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Abstract

Full-history recursive multilevel Picard (MLP) approximation schemes have been shown
to overcome the curse of dimensionality in the numerical approximation of high-dimensional
semilinear partial differential equations (PDEs) with general time horizons and Lipschitz con-
tinuous nonlinearities. However, each of the error analyses for MLP approximation schemes
in the existing literature studies the L2-root-mean-square distance between the exact solution
of the PDE under consideration and the considered MLP approximation and none of the error
analyses in the existing literature provides an upper bound for the more general LP-distance
between the exact solution of the PDE under consideration and the considered MLP approx-
imation. It is the key contribution of this article to extend the L?-error analysis for MLP
approximation schemes in the literature to a more general LP-error analysis with p € (0, c0).
In particular, the main result of this article proves that the proposed MLP approximation
scheme indeed overcomes the curse of dimensionality in the numerical approximation of high-
dimensional semilinear PDEs with the approximation error measured in the LP-sense with
p € (0,00).
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1 Introduction

It is one of the most challenging topics in computational mathematics to design and analyze
algorithms for the approximative solution of high-dimensional partial differential equations (PDEs)
and there are several promising approaches to this topic in the scientific literature.

We refer, for instance, to Darbon & Osher [12] for approximation methods for certain high-
dimensional first-order Hamilton—Jacobi-Bellman PDEs. We refer, for instance, to [10, 37,38, 39|
and the references mentioned therein for approximation methods for PDEs based on density esti-
mations and particle systems. We refer, for instance, to [3,9,11,20,36] and the references mentioned
therein for approximation methods based on Picard iterations and suitable projections on function
spaces. We refer, for instance, to [10, 24,25 26,15 18] and the references mentioned therein for
approximation methods for semilinear parabolic PDEs based on branching diffusion approxima-
tions. We refer, for instance, to [10,17] for approximation methods for semilinear parabolic PDEs
based on standard Monte Carlo approximations for nested conditional expectations. We refer, for
instance, to [5, 13, 14,17, 18,22,34,35 42 11] and the references therein for deep learning-based
approximation methods for high-dimensional PDEs. We refer, for instance, to |15, 16, 30| for full-
history recursive multilevel Picard approximation methods for semilinear parabolic PDEs (in the
following we abbreviate full-history recursive multilevel Picard by MLP).

Standard numerical approximation methods for high-dimensional nonlinear PDEs in the sci-
entific literature suffer from the curse of dimensionality (cf., e.g., Bellman [7], Novak & Wozni-
akowski |11, Chapter 1], and Novak & Ritter [10]) in the sense that the number of computational
operations required to approximately compute the PDE solution by means of the considered nu-
merical approximation method grows at least exponentially in the reciprocal /e of the prescribed
approximation accuracy € € (0,00) or the PDE dimension d € N = {1,2,3,...}. As of today, to
the best of our knowledge, MLLP approximation schemes are the only approximation schemes for
high-dimensional PDEs in the scientific literature for which it has been proven that they overcome
the curse of dimensionality in the numerical approximation of semilinear heat PDEs with general
time horizons and Lipschitz continuous nonlinearities in the sense that the number of computa-
tional operations required to approximately compute the PDE solution using MLP approximation



schemes grows at most polynomially in both the reciprocal /e of the prescribed approximation
accuracy € € (0,00) and the dimension d € N of the PDE; cf. Hutzenthaler et al. [30]. This type
of scaling of computational complexity is also referred to as polynomial tractability in the scientific
literature (cf., e.g., Novak & Wozniakowski |11, Definition 4.44]|).

The complexity analysis in [30] has been extended to more general MLP approximation schemes
and more general classes of nonlinear PDEs. More specifically, we refer to [28,31] for complexity
analyses for MLP approximation schemes for parabolic semilinear PDEs involving more general
second-order differential operators than just the Laplacian, we refer to Beck et al. [3] for com-
plexity analyses for MLP approximation schemes for parabolic semilinear PDEs with possibly
non-Lipschitz continuous nonlinearities such as Allen-Cahn equations, we refer to Beck et al. [2]
for complexity analyses for MLP approximation schemes for elliptic semilinear PDEs with Lips-
chitz continuous nonlinearities, we refer to [27,32] for complexity analyses for MLP approximation
schemes for parabolic semilinear PDEs with gradient-dependent nonlinearities, and we refer to Giles
et al. [19] for complexity analyses for a general class of MLP approximation schemes for semilinear
heat PDEs. We also refer to [0, 15| for numerical simulations for MLP approximation schemes.
Each of the error analyses for MLP approximation schemes in the above-mentioned articles studies
the L2-root-mean-square distance between the exact solution of the PDE under consideration and
the considered MLP approximation and none of the error analyses in the above-mentioned articles
provides an upper bound for the more general LP-distance where p € (0,00) between the exact
solution of the PDE under consideration and the considered MLP approximation.

It is precisely the subject of this article to extend the L?-error analyses for MLP approximation
schemes in [30] to a more general LP-error analysis with p € (0, 00) and, thereby, also introduce a
slightly different variation of the previously studied MLP approximation schemes; see (1.2) below.

It turns out that it is not straightforward to extend the L?-error analysis for MLP approximation
schemes from the literature to a more general LP-error analysis with p € [2,00) (cf., e.g., Rio [13,
Theorem 2.1]). A central difficulty is related to the issue that in our LP-error analysis the growth
of the number of samples used to approximate expectations via Monte Carlo averages must be
more carefully chosen; see (1.9) and (1.10) below for details.

To better illustrate the findings of this work, we present in the following result, Theorem 1.1
below, a special case of Theorem 4.6, the main result of this paper. Below Theorem 1.1 we add
some explanatory comments regarding the statement of Theorem 1.1 and the mathematical objects
appearing in Theorem 1.1 and we also present a brief sketch of our proof of Theorem 1.1.



Theorem 1.1. Let T, k,6,p € (0,00), © = [J,enZ", let f: R — R be Lipschitz continuous, let
ug € CH2([0,T] x RER), d € N, satisfy for alld € N, t € [0,T], v = (z1,79,...,74) € R? that
lug(t, )] < wd*(1+ 34, |24])" and

(Frua)(t, 2) = (Agua)(t, z) + f(ua(t, 7)), (1.1)

let (2, F,P) be a probability space, let u’: Q — [0,1], 0 € O, be i.i.d. random variables, assume for
allr € (0,1) that P(u® <7r) =7, let W0 [0, T] x Q2 — R?, d € N, 0 € O, be independent standard
Brownian motions, assume that (u)gee and (W ’9)(d’9)€NX@ are independent, let ¢: N — N and
Uff;fn: 0,T] x REx Q =R, d,n,m € Z, § € O, satisfy for alln € Ny, d,m €N, § € ©, t € [0,T],
z € R? that ¢(m) = max{k € N: k < exp(|ln(m)|"/?)} and

n—1 (¢(m))
0,i, i 0,
Ul (t,z) = gw{ kz [f(U B (qu0ik) W ECER ) (1.2)

=1

ua(0,2 + VIO |

. d,(0,—1,k i, d sz n

{W(m))"
and for every d,n,m € N let €4,,,, € N be the number of function evaluations of f and uq(0,-) and
the number of realizations of scalar random variables which are used to compute one realization of
ULO(T,0): Q — R (see (4.28) for a precise definition). Then there exist c € R and 7: Nx (0,1] —
N such that for all d € N, e € (0,1] it holds that

(E[|ua(T,0) = Usto o) miae) (T 0PN <e  and  Canpeymiae < cde=C). (1.3)

Theorem 1.1 is an immediate consequence of Theorem 4.6 in Section 4 below. Theorem 4.6,
which is the main result of this article, in turn, follows from Proposition 4.4 (see Section 4 below
for details). In the following we provide some explanatory comments concerning the mathematical
objects appearing in Theorem 1.1 above.

In Theorem 1.1 we intend to approximate the solutions of the PDEs in (1.1). The strictly
positive real number T € (0, 00) in Theorem 1.1 describes the time horizon of the PDEs in (1.1),
the Lipschitz continuous function f: R — R specifies the nonlinearity of the PDEs in (1.1), and
the functions ug: [0,7] x R? — R, d € N, are the solutions of the PDEs in (1.1).

The strictly positive real number x € (0,00) in Theorem 1.1 is employed to formulate a reg-
ularity condition for the solutions uy: [0,7] x RY — R, d € N, of the PDEs in (1.1) which we
impose in Theorem 1.1. More formally, in Theorem 1.1 we assume that the solution functions
ug: [0, 7] x R — R, d € N, of the PDEs in (1.1) satisfy the regularity condition that for all d € N,
t €[0,7], € R? it holds that

lua(t, )] < wd" (1 + S, zxl)". (1.4)

This condition ensures that the solution functions u4: [0, 7] x R — R, d € N, of the PDEs in (1.1)
are at most polynomially growing both in the spatial variable € R? and in the PDE dimension
d € N. Observe that the condition in (1.4) also ensures that solutions of the PDEs in (1.1) with
the fixed initial value functions R¢ > z + u4(0,2) € R, d € N, are unique.

In (1.2) we recursively specify the proposed MLP approximations which we employ in Theo-
rem 1.1 to approximate the solutions of the PDEs in (1.1). The proposed MLP approximation
method is a random approximation algorithm which is defined on an artificial probability space.
The probability space (€2, F,P) in Theorem 1.1 is this artificial probability space on which we
defined the proposed MLP approximations.

To formulate the proposed MLP approximations, we need, roughly speaking, sufficiently many
independent random variables as random input sources and to formulate these sufficiently many
independent random variables, we need, roughly speaking, a sufficiently large index set over which



the sufficiently many independent random variables are defined. The set © = (J,Z" in Theo-
rem 1.1 is precisely this sufficiently large index set which allows us to introduce sufficiently many
independent random variables over this index set and the i.i.d. random variables u’: Q — [0, 1],
6 € ©, and the independent standard Brownian motions W% [0,7] x @ — R% d € N, § € ©,
are the sufficiently many independent random variables which we use to specify the MLP approx-
imations in (1.2). Observe that the assumption that for all r € (0,1) it holds that P(u® < r) =r
in Theorem 1.1 ensures that the random variables u’: Q — [0,1], § € ©, are on [0, 1] continuous
uniformly distributed random variables.

The MLP approximations specified in (1.2) differ from previously introduced MLP approxima-
tions, roughly speaking, in the sense that a smaller number of Monte Carlo samples is employed.
In Theorem 1.1 this smaller number of Monte Carlo samples is formulated through the function
¢: N — N which increases quite slowly to infinity. More formally, Lemma 4.5 in Subsection 4.4
below proves that for every ¢ € (0,00) there exists ¢ € R such that for all x € [1,00) it holds
that lim, . ¢(y) = oo and ¢(z) < cz®. This slow increase to infinity is an important argument in
our LP-error analysis for the proposed MLP approximations (see (1.9), (1.10), and Subsection 4.4
below for further details).

The natural numbers €4,,,, € N, d,m,n € N, in Theorem 1.1 measure the computational
cost of the proposed MLP approximations. More specifically, for every d,m,n € N we have that
Can,m 1s the sum of the number of function evaluations of the nonlinearity f: R — R, of the
number of function evaluations of the initial value function R 3 z + u4(0,7) € R, and of the
number of one-dimensional random variables which are used to compute one realization of the
MLP approximation U20 (T,0): @ — R. We also refer to (4.28) in Proposition 4.4 in Section 4
below for the precise specification of the natural numbers €4, ,,, € N, d,m,n € N.

Theorem 1.1 reveals that the MLP approximations in (1.2) approximate the values u4(7',0) € R,
d € N, of the solution functions ugz: [0,7] x R? — R, d € N, at the terminal time t = T and at
the space point z = 0 € R? with a computational effort which grows at most polynomially in the
PDE dimension d € N and up to an arbitrarily small polynomial order at most quadratically in
the reciprocal of the prescribed approximation accuracy € > 0. This arbitrarily small polynomial
order is described through the real number ¢ € (0, 00) in Theorem 1.1.

Due to the fact that the MLP approximations proposed in (1.2) differ slightly from the MLP
approximations which have been previously employed in L2-error analyses in the scientific liter-
ature, we now briefly sketch the main ideas in the proof of Theorem 1.1. The first step in our
sketch of the proof of Theorem 1.1 is to reformulate the PDEs under consideration as stochastic
fixed-point equations. Specifically, in the context of (1.1) we have that the Feynman-Kac formula
proves that the solution functions ug: [0, 7] x R? — R, d € N, of the PDEs in (1.1) are the unique
at most polynomially growing functions which satisfy for all d € N, § € ©, t € [0,T], x € R? that

walt,z) = Efug(0, 2 + \/EWtd’B)} + /OtE[f(ud(s,x + \/EWtd,i))} ds. (1.5)

In the next step we note that (1.2), the assumption that W®: [0,7] x Q@ — R% d € N, § € ©, are
independent standard Brownian motions, and the assumption that u?: Q — [0, 1], 0 € O, are i.i.d.
random variables assure that for all n € Ng, d,m € N, § € ©, t € [0,T], z € R? it holds that

E[Udﬂ (t,2)] = In(n) E[ug (0, z + V2W)]

:t ZE[ 0l 4 VIWEL) = @)U (0 4 V2 Wdiw”ﬂ (16)

=t ZE[ f (Ui’ z + V2 ) — <>f<U;’%m<tu9,x+deiue>>]]

(cf. Lemmas 3.3 and 3.5 and (3.24) in the proof of Lemma 3.5 for the details). In addition, we
observe that the assumption that W4?: [0,T] x Q — R? d € N, § € O, are independent standard
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Brownian motions, the assumption that u’: Q — [0,1], € O, are i.i.d. random variables, and a
telescoping sum argument demonstrate that for all n € Ng, d,m € N, § € ©,t € [0,T], » € R? it
holds that

n—1

STE[FUA o+ VEWE) — L) (U2 (0 x4 VI )]

1=0

— In(n) tIE[f(Uffelm(tu T+ V2 Zue))} — 1n(n) UtE[f(Ug"lm(s,x + \/ﬁwf;i))] ds}

/ (1.7)

(cf. Lemmas 3.4 and 3.5). Combining (1.5), (1.6), and (1.7) indicates that for all n € Ny, d,m € N,
6c0O,tel0,T], xr € R we have that

E[Ug:&(t, x)} = In(n) (IE [ud(O, T+ \/§Wtd’9)} + /t]E[f(Uff elm(s, T+ \/§Wtd_i))] ds)
~ 1y(n) (E [ (0, + V2W)] + /tE [f(ud(s, x+ ﬁwgﬁi))] ds) (1.8)

= In(n) uq(t, )

(cf. Lemmas 3.5 and 3.14). Observe that (1.8) suggests that the proposed MLP approximations
Uff;fn: [0, 7] x REx Q — R, n € Ny, d,;m € N, § € O, behave in expectation like Picard iterations
for the stochastic fixed-point equations in (1.5). The final step in our sketch of the proof of
Theorem 1.1 is to employ a Monte Carlo approach to approximate the expectations in (1.6). This
final step is where the MLP approximations proposed in (1.2) differ from the MLP approximations
which have been previously employed in L?-error analyses in the scientific literature. Specifically,
the MLP approximations proposed in (1.2) use the fact that for all n € Ny, 7 € {0,1,...,n — 1},
deN,0e0,te|0,T], z€R?we have that

(¢(m))"~*
d,(0,i,k i (6,3,k)
(¢(m1))n7i ].;1 [f (U { )(tu(‘) k) , T+ \/_W (0, k)))

= L) (U0, 0 o+ VAW, )] (1)

i—1,m

is a Monte Carlo approximation of
E[f(U;f;f’i) (tu 2+ V2 ) — In(i) f (U D (tuf, o+ V2w Zug))} (1.10)

employing (¢(m))"~* € N samples. The function ¢: N — N thus determines the number of samples
used in the Monte Carlo approximations in the MLP approximations proposed in (1.2).

