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Abstract

Recently, several variants of deep learning based approximation methods for partial differential
equations (PDEs) have been proposed and a number of very encouraging numerical simulations have
indicated the potential of such approximation methods to overcome the curse of dimensionality in the
numerical approximation of high-dimensional PDEs. Nonetheless, there is as yet no comprehensive
mathematical theory which explains why these methods seem to overcome the curse of dimensionality.
However, there are now several partial results available in the scientific literature which rigorously
prove that deep neural network (DNN) approximations indeed overcome the curse of dimensionality
in the approximation of PDEs in the sense that the number of real parameters used to describe the
approximating DNNs grows at most polynomially in both the PDE dimension d ∈ N = {1, 2, 3, . . . }
and the reciprocal 1/ε of the prescribed approximation accuracy ε ∈ (0,∞). In the case of nonlinear
PDEs these prior works study DNN approximations for solutions of PDEs only at the time of maturity
T ∈ (0,∞) and it remained an open question whether DNN approximations can also approximate
entire solutions of nonlinear PDEs on the space-time region [0, T ] × Rd without the curse of dimen-
sionality. It is precisely the subject of this article to overcome this obstacle. In particular, the main
result of this article shows that for all a ∈ R, b ∈ [a,∞) it holds that DNNs can approximate solutions
of PDEs with Lipschitz nonlinearities on the space-time region [0, T ] × [a, b]d without the curse of
dimensionality.
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1 Introduction
Recently, several variants of deep learning based approximation methods for partial differential equations
(PDEs) have been proposed and a number of very encouraging numerical simulations have indicated
the potential of such approximation methods to overcome the curse of dimensionality in the numerical
approximation of high-dimensional PDEs (cf., e.g., [1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 13, 14, 16, 21, 22, 23, 25, 27, 30,
31, 32, 33, 34, 35, 37]). There is as yet no comprehensive mathematical theory which explains why these
methods seem to overcome the curse of dimensionality. However, there are now several partial results
available in the scientific literature which rigorously prove that deep neural network (DNN) approximations
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indeed overcome the curse of dimensionality in the approximation of PDEs in the sense that the number
of real parameters used to describe the approximating DNNs grows at most polynomially in both the
PDE dimension d ∈ N = {1, 2, 3, . . . } and the reciprocal 1/ε of the prescribed approximation accuracy
ε ∈ (0,∞); cf., e.g., [?, 7, 12, 15, 17, 18, 20, 24, 26, 28, 29, 36]. The articles [7, 12, 15, 17, 18, 20, 24, 28, 29,
36] study DNN approximations for linear PDEs and the articles [?, 26] study DNN approximations for
nonlinear PDEs. Except for the articles [19, 24] in the case of linear PDEs, all of the above articles
study DNN approximations for solutions of PDEs at the time of maturity T ∈ (0,∞) but do not provide
approximations for the entire PDE solution on [0, T ]×Rd and it remained an open question whether DNN
approximations can also approximate solutions of nonlinear PDEs on the space-time region [0, T ] × Rd

without the curse of dimensionality.
It is precisely the subject of this article to overcome this obstacle and to prove that DNNs have the

power to approximate solutions of certain nonlinear PDEs on the entire space-time region [0, T ] × Rd

without the curse of dimensionality. In particular, the main result of this article, ?? in ?? below, shows
that for all a ∈ R, b ∈ [a,∞) it holds that DNNs can approximate solutions of PDEs with Lipschitz
nonlinearities on the space-time region [0, T ]× [a, b]d without the curse of dimensionality. In order to lay
out the findings of this work in more detail, we present in Theorem 1.1 below a special case of ?? in ??
below.

Theorem 1.1. Let A : (
⋃
d∈N Rd) → (

⋃
d∈N Rd) and ‖·‖ : (

⋃
d∈N Rd) → [0,∞) satisfy for all d ∈ N, x =

(x1, x2, . . . , xd) ∈ Rd that A(x) = (max{x1, 0},max{x2, 0}, . . . ,max{xd, 0}) and ‖x‖ = [
∑d

k=1(xk)
2]1/2, let

N =
⋃
L∈N

⋃
l0,l1,...,lL∈N(

�L
k=1(Rlk×lk−1 × Rlk)), let R : N → (

⋃
k,l∈NC(Rk,Rl)) and P : N → N satisfy for

all L ∈ N, l0, l1, . . . , lL ∈ N, Φ = ((W1, B1), (W2, B2), . . . , (WL, BL)) ∈ (
�L

k=1(Rlk×lk−1 × Rlk)), x0 ∈ Rl0,
x1 ∈ Rl1, . . . , xL ∈ RlL with ∀ k ∈ {1, 2, . . . , L − 1} : xk = A(Wkxk−1 + Bk) that R(Φ) ∈ C(Rl0 ,RlL),
(R(Φ))(x0) = WLxL−1 +BL, and P(Φ) =

∑L
k=1 lk(lk−1 +1), let T, κ, p ∈ (0,∞), (gd,ε)(d,ε)∈(N×(0,1]) ⊆ N, let

f : R→ R be Lipschitz continuous, let ud ∈ C1,2([0, T ]×Rd,R), d ∈ N, and assume for all d ∈ N, x ∈ Rd,
ε ∈ (0, 1], t ∈ [0, T ] that R(gd,ε) ∈ C(Rd,R), ε‖(∇xud)(0, x)‖ + ε|ud(t, x)| + |ud(0, x) − (R(gd,ε))(x)| ≤
εκdκ(1 + ‖x‖κ), P(gd,ε) ≤ κdκε−κ, and

( ∂
∂t
ud)(t, x) = (∆xud)(t, x) + f(ud(t, x)). (1.1)

Then there exist (ud,ε)(d,ε)∈N×(0,1] ⊆ N and c ∈ R such that for all d ∈ N, ε ∈ (0, 1] it holds that
R(ud,ε) ∈ C(Rd+1,R), P(ud,ε) ≤ cdcε−c, and[∫

[0,T ]×[0,1]d
|ud(y)− (R(ud,ε))(y)|p dy

]1/p

≤ ε. (1.2)

Theorem 1.1 is an immediate consequence of ?? in ?? below. ??, in turn, follows from ?? which
is the main result of this article (see ?? below for details). In the following we provide some explana-
tory comments concerning the mathematical objects appearing in Theorem 1.1 above. The function
A : (

⋃
d∈N Rd)→ (

⋃
d∈N Rd) in Theorem 1.1 above describes the multidimensional rectifier functions which

we employ as activation functions in the approximating DNNs in Theorem 1.1 above. The function
‖·‖ : (

⋃
d∈N Rd) → [0,∞) describes the standard norms on Rd, d ∈ N, in the sense that for all d ∈ N

it holds that ‖·‖ : (
⋃
d∈N Rd) → [0,∞) restricted to Rd is nothing but the standard norm on Rd. The

set N =
⋃
L∈N

⋃
l0,l1,...,lL∈N(

�L
k=1(Rlk×lk−1 × Rlk)) in Theorem 1.1 above represents the set of all neural

networks which we employ to approximate the solutions of the PDEs under consideration. The function
R : N→ (

⋃
k,l∈NC(Rk,Rl)) in Theorem 1.1 above assigns to each neural network its realization function.

More specifically, we observe that for every neural network Φ ∈ N it holds that R(Φ) ∈ (
⋃
k,l∈NC(Rk,Rl))

is the realization function of the neural network Φ with the activation functions being multidimensional
versions of the rectifier function provided by A : (

⋃
d∈NRd)→ (

⋃
d∈N Rd). The function P : N→ N counts

for every neural network Φ ∈ N the number of real parameters employed in Φ. More formally, we note that
for every neural network Φ ∈ N it holds that P(Φ) ∈ N is the number of real numbers used to describe
the neural network Φ. Furthermore, we observe that P(Φ) corresponds to the amount of memory that is
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needed on a computer to store the neural network Φ ∈ N. The real number T ∈ (0,∞) in Theorem 1.1
above specifies the time horizon of the PDEs (see (1.1)) whose solutions we intend to approximate by
DNNs in (1.2) in Theorem 1.1 above. The real number κ ∈ (0,∞) in Theorem 1.1 above is a constant
which we employ to formulate our regularity and approximation hypotheses in Theorem 1.1. The real
number p ∈ (0,∞) in Theorem 1.1 above is used to specify the way we measure the error between the exact
solutions of the PDEs under consideration and their DNN approximations, that is, we measure the error
between the exact solutions of the PDEs under consideration and their DNN approximations in the Lp-
sense (see (1.2) above for details). In Theorem 1.1 we assume that the initial conditions of the PDEs (see
(1.1)) whose solutions we intend to approximate by DNNs without the curse of dimensionality can be ap-
proximated by DNNs without the curse of dimensionality. The neural networks (gd,ε)(d,ε)∈N×(0,1] ⊆ N serve
as such approximating DNNs for the initial conditions of the PDEs (see (1.1)) whose solutions we intend
to approximate. In particular, we note that the hypothesis that for all d ∈ N, x ∈ Rd, ε ∈ (0, 1], t ∈ [0, T ]
it holds that ε‖(∇xud)(0, x)‖ + ε|ud(t, x)| + |ud(0, x) − (R(gd,ε))(x)| ≤ εκdκ(1 + ‖x‖κ) in Theorem 1.1
above ensures that for all d ∈ N, x ∈ Rd it holds that (R(gd,ε))(x) converges to ud(0, x) as ε converges to
0. The function f : R→ R in Theorem 1.1 above specifies the nonlinearity in the PDEs (see (1.1)) whose
solutions we intend to approximate by DNNs in Theorem 1.1. The functions ud : [0, T ]×Rd → R, d ∈ N,
in Theorem 1.1 above describe the exact solutions of the PDEs in (1.1). Theorem 1.1 establishes that
there exist neural networks ud,ε ∈ N, (d, ε) ∈ N × (0, 1], such that for all d ∈ N, ε ∈ (0, 1] it holds that
the Lp-distance between the exact solution ud : [0, T ] × Rd → R of the PDE in (1.1) and the realization
R(ud,ε) : Rd+1 → R of the neural network ud,ε with respect to the Lebesgue measure on the space-time
region [0, T ] × [0, 1]d is bounded by ε and such that the number of parameters of the neural networks
ud,ε ∈ N, (d, ε) ∈ N × (0, 1], grows at most polynomially in both the PDE dimension d ∈ N and the
reciprocal 1/ε of the prescribed approximation accuracy ε ∈ (0, 1]. Theorem 1.1 is restricted to measuring
the Lp-distance with respect to the Lebesgue measure on [0, T ] × [0, 1]d but our more general DNN ap-
proximation results in ?? below (see ?? and ?? in ??) allow measuring the Lp-distance with respect to
more general probability measures on [0, T ] × Rd. In particular, for all a ∈ R, b ∈ (a,∞) we have that
the more general DNN approximation results in ?? below allow measuring the Lp-distance with respect
to the uniform distribution on [0, T ]× [a, b]d.

The rest of this article is structured in the following way:

2 Properties of solutions of partial differential equations (PDEs)
A comment from Josh: Should I refer to the equations as “stochastic fixed point equations”,
rather than PDEs?

2.1 An a priori bound for solutions of PDEs

A comment from Josh: This is new...

Definition 2.1 (The Euclidean norm). We denote by ‖·‖ : (
⋃
d∈N Rd)→ [0,∞) the function which satisfies

for all d ∈ N, x = (x1, x2, . . . , xd) ∈ Rd that ‖x‖ = [
∑d

i=1 |xi|2]1/2.

A comment from Josh: This is new...
Note: The result can be cited from the paper with Nguyen, if we want...

Lemma 2.2. Let d ∈ N, T, L, C ∈ (0,∞), p, q ∈ [1,∞), let f ∈ C([0, T ]× Rd × R,R) and g ∈ C(Rd,R)
satisfy for all t ∈ [0, T ], x ∈ Rd, v, w ∈ R that |f(t, x, v)−f(t, x, w)| ≤ L|v−w| and |g(x)| ≤ C(1+‖x‖)p, let
(Ω,F ,P) be a probability space, let W : [0, T ]×Ω→ Rd be a standard Brownian motion, let u ∈ C([0, T ]×
Rd,R) satisfy for all t ∈ [0, T ], x ∈ Rd that E[|g(x+WT−t)|+

∫ T
t
|f(s, x+Ws−t, u(s, x+Ws−t))| ds] <∞

and

u(t, x) = E[g(x+ WT−t)] +

∫ T

t

E[f(s, x+ Ws−t, u(s, x+ Ws−t))] ds (2.1)
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(cf. Definition 2.1). Then it holds for all x ∈ Rd that

sup
t∈[0,T ]

(
E
[∣∣u(t, x+ Wt)

∣∣q])1/q

≤ eLT (T + 1)C

[
sup
t∈[0,T ]

(
E
[(

1 + ‖x+ Wt‖
)pq])1/q

]
. (2.2)

Proof of Lemma 2.2. Throughout this proof let µt : B(Rd)→ [0, 1], t ∈ [0, T ] be the probability measures
which satisfy for all t ∈ [0, T ], B ∈ B(Rd) that

µt(B) = P(x+ Wt ∈ B). (2.3)

The integral transformation theorem, (2.1), and the triangle inequality show for all t ∈ [0, T ] that(
E
[
|u(t, x+ Wt)|q

])1/q

=

(∫
Rd
|u(t, z)|q µt(dz)

)1/q

=

(∫
Rd

∣∣∣∣E[g(z + WT−t) +

∫ T

t

f(s, z + Ws−t, u(s, z + Ws−t)) ds

]∣∣∣∣q µt(dz)

)1/q

≤
(∫

Rd

∣∣E[g(z + WT−t)
]∣∣q µt(dz)

)1/q

+

∫ T

t

(∫
Rd

∣∣E[f(s, z + Ws−t, u(s, z + Ws−t))
]∣∣q µt(dz)

)1/q

ds.

(2.4)

Next, Jensen’s inequality, Fubini’s theorem, (2.3), the fact that W has independent and stationary in-
crements, and the fact that for all x ∈ Rd it holds that |g(x)| ≤ C(1 + ‖x‖p) demonstrate that for all
t ∈ [0, T ] it holds that∫

Rd

∣∣E[g(z + WT−t)
]∣∣q µt(dz) ≤

∫
Rd

E
[
|g(z + WT −Wt)|q

]
µt(dz)

= E
[
|g(x+ Wt + WT −Wt)|q

]
= E

[
|g(x+ WT )|q

]
≤ E

[
Cq
(

1 + ‖x+ WT‖
)pq]

.

(2.5)

Furthermore, Jensen’s inequality, Fubini’s theorem, (2.3), the fact that W has independent and stationary
increments, the triangle inequality, the fact that for all t ∈ [0, T ], x ∈ Rd, v, w ∈ R that |f(t, x, v) −
f(t, x, w)| ≤ L|v−w|, and the fact that for all x ∈ Rd it holds that |g(x)| ≤ C(1 + ‖x‖p) demonstrate for
all t ∈ [0, T ] that∫ T

t

(∫
Rd

∣∣E[f(s, z + Ws−t, u(s, z + Ws−t))
]∣∣q µt(dz)

)1/q

ds

≤
∫ T

t

(
E
[∣∣f(s, z + Ws, u(s, z + Ws))

∣∣q])1/q

ds

≤
∫ T

t

(
E
[
|f(s, x+ Ws, 0)|q

])1/q

ds

+

∫ T

t

(
E
[
|f(s, z + Ws, u(s, z + Ws))− f(s, x+ Ws, 0)|q

])1/q

ds

≤ T sup
s∈[0,T ]

(
E
[
Cq
(

1 + ‖x+ Ws‖
)pq])1/q

+

∫ T

t

(
E
[
Lq |u(s, x+ Ws)|q

])1/q

ds.

(2.6)
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Combining this with (2.4) and (2.5) implies that for all t ∈ [0, T ] it holds that(
E
[∣∣u(t, x+ Wt)

∣∣q])1/q

≤ (T + 1)C sup
s∈[0,T ]

(
E
[(

1 + ‖x+ Ws‖
)pq])1/q

+ L

∫ T

t

(
E
[
|u(s, x+ Ws)|q

])1/q

ds.

(2.7)

Next, A comment from Josh: Add citation... shows that

sup
s∈[0,T ]

sup
y∈Rd

|u(s, y)|
(1 + ‖y‖)p

≤ sup
s∈[0,T ]

sup
y∈Rd

|u(s, y)|
1 + ‖y‖p

<∞. (2.8)

This, the triangle inequality, and the fact that E[‖WT‖pq] <∞ show that∫ T

0

(
E
[
|u(s, x+ Ws)|q

])1/q

ds ≤

[
sup
s∈[0,T ]

sup
y∈Rd

|u(s, y)|
(1 + ‖y‖)p

]∫ T

0

(
E
[(

1 + ‖x+ Ws‖
)pq])1/q

ds

≤

[
sup
s∈[0,T ]

sup
y∈Rd

|u(s, y)|
(1 + ‖y‖)p

]
T

(
1 + ‖x‖+

(
E
[
‖WT‖pq

])1/(pq)
)p

<∞.

(2.9)

This, Gronwall’s integral inequality, and (2.7) establish for all t ∈ [0, T ] that(
E
[
|u(t, x+ Wt)|q

])1/q

≤ eLT (T + 1)C sup
s∈[0,T ]

(
E
[(

1 + ‖x+ Ws‖
)pq])1/q

. (2.10)

The proof of Lemma 2.2 is thus completed.

2.2 Stability properties for solutions of PDEs

A comment from Josh: This is new...

Lemma 2.3. Let d ∈ N, T, L, C,B ∈ (0,∞), p, q ∈ [1,∞), let f1, f2 ∈ C([0, T ] × Rd × R,R) and
g1, g2 ∈ C(Rd,R) satisfy for all t ∈ [0, T ], x ∈ Rd, v, w ∈ R, i ∈ {1, 2} that |fi(t, x, v) − fi(t, x, w)| ≤
L|v−w|, |gi(x)| ≤ C(1 + ‖x‖)p, and max{|f1(t, x, v)− f2(t, x, v)|, |g1(x)− g2(x)|} ≤ B((1 + ‖x‖)pq + |v|q),
let (Ω,F ,P) be a probability space, let W : [0, T ] × Ω → Rd be a standard Brownian motion, and let
u1, u2 ∈ C([0, T ]×Rd,R) satisfy for all t ∈ [0, T ], x ∈ Rd, i ∈ {1, 2} that E[|gi(x+ WT−t)|+

∫ T
t
|fi(s, x+

Ws−t, ui(s, x+ Ws−t))| ds] <∞ and

ui(t, x) = E[gi(x+ WT−t)] +

∫ T

t

E[fi(s, x+ Ws−t, ui(s, x+ Ws−t))] ds (2.11)

(cf. Definition 2.1). Then it holds for all t ∈ [0, T ], x ∈ Rd that

E
[∣∣u1(t, x+ Wt)− u2(t, x+ Wt)

∣∣] ≤ B
(
eLT (T + 1)

)q+1(
Cq + 1

) [
sup
s∈[0,T ]

E
[(

1 + ‖x+ Ws‖
)pq]]

. (2.12)

Proof of Lemma 2.3. First, (2.11), the triangle inequality, and the fact that W has stationary increments
show for all t ∈ [0, T ], x ∈ Rd that

|u1(t, x)− u2(t, x)|

≤ E
[∣∣g1(x+ WT−t)− g2(x+ WT−t)

∣∣]
+

∫ T

t

E
[
|f1(s, x+ Ws−t, u1(s, x+ Ws−t))− f1(s, x+ Ws−t, u2(s, x+ Ws−t))|

]
ds

+

∫ T

t

E
[
|f1(s, x+ Ws−t, u2(s, x+ Ws−t))− f2(s, x+ Ws−t, u2(s, x+ Ws−t))|

]
ds.

(2.13)
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This, Fubini’s theorem, the fact that W has independent increments, and the fact that for all t ∈ [0, T ],
x ∈ Rd, v, w ∈ R, i ∈ {1, 2} that |fi(t, x, v)− fi(t, x, w)| ≤ L|v − w| ensure that for all t ∈ [0, T ], x ∈ Rd

it holds that

E
[∣∣u1(t, x+ Wt)− u2(t, x+ Wt)

∣∣]
≤ E

[∣∣g1(x+ WT )− g2(x+ WT )
∣∣]

+

∫ T

t

E
[
|f1(s, x+ Ws, u1(s, x+ Ws))− f1(s, x+ Ws, u2(s, x+ Ws))|

]
ds

+

∫ T

t

E
[
|f1(s, x+ Ws, u2(s, x+ Ws))− f2(s, x+ Ws, u2(s, x+ Ws))|

]
ds

≤ E
[∣∣g1(x+ WT )− g2(x+ WT )

∣∣]
+ L

∫ T

t

E
[
|u1(s, x+ Ws)− u2(s, x+ Ws)|

]
ds

+ T sup
s∈[0,T ]

E
[
|f1(s, x+ Ws, u2(s, x+ Ws))− f2(s, x+ Ws, u2(s, x+ Ws))|

]
.

(2.14)

This, Gronwall’s lemma, and Lemma 2.2 yield for all x ∈ Rd that

sup
s∈[0,T ]

E
[∣∣u1(s, x+ Ws)− u2(s, x+ Ws)

∣∣]
≤ eLT

(
E
[∣∣g1(x+ WT )− g2(x+ WT )

∣∣]
+T sup

s∈[0,T ]

E
[
|f1(s, x+ Ws, u2(s, x+ Ws))− f2(s, x+ Ws, u2(s, x+ Ws))|

])
.

(2.15)

Furthermore, the fact that for all t ∈ [0, T ], x ∈ Rd, v ∈ R, i ∈ {1, 2} it holds that max{|f1(t, x, v) −
f2(t, x, v)|, |g1(x) − g2(x)|} ≤ B((1 + ‖x‖)pq + |v|q), the triangle inequality, and Lemma 2.2 imply for all
x ∈ Rd that

E
[∣∣g1(x+ WT )− g2(x+ WT )

∣∣]
+ T sup

s∈[0,T ]

E
[
|f1(s, x+ Ws, u2(s, x+ Ws))− f2(s, x+ Ws, u2(s, x+ Ws))|

]
≤ B sup

s∈[0,T ]

E
[(

1 + ‖x+ Ws‖
)pq]

+BT sup
s∈[0,T ]

E
[
|u2(x+ Ws)|q

]
.

≤ B sup
s∈[0,T ]

E
[(

1 + ‖x+ Ws‖
)pq]

+BT (eLT (T + 1)C)q sup
s∈[0,T ]

E
[(

1 + ‖x+ Ws‖
)pq]

≤ B(T + 1)
(
eLT (T + 1)

)q
(Cq + 1) sup

s∈[0,T ]

E
[(

1 + ‖x+ Ws‖
)pq]

.

(2.16)

This, (2.15), and the triangle inequality yield that

sup
s∈[0,T ]

E
[∣∣u1(s, x+ Ws)− u2(s, x+ Ws)

∣∣]
≤ B

(
eLT (T + 1)

)q+1
(Cq + 1) sup

s∈[0,T ]

E
[(

1 + ‖x+ Ws‖
)pq]

.
(2.17)

The proof of Lemma 2.3 is thus completed.
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A comment from Josh: This is new...

Corollary 2.4. Let d ∈ N, T, L, C,B ∈ (0,∞), p, q ∈ [1,∞), let f1, f2 ∈ C([0, T ] × Rd × R,R) and
g1, g2 ∈ C(Rd,R) satisfy for all t ∈ [0, T ], x ∈ Rd, v, w ∈ R, i ∈ {1, 2} that |fi(t, x, v) − fi(t, x, w)| ≤
L|v−w|, |gi(x)| ≤ C(1 + ‖x‖)p, and max{|f1(t, x, v)− f2(t, x, v)|, |g1(x)− g2(x)|} ≤ B((1 + ‖x‖)pq + |v|q),
let (Ω,F ,P) be a probability space, let W : [0, T ] × Ω → Rd be a standard Brownian motion, and let
u1, u2 ∈ C([0, T ]×Rd,R) satisfy for all t ∈ [0, T ], x ∈ Rd, i ∈ {1, 2} that E[|gi(x+ WT−t)|+

∫ T
t
|fi(s, x+

Ws−t, ui(s, x+ Ws−t))| ds] <∞ and

ui(t, x) = E[gi(x+ WT−t)] +

∫ T

t

E[fi(s, x+ Ws−t, ui(s, x+ Ws−t))] ds (2.18)

(cf. Definition 2.1). Then it holds for all t ∈ [0, T ], x ∈ Rd that

∣∣u1(t, x)− u2(t, x)
∣∣ ≤ B

(
eLT (T + 1)

)q+1(
Cq + 1

) [
sup
s∈[0,T ]

E
[(

1 + ‖x+ Ws‖
)pq]]

. (2.19)

Note: Finish updating this proof...

Proof of Corollary 2.4. Throughout this proof let Vi,t : [0, T − t]×Rd → R, t ∈ [0, T ], and Fi,t : [0, T − t]×
Rd × R,R), t ∈ [0, T ], be the functions which satisfy for all t ∈ [0, T − t], x ∈ Rd, v ∈ R, i ∈ {1, 2} that
Vi,t(t, x) = ui(t + t, x) and Fi,t(t, x, v) = fi(t + t, x, v). Note that (2.18) and A comment from Josh:
Add reference/reason... ensure for all t ∈ [0, T − t], x ∈ Rd, i ∈ {1, 2} it holds that

Vi,t(t, x) = ui(t+ t, x)

= E[gi(x+ WT−(t+t))] +

∫ T

(t+t)

E[fi(s, x+ Ws−(t+t), ui(s, x+ Ws−(t+t)))] ds

= E[gi(x+ W(T−t)−t)] +

∫ (T−t)

t

E[fi(s+ t, x+ Ws−t, ui(s+ t, x+ Ws−t))] ds

= E[gi(x+ W(T−t)−t)] +

∫ (T−t)

t

E[Fi,t(s, x+ Ws−t, Vi,t(s, x+ Ws−t))] ds

(2.20)

and

E

[
|gi(x+ W(T−t)−t)|+

∫ (T−t)

t

|Fi,t(s, x+ Ws−t, Vi,t(s, x+ Ws−t))| ds

]

= E
[
|gi(x+ WT−(t+t))|+

∫ T

(t+t)

|fi(s, x+ Ws−(t+t), ui(s, x+ Ws−(t+t)))| ds
]
<∞.

(2.21)

Further note that for all t ∈ [0, T − t], x ∈ Rd, v, w ∈ R i ∈ {1, 2} it holds that

|Fi,t(t, x, v)− Fi,t(t, x, w)| = |fi(t+ t, x, v)− fi(t+ t, x, w)| ≤ L|v − w| (2.22)

and
|F1,t(t, x, v)− F2,t(t, x, v)| = |f1(t+ t, x, v)− f(t+ t, x, v)| ≤ B(1 + |v|q). (2.23)

In addition, note that the hypothesis that u1, u2 ∈ C([0, T ]×Rd,R) ensures that for all t ∈ [0, T ] it holds
that V1,t, V2,t ∈ C([0, T − t] × Rd,R). Combining this, (2.20), (2.21), (2.22), and (2.23) with Lemma 2.3
(with u1 = V1,t, u2 = V2,t, f1 = F1,t, f2 = F2,t, g1 = g1, g2 = g2, T = T − t in the notation of Lemma 2.3)
demonstrates for every t ∈ [0, T ], t ∈ [0, T − t], x ∈ Rd that

E
[∣∣V1,t(t, x+ Wt)− V2,t(t, x+ Wt)

∣∣] ≤ B
(
eLT (T+1)

)q+1(
Cq+1

) [
sup
s∈[0,T ]

E
[(

1 + ‖x+ Ws‖
)pq]]

. (2.24)
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This implies for all t ∈ [0, T ] that

E
[∣∣V1,t(0, x+ W0)− V2,t(0, x+ W0)

∣∣] = E
[∣∣u1(t, x)− u2(t, x)

∣∣] = |u1(t, x)− u2(t, x)|

≤ B
(
eLT (T + 1)

)q+1(
Cq + 1

) [
sup
s∈[0,T ]

E
[(

1 + ‖x+ Ws‖
)pq]]

.
(2.25)

The proof of Corollary 2.4 is thus completed.

2.3 Temporal regularity properties for solutions of PDEs

A comment from Josh: This is new...

Lemma 2.5. Let d ∈ N, C ∈ (0,∞), p ∈ [1,∞), let g ∈ C1(Rd,R) satisfy for all x ∈ Rd that ‖(∇g)(x)‖ ≤
C(1 + ‖x‖)p, let (Ω,F ,P) be a probability space, and let W : [0, T ] × Ω → Rd be a standard Brownian
motion (cf. Definition 2.1). Then it holds for all t, t ∈ [0, T ], x ∈ Rd that

E
[∣∣g(x+ Wt)− g(x+ Wt)

∣∣] ≤ C|t− t|1/2 (d+ 2)
1/2

[
sup
s∈[0,T ]

E
[(

1 + ‖x+ Ws‖
)p]]

. (2.26)

A comment from Josh: Double-check this proof...

Proof of Lemma 2.5. Note that the fact that for all x ∈ Rd it holds that ‖(∇g)(x)‖ ≤ C(1 + ‖x‖)p, the
fundamental theorem of calculus, the Cauchy-Schwarz inequality, and the fact that W has independent
increments assure for all t, t ∈ [0, T ], x ∈ Rd it holds that

E
[∣∣g(x+ Wt)− g(x+ Wt)

∣∣] ≤ E

[(
sup
s∈[0,T ]

‖(∇g)(x+ Ws)‖

)∥∥W|x−t|
∥∥]

≤ E

[
sup
s∈[0,T ]

C (1 + ‖x+ Ws‖)p
]
E
[∥∥W|x−t|

∥∥]
≤ C

[
sup
s∈[0,T ]

E
[(

1 + ‖x+ Ws‖
)p]]E[∥∥W|x−t|

∥∥] .
(2.27)

Note that the fact that for all t, t ∈ [0, T ] the random variable ‖W|x−t|/√|t−t|‖2 is chi-squared distributed
with d degrees of freedom and Jenson’s inequality imply that for all t, t ∈ [0, T ] it holds that

∣∣E[‖W|x−t|‖
]∣∣2 ≤ E

[
‖W|x−t|‖2

]
= 2|t−t|

[
Γ
(
d
2

+ 2
)

Γ
(
d
2

) ]1/2

= 2|t−t|

[
1∏
j=0

(
d

2
+ j

)]1/2

≤ |t−t|(d+2). (2.28)

Combining (2.27) and (2.28) then yields the desired result. The proof of Lemma 2.5 is thus completed.

A comment from Josh: This is new...
Note: I had to add an additional regularity assumption to f ...

Lemma 2.6. Let d ∈ N, T, L, C ∈ (0,∞), p ∈ [1,∞), let f ∈ C([0, T ] × Rd × R,R) and g ∈ C1(Rd,R)
satisfy for all s, t ∈ [0, T ], x ∈ Rd, v, w ∈ R that |f(s, x, v) − f(t, x, w)| ≤ L(|s − t| + |v − w|) and
max{|f(t, x, 0)|, ‖(∇g)(x)‖} ≤ C(1 + ‖x‖)p, let (Ω,F ,P) be a probability space, let W : [0, T ] × Ω → Rd

be a standard Brownian motion, and let u ∈ C([0, T ] × Rd,R) satisfy for all t ∈ [0, T ], x ∈ Rd that
E[|g(x+ WT−t)|+

∫ T
t
|f(s, x+ Ws−t, u(s, x+ Ws−t))| ds] <∞ and

u(t, x) = E[g(x+ WT−t)] +

∫ T

t

E[f(s, x+ Ws−t, u(s, x+ Ws−t))] ds (2.29)
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(cf. Definition 2.1). Then it holds for all t, t ∈ [0, T ], x ∈ Rd that

E
[
|u(t, x+ Wt)− u(t, x+ Wt)|

]
≤
√
|t− t|

(
eLT

[
C
(

1 + (d+ 2)
1/2
)

+ L
(
T + CeLT

)
(T + 1)

] [
sup
s∈[0,T ]

E
[
(1 + ‖x+ Ws‖)p

]])
.

(2.30)

A comment from Josh: I should probably clean up this bound (above)...

Note: Double-check proof...

Proof of Lemma 2.6. Throughout this proof let δ = t − t. Without loss of generality, assume that t ≤ t.
First, (2.29), the triangle inequality, and the fact that W has stationary increments show for all t, t ∈ [0, T ],
x ∈ Rd that

E
[∣∣u(t, x)− u(t, x)

∣∣] = E
[∣∣u(t+ δ, x)− u(t, x)

∣∣]
= E

[∣∣∣∣E[g(x+ WT−(t+δ)

)
− g(x+ WT−t)

]
+

∫ T

t+δ

E
[
f(s, x+ Ws−(t+δ), u(s, x+ Ws−(t+δ))

]
ds−

∫ T

t

E
[
f(s, x+ Ws−t, u(s, x+ Ws−t)

]
ds

∣∣∣∣]
= E

[∣∣∣∣E[g(x+ WT−(t+δ)

)
− g(x+ WT−t)

]
+

∫ T−δ

t

E
[
f(s+ δ, x+ Ws−t, u(s+ δ, x+ Ws−t)

]
ds−

∫ T

t

E
[
f(s, x+ Ws−t, u(s, x+ Ws−t)

]
ds

∣∣∣∣]
≤ E

[∣∣g(x+ WT−(t+δ)

)
− g(x+ WT−t)

∣∣]
+

∫ T−δ

t

E
[∣∣f(s, x+ Ws−t, u(s+ δ, x+ Ws−t)− f(s, x+ Ws−t, u(s, x+ Ws−t)

∣∣] ds
+

∫ T−δ

t

E
[∣∣f(s+ δ, x+ Ws−t, u(s+ δ, x+ Ws−t)− f(s, x+ Ws−t, u(s+ δ, x+ Ws−t)

∣∣] ds
+

∫ T

T−δ
E
[∣∣f(s, x+ Ws−t, u(s, x+ Ws−t)

∣∣] ds.
(2.31)

This, Fubini’s theorem, the fact that W has independent increments, and the fact that for all s, t ∈ [0, T ],
x ∈ Rd, v, w ∈ R that |f(s, x, v)− f(t, x, w)| ≤ L(|s− t|+ |v − w|) ensure that for all t, t ∈ [0, T ], x ∈ Rd

it holds that

E
[∣∣u(t+ δ, x+ Wt)− u(t, x+ Wt)

∣∣]
≤ E

[∣∣g(x+ WT−δ)− g(x+ WT )
∣∣]

+

∫ T−δ

t

E
[∣∣f(s, x+ Ws, u(s+ δ, x+ Ws)− f(s, x+ Ws, u(s, x+ Ws)

∣∣] ds
+

∫ T−δ

t

E
[∣∣f(s+ δ, x+ Ws, u(s+ δ, x+ Ws)− f(s, x+ Ws, u(s, x+ Ws)

∣∣] ds
+

∫ T

T−δ
E
[∣∣f(s, x+ Ws, u(s, x+ Ws)

∣∣] ds
≤ E

[∣∣g(x+ WT−δ)− g(x+ WT )
∣∣]+ L

∫ T−δ

t

E
[∣∣u(s+ δ, x+ Ws)− u(s, x+ Ws)

∣∣] ds
+ δLT + δ sup

s∈[0,T ]

E
[∣∣f(s, x+ Ws, u(s, x+ Ws)

∣∣] .

(2.32)
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This, Gronwall’s lemma, and Lemma 2.2 yield for all x ∈ Rd that

sup
t∈[0,T−δ]

E
[∣∣u(t+ δ, x+ Wt)− u(t, x+ Wt)

∣∣]
≤ eLT

(
E
[ ∣∣g(x+ WT−δ)− g(x+ WT )

∣∣]+ δLT

+δ sup
s∈[0,T ]

E
[∣∣f(s, x+ Ws, u(s, x+ Ws)

∣∣]) .
(2.33)

Note that Lemma 2.2, the fact that for all s, t ∈ [0, T ], x ∈ Rd, v, w ∈ R that |f(s, x, v) − f(t, x, w)| ≤
L(|s − t| + |v − w|), and the fact that for all t ∈ [0, T ], x ∈ Rd that |f(t, x, 0)| ≤ C(1 + ‖x‖)p, and the
triangle inequality assure that for all s ∈ [0, T ] it holds that

E
[∣∣f(s, x+ Ws, u(s, x+ Ws)

∣∣]
≤ E

[∣∣f(s, x+ Ws, u(s, x+ Ws)− f(s, x+ Ws, 0)
∣∣]+ E

[∣∣f(s, x+ Ws, 0)
∣∣]

≤ L
(
E
[
|u(s, x+ Ws)|

])
+ C

(
E
[
(1 + ‖x+ Ws‖)p

])
≤ L

(
eLT (T + 1)C

[
sup
t∈[0,T ]

E
[
(1 + ‖x+ Wt‖)p

]])
+ C

(
E
[
(1 + ‖x+ Ws‖)p

])
≤ (L+ 1)CeLT (T + 1)

[
sup
t∈[0,T ]

E
[
(1 + ‖x+ Wt‖)p

]]
.

(2.34)

This, (2.33), Lemma 2.5, and the triangle inequality then imply for all x ∈ Rd that

sup
s∈[0,T−δ]

E
[∣∣u(s+ δ, x+ Ws)− u(s, x+ Ws)

∣∣q]
≤ eLT

(
C (δ(d+ 2))

1/2

(
sup
s∈[0,T ]

E
[
(1 + ‖x+ Ws)‖)p

])
+ δLT

+
√
δ(L+ 1)CeLT (T + 1)

[
sup
s∈[0,T ]

E
[
(1 + ‖x+ Ws‖)p

]])

≤
√
δ

(
eLT

[
C
(

1 + (d+ 2)
1/2
)

+ L
(
T + CeLT

)
(T + 1)

] [
sup
s∈[0,T ]

E
[
(1 + ‖x+ Ws‖)pq

]])
.

(2.35)

The proof of Lemma 2.6 is thus completed.

A comment from Josh: This is new...

Corollary 2.7. Let d ∈ N, T, L, C ∈ (0,∞), p, q ∈ [1,∞), let f ∈ C([0, T ]×Rd×R,R) and g ∈ C1(Rd,R)
satisfy for all s, t ∈ [0, T ], x ∈ Rd, v, w ∈ R that |f(s, x, v) − f(t, x, w)| ≤ L(|s − t| + |v − w|) and
max{|f(t, x, 0)|, ‖(∇g)(x)‖} ≤ C(1 + ‖x‖)p, let (Ω,F ,P) be a probability space, let W : [0, T ] × Ω → Rd

be a standard Brownian motion, and let u ∈ C([0, T ] × Rd,R) satisfy for all t ∈ [0, T ], x ∈ Rd that
E[|g(x+ WT−t)|+

∫ T
t
|f(s, x+ Ws−t, u(s, x+ Ws−t))| ds] <∞ and

u(t, x) = E[g(x+ WT−t)] +

∫ T

t

E[f(s, x+ Ws−t, u(s, x+ Ws−t))] ds (2.36)

(cf. Definition 2.1). Then it holds for all t, t ∈ [0, T ], x ∈ Rd that

|u(t, x)− u(t, x)|

≤
√
|t− t|

(
eLT

[
C
(

1 + (d+ 2)
1/2
)

+ L
(
T + CeLT

)
(T + 1)

] [
sup
s∈[0,T ]

E
[
(1 + ‖x+ Ws‖)p

]])
.

(2.37)
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Proof of Corollary 2.7. A comment from Josh: Add proof...

2.4 Full history recursive multilevel Picard (MLP) approximations of solu-
tions of PDEs

A comment from Josh: This is new...

Lemma 2.8. Let d,M ∈ N, T, L, C ∈ (0,∞), p, q ∈ [1,∞), let f ∈ C([0, T ]×Rd×R,R) and g ∈ C(Rd,R)
satisfy for all t ∈ [0, T ], x ∈ Rd, v, w ∈ R that |f(t, x, v)−f(t, x, w)| ≤ L|v−w| and |g(x)| ≤ C(1+‖x‖)p, let
(Ω,F ,P) be a probability space, let W : [0, T ]×Ω→ Rd be a standard Brownian motion, let u ∈ C([0, T ]×
Rd,R) satisfy for all t ∈ [0, T ], x ∈ Rd that E[|g(x+WT−t)|+

∫ T
t
|f(s, x+Ws−t, u(s, x+Ws−t))| ds] <∞

and

u(t, x) = E[g(x+ WT−t)] +

∫ T

t

E[f(s, x+ Ws−t, u(s, x+ Ws−t))] ds, (2.38)

let Θ = (
⋃
n∈N Zn), let uθ : Ω → [0, 1], θ ∈ Θ, be independent uniformly distributed random variables, let

U θ : [0, T ]×Ω→ [0, T ], θ ∈ Θ, satisfy for all t ∈ [0, T ], θ ∈ Θ that U θt = t+(T − t)uθ, let W θ : [0, T ]×Ω→
Rd, θ ∈ Θ, be independent standard Brownian motions, assume for all θ ∈ Θ that U θ and W θ are
independent, for every θ ∈ Θ, t ∈ [0, T ], s ∈ [t, T ] let Xθ

t,s,x : Ω → Rd satisfy Y θ
t,s = W θ

s −W θ
t , and let

U θ
n : [0, T ]× Rd × Ω→ R, n ∈ N0, θ ∈ Θ, satisfy for all n ∈ N0, θ ∈ Θ, t ∈ [0, T ], x ∈ Rd that

U θ
n(t, x) =

1N(n)

Mn

[
Mn∑
k=1

g
(
x+ Y

(θ,0,−k)
t,T

)]

+
n−1∑
i=0

(T − t)
Mn−i

Mn−i∑
k=1

(
f
(
U (θ,i,k)
t , x+ Y

(θ,i,k)

t,U(θ,i,k)
t ,

, U
(θ,i,k)
i

(
U (θ,i,k)
t , x+ Y

(θ,i,k)

t,U(θ,i,k)
t

))

−1N(i) f
(
U (θ,i,k)
t , x+ Y

(θ,i,k)

t,U(θ,i,k)
t

, U
(θ,−i,k)
max{i−1,0}

(
U (θ,i,k)
t , x+ Y

(θ,i,k)

t,U(θ,i,k)
t

)))]
(2.39)

(cf. Definition 2.1). Then it holds for all t ∈ [0, T ], x ∈ Rd that(
E
[
|U θ

n(t, x)− u(t, x)|q
])1/q

≤ eLT (T + 1)C

[
sup
s∈[0,T ]

E
[
(1 + ‖x+ Ws‖)pq

]1/q
](

eM/2(1 + 2LT )n

Mn/2

)
. (2.40)

Proof of Lemma 2.8. A comment from Josh: Add proof...

3 Artificial neural network (ANN) calculus

3.1 ANNs

Definition 3.1 (Artificial neural networks). We denote by N the set given by

N =
⋃
L∈N

⋃
(l0,l1,...,lL)∈NL+1

(�L
k=1(Rlk×lk−1 × Rlk)

)
, (3.1)

we refer to the elements of N as neural networks, and we denote by P ,L, I,O : N → N, H : N → N0,
D : N→

(⋃∞
L=2 NL

)
, and Dn : N→ N0, n ∈ N0, the functions which satisfy for all L ∈ N, l0, l1, . . . , lL ∈ N,

Φ ∈
(�L

k=1(Rlk×lk−1 × Rlk)
)
, n ∈ N0 that P(Φ) =

∑L
k=1 lk(lk−1 + 1), L(Φ) = L, I(Φ) = l0, O(Φ) = lL,

H(Φ) = L− 1, D(Φ) = (l0, l1, . . . , lL), and

Dn(Φ) =

{
ln : n ≤ L

0 : n > L
(3.2)
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Definition 3.2 (Neural network). We say that Φ is a neural network if and only if it holds that Φ ∈ N
(cf. Definition 3.1).

Definition 3.3 (Maximum norm). We denote by ~·~ : (
⋃
d∈NRd) → [0,∞) the function which satisfies

for all d ∈ N, x = (x1, x2, . . . , xd) ∈ Rd that

~x~ = max
i∈{1,2,...,d}

|xi|. (3.3)

3.2 Realizations of DNNs

Definition 3.4 (Rectifier function). We denote by r : R → R the function which satisfies for all x ∈ R
that

r(x) = max{x, 0}. (3.4)

Definition 3.5 (Multidimensional version). Let d ∈ N and let a ∈ C(R,R) be a function. Then we denote
by Ma,d : Rd → Rd the function which satisfies for all x = (x1, x2, . . . , xd) ∈ Rd that

Ma,d(x) = (a(x1), a(x2), . . . , a(xd)). (3.5)

Definition 3.6 (Realization associated to a DNN). Let a ∈ C(R,R). Then we denote by Ra : N →(⋃
k,l∈N C(Rk,Rl)

)
the function which satisfies for all L ∈ N, l0, l1, . . . , lL ∈ N, Φ = ((W1, B1), (W2, B2),

. . . , (WL, BL)) ∈
(�L

k=1(Rlk×lk−1 ×Rlk)
)
, x0 ∈ Rl0 , x1 ∈ Rl1 , . . . , xL−1 ∈ RlL−1 with ∀ k ∈ N ∩ (0, L) : xk =

Ma,lk(Wkxk−1 +Bk) that

Ra(Φ) ∈ C(Rl0 ,RlL) and (Ra(Φ))(x0) = WLxL−1 +BL (3.6)

(cf. Definitions 3.1 and 3.5).

A comment from Josh: Do I need this result?

Lemma 3.7. Let Φ ∈ N (cf. Definition 3.1). Then

(i) it holds that D(Φ) ∈ NL(Φ)+1 and

(ii) it holds for all a ∈ C(R,R) that Ra(Φ) ∈ C(RI(Φ),RO(Φ))

(cf. Definition 3.6).

Proof of Lemma 3.7. Note that the assumption that Φ ∈ N =
⋃
L∈N

⋃
(l0,l1,...,lL)∈NL+1(

�L
k=1(Rlk×lk−1 ×

Rlk)) ensures that there exist L ∈ N, l0, l1, . . . , lL ∈ N such that

Φ ∈
(�L

k=1(Rlk×lk−1 × Rlk)
)
. (3.7)

Observe that (3.7) assures that

L(Φ) = L, I(Φ) = l0, O(Φ) = lL, (3.8)

and D(Φ) = (l0, l1, . . . , lL) ∈ NL+1 = NL(Φ)+1. (3.9)

This establishes item (i). Moreover, note that (3.8) and (3.6) show that Ra(Φ) ∈ C(RI(Φ),RO(Φ)). This
establishes item (ii). The proof of Lemma 3.7 is thus completed.
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3.3 Compositions of ANNs

3.3.1 Standard compositions of ANNs

Definition 3.8 (Composition of ANNs). We denote by (·) • (·) : {(Φ1,Φ2) ∈ N × N : I(Φ1) = O(Φ2)}
→ N the function which satisfies for all L,L ∈ N, l0, l1, . . . , lL, l0, l1, . . . , lL ∈ N, Φ1 = ((W1, B1), (W2, B2),
. . . , (WL, BL)) ∈

(�L
k=1(Rlk×lk−1 × Rlk)

)
, Φ2 = ((W1,B1), (W2,B2), . . . , (WL,BL)) ∈

(�L
k=1(Rlk×lk−1 ×

Rlk)
)
with l0 = I(Φ1) = O(Φ2) = lL that

Φ1 • Φ2 =

(
(W1,B1), (W2,B2), . . . , (WL−1,BL−1), (W1WL,W1BL +B1),

(W2, B2), (W3, B3), . . . , (WL, BL)
) : L > 1 < L

(
(W1W1,W1B1 +B1), (W2, B2), (W3, B3), . . . , (WL, BL)

)
: L > 1 = L(

(W1,B1), (W2,B2), . . . , (WL−1,BL−1), (W1WL,W1BL +B1)
)

: L = 1 < L(
(W1W1,W1B1 +B1)

)
: L = 1 = L

(3.10)

(cf. Definition 3.1).

3.3.2 Elementary properties of standard compositions of ANNs

A comment from Josh: I think I need this result...

Proposition 3.9. Let Φ1,Φ2 ∈ N satisfy that I(Φ1) = O(Φ2) (cf. Definition 3.1). Then

(i) it holds that

D(Φ1 • Φ2) = (D0(Φ2),D1(Φ2), . . . ,DL(Φ2)−1(Φ2),D1(Φ1),D2(Φ1), . . . ,DL(Φ1)(Φ1)), (3.11)

(ii) it holds that
[L(Φ1 • Φ2)− 1] = [L(Φ1)− 1] + [L(Φ2)− 1], (3.12)

(iii) it holds that
H(Φ1 • Φ2) = H(Φ1) +H(Φ2), (3.13)

(iv) it holds that

P(Φ1 • Φ2) = P(Φ1) + P(Φ2) + D1(Φ1)(DL(Φ2)−1(Φ2) + 1)

− D1(Φ1)(D0(Φ1) + 1)− DL(Φ2)(Φ2)(DL(Φ2)−1(Φ2) + 1)

≤ P(Φ1) + P(Φ2) + D1(Φ1)DL(Φ2)−1(Φ2),

(3.14)

and

(v) it holds for all a ∈ C(R,R) that Ra(Φ1 • Φ2) ∈ C(RI(Φ2),RO(Φ1)) and

Ra(Φ1 • Φ2) = [Ra(Φ1)] ◦ [Ra(Φ2)] (3.15)

(cf. Definitions 3.6 and 3.8).

Proof of Proposition 3.9. Throughout this proof let a ∈ C(R,R), let Lk ∈ N, k ∈ {1, 2}, satisfy for all
k ∈ {1, 2} that Lk = L(Φk), let l1,0, l1,1, . . . , l1,L(Φ1), l2,0, l2,1, . . . , l2,L(Φ2) ∈ N,

(
(Wk,1, Bk,1), (Wk,2, Bk,2), . . . ,

(Wk,Lk , Bk,Lk)
)
∈ (×Lkj=1(Rlk,j×lk,j−1 × Rlk,j)), k ∈ {1, 2}, satisfy for all k ∈ {1, 2} that

Φk =
(
(Wk,1, Bk,1), (Wk,2, Bk,2), . . . , (Wk,Lk , Bk,Lk)

)
, (3.16)
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let L3 ∈ N, l3,0, l3,1, . . . , l3,L3 ∈ N, Φ3 =
(
(W3,1, B3,1), . . . , (W3,L3 , B3,L3)

)
∈ (×L3

j=1(Rl3,j×l3,j−1×Rl3,j)) satisfy
that Φ3 = Φ1 • Φ2, let x0 ∈ Rl2,0 , x1 ∈ Rl2,1 , . . . , xL2−1 ∈ Rl2,L2−1 satisfy that

∀ j ∈ N ∩ (0, L2) : xj = Ma,l2,j(W2,jxj−1 +B2,j) (3.17)

(cf. Definition 3.5), let y0 ∈ Rl1,0 , y1 ∈ Rl1,1 , . . . , yL1−1 ∈ Rl1,L1−1 satisfy that y0 = W2,L2xL2−1 +B2,L2 and

∀ j ∈ N ∩ (0, L1) : yj = Ma,l1,j(W1,jyj−1 +B1,j), (3.18)

and let z0 ∈ Rl3,0 , z1 ∈ Rl3,1 , . . . , zL3−1 ∈ Rl3,L3−1 satisfy that z0 = x0 and

∀ j ∈ N ∩ (0, L3) : zj = Ma,l3,j(W3,jzj−1 +B3,j). (3.19)

Note that (3.10) ensures that

Φ3 = Φ1 • Φ2 =

(
(W2,1, B2,1), (W2,2, B2,2), . . . , (W2,L2−1, B2,L2−1),

(W1,1W2,L2 ,W1,1B2,L2 +B1,1), (W1,2, B1,2),

(W1,3, B1,3), . . . , (W1,L1 , B1,L1)
) : L1 > 1 < L2

(
(W1,1W2,1,W1,1B2,1 +B1,1), (W1,2, B1,2),

(W1,3, B1,3), . . . , (W1,L1 , B1,L1)
) : L1 > 1 = L2

(
(W2,1, B2,1), (W2,2, B2,2), . . . , (W2,L2−1, B2,L2−1),

(W1,1W2,L2 ,W1,1B2,L2 +B1,1)
) : L1 = 1 < L2

(W1,1W2,1,W1,1B2,1 +B1,1) : L1 = 1 = L2

.
(3.20)

Hence, we obtain that

[L(Φ1 • Φ2)− 1] = [(L2 − 1) + 1 + (L1 − 1)]− 1

= [L1 − 1] + [L2 − 1] = [L(Φ1)− 1] + [L(Φ2)− 1]
(3.21)

and D(Φ1 • Φ2) = (l2,0, l2,1, . . . , l2,L2−1, l1,1, l1,2, . . . , l1,L1). (3.22)

This establishes items (i), (ii), and (iii). In addition, observe that (3.22) demonstrates that

P(Φ1 • Φ2) =
L3∑
j=1

l3,j(l3,j−1 + 1)

=

[
L2−1∑
j=1

l3,j(l3,j−1 + 1)

]
+ l3,L2(l3,L2−1 + 1) +

[
L3∑

j=L2+1

l3,j(l3,j−1 + 1)

]

=

[
L2−1∑
j=1

l2,j(l2,j−1 + 1)

]
+ l1,1(l2,L2−1 + 1) +

[
L3∑

j=L2+1

l1,j−L2+1(l1,j−L2 + 1)

]

=

[
L2−1∑
j=1

l2,j(l2,j−1 + 1)

]
+

[
L1∑
j=2

l1,j(l1,j−1 + 1)

]
+ l1,1

(
l2,L2−1 + 1

)
=

[
L2∑
j=1

l2,j(l2,j−1 + 1)

]
+

[
L1∑
j=1

l1,j(l1,j−1 + 1)

]
+ l1,1(l2,L2−1 + 1)

− l2,L2(l2,L2−1 + 1)− l1,1(l1,0 + 1)

= P(Φ1) + P(Φ2) + l1,1(l2,L2−1 + 1)− l2,L2(l2,L2−1 + 1)

− l1,1(l1,0 + 1)

≤ P(Φ1) + P(Φ2) + l1,1l2,L2−1.

(3.23)
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This establishes item (iv). Moreover, observe that (3.20) and the fact that a ∈ C(R,R) ensure that

Ra(Φ1 • Φ2) ∈ C(Rl2,0 ,Rl1,L1 ) = C(RI(Φ2),RO(Φ1)). (3.24)

Next note that (3.21) implies that L3 = L1 + L2 − 1. This, (3.20), and (3.22) ensure that

(l3,0, l3,1, . . . , l3,L1+L2−1) = (l2,0, l2,1, . . . , l2,L2−1, l1,1, l1,2, . . . , l1,L1), (3.25)[
∀ j ∈ N ∩ (0, L2) : (W3,j, B3,j) = (W2,j, B2,j)

]
, (3.26)

(W3,L2 , B3,L2) = (W1,1W2,L2 ,W1,1B2,L2 +B1,1), (3.27)

and
[
∀ j ∈ N ∩ (L2, L1 + L2) : (W3,j, B3,j) = (W1,j+1−L2 , B1,j+1−L2)

]
. (3.28)

This, (3.17), (3.19), and induction imply that for all j ∈ N0 ∩ [0, L2) it holds that zj = xj. Combining
this with (3.27) and the fact that y0 = W2,L2xL2−1 +B2,L2 ensures that

W3,L2zL2−1 +B3,L2 = W3,L2xL2−1 +B3,L2

= W1,1W2,L2xL2−1 +W1,1B2,L2 +B1,1

= W1,1(W2,L2xL2−1 +B2,L2) +B1,1 = W1,1y0 +B1,1.

(3.29)

Next we claim that for all j ∈ N ∩ [L2, L1 + L2) it holds that

W3,jzj−1 +B3,j = W1,j+1−L2yj−L2 +B1,j+1−L2 . (3.30)

We prove (3.30) by induction on j ∈ N∩ [L2, L1 +L2). Note that (3.29) establishes (3.30) in the base case
j = L2. For the induction step note that the fact that L3 = L1 +L2− 1, (3.18), (3.19), (3.25), and (3.28)
imply that for all j ∈ N ∩ [L2,∞) ∩ (0, L1 + L2 − 1) with

W3,jzj−1 +B3,j = W1,j+1−L2yj−L2 +B1,j+1−L2 (3.31)

it holds that

W3,j+1zj +B3,j+1 = W3,j+1Ma,l3,j(W3,jzj−1 +B3,j) +B3,j+1

= W1,j+2−L2Ma,l1,j+1−L2
(W1,j+1−L2yj−L2 +B1,j+1−L2) +B1,j+2−L2

= W1,j+2−L2yj+1−L2 +B1,j+2−L2 .

(3.32)

Induction hence proves (3.30). Next observe that (3.30) and the fact that L3 = L1 + L2 − 1 assure that

W3,L3zL3−1 +B3,L3 = W3,L1+L2−1zL1+L2−2 +B3,L1+L2−1 = W1,L1yL1−1 +B1,L1 . (3.33)

The fact that Φ3 = Φ1 • Φ2, (3.17), (3.18), and (3.19) therefore prove that

[Ra(Φ1 • Φ2)](x0) = [Ra(Φ3)](x0) = [Ra(Φ3)](z0) = W3,L3zL3−1 +B3,L3

= W1,L1yL1−1 +B1,L1 = [Ra(Φ1)](y0)

= [Ra(Φ1)]
(
W2,L2xL2−1 +B2,L2

)
= [Ra(Φ1)]

(
[Ra(Φ2)](x0)

)
= [(Ra(Φ1)) ◦ (Ra(Φ2))](x0).

(3.34)

Combining this with (3.24) establishes item (v). The proof of Proposition 3.9 is thus completed.

A comment from Josh: Do I need this result?

Corollary 3.10. Let L1, L2, L3 ∈ N, l1,0, l1,1, . . . , l1,L1 , l2,0, l2,1, . . . , l2,L2 , l3,0, l3,1, . . . , l3,L3 ∈ N satisfy that
l1,0 = l2,L2 and let Φk =

(
(Wk,1, Bk,1), (Wk,2, Bk,2), . . . , (Wk,Lk , Bk,Lk)

)
∈ (×Lkj=1(Rlk,j×lk,j−1 × Rlk,j)), k ∈

{1, 2, 3}, satisfy that Φ3 = Φ1 • Φ2 (cf. Definitions 3.1 and 3.8). Then
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(i) it holds that
L3 = L(Φ3) = L(Φ1) + L(Φ2)− 1 = L1 + L2 − 1 ≥ max{L1, L2}, (3.35)

(ii) it holds for all j ∈ N ∩ (0, L2) that

(W3,j, B3,j) = (W2,j, B2,j), (3.36)

(iii) it holds that
(W3,L2 , B3,L2) = (W1,1W2,L2 ,W1,1B2,L2 +B1,1), (3.37)

and

(iv) it holds for all j ∈ N ∩ (L2, L1 + L2) = N ∩ (L2,∞) ∩ [1, L3] that

(W3,j, B3,j) = (W1,j−L2+1, B1,j−L2+1). (3.38)

Proof of Corollary 3.10. Observe that item (ii) in Proposition 3.9 proves item (i). Moreover, note that
(3.10) establishes items (ii), (iii), and (iv). The proof of Corollary 3.10 is thus completed.

3.3.3 Associativity of standard compositions of ANNs

A comment from Josh: I think I need this result...

Lemma 3.11. Let Φ1,Φ2,Φ3 ∈ N satisfy that I(Φ1) = O(Φ2) and I(Φ2) = O(Φ3) (cf. Definition 3.1).
Then it holds that

(Φ1 • Φ2) • Φ3 = Φ1 • (Φ2 • Φ3) (3.39)

(cf. Definition 3.8).

Proof of Lemma 3.11. Throughout this proof let Φ4,Φ5,Φ6,Φ7 ∈ N satisfy that Φ4 = Φ1 • Φ2, Φ5 =
Φ2 • Φ3, Φ6 = Φ4 • Φ3, and Φ7 = Φ1 • Φ5, let Lk ∈ N, k ∈ {1, 2, . . . , 7}, satisfy for all k ∈ {1, 2, . . . , 7}
that Lk = L(Φk), let lk,0, lk,1, . . . , lk,Lk ∈ N, k ∈ {1, 2, . . . , 7}, and let

(
(Wk,1, Bk,1), (Wk,2, Bk,2), . . . ,

(Wk,Lk , Bk,Lk)
)
∈ (×Lkj=1(Rlk,j×lk,j−1 × Rlk,j)), k ∈ {1, 2, . . . , 7}, satisfy for all k ∈ {1, 2, . . . , 7} that

Φk =
(
(Wk,1, Bk,1), (Wk,2, Bk,2), . . . , (Wk,Lk , Bk,Lk)

)
. (3.40)

Proposition 3.9 and the fact that for all k ∈ {1, 2, 3} it holds that L(Φk) = Lk proves that

L(Φ6) = L((Φ1 • Φ2) • Φ3) = L(Φ1 • Φ2) + L(Φ3)− 1

= L(Φ1) + L(Φ2) + L(Φ3)− 2 = L1 + L2 + L3 − 2

= L(Φ1) + L(Φ2 • Φ3)− 1 = L(Φ1 • (Φ2 • Φ3)) = L(Φ7).

(3.41)

Next note that Corollary 3.10, (3.40), and the fact that Φ4 = Φ1 • Φ2 imply that[
∀ j ∈ N ∩ (0, L2) : (W4,j, B4,j) = (W2,j, B2,j)

]
, (3.42)

(W4,L2 , B4,L2) = (W1,1W2,L2 ,W1,1B2,L2 +B1,1), (3.43)

and
[
∀ j ∈ N ∩ (L2, L1 + L2) : (W4,j, B4,j) = (W1,j+1−L2 , B1,j+1−L2)

]
. (3.44)

Hence, we obtain that[
∀ j ∈ N ∩ (L3 − 1, L2 + L3 − 1) : (W4,j+1−L3 , B4,j+1−L3) = (W2,j+1−L3 , B2,j+1−L3)

]
, (3.45)

(W4,L2 , B4,L2) = (W1,1W2,L2 ,W1,1B2,L2 +B1,1), (3.46)
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and[
∀ j ∈ N ∩ (L2 + L3 − 1, L1 + L2 + L3 − 1) :

(W4,j+1−L3 , B4,j+1−L3) = (W1,j+2−L2−L3 , B1,j+2−L2−L3)
]
. (3.47)

In addition, observe that Corollary 3.10, (3.40), and the fact that Φ5 = Φ2 • Φ3 demonstrate that[
∀ j ∈ N ∩ (0, L3) : (W5,j, B5,j) = (W3,j, B3,j)

]
, (3.48)

(W5,L3 , B5,L3) = (W2,1W3,L3 ,W2,1B3,L3 +B2,1), (3.49)

and
[
∀ j ∈ N ∩ (L3, L2 + L3) : (W5,j, B5,j) = (W2,j+1−L3 , B2,j+1−L3)

]
. (3.50)

Moreover, note that Corollary 3.10, (3.40), and the fact that Φ6 = Φ4 • Φ3 ensure that[
∀ j ∈ N ∩ (0, L3) : (W6,j, B6,j) = (W3,j, B3,j)

]
, (3.51)

(W6,L3 , B6,L3) = (W4,1W3,L3 ,W4,1B3,L3 +B4,1), (3.52)

and
[
∀ j ∈ N ∩ (L3, L4 + L3) : (W6,j, B6,j) = (W4,j+1−L3 , B4,j+1−L3)

]
. (3.53)

Furthermore, observe that Corollary 3.10, (3.40), and the fact that Φ7 = Φ1 • Φ5 show that[
∀ j ∈ N ∩ (0, L5) : (W7,j, B7,j) = (W5,j, B5,j)

]
, (3.54)

(W7,L5 , B7,L5) = (W1,1W5,L5 ,W1,1B5,L5 +B1,1), (3.55)

and
[
∀ j ∈ N ∩ (L5, L1 + L5) : (W7,j, B7,j) = (W1,j+1−L5 , B1,j+1−L5)

]
. (3.56)

This, the fact that L3 ≤ L2 + L3 − 1 = L5, (3.48), and (3.51) imply that for all j ∈ N ∩ (0, L3) it holds
that

(W6,j, B6,j) = (W3,j, B3,j) = (W5,j, B5,j) = (W7,j, B7,j). (3.57)

In addition, observe that (3.42), (3.43), (3.48), (3.49), (3.52), (3.54), (3.55), and the fact that L5 =
L2 + L3 − 1 demonstrate that

(W6,L3 , B6,L3) = (W4,1W3,L3 ,W4,1B3,L3 +B4,1)

=

{
(W2,1W3,L3 ,W2,1B3,L3 +B2,1) : L2 > 1

(W1,1W2,1W3,L3 ,W1,1W2,1B3,L3 +W1,1B2,1 +B1,1) : L2 = 1

=

{
(W2,1W3,L3 ,W2,1B3,L3 +B2,1) : L2 > 1

(W1,1(W2,1W3,L3),W1,1(W2,1B3,L3 +B2,1) +B1,1) : L2 = 1

=

{
(W5,L3 , B5,L3) : L2 > 1

(W1,1W5,L3 ,W1,1B5,L3 +B1,1) : L2 = 1

= (W7,L3 , B7,L3).

