
ar
X

iv
:2

10
3.

10
87

0v
1 

 [
m

at
h.

PR
] 

 1
9 

M
ar

 2
02

1

Multilevel Picard approximations for

McKean-Vlasov stochastic differential equations

Martin Hutzenthaler∗ Thomas Kruse† Tuan Anh Nguyen‡

Monday 22nd March, 2021

Abstract

In the literature there exist approximation methods for McKean-Vlasov stochastic dif-

ferential equations which have a computational effort of order 3. In this article we intro-

duce full-history recursive multilevel Picard approximations for McKean-Vlasov stochastic

differential equations. We prove that these MLP approximations have computational ef-

fort of order 2+ which is essentially optimal in high dimensions.

1 Introduction

McKean [19] introduced stochastic differential equations (SDEs) whose coefficients depend on

the distribution of the solution. These McKean-Vlasov SDEs allow a stochastic representation

of solutions of nonlinear, possibly non-local partial parabolic differential equations (PDEs) such

as Vlasov’s equation, Boltzmann’s equation, or Burgers’ equation. Moreover, weakly dependent

diffusions converge to independent solutions of McKean-Vlasov SDEs as the system size tends

to infinity. This phenomenon was termed propagation of chaos by Kac [16] and is well studied

in the literature; see, e.g., [18, 20, 8, 22, 11, 24, 15].

For simplicity we consider in this article the McKean-Vlasov SDE in (3) below with additive

noise whose drift coefficient depends linearly on the distribution of the solution. In the literature

there exist a number of approximation methods for the solution of (3). A direct approach

approximates the spatial integral in (3) with an average over weakly dependent versions of

the solution (resulting in weakly interacting diffusions) and the temporal integral in (3) with

suitable Rieman sums (Euler method). The L2-error of this approximation is of order 1/N as

N = {1, 2, . . .} ∋ N → ∞ if we use N2 interacting diffusions and N time intervals resulting
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in N5 function evaluations of the drift coefficient. Thus the computational effort for achieving

L2-error ε ∈ (0, 1) is of order ε−5 as ε → 0; cf., e.g., [1, 5, 6]. This computational effort for

achieving error ε ∈ (0, 1) can be reduced to order ε−4| log(ε)|3 by replacing averages by the

multilevel Monte Carlo method (cf. [23, Theorem 4.5] and, e.g., [10, 9, 17]) and to order ε−3

by the antithetic multilevel Monte Carlo method (cf. [24, Theorem 4.3]). In the very special

case of ordinary differential equations with an expectation in the driving function, where the

plain vanilla Monte Carlo method has computational effort of order ε−3, [3, Theorem 1.1] shows

that this computational effort can be reduced to order ε−2+. In low dimensions, the spatial

integral in (3) can also be approximated e.g. by projections on function spaces and then the

computational effort can be reduced to order ε−2| log(ε)|4 (or better); cf., e.g., [4, Theorem

4]. In high dimensions, the numerical approximation of Lebesgue integrals with (deterministic)

quadrature rules suffers from the curse of dimensionality; see [21]. The Monte Carlo method

overcomes this curse and achieves a L2-error ε ∈ (0, 1) with computational effort of order ε−2 in

the numerical approximation of Lebesgue integrals without the curse of dimensionality. Thus,

in high dimensions, the computational effort for approximating the spatial integral on the right-

hand side of (3) has optimal order ε−2 and this is clearly a lower bound for the approximation of

the full McKean-Vlasov SDE. It remained an open question in the literature whether McKean-

Vlasov SDEs can be approximated up to L2-error ε ∈ (0, 1) with computational effort of order

ε−2 (or whether an higher effort such as ε−3 is required in general).

In this article we partially answer this question positively. In other words, we show that the

computational problem of approximating the solution of the McKean-Vlasov SDE in (3) has

up to logarithmic factors the same computational complexity as the numerical approximation

of the spatial integral in (3). More specifically, we view (3) as fixed point equation and adapt

the full-history multilevel Picard (MLP) method, which was introduced in [7], to this fixed

point equation. This MLP method was already successfully applied to overcome the curse of

dimensionality in the numerical approximation of semilinear PDEs; see, e.g., [14, 12, 2, 13]. Our

MLP approximation method (2) below is, roughly speaking, based on the idea to (a) reformulate

the McKean-Vlasov SDE in (3) as a stochastic fixed point problem X = Φ(X) with a suitable

function Φ, to (b) approximate the fixed point X through Picard iterates (Xk)k∈{0,1,2,...}, to (c)

write X as telescoping series over this sequence, that is,

X = X1 +

∞
∑

k=1

(Xk+1 −Xk) = X1 +

∞
∑

k=1

(

Φ(Xk)− Φ(Xk−1)
)

, (1)

and to (d) approximate the series by a finite sum and the temporal and spatial integrals

in the summands by Monte Carlo averages with fewer and fewer independent samples as k

increases. Roughly speaking, the rationale behind this approach is that Xk+1 −Xk converges

exponentially fast (or even factorially fast) to 0 as k → ∞ and the mean squared error of the

Monte Carlo average is bounded by the second moment of the involved random variable divided

by the number of independent samples in the average. This motivates our MLP approximations

in (2).

The main result of this article, Theorem 3.1 in Section 3 below, implies that the MLP

approximation method approximates solutions of McKean-Vlasov SDEs with additive noise

whose drift coefficients depend linearly on the distribution of the solution up to an L2-error

ε ∈ (0, 1) with computational effort ε−2+ without suffering from the curse of dimensionality.
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To illustrate our main results, we now present in Theorem 1.1 a special case of Theorem 3.1.