In our LP-error analysis the specific choice of ¢ is a subtle issue and, in particular, in our LP-
error analysis there is some fine-tuning needed in the choice of the function ¢. On the one hand,
the function ¢ must be chosen large enough so that the error due to approximating expectations
via Monte Carlo averages is small enough. On the other hand, in our recursive Gronwall-type LP-
error analysis in Lemma 3.13 in Subsection 3.6 and Lemma 3.14 in Subsection 3.7 the exponential
term exp(m”?/p) arises in the upper bounds (see (3.72) in Lemma 3.13, (3.75) in Lemma 3.14,
and (4.38) in the proof of Proposition 4.4) where m € N will be replaced by ¢(m). To control this
term, our LP-error analysis employs the assumption that (¢(m)”?/m)men is a bounded sequence.
More specifically, if p € (0,2], then ¢ may be chosen to be the identity, but if p € (2, 00), then ¢
must grow much slower and the choice Vm € N: ¢(m) = max{k € N: k < exp(|ln(m)|"/?)} is a
suitable p-independent choice.

The remainder of this article is structured as follows. In Section 2 we establish regularity prop-
erties for solutions of stochastic fixed-point equations. Afterwards, in Section 3 we introduce MLP
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approximations for the stochastic fixed-point equations from Section 2, we study their measura-
bility and integrability properties, and we establish LP-error bounds between the exact solutions
of the stochastic fixed-point equations and the MLP approximations. Finally, in Section 4 we
establish some elementary estimates for full-history recursions and combine these estimates with
the regularity properties for solutions of stochastic fixed-point equations, which we established
in Section 2, and the LP-error analysis for MLP approximations for stochastic fixed-point equa-
tions, which we established in Section 3, to obtain a computational complexity analysis for MLP
approximations for semilinear partial differential equations.

2 Stochastic fixed-point equations

In this section we establish in Corollary 2.5 below appropriate regularity results for solutions of
stochastic fixed-point equations with polynomially growing solutions. In Corollary 2.5 we assume,
among other things, that the nonlinearity f: [0,7] X R? x R — R and the terminal condition
g: RY — R of the stochastic fixed-point equation in (2.18) satisfy the polynomial growth bound
that there exist £, p € [0,00) such that for all t € [0,T], x = (21, 29, ..., z4) € R? it holds that

max{| f(t,,0)], lg(x)|} < (1 + [, |2al”?) (2.1)

(see above (2.18) in Corollary 2.5). Observe that in the case z = 0 € RY p = 0 we have
that (2.1) reduces to the condition that for all ¢ € [0,7] it holds that max{|f(¢,0,0)|,|g(0)|} <
S(1+ [0, [0272) = £(1 4 0°) = 2¢.

Our proof of Corollary 2.5 uses the regularity result for stochastic fixed-point equations with
Lipschitz continuous nonlinearities in Lemma 2.3 below. Similar regularity results for stochastic
fixed-point equations can, e.g., be found in Hutzenthaler et al. [29, Lemma 2.2]. Our proof of
Lemma 2.3 uses the well-known backward formulation of the Gronwall inequality in Corollary 2.2
below. In our proof of Corollary 2.2 we use the well-known forward formulation of the Gronwall
inequality in Lemma 2.1. Lemma 2.1 is a direct consequence of, e.g., the generalized Gronwall
inequality in Henry [23, Lemma 7.1.1].

2.1 Gronwall-type inequalities

Lemma 2.1. Let T,y € [0,00), let §:[0,T] — [O o0) be a function, let a: [0,T] — [0, 00] be
measurable, and assume for all t € [0,T] that fo a(s)ds < oo and

aft —|—7/0 o (2.2)

Then it holds for allt € [0,T] that a(t) < [Supseo B(s)] exp(71).

Corollary 2.2. Let T,~ € [0,00), let §: [0,T] — [0 o0) be non-increasing, let a: [0,7] — [0, o0]
be measurable, and assume for all t € [0,T)] that ft s)ds < oo and
T
at) < B(t) + 7/ a(s)ds. (2.3)
t

Then it holds for all t € [0,T] that a(t) < B(t) exp(y(T — 1)) < o0

Proof of Corollary 2.2. Throughout this proof let A: [0,7] — [0, 00] and a: [0, 7] — [0, o) satisfy
for all t € [0, 7] that
Alt) =a(T —1) and  a(t) = B(T —t). (2.4)



Note that the hypothesis that « is measurable and (2.4) ensure that A is measurable. In addition,

observe that the hypothesis that for all ¢ € [0,77] it holds that ft s)ds < oo and (2.4) assure
that for all ¢ € [0, 77 it holds that

/OtA(S)d8:/OtOz(T—S)ds:/:ta(s)dsg/OTa(s)ds<oo. (2.5)

Moreover, note that the hypothesis that § is non-increasing and (2.4) guarantee that a is non-
decreasing. Furthermore, observe that (2.3), (2.4), and (2.5) demonstrate that for all ¢t € [0,7]] it
holds that

At)=a(T—t) < 6(T—t)+7/

T—t

T

a(s)ds = a(t)+7/0 a(T —s)ds = a(t)—|—7/0 A(s)ds. (2.6)

This, (2.4), the fact that A is measurable, (2.5), the fact that a is non-decreasing, and Lemma 2.1
(applied with T~ T, v~ v, B v a, @ v~ A in the notation of Lemma 2.1) prove that for all
t € [0, 7] it holds that

A(t) < [sup a(s)] exp(yt) = a(t) exp(vt) < oco. (2.7)
s€[0,¢]
Combining this and (2.4) establishes that for all ¢ € [0,77] it holds that
aft) < B(t) exp(y (T — 1)) < oo. (2.8)
The proof of Corollary 2.2 is thus complete. O

2.2 A priori bounds for solutions of stochastic fixed-point equations

Lemma 2.3. Letd € N, T, L € [0,00), q € [1,00), f € C([0,T] x R? x R,R), g € C(R%R),
u € C([0,T] x RLR), let (Q,F,P) be a probability space, let W:[0,T] x Q — R? be a standard
Brownian motion, and assume for all t € [0,T], z € RY, v,w € R that |f(t,z,v) — f(t,z,w)| <
Ljv—w], ]E[\g(x—i—WT_tH—i—j;T|f(s,x+Ws_t, (s, 24+Ws_4))| ds] —i—j; E[|u(s, z+W,)|9)"ds < oo,

and

u(t,z) =E[g(x + Wr_y)] + /t E[f(s,x 4+ W, u(s,z + W,_y))] ds. (2.9)

Then it holds for all t € [0,T], z € R? that
([t +mo)|’] )Vq (2.10)
(B]lg(z + W)’ )Vq (T — ) (/TE[\f(s, 2+ W,,0)[7] ds>l/q] .

Proof of Lemma 2.5. Throughout this proof let a: [0,7] x R? — [0, 00] satisfy for all ¢ € [0, 7],
x € R? that

< exp(L(T —t))

1/q

a(t,z) = (Ef|g(z + WT)\qDl/q + (T —t)\ "/ (/t E[|f(s,z + W, 0)]7] ds) (2.11)

and assume without loss of generality that for all x € R? it holds that «(0,z) < co. Note that
(2.11) ensures that for all z € R? it holds that [0,7] 3 t — a(t,z) € [0,00) is non-increasing. In
addition, observe that (2.9), the triangle inequality, Jensen’s inequality, Fubini’s theorem, and the
fact that W has independent increments assure that for all ¢ € [0,7], z € R? it holds that

(E[Ju(t, = + W,)|])"



| T
qD/q (2.12)

l/q

E UE[g(x + Wy + VVtﬂ + ftT]E[f(s, x4+ Wy + Wy u(s,z +Ws_y + Wt))} ds

(
- (E UE[g(x + W) + [TE[f(s, 2 + Wy, u(s,x + W,))] ds

< (B[|E[g(z+ W) |' )Vq + (E SB[ (5.2 + Weyu(s, + W) ds\q])
< (E[|g(z + WT)|q])l/q + /tT (E[If(s, 2 + Wy, u(s,z + W,))|] )1/q ds.

Next note that the triangle inequality and the hypothesis that for all ¢t € [0,T], z € R%, v,w € R
it holds that |f(t,x,v) — f(t,z,w)| < Llv — w| demonstrate that for all t € [0,7T], x € R? it holds
that

[ ©05o Wtz W] s < [ (B W, 01 s
—l—/t (E[\f(s,x—i—Ws,u(s,x—i-Ws))—f(s,x—l—Ws,O)]q])l/qu (2.13)

S/t (Eﬂf(S,l‘+Ws,0))|Q})l/qu—|—L/t (E[|u(5’$+Ws>|q])l/qd8.

Furthermore, observe that Hélder’s inequality shows that for all ¢ € [0, 7], x € R? it holds that
l/q

/tT(EUf(S’I + WS,O))|qDI/q ds = ([/tT(EHf(s,x + WS,O))|QD1/q ds} q)

< ((T — )7t /tTEUf(s, z + W, 0))]] ds)l/q (2.14)
a

= (T — ) (/tTEUf(s, x + W, 0))]] ds)

Combining this, (2.11), (2.12), and (2.13) guarantees that for all ¢ € [0, 7], x € R? it holds that
T
(E[|u(t, = + Wy)|7]) f1 < at,z) + L/ (E|u(s, = + Wy)|%]) /" ds. (2.15)
t

This, (2.11), the fact that for all z € R? it holds that [0,T] 3 t — «(t,x) € [0, 00) is non-increasing,
the hypothesis that for all ¢ € [0,7], z € R it holds that ftT(EHu(s,x + W) /1 ds < oo, and
Corollary 2.2 (applied for every x € R with T AT, v~ L, 8-~ ([0,T] 3 t = a(t,z) € [0,00)),
a - ([0,7] >t — (E[|u(t,z + W;)|9)Ye € [0,00]) in the notation of Corollary 2.2) establish that
for all t € [0, 7], z € R? it holds that

(E[|u(t, z + W)|"])"" < a(t, x) exp(L(T —1)). (2.16)

The proof of Lemma 2.3 is thus complete. [

Definition 2.4. We denote by ||-||: (U enR?) — [0,00) the function which satisfies for all d € N,
v = (v1,72,...,74) € RY that ||z]] = [S5_, |=x/}]".

Corollary 2.5. Letd € N, T, L, £,p € [0,00), g € [1,00), f € C([0,T] xR¢xR,R), g € C(R4, R),
u € C([0,T] x RLR), let (Q,F,P) be a probability space, let W:[0,T] x Q — R? be a standard
Brownian motion, and assume for all t € [0,T], z € RY, v,w € R that |f(t,z,v) — f(t,7,w)| <

9



L|U - w|7 max{|f(t,x,0)|, |g<I)|} < 2(1 + Hpr)? E[’g(‘r + WT—t)l + j;T|f(S,l‘ + Ws—t7u<s7x +
W,_4))|ds] < oo, and

u(t,z) =E[g(x + Wr_y)] + /t E[f(s,2 4+ Wy, u(s,z + W,_y))] ds (2.17)

(cf. Definition 2./). Then it holds for all t € [0,T], x € R? that

(E[\u(t, z+ Wt)}q] )Vq < S(T + 1) exp(LT)

s€[0,7

sup (E[(l + [Jz + Ws||p)q} )1/1 < 00. (2.18)

Proof of Corollary 2.5. Throughout this proof let F, C F, ¢ € [0, T}, satisty for all ¢ € [0, T] that

F - Neeer) oloW,:re0,shU{Ae F:P(A)=0}) :t<T (2.19)
' oc(oc(Ws: s €[0,T)) U{A € F: P(4) =0}) =T '

and let a € C([0,T] x R4, RY) and b € C([0, T] x R4, R¥4) satisfy for all t € [0,T], z,v € R? that

a(t,x) = 0 and b(t, z)v = v. Note that (2.19) guarantees that F, C F, ¢t € [0, T], satisfies that

(I) it holds that {A € F: P(A) =0} C Fy and
(IT) it holds for all t € [0, 7] that F; = Neee,nFs-

Combining items (I) and (II), (2.19), and, e.g., Hutzenthaler et al. [31, Lemma 2.17| (applied with
mad, T AT, WA W, He nFy, (F P, (Fcior) (2, F, P, (c(W: s € [0,t]) U{A €
F:P(A) = 0})iepo,r)) in the notation of |31, Lemma 2.17|) hence assures that W: [0,7] x Q — R
is a standard (€2, F,P, (F¢):c(o,71)-Brownian motion. Combining this, the hypothesis that for all
t€[0,7], x € R% v,w € Rit holds that |f(¢,z,v)— f(t,7,w)| < Llv—w|, the hypothesis that for all
t €10,T], » € R? it holds that max{|f(t,z,0)|,|g(x)|} < £(1+ ||z|[?), and Beck et al. [1, Corollary
3.9] (applied with d ~d, m ~d, T AT, L ~nmax{d”?, L}, €~ 0, f~f, g g, pa, onb,
W W, (Q,F,P,(F)icpo,n) o (2, F,P, (Ft)icpo,r) in the notation of |4, Corollary 3.9]) ensures
that

sup sup <M> < 0. (2.20)

se0,7] yerd \ 1 + [[y]|P

This, the fact that for all r, v, w € [0, 00) it holds that (v 4 w)" < 2@ =L0}(y7 4 "), the triangle
inequality, and the fact that for all » € [0, 00) it holds that E[||W7]|"] < oo demonstrate that for
all t € [0,T], x € R? it holds that

. sup 1150

T
l/q
E|(1+ ||z + W||P)?]) " ds
se[O,T}yeRdl‘FHpr /0 ( [ ‘ | ])

/t (E[lu(s,z + WS)M)% ds <

o a5
sef0.7] yera 1+ [[y]|P

a5
s€0,7] yerd 1+ [[y][P

< [ [+ 2ot @ ety + 1wy as @2.21)

<T

[1 + 2max{p71,O}Hpr + Qmax{pfl,[)} (E [HWTHpq] )l/q] < 00,

Combining this, the hypothesis that for all t € [0,T], € R%, v,w € R it holds that |f(¢,x,v) —
f(t,z,w)| < L|v —w|, the hypothesis that for all ¢ € [0,T], z € R? it holds that E[|g(z + Wr_;)| +
ftT|f(s, r+W,_,u(s, z+W,_4))| ds] < oo, and Lemma 2.3 establishes that for all ¢ € [0, 7], z € R?
it holds that

(E[|u(t, z + Wy)|9])"" (2.22)
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< exp(L(T —t))

1 T Y
(Ellg(z + WT)|‘1D/q + (T — )/ (/t E[|f(s,z + W, 0)]7] ds) ]

l/q

< exp(LT) | (E[|g(x + WT>|qD1/q L/ (/0 E[|f(s,x + Wi, 0)|7)] ds)