(3.58)

Next note that the fact that L5 = L2 + L3 − 1 < L1 + L2 + L3 − 1 = L3 + L4, (3.53), (3.45), (3.50), and
(3.54) ensure that for all j ∈ N with L3 < j < L5 it holds that

(W6,j, B6,j) = (W4,j+1−L3 , B4,j+1−L3) = (W2,j+1−L3 , B2,j+1−L3)

= (W5,j, B5,j) = (W7,j, B7,j).
(3.59)
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Moreover, observe that the fact that L5 = L2 +L3−1 < L1 +L2 +L3−1 = L3 +L4, (3.53), (3.58), (3.43),
(3.50), and (3.55) prove that

(W6,L5 , B6,L5) =

{
(W4,L5+1−L3 , B4,L5+1−L3) : L2 > 1

(W6,L3 , B6,L3) : L2 = 1

=

{
(W4,L2 , B4,L2) : L2 > 1

(W7,L3 , B7,L3) : L2 = 1

=

{
(W1,1W2,L2 ,W1,1B2,L2 +B1,1) : L2 > 1

(W7,L5 , B7,L5) : L2 = 1

=

{
(W1,1W5,L5 ,W1,1B5,L5 +B1,1) : L2 > 1

(W7,L5 , B7,L5) : L2 = 1

= (W7,L5 , B7,L5).

(3.60)

Furthermore, note that (3.53), (3.47), (3.56), and the fact that L5 = L2 + L3 − 1 ≥ L3 assure that for all
j ∈ N with L5 < j ≤ L6 it holds that

(W6,j, B6,j) = (W4,j+1−L3 , B4,j+1−L3) = (W1,j+2−L2−L3 , B1,j+2−L2−L3)

= (W1,j+1−L5 , B1,j+1−L5) = (W7,j, B7,j).
(3.61)

Combining this with (3.41), (3.57), (3.58), (3.59), and (3.60) establishes that

(Φ1 • Φ2) • Φ3 = Φ4 • Φ3 = Φ6 = Φ7 = Φ1 • Φ5 = Φ1 • (Φ2 • Φ3). (3.62)

The proof of Lemma 3.11 is thus completed.

3.3.4 Compositions of ANNs and affine linear transformations

A comment from Josh: I think I need this result...

Corollary 3.12. Let Φ ∈ N (cf. Definition 3.1). Then
(i) it holds for all A ∈ N with L(A) = 1 and I(A) = O(Φ) that

P(A • Φ) ≤
[
max

{
1, O(A)
O(Φ)

}]
P(Φ) (3.63)

and

(ii) it holds for all A ∈ N with L(A) = 1 and I(Φ) = O(A) that

P(Φ • A) ≤
[
max

{
1, I(A)+1
I(Φ)+1

}]
P(Φ) (3.64)

(cf. Definition 3.8).
Proof of Corollary 3.12. Throughout this proof let L ∈ N, l0, l1, . . . , lL ∈ N, A1,A2 ∈ N satisfy that
L(A1) = L(A2) = 1, I(A1) = O(Φ), I(Φ) = O(A2), and D(Φ) = (l0, l1, . . . , lL). Observe that item (iv) in
Proposition 3.9, the fact that O(Φ) = lL, the fact that I(Φ) = l0, and the fact that for all k ∈ {1, 2} it
holds that D(Ak) = (I(Ak),O(Ak)) ensure that

P(A1 • Φ) =

[
L−1∑
m=1

lm(lm−1 + 1)

]
+
[
O(A1)

]
(lL−1 + 1)

=

[
L−1∑
m=1

lm(lm−1 + 1)

]
+
[
O(A1)
lL

]
lL(lL−1 + 1)

≤
[
max

{
1, O(A1)

lL

}] [L−1∑
m=1

lm(lm−1 + 1)

]
+
[
max

{
1, O(A1)

lL

}]
lL(lL−1 + 1)

=
[
max

{
1, O(A1)

lL

}] [ L∑
m=1

lm(lm−1 + 1)

]
=
[
max

{
1, O(A1)
O(Φ)

}]
P(Φ)

(3.65)
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and

P(Φ • A2) =

[
L∑

m=2

lm(lm−1 + 1)

]
+ l1

[
I(A2) + 1

]
=

[
L∑

m=2

lm(lm−1 + 1)

]
+
[
I(A2)+1
l0+1

]
l1(l0 + 1)

≤
[
max

{
1, I(A2)+1

l0+1

}] [ L∑
m=2

lm(lm−1 + 1)

]
+
[
max

{
1, I(A2)+1

l0+1

}]
l1(l0 + 1)

=
[
max

{
1, I(A2)+1

l0+1

}] [ L∑
m=1

lm(lm−1 + 1)

]
=
[
max

{
1, I(A2)+1
I(Φ)+1

}]
P(Φ).

(3.66)

This establishes items (i) and (ii). The proof of Corollary 3.12 is thus completed.

3.3.5 Powers and extensions of ANNs

Definition 3.13 (Identity matrix). Let d ∈ N. Then we denote by Id ∈ Rd×d the identity matrix in Rd×d.

Definition 3.14 (Powers of ANNs). We denote by (·)•n : {Φ ∈ N : I(Φ) = O(Φ)} → N, n ∈ N0, the
functions which satisfy for all n ∈ N0, Φ ∈ N with I(Φ) = O(Φ) that

Φ•n =

{(
IO(Φ), (0, 0, . . . , 0)

)
∈ RO(Φ)×O(Φ) × RO(Φ) : n = 0

Φ • (Φ•(n−1)) : n ∈ N
(3.67)

(cf. Definitions 3.1, 3.8, and 3.13).

Definition 3.15 (Extension of ANNs). Let L ∈ N, Ψ ∈ N satisfy that I(Ψ) = O(Ψ). Then we denote
by EL,Ψ : {Φ ∈ N : (L(Φ) ≤ L and O(Φ) = I(Ψ))} → N the function which satisfies for all Φ ∈ N with
L(Φ) ≤ L and O(Φ) = I(Ψ) that

EL,Ψ(Φ) = (Ψ•(L−L(Φ))) • Φ (3.68)

(cf. Definitions 3.1, 3.8, and 3.14).

A comment from Josh: Do I need this result?

Lemma 3.16. Let d, i ∈ N, Ψ ∈ N satisfy that D(Ψ) = (d, i, d) (cf. Definition 3.1). Then

(i) it holds for all n ∈ N0 that L(Ψ•n) = n+ 1, D(Ψ•n) ∈ Nn+2, and

D(Ψ•n) =

{
(d, d) : n = 0

(d, i, i, . . . , i, d) : n ∈ N
(3.69)

and

(ii) it holds for all Φ ∈ N, L ∈ N ∩ [L(Φ),∞) with O(Φ) = d that L
(
EL,Ψ(Φ)

)
= L and

P(EL,Ψ(Φ))

≤

{
P(Φ) : L(Φ) = L[(

max
{

1, i
d

})
P(Φ) +

(
(L− L(Φ)− 1) i + d

)
(i + 1)

]
: L(Φ) < L

(3.70)

(cf. Definitions 3.14, 3.15, and 3.15).
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Proof of Lemma 3.16. Throughout this proof let Φ ∈ N, l0, l1, . . . , lL(Φ) ∈ N satisfy that O(Φ) = d and
D(Φ) = (l0, l1, . . . , lL(Φ)) ∈ NL(Φ)+1 and let aL,k ∈ N, k ∈ N0 ∩ [0, L], L ∈ N ∩ [L(Φ),∞), satisfy for all
L ∈ N ∩ [L(Φ),∞), k ∈ N0 ∩ [0, L] that

aL,k =


lk : k < L(Φ)

i : L(Φ) ≤ k < L

d : k = L

. (3.71)

We claim that for all n ∈ N0 it holds that

L(Ψ•n) = n+ 1 and Nn+2 3 D(Ψ•n) =

{
(d, d) : n = 0

(d, i, i, . . . , i, d) : n ∈ N
. (3.72)

We now prove (3.72) by induction on n ∈ N0. Note that the fact that Ψ•0 = (Id, 0) ∈ Rd×d × Rd (cf.
Definition 3.13) establishes (3.69) in the base case n = 0. For the induction step N0 3 n → n + 1 ∈ N
assume that there exists n ∈ N0 such that

L(Ψ•n) = n+ 1 and Nn+2 3 D(Ψ•n) =

{
(d, d) : n = 0

(d, i, i, . . . , i, d) : n ∈ N
. (3.73)

Observe that Lemma 3.7, (3.67), items (i) and (ii) in Proposition 3.9, (3.73), and the hypothesis that
D(Ψ) = (d, i, d) imply that

L(Ψ•(n+1)) = L(Ψ • (Ψ•n)) = L(Ψ) + L(Ψ•n)− 1 = 2 + (n+ 1)− 1 = (n+ 1) + 1

and D(Ψ•(n+1)) = D(Ψ • (Ψ•n)) = (d, i, i, . . . , i, d) ∈ Nn+3.
(3.74)

Induction thus proves (3.72). Next note that (3.72) establishes item (i). In addition, observe that items (i)
and (ii) in Proposition 3.9, item (i), (3.68), and (3.71) ensure that for all L ∈ N∩ [L(Φ),∞) it holds that

L
(
EL,Ψ(Φ)

)
= L

(
(Ψ•(L−L(Φ))) • Φ

)
= L

(
Ψ•(L−L(Φ))

)
+ L(Φ)− 1

= (L− L(Φ) + 1) + L(Φ)− 1 = L
(3.75)

and

D
(
EL,Ψ(Φ)

)
= D

(
(Ψ•(L−L(Φ))) • Φ

)
= (aL,0, aL,1, . . . , aL,L). (3.76)

Combining this with (3.71) demonstrates that

L
(
EL(Φ),Ψ(Φ)

)
= L(Φ) (3.77)

and

D
(
EL(Φ),Ψ(Φ)

)
= (aL(Φ),0, aL(Φ),1, . . . , aL(Φ),L(Φ))

= (l0, l1, . . . , lL(Φ)) = D(Φ).
(3.78)

Hence, we obtain that
P
(
EL(Φ),Ψ(Φ)

)
= P(Φ). (3.79)

Next note that (3.71), (3.76), and the fact that lL(Φ) = O(Φ) = d imply that for all L ∈ N ∩ (L(Φ),∞) it
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holds that

P
(
EL,Ψ(Φ)

)
=

L∑
k=1

aL,k(aL,k−1 + 1)

=

[
L(Φ)−1∑
k=1

aL,k(aL,k−1 + 1)

]
+

[
L∑

k=L(Φ)

aL,k(aL,k−1 + 1)

]

=

[
L(Φ)−1∑
k=1

lk(lk−1 + 1)

]
+

[
L(Φ)∑

k=L(Φ)

aL,k(aL,k−1 + 1)

]

+

[
L∑

k=L(Φ)+1

aL,k(aL,k−1 + 1)

]

=

[
L(Φ)−1∑
k=1

lk(lk−1 + 1)

]
+ aL,L(Φ)(aL,L(Φ)−1 + 1)

+

[
L−1∑

k=L(Φ)+1

aL,k(aL,k−1 + 1)

]
+

[
L∑

k=L

aL,k(aL,k−1 + 1)

]

=

[
L(Φ)−1∑
k=1

lk(lk−1 + 1)

]
+ i(lL(Φ)−1 + 1)

+
(
L− 1− (L(Φ) + 1) + 1

)
i(i + 1) + aL,L(aL,L−1 + 1)

=

[
L(Φ)−1∑
k=1

lk(lk−1 + 1)

]
+ i

d

[
lL(Φ)(lL(Φ)−1 + 1)

]
+
(
L− L(Φ)− 1

)
i(i + 1) + d(i + 1)

≤
[
max{1, i

d
}
] [L(Φ)∑

k=1

lk(lk−1 + 1)

]
+
(
L− L(Φ)− 1

)
i(i + 1) + d(i + 1)

=
[
max{1, i

d
}
]
P(Φ) +

(
L− L(Φ)− 1

)
i(i + 1) + d(i + 1).

(3.80)

Combining this with (3.79) establishes (3.70). The proof of Lemma 3.16 is thus completed.

A comment from Josh: This result is needed for properties of generalized parallelizations...

Lemma 3.17. Let a ∈ C(R,R), I ∈ N satisfy for all x ∈ RI(I) that I(I) = O(I) and (Ra(I))(x) = x (cf.
Definitions 3.1 and 3.6). Then

(i) it holds for all n ∈ N0, x ∈ RI(I) that

Ra(I•n) ∈ C(RI(I),RI(I)) and (Ra(I•n))(x) = x (3.81)

and

(ii) it holds for all Φ ∈ N, L ∈ N ∩ [L(Φ),∞), x ∈ RI(Φ) with O(Φ) = I(I) that

Ra(EL,I(Φ)) ∈ C(RI(Φ),RO(Φ)) and
(
Ra(EL,I(Φ))

)
(x) =

(
Ra(Φ)

)
(x) (3.82)

(cf. Definitions 3.14 and 3.15).

Proof of Lemma 3.17. Throughout this proof let Φ ∈ N, L, d ∈ N satisfy that L(Φ) ≤ L and I(I) =
O(Φ) = d. We claim that for all n ∈ N0 it holds that

Ra(I•n) ∈ C(Rd,Rd) and ∀x ∈ Rd : (Ra(I•n))(x) = x. (3.83)
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We now prove (3.83) by induction on n ∈ N0. Note that (3.67) and the fact thatO(I) = d demonstrate that
Ra(I•0) ∈ C(Rd,Rd) and ∀x ∈ Rd : (Ra(I•0))(x) = x. This establishes (3.83) in the base case n = 0. For
the induction step observe that for all n ∈ N0 with Ra(I•n) ∈ C(Rd,Rd) and ∀x ∈ Rd : (Ra(I•n))(x) = x
it holds that

Ra(I•(n+1)) = Ra(I • (I•n)) = (Ra(I)) ◦ (Ra(I•n)) ∈ C(Rd,Rd) (3.84)

and

∀x ∈ Rd :
(
Ra(I•(n+1))

)
(x) =

(
[Ra(I)] ◦ [Ra(I•n)]

)
(x)

= (Ra(I))
((
Ra(I•n)

)
(x)
)

= (Ra(I))(x) = x.
(3.85)

Induction thus proves (3.83). Next observe that (3.83) establishes item (i). Moreover, note that (3.68),
item (v) in Proposition 3.9, item (i), and the fact that I(I) = O(Φ) ensure that

Ra(EL,I(Φ)) = Ra((I•(L−L(Φ))) • Φ)

∈ C(RI(Φ),RO(I)) = C(RI(Φ),RI(I)) = C(RI(Φ),RO(Φ))
(3.86)

and

∀x ∈ RI(Φ) :
(
Ra(EL,I(Φ))

)
(x) =

(
Ra(I•(L−L(Φ)))

)(
(Ra(Φ))(x)

)
= (Ra(Φ))(x).

(3.87)

This establishes item (ii). The proof of Lemma 3.17 is thus completed.

Lemma 3.18. Let d, i, L,L ∈ N, l0, l1, . . . , lL−1 ∈ N, Φ,Ψ ∈ N satisfy L ≥ L, D(Φ) = (l0, l1, . . . , lL−1, d)
and D(Ψ) = (d, i, d) (cf. Definition 3.1). Then it holds that D(EL,Ψ(Φ)) ∈ NL+1 and

D(EL,Ψ(Φ)) =

{
(l0, l1, . . . , lL−1, d) : L = L

(l0, l1, . . . , lL−1, i, i, . . . , i, d) : L > L
(3.88)

(cf. Definition 3.15).

Proof of Lemma 3.18. Observe that item (i) in Lemma 3.16 ensures that L(Ψ•(L−L)) = L − L + 1,
D(Ψ•(L−L)) ∈ NL−L+2, and

D(Ψ•(L−L)) =

{
(d, d) : L = L

(d, i, i, . . . , i, d) : L > L
(3.89)

(cf. Definition 3.14). Combining this with Proposition 3.9 shows that L((Ψ•(L−L)) • Φ) = L(Ψ•(L−L)) +
L(Φ)− 1 = L, D((Ψ•(L−L)) • Φ) ∈ NL+1, and

D((Ψ•(L−L)) • Φ) =

{
(l0, l1, . . . , lL−1, d) : L = L

(l0, l1, . . . , lL−1, i, i, . . . , i, d) : L > L.
(3.90)

This and (3.68) establish (3.88). The proof of Lemma 3.18 is thus completed.

3.4 Parallelizations of ANNs

3.4.1 Parallelizations of ANNs with the same length

Definition 3.19 (Parallelization of ANNs). Let n ∈ N. Then we denote by

Pn :
{

(Φ1,Φ2, . . . ,Φn) ∈ Nn : L(Φ1) = L(Φ2) = . . . = L(Φn)
}
→ N (3.91)

the function which satisfies for all L ∈ N, (l1,0, l1,1, . . . , l1,L), (l2,0, l2,1, . . . , l2,L), . . . , (ln,0, ln,1, . . . , ln,L) ∈
NL+1, Φ1 = ((W1,1, B1,1), (W1,2, B1,2), . . . , (W1,L, B1,L)) ∈

(�L
k=1(Rl1,k×l1,k−1 × Rl1,k)

)
, Φ2 = ((W2,1, B2,1),
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(W2,2, B2,2), . . . , (W2,L, B2,L)) ∈
(�L

k=1(Rl2,k×l2,k−1 × Rl2,k)
)
, . . . , Φn = ((Wn,1, Bn,1), (Wn,2, Bn,2), . . . ,

(Wn,L, Bn,L)) ∈
(�L

k=1(Rln,k×ln,k−1 × Rln,k)
)
that

Pn(Φ1,Φ2, . . . ,Φn) =






W1,1 0 0 · · · 0

0 W2,1 0 · · · 0
0 0 W3,1 · · · 0
...

...
... . . . ...

0 0 0 · · · Wn,1

 ,


B1,1

B2,1

B3,1
...

Bn,1



 ,




W1,2 0 0 · · · 0

0 W2,2 0 · · · 0
0 0 W3,2 · · · 0
...

...
... . . . ...

0 0 0 · · · Wn,2

 ,


B1,2

B2,2

B3,2
...

Bn,2



 , . . . ,




W1,L 0 0 · · · 0

0 W2,L 0 · · · 0
0 0 W3,L · · · 0
...

...
... . . . ...

0 0 0 · · · Wn,L

 ,


B1,L

B2,L

B3,L
...

Bn,L







(3.92)

(cf. Definition 3.1).

A comment from Josh: I think I need this result...

Lemma 3.20. Let n, L ∈ N, Φ1,Φ2, . . . ,Φn ∈ N satisfy that L = L(Φ1) = L(Φ2) = . . . = L(Φn) (cf.
Definition 3.1). Then it holds that

Pn(Φ1,Φ2, . . . ,Φn) ∈
(
×Lk=1

(
R(

∑n
j=1 Dj(Φk))×(

∑n
j=1 Dj(Φk−1)) × R(

∑n
j=1 Dj(Φk))

))
(3.93)

(cf. Definition 3.19).

Proof of Lemma 3.20. Note that (3.92) establishes (3.93). The proof of Lemma 3.20 is thus completed.

A comment from Josh: I think I need this result...

Proposition 3.21. Let a ∈ C(R,R), n ∈ N, Φ = (Φ1,Φ2, . . . ,Φn) ∈ Nn satisfy that L(Φ1) = L(Φ2) =
. . . = L(Φn) (cf. Definition 3.1). Then

(i) it holds that
Ra(Pn(Φ)) ∈ C

(
R[

∑n
j=1 I(Φj)],R[

∑n
j=1O(Φj)]

)
(3.94)

and

(ii) it holds for all x1 ∈ RI(Φ1), x2 ∈ RI(Φ2), . . . , xn ∈ RI(Φn) that(
Ra

(
Pn(Φ)

))
(x1, x2, . . . , xn)

=
(
(Ra(Φ1))(x1), (Ra(Φ2))(x2), . . . , (Ra(Φn))(xn)

)
∈ R[

∑n
j=1O(Φj)]

(3.95)

(cf. Definitions 3.6 and 3.19).

Proof of Proposition 3.21. Throughout this proof let L ∈ N satisfy that L = L(Φ1), let lj,0, lj,1, . . . , lj,L ∈
N, j ∈ {1, 2, . . . , n}, satisfy for all j ∈ {1, 2, . . . , n} that D(Φj) = (lj,0, lj,1, . . . , lj,L), let

(
(Wj,1, Bj,1),
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(Wj,2, Bj,2), . . . , (Wj,L, Bj,L)
)
∈ (×Lk=1(Rlj,k×lj,k−1 ×Rlj,k)), j ∈ {1, 2, . . . , n}, satisfy for all j ∈ {1, 2, . . . , n}

that
Φj =

(
(Wj,1, Bj,1), (Wj,2, Bj,2), . . . , (Wj,L, Bj,L)

)
, (3.96)

let αk ∈ N, k ∈ {0, 1, . . . , L}, satisfy for all k ∈ {0, 1, . . . , L} that αk =
∑n

j=1 lj,k, let
(
(A1, b1), (A2, b2), . . . ,

(AL, bL)
)
∈ (×Lk=1(Rαk×αk−1 × Rαk)) satisfy that

Pn(Φ) =
(
(A1, b1), (A2, b2), . . . , (AL, bL)

)
(3.97)

(cf. Lemma 3.20), let (xj,0, xj,1, . . . , xj,L−1) ∈ (Rlj,0 × Rlj,1 × . . .× Rlj,L−1), j ∈ {1, 2, . . . , n}, satisfy for all
j ∈ {1, 2, . . . , n}, k ∈ N ∩ (0, L) that

xj,k = Ma,lj,k(Wj,kxj,k−1 +Bj,k) (3.98)

(cf. Definition 3.5), and let x0 ∈ Rα0 , x1 ∈ Rα1 , . . . , xL−1 ∈ RαL−1 satisfy for all k ∈ {0, 1, . . . , L − 1}
that xk = (x1,k, x2,k, . . . , xn,k). Observe that (3.97) demonstrates that I(Pn(Φ)) = α0 and O(Pn(Φ)) =
αL. Combining this with item (ii) in Lemma 3.7, the fact that for all k ∈ {0, 1, . . . , L} it holds that
αk =

∑n
j=1 lj,k, the fact that for all j ∈ {1, 2, . . . , n} it holds that I(Φj) = lj,0, and the fact that for all

j ∈ {1, 2, . . . , n} it holds that O(Φj) = lj,L ensures that

Ra(Pn(Φ)) ∈ C(Rα0 ,RαL) = C
(
R[

∑n
j=1 lj,0],R[

∑n
j=1 lj,L]

)
= C

(
R[

∑n
j=1 I(Φj)],R[

∑n
j=1O(Φj)]

)
.

(3.99)

This proves item (i). Moreover, observe that (3.92) and (3.97) demonstrate that for all k ∈ {1, 2, . . . , L}
it holds that

Ak =


W1,k 0 0 · · · 0

0 W2,k 0 · · · 0
0 0 W3,k · · · 0
...

...
... . . . ...

0 0 0 · · · Wn,k

 and bk =


B1,k

B2,k

B3,k
...

Bn,k

 . (3.100)

Combining this with (3.5), (3.98), and the fact that for all k ∈ N∩ [0, L) it holds that xk = (x1,k, x2,k, . . . ,
xn,k) implies that for all k ∈ N ∩ (0, L) it holds that

Ma,αk(Akxk−1 + bk) =


Ma,l1,k(W1,kx1,k−1 +B1,k)
Ma,l2,k(W2,kx2,k−1 +B2,k)

...
Ma,ln,k(Wn,kxn,k−1 +Bn,k)

 =


x1,k

x2,k
...

xn,k

 = xk. (3.101)

This, (3.6), (3.96), (3.97), (3.98), (3.100), the fact that x0 = (x1,0, x2,0, . . . , xn,0), and the fact that xL−1 =
(x1,L−1, x2,L−1, . . . , xn,L−1) ensure that(

Ra

(
Pn(Φ)

))
(x1,0, x2,0, . . . , xn,0) =

(
Ra

(
Pn(Φ)

))
(x0)

= ALxL−1 + bL =


W1,Lx1,L−1 +B1,L

W2,Lx2,L−1 +B2,L
...

Wn,Lxn,L−1 +Bn,L

 =


(Ra(Φ1))(x1,0)
(Ra(Φ2))(x2,0)

...
(Ra(Φn))(xn,0)

 .
(3.102)

This establishes item (ii). The proof of Proposition 3.21 is thus completed.

A comment from Josh: I think I need this result...
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Proposition 3.22. Let n, L ∈ N, Φ = (Φ1,Φ2, . . . ,Φn) ∈ Nn satsify that L = L(Φ1) = L(Φ2) = . . . =
L(Φn) (cf. Definition 3.1). Then

(i) it holds that
D
(
Pn(Φ)

)
=
(∑n

j=1 D0(Φj),
∑n

j=1 D1(Φj), . . . ,
∑n

j=1 DL(Φj)
)

(3.103)

and

(ii) it holds that
P(Pn(Φ)) ≤ 1

2

[∑n
j=1P(Φj)

]2 (3.104)

(cf. Definition 3.19).

Proof of Proposition 3.22. Throughout this proof let lj,0, lj,1, . . . , lj,L ∈ N, j ∈ {1, 2, . . . , n}, satisfy for all
j ∈ {1, 2, . . . , n}, k ∈ {0, 1, . . . , L} that lj,k = Dk(Φj). Note that Lemma 3.20 assures that

D
(
Pn(Φ)

)
=
(∑n

j=1 lj,0,
∑n

j=1 lj,1, . . . ,
∑n

j=1 lj,L
)
. (3.105)

This establishes item (i). Moreover, observe that (3.105) demonstrates that

P(Pn(Φ)) =
L∑
k=1

[∑n
i=1 li,k

][(∑n
i=1 li,k−1

)
+ 1
]

=
L∑
k=1

[∑n
i=1 li,k

][(∑n
j=1 lj,k−1

)
+ 1
]

≤
n∑
i=1

n∑
j=1

L∑
k=1

li,k(lj,k−1 + 1) ≤
n∑
i=1

n∑
j=1

L∑
k,`=1

li,k(lj,`−1 + 1)

=
n∑
i=1

n∑
j=1

[∑L
k=1 li,k

][∑L
`=1(lj,`−1 + 1)

]
≤

n∑
i=1

n∑
j=1

[∑L
k=1

1
2
li,k(li,k−1 + 1)

][∑L
`=1 lj,`(lj,`−1 + 1)

]
=

n∑
i=1

n∑
j=1

1
2
P(Φi)P(Φj) = 1

2

[∑n
i=1P(Φi)

]2

.

(3.106)

The proof of Proposition 3.22 is thus completed.

A comment from Josh: I think I need this result...

Corollary 3.23. Let n ∈ N, Φ = (Φ1,Φ2, . . . ,Φn) ∈ Nn satisfy that D(Φ1) = D(Φ2) = . . . = D(Φn) (cf.
Definition 3.1). Then it holds that P(Pn(Φ)) ≤ n2P(Φ1) (cf. Definition 3.19).

Proof of Corollary 3.23. Throughout this proof let L ∈ N, l0, l1, . . . , lL ∈ N satisfy that D(Φ1) = (l0, l1,
. . . , lL). Note that item (i) in Proposition 3.22 and the fact that ∀ j ∈ {1, 2, . . . , n} : D(Φj) = (l0, l1, . . . ,
lL) demonstrate that

P(Pn(Φ1,Φ2, . . . ,Φn)) =
L∑
j=1

(nlj)
(
(nlj−1) + 1

)
≤

L∑
j=1

(nlj)
(
(nlj−1) + n

)
= n2

[
L∑
j=1

lj(lj−1 + 1)

]
= n2P(Φ1).

(3.107)

The proof of Corollary 3.23 is thus completed.
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3.4.2 Parallelizations of ANNs with different lengths

A comment from Josh: Should we update this definition to match that of the generalized
sum?

Definition 3.24 (Parallelization of ANNs with different length). Let n ∈ N, Ψ = (Ψ1,Ψ2, . . . ,Ψn) ∈ Nn

satisfy for all j ∈ {1, 2, . . . , n} that H(Ψj) = 1 and I(Ψj) = O(Ψj). Then we denote by

Pn,Ψ : {(Φ1,Φ2, . . . ,Φn) ∈ Nn : (∀ j ∈ {1, 2, . . . , n} : O(Φj) = I(Ψj))} → N (3.108)

the function which satisfies for all Φ = (Φ1,Φ2, . . . ,Φn) ∈ Nn with ∀ j ∈ {1, 2, . . . , n} : O(Φj) = I(Ψj)
that

Pn,Ψ(Φ) = Pn

(
Emaxk∈{1,2,...,n} L(Φk),Ψ1(Φ1), . . . , Emaxk∈{1,2,...,n} L(Φk),Ψn(Φn)

)
(3.109)

(cf. Definitions 3.1, 3.15, and 3.19 and Lemma 3.16).

A comment from Josh: I think I need this result...

Corollary 3.25. Let a ∈ C(R,R), n ∈ N, I = (I1, I2, . . . , In), Φ = (Φ1,Φ2, . . . ,Φn) ∈ Nn satisfy for
all j ∈ {1, 2, . . . , n}, x ∈ RO(Φj) that H(Ij) = 1, I(Ij) = O(Ij) = O(Φj), and (Ra(Ij))(x) = x (cf.
Definitions 3.1 and 3.6). Then

(i) it holds that
Ra

(
Pn,I(Φ)

)
∈ C

(
R[

∑n
j=1 I(Φj)],R[

∑n
j=1O(Φj)]

)
(3.110)

and

(ii) it holds for all x1 ∈ RI(Φ1), x2 ∈ RI(Φ2), . . . , xn ∈ RI(Φn) that(
Ra(Pn,I(Φ))

)
(x1, x2, . . . , xn)

=
(
(Ra(Φ1))(x1), (Ra(Φ2))(x2), . . . , (Ra(Φn))(xn)

)
∈ R[

∑n
j=1O(Φj)]

(3.111)

(cf. Definition 3.24).

Proof of Corollary 3.25. Throughout this proof let L ∈ N satisfy that L = maxj∈{1,2,...,n} L(Φj). Note
that item (ii) in Lemma 3.16, the hypothesis that for all j ∈ {1, 2, . . . , n} it holds that H(Ij) = 1, (3.68),
(3.12), and item (ii) in Lemma 3.17 demonstrate

(I) that for all j ∈ {1, 2, . . . , n} it holds that L(EL,Ij(Φj)) = L and Ra(EL,Ij(Φj)) ∈ C(RI(Φj),RO(Φj))
and

(II) that for all j ∈ {1, 2, . . . , n}, x ∈ RI(Φj) it holds that(
Ra(EL,Ij(Φj))

)
(x) = (Ra(Φj))(x) (3.112)

(cf. Definition 3.15). items (i) and (ii) in Proposition 3.21 therefore imply

(A) that
Ra

(
Pn

(
EL,I1(Φ1), EL,I2(Φ2), . . . , EL,In(Φn)

)
∈ C

(
R[

∑n
j=1 I(Φj)],R[

∑n
j=1O(Φj)]

)
(3.113)

and

(B) that for all x1 ∈ RI(Φ1), x2 ∈ RI(Φ2), . . . , xn ∈ RI(Φn) it holds that(
Ra

(
Pn

(
EL,I1(Φ1), EL,I2(Φ2), . . . , EL,In(Φn)

)))
(x1, x2, . . . , xn)

=
((
Ra

(
EL,I1(Φ1)

))
(x1),

(
Ra

(
EL,I2(Φ2)

))
(x2), . . . ,

(
Ra

(
EL,In(Φn)

))
(xn)

)
=
(

(Ra(Φ1))(x1), (Ra(Φ2))(x2), . . . , (Ra(Φn))(xn)
) (3.114)
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(cf. Definition 3.19). Combining this with (3.109) and the fact that L = maxj∈{1,2,...,n} L(Φj) ensures

(C) that
Ra

(
Pn,I(Φ)

)
∈ C

(
R[

∑n
j=1 I(Φj)],R[

∑n
j=1O(Φj)]

)
(3.115)

and

(D) that for all x1 ∈ RI(Φ1), x2 ∈ RI(Φ2), . . . , xn ∈ RI(Φn) it holds that(
Ra

(
Pn,I(Φ)

))
(x1, x2, . . . , xn)

=
(
Ra

(
Pn

(
EL,I1(Φ1), EL,I2(Φ2), . . . , EL,In(Φn)

)))
(x1, x2, . . . , xn)

=
(

(Ra(Φ1))(x1), (Ra(Φ2))(x2), . . . , (Ra(Φn))(xn)
)
.

(3.116)

This establishes items (i) and (ii). The proof of Corollary 3.25 is thus completed.