Theorem 1.1. Let δ, T ∈ (0,∞), d ∈ N, ξ ∈ Rd, Θ =
⋃

n∈N(N0)
n, let ‖·‖ : Rd → [0,∞) be a

norm, let µ : Rd×Rd → R

d be globally Lipschitz continuous, let (Ω,F ,P) be a probability space,

let uθ : Ω → [0, 1], θ ∈ Θ, be i.i.d. random variables, assume for all t ∈ [0, 1] that P(u0 ≤ t) = t,

let W θ : [0, T ]× Ω → R

d, θ ∈ Θ, be i.i.d. standard Brownian motions with continuous sample

paths, assume that (uθ)θ∈Θ and (W θ)θ∈Θ are independent, let Xθ
n,m : [0, T ] × Ω → R

d, θ ∈ Θ,

n,m ∈ N0, satisfy for all θ ∈ Θ, m ∈ N, n ∈ N0, t ∈ [0, T ] that

Xθ
n,m(t) =

(

ξ +W θ
(

max
(

{ kT
mn : k ∈ N0} ∩ [0, t]

))

+ tµ(0, 0)
)

1

N

(n)

+

n−1
∑

ℓ=1

mn−ℓ
∑

k=1

t

[

µ
(

Xθ
ℓ,m(u(θ,n,k,ℓ)t),X

(θ,n,k,ℓ)
ℓ,m (u(θ,n,k,ℓ)t)

)

−µ
(

Xθ
ℓ−1,m(u(θ,n,k,ℓ)t),X

(θ,n,k,ℓ)
ℓ−1,m (u(θ,n,k,ℓ)t)

)

]

mn−ℓ ,
(2)

let X : [0, T ] × Ω → R

d be a (σ({W 0(s) : s ∈ [0, t]}))t∈[0,T ]-adapted stochastic process with

continuous sample paths, assume for all t ∈ [0, T ] that
´ T

0
(E[‖X(s)‖2])1/2 ds < ∞ and

X(t) = ξ +

ˆ t

0

ˆ

µ(X(s), x)P
(

X(s) ∈ dx
)

ds+W 0(t), (3)

and for every n,m ∈ N let Cn,m ∈ N0 be the number of function evaluations of µ and the number

of scalar random variables which are used to compute one realization of X0
n,m(T ) (cf. (19)

in Theorem 3.1 below). Then there exist c ∈ R and n = (nε)ε∈(0,1] : (0, 1] → N, such that for

all ε ∈ (0, 1] it holds that supk∈[nε,∞)∩N supt∈[0,T ]

(

E

[

‖X0
k,k(t)−X(t)‖2

])1/2 ≤ ε and Cnε,nε ≤
c ε−(2+δ).

In the following we add further comments on our approximation method. The MLP ap-

proximations Xθ
n,m, n ∈ N0, m ∈ N, θ ∈ Θ, in (2) are indexed by the number n ∈ N0 of fixed

point iterates, by a parameter m ∈ N which is fixed in the recursion in (2) and is the basis of

the number of Monte Carlo averages, and by a parameter θ ∈ Θ which is used to distinguish

independent MLP approximations in (2). We note for every θ that all Xθ
n,m, n,m ∈ N, depend

on the same Brownian path W θ so that for all n,m ∈ N, θ ∈ Θ, t ∈ [0, T ] we need to have

(W θ( kT
mn ))k∈{0,1,...,mn} as argument of the function call which calculates Xθ

n,m(t).

The remainder of this article is organized as follows. In Section 2 we solve recursions

of Gronwall-type. In particular, Corollary 2.3 will be applied to obtain an upper bound for

the computational effort which satisfies the recursion in (19) in Theorem 3.1. Moreover, in

Theorem 3.1 in Section 3 we estimate the L2-error between the solution of the McKean-Vlasov

SDE and our MLP approximations and we estimate the computational effort for computing

one realization of our MLP approximation.

2 Discrete Gronwall-type recursions

In this section we solve recursions of Gronwall-type. The following result, Lemma 2.1, provides

the exact solutions of certain linear recurrence relations of second order.

Lemma 2.1 (Two-step recursions). Let κ, λ, x1, x2 ∈ C, (ak)k∈N0, (bk)k∈N0 ⊆ C satisfy for all

k ∈ N0, i ∈ {1, 2} that

a0 = b0, a1 = b1 + κb0, ak+2 = bk+2 + κak+1 + λak, x2
i = κxi + λ, and x1 6= x2. (4)
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Then it holds for all k ∈ N0 that ak =
1

x2−x1

∑k
ℓ=0 bℓ(x

k−ℓ+1
2 − xk−ℓ+1

1 ).

Proof of Lemma 2.1. Throughout this proof let (zk)k∈N0 ⊆ C satisfy for all k ∈ N0 that zk =
1

x2−x1

∑k
ℓ=0 bℓ

(

xk−ℓ+1
2 − xk−ℓ+1

1

)

. We consider the two cases λ = 0 and λ 6= 0.

Case 1. λ = 0. The fact that x1 6= x2 and the fact that ∀ i ∈ {1, 2} : x2
i = κxi prove that

κ 6= 0 and (x1, x2) ∈ {(0, κ), (κ, 0)}. This proves for all k ∈ N0 that zk = 1
κ

∑k
ℓ=0 bℓκ

k−ℓ+1 =
∑k

ℓ=0 bℓκ
k−ℓ. This and the fact that λ = 0 show for all k ∈ N0 that z0 = b0, z1 = b1 + κb0, and

zk+2 =
∑k+2

ℓ=0 bℓκ
k+2−ℓ = bk+2 + κzk+1 = bk+2 + κzk+1 + λzk. This, (4), and induction prove for

all k ∈ N0 that zk = ak.

Case 2. λ 6= 0. The fact that ∀ i ∈ {1, 2} : x2
i = κxi + λ implies that x1 6= 0 and x2 6= 0.

Moreover, the fact that 0 = (x2
1−κx1−λ)−(x2

2−κx2−λ) = (x1−x2)(x1+x2−κ) and the fact that

x1 6= x2 imply that x1+x2 = κ. Next, the fact that 0 =
x2
1−κx1−λ

x1
− x2

2−κx2−λ

x2
= x1−x2+λ( 1

x2
− 1

x1
)

imply that λ
x2−x1

( 1
x2

− 1
x1
) = 1. This, the definition of (zk)k∈N0, and the fact that x1 + x2 = κ

imply for all k ∈ N0 that z0 = b0 = a0, z1 = 1
x2−x1

(b0(x
2
2 − x2

1) + b1(x2 − x1)) = b0(x1 + x2) +

b1 = b0κ + b1 = a1, and

zk+2 =
k+2
∑

ℓ=0

bℓ(xk−ℓ+3
2 −xk−ℓ+3

1 )
x2−x1

=
k+2
∑

ℓ=0

bℓ(xk−ℓ+1
2 x2

2−xk−ℓ+1
1 x2

1)
x2−x1

=
k+2
∑

ℓ=0

bℓ(xk−ℓ+1
2 (κx2+λ)−xk−ℓ+1

1 (κx1+λ))
x2−x1

= κ

[

k+2
∑

ℓ=0

bℓ(xk−ℓ+2
2 −xk−ℓ+2

1 )
x2−x1

]