Next observe that the hypothesis that for all z € R? it holds that |g(z)| < £(1 + ||z||?) and (2.21)
show that for all x € R? it holds that

Ellg(z + Wr)|)] <E[£Y(1+ ||z + Wr[P)!] < sup E[LY(1 + ||z + W|?)?] < <. (2.23)
s€[0,T7]
In addition, note that the hypothesis that for all t € [0,7], € R? it holds that |f(¢,z,0)| <
£(1 + ||z||P) and (2.21) assure that for all x € R it holds that

T 1/q T 1/q
</ E[|f(s,x + W, 0)[] ds) < (/ E[£7(1 + ||lz + Wi|P)1] ds)
0 0
(2.24)
< 7| sup (E[(1+ ||z + WsHp)qDl/q] < 0.
s€[0,T

Combining this, (2.22), and (2.23) proves that for all ¢ € [0, 7], z € R it holds that

(B[|u(t, z + W)|"])"" < &(T + 1) exp(LT)

sup (E[(1+ ||z + W,|")?] )1/1 < 00. (2.25)
s€[0,7T

The proof of Corollary 2.5 is thus complete. ]

3 Full-history recursive multilevel Picard (MLP) approxima-
tions

In this section we introduce and provide the LP-error analysis for MLP approximations for solutions
of stochastic fixed-point equations. More specifically, we prove Corollary 3.15 below, which is a non-
recursive LP-error bound for MLP approximations for solutions of stochastic fixed-point equations.
Our proof of Corollary 3.15 uses Lemma 3.14, which provides a potentially sharper LP-error bound
for MLP approximations for solutions of stochastic fixed-point equations. Our proof of Lemma 3.14,
in turn, employs Lemma 3.10 and the elementary auxiliary results in Lemma 3.11, Lemma 3.12,
and Lemma 3.13. Our proof of the recursive error bound in Lemma 3.10 employs Lemma 3.9. Our
proof of Lemma 3.9, in turn, is based on Lemma 3.5 and the elementary Monte Carlo approximation
results in Lemma 3.6, Corollary 3.7, and Corollary 3.8. Our proof of Lemma 3.5 uses Lemma 3.3
and Lemma 3.4, which are elementary results regarding the measurability and integrability of MLP
approximations for solution of stochastic fixed-point equations, respectively.

Lemma 3.3 is, e.g., proved as Hutzenthaler et al. [30, Lemma 3.2]. Lemma 3.4 is, e.g., proved as
Hutzenthaler et al. [30, Lemma 3.3]. Only for completeness we include in this section the detailed
proofs of Lemma 3.3 and Lemma 3.4, respectively. Lemma 3.11 and Lemma 3.12 are well-known
elementary results and we include their proofs for completeness, as well. The elementary result
Lemma 3.13 is a slight generalization of the result in Hutzenthaler et al. [28, Lemma 3.11].

3.1 MLP approximations

Definition 3.1. Let p € [2,00). Then we denote by K, € R the real number given by

It holds for every probability space (2, F,P) and every
R, = inf{ c € R: | random variable X : Q — R with E[| X|] < oo that . (3.1)

(E[X - E[XHPDI/” < C(E[|X|p])l/P
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Setting 3.2. Let d,m € N, T,L,£,p € [0,00), p € [2,00), m = K/p—1, © = J,nZ",
FeC(0,T] xR x R, R), g € C(RLR), let F: C([0,T] x RYR) — C([0,T] x RY, R), assume for
allt €[0,T], x € R¢, w,v € R, v € C([0,T] x R, R) that

[f(t, 2, w) = f(t, 2, w)] < Llw —wl,  max{|f(t,z,0)|,[g(z)]} < L1+ [lz]|"), (3.2)

and

(F(u)(t x) = f(t,2,0(t, x)), (3.3)
let (2, F,P) be a probability space, let u’: Q — [0,1], 0 € O, be i.i.d. random variables, assume for
all € ©, r € (0,1) that P(w® <7r) =7, letU’: [0,T] x Q — [0,T], 0 € O, satisfy for all t € [0,T),
00O that? =t+ (T —t)ul, let W9: [0,T] x Q = R%, § € O, be independent standard Brownian
motions, assume that (U°)gco and (W)pco are independent, let u € C([0,T] x R, R) satisfy for
allt € [0,T), x € R that E[|g(x + W2_,)| + ftT](F(u))(s,:L’ + WP )| ds] < oo and

s—t

u(t,z) =E[g(z + Wp_,)] + /t E[(F(u))(s,x +W._,)] ds, (3.4)

and let U?: [0, T] x REx Q - R, n € Z, § € O, satisfy for alln € Ny, 0 € ©,t € [0,T], v € R?
that

In(n) | <& _
t - B0[S e
=t . (3.5)
— (T —1) | (0,i,k) (O=i,k)\~ /7 4 (0,0.k) (0,i.k)
+ - i kZ(F<Uz ) = In@)FUTT) U e+ Wut(;”"”“)—t)
i= =1

(cf. Definitions 2./ and 3.1).

3.2 Measurability properties of MLP approximations
Lemma 3.3. Assume Setting 3.2. Then

(i) it holds for alln € Ny, 0 € © that U’: [0,T] x R? x Q — R is a continuous random field,
(i) it holds' for all n € Ny, 0 € © that o(U?) C o(U)yeo, WO)yeo),
(iii) it holds for all n € Ny that (U%)pco, (W)sco, and (U)sco are independent,

(iv) it holds for all n,m € Ny, i,k,i,t € Z with (i, k) # (i, ) that ( ,Se’i’k))ge@ and (Uﬁf’i’k))ge@ are
independent, and

(v) it holds for all n € Ny that (U%)pco are identically distributed random variables.

Proof of Lemma 3.3. We first prove item (i) by induction. For the base case n = 0 note that (3.5)
ensures that for all € ©, t € [0,T], + € R? it holds that Uf(t,x) = 0. This implies that for
all @ € O it holds that U¢: [0,7] x R x Q — R is a continuous random field. This establishes
item (i) in the base case n = 0. For the induction step Ny 2 (n — 1) --» n € Nlet n € N
and assume that for every k € {0,1,...,n — 1}, § € © it holds that U{: [0,7] x R? x Q — R?
is a continuous random field. This, the hypothesis that f € C([0,7] x R4 R), (3.3), and, e.g.,
Hutzenthaler et al. [30, Item (i) in Lemma 2.9| (applied for every n € Ny, § € © with d ~ d,

INote that for every A C 29 it holds that o(A) is a sigma-algebra on © and note that for every A C 2% and
every sigma-algebra B on € with A C B it holds that o(A) C B.

12



TAT, (QFP) ~(QFP), F~F, U~ U in the notation of |30, Item (i) of Lemma 2.9])
imply that for all £ € {0,1,...,n— 1}, 8 € © it holds that

0, 7] x R* x Q3 (t,z,w) = [F([0,T] x R > (s,y) = UL(s,y,w) € R)](t,z) €R (3.6)

is a continuous random field. Combining this, the hypothesis that g € C(R?, R), the fact that for all
6 € O it holds that W%: [0,T] x Q — R4 and U’: [0,T] x  — [0, T] are continuous random fields,
(3.5), Hutzenthaler et al. |31, Lemma 2.14|, and Beck et al. ||, Lemma 2.4| proves that for all § € ©
it holds that U?: [0,T] x R? x Q@ — R? is a continuous random field. Induction thus establishes
item (i). Next note that (3.6), Beck et al. |1, Lemma 2.4], and item (i) assure that for all n € N,
6 € © it holds that F(U?) is (B([0,T] x RY) @ o(U?))/B(R)-measurable. This, (3.5), the fact that
for all § € © it holds that W is (B([0, T]) ® a(W?))/B(R?)-measurable, the fact that for all § € ©
it holds that % is (B([0,T]) ® o(u?))/B([0, T])-measurable, and induction on Ny prove item (ii).
Moreover, observe that item (ii) and the fact that for all @ € © it holds that (U yce, (W) e,
WP and u’ are independent establish item (iii). Furthermore, note that item (ii) and the fact that
for all i,k,i,€,€ Z, 0 € © with (i,k) # (i,€) it holds that (U P"*"))ycq, (W@ o) and
(UG 5cg, (WEOHED)y o) are independent establish item (iv). In addition, observe that the
fact that (3.5) implies that for all # € ©, t € [0,T], + € R? it holds that Ul(t,z) = 0, the
hypothesis that (W?)gco are independent standard Brownian motions, the hypothesis that (u%)gce
are i.i.d. random variables, items (i), (ii), (iii), and (iv), Hutzenthaler et al. [30, Corollary 2.5], and
induction on Ny establish item (v). The proof of Lemma 3.3 is thus complete. O

3.3 Integrability properties of MLP approximations

Lemma 3.4. Assume Setting 3.2. Then it holds for alln € Ng, § € ©, s € [0,T], t € [s,T],
x € R? that

E[|Un(t, 2+ W )] +E[lg(@ + W] +E[[(FU)) U x+ W _,)]

T T (3-7)
+/ E[|US(r,x + W)_)|] dr +/ E[[(FU))(r,z+ W )] dr < .

Proof of Lemma 3.4. Throughout this proof let € R? and assume without loss of generality
that T' € (0,00). Note that (3.2), the fact that for all r,a,b € [0,00) it holds that (a + b)" <
gmax{r=1.0} (g™ 4+ "), and the fact that for all § € © it holds that E[||WW4||’] < co assure that for all
s€[0,T],te[s,T],0 €O it holds that

Ellg(z + W] SE[EQ+ [lo+ W |P)] < £[1+ 270 (2P + E[[|W2[P])] < 0o, (3.8)
Next we claim that for all n € Ny, s € [0,T], ¢t € [s,T], § € O it holds that

E[|Un(t, @+ W )] +E[[(FO)) U, = + Wy _,)]

T T (3.9)
+/ E[|US(r,x + WE_,)|] dr +/ E[[(F(UD)(r,z+ W )|] dr < oo.
We now prove (3.9) by induction on n € Ny. For the base case n = 0 note that the fact that

(3.5) implies that for all ¢ € [0,T], § € © it holds that U¢(t, z) = 0 ensures that for all s € [0, 7],
t € [s,T] it holds that

E[|Ug(t, = + Wi )] + E[[(FU)) G, = + Wy )]

- /TE[yUg(r, x+ W, )] dr+ /TE[y(F(Ug))(r, x+ W, )|] dr (3.10)
—E[(FO)U o+ Wiy )] + [ ENEO) o+ W) dr
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In addition, observe that (3.2), (3.3), and (3.8) guarantee that for all s € [0,T], ¢t € [s,T], 6 € ©
it holds that

E[(FO)@U o+ Wi )] + [ ENPO)ro+ WL )] dr

T
<E[S(L+ o+ Wiy )] + [ B[S+ o+ WL )] dr (3.11)

<(T+1) sup (E[L(1+ [lz+ W/|)]) < .
rel0,T]
Combining this and (3.10) establishes (3.9) in the base case n = 0. For the induction step Ny >
(n—1) --» n € Nlet n € N and assume that for all k € {0,1,...,n— 1}, s € [0,T], t € [s,T],
6 € O it holds that

E[|UL(t, @ + W) +E[[(FU) U a + Wy )] (3.12)
+/ EHU,?(T,:B + Wf_s)ﬂ dr +/ E[|(F(U,f))(r,x + Wf_s)ﬂ dr < .

Observe that (3.5) and the triangle inequality demonstrate that for all s € [0,7], ¢ € [s,T], 0 € ©
it holds that

n

Ew¢wx+wﬁgu<1W”bmmmu+w¢ﬂ+w#@iW] (3.13)

= mn
i=1

mn—1 uﬁ(@,i,k)_t

n—1 mn Tt . . .
+ 5 00T BIECC DU 4 W+ W ]

. 0,—i,k 0,i,k 0,i,k
+ () E[JFOT N, o+ W+ W DI

Next note that (3.8) and the fact that (W%)ycg are independent standard Brownian motions imply
that for all s € [0,7],t € [s,T], 6 € ©, i € Z it holds that

Ellg(z + W, + W) = Ellg(e + Wi_yeq_)l] = E[lglz + Wi_)[] <oo.  (3.14)

Furthermore, observe that (3.12), Lemma 3.3, the fact that (W?)yco are independent standard
Brownian motions, the fact that (U%)gceo are i.i.d. random variables, the hypothesis that (W?)gce
and (U%)pco are independent, the hypothesis that for all 6 € ©, r € (0,1) it holds that P(u’ <
r) = r, Hutzenthaler et al. [31, Lemma 2.15], and Hutzenthaler et al. [31, Lemma 3.7| guarantee
that for all : € {0,1,...,n— 1}, k€ Z, s € [0,T],t € [s,T], § € O it holds that

(T = E[(FOS NG x+ W, + WG )]

ul® bR _y

T . .
— [ BN+ W+ W) ar (3.15)
t

= /t ]E[](F(Uf))(r,x + Wte_s + Wf_t)]] dr = /t E[\(F(Uf))(r,a: + Wf_s)ﬂ dr < oo.

Combining this, (3.12), (3.13), and (3.14) establishes that for all s € [0,T], ¢t € [s,T], § € O it
holds that

1=0 k=1

EWﬁmx+wﬁgus<§fm%[§fl’Eme%xnx+wigum

+ﬂmw[’EmFaﬁﬁxnx+wﬁgﬂw

) + ﬂi,ff) KZT;EUQ(JJ +WE_)]
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n—1

5 / E[|(F(U9)(r.z + W?_ )] dr (3.16)

1=0

() / E[|(F(UL)(r, 2+ W) dr | + 1u(n) E[lg(x + WE_,)]]

T

s1N<n>E[|g<x+Wﬁ_s>u+2E§ (@) W) ar| < oo

This implies that for all s € [0, 7], § € O it holds that

| B+ W) dr < (T~ 5) sup B[Vl + W) (3.17)

r€(s,T]

< (7 - 5)(tEllota+ W) +2[ £ | CE[(FUO)ra+ W)] ] ) <o

1=0

Combining this, the triangle inequality, (3.2), (3.3), and (3.11) proves that for all s € [0,7], § € ©
it holds that

/ E[|(F(UD)(r,z+ W/_)|] dr
< / E[[(F(U]) — F(0))(r,z + W/ )|] dr + / E[|(F(0))(r,z + W/_,)|] dr (3.18)

< L/ E[JU°(r,x + WP_)|] dr +/ E[|(F(0))(r,z + W_)|] dr < oc.