A comment from Josh: I think I need this result...

Corollary 3.26. Let n, L ∈ N, i1, i2, . . . , in ∈ N, Ψ = (Ψ1,Ψ2, . . . ,Ψn),Φ = (Φ1,Φ2, . . . ,Φn) ∈ Nn satisfy
for all j ∈ {1, 2, . . . , n} that D(Ψj) = (O(Φj), ij,O(Φj)) and L = maxk∈{1,2,...,n} L(Φk) (cf. Definition 3.1).
Then it holds that

P
(
Pn,Ψ(Φ)

)
≤ 1

2

([∑n
j=1

[
max

{
1,

ij
O(Φj)

}]
P(Φj)1(L(Φj),∞)(L)

]
+
[∑n

j=1

(
(L− L(Φj)− 1) ij (ij + 1) +O(Φj) (ij + 1)

)
1(L(Φj),∞)(L)

]
+
[∑n

j=1P(Φj)1{L(Φj)}(L)
])2

(3.117)

(cf. Definition 3.24).

Proof of Corollary 3.26. Observe that (3.109), item (ii) in Proposition 3.22, and item (ii) in Lemma 3.16
assure that

P
(
Pn,Ψ(Φ)

)
= P

(
Pn

(
EL,Ψ1(Φ1), EL,Ψ2(Φ2), . . . , EL,Ψn(Φn)

))
≤ 1

2

[∑n
j=1P(EL,Ψj(Φj))

]2

≤ 1
2

([∑n
j=1

[
max

{
1,

ij
O(Φj)

}]
P(Φj)1(L(Φj),∞)(L)

]
+
[∑n

j=1

(
(L− L(Φj)− 1) ij (ij + 1) +O(Φj) (ij + 1)

)
1(L(Φj),∞)(L)

]
+
[∑n

j=1P(Φj)1{L(Φj)}(L)
])2

(3.118)

(cf. Definitions 3.15 and 3.19). The proof of Corollary 3.26 is thus completed.

3.5 Linear transformations of ANNs

A comment from Josh: I have restructured this subsection...
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3.5.1 Linear transformations as ANNs

A comment from Josh: Is this an appropriate place for these results?

Definition 3.27 (Affine linear transformation ANN). Let m,n ∈ N, W ∈ Rm×n, B ∈ Rm. Then we
denote by AW,B ∈ (Rm×n × Rm) ⊆ N the neural network given by AW,B = (W,B) (cf. Definitions 3.1
and 3.2).

Lemma 3.28. Let m,n ∈ N, W ∈ Rm×n, B ∈ Rm. Then

(i) it holds that D(AW,B) = (n,m) ∈ N2,

(ii) it holds for all a ∈ C(R,R) that Ra(AW,B) ∈ C(Rn,Rm), and

(iii) it holds for all a ∈ C(R,R), x ∈ Rn that (Ra(AW,B))(x) = Wx+B

(cf. Definitions 3.1, 3.6, and 3.27).

Proof of Lemma 3.28. Note the fact that AW,B ∈ (Rm×n×Rm) ⊆ N ensures that D(AW,B) = (n,m) ∈ N2.
This establishes item (i). Next, observe that the fact that AW,B = (W,B) ∈ (Rm×n×Rm) and (3.6) prove
that for all a ∈ C(R,R), x ∈ Rn it holds that Ra(AW,B) ∈ C(Rn,Rm) and

(Ra(AW,B))(x) = Wx+B. (3.119)

This establishes items (ii) and (iii). The proof of Lemma 3.28 is thus completed.

Lemma 3.29. Let Φ ∈ N (cf. Definition 3.1). Then

(i) it holds for all m ∈ N, W ∈ Rm×O(Φ), B ∈ Rm that

D(AW,B • Φ) =
(
D0(Φ),D1(Φ), . . . ,DL(Φ)−1(Φ),m

)
∈ NL(Φ)+1, (3.120)

(ii) it holds for all a ∈ C(R,R), m ∈ N, W ∈ Rm×O(Φ), B ∈ Rm that Ra(AW,B • Φ) ∈ C(RI(Φ),Rm),

(iii) it holds for all a ∈ C(R,R), m ∈ N, W ∈ Rm×O(Φ), B ∈ Rm, x ∈ RI(Φ) that

(Ra(AW,B • Φ))(x) = W ((Ra(Φ))(x)) +B, (3.121)

(iv) it holds for all n ∈ N, W ∈ RI(Φ)×n, B ∈ RI(Φ) that

D(Φ •AW,B) =
(
n,D1(Φ),D2(Φ), . . . ,DL(Φ)(Φ)

)
∈ NL(Φ)+1, (3.122)

(v) it holds for all a ∈ C(R,R), n ∈ N, W ∈ RI(Φ)×n, B ∈ RI(Φ) that Ra(Φ •AW,B) ∈ C(Rn,RO(Φ)),
and

(vi) it holds for all a ∈ C(R,R), n ∈ N, W ∈ RI(Φ)×n, B ∈ RI(Φ), x ∈ Rn that

(Ra(Φ •AW,B))(x) = (Ra(Φ))(Wx+B) (3.123)

(cf. Definitions 3.6, 3.8, and 3.27).

Proof of Lemma 3.29. Note that Lemma 3.28 demonstrates that for all m,n ∈ N, W ∈ Rm×n, B ∈ Rm,
a ∈ C(R,R), x ∈ Rn it holds that Ra(AW,B) ∈ C(Rn,Rm) and

(Ra(AW,B))(x) = Wx+B. (3.124)

Combining this and Proposition 3.9 establishes items (i), (ii), (iii), (iv), (v), and (vi). The proof of
Lemma 3.29 is thus completed.
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Definition 3.30 (Activation ANN). Let n ∈ N. Then we denote by in ∈ ((Rn×n×Rn)×(Rn×n×Rn)) ⊆ N
the neural network given by in = ((In, 0), (In, 0)) (cf. Definitions 3.1, 3.2, and 3.13).

Lemma 3.31. Let n ∈ N (cf. Definition 3.1). Then

(i) it holds that D(in) = (n, n, n) ∈ N3,

(ii) it holds for all a ∈ C(R,R) that Ra(in) ∈ C(Rn,Rn), and

(iii) it holds for all a ∈ C(R,R) that Ra(in) = Ma,n

(cf. Definitions 3.5, 3.6, and 3.30).

Proof of Lemma 3.31. Note the fact that in ∈ ((Rn×n × Rn) × (Rn×n × Rn)) ⊆ N ensures that D(in) =
(n, n, n) ∈ N3. This establishes item (i). Next observe the fact that in = ((In, 0), (In, 0)) ∈ ((Rn×n×Rn)×
(Rn×n × Rn)) and (3.6) prove that for all a ∈ C(R,R), x ∈ Rn it holds that Ra(in) ∈ C(Rn,Rn) and

(Ra(in))(x) = In(Ma,n(Inx+ 0)) + 0 = Ma,n(x). (3.125)

This establishes items (ii) and (iii). The proof of Lemma 3.31 is thus completed.

Lemma 3.32. Let Φ ∈ N (cf. Definition 3.1). Then

(i) it holds that D(iO(Φ) • Φ) = (I(Φ),D1(Φ),D2(Φ), . . . ,DL(Φ)−1(Φ),O(Φ),O(Φ)) ∈ NL(Φ)+2,

(ii) it holds for all a ∈ C(R,R) that Ra(iO(Φ) • Φ) ∈ C(RI(Φ),RO(Φ)),

(iii) it holds for all a ∈ C(R,R), x ∈ RI(Φ) that (Ra(iO(Φ) • Φ))(x) = Ma,O(Φ)((Ra(Φ))(x)),

(iv) it holds that D(Φ • iI(Φ)) = (I(Φ), I(Φ),D1(Φ),D2(Φ), . . . ,DL(Φ)−1(Φ),O(Φ)) ∈ NL(Φ)+2,

(v) it holds for all a ∈ C(R,R) that Ra(Φ • iI(Φ)) ∈ C(RI(Φ),RO(Φ)), and

(vi) it holds for all a ∈ C(R,R), x ∈ RI(Φ) that (Ra(Φ • iI(Φ)))(x) = (Ra(Φ))(Ma,I(Φ)(x))

(cf. Definitions 3.6 and 3.30).

Proof of Lemma 3.32. Note that Lemma 3.31 demonstrates that for all n ∈ N, a ∈ C(R,R), x ∈ Rn it
holds that Ra(in) ∈ C(Rn,Rn) and

(Ra(in))(x) = Ma,n(x). (3.126)

Combining this and Proposition 3.9 establishes items (i), (ii), (iii), (iv), (v), and (vi). The proof of
Lemma 3.32 is thus completed.

3.5.2 Scalar multiplications of ANNs

Definition 3.33 (Scalar multiplications of ANNs). We denote by (·) ~ (·) : R × N → N the function
which satisfies for all λ ∈ R, Φ ∈ N that

λ~ Φ = Aλ IO(Φ),0 • Φ (3.127)

(cf. Definitions 3.1, 3.8, 3.13, and 3.27).

Lemma 3.34. Let λ ∈ R, Φ ∈ N (cf. Definition 3.1). Then

(i) it holds that D(λ~ Φ) = D(Φ),

(ii) it holds for all a ∈ C(R,R) that Ra(λ~ Φ) ∈ C(RI(Φ),RO(Φ)), and
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(iii) it holds for all a ∈ C(R,R), x ∈ RI(Φ) that

(Ra(λ~ Φ))(x) = λ
(
(Ra(Φ))(x)

)
(3.128)

(cf. Definitions 3.6 and 3.33).

Proof of Lemma 3.34. Throughout this proof let L ∈ N, l0, l1, . . . , lL ∈ N satisfy that L = L(Φ) and
(l0, l1, . . . , lL) = D(Φ). Note that item (i) in Lemma 3.28 proves that

D(Aλ IO(Φ),0) = (O(Φ),O(Φ)) (3.129)

(cf. Definitions 3.13 and 3.27). Combining this and item (i) in Proposition 3.9 assures that

D(λ~ Φ) = D(Aλ IO(Φ),0 • Φ) = (l0, l1, . . . , lL−1,O(Φ)) = D(Φ). (3.130)

This establishes item (i). Moreover, observe that items (i) and (ii) in Lemma 3.29 demonstrate that for
all a ∈ C(R,R), x ∈ RI(Φ) it holds that Ra(λ~ Φ) ∈ C(RI(Φ),RO(Φ)) and

(Ra(λ~ Φ))(x) = (Ra(Aλ IO(Φ),0 • Φ))(x)

= λ IO(Φ)

(
(Ra(Φ))(x)

)
= λ

(
(Ra(Φ))(x)

)
.

(3.131)

This establishes items (ii) and (iii). The proof of Lemma 3.34 is thus completed.

3.6 Representations of the identities with rectifier functions

A comment from Josh: This is new...

Definition 3.35 (Identity network). We denote by I ∈ N the neural network which satisfies that

I =

(((
1
−1

)
,

(
0
0

))
,
( (

1 −1
)
, 0
))
∈
(
(R2×1 × R2)× (R1×2 × R1)

)
(3.132)

(cf. Definitions 3.1 and 3.2).

A comment from Josh: This is new...

Lemma 3.36. Let a ∈ C(R,R) satisfy for all x ∈ R that a(x) = max{x, 0}. Then

(i) it holds that D(I) = (1, 2, 1) ∈ N3,

(ii) it holds that Ra(I) ∈ C(R,R), and

(iii) it holds for all x ∈ R that (Ra(I))(x) = x

(cf. Definitions 3.1, 3.6, and 3.35).

Proof of Lemma 3.36. Throughout this proof let L = 2, l0 = 1, l1 = 2, l2 = 1. Note that (3.132) ensures
that D(I) = (1, 2, 1) ∈ N3. This establishes item (i). Next note that (3.132) assures that for all x ∈ R it
holds that

(Ra(I))(x) = a(x)− a(−x) = max{x, 0} −max{−x, 0} = x. (3.133)

This establishes items (ii) and (iii). The proof of Lemma 3.36 is thus completed.
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3.7 Sums of ANNs

3.7.1 Sums of ANNs with the same length

Definition 3.37. Let m,n ∈ N. Then we denote by Sm,n ∈ (Rm×(nm) × Rm) the pair given by

Sm,n = A(Im Im ... Im),0 (3.134)

(cf. Definitions 3.13 and 3.27).

A comment from Josh: I think I need this...

Lemma 3.38. Let m,n ∈ N. Then

(i) it holds that Sm,n ∈ N,

(ii) it holds that D(Sm,n) = (nm,m) ∈ N2,

(iii) it holds for all a ∈ C(R,R) that Ra(Sm,n) ∈ C(Rnm,Rm), and

(iv) it holds for all a ∈ C(R,R), x1, x2, . . . , xn ∈ Rm that

(Ra(Sm,n))(x1, x2, . . . , xn) =
∑n

k=1 xk (3.135)

(cf. Definitions 3.1, 3.6, and 3.37).

Proof of Lemma 3.38. Note that the fact that Sm,n ∈ (Rm×(nm) × Rm) ensures that Sm,n ∈ N and
D(Sm,n) = (nm,m) ∈ N2. This establishes items (i) and (ii). Next observe that items (ii) and (iii) in
Lemma 3.28 prove that for all a ∈ C(R,R), x1, x2, . . . , xn ∈ Rm it holds that Ra(Sm,n) ∈ C(Rnm,Rm)
and

(Ra(Sm,n))(x1, x2, . . . , xn) =
(
Ra

(
A(Im Im ... Im),0

))
(x1, x2, . . . , xn)

= (Im Im . . . Im)(x1, x2, . . . , xn) =
∑n

k=1 xk
(3.136)

(cf. Definitions 3.13 and 3.27). This establishes items (iii) and (iv). The proof of Lemma 3.38 is thus
completed.

A comment from Josh: I think I need this...

Lemma 3.39. Let m,n ∈ N, a ∈ C(R,R), Φ ∈ {Ψ ∈ N : O(Ψ) = nm} (cf. Definition 3.1). Then

(i) it holds that Ra(Sm,n • Φ) ∈ C(RI(Φ),Rm) and

(ii) it holds for all x ∈ RI(Φ), y1, y2, . . . , yn ∈ Rm with (Ra(Φ))(x) = (y1, y2, . . . , yn) that(
Ra(Sm,n • Φ)

)
(x) =

∑n
k=1 yk (3.137)

(cf. Definitions 3.6, 3.8, and 3.37).

Proof of Lemma 3.39. Note that Lemma 3.38 ensures that for all x1, x2, . . . , xn ∈ Rm it holds that
Ra(Sm,n) ∈ C(Rnm,Rm) and

(Ra(Sm,n))(x1, x2, . . . , xn) =
∑n

k=1 xk. (3.138)

Combining this and item (v) in Proposition 3.9 establishes items (i) and (ii). The proof of Lemma 3.39 is
thus completed.

A comment from Josh: I think I need this...
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Lemma 3.40. Let n ∈ N, a ∈ C(R,R), Φ ∈ N (cf. Definition 3.1). Then

(i) it holds that Ra(Φ •SI(Φ),n) ∈ C(RnI(Φ),RO(Φ)) and

(ii) it holds for all x1, x2, . . . , xn ∈ RI(Φ) that(
Ra(Φ •SI(Φ),n)

)
(x1, x2, . . . , xn) = (Ra(Φ))(

∑n
k=1 xk) (3.139)

(cf. Definitions 3.6, 3.8, and 3.37).

Proof of Lemma 3.40. Note that Lemma 3.38 demonstrates that for all m ∈ N, x1, x2, . . . , xn ∈ Rm it
holds that Ra(Sm,n) ∈ C(Rnm,Rm) and

(Ra(Sm,n))(x1, x2, . . . , xn) =
∑n

k=1 xk. (3.140)

Combining this and item (v) in Proposition 3.9 establishes items (i) and (ii). The proof of Lemma 3.40 is
thus completed.

Definition 3.41 (Matrix transpose). Let m,n ∈ N, A ∈ Rm×n. Then we denote by A∗ ∈ Rn×m the
transpose of A.

Definition 3.42 (Transpose ANN). Let m,n ∈ N. Then we denote by Tm,n ∈ (R(nm)×m × Rnm) the pair
given by

Tm,n = A(Im Im ... Im)∗,0 (3.141)

(cf. Definitions 3.13, 3.27, and 3.41).

A comment from Josh: I think I need this...

Lemma 3.43. Let m,n ∈ N. Then

(i) it holds that Tm,n ∈ N,

(ii) it holds that D(Tm,n) = (m,nm) ∈ N2,

(iii) it holds for all a ∈ C(R,R) that Ra(Tm,n) ∈ C(Rm,Rnm), and

(iv) it holds for all a ∈ C(R,R), x ∈ Rm that

(Ra(Tm,n))(x) = (x, x, . . . , x) (3.142)

(cf. Definitions 3.1, 3.6, and 3.42).

Proof of Lemma 3.43. Note that the fact that Tm,n ∈ (R(nm)×m × Rnm) ensures that Tm,n ∈ N and
D(Tm,n) = (m,nm) ∈ N2. This establishes items (i) and (ii). Next observe that items (ii) and (iii) in
Lemma 3.28 prove that for all a ∈ C(R,R), x ∈ Rm it holds that Ra(Tm,n) ∈ C(Rm,Rnm) and

(Ra(Tm,n))(x) =
(
Ra

(
A(Im Im ... Im)∗,0

))
(x)

= (Im Im . . . Im)∗x = (x, x, . . . , x)
(3.143)

(cf. Definitions 3.13 and 3.27). This establishes items (iii) and (iv). The proof of Lemma 3.43 is thus
completed.

A comment from Josh: I think I need this...

Lemma 3.44. Let n ∈ N, a ∈ C(R,R), Φ ∈ N (cf. Definition 3.1). Then

(i) it holds that Ra(TO(Φ),n • Φ) ∈ C(RI(Φ),RnO(Φ)) and
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(ii) it holds for all x ∈ RI(Φ) that(
Ra(TO(Φ),n • Φ)

)
(x) =

(
(Ra(Φ))(x), (Ra(Φ))(x), . . . , (Ra(Φ))(x)

)
(3.144)

(cf. Definitions 3.6, 3.8, and 3.42).

Proof of Lemma 3.44. Note that Lemma 3.43 ensures that for allm ∈ N, x ∈ Rm it holds thatRa(Tm,n) ∈
C(Rm,Rnm) and

(Ra(Tm,n))(x) = (x, x, . . . , x). (3.145)

Combining this and item (v) in Proposition 3.9 establishes items (i) and (ii). The proof of Lemma 3.44 is
thus completed.

A comment from Josh: I think I need this...

Lemma 3.45. Let m,n ∈ N, a ∈ C(R,R), Φ ∈ {Ψ ∈ N : I(Ψ) = nm} (cf. Definition 3.1). Then

(i) it holds that Ra(Φ • Tm,n) ∈ C(Rm,RO(Φ)) and

(ii) it holds for all x ∈ Rm that (
Ra(Φ • Tm,n)

)
(x) = (Ra(Φ))(x, x, . . . , x) (3.146)

(cf. Definitions 3.6, 3.8, and 3.42).

Proof of Lemma 3.45. Observe that Lemma 3.43 demonstrates that for all x ∈ Rm it holds thatRa(Tm,n) ∈
C(Rm,Rnm) and

(Ra(Tm,n))(x) = (x, x, . . . , x). (3.147)

Combining this and item (v) in Proposition 3.9 establishes items (i) and (ii). The proof of Lemma 3.45 is
thus completed.

Definition 3.46 (Sums of DNNs with the same length). Let n ∈ N, Φ1,Φ2, . . . ,Φn ∈ N satisfy for
all k ∈ {1, 2, . . . , n} that L(Φk) = L(Φ1), I(Φk) = I(Φ1), and O(Φk) = O(Φ1). Then we denote by
⊕k∈{1,2,...,n}Φk (we denote by Φ1 ⊕ Φ2 ⊕ . . .⊕ Φn) the neural network given by

⊕k∈{1,2,...,n} Φk =
(
SO(Φ1),n •

[
Pn(Φ1,Φ2, . . . ,Φn)

]
• TI(Φ1),n

)
∈ N (3.148)

(cf. Definitions 3.1, 3.2, 3.8, 3.19, 3.37, and 3.42).

A comment from Josh: I think I need this...

Lemma 3.47. Let n ∈ N, Φ1,Φ2, . . . ,Φn ∈ N satisfy for all k ∈ {1, 2, . . . , n} that L(Φk) = L(Φ1),
I(Φk) = I(Φ1), and O(Φk) = O(Φ1) (cf. Definition 3.1). Then

(i) it holds that L(⊕k∈{1,2,...,n}Φk) = L(Φ1),

(ii) it holds that

D(⊕k∈{1,2,...,n}Φk) (3.149)
=
(
I(Φ1),

∑n
k=1 D1(Φk),

∑n
k=1 D2(Φk), . . . ,

∑n
k=1 DL(Φ1)−1(Φk),O(Φ1)

)
,

(iii) it holds for all a ∈ C(R,R) that Ra(⊕k∈{1,2,...,n}Φk) ∈ C(RI(Φ1),RO(Φ1)), and
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(iv) it holds for all a ∈ C(R,R), x ∈ RI(Φ1) that

(
Ra(⊕k∈{1,2,...,n}Φk)

)
(x) =

n∑
k=1

(Ra(Φk))(x) (3.150)

(cf. Definitions 3.6 and 3.46).

Proof of Lemma 3.47. First, note that Lemma 3.20 proves that

D
(
Pn(Φ1,Φ2, . . . ,Φn)

)
=
(∑n

k=1 D0(Φk),
∑n

k=1 D1(Φk), . . . ,
∑n

k=1 DL(Φ1)−1(Φk),
∑n

k=1 DL(Φ1)(Φk)
)

=
(
nI(Φ1),

∑n
k=1 D1(Φk),

∑n
k=1 D2(Φk), . . . ,

∑n
k=1 DL(Φ1)−1(Φk), nO(Φ1)

) (3.151)

(cf. Definition 3.19). Moreover, observe that item (ii) in Lemma 3.38 ensures that

D
(
SO(Φ1),n

)
= (nO(Φ1),O(Φ1)) (3.152)

(cf. Definition 3.37). This, (3.151), and item (i) in Proposition 3.9 demonstrate that

D
(
SO(Φ1),n •

[
Pn(Φ1,Φ2, . . . ,Φn)

])
=
(
nI(Φ1),

∑n
k=1 D1(Φk),

∑n
k=1 D2(Φk), . . . ,

∑n
k=1 DL(Φ1)−1(Φk),O(Φ1)

)
.

(3.153)

Next note that item (ii) in Lemma 3.43 assures that

D
(
TI(Φ1),n

)
= (I(Φ1), nI(Φ1)) (3.154)

(cf. Definition 3.42). Combining this, (3.153), and item (i) in Proposition 3.9 proves that

D(⊕k∈{1,2,...,n}Φk)

= D
(
SO(Φ1),n •

[
Pn(Φ1,Φ2, . . . ,Φn)

]
• TI(Φ1),n

)
=
(
I(Φ1),

∑n
k=1 D1(Φk),

∑n
k=1 D2(Φk), . . . ,

∑n
k=1 DL(Φ1)−1(Φk),O(Φ1)

)
.

(3.155)

This establishes items (i) and (ii). Next observe that Lemma 3.45 and (3.151) ensure that for all a ∈
C(R,R), x ∈ RI(Φ1) it holds that Ra([Pn(Φ1,Φ2, . . . ,Φn)] • TI(Φ1),n) ∈ C(RI(Φ1),RnO(Φ1)) and(

Ra

(
[Pn(Φ1,Φ2, . . . ,Φn)] • TI(Φ1),n

))
(x)

=
(
Ra

(
Pn(Φ1,Φ2, . . . ,Φn)

))
(x, x, . . . , x).

(3.156)

Combining this with item (ii) in Proposition 3.21 proves that for all a ∈ C(R,R), x ∈ RI(Φ1) it holds that(
Ra

(
[Pn(Φ1,Φ2, . . . ,Φn)] • TI(Φ1),n

))
(x)

=
(
(Ra(Φ1))(x), (Ra(Φ2))(x), . . . , (Ra(Φn))(x)

)
∈ RnO(Φ1).

(3.157)

Lemma 3.39, (3.152), and Lemma 3.11 therefore demonstrate that for all a ∈ C(R,R), x ∈ RI(Φ1) it holds
that Ra(⊕k∈{1,2,...,n}Φk) ∈ C(RI(Φ1),RO(Φ1)) and(

Ra(⊕k∈{1,2,...,n}Φk)
)
(x)

=
(
Ra

(
SO(Φ1),n • [Pn(Φ1,Φ2, . . . ,Φn)] • TI(Φ1),n

))
(x) =

n∑
k=1

(Ra(Φk))(x).
(3.158)

This establishes items (iii) and (iv). The proof of Lemma 3.47 is thus completed.
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3.7.2 Sums of ANNs with different lengths

A comment from Josh: This has been updated...

Definition 3.48 (Sums of ANNs with different lengths). Let u ∈ N, v ∈ N∩(u,∞), Φu,Φu+1, . . . ,Φv,Ψ ∈
N satisfy that I(Φu) = I(Φu+1) = . . . = I(Φv), O(Φu) = O(Φu+1) = . . . = O(Φv) = I(Ψ) = O(Ψ), and
H(Ψ) = 1. Then we denote by �vk=u,ΨΦk (we denote by Φu �Ψ Φu+1 �Ψ · · ·�Ψ Φv) the tuple given by

v

�
k=u,Ψ

Φk =
v
⊕
k=u
Emaxk∈{u,u+1,...,v} L(Φk),Ψ(Φk) (3.159)

(cf. Definitions 3.1, 3.42, and 3.46).

A comment from Josh: I think I need this...

Lemma 3.49. Let a ∈ C(R,R), u ∈ N, v ∈ N ∩ (u,∞), Φu,Φu+1, . . . ,Φv ∈ N Ψ = (Ψu,Ψu+1, . . . ,
Ψv) ∈ Nv−u+1 satisfy for all k ∈ {u, u + 1, . . . , v} that I(Φk) = I(Φu), O(Φk) = O(Φu), H(Ψk) = 1,
I(Ψk) = O(Ψk) = O(Φu), and (Ra(Ψk))(x) = x (cf. Definitions 3.1 and 3.6). Then

(i) it holds that L(�vk=u,ΨΦk) = L(Φu),

(ii) it holds that

D
(
�vk=u,ΨΦk

)
=
(
I(Φ1),

∑n
k=1 D1(Emaxk∈{u,u+1,...,v} L(Φk),Ψ(Φk)),

∑n
k=1 D2(Emaxk∈{u,u+1,...,v} L(Φk),Ψ(Φk))

. . . ,
∑n

k=1 Dmaxk∈{u,u+1,...,v} L(Φk)−1(Emaxk∈{u,u+1,...,v} L(Φk),Ψ(Φk)),O(Φ1)
)
,

(3.160)

(iii) it holds that Ra(�vk=u,ΨΦk) ∈ C(RI(Φu),RO(Φu)), and

(iv) it holds for all x ∈ RI(Φu) that

Ra

(
�vk=u,ΨΦk

)
=

v∑
k=u

Ra(Φk), (3.161)

(cf. Definition 3.48).

Proof of Lemma 3.49. A comment from Josh: Add proof...

3.8 Linear combinations of ANNs

A comment from Josh: Should I prove a “simpler” result for linear combinations?

3.8.1 Linear combinations of ANNs with the same length

A comment from Josh: I’m not sure if I need this...

Lemma 3.50. Let n ∈ N, h1, h2, . . . , hn ∈ R, Φ1,Φ2, . . . ,Φn ∈ N satisfy that D(Φ1) = D(Φ2) = . . . =
D(Φn), let Ak ∈ RI(Φ1)×(nI(Φ1)), k ∈ {1, 2, . . . , n}, satisfy for all k ∈ {1, 2, . . . , n}, x = (xi)i∈{1,2,...,n} ∈
RnI(φ1) that Akx = xk, and let Ψ ∈ N satisfy that

Ψ = ⊕k∈{1,2,...,n}(hk ~ (Φk •AAk,0)) (3.162)

(cf. Definitions 3.1, 3.27, 3.33, and 3.46). Then
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(i) it holds that
D(Ψ) = (nI(Φ1), nD1(Φ1), nD2(Φ1), . . . , nDL(Φ1)−1(Φ1),O(Φ1)), (3.163)

(ii) it holds that P(Ψ) ≤ n2P(Φ1),

(iii) it holds for all a ∈ C(R,R) that Ra(Ψ) ∈ C(RnI(Φ1),RO(Φ1)), and

(iv) it holds for all a ∈ C(R,R), x = (xk)k∈{1,2,...,n} ∈ RnI(Φ1) that

(Ra(Ψ))(x) =
n∑
k=1

hk(Ra(Φk))(xk) (3.164)

(cf. Definition 3.6).

Proof of Lemma 3.50. First, note that item (i) in Lemma 3.28 ensures for all k ∈ {1, 2, . . . , n} that

D(AAk,0) = (nI(Φ1), I(Φ1)) ∈ N2. (3.165)

This and item (i) in Proposition 3.9 prove for all k ∈ {1, 2, . . . , n} that

D(Φk •AAk,0) = (nI(Φ1),D1(Φk),D2(Φk), . . . ,DL(Φk)(Φk)). (3.166)

Item (i) in Lemma 3.34 therefore demonstrates for all k ∈ {1, 2, . . . , n} that

D(hk ~ (Φk •AAk,0)) = D(Φk •AAk,0)

= (nI(Φ1),D1(Φk),D2(Φk), . . . ,DL(Φk)−1(Φk),O(Φk))

= (nI(Φ1),D1(Φ1),D2(Φ1), . . . ,DL(Φ1)−1(Φ1),O(Φ1)).

(3.167)

Combining this with item (ii) in Lemma 3.47 ensures that

D(Ψ) = D
(
⊕k∈{1,2,...,n} (hk ~ (Φk •WAk))

)
= (nI(Φ1), nD1(Φ1), nD2(Φ1), . . . , nDL(Φ1)−1(Φ1),O(Φ1)).

(3.168)

This establishes item (i). Hence, we obtain that

P(Ψ) ≤ n2P(Φ1). (3.169)

This establishes item (ii). Moreover, observe that items (v) and (vi) in Lemma 3.29 assure for all k ∈
{1, 2, . . . , n}, a ∈ C(R,R), x = (xi)i∈{1,2,...,n} ∈ RnI(Φ1) that Ra(Φk •AAk,0) ∈ C(RnI(Φ1),RO(Φk)) and(

Ra(Φk •AAk,0)
)
(x) = (Ra(Φ))(Akx) = (Ra(Φ))(xk). (3.170)

Combining this with items (ii) and (iii) in Lemma 3.34 proves for all k ∈ {1, 2, . . . , n}, a ∈ C(R,R),
x = (xi)i∈{1,2,...,n} ∈ RnI(Φ1) that Ra(hk ~ (Φk •AAk,0)) ∈ C(RnI(Φ1),RO(Φ1)) and(

Ra(hk ~ (Φk •AAk,0))
)
(x) = hk(Ra(Φ))(xk). (3.171)

Items (iii) and (iv) in Lemma 3.47 and (3.167) hence ensure for all a ∈ C(R,R), x = (xi)i∈{1,2,...,n} ∈ RnI(Φ1)

that Ra(Ψ) ∈ C(RnI(Φ1),RO(Φ1)) and

(Ra(Ψ))(x) =
(
Ra

(
⊕k∈{1,2,...,n} (hk ~ (Φk •AAk,0))

))
(x)

=
n∑
k=1

(
Ra(hk ~ (Φk •AAk,0))

)
(x) =

n∑
k=1

hk(Ra(Φk))(xk).
(3.172)

This establishes items (iii) and (iv). The proof of Lemma 3.50 is thus completed.
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3.8.2 Linear combinations of ANNs with different lengths

A comment from Josh: I think I need this result...

Lemma 3.51. Let a ∈ C(R,R), n ∈ N, h1, h2, . . . , hn ∈ R, Φ1,Φ2, . . . ,Φn ∈ N satisfy for all k ∈
{1, 2, . . . , n} that I(Φk) = I(Φ1), let Ak ∈ RI(Φu)×(cI(Φu)), k ∈ {1, 2, . . . , n}, satisfy for all k ∈ {1, 2, . . . , n},
x = (xi)i∈{1,2,...,n} ∈ RnI(Φu) that Akx = xk, and let Ψ ∈ N satisfy that

Ψ =
v

�
k=u,I

(hk ~ (Φk •AAk,0)) (3.173)

(cf. Definitions 3.1, 3.6, 3.27, 3.33, 3.35, and 3.48). Then

(i) it holds that
D(Ψ) = A comment from Josh: Add vector..., (3.174)

(ii) it holds that P(Ψ) ≤ A comment from Josh: Add value...,

(iii) it holds that Ra(Ψ) ∈ C(RnI(Φu),RO(Φu)), and

(iv) it holds for all x = (xk)k∈{u,u+1,...,v} ∈ RnI(Φu) that

(Ra(Ψ))(x) =
v∑

k=u

hk(Ra(Φk))(xk). (3.175)

Proof of Lemma 3.51. A comment from Josh: Add proof....

