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Preface to the First Edition

They throw geometry out the door, and it comes back through the win-
dow.
(H.G.Forder, Auckland 1973, reading new mathematics at the age of 84)

The subject of this book is numerical methods that preserve geometric properties of
the flow of a differential equation: symplectic integrators for Hamiltonian systems,
symmetric integrators for reversible systems, methods preserving first integrals and
numerical methods on manifolds, including Lie group methods and integrators for
constrained mechanical systems, and methods for problems with highly oscillatory
solutions. Structure preservation — with its questions as to where, how, and what for
— is the unifying theme.

In the last few decades, the theory of numerical methods for general (non-stiff
and stiff) ordinary differential equations has reached a certain maturity, and excel-
lent general-purpose codes, mainly based on Runge—Kutta methods or linear mul-
tistep methods, have become available. The motivation for developing structure-
preserving algorithms for special classes of problems came independently from such
different areas of research as astronomy, molecular dynamics, mechanics, theoreti-
cal physics, and numerical analysis as well as from other areas of both applied and
pure mathematics. It turned out that the preservation of geometric properties of the
flow not only produces an improved qualitative behaviour, but also allows for a more
accurate long-time integration than with general-purpose methods.

An important shift of view-point came about by ceasing to concentrate on the
numerical approximation of a single solution trajectory and instead to consider a
numerical method as a discrete dynamical system which approximates the flow of
the differential equation — and so the geometry of phase space comes back again
through the window. This view allows a clear understanding of the preservation of
invariants and of methods on manifolds, of symmetry and reversibility of methods,
and of the symplecticity of methods and various generalizations. These subjects are
presented in Chapters IV through VII of this book. Chapters I through III are of an
introductory nature and present examples and numerical integrators together with
important parts of the classical order theories and their recent extensions. Chapter
VIII deals with questions of numerical implementations and numerical merits of the
various methods.

It remains to explain the relationship between geometric properties of the nu-
merical method and the favourable error propagation in long-time integrations. This
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’ Backward error analysis ‘

Geometric integrators ‘ D ——

is done using the idea of backward error analysis, where the numerical one-step
map is interpreted as (almost) the flow of a modified differential equation, which is
constructed as an asymptotic series (Chapter IX). In this way, geometric properties
of the numerical integrator translate into structure preservation on the level of the
modified equations. Much insight and rigorous error estimates over long time in-
tervals can then be obtained by combining this backward error analysis with KAM
theory and related perturbation theories. This is explained in Chapters X through
XII for Hamiltonian and reversible systems. The final Chapters XIII and XIV treat
the numerical solution of differential equations with high-frequency oscillations and
the long-time dynamics of multistep methods, respectively.

This book grew out of the lecture notes of a course given by Ernst Hairer at
the University of Geneva during the academic year 1998/99. These lectures were
directed at students in the third and fourth year. The reactions of students as well
as of many colleagues, who obtained the notes from the Web, encouraged us to
elaborate our ideas to produce the present monograph.

We want to thank all those who have helped and encouraged us to prepare this
book. In particular, Martin Hairer for his valuable help in installing computers and
his expertise in Latex and Postscript, Jeff Cash and Robert Chan for reading the
whole text and correcting countless scientific obscurities and linguistic errors, Haruo
Yoshida for making many valuable suggestions, Stéphane Cirilli for preparing the
files for all the photographs, and Bernard Dudez, the irreplaceable director of the
mathematics library in Geneva. We are also grateful to many friends and colleagues
for reading parts of the manuscript and for valuable remarks and discussions, in
particular to Assyr Abdulle, Melanie Beck, Sergio Blanes, John Butcher, Mari Paz
Calvo, Begona Cano, Philippe Chartier, David Cohen, Peter Deuflhard, Stig Faltin-
sen, Francesco Fasso, Martin Gander, Marlis Hochbruck, Bulent Karasozen, Wil-
helm Kaup, Ben Leimkuhler, Pierre Leone, Frank Loose, Katina Lorenz, Robert
McLachlan, Ander Murua, Alexander Ostermann, Truong Linh Pham, Sebastian
Reich, Chus Sanz-Serna, Zaijiu Shang, Yifa Tang, Matt West, Will Wright.

We are especially grateful to Thanh-Ha Le Thi and Dr. Martin Peters from
Springer-Verlag Heidelberg for assistance, in particular for their help in getting most
of the original photographs from the Oberwolfach Archive and from Springer New
York, and for clarifying doubts concerning the copyright.

Geneva and Tiibingen, November 2001 The Authors



Preface to the Second Edition

The fast development of the subject — and the fast development of the sales of the
first edition of this book — has given the authors the opportunity to prepare this sec-
ond edition. First of all we have corrected several misprints and minor errors which
we have discovered or which have been kindly communicated to us by several read-
ers and colleagues. We cordially thank all of them for their help and for their interest
in our work. A major point of confusion has been revealed by Robert McLachlan in
his book review in SIAM Reviews.

Besides many details, which have improved the presentation throughout the
book, there are the following major additions and changes which make the book
about 130 pages longer:

— a more prominent place of the Stormer—Verlet method in the exposition and the
examples of the first chapter;

— adiscussion of the Hénon—Heiles model as an example of a chaotic Hamiltonian
system,;

— a new Sect.IV.9 on geometric numerical linear algebra considering differential
equations on Stiefel and Grassmann manifolds and dynamical low-rank approxi-
mations;

— anew improved composition method of order 10 in Sect. V.3;

— a characterization of B-series methods that conserve quadratic first integrals and
a criterion for conjugate symplecticity in Sect. VIL.8;

— the section on volume preservation taken from Chap. VII to Chap. VI,

— an extended and more coherent Chap. VII, renamed Non-Canonical Hamiltonian
Systems, with more emphasis on the relationships between Hamiltonian systems
on manifolds and Poisson systems;

— a completely reorganized and augmented Sect. VIL.5 on the rigid body dynamics
and Lie—Poisson systems;

— anew Sect. VIL.6 on reduced Hamiltonian models of quantum dynamics and Pois-
son integrators for their numerical treatment;

— an improved step-size control for reversible methods in Sects. VIII.3.2 and IX.6;

— extension of Sect. IX.5 on modified equations of methods on manifolds to include
constrained Hamiltonian systems and Lie—Poisson integrators;

— reorganization of Sects. IX.9 and IX.10; study of non-symplectic B-series meth-
ods that have a modified Hamiltonian, and counter-examples for symmetric meth-
ods showing linear growth in the energy error;
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— a more precise discussion of integrable reversible systems with new examples in
Chap. XI;

— extension of Chap. XIII on highly oscillatory problems to systems with several
constant frequencies and to systems with non-constant mass matrix;

— a new Chap. XIV on oscillatory Hamiltonian systems with time- or solution-
dependent high frequencies, emphasizing adiabatic transformations, adiabatic in-
variants, and adiabatic integrators;

— a completely rewritten Chap. XV with more emphasis on linear multistep meth-
ods for second order differential equations; a complete backward error analysis
including parasitic modified differential equations; a study of the long-time sta-
bility and a rigorous explanation of the long-time near-conservation of energy and
angular momentum.

Let us hope that this second revised edition will again meet good acceptance by our
readers.

Geneva and Tiibingen, October 2005 The Authors
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Chapter 1.
Examples and Numerical Experiments

This chapter introduces some interesting examples of differential equations and il-
lustrates different types of qualitative behaviour of numerical methods. We deliber-
ately consider only very simple numerical methods of orders 1 and 2 to emphasize
the qualitative aspects of the experiments. The same effects (on a different scale)
occur with more sophisticated higher-order integration schemes. The experiments
presented here should serve as a motivation for the theoretical and practical inves-
tigations of later chapters. The reader is encouraged to repeat the experiments or to
invent similar ones.

I.1 First Problems and Methods

Numerical applications of the case of two dependent variables are not
easily obtained. (A.J. Lotka 1925, p.79)

Our first problems, the Lotka—Volterra model and the pendulum equation, are dif-
ferential equations in two dimensions and show already many interesting geometric
properties. Our first methods are various variants of the Euler method, the midpoint
rule, and the Stormer—Verlet scheme.

I.1.1 The Lotka—Volterra Model

We start with an equation from mathematical biology which models the growth of
animal species. If a real variable u(¢) is to represent the number of individuals of a
certain species at time ¢, the simplest assumption about its evolution is du/dt = u-a,
where « is the reproduction rate. A constant « leads to exponential growth. In the
case of more species living together, the reproduction rates will also depend on
the population numbers of the other species. For example, for two species with
u(t) denoting the number of predators and v(t) the number of prey, a plausible
assumption is made by the Lotka—Volterra model

i = u(v—2)

v = v(l—u), (.D

where the dots on w and v stand for differentiation with respect to time. (We have
chosen the constants 2 and 1 in (1.1) arbitrarily.) A.J. Lotka (1925, Chap. VIII) used
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~

numerical flow

exact flow

[SENV

Fig. 1.1. Vector field, exact flow, and numerical flow for the Lotka—Volterra model (1.1)

this model to study parasitic invasion of insect species, and, with its help, V. Volterra
(1927) explained curious fishing data from the upper Adriatic Sea following World
War L.

Equations (1.1) constitute an autonomous system of differential equations. In
general, we write such a system in the form

y=f(y)- (1.2)

Every y represents a point in the phase space, in equation (1.1) above y = (u,v)
is in the phase plane R2. The vector-valued function f(y) represents a vector field
which, at any point of the phase space, prescribes the velocity (direction and speed)
of the solution y(¢) that passes through that point (see the first picture of Fig. 1.1).
For the Lotka—Volterra model, we observe that the system cycles through three
stages: (1) the prey population increases; (2) the predator population increases by
feeding on the prey; (3) the predator population diminishes due to lack of food.

Flow of the System. A fundamental concept is the flow over time ¢. This is the
mapping which, to any point ¥ in the phase space, associates the value y(t) of the
solution with initial value y(0) = yo. This map, denoted by ¢, is thus defined by

ei(yo) = y(t) if  y(0) = yo. (1.3)

The second picture of Fig. 1.1 shows the results of three iterations of ¢; (with ¢ =
1.3) for the Lotka—Volterra problem, for a set of initial values yg = (ug, vo) forming
an animal-shaped set A.!

Invariants. If we divide the two equations of (1.1) by each other, we obtain a single
equation between the variables u and v. After separation of variables we get

u v dt

! This cat came to fame through Arnold (1963).



1.1 First Problems and Methods 3

where
I(u,v) =Inu —u+2lnv — v, (1.4)

so that I(u(t),v(t)) = Const for all t. We call the function I an invariant of the
system (1.1). Every solution of (1.1) thus lies on a level curve of (1.4). Some of
these curves are drawn in the pictures of Fig. 1.1. Since the level curves are closed,
all solutions of (1.1) are periodic.

I.1.2 First Numerical Methods

Explicit Euler Method. The simplest of all numerical methods for the system (1.2)
is the method formulated by Euler (1768),

Yn+1 = Yn + h.f(yn) (15)

It uses a constant step size h to compute, one after the other, approximations y1, y2,
Y3, .. to the values y(h), y(2h), y(3h), ... of the solution starting from a given
initial value y(0) = yo. The method is called the explicit Euler method, because
the approximation y, 11 is computed using an explicit evaluation of f at the already
known value y,,. Such a formula represents a mapping

Ph  Yn — Yn+1,

which we call the discrete or numerical flow. Some iterations of the discrete flow for
the Lotka—Volterra problem (1.1) (with h = 0.5) are represented in the third picture
of Fig. 1.1.

Implicit Euler Method. The implicit Euler method

Ynt1 = Yn + hf(Yns1), (1.6)

is known for its all-damping stability properties. In contrast to (1.5), the approx-
imation y,4; is defined implicitly by (1.6), and the implementation requires the
numerical solution of a nonlinear system of equations.

Implicit Midpoint Rule. Taking the mean of y,, and y,, 1 in the argument of f, we
get the implicit midpoint rule

M)

5 (1.7)

Ynt1 =Yn + hf (
It is a symmetric method, which means that the formula is left unaltered after ex-
changing y,, <> yn+1 and h <> —h (more on symmetric methods in Chap. V).

Symplectic Euler Methods. For partitioned systems

u = a(u,v) (18)
0 = b(u,v), '



4 I. Examples and Numerical Experiments

o I ~N

Fig. 1.2. Solutions of the Lotka—Volterra equations (1.1) (step sizes h = 0.12; initial values
(2, 2) for the explicit Euler method, (4, 8) for the implicit Euler method, (4, 2) and (6, 2) for
the symplectic Euler method)

such as the problem (1.1), we consider also partitioned Euler methods

Unt1 = Up + ha(tn, Vni1) o Umtl = Up, + ha(Uni1,Vn)

1.9
Un+1 = Un + hb(una Un+1)7 Un+1 = Un + hb(un-‘rl; Un)7 ( )

which treat one variable by the implicit and the other variable by the explicit Euler
method. In view of an important property of this method, discovered by de Vogelaere
(1956) and to be discussed in Chap. VI, we call them symplectic Euler methods.

Numerical Example for the Lotka—Volterra Problem. Our first numerical exper-
iment shows the behaviour of the various numerical methods applied to the Lotka—
Volterra problem. In particular, we are interested in the preservation of the invariant
I over long times. Fig. 1.2 plots the numerical approximations of the first 125 steps
with the above numerical methods applied to (1.1), all with constant step sizes. We
observe that the explicit and implicit Euler methods show wrong qualitative be-
haviour. The numerical solution either spirals outwards or inwards. The symplectic
Euler method (implicit in w and explicit in v), however, gives a numerical solution
that lies apparently on a closed curve as does the exact solution. Note that the curves
of the numerical and exact solutions do not coincide.

I.1.3 The Pendulum as a Hamiltonian System

A great deal of attention in this book will be addressed to Hamiltonian problems,
and our next examples will be of this type. These problems are of the form

p=—Hy(p,q), q= Hy(p,q), (1.10)

where the Hamiltonian H(p1, ..., pd4,q1, - - - qq) represents the total energy; g; are
the position coordinates and p; the momenta for¢ = 1,. .., d, with d the number of
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degrees of freedom; H,, and H, are the vectors of partial derivatives. One verifies
easily by differentiation (see Sect.IV.1) that, along the solution curves of (1.10),

H(p(t),q(t)) = Const, (1.11)

i.e., the Hamiltonian is an invariant or a first integral. More details about Hamil-
tonian systems and their derivation from Lagrangian mechanics will be given in
Sect. VI.1.

Pendulum. The mathematical pendulum (mass m = 1,
massless rod of length / = 1, gravitational acceleration
g = 1) is a system with one degree of freedom having the
Hamiltonian

1
H(p,q) = 5 p* — cosq, (1.12)

so that the equations of motion (1.10) become

p = —sing, q=0p. (1.13)

Since the vector field (1.13) is 27-periodic in g, it is natural to consider g as a vari-
able on the circle S'. Hence, the phase space of points (p, ¢) becomes the cylinder
R x S'. Fig. 1.3 shows some level curves of H(p,q). By (1.11), the solution curves
of the problem (1.13) lie on such level curves.

exact flow explicit Euler symplectic Euler

Fig. 1.3. Exact and numerical flow for the pendulum problem (1.13); step sizesh =¢ =1

Area Preservation. Figure 1.3 (first picture) illustrates that the exact flow of a
Hamiltonian system (1.10) is area preserving. This can be explained as follows: the
derivative of the flow ¢, with respect to initial values (p, q),

a(p(t),q(t))

©;(p,q) = )
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satisfies the variational equation 2

./ —Hp, —qu> ,
PPy q) = Pe\D4)
t( ) ( pr qu t( )

where the second partial derivatives of H are evaluated at ¢:(p, ¢). In the case of
one degree of freedom (d = 1), a simple computation shows that

L (30(0) 2ult) _ 2v(t) 2u()

dt\ Op Oq dq Op = =0

d
- det ©,(p,q) =

Since (g is the identity, this implies det ¢} (p, ¢) = 1 for all ¢, which means that the
flow ¢+ (p, q) is an area-preserving mapping.

The last two pictures of Fig.1.3 show numerical flows. The explicit Euler
method is clearly seen not to preserve area but the symplectic Euler method is (this
will be proved in Sect. VI.3). One of the aims of ‘geometric integration’ is the study
of numerical integrators that preserve such types of qualitative behaviour of the ex-
act flow.

explicit Euler symplectic Euler Stormer—Verlet

Fig. 1.4. Solutions of the pendulum problem (1.13); explicit Euler with step size h = 0.2,
initial value (po, go) = (0,0.5); symplectic Euler with A = 0.3 and initial values go = 0,
po = 0.7,1.4,2.1; Stormer—Verlet with h = 0.6

Numerical Experiment. We apply the above numerical methods to the pendulum
equations (see Fig. 1.4). Similar to the computations for the Lotka—Volterra equa-
tions, we observe that the numerical solutions of the explicit Euler and of the im-
plicit Euler method (not drawn in Fig. 1.4) spiral either outwards or inwards. The
symplectic Euler method shows the correct qualitative behaviour, but destroys the
left-right symmetry of the problem. The Stormer—Verlet scheme, which we discuss
next, works perfectly even with doubled step size.

2 As is common in the study of mechanical problems, we use dots for denoting time-
derivatives, and we use primes for denoting derivatives with respect to other variables.
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ues Verlet-Banide

GG

Fig. 1.5. Carl Stormer (left picture), born: 3 September 1874 in Skien (Norway), died: 13 Au-
gust 1957.
Loup Verlet (right picture), born: 24 May 1931 in Paris

I.1.4 The Stormer—Verlet Scheme
The above equations (1.13) for the pendulum are of the form

= f(q)
Gg=p

or = flg) (1.14)

which is the important special case of a second order differential equation. The most
natural discretization of (1.14) is

Gni1 = 2Gn + qu1 = W2 f(qn), (1.15)

which is just obtained by replacing the second derivative in (1.14) by the central
second-order difference quotient. This basic method, or its equivalent formulation
given below, is called the Stormer method in astronomy, the Verlet method 3 in mole-
cular dynamics, the leap-frog method in the context of partial differential equations,
and it has further names in other areas (see Hairer, Lubich & Wanner (2003), p. 402).
C. Stormer (1907) used higher-order variants for numerical computations concern-
ing the aurora borealis. L. Verlet (1967) proposed this method for computations in
molecular dynamics, where it has become by far the most widely used integration
scheme.

Geometrically, the Stormer—Verlet method can be seen as produced by parabo-
las, which in the points ¢,, possess the right second derivative f(q,) (see Fig. 1.6

3 Trony of fate: Professor Loup Verlet, who later became interested in the history of science,
discovered precisely “his” method in Newton’s Principia (Book I, figure for Theorem I,
see Sect.1.2.1 below).
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o

C
o

tnf 1 tn+1

Fig. 1.6. Illustration for the Stormer—Verlet method

to the left). But we can also think of polygons, which possess the right slope in the
midpoints (Fig. 1.6 to the right).
Approximations to the derivative p = ¢ are simply obtained by

dn+1 — 4n—1 dn+1 — qn
Po = T and pagyg = S (1.16)

One-Step Formulation. The Stormer—Verlet method admits a one-step formulation
which is useful for actual computations. The value ¢,, together with the slope p,, and
the second derivative f(gy), all at ¢,,, uniquely determine the parabola and hence
also the approximation (P11, @ny1) at ty, 1. Writing (1.15) as p, 4172 —Pp—1/2 =
hf(qn) and using pp,11/2 + pr—1/2 = 2pn , We get by elimination of either p,, /2
Or Py _1/2 the formulae

h
Dn+1/2 = DPn+ 5 f(Qn)
Int1 = Gn + hppy1y2 (1.17)
h
Pnt1 = Pat1/2+ 5 J(qns1)

which is an explicit one-step method @y, : (¢, Pn) — (¢n+1,Pn+1) for the corre-
sponding first order system of (1.14). If one is not interested in the values p,, of the
derivative, the first and third equations in (1.17) can be replaced by

Prt1/2 = Pn—1/2 +h f(qn)-

1.2 The Kepler Problem and the Outer Solar System

I awoke as if from sleep, a new light broke on me. (J. Kepler; quoted
from J.L.E.Dreyer, A history of astronomy, 1906, Dover 1953, p.391)

One of the great achievements in the history of science was the discovery of the
laws of J. Kepler (1609), based on many precise measurements of the positions of
Mars by Tycho Brahe and himself. The planets move in elliptic orbits with the sun
at one of the foci (Kepler’s first law)
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d

r =
1+ecosp

=a—aecos F, 2.1

(where @ = great axis, e = eccentricity, b =
avl—e2,d = bJ/1—e2 = a(l —€?), E = ec-
centric anomaly, (¢ = true anomaly).

Newton (Principia 1687) then explained this
motion by his general law of gravitational attrac-
tion (proportional to 1/72) and the relation between
forces and acceleration (the “Lex II” of the Prin-
cipia). This then opened the way for treating arbi-
trary celestial motions by solving differential equa-
tions.

Two-Body Problem. For computing the motion of two bodies which attract each
other, we choose one of the bodies as the centre of our coordinate system; the motion
will then stay in a plane (Exercise 3) and we can use two-dimensional coordinates
q = (q1,q2) for the position of the second body. Newton’s laws, with a suitable
normalization, then yield the following differential equations

.. q1 .. q2
q1 = — ) q2 = — R (22)
(af +43)%/? (af +a3)%/?
This is equivalent to a Hamiltonian system with the Hamiltonian
1 .
H(p1,p2,q1,q2) = 5 (pi +p3) — m, Di = 4. (2.3)

I.2.1 Angular Momentum and Kepler’s Second Law

The system has not only the total energy H(p,q) as a first integral, but also the
angular momentum

L(p1,p2,q1,q2) = q1p2 — q2p1- (2.4)

This can be checked by differentiation and is nothing other than Kepler’s second
law, which says that the ray F'M sweeps equal areas in equal times (see the little
picture at the beginning of Sect..2).

A beautiful geometric justification of this law is due to I. Newton* (Principia
(1687), Book 1, figure for Theorem I). The idea is to apply the Stormer—Verlet
scheme (1.15) to the equations (2.2) (see Fig.2.1). By hypothesis, the diago-
nal of the parallelogram ¢,,—1¢ngn+1, Which is (¢n+1 — qn) — (@n — @n-1) =
Gnt1 — 2gn + qn—1 = Const - f(g,), points towards the sun S. Therefore, the
altitudes of the triangles g,,—1¢,.S and g, +1¢,.S are equal. Since they have the com-
mon base ¢,,.5, they also have equal areas. Hence

det(gn-1,9n — gn-1) = det(qn, gnt1 — ¢n)
and by passing to the limit 4 — 0 we see that det(q, p) = Const. This is (2.4).

4 We are grateful to a private communication of L. Verlet for this reference
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qn—Qn—l

Loug 23

Fig. 2.1. Proof of Kepler’s Second Law (left); facsimile from Newton’s Principia (right)

We have not only an elegant proof for this invariant, but we also see that the
Stormer—Verlet scheme preserves this invariant for every h > 0.

1.2.2 Exact Integration of the Kepler Problem

Pour voir présentement que cette courbe ABC' .. . est toGijours une Sec-
tion Conique, ainsi que Mr. Newton I’a supposé, pag. 55. Coroll.l. sans le
démontrer; il y faut bien plus d’adresse: (Joh. Bernoulli 1710, p.475)

It is now interesting, inversely to the procedure of Newton, to prove that any solution
of (2.2) follows either an elliptic, parabolic or hyperbolic arc and to describe the
solutions analytically. This was first done by Joh. Bernoulli (1710, full of sarcasm
against Newton), and by Newton (1713, second edition of the Principia, without
mentioning a word about Bernoulli).

By (2.3) and (2.4), every solution of (2.2) satisfies the two relations

1,9, 1 . .
- S — - =1L 2.5
9 (ql + QZ) \/m 0 q192 9291 0 ( )
where the constants Hy and Ly are determined by the initial values. Using polar
coordinates q; = 7 cos ¢, g2 = 7 sin ¢, this system becomes

1 1

5 (P 41%%) =~ =Ho, 1% =Lo. 2.6)
For its solution we consider r as a function of ¢ and write 7 = C% - . The elimina-
tion of ¢ in (2.6) then yields

Lfrdr\2 2\ LE 1
2<(d¢) +”>7A4‘T—H°-

In this equation we use the substitution 7 = 1/u, dr = —du/u?, which gives (with
'=d/de)
1, 9 U Hy
il - =0. 2.7
5 (u* 4+ u®) 1 2.7

This is a “Hamiltonian” for the system
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1 1 1 —p*
v +u== ie, u==-+cicosp+cysing = Fecosly = ¢7) (2.8)
d d d
where d = L% and the constant e becomes, from (2.7),
e =1+ 2H,L2 (2.9)

(by Exercise 7, the expression 1+2HqL3 is non-negative). This is precisely formula
(2.1). The angle ¢* is determined by the initial values r¢ and ¢g. Equation (2.1)
represents an elliptic orbit with eccentricity e for [y < 0 (see Fig. 2.2, dotted line),
a parabola for Hy = 0, and a hyperbola for Hy > 0.

Finally, we must determine the variables r and ¢ as functions of ¢. With the
relation (2.8) and r = 1/u, the second equation of (2.6) gives

d2
(1 + ecos(p — ¢*))

which, after an elementary, but not easy, integration, represents an implicit equation
for ¢(t).

s dp = Lodt (2.10)

400 000 steps
h = 0.0005

4000 steps

explicit Euler symplectic Euler h =0.05
t
implicit midpoint 4000 steps 4000 steps

h=0.05 oLk =005

Stormer—Verlet

Fig. 2.2. Numerical solutions of the Kepler problem (eccentricity e = 0.6; in dots: exact
solution)
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1.2.3 Numerical Integration of the Kepler Problem
For the problem (2.2) we choose, with 0 < e < 1, the initial values

1+e

@(0)=1-e, (0)=0, ¢@(0)=0, ¢(0)= 1—e

@2.11)

This implies that Hy = —1/2, Ly = v/1 — e2,d = 1 — €2 and * = 0. The period
of the solution is 27 (Exercise 5). Fig. 2.2 shows some numerical solutions for the
eccentricity e = 0.6 compared to the exact solution. After our previous experience,
it is no longer a surprise that the explicit Euler method spirals outwards and gives a
completely wrong answer. For the other methods we take a step size 100 times larger
in order to “see something”. We see that the nonsymmetric symplectic Euler method
distorts the ellipse, and that all methods exhibit a precession effect, clockwise for
Stormer—Verlet and symplectic Euler, anti-clockwise for the implicit midpoint rule.
The same behaviour occurs for the exact solution of perturbed Kepler problems
(Exercise 12) and has occupied astronomers for centuries.

Our next experiment (Fig.2.3) studies the conservation of invariants and the
global error. The main observation is that the error in the energy grows linearly for
the explicit Euler method, and it remains bounded and small (no secular terms) for
the symplectic Euler method. The global error, measured in the Euclidean norm,
shows a quadratic growth for the explicit Euler compared to a linear growth for
the symplectic Euler. As indicated in Table 2.1 the implicit midpoint rule and the
Stormer—Verlet scheme behave similar to the symplectic Euler, but have a smaller

conservation of energy

.02 explicit Euler, A = 0.0001

.01

symplectic Euler, h = 0.001

) R B S S, B P S S R, B W)
vV v v v v v v Vv 7w "8

50 " 100

4 \/ global error of the solution
explicit Euler, ~ = 0.0001

symplectic Euler, h = 0.001

— T S S ) U W

50 100

Fig. 2.3. Energy conservation and global error for the Kepler problem
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Table 2.1. Qualitative long-time behaviour for the Kepler problem; ¢ is time, h the step size

method H error in H ‘ error in L ‘ global error
explicit Euler O(th) O(th) O(t?h)
symplectic Euler O(h) 0 O(th)
implicit midpoint O(h?) 0 O(th?)
Stormer—Verlet O(h?) 0 O(th?)

error due to their higher order. We remark that the angular momentum L(p, q) is ex-
actly conserved by the symplectic Euler, the Stormer—Verlet, and the implicit mid-
point rule.

1.2.4 The Outer Solar System

The evolution of the entire planetary system has been numerically in-

tegrated for a time span of nearly 100 million years®. This calculation

confirms that the evolution of the solar system as a whole is chaotic, . . .
(G.J. Sussman & J. Wisdom 1992)

We next apply our methods to the system which describes the motion of the five
outer planets relative to the sun. This system has been studied extensively by as-
tronomers. The problem is a Hamiltonian system (1.10) (/V-body problem) with

H(pﬂ)z%Z—plpl GZZ BRLALL (2.12)

2 2 i — 451

Here p and q are the supervectors composed by the vectors p;,¢; € R? (momenta
and positions), respectively. The chosen units are: masses relative to the sun, so that
the sun has mass 1. We have taken

mo = 1.00000597682

to take account of the inner planets. Distances are in astronomical units (1 [A.U.] =
149597 870 [km]), times in earth days, and the gravitational constant is

G = 2.95912208286 - 10™4.

The initial values for the sun are taken as go(0) = (0,0,0) and ¢o(0) = (0,0,0)%
All other data (masses of the planets and the initial positions and initial veloci-
ties) are given in Table 2.2. The initial data is taken from “Ahnerts Kalender fiir
Sternfreunde 19947, Johann Ambrosius Barth Verlag 1993, and they correspond to
September 5, 1994 at 0h00.°

5 100 million years is not much in astronomical time scales; it just goes back to “Jurassic
Park”.
6 We thank Alexander Ostermann, who provided us with this data.
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Table 2.2. Data for the outer solar system

planet H

mass initial position | initial velocity

—3.5023653 0.00565429

Jupiter my = 0.000954786104043 —3.8169847 | —0.00412490
—1.5507963 | —0.00190589

9.0755314 0.00168318

Saturn meo = 0.000285583733151 —3.0458353 0.00483525
—1.6483708 0.00192462

8.3101420 0.00354178

Uranus mg = 0.0000437273164546 | —16.2901086 0.00137102
—7.2521278 0.00055029

11.4707666 0.00288930

Neptune || m4 = 0.0000517759138449 | —25.7294829 0.00114527
—10.8169456 0.00039677

—15.5387357 0.00276725

Pluto ms = 1/(1.3-10%) —25.2225594 | —0.00170702
—3.1902382 | —0.00136504

explicit Euler, h = 10

implicit Euler, h = 10

Fig. 2.4. Solutions of the outer solar system

To this system we apply the explicit and implicit Euler methods with step size
h = 10, the symplectic Euler and the Stormer—Verlet method with much larger
step sizes h = 100 and h = 200, repectively, all over a time period of 200 000
days. The numerical solution (see Fig. 2.4) behaves similarly to that for the Kepler
problem. With the explicit Euler method the planets have increasing energy, they
spiral outwards, Jupiter approaches Saturn which leaves the plane of the two-body
motion. With the implicit Euler method the planets (first Jupiter and then Saturn)
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fall into the sun and are thrown far away. Both the symplectic Euler method and
the Stormer—Verlet scheme show the correct behaviour. An integration over a much
longer time of say several million years does not deteriorate this behaviour. Let us
remark that Sussman & Wisdom (1992) have integrated the outer solar system with
special geometric integrators.

1.3 The Hénon-Heiles Model

... because: (1) it is analytically simple; this makes the computation of
the trajectories easy; (2) at the same time, it is sufficiently complicated to
give trajectories which are far from trivial . (Hénon & Heiles 1964)

The Hénon—Heiles model was created for describing stellar motion, followed for a
very long time, inside the gravitational potential Uy (r, z) of a galaxy with cylindrical
symmetry (Hénon & Heiles 1964). Extensive numerical experimentations should
help to answer the question, if there exists, besides the known invariants H and L,
a third invariant. Despite endless tentatives of analytical calculations during many
decades, such a formula had not been found.

After a reduction of the dimension, a Hamiltonian in two degrees of freedom of
the form

H(p,q) = 5 (5} + ) + U(q) (3.1)

is obtained and the question is, if such an equation has a second invariant. Here,
Hénon and Heiles put aside the astronomical origin of the problem and choose

1 1
Ulg) = 5(ai +a3) + dige — 3 (3.2)

(see citation). The potential U is represented in Fig. 3.1. When U approaches %, the

level curves of U tend to an equilateral triangle, whose vertices are saddle points
of U. The corresponding system

Fig. 3.1. Potential of the Hénon—Heiles Model and a solution
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Fig. 3.2. Poincaré cuts for g1 = 0, p1 > 0 of the Hénon—Heiles Model for H = % (6 orbits,
left) and H = £ (1 orbit, right)

RE

Explicit Euler
h=10""

-_OZE

Implicit Euler
h=1077

0= 3

P7'.6('JO":- R
F " in bold: P1,...,P400 in bold: Pgooo,...,nggg

Fig. 3.3. Poincaré cuts for numerical methods, one orbit each; explicit Euler (left), implicit
Euler (right). Same initial data as in Fig. 3.2

Gr=—q1 —2q192, fo=—q2— ¢+ a3 (3.3)
has solutions with nontrivial properties. For given initial values with H (pg, go) < %
and g inside the triangle U < %, the solution stays there and moves somehow like
a mass point gliding on this surface (see Fig. 3.1, right).

Poincaré Cuts. We fix first the energy Hy and put g;o = 0. Then for any point
Py = (g20, p20), we obtain pyg from (3.1) as p1p = \/QHO — 2Uy — p3,, where we
choose the positive root. We then follow the solution until it hits again the surface
¢1 = 0 in the positive direction p; > 0 and obtain a point P; = (ga1,p21); in the
same way we compute Py = (g2, p22), etc. For the same initial values as in Fig. 3.1
and with Hy = 1—12, the solution for 0 < ¢t < 300000 gives 46 865 Poincaré cuts
which are all displayed in Fig. 3.2 (left). They seem to lie exactly on a curve, as do
the orbits for 5 other choices of initial values. This picture thus shows “convincing




1.3 The Hénon—Heiles Model 17

/ /
10-1| global error A ANV
r -~
expl. Euler, b = .0001 AT p
. v # ~\n ARRYAY
s\ ) /
1072 S WV e 77 N/
2 "pa A o/ \//‘ /"‘rvl
3 2 ' /Q\ -
10~ =~ WARY: sympl. Euler, h = .0001 ¢
-~ o ’
- Ar v
107 E] u""‘r \_/f W oo Y
’: " P AS)! .
i~ I/
10-3 1L Stormer—Verlet, h = .005 "
il L L L L L L L L | L L L L L L L L L | L
g o g1 200

12
Fig. 3.4. Global error of numerical methods for nearly quasiperiodic and for chaotic solutions;
same initial data as in Fig. 3.2

evidence” for the existence of a second invariant, for which Gustavson (1966) has
derived a formal expansion, whose first terms represent perfectly these curves.

“But here comes the surprise” (Hénon—Heiles, p. 76): Fig. 3.2 shows to the right
the same picture in the (g2, p2) plane for a somewhat higher Energy H = %. The
motion turns completely to chaos and all hope for a second invariant disappears.
Actually, Gustavson’s series does not converge.

Numerical Experiments. We now apply numerical methods, the explicit Euler
method to the low energy initial values H = 1—12 (Fig. 3.3, left), and the implicit
Euler method to the high energy initial values (Fig. 3.3, right), both methods with a
very small step size h = 107°. As we already expect from our previous experiences,
the explicit Euler method tends to increase the energy and turns order into chaos,
while the implicit Euler method tends to decrease it and turns chaos into order. The
Stormer—Verlet method (not shown) behaves as the exact solution even for step sizes
as large as h = 1071

In our next experiment we study the global error (see Fig. 3.4), once for the case
of the nearly quasiperiodic orbit (H = %) and once for the chaotic one (H = %),
both for the explicit Euler, the symplectic Euler, and the Stormer—Verlet scheme.
It may come as a surprise, that only in the first case we have the same behaviour
(linear or quadratic growth) as in Fig. 2.3 for the Kepler problem. In the second case
(H = %) the global error grows exponentially for all methods, and the explicit Euler
method is worst.

Study of a Mapping. The passage from a point P; to the next one P;y; (as ex-
plained for the left picture of Fig.3.2) can be considered as a mapping @ : P; —
P+, and the sequence of points Py, P;, Ps, ... are just the iterates of this mapping.
This mapping is represented for the two energy levels H = % and H = % in
Fig. 3.5 and its study allows to better understand the behaviour of the orbits. We see
no significant difference between the two cases, simply for larger H the deforma-

tions are more violent and correspond to larger eigenvalues of the Jacobian of . In
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Fig. 3.5. The Poincaré map & : Py — P, for the Hénon—Heiles Model

both cases we have seven fixed points, which correspond to periodic solutions of the
system (3.3). Four of them are stable and lie inside the white islands of Fig. 3.2.

1.4 Molecular Dynamics

‘We do not need exact classical trajectories to do this, but must lay great
emphasis on energy conservation as being of primary importance for this
reason. (M.P. Allen & D.J. Tildesley 1987)

Molecular dynamics requires the solution of Hamiltonian systems (1.10), where the
total energy is given by

1 N 1 N i—1
H(PMI)Z52517?191'%—22%1(”%—%”), 4.1
i=1 "

=2 j=1
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and V;;(r) are given potential functions. Here, g; and p; denote the positions and
momenta of atoms and m; is the atomic mass of the ¢th atom. We remark that the
outer solar system (2.12) is such an N-body system with V;;(r) = —Gm;m;/r. In
molecular dynamics the Lennard—Jones potential

b= (%) (2))

is very popular (¢;; and o;; are suit-
able constants depending on the atoms).
This potential has an absolute minimum
at distance r = 0 /2. The force due to
this potential strongly repels the atoms
when they are closer than this value,
and they attract each other when they
are farther away.

Lennard - Jones

Numerical Experiments with a Frozen Argon Crys- @
tal. As in Biesiadecki & Skeel (1993) we consider the @ @
interaction of seven argon atoms in a plane, where six of

them are arranged symmetrically around a centre atom. @

As a mathematical model we take the Hamiltonian (4.1) @ @
with N =7, m; = m = 66.34 - 10727 [kg], ®

gy =€ =119.8kp [J], oi; = 0 = 0.341 [nm],

where kg = 1.380658 - 10~22 [J /K] is Boltzmann’s constant (see Allen & Tildesley
(1987), page 21). As units for our calculations we take masses in [kg|, distances in
nanometers (1 [nm] = 10~ [m]), and times in nanoseconds (1 [nsec] = 10~ [sec]).
Initial positions (in [nm]) and initial velocities (in [nm/nsec]) are given in Table 4.1.
They are chosen such that neighbouring atoms have a distance that is close to the
one with lowest potential energy, and such that the total momentum is zero and
therefore the centre of gravity does not move. The energy at the initial position is
H(po,qo0) = —1260.2 kg [J].

For computations in molecular dynamics one is usually not interested in the tra-
jectories of the atoms, but one aims at macroscopic quantities such as temperature,
pressure, internal energy, etc. Here we consider the total energy, given by the Hamil-
tonian, and the temperature which can be calculated from the formula (see Allen &

Table 4.1. Initial values for the simulation of a frozen argon crystal

atom H 1 ‘ 2 ‘ 3 ‘ 4 ‘ 5 ‘ 6 ‘ 7
- 0.00 0.02 0.34 0.36 —0.02 —0.35 —0.31
posthion - oo 0.39 0.17 —0.21 —0.40 —~0.16 0.21
velocit —30 50 —70 90 30 —10 —80
Y —20 —90 —60 40 90 100 —60
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60F explicit Euler, h = 0.5 [fsec] 30t Verlet, h = 40 [fsec]
30f °r i
ok . ) | =301
30: symplectic Euler, h = 10 [fsec] 301 Verlet, h = 80 [fsec]
-30f ok
_eof total energy 301 total energy
60 explicit Euler, h = 10 [fsec] 301 Verlet, h = 10 [fsec]
30 " W oo
0 =30p
30¢ Verlet, h = 20 [fsec]

symplectic Euler, h = 10 [fsec]

temperature 3 OE teMpeﬁatuw

Fig. 4.1. Computed total energy and temperature of the argon crystal

=]

Tildesley (1987), page 46)

N
1
T = 7§ illaill?. 4.3
2Nkp i:1m,||q,|| @3

We apply the explicit and symplectic Euler methods and also the Verlet method
to this problem. Observe that for a Hamiltonian such as (4.1) all three methods
are explicit, and all of them need only one force evaluation per integration step. In
Fig.4.1 we present the numerical results of our experiments. The integrations are
done over an interval of length 0.2 [nsec]. The step sizes are indicated in femtosec-
onds (1 [fsec] = 107° [nsec]).

The two upper pictures show the values (H (Pn, qn) — H(po, qo)) / kp as a func-
tion of time ¢,, = nh. For the exact solution, this value is precisely zero for all times.
Similar to earlier experiments we see that the symplectic Euler method is qualita-
tively correct, whereas the numerical solution of the explicit Euler method, although
computed with a much smaller step size, is completely useless (see the citation at
the beginning of this section). The Verlet method is qualitatively correct and gives
much more accurate results than the symplectic Euler method (we shall see later
that the Verlet method is of order 2). The two computations with the Verlet method
show that the energy error decreases by a factor of 4 if the step size is reduced by a
factor of 2 (second order convergence).

The two lower pictures of Fig. 4.1 show the numerical values of the temperature
difference T' — T, with T given by (4.3) and T ~ 22.72 [K] (initial temperature).
In contrast to the total energy, this is not an exact invariant, but for our problem it
fluctuates around a constant value. The explicit Euler method gives wrong results,
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but the symplectic Euler and the Verlet methods show the desired behaviour. This
time a reduction of the step size does not reduce the amplitude of the oscillations,
which indicates that the fluctuation of the exact temperature is of the same size.

I.5 Highly Oscillatory Problems

In this section we discuss a system with almost-harmonic high-frequency oscilla-
tions. We show numerical phenomena of methods applied with step sizes that are
not small compared to the period of the fastest oscillations.

I.5.1 A Fermi-Pasta—Ulam Problem

... dealing with the behavior of certain nonlinear physical systems where
the non-linearity is introduced as a perturbation to a primarily linear prob-
lem. The behavior of the systems is to be studied for times which are long
compared to the characteristic periods of the corresponding linear prob-
lems. (E. Fermi, J. Pasta, S. Ulam 1955)

In the early 1950s MANIAC-I had just been completed and sat poised
for an attack on significant problems. ... Fermi suggested that it would
be highly instructive to integrate the equations of motion numerically for
a judiciously chosen, one-dimensional, harmonic chain of mass points
weakly perturbed by nonlinear forces. (J. Ford 1992)

The problem of Fermi, Pasta & Ulam (1955) is a simple model for simulations in
statistical mechanics which revealed highly unexpected dynamical behaviour. We
consider a modification consisting of a chain of 2m mass points, connected with al-
ternating soft nonlinear and stiff linear springs, and fixed at the end points (see Gal-
gani, Giorgilli, Martinoli & Vanzini (1992) and Fig. 5.1). The variables q1, . .., gam

stiff soft
harmonic nonlinear

Fig. 5.1. Chain with alternating soft nonlinear and stiff linear springs

(90 = q2m+1 = 0) stand for the displacements of the mass points, and p; = ¢; for
their velocities. The motion is described by a Hamiltonian system with total energy

1 m 2 m m
H(p,q) = 3 Z(pgiq +P§i) + wz Z(Qm —q2ic1)* + Z(Q%+1 — q2i)*,
i=1 i=1 i=0

where w is assumed to be large. It is quite natural to introduce the new variables
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0 I P . .

E 100 200 70 72
Fig. 5.2. Exchange of energy in the exact solution of the Fermi—Pasta—Ulam model. The
picture to the right is an enlargement of the narrow rectangle in the left-hand picture

To,i = (QQ1+Q21‘—1)/\@, Tii = (QQi*QQi—l)/\@7
Yo,i = (p2i+p2i—1)/\/§, Yi,i (p2i—p2i—1)/\/§,

where xo; (1 = 1,...,m) represents a scaled displacement of the ith stiff spring,
71, a scaled expansion (or compression) of the «th stiff spring, and ¥ ;,y1,; their
velocities (or momenta). With this change of coordinates, the motion in the new
variables is again described by a Hamiltonian system, with

5.1

m 2 m
1 w 1
H(y,x) = 3 Z(?J(Q)z + y%z) Y Zﬁz + Z((xo"l —z10)*
i=1 i=1
m—1 4
+ ($0,1+1 — Z1,i+1 — 0,4 — $1,i) + (zom + $1,m)4)~
i=1
5.2)

Besides the fact that the equations of motion are Hamiltonian, so that the total energy
is exactly conserved, they have a further interesting feature. Let

1
Ii(21,5,y1,5) = E(y%,j +W2$%,j) (5.3)

denote the energy of the jth stiff spring. It turns out that there is an exchange of
energy between the stiff springs, but the total oscillatory energy I = I1 + ... +
I,,, remains close to a constant value, in fact, I ((z(t),y(t)) = I((z(0),y(0)) +
O(w™1'). For an illustration of this property, we choose m = 3 (as in Fig.5.1),
w = 50,

201(0) =1, 901(0)=1, z11(0)=w™", 31.1(0)=1,

and zero for the remaining initial values. Fig.5.2 displays the energies I, I, I3
of the stiff springs together with the total oscillatory energy [ = I + Is + I3 as a
function of time. The solution has been computed very carefully with high accuracy,
so that the displayed oscillations can be considered as exact.
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L.5.2 Application of Classical Integrators

Which of the methods of the foregoing sections produce qualitatively correct ap-
proximations when the product of the step size h with the high frequency w is rela-
tively large?

Linear Stability Analysis. To get an idea of the maximum admissible step size,
we neglect the quartic term in the Hamiltonian (5.2), so that the differential equation
splits into the two-dimensional problems 9o ; = 0, Zo; = ¥o,; and

U= —wiry g, d1i =y 5.4

Onmitting the subscripts, the solution of (5.4) is

(20) = (s o) (2)

The numerical solution of a one-step method applied to (5.4) yields

Yn+1 _ Un,
(Wﬂﬁn-u ) = M(hw) (wxn ) ’ (5.5

and the eigenvalues \; of M (hw) determine the long-time behaviour of the numeri-
cal solution. Stability (i.e., boundedness of the solution of (5.5)) requires the eigen-
values to be less than or equal to one in modulus. For the explicit Euler method
we have ;o = 1 & ihw, so that the energy I,, = (y2 + w?x2)/2 increases as
(1 4 h2w?)"/2. For the implicit Euler method we have \; o = (1 + ihw)~!, and
the energy decreases as (1 + h2w?)~"/2. For the implicit midpoint rule, the ma-
trix M (hw) is orthogonal and therefore I,, is exactly preserved for all A and for all
times. Finally, for the symplectic Euler method and for the Stormer—Verlet scheme
we have

1 Chw 1_ h22wz —hTw 1_ hzfz
2

2

respectively. For both matrices, the characteristic polynomial is A% —(2—h2w?)A\+1,
so that the eigenvalues are of modulus one if and only if |hw| < 2.

Numerical Experiments. We apply several methods to the Fermi—Pasta—Ulam
(FPU) problem, with w = 50 and initial data as given in Sect.1.5.1. The explicit
and implicit Euler methods give completely wrong solutions even for very small
step sizes. Fig. 5.3 presents the numerical results for H, I, I1, I», I3 obtained with
the implicit midpoint rule, the symplectic Euler, and the Stormer—Verlet scheme.
For the small step size h = 0.001 all methods give satisfactory results, although the
energy exchange is not reproduced accurately over long times. The Hamiltonian H
and the total oscillatory energy I are well conserved over much longer time inter-
vals. The larger step size . = 0.03 has been chosen such that hw = 1.5 is close
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[ implicit mid-point [ symplectic Euler [ Stormer/Verlet
1 ) g o vaal:
; h=0.001 |} h=0.001 YF h = 0.001
0 F el 4 ; =
100 200 100 200 100 200

0

\ \
100 200 100 200 100 200

Fig. 5.3. Numerical solution for the FPU problem (5.2) with data as in Sect..5.1, obtained
with the implicit midpoint rule (left), symplectic Euler (middle), and Stormer—Verlet scheme
(right); the upper pictures use h = 0.001, the lower pictures h = 0.03; the first four pictures
show the Hamiltonian H — 0.8 and the oscillatory energies I1, I2, I3, I; the last two pictures
only show I and [

to the stability limit of the symplectic Euler and the Stormer—Verlet methods. The
values of H and [ are still bounded over very long time intervals, but the oscillations
do not represent the true behaviour. Moreover, the average value of I is no longer
close to 1, as it is for the exact solution. These phenomena call for an explanation,
and for numerical methods with an improved behaviour (see Chap. XIII).

1.6 Exercises

1. Show that the Lotka—Volterra problem (1.1) in logarithmic scale, i.e., by putting
p = log u and ¢ = log v, becomes a Hamiltonian system with the function (1.4)
as Hamiltonian (see Fig. 6.1).

flow in log. scale

[958
T

Fig. 6.1. Area preservation in logarithmic scale of the Lotka—Volterra flow
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2. Apply the symplectic Euler method (or the implicit midpoint rule) to problems

such as
(5)=(Gzam) (0)=(mtzd)

with various initial conditions. Both problems have the same first integral (1.4)
as the Lotka—Volterra problem and therefore their solutions are also periodic.
Do the numerical solutions also show this behaviour?

3. A general two-body problem (sun and planet) is given by the Hamiltonian

1 1 GmM
H(p,ps,q,qs) = 527 PsPs + 5— D' p— ——,
2M 75 2m llg — gsll
where qg,q € R? are the positions of the sun (mass M) and the planet (mass
m), ps,p € R? are their momenta, and G is the gravitational constant.
a) Prove: in heliocentric coordinates () := g — ¢g, the equations of motion are
Q=—-GM+m) —.
1QI?
b) Prove that % (Q(t) x Q(t)) = 0, so that Q(t) stays for all times ¢ in the
plane E = {q; d"q = 0}, where d = Q(0) x Q(0).
Conclusion. The coordinates corresponding to a basis in E satisfy the two-
dimensional equations (2.2).
4. In polar coordinates, the two-body problem (2.2) becomes
z 1
==V ith  V(r)=-2—-
7 (r) wi (r) 52 " 7
which is independent of ¢. The angle ¢(t) can be obtained by simple integration
from ¢(t) = Lo/r%(t).
5. Compute the period of the solution of the Kepler problem (2.2) and deduce
from the result Kepler’s “third law”.
Hint. Comparing Kepler’s second law (2.6) with the area of the ellipse gives
1 LoT = abr. Then apply (2.7). The result is T = 27 (2| Ho|)~3/% = 27a®/2.
6. Deduce Kepler’s first law from (2.2) by the elegant method of Laplace (1799).
Hint. Multiplying (2.2) with (2.5) gives

.. d (g .. d T
- 7d(7>’ - 7d<_7>7
Lo i\ Logz = m ,

and after integration Loy = ¢ + B, Logo = —% + A, where A and B are
integration constants. Then eliminate ¢; and ¢, by multiplying these equations
by ¢» and —gq; respectively and by subtracting them. The result is a quadratic
equation in ¢; and gs.

7. Whatever the initial values for the Kepler problem are, 1 + 2H Lg > 0 holds.
Hence, the value e is well defined by (2.9).
Hint. Ly is the area of the parallelogram spanned by the vectors ¢(0) and ¢(0).
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10.

11.

12.

I. Examples and Numerical Experiments

Implementation of the Stormer—Verlet scheme. Explain why the use of the one-
step formulation (1.17) is numerically more stable than that of the two-term
recursion (1.15).

Runge—Lenz—Pauli vector. Prove that the function

P1 0 1 q1
A(pv Q) = b2 X 0

|
2 2
0 qip2 — @2p1 Vait4 \ o

is a first integral of the Kepler problem, i.e., A(p(t),q(t)) = Const along
solutions of the problem. However, it is not a first integral of the perturbed
Kepler problem of Exercise 12.

Add a column to Table 2.1 which shows the long-time behaviour of the error in
the Runge-Lenz—Pauli vector (see Exercise 9) for the various numerical inte-
grators.

For the Kepler problem, eliminate (p;, p2) from the relations H (p, ¢) = Const,
L(p,q) = Const and A(p,q) = Const. This gives a quadratic relation for
(g1, q2) and proves that the solution lies on an ellipse, a parabola, or on a hy-
perbola.

Study numerically the solution of the perturbed Kepler problem with Hamil-
tonian

1 1%

(p% + p%) - - )

Vi +a 3y +6)’
where (4 is a positive or negative small num-
ber. Among others, this problem describes
the motion of a planet in the Schwarzschild
potential for Einstein’s general relativity the-
ory’. You will observe a precession of the
perihelion, which, applied to the orbit of Mer-
cury, represented the historically first verifi-
cation of Einstein’s theory (see e.g., Birkhoff
1923, p. 261-264).

[N

H(Plypmfh»(h) =

/=

The precession can also be expressed analytically: the equation for u = 1/r as
a function of ¢, corresponding to (2.8), here becomes

1
' tu= g—i—uu?, 6.1)

where d = L2. Now compute the derivative of this solution with respect to s,
at p =0and u = (1 + ecos(¢ — ¢*))/d after one period t = 2. This leads to
n = pu(e/d?)-2m sin ¢ (see the small picture). Then, for small y, the precession
after one period is

2

A
L

(6.2)

7 We are grateful to Prof. Ruth Durrer for helpful hints about this subject.



Chapter II.
Numerical Integrators

After having seen in Chap.I some simple numerical methods and a variety of nu-
merical phenomena that they exhibited, we now present more elaborate classes of
numerical methods. We start with Runge—Kutta and collocation methods, and we
introduce discontinuous collocation methods, which cover essentially all high-order
implicit Runge—Kutta methods of interest. We then treat partitioned Runge—Kutta
methods and Nystrom methods, which can be applied to partitioned problems such
as Hamiltonian systems. Finally we present composition and splitting methods.

I1I.1 Runge—Kutta and Collocation Methods

Fig. 1.1. Carl David Tolmé Runge (left picture), born: 30 August 1856 in Bremen (Germany),
died: 3 January 1927 in Gottingen (Germany).

Wilhelm Martin Kutta (right picture), born: 3 November 1867 in Pitschen, Upper Silesia (now
Byczyna, Poland), died: 25 December 1944 in Fiirstenfeldbruck (Germany)

Runge—Kutta methods form an important class of methods for the integration of
differential equations. A special subclass, the collocation methods, allows for a par-
ticularly elegant access to order, symplecticity and continuous output.
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I1.1.1 Runge-Kutta Methods

In this section, we treat non-autonomous systems of first-order ordinary differential
equations

v = f(t,y), y(to) = Yo (1.1)

The integration of this equation gives y(t1) = yo + f:ol f(t,y(t)) dt, and replacing
the integral by the trapezoidal rule, we obtain

yl:y0+g(f(to,y0)+f(t1,yl))~ (1.2)

This is the implicit trapezoidal rule, which, in addition to its historical impor-
tance for computations in partial differential equations (Crank—Nicolson) and in
A-stability theory (Dahlquist), played a crucial role even earlier in the discovery of
Runge—Kutta methods. It was the starting point of Runge (1895), who “predicted”
the unknown y;-value to the right by an Euler step, and obtained the first of the
following formulas (the second being the analogous formula for the midpoint rule)

k1 = f(to, vo) k1 = f(to, o)
ko = f(to + h,yo + hk1) ke = f(to+ 2,50 + 5k1) (1.3)
y1 =yo + 2 (ki + ko) Y1 = Yo + hka.

These methods have a nice geometric interpretation (which is illustrated in the first
two pictures of Fig. 1.2 for a famous problem, the Riccati equation): they consist
of polygonal lines, which assume the slopes prescribed by the differential equation
evaluated at previous points.

Idea of Heun (1900) and Kutta (1901): compute several polygonal lines, each start-
ing at yo and assuming the various slopes k; on portions of the integration interval,
which are proportional to some given constants a;;; at the final point of each poly-
gon evaluate a new slope k;. The last of these polygons, with constants b;, deter-
mines the numerical solution y; (see the third picture of Fig. 1.2). This idea leads to
the class of explicit Runge—Kutta methods, i.e., formula (1.4) below with a;; = 0
for: < 3.

Yr expl. midp. rule/

Y1

o=
~

5t 1
Fig. 1.2. Runge—Kutta methods for 3§ = > + y2, yo = 0.46, h = 1; dotted: exact solution
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Much more important for our purpose are implicit Runge—Kutta methods, intro-
duced mainly in the work of Butcher (1963).

Definition 1.1. Let b;, a;; (¢,7 = 1,...,s) be real numbers and let ¢; = ijl ajj.
An s-stage Runge—Kutta method is given by

ki = f(fo—FCih,yo—FhZaijkj); t=1,...,s
. i=1 (1.4)
=1

Here we allow a full matrix (a,;) of non-zero coefficients. In this case, the slopes
k; can no longer be computed explicitly, and even do not necessarily exist. For ex-
ample, for the problem set-up of Fig. 1.2 the implicit trapezoidal rule has no solu-
tion. However, the implicit function theorem assures that, for sufficiently small h,
the nonlinear system (1.4) for the values k1, ..., ks has a locally unique solution
close to k; = f(to,yo)-

Since Butcher’s work, the coefficients are usually displayed as follows:

ci1 | a1 ... Qig
(1.5)

Cg Qg1 ... Qgg

| b . by

Definition 1.2. A Runge—Kutta method (or a general one-step method) has order p,
if for all sufficiently regular problems (1.1) the local error y; — y(to + h) satisfies

y1 — y(to +h) = O(RPT) as h — 0.

To check the order of a Runge Kutta method, one has to compute the Taylor
series expansions of y(to + h) and y; around to A = 0. This leads to the following
algebraic conditions for the coefficients for orders 1, 2, and 3:

Yibi=1 for order 1;

in addition Do bici =1/2 for order 2;
in addition S bic2 =1/3

and }, ;bajjc; =1/6  for order 3.

(1.6)

For higher orders, however, this problem represented a great challenge in the first
half of the 20th century. We shall present an elegant theory in Sect.IIl.1 which
allows order conditions to be derived.

Among the methods seen up to now, the explicit and implicit Euler methods

0 11 L7
1 1 )
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are of order 1, the implicit trapezoidal and midpoint rules as well as both methods
of Runge

0 0 0
1]1/2 1/2 1/2 [ 1/2 1] 1 1/2 | 1/2
[1/2 1/2 |1 | 1/2 1/2 0 1

are of order 2. The most successful methods during more than half a century were
the 4th order methods of Kutta:

0 0
1/21/2 1/3| 1/3
121 0 12 2/3|-1/3 1 (1.8)
110 o 1 1] 1 -1 1
| 1/6 2/6 2/6 1/6 | 1/8 3/8 3/8 1/8

I1.1.2 Collocation Methods

The high speed computing machines make it possible to enjoy the advan-
tages of intricate methods.  (P.C. Hammer & J.W. Hollingsworth 1955)

Collocation methods for ordinary differential equa-

tions have their origin, once again, in the implicit

trapezoidal rule (1.2): Hammer & Hollingsworth y
(1955) discovered that this method can be interpreted

as being generated by a quadratic function “which

agrees in direction with that indicated by the differen- Y

tial equation at two points” tg and ¢; (see the picture (— |
to the right). This idea allows one to “see much-used 0 to+h/2 t1
methods in a new light” and allows various general-

izations (Guillou & Soulé (1969), Wright (1970)). An interesting feature of collo-
cation methods is that we not only get a discrete set of approximations, but also a
continuous approximation to the solution.

Y1

Definition 1.3. Let c1, ..., cs be distinct real numbers (usually 0 < ¢; < 1). The
collocation polynomial u(t) is a polynomial of degree s satisfying

u(to) = o
. . 1.9
U(t0+Cih) = f(to—FCq;h,u(tQ—FCih)), 1= 1,...,5,
and the numerical solution of the collocation method is defined by y1 = u(tg + h).
For s = 1, the polynomial has to be of the form u(t) = yo + (¢t — to)k with
k= f(to +cih,yo + hClk‘).

We see that the explicit and implicit Euler methods and the midpoint rule are collo-
cation methods with ¢; = 0, ¢; = 1 and ¢; = 1/2, respectively.
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Fig. 1.3. Collocation solutions for the Lotka—Volterra problem (I.1.1); uo = 0.2, vo = 3.3;
methods of order 2: four steps with A = 0.4; method of order 4: two steps with h = 0.8;
dotted: exact solution

For s = 2 and ¢; = 0,co = 1 we find, of y
course, the implicit trapezoidal rule. The choice of g
1

Hammer & Hollingsworth for the collocation points
isc1o=1/ 24-/3/6, the Gaussian quadrature nodes
(see the picture to the right). We will see that the cor- y\

responding method is of order 4. tONtO +c1h to+cah t‘l

In Fig. 1.3 we illustrate the collocation idea with
these methods for the Lotka—Volterra problem (I.1.1). One can observe that, in spite
of the extremely large step sizes, the methods are quite satisfactory.

Theorem 1.4 (Guillou & Soulé 1969, Wright 1970). The collocation method of
Definition 1.3 is equivalent to the s-stage Runge—Kutta method (1.4) with coeffi-
cients

aij = /O ti(r)dr, b= /O1 ¢;(r) dr, (1.10)
where £;(7) is the Lagrange polynomial {;(7) = [, (T —c1)/(ci — ).
Proof. Let u(t) be the collocation polynomial and define
ki :=4(to + c;h).

By the Lagrange interpolation formula we have 4(tg 4+ 7h) = ijl k;-¢;(T),and
by integration we get

u(t0+clh):y0+h2k]/ Ej(T)dT.
0

Jj=1

Inserted into (1.9) this gives the first formula of the Runge—Kutta equation (1.4).
Integration from 0 to 1 yields the second one. O
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The above proof can also be read in reverse order. This shows that a Runge—
Kutta method with coefficients given by (1.10) can be interpreted as a collocation

method. Since 7F71 = ijl c?iléj(T) for k = 1,...,s, the relations (1.10) are
equivalent to the linear systems
- k—1 o .
C(q) : Zaijcj :fl’ k=1,...,q, allg
j=1

- ) (1.11)
B(p) : Zbicfflzg, k=1,...,p,
i=1

with ¢ = s and p = s. What is the order of a Runge—Kutta method whose coeffi-
cients b;, a;; are determined in this way?

Compared to the enormous difficulties that the first explorers had in constructing
Runge—Kutta methods of orders 5 and 6, and also compared to the difficult algebraic
proofs of the first papers of Butcher, the following general theorem and its proof,
discovered in this form by Guillou & Soulé (1969), are surprisingly simple.

Theorem 1.5 (Superconvergence). If the condition B(p) holds for some p > s,
then the collocation method (Definition 1.3) has order p. This means that the collo-
cation method has the same order as the underlying quadrature formula.

Proof. We consider the collocation polynomial u(t) as the solution of a perturbed
differential equation

w= f(t,u)+ 0(t) (1.12)
with defect §(t) := u(t) — f(¢,u(t)). Subtracting (1.1) from (1.12) we get after
linearization that

i) = i0) = 52 (100 (w0 - y(0) + 60+ ), (L1

where, for tg < t < to + h, the remainder 7(t) is of size O(||lu(t) — y(¢)||?) =
O(h?**2) by Lemma 1.6 below. The variation of constants formula (see e.g., Hairer,
Ngrsett & Wanner (1993), p. 66) then yields
to+h
y1—y(to+h) = u(to+h)—y(to+h) = R(to+h,s) (6(s)+r(s)) ds, (1.14)
to
where R(t,s) is the resolvent of the homogeneous part of the differential equa-
tion (1.13), i.e., the solution of the matrix differential equation OR(¢,s)/0t =
A(t)R(t, s), R(s,s) = I, with A(t) = 0f/0y(t,y(t)). The integral over R(to +
h, s)r(s) gives a O(h?53) contribution. The main idea now is to apply the quadra-
ture formula (b;, ¢;)$_; to the integral over g(s) = R(to + h, s)d(s); because the
defect 0(s) vanishes at the collocation points ¢ty + c;h for i = 1,..., s, this gives
zero as the numerical result. Thus, the integral is equal to the quadrature error, which
is bounded by AP*! times a bound of the pth derivative of the function g(s). This
derivative is bounded independently of h, because by Lemma 1.6 all derivatives
of the collocation polynomial are bounded uniformly as ~ — 0. Since, anyway,
p < 2s,we gety; — y(to + h) = O(hPT) from (1.14). 0
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Lemma 1.6. The collocation polynomial u(t) is an approximation of order s to the
exact solution of (1.1) on the whole interval, i.e.,

lut) —y@)|| < C-hTY  for te[to,to+h) (1.15)

and for sufficiently small h.
Moreover; the derivatives of u(t) satisfy for t € [to,to + h]

[u® (@) —yB @) < C-hHF for k=0,...,s.
Proof. The collocation polynomial satisfies
ito + Th) = Z f(to + esh, u(to + cih)) (),
i=1
while the exact solution of (1.1) satisfies
§(to +7h) = Z £ (to + cihyy(to + eih) ) £3(7) + h* E(7, h),
i=1
where the interpolation error £(7, h) is bounded by maxycis, +h) [yEHD )]/ 8!

and its derivatives satisfy

(s+1) t
|‘E(k71)(7', h)” < max ”y ( )H )
telto,to+h] (s — k4 1)!
This follows from the fact that, by Rolle’s theorem, the differentiated polynomial
Soiy f(to + cihy(to + cih)) ¢*=V (1) can be interpreted as the interpolation

polynomial of h*~1y(*)(t, +7h) at s — k + 1 points lying in [to, to + h]. Integrating
the difference of the above two equations gives

ylto+7h) —ulty+h) = h S Af, /T&(a)da—l—hs“/TE(a,h)da (1.16)
i=1 0 0

with Af; = f(to +cih,y(to + cih)) — f(to +cih, uto + cih)). Using a Lipschitz
condition for f(t,y), this relation yields

t) —u(t)|]| <hCL t) — u(t)|| + Const - h*+1,
e 1110 OIS HOL sy To®) = O+ Cone

implying the statement (1.15) for sufficiently small h > 0.
The proof of the second statement follows from

B (y(k)(tg rh) — u® (2o + Th)) =13 ALV () + het EED (1 h)
=1

by using a Lipschitz condition for f(t,y) and the estimate (1.15). O
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I1.1.3 Gauss and Lobatto Collocation

Gauss Methods. If we take cq,...,cs as the zeros of the sth shifted Legendre
polynomial

ddxs (”“"S(g” N DS)’

the interpolatory quadrature formula has order p = 2s, and by Theorem 1.5, the
Runge—Kutta (or collocation) method based on these nodes has the same order 2s.
For s = 1 we obtain the implicit midpoint rule. The Runge—Kutta coefficients for
s = 2 (the method of Hammer & Hollingsworth 1955) and s = 3 are given in
Table 1.1. The proof of the order properties for general s was a sensational result of
Butcher (1964a). At that time these methods were considered, at least by the editors
of Math. of Comput., to be purely academic without any practical value; 5 years
later their A-stability was discovered, 12 years later their B-stability, and 25 years
later their symplecticity. Thus, of all the papers in issue No. 85 of Math. of Comput.,
the one most important to us is the one for which publication was the most difficult.

Table 1.1. Gauss methods of order 4 and 6

1 V3 1 1 V3
2 6 4 4 6
1 V3|1 V3 1
2t |1t 1
1 1
2 2
1 V15 5 2 V15 5 415
2 10 36 9 15 36 30
L I VAL T S RVAL:
36 ' 24 9 36 24
1 oVis| 5 V52 VB 5
2 10 |3 30 9 15 36
5 4 5
18 9 18

Radau Methods. Radau quadrature formulas have the highest possible order,
2s — 1, among quadrature formulas with either ¢; = 0 or ¢, = 1. The correspond-
ing collocation methods for ¢, = 1 are called Radau IIA methods. They play an
important role in the integration of stiff differential equations (see Hairer & Wanner
(1996), Sect. IV.8). However, they lack both symmetry and symplecticity, properties
that will be the subjects of later chapters in this book.

Lobatto IIIA Methods. Lobatto quadrature formulas have the highest possible or-

der with ¢; = 0 and ¢, = 1. Under these conditions, the nodes must be the zeros
of
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ds—2

— (xs_l(ar—-l)s_l) (1.17)

and the quadrature order is p = 2s — 2. The corresponding collocation methods are
called, for historical reasons, Lobatto IIIA methods. For s = 2 we have the implicit
trapezoidal rule. The coefficients for s = 3 and s = 4 are given in Table 1.2.

Table 1.2. Lobatto IIIA methods of order 4 and 6

0] o0 o0 0
115 1 1
2124 3 24
1 2 1
15 3 &
1 2 1
6 3 6
0 0 0 0 0
5—v5 | 11++5 25 —+/5 25—-13v5 —-1++5
10 120 120 120 120
545 | 11-v5  25+13V5 25++/5 -1-+5
10 120 120 120 120
1 1 5 5 1
12 12 12 12
1 5 5 1
12 12 12 12

I1.1.4 Discontinuous Collocation Methods

Collocation methods allow, as we have seen above, a very elegant proof of their
order properties. By similar ideas, they also admit strikingly simple proofs for their
A- and B-stability as well as for symplecticity, our subject in Chap. VI. However,
not all method classes are of collocation type. It is therefore interesting to define a
modification of the collocation idea, which allows us to extend all the above proofs
to much wider classes of methods. This definition will also lead, later, to important

classes of partitioned methods.

Definition 1.7. Letcs, ..., cs_1 be distinct real
numbers (usually 0 < ¢; < 1), and let by, b
be two arbitrary real numbers. The correspond-
ing discontinuous collocation method is then
defined via a polynomial of degree s — 2 sat-
isfying

u(to) = yo — hbi (ulto) — f(to, u(to)))

u(to + c;h) = f(to + cih, ulto + ¢;h)),

y1 = u(ty) — hbs (a(tr) — f(tr, u(tr))).

}Lbl
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The figure gives a geometric interpretation of the correction term in the first and
third formulas of (1.18). The motivation for this definition will become clear in the
proof of Theorem 1.9 below. Our first result shows that discontinuous collocation
methods are equivalent to implicit Runge—Kutta methods.

Theorem 1.8. The discontinuous collocation method of Definition 1.7 is equivalent
to an s-stage Runge—Kutta method (1.4) with coefficients determined by c; = 0,
cs = 1, and

a;1 = by, ais =0  fori=1,...,s,

C(s—2) and B(s—2),

with the conditions C(q) and B(p) of (1.11).

(1.19)

Proof. As in the proof of Theorem 1.4 we put k; := 4(to + ¢;h) (this time for
1=2,...,s—1),sothatu(to+7h) = Zj;; k;-£;(7) by the Lagrange interpolation
formula. Here, £;(7) corresponds to ¢z, . . ., ¢s—1 and is a polynomial of degree s—3.
By integration and using the definition of u(tg) we get

s—1 ¢
uto +eh) = ult) +h 3k [ (s
j=2 70

s—1 ¢
y0+hb1k1+h2kj(/ fj(T)dT—bléj(O))
=2 0

with k1 = f(yo). Inserted into (1.18) this gives the first formula of the Runge—Kutta
equation (1.4) with a;; = ;" ¢;(7) dr — b1£;(0). As for collocation methods, one
checks that the a;; are uniquely determined by the condition C'(s — 2). The formula
for y; is obtained similarly. d

Table 1.3. Survey of discontinuous collocation methods

type characteristics prominent examples
b1 =0, bs =0 | (s — 2)-stage collocation Gauss, Radau ITA, Lobatto IITA
b1 =0, bs #0 | (s — 1)-stage with a;s =0 methods of Butcher (1964b)
b1 #0, bs =0 | (s—1)-stage with a;1 = b1 Radau TA, Lobatto ITIC
by #0, bs #0 | s-stage with a;1 = b1, a;s =0 | Lobatto ITIB

If by = 0 in Definition 1.7, the entire first column in the Runge—Kutta tableau
vanishes, so that the first stage can be removed, which leads to an equivalent method
with s — 1 stages. Similarly, if by = 0, we can remove the last stage. Therefore, we
have all classes of methods, which are “continuous” either to the left, or to the right,
or on both sides, as special cases in our definition.

In the case where b; = b, = 0, the discontinuous collocation method (1.18) is
equivalent to the (s — 2)-stage collocation method based on c¢s, ..., cs—1 (see Ta-
ble 1.3). The methods with b = 0 but b; # 0, which include the Radau IA and
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Table 1.4. Lobatto IIIB methods of order 4 and 6

0 L S B B VA B
12 24 24
11 5-Vvh | 1 254V6  25-13V6
0ls =5 © 10 12 120 120
111 1 5+4v5 | 1 25413V5 25—+/5 0
2l 3 O 0 |12 120 120
1 5 1 11—-+/5 11++/5
"ls 6 R 24 24 0
1 2 1 1 5 5 1
6 3 6 12 12 12 12

Lobatto IIIC methods, are of interest for the solution of stiff differential equations
(Hairer & Wanner 1996). The methods with b; = 0 but by # 0, introduced by
Butcher (1964a, 1964b), are of historical interest. They were thought to be compu-
tationally attractive, because their last stage is explicit. In the context of geometric
integration, much more important are methods for which both b; # 0 and b, # 0.

Lobatto IIIB Methods (Table 1.4). We consider the quadrature formulas whose
nodes are the zeros of (1.17). We have ¢c; = 0 and ¢; = 1. Based on ca,...,cs_1
and by, b, we consider the discontinuous collocation method. This class of meth-
ods is called Lobatto IIIB (Ehle 1969), and it plays an important role in geometric
integration in conjunction with the Lobatto IIIA methods of Sect.II.1.3 (see Theo-
rem IV.2.3 and Theorem VI.4.5). These methods are of order 2s—2, as the following
result shows.

Theorem 1.9 (Superconvergence). The discontinuous collocation method of Def-
inition 1.7 has the same order as the underlying quadrature formula.

Proof. We follow the lines of the proof of Theorem 1.5. With the polynomial u(t)
of Definition 1.7, and with the defect

8(t) == a(t) — f(t,u(t))
we get (1.13) after linearization. The variation of constants formula then yields

ulto +h) = y(to+h) = Rlto + h,to) (u(to) - yo)
to+h
n mm+mg@gwwggw,
to

which corresponds to (1.14) if u(tg) = yo. As a consequence of Lemma 1.10 below
(with k& = 0), the integral over R(to + h, s)r(s) gives a O(h?*~!) contribution.
Since the defect 6(tg + ¢;h) vanishes only fori = 2, ..., s —1, an application of the
quadrature formula to R(to + h, s)d(s) yields hby R(to + h, t9)d(to) + hbsd (to + h)
in addition to the quadrature error, which is O(h?*1). Collecting terms suitably, we
obtain
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’U,(tl) — hbsé(tl) — y(tl) = R(tl,to)(u(to) —+ hbl§(to) — yo)
+O (kP + O(h%s 1),

which, after using the definitions of u(¢o) and u(t; ), proves y1 —y(t1) = O(hPT1)+
O(h?s~1). o

Lemma 1.10. The polynomial u(t) of the discontinuous collocation method (1.18)
satisfies for t € [to,to + h| and for sufficiently small h

|[u® (@) —y® @) <C-r*F for k=0,...,5—2.

Proof. The proof is essentially the same as that for Lemma 1.6. In the formulas for
u(to + 7h) and y(to + Th), the sum has to be taken from i = 2toi = s — 1.
Moreover, all A® become h°~2. In (1.16) one has an additional term

Yo — u(to) = kb1 (u(to) — f(to,u(to))),

which, however, is just an interpolation error of size O(h*~!) and can be included
in Const - h*~ 1. O

I1.2 Partitioned Runge-Kutta Methods

Some interesting numerical methods introduced in Chap.I (symplectic Euler and
the Stormer—Verlet method) do not belong to the class of Runge—Kutta methods.
They are important examples of so-called partitioned Runge—Kutta methods. In this
section we consider differential equations in the partitioned form

where y and z may be vectors of different dimensions.

I1.2.1 Definition and First Examples

The idea is to take two different Runge—Kutta methods, and to treat the y-variables
with the first method (a;;, b;), and the z-variables with the second method (@;;, b;).

Definition 2.1. Let b;, a;; and 31», a;; be the coefficients of two Runge—Kutta meth-
ods. A partitioned Runge—Kutta method for the solution of (2.1) is given by

ki = f(y0+h2aijkj, zo+h26ij€j),
j=1 j=1

b = g(yo+h2aijkj7 Zo+hzaij€j), 2.2)
j=1 j=1

S

yio= yo+hY bk 2= z2+hY bl
i—1 i=1
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Methods of this type were originally proposed by Hofer in 1976 and by Griepen-
trog in 1978 for problems with stiff and nonstiff parts (see Hairer, Ngrsett & Wanner
(1993), Sect. I1.15). Their importance for Hamiltonian systems (see the examples of
Chap. I) has been discovered only in the last decade.

An interesting example is the symplectic Euler method (I.1.9), where the im-
plicit Euler method b; = 1,a;; = 1 is combined with the explicit Euler method
/b\l = 1,a1; = 0. The Stormer—Verlet method (I.1.17) is of the form (2.2) with
coefficients given in Table 2.1.

Table 2.1. Stormer—Verlet as a partitioned Runge—Kutta method

0] o o 1/2]1/2 0
1]1/2 1/2 12 {1/2 o
/2 12 12 12

The theory of Runge—Kutta methods can be extended in a straightforward man-
ner to partitioned methods. Since (2.2) is a one-step method (y1, 21) = @1 (Yo, 20),
the Definition 1.2 of the order applies directly. Considering problems ¢y = f(y),
2 = g(z) without any coupling terms, we see that the order of (2.2) cannot exceed
min(p, p), where p and p are the orders of the two methods.

Conditions for Order Two. Expanding the exact solution of (2.1) and the numer-
ical solution (2.2) into Taylor series, we see that the method is of order 2 if the
coupling conditions

> i bitig =1/2, > biai; = 1/2 (2.3)

are satisfied in addition to the usual Runge—Kutta order conditions for order 2. The
method of Table 2.1 satisfies these conditions, and it is therefore of order 2. We also
remark that (2.3) is automatically satisfied by partitioned methods that are based on
the same quadrature nodes, i.e.,

c; = C; for all 4 (2.4)

where, as usual, ¢; = >, a;; and ¢ =3, @y .

Conditions for Order Three. The conditions for order three already become quite
complicated, unless (2.4) is satisfied. In this case, we obtain the additional condi-
tions

Zij b{dijcj = 1/6, Zijgiaijcj = 1/6. (25)

The order conditions for higher order will be discussed in Sect. III.2.2. It turns out
that the number of coupling conditions increases very fast with order, and the proofs
for high order are often very cumbersome. There is, however, a very elegant proof of
the order for the partitioned method which is the most important one in connection
with “geometric integration”, as we shall see now.
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I1.2.2 Lobatto IIIA-IIIB Pairs

These methods generalize the Stormer—Verlet method to arbitrary order. Indeed, the
left method of Table 2.1 is the trapezoidal rule, which is the Lobatto IIIA method
with s = 2, and the method to the right is equivalent to the midpoint rule and, apart
from the values of the c¢;, is the Lobatto IIIB method with s = 2. Sun (1993b) and
Jay (1996) discovered that for general s the combination of the Lobatto IIIA and
IIIB methods are suitable for Hamiltonian systems. The coefficients of the methods
for s = 3 are given in Table 2.2. Using the idea of discontinuous collocation, we
give a direct proof of the order for this pair of methods.

Table 2.2. Coefficients of the 3-stage Lobatto IITA-IIIB pair

0ol 0 0 0 0 ]1/6 -1/6 0

1/2 | /24 1/3 —1/24 12116 13 0

1| 1/6 2/3 1/6 1 |1/6 5/6 0
| 16 2/3 1/6 1/6  2/3  1/6

Theorem 2.2. The partitioned Runge—Kutta method composed of the s-stage Lo-
batto IIIA and the s-stage Lobatto IIIB method, is of order 2s — 2.

Proof. Letcy =0,c¢a,...,c5-1,¢s = 1 and by, ..., b, be the nodes and weights of
the Lobatto quadrature. The partitioned Runge—Kutta method based on the Lobatto
ITA-IIIB pair can be interpreted as the discontinuous collocation method

u(to) = Yo

v(to) = 20 — hby (0(t0) — g(u(to), v(to)))

u(to + c;h) = f(u(to + ¢;h), v(to + c;h)), i=1,...,s 26)
(to + ¢;h) = g(u(to + ¢cih),v(to + cih)), 1=2,...,5—1 '
y1 = u(ty)

21 = w(tr) — hbs (5(t1) — g(u(tr),v(t1))),

where u(t) and v(t) are polynomials of degree s and s — 2, respectively. This is seen
as in the proofs of Theorem 1.4 and Theorem 1.8. The superconvergence (order
2s — 2) is obtained with exactly the same proof as for Theorem 1.9, where the
functions u(t) and y(t) have to be replaced with (u(t),v(t))T and (y(t), z(¢))7,
etc. Instead of Lemma 1.10 we use the estimates (for ¢ € [tg,tg + h])

[u® (@) —y® (@) < c-h*™F for k=0,...,s,
[o® () —zB @) < c-h*F for k=0,...,5-2,

VAN

which can be proved by following the lines of the proofs of Lemma 1.6 and
Lemma 1.10. o
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I1.2.3 Nystrom Methods

Da bis jetzt die direkte Anwendung der Rungeschen Methode auf den
wichtigen Fall von Differentialgleichungen zweiter Ordnung nicht behan-
delt war . .. (E.J. Nystrom 1925)

Second-order differential equations

g=9(ty.9) 2.7

form an important class of problems. Most of the differential equations in Chap. I
are of this form (e.g., the Kepler problem, the outer solar system, problems in mole-
cular dynamics). This is mainly due to Newton’s law that forces are proportional
to second derivatives (acceleration). Introducing a new variable z = g for the first
derivative, the problem (2.7) becomes equivalent to the partitioned system

v =z, 2=g(t,y,2). (2.8)
A partitioned Runge—Kutta method (2.2) applied to this system yields

s
ki = Zo+hzal‘jgj,
j=1

l; = g(to + cih, yo + hZaijkj, 2o + hza}jéj), 2.9)
j=1 j=1
Y1 = y0+hzbikia 21 = Z()"‘hzgifio
i=1 i=1

If we insert the formula for k; into the others, we obtain Definition 2.3 with
Tij = aidrg, b= by, 2.10)
k=1 k=1

Definition 2.3. Let ¢;, b;, @; ; and 32 , @;; be real coefficients. A Nystrom method for
the solution of (2.7) is given by

b = 9<t0 + cih, yo + cihgo + b2 Zaijfj, Yo + hzaijfj>7
7=1 s 71 (2.11)
vi = yo+hjo+h>D bili, G = go+hYy bili.
i=1 i=1

For the important special case § = g(¢,y), where the vector field does not de-
pend on the velocity, the coefficients @;; need not be specified. A Nystrom method is
of order pif y; —y(to+h) = O(hRPT1) and ¢y — 5 (to +h) = O(hP*1). Itis not suf-
ficient to consider y; alone. The order conditions will be discussed in Sect. IT11.2.3.

Notice that the Stormer—Verlet scheme (I.1.17) is a Nystrom method for prob-
lems of the form § = g(¢,y). We have s = 2, and the coefficients are ¢c; = 0,c2 = 1,
11 = Q12 = aoo = 0, a9 = 1/2, 51 = 1/2, 52 =0, al’ld/b\l 262 = 1/2 With
Gni1/2 = Gn + 20,410 the step (G172, Vn—1/2) — (@nt1/2, Vnt1/2) of 1L1.17)
becomes a one-stage Nystrom method with ¢; = 1/2, @17 =0, b = 31 = 1.
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I1.3 The Adjoint of a Method

We shall see in Chap.V that symmetric numerical methods have many impor-
tant properties. The key for understanding symmetry is the concept of the adjoint
method.

The flow ¢, of an autonomous differential equation

v = f(y), y(to) = Yo 3.1

satisfies ¢~} = ;. This property is not, in general, shared by the one-step map
@, of a numerical method. An illustration is presented in the upper picture of
Fig. 3.1 (a), where we see that the one-step map @}, for the explicit Euler method
is different from the inverse of @_j, which is the implicit Euler method.

Definition 3.1. The adjoint method @} of a method &y, is the inverse map of the
original method with reversed time step —h, i.e.,

=0T, (3.2)

(see Fig. 3.1 (b)). In other words, y; = &7 (yo) is implicitly defined by &_(y1) =
9o. A method for which &} = &y, is called symmetric.

Fig. 3.1. Definition and properties of the adjoint method

The consideration of adjoint methods evolved independently from the study of
symmetric integrators (Stetter (1973), p. 125, Wanner (1973)) and from the aim of
constructing and analyzing stiff integrators from explicit ones (Cash (1975) calls
them “the backward version” which were the first example of mono-implicit meth-
ods and Scherer (1977) calls them “reflected methods™).

The adjoint method satisfies the usual properties such as (97,)* = @}, and (P, o
)" = ¥y o @; for any two one-step methods @, and W¥y,. The implicit Euler
method is the adjoint of the explicit Euler method. The implicit midpoint rule is
symmetric (see the lower picture of Fig.3.1(a)), and the trapezoidal rule and the
Stormer—Verlet method are also symmetric.

The following theorem shows that the adjoint method has the same order as the
original method, and, with a possible sign change, also the same leading error term.

Theorem 3.2. Let ¢, be the exact flow of (3.1) and let Py, be a one-step method of
order p satisfying
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Pn(yo) = @n(yo) + Clyo) /7 + O(APT?). (3.3)
The adjoint method P}, then has the same order p and we have
@5 (y0) = n(yo) + (=1)7Cyo) A1 + O(hP*?). (3.4)
If the method is symmetric, its (maximal) order is even.

Proof. The idea of the proof is exhibited in drawing (c) of Fig.3.1. From a given
initial value yo we compute ¢y (yo) and y1 = @} (yo), whose difference e* is the
local error of @5 . This error is then “projected back” by &_j, to become e. We see
that —e is the local error of @_,,, i.e., by hypothesis (3.3),

e = (=1)PC(en(yo))h"*" + O(h"*?). (3.5)
Since ¢r(yo) = yo + O(h) and e = (I + O(h))e*, it follows that
" = (=1)PC(yo) "™ + O(hF*?)

which proves (3.4). The statement for symmetric methods is an immediate conse-
quence of this result, because @5, = &}, implies C(yo) = (—1)?C(yo), and therefore
C'(yo) can be different from zero only for even p. O

I1.4 Composition Methods

The idea of composing methods has some tradition in several variants: composition
of different Runge—Kutta methods with the same step size leading to the Butcher
group, which is treated in Sect. III.1.3; cyclic composition of multistep methods for
breaking the “Dahlquist barrier” (see Stetter (1973), p.216); composition of low
order Runge—Kutta methods for increasing stability for stiff problems (Gentzsch &
Schliiter (1978), Iserles (1984)). In the following, we consider the composition of a
given basic one-step method (and, eventually, its adjoint method) with different step
sizes. The aim is to increase the order while preserving some desirable properties
of the basic method. This idea has mainly been developed in the papers of Suzuki
(1990), Yoshida (1990), and McLachlan (1995).

Let &}, be a basic method and 74, . . . , s real numbers. Then we call its compo-
sition with step sizes y1h, ¥2h, ..., vsh, i.e.,

Wh:¢75h0~-~0¢71h7 (4])
the corresponding composition method (see Fig. 4.1 (a)).
Theorem 4.1. Let &, be a one-step method of order p. If

Yi+...+y =1

AP 4Aptl =, (42)

then the composition method (4.1) is at least of order p + 1.
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(a) ©5;n(Yo)

q’),yl h Y1 ¢'Y2 h

Fig. 4.1. Composition of method @}, with three step sizes

Proof. The proof is presented in Fig. 4.1 (b) for s = 3. It is very similar to the proof
of Theorem 3.2. By hypothesis

e1 = Clyo) AT AP+ O(hPT2)
es = C(y1) '”Yéﬂrlhpﬂ + O(h?+?) (4.3)
es = C(ya) - 2T P + O(RPF2).

We have, as before, y; = yo + O(h) and E; = (I + O(h))e; for all ¢ and obtain, for
=1
n(yo) = Wn(yo) = By + B+ B = Clyo) 0 '+ 25 8 ORI+ O(hP+)

which shows that under conditions (4.2) the O(hP*1)-term vanishes. a

Example 4.2 (The Triple Jump). Equations (4.2) have no real solution for odd p.
Therefore, the order increase is only possible for even p. In this case, the smallest
s which allows a solution is s = 3. We then have some freedom for solving the
two equations. If we impose symmetry v; = -y3, then we obtain (Creutz & Gocksch
1989, Forest 1989, Suzuki 1990, Yoshida 1990)

1 91/(p+1)

’71273=m’ 72=—m- 4.4)

This procedure can be repeated: we start with a symmetric method of order 2, apply
(4.4) with p = 2 to obtain order 3; due to the symmetry of the ’s this new method
is in fact of order 4 (see Theorem 3.2). With this new method we repeat (4.4) with
p = 4 and obtain a symmetric 9-stage composition method of order 6, then with
p = 6 a 27-stage symmetric composition method of order 8, and so on. One obtains
in this way any order, however, at the price of a terrible zig-zag of the step points
(see Fig.4.2).

p=38

O,""QT

Fig. 4.2. The Triple Jump of order 4 and its iterates of orders 6 and 8
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Example 4.3 (Suzuki’s Fractals). If one desires methods with smaller values of
~:, one has to increase s even more. For example, for s = 5 the best solution of
(4.2) has the sign structure + + — + + with ;3 = 79 (see Exercise 7). This leads to
(Suzuki 1990)

1 41/ (p+1)

'71:72:74:75:m7 73:—m~ 4.5)

The repetition of this algorithm for p = 2,4, 6, . .. leads to a fractal structure of the
step points (see Fig. 4.3).

p=4

0 1

Fig. 4.3. Suzuki’s “fractal” composition methods

Composition with the Adjoint Method. If we replace the composition (4.1) by the
more general formula

Wh:@asho©zsho...o@Ezho@alh O@Elh, (4.6)

the condition for order p + 1 becomes, by using the result (3.4) and a similar proof
as above,
Bi+or+G+... +0:+a; =1 @7
(—1PBT o (SDPEE L (PRl =0
This allows an order increase for odd p as well. In particular, we see at once the
solution oy = By = 1/2 for p = s = 1, which turns every consistent one-step
method of order 1 into a second-order symmetric method

Wh = dsh/Q o 45;;/2 (48)

Example 4.4. If &;, is the explicit (resp. implicit) Euler method, then ¥, in (4.8)
becomes the implicit midpoint (resp. trapezoidal) rule.

Example 4.5. In a second-order problem ¢ = p, p = ¢g(q), if &, is the sym-
plectic Euler method, which discretizes ¢ by the implicit Euler and p by the ex-
plicit Euler method, then the composed method ¥}, in (4.8) is the Stormer—Verlet
method (I.1.17).
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A Numerical Example. To demonstrate the numerical performance of the above
methods, we choose the Kepler problem (1.2.2) with e = 0.6 and the initial values
from (I.2.11). As integration interval we choose [0, 7.5], a bit more than one revo-
lution. The exact solution is obtained by carefully evaluating the integral (1.2.10),
which gives

© = 8.67002632314281495159108828552, 4.9)

with the help of which we compute 7, ¢, 7 from (1.2.8) and (1.2.6). This gives

q1 = —0.828164402690770818204757585370
g2 = 0.778898095658635447081654480796
p1 = —0.856384715343395351524486215030
p2 = —0.160552150799838435254419104102 .

(4.10)

As the basic method we use the Verlet scheme and compare in Fig. 4.4 the perfor-
mances of the composition sequences of the Triple Jump (4.4) and those of Suzuki
(4.5) for a large number of different equidistant basic step sizes and for orders
p =4,6,8,10,12. Each basic step is then divided into 3, 9, 27, 81, 243 respectively
5,25,125,625,3125 composition steps and the maximal final error is compared
with the total number of function evaluations in double logarithmic scales. For each
method and order, all the points lie asymptotically on a straight line with slope —p.
Therefore, theoretically, a higher order method will become superior when the pre-
cision requirements become sufficiently high. But we see that for orders 10 and 12
these “break even points” are far beyond any precision of practical interest, after
some 40 or 50 digits. We also observe that the wild zig-zag of the Triple Jump (4.4)
is a more serious handicap than the enormous number of small steps of the Suzuki
sequence (4.5).

For later reference we have also included, in black symbols, the results obtained
by the two methods (V.3.11) and (V.3.13) of orders 6 and 8, respectively, which will
be the outcome of a more elaborate order theory of Chap. I11.

10°
1073 1073
106 106

107° 107

1025 Triple Jump %, 2° 1025 Suzuki

function eval. function eval.

‘ 1 \\\HH‘ 1 \\\HH‘ 1 \\\HH‘ 1 \\\HH‘ 1 \\\HH‘

102 103 104 10° 103 104 10°

Fig. 4.4. Numerical results of the Triple Jump and Suzuki step sequences (grey symbols)
compared to optimal methods (black symbols)

10—15 10—15

Erm

—_
o
]
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IL.5 Splitting Methods

The splitting idea yields an approach that is completely different from Runge—Kutta
methods. One decomposes the vector field into integrable pieces and treats them
separately.

12221l o T O
RSN, o om om o o o om0 sa
/‘/‘/C‘/f«fvf; o om om0 om om0 on utgg%“
SOy = T AT e R R
//???545; NI ATII - : i i % % %
77 o> 0> 03 03 03 03 03 0> A4

AR ey NEERERET

Fig. 5.1. A splitting of a vector field

We consider an arbitrary system ¢ = f(y) in R™, and suppose that the vector
field is “split” as (see Fig.5.1)

g =My + ). (5.1)

If then, by chance, the exact flows cpE] and QQ?] of the systems y = f[(y) and

g = f12 (y) can be calculated explicitly, we can, from a given initial value g, first
solve the first system to obtain a value y; 3, and from this value integrate the second
system to obtain ;. In this way we have introduced the numerical methods

(1]
Y Y2 Ph
P2
o = SDELQ] o 99%1] @h/( @[2] i —o Y1
, h A A, (5.2)
By =g}, o)) Yo 11 y g
©h Yz Yo

where one is the adjoint of the other. These formulas are often called the Lie—
Trotter splitting (Trotter 1959). By Taylor expansion we find that ((le] o @f] )yo) =
©n(yo)+O(h?), so that both methods give approximations of order 1 to the solution
of (5.1). Another idea is to use a symmetric version and put
(1]
Ph2
/ Y1

/
2 = el ol ool Al 6
7/
Yo 1
Pr/2
which is known as the Strang splitting' (Strang 1968), and sometimes as the

Marchuk splitting (Marchuk 1968). By breaking up in (5.3) gof] = @f}Q o @E}Q,
! The article Strang (1968) deals with spatial discretizations of partial differential equations

such as uy = Aug + Bu,y. There, the functions fU typically contain differences in only
one spatial direction.
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we see that the Strang splitting @gf] = @00 P} /2 is the composition of the Lie-

Trotter method and its adjoint with halved step sizes. The Strang splitting formula
is therefore symmetric and of order 2 (see (4.8)).

Example 5.1 (The Symplectic Euler and the Stormer—Verlet Schemes). Sup-
pose we have a Hamiltonian system with separable Hamiltonian H (p, q) = T'(p) +
U(q). We consider this as the sum of two Hamiltonians, the first one depending only
on p, the second one only on ¢q. The corresponding Hamiltonian systems

p=20 p = —U, (q)

d 5.4
=T 0 4=0 6

can be solved without problem to yield

p(t) = po and p(t) = po—tUq(qo)
q(t) = qo +tTp(po) q(t) = qo.

Denoting the flows of these two systems by ! and ¢!, we see that the symplectic
Euler method (I.1.9) is just the composition cpf o cp,({. Furthermore, the adjoint of
the symplectic Euler method is ¢Y o (7, and by Example 4.5 the Verlet scheme is
oY /20 oF oY /2» the Strang splitting (5.3). Anticipating the results of Chap. VI, the

(5.5)

flows @{ and go,({ are both symplectic transformations, and, since the composition of
symplectic maps is again symplectic, this gives an elegant proof of the symplecticity
of the “symplectic” Euler method and the Verlet scheme.

General Splitting Procedure. In a similar way to the general idea of composi-
tion methods (4.6), we can form with arbitrary coefficients a1, b1, as, ..., am,bm
(where, eventually, a; or b,,, or both, are zero)

2 1 2 1 2 1
), = <pl[7 ] B © (pL,],Lh o 901[71171h 0...0 ngLjh o <pl[)1]h o %[zl]h (5.6)

m

and try to increase the order of the scheme by suitably determining the free coeffi-
cients. An early contribution to this subject is the article of Ruth (1983), where, for
the special case (5.4), a method (5.6) of order 3 with m = 3 is constructed. Forest
& Ruth (1990) and Candy & Rozmus (1991) extend Ruth’s technique and construct
methods of order 4. One of their methods is just (4.1) with 1, 2, v3 given by (4.4)
(p = 2) and &}, from (5.3). A systematic study of such methods started with the
articles of Suzuki (1990, 1992) and Yoshida (1990).

A close connection between the theories of splitting methods (5.6) and of com-
position methods (4.6) was discovered by McLachlan (1995). Indeed, if we put
(1 = ay and break up go,[i]h = gpfﬂ B © 9951] ;, (group property of the exact flow)

where «; is given in (5.8), further <p([112]h = @Ejh ° ‘P[oﬂh and so on (cf. Fig.5.2), we

see, using (5.2), that ¥}, of (5.6) is identical with ¥}, of (4.6), where
Py = Lpgll] ) gpf] so that o) = @E] o @E]. 5.7

A necessary and sufficient condition for the existence of a,; and (; satisfying (5.8)
is that Y a; = >_ b;, which is the consistency condition anyway for method (5.6).
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a1 =
by =081+ o
(5.8)
as = o1 + B2
by = B2 + ap
az = o + 33
b3 = 33
Yo SOL,ll]h

Fig. 5.2. Equivalence of splitting and composition methods

Combining Exact and Numerical Flows. It may happen that the differential equa-
tion y = f(y) can be split according to (5.1), such that only the flow of, say,
y = fl(y) can be computed exactly. If f[!/(y) constitutes the dominant part of
the vector field, it is natural to search for integrators that exploit this information.
The above interpretation of splitting methods as composition methods allows us to
construct such integrators. We just consider

&, =Moo @r =l ol (5.9)

as the basis of the composition method (4.6). Here <p,[51] is the exact flow of y =

fhl (y), and (25%2] is some first-order integrator applied to §y = f[?! (y). Since P, of
(5.9) is consistent with (5.1), the resulting method (4.6) has the desired high order.
It is given by

W, =), 00l o a0l L 00 o oo gl (5.10)

Notice that replacing <p£2] with a low-order approximation Q?} in (5.6) would not

retain the high order of the composition, because @?] does not satisfy the group
property.

Splitting into More than Two Vector Fields. Consider a differential equation

g = Uy + By +...+ [Ny, (5.11)

where we assume that the flows cp,[fj } of the individual problems ¢ = fUl(y) can

be computed exactly. In this case there are many possibilities for extending (5.6)
and for writing the method as a composition of @Ll,] o gpl[f_}h, go[c?’_]h, ... . This makes
it difficult to find optimal compositions of high order. A sJimpleJand efficient way is
to consider the first-order method
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@hchg]oga[i]o...ocp%v]

together with its adjoint as the basis of the composition (4.6). Without any additional
effort this yields splitting methods for (5.11) of arbitrary high order.

I1.6 Exercises

1.

2.

Compute all collocation methods with s = 2 as a function of ¢; and ¢,. Which
of them are of order 3, which of order 4?

Prove that the collocation solution plotted in the right picture of Fig. 1.3 is com-
posed of arcs of parabolas.

Let by = by = 1/8, ¢ca = 1/3, c3 = 2/3, and consider the corresponding
discontinuous collocation method. Determine its order and find the coefficients
of the equivalent Runge—Kutta method.

Show that each of the symplectic Euler methods in (I.1.9) is the adjoint of the
other.

(Additive Runge—Kutta methods). Let b;, a;; and b;, @;; be the coefficients of
two Runge—Kutta methods. An additive Runge—Kutta method for the solution

of y = fl(y) + fPl(y) is given by
S S
ki = M (yo + hzaijkj) + f1 (yo + hzaijkj)
j=1 j=1
yio= yo+h> bk
i=1

Show that this can be interpreted as a partitioned Runge—Kutta method (2.2)
applied to

g=rMy) + PR,  i=Me)+ PRk

with y(0) = 2z(0) = yo. Notice that y(t) = z(¢t).
Let &;, denote the Stormer—Verlet scheme, and consider the composition

) hOoPyyno...0oP 0P, 1

Y2k+1

withy, = ... = 7% = Yk42 = ... = Yar+1. Compute ~; and ;471 such
that the composition gives a method of order 4. For several differential equa-
tions (pendulum, Kepler problem) study the global error of a constant step size
implementation as a function of k.

. Consider the composition method (4.1) with s = 5, 75 = 71, and 74 = 7.

Among the solutions of
A2 tp=1l 27+ 295 +95 =0

find the one that minimizes [2v9 + 275 + 73|
Remark. This property motivates the choice of the ; in (4.5).



Chapter III.
Order Conditions, Trees and B-Series

In this chapter we present a compact theory of the order conditions of the meth-
ods presented in Chap.Il, in particular Runge—Kutta methods, partitioned Runge—
Kutta methods, and composition methods by using the notion of rooted trees and
B-series. These ideas lead to algebraic structures which have recently found inter-
esting applications in quantum field theory. The chapter terminates with the Baker-
Campbell-Hausdorff formula, which allows another access to the order properties
of composition and splitting methods.

Some parts of this chapter are rather short, but nevertheless self-contained. For
more detailed presentations we refer to the monographs of Butcher (1987), of Hairer,
Ngrsett & Wanner (1993), and of Hairer & Wanner (1996). Readers mainly inter-
ested in geometric properties of numerical integrators may continue with Chap-
ters IV, V or VI before returning to the technically more difficult jungle of trees.

IT1I.1 Runge-Kutta Order Conditions and B-Series

Even the standard notation has been found to be too heavy in dealing with
fourth and higher order processes, . . . (R.H. Merson 1957)

In this section we derive the order conditions of Runge—Kutta methods by com-
paring the Taylor series of the exact solution of (1.1) with that of the numerical
solution. The computation is much simplified, first by considering an autonomous
system of equations (Gill 1951), and second, by the use of rooted trees (connected
graphs without cycles and a distinguished vertex; Merson 1957). The theory has
been developed by Butcher in the years 1963-72 (see Butcher (1987), Sect. 30) and
by Hairer & Wanner in 1973-74 (see Hairer, Norsett & Wanner (1993), Sections I1.2
and I1.12). Here we give new simplified proofs.

ITI.1.1 Derivation of the Order Conditions
We consider an autonomous problem

v =fy), y(to) = Yo, (.1

where f : R"” — R" is sufficiently differentiable. A problem y = f(¢,y) can be
brought into this form by appending the equation # = 1. We develop the subsequent
theory in four steps.
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Er sagte es klar und angenehm,
was erstens, zweitens und drittens kam’. (W. Busch, Jobsiade 1872)

First Step. We compute the higher derivatives of the solution y at the initial point
to. For this, we have from (1.1)

Y@ = (f(y) " (1.2)

and compute the latter derivatives by using the chain rule, the product rule, the
symmetry of partial derivatives, and the notation f’(y) for the derivative as a linear
map (the Jacobian), f”/(y) the second derivative as a bilinear map and similarly for
higher derivatives. This gives

v = fly)
i= Wy (1.3)
vO = W)@ 9) + ()i
y W = )9 9) + 31" W) (@,9) + £ (y) y®
v = FW)0,9,9,9) + 6" W) (G 9, 9) + 4" () (D, )
+3F" () (@i, i) + F' () v,

and so on. The coefficients 3, 6,4, 3, ... appearing in these expressions have a cer-
tain combinatorial meaning (number of partitions of a set of ¢ — 1 elements), but for
the moment we need not know their values.

Second Step. We insert in (1.3) recursively the computed derivatives g, 4, . . . into
the right side of the subsequent formulas. This gives for the first few

y = f
i = f/f (1.4)
v = D+
y W o= D3N+ D+ PP,

where the arguments (y) have been suppressed. The expressions which appear in
these formulas, denoted by F'(7), will be called the elementary differentials. We
represent each of them by a suitable graph 7 (a rooted tree) as follows:

Each f becomes a vertex, a first derivative f’ becomes a
vertex with one branch, and a kth derivative f (*) becomes a f
vertex with k branches pointing upwards. The arguments of the ,
k-linear mapping f(*) (y) correspond to trees that are attached f f
on the upper ends of these branches. The tree to the right cor-
responds to f”(f’f, f). Other trees are plotted in Table 1.1. In 1
the above process, each insertion of an already known derivative
consists of grafting the corresponding trees upon a new root as
in Definition 1.1 below, and inserting the corresponding elementary differentials as
arguments of f("™ (y) as in Definition 1.2.
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Table 1.1. Trees, elementary differentials, and coefficients

I7| T graph | () | F(r)  |~(7) ¢(7) o(7)
1 . . 1 f 1 b 1
2 [+] 1 r'f 2 >, biai; 1

/
3| e V|t | ren | 3| Sycbagan | 2
3 [[]] } 1 s 6 >k Diiajn 1
A4 | [ese,e]| N\ | 1| FUAE) | 4| X biciasan |6
4 | [[=] ] \} 3| 'R | 8 | Xijubiaaia |1
4 [[*,*]] Y 1 F . n 12| 32, biaijagkas 2
5 L opper | o | Soubagasan | 1

Definition 1.1 (Trees). The set of (rooted) trees T is recursively defined as follows:
a) the graph « with only one vertex (called the root) belongs to 7";
b) if 7y,..., 7, € T, then the graph obtained
by grafting the roots of 74,...,7,, to a new
vertex also belongs to 7. It is denoted by

T =T, ", Tml,

and the new vertex is the root of 7.

We further denote by |7]| the order of T (the number of vertices), and by a(7) the
coefficients appearing in the formulas (1.4). We remark that some of the trees among
Ty, ..., Tm may be equal and that 7 does not depend on the ordering of 7y, ..., Ty,.
For example, we do not distinguish between [[¢], «] and [, []].

Definition 1.2 (Elementary Differentials). For a tree 7 € T the elementary differ-
ential is a mapping F'(7) : R™ — R", defined recursively by F(«)(y) = f(v)
and

F(O)(w) = F" @) (F)@)s - Flra)@)  for 7= [r1,.0 7.

Examples of these constructions and the corresponding coefficients are seen in
Table 1.1. With these definitions, we obtain from (1.4):

Theorem 1.3. The qth derivative of the exact solution is given by
YV (to) = Y o(r) F(7)(wo), (15)
ITl=q

where (1) are positive integer coefficients. a
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Third Step. We now turn to the numerical solution of the Runge—Kutta method
(II.1.4), which, by putting hk; = g;, we write as

9i = hf(w) (1.6)

and
Ui :ZUO“"Zaij 95> (3 :y0+zbi9ia 1.7
J i

where u;, g; and y; are functions of h. We develop the derivatives of (1.6), by
(@) h(f(u:)) @ + q - (f(u;))@ V. This gives, for

%

Leibniz’ rule, and obtain g
h=0,
9 = q- (flu;) T, (1.8)

the same expression as in (1.2), with y just replaced by u; and with an extra factor
q. Consequently, exactly as in (1.3),

gi = 1-f(yo)
gi = 2- f'(yo) (1.9)
¥ = 3. (" (yo) (s, i) + ' (yo) i )

g = 4. (" (yo) (i, iy i) + 3" (yo) (i, ;) + f/(yo)ugg))
: (f(4) (o) (i @i, iy 05) + 6 (yo) (i, s, 1) + 4f”(yo)(UE3), ;)
+ 3" (yo) i, i) + f (o) ul®),

and so on. Here, the derivatives of g; and u; are evaluated at h = 0.

A
at
)
|
ot

Fourth Step. We now insert recursively the derivatives ;, i, ... into (1.9). This
will give the next higher derivative of g;, and, using
u? =3 ay - gl?, (1.10)
J

which follows from (1.7), also the next higher derivative of ;. This process begins
as

gi=1-f w =1 (3;a) - f
gi=(1-2) (Zjaij)f/f i, = (1-2) (ijaijajk)f/f (1.11)
and so on. If we compare these formulas with the first lines of (1.4), we see that the
results are precisely the same, apart from the extra factors. We denote the integer
factors 1, 1-2, ... by v(7) and the factors containing the a;;’s by g;(7) and u,(7),

respectively. We obtain by induction that the same happens in general, i.e. that, in
contrast to (1.5),
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9= S (1) gilr) - alr) F(7) (o)

I7|=q

Wy = 3 () wlr) () Fr) o)

IT|=q

(1.12)

where a(7) and F(7) are the same quantities as before. This is seen by continuing
the insertion process of the derivatives ul(-q) into the right-hand side of (1.9). For
example, if u; and i; are inserted into 3 f”/ (ii;, 1; ), we will obtain the corresponding
expression as in (1.4), multiplied by the two extra factors u;( /), brought in by i,
and u;(« ) from ;. For a general tree 7 = [7y, .. ., Ty, ] this will be

gi(r):u,;(ﬁ)m.mui(Tm). (113)

Second, the factors y( /) and ~y(«) will receive the additional factor ¢ = |7| from
(1.9), i.e., we will have in general

(1) = 7|y (1) - (). (1.14)

Then, by (1.10),

u;(7) = Zaij g;(1) = Zaij (1) (). (1.15)

This formula can be re-used repeatedly, as long as some of the trees 7y, ..., 7, are
of order > 1. Finally, we have from the last formula of (1.7), that the coefficients for
the numerical solution, which we denote by ¢(7) and call the elementary weights,
satisfy

¢(r) =Y bigi(7). (1.16)
‘We summarize the result as follows:

Theorem 1.4. The derivatives of the numerical solution of a Runge—Kutta method
(11.1.4), for h = 0, are given by

U,y = S (1) 6(r) - alr) F(7) (o), (1.17)

[T|=q

where a(T) and F(7) are the same as in Theorem 1.3, the coefficients v(T) satisfy
~v(*) = 1 and (1.14). The elementary weights ¢(7) are obtained from the tree T as
follows: attach to every vertex a summation letter (“i” to the root), then ¢(T) is the
sum, over all summation indices, of a product composed of b;, and factors a;y, for
each vertex “j” directly connected with “k” by an upwards directed branch.

Proof. Repeated application of (1.15) followed by (1.16) shows that the elementary
weight ¢(7) is the collection of ), b; from (1.16) and all Zj a;; of (1.15). O
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Theorem 1.5. The Runge—Kutta method has order p if and only if
1
(1) = — Jor |1 <p. (1.18)

Proof. The comparison of Theorem 1.3 with Theorem 1.4 proves the sufficiency
of condition (1.18). The necessity of (1.18) follows from the independence of the
elementary differentials (see e.g., Hairer, Ngrsett & Wanner (1993), Exercise 4 of
Sect. 11.2). O

Example 1.6. For the following tree of order 9 we have

1
E bi0ijQjmAin ik K1 A1qQALrGLp = 9953
i,5,k,l,m,n,p,q,r
or, by using Zj aij = ¢,
9 1
E biciasjcjapcrakic; = 270"

.5,k

The quantities ¢(7) and ~(7) for all trees up to order 4 are given in Table 1.1. This
also verifies the formulas (II.1.6) stated previously.

II1.1.2 B-Series

We now introduce the concept of B-series, which gives further insight into the be-
haviour of numerical methods and allows extensions to more general classes of
methods.

Motivated by formulas (1.12) and (1.17) above, we consider the corresponding
series as the objects of our study. This means, we study power series in 27! contain-
ing elementary differentials F'(7) and arbitrary coefficients which are now written in
the form a(7). Such series will be called B-series. To move from (1.6) to (1.13) we
need to prove a result stating that a B-series inserted into hf(-) is again a B-series.
We start with

Bla,y) =y +a()hf(y) +a(R*(f' ly) +... =y +3, (1.19)
and get by Taylor expansion
hf(B(a,y)) = hf(y+06) = hf(y) + hf (y)s + %f”(y)(& §)4.... (1.20)

Inserting § from (1.19) and multiplying out, we obtain the expression

3
hf(Bla,y)) = hf +h2a(+)f' [+ BPa( )] 1 + %ab)?f”(ﬁ 1 o
+hta()al ) [ (F )+
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This beautiful formula is not yet perfect for two reasons. First, there is a denominator
2! in the fourth term. The origin of this lies in the symmetry of the tree /. We
thus introduce the symmetry coefficients of Definition 1.7 (following Butcher 1987,
Theorem 144A). Second, there is no first term y. We therefore allow the factor a(()
in Definition 1.8.

Definition 1.7 (Symmetry coefficients). The symmetry coefficients o(7) are de-
fined by o(e) =1 and, for7 = [ry,..., 7],

o(t)=o0(r1) ... 0(Tm) - palpa! ... (1.22)
where the integers ji1, ti2, . . . count equal trees among 71, . . ., T,

Definition 1.8 (B-Series). For a mapping a : T U{f} — R a formal series of the
form
Al

a(7)

B(a,y) =a(@)y+ Y —— a(7) F(7)(y) (123)
TeT
is called a B-series.!

The main results of the theory of B-series have their origin in the paper of
Butcher (1972), although series expansions were not used there. B-series were then
introduced by Hairer & Wanner (1974). The normalization used in Definition 1.8
is due to Butcher & Sanz-Serna (1996). The following fundamental lemma gives a
second way of finding the order conditions.

Lemma 1.9. Let a : T U {0} — R be a mapping satisfying a(Q) = 1. Then the
corresponding B-series inserted into hf(+) is again a B-series. That is

hf(B(a,y)) — B(dy), (1.24)
where o' () =0, a’(+) =1, and
d(r)=aln) ... alty)  for T=[m1,...,Tm] (1.25)

Proof. Since a(()) = 1 we have B(a,y) = y 4+ O(h), so that hf (B(a,y)) can be
expanded into a Taylor series around y. As in formulas (1.20) and (1.21), we get

! In this section we are not concerned about the convergence of the series. We shall see
later in Chap.IX that the series converges for sufficiently small h, if a(7) satisfies an
inequality |a(7)| < (7)ed!™ and if f(y) is an analytic function. If f(y) is only k-times
differentiable, then all formulas of this section remain valid for the truncated B-series
> rer,|r|<k -/ With a suitable remainder term of size O(RF*1) added.
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hf(Bla,y)) = h» .f("’) ((cuy)—y)m

m>0

DD IRD I

m>0 'neT rmeT

\71\+ AT |

o) ca(r) ... a(Tm)

- f<m>< J(FEOW), - Flrm) )
7]
S Y3 S () )

m>0 T eT TmGT

with 7 = [11,. .., T

Il
= 3 S YO0 = By

TeT

The last equality follows from the fact that there are (M1 :Z
ing the tree 7 in the form 7 = [ry,...,7,]. For example, the trees [« ¢, [¢]],
[¢,[*], *] and [[¢], ¢, *] appear as different terms in the upper sum, but only as
one term in the lower sum. ad

) possibilities for writ-

Back to the Order Conditions. We present now a new derivation of the order
conditions that is solely based on B-series and on Lemma 1.9. Let a Runge—Kutta
method, say formulas (1.6) and (1.7), be given. All quantities in the defining formu-
las are set up as B-series, g; = B(8gi, o), ui = B(u;,y0), y1 = B(¢,y0). Then,
either the linearity and/or Lemma 1.9, translate the formulas of the method into cor-
responding formulas for the coefficients (1.13), (1.15), and (1.16). This recursively
justifies the ansatz as B-series.

Assuming the exact solution to be a B-series B(e, yo), a term-by-term derivation
of this series and an application of Lemma 1.9 to (1.1) yields

e(r) = |17|e(7'1) cooe(Tm).

Together with definition (1.14) of y(7) we thus obtain
e(r) = ——. (1.26)

A comparison of the coefficients of the B-series y1 = B(¢, yo) with those of the
exact solution gives (1.18) and proves Theorem 1.5 again .

Comparing the B-series B(e, yo) for the exact solution with Theorem 1.3, we
get as a byproduct the formula

al

RRGRTCN

(1.27)

If the available tools are enriched by the more general composition law of Theo-
rem 1.10 below, this procedure can be applied to yet larger classes of methods.
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I11.1.3 Composition of Methods

The order theory for the composition of methods goes back to 1969, when Butcher
used it to circumvent the order barrier for explicit Sth order 5 stage methods. It led to
the seminal publication of Butcher (1972), where the general composition formula
in (1.34) was expressed recursively.

Composition of Runge-Kutta Methods. Suppose that, starting from an initial
value y(, we compute a numerical solution y; using a Runge—Kutta method with
coefficients a;;, b; and step size h. Then, continuing from ¥, we compute a value
Y2 using another method with coefficients a;;, b; and the same step size. This com-
position of two methods is now considered as a single method (with coefficients
aij,@). The problem is to derive the order properties of this new method, in par-
ticular to express the elementary weights $(T) in terms of those of the original two
methods.

If the value y; from the first method is inserted into the starting value for the
second method, one sees that the coefficients of the combined method are given by
(here written for two-stage methods)

air a2 air a2

a1 a22 a1 a22
D ~ ~ —~ " "

as; a3z a3z G34 = b1 by aj; ajy (1.28)
B ~ ~ B X X

(41 G42 Q43 Qug by by a3 ay

= = = = " "

b by by b b by 0T b

and our problem is to compute the elementary weights of this scheme.

Derivation. The idea is to write the sum for $(T), say for the tree \}, in full detail

4 4
$(X>>=ZZZZZZ-6MM6M:... (1.29)

and to split each sum into the two different index sets. This leads to 27! dif-
ferent expressions 377 327 S5y Yoy /- + s X5y sy Yo o/
Zle Z?:s Zizl Zle ./. + .... We symbolize each expression by drawing the
corresponding vertex of 7 as a bullet for the first index set and as a star for the sec-
ond. However, due to the zero pattern in the matrix in (1.28) (the upper right corner
is missing), each term with “star above bullet” can be omitted, since the correspond-
ing @;;’s are zero. So the only combinations to be considered are those of Fig. 1.1.
We finally insert the quantities from the right tableau in (1.28),

(}5(\}) =>b; Q45 Qi) Gkl + >b; b; b ar + >br a;-‘j b agt + > bF bj ajy by
+ 2207 af; ap, by + Y b; by agy, ap, + > b; af; ajy, ay,
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!
Q\J\/’k \ qu Vk QJ}
G *i

Fig. 1.1. Combinations with nonzero product

and we observe that each factor of the type b; interrupts the summation, so that the
terms decompose into factors of elementary weights of the individual methods as
follows:

QAS(\>) :¢(\>)+¢*(°)-¢(°)¢(.f)+¢*(f)-¢(f)+¢*(f)~¢(°)¢(°)
+¢*(V)~¢(°)+¢>*(>)-¢(°)+¢*(\>)-

The trees composed of the “star”” nodes of 7 in Fig. 1.1 constitute all possible “sub-
trees” 6 (from the empty tree to 7 itself) having the same root as 7. This is the key
for understanding the general result.

Ordered Trees. In order to formalize the procedure of Fig. 1.1, we introduce the
set OT of ordered trees recursively as follows: « € OT, and

ifwiy,...,wn, € OT, then also the ordered m-tuple (w1, ...,wy) € OT. (1.30)

As the name suggests, in the graphical representation of an ordered tree the order of
the branches leaving cannot be permuted. Neglecting the ordering, a tree 7 € T' can
be considered as an equivalence class of ordered trees, denoted 7 = w.

For example, the tree of Fig. 1.1 has two orderings, namely \} and <[ We
denote by v(7) the number of possible orderings of the tree 7. It is given by v(«) =

1 and
m)!

vVitT) = ————v(m) ... V(" (1.31)
for 7 = [ry,...,Tm], Where the integers p1, 12, . . . are the numbers of equal trees
among 71, . . ., Tr,. This number is closely related to the symmetry coefficient o(7),

because the product k(7) = o(7)v(7) satisfies the recurrence relation
K(T)=mlk(m) ...  k(Tm). (1.32)
We introduce the set OST(w) of ordered subtrees of an ordered tree w € OT by

OST(+) = {0, +} (133)
OST(w) = {0}U{(01,...,0m); 0; € OST(w;)} for w = (wi,...,wm).

Each ordered subtree # € OST(w) is naturally associated with a tree § € T obtained
by neglecting the ordering and the ()-components of 6. For every tree 7 € T we
choose, once and for all, an ordering. We denote this ordered tree by w(7), and we
put OST(7) = OST(w(1)).
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For the tree of Fig. 1.1, considered as an ordered tree, the ordered subtrees cor-
respond to the trees composed of the “star” nodes.

s The General Rule. The general composition rule now be-
®  comes visible: for § € OST(w) we denote by w \ 8 the “for-
/ v .
est” collecting the trees left over when 6 has been removed
from the ordered tree w. For brevity we set 7\ := w(7)\0.
With the conventions ¢*(8) = ¢*(0) and ¢*(0) = 1 we
then have

o= (s I[e@). 34

0€O0ST(T) deT\0

This composition formula for the trees up to order 3 reads:

O(+) = 8" (0) - 6(+) + " (+)
L) =0 0)-0(8) +(+) - 6(+) +67°(])
o) = 0" (0) - (V) + () - 6(+)* +26°(]) - 0(+) +6*(V)

QAS(}) =¢"(0) - (b(}) + ¢ () o) +0"(]) o) + ¢*(>)
The tree 7 = Y/ has the subtrees displayed in Fig. 1.2. It contains symmetries in that

the third and fourth subtrees are topologically equivalent. This explains the factor 2
in the expression for the elementary weight.

Vk o sk \ipk qjjk vk
\ / / \
\ 7/ / \

G *i ; f f

Fig. 1.2. A tree with symmetry

I11.1.4 Composition of B-Series

We now extend the above composition law to general B-series, i.e., we insert the
B-series themselves into each other, as sketched in Fig. 1.3. This allows us to gen-
eralize Lemma 1.9 (because hf(y) is a special B-series).

B(a7 Z/O) “ B(bv yl)
/_> ° \

Yo @ @ Y2

Fig. 1.3. Composition of B-series

We start with an observation of Murua (see, e.g., Murua & Sanz-Serna (1999),
p- 1083), namely that the proof of Lemma 1.9 remains the same if the function A f (y)
is replaced with any other function hg(y); in this case (1.21) is replaced with
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3
hg(B(a,y)) = hg+h?a(+)g' f +h*a([)g'f' f + %a( ’9"(F D) (135
+hta()a()g"(f f.£)+... .

Such series will reappear in Sect. II1.3.1 below. Extending this idea further to, say,
1" (y)(v1, v2), where vy, vy are two fixed vectors, we obtain

hf"(Bla,y))(vi,v2) = hf"(vi,v2) + ha(«) " (v, v, f) (1.36)
+ Ba(])f" (01,05 ' F) + phPals 2" (01,0, )
+ h4a(’)a([)f/”/(l}l,’l)g,f/f, f) +...

This idea will lead to a direct proof of the following theorem of Hairer & Wanner
(1974).

Theorem 1.10. Let a : TU {0} — R be a mapping satisfying a() = 1 and let
b: TU{D} — R be arbitrary. Then the B-series B(a,y) inserted into B(b,-) is
again a B-series

B(b,B(a, y)) — B(ab,y), (1.37)

where the group operation ab(T) is as in (1.34), i.e.,

ab(r) = Z b(0) - a(T\ 0) with a(t\0) = H a(8).  (1.38)

0€O0ST(T) seT\0

Proof. (a) In part (c) below we prove by induction on |¢|, ¥ € T that

[9] [7]
GEO(Bew) = Y IS \OFOE. (19
g (1,0)€A(9) T

where )
AW@) = {(r,0); T € T,0 € OST(7),0 = V}.
Multiplying (1.39) by b(¢}) and summing over all ¢ € T yields the statement (1.37)-

(1.38), because
D MIRTED DD SIS

OET (1,0)EA(®) €T 9€0ST(r)

(b) Choosing a different ordering of 7 in the definition of OST(7) yields the
same sum in (1.39). Therefore (1.39) is equivalent to

19| lw]
PLEO(Baw) = Y T a@\ 0 F@), (140
o(9) (w,0)€Q() o(Wv(w)

where )
2@0) = {(w,0) ; w € OT,0 € OST(w),0 =V},

and v(7) is the number of orderings of the tree 7, see (1.31). Functions defined on
trees are naturally extended to ordered trees. In (1.40) we use |w| = |7|, o(w) =
o(7), v(w) =v(r),alw\ ) =a(r\ 0),and F(w)(y) = F(7)(y) forw = 7.
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(c)Ford = ¢ and w = (w1, ...,wy,) wehave a(w \ 0) = a(wy) - ... a(wn) if
0 = . Since we have a one-to-one correspondence (w, #) «> w between §2( + ) and
OT, and since the expression in the sum of (1.40) is independent of the ordering of
w, formula (1.40) is precisely Lemma 1.9.

To prove (1.40) for a general tree ¥ = [4,...,1], we apply the idea put for-
ward in (1.36) to hf") (B(a,y))(v1, ..., v;) with fixed vq, . .., v, and obtain as in
the proof of Lemma 1.9

hf(l)(B(a,y))(vl,..., Z Z Z

m>0 ' Tl+1ET Tl+7n€T

a(mi1) - i) - F @) 1o ) @), ,F<n+m><y>).

Rl T 41

7'l+1 U(Tl+m)

Changing the sums over trees to sums over ordered trees we obtain

hf(l)(B(a,y))(vl,..., Z Z Z

m>0 'wl+1€0T Witm EOT

a(@i1) - aigm) - L) (oo P @), - ,F<wl+m><y>).

hlwiril+ . Flwipm|+1

K(wigt) v K(Wigm)

We insert v; = % F(9;)(B(a,y)) into this relation, and we apply our induction
hypothesis
RlY5] Bl
b= oy PO (Bla) = 3 e el \0) Flen)w).

(oroefa(oy i)

We then use the recursive definitions of o (%) and F'(9)(y) on the left-hand side. On
the right-hand side we use the multilinearity of f(+), the recursive definitions of
lwl], k(w), F(w)(y) forw = (w1, ..., wi+m), and the facts that

alw\0)=alwi \01) ... alw \ ) - alwig1) .. alWitm)

and

DY ZZ/%Z'/'

(wl,Gl)eQ(ﬂl) (wl,Gl)GQ(ﬂl) wi41€0T  wi4m€eOT (w,9)691+m(’l9)

where i1, 12, ... count equal trees among vy, ..., %, and 21y, (%) consists of
those pairs (w,d) € £2(¢) for which w is of the form w = (wy,...,w;+m). The
factorials appear, because to every (I + m)-tuple of the left-hand sum correspond
( trm ) elements in §2;4,,(¥), obtained by permuting the order. This yields

M1, [42 .

formula (1 40) and hence (1.39). O
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Example 1.11. The composition laws for the trees of order < 4 are

ab() =b(0) -a(+) +b(+)
ab(}) =b(0)-a([)+b(e)-a(+)+b(])
ab(V) =b(0) - a(\V) +b(+)-a(+)* +2b(]) - a(+) +b(V)
ab()) = b(0) a(>)+b(°) a(])+0(7) -a(°)+b(>)
ab(\/) = b(0) - a(\") +b(<) - a(+)® +3b([) - a(+)* + 3b(V) - a(+)

+o(\)

ab(ﬁ) = b(@)-a(§)+b(°) ~a(}) +b(J)-a(]) +b(})-a(°) +b(§)

Remark 1.12. The composition law (1.38) can alternatively be obtained from the
corresponding formula (1.34) for Runge—Kutta methods by using the fact that B-
series which represent Runge—Kutta methods are “dense” in the space of all B-series
(see Theorem 306A of Butcher 1987).

II1.1.5 The Butcher Group

The composition law (1.38) can be turned into
a group operation, by introducing a unit ele-
ment

e@ =1, e(r)=0 forreT, (1.41)

and by computing the inverse element of a
given a. This is obtained recursively from
the table of Example 1.11, by requiring
aa~1(7) = 0 and by inserting the previously
known values of a~!(1). This gives for the
first orders

John C. Butcher, 1 (
born: 31 March 1933 in Auckland a
(New Zealand)



III.1 Runge—Kutta Order Conditions and B-Series 65

We can distinguish several realizations of this group:

GRrk the set of Runge—Kutta schemes with composition (1.28);

Ggw the set of elementary weights of Runge—Kutta schemes with the composition
law (1.34);

Gtm the set of tree mappings a : T U {#} — R satisfying a(#) = 1 with
composition (1.38);

GpRs the set of B-series (1.23) satisfying a()) = 1 with composition (1.37).

A technical difficulty concerns the group GRri, where “reducible” schemes must be
identified (by deleting unnecessary stages or by combining stages that give identical
results) to the same “irreducible’” method (see Butcher (1972), or Butcher & Wanner
(1996), p. 140). The definition of ¢(7) in Theorem 1.4 describes a group isomor-
phism from GRrk to Gy, further, Ggyy is a subgroup of G1) and Theorem 1.10
shows that formula (1.23) constitutes a group homomorphism from Gy to Ggs.-
Because the elementary differentials are independent (see, e.g., Hairer, Ngrsett &
Wanner (1993), Exercise 4 of Sect.I1.2), the last two groups are isomorphic. The
group GRg can also be extended by allowing “continuous” Runge—Kutta schemes
with “infinitely many stages” (see Butcher (1972), or Butcher & Wanner (1996),
p. 141). The term “Butcher group” was introduced by Hairer & Wanner (1974).

This paper tells the story of a mathematical object that was created by
John Butcher in 1972 and was rediscovered by Alain Connes, Henri
Moscovici and Dirk Kreimer in 1998. (Ch. Brouder 2004)

Connection with Hopf Algebras and Quantum Field Theory. A surprising con-
nection between Runge—Kutta theory and renormalization in quantum field theory
has been discovered by Brouder (2000). One denotes by a Hopf algebra a graded
algebra which, besides the usual product, also possesses a coproduct, a tool used by
H. Hopf (1941) ? in his topological classification of certain manifolds. Hopf algebras
generated by families of rooted trees proved to be extremely useful for simplifying
the intricate combinatorics of renormalization (Kreimer 1998). Kreimer’s Hopf al-
gebra H is the space generated by linear combinations of families of rooted trees
and the coproduct is a mapping A : H — H ® H which is, for the first trees, given
b
Y Ald)=+e@1+1®
AN)=]01+e@«+10 ]

AV)=V@1+ee@e+2e [ +10Y

A(}):>®1+[®-+-®1+1®>
It can be clearly seen, that this algebraic structure is precisely the one underlying
the composition law of Example 1.11, so that the Butcher group Gy becomes the
corresponding character group. The so-called antipodes of trees 7 € H, denoted by
S(7), are for the first trees

(1.43)

2 Not to be confused with E. Hopf, the discoverer of the “Hopf bifurcation”.
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S(+)
S =t
S(V) ==V +2/— e (149

S =-d s

and, apparently, describes the inverse element (1.42) in the Butcher group.

II1.2 Order Conditions for Partitioned Runge—Kutta
Methods

We now apply the ideas of the previous section to the creation of the order conditions
for partitioned Runge—Kutta methods (II.2.2) of Sect.II.2. These results can then
also be applied to Nystrom methods.

I11.2.1 Bi-Coloured Trees and P-Series
Let us consider a partitioned system

v = f(y,2), z2=9(y,2) (2.1

(non-autonomous problems can be brought into this form by appending ¢ = 1).
We start by computing the derivatives of its exact solution, which are to be inserted
into the Taylor series expansion. By analogy with (1.4) we obtain in this case the
derivatives of y at ¢y as follows:

y=1r

b= fyf+ fz9 (2.2)
YO = fo (f. )+ 2 fya(f,9) + f22(9.9) + fufyf + fufeg + F290f + f29:9.
Here, fy, f., fy-,. .. denote partial derivatives and all terms are to be evaluated at

(Yo, 20). Similar expressions are obtained for the derivatives of z(t).

The terms occurring in these expressions are again
called the elementary differentials F(7)(y, z). For their f g
graphical representation as a tree 7, we distinguish be-
tween “black” vertices for representing an f and “white”
vertices for a g. Upwards pointing branches represent par-
tial derivatives, with respect to y if the branch leads to a oy
black vertex, and with respect to z if it leads to a white
vertex. With this convention, the graph to the right corre-
sponds to the expression f., (gyz( 5o f ) (see Table 2.1 for more examples).

We denote by TP the set of graphs obtained by the above procedure, and we
call them (rooted) bi-coloured trees. The first graphs are « and o. By analogy with
Definition 1.1, we denote by

Gy> f
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Table 2.1. Bi-coloured trees, elementary differentials, and coefficients

|7l T graph | () F(r) | (1) o(7) o(r)
1 ! 1 S, bi 1
1 fuf 2 >ij biai; 1
1 f=g 2 >4, bidi 1
Tuu(F, 1) 3 Zijk bia;jaix 2
2 | fu(fig) | 3 | Xk biaiaik 1
1 f=2(9,9) 3 >k biligaan 2

3 [[elyly 1 Tuluf 6 Zi]’k biaijajk 1

1 .

v-<3<;-<:'\°'\' .

3 [[o]yly } 1 fuf=9 6 Ei]’k biai;ajk 1
3] (Il }’ 1 f294f 6 | X bidiage |1
3 [[o]:]y }’ 1 f29-9 6 Zwk bitijajk 1
1 ° ° 1 g 1 S, bi 1
2| [l J 1 gvf 2 3, biaij 1
etc etc etc etc
[T15 s Tinly and [T1, -y T zs TlyeeosTm € TP
the bi-coloured trees obtained by connecting the roots of 79, ..., 7,, to a new root,

which is e in the first case, and o in the second. Furthermore, we denote by TP,
and TP, the subsets of TP which are formed by trees with black and white roots,
respectively. Hence, the trees of TP, correspond to derivatives of y(t), whereas
those of TP, correspond to derivatives of z(t).

As in Definition 1.2 we denote the number of vertices of 7 € TP by |7/, the
order of 7. The symmetry coefficient o (7) is again defined by

o(+)=0(0)=1,

and, for 7 = [1q,..., Ty Or T = [T1,..., T ]2, DY
o(r)=o(m) ... 0(Tm) - plp!. .., (2.3)
where the integers 1, 2, . .. count equal trees among 71, ..., 7, € TP. This is

formally the same definition as in Sect. III.1. Observe, however, that o(7) depends
on the colouring of the vertices. For example, we have o(Y/) = 2, but o(\/) = 1.
By analogy with Definition 1.8 we have:
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Definition 2.1 (P-Series). For a mapping a : TP U {(,,0.} — R a series of the
form

7|
aO)y+ Y Lol P, 2)

is called a P-series.

The following results correspond to Lemma 1.9 and formula (1.26). They are
obtained in exactly the same manner as the corresponding results for non-partitioned
Runge—Kutta methods (Sect. III.1). We therefore omit their proofs.

Lemma 2.2. Leta: TP U {0,,0,} — Rsatisfy a(0,) = a(0,) = 1. Then

. (f(P(% (w)))) = P(d(0.2).

9(P(a,(y,2)))
where o/ (0,) = a'(0.) =0, a'(s) =d'(0) =1, and
a(t)=a(m) ... a(tm), 2.4)
ifeither T = [T1,...,Tmly OF T =[T1,...,Tm]2 O

Theorem 2.3 (P-Series of Exact Solution). The exact solution of (2.1) is a P-series
(y(to + h), z(to + h)) = P(e, (yo, 20)), where e(,)) = e(0.) = 1 and

e(r)=——  forall te TP (2.5)

where the y(T) have the same values as for mono-coloured trees. O

II1.2.2 Order Conditions for Partitioned Runge—Kutta Methods

The next result corresponds to Theorem 1.4 and is a consequence of Lemma 2.2.

Theorem 2.4 (P-Series of Numerical Solution). The numerical solution of a par-
titioned Runge—Kutta method (11.2.2) is a P-series (y1,21) = P((;S7 (vo, zo)), where

¢(®y) =¢(0,) =1and
Z?:l bii(T) for 7€ TP,
o) ={ =
D imq bidi(T) for 1€ TP,.
The expression ¢;(T) is defined by ¢;(+) = ¢;(o) = 1 and by
ijZl aijk¢jk (Tk) if i, € TPy

Z;kzlaijkd)jk(Tk) if T, € TP,
2.7

2.6)

for T=1T1,. . Tmly oF T=[T1,...,Tm]s
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Proof. These formulas result from Lemma 2.2 by writing (hk;, h¢;) from the for-
mulas (I1.2.2) as a P-series (hk;, h¢;) = P(qﬁi, (vo, zo)) so that

(hzaijkj,hzaijgj) - P(wzv (y07ZO))
J J

is also a P-series. Observe that equation (2.6) corresponds to (1.16) (where g; has to
be replaced with ¢;) and that formula (2.7) comprises (1.13) and (1.15), where we
now write 1; instead of u;. O

The expressions ¢(7) are shown in Table 2.1 for all trees in TP, up to order
|7| < 3. A similar table must be added for trees in TP,, where all roots are white
and all b; are replaced with E‘. The general rule is the following: attach to every
vertex a summation index. Then, the expression ¢(7) is a sum over all summation

~

indices with the summand being a product of b; or b; (depending on whether the

[T3ell

root “4” is black or white) and of a;;, (if “k” is black) or @ (if “k” is white), for

[Tt}

each vertex “k” directly above “j”.

Theorem 2.5 (Order Conditions). A partitioned Runge—Kutta method (11.2.2) has
orderr, i.e., y1 —y(to +h) = O(R™1), z1 — z(to + h) = O(R"™ 1), if and only if

H(1) = —— forT € TP, U TP, with |T| < r. (2.8)

Proof. This corresponds to Theorem 1.5 and is seen by comparing the expansions
of Theorems 2.4 and 2.3. O

Example 2.6. We see that not only does every individual Runge—Kutta method have
to be of order r, but also the so-called coupling conditions between the coefficients
of both methods must hold. The order conditions mentioned above (see formulas

(I1.2.3) and (I1.2.5)) correspond to the trees [, J ., and /. For the tree sketched
below we obtain

~ o~ -~ -~ 1
E bi iU Qin Qi ARt Al Qi Ay = 9.2.5.3

i.3,k,l,m,n,p,q,r
or, by using >, a;; = ¢; and ), a5 = ¢,

L
270"

~~ o~ ~ 2
E bicia;;cjakcrakicy =

.3,k

II1.2.3 Order Conditions for Nystrom Methods

A “modern” order theory for Nystrom methods (IL.2.11) of Sect.Il.2.3 was first
given in 1976 by Hairer & Wanner (see Sect. .14 of Hairer, Ngrsett & Wanner
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1993). Later it turned out that these conditions are obtained easily by applying the
theory of partitioned Runge—Kutta methods to the system

y=z  i=g(y2), 2.9

which is of the form (2.1). This function has the partial derivative f, = I and all
other derivatives of f are zero. As a consequence, many elementary differentials are
zero and the corresponding order conditions can be omitted. The only trees remain-
ing are those for which

“black vertices have at most one son and this son must be white”. (2.10)

Example 2.7. The tree sketched below apparently satisfies condition (2.10) and the
corresponding order condition becomes, by Theorem 2.4 and formula (2.8),

1

E biaz‘jajkakmaknakpajqaqrarsajéaltatuatv = m .

0,5,k,...v

Due to property (2.10), each a;j inside the tree comes with a
corresponding @y, and by (2.10), both factors contract to an ~ m.n P
a;;; similarly, the black root is only connected to one white
vertex, the corresponding b;a;; simplifies to b;. We thus get

g b0k ChChlqlgsTjtCr = _
- , IRk 792 qs¥ytt 13- 3456
1,R,4,5,

Each of the above order conditions for a tree in TP, has a “twin” in TP, of one
order lower with the root cut off. For the above example this twin becomes

1

DGk Co Ok ATt Co = —

Uik CRCRAjqlqs U tCy 3456
J.k,q,s,t

We need only consider the trees in TP, if

bi = bl(l — Ci)
is satisfied (see Lemma I1.14.13 of Hairer, Ngrsett & Wanner (1993), Sect.11.14).

Remark 2.8. Strictly speaking, the theory of partitioned methods is applicable to
Nystrom methods only if the matrix (@;;) is invertible. However, since we arrive at
expansions with a finite number of algebraic conditions, we can recover the singular
case by a continuous perturbation of the coefficients.

Equations without Friction. Although condition (2.10) already eliminates many
order conditions, Nystrom methods for the general problem § = g(y, ) cannot be
much better than an excellent Runge—Kutta method applied pairwise to system (2.9).
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There is, however, an important special case where much more progress is possible,
namely equations of the type

i=9y), (2.11)

which corresponds to motion without friction. In this case, the function for 2 in (2.9)
is independent of z, and in addition to (2.10) we have a second condition, namely

“white vertices have only black sons”. (2.12)

Both conditions reduce the remaining trees drastically. Along each branch, there
occur alternating black and white vertices. Ramifications only happen at white ver-
tices. This case allows the construction of excellent numerical methods of high or-
ders. For example, the following 13 trees

oxvi\yﬁf%w(y@@zg

assure order 5, whereas ordinary Runge—Kutta theory requires 17 conditions for this
order. See Hairer, Ngrsett & Wanner (1993), pages 291f, for tables, examples and
references.

II1.3 Order Conditions for Composition Methods

We have seen in the preceding chapter that composition methods of arbitrarily high
order can be obtained with the use of Theorem I1.4.1. However, as demonstrated in
Fig.I1.4.4, these methods are not attractive for high orders. This section is devoted
to the derivation of order conditions, which then allow the construction of optimal
high order composition methods.

The order conditions for these methods are often derived via the Baker-Campbell-
Hausdorff formula. This will be the subject of Sect. III.5 below. Only very recently,
Murua & Sanz-Serna (1999) have found an elegant theory based on the idea of B-
series. This paper has largely inspired the subsequent presentation.

I11.3.1 Introduction
The principal tool in this section is the Taylor series expansion
Bu(y) =y + hdi(y) + h*da(y) + hds(y) + . .. 3.1)

of the basic method. The only hypothesis which we require for this method is con-
sistency, i.e., that

di(y) = f(y)- (3.2)
All other functions d;(y) are arbitrary.
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The underlying idea for obtaining the expansions for composition methods is, in
fact, very simple: we just insert the series (3.1), with varying values of A, into itself.
All our experience from Sect. III.1.2 with the insertion of a B-series into a function
will certainly be helpful. We demonstrate this for the case of the composition ¥}, =
Do,h © Do, n. Applied to an initial value yo, this gives with (3.1)

Y1 = Payn(yo) = yo + haidi(yo) + h2adda(yo) + ...

(3.3)
Y2 = Payn(y1) = y1 + haody (y1) + h2a3da(ys) + ... .

We now insert the first series into the second, in the same way as we did in (1.35).
Then, for example, the term h%a3dz(y;) becomes

Y2 = ... + h2a3da(yo) + h3a3a1d)(yo)di(vo) (3.4)
h4
+ hlagaids(yo)ds(yo) + - azaids (yo)(di (yo), da (o)) + - .

We see that we arrive at “generalized” B-series, where the elementary differentials
contain not only one function, but are composed of infinitely many functions and
their derivatives. We symbolize the four terms written in (3.4) by the trees

o b b Y

This leads us to the following definition.

Definition 3.1 (co-Trees, B.-series). We extend Definitions 1.1 and 1.2 to T,
the set of all rooted trees where each vertex bears a positive integer without any
further restriction, and use the notation
@, ®,®,... = the trees with one vertex;
[T1,...,Tm]: = the tree T formed by a new root () connected to 71, . . ., Tyn;
F(®@)(y) = di(y);

F(r)() = di" @) (E ()W), .. F(7)(y)) for T as above;
|| = 1+ |m|+...4 |Tm|, the number of vertices of T;

||[7|] = i+ ||71]| + ...+ ||7m|], the sum of the labels of 7;
o(r)= prlua! - ...co(m) ... - o(Tm),
where (i1, 42, . . . count equal trees among Ty, . .., Ty,

the symmetry coefficient respecting the labels;
i(t) = i, the label of the root of T.

Foramapa: T, U {0} — R we write

Rl
o(r) "

which extends the notion of B-series to the new situation.

Buo(a,y) =al)y+ >

TET

(1) F(7)(y) 3.5
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Example 3.2. For the tree

Q® ®
Q® ®
r=Q O & 71=[r,m)s where 71=0, ™= (3.6)
o D

we have
F(r)(y) = d (y) (di(y), d7" (y) (ds (y), ds (), ds(y)))

T=[0,[®,0,0®]7s, [7[=6, [|7]|=29, o(r) =2, i(r)=4.
The above calculations for (3.4) are governed by the following lemma.

Lemma 3.3. For a series By (a,y) with a()) = 1 we have

, Bl
Wdi(Buolay) = Y o (O W), 3.7)
TE€ET oo ,i(T)=1
where o' (D) =1 and
d(t)=a(n) ... altym)  for 7=, .., Tmli (3.8)

Proof. This is a straightforward extension of Lemma 1.9 with exactly the same
proof. O

The preceding lemma leads directly to the order conditions for composition
methods. However, if we continue with compositions of the type (I.4.1), we arrive
at conditions without real solutions. We therefore turn to compositions including the
adjoint method as well.

I11.3.2 The General Case
As in (IL.4.6), we consider

Up=®a,n0®P5 1 0...0Poyn0Ph,,, 0Payn 0 Ppps (3.9)
and we obtain with the help of the above lemma the corresponding B, -series.
Lemma 3.4 (Recurrence Relations). The following compositions are B -series

(¢Ekho"'o¢a1h0¢21h)(y) = Boo(blmy)

: ’ (3.10)
(éakhoégkho--~O¢a1ho¢ﬁ1h)(y) = Boo(akay)

Their coefficients are recursively given by a,(0)) = 1, bi(0) = 1, ap(r) = 0 for all
7 € Tso, and A
bi(r) = ap-1(1) = (=)D by (1),

) 3.11
a(r) = bulr) + ol B, D
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Proof. The coefficients ao(7) correspond to the identity map By, (ag,y) = y. The
second formula of (3.11) follows from

Boo(akay)zéakh/<BOO(bk7y)) bka ZakhZ ( bka ))7

i>1

and from an application of Lemma 3.3.
The relation By, (by,y) = (Pﬁkh(Boo(ak,l,y)), which involves the adjoint
method, needs a little trick: we write it as Boo(ag—1,y) = d5_5kh(Boo(bk,y))

(remember that &} = (15:,11), apply Lemma 3.3 again, and reverse the formula. This
gives the first equation of (3.11). O

Adding the equations of (3.11), we get
a(7) = ap_1(r) + ()7 — (=B) )b (7). (3.12)

Because of b},((D) = 1, we obtain

1 k k (.13)
(@)=Y ap—> (=)' =Y (o} — (—Be)")
=1 /=1 /=1

The fact that, for by, (@), the sum of (— ;) is from 1 to k, but the sum of &}, is only
from 1 to k — 1, has been indicated by a prime attached to the summation symbol.
Continuing to apply the formulas (3.11) and (3.12) to more and more complicated
trees, we quickly understand the general rule for the coefficients of an arbitrary tree.

Example 3.5. The tree 7 in (3.6) gives

S

k
"QO O a,(r) =S (ad - 8)S (o + A1)
‘@D Xm kk 1 f:l . (3.14)
ol -Za+57za+55(z %)
m=1 n=1 p=1

The Order Conditions. The exact solution of §y = f(y) is a B-series y(to + h) =
B(e,yo) (see (1.26)). Since d; (y) = f(y), every B-series is also a B -series with
e(7) = 0 for trees with at least one label different from 1. Therefore, we also have
y(to + h) = B (e, yo), where the coefficients e(7) satisfy e(®D) = 1, e(7) = 0 if
i(t) > 1, and

e(r) = He(ﬁ) coe(Tm) for 7 =[11,...,Tm]1- (3.15)
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Theorem 3.6. The composition method Wy, (y) = Boo(as, y) of (3.9) has order p if
as(t) =e(t)  for T € T with ||7|| < p. (3.16)

Proof. This follows from a comparison of the B, -series for the numerical and the
exact solution. For the necessity of (3.16), the independence of the elementary dif-
ferentials has to be studied as in Exercise 3. ad

II1.3.3 Reduction of the Order Conditions

The order conditions of the foregoing section are indeed beautiful, but for the mo-
ment they are not of much use, because of the enormous number of trees in 7T, of
a certain order. For example, there are 166 trees in T, with ||7|| < 6. Fortunately,
the equations are not all independent, as we shall see now.

Definition 3.7 (Butcher 1972, Murua & Sanz-Serna 1999). For two trees in T,
u=[u1,...,Un); and v = [v1,...,v;];, we denote

UOV = [Ul,y ..., Um, V), UX V= [Up, ey U, V1, Uiy (31T)

and call them the Butcher product and merging product, respectively (see Fig. 3.1).

uov vou u Xv

Fig. 3.1. The Butcher product and the merging product

The merging product is associative and commutative, the Butcher product is
neither of the two. To simplify the notation, we write products of several factors
without parentheses, when we mean evaluation from left to right:

V1] V2] U3
uowviovgo...ovs = (((uowvy)owvy)o...)ovs. (3.18)

Here the factors vq, . . ., vs can be freely permuted.

All subsequent results concern properties of ay (7) as well as by, (7), valid for all
k. To avoid writing all formulas twice, we replace ay(7) and b (7) everywhere by
a neutral symbol ¢(7).
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Lemma 3.8 (Switching Lemma). All ay, by of Lemma 3.4 satisfy, for all u,v €
T, the relation

c(uov)+clvou)=c(u)-cv) —cluxv). (3.19)
Proof. The recursion formulas (3.11) are of the form
a(t) = b(r) + Y (7). (3.20)
We arrange this formula, for all five trees of Fig. 3.1, as follows:
a(uov) + alvow) + a(u X v) —  a(u)a(v)
= bluov) + blvou) + b(u x v) —  b(u)b(v)
+ o'W (uov) + Wb (vou) + o' WH@Y (y x v)
— &'V (u)b(v) — Y (v)b(u) — WOV (W) (v) .

Because of &' (u o v) = b’ (u)b(v) and ' (u x v) = V' (u)b'(v), the last two rows
cancel, hence

a(7) satisfies (3.19) < b(7) satisfies (3.19). (3.21)
Thus, beginning with ag, then b1, then a1, etc., all a and by, must satisfy (3.19). O

The Switching Lemma 3.8 reduces considerably the number of order conditions.
Since the right-hand expression involves only trees with |7| < |u o v|, and since
relation (3.19) is also satisfied by e(7), an induction argument shows that the order
conditions (3.16) for the trees v o v and v o u are equivalent. The operation u o v —
v o u consists simply in switching the root from one vertex to the next. By repeating
this argument, we see that we can freely move the root inside the graph, and of all
these trees, only one needs to be retained. For order 6, for example, there remain 68
conditions out of the original 166.

Our next results show how relation (3.19) also generates a considerable amount
of reductions of the order conditions. These ideas (for the special situation of sym-
plectic methods) have already been exploited by Calvo & Hairer (1995b).

Lemma 3.9. Assume that all by, of Lemma 3.4 satisfy a relation of the form

N ms
Z A; H c(uij) =0 (3.22)
i=1 j=1

with all m; > 0. Then, for any tree w, all ay, and by, satisfy the relation

N
Z Al C(U) OU;1 U200 ...0 uimi) =0. (323)

i=1
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Proof. The relation (3.20), written for the tree w o ;1 0 U2 0 ... 0 U; 4y, 1S
a(Wouj1 0...0Um,) = blwouso...o0um,)
+ @Y (w)b(ug) - b(Uim,)-

Multiplying with A; and summing over i, this shows that, under the hypothesis
(3.22) for b, the relation (3.23) holds for b if and only if it holds for a. The coef-
ficients ag(7) = 0 for the identity map satisfy (3.22) and (3.23) because m; > 0.
Starting from this, we again conclude (3.23) recursively for all aj, and by. ad

The following lemma * extends formula (3.19) to the case of several factors.
Lemma 3.10. For any three trees u, v, w all ay, by, of Lemma 3.4 satisfy a relation
c(uovow)+clvouow)+c(wouowv)=cu)-cl)- clw)+..., (3.24)

where the dots indicate a linear combination of products [ [ ; c(v;) with [v1 [+ |v2| +
... < |u| + |v| + |w| and, for each term, at least one of the v; possesses a label

larger than one. The general formula, for m trees uy, ..., Un, IS
m m
Zc(ui OUL O...0U;_1 0 Uit] o...oum) = HC(U@) +.... (3.25)
i=1 i=1

Proof. We apply Lemma 3.9 to (3.19) and obtain
c(wo(uov))+c(wo(vou)) =cwouowv)—clwo (uxwv)). (3.26)
Next, we apply the Switching Lemma 3.8 to the trees to the left and get

c(wo (uov))+cluovow)=c(w)- c(uowv)—clw X (uow))

c(wo(wou))+c(vouow)=clw)-c(vou)—clwx (vou)).
Adding these formulas and subtracting (3.26) gives
cluovow)+clvouow)+clwouov)=c(w)(c(uov)+clvou)) +...

which becomes (3.24) after another use of the Switching Lemma. Thereby, every-

thing which goes into “+-...” contains somewhere a merging product, whose roots
introduce necessarily labels larger than one.
Continuing like this, we get recursively (3.25) for all m. a

In order that the further simplifications do not turn into chaos, we fix, once and
for all, a fotal order relation (written <) on T, where we only require that the
order respects the number of vertices, i.e., that

u <v whenever |u| < |vl|. (3.27)

Similar to the strategy introduced by Hall (1950) for simplifying bracket expressions
in Lie algebras, we define the following subset of T,.

3 due to A. Murua, private communication, Feb. 2001
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Definition 3.11 (Hall Set). The Hall set corresponding to an order relation (3.27)
is a subset H C Ty, defined by

OeH fori=1,2,3,...
T€H <& thereexistu,v € H,u > wv,suchthat 7 =wuow.

Example 3.12. The trees in the subsequent table are ordered from left to right with
respect to |7], and from top to bottom within fixed |7|. There remain finally 22
conditions for order 6.

A Hall set H with ||7]| < 6: Not in H are, for example:

% Gg? % because u = v = () :
% @55) 029 @gg) because u % is not in H;

D becauseu:@<v:@§z€>;

@gg o0 o
© s because u = is not in H;
i i
010 @ (2 b @?
® % 4 ) ecause u = v = (.

Theorem 3.13 (Murua & Sanz-Serna 1999). For each ™ € T, there are constants
A;, integers my; and trees u;; € H such that for all ay,, by, of Lemma 3.4 we have

® & © 6 0
@/@)
S
OS5
S
cse
S
Sae

N m;
o(r) = ZAi H c(uiz), uij € H, |u| + oo 4 [wim, | <|7]. (3.28)
=1 j=1

Proof. We proceed by induction on |7|. For 7 = (© the statement is trivial, because

@ € H. We thus consider 7 € T, with |7| > 2, write it as 7 = u o v, and conclude
through the following two steps.

First Step. We apply the induction hypothesis (3.28) to v, i.e.,
C(U) = ZBi HC('Uij)7 Vij € H, Zj |U¢j| < ‘Ul (3.29)
i J

To this, we apply Lemma 3.9 followed by the Switching Lemma 3.8:

e(t) =cluow) = ZBiC(UOUil O Vi2...0UVin,)

i
—ZBiC(Umi O(uovilo...ovi’ni,l)) + ..
i
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The “+...” indicate terms containing trees to which we can apply our induction
hypothesis. Inside the above expressions, we apply the induction hypothesis to the
trees u 0 v © ... 0 v; p, 1, followed once again by Lemma 3.9. We arrive at a huge
double sum which constitutes a linear combination of expressions of the form

c(u1 O'LLQO...Oum) (3.30)
and of terms “+...” covered by the induction hypothesis. The point of the above
dodges was to make sure that all uy,us, . .., Uy, are in H.

Second Step. It remains to reduce an expression (3.30) to the form required by
(3.28). The trees us, ..., u,, can be permuted arbitrarily; we arrange them in in-
creasing order us < ... < Upy,.

Case 1. If u; > wq, then by definition uj o us = w € H and we absorb the
second factor into the first and obtain a product woug o. ..o u,, with fewer factors.

Case 2. If u; < uo < ..., we shuffle the factors with the help of Lemma 3.10

and obtain for (3.30) the expression

m m

_Zc(uioulo...)—FHc(ui)+... .

i=1

With the first terms we return to Case 1, the second term is precisely as in (3.28),
and the terms “+ ...” are covered by the induction hypothesis.

Case 3. Now let u; = up < ... .In this case, the formula (3.25) of Lemma 3.10
contains the term (3.30) twice. We group both together, so that (3.30) becomes

m

m
1
z;c(uiouloulo...)—|—§Hc(ui)+...
1=

i=1

N | =

and we go back to Case 1. If the first three trees are equal, we group three equal
terms together and so on.

The whole reduction process is repeated until all Butcher products have disap-
peared. O

Theorem 3.14 (Murua & Sanz-Serna 1999). The composition method ¥, (y) =
Boo(as,y) of (3.9) has order p if and only if

as(t) = e(7) Sfor T € Hwith ||7|| < p.
The coefficients e(7) are those of Theorem 3.6.

Proof. We have seen in Sect. I1.4 that composition methods of arbitrarily high order
exist. Since the coefficients A; of (3.28) do not depend on the mapping ¢(7), this
together with Theorem 3.6 implies that the relation (3.28) is also satisfied by the
mapping e for the exact solution. This proves the statement. O
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Example 3.15. The order conditions for orders p = 1, ..., 4 become, with the trees
of Example 3.12 and the rule of (3.14), as follows:

S

Order 1: ©) Z(ak +0k)=1

k=1
Order 2: ©) Z(az _ 5}3) —0
k=1
Order 3: ©) Z(O‘i + ﬁg) —0
k=1
S k ,
3 Swmwrms0 e
k=1 =1
Order 4: @ Z(ai _ ﬁé) —0
k=1
S k ,
% S (@48 (w+8)=0
k=1 (=1
s s w k , 9 -
Sz -8 (Y (e +0) =0,
k=1 =1

where, as above, a prime attached to a summation symbol indicates that the sum of
a}; is only from 1 to k — 1, whereas the sum of (— ﬂg)i is from 1 to k. Similarly, the
remaining trees of Example 3.12 with ||7|| = 5 and ||7|| = 6 give the additional
conditions for order 5 and 6.

We shall see in Sect. V.3 how further reductions and numerical values are ob-
tained under various assumptions of symmetry.

I11.3.4 Order Conditions for Splitting Methods

Splitting methods, introduced in Sect. IL.5, are based on differential equations of the
form

v = f1(y) + fa(v), (3.32)
(1] (2]

where the flows ¢; and ;" of the systems ¢ = f1(y) and § = f2(y) are assumed
to be known exactly. In this situation, the method

B = flo ol

is of first order and, together with its adjoint ¢; = QDELZ] o @E}], can be used as the
basic method in the composition (3.9). This yields

Y = @Lljﬂh ° <Pz[i]h ° @Ejh ©...0 <Pz[>22]h ° @Ejh ° ‘Pﬁ]h ° Sﬁ[all]h (3.33)

where
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b = a; + f3;, a; = a;—1 + G (3.34)

with the conventions oy = 0 and G,41 = 0. Consequently, the splitting method
(3.33) is a special case of (3.9) and we have the following obvious result.

Theorem 3.16. Suppose that the composition method (3.9) is of order p for all
basic methods @y, then the splitting method (3.33) with a;, b; given by (3.34) is of
the same order p. O

We now want to establish the reciprocal result. To every consistent splitting
method (3.33), i.e., with coefficients satisfying >, a; = >, b; = 1, there exist
unique «;, 3; such that (3.34) holds. Does the corresponding composition method
have the same order?

Theorem 3.17. If a consistent splitting method (3.33) is of order p at least for
problems of the form (3.32) with the integrable splitting

n = ("8) . mw = (0, ) wee u= (). 6

then the corresponding composition method has the same order p for an arbitrary
basic method &y,.

Proof. McLachlan (1995) proves this result in the setting of Lie algebras. We give
here a proof using the tools of this section.
a) The flows corresponding to the two vector fields f; and fy of (3.35) are

<,0£1] (y) =y+tfi(y) and <p£2] (y) = y + tf2(y), respectively. Consequently, the
method &}, = ng] o <ph2 can be written in the form (3.1) with

Gy) = LW+ L) deal) = 5 K0 (L) L) 636

The idea is to construct, for every tree 7 € H, functions g; (y2) and g2(y1) such that
the first component of F'(7)(0) is non-zero whereas the first component of F'(¢)(0)
vanishes for all 0 € T different from 7. This construction will be explained in
part (b) below. Since the local error of the composition method is a B,-series with
coefficients as(7) — e(7), this implies that the order conditions for 7 € H with
|I7]| < p are necessary already for this very special class of problems. Theorem 3.14
thus proves the statement.

b) For the construction of the functions g1 (y2) and g2 (y1) we have to understand
the structure of F'(7)(y) with di(y) given by (3.36). Consider for example the tree
7 € Tw of Fig.3.2, for which we have F(7)(y) = d4(y)(d1(y),ds(y)). Inserting
di(y) from (3.36), we get by Leibniz’ rule a linear combination of eight expressions

(G e{1,2})

U (f2, fis 1 (f2, f2)), U (fafin [ (fas f2))
{/(fiafé {I(f27f2))7 f{ é/(fia {/(anfQ))v
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VR VIV ]

Fig. 3.2. Trees for illustrating the equivalence of the order conditions between composition
and splitting methods

each of which can be identified with a bi-coloured tree (see Sect.II.2.1, a vertex
 corresponds to f; and o to f5). The trees corresponding to these expressions
with ¢ = 1 are shown in Fig. 3.2. Due to the special form of d(y) in (3.36) and
due to the fact that in trees of the Hall set H the vertex (D can appear only at the
end of a branch, there is always at least one bi-coloured tree where the vertices e
are separated by those of o and vice versa. We now select such a tree, denoted by
7, and we label the black and white vertices with {1,2,...}. We then let y; =
(yi, ...,y T and yo = (32, ..., y2,)", where n and m are the numbers of vertices
» and o in T3, respectively. Inspired by “Exercise 4” of Hairer, Ngrsett & Wanner
(1993), page 155, we define the ith component of g;(y2) as the product of all y7
where j runs through the labels of the vertices directly above the vertex « with
label i. The function g2 (y1 ) is defined similarly. For the example of Fig. 3.2, the tree
Ty yields

yt Y3y3
ga)=v3B |, ey)=| 1
1 1

One can check that with this construction the bi-coloured tree 7 is the only one
for which the first component of the elementary differential evaluated at y = 0 is
different from zero. This in turn implies that among all trees of T, only the tree 7
has a non-vanishing first component in its elementary differential. ]

Necessity of Negative Steps for Higher Order. One notices that all the compo-
sition methods (I1.4.6) of oder higher than two with @;, given by (I1.5.7) lead to a
splitting (I.5.6) where at least one of the coefficients a; and b; is negative. This
may be undesirable, especially when the flow @Ll] originates from a partial differen-
tial equation that is ill-posed for negative time progression. The following result has
been proved independently by Sheng (1989) and Suzuki (1991) (see also Goldman

& Kaper (1996)). We present the elegant proof found by Blanes & Casas (2005).

Theorem 3.18. If the splitting method (I1.5.6) is of order p > 3 for general f'') and
f2 then at least one of the a; and at least one of the b; are strictly negative.

Proof. The condition in equation (3.31) for the tree ® reads

s s+1
Z(ai 4 ﬁ}?) =0 or also Z(Oéz_1 + ﬁg) =0
Pt k=1

(remember that oy = 0 and 3,1 = 0). Now apply the fact that 23 + 3> < 0 implies
x + y < 0 and conclude with formulas (3.34). O
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II1.4 The Baker-Campbell-Hausdorff Formula

This section treats the Baker-Campbell-Hausdorff (short BCH or CBH) formula on
the composition of exponentials. It was proposed in 1898 by J.E. Campbell and
proved independently by Baker (1905) and Hausdorff (1906). This formula will
provide an alternative approach to the order conditions of composition (Sect. I1.4)
and splitting methods (Sect. I1.5). For its derivation we shall use the inverse of the
derivative of the exponential function.

II1.4.1 Derivative of the Exponential and Its Inverse

Elegant formulas for the derivative of exp and for its inverse can be obtained by
the use of matrix commutators [{2, A] = 2A — Af2. If we suppose (2 fixed, this
expression defines a linear operator A — [{2, A]

which is called the adjoint operator (see Varadarajan (1974), Sect.2.13). Let us start
by computing the derivatives of £2*. The product rule for differentiation becomes

(% Qk)H —HO 4 QHOR? 4+ 0FH, 4.2)

and this equals kH k=1 if  and H commute. Therefore, it is natural to write
(4.2) as kH 2%~ to which are added correction terms involving commutators and
iterated commutators. In the cases £ = 2 and k£ = 3 we have

HQ+QH = 2HQ+ado(H)
HO?+ QHQ + *H = 3HQ? +3(ad o(H)) 2 +ad 5 (H),

where ad %, denotes the iterated application of the linear operator ad . With the
convention ad {,(H) = H we obtain by induction on k that

CTOTE > N [ CHTI

i=0
This is seen by applying Leibniz’ rule to %1 = (2. 2% and by using the identity
Q(ad i (H)) = (ad(H)) 2 + ad (' (H).
Lemma 4.1. The derivative of exp {2 = ZkZO % 2% is given by
d
(diﬂ exp .Q)H = (d epr(H)) exp {2,
where
1 k

dexpg(H) = ] ad %, (H). (4.4)
E>0 ’

The series (4.4) converges for all matrices (2.
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Proof. Multiplying (4.3) by (k!)~! and summing, then exchanging the sums and
putting 7 = k — ¢ — 1 yields

(Goer ) = T2 (.4 ) (wnon)o
) ; ;o (z‘+11>!j! (sa i) 2’

The convergence of the series follows from the boundedness of the linear operator
ad ¢ (we have ||ad || < 2]|2|). O

Lemma 4.2 (Baker 1905). If the eigenvalues of the linear operator ad , are differ-
ent from 20mi with ¢ € {£1,42,...}, then dexpg, is invertible. Furthermore, we
have for || 2| < 7 that
_ B
dexpp! (H) = Y <7 ad(H), 4.5)
k>0

where By, are the Bernoulli numbers, defined by ZkZO(Bk/k!)xk =z/(e* —1).

Proof. The eigenvalues of dexpg, are 1 = >, A*/(k + 1)l = (e} — 1)/A,
where ) is an eigenvalue of ad . By our assumption, the values p are non-zero, so
that d exp, is invertible. By definition of the Bernoulli numbers, the composition of
(4.5) with (4.4) gives the identity. Convergence for ||2|| < 7 follows from ||ad | <
2||£2]| and from the fact that the radius of convergence of the series for z/(e® — 1)
is 2. O

II1.4.2 The BCH Formula

Let A and B be two arbitrary (in general non-commuting) matrices. The problem is
to find a matrix C(t), such that

exp(tA) exp(tB) = exp C(t). (4.6)

In order to get a first idea of the form of C'(¢), we develop the expression to the left in
aseries: exp(tA) exp(tB) = [+t(A+B)+ % (A24+2AB+B*)+0(t3) = I+ X.
For sufficiently small ¢ (hence || X|| is small), the series expansion of the logarithm
log(I +X) =X —X?%/2+...yields amatrix C(t) = log({ + X) = t(A+ B) +
% (A% 4+ 24AB + B? — (A + B)?) + O(t%), which satisfies (4.6). This series has
a positive radius of convergence, because it is obtained by elementary operations of
convergent series.

The main problem of the derivation of the BCH formula is to get explicit for-
mulas for the coefficients of the series for C'(¢), and to express the coefficients of
2,43, .. .in terms of commutators. With the help of the following lemma, recurrence
relations for these coefficients will be obtained, which allow for an easy computa-
tion of the first terms.
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John Edward Campbell * Henry Frederick Baker’® Felix Hausdorff ®

Lemma 4.3. Let A and B be (non-commuting) matrices. Then, (4.6) holds, where
C'(t) is the solution of the differential equation

: 1 By ..
=A+B+-[A-B —adi(A+ B 4.7
C=A+B+5] ’C]+;;2k!30( +B) (4.7)

with initial value C(0) = 0. Recall that ad c A = [C, A] = CA— AC, and that By,
denote the Bernoulli numbers as in Lemma 4.2.

Proof. We follow Varadarajan (1974), Sect. 2.15, and we consider for small s and ¢
a smooth matrix function Z (s, t) such that

exp(sA)exp(tB) = exp Z(s,t). (4.8)

Using Lemma 4.1, the derivative of (4.8) with respect to s is

0z
A exp(sA)exp(tB) = dexpy(s ) (E(s, t)) exp Z(s,t),

so that 57 ) B
—_— = -1 = _ = 7]6 k
5, = dexp!(4) = A— 5 [Z.4] +kz>2 oy ad5(4). (4.9)

We next take the inverse of (4.8)

4 John Edward Campbell, born: 27 May 1862 in Lisburn, Co Antrim (Ireland), died: 1 Oc-
tober 1924 in Oxford (England).

5 Henry Frederick Baker, born: 3 July 1866 in Cambridge (England), died: 17 March 1956
in Cambridge.

6 Felix Hausdorff, born: 8 November 1869 in Breslau, Silesia (now Wroclaw, Poland), died:
26 January 1942 in Bonn (Germany).
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exp(—tB) exp(—sA) = exp(—Z(s, 1)),
and differentiate this relation with respect to t. As above we get

YA .
-, =dexp_(B) = 512.B]+ ];2 —adk (4.10)

because ad® ,(B) = (—1)*ad’% (B) and the Bernoulli numbers satisfy By = 0
for odd k > 2. A comparison of (4.6) with (4.8) gives C(t) = Z(t,t). The stated
differential equation for C/(t) therefore follows from C(t) = %—f(t, t) + %—f(t, t),
and from adding the relations (4.9) and (4.10). O

Using Lemma 4.3 we can compute the first Taylor coefficients of C(t),
exp(tA) exp(tB) = exp (tC’l +t2Cy +t3C5 +t*Cy +1°C5 + .. ) (4.11)

Inserting this expansion of C'(¢) into (4.7) and comparing like powers of ¢ gives

Ci = A+B
Oy = 1[A-B,A+B]:%[A,B]
Oy = [A B, [A, B)| = - 4,14, 8] + b (B, (B, 4]
Cy - 2—14[/1, B, [B,A]]] (4.12)
Cs = o= == [A A [A A, B])] - =55 [ B [B. [B.[B. A]]]
+% [A, B, [B, [B,A]]H n % [B, [A,[A, 4, B}]H
+os 4[4 [B. (B, AN | + 55 [B. [B.[4,14,B])].

Here, the dots ... in the formulas for Cy and C5 indicate simplifications with the
help of the Jacobi identity

[A,[B,C]] + [C.[A, B]] + [B,[C, 4] =0, 4.13)

which is verified by straightforward calculation. For higher order the expressions
soon become very complicated.

The Symmetric BCH Formula. For the construction of symmetric splitting meth-
ods it is convenient to use a formula for the composition

exp(%A) exp(tB) exp(%A) = exp (tSl + 1385 +°85 + .. > (4.14)

Since the inverse of the left-hand side is obtained by changing the sign of ¢, the
same must be true for the right-hand side. This explains why only odd powers of
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¢ are present in (4.14). Applying the BCH formula (4.11) to exp(5A) exp(£B) =
exp C(t) and a second time to exp(C(t)) exp(—C(—t)) yields for the coefficients
of (4.14) (Yoshida 1990)

S, = A+B

Ss = —5: 4148+ [B,(B,4)]

S5 = s A A A A B])] - s [B (B (B BAN] @)
+ﬁ{f1’ (B, BB, 4]]]| + 5 [B A4 4, B]]]]
_ﬁ [A, (A, [B, [B,A]]]] + % [B, [B,[A,[A, Bm]

II1.5 Order Conditions via the BCH Formula

Using the BCH formula we present an alternative approach to the order conditions
of splitting and composition methods. The main idea is to write the flow of a differ-
ential equation formally as the exponential of the Lie derivative.

II1.5.1 Calculus of Lie Derivatives

For a differential equation

g = Uy + fPy),

it is convenient to study the composition of the

flows <p£1] and gp,[fz] of the systems

g=rMy), g=rFw, 6D

respectively. We introduce the differential op-
erators (Lie derivative)

_ i,y 0
D; = ij (y)@
J

which means that for differentiable functions
F : R™ — R™ we have Wolfgang Grobner’

D;iF(y) = F'(y) " (y)- (5.2)
It follows from the chain rule that, for the solutions <p7[f] (yo) of (5.1),

7 Wolfgang Grobner, born: 11 February 1899 in Gossensass, South Tyrol (now Italy), died:
10 August 1980 in Innsbruck.
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d

= F (o)) = (DiF) (£ (w0)), (5.3)

and applying this operator iteratively we get

d—kF(go[i](y ) = (DEF) (o 5.4
aik ¢ (Yo FE) (2 (h0))- (5.4)

Consequently, the Taylor series of F' (@Lﬂ (yo)) , developed at t = 0, becomes

. k
Flefl ) = 3 5 (DEF) ) = exp(tD)F (o). 55)
E>0

Now, putting F'(y) = Id(y) = v, the identity map, this is the Taylor series of the
solution itself

i t*
lyo) = - 75 (DFId)(30) = exp(tDi)ld(yo)- (5.6)
k>0

If the functions f)(y) are not analytic, but only N-times continuously differen-
tiable, the series (5.6) has to be truncated and a O(h") remainder term has to be
included.

Lemma 5.1 (Grobner 1960). Let goL” and <p2[52] be the flows of the differential equa-
tions §y = fM(y) and i = fPl(y), respectively. For their composition we then have

(o 0 o1) (yo) = exp(sD1) exp(tDy) 1d(yo)-

Proof. This is precisely formula (5.5) with ¢ =1, ¢ replaced with s, and with F'(y) =
P (y) = exp(tDs)Td(yo). D

Remark 5.2. Notice that the indices 1 and 2 as well as s and ¢ to the left and right
in the identity of Lemma 5.1 are permuted. Grobner calls this phenomenon, which
sometimes leads to some confusion in the literature, the “Vertauschungssatz”.

Remark 5.3. The statement of Lemma 5.1 can be extended to more than two flows.
If @Lj Vis the flow of a differential equation iy = fUl(y), then we have

(¢l o ol o oll) (yo) = exp(sD1) exp(tDz) - .. - exp(uDy)Id(yo).
This follows by induction on m.

In general, the two operators D; and D, do not commute, so that the composi-
tion exp(tD1) exp(tD2)Id(yo) is different from exp(¢(Dy + D2))Id(yo) , which
represents the solution ¢, (o) of ¥ = f(y) = fM(y) + f2(y). The relation of
Lemma 5.1 suggests the use of the BCH formula. However, D; and D» are un-
bounded differential operators so that the series expansions that appear cannot be
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expected to converge. A formal application of the BCH formula with tA and ¢B
replaced with sD; and ¢ Ds, respectively, yields

exp(sD1) exp(tDs) = exp(D(s, t)), (5.7)
where the differential operator D(s, t) is obtained from (4.11) as

t %t
D(s,t) = sDi+tDy+ 5 [Dy, Da] + 5 [Dl, D1, DQ}}

st
12

242 (5.8)

+ o0

[D2, [DQaDl]} + {Dh [Ds, [D2,D1]H +....
The Lie bracket for differential operators is calculated exactly as for matrices,
namely, [D1, D2] = D1 Dy — D2 D;. But how can we interpret (5.7) rigorously?

Expanding both sides in Taylor series we see that
exp(sD1) exp(tDs) = I+sD1+tDo+ % (32D% +2stD1 Do +t2D§) +... (59
and

exp(D(s,t)) = I+ D(s,t)+ %D(s,t)2 +...

1
= I+ SDl +tD2 —+ 5((5D1 +tD2)2 —+ St[Dl,D2]> 4+ ...

By derivation of the BCH formula we have a formal identity, i.e., both series have
exactly the same coefficients. Moreover, every finite truncation of the series can be
applied without any difficulties to sufficiently differentiable functions F'(y). Con-
sequently, for N-times differentiable functions the relation (5.7) holds true, if both
sides are replaced by their truncated Taylor series and if a O(h™") remainder is added
(h = max(]s|, |t])).

I11.5.2 Lie Brackets and Commutativity

If we apply D> to a function F, followed by an application of D;, we will obtain
partial derivatives of F' of first and second orders. However, if we subtract from this
the same expression with D; and D, reversed, the second derivatives will cancel
(this was already remarked upon by Jacobi (1862), p.39: “differentialia partialia
secunda functionis f non continere”) and we see that the Lie bracket

af? af )
Dy, Dy] = DyDy — Dy, =Z(Z( 8"; - g;ff]))ay (5.10)
y j j i

3

is again a linear differential operator. So, from two vector fields f[I and f1?! we
obtain a third vector field f13).
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The geometric meaning of the new vector
field can be deduced from Lemma 5.1. We see
by subtracting (5.9) from itself, once as it stands
and once with sD; and tD, permuted, that Yo

. (1]
if[B] Ps
ool (yo) W oo (yo) = st [Dy, Do) Id(yo) +. .. = st /B (yo)+... (5.11)

(see the picture), where “+ . ..” are terms of order > 3. This leads us to the following
result.

Lemma 5.4. Let fl1(y) and fP(y) be defined on an open set. The corresponding

flows QDLH and <p£2] commute everywhere for all sufficiently small s and t, if and only

if
[Dy, Ds] = 0. (5.12)

Proof. The “only if” part is clear from (5.11). For proving the “if” part, we take s
and ¢ fixed, and subdivide, for a given n, the integration intervals into n equidistant

parts As = s/n and At = t/n. This allows us to transform the solution cp?] o

ale] (yo) by a discrete homotopy in n? steps into the solution gp[sl] o (p?] (yo), each
time appending a small rectangle of size O(n~2). If we denote such an intermediate

stage by

2 1 2 1
I, =...0 (pgz]ﬂt o SDEQ]AS © @E‘l]m o @El]As(yO)

then we have [y = cp?] o @Ll] (yo) and [,z = 90[31] o g0£2] (yo) (see Fig. 5.1). Now, for
n — 00, we have the estimate

|1 — Tk < O(n7?),

because the error terms in (5.11) are of order 3 at least, and because of the dif-
ferentiability of the solutions with respect to initial values. Thus, by the triangle
inequality |I},> — I'o| < O(n~1!) and the result is proved. O

I = cp[sl]

o ga[sl]

Fig. 5.1. Estimation of commuting solutions
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IT1.5.3 Splitting Methods

We follow the approach of Yoshida (1990) for obtaining the order conditions of
splitting methods (I.5.6). The idea is the following: with the use of Lemma 5.1 we
write the method as a product of exponentials, then we apply formally the Baker-
Campbell-Hausdorff formula to get one exponential of a series in powers of h. Fi-
nally, we compare this series with h(D; + Dz), which corresponds to the exact
solution of (5.1).

The splitting method (I1.5.6), viz.,

v, = wl[ilh o 50¢[11,Lh o 901[)21171h 0...0 %[zlz]h o 901[721]h o @Lll]h, (5.13)

is a composition of expressions gal[?j]h o gogj] ;, which, by Lemma 5.1 and by (5.7), can
be written as an exponential

i 0w = exp (B + bREY + a;b;h B .
+a2b RSB + a0 B + 20 B+ )1, e
where we use the abbreviations
El =Dy, E;=D,, E}= %[DthL E} = T12[D1;[D13D2]]7
E§ = =5 [D2,[D2, D1}, B = o [Da[Ds, [Da, Dull],

and the dots indicate O(h®) expressions.
We next define (%) recursively by

v =1, 00 = ol 0wl Y, (5.15)

so that ¥(™) is equal to our method (5.13). Aiming to write (/) also as an exponen-
tial of differential operators, we are confronted with computing commutators of the
expressions E7. We see that [E], Fi] = 2E%, [E{, E}] = 6E}, [E), E}] = —6E3,
(B}, E3] = 2E1, and [E}, o] = —2E} as a consequence of the Jacobi identity
(4.13). But the other commutators cannot be expressed in terms of E/. We therefore
introduce

1 1
E; = o7 [D1,[D1,[D1,Ds]]], Ej= o [Ds, Dy, [D2, D1]]].
This allows us to formulate the following result.
Lemma 5.5. The method W\9), defined by (5.15), can be formally written as
w0 = exp(cl hEL + ch hEL + & h2E} + ¢ W E

e hOES + o W ES + o 0B + of b + . )14,
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where all coefficients are zero for j = 0, and where for j > 1

1 _ 1 ) 1 _ 1 )

C1,j = C1,j-1 T aj, Cyj=Cyj_1+ bj,
2 _ 2 ol S | )
€t =¢1 1 Tajbj+cy ;10 —c3 ;i qa5,

3 _ 3 27 . 1 3. a2 i
;=0 1+ ajb] + 2617j71ajbj 3¢t -1,

1 2, 1 1 ) 1 2

+(e1,;-1)°bj — €1 163 105 + ¢354,
3 _ .3 32 g1 b 2 )
Cy; =Cyj_1t ajbj 402,]'—1%1)3 + 301,j—1bj

1 2 1 1 L 2
+(egj-1)%a; — 1 j_q¢5_1bj + 1 107,

and similar but more complicated formulas for C;L,j'
Proof. Due to the reversed order in Lemma 5.1 we have to compute exp(A) exp(B),
where A is the argument of the exponential for w0~ and B is that of (5.14). The
rest is a tedious but straightforward application of the BCH formula. One has to use
repeatedly the formulas for [E7, E}], stated before Lemma 5.5. O

Theorem 5.6. The splitting method (5.13) is of order p if
c},m = c%ym =1, c’Z’m =0 for k=2,...,p andall L. (5.16)
The coefficients c’zm are those defined in Lemma 5.5.

Proof. This is an immediate consequence of Lemma 5.5, because the conditions of
order p imply that the Taylor series expansion of ¥("™) (yo) coincides with that of
the solution ¢y, (yo) = exp(h(D1 + D2))yo up to terms of size O(hP). O

A simplification in the order conditions arises for symmetric methods (5.13),
that is, for coefficients satisfