the proof of Lemma 2.1.

Lemma 2.2. Let d,m P N, T P p0,8q, let x¨, ¨y : Rd ˆ Rd Ñ R be the standard Euclidean scalar
product on Rd, let µ : r0, T s ˆRd Ñ Rd and σ : r0, T s ˆRd Ñ Rdˆm be infinitely often differentiable
functions with compact support, let g : Rd Ñ R and h : r0, T s ˆRd Ñ R be infinitely often differen-
tiable functions, let pΩ,F ,P, pFtqtPr0,T sq be a stochastic basis, let W : r0, T sˆΩ Ñ Rm be a standard
pFtqtPr0,T s-Brownian motion, for every t P r0, T s, x P R

d let X t,x “ pX t,x
s qsPrt,T s : rt, T s ˆ Ω Ñ R

d

be an pFsqsPrt,T s-adapted stochastic process with continuous sample paths satisfying that for all
s P rt, T s we have P-a.s. that

X t,x
s “ x `

ż s

t

µpr,X t,x
r q dr `

ż s

t

σpr,X t,x
r q dWr, (8)

and let u : r0, T s ˆ Rd Ñ R satisfy for all t P r0, T s, x P Rd that

upt, xq “ E

„

gpX t,x
T q `

ż T

t

hps,X t,x
s q ds



(9)

(cf. Lemma 2.1). Then

(i) we have that u P C1,2pr0, T s ˆ Rd,Rq and

(ii) we have for all t P r0, T s, x P Rd that upT, xq “ gpxq and

p B
Bt
uqpt, xq` 1

2
Tracepσpt, xqrσpt, xqs˚pHessx uqpt, xqq`xµpt, xq, p∇xuqpt, xqy`hpt, xq “ 0. (10)

Proof of Lemma 2.2. Throughout this proof let o P p0,8q, o P po,8q, assume that psupppµq Y
supppσqq Ď r0, T sˆp´o, oqd, let xx¨, ¨yy : Rd`1ˆRd`1 Ñ R be the standard Euclidean scalar product
on Rd`1, let m : Rd`1 Ñ Rd`1, s : Rd`1 Ñ Rpd`1qˆm, g : Rd`1 Ñ R, and h : Rd`1 Ñ R be infinitely
often differentiable functions with bounded derivatives which satisfy for all t P r0, T s, x P Rd,
y P r´o, osd that

mpt, xq “
ˆ

1

µpt, xq

˙

P R
d`1, spt, xq “

ˆ

0

σpt, xq

˙

P R
pd`1qˆm,

gpt, yq “ gpyq P R, and hpt, yq “ hpt, yq P R

(11)

(cf., for instance, Seeley [42]), for every s P r0, T s, t P R, x P Rd let Y s,pt,xq “ pY s,pt,xq
r qrPrs,T s : rs, T sˆ

Ω Ñ Rd`1 be an pFrqrPrs,T s-adapted stochastic process with continuous sample paths satisfying
that for all r P rs, T s we have P-a.s. that

Y s,pt,xq
r “

ˆ

t

x

˙

`
ż r

s

mpY s,pt,xq
q q dq `

ż r

s

spY s,pt,xq
q q dWq (12)

(cf., e.g., Karatzas & Shreve [28, Theorem 5.2.9]), for every t P r0, T s, x P Rd let Zt,x “
pZt,x

s qsPrt,T s : rt, T s ˆ Ω Ñ Rd`1 satisfy for all s P rt, T s that Zt,x
s “ ps,X t,x

s q, and let v : r0, T s ˆ
Rd`1 Ñ R and w : r0, T s ˆ Rd`1 Ñ R satisfy for all s P r0, T s, t P R, x P Rd that

vps, t, xq “ E

”

g
`

Y
s,pt,xq
T

˘

ı

and wps, t, xq “ E

”

h
`

Y
s,pt,xq
T

˘

ı

. (13)
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Note that the assumption that psupppµqYsupppσqq Ď r0, T sˆp´o, oqd ensures that for all t P r0, T s,
x P Rdzp´o, oqd we have that Pp@ s P rt, T s : X t,x

s “ xq “ 1 (cf., e.g., [5, Item (i) in Lemma 3.4]).
This implies that for all t P r0, T s, x P Rdzp´o, oqd we have that

upt, xq “ E

„

gpX t,x
T q `

ż T

t

hps,X t,x
s q ds



“ gpxq `
ż T

t

hps, xq ds. (14)

The assumption that g and h are infinitely often differentiable and the fact that psupppµq Y
supppσqq Ď r0, T s ˆ p´o, oqd therefore assure that for all t P r0, T s, x P Rdzr´o, osd we have that
u|r0,T sˆpRdzr´o,osdq P C1,2pr0, T s ˆ pRdzr´o, osdq,Rq and

0 “ p B
Bt
uqpt, xq ` hpt, xq

“ p B
Bt
uqpt, xq ` 1

2
Tracepσpt, xqrσpt, xqs˚pHessx uqpt, xqq ` xµpt, xq, p∇xuqpt, xqy ` hpt, xq.

(15)

Next note that, e.g., Da Prato & Zabczyk [11, Theorem 7.4.5 and Theorem 7.5.1] (cf. also, e.g.,
Gīhman & Skorokhod [15, Theorem 2.8.1 and Corollary 2.8.1] and Andersson et al. [1, Theorem
1.1]) and (13) guarantee that

(I) we have that v, w P C1,2pr0, T s ˆ R
d`1,Rq,

(II) we have for all s P r0, T s, t P R, x P R
d that

´ p B
Bs
vqps, t, xq

“ 1
2
Trace

`

spt, xqrspt, xqs˚pHesspt,xq vqps, t, xq
˘

` xxmpt, xq, p∇pt,xqvqps, t, xqyy
“ 1

2
Tracepσpt, xqrσpt, xqs˚pHessx vqps, t, xqq ` p B

Bt
vqps, t, xq ` xµpt, xq, p∇xvqps, t, xqy,

(16)

and

(III) we have for all s P r0, T s, t P R, x P Rd that

´ p B
Bs
wqps, t, xq

“ 1
2
Trace

`

spt, xqrspt, xqs˚pHesspt,xq wqps, t, xq
˘

` xxmpt, xq, p∇pt,xqwqps, t, xqyy (17)

“ 1

2
Tracepσpt, xqrσpt, xqs˚pHessx wqps, t, xqq ` p B

Bt
wqps, t, xq ` xµpt, xq, p∇xwqps, t, xqy.

Moreover, observe that (8), (11), and the fact that for all t P r0, T s, s P rt, T s, x P Rd we have
that Zt,x

s “ ps,X t,x
s q ensure that for all t P r0, T s, s P rt, T s, x P Rd we have P-a.s. that

Zt,x
s “

ˆ

s

X t,x
s

˙

“
ˆ

t

x

˙

`
ż s

t

ˆ

1

µpr,X t,x
r q

˙

dr `
ż s

t

ˆ

0

σpr,X t,x
r q

˙

dWr

“
ˆ

t

x

˙

`
ż s

t

mpZt,x
r q dr `

ż s

t

spZt,x
r q dWr.

(18)

Combining this with the fact that for all t P r0, T s, x P Rd we have that Zt,x is an pFsqsPrt,T s-adapted
stochastic process with continuous sample paths, (12), e.g., Karatzas & Shreve [28, Theorem 5.2.5],
and (18) demonstrates that for all t P r0, T s, x P R

d we have that

P
`

@ s P rt, T s : Zt,x
s “ Y t,pt,xq

s

˘

“ 1. (19)

The fact that for all t P r0, T s, x P p´o, oqd we have that Pp@ s P rt, T s : X t,x
s P r´o, osdq “ 1, (11),

and (13) therefore yield that for all t P r0, T s, x P p´o, oqd we have that

vpt, t, xq “ E
“

gpY t,pt,xq
T q

‰

“ E
“

gpZt,x
T q

‰

“ E
“

gpT,X t,x
T q

‰

“ E
“

gpX t,x
T q

‰

. (20)
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Furthermore, note that (11), (13), (19), the fact that for all t P r0, T s, x P p´o, oqd we have that
Pp@ s P rt, T s : X t,x

s P r´o, osdq “ 1, and the fact that for all t P r0, T s, s P rt, T s, x P Rd, B P BpRq
we have that PpY s,pt,xq

T P Bq “ PpY t,pt,xq
T´s`t P Bq (cf., e.g., Klenke [29, Theorem 26.8]) demonstrate

that for all t P r0, T s, s P rt, T s, x P p´o, oqd we have that

wpT ´ s ` t, t, xq “ E
“

hpY T´s`t,pt,xq
T q

‰

“ E
“

hpY t,pt,xq
s q

‰

“ E
“

hpZt,x
s q

‰

“ E
“

hps,X t,x
s q

‰

“ E
“

hps,X t,x
s q

‰

.
(21)

This, (9), and (20) show for all t P r0, T s, x P p´o, oqd that

upt, xq “ vpt, t, xq `
ż T

t

wpT ´ s ` t, t, xq ds. (22)

Combining this with the fact that v, w P C1,2pr0, T s ˆRd`1,Rq and the chain rule ensures that for
all t P r0, T s, x P p´o, oqd we have that u|r0,T sˆp´o,oqd P C1,2pr0, T s ˆ p´o, oqd,Rq and

p B
Bt
uqpt, xq “ p B

Bs
vqpt, t, xq ` p B

Bt
vqpt, t, xq ` p B

Bt
q
„
ż T

t

wpT ´ s ` t, t, xq ds


. (23)

Furthermore, note that (16) and (17) yield that for all t P r0, T s, s P rt, T s, x P Rd we have that

p B
Bs
vqpt, t, xq ` p B

Bt
vqpt, t, xq

“ ´1

2
Tracepσpt, xqrσpt, xqs˚pHessx vqpt, t, xqq ´ xµpt, xq, p∇xvqpt, t, xqy (24)

and

p B
Bs
wqps, t, xq ` p B

Bt
wqps, t, xq

“ ´1

2
Tracepσpt, xqrσpt, xqs˚pHessxwqps, t, xqq ´ xµpt, xq, p∇xwqps, t, xqy. (25)

This ensures for all t P r0, T s, x P Rd that

p B
Bt

q
„
ż T

t

wpT ´ s ` t, t, xq ds


“ ´wpT, t, xq `
ż t

t

`

p B
Bs
wqpT ´ s ` t, t, xq ` p B

Bt
wqpT ´ s ` t, t, xq

˘

ds

“ ´wpT, t, xq ´
ż T

t

1
2
Tracepσpt, xqrσpt, xqs˚pHessxwqpT ´ s ` t, t, xqq ds

´
ż T

t

xµpt, xq, p∇xwqpT ´ s ` t, t, xqy ds.

(26)

Next observe that the fact that w P C1,2pr0, T s ˆ Rd`1,Rq proves that for all t P r0, T s, x P Rd we
have that

ż T

t

1
2
Tracepσpt, xqrσpt, xqs˚pHessx wqpT ´ s ` t, t, xqq ds

“ 1

2
Trace

ˆ

σpt, xqrσpt, xqs˚

„

Hessx

ˆ
ż T

t

wpT ´ s ` t, t, xq ds
˙˙ (27)

and
ż T

t

xµpt, xq, p∇xwqpT ´ s ` t, t, xqy ds “
B

µpt, xq,∇x

ˆ
ż T

t

wpT ´ s ` t, t, xq ds
˙F

. (28)
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Moreover, note that (8) and (21) ensure for all t P r0, T s, x P p´o, oqd that

wpT, t, xq “ E
“

hpt, X t,x
t pxqq

‰

“ hpt, xq. (29)

Combining this with (22)–(28) shows for all t P r0, T s, x P p´o, oqd that

p B
Bt
uqpt, xq “ ´1

2
Tracepσpt, xqrσpt, xqs˚pHessx uqpt, xqq ´ xµpt, xq, p∇xuqpt, xqy ´ hpt, xq. (30)

This and (15) demonstrate for all t P r0, T s, x P Rd that u P C1,2pr0, T s ˆ Rd,Rq and

p B
Bt
uqpt, xq “ ´1

2
Tracepσpt, xqrσpt, xqs˚pHessx uqpt, xqq ´ xµpt, xq, p∇xuqpt, xqy ´ hpt, xq. (31)

This establishes Item (i). Furthermore, observe that (8) and (9) demonstrate that for all x P Rd

we have that upT, xq “ gpxq. Combining this with (31) establishes Item (ii). This completes the
proof of Lemma 2.2.

2.2 Basic properties of viscosity solutions of suitable PDEs

Definition 2.3 (Symmetric matrices). Let d P N. Then we denote by Sd the set given by
Sd “ tA P R

dˆd : A˚ “ Au.

Definition 2.4 (Degenerate elliptic functions). Let d P N, T P p0,8q, let O Ď Rd be a non-empty
open set, and let x¨, ¨y : Rd ˆ Rd Ñ R be the standard Euclidean scalar product on Rd. Then we
say that G is degenerate elliptic on p0, T q ˆOˆRˆRd ˆSd (we say that G is degenerate elliptic)
if and only if

(i) we have that G : p0, T q ˆ O ˆ R ˆ R
d ˆ Sd Ñ R is a function from p0, T q ˆ O ˆ R ˆ R

d ˆ Sd

to R and

(ii) we have for all t P p0, T q, x P O, r P R, p P Rd, A,B P Sd with @ y P Rd : xAy, yy ď xBy, yy
that Gpt, x, r, p, Aq ď Gpt, x, r, p, Bq

(cf. Definition 2.3).

Definition 2.5 (Viscosity subsolutions). Let d P N, T P p0,8q, let O Ď Rd be a non-empty open
set, and letG : p0, T qˆOˆRˆRdˆSd Ñ R be degenerate elliptic (cf. Definitions 2.3 and 2.4). Then
we say that u is a viscosity solution of p B

Bt
uqpt, xq`Gpt, x, upt, xq, p∇xuqpt, xq, pHessx uqpt, xqq ě 0 for

pt, xq P p0, T qˆO (we say that u is a viscosity subsolution of p B
Bt
uqpt, xq`Gpt, x, upt, xq, p∇xuqpt, xq,

pHessx uqpt, xqq “ 0 for pt, xq P p0, T q ˆ O) if and only if there exists a set A such that

(i) we have that p0, T q ˆ O Ď A,

(ii) we have that u : A Ñ R is an upper semi-continuous function from A to R, and

(iii) we have for all t P p0, T q, x P O, φ P C1,2pp0, T q ˆO,Rq with φpt, xq “ upt, xq and φ ě u that

p B
Bt
φqpt, xq ` Gpt, x, φpt, xq, p∇xφqpt, xq, pHessx φqpt, xqq ě 0. (32)

Definition 2.6 (Viscosity supersolutions). Let d P N, T P p0,8q, let O Ď Rd be a non-empty open
set, and letG : p0, T qˆOˆRˆRdˆSd Ñ R be degenerate elliptic (cf. Definitions 2.3 and 2.4). Then
we say that u is a viscosity solution of p B

Bt
uqpt, xq`Gpt, x, upt, xq, p∇xuqpt, xq, pHessx uqpt, xqq ď 0 for

pt, xq P p0, T qˆO (we say that u is a viscosity supersolution of p B
Bt
uqpt, xq`Gpt, x, upt, xq, p∇xuqpt, xq,

pHessx uqpt, xqq “ 0 for pt, xq P p0, T q ˆ O) if and only if there exists a set A such that

9



(i) we have that p0, T q ˆ O Ď A,

(ii) we have that u : A Ñ R is a lower semi-continuous function from A to R, and

(iii) we have for all t P p0, T q, x P O, φ P C1,2pp0, T q ˆO,Rq with φpt, xq “ upt, xq and φ ď u that

p B
Bt
φqpt, xq ` Gpt, x, φpt, xq, p∇xφqpt, xq, pHessx φqpt, xqq ď 0. (33)

Definition 2.7 (Viscosity solutions). Let d P N, T P p0,8q, let O Ď Rd be a non-empty open set,
and let G : p0, T q ˆOˆRˆRd ˆSd Ñ R be degenerate elliptic (cf. Definitions 2.3 and 2.4). Then
we say that u is a viscosity solution of p B

Bt
uqpt, xq `Gpt, x, upt, xq, p∇xuqpt, xq, pHessx uqpt, xqq “ 0

for pt, xq P p0, T q ˆ O if and only if

(i) we have that u is a viscosity subsolution of p B
Bt
uqpt, xq`Gpt, x, upt, xq, p∇xuqpt, xq, pHessx uqpt,

xqq “ 0 for pt, xq P p0, T q ˆ O and

(ii) we have that u is a viscosity supersolution of p B
Bt
uqpt, xq`Gpt, x, upt, xq, p∇xuqpt, xq, pHessx uqpt,

xqq “ 0 for pt, xq P p0, T q ˆ O

(cf. Definitions 2.5 and 2.6).

Lemma 2.8. Let d P N, T P p0,8q, let O Ď Rd be a non-empty open set, and let G : p0, T q ˆO ˆ
R ˆ Rd ˆ Sd Ñ R be degenerate elliptic (cf. Definitions 2.3 and 2.4). Then

(i) we have for every u P C1,2pp0, T q ˆO,Rq with @ t P p0, T q, x P O : p B
Bt
uqpt, xq `Gpt, x, upt, xq,

p∇xuqpt, xq, pHessx uqpt, xqq ě 0 that u is a viscosity solution of

p B
Bt
uqpt, xq ` Gpt, x, upt, xq, p∇xuqpt, xq, pHessx uqpt, xqq ě 0 (34)

for pt, xq P p0, T q ˆ O,

(ii) we have for every u P C1,2pp0, T q ˆO,Rq with @ t P p0, T q, x P O : p B
Bt
uqpt, xq `Gpt, x, upt, xq,

p∇xuqpt, xq, pHessx uqpt, xqq ď 0 that u is a viscosity solution of

p B
Bt
uqpt, xq ` Gpt, x, upt, xq, p∇xuqpt, xq, pHessx uqpt, xqq ď 0 (35)

for pt, xq P p0, T q ˆ O, and

(iii) we have for every u P C1,2pp0, T q ˆO,Rq with @ t P p0, T q, x P O : p B
Bt
uqpt, xq `Gpt, x, upt, xq,

p∇xuqpt, xq, pHessx uqpt, xqq “ 0 that u is a viscosity solution of

p B
Bt
uqpt, xq ` Gpt, x, upt, xq, p∇xuqpt, xq, pHessx uqpt, xqq “ 0 (36)

for pt, xq P p0, T q ˆ O

(cf. Definitions 2.5–2.7).

Proof of Lemma 2.8. First, note that (32) establishes Item (i). Next observe that (33) proves
Item (ii). Moreover, note that Item (i) and Item (ii) establish Item (iii). This completes the proof
of Lemma 2.8.

Lemma 2.9. Let d P N, T P p0,8q, t P p0, T q, let O Ď Rd be an open set, let x P O, φ P
C1,2pp0, T qˆO,Rq, let G : p0, T qˆOˆRˆRdˆSd Ñ R be degenerate elliptic, let u : p0, T qˆO Ñ R

be a viscosity solution of p B
Bt
uqpt, xq ` Gpt, x, upt, xq, p∇xuqpt, xq, pHessx uqpt, xqq ě 0 for pt, xq P

p0, T q ˆO, and assume that u´ φ has a local maximum at pt, xq P p0, T q ˆO (cf. Definitions 2.3–
2.5). Then

p B
Bt
φqpt, xq ` Gpt, x, upt, xq, p∇xφqpt, xq, pHessx φqpt, xqq ě 0. (37)
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Proof of Lemma 2.9. First, observe that the fact that u is upper semi-continuous implies that
there exist ψ P C1,2pp0, T q ˆ O,Rq and a non-empty open set U Ď p0, T q ˆ O which satisfy that

(i) we have that pt, xq P U ,

(ii) we have for all t P p0, T q, x P O that upt, xq ´ ψpt, xq ě upt, xq ´ ψpt, xq, and

(iii) we have for all pt, xq P U that ψpt, xq “ φpt, xq.

Hence, we obtain that

p B
Bt
φqpt, xq ` Gpt, x, upt, xq, p∇xφqpt, xq, pHessx φqpt, xqq

“ p B
Bt
ψqpt, xq ` Gpt, x, upt, xq, p∇xψqpt, xq, pHessx ψqpt, xqq ě 0.

(38)

This completes the proof of Lemma 2.9.

Lemma 2.10. Let d P N, T P p0,8q, let O Ď Rd be a non-empty open set, let G : p0, T q ˆ O ˆ
R ˆ Rd ˆ Sd Ñ R be degenerate elliptic and upper semi-continuous, let u : p0, T q ˆ O Ñ R be
upper semi-continuous, and assume for all t P p0, T q, x P O, φ P tψ P C2pp0, T q ˆ O,Rq : pu ´
ψ has a local maximum at pt, xq P p0, T q ˆ Oqu that

p B
Bt
φqpt, xq ` Gpt, x, upt, xq, p∇xφqpt, xq, pHessx φqpt, xqq ě 0 (39)

(cf. Definitions 2.3 and 2.4). Then u is a viscosity solution of

p B
Bt
uqpt, xq ` Gpt, x, upt, xq, p∇xuqpt, xq, pHessx uqpt, xqq ě 0 (40)

for pt, xq P p0, T q ˆ O (cf. Definition 2.5).