+ λ

[

k+2
∑

ℓ=0

bℓ(xk−ℓ+1
2 −xk−ℓ+1

1 )
x2−x1

]

= κ

[

k+1
∑

ℓ=0

bℓ

(

x
(k+1)−ℓ+1
2 −x

(k+1)−ℓ+1
1

)

x2−x1

]

+ λ

[

k
∑

ℓ=0

bℓ(xk−ℓ+1
2 −xk−ℓ+1

1 )
x2−x1

]

+ λ

[

k+2
∑

ℓ=k+1

bℓ(xk−ℓ+1
2 −xk−ℓ+1

1 )
x2−x1

]

= κzk+1 + λzk +
λbk+2

x2−x1

(

1
x2

− 1
x1

)

= κzk+1 + λzk + bk+2. (5)

This, (4), and induction show for all k ∈ N0 that zk = ak. Combining the two cases λ = 0 and

λ 6= 0 completes the proof of Lemma 2.1.

The following result, Lemma 2.2, generalizes the discrete Gronwall inequality which is the

special case λ = 0 of Lemma 2.2.

Lemma 2.2 (Discrete Gronwall-type recursion). Let κ, λ, x1, x2 ∈ C, (an)n∈N0, (bn)n∈N0 ⊆ C

satisfy for all n ∈ N0, i ∈ {1, 2} that

an = bn +
n−1
∑

k=0

[

κak + 1N(k)λa|k−1|
]

, x2
i = (1 + κ)xi + λ, and x1 6= x2. (6)

Then it holds for all n ∈ N0 that

an =

n
∑

k=0

[

bk−1N(k)b|k−1|

x2−x1

(

xn−k+1
2 − xn−k+1

1

)

]

. (7)

Proof of Lemma 2.2. Throughout this proof let (zn)n∈N0 ⊆ C satisfy for all n ∈ N0 that

zn =
∑n

k=0 ak. This and (6) show for all n ∈ N0 that z0 = a0 = b0, z1 = a0+a1 = a0+b1+κa0 =

b1 + (1 + κ)b0, zn+2 − zn+1 = an+2 = bn+2 + κ
(
∑n+1

k=0 ak
)

+ λ
(
∑n

k=0 ak
)

= bn+2 + κzn+1 + λzn,

and therefore zn+2 = bn+2 + (1 + κ)zn+1 + λzn. This, Lemma 2.1 (applied with κ x (1 + κ),
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(an)n∈N0 x (zn)n∈N0 in the notation of Lemma 2.1), and the assumptions on x1, x2 prove for

all n ∈ N0 that zn =
∑n

k=0
bk(x

n−k+1
2 −xn−k+1

1 )

x2−x1
. Therefore, it holds for all n ∈ N that

an = zn − zn−1 =
n
∑

k=0

bk(x
n−k+1
2 −xn−k+1

1 )

x2−x1
−

n−1
∑

k=0

bk(x
n−k
2 −xn−k

1 )

x2−x1

=
n
∑

k=0

bk(x
n−k+1
2 −xn−k+1

1 )

x2−x1
−

n
∑

k=1

bk−1(x
n−k+1
2 −xn−k+1

1 )

x2−x1
=

n
∑

k=0

(bk−1N(k)b|k−1|)(x
n−k+1
2 −xn−k+1

1 )

x2−x1
.

(8)

This and the fact that a0 = b0 (see (6)) complete the proof of Lemma 2.2.

The following result, Corollary 2.3, generalizes, e.g., [14, Lemma 3.6].

Corollary 2.3 (Discrete Gronwall-type inequality). Let (an)n∈N0 ⊆ [0,∞), κ, λ, c1, c2, c3, c4, β

∈ [0,∞) satisfy for all n ∈ N0 that

an ≤ c1 + c2n+ c3

n
∑

k=1

ck4 +

n−1
∑

k=0

[

κak + λ1
N

(k)a|k−1|
]

and β =
(1+κ)+

√
(1+κ)2+4λ

2
> 1. (9)

Then it holds for all n ∈ N0 that

an ≤
{

3
2
βnc1 +

3c2(βn−1)
2(β−1)

+ 3
2
c3nβ

n if c4 = β,

3
2
βnc1 +

3c2(βn−1)
2(β−1)

+
3c3(c

n+1
4 −c4βn)

2(c4−β)
else.

(10)

Proof of Corollary 2.3. Throughout this proof let (ãn)n∈N0, (bn)n∈N0 ⊆ [0,∞), x1, x2 ∈ R sat-

isfy for all n ∈ N0 that x1 =
(1+κ)−

√
(1+κ)2+4λ

2
, x2 =

(1+κ)+
√

(1+κ)2+4λ

2
,

ãn = bn +
n−1
∑

k=0

[

κãk + λ1
N

(k)ã|k−1|
]

, and bn = c1 + c2n + c3

n
∑

k=1

ck4. (11)

This and the quadratic formula show for all n ∈ N0, k ∈ {0, 1, . . . , n}, i ∈ {1, 2} that

|x1|
|x2−x1| =

√
(1+κ)2+4λ−(1+κ)

2
√

(1+κ)2+4λ
≤ 1

2
, |x2|

|x2−x1| =
(1+κ)+

√
(1+κ)2+4λ

2
√

(1+κ)2+4λ
≤ 1,

|x1| ≤ |x2|, and
∣

∣

∣

xn−k+1
2 −xn−k+1

1

x2−x1

∣

∣

∣
≤
[

|x2|
|x2−x1| |x2|n−k + 1

|x2−x1| |x1|n−k+1
]

≤ 3
2
|x2|n−k,

(12)

x1 6= x2, x
2
i = (1 + κ)xi + λ, b0 = c1, and bn+1 − bn = c2 + c3c

n+1
4 . This, Lemma 2.2 (applied

with (an)n∈N0 x (ãn)n∈N0 in the notation of Lemma 2.2), the fact that λ, κ, c1, c2, c3, c4 ≥ 0,

and the definition of x2 show for all n ∈ N0 that

ãn =
n
∑

k=0

(bk−1N(k)b|k−1|)(x
n−k+1
2 −xn−k+1

1 )

x2−x1
≤ 3

2
c1|x2|n +

n
∑

k=1

[

3
2
(c2 + c3c

k
4)|x2|n−k

]

= 3
2
|x2|nc1 + 3

2
c2

[

n−1
∑

k=0

|x2|k
]

+ 3
2
c3|x2|n

[

n
∑

k=1

|c4|k
|x2|k

]

.