This, (3.16), (3.17), and induction prove (3.9). Combining (3.9) with (3.8) therefore establishes
(3.7). The proof of Lemma 3.4 is thus complete. [

3.4 Expectations of MLP approximations
Lemma 3.5. Assume Setting 3.2. Then
(i) it holds for alln € Ny, 6 € ©, t € [0,T], z € R that (F(U™ ™) U™ + Wb(gﬁ,ﬁ)_t) -
]1N(n)(F(U(g’fn’k)))(ut(a’"’k), T+ Wzi?f;]fg)_t), k € Z, are i.i.d. random variables,

n—1
(i) it holds for alln € Ny, t € [0,T], x € R? that
E[|US(t, 2)|] + E[|g(x + WD)

n—1 i ) i i i (319)
+ LE[(FUY) - L@FOL )@, 0+ Wi I < oo
(iii) it holds for alln € Ny, t € [0,T], x € R? that
E[UR ()] = In(m) Efg(x + W75 "))
n—1 i ) i i i (320)
+ (7 0| S EIFC) - @ PO N o+ w0 )],
and
(iv) it holds for alln € Ny, 0 € ©, t € [0,T], z € R? that
(T =) E[|(F(U7) = In(n) F(Un_)) U,z + Wy )]
(3.21)

- / E[[(F(U) — () FU?_))(r,z + WP )[] dr < oo.
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Proof of Lemma 3.5. Throughout this proof let € R?. Observe that Lemma 3.3, the hypothesis
that (U%)gee are ii.d. random variables, the hypothesis that (W?)gco are independent standard
Brownian motions, Hutzenthaler et al. |30, Corollary 2.5], and Hutzenthaler et al. [30, Item (i) of
Lemma 2.6] (applied for every n € Ny, 0 € © withd ~d, T ~ T, (2, F,P) ~ (2, F,P), F A F,
U ~ U! in the notation of |30, Item (i) of Lemma 2.6]) imply that for all n € Ny, § € ©, ¢ € [0, T]
it holds that

(FUS) — 15(n) FUS TN (U™ e+ W ?;1’“,3) ). kez, (3.22)
are ii.d. random variables. This establishes item (i). Next note that the triangle inequality,
Lemma 3.3, Lemma 3.4, (3.3), (3.5), and the fact that (1W?)gce are independent standard Brownian
motions guarantee that for all n € Ny, ¢t € [0, 7] it holds that

E[|US(t 2)[] + E[lg(z + W20 ™))
+ 1E[|(F<U<°“>> ()P (UL )@ e+ W )]

)

<E[JUs(t )] +E[lgl + W2 ™) + S5 E[|(F L) o, r+ Wi )]
+ 3 W@ E[(FUST D@, 0+ Wi )] (3.23)
<E[|UL(t,2)|] +E[|g(z + Wi_)|] +23 0 1IE[|( (UD)U,x + Wy )] < 0.

This establishes item (ii). Furthermore, observe that item (i), item (ii), Lemma 3.3, (3.3), (3.5),
and the fact that (W?)yco are independent standard Brownian motions ensure that for all n € N,
t € [0,7] it holds that

E{U20.0) = S (£ e )

n—1 mr—t ) .
TR 5 B Pt e e i )] a2
[ ( 00 1))}
+ (T—t){ 3 E[(F(Ufo WY — 1@ PO N @O, +W3;}1> J]]-
=0

This establishes item (iii). In addition, observe that item (i), item (ii), Lemma 3.3, the fact that
(U%)geco are i.i.d. random variables, the hypothesis that for all § € ©, » € (0,1) it holds that
P(u’ < r) = r, and Hutzenthaler et al. |31, Lemma 3.7] demonstrate that for all n € Ny, § € O,
t € [0,7] it holds that

(T~ O E[(FUY) — Lu(n) F(UL_ ) U+ Wiy _)]

T (3.25)
- / E[[(F(U) — () FU?_))(r,z + WP )[] dr < oo.

This establishes item (iv). The proof of Lemma 3.5 is thus complete. O

3.5 Monte Carlo approximations

Lemma 3.6. Let p € (2,00), n € N, let (2, F,P) be a probability space, and let X;: Q — R,
i€ {l1,2,...,n}, be i.i.d. random variables with E[|X:|| < oco. Then it holds that

(E[IELX) - (20, X)) < [ (B1X) — E[X4]17]) ™. (3.26)



Proof of Lemma 3.6. First, observe that the hypothesis that for all i € {1,2,...,n} it holds that
X;: Q — R are 1.i.d. random variables assures that

E[|E[X1] — 5 (i XolP] = E[l; (CiL (B[X] = X)) P] = n PE[X0L, (E[X] - Xi)[”].  (3.27)

Combining this, the fact that for all i € {1,2,...,n} it holds that X;: Q — R are i.i.d. random
variables, and, e.g., [13, Theorem 2.1] (applied with p ~ p, (Si)icfo1,..n} O O pey (E[XK] —
Xi)ic(oa,..nys (Xi)ieqi,2,..ny O (E[Xi] = Xi)ieq1,2,.n) in the notation of [13, Theorem 2.1|) ensures
that

< D [Ziﬂ( EN } = ”[ 1 - x| (3.28)
(BB - X))

The proof of Lemma 3.6 is thus complete. O]

Corollary 3.7. Let p € [2,00), n € N, let (2, F,P) be a probability space, and let X;: Q — R,
i€ {l1,2,...,n}, be i.i.d. random variables with E[|X1|| < oco. Then it holds that

(E[EX] - L0, X)) < [ (E&[1x - EXP))"”. (3.29)

Proof of Corollary 3.7. Observe that, e.g., Grohs et al. [2], Lemma 2.3| and Lemma 3.6 establish
(3.29). The proof of Corollary 3.7 is thus complete. O

Corollary 3.8. Let p € [2,00), n € N, let (2, F,P) be a probability space, and let X;: Q — R,
i€ {l1,2,...,n}, be i.i.d. random variables with E[|X;|] < co. Then

(E[IEX] - 2(r, X)) < 2 (E[|1X4 7)) (3.30)
(cf. Definition 3.1).

Proof of Corollary 3.8. Note that Definition 3.1 and Corollary 3.7 demonstrate that (3.30) holds.
The proof of Corollary 3.8 is thus complete. O

3.6 Recursive error bounds for MLP approximations

Lemma 3.9. Assume Setting 5.2. Then it holds for alln € Ny, t € [0,T], v € R? that
1/
(B[|vs(to+w?) ~E[Us (e + W)]['])

HN( )m (E[‘g(:c—kwg)‘p})l/p_|_(T_t)(l’—1)/p (/tTE“f(s,x—i—Wg,O”p] ds>l/p] (3.31)

P 1)/pm

+ ”Zi LT m(n /2 [(Il(o,n)(z') + L1y (1) m"?) ([TE “ (08— (o4 W) H ds)l/"] |

Proof of Lemma 3.9. Throughout this proof let Gy: [0,T] x RY x Q — R, k € Z, satisfy for all
keZ,tel0,T], » € R that

Gi(t, z) = gz + W0 (3.32)

and let F2%: [0, 7] x RYx Q — R, n,i,j,k € Z, satisfy for alln € N, i € {0,1,...,n—1}, j, k € Z,
t € [0,7], IERdthat

j 0,5,k . 0,—j.k 0,5,k 0,5,k
Bl 2) = (FU) = @ PO D@ 0+ Wi ). (3.33)

2
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Observe that the hypothesis that (W?)gco are independent standard Brownian motions and the
hypothesis that g € C(R? R) assure that for all ¢ € [0,7], z € R? it holds that (G(t,z))xez are
i.i.d. random variables. This and Corollary 3.8 (applied for every n € N, t € [0,T], x € R? with
pAp, nAm®, (Xe)ren2,..mmy VO (Gr(t, %)) rei2,. mny in the notation of Corollary 3.8) ensure
that for all n € Ny, t € [0,7T], x € R? it holds that

mn 1/ 1/
(B[|% [0 Gat,2)] ~E[Gito)][]) " < 2= (B[Gi(t2)P) " (3.34)
Next note that item (i) of Lemma 3.5 and Corollary 3.8 (applied for every n € N, i € {0,1,...,
n—1},t € [0,T], z € R? with p ~ p, n ~ M, (Xk)ke{m ,,,, mn—i} ) (FZﬁ(t,x))ke{m ..... mn—i}

in the notation of Corollary 3.8) demonstrate that for allm € N, i € {0,1,...,n— 1}, ¢t € [0,T],
x € R? it holds that

(B[l [y Fitstr )]~ BIEA0]]) " < ot BIE0P)). (339)

Combining this, (3.5), (3.32), (3.33), (3.34), item (iii) of Lemma 3.5, and the triangle inequality
implies that for all n € Ny, t € [0,7], x € R? it holds that

(B[lvst.2) - B P])”

= (B[] (32 [T Gulto)] + T T[S0 Fikt )
- (I E[Gu(t )] + T (T~ 0 E[FA ) ])

< () (B[ |24 [S40) Ga(t,2)] — E[Ga(t,2) ]) (3.36)
+ i (@ = ) (B[ | A= [0 Filb(n )] - B[R )] D/

In(n 1o " (r—pym il T/
< B (E[IGa (¢, 2) )" + 2 L (B[, 2)[])".

Moreover, observe that (3.33) and items (i) and (iv) of Lemma 3.5 assure that for all n € Ny,
t €10,T], x € R? it holds that

n—1 : n—1 _n®=D/p i
X s (BE 0 2)P]) = 3 e (T - O R[S, )P) ™

o . (337)
Pm 7 . —1 1,
= Z (T— t(n — <[ E[‘(F(UZ(O, 71)) . ﬂ-N(Z)F(UiO_’l ,1)))(8 z+ WSOt 1) )‘Pi| dS) .

Furthermore, note that (3.3), (3.5), and the triangle inequality guarantee that for all n € N,
t €[0,7], z € R? it holds that

( 1) m T i . i, KR G
Z e ( / E[|(F) = 1n@ FU2)) (s, + W) [ ]ds)

< @) rm TE ‘ (001) v
< — f(s,x+ WP 0)[7| ds (3.38)
t
n—1

—1 r i ' "
+ gg—[(/ B[J(PO) = Pl s+ W) )
t

=1

+(f CE[|(P) - PUOT)) (s + WO P] ds)l/p] .

18



Combining this, Lemma 3.3, (3.2), (3.3), (3.32), (3.36), (3.37), and the fact that (W?)yco are
independent standard Brownian motions demonstrates that for all n € Ny, t € [0,T], x € R? it
holds that

(=lvste o) - Bl 2] P]) < e e ]y + 5 Gt e, )
et ([ o)

Z e ([ B[l - )(s.as w2 ] ds)”"
" ( /tT B[|(u = U2 ) (s, + W) ds)”*’} -
< [’g(x + Wi, Dl/p +(T =) (/tTE Df(S, x+ Wy, 0>|"] ds>1/p]
e L (R S DN

This and the fact that W° has independent increments ensure that for alln € Ny, t € [0,T], x € R?
it holds that

]lN(n)

_ Iy(n)
= —n/2

(&[jvst.x + wp) U2+ W) )"
st wpl])" ([l emop)a) |
Z LTy [(ﬂ(om (i) + Ljgn1y (i) m*?) ( /t g [\ (07 —u)(s,z + W) H ds)l/p] :

The proof of Lemma 3.9 is thus complete. O

< ]1N(n)m

= T2

Lemma 3.10. Assume Setting 3.2. Then it holds for alln € Ny, t € [0,T], x € R? that

<IE [‘Ug(t, x+ WD) —u(t,x + W) |p] >1/,, (3.41)

Pt (E “g(x + WQ)}”] )1/" (T — ) (/tT]E[]f(s, v+ W oﬂ ds)l/p]

TS Pt M [w @+m) ([ B - s+ w0l ds)%] |

t

< mexp(L(T —t))

=0

Proof of Lemma 5.10. First, observe that Lemma 3.4, Corollary 2.5, and the triangle inequality
ensure that for all n € Ny, t € [0, 7], x € R? it holds that

(B[|U2(t, z) — u(t, z)P])" (3.42)
< (B[US(t,2) — B[UL(E 2))P]) " + (B[BUS(E )] - u(t, 2)P]) "

Next note that items (ii), (iii), and (iv) of Lemma 3.5, the fact that (W?)yce are independent
standard Brownian motions, and (3.5) demonstrate that for all n € Ny, t € [0,7], x € R? it holds
that

E[U2(t, )] = In(n) E[g(z + Wiy ™)
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n—1

+(T = )| L E(FE") - W@ F U N@ 2 + Wg,iza%;%t)ﬂ (3.43)

= 7 1
n—1 (T ) ) .
= In(n) Efg(z + Wp_)] + {Z / E[(F(U D) = In())F(UL ) (5,2 + WD) ds} .

i=0 Jt

In addition, observe that (3.3), the fact that (1W?)yce are independent standard Brownian motions,

the fact that (U%)peo are i.i.d. random variables, items (iii) and (v) of Lemma 3.3, and [30, Lemma

2.2] prove that for all i € Ny, t € [0, 7], s € [t,T], z € R? it holds that

E[(FU) = () FULT)) (52 + W)

(2

E[(FUL" ) (5,2 + W] = 1n(0) E[(FULT ")) (s, 2 + W) (3.44)
E

(2

[(F(Uio))(sv T+ Wg—t)] — 1n(4) E[<F(Uz‘0—1))(37$ + Wg—tﬂ'
Combining this, Lemma 3.4, and (3.43) yields that for all n € Ny, t € [0,T], z € R? it holds that
E[Up(t,2)] = In(n) E[g(z + Wp_,)]

;/t (B{(FUD) (s, 2+ W] = n@) E[(FUL)) (s, 2+ W) ds] 3.4)

_|_

T
= s} [Eloto+ W) + [ EUFO2 ) s+ W2 ]
t
This and (3.4) show that for all n € Ny, t € [0, 7], € R? it holds that

u(t, x) :n =20

ftTE[(F(u) — F(U)_))(s,2 + Wso_t)] ds mneN (3.46)

u(t,z) — E[Ug(t,x)} = {

This, (3.2), (3.3), Corollary 2.5, the triangle inequality, Jensen’s inequality, Fubini’s theorem, and
the fact that W9 has independent increments assure that for all n € Ny, t € [0,7], x € R it holds
that

(E[|B[U(t, 2 + W0)] — ult, z + WO)P])" (3.47)

o

[ E[(F(u) - F(U?_))(s, + W)] ds

< Ligy(n) (E[Jult,z + W)P])” + Lu(n) (E

< oy (n) (Ef|ult, z + W) ] )1/" + In(n) / (E[|(F(u) — F(UY_))(s,2 + Wf)]p])l/" ds

t
T

< Lo (n) (EfJult. o+ WP + 1x() L [ (B[l = U 1)(sv + WOP])” ds.

t
Next observe that Holder’s inequality ensures that for all n € N, t € [0, 7], # € R? it holds that

/tT(EU(u IR <[/tT (E[|(u— U2 ) (5,2 + W) ds} p>l/p

< (-0 [ Bl 02 pisi+ WP) ds)% (3.48)

= (T (/tTEU(u —UY_y)(s, 2+ W] ds)%

Combining this, Lemma 2.3, and (3.47) demonstrates that for all n € Ny, t € [0,T], z € R? it
holds that

(E [|E[U£(t, T+ W] = ult,z + Wf)ﬂ >1/,,
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< Loy (n) exp(L(T — 1)) [(Eﬂg(m + W)Y+ (T = 0 (fTE[|f (s, 2+ Wi, 0)] ds)l/"]
+ In(n) L(T — )" (ftT E[|(u— U2 ,)(s,x + WO)P] ds)l/p. (3.49)

This, Lemma 3.9, (3.42), and the fact that m € [1,00) guarantee that for all n € Ny, ¢t € [0, T,
z € R? it holds that

(E[|JU2(t, & + WP) — ult, z + WO)[])” (3.50)

ex - ! ! "
o m p(L(T —t)) (E“g(:ﬂ n qu)lp}) A (T — ) </t Eﬂf(s,x + WSO,O)|P] ds) ]

m"/?

n—1 <p V/om

T 1/p
+ Z T m‘” /2 [(H(O,n)(i) + ml/Z) (/t E“(Uio—l —u)(s,z + Wso)|p] ds) ] .