Proof of Lemma 2.10. Throughout this proof let }¨} : Rd Ñ r0,8q be the standard Euclidean
norm on R

d, let ~¨~ : Rdˆd Ñ r0,8q be the Frobenius norm on R
dˆd, let t0 P p0, T q, x0 P O, φ P

C1,2pp0, T qˆO,Rq satisfy for all s P p0, T q, y P O that φps, yq ě ups, yq and φpt0, x0q “ upt0, x0q, let
ψ0 P C1,2pp0, T qˆO,Rq satisfy for all s P p0, T q, y P O that ψ0ps, yq “ φps, yq`|s´t0|4`}y´x0}4, let
η P p0,8q satisfy that tps, yq P RˆRd : maxt|s´t0|, }y ´ x0}u ď ηu Ď p0, T qˆO, and let Ir P r0,8q,
r P p0, ηs, satisfy for all r P p0, ηs that Ir “ 1

2
inftψ0ps, yq ´ ups, yq : ps, yq P p0, T q ˆ O, r2 ď

|s ´ t0|2 ` }y ´ x0}2 ď η2u. Observe that the fact that for all ps, yq P rp0, T q ˆ Osztpt0, x0qu
we have that ψ0ps, yq ą φps, yq ensures that for all ps, yq P rp0, T q ˆ Osztpt0, x0qu we have that
ψ0ps, yq ą ups, yq and ψ0pt0, x0q “ upt0, x0q. The assumption that u is upper semi-continuous
hence guarantees that for all r P p0, ηs we have that Ir P p0,8q. Moreover, note that there exist
ψn P C2pp0, T q ˆ O,Rq, n P N, which satisfy for all non-empty compact K Ď p0, T q ˆ O that

lim sup
nÑ8

«

sup
ps,yqPK

´

|p B
Bt
ψnqps, yq ´ p B

Bt
ψ0qps, yq| ` |ψnps, yq ´ ψ0ps, yq|

` }p∇xψnqps, yq ´ p∇xψ0qps, yq} ` ~pHessx ψnqps, yq ´ pHessx ψ0qps, yq~
¯

ff

“ 0. (41)

This implies that there exists n “ pnεqεPp0,8q : p0,8q Ñ N which satisfies that for all ε P p0,8q,
n P N X rnε,8q we have that

sup
 

|ψnps, yq ´ ψ0ps, yq| : ps, yq P p0, T q ˆ O, |s ´ t0|2 ` }y ´ x0}2 ď η2
(

ă ε. (42)
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The fact that Iη P p0,8q and (41) hence ensure that there exist ptn, xnq P p0, T q ˆ O, n P N,
which satisfy for all n P N X rnIη ,8q, s P p0, T q, y P O with |s ´ t0|2 ` }y ´ x0}2 ď η2 that
|tn ´ t0|2 ` }xn ´ y0}2 ă η2 and

uptn, xnq ´ ψnptn, xnq ě ups, yq ´ ψnps, yq. (43)

Combining this with (39) proves that for all n P rnIη ,8q we have that

p B
Bt
ψnqptn, xnq ` Gptn, xn, uptn, xnq, p∇xψnqptn, xnq, pHessx ψnqptn, xnqq ě 0. (44)

Moreover, note that (42) and (43) imply that for all r P p0, ηq, n P rnIr ,8q we have that |tn´t0|2`
}xn ´ x0}2 ď r2. Therefore, we obtain that lim supnÑ8p|tn ´ t0|2 ` }xn ´ x0}2q “ 0. Combining
this with (41), (43), and the assumption that u is upper semi-continuous shows that

0 ě lim sup
nÑ8

ruptn, xnq ´ upt0, x0qs ě lim inf
nÑ8

ruptn, xnq ´ upt0, x0qs

ě lim inf
nÑ8

rψnptn, xnq ´ ψnpt0, x0qs “ 0.
(45)

The fact that lim supnÑ8p|tn ´ t0|2 ` }xn ´ x0}2q “ 0, the fact that ψ0 P C1,2pp0, T q ˆ O,Rq, (41),
the assumption that G is upper semi-continuous, and (44) hence demonstrate that

p B
Bt
φqpt0, x0q ` Gpt0, x0, upt0, x0q, p∇xφqpt0, x0q, pHessx φqpt0, x0q

“ p B
Bt
ψ0qpt0, x0q ` Gpt0, x0, upt0, x0q, p∇xψ0qpt0, x0q, pHessx ψ0qpt0, x0q ě 0.

(46)

This establishes (40). This completes the proof of Lemma 2.10.

Definition 2.11 (Parabolic superjets). Let d P N, T P p0,8q, let O Ď R
d be a non-empty open

set, let t P p0, T q, x P O, let x¨, ¨y : Rd ˆ Rd Ñ R be the standard Euclidean scalar product on
Rd, let }¨} : Rd Ñ r0,8q be the standard Euclidean norm on Rd, and let u : p0, T q ˆ O Ñ R be a
function. Then we denote by pP`

d,T,Ouqpt, xq (we denote by pP`uqpt, xq) the set given by

pP`
d,T,Ouqpt, xq “ pP`uqpt, xq “

"

pb, p, Aq P R ˆ R
d ˆ Sd :

lim sup
rp0,T qˆOsztpt,xquQps,yqÑpt,xq

”

ups,yq´upt,xq´bps´tq´xp,y´xy´ 1

2
xApy´xq,y´xy

|t´s|`}x´y}2

ı

ď 0

*

(47)

(cf. Definition 2.3).

Definition 2.12 (Parabolic subjets). Let d P N, T P p0,8q, let O Ď R
d be a non-empty open set,

let t P p0, T q, x P O, let x¨, ¨y : Rd ˆ Rd Ñ R be the standard Euclidean scalar product on Rd, let
}¨} : Rd Ñ r0,8q be the standard Euclidean norm on Rd, and let u : p0, T q ˆO Ñ R be a function.
Then we denote by pP´

d,T,Ouqpt, xq (we denote by pP´uqpt, xq) the set given by

pP´
d,T,Ouqpt, xq “ pP´uqpt, xq “

"

pb, p, Aq P R ˆ R
d ˆ Sd :

lim inf
rp0,T qˆOsztpt,xquQps,yqÑpt,xq

”

ups,yq´upt,xq´bps´tq´xp,y´xy´ 1

2
xApy´xq,y´xy

|t´s|`}x´y}2

ı

ě 0

*

(48)

(cf. Definition 2.3).
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Definition 2.13 (Generalized parabolic superjets). Let d P N, T P p0,8q, let O Ď Rd be a
non-empty open set, let t P p0, T q, x P O, let x¨, ¨y : Rd ˆ Rd Ñ R be the standard Euclidean
scalar product on Rd, let }¨} : Rd Ñ r0,8q be the standard Euclidean norm on Rd, and let
u : p0, T q ˆ O Ñ R be a function. Then we denote by pP`

d,T,Ouqpt, xq (we denote by pP`uqpt, xq)
the set given by

pP`
d,T,Ouqpt, xq “ pP`uqpt, xq “

#

pb, p, Aq P R ˆ R
d ˆ Sd :

˜ D ptn, xn, bn, pn, AnqnPN Ď p0, T q ˆ O ˆ R ˆ Rd ˆ Sd :

p@n P N : pbn, pn, Anq P pP`uqptn, xnqq and
limnÑ8ptn, xn, uptn, xnq, bn, pn, Anq “ pt, x, upt, xq, b, p, Aq

¸+

(49)

(cf. Definitions 2.3 and 2.11).

Definition 2.14 (Generalized parabolic subjets). Let d P N, T P p0,8q, let O Ď Rd be a
non-empty open set, let t P p0, T q, x P O, let x¨, ¨y : Rd ˆ Rd Ñ R be the standard Euclidean
scalar product on Rd, let }¨} : Rd Ñ r0,8q be the standard Euclidean norm on Rd, and let
u : p0, T q ˆ O Ñ R be a function. Then we denote by pP´

d,T,Ouqpt, xq (we denote by pP´uqpt, xq)
the set given by

pP´
d,T,Ouqpt, xq “ pP´uqpt, xq “

#

pb, p, Aq P R ˆ R
d ˆ Sd :

˜ D ptn, xn, bn, pn, AnqnPN Ď p0, T q ˆ O ˆ R ˆ Rd ˆ Sd :

p@n P N : pbn, pn, Anq P pP´uqptn, xnqq and
limnÑ8ptn, xn, uptn, xnq, bn, pn, Anq “ pt, x, upt, xq, b, p, Aq

¸+

(50)

(cf. Definitions 2.3 and 2.12).

Lemma 2.15. Let d P N, ε, T P p0,8q, let O Ď Rd be a non-empty open set, let u : p0, T qˆO Ñ R

be upper semi-continuous, and let t P p0, T q, x P O, pb, p, Aq P pP`uqpt, xq. Then there exists
φ P C1,2pp0, T q ˆ O,Rq such that

(i) we have that pb, p, A` ε IdRdq “ pp B
Bt
φqpt, xq, p∇xφqpt, xq, pHessx φqpt, xqq and

(ii) we have that u ´ φ has a local maximum at pt, xq P p0, T q ˆ O

(cf. Definition 2.11).

Proof of Lemma 2.15. Throughout this proof let Φ: p0, T qˆO Ñ R satisfy for all s P p0, T q, y P O

that

Φps, yq “
#

max
!

ups,yq´upt,xq´bps´tq´xp,y´xy´ 1

2
xpA`ε Id

Rd
qpy´xq,y´xy

|s´t|
, 0
)

: s ‰ t

0 : s “ t.
(51)

Observe that (47) ensures that

lim sup
p0,T qˆOztpt,xquQps,yqÑpt,xq

”

ups,yq´upt,xq´bps´tq´xp,y´xy´ 1

2
xApy´xq,y´xy

|s´t|`}y´x}2

ı

ď 0. (52)

This and the assumption that ε P p0,8q imply that there exists ρ P p0,8q which satisfies that

(I) we have that rt´ ρ, t` ρs ˆ ty P Rd : }y ´ x} ď ρu Ď p0, T q ˆ O and
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(II) we have for all s P rt´ ρ, t` ρs, y P tz P Rd : }z ´ x} ď ρu that

ups, yq ´ upt, xq ´ bps ´ tq ´ xp, y ´ xy ´ 1
2
xpA` ε IdRdqpy ´ xq, y ´ xy ď ε|s´ t|. (53)

Next let η : R Ñ R satisfy for all r P R that

ηprq “ suptΦps, yq : ps, yq P p0, T q ˆ O, |s ´ t| ď |r|, }y ´ x} ď ρu, (54)

let Ψ: R Ñ R satisfy for all r P R that

Ψprq “
#

2
|r|

ş2r

0

şs

0
ηpθq dθ ds : r ‰ 0

0 : r “ 0,
(55)

and let ψ : p0, T qˆO Ñ R satisfy for all s P p0, T q, y P O that ψps, yq “ bps´ tq`Ψps´ tq`xp, y´
xy ` 1

2
xpA`ε IdRdqpy´xq, y´xy. Note that the assumption that u is upper semi-continuous, (51),

(53), (54), and (55) ensure that

(a) we have for all r P r0,8q, s P rr,8q that ηprq ď ηpsq ă 8, ηp0q “ 0, and ηp´rq “ ηprq,

(b) we have that Ψ P C1pR,Rq,

(c) we have that Ψ1p0q “ 0,

(d) we have for all s P rt´ ρ, t ` ρs, y P tz P Rd : }z ´ x} ď ρu that

ups, yq ´ upt, xq ´ bps ´ tq ´ xp, y ´ xy ´ 1
2
xpA` ε IdRdqpy ´ xq, y ´ xy

ď |s ´ t|Φps, yq ď |s ´ t|ηp|s ´ t|q, (56)

and

(e) we have for all r P R that

Ψprq “ 2

|r|

ż 2|r|

0

ż s

0

ηpθq dθ ds ě 2

|r|

ż 2|r|

|r|

ż s

|r|

ηprq dθ ds “ |r|ηprq. (57)

The fact that for all s P p0, T q, y P O we have that ψps, yq “ bps ´ tq ` Ψps ´ tq ` xp, y ´ xy `
1
2
xpA` ε IdRdqpy ´ xq, y ´ xy hence ensures that

(A) we have that ψ P C1,2pp0, T q ˆ O,Rq,

(B) we have that pb, p, A` ε IdRdq “ pp B
Bt
ψqpt, xq, p∇xψqpt, xq, pHessx ψqpt, xqq, and

(C) we have for all s P rt ´ ρ, t ` ρs, y P tz P R
d : }z ´ x} ď ρu that ups, yq ´ ψps, yq ď upt, xq “

upt, xq ´ ψpt, xq.
This establishes Items (i) and (ii). This completes the proof of Lemma 2.15.

Lemma 2.16. Let d P N, T P p0,8q, let O Ď Rd be a non-empty open set, let G : p0, T q ˆ O ˆ
R ˆ Rd ˆ Sd Ñ R be degenerate elliptic and upper semi-continuous, and let u : r0, T s ˆ O Ñ R be
a viscosity solution of

p B
Bt
uqpt, xq ` Gpt, x, upt, xq, p∇xuqpt, xq, pHessx uqpt, xqq ě 0 (58)

(cf. Definitions 2.3–2.5). Then we have for all t P p0, T q, x P O, pb, p, Aq P pP`uqpt, xq that

b` Gpt, x, upt, xq, p, Aq ě 0 (59)

(cf. Definition 2.13).
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Proof of Lemma 2.16. Throughout this proof let ptn, xn, bn, pn, Anq P p0, T q ˆ O ˆ R ˆ Rd ˆ Sd,
n P N0, satisfy for all n P N that pbn, pn, Anq P pP`uqptn, xnq and

lim
mÑ8

ptm, xm, uptm, xmq, bm, pm, Amq “ pt0, x0, upt0, x0q, b0, p0, A0q. (60)

Observe that Lemma 2.15 ensures that there exist φε,n P C1,2pp0, T q ˆ O,Rq, ε P p0,8q, n P N,
which satisfy that

(i) we have for all ε P p0,8q, n P N that

pbn, pn, An ` ε IdRdq “ pp B
Bt
φε,nqptn, xnq, p∇xφε,nqptn, xnq, pHessx φε,nqptn, xnqq (61)

and

(ii) we have for all ε P p0,8q, n P N that u ´ φε,n has a local maximum at ptn, xnq P p0, T q ˆ O.

Lemma 2.9 therefore demonstrates that for all ε P p0,8q, n P N we have that

bn ` Gptn, xn, uptn, xnq, pn, An ` ε IdRdq
“ p B

Bt
φε,nqptn, xnq ` Gptn, xn, uptn, xnq, p∇xφε,nqptn, xnq, pHessx φε,nqptn, xnqq ě 0.

(62)

The assumption that G is upper semi-continuous therefore ensures for all n P N that

bn ` Gptn, xn, uptn, xnq, pn, Anq ě lim sup
p0,8qQεÑ0

rbn ` Gptn, xn, unptn, xnq, pn, An ` ε IdRdqs ě 0. (63)

Combining this with the assumption that G is upper semi-continuous proves that

b ` Gpt0, x0, upt0, x0q, p0, A0q ě lim sup
nÑ8

rbn ` Gptn, xn, uptn, xnqqs ě 0. (64)

This establishes (59). This completes the proof of Lemma 2.16.

Lemma 2.17. Let d P N, T P p0,8q, let O Ď R
d be a non-empty open set, let G : p0, T q ˆ O ˆ

R ˆ Rd ˆ Sd Ñ R be degenerate elliptic, let u : r0, T s ˆ Rd Ñ R be upper semi-continuous, and
assume for all t P p0, T q, x P O, pb, p, Aq P pP`uqpt, xq that

b` Gpt, x, upt, xq, p, Aq ě 0 (65)

(cf. Definitions 2.3, 2.4, and 2.11). Then we have that u is a viscosity solution of

p B
Bt
uqpt, xq ` Gpt, x, upt, xq, p∇xuqpt, xq, pHessx uqpt, xqq ě 0 (66)

for pt, xq P p0, T q ˆ O (cf. Definition 2.5).

Proof of Lemma 2.17. First, observe that for all t P p0, T q, x P O, φ P C1,2pp0, T q ˆ O,Rq with
φ ě u and φpt, xq “ upt, xq we have that pp B

Bt
φqpt, xq, p∇xφqpt, xq, pHessx φqpt, xqq P pP`uqpt, xq.

Hence, we obtain that for all t P p0, T q, x P O, φ P C1,2pp0, T q ˆ O,Rq with φ ě u and φpt, xq “
upt, xq we have that p B

Bt
φqpt, xq ` Gpt, x, upt, xq, p∇xφqpt, xq, pHessx φqpt, xqq ě 0. This establishes

that u is a viscosity solution of

p B
Bt
uqpt, xq ` Gpt, x, upt, xq, p∇xuqpt, xq, pHessx uqpt, xqq ě 0 (67)

for pt, xq P p0, T q ˆ O. This completes the proof of Lemma 2.17.
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2.3 Approximation results for viscosity solutions of suitable PDEs

Lemma 2.18. Let d P N, T P p0,8q, let O Ď Rd be a non-empty open set, let un : p0, T qˆO Ñ R,
n P N0, be functions, let Gn : p0, T q ˆOˆRˆRd ˆSd Ñ R, n P N0, be degenerate elliptic, assume
that G0 is upper semi-continuous, assume for all non-empty compact K Ď p0, T qˆOˆRˆR

d ˆSd

that

lim sup
nÑ8

«

sup
pt,x,r,p,AqPK

´

|unpt, xq ´ u0pt, xq| ` |Gnpt, x, r, p, Aq ´ G0pt, x, r, p, Aq|
¯

ff

“ 0, (68)

and assume for all n P N that un is a viscosity solution of

p B
Bt
unqpt, xq ` Gnpt, x, unpt, xq, p∇xunqpt, xq, pHessx unqpt, xqq ě 0 (69)

for pt, xq P p0, T q ˆ O (cf. Definitions 2.3–2.5). Then we have that u0 is a viscosity solution of

p B
Bt
u0qpt, xq ` G0pt, x, u0pt, xq, p∇xu0qpt, xq, pHessx u0qpt, xqq ě 0 (70)

for pt, xq P p0, T q ˆ O (cf. Definition 2.5).

Proof of Lemma 2.18. Throughout this proof let }¨} : Rd Ñ r0,8q be the standard Euclidean
norm on Rd, let t0 P p0, T q, x0 P O, pφεqεPp0,8q Ď C1,2pp0, T q ˆ O,Rq satisfy for all ε P p0,8q,
s P p0, T q, y P O that φ0pt0, x0q “ u0pt0, x0q, φ0ps, yq ě u0ps, yq, and

φεps, yq “ φ0ps, yq ` ε
2
p|s ´ t0|2 ` }y ´ x0}2q, (71)

and let η P p0,8q satisfy that tps, yq P RˆR
d : maxt|s´t0|, }y´x0}u ď ηu Ď p0, T qˆO. Note that

(68) and the fact that for all n P N we have that un is upper semi-continuous ensure that u0 is upper
semi-continuous. Moreover, note that (68) assures that there exists n “ pnεqεPp0,8q : p0,8q Ñ N

which satisfies for all ε P p0,8q, n P N X rnε,8q that

sup
 

|unps, yq ´ u0ps, yq| : ps, yq P p0, T q ˆ O,maxt|s ´ t0|, }y ´ x0}u ď η
(

ă εη2

4
. (72)

Combining this with (71) implies that for all ε P p0,8q, n P N X rnε,8q, s P p0, T q, y P O with
|s ´ t0| ď η, }y ´ x0} ď η, and |s ´ t0|2 ` }y ´ x0}2 ě η2 we have that

unpt0, x0q ´ φεpt0, x0q “ unpt0, x0q ´ φ0pt0, x0q “ unpt0, x0q ´ u0pt0, x0q ą ´ εη2

4

ą unps, yq ´ u0ps, yq ´ ε
2
p|s ´ t0|2 ` }y ´ x0}2q

ě unps, yq ´ φ0ps, yq ´ ε
2
p|s ´ t0|2 ` }y ´ x0}2q “ unps, yq ´ φεps, yq.

(73)

The fact that for every ε P p0,8q, n P N we have that un ´ φε is upper semi-continuous therefore

guarantees that there exist t “ ptpεq
n qpε,nqPRˆN : R ˆ N Ñ p0, T q and x “ pxpεq

n qpε,nqPRˆN : R ˆ N Ñ O

which satisfy for all ε P p0,8q, n P N X rnε,8q, s P rt0 ´ η, t0 ` ηs, y P tz P O : }z ´ x0} ď ηu that

t
pεq
n P pt0 ´ η, t0 ` ηq, }xpεq

n ´ x0} ă η, and

unptpεq
n , xpεq

n q ´ φεptpεq
n , xpεq

n q ě unps, yq ´ φεps, yq. (74)

Lemma 2.9 and (69) hence prove that for all ε P p0,8q, n P N X rnε,8q we have that

p B
Bt
φεqptpεq

n , xpεq
n q ` Gnptpεq

n , xpεq
n , unptpεq

n , xpεq
n q, p∇xφεqptpεq

n , xpεq
n q, pHessx φεqptpεq

n , xpεq
n qq ě 0. (75)
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Moreover, note that (68), (71), and (74) imply that for all ε P p0,8q we have that

0 “ lim sup
nÑ8

ru0pt0, x0q ´ unpt0, x0qs “ lim sup
nÑ8

rφεpt0, x0q ´ unpt0, x0qs

ě lim sup
nÑ8

“

φεptpεq
n , xpεq

n q ´ unptpεq
n , xpεq

n q
‰

“ lim sup
nÑ8

“

φ0ptpεq
n , xpεq

n q ` ε
2
p|tpεq

n ´ t0|2 ` }xpεq
n ´ x0}2q ´ unptpεq

n , xpεq
n q

‰

ě lim sup
nÑ8

“

u0ptpεq
n , xpεq

n q ´ unptpεq
n , xpεq

n q ` ε
2
p|tpεq

n ´ t0|2 ` }xpεq
n ´ x0}2q

‰

“ lim sup
nÑ8

“

ε
2
p|tpεq

n ´ t0|2 ` }xpεq
n ´ x0}2q

‰

.

(76)

The fact that u0 is upper semi-continuous and (68) hence ensure that for all ε P p0,8q we have
that

lim sup
nÑ8

“

unptpεq
n , xpεq

n q ´ u0pt0, x0q
‰

“ lim sup
nÑ8

“

unptpεq
n , xpεq

n q ´ u0ptpεq
n , xpεq

n q ` u0ptpεq
n , xpεq

n q ´ u0pt0, x0q
‰

“ lim sup
nÑ8

“

u0ptpεq
n , xpεq

n q ´ u0pt0, x0q
‰

ď 0.

(77)

Moreover, note that the fact that φ0 P C1,2pp0, T q ˆ O,Rq, (68), and (74) prove that for all
ε P p0,8q we have that

lim inf
nÑ8

“

unptpεq
n , xpεq

n q ´ u0pt0, x0q
‰

ě lim inf
nÑ8

“

unpt0, x0q ´ u0pt0, x0q ` φεptpεq
n , xpεq

n q ´ φεpt0, x0q
‰

“ 0.
(78)

This and (77) show for all ε P p0,8q that

lim sup
nÑ8

|unptpεq
n , xpεq

n q ´ u0pt0, x0q| “ 0. (79)

The assumption that G0 is upper semi-continuous, the fact that φ0 P C1,2pp0, T q ˆ O,Rq, (68),

(71), and (76) hence imply that for all ε P p0,8q we have that lim supnÑ8 |p B
Bt
φεqptpεq

n , x
pεq
n q ´

p B
Bt
φ0qpt0, x0q| “ 0 and

G0pt0, x0, φ0pt0, x0q, p∇xφ0qpt0, x0q, pHessx φ0qpt0, x0q ` εIq
“ G0pt0, x0, u0pt0, x0q, p∇xφεqpt0, x0q, pHessx φεqpt0, x0qq
ě lim sup

nÑ8

“

G0ptpεq
n , xpεq

n , unptpεq
n , xpεq

n q, p∇xφεqptpεq
n , xpεq

n q, pHessx φεqptpεq
n , xpεq

n qq
‰

“ lim sup
nÑ8

“

Gnptpεq
n , xpεq

n , unptpεq
n , xpεq

n q, p∇xφεqptpεq
n , xpεq

n q, pHessx φεqptpεq
n , xpεq

n qq
‰

.

(80)

Combining this with (75) assures for all ε P p0,8q that

p B
Bt
φ0qpt0, x0q ` G0pt0, x0, φ0pt0, x0q, p∇xφ0qpt0, x0q, pHessx φ0qpt0, x0q ` ε IdRdq ě 0. (81)

The assumption that G0 is upper semi-continuous therefore demonstrates that

p B
Bt
φ0qpt0, x0q ` G0pt0, x0, u0pt0, x0q, p∇xφ0qpt0, x0q, pHessx φ0qpt0, x0qq ě 0. (82)

This establishes (70). This completes the proof of Lemma 2.18.

17



Corollary 2.19. Let d P N, T P p0,8q, let O Ď Rd be a non-empty open set, let un : p0, T q ˆO Ñ
R, n P N0, be functions, let Gn : p0, T qˆOˆRˆRdˆSd Ñ R, n P N0, be degenerate elliptic, assume
that G0 is lower semi-continuous, assume for all non-empty compact K Ď p0, T q ˆOˆRˆRdˆSd

that

lim sup
nÑ8

«

sup
pt,x,r,p,AqPK

´

|unpt, xq ´ u0pt, xq| ` |Gnpt, x, r, p, Aq ´ G0pt, x, r, p, Aq|
¯

ff

“ 0, (83)

and assume for all n P N that un is a viscosity solution of

p B
Bt
unqpt, xq ` Gnpt, x, unpt, xq, p∇xunqpt, xq, pHessx unqpt, xqq ď 0 (84)

for pt, xq P p0, T q ˆ O (cf. Definitions 2.3, 2.4, and 2.6). Then we have that u0 is a viscosity
solution of

p B
Bt
u0qpt, xq ` G0pt, x, u0pt, xq, p∇xu0qpt, xq, pHessx u0qpt, xqq ď 0 (85)

for pt, xq P p0, T q ˆ O (cf. Definition 2.6).

Proof of Corollary 2.19. Throughout this proof let vn : p0, T q ˆ O Ñ R, n P N0, and Hn : p0, T q ˆ
O ˆ R ˆ Rd ˆ Sd Ñ R, n P N0, satisfy for all n P N0, t P p0, T q, x P O, r P R, p P Rd, A P Sd

that vnpt, xq “ ´unpt, xq and Hnpt, xq “ ´Gnpt, x,´r,´p,´Aq. Observe that the assumption that
G0 is lower semi-continuous ensures that H0 is upper semi-continuous. Moreover, note that the
assumption that for all n P N0 we have that Gn is degenerate elliptic shows that we have for all
n P N0 that Hn is degenerate elliptic. Furthermore, observe that (84) assures that for all n P N

we have that vn is a viscosity solution of

p B
Bt
vnqpt, xq ` Hnpt, x, vnpt, xq, p∇xvnqpt, xq, pHessx vnqpt, xqq ě 0 (86)

for pt, xq P p0, T q ˆ O. In addition, note that (83) proves that for all non-empty compact K Ď
p0, T q ˆ O ˆ R ˆ Rd ˆ Sd we have that

lim sup
nÑ8

«

sup
pt,x,r,p,AqPK

´

|vnpt, xq ´ v0pt, xq| ` |Hnpt, x, r, p, Aq ´ H0pt, x, r, p, Aq|
¯

ff

“ 0. (87)

Combining this, (86), the fact that H0 is upper semi-continuous, and the fact that for all n P N0 we
have that Hn is degenerate elliptic with Lemma 2.18 demonstrates that v0 is a viscosity solution
of

p B
Bt
v0qpt, xq ` H0pt, x, v0pt, xq, p∇xv0qpt, xq, pHessx v0qpt, xqq ě 0 (88)

for pt, xq P p0, T q ˆ O. Hence, we obtain that u0 is a viscosity solution of

p B
Bt
u0qpt, xq ` G0pt, x, u0pt, xq, p∇xu0qpt, xq, pHessx u0qpt, xqq ď 0 (89)

for pt, xq P p0, T q ˆ O. This completes the proof of Corollary 2.19.

Corollary 2.20. Let d P N, T P p0,8q, let O Ď Rd be a non-empty open set, let un : p0, T q ˆO Ñ
R, n P N0, be functions, let Gn : p0, T q ˆ O ˆ R ˆ Rd ˆ Sd Ñ R, n P N0, be degenerate elliptic,
assume that G0 : p0, T q ˆ O ˆ R ˆ Rd ˆ Sd Ñ R is continuous, assume for all non-empty compact
K Ď p0, T q ˆ O ˆ R ˆ Rd ˆ Sd that

lim sup
nÑ8

«

sup
pt,x,r,p,AqPK

´

|Gnpt, x, r, p, Aq ´ G0pt, x, r, p, Aq| ` |unpt, xq ´ u0pt, xq|
¯

ff

“ 0, (90)
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and assume for all n P N that un is a viscosity solution of

p B
Bt
unqpt, xq ` Gnpt, x, unpt, xq, p∇xunqpt, xq, pHessx unqpt, xqq “ 0 (91)

for pt, xq P p0, T q ˆ O (cf. Definitions 2.3, 2.4, and 2.7). Then we have that u0 is a viscosity
solution of

p B
Bt
u0qpt, xq ` G0pt, x, u0pt, xq, p∇xu0qpt, xq, pHessx u0qpt, xqq “ 0 (92)

for pt, xq P p0, T q ˆ O (cf. Definition 2.7).

Proof of Corollary 2.20. First, observe that Lemma 2.18 ensures that u0 is a viscosity solution of

p B
Bt
u0qpt, xq ` G0pt, x, u0pt, xq, p∇xu0qpt, xq, pHessx u0qpt, xqq ě 0 (93)

for pt, xq P p0, T q ˆ O. Next note that Corollary 2.19 proves that u0 is a viscosity solution of

p B
Bt
u0qpt, xq ` G0pt, x, u0pt, xq, p∇xu0qpt, xq, pHessx u0qpt, xqq ď 0 (94)

for pt, xq P p0, T q ˆ O. Combining this with (93) establishes (92). This completes the proof of
Corollary 2.20.

2.4 Approximation results for solutions of stochastic differential equa-
tions (SDEs)

Lemma 2.21. Let d,m P N, T P p0,8q, let }¨} : Rd Ñ r0,8q be the standard Euclidean norm on
R

d, let ~¨~ : Rdˆm Ñ r0,8q be the Frobenius norm on R
dˆm, let O Ď R

d be an non-empty open
set, let µn P Cpr0, T sˆO,Rdq, n P N0, and σn P Cpr0, T sˆO,Rdˆmq, n P N0, satisfy for all n P N0

that

sup
tPr0,T s

sup
xPO

sup
yPOztxu

ˆ}µnpt, xq ´ µnpt, yq} ` ~σnpt, xq ´ σnpt, yq~
}x ´ y}

˙

ă 8, (95)

assume that

lim sup
nÑ8

«

sup
tPr0,T s

sup
xPO

´

}µnpt, xq ´ µ0pt, xq} ` ~σnpt, xq ´ σ0pt, xq~
¯

ff

“ 0, (96)

let pΩ,F ,P, pFtqtPr0,T sq be a stochastic basis, let W : r0, T s ˆ Ω Ñ Rm be a standard pFtqtPr0,T s-
Brownian motion, and for every n P N0, t P r0, T s, x P O let Xn,t,x “ pXn,t,x

s qsPrt,T s : rt, T sˆΩ Ñ O

be an pFsqsPrt,T s-adapted stochastic process with continuous sample paths satisfying that for all
s P rt, T s we have P-a.s. that

Xn,t,x
s “ x`

ż s

t

µnpr,Xn,t,x
r q dr `

ż s

t

σnpr,Xn,t,x
r q dWr. (97)

Then

lim sup
nÑ8

«

sup
tPr0,T s

sup
sPrt,T s

sup
xPO

´

E

”

›

›Xn,t,x
s ´ X0,t,x

s

›

›

2
ı¯

ff

“ 0. (98)

Proof of Lemma 2.21. Throughout this proof let L P R satisfy for all t P r0, T s, x, y P O that

}µ0pt, xq ´ µ0pt, yq} ` ~σ0pt, xq ´ σ0pt, yq~ ď L}x´ y}. (99)

Note that, e.g., Karatzas & Shreve [28, Theorem 5.2.9] ensures that for all n P N0, t P r0, T s,
x P O we have that

sup
sPrt,T s

E

”

›

›Xn,t,x
s

›

›

2
ı

ă 8. (100)
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Next observe that (97) proves that for all n P N, t P r0, T s, s P rt, T s, x P O we have P-a.s. that

Xn,t,x
s ´ X0,t,x

s “
ż s

t

pµnpr,Xn,t,x
r q ´ µ0pr,X0,t,x

r qq dr `
ż s

t

pσnpr,Xn,t,x
r q ´ σ0pr,X0,t,x

r qq dWr. (101)

Minkowski’s inequality and Itô’s isometry hence ensure that for all n P N, t P r0, T s, s P rt, T s,
x P O we have that

´

E

”

›

›Xn,t,x
s ´ X0,t,x

s

›

›

2
ı¯1{2

ď
ż s

t

´

E

”

›

›µnpr,Xn,t,x
r q ´ µ0pr,X0,t,x

r q
›

›

2
ı¯1{2

dr

`
˜

E

«

›

›

›

›

ż s

t

pσnpr,Xn,t,x
r q ´ σ0pr,X0,t,x

r qq dWr

›

›

›

›

2
ff¸1{2

ď
ż s

t

´

E

”

›

›µnpr,Xn,t,x
r q ´ µ0pr,X0,t,x

r q
›

›

2
ı¯1{2

dr

`
ˆ
ż s

t

E

”

�

�σnpr,Xn,t,x
r q ´ σ0pr,X0,t,x

r q
�

�

2
ı

dr

˙1{2

.

(102)

The fact that for all a, b P R we have that pa` bq2 ď 2a2 ` 2b2 and the Cauchy-Schwarz inequality
therefore show that for all n P N, t P r0, T s, s P rt, T s, x P O we have that

E

”

›

›Xn,t,x
s ´ X0,t,x

s

›

›

2
ı

ď 2

„
ż s

t

´

E

”

›

›µnpr,Xn,t,x
r q ´ µ0pr,X0,t,x

r q
›

›

2
ı¯1{2

dr

2

` 2

ż s

t

E

”

�

�σnpr,Xn,t,x
r q ´ σ0pr,X0,t,x

r q
�

�

2
ı

dr

ď 2T

ż s

t

E

”

›

›µnpr,Xn,t,x
r q ´ µ0pr,X0,t,x

r q
›

›

2
ı

dr

` 2

ż s

t

E

”

�

�σnpr,Xn,t,x
r q ´ σ0pr,X0,t,x

r q
�

�

2
ı

dr

(103)

This and the fact that for all a, b P R we have that pa ` bq2 ď 2a2 ` 2b2 prove that for all n P N,
t P r0, T s, s P rt, T s, x P O we have that

E

”

›

›Xn,t,x
s ´ X0,t,x

s

›

›

2
ı

ď 2T

ż s

t

ˆ

2E
”

›

›µnpr,Xn,t,x
r q ´ µ0pr,Xn,t,x

r q
›

›

2
ı

` 2E
”

›

›µ0pr,Xn,t,x
r q ´ µ0pr,X0,t,x

r q
›

›

2
ı

˙

dr

` 2

ż s

t

ˆ

2E

”

�

�σnpr,Xn,t,x
r q ´ σ0pr,Xn,t,x

r q
�

�

2
ı

` 2E

”

�

�σ0pr,Xn,t,x
r q ´ σ0pr,X0,t,x

r q
�

�

2
ı

˙

dr.

(104)

Combining this with (99) demonstrates that for all n P N, t P r0, T s, s P rt, T s, x P O we have that

E

”

›

›Xn,t,x
s ´ X0,t,x

s

›

›

2
ı

ď 4L2pT ` 1q
ż s

t

E

”

›

›Xn,t,x
r ´ X0,t,x

r

›

›

2
ı

dr

` 4T pT ` 1q
«

sup
rPr0,T s

sup
yPRd

`

}µnpr, yq ´ µ0pr, yq}2 ` ~σnpr, yq ´ σ0pr, yq~2
˘

ff

.

(105)

Gronwall’s inequality and (100) hence imply that for all n P N, t P r0, T s, s P rt, T s, x P O we
have that

E

”

›

›Xn,t,x
s ´ X0,t,x

s

›

›

2
ı

ď 4T pT ` 1q
«

sup
rPr0,T s

sup
yPRd

`

}µnpr, yq ´ µ0pr, yq}2 ` ~σnpr, yq ´ σ0pr, yq~2
˘

ff

e4L
2T pT`1q.

(106)

This and (96) establish (98). This completes the proof of Lemma 2.21.
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2.5 Existence results for viscosity solutions of linear inhomogeneous

Kolmogorov PDEs

Lemma 2.22. Let d,m P N, T P p0,8q, let x¨, ¨y : Rd ˆ Rd Ñ R be the standard Euclidean scalar
product on R

d, let }¨} : Rd Ñ r0,8q be the standard Euclidean norm on R
d, let ~¨~ : Rdˆm Ñ r0,8q

be the Frobenius norm on Rdˆm, let µ P Cpr0, T sˆRd,Rdq, σ P Cpr0, T sˆRd,Rdˆmq, g P CpRd,Rq,
h P Cpr0, T s ˆ Rd,Rq, assume that µ and σ have compact supports, assume that

sup
tPr0,T s

sup
xPRd

sup
yPRdztxu

„}µpt, xq ´ µpt, yq} ` ~σpt, xq ´ σpt, yq~
}x ´ y}



ă 8, (107)

let pΩ,F ,P, pFtqtPr0,T sq be a stochastic basis, let W : r0, T s ˆ Ω Ñ Rm be a standard pFtqtPr0,T s-
Brownian motion, for every t P r0, T s, x P Rd let X t,x “ pX t,x

s qsPrt,T s : rt, T s ˆ Ω Ñ Rd be an
pFsqsPrt,T s-adapted stochastic process with continuous sample paths satisfying that for all s P rt, T s
we have P-a.s. that

X t,x
s “ x `

ż s

t

µpr,X t,x
r q dr `

ż s

t

σpr,X t,x
r q dWr, (108)

and let u : r0, T s ˆ Rd Ñ R satisfy for all t P r0, T s, x P Rd that

upt, xq “ E

„

gpX t,x
T q `

ż T

t

hps,X t,x
s q ds



(109)

(cf. Lemma 2.1). Then we have that u is a viscosity solution of

p B
Bt
uqpt, xq ` 1

2
Tracepσpt, xqrσpt, xqs˚pHessx uqpt, xqq ` xµpt, xq, p∇xuqpt, xqy ` hpt, xq “ 0 (110)

with upT, xq “ gpxq for pt, xq P p0, T q ˆ R
d (cf. Definition 2.7).

Proof of Lemma 2.22. Throughout this proof let K “ psupppµq Y supppσqq Ď r0, T s ˆ Rd, let
ρ P p0,8q satisfy K Ď r0, T s ˆ p´ρ, ρqd, let mn P C8pr0, T s ˆ Rd,Rdq, n P N, and sn P C8pr0, T s ˆ
R

d,Rdˆmq, n P N, satisfy
Ť

nPNrsupppmnq Y supppsnqs Ď r0, T s ˆ p´ρ, ρqd and

lim sup
nÑ8

«

sup
tPr0,T s

sup
xPRd

´

}mnpt, xq ´ µpt, xq} ` ~snpt, xq ´ σpt, xq~
¯

ff

“ 0, (111)

let gn P C8pRd,Rq, n P N, and hn P C8pr0, T s ˆ Rd,Rq, n P N, satisfy for all n P N that

suptPr0,T s supxPRd,}x}ďn

`

|gnpxq ´ gpxq| ` |hnpt, xq ´ hpt, xq|
˘

ď 1

n
, (112)

let Gn,k : p0, T q ˆ Rd ˆ R ˆ Rd ˆ Sd Ñ R, n, k P N0, satisfy for all n, k P N, t P p0, T q, x P Rd,
r P R, p P Rd, A P Sd that

G0,0pt, x, r, p, Aq “ 1

2
Tracepσpt, xqσpt, xq˚Aq ` xµpt, xq, py ` hpt, xq, (113)

G0,kpt, x, r, p, Aq “ 1
2
Tracepσpt, xqσpt, xq˚Aq ` xµpt, xq, py ` hkpt, xq, (114)

and
Gn,kpt, x, r, p, Aq “ 1

2
Tracepsnpt, xqsnpt, xq˚Aq ` xmnpt, xq, py ` hkpt, xq, (115)

for every t P r0, T s, x P Rd, n P N let Xn,t,x “ pXn,t,x
s qsPrt,T s : rt, T s ˆ Ω Ñ Rd be an pFsqsPrt,T s-

adapted stochastic process with continuous sample paths satisfying that for all s P rt, T s we have
P-a.s. that

Xn,t,x
s “ x`

ż s

t

mnpr,Xn,t,x
r q dr `

ż s

t

snpr,Xn,t,x
r q dWr (116)
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(cf., for example, Karatzas & Shreve [28, Theorem 5.2.9]), and let un,k : r0, T s ˆ Rd Ñ R, n P N0,
k P N, satisfy for all n, k P N, t P r0, T s, x P Rd that

un,kpt, xq “ E

„

gkpXn,t,x
T q `

ż T

t

hkps,Xn,t,x
s q ds



(117)

and

u0,kpt, xq “ E

„

gkpX t,x
T q `

ż T

t

hkps,X t,x
s q ds



(118)

(cf. Lemma 2.1). Note that Lemma 2.2 (applied with g Ð gk, h Ð hk, µ Ð mn, σ Ð sn,
X t,x Ð Xn,t,x for n P N, t P r0, T s, x P O in the notation of Lemma 2.2) establishes that for all
n, k P N, t P r0, T s, x P R

d we have that un,k P C1,2pr0, T s ˆ R
d,Rq, un,kpT, xq “ gkpxq, and

p B
Bt
un,kqpt, xq ` 1

2
Trace

`

snpt, xqrsnpt, xqs˚pHessx un,kqpt, xq
˘

` xmnpt, xq, p∇xu
n,kqpt, xqy

` hkpt, xq “ 0. (119)

Lemma 2.8 hence implies that for all n, k P N we have that un,k is a viscosity solution of

p B
Bt
un,kqpt, xq ` 1

2
Trace

`

snpt, xqrsnpt, xqs˚pHessx un,kqpt, xq
˘

` xmnpt, xq, p∇xu
n,kqpt, xqy

` hkpt, xq “ 0 (120)

for pt, xq P p0, T q ˆ Rd. Next note that (108), (116), and the fact that for all n P N we have
that psupppmnq Y supppsnq Y supppµq Y supppσqq Ď r0, T s ˆ p´ρ, ρqd demonstrate that for all
n P N, t P r0, T s, x P Rdzp´ρ, ρqd we have that Pp@ s P rt, T s : Xn,t,x

s “ x “ X t,x
s q “ 1 (cf., e.g.,

[5, Item (i) in Lemma 3.4]). Hence, we obtain for all n, k P N, t P r0, T s, x P Rdzp´ρ, ρqd that
un,kpt, xq “ u0,kpt, xq. Combining this with (117) and (118) assures that for all n, k P N we have
that

sup
tPr0,T s

sup
xPRd

”

|un,kpt, xq ´ u0,kpt, xq|
ı

“ sup
tPr0,T s

sup
xPp´ρ,ρqd

”

|un,kpt, xq ´ u0,kpt, xq|
ı

ď sup
tPr0,T s

sup
xPp´ρ,ρqd

ˆ

E
“

|gkpXn,t,x
T q ´ gkpX t,x

T q|
‰

` E

„
ż T

t

|hkps,Xn,t,x
s q ´ hkps,X t,x

s q| ds
˙

.

(121)

Moreover, observe that the fact that for all k P N we have that gk P C8pRd,Rq, the fact that
for all k P N we have that hk P C8pr0, T s ˆ Rd,Rq, the fact that p´ρ, ρqd is convex, the fact
that r´ρ, ρsd is compact, and the fact that for all n P N, t P r0, T s, x P p´ρ, ρqd we have that
Pp@ s P rt, T s : X t,x

s P r´ρ, ρsdq “ Pp@ s P rt, T s : Xn,t,x
s P r´ρ, ρsdq “ 1 (cf., e.g., [5, Item (ii) in

Lemma 3.4]) yields that for all n, k P N we have that

sup
tPr0,T s

sup
xPp´ρ,ρqd

`

E
“

|gkpXn,t,x
T q ´ gkpX t,x

T q|
‰˘

ď sup
tPr0,T s

sup
xPp´ρ,ρqd

˜

E

«˜

sup
yPp´ρ,ρqd

}p∇gkqpyq}
¸

}Xn,t,x
T ´ X

t,x
T }

ff¸

ď
˜

sup
yPp´ρ,ρqd

}p∇gkqpyq}
¸

looooooooooooomooooooooooooon

ă8

«

sup
tPr0,T s

sup
xPp´ρ,ρqd

`

E
“

}Xn,t,x
T ´ X

t,x
T }

‰˘

ff

(122)
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and

sup
tPr0,T s

sup
xPp´ρ,ρqd

ˆ

E

„
ż T

t

|hkps,Xn,t,x
s q ´ hkps,X t,x

s q| ds
˙

ď sup
tPr0,T s

sup
xPp´ρ,ρqd

˜

E

«

ż T

t

˜

sup
yPp´ρ,ρqd

}p∇xhkqps, yq}
¸

}Xn,t,x
s ´ X t,x

s } ds
ff¸

ď
˜

sup
tPr0,T s

sup
xPp´ρ,ρqd

}p∇xhkqpt, xq}
¸«

sup
tPr0,T s

sup
xPp´ρ,ρqd

ˆ

E

„
ż T

t

}Xn,t,x
s ´ X t,x

s } ds
˙

ff

.

(123)

Furthermore, note that Lemma 2.21 ensures that

lim sup
nÑ8

«

sup
tPr0,T s

sup
xPp´ρ,ρqd

ˆ

E
“

}Xn,t,x
T ´ X

t,x
T }

‰

` E

„
ż T

t

}Xn,t,x
s ´ X t,x

s } ds
˙

ff

“ 0. (124)

Combining this with (121)–(123) guarantees that for all k P N we have that

lim sup
nÑ8

«

sup
tPr0,T s

sup
xPRd

´

|un,kpt, xq ´ u0,kpt, xq|
¯

ff

“ 0. (125)

Moreover, observe that (120) proves that for all n, k P N we have that un,k is a viscosity solution
of

p B
Bt
un,kqpt, xq ` Gn,kpt, x, un,kpt, xq, p∇xu

n,kqpt, xq, pHessx un,kqpt, xqq “ 0 (126)

for pt, xq P p0, T q ˆ Rd. Furthermore, observe that (111) yields that for all non-empty compact
C Ď p0, T q ˆ O ˆ R ˆ R

d ˆ Sd we have that

lim sup
nÑ8

«

sup
pt,x,r,p,AqPC

ˇ

ˇGn,kpt, x, r, p, Aq ´ G0,kpt, x, r, p, Aq
ˇ

ˇ

ff

ď lim sup
nÑ8

«

sup
pt,x,r,p,AqPC

´

}µpt, xq ´ mnpt, xq} }p}
¯

ff

` lim sup
nÑ8

«

sup
pt,x,r,p,AqPC

´

~snpt, xqrsnpt, xqs˚ ´ σpt, xqrσpt, xqs˚~ ~A~
¯

ff

“ 0.

(127)

This, (125), (126), the fact that G0,0 is continuous, and Corollary 2.20 demonstrate that for all
k P N we have that u0,k is a viscosity solution of

p B
Bt
u0,kqpt, xq ` G0,kpt, x, u0,kpt, xq, p∇xu

0,kqpt, xq, pHessx u0,kqpt, xqq “ 0 (128)

for pt, xq P p0, T q ˆ Rd. Moreover, observe that (112) ensures that for all compact C Ď r0, T s ˆ Rd

we have that

lim sup
kÑ8

«

sup
pt,xqPC

E
“

|gkpX t,x
T q ´ gpX t,x

T q|
‰

ff

ď lim sup
kÑ8

»

—

–
sup

pt,xqPC,
}x}ďk

E
“

|gkpX t,x
T q ´ gpX t,x

T q|
‰

fi

ffi

fl

ď lim sup
kÑ8

»

—

–
sup

tPr0,T s

sup
xPCYp´ρ,ρqd,

}x}ďk

E
“

|gkpX t,x
T q ´ gpX t,x

T q|
‰

fi

ffi

fl

ď lim sup
kÑ8

»

—

–
sup

tPr0,T s

sup
xPRd,
}x}ďk

|gkpxq ´ gpxq|

fi

ffi

fl
ď lim sup

kÑ8

ˆ

1

k

˙

“ 0

(129)
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and

lim sup
kÑ8

«

sup
pt,xqPC

E

„
ż T

t

ˇ

ˇhkps,X t,x
s q ´ hps,X t,x

s q
ˇ

ˇ ds



ff

“ lim sup
kÑ8

»

—

–
sup

pt,xqPC,
}x}ďk

E

„
ż T

t

ˇ

ˇhkps,X t,x
s q ´ hps,X t,x

s q
ˇ

ˇ ds



fi

ffi

fl

ď lim sup
kÑ8

»

—

–
sup

tPr0,T s

sup
xPRd,
}x}ďk

E

„
ż T

t

ˇ

ˇhkps,X t,x
s q ´ hps,X t,x

s q
ˇ

ˇ ds



fi

ffi

fl

ď lim sup
kÑ8

»

—

–
T sup

tPr0,T s

sup
xPRd,
}x}ďk

|hkpt, xq ´ hpt, xq|

fi

ffi

fl
ď lim sup

kÑ8

ˆ

T

k

˙

“ 0.

(130)

Combining this with (109), (118), and (129) proves that for all compact C Ď p0, T q ˆ Rd we have
that

lim sup
kÑ8

«

sup
pt,xqPC

ˇ

ˇu0,kpt, xq ´ upt, xq
ˇ

ˇ

ff

“ 0. (131)

Corollary 2.20, the fact that for all non-empty compact C Ď p0, T qˆRdˆRˆRd ˆSd we have that
lim supkÑ8rsuppt,x,r,p,AqPC |G0,kpt, x, r, p, Aq ´ G0,0pt, x, r, p, Aq|s “ 0, (128), and (131) show that u
is a viscosity solution of

p B
Bt
uqpt, xq ` G0,0pt, x, upt, xq, p∇xuqpt, xq, pHessx uqpt, xqq “ 0 (132)

for pt, xq P p0, T q ˆ Rd. This assures that u is a viscosity of

p B
Bt
uqpt, xq ` 1

2
Tracepσpt, xqrσpt, xqs˚pHessx uqpt, xqq ` xµpt, xq, p∇xuqpt, xqy ` hpt, xq “ 0 (133)

for pt, xq P p0, T q ˆ Rd. Next note that (108) and (109) ensure that for all x P Rd we have
that upT, xq “ gpxq. Combining this with (133) establishes (110). This completes the proof of
Lemma 2.22.

Proposition 2.23. Let d,m P N, T P p0,8q, let O Ď R
d be a non-empty open set, let x¨, ¨y : Rd ˆ

Rd Ñ R be the standard Euclidean scalar product on Rd, let }¨} : Rd Ñ r0,8q be the standard
Euclidean norm on Rd, let ~¨~ : Rdˆm Ñ r0,8q be the Frobenius norm on Rdˆm, for every r P
p0,8q let Or Ď O satisfy Or “ tx P O : p}x} ď r and ty P Rd : }y ´ x} ă 1{ru Ď Oqu, let
g P CpO,Rq, h P Cpr0, T sˆO,Rq, µ P Cpr0, T sˆO,Rdq, σ P Cpr0, T sˆO,Rdˆmq, V P C1,2pr0, T sˆ
O, p0,8qq, assume for all r P p0,8q that

sup

ˆ"}µpt, xq ´ µpt, yq} ` ~σpt, xq ´ σpt, yq~
}x´ y} : t P r0, T s, x, y P Or, x ‰ y

*

Y t0u
˙

ă 8, (134)

assume for all t P r0, T s, x P O that

p B
Bt
V qpt, xq ` 1

2
Tracepσpt, xqrσpt, xqs˚pHessx V qpt, xqq ` xµpt, xq, p∇xV qpt, xqy ď 0, (135)

assume that suprPp0,8qrinftPr0,T s infxPOzOr
V pt, xqs “ 8 and infrPp0,8qrsuptPr0,T s supxPOzOr

p |gpxq|
V pT,xq

`
|hpt,xq|
V pt,xq

qs “ 0, let pΩ,F ,P, pFtqtPr0,T sq be a stochastic basis, let W : r0, T s ˆ Ω Ñ Rm be a standard
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pFtqtPr0,T s-Brownian motion, for every t P r0, T s, x P O let X t,x “ pX t,x
s qsPrt,T s : rt, T s ˆ Ω Ñ O

be an pFsqsPrt,T s-adapted stochastic process with continuous sample paths satisfying that for all
s P rt, T s we have P-a.s. that

X t,x
s “ x `

ż s

t

µpr,X t,x
r q dr `

ż s

t

σpr,X t,x
r q dWr, (136)

and let u : r0, T s ˆ Rd Ñ R satisfy for all t P r0, T s, x P Rd that

upt, xq “ E

„

gpX t,x
T q `

ż T

t

hps,X t,x
s q ds



. (137)

Then we have that u is a viscosity solution of

p B
Bt
uqpt, xq ` 1

2
Tracepσpt, xqrσpt, xqs˚pHessx uqpt, xqq ` xµpt, xq, p∇xuqpt, xqy ` hpt, xq “ 0 (138)

with upT, xq “ gpxq for pt, xq P p0, T q ˆ O (cf. Definition 2.7).

Proof of Proposition 2.23. Throughout this proof let gn P CpRd,Rq, n P N, and hn P Cpr0, T s ˆ
Rd,Rq, n P N, be compactly supported functions which satisfy

“
Ť

nPN suppphnq
‰

Ď r0, T s ˆ O,
“
Ť

nPN supppgnq
‰

Ď O, and

lim sup
nÑ8

«

sup
tPr0,T s

sup
xPO

ˆ |gnpxq ´ gpxq|
V pT, xq ` |hnpt, xq ´ hpt, xq|

V pt, xq

˙

ff

“ 0, (139)

let mn P Cpr0, T s ˆ Rd,Rdq, n P N, and sn P Cpr0, T s ˆ Rd,Rdˆmq, n P N, satisfy that

(I) we have for all n P N that

sup
tPr0,T s

sup
x,yPRd,x‰y

„}mnpt, xq ´ mnpt, yq} ` }snpt, xq ´ snpt, yq}
}x´ y}



ă 8, (140)

(II) we have for all n P N, t P r0, T s, x P O that

1tV ďnupt, xq r}mnpt, xq ´ µpt, xq} ` ~snpt, xq ´ σpt, xq~s “ 0, (141)

and

(III) we have for all n P N, t P r0, T s, x P RdztV ď n` 1u that }mnpt, xq} ` ~snpt, xq~ “ 0,

for every n P N, t P r0, T s, x P Rd let Xn,t,x “ pXn,t,x
s qsPrt,T s : rt, T s ˆ Ω Ñ Rd be an pFsqsPrt,T s-

adapted stochastic process with continuous sample paths satisfying that for all s P rt, T s we have
P-a.s. that

Xn,t,x
s “ x`

ż s

t

mnpr,Xn,t,x
r q dr `

ż s

t

snpr,Xn,t,x
r q dWr (142)

(cf., for instance, Karatzas & Shreve [28, Theorem 5.2.9]), let un,k : r0, T sˆR
d Ñ R, n P N0, k P N,

satisfy for all n, k P N, t P r0, T s, x P Rd that

un,kpt, xq “ E

„

gkpXn,t,x
T q `

ż T

t

hkps,Xn,t,x
s q ds



(143)

and

u0,kpt, xq “ E

„

gkpX t,x
T q `

ż T

t

hkps,X t,x
s q ds



(144)

25



(cf., e.g., [5, Lemma 2.1]), and for every n P N, t P r0, T s, x P O let τ t,xn : Ω Ñ rt, T s satisfy
τ t,xn “ infpts P rt, T s : maxtV ps,Xn,t,x

s q, V ps,X t,x
s qu ě nu Y tT uq. Next observe that Lemma 2.22

(applied with µ Ð mn, σ Ð sn, g Ð gk, h Ð hk for k, n P N in the notation of Lemma 2.22)
ensures that for all n, k P N we have that un,k is a viscosity solution of

p B
Bt
un,kqpt, xq ` 1

2
Trace

`

snpt, xqrsnpt, xqs˚pHessx un,kqpt, xq
˘

` xmnpt, xq, p∇xu
n,kqpt, xqy

` hkpt, xq “ 0 (145)

for pt, xq P p0, T q ˆRd. Moreover, observe that Items (I)–(III) and (142) assure that for all n P N,
t P r0, T s, x P O we have that

P

´

@ s P rt, T s : 1tsďτ
t,x
n uX

n,t,x
s “ 1tsďτ

t,x
n uX

t,x
s

¯

“ 1 (146)

(cf., e.g., [5, Lemma 3.5]). This implies that for all n, k P N, t P r0, T s, x P O we have that

E
“

|gkpXn,t,x
T q ´ gkpX t,x

T q|
‰

“ E

”

1tτ t,xn ăT u|gkpXn,t,x
T q ´ gkpX t,x

T q|
ı

ď 2

„

sup
yPO

|gkpyq|


Ppτ t,xn ă T q (147)

and
ż T

t

E
“

|hkps,Xn,t,x
s q ´ hkps,X t,x

s q|
‰

ds

“
ż T

t

E

”

1tτ t,xn ăT u|hkps,Xn,t,x
s q ´ hkps,X t,x

s q|
ı

ds ď 2T

«

sup
sPr0,T s

sup
yPO

|hkps, yq|
ff

Ppτ t,xn ă T q.
(148)

Combining this with the fact that for all t P r0, T s, x P O, n P N we have that ErV pτ t,xn , X
t,x

τ
t,x
n

qs ď
V pt, xq (cf., e.g., [5, Lemma 3.1]) proves that for all n, k P N we have that

|un,kpt, xq ´ u0,kpt, xq| ď 2

«

sup
yPO

|gkpyq| ` T sup
sPr0,T s

sup
yPO

|hkps, yq|
ff

Ppτ t,xn ă T q

ď 2

«

sup
yPO

|gkpyq| ` T sup
sPr0,T s

sup
yPO

|hkps, yq|
ff

P

´

V pτ t,xn , X
t,x

τ
t,x
n

q ě n
¯

ď 2

n

«

sup
yPO

|gkpyq| ` T sup
sPr0,T s

sup
yPO

|hkps, yq|
ff

E

”

V pτ t,xn , X
t,x

τ
t,x
n

q
ı

ď 2

n

«

sup
yPO

|gkpyq| ` T sup
sPr0,T s

sup
yPO

|hkps, yq|
ff

V pt, xq.

(149)

This demonstrates that for all k P N and all compact K Ď r0, T s ˆ O we have that

lim sup
kÑ8

«

sup
pt,xqPK

´

|un,kpt, xq ´ u0,kpt, xq|
¯

ff

“ 0. (150)

In addition, note that the assumption that suprPp0,8qrinftPr0,T s,xPRdzOr
V pt, xqs “ 8 and (141) ensure

that for all compact K Ď r0, T s ˆ O we have that

lim sup
nÑ8

«

sup
pt,xqPK

´

}mnpt, xq ´ µpt, xq} ` ~snpt, xq ´ σpt, xq~
¯

ff

“ 0. (151)
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Corollary 2.20, (145), and (150) yield that for all k P N we have that u0,k is a viscosity solution of

p B
Bt
u0,kqpt, xq ` 1

2
Trace

`

σpt, xqrσpt, xqs˚pHessx u0,kqpt, xq
˘

` xµpt, xq, p∇xu
0,kqpt, xqy
` hpkqpt, xq “ 0 (152)

for pt, xq P p0, T q ˆ O. Moreover, note that (137), (139), and (144) prove that for all compact
K Ď p0, T q ˆ O we have that

lim sup
kÑ8

«

sup
pt,xqPK

|u0,kpt, xq ´ upt, xq|
ff

“ 0 (153)

(cf., e.g., [5, Item (iv) in Lemma 2.2]). This, (139), (152), and Corollary 2.20 demonstrate that u
is a viscosity solution of

p B
Bt
uqpt, xq ` 1

2
Tracepσpt, xqrσpt, xqs˚pHessx uqpt, xqq ` xµpt, xq, p∇xuqpt, xqy ` hpt, xq “ 0 (154)

for pt, xq P p0, T qˆO. Next note that (137) ensures that for all x P Rd we have that upT, xq “ gpxq.
This and (154) establish (138). This completes the proof of Proposition 2.23.

3 Semilinear Kolmogorov PDEs

In this section we establish in Theorem 3.7 in Section 3.3 below, the main result of this article, a
one-to-one correspondence between suitable solutions of certain SFPEs and suitable viscosity solu-
tions of certain semilinear Kolmogorov PDEs and we thereby obtain an existence, uniqueness, and
Feynman–Kac type representation result for viscosity solutions of semilinear Kolmogorov PDEs.
Our proof of Theorem 3.7 employs the following four constituents: (i) the existence and unique-
ness result for solutions of SFPEs in [5, Theorem 3.8], (ii) the Feynman–Kac type representation
result for viscosity solutions of linear inhomogeneous Kolmogorov PDEs in Proposition 2.23 in Sec-
tion 2.5 above, (iii) the uniqueness result for viscosity solutions of suitable degenerate parabolic
PDEs in Proposition 3.5 in Section 3.1 below, and (iv) the existence and uniqueness result for
solutions of SDEs in Proposition 3.6 in Section 3.2 below.

In Section 3.1 we establish in Proposition 3.5 under suitable assumptions that a semilinear
Kolmogorov PDE with Lipschitz continuous nonlinearity possesses at most one viscosity solution
which satisfies a certain growth condition. Proposition 3.5 generalizes Hairer et al. [18, Corollary
4.14] with respect to the possible time dependence of the drift and diffusion coefficient functions
of the PDE as well as with respect to the possible appearance of a one-sided Lipschitz continuous
nonlinearity in the PDE. Our proof of Proposition 3.5 is strongly inspired by Hairer et al. [18,
Section 4.3]. Our proof of Proposition 3.5 employs the comparison result for viscosity sub- and
supersolutions of suitable degenerate parabolic PDEs in Corollary 3.4. Corollary 3.4, in turn, is
a rather direct consequence of Lemma 3.3. Our proof of Lemma 3.3 is strongly inspired by, e.g.,
Crandall et al. [9, Section 8], Hairer et al. [18, Corollary 4.11], and Imbert & Silvestre [26, Section
2.3]. For completeness we provide in Section 3.1 a detailed proof for Lemma 3.3. Our proof of
Lemma 3.3 is based on the well-known result in Crandall et al. [9, Proposition 3.7] (cf. also Hairer
et al. [18, Lemma 4.9]), which we recall in Lemma 3.1 below, and on a special case of the result
in Crandall et al. [9, Theorem 8.3] (cf. also Peng [40, Theorem 2.1 in Appendix C]), which we
recall in Lemma 3.2 below. In Section 3.2 we establish in Proposition 3.6 an existence result for
solutions of SDEs with drift and diffusion coefficient functions which satisfy certain Lipschitz and
coercivity type conditions. Proposition 3.6 is essentially well-known in the scientific literature (see,
e.g., Gyöngy & Krylov [17, Corollary 2.6]). For completeness we provide in Section 3.2 a detailed
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proof for Proposition 3.6. In Section 3.3 we establish in Theorem 3.7 an existence, uniqueness, and
Feynman–Kac type representation result for viscosity solutions of semilinear Kolmogorov PDEs.
Our proof of Theorem 3.7 is based on the existence and uniqueness result for solutions of SFPEs
in [5, Theorem 3.8], the Feynman–Kac type representation result for viscosity solutions of linear
inhomogeneous Kolmogorov PDEs in Proposition 2.23 in Section 2.5, the uniqueness result for
viscosity solutions in Proposition 3.5 in Section 3.1, and the existence and uniqueness result for
solutions of SDEs in Proposition 3.6 in Section 3.2. We conclude this article by providing in
Corollary 3.8, Corollary 3.9, and Corollary 3.11 below several sample applications of Theorem 3.7.

3.1 Uniqueness results for viscosity solutions of semilinear Kolmogorov
PDEs

Lemma 3.1. Let d P N, let }¨} : Rd Ñ r0,8q be a norm on Rd, let O Ď Rd be a non-empty set,
let η : O Ñ R be upper semi-continuous, let φ : O Ñ r0,8q be lower semi-continuous, assume that
infαPp0,8qrsupyPOpηpyq ´ αφpyqqs P R, and let x “ pxαqαPp0,8q : p0,8q Ñ O satisfy that

lim sup
αÑ8

„

sup
yPO

`

ηpyq ´ αφpyq
˘

´
`

ηpxαq ´ αφpxαq
˘



“ 0. (155)

Then

(i) we have that lim supαÑ8rαφpxαqs “ 0 and

(ii) we have for all x P O and all αn P p0,8q, n P N, with lim supnÑ8 }xαn
´ x} “ 0 ă 8 “

lim infnÑ8 αn that φpxq “ 0 and ηpxq “ limαÑ8rsupyPOpηpyq ´ αφpyqqs “ supyPφ´1p0q ηpyq.
Proof of Lemma 3.1. Throughout this proof let Sα P p´8,8s, α P p0,8q, and εα P r0,8s, α P
p0,8q, satisfy for all α P p0,8q that

Sα “ sup
yPO

`

ηpyq ´ αφpyq
˘

and εα “ sup
yPO

`

ηpyq ´ αφpyq
˘

´
`

ηpxαq ´ αφpxαq
˘

. (156)

Observe that (156) assures that for all α P p0,8q we have that Sα “ ηpxαq´αφpxαq`εα. Moreover,
note that (155) ensures that limαÑ8 Sα P R and lim infαÑ8 εα “ lim supαÑ8 εα “ 0. Hence, we
obtain that there exists a P p0,8q such that

`
Ť

αPra,8qtSα, εαu
˘

Ď R. This yields that

0 ď lim sup
αÑ8

`

α
2
φpxαq

˘

“ lim sup
αÑ8

“`

ηpxαq ´ α
2
φpxαq

˘

´
`

ηpxαq ´ αφpxαq
˘‰

ď lim sup
αÑ8

„

sup
yPO

`

ηpyq ´ α
2
φpyq

˘

´
`

ηpxαq ´ αφpxαq
˘



“ lim sup
αÑ8

`

Sα{2 ´ Sα ` εα
˘

“ 0.
(157)

This establishes Item (i). It remains to establish Item (ii). For this let x P O and let αn P p0,8q,
n P N, satisfy lim infnÑ8 αn “ 8 and lim supnÑ8 }xαn

´ x} “ 0. Note that (157) ensures that
lim infαÑ8 φpxαq “ lim supαÑ8 φpxαq “ 0. Combining this with the assumption that φ is lower
semi-continuous demonstrates that

0 ď φpxq ď lim inf
nÑ8

φpxαn
q “ 0. (158)

The assumption that η is upper semi-continuous and the fact that for all y P O we have that
φpyq ě 0 hence imply that

ηpxq ě lim sup
nÑ8

ηpxαn
q ě lim sup

nÑ8

`

ηpxαn
q ´ αnφpxαn

q
˘

“ lim sup
nÑ8

pSαn
´ εαn

q

“ lim
nÑ8

Sαn
ě sup

yPφ´1p0q

ηpyq ě ηpxq. (159)

This and (158) establish Item (ii). This completes the proof of Lemma 3.1.
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Lemma 3.2. Let d, k P N, ε, T P p0,8q, let }¨} : pYmPNR
mq Ñ r0,8q satisfy for all m P N,

x “ px1, x2, . . . , xmq P Rm that }x} “ přm

i“1
|xi|2q1{2, let ~¨~ : pYmPNR

mˆmq Ñ r0,8q satisfy for
all m P N, A P Rmˆm that ~A~ “ supxPRmzt0up}Ax} }x}´1q, let O Ď Rd be a non-empty open

set, let Φ “ pΦpt, xqqpt,xqPp0,T qˆOk P C1,2pp0, T q ˆ Ok,Rq, let Gi : p0, T q ˆ O ˆ R ˆ R
d ˆ Sd Ñ R,

i P t1, 2, . . . , ku, satisfy for all i P t1, 2, . . . , ku that Gi is degenerate elliptic and upper semi-
continuous, let ui : p0, T q ˆ O Ñ R, i P t1, 2, . . . , ku, satisfy for all i P t1, 2, . . . , ku that ui is a
viscosity solution of

p B
Bt
uiqpt, xq ` Gipt, x, uipt, xq, p∇xuiqpt, xq, pHessx uiqpt, xqq ě 0 (160)

for pt, xq P p0, T q ˆ O, and let pt, xq “ pt, x1, x2, . . . , xkq P p0, T q ˆ Ok be a global maximum
point of p0, T q ˆ Ok Q pt, xq “ pt, x1, x2, . . . , xkq ÞÑ rřk

i“1 uipt, xiqs ´ Φpt, x1, x2, . . . , xkq P R

(cf. Definitions 2.3–2.5). Then there exist b1, b2, . . . , bk P R, A1, A2, . . . , Ak P Sd such that for
all i P t1, 2, . . . , ku we have that pbi, p∇xi

Φqpt, xq, Aiq P pP`uiqpt, xiq,
řk

i“1 bi “ p B
Bt
Φqpt, xq, and

´
„

1

ε
` ~pHessx Φqpt, xq~



IdRkd ď

¨

˚

˝

A1 . . . 0
...

