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1 Introduction

Add an appropriate introduction. . .

2 Multilevel Picard approximations for the heat equa-
tion

Theorem 2.1. Let T,x,6 € (0,00), © = [J,n2", let ug € CH*([0,T] x RY,R), d € N,
satisfy for alld € N, t € [0,T], x = (21,29, ...,2q4) € R? that

lua(t,2)| < kd*(1+ 0 |w])™  and  (Zua)(t,2) = (Ayua)(t, v), (2.1)
let (Q, F,P) be a probability space, let W9: [0, T] x Q =R, d € N, § € ©, be independent
standard Brownian motions, let U%%: [0,T] x RE x Q — R, d,m € Z, § € O, satisfy for all
dmeN, e, te|0,T], z€R? that

m

Ua9(t,z) = — { ug (0, 2+ V2O |

m k=1
and for every d,n,m € N let €4, ,, € N be the number of function evaluations of uq(0,-)
and the number of realizations of scalar random wvariables which are used to compute one
realization of UXY(T,0): Q — R. Then there exist c € R and 7: N x (0,1] — N such that
for alld € N, ¢ € (0,1] it holds that

1/2
(Eﬂud(T,O)—UZ’&E)(T,O)P]) <t and  Copenae <cdeC (22)



3 Stochastic solutions to parabolic partial differential

equations
Lemma 3.1. Let T € (0,00), let (2, F,P) be a probability space, let ug € C2([0, T] x R4, R),
d € N, satisfy for alld € N, t € [0,T], z € R? that

(Qud)(t, x) + (Ayug)(t,z) =0, (3.1)

let We:[0,T] x Q — R?, d € N, be standard Brownian motions, and let X : [t,T] x Q —
RY deN, te€[0,T], z € R be a stochastic process with continuous sample paths satisfying
that for alld € N, t € [0,T], s € [t,T], + € R? we have P-a.s. that

XL — g 4 / V2dwd =z +V2wd . (3.2)
t
Then for alld € N, t € [0,T], x € R? it holds that
ua(t, v) = Eua (T, X7"%)]. (3.3)
Proof of Lemma 3.1. The proof of Lemma 3.1 is thus complete. O]

Lemma 3.2. Let T € (0,00), let (2, F,P) be a probability space, let oq: R — R4 d € N,
be infinitely often differentiable functions, let uq € C12([0,T] x R% R), d € N, satisfy for all
deN, tel0,T], x € R? that

(Zrua)(t, z) + Trace(o(z)[o(2)]* (Hess, ua)(t, 7)) = 0, (3.4)

let W:[0,T] x Q = R% d €N, be standard Brownian motions, and let X4 [t T] x Q —
R?, d e N, t€[0,T], z € R%, be a stochastic process with continuous sample paths satisfying
that for alld € N, t € [0,T], s € [t,T], x € R? we have P-a.s. that

t
X =g 4 / V20 (XM AW, (3.5)
Then for alld € N, t € [0,T], x € R? it holds that
ug(t, z) = E[ud (T, X;W)] . (3.6)
Proof of Lemma 3.2. The proof of Lemma 3.2 is thus complete. O]

Lemma 3.3. Let T € (0,00), let (Q, F,P) be a probability space, let g € R? — R?, d € N,
be infinitely often differentiable functions, let uq € C12([0,T] x R R), d € N, satisfy for all
deN,te€0,T], x € R? that

(Gua)(t, ) + (Dgug)(t, ) + [pa(2)]" (Voua) (t, ) = 0, (3.7)
let W: [0, T] x Q = R% d €N, be standard Brownian motions, and let X4 [t T] x Q —
RY, d e N, t€[0,T], z € RY, be a stochastic process with continuous sample paths satisfying
that for alld € N, t € [0,T], s € [t,T], x € R? we have P-a.s. that

t t
X4te = g / pa (XY dr + / V2dwe, (3.8)

2



Then for alld € N, t € [0,T], x € R? it holds that
ua(t, ) = Efua (T, X3"")]. (3.9)
Proof of Lemma 3.5. The proof of Lemma 3.3 is thus complete. [

Lemma 3.4. Let T € (0,00), let (Q, F,P) be a probability space, let oy € R? — R, d € N,
be infinitely often differentiable functions, let uqg € CY2([0,T] x R4, R), d € N, satisfy for all
deN, tel0,T], x € R? that

(Sug)(t,z) + (Agua)(t, ) + ca(@)ug(t, z) =0, (3.10)

let W2:[0,T] x Q = R?, d €N, be standard Brownian motions, and let X4 : [t, T] x Q —
RY deN, te€[0,T], z € R be a stochastic process with continuous sample paths satisfying
that for alld € N, t € [0,T], s € [t,T], + € R? we have P-a.s. that

t
xdte — g +/ V2dawd. (3.11)

Then for alld € N, t € [0,T], x € R? it holds that
ug(t,z) =R [exp (ftT (XY dr)ug (T, Xg’t’w)} : (3.12)

Proof of Lemma 3.4. The proof of Lemma 3.4 is thus complete. O
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