4 ANN representations for MLP approximations

4.1 ANN representations for MLP approximations

Lemma 4.1. Let α, β,M ∈ [0,∞), Un ∈ [0,∞), n ∈ N0, satisfy for all n ∈ N that

Un ≤ αMn +
n−1∑
k=0

Mn−k (max{β, Uk}+ 1N(k) max{β, Umax{k−1,0}}
)
. (4.1)

Then it holds for all n ∈ N that Un ≤ (2M + 1)n max{α, β}.
Proof of Lemma 4.1. We prove Lemma 4.1 by induction on n ∈ N0. Throughout this proof let Sn ∈ [0,∞),
n ∈ N0, satisfy for all n ∈ N0 that

Sn = Mn +
n−1∑
k=0

Mn−k ((2M + 1)k + 1N(k) (2M + 1)max{k−1,0}) . (4.2)

For the base case n = 0 note that (4.1) implies that U0 ≤ α ≤ max{α, β}. This proves the base case n = 0.
For the induction step from n ∈ N0 to n + 1 ∈ N let n ∈ N0 and assume that for all k ∈ {0, 1, . . . , n} it
holds that Uk ≤ (2M + 1)k max{α, β}. Note that (4.1) yields that

Un+1 ≤ αMn+1 +
n∑
k=0

Mn+1−k (max{β, Uk}+ 1N(k) max{β, Umax{k−1,0}}
)

≤ αMn+1 +
n∑
k=0

Mn+1−k (max{β, (2M + 1)k max{α, β}}

+1N(k) max{β, (2M + 1)max{k−1,0}max{α, β}}
)

≤ αMn+1 + max{α, β}
n∑
k=0

Mn+1−k ((2M + 1)k + 1N(k) (2M + 1)max{k−1,0})
≤ max{α, β}Sn+1.

(4.3)
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Note that by (4.2) and the assumption that M ∈ [0,∞) it follows that

Sn+1 = Mn+1 +
n∑
k=0

Mn+1−k ((2M + 1)k + 1N(k) (2M + 1)max{k−1,0})
= Mn+1 +

n∑
k=0

Mn+1−k(2M + 1)k +
n∑
k=1

Mn+1−k(2M + 1)k−1

= Mn+1 +M

[
(2M + 1)n+1 −Mn+1

M + 1

]
+M

[
(2M + 1)n −Mn

M + 1

]
= Mn+1 +

M(2M + 1)n+1

M + 1
+
M(2M + 1)n

M + 1
−M

[
Mn+1 +Mn

M + 1

]
≤Mn+1 +

M(2M + 1)n+1

M + 1
+

(2M + 1)n+1

M + 1
−Mn+1

[
M + 1

M + 1

]
= (2M + 1)n+1.

(4.4)

Combining (4.3) and (4.4) completes the induction step, which establishes (4.1). The proof of Lemma 4.1
is thus completed.

Lemma 4.2. Let Θ = (
⋃
n∈N Zn), d,M ∈ N, T ∈ (0,∞), f ∈ C(R,R), g ∈ C(Rd,R), F,G ∈ N satisfy

that Rr(F) = f, and Rr(G) = g, let uθ ∈ [0, 1], θ ∈ Θ, and U θ : [0, T ] → [0, T ], θ ∈ Θ, satisfy for all
t ∈ [0, T ], θ ∈ Θ that U θt = t+ (T − t)uθ, let W θ : [0, T ]→ Rd, θ ∈ Θ, for every θ ∈ Θ, t ∈ [0, T ], s ∈ [t, T ]
let Y θ

t,s ∈ Rd satisfy Y θ
t,s = W θ

s −W θ
t , and let U θ

n : [0, T ] × Rd → R, n ∈ N0, θ ∈ Θ, satisfy for all θ ∈ Θ,
n ∈ N0, t ∈ [0, T ], x ∈ Rd that

U θ
n(t, x) =

1N(n)

Mn

[
Mn∑
k=1

g
(
x+ Y

(θ,0,−k)
t,T

)]

+
n−1∑
i=0

(T − t)
Mn−i

Mn−i∑
k=1

(
(f ◦ U (θ,i,k)

i )− 1N(i) (f ◦ U (θ,−i,k)
max{i−1,0})

)(
U (θ,i,k)
t , x+ Y

(θ,i,k)

t,U(θ,i,k)
t

) (4.5)

(cf. Definitions 3.1, 3.4, and 3.6). Then

(i) there exist unique Uθ
n,t ∈ N, t ∈ [0, T ], n ∈ N0, θ ∈ Θ, which satisfy for all θ1, θ2 ∈ Θ, n ∈ N0,

t1, t2 ∈ [0, T ] that D(Uθ1
n,t1) = D(Uθ2

n,t2),

(ii) it holds for all θ ∈ Θ, t ∈ [0, T ] that Uθ
0,t = ((0 0 . . . 0), 0) ∈ R1×d × R1,

(iii) it holds for all θ ∈ Θ, n ∈ N, t ∈ [0, T ] that

Uθ
n,t =

[
Mn

⊕
k=1

(
1

Mn
~
(
G •A

Id,Y
(θ,0,−k)
t,T

))]
� I

[
n−1

�
i=0,I

[(
(T − t)
Mn−i

)
~

(
Mn−i

�
k=1,I

((
F •U

(θ,i,k)

i,U(θ,i,k)
t

)
•A

Id,Y
(θ,i,k)

t,U(θ,i,k)
t

))]]
(4.6)

� I

[
n−1

�
i=0,I

[(
(t− T )1N(i)

Mn−i

)
~

(
Mn−i

�
k=1,I

((
F •U

(θ,−i,k)

max{i−1,0},U(θ,i,k)
t

)
•A

Id,Y
(θ,i,k)

t,U(θ,i,k)
t

))]]
,

A comment from Josh: Would a different construction yield better estimates?

(iv) it holds for all θ ∈ Θ, n ∈ N0, t ∈ [0, T ] that L(Uθ
n,t) = nH(F) + max{1,1N(n)L(G)},

(v) it holds for all θ ∈ Θ, n ∈ N0, t ∈ [0, T ] that ~D(Uθ
n,t)~ ≤ (2M + 1)n max{2,~D(F)~,~D(G)~},
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(vi) it holds for all θ ∈ Θ, n ∈ N0, t ∈ [0, T ], x ∈ Rd that U θ
n(t, x) = ((Rr(U

θ
n,t))(x), and

(vii) it holds for all θ ∈ Θ, n ∈ N0, t ∈ [0, T ] that

P(Uθ
n,t) ≤ 2nH(F) + max{1,1N(n)L(G)} [(2M + 1)n max{2,~D(F)~,~D(G)~}]2 (4.7)

A comment from Josh: I need to double-check the above... Can it be improved?

(cf. Definitions 3.8, 3.13, 3.27, 3.33, 3.35, 3.37, and 3.48).

A comment from Josh: The proof is still being update/finalized...
A comment from Josh: I cannot do what I did in (4.8)...

Proof of Lemma 4.2. Throughout this proof let κn` ∈ N, ` ∈ {1, 2, . . . ,L(F •U0
n,0) − 1}, n ∈ N0, satisfy

for all n ∈ N0, ` ∈ {1, 2, . . . ,L(F •U0
n,0)− 1} that

κn` = Mn+1D`(EL(F•U0
n,0),I(G)) +

n∑
i=0

Mn+1−iD`(EL(F•U0
n,0),I(F •U0

i,0))

+
n∑
i=0

Mn+1−iD`(EL(F•U0
n,0),I(F •U0

max{i−1,0},0)).

(4.8)

We prove items (i), (ii), (iii), (iv), (v), and (vi) by induction on n ∈ N0. For the base case n = 0 note that
the fact that for all θ ∈ Θ, t ∈ [0, T ], x ∈ Rd we have U θ

n(t, x) = 0 and A comment from Josh: Add
lemma imply that there exist unique Uθ

0,t ∈ N, t ∈ [0, T ], θ ∈ Θ, such that it holds for all θ ∈ Θ, t ∈ [0, T ]

that Uθ
0,t = ((0 0 . . . 0), 0) ∈ R1×d × R1 and for all θ1, θ2 ∈ Θ, t1, t2 ∈ [0, T ] that D(Uθ1

0,t1
) = D(Uθ2

0,t2
).

Moreover, by the assumption that Ra(G) ∈ C(Rd,R) it follows that for all θ ∈ Θ, t ∈ [0, T ], x ∈ Rd

it holds that L(Uθ
0,t) = 1 = max{1, 0}, ~D(Uθ

0,t)~ = d ≤ ~D(G)~ ≤ max{~D(F)~,~D(G)~}, and
(Rr(U

θ
0,t)(x) = U θ

0 (t, x). This proves the base case n = 0. For the induction step from n ∈ N0 to n+1 ∈ N0

let n ∈ N0 and assume that items (i), (ii), (iii), (iv), (v), and (vi) hold true for all k ∈ {0, 1, . . . , n}. A
comment from Josh: Add reference... shows that for all θ ∈ Θ, t ∈ [0, T ] that

D
(
G •AId,Y

θ
t,T

)
= D(G). (4.9)

(4.9) and A comment from Josh: Add reference... demonstrate that for all θ ∈ Θ, t ∈ [0, T ] that

D
(
Mn+1

�
k=1,I

(
1

Mn+1
~
(
G •A

Id,Y
(θ,0,−k)
t,T

)))
= D

(
I(G),Mn+1D1(G),Mn+1D2(G), . . . ,Mn+1DL(G)−1(G),O(G)

)
.

(4.10)

Next, the induction hypothesis implies for all θ ∈ Θ, t ∈ [0, T ], ` ∈ {0, 1, . . . , n} that D(Uθ
`,t) = D(U0

`,0).
This and A comment from Josh: Add reference... imply that for all θ, η ∈ Θ, t ∈ [0, T ], ` ∈
{0, 1, . . . , n} it holds that

D
(

Uη

`,Uθt
•AId,Y

θ

t,Uθt

)
= D

(
Uη

`,Uθt

)
= D(U0

`,0). (4.11)

This, Lemma 3.11, A comment from Josh: Add lemma, and the induction hypothesis then yield for
all θ, η ∈ Θ, t ∈ [0, T ], ` ∈ {0, 1, . . . , n} it holds that

D
((

F •Uη

`,Uθt

)
•AId,Y

θ

t,Uθt

)
= D

(
F •

(
Uη

`,Uθt
•AId,Y

θ

t,Uθt

))
= D

(
F •U0

`,0

)
=
(
I
(
F •U0

`,0

)
,D1

(
F •U0

`,0

)
,D2

(
F •U0

`,0

)
, . . . ,DL(U0

`,0)+L(F)−1

(
F •U0

`,0

)
,O
(
F •U0

`,0

))
=
(
d,D1

(
F •U0

`,0

)
,D2

(
F •U0

`,0

)
, . . . ,DL(U0

`,0)+L(F)−1

(
F •U0

`,0

)
, 1
)
.

(4.12)

40



This, A comment from Josh: Add reference..., and the induction hypothesis shows that for all
i ∈ {0, 1, . . . , n}, θ ∈ Θ, t ∈ [0, T ] thatNote: The following is incorrect and needs to be updated...

D

(
Mn+1−i

�
k=1,I

((
F •U

(θ,i,k)

i,U(θ,i,k)
t

)
•A

Id,Y
(θ,i,k)

t,U(θ,i,k)
t

))
= D

(
Mn+1−i

�
k=1,I

(
F •U0

i,0

))
=
(
d,Mn+1−iD1

(
F •U0

`,0

)
,Mn+1−iD2

(
F •U0

`,0

)
, . . . ,Mn+1−iDL(U0

`,0)+L(F)−1

(
F •U0

`,0

)
, 1
)
.

(4.13)

Note that by the induction hypothesis we have for all i ∈ {0, 1, . . . , n}, θ ∈ Θ, t ∈ [0, T ] that

L(Uθ
i,t) = L(U0

i,0) = iH(F) + max{1,1N(i)L(G)} (4.14)

and, as a consequence of (4.14), for all i, j ∈ {0, 1, . . . , n}, θ ∈ Θ, t ∈ [0, T ] with i ≤ j it follows that

L(Uθ
i,t) = L(U0

i,0) ≤ L(U0
j,0) = L(Uθ

j,t). (4.15)

(4.15) and Definition 3.8 then imply that for all i, j ∈ {0, 1, . . . , n}, θ ∈ Θ, t ∈ [0, T ] with i ≤ j it follows
that

L(F •Uθ
i,t) = L(F •U0

i,0) ≤ L(F •U0
j,0) = L(F •Uθ

j,t). (4.16)

This, (4.13), Definition 3.15, A comment from Josh: Add reference... and the induction hypothesis
show that for all ` ∈ {0, 1, . . . , n}, θ ∈ Θ, t ∈ [0, T ] thatNote: The following needs to be corrected...

D

(
n

�
i=0,I

[(
(T − t)
Mn+1−i

)
~

(
Mn+1−i

�
k=1,I

((
F •U

(θ,i,k)

i,U(θ,i,k)
t

)
•A

Id,Y
(θ,i,k)

t,U(θ,i,k)
t

))])

= D
(

n

�
i=0,I

[(
(T − t)
Mn+1−i

)
~

(
Mn+1−i

�
k=1,I

(
F •U0

i,0

))])
=

(
d,

n∑
i=0

Mn+1−iD1

(
EL(F•U0

n,0),I

(
F •U0

`,0

))
,

n∑
i=0

Mn+1−iD2

(
EL(F•U0

n,0),I

(
F •U0

`,0

))
,

. . . ,
n∑
i=0

Mn+1−iDL(U0
`,0)+L(F)−1

(
EL(F•U0

n,0),I

(
F •U0

`,0

))
, 1

)
(4.17)

This, (4.10), A comment from Josh: Add reference..., and the induction hypothesis ensure that for
all θ ∈ Θ, t ∈ [0, T ] that Note: This needs to be corrected...

D(Uθ
n+1,t)

= D
([

Mn+1

⊕
k=1

(
1

Mn+1
~
(
G •A

Id,Y
(θ,0,−k)
t,T

))]
� I

[
n

�
i=0,I

[(
(T − t)
Mn+1−i

)
~

(
Mn+1−i

�
k=1,I

((
F •U

(θ,i,k)

i,U(θ,i,k)
t

)
•A

Id,Y
(θ,i,k)

t,U(θ,i,k)
t

))]]

� I

[
n

�
i=0,I

[(
(t− T )1N(i)

Mn+1−i

)
~

(
Mn+1−i

�
k=1,I

((
F •U

(θ,−i,k)

max{i−1,0},U(θ,i,k)
t

)
•A

Id,Y
(θ,i,k)

t,U(θ,i,k)
t

))]])
=
(
d, κn+1

1 , κn+1
2 , . . . , κn+1

L(F•U0
n,0)−1

, 1
)
.

(4.18)

This demonstrates for all θ1, θ2 ∈ Θ, t1, t2 ∈ [0, T ] that

D
(
Uθ1
n+1,t1

)
= D

(
Uθ2
n+1,t2

)
. (4.19)
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By A comment from Josh: Add reference..., (4.18), and the induction hypothesis it follows that for
all θ ∈ Θ, t ∈ [0, T ] that

L(Uθ
n+1,t) = L(F •Uθ

n,t) = L(Uθ
n,t) + L(F)− 1

= (nH(F) + max{1,1N(n)L(G)}) +H(F) = (n+ 1)H(F) + max{1,1N(n)L(G)}.
(4.20)

Furthermore, (4.8) and (4.18), A comment from Josh: Add reference..., Lemma 4.1, and the induc-
tion hypothesis ensure for all θ ∈ Θ, t ∈ [0, T ] that Note: The following needs to be corrected...

~D(Uθ
n+1,t)~ ≤ max

{
d, κ1, κ2, . . . , κL(F•U0

n,0)−1, 1
}

≤ max
`∈{0,1,...,L(F•U0

n,0)}

(
Mn+1D`(EL(F•U0

n,0),I(G)) +
n∑
i=0

Mn+1−iD`(EL(F•U0
n,0),I(F •U0

i,0))

+
n∑
i=0

Mn+1−iD`(EL(F•U0
n,0),I(F •U0

max{i−1,0},0))

)
≤Mn+1 max{2,~D(G)~}

+
n∑
i=0

Mn+1−i (max{2,~D(F •U0
i,0)~}+ max{2,~D(F •U0

max{i−1,0},0)~}
)

≤Mn+1 max{2,~D(G)~}

+
n∑
i=0

Mn+1−i (max{2,~D(F)~,~D(U0
i,0)~}+ max{2,~D(F)~,~D(U0

max{i−1,0},0)~}
)

≤ (2M + 1)n+1 max{2,~D(F)~,~D(G)~}.
(4.21)

Finally, A comment from Josh: Add references..., and the induction hypothesis assure for all θ ∈ Θ,
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t ∈ [0, T ], x ∈ Rd that Note: This should all be correct...

(Rr(U
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+

n−1∑
i=0

(t− T )1N(i)

Mn−i

Mn−i∑
k=1

(
Rr
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F •U
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•A

Id,Y
(θ,i,k)

t,U(θ,i,k)
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=
1

Mn

[
Mn∑
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g
(
x+ Y

(θ,0,−k)
t,T

)]
+

n−1∑
i=0

(T − t)
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Mn−i∑
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(
f ◦ U (θ,i,k)

i

)(
U (θ,i,k)
t , x+ Y

(θ,i,k)

t,U(θ,i,k)
t

)
+

n−1∑
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(T − t)1N(i)

Mn−i

Mn−i∑
k=1

(
(f ◦ U (θ,−i,k)

max{i−1,0}

)(
U (θ,i,k)
t , x+ Y

(θ,i,k)

t,U(θ,i,k)
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) = U θ
n(t, x).

(4.22)

This completes the induction step. The proof of Lemma 4.2 is thus completed.

4.2 ANN representations for the PDE nonlinearity

4.2.1 Linear interpolation with ANNs

A comment from Josh: I left this material here... Should I move it to Section 3.5.1?

Lemma 4.3. Let α, β, h ∈ R. Then

(i) there exists a unique H ∈ ((R1×1×R1)× (R1×1×R1)) ⊆ N which satisfies that H = h~ (i1 •Aα,β) =
((α, β), (h, 0)),

(ii) it holds that Rr(H) ∈ C(R,R),

(iii) it holds that D(H) = (1, 1, 1) ∈ N3, and

(iv) it holds for all x ∈ R that (Rr(H))(x) = hmax{αx+ β, 0} = h [αx+ β]1(−β/α,∞)(x)
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(cf. Definitions 3.1, 3.8, 3.27, 3.30, and 3.33).

Proof of Lemma 4.3. Note that Definition 3.27 and Lemma 3.28 ensure that for all x ∈ R it holds that
Aα,β = (α, β) ∈ (R1×1 × R1) ⊆ N, D(Aα,β) = (1, 1) ∈ N2, Rr(Aα,β) ∈ C(R,R), and (Rr(Aα,β))(x) =
αx + β. By (3.6), Definitions 3.8 and 3.30, and Lemmas 3.31 and 3.32 it follows for all x ∈ R that
i1 •Aα,β = ((α, β), (1, 0)) ∈ ((R1×1×R1)× (R1×1×R1)) ⊆ N, D(i1 •Aα,β) = (1, 1, 1) ∈ N3, Rr(i1 •Aα,β) ∈
C(R,R), and

(Rr(i1 •Aα,β))(x) = max{αx+ β, 0} = [αx+ β]1(−β/α,∞)(x). (4.23)

This, Definition 3.33, and Lemma 3.34 ensure that there exists a unique H ∈ ((R1×1 × R1) × (R1×1 ×
R1)) ⊆ N which satisfies for all x ∈ R that H = h ~ (i1 • Aα,β) = ((α, β), (h, 0)), Rr(H) ∈ C(R,R),
D(H) = (1, 1, 1) ∈ N3, and

(Rr(H))(x) = h((Rr(i1 •Aα,β))(x)) = h[αx+ β]1(−β/α,∞)(x). (4.24)

This establishes items (i), (ii), (iii), and (iv). The proof of Lemma 4.3 is thus completed.

Lemma 4.4. Let K ∈ N, h0, h1, . . . , hK , x0, x1, . . . , xK ∈ R satisfy x0 < x1 < . . . < xK. Then

(i) there exists a unique Ψ ∈ N which satisfies

Ψ = A1,h0 •
(

K
⊕
k=0

((
(hmin{k+1,K}−hk)

(xmin{k+1,K}−xmin{k,K−1})
− (hk−hmax{k−1,0})

(xmax{k,1}−xmax{k−1,0})

)
~ (i1 •A1,−xk)

))
, (4.25)

(ii) it holds that D(Ψ) = (1, K + 1, 1) ∈ N3,

(iii) it holds that Rr(Ψ) ∈ C(R,R),

(iv) it holds for all k ∈ {0, 1, . . . , K} that (Rr(Ψ))(xk) = hk, and

(v) it holds for all k ∈ {1, 2, . . . , K}, x ∈ R that

(Rr(Ψ))(x) =


h0 : x ∈ (−∞, x0]

hk−1 +
(
hk−hk−1

xk−xk−1

)
(x− xk−1) : x ∈ (xk−1, xk]

hK : x ∈ (xK ,∞)

(4.26)

(cf. Definitions 3.1, 3.27, 3.30, 3.33, and 3.37).

Proof of Lemma 4.4. Throughout this proof let c0, c1, . . . , cK ∈ R satisfy for all k ∈ {0, 1, . . . , K} that

ck =
(hmin{k+1,K} − hk)

(xmin{k+1,K} − xmin{k,K−1})
−

(hk − hmax{k−1,0})

(xmax{k,1} − xmax{k−1,0})
. (4.27)

Observe that Lemma 4.3 assures for each k ∈ {0, 1, . . . , K} that

(I) there exists a unique Φk ∈ ((R1×1×R1)×(R1×1×R1)) ⊆ N which satisfies that Φk = ck~(i1•A1,−xk) =
((1,−xk), (ck, 0)),

(II) it holds that Rr(Φk) ∈ C(R,R),

(III) it holds that D(Φk) = (1, 1, 1) ∈ N3,

(IV) it holds that (Rr(Φk))(x) = ck[x− xk]1(xk,∞)(x).
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Item (I) and Lemmas 3.29 and 3.47 guarantee the existence of a unique Ψ ∈ ((R1×1×R1)×(R1×1×R1)) ⊆ N
such that

Ψ = A1,h0 •
(

K
⊕
k=0

(ck ~ (i1 •A1,−xk))

)
. (4.28)

This establishes item (i). Items (II) and (III), Lemmas 3.29 and 3.47, and (4.28) assure that Rr(Ψ) ∈
C(R,R) and D(Ψ) = (1, K+1, 1) ∈ N3. This establishes items (ii) and (iii). Next, observe that item (IV),
(4.27), and Lemmas 3.29 and 3.47 assure for all x ∈ R it holds that

(Rr(Ψ))(x) = h0 +
K∑
k=0

(Rr(Φk))(x) = h0 +
K∑
k=0

ck max{x− xk, 0}. (4.29)

This and the fact that ∀ k ∈ {0, 1, . . . , K} : x0 ≤ xk assure that for all x ∈ (−∞, x0] it holds that

(Rr(Ψ))(x) = h0 + 0 = h0. (4.30)

In addition, observe that the fact that ∀ k ∈ {1, 2, . . . , K} : xk−1 < xk and the fact that ∀ k ∈ {1, 2, . . . , K} :∑k−1
n=0 cn = hk−hk−1

xk−xk−1
show that for all k ∈ {1, 2, . . . , K}, x ∈ (xk−1, xk] it holds that

(Rr(Ψ))(x)− (Rr(Ψ))(xk) =
K∑
n=0

cn (max{x− xn, 0} −max{xk − xn, 0})

=
k∑

n=0

cn[(x− xn)− (xk − xn)] =
k∑

n=0

cn(x− xk)

= (hk−hk−1

xk−xk−1
)(x− xk−1).

(4.31)

Next, we claim that for all k ∈ {1, 2, . . . , K}, x ∈ (xk−1, xk] it holds that

(Rr(Ψ))(x) = hk−1 + (hk−hk−1

xk−xk−1
)(x− xk−1). (4.32)

We now prove (4.32) by induction on k ∈ {1, 2, . . . , K}. For the base case k = 1 observe that (4.30) and
(4.31) demonstrate that for all x ∈ (x0, x1] it holds that

(Rr(Ψ))(x) = (Rr(Ψ))(x0) + (Rr(Ψ))(x)− (Rr(Ψ))(x0) = h0 + (h1−h0

x1−x0 )(x− x0). (4.33)

This proves (4.32) in the base case k = 1. For the induction step note that (4.31) implies for all k ∈
{2, 3, . . . , K}, x ∈ (xk−1, xk] with ∀ y ∈ (xk−2, xk−1] : (Rr(Ψ))(y) = hk−2 +(hk−1−hk−2

xk−1−xk−2
)(y− xk−2) it holds that

(Rr(Ψ))(x) = (Rr(Ψ))(xk−1) + (Rr(Ψ))(x)− (Rr(Ψ))(xk−1)

= hk−2 + (hk−1−hk−2

xk−1−xk−2
)(xk−1 − xk−2) + (hk−hk−1

xk−xk−1
)(t− τk−1) = hk−1 + (hk−hk−1

xk−xk−1
)(x− xk−1).

(4.34)

Induction thus proves (4.32). Furthermore, observe that (4.32), the fact that ∀ k ∈ {0, 1, . . . , K} : xk ≤ xK ,
and the fact that

∑K
n=0 ck = 0 imply that for all x ∈ (xK ,∞) it holds that

(Rr(Ψ))(x)− (Rr(Ψ))(xK) =

[
K∑
n=0

ck (max{x− xn, 0} −max{xK − xn, 0})

]

=
K∑
n=0

cn[(x− xn)− (xK − xn)] =
K∑
n=0

ck(x− xK) = 0.

(4.35)

This and (4.32) show that for all x ∈ (xK ,∞) it holds that

(Rr(Ψ))(x) = (Rr(Ψ))(xK) = hK−1 + (hK−hK−1

xK−xK−1
)(xK − xK−1) = hK . (4.36)

Combining this, (4.30), and (4.32) establishes item (v). Moreover, note that item (v) implies item (iv).
The proof of Lemma 4.4 is thus completed.
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4.2.2 ANN approximations of one-dimensional functions

Definition 4.5 (Modulus of continuity). Let f : R→ R be a function. Then we denote by wf : [0,∞]→
[0,∞] the function which satisfies for all h ∈ [0,∞] that

wf (h) = sup
({
|f(x)− f(y)| ∈ [0,∞) :

(
x, y ∈ R with |x− y| ≤ h

)}
∪ {0}

)
(4.37)

and we call wf the modulus of continuity of f .

Lemma 4.6. Let f : R→ R be a function. Then

(i) it holds that wf is non-decreasing,

(ii) it holds that f is uniformly continuous if and only if limh↘0wf (h) = 0,

(iii) it holds that f is globally bounded if and only if wf (∞) <∞,

(iv) it holds for all x, y ∈ R that |f(x)− f(y)| ≤ wf (|x− y|), and

(v) it holds for all h, h ∈ [0,∞] that wf (h+ h) ≤ wf (h) + wf (h)

(cf. Definition 4.5).

Proof of Lemma 4.6. First, observe that items (i), (ii), and (iv) are an immediate consequence of the
definition of wf . Next, note that item (iii) follows directly from the definition of a globally bounded set.
Finally, by Definition 4.5 and the triangle inequality it holds for all h, h ∈ [0,∞] that

wf (h+ h) = sup
({
|f(x)− f(y)| ∈ [0,∞) :

(
x, y ∈ R with |x− y| ≤ (h+ h)

)}
∪ {0}

)
≤ sup

({ ∣∣∣f(x)− f(x− h x−y
|x−y|)

∣∣∣ ∈ [0,∞) :
(
x, y ∈ R with |x− y| ≤ (h+ h)

)}
∪ {0}

)
+ sup

({ ∣∣∣f(x− h x−y
|x−y|)− f(y)

∣∣∣ ∈ [0,∞) :
(
x, y ∈ R with |x− y| ≤ (h+ h)

)}
∪ {0}

)
≤ sup

({ ∣∣∣f(x)− f(x− h x−y
|x−y|)

∣∣∣ ∈ [0,∞) :
(
x, y ∈ R with |x− y| ≤ h

)}
∪ {0}

)
+ sup

({ ∣∣∣f(x− h x−y
|x−y|)− f(y)

∣∣∣ ∈ [0,∞) :
(
x, y ∈ R with |x− y| ≤ h

)}
∪ {0}

)
= wf (h) + wf (h).

(4.38)

This establishes item (v). The proof of Lemma 4.6 is thus completed.

Lemma 4.7. Let K ∈ N, x0, x1, . . . , xK ∈ R satisfy x0 < x1 < . . . < xK and let f : [x0, xK ] → R be a
function. Then

(i) there exists a unique F ∈ N which satisfies

F = A1,f(x0) •
(

K
⊕
k=0

((
(f(xmin{k+1,K})−f(xk))

(xmin{k+1,K}−xmin{k,K−1})
− (f(xk)−f(xmax{k−1,0}))

(xmax{k,1}−xmax{k−1,0})

)
~ (i1 •A1,−xk)

))
, (4.39)

(ii) it holds that D(F) = (1, K + 1, 1),

(iii) it holds that Rr(F) ∈ C(R,R),

(iv) it holds for all k ∈ {0, 1, . . . , K} that (Rr(F))(xk) = f(xk),

(v) it holds for all k ∈ {1, 2, . . . , K}, x ∈ R that

(Rr(F))(x) =


f(x0) : x ∈ (−∞, x0]

f(xk−1) +
(
f(xk)−f(xk−1)

xk−xk−1

)
(x− xk−1) : x ∈ (xk−1, xk]

f(xK) : x ∈ (xK ,∞)

, (4.40)
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(vi) it holds for all x, y ∈ R that

|(Rr(F))(x)− (Rr(F))(y)| ≤
(

max
k∈{1,2,...,K}

(
wf (|xk − xk−1|)
|xk − xk−1|

))
|x− y|, (4.41)

(vii) it holds that supx∈[x0,xK ] |(Rr(F))(x)− f(x)| ≤ wf (maxk∈{1,2,...,K} |xk − xk−1|), and

(viii) it holds that P(F) = 3K + 4

(cf. Definitions 3.1, 3.4, 3.6, 3.8, 3.27, 3.30, 3.37, and 4.5).

Proof of Lemma 4.7. Throughout this proof let c0, c1, . . . , cK ∈ R satisfy for all k ∈ {0, 1, . . . , K} that

ck =
(f(xmin{k+1,K})− f(xk))

(xmin{k+1,K} − xmin{k,K−1})
−

(f(xk)− f(xmax{k−1,0}))

(xmax{k,1} − xmax{k−1,0})
(4.42)

and let L ∈ [0,∞] satisfy that

L = max
k∈{1,2,...,K}

(
wf (|xk − xk−1|)
|xk − xk−1|

)
(4.43)

(cf. Definition 4.5). Then Lemma 4.4 assures that

(I) there exists a unique F ∈ N which satisfies

F = A1,f(x0) •
(

K
⊕
k=0

(ck ~ (i1 •A1,−xk))

)
, (4.44)

(II) it holds that D(F) = (1, K + 1, 1) ∈ N3,

(III) it holds that Rr(F) ∈ C(R,R),

(IV) it holds for all k ∈ {0, 1, . . . , K} that (Rr(F))(xk) = f(xk), and

(V) it holds for all x ∈ R, k ∈ {1, 2, . . . , K} that

(Rr(F))(x) =


f(x0) : x ∈ (−∞, x0]

f(xk−1) +
(
f(xk)−f(xk−1)

xk−xk−1

)
(x− xk−1) : x ∈ (xk−1, xk]

f(xK) : x ∈ (xK ,∞)

(4.45)

(cf. Definitions 3.1, 3.27, 3.30, 3.33, and 3.37). This establishes items (i), (ii), (iii), (iv), and (v). Next,
observe that for all k ∈ {1, 2, . . . , K}, x, y ∈ [xk−1, xk] it holds that

|(Rr(F))(x)− (Rr(F))(y)| =
∣∣∣∣(f(xk)− f(xk−1)

xk − xk−1

)
(x− y)

∣∣∣∣ ≤ (wf (|xk − xk−1|)
|xk − xk−1|

)
|x− y| (4.46)

(cf. Definition 4.5 and Lemma 4.6). This, item (iv), Definition 4.5, and Lemma 4.6 assure that for all
k, l ∈ {1, 2, . . . , K}, x ∈ [xk−1, xk], y ∈ [xl−1, xl] with k < l it holds that

|(Rr(F))(x)− (Rr(F))(y)|
≤ |(Rr(F))(x)− (Rr(F))(xk)|+ |(Rr(F))(xk)− (Rr(F))(xl−1)|+ |(Rr(F))(xl−1)− (Rr(F))(y)|
= |(Rr(F))(x)− (Rr(F))(xk)|+ |f(xk)− f(xl−1)|+ |(Rr(F))(xl−1)− (Rr(F))(y)|

≤
(
wf (|xk − xk−1|)
|xk − xk−1|

)
|x− xk|+ wf (|xk − xl−1|) +

(
wf (|xl − xl−1|)
|xl − xl−1|

)
|xl−1 − y|

≤
(
wf (|xk − xk−1|)
|xk − xk−1|

)
|x− xk|+

(
l−1∑

j=k+1

wf (|xj − xj−1|)

)
+

(
wf (|xl − xl−1|)
|xl − xl−1|

)
|xl−1 − y|

≤ L

(
(xk − x) +

(
l−1∑

j=k+1

(xj − xj−1)

)
+ (y − xl−1)

)
= L|x− y|.

(4.47)
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Combining this and (4.46) shows that for all x, y ∈ [x0, xK ] it holds that |(Rr(F))(x) − (Rr(F))(y)| ≤
L|x− y|. This, the fact that for all x, y ∈ (−∞, x0] it holds that |(Rr(F))(x)− (Rr(F))(y)| = 0 ≤ L|x− y|,
the fact that for all x, y ∈ [xK ,∞) it holds that |(Rr(F))(x)− (Rr(F))(y)| = 0 ≤ L|x−y|, and the triangle
inequality hence demonstrate that for all x, y ∈ R it holds that |(Rr(F))(x) − (Rr(F))(y)| ≤ L|x − y|.
This establishes item (vi). Moreover, note that Definition 4.5, Lemma 4.6, item (iv), and the fact that
for all k ∈ {1, 2, . . . , K}, x ∈ R that

xk − x
xk − xk−1

+
x− xk−1

xk − xk−1

= 1 (4.48)

assure that for all k ∈ {1, 2, . . . , K}, x ∈ [xk−1, xk] it holds that

|(Rr(F))(x)− f(x)| =
∣∣∣∣(Rr(F))(x)−

(
xk − x

xk − xk−1

+
x− xk−1

xk − xk−1

)
f(x)

∣∣∣∣
≤ |f(xk−1)− f(x)|

∣∣∣∣ xk − x
xk − xk−1

∣∣∣∣+ |f(xk)− f(x)|
∣∣∣∣ x− xk−1

xk − xk−1

∣∣∣∣
≤ wf (|xk − xk−1|)

(
xk − x

xk − xk−1

+
x− xk−1

xk − xk−1

)
= wf (|xk − xk−1|) ≤ wf (maxj∈{1,2,...,K} |xj − xj−1|).

(4.49)

This establishes item (vii). By Definition 3.1 and item (ii) it follows that

P(Ψ) = (K + 1)(1 + 1) + 1((K + 1) + 1) = 3K + 4. (4.50)

This establishes item (viii). The proof of Lemma 4.7 is thus complete.

Lemma 4.8. Let K ∈ N, L, x0, x1, . . . , xK ∈ R satisfy x0 < x1 < . . . < xK and let f : [x0, xK ] → R satisfy
for all x, y ∈ [x0, xK ] that |f(x)− f(y)| ≤ L|x− y|. Then

(i) there exists a unique F ∈ N which satisfies

F = A1,f(x0) •
(

K
⊕
k=0

((
(f(xmin{k+1,K})−f(xk))

(xmin{k+1,K}−xmin{k,K−1})
− (f(xk)−f(xmax{k−1,0}))

(xmax{k,1}−xmax{k−1,0})

)
~ (i1 •A1,−xk)

))
, (4.51)

(ii) it holds that D(F) = (1, K + 1, 1),

(iii) it holds that Rr(F) ∈ C(R,R),

(iv) it holds for all k ∈ {0, 1, . . . , K} that (Rr(F))(xk) = f(xk),

(v) it holds for all k ∈ {1, 2, . . . , K}, x ∈ R that

(Rr(F))(x) =


f(x0) : x ∈ (−∞, x0]

f(xk−1) +
(
f(xk)−f(xk−1)

xk−xk−1

)
(x− xk−1) : x ∈ (xk−1, xk]

f(xK) : x ∈ (xK ,∞)

, (4.52)

(vi) it holds for all x, y ∈ R that |(Rr(F))(x)− (Rr(F))(y)| ≤ L|x− y|,

(vii) it holds that supx∈[x0,xK ] |(Rr(F))(x)− f(x)| ≤ L(maxk∈{1,2,...,K} |xk − xk−1|), and

(viii) it holds that P(F) = 3K + 4

(cf. Definitions 3.1, 3.4, 3.6, 3.8, 3.27, 3.30, and 3.37).
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Proof of Lemma 4.8. Throughout this proof let c0, c1, . . . , cK ∈ R satisfy for all k ∈ {0, 1, . . . , K} that

ck =
(f(xmin{k+1,K})− f(xk))

(xmin{k+1,K} − xmin{k,K−1})
−

(f(xk)− f(xmax{k−1,0}))

(xmax{k,1} − xmax{k−1,0})
. (4.53)

Then Lemma 4.7 assures that

(I) there exists a unique F ∈ N which satisfies

F = A1,f(x0) •
(

K
⊕
k=0

(ck ~ (i1 •A1,−xk))

)
, (4.54)

(II) it holds that D(F) = (1, K + 1, 1) ∈ N3,

(III) it holds that Rr(F) ∈ C(R,R),

(IV) it holds for all k ∈ {0, 1, . . . , K} that (Rr(F))(xk) = f(xk),

(V) it holds for all x ∈ R, k ∈ {1, 2, . . . , K} that

(Rr(F))(x) =


f(x0) : x ∈ (−∞, x0]

f(xk−1) +
(
f(xk)−f(xk−1)

xk−xk−1

)
(x− xk−1) : x ∈ (xk−1, xk]

f(xK) : x ∈ (xK ,∞)

, (4.55)

(VI) it holds for all x, y ∈ R that

|(Rr(F))(x)− (Rr(F))(y)| ≤
(

max
k∈{1,2,...,K}

(
wf (|xk − xk−1|)
|xk − xk−1|

))
|x− y|, (4.56)

(VII) it holds that supx∈[x0,xK ] |(Rr(F))(x)− f(x)| ≤ wf (maxk∈{1,2,...,K} |xk − xk−1|), and

(VIII) it holds that P(F) = 3K + 4

(cf. Definitions 3.1, 3.27, 3.30, 3.33, and 3.37). This establishes items (i), (ii), (iii), (iv), (v), and (viii).
Observe that the fact that for all x, y ∈ [x0, xK ] it holds that |f(x)− f(y)| ≤ L|x− y| and Definition 4.5
imply for all x, y ∈ [x0, xK ] it holds that

wf (|x− y|) = sup
({
|f(u)− f(v)| ∈ [0,∞) : (u, v ∈ R with |u− v| ≤ |x− y|)

}
∪ {0}

)
≤ sup

({
L|u− v| ∈ [0,∞) : (u, v ∈ R with |u− v| ≤ |x− y|)

}
∪ {0}

)
≤ L|x− y|.

(4.57)

This and item (IV) imply for all x, y ∈ [x0, xK ] it holds that

|(Rr(F))(x)− (Rr(F))(y)| ≤
(

max
k∈{1,2,...,K}

(
wf (|xk − xk−1|)
|xk − xk−1|

))
|x− y| ≤ L|x− y|. (4.58)

This, the fact that for all x, y ∈ (−∞, x0] it holds that |(Rr(F))(x) − (Rr(F))(y)| = 0 ≤ L|x − y|, the
fact that for all x, y ∈ [xK ,∞) it holds that |(Rr(F))(x) − (Rr(F))(y)| = 0 ≤ L|x − y|, and the triangle
inequality hence demonstrate for all x, y ∈ R it holds that |(Rr(F))(x) − (Rr(F))(y)| ≤ L|x − y|. This
establishes item (vi). Note that Lemma 4.6, (4.57), and item (VII) assure for all k ∈ {0, 1, . . . , K},
x ∈ [x0, xK ] it holds that

|(Rr(F))(x)− f(x)| ≤ wf

(
max

k∈{1,2,...,K}
|xk − xk−1|

)
≤ max

k∈{1,2,...,K}
(wf (|xk − xk−1|))

≤ max
k∈{1,2,...,K}

(L|xk − xk−1|) = L

(
max

k∈{1,2,...,K}
|xk − xk−1|

)
.

(4.59)

This establishes item (vii). The proof of Lemma 4.8 it thus completed.
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Corollary 4.9. Let K ∈ N, L, a, x0, x1, . . . , xK ∈ R, b ∈ (a,∞) satisfy for all k ∈ {0, 1, . . . , K} that
xk = a+ k(b−a)

K
and let f : [a, b]→ R satisfy for all x, y ∈ [a, b] that |f(x)− f(y)| ≤ L|x− y|. Then

(i) there exists a unique F ∈ N which satisfies

F = A1,f(x0) •
(

K
⊕
k=0

((
K(f(xmin{k+1,K})−2f(xk)+f(xmax{k−1,0}))

(b−a)

)
~ (i1 •A1,−xk)

))
, (4.60)

(ii) it holds that Rr(F) ∈ C(R,R),

(iii) it holds that D(F) = (1, K + 1, 1),

(iv) it holds for all x, y ∈ R that |(Rr(F))(x)− (Rr(F))(y)| ≤ L|x− y|,

(v) it holds that supx∈[a,b] |(Rr(F))(x)− f(x)| ≤ L(b− a)K−1, and

(vi) it holds that P(F) = 3K + 4

(cf. Definitions 3.1, 3.4, 3.6, 3.8, 3.27, 3.30, and 3.37).

Proof of Corollary 4.9. Note that for all k ∈ {0, 1, . . . , K} it holds that xmin{k+1,K} − xmin{k,K−1} =
xmax{k,1} − xmax{k−1,0} = (b− a)K−1 and

(f(xmin{k+1,K})− f(xk))

(xmin{k+1,K} − xmin{k,K−1})
−

(f(xk)− f(xmax{k−1,0}))

(xmax{k,1} − xmax{k−1,0})
=
K(f(xmin{k+1,K})− 2f(xk) + f(xmax{k−1,0}))

(b− a)
.

(4.61)
This and items (i), (ii), (iii), (vi), and (viii) of Lemma 4.8 prove items (i), (ii), (iii), (iv), and (vi).
Moreover, note that item (vii) of Lemma 4.8 demonstrates that for all x ∈ [a, b] it holds that

|(Rr(F))(x)− f(x)| ≤ L

(
max

k∈{1,2,...,K}
|xk − xk−1|

)
= L

(
b− a
K

)
. (4.62)

This establishes item (v). The proof of Corollary 4.9 is thus completed.

Lemma 4.10. Let L, a ∈ R, b ∈ (a,∞), ξ ∈ [a, b] and let f : [a, b] → R satisfy for all x, y ∈ [a, b] that
|f(x)− f(y)| ≤ L|x− y|. Then

(i) there exists a unique F ∈ N which satisfies F = A1,f(ξ) • (0~ (i1 •A1,−ξ)) ,

(ii) it holds that Rr(F) ∈ C(R,R),

(iii) it holds that D(F) = (1, 1, 1),

(iv) it holds for all x ∈ R that (Rr(F))(x) = f(ξ),

(v) it holds that supx∈[a,b] |(Rr(F))(x)− f(x)| ≤ Lmax{ξ − a, b− ξ}, and

(vi) it holds that P(F) = 4

(cf. Definitions 3.1, 3.4, 3.6, 3.8, 3.27, and 3.30).

Proof of Lemma 4.10. Note that Definitions 3.8 and 3.27, items (i) and (ii) of Lemma 3.28, items (i)
and (ii) of Lemma 3.29, and items (i), (ii), and (iii) of Lemma 4.3 establish items (i), (ii), and (iii). By
Definitions 3.4, 3.6, 3.8, 3.27, and 3.30 it follows for all x ∈ R that

(Rr(F))(x) =
(
Rr

(
A1,f(ξ) • (0~ (i1 •A1,−ξ))

))
(x) = f(ξ). (4.63)
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This establishes item (iv). Note that (4.63), the fact that ξ ∈ [a, b], and the fact that for all x, y ∈ [a, b]
it holds that |f(x)− f(y)| ≤ L|x− y| assure that for all x ∈ [a, b] it holds that

|(Rr(F))(x)− f(x)| = |f(ξ)− f(x)| ≤ L|x− ξ| ≤ Lmax{ξ − a, b− ξ}. (4.64)

This establishes item (v). Moreover, note that Definition 3.1 and item (iii) assure that

P(F) = 1 + 1(1 + 1) + 1 = 4. (4.65)

This establishes item (vi). The proof of Lemma 4.10 it thus completed.

Corollary 4.11. Let ε ∈ (0,∞), L, a ∈ R, b ∈ (a,∞), K ∈ N0 ∩ [L(b−a)
ε

, L(b−a)
ε

+ 1), x0, x1, . . . , xK ∈ R
satisfy for all k ∈ {0, 1, . . . , K} that xk = a+ k(b−a)

max{K,1} and let f : [a, b]→ R satisfy for all x, y ∈ [a, b] that
|f(x)− f(y)| ≤ L|x− y|. Then

(i) there exists a unique F ∈ N which satisfies

F = A1,f(x0) •
(

K
⊕
k=0

((
K(f(xmin{k+1,K})−2f(xk)+f(xmax{k−1,0}))

(b−a)

)
~ (i1 •A1,−xk)

))
, (4.66)

(ii) it holds that Rr(F) ∈ C(R,R),

(iii) it holds that D(F) = (1, K + 1, 1),

(iv) it holds for all x, y ∈ R that |(Rr(F))(x)− (Rr(F))(y)| ≤ L|x− y|,

(v) it holds that supx∈[a,b] |(Rr(F))(x)− f(x)| ≤ L(b−a)
max{K,1} ≤ ε, and

(vi) it holds that P(F) = 3K + 4 ≤ 3L(b− a)ε−1 + 7

(cf. Definitions 3.1, 3.4, 3.6, 3.8, 3.27, 3.30, and 3.37).

Proof of Corollary 4.11. Note that the fact that K ∈ N0 ∩ [L(b−a)
ε

, L(b−a)
ε

+ 1) implies that L(b−a)
max{K,1} ≤ ε.

This, items (i), (ii), (iii), (iv), and (v) of Corollary 4.9, and items (i), (ii), (iii), (iv), and (v) of Lemma 4.10
establish items (i), (ii), (iii), (iv), and (v). In addition, note that for all k ∈ N0 ∩ [L(b−a)

ε
, L(b−a)

ε
+ 1) it

holds that k − 1 ≤ L(b−a)
ε

. This and the fact that K ∈ N0 ∩ [L(b−a)
ε

, L(b−a)
ε

+ 1) therefore ensure that
K ≤ 1 + L(b−a)

ε
. Item (vi) of Corollary 4.9 and item (vi) of Lemma 4.10 hence assure that

P(F) = 3K + 4 ≤ 3L(b− a)

ε
+ 7. (4.67)

This establishes item (vi). The proof of Corollary 4.11 is thus completed.

Corollary 4.12. Let ε ∈ (0,∞), L, a ∈ R, b ∈ (a,∞) and let f : [a, b]→ R satisfy for all x, y ∈ [a, b] that
|f(x)− f(y)| ≤ L|x− y|. Then there exists F ∈ N such that

(i) it holds that Rr(F) ∈ C(R,R),

(ii) it holds that H(F) = 1,

(iii) it holds that D1(F) ≤ L(b− a)ε−1 + 2,

(iv) it holds for all x, y ∈ R that |(Rr(F))(x)− (Rr(F))(y)| ≤ L|x− y|,

(v) it holds that supx∈[a,b] |(Rr(F))(x)− f(x)| ≤ ε, and

(vi) it holds that P(F) = 3(D1(F)) + 1 ≤ 3L(b− a)ε−1 + 7
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(cf. Definitions 3.1, 3.4, and 3.6).

Proof of Corollary 4.12. Throughout this proof let K ∈ N0 ∩ [L(b−a)
ε

, L(b−a)
ε

+ 1), x0, x1, . . . , xK ∈ R satisfy
for all k ∈ {0, 1, . . . , K} that xk = a+ k(b−a)

max{K,1} and let F ∈ N satisfy that

F = A1,f(x0) •
(

K
⊕
k=0

((
K(f(xmin{k+1,K})−2f(xk)+f(xmax{k−1,0}))

(b−a)

)
~ (i1 •A1,−xk)

))
(4.68)

(cf. Definitions 3.8, 3.27, 3.30, and 3.37). By items (i), (ii), (iv), (v), and (vi) of Corollary 4.11 the neural
network F satisfies items (i), (ii), (iv), (v), and (vi). Next, note that for all k ∈ N0 ∩ [L(b−a)

ε
, L(b−a)

ε
+ 1)

it holds that k − 1 ≤ L(b−a)
ε

. This and the fact that K ∈ N0 ∩ [L(b−a)
ε

, L(b−a)
ε

+ 1) therefore ensures that
K ≤ 1 + L(b−a)

ε
. Combining this with item (iii) of Corollary 4.11 establishes item (iii). The proof of

Corollary 4.12 is thus completed.

Corollary 4.13. Let ε ∈ (0,∞), L, a ∈ R, b ∈ (a,∞), K ∈ N0 ∩ [L(b−a)
ε

, L(b−a)
ε

+ 1), x0, x1, . . . , xK ∈ R
satisfy for all k ∈ {0, 1, . . . , K} that xk = a + k(b−a)

max{K,1} and let f : R → R satisfy for all x, y ∈ R that
|f(x)− f(y)| ≤ L|x− y|. Then

(i) there exists a unique F ∈ N which satisfies

F = A1,f(x0) •
(

K
⊕
k=0

((
K(f(xmin{k+1,K})−2f(xk))+f(xmax{k−1,0}))

(b−a)

)
~ (i1 •A1,−xk)

))
, (4.69)

(ii) it holds that Rr(F) ∈ C(R,R),

(iii) it holds that D(F) = (1, K + 1, 1),

(iv) it holds for all x, y ∈ R that |(Rr(F))(x)− (Rr(F))(y)| ≤ L|x− y|,

(v) it holds that supx∈[a,b] |(Rr(F))(x)− f(x)| ≤ L(b−a)
max{K,1} ≤ ε,

(vi) it holds for all x ∈ (−∞, a) ∪ (b,∞) that |(Rr(F))(x)− f(x)| ≤ L(min{a− x, x− b}), and

(vii) it holds that P(F) = 3K + 4 ≤ 3L(b− a)ε−1 + 7

(cf. Definitions 3.1, 3.4, 3.6, 3.8, 3.27, 3.30, 3.37, and 4.5).

Proof of Corollary 4.13. First, observe that items (i), (ii), (iii), (iv), (v), and (vi) of Corollary 4.11 estab-
lish items (i), (ii), (iii), (iv), (v), and (vii). Note that the triangle inequality, item (iv) of Lemma 4.8, and
the fact that for all x, y ∈ R it holds that |f(x)− f(y)| ≤ L|x− y| imply that for all x ∈ (−∞, a) it holds
that

|(Rr(F))(x)− f(x)| = |f(a)− f(x)| ≤ L|x− a| = L(a− x). (4.70)

In addition, note that triangle inequality, item (iv) of Lemma 4.8, and the fact that for all x, y ∈ R it
holds that |f(x)− f(y)| ≤ L|x− y| imply that for all x ∈ (b,∞) it holds that

|(Rr(F))(x)− f(x)| = |f(b)− f(x)| ≤ L|x− b| = L(x− b). (4.71)

It then follows from (4.70) and (4.71) that for all x ∈ (−∞, a) ∪ (b,∞) it holds that

|(Rr(F))(x)− f(x)| ≤ L(min{a− x, x− b}). (4.72)

This establishes item (vi). The proof of Corollary 4.13 is thus completed.

Corollary 4.14. Let ε ∈ (0,∞), q ∈ (1,∞), L, a ∈ R, b ∈ (a,∞) and let f : R → R satisfy for all
x, y ∈ R that |f(x)− f(y)| ≤ L|x− y|. Then there exists F ∈ N such that
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(i) it holds that Rr(F) ∈ C(R,R),

(ii) it holds that H(F) = 1,

(iii) it holds that D1(F) ≤ (2L
ε

)q/(q−1) + 2,

(iv) it holds for all x, y ∈ R that |(Rr(F))(x)− (Rr(F))(y)| ≤ L|x− y|,

(v) it holds for all x ∈ R that |(Rr(F))(x)− f(x)| ≤ ε(max{1, |x|q}), and

(vi) it holds that P(F) = 3(D1(F)) + 1 ≤ 3(2L)q/(q−1)

εq/(q−1) + 7

(cf. Definitions 3.1, 3.4, and 3.6).

Proof of Corollary 4.14. Throughout this proof let K ∈ N0, R ∈ (0,∞) satisfy that 2L = εRq−1 and
K ∈ [2LR

ε
, 2LR

ε
+ 1), let x0, x1, . . . , xK ∈ R satisfy for all k ∈ {0, 1, . . . , K} that xk = −R+ 2kR

max{K,1} , and let
F ∈ N satisfy that

F = A1,f(x0) •
(

K
⊕
k=0

((
K(f(xmin{k+1,K})−2f(xk)+f(xmax{k−1,0}))

2R

)
~ (i1 •A1,−xk)

))
(4.73)

(cf. Definitions 3.8, 3.27, 3.30, and 3.37). Items (ii), (iii), and (iv) of Corollary 4.13 then establish items (i),
(ii), and (iv). Next, note that for all k ∈ N0 ∩ [2LR

ε
, 2LR

ε
+ 1) it holds that k − 1 ≤ 2LR

ε
. This and the fact

that K ∈ N0 ∩ [2LR
ε
, 2LR

ε
+ 1) therefore ensures that K ≤ 1 + 2LR

ε
. This, the fact that 2L = εRq−1, and

item (iii) then imply that

D1(F) = K + 1 ≤ 2 +
2LR

ε
= 2 +

2L

ε

(
2L

ε

)1/(q−1)

= 2 +

(
2L

ε

)q/(q−1)

. (4.74)

This establishes item (iii). By item (v) of Corollary 4.13 we have that it holds for all x ∈ [−R,R] that

|(Rr(F))(x)− f(x)| ≤ L(b− a)

max{K, 1}
≤ ε ≤ ε(max{1, |x|q}). (4.75)

By item (vi) of Corollary 4.13 we have that it holds for all x ∈ (−∞,−R) ∪ (R,∞) that

|(Rr(F))(x)− f(x)| ≤ L(min{−R− x, x−R}). (4.76)

This and the fact that 2L = εRq−1 imply that for all x ∈ (−∞,−R) ∪ (R,∞) it holds that

|(Rr(F))(x)− f(x)|
max{1, |x|q}

≤ L(min{−R− x, x−R})
max{1, |x|q}

≤ L(|x|+R)

max{1, |x|q}

≤ 2L|x|
max{1, |x|q}

≤ 2L|x|
|x|q

≤ 2L

|x|q−1
≤ 2L

Rq−1
= ε.

(4.77)

Combining this with (4.75) then establishes item (v). Item (vi) of Corollary 4.9, the fact that 2L = εRq−1,
and the fact that K ∈ N0 ∩ [2LR

ε
, 2LR

ε
+ 1) imply that

P(F) ≤ 3K + 4 ≤ 6LR

ε
+ 7 =

3(2L)q/(q−1)

εq/(q−1)
+ 7. (4.78)

This establishes item (vi). The proof of Corollary 4.14 is thus completed.
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5 ANN Approximation Results

5.1 ANN approximations for products

A comment from Josh: I need this result...

Lemma 5.1. Let (ck)k∈N ⊆ R, (Ak)k∈N ⊆ R4×4, A, B ∈ R4×1, (Ck)k∈N ⊆ R1×4 satisfy for all k ∈ N that

Ak =


2 −4 2 0
2 −4 2 0
2 −4 2 0
−ck 2ck −ck 1

 , A =


1
1
1
1

 , B =


0
−1

2

−1
0

 , Ck =
(
−ck 2ck −ck 1

)
, (5.1)

and ck = 21−2k. Then

(i) there exist unique Φk ∈ N, k ∈ N, which satisfy for all k ∈ [2,∞) ∩ N that Φ1 = (AC1,0 • i4) •AA,B
and that

Φk = (ACk,0 • i4) •
(
AAk−1,B • i4

)
•
(
AAk−2,B • i4

)
• . . . • (AA1,B • i4) •AA,B, (5.2)

(ii) it holds for all k ∈ N that Rr(Φk) ∈ C(R,R),

(iii) it holds for all k ∈ N that D(Φk) = (1, 4, 4, . . . , 4, 1) ∈ Nk+2,

(iv) it holds for all k ∈ N, x ∈ R\[0, 1] that (Rr(Φk))(x) = r(x),

(v) it holds for all k ∈ N, x ∈ [0, 1] that |x2 − (Rr(Φk))(x)| ≤ 2−2k−2, and

(vi) it holds for all k ∈ N that P(Φk) = 20k − 7

(cf. Definitions 3.1, 3.4, 3.6, 3.27, and 3.30).

A comment from Josh: I’m still updating this proof...

Proof of Lemma 5.1. Throughout this proof let (αk)k∈N ⊆ R, (βk)k∈N ⊆ R satisfy for all k ∈ N that
αk = −ck and βk = 2ck, let gk : R→ [0, 1], k ∈ N, be the functions which satisfy for all k ∈ N, x ∈ R that

g1(x) =


2x : x ∈ [0, 1

2
)

2− 2x : x ∈ [1
2
, 1]

0 : x ∈ R\[0, 1]

(5.3)

and gk+1(x) = g1(gk(x)), let fk : [0, 1] → [0, 1], k ∈ N0, be the functions which satisfy for all k ∈ N0,
n ∈ {0, 1, . . . , 2k − 1}, x ∈

[
n
2k
, n+1

2k

)
that fk(1) = 1 and

fk(x) =
[

2n+1
2k

]
x− (n2+n)

22k , (5.4)

and let rk = (rk,1, rk,2, rk,3, rk,4) : R→ R4, k ∈ N, be the functions which satisfy for all x ∈ R, k ∈ N that

r1(x) = (r1,1(x), r1,2(x), r1,3(x), r1,4(x)) = Mr,4

(
x, x− 1

2
, x− 1, x

)
(5.5)

and
rk+1(x) = (rk+1,1(x), rk+1,2(x), rk+1,3(x), rk+1,4(x)) = Mr,4

(
Ak+1rk(x) + bk+1

)
. (5.6)

Note that A comment from Josh: Add stuff.... This establishes items (i), (ii), and (iii). Note that
(3.5), (5.3), and (5.5) and the fact that for all x ∈ R it holds that r(x) = max{x, 0} show that for all
x ∈ R it holds that

2r1,1(x)− 4r1,2(x) + 2r1,3(x) = 2r(x)− 4r(x− 1
2
) + 2r(x− 1)

= 2 max{x, 0} − 4 max{x− 1
2
, 0}+ 2 max{x− 1, 0} = g1(x).

(5.7)
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Furthermore, observe that (3.5) and (5.5), the fact that for all x ∈ R it holds that r(x) = max{x, 0}, and
the fact that for all x ∈ [0, 1] it holds that f0(x) = x = max{x, 0} imply that for all x ∈ R it holds that

r1,4(x) = max{x, 0} =

{
f0(x) : x ∈ [0, 1]

max{x, 0} : x ∈ R\[0, 1]
. (5.8)

Next we claim that for all k ∈ N it holds that(
∀x ∈ R : 2rk,1(x)− 4rk,2(x) + 2rk,3(x) = gk(x)

)
(5.9)

and (
∀x ∈ R : rk,4(x) =

{
fk−1(x) : x ∈ [0, 1]

max{x, 0} : x ∈ R\[0, 1]

)
. (5.10)

We now prove (5.9) and (5.10) by induction on k ∈ N. Note that (5.7) and (5.8) prove (5.9) and (5.10) in
the base case k = 1. For the induction step N 3 k → k + 1 ∈ N ∩ [2,∞) assume that there exists k ∈ N
such that for all x ∈ R it holds that

2rk,1(x)− 4rk,2(x) + 2rk,3(x) = gk(x) (5.11)

and rk,4(x) =

{
fk−1(x) : x ∈ [0, 1]

max{x, 0} : x ∈ R\[0, 1]
. (5.12)

Observe that (3.5), (5.1), (5.6), (5.7), and (5.11) ensure that for all x ∈ R it holds that

gk+1(x) = g1(gk(x)) = g1(2rk,1(x)− 4rk,2(x) + 2rk,3(x))

= 2 r
(
2rk,1(x)− 4rk,2(x) + 2rk,3(x)

)
− 4 r

(
2rk,1(x)− 4rk,2(x) + 2rk,3(x)− 1

2

)
+ 2 r

(
2rk,1(x)− 4rk,2(x) + 2rk,3(x)− 1

)
= 2rk+1,1(x)− 4rk+1,2(x) + 2rk+1,3(x).

(5.13)

In addition, observe that (3.5), (5.1), (5.6), and (5.11) demonstrate that for all x ∈ R it holds that

rk+1,4(x) = r
(
(−2)3−2(k+1)rk,1(x) + 24−2(k+1)rk,2(x) + (−2)3−2(k+1)rk,3(x) + rk,4(x)

)
= r
(
(−2)1−2krk,1(x) + 22−2krk,2(x) + (−2)1−2krk,3(x) + rk,4(x)

)
= r
(
2−2k

[
− 2rk,1(x) + 22rk,2(x)− 2rk,3(x)

]
+ rk,4(x)

)
= r
(
−
[
2−2k

][
2rk,1(x)− 4rk,2(x) + 2rk,3(x)

]
+ rk,4(x)

)
= r
(
−
[
2−2k

]
gk(x) + rk,4(x)

)
.

(5.14)

Combining this with 5.12, A comment from Josh: Add reference..., the fact that for all x ∈ R it
holds that r(x) = max{x, 0}, and the fact that for all x ∈ [0, 1] it holds that fk(x) ≥ 0 shows that for all
x ∈ [0, 1] it holds that

rk+1,4(x) = r
(
−
[
2−2kgk(x)

]
+ fk−1(x)

)
= r
(
−
(
2−2kgk(x)

)
+ x−

[ k−1∑
j=1

(
2−2jgj(x)

)])
= r
(
x−

[ k∑
j=1

2−2jgj(x)
])

= r(fk(x)) = fk(x).

(5.15)

Next note that (5.12) and (5.14), A comment from Josh: Add reference..., and the hypothesis that
for all x ∈ R it holds that a(x) = max{x, 0} prove that for all x ∈ R\[0, 1] it holds that

rk+1,4(x) = a
(
−
(
2−2kgk(x)

)
+ rk,4(x)

)
= a(max{x, 0}) = max{x, 0}. (5.16)
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Combining (5.13) and (5.15) hence proves (5.9) and (5.10) in the case k + 1. Induction thus establishes
(5.9) and (5.10). Next note that (3.6), (5.1), (5.5), (5.6), and (5.9) A comment from Josh: Add
definition references for the new network... A comment from Josh: Add lemma references...
assure that for all k ∈ N, x ∈ R it holds that Rr(Φk) ∈ C(R,R) and

(Rr(Φk))(x)

=
(
Rr

(
(ACk,0 • i4) •

(
AAk−1,B • i4

)
•
(
AAk−2,B • i4

)
• · · · • (AA1,B • i4) •AA,B

))
(x)

= (−2)1−2krk,1(x) + 22−2krk,2(x) + (−2)1−2krk,3(x) + rk,4(x)

= (−2)2−2k
([

rk,1(x)+rk,3(x)

(−2)

]
+ rk,2(x)

)
+ rk,4(x)

= 22−2k
([

rk,1(x)+rk,3(x)

(−2)

]
+ rk,2(x)

)
+ rk,4(x)

= 2−2k
(
4rk,2(x)− 2rk,1(x)− 2rk,3(x)

)
+ rk,4(x)

= −
[
2−2k

][
2rk,1(x)− 4rk,2(x) + 2rk,3(x)

]
+ rk,4(x) = −

[
2−2k

]
gk(x) + rk,4(x).

(5.17)

Combining this with 5.10 and A comment from Josh: Add reference... shows that for all k ∈ N,
x ∈ [0, 1] it holds that

(Rr(Φk))(x) = −
(
2−2kgk(x)

)
+ fk−1(x) = −

(
2−2kgk(x)

)
+ x−

[ k−1∑
j=1

2−2jgj(x)
]

= x−
[ k∑
j=1

2−2jgj(x)
]

= fk(x).

(5.18)

A comment from Josh: Add reference... therefore implies that for all k ∈ N, x ∈ [0, 1] it holds that

|x2 − (Rr(Φk))(x)| ≤ 2−2k−2. (5.19)

This establishes item (v). Moreover, observe that A comment from Josh: Add reference..., (5.10)
and (5.17) ensure that for all k ∈ N, x ∈ R\[0, 1] it holds that

(Rr(Φk))(x) = −2−2kgk(x) + rk,4(x) = rk,4(x) = max{x, 0} = r(x). (5.20)

This establishes item (iv). Note that item (iii) ensures for all k ∈ N that L(Φk) = k + 1 and

P(Φk) = 4(1 + 1) +

[
k∑
j=2

4(4 + 1)

]
+ (4 + 1) = 8 + 20(k − 1) + 5 = 20k − 7. (5.21)

This establishes item (vi). The proof of Lemma 5.1 is thus completed.

A comment from Josh: I need this result...

Corollary 5.2. Let ε ∈ (0,∞), M = min
([

1
2

log2(ε−1)− 1,∞
)
∩ N

)
, (ck)k∈N ⊆ R, (Ak)k∈N ⊆ R4×4,

A, B ∈ R4×1, (Ck)k∈N ⊆ R1×4 satisfy for all k ∈ N that

Ak =


2 −4 2 0
2 −4 2 0
2 −4 2 0
−ck 2ck −ck 1

 , A =


1
1
1
1

 , B =


0
−1

2

−1
0

 , Ck =
(
−ck 2ck −ck 1

)
, (5.22)

and ck = 21−2k. Then

(i) there exists a unique Φ ∈ N which satisfies that

Φ =


(AC1,0 • i4) •AA,B : M = 1

(ACM ,0 • i4) •
(
AAM−1,B • i4

)
•
(
AAM−2,B • i4

)
• . . . • (AA1,B • i4) •AA,B

: M ∈ [2,∞) ∩ N
, (5.23)
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(ii) it holds that Rr(Φ) ∈ C(R,R),

(iii) it holds that D(Φ) = (1, 4, 4, . . . , 4, 1) ∈ NM+2,

(iv) it holds for all x ∈ R\[0, 1] that (Rr(Φ))(x) = r(x),

(v) it holds for all x ∈ [0, 1] that |x2 − (Rr(Φ))(x)| ≤ 2−2M−2 ≤ ε,

(vi) it holds that L(Φ) = M + 1 ≤ max{1
2

log2(ε−1) + 1, 2}, and

(vii) it holds that P(Φ) = 20M − 7 ≤ max{10 log2(ε−1)− 7, 13}

(cf. Definitions 3.1, 3.4, 3.6, 3.27, and 3.30).

Note: Double-check proof...

Proof of Corollary 5.2. Note that items (i), (ii), and (iv) of Lemma 5.1 establish items (i), (ii), and (iv).
Next note the fact that M = min(N ∩ [1

2
log2(ε−1)− 1,∞)) assures that

M = min
(
N ∩

[
1
2

log2(ε−1)− 1,∞
))
≥ min

([
max

{
1, 1

2
log2(ε−1)− 1

}
,∞
))
≥ 1

2
log2(ε−1)− 1. (5.24)

This and item (v) of Lemma 5.1 demonstrate that for all x ∈ [0, 1] it holds that

|x2 − (Rr(Φ))(x)| ≤ 2−2M−2 = 2−2(M+1) ≤ 2− log2(ε−1) = ε. (5.25)

This establishes item (v). Furthermore, the fact that M = min(N∩ [1
2

log2(ε−1)− 1,∞)) and item (iii) of
Lemma 5.1 assure that

L(Φ) = M + 1 ≤ max{1
2

log2(ε−1) + 1, 2}. (5.26)

This establishes item (vi). This and item (vi) of Lemma 5.1 show that

P(ΦM) ≤ 20M − 7 ≤ 20 max{1
2

log2(ε−1), 2} − 7 = max{10 log2(ε−1)− 7, 13}. (5.27)

This establishes item (vii). The proof of Corollary 5.2 is thus completed.

A comment from Josh: I need this result...

Lemma 5.3. Let δ, ε ∈ (0,∞), α ∈ (0,∞), q ∈ (2,∞), Φ ∈ N satisfy that δ = 2−2/(q−2)εq/(q−2),
α = (ε/2)1/(q−2), Φ ∈ C(R,R), L(Φ) ≤ max{1

2
log2(δ−1) + 1, 2}, P(Φ) ≤ max{10 log2(δ−1) − 7, 13},

supx∈R\[0,1] |(Rr(Φ))(x)− r(x)| = 0, and supx∈[0,1] |x2− (Rr(Φ))(x)| ≤ δ (cf. Definitions 3.1, 3.4, and 3.6).
Then

(i) there exists a unique Ψ ∈ N which satisfies Ψ = (Aα−2,0 • Φ •Aα,0)⊕ (Aα−2,0 • Φ •A−α,0) ,

(ii) it holds that Rr(Ψ) ∈ C(R,R),

(iii) it holds that (Rr(Ψ))(0) = 0,

(iv) it holds for all x ∈ R that 0 ≤ (Rr(Ψ))(x) ≤ ε+ |x|2,

(v) it holds for all x ∈ R that |x2 − (Rr(Ψ))(x)| ≤ εmax{1, |x|q},

(vi) it holds that L(Ψ) ≤ max
{

1 + 1
(q−2)

+ q
2(q−2)

log2(ε−1), 2
}
, and

(vii) it holds that P(Ψ) ≤ max
{[

40q
(q−2)

]
log2(ε−1) + 80

(q−2)
− 28, 52

}
(cf. Definitions 3.8, 3.19, 3.27, and 3.37).

Note: Double-check proof...
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Proof of Lemma 5.3. A comment from Josh: Add references... This establishes items (i) and (ii).
Next, note that A comment from Josh: Add references... ensure that for all x ∈ R it holds that

(Rr(Ψ))(x) = (Rr(Aα−2,0 • Φ •Aα,0)⊕ (Aα−2,0 • Φ •A−α,0))(x)

= (Rr(Aα−2,0 • Φ •Aα,0))(x) + (Rr(Aα−2,0 • Φ •A−α,0))(x)

= ( ε
2
)−

2/(q−2)
[
(Rr(Φ))(( ε

2
)

1/(q−2)x) + (Rr(Φ))(−( ε
2
)

1/(q−2)x)
]
.

(5.28)

This, the assumption that Φ ∈ C(R,R), and the assumption that supx∈R\[0,1] |(Rr(Φ))(x) − r(x)| = 0
ensure that for all x ∈ R it holds that

(Rr(Ψ))(0) = ( ε
2
)−

2/(q−2) [(Rr(Φ))(0) + (Rr(Φ))(0)] = ( ε
2
)−

2/(q−2) [r(0) + r(0)] = 0. (5.29)

This establishes item (iii). Next, observe that the assumption that Rr(Φ) ∈ C(R,R) and the assumption
that supx∈R\[0,1] |(Rr(Φ))(x)− r(x)| = 0 ensure that for all x ∈ R\[−1, 1] it holds that

[Rr(Φ)](x) + [Rr(Φ)](−x) = r(x) + r(−x) = max{x, 0}+ max{−x, 0}
= max{x, 0} −min{x, 0} = |x|.

(5.30)

The assumption that for all supx∈R\[0,1] |(Rr(Φ))(x) − r(x)| = 0 and the assumption that supx∈[0,1] |x2 −
(Rr(Φ))(x)| ≤ δ show that

sup
x∈[−1,1]

∣∣x2 −
(
[Rr(Φ)](x) + [Rr(Φ)](−x)

)∣∣
= max

{
sup

x∈[−1,0]

∣∣x2 −
(
r(x) + [Rr(Φ)](−x)

)∣∣ , sup
x∈[0,1]

∣∣x2 −
(
[Rr(Φ)](x) + r(−x)

)∣∣ }
= max

{
sup

x∈[−1,0]

∣∣(−x)2 − (Rr(Φ))(−x)
∣∣ , sup

x∈[0,1]

∣∣x2 − (Rr(Φ))(x)
∣∣ }

= sup
x∈[0,1]

∣∣x2 − (Rr(Φ))(x)
∣∣ ≤ δ.

(5.31)

Next observe that (5.28) and (5.30) prove that for all x ∈ R\[−(ε/2)−1/(q−2), (ε/2)−1/(q−2)] it holds that

0 ≤ [Rr(Ψ)](x) = ( ε
2
)−

2/(q−2)

(
[Rr(Φ)]

(
( ε

2
)

1/(q−2)x
)

+ [Rr(Φ)]
(
− ( ε

2
)

1/(q−2)x
))

= ( ε
2
)−

2/(q−2)
∣∣( ε

2
)

1/(q−2)x
∣∣ = ( ε

2
)
−1/(q−2)|x| ≤ |x|2.

(5.32)

The triangle inequality therefore ensures that for all x ∈ R\[−(ε/2)−1/(q−2), (ε/2)−1/(q−2)] it holds that∣∣x2 − (Rr(Ψ))(x)
∣∣ =

∣∣x2 − ( ε
2
)
−1/(q−2)|x|

∣∣ ≤ (|x|2 + ( ε
2
)−

1/(q−2)|x|
)

=
(
|x|q|x|−(q−2) + ( ε

2
)−

1/(q−2)|x|q|x|−(q−1)
)

≤
(
|x|q( ε

2
)

(q−2)/(q−2) + ( ε
2
)−

1/(q−2)|x|q( ε
2
)

(q−1)/(q−2)
)

= ( ε
2

+ ε
2
)|x|q = ε|x|q ≤ εmax

{
1, |x|q

}
.

(5.33)

Next note that (5.28) and (5.31), and the fact that δ = 2−2/(q−2)εq/(q−2) demonstrate that for all x ∈
[−(ε/2)−1/(q−2), (ε/2)−1/(q−2)] it holds that∣∣x2 − (Rr(Ψ))(x)

∣∣
= ( ε

2
)−

2/(q−2)

∣∣∣(( ε2)
1/(q−2)x

)2 −
(

[Rr(Φ)]
(
( ε

2
)

1/(q−2)x
)

+ [Rr(Φ)]
(
− ( ε

2
)

1/(q−2)x
))∣∣∣

≤ ( ε
2
)−

2/(q−2)

[
sup

y∈[−1,1]

∣∣y2 −
(
[Rr(Φ)](y) + [Rr(Φ)](−y)

)∣∣ ]
≤ ( ε

2
)−

2/(q−2)δ = ( ε
2
)−

2/(q−2)2−
2/(q−2)ε

q/(q−2) = ε ≤ εmax
{

1, |x|q
}
.

(5.34)
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Combining this and (5.33) implies that for all x ∈ R it holds that∣∣x2 − (Rr(Ψ))(x)
∣∣ ≤ εmax

{
1, |x|q

}
. (5.35)

This establishes item (v). In addition, note that (5.34) ensures that for all x ∈ [−(ε/2)−1/(q−2), (ε/2)−1/(q−2)]
it holds that

|(Rr(Ψ))(x)| ≤
∣∣x2 − (Rr(Ψ))(x)

∣∣+ |x|2 ≤ ε+ |x|2. (5.36)

This and (5.32) show for all x ∈ R that

|(Rr(Ψ))(x)| ≤ ε+ |x|2. (5.37)

This establishes item (iv). Furthermore, observe that the fact that δ = 2−2/(q−2)εq/(q−2) ensures that

log2(δ−1) = log2(2
2/(q−2)ε−

q/(q−2)) = 2
(q−2)

+
[[

q
(q−2)

]
log2(ε−1)

]
. (5.38)

A comment from Josh: Finish proof... Note: I need parameter estimate results for the
sum of neural networks... In addition observe that A comment from Josh: Add references...
demonstrate that

L(Ψ) = L(Aα−2,0 • Φ •Aα,0) = L(Φ) ≤ max{1
2

log2(δ−1) + 1, 2}

= max
{

1 + 2
(q−2)

+
[[

q
(q−2)

]
log2(ε−1)

]
, 2
}
.

(5.39)

This establishes item (vi). The proof of Lemma 5.3 is thus completed.

A comment from Josh: I need this...

Lemma 5.4. Let δ, ε ∈ (0,∞), q ∈ (2,∞), A1,A2,A3 ∈ R1×2, Φ ∈ N satisfy for all x ∈ R that
δ = ε(2q−1 + 1)−1, A1 =

(
1 1

)
, A2 =

(
1 0

)
, A3 =

(
0 1

)
, Φ ∈ C(R,R), (Rr(Φ))(0) = 0, 0 ≤

(Rr(Φ))(x) ≤ δ + |x|2, |x2 − (Rr(Φ))(x)| ≤ δmax{1, |x|q}, L(Φ) ≤ max
{

1 + 1
(q−2)

+ q
2(q−2)

log2(δ−1), 2
}
,

and P(Φ) ≤ max
{[

40q
(q−2)

]
log2(δ−1) + 80

(q−2)
− 28, 52

}
(cf. Definitions 3.1, 3.4, and 3.6). Then

(i) there exists a unique Γ ∈ N which satisfies that

Γ =
(

1
2
~ (Φ •AA1,0)

)
⊕
(
(−1

2
)~ (Φ •AA2,0)

)
⊕
(
(−1

2
)~ (Φ •AA3,0)

)
(5.40)

(ii) it holds that Rr(Γ) ∈ C(R2,R),

(iii) it holds for all x ∈ R that (Rr(Γ))(x, 0) = (Ra(Γ))(0, x) = 0,

(iv) it holds for all x, y ∈ R that |xy − (Rr(Γ))(x, y)| ≤ εmax{1, |x|q, |y|q},

(v) it holds that P(Γ) ≤ 360q
(q−2)

[log2(ε−1) + q + 1]− 252, and

(vi) it holds that L(Γ) ≤ q
(q−2)

[log2(ε−1) + q]

(cf. Definitions 3.8, 3.27, 3.33, and 3.37).

Proof of Lemma 5.4. A comment from Josh: Add proof...

A comment from Josh: I need this...

Lemma 5.5. Let ε ∈ (0,∞), q ∈ (2,∞). Then there exists Γ ∈ N such that

(i) it holds that Rr(Γ) ∈ C(R2,R),

(ii) it holds for all x ∈ R that (Rr(Γ))(x, 0) = (Ra(Γ))(0, x) = 0,
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(iii) it holds for all x, y ∈ R that |xy − (Rr(Γ))(x, y)| ≤ εmax{1, |x|q, |y|q},

(iv) it holds that P(Γ) ≤ 360q
(q−2)

[log2(ε−1) + q + 1]− 252, and

(v) it holds that L(Γ) ≤ q
(q−2)

[log2(ε−1) + q]

(cf. Definitions 3.1, 3.4, and 3.6).

Proof of Lemma 5.5. A comment from Josh: Add proof...

5.2 Linear interpolation of MLP approximations

5.2.1 Properties of linear interpolations

A comment from Josh: Should I move these results to Section 4.2.2?

Definition 5.6 (Linear interpolation function). Let K ∈ N, x0, x1, . . . , xK , f0, f1, . . . , fK ∈ R satisfy x0 <
x1 < . . . < xK. Then we denote by L f0,f1,...,fK

x0,x1,...,xK
: R→ R the function which satisfies for all k ∈ {1, 2, . . . , K},

r ∈ (−∞, x0), s ∈ [xK ,∞), t ∈ [xk−1, xk) that (L f0,f1,...,fK
x0,x1,...,xK

)(r) = f0, (L f0,f1,...,fK
x0,x1,...,xK

)(s) = fK, and

(L f0,f1,...,fK
x0,x1,...,xK

)(t) = fk−1 +
( t−xk−1

xk−xk−1

)
(fk − fk−1). (5.41)

A comment from Josh: I need this...

Lemma 5.7. Let K ∈ N, x0, x1, . . . , xK , f0, f1, . . . , fK ∈ R satisfy x0 < x1 < . . . < xK. Then

(i) it holds for all k ∈ {0, 1, . . . , K} that (L f0,f1,...,fK
x0,x1,...,xK

)(xk) = fk,

(ii) it holds for all k ∈ {1, 2, . . . , K}, x, y ∈ [xk−1, xk] that∣∣(L f0,f1,...,fK
x0,x1,...,xK

)(x)− (L f0,f1,...,fK
x0,x1,...,xK

)(y)
∣∣ =

( |fk−fk−1|
|xk−xk−1|

)
|x− y|, (5.42)

and

(iii) it holds for all x, y ∈ R that∣∣(L f0,f1,...,fK
x0,x1,...,xK

)(x)− (L f0,f1,...,fK
x0,x1,...,xK

)(y)
∣∣ ≤ [ max

k∈{1,2,...,K}

( |fk−fk−1|
|τk−τk−1|

)]
|x− y| (5.43)

(cf. Definition 5.6).

Note: This needs to be double-checked...

Proof of Lemma 5.7. Throughout this proof let L ∈ R satisfy that L = maxk∈{1,2,...,K}(
|fk−fk−1|
|xk−xk−1|

). Note
that Definition 5.6 implies item (i). Next observe that for all k ∈ {1, 2, . . . , K}, x, y ∈ [xk−1, xk] it holds
that ∣∣(L f0,f1,...,fK

x0,x1,...,xK
)(x)− (L f0,f1,...,fK

x0,x1,...,xK
)(y)

∣∣ =
( |fk−fk−1|
|xk−xk−1|

)
|x− y|. (5.44)

This establishes item (ii). The triangle inequality and item (ii) assure that for all k, l ∈ {1, 2, . . . , K},
x ∈ [xk−1, xk], y ∈ [xl−1, xl] with k < l it holds that∣∣(L f0,f1,...,fK

x0,x1,...,xK
)(x)− (L f0,f1,...,fK

x0,x1,...,xK
)(y)

∣∣
≤
∣∣(L f0,f1,...,fK

x0,x1,...,xK
)(x)− fk

∣∣+ |fk − fl−1|+
∣∣fl−1 − (L f0,f1,...,fK

x0,x1,...,xK
)(y)

∣∣
=
∣∣(L f0,f1,...,fK

x0,x1,...,xK
)(x)− (L f0,f1,...,fK

x0,x1,...,xK
)(xk)

∣∣+ |fk − fl−1|+
∣∣(L f0,f1,...,fK

x0,x1,...,xK
)(xl−1)− (L f0,f1,...,fK

x0,x1,...,xK
)(y)

∣∣
≤
( |fk−fk−1|
|xk−xk−1|

)
|x− xk|+

l−1∑
j=k+1

|fj − fj−1|+
( |fl−fl−1|
|xl−xl−1|

)
|xl−1 − y|

≤ L

[
|x− xk|+

l−1∑
j=k+1

|xj − xj−1|+ |xl−1 − y|

]
= L|x− y|.

(5.45)
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Combining this and item (ii) shows that for all x, y ∈ [x0, xK ] it holds that∣∣(L f0,f1,...,fK
x0,x1,...,xK

)(x)− (L f0,f1,...,fK
x0,x1,...,xK

)(y)
∣∣ ≤ L|x− y|. (5.46)

This, the fact that for all x, y ∈ (−∞, x0] it holds that |(L f0,f1,...,fK
x0,x1,...,xK

)(x)− (L f0,f1,...,fK
x0,x1,...,xK

)(y)| = 0 ≤ L|x− y|,
the fact that for all x, y ∈ [xK ,∞) it holds that |(L f0,f1,...,fK

x0,x1,...,xK
)(x)−(L f0,f1,...,fK

x0,x1,...,xK
)(y)| = 0 ≤ L|x−y|, and the

triangle inequality hence demonstrate for all x, y ∈ R it holds that |(L f0,f1,...,fK
x0,x1,...,xK

)(x)− (L f0,f1,...,fK
x0,x1,...,xK

)(y)| =
0 ≤ L|x− y|. This establishes item (iii). The proof of Lemma 5.7 is thus completed.

5.2.2 Properties of linear interpolations employing a perturbed product function

A comment from Josh: Do we want a different name?

Definition 5.8 (Perturbed linear interpolation function). Let K ∈ N, x0, x1, . . . , xK , f0, f1, . . . , fK ∈ R
satisfy x0 < x1 < . . . < xK and let p : R2 → R be a function. Then we denote by Pp,f0,f1,...,fK

x0,x1,...,xK
: R → R

the function which satisfies for all k ∈ {1, 2, . . . , K}, r ∈ (−∞, x0), s ∈ [xK ,∞), t ∈ [xk−1, xk) that
(Pp,f0,f1,...,fK

x0,x1,...,xK
)(r) = f0, (Pp,f0,f1,...,fK

x0,x1,...,xK
)(s) = fK, and

(Pp,f0,f1,...,fK
x0,x1,...,xK

)(t) = fk−1 + p
( t−xk−1

xk−xk−1
, fk − fk−1

)
. (5.47)

A comment from Josh: I need this...

Lemma 5.9. Let ε, q ∈ [0,∞), K ∈ N, x0, x1, . . . , xK , f0, f1, . . . , fK ∈ R satisfy x0 < x1 < . . . < xK and let
p : R2 → R satisfy for all x, y ∈ R that |xy − p(x, y)| ≤ εmax{1, |x|q, |y|q}1R\{0}(xy). Then

(i) it holds for all k ∈ {0, 1, . . . , K} that (Pp,f0,f1,...,fK
x0,x1,...,xK

)(xk) = fk,

(ii) it holds for all k ∈ {1, 2, . . . , K}, x ∈ [xk−1, xk] that

|(Pp,f0,f1,...,fK
x0,x1,...,xK

)(x)− (L f0,f1,...,fK
x0,x1,...,xK

)(x)| ≤ εmax{1, |fk − fk−1|q}, (5.48)

(iii) it holds for all k ∈ {1, 2, . . . , K}, x, y ∈ [xk−1, xK ] that∣∣(Pp,f0,f1,...,fK
x0,x1,...,xK

)(x)− (Pp,f0,f1,...,fK
x0,x1,...,xK

)(y)
∣∣ ≤ ( |fk−fk−1|

|xk−xk−1|

)
|x− y|+ εmax{1, |fk − fk−1|q}, (5.49)

and

(iv) it holds for all k ∈ {1, 2, . . . , K}, x ∈ [xk−1, xk] that

|(Pp,f0,f1,...,fK
x0,x1,...,xK

)(x)− fk| ≤ |fk − fk−1|+ εmax{1, |fk − fk−1|q} (5.50)

(cf. Definitions 5.6 and 5.8).

Proof of Lemma 5.9. A comment from Josh: Add proof...

A comment from Josh: I need this...
Note: Should this be combined with the previous lemma?

Lemma 5.10. Let ε, q ∈ [0,∞), K ∈ N, x0, x1, . . . , xK , f0, f1, . . . , fK , g0, g1, . . . , gK ∈ R satisfy x0 < x1 <
. . . < xK and let p : R2 → R satisfy for all x, y ∈ R that |xy − p(x, y)| ≤ εmax{1, |x|q, |y|q}1R\{0}(xy).
Then it holds for all k ∈ {1, 2, . . . , K}, x ∈ [xk−1, xk] that∣∣(Pp,f0,f1,...,fK

x0,x1,...,xK
)(t)− (Pp,g0,g1,...,gK

x0,x1,...,xK
)(t)
∣∣ ≤ max

j∈{k−1,k}
|fj − gj|+ 2εmax

{
1, 2q

(
max

j∈{k−1,k}
|fj − gj|q

)}
(5.51)

(cf. Definition 5.8).

Proof of Lemma 5.10. A comment from Josh: Add proof...
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5.3 Linear interpolation of ANNs

5.3.1 ANN representation of the perturbed linear interpolation function

A comment from Josh: This is new...

Lemma 5.11. Let ε ∈ (0,∞), q ∈ (2,∞), d,K ∈ N, x0, x1, . . . , xK ∈ R, f0, f1, . . . , fK ∈ C(Rd,R), P,F0,
F1, . . . ,FK ∈ N satisfy for all k ∈ {0, 1, . . . , K}, x, y ∈ R that x0 < x1 < . . . < xK, Rr(P) ∈ C(R2,R),
|xy − (Rr(P))(x, y)| ≤ εmax{1, |x|q, |y|q}1R\{0}(xy), and Rr(Fk) = fk (cf. Definitions 3.1, 3.4, and 3.6).
Then

(i) there exists a unique G ∈ N which satisfies

G = F0� I

[
K

�
k=0,I

(
P •

[
P2,(I,I)

(
(i1 •A1,−xk),

((
1

xmin{k+1,K}−xmin{k,K−1}

)
~
(
Fmin{k+1,K}

� I ((−1)~ Fk

) )
� I

((
1

xmax{k,1}−xmax{k−1,0}

)
~ (Fmax{k−1,0}� I ((−1)~ Fk)

))])]
,

(5.52)

(ii) it holds that Rr(G) ∈ C(Rd+1,R), and

(iii) it holds for all t ∈ R, x ∈ Rd that (Rr(G))(t, x) = (PRr(P),f0(x),f1(x),...,fK(x)
x0,x1,...,xK )(t)

(cf. Definitions 3.8, 3.24, 3.27, 3.33, 3.35, 3.37, and 5.8).

Proof of Lemma 5.11. A comment from Josh: Add proof...

A comment from Josh: This is new...

Lemma 5.12. Let ε ∈ (0,∞), q ∈ (2,∞), d,K ∈ N, x0, x1, . . . , xK ∈ R, f0, f1, . . . , fK ∈ C(Rd,R), P,F0,
F1, . . . ,FK ∈ N satisfy for all k ∈ {0, 1, . . . , K}, x, y ∈ R that x0 < x1 < . . . < xK, Rr(P) ∈ C(R2,R),
|xy − (Rr(P))(x, y)| ≤ εmax{1, |x|q, |y|q}1R\{0}(xy), and Rr(Fk) = fk (cf. Definitions 3.1, 3.4, and 3.6).
Then

(i) there exists a unique G ∈ N which satisfies

G = F0� I

[
K

�
k=0,I

(
P •

[
P2,(I,I)

(
(i1 •A1,−xk),

((
1

xmin{k+1,K}−xmin{k,K−1}

)
~
(
Fmin{k+1,K}

� I ((−1)~ Fk

) )
� I

((
1

xmax{k,1}−xmax{k−1,0}

)
~ (Fmax{k−1,0}� I ((−1)~ Fk)

))])]
,

(5.53)

(ii) it holds that Rr(G) ∈ C(Rd+1,R),

(iii) it holds for all t ∈ R, x ∈ Rd that (Rr(G))(t, x) = (PRr(P),f0(x),f1(x),...,fK(x)
x0,x1,...,xK )(t),

(iv) it holds that L(G) ≤ L(P) + max{1,H(F0),H(F1), . . . ,H(FK)}, and

(v) it holds that P(G) ≤ A comment from Josh: Add value...,

(cf. Definitions 3.8, 3.24, 3.27, 3.33, 3.35, 3.37, and 5.8).

Proof of Lemma 5.12. A comment from Josh: Add proof...
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5.3.2 ANN representation of the perturbed linear interpolation of MLP approximations

A comment from Josh: This is new...

Lemma 5.13. Let Θ =
(⋃

n∈N Zn
)
, ε ∈ (0,∞), q ∈ (2,∞), d,K,M ∈ N, x0, x1, . . . , xK , T ∈ R, F,G,P ∈

N satisfy for all x, y ∈ R that 0 = x0 < x1 < . . . < xK = T, Rr(F) ∈ C(R,R), Rr(G) ∈ C(Rd,R),
Rr(P) ∈ C(R2,R), and |xy − (Rr(P))(x, y)| ≤ εmax{1, |x|q, |y|q}1R\{0}(xy), let uθ ∈ [0, 1], θ ∈ Θ, let
U θ : [0, T ]→ [0, T ], θ ∈ Θ, satisfy for all t ∈ [0, T ], θ ∈ Θ that U θt = t+(T − t)uθ, let W θ : [0, T ]→ Rd, θ ∈
Θ, for every θ ∈ Θ, t ∈ [0, T ], s ∈ [t, T ] let Y θ

t,s ∈ Rd satisfy Y θ
t,s = W θ

s −W θ
t , and let U θ

n : [0, T ]×Rd → R,
n ∈ N0, θ ∈ Θ, satisfy for all n ∈ N0, θ ∈ Θ, t ∈ [0, T ], x ∈ Rd that

U θ
n(t, x) =

1N(n)

Mn

[
Mn∑
k=1

(Ra(G))
(
x+ Y

(θ,0,−k)
t,T

)]

+
n−1∑
i=0

(T − t)
Mn−i

Mn−i∑
k=1

(
Ra(F) ◦ U (θ,i,k)

i

)(
U (θ,i,k)
t , x+ Y

(θ,i,k)

t,U(θ,i,k)
t

)
−

n−1∑
i=0

(T − t)
Mn−i

Mn−i∑
k=1

(
1N(i) (Ra(F) ◦ U (θ,−i,k)

max{i−1,0})
)(
U (θ,i,k)
t , x+ Y

(θ,i,k)

t,U(θ,i,k)
t

)
(5.54)

(cf. Definitions 3.1, 3.4, and 3.6). Then

(i) there exist unique Uθ
n,t ∈ N, t ∈ [0, T ], n ∈ N0, θ ∈ Θ, which satisfy for all θ ∈ Θ, n ∈ N, t ∈ [0, T ]

that Uθ
0,t = ((0 0 . . . 0), 0) ∈ R1×d × R1 and

Uθ
n,t =

[
Mn

⊕
k=1

(
1

Mn
~
(
G •A

Id,Y
(θ,0,−k)
t,T

))]
� I

[
n−1

�
i=0,I

[(
(T − t)
Mn−i

)
~

(
Mn−i

�
k=1,I

((
F •U

(θ,i,k)

i,U(θ,i,k)
t

)
•A

Id,Y
(θ,i,k)

t,U(θ,i,k)
t

))]]
(5.55)

� I

[
n−1

�
i=0,I

[(
(t− T )1N(i)

Mn−i

)
~

(
Mn−i

�
k=1,I

((
F •U

(θ,−i,k)

max{i−1,0},U(θ,i,k)
t

)
•A

Id,Y
(θ,i,k)

t,U(θ,i,k)
t

))]]
,

(ii) there exist unique Φθ
n ∈ N, n ∈ N0, θ ∈ Θ, which satisfy for all θ ∈ Θ, n ∈ N0 that

Φθ
n = Uθ

n,x0 � I

[
K

�
k=0,I

(
P •

[
P2,(I,I)

(
(i1 •A1,−xk),

((
1

xmin{k+1,K}−xmin{k,K−1}

)
~
(
Uθ
n,xmin{k+1,K}

� I ((−1)~Uθ
n,xk

))
� I

((
1

xmax{k,1}−xmax{k−1,0}

)
~
(
Uθ
n,xmax{k−1,0} � I ((−1)~Uθ

n,xk
)
)))])]

,

(5.56)

(iii) it holds for all θ ∈ Θ, n ∈ N0, t ∈ [0, T ], x ∈ Rd that

(Rr(Φ
θ
n))(t, x) = (PRr(P),Uθn(x0,x),Uθn(x1,x),...,Uθn(xK ,x)

x0,x1,...,xK
)(t), (5.57)

(iv) it holds for all θ ∈ Θ, n ∈ N0 that L(Φθ
n) ≤ A comment from Josh: Add value..., and

(v) it holds for all θ ∈ Θ, n ∈ N0 that P(Φθ
n) ≤ A comment from Josh: Add value...

(cf. Definitions 3.8, 3.13, 3.24, 3.27, 3.30, 3.33, 3.35, 3.48, and 5.8).

Proof of Lemma 5.13. A comment from Josh: Add proof...
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6 ANN approximations for PDEs

6.1 ANN approximations with specific polynomial convergence rates

A comment from Josh: Some of the details regarding the constants will be updated...
Note: I may need different assumptions on α and β...

Theorem 6.1. Let r, L, c, C, α, β ∈ [0,∞), p, q ∈ [1,∞), q ∈ (2,∞), T ∈ (0,∞), f ∈ C(R,R), for every
d ∈ N let νd : B(Rd+1)→ [0, 1] be a probability measure on (Rd+1,B(Rd+1)), let gd ∈ C1(Rd,R), d ∈ N, let
Gd,ε ∈ N, d ∈ N, ε ∈ (0,∞), and assume for all d ∈ N, v, w ∈ R, x ∈ Rd, ε ∈ (0, 1] that |f(v)− f(w)| ≤
L|v−w|,Rr(Gd,ε) ∈ C1(Rd,R), ε(‖(∇gd)(x)‖+|(Rr(Gd,ε))(x)|)+|gd(x)−(Rr(Gd,ε))(x)| ≤ εCdp(1+‖x‖)pq,
L(Gd,ε) ≤ Cdpε−β, ~D(Gd,ε)~ ≤ Cdpε−α, and (

∫
Rd+1 ‖y‖pqq νd(dy))1/(pqq) ≤ Cdr (cf. Definitions 2.1, 3.1,

3.3, 3.4, and 3.6). Then

(i) there exist unique ud ∈ C([0, T ] × Rd,R), d ∈ N, which satisfy for every d ∈ N, t ∈ [0, T ], x ∈ Rd,
every probability space (Ω,F ,P), and every standard Brownian motion W : [0, T ] × Ω → Rd that
sups∈[0,T ] supy∈Rd(

|ud(s,y)|
1+‖y‖pq ) <∞ and

ud(t, x) = E[gd(x+ WT−t)] +

∫ T

t

E[f(ud(s, x+ Ws−t))] ds (6.1)

and

(ii) there exist (Ud,ε)(d,ε)∈(N×(0,1]) ∈ N and η, c ∈ (0,∞) such that for all d ∈ N, ε ∈ (0, 1] it holds that
Rr(Ud,ε) ∈ C(Rd+1,R), P(Ud,ε) ≤ cdηε−c, and(∫

[0,T ]×Rd
|ud(t, y)− (Rr(Ud,ε))(t, y)|q νd(dt, dy)

)1/q

≤ ε. (6.2)

A comment from Josh: I will be more explicit on the bounds after the proof is com-
plete...

Proof of Theorem 6.1. Throughout this proof let M ∈ N satisfy that M = inf{m ∈ N : (1+2LT )/√m < 1},
let Cd ∈ R, d ∈ N, satisfy for all d ∈ N that Cd = eLT [Cdp(1 +

√
d+ 2) + L(T + CdpeLT )(T + 1)], let

D ∈ R satisfy D = eLT (T + 1)CeM/2, let Ed ∈ R, d ∈ N, satisfy for all d ∈ N that Ed = Cdp(eLT (T +
1))q+1((Cdp)q + 1) A comment from Josh: I may need to fix this constant..., and assume without
loss of generality that

max{|f(0)|+ 1,A comment from Josh: Add value...} ≤ C. (6.3)

Note that the triangle inequality and the fact that for all d ∈ N, x ∈ Rd, ε ∈ (0, 1] it holds that
ε|(Rr(Gd,ε))(x)|+ |gd(x)− (Rr(Gd,ε))(x)| ≤ εCdp(1 + ‖x‖)pq imply for all d ∈ N, x ∈ Rd, ε ∈ (0, 1] that

|gd(x)| ≤ |gd(x)− (Rr(Gd,ε))(x)|+ |(Rr(Gd,ε))(x)| ≤ εCdp(1 + ‖x‖)pq + Cdp(1 + ‖x‖)pq. (6.4)

This proves for all d ∈ N, x ∈ Rd that

|gd(x)| ≤ (C + 1)dp(1 + ‖x‖)pq. (6.5)

A comment from Josh: Add reference..., the fact that for all v, w ∈ R it holds that |f(v)− f(w)| ≤
L|v − w|, and (6.5) hence establish item (i). It thus remains to prove item (ii). To that end, note that
Corollary 4.14 ensures that there exists Fε ∈ N, ε ∈ (0, 1], which satisfy for all v, w ∈ R, ε ∈ (0, 1]
that Rr(Fε) ∈ C(R,R), H(Fε) = 1, D1(Fε) ≤ (2L

ε
)q/(q−1) + 2, |(Rr(Fε))(v) − (Rr(Fε))(w)| ≤ L|v − w|,

|(Rr(Fε))(v)− f(v)| ≤ ε(max{1, |v|q}), and

P(Fε) ≤
3(2L)q/(q−1)

εq/(q−1)
+ 7. (6.6)
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Note that the fact that 1 + |f(0)| ≤ C implies for all ε ∈ (0, 1] that

|(Rr(Fε))(0)| ≤ |(Rr(Fε))(0)− f(0)|+ |f(0)| ≤ ε+ |f(0)| ≤ C. (6.7)

A comment from Josh: Add reference..., the fact that for all v, w ∈ R, ε ∈ (0, 1] it holds that
Rr(Fε) ∈ C(R,R), |(Rr(Fε))(v)−(Rr(Fε))(w)| ≤ L|v−w|, and the fact that for all d ∈ N, ε ∈ (0, 1], x ∈ Rd

it holds that |(Rr(Gd,ε))(x)| ≤ Cdp(1+‖x‖)pq ensure that there exist unique ud,ε ∈ C([0, T ]×Rd,R), d ∈ N,
ε ∈ (0, 1], which satisfy for every d ∈ N, ε ∈ (0, 1], t ∈ [0, T ], x ∈ Rd, every probability space (Ω,F ,P),
and every standard Brownian motion Wd : [0, T ]× Ω→ Rd, d ∈ N, that sups∈[0,T ] supy∈Rd(

|ud,ε(s,y)|
1+‖y‖pq ) <∞

and

ud,ε(t, x) = E[(Rr(Gd,ε))(x+ WT−t)] +

∫ T

t

E[(Rr(Fε))(ud,ε(s, x+ Ws,t))] ds. (6.8)

Next, let Θ = (
⋃
n∈N Zn), let (Ω,F ,P) be a probability space, let uθ : Ω → [0, 1], θ ∈ Θ, be independent

uniformly distributed random variables, let U θ : [0, T ]× Ω→ [0, T ], θ ∈ Θ, satisfy for all t ∈ [0, T ], θ ∈ Θ
that U θt = t + (T − t)uθ, for every d ∈ N let W θ,d : [0, T ] × Ω → Rd, θ ∈ Θ, be independent standard
Brownian motions, assume for every d ∈ N, θ ∈ Θ that U θ and W θ,d are independent, for every d ∈ N,
θ ∈ Θ, t ∈ [0, T ], s ∈ [t, T ] let Y θ,d

t,s : Ω→ Rd satisfy Y θ,d
t,s = W θ,d

s −W
θ,d
t , and let U θ

n,d,δ : [0, T ]×Rd×Ω→ R,
n ∈ N0, d ∈ N, δ ∈ (0, 1], θ ∈ Θ, satisfy for all n ∈ N0, d ∈ N, δ ∈ (0, 1], θ ∈ Θ, t ∈ [0, T ], x ∈ Rd that

U θ
n,d,δ(t, x) =

1N(n)

Mn

[
Mn∑
k=1

(Rr(Gd,δ))
(
x+ Y

(θ,0,−k),d
t,T

)]

+
n−1∑
i=0

(T − t)
Mn−i

Mn−i∑
k=1

(
(Rr(Fδ))

(
U (θ,i,k)
t , x+ Y

(θ,i,k)

t,U(θ,i,k),d
t

, U
(θ,i,k)
i,d,δ

(
U (θ,i,k)
t , x+ Y

(θ,i,k),d

t,U(θ,i,k)
t

))

−1N(i) (Rr(Fδ))
(
U (θ,i,k)
t , x+ Y

(θ,i,k)

t,U(θ,i,k),d
t

, U
(θ,−i,k)
max{i−1,0},d,δ

(
U (θ,i,k)
t , x+ Y

(θ,i,k),d

t,U(θ,i,k)
t

)))]
,

(6.9)

let Pγ ∈ N, γ ∈ (0, 1], satisfy for all γ ∈ (0, 1], v, w ∈ R that Rr(Pγ) ∈ C(R2,R) and |vw −
(Rr(Pγ))(v, w)| ≤ γmax{1, |v|q, |w|q}, let Ed,λ : Rd → [1,∞), d ∈ N, λ ∈ [1,∞), be the function which
satisfies for all d ∈ N, λ ∈ [1,∞), x ∈ Rd that

Ed,λ(x) = sup
s∈[0,T ]

E
[(

1 +
∥∥x+ Wd

s

∥∥)λ] , (6.10)

let cd ∈ [1,∞), d ∈ N, satisfy for all d ∈ N that

cd =

[
1 +

(∫
Rd+1

‖y‖pqqνd(dy)

)1/(pqq)

+
(
E
[∥∥Wd

T

∥∥pq])1/(pq)

]pq
, (6.11)

let Kd,ε ∈ N, d ∈ N, ε ∈ (0, 1], satisfy for all d ∈ N, ε ∈ (0, 1] that

Kd,ε = inf

{
k ∈ N :

cdCdT
1/2

k1/2
≤ ε

8

}
, (6.12)

let Nd,ε ∈ N, d ∈ N, ε ∈ (0, 1], satisfy for all d ∈ N, ε ∈ (0, 1] that

Nd,ε = inf

{
n ∈ N :

[
D

(
1 + 2LT

M 1/2

)n]
≤ ε

4

}
, (6.13)

let Bd,ε ∈ N, d ∈ N, ε ∈ (0, 1], satisfy for all d ∈ N, ε ∈ (0, 1] that

Bd,ε = max{2,~D(Fε)~,~D(Gd,ε)~}, (6.14)
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let xK,k ∈ [0, T ], K ∈ N, k ∈ {0, 1, . . . , K}, satisfy for all K ∈ N, k ∈ {0, 1, . . . , K} that xK,k = kT
K
, let

A comment from Josh: Add constant assumptions... let δd,ε ∈ (0, 1], d ∈ N, ε ∈ (0, 1], satisfy
for all d ∈ N, ε ∈ (0, 1] that δd,ε = ε

4cdEd
, and let γd,ε ∈ (0, 1], d ∈ N, ε ∈ (0, 1], satisfy for all d ∈ N,

ε ∈ (0, 1] that γd,ε = ε
10cd

. Observe that for all d ∈ N, x ∈ Rd it holds that 1 ≤ Ed,p(x) ≤ Ed,pq(x),
1 ≤ Ed,q(x) ≤ Ed,pq(x), and

(∫
[0,T ]×Rd

[Ed,pq(x)]q νd(dt, dx)

)1/q

=

(∫
[0,T ]×Rd

[
sup
s∈[0,T ]

E
[(

1 + ‖x+ Wd
s‖
)pq]]q

νd(dt, dx)

)1/q

≤
(∫

[0,T ]×Rd

[
1 + ‖x‖+

(
E
[∥∥Wd

T

∥∥pq])1/(pq)
]pqq

νd(dt, dx)

)1/q

≤

[
1 +

(∫
Rd+1

‖y‖pqqνd(dy)

)1/(pqq)

+
(
E
[∥∥Wd

T

∥∥pq])1/(pq)

]pq
= cd.

(6.15)

Further note that the fact that for all d ∈ N the random variable ‖Wd
T/
√
T‖q is a chi-squared distributed

random variable with d degrees of freedom and Jensen’s inequality imply that for all d ∈ N it holds that

(
E
[∥∥Wd

T

∥∥pq])2 ≤ E
[∥∥Wd

T

∥∥2pq
]

= (2T )pq

[
Γ(d

2
+ pq)

Γ(d
2
)

]
= (2T )pq

[
pq−1∏
k=0

(
d

2
+ k

)]
. (6.16)

This implies for all d ∈ N that

(
E
[∥∥Wd

T

∥∥pq])1/(pq)
=
(
E
[∥∥Wd

T

∥∥pq])2/(2pq) ≤
√

2T

[
pq−1∏
k=0

(
d

2
+ k

)]1/(2pq)

≤

√
2T

(
d

2
+ pq − 1

)
. (6.17)

This, together with the fact that for all d ∈ N it holds that (
∫
Rd+1 ‖y‖pqqνd(dy))1/(pqq) ≤ Cdr implies that

there exist C ∈ (0,∞) such that for all d ∈ N it holds that

cd ≤ C

(
1 + dr +

√
d

3

)pq

≤ Cdmax{rpq,rp/2}. (6.18)
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Note that the triangle inequality implies that for all n ∈ N0, d,K ∈ N, δ, γ ∈ (0, 1] it holds that(∫
[0,T ]×Rd

E
[∣∣∣ud(t, x)− (P

Rr(Pγ),U0
n,d,δ(xK,0,x),U0

n,d,δ(xK,1,x),...,U0
n,d,δ(xK,K ,x)

xK,0,xK,1,...,xK,K )(t)
∣∣∣q] νd(dt, dx)

)1/q

=

(
K∑
k=1

∫
[xK,k−1,xK,k]×Rd

E
[∣∣∣ud(t, x)− (P

Rr(Pγ),U0
n,d,δ(xK,0,x),U0

n,d,δ(xK,1,x),...,U0
n,d,δ(xK,K ,x)

xK,0,xK,1,...,xK,K )(t)
∣∣∣q] νd(dt, dx)

)1/q

≤

(
K∑
k=1

∫
[xK,k−1,xK,k]×Rd

|ud(t, x)− ud(xK,k, x)|q νd(dt, dx)

)1/q

+

(
K∑
k=1

∫
[xK,k−1,xK,k]×Rd

∣∣∣ud(xK,k, x)− (P
Rr(Pγ),ud(xK,0,x),ud(xK,1,x),...,ud(xK,K ,x)
xK,0,xK,1,...,xK,K )(t)

∣∣∣q νd(dt, dx)

)1/q

+

(
K∑
k=1

∫
[xK,k−1,xK,k]×Rd

∣∣∣(PRr(Pγ),ud(xK,0,x),ud(xK,1,x),...,ud(xK,K ,x)
xK,0,xK,1,...,xK,K )(t)

−(P
Rr(Pγ),ud,δ(xK,0,x),ud,δ(xK,1,x),...,ud,δ(xK,K ,x)
xK,0,xK,1,...,xK,K )(t)

∣∣∣q νd(dt, dx)

)1/q

+

(
K∑
k=1

∫
[xK,k−1,xK,k]×Rd

E
[∣∣∣(PRr(Pγ),ud,δ(xK,0,x),ud,δ(xK,1,x),...,ud,δ(xK,K ,x)

xK,0,xK,1,...,xK,K )(t)

−(P
Rr(Pγ),U0

n,d,δ(xK,0,x),U0
n,d,δ(xK,1,x),...,U0

n,d,δ(xK,K ,x)
xK,0,xK,1,...,xK,K )(t)

∣∣∣q] νd(dt, dx)

)1/q

.

(6.19)

The fact that for all v, w ∈ R it holds that |f(v) − f(w)| ≤ L|v − w|, the fact that f(0) ≤ C ≤
Cdp(1 + ‖x‖)pq, the fact that for all d ∈ N, x ∈ Rd it holds that ‖(∇gd)(x)‖ ≤ Cdp(1 + ‖x‖)pq, and
Corollary 2.7 (with L = L, C = C, p = pq, f = f , g = gd, W = Wd, t = t, t = xK,k−1 in the notation of
Corollary 2.7) imply for all d,K ∈ N, γ ∈ (0, 1], k ∈ {1, 2, . . . , K} it holds that∫

[xK,k−1,xK,k]×Rd
|ud(t, x)− ud(xK,k, x)|q νd(dt, dx)

≤
∫

[xK,k−1,xK,k]×Rd

[√
t− xK,k−1

(
CdEd,p(x)

)]q
νd(dt, dx)

≤
(
T

K

)q/2

(Cd)
q

[∫
[xK,k−1,xK,k]×Rd

[Ed,pq(x)]q νd(dt, dx)

]
.

(6.20)

This implies for all d,K ∈ N, γ ∈ (0, 1] it holds that(
K∑
k=1

∫
[xK,k−1,xK,k]×Rd

|ud(t, x)− ud(xK,k, x)|q νd(dt, dx)

)1/q

≤ Cd

(
T

K

)1/2
(

K∑
k=1

[∫
[xK,k−1,xK,k]×Rd

[Ed,pq(x)]q νd(dt, dx)

])1/q

= Cd

(
T

K

)1/2(∫
[0,T ]×Rd

[Ed,pq(x)]q νd(dt, dx)

)1/q

≤ (Cdcd)

(
T

K

)1/2

.

(6.21)

(6.20), the triangle inequality, Jensen’s inequality, Definition 5.8, Lemma 5.9 (with A comment from
Josh: Add stuff... in the notation of Lemma 5.9), and Corollary 2.7 (with L = L, C = C, p = pq,
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f = f , g = gd, W = Wd, t = xK,k, t = xK,k−1 in the notation of Corollary 2.7) imply for all d,K ∈ N,
γ ∈ (0, 1], k ∈ {1, 2, . . . , K} it holds that∫

[xK,k−1,xK,k]×Rd

∣∣∣ud(xK,k, x)− (P
Rr(Pγ),ud(xK,0,x),ud(xK,1,x),...,ud(xK,K ,x)
xK,0,xK,1,...,xK,K )(t)

∣∣∣q νd(dt, dx)

≤
∫

[xK,k−1,xK,k]×Rd

∣∣|ud(xK,k, x)− ud(xK,k−1, x)|+ γmax{1, |ud(xK,k, x)− ud(xK,k−1, x)|q}
∣∣q νd(dt, dx)

≤
∫

[xK,k−1,xK,k]×Rd

∣∣∣∣∣Cd
(
T

K

)1/2

Ed,p(x) + γmax

{
1,

(
Cd

(
T

K

)1/2

Ed,p(x)

)q}∣∣∣∣∣
q

νd(dt, dx).

(6.22)

This ensures for all d,K ∈ N, γ ∈ (0, 1], k ∈ {1, 2, . . . , K} it holds that(
K∑
k=1

∫
[xK,k−1,xK,k]×Rd

∣∣∣ud(xK,k, x)− (P
Rr(Pγ),ud(xK,0,x),ud(xK,1,x),...,ud(xK,K ,x)
xK,0,xK,1,...,xK,K )(t)

∣∣∣q νd(dt, dx)

)1/q

≤

(
K∑
k=1

∫
[xK,k−1,xK,k]×Rd

∣∣∣∣∣Cd
(
T

K

)1/2

Ed,p(x) + γmax

{
1,

(
Cd

(
T

K

)1/2

Ed,p(x)

)q}∣∣∣∣∣
q

νd(dt, dx)

)1/q

=

(∫
[0,T ]×Rd

∣∣∣∣∣Cd
(
T

K

)1/2

Ed,p(x) + γmax

{
1,

(
Cd

(
T

K

)1/2

Ed,p(x)

)q}∣∣∣∣∣
q

νd(dt, dx)

)1/q

≤

[
Cd

(
T

K

)1/2

+ γmax

{
1, (Cd)

q

(
T

K

)q/2
}](∫

[0,T ]×Rd
[Ed,pq(x)]qνd(dt, dx)

)1/q

≤

[
Cd

(
T

K

)1/2

+ γmax

{
1, (Cd)

q

(
T

K

)q/2
}]

cd.

(6.23)

The fact that for all d ∈ N, v ∈ R, x ∈ Rd ε ∈ (0, 1] it holds that |f(v)− (Rr(Fε))(v)| ≤ ε(max{1, |v|q})
and |gd(x)− (Rr(Gd,ε))(x)| ≤ εCdp(1 + ‖x‖)pq implies that for all d ∈ N, v ∈ R, x ∈ Rd, ε ∈ (0, 1] it holds
that

max{|f(v)− (Rr(Fd,ε))(v)|, |gd(x)− (Rr(Gd,ε))(x)|} ≤ max{ε(max{1, |v|q}, εCdp(1 + ‖x‖)pq}
≤ εCdp((1 + ‖x‖)pq + |v|q).

(6.24)

Note that Lemma 5.10 (with ε = γ, q = q, K = K, p = Rr(Pγ), and for all k ∈ {0, 1, . . . , K} that
xk = xK,k, fk = ud(xK,k, x), gk = ud,δ(xK,k, x) in the notation of Lemma 5.10), and the triangle inequality
imply for all d,K ∈ N, δ ∈ (0, 1], k ∈ {1, 2, . . . , K} it holds that∫

[xK,k−1,xK,k]×Rd

∣∣∣(PRr(Pγ),ud(xK,0,x),ud(xK,1,x),...,ud(xK,K ,x)
xK,0,xK,1,...,xK,K )(t)

−(P
Rr(Pγ),ud,δ(xK,0,x),ud,δ(xK,1,x),...,ud,δ(xK,K ,x)
xK,0,xK,1,...,xK,K )(t)

∣∣∣q νd(dt, dx)

≤
∫

[xK,k−1,xK,k]×Rd

∣∣∣∣ max
j∈{k−1,k}

|ud(xK,j, x)− ud,δ(xK,j, x)|

+2γmax

{
1, 2q

(
max

j∈{k−1,k}
|ud(xK,j, x)− ud,δ(xK,j, x)|

)}∣∣∣∣q νd(dt, dx)

(6.25)

This, (6.5), (6.7), the fact that for all d ∈ N, v, w ∈ R, x ∈ Rd, ε ∈ (0, 1] it holds that |f(v) − f(w)| ≤
L|v−w|, |(Rr(Fε))(v)− (Rr(Fε))(w)| ≤ L|v−w|, |f(0)| ≤ C, ε|(Rr(Gd,ε))(x)|+ |gd(x)− (Rr(Gd,ε))(x)| ≤
εCdp(1 + ‖x‖)pq, and Corollary 2.4 (with f1 = f , f2 = Rr(Fδ), g1 = gd, g2 = Rr(Gd,δ), L = L, B = δCdp,
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C = Cdp, W = Wd in the notation of Corollary 2.4) imply for all d,K ∈ N, δ ∈ (0, 1], k ∈ {1, 2, . . . , K}
it holds that ∫

[xK,k−1,xK,k]×Rd

∣∣∣(PRr(Pγ),ud(xK,0,x),ud(xK,1,x),...,ud(xK,K ,x)
xK,0,xK,1,...,xK,K )(t)

−(P
Rr(Pγ),ud,δ(xK,0,x),ud,δ(xK,1,x),...,ud,δ(xK,K ,x)
xK,0,xK,1,...,xK,K )(t)

∣∣∣q νd(dt, dx)

≤
∫

[xK,k−1,xK,k]×Rd

∣∣[δEdEd,p(x)] + 2γmax{1, [δEdEd,p(x)]q}
∣∣q νd(dt, dx)

(6.26)

This, Jensen’s inequality, and the triangle inequality imply for all d,K ∈ N, δ ∈ (0, 1] it holds that(
K∑
k=1

∫
[xK,k−1,xK,k]×Rd

∣∣∣(PRr(Pγ),ud(xK,0,x),ud(xK,1,x),...,ud(xK,K ,x)
xK,0,xK,1,...,xK,K )(t)

−(P
Rr(Pγ),ud,δ(xK,0,x),ud,δ(xK,1,x),...,ud,δ(xK,K ,x)
xK,0,xK,1,...,xK,K )(t)

∣∣∣q νd(dt, dx)

)1/q

≤

(
K∑
k=1

∫
[xK,k−1,xK,k]×Rd

∣∣[δEdEd,p(x)] + 2γmax{1, [δEdEd,p(x)]q}
∣∣q νd(dt, dx)

)1/q

=

(∫
[0,T ]×Rd

∣∣[δEdEd,p(x)] + 2γmax{1, [δEdEd,p(x)]q}
∣∣q νd(dt, dx)

)1/q

≤ [δEd + 2γmax{2, (2δEd)q}]
(∫

[0,T ]×Rd
[Ed,pq(x)]q νd(dt, dx)

)1/q

≤ [δEd + 2γmax{2, (2δEd)q}]cd.

(6.27)

Note that Lemma 5.10 (with ε = γ, q = q,K = K, p = Rr(Pγ), and for all k ∈ {0, 1, . . . , K} that xk = xK,k,
fk = ud,δ(xK,k, x), gk = U0

n,d,δ(xK,k, x) in the notation of Lemma 5.10), and the triangle inequality imply
for all d,K ∈ N, δ, γ ∈ (0, 1], k ∈ {1, 2, . . . , K} it holds that∫

[xK,k−1,xK,k]×Rd
E
[∣∣∣(PRr(Pγ),ud,δ(xK,0,x),ud,δ(xK,1,x),...,ud,δ(xK,K ,x)

xK,0,xK,1,...,xK,K )(t)

−(P
Rr(Pγ),U0

n,d,δ(xK,0,x),U0
n,d,δ(xK,1,x),...,U0

n,d,δ(xK,K ,x)
xK,0,xK,1,...,xK,K )(t)

∣∣∣q] νd(dt, dx)

≤
∫

[xK,k−1,xK,k]×Rd

∣∣∣∣ max
j∈{k−1,k}

|ud,δ(xK,j, x)− U0
n,d,δ(xK,j, x)|

+2γmax

{
1, 2q

(
max

j∈{k−1,k}
|ud,δ(xK,j, x)− U0

n,d,δ(xK,j, x)|q
)}∣∣∣∣q νd(dt, dx)

(6.28)

This, the fact that for all v, w ∈ R, δ ∈ (0, 1] it holds that |(Rr(Fδ))(v) − (Rr(Fδ))(w)| ≤ L|v − w|, the
fact that for all d ∈ N, δ ∈ (0, 1] it holds that |(Rr(Gd,δ))(x)| ≤ Cdp(1 + ‖x‖)pq, (6.8), and Lemma 2.8
(with M = M , L = L, C = Cdp, p = p, f = Rr(Fδ), g = Rr(Gd,δ), u = ud,δ, U θ

n = U0
n,d,δ in the notation

of Lemma 2.8) imply for all d,K ∈ N, δ, γ ∈ (0, 1], k ∈ {1, 2, . . . , K} it holds that∫
[xK,k−1,xK,k]×Rd

E
[∣∣∣(PRr(Pγ),ud,δ(xK,0,x),ud,δ(xK,1,x),...,ud,δ(xK,K ,x)

xK,0,xK,1,...,xK,K )(t)

−(P
Rr(Pγ),U0

n,d,δ(xK,0,x),U0
n,d,δ(xK,1,x),...,U0

n,d,δ(xK,K ,x)
xK,0,xK,1,...,xK,K )(t)

∣∣∣q] νd(dt, dx)

≤
∫

[xK,k−1,xK,k]×Rd

∣∣∣∣D((1 + 2LT )n

Mn/2

)
Ed,p(x) + 2γmax

{
1,

[
2D

(
(1 + 2LT )n

Mn/2

)
Ed,p(x)

]q}∣∣∣∣q νd(dt, dx).

(6.29)
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This, Jensen’s inequality, and the triangle inequality imply for all d,K ∈ N, δ, γ ∈ (0, 1] it holds that(
K∑
k=1

∫
[xK,k−1,xK,k]×Rd

E
[∣∣∣(PRr(Pγ),ud,δ(xK,0,x),ud,δ(xK,1,x),...,ud,δ(xK,K ,x)

xK,0,xK,1,...,xK,K )(t)

−(P
Rr(Pγ),U0

n,d,δ(xK,0,x),U0
n,d,δ(xK,1,x),...,U0

n,d,δ(xK,K ,x)
xK,0,xK,1,...,xK,K )(t)

∣∣∣q] νd(dt, dx)

)1/q

≤

(
K∑
k=1

∫
[xK,k−1,xK,k]×Rd

∣∣∣∣D((1 + 2LT )n

Mn/2

)
Ed,p(x)

+2γmax

{
1,

[
2D

(
(1 + 2LT )n

Mn/2

)
Ed,p(x)

]q}∣∣∣∣q νd(dt, dx)

)1/q

=

(∫
[0,T ]×Rd

∣∣∣∣D((1 + 2LT )n

Mn/2

)
Ed,p(x) + 2γmax

{
1,

[
2D

(
(1 + 2LT )n

Mn/2

)
Ed,p(x)

]q}∣∣∣∣q νd(dt, dx)

)1/q

≤
[
D

(
(1 + 2LT )n

Mn/2

)
+ 2γmax

{
2, (2D)q

(
(1 + 2LT )n

Mn/2

)q}](∫
[0,T ]×Rd

[Ed,pq(x)]q νd(dt, dx)

)1/q

≤
[
D

(
(1 + 2LT )n

Mn/2

)
+ 2γmax

{
2, (2D)q

(
(1 + 2LT )n

Mn/2

)q}]
cd.

(6.30)

Combining (6.19) with (6.21), (6.23), (6.27), (6.30), and Fubini’s theorem then imply that for all d ∈ N,
ε ∈ (0, 1] it holds that

E
[∫

[0,T ]×Rd

∣∣∣∣ud(t, x)− (P
Rr(Pγd,ε ),U0

Nd,ε,d,δd,ε
(xKd,ε,0,x),U0

Nd,ε,d,δd,ε
(xKd,ε,1,x),...,U0

Nd,ε,d,δd,ε
(xKd,ε,Kd,ε ,x)

xKd,ε,0,xKd,ε,1,...,xKd,ε,Kd,ε
)(t)

∣∣∣∣q νd(dt, dx)

]
=

∫
[0,T ]×Rd

E
[∣∣∣∣ud(t, x)

−(P
Rr(Pγd,ε ),U0

Nd,ε,d,δd,ε
(xKd,ε,0,x),U0

Nd,ε,d,δd,ε
(xKd,ε,1,x),...,U0

Nd,ε,d,δd,ε
(xKd,ε,Kd,ε ,x)

xKd,ε,0,xKd,ε,1,...,xKd,ε,Kd,ε
)(t)

∣∣∣∣q] νd(dt, dx)

≤

[
2Cd

(
T

Kd,ε

)1/2

+ δEd + 2γd,ε max{2, (2δEd)q}+ γd,ε max

{
1, (Cd)

q

(
T

Kd,ε

)q/2
}

+D

(
(1 + 2LT )Nd,ε

MNd,ε/2

)
+ 2γd,ε max

{
2, (2D)q

(
(1 + 2LT )Nd,ε

MNd,ε/2

)q}]q
(cd)

q

≤

[
2Cd

(
T

Kd,ε

)1/2

+ δEd + 9γd,ε + 2γd,ε(2δEd)
q + γd,ε(Cd)

q

(
T

Kd,ε

)q/2

+D

(
(1 + 2LT )Nd,ε

MNd,ε/2

)
+ 2γd,ε(2D)q

(
(1 + 2LT )Nd,ε

MNd,ε/2

)q]q
(cd)

q

≤
[ε

4
+
ε

4
+ 9γd,ε + 2γd,ε

(ε
2

)q
+ γd,ε

(ε
2

)q
+
ε

4
+ 2γd,ε

(ε
2

)q]q
≤
[

3ε

4
+ 10γd,ε

]q
= εq.

(6.31)

This implies for all d ∈ N, ε ∈ (0, 1] there exists ωd,ε ∈ Ω such that∫
[0,T ]×Rd

∣∣∣∣ud(t, x)− (P
Rr(Pγd,ε ),U0

Nd,ε,d,δd,ε
(xKd,ε,0,x),U0

Nd,ε,d,δd,ε
(xKd,ε,1,x),...,U0

Nd,ε,d,δd,ε
(xKd,ε,Kd,ε ,x)

xKd,ε,0,xKd,ε,1,...,xKd,ε,Kd,ε
)(t)

∣∣∣∣q νd(dt, dx)

≤ εq.

(6.32)
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A comment from Josh: The rest of the proof will come after I finish the ANN interpolation
details...
The proof of Theorem 6.1 is thus completed.

6.2 ANN approximations with general polynomial convergence rates

A comment from Josh: This needs to be updated...

Corollary 6.2. Let T, κ ∈ (0,∞), q ∈ [1,∞), f ∈ C(R,R), let Gd,ε ∈ N, d ∈ N, ε ∈ (0, 1], let
ud ∈ C1,2([0, T ] × Rd,R), d ∈ N, and assume for all d ∈ N, v, w ∈ R, x ∈ Rd, ε ∈ (0, 1], t ∈ [0, T ] that
|f(v)−f(w)| ≤ κ|v−w|, Rr(Gd,ε) ∈ C(Rd,R), ε(‖(∇xud)(T, x)‖+ |ud(t, x)|)+ |ud(T, x)−(Rr(Gd,ε))(x)| ≤
εκdκ(1 + ‖x‖κ), P(Gd,ε) ≤ κdκε−κ, and

( ∂
∂t
ud)(t, x) + 1

2
(∆xud)(t, x) + fd(ud(t, x)) = 0 (6.33)

(cf. Definitions 2.1, 3.1, 3.3, 3.4, and 3.6). Then there exist c ∈ (0,∞), Ud,ε ∈ N, d ∈ N, ε ∈ (0, 1],
which satisfy for all d ∈ N, ε ∈ (0, 1] that Rr(Ud,ε) ∈ C(Rd+1,R), P(Ud,ε) ≤ cdcε−c, and[∫

[0,T ]×[0,1]d
|ud(y)− (Rr(Ud,ε))(y)|q dy

]1/q

≤ ε. (6.34)

Proof of Corollary 6.2. A comment from Josh: Add proof....
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