. . .
...

0 . . . Ak

˛

‹

‚
ď pHessx Φqpt, xq ` εrpHessx Φqpt, xqs2 (161)

(cf. Definition 2.13).

Proof of Lemma 3.2. Throughout this proof let vi : p0, T q ˆ O Ñ R, i P t1, 2, . . . , ku, satisfy for
all i P t1, 2, . . . , ku, t P p0, T q, x P O that vipt, xq “ uipT ´ t, xq and let Ψ: p0, T q ˆOk Ñ R satisfy
for all t P p0, T q, x “ px1, x2, . . . , xkq P Ok that

Ψpt, x1, x2, . . . , xkq “ ΦpT ´ t, x1, x2, . . . , xkq. (162)

Observe that (160) guarantees that

(i) we have for all i P t1, 2, . . . , ku that vi is upper semi-continuous,

(ii) we have that Ψ P C1,2pp0, T q ˆ Ok,Rq, and

(iii) we have that pT´t, x1, x2, . . . , xkq is a global maximum point of p0, T qˆOk Q pt, x1, x2, . . . , xkq ÞÑ
přk

i“1 vipt, xqq ´ Ψpt, x1, x2, . . . , xkq P R.

In addition, note that (47) ensures that for all i P t1, 2, . . . , ku, t P p0, T q, x P O we have that
pP`viqpt, xq “ tpb, p, Aq P R ˆ Rd ˆ Sd : p´b, p, Aq P pP`uiqpT ´ t, xqu and

pP1,2
` viqpt, xq “ tpb, p, Aq P R ˆ R

d ˆ Sd : p´b, p, Aq P pP`uiqpT ´ t, xqu. (163)

The fact that for all i P t1, 2, . . . , ku we have that ui is a viscosity solution of

p B
Bt
uiqpt, xq ` Gipt, x, uipt, xq, p∇xuiqpt, xq, pHessx uiqpt, xqq ě 0 (164)

for pt, xq P p0, T q ˆ O and Lemma 2.16 hence imply that for all i P t1, 2, . . . , ku, t P p0, T q, x P O,
pb, p, Aq P pP`viqpt, xq we have that

b´ GipT ´ t, x, vipt, xq, p, Aq “ ´r´b` GipT ´ t, x, uipT ´ t, xq, p, Aqs ď 0. (165)

This and the assumption that for all i P t1, 2, . . . , ku we have that Gi is upper semi-continuous
ensure that for all i P t1, 2, . . . , ku, M P p0,8q and all compact K Ď p0, T q ˆ O we have that

sup
 

b P R : pb, p, Aq P pP`viqpt, xq, pt, xq P K, |vipt, xq| ` }p} ` ~A~ ď M
(

ď sup

"

GipT ´ t, x, vipt, xq, p, Aq :
ˆ

pb, p, Aq P pP`viqpt, xq, pt, xq P K,

|vipt, xq| ` }p} ` ~A~ ď M

˙*

ď sup
 

Gips, y, r, p, Aq : pT ´ s, yq P K, |r| ` }p} ` ~A~ ď M
(

ă 8.

(166)
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Crandall et al. [9, Theorem 8.3] (applied with k Ð k, ui Ð vi, Oi Ð O, ϕ Ð Ψ, t̂ Ð T ´ t, x̂ Ð x

for i P t1, 2, . . . , ku in the notation of Crandall et al. [9, Theorem 8.3]) hence guarantees that there
exist a1, a2, . . . , ak P R, A1, A2, . . . , Ak P Sd which satisfy that

(I) we have for all i P t1, 2, . . . , ku that pai, p∇xi
ΨqpT ´ t, x1, . . . , xkq, Aiq P pP`viqpT ´ t, xiq,

(II) we have that

´
„

1

ε
` ~pHessx ΨqpT ´ t, xq~



IdRkd

ď

¨

˚

˝

A1 . . . 0
...

. . .
...

0 . . . Ak

˛

‹

‚
ď pHessx ΨqpT ´ t, xq ` εrpHessxΨqpT ´ t, xqs2,

(167)

and

(III) we have that
řk

i“1 ai “ p B
Bt
ΨqpT ´ t, x1, x2, . . . , xkq.

This and (163) prove that

(A) we have for all i P t1, 2, . . . , ku that p´ai, p∇xi
Φqpt, x1, . . . , xkq, Aiq P pP`uiqpt, xiq,

(B) we have that

´
„

1

ε
` ~pHessxΦqpt, xq~



IdRkd

ď

¨

˚

˝

A1 . . . 0
...

. . .
...

0 . . . Ak

˛

‹

‚
ď pHessxΦqpt, xq ` εrpHessxΦqpt, xqs2,

(168)

and

(C) we have that
řk

i“1p´aiq “ p B
Bt
Φqpt, x1, x2, . . . , xkq.

This establishes (161). This completes the proof of Lemma 3.2.

Lemma 3.3. Let d, k P N, T P p0,8q, let x¨, ¨y : Rd ˆ Rd Ñ R be the standard Euclidean scalar
product on Rd, let }¨} : Rd Ñ r0,8q be the standard Euclidean norm on Rd, let O Ď Rd be a
non-empty open set, for every r P p0,8q let Or Ď O satisfy Or “ tx P O : p}x} ď r and ty P
Rd : }y ´ x} ă 1{ru Ď Oqu, let Gi : p0, T q ˆ O ˆ R ˆ Rd ˆ Sd Ñ R, i P t1, 2, . . . , ku, satisfy for all
i P t1, 2, . . . , ku that Gi is degenerate elliptic and upper semi-continuous, let ui : r0, T s ˆ O Ñ R,
i P t1, 2, . . . , ku, satisfy for all i P t1, 2, . . . , ku that ui is a viscosity solution of

p B
Bt
uiqpt, xq ` Gipt, x, uipt, xq, p∇xuiqpt, xq, pHessx uiqpt, xqq ě 0 (169)

for pt, xq P p0, T q ˆ O, assume that

sup
xPO

«

k
ÿ

i“1

uipT, xq
ff

ď 0 and lim
nÑ8

«

sup
tPp0,T q

sup
xPOzOn

˜

k
ÿ

i“1

uipt, xq
¸ff

ď 0, (170)

and assume for all tpnq P p0, T q, n P N0, and all pxpnq
i , r

pnq
i , A

pnq
i q P O ˆ R ˆ Sd, n P N0,

i P t1, 2, . . . , ku, with lim supnÑ8r|tpnq ´ tp0q| ` }xpnq
1 ´ x

p0q
1 } ` ?

n
řk

i“2 }xpnq
i ´ x

pnq
i´1}s “ 0 ă

30



lim infnÑ8rřk
i“1 r

pnq
i s “ lim supnÑ8rřk

i“1 r
pnq
i s ď supnPNrřk

i“1 |rpnq
i |s ă 8 and @ pn P N, z1, . . . , zk P

R
dq : ´ 5

řk

i“1 }zi}2 ď řk

i“1xzi, A
pnq
i ziy ď 5

řk

i“2 }zi ´ zi´1}2 that

lim sup
nÑ8

«

k
ÿ

i“1

Giptpnq, x
pnq
i , r

pnq
i , np1r2,kspiqrxpnq

i ´ x
pnq
i´1s ` 1r1,k´1spiqrxpnq

i ´ x
pnq
i`1sq, nA

pnq
i q

ff

ď 0 (171)

(cf. Definitions 2.3–2.5). Then we have for all t P p0, T s, x P O that
řk

i“1 uipt, xq ď 0.

Proof of Lemma 3.3. We intend to prove that for all t P p0, T s, x P O we have that
řk

i“1 uipt, xq ď
0 by showing that for all δ P p0,8q, t P p0, T s, x P O we have that

řk
i“1 uipt, xq ď kδ

t
. Throughout

this proof let δ P p0,8q, let vi : r0, T s ˆ O Ñ r´8,8q, i P t1, 2, . . . , ku, satisfy for all i P
t1, 2, . . . , ku, t P r0, T s, x P O that

vipt, xq “
#

uipt, xq ´ δ
t

: t ą 0

´8 : t “ 0,
(172)

let Hi : p0, T q ˆ O ˆ R ˆ Rd ˆ Sd Ñ R, i P t1, 2, . . . , ku, satisfy for all i P t1, 2, . . . , ku, t P p0, T q,
x P O, r P R, p P Rd, A P Sd that

Hipt, x, r, p, Aq “ Gi

`

t, x, r ` δ
t
, p, A

˘

´ δ
t2
, (173)

let Φ: r0, T s ˆ Ok Ñ r0,8q and η : r0, T s ˆ Ok Ñ r´8,8q satisfy for all t P r0, T s, x “
px1, x2, . . . , xkq P Ok that ηpt, xq “ řk

i“1 vipt, xiq and

Φpt, xq “ 1

2

«

k
ÿ

i“2

}xi ´ xi´1}2
ff

, (174)

let S P p´8,8s satisfy S “ suptPr0,T s supxPOrřk
i“1 vipt, xqs, let Sα,r P p´8,8s, α, r P r0,8q,

satisfy for all α, r P r0,8q that

Sα,r “ sup
tPr0,T s

sup
xPpOrqk

rηpt, xq ´ αΦpt, xqs, (175)

and let ~¨~ : Rpkdqˆpkdq Ñ r0,8q satisfy for all A P Rpkdqˆpkdq that

~A~ “ sup

$

&

%

«

kd
ÿ

i“1

|yi|2
ff1{2 « kd

ÿ

i“1

|xi|2
ff´1{2

:

¨

˝

x “ px1, x2, . . . , xkdq P Rkdzt0u,
y “ py1, y2, . . . , ykdq P Rkd,

y “ Ax

˛

‚

,

.

-

. (176)

Observe that (170), the fact that supxPO

“
řk

i“1 vip0, xq
‰

“ ´8, and the fact that for all i P
t1, 2, . . . , ku we have that vi ď ui yield that

sup
xPO

«

k
ÿ

i“1

vipT, xq
ff

ď 0 and lim sup
nÑ8

«

sup
tPr0,T s

sup
xPOzOn

k
ÿ

i“1

vipt, xq
ff

ď 0. (177)

Moreover, observe that the assumption that for all i P t1, 2, . . . , ku we have that ui is upper
semi-continuous implies that for all i P t1, 2 . . . , ku we have that vi is upper semi-continuous.
Furthermore, note that (173) shows that for all i P t1, 2, . . . , ku we have that vi is a viscosity
solution of

p B
Bt
viqpt, xq ` Hipt, x, vipt, xq, p∇xviqpt, xq, pHessx viqpt, xqq ě 0 (178)
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for pt, xq P p0, T q ˆ O. Next we claim that for all t P r0, T s, x P O we have that

S “ sup
tPr0,T s

sup
xPO

«

k
ÿ

i“1

vipt, xq
ff

ď 0. (179)

We intend to prove (179) by contradiction. For this assume that S P p0,8s. Observe that the
hypothesis that S P p0,8s and (177) ensure that there exists N P N which satisfies that

(i) we have that ON ‰ H,

(ii) we have that ON is compact, and

(iii) we have that suptPr0,T s supxPON
rřk

i“1 vipt, xqs “ S.

The fact that for all i P t1, 2, . . . , ku we have that vi is upper semi-continuous hence proves that
S P p0,8q. Moreover, note that the fact that for all i P t1, 2, . . . , ku we have that supxPO vip0, xq “
´8 yields that S “ suptPp0,T s supxPON

rřk

i“1
vipt, xqs. Note that the fact that Φ P Cpr0, T s ˆOk,Rq

and the fact that for all i P t1, 2, . . . , ku we have that vi is upper semi-continuous ensure that for
all α P p0,8q we have that r0, T s ˆ pONqk Q pt, xq ÞÑ ηpt, xq ´ αΦpt, xq P r´8,8q is upper semi-
continuous. This and the fact that ON is compact prove that there exist tpαq P r0, T s, α P p0,8q,
and xpαq “ pxpαq

1 , x
pαq
2 , . . . , x

pαq
k q P pONqk, α P p0,8q, which satisfy for all α P p0,8q that

ηptpαq, xpαqq ´ αΦptpαq, xpαqq “ sup
tPr0,T s

sup
xPpON qk

rηpt, xq ´ αΦpt, xqs “ Sα,N . (180)

Moreover, note that the fact that for all t P r0, T s, y P O we have that ηpt, y, y, . . . , yq “
řk

i“1 vipt, yq and the fact that for all t P r0, T s, y P O we have that Φpt, y, y, . . . , yq “ 0 im-
ply that for all α P p0,8q we have that

Sα,N ě sup
tPr0,T s

sup
yPO

”

ηpt, y, y, . . . , yq ´ αΦpt, y, y, . . . , yq
ı

“ sup
tPr0,T s

sup
yPO

«

k
ÿ

i“1

vipt, yq
ff

“ S ą 0. (181)

Combining this with the fact that for all α, β P p0,8q with α ě β we have that Sα,N ď Sβ,N

demonstrates that lim infαÑ8 Sα,N “ lim supαÑ8 Sα,N P rS,8q Ď R. Moreover, note that (181)
and the fact that for all α P p0,8q we have that supxPOk rηp0, xq ´ αΦp0, xqs “ ´8 yield that for
all α P p0,8q we have that

Sα,N “ sup
tPp0,T s

sup
xPpON qk

rηpt, xq ´ αΦpt, xqs. (182)

Item (i) in Lemma 3.1 (applied with O Ð p0, T s ˆ pONqk, η Ð η|p0,T sˆpON qk , φ Ð Φ|p0,T sˆpON qk ,

x Ð pp0,8q Q α ÞÑ ptpαq, xpαqq P p0, T s ˆ pONqkq in the notation of Lemma 3.1) hence ensures that

0 “ lim sup
αÑ8

“

αΦptpαq, xpαqq
‰

“ lim sup
αÑ8

«

α
2

k
ÿ

i“2

}xpαq
i ´ x

pαq
i´1}2

ff

. (183)

In addition, note that the fact that ON is compact guarantees that there exist t P r0, T s, x “
px1, x2, . . . , xkq P pONqk, pαnqnPN Ď N which satisfy lim infnÑ8 αn “ 8 and lim supnÑ8r|tpαnq ´ t| `
}xpαnq ´ x}s “ 0. Furthermore, observe that the fact that η is upper semi-continuous and the fact
that Φ is continuous imply that

ηpt, xq ě lim sup
nÑ8

“

ηptpαnq, xpαnqq ´ αnΦptpαnq, xpαnqq
‰

ě S ą 0. (184)
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Combining this with the fact that for all x P Ok we have that ηp0, xq “ ´8 shows that t P
p0, T s. Item (ii) of Lemma 3.1 hence ensures that 0 “ Φpt, xq “ 1

2

řk

i“2
}xi ´ xi´1}2 and ηpt, xq “

suppt,xqPrΦ´1p0qsXrp0,T sˆpON qks ηpt, xq. Therefore, we obtain for all i P t1, 2, . . . , ku that xi “ x1 and

S ď lim
αÑ8

Sα,N “
k
ÿ

i“1

vipt, xiq “ ηpt, xq “ sup
tPr0,T s

sup
yPON

«

k
ÿ

i“1

vipt, yq
ff

ď S. (185)

Combining this with (177) ensures that t P p0, T q. This implies that there exists j P N such that
for all n P N X rj,8q we have that tpαnq P p0, T q. Hence, we obtain that there exists a non-empty
set N Ď N which satisfies that N “ tαn : n P N, tpαnq P p0, T qu. Note that Lemma 3.2 (applied
with ε Ð 1

n
, O Ð p0, T q ˆ Ok, Φ Ð nΦ|p0,T qˆOk , puiqiPt1,2,...,ku Ð pvi|p0,T qˆOqiPt1,2,...,ku, t Ð tpnq,

x Ð xpnq for n P N in the notation of Lemma 3.2) guarantees that there exist b
pnq
1 , b

pnq
2 , . . . , b

pnq
k P R,

A
pnq
1 , A

pnq
2 , . . . , A

pnq
k P Sd which satisfy that

(I) we have for all n P N , i P t1, 2, . . . , ku that

pbpnq
i , np∇xi

Φqptpnq, xpnqq, nApnq
i q P pP`viqptpnq, x

pnq
i q, (186)

(II) we have for all n P N that
řk

i“1
b

pnq
i “ p B

Bt
Φqptpnq, xpnqq “ 0, and

(III) we have for all n P N that

´
`

n ` n
�

�pHessxΦqptpnq, xpnqq
�

�

˘

IdRkd

ď n

¨

˚

˝

A
pnq
1 . . . 0
...

. . .
...

0 . . . A
pnq
k

˛

‹

‚
ď npHessx Φqptpnq, xpnqq ` nrpHessx Φqptpnq, xpnqqs2.

(187)

Observe that the fact that for all t P p0, T q, x P Ok we have that pHessxΦqpt, xq “ pHessx Φqp0, 0q
and Item (III) show that for all n P N we have that

´ p1 ` ~pHessx Φqp0, 0q~q IdRkd

ď

¨

˚

˝

A
pnq
1 . . . 0
...

. . .
...

0 . . . A
pnq
k

˛

‹

‚
ď pHessx Φqp0, 0q ` rpHessx Φqp0, 0qs2.

(188)

Moreover, note that Lemma 2.16, Item (I), and (178) ensure that for all n P N , i P t1, 2, . . . , ku
we have that

b
pnq
i ` Hiptpnq, x

pnq
i , viptpnq, x

pnq
i q, np∇xi

Φqptpnq, xpnqq, nApnq
i q ě 0. (189)

Combining this and Item (II) with (173) proves that for all n P N we have that

k
ÿ

i“1

Giptpnq, x
pnq
i , viptpnq, x

pnq
i q ` δ

tpnq
, np∇xi

Φqptpnq, xpnqq, nApnq
i q ě kδ

rtpnqs2 . (190)

Next let ptpnq,x
pnq
i , r

pnq
i ,A

pnq
i q P p0, T q ˆ O ˆ R ˆ Sd, n P N, i P t1, 2, . . . , ku, satisfy for all

i P t1, 2, . . . , ku, n P N that

ptpnq,x
pnq
i , r

pnq
i ,A

pnq
i q “

#

`

tpnq, x
pnq
i , viptpnq, x

pnq
i q ` δ

tpnq , A
pnq
i

˘

: n P N
`

t, xi,
S

k
` δ

t
, 0
˘

: else.
(191)
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Observe that the fact that lim supNQnÑ8rtpnq´t|`}xpnq´x}s “ lim supnÑ8r|tpαnq´t|`}xpαnq´x}s “ 0

implies that

lim sup
nÑ8

”

|tpnq ´ t| ` }xpnq
1 ´ x1}

ı

“ 0. (192)

Moreover, note that the fact that for all i P t1, 2, . . . , ku we have that xi “ x1, (183), and (191)
ensure that

0 ď lim sup
nÑ8

«

?
n

k
ÿ

i“2

}xpnq
i ´ x

pnq
i´1}

ff

“ lim sup
nÑ8

»

–n

˜

k
ÿ

i“2

}xpnq
i ´ x

pnq
i´1}

¸2
fi

fl

1{2

ď
?
k lim sup

nÑ8

«

n

k
ÿ

i“2

}xpnq
i ´ x

pnq
i´1}2

ff1{2

“ 0.

(193)

In addition, observe that (191) and the fact that lim supNQnÑ8 |ηptpnq, xpnqq ´ S| “ 0 prove that

lim inf
nÑ8

«

k
ÿ

i“1

r
pnq
i

ff

“ lim sup
nÑ8

«

k
ÿ

i“1

r
pnq
i

ff

“ S ` kδ

t
ą 0. (194)

Furthermore, note that the fact that tptpnq,xpnqq P p0, T q ˆ Ok : n P Nu Y tpt, xqu is compact and
the fact that for all i P t1, 2, . . . , ku we have that vi is upper semi-continuous guarantee that

sup
 

r
pnq
i : n P N, i P t1, 2, . . . , ku

(

ă 8. (195)

Moreover, observe that (194) ensures that sup
 

|řk
i“1 r

pnq
i | : n P N

(

ă 8. Combining this with
(195) implies that

sup
nPN

«

k
ÿ

i“1

|rpnq
i |

ff

ă 8. (196)

Next note that (174) ensures that ~pHessxΦqp0, 0q~ ď 4 (cf., for instance, (4.41) in Hairer et
al. [18]). This, (191), and (188) imply that for all n P N, z1, z2, . . . , zk P Rd we have that

´ 5

«

k
ÿ

i“1

}zi}2
ff

ď
k
ÿ

i“1

xzi,Apnq
i ziy ď 5

«

k
ÿ

i“2

}zi ´ zi´1}2
ff

. (197)

In addition, observe that (174) guarantees that for all t P p0, T q, x “ px1, x2, . . . , xkq P Ok we have
that

p∇xi
Φqpt, xq “

$

’

’

’

&

’

’

’

%

x1 ´ x2 : 1 “ i ă k

2xi ´ xi´1 ´ xi`1 : 1 ă i ă k

xk ´ xk´1 : 1 ă i “ k

0 : 1 “ i “ k

“ 1r2,kspiqrxi ´ xi´1s ` 1r1,k´1spiqrxi ´ xi`1s.

(198)

Combining (171) and (190) with (192)–(197) hence ensures that

0 ă kδ

t2
“ lim sup

nÑ8

kδ

rtpnqs2 ď lim sup
nÑ8

«

k
ÿ

i“1

Gi

ˆ

t
pnq,x

pnq
i , r

pnq
i , n

`

1r2,kspiqrxpnq
i ´ x

pnq
i´1s

` 1r1,k´1spiqrxpnq
i ´ x

pnq
i`1s

˘

, nA
pnq
i

˙

ff

ď 0. (199)

This contradiction implies that S ď 0. Therefore, we obtain that for all t P p0, T s, y P O we have
that

řk
i“1 uipt, yq ď kδ

t
. This completes the proof of Lemma 3.3.
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Corollary 3.4. Let d P N, T P p0,8q, let x¨, ¨y : Rd ˆ Rd Ñ R be the standard Euclidean scalar
product on Rd, let }¨} : Rd Ñ r0,8q be the standard Euclidean norm on Rd, let O Ď Rd be a
non-empty open set, for every r P p0,8q let Or Ď O satisfy Or “ tx P O : p}x} ď r and ty P
Rd : }y ´ x} ă 1{ru Ď Oqu, let G P Cpp0, T q ˆO ˆRˆRd ˆSd,Rq, u, v P Cpr0, T s ˆO,Rq, assume
that

sup
xPO

pupT, xq ´ vpT, xqq ď 0 and inf
rPp0,8q

«

sup
tPp0,T q

sup
xPOzOr

pupt, xq ´ vpt, xqq
ff

ď 0, (200)

assume that G is degenerate elliptic, assume that u is a viscosity solution of

p B
Bt
uqpt, xq ` Gpt, x, upt, xq, p∇xuqpt, xq, pHessx uqpt, xqq ě 0 (201)

for pt, xq P p0, T q ˆ O, assume that v is a viscosity solution of

p B
Bt
vqpt, xq ` Gpt, x, vpt, xq, p∇xvqpt, xq, pHessx vqpt, xqq ď 0 (202)

for pt, xq P p0, T q ˆ O, and assume for all tn P p0, T q, n P N0, all pxn, rn, Anq P O ˆ R ˆ Sd,
n P N0, and all pxn, rn,Anq P O ˆ R ˆ Sd, n P N0, with lim supnÑ8r|tn ´ t0| ` }xn ´ x0} `?
n }xn ´ xn}s “ 0 ă lim infnÑ8prn ´ rnq “ lim supnÑ8prn ´ rnq ď supnPNp|rn| ` |rn|q ă 8 and

@ pn P N, z, z P Rdq : xz, Anzy ´ xz,Anzy ď 5 }z ´ z}2 that

lim sup
nÑ8

rGptn, xn, rn, npxn ´ xnq, nAnq ´ Gptn, xn, rn, npxn ´ xnq, nAnqs ď 0 (203)

(cf. Definitions 2.3–2.6). Then we have for all t P r0, T s, x P O that upt, xq ď vpt, xq.

Proof of Corollary 3.4. Throughout this proof let H : p0, T q ˆO ˆRˆRd ˆSd Ñ R satisfy for all
t P p0, T q, x P O, r P R, p P Rd, A P Sd that

Hpt, x, r, p, Aq “ ´Gpt, x,´r,´p,´Aq. (204)

Note that (204) ensures that H is degenerate elliptic. Moreover, observe that (204) and the
assumption that G P Cpp0, T qˆOˆRˆRdˆSd,Rq assure that H P Cpp0, T qˆOˆRˆRdˆSd,Rq.
In addition, note that (204) implies that ´v is a viscosity solution of

p B
Bt

p´vqqpt, xq ` H
`

t, x, p´vqpt, xq, p∇xp´vqqpt, xq, pHessxp´vqqpt, xq
˘

ě 0 (205)

for pt, xq P p0, T q ˆ O. Moreover, observe that (203) guarantees that for all tn P p0, T q, n P
N0, all pxn, rn, Anq P O ˆ R ˆ Sd, n P N0, and all pxn, rn,Anq P O ˆ R ˆ Sd, n P N0, with
lim supnÑ8r|tn´t0|`}xn ´ x0}`?

n }xn ´ xn}s “ 0 ă lim infnÑ8prn`rnq “ lim supnÑ8prn`rnq ď
supnPNp|rn| ` |rn|q ă 8 and @ pn P N, z, z P R

dq : ´ 5p}z}2 ` }z}2q ď xz, Anzy ` xz,Anzy ď 5 }z ´ z}2
we have that

lim sup
nÑ8

“

Gptn, xn, rn, npxn ´ xnq, nAnq ` Hptn, xn, rn, npxn ´ xnq, nAnq
‰

“ lim sup
nÑ8

“

Gptn, xn, rn, npxn ´ xnq, nAnq ´ Gptn, xn,´rn, npxn ´ xnq,´nAnq
‰

ď 0.
(206)

Lemma 3.3 (applied with k Ð 2, u1 Ð u, u2 Ð ´v, G1 Ð G, G2 Ð H in the notation of
Lemma 3.3) hence ensures that for all t P p0, T s, x P O we have that upt, xq ´ vpt, xq ď 0. The
assumption that u, v P Cpr0, T s ˆ O,Rq therefore ensures that for all t P r0, T s, x P O we have
that upt, xq ď vpt, xq. This completes the proof of Corollary 3.4.
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Proposition 3.5. Let d,m P N, L, T P p0,8q, let x¨, ¨y : Rd ˆ Rd Ñ R be the standard Euclidean
scalar product on Rd, let }¨} : Rd Ñ r0,8q be the standard Euclidean norm on Rd, let ~¨~ : Rdˆm Ñ
r0,8q be the Frobenius norm on Rdˆm, let O Ď Rd be a non-empty open set, for every r P p0,8q
let Or Ď O satisfy Or “ tx P O : p}x} ď r and ty P Rd : }y ´ x} ă 1{ru Ď Oqu, let µ P Cpr0, T s ˆ
O,Rdq, σ P Cpr0, T sˆO,Rdˆmq, f P Cpr0, T sˆOˆR,Rq, g P CpO,Rq, V P C1,2pr0, T sˆO, p0,8qq,
assume for all r P p0,8q that

sup

ˆ"}µpt, xq ´ µpt, yq} ` ~σpt, xq ´ σpt, yq~
}x´ y} : t P r0, T s, x, y P Or, x ‰ y

*

Y t0u
˙

ă 8, (207)

assume for all t P r0, T s, x P O, v, w P R that pfpt, x, vq ´ fpt, x, wqqpv ´ wq ď L|v ´ w|2,
lim suprÑ8rsupsPr0,T s supyPOzOr

p |fps,y,0q|
V ps,yq

qs “ 0, and

p B
Bt
V qpt, xq ` 1

2
Trace

`

σpt, xqrσpt, xqs˚pHessx V qpt, xq
˘

` xµpt, xq, p∇xV qpt, xqy ď 0, (208)

and let u1, u2 P tu P Cpr0, T s ˆ O,Rq : lim suprÑ8rsuptPr0,T s supxPOzOr
p |upt,xq|
V pt,xq

qs “ 0u satisfy for all

i P t1, 2u that ui is a viscosity solution of

p B
Bt
uiqpt, xq ` 1

2
Trace

`

σpt, xqrσpt, xqs˚pHessx uiqpt, xq
˘

` xµpt, xq, p∇xuiqpt, xqy
` fpt, x, uipt, xqq “ 0 (209)

with uipT, xq “ gpxq for pt, xq P p0, T q ˆ O (cf. Definition 2.7). Then we have for all t P r0, T s,
x P O that u1pt, xq “ u2pt, xq.

Proof of Proposition 3.5. Throughout this proof let J¨K :
`
Ť8

a,b“1R
aˆb

˘

Ñ r0,8q satisfy for all

a, b P N, A “ pAi,jqpi,jqPt1,2,...,auˆt1,2,...,bu P Raˆb that

JAK “
«

a
ÿ

i“1

b
ÿ

j“1

|Ai,j |2
ff1{2

, (210)

let V : r0, T sˆO Ñ p0,8q satisfy for all t P r0, T s, x P O that Vpt, xq “ e´LtV pt, xq, let vi : r0, T sˆ
O Ñ R, i P t1, 2u, satisfy for all i P t1, 2u, t P r0, T s, x P O that vipt, xq “ uipt,xq

Vpt,xq
, let G : p0, T q ˆ

O ˆ R ˆ Rd ˆ Sd Ñ R satisfy for all t P p0, T q, x P O, r P R, p P Rd, A P Sd that

Gpt, x, r, p, Aq “ 1
2
Trace

`

σpt, xqrσpt, xqs˚A
˘

` xµpt, xq, py ` fpt, x, rq, (211)

and let H : p0, T q ˆ O ˆ R ˆ Rd ˆ Sd Ñ R satisfy for all t P p0, T q, x P O, r P R, p P Rd, A P Sd

that

Hpt, x, r, p, Aq “ r
Vpt,xq

p B
Bt
Vqpt, xq ` 1

Vpt,xq
G
`

t, x, rVpt, xq,Vpt, xqp ` rp∇xVqpt, xq,
Vpt, xqA` prp∇xVqpt, xqs˚ ` p∇xVqpt, xqp˚ ` rpHessxVqpt, xq

˘

. (212)

Observe that (210) proves that for all A P Rdˆm we have that JAK “ ~A~. Next note that (208)
implies that for all t P r0, T s, x P O we have that V P C1,2pr0, T s ˆ O, p0,8qq and

p B
Bt
Vqpt, xq` 1

2
Trace

`

σpt, xqrσpt, xqs˚pHessx Vqpt, xq
˘

`xµpt, xq, p∇xVqpt, xqy`LVpt, xq ď 0. (213)

Moreover, observe that (211) ensures that G P Cpp0, T qˆOˆRˆRdˆSd,Rq is degenerate elliptic.
In addition, note that (212) proves that H P Cpp0, T q ˆO ˆRˆRd ˆSd,Rq is degenerate elliptic.
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Next observe that the assumption that for all i P t1, 2u, x P O we have that uipT, xq “ gpxq shows
that for all x P O we have that

v1pT, xq ď v2pT, xq ď v1pT, xq. (214)

In addition, note that the assumption that lim suprÑ8rsuptPr0,T s supxPOzOr
p |u1pt,xq|`|u2pt,xq|

V pt,xq
qs “ 0

implies that

lim sup
rÑ8

«

sup
tPr0,T s

sup
xPOzOr

|v1pt, xq ´ v2pt, xq|
ff

“ 0. (215)

Furthermore, observe that (209) and (212) ensure that for all i P t1, 2u we have that vi is a
viscosity solution of

p B
Bt
viqpt, xq ` H

`

t, x, vipt, xq, p∇xviqpt, xq, pHessx viqpt, xq
˘

“ 0 (216)

for pt, xq P p0, T q ˆ O (cf., for example, Hairer et al. [18, Lemma 4.12]). We intend to prove that
u1 “ u2 by applying Corollary 3.4 to obtain that v1 ď v2 and v2 ď v1. Next let e1, e2, . . . , em P Rm

satisfy e1 “ p1, 0, . . . , 0q, e2 “ p0, 1, 0, . . . , 0q, . . ., em “ p0, . . . , 0, 1q, let tn P p0, T q, n P N0, satisfy
lim supnÑ8 |tn ´ t0| “ 0, and let pxn, rn, Anq P O ˆ R ˆ Sd, n P N0, and pxn, rn,Anq P O ˆ R ˆ Sd,
n P N0, satisfy lim supnÑ8r|tn ´ t0| ` }xn ´ x0} ` ?

n}xn ´ xn}s “ 0 ă r0 “ lim infnÑ8prn ´ rnq “
lim supnÑ8prn ´ rnq ď supnPNp|rn| ` |rn|q ă 8 and @ pn P N, z, z P Rdq : xz, Anzy ´ xz,Anzy ď
5 }z ´ z}2. Observe that (207) and the fact that lim supnÑ8r|tn´t0|`}xn ´ x0}`?

n }xn ´ xn}s “ 0

ensure that
lim sup
nÑ8

”

n~σptn, xnq ´ σptn, xnq~2
ı

“ 0. (217)

This, the fact that for all B P Sd, C P R
dˆm we have that TracepCC˚Bq “ řm

i“1xCei, BCeiy, and
the assumption that for all n P N, z, z P Rd we have that xz, Anzy ´ xz,Anzy ď 5 }z ´ z}2 prove
that

lim sup
nÑ8

”

1

2
Trace

´

σptn,xnqrσptn ,xnqs˚

Vptn,xnq
Vptn, xnqnAn ´ σptn,xnqrσptn ,xnqs˚

Vptn,xnq
Vptn, xnqnAn

¯ı

“ lim sup
nÑ8

“

n
2
Tracepσptn, xnqrσptn, xnqs˚An ´ σptn, xnqrσptn, xnqs˚Anq

‰

“ lim sup
nÑ8

„

n
2

m
ÿ

i“1

pxσptn, xnqei, Anσptn, xnqeiy ´ xσptn, xnqei,Anσptn, xnqeiyq


ď lim sup
nÑ8

«

m
ÿ

i“1

5

2
n }σptn, xnqei ´ σptn, xnqei}2

ff

“ 5

2
lim sup
nÑ8

“

n~σptn, xnq ´ σptn, xnq~2
‰

“ 0.

(218)

Next observe that (207) and the fact that V P C1,2pr0, T s ˆ O, p0,8qq ensure that for all compact
K Ď O we have that there exists c P R such that for all s P r0, T s, y1, y2 P K we have that

s
σps, y1q rσps, y1qs˚

Vps, y1q
´ σps, y2q rσps, y2qs˚

Vps, y2q

{
` }p∇xVqps, y1q ´ p∇xVqps, y2q} ď c}y1 ´ y2}. (219)

The fact that lim supnÑ8r|tn´t0|`}xn ´ x0}s “ 0 and the fact that lim supnÑ8r?n }xn ´ xn}s “ 0

hence guarantee that

lim sup
nÑ8

”

n }xn ´ xn}
r

σptn,xnqrσptn,xnqs˚

Vptn,xnq
´ σptn,xnqrσptn ,xnqs˚

Vptn,xnq

zı

“ 0 “ lim sup
nÑ8

rn }xn ´ xn} }p∇xVqptn, xnq ´ p∇xVqptn, xnq}s .
(220)
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Combining this with the fact that for all B P Sd, v, w P Rd we have that TracepBvw˚q “
Tracepw˚Bvq “ w˚Bv “ xw,Bvy “ xBw, vy “ xv, Bwy “ v˚Bw “ Tracepv˚Bwq “ TracepBwv˚q
yields that

lim sup
nÑ8

„

1

2
Trace

ˆ

σptn ,xnqrσptn ,xnqs˚

Vptn,xnq

`

npxn ´ xnqrp∇xVqptn, xnqs˚ ` p∇xVqptn, xnqnpxn ´ xnq˚
˘

´ σptn,xnqrσptn ,xnqs˚

Vptn,xnq

`

npxn ´ xnqrp∇xVqptn, xnqs˚ ` p∇xVqptn, xnqnpxn ´ xnq˚
˘

˙

“ lim sup
nÑ8

„

A

σptn,xnqrσptn ,xnqs˚

Vptn,xnq
npxn ´ xnq, p∇xVqptn, xnq

E

´
A

σptn,xnqrσptn ,xnqs˚

Vptn,xnq
npxn ´ xnq, p∇xVqptn, xnq

E



“ lim sup
nÑ8

„

A´

σptn,xnqrσptn,xnqs˚

Vptn,xnq
´ σptn,xnqrσptn ,xnqs˚

Vptn,xnq

¯

npxn ´ xnq, p∇xVqptn, xnq
E

(221)

`
A

σptn,xnqrσptn ,xnqs˚

Vptn,xnq
npxn ´ xnq, p∇xVqptn, xnq ´ p∇xVqptn, xnq

E



ď lim sup
nÑ8

„r
σptn,xnqrσptn ,xnqs˚

Vptn,xnq
´ σptn,xnqrσptn,xnqs˚

Vptn,xnq

z
n }xn ´ xn} }p∇xVqptn, xnq}

`
r

σptn,xnqrσptn ,xnqs˚

Vptn,xnq

z
n }xn ´ xn} }p∇xVqptn, xnq ´ p∇xVqptn, xnq}



“ 0.

Moreover, note that the fact that p0, T q ˆ O Q ps, yq ÞÑ σps,yqrσps,yqs˚

Vps,yq
pHessxVqps, yq P Rdˆd is

continuous, the fact that lim supnÑ8r?n }xn ´ xn}s “ 0, and the fact that lim supnÑ8r|tn ´ t0| `
}xn ´ x0}s “ 0 guarantee that

0 “ lim sup
nÑ8

ˇ

ˇ

ˇ
Trace

´

σptn,xnqrσptn ,xnqs˚

Vptn,xnq
pHessxVqptn, xnq ´ σpt0 ,x0qrσpt0 ,x0qs˚

Vpt0,x0q
pHessxVqpt0, x0q

¯ˇ

ˇ

ˇ

“ lim sup
nÑ8

ˇ

ˇ

ˇ
Trace

´

σptn,xnqrσptn ,xnqs˚

Vptn,xnq
pHessxVqptn, xnq ´ σpt0,x0qrσpt0 ,x0qs˚

Vpt0,x0q
pHessx Vqpt0, x0q

¯ˇ

ˇ

ˇ
.

(222)

This and the fact that 0 ă r0 “ lim infnÑ8prn´rnq “ lim supnÑ8prn´rnq ď supnPNp|rn|`|rn|q ă 8
ensure that

lim sup
nÑ8

”

1

2
Trace

`

σptn,xnqrσptn,xnqs˚

Vptn,xnq
rnpHessxVqptn, xnq ´ σptn,xnqrσptn,xnqs˚

Vptn,xnq
rnpHessxVqptn, xnq

˘

ı

“ 1

2
lim sup
nÑ8

„

prn ´ rnqTrace
´

σptn,xnqrσptn,xnqs˚

Vptn,xnq
pHessxVqptn, xnq

¯

(223)

` rn Trace
´

σptn,xnqrσptn ,xnqs˚

Vptn,xnq
pHessxVqptn, xnq ´ σptn ,xnqrσptn ,xnqs˚

Vptn,xnq
pHessxVqptn, xnq

¯



“ r0
2Vpt0,x0q

Tracepσpt0, x0qrσpt0, x0qs˚pHessxVqpt0, x0qq .
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Combining this with (218) and (221) demonstrates that

lim sup
nÑ8

„

1

2
Trace

ˆ

σptn ,xnqrσptn ,xnqs˚

Vptn,xnq

`

Vptn, xnqnAn ` npxn ´ xnq rp∇xVqptn, xnqs˚

` p∇xVqptn, xnqnpxn ´ xnq˚ ` rnpHessxVqptn, xnq
˘

˙

´ 1
2
Trace

ˆ

σptn,xnqrσptn ,xnqs˚

Vptn,xnq

`

Vptn, xnqnAn ` npxn ´ xnq rp∇xVqptn, xnqs˚

` p∇xVqptn, xnqnpxn ´ xnq˚ ` rnpHessxVqptn, xnq
˘

˙

ď r0
2Vpt0,x0q

Trace
`

σpt0, x0qrσpt0, x0qs˚pHessx Vqpt0, x0q
˘

.

(224)

Moreover, observe that the fact that p0, T q ˆ O Q ps, yq ÞÑ 1
Vps,yq

p B
Bt
Vqps, yq P R is continuous and

the fact that 0 ă r0 “ lim infnÑ8prn ´ rnq “ lim supnÑ8prn ´ rnq ď supnPNp|rn| ` |rn|q ă 8 show
that

lim sup
nÑ8

”

rn
Vptn,xnq

`

B
Bt
V
˘

ptn, xnq ´ rn
Vptn,xnq

`

B
Bt
V
˘

ptn, xnq
ı

“ lim sup
nÑ8

„

rn´rn
Vptn,xnq

`

B
Bt
V
˘

ptn, xnq ` rn

ˆ

p B
Bt
Vqptn,xnq

Vptn,xnq
´ p B

Bt
Vqptn,xnq

Vptn,xnq

˙

“ r0
Vpt0,x0q

`

B
Bt
V
˘

pt0, x0q.
(225)

Next note that (207), the fact that lim supnÑ8r|tn ´ t0| ` }xn ´ x0}s “ 0, and the fact that
lim supnÑ8r?n }xn ´ xn}s “ 0 imply that

lim sup
nÑ8

”

n}µptn, xnq ´ µptn, xnq}}xn ´ xn}
ı

“ 0. (226)

This, the fact that p0, T q ˆ O Q ps, yq ÞÑ x µps,yq
Vps,yq

, p∇xVqps, yqy P R is continuous, and the fact that

0 ă r0 “ lim infnÑ8prn ´ rnq “ lim supnÑ8prn ´ rnq ď supnPNp|rn| ` |rn|q ă 8 yield that

lim sup
nÑ8

„

1

Vptn,xnq
xµptn, xnq,Vptn, xnqnpxn ´ xnq ` rnp∇xVqptn, xnqy

´ 1
Vptn,xnq

xµptn, xnq,Vptn, xnqnpxn ´ xnq ` rnp∇xVqptn, xnqy


“ lim sup
nÑ8

„

xµptn, xnq ´ µptn, xnq, npxn ´ xnqy

` rn

A

µptn,xnq
Vptn,xnq

, p∇xVqptn, xnq
E

´ rn

A

µptn,xnq
Vptn,xnq

, p∇xVqptn, xnq
E



ď lim sup
nÑ8

“

}µptn, xnq ´ µptn, xnq}n }xn ´ xn}
‰

` lim sup
nÑ8

”

prn ´ rnq
A

µptn,xnq
Vptn,xnq

, p∇xVqptn, xnq
Eı

` lim sup
nÑ8

”

rn

´A

µptn,xnq
Vptn,xnq

, p∇xVqptn, xnq
E

´
A

µptn,xnq
Vptn,xnq

, p∇xVqptn, xnq
E¯ı

“ r0
Vpt0,x0q

xµpt0, x0q, p∇xVqpt0, x0qy.

(227)

Furthermore, note that the assumption that f P Cpr0, T s ˆ O ˆ R,Rq proves that for all compact
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K Ď r0, T s ˆ O ˆ R we have that

lim sup
p0,8qQεÑ0

»

–sup

¨

˝

$

&

%

|fps1, y1, a1q ´ fps2, y2, a2q| :

¨

˝

ps1, y1, a1q, ps2, y2, a2q P K,

|a1 ´ a2| ` |s1 ´ s2| ď ε,

}y1 ´ y2} ď ε

˛

‚

,

.

-

Y t0u

˛

‚

fi

fl

“ 0. (228)

This and the assumption that for all s P r0, T s, y P O, a, b P R we have that pfps, y, aq ´
fps, y, bqqpa´ bq ď L|a ´ b|2 imply that

lim sup
nÑ8

”

fptn,xn,rnVptn,xnqq
Vptn,xnq

´ fptn,xn,rnVptn,xnqq
Vptn,xnq

ı

“ lim sup
nÑ8

”

fptn,xn,rnVptn,xnqq
Vptn,xnq

´ fptn,xn,rnVptn,xnqq
Vptn,xnq

` fptn,xn,rnVptn,xnqq
Vptn,xnq

´ fptn,xn,rnVptn,xnqq
Vptn,xnq

ı

ď lim sup
nÑ8

”

fptn,xn,rnVptn,xnqq
Vptn,xnq

´ fptn,xn,rnVptn,xnqq
Vptn,xnq

ı

` lim sup
nÑ8

”

LprnVptn,xnq´rnVptn,xnqq
Vptn,xnq

ı

“ lim sup
nÑ8

rLprn ´ rnqs “ Lr0.

(229)

Combining (212), (213), (224), (225), and (227) hence demonstrates that

lim sup
nÑ8

rHptn, xn, rn, npxn ´ xnq, nAnq ´ Hptn, xn, rn, npxn ´ xnq, nAnqs

ď r0
Vpt0,x0q

„

p B
Bt
Vqpt0, x0q ` 1

2
Tracepσpt0, x0qrσpt0, x0qs˚pHessxVqpt0, x0qq

` xµpt0, x0q, p∇xVqpt0, x0qy ` LVpt0, x0q


ď 0.