1=0

The proof of Lemma 3.10 is thus complete. O]
Lemma 3.11. It holds for all n € N that

n n n n+1/2 TL+1/2 17’L—|—1
P PN N L 531
3 e e 22 Le

and
n" < 272 P < (nl)et < et < (4 1)), (3.52)

Proof of Lemma 3.11. Throughout this proof let f: R — R satisfy for all x € [2,00) that f(x) =
(z — 3)(In(z) — In(z — 1)). Observe that for all n € N it holds that

ln(n!)zln(n-(n—l)-...-2-1):iln(k‘)

k=1

- zi; Ukklln(x) dz + (ln(k) - /:lln(a:) das)].

In addition, note that for all £ € N it holds that

(3.53)

In(k) — /k—l In(z) dz = In(k) — [(kIn(k) — k) — ((k— 1) In(k — 1) — (k — 1))]
=1—(k—1)(In(k) — In(k — 1)). (3.54)
This and (3.53) yield that for all n € N it holds that

k

) =3 [ In(e)de+ SS[1— (k- 1)(In(k) — In(k — 1))]

- /ln In(z)dz + 3 [1—(k—1)(In(k) — In(k — 1))] (3.55)

k=2

:nln(n)—n+1+%§:(ln( k) —In(k — ))+Zk 2[1_( —%)(ln(k)—ln(k—l))]

k=2

= (n+ D) —n+1+ 31— f(k)].

k=2

Next observe that the fact that for all z € [2,00) it holds that f(z) = (z — 3)(In(z) — In(z — 1))
implies that for all z € [2,00) it holds that

f'(@) = (n(2) = Infe = 1) + (2 = 3) (3 = 7). (3.56)
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This ensures that for all € [2,00) it holds that

(@ )—2(;—L)—($—%)(£2—ﬁ)
[ (2@ —12—22(z—1) - (- ) ((z—1)2 - xQ)} (3.57)
ol

2¢(x — 1)+ (z — 1) (22 — 1)] :m>0.

2

Combining this and (3.56) shows that for all x € [2,00) it holds that f’ is increasing. This and
the fact that (3.56) implies that lim, ., f'(z) = 0 demonstrates that for all z € [2,00) it holds
that f'(x) € (—o0,0]. Hence, we obtain that for all x € [2,00) it holds that f is non-increasing.
Combining this and the fact that lim, ., f(z) = 1 assures that for all x € [2,00) it holds that
f(z) € [1,00). This and (3.55) guarantee that for all n € N it holds that

In(n!) = (n+ 1) In(n) —n+1+ éu — FB)] < (n+ L) In(n) —n +1. (3.58)

Furthermore, note that for all n € N it holds that

S F(0)] = 3 [1 - (k= §)(1n(k) ~ n(k — 1))
=1In(n—1)[(n—1) = (n — 1) In(n) + In((n — 1)!)].

Combining this, the fact that for all € [2, 00) it holds that f is non-increasing, and (3.55) ensures
that for all n € N it holds that

SS[1 = £(B)] = In(n— 1) [(n—1) — (n — L) In(n

)+
=In(n—1)[In((n—1)) = ((n—3)In(n—1) — (n — 1) + 1) (3.60)
+1—(n—3%)In(n)+ (n—1)In(n —1)]
> In(n — 1)[1 = f(n)] > In(n —1)[1 — 2In(2)] > —1In(2).

(3.59)

This and (3.55) show that for all n € N it holds that
In(n!) = (n+3)In(n) —n+1+ Y [1 - f(k)] > (n+3)In(n) —n+1— L1n(2). (3.61)
k=2

Combining this and (3.58) proves that for all n € N it holds that

nn < 2_1/2 n(n+1/2) (( + 1/ ) 1 ( ) + 1 1 (21/2)> < nl
— < — =exp((n 2)In(n) —n —In <n!
exp(n — 1) exp(n —1/2) (3.62)
1)1 O A 3 o0 VA '
< — = <
<exp((n+12)In(n) —n+1) epi—1) = exp(n)
The proof of Lemma 3.11 is thus complete. O

Lemma 3.12. Let |-|: R — Z satisfy for all x € R that |xz] = max{n € Z: n < x}. Then for all
m € [1,00) it holds that

mlm 21/

m"? exp(m'/?)
max

< < 1/2 ] .
neNo n! — I_m1/2J! < (Lml/gJ)l/g < exp(m’?) (3.63)

Proof of Lemma 5.12. Throughout this proof let m € [1,00), let [-]: R — Z satisfy for all z € R
that [7] = min{n € Z: v < n}, and let f: Ny — R satisfy for all n € Ny that f(n) = In(m"/?) —
In(n!). We claim that

max f(n) = f(|m"?]). (3.64)

n€eNp

22



Note that for all n € Ny it holds that

f(n)=In(m”) —In(n-(n—-1)-...-2-1) = 2In(m) — >_p_, In(k). (3.65)

This guarantees that for all n € N it holds that

f(n) = f(n=1) = [ In(m) = Sp_ (k)] = [*5* In(m) = 3237, In(k)]
= LIn(m) — In(n) = In(m"?) — In(n).

This and the fact that (0,00) >  + In(z) € R is increasing show that for all n € {1,2,..., |m"?]}
it holds that f(n) — f(n — 1) > 0. Furthermore, note that (3.66) and the fact that (0,00) 3 x +—
In(x) € R is increasing assure that for all n € NN [[m"?],00) it holds that f(n) — f(n — 1) <0.
Combining this and the fact that for all n € {1,2,..., |m"?|} it holds that f(n) — f(n —1) >0

demonstrates that

£ (3.66)

max f(n) = max{f(|m"*]), f(fm"*])}. (3.67)

neNp

Next observe that (3.65), the fact that (0,00) 3 x — In(z) € R is increasing, and the fact that for
all z € R it holds that |z] < [z] guarantee that

() = F(lm"?])

= (Fm" ) In(m"?) = S0 (k) — (|m¥2] n(m*2) — 1 n(k)

= (Im"] = [m"]) In(m"?) — (S0 (k) — S nk)) (3.68)
= To(m”?) n(m¥?) = 0" "L, | (k) = Ta(m) (') — n([m'])] < 0.

Combining this and (3.67) establishes (3.64). In addition, observe that Lemma 3.11, the fact that
for all z € R it holds that |z| < z, and the fact that In(6) < 2 ensure that

F(m”2 1) = In(m""%) — In(|m"?)1)
<m0 — (Im) o+ 3) n([m?]) + "] =1+ 3 In(2)
ln(m!™ %) — [m*2 | In((m2])] — Lin([m"2]) + [m*2] =1+ 1n(2)  (3.69)
Ln(3) — Sn([m”2]) + [m"?] =14 Ln(2)
< ) = P < ' — a2

IA

Combining this, (3.64), and the fact that R 5 z +— exp(x) € (0, 00) is monotone yields that

nja Lm'72)/2
max exp(f(n)) = max noLn - < exp(ml/2 — %ln(Lml/zj))
neNp neNg n! Lm /QJ' (3 70)
_exp(m 12) 12
= ] < exp(m?’?).
The proof of Lemma 3.12 is thus complete. [

Lemma 3.13. Let M,N € N, T' € (0,00), 7 € [0,T], a,b € [0,00), p € [1,00), let |-|: R = Z
satisfy for all x € R that |z] = max{n € Z: n < x}, let f,: [ T| — [0,00], n € Ny, be measurable,
te

assume supe. 71| fo(s)| < 0o, and assume for alln € {1,2,..., N}, [1,T] that
n—1 b T /p
n . i(s)|Pd . 3.71
rfLWNMMWAﬂmnﬁ (3.71)
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Then
(1+b(T — 7))
M(N—LMP/%/Q( | M2 ]1) e

el

x(r) < oo =7y Liﬁ% }Ifo(S)IH

(3.72)

< [ﬁb(T—Tw[ sup |fo(s)]

s€[r,T]

Proof of Lemma 5.13. Note that Hutzenthaler et al. [28, Lemma 3.10] (applied with ¢ «~ M~"2,
a1, BT in the notation of Hutzenthaler et al. [28, Lemma 3.10]) assures that

fu(r) < [avb(r =y Li}i% }Ifo(S)IH s e @rar - )

This, the fact that a,b € [0,00), and Lemma 3.12 (applied with M «~ MP? in the notation of
Lemma 3.12) prove that

1+ b(T —7)/)"
_ A\Yr (
fN<7_> S |:G,+b(T 7_) |:52E2“}‘f0(8>’:|:| M(N—LMP/2J>/2(LMP/2J!)1/p (374)
. 1+ b(T — T)l/”)Nfl
<la+bT -7 /p[sup SH( - .
T 2| s o) || e
The proof of Lemma 3.13 is thus complete. O]

3.7 Non-recursive error bounds for MLP approximations
Lemma 3.14. Assume Setting 3.2 and let |-|: R — 7Z satisfy for all x € R that |x| = max{n €
Z:n < x}. Then it holds for allm € Ny, t € [0,T], x € R? that
(B[|U2(t, 2+ WO) — ult, z + WO)[])”
<m£ﬂ%4jwmﬂmu+aﬂmn" ]

s (B[0+ e+ W]} @)
me= 0 (el 1) Y | s€l0,7] s |

m&(T + 1) exp(LT)(1 + 2LT)" o] V"
B m™? eXp(—mp/Q/p) _52}32] <]E[(1 * ||JI + Ws H ) :|>

Proof of Lemma 3.1/. Throughout this proof assume without loss of generality that T € (0, c0),
let t € [0,T], b=2LT* V’m, let a: R? — R satisfy

T 1/p
a(x) = mexp(LT) (E[\g(m + W:%)yp})l/" + TV (/0 E[|f(s, T+ W2, 0)|p] ds) ] , (3.76)

and let f,5: [t,T] x RY — [0,00], n € Ny, k € {0,1,...,n}, satisfy for all n € Ny, k € {0,1,...,n},
r € [t,T], v € R? that

up(r, @) = (B[UL0r, @+ WP) = ulr,z + WP)PT) ™. (3.77)
Note that (3.77) ensures that for all n € Ny, k € {0,1,...,n} it holds that f, s is measurable. In
addition, observe that (3.76), (3.77), and Lemma 3.10 assure that for all n € Ny, k € {0,1,...,n},
r € [t,T], = € R? it holds that
as(ro)| = EOR(r 2 + W) —ulr + W)P)”

24



mexp(L(T — 1))
<
= mn/2

) T p
(E[lg(x + WP])” + (T — )P (/ E[lf(s,z + W/, 0)]"] ds) ]

(T — P\~ Yrq ‘ " T /p
ey A [(ﬂm,nm w) (BN - wisa s WP as)

1=0
LT ) T 1p
me};fn(/Q ) (E[lg(x + W) + 10 (/ E[|f(s,z+ W, 0)] ds) ] (3.78)
0
k—1 - 1
2L Vm ([T &
+ W(/ E[|(UL, —u)(s,z + W,)P] ds)
1=0 r
k—1 T /p
a(x) b
= et ; [W U (s, @) [P dS} :

Next note that (3.5), (3.76), and Corollary 2.5 assure that for all n € Ny, r € [¢,T], z € R? it holds
that

o (r, )| = (E[JUS(r,x + W) — u(r,z + WOP))” = (E[Ju(r,« + WO)P])”

< L(T +1)exp(LT)

sup (E[(1+ ||z + Wsllp)q})l/q] < 0. (3.79)

s€[0,T]

Combining this, (3.76), (3.77), (3.78), and Lemma 3.13 (applied for every n € N, x € R? with
ana(@),b b, Nan, T AET AT, (fi)eeqor,.ny O ([ET] 27 = Fup(r,z) € [0,00])keqo1,....n}
in the notation of Lemma 3.13) guarantees that for all n € N, x € R? it holds that

(B[|U(t, 2+ W0) — ult, z + WO P])"” = fn(t, )
(L+b(T — 1))
m(n—tm"/%/g( L2 1) />

” (1+b(T — 1))

mn/z exp(_mp/g/p) .

n—1

< |alo) + 07 0% | sup oo | (380)

se[t,T]

< [a(x) +0(T — 1) [ sup [fno(s, )|

s€t,T]

In addition, observe that (3.2) demonstrates that for all z € R? it holds that
) T /p
Ellgte+ WP + 70 ([ Bl + w2 0P ds)
0

1 l/p
< S(R[(1 + ||z + WQP)P])” + 7O <£T sup E[(1+ ||z + W§||P)P]) (3.81)

s€[0,7T

sup (E[(1+ |Jz +W2|")*])"”].
s€[0,T]

< &(T+1)

This, the fact that b = 2LT" "*m, (3.76), and (3.79) show that for all n € N, 2 € R? it holds that

a(x) +b(T — t)l/*’ [ sup [fn.o(s, x)@
s€(t,T)

< [L4+2LT" (T — )] me(T + 1) exp(LT)
s€[0,7T

sup (E[(1+ ||z + WY|]P)*] )1/"] (3.82)

< [1+2LT|mE(T + 1) exp(LT)

sup (E[(1+ |Jz + WO|?)?] )1/1 .

s€[0,T
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Combining this, (3.80), and the fact that for all n € N it holds that

(L4 6(T — )Y~ = (14 20T (T — )Y ™ < (14 2LT)" (3.83)
proves that for all n € N, z € R it holds that

(B[|U(t, 2+ W0) — ult, z + WO)P])"

m&(T + 1) exp(LT)(1 + 2LT)" | ]
—7 sup (E[(l + ||z + WSOHP)”D ’ (3.84)
m =m0/ (| e/ | 1) 5€[0,T]

m&(T + 1) exp(LT)(1 + 2LT)" 1
< WAL+ DRI ) (g0 4 ot woPP]) .
m exp(—m /p) _se[O,T]

Combining this and (3.79) establishes (3.75). The proof of Lemma 3.14 is thus complete. O

Corollary 3.15. Assume Setting 5.2. Then it holds for allm € Ny, t € [0,T], x € R? that

(B[ |09t 2) — u(t. )]’ )1/"

< m&(T + 1) exp(LT)(1 +2LT)"
- m"/? exp(—mp/Q/ p)

(3.85)

sup (E[(1 + |+ W£||p)'°] )/] .

s€[0,T7]

Proof of Corollary 3.15. Throughout this proof let Vi: [0, —t] x R? — R, t € [0, T, satisfy for
allt € [0,7],t€[0,T —t], z € R? that

Vi(t, o) = u(t + t,x), (3.86)

let Gi: C([0, T —t] x RER) — C([0, T —t] x RER), t € [0, T], satisfy for all t € [0, 7], t € [0, T —1],
r€RY v e C([0,T - x RYR) that

(Guw)(t,z) = (F(0))(t +t,2), (3.87)

let RY: [0, —¢ xQ— [0,T —t], t€[0,T], 0 € O, satisfy for all t € [0,T], t € [0,T — ], § € ©
that
RI =t 4+ (T — (t + ), (3.88)

and let VO [0, T —t| x RTx Q - R, t € [0,T], n € Ny, 0 € O, satisfy for all t € [0,T], n € N,
HecO,te|0,T—t,recR?that

VOt ) = U(t + t,x). (3.89)

Observe that (3.4), (3.86), (3.87), and the fact that W has independent increments ensure that
for all t € [0, 7], t € [0,T — ], € R? it holds that

T

Vilt,z) = ut +t,2) =E[g(z + Wp_(, )] + /@ » E[(F(u)(s,z+ W (1] ds

=E[g(z + Wiy + / g [(F(w)(s+t,z+ W2 )] ds  (3.90)
(T—1)
= E[g(m + W([’)Tft)ft)} + /t E[(Gt(vt))(s, T+ ngt)] ds.

Combining this, (3.86), (3.87), and the hypothesis that for all t € [0,T], + € R? it holds that
Ellg(z + W_)| + ['|F(u))(s,x + W,)|ds] < oo implies that for all t € [0,T], t € [0,T — 4,
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x € R? it holds that

(T
’g x—i—WT - ‘—I—/ ‘(Gf(‘/t))(s,x—l—Wf_t)’ds]
! (3.91)

T

:E{\g(erW%_(tH))\Jr/( |(F(u)(s, 24+ W 14 ‘ds} < 00.

t+t)

Next note that (3.2), (3.3), and (3.87) demonstrate that for all t € [0,7T], t € [0,T — ], € R4,
v,w € C([0,T — t] x R4 R) it holds that

(G ()t 2) = (Gu(w))(t, 2)| = [(F(0))( + ¢ x) — (F(w))(t + ¢, )] (3.92)

=|ft+tz,o(t+tx)— fE+tz,wit+tx)| < Lv(t+tz) —wt+t ). '

In addition, observe that (3.2), (3.3), and (3.87) show that for all t € [0,7], t € [0,T — ], z € R?
it holds that

[(G(0)(E, )| = [f(t+t2,0)] < L1+ [l=]"). (3.93)

Moreover, note that (3.86), (3.90), and the hypothesis that u € C([0, T] x R¢, R) assure that for all
t€[0,7],t€[0,T —1, x € R? it holds that V; € C([0,T — t] x R4 R). Furthermore, observe that
(3.88), the hypothesis that (u?)gce are i.i.d. random variables, and the hypothesis that (W%)ce
and (U%)geco are independent ensure that for all t € [0, 7] it holds that (W?)yce and (R%!)co are
independent on [0, 7 — t|. Next note that (3.89) implies that for all t € [0,7], n € Ny, 0 € O,
t €[0,T —t], x € R? it holds that

WOt ) = UO(¢ + ¢ ) — L) [z gz + W) (3.94)
k=1

n—i

+ T ae {z (PO = 1)U QUL o+ Wi

mn k=1 u(t+t>

(t+t))} ’

Combining this, the fact that for all t € [0,T], § € © that U; =t + (T — t)u’, (3.87), (3.88), and
(3.89) shows that for all t € [0,T], n € Ny, § € ©, t € [0,T — t], € R? it holds that

WO (1, 7) — Lutn) {2 oo+ WO ’1)]

n—l X
+ Y T [ " IEOSPY = G PO (4 RO & +W<i;f;>f )1]

=0

_ 1t {Zg (1 4+ WO ] (3.95)
z . [Zk L LGB — () Gy (B ’k>‘>><R£9”'7’““,x+W;§’Z:£i>4_t>}]-

Combining this, (3.90), (3.91), (3.92), (3.93), the fact that 1 +m~"2 < 2, the fact that for all
te [0,T],t e [0, T —1t, z € R?it holds that V; € C([0,T — t] x RYR), and Lemma 3.14 (applied
for every t € [0, T with L " L, £ A" & pap pap T A (T—-1),9g g F~ G,

U geo  (RPYYgeco, u A~ Vi, (U? )(n,0)eNox© (‘Be’t)(n,e)eNox@ in the notation of Lemma 3.14)

n

demonstrates that for all t € [0, 7], t € [0,T — 4], * € R, n € Ny it holds that

(B[t e+ W) = Vit + W) P]) "

< MET Y+ VoI = H)AFLT O\ (g1 4 e+ w0 PP])? | (3.96)
- m"/2 exp(—mp/z/p) s€[0,T—¢] ’
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m&(T + 1) exp(LT)(1 + 2LT)"
m"/2 exp(—"/p)

This and (3.89) prove that for all t € [0,7], x € R? n € Ny it holds that

sup (E[(1+ ||z + W2|7)?] )1/"] .

$€[0,7T

(E[JUO(t 2) — u(t, 2)[P])”" = (B[40, 2 + W) — V0, + W) F])”

ex n 1 3.97
S e e PG (R A

s€[0,7
The proof of Corollary 3.15 is thus complete. O]

4 Computational complexity analysis for MLP approxima-
tions

In this section we use the results from Section 3 to provide the complexity analysis for MLP
approximations of solutions to stochastic fixed-point equations and semilinear PDEs. The main
result of this section is Theorem 4.6 in Subsection 4.4 below. The proof of Theorem 4.6 employs
Proposition 4.4 and the elementary auxiliary result in Lemma 4.5. The proof of Proposition 4.4,
in turn, is based on Corollary 3.15 and the elementary estimate for full-history recursions in
Corollary 4.3. Our proof of Corollary 4.3 employs the elementary result for full-history recursions
in Lemma 4.2. Our proof of Lemma 4.2, in turn, is based on the elementary result for two-step
recursions in Lemma 4.1. Lemma 4.1 is a special case of Hutzenthaler et al. [33, Lemma 2.1]. Only
for completeness we include in this section the detailed proof of Lemma 4.1.

4.1 Elementary estimates for two-step recursions
Lemma 4.1. Let 5y, B, b1, ba, 9,1, c0,... € C and let x, € C, k € Ny, satisfy for all k € Ny,

J € {172} that x, = oy + ]1[1,00)(k) B Tmax{k—1,0} T 1[2,00)“7) B2 Tmax{k—2,0}> (51)2 7A —43,, and
%(ﬁl — (=1)7y/(B1)? + 452). Then it holds for all k € Ny that by — by = \/(51)> + 402 # 0

and
1 : k11 k11
Ty = m Zal([bl] - [52] )
k = k1-1 k+1-1 (4.1)
_ Z ar((Br + /(1) + 462) — [B1 =V (B1)? + 45 )
o 2(k+1-1)  /(B1)2 + 4Ps

Proof of Lemma 4.1. Throughout this proof let x_1,x_5 € C satisfy that x_y = x_5 = 0 and let
yr € C, k € Ny, satisfy for all & € Ny that

1 k
> o ([0 = B, (4.2)
(b —b1) i

Note that (4.2) and the fact that zy = « ensure that

Yr =

e (b;bl)i (bl = ) = Gty a0 (b = br) = a0 = . (4.3)

This, (4.2), the fact that for all £ € Ny it holds that xy = o + f1zx_1 + B2xk_o, the fact that
r_1 = x_o = 0, and the fact that b; + by = 5 prove that

m=@j55§m@ﬁ4—mﬁﬁ=@ﬁﬂ%@$—Mﬁ+aMr4M

=og(by +b2) +oq = apfr + a1 = 291 + g = a1 + Prxg + far_1 = 27,

(4.4)
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Next observe that the quadratic formula implies that for all j € {1, 2} it holds that (b;)* = S1b;+ So.
This and (4.2) assure that for all k& € Ny it holds that

e = Ty 2o ([l = () = o S s (g )
= Qg2 + kil () (b2 [Buba + Ba] — [b]" ' [B1b1 + Ba]) (4.5)
and
Yrto = [k+1 o (52 2t [ z)} + B, Eztbz—m)([bﬂkﬂ LB | s
k

= B1Yr+1 + B2 [Z: TabD) ([bz]kH_Z - [b1]k+1_l)] + Qg2 = BrYkt1 + PaYk + o (4.6)

Combining (4.3), (4.4), and (4.6) hence ensures that for all k& € Ny it holds that yx = x;. The
proof of Lemma 4.1 is thus complete. O

4.2 Elementary estimates for full-history recursions

Lemma 4.2. Let v € {0,1}, f € (0,00), let ap € C, k € Ny, and x, € C, k € Ny, satisfy for all
k € Ny that

T = Qg + Z 75 (k=1) .I'l -+ HN(Z) :r;max{l_l,o}]. (47)

Then it holds for all k € Ny that

k
Ty = 2 : [ —1n(1) 27 Bamax{i—1,0} T 1[2,00) (1) V8% Omax{1—2,0}) (4.8)

o190 [5732 1475 ( [374/57 B2 147 ] .Hil—[?ﬂ,@—\/M] k+17l)—1
i [al_ﬂN(l)Bamax{z—Lo}] ([5+ /_52—1-5} k41— l—[ﬁ—\/M} k+14> L

_ Ji=o 2y/8%+5
k [az—llN(l) 2Bamax{i—1,0y 112, oo)(l)ﬁ Omax{l—2 0}}

Z%w—w\/mqum} T [s8-v/55r1a8]

Proof of Lemma 4.2. Throughout this proof let z_1,2_9,2_3,a_1,a_o,a_3 € C satisfy that x_;
=z o=x_3=0a_1 =a_y=ca_3=0. Note that (4.7) ensures that for all k£ € Ny it holds that

) :'y:l'

Tp = Qg + kz_:l(k — l)vﬁ(k_l) [:El -+ xl,l]. (49)

Hence, we obtain that for all k£ € Ny it holds that

k k—1
Thir — Brr = |apgr + 2 (k+1— 1) BEAD[z, + xl—l]} — 8 {a’“ + > (k= 1)"B% Dy 4+ 24
=0

=0
k=1
= Opy1 — Bak + B[Ik + Ik—l] + lz ,B(k+l_l)[<k +1-— l)’y - (l{i - l)’y] [[L’l + ZEl_l]. (410)
=0

This implies that for all £ € Ny it holds that

k-1
T1 — By = agyr — Bag + Bk + zp—1] + Ly (7) Do BEH D[y + 4] (4.11)
i=0
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This proves that for all & € Ny it holds that
k-1
Tt = Qg1 — Bag + 2Bz + Bag—1 + Ly (v) 3 B0z + 2], (4.12)
1=0

This and the fact that zo = ag show that for all k € {—1,0,1,2,...} it holds that

k
zy, = [og — Bag—1] + 2Bz—1 + Brp—z + Ly (7) X0 B* V(a4 21-4]. (4.13)

Therefore, we obtain that for all £ € Ny it holds that

k—
T — Brp_ = [[ak — Bag_1] + 2Bxp—1 + Brr—o + Ly () ;jﬁ(kl) [z + $1_1]}
k—

—p {[O‘kl — Bo—o] + 2Bz + Brr_s + 11y (7) leﬁ(’“‘l‘” [z, + 3711]]

= [Oék — 281 + ﬁz@kq} + 2B2p-1 + B[l — Blaw—s — B2xp—s — FPais
k— k-

+1y(7) L;j BE Dy + 2] - gﬁ(’“‘” 1+ 91311]1 (4.14)
= [ — 2Bay-1 + BPaj_s] + 2Bz-1 + B[1 — Blzk—o — B[Tr-2 + Tp_3]

+ L3 (7) BPzh—2 + Th—s)
= [ — 2B8ap_1 + BPar—s] + 2Bx—1 + B[l — Blar—s — Loy () B2 [zr—2 + zrs].

This ensures that for all £ € Ny it holds that
T = [ak — 25ak_1 + 520%_2} + 3Bl‘k_1 + 5[1 — ﬁ]iﬂk_g — ﬂ{o}(’}/) ﬁQ[[Bk_g + l‘k_g]. (415)

Combining this, (4.13), and Lemma 4.1 yields that for all k£ € Ny it holds that

g Jon=son] ([2o+/2574350] ey )
iz 2(k+1—l)\/4ﬁ2+4ﬁ e
Tk =19 & k+1-1 k+1-1 (416)
5 ([ss+y/GBrras—ap?] —[38-/GRPrap—ap?| ) N
=0 [01-2600_1+5%01_5] 20410 /GET+ 45257
This proves that for all £ € Ny it holds that
i [t ([oey/53] ' [o- 5] ) ~0
T = =0 2\/52"!‘6 . i fy (417>
Zk: [o2peatons ] ([380/60as] — —[ss—vomras] )
= 2(k+1-1) \/562+4B . fY —
The proof of Lemma 4.2 is thus complete. O

Corollary 4.3. Let v € {0,1}, 8 € [1,00), ag, a1, Tg, T1, T, . .. € [0,00) satisfy for all k € Ny that

k—1
21 < Tn(k) (00 + k)8 + S (k = 178D a1 + et (413)
1=0
Then it holds for all k € Ny that
- (00+01)8Tn(k) Ln(k)(ao +a1)27' (1L +272)F38 -y =0 (4.19)
Tr = /2y —k ' '
(44 7)72(1+2072) I (k) (g + o1)5~V2(36)* ty =1
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Proof of Corollary /.3. Throughout this proof let A: Ny — [0,00) satisfy for all k& € Ny that
Ay, = In(k)(ao + ark)B*. Note that (4.18) ensures that zy = 0. This assures that for all k € Ny it
holds that

k-1
r < In(k) (oo + ark)BF + 3 (k —1)7 gk (21 + Tmaxfi—1,0})
1=0 (4.20)

k—
= In(k)(ao + alk)ﬁk + ;:(k‘ — l)’yﬁ(kfl) [ZL‘[ + In(2) xmax{l,l,o}}

Next observe that for all [ € Ny it holds that

Al — ﬂN(l)BAmax{l—l,O} = [1]\1([)(0&0 + Oéll) — ILN(DEN(Z — 1)(@0 -+ Oél(l — 1))}51

and
A = In(1)268Amaxii—1,01 + Liz,00) (1) 8° Amasxfi—2,0}
= [In(D)(ao + al) — In(0)215(1 — 1)(co + a1 (L — 1)) + In(l — 2)(a0 + an (1 = 2))] 8" (4.22)
= Ty (D)(c0 + a1) 8 — Ly (Dao B,

Lemma 4.2 therefore proves that for all k£ € Ny it holds that

[ﬁ+\/62 8"~ [p-vE+ 8"

z < In(k) (o + 1)

i kﬁ A (4.23)
< (k) (o + 1) [5; ”55 :f] < 1y ({2 M) (1 4 ayst
and
38+ 5P+ 48] — [38 - /57 1 45]
T < ]]_N(k)(ao —|— 041)6 .
2k\/5B% + 45
k k
(35 + /557 + 18] CUEERVERE (4.24)
< In(k)(ao + a1)p NG YT = In(k) (a0 + 1) o /e +%
< (k) (O‘Og‘l) (35)"
Combining (4.23) and (4.24) hence establishes (4.19). The proof of Corollary 4.3 is thus complete.
[l

4.3 Complexity analysis in the case of stochastic fixed-point equations

Proposition 4.4. Let T, L,p,q,a, 3,0, € [0,00), mi,ma,ms3,... € N, © = |J, 2", let fq €
C0,T] x R x R,R), d € N, and let g4 € C(RY,R), d € N, assume for all d € N, t € [0,T],
= (21,29,...,24) € RY v, w € R that

llmlnfm] = 00, Mar1 < Bmy, |fa(t,z,v) — fa(t,x,w)| < Ljv —w|, (4.25)
Jmree Sequence of m_j’s not necessary

and max{|fa(t, z,0)|,|ga(x)|} < Ldp(1+zzzl|xk|)q, let (Q, F,P) be a probability space, let u’: Q —
[0,1], 8 € ©, be i.i.d. random variables, assume for all r € (0,1) it holds that P(u® < r) = r, let
U [0,T] x Q@ — [0,T], 6 € O, satisfy for all t € [0,T], 8 € O that U} = t + (T — t)u?, let
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W 0,T] x Q — R? d € N, § € O, be independent standard Brownian motions, assume for
every d € N that (u9>9€@ and (Wd9)96@ are independent, let uy € C([O T] x RYR), d € N, satisfy

foralld e N, t € [0,T], x € R that ]E[\gd(:rz—l—Wﬁ’ft)|+j;T|fd (s, 2+ W ug(s, ZE+WdO))|dS] < 00
and

T
ua(t, w) = Elga(z + Wil)] + / E[fa(s, v+ W, ua(s, w + W) ds, (4.26)
t

let Ufff: 0, T] xRIx Q =R, d,jn€Z,0 €O, satisfy for alln € Ny, d,j €N, € 6, € [0,T],
r € R? that

(mj)"
wﬁ@@>=ﬂﬂml§:g(x+wg00“ﬂ

=1

x>

n—1i

n—1 (m])
T t ’L N 7 Z 1
) [ 3 [fd U (ee, B UL o) +Wd(gel 9 )) (127)

L ()|

7=

. 0,i, (6,i 0,—1, 0,i, (6,i
= (i) Ll x4 W) JURCT @ Wi )]

and let €4, € R, d,n, 5 € Ny, satisfy for all d,j € N, n € Ny that

—_

Q:d,n,j S ILN(n) OédD (m])” + (mj)nik (OédD + Q:d,k,j + Q:d,max{k—l,o},j)- (428)

3

il
o

Then there exist 7: NXR — N and ¢ = (¢p.6)ps)erz: R? = R such that for alld € N, €,8 € (0, 00),
p € [2,00) with limsup,_, [(m)*?/j] < oo it holds that

(2(d, €))°Capiae) miaey < ad (2(d, €))7 (1 4+ V2)" @) (1m0

< ac, 6da+(p+q)(2+6)(mm{1 e} (2+9)
Supremum over time and
and space

Y
sup  sup (E“ud(t,x) — UZ’&a)vn(d,a)(t,x)‘pD ' <e. (4.30)
t€[0,T) we[~L,L]4

Proof of Proposition /./. Throughout this proof let my, = &,+/p — 1, p € [2,00),let F¢ C F,d € N,
t € [0, 7], satisfy for all d € N, t € [0,T] that May or may not be

necessary, as it is a
sigma algebra to

. {mse(m o(o(WH0: 1 €[0,s]) U{A € F: P(A) =0}) :t<T calculate F

(4.29)

t oc(oc(Wi0: s €0, T))U{A e F: P(A) =0}) T (4.31)

let ag € C([0,T] x R4 RY), d € N, satisfy for all d € N, t € [0,T], 2 € R? that aq(t,x) = 0, let
by € C([0,T] x R4, R¥4) d € N, satisfy for all d € N, t € [0,T], z,v € R? that by(t,)v = v, let
Nap € [0,00), d € N, p € [2,00), satisfy for all p € [2,00), d € N that

Ndp = mpL2max{q,1}dp+q((1 + L2>q/2 + (qp + 1)1/33) eXp([q(qp+§)+1]T + (L + 1)T), (432)
and let : N x R — [1, 00| satisfy for all d € N, € € (0, 00) that
n(d,e) = (4.33)

]” p € [2,00) with

< €% Jimsup (mi)*/?/j < 0o
Jj—o0

(1+2LT) exp<7(m") it )

(M )1/2 U {OO}

inf [ ¢ n € N: |sup< 74y [

(cf. Definition 3.1). Observe that (4.31) guarantees that F¢ C F, d € N, t € [0, T], satisfies that
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(I) it holds for all d € N that {A € F: P(A) =0} C F¢ and
(I) it holds for all d € N, t € [0, 7] that F = Ny nFe.

Combining item (I), item (II), (4.31), and Hutzenthaler et al. [31, Lemma 2.17] therefore assures
that for all d € N it holds that W%: [0,T] x Q — R? is a standard (Q, F, P, (F{):c(o,r1)-Brownian
motion. In addition, note that (4.31) ensures that for all d € N, x € R? it holds that [0, 7] x 2 3
(t,w) = x4+ W w) € R is an (F)ieo. 1/ B(R?)-adapted stochastic process with continuous
sample paths. This, the fact that for all d € N, ¢ € [0,7], x € R? it holds that a4(t,z) = 0, and
the fact that for all d € N, t € [0,T], x,v € R it holds that by(t, z)v = v yield that for all d € N,
z € R? it holds that [0, 7] x Q 3 (t,w) — z + W (w) € R? satisfies for all ¢ € [0, T7] it holds P-a.s.
that

t t t t
z+ W :x—ir/ Ods—l—/ dW 0 :x—ir/ ad(s,x+Wf’O)ds+/ ba(s, x + W) dWE0. (4.34)
0 0 0 0

Combining this and Hutzenthaler et al. [31, Lemma 2.6| (applied for every d € N, z € R? with
dnnd mand TAT, Cnd Con0,FATFL &z, o ag, o by, W W
X A~ ([0,T] x Q3 (t,w) = z+ W (w) € RY) in the notation of [31, Lemma 2.6]) ensures that
for all 7 € [0,00), d € N, z € R? ¢ € [0, T] it holds that

E[llz + W] < max{T, 1}((1 + ||lz||*)7* + (r + 1)d"?) exp("F2T) < o0 (4.35)

(cf. Definition 2.4). This, the triangle inequality, and the fact that for all v,w € [0, 00), r € (0, 1]
it holds that (v +w)" < v" + w" assure that for all p € [2,0), d € N, x € R? it holds that

Don’t

a??eadyeknow sup (E[(l + ||z + Wsd’OHq)p} )VP <1+ sup (E[Hx + Wsd,0|’qp] )1/”

what 1+ || s€[0,7] s€[0,7]

x+W|| is? "

<1+ sup <max{T, (L + [J2]%)™2 + (pp + 1)d"™?) exp(—qp(qp;3)T))
e (4.36)
<1+ max{Tl/p, 1}((1 + ||x||2)‘1/2 + (gp + 1)1/de/2) exp(q(qp;—i%)T)

< 2((1+ )72 + (qp + 1)Pd”?) exp(L2FT 4 T

< 2((1+ |2]2)7* + (gp + 1)d"?) exp (LetDHITY o

Combining this, (4.32), and the fact that for all d € N, x € [-L, L]? it holds that |z| < Ld"’?
demonstrates that for all p € [2,00), d € N it holds that

mpLQmax{q_l’O}dp+q/2(T + 1)exp(LT)| sup sup (E[(l + ||z + W?OHQ)”})VP
z€[~L,L]4 s€[0,T]

< my, L2ma L0 gr i oxepy (LT 4 T)
: [ w {2((1 +[2]?)72 + (gp + 1)77d"?) exp(—[q@p*;’)“”)}] (4.37)
ze[—L,L
< m, Lm0 g (14 12)72 4 (gp +1)7d??) exp (WL (1 4 1))
< mpLQmaX{qyl}dzﬂrq((l + L2)q/2 + (gp + 1)%) eXp(w + (L + 1)T) = Ngp < 0.

This and (4.25) guarantee that for all p € [2, 00) which satisfy limsup;_, . [(m)"?/;] < oo it holds
that

lim sup 74, (4.38)

n—oo

(1+2LT) exp(m)2/) " .
(mn)1/2 T

Combining this and (4.33) implies that for all d € N, ¢ € (0,00) it holds that 7(d,c) € N. Next
observe that the fact that for all m € N, r,vy,vq,...,0,, € [0,00) it holds that [> ;" vx]" <
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mmax{r=LO}[$™" ] and the hypothesis that for all d € N, t € [0,T], z = (21,79, ...,24) € R
it holds that max{|fy(t,z,0)],|ga(z)]} < Ld?(1 + S2¢_,|xx|)? ensure that for all d € N, z =
(21,22, ...,24) € R? it holds that

max{| fu(t, z,0)], |ga()[} < L (1 + Y25_ Jaa])* < Lm0 @ [1 4 (375 |2el) ]

-1,0 2—1 d a/2 _ (4.39)
< L2max{q ’}dp[l—l— (d Zk:l’ka) :| < L2max{q l,O}dp+q/2(1_'_ HxHq)

This, (4.25), and Corollary 3.15 (applied for every p € [2,00), d,j € N with m v~ m;, m \~ m,,
pAG fAFfy, g gy, T AT, L AL g~ L20axle-10bgrtaz 0 ~ 0 10 ~ U’ W ~ Wee,
u N ug, UY A U,‘i’? in the notation of Corollary 3.15) assure that for all p € [2,00), n € Ny,
d,j €N, te€[0,T], z € R? it holds that

(E[Juat, z) — UL, 2)[7]) " (4.40)
_ m, L2mada=10 qp+/2(T 4 1) exp(LT) (1 + 2LT)"
- (m)"2 exp (—m)"?/y)

Combining this, (4.32), (4.36), and (4.37) demonstrates that for all p € [2,00), n € Ny, d,j € N,
t €[0,T], x € [-L, L] it holds that

sup (E[(1+ ||z + WS’OH‘J)”DI/'@] .

s€[0,7

(1+ 2LT)n exp ((m)"?/p)
(m;)"

(E[Jua(t, x) = UsS(t 2)F]) " < may (4.41)

This, (4.33), and the fact that for all d € N, ¢ € (0, 00) it holds that 7(d,e) € N prove that for all
p € [2,00) with limsup,_,[(m)*?/j] < oo, d e N, t € [0,T], z € [-L, L]%, € € (0,00) it holds that

(E[Jua(t, ) = UL a0 < 0o

(14 207)" exp((1m,4,)"?)
(mn(d75) ) n(d,e)/2

(4.42)

<e.

< Nd.p

7(d,
(1 + 2LT) eXp((mn(d,s))pﬂ/ﬂ(dﬁ))] o

(mn(d,s))l/2

This establishes (4.29). Next note that (4.28) implies that for all d,j € N, n € Ny it holds that

n—1 n—1

Cing < In(n) ad (my)" + Y (my)"Fad + > " (m;)" ™ (Cars + Comaxir-10.)
k=0 h=0 (4.43)

< In(n)(ad® + nad®) (m))" + ¥ (m;)" *(Capj + Camaxib-1,00)-
0

—_

=
Il

Combining this and Corollary 4.3 (applied for every d,j € N with v v~ 0, 8~ m;, ap v ad®,
ar N ad®, (Tn)neny O (€anj)nen, in the notation of Corollary 4.3) guarantees that for all n € N,
d,j € N it holds that

Cany < In(n) ad®(1 +V2)"(m;)". (4.44)

Furthermore, observe that (4.33), the fact that for all j € N it holds that m; € N, and the fact
that for all p € [2,00), d € N it holds that 74, € [0,00) ensure that for all p € [2,00), d € N,
e € (0,00) with limsup;_,[(m)"?/j] < co and 7(d,e) € NN [2,00) it holds that

(n(de)—1)

1+2LT ex (mn(d,e)—l)p/Z 7(de)—1
( ) exp( /(n(de)-1)) + min{L, e}, )

(mn(d,e)— 1 ) /2

Nd,p
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Combining this and (4.44) demonstrates that for all p € [2,00), d € N, £, € (0,00) with
lim sup;_, ,[(m)"?/;] < 0o and 7(d, ) € NN [2,00) it holds that

(2(d:€))’ Capaey miae) < In(2(d; €)) ad (1 + V)" ((d, €))° ()"

7(d,€)
- ad® ((1+ vV2)m, ) Nd,p
= (2(d, )7 min{1,}
_ad(nay) D [ (e(d, €))7 (1 +2LT) exp(<mﬂ<d,5>—1>"/2/<n<d,s>—1>))(ﬂ(d’g)DM]
- : 5 —7(d,e
(min{1,e})E+o) i ((1 + ﬁ)mn(d,a)) ( )(mn(d,a)—1)(”(d’e)_l)(lJré/Q))
ad® (ﬁd,p)(2+6) <(n + 1>ﬁ((1 + \/E)mnH)(n—s—l) ((1 + QLT) eXp((mn)P/z/n) )n(2+6)>

(2+9)

d,ig)—1
(1 + 2LT) eXp((mn(dﬁ)1)p/2/(n(d,a)1))](n( &)-1)

(mn(d,e)—1)1/2

(4.46)

= (min{1,e}) @ | ek (11, ) (+72)

- ad® (1 +v/2)(ng,) 3+ . (n + 1)1 (M) (1 + V2)(1 + 2LT) exp (m)2/n))
=T (in{T ) el ()" ()07 |

This and (4.25) ensure that for all p € [2,00), d € N, ¢,0 € (0,00) with limsup;_, . [(m)"?/;] < co
and 7(d,e) € NN [2,00) it holds that

(ﬂ(d7 6))ﬁ€d,ﬂ(d,€),ﬂ(d,€) (4 47
< O[da(l + \/5) (nd,p)(2+5) (n + 1)5%2n+1m1 ((1 + \/_)(1 + 2LT> eXp( mn) P/2 n(2+9)

d®mq (1 + ﬂ)%(nd,p)@”) lsup<(n + 1)ﬁ/n((1 +V2)B(1 + 2LT) exp((mn)"“/ 2+6 >"]

- (min{1,e})2+9) (1, )72

Moreover, note that (4.25), (4.28), and the fact that for all p € [2,00), d € N it holds that
Nap € [0,00) ensure that for all p € [2,00), d € N, €,6 € (0,00) with limsup, ,[m)*?/j] < oo it
holds that

Carg < ad®my +my(ad + Cqo0 + Ca00) < 2ad’my < ad®(1+ vV2)Bmy
Pmy (1 + v/2)B(max{1,ng,})
- (min{1, £})+)
(n+ 1) (1 + V2)B(1 + 2LT) exp((m)2/) )TN
- |sup () .

Combining this and (4.47) demonstrates that for all p € [2,00), d € N, £,0 € (0,00) with
limsup;_,[(m)*?/j] < 0o it holds that

(4.48)

neN

(ﬂ’<d7 E))Bcd,n(d,s),n(d €) (4.49)
dm (1 + V2)B(max{L, 5, }) >0 | (0 + 1)%(B(1 4 2LT) exp((m)2/) )FFY
= (min{1, £}) @+ et (1+ v/2) ()2 |

This, the fact that m; € N, (4.37), (4.38), and (4.47) prove that for all p € [2,00), d € N,
e,0 € (0,00) with limsup;_, . [(m)"?/;] < oo it holds that

(72(d, €))° Can(de) i)
dmi(1+ v2)B [SUP < (n+1)7"((1+ V2)B(1 + 2LT) exp(m)"/x) > )"]

(min{1,¢e})2+9) (M) 2 (4.50)
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(2+5)
: (max{l, m, L2m A e (14 L)Y + (gp + 1)) exp(w +(L+1)T) })

sup ((n + 1) (14 V2)B(1 + 2LT) exp(ma)/) )2+ )n]

amy BT PTa)(2+9)
(14 v2)"H(min{1,})E+o)
(2+9)

‘ (max{l, mpLQmaX{’Ll} ((1 + L2)q/z + (gp + 1)1/») exp([Q(qp+§»)+1]T + (L + 1)T) }) < 0.

(mn)"/?

Combining (4.44) and (4.50) hence establishes (4.30). The proof of Proposition 4.4 is thus complete.
[

4.4 Complexity analysis in the case of semilinear partial differential
equations

Lemma 4.5. Let p € (0,00) and let ¢: R — N satisfy for all x € [1,00) that ¢(x) = max{k €
N: k < exp(|In(x)|"/?)}. Then

(i) it holds that lim supx_,oo[(d’(m))p + ¢(x)} =0 and

T

(it) it holds for all z € N that ¢p(x + 1) < 2¢(x).

Proof of Lemma 4.5. Throughout this proof let ¢): R — R satisfy for all z € [1,00) that ¥(z) =
exp(|In(x)|'/?). Note that the fact that for all z € [1,00) it holds that In(x) € [0, 00) assures that
for all = € (1, 00) it holds that

_ p(exp(/ln(2)['2))"
S P IIRE

(4.51)

This and the fact that for all € [1,00) it holds that In(x) € [0, 00) ensure that for all z € (1, 00)

it holds that
_p(exp(|ln(m)|1/2))p[2 In(x) — plln(x)|"/2 + 1} .

%(d’(@)p = 422|In(z)]3/2 (4.52)

Combining this and (4.51) shows that (exp([p + \/max{0,p> — 8}]/4),00) > z — L((z))P € R is
decreasing. This, the fact that (4.51) implies that for all 2 € (1, 0o) it holds that - (¢ (x))? € [0, 00),
and L’Hopital’s rule establish that

—(¢(§))p = lim (w(z)) = lim < (¢(z))? = 0. (4.53)

T—r00 T—00

lim sup
Tr—r00

Combining this, the fact that for all z € [1,00) it holds that ¢(x) < 9(x), the fact that for
all x € [1,00) it holds that ¢(x) € N, and the fact that for all x € [1,00) it holds that ¢ is
non-decreasing proves that

llmsup[(¢(x))p + 3 } < hmsup (¢( ) hmsupm < hmsup( (@) + lim sup -+ 5@ = 0 (4.54)

T—00 T—00 T—00 T—r00

This establishes item (i). Next note that for all x € (1, 00) it holds that

oz +1) _ max{k € N: k < exp(|In(1 + x)|"/?)} < exp(|In(1 + z)[*/?)
o(x) max{k € N: k < exp(|ln(x)[*/2)} ~ exp(|ln(x)[*/?) — 1

In addition, observe that the fact that for all z € (1, 00) it holds that In(z) € (0, c0) demonstrates
that for all € (1, 00) it holds that

4 exp((In(1 +2))
dx exp((In(z))¥/?) — 1
exp(|In(z + 1)['/?) 1 exp(|In(z)|'?)

~ 2exp(I(@) ) — 1] [(1+ o) (e + D17 zlexp(In()[7) — Y@ 72| ="

(4.55)

(4.56)
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This implies that for all € [3,00) it holds that

exp(|In(1 + l’)|1/2) exp(|In(4)]'/?)

<2. 4.
ep(@[7) 1 = exp(@) ) —1 - 457
Combining this and the fact that
< 1/2
¢<2) _ maX{k €eN: k exp(| (2)| )} Xp(|1n(2)|1/2) < exp(ln(Z)) —9 (458)

(1)  max{k € N: k < exp(|In(1)[1/2)} <e

proves that for all x € N it holds that ¢(x 4+ 1) < 2¢(x). This establishes item (ii). The proof of
Lemma 4.5 is thus complete. O

Theorem 4.6. Let p,q,T,k,0 € [0,00), © =, .yZ", f € C(R,R), let uqg € C2([0,T] x RY,R),
d € N, assume for alld € N, t € [0,T], v = (x1,79,...,74) € RY, v,w € R that |f(v) — f(w)| <
klv —w|, Jug(t, )] < kdP(1+ Eizl\xk\)q, and

(é%ud)(t, x) + (Agug)(t,x) + fug(t,x)) =0, (4.59)

let (2, F,P) be a probability space, let u’: Q — [0,1], 0 € O, be i.i.d. random variables, assume for
all v € (0,1) that P(w® <r) =7, letU?: [0,T] x Q — [0,T], 0 € O, satisfy for allt € [0,T], € ©
that U = t+ (T —t)u?, let W0 [0, T]xQ — R, 0 € ©, d € N, be independent standard Brownian
motions, assume for all d € N that (U%)geco and (Wde)ge(a are independent, let ¢: N — N and
UL [0, T] xR x Q =R, d,n,m € Z, § € O, satisfy for alln € No, d,m €N, 0 € ©, t € [0,T],
z € R? that ¢(m) = max{k € N: k < exp(|ln(m)|"/?)} and

n—1 (p(m))"—* .
T— d,(0,i,k (6,i,k (0,3,k)
Uni(t, ) = ) G { > [f(UZ-,WS " w2 it ")) (4.60)

‘ , ((m)"
. d,(0,—i,k) (G,zk (0,i,k) In(n d,(0,0,—k)
— (i) f(US (U +fW(M) t))H +(¢éi§)>)n{ k; ua(T,z + V2 W ")

and let €qpm € R, d,n,m € Ny, satisfy for all d,m € N, n € Ny that

—_

Q:d,n,m S :H-N(n) /{db(gb(m))n + (gb(m))n_k (I{da + Q:d,k,m + €d,max{k—l,O},m)- (461)
0

3

B
Il

Then there exist 72: N x R = N and ¢ = (c, 5)(p )ERQ R? — R such that for alld € N, €,6,p €
(0,00) it holds that €q () nide) < Cpod T PTOCT) (min{1,e})=C+) and

1/
sup sup <]E[‘ud(t,x) Ud0 (o) (b x)|p]) ' <e. (4.62)
t€[0,T] TE€[—V/2k,V/26]4

Proof of Theorem /J.6. Throughout this proof let ¢: (0, 00) — [2, 00) satisfy for all z € (0, 00) that

¢(z) = max{2, 2}, let ® = max{2%?x, |f(0)|}, let F! C F, d € N, t € [0,T), satisfy for all d € N,
t € 10,7 that

Fé — Nsee o(o(WH:rel0,s)U{Ae F:P(A)=0}) :t<T (4.63)

o o(o(Wa0: s € [0,T]) U{A € F: P(A) = 0}) =T '

let ag € C([0,T] x RYRY), d € N, and by € C([0,T] x R, R4 d € N, satisfy for all d € N,
t €1[0,T), z,v € R that a4(t,z) = 0 and by(t, z)v = V20, let My, My, Ms, ... € N satisfy for all
j € N that M; = ¢(j), let V4: [0,T] x R? - R, d € N, satisfy for all d € N, t € [0,7], z € R that
Va(t,2) = ug(t,v/22), let Fy: [0,7] x R x R = R, d € N, satisfy for all d € N, t € [0,T], z € R?,
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w € R that Fy(t,z,w) = f(w), and let Vr%: [0,7] x RY x @ = R, d,n,j € Z, 0 € O, satisfy for
alld,n,j €Z,0€0O,te[0,T], z €R? that mﬁ‘j( x) = U%(t,v/2z). Note that the hypothesis
that for all v,w € R it holds that |f(v) — f(w)| < k|v — w| assures that for all d € N, ¢ € [0, 7],
r € RY v, w € R it holds that

|Ey(t,x,v) — Fy(t,x,w)| = |f(v) — f(w)] < klv —w]. (4.64)

Next observe that the hypothesis that for all d € N, ¢ € [0,T], z € R? it holds that |ug(t,z)| < kdP
(1+ Zzzl\xk\)p ensures that for all d € N, t € [0,T], z = (21,22, .. .,74) € R? it holds that

max{|Fy(t, x,0)], [Va(t, x)|} = max{| f(0)], |ua(t, V2 )|}

) ) (4.65)
< max{| f(0)], (1 + 35y [V2 )1} < DdP(1+ 375 |oe])”.
In addition, note that (4.63) guarantees that F¢ C F, d € N, t € [0, T], satisfies that
(I) it holds for all d € N that {A € F: P(A) =0} C Fd and
(I) it holds for all d € N, t € [0, 7] that F{ = Ny nFe.
Combining items (I) and (II), (4.63), and Hutzenthaler et al. [31, Lemma 2.17| (applied with

md, T AT, WA W, Hy AFE (QF, P, (Fiepr) » (Q,F, P, (c(WE: s € [0,¢]) U{A €
F:P(A) = 0})eco,r) in the notation of [31, Lemma 2.17]) therefore assures that for all d € N it
holds that W®0: [0,7] x Q — R? is a standard (Q, F,P, (F$);ep0,r)-Brownian motion. This, the
hypothesis that for all t € [0,7], * € R? v,w € R it holds that |f(v) — f(w)| < kv — w]|, the
hypothesis that for all d € N, ¢ € [0,T], = € R? it holds that |ug(t,z)| < kd”(1 + 3¢ |zk])4,
and, e.g., Beck et al. [4, Corollary 3.9| (applied for every d € N with d ~ d, m ~ d, T ~ T,
L~ max{V2d,x}, €~ 0, f N f, g (RES 2 ug(T,z) €R), pp ag, o N by, WO o~ WO,
(Q, F. P, (Fp)iepor)) > (Q, F, P, (Ff)sepo.r1) in the notation of [1, Corollary 3.9]) ensure that for all
deN,tel0,T], zeR%it holds that Efjug(T, z + V2 W) +ft |f(ug(s, 2 +V2WH)) | ds] < oo
and .

ug(t, z) = Efug(T, z + \/§W¥Bt)] + / E[f(ua(s,x + \/§Wi%))] ds. (4.66)

¢

Combining this, the fact that for all d € N, ¢t € [0, 7], z € R? it holds that Vy(t,z) = ug(t,vV2x),
and the fact that for all d € N, t € [0,7], x € RY, w € R it holds that Fy(t,z,w) = f(w)
demonstrates that for all d € N, ¢ € [0,T], € R? it holds that

E {\Vd(T, x4+ WE)| + /tT|Fd(s, x4+ W Vils, z + W) ds]
—E [|Vd(T, x4+ W) + /tT]f(Vd(s, x4+ W) ds] (4.67)
—E {|ud(T, V2(x + W) + /tT|f(Ud(s, V2(x + W) ds} < 00

and

Va(t, @) = ua(t, V22) = E[ua(T, V2(z + Wz,))] + / E[f(ua(s, V2(x + W)))] ds

T
=E[Vu(T,x + Wi°,)] +/ E[f(Va(s,z + WE5))] ds (4.68)

T
= E[Va(T,z + Wi°))] +/ E[Fu(s, o + W25, Va(s, @ + W) ds.
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Moreover, note that the fact that for all j € N it holds that M; = ¢(j) and (4.60) show that for
allm € Ny, d,j €N, 0€0,tel0,T], x € R? it holds that

n—1 (M)t
d,0 _ T—t d,(0,i,k) (4 ,(0,5,k) ,(0,1,k)
Umj (t> \/5.1’) - ;) (_/E/lj)n)fi |: kZ::l |:f(Ul,J ( \/_( (sz t))) (469)
(M;)™ d,(6,0,—k)
. d,(0,—ik) (7 ,(0,ik 0,3k In(n) ug(TV2(z+Wy )
— I[N(Z) f(Ui—(l,j ( ) \/_( (Ozk))t)))]:| + |: 1;1 a d )" 1t .

This and the fact that for all d,n,j € Z, § € ©, t € [0,T], z € R? it holds that VL%(t,z) =
Ugﬁ(t, V2 ) imply that for all n € Ny, d,7 €N, 0 € ©, t € [0,T], € R? it holds that

Uy (£ V2w) = 05t )

n—1 (My)n—t )
_ (T—t) 4.0k (1 Ok). (6,,k)
- 3 i [ > PO 2 WL ) (4.70)
: 4,(0,—i,k) (4 (0,4, k d,(6,i,k) M)™ 1(m) Va(T, e+ Wh0.0.=k),
= I ST @ e Wl t))} + ];1 YR

Combining this and the fact that for all d € N, t € [0,T], * € R?, w € R it holds that Fy(¢,z,w) =
f(w) yields that for all n € Ny, d,j € N, 0 € ©, t € [0,T], x € R? it holds that

1 _
o) = G| 30 vms )| ()
J e
n—1 (M)
(T - t) i, 7 J J, 5t
+ (M ,)n—z [Fd (Z/It(e k) x+ W (901 kl)c 4 mz ]0 & (u(9 k z+W (902 k];) t))
i=0 J k=1

. G,zk (6,3,k) d,(0,—i,k 9,zk (0,3,k)
— (i) P+ Wil LT U w4 W )|

i—1,5

Furthermore, observe that Lemma 4.5 and the fact that for all m € N it holds that ¢(m) =
max{k € N: k < exp(|In(m)|"/2)} imply that

(A) it holds for all p € (0,00) that limsup; . [(M)""?/; 4+ 1/am,] = limsup,_, . [@0)""/; 4
Yo(] = 0 and

(B) it holds for all j € N that M,y = ¢(j + 1) < 26(j) = 2M,;.

Combining items (A) and (B), (4.64), (4.65), (4.67), (4.68), (4.71), and Proposition 4.4 (applied
witha Nk, 0N, ank BA0pADp ¢gng B2, LAD, T AT, (mj)jen v (M;)jen,
& N b, fa N Fy oga N (Rd > a = Vy(T,7) € R), ug ~ Vg, (,F,P) ~ (Q,FP), u/ ~uf
U AU W~ WO, U a ?Un(j in the notation of Proposition 4.4) hence guarantees that

there exists z: N x R - N and c = (cp.5), 5)ER2 R? — R such that for all d € N, £,§ € (0, 00),
p € [2,00) it holds that €4 (de)n(e) < Cpad® PP (min{l, e})~*+) and

sup sup (E[|Va(t,z) — ‘Bi’?dﬁ)’ﬂ(d’s)(t, x)m)l/p <e. (4.72)

te[0,T] z€[—k,k]4

This and Holder’s inequality prove that there exist : N x R — N and ¢ = (¢y5) p,5)cr2: RZ2 5 R
such that for all d € N, €,4,p € (0,00) it holds that

Q:d,ﬂ(d,a),n(d,s) S Cp,6d0+(p+q)(2+6) (mln{17 5})_(2+6) (473)
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and

d’
sup sup E[|Vy(t,z) — Q?ﬂ?d’e)’ﬂ(d,s)(t,a:)m
t€(0,T] z€[—k,k]?

< sup sup (E[|Vu(t,z)— Q?i’?d’g)ﬂ(dﬁ)(t,x)|“"(p)})p/w(p> < eP.
te[0,T] z€[—k,k]4

(4.74)

Combining (4.73), (4.74), and the fact that for all n € Ny, d,j € N, 0 € ©, t € [0,T], » € R? it
holds that u4(t,z) = Vy(t,%/vz) and Ug:?(t,x) = Q?i’z (t,2/v2) hence establishes (4.62). The proof
of Theorem 4.6 is thus complete. O
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