(13)

This and the fact that x2 = β > 1 show for all n ∈ N0 that if c4 6= x2, then

ãn ≤ 3
2
|x2|nc1 + 3

2
c2

|x2|n−1
|x2|−1

+ 3
2
c3|x2|n

| c4
x2
|n+1 − | c4

x2
|

| c4
x2
| − 1

≤ 3
2
|x2|nc1 + 3

2
c2

|x2|n−1
|x2|−1

+ 3
2
c3

|c4|n+1−c4|x2|n
|c4|−|x2|

(14)

5



and if c4 = x2, then

ãn ≤ 3
2
|x2|nc1 + 3

2
c2

|x2|n−1
|x2|−1

+ 3
2
c3n|x2|n. (15)

Furthermore, (9), (11), and induction prove for all n ∈ N0 that an ≤ ãn. This, (14), (15), and

the fact that x2 = β complete the proof of Corollary 2.3.

3 Multilevel Picard approximations of McKean-Vlasov

SDEs

The following theorem, Theorem 3.1, shows that the computational effort of MLP approxima-

tions of McKean-Vlasov SDEs is of order 2+ if the noise is additive and if the drift coefficients

depend linearly on the distributions. In Theorem 3.1, for every n,M ∈ N we think of Cn,M as

an upper bound for the sum of the number of scalar random variables and the number of func-

tion evaluations of the drift coefficient which are used to compute one realization of X0
n,m(T ).

Let us comment on the recursion (19) which describes this computational effort. The binary

variables v, f ∈ {0, 1} indicate whether we want to count the number of scalar random variables

(v = 1) and whether we want to count the number of function evaluations of the drift coefficient

(f = 1). For every n,M ∈ N to compute one realization of X0
n,m(T ) the scheme in (18) first

has to generate a realization of (W 0( kT
mn ))k∈{0,1,...,mn} which corresponds to the generation of

mnd scalar random variables. Additionally, the scheme evaluates the drift coefficient once at

(0, 0) ∈ Rd×Rd. Next, for every l ∈ {1, 2, . . . , n−1} the scheme does mn−l times the following:

it evaluates the drift coefficient twice, it generates a continuously uniformly on [0, 1] distributed

random variable, it generates a realization of (W θ(kT
ml ))k∈{0,1,...,ml} (corresponding to mld scalar

random variables), and for suitable s ∈ [0, T ], θ ∈ Θ it calls twice the functions which calculate

Xθ
l,m(s) and Xθ

n,m(s).

Theorem 3.1. Let T, L ∈ (0,∞), d ∈ N, ξ ∈ Rd, µ ∈ C(Rd × Rd,Rd), Θ =
⋃

n∈N(N0)
n, let

‖·‖ : Rd → [0,∞) be the standard norm, assume for all x1, y1, x2, y2 ∈ Rd that
∥

∥µ(x1, y1)− µ(x2, y2)
∥

∥ ≤ L
2
‖x1 − x2‖+ L

2
‖y1 − y2‖, (16)

let (Ω,F ,P) be a probability space, let uθ : Ω → [0, 1], θ ∈ Θ, be i.i.d. random variables,

assume for all t ∈ [0, 1] that P(u0 ≤ t) = t, let W θ : [0, T ] × Ω → R

d, θ ∈ Θ, be i.i.d.

standard Brownian motions with continuous sample paths, assume that (uθ)θ∈Θ and (W θ)θ∈Θ
are independent, let X : [0, T ]× Ω → R

d be a (σ({W 0(s) : s ∈ [0, t]}))t∈[0,T ]-adapted stochastic

process with continuous sample paths, assume for all t ∈ [0, T ] that
´ T

0
(E[‖X(s)‖2])1/2 ds < ∞

and

X(t) = ξ +

ˆ t

0

ˆ

µ(X(s), x)P
(

X(s) ∈ dx
)

ds+W 0(t), (17)

let Xθ
n,m : [0, T ]× Ω → R

d, θ ∈ Θ, m ∈ N, n ∈ N0, satisfy for all θ ∈ Θ, m,n ∈ N, t ∈ [0, T ]

that Xθ
0,m(t) = 0 and

Xθ
n,m(t) = ξ +W θ

(

sup
(

{ kT
mn : k ∈ N0} ∩ [0, t]

))

+ tµ(0, 0)

+

n−1
∑

ℓ=1

mn−ℓ
∑

k=1

t

[

µ
(

Xθ
ℓ,m(u(θ,n,k,ℓ)t),X

(θ,n,k,ℓ)
ℓ,m (u(θ,n,k,ℓ)t)

)

−µ
(

Xθ
ℓ−1,m(u(θ,n,k,ℓ)t),X

(θ,n,k,ℓ)
ℓ−1,m (u(θ,n,k,ℓ)t)

)

]

mn−ℓ ,
(18)

6



let v, f ∈ {0, 1}, and let Cn,m ∈ N0, m,n ∈ N0, satisfy for all m,n ∈ N that C0,m = 0 and

Cn,m ≤ vmnd+ f+
n−1
∑

ℓ=1

[

mn−ℓ
(

v(mℓd+ 1) + 2f+ 2Cℓ,m + 2Cℓ−1,m

)]

. (19)

Then

(i) it holds for all t ∈ [0, T ] that (E[‖X(t)‖2])1/2 ≤
[

‖ξ‖+ ‖µ(0, 0)‖t+
√
td
]

eLt,

(ii) it holds for all t ∈ [0, T ], m,n ∈ N that X0
n,m(t) is measurable and

(

E

[

∥

∥X0
n,m(t)−X(t)

∥

∥

2
])1/2

≤ m−n/2em/2
[

‖ξ‖+ ‖µ(0, 0)‖t+
√
Td
]

eLt (1 + 2Lt)n , (20)

and

(iii) there exists n = (nε)ε∈(0,1) : (0, 1) → N such that for all δ, ε ∈ (0, 1) it holds that

supk∈[nε,∞)∩N supt∈[0,T ]E
[

‖X0
k,k(t)−X(t)‖2

]

≤ ε2 and

Cnε,nεε
2+δ ≤ (vd+ f) sup

k∈N

[

(4k + 4)k+1

[

ek/2[1+‖ξ‖+‖µ(0,0)‖T+
√
Td]eLT (1+2LT )k

kk/2

]2+δ
]

< ∞. (21)

Proof of Theorem 3.1. Throughout this proof for every random variable X : Ω → R

d with

E[‖X‖2] < ∞ and every σ-algebra A ⊆ F let Var[X|A] : Ω → [0,∞) be a random variable

which satisfies that a.s. it holds that Var[X|A] = E

[

‖X − E[X|A]‖2|A
]

and let Gn,m ⊆ F ,

n ∈ N0, m ∈ N, be the σ-algebras which satisfy for all n ∈ N0, m ∈ N that Gn,m =

σ
({

W 0(t), X0
ℓ,m(t) : ℓ ∈ {0, 1, . . . , n}, t ∈ [0, T ]

})

.

This proof is organized as follows. In Step 1 we prove the upper bound of the exact solution

X in (i). In Steps 2 and 3 we establish distributional, measurablility, and integrability properties

for the MLP approximations in (18). In Step 4 we consider the bias. In Step 5 we consider

the statistical error. In Step 6 we combine Steps 4 and 5 to obtain a recursive bound of the

approximation error, which, together with a Gronwall-type inequality and the upper bound of

the exact solution in (i), establishes (ii). In Step 7 we estimate the computational complexity

and obtain (iii).

Step 1. We prove the upper bound of the exact solution X in (i). Observe that Jensen’s

inequality, the triangle inequality, and (16) show for all s ∈ [0, T ] that

(

E

[

∥

∥

∥

∥

ˆ

µ(X(s), x)P
(

X(s) ∈ dx
)

∥

∥

∥

∥

2
])1/2

≤
(

E

[
ˆ

‖µ(X(s), x)‖2P
(

X(s) ∈ dx
)

])1/2

≤ ‖µ(0, 0)‖+ L
2

(

E

[

‖X(s)‖2
])1/2

+ L
2

(

E

[

‖X(s)‖2
])1/2

= ‖µ(0, 0)‖+ L
(

E

[

‖X(s)‖2
])1/2

.

(22)

This, (17), the triangle inequality, and the fact that ∀ t ∈ [0, T ] : E
[

‖W 0(t)‖2
]

= td prove for

7



all t ∈ [0, T ] that

(

E

[

‖X(t)‖2
])1/2

=

(

E

[

∥

∥

∥

∥

ξ +

ˆ t

0

ˆ

µ(X(s), x)P
(

X(s) ∈ dx
)

ds+W 0(t)

∥

∥

∥

∥

2
])1/2

≤ ‖ξ‖+
ˆ t

0

(

E

[

∥

∥

∥

∥

ˆ

µ(X(s), x)P
(

X(s) ∈ dx
)

∥

∥

∥

∥

2
])1/2

ds+
(

E

[

∥

∥W 0(t)
∥

∥

2
])1/2

≤ ‖ξ‖+
ˆ t

0

‖µ(0, 0)‖+ L
(

E

[

‖X(s)‖2
])1/2

ds+
√
td

=

ˆ t

0

L
(

E

[

‖X(s)‖2
])1/2

ds+ ‖ξ‖+ ‖µ(0, 0)‖t+
√
td.

(23)

This, the fact that ∀m ∈ N : X0
0,m = 0, Gronwall’s lemma, and the fact that

´ T

0
(E[‖X(t)‖2])1/2 dt < ∞ prove for all t ∈ [0, T ] that

(

E

[

∥

∥X0
0,m(t)−X(t)

∥

∥

2
])1/2

=
(

E

[

‖X(t)‖2
])1/2 ≤

[

‖ξ‖+ ‖µ(0, 0)‖t+
√
td
]

eLt. (24)

This proves (i).

Step 2. We establish measurability and distributional properties. First, the assumptions on

measurablity, (18), induction, and the fact that ∀m ∈ N, θ ∈ Θ: Xθ
0,m = 0 prove for all m ∈ N,

n ∈ N0, θ ∈ Θ that Xθ
n,m is measurable. Next, the fact that ∀m ∈ N, θ ∈ Θ: Xθ

0,m = 0, (18),

and induction prove for all n ∈ N0, m ∈ N, θ ∈ Θ that

σ
({

W θ(t), Xθ
ℓ,m(t) : ℓ ∈ {0, 1, . . . , n}, t ∈ [0, T ]

})

⊆ σ
({

W θ(t),W (θ,i,ν)(t), u(θ,i,ν) : i ∈ {0, 1, . . . , n}, ν ∈ Θ, t ∈ [0, T ]
})

.
(25)

This and the fact that ∀m ∈ N, θ ∈ Θ: Xθ
0,m = 0 prove for all n,m ∈ N, θ ∈ Θ, k, ℓ ∈ N,

j ∈ {ℓ− 1, ℓ} that

σ
({

X
(θ,n,k,ℓ)
j,m (t) : t ∈ [0, T ]

})

⊆ σ
({

W (θ,n,k,ℓ)(t),W (θ,n,k,ℓ,ν)(t), u(θ,n,k,ℓ,ν) : ν ∈ Θ, t ∈ [0, T ]
})

.
(26)

This, (25), and the independence assumptions show for all n,m ∈ N, θ ∈ Θ that

(W θ, (Xθ
j,m)j∈{0,1,...,n−1}), (X

(θ,n,k,ℓ)
ℓ,m , X

(θ,n,k,ℓ)
ℓ−1,m ), u(θ,n,k,ℓ), k, ℓ ∈ N, (27)

are independent. This, the fact that ∀m ∈ N, θ ∈ Θ: Xθ
0,m = 0, (18), the disintegra-

tion theorem (see, e.g., [14, Lemma 2.2]), and induction show for all m ∈ N, n ∈ N0 that

(W θ, (Xθ
ℓ,m)ℓ∈{0,1,...,n}), θ ∈ Θ, are identically distributed.

Step 3. We establish that the approximations are square-integrable. Observe that the trian-

gle inequality, (16), distributional properties (see Step 2), and the disintegration theorem (see,

e.g., [14, Lemma 2.2]) prove for all n,m, k ∈ N, ℓ ∈ {1, 2, . . . , n− 1}, j ∈ {ℓ − 1, ℓ}, t ∈ [0, T ]

that

t

(

E

[

∥

∥

∥
µ
(

X0
j,m(tu

(0,n,k,ℓ)), X
(0,n,k,ℓ)
j,m (tu(0,n,k,ℓ))

)

∥

∥

∥

2
])1/2
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≤ t ‖µ(0, 0)‖+ tL
2

(

E

[

∥

∥X0
j,m(tu

(0,n,k,ℓ))
∥

∥

2
])1/2

+ tL
2

(

E

[

∥

∥X
(0,n,k,ℓ)
j,m (tu(0,n,k,ℓ))

∥

∥

2
])1/2

= t ‖µ(0, 0)‖+ L
√
t
(

tE
[

∥

∥X0
j,m(tu

(0,n,k,ℓ))
∥

∥

2
])1/2

= t ‖µ(0, 0)‖+ L
√
t

(
ˆ t

0

E

[

∥

∥X0
j,m(s)

∥

∥

2
]

ds

)1/2

. (28)

This, the fact that ∀m ∈ N, θ ∈ Θ: Xθ
0,m = 0, (18), the triangle inequality, and induction yield

for all n,m, k ∈ N, ℓ ∈ {1, 2, . . . , n− 1}, j ∈ {ℓ− 1, ℓ} that

sup
t∈[0,T ]

[

(

E

[

∥

∥X0
n,m(t)

∥

∥

2
])1/2

+ t

(

E

[

∥

∥

∥
µ
(

X0
j,m(tu(0,n,k,ℓ)),X

(0,n,k,ℓ)
j,m (tu(0,n,k,ℓ))

)

∥

∥

∥

2
])1/2

]

< ∞. (29)

Step 4. We consider the bias. Observe that (18), (29), linearity of conditional expectations,

the disintegration theorem (see, e.g., [14, Lemma 2.2]), distributional properties (cf. Step 2),

a telescoping sum argument, the fact that ∀m ∈ N : X0
0,m = 0, and the substitution rule imply

that for all n,m ∈ N, t ∈ [0, T ] it holds a.s. that

E

[

X0
n,m(t)− ξ −W 0

(

sup
(

{ kT
mn : k ∈ N0} ∩ [0, t]

))

∣

∣

∣
Gn−1,m

]

= tµ(0, 0) +

n−1
∑

ℓ=1

(

t

mn−ℓ

mn−ℓ
∑

k=1

(

E

[

µ
(

X0
ℓ,m(u

(0,n,k,ℓ)t), X
(0,n,k,ℓ)
ℓ,m (u(0,n,k,ℓ)t)

)

∣

∣

∣
Gn−1,m

]

−E
[

µ
(

X0
ℓ−1,m(u

(0,n,k,ℓ)t), X
(0,n,k,ℓ)
ℓ−1,m (u(0,n,k,ℓ)t)

)

∣

∣

∣
Gn−1,m

]

)

)

= tµ(0, 0) +
n−1
∑

ℓ=1

(

1

mn−ℓ

mn−ℓ
∑

k=1

ˆ t

0

E

[

µ
(

X0
ℓ,m(s), X

(0,n,k,ℓ)
ℓ,m (s)

)

∣

∣

∣
Gn−1,m

]

−E
[

µ
(

X0
ℓ−1,m(s), X

(0,n,k,ℓ)
ℓ−1,m (s)

)

∣

∣

∣
Gn−1,m

]

ds

)

= tµ(0, 0) +
n−1
∑

ℓ=1

ˆ t

0

ˆ

µ
(

X0
ℓ,m(s), y

)

P

(

X0
ℓ,m(s) ∈ dy

)

−
ˆ

µ
(

X0
ℓ−1,m(s), y

)

P

(

X0
ℓ−1,m(s) ∈ dy

)

ds

=

ˆ t

0

ˆ

µ
(

X0
n−1,m(s), y

)

P

(

X0
n−1,m(s) ∈ dy

)

ds. (30)

Next, (17) shows that for all t ∈ [0, T ] it holds a.s. that

E

[

X(t)− ξ −W 0(t)
∣

∣Gn−1,m

]

= X(t)− ξ −W 0(t) =

ˆ t

0

ˆ

µ(X(s), x)P
(

X(s) ∈ dx
)

ds. (31)

This, the triangle inequality, the fact that ∀ s, t ∈ [0, T ] : E
[

‖W 0(t)−W 0(s)‖2
]

= d|t− s|, (30),
Jensen’s inequality, (16), and Tonelli’s theorem show for all n,m ∈ N, t ∈ [0, T ] that

(

E

[

∥

∥

E

[

X0
n,m(t)−X(t)

∣

∣Gn−1,m

]
∥

∥

2
])1/2

≤
(

E

[

∥

∥W 0
(

sup
(

{ kT
mn : k ∈ N0} ∩ [0, t]

))

−W 0(t)
∥

∥

2
])1/2

+

(

E

[

∥

∥

∥
E

[(

X0
n,m(t)− ξ −W 0

(

sup
(

{ kT
mn : k ∈ N0} ∩ [0, t]

))

)

−
(

X(t) − ξ −W 0(t)
)∣

∣

∣
Gn−1,m

]∥

∥

∥

2
]

)1/2
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≤
√
Td√
mn +

(

E

[

∥

∥

∥

∥

ˆ t

0

ˆ

[

µ
(

X0
n−1,m(s), y

)

− µ(X(s), x)
]

P

(

X0
n−1,m(s) ∈ dy,X(s) ∈ dx

)

ds

∥

∥

∥

∥

2
])1/2

≤
√
Td√
mn +

(

E

[

t

ˆ t

0

ˆ

∥

∥µ
(

X0
n−1,m(s), y

)

− µ(X(s), x)
∥

∥

2
P

(

X0
n−1,m(s) ∈ dy,X(s) ∈ dx

)

ds

])1/2

≤
√
Td√
mn + L

√
t

2

(

E

[
ˆ t

0

∥

∥X0
n−1,m(s)−X(s)

∥

∥

2
ds

])1/2

+ L
√
t

2

(

E

[
ˆ t

0
E

[

∥

∥X0
n−1,m(s)−X(s)

∥

∥

2
]

ds

])1/2

=
√
Td√
mn + L

√
t

(
ˆ t

0
E

[

∥

∥X0
n−1,m(s)−X(s)

∥

∥

2
]

ds

)1/2

. (32)

Step 5. We consider the statistical error. Distributional properties (cf. Step 2) imply for all

n,m ∈ N, ℓ ∈ {1, 2, . . . , n− 1} that

a) it holds for all k ∈ N that (X
(0,n,k,ℓ)
ℓ,m , X

(0,n,k,ℓ)
ℓ−1,m , u(0,n,k,ℓ)) and Gn−1,m are independent,

b) it holds that (X
(0,n,k,ℓ)
ℓ,m , X

(0,n,k,ℓ)
ℓ−1,m , u(0,n,k,ℓ)), k ∈ N, are i.i.d., and

c) it holds that (X
(0,n,1,ℓ)
ℓ,m , X

(0,n,1,ℓ)
ℓ−1,m ) and (X0

ℓ,m, X
0
ℓ−1,m) are identically distributed.

This, (18), the triangle inequality, Biennaymé’s identity, the assumptions on distributions, and

the disintegration theorem (see, e.g., [14, Lemma 2.2]) prove that for all n,m ∈ N, t ∈ [0, T ] it

holds a.s. that

(

Var
[

X0
n,m(t)

∣

∣Gn−1,m

])1/2
=

(

Var

[

n−1
∑

ℓ=1

[

t
mn−ℓ

mn−ℓ
∑

k=1

[

µ
(

X0
ℓ,m(u

(0,n,k,ℓ)t), X
(0,n,k,ℓ)
ℓ,m (u(0,n,k,ℓ)t)

)

− µ
(

X0
ℓ−1,m(u

(0,n,k,ℓ)t), X
(0,n,k,ℓ)
ℓ−1,m (u(0,n,k,ℓ)t)

)

]

]

∣

∣

∣
Gn−1,m

])1/2

≤
n−1
∑

ℓ=1

[

t
mn−ℓ

(

Var

[

mn−ℓ
∑

k=1

[

µ
(

X0
ℓ,m(u

(0,n,k,ℓ)t), X
(0,n,k,ℓ)
ℓ,m (u(0,n,k,ℓ)t)

)

− µ
(

X0
ℓ−1,m(u

(0,n,k,ℓ)t), X
(0,n,k,ℓ)
ℓ−1,m (u(0,n,k,ℓ)t)

)

]

∣

∣

∣

∣

Gn−1,m

])1/2]

≤
n−1
∑

ℓ=1

[

√
t√

mn−ℓ

(

tE

[

∥

∥

∥
µ
(

X0
ℓ,m(u

(0,n,1,ℓ)t), X
(0,n,1,ℓ)
ℓ,m (u(0,n,1,ℓ)t)

)

− µ
(

X0
ℓ−1,m(u

(0,n,1,ℓ)t), X
(0,n,1,ℓ)
ℓ−1,m (u(0,n,1,ℓ)t)

)

∥

∥

∥

2
∣

∣

∣

∣

Gn−1,m

])1/2
]

(33)

and

(

Var
[

X0
n,m(t)

∣

∣Gn−1,m

])1/2

≤
n−1
∑

ℓ=1

[

√
t√

mn−ℓ

(
ˆ t

0

ˆ

∥

∥µ
(

X0
ℓ,m(s), x

)

− µ
(

X0
ℓ−1,m(s), y

)
∥

∥

2

P

(

X
(0,n,1,ℓ)
ℓ,m (s) ∈ dx,X

(0,n,1,ℓ)
ℓ−1,m (s) ∈ dy

)

ds

)1/2
]

=

n−1
∑

ℓ=1

[

√
t√

mn−ℓ

(
ˆ t

0

ˆ

∥

∥µ
(

X0
ℓ,m(s), x

)

− µ
(

X0
ℓ−1,m(s), y

)
∥

∥

2

10



P

(

X0
ℓ,m(s) ∈ dx,X0

ℓ−1,m(s) ∈ dy
)

ds

)1/2
]

≤
n−1
∑

ℓ=1

[

L
√
t

2
√
mn−ℓ

(
ˆ t

0

∥

∥X0
ℓ,m(s)−X0

ℓ−1,m(s)
∥

∥

2
ds

)1/2

+ L
√
t

2
√
mn−ℓ

(
ˆ t

0

E

[

∥

∥X0
ℓ,m(s)−X0

ℓ−1,m(s)
∥

∥

2
]

ds

)1/2
]

. (34)

This, the tower property, the definition of conditional variances, the triangle inequality, Jensen’s

inequality, and Tonelli’s theorem show for all n,m ∈ N, t ∈ [0, T ] that

(

E

[

∥

∥X0
n,m(t)−E

[

X0
n,m(t)

∣

∣Gn−1,m

]
∥

∥

2
])1/2

=
(

E

[

E

[

∥

∥X0
n,m(t)−E

[

X0
n,m(t)

∣

∣Gn−1,m

]
∥

∥

2
∣

∣

∣
Gn−1,m

]])1/2

=
(

E

[

Var
[

X0
n,m(t)

∣

∣Gn−1,m

]])1/2

≤
n−1
∑

ℓ=1

[

L
√
t√

mn−ℓ

(
ˆ t

0

E

[

∥

∥X0
ℓ,m(s)−X0

ℓ−1,m(s)
∥

∥

2
]

ds

)1/2
]

≤
n−1
∑

ℓ=0

(2− 1{n−1}(ℓ))L
√
t√

mn−ℓ−1

(
ˆ t

0

E

[

∥

∥X0
ℓ,m(s)−X(s)

∥

∥

2
]

ds

)1/2

. (35)

Step 6. We now prove (ii). Observe that the definition of Gn,m, n ∈ N0, m ∈ N, and the

fact that X is (σ({W 0(s) : s ∈ [0, t]}))t∈[0,T ]-adapted show for all n,m ∈ N, t ∈ [0, T ] that

X0
n,m(t)−X(t) = E

[

X0
n,m(t)−X(t)

∣

∣Gn−1,m

]

+X0
n,m(t)−E

[

X0
n,m(t)

∣

∣Gn−1,m

]

. (36)

This, the triangle inequality, (32), and (35) show for all n,m ∈ N, t ∈ [0, T ] that

(

E

[

∥

∥X0
n,m(t)−X(t)

∥

∥

2
])1/2

≤
(

E

[

∥

∥

E

[

X0
n,m(t)−X(t)

∣

∣Gn−1,m

]
∥

∥

2
])1/2

+
(

E

[

∥

∥X0
n,m(t)−E

[

X0
n,m(t)

∣

∣Gn−1,m

]
∥

∥

2
])1/2

≤
√
Td√
mn + L

√
t

(
ˆ t

0

E

[

∥

∥X0
n−1,m(s)−X(s)

∥

∥

2
]

ds

)1/2

+

n−1
∑

ℓ=0

[

(2−1{n−1}(ℓ))L
√
t√

mn−ℓ−1

(
ˆ t

0

E

[

∥

∥X0
ℓ,m(s)−X(s)

∥

∥

2
]

ds

)1/2
]

=
√
Td√
mn +

n−1
∑

ℓ=0

[

2L
√
t√

mn−ℓ−1

(
ˆ t

0

E

[

∥

∥X0
ℓ,m(s)−X(s)

∥

∥

2
]

ds

)1/2
]

. (37)

This, [13, Lemma 3.9] (applied for every m,N ∈ N, t ∈ [0, T ] with a x

√
Td, b x 2L

√
t,

c x 1/
√
m, α x 0, β x t, p x 2, (fn)n∈N0 x

(

[0, t] ∋ s 7→
(

E

[

‖X0
n,m(s) − X(s)‖2

])1/2 ∈
[0,∞]

)

n∈N0
in the notation of [13, Lemma 3.9]), (24), and the fact that for all m,N ∈ N it

holds that

max
k∈{0,1,...,N}

1√
mN−kk!

= m−N/2 max
k∈{0,1,...,N}

√
mk√
k!

≤ m−N/2em/2 (38)
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show for all t ∈ [0, T ], m,N ∈ N that

(

E

[

∥

∥X0
N,m(t)−X(t)

∥

∥

2
])1/2

≤
[

√
Td+ 2L

√
t ·

√
t sup
s∈[0,t]

(

E

[

∥

∥X0
0,m(s)−X(s)

∥

∥

2
])1/2

]

·
[

max
k∈{0,1,...,N}

1√
mN−kk!

]

(

1 + 2L
√
t ·

√
t
)N−1

≤
[√

Td+ 2Lt
[

‖ξ‖+ ‖µ(0, 0)‖t+
√
td
]

eLt
]

m−N/2em/2 (1 + 2Lt)N−1

≤
[√

Td+ 2Lt
[

‖ξ‖+ ‖µ(0, 0)‖t+
√
td
]]

eLtm−N/2em/2 (1 + 2Lt)N−1

≤ m−N/2em/2
[

‖ξ‖+ ‖µ(0, 0)‖t+
√
Td
]

eLt (1 + 2Lt)N .

(39)

This proves (ii).

Step 7. We estimate the computational complexity. Let n = (nε)ε∈(0,1) : (0, 1) → N ∪ {∞}
satisfy for all ε ∈ (0, 1) that

nε = inf

({

n ∈ N : sup
k∈[n,∞)∩N

sup
t∈[0,T ]

(

E

[

∥

∥X0
k,k(t)−X(t)

∥

∥

2
])1/2

< ε

}

∪ {∞}
)

. (40)

This, (ii), and the fact that ∀ δ ∈ (0, 1), s, t ∈ (0,∞) : limn→∞(snntn−n/2) = 0 prove for all

ε ∈ (0, 1) that limn→∞ supt∈[0,T ]E
[

‖X0
n,n(t)−X(t)‖2

]

= 0 and nε ∈ N. Next, (19) and the fact

that ∀ ℓ,m ∈ N : m−ℓ ≤ 1 imply for all m,n ∈ N that C0,m = 0 and

m−nCn,m ≤ vd+ fm−n +

n−1
∑

ℓ=1

[

m−ℓ
(

v(mℓd+ 1) + 2f+ 2Cℓ,m + 2Cℓ−1,m

)]

≤ 2n(vd+ f) +

n−1
∑

ℓ=0

(

2m−ℓCℓ,m + 1
N

(ℓ)2m−(ℓ−1)C|ℓ−1|,m

)

.

(41)

This, Corollary 2.3 (applied for every m ∈ N with (an)n∈N0 x (m−nCn,m)n∈N0, κ x 2, λ x 2,

c1 x 0, c2 x 2(vd+ f), c3 x 0, c4 x 1, β x

(1+2)+
√

(1+2)2+4·2
2

in the notation of Corollary 2.3),

and the fact that
(1+2)+

√
(1+2)2+4·2
2

≤ 4 imply for all n,m ∈ N that m−nCn,m ≤ 1.5 · 2(vd +

f)4
n−1
4−1

≤ (vd+ f)4n. This and (ii) imply for all n,m ∈ N that Cn,m ≤ (vd+ f)(4m)n and

Cn+1,n+1 sup
t∈[0,T ]

(

E

[

∥

∥X0
n,n(t)−X(t)

∥

∥

2
])

2+δ
2

≤ (vd+ f)(4n + 4)n+1
[

n−n/2en/2
[

‖ξ‖ + ‖µ(0, 0)‖T +
√
dT
]

eLT (1 + 2LT )n
]2+δ

≤ (vd+ f) sup
k∈N

[

(4k + 4)k+1
[

k−k/2ek/2
[

‖ξ‖+ ‖µ(0, 0)‖T +
√
dT
]

eLT (1 + 2LT )k
]2+δ

]

.

(42)

This and the fact that ∀ δ ∈ (0, 1), s, t ∈ (0,∞) : limn→∞(sn(n + 1)tn−nδ/2) = 0 imply for all

δ, ε ∈ (0, 1) that

Cnε,nεε
2+δ ≤ 1{1}(nε)C1,1 + 1[2,∞)(nε)Cnε,nε sup

t∈[0,T ]

(

E

[

∥

∥X0
nε−1,nε−1(t)−X(t)

∥

∥

2
])

2+δ
2

≤ (vd+ f) sup
k∈N

[

(4k + 4)k+1

[

ek/2[1+‖ξ‖+‖µ(0,0)‖T+
√
Td]eLT (1+2LT )k

kk/2

]2+δ
]

< ∞.

(43)

This proves (iii). The proof of Theorem 3.1 is thus completed.
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