(230)

This, (214), (215), and Corollary 3.4 guarantee that v1 ď v2 and v2 ď v1. Therefore, we obtain
that v1 “ v2. This establishes u1 “ u2. This completes the proof of Proposition 3.5.

3.2 Existence results for solutions of SDEs

Proposition 3.6. Let d,m P N, T P p0,8q, let x¨, ¨y : RdˆRd Ñ R be the standard Euclidean scalar
product on Rd, let }¨} : Rd Ñ r0,8q be the standard Euclidean norm on Rd, let ~¨~ : Rdˆm Ñ r0,8q
be the Frobenius norm on Rdˆm, let O Ď Rd be a non-empty open set, for every r P p0,8q let Or Ď
O satisfy Or “ tx P O : p}x} ď r and ty P Rd : }y ´ x} ă 1{ru Ď Oqu, let µ P Cpr0, T s ˆ O,Rdq,
σ P Cpr0, T s ˆ O,Rdˆmq satisfy for all r P p0,8q that

sup

ˆ"}µpt, xq ´ µpt, yq} ` ~σpt, xq ´ σpt, yq~
}x´ y} : t P r0, T s, x, y P Or, x ‰ y

*

Y t0u
˙

ă 8, (231)

let V P C1,2pr0, T s ˆ O, p0,8qq satisfy lim suprÑ8

“

inftPr0,T s infxPOzOr
V pt, xq

‰

“ 8, assume for all
t P r0, T s, x P O that

p B
Bt
V qpt, xq ` 1

2
Tracepσpt, xqrσpt, xqs˚pHessx V qpt, xqq ` xµpt, xq, p∇xV qpt, xqy ď 0, (232)

let pΩ,F ,P, pFtqtPr0,T sq be a stochastic basis, let W : r0, T s ˆ Ω Ñ Rm be a standard pFtqtPr0,T s-
Brownian motion, and let ξ P O. Then there exists an up to indistinguishability unique pFtqtPr0,T s-
adapted stochastic process X “ pXtqtPr0,T s : r0, T s ˆΩ Ñ O with continuous sample paths such that
for all t P r0, T s we have P-a.s. that

Xt “ ξ `
ż t

0

µps,Xsq ds`
ż t

0

σps,Xsq dWs. (233)
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Proof of Proposition 3.6. Throughout this proof let mn P Cpr0, T s ˆ O,Rdq, n P N, and sn P
Cpr0, T s ˆ O,Rdˆmq, n P N, satisfy that

(A) we have for all n P N that

sup
tPr0,T s

sup
xPO

sup
yPOztxu

„}mnpt, xq ´ mnpt, yq} ` ~snpt, xq ´ snpt, yq~
}x´ y}



ă 8, (234)

(B) we have for all n P N, t P r0, T s, x P O that

1tV ďnupt, xq r}mnpt, xq ´ µpt, xq} ` ~snpt, xq ´ σpt, xq~s “ 0, (235)

and

(C) we have for all n P N, t P r0, T s, x P O that

1tV ěn`1upt, xq r}mnpt, xq} ` ~snpt, xq~s “ 0. (236)

Note that Items (A) and (C) ensure that there exist pFtqtPr0,T s-adapted stochastic processes Xpnq “
pXpnq

t qtPr0,T s : r0, T s ˆ Ω Ñ O, n P N, with continuous sample paths satisfying that for all n P N,
t P r0, T s we have P-a.s. that

X
pnq
t “ ξ `

ż t

0

mnps,Xpnq
s q ds `

ż t

0

snps,Xpnq
s q ds (237)

(cf., e.g, Karatzas & Shreve [28, Theorem 5.2.9] and [5, Item (ii) in Lemma 3.4]). Next let

τn : Ω Ñ r0, T s, n P N, satisfy for all n P N that τn “ infptt P r0, T s : V pt,Xpnq
t q ě nu Y tT uq.

Moreover, observe that Item (B) ensures that for all m P N, n P N X rm,8q we have that

Pp@ t P r0, T s : 1ttďτmuX
pnq
t “ 1ttďτmuX

pmq
t q “ 1 (cf., e.g, [5, Lemma 3.5]). Combining this with

(237) and Item (B) proves that for all n P N, t P r0, T s we have P-a.s. that

X
pnq
mintτn,tu

“ ξ `
ż mintτn,tu

0

mnps,Xpnq
s q ds`

ż mintτn,tu

0

snps,Xpnq
s q dWs

“ ξ `
ż mintτn,tu

0

µps,Xpnq
s q ds `

ż mintτn,tu

0

σps,Xpnq
s q dWs

“ ξ `
ż t

0

1tsďτnuµps,Xpnq
mintτn,suq ds`

ż t

0

1tsďτnuσps,Xpnq
mintτn,suq dWs.

(238)

Itô’s formula hence guarantees that for all n P N, t P r0, T s we have P-a.s. that

V pmintτn, tu,Xpnq
mintτn,tu

q “ V p0, ξq `
ż mintτn,tu

0

A

p∇xV qps,Xpnq
mintτn,suq, σps,Xpnq

mintτn,suq dWs

E

`
ż mintτn,tu

0

p B
Bt
V qps,Xpnq

mintτn,suq ds`
ż mintτn,tu

0

A

µps,Xpnq
mintτn,suq, p∇xV qps,Xpnq

mintτn,suq
E

ds

`
ż mintτn,tu

0

1
2
Trace

`

σps,Xpnq
mintτn,suqrσps,Xpnq

mintτn,suqs˚pHessx V qps,Xpnq
mintτn,suq

˘

ds.

(239)

This and (232) show that for all n P N, t P r0, T s we have P-a.s. that

V pmintτn, tu,Xpnq
mintτn,tu

q ď V p0, ξq `
ż mintτn,tu

0

xp∇xV qps,Xpnq
s q, σps,Xpnq

s q dWsy. (240)
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Hence, we obtain for all n P N, t P r0, T s that

E
“

V pmintτn, tu,Xpnq
mintτn,tu

q
‰

ď V p0, ξq. (241)

This implies for all n P N that
E
“

V pτn,Xpnq
τn

q
‰

ď V p0, ξq. (242)

Markov’s inequality and the fact that Xpnq : r0, T s ˆ Ω Ñ O, n P N, are stochastic processes with
continuous sample paths hence ensure that for all n P N we have that

Ppτn ă T q ď P
`

V pτn,Xpnq
τn

q ě n
˘

ď 1

n
E
“

V pτn,Xpnq
τn

q
‰

ď V p0, ξq
n

. (243)

Therefore, we obtain that

8
ÿ

n“1

Ppτn2 ă T q ď V p0, ξq
«

8
ÿ

n“1

1

n2

ff

ă 8. (244)

The Borel-Cantelli lemma hence yields that PpDn P N : τn “ T q “ 1. This demonstrates that
there exists an pFtqtPr0,T s-adapted stochastic process X : r0, T s ˆ Ω Ñ O with continuous sample

paths satisfying that lim infnÑ8 Pp@ t P r0, T s : Xt “ X
pnq
t q “ 1. Item (B) hence yields that for all

t P r0, T s we have that

lim sup
nÑ8

E

„

min

"

1,

ż t

0

�

�snps,Xpnq
s q ´ σps,Xsq

�

�

2
ds

*

“ 0. (245)

This, the fact that for all t P r0, T s we have P-a.s. that

lim sup
nÑ8

›

›

›

›

ż t

0

mnps,Xpnq
s q ds´

ż t

0

µps,Xsq ds
›

›

›

›

“ 0, (246)

and (237) guarantee that for all t P r0, T s we have P-a.s. that

Xt “ ξ `
ż t

0

µps,Xsq ds`
ż t

0

σps,Xsq dWs. (247)

This and, e.g., Karatzas & Shreve [28, Theorem 5.2.5] establish (233). This completes the proof
of Proposition 3.6.

3.3 Existence results for viscosity solutions of semilinear Kolmogorov

PDEs

Theorem 3.7. Let d,m P N, L, T P p0,8q, let x¨, ¨y : RdˆR
d Ñ R be the standard Euclidean scalar

product on Rd, let }¨} : Rd Ñ r0,8q be the standard Euclidean norm on Rd, let ~¨~ : Rdˆm Ñ r0,8q
be the Frobenius norm on Rdˆm, let O Ď Rd be a non-empty open set, for every r P p0,8q let Or Ď
O satisfy Or “ tx P O : p}x} ď r and ty P Rd : }y ´ x} ă 1{ru Ď Oqu, let µ P Cpr0, T s ˆ O,Rdq,
σ P Cpr0, T s ˆ O,Rdˆmq, f P Cpr0, T s ˆ O ˆ R,Rq, g P CpO,Rq, V P C1,2pr0, T s ˆ O, p0,8qq,
assume for all r P p0,8q that

sup

ˆ"}µpt, xq ´ µpt, yq} ` ~σpt, xq ´ σpt, yq~
}x´ y} : t P r0, T s, x, y P Or, x ‰ y

*

Y t0u
˙

ă 8, (248)
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assume suprPp0,8qrinftPr0,T s infxPOzOr
V pt, xqs “ 8 and infrPp0,8qrsuptPr0,T s supxPOzOr

p |fpt,x,0q|
V pt,xq

` |gpxq|
V pT,xq

qs
“ 0, assume for all t P r0, T s, x P O, v, w P R that |fpt, x, vq ´ fpt, x, wq| ď L|v ´ w| and

p B
Bt
V qpt, xq ` 1

2
Tracepσpt, xqrσpt, xqs˚pHessx V qpt, xqq ` xµpt, xq, p∇xV qpt, xqy ď 0, (249)

let pΩ,F ,P, pFtqtPr0,T sq be a stochastic basis, and let W : r0, T s ˆΩ Ñ Rm be a standard pFtqtPr0,T s-
Brownian motion. Then

(i) there exists a unique viscosity solution u P tu P Cpr0, T sˆO,Rq : lim suprÑ8rsuptPr0,T s supxPOzOr

p |upt,xq|
V pt,xq

qs “ 0u of

p B
Bt
uqpt, xq ` 1

2
Trace

`

σpt, xqrσpt, xqs˚pHessx uqpt, xq
˘

` xµpt, xq, p∇xuqpt, xqy
` fpt, x, upt, xqq “ 0 (250)

with upT, xq “ gpxq for pt, xq P p0, T q ˆ O,

(ii) for every t P r0, T s, x P O there exists an up to indistinguishability unique pFsqsPrt,T s-adapted
stochastic process X t,x “ pX t,x

s qsPrt,T s : rt, T sˆΩ Ñ O with continuous sample paths satisfying
that for all s P rt, T s we have P-a.s. that

X t,x
s “ x`

ż s

t

µpr,X t,x
r q dr `

ż s

t

σpr,X t,x
r q dWr, (251)

(iii) there exists a unique v P Cp0, T s ˆ O,Rq which satisfies for all t P r0, T s, x P O that

lim suprÑ8rsupsPr0,T s supyPOzOr
p |vps,yq|
V ps,yq

qs “ 0, Er|gpX t,x
T q| `

şT

t
|fps,X t,x

s , vps,X t,x
s qq| dss ă 8,

and

vpt, xq “ E

„

gpX t,x
T q `

ż T

t

fps,X t,x
s , vps,X t,x

s qq ds


, (252)

and

(iv) we have for all t P r0, T s, x P O that upt, xq “ vpt, xq
(cf. Definition 2.7).

Proof of Theorem 3.7. First, observe that Proposition 3.6 (applied with d Ð d, m Ð m, T Ð
T ´ t, O Ð O, µ Ð pr0, T ´ ts ˆ O Q ps, xq ÞÑ µpt ` s, xq P Rdq, σ Ð pr0, T ´ ts ˆ O Q ps, xq ÞÑ
σpt ` s, xq P Rdˆmq, V Ð pr0, T ´ ts ˆ O Q ps, xq ÞÑ V pt ` s, xq P p0,8qq, pΩ,F ,Pq Ð pΩ,F ,Pq,
pFsqsPr0,T s Ð pFs`tqsPr0,T´ts, pWsqsPr0,T s Ð pWs`t ´ WtqsPr0,T´ts for t P r0, T s in the notation of
Proposition 3.6) establishes Item (ii). Next we prove Item (iii). Note that Item (ii) ensures
that there exists a unique v P Cpr0, T s ˆ O,Rq which satisfies for all t P r0, T s, x P O that

lim suprÑ8rsupsPr0,T s supyPOzOr
p |vps,yq|
V ps,yq

qs “ 0, Er|gpX t,x
T q| `

şT

t
|fps,X t,x

s , vps,X t,x
s qq| dss ă 8, and

vpt, xq “ E

„

gpX t,x
T q `

ż T

t

fps,X t,x
s , vps,X t,x

s qq ds


(253)

(cf., e.g., [5, Theorem 3.8]). This establishes Item (iii). In the next step we prove Items (i) and
(iv). For this let h : r0, T s ˆ O Ñ R satisfy for all t P r0, T s, x P O that hpt, xq “ fpt, x, vpt, xqq.
Observe that h P Cpr0, T s ˆ O,Rq and

lim sup
rÑ8

«

sup
tPr0,T s

sup
xPOzOr

ˆ |hpt, xq|
V pt, xq

˙

ff

“ lim sup
rÑ8

«

sup
tPr0,T s

sup
xPOzOr

ˆ |fpt, x, vpt, xqq|
V pt, xq

˙

ff

ď lim sup
rÑ8

«

sup
tPr0,T s

sup
xPOzOr

ˆ |fpt, x, 0q| ` |fpt, x, vpt, xqq ´ fpt, x, 0q|
V pt, xq

˙

ff

ď lim sup
rÑ8

«

sup
tPr0,T s

sup
xPOzOr

ˆ |fpt, x, 0q| ` L|vpt, xq|
V pt, xq

˙

ff

“ 0.

(254)
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Proposition 2.23, Item (ii), and (253) hence guarantee that v is a viscosity solution of

p B
Bt
vqpt, xq ` 1

2
Trace

`

σpt, xqrσpt, xqs˚pHessx vqpt, xq
˘

` xµpt, xq, p∇xvqpt, xqy ` hpt, xq “ 0 (255)

for pt, xq P p0, T q ˆ O. This implies that for all t P p0, T q, x P O, φ P C1,2pp0, T q ˆ O,Rq with
φ ě v and φpt, xq “ vpt, xq we have that

p B
Bt
φqpt, xq ` 1

2
Tracepσpt, xqrσpt, xqs˚pHessx φqpt, xqq ` xµpt, xq, p∇xφqpt, xqy ` fpt, x, φpt, xqq

“ p B
Bt
φqpt, xq ` 1

2
Tracepσpt, xqrσpt, xqs˚pHessx φqpt, xqq ` xµpt, xq, p∇xφqpt, xqy ` hpt, xq (256)

ě 0.

In addition, note that (255) proves that for all t P p0, T q, x P O, φ P C1,2pp0, T q ˆ O,Rq with
φ ď v and φpt, xq “ vpt, xq we have that

p B
Bt
φqpt, xq ` 1

2
Tracepσpt, xqrσpt, xqs˚pHessx φqpt, xqq ` xµpt, xq, p∇xφqpt, xqy ` fpt, x, φpt, xqq

“ p B
Bt
φqpt, xq ` 1

2
Tracepσpt, xqrσpt, xqs˚pHessx φqpt, xqq ` xµpt, xq, p∇xφqpt, xqy ` hpt, xq (257)

ď 0.

Combining this with (256) shows that v is a viscosity solution of

p B
Bt
vqpt, xq ` 1

2
Tracepσpt, xqrσpt, xqs˚pHessx vqpt, xqq ` xµpt, xq, p∇xvqpt, xqy

` fpt, x, vpt, xqq “ 0 (258)

for pt, xq P p0, T q ˆ O. Combining this and the fact that v P tu P Cpr0, T s ˆ O,Rq : lim suprÑ8

rsuptPr0,T s supxPOzOr
p |upt,xq|
V pt,xq

qs “ 0u with Proposition 3.5 (applied with u1 Ð v in the notation of

Proposition 3.5) establishes Items (i) and (iv). This completes the proof of Theorem 3.7.

Corollary 3.8. Let d,m P N, T P p0,8q, L, ρ P R, let x¨, ¨y : Rd ˆ Rd Ñ R be the standard
Euclidean scalar product on Rd, let }¨} : Rd Ñ r0,8q be the standard Euclidean norm on Rd, let
~¨~ : Rdˆm Ñ r0,8q be the Frobenius norm on Rdˆm, let O Ď Rd be a non-empty open set, for
every r P p0,8q let Or Ď O satisfy Or “ tx P O : p}x} ď r and ty P Rd : }y ´ x} ă 1{ru Ď Oqu,
let µ P Cpr0, T s ˆ O,Rdq, σ P Cpr0, T s ˆ O,Rdˆmq, f P Cpr0, T s ˆ O ˆ R,Rq, g P CpO,Rq,
V P C2pO, p0,8qq, assume for all r P p0,8q that

sup

ˆ"}µpt, xq ´ µpt, yq} ` ~σpt, xq ´ σpt, yq~
}x´ y} : t P r0, T s, x, y P Or, x ‰ y

*

Y t0u
˙

ă 8, (259)

assume that suprPp0,8qrinfxPOzOr
V pxqs “ 8 and infrPp0,8qrsuptPr0,T s supxPOzOr

p |fpt,x,0q|`|gpxq|
V pxq

qs “ 0,

assume for all t P r0, T s, x P O, v, w P R that |fpt, x, vq ´ fpt, x, wq| ď L|v ´ w| and

1
2
Tracepσpt, xqrσpt, xqs˚pHess V qpxqq ` xµpt, xq, p∇V qpxqy ď ρV pxq, (260)

let pΩ,F ,P, pFtqtPr0,T sq be a stochastic basis, and let W : r0, T s ˆΩ Ñ Rm be a standard pFtqtPr0,T s-
Brownian motion. Then

(i) there exists a unique viscosity solution u P tu P Cpr0, T sˆO,Rq : lim suprÑ8rsupsPr0,T s supyPOzOr

p |ups,yq|
V pyq

qs “ 0u of

p B
Bt
uqpt, xq ` 1

2
Tracepσpt, xqrσpt, xqs˚pHessx uqpt, xqq ` xµpt, xq, p∇xuqpt, xqy

` fpt, x, upt, xqq “ 0 (261)

with upT, xq “ gpxq for pt, xq P p0, T q ˆ O,
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(ii) for every t P r0, T s, x P O there exists an up to indistinguishability unique pFsqsPrt,T s-adapted
stochastic process X t,x “ pX t,x

s qsPrt,T s : rt, T sˆΩ Ñ O with continuous sample paths satisfying
that for all s P rt, T s we have P-a.s. that

X t,x
s “ x`

ż s

t

µpr,X t,x
r q dr `

ż s

t

σpr,X t,x
r q dWr, (262)

(iii) there exists a unique v P Cpr0, T s ˆ O,Rq which satisfies for all t P r0, T s, x P O that

lim suprÑ8rsupsPrt,T s supyPOzOr
p |vps,yq|

V pyq
qs “ 0, Er|gpX t,x

T q| `
şT

t
|fps,X t,x

s , vps,X t,x
s qq| dss ă 8,

and

vpt, xq “ E

„

gpX t,x
T q `

ż T

t

fps,X t,x
s , vps,X t,x

s qq ds


, (263)

and

(iv) we have for all t P r0, T s, x P O that upt, xq “ vpt, xq

(cf. Definition 2.7).

Proof of Corollary 3.8. Throughout this proof let V : r0, T s ˆ O Ñ p0,8q satisfy for all t P r0, T s,
x P O that Vpt, xq “ e´ρtV pxq. Observe that (260) ensures that for all t P r0, T s, x P O we have
that

p B
Bt
Vqpt, xq ` 1

2
Tracepσpt, xqrσpt, xqs˚pHessx Vqpt, xqq ` xµpt, xq, p∇xVqpt, xqy ď 0 (264)

(cf., e.g, [5, Lemma 3.2]). Moreover, note that the hypothesis that suprPp0,8qrinfxPOzOr
V pxqs “ 8

assures that

sup
rPp0,8q

„

inf
tPr0,T s

inf
xPOzOr

Vpt, xq


“ 8. (265)

In addition, observe that the hypothesis that infrPp0,8q

“

suptPr0,T s supxPOzOr

`

|fpt,x,0q|`|gpxq|
V pxq

˘‰

“ 0

guarantees that

inf
rPp0,8q

«

sup
tPr0,T s

sup
xPOzOr

ˆ |fpt, x, 0q|
Vpt, xq ` |gpxq|

VpT, xq

˙

ff

“ 0. (266)

Theorem 3.7 hence establishes Items (ii)–(iv). This completes the proof of Corollary 3.8.

Corollary 3.9. Let d,m P N, L, T P p0,8q, µ P Cpr0, T s ˆ Rd,Rdq, σ P Cpr0, T s ˆ Rd,Rdˆmq,
C P Cpr0,8q, r0,8qq, let f P Cpr0, T s ˆRd ˆR,Rq, g P CpRd,Rq be at most polynomially growing,
let x¨, ¨y : Rd ˆR

d Ñ R be the standard Euclidean scalar product on R
d, let }¨} : Rd Ñ r0,8q be the

standard Euclidean norm on Rd, let ~¨~ : Rdˆm Ñ r0,8q be the Frobenius norm on Rdˆm, assume
for all t P r0, T s, x, y P Rd, v, w P R that }µpt, xq ´ µpt, yq}`~σpt, xq ´ σpt, yq~ ď Cp}x}`}y}q}x´
y}, xx, µpt, xqy ď Lp1 ` }x}2q, ~σpt, xq~ ď Lp1 ` }x}q, and |fpt, x, vq ´ fpt, x, wq| ď L|v ´ w|, let
pΩ,F ,P, pFtqtPr0,T sq be a stochastic basis, and let W : r0, T s ˆ Ω Ñ Rm be a standard pFtqtPr0,T s-
Brownian motion. Then

(i) there exists a unique at most polynomially growing viscosity solution u P Cpr0, T s ˆRd,Rq of

p B
Bt
uqpt, xq ` 1

2
Tracepσpt, xqrσpt, xqs˚pHessx uqpt, xqq ` xµpt, xq, p∇xuqpt, xqy

` fpt, x, upt, xqq “ 0 (267)

with upT, xq “ gpxq for pt, xq P p0, T q ˆ Rd,
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(ii) for every t P r0, T s, x P Rd there exists an up to indistinguishability unique pFsqsPrt,T s-adapted
stochastic process X t,x “ pX t,x

s qsPrt,T s : rt, T sˆΩ Ñ Rd with continuous sample paths satisfying
that for all s P rt, T s we have P-a.s. that

X t,x
s “ x`

ż s

t

µpr,X t,x
r q dr `

ż s

t

σpr,X t,x
r q dWr, (268)

(iii) there exists a unique at most polynomially growing v P Cpr0, T s ˆ Rd,Rq which satisfies for

all t P r0, T s, x P Rd that Er|gpX t,x
T q| `

şT

t
|fps,X t,x

s , vps,X t,x
s qq| dss ă 8 and

vpt, xq “ E

„

gpX t,x
T q `

ż T

t

fps,X t,x
s , vps,X t,x

s qq ds


, (269)

and

(iv) we have for all t P r0, T s, x P Rd that upt, xq “ vpt, xq
(cf. Definition 2.7).

Proof of Corollary 3.9. Throughout this proof let Vq : R
d Ñ p0,8q, q P p0,8q, satisfy for all

q P p0,8q, x P Rd that
Vqpxq “ r1 ` }x}2sq{2. (270)

Observe that the assumption that f is at most polynomially growing and the assumption that g
is at most polynomially growing ensure that there exists p P p0,8q which satisfies that

sup
tPr0,T s

sup
xPRd

ˆ |gpxq| ` |fpt, x, 0q|
Vppxq

˙

ă 8. (271)

Hence, we obtain for all q P pp,8q that

lim sup
rÑ8

«

sup
tPr0,T s

sup
xPRd,}x}ąr

ˆ |fpt, x, 0q| ` |gpxq|
Vqpxq

˙

ff

“ 0. (272)

Moreover, note that (270), the assumption that for all t P r0, T s, x P Rd we have that xx, µpt, xqy ď
Lp1` }x}2q, and the assumption that for all t P r0, T s, x P Rd we have that ~σpt, xq~ ď Lp1` }x}q
guarantee that there exist ρq P r0,8q, q P R, which satisfy for all q P pp,8q, t P r0, T s, x P Rd that

1
2
Tracepσpt, xqrσpt, xqs˚pHess Vqqpxqq ` xµpt, xq, p∇Vqqpxqy ď ρqVqpxq (273)

(cf., e.g., [5, Lemma 3.3]). In addition, observe that (270) demonstrates for all q P p0,8q that
lim infrÑ8rinfxPRd,}x}ąr Vqpxqs “ 8. Item (ii) in Corollary 3.8 (applied with ρ Ð ρ2p, O Ð R

d,
V Ð V2p in the notation of Corollary 3.8), (272), and (273) therefore ensure that for every
t P r0, T s, x P Rd there exists an up to indistinguishability unique pFsqsPrt,T s-adapted stochastic
process X t,x “ pX t,x

s qsPrt,T s : rt, T s ˆ Ω Ñ Rd with continuous sample paths satisfying that for all
s P rt, T s we have P-a.s. that

X t,x
s “ x `

ż s

t

µpr,X t,x
r q dr `

ż s

t

σpr,X t,x
r q dWr. (274)

This establishes Item (ii). Next we prove Item (i). Note that Item (i) in Corollary 3.8 (applied with
ρ Ð ρ2p, O Ð R

d, V Ð V2p in the notation of Corollary 3.8), (272), and (273) prove that there ex-

ists a unique viscosity solution u P tu P Cpr0, T sˆRd,Rq : lim suprÑ8rsuptPr0,T s supxPOzOr
p |upt,xq|
V2ppt,xq

qs
“ 0u of

p B
Bt
uqpt, xq ` 1

2
Tracepσpt, xqrσpt, xqs˚pHessx uqpt, xqq ` xµpt, xq, p∇xuqpt, xqy

` fpt, x, upt, xqq “ 0 (275)
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with upT, xq “ gpxq for pt, xq P p0, T q ˆ Rd. Next let v P Cpr0, T s ˆ Rd,Rq be an at most
polynomially growing viscosity solution of

p B
Bt
vqpt, xq ` 1

2
Tracepσpt, xqrσpt, xqs˚pHessx vqpt, xqq ` xµpt, xq, p∇xvqpt, xqy

` fpt, x, vpt, xqq “ 0 (276)

with vpT, xq “ gpxq for pt, xq P p0, T q ˆ Rd. Note that the fact that v is at most polynomially
growing guarantees that there exists α P r2p,8q which satisfies that

lim sup
rÑ8

«

sup
tPr0,T s

sup
xPRd,}x}ąr

ˆ |vpt, xq|
Vαpxq

˙

ff

“ 0. (277)

Item (i) in Corollary 3.8 (applied with ρ Ð ρα, O Ð Rd, V Ð Vα in the notation of Corollary 3.8)
and (275) hence ensure that u “ v. This establishes Item (i). In the next step we prove Items (iii)
and (iv). Observe that Item (iii) in Corollary 3.8 guarantees for all t P r0, T s, x P Rd that

Er|gpX t,x
T q| `

şT

t
|fps,X t,x

s , ups,X t,x
s qq| dss ă 8 and

upt, xq “ E

„

gpX t,x
T q `

ż T

t

fps,X t,x
s , ups,X t,x

s qq ds


. (278)

Next let w P Cpr0, T s ˆ Rd,Rq be an at most polynomially growing function satisfying for all
t P r0, T s, x P Rd that

wpt, xq “ E

„

gpX t,x
T q `

ż T

t

fps,X t,x
s , wps,X t,x

s qq ds


. (279)

Observe that the fact that w is at most polynomially growing yields that there exists β P rα,8q
which satisfies that

lim sup
rÑ8

«

sup
tPr0,T s

sup
xPRd,}x}ąr

ˆ |wpt, xq|
Vβpxq

˙

ff

“ 0. (280)

Combining Items (iii) and (iv) in Corollary 3.8 (applied with ρ Ð ρβ, O Ð R
d, V Ð Vβ in

the notation of Corollary 3.8) with (275) and (278) hence demonstrates that u “ v “ w. This
establishes Items (iii) and (iv). This completes the proof of Corollary 3.9.

Lemma 3.10. Let d,m P N, ε, T P p0,8q, α, c P r0,8q, let x¨, ¨y : Rd ˆ Rd Ñ R be the standard
Euclidean scalar product on Rd, let }¨} : Rd Ñ r0,8q be the standard Euclidean norm on Rd, let
B : r0, T s ˆ R

d Ñ R
dˆm satisfy suptxξ, Bpt, xqrBpt, xqs˚ξy : t P r0, T s, x, ξ P R

d, }ξ} “ 1u “ c ď α,
and let V : r0, T s ˆ Rd Ñ p0,8q satisfy for all t P r0, T s, x P Rd that

V pt, xq “ 1

r2πpαt`εqsd{2 exp
´

}x}2

2pαt`εq

¯

. (281)

Then

(i) we have that V P C8pr0, T s ˆ Rd, p0,8qq and

(ii) we have for all t P r0, T s, x P Rd that

p B
Bt
V qpt, xq ` 1

2
Trace

`

Bpt, xqrBpt, xqs˚pHessx V qpt, xq
˘

ď 0. (282)
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Proof of Lemma 3.10. Throughout this proof let δi,j P R, i, j P N, satisfy for all i, j P N with i ă j

that δi,i “ 1 and δi,j “ δj,i “ 0 and let bi,j : r0, T s ˆ Rd Ñ R, i P t1, 2, . . . , du, j P t1, 2, . . . , mu,
satisfy for all t P r0, T s, x P Rd that

Bpt, xq “

¨

˚

˚

˚

˝

b1,1pt, xq b1,2pt, xq . . . b1,mpt, xq
b2,1pt, xq b2,2pt, xq . . . b2,mpt, xq

...
...

. . .
...

bd,1pt, xq bd,2pt, xq . . . bd,mpt, xq

˛

‹

‹

‹

‚

. (283)

Observe that (281) and the chain rule establish Item (i). Moreover, note that (281) ensures that
for all i P t1, 2, . . . , du, j P t1, 2, . . . , mu, t P r0, T s, x “ px1, x2, . . . , xdq P Rd we have that

p B
Bt
V qpt, xq “ α

”

´ d
2pαt`εq

´ }x}2

2pαt`εq2

ı

V pt, xq, p B
Bxi
V qpt, xq “ xi

αt`ε
V pt, xq,

and p B2

BxiBxj
V qpt, xq “

”

xixj

pαt`εq2
` δi,j

αt`ε

ı

V pt, xq.
(284)

Hence, we obtain that for all t P r0, T s, x “ px1, x2, . . . , xdq P Rd we have that

p B
Bt
V qpt, xq ` 1

2
Trace

`

Bpt, xqrBpt, xqs˚pHessx V qpt, xq
˘

“ p B
Bt
V qpt, xq ` 1

2

«

d
ř

i,j“1

m
ř

k“1

bi,kpt, xqbj,kpt, xqp B2

BxiBxj
V qpt, xq

ff

“ α
”

´ d
2pαt`εq

´ }x}2

2pαt`εq2

ı

V pt, xq ` 1

2

«

d
ř

i,j“1

m
ř

k“1

bi,kpt, xqbj,kpt, xq
´

xixj

pαt`εq2
` δi,j

αt`ε

¯

ff

V pt, xq

“ α
”

´ d
2pαt`εq

´ }x}2

2pαt`εq2

ı

V pt, xq ` 1
2

”

xx,Bpt,xqrBpt,xqs˚xy
pαt`εq2

` TracepBpt,xqrBpt,xqs˚ q
αt`ε

ı

.

(285)

Next note that the assumption that for all t P r0, T s, x, ξ P Rd we have that xξ, Bpt, xqrBpt, xqs˚ξy ď
c}ξ}2 implies that for all t P r0, T s, x P Rd we have that TracepBpt, xqrBpt, xqs˚q ď cd. Combining
this with (285) and the assumption that c ď α ensures that for all t P r0, T s, x P Rd we have that

p B
Bt
V qpt, xq ` 1

2
Trace

`

Bpt, xqrBpt, xqs˚pHessx V qpt, xq
˘

ď ´α
”

d
2pαt`εq

` }x}2

2pαt`εq2

ı

V pt, xq ` 1

2

”

c}x}2

pαt`εq2
` cd

αt`ε

ı

V pt, xq

“ p´α ` cq
”

d
2pαt`εq

` }x}2

2pαt`εq2

ı

V pt, xq ď 0.

(286)

This establishes Item (ii). This completes the proof of Lemma 3.10.

Corollary 3.11. Let d,m P N, B P Rdˆm, a, T P p0,8q, c, L P R, f P Cpr0, T s ˆ Rd ˆ R,Rq,
g P CpRd,Rq, let x¨, ¨y : RdˆRd Ñ R be the standard Euclidean scalar product on Rd, let }¨} : Rd Ñ
r0,8q be the standard Euclidean norm on Rd, assume for all t P r0, T s, x P Rd, v, w P R that
c “ suptxy, BB˚yy : y P R

d, }y} “ 1u ă 1

2aT
, |fpt, x, 0q| ` |gpxq| ď L exppa}x}2q, and |fpt, x, vq ´

fpt, x, wq| ď L|v ´ w|, let pΩ,F ,Pq be a probability space, and let W : r0, T s ˆ Ω Ñ Rm be a
standard Brownian motion. Then

(i) there exists a unique viscosity solution u P
`
Ť

bPRtu P Cpr0, T s ˆ Rd,Rq : supt |upt,xq|
exppb}x}2q

: t P
r0, T s, x P Rdu ă 8u

˘

of

p B
Bt
uqpt, xq ` 1

2
Trace

`

BB˚pHessx uqpt, xq
˘

` fpt, x, upt, xqq “ 0 (287)

with upT, xq “ gpxq for pt, xq P p0, T q ˆ Rd,
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(ii) there exists a unique v P
`
Ť

εPp0,8qtu P Cpr0, T s ˆ R
d,Rq : supt|upt, xq| expp´ }x}2

2pct`εq
q : t P

r0, T s, x P R
du ă 8u

˘

which satisfies for all t P r0, T s, x P R
d that Er|gpx ` BWT´tq| `

şT

t
|fps, x` BWs´t, vps, x` BWs´tqq| dss ă 8 and

vpt, xq “ E

„

gpx` BWT´tq `
ż T

t

fps, x` BWs´t, vps, x` BWs´tqq ds


, (288)

and

(iii) we have for all t P r0, T s, x P Rd that upt, xq “ vpt, xq

(cf. Definition 2.7).

Proof of Corollary 3.11. Throughout this let Vε : r0, T s ˆ Rd Ñ p0,8q, ε P p0,8q, satisfy for all
ε P p0,8q, t P r0, T s, x P R

d that

Vεpt, xq “ 1

r2πpct`εqsd{2 exp

´

}x}2

2pct`εq

¯

(289)

and let Vε Ď Cpr0, T s ˆ Rd,Rq, ε P p0,8q, satisfy for all ε P p0,8q that

Vε “
#

u P Cpr0, T s ˆ R
d,Rq :

˜

lim sup
rÑ8

«

sup
tPr0,T s

sup
xPRd,}x}ąr

ˆ |upt, xq|
Vεpt, xq

˙

ff

“ 0

¸+

. (290)

Observe that the assumption that for all t P r0, T s, x P Rd we have that |fpt, x, 0q| ` |gpxq| ď
L exppa}x}2q ensures that for all ε P p0,8q, t P r0, T s, x P Rd we have that

|fpt, x, 0q| ` |gpxq|
Vεpt, xq ď L r2πpct` εqsd{2 exp

´

a}x}2 ´ }x}2

2pct`εq

¯

ď L r2πpcT ` εqsd{2 exp
´

`

a´ 1

2pct`εq

˘

}x}2
¯

ď L r2πpcT ` εqsd{2 exp
´

`

a´ 1
2pcT`εq

˘

}x}2
¯

.

(291)

Hence, we obtain that for all ε P p0, 1

2a
´ cT q we have that

lim sup
rÑ8

«

sup
tPr0,T s

sup
xPRd,}x}ąr

ˆ |fpt, x, 0q|
Vεpt, xq ` |gpxq|

VεpT, xq

˙

ff

ď 2L r2πpcT ` εqsd{2
„

lim sup
rÑ8

”

exp
´

`

a´ 1

2pcT`εq

˘

r2
¯ı



“ 0.

(292)

Moreover, note that (289) demonstrates that for all ε P p0,8q, t P r0, T s, x P Rd we have that

Vεpt, xq ě 1

r2πpcT`εqsd{2 exp
´

}x}2

2pcT`εq

¯

. (293)

Hence, we obtain for all ε P p0,8q that

lim inf
rÑ8

„

inf
tPr0,T s

inf
xPRd,}x}ąr

Vεpt, xq


“ 8. (294)

In addition, observe that Lemma 3.10 guarantees that for all ε P p0,8q, t P r0, T s, x P Rd we have
that

p B
Bt
Vεqpt, xq ` 1

2
Trace

`

BB˚pHessx Vεqpt, xq
˘

ď 0. (295)
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Combining this with (292), (294), and Item (i) in Theorem 3.7 (applied with O Ð Rd, µ Ð
pr0, T s ˆRd Q pt, xq ÞÑ 0 P Rdq, σ Ð pr0, T s ˆRd Q pt, xq ÞÑ B P Rdˆmq, V Ð Vε for ε P p0, 1

2a
´ cT q

in the notation of Theorem 3.7) proves that for every ε P p0, 1
2a

´cT q there exists a unique viscosity
solution Uε P Vε of

p B
Bt
Uεqpt, xq ` 1

2
Trace

`

BB˚pHessx Uεqpt, xq
˘

` fpt, x, Uεpt, xqq “ 0 (296)

with UεpT, xq “ gpxq for pt, xq P p0, T qˆRd. This, (290), and (293) ensure that for all ε P p0, 1
2a

´cT q
we have that

sup
tPr0,T s

sup
xPRd

»

–

|Uεpt, xq|
exp

´

}x}2

2ε

¯

fi

fl ď 1

r2πεsd{2
sup

tPr0,T s

sup
xPRd

„ |Uεpt, xq|
Vεpt, xq



ă 8. (297)

Moreover, observe that (289) yields for all t P r0, T s, x P R
d, δ, ε P p0,8q with δ ď ε that

Vεpt, xq
Vδpt, xq “

„

2πpct` δq
2πpct` εq

d{2

exp
´

}x}2
`

1

2pct`εq
´ 1

2pct`δq

˘

¯

ď
„

cT ` δ

ε

d{2

. (298)

This implies for all δ, ε P p0, 1

2a
´ cT q with δ ď ε that Vε Ď Vδ. Combining this with (296)

demonstrates that for all δ, ε P p0, 1
2a

´ cT q we have that Uε “ Uδ. This proves that there exists a
unique u P Cpr0, T s ˆ Rd,Rq which satisfies for all ε P p0, 1

2a
´ cT q, t P r0, T s, x P Rd that

upt, xq “ Uεpt, xq. (299)

Note that (296), (297), and (299) ensure that u P
`
Ť

bPRtu P Cpr0, T s ˆ Rd,Rq : supt |upt,xq|
exppb}x}2q

:

t P r0, T s, x P Rdu ă 8u
˘

is a viscosity solution of

p B
Bt
uqpt, xq ` 1

2
Trace

`

BB˚pHessx uqpt, xq
˘

` fpt, x, upt, xqq “ 0 (300)

with upT, xq “ gpxq for pt, xq P p0, T qˆRd. Next let v P
`
Ť

bPRtu P Cpr0, T sˆRd,Rq : supt |upt,xq|
exppb}x}2q

:

t P r0, T s, x P Rdu ă 8u
˘

be a viscosity solution of

p B
Bt
vqpt, xq ` 1

2
TracepBB˚pHessx vqpt, xqq ` fpt, x, vpt, xqq “ 0 (301)

with vpT, xq “ gpxq for pt, xq P p0, T q ˆ Rd, let b P p0,8q satisfy suptPr0,T s supxPRdp |vpt,xq|
exppb}x}2q

q ă 8,

and let T Ď r0, T s satisfy

T “ tt P r0, T s : v|rt,T sˆRd “ u|rt,T sˆRdu. (302)

Observe that (302) and the fact that for all x P Rd we have that upT, xq “ gpxq “ vpT, xq imply
that T P T . Moreover, note that the fact that u, v P Cpr0, T s ˆ Rd,Rq assures that T is closed.
In addition, observe that (289) and (302) ensure that for all t P r0, T s, s P r0,mintt, 1

4bc
us, x P Rd,

ε P p0, 1{4bq we have that

|vpmaxtt´ 1

4bc
,0u`s,xq|

Vεps,xq
“ r2πpcs` εqsd{2

”

|vpmaxtt´ 1

4bc
,0u`s,xq|

exppb}x}2q

ı

exp
´

pb ´ 1

2pcs`εq
q }x}2

¯

ď r2πpcT ` εqsd{2
”

|vpmaxtt´ 1

4bc
,0u`s,xq|

exppb}x}2q

ı

exp

´

pb´ 1

2ε`1{2b
q }x}2

¯

.
(303)

Hence, we obtain for all t P r0, T s, ε P p0, 1{4bq that

lim sup
rÑ8

«

sup
sPr0,mintt, 1

4bc
us

sup
xPRd,}x}ąr

´

|vpmaxtt´ 1

4bc
,0u`s,xq|

Vεps,xq

¯

ff

“ 0. (304)
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Item (i) in Theorem 3.7 (applied with T Ð mintt, 1
4bc

u, O Ð Rd, µ Ð pr0,mintt, 1
4bc

us ˆ Rd Q
ps, xq ÞÑ 0 P Rdq, σ Ð pr0,mintt, 1

4bc
us ˆRd Q ps, xq ÞÑ B P Rdˆmq, f Ð pr0,mintt, 1

4bc
us ˆRd ˆR Q

ps, x, vq ÞÑ fpmaxtt´ 1
4bc
, 0u ` s, x, vq P Rq, g Ð pRd Q x ÞÑ upt, xq P Rq, V Ð Vε for t P T X p0, T s,

ε P p0, 1

4b
qXp0, 1

2a
´cT q in the notation of Theorem 3.7), the fact that for all ε P p0, 1

2a
´cT q we have

that Uε “ u, and (296) therefore demonstrate that for all t P T Xp0, T s, ε P p0, 1

4b
qXp0, 1

2a
´cT q we

have that v|rmaxtt´ 1

4b
,0u,tsˆRd “ Uε|rmaxtt´ 1

4b
,0u,tsˆRd . This and (299) ensure that for all t P T X p0, T s

we have that v|rmaxtt´ 1

4b
,0u,tsˆRd “ u|rmaxtt´ 1

4b
,0u,tsˆRd . Hence, we obtain for all t P T X p0, T s that

rmaxtt´ 1

4b
, 0u, ts Ď T . This implies that T P tA Ď r0, T s : p@ a P A : D ε P p0,8q : pa´ ε, a` εq X

r0, T s Ď Aqu. Combining this with the fact that T is non-empty, the fact that T is closed, and
the fact that r0, T s is connected ensures that T “ r0, T s. This and (300) establish Item (i). Next
we prove Items (ii) and (iii). Observe that (289), (290), (292), (294), (295), (296), (299), and
Items (iii) and (iv) in Theorem 3.7 (applied with O Ð Rd, µ Ð pr0, T s ˆ Rd Q pt, xq ÞÑ 0 P Rdq,
σ Ð pr0, T sˆRd Q pt, xq ÞÑ B P Rdˆmq, V Ð Vε for ε P p0, 1

2a
´cT q in the notation of Theorem 3.7)

guarantee that for all t P r0, T s, x P R
d we have that

upt, xq “ E

„

gpx` BpWT ´ Wtqq `
ż T

t

fps, x` BpWs ´ Wtq, ups, x` BpWs ´ Wtqqq ds


. (305)

The assumption that W is a standard Brownian motion and Fubini’s theorem therefore ensure
that for all t P r0, T s, x P Rd we have that

upt, xq “ E

„

gpx` BWT´tq `
ż T

t

fps, x` BWs´t, ups, x` BWs´tqq ds


. (306)

Next let w P
`
Ť

εPp0,8qtu P Cpr0, T sˆRd,Rq : supt|upt, xq| expp´ }x}2

2pct`εq
q : t P r0, T s, x P Rdu ă 8u

˘

satisfy for all t P r0, T s, x P R
d that Er|gpx`BWT´tq|`

şT

t
|fps, x`BWs´t, wps, x`BWs´tqq| dss ă

8 and

wpt, xq “ E

„

gpx` BWT´tq `
ż T

t

fps, x` BWs´t, wps, x` BWs´tqq ds


(307)

and let η P p0,8q satisfy suptPr0,T s supxPRdp|wpt, xq| expp´ }x}2

2pct`ηq
qq ă 8. Observe that (298) demon-

strates that for all ε P p0, ηq X p0, 1

2a
´ cT q we have that w P Vε. Combining this, (306), and (307)

with the fact that W is a standard Brownian motion, the fact that for all ε P p0, 1
2a

´ cT q we have
that u P Vε, and Item (iii) in Theorem 3.7 proves that u “ w. This establishes Items (ii) and (iii).
This completes the proof of Corollary 3.11.
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