
Artificial Neural Networks Applied to Stochastic Monte Carlo as a Way to Approximate
Modified Heat Equations, and Their Associated Parameters, Depths, and Accuracies.

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy in Mathematics

by

Shakil Ahmed Rafi
Troy University

Bachelor of Science in Mathematics, 2015
University of Arkansas

Master of Science in Mathematics, 2019

May 2024
University of Arkansas

This dissertation is approved for recommendation to the Graduate Council.

Joshua Lee Padgett, Ph.D.
Dissertation Director

Ukash Nakarmi, Ph.D.
Committee Member

Jiahui Chen, Ph.D.
Committee Member

Tulin Kaman, Ph.D.
Committee Member

1

Abstract

This dissertation seeks to explore a certain calculus for artificial neural networks. Specifi-
cally we will be looking at versions of the heat equation, and exploring strategies on how to
approximate them.

Our strategy towards the beginning will be to take a technique called Multi-Level Picard
(MLP), and present a simplified version of it showing that it converges to a solution of the
equation

∂
∂t
ud

(t, x) = (∇2

xud) (t, x).

We will then take a small detour exploring the viscosity super-solution properties of so-
lutions to such equations. It is here that we will first encounter Feynman-Kac, and see that
solutions to these equations can be expressed the expected value of a certain stochastic in-
tegral.

The final and last part of the dissertation will be dedicated to expanding a certain neu-
ral network framework. We will build on this framework by introducing new operations,
namely raising to a power, and use this to build out neural network polynomials. This opens
the gateway for approximating transcendental functions such as exp (x) , sin (x), and cos (x).
This, coupled with a trapezoidal rule mechanism for integration allows us to approximate
expressions of the form exp

 b

a
□dt

.

We will, in the last chapter, look at how the technology of neural networks developed in
the previous two chapters work towards approximating the expression that Feynman-Kac
asserts must be the solution to these modified heat equations. We will then end by giving
approximate bounds for the error in the Monte Carlo method. All the while we will maintain
that the parameter estimates and depth estimates remain polynomial on 1

ε
.

As an added bonus we will also look at the simplified MLP technque from the previous
chapters of this dissertation and show that yes, they can indeed be approximated with ar-
tificial neural networks, and that yes, they can be done so with neural networks whose
parameters and depth counts grow only polynomially on 1

ε
.

Our appendix will contain code listings of these neural network operations, some of the
architectures, and some small scale simulation results.

2

©2024 Shakil Ahmed Rafi
All rights reserved.

3

Acknowledgements

I would like to acknowledge my advisor Dr. Joshua Padgett who has been instrumental in
me Ph.D. journey. I am incredibly thankful for him taking the time out of his busy schedule
to meet with me over the weekends and helping me finish my dissertation. Without his help,
guidance, and patience I would never have been where I am today. You not only taught me
mathematics, but also how to be a mathematician. Thank you.

I would also like to thank my department, and everyone there, including, but not lim-
ited to Dr. Andrew Raich, for his incredible patience and helpful guidance throughout the
years. I would also like to thank Dr. Ukash Nakarmi for the excellent collaboartions I've
had. I would also to Egan Meaux for all the little things he does to keep the department going.

I would like to acknowledge Marufa Mumu for believing in me when I didn't. You re-
ally made the last few months of writing this dissertation, less painful.

I would like to acknowledge my cat, a beautiful Turkish Angora, Tommy. He was pretty
useless, but stroking his fur made me stress a little less.

Finally, I would like to thank Valetta Ventures, Inc. and their product Texifier. It is marvel
of software engineering and made the process of creating this dissertation much less painful
than it already was.

4

Dedicated to my grandparents,
M.A. Hye, M.A., & Nilufar Hye

who would've love to see this but can't;
to my parents,

Kamal Uddin Ahmed, M.A., & Shahnaz Parveen, M.A.,
who kept faith in me, always;
and finally to my brothers,

Wakil Ahmed Shabi, BBA & Nabeel Ahmed Sami, B.Eng.,
for whom I have been too imperfect a role model.

5

Read, in the name of your Lord
—Surah Al-Alaq:1

The conquest of nature must be achieved with number and measure.
—René Descartes

6

Contents

I On Convergence of Brownian Motion Monte Carlo 11

1 Introduction. 1

1.1 Motivation . 1

1.2 Notation, Definitions & Basic notions. 3

1.2.1 Norms and Inner Products . 3

1.2.2 Probability Space and Brownian Motion 4

1.2.3 Lipschitz and Related Notions . 7

1.2.4 Kolmogorov Equations . 9

1.2.5 Linear Algebra Notation and Definitions 10

1.2.6 O-type Notation and Function Growth 13

1.2.7 The Concatenation of Vectors & Functions 15

2 Brownian Motion Monte Carlo 18

2.1 Brownian Motion Preliminaries . 18

2.2 Monte Carlo Approximations . 25

2.3 Bounds and Covnvergence . 26

3 That u is a Viscosity Solution 35

3.1 Some Preliminaries . 35

3.2 Viscosity Solutions . 40

7

3.3 Solutions, Characterization, and Computational

Bounds to the Kolmogorov Backward Equations 61

II A Structural Description of Artificial Neural Networks 69

4 Introduction and Basic Notions About Neural Networks 70

4.1 The Basic Definition of ANNs and instantiations of ANNs 70

4.2 Compositions of ANNs . 74

4.2.1 Composition . 74

4.3 Stacking of ANNs . 80

4.3.1 Stacking of ANNs of Equal Depth . 80

4.3.2 Stacking of ANNs of Unequal Depth 86

4.4 Affine Linear Transformations as ANNs and Their Properties. 88

4.5 Sums of ANNs of Same End-widths . 91

4.5.1 Neural Network Sum Properties . 92

4.5.2 Sum of ANNs of Unequal Depth But Same End-widths 100

4.6 Linear Combinations of ANNs and Their Properties 101

4.7 Neural Network Diagrams . 113

5 ANN Product Approximations 115

5.1 Approximation for Products of Two Real Numbers 115

5.1.1 The squares of real numbers in [0, 1] 116

5.1.2 The Sqrq,ε network . 125

5.1.3 The Prdq,ε network . 131

5.2 Higher Approximations . 139

5.2.1 The Tund
n Neural Networks and Their Properties 139

5.2.2 The Pwrq,εn Neural Networks and Their Properties 147

5.2.3 Pnmq,ε
n,C and Neural Network Polynomials. 157

8

5.2.4 Xpnq,ε
n , Csnq,ε

n , Sneq,εn , and Artificial Neural Network Approximations

of ex, cos(x), and sin(x). 163

6 ANN first approximations 173

6.1 ANN Representations for One-Dimensional Identity and some associated prop-

erties . 173

6.2 Trph, Etrn,h and Neural Network Approximations For the Trapezoidal Rule. . 183

6.3 Maximum Convolution Approximations for Multi-Dimensional Functions . . 184

6.3.1 The Nrmd
1 Networks . 184

6.3.2 The Mxmd Neural Networks . 187

6.3.3 The MCN,d
x,y Neural Network and Approximations via Maximum Con-

volutions . 192

6.3.4 Lipschitz Function Approximations 196

6.3.5 Explicit ANN Approximations . 200

III A deep-learning solution for u and Brownian motions 202

7 ANN representations of Brownian Motion Monte Carlo 203

7.1 The EN,h,q,ε
n Neural Network . 206

7.2 The UEN,h,q,ε
n,Gd

Neural Network . 212

7.3 The UEXN,h,q,ε
n,Gd,ωi

network . 218

7.4 The UESN,h,q,ε
n,Gd,Ω,n network . 223

8 Conclusions and Further Research 233

8.1 Further operations and further kinds of neural networks 233

8.1.1 Dropout . 233

8.2 Further Approximants . 234

8.3 Algebraic Properties of this Framework . 235

9

8.4 Code Listings . 240

10

Part I

On Convergence of Brownian Motion

Monte Carlo

11

Chapter 1

Introduction.

1.1 Motivation

Artificial neural networks represent a sea change in computing. They have successfully been

used in a wide range of applications, from protein-folding in Tsaban et al. (2022), knot the-

ory in Davies et al. (2022), and extracting data from gravitational waves in Zhao et al. (2023).

As neural networks become more ubiquitous, we see that the number of parameters re-

quired to train them increases, which poses two problems: accessibility on low-power devices

and the amount of energy needed to train these models, see for instance Wu et al. (2022) and

Strubell et al. (2019). Parameter estimates become increasingly crucial in an increasingly

climate-challenged world. That we know strict and precise upper bounds on parameter esti-

mates tells us when training becomes wasteful, in some sense, and when, perhaps, different

approaches may be needed.

Our goal in this dissertation is threefold:

(i) Firstly, we will take something called Multi-Level Picard first introduced in E et al.

(2019) and E et al. (2021), and in particular, the version of Multi-Level Picard that

1

appears in Hutzenthaler et al. (2021). We show that dropping the drift term and

substantially simplifying the process still results in convergence of the method and

polynomial bounds for the number of computations required and rather nice properties

for the approximations, such as integrability and measurability.

(ii) We will then go on to realize that the solution to a modified version of the heat equation

has a solution represented as a stochastic differential equation by Feynman-Kac and

further that a version of this can be realized by the modified multi-level Picard tech-

nique mentioned in Item (i), with certain simplifying assumptions since we dropped

the drift term. A substantial amount of this is inspired by Beck et al. (2021c) and

much earlier work in Karatzas and Shreve (1991) and Da Prato and Zabczyk (2002).

(iii) By far, the most significant part of this dissertation is dedicated to expanding and

building upon a framework of neural networks as appears in Grohs et al. (2023). We

modify this definition highly and introduce several new neural network architectures to

this framework (Pwr,Pnm,Tun,Etr,Xpn,Csn, Sne,E,UE,UEX, and UEX, among others)

and show, for all these neural networks, that the parameter count grows only polyno-

mially as the accuracy of our model increases, thus beating the curse of dimensionality.

This finally paves the way for giving neural network approximations to the techniques

realized in Item (ii). We show that it is not too wasteful (defined on the polynomiality

of parameter counts) to use neural networks to approximate MLP to approximate a

stochastic differential equation equivalent to certain parabolic PDEs as Feynman-Kac

necessitates.

We end this dissertation by proposing two avenues of further research: analytical

and algebraic. This framework of understanding neural networks as ordered tuples of

ordered pairs may be extended to give neural network approximation of classical PDE

approximation techniques such as Runge-Kutta, Adams-Moulton, and Bashforth. We

2

also propose three conjectures about neural networks, as defined in Grohs et al. (2023).

They form a bimodule, and that realization is a functor.

This dissertation is broken down into three parts. At the end of each part, we will encounter

tent-pole theorems, which will eventually lead to the final neural network approximation

outcome. These tentpole theorems are Theorem 2.3.4, Theorem 3.3.1, and Theorem 7.4.4.

Finally, the culmination of these three theorems is Corollary 7.4.4.1, the end product of the

dissertation. We hope, you the reader will enjoy this.

1.2 Notation, Definitions & Basic notions.

We introduce here basic notations that we will be using throughout this dissertation. Large

parts are taken from standard literature inspired by Matrix Computations by Golub & van

Loan, Golub and Van Loan (2013), Probability: Theory & Examples by Rick Durrett, Durrett

(2019), and Concrete Mathematics by Knuth, Graham & Patashnik, Graham et al. (1994).

1.2.1 Norms and Inner Products

Definition 1.2.1 (Euclidean Norm). Let ·E : Rd → [0,∞) denote the Euclidean norm

defined for every d ∈ N0 and for all x = {x1, x2, · · · , xd} ∈ Rd as:

xE =

d

i=1

x2
i

 1
2

(1.2.1)

For the particular case that d = 1 and where it is clear from context, we will denote · E as

| · |.

Definition 1.2.2 (Max Norm). Let ·∞ : Rd → [0,∞) denote the max norm defined for

every d ∈ N and for all x = {x1, x2, · · · , xd} ∈ Rd as:

x∞ = max
i∈{1,2,··· ,d}

{|xi|} (1.2.2)

3

We will denote the max norm ·max : Rm×n → [0,∞) defined for every m,n ∈ N and for all

A ∈ Rm×n as:

Amax := max
i∈{1,2,...,m}
j∈{1,2,...,n}

[A]i,j
 (1.2.3)

Definition 1.2.3 (Frobenius Norm). Let · F : Rm×n → [0,∞) denote the Frobenius norm

defined for every m,n ∈ N and for all A ∈ Rm×n as:

AF =

m

i=1

n

j=1

[A]2i,j

 1
2

(1.2.4)

Definition 1.2.4 (Euclidean Inner Product). Let 〈·, ·〉 : Rd ×Rd → R denote the Euclidean

inner product defined for every d ∈ N, for all Rd ∋ x = {x1, x2, ..., xd}, and for all Rd ∋ y =

{y1, y2, ..., yd} as:

〈x, y〉 =
d

i=1

|xiyi| (1.2.5)

1.2.2 Probability Space and Brownian Motion

Definition 1.2.5 (Probability Space). A probability space is a triple (Ω,F ,P) where:

(i) Ω is a set of outcomes called the sample space.

(ii) F is a set of events called the event space, where each event is a set of outcomes

from the sample space. More specifically, it is a σ-algebra on the set Ω.

(iii) A measurable function P : F → [0, 1] assigning each event in the event space a

probability. More specifically, P is a measure on Ω with the caveat that the measure of

the entire space is 1, i.e., P(Ω) = 1.

Definition 1.2.6 (Random Variable). Let (Ω,F ,P) be a probability space, and let d ∈ N0.

For some d ∈ N0 a random variable is a measurable function X : Ω → Rd.

4

Definition 1.2.7 (Expectation). Given a probability space (Ω,F ,P), the expected value of

a random variable X, denoted E [X] is the Lebesgue integral given by:

E [X] =

Ω

XdP (1.2.6)

Definition 1.2.8 (Variance). Given a probability space (Ω,F ,P), the variance of variable

X, assuming E [X] < ∞, denoted V [X], is the identity given by:

V [X] = E

X2

− (E [X])2 (1.2.7)

Definition 1.2.9 (Stochastic Process). A stochastic process is a family of random variables

over a fixed probability space (Ω,F ,R), indexed over a set, usually [0, T] for T ∈ (0,∞).

Definition 1.2.10 (Stochastic Basis). A stochastic basis is a tuple (Ω,F ,P,F) where:

(i) (Ω,F ,P) is a probability space equipped with a filtration F where,

(ii) F = (Fi)i∈I , is a collection of non-decreasing sets under inclusion where for every

i ∈ I, I being equipped in total order, it is the case that Fi is a sub σ-algebra of F .

Definition 1.2.11 (Brownian Motion Over a Stochastic Basis). Given a stochastic basis

(Ω,F ,P,F) a standard (Ft)t∈[0,T]-Brownian motion Wt is a mapping Wt : [0, T] × Ω → Rd

satisfying:

(i) Wt is Ft measurable for all t ∈ [0,∞)

(ii) W0 = 0 with P-a.s.

(iii) Wt −Ws ∼ Norm (0, t− s) when s ∈ (0, t).

(iv) Wt −Ws is independent of Ws whenever s < t.

(v) The paths that Wt take are P-a.s. continuous.

5

Definition 1.2.12 ((Ft)t∈[0,T]-adapted Stochastic Process). Let T ∈ (0,∞). Let (Ω,F ,P,F)

be a filtered probability space with the filtration indexed over [0, T]. Let (S,Σ) be a measurable

space. Let X : [0, T]×Ω → S be a stochastic process. We say that X is an (Ft)t∈[0,T]-adapted

stochastic process if it is the case that Xt : Ω → S is (Ft,Σ) measurable for each t ∈ [0, T].

Definition 1.2.13 ((Ft)t∈[0,T]-adapted stopping time). Let T ∈ (0,∞), τ ∈ [0, T]. Assume

a filtered probability space (Ω,F ,P,F). It is then the case that τ ∈ R is a stopping time if

the stochastic process X = (Xt)t∈[0,T] define as:

Xt :=

1 : t < τ

0 : t τ

(1.2.8)

is adapted to the filtration F := (Fi)i∈[0,T]

Definition 1.2.14 (Strong Solution of Stochastic Differential Equation). Let d,m ∈ N. Let

µ : Rd → Rd, σ : Rd → Rd×m be Borel-measurable. Let (Ω,F ,P, (Ft)t∈[0,T]) be a stochastic

basis, and let W : [0, T] × Ω → Rd be a standard (Ft)t∈[0,T]-Brownian motion. For all

t ∈ [0, T], x ∈ Rd, let X t,x = (X t,x
s)s∈[t,T] × Ω → Rd be an (Fs)s∈[t,T]-adapted stochastic

process with continuous sample paths satisfying that for all t ∈ [0, T] we have P-a.s. that:

X t,x = X0 +

 t

0

µ(r,X t,x
r)dr +

 t

0

σ(r,X t,x
r)dWr (1.2.9)

A strong solution to the stochastic differential equation (1.2.9) on probability space

(Ω,F ,P, (Ft)t∈[0,T]), w.r.t Brownian motion W, w.r.t to initial condition X0 = 0 is a stochas-

tic process (Xt)t∈[0,∞) satisfying that:

(i) Xt is adapted to the filtration (Ft)t∈[0,T].

(ii) P(X0 = 0) = 1.

6

(iii) for all t ∈ [0, T] it is the case that P
 t

0
µ(r,X t,x

r)E + σ(r,X t,x
r)FdWr < ∞

= 1

(iv) it holds with P-a.s. that X satisfies the equation:

X t,x = X0 +

 t

0

µ(r,X t,x
r)dr +

 t

0

σ(r,X t,x
r)dWr (1.2.10)

Definition 1.2.15 (Strong Uniqueness Property for Solutions to Stochastic Differential

Equations). Let it be the case that whenever we have two strong solutions X and X , w.r.t.

process W and initial condition X0 = 0, as defined in Definition 1.2.14, it is also the case

that P(Xt = Xt) = 1 for all t ∈ [0, T]. We then say that the pair (µ, σ) exhibits a strong

uniqueness property.

1.2.3 Lipschitz and Related Notions

Definition 1.2.16 (Globally Lipschitz Function). Let d ∈ N0. For every d ∈ N0, we say a

function f : Rd → Rd is (globally) Lipschitz if there exists an L ∈ (0,∞) such that for all

x, y ∈ Rd it is the case that :

f(x)− f(y)E L · x− yE (1.2.11)

The set of globally Lipschitz functions over set X will be denoted LipG(X)

Corollary 1.2.16.1. Let d ∈ N0. For every d ∈ N0, a continuous function f ∈ C(Rd,Rd)

over a compact set K ⊊ Rd is Lipschitz over that set.

Proof. By Hiene-Cantor, f is uniformly continuous over set K. Fix an arbitrary and let δ

be from the definition of uniform continuity. By compactness we have a finite cover of K by

balls of radius δ, centered around xi ∈ K:

K ⊆
N

i=1

Bδ(xi) (1.2.12)

7

Note that within a given ball, no point xj is such that |xi − xj| > δ. Thus, by uniform

continuity, we have the following:

|f(xi)− f(xj)| < ∀i, j ∈ {1, 2, ..., N} (1.2.13)

and thus let L be defined as:

L = max
i,j∈{1,2,...,N}

i ∕=j

f(xi)− f(xj)

xi − xj

 (1.2.14)

L satisfies the Lipschitz property. To see this, let x1, x2 be two arbitrary points within K.

Let Bδ(xi) and Bδ(xj) be two points such that x1 ∈ Bδ(xi) and x2 ∈ Bδ(xj). The triangle

inequality then yields that:

|f(x1)− f(x2)| |f(x1)− f(xi)|+ |f(xi)− f(xj)|+ |f(xj)− f(x2)|

 |f(xi)− f(xj)|+ 2

 L · |xi − xj|+ 2

 L · |x1 − x2|+ 2

for all ∈ (0,∞).

Definition 1.2.17 (Locally Lipschitz Function). Let d ∈ N0. For every d ∈ N0 a function

f : Rd → Rd is locally Lipschitz if for all x0 ∈ Rd there exists a compact set K ⊆ Domain(f)

containing x0, and a constant L ∈ (0,∞) for that compact set such that

sup
x,y∈K
x ∕=y

f(x)− f(y)

x− y

E

 L (1.2.15)

The set of locally Lipschitz functions over set X will be denoted LipL(X).

Corollary 1.2.17.1. A function f : Rd → Rd that is globally Lipschitz is also locally

8

Lipschitz. More concisely LipG(X) ⊊ LipL(X).

Proof. Assume not, that is to say, there exists a point x ∈ Domain(f), a compact set

K ⊆ Domain(f), and points x1, x2 ∈ K such that:

|f(x1)− f(x2)|
x1 − x2

 L (1.2.16)

This directly contradicts Definition 1.2.16.

1.2.4 Kolmogorov Equations

Definition 1.2.18 (Kolmogorov Equation). We take our definition from (Da Prato and

Zabczyk, 2002, (7.0.1)) with, u ↶ u, G ↶ σ, F ↶ µ, and ϕ ↶ g, and for our purposes

we set A : Rd → 0. Given a separable Hilbert space H (in our case Rd), and letting

µ : [0, T] × Rd → Rd, σ : [0, T] × Rd → Rd×m, and g : Rd → R be at least Lipschitz, a

Kolmogorov Equation is an equation of the form:

∂
∂t
u

(t, x) = 1

2
Trace (σ (t, x) [σ (t, x)]∗ (Hessx u) (t, x)) + 〈µ (t, x) , (∇xu) (t, x)〉

u(0, x) = g(x)

(1.2.17)

Definition 1.2.19 (Strict Solution to Kolmogorov Equation). Let d ∈ N0. For every d ∈ N0

a function u : [0, T]× Rd → R is a strict solution to (1.2.17) if and only if:

(i) u ∈ C1,1

[0, T]× Rd

and u(0, ·) = g

(ii) u(t, ·) ∈ UC1,2([0, T]× Rd,R)

(iii) For all x ∈ Domain(A), u(·, x) is continuously differentiable on [0,∞) and satisfies

(1.2.17).

9

Definition 1.2.20 (Generalized Solution to Kolmogorov Equation). A generalized solution

to (1.2.17) is defined as:

u(t, x) = E

g

X t,x

(1.2.18)

Where the stochastic process X t,x is the solution to the stochastic differential equation, for

x ∈ Rd, t ∈ [0, T]:

X t,x =

 t

0

µ

X t,x

r

dr +

 t

0

σ

X t,x

r

dWr (1.2.19)

Definition 1.2.21 (Laplace Operator w.r.t. x). Let d ∈ N0, and f ∈ C2

Rd,R

. For every

d ∈ N0, the Laplace operator ∇2
x : C2(Rd,R) → R is defined as:

∆xf = ∇2
xf := ∇ ·∇f =

d

i=1

∂f

∂xi

(1.2.20)

1.2.5 Linear Algebra Notation and Definitions

Definition 1.2.22 (Identity, Zero Matrix, and the 1-matrix). Let d ∈ N. We will define the

identity matrix for every d ∈ N as the matrix Id ∈ Rd×d given by:

Id = [Id]i,j =

1 i = j

0 else
(1.2.21)

Note that I1 = 1.

Let m,n, i, j ∈ N. For every m,n ∈ N, i ∈ {1, 2, . . . ,m}, and j ∈ {1, 2, . . . , n} we define the

zero matrix 0m,n ∈ Rm×n as:

0m,n = [0m,n]i,j = 0 (1.2.22)

10

Where we only have a column of zeros, it is convenient to denote 0d where d is the height of

the column.

Let m,n, i, j ∈ N. For every m,n ∈ N, i ∈ {1, 2, . . . ,m}, and j ∈ {1, 2, . . . , n} we define

matrix of ones em,n ∈ Rm×n as:

em,n = [e]i,j = 1 (1.2.23)

Where we only have a column of ones, it is convenient to denote ed where d is the height of

the column.

Definition 1.2.23 (Single-entry matrix). Let m,n, k, l ∈ N and let c ∈ R. For k ∈ N∩ [1,m]

and l ∈ N ∩ [1, n], we will denote by k
m,n
k,l,c ∈ Rm×n as the matrix defined by:

k
m,n
k,l,c =

k
m,n
k,l

i,j

=

c : k = i ∧ l = j

0 : else

(1.2.24)

Definition 1.2.24 (Complex conjugate and transpose). Let m,n, i, j ∈ N, and A ∈ Cm×n.

For every m,n ∈ N, i ∈ {1, 2, . . . ,m} and j ∈ {1, 2, . . . , n}, we denote by A∗ ∈ Cn×m the

matrix:

A∗ := [A∗]i,j = [A]j,i (1.2.25)

Where it is clear that we are dealing with real matrices, i.e., A ∈ Rm×n, we will denote this

as A⊺.

Definition 1.2.25 (Column and Row Notation). Let m,n, i, j ∈ N and let A ∈ Rm×n. For

every m,n ∈ N and i ∈ {1, 2, . . . ,m} we denote i-th row as:

[A]i,∗ =

ai,1 ai,2 · · · ai,n

(1.2.26)

11

Similarly for every m,n ∈ N and j ∈ {1, 2, . . . , n}, we done the j-th row as:

[A]∗,j =

a1,j

a2,j
...

am,j

(1.2.27)

Definition 1.2.26 (Component-wise notation). Let m,n, i, j ∈ N, and let A ∈ Rm×n. Let

f : R → R. For all m,n ∈ N, i ∈ {1, 2, . . . ,m}, and j ∈ {1, 2, . . . , n} we will define

f

[A]∗,∗

∈ Rm×n as:

f

[A]∗,∗

:=

f

[A]i,j

i,j
(1.2.28)

Thus under this notation the component-wise square of A is

[A]∗,∗

2

, the component-wise sin

is sin

[A]∗,∗

and the Hadamard product of A,B ∈ Rm×n then becomes A⊙B = [A]∗,∗×[B]∗,∗.

Remark 1.2.27. Where we are dealing with a column vector x ∈ Rd×1 and it is evident

from the context we may choose to write f ([x]∗).

Definition 1.2.28 (The Diagonalization Operator). Let m1,m2, n1, n2 ∈ N. Given A ∈

Rm1×n1 and B ∈ Rm2×n2, we will denote by diag (A,B) the matrix:

diag (A,B) =

A 0m1,n2

0m2,n1 B

 (1.2.29)

Remark 1.2.29. diag (A1, A2, . . . , An) is defined analogously for a finite set of matrices

A1, A2, . . . , An.

Definition 1.2.30 (Number of rows and columns notation). Let m,n ∈ N. Let A ∈ Rm×n.

Let rows : Rm×n → N and columns : Rm×n → N, be the functions respectively rows (A) = m

and columns (A) = n.

12

1.2.6 O-type Notation and Function Growth

Definition 1.2.31 (O-type notation). Let g ∈ C(R,R). We say that f ∈ C(R,R) is in

O(g(x)), denoted f ∈ O(g(x)), if there exists c ∈ (0,∞) and x0 ∈ (0,∞) such that for all

x ∈ [x0,∞) it is the case that:

0 f(x) c · g(x) (1.2.30)

We say that f ∈ Ω(g(x)) if there exists c ∈ (0,∞) and x0 ∈ (0,∞) such that for all

x ∈ [x0,∞) it is the case that:

0 cg(x) f(x) (1.2.31)

We say that f ∈ Θ(g(x)) if there exists c1, c2, x0 ∈ (0,∞) such that for all x ∈ [x0,∞) it is

the case that:

0 c1g(x) f c2g(x) (1.2.32)

Corollary 1.2.31.1 (Bounded functions and O-type notation). Let f(x) ∈ C(R,R), then:

(i) if f is bounded above for all x ∈ R, it is in O(1) for some constant c ∈ R.

(ii) if f is bounded below for all x ∈ R, it is in Ω(1) for some constant c ∈ R.

(iii) if f is bounded above and below for all x ∈ R, it is in Θ(1) for some constant c ∈ R.

Proof. Assume f ∈ C(R,R), then:

(i) Assume for all x ∈ R it is the case that f(x) M for some M ∈ R, then there exists

an x0 ∈ (0,∞) such that for all x ∈ (x0,∞) it is also the case that 0 f(x) M ,

whence f(x) ∈ O(1).

13

(ii) Assume for all x ∈ R it is the case that f(x) M for some M ∈ R, then there exists

an x0 ∈ (0,∞) such that for all x ∈ [x0,∞) it is also the case that f(x) M 0,

whence f(x) ∈ Ω(1).

(iii) This is a consequence of items (i) and (ii).

Corollary 1.2.31.2. Let n ∈ N0. For some n ∈ N0, let f ∈ O(xn). It is then also the case

that f ∈ O (xn+1).

Proof. Let f ∈ O(xn). Then there exists c0, x0 ∈ (0,∞), such that for all x ∈ [x0,∞) it is

the case that:

f(x) c0 · xn (1.2.33)

Note however that for all n ∈ N0, there also exists c1, x1 ∈ (0,∞) such that for all x ∈ (x1,∞)

it is the case that:

xn c1 · xn+1 (1.2.34)

Thus taken together this implies that for all x ∈ (max {x0, x1} ,∞) it is the case that:

f(x) c0 · xn c0 · c1 · xn+1 (1.2.35)

Definition 1.2.32 (The floor and ceiling functions). We denote by ⌊·⌋ : R → Z and ⌈·⌉ :

R → Z the functions satisfying for all x ∈ R that ⌊x⌋ = max (Z ∩ (−∞, x]) and ⌈x⌉ =

min (Z ∩ (−∞, x]).

14

1.2.7 The Concatenation of Vectors & Functions

Definition 1.2.33 (Vertical Vector Concatenation). Let m,n ∈ N. Let x = [x1 x2 . . . xm]
⊺ ∈

Rm and y = [y1, y2, . . . , yn]
⊺ ∈ Rn. For every m,n ∈ N, we will denote by x ⌢ y ∈ Rm × Rn

the vector given as:

x1

x2

...

xm

y1

y2
...

yn

(1.2.36)

Remark 1.2.34. We will stipulate that when concatenating vectors as x1 ⌢ x2, x1 is on

top, and x2 is at the bottom.

Corollary 1.2.34.1. Let m1,m2, n1, n2 ∈ N, such that m1 = n1, m2 = n2, and let x ∈ Rm1,

y ∈ Rn1, x ∈ Rm2, and y ∈ Rn2. It is then the case that [x ⌢ x]+ [y ⌢ y] = [x+ y] ⌢ [x+ y].

15

Proof. This follows straightforwardly from the fact that:

[x ⌢ x] + [y ⌢ y] =

x1

x2

...

xm1

x1

x2
...

xm2

+

y1

y2
...

yn1

y1

y2
...

yn2

=

x1 + y1

x2 + y2
...

xm1 + yn1

x1 + y1

x2 + y2
...

xm2 + yn2

= [x+ y] ⌢ [x+ y] (1.2.37)

Definition 1.2.35 (Function Concatenation). Let m1, n1,m2, n2 ∈ N. Let f : Rm1 → Rn1

and g : Rm2 → Rn2. We will denote by f ⌢ g : Rm1 × Rm2 → Rn1 × Rn2 as the function

given for all x = {x1, x2, . . . , xm1} ∈ Rm1, x ∈ {x1, x2, . . . , xm2} ∈ Rm2, and x ⌢ x =

{x1, x2, . . . , xm1 , x1, x2, . . . , xm2} ∈ Rm1 × Rm2 by:

x1

x2

...

xm1

x1

x2

...

xm2

−−−−−−→

f(x)

g(x)

 (1.2.38)

Corollary 1.2.35.1. Let m,n ∈ N. Let x1 ∈ Rm,x2 ∈ Rn, and f ∈ C (R,R). It is then the

case that f (x1 ⌢ x2) = f (x1) ⌢ f (x2).

16

Proof. This follows straightforwardly from the definition of function concatenation.

Lemma 1.2.36. Let m1,m2, n1, n2 ∈ N. Let f ∈ C (Rm1 ,Rn1) and g ∈ C (Rm2 ,Rn2). It is

then also the case that f ⌢ g ∈ C (Rm1 × Rn1 ,Rm2 × Rn2).

Proof. Let Rm2 × Rn2 be equipped with the usual product topology, i.e., the topology gen-

erated by all products X × Y of open subsets X ∈ Rm2 and Y ∈ Rn2 . In such a case let

V ⊊ Rm2 × Rn2 be an open subset. Then let it be that Vf and Vg are the canonical projec-

tions to the first and second factors respectively. Since projection under the usual topology

is continuous, it is the case that Vf ⊊ Rm2 and Vg ⊊ Rn2 are open sets, respectively. As

such it is then also the case that f−1 (Vf) ⊊ Rm1 and g−1 (Vg) ⊊ Rn1 are open sets as well

by continuity of f and g. Thus, their product is open as well, proving the lemma.

17

Chapter 2

Brownian Motion Monte Carlo

2.1 Brownian Motion Preliminaries

We will present here some standard invariants of Brownian motions. The proofs are standard

and can be found in for instance Durrett (2019) and Karatzas and Shreve (1991).

Lemma 2.1.1 (Markov property of Brownian motions). Let T ∈ R, t ∈ [0, T], and d ∈ N.

Let (Ω,F ,P) be a probability space. Let Wt : [0, T] × Ω → Rd be a standard Brownian

motion. Fix s ∈ [0,∞). Let Wt = Ws+t − Ws. Then W = {Wt : t ∈ [0,∞)} is also a

standard Brownian motion independent of W.

Proof. We check against the Brownian motion axioms. First note that W0 = Ws+0−Ws = 0

with P-a.s.

Note that t → Ws+t −Ws is P-a.s. continuous as it is the difference of two functions that

are also P-a.s. continuous.

Note next that for h ∈ (0,∞) it is the case that:

E [Wt+h −Wt] = E [Ws+t+h −Ws+h −Ws+t +Ws]

= E [Ws+t+h −Ws+t]− E [Ws+h −Ws]

= 0− 0 = 0 (2.1.1)

18

We note finally that:

V [Wt+h −Mt] = V [Ws+t+h −Ws −Ws+t +Ws]

= V [Ws+t+h −Ws+t]− V [Ws −Ws] +
✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭

Cov (Ws+t+h −Ws+t,Ws+h −Ws)

= h− 0 = h

Finally note that two stochastic processes W , X are independent whenever given a set of

sample points t1, t2, . . . , tn ∈ [0, T] it is the case that the vectors [Wt1 ,Wt2 , . . . ,Wtn]
⊺ and

[Xt1 ,Xt2 , . . . ,Xtn]
⊺ are independent vectors.

That being the case note that the independent increments property of Brownian motions

yields that, Ws+t1 −Ws, Ws+t2 −Ws, . . . ,Ws+tn −Ws is independent of Wt1 ,Wt2 , . . . ,Wtn ,

i.e. W and W are independent.

Lemma 2.1.2 (Independence of Brownian Motion). Let T ∈ (0,∞). Let (Ω,F ,P) be a

probability space. Let X ,Y : [0, T] × Ω → Rd be standard Brownian motions. It is then the

case that they are independent of each other.

Proof. We say that two Brownian motions are independent of each of each other if given a

sampling vector of times (t1, t2, . . . , tn), the vectors (Xt1 ,Xt2 , . . .Xtn) and (Yt1 ,Yt2 , . . . ,Ytn)

are independent. As such let n ∈ N and let (t1, t2, . . . tn) be a vector or times with samples

as given above. Consider now a new Brownian motion X −Y , wherein our samples are now

(Xt1 − Yt1 ,Xt2 − Yt2 , . . . ,Xtn − Ytn). By the independence property of Brownian motions,

these increments must be independent of each other. Whence it is the case that the vectors

(Xt1 ,Xt2 , . . . ,Xtn) and (Yt1 ,Yt2 , . . . ,Ytn) are independent.

Lemma 2.1.3 (Scaling Invariance). Let T ∈ R, t ∈ [0, T], and d ∈ N. Let (Ω,F ,P) be a

probability space. Let Wt : [0, T]×Ω → Rd be a standard Brownian motion. Let a ∈ R \ {0}.

It is then the case that Xt :=
1
a
Wa2·t is also a standard Brownian motion.

Proof. We check against the Brownian motion axioms. Note for instance that the function

19

t → Xt is a product of a constant with a function that is P-a.s. continuous yielding a function

that is also P-a.s. continuous.

Note also for instance that X0 =
1
a
· Wa2·0 = 0 with P-a.s.

Note that for all h ∈ (0,∞), and t ∈ [0, T] it is the case that:

E [Xt+h − Xt] = E

1

a
Wa2·(t+h) −

1

a
Wa2·t

=
1

a
E

Wa2·(t+h) −Wa2·t

= 0

Note that for all h ∈ (0,∞), and t ∈ [0, T] it is the case that:

V [Xt+h − Xt] = V

1

a
Wa2·(t+h) −

1

a
Wa2·t

=
1

a2
V

Wa2·(t+h) −Wa2·t

=
1

a
2
a
2 (✁t+ h− ✁t)

= h (2.1.2)

Finally note that for t ∈ [0, T] and s ∈ [0, t) it is the case that Wa2·t −Wa2·s is independent

of Wa2·s. Whence it is also the case that Xt − Xs is independent of Xs.

Lemma 2.1.4 (Summation of Brownian Motions). Let T ∈ R, t ∈ [0, T] and d ∈ N. Let

(Ω,F ,P) be a probability space. Let Wt,Xt : [0, T] × Ω → Rd be a standard independent

Brownian motions. It is then the case that the process Yt defined as Yt =
1√
2
(Wt + Xt) is

also a standard Brownian motion.

Proof. Note that t → 1√
2
(Wt + Xt) is P-a.s. continuous as it is the linear combination of

two functions that are also R-a.s. continuous.

Note also that Y0 =
1√
2
(W0 + X0) = 0 + 0 = 0 with P-a.s.

20

Note that for all h ∈ (0,∞) and t ∈ [t, T] it is the case that:

E

1√
2
(Yt+h − Yt)

= E

1√
2
(Wt+h + Xt+h −Wt − Xt)

=
1√
2
E [Wt+h −Wt] +

1√
2
E [Xt+h − Xt]

= 0

Note that for all h ∈ (0,∞), and t ∈ [0, T] it is the case that:

V

1√
2
(Yt+h − Yt)

= V

1√
2
(Wt+h + Xt+h −Wt − Xt)

= V

1√
2
(Wt+h −Wt) +

1√
2
(Xt+h − Xt)

=
1

2
V [Wt+h −Wt] +

1

2
V [Xt+h − Xt] +✘✘✘✘✘✘✘Cov (W ,X)

= h

Definition 2.1.5 (Of k). Let p ∈ [2,∞). We denote by kp ∈ R the real number given by

k := inf{c ∈ R} where it holds that for every probability space (Ω,F ,P) and every random

variable X : Ω → R with E[|X |] < ∞ that (E [|X − E [X])p])
1
p c (E [|X |p])

1
p .

Definition 2.1.6 (Primary Setting For This Chapter). Let d,m ∈ N, T,L, p ∈ [0,∞),

p ∈ [2,∞) m = kp
√
p− 1, Θ = Z, g ∈ C(Rd,R), assume for all t ∈ [0, T], x ∈ Rd that:

max{|g(x)|} L (1 + xpE) (2.1.3)

and let (Ω,F ,P) be a probability space. Let Wθ : [0, T] × Ω → Rd, θ ∈ Θ be independent

standard Brownian motions, let u ∈ C([0, T]× Rd,R) satisfy for all t ∈ [0, T], x ∈ Rd, that

21

E[|g(x+W0
T−t)|] < ∞ and:

u(t, x) = E

g

x+W0

T−t

(2.1.4)

and let let U θ : [0, T]× Rd × Ω → R, θ ∈ Θ satisfy, θ ∈ Θ, t ∈ [0, T], x ∈ Rd, that:

U θ
m(t, x) =

1

m

m

k=1

g

x+W (θ,0,−k)

T−t

(2.1.5)

Lemma 2.1.7. Assume Setting 2.1.6 then:

(i) it holds for all n ∈ N0, θ ∈ Θ that U θ : [0, T] × Rd × Ω → R is a continuous random

field.

(ii) it holds that for all θ ∈ Θ that σ

U θ

⊆ σ

W (θ,V)

V∈Θ

.

(iii) it holds that

U θ

θ∈Θ,

Wθ

θ∈Θ, are independent.

(iv) it holds for all n,m ∈, i, k, i, k ∈ Z, with (i, k) ∕= (i, k) that (U (θ,i,k))θ∈Θ and

U (θ,i,k)

θ∈Θ

are independent and,

(v) it holds that

U θ

θ∈Θ are identically distributed random variables.

Proof. For (i) Consider that W (θ,0,−k)
T−t are continuous random fields and that g ∈ C(Rd,R),

we have that U θ(t, x) is the composition of continuous functions with m > 0 by hypothesis,

ensuring no singularities. Thus U θ : [0, T]× Rd × Ω → R is a continuous random field.

For (ii) observe that for all θ ∈ Θ it holds that Wθ is B

[0, T]⊗ σ

W θ

/B

Rd

-measurable,

this, and induction on prove item (ii).

Moreover observe that item (ii) and the fact that for all θ ∈ Θ it holds that

W (θ,ϑ)

ϑ∈Θ

, Wθ

are independent establish item (iii).

Furthermore, note that (ii) and the fact that for all i, k, i, k ∈ Z, θ ∈ Θ, with (i, k) ∕= (i, k) it

holds that

W (θ,i,k,ϑ)

ϑ∈Θ and

W (θ,i,k,ϑ)

ϑ∈Θ are independent, establish item (iv).

22

Hutzenhaler (Hutzenthaler et al., 2020a, Corollary 2.5) establish item (v). This completes

the proof of Lemma 1.1.

Lemma 2.1.8. Assume Setting 2.1.6. Then it holds for θ ∈ Θ, s ∈ [0, T], t ∈ [s, T], x ∈ Rd

that:

E
U θ

t, x+Wθ

t−s

+ E
g

x+Wθ

t−s

+
 T

s

E
U θ

r, x+Wθ

r−s

 dr < ∞ (2.1.6)

Proof. Note that (2.1.3), the fact that for all r, a, b ∈ [0,∞) it holds that (a + b)r

2max{r−1,0}(ar + br), and the fact that for all θ ∈ Θ it holds that E

Wθ

T

< ∞, assure

that for all s ∈ [0, T], t ∈ [s, T], θ ∈ Θ it holds that:

E
g(x+Wθ

t−s)
 E

L

1 + x+Wθ

t−s
p
E

 L

1 + 2max{p−1,0} xpE + E

Wθ
T

p

E

< ∞ (2.1.7)

We next claim that for all s ∈ [0, T], t ∈ [s, T], θ ∈ Θ it holds that:

E
U θ

t, x+Wθ

t−s

+
 T

s

E
U θ

r, x+Wθ

r−s

 dr < ∞ (2.1.8)

To prove this claim observe the triangle inequality and (2.1.5), demonstrate that for all

s ∈ [0, T], t ∈ [s, T], θ ∈ Θ, it holds that:

E
U θ

t, x+Wθ

t−s

 1

m

m

i=1

E
g

x+Wθ

t−s +W (θ,0,−i)
T−t

(2.1.9)

Now observe that (2.1.7) and the fact that (W θ)θ∈Θ are independent imply that for all

s ∈ [0, T], t ∈ [s, T], θ ∈ Θ, i ∈ Z it holds that:

E
g

x+Wθ

t−s +W (θ,0,i)
T−t

= E

g

x+Wθ

(t−s)+(T−t)

 = E
g

x+Wθ

T−s

 < ∞

(2.1.10)

23

Combining (2.1.9) and (2.1.10) demonstrate that for all s ∈ [0, T], t ∈ [s, T], θ ∈ Θ it holds

that:

E
U θ(t, x+Wθ

t−s)
 < ∞ (2.1.11)

Finally observe that for all s ∈ [0, T] θ ∈ Θ it holds that:

 T

s

E
U θ

r, x+Wθ

r−s

 (T − s) sup
r∈[s,T]

E
U θ

r, x+Wθ

r−s

 < ∞ (2.1.12)

Combining (??), (2.1.11), and (2.1.12) completes the proof of Lemma 2.1.8.

Corollary 2.1.8.1. Assume Setting 2.1.6, then we have:

(i) it holds that t ∈ [0, T], x ∈ Rd that:

E
U0 (t, x)

+ E
g

x+W (0,0,−1)

T−t

< ∞ (2.1.13)

(ii) it holds that t ∈ [0, T], x ∈ Rd that:

E

U0 (t, x)

= E

g

x+W (0,0,−1)

T−t

(2.1.14)

Proof. (i) is a restatement of Lemma 2.1.8 in that for all t ∈ [0, T]:

E
U0 (t, x)

+ E
g

x+W (0,0,−1)

T−t

< E
U θ

t, x+Wθ

t−s

+ E
g

x+Wθ

t−s

+
 T

s

E
U θ

r, x+Wθ

r−s

 dr

< ∞ (2.1.15)

Furthermore (ii) is a restatement of (??) with θ = 0, m = 1, and k = 1. This completes the

24

proof of Corollary 2.1.8.1.

2.2 Monte Carlo Approximations

Lemma 2.2.1. Let p ∈ (2,∞), n ∈ N, let (Ω,F ,P), be a probability space and let Xi : Ω → R,

i ∈ {1, 2, ..., n} be i.i.d. random variables with E[|X1|] < ∞. Then it holds that:

E

E [X1]−
1

n

n

i=1

Xi

p 1
p

p− 1

n

 1
2

(E [|X1 − E [X1]|p)]
1
p (2.2.1)

Proof. The hypothesis that for all i ∈ {1, 2, ..., n} it holds that Xi : Ω → R are i.i.d. random

variables ensures that:

E

E [X1]−
1

n

n

i=1

Xi

p
= E

1

n

n

i=1

(E [X1]− Xi)

p
=

1

np
E

n

i=1

(E [Xi]− Xi)

p

(2.2.2)

This combined with the fact that for all i ∈ {1, 2, ..., n} it is the case that Xi : Ω → R are

i.i.d. random variables and e.g. (Rio, 2009, Theorem 2.1) (with p ↶ p, (Si)i∈{0,1,...,n} ↶

(
i

k=1(E[Xk] − Xk)), (Xi)i∈{1,2,...,n} ↶ (E[Xi] − Xi)i∈{1,2,...,n} in the notation of (Rio, 2009,

Theorem 2.1) ensures that:

E

E [X1]−
1

n

n

i=1

Xi

p 2
p

=
1

n2

E

n

i=1

(E [Xi]− Xi)

p 2
p

 p− 1

n2

n

i=1

(E [|E [Xi]− Xi|p])
2
p

=
p− 1

n2

n (E [|E [X1]− X1|p])

2
p

(2.2.3)

=
p− 1

n
(E [|E [X1]− X1|p])

2
p (2.2.4)

This completes the proof of the lemma.

25

Corollary 2.2.1.1. Let p ∈ [2,∞), n ∈ N, let (Ω,F ,P) be a probability space, and let

Xi : Ω → R, i ∈ {1, 2, ..., n} be i.i.d random variables with E [|X1|] < ∞. Then it holds that:

E

E [X1]−
1

n

n

i=1

Xi

p 1
p

p− 1

n

 1
2

(E [|X1 − E [X1]|p])
1
p (2.2.5)

Proof. Observe that e.g. (Grohs et al., 2018, Proposition 2.3) and Lemma 2.3.1 establish

(2.2.5).

Corollary 2.2.1.2. Let p ∈ [2,∞), n ∈ N, let (Ω,F ,P), be a probability space, and let

Xi : Ω → R, i ∈ {1, 2, ..., n}, be i.i.d. random variables with E[|X1|] < ∞, then:

E

E [X1]−
1

n

n

i=1

Xi

p 1
p

 kp
√
p− 1

n
1
2

(E [|X1|p])
1
p (2.2.6)

Proof. This a direct consequence of Definition 2.1.5 and Corollary 2.2.1.1.

2.3 Bounds and Covnvergence

Lemma 2.3.1. Assume Setting ??. Then it holds for all t ∈ [0, T], x ∈ Rd

E
U0(t, x+W0

t)− E

U0

t, x+W0

t

p
 1

p

 m

m
1
2

E
g

x+W0

T

p
 1

p

(2.3.1)

Proof. For notational simplicity, let Gk : [0, T] × Rd × Ω → R, k ∈ Z, satisfy for all k ∈ Z,

t ∈ [0, T], x ∈ Rd that:

Gk(t, x) = g

x+W (0,0,−k)

T−t

(2.3.2)

Observe that the hypothesis that (Wθ)θ∈Θ are independent Brownian motions and the hy-

pothesis that g ∈ C(Rd,R) assure that for all t ∈ [0, T],x ∈ Rd it holds that (Gk(t, x))k∈Z

26

are i.i.d. random variables. This and Corollary 2.2.1.2 (applied for every t ∈ [0, T], x ∈ Rd

with p ↶ p, n ↶ m, (Xk)k∈{1,2,...,m} ↶ (Gk(t, x))k∈{1,2,...,m}), with the notation of Corollary

2.2.1.2 ensure that for all t ∈ [0, T], x ∈ Rd, it holds that:

E

1

m

m

k=1

Gk(t, x)

− E [G1(t, x)]

p 1
p

 m

m
1
2

(E [|G1(t, x)|p])
1
p (2.3.3)

Combining this, with (1.16), (1.17), and item (ii) of Corollary 2.1.8.1 yields that:

E
U0(t, x)− E

U0(t, x)

p
 1

p

=

E

1

m

m

k=1

Gk(t, x)

− E [G1(t, x)]

p 1
p

(2.3.4)

 m

m
1
2

E

|G1(t, x)|p

 1
p (2.3.5)

=
m

m
1
2

E
g

x+W1

T−t

p
 1

p

(2.3.6)

This and the fact that W0 has independent increments ensure that for all n ∈, t ∈ [0, T],

x ∈ Rd it holds that:

E
U0

t, x+W0

t

− E

U0

t, x+W0

t

p
 1

p m

m
1
2

E
g

x+W0

T

p
 1

p

(2.3.7)

This completes the proof of Lemma 2.3.1.

Lemma 2.3.2. Assume Setting 2.1.6. Then it holds for all, t ∈ [0, T], x ∈ Rd that:

E
U0

t, x+W0

t

− u

t, x+W0

t

p
 1

p

m

m
1
2

E
g

x+W0

T

p
 1

p (2.3.8)

Proof. Observe that from Corollary 2.1.8.1 item (ii) we have:

E

U0(t, x)

= E

g

x+W (0,0,−1)

T−t

(2.3.9)

27

This and (2.1.4) ensure that:

u(t, x)− E

U0(t, x)

= 0

E

U0(t, x)

− u (t, x) = 0 (2.3.10)

This, and the fact that W0 has independent increments, assure that for all, t ∈ [0, T], x ∈ Rd,

it holds that:

E
E

U0

t, x+W0

t

− u

t, x+W0

t

p
 1

p

= 0

E
u

t, x+W0

t

p

(2.3.11)

This along with (2.1.4) ensure that:

E
E

U0

t, x+W0

t

− u

t, x+W0

t

p
 1

p

= 0

E
g

x+W0

T

p
 1

p (2.3.12)

Notice that the triangle inequality gives us:

E
U0

t, x+W0

t

− u

t, x+W0

t

p
 1

p

E
U0(t, x+W 0

t)− E

U0(t, x+W0

t)
p

 1
p

+

E
E

U0

t, x+W0

t

− u

t, x+W0

t

p
 1

p

(2.3.13)

This, combined with (1.26), (1.21), the independence of Brownian motions, gives us:

E
U0

t, x+W0

t

− u

t, x+W0

t

p
 1

p

m

m
1
2

E
g

x+W0

T

p
 1

p

=

m

m
1
2

E
g

x+W0

T

p
 1

p (2.3.14)

This completes the proof of Lemma 2.3.2.

28

Lemma 2.3.3. Assume Setting 2.1.6. Then it holds for all t ∈ [0, T], x ∈ Rd that:

E
U0

t, x+W0

t

− u

t, x+W0

t

p
 1

p L

m

m
1
2

sup

s∈[0,T]

E

1 +

x+W0
s

p

E

p
 1

p

(2.3.15)

Proof. Observe that Lemma 2.3.2 ensures that:

E
U0

t, x+W0

t

− u

t, x+W0

t

p
 1

p

m

m
1
2

E
g

x+W0

T

p
 1

p (2.3.16)

Observe next that (2.1.4) ensures that:

m

m
1
2

E
g

x+W0

T

p
 1

p L

m

m
1
2

E

1 +

x+W0
T

p

E

p 1
p (2.3.17)

Which in turn yields that:

L

m

m
1
2

E

1 +

x+W0
T

p

E

p 1
p L

m

m
1
2

sup

s∈[0,T]

E

1 +

x+W0
s

p

E

p
 1

p

(2.3.18)

Combining 2.3.16, 2.3.17, and 2.3.18 yields that:

E
U0

t, x+W0

t

− u

t, x+W0

t

p
 1

p

m

m
1
2

E
g

x+W0

T

p
 1

p

 L

m

m
1
2

sup

s∈[0,T]

E

1 +

x+W0
s

p

E

p
 1

p

(2.3.19)

This completes the proof of Lemma 2.3.3.

29

Corollary 2.3.3.1. Assume Setting 2.1.6. Then it holds for all t ∈ [0, T], x ∈ Rd that:

E
U0 (t, x)− u(t, x)

p
 1

p L

m

m
1
2

sup

s∈[0,T]

E

(1+x+W0

s
p
E)

p
 1

p

(2.3.20)

Proof. Observe that for all t ∈ [0, T − t] and t ∈ [0, T], and the fact that W 0 has independent

increments it is the case that:

u(t+ t, x) = E

g

x+W0

T−(t+t)

= E

g

x+W0

(T−t)−t)

(2.3.21)

It is also the case that:

U θ(t+ t, x) =
1

m

m

k=1

g

x+W (θ,0,−k)

T−(t+t)

=

1

m

m

k=1

g

x+W (θ,0,−k)

(T−t)−t

Then, applying Lemma 2.3.3, applied for all t ∈ [0, T], with L ↶ L, p ↶ p, p ↶ p,

T ↶ (T − t) is such that for all t ∈ [0, T], t ∈ [0, T − t], x ∈ Rd we have:

E
U0

t+ t, x+W0

t

− u

t+ t, x+W0

t

p
 1

p

 L

m

m
1
2

sup

s∈[0,T−t]

E

1 +

x+W0
s

p

E

p
 1

p

 L

m

m
1
2

sup

s∈[0,T]

E

1 +

x+W0
s

p

E

p
 1

p

(2.3.22)

Thus we get for all t ∈ [0, T], x ∈ Rd, n ∈:

E
U0 (t, x)− u (t, x)

p
 1

p

=

E
U0

t, x+W0

0

− u

t, x+W0

0

p
 1

p

 L

m

m
1
2

sup

s∈[0,T]

E

1 +

x+W0
s

p

E

p
 1

p

(2.3.23)

This completes the proof of Corollary 2.3.3.1.

30

Theorem 2.3.4. Let T, L, p, q, d ∈ [0,∞),m ∈ N, Θ =

n∈N Zn, let gd ∈ C(Rd,R), and

assume that d ∈ N, t ∈ [0, T], x = (x1, x2, ..., xd) ∈ Rd, v, w ∈ R and that max{|gd(x)|}

Ldp

1 + Σd

k=1 |xk|

, let (Ω,F ,P) be a probability space, let Wd,θ : [0, T] × Ω → Rd, d ∈ N,

θ ∈ Θ, be independent standard Brownian motions, assume for every d ∈ N that

Wd,θ

θ∈Θ

are independent, let ud ∈ C([0, T] × Rd,R), d ∈ N, satisfy for all d ∈ N, t ∈ [0, T], x ∈ Rd

that E

gx

x+Wd,0

T−t

< ∞ and:

ud (t, x) = E

gd

x+Wd,0

T−t

(2.3.24)

Let Ud,θ
m : [0, T]× Rd × Ω → R, d ∈ N, m ∈ Z, θ ∈ Θ, satisfy for all, d ∈ N, m ∈ Z, θ ∈ Θ,

t ∈ [0, T], x ∈ Rd that:

Ud,θ
m (t, x) =

1

m

m

k=1

gd

x+Wd,(θ,0,−k)

T−t

(2.3.25)

and for every d, n,m ∈ N let Cd,n,m ∈ Z be the number of function evaluations of ud(0, ·)

and the number of realizations of scalar random variables which are used to compute one

realization of Ud,0
m (T, 0) : Ω → R.

There then exists c ∈ R, and N : N × (0, 1] → N such that for all d ∈ N, ε ∈ (0, 1] it holds

that:

sup
t∈[0,T]

sup
x∈[−L,L]d

E
ud(t, x)− Ud,0

N(d,)

p 1

p (2.3.26)

and:

Cd,N(d,ε),N(d,ε) cdcε−(2+δ) (2.3.27)

Proof. Throughout the proof let mp =
√
p− 1, p ∈ [2,∞), let Fd

t ⊆ F , d ∈ N, t ∈ [0, T]

31

satisfy for all d ∈ N, t ∈ [0, T] that:

Fd
t =

s∈[t,T] σ

σ

W d,0

r : r ∈ [0, s]

∪ {A ∈ F : P(A) = 0}

: t < T

σ

σ

W d,0

s : s ∈ [0, T]

∪ {A ∈ F : P(A) = 0}

: t = T

(2.3.28)

Observe that (2.3.28) guarantees that Fd
t ⊆ F , d ∈ N, t ∈ [0, T] satisfies that:

(I) it holds for all d ∈ N that {A ∈ F : P(A) = 0} ⊆ Fd
0

(II) it holds for all d ∈ N, t ∈ [0, T], that Fd
t =

s∈(t,T] Fd

s.

Combining item (I), item (II), (2.3.28) and (Hutzenthaler et al., 2020b, Lemma 2.17) assures

us that for all d ∈ N it holds that W d,0 : [0, T]×Ω → Rd is a standard

Ω,F ,P,

Fd
t

t∈[0,T]

-

Brownian motion. In addition (58) ensures that it is the case that for all d ∈ N , x ∈ Rd it

holds that [0, T]×Ω ∋ (t,ω) → x+W d,0
t (ω) ∈ Rd is an

Fd
t

t∈[0,T]

/B

Rd

-adapted stochastic

process with continuous sample paths.

This and the fact that for all d ∈ N, t ∈ [0, T], x ∈ Rd it holds that ad(t, x) = 0, and the fact

that for all d ∈ N, t ∈ [0, T], x,v ∈ Rd it holds that bd(t, x)v = v yield that for all d ∈ N,

x ∈ Rd it holds that [0, T]×Ω ∋ (t,ω) → x+W d,0
t (ω) ∈ Rd satisfies for all t ∈ [0, T] it holds

P-a.s. that:

x+W d,0
t = x+

 t

0

0ds+

 t

0

dW d,0
s = x+

 t

0

ad(s, x+W d,0
s)ds+

 t

0

bd(s, x+W d,0
s)dW d,0

s

(2.3.29)

This and (Hutzenthaler et al., 2020b, Lemma 2.6) (applied for every d ∈ N, x ∈ Rd with

d ↶ d, m ↶ d, T ↶ T , C1 ↶ d, C2 ↶ 0, F ↶ Fd, ξ ↶ x, µ ↶ ad, σ ↶ bd,W ↶

W d,0, X ↶

[0, T]× Ω ∋ (t,ω) → x+W d,0

t (ω) ∈ Rd

in the notation of (Hutzenthaler et al.,

32

2020b, Lemma 2.6) ensures that for all r ∈ [0,∞), d ∈ N, x ∈ Rd, t ∈ [0, T] it holds that

E
x+W d,0

t

r

 max{T, 1}

1 + x2
 r

2 + (r + 1)d
r
2

exp

r(r + 3)T

2

< ∞ (2.3.30)

This, the triangle inequality, and the fact that for all v,w ∈ [0,∞), r ∈ (0, 1], it holds that

(v + w)r vr + wr assure that for all p ∈ [2,∞), d ∈ N, x ∈ Rd it holds that:

sup
s∈[0,T]

E

1 +

x+W d,0
s

q

E

p 1
p 1 + sup

s∈[0,T]

E
x+W d,0

s

qp

E

 1
p

 1 + sup
s∈[0,T]

max{T, 1}

1 + x2E

 qp
2 + (qp+ 1)d

qp
2

exp

qp(qp+ 3)T

2

 1
p

 1 + max{T
1
p , 1}

1 + x2E

 qp
2 + (qp+ 1)d

qp
2

exp

q(qp+ 3)T

2

 2

1 + x2E
 qp

2 + (qp+ 1)d
qp
2

exp

q(qp+ 3)T

2
+

T

p

 2

1 + x2E
 qp

2 + (qp+ 1)d
qp
2

exp

[q(qp+ 3) + 1]T

2

(2.3.31)

Given that for all d ∈ N, x ∈ [−L,L]d it holds that xE Ld
1
2 , this demonstrates for all

p ∈ [2,∞), d ∈ N, it holds that:

L

mp

m
1
2

sup

x∈[−L,L]d
sup

s∈[0,T]

E

1 +

x+W d,0
s

q

E

p 1
p

 L

mp

m
1
2

sup

x∈[−L,L]d

1 + x2E

 qp
2 + (qp+ 1)d

qp
2

exp

[q(qp+ 3) + 1]T

2

 L

mp

m
1
2

1 + L2d

 qp
2 + (qp+ 1)d

qp
2

exp

[q(qp+ 3) + 1]T

2

(2.3.32)

33

Combining this with Corollary 2.3.3.1 tells us that:

E
ud(t, x)− Ud,0

m (t, x)
p
 1

p

 L

mp

m
1
2

sup

x∈[−L,L]d
sup

s∈[0,T]

E

1 +

x+W d,0
s

q

E

p 1
p

 L

mp

m
1
2

1 + L2d

 qp
2 + (qp+ 1)d

qp
2

exp

[q(qp+ 3) + 1]T

2

(2.3.33)

This and the fact that for all d ∈ N and ε ∈ (0,∞) and the fact that mp 2, it holds that

for fixed L, q, p, d, T there exists an ML,q,p,d,T ∈ R such that Nd, ML,q,p,d,T forces:

L

 mp

N
1
2
d,

1 + L2d
 qp

2 + (qp+ 1)d
qp
2

exp

[q(qp+ 3) + 1]T

2

 ε (2.3.34)

Thus (2.3.33) and (2.3.34) together proves (2.3.26).

Note that Cd,Nd,,Nd,
is the number of function evaluations of ud(0, ·) and the number

of realizations of scalar random variables which are used to compute one realization of

Ud,0
Nd,

(T, 0) : Ω → R. Let Nd,ε be the value of Nd,ε that causes equality in (2.3.34). In such a

situation the number of evaluations of ud(0, ·) do not exceed Nd,ε. Each evaluation of ud(0, ·)

requires at most one realization of scalar random variables. Thus we do not exceed 2Nd,.

Thus note that:

Cd,Nd,ε,Nd,ε
 2

Lmp

1 + L2d

 qp
2 + (qp+ 1)d

qp
2

exp

[q(qp+ 3) + 1]T

2

ε−1 (2.3.35)

Note that other than d and ε everything on the right-hand side is constant or fixed. Hence

(2.3.35) can be rendered as:

Cd,Nd,ε,Nd,ε
≤ cdkε−1 (2.3.36)

Where both c and k are dependent on L, p,m, L

34

Chapter 3

That u is a Viscosity Solution

We can extend the work for the heat equation to generic parabolic partial differential equa-

tions. We do this by first introducing viscosity solutions to Kolmogorov PDEs as given in

Crandall & Lions Crandall et al. (1992) and further extended, esp. in Beck et al. (2021a).

3.1 Some Preliminaries

We take work previously pioneered by Itô (1942a) and Itô (1942b), and then seek to re-apply

concepts first applied in Beck et al. (2021a) and Beck et al. (2021b).

Lemma 3.1.1. Let d,m ∈ N, T ∈ (0,∞). Let µ ∈ C1,2([0, T]×Rd,Rd) and σ ∈ C1,2([0, T]×

Rd,Rd×m) satisfying that they have non-empty compact supports and let S = supp(µ) ∪

supp(σ) ⊆ [0, T]×Rd. Let (Ω,F ,P, (Ft)t∈[0,T]) be a filtered probability space satisfying usual

conditions. Let W : [0, T] × Ω → Rm be a standard (Ft)t∈[0,T] -Brownian motion, and let

X : [0, T]×Ω → Rd be an (Ft)t∈[0,T]-adapted stochastic process with continuous sample paths

satisfying for all t ∈ [0, T] with P-a.s. that:

Xt = X0 +

 t

0

µ(s,Xs)ds+

 t

0

σ(s,Xs)dWs (3.1.1)

It then holds that:

35

(i) [(P (X0 ∕∈ S) = 1) =⇒ (P (∀t ∈ [0, T] : Xt = X0) = 1)]

(ii) [(P (X0 ∈ S) = 1) =⇒ (P (∀t ∈ [0, T] : Xt ∈ S) = 1)]

Proof. Assume that P(X0 ∕∈ S) = 1, meaning that the particle almost surely starts outside

S. It is then the case that P(∀t ∈ [0, T] : µ(t,X0)E + σ(t,X0)F = 0) = 1 as the µ and σ

are outside their supports, and we integrate over zero over time.

It is then the case that:

Y :=

[0, T]× Ω ∋ (t,ω) → X0(ω) ∈ Rd

(3.1.2)

is an (Ft)t∈[0,T] adapted stochastic process with continuous sample paths satisfying that for

all t ∈ [0, T] with P-almost surety that:

Yt = X0 +

 t

0

0ds+

 t

0

0dWs = X0 +

 t

0

µ(s,X0)ds+

 t

0

σ(s,X0)dWs

= X0 +

 t

0

µ(s,Ys)ds+

 t

0

σ(s,Ys)dWs (3.1.3)

Note that since µ ∈ C1,2([0, T]×Rd,Rd) and σ ∈ C1,2([0, T]×Rd,Rd×m), and since continuous

functions are locally Lipschitz, and since this is especially true in the space variable for µ

and σ, the fact that S is compact and continuous functions over compact sets are Lipschitz

and bounded, and (Karatzas and Shreve, 1991, Theorem 5.2.5) allows us to conclude that

strong uniqueness holds, that is to say:

P (∀t ∈ [0, T] : Xt = X0) = P (∀t ∈ [0, T] : Xt = Yt) = 1 (3.1.4)

establishing the case (i).

Assume now that P(X0 ∈ S) = 1 that is to say that the particle almost surely starts inside

S. We define τ : Ω → [0, T] as τ = inf{t ∈ [0, T] : Xt ∕∈ S}. τ is an (Ft)t∈[0,T]-adapted

stopping time. On top of τ we can define Y : [0, T] × Ω → Rd, for all t ∈ [0, T], ω ∈ Ω

36

as Yt(ω) = Xmin{t,τ}(ω). Y is thus an (Ft)t∈[0,T]-adapted stochastic process with continuous

sample paths. Note however that for t > τ it is the case µ(t,Yt) + σ(t,Yt)E = 0 as we are

outside their supports. For t < τ it is also the case that Yt = Xt. This yields with P-a.s.

that:

Yt = Xmin{t,τ} = X0 +

 min{t,τ}

0

µ(s,Xs)ds+

 min{t,τ}

0

σ(s,Xs)dWs

= X0 +

 t

0
{0<sτ}µ(s,Xs)ds+

 t

0
{0<sτ}σ(s,Xs)dWs

= X0 +

 t

0

µ(s,Ys)ds+

 t

0

σ(s,Ys)dWs (3.1.5)

Thus another application of (Karatzas and Shreve, 1991, Theorem 5.2.5) and the fact that

within our compact support S, the continuous functions µ and σ are Lipschitz and hence

locally Lipschitz, and also bounded gives us:

P(∀t ∈ [0, T] : Xt = Yt) = 1 (3.1.6)

Proving case (ii).

Lemma 3.1.2. Let d,m ∈ N, T ∈ (0,∞). Let g ∈ C2(Rd,R). Let µ ∈ C1,3([0, T]× Rd,Rd)

and σ ∈ C1,3([0, T] × Rd,Rd×m) have non-empty compact supports and let S = supp(µ) ∪

supp(σ). Let (Ω,F ,P, (Ft)t∈[0,T]) be a stochaastic basis and let W : [0, T] × Ω → Rm be a

standard (Ft)t∈[0,T]-Brownian motion. For every t ∈ [0, T] , x ∈ Rd, let X t,x = (X t,x
s)s∈[t,T] :

[t, T] × Ω → Rd be an (Fs)s∈[t,T]-adapted stochastic process with continuous sample paths

satisfying for all s ∈ [t, T] with P-almost surety that:

X t,x
s = x+

 s

t

µ(r,X t,x
r)dr +

 s

t

σ(r,X t,x
s)dWr (3.1.7)

37

also let u : Rd → R satisfy for all t ∈ [0, T], x ∈ Rd that:

u(t, x) = E

g(X t,x

T)

(3.1.8)

then it is the case that we have:

(i) u ∈ C1,2([0, T]× Rd,R) and

(ii) for all t ∈ [0, T], x ∈ Rd that u(T, x) = g(x) and:

∂

∂t
u

(t, x) +

1

2
Trace (σ (t, x) [σ (t, x)]∗ (Hessx u) (t, x)) + 〈µ (t, x) , (∇xu) (t, x)〉 = 0

(3.1.9)

Proof. We break the proof down into two cases, inside the support S = supp(µ) ∪ supp(σ)

and outside the support: [0, T]× (Rd \S).

For the case inside S. Note that we may deduce from Item (i) of Lemma 3.1.1 that for all

t ∈ [0, T], x ∈ Rd \S it is the case that P(∀s ∈ [t, T] : X t,x
s = x) = 1. Thus for all t ∈ [0, T],

x ∈ Rd \S we have, deriving from (3.1.8):

u(t, x) = E

g

X t,x

T

= g(x) (3.1.10)

Note that g(x) only has a space parameter and so derivatives w.r.t. t is 0. Inhereting from

the regularity properties of g and (3.1.10), we may assume for all t ∈ [0, T], x ∈ Rd \ S,

that u|[0,T]×(Rd\S) ∈ C1,2([0, T]× (Rd \S)). Note that the hypotheses that µ ∈ C1,3([0, T]×

Rd,Rd) and σ ∈ C1,3([0, T]×Rd,Rd×m) allow us to apply Theorem 7.4.3, Theorem 7.4.5 and

Theorem 7.5.1 from Da Prato and Zabczyk (2002) for t ∈ [0, T], x ∈ Rd \S, to give us:

(i) u ∈ C1,2([0, T]× Rd,R).

38

(ii)

0 =

∂

∂t
u

(t, x)

=

∂

∂t
u

(t, x) +

1

2
Trace (σ(t, x) [σ(t, x)]∗ (Hessx u) (t, x)) + 〈µ(t, x), (∇xu) (t, x)〉

(3.1.11)

Now consider the case within support S. Note that by hypothesis µ and σ must at least be

locally Lipschitz. Thus (Karatzas and Shreve, 1991, Theorem 5.2.5) allows us to conclude

that within S the pair (µ, σ) for our our stochastic process X t,x
s defined in (3.1.7) must

exhibit a strong uniqueness property.

Further note that Item (ii) from Lemma 3.1.1 tells us that:

P(∀t ∈ [0, T] : X t,x
s ∈ S) = 1. (3.1.12)

Note that again the hypotheses that µ ∈ C1,3([0, T]×Rd,Rd) and σ ∈ C1,3([0, T]×Rd,Rd×m),

and g ∈ C2(Rd) allow us to apply Theorem 7.4.3, Theorem 7.4.5 and Theorem 7.5.1 from

Da Prato and Zabczyk (2002) for t ∈ [0, T], x ∈ S, to give us:

(i) u ∈ C1,2([0, T]× Rd,R).

(ii)

∂

∂t
u

(t, x) +

1

2
Trace (σ(t, x) [σ(t, x)]∗ (Hessx u) (t, x)) + 〈µ(t, x), (∇xu) (t, x)〉 = 0

(3.1.13)

Note that (3.1.7) and (3.1.8) together prove that u(T, x) = g(x). This completes the proof.

39

3.2 Viscosity Solutions

Definition 3.2.1 (Symmetric Matrices). Let d ∈ N. The set of symmetric matrices is

denoted Sd given by Sd = {A ∈ Sd : A
∗ = A}.

Definition 3.2.2 (Upper semi-continuity). A function f : U → R is upper semi-continuous

at x0 if for every ε > 0, there exists δ > 0 such that:

f(x) < f(x0) + ε for all x ∈ B (x0, δ) ∩ U (3.2.1)

Definition 3.2.3 (Lower semi-continuity). A function f : U → R is lower semi-continuous

at x0 if for every ε > 0, there exists δ > 0 such that:

f(x) > f(x0)− ε for all x ∈ B (x0, δ) ∩ U (3.2.2)

Corollary 3.2.3.1. Given two upper semi-continuous functions f, g : Rd → R, their sum

(f + g) : Rd → R is also upper semi-continuous.

Proof. From definitions, at any given x0 ∈ Rd, for any ε ∈ (0,∞) there exist neighborhoods

U and V around x0 such that:

(∀x ∈ U) (f(x) f(x0) + ε) (3.2.3)

(∀x ∈ V) (g(x) g(x0) + ε) (3.2.4)

and hence:

(∀x ∈ U ∩ V) (f(x) + g(x) f(x0) + g(x0) + 2ε) (3.2.5)

Corollary 3.2.3.2. Given an upper semi-continuous function f : Rd → R, it is the case

40

that (−f) : Rd → R is lower semi-continuous.

Proof. Let f : Rd → R be upper semi-continuous. At any given x0 ∈ Rd, for any ε ∈ (0,∞)

there exists a neighborhood U around x0 such that:

(∀x ∈ U) (f(x) f(x0) + ε) (3.2.6)

This also means that:

(∀x ∈ U) (−f(x) −f(x0)− ε)

(3.2.7)

This completes the proof.

Definition 3.2.4 (Degenerate Elliptic Functions). Let d ∈ N, T ∈ (0,∞), let O ⊆ Rd be a

non-empty open set, and let 〈·, ·〉 : Rd ×Rd → R be the standard Euclidean inner product on

Rd. G is degenerate elliptic on (0, T)×O × R× Rd × Sd if and only if:

(i) G : (0, T)×O × R× Rd × Sd → R is a function, and

(ii) for all t ∈ (0, T), x ∈ O, r ∈ R, p ∈ Rd, A,B ∈ Sd, with ∀y ∈ Rd: 〈Ay, y〉 〈By, y〉

that G(t, x, r, p, A) G(t, x, r, p, B).

Remark 3.2.5. Let t ∈ (0, T), x ∈ Rd, r ∈ R, p ∈ Rd, A ∈ Sd. Let u ∈ C1,2([0, T]×Rd,R),

and let σ : Rd → Rd×d and µ : Rd → Rd be infinitely often differentiable. The function

G : (0, T)× Rd × R× Rd × Sd → R given by:

G(t, x, r, p, A) =
1

2
Trace (σ(x) [σ(x)]∗ (Hessx u) (t, x)) + 〈µ(t, x),∇xu (t, x)〉 (3.2.8)

where (t, x, u(t, x), µ(x), σ(x) [σ(x)]∗) ∈ (0, T)× Rd × R× Rd × Sd, is degenerate elliptic.

41

Lemma 3.2.6. Given a function G : (0, T)×O×R×Rd × Sd → R that is degerate elliptic

on (0, T)×O×R×Rd × Sd it is also the case that H : (0, T)×O×R×Rd × Sd → R given

by H(t, x, r, p, A) = −G(t, x,−r,−p,−A) is degenerate elliptic on (0, T)×O×R×Rd × Sd.

Proof. Note that H is a function. Assume for y ∈ Rd it is the case that 〈Ay, y〉 〈By, y〉

then it is also the case by (??) that 〈−Ay, y〉 〈−By, y〉 for y ∈ Rd. However since G is

monotoically increasing over the subset of (0, T)×O×R×Rd × Sd where 〈Ay, y〉 〈By, y〉

then it is also the case that H(t, x, r, p, A) = −G(t, x,−r,−p,−A) −G(t, x,−r,−p,−B) =

H(t, x, r, p, B).

Definition 3.2.7 (Viscosity subsolutions). Let d ∈ N, T ∈ (0,∞), let O ⊆ Rd be a

non-empty open set, and let G : (0, T)×O×R×Rd×Sd → R be degenrate elliptic. Then we say

that u is a viscosity solution of

∂
∂t
u

(t, x) +G (t, x, u(t, x), (∇xu) (t, x) , (Hessx u) (t, x)) 0

for (t, x,) ∈ (0, T)×O if and only if there exists a set A such that:

(i) we have that (0, T)×O ⊆ A.

(ii) we have that u : A → R is an upper semi-continuous function from A to R, and

(iii) we have that for all t ∈ (0, T), x ∈ O, φ ∈ C1,2 ((0, T)×O,R) with φ(t, x) = u(t, x)

and φ u that:

∂

∂t
ud

(t, x) +G (t, x,φ(t, x), (∇xφ) (t, x) , (Hessx φ) (t, x)) 0 (3.2.9)

Definition 3.2.8 (Viscosity supersolutions). Let d ∈ N, T ∈ (0,∞), let O ⊆ Rd be a

non-empty open set, and let G : (0, T)×O×R×Rd×Sd → R be degenrate elliptic. Then we say

that u is a viscosity solution of

∂
∂t
u

(t, x) +G (t, x, u(t, x), (∇xu) (t, x) , (Hessx u) (t, x)) 0

for (t, x,) ∈ (0, T)×O if and only if there exists a set A such that:

(i) we have that (0, T)×O ⊆ A.

42

(ii) we have that u : A → R is an upper semi-continuous function from A to R, and

(iii) we have that for all t ∈ (0, T), x ∈ O, φ ∈ C1,2 ((0, T)×O,R) with φ(t, x) = u(t, x)

and φ u that:

∂

∂t
ud

(t, x) +G (t, x,φ(t, x), (∇xφ) (t, x) , (Hessx φ) (t, x)) 0 (3.2.10)

Definition 3.2.9 (Viscosity solution). Let d ∈ N, T ∈ (0,∞), O ⊆ Rd be a non-empty open

set and let G : (0, T)×O ×R×Rd × Sd → R be degenerate elliptic. Then we say that ud is

a viscosity solution to

∂
∂t
ud

(t, x) +G(t, x, u(t, x),∇x(x, t), (Hessx ud)(t, x)) if and only if:

(i) u is a viscosity subsolution of

∂
∂t
ud

(t, x)+G(t, x, u(t, x),∇x(x, t), (Hessx ud)(t, x)) = 0

for (t, x) ∈ (0, T)×O

(ii) u is a viscosity supersolution of

∂
∂t
ud

(t, x)+G(t, x, u(t, x),∇x(x, t), (Hessx ud)(t, x)) =

0 for (t, x) ∈ (0, T)×O

Lemma 3.2.10. Let d ∈ N, T ∈ (0,∞), t ∈ (0, T), let O ⊆ Rd be an open set, let r ∈ O,

φ ∈ C1,2 ((0, T)×O,R), let G : (0, T)×O×R×Rd × Sd → R be degenerate elliptic and let

ud : (0, T)×O → R be a viscosity solution of

∂
∂t
ud

(t, x) +G (t, x, u(t, x), (∇xuD) (t, x) , (Hessx ud) (t, x)) 0 for (t, x) ∈ (0, T)×O, and

assume that u− φ has a local maximum at (t, r) ∈ (0, T)×O, then:

∂

∂t
φ

(t, r) +G (t, r, u(t, r), (∇xφ) (t, r) , (Hessx φ) (t, r)) 0 (3.2.11)

Proof. That u is upper semi-continuous ensures that there exists as a neighborhood U around

(t, r) and ψ ∈ C1,2((0, T)×O,R) where:

(i) for all (t, x) ∈ (0, T)×O that u(t, r)− ψ(t, r) u(t, x)− ψ(t, x)

(ii) for all (t, x) ∈ U that φ(t, x) = φ(t, x).

43

We therefore obtain that:

∂

∂t
φ

(t, r) +G (t, r, u(t, r), (∇x)(t, r), (Hessx φ)(t, r))

=

∂

∂t
ψ

(t, r) +G (t, r, u(t, r), (∇x)(t, r), (Hessx ψ)(t, r)) 0 (3.2.12)

Lemma 3.2.11. Let d ∈ N, T ∈ (0,∞), let O ⊆ Rd be a non-empty open set, let un :

(0, T) × O → R, n ∈ N0 be functions, let Gn : (0, T) × O × R × Rd × Sd → R, n ∈ N

be degenerate elliptic, assume that G∞ is upper semi-continuous for all non-empty compact

K ⊆ (0, T)×O × R× Rd × Sd that:

lim sup
n→∞

sup

(t,x,r,p,A)∈K
(|un(t, x)− u0(t, x)|+ |Gn(t, x, r, p, A)−G0(t, x, r, p, A)|)

= 0 (3.2.13)

and assume for all n ∈ N that un is a viscosity solution of:

∂

∂t
un

(t, x) +Gn (t, x, un(t, x), (∇xun)(t, x), (Hessx un)(t, x)) 0 (3.2.14)

then u0 is a viscosity solution of:

∂

∂t
u0

(t, x) +Gn (t, x, u0(t, x), (∇xu0)(t, x), (Hessx u0)(t, x)) 0 (3.2.15)

Proof. Let (t0, x0) ∈ (0, T) × O. Let φ ∈ C1,2((0, T) × O,R) satisfy for all ∈ (0,∞),

s ∈ (0, T), y ∈ O that φ0(t0, x0) = u0(t0, x0), φ0(t0, x0) u0(t0, x0), and:

φε(s, y) = φo(s, y) + ε (|s− t0|+ y − x0E) (3.2.16)

Let δ ∈ (0,∞) be such that {(s, y) ∈ Rd × R : max (|s− t0|2, y − x02E) δ}. Note that

this and (3.2.27) then imply for all ε ∈ (0,∞) there exists an νε ∈ N such that for all n νε,

44

and max (|s− t0|, y − x0E) δ, it is the case that:

sup (|un(s, y)− u0(s, y)|)
εδ

2
(3.2.17)

Note that this combined with (3.2.16) tells us that for all ε ∈ (0,∞), n ∈ N ∩ [ν,∞),

s ∈ (0, T), y ∈ O, with |s− t0| < δ, y − x0E δ, |s− t0|+ y − x0E > δ that:

un(t0, x0)− φε(t0, x0) = un(t0, x0)− φ0(t0, x0) (3.2.18)

= un(t0, x0)− u0(t0, x0)

 −εδ

2

 un(s, y)− u0(s, y)− ε (|s− t0|+ y − x0E)

 un(s, y)− φ0(s, y)− ε (|s− t0|+ y − x0E)

= un(s, y)− φε(s, y) (3.2.19)

Note that Corollary 3.2.3.1 implies that for all ∈ (0,∞) and n ∈ N that un − φε is upper

semi-continuous. There therefore exists for all ∈ (0,∞) and n ∈ N, a τ εn ∈ (t0 − δ, t0 + δ)

and a ρεn, where ρεn − x0 δ such that:

un(τ
ε
n, ρ

ε
n)− φ(τ

ε
n, ρ

ε
n) un(s, y)− φε(s, y) (3.2.20)

By Lemma 3.2.10, it must be the case that for all ε ∈ (0,∞) and n ∈ N ∩ [νε,∞):

∂

∂t
φε

(τ εn, ρ

ε
n) +Gn (τ

ε
n, ρ

ε
n, un (τ

ε
n, ρ

ε
n) , (∇xφε) (τ

ε
n, ρ

ε
n) , (Hessx φε) (τ

ε
n, ρ

ε
n)) 0 (3.2.21)

Note however that (3.2.20) along with (3.2.16) and (3.2.27) yields that for all ε ∈ (0,∞)

45

that:

lim sup
n→∞

[un(τ
ε
n, ρ

ε
n)− φ(τ

ε
n, ρ

ε
n)]

 lim sup
n→∞

[un(τ
ε
n, ρ

ε
n)− (φ0(τ

ε
n, ρ

ε
n) + ε (|τ εn − t0|+ ρεn − x0E))]

 lim sup
n→∞

[un(τ
ε
n, ρ

ε
n)− u0(τ

ε
n, ρ

ε
n)− ε (|τ εn − t0|+ ρεn − x0E)]

= lim sup
n→∞

[−ε (|τ εn − t0|+ ρεn − x0E)] 0 (3.2.22)

However note also that since G0 is upper semi-continuous, further the fact that, φ0 ∈

((0, T)×O,R), and then (3.2.27), and (3.2.16), imply for all ε ∈ (0,∞) we have that:

lim supn→∞
 ∂

∂t
φε

(τ εn, ρ

ε
n)−

∂
∂t
φ0

(t0, x0)

 = 0 and:

G0 (t0, x0,φ0 (t0, x0) , (∇xφ0) (t0, x0) , (Hessx φ0) (t0, x0) + IdRd)

= G0 (t0, x0, u0 (t0, x0) , (∇xφε) (t0, x0) , (Hessx φε) (t0, x0))

 lim sup
n→∞

[G0 (τ
ε
n, ρ

ε
n, un (τ

ε
n, ρ

ε
n) , (∇xφε) (τ

ε
n, ρ

ε
n) , (Hessx φε) (τ

ε
n, ρ

ε
n))] (3.2.23)

 lim sup
n→∞

[Gn (τ
ε
n, ρ

ε
n, un (τ

ε
n, ρ

ε
n) , (∇xφε) (τ

ε
n, ρ

ε
n) , (Hessx φε) (τ

ε
n, ρ

ε
n))] (3.2.24)

This with (3.2.20) assures for all ∈ (0,∞) that:

∂

∂t
φ0

(t0, x0) +G0 (t0, x0,φ0 (t0, x0) , (∇xφ0) (t0, x0) , (Hessx φ0) (t0, x0) + εIdRd) 0

(3.2.25)

That G0 is upper semi-continuous then yields that:

∂

∂t
φ0

(t0, x0) +G0 (t0, x0,φ0 (t0, x0) , (∇xφ0) (t0, x0) , (Hessx φ0) (t0, x0) + εIdRd) 0

(3.2.26)

46

This establishes (3.2.29) which establishes the lemma.

Corollary 3.2.11.1. Let d ∈ N, T ∈ (0,∞), let O ⊆ Rd be a non-empty open set, let

un : (0, T) ×O → R, n ∈ N0 be functions, let Gn : (0, T) ×O × R × Rd × Sd → R, n ∈ N0

be degenerate elliptic, assume that G0 is lower semi-continuous for all non-empty compact

K ⊆ (0, T)×O × R× Rd × Sd that:

lim sup
n→∞

sup

(t,x,r,p,A)∈K
(|un(t, x)− u0(t, x)|+ |Gn(t, x, r, p, A)−G0(t, x, r, p, A)|)

= 0 (3.2.27)

and assume for all n ∈ N that un is a viscosity solution of:

∂

∂t
un

(t, x) +Gn (t, x, un(t, x), (∇xun)(t, x), (Hessx un)(t, x)) 0 (3.2.28)

then u0 is a viscosity solution of:

∂

∂t
u0

(t, x) +Gn (t, x, u0(t, x), (∇xu0)(t, x), (Hessx u0)(t, x)) 0 (3.2.29)

Proof. Let vn : (0, T) × O → R, n ∈ N0 and Hn : (0, T) × O × R × Rd × Sd → R satisfy

for all n ∈ N0, t ∈ (0, T), x ∈ O, r ∈ R, p ∈ Rd, A ∈ Sd that vn(t, x) = −un(t, x) and that

Hn(t, x) = −Gn(t, x,−r,−p,−A).

Note that Corollary 3.2.3.2 gives us that H0 is upper semi-continuous. Note also that since

it is the case that for all n ∈ N0, Gn is degenerate elliptic then it is also the case by Lemma

3.2.6 that Hn is degenerate elliptic for all n ∈ N0. These together with (3.2.28) ensure that

for all n ∈ N, vn is a viscosity solution of:

∂

∂t
vn

(t, x) +Hn (t, x, vn (t, x) , (∇xvn) (t, x) , (Hessx vn) (t, x)) 0 (3.2.30)

47

This together with (3.2.27) establish that:

lim sup
n→∞

sup

(t,x,r,p,A)∈K
(|un(t, x)− u0(t, x)|+ |Hn(t, x, r, p, A)−H0(t, x, r, p, A)|)

= 0 (3.2.31)

This (3.2.30) and the fact that H0 is upper semi-continuous then establish that:

∂

∂t
v0

(t, x) +H0 (t, x, v0(t, x), (∇xv0)(t, x), (Hessx v0)(t, x)) 0 (3.2.32)

for (t, x) ∈ (0, T)×O. Hence v0 is a viscosity solution of:

∂

∂t
u0

(t, x) +H0 (t, x, u0(t, x), (∇xu0)(t, x), (Hessx u0)(t, x)) 0 (3.2.33)

This completes the proof.

Corollary 3.2.11.2. Let d ∈ N, T ∈ (0,∞), let O ⊆ Rd be a non-empty set, let un :

(0, T) × O → R, n ∈ N0, be functions, let Gn : (0, T) × O × R × Rd × Sd → R, n ∈ N0 be

degenerate elliptic, assume also that G0 : (0, T)×O × R× Rd × Sd → R be consinuous and

assume for all non-empty compact K ⊆ (0, T)×O × R× Rd × Sd it is the case that:

lim sup
n→∞

sup

(t,x,r,p,A)∈K
(|Gn (t, x, r, p, A)−G0 (t, x, r, p, A)|+ |un (t, x)− u0 (t, x)|)

= 0

(3.2.34)

and further assume for all n ∈ N, that un is a viscosity solution of:

∂

∂t
un

(t, x) +Gn (t, x, un (t, x) , (∇xun) (t, x) , (Hessx un) (t, x)) = 0 (3.2.35)

for (t, x) ∈ (0, T)×O, then we have that u0 is a viscosity solution of:

∂

∂t
u0

(t, x) +G0 (t, x, u0 (t, x) , (∇xu0) (t, x) , (Hessx u0) (t, x)) = 0 (3.2.36)

48

Proof. Note that Lemma 3.2.11 gives us that u0 is a viscosity solution of:

∂

∂t
u0

(t, x) +Gn (t, x, u0(t, x), (∇xu0)(t, x), (Hessx u0)(t, x)) 0 (3.2.37)

for (t, x) ∈ (0, T)×O. Also note that Corollary 3.2.11.1 ensures that u0 is a viscosity solution

of:

∂

∂t
u0

(t, x) +Gn (t, x, u0(t, x), (∇xu0)(t, x), (Hessx u0)(t, x)) 0 (3.2.38)

Taken together these prove the corollary.

Lemma 3.2.12. For all a, b ∈ R it is the case that (a+ b)2 2a2 + 2b2.

Proof. Since for all a, b ∈ R it is the case that (a− b)2 0 we then have that:

(a+ b)2 (a+ b)2 + (a− b)2

 a2 + 2ab+ b2 + a2 − 2ab+ b2

= 2a2 + 2b2

This completes the proof.

Lemma 3.2.13. Let d,m ∈ N, T ∈ (0,∞). Let O ⊆ Rd be a non-empty compact set, and

for all n ∈ N0, µn ∈ C([0, T]×O,R), σn ∈ C([0, T]×O,Rd×m) assume also:

lim sup
n→∞

sup

t∈[0,T]

sup
x∈O

(µn(t, x)− µ0(t, x) E + σn(t, x)− σ0(t, x)F)

= 0 (3.2.39)

Let (Ω,F ,R) be a stochastic basis and let W : [0, T]× Ω → Rm be a standard

(Ft)t∈[0,T]-Brownian motion for every t ∈ [0, T], x ∈ O, let X t,x = (X t,x
s)s∈[t,T] : [t, T]× Ω →

Rd be an (Fs)s∈[t,T] adapted stochastic process with continuous sample paths, satisfying for

49

all s ∈ [t, T] we have P-a.s.

X n,t,x
s = x+

 s

t

µn(r,X n,t,x
s)dr +

 s

t

σn(r,X n,t,x
r)dWr (3.2.40)

then it is the case that:

lim sup
n→∞

sup

t∈[0,T]

sup
s∈[t,T]

sup
x∈O

E
X n,t,x

s − X 0,t,x
s

2

E

= 0 (3.2.41)

for (t, x) ∈ (0, T)× Rd.

Proof. Since O is compact, let L ∈ R be such that for all t ∈ [0, T], x, y ∈ O it is the case

that:

µ0(t, x)− µ0(t, y)E − σ0(t, x) + σ0(t, y)F Lx− yE (3.2.42)

Furthermore (Karatzas and Shreve, 1991, Theorem 5.2.9) tells us that:

sup
s∈[t,T]

E

X n,t,x

s E

< ∞ (3.2.43)

Note now that (3.2.40) tells us that:

X n,t,x
s − X 0,t,x

s =

 s

t

µn(r,X n,t,x
s)− µ0(r,X 0,t,x

s)dr +

 s

t

σn(r,X n,t,x
r)− σ0(r,X 0,t,x

r)dWr

(3.2.44)

Minkowski's Inequality applied to (3.2.44) then tells us for all n ∈ N, t ∈ [0, T], s ∈ [t, T],

and x ∈ O that:

E
X n,t,x

s − X 0,t,x
s

E

 1
2

 s

t

E
µn(r,X n,t,x

r)− µ0(r,X 0,t,x
r)

2

E

 1
2
dr+

E

 s

t

(σn(r,X n,t,x
r)− σ0(r,X 0,t,x

r))dWr

2

E

 1
2

(3.2.45)

50

Itô's isometry applied to the second summand yields:

E
X n,t,x

s − X 0,t,x
s

E

 1
2

 s

t

E
µn(r,X n,t,x

r)− µ0(r,X 0,t,x
r)

2

E

 1
2
dr+

 s

t

E
σn(r,X n,t,x

r)− σ0(r,X 0,t,x)
2

F

dr

 1
2

(3.2.46)

Applying Lemma 3.2.12 followed by the Cauchy-Schwarz Inequality then gives us for all

n ∈ N, t ∈ [0, T], s ∈ [t, T], and x ∈ O that:

E

X n,t,x

s − X n,t,x
s 2E

 2

 s

t

E
µn(r,X n,t,x

r)− µ0(r,X 0,t,x
r)

2

E

 1
2
dr

2

+ 2

 s

t

E
σn(r,X nt,x

r)− σ0(r,X 0,t,x
r)

2

F

dr

 2T

 s

t

E
µn(r,X n,t,x

r)− µ0(r,X 0,t,x
r)

2

E

dr

+ 2

 s

t

E
σn(r,X n,t,x

r)− σ0(r,X 0,t,x
r)

2

F

dr (3.2.47)

Applying Lemma 3.2.12 again to each summand then yields for all n ∈ N, t ∈ [0, T] s ∈ [t, T],

and x ∈ O it is the case that:

E
X n,t,x

s − X 0,t,x
s

2

 2T

 s

t

2E

µn(r,X n,t,x
r)− µ0(r,X n,t,x

r)
2

E

+ 2E

µ0(r,X n,t,x
r)− µ0(r,X 0,t,x

r)
2

E

dr

+ 2

 2

t

2E

σn(r,X n,t,x
r)− σ0(r,X n,t,x

r)
2

F

+ 2E

σ0(r,X n,t,x
r)− σ0(r,X 0,t,x

r)

F

dr

(3.2.48)

However assumption (3.2.42) then gives us that for all n ∈ N, t ∈ [0, T], s ∈ [t, T], and x ∈ O

51

that:

E
X n,t,x

s − X 0,t,x
s

2

E

 4L2(T + 1)

 s

t

E
X n,t,x

r − X 0,t,x
r

2

E

dr

+ 4T (T + 1)

sup

r∈[0,T]

sup
y∈Rd

µn(r, y)− µ0(r, y)2E + σn(r, y)− σ0(r, y)2F

Finally Gronwall's Inequality with assumption (3.2.43) gives us for all n ∈ N, t ∈ [0, T],

s ∈ [t, T], x ∈ O that:

E
X n,t,x

s − X 0,t,x
s

2

E

 4T (T + 1)

sup

r∈[0,T]

sup
y∈Rd

µn(r, y)− µ0(r, y)2E + σn(r, y)− σ)(r, y)2F

e4L

2T (T+1)

(3.2.49)

Applying lim supn→∞ to both sides and applying (3.2.39) gives us for all n ∈ N, t ∈ [0, T],

s ∈ [t, T], x ∈ O that:

lim sup
n→∞

E
X n,t,x

s − X 0,t,x
s

2

E

lim sup
n→∞

4T (T + 1)

sup

r∈[0,T]

sup
y∈Rd

µn(r, y)− µ0(r, y)2E + σn(r, y)− σ0(r, y)2F

e4L

2T (T+1)

4T (T + 1)

lim sup
n→∞

sup

r∈[0,T]

sup
y∈Rd

µn(r, y)− µ0(r, y)2E + σn(r, y)− σ0(r, y)2F

e4L
2T (T+1)

 0

This completes the proof.

Lemma 3.2.14. Let d,m ∈ N, T ∈ (0,∞), let O ⊆ [0, T] × Rd, let µ ∈ C([0, T] × O,Rd)

and σ ∈ C([0, T]×O,Rd×m) have compact supports such that supp(µ)∪ supp(σ) ⊆ [0, T]×O

let g ∈ C(Rd,R). Let

Ω,F ,P, (Ft)t∈[0,T]

be a stochastic basis, let W : [0, T] × Ω → Rm be

52

a standard (Ft)t∈[0,T] Brownian motion, for every t ∈ [0, T], x ∈ Rd, let X t,x = (X t,x
s)s∈[t,T] :

[t, T] × Ω → Rd be an (Fs)s∈[t,T] adapted stochastic process with continuous sample paths

satisfying for all s ∈ [t, T] with F-a.s. that:

X t,x
s = x+

 s

t

µ

r,X t,x

r

dr +

 s

t

σ

r,X t,x

r

dWr (3.2.50)

and further let u : [0, T]× Rd → R satisfy for all t ∈ [0, T], x ∈ Rd that:

u(t, x) = E

g

X t,x

T

(3.2.51)

Then u is a viscosity solution of:

∂

∂t
u

(t, x) +

1

2
Trace (σ(t, x) [σ(t, x)]∗ (Hessx u) (t, x)) + 〈µ(t, x), (∇xu) (t, x)〉 = 0

(3.2.52)

and where u(T, x) = g(x) for (t, x) ∈ (0, T)×O.

Proof. Let S = supp(µ) ∪ supp(σ) ⊆ [0, T] × O be bounded in space by ρ ∈ (0,∞), as

S ⊆ [0, T] × (−ρ, ρ)d. This exists as the supports are compact and thus by Hiene-Börel is

closed and bounded. Let sn,mn ∈ C∞([0, T]×Rd,Rd×n) where

n∈N [supp(sn) ∪ supp(mn)] ⊆

[0, T]× (−ρ, ρ)d satisfy for n ∈ N that:

lim sup
n→∞

sup

t∈[0,T]

sup
x∈R

(mn(t, x)− µ(t, x)E + sn − σ(t, x)F)

= 0 (3.2.53)

We construct a set of degenerate elliptic functions, Gn : (0, T)×Rd×R×Rd×Sd → R with

53

n ∈ N0 such that:

G0(t, x, r, p, A) =
1

2
Trace (σ(t, x)[σ(t, x)]∗A) + 〈µ(t, x), p〉 (3.2.54)

and

Gn(t, x, r, p, A) =
1

2
Trace (sn(t, x)[sn(t, x)]∗A) + 〈µ(t, x), p〉 (3.2.55)

Also let gn ∈ C∞(Rd,R) for n ∈ N satisfy for all n ∈ N that:

lim sup
n→∞

sup
t∈[0,T]

sup
x∈Rd

(gn(x)− g(x)E) = 0 (3.2.56)

Further let Xn,t,x = (Xn,t,x
s)s∈[t,T] : [t, T]×Ω → Rd be an (Fs)s∈[t,T]-adapted stochastic process

with continuous sample paths that satisfy:

X n,t,x
s = x+

 s

t

mn(r,X n,t,x
r)dr +

 s

t

sn(r,X n,t,x
r)dWr (3.2.57)

Finally let un : [0, T]× Rd → R for n ∈ N be:

un = E

gn

Xn,t,x

T

(3.2.58)

and:

u0 = E

gn

X t,x

T

(3.2.59)

Note that (Beck et al., 2021b, Lemma 2.2) with g ↶ gk, µ ↶ mn, σ ↶ sn, X t,x ↶ X n,t,x

gives us un ∈ C1,2([0, T]× Rd,R), and un(t, x) = gk(x) where:

∂

∂t
un

(t, x) +

1

2
Trace (sn(t, x) [sn(t, x)]∗ (Hessx un) (t, x)) + 〈mn(t, x), (∇xu

n) (t, x)〉 = 0

(3.2.60)

54

And by Definitions 3.2.7, 3.2.8, and 3.2.9 we have that un is a viscosity solution of

∂

∂t
un

(t, x) +

1

2
Trace (sn(t, x) [sn(t, x)]∗ (Hessx un) (t, x)) + 〈mn(t, x), (∇xu

n) (t, x)〉 = 0

(3.2.61)

for (t, x) ∈ (0, T)× Rd.

Since for all n ∈ N, it is the case that S = (supp(mn) ∪ supp(sn) ∪ supp(µ) ∪ supp(σ)) ⊆

[0, T]×(−ρ, ρ)d and because of (3.2.50) of (3.2.57) we have that (Beck et al., 2021a, Lemma 3.2,

Item (ii)) which yields that for all n ∈ N, t ∈ [0, T], x ∈ Rd \ (−ρ, ρ)d that P(∀s ∈ [t, T] :

Xn,t,x
s = x = X t,x

s) = 1. This in turn shows that for all n ∈ N, x ∈ Rd \ (−ρ, ρ)d that

un(t, x) = u0(t, x) which along with (3.2.58) and (3.2.59) yields that:

sup
t∈[0,T]

sup
x∈Rd

un(t, x)− u0(t, x)
 = sup

t∈[0,T]

sup
x∈(−ρ,ρ)d

un(t, x)− u0(t, x)

 sup
t∈[0,T]

sup
x∈(−ρ,ρ)d

E
gk

Xn,t,x

T

− g

X t,x

T

 (3.2.62)

Note that Lemma 3.2.13 allows us to conclude that:

lim sup
n→∞

sup

t∈[0,T]

sup
x∈(−ρ,ρ)d

E

Xn,t,x

T − X t,x
s

= 0 (3.2.63)

But then we have that (3.2.62) which yields that:

lim sup
n→0

sup

t∈[0,T]

sup
x∈Rd

un(t, x)− u0(t, x)

= 0 (3.2.64)

However now note that (3.2.55) and (3.2.61) thus yield that for n ∈ N0, un is a viscosity

55

solution to:

∂

∂t
un

(t, x) +Gn (t, x, un (t, x) , (∇xu

n) (t, x) , (Hessx un) (t, x)) = 0 (3.2.65)

But since we've established (3.2.53) we have that for a non-empty compact set C ⊆ (0, T)×

O × R× Rd × Sd that:

lim sup
n→∞

sup

(t,x,r,p,A)∈C

Gn (t, x, r, p, A)−G0 (t, x, r, p, A)

 lim sup
n→∞

sup

(t,x,r,p,A)∈C
µ(t, x)−mn(t, x)E pE

+ lim sup
n→∞

sup

(t,x,r,p,A)∈C
σ(t, x) [σ(t, x)]∗ − sn(t, x) [sn(t, x)]

∗F AF

= 0 (3.2.66)

This, together with (3.2.64), (3.2.65) and Corollary 3.2.11.2 yields that u0 is also a viscosity

solution to:

∂

∂t
u0

(t, x) +G0

t, x, u0(t, x),

∇xu

0

(t, x) , (Hessx) (t, x)

= 0 (3.2.67)

Finally note that (3.2.53), (3.2.57), (3.2.59), and (3.2.67) yield that u is a viscosity solution

of::

∂

∂t
u

(t, x) +

1

2
Trace (σ(t, x) [σ(t, x)]∗ (Hessx u) (t, x)) + 〈µ(t, x), (∇x) (t, x)〉 = 0 (3.2.68)

for (t, x) ∈ [0, T]×Rd. Finally (3.2.50) and (3.2.51) allows us to conclude that for all x ∈ Rd

it is the case that u(T, x) = g(x). This concludes the proof.

Lemma 3.2.15. Let d,m ∈ N, T ∈ (0,∞), further let O ⊆ Rd be a non, empty compact

set. Let every r ∈ (0,∞) satisfy the condition that Or ⊆ O, where Or = {x ∈ O :

xE r and {y ∈ Rd : y − xE < 1

r
} ⊆ O

} let g ∈ C(O,R), µ ∈ C([0, T]×O,R), V ∈

56

C1,2([0, T]×O, (0,∞)), assume that for all t ∈ [0, T], x ∈ O that:

sup

µ(t, x)− µ(t, y)E + σ(t, x)− σ(t, y)F
x− yE

: t ∈ [0, T], x, y ∈ Or, x ∕= y

∪ {0}

< ∞

(3.2.69)

∂

∂t
V

(t, x) +

1

2
Trace (σ(t, x) [σ(t, x)]∗ (Hessx V) (t, x)) + 〈µ(t, x), (∇xV) (t, x)〉 0

(3.2.70)

assume that supr∈(0,∞)

infx∈O\Or V (t, x)

= ∞ and infr∈(0,∞)

supt∈[0,T] supx∈O\Or

g(x)

V (T,x)

=

0. Let

Ω,F ,P, (Ft)t∈[0,T]

be a stochastic basis and let W : [0, T] × Ω → Rm be a standard

(Ft)t∈[0,T]-Brownian motion, for every t ∈ [0, T], x ∈ O let X t,x = (X t,x
s)s∈[t,T] : [t, T]×Ω → O

be an (Fs)s∈[t,T]-adapted stochastic process with continuous sample paths satisfying that for

all s ∈ [t, T], we have P-a.s. that:

X t,x
s = x+

 s

t

µ(r,X t,x
r)dr +

 s

t

σ(r,X t,x
n)dWr (3.2.71)

also let u : [0, T]× Rd → R satisfy for all t ∈ [0, T], x ∈ Rd that:

u(t, x) = E

u(T,X t,x

T)

(3.2.72)

It is then the case that u is a viscosity solution to:

∂

∂t
u

(t, x) +

1

2
Trace (σ(t, x) [σ(t, x)]∗ (Hessx u) (t, x)) + 〈µ(t, x), (∇x) (t, x)〉 = 0 (3.2.73)

for (t, x) ∈ (0, T)×O with u(T, x) = g(x).

Proof. Let it be the case, that throughout the proof, for n ∈ N, we have that gn ∈ C(Rd,R),

57

compactly supported and that

n∈N supp(gm)

⊆ [0, T]×O and further that:

lim sup
n→∞

sup

t∈[0,T]

sup
x∈O

|gn(x)− g(x)|

V (T, x)

= 0 (3.2.74)

Let is also be the case that for n ∈ N, mn ∈ C([0, T]×Rd,Rd) and sn ∈ C([0, T]×Rd,Rd×m)

satisfy:

(i) for all n ∈ N:

sup
t∈[0,T]

sup
x,y∈Rd,x ∕=y

mn(t, y)−mn(t, y)E + sn(t, x)− sn(t, y)E

x− yE

= 0 (3.2.75)

(ii) for all all n ∈ N, t ∈ [0, T], x ∈ O:

{V n}(t, x) [mn(t, x)− µ(t, x)E + sn(t, x)− σ(t, x)F] = 0 (3.2.76)

and

(iii) for all n ∈ N, t ∈ [0, T], x ∈ Rd \ {V n+ 1} that:

mn(t, x)E + sn(t, x)F = 0 (3.2.77)

Next for every n ∈ N, t ∈ [0, T] and x ∈ Rd let it be the case that Xn,t,x
s = (Xn,t,x

s)s∈[t,T] :

[t, t]× Ω. → Rd be a stochastic process with continuous sample paths satisfying:

Xn,t,x
s = x+

 s

t

mn(r,X
n,t,x
s)dr +

 s

t

sn(r,X
n,t,x
s)dWr (3.2.78)

Let un : [0, T]× Rd → R, k ∈ N, n ∈ N0, satisfy for all n ∈ N, t ∈ [0, T], x ∈ Rd that:

un,k(t, x) = E

gk(X

n,t,x
T)

(3.2.79)

58

and

u0,k(t, x) = E

gk

X t,x

T

(3.2.80)

and finally let, for every n ∈ N, t ∈ [0, T], x ∈ O, there be tt,xn : Ω → [t, T] which satisfy

tt,xn = inf ({s ∈ [t, T],max{V (s,Xt,x
s), V (s,X t,x

s)} n} ∪ {T}). We may apply Lemma 3.2.14

with µ ↶ mn, σ ↶ sn, g ↶ gk to show that for all n, k ∈ N we have that un,k is a viscosity

solution to:

∂

∂t
un,k

(t, x) +

1

2
Trace

sn(t, x) [sn(t, x)]

∗ Hessx un,k

(t, x)

+ 〈mn(t, x),

∇x(u

n,k

(t, x)〉

= 0

for (t, x) ∈ (0, T) × Rd. But note that items (i)-(iii) and 3.2.78 give us that, in line with

(Beck et al., 2021a, Lemma 3.5):

P

∀s ∈ [t, T] : {stt,xn }X

n,t,x
s = {stt,xn }X

t,x
s

= 1 (3.2.81)

Further this implies that for all n, k ∈ N, t ∈ [0, T], x ∈ O that:

E
gk

Xn,t,x

T)− gk(X t,x
T

 = E

{tt,xn <T}
gk(Xn,t,x

T)− gk(X t,x
T)

 2

sup
y∈O

|gk(y)|

P

tt,xn < T

Note that this combined with (Beck et al., 2021a, Lemma 3.1) implies for all t ∈ [0, T],

59

x ∈ O, n ∈ N we have that E

V

tt,xn ,X t,x

tt,xn

 V (t, x), which then further proves that:

un,k(t, x)− u0,k(t, x)
 2

sup
y∈O

|gk(y)|

P

tt,xn < T

 2

sup
y∈O

|gk(y)|

P

V

tt,xn ,X t,x

tt,xn

 n

 2

n

sup
y∈O

|gk(y)|

E

V

tt,xn ,X t,x

tt,xn

 2

n

sup
y∈O

|gk(y)|

V (t, x,)

Together these imply that for all k ∈ N and compact K ⊆ [0, T]×O:

lim sup
k→∞

sup

(t,x)∈K

un,k(t, x)− u0,k(t, x)

= 0 (3.2.82)

But again note that since have that supr∈(0,∞)

inft∈[0,T],x∈Rd\Or

V (t, x)

= ∞ and (3.2.76)

tell us that for all compact K ⊆ [0, T]×O we have that:

lim sup
n→∞

sup

(t,x)∈K
(mn(t, x)− µ(t, x)E + sn(t, x)− σ(t, x)F)

= 0 (3.2.83)

Note that (3.2.81), (3.2.82) and Corollary 3.2.11.2 tell us that for all k ∈ N we have that

u0,k is a viscosity solution to:

∂

∂t
u0,k

(t, x) +

1

2
Trace

σ(t, x) [σ(t, x)]∗

Hessx u0,k

(t, x)

+ 〈µ(t, x),

∇xu

0,k

(t, x)〉 = 0

(3.2.84)

for (t, x) ∈ (0, T)×O. However note that (3.2.71),(3.2.74), (3.2.80) prove that for all compact

K ⊆ [0, T]×O we have:

lim sup
k→∞

sup

(t,x)∈K

u0,k(t, x)− u(t, x)

= 0 (3.2.85)

60

This together with (3.2.84), (3.2.74), Corollary 3.2.11.2 shows that u0 is a viscosity solution

to:

∂

∂t
u

(t, x) +

1

2
Trace (σ(t, x) [σ(t, x)]∗ (Hessx u) (t, x)) + 〈µ(t, x), (∇xu)〉 = 0 (3.2.86)

for (t, x) ∈ (0, T) × O. By (3.2.73) we are ensured that for all x ∈ Rd we have that

u(T, x) = g(x) which together with proves the proposition.

3.3 Solutions, Characterization, and Computational

Bounds to the Kolmogorov Backward Equations

Theorem 3.3.1 (Existence and characterization of ud). Let T ∈ (0,∞). Let (Ω,F ,P)

be a probability space. Let σd ∈ C

Rd,Rd×d

and µd ∈ C

Rd,Rd

for d ∈ N, let ud ∈

C1,2

[0, T]× Rd,R

satisfy for all d ∈ N, t ∈ [0, T] , x ∈ Rd that:

∂

∂t
ud

(t, x) +

1

2
Trace (σd(x) [σd(x)]

∗ (Hessx ud) (t, x)) + 〈µd(x), (∇xud) (t, x)〉 = 0

(3.3.1)

let Wd : [0, T]×Ω → Rd, d ∈ N be a standard Brownian motions and let X d,t,x : [t, T]×Ω →

Rd, d ∈ N, t ∈ [0, T], be a stochastic process with continuous sample paths satisfying for all

d ∈ N, t ∈ [0, T], s ∈ [t, T], x ∈ Rd, we have P-a.s. that:

X d,t,x = x+

 t

s

µd

X d,t,x

r

dr +

 t

s

σ

X d,t,x

r

dWd

r (3.3.2)

Then for all d ∈ N , t ∈ [0, T], x ∈ R, it holds that:

ud(t, x) = E

ud

T,X d,t,x

t

(3.3.3)

61

Furthermore, ud is a viscosity solution to (3.3.1).

Proof. This is a consequence of Lemma 3.1.2 and 3.2.14.

62

Corollary 3.3.1.1. Let T ∈ (0,∞),

let (Ω,F ,P) be a probability space, let ud ∈ C1,2

[0, T]× Rd,R

, d ∈ N satisfy for all d ∈ N,

t ∈ [0, T], x ∈ Rd that:

∂

∂t
ud

(t, x) +

1

2

∇2

xud

(t, x) = 0 (3.3.4)

Let Wd : [0, T]×Ω → Rd, d ∈ N be standard Brownian motions, and let X d,t,x : [t, T]×Ω →

Rd, d ∈ N, t ∈ [0, T], x ∈ Rd, be a stochastic process with continuous sample paths satisfying

that for all d ∈ N , t ∈ [0, T], s ∈ [t, T], x ∈ Rd we have P-a.s. that:

X d,t,x
s = x+

 s

t

dWd
r = x+Wd

t−s (3.3.5)

Then for all d ∈ N, t ∈ [0, T], x ∈ Rd it holds that:

ud(t, x) = E

ud

T,X d,T,x

t

(3.3.6)

Proof. This is a special case of Theorem 3.3.1. It is the case where σd(x) = Id, the uniform

identity function where Id is the identity matrix in dimension d for d ∈ N, and µd(x) = 0d

where 0d is the zero vector in dimension d for d ∈ N.

Lemma 3.3.2. Let T ∈ (0,∞), let (Ω,F ,P), be a probability space, let αd ∈ C2
b

Rd,R

, and

α ∈ O (x2) for d ∈ N , be infinitey often differentiable function, let ud ∈ C1,2

[0, T]× Rd,R

,

d ∈ N, satisfy for all d ∈ N, t ∈ [0, T], x ∈ Rd, that:

∂

∂t
ud

(t, x) +

1

2

∇2

xud

(t, x) + αd (x) ud (t, x) = 0 (3.3.7)

Let Wd : [0, T] × Ω → Rd be standard Brownian motions and let X d,t,x : [t, T] × Ω → Rd,

d ∈ N, t ∈ [0, T], x ∈ Rd be a stochastic process with continuous sample paths satisfying that

63

for all d ∈ N, t ∈ [0, T], s ∈ (t, T], x ∈ Rd, we have P-a.s. that:

X d,t,x
s = x+

 t

s

1

2
dWd

r =
1

2
Wd

t−r (3.3.8)

Then for all d ∈ N, t ∈ [0, T], x ∈ Rd it holds that:

ud (t, x) = E

exp

 T

t

αd

X d,t,x

r

dr

ud

T,X d,t,x

T

(3.3.9)

Proof. Let vd : Rd → R be continuous. Throughout the proof let ud (t, x) = e−tαd(x)vd(t, x)

for all d ∈ N, t ∈ [0, T], x ∈ Rd. For notational simplicity, we will drop the d, t, x wherever

it is obvious. Therefore the derivatives become:

ut = −αe−tαv + e−tαvt (3.3.10)
1

2
∇2

xu =
1

2

e−tα∇2

xv + 2〈∇xv,∇xe
−tα〉+ v∇2

xe
−tα

(3.3.11)

This then renders (3.3.7) as:

✘✘✘✘✘−αe−tαv + e−tαvt +
1

2

e−tα∇2

xv + 2〈∇xv,∇xe
−tα〉+ v∇2

xe
−tα

+✘✘✘✘αe−tαv = 0

e−tαvt +
1

2

e−tα∇2

xv − 2te−tα〈∇xv,∇xα〉+ v∇2
xe

−tα

= 0

e−tαvt +
1

2

e−tα∇2

xv − 2te−tα〈∇xv,∇xα〉 − tve−tα∇2
xα

= 0

vt +
1

2

∇2

xv − 2t〈∇xv,∇xα〉 − tv∇2
xα

= 0

vt +
1

2

∇2

xv − 2t〈∇xα,∇xv〉 − tv∇2
xα

= 0

vt +
1

2
∇2

xv + 〈−t∇xα,∇xv〉 −
1

2
tv∇2

xα = 0 (3.3.12)

Let σ(t, x) = Id, i.e. the uniform identity function. Let µ(t, x) = −t∇xα for t ∈ [0, T], x ∈ Rd,

and for fixed α. Let f(t, x, v) = −1
2
tv∇2

xα for t ∈ [0, T], x ∈ Rd.

Claim 3.3.3. It is the case that for for all x ∈ Rd and t ∈ [0, T] that 〈x, µ(t, x)〉

64

L (1 + xE) for some constant L ∈ (0,∞).

Proof. Since α has bounded first and second derivatives let:

B = max

sup
x∈Rd

∇xαE, sup
x∈Rd

∇2
xα

(3.3.13)

Note that we then have the Cauchy-Schwarz inequality:

〈x, µ(t, x)〉 〈x,−t∇xα〉E xEt∇xαE

 T (xEB)

 T (B+ d) xE

= LxE L

1 + x2E

(3.3.14)

It also follows that σ(t, x)F =
√
d L L(1 + xE).

Claim 3.3.4. It is the case that for all x, y ∈ Rd, and t ∈ [0, T] that: µ(t, x)− µ(t, y)E +

σ(t, x)− σ(t, y)E C (xE + yE) (x− yE) for some constant C ∈ (0,∞).

Proof. The fact that for all x, y ∈ Rd and t ∈ [0, T] it is the case that σ(t, x)−σ(t, y)F = 0,

the fact that for all x, y ∈ Rd it is the case that (xE + yE)(x− yE) 0 and (3.3.13)

tells us that:

µ(t, x)− µ(t, y)E + σ(t, x)− σ(t, y)F = µ(t, x)− µ(t, y)E + 0

= t∇xα(x)− t∇xα(y)E

 T∇xα(x)−∇xα(y)E

 2TB (3.3.15)

Now consider a function f ∈ C

[0, T]× Rd,Rd

, where for all x, y ∈ Rd it is the case that

65

f(x)− f(y) C (xE + yE) (x+ ye). Note then that setting y = x+ h gives us:

f(x+ h)− f(x)

h

 C (xE + x+ hE)

lim
h→0

f(x+ h)− f(x)

h

 lim
h→0

C (xE + x+ hE)

|∇xf (x)| 2C xE = K xE (3.3.16)

This suggests that ∇xf ∈ O (x) and in particular that f ∈ O (x2). However with f ↶ µ

we first notice that because µ 2TB in (3.3.15) it must also be that case that µ ∈ O(1)

by Corollary 1.2.31.1. However since O(c) ⊆ O(x) ⊆ O (x2) by Corollary 1.2.31.2 it is also

the case that µ ∈ O (x2), and hence there exists a C satisfying the claim. This proves the

claim.

Claim 3.3.5. It is the case that |f(t, x, v)− f(t, x, w)| L |v − w|

Proof. Note that by the absolute homogeneity property of norms, we have:

|f(t, x, v)− f(t, x, w)| =

1

2
tv∇2

xα− 1

2
tw∇2

xα

=

1

2
t∇2

xα

 |v − w|

 1

2
T
∇2

xα
 |v − w|

 1

2
TB |v − w|

 T (B+ d) |v − w|

= L |v − w| (3.3.17)

66

Note that we may rewrite (3.3.12) as:

∂

∂t
v

(t, x) +

1

2
Trace (σ (t, x) [σ (t, x)]∗ (Hessx v) (t, x)) + 〈µ (t, x) , (∇xv) (t, x)〉

+f (t, x, v (t, x)) = 0

We realize that (3.3.12) is a case of (Beck et al., 2021c, Corollary 3.9) where it is the case

that: u(t, x) ↶ v(t, x), where σd(x) = Id for all x ∈ Rd, d ∈ N, where µ(t, x) = −t∇xα for

fixed α and for all t ∈ [0, T], x ∈ Rd, and where f (t, x, u (t, x)) = −1
2
tu∇2

xα for fixed α and

for all t ∈ [0, T], x ∈ Rd.

We thus have that there exists a unique, at most polynomially growing viscosity solution

v ∈ C

[0, T]× Rd,R

given as:

v(t, x) = E

v

T,Y t,x

T

+

 T

t

f

s,Y t,x

s , v

s,Y t,x

s

ds

(3.3.18)

Let V : [0, T] × Ω → Rm be a standard (Ft)t∈[0,T]-Brownian motion. Note that this also

implies that the Y in (3.3.18) is characterized as:

Y t,x
s = x+

 s

t

µ

r,Y t,x

r

dr +

 s

t

σ

s,X t,x

r

dVr (3.3.19)

With substitution, this is then:

Y t,x
s = x+

 s

t

−r∇xα

Y t,x

r

dr +

 s

t

IdVr

Y t,x
s = x−

 s

t

r∇xα

Y t,x

s

dr + Vs−t

67

Note that our initial substitution tells us: v(t, x) = etα(x)u(t, x). And so we have that:

v(t, x) = E

v

T,X t,x

T

+

 T

t

f

s,X t,x

s , v

s,X t,x

s

ds

(3.3.20)

v(t, x) = E

v

T,X t,x

T

− 1

2

 T

t

tv

s,X t,x

s

∇2

xα

X t,x

s

ds

etα(x)u(t, x) = E

exp

Tα

X t,x

T

u

T,X t,x

T

− 1

2

 T

t

t exp

tα

X t,x

s

u

t,X t,x

s

∇2

xα

X t,x

s

ds

u(t, x) = E

exp

Tα

X t,x

T

− tα(x)

u

T,X t,x

T

− E

1

2etα(x)

 T

t

t exp

tα

X t,x

s

u

t,X t,x

s

∇2

xα

X t,x

s

ds

68

Part II

A Structural Description of Artificial

Neural Networks

69

Chapter 4

Introduction and Basic Notions

About Neural Networks

We seek here to introduce a unified framework for artificial neural networks. This framework

borrows from the work presented in Grohs et al. (2018) and work done by Joshua Padgett,

Benno Kuckuk, and Arnulf Jentzen (unpublished). With this framework in place, we wish

to study ANNs from the perspective of trying to see the number of parameters required to

define a neural network to solve certain PDEs. The curse of dimensionality here refers to the

number of parameters necessary to model PDEs and their growth (exponential or otherwise)

as dimensions d increase.

4.1 The Basic Definition of ANNs and instantiations

of ANNs

Definition 4.1.1 (Rectifier Function). Let d ∈ N and x ∈ Rd. We denote by r : R → R the

function given by:

r(x) = max {0, x} (4.1.1)

70

Definition 4.1.2 (Artificial Neural Networks). Denote by NN the set given by:

NN =

L∈N

l0,l1,...,lL∈N

L×

k=1

Rlk×lk−1 × Rlk

(4.1.2)

An artificial neural network is a tuple (ν,P,D, I,O,H, L,W) where ν ∈ NN and is equipped

with the following functions (referred to as auxiliary functions) satisfying for all

ν ∈

×L

k=1

Rlk×lk−1 × Rlk

:

(i) P : NN → N denoting the number of parameters of ν, given by:

P(ν) =
L

k=1

lk (lk−1 + 1) (4.1.3)

(ii) D : NN → N denoting the number of layers of ν other than the input layer given by:

D(ν) = L (4.1.4)

(iii) I : NN → N denoting the width of the input layer, given by:

I(ν) = l0 (4.1.5)

(iv) O : NN → N denoting the width of the output layer, given by:

O(ν) = lL (4.1.6)

(v) H : NN → N0 denoting the number of hidden layers (i.e., layers other than the input

and output), given by:

H(ν) = L− 1 (4.1.7)

71

(vi) L : NN →

L∈N NL denoting the width of layers as an (L+ 1)-tuple, given by:

L(ν) = (l0, l1, l2, ..., lL) (4.1.8)

We sometimes refer to this as the layer configuration or layer architecture of ν.

(vii) Wi : NN → N0 denoting the width of layer i, given by:

Wi(ν) =

li i L

0 i > L

(4.1.9)

Note that this implies that ν = ((W1, b1), (W2, b2), ...(WL, bL)) ∈

×L

k=1

Rlk×lk−1 × Rlk

.

Note that we denote by Weight(·),ν : (Weightn,ν)n∈{1,2,...,L} : {1, 2, ..., L} →

m,k∈N Rm×k

and also Bias(·),ν : (Biasn,ν){1,2,...,L} : {1, 2, ..., L} →

m∈N Rm

the functions that satisfy for

all n ∈ {1, 2, ..., L} that Weighti,ν = Wi i.e. the weights matrix for neural network ν at layer

i and Biasi,ν = bi, i.e. the bias vector for neural network ν at layer i.

We will call l0 the starting width and lL the finishing width. Together, they will be referred

to as end-widths.

Remark 4.1.3. Notice that our definition varies somewhat from the conventional ones found

in Petersen and Voigtlaender (2018) and Grohs et al. (2023) in that whereas the former

talk about auxiliary functions as existing within the set NN we will talk about these auxiliary

functions as something elements of NN are endowed with. In other words, elements of NN may

exist whose depths and parameter counts, for instance, are undefined and non-determinate.

Note that we develop this definition to closely align to popular deep-learning frameworks such

as PyTorch, TensorFlow, and Flux, where, in principle, it is always possible to know

the parameter count, depth, number of layers, and other auxiliary information.

We will often say let ν ∈ NN, and it is implied that the tuple ν with the auxiliary functions

is what is being referred to. This is analogous to when we say that X is a topological but we

72

x0

x0

x0

x0

x1

x1

x1

x1

x1

x2

x2

x2

x2

x3

x3

Figure 4.1: A neural network ν with L (ν) = (4, 4, 3, 2)

mean the pair (X, τ), i.e. X endowed with topology τ , or when we say that Y is a measurable

space when we mean the triple (X,Ω, µ), i.e. X, endowed with σ−algebra Ω, and measure

µ.

Definition 4.1.4 (Instantiations of Artificial Neural Networks with Activation Functions).

Let a ∈ C (R,R), we denote by Ia : NN →

k,l∈N C

Rk,Rl

the function satisfying for

all L ∈ N, l0, l1, ..., lL ∈ N, ν = ((W1, b1) , (W2, b2) , ..., (WL, bL)) ∈

×L

k=1

Rlk×lk−1 × Rlk

,

x0 ∈ Rl0 , x1 ∈ Rl1 , ..., xL−1 ∈ RlL−1 and with ∀k ∈ N ∩ (0, L) : xk = a

[Wkxk + bk]∗,∗

such

that:

Ia (ν) ∈ C

Rl0 ,RlL

and (Ia (ν)) (x0) = WLxL−1 + bL (4.1.10)

Remark 4.1.5. For an R implementation see Listings 8.1, 8.2, 8.3, and 8.4.

Lemma 4.1.6. Let ν ∈ NN, it is then the case that:

(i) L(ν) ∈ ND(ν)+1, and

(ii) for all a ∈ C (R,R), Ia ∈ C

RI(ν),RO(ν)

Proof. By assumption:

ν ∈ NN =

L∈N

(l0,l1,...,lL)∈NL+1

L×

k=1

Rlk×lk−1 × Rlk

(4.1.11)

73

This ensures that there exist l0, l1, ..., lL, L ∈ N such that:

ν ∈

L×
j=1

Rlj×lj−1 × RBj

(4.1.12)

This also ensures that L(ν) = (l0, l1, ..., lL) ∈ NL+1 = ND(ν)+1 and further that I(ν) = l0,

O(ν) = lL, and that D(ν) = L. Together with (4.1.10), this proves the lemma.

4.2 Compositions of ANNs

The first operation we want to be able to do is to compose neural networks. Note that the

composition is not done in an obvious way; for instance, note that the last layer of the first

component of the composition is superimposed with the first layer of the second component

of the composition.

4.2.1 Composition

Definition 4.2.1 (Compositions of ANNs). We denote by (·) • (·) : {(ν1, ν2) ∈ NN×NN :

I(ν1) = O(ν1)} → NN the function satisfying for all L,M ∈ N, l0, l1, ..., lL,m0,m1, ...,mM ∈

N, ν1 = ((W1, b1) , (W2, b2) , ..., (WL, bL)) ∈

×L

k=1

Rlk×lk−1 × Rlk

, and ν2 =

((W ′
1, b

′
1) , (W

′
2, b

′
2) , ... (W

′
M , b′M)) ∈

×M

k=1
[Rmk×mk−1 × Rmk]

with l0 = I(ν1) = O(ν2) = mM

74

and :

ν1 • ν2 = (4.2.1)

((W ′
1, b

′
1), (W

′
2, b

′
2), ...(W

′
M−1, b

′
M−1), (W1W

′
M ,W1b

′
M + b1), (W2, b2),

..., (WL, bL)) : (L > 1) ∧ (M > 1)

((W1W
′
1,W1b

′
1 + b1), (W2, b2), (W3, b3), ..., (WLbL)) : (L > 1) ∧ (M = 1)

((W ′
1, b

′
1), (W

′
2, b

′
2), ..., (W

′
M−1, b

′
M−1)(W1, b

′
M + b1)) : (L = 1) ∧ (M > 1)

((W1W
′
1,W1b

′
1 + b1)) : (L = 1) ∧ (M = 1)

(4.2.2)

Remark 4.2.2. For an R implementation see Listing 8.7

Lemma 4.2.3. Let ν, µ ∈ NN be such that O(µ) = I(ν). It is then the case that:

(i) D(ν • µ) = D(ν) + D(µ)− 1

(ii) For all i ∈ {1, 2, ...,D(ν • µ)} that:

Weighti,(ν•µ),Biasi,(ν•µ)

=

Weighti,µ,Biasi,µ

: i < D(µ)

Weight1,ν WeightD(µ),µ,Weight1,ν BiasD(µ),µ +Bias1,ν

: i = D(µ)

Weighti−D(µ)+1,ν Biasi−D(µ)+1,ν

: i > D(µ)

Proof. This is a consequence of (4.2.1), which implies both (i) and (ii).

Lemma 4.2.4. Let ν1, ν2, ν3 ∈ NN satisfy that I(ν1) = O(ν2) and I(ν2) = O(ν3), it is then

the case

75

that:

(ν1 • ν2) • ν3 = ν1 • (ν2 • ν3) (4.2.3)

Proof. This is a consequence of (Grohs et al., 2023, Lemma 2.8) with Φ1 ↶ ν1, Φ2 ↶ ν2,

and Φ3 ↶ ν3, and the functions I ↶ I, L ↶ D and O ↶ O.

The following Lemma will be important later on, referenced numerous times, and found in

(Grohs et al., 2023, Proposition 2.6). For completion, we will include a simplified version of

the proof here.

Lemma 4.2.5. Let ν1, ν2 ∈ NN. Let it also be that O (ν1) = I (ν2). It is then the case that:

(i) D (ν1 • ν2) = D (ν1) + D (ν2)− 1

(ii) L (ν1 • ν2) =

W1 (ν2) ,W2 (ν2) , . . . ,WH(ν2),W1 (ν1) ,W2 (ν1) , . . . ,WD(φ1) (ν1)

(iii) H (ν1 • ν2) = H (ν1) + H (ν2)

(iv) P (ν1 • ν2) P (ν1) + P (ν2) + W1 (ν1) · WH(ν2) (ν2)

(v) for all a ∈ C (R,R) that Ia (ν1 • ν2) (x) ∈ C

RI(ν2),RO(ν1)

and further:

Ia (ν1 • ν2) = [Ia (ν1)] ◦ [Ia (ν2)] (4.2.4)

Proof. Note that Items (i)---(iii) are a simple consequence of Definition 4.2.1. Specifically,

given neural networks ν1, ν2 ∈ NN, and D (ν1) = n and D (ν2) = m, note that for all

four cases, we have that the depth of the composed neural network ν1 • ν2 is given by

n − 1 +m − 1 = n +m − 1 proving Item (i). Note that the outer neural network loses its

last layer, yielding Item (ii) in all four cases. Finally since, for all ν ∈ NN it is the case that

H (ν) = D (ν)− 1, Item (i) yields Item (iii).

76

Now, suppose it is the case that ν3 = ν1 • ν2 and that:

ν1 = ((W1,1, b1,1) , (W1,2, b1,2) , . . . , (W1,L1 , b1,L1))

ν2 = ((W2,1, b2,1) , (W2,2, b2,2) , . . . , (W2,L2 , b2,L2))

ν3 = ((W3,1, b3,1) , (W3,2, b3,2) , . . . , (W3,L2 , b3,L2))

(4.2.5)

And that:

L (ν1) = (l1,1, l1,2, . . . , l1,L1)

L (ν2) = (l2,1, l2,2, . . . , l2.L2)

L (ν1 • ν2) = (l3,1, l3,2, . . . , l3,L3) (4.2.6)

and further let x0 ∈ Rl2,0 , x1 ∈ Rl2,1 , . . . , xL2−1 ∈ Rl2,L2−1 satisfy the condition that:

∀k ∈ N ∩ (0, L2) : xk = a

[W2,kxk−1 + b2,k]∗,∗

(4.2.7)

also let y0 ∈ Rl1,0 , y1 ∈ Rl1,1 , . . . , yL1−1 ∈ Rl2,L2−1 satisfy:

∀k ∈ N ∩ (0, L1) : yk = a

[W1,kyk−1 + b1,k]∗,∗

(4.2.8)

and finally let z0 ∈ Rl3,0 , z1 ∈ Rl3,1 , . . . , zL3−1 ∈ Rl3,L3−1 satisfy:

∀k ∈ N ∩ (0, L3) : zk = a

[W3,kzk−1 + b3,k]∗,∗

(4.2.9)

77

Note then that by Item (i) of Definition 4.1.2 we have that:

P (ν1 • ν2) =
L3

k=1

l3,k (l3,k−1 + 1)

=

L2−1

k=1

l3,k (l3,k−1 + 1)

+ l3,L2 (l3,L2−1 + 1) +

L3

k=L2+1

l3,k (l3,k−1 + 1)

=

L2−1

k=1

l2,j (l2,j−1 + 1)

+ l1,1 (l2,L−1 + 1) +

L3

k=L2+1

lj−L2+1 (l1,j−L2 + 1)

=

L2−1

k=1

l2,j (l2,k−1 + 1)

+

L1

k=2

l1,j (l1,k−1 + 1)

+ l1,1 (l2,L2−1 + 1)

=

L2

k=1

l2,k (l2,k−1 + 1)

+

L1

k=1

l1,k (l1,k−1 + 1)

+ l1,1 (l2,L2−1 + 1)

− l2,L2 (l2,L2−1 + 1)− l1,1 (l1,0 + 1)

= P (ν1) + P (ν2) + l1,1 · l2,L2−1 (4.2.10)

Thus establishing Item (iv). Note by Definition 4.2.1, and the fact that a ∈ C (R,R) it is

the case that

Ia (ν1 • ν2) ∈ C

RI(ν1),RO(ν2)

(4.2.11)

Next note that by definition, it is the case that:

L (ν1 • ν2) = (l2,0, l2,1, . . . , l2,L2−1, l1,1, l1,2, . . . , l1,L1) (4.2.12)

And further that:

∀k ∈ N ∩ (0, L2) : (W3,k, b3,k) = (W2,k, b2,k)

(W3,L2 , b3,L2) = (W1,1 ·W2,L2 ,W1,1b2,L2 + b1,1)

and ∀k ∈ N ∩ (L2, L1 + L2) : (W3,k, b3,k) = (W1,j+1−L2 , b1,j+1−L2) (4.2.13)

78

Since for all k ∈ N∩ [0, L2) it is the case that zj = xj and the fact that y0 = W2,l2xL2−1+b2,L2

ensures us that:

W3,L2zL2−1 + b3,L2 = W3,L2xL2−1 + b3,L2

= W1,1W2,L2xL2−1 +W1,1b2,L2 + b1,1

= W1,1 (W2,L2xL2−1 + b2,L2) + b1,1 = W1,1y0 + b1,1 (4.2.14)

We next claim that for all k ∈ N ∩ [L2, L1 + L2) it is the case that:

W3,kzk−1 + b3,k = W1,k+1−L2yk−L2 + b1,k+1−L2 (4.2.15)

This can be proved via induction on k ∈ N∩[L2, L1 + L2). Consider that our base case of k =

L2 in (4.2.15) is fulfilled by (4.2.14). Now note that for all k ∈ N∩ [L2,∞)∩ (0, L1 + L2 − 1)

with:

W3,kzk−1 + b3,k = W1,k+1−L2yk−L2 + b1,k+1−L2 (4.2.16)

it holds that:

W3,k+1zk + b3,k+1 = W3,k+1

[W3,kzk−1 + b3,k]∗,∗

+ b3,k+1

= W1,k+2−L2 ([W1,k+1−L2yk−L2] + b1,k+1−L2) + b1,k+2−L2

= W1,k+2−L2yk+1−L2 + b1,k+2−L2 (4.2.17)

Whence induction proves (4.2.15). This, along with the fact that L3 = L1 + L2 − 1 then

indicates that:

W3,L3zL3−1 + b3,L3 = W3,L1+L2−1zL1+L2−2 + b3,L1+L2−1 = W1,L1yL1−1 + b1,L1 (4.2.18)

79

Finally, the fact that ν3 = ν1 • ν2, in addition with (4.2.7),(4.2.8), and (4.2.9) then tells us

that:

[Ia (ν1 • ν2)] (x0) = [Ia (ν3)] (x0) = [Ia (ν3)] (z0) = W3,L3zL3−1 + b3,L3

= W1,L1yL1−1 + b1,L1 = [Ia (ν1)] (y0)

= [Ia (ν1)]

[W2,L2xL2−1 + b2,L2]∗,∗

= [Ia (ν1)] ([Ia (ν2)] (x0)) = [Ia (ν1)] ◦ [Ia (ν2)] (x0) (4.2.19)

This and (4.2.11) then prove Item (v), hence proving the lemma.

4.3 Stacking of ANNs

We will introduce here the important concept of stacking of ANNs. Given an input vector

x ∈ Rd, it is sometimes very helpful to imagine two neural networks working on them

simultaneously, whence we have stacking. Because vectors are ordered tuples, stacking ν1

and ν2 is not necessarily the same as stacking ν2 and ν1.

4.3.1 Stacking of ANNs of Equal Depth

Definition 4.3.1 (Stacking of ANNs of same depth). Let L, n ∈ N, and let ν1, ν2, . . . , νn ∈

NN, such that D (ν1) = D (ν2) = · · · = D (νn) = L. As such, for all i ∈ {1, . . . , n}, let it also

be the case that L (νi) = ((W i
1, b

i
1) , (W

i
2, b

i
2) , . . . , (W

i
L, b

i
L)). We then denote by ⊟n

i=1νi, the

neural network whose layer architecture is given by:

L (⊟n
i=1νi) =

diag

W 1

1 ,W
2
1 , . . . ,W

n
1

, b11 ⌢ b21,⌢ · · · ⌢ bn1

,

diag

W 1

2 ,W
2
2 , . . . ,W

n
2

, b12 ⌢ b22,⌢ · · · ⌢ bn2

,

...

diag

W 1

L,W
2
L, . . . ,W

n
L

, b1L ⌢ b2L,⌢ · · · ⌢ bnL

80

Remark 4.3.2. For an R implementation see Listing ??

Lemma 4.3.3. Let ν1, ν2 ∈ NN, with D (ν1) = D (ν2), x1 ∈ Rm1, x2 ∈ Rm2, and x ∈ Rm1+m2.

Let Ir (ν1) : Rm1 → Rn1, and Ir : Rm2 → Rn2. It is then the case that Ir (ν1 ⊟ ν2) (x) =

Ir (ν1) (x1) ⌢ Ir (ν2) (x2).

Proof. Let L (ν1) = ((W1, b1) , (W2, b2) , . . . , (WL, bL)) and

L (ν2) = ((W1, b1) , (W2, b2) , . . . , (WL, bL)), and as such it is the case according to Definition

4.3.1 that:

L (ν1 ⊟ ν2) = ((diag (W1,W1) , b1 ⌢ b1) ,

(diag (W2,W2) , b2 ⌢ b2) ,

...

diag (WL,WL) , b

1
L ⌢ bL

Note that for all, a ∈ (R,R), j ∈ {1, 2, . . . , L−1} and for all x ∈ Rcolumns(Wj)+columns(Wj), x1 ∈

Rcolumns(Wj), x2 ∈ Rcolumns(Wj), y ∈ Rrows(Wj)+rows(Wj), y1 ∈ Rrows(Wj), y2 ∈ Rrows(Wj), where

y1 = a

[Wj · x1 + b1]∗,∗

, y2 = a

[Wj · x2 + bj]∗,∗

, y = a

[diag (Wj,Wj) · x+ (bj ⌢ bj)]∗,∗

it is the case that, Corollary 1.2.35.1 tells us that:

y = a

[diag (Wj,Wj) · x+ (bj ⌢ bj)]∗,∗

= a

[(Wj · x1 + bj) ⌢ (Wj · x2 + bj)]∗,∗

= a

[Wj · x1 + bj]∗,∗

⌢ a

[Wj · x2 + bj]∗,∗

= y1 ⌢ y2 (4.3.1)

Note that this is repeated from one layer to the next, yielding that Ir (ν1 ⊟ ν2) (x) =

Ir (ν1) (x1) ⌢ Ir (ν2) (x2).

Remark 4.3.4. Given n, L ∈ N, ν1, ν2, ..., νn ∈ NN such that L = D(ν1) = D(ν2) = ... =

81

D(νn) it is then the case, as seen from (??) that:

⊟n
i=1νi ∈

L×

k=1

R(

n
j=1 Wk(νj))×(

n
j=1 Wk−1(νj)) × R(

n
j=1 Wk(νj))

(4.3.2)

Lemma 4.3.5. Let n, L ∈ N, ν1, ν2, . . . , νn ∈ NN satisfty that L = D (ν1) = D (ν2) = · · · =

D (νn). It is then the case that:

P ([⊟n
i=1νi])

1

2

n

i=1

P (νi)

2

(4.3.3)

Proof. Note that by Remark 4.4.2 we have that:

P ([⊟n
i=1νi]) =

L

k=1

n

i=1

li,k

n

i=1

li,k−1

+ 1

=
L

k=1

n

i=1

li,k

n

j=1

lj,k−1

+ 1

n

i=1

n

j=1

L

k=1

li,k (lj,k−1 + 1)

n

i=1

n

j=1

L

ℓ=1

li,k (lj,ℓ−1 + 1)

=
n

i=1

n

j=1

L

k=1

li,k

L

ℓ=1

(lj,ℓ−1 + 1)

n

i=1

n

j=1

L

k=1

1

2
li,k (li,k−1 + 1)

L

ℓ=1

lj,ℓ (lj,ℓ−1 + 1)

=
n

i=1

n

j=1

1

2
P (νi)P (νj) =

1

2

n

i=1

P (νi)

2

(4.3.4)

This completes the proof of the lemma.

Corollary 4.3.5.1. Let n ∈ N. Let ν1, ν2, ..., νn ∈ NN satisfy that L (ν1) = L (ν2) = · · · =

82

L (νn). It is then the case that:

P (⊟n
i=1νi) n2 P (ν1) (4.3.5)

Proof. Since it is the case that for all j ∈ {1, 2, ..., n} that: L (νj) = (l0, l1, ..., lL), where

l0, l1, ..., lL, L ∈ N, we may say that:

P

⊟n

j=1νj

=

L

j=1

(nlj) [(nlj−1) + 1]
L

j=1

(nlj) [(nlj−1) + n]

= n2

L

j=1

lj (lj−1 + 1)

= n2 P (ν1) (4.3.6)

Lemma 4.3.6. Let ν1, ν2 ∈ NN, such that D (ν1) = D (ν2) = L. It is then the case that

P (ν1) + P (ν2) P (ν1 ⊟ ν2).

Proof. Remark 4.3.4 tells us that:

ν1 ⊟ ν2 ∈

L×
k=1

R(Wk(ν1)+Wk(ν2))×(Wk−1(ν1)+Wk−1(ν2)) × RWk(ν1)+Wk(ν2)

(4.3.7)

The definition of P() from Defition 4.1.2, and the fact that Wi 1 for all i ∈ {1, 2, . . . , L}

83

tells us then that:

P (ν1 ⊟ ν2) =
L

k=1

[(Wk (ν1) + Wk (ν2))× (Wk−1 (ν1) + Wk−1 (ν2) + 1)]

=
L

k=1

[Wk (ν1)Wk−1 (ν1) + Wk (ν1)Wk−1 (ν2)

+Wk (ν1) + Wk (ν2)Wk−1 (ν1) + Wk (ν2)Wk−1 (ν2) + Wk (ν2)]

L

k=1

[Wk (ν1)Wk−1 (ν1) + Wk (ν1) + Wk (ν2)Wk−1 (ν2) + Wk (ν2)]

=
L

k=1

[Wk (ν1) (Wk−1 (ν1) + 1)] +
L

k=1

[Wk (ν2) (Wk−1 (ν2) + 1)]

= P (ν1) + P (ν2) (4.3.8)

Corollary 4.3.6.1. Let ν1, ν2, ν3 ∈ NN. Let P (ν2) P (ν3). It is then the case that

P (ν1 ⊟ ν2) P (ν1 ⊟ ν3).

Proof. Lemma 4.3.6 tells us that:

0 P (ν1) + P (ν3) P (ν1 ⊟ ν3) (4.3.9)

0 P (ν1) + P (ν2) P (ν1 ⊟ ν2) (4.3.10)

Subtracting (4.3.9) from (4.3.10) gives us that:

0 P (ν3)− P (ν2) P (ν1 ⊟ ν3)− P (ν1 ⊟ ν2)

P (ν1 ⊟ ν2) P (ν1 ⊟ ν2)

Lemma 4.3.7. Let m1,m2, n1, n2 ∈ N. Let ν1, ν2 ∈ NN, such that Ir (ν1) ∈ C (Rm1 ,Rn1) and

84

Ir (ν2) ∈ C (Rm2 ,Rn2). It is then the case that (Ia(ν1 ⊟ ν2))

x

x′

 = (Ia(ν2 ⊟ ν1))

x′

x

for x ∈ Rm1 , x′ ∈ Rn1, upto transposition.

Proof. Note that this is a consequence of the commutativity of summation in the exponents

of (4.3.2), and the fact that switching ν1 and ν2 with a transposition results in a transposed

output for transposed input.

Lemma 4.3.8. Let a ∈ C (R,R), n ∈ N, and ν = ⊟n
i=1νi satisfy the condition that D(ν1) =

D(ν2) = ... = D(νn). It is then the case that Ia (ν) ∈ C

R

n
i=1 I(νi),R

n
i=1 O(νi)

Proof. Let L = D(ν1), and let li,0, li,1...li,L ∈ N satisfy for all i ∈ {1, 2, ..., n} that L(νi) =

(li,0, li,1, ..., li,L). Furthermore let ((Wi,1, bi,1) , (Wi,2, bi,2) , ..., (Wi,L, bi,L)) ∈

×L

j=1

Rli,j×li,j−1 × Rli,j

satisfy for all i ∈ {1, 2, ..., n} that:

νi = ((Wi,1, bi,1) , (Wi,2, bi,2) , ..., (Wi,L, bi,L)) (4.3.11)

Let αj ∈ N with j ∈ {0, 1, ..., L} satisfy that αj =
n

i=1 li,j and let

((A1, b1) , (A2, b2) , ..., (AL, bL)) ∈

×L

j=1
[Rαj×αj−1 × Rαj]

satisfy that:

⊟n
i=1νi = ((A1, b1) , (A2, b2) , ..., (AL, bL)) (4.3.12)

See Remark 5.3.2. Let xi,0, xi,1, ..., xi,L−1 ∈

Rli,0 × Rli,1 × · · ·× Rli,L−1

satisfy for all i ∈

{1, 2, ..., n} k ∈ N ∩ (0, L) that:

xi,j = Multli,ja (Wi,jxi,j−1 + bi,j) (4.3.13)

Note that (4.3.12) demonstrates that I (⊟n
i=1νi) = α0 and O (⊟n

i=1νi) = αL. This and Item(ii)

of Lemma 4.1.6, and the fact that for all i ∈ {1, 2, ..., n}it is the case that I(νi) = li,0 and

85

O(νi) = li,L ensures that:

Ia (⊟n
i=1) ∈ C (Rα0 ,RαL) = C

R

n
i=1 li,0 ,R

n
i=1 li,L

= C

R

n
i=1 I(νi),R

n
i=1 O(νi)

This proves the lemma.

4.3.2 Stacking of ANNs of Unequal Depth

We will often encounter neural networks that we want to stack but have unequal depth.

Definition 4.3.1 only deals with neural networks of the same depth. We will facilitate this

situation by introducing a form of padding for our shorter neural network. Hence, they come

out to the same length before stacking them. This padding will be via the tunneling neural

network, as shown below.

Definition 4.3.9 (Identity Neural Network). Let d ∈ N. We will denote by Idd ∈ NN the

neural network satisfying for all d ∈ N that:

(i)

Id1 =

1

−1

 ,

0

0

1 − 1

,

0

 ∈

R2×1 × R2

×

R1×2 × R1

(4.3.14)

(ii)

Idd = ⊟d
i=1 Id1 (4.3.15)

For d > 1.

Remark 4.3.10. We will discuss some properties of Idd in Section 5.2.

86

ν1

ν2Tun

Figure 4.2: Diagrammmatic representation of the stacking of unequal depth neural networks

Definition 4.3.11 (The Tunneling Neural Network). We define the tunneling neural net-

work, denoted as Tunn for n ∈ N and d ∈ N by:

Tund
n =

AffId,0 : n = 1

Idd : n = 2

•n−2 Idd n ∈ N ∩ [3,∞)

(4.3.16)

We will drop the requirement for d and Tunn by itself will be used to denote Tun1
n.

Remark 4.3.12. We will discuss some properties of the Tund
n network in Section 5.2.

Definition 4.3.13. Let n ∈ N, and ν1, ν2, ..., νn ∈ NN. We will define the stacking of unequal

length neural networks, denoted n
i=1νi as the neural network given by:

n
i=1νi = ⊟n

i=1

Tunmaxi{D(νi)}+1−D(νi) •νi

(4.3.17)

Diagrammatically, this can be thought of as:

Lemma 4.3.14. Let ν1, ν2 ∈ NN. It is then the case that:

P (ν1 ν2) 2 · (max {P (ν1) ,P (ν2)})2 (4.3.18)

Proof. This is a straightforward consequence of Lemma 4.3.5.

87

4.4 Affine Linear Transformations as ANNs and Their

Properties.

Affine neural networks present an important class of neural networks. By virtue of them

being only one layer deep, they may be instantiated with any activation function whatsoever

and still retain their affine transformative properties, see Definition 4.1.4. In addition, when

composing, they are subsumed into the function being somposed to, i.e. they do not change

the depth of a neural network once composed into it, see Lemma 4.2.5.

Definition 4.4.1. Let m,n ∈ N, W ∈ Rm×n, b ∈ Rm.We denote by AffW,b ∈ (Rm×n × Rm) ⊊

NN the neural network given by AffW,b = ((W, b)).

Lemma 4.4.2. Let m,n ∈ N, W ∈ Rm×n, b ∈ Rm. It is then the case that:

(i) L(AffW,b) = (n,m) ∈ N2.

(ii) for all a ∈ C(R,R) it is the case that Ia(AffW,b) ∈ C(Rn,Rm)

(iii) for all a ∈ C(R,R), x ∈ Rn we have (Ia(AffW,b))(x) = Wx+ b

Proof. Note that (i) is a consequence of Definition 4.1.2 and 4.4.1. Note next that AffW,b =

(W, b) ∈ (Rm×n × Rm) ⊊ NN. Note that (4.1.10) then tells us that Ia(AffW,b) = Wx + b

which in turn proves (ii) and (iii)

Remark 4.4.3. Given W ∈ Rm×n, and b ∈ Rm×1, it is the case that according to Definition

(4.1.3) we have: P(AffW,b) = m× n+m

Remark 4.4.4. For an R implementation see Listing 8.6

Lemma 4.4.5. Let ν ∈ NN. It is then the case that:

(i) For all m ∈ N, W ∈ Rm×O(ν)

L(AffW,B •ν) =

W0(ν),W1(ν), ...,WD(ν)−1(ν),m

∈ ND(ν)+1 (4.4.1)

88

(ii) For all a ∈ C(R,R), m ∈ N, W ∈ Rm×O(ν), B ∈ Rm, we have that Ia(AffW,B •ν) ∈

C

RI(ν),Rm

.

(iii) For all a ∈ C(R,R), m ∈ N, W ∈ Rm×O(ν), B ∈ Rm, x ∈ RI(ν) that:

(I (AffW,b •ν)) (x) = W (Ia (ν)) (x) + b (4.4.2)

(iv) For all n ∈ N, W ∈ RI(ν)×n, b ∈ RI(ν) that:

L(ν • AffW,b) =

n,W1(ν),W2(ν), ...,WD(ν)(ν)

∈ ND(ν)+1 (4.4.3)

(v) For all a ∈ C(R,R), n ∈ N, W ∈ RI(ν)×n, b ∈ RI(ν) that Ia (ν • AffW,b) ∈ C

Rn,RO(ν)

and,

(vi) For all a ∈ C(R,R), n ∈ N, W ∈ RI(ν)×n, b ∈ RI(ν), x ∈ Rn that:

(Ia (ν • AffW,b)) (x) = (Ia (ν)) (Wx+ b) (4.4.4)

Proof. From Lemma 4.4.2 we see that Ia(AffW,b) ∈ C(Rn,Rm) given by Ia(AffW,b) = Wx+ b.

This and Lemma 4.2.5 prove (i)− (vi).

Corollary 4.4.5.1. Let m,n ∈ N, and W ∈ Rm×n and b ∈ Rm. Let ν ∈ NN. It is then the

case that:

(i) for all AffW,b ∈ NN with I (AffW,b) = O (ν) that:

P (AffW,b •ν)

max

1,

O (AffW,b)

lL

P (ν) (4.4.5)

(ii) for all AffW,b ∈ NN with O (AffW,b) = I (ν) that:

P (ν • AffW,b)

max

1,

I (AffW,b) + 1

I (ν) + 1

P (ν) (4.4.6)

89

Proof. Let it be the case that L (ν) = (l0, l1, ..., lL) for l0, l1, ..., lL, L ∈ N. Lemma 4.4.5, Item

(i), and Lemma 4.2.5 then tells us that:

P (AffW,b •ν) (4.4.7)

=

L−1

m=1

lm (lm−1 + 1)

+ O (AffW,b) (lL−1 + 1)

=

L−1

m=1

lm (lm−1 + 1)

+

O (AffW,b)

lL

lL (lL−1 + 1)

max

1,

O(AffW,b)

lL

L−1

m=1

lm (lm−1 + 1)

+

max

1,

O (AffW,b)

lL

lL (lL−1 + 1)

=

max

1,

O (AffW,b)

lL

 L

m=1

lm (lm−1 + 1)

=

max

1,

O (AffW,b)

lL

P (ν)

and further that:

P (ν • AffW,b) (4.4.8)

=

L

m=2

lm (lm−1 + 1)

+ l1 (I (AffW,b) + 1)

=

L

m=2

lm (lm−1 + 1)

+

I (AffW,b) + 1

l0 + 1

l1 (l0 + 1)

max

1,

I(AffW,b) + 1

l0 + 1

 L

m=2

lm (lm−1 + 1)

+

max

1,

I (AffW,b) + 1

l0 + 1

l1 (l0 + 1)

=

max

1,

I (AffW,b) + 1

l0 + 1

 L

m=1

lm (lm−1 + 1)

=

max

1,

I (AffW,b) + 1

I (ν) + 1

P (ν)

This completes the proof of the lemma.

Lemma 4.4.6. Let a1, a2 be two affine neural networks as defined in Definition 4.4.1. It is

then the case that a1 ⊟ a2 is also an affine neural network

Proof. This follows straightforwardly from Definition 4.3.1, where, given that a1 = ((W1, b1)),

and a2 = ((W2, b2)), their stackings is the neural network ((diag (W1,W2) , b1 ⌢ b2)), which

is clearly an affine neural network.

90

4.5 Sums of ANNs of Same End-widths

Definition 4.5.1 (The Cpyn,k Network). We define the neural network, Cpyn,k ∈ NN for

n, k ∈ N as the neural network given by:

Cpyn,k = Aff
[Ik Ik · · · Ik]T

n−many

,0nk

(4.5.1)

Where k represents the dimensions of the vectors being copied and n is the number of copies

of the vector being made.

Remark 4.5.2. See Listing 8.6.

Lemma 4.5.3. Let n, k ∈ N and let Cpyn,k ∈ NN, it is then the case for all n, k ∈ N that:

(i) D

Cpyn,k

= 1

(ii) P

Cpyn,k

= nk2 + nk

Proof. Note that (i) is a consequence of Definition 4.4.1, and (ii) follows from the structure

of Cpyn,k.

Definition 4.5.4 (The Sumn,k Network). We define the neural network Sumn,k for n, k ∈ N

as the neural network given by:

Sumn,k = Aff[Ik Ik · · · Ik]
n−many

,0k
(4.5.2)

Where k represents the dimensions of the vectors being added and n is the number of vectors

being added.

Remark 4.5.5. See again, Listing 8.6

Lemma 4.5.6. Let n, k ∈ N and Sumn,k ∈ NN, it is then the case for all n, k ∈ N that:

(i) D (Sumn,k) = 1

91

(ii) P (Sumn,k) = nk2 + k

Proof. (i) is a consequence of Definition 4.4.1 and (ii) follows from the structure of Sumn,k.

Definition 4.5.7 (Sum of ANNs of the same depth and same end widths). Let u, v ∈ Z with

u v. Let νu, νu+1, ..., νv ∈ NN satisfy for all i ∈ N∩ [u, v] that D(νi) = D(νu), I(νi) = I(νu),

and O(νi) = O(νu). We then denote by ⊕n
i=uνi or alternatively νu⊕ νu+1⊕ . . .⊕ νv the neural

network given by:

⊕v
i=uνi :=

Sumv−u+1,O(ν2) • [⊟v

i=uνi] • Cpy(v−u+1),I(ν1)

(4.5.3)

Remark 4.5.8. For an R implementation, see Listing 8.9.

4.5.1 Neural Network Sum Properties

Lemma 4.5.9. Let ν1, ν2 ∈ NN satisfy that D(ν1) = D(ν2) = L, I(ν1) = I(ν2), and O(ν1) =

O(ν2), and L(ν1) = (l1,1, l1,2, ...l1,L) and L (ν2) = (l2,1, l2,2, ..., l2,L) it is then the case that:

P (ν1 ⊕ ν2) = P

Aff[IO(ν2)
IO(ν2)],0O(ν2)

• [ν1 ⊟ ν2] • Aff
[II(ν1) II(ν1)]

T
,02·I(ν1)

(4.5.4)

 1

2
(P (ν1) + P (ν2))

2

Proof. Note that by Lemma 4.3.5 we have that:

P (ν1 ⊟ ν2) =
1

2
(P (ν1) + P (ν2))

2 (4.5.5)

Note also that since Cpy and Sum are affine neural networks, from Corollary 4.4.5.1 we get

92

that:

P

[ν1 ⊟ ν2] • Cpy2,I(ν1)

 max

1,

I (ν1) + 1

2 I (ν1) + 1

1

2
(P (ν1) + P (ν2))

2

=
1

2
(P (ν1) + P (ν2))

2 (4.5.6)

and further that:

P

Sum2,O(ν1⊟ν2) • [ν1 ⊟ ν2] • Cpy2,I(ν1)

max

1,

O (AffW,b)

2O (ν1)

1

2
(P (ν1) + P (ν2))

2

=
1

2
(P (ν1) + P (ν2))

2 (4.5.7)

Corollary 4.5.9.1. Let n ∈ N. Let ν1, ν2, ..., νn ∈ NN satisfy that L (ν1) = L (ν2) = · · · =

L (νn). It is then the case that:

P

n

i=1

νi

 n2 P (ν1) (4.5.8)

Proof. Let L (ν1) = (l0, l1, ..., lL) where for all i ∈ {0, 1, ..., L} it is the case that li, L ∈ N.

Corollary 4.3.5.1 then tells us that:

P (⊟n
i=1νi) n2 P (νi) (4.5.9)

Then from Corollary 4.4.5.1, and (4.5.6) we get that:

P

[⊟n

i=1νi] • Cpy2,I(ν1)

 n2 P (ν1) (4.5.10)

And further that:

P

Sum2,O(⊟n
i=1νi)

• [⊟n
i=1νi] • Cpy2,I(ν1)

 n2 P (ν1) (4.5.11)

93

Lemma 4.5.10. Let ν1, ν2 ∈ NN satisfy that D(ν1) = D(ν2) = L, I(ν1) = I(ν2), and O(ν1) =

O(ν2), and L(ν1) = (l1,1, l1,2, ...l1,L) and L (ν2) = (l2,1, l2,2, ..., l2,L) it is then the case that:

D (ν1 ⊕ ν2) = L (4.5.12)

Proof. Note that D

Cpyn,k

= 1 = D (Sumn,k) for all n, k ∈ N. Note also that D (ν1 ⊟ ν2) =

D (ν1) = D (ν2) and that for ν, µ ∈ NN it is the case that D (ν • µ) = D (ν)+D (µ)−1. Thus:

D (ν1 ⊕ ν1) = D (ν1 ⊕ ν2) = D

Aff[IO(ν2)
IO(ν2)],0O(ν2)

• [ν1 ⊟ ν2] • Aff
[II(ν1) II(ν1)]

T
,02·I(ν1)

= L

Lemma 4.5.11. Let ν1, ν2 ∈ NN, such that D(ν1) = D(ν2) = L, I(ν1) = I(ν2) = l0, and

O(ν1) = O(ν2) = lL. It is then the case that I(ν1 ⊕ ν2) = I(ν2 ⊕ ν1), i.e., the instantiated

sum of ANNs of the same depth and same end widths is commutative.

Proof. Let ν1 = ((W1, b1), (W2, b2), ..., (WL, bL)) and let ν2 = ((W ′
1, b

′
1), (W

′
2, b

′
2), ..., (W

′
L, b

′
L)).

Note that Definition 4.3.1 then tells us that:

ν1 ⊟ ν2 =

W1 0

0 W ′
1

 ,

b1

b′1

 ,

W2 0

0 W ′
2

 ,

b2

b′2

 , ...,

WL 0

0 W ′
L

 ,

bL

b′L

94

Note also that by Claims ?? and ?? and Definition 4.4.1 we know that:

Aff
[II(ν2) II(ν2)]

T
,02 I(ν2),1

=

II(ν2)

II(ν2)

 , 02 I(ν2),1

 (4.5.13)

and:

Aff[IO(ν1)
IO(ν1)],02 O(ν1),1

=

IO(ν1) IO(ν1)

, 02O(ν1),1

(4.5.14)

Applying Definition 4.2.1, specifically the second case, (4.5.3) and (??) yields that:

[ν1 ⊟ ν2] • Aff
[II(ν2) II(ν2)]

T
,02 I(ν2),1

=

W1 0

0 W ′
1

II(ν1)

II(ν1)

 ,

b1

b′1

 ,

W2 0

0 W ′
2

 ,

b2

b′2

 , ...,

WL 0

0 W ′
L

 ,

bL

b′L

=

W1

W ′
1

 ,

b1

b′1

 ,

W2 0

0 W ′
2

 ,

b2

b′2

 , ...,

WL 0

0 W ′
L

 ,

bL

b′L

Applying Claim ?? and especially the third case of Definition 4.2.1 to to the above then

gives us:

Aff[IO(ν1)
IO(ν1)],0

• [ν1 ⊟ ν2] • Aff
[II(ν2) II(ν2)]

T
,0
=

W1

W ′
1

 ,

B1

B′
1

 ,

W2 0

0 W ′
2

 ,

b2

b′2

 , ...,

IO(ν2) IO(ν2)

WL 0

0 W ′
L

 ,

IO(ν2) IO(ν2)

bL

b′L

=

W1

W ′
1

 ,

b1

b′1

 ,

W2 0

0 W ′
2

 ,

b2

b′2

 , ...,

WL W ′

L

, bL + b′L

(4.5.15)

95

Now note that:

ν2 ⊟ ν1 =

W ′

1 0

0 W1

 ,

b′1

b1

 ,

W ′

2 0

0 W2

 ,

b′2

b2

 , ...,

W ′

L 0

0 WL

 ,

b′L

bL

And thus:

Aff[IO(ν2)
IO(ν2)],0

• [ν2 ⊟ ν1] • Aff
[II(ν1) II(ν1)]

T
,0

=

W ′

1

W1

 ,

b′1

b1

 ,

W ′

2 0

0 W2

 ,

b′2

b2

 , ...,

W ′

L WL

,

b′L + bL

(4.5.16)

Let x ∈ RI(ν1), note then that:

W1

W ′
1

 x+

b1

b′1

 =

W1x+ b1

W ′
1x+ b′1

The full instantiation of (4.5.15) with activation function a ∈ C (R,R) is then given by:

WL W ′

L

a (WL−1(... a(W2 (a (W1x+ b1)) + b2) + ...) + bL−1)

a

W ′

L−1(... a(W
′
2 (a (W

′
1x+ b′1)) + b′2) + ...) + b′L−1

+ bL + b′L (4.5.17)

The full instantiation of (4.5.16) is then given by:

W ′

L WL

a

W ′

L−1(... a(W
′
2 (a (W

′
1x+ b′1)) + b′2) + ...) + b′L−1

a (WL−1(... a(W2 (a (W1x+ b1)) + b2) + ...) + bL−1)

+ bL + b′L (4.5.18)

Since (4.5.27) and (4.5.18) are the same this proves that ν1 ⊕ ν2 = ν2 ⊕ ν1.

Remark 4.5.12. This is a special case of (Grohs et al., 2022, Lemma 3.28).

96

Lemma 4.5.13. Let l0, l1, ..., lL ∈ N. Let ν ∈ NN with L(ν) = (l0, l1, ..., lL). There then

exists a neural network Zrl0,l1,...,lL ∈ NN such that I(ν ⊕ Zrl0,l1,...,lL) = I(Zrl0,l1,...,lL ⊕ν) = ν.

Proof. Let ν = ((W1, b1) , (W2, b2) , ..., (WL, bL)), where W1 ∈ Rl1×l0 , b1 ∈ Rl1 , W2 ∈ Rl2×l1 ,

b2 ∈ Rl2 , ...,WL ∈ RlL×lL−1 , bL ∈ RlL . Denote by Zrl0,l1,...,lL the neural network which for all

l0, l1, ..., lL ∈ N is given by:

Zrl0,l1,...,lL =

(0l1,l0 , 0l1) , (0l2,l1 , 0l2) , ...,

0lL,lL−1

, 0lL

(4.5.19)

Thus, by (4.5.27), we have that:

I(Zrl0,l1,...,lL ⊕ν) =

0 WL

0

WL−1(...(W2 (W1x+ b1) + b2) + ...) + bL−1

+ bL

= WL(WL−1(...W2 (W1x+ b1) + b2) + ...) + bL−1) + bL (4.5.20)

I(ν ⊕ Zrl0,l1,...,lL) =

WL 0

WL−1(...(W2 (W1x+ b1) + b2) + ...) + bL−1

0

+ bL

= WL(WL−1(...W2 (W1x+ b1) + b2) + ...) + bL−1) + bL (4.5.21)

And finally:

I(ν) = WL(WL−1(...W2 (W1x+ b1) + b2) + ...) + bL−1) + bL (4.5.22)

This completes the proof.

Lemma 4.5.14. Given neural networks ν1, ν2, ν3 ∈ NN with fixed depth L, fixed starting

width of l0 and fixed finishing width of lL, it is then the case that I ((ν1 ⊕ ν2)⊕ ν3) =

I (ν1 ⊕ (ν2 ⊕ ν3)), i.e. the instantiation with a continuous activation function of ⊕ is asso-

ciative.

97

Proof. Let ν1 = ((W 1
1 , b

1
1) , (W

1
2 , b

1
2) , ..., (W

1
L, b

1
L)), ν2 = ((W 2

1 , b
2
1) , (W

2
2 , b

2
2) , ..., (W

2
L, b

2
L)),

and ν3 = ((W 3
1 , b

3
1) , (W

3
2 , b

3
2) , ..., (W

3
L, b

3
L)). Then (4.5.27) tells us that:

I(ν1 ⊕ ν2) =

W 1

L W 2
L

W 1

L−1 (... (W
1
2 (W

1
1 x+ b11) + b12) + ...) + b1L−1

W 2
L−1 (... (W

2
2 (W

2
1 x+ b21) + b22) + ...) + b2L−1

+ b1L + b2L

And thus:

I ((ν1 ⊕ ν2)⊕ ν3) (x) =

I

I W 3

L

W 1

L W 2
L

W 1

L−1 (... (W
1
2 (W

1
1 x+ b11) + b12) + ...) + b1L−1

W 2
L−1 (... (W

2
2 (W

2
1 x+ b21) + b22) + ...) + b2L−1

+ b1L + b2L

W 3
L−1 (... (W

3
2 (W

3
1 x+ b31) + b32) + ...) + b3L−1

+ b3L

(4.5.23)

Similarly, we have that:

Ia (ν1 ⊕ (ν2 ⊕ ν3)) (x) =

I

W 1

L I

W 1
L−1 (... (W

1
2 (W

1
1 x+ b11) + b12) + ...) + b1L−1

W 2

L W 3
L

W 2

L−1 (... (W
2
2 (W

2
1 x+ b21) + b22) + ...) + b2L−1

W 3
L−1 (... (W

3
2 (W

3
1 x+ b31) + b32) + ...) + b3L−1

+ b2L + b3L

+ b1L

(4.5.24)

Note that the associativity of matrix-vector multiplication ensures that (4.5.23) and (4.5.24)

are the same.

Definition 4.5.15 (Commutative Semi-group). A set X equipped with a binary operation ∗

is called a monoid if:

(i) for all x, y, z ∈ X it is the case that (x ∗ y) ∗ z = x ∗ (y ∗ z) and

(ii) for all x, y ∈ X it is the case that x ∗ y = y ∗ x

98

Theorem 4.5.16. For fixed depth and layer widths, the set of instantiated neural networks

ν ∈ NN form a commutative semi-group under the operation of ⊕.

Proof. This is a consequence of Lemmas 4.5.11, 4.5.13, and 4.5.14.

Lemma 4.5.17. Let ν, µ ∈ NN, with the same length and end-widths. It is then the case

that Ia (ν ⊕ µ) = Ia (ν) + Ia (µ).

Proof. Let ν = ((W1, b1) , (W2, b2) , ..., (WL, bL)) and µ = ((W ′
1, b

′
1) , (W

′
2, b

′
2) , ..., (W

′
L, b

′
L)).

Note now that by (4.5.27) we have that:

Ia (ν) = WL a (WL−1(... a(W2 a (W1x+ b1) + b2) + ...) + bL−1) + bL (4.5.25)

And:

Ia (µ) = W ′
L a

W ′

L−1(... a(W
′
2 a (W

′
1x+ b′1) + b′2) + ...) + b′L−1

+ b′L (4.5.26)

In addition, because of the block matrix structure of the weights of our summands:

Ia (ν ⊕ µ) (x) =

WL W ′

L

a (WL−1(... a(W2 a (W1x+ b1) + b2) + ...) + bL−1)

a

W ′

L−1(... a(W
′
2 a (W

′
1x+ b′1) + b′2) + ...) + b′L−1

+ bL + b′L

= WL a (WL−1(... a(W2 a (W1x+ b1) + b2) + ...) + bL−1) + bL

+W ′
L a

W ′

L−1(... a(W
′
2 a (W

′
1x+ b′1) + b′2) + ...) + b′L−1

+ b′L

= Ia (ν) (x) + Ia (µ) (x) (4.5.27)

This proves the lemma.

Lemma 4.5.18. Let n ∈ N. Let ν1, ν2, ..., νn ∈ NN. It is then the case that:

Ia

n

i=1

νi

=

n

i=1

Ir (νi) (4.5.28)

99

Proof. This is the consequence of a finite number of applications of Lemma 4.5.17. This

proves the Lemma.

4.5.2 Sum of ANNs of Unequal Depth But Same End-widths

Definition 4.5.19 (Sum of ANNs of different depths but same end widths). Let n ∈ N. Let

ν1, ν2, ..., νn ∈ NN such that they have the same end widths. We define the neural network

♦+n
i=1νi ∈ NN, the neural network sum of neural networks of unequal depth as:

♦+n
i=1νi :=

Sumn,O(ν2) • [

v
i=uνi] • Cpyn,I(ν1)

(4.5.29)

Lemma 4.5.20. Let n ∈ N. Let ν1, ν2 ∈ NN and assume also that they have the same

end-widths. It is then the case that:

Ir (ν1♦+ν2) (x) = Ir (ν1) + Ir (ν2) (4.5.30)

Proof. Note that Lemma 5.2.3 tellls us that for all n ∈ N it is the case that Ir (Tunn) (x) = x.

This combined with Lemma 4.2.5 then tells us that for all n ∈ N it is the case for all ν ∈ NN

that:

Ir (Tunn •ν) (x) = Ir (ν) (x) (4.5.31)

Thus, this means that:

Ir (ν1♦+ν2) (x) =

Sumn,O(ν2) • [ν1 ν2] • Cpyn,I(ν1)

= Ir (ν1) (x) + Ir (ν2) (x) (4.5.32)

This then proves the lemma.

Lemma 4.5.21. Let n ∈ N. Let ν1, ν2, ..., νn ∈ NN. Let it also be the case that they have

100

the same end-widths. It is then the case that:

Ir (♦+n
i=1νi) (x) =

n

i=1

Ir (νi) (x) (4.5.33)

Proof. This is a consequence of a finite number of applications of Lemma 4.5.20. This proves

the Lemma.

4.6 Linear Combinations of ANNs and Their Proper-

ties

Definition 4.6.1 (Scalar left-multiplication with an ANN). Let λ ∈ R. We will denote

by (·) ⊲ (·) : R × NN → NN the function that satisfy for all λ ∈ R and ν ∈ NN that

λ ⊲ ν = AffλIO(ν),0 •ν.

Definition 4.6.2 (Scalar right-multiplication with an ANN). Let λ ∈ R. We will denote

by (·) ⊳ (·) : NN×R → NN the function satisfying for all ν ∈ NN and λ ∈ R that ν ⊳ λ =

ν • AffλII(ν),0.

Remark 4.6.3. Note that whereas λ ∈ R, the actual neural network in question, properly

speaking, must always be referred to as λ⊲ or ⊳λ, and we shall do so whenever this comes

up in any neural network diagrams. This is by analogy with, for example, logλ or λ
√ for

λ ∕= 0, where the argument λ is generally always written except for λ = 10 for the logarithm

or λ = 2 for the root.

Remark 4.6.4. For an R implementation, see Listing 8.8

Lemma 4.6.5. Let λ ∈ R and ν ∈ NN. it is then the case that:

(i) L(λ ⊲ ν) = L(ν)

(ii) For all a ∈ C(R,R) that Ia(λ ⊲ ν) ∈ C

RI(ν),RO(ν)

101

(iii) For all a ∈ C(R,R), and x ∈ RI(ν) that:

Ia (λ ⊲ ν) = λ Ia(ν) (4.6.1)

Proof. Let ν ∈ NN such that L(ν) = (l1, l2, ..., lL) and D(ν) = L where l1, l2, ..., lL, L ∈ N.

Then Item (i) of Lemma 4.4.2 tells us that:

L

AffIO(ν),0

= (O(ν),O(ν)) (4.6.2)

This and Item (i) from Lemma 4.4.5 gives us that:

L (λ ⊲ ν) = L

AffλIO(ν),0 •ν

= (l0, l1, ..., lL−1,O(ν)) = L(ν) (4.6.3)

Which proves (i). Item (ii)—(iii) of Lemma 4.4.2 then prove that for all a ∈ C(R,R),

x ∈ RI(ν), that Ia (λ ⊲ ν) ∈ C

RI(ν),O(ν)

given by:

(Ia (λ ⊲ ν)) (x) =

Ia

AffλIO(ν),0

•ν

(x)

= λIO(ν) ((Ia (ν)) (x)) = λ ((Ia (ν)) (x)) (4.6.4)

This establishes Items (ii)—(iii), completing the proof.

Lemma 4.6.6. Let λ ∈ R and ν ∈ NN. It is then the case that:

(i) L(ν ⊳ λ) = L(ν)

(ii) For all a ∈ C (R,R) that Ia(ν ⊳ λ) ∈ C

RI(ν),RO(ν)

(iii) For all a ∈ C (R,R), and x ∈ RI(ν) that:

Ia (ν ⊳ λ) = Ia(ν) (λx) (4.6.5)

102

Proof. Let ν ∈ NN such that L(ν) = (l1, l2, ..., lL) and D(ν) = L where B1, l2, ..., lL, L ∈ N.

Then Item (i) of Lemma 4.4.2 tells us that:

L

AffII(ν),0

= (I(ν), I(ν)) (4.6.6)

This and Item (iv) of Lemma 4.4.5 tells us that:

L(ν ⊳ λ) = L

ν • AffλII(ν)

= (I(ν), l1, l2, ..., lL) = L(ν) (4.6.7)

Which proves (i). Item (v)—(vi) of Lemma 4.4.5 then prove that for all a ∈ C(R,R),

x ∈ RI(ν) that Ia (ν ⊳ λ) ∈ C

RI(ν),O(ν)

given by:

(Ia (ν ⊳ λ)) (x) =

Ia

ν • AffλII(ν),0

(x)

= (Ia (ν))

AffλII(ν)

(x)

= (Ia (ν)) (λx) (4.6.8)

This completes the proof.

Lemma 4.6.7. Let ν, µ ∈ NN with the same length and end-widths, and λ ∈ R. It is then

the case, for all a ∈ C (R,R) that:

Ia ((ν ⊕ µ) ⊳ λ) (x) = Ia ((ν ⊳ λ)⊕ (µ ⊳ λ)) (x)

= (Ia (ν)) (λx) + (Ia (µ)) (λx)

Proof. Let ν = ((W1, b1) , (W2, b2) , ..., (WL, bL)) and µ = ((W ′
1, b

′
1) , (W

′
2, b

′
2) , ..., (W

′
L, b

′
L)).

103

Then from Lemma 4.6.6 and (4.5.27) we have that:

(Ia (ν ⊕ µ) ⊳ λ) (x)

= (Ia (ν ⊕ µ)) (λx)

=

WL W ′

L

a (WL−1(...(a (W2 (a (W1λx+ b1)) + b2)) + ...) + bL−1)

a

W ′

L−1(...(a (W
′
2 (a (W

′
1λx+ b′1)) + b′2)) + ...) + b′L−1

+ bL + b′L

Note that:

(Ia (ν)) (λx) = WL · a (WL−1(...(a (W2 (a (W1λx+ b1)) + b2)) + ...) + bL−1) + bL (4.6.9)

and that:

(Ia (µ)) (λx) = W ′
L · a

W ′

L−1(...(a (W
′
2 (a (W

′
1λx+ b′1)) + b′2)) + ...) + b′L−1

+ b′L (4.6.10)

This, together with Lemma 4.5.17, completes the proof.

Lemma 4.6.8. Let ν, µ ∈ NN with the same length and end-widths, and λ ∈ R. It is then

the case, for all a ∈ C (R,R) that:

Ia (λ ⊲ (ν ⊕ µ)) (x) = Ia ((λ ⊲ ν)⊕ (λ ⊲ µ)) (x)

= λ · (Ia (ν)) (x) + λ · (Ia (µ)) (x)

Proof. Let ν = ((W1, b1) , (W2, b2) , ..., (WL, bL)) and µ = ((W ′
1, b

′
1) , (W

′
2, b

′
2) , ..., (W

′
L, b

′
L)).

104

Then from Lemma 4.6.6 and (4.5.27) we have that:

Ia (λ (ν ⊕ µ)) (x)

= Ia (λ ⊲ (ν ⊕ µ)) (λx)

= λ ·

WL W ′

L

Ir (WL−1(...(Ir (W2 (Ir (W1x+ b1)) + b2)) + ...) + bL−1)

Ir

W ′

L−1(...(Ir (W
′
2 (Ir (W

′
1x+ b′1)) + b′2)) + ...) + b′L−1

+ bL + b′L

Note that:

λ · (Ia (ν)) (x) = WL · Ir (WL−1(...(Ir (W2 (Ir (W1x+ b1)) + b2)) + ...) + bL−1) + bL (4.6.11)

and that:

λ · (Ia (µ)) (x) = W ′
L · Ir

W ′

L−1(...(Ir (W
′
2 (Ir (W

′
1x+ b′1)) + b′2)) + ...) + b′L−1

+ b′L

(4.6.12)

This, together with Lemma 4.5.17, completes the proof.

Lemma 4.6.9. Let u, v ∈ Z with u v and n = v − u + 1. Let λu,λu+1, ...,λv ∈ R. Let

νu, νu+1, ..., νv, µ ∈ NN, Bu, Bu+1, ..., Bv ∈ RI(µ) satisfy that L(νu) = L(νu+1) = ... = L(νv)

and further that:

µ =

⊕v

i=u

ci ⊲

νi • AffII(ν1),Bi

(4.6.13)

It then holds:

(i) That:

L(µ) =

I(νu),
v

i=u

W1 (νu) ,
v

i=u

W2 (νu) , ...,
v

i=u

WD(νu)−1 (νu) ,O(νu)

=

I(νu), nW1(νu), nW2(νu), ..., nWD(νu−1),O(νu)

105

(ii) that for all a ∈ C (R,R), that Ia(µ) ∈ C

RI(νu),RO(νu)

, and

(iii) for all a ∈ C (R,R) and x ∈ RI(νu) that:

(Ia (µ)) (x) =
v

i=u

ci (Ia (νi)) (x+Bi) (4.6.14)

Proof. Assume hypothesis that L(νu) = L(νu+1) = ... = L(νv). Note that Item (i) of Lemma

4.4.2 gives us that for all i ∈ {u, u+ 1, ..., v} that:

L

AffII(νi),Bi

= L

AffII(νu)

= (I (νu) , I (νu)) ∈ N2 (4.6.15)

This together with Lemma 4.2.5, Item (i), assures us that for all i ∈ {u, u+1, ..., v} it is the

case that:

L

νi • AffII(νi),Bi

=

I(νu),W1 (νu) ,W2 (νu) , ...,WD(νu) (νu)

(4.6.16)

This and (Grohs et al., 2022, Lemma 3.14, Item (i)) tells us that for all i ∈ {u, u + 1, ..., v}

it is the case that:

L

ci ⊲

νi • AffII(νi),Bi

= L

νi • AffII(νi),Bi

(4.6.17)

This, (4.6.16), and (Grohs et al., 2022, Lemma 3.28, Item (ii)) then yield that:

L(µ) = L

⊕v

i=u

ci ⊲

νi • AffII(νi),Bi

=

I(νu),

v

i=u

W1 (νu) ,
v

i=u

W2 (νu) , ...,
v

i=u

WD(νu)−1 (νu) ,O (νu)

=

I(νu), nW1(νu), nW2(νu), ..., nWD(νu)−1(νu),O(νu)

(4.6.18)

This establishes item (i). Items (v) and (vi) from Lemma 4.4.5 tells us that for all i ∈ {u, u+

106

1, ..., v}, a ∈ C(R,R), x ∈ RI(νu), it is the case that Ia

νi • AffII(νi),Bi

∈ C

RI(νu),RO(νu)

and further that:

Ia

νi • AffII(νi),bi

(x) = (Ia (νi)) (x+ bi) (4.6.19)

This along with (Grohs et al., 2022, Lemma 3.14) ensures that for all i ∈ {u, u + 1, ..., v},

a ∈ C (R,R), x ∈ RI(νu), it is the case that:

Ia

ci ⊲

νi • AffII(νi),Bi

∈ C

RI(νu),RO(νu)

(4.6.20)

and:

Ia

ci ⊲

νi • AffII(νi),bi

(x) = ci (Ia (νi)) (x+ bi) (4.6.21)

Now observe that (Grohs et al., 2022, Lemma 3.28) and (4.6.17) ensure that for all a ∈

C (R,R), x ∈ RI(νu), it is the case that Ia (µ) ∈ C

RI(νu),RO(νu)

and that:

(Ia (µ)) (x) =

Ia

⊕v

i=u

ci ⊲

νi • AffII(νi),bi

(x)

=
v

i=u

Ia

ci ⊲

νi • AffII(νi),bi

(x)

=
v

i=u

ci (Ia (νi)) (x+ bi)

This establishes items (ii)--(iii); thus, the proof is complete.

Lemma 4.6.10. Let u, v ∈ Z with u v. Let λu,λu+1, ...,λv ∈ R. Let νu, νu+1, ..., νv, µ ∈

NN, Bu, Bu+1, ..., Bv ∈ RI(µ) satisfy that L(νu) = L(νu+1) = ... = L(νv) and further that:

µ =

⊕v

i=u

AffII(ν1),bi

•ν

⊳ ci

(4.6.22)

It then holds:

107

(i) That:

L(µ) =

I(νu),
v

i=u

W1 (νu) ,
v

i=u

W2 (νu) , ...,
v

i=u

WD(νu)−1 (νu) ,O(νu)

=

I(νu), nW1(νu), nW2(νu), ..., nWD(νu−1),O(νu)

(4.6.23)

(ii) that for all a ∈ C (R,R), that Ia(µ) ∈ C

RI(νu),RO(νu)

, and

(iii) for all a ∈ C (R,R) and x ∈ RI(νu) that:

(Ia (µ)) (x) =
v

i=u

(Ia (νi)) (cix+ bi) (4.6.24)

Proof. Assume hypothesis that L(νu) = L(νu+1) = ... = L(νv). Note that Item (i) of Lemma

4.4.2 gives us that for all i ∈ {u, u+ 1, ..., v} that:

L

AffII(νi),Bi

= L

AffII(νu)

= (I (νu) , I (νu)) ∈ N2 (4.6.25)

Note then that Lemma 4.2.5, Item (ii), tells us that for all i ∈ {u, u+ 1, ..., v} it is the case

that:

L

AffII(νi),Bi
•ν

=

I(νu),W1 (νu) ,W2 (νu) , ...,WD(νu) (νu)

(4.6.26)

This and Item (i) of Lemma 4.6.6 tells us that for all i ∈ {u, u+ 1, ..., v} it is the case that:

L

AffII(νi),bi
•ν

⊳ ci

= L

AffII(νi),bi

•ν

(4.6.27)

108

This, (4.6.26), and (Grohs et al., 2022, Lemma 3.28, Item (ii)) tell us that:

L(µ) = L

⊕v

i=u

AffII(νi),bi

•νi

⊳ ci

=

I(νu),

v

i=u

W1 (νu) ,
v

i=u

W2 (νu) , ...,
v

i=u

WD(νu)−1 (νu) ,O (νu)

=

I(νu), nW1(νu), nW2(νu), ..., nWD(νu)−1(νu),O(νu)

(4.6.28)

This establishes Item (i). Items (i) and (ii) from Lemma 4.4.5 tells us that for all i ∈ {u, u+

1, ..., v}, a ∈ C(R,R), x ∈ RI(νu), it is the case that Ia

νi • AffII(νi),Bi

∈ C

RI(νu),RO(νu)

and further that:

Ia

AffII(νi),bi

•νi

(x) = (Ia (νi)) (x) + bi (4.6.29)

This along with Lemma 4.6.6 ensures that for all i ∈ {u, u+1, ..., v}, a ∈ C (R,R), x ∈ RI(νu),

it is the case that:

Ia

AffII(νi),bi

•νi

⊳ ci

∈ C

RI(νu),RO(νu)

(4.6.30)

and:

Ia

AffII(νi),bi

•νi

⊳ ci

(x) = (Ia (νi)) (cix+ bi) (4.6.31)

Now observe that (Grohs et al., 2022, Lemma 3.28) and (??) ensure that for all a ∈ C (R,R),

109

x ∈ RI(νu), it is the case that Ia (µ) ∈ C

RI(νu),RO(νu)

and that:

(Ia (µ)) (x) =

Ia

⊕v

i=u

AffII(νi),bi

•νi

⊳ ci

(x) (4.6.32)

=
v

i=u

Ia

AffII(νi),bi

•νi

⊳ ci

(x) (4.6.33)

=
v

i=u

(Ia (νi)) (cix+ bi)

This establishes items (ii)—(iii); thus, the proof is complete.

Lemma 4.6.11. Let L ∈ N, u, v ∈ Z with u v. Let cu, cu+1, ..., cv ∈ R. νu, νu+1, ..., νv, µ ∈

NN, Bu, Bu+1, ..., Bv ∈ RI(νu), a ∈ C (R,R), satisfy for all j ∈ N∩ [u, v] that L = maxi∈N∩[u,v]

D(νi), I(νj) = I(νu), O(νj) = I(I) = O(I), H(I) = 1, Ia(I) = IR, and that:

µ = ♦+v
i=u,I

ci ⊲

νi • AffII(νi),,bi

(4.6.34)

We then have that:

(i) it holds that Ia(µ) ∈ C

RI(νu),RO(νu)

, and that,

(ii) it holds for all x ∈ RI(νu) that:

(Ia (µ)) (x) =
v

i=u

ci (Ia (νi)) (x+ bi) (4.6.35)

Proof. Note that Item(i) from Lemma 4.6.9 establish Item(i) and (4.5.25); in addition, items

(v) —(vi) from Lemma 4.4.5 tell us that for all i ∈ N ∩ [u, v], x ∈ RI(νu , it holds that

Ia

νi • AffII(νi),Bi

∈ C

RI(νu),RO(νu)

and further that:

Ia

νi • AffII(νi),Bi

(x) = (Ia (νi)) (x+ bk) (4.6.36)

This, Lemma 4.6.5 and (Grohs et al., 2023, Lemma 2.14, Item (ii)) show that for all i ∈

110

N ∩ [u, v], x ∈ RI(νu), it holds that:

Ia

EL,I

ci ⊲

νi • AffII(νi),bi

= Ia

ci ⊲

νi • AffII(νi),bi

∈ C

RI(νu),RO(νu)

(4.6.37)

and:

Ia

EL,I

ci ⊲

νi • AffII(νi),bi

(x) =

Ia

ci ⊲

νi • AffII(νi),bi

(x)

= ci (Ia (νi)) (x+ bi) (4.6.38)

This combined with (Grohs et al., 2022, Lemma 3.28) and (4.6.17) demonstrate that for all

x ∈ RI(νu) it holds that Ia (µ) ∈ C

RI(νu),RO(νu)

and that:

(Ia (µ)) (x) =

Ia

⊞v

i=u,I

ci ⊲

νi • AffII(νi)

(x)

=

Ia

⊕v

i=u EL,I

ci ⊲

νi • AffII(νi),bi

(x)

=
v

i=u

ci (Ia (νi)) (x+ bi) (4.6.39)

This establishes Items(ii)--(iii), thus proving the lemma.

Lemma 4.6.12. Let L ∈ N, u, v ∈ Z with u v. Let cu, cu+1, ..., cv ∈ R. νu, νu+1, ..., νv, µ, I ∈

NN, Bu, Bu+1, ..., Bv ∈ RI(νu), a ∈ C (R,R), satisfy for all j ∈ N ∩ [u, v] that L =

maxi∈N∩[u,v] D(νi), I(νj) = I(νu), O(νj) = I(I) = O(I), H(I) = 1, Ia(I) = IR, and that:

µ = ⊞v
i=u,I

AffII(νi),bi

•νi

⊳ ci

(4.6.40)

We then have:

111

(i) it holds that:

L(µ) =

I(νu),
v

i=u

W1 (EL,I (νi)) ,
v

i=u

W2 (EL,I (νi)) , ...,
v

i=u

WL−1 (EL,I (νi) ,O (νu))

(4.6.41)

(ii) it holds that Ia(µ) ∈ C

RI(νu),RO(νu)

, and that,

(iii) it holds for all x ∈ RI(νu) that:

(Ia (µ)) (x) =
v

i=u

(Ia (νi)) (cix+ bi) (4.6.42)

Proof. Note that Item(i) from Lemma 4.6.10 establish Item(i) and (4.5.25); in addition,

items (ii) and (iii) from Lemma 4.4.5 tell us that for all i ∈ N∩ [u, v], x ∈ RI(νu , it holds that

Ia

AffII(νi),Bi

•νi ∈ C

RI(νu),RO(νu)

and further that:

Ia

AffII(νi),Bi

•νi

(x) = (Ia (νi)) (x) + bk (4.6.43)

This, Lemma 4.6.6 and (Grohs et al., 2023, Lemma 2.14, Item (ii)) show that for all i ∈

N ∩ [u, v], x ∈ RI(νu), it holds that:

Ia

EL,I

AffII(νi),bi

•νi

⊳ ci

= Ia

AffII(νi),bi

•νi

⊳ ci

∈ C

RI(νu),RO(νu)

(4.6.44)

and:

Ia

EL,I

AffII(νi),bi

•νi

⊳ ci

(x) =

Ia

ci ⊲

νi • AffII(νi),bi

(x)

= (Ia (νi)) (cix+ bi) (4.6.45)

This and (Grohs et al., 2022, Lemma 3.28) and (4.6.27) demonstrate that for all x ∈ RI(νu)

112

it holds that Ia (µ) ∈ C

RI(νu),RO(νu)

and that:

(Ia (µ)) (x) =

Ia

⊞v

i=u,I

AffII(νi)

•νi

⊳ ci

(x)

=

Ia

⊕v

i=u EL,I

AffII(νi),bi

•νi

⊳ ci

(x)

=
v

i=u

(Ia (νi)) (cix+ bi) (4.6.46)

This completes the proof.

4.7 Neural Network Diagrams

Conceptually, it will be helpful to construct what are called ``neural network diagrams''.

They take inspiration from diagrams typically seen in the literature, for instance, Vaswani

et al. (2017), Arik and Pfister (2021), and Chollet (2017). They are constructed as follows.

Lines with arrows indicate the flow of data:
x

x

Named neural networks are always enclosed in boxes with serif fonts:

Affa,b

Where possible, we seek to label the arrows going in and going out of a boxed neural network

with the appropriate operations that take place:

Affa,b
ax+ b x

It is often more helpful to draw the arrows from right to left, as above.

Stacked neural networks are drawn in adjacent boxes.

113

Affa,b

Affc,d

ax+ b x

cx+ d x

For neural networks that take in two inputs and give out one output, we use two arrows

going in and one arrow going out:

Sum2,1

x

y

x+ y

For neural networks that take in one input and give out two outputs, we use one arrow going

in and two arrows going out:

Cpy1,2

x

x

x

Thus taking this all together the sum of neural networks Affa,b,Affc,d ∈ NN is given by:

Affa,b

Cpy

Affc,d

Sum

x

x

x

ax+ b

cx+ d

ax+ b+ cx+ d

114

Chapter 5

ANN Product Approximations

5.1 Approximation for Products of Two Real Numbers

We will build up the tools necessary to approximate ex via neural networks in the framework

described in the previous sections. While much of the foundation comes from, e.g., Grohs

et al. (2023) way, we will, along the way, encounter neural networks not seen in the literature,

such as the Tay, Pwr, Tun, and finally a neural network approximant for ex. For each of these

neural networks, we will be concerned with at least the following:

(i) whether their instantiations using the ReLU function (often just continuous functions)

are continuous.

(ii) whether their depths are bounded, at most polynomially, on the type of accuracy we

want, ε.

(iii) whether their parameter estimates are bounded at most polynomially on the type of

accuracy we want, ε.

(iv) The accuracy of our neural networks.

115

5.1.1 The squares of real numbers in [0, 1]

One of the most important operators we can

Definition 5.1.1 (The id Network). For all d ∈ N we will define the following set of neural

networks as ``activation neural networks'' denoted id as:

id = ((Id, 0d) , (Id, 0d)) (5.1.1)

Lemma 5.1.2. Let d ∈ N. It is then the case that:

(i) Ir (i4) ∈ C

Rd,Rd

.

(ii) L (id) = (d, d, d)

(iii) P (i4) = 2d2 + 2d

Proof. Item (i) is straightforward from the fact that for all d ∈ N it is the case that Ir (id) =

Id (Ir ([Id]∗) + 0d) + 0d. Item (ii) is straightforward from the fact that Id ∈ Rd×d. We realize

Item (iii) by observation.

Lemma 5.1.3. Let (ck)k∈N ⊆ R, (Ak)k∈N ∈ R4×4, B ∈ R4×1, (Ck)k∈N satisfy for all k ∈ N

that:

Ak =

2 −4 2 0

2 −4 2 0

2 −4 2 0

−ck 2ck −ck 1

B =

0

−1
2

−1

0

Ck =

−ck 2ck −ck 1

(5.1.2)

and that:

ck = 21−2k (5.1.3)

116

Let Φk ∈ NN, k ∈ N satisfy for all k ∈ [2,∞)∩N that Φ1 = (AffC1,0 •i4) •Affe4,B, that for all

d ∈ N, id = ((Id, 0d) , (Id, 0d)) and that:

Φk = (AffCk,0 •i4) •

AffAk−1,B •i4

• · · · • (AffA1,B •i4) • Affe4,B (5.1.4)

It is then the case that:

(i) for all k ∈ N, x ∈ R we have Ir (Φk) (x) ∈ C (R,R)

(ii) for all k ∈ N we have L (Φk) = (1, 4, 4, ..., 4, 1) ∈ Nk+2

(iii) for all k ∈ N, x ∈ R \ [0, 1] that (Ir (Φk)) (x) = r (x)

(iv) for all k ∈ N, x ∈ [0, 1], we have |x2 − (Ir (ξk)) (x)| 2−2k−2, and

(v) for al k ∈ N , we have that P (Φk) = 20k − 7

Proof. Let gk : R → [0, 1], k ∈ N be the functions defined as such, satisfying for all k ∈ N,

x ∈ R that:

g1 (x) =

2x : x ∈

0, 1

2

2− 2x : x ∈

1
2
, 1

0 : x ∈ R \ [0, 1]

(5.1.5)

gk+1 = g1(gk)

and let fk : [0, 1] → [0, 1], k ∈ N0 be the functions satisfying for all k ∈ N0, n ∈ {0, 1, ..., 2k−

1}, x ∈

n
2k
, n+1

2k

that fk(1) = 1 and:

fk(x) =

2n+ 1

2k

x− n2 + n

22k
(5.1.6)

and let rk = (rk,1, rk,2, rk,3, rk,4) : R → R4, k ∈ N be the functions which which satisfy for all

117

x ∈ R, k ∈ N that:

r1 (x) =

r1,1(x)

r2,1(x)

r3,1(x)

r4,1(x)

= r

x

x− 1
2

x− 1

x

(5.1.7)

rk+1 = Ak+1rk(x)

Note that since it is the case that for all x ∈ R that r(x) = max{x, 0}, (5.1.5) and (5.1.7)

shows that it holds for all x ∈ R that:

2r1,1(x)− 4r2,1(x) + 2r3,1(x) = 2 r(x)− 4 r

x− 1

2

+ 2 r (x− 1)

= 2max{x, 0}− 4max

x− 1

2
, 0

+ 2max{x− 1, 0}

= g1(x) (5.1.8)

Note also that combined with (5.1.6), the fact that for all x ∈ [0, 1] it holds that f0(x) =

x = max{x, 0} tells us that for all x ∈ R:

r4,1(x) = max{x, 0} =

f0(x) : x ∈ [0, 1]

max{x, 0} : x ∈ R \ [0, 1]
(5.1.9)

We next claim that for all k ∈ N, it is the case that:

(∀x ∈ R : 2r1,k(x)− 4r2,k(x) + 2r3,k(x) = g(x)) (5.1.10)

118

and that:

∀x ∈ R : r4,k(x) =

fk−1(x) : x ∈ [0, 1]

max{x, 0} : x ∈ R \ [0, 1]

 (5.1.11)

We prove (5.1.10) and (5.1.11) by induction. The base base of k = 1 is proved by (5.1.8)

and (5.1.9). For the induction step N ∋ k → k + 1 assume there does exist a k ∈ N such

that for all x ∈ R it is the case that:

2r1,k(x)− 4r2,k(x) + 2r3,k(x) = gk(x) (5.1.12)

and:

r4,k(x) =

fk−1(x) : x ∈ [0, 1]

max{x, 0} : x ∈ R \ [0, 1]
(5.1.13)

Note that then (5.1.5),(5.1.7), and (5.1.8) then tells us that for all x ∈ R it is the case that:

gk+1 (x) = g1(gk(x)) = g1(2r1,k(x) + 4r2,k(x) + 2r3,k(x))

= 2 r (2r1,k(x)) + 4r2,k + 2r3,k(x))

− 4 r

2r1,k (x)− 4r2,k + 2r3,k(x)−

1

2

+ 2 r (2r1,k(x)− 4r2,k(x) + 2r3,k(x)− 1)

= 2r1,k+1(x)− 4r2,k+1(x) + 2r3,k+1(x) (5.1.14)

119

In addition note that (5.1.6), (5.1.7), and (5.1.9) tells us that for all x ∈ R:

r4,k+1(x) = r

(−2)3−2(k+1) r1,k (x) + 24−2(k+1)r2,k (x) + (−2)3−2(k+1) r3,k (x) + r4,k (x)

= r

(−2)1−2k r1,k (x) + 22−2krk,2 (x) + (−2)1−2k r3,k (x) + r4,k (x)

= r

2−2k

−2r1,k (x) + 22r2,k (x)− 2r3,k (x)

+ r4,k (x)

= r

−

2−2k

[2r1,k (x)− 4r2,k (x) + 2r3,k (x)] + r4,k (x)

= r

−

2−2k

gk (x) + r4,k (x)

(5.1.15)

This and the fact that for all x ∈ R it is the case that r (x) = max{x, 0}, that for all x ∈ [0, 1]

it is the case that fk (x) 0, (5.1.13), shows that for all x ∈ [0, 1] it holds that:

r4,k+1 (x) = r

−2

2−2kgk

+ fk−1 (x)

= r

−2

2−2kgk (x)

+ x−

k−1

j=1

2−2jgj (x)

= r

x−

k

j=1

2−2jgj (x)

= r (fk (x)) = fk (x) (5.1.16)

Note next that (5.1.13) and (5.1.15) then tells us that for all x ∈ R \ [0, 1]:

r4,k+1 (x) = max

−

2−2kgx (x)

+ r4,k (x)

= max{max{x, 0}, 0} = max{x, 0} (5.1.17)

Combining (5.1.14) and (5.1.16) proves (5.1.10) and (5.1.11). Note that then (5.1.2) and

120

(5.1.10) assure that for all k ∈ N, x ∈ R it holds that Ir (Φk) ∈ C (R,R) and that:

(Ir (Φk)) (x)

=

Ir

(AffCk,0 •i4) •

AffAk−1,B •i4

• · · · • (AffA1,B •i4) • Affe4,B

(x)

= (−2)1−2k r1,k (x) + 22−2kr2,k (x) + (−2)1−2k r3,k (x) + r4,k (x)

= (−2)2−2k

r1,k (x) + r3,k (x)

−2

+ r2,k (x)

+ r4,k (x)

= 22−2k

r1,k (x) + r3,k (x)

−2

+ r2,k (x)

+ r4,k (x)

= 2−2k (4r2,k (x)− 2r1,k (x)− 2r3,k (x)) + r4,k (x)

= −

2−2k

[2r1,k (x)− 4r2,k (x) + 2r3,k (x)] + r4,k (x) = −

2−2k

gk (x) + r4,k (x) (5.1.18)

This and (5.1.11) tell us that:

(Ir (Φk)) (x) = −

2−2kgk (x)

+ fk−1 (x) = −

2−2kgk (x)

+ x−

k−1

j=1

2−2jgj (x)

= x−

k

j=1

2−2jgj (x)

= fk (x)

Which then implies for all k ∈ N, x ∈ [0, 1] that it holds that:

x2 − (Ir (Φk)) (x)
 2−2k−2 (5.1.19)

This, in turn, establishes Item (i).

Finally observe that (5.1.18) then tells us that for all k ∈ N, x ∈ R \ [0, 1] it holds that:

(Ir (Φk)) (x) = −2−2kgk (x) + r4,k (x) = r4,k (x) = max{x, 0} = r(x) (5.1.20)

This establishes Item(iv). Note next that Item(iii) ensures for all k ∈ N that D (ξk) = k+1,

121

and:

P (Φk) = 4(1 + 1) +

k

j=2

4 (4 + 1)

+ (4 + 1) = 8 + 20 (k − 1) + 5 = 20k − 7 (5.1.21)

This, in turn, proves Item(vi). The proof of the lemma is thus complete.

Remark 5.1.4. For an R implementation see Listing 8.13

Figure 5.1: Plot of log10 of the L1 difference between Φk and x2 over [0, 1] for different values
of k

Corollary 5.1.4.1. Let ε ∈ (0,∞), M = min{1
2

log2 (ε
−1) − 1,∞} ∩ N, (ck)k∈N ⊆ R,

122

(Ak)k∈N ⊆ R4×4, B ∈ R4×1, (Ck)k∈N satisfy for all k ∈ N that:

Ak =

2 −4 2 0

2 −4 2 0

2 −4 2 0

−ck 2ck −ck 1

, B =

0

−1
2

−1

0

Ck =

−ck 2c)k −ck 1

(5.1.22)

where:

ck = 21−2k (5.1.23)

and let Φ ∈ NN be defined as:

Φ =

[AffC1,0 •i4] • Affe4,B : M = 1

[AffCM ,0 •i4] •

AffAM−1,0 •i4

• · · · • [AffA1,B •i4] • Affe4,B : M ∈ [2,∞) ∩ N

(5.1.24)

it is then the case that:

(i) Ir (Φ) ∈ C (R,R)

(ii) L (Φ) = (1, 4, 4, ..., 4, 1) ∈ NM+2

(iii) it holds for all x ∈ R \ [0, 1] that (Ir (Φ)) (x) = r(x)

(iv) it holds for all x ∈ [0, 1] that |x2 − (Ir (Φ)) (x)| 2−2M−2 ε

(v) D (Φ) M + 1 max{1
2

log2 (ε
−1) + 1, 2}, and

(vi) P (Φ) = 20M − 7 max {10 log2 (ε
−1)− 7, 13}

Proof. Items (i)--(iii) are direct consequences of Lemma 5.1.3, Items (i)--(iii). Note next the

123

fact that M = min

N ∩

1
2

log2 (ε
−1)− 1

,∞

ensures that:

M = min

N ∩

1

2
log2

ε−1

− 1

,∞

(5.1.25)

 min

max

1,

1

2
log2

ε−1

− 1

,∞

(5.1.26)

 1

2
log2

ε−1

− 1 (5.1.27)

This and Item (v) of Lemma 5.1.3 demonstrate that for all x ∈ [0, 1] it then holds that:

x2 − (Ir (Φ)) (x)
 2−2M−2 = 2−2(M+1) 2− log2(ε−1) = ε (5.1.28)

Thus establishing Item (iv). The fact that M = min

N ∩

1
2

log2 (ε
−1)− 1,∞

and Item

(ii) of Lemma 5.1.3 tell us that:

D (Φ) = M + 1 max

1

2
log2

ε−1

+ 1, 2

(5.1.29)

Which establishes Item(v). This and Item (v) of Lemma 5.1.3 then tell us that:

P (ΦM) 20M − 7 20max

1

2
log2

ε−1

, 2

− 7 = max

10 log2

ε−1

− 7, 13

(5.1.30)

This completes the proof of the corollary.

Remark 5.1.5. For an implementation in R, see Listing 8.15

Remark 5.1.6. Note that (5.1.24) implies that D (Φ) 4.

Now that we have neural networks that perform the squaring operation inside [−1, 1], we

may extend to all of R. Note that this neural network representation differs somewhat from

the ones in Grohs et al. (2023).

124

Figure 5.2: Contour plot of the L1 difference between Φ and x2 over [0, 1] for different values
of ε.

5.1.2 The Sqrq,ε network

Lemma 5.1.7. Let δ, ∈ (0,∞), α ∈ (0,∞), q ∈ (2,∞), Φ ∈ NN satisfy that δ = 2
−2
q−2 ε

q
q−2 ,

α =

ε
2

 1
q−2 , I r (Φ) ∈ C (R,R), D(Φ) max

1
2

log2(δ
−1) + 1, 2

, P(Φ) max {10 log2 (δ

−1)− 7, 13},

supx∈R\[0,1] | (Ir (Φ)− r(x)| = 0, and supx∈[0,1] |x2−(Ir (Φ)) (x) | δ, let Ψ ∈ NN be the neural

network given by:

Ψ = (Affα−2,0 •Φ • Affα,0)

(Affα−2,0 •Φ • Aff−α,0) (5.1.31)

125

(i) it holds that Ir (Ψ) ∈ C (R,R).

(ii) it holds that (Ir (Ψ)) (0) = 0

(iii) it holds for all x ∈ R that 0 (Ir (Ψ)) (x) ε+ |x|2

(iv) it holds for all x ∈ R that |x2 − (Ir (Ψ)) (x) | εmax{1, |x|q}

(v) it holds that D(Ψ) max

1 + 1

q−2
+ q

2(q−2)
log2 (ε

−1) , 2

, and

(vi) it holds that P (Ψ) max

40q
q−2

log2 (ε

−1) + 80
q−2

− 28, 52

Proof. Note that for all x ∈ R it is the case that:

(Ir (Ψ)) (x) = (Ir ((Affα−2 •Φ • Affα,0)⊕ (Affα−2,0 •Φ • Aff−α,0))) (x)

= (Ir (Affα−2,0 •Φ • Affα,0)) (x) + (Ir (Affα−2,0 •Φ • Aff−α,0)) (x)

=
1

α2
(Ir (Φ)) (αx) +

1

α2
(Ir (Φ)) (−αx)

=
1

ε
2

 2
q−2

(Ir (Φ))

ε
2

 1
q−2

x

+ (Ir (Φ))

−
ε
2

 1
q−2

x

(5.1.32)

This and the assumption that Φ ∈ C (R,R) along with the assumption that supx∈R\[0,1] | (Ir (Φ)) (x)−

r (x) | = 0 tells us that for all x ∈ R it holds that:

(Ir (Ψ)) (0) =
ε
2

 −2
q−2

[(Ir (Φ)) (0) + (Ir (Φ)) (0)]

=
ε
2

 −2
q−2

[r(0) + r(0)]

= 0 (5.1.33)

This, in turn, establishes Item (i)--(ii). Observe next that from the assumption that Ir (Φ) ∈

C (R,R) and the assumption that supx∈R\[0,1] | (Ir (Φ)) (x) − r(x)| = 0 ensure that for all

126

x ∈ R \ [−1, 1] it holds that:

[Ir (Φ)] (x) + [Ir (Φ) (−x)] = r (x) + r(−x) = max{x, 0}+ max{−x, 0}

= |x| (5.1.34)

The assumption that for all supx∈R\[0,1] | (Ir (Φ)) (x) − r (x) | = 0 and the assumption that

supx∈[0,1] |x2 − (Ir (Φ)) (x) | δ show that:

sup
x∈[−1,1]

x2 − ([Ir (Φ)] (x) + [Ir (Φ) (x)])

= max

sup

x∈[−1,0]

x2 − (r(x) + [Ir (Φ)] (−x))
 , sup

x∈[0,1]

x2 − ([Ir (Φ)] (x) + r (−x))

= max

sup

x∈[−1,0]

(−x)2 − (Ir (Φ)) (−x)
 , sup

x∈[0,1]

x2 − (Ir (Φ)) (x)

= sup
x∈[0,1]

x2 − (Ir (Φ)) (x)
 δ (5.1.35)

Next observe that (5.1.32) and (5.1.34) show that for all x ∈ R \

−

ε
2

 −1
q−2 ,

ε
2

 −1
q−2

it holds

that:

0 [Ir (Ψ)] (x) =
ε
2

 −2
q−2

[Ir (Φ)]

ε
2

 1
q−2

x

+ [Ir (Φ)]

−
ε
2

 1
q−2

x

=
ε
2

 −2
q−2

ε
2

 1
q−2

x

 =
ε
2

 −1
q−2

|x|
 |x|2 (5.1.36)

127

The triangle inequality then tells us that for all x ∈ R \

−

ε
2

 −1
q−2 ,

ε
2

 −1
q−2

it holds that:

x2 − (Ir (Ψ)) (x)
 =

x
2 −

ε
2

 −1
q−2 |x|

|x|2 +

ε
2

 −1
q−2 |x|

=

|x|q |x|−(q−2) +

ε
2

 −1
q−2 |x|q |x|−(q−1)

|x|q

ε
2

 q−2
q−2

+
ε
2

 −1
q−2 |x|q

ε
2

 q−1
q−2

=
ε
2
+

ε

2

|x|q = ε |x|q εmax {1, |x|q} (5.1.37)

Note that (5.1.35), (5.1.32) and the fact that δ = 2
−2
q−2 ε

q
q−2 then tell for all x ∈

−

ε
2

 −1
q−2 ,

ε
2

 −1
q−2

it holds that:

x2 − (Ir(Φ)) (x)

=
ε
2

 −2
q−2

ε
2

 1
q−2

x

2

−

[Ir(Φ)]

ε
2

 1
q−2

x

+ [Ir(Φ)] (−y)

ε
2

 −2
q−2

sup

y∈[−1,1]

y2 − [Ir(Φ)] (y) + [Ir(Φ)] (−y)

ε
2

 −2
q−2

δ =
ε
2

 −2
q−2

2
−2
q−2 ε

q
q−2 = ε εmax{1, |x|q}

(5.1.38)

Now note that this and (5.1.37) tells us that for all x ∈ R it is the case that:

x2 − (Ir (Ψ)) (x)
 εmax{1, |x|q} (5.1.39)

This establishes Item (v). Note that, (5.1.38) tells that for all x ∈

−

ε
2

 −1
q−2 ,

ε
2

 1
q−2

it is

the case that:

|(Ir (Ψ)) (x)|
x2 − (Ir (Ψ)) (x)

+ |x|2 ε+ |x|2 (5.1.40)

128

This and (5.1.37) tells us that for all x ∈ R:

|(Ir) (x)| ε+ |x|2 (5.1.41)

This establishes Item (iv).

Note next that by Corollary 4.4.5.1, Remark 4.4.2, the hypothesis, and the fact that δ =

2
−2
q−2 ε

q
q−2 tells us that:

D (Ψ) = D (Φ) max

1

2
log2(δ

−1) + 1, 2

= max

1

q − 2
+

q

q − 2

log2 (ε) + 1, 2

(5.1.42)

This establishes Item (v).

Notice next that the fact that δ = 2
−2
q−2 ε

q
q−2 tells us that:

log2

δ−1

= log2

2

2
q−2 ε

−q
q−2

=

2

q − 2
+

q

q − 2

log2

ε−1

(5.1.43)

Note that by , Corollary 4.4.5.1 we have that:

P (Φ • Aff−α,0)

max

1,

I (Aff−α,0) + 1

I (Φ) + 1

P (Φ) = P (Φ) (5.1.44)

and further that:

P (Affα−2,0 •Φ • Aff−α,0) =

max

1,

O (Aff−α2,0)

O (Φ • Aff−α,0)

P (Φ • Aff−α,0)

 P (Φ) (5.1.45)

By symmetry note also that P (Affα−2,0 •Φ • Affα,0) = P (Affα−2,0 •Φ • Aff−α,0) and also that

L (Affα−2,0 •Φ • Affα,0) = L (Affα−2,0 •Φ • Aff−α,0). Thus Lemma 4.5.9, Corollary 4.3.5.1, and

129

the hypothesis tells us that:

P (Ψ) = P (Φ⊟ Φ)

 4P (Φ)

= 4max

10 log2

δ−1

− 7, 13

(5.1.46)

This, and the fact that δ = 2
−2
q−2 ε

q
q−2 renders (5.1.46) as:

4max

10 log2

δ−1

− 7, 13

= 4max

10 log2

δ−1

− 7, 13

= 4max

10

2

q − 2
+

q

q − 2
log2

ε−1

− 7, 13

= max

40q

q − 2

log2

ε−1

+

80

q − 2
− 28, 52

(5.1.47)

Remark 5.1.8. We will often find it helpful to refer to this network for fixed ε ∈ (0,∞) and

q ∈ (2,∞) as the Sqrq,ε network.

Remark 5.1.9. For an R implementation see Listing 8.17

Figure 5.3: Left: log10 of depths for a simulation with q ∈ [2.1, 4], ε ∈ (0.1, 2], and x ∈ [−5, 5],
all with 50 mesh-points. Right: The theoretical upper limits over the same range of values

130

Figure 5.4: Left: log10 of params for a simulation with q ∈ [2.1, 4], ε ∈ (0.1, 2], and x ∈
[−5, 5], all with 50 mesh-points. Right: The theoretical upper limits over the same range of
values

Min. 1st Qu. Median Mean 3rd Qu. Max.

Experimental |x2 − Ir(Sqrq,ε)(x) 0.00000 0.08943 0.33787 3.14893 4.67465 20.00

Theoretical |x2 − Ir(Sqr)q,ε(x) 0.010 1.715 10.402 48.063 45.538 1250.00

Forward Difference 0.01 1.6012 9.8655 44.9141 40.7102 1230

Table 5.1: Theoretical upper bounds for L1 error, experimental L1 error and their forward
difference, with q ∈ [2.1, 4], ε ∈ (0.1, 2], and x ∈ [−5, 5], all with 50 mesh-points.

5.1.3 The Prdq,ε network

We are finally ready to give neural network representations of arbitrary products of real

numbers. However, this representation differs somewhat from those found in the literature,

especially Grohs et al. (2023), where parallelization (stacking) is used instead of neural

network sums. This will help us calculate W1 and the width of the second to last layer.

Lemma 5.1.10. Let δ, ε ∈ (0,∞), q ∈ (2,∞), A1, A2, A3 ∈ R1×2, Ψ ∈ NN satisfy for all

x ∈ R that δ = ε (2q−1 + 1)
−1, A1 = [1 1], A2 = [1 0], A3 = [0 1], Ir ∈ C (R,R),

(Ir (Ψ)) (0) = 0, 0 (Ir (Ψ)) (x) δ + |x|2, |x2 − (Ir (Ψ)) (x) | δ max{1, |x|q}, D (Ψ)

max{1+ 1
q−2

+ q
2(q−2)

log2 (δ
−1) , 2}, and P (Ψ) max

40q
q−2

log2 (δ

−1) + 80
q−2

− 28, 52

, then:

131

(i) there exists a unique Γ ∈ NN satisfying:

Γ =

1

2
⊲ (Ψ • AffA1,0)

−1

2

⊲ (Ψ • AffA2,0)

−1

2

⊲ (Ψ • AffA3,0)

(5.1.48)

(ii) it that Ir (Γ) ∈ C (R2,R)

(iii) it holds for all x ∈ R that (Ir (Γ)) (x, 0) = (Ir (Γ)) (0, y) = 0

(iv) it holds for any x, y ∈ R that

xy − (Ir (Γ))

x

y

 εmax{1, |x|q, |y|q}

(v) it holds that P(Γ) 360q
q−2

[log2 (ε
−1) + q + 1]− 252

(vi) it holds that D (Γ) q
q−2

[log2 (ε
−1) + q]

(vii) it holds that W1 (Γ) = 24

(viii) it holds that WH(Γ) = 24

132

Proof. Note that:

(Ir (Γ))

x

y

 = Ir

1

2
⊲ (Ψ • AffA1,0)

−1

2

⊲ (Ψ • AffA2,0)

(5.1.49)

−1

2

⊲ (Ψ • AffA3,0)

x

y

= Ir

1

2
⊲ (Ψ • AffA1,0)

x

y

+ Ir

−1

2

⊲ (Ψ • AffA2,0)

x

y

+ Ir

−1

2

⊲ (Ψ • AffA3,0)

x

y

=
1

2
(Ir (Ψ))

1 1

x

y

− 1

2
(Ir (Ψ))

1 0

x

y

− 1

2
(Ir (Ψ))

0 1

x

y

=
1

2
(Ir (Ψ)) (x+ y)− 1

2
(Ir (Ψ)) (x)− 1

2
(Ir (Ψ)) (y) (5.1.50)

Note that this, and the assumption that (Ir (Ψ)) (x) ∈ C (R,R) and that (Ir (Ψ)) (0) = 0

ensures:

(Ir (Γ))

x

0

 =
1

2
(Ir (Ψ)) (x+ 0)− 1

2
(Ir (Ψ)) (x)− 1

2
(Ir (Ψ)) (0)

= 0

=
1

2
(Ir (Ψ)) (0 + y)− 1

2
(Ir (Ψ)) (0)− 1

2
(Ir (Ψ)) (y)

= (Ir (Γ))

0

y

 (5.1.51)

133

Next, observe that since by assumption it is the case for all x, y ∈ R that |x2−(Ir (Ψ)) (x) |

δ max{1, |x|q}, xy = 1
2
|x+ y|2 − 1

2
|x|2 − 1

2
|y|2, triangle Inequality and from (5.1.50) we have

that:

|(Ir (Γ) (x, y))− xy|

=

1

2

(Ir (Ψ)) (x+ y)− |x+ y|2

− 1

2

(Ir (Ψ)) (x)− |x|2

− 1

2

(Ir (Ψ)) (x)− |y|2

1

2

(Ir (Ψ)) (x+ y)− |x+ y|2

+

1

2

(Ir (Ψ)) (x)− |x|2

+

1

2

(Ir (Ψ)) (x)− |y|2

 δ

2
[max {1, |x+ y|q}+ max {1, |x|q}+ max {1, |y|q}]

Note also that since for all α, β ∈ R and p ∈ [1,∞) we have that |α+β|p 2p−1 (|α|p + |β|p)

we have that:

|(Ir (Ψ)) (x)− xy|

 δ

2

max

1, 2q−1|x|q + 2q−1 |y|q

+ max {1, |x|q}+ max {1, |y|q}

 δ

2

max

1, 2q−1|x|q

+ 2q−1 |y|q + max {1, |x|q}+ max {1, |y|q}

 δ

2
[2q + 2]max {1, |x|q , |y|q} = εmax {1, |x|q , |x|q}

This proves Item (iv).

By symmetry it holds that P

1
2
⊲ (Ψ • AffA1,0)

= P

−1

2
⊲ (Ψ • AffA2,0)

= P

−1

2
⊲ (Ψ • AffA3,0)

and further that L

1
2
⊲ (Ψ • AffA1,0)

=

L

−1

2
⊲ (Ψ • AffA2,0)

= L

−1

2
⊲ (Ψ • AffA3,0)

. Note also that Corollary 4.4.5.1 tells us that

for all i ∈ {1, 2, 3} and a ∈ {1
2
,−1

2
} it is the case that:

P (a ⊲ (Ψ • AffAi,0)) = P (Ψ) (5.1.52)

134

This, together with Corollary 4.5.9.1 indicates that:

P (Γ) 9P (Ψ)

 9max

40q

q − 2

log2

δ−1

+

80

q − 2
− 28, 52

(5.1.53)

Combined with the fact that δ = ε (2q−1 + 1)
−1, this is then rendered as:

9max

40q

q − 2

log2

δ−1

+

80

q − 2
− 28, 52

= 9max

40q

q − 2

log2

ε−1

+ log2

2q−1 + 1

+

80

q − 2
− 28, 52

(5.1.54)

Note that:

log2

2q−1 + 1

= log2

2q−1 + 1

− log2 (2

q) + q

= log2

2q−1 + 1

2q

+ q = log2

2−1 + 2−q

+ q

 log2

2−1 + 2−2

+ q = log2

3

4

+ q = log2 (3)− 2 + q (5.1.55)

Combine this with the fact that for all q ∈ (2,∞) it is the case that q(q−1)
q−2

 2 then gives us

that:

40q

q − 2

log2

2q−1 + 1

− 28

40q

q − 2

log2

2q−1

− 28 =

40q(q − 1)

q − 2
− 28 52 (5.1.56)

135

This then finally renders (5.1.54) as:

9max

40q

q − 2

log2

ε−1

+ log2

2q−1 + 1

+

80

q − 2
− 28, 52

 9

40q

q − 2

log2

ε−1

+ log2 (3)− 2 + q

+

80

q − 2
− 28

= 9

40q

q − 2

log2

ε−1

+ log2 (3)− 2 +

2

q

− 28

 9

40q

q − 2

log2

ε−1

+ log2 (3)− 1

− 28

=
360q

q − 2

log2

ε−1

+ q + log2 (3)− 1

− 252 (5.1.57)

Note that Lemma 4.5.10, Lemma 4.4.5, the hypothesis, and the fact that δ = ε (2q−1 + 1)
−1

tell us that:

D (Γ) = D (Ψ) max

1 +

1

q − 2
+

q

2(q − 2)
log2

δ−1

, 2

= max

1 +

1

q − 2
+

q

2(q − 2)

log2

ε−1

+ log2

2q−1 + 1

, 2

= max

1 +

1

q − 2
+

q

2(q − 2)

log2

ε−1

+ q − 1

, 2

(5.1.58)

Since it is the case that q(q−1)
2(q−2)

> 2 for q ∈ (2,∞) we have that:

max

1 +

1

q − 2
+

q

2(q − 2)

log2

ε−1

+ q − 1

, 2

= 1 +
1

q − 2
+

q

2(q − 2)

log2

ε−1

+ q − 1

 q − 1

q − 2
+

q

2 (q − 2)

log2

ε−1

+ q

(5.1.59)

Observe next that for q ∈ (0,∞), ε ∈ (0,∞), Γ consists of, among other things, three

stacked (Ψ • AffAi,0) networks where i ∈ {1, 2, 3}. Corollary 4.4.5.1 tells us therefore, that

W1 (Γ) = 3 ·W1 (Ψ). On the other hand, note that each Ψ networks consist of, among other

136

things, two stacked Φ networks, which by Corollary 4.4.5.1 and Lemma 5.1.7, yields that

W1 (Γ) = 6 · W1 (Φ). Finally from Corollary 5.1.4.1, and Corollary 4.4.5.1, we see that the

only thing contributing to the W1 (Φ) is W1 (i4), which was established from Lemma 5.1.2

as 4. Whence we get that W1 (Γ) = 6 · 4 = 24, and that WH(Γ) (Γ) = 24. This proves Item

(vii)—(viii). This then completes the proof of the Lemma.

Corollary 5.1.10.1. Let δ, ε ∈ (0,∞), q ∈ (2,∞), A1, A2, A3 ∈ R1×2, Ψ ∈ N satisfy for

all x ∈ R that δ = ε (2q−1 + 1)
−1, A1 = [1 1], A2 = [1 0], A3 = [0 1], Ir ∈ C (R,R),

(Ir (Ψ)) (0) = 0, 0 (Ir (Ψ)) (x) δ + |x|2, |x2 − (Ir (Ψ)) (x) | δ max{1, |x|q}, D (Ψ)

max{1 + 1
q−2

+ q
2(q−2)

log2 (δ
−1) , 2}, and P (Ψ) max

40q
q−2

log2 (δ

−1) + 80
q−2

− 28, 52

, and

finally let Γ be defined as in Lemma 5.1.10, i.e.:

Γ =

1

2
⊛ (Ψ • AffA1,0)

−1

2

⊛ (Ψ • AffA2,0)

−1

2

⊛ (Ψ • AffA3,0)

(5.1.60)

It is then the case for all x, y ∈ R that:

Ir (Γ) (x, y)
3

2

ε
3
+ x2 + y2

 ε+ 2x2 + 2y2 (5.1.61)

Proof. Note that the triangle inequality, the fact that δ = ε (2q−1 + 1)
−1, the fact that for

all x, y ∈ R it is the case that |x+ y|2 2 (|x|2 + |y|2) and (5.1.50) tell us that:

|Ir (Γ) (x, y)|
1

2
|Ir (Ψ) (x+ y)|+ 1

2
|Ir (Ψ) (x)|+ 1

2
|Ir (Ψ) (y)|

 1

2

δ + |x+ y|2

+

1

2

δ + |x|2

+

1

2

δ + |y|2

 3δ

2
+

3

2

|x|2 + |y|2

=

3ε

2

2q−1 + 1

−1
+

3

2

|x|2 + |y|2

=
3

2

ε

2q−1 + 1
+ |x|2 + |y|2

 3

2

ε
3
+ |x|2 + |y|2

 ε+ 2x2 + 2y2 (5.1.62)

137

Remark 5.1.11. We shall refer to this neural network for a given q ∈ (2,∞) and given

ε ∈ (0,∞) from now on as Prdq,ε.

Remark 5.1.12. For an R implementation see Listing ??

Remark 5.1.13. Diagrammatically, this can be represented as:

1
2
⊲ (Φ • AffA1,0)

1
2
⊲ (Φ • AffA2,0)

1
2
⊲ (Φ • AffA2,0)

CpySum

Figure 5.5: Neural network diagram of the Prdq,ε network.

Figure 5.6: Left: log10 of deps for a simulation of Prdq,ε with q ∈ [2.1, 4], ε ∈ (0.1, 2], and
x ∈ [−5, 5], all with 50 mesh-points. Right: The theoretical upper limits over the same range
of values.

138

Figure 5.7: Left: log10 of params for a simulation of Prdq,ε with q ∈ [2.1, 4], ε ∈ (0.1, 2],
and x ∈ [−5, 5], all with 50 mesh-points. Right: The theoretical upper limits over the same
range of values.

5.2 Higher Approximations

We take inspiration from the Sum neural network to create the Prd neural network. However,

we first need to define a special neural network called tunneling neural network to stack two

neural networks not of the same length effectively.

5.2.1 The Tundn Neural Networks and Their Properties

Definition 5.2.1 (R—,2023, The Tunneling Neural Networks). We define the tunneling

neural network, denoted as Tunn for n ∈ N by:

Tunn =

Aff1,0 : n = 1

Id1 : n = 2

•n−2 Id1 n ∈ N ∩ [3,∞)

(5.2.1)

Where Id1 is as in Definition 6.1.1.

Remark 5.2.2. For an R implementation see Listing 8.12

139

Figure 5.8: Isosurface plot showing |x2 − Sqrq,ε | for q ∈ [2.1, 4], ε ∈ [0.01, 2], and x ∈ [−5, 5]
with 50 mesh-points in each.

Lemma 5.2.3. Let n ∈ N, x ∈ R and Tunn ∈ NN. For all n ∈ N and x ∈ R, it is then the

case that:

(i) Ir (Tunn) ∈ C (R,R)

(ii) D (Tunn) = n

(iii) (Ir (Tunn)) (x) = x

(iv) P (Tunn) =

2 : n = 1

7 + 6(n− 2) : n ∈ N ∩ [2,∞)

(v) L (Tunn) = (l0, l1, ..., lL−1, lL) = (1, 2, ..., 2, 1)

Proof. Note that Aff0,1 ∈ C (R,R) and by Lemma 6.1.2 we have that Id1 ∈ C (R,R). Finally,

140

Min 1st. Qu Median Mean 3rd Qu Max.
Experimental
|x2 − Ir (Sqrq,ε) (x)| 0.0000 0.0894 0.3378 3.1489 4.6746 20.0000
Theoretical upper limits for
|x2 −Rr(Sqr)(x) 0.010 1.715 10.402 48.063 45.538 1250.000
Forward Difference 0.001 1.6012 9.8655 44.9141 40.7102 1230
Experimental depths 2 2 2 2.307 2 80
Theoretical upper bound on
depths 2 2 2 2.73 2 91
Forward Difference 0 0 0 0.423 0 11
Experimental params 25 25 25 47.07 25 5641
Theoretical upper limit on
params 52 52 52 82.22 52 6353
Forward Differnce 27 27 27 35.16 27 712

Table 5.2: Table showing the experimental and theoretical 1-norm difference, depths, and
parameter counts respectively for Sqrq,ε with q ∈ [2.1, 4], ε ∈ [0.01, 2], and x ∈ [−5, 5] all
with 50 mesh-points, and their forward differences.

the composition of continuous functions is continuous, hence Tunn ∈ C (R,R) for n ∈ N ∩

[2,∞). This proves Item (i).

Note that by Lemma 4.4.2 it is the case that D (Aff1,0) = 1 and by Lemma 6.1.1 it is the case

that D (Id1) = 2. Assume now that for all n N that D (Tunn) = n, then for the inductive

step, by Lemma 4.2.5 we have that:

D (Tunn+1) = D

•n−1 Id1

= D

•n−2 Id1

• Id1

= n+ 2− 1 = n+ 1 (5.2.2)

This completes the induction and proves Item (i)—(iii). Note next that by (4.1.10) we have

that:

(Ir (Aff1,0)) (x) = x (5.2.3)

141

Lemma 6.1.2, Item (iii) also tells us that:

(Ir (Id1)) (x) = r(x)− r(−x) = x (5.2.4)

Assume now that for all n N that Tunn (x) = x. For the inductive step, by Lemma 6.1.2,

Item (iii), and we then have that:

(Ir (Tunn+1)) (x) =

Ir

•n−1 Id1

(x) (x)

=

Ir

•n−2 Id1

• Id1

=

Ir

•n−2 Id1

◦ (Ir (Id1))

(x)

= ((Ir (Tunn)) ◦ (Ir (Id1))) (x)

= x (5.2.5)

This proves Item (ii). Next note that P (Tun1) = P (Aff1,0) = 2. Note also that:

P (Tun2) = P (Id1) = P

1

−1

 ,

0

0

 ,

1 −1

,

0

= 7

And that by definition of composition:

P (Tun3) (5.2.6)

= P

1

−1

 ,

0

0

 ,

1 −1

,

0

 •

1

−1

 ,

0

0

 ,

1 −1

,

0

= P

1

−1

 ,

0

0

 ,

1 −1

−1 1

 ,

0

0

 ,

1 −1

,

0

= 13

142

Now for the inductive step assume that for all n N ∈ N, it is the case that P (Tunn) =

7 + 6(n− 2). For the inductive step, we then have:

P (Tunn+1) = P (Tunn • Id1) =

P

1

−1

 ,

0

0

 ,

1 −1

−1 1

 ,

0

0

 , · · · ,

1 −1

,

0

 • Id1

 =

P

1

−1

 ,

0

0

 ,

1 −1

−1 1

 ,

0

0

 , · · · ,

1 −1

−1 1

 ,

0

0

 ,

1 −1

,

0

= 7 + 6(n− 2) + 6 = 7 + 6 ((n+ 1)− 2) (5.2.7)

This proves Item (iv).

Note finally that Item (v) is a consequence of Lemma 6.1.2, Item (i), and Lemma 4.2.5

Definition 5.2.4 (R—, 2023, The Multi-dimensional Tunneling Network). We define the

multi-dimensional tunneling neural network, denoted as Tund
n for n ∈ N and d ∈ N by:

Tund
n =

AffId,0d : n = 1

Idd : n = 2

•n−2 Idd : n ∈ N ∩ [3,∞)

(5.2.8)

Where Idd is as in Definition 6.1.1.

Remark 5.2.5. We may drop the requirement for a d and write Tunn where d = 1, and it

is evident from the context.

Lemma 5.2.6. Let n ∈ N, d ∈ N, x ∈ R and Tund
n ∈ NN. For all n ∈ N, d ∈ N, and x ∈ R,

it is then the case that:

(i) Ir

Tund

n

∈ C (R,R)

(ii) D

Tund

n

= n

143

(iii)

Ir

Tund

n

(x) = x

(iv) P

Tund

n

=

8d2 + 5d : n = 1

4d2 + 3d+ (n− 1) (4d2 + 2d) : n ∈ N ∩ [2,∞)

(v) L

Tund

n

= (l0, l1, ..., lL−1, lL) = (d, 2d, ..., 2d, d)

Proof. Note that Items (i)–(iii) are consequences of Lemma 6.1.2 and Lemma 4.2.5 respec-

tively. Note now that by observation P

Tund

1

= d2 + d. Next Lemma 6.1.4 tells us that

P

Tund

2

= 4d2+3d Note also that by definition of neural network composition, we have the

144

following:

P

Tund

3

(5.2.9)

= P

1

−1

. . .

1

−1

,

0

0

...

0

0

,

1 −1

. . .

1 −1

,

0

...

0

• (5.2.10)

1

−1

. . .

1

−1

,

0

0

...

0

0

,

1 −1

. . .

1 −1

,

0

...

0

=

P

1

−1

. . .

1

−1

,

0

0

...

0

0

,

1 −1

−1 1

. . .

1 −1

−1 1

,

0

0

...

0

0

, (5.2.11)

1 −1

. . .

1 −1

,

0

...

0

= 2d× d+ 2d+ 2d× 2d+ 2d+ 2d× d+ d

= 2d2 + 2d+ 4d2 + 2d+ 2d2 + d

= 8d2 + 5d (5.2.12)

Suppose now that for all naturals up to and including n, it is the case that P

Tund

n

=

145

4d2 + 3d+ (n− 2) (4d2 + 2d). For the inductive step, we have the following:

P

Tund

n+1

= P

Tund

n • Idd

=P

1

−1

. . .

1

−1

,

0

0

...

0

0

,

1 −1

−1 1

. . .

1 −1

−1 1

,

0

0

...

0

0

, . . . , (5.2.13)

1 −1

. . .

1 −1

,

0

...

0

• Idd

=P

1

−1

. . .

1

−1

,

0

0

...

0

0

,

1 −1

−1 1

. . .

1 −1

−1 1

,

0

0

...

0

0

, . . . , (5.2.14)

1 −1

−1 1

. . .

1 −1

−1 1

,

0

0

...

0

0

,

1 −1

. . .

1 −1

,

0

...

0

= 4d2 + 3d+ (n− 2)

4d2 + 2d

+ 4d2 + 2d

= 4d2 + 3d+ (n− 1)

4d2 + 2d

This proves Item (iv). Finally, Item (v) is a consequence of Lemma 4.4.2

146

Pwrq,εn−1

Cpy2,1

TunD(Pwrq,εn−1)

Prdq,ε

x

x

x

Ir

Pwrq,εn−1

(x)

x

Figure 5.9: A representation of a typical Pwrq,εn network.

5.2.2 The Pwrq,εn Neural Networks and Their Properties

Definition 5.2.7 (R—, 2023, The Power Neural Network). Let n ∈ N. Let δ, ε ∈ (0,∞),

q ∈ (2,∞), satisfy that δ = ε (2q−1 + 1)
−1. We define the power neural networks Pwrq,εn ∈ NN,

denoted for n ∈ N0 as:

Pwrq,εn =

Aff0,1 : n = 0

Prdq,ε •

TunD(Pwrq,εn−1)

⊟Pwrq,εn−1

• Cpy2,1 : n ∈ N

Diagrammatically, this can be represented as:

Remark 5.2.8. For an R implementation see Listing 8.19

Remark 5.2.9. Note that for all i ∈ N, q ∈ (2,∞), ε ∈ (0,∞), each Pwrq,εi differs from

Pwrq,εi+1 by atleast one Prdq,ε network.

Lemma 5.2.10. Let x, y ∈ R, ε ∈ (0,∞) and q ∈ (2,∞). It is then the case for all x, y ∈ R

that:

εmax {1, |x|q, |y|q} ε+ ε|x|q + ε|y|q. (5.2.15)

Proof. We will do this in the following cases:

147

For the case that |x| 1 and |y| 1 we then have:

εmax {1, |x|q, |y|q} = ε ε+ ε|x|q + ε|y|q (5.2.16)

For the case that |x| 1 and |y| 1, without loss of generality we have then:

εmax {1, |x|q, |y|q} ε|y|q ε+ ε|x|q + ε|y|q : (5.2.17)

For the case that |x| 1 and |y| 1, and without loss of generality that |x| |y| we have

that:

εmax{1, |x|q, |y|q} = ε|x|q ε+ ε|x|q + ε|y|q (5.2.18)

Lemma 5.2.11. Let pi for i ∈ {1, 2, ...} be the set of functions defined for ε ∈ (0,∞), and

x ∈ R as follows:

p1 = ε+ 2 + 2|x|2

pi = ε+ 2 (pi−1)
2 + 2|x|2 for i 2 (5.2.19)

For all n ∈ N and ε ∈ (0,∞) and q ∈ (2,∞) it holds for all x ∈ R that:

|Ir (Pwrq,εn) (x)| pn (5.2.20)

Proof. Note that by Corollary 5.1.10.1 it is the case that:

|Ir (Pwrq,ε1) (x)| = |Ir (Prdq,ε) (1, x)| p1 (5.2.21)

148

and applying (5.2.21) twice, it is the case that:

|Ir (Pwrq,ε2) (x)| = |Ir (Prdq,ε) (Ir (Prdq,ε (1, x)) , x)|

 ε+ 2 |Ir (Prdq,ε) (1, x)|2 + 2|x|2

 ε+ 2p21 + 2|x|2 = p2 (5.2.22)

Let's assume this holds for all cases up to and including n. For the inductive step, Corollary

5.1.10.1 tells us that:

Ir

Pwrq,εn+1

(x)

 |Ir (Prdq,ε (Ir (Prdq,ε (Ir · · · (1, x) , x) , x) · · ·))|

 Ir [Prdq,ε (Pwrq,εn (x) , x)]

 ε+ 2p2n + 2|x|2 = pn+1 (5.2.23)

This completes the proof of the lemma.

Remark 5.2.12. Note that since any instance of pi contains an instance of pi−1 for i ∈

N ∩ [2,∞), we have that pn ∈ O

ε2(n−1)

Lemma 5.2.13. For all n ∈ N, q ∈ (2,∞), and ε ∈ (0,∞), it is the case that P

TunD(Pwrq,εn)

P (Pwrq,εn).

Proof. Note that for all n ∈ N it is straightforwardly the case that P (Pwrq,εn) P

TunD(Pwrq,εn−1)

because for all n ∈ N, a Pwrq,εn network contains a TunD(Pwrq,εn−1)
network. Note now that

for all i ∈ N we have from Lemma 5.2.3 that 5 P (Tuni+1) − P (Tuni) 6. Recall from

Corollary 5.1.4.1 that every instance of the Φ network contains atleast one i4 network, which

by Lemma 5.1.2 has 40 parameters, whence the Prdq,ε network has atleast 40 parameters

for all ε ∈ (0,∞) and q ∈ (2,∞). Note now that for all i ∈ N, Pwrq,εi and Pwrq,εi+1 differ by

atleast as many parameters as there are in Prdq,ε, since, indeed, they differ by atleast one

more Prdq,ε. Thus for every increment in i, Pwrq,εi outstrips Tuni by at-least 40 − 6 = 34

149

parameters. This is true for all i ∈ N. Whence it is the case that for all i ∈ N, it is the case

that P (Tuni) P (Pwrq,εi).

Lemma 5.2.14 (R—,2023). Let δ, ε ∈ (0,∞), q ∈ (2,∞), and δ = ε (2q−1 + 1)
−1. Let

n ∈ N0, and Pwrn ∈ NN. It is then the case for all n ∈ N0, and x ∈ R that:

(i) (Ir (Pwrq,εn)) (x) ∈ C (R,R)

(ii) D(Pwrq,εn)

1 : n = 0

n

q
q−2

[log2 (ε
−1) + q]− 1

+ 1 : n ∈ N

(iii) W1 (Pwrq,εn) =

1 : n = 0

24 + 2 (n− 1) : n ∈ N

(iv) P(Pwrq,εn)

2 : n = 0

4n+
3
2 +

4n+1−1

3

360q
q−2

[log2 (ε
−1) + q + 1] + 372

: n ∈ N

(v) |xn − (Ir (Pwrq,εn)) (x)|

0 : n = 0

x

xn−1 − Ir

Pwrq,εn−1

(x)

+ ε+ |x|q + pqn−1 : n ∈ N

Where we let pi for i ∈ {1, 2, ...} be the set of functions defined as follows:

p1 = ε+ 2 + 2|x|2

pi = ε+ 2 (pi−1)
2 + 2|x|2 (5.2.24)

And whence we get that:

|xn − Ir (Pwrq,εn) (x)| ∈ O

ε2q(n−1)

for n 2 (5.2.25)

150

(vi) WH(Pwrq,εn) (Pwrq,εn) =

1 n = 0

24 n ∈ N

Proof. Note that Item (ii) of Lemma 4.4.2 ensures that Ir (Pwr0) = Aff1,0 ∈ C (R,R). Note

next that by Item (v) of Lemma 4.2.5, with Φ1 ↶ ν1,Φ2 ↶ ν2, a ↶ r, we have that:

(Ir (ν1 • ν2)) (x) = ((Ir (ν1)) ◦ (Ir (ν2))) (x) (5.2.26)

This, with the fact that the composition of continuous functions is continuous, the fact the

stacking of continuous instantiated neural networks is continuous tells us that (Ir Pwrn) ∈

C (R,R) for n ∈ N ∩ [2,∞). This establishes Item (i).

Note next that by observation D (Pwrq,ε0) = 1 and by Item (iv) of Lemma 6.1.2, it is the case

that D (Id1) = 2. By Lemmas 4.5.3 and 4.2.3 it is also the case that

D

Prdq,ε •

TunD(Pwrq,εn−1)

⊟Pwrq,εn−1

• Cpy

= D

Prdq,ε •

TunD(Pwrq,εn−1)

⊟Pwrq,εn−1

. Note also

that by Lemma we have that D

TunD(Pwrq,εn−1)
⊟Pwrq,εn−1

= D

Pwrq,εn−1

. This with Lemma

4.2.5 then yields for n ∈ N that:

D (Pwrq,εn) = D

Prd •

TunD(Pwrq,εn−1)

⊟Pwrq,εn−1

• Cpy2,1

= D

Prd •

TunD(Pwrq,εn−1)

⊟Pwrq,εn−1

= D (Prd) + D

TunD(Pwrq,εn−1)

− 1

 q

q − 2

log2

ε−1

+ q

+ D

TunD(Pwrq,εn−1)

− 1

=
q

q − 2

log2

ε−1

+ q

+ D

Pwrq,εn−1

− 1 (5.2.27)

And hence for all n ∈ N it is the case that:

D (Pwrq,εn)− D

Pwrq,εn−1

 q

q − 2

log2

ε−1

+ q

− 1 (5.2.28)

151

This, in turn, indicates that:

D (Pwrq,εn) n

q

q − 2

log2

ε−1

+ q

− 1

+ 1

 n

q

q − 2

log2

ε−1

+ q

− 1

+ 1 (5.2.29)

This proves Item (ii).

Note now that W1 (Pwrq,ε0) = W1 (Aff0,1) = 1. Further Lemma 4.2.5, Remark 4.4.2, tells us

that for all i, k ∈ N it is the case that Wi (Tunk) 2. Observe that since Cpy2,1,Pwrq,ε0 ,

and TunD(Pwrq,ε0) are all affine neural networks, Lemma 4.4.5, Corollary 4.4.5.1, and Lemma

5.1.10 tells us that:

W1 (Pwrq,ε1) = W1

Prdq,ε •

TunD(Pwrq,ε0) ⊟Pwrq,ε0

• Cpy2,1

= W1 (Prdq,ε) = 24 (5.2.30)

And that:

W1 (Pwrq,ε2) = W1

Prdq,ε •

TunD(Pwrq,ε1) ⊟Pwrq,ε1

• Cpy2,1

= W1

TunD(Pwrq,ε1)⊟Pwrq,ε1

= 24 + 2 = 26

This completes the base case. For the inductive case, assume that for all i up to and including

k ∈ N it is the case that W1 (Pwrq,εi)

1 : i = 0

24 + 2(i− 1) : i ∈ N
. For the case of k + 1, we

152

get that:

W1

Pwrq,εk+1

= W1

Prdq,ε •

TunD(Pwrq,εk) ⊟Pwrq,εk

• Cpy2,1

= W1

TunD(Pwrq,εk) ⊟Pwrq,εk

= W1

TunD(Pwrq,εk)

+ W1 (Pwrq,εk)

2 : k = 0

24 + 2k : k ∈ N
(5.2.31)

This establishes Item (iii).

For Item (iv), we will prove this in cases.

Case 1: Pwrq,ε0 :

Note that by Lemma 4.4.2 we have that:

P (Pwrq,ε0) = P (Aff0,1) = 2 (5.2.32)

This completes Case 1.

Case 2: Pwrq,εn where n ∈ N:

Note that Lemma 4.3.5, Lemma 5.2.13, Corollary 4.3.5.1, Lemma 4.3.6, and Corollary 4.3.6.1,

tells us it is the case that:

P

Pwrq,εn−1 ⊟TunD(Pwrq,εn−1)

 P

Pwrq,εn−1 ⊟Pwrq,εn−1

 4P

Pwrq,εn−1

(5.2.33)

153

Then Lemma 4.2.5 and Corollary 4.4.5.1 tells us that:

P

Pwrq,εn−1 ⊟TunD(Pwrq,εn−1)

• Cpy2,1

= P

Pwrq,εn−1 ⊟TunD(Pwrq,εn−1)

 4P

Pwrq,εn−1

(5.2.34)

Note next that by definition for all q ∈ (2,∞), and ε ∈ (0,∞) it is case that WH(Pwrq,ε0) Pwrq,ε0 =

WH(Aff0,1) = 1. Now, by Lemma 5.1.10, and by construction of Pwrq,εi we may say that for

i ∈ N it is the case that:

WH(Pwrq,εi) = WH(Prdq,ε) = 24 (5.2.35)

Note also that by Lemma 5.2.3 it is the case that:

W
H

Tun
D(Pwrq,ε

i−1)

TunD(Pwrq,εi−1)

= 2 (5.2.36)

Furthermore, note that for n ∈ [2,∞) ∩ N Lemma 5.1.10 tells us that:

W
H

Pwrq,εn−1 ⊟Tun
D(Pwrq,εn−1)

Pwrq,εn−1 ⊟TunD(Pwrq,εn−1)

= 24 + 2 = 26 (5.2.37)

Finally Lemma 4.2.5, (5.2.34), a geometric series argument, and Corollary 4.3.5.1, also tells

154

us that:

P (Pwrq,εn) (5.2.38)

= P

Prdq,ε •

Pwrq,εn−1 ⊟TunD(Pwrq,εn−1)

• Cpy2,1

= P

Prdq,ε •

Pwrq,εn−1 ⊟TunD(Pwrq,εn−1)

 P (Prdq,ε) + 4P

Pwrq,εn−1

+

+ W1 (Prdq,ε) · W
H

Pwrq,εn−1 ⊟Tun
D(Pwrq,εn−1)

Pwrq,εn−1 ⊟TunD(Pwrq,εn−1)

= P (Prdq,ε) + 4P

Pwrq,εn−1

+ 624

= 4n+1 P (Pwrq,ε0) +

4n+1 − 1

3

(P (Prdq,ε) + 624)

= 4n+
3
2 +

4n+1 − 1

3

360q

q − 2

log2

ε−1

+ q + 1

+ 372

(5.2.39)

Next note that (Ir (Pwr0,1)) (x) is exactly 1, which implies that for all x ∈ R we have that

|x0 − (Ir (Pwr0.1) (x)) | = 0. Note also that the instantiations of Tunn and Cpy2,1 are exact.

Note next that since Tunn and Cpy2,1 are exact, the only sources of error for Pwrq,εn are n

compounding applications of Prdq,ε.

Note also that by definition, it is the case that:

Ir (Pwrq,εn) = Ir

Prdq,ε (Ir [Prdq,ε (· · · Ir [Prdq,ε (1, x)] , · · · x)] , x)
n−copies

 (5.2.40)

Lemma 5.1.10 tells us that:

|x− Ir (Prdq,ε (1, x))| εmax{1, |x|q} ε+ |x|q (5.2.41)

The triangle inequality, Lemma 5.2.10, Lemma 5.1.10, and Corollary 5.1.10.1 then tells us

155

that:

x2 − Ir (Pwrq,ε2) (x)

= |x · x− Ir (Prdq,ε (Ir (Prdq,ε (1, x)) , x))|

 |x · x− x · Ir (Prdq,ε (1, x))|+ |x · Ir (Prdq,ε (1, x))− Ir (Prdq,ε (Ir (Prdq,ε (1, x)) , x))|

= |x (x− Ir (Prdq,ε (1, x)))|+ ε+ ε |x|q + ε |Ir (Prdq,ε (1, x))|q

 |xε+ xε |x|q|+ ε+ ε |x|q + ε
ε+ 2 + x2

q

= |xε+ xε |x|q|+ ε+ ε |x|q + εpq1 (5.2.42)

Note that this takes care of our base case. Assume now that for all integers up to and

including n, it is the case that:

|xn − Ir (Pwrq,εn) (x)|
x · xn−1 − x · Ir

Pwrq,εn−1

(x)

+
x · Ir

Pwrq,εn−1

(x)− Ir (Pwrq,εn) (x)

x

xn−1 − Ir

Pwrq,εn−1

(x)

+ ε+ ε|x|q + ε
Ir

Pwrq,εn−1

(x)

q

x

xn−1 − Ir

Pwrq,εn−1

(x)

+ ε+ ε|x|q + εpqn−1 (5.2.43)

For the inductive case, we see that:

xn+1 − Ir

Pwrq,εn+1

(x)

xn+1 − x · Ir (Pwrq,εn) (x)

+
x · Ir (Pwrq,εn) (x)− Ir

Pwrq,εn+1

 |x (xn − Ir (Pwrq,εn) (x))|+ ε+ ε|x|q + ε |Ir (Pwrq,εn) (x)|q

 |x (xn − Ir (Pwrq,εn) (x))|+ ε+ ε|x|q + εpqn (5.2.44)

Note that since pn ∈ O

ε2(n−1)

for n ∈ N ∩ [2,∞), it is the case for all x ∈ R then that

|xn − Ir (Pwrq,εn) (x)| ∈ O

ε2q(n−1)

for n 2.

Finally note that WH(Pwrq,ε0) (Pwrq,ε0) = 1 from observation. For n ∈ N, note that the second

to last layer is the second to last layer of the Prdq,ε network. Thus Lemma 5.1.10 tells us

156

that:

WH(Pwrq,εm) (Pwrq,εn) =

1 n = 0

24 n ∈ N
(5.2.45)

This completes the proof of the lemma.

Remark 5.2.15. Note each power network Pwrq,εn is at least as deep and parameter-rich as

the previous power network Pwrq,εn−1, one differs from the next by one Prdq,ε network.

Figure 5.10: Left: log10 of depths for a simulation of Pwrq,ε3 with q ∈ [2.1, 4], ε ∈ (0.1, 2],
and x ∈ [−5, 5], all with 50 mesh-points. Right: The theoretical upper limits over the same
range of values

5.2.3 Pnmq,ε
n,C and Neural Network Polynomials.

Definition 5.2.16 (Neural Network Polynomials). Let δ, ε ∈ (0,∞), q ∈ (2,∞) and δ =

ε (2q−1 + 1)
−1. For fixed q, ε, fixed n ∈ N0, and for C = {c0, c1, . . . , cn} ∈ Rn+1 (the set of

coefficients), we will define the following objects as neural network polynomials:

Pnmq,ε
n,C :=

n

i=0

ci ⊲

Tunmaxi{D(Pwrq,εi)}+1−D(Pwrq,εi) •Pwrq,εi

(5.2.46)

Remark 5.2.17. Diagrammatically, these can be represented as

157

Figure 5.11: Left: log10 of params for a simulation of Pwrq,ε3 with q ∈ [2.1, 4], ε ∈ (0.1, 2],
and x ∈ [−5, 5], all with 50 mesh-points. Right: The theoretical upper limits over the same
range of values

Lemma 5.2.18 (R—,2023). Let δ, ε ∈ (0,∞), q ∈ (2,∞) and δ = ε (2q−1 + 1)
−1. It is then

the case for all n ∈ N0 and x ∈ R that:

(i) Ir

Pnmq,ε

n,C

∈ C (R,R)

(ii) D

Pnmq,ε

n,C

1 : n = 0

n

q
q−2

[log2 (ε
−1) + q]− 1

+ 1 : n ∈ N

(iii) P

Pnmq,ε

n,C

2 : n = 0

(n+ 1)

4n+

3
2 +

4n+1−1

3

360q
q−2

[log2 (ε
−1) + q + 1] + 372

: n ∈ N

(iv)
n

i=0 cix
i − Ir

Pnmq,ε

n,C

(x)

n

i=1 ci
x

xi−1 − Ir

Pwrq,εi−1

(x)

+ ε+ |x|q + pqi−1

Where pi are the set of functions defined for i ∈ N as such:

p1 = ε+ 1 + |x|2

pi = ε+ (pi−1)
2 + |x|2 (5.2.47)

158

Figure 5.12: Isosurface plot showing |x3−Pwrq,ε3 | for q ∈ [2.1, 4], ε ∈ [0.01, 2], and x ∈ [−5, 5]
with 50 mesh-points in each.

Whence it is the case that:

n

i=0

cix
i − Ir

Pnmq,ε

n,C

(x)

 ∈ O

ε2q(n−1)

(5.2.48)

(v) W1

Pnmq,ε

n,C

= 2 + 23n+ n2

(vi) WH(Pnmq,ε
n,C)

Pnmq,ε

n,C

1 : n = 0

24 + 2n : n ∈ N

Proof. Note that by Lemma 4.6.5, Lemma 5.2.14, and Lemma 4.2.5 indicate for all n ∈ N0

159

...

Pwrq,ε0

Pwrq,ε1

Pwrq,ε2

Tun

Pwrq,εn

Tun

Tun
Cpyn+1,1

...

Sumn+1,1

...

...

Figure 5.13: Neural network diagram for an elementary neural network polynomial, with all
coefficients being uniformly 1.

it is the case that:

Ir

Pnmq,ε

n,C

= Ir

n

i=0

ci ⊲

Tunmaxi{D(Pwrq,εi)}+1−D(Pwrq,εi) •Pwrq,εi

=
n

i=1

ci Ir

Tunmaxi{D(Pwrq,εi)}+1−D(Pwrq,εi) •Pwrq,εi

=
n

i=1

ci Ir (Pwrq,εi)

Since Lemma 5.2.14 tells us that (Ir (Pwrq,εn)) (x) ∈ C (R,R), for all n ∈ N0 and since the

finite sum of continuous functions is continuous, this proves Item (i).

Note that Pnmq,ε
n is only as deep as the deepest of the Pwrq,εi networks, which from the

definition is Pwrq,εn , which in turn also has the largest bound. Therefore, by Lemma 4.2.5,

Lemma 4.4.5, Lemma 4.5.10, and Lemma 5.2.14, we have that:

D

Pnmq,ε

n,C

 D (Pwrq,εn)

1 : n = 0

n

q
q−2

[log2 (ε
−1) + q]− 1

+ 1 : n ∈ N

160

This proves Item (ii).

Note next that for the case of n = 0, we have that:

Pnmq,ε
n = ci ⊲ Pwrq,ε0 (5.2.49)

This then yields us 2 parameters.

Note that each neural network summand in Pnmq,ε
n consists of a combination of Tunk and

Pwrk for some k ∈ N. Each Pwrk has at least as many parameters as a tunneling neural

network of that depth, as Lemma 5.2.13 tells us. This, finally, with Lemma 4.4.5, Corollary

4.4.5.1, and Lemma 5.2.14 then implies that:

P

Pnmq,ε

n,C

= P

n

i=0

ci ⊲

Tunmaxi{D(Pwrq,εi)}+1−D(Pwrq,εi) •Pwrq,εi

 (n+ 1) · P (ci ⊲ [Tun1 •Pwrq,εn])

 (n+ 1) · P (Pwrq,εn)

2 : n = 0

(n+ 1)

4n+

3
2 +

4n+1−1

3

360q
q−2

[log2 (ε
−1) + q + 1] + 372

: n ∈ N

This proves Item (iii).

Finally, note that for all i ∈ N, Lemma 5.2.14, and the triangle inequality then tells us that

it is the case for all i ∈ N that:

xi − Ir (Pwrq,εi) (x)

xi − x · Ir

Pwrq,εi−1

(x)

+
x · Ir

Pwrq,εi−1

(x)− Ir (Pwrq,εi) (x)

(5.2.50)

This, Lemma 5.2.28, and the fact that instantiation of the tunneling neural network leads to

the identity function (Lemma 5.2.3 and Lemma 4.2.5), together with Lemma 4.6.8, and the

161

absolute homogeneity condition of norms, then tells us that for all x ∈ R, and c0, c1, . . . , cn ∈

R it is the case that:

n

i=0

cix
i − Ir

Pnmq,ε

n,C (x)

=

n

i=0

cix
i − Ir

n

i=0

ci ⊲ Tunmaxi{D(Pwrq,εi)}+1−D(Pwrq,εi) •Pwrq,εi

(x)

=

n

i=1

cix
i −

n

i=0

ci

Ir

Tunmaxi{D(Pwrq,εi)}+1−D(Pwrq,εi) •Pwrq,εi

(x)

n

i=1

|ci| ·
xi − Ir

Tunmaxi{D(Pwrq,εi)}+1−D(Pwrq,εi) •Pwrq,εi

(x)

n

i=1

|ci| ·
x

xi−1 − Ir

Pwrq,εi−1

(x)

+ ε+ |x|q + pqi−1

Note however that since for all x ∈ R and i ∈ N ∩ [2,∞), Lemma 5.1.10 tells us that

|xi − Ir (Pwrq,εi) (x)| ∈ O

ε2q(i−1)

, this, and the fact that f + g ∈ O (xa) if f ∈ O (xa),

g ∈ O

xb

, and a b, then implies that:

n

i=1

|ci| ·
x

xi−1 − Ir

Pwrq,εi−1

(x)

+ ε+ |x|q + pqi−1

∈ O

ε2q(n−1)

(5.2.51)

This proves Item (iv).

Note next in our construction Aff0,1 will require tunneling whenever i ∈ N in Pwrq,εi . Lemma

4.4.5 and Corollary 4.4.5.1 then tell us that:

W1 (Pnmq,ε
n) = W1

n

i=0

ci ⊲

Tunmaxi{D(Pwrq,εi)}+1−D(Pwrq,εi) •Pwrq,εi

= W1

n

i=0

Pwrq,εi

n

i=0

W1 (Pwrq,εi) = 2 +
n

2
(24 + 24 + 2 (n− 1)) = 2 + 23n+ n2

(5.2.52)

162

This proves Item (v).

Finally note that from the definition of the Pnmq,ε
n,C , it is evident that WH(Pwrq,ε0,C)

Pwrq,ε0,C

= 1

since Pwrq,ε0,C = Aff0,1. Other than this network, for all i ∈ N, Pwrq,εi,C end in the Prdq,ε network,

and the deepest of the Pwrq,εi networks is Pwrq,εn inside Pnmq,ε
n,C . All other Pwrq,εi must end in

tunnels. Whence in the second to last layer, Lemma 5.1.10 tells us that:

WH(Pnmq,ε
n,C)

1 : n = 0

24 + 2n : n ∈ N
(5.2.53)

This completes the proof of the Lemma.

5.2.4 Xpnq,εn , Csnq,εn , Sneq,εn , and Artificial Neural Network Approxi-

mations of ex, cos(x), and sin(x).

Once we have neural network polynomials, we may take the next leap to transcendental

functions. For approximating them we will use Taylor expansions which will swiftly give us

our approximations for our desired functions. Here, we will explore neural network approx-

imations for three common transcendental functions: ex, cos(x), and sin(x).

Lemma 5.2.19. Let ν1, ν2 ∈ NN, f, g ∈ C (R,R), and ε1, ε2 ∈ (0,∞) such that for all x ∈ R

it holds that |f(x)− Ir (ν1)| ε1 and |g(x)− Ir (ν2)| ε2. It is then the case for all x ∈ R

that:

|[f + g] (x)− Ir ([ν1 ⊕ ν2]) (x)| ε1 + ε2 (5.2.54)

163

Proof. Note that the triangle inequality tells us:

|[f + g] (x)− Ir [ν1 ⊕ ν2] (x)| = |f (x) + g (x)− Ir (ν1) (x)− Ir (ν2) (x)|

 |f (x)− Ir (ν1) (x)|+ |g (x)− Ir (ν2) (x)|

 ε1 + ε2

Lemma 5.2.20. Let n ∈ N. Let ν1, ν2, ..., νn ∈ NN, ε1, ε2, ..., εn ∈ (0,∞) and f1, f2, ..., fn ∈

C (R,R) such that for all i ∈ {1, 2, ..., n}, and for all x ∈ R, it is the case that,

|fi (x)− Ir (νi) (x)| εi. It is then the case for all x ∈ R, that:

n

i=1

fi (x)−
n

i=1

(Ir (νi)) (x)

n

i=1

εi (5.2.55)

Proof. This is a consequence of a finite number of applications of (5.2.54).

Definition 5.2.21 (R—2023, Xpnq,ε
n and the Neural Network Taylor Approximations for ex

around x = 0). Let δ, ε ∈ (0,∞), q ∈ (2,∞) and δ = ε (2q−1 + 1)
−1, and let Pwrq,εn ⊊ NN be

as in Lemma 5.2.14. We define, for all n ∈ N0, the family of neural networks Xpnq,ε
n as:

Xpnq,ε
n :=

n

i=0

1

i!
⊲

Tunmaxi{D(Pwrq,εi)}+1−D(Pwrq,εi) •Pwrq,εi

(5.2.56)

Lemma 5.2.22 (R—,2023). Let δ, ε ∈ (0,∞), q ∈ (2,∞) and δ = ε (2q−1 + 1)
−1. It is then

the case for all n ∈ N0 and x ∈ R that:

(i) Ir (Xpnq,ε
n) (x) ∈ C (R,R)

(ii) D (Xpnq,ε
n)

1 : n = 0

n

q
q−2

[log2 (ε
−1) + q]− 1

+ 1 : n ∈ N

164

(iii) P (Xpnq,ε
n)

2 : n = 0

(n+ 1)

4n+

3
2 +

4n+1−1

3

360q
q−2

[log2 (ε
−1) + q + 1] + 372

: n ∈ N

(iv)

n

i=0

xi

i!

− Ir (Xpnq,ε

n) (x)

n

i=1

1

i!

x

xi−1 − Ir

Pwrq,εi−1

(x)

+ ε+ |x|q + pqi−1

Where pi are the set of functions defined for i ∈ N as such:

p1 = ε+ 1 + |x|2

pi = ε+ (pi−1)
2 + |x|2 (5.2.57)

Whence it is the case that:

n

i=0

xi

i!

− Ir (Xpnq,ε

n) (x)

 ∈ O

ε2q(n−1)

(5.2.58)

(v) W1 (Xpnq,ε
n) = 2 + 23n+ n2

(vi) WH(Xpnn
q,ε) (Xpnq,ε

n) 24 + 2n

Proof. This follows straightforwardly from Lemma 5.2.18 with ci ↶ 1
i!

for all n ∈ N and

i ∈ {0, 1, . . . , n}. In particular, Item (iv) benefits from the fact that for all i ∈ N0, it is the

case that 1
i!
 0.

Lemma 5.2.23 (R—, 2023). Let δ, ε ∈ (0,∞), q ∈ (2,∞) and δ = ε (2q−1 + 1)
−1

. It is then

165

the case for all n ∈ N0 and x ∈ [a, b] ⊊ R, where 0 ∈ [a, b] ⊊ R that:

|ex − Ir (Xpnq,ε
n) (x)|

n

i=0

1

i!

x

xn−1 − Ir

Pwrq,εn−1

(x)

+ ε+ |x|q + pqn−1

+

eb · |x|n+1

(n+ 1)!

(5.2.59)

Proof. Note that Taylor's theorem states that for x ∈ [a, b] ⊊ R it is the case that:

ex =
n

i=0

xi

i!

+

eξ · xn+1

(n+ 1)!
(5.2.60)

Where ξ is between 0 and x in the Lagrange form of the remainder. Note then, for all n ∈ N0,

x ∈ [a, b] ⊊ R, and ξ between 0 and x, it is the case, by monotonicity of ex that the second

summand is bounded by:

eξ · xn+1

(n+ 1)!
 eb · |x|n+1

(n+ 1)!
(5.2.61)

This, and the triangle inequality, then indicates that for all x ∈ [a, b] ⊊ R, and ξ between 0

and x that:

|ex − Ir (Xpnq,ε
n) (x)| =

n

i=0

xi

i!

+

eξ · xn+1

(n+ 1)!
− Ir (Xpnq,ε

n) (x)

n

i=0

xi

i!

− Ir (Xpnq,ε

n) (x)

+
eb · |x|n+1

(n+ 1)!

n

i=1

1

i!

x

xn−1 − Ir

Pwrq,εn−1

(x)

+ ε+ |x|q + pqn−1

+

eb · |x|n+1

(n+ 1)!

Whence we have that for fixed n ∈ N0 and b ∈ [0,∞), the last summand is constant, whence

it is the case that:

|ex − Ir (Xpnq,ε
n) (x)| ∈ O

ε2q(n−1)

(5.2.62)

166

Definition 5.2.24 (The Csnq,ε
n Networks, and Neural Network Cosines). Let δ, ε ∈ (0,∞),

q ∈ (2,∞) and δ = ε (2q−1 + 1)
−1. Let Pwrq,εn be a neural networks as defined in Definition

5.2.7. We will define the neural networks Csnq,ε
n as:

Csnq,ε
n :=

n

i=0

(−1)i

2i!
⊲

Tunmaxi{D(Pwrq,εi)}+1−D(Pwrq,εi) •Pwrq,ε2i

(5.2.63)

Lemma 5.2.25 (R—, 2023). Let δ, ε ∈ (0,∞), q ∈ (2,∞) and δ = ε (2q−1 + 1)
−1. It is then

the case for all n ∈ N0 and x ∈ R that:

(i) Ir (Csnq,ε
n) (x) ∈ C (R,R)

(ii) D (Csnq,ε
n)

1 : n = 0

2n

q
q−2

[log2 (ε
−1) + q]− 1

+ 1 : n ∈ N

(iii) P (Csnq,ε
n)

2 : n = 0

(2n+ 1)

42n+

3
2 +

42n+1−1

3

360q
q−2

[log2 (ε
−1) + q + 1] + 372

: n ∈ N

(iv)

n

i=0
(−1)i

2i!
x2i − Ir (Csnq,ε

n) (x)

n

i=1

 (−1)i

2i!

x

x2i−1 − Ir

Pwrq,ε2i−1

(x)

+ ε+ |x|q + pq2i−1

Where pi are the set of functions defined for i ∈ N as such:

p1 = ε+ 1 + |x|2

pi = ε+ (pi−1)
2 + |x|2 (5.2.64)

167

Whence it is the case that:

n

i=0

(−1)i

2i!
x2i − Ir (Csnq,ε

n) (x)

 ∈ O

ε2q(2n−1)

(5.2.65)

Proof. Item (i) derives straightforwardly from Lemma 5.2.18. This proves Item (i).

Next, observe that since Csnq,ε
n will contain, as the deepest network in the summand, Pwrq,ε2n ,

we may then conclude that

D (Csnq,ε
n) D (Pwrq,ε2n)

1 : n = 0

2n

q
q−2

[log2 (ε
−1) + q]− 1

+ 1 : n ∈ N

This proves Item (ii).

A similar argument to the above, Lemma 4.4.5, and Corollary 4.4.5.1 reveals that:

P (Csnq,ε
n) = P

n

i=0

(−1)i

2i!
⊲

Tunmaxi{D(Pwrq,εi)}+1−D(Pwrq,εi) •Pwrq,εi

 (n+ 1) · P (ci ⊲ [Tun1 •Pwrq,ε2n])

 (n+ 1) · P (Pwrq,ε2n)

2 : n = 0

(n+ 1)

42n+

3
2 +

42n+1−1

3

360q
q−2

[log2 (ε
−1) + q + 1] + 372

: n ∈ N

This proves Item (iii).

In a similar vein, we may argue from Lemma 5.2.18 and from the absolute homogeneity

168

property of norms that:

n

i=0

(−1)i

2i!
x2i − Ir (Csnq,ε

n (x))

=

n

i=0

(−1)i

2i!
x2i − Ir

n

i=0

(−1)i

2i!
⊲ Tunmax2i{D(Pwrq,ε2i)}+1−D(Pwrq,ε2i)

•Pwrq,ε2i

(x)

=

n

i=1

(−1)i

2i!
x2i −

n

i=0

(−1)i

2i!

Ir

Tunmax2i{D(Pwrq,ε2i)}+1−D(Pwrq,ε2i)

•Pwrq,ε2i

(x)

n

i=1

(−1)i

2i!

 ·
x2i − Ir

Tunmax2i{D(Pwrq,ε2i)}+1−D(Pwrq,ε2i)

•Pwrq,ε2i

(x)

n

i=1

(−1)i

2i!

 ·
x

x2i−1 − Ir

Pwrq,ε2i−1

(x)

+ ε+ |x|q + pq2i−1

Whence we have that:

n

i=0

(−1)i x2i

2i!

− Ir (Csnq,ε

n) (x)

 ∈ O

ε2q(2n−1)

(5.2.66)

This proves Item (iv).

Lemma 5.2.26 (R—, 2023). Let δ, ε ∈ (0,∞), q ∈ (2,∞) and δ = ε (2q−1 + 1)
−1

. It is then

the case for all n ∈ N0 and x ∈ [a, b] ⊆ [0,∞) that:

|cos (x)− Ir (Csnq,ε
n) (x)| (5.2.67)

n

i=0

(−1)i

2i!

x

xn−1 − Ir

Pwrq,εn−1

(x)

+ ε+ |x|q + pqn−1

++

|x|n+1

(n+ 1)!

Proof. Note that Taylor's theorem states that for all x ∈ [a, b] ⊊ R, where 0 ∈ [a, b], it is the

case that:

cos (x) =
n

i=0

(−1)i

2i!
xi +

cos(n+1) (ξ) · xn+1

(n+ 1)!
(5.2.68)

Note further that for all n ∈ N0, and x ∈ R, it is the case that cos(n) (x) 1. Whence we

169

may conclude that for all n ∈ N0, x ∈ [a, b] ⊆ R, where 0 ∈ [a, b] and ξ between 0 and x, we

may bound the second summand by:

cos(n+1) (ξ) · xn+1

(n+ 1)!
 |x|n+1

(n+ 1)!
(5.2.69)

This, and the triangle inequality, then indicates that for all x ∈ [a, b] ⊊ [0,∞) and ξ ∈ [0, x]:

|cos (x)− Ir (Csnq,ε
n) (x)| =

n

i=0

(−1)i

2i!
xi +

cos(n+1) (ξ) · xn+1

(n+ 1)!
− Ir (Csnq,ε

n) (x)

n

i=0

(−1)i

2i!
xi − Ir (Csnq,ε

n) (x)

+
|x|n+1

(n+ 1)!

n

i=1

(−1)i

2i!

 ·
x

x2i−1 − Ir

Pwrq,ε2i−1

(x)

+ ε+ |x|q + pq2i−1

+
|x|n+1

(n+ 1)!

This completes the proof of the Lemma.

Definition 5.2.27 (R—, 2023, The Sneq,εn Newtorks and Neural Network Sines.). . Let

δ, ε ∈ (0,∞), q ∈ (2,∞) and δ = ε (2q−1 + 1)
−1. Let Pwrq,ε be a neural network defined in

Definition 5.2.7. We will define the neural network Csnn,q,ε as:

Sneq,εn := Csnq,ε •Aff1,−π
2

(5.2.70)

Lemma 5.2.28 (R—, 2023). Let δ, ε ∈ (0,∞), q ∈ (2,∞) and δ = ε (2q−1 + 1)
−1. It is then

the case for all n ∈ N0 and x ∈ R that:

(i) Ir (Sneq,εn) ∈ C (R,R)

(ii) D (Sneq,εn)

1 : n = 0

2n

q
q−2

[log2 (ε
−1) + q]− 1

+ 1 : n ∈ N

170

(iii) P (Sneq,εn)

2 : n = 0

(2n+ 1)

42n+

3
2 +

42n+1−1

3

360q
q−2

[log2 (ε
−1) + q + 1] + 372

: n ∈ N

(iv)

n

i=0

(−1)i

2i!

x− π

2

2i

− Ir (Sneq,εn) (x)

=

n

i=0

(−1)i

2i!

x− π

2

2i

− Ir

Csnq,ε

n •Aff1,−π
2

(x)

n

i=1

(−1)i

2i!

x− π

2

x− π

2

2i−1

− Ir

Pwrq,εi−1

x− π

2

+ ε+ |x|q + pqi−1

Where pi are the set of functions defined for i ∈ N as such:

p1 = ε+ 1 + |x|2

pi = ε+ (pi−1)
2 + |x|2 (5.2.71)

Whence it is the case that:

n

i=0

(−1)i

2i!

x− π

2

2i

− Ir (Sneq,εn) (x)

 ∈ O

ε2q(2n−1)

(5.2.72)

Proof. This follows straightforwardly from Lemma 5.2.25, and the fact that by Corollary

4.4.5.1, there is not a change to the parameter count, by Lemma 4.2.11, there is no change

in depth, by Lemma 4.4.2, and Lemma 5.2.25, continuity is preserved, and the fact that

Aff1,−π
2

is exact and hence contributes nothing to the error, and finally by the fact that

Aff1,−π
2
→ (·)− π

2
under instantiation, assures us that the Sneq,εn has the same error bounds

171

as Csnq,ε
n .

Lemma 5.2.29 (R—, 2023). Let δ, ε ∈ (0,∞), q ∈ (2,∞) and δ = ε (2q−1 + 1)
−1

. It is then

the case for all n ∈ N0 and x ∈ [a, b] ⊆ [0,∞) that:

|sin (x)− Ir (Sneq,εn) (x)|

n

i=1

(−1)i

2i!

x− π

2

x− π

2

2i−1

− Ir

Pwrq,εi−1

x− π

2

+ ε+ |x|q + pqi−1

+
|x|n+1

(n+ 1)!
(5.2.73)

Proof. Note that the fact that sin (x) = cos

x− π

2

, Lemma 4.2.5, and Lemma 4.4.2 then

renders (5.2.73) as:

|sin (x)− Ir (Sneq,εn)|

=
cos

x− π

2

− Ir

Csnq,ε

n •Aff1,−π
2

(x)

=
cos

x− x

2

− Ir Csnq,ε

n

x− π

2

n

i=1

(−1)i

2i!

x− π

2

x− π

2

2i−1

− Ir

Pwrq,εi−1

x− π

2

+ ε+ |x|q + pqi−1

+
|x|n+1

(n+ 1)!

Remark 5.2.30. Note that under these neural network architectures the famous Pythagorean

identity sin2 (x) + cos2 (x) = 1, may be rendered approximately, for fixed n, q, ε as:

[Sqrq,ε •Csnq,ε
n] ⊕ [Sqrq,ε • Sneq,εn]. A full discussion of the associated parameter, depth, and

accuracy bounds are beyond the scope of this dissertation, and may be appropriate for future

work.

172

Chapter 6

ANN first approximations

6.1 ANN Representations for One-Dimensional Iden-

tity and some associated properties

Definition 6.1.1 (One Dimensional Identity Neural Network). We will denote by Idd ∈ NN

the neural network satisfying for all d ∈ N that:

(i)

Id1 =

1

−1

 ,

0

0

1 − 1

,

0

 ∈

R2×1 × R2

×

R1×2 × R1

(6.1.1)

(ii)

Idd = ⊟d
i=1 Id1 (6.1.2)

For d > 1.

Lemma 6.1.2. Let d ∈ N, it is then the case that:

173

(i) L(Idd) = (d, 2d, d) ∈ N3.

(ii) Ir (Idd) ∈ C

Rd,Rd

.

(iii) For all x ∈ Rd that:

(Ir (Idd)) (x) = x

(iv) For d ∈ N it is the case that D (Idd) = 2

Proof. Note that (6.1.1) ensure that L(Idd) = (1, 2, 1). Furthermore, (6.1.2) and Remark

4.3.12 prove that L(Idd) = (d, 2d, d) which in turn proves Item (i). Note now that Remark

4.3.12 tells us that:

Idd = ⊟d
i=1 (Id1) ∈

L×
i=1

Rdli×dli−1 × Rdli

=

R2d×d × R2d

×

Rd×2d × Rd

(6.1.3)

Note that 6.1.1 ensures that for all x ∈ R it is the case that:

(Ir (Id1)) (x) = r(x)− r(−x) = max{x, 0}− max{−x, 0} = x (6.1.4)

And Lemma 4.3.8 shows us that for all x = (x1, x2, ..., xd) ∈ Rd it is the case that Ir (Idd) ∈

C

Rd,Rd

and that:

(Ia (Idd)) (x) =

Ia

⊟d

i=1 (Id1)

(x1, x2, ..., xd)

= ((Ia (Id1)) (x1) , (Ia (Id1)) (x1) , ..., (Ia (Id1)) (xd))

= (x1, x2, ..., xd) = x (6.1.5)

This proves Item (ii)—(iii). Item (iv) follows straightforwardly from Item (i). This estab-

lishes the lemma.

Remark 6.1.3. Note here the difference between Definition ?? and Definition 6.1.1.

174

Lemma 6.1.4 (R—, 2023). Let d ∈ N. It then the case that for all d ∈ N we have that

P (Idd) = 4d2 + 3d

Proof. By observation we have that P (Id1) = 4(1)2 + 3(1) = 7. By induction, suppose that

this holds for all natural numbers up to and including n, i.e., for all naturals up to and

including n; it is the case that P (Idn) = 4n2 + 3n. Note then that Idn+1 = Idn ⊟ Id1. For W1

and W2 of this new network, this adds a combined extra 8n + 4 parameters. For b1 and b2

of this new network, this adds a combined extra 3 parameters. Thus, we have the following:

4n2 + 3n+ 8n+ 4 + 3 = 4(n+ 1)2 + 3(n+ 1) (6.1.6)

This completes the induction and hence proves the Lemma.

Lemma 6.1.5. Let ν ∈ NN with end-widths d. It is then the case that Ir (Idd •ν) (x) =

Ir (ν • Idd) = Ir (ν), i.e. Idd acts as a compositional identity.

Proof. From (4.2.1) and Definition 6.1.1 we have eight cases.

Case 1 where d = 1 and subcases:

(1.i) Idd •ν where D(ν) = 1

(1.ii) Idd •ν where D(ν) > 1

(1.iii) ν • Idd where D(ν) = 1

(1.iv) ν • Idd where D(ν) > 1

Case 2 where d > 1 and subcases:

(2.i) Idd •ν where D(ν) = 1

(2.ii) Idd •ν where D(ν) > 1

(2.iii) ν • Idd where D(ν) = 1

175

(2.iv) ν • Idd where D(ν) > 1

Case 1.i: Let ν = ((W1, b1)). Deriving from Definitions 6.1.1 and 4.2.1 we have that:

Id1 •ν =

1

−1

W1,

1

−1

 b1 +

0

0

 ,

1 − 1,

,

0

 (6.1.7)

=

W1

−W1

 ,

b1

−b1

 ,

1 − 1

,

0

 (6.1.8)

Let x ∈ R. Upon instantiation with r and d = 1 we have:

(Ir (Id1 •ν)) (x) = r(W1x+ b1)− r(−W1x− b1)

= max{W1x+ b1, 0}− max{−W1x− b1, 0}

= W1x+ b1

= Ir(ν)

Case 1.ii: Let ν = ((W1, b1) , (W2, b2) , ..., (WL, bL)). Deriving from Definition 6.1.1 and 4.2.1

we have that:

Id1 •ν

=

(W1, b1) , (W2, b2) , ..., (WL−1, bL−1) ,

1

−1

WL,

1

−1

 bL +

0

0

 ,

1 − 1

,

0

=

(W1, b1) , (W2, b2) , ..., (WL−1, bL−1) ,

WL

−WL

 ,

bL

−bL

 ,

1 −1

,

0

176

Let x ∈ R. Note that upon instantiation with r, the last two layers are:

r(WLx+ bL)− r(−WLx− bL, 0)

= max{WLx+ bL, 0}− max{−WLx− bL, 0}

= WLx+ bL (6.1.9)

This, along with Case 1. i, implies that the uninstantiated last layer is equivalent to (WL, bL)

whence Id1 •ν = ν.

Case 1.iii: Let ν = ((W1, b1)). Deriving from Definition 6.1.1 and 4.2.1 we have:

ν • Id1 =

1

−1

 ,

0

0

 ,

W1

1 − 1

,W1

0

+ b1

=

1

−1

 ,

0

0

 ,

W1 −W1

, b1

Let x ∈ R. Upon instantiation with r we have that:

(Ir (ν • Id1)) (x) =

W1 −W1

r

x

−x

+ b1

= W1 r(x)−W1 r(−x) + b1

= W1 (r(x)− r(−x)) + b1

= Wx + b1 = Ir (ν) (6.1.10)

Case 1.iv: Let ν = ((W1, b1) , (W2, b2) , ..., (WL, bL)). Deriving from Definitions 6.1.1 and

4.2.1 we have that:

ν • Id1 =

1

−1

 ,

0

0

 ,

W1 −W1

, b1

, (W2, b2) , ..., (WL, bL)

 (6.1.11)

177

Let x ∈ R. Upon instantiation with r, we have that the first two layers are:

W1 −W1

r

x

−x

+ b1

= W1 r(x)−W1 r(−x) + b1

= W1 (r(x)− r(−x)) + b1

= W1x+ b1 = Ir (ν) (6.1.12)

This, along with Case 1. iii, implies that the uninstantiated first layer is equivalent (W1, b1)

whence we have that ν • Id1 = ν.

Observe that Definitions 4.3.1 and 6.1.1 tells us that:

⊟d
i=1 Idi (6.1.13)

=

d−many

WeightId1,1

. . .

WeightId1,1

, 02d

,

d−many

WeightId1,2

. . .

WeightId1,2

, 0d

Case 2.i Let d ∈ N ∩ [1,∞). Let ν ∈ NN be ν = (W1, b1) with end-widths d. Deriving from

178

Definitions 4.2.1 and 6.1.1 we have:

Idd •ν =

WeightId1,1

. . .

WeightId1,1

W1,

WeightId1,1

. . .

WeightId1,1

b1

,

WeightId1,2

. . .

WeightId1,2

, 0d

=

[W1]1,∗

−[W1]1,∗
...

[W1]d,∗

−[W1]d,∗

,

[b1]1

−[b1]1
...

[b1]d

−[b1]d

,

WeightId1,2

. . .

WeightId1,2

, 0d

Let x ∈ Rd. Upon instantiation with r we have that:

(Ir (Idd •ν)) (x)

= r([W1]1,∗ · x+ [b1]1)− r(−[W1]1,∗ · x− [b1]1) + · · ·

+ r([W1]d,∗ · x+ [b1]d)− r(−[W1]d,∗ · x− [b1]d)

= [W1]1,∗ · x+ [b1]1 + · · ·+ [W1]d,∗ · x+ [b1]d

= W1x+ b1 = Ir (ν)

Case 2.ii: Let ν = ((W1, b1) , (W2, b2) , ..., (WL, bL)). Deriving from Definition 6.1.1 and 4.2.1

179

we have that:

Idd •ν

=

(W1, b1) , (W2, b2) , ..., (WL−1, bL−1) ,

[WL]1,∗

−[WL]1,∗
...

[WL]d,∗

−[WL]d,∗

,

[bL]1

−[bL]1
...

[bL]d

−[bL]d

,

1 −1

,

0

Note that upon instantiation with r, the last two layers become:

r([WL]1,∗ · x+ [bL]1)− r(−[WL]1,∗ · x− [bL]1) + · · ·

+ r([WL]d,∗ · x+ [bL]d)− r(−[WL]d,∗ · x− [bL]d)

= [WL]1,∗ · x+ [bL]1 + · · ·+ [WL]d,∗ · x+ [bL]d

= WLx+ bL (6.1.14)

This, along with Case 2.i implies that the uninstantiated last layer is equivalent to (WL, bL)

whence Idd •ν = ν.

Case 2.iii: Let ν = ((W1, b1)). Deriving from Definition 6.1.1 and 4.2.1 we have:

ν • Idd =

WeightId1,1

. . .

WeightId1,1

, 02d

,

W1

WeightId1,2

. . .

WeightId1,2

, b1

180

Upon instantiation with r we have that:

(Ir (ν)) (x) (6.1.15)

=

[W1]∗,1 − [W1]∗,1 · · · [W1]∗,d − [W1]∗,d

r

[x]1

−[x]1
...

[x]d

−[x]d

+ b1

= [W1]∗,1 r([x]1)− [W1]∗,1 r(−[x]1) + · · ·+ [W1]∗,d r([x]d)− [W1]∗,d r(−[x]d) + b1

= [W1]∗,1 · [x]1 + · · ·+ [W1]∗,d · [x]d

= W1x+ b1 = Ir(ν) (6.1.16)

Case 2.iv: Let ν = ((W1, b1) , (W2, b2) , ..., (WL, bL)). Deriving from Definitions 6.1.1 and

4.2.1 we have:

ν • Idd

=

WeightId1,1

. . .

WeightId1,1

, 02d

,

[W1]∗,1 − [W1]∗,1 · · · [W1]∗,d − [W1]∗,d

, b1

, ...

(W2, b2) , ..., (WL, bL))

181

Upon instantiation with r, we have that the first two layers are:

(Ir (ν)) (x) (6.1.17)

=

[W1]∗,1 − [W1]∗,1 · · · [W1]∗,d − [W1]∗,d

r

[x]1

−[x]1
...

[x]d

−[x]d

+ b1

= [W1]∗,1 r([x]1)− [W1]∗,1 r(−[x]1) + · · ·+ [W1]∗,d r([x]d)− [W1]∗,d r(−[x]d) + b1

= [W1]∗,1 · [x]1 + · · ·+ [W1]∗,d · [x]d

= W1x+ b1 (6.1.18)

This, along with Case 2. iii, implies that the uninstantiated first layer is equivalent to

(WL, bL) whence Idd •ν = ν.

This completes the proof.

Definition 6.1.6 (Monoid). Given a set X with binary operation ∗, we say that X is a

monoid under the operation ∗ if:

(i) For all x, y ∈ X it is the case that x ∗ y ∈ X

(ii) For all x, y, z ∈ X it is the case that (x ∗ y) ∗ z = x ∗ (y ∗ z)

(iii) The exists a unique element e ∈ X such that e ∗ x = x ∗ e = x

Theorem 6.1.7. Let d ∈ N. For a fixed d, the set of all neural networks ν ∈ NN with

instantiations in r and end-widths d form a monoid under the operation of •.

Proof. This is a consequence of Lemma 6.1.5 and Lemma 4.2.4.

Remark 6.1.8. By analogy with matrices, we may find it helpful to refer to neural networks

of end-widths d as ``square neural networks of size d''.

182

6.2 Trph, Etrn,h and Neural Network Approximations For

the Trapezoidal Rule.

Definition 6.2.1 (The Trp neural network). Let h ∈ R0. We define the Trph ∈ NN neural

network as:

Trph := Aff[h2 h
2],0

(6.2.1)

Lemma 6.2.2. Let h ∈ (−∞,∞). It is then the case that:

(i) for x = {x1, x2} ∈ R2 that

Ir

Trph

(x) ∈ C (R2,R)

(ii) for x = {x1, x2} ∈ R2 that

Ir

Trph

(x) = 1

2
h (x1 + x2)

(iii) D

Trph

= 1

(iv) P

Trph

= 3

(v) L

Trph

= (2, 1)

Proof. This a straight-forward consequence of Lemma 4.4.1

Definition 6.2.3 (The Etr neural network). Let n ∈ N and h ∈ R0. We define the neural

network Etrn,h ∈ NN as:

Etrn,h := Affh
2
h h ... h

h

2

n+1−many

,0

(6.2.2)

Lemma 6.2.4. Let n ∈ N. Let x0 ∈ (−∞,∞), and xn ∈ [x0,∞). Let x = [x0 x1 ... xn] ∈

Rn+1 and h ∈ (−∞,∞) such that for all i ∈ {0, 1, ..., n} it is the case that xi = x0 + i · h.

Then:

(i) for all x ∈ Rn+1 it is the case that

Ir

Etrn,h

(x) ∈ C (Rn+1,R)

183

(ii) for all n ∈ N, and h ∈ (0,∞) it is the case that

Ir

Etrn,h

(x) = h

2
· x0 + h · x1 +

· · ·+ h · xn−1 +
h
2
· xn

(iii) for all n ∈ N, and h ∈ (0,∞) it is the case that D

Etrn,h

= 1

(iv) for all n ∈ N and h ∈ (0,∞) it is the case that P

Etrn,h

= n+ 2

(v) for all n ∈ N and h ∈ (0,∞) it is the case that L

Etrn,h

= (n+ 1, 1)

Proof. This a straightforward consequence of Lemma 4.4.1.

Remark 6.2.5. Let h ∈ (0,∞). Note then that Trph is simply Etr2,h.

6.3 Maximum Convolution Approximations for Multi-

-Dimensional Functions

We will present here an approximation scheme for continuous functions called maximum

convolution approximation. This derives mainly from Chapter 4 of Jentzen et al. (2023),

and our contribution is mainly to show parameter bounds, and convergence in the case of

1-D approximation.

6.3.1 The Nrmd
1 Networks

Definition 6.3.1 (The Nrmd
1 neural network). We denote by

Nrmd

1

d∈N ⊆ NN the family of

neural networks that satisfy:

(i) for d = 1:

Nrm1
1 =

1

−1

 ,

0

0

 ,

1 1

,

0

 ∈

R2×1 × R2

×

R1×2 × R1

(6.3.1)

184

(ii) for d ∈ {2, 3, ...}:

Nrmd
1 = Sumd,1 •

⊟d

i=1 Nrm1
1

(6.3.2)

Lemma 6.3.2. Let d ∈ N. It is then the case that:

(i) L

Nrmd

1

= (d, 2d, 1)

(ii)

Ir

Nrmd

1

(x) ∈ C

Rd,R

(iii) that for all x ∈ Rd that

Ir

Nrmd

1

(x) = x1

(iv) it holds H

Nrmd

1

= 1

(v) it holds that P

Nrmd

1

 7d2

(vi) it holds that D

Nrmd

1

= 2

Proof. Note that by observation, it is the case that L

Nrmd

1

= (1, 2, 1). This and Re-

mark 4.4.2 tells us that for all d ∈ {2, 3, ...} it is the case that L

⊟d

i=1 Nrmd
1

= (d, 2d, d).

This, Lemma 4.2.5, and Lemma 4.4.2 ensure that for all d ∈ {2, 3, 4, ...} it is the case that

L

Nrmd

1

= (d, 2d, 1), which in turn establishes Item (i).

Notice now that (6.3.1) ensures that:

Ir

Nrmd

1

(x) = r (x) + r (−x) = max{x, 0}+ max{−x, 0} = |x| = x1 (6.3.3)

This along with (Grohs et al., 2023, Proposition 2.19) tells us that for all d ∈ {2, 3, 4, ...}

and x = (x1, x2, ..., xd) ∈ Rd it is the case that:

Ir

⊟d

i=1 Nrm1
1

(x) = (|x1| , |x2| , ..., |xd|) (6.3.4)

185

This together with Lemma 4.2.3 tells us that:

Ir

Nrmd

1

=

Ir

Sumd,1 •

⊟d

i=1 Nrmd
1

(x)

= (Ir (Sumd,1)) (|x1|, |x2|, ..., |xd|) =
d

i=1

|xi| = x1 (6.3.5)

Note next that by observation H

Nrm1

1

= 1. Remark 4.4.2 then tells us that since the

number of layers remains unchanged under stacking, it is then the case that H

Nrm1

1

=

H

⊟d

i=1 Nrm1
1

= 1. Note next that Lemma 4.2.4 then tells us that H (Sumd,1) = 0 whence

Lemma 4.2.5 tells us that:

H

Nrmd

1

= H

Sumd,1 •

⊟d

i=1 Nrm1
1

= H (Sumd,1) + H

⊟d

i=1 Nrm1
1

= 0 + 1 = 1 (6.3.6)

Note next that:

Nrm1
1 =

1

−1

 ,

0

0

 ,

1 1

,

0

 ∈

R2×1 × R2

×

R1×2 × R1

(6.3.7)

and as such P

Nrm1

1

= 7. This, combined with Cor 4.3.5.1, and the fact that we are stacking

identical neural networks then tells us that:

P

⊟d

i=1 Nrm1
1

 7d2 (6.3.8)

Then Lemma Corollary 4.4.5.1, Lemma 4.5.6, and Lemma 4.2.5 tells us that:

P

Nrmd

1

= P

Sumd,1 •

⊟d

i=1 Nrm1
1

 P

⊟d

i=1 Nrm1
1

 7d2 (6.3.9)

186

This establishes Item (v).

Finally, by observation D

Nrm1

1

= 2, we are stacking the same neural network when

we have Nrmd
1. Stacking has no effect on depth from Definition 4.3.1, and by Lemma

4.2.5, D

Sumd,1 •

⊟d

i=1 Nrm1
1

= D

⊟Nrm1

1

. Thus we may conclude that D

Nrmd

1

=

D

Nrm1

1

= 2.

This concludes the proof of the lemma.

6.3.2 The Mxmd Neural Networks

Given x ∈ R, it is straightforward to find the maximum; x is the maximum. For x ∈ Rd we

may find the maximum via network (6.3.8.1), i.e. Mxm2. The strategy is to find maxima for

half our entries and half repeatedly until we have one maximum. For x ∈ Rd where d is even

we may stack d copies of Mxm2 to halve, and for x ∈ Rd where d is odd and greater than 3

we may introduce ``padding'' via the Id1 network and thus require d−1
2

copies of Mxm2 to

halve.

Definition 6.3.3 (Maxima ANN representations). Let

Mxmd

d∈N ⊆ NN represent the neu-

ral networks that satisfy:

(i) for all d ∈ N that I

Mxmd

= d

(ii) for all d ∈ N that O

Mxmd

= 1

(iii) that Mxm1 = Aff1,0 ∈ R1×1 × R1

(iv) that:

Mxm2 =

1 −1

0 1

0 −1

,

0

0

0

,

1 1 −1

,

0

(6.3.10)

(v) it holds for all d ∈ {2, 3, ...} that Mxm2d = Mxmd •

⊟d

i=1 Mxm2

, and

187

(vi) it holds for all d ∈ {2, 3, ...} that Mxm2d−1 = Mxmd •

⊟d

i=1 Mxm2

⊟ Id1

.

Remark 6.3.4. Diagrammatically, this can be represented as:

Mxm2

Mxm2

Mxm2

Mxm2

Mxm2

Mxm2

Mxm2

Mxm2

Id1

Mxm2

Mxm2

Figure 6.1: Neural network diagram for Mxm5.

Lemma 6.3.5. Let d ∈ N, it is then the case that:

(i) H

Mxmd

= ⌈log2 (d)⌉

(ii) for all i ∈ N that Wi

Mxmd

 3

d
2i

(iii) Ir

Mxmd

∈ C

Rd,R

and

(iv) for all x = (x1, x2, ..., xd) ∈ Rd we have that

Ir

Mxmd

(x) = max{x1, x2, ..., xd}.

(v) P

Mxmd

4
3
d2 + 3d

1 + 1

2

⌈log2(d)⌉+1

(vi) D

Mxmd

= ⌈log2 (d)⌉+ 1

188

Proof. Assume w.l.o.g. that d > 1. Note that (6.3.10) ensures that H

Mxmd

= 1. This and

(4.3.1) then tell us that for all d ∈ {2, 3, 4, ...} it is the case that:

H

⊟d

i=1 Mxm2

= H

⊟d

i=1 Mxm2

⊟ Id1

= H

Mxm2

= 1

This and Lemma 4.2.5 tells us that for all d ∈ {3, 4, 5, ...} it holds that:

H

Mxmd

= H

Mxm⌈ d

2⌉

+ 1 (6.3.11)

And for d ∈ {4, 6, 8, ...} with H

Mxm⌈ d
2⌉

=

log2

d
2

it holds that:

H

Mxmd

=

log2

d

2

+ 1 = ⌈log2 (d)− 1⌉+ 1 = ⌈log2 (d)⌉ (6.3.12)

Moreover (6.3.11) and the fact that for all d ∈ {3, 5, 7, ...} it holds that ⌈log2 (d+ 1)⌉ =

⌈log2 (d)⌉ ensures that for all d ∈ {3, 5, 7, ...} with H

Mxm⌈ d
2⌉

=

log2

d
2

it holds that:

H

Mxmd

=

log2

d

2

+ 1 =

log2

d+ 1

2

+ 1

= ⌈log2 (d+ 1)− 1⌉+ 1 = ⌈log2 (d+ 1)⌉ = ⌈log2 (d)⌉ (6.3.13)

This and (6.3.12) demonstrate that for all d ∈ {3, 4, 5, ...} with ∀k ∈ {2, 3, ..., d − 1} :

H

Mxmd

= ⌈log2 (k)⌉ it holds htat H

Mxmd

= ⌈log2 (d)⌉. The fact that H

Mxm2

= 1

and induction establish Item (i).

We next note that L

Mxm2

= (2, 3, 1). This then indicates that for all i ∈ N that:

Wi

Mxm2

 3 = 3

2

2i

. (6.3.14)

189

Note then that Lemma 4.2.5 and Remark 4.4.2 tells us that:

Wi

Mxm2d

=

3d : i = 1

Wi−1

Mxmd

: i 2

(6.3.15)

And:

Wi

Mxm2d−1

=

3d− 1 : i = 1

Wi−1

Mxmd

: i 2

(6.3.16)

This in turn assures us that for all d ∈ {2, 4, 6, ..., } it holds that:

W1

Mxmd

= 3

d

2

 3

d

2

(6.3.17)

Moreover, note that (6.3.16) tells us that for all d ∈ {3, 5, 7, ...} it holds that:

W1

Mxmd

= 3

d

2

− 1 3

d

2

(6.3.18)

This and (6.3.17) shows that for all d ∈ {2, 3, ...} it holds that:

W1

Mxmd

 3

d

2

(6.3.19)

Additionally note that (6.3.15) demonstrates that for all d ∈ {4, 6, 8, ...}, i ∈ {2, 3, ...} with

Wi−1

Mxm

d
2

 3

d
2

1

2i−1

it holds that:

Wi

Mxmd

= Wi−1

Mxm

d
2

 3

d

2

1

2i−1

= 3

d

2i

(6.3.20)

Furthermore note also the fact that for all d ∈ {3, 5, 7, ...}, i ∈ N it holds that

d+1
2i

=

d
2i

and (6.3.16) assure that for all d ∈ {3, 5, 7, ...}, i ∈ {2, 3, ...} with Wi−1

Mxm⌈ d

2⌉

190

3

d
2

1

2i−1

it holds that:

Wi

Mxmd

= Wi−1

Mxm⌈ d

2⌉

 3

d

2

1

2i−1

= 3

d+ 1

2i

= 3

d

2i

(6.3.21)

This and (6.3.20) tells us that for all d ∈ {3, 4, ...}, i ∈ {2, 3, ...} with ∀k ∈ {2, 3, ..., d − 1},

j ∈ {1, 2, ..., i− 1} : Wj

Mxmk

 3

k
2j

it holds that:

Wi

Mxmd

 3

d

2i

(6.3.22)

This, combined with (6.3.14), (6.3.19), with induction establishes Item (ii).

Next observe that (6.3.10) tells that for x =

x1

x2

 ∈ R2 it becomes the case that:

Ir

Mxm2

(x) = max{x1 − x2, 0}+ max{x2, 0}− max{−x2, 0}

= max{x1 − x2, 0}+ x2 = max{x1, x2} (6.3.23)

Note next that Lemma 6.1.2, Lemma 4.2.5, and (Grohs et al., 2023, Proposition 2.19) then

imply for all d ∈ {2, 3, 4, ...}, x = {x1, x2, ..., xd} ∈ Rd it holds that

Ir

Mxmd

(x) ∈

C

Rd,R

. and

Ir

Mxmd

(x) = max{x1, x2, ..., xd}. This establishes Items (iii)—(iv).

Consider now the fact that Item (ii) implies that the layer architecture forms a geometric

series whence we have that the number of bias parameters is bounded by:

3d
2

1−

1
2

⌈log2(d)⌉+1

1
2

= 3d

1− 1

2

⌈log2(d)⌉+1

3d

1− 1

2

⌈log2(d)⌉+1

(6.3.24)

For the weight parameters, consider the fact that our widths follow a geometric series with

ratio 1
2
, and considering that we have an upper bound for the number of hidden layers, and

the fact that W0

Mxmd

= d, would then tell us that the number of weight parameters is

191

bounded by:

⌈log2(d)⌉

i=0

1

2

i

· W0

Mxmd

·

1

2

i+1

· W0

Mxmd

=

⌈log2(d)⌉

i=0

1

2

2i+1
W0

Mxmd

2

=
1

2

⌈log2(d)⌉

i=0

1

2

i

W0

Mxmd

2

 =
1

2

⌈log2(d)⌉

i=0

1

4

i

d2

(6.3.25)

Notice that this is a geometric series with ratio 1
4
, which would then reveal that:

1

2

⌈log2(d)⌉

i=0

1

4

i

d2

 2

3
d2

1− 1

2

2(⌈log2(d)⌉+1)

(6.3.26)

Thus, we get that:

P

Mxmd

 2

3
d2

1− 1

2

2(⌈log2(d)⌉)+1

+

3d

1− 1

2

⌈log2(d)⌉+1

 2

3
d2

1− 1

2

2(⌈log2(d)⌉)+1

+

3d

1− 1

2

2(⌈log2(d)⌉+1)

(6.3.27)

2

3
d2 + 3d

1 +

1

2

2(⌈log2(d)⌉+1)

+ 1

(6.3.28)

This proves Item (v).

Item (vi) is a straightforward consequence of Item (i). This completes the proof of the

lemma.

6.3.3 The MCN,d
x,y Neural Network and Approximations via Maxi-

mum Convolutions

Let f : [a, b] → R be a continuous bounded function with Lipschitz constant L. Let x0

x1 · · · xN be a set of sample points within [a, b], with it being possibly the case that

that for all i ∈ {0, 1, . . . , N}, xi ∼ Unif([a, b]). For all i ∈ {0, 1, . . . , N}, define a series of

192

functions f0, f1, . . . fN : [a, b] → R, as such:

fi = f(xi)− L · |x− xi| (6.3.29)

We will call the approximant maxi∈{0,1,...,N}{fi}, the maximum convolution approximation.

This converges to f , as shown in

Lemma 6.3.6. Let d,N ∈ N, L ∈ [0,∞), x1, x2, . . . , xN ∈ Rd, y = (y1, y2, . . . , yN) ∈ RN

and MC ∈ NN satisfy that:

MCN,d
x,y = MxmN •Aff−LIN ,y •

⊟N

i=1

Nrmd

1 •AffId,−xi

• CpyN,d (6.3.30)

It is then the case that:

(i) I

MCN,d

x,y

= d

(ii) O

MCN,d

x,y

= 1

(iii) H

MCN,d

x,y

= ⌈log2 (N)⌉+ 1

(iv) W1

MCN,d

x,y

= 2dN

(v) for all i ∈ {2, 3, ...} we have Wi

MCN,d

x,y

 3

N

2i−1

(vi) it holds for all x ∈ Rd that

Ir

MCN,d

x,y

(x) = maxi∈{1,2,...,N} (yi − L x− xi1)

(vii) it holds that P

MCN,d

x,y

2
3
d2 + 3d

1 + 1

2

2(⌈log2(d)⌉+1)

+ 1

+ 7N2d2 + 3

N
2

· 2dN

Proof. Throughout this proof let Si ∈ NN satisfy for all i ∈ {1, 2, ..., N} that Si = Nrmd
1 •AffId,−xi

and let X ∈ NN satisfy:

X = Aff−LIN ,y •

⊟N

i=1Si

• CpyN,d (6.3.31)

193

Note that (6.3.30) and Lemma 4.2.5 tells us that O (R) = O

MxmN

= 1 and I

MCN,d

x,y

=

I

CpyN,d

= d. This proves Items (i)--(ii). Next observe that since it is the case that

H

CpyN,d

and H

Nrmd

1

= 1, Lemma 4.2.5 then tells us that:

H (X) = H (Aff−LIN ,y) + H

⊟N

i=1Si

+ H

CpyN,d

= 1 (6.3.32)

Thus Lemma 4.2.5 and Lemma 6.3.5 then tell us that:

H (MC) = H

MxmN •X

= H

MxmN

+ H (X) = ⌈log2 (N)⌉+ 1 (6.3.33)

Which in turn establishes Item (iii).

Note next that Lemma 4.2.5 and (Grohs et al., 2023, Proposition 2.20) tells us that:

W1

MCN,d

x,y

= W1 (X) = W1

⊟N

i=1Si

=

N

i=1

W1 (Si) =
N

i=1

W1

Nrmd

1

= 2dN (6.3.34)

This establishes Item (iv).

Next observe that the fact that H (X) = 1, Lemma 4.2.5 and Lemma 6.3.5 tells us that for

all i ∈ {2, 3, ...} it is the case that:

Wi

MCN,d

x,y

= Wi−1

MxmN

 3

N

2i−1

(6.3.35)

This establishes Item (v).

Next observe that Lemma 6.3.2 and Lemma 4.4.5 tells us that for all x ∈ Rd, i ∈ {1, 2, ..., N}

it holds that:

Ir

MCN,d

x,y

(x)−

Ir

Nrmd

1

◦ Ir (AffId,−xi

)

(x) = x− xi1 (6.3.36)

This an (Grohs et al., 2023, Proposition 2.20) combined establishes that for all x ∈ Rd it

194

holds that:

Ir

⊟N

i=1Si

• CpyN,d

(x) = (x− x11, x− x21, ..., x− xN1)

(6.3.37)

This and Lemma 4.4.5 establishes that for all x ∈ Rd it holds that:

(Ir (X)) (x) = (Ir (Aff−LIN ,y)) ◦

Ir

⊟N

i=1Si

• CpyN,d

(x)

= (y1 − Lx− x1, y2 − Lx− x2, ..., yN − Lx− xN1) (6.3.38)

Then Lemma 4.2.5 and Lemma 6.3.5 tells us that for all x ∈ Rd it holds that:

Ir

MCN,d

x,y

(x) =

Ir

MxmN

◦ (Ir (X))

(x)

=

Ir

MxmN

(y1 − Lx− x11, y2 − Lx− x21, ..., yN − Lx− xN1)

= max
i∈{1,2,...,N}

(yi − Lx− xi1) (6.3.39)

This establishes Item (vi).

For Item (vii) note that Lemma 6.3.2, Remark 4.3.4, Lemma 6.3.2, and Corollary 4.4.5.1

tells us that for all d ∈ N and x ∈ Rd it is the case that:

P

Nrmd

1 •AffId,−x

 P

Nrmd

1

 7d2 (6.3.40)

This, along with Corollary 4.3.5.1, and because we are stacking identical neural networks,

then tells us that for all N ∈ N, it is the case that:

P

⊟N

i=1

Nrmd

1 •AffId,−x

 7N2d2 (6.3.41)

Observe next that Corollary 4.4.5.1 tells us that for all d,N ∈ N and x ∈ Rd it is the case

195

that:

P

⊟N

i=1

Nrmd

1 •AffId,−x

• CpyN,d

 P

⊟N

i=1

Nrmd

1 •AffId,−x

 7N2d2 (6.3.42)

Now, let d,N ∈ N, L ∈ [0,∞), let x1, x2, . . . , xN ∈ Rd and let y = {y1, y2, . . . , yN} ∈ RN .

Observe that again, Corollary 4.4.5.1, and (6.3.42) tells us that:

P

Aff−LIN ,y •

⊟N

i=1

Nrmd

1 •AffId,−xi

• CpyN,d

 P

⊟N

i=1

Nrmd

1 •AffId,−x

 7N2d2

Finally Lemma 4.2.5, (6.3.34), and Lemma 6.3.5 yields that:

P(MCN,d
x,y) = P

MxmN •Aff−LIN ,y •

⊟N

i=1

Nrmd

1 •AffId,−xi

• CpyN,d

 P

MxmN •

⊟N

i=1

Nrmd

1 •AffId,−x

 P

MxmN

+ P

⊟N

i=1

Nrmd

1 •AffId,−x

+

W1

MxmN

· WH(⊟N

i=1[Nrmd
1 •AffId,−x])

⊟N

i=1

Nrmd

1 •AffId,−x

2

3
d2 + 3d

1 +

1

2

2(⌈log2(d)⌉+1)

+ 1

+ 7N2d2 + 3

N

2

· 2dN (6.3.43)

Remark 6.3.7. We may represent the neural network diagram for Mxmd as:

6.3.4 Lipschitz Function Approximations

Lemma 6.3.8. Let (E, d) be a metric space. Let L ∈ [0,∞), D ⊆ E, ∅ ∕= C ⊆ D.

Let f : D → R satisfy for all x ∈ D, y ∈ C that |f(x)− f(y)| Ld (x, y), and let

196

CpyN,d

AffId−xi

AffId−xi

AffId−xi

AffId−xi

Nrmd
1

Nrmd
1

Nrmd
1

Nrmd
1

... ...Aff−LIN ,yMxmN

Figure 6.2: Neural network diagramfor the Mxm network

F : E → R ∪ {∞} satisfy for all x ∈ E that:

F (x) = sup
y∈C

[f (y)− Ld (x, y)] (6.3.44)

It is then the case that:

(i) for all x ∈ C that F (x) = f(x)

(ii) it holds for all x ∈ D, that F (x) f(x)

(iii) it holds for all x ∈ E that F (x) < ∞

(iv) it holds for all x, y ∈ E that |F (x)− F (y)| Ld (x, y) and,

(v) it holds for all x ∈ D that:

|F (x)− f (x)| 2L

inf
y∈C

d (x, y)

(6.3.45)

197

Proof. The assumption that ∀x ∈ D, y ∈ C : |f(x)− f(y)| Ld (x, y) ensures that:

f(y)− Ld (x, y) f (x) f(y) + Ld (x, y) (6.3.46)

For x ∈ D, it then renders as:

f(x) sup
y∈C

[f(y)− Ld (x, y)] (6.3.47)

This establishes Item (i). Note that (6.3.45) then tells us that for all x ∈ C it holds that:

F (x) f(x)− Ld (x, y) = f (x) (6.3.48)

This with (6.3.47) then yields Item (i).

Note next that (6.3.46, with x ↶ y and y ↶ z) and the triangle inequality ensure that for

all x ∈ E, y, z ∈ C it holds that:

f(y)− Ld (x, y) f(z) + Ld (y, z)− Ld (x, y) f(z) + Ld (x, z) (6.3.49)

We then obtain for all x ∈ E, z ∈ C it holds that:

F (x) = sup
y∈C

[f(y)− Ld (x, y)] f (x) + Ld (x, z) < ∞ (6.3.50)

This proves Item (iii). Item (iii), (6.3.44), and the triangle inequality then shows that for all

198

x, y ∈ E, it holds that:

F (x)− F (y) =

sup
v∈C

(f(v)− Ld (x, v))

−

sup
w∈C

(f(w)− Ld (y, w))

= sup
v∈C

f(v)− Ld (x, v)− sup

w∈C
(f(w)− Ld (y, w))

 sup
v∈C

[f(v)− Ld (x, v)− (f(v)− Ld (y, w))]

= sup
v∈C

(Ld (y, v) + Ld (x, v)− Ld (x, v)) = Ld (x, y) (6.3.51)

This establishes Item (v). Finally, note that Items (i) and (iv), the triangle inequality, and

the assumption that ∀x ∈ D, y ∈ C : |f(x)− f(y)| Ld (x, y) ensure that for all x ∈ D it

holds that:

|F (x)− f(x)| = inf
y∈C

|F (x)− F (y) + f(y)− f(x)|

 inf
y∈C

(|F (x)− F (y)|+ |f(y)− f(x)|)

 inf
y∈C

(2Ld (x, y)) = 2L

inf
y∈C

d (x, y)

(6.3.52)

This establishes Item (v) and hence establishes the Lemma.

Corollary 6.3.8.1. Let (E, d) be a metric space, let L ∈ [0,∞), ∅ ∕= C ⊆ E, let f : E → R

satisfy for all x ∈ E, y ∈ C that f(x)− f(y)| Ld (x, y), and let F : E → R∪ {∞} satisfy

for all x ∈ E that:

F (x) = sup
y∈C

[f(y)− Ld (x, y)] (6.3.53)

It is then the case that:

(i) for all x ∈ C that F (x) = f(x)

(ii) for all x ∈ E that F (x) f(x)

199

(iii) for all x, y ∈ E that |F (x)− f(y)| Ld (x, y) and

(iv) for all x ∈ E that:

|F (x)− f (x)| 2L

inf
y∈C

d (x, y)

(6.3.54)

Proof. Note that Lemma 6.3.4 establishes Items (i)—(iv).

6.3.5 Explicit ANN Approximations

Lemma 6.3.9. Let d,N ∈ N, L ∈ [0,∞). Let E ⊆ Rd. Let x1, x2, ..., xN ∈ E, let

f : E → R satisfy for all x1, y1 ∈ E that |f(x1)− f(y1)| L x1 − x21 and let MC ∈ NN

and y = (f (x1) , f (x2) , ..., f (xN)) satisfy:

MCN,d
x,y = MxmN •Aff−LIN ,y •

⊟N

i=1 Nrmd
1 •AffId,−xi

• CpyN,d (6.3.55)

It is then the case that:

sup
x∈E

Ir

MCN,d

x,y

(x)− f (x)

 2L

sup
x∈E

min

i∈{1,2,...,N}
x− xi1

(6.3.56)

Proof. Throughout this proof let F : Rd → R satisfy that:

F (x) = max
i∈{1,2,...,N}

(f (xi)− L x− xi1) (6.3.57)

Note then that Corollary 6.3.8.1, (6.3.57), and the assumption that for all x, y ∈ E it holds

that |f(x)− f(y)| L x− y1 assures that:

sup
x∈E

|F (x)− f(x)| 2L

sup
x∈E

min

i∈{1,2,...,N}
x− xi1

(6.3.58)

Then Lemma 6.3.6 tells us that for all x ∈ E it holds that F (x) = (Ir (MC)) (x). This

200

combined with (6.3.58) establishes (6.3.56).

Lemma 6.3.10. Let d,N ∈ N, L ∈ [0,∞). Let [a, b] ⊊ Rd. Let x1, x2, ..., xN ∈ [a, b],

let f : [a, b] → R satisfy for all x1, x2 ∈ [a, b] that |f(x1)− f(x2)| L |x1 − x2| and let

MCN,1
x,y ∈ NN and y = f ([x]∗) satisfy:

MCN,1
x,y = MxmN •Aff−LIN ,y •

⊟N

i=1 Nrm1
1 •Aff1,−xi

• CpyN,1 (6.3.59)

It is then the case that for approximant MCN,1
x,y that:

(i) I

MCN,1

x,y

= 1

(ii) O

MCN,1

x,y

= 1

(iii) H

MCN,1

x,y

= ⌈log2 (N)⌉+ 1

(iv) W1

MCN,1

x,y

= 2N

(v) for all i ∈ {2, 3, ...} we have W1

MCN,1

x,y

 3

N

2i−1

(vi) it holds for all x ∈ Rd that

Ir

MCN,1

x,y

(x) = maxi∈{1,2,...,N} (yi − L |x− xi|)

(vii) it holds that P

MCN,1

x,y

 6 + 7N2 + 3

N
2

· 2N

(viii) supx∈[a,b] |F (x)− f(x)| 2L |a−b|
N

Proof. Items (i)—(vii) is an assertion of Lemma 6.3.6. Item (viii) is an assertion of Lemma

6.3.9 with d ↶ 1.

201

Part III

A deep-learning solution for u and

Brownian motions

202

Chapter 7

ANN representations of Brownian

Motion Monte Carlo

We will now take the modified and simplified version of Multi-level Picard introduced in

Chapter 2 and show a neural network representation and associated, parameters, depth,

and accuracy bounds. However we will also try a different approach in that we will also

give a direct neural network representation of the expectation of the stochastic process that

Feynman-Kac asserts in Lemma 7.4.4, and to build up to it we must build the requisite

technology in Lemma 7.1.1, Lemma 7.2.1, Lemma 7.3.1.

Lemma 7.0.1 (R—,2023). Let d,M ∈ N, T ∈ (0,∞) , a ∈ C(R,R), Γ ∈ NN, satisfy that

Ia (Gd) ∈ C

Rd,R

, for every θ ∈ Θ, let U θ : [0, T] → [0, T] and Wθ : [0, T] → Rd be

functions , for every θ ∈ Θ, let U θ : [0, T] → Rd → R satisfy satisfy for all t ∈ [0, T], x ∈ Rd

that:

U θ(t, x) =
1

M

M

k=1

(Ia (Γ))

x+W (θ,0,−k)

(7.0.1)

203

Let Uθ
t ∈ NN , θ ∈ Θ satisfy for all θ ∈ Θ, t ∈ [0, T] that:

Uθ
t =

M

k=1

1

M
⊲

Gd • AffId,W
(θ,0,−k)
T−t

(7.0.2)

It is then the case that:

(i) for all θ1, θ2 ∈ Θ, t1, t2 ∈ [0, T] that L

Uθ1

t1

= L

Uθ2

t2

.

(ii) for all θ ∈ Θ, t ∈ [0, T], that D

Uθ

t

 D(Gd)

(iii) for all θ ∈ Θ, t ∈ [0, T] that:

L

Uθ

t

max L (Gd) max

1 +

√
2

M (7.0.3)

(iv) for all θ ∈ Θ, t ∈ [0, T], x ∈ Rd that U θ(t, x) =

Ia

Uθ

t

(x) and

(v) for all θ ∈ Θ, t ∈ [0, T] that:

P

Uθ

t

 2D (Gd)

1 +

√
2

M L (Gd)max

2
(7.0.4)

Proof. Throughout the proof let Pθ
t ∈ NN, θ ∈ Θ, t ∈ [0, T] satisfy for all θ ∈ Θ, t ∈ [0, T]

that:

Pθ
t =

M

k=1

1

M
⊲

Gd • AffId,Wθ,0,−k
T−t

(7.0.5)

Note the hypothesis that for all θ ∈ Θ, t ∈ [0, T] it holds that Wθ
t ∈ Rd and Lemma

4.6.9 applied for every θ ∈ Θ t ∈ [0, T] with v ↶ M , ci∈{u,u+1,...,v} ↶

1
M

i∈{u,u+1,...,v},

(Bi)i∈{u,u+1,...,v} ↶

W (θ,0,−k)

T−t

k∈{1,2,...,M}
, (νi)i∈{u,u+1,...,v} ↶ (Gd)i∈{u,u+1,...,v}, µ ↶ Φθ

t and

with the notation of Lemma 4.6.9 tells us that for all θ ∈ Θ, t ∈ [0, T], and x ∈ Rd it holds

204

that:

L

Pθ
t

=

d,M W1 (G) ,M W2 (G) , ...,M WD(G)−1 (G) , 1

= L

P0
0

∈ ND(G)+1 (7.0.6)

and that:

Ia

Pθ
t

(x) =

1

M

M

k=1

(Ia (G))

x+W (θ,0,−k)

T−t

= Uθ (t, x) (7.0.7)

This proves Item (i).

Note that (7.0.6), and (7.0.7) also implies that:

L

Uθ

t

= L

Pθ
t

=

d,W1

Pθ
t

,W2

Pθ
t

, ...,WD(G)

Pθ
t

, t

= L

U0

0

∈ ND(G)+1 (7.0.8)

This indicates that for all θ ∈ Θ, t ∈ [0, T] it is the case that:

L

Uθ

t

∞ =

L

U0

0

∞

= max
k∈{1,2,...,D(G)}

Wk

P0
0

This, (7.0.6), and Lemma 4.2.5 ensure that for all θ ∈ Θ, t ∈ [0, T] it is the case that:

L

Uθ

t

∞ =

L

U0

0

∞

L

P0
0

∞ M L (G)∞

 M L (G)∞ +M
L

U0

0

∞

(7.0.9)

Then (Hutzenthaler et al., 2021, Corollary 4.3), with γ ↶ 0, β ↶ M , k ↶ 1, α0 ↶ L (G)∞,

α1 ↶ 0, (xi)i∈{0,1,...,k} ↶
L

U0

0

∞

i∈{0,1,...,n} in the notation of (Hutzenthaler et al., 2021,

205

Corollary 4.3) yields for all θ ∈ Θ, t ∈ [0, T] that:

L

Uθ

t

∞ 1

2
(L (G)∞)

1 +

√
2

M

 (L (G)∞)

1 +

√
2

M

Note that Lemma 4.2.5, Item (iii), proves that for all θ ∈ Θ, t ∈ [0, T] it is the case that:

D

Uθ

t

= D

U0

0

= D (G) (7.0.10)

This proves Items (ii)--(iii) and (7.0.7) proves Item (iv).

Items (ii)--(iii) together shows that for all θ ∈ Θ, t ∈ [0, T] it is the case that:

P

Uθ

t

D(Uθ
t)

k=1

L

Uθ

t

max

= D

Uθ

t

 L

Uθ

t

∞

 D

Uθ

t

(L (G)∞)

1 +

√
2

M

= D (G) (L (G)∞)

1 +

√
2

M

This proves Item (v) and hence the whole lemma.

7.1 The EN,h,q,ε
n Neural Network

Lemma 7.1.1 (R—, 2023). Let n,N ∈ N and h ∈ (0,∞). Let δ, ε ∈ (0,∞), q ∈ (2,∞),

satisfy that δ = ε (2q−1 + 1)
−1. Let a ∈ (−∞,∞), b ∈ [a,∞). Let f : [a, b] → R be continuous

and have second derivatives almost everywhere in [a, b]. Let a = x0 x1 · · · xN−1

xN = b such that for all i ∈ {0, 1, ..., N} it is the case that h = b−a
N

, and xi = x0 + i · h . Let

x = [x0 x1 · · · xN] and as such let f

[x]∗,∗

= [f(x0) f(x1) · · · f(xN)]. Let EN,h,q,ε

n ∈ NN be

206

the neural network given by:

EN,h,q,ε
n = Xpnq,ε

n •EtrN,h (7.1.1)

It is then the case that:

(i) for all x ∈ RN+1 we have that

Ir

EN,h,q,ε
n

(x) ∈ C

RN+1,R

(ii) D

EN,h,q,ε
n

1 : n = 0

n

q
q−2

[log2 (ε
−1) + q]− 1

+ 1 : n 1

(iii)

P

EN,h,q,ε
n

N + 2 : n = 0

1
2
N + 1

(n+ 1)

4n+

3
2 +

4n+1−1

3

360q
q−2

[log2 (ε
−1) + q + 1] + 372

: n ∈ N

(iv) for all x = {x0, x1, . . . , xN} ∈ RN+1, where a = x0 x1 · · · xN−1 xN = b we

have that:

exp
 b

a

fdx

− Ir

EN,h,q,ε
n

f

[x]∗,∗

 (b− a)3

12N2
f ′′ (ξ) · n2 ·

Ξ+

(b− a)3

12N2
f ′′ (ξ)

n−1

+

n

i=1

1

i!

Ξ

Ξi−1 − Ir

Pwrq,εi−1

(Ξ)

+ ε+ |Ξ|q + pqi−1

(7.1.2)

(v) it is the case that WH(EN,h,q,ε
n)

EN,h,q,ε
n

 24 + 2n

Proof. Note that Lemma 6.2.4 tells us that Ir

EtrN,h

∈ C

RN+1,R

, and Lemma 5.2.22

tells us that Ir (Xpnq,ε
n) (x) ∈ C (R,R). Next, note that Lemma 4.2.5 and the fact that the

207

composition of continuous functions is continuous yields that:

Ir

EN,h,q,ε
n

= Ir

Xpnq,ε

n •Aff[h2 h ... h h
2],0

= Ir (Xpnq,ε
n) ◦ Ir

Aff[h2 h ... h h

2],0

∈ C

RN+1,R

Since both component neural networks are continuous, and the composition of continuous

functions is continuous, so is EN,h,q,ε
n . This proves Item (i).

Next note that D

Aff[h2 h ... h h
2]

= 1, and thus Lemma 4.2.5 and Lemma 5.2.22 tells us that:

D

EN,h,q,ε
n

= D

Xpnq,ε

n •Aff[h2 h ... h h
2],0

= D (Xpnq,ε
n) + D

Aff[h2 h ... h h

2],0

− 1

= D (Xpnq,ε
n)

1 : n = 0

n

q
q−2

[log2 (ε
−1) + q]− 1

+ 1 : n ∈ N

This proves Item (ii).

Next note that by Corollary 4.4.5.1, Lemma 5.2.22, Lemma 6.2.4, and the fact that I

EtrN,h

=

N + 1, and I (Xpnq,ε
n) = 1, tells us that, for all N ∈ N it is the case that:

P

EN,h,q,ε
n

max

1,

I

EtrN,h

+ 1

I (Xpnq,ε
n) + 1

· P (Xpnq,ε

n)

=

1

2
N + 1

· P (Xpnq,ε

n)

N + 2 : n = 0

1
2
N + 1

(n+ 1)

4n+

3
2 +

4n+1−1

3

360q
q−2

[log2 (ε
−1) + q + 1] + 372

: n ∈ N

This proves Item (iii).

208

Note next that:

Aff[h2 h ... h h
2],0

= EtrN,h (7.1.3)

Thus the well-known error term of the trapezoidal rule tells us that for [a, b] ⊊ R, and for

ξ ∈ [a, b] it is the case that:

 b

a

f (x) dx−

Ir

EtrN,h

f

[x]∗,∗

(b− a)3

12N2
f ′′ (ξ) (7.1.4)

and for n ∈ N0, δ, ε ∈ (0,∞), q ∈ (2,∞) and δ = ε (2q−1 + 1)
−1, and for x ∈ [a, b] ⊊ R, with

0 ∈ [a, b] it is the case, according to Lemma 7.1.1, that:

|ex − Ir (Xpnq,ε
n) (x)|

n

i=1

1

i!

x

xn−1 − Ir

Pwrq,εn−1

(x)

+ ε+ |x|q + pqn−1

+

eb · |x|n+1

(n+ 1)!

(7.1.5)

Note now that for f ∈ Cae (R,R),
 b

a
fdx ∈ [a, b] ⊊ R, 0 ∈ [a, b], and ξ between 0 and

 b

a
fdx

it is the case that:

exp
 b

a

fdx

=

n

i=1

1

i!

 b

a

fdx

i

+

eξ ·

 b

a
fdx

n+1

(n+ 1)!
(7.1.6)

And thus the triangle inequality, Lemma 4.2.5, and Lemma 5.2.22, tells us that for x =

209

{x0, x1, . . . , xN}, a = x0 x1 · · · xN = b and [a, b] ⊊ R that:

exp
 b

a

fdx

− Ir

EN,h,q,ε
n

f

[x]∗,∗

=

n

i=1

1

i!

 b

a

fdx

i

+

eξ ·
 b

a
fdx

n+1

(n+ 1)!
− Ir

Xpnq,ε

n •EtrN,h

f

[x]∗,∗

n

i=1

1

i!

 b

a

fdx

i

− Ir (Xpnq,ε

n) (x) ◦ Ir

EtrN,h

f

[x]∗,∗

+
eξ ·

 b

a
fdx

n+1

(n+ 1)!

(7.1.7)

Note that the instantiation of EtrN,h is exact as it is the instantiation of an affine neural

network. For notational simplicity let Ξ = Ir

EtrN,h

f

[x]∗,∗

. Then Lemma 5.2.22 tells

us that:

n

i=0

Ξi

i!

− Ir (Xpnq,ε

n) (Ξ)

n

i=1

1

i!

Ξ

Ξi−1 − Ir

Pwrq,εi−1

(Ξ)

+ ε+ |Ξ|q +

pΞi−1

q

(7.1.8)

Where for i ∈ N, let pΞi−1 be the family of functions defined as such:

pΞ1 = ε+ 1 + |Ξ|2

pΞi = ε+ (pi−1)
2 + |Ξ|2 (7.1.9)

This then leaves us with:

n

i=0

1

i!

 b

a

fdx

i

−

n

i=0

Ξi

i!

n

i=0

1

i!

 b

a

fdx

i

− Ξi

i!

 (n+ 1) max
i∈{0,1,...,n}

1

i!

 b

a

fdx

i

− Ξi

i!

 n · max
i∈{1,...,n}

1

i!

 b

a

fdx

i

− Ξi

 (7.1.10)

210

Note that for each i ∈ {1, ..., n} it holds that:

 b

a

fdx

i

− Ξi =

 b

a

fdx− Ξ

 b

a

fdx

i−1

+

 b

a

fdx

i−2

· Ξ+ · · ·+ Ξi−1

(7.1.11)

Note that the well-known error bounds for the trapezoidal rule tell us that Ξ and
 b

a
fdx

differ by at most (b−a)3

12N2 f
′′ (ξ) in absolute terms, and thus:

max

Ξ,

 b

a

fdx

 Ξ+

(b− a)3

12N2
f ′′ (ξ) (7.1.12)

This then renders (7.1.11) as:

 b

a

fdx

i

− Ξi (b− a)3

12N2
f ′′ (ξ) · i ·

Ξ+

(b− a)3

12N2
f ′′ (ξ)

i−1

(7.1.13)

Note that this also renders (7.1.10) as:

n

i=0

1

i!

 b

a

fdx

i

−

n

i=0

Ξi

i!

(b− a)3

12N2
f ′′ (ξ) · n2 ·

Ξ+

(b− a)3

12N2
f ′′ (ξ)

n−1

(7.1.14)

This, the triangle inequality and (7.1.8), then tell us for all x ∈ [a, b] ⊆ [0,∞) that:

n

i=0

1

i!

 b

a

fdx

i

− Ir (Xpnq,ε

n) (x) ◦ Ξ

n

i=0

1

i!

 b

a

fdx

i

−

n

i=0

Ξi

i!

+

n

i=0

Ξi

i!

− Ir (Xpnq,ε

n) (x) ◦ Ξ

 (b− a)3

12N2
f ′′ (ξ) · n2 ·

Ξ+

(b− a)3

12N2
f ′′ (ξ)

n−1

+

n

i=1

1

i!

Ξ

Ξi−1 − Ir

Pwrq,εi−1

(Ξ)

+ ε+ |Ξ|q +

pΞi−1

q (7.1.15)

211

This, applied to (7.1.7) then gives us that:

exp
 b

a

fdx

− Ir

EN,h,q,ε
n

f

[x]∗,∗

n

i=1

1

i!

 b

a

fdx

i

− Ir (Xpnq,ε

n) (x) ◦ Ir

EtrN,h

f

[x]∗,∗

+
eξ ·

 b

a
fdx

n+1

(n+ 1)!

 (b− a)3

12N2
f ′′ (ξ) · n2 ·

Ξ+

(b− a)3

12N2
f ′′ (ξ)

n−1

+

n

i=1

1

i!

Ξ

Ξi−1 − Ir

Pwrq,εi−1

(Ξ)

+ ε+ |Ξ|q +

pΞi−1

q
+

eξ ·

 b

a
fdx

n+1

(n+ 1)!
(7.1.16)

This proves Item (iv).

Finally note that Lemma 5.2.22 tells us that:

WH(EN,h,q,ε
n)

EN,h,q,ε
n

= WH(Xpnq,ε

n) (Xpnq,ε
n)

 24 + 2n (7.1.17)

Remark 7.1.2. We may represent the EN,h,q,ε
n diagrammatically as follows:

7.2 The UEN,h,q,ε
n,Gd

Neural Network

Lemma 7.2.1 (R—,2023). Let n,N, h ∈ N. Let δ, ε ∈ (0,∞), q ∈ (2,∞), satisfy that

δ = ε (2q−1 + 1)
−1. Let a ∈ (−∞,∞), b ∈ [a,∞). Let f : [a, b] → R be continuous and have

second derivatives almost everywhere in [a, b]. Let a = x0 x1 · · · xN−1 xN = b

such that for all i ∈ {0, 1, ..., N} it is the case that h = b−a
N

, and xi = x0 + i · h . Let

x = [x0 x1 · · · xN] and as such let f

[x]∗,∗

= [f(x0) f(x1) · · · f(xN)]. Let Eexp

n,h,q,ε ∈ NN be

212

EtrNh

R

R

R

...Cpyn,1

Pwrq0

Pwrq1

Pwrqn

......

Tun

Tun

1
0!
⊲

1
1!
⊲

1
n!
⊲

...
Cpyn,1

Figure 7.1: Diagram of EN,h,q,ε
n .

the neural network given by:

EN,h,q,ε
n = Xpnq,ε

n •EtrN,h (7.2.1)

Let Gd ∈ NN be the neural network which instantiates as ud = Ir (Gd) (x) ∈ C

Rd,R

for all

x ∈ Rd.

Let UEN,h,q,ε
n,Gd

be the neural network given as:

UEN,h,q,ε
n,Gd

= Prdq,ε •

EN,h,q,ε
n Gd

(7.2.2)

It is then the case that for all x = {x0, x1, . . . , xN} ∈ RN+1 and x ∈ Rd that:

(i) Ir

UEN,h,q,ε

n,Gd

(f ([x]∗) ⌢ x) ∈ C

RN+1 × Rd,R

(ii) D

UEN,h,q,ε
n,Gd

q
q−2

[log2 (ε
−1) + q] + D (Gd)− 1 : n = 0

q
q−2

[log2 (ε
−1) + q] + max

D

EN,h,q,ε
n,Gd

,D (Gd)

− 1 : n 1

213

(iii) It is also the case that:

P

UEN,h,q,ε
n,Gd

 360q

q − 2

log2

ε−1

+ q + 1

+ 324 + 48n

+ 24WH(Gd) (Gd) + 4max

P

EN,h,q,ε
n

,P (Gd)

(7.2.3)

(iv) It is also the case that:

exp
 b

a

fdx

ud (x)− Ir

UEN,h,q,ε

n,Gd

(f([x]∗ ⌢ x)

 3ε+ 2ε |u (x)|q + 2ε

exp
 b

a

fdx

q

+ ε

exp
 b

a

fdx

− e

q

− eu (x)

Where, as per Lemma 7.1.1, e is defined as:

E
N,h,q,ε
n (f ([x]∗))− exp

 b

a

fdx

 e (7.2.4)

Remark 7.2.2. Diagrammatically UEN,h,q,ε
n can be represented as:

EN,h,q,ε
n

Gd

Tun

Tun

Prdq,ε

Rd

RN+1

Proof. Note that from Lemma 4.2.5, and Lemma 4.3.3, we have that for x ∈ RN+1, and x ∈

Rd it is the case that Ir

Prdq,ε •

EN,h,q,ε
n Gd

(f ([x]∗ ⌢ x)) = Ir (Prdq,ε)◦Ir

EN,h,q,ε
n Gd

(f ([x]∗) ⌢ x). Then Lemma 5.1.10 tells us that Ir (Prdq,ε) ∈ C (R2,R). Lemma 7.1.1

tells us that Ir

EN,h,q,ε
n

∈ C

RN+1,R

and by hypothesis it is the case that Ir (Gd) ∈

C

Rd,R

. Thus, by the stacking properties of continuous instantiated networks and the fact

that the composition of continuous functions is continuous, we have that Ir

UEN,h,q,ε

n,Gd

∈

C

RN+1 × Rd,R

.

214

Note that by Lemma 4.2.5 it is the case that:

D

UEN,h,q,ε
n,Gd

= D (Prdq,ε) + D

EN,h,q,ε
n Gd

− 1 (7.2.5)

Lemma 7.1.1 and Lemma 5.1.10 then tell us that:

D

UEN,h,q,ε
n,Gd

q
q−2

[log2 (ε
−1) + q] + D (Gd)− 1 : n = 0

q
q−2

[log2 (ε
−1) + q] + max

D

EN,h,q,ε
n

,D (Gd)

− 1 : n 1

(7.2.6)

Note that then Lemma 4.2.5, Lemma 5.2.22, and Lemma 7.1.1 tell us that:

P

UEN,h,q,ε
n,Gd

 P (Prdq,ε) + 4max

P

EN,h,q,ε
n

,P (Gd)

+ W1 (Prdq,ε) · WH

EN,h,q,ε
n Gd

EN,h,q,ε
n Gd

 P (Prdq,ε) + 4max

P

EN,h,q,ε
n

,P (Gd)

+ 24

(24 + 2n) + WH(Gd) (Gd)

= P (Prdq,ε) + 4max

P

EN,h,q,ε
n

,P (Gd)

+ 576 + 48n+ 24 · WH(Gd) (Gd)

 360q

q − 2

log2

ε−1

+ q + 1

+ 324 + 48n

+ 24WH(Gd) (Gd) + 4max

P

EN,h,q,ε
n

,P (Gd)

(7.2.7)

Now note that Lemma 4.2.5, and Lemma 4.3.3 tells us that for all x = {x1, x2, . . . , xn} ∈ Rn

and x ∈ Rd:

Ir

Prdq,ε •

EN,h,q,ε
n Gd

(f ([x]∗) ⌢ x) = Ir (Prdq,ε)

Ir

EN,h,q,ε
n

, Ir (Gd)

(f ([x]∗) ⌢ x) .

(7.2.8)

215

Note then that the triangle inequality tells us that:

exp
 b

a

fdx

ud (x)− Ir

UEN,h,q,ε

n,Gd

(f ([x]∗) ⌢ x)

=

exp
 b

a

fdx

· ud (x)− Ir (Prdq,ε)

Ir

EN,h,q,ε
n

, Ir (Gd)

(f ([x]∗) ⌢ x)

exp

 b

a

fdx

· ud (x)− Ir (Prdq,ε)

exp

 b

a

fdx

, ud (x)

+

Ir (Prdq,ε)

exp

 b

a

fdx

, ud (x)

− Ir (Prdq,ε)

Ir

EN,h,q,ε
n

, Ir (Gd)

(f ([x]) ⌢ x)

(7.2.9)

Note that Lemma 5.1.10 bounds the first summand. Note that by hypothesis Ir (Gd) is

exactly ud (x). Note also that by Lemma 7.1.1, Lemma 5.1.10, we realize that the second

summand can be bounded as such:

Ir (Prdq,ε)

exp

 b

a

fdx

, ud (x)

− Ir (Prdq,ε)

Ir

EN,h,q,ε
n

, Ir (Gd)

(f ([x]∗) ⌢ x)

 exp
 b

a

fdx

ud (x) + ε+ ε

exp
 b

a

fdx

q

+ ε |ud (x)|q

−

Ir

EN,h,q,ε
n

(f ([x]∗)) Ir (Gd) (x)− ε− ε

Ir

EN,h,q,ε
n

(f ([x]∗))

q − ε |Ir (Gd) (x)|q

(7.2.10)

Per Lemma 7.1.1, let e represent the error in approximation of EN,h,q,ε
n , that is to say for all

x ∈ RN+1 and corresponding f ([x]∗), let it be the case that:

E
N,h,q,ε
n (f ([x]∗))− exp

 b

a

fdx

 e (7.2.11)

Thus EN,h,q,ε
n (f ([x]∗)) is maximally e+ exp

 b

a
fdx

and minimally exp

 b

a
fdx

− e. Thus

216

(7.2.10) is rendered as:

exp
 b

a

fdx

ud (x) + ε+ ε

exp
 b

a

fdx

q

+ ε |ud (x)|q

−

Ir

EN,h,q,ε
n

Ir (Gd) (f ([x]∗) ⌢ x)− ε− ε

Ir

EN,h,q,ε
n

(f ([x]∗))

q − ε |Ir (Gd) (x)|q

 exp
 b

a

fdx

ud (x) + ε+ ε

exp
 b

a

fdx

q

+ ε |ud (x)|q

−

e+ exp
 b

a

fdx

ud (x)− ε− ε

exp
 b

a

fdx

− e

q

− ε |ud (x)|q

=
✘✘✘✘✘✘✘✘✘✘✘

exp
 b

a

fdx

ud (x) + ε+ ε

exp
 b

a

fdx

q

+ ε |ud (x)|q

− eu (t, x)−
✘✘✘✘✘✘✘✘✘✘✘

exp
 b

a

fdx

ud (x) + ε+ ε

exp
 b

a

fdx

− e

q

+ ε |ud (x)|q

= 2ε+ 2ε |ud (x)|q + ε

exp
 b

a

fdx

− e

q

+ ε

exp
 b

a

fdx

q

− eud (x) (7.2.12)

This, together with (7.2.9), then tells us that:

exp
 b

a

fdx

ud (x)− Ir

UEN,h,q,ε

n,Gd

(f ([x]∗) ⌢ x)

exp

 b

a

fdx

ud (x)− Ir (Prdq,ε)

exp

 b

a

fdx

, ud (x)

+

Ir (Prdq,ε)

exp

 b

a

fdx

, ud (x)

− Ir (Prdq,ε)

Ir

EN,h,q,ε
n

(f ([x]∗)) , Ir (Gd) (x)

 ε+ ε

exp
 b

a

fdx

q

+ ε |ud (x)|q

+ 2ε+ 2ε |ud (x)|q + ε

exp
 b

a

fdx

− e

q

+ ε

exp
 b

a

fdx

q

− eud (x)

= 3ε+ 2ε |ud (x)|q + 2ε

exp
 b

a

fdx

q

+ ε

exp
 b

a

fdx

− e

q

− eud (x)

217

7.3 The UEXN,h,q,ε
n,Gd,ωi

network

Lemma 7.3.1 (R—,2023). Let n,N, h ∈ N. Let δ, ε ∈ (0,∞), q ∈ (2,∞), satisfy that

δ = ε (2q−1 + 1)
−1. Let a ∈ (−∞,∞), b ∈ [a,∞). Let f : [a, b] → R be continuous and have

second derivatives almost everywhere in [a, b]. Let a = x0 x1 · · · xN−1 xN = b

such that for all i ∈ {0, 1, ..., N} it is the case that h = b−a
N

, and xi = x0 + i · h . Let

x = [x0 x1 · · · xN] and as such let f

[x]∗,∗

= [f(x0) f(x1) · · · f(xN)]. Let Eexp

n,h,q,ε ∈ NN be

the neural network given by:

EN,h,q,ε
n = Xpnq,ε

n •EtrN,h (7.3.1)

Let Gd ⊊ NN be the neural networks which, for d ∈ N, instantiate as ud = Ir (Gd) (x) ∈

C

Rd,R

for all x ∈ Rd.

Let UEN,h,q,ε
n,Gd

⊊ NN be the neural networks given as:

UEN,h,q,ε
n,Gd

= Prdq,ε •

EN,h,q,ε
n Gd

(7.3.2)

Finally let UEXN,h,q,ε
n,Gd,ωi

⊊ NN be given the neural networks given by:

UEXN,h,q,ε
n,Gd,ωi

= UEN,h,q,ε
n,Gd

•

TunN+1

1 ⊟Aff0d,d,Xωi

(7.3.3)

It is then the case that for all x = {x0, x1, . . . , xN} ∈ RN+1 and x ∈ Rd that:

(i) Ir

UEXN,h,q,ε

n,Gd,ωi

∈ C

RN+1 × Rd,R

218

(ii)

D

UEXN,h,q,ε
n,Gd,ωi

= D

UEN,n,h,q,ε

n,Gd

q
q−2

[log2 (ε
−1) + q] + D (Gd)− 1 : n = 0

q
q−2

[log2 (ε
−1) + q] + max

D

Eexp,f
N,n,h,q,ε

,D (Gd)

− 1 : n ∈ N

(iii) It is also the case that:

P

UEXN,h,q,ε
n,Gd,ωi

= P

UEN,h,q,ε

n,Gd

 360q

q − 2

log2

ε−1

+ q + 1

+ 324 + 48n

+ 24WH(Gd) (Gd) + 4max

P

EN,h,q,ε
n

,P (Gd)

(7.3.4)

(iv) It is also the case that:

exp
 T

t

fds

uTd (x)− Ir

UEXN,h,q,ε

n,Gd,ωi

(f ([x]∗) ⌢ x)

 3ε+ 2ε
uTd (t, x)

q + 2ε

exp
 b

a

fdx

q

+ ε

exp
 b

a

fdx

− e

q

− euTd (x)

Where, as per Lemma 7.1.1, e is defined as:

E
N,h,q,ε
n (f ([x]∗))− exp

 b

a

fdx

 e (7.3.5)

Proof. Note that (7.4.9) is an assertion of Feynman-Kac. Now notice that for x ∈ RN+1×Rd

it is the case that:

Ir

UEXN,h,q,ε

n,Gd,ωi

(x) = Ir

UEN,h,q,ε

n,Gd
•

TunN+1

1 ⊟Aff0d,d,Xωi

(x)

= Ir

UEN,h,q,ε

n,Gd

◦ Ir

TunN+1

1 ⊟Aff0d,d,Xωi

(x)

219

Note that by Lemma 7.2.1 it holds that Ir

UEN,h,q,ε

n,Gd

∈ C

RN+1 × Rd,R

. Note also that

by Lemma 5.2.6, TunN+1
1 is continuous and by Lemma 4.4.2, Aff0d,d,Xωi

is continuous, and

whence by Lemma 5.2.6 and Lemma 4.4.5 it is the case that Ir

TunN+1

1 ⊟Aff0d,d,Xωi

(x) ∈

C

RN+1 × Rd,RN+1 × Rd

. Finally, since the composition of continuous functions is con-

tinuous, and since we have functions

RN+1 × Rd

→

RN+1 × Rd

→ R we have that

Ir

UEXN,h,q,ε

n,Gd,ωi

∈ C

RN+1 × Rd,R

. This proves Item (i).

Note next that by Lemma 5.2.6, it is the case that D

TunN+1

1

= D

Aff0d,d,Xωi

= 1. Thus

by Lemma 4.2.5 it is the case that D

UEXN,h,q,ε
n,Gd,ωi

= D

UEN,h,q,ε

n,Gd

. This proves Item (ii)

Next note that:

P

UEXN,h,q,ε
n,Gd,ωi

= P

UEN,h,q,ε

n,Gd
•

TunN+1

1 ⊟Aff0d,d,Xωi

(7.3.6)

Note carefully that Definition 5.2.4 tells us that TunN+1
1 = AffIN+1,N+1,0N+1

, and so by Lemma

4.4.6, it must be the case that TunN+1
1 ⊟Aff0d,d,Xωi

is also an affine neural network. Whence,

Corollary 4.4.5.1 tells us that:

P

UEXN,h,q,ε
n,Gd,ωi

= P

UEN,h,q,ε

n,Gd
•

TunN+1

1 ⊟Aff0d,d,Xωi

max

1,
I

TunN+1

1 ⊟Aff0d,d,Xωi

+ 1

I

UEN,h,q,ε
n,Gd

+ 1

 · P

UEN,h,q,ε
n,Gd

= P

UEN,h,q,ε
n,Gd

 360q

q − 2

log2

ε−1

+ q + 1

+ 324 + 48n

+ 24WH(Gd) (Gd) + 4max

P

EN,h,q,ε
n

,P (Gd)

(7.3.7)

Finally, note that both AffW,b and Tund
n are exact and contribute nothing to the uncertainty.

220

Thus UEXN,h,q,ε
n,Gd,ωi

has the same error bounds as UEN,h,q,ε
n,Gd

. That is to say that:

exp
 T

t

fds

uTd (x)− Ir

UEXN,h,q,ε

n,Gd,ωi

(f ([x]∗) ⌢ x)

 3ε+ 2ε
uTd (t, x)

q + 2ε

exp
 b

a

fdx

q

+ ε

exp
 b

a

fdx

− e

q

− euTd (x)

Corollary 7.3.1.1 (R—, 2024, Approximants for Brownian Motion). Let t ∈ (0,∞) and

T ∈ (t,∞). Let (Ω,F ,P) be a probability space. Let n,N ∈ N, and h ∈ (0,∞). Let

δ, ε ∈ (0,∞), q ∈ (2,∞), satisfy that δ = ε (2q−1 + 1)
−1. Let f : [t, T] → R be continuous

almost everywhere in [t, T]. Let it also be the case that f = g ◦ h, where h : [t, T] → Rd,

and g : Rd → R. Let t = t0 t1 · · · tN−1 tN = T such that for all i ∈ {0, 1, ..., N}

it is the case that h = T−t
N

, and ti = t0 + i · h . Let t = [t0 t1 · · · tN] and as such let

f

[t]∗,∗

= [f(t0) f(t1) · · · f(tN)]. Let EN,h,q,ε

n ∈ NN be the neural network given by:

EN,h,q,ε
n = Xpnq,ε

n •EtrN,h (7.3.8)

Let ud ∈ C1,2

[0, T]× Rd,R

satisfy for all d ∈ N, t ∈ [0, T], x ∈ Rd that:

∂

∂t
ud

(t, x) +

∇2

xud

(t, x) + αd (x) ud (t, x) = 0 (7.3.9)

Furthermore, let uTd (x) = ud(T, x). Let Gd ⊊ NN be the neural networks which instantiate as

uTd = Ir (Gd) ∈ C

Rd,R

.

Let Wd : [0, T]×Ω → Rd, d ∈ N be standard Brownian motions, and let X d,t,x : [t, T]×Ω →

Rd, d ∈ N, t ∈ [0, T], x ∈ Rd be stochastic processes with continuous sample paths satisfying

that for all d ∈ N, t ∈ [0, T], s ∈ [t, T], x ∈ Rd we have P-a.s. that:

X d,t,x
s = x+

 t

s

√
2dWd

r (7.3.10)

221

It is then the case that for all d ∈ N, t ∈ [0, T], x ∈ Rd it holds that:

ud (t, x) = E

exp

 T

t

αd ◦ X d,t,x

r

dr

ud

T,X d,t,x

T

(7.3.11)

Let UEN,h,q,ε
n,Gd

be the neural network given as:

UEN,h,q,ε
n,Gd

= Prdq,ε •

EN,h,q,ε
n Gd

(7.3.12)

Finally let UEXN,h,q,ε
n,Gd,ωi

be given by:

UEXN,h,q,ε
n,Gd,ωi

= UEN,h,q,ε
n,Gd

•

TunN+1

1 ⊟Aff0d,d,Xωi

(7.3.13)

It is then the case that for all x = {x0, x1, . . . , xN} ∈ RN+1 and x ∈ Rd that:

exp
 T

t

fds

uTd (x)− Ir

UEXN,h,q,ε

n,Gd,ωi

(f ([x]∗) ⌢ x)

 3ε+ 2ε
uTd (t, x)

q + 2ε

exp
 b

a

fdx

q

+ ε

exp
 b

a

fdx

− e

q

− euTd (x)

Where, as per Lemma 7.1.1, e is defined as:

E
N,h,q,ε
n (f ([x]∗))− exp

 b

a

fdx

 e (7.3.14)

Proof. Note that for a fixed T ∈ (0,∞) it is the case that ud (t, x) ∈ C1,2

[0, T]× Rd,R

projects down to a function uTd (x) ∈ C2

Rd,R

. Furthermore given a probability space

(Ω,F ,P) and a stochastic process X d,t,x : [t, T]× Ω → Rd, for a fixed outcome space ωi ∈ Ω

it is the case that X d,t,x projects down to X d,t,x
ωi

: [t, T] → Rd. Thus given αd : Rd → R that

is infinitely often differentiable, we get that αd ◦ X d,t,x
ωi

: [t, T] → R.

Taken together with Lemma 7.2.1 with x ↶ X d,t,x
r,ω , f ↶ αd ◦ X d,t,x

ωi
, b ↶ T , a ↶ t, and

222

uTd (x) ↶ ud

T,X d,t,x

ωi

, our error term is rendered as is rendered as:

exp
 T

t

αd ◦ X d,t,x

r,ωi
ds

ud

T,X d,t,x

ωi

− Ir

UEXN,h,q,ε

n,Gd,ωi

 3ε+ 2ε
ud

T,X d,t,x

r,ωi

q + 2ε

exp
 b

a

fdx

q

+ ε

exp
 b

a

fdx

− e

q

− eud

T,X d,t,x

r,ωi

This completes the proof of the Lemma.

Remark 7.3.2. Diagrammatically, this can be represented as:

Eexp,f
N,n,h,q,ε

Gd

Tun

Tun

Prdq,ε

Rd

RN+1
TunN+1

1

Aff
0d,d,X d,t,x

r,ωi

7.4 The UESN,h,q,ε
n,Gd,Ω,n

network

Lemma 7.4.1. Let ν1, ν2, . . . , νn ∈ NN such that for all i ∈ {1, 2, . . . , n} it is the cast that

O (νi) = 1, and it is also the case that D (ν1) = D (ν2) = · · · = D (νn). Let x1 ∈ RI(ν1), x2 ∈

RI(ν2), . . . , xn ∈ RI(νn) and x ∈ R
n

i=1 I(νi). It is then the case that we have that:

Ir (Sumn,1 • [⊟n
i=1νi]) (x) =

n

i=1

Ir (νi) (xi) (7.4.1)

Proof. Throughout the proof let x1 ∈ RI(ν1), x2 ∈ RI(ν2), . . . , xn ∈ RI(νn) and x ∈ R
n

i=1 I(νi)

such that x = x1 ⌢ x2 ⌢ · · · ⌢ xn. Observe that by Lemma 4.2.5 we have that:

Ir (Sumn,1 • [⊟n
i=1νi]) (x) = Ir (Sumn,1) ◦ Ir (⊟n

i=1νi) (x) (7.4.2)

Note however that Defiition 4.1.4 yields that Ir (Sumn,1) (x) = [1 1 · · · 1] · x+ 0 for x ∈ Rn.

On the other hand O (⊟n
i=1νi) = n and furthermore by Lemma 4.3.3 it is the case for

223

x ∈ R
n

i=1 I(νi) that Ir (⊟n
i=1νi) (x) = Ir (ν1) (x1) ⌢ Ir (ν2) (x2) ⌢ · · · ⌢ Ir (νn) (xn). Thus

Ir (Sumn,1 • [⊟n
i=1νi]) (x) is rendered as:

1 1 · · · 1

Ir (ν1) (x1)

Ir (ν2) (x2)

...

Ir (νn) (xn)

+ 0 =
n

i=1

Ir (νi) (xi) (7.4.3)

This completes the proof of the lemma.

Lemma 7.4.2. Let ν1, ν2, . . . , νn ∈ NN with I (ν1) = I (ν2) = . . . = I (νn) and O (ν1) =

O (ν2) = . . . = O (νn) = 1 such that for all i ∈ {1, 2, . . . , n} it is the case that there

exists fi ∈ C

RI(ν1),R

, and εi ∈ (0,∞), where for all xi ∈ RI(ν1), it is the case that

| Ir (νi) (xi) − f (xi) | εi. It is then the case that for all x ∈ Rn·I(ν1) and xi ∈ RI(νi) with

x = x1 ⌢ x2 ⌢ · · · ⌢ xn that:

Ir (⊟n
i νi) (x)− [⌢n

i=1 fi] (x)1
n

i=1

εi (7.4.4)

Proof. We will prove this with induction. This is straight-forward for the case where we have

just one neural network where for all x ∈ RI(ν1) it is the case that Ir (ν1) (x)− f (x)1

ε1 =
1

i=1 εi. Suppose now, that, Ir (⊟n
i νi) (x)− [⌢n

i=1 fi] (x)1
n

i=1 εi holds true for

all cases upto and including n. Consider what happens when we have a triple, a function

fn+1, a neural network νn+1, and εn+1 ∈ (0,∞) with a maximum error over all x ∈ RI(ν1) of

| Ir (νn+1) (x) − fn+1 (x) | εn+1. Then Lemma 4.3.3, Corollary 1.2.34.1, and the triangle

224

inequality tells us that:

Ir

⊟n+1

i νi

(x)−

⌢n+1

i=1 fi

(x)

1

 Ir (⊟n
i νi) (x)− [⌢n

i=1 fi] (x)1 + | Ir (νn+1) (x)− fn+1 (x) |

n+1

i=1

εi (7.4.5)

This proves the inductive case and hence the Lemma.

Lemma 7.4.3. Let (Ω,F ,P) be a probability space. Let Xd : Ω → Rd be a random variable.

Let f : Rd → R be a function such that for all x, x ∈ Rd it is the case that f (x)− f (x)E

L |x− x|. It is then the case that V [f (Xd)] 2L2 V [Xd].

Proof. Let Xd be an i.i.d. copy of Xd. As such it is the case that Cov (Xd,Xd) = 0, whence

it is the case that V [Xd,Xd] = V [Xd] +V [Xd] = V[Xd] +V [−Xd] = V [Xd − Xd] = 2V [Xd].

Note that f (Xd) and f (Xd) are also indepentend and thus Cov (f (Xd) , f (Xd)) = 0, and

whence we get that V [f (Xd)− f (Xd)] = 2V [Xd]. This then yields that:

2V [f (Xd)] = V [f (Xd)− f (Xd)]

= E

(f (Xd)− f (Xd))

2− (E [f (Xd)− f (Xd)])
2

= E

(f (Xd)− f (Xd))

2

= L2 · E

(Xd − Xd)

2

= L2 · 2V [Xd]

=⇒ V [f (Xd)] = L2 · V [Xd] (7.4.6)

This proves the Lemma.

Lemma 7.4.4 (R—, 2024, Approximants for Brownian Motion). Let t ∈ (0,∞) and T ∈

(t,∞). Let (Ω,F ,P) be a probability space. Let n,N ∈ N, and h ∈ (0,∞). Let δ, ε ∈ (0,∞),

q ∈ (2,∞), satisfy that δ = ε (2q−1 + 1)
−1. Let f : [t, T] → R be continuous almost

225

everywhere in [t, T]. Let it also be the case that f = g ◦ h, where h : [t, T] → Rd, and

g : Rd → R. Let t = t0 t1 · · · tN−1 tN = T such that for all i ∈ {0, 1, ..., N}

it is the case that h = T−t
N

, and ti = t0 + i · h . Let t = [t0 t1 · · · tN] and as such let

f

[t]∗,∗

= [f(t0) f(t1) · · · f(tN)]. Let ud ∈ C

Rd,R

satisfy for all d ∈ N, t ∈ [0, T],

x ∈ Rd that:

∂

∂t
ud

(t, x) +

∇2

xud

(t, x) + αd (x) ud (t, x) = 0 (7.4.7)

Furthermore, let uTd (x) = ud(T, x). Let Gd ⊊ NN be the neural network which instantiates as

uTd = Ir (Gd) ∈ C

Rd,R

.

Let Wd : [0, T]×Ω → Rd, d ∈ N be standard Brownian motions, and let X d,t,x : [t, T]×Ω →

Rd, d ∈ N, t ∈ [0, T], x ∈ Rd be stochastic processes with continuous sample paths satisfying

that for all d ∈ N, t ∈ [0, T], s ∈ [t, T], x ∈ Rd we have P-a.s, that:

X d,t,x
s = x+

 t

s

√
2dWd

r (7.4.8)

It is then the case that for all d ∈ N, t ∈ [0, T], x ∈ Rd it holds that:

ud (t, x) = E

exp

 T

t

αd ◦ X d,t,x

r

dr

ud

T,X d,t,x

T

(7.4.9)

Let EN,h,q,ε
n ⊊ NN be neural networks given by:

EN,h,q,ε
n = Xpnq,ε

n •EtrN,h (7.4.10)

Furthermore, let Gd ∈ NN ⊊ NN be neural networks which instantiate as ud = Ir (Gd) ∈

C

Rd,R

.

226

Furthermore, let UEN,h,q,ε
n,Gd

⊊ NN be neural networks given by:

UEN,h,q,ε
n,Gd

= Prdq,ε •

EN,h,q,ε
n Gd

(7.4.11)

Futhermore, let UEXN,h,q,ε
n,Gd,ωi

⊊ NN be neural networks given by:

UEXN,h,q,ε
n,Gd,ωi

= UEN,h,q,ε
n,Gd

•

TunN+1

1 ⊟Aff0d,d,Xωi

(7.4.12)

Finally let UESN,h,q,ε
n,Gd,Ω,n ⊊ NN be neural networks which, for ωi ∈ Ω, is given as:

UESN,h,q,ε
n,Gd,Ω,n =

1

n
⊲

Sumn,1 •

⊟n

i=1UEXN,h,q,ε
n,Gd,ωi

(7.4.13)

It is then the case that for all X ∈ Rn(N+1) × Rnd:

(i) Ir

UESN,h,q,ε

n,Gd,Ω,n

∈ C

Rn(N+1) × Rnd,R

(ii) D

UESN,h,q,ε
n,Gd,Ω,n

q
q−2

[log2 (ε
−1) + q] + D (Gd)− 1 : n = 0

q
q−2

[log2 (ε
−1) + q] + max

D

EN,h,q,ε
n

,D (Gd)

− 1 : n ∈ N

(iii) It is also the case that:

P

UESN,h,q,ε
n,Gd,Ω,n

 n2 ·

360q

q − 2

log2

ε−1

+ q + 1

+ 324 + 48n

+24WH(Gd) (Gd) + 4max

P

EN,h,q,ε
n

,P (Gd)

(7.4.14)

(iv) It is also the case that:

1

n

n

i=1

exp

 T

t

f

X d,t,x

r,ωi

ds · uT

d

X d,t,x

r,ωi

− Ir

UESN,h,q,ε

n,Gd,Ω,n

 3ε+ 2ε
uTd (x)

q + 2ε

exp
 b

a

fdx

q

+ ε

exp
 b

a

fdx

− e

q

− euTd (x)

227

Where, as per Lemma 7.1.1, e is defined as:

E
N,h,q,ε
n − exp

 b

a

fdx

 e (7.4.15)

Proof. Note that for all i ∈ {1, 2, . . . , n}, Lemma 7.3.1 tells us that Ir

UEXN,h,q,ε

n,Gd,ωi

∈ C

RN+1 × Rd,R

. Lemma 4.5.18 and Lemma 4.5.17, thus tells us that

Ir

n
i=1

UEXN,h,q,ε

n,Gd,ωi

=

n
i=1

Ir

UEXN,h,q,ε

n,Gd,ωi

. The sum of continuous functions is

continuous. Note next that 1
n
⊲ is an affine neural network, and hence, by Lemma 4.4.2, must

be continuous.

Then Lemmas 4.2.5, 4.3.8, and the fact that by Lemma 7.3.1 each of the individual stacked

UEXN,h,q,ε
n,Gd,ωi

neural networks is continuous then ensures us that it must therefore be the case

that: Ir

UESN,h,q,ε

n,Gd,Ω,n

∈ C

Rn(N+1) × Rnd,R

. This proves Item (i).

Next note that by construction each UEXN,h,q,ε
n,Gd,ωi

has the same depth, indeed for each i the

only thing different for each of the UEXN,h,q,ε
n,Gd,ωi

is the parameters themselves and not the count

or depth or layer architecture. Note that D (Sumn,1) = D

1
n
⊲

= D

Aff 1

n
,0

= 1.

Whence by Lemma 4.2.5 it is the case that D

UESN,h,q,ε
n,Gd,Ω,n

= D

UEXN,h,q,ε

n,Gd,ωi

. This then

proves Item (ii).

Next, observe that each of the UEXN,h,q,ε
n,Gd,ωi

networks has the same architecture for all ωi ∈ Ω

by construction. Corollary 4.3.5.1 then yields that:

P

⊟n

i=1UEXN,h,q,ε
n,Gd,ωi

 n2 · P

UEXN,h,q,ε

n,Gd,ωi

(7.4.16)

Note for instance also that by Remark 4.4.3, it is the case that P (Sumn,1) = n+ 1. Further-

more, since the output of the Sum neural network has length one, by Definition 4.6.1 it is

228

the case that P

1
n
⊲

= 2. Then Corollary 4.4.5.1 leads us to conclude that:

P

Sumn,1 •

⊟n

i=1UEXN,h,q,ε
n,Gd,ωi

 P

⊟n

i=1UEXN,h,q,ε
n,Gd,ωi

 n2 · P

UEXN,h,q,ε
n,Gd,ωi

 n2 ·

360q

q − 2

log2

ε−1

+ q + 1

+ 324 + 48n

+24WH(Gd) (Gd) + 4max

P

EN,h,q,ε
n

,P (Gd)

(7.4.17)

and therefore that:

P

1

n
⊲

Sumn,1 •

⊟n

i=1UEXN,h,q,ε
n,Gd,ωi

 P

Sumn,1 •

⊟n

i=1UEXN,h,q,ε
n,Gd,ωi

 P

⊟n

i=1UEXN,h,q,ε
n,Gd,ωi

 n2 · P

UEXN,h,q,ε
n,Gd,ωi

 n2 ·

360q

q − 2

log2

ε−1

+ q + 1

+ 324 + 48n

+24WH(Gd) (Gd) + 4max

P

EN,h,q,ε
n

,P (Gd)

(7.4.18)

Observe that the absolute homogeneity condition for norms, the fact that the Brownian

motions are independent of each other, Lemma 7.4.1, the fact that n ∈ N, the fact that the

upper limit of error remains bounded by the same bound for all ωi ∈ Ω, and Lemma 7.4.2,

229

then yields us:

1

n

n

i=1

exp

 T

t

f

X d,t,x

r,ωi

ds · uT

d

X d,t,x

r,ωi

− Ir

UESN,h,q,ε

n,Gd,Ω,n

=

1

n

n

i=1

exp

 T

t

f

X d,t,x

r,ωi

ds · uT

d

X d,t,x

r,ωi

− Ir

1

n
⊲

Sumn,1 •

⊟n

i=1UEXN,h,q,ε
n,Gd,ωi

1

n

n

i=1

exp
 T

t

f

X d,t,x

r,ωi

ds · uT

d

X d,t,x

r,ωi

− 1

n

n

i=1

Ir

UEXN,h,q,ε

n,Gd,ωi

✓
✓
✓
✓1

n

n

i=1

exp
 T

t

f

X d,t,x

r,ωi

ds · uT

d

X d,t,x

r,ωi

− Ir

UEXN,h,q,ε

n,Gd,ωi

exp

 T

t

f

X d,t,x

r,ωi

ds · uT

d

X d,t,x

r,ωi

− Ir

UEXN,h,q,ε

n,Gd,ωi

 3ε+ 2ε
uTd (t, x)

q + 2ε

exp
 b

a

fdx

q

+ ε

exp
 b

a

fdx

− e

q

− euTd (x)

Corollary 7.4.4.1. Let N, n, n ∈ N, h, ε ∈ (0,∞), q ∈ (2,∞), given UESN,h,q,ε
n,Gd,Ω,n ⊊ NN, it is

the case that:

E

E

exp

 T

t

αd ◦ X d,t,x
r,Ω ds

· uTd

X d,t,x

r,Ω

− 1

n

n

i=1

exp

 T

t

αd ◦ X d,t,x
r,ωi

ds · uTd

X d,t,x

r,ωi

Proof. Note that (Hutzenthaler et al., 2021, Corollary 3.8) tells us that:

E

E

exp

 T

t

αd ◦ X d,t,x
r,Ω ds

· uTd

X d,t,x

r,Ω

− 1

n

n

i=1

exp

 T

t

αd ◦ X d,t,x
r,ωi

ds · uTd

X d,t,x

r,ωi

 Kp

√
p− 1

n
1
2

E
exp

 T

t

αd ◦ X d,t,x
r,Ω ds

· uTd

X d,t,x

r,Ω

(7.4.19)

Note that Taylor's theorem states that:

exp
 T

t

αd ◦ X d,t,x
r,Ω ds

= 1 +

 T

t

αd ◦ X d,t,x
r,Ω ds+

1

2

 T

t

αd ◦ X d,t,x
r,Ω

2

ds+R3 (7.4.20)

230

Where R3 is the Lagrange form of the reamainder. Thus exp
 T

t
αd ◦ X d,t,x

r,Ω ds

·u

T,X d,t,x

r,Ω

is rendered as:

exp
 T

t

αd ◦ X d,t,x
r,Ω ds

· uTd

X d,t,x

r,Ω

(7.4.21)

= uT

X d,t,s

r,Ω

+ uTd

X d,t,s

r,Ω

·
 T

t

αd ◦ X d,t,x
r,ω +

1

2
uT

X d,t,x

r,Ω

·
 T

t

αd ◦ X d,t,x
r,Ω

2

(7.4.22)

+R3 · uTd

X d,t,s

r,Ω

(7.4.23)

Jensen's Inequality, the fact that uT does not depend on time, and the linearity of integrals

gives us:

= uT

X d,t,s

r,Ω

+ uT

X d,t,s

r,Ω

·
 T

t

αd ◦ X d,t,x
r,ω ds+

1

2
uT

X d,t,x

r,Ω

·
 T

t

αd ◦ X d,t,x
r,Ω ds

2

+R3 · uT

X d,t,s

r,Ω

 uT

X d,t,x

r,Ω

+ uT

X d,t,s

r,Ω

·
 T

t

αd ◦ X d,t,x
r,Ω ds+

1

2
uT

X d,t,x

r,Ω

·

1

T − t

 T

t

αd ◦ X d,t,x
r,Ω ds

2

(7.4.24)

+R3

 uT

X d,t,x

r,Ω

+

 T

t

uT

X d,t,x

r,Ω

· αd ◦ X d,t,x

r,Ω ds+

 T

t

1

2 (T − t)
uT

X d,t,x

r,Ω

·

αd ◦ X d,t,x

r,Ω

2

ds

(7.4.25)

+R3

= uT

X d,t,x

r,Ω

+

 T

t

uT

X d,t,x

r,Ω

· αd ◦ X d,t,x

r,Ω +
1

2 (T − t)
uT

X d,t,x

r,Ω

·

αd ◦ X d,t,x

r,Ω

2

ds+R3

Thus (Hutzenthaler et al., 2021, Lemma 2.3) with f ↶ uT tells us that:

E (7.4.26)

231

Remark 7.4.5. Note that diagrammatically, this can be represented as in figure below.

Eexp,f
N,n,h,q,ε

Gd

Tun

Tun

Prdq,ε

Rd

RN+1
TunN+1

1

Aff⊬d,d,X

Eexp,f
N,n,h,q,ε

Gd

Tun

Tun

Prdq,ε

Rd

RN+1
TunN+1

1

Aff⊬d,d,X

...Sum

...

...

1
n
⊲

Figure 7.2: Neural network diagram for the UES network.

232

Chapter 8

Conclusions and Further Research

We will present three avenues of further research and related work on parameter estimates

here.

8.1 Further operations and further kinds of neural net-

works

Note, for instance, that several classical operations are done on neural networks that have

yet to be accounted for in this framework and talked about in the literature. We will discuss

two of them dropout and merger and discuss how they may be brought into this framework.

8.1.1 Dropout

Overfitting presents an important challenge for all machine learning models, including deep

learning. There ex

Definition 8.1.1 (Hadamard Product). Let m,n ∈ N. Let A,B ∈ Rm×n. For all i ∈

{1, 2, . . . ,m} and j ∈ {1, 2, . . . , n} define the Hadamard product ⊙ : Rm×n × Rm×n → Rm×n

233

as:

A⊙ B := [A⊙ B]i,j = [A]i,j × [B]i,j ∀i, j (8.1.1)

We will also define the dropout operator introduced in Srivastava et al. (2014), and explained

further in Goodfellow et al. (2016).

Definition 8.1.2 (Realization with dropout). Let ν ∈ NN, L, n ∈ N, p ∈ (0, 1), L (ν) =

(l0, l1, . . . , BL), and that ν = ((W1, b1) , (W2, b2) , . . . , (WL, bL)). Let it be the case that for

each n ∈ N, ρn = {x1, x2, . . . , xn} ∈ Rn where for each i ∈ {1, 2, . . . , n} it is the case that

xi ∼ Bern(p). We will then denote ID,p
a (ν) ∈ C

RI(ν),RO(ν)

, the continuous function given

by:

ID,p
a (ν) = ρlL ⊙ a

Wl

ρlL−1

⊙ a (WL−1 (. . .) + bL−1)

+ bL

(8.1.2)

Dropout is an example of ensemble learning, a form of learning where versions of our model

(e.g. random forests or neural networks) are made (e.g. by dropout for neural networks or

by enforcing a maximum depth to the trees in our forest), and a weighted average of the

predictions of our different models is taken to be the predictive model. That such a model

can work, and indeed work well, is the subject of Schapire (1990).

8.2 Further Approximants

In theory the approximation schemes given in the case of Xpnq,ε
n ,Csnq,ε

n , and Sneq,εn given

in the previous sections, could be used to approximate more transcendental functions, and

identities such as alluded to in Remark 5.2.30. Indeed, recent attempts have been made

to approximate backwards and forward Euler methods as in Grohs et al. (2023). In fact,

this architecture was originally envisioned to approximate, Multi-Level Picard iterations,

as seen in Ackermann et al. (2023). These neural network methods have been proven to

234

beat the curse of dimensionality in the sense that the size of these networks (parameter and

depth counts) grow only polynomially with respect to the desired accuracy. In practice, it

remains to be seen whether for larger dimensions, the increased number of operations and

architectures to contend with do not make up for the polynomial increase in parameter and

depths, especially when it comes to computaiton time.

In a similar vein, these architectures have so far lacked a consistent implementation in a

widely available programming language. Part of the dissertation work has been focused on

implementing these architectures as an R package, available at CRAN.

8.3 Algebraic Properties of this Framework

It is quite straightforward to see that the instantiation operation has sufficiently functorial

properties, at the very least, when instantiating with the identity function. More specifically

consider the category Mat whose objects are natural numbers, m,n, and whose arrows

m
A←− n are matrices A ∈ Rm×n, i.e. a continuous function between vector spaces Rn and

Rm respectively. Consider as well the set of neural networks ν ⊊ NN where I (ν) = n and

O (ν) = m.

In such a case, note that the instantiation operation preserves the axiom of functoriality,

namely that composition is respected under instantiation. Note also that we have alluded

to the fact that under neural network composition, with Id (the appropriate one for our

dimension) behaves like a monoid under instantiation.

Note for example that a neural network analog for derivatives, one that respects the chain

rule under instantiation already exist in the literature, e.g. Berner et al. (2019). Thus there

is a growing and rather rich and growing set of algebraic operations that are and have been

proposed for neural networks.

A further exploration of the algebraic properties of this artificial neural network framework

could present a fruitful avenue of future study.

235

This completes this Dissertation.

236

Bibliography

Ackermann, J., Jentzen, A., Kruse, T., Kuckuck, B., and Padgett, J. L. (2023). Deep neural
networks with relu, leaky relu, and softplus activation provably overcome the curse of
dimensionality for kolmogorov partial differential equations with lipschitz nonlinearities in
the lp-sense.

Arik, S. n and Pfister, T. (2021). TabNet: Attentive Interpretable Tabular Learning. Pro-
ceedings of the AAAI Conference on Artificial Intelligence, 35(8):6679--6687. Number:
8.

Beck, C., Gonon, L., Hutzenthaler, M., and Jentzen, A. (2021a). On existence and unique-
ness properties for solutions of stochastic fixed point equations. Discrete & Continuous
Dynamical Systems - B, 26(9):4927.

Beck, C., Hutzenthaler, M., and Jentzen, A. (2021b). On nonlinear Feynman–Kac formulas
for viscosity solutions of semilinear parabolic partial differential equations. Stochastics
and Dynamics, 21(08).

Beck, C., Hutzenthaler, M., and Jentzen, A. (2021c). On nonlinear feynman–kac formulas
for viscosity solutions of semilinear parabolic partial differential equations. Stochastics
and Dynamics, 21(08):2150048.

Berner, J., Elbrächter, D., Grohs, P., and Jentzen, A. (2019). Towards a regularity theory
for relu networks – chain rule and global error estimates. In 2019 13th International
conference on Sampling Theory and Applications (SampTA), pages 1--5.

Chollet, F. (2017). Xception: Deep learning with depthwise separable convolutions. In 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 1800--1807,
Los Alamitos, CA, USA. IEEE Computer Society.

Crandall, M. G., Ishii, H., and Lions, P.-L. (1992). User’s guide to viscosity solutions of
second order partial differential equations. Bull. Amer. Math. Soc., 27(1):1--67.

Da Prato, G. and Zabczyk, J. (2002). Second Order Partial Differential Equations in Hilbert
Spaces. London Mathematical Society Lecture Note Series. Cambridge University Press.

Davies, A., Juhasz, A., Lackenby, M., and Tomasev, N. (2022). The signature and cusp
geometry of hyperbolic knots. Geometry and Topology. Publisher: Mathematical Sciences
Publishers.

237

Durrett, R. (2019). Probability: Theory and Examples. Cambridge Series in Statistical and
Probabilistic Mathematics. Cambridge University Press.

E, W., Hutzenthaler, M., Jentzen, A., and Kruse, T. (2019). On Multilevel Picard Numerical
Approximations for High-Dimensional Nonlinear Parabolic Partial Differential Equations
and High-Dimensional Nonlinear Backward Stochastic Differential Equations. J Sci Com-
put, 79(3):1534--1571.

E, W., Hutzenthaler, M., Jentzen, A., and Kruse, T. (2021). Multilevel Picard iterations for
solving smooth semilinear parabolic heat equations. Partial Differ. Equ. Appl., 2(6):80.

Golub, G. and Van Loan, C. (2013). Matrix Computations. Johns Hopkins Studies in the
Mathematical Sciences. Johns Hopkins University Press.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press. http:
//wwwww.deeplearningbook.org.

Graham, R., Knuth, D., and Patashnik, O. (1994). Concrete Mathematics: A Foundation
for Computer Science. Addison-Wesley Professional, Upper Saddle River, NJ, 2nd edition
edition.

Grohs, P., Hornung, F., Jentzen, A., and von Wurstemberger, P. (2018). A proof that artifi-
cial neural networks overcome the curse of dimensionality in the numerical approximation
of Black-Scholes partial differential equations. Papers 1809.02362, arXiv.org.

Grohs, P., Hornung, F., Jentzen, A., and Zimmermann, P. (2023). Space-time error es-
timates for deep neural network approximations for differential equations. Advances in
Computational Mathematics, 49(1):4.

Grohs, P., Jentzen, A., and Salimova, D. (2022). Deep neural network approximations for
solutions of PDEs based on monte carlo algorithms. Partial Differential Equations and
Applications, 3(4).

Hutzenthaler, M., Jentzen, A., Kruse, T., Anh Nguyen, T., and von Wurstemberger, P.
(2020a). Overcoming the curse of dimensionality in the numerical approximation of semi-
linear parabolic partial differential equations. Proceedings of the Royal Society A: Math-
ematical, Physical and Engineering Sciences, 476(2244):20190630.

Hutzenthaler, M., Jentzen, A., Kuckuck, B., and Padgett, J. L. (2021). Strong Lp-error
analysis of nonlinear Monte Carlo approximations for high-dimensional semilinear partial
differential equations. Technical Report arXiv:2110.08297, arXiv. arXiv:2110.08297 [cs,
math] type: article.

Hutzenthaler, M., Jentzen, A., and von Wurstemberger Wurstemberger (2020b). Overcoming
the curse of dimensionality in the approximative pricing of financial derivatives with default
risks. Electronic Journal of Probability, 25(none):1 -- 73.

Itô, K. (1942a). Differential equations determining Markov processes (original in Japanese).
Zenkoku Shijo Sugaku Danwakai, 244(1077):1352--1400.

238

http://www.deeplearningbook.org

Itô, K. (1942b). On a stochastic integral equation. Proc. Imperial Acad. Tokyo,
244(1077):1352--1400.

Jentzen, A., Kuckuck, B., and von Wurstemberger, P. (2023). Mathematical introduction to
deep learning: Methods, implementations, and theory.

Karatzas, I. and Shreve, S. (1991). Brownian Motion and Stochastic Calculus. Graduate
Texts in Mathematics (113) (Book 113). Springer New York.

Petersen, P. and Voigtlaender, F. (2018). Optimal approximation of piecewise smooth func-
tions using deep ReLU neural networks. Neural Netw, 108:296--330.

Rafi, S. (2024). nnR.

Rafi, S. and Padgett, J. L. (2024). nnR: Neural Networks Made Algebraic. R package version
0.1.0.

Rio, E. (2009). Moment Inequalities for Sums of Dependent Random Variables under Pro-
jective Conditions. J Theor Probab, 22(1):146--163.

Schapire, R. E. (1990). The strength of weak learnability. Mach Learn, 5(2):197--227.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014).
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res.,
15(1):1929--1958.

Strubell, E., Ganesh, A., and McCallum, A. (2019). Energy and policy considerations for
deep learning in nlp.

Tsaban, T., Varga, J. K., Avraham, O., Ben-Aharon, Z., Khramushin, A., and Schueler-Fur-
man, O. (2022). Harnessing protein folding neural networks for peptide–protein docking.
Nat Commun, 13(1):176. Number: 1 Publisher: Nature Publishing Group.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, î,
and Polosukhin, I. (2017). Attention is All you Need. In Advances in Neural Information
Processing Systems, volume 30. Curran Associates, Inc.

Wu, C.-J., Raghavendra, R., Gupta, U., Acun, B., Ardalani, N., Maeng, K., Chang, G.,
Behram, F. A., Huang, J., Bai, C., Gschwind, M., Gupta, A., Ott, M., Melnikov, A.,
Candido, S., Brooks, D., Chauhan, G., Lee, B., Lee, H.-H. S., Akyildiz, B., Balandat, M.,
Spisak, J., Jain, R., Rabbat, M., and Hazelwood, K. (2022). Sustainable ai: Environmental
implications, challenges and opportunities.

Zhao, T., Lyu, R., Wang, H., Cao, Z., and Ren, Z. (2023). Space-based gravitational wave
signal detection and extraction with deep neural network. Commun Phys, 6(1):1--12.
Number: 1 Publisher: Nature Publishing Group.

239

8.4 Code Listings
Parts of this code have been released on CRAN under the package name nnR, and can be
found in Rafi and Padgett (2024), with the corresponding repository being found at Rafi
(2024):

Listing 8.1: R code for neural network generation
1 #' Function to generate a random matrix with specified dimensions.
2 #'
3 #' @param rows number of rows.
4 #' @param cols number of columns.
5 #'
6 #' @return a random matrix of dimension rows times columns with elements from
7 #' a standard normal distribution
8

9 generate_random_matrix <- function(rows, cols) {
10 (rows * cols) |>
11 rnorm() |>
12 matrix(rows, cols) -> result
13 return(result)
14 }
15

16 #' @title create_neural_network
17 #' @description Function to create a list of lists for neural network layers
18 #'
19 #' @param layer_architecture a list specifying the width of each layer
20 #'
21 #' @return An ordered list of ordered pairs of \eqn{(W,b)}. Where \eqn{W} is

the matrix
22 #' representing the weight matrix at that layer and \eqn{b} the bias vector.

Entries
23 #' on the matrix come from a standard normal distribution. Neural networks
24 #' are defined to be elements belonging to the following set:
25 #' \deqn{
26 #'
27 #' \mathsf{NN} = \bigcup_{L\in \N} \bigcup_{l_0,l_1,...,l_L \in \N}
28 #' \left(\times^L_{k=1} \left[\mathbb{R}^{l_k \times l_{k-1}} \times \R^{l_k

}\right] \right)
29 #'
30 #'
31 #' }
32 #'
33 #'
34 #'
35 #'
36 #' We will use the definition of neural networks as found in:
37 #'
38 #' @references Grohs, P., Hornung, F., Jentzen, A. et al.
39 #' Space-time error estimates for deep neural network approximations
40 #' for differential equations. Adv Comput Math 49, 4 (2023).
41 #' \url{https://doi.org/10.1007/s10444-022-09970-2}.
42 #' @export
43

240

44 create_neural_network <- function(layer_architecture) {
45 if (all(sapply(layer_architecture, function(x) is.numeric(x) && x %% 1 == 0

&& x > 0)) == FALSE) {
46 stop("Non␣integer␣or␣negative␣neural␣network␣width␣specified.")
47 } else if (layer_architecture |> length() < 2) {
48 stop("Neural␣network␣must␣have␣atleast␣two␣layers.")
49 } else {
50 layer_architecture |> length() -> L
51

52 # Initialize the list of lists
53 neural_network <- list()
54

55 # Generate matrices W and vectors b for each layer
56 for (i in 1:(L - 1)) {
57 # Set dimensions for W and b
58 layer_architecture[i] -> input_size
59 layer_architecture[i + 1] -> output_size
60

61 # Create matrix W
62 generate_random_matrix(output_size, input_size) -> W
63

64 # Create vector b
65 output_size |>
66 rnorm() |>
67 matrix(output_size, 1) -> b
68

69 # Add W and b to the list
70 list(W = W, b = b) -> neural_network[[i]]
71 }
72

73 return(neural_network)
74 }
75 }

Listing 8.2: R code for auxilliary functions
1 source("R/is_nn.R")
2 #' @title hid
3 #'
4 #' @description The function that returns the number of hidden layers of a
5 #' neural network. Denoted \eqn{\mathsf{H}}
6 #'
7 #' @param nu a neural network of the type generated by create_neural_network()
8 #'
9 #' By definition \eqn{\mathsf{H}(\nu) = \mathsf{D}(\nu) - 1}
10 #'
11 #' @references Definition 1.3.1. Jentzen, A., Kuckuck, B., and von

Wurstemberger, P. (2023).
12 #' Mathematical introduction to deep learning: Methods, implementations,
13 #' and theory. \url{https://arxiv.org/abs/2310.20360}.
14 #'
15 #' @return Integer representing the number of hidden layers.
16 #' @export
17

241

18 hid <- function(nu) {
19 if (nu |> is_nn() == TRUE) {
20 return(length(nu) - 1)
21 } else {
22 stop("Only␣neural␣networks␣can␣have␣hidden␣layers")
23 }
24 }
25

26 #' @title dep
27 #' @description The function that returns the depth of a neural network.

Denoted
28 #' \eqn{\mathsf{D}}.
29 #'
30 #' @param nu a neural network of the type generated by
31 #' create_neural_network(). Very straightforwardly it is the
32 #' length of the list where neural networks are defined as an odered list of
33 #' lists.
34 #' @references Definition 1.3.1. Jentzen, A., Kuckuck, B., and von

Wurstemberger, P. (2023).
35 #' Mathematical introduction to deep learning: Methods, implementations,
36 #' and theory. \url{https://arxiv.org/abs/2310.20360}.
37 #'
38 #' @return Integer representing the depth of the neural network.
39 #' @export
40

41 dep <- function(nu) {
42 if (nu |> is_nn() == TRUE) {
43 return(length(nu))
44 } else {
45 stop("Only␣neural␣networks␣can␣have␣depth")
46 }
47 }
48

49 #' @title inn
50 #' @description The function that returns the input layer size of a neural
51 #' network. Denoted \eqn{\mathsf{I}}
52 #'
53 #' @param nu A neural network of the type generated by
54 #' create_neural_network().
55 #'
56 #' @references Definition 1.3.1. Jentzen, A., Kuckuck, B., and von

Wurstemberger, P. (2023).
57 #' Mathematical introduction to deep learning: Methods, implementations,
58 #' and theory. \url{https://arxiv.org/abs/2310.20360}.
59 #'
60 #' @return An integer representing the input width of the neural network.
61 #' @export
62

63 inn <- function(nu) {
64 if (nu |> is_nn() == TRUE) {
65 return(dim(nu[[1]]$W)[2])
66 } else {
67 stop("Only␣neural␣networks␣can␣have␣size␣of␣input␣layers")

242

68 }
69 }
70

71

72 #' @title out
73 #' @description The function that returns the output layer size of a neural
74 #' network. Denoted \eqn{\mathsf{O}}.
75 #'
76 #' @param nu A neural network of the type generated by create_neural_network()

.
77 #'
78 #' @references Definition 1.3.1. Jentzen, A., Kuckuck, B., and von

Wurstemberger, P. (2023).
79 #' Mathematical introduction to deep learning: Methods, implementations,
80 #' and theory. \url{https://arxiv.org/abs/2310.20360}.
81 #'
82 #' @return An integer representing the output width of the neural network.
83 #' @export
84

85 out <- function(nu) {
86 if (nu |> is_nn() == TRUE) {
87 return(dim(nu[[length(nu)]]$W)[1])
88 } else {
89 stop("Ony␣neural␣networks␣can␣have␣size␣of␣output␣layers")
90 }
91 }
92

93

94 #' @title lay
95 #' @description The function that returns the layer architecture of a neural
96 #' network.
97 #'
98 #' @param nu A neural network of the type generated by
99 #' create_neural_network(). Denoted \eqn{\mathsf{L}}.

100 #'
101 #' @references Definition 1.3.1. Jentzen, A., Kuckuck, B., and von

Wurstemberger, P. (2023).
102 #' Mathematical introduction to deep learning: Methods, implementations,
103 #' and theory. \url{https://arxiv.org/abs/2310.20360}.
104 #'
105 #' @return A tuple representing the layer architecture of our neural network.
106 #' @export
107

108 lay <- function(nu) {
109 if (nu |> is_nn() == TRUE) {
110 layer_architecture <- list()
111 for (i in 1:length(nu)) {
112 layer_architecture |> append(dim(nu[[i]]$W)[1]) -> layer_architecture
113 }
114 inn(nu) |> append(layer_architecture) -> layer_architecture
115 return(layer_architecture)
116 } else {
117 stop("Only␣neural␣networks␣can␣have␣layer␣architectures")

243

118 }
119 }
120

121

122 #' @title param
123 #' @description The function that returns the numbe of parameters of a neural
124 #' network.
125 #'
126 #' @param nu A neural network of the type generated by
127 #' create_neural_network(). Denoted \eqn{\mathsf{P}}.
128 #'
129 #' @references Definition 1.3.1. Jentzen, A., Kuckuck, B., and von

Wurstemberger, P. (2023).
130 #' Mathematical introduction to deep learning: Methods, implementations,
131 #' and theory. \url{https://arxiv.org/abs/2310.20360}.
132 #'
133 #' @return An integer representing the parameter count of our neural network.
134 #' @export
135

136 param <- function(nu) {
137 if (nu |> is_nn() == TRUE) {
138 0 -> param_count
139 for (i in 1:length(nu)) {
140 param_count + length(nu[[i]]$W) + length(nu[[i]]$b) -> param_count
141 }
142 return(param_count)
143 } else {
144 stop("Only␣neural␣networks␣can␣have␣parameters")
145 }
146 }

Listing 8.3: R code for activation functions ReLU and Sigmoid
1 #' @title: ReLU
2 #' @description: The ReLU activation function
3 #'
4 #' @param x A real number that is the input to our ReLU function.
5 #'
6 #' @return The output of the standard ReLU function, i.e. \eqn{\max\{0,x\}}.

See also \code{\link{Sigmoid}}.
7 #' and \code{\link{Tanh}}.
8 #' @export
9

10 ReLU <- function(x) {
11 if (x |> is.numeric() && x |> length() == 1 && x |> is.finite()) {
12 return(x |> max(0))
13 } else {
14 stop("x␣must␣be␣a␣real␣number")
15 }
16 }
17

18 #' @title: Sigmoid
19 #' @description The Sigmoid activation function.
20 #'

244

21 #' @param x a real number that is the input to our Sigmoid function
22 #'
23 #' @return The output of a standard Sigmoid function,
24 #' i,e. \eqn{\frac{1}{1 + \exp(-x)}}.
25 #' See also \code{\link{Tanh}}.and \code{\link{ReLU}}.
26 #' @export
27

28 Sigmoid <- function(x) {
29 if (x |> is.numeric() && x |> length() == 1 && x |> is.finite()) {
30 return(1 / (1 + exp(-x)))
31 } else {
32 stop("x␣must␣be␣a␣real␣number")
33 }
34 }
35

36 #' @title Tanh
37 #' @description The tanh activation function
38 #'
39 #' @param x a real number
40 #'
41 #' @return the \eqn{tanh} of x. See also \code{\link{Sigmoid}} and
42 #' \code{\link{ReLU}}.
43 #' @export
44

45 Tanh <- function(x) {
46 if (x |> is.numeric() && x |> length() == 1 && x |> is.finite()) {
47 return(x |> tanh())
48 } else {
49 stop("x␣must␣be␣a␣real␣number")
50 }
51 }

Listing 8.4: R code for intanitation
1 source("R/aux_fun.R")
2 source("R/is_nn.R")
3

4 #' @title inst
5 #' @description The function that instantiates a neural network as created
6 #' by create_neural_network().
7 #'
8 #'
9 #' @param neural_network An ordered list of lists, of the type generated by
10 #' create_neural_network() where each element in the
11 #' list of lists is a pair \eqn{(W,b)} representing the weights and biases of
12 #' that layer.
13 #'
14 #' \emph{NOTE:} We will call istantiation what Grohs et. al. call "realization

".
15 #'
16 #' @references Grohs, P., Hornung, F., Jentzen, A. et al. Space-time error

estimates for deep
17 #' neural network approximations for differential equations. Adv Comput Math

49, 4 (2023).

245

18 #' https://doi.org/10.1007/s10444-022-09970-2.
19 #'
20 #' Definition 1.3.4. Jentzen, A., Kuckuck, B., and von Wurstemberger, P.

(2023).
21 #' Mathematical introduction to deep learning: Methods, implementations,
22 #' and theory. \url{https://arxiv.org/abs/2310.20360}
23 #'
24 #' @param activation_function A continuous function applied to the output of

each layer
25 #' @param x our input to the continuous function formed from activation. Our

input will
26 #' be an element in \eqn{\mathbb{R}^d} for some appropriate \eqn{d}.
27 #'
28 #' @return The output of the function that is the instantiation of the given
29 #' neural network with the given activation function at the given \eqn{x}.
30 #'
31 #' @export
32 #'
33

34

35 inst <- function(neural_network, activation_function, x) {
36 if (neural_network |> is_nn() == FALSE) {
37 stop("Only␣neural␣networks␣can␣be␣instantiated")
38 } else if (neural_network |> inn() != x |>
39 matrix() |>
40 nrow()) {
41 stop("x␣does␣not␣match␣input␣size␣required␣by␣neural␣network")
42 } else {
43 if (dep(neural_network) == 1) {
44 neural_network[[1]]$W %*% x + neural_network[[1]]$b -> output
45 return(output)
46 }
47

48 x |> matrix() -> output
49

50 for (i in 1:(length(neural_network) - 1)) {
51 neural_network[[i]]$W %*% output + neural_network[[i]]$b -> linear_

transform
52 apply(linear_transform,
53 MARGIN = 1,
54 FUN = activation_function
55) -> output
56 }
57 neural_network[[length(neural_network)]]$W %*% output +
58 neural_network[[length(neural_network)]]$b -> output
59 return(output)
60 }
61 }

Listing 8.5: R code for parallelizing two neural networks
1 source("R/aux_fun.R")
2 source("R/Tun.R")
3 source("R/is_nn.R")

246

4

5

6 #' Function for creating a block diagonal given two matrices.
7 #'
8 #' @param matrix1 A matrix.
9 #' @param matrix2 A matrix
10 #'
11 #' @return A block diagonal matrix with matrix1 on top left
12 #' and matrix2 on bottom right.
13

14 create_block_diagonal <- function(matrix1, matrix2) {
15 nrow(matrix1) -> m1
16 nrow(matrix2) -> m2
17 ncol(matrix1) -> n1
18 ncol(matrix2) -> n2
19

20 # Create a block diagonal matrix
21 0 |> matrix(m1 + m2, n1 + n2) -> block_diagonal_matrix
22 block_diagonal_matrix[1:m1, 1:n1] <- matrix1
23 block_diagonal_matrix[(m1 + 1):(m1 + m2), (n1 + 1):(n1 + n2)] <-
24 matrix2
25

26 return(block_diagonal_matrix)
27 }
28

29 #' @title stk
30 #' @description A function that stacks neural networks.
31 #'
32 #' @param nu neural network.
33 #' @param mu neural network.
34 #'
35 #' @return A stacked neural network of \eqn{\nu} and \eqn{\mu}, i.e. \eqn{\nu

\boxminus \mu}
36 #'
37 #'
38 #' \strong{NOTE:} This is different than the one given in Grohs, et. al. 2023.
39 #' While we use padding to equalize neural networks being parallelized our
40 #' padding is via the Tun network whereas Grohs et. al. uses repetitive
41 #' composition of the i network. We use repetitive composition of the \eqn{\

mathsf{Id_1}}
42 #' network. See \code{\link{Id}} \code{\link{comp}}
43 #'
44 #' \strong{NOTE:} The terminology is also different from Grohs et. al. 2023.
45 #' We call stacking what they call parallelization. This terminology change

was
46 #' inspired by the fact that parallelization implies commutativity but this
47 #' operation is not quite commutative. It is commutative up to transposition
48 #' of our input x under instantiation with a continuous activation function.
49 #'
50 #' Also the work parallelization has a lot of baggage when it comes to
51 #' artificial neural networks in that it often means many different CPUs

working
52 #' together.

247

53 #'
54 #' \emph{Remark:} We will use only one symbol for stacking equal and unequal

depth
55 #' neural networks, namely "stk". This is for usability but also that
56 #' for all practical purposes only the general stacking of neural networks
57 #' of different sizes is what is needed.
58 #'
59 #' \emph{Remark:} We have two versions, a prefix and an infix version.
60 #'
61 #' This operation on neural networks, called "parallelization" is found in:
62 #' @references Grohs, P., Hornung, F., Jentzen, A. et al. Space-time error

estimates for deep
63 #' neural network approximations for differential equations. Adv Comput Math

49, 4 (2023).
64 #' https://doi.org/10.1007/s10444-022-09970-2
65 #'
66 #' @export
67

68 stk <- function(nu, mu) {
69 if (nu |> is_nn() && mu |> is_nn()) {
70 if (dep(nu) == dep(mu)) {
71 list() -> parallelized_network
72 for (i in 1:length(nu)) {
73 create_block_diagonal(nu[[i]]$W, mu[[i]]$W) -> parallelized_W
74 rbind(nu[[i]]$b, mu[[i]]$b) -> parallelized_b
75 list(W = parallelized_W, b = parallelized_b) -> parallelized_network[[

i]]
76 }
77 return(parallelized_network)
78 }
79

80 if (dep(nu) > dep(mu)) {
81 (dep(nu) - dep(mu) + 1) |> Tun(d = out(mu)) -> padding
82 padding |> comp(mu) -> padded_network
83 nu |> stk(padded_network) -> parallelized_network
84 return(parallelized_network)
85 }
86

87 if (dep(nu) < dep(mu)) {
88 (dep(mu) - dep(nu) + 1) |> Tun(d = out(nu)) -> padding
89 padding |> comp(nu) -> padded_network
90 padded_network |> stk(mu) -> parallelized_network
91 return(parallelized_network)
92 }
93 } else {
94 stop("Please␣try␣stacking␣neural␣networks")
95 }
96 }
97

98 #' The stk function.
99 #'

100 #' @param nu neural network.
101 #' @param mu neural network.

248

102 #'
103 #' @return A stacked neural network of nu and mu.
104 #' @export
105

106

107 `%stk%` <- function(nu, mu) {
108 if (nu |> is_nn() && mu |> is_nn()) {
109 if (dep(nu) == dep(mu)) {
110 list() -> parallelized_network
111 for (i in 1:length(nu)) {
112 create_block_diagonal(nu[[i]]$W, mu[[i]]$W) -> parallelized_W
113 rbind(nu[[i]]$b, mu[[i]]$b) -> parallelized_b
114 list(W = parallelized_W, b = parallelized_b) -> parallelized_network[[

i]]
115 }
116 return(parallelized_network)
117 }
118

119 if (dep(nu) > dep(mu)) {
120 (dep(nu) - dep(mu) + 1) |> Tun(d = out(mu)) -> padding
121 padding |> comp(mu) -> padded_network
122 nu |> stk(padded_network) -> parallelized_network
123 return(parallelized_network)
124 }
125

126 if (dep(nu) < dep(mu)) {
127 (dep(mu) - dep(nu) + 1) |> Tun(d = out(nu)) -> padding
128 padding |> comp(nu) -> padded_network
129 padded_network |> stk(mu) -> parallelized_network
130 return(parallelized_network)
131 }
132 } else {
133 stop("Please␣try␣stacking␣neural␣networks")
134 }
135 }

Listing 8.6: R code for affine neural networks
1 #' @title Aff
2 #' @description The function that returns \eqn{\mathsf{Aff}} neural networks.
3 #'
4 #' @param W An \eqn{m \times n} matrix representing the weight of the affine
5 #' neural network
6 #' @param b An \eqn{m \times 1} vector representing the bias of the affine
7 #' neural network
8 #'
9 #' @references Grohs, P., Hornung, F., Jentzen, A. et al. Space-time error

estimates for deep
10 #' neural network approximations for differential equations. Adv Comput Math

49, 4 (2023).
11 #' https://doi.org/10.1007/s10444-022-09970-2
12 #'
13 #' Definition 2.3.1. Jentzen, A., Kuckuck, B., and von Wurstemberger, P.

(2023).

249

14 #' Mathematical introduction to deep learning: Methods, implementations,
15 #' and theory. \url{https://arxiv.org/abs/2310.20360}
16 #'
17 #' @return Returns the network \eqn{((W,b))} representing an affine neural

network. Also
18 #' denoted as \eqn{\mathsf{Aff}_{W,b}}
19 #' See also \code{\link{Cpy}} and \code{\link{Sum}}.
20 #' @export
21

22 Aff <- function(W, b) {
23 if (W |> is.matrix() == FALSE) (W |> matrix() -> W)
24 if (b |> is.matrix() == FALSE) (b |> matrix() -> b)
25 list(list(W = W, b = b)) -> return_network
26 return(return_network)
27 }
28

29 #' @title Cpy
30 #' @description The function that returns \eqn{\mathsf{Cpy}} neural networks.
31 #' These are neural networks defined as such
32 #' \deqn{
33 #' \mathsf{Aff}_{\left[\mathbb{I}_k \: \mathbb{I}_k \: \cdots \: \mathbb{I}_k

\right]^T,0_{k}}
34 #' }
35 #'
36 #' @param n number of copies to make.
37 #' @param k the size of the input vector.
38 #'
39 #' @return Returns an affine network that makes a concatenated vector that is

\eqn{n}
40 #' copies of the input vector of size \eqn{k}. See \code{\link{Aff}} and \code

{\link{Sum}}.
41 #'
42 #' @references Definition 2.4.6. Jentzen, A., Kuckuck, B., and von

Wurstemberger, P. (2023).
43 #' Mathematical introduction to deep learning: Methods, implementations,
44 #' and theory. \url{https://arxiv.org/abs/2310.20360}
45 #'
46 #'
47 #' @export
48

49 Cpy <- function(n, k) {
50 if (n %% 1 != 0 ||
51 n < 1 ||
52 k %% 1 != 0 ||
53 k < 1) {
54 stop("n␣and␣k␣must␣be␣natural␣numbers")
55 } else {
56 k |> diag() -> W
57 for (i in 2:n) {
58 W |> rbind(k |> diag()) -> W
59 }
60 0 |> matrix(n * k) -> b
61 list(list(W = W, b = b)) -> return_network

250

62 return(return_network)
63 }
64 }
65

66 #' @title Sum
67 #' @description The function that returns \eqn{\mathsf{Sum}} neural networks.
68 #'
69 #' These are neural networks defined as such
70 #' \deqn{
71 #' \mathsf{Aff}_{\left[\mathbb{I}_k \: \mathbb{I}_k \: \cdots \: \mathbb{I}_k

\right],0_{k}}
72 #' }
73 #'
74 #' @param n number of copies of a certain vector to be summed.
75 #' @param k the size of the summation vector.
76 #'
77 #' @return An affine neural network that will take a vector of size
78 #' \eqn{n \times k} and return the summation vector that is of length
79 #' \eqn{k}. See also \code{\link{Aff}} and \code{\link{Cpy}}.
80 #'
81 #' @references Definition 2.4.1. Jentzen, A., Kuckuck, B., and von

Wurstemberger, P. (2023).
82 #' Mathematical introduction to deep learning: Methods, implementations,
83 #' and theory. \url{https://arxiv.org/abs/2310.20360}
84 #'
85 #'
86 #' @export
87 #'
88

89

90 Sum <- function(n, k) {
91 if (n %% 1 != 0 ||
92 n < 1 ||
93 k %% 1 != 0 ||
94 k < 1) {
95 stop("n␣and␣k␣must␣be␣natural␣numbers")
96 } else {
97 k |> diag() -> W
98 for (i in 2:n) {
99 W |> cbind(k |> diag()) -> W

100 }
101 0 |> matrix(k) -> b
102 list(list(W = W, b = b)) -> return_network
103

104 return(return_network)
105 }
106 }

Listing 8.7: R code for composition of two neural networks
1 source("R/aux_fun.R")
2 source("R/is_nn.R")
3

4

251

5 #' @title comp
6 #' @description The function that takes the composition of two neural
7 #' networks assuming they are compatible, i.e., given
8 #' \eqn{\nu_1, \nu_2 \in \mathsf{NN}}, it must be the case that
9 #' \eqn{\mathsf{I}(\nu)_1 = \mathsf{O}(\nu_2)}.
10 #'
11 #' @param phi_1 first neural network to be composed, goes on the left
12 #' @param phi_2 second neural network to be composed, goes on right
13 #'
14 #' @return The composed neural network. See also \code{\link{dep}}.
15 #' Composition of neural networks is the operation defined for \eqn{\nu_1 \in

\mathsf{NN}}
16 #' and \eqn{\nu_2 \in \mathsf{NN}} as:
17 #'
18 #' \deqn{
19 #' \nu_1 \bullet \nu_2 = \begin{cases} ((W'_1,b'_1),
20 #' (W'_2,b'_2), ...,(W'_{M-1}, b'_{M-1}), (W_1W'_M, W_1b'_{M} + b_1), (W_

2, b_2),\\...,
21 #' (W_L,b_L)) & :(L> 1) \land (M > 1) \\((W_1W'_1,W_1b'_1+b_1),(W_2,b_2)

, (W_3,b_3),...,
22 #' (W_Lb_L)) & :(L>1) \land (M=1) \\((W'_1, b'_1),(W'_2,b'_2), ...,
23 #' (W'_{M-1}, b'_{M-1})(W_1, b'_M + b_1)) &:(L=1) \land (M>1) \\ ((W_1W'_1, W_

1b'_1+b_1)) &:(L=1)
24 #' \land (M=1)\end{cases}
25 #'
26

27 #' }
28 #'
29 #'
30 #' @references Grohs, P., Hornung, F., Jentzen, A. et al.
31 #' Space-time error estimates for deep neural network approximations
32 #' for differential equations. Adv Comput Math 49, 4 (2023).
33 #' \url{https://doi.org/10.1007/s10444-022-09970-2}.
34 #'
35 #' @references Definition 2.1.1. Jentzen, A., Kuckuck, B., and von

Wurstemberger, P. (2023).
36 #' Mathematical introduction to deep learning: Methods, implementations,
37 #' and theory. \url{https://arxiv.org/abs/2310.20360}
38 #'
39 #' \emph{Remark:} We have two versions of this function, an
40 #' infix version for close resemblance to mathematical notation and
41 #' prefix version.
42

43 #' @encoding utf8
44 #' @export
45 #'
46

47

48 comp <- function(phi_1, phi_2) {
49 if (phi_1 |> is_nn() && phi_2 |> is_nn()) {
50 dep(phi_1) -> L
51 dep(phi_2) -> L_
52

252

53 if (L > 1 & L_ > 1) {
54 phi_2[-L_] -> beginning
55 phi_1[-1] -> end
56 phi_1[[1]]$W %*% phi_2[[L_]]$W -> mid_W
57 phi_1[[1]]$W %*% phi_2[[L_]]$b + phi_1[[1]]$b -> mid_b
58 list(W = mid_W, b = mid_b) -> mid
59 c(
60 beginning,
61 list(mid),
62 end
63) -> composed_network
64 return(composed_network)
65 } else if (L > 1 & L_ == 1) {
66 phi_1[[1]]$W %*% phi_2[[1]]$W -> beginning_W
67 phi_1[[1]]$W %*% phi_2[[1]]$b + phi_1[[1]]$b -> beginning_b
68 list(
69 W = beginning_W,
70 b = beginning_b
71) -> beginning
72 phi_1[-1] -> end
73 c(
74 list(beginning),
75 end
76) -> composed_network
77 return(composed_network)
78 } else if (L == 1 & L_ > 1) {
79 phi_2[-L_] -> beginning
80 phi_1[[1]]$W %*% phi_2[[L_]]$W -> end_W
81 phi_1[[1]]$W %*% phi_2[[L_]]$b + phi_1[[1]]$b -> end_b
82 list(
83 W = end_W,
84 b = end_b
85) -> end
86 c(
87 beginning,
88 list(end)
89) -> composed_network
90 return(composed_network)
91 } else if (L == 1 & L_ == 1) {
92 list() -> composed_network
93 phi_1[[1]]$W %*% phi_2[[1]]$W -> W
94 phi_1[[1]]$W %*% phi_2[[1]]$b + phi_1[[1]]$b -> b
95 list(
96 W = W,
97 b = b
98) -> composed_network[[1]]
99 return(composed_network)

100 } else {
101 stop("Dimensionality␣mismatch")
102 }
103 } else {
104 stop("Only␣neural␣networks␣can␣be␣composed.")
105 }

253

106 }
107

108 #' The `infix version of comp function
109 #'
110 #' @param phi_1 first neural network to be composed, goes on the left
111 #' @param phi_2 second neural network to be composed, goes on right
112 #'
113 #' @rdname comp
114 #' @export
115

116

117 `%comp%` <- function(phi_1, phi_2) {
118 if (phi_1 |> is_nn() && phi_2 |> is_nn()) {
119 dep(phi_1) -> L
120 dep(phi_2) -> L_
121

122 if (L > 1 & L_ > 1) {
123 phi_2[-L_] -> beginning
124 phi_1[-1] -> end
125 phi_1[[1]]$W %*% phi_2[[L_]]$W -> mid_W
126 phi_1[[1]]$W %*% phi_2[[L_]]$b + phi_1[[1]]$b -> mid_b
127 list(W = mid_W, b = mid_b) -> mid
128 c(
129 beginning,
130 list(mid),
131 end
132) -> composed_network
133 return(composed_network)
134 } else if (L > 1 & L_ == 1) {
135 phi_1[[1]]$W %*% phi_2[[1]]$W -> beginning_W
136 phi_1[[1]]$W %*% phi_2[[1]]$b + phi_1[[1]]$b -> beginning_b
137 list(
138 W = beginning_W,
139 b = beginning_b
140) -> beginning
141 phi_1[-1] -> end
142 c(
143 list(beginning),
144 end
145) -> composed_network
146 return(composed_network)
147 } else if (L == 1 & L_ > 1) {
148 phi_2[-L_] -> beginning
149 phi_1[[1]]$W %*% phi_2[[L_]]$W -> end_W
150 phi_1[[1]]$W %*% phi_2[[L_]]$b + phi_1[[1]]$b -> end_b
151 list(
152 W = end_W,
153 b = end_b
154) -> end
155 c(
156 beginning,
157 list(end)
158) -> composed_network

254

159 return(composed_network)
160 } else if (L == 1 & L_ == 1) {
161 list() -> composed_network
162 phi_1[[1]]$W %*% phi_2[[1]]$W -> W
163 phi_1[[1]]$W %*% phi_2[[1]]$b + phi_1[[1]]$b -> b
164 list(
165 W = W,
166 b = b
167) -> composed_network[[1]]
168 return(composed_network)
169 } else {
170 stop("Dimensionality␣mismatch")
171 }
172 } else {
173 stop("Only␣neural␣networks␣can␣be␣composed.")
174 }
175 }

Listing 8.8: R code for scalar multiplication
1 source("R/comp.R")
2 source("R/aux_fun.R")
3 source("R/is_nn.R")
4

5 #' @title slm
6 #'
7 #' @description The function that returns the left scalar multiplication
8 #' neural network
9 #'
10 #' @param a A real number.
11 #' @param nu A neural network of the kind created by create_neural_network.
12 #'
13 #' @return Returns a neural network that is \eqn{a \triangleright \nu}. This
14 #' instantiates as \eqn{a \cdot f(x)} under continuous function activation.

More specifically
15 #' we define operation as:
16 #'
17 #' Let \eqn{\lambda \in \mathbb{R}}. We will denote by \eqn{(\cdot) \

triangleright (\cdot):
18 #' \mathbb{R} \times \mathsf{NN} \rightarrow \mathsf{NN}} the function

satisfying for all
19 #' \eqn{\nu \in \mathsf{NN}} and \eqn{\lambda \in \mathbb{R}} that \eqn{\

lambda \triangleright \nu =
20 #' \mathsf{Aff}_{\lambda \mathbb{I}_{\mathsf{I}(\nu)},0} \bullet \nu}.
21

22 #' @references Definition 2.3.4. Jentzen, A., Kuckuck, B., and von
Wurstemberger, P. (2023).

23 #' Mathematical introduction to deep learning: Methods, implementations,
24 #' and theory. \url{https://arxiv.org/abs/2310.20360}.
25 #'
26 #' \emph{Note:} We will have two versions of this operation, a prefix and an
27 #' infix version.
28 #' @export
29

255

30

31 slm <- function(a, nu) {
32 if (a |> is.numeric() &&
33 length(a) == 1 &&
34 a |> is.finite() &&
35 nu |> is_nn()) {
36 nu |> out() -> constant_matrix_size
37 list() -> multiplier_network
38 a |> diag(constant_matrix_size) -> W
39 0 |> matrix(constant_matrix_size) -> b
40 list(W = W, b = b) -> multiplier_network[[1]]
41 multiplier_network |> comp(nu) -> return_network
42 return(return_network)
43 } else {
44 stop("a␣must␣be␣a␣real␣number␣and␣nu␣must␣be␣a␣neural␣network")
45 }
46 }
47

48 #' @title srm
49 #' @description The function that returns the right scalar multiplication
50 #' neural network
51 #'
52 #' @param nu A neural network of the type generated by create_neural_network()

.
53 #' @param a A real number.
54 #'
55 #' @return Returns a neural network that is \eqn{\nu \triangleleft a}. This
56 #' instantiates as \eqn{f(a \cdot x)}.under continuous function activation.

More
57 #' specifically we will define this operation as:
58 #'
59 #' Let \eqn{\lambda \in \mathbb{R}}. We will denote by \eqn{(\cdot) \

triangleleft (\cdot):
60 #' \mathsf{NN} \times \mathbb{R} \rightarrow \mathsf{NN}} the function

satisfying for all
61 #' \eqn{\nu \in \mathsf{NN}} and \eqn{\lambda \in \mathbb{R}} that \eqn{\nu \

triangleleft \lambda =
62 #' \nu \bullet \mathsf{Aff}_{\lambda \mathbb{I}_{\mathsf{I}(\nu)},0}}.
63 #'
64 #' @references Definition 2.3.4. Jentzen, A., Kuckuck, B., and von

Wurstemberger, P. (2023).
65 #' Mathematical introduction to deep learning: Methods, implementations,
66 #' and theory. \url{https://arxiv.org/abs/2310.20360}.
67 #'
68 #' \emph{Note:} We will have two versions of this operation, a prefix
69 #' and an infix version.
70 #' @export
71

72 srm <- function(nu, a) {
73 if (a |> is.numeric() &&
74 length(a) == 1 &&
75 a |> is.finite() &&
76 nu |> is_nn()) {

256

77 nu |> inn() -> constant_matrix_size
78 list() -> multiplier_network
79 a |> diag(constant_matrix_size) -> W
80 0 |> matrix(constant_matrix_size) -> b
81 list(W = W, b = b) -> multiplier_network[[1]]
82 nu |> comp(multiplier_network) -> return_network
83 return(return_network)
84 } else {
85 stop("a␣must␣be␣a␣real␣number␣and␣nu␣must␣be␣a␣neural␣network")
86 }
87 }
88

89

90 #'
91 #' @param a A real number.
92 #' @param nu A neural network of the type generated by create_neural_network()

.
93 #'
94 #' @rdname slm
95 #' @export
96

97 `%slm%` <- function(a, nu) {
98 if (a |> is.numeric() &&
99 length(a) == 1 &&

100 a |> is.finite() &&
101 nu |> is_nn()) {
102 nu |> out() -> constant_matrix_size
103 list() -> multiplier_network
104 a |> diag(constant_matrix_size) -> W
105 0 |> matrix(constant_matrix_size) -> b
106 list(W = W, b = b) -> multiplier_network[[1]]
107 multiplier_network |> comp(nu) -> return_network
108 return(return_network)
109 } else {
110 stop("a␣must␣be␣a␣real␣number␣and␣nu␣must␣be␣a␣neural␣network")
111 }
112 }
113

114 #' @param nu A neural network
115 #' @param a A real number.
116 #'
117 #' @rdname srm
118 #' @export
119

120 `%srm%` <- function(nu, a) {
121 if (a |> is.numeric() &&
122 length(a) == 1 &&
123 a |> is.finite() &&
124 nu |> is_nn()) {
125 nu |> inn() -> constant_matrix_size
126 list() -> multiplier_network
127 a |> diag(constant_matrix_size) -> W
128 0 |> matrix(constant_matrix_size) -> b

257

129 list(W = W, b = b) -> multiplier_network[[1]]
130 nu |> comp(multiplier_network) -> return_network
131 return(return_network)
132 } else {
133 stop("a␣must␣be␣a␣real␣number␣and␣nu␣must␣be␣a␣neural␣network")
134 }
135 }

Listing 8.9: R code for sum of two neural networks
1 source("R/comp.R")
2 source("R/stacking.R")
3 source("R/aux_fun.R")
4 source("R/Aff.R")
5 source("R/is_nn.R")
6

7 #' @title nn_sum
8 #' @description A function that performs the neural network sum for two
9 #' neural networks of the type generated by
10 #' create_neural_network(). Neural network sums are defined for
11 #' \eqn{\nu_1 \in \mathsf{NN}} and \eqn{\nu_2 \in \mathsf{NN}} as:
12 #' \deqn{
13 #' \oplus^v_{i=u}\nu_i \coloneqq \left(\mathsf{Sum}_{v-u+1,\mathsf{O}(\nu_2)}

\bullet \left[\boxminus^v_{i=u}\nu_i \right] \bullet \mathsf{Cpy}_{(v-u
+1),\mathsf{I}(\nu_1)} \right)

14 #' }
15 #'
16 #' @references Grohs, P., Hornung, F., Jentzen, A. et al.
17 #' Space-time error estimates for deep neural network approximations
18 #' for differential equations. Adv Comput Math 49, 4 (2023).
19 #' \url{https://doi.org/10.1007/s10444-022-09970-2}.
20 #'
21 #' @param nu_1 A neural network.
22 #' @param nu_2 A neural network.
23 #'
24 #' @return A neural network that is the neural network sum of \eqn{\nu_1} and

\eqn{\nu_2}
25 #' i.e. \eqn{\nu_1 \oplus \nu_2}.
26 #'
27 #' \emph{Note:} We have two versions, an infix version and a prefix version.
28 #' @export
29

30 nn_sum <- function(nu_1, nu_2) {
31 if (nu_1 |> is_nn() &&
32 nu_2 |> is_nn() &&
33 inn(nu_1) == inn(nu_2) &&
34 out(nu_1) == out(nu_2)) {
35 Cpy(2, inn(nu_1)) -> first_third
36 nu_1 |> stk(nu_2) -> mid_third
37 Sum(2, out(nu_1)) -> last_third
38

39 last_third |>
40 comp(mid_third) |>
41 comp(first_third) -> return_network

258

42 return(return_network)
43 } else {
44 stop("Only␣neural␣networks␣with␣same␣end-widths␣may␣be␣summed")
45 }
46 }
47

48 #' Function for calculating neural network sums
49 #'
50 #' @param nu_1 A neural network.
51 #' @param nu_2 A neural network.
52 #'
53 #' @rdname nn_sum
54 #' @export
55 #'
56 `%nn_sum%` <- function(nu_1, nu_2) {
57 if (nu_1 |> is_nn() &&
58 nu_2 |> is_nn() &&
59 inn(nu_1) == inn(nu_2) &&
60 out(nu_1) == out(nu_2)) {
61 Cpy(2, inn(nu_1)) -> first_third
62 nu_1 |> stk(nu_2) -> mid_third
63 Sum(2, out(nu_1)) -> last_third
64

65 last_third |>
66 comp(mid_third) |>
67 comp(first_third) -> return_network
68 return(return_network)
69 } else {
70 stop("Only␣neural␣networks␣of␣same␣end␣widths␣may␣be␣summed")
71 }
72 }

Listing 8.10: R code for i

1 #' @title: i
2 #' @description The function that returns the \eqn{\mathbb{i}} network.
3 #'
4 #' @param d the size of the \eqn{\mathsf{i}} network
5 #'
6 #' @return returns the i_d network
7

8 i <- function(d) {
9 list() -> return_network
10 d |> diag() -> W
11 0 |> matrix(d, 1) -> b
12 list(W = W, b = b) -> return_network[[1]]
13 list(W = W, b = b) -> return_network[[2]]
14 return(return_network)
15 }

Listing 8.11: R code for Id neural networks
1 #' @title: Id
2 #' @description The function that returns the \eqn{\mathsf{Id_1}} networks.

259

3 #' @param d the dimension of the \eqn{Id} network, by default it is \eqn{1}.
4 #'
5 #' @return Returns the \eqn{\mathsf{Id_1}} network.
6 #' @export
7

8 Id <- function(d = 1) {
9 if (d %% 1 != 0 ||
10 d < 1
11) {
12 stop("d␣must␣be␣natural␣numbers")
13 } else if (d == 1) {
14 W_1 <- c(1, -1) |> matrix()
15 b_1 <- c(0, 0) |> matrix()
16 layer_1 <- list(W = W_1, b = b_1)
17 W_2 <- c(1, -1) |> matrix(1, 2)
18 b_2 <- 0 |> matrix()
19 layer_2 <- list(W = W_2, b = b_2)
20 result <- list(layer_1, layer_2)
21 return(result)
22 } else if (d > 1) {
23 Id() -> return_network
24 for (j in 2:d) {
25 return_network |> stk(Id()) -> return_network
26 }
27 return(return_network)
28 } else {
29 stop("Unknown␣error")
30 }
31 }

Listing 8.12: R code for Tun
1 source("R/comp.R")
2 source("R/Id.R")
3

4 #' Tun: The function that returns tunneling neural networks
5 #'
6 #' @param n The depth of the tunnel network where \eqn{n \in \mathbb{N} \cap

[1,\infty)}.
7 #' @param d The dimension of the tunneling network. By default it is assumed

to be \eqn{1}.
8 #'
9 #' @return A tunnel neural network of depth n. A tunneling neural
10 #' network is defined as the neural network \eqn{\mathsf{Aff}_{1,0}} for \eqn{

n=1},
11 #' the neural network \eqn{\mathsf{Id}_1} for \eqn{n=1} and the neural network
12 #' \eqn{\bullet^{n-2}\mathsf{Id}_1} for \eqn{n >2}. For this to work we
13 #' must provide an appropriate \eqn{n} and instantiate with ReLU at some
14 #' real number \eqn{x}.
15 #' @export
16 #'
17 Tun <- function(n, d = 1) {
18 if (n %% 1 != 0 ||
19 n < 1 ||

260

20 d %% 1 != 0 ||
21 d < 1
22) {
23 stop("n␣and␣d␣must␣be␣natural␣numbers")
24 }
25 if (d == 1) {
26 if (n == 1) {
27 return(Aff(1, 0))
28 } else if (n == 2) {
29 return(Id())
30 } else if (n > 2) {
31 Id() -> return_network
32 for (i in 3:n) {
33 return_network |> comp(Id()) -> return_network
34 }
35 return(return_network)
36 }
37 } else if (d > 1) {
38 if (n == 1) {
39 return(Aff(diag(d), 0 |> matrix()))
40 } else if (n == 1) {
41 return(Id(d))
42 } else if (n == 2) {
43 return(Id(d))
44 } else if (n > 2) {
45 Id(d) -> return_network
46 for (i in 3:n) {
47 return_network |> comp(Id(d)) -> return_network
48 }
49 return(return_network)
50 }
51 } else {
52 stop("Unknown␣error")
53 }
54 }

Listing 8.13: R code for Φk

1 source("R/comp.R")
2 source("R/Aff.R")
3 source("R/i.R")
4 source("R/aux_fun.R")
5 source("R/activations.R")
6

7 #' The c_k function
8 #'
9 #' @param k an integer in \eqn{[1,\infty)}
10 #'
11 #' @return the real number \eqn{2^{1-2k}}
12 #' @references Grohs, P., Hornung, F., Jentzen, A. et al.
13 #' Space-time error estimates for deep neural network approximations
14 #' for differential equations. Adv Comput Math 49, 4 (2023).
15 #' https://doi.org/10.1007/s10444-022-09970-2

261

16 #'
17 #' @references Definition 2.3.4. Jentzen, A., Kuckuck, B., and von

Wurstemberger, P. (2023).
18 #' Mathematical introduction to deep learning: Methods, implementations,
19 #' and theory. \url{https://arxiv.org/abs/2310.20360}.
20

21 c_k <- function(k) {
22 2^{
23 1 - 2 * k
24 } -> result
25 return(result)
26 }
27

28 #' This is an intermediate variable, see reference.
29 c(0, -1 / 2, -1, 0) |> matrix() -> B
30

31

32 #' C_k: The function that returns the C_k matrix
33 #'
34 #' @param k Natural number, the precision with which to approximate squares
35 #' within \eqn{[0,1]}
36 #'
37 #' @return A neural network that approximates the square of any real within
38 #' \eqn{[0,1]}
39

40 C_k <- function(k) {
41 c(-c_k(k), 2 * c_k(k), -c_k(k), 1) |> matrix(1, 4) -> result
42 return(result)
43 }
44

45

46 #' A_k: The function that returns the matrix A_k
47 #'
48 #' @param k Natural number, the precision with which to approximate squares
49 #' within \eqn{[0,1]}
50 #'
51 #' @return A neural network that approximates the square of any real within
52 #' \eqn{[0,1]}
53 #'
54 A_k <- function(k) {
55 c(2, 2, 2, -c_k(k)) |>
56 c(-4, -4, -4, 2 * c_k(k)) |>
57 c(2, 2, 2, -c_k(k)) |>
58 c(0, 0, 0, 1) |>
59 matrix(4, 4) -> result
60 return(result)
61 }
62

63 #' This is an intermediate variable. See the reference
64 #'
65 c(1, 1, 1, 1) |> matrix(4, 1) -> A
66

67

262

68 #' The Phi_k function
69 #'
70 #' @param k an integer \eqn{k \in (2,\infty)}
71 #'
72 #' @return The Phi_k neural network
73 #' @references Grohs, P., Hornung, F., Jentzen, A. et al.
74 #' Space-time error estimates for deep neural network approximations
75 #' for differential equations. Adv Comput Math 49, 4 (2023).
76 #' https://doi.org/10.1007/s10444-022-09970-2
77 #'
78 Phi_k <- function(k) {
79 if (k |> is.numeric() &&
80 k |> length() == 1 &&
81 k >= 1 &&
82 k |> is.finite() &&
83 k %% 1 == 0) {
84 if (k == 1) {
85 C_k(1) |>
86 Aff(0) |>
87 comp(i(4)) |>
88 comp(Aff(A, B)) -> return_network
89 return(return_network)
90 }
91 if (k >= 2) {
92 C_k(k) |>
93 Aff(0) |>
94 comp(i(4)) -> return_network
95 for (j in (k - 1):1) {
96 A_k(j) |>
97 Aff(B) |>
98 comp(i(4)) -> intermediate_network
99 return_network |> comp(intermediate_network) -> return_network

100 }
101 return_network |> comp(A |> Aff(B)) -> return_network
102 return(return_network)
103 }
104 } else {
105 stop("k␣must␣a␣natural␣number")
106 }
107 }

263

Listing 8.14: R code for simulations involving Φk

1 source("Phi_k.R")
2 source("aux_fun")
3 source("realization.R")
4 source("activations.R")
5

6 library(ggplot2)
7

8 #' The Phi_k_diff function
9 #'
10 #' @param x the number to be squared in [0,1]
11 #' @param k a parameter for Phi_k in [0, \infty)]
12 #'
13 #' @return the 1-norm error between x^2 and Phi_k approximation
14

15 Phi_k_diff <- function(x, k) {
16 return <- (k |> Phi_k() |> rlz(ReLU, x) - x^2) |>
17 abs() -> result
18 return(result)
19 }
20

21 k_values <- c(1, 2, 5, 10, 15, 20)

264

22 x_values <- seq(-2, 2, length.out = 200)
23 Phi_k_diff_v <- Vectorize(Phi_k_diff)
24

25 Phi_k_diff_data <- expand.grid(k = k_values, x = x_values)
26 Phi_k_diff_data$diff <- Phi_k_diff_v(Phi_k_diff_data$x, Phi_k_diff_data$k)
27

28 library(ggplot2)
29 ggplot(Phi_k_diff_data, aes(x = x, y = diff, color = factor(k))) +
30 scale_y_log10() +
31 geom_line() +
32 geom_line(aes(y = 2^(-2 * k - 2))) +
33 labs(
34 x = "x",
35 y = "log10␣of␣the␣1-norm␣error␣over␣domain␣[0,1]"
36) -> Phi_k_diff_plot
37 ggsave("Phi_k_properties/diff.png", plot = Phi_k_diff_plot, width = 6, height

= 5, units = "in")
38

39 vectorized_Phi_k <- Vectorize(Phi_k)
40 vectorized_param <- Vectorize(param)
41

42 param_data <- data.frame(x = 1:100, y = vectorized_param(vectorized_Phi_k
(1:100)))

43

44 ggplot(param_data, aes(x = x, y = y)) +
45 geom_line() +
46 theme_minimal() +
47 xlab("Size␣of␣k") +
48 ylab("Number␣of␣parameters") +
49 ggtitle("Plot␣of␣the␣number␣of␣parameters␣of␣ϕ(k)␣against␣k") +
50 geom_smooth(method = "lm", se = FALSE, color = "blue")
51

52 vectorized_dep <- Vectorize(dep)
53

54 dep_data <- data.frame(x = 1:100, y = vectorized_dep(vectorized_Phi_k(1:100)))
55

56 ggplot(dep_data, aes(x = x, y = y)) +
57 geom_line() +
58 theme_minimal() +
59 xlab("Size␣of␣k") +
60 ylab("Depth␣of␣network") +
61 ggtitle("Plot␣of␣the␣depth␣of␣ϕ(k)␣against␣k") +
62 geom_smooth(method = "lm", se = FALSE, color = "blue")

Listing 8.15: R code for Φ

1 source("R/Phi_k.R")
2 source("R/i.R")
3 source("R/Aff.R")
4

5

6 #' The Phi function
7 #'

265

8 #' @param eps parameter for Phi
9 #' @references Grohs, P., Hornung, F., Jentzen, A. et al.
10 #' Space-time error estimates for deep neural network approximations
11 #' for differential equations. Adv Comput Math 49, 4 (2023).
12 #' https://doi.org/10.1007/s10444-022-09970-2
13 #'
14 #' @return neural network Phi that approximately squares a number between
15 #' 0 and 1.
16

17 Phi <- function(eps) {
18 if (eps |> is.numeric() &&
19 eps |> length() == 1 &&
20 eps |> is.finite() &&
21 eps > 0) {
22 (0.5 * log2(1 / eps) - 1) |> ceiling() -> M
23

24 if (M <= 0) 1 -> M
25

26 if (M == 1) {
27 C_k(1) |>
28 Aff(0) |>
29 comp(i(4)) |>
30 comp(Aff(A, B)) -> return_network
31 return(return_network)
32 }
33

34 if (M >= 2) {
35 C_k(M) |>
36 Aff(0) |>
37 comp(i(4)) -> return_network
38 for (j in (M - 1):1) {
39 A_k(j) |>
40 Aff(B) |>
41 comp(i(4)) -> intermediate_network
42 return_network |> comp(intermediate_network) -> return_network
43 }
44 return_network |> comp(A |> Aff(B)) -> return_network
45 return(return_network)
46 }
47 } else {
48 stop("eps␣must␣be␣a␣positive␣real␣number")
49 }
50 }

266

Listing 8.16: R code for simulations involving Φ

1 source("Phi.R")
2 source("aux_fun.R")
3 source("realization.R")
4 source("activations.R")
5

6 #' The Phi diff function
7 #'
8 #' @param eps parameter for Phi
9 #' @param x number to be squared
10 #'
11 #' @return the 1-norm error between the result
12 #' and x^2
13

14 diff <- function(eps, x) {
15 (x^2 - eps |> Phi() |> rlz(ReLU, x)) |>
16 abs() -> result
17 return(result)
18 }
19

20 eps_values <- c(1, 0.5, 0.1, 0.01, 0.001, 0.0001)
21 x_values <- seq(0, 1, length.out = 100)

267

22 vectorized_diff <- Vectorize(diff)
23

24 diff_data <- expand.grid(eps = eps_values, x = x_values)
25 diff_data$Phi_diff <- vectorized_diff(diff_data$eps, diff_data$x)
26

27 library(ggplot2)
28

29 ggplot(diff_data, aes(x = x, y = eps, z = Phi_diff)) +
30 geom_contour_filled() +
31 ggtitle("Contour␣plot␣of␣the␣1-norm␣difference␣for␣values␣of␣x␣and␣eps") +
32 theme_minimal() -> Phi_diff_contour_plot
33

34 ggsave("Phi_properties/Phi_diff_contour.png", plot = Phi_diff_contour_plot,
width = 6, height = 5, units = "in")

35

36 vectorized_Phi_k <- Vectorize(Phi_k)
37 vectorized_param <- Vectorize(param)
38

39 param_data <- data.frame(x = 1:100, y = vectorized_param(vectorized_Phi_k
(1:100)))

40

41 ggplot(param_data, aes(x, y)) +
42 geom_line() +
43 theme_minimal()
44

45

46

47 vectorized_dep <- Vectorize(dep)
48

49 dep_data <- data.frame(x = 1:100, y = vectorized_dep(vectorized_Phi_k(1:100)))
50

51 ggplot(dep_data, aes(x = x, y = y)) +
52 geom_line() +
53 theme_minimal() +
54 xlab("Size␣of␣k") +
55 ylab("Depth␣of␣network") +
56 ggtitle("Plot␣of␣the␣depth␣of␣ϕ(k)␣against␣k") +
57 geom_smooth(method = "lm", se = FALSE, color = "blue")

Listing 8.17: R code for Sqr
1 source("R/comp.R")
2 source("R/Aff.R")
3 source("R/nn_sum.R")
4 source("R/Phi.R")
5 source("R/aux_fun.R")
6

7 #' @title Sqr
8 #' @description A function that returns the \eqn{\mathsf{Sqr}} neural networks

.
9 #'
10 #' @param q parameter for the Sqr network. \eqn{2 \in (2,\infty)}
11 #' @param eps parameter for the Sqr network. \eqn{eps \in (0,1]}. You may
12 #' choose epsilon to be greater than 1 but that leads to large errors

268

13 #'
14 #' @return A neural network that approximates the square of a real number.when
15 #' provided appropriate \eqn{q,\varepsilon} and upon instantiation with ReLU,
16 #' and a real number \eqn{x}
17 #' @references Grohs, P., Hornung, F., Jentzen, A. et al. Space-time error

estimates for deep
18 #' neural network approximations for differential equations. Adv Comput Math

49, 4 (2023).
19 #' https://doi.org/10.1007/s10444-022-09970-2
20 #'
21 #'
22 #' @export
23

24

25 Sqr <- function(q, eps) {
26 if (q <= 2 || eps <= 0) {
27 stop("q␣must␣be␣>␣2␣and␣eps␣must␣be␣>␣0")
28 } else {
29 2^(-2 / (q - 2)) * eps^(q / (q - 2)) -> delta
30 (eps / 2)^(1 / (q - 2)) -> alpha
31

32 (0.5 * log2(1 / eps) - 1) |> ceiling() -> M
33

34 if (M <= 0) 1 else M -> M
35

36 (Aff(alpha^(-2), 0) |> comp(Phi(delta))) |>
37 comp(Aff(alpha, 0)) -> first_summand
38

39 (Aff(alpha^(-2), 0) |> comp(Phi(delta))) |>
40 comp(Aff(-alpha, 0)) -> second_summand
41

42 first_summand |>
43 nn_sum(second_summand) -> return_network
44

45 return(return_network)
46 }
47 }

Listing 8.18: R code simulations involving Sqr
1 source("aux_fun.R")
2 source("Sqr.R")
3 source("instantiation.R")
4 source("activations.R")
5 library("tidyverse")
6

7 #' Sqr_diff function
8 #'
9 #' @param q parameter for the Sqr network
10 #' @param eps parameter for the Sqr network
11 #' @param x the number to be squered
12 #'
13 #' @return a neural network that approximately squares x.
14

269

15 Sqr_diff <- function(q, eps, x) {
16 return <- (Sqr(q, eps) |> rlz(ReLU, x) - x^2) |> abs()
17 return(return)
18 }
19

20 Sqr_diff_v <- Vectorize(Sqr_diff)
21

22 Sqr_data <- expand.grid(
23 q = seq(2.1, 4, length.out = 50),
24 eps = seq(0.01, 2, length.out = 50),
25 x = seq(-5, 5, length.out = 50)
26)
27

28

29

30 Sqr_data$diff <- Sqr_diff_v(Sqr_dataq, Sqr_dataeps, Sqr_data$x)
31

32 #' Function to calculate the theoretical upper bounds of the 1-norm error
33 #' over \mathbb{R}
34 #'
35 #' @param q parameter for the Sqr network
36 #' @param eps parameter for the Sqr network
37 #' @param x the number to be squered
38 #'
39 #' @return the maximum 1-norm error over \mathbb{R}
40

41 diff_upper_limit <- function(q, eps, x) {
42 eps * max(1, abs(x)^q)
43 }
44

45 diff_upper_limit_v <- Vectorize(diff_upper_limit)
46

47 Sqr_data$diff_upper_limit <- diff_upper_limit_v(Sqr_dataq, Sqr_dataeps, Sqr_
data$x)

48

49 write_csv(Sqr_data, "Sqr_properties/Sqr_data.csv")
50

51 library(plotly)
52

53 fig <- plot_ly(
54 type = "isosurface",
55 x = Sqr_data$x,
56 y = Sqr_data$q,
57 z = Sqr_data$eps,
58 value = Sqr_data$diff,
59 isomin = 0.0001,
60 isomax = 5,
61 colorscale = "RdBu"
62) |>
63 layout(scene = list(
64 xaxis = list(title = "x"),
65 yaxis = list(title = "q"),
66 zaxis = list(title = "eps")

270

67)) |>
68 layout(scene = list(legend = list(title = "Diff␣from␣x^2")))
69

70 fig
71

72 library(ggplot2)
73

74 Sqr_data_aux <- expand.grid(
75 q = seq(2.1, 10, length.out = 100),
76 eps = seq(0.01, 4, length.out = 100)
77)
78

79 Sqr_data_aux$param <- 0
80

81 for (k in 1:10000) {
82 Sqr_data_aux$param[k] <- Sqr(Sqr_data_aux$q[k], Sqr_data_aux$eps[k]) |>

param()
83 }
84

85 experimental_params <- ggplot(Sqr_data_aux, aes(x = q, y = eps, z = log10(
param))) +

86 geom_contour_filled() +
87 theme_minimal() +
88 labs(fill = "Log␣10␣number␣of␣parameters")
89

90 Sqr_data_aux$dep <- 0
91

92 for (k in 1:10000) {
93 Sqr_data_aux$dep[k] <- Sqr(Sqr_data_aux[k,]$q, Sqr_data_aux[k,]$eps) |>

dep()
94 }
95

96 experimental_deps <- ggplot(Sqr_data_aux, aes(x = q, y = eps, z = log10(dep)))
+

97 geom_contour_filled(alpha = 0.8) +
98 # scale_fill_continuous(breaks = seq(0, max(Sqr_data_aux$dep), by = 1)) +
99 theme_minimal() +

100 labs(fill = "log␣10␣experimental␣depths")
101

102

103 param_upper_limit <- function(q, eps) {
104 (((40 * q) / (q - 2)) * ((1 / eps) |> log(2)) + 80 / (q - 2) - 28) |> max

(52)
105 }
106

107 dep_upper_limit <- function(q, eps) {
108 ((q / (2 * q - 4)) * log2(1 / eps) + 1 / (q - 2) + 1 / (q - 2) + 1) |> max

(2)
109 }
110

111 Sqr_data_aux$param_upper_limit <- 0
112

113 for (k in 1:10000) {

271

114 Sqr_data_aux$param_upper_limit[k] <- param_upper_limit(Sqr_data_aux[k,]$q,
Sqr_data_aux[k,]$eps) |>

115 ceiling()
116 }
117

118 param_theoretical_upper_limits <- ggplot(Sqr_data_aux, aes(x = q, y = eps, z =
log10(param_upper_limit))) +

119 geom_contour_filled() +
120 theme_minimal() +
121 labs(fill = "Log10␣upper␣limits␣of␣parameters")
122

123 Sqr_data_aux$dep_upper_limit <- 0
124

125 for (k in 1:10000) {
126 Sqr_data_aux$dep_upper_limit[k] <- dep_upper_limit(Sqr_data_aux[k,]$q, Sqr_

data_aux[k,]$eps) |>
127 ceiling()
128 }
129

130 dep_theoretical_upper_limits <- ggplot(Sqr_data_aux, aes(x = q, y = eps, z =
log10(dep_upper_limit))) +

131 geom_contour_filled() +
132 theme_minimal() +
133 labs(fill = "Log10␣upper␣limits␣of␣depth")
134

135 ggsave("Sqr_properties/param_theoretical_upper_limits.png", plot = param_
theoretical_upper_limits, width = 6, height = 5, units = "in")

136

137 ggsave("Sqr_properties/dep_theoretical_upper_limits.png", plot = dep_
theoretical_upper_limits, width = 6, height = 5, units = "in")

138

139 ggsave("Sqr_properties/experimental_deps.png", plot = experimental_deps, width
= 6, height = 5, units = "in")

140

141 ggsave("Sqr_properties/experimental_params.png", plot = experimental_params,
width = 6, height = 5, units = "in")

Listing 8.19: R code for Pwrq,ε networks
1 source("R/Prd.R")
2 source("R/Aff.R")
3 source("R/stacking.R")
4 source("R/Tun.R")
5 source("R/aux_fun.R")
6

7 #' @title Pwr
8 #' @description
9 #' A function that returns the \eqn{\mathsf{Pwr}} neural networks.
10 #'
11 #'
12 #' @param q inside \eqn{(2,\infty)}.
13 #' @param eps inside \eqn{(0,\infty)}.
14 #' @param exponent the exponent which the Pwr network will approximate. Must

272

be
15 #' a non-negative integer.
16 #'
17 #' @return A neural network that approximates raising a number to exponent,

when
18 #' given appropriate \eqn{q,\varepsilon} and exponent when isntanatiated
19 #' under ReLU activation at \eqn{x}.
20 #' @export
21

22

23 Pwr <- function(q, eps, exponent) {
24 if (q <= 2) {
25 stop("Too␣small␣q,␣q␣must␣be␣>=␣2")
26 } else if (eps <= 0) {
27 stop("Too␣small␣eps,␣eps␣must␣be␣>=␣0")
28 } else if (exponent %% 1 != 0 || exponent < 0) {
29 stop("Exponent␣must␣be␣a␣non-negative␣integer")
30 } else {
31 if (exponent == 0) {
32 Aff(0, 1) -> return_network
33 return(return_network)
34 } else if (exponent >= 1) {
35 Cpy(2, 1) -> first_third
36 Pwr(q, eps, exponent - 1) |> stk(Pwr(q, eps, exponent - 1) |> dep() |>

Tun()) -> mid_third
37 Prd(q, eps) -> last_third
38 last_third |>
39 comp(mid_third) |>
40 comp(first_third) -> return_network
41 } else {
42 return("Invalid␣exponent,␣must␣be␣non-negative␣integer")
43 }
44 return(return_network)
45 }
46 }

Listing 8.20: R code simulations involving Pwrq,ε3

1 source("Pwr.R")
2 library(tidyverse)
3

4 #' Pwr_3_diff function
5 #'
6 #' @param q parameter for Pwr_3
7 #' @param eps parameter for Pwr_3
8 #' @param x the number to be cubed
9 #' @param exponent = 3, i.e. cubing a number
10

11 Pwr_3_diff <- function(q, eps, x, exponent = 3) {
12 return <- (Pwr(q, eps, exponent = 3) |> rlz(ReLU, x) - x^3) |> abs()
13 return(return)
14 }
15

16 Pwr_3_diff_v <- Vectorize(Pwr_3_diff)

273

17

18 Pwr_3_data <- expand.grid(
19 q = seq(2.1, 4, length.out = 50),
20 eps = seq(0.01, 2, length.out = 50),
21 x = seq(-5, 5, length.out = 50)
22)
23

24 Pwr_3_data$diff <- Pwr_3_diff_v(Pwr_3_dataq, Pwr_3_dataeps, Pwr_3_data$x)
25

26 library(ggplot2)
27

28 ggplot(Pwr_3_data, aes(diff)) +
29 scale_x_log10() +
30 geom_density() +
31 theme_minimal()
32

33 library(plotly)
34

35 fig <- plot_ly(
36 type = "isosurface",
37 x = Pwr_3_data$x,
38 y = Pwr_3_data$q,
39 z = Pwr_3_data$eps,
40 value = Pwr_3_data$diff,
41 isomin = 0.0001,
42 isomax = 5,
43 colorscale = "RdBu"
44) |>
45 layout(scene = list(
46 xaxis = list(title = "x"),
47 yaxis = list(title = "q"),
48 zaxis = list(title = "eps")
49)) |>
50 layout(scene = list(legend = list(title = "Diff␣from␣x^2")))
51

52 fig
53

54 Pwr_3_data_aux <- expand.grid(
55 q = seq(2.1, 10, length.out = 100),
56 eps = seq(0.01, 4, length.out = 100)
57)
58

59 Pwr_3_data_aux$param <- 0
60

61 for (k in 1:10000) {
62 Pwr_3_data_aux$param[k] <- Pwr(Pwr_3_data_aux$q[k], Pwr_3_data_aux$eps[k],

exponent = 3) |> param()
63 }
64

65 experimental_params <- ggplot(Pwr_3_data_aux, aes(x = q, y = eps, z = log10(
param))) +

66 geom_contour_filled() +
67 theme_minimal() +

274

68 labs(fill = "log␣10␣#␣of␣parameters")
69

70 Pwr_3_data_aux$dep <- 0
71

72 for (k in 1:10000) {
73 Pwr_3_data_aux$dep[k] <- Pwr(Pwr_3_data_aux[k,]$q, Pwr_3_data_aux[k,]$eps,

exponent = 3) |> dep()
74 }
75

76 experimental_deps <- ggplot(Pwr_3_data_aux, aes(x = q, y = eps, z = log10(dep)
)) +

77 geom_contour_filled(alpha = 0.8, breaks = seq(0, 10, 1)) +
78 # scale_fill_continuous(breaks = seq(0, max(Pwr_3_data_aux$dep), by = 1)) +
79 theme_minimal() +
80 labs(fill = "log10␣depths")
81

82 #' The param_upper_limit funnction
83 #'
84 #' @param q parameter for the Pwr network
85 #' @param eps parameter for the Pwr network
86 #'
87 #' @return the theoretical upper limit for the number of parameters
88

89 param_upper_limit <- function(q, eps) {
90 4^(4.5) -> first_summand
91 (4^4-1)/3 -> second_summand_a
92 ((360*q)/(q-2))*(log2(1/eps)+q+1)+372 -> second_summand_b
93 first_summand + (second_summand_a * second_summand_b) -> result
94 return(result)
95 }
96

97

98 #' The dep_upper_limit function
99 #'

100 #' @param q parameter for the Pwr_3 network
101 #' @param eps parameter for the Pwr_3 network
102 #'
103 #' @return the theoretical upper limit for the depth
104

105 dep_upper_limit <- function(q, eps) {
106 ((q / (q - 2)) * (log2(1 / eps) + q) - 1) * 3 + 1
107 }
108

109 Pwr_3_data_aux$param_upper_limit <- 0
110

111 for (k in 1:10000) {
112 Pwr_3_data_aux$param_upper_limit[k] <- param_upper_limit(Pwr_3_data_aux[k,]

$q, Pwr_3_data_aux[k,]$eps) |>
113 ceiling()
114 }
115

116 param_theoretical_upper_limits <- ggplot(Pwr_3_data_aux, aes(x = q, y = eps, z
= log10(param_upper_limit))) +

275

117 geom_contour_filled() +
118 theme_minimal() +
119 labs(fill = "Log10␣upper␣limits␣of␣parameters")
120

121 Pwr_3_data_aux$dep_upper_limit <- 0
122

123 for (k in 1:10000) {
124 Pwr_3_data_aux$dep_upper_limit[k] <- dep_upper_limit(Pwr_3_data_aux[k,]$q,

Pwr_3_data_aux[k,]$eps)
125 }
126

127 dep_theoretical_upper_limits <- ggplot(Pwr_3_data_aux, aes(x = q, y = eps, z =
log10(dep_upper_limit))) +

128 geom_contour_filled() +
129 theme_minimal() +
130 labs(fill = "Log10␣upper␣limits␣of␣depth")
131

132 ggsave("Pwr_3_properties/param_theoretical_upper_limits.png", plot = param_
theoretical_upper_limits, width = 6, height = 5, units = "in")

133 ggsave("Pwr_3_properties/dep_theoretical_upper_limits.png", plot = dep_
theoretical_upper_limits, width = 6, height = 5, units = "in")

134 ggsave("Pwr_3_properties/experimental_deps.png", plot = experimental_deps,
width = 6, height = 5, units = "in")

135 ggsave("Pwr_3_properties/experimental_params.png", plot = experimental_params,
width = 6, height = 5, units = "in")

Listing 8.21: R code simulations involving Nrmd
1

1 source("R/Aff.R")
2 source("R/stacking.R")
3 source("R/comp.R")
4 source("R/nn_sum.R")
5

6 #' @title Nrm
7 #'
8 #' @description
9 #' A function that creates the \eqn{\mathsf{Nrm}} neural networks.that take
10 #' the 1- norm of a \eqn{d}-dimensional vector when instantiated with ReLU
11 #' activation.
12 #'
13 #'
14 #' @param d the dimensions of the vector being normed.
15 #'
16 #' @return a neural network that takes the 1-norm of a vector of
17 #' size d.under ReLU activation. This is the neural network that is:
18 #' \deqn{
19 #' \mathsf{Nrm}^1_1 = \left(\left(\begin{bmatrix} 1 \\ -1\end{bmatrix},
20 #' \begin{bmatrix} 0 \\ 0 \end{bmatrix}\right), \left(\begin{bmatrix}1 && 1\

end{bmatrix},
21 #' \begin{bmatrix}0\end{bmatrix}\right) \right) \in \left(\mathbb{R}^{2 \

times 1} \times
22 #' \mathbb{R}^2 \right) \times \left(\mathbb{R}^{1 \times 2} \times \mathbb{R

}^1 \right) \quad d=1 \\

276

23 #' \mathsf{Nrm}_1^d = \mathsf{Sum}_{d,1} \bullet \left[\boxminus_{i=1}^d \
mathsf{Nrm}_1^1 \right] \quad d>1

24

25 #' }
26 #'
27 #'
28 #'
29 #' \emph{Note:} This function is split into two cases
30 #' much like the definition itself.
31 #'
32 #' @references Lemma 4.2.1. Jentzen, A., Kuckuck, B., and von Wurstemberger, P

. (2023).
33 #' Mathematical introduction to deep learning: Methods, implementations,
34 #' and theory. \url{https://arxiv.org/abs/2310.20360}
35

36 #' @export
37 #'
38 Nrm <- function(d) {
39 if (d %% 1 != 0 || d < 1) {
40 stop("d␣must␣be␣a␣natural␣number")
41 } else {
42 if (d == 1) {
43 c(1, -1) |> matrix() -> W_1
44 c(0, 0) |> matrix() -> b_1
45 c(1, 1) |> matrix(1, 2) -> W_2
46 0 |> matrix() -> b_2
47

48 list(W = W_1, b = b_1) -> layer_1
49 list(W = W_2, b = b_2) -> layer_2
50

51 list(layer_1, layer_2) -> return_network
52

53 return(return_network)
54 } else if (d > 1) {
55 1 |> Nrm() -> first_compose
56 for (i in 1:(d - 1)) {
57 first_compose |> stk(Nrm(1)) -> first_compose
58 }
59 Sum(d, 1) |> comp(first_compose) -> return_network
60 return(return_network)
61 } else {
62 stop("Possibly␣taking␣the␣norm␣of␣an␣invalid␣sized␣array")
63 }
64 }
65 }

Listing 8.22: R code simulations involving Mxmd

1 source("R/Aff.R")
2 source("R/stacking.R")
3 source("R/comp.R")
4 source("R/nn_sum.R")
5 source("R/Id.R")
6

277

7 #' @title Mxm
8 #' @description The function that returns the \eqn{\mathsf{Mxm}} neural

networks.
9 #' These are neural networks of the type:
10 #' \deqn{
11 #'\mathsf{Mxm}^1 = \mathsf{Aff}_{1,0} \quad d = 1 \\
12 #'\\
13 #'\mathsf{Mxm}^2 = \left(\left(\begin{bmatrix} 1 & -1 \\ 0 & 1 \\ 0 & -1\end

{bmatrix},
14 #'\begin{bmatrix} 0 \\ 0 \\0\end{bmatrix}\right), \left(\begin{bmatrix}1&1&

-1\end{bmatrix},
15 #'\begin{bmatrix}0\end{bmatrix}\right)\right) \quad d = 2 \\
16 #'\\
17 #'\mathsf{Mxm}^{2d} = \mathsf{Mxm}^d \bullet \left[\boxminus_{i=1}^d \mathsf{

Mxm}^2\right] \quad d > 2\\
18 #'\mathsf{Mxm}^{2d-1} = \mathsf{Mxm}^d \bullet \left[\left(\boxminus^d_{i=1}

\mathsf{Mxm}^2 \right)
19 #'\boxminus \mathsf{Id}_1\right] \quad d > 2
20 #'
21 #'}
22 #'
23

24 #' \emph{Note:} Because of certain quirks of R we will have split
25 #' into five cases. We add an extra case for \eqn{d = 3}. Unlike the paper
26 #' we will simply reverse engineer the appropriate \emph{d}.
27 #'
28 #' @param d The dimension of the input vector on instantiation.
29 #'
30 #' @return The neural network that will ouput the maximum of a vector of
31 #' size \eqn{d} when activated with the ReLU function.
32 #'
33 #' @references Lemma 4.2.4. Jentzen, A., Kuckuck, B., and von Wurstemberger, P

. (2023).
34 #' Mathematical introduction to deep learning: Methods, implementations,
35 #' and theory. \url{https://arxiv.org/abs/2310.20360}
36

37

38 #' @export
39

40 Mxm <- function(d) {
41 if (d %% 1 != 0 || d < 1) {
42 stop("d␣must␣be␣a␣natural␣number")
43 }
44 if (d == 1) {
45 return(Aff(1, 0))
46 } else if (d == 2) {
47 c(1, 0, 0, -1, 1, -1) |> matrix(3, 2) -> W_1
48 c(0, 0, 0) |> matrix() -> b_1
49 c(1, 1, -1) |> matrix(1, 3) -> W_2
50 0 |> matrix() -> b_2
51 list(W = W_1, b = b_1) -> layer_1
52 list(W = W_2, b = b_2) -> layer_2
53 list(layer_1, layer_2) -> return_network

278

54 return(return_network)
55 } else if (d == 3) {
56 Mxm(2) |> stk(Id()) -> first_compose
57 Mxm(2) |> comp(first_compose) -> return_network
58 return(return_network)
59 } else if ((d %% 2 == 0) & (d > 3)) {
60 d / 2 -> d
61 Mxm(2) -> first_compose
62 for (i in 1:(d - 1)) {
63 first_compose |> stk(Mxm(2)) -> first_compose
64 }
65 Mxm(d) |> comp(first_compose) -> return_network
66 return(return_network)
67 } else if ((d %% 2 != 0) & (d > 3)) {
68 (d - 1) / 2 -> d
69

70 Mxm(2) -> first_compose
71 for (i in 1:(d - 1)) {
72 first_compose |> stk(Mxm(2)) -> first_compose
73 }
74 first_compose |> stk(Id()) -> first_compose
75 Mxm(d + 1) |> comp(first_compose) -> return_network
76 return(return_network)
77 } else {
78 stop("Possibly␣taking␣max␣of␣vector␣of␣length␣0")
79 }
80 }

Listing 8.23: R code simulations involving Tay
1 source("R/Pwr.R")
2 source("R/nn_sum.R")
3 source("R/scalar_mult.R")
4 source("R/Aff.R")
5

6 #' The Tay function
7 #'
8 #' @param f the function to be Taylor approximated, for now "exp", "sin"
9 #' and "cos". NOTE use the quotation marks when using this arguments
10 #' @param n the extent of Taylor approximations, a natural number
11 #' @param q argument for the Pwr networks \eqn{q \in (2,\infty)}
12 #' @param eps argument for the Pwr networks \eqn{eps \in (0,\infty)}
13 #'
14 #' @return a neural network that approximates the function f
15

16 Tay <- function(f, n, q, eps) {
17 if (n %% 1 != 0 || n < 0) {
18 stop("Number␣of␣Taylor␣iteration␣must␣be␣a␣non␣negative␣integer")
19 } else if (q < 2 || eps < 0) {
20 stop("q␣must␣be␣>␣2␣and␣eps␣must␣be␣>␣0")
21 } else if (f != "exp" && f != "sin" && f != "cos") {
22 stop("For␣now,␣only␣Taylor␣approximations␣for␣exp,␣sin,␣and␣cos␣is␣

available")

279

23 } else {
24 if (f == "exp") {
25 (1 / factorial(0)) |> slm(Pwr(q, eps, 0)) -> return_network
26 if (n == 0) {
27 return(return_network)
28 }
29 for (i in 1:n) {
30 return_network |> nn_sum((1 / factorial(i)) |> slm(Pwr(q, eps, i))) ->

return_network
31 }
32 return(return_network)
33 }
34

35 if (f == "cos") {
36 1 |> slm(Pwr(q, eps, 0)) -> return_network
37 if (n == 0) {
38 return(return_network)
39 }
40

41 for (i in 1:n) {
42 ((-1)^i) / factorial(2 * i) -> coeff
43 return_network |> nn_sum(coeff |> slm(Pwr(q, eps, 2 * i))) -> return_

network
44 }
45 return(return_network)
46 }
47

48 if (f == "sin") {
49 Tay("cos", n, q, eps) -> return_network
50 return_network |> comp(Aff(1, -pi / 2)) -> return_network
51 return(return_network)
52 }
53 }
54 }

Listing 8.24: R code simulations involving Etr
1 #' @title Trp
2 #' @description The function that returns the \eqn{\mathsf{Trp}} networks.
3 #'
4 #' @param h the horizontal distance between two mesh points
5 #'
6 #' @return The \eqn{\mathsf{Trp}} network that gives the area
7 #' when activated with ReLU and two meshpoint values x_1 and x_2.
8 #' @export
9

10 Trp <- function(h) {
11 if (h |> is.numeric() &&
12 h |> length() == 1 &&
13 h |> is.finite() &&
14 h > 0) {
15 c(h / 2, h / 2) |> matrix(1, 2) -> W
16 0 |> matrix() -> b

280

17 list(list(W = W, b = b)) -> return_network
18 return(return_network)
19 } else {
20 stop("h␣must␣be␣a␣positive␣real␣number")
21 }
22 }
23

24 #' @title Etr
25 #' @description The function that returns the \eqn{\mathsf{Etr}} networks.
26 #'
27 #' @param n number of trapezoids to make. Note this will result in a set of
28 #' trapezoids.
29 #' Note that this will result in n+1 meshpoints including the starting a and
30 #' ending b
31 #'
32 #' \emph{Note: } Upon instantiation with any continuous function this neural
33 #' network must be fed with \eqn{n+1} real numbers representing the values
34 #' of the function being approximated at the \eqn{n+1} meshpoints which are
35 #' the legs of the \eqn{n} triangles as stipulated in the input parameters.
36 #'
37 #' @param h width of trapezoids
38 #'
39 #' @return an approximation for area of the integral
40 #' @export
41

42 Etr <- function(n, h) {
43 if (h |> is.numeric() &&
44 h |> length() == 1 &&
45 h |> is.finite() &&
46 h > 0 &&
47 n %% 1 == 0 &&
48 n > 1) {
49 c(h / 2, rep(h, n - 1), h / 2) |>
50 matrix() |>
51 t() -> W
52 0 |> matrix() -> b
53 list(list(W = W, b = b)) -> return_network
54 return(return_network)
55 } else {
56 stop("n␣must␣be␣a␣natural␣number␣and␣h␣must␣be␣a␣positive␣real␣number.")
57 }
58 }

281

Vita

The author was born in November 1st, 1992 in the city of Dhaka in the heart of Bangladesh.
He grew up in the large city with a childhood that included setting things on fire, and very
occasionally focusing on mathematics. He failed to achieve his childhood goal of becoming
an astronomer however when he entered college at Troy University in 2011 and realized it
would involve cold nights outside, and so chose mathematics instead. He has continued his
pursuits in mathematics and is now a graduate student at the University of Arkansas trying
to graduate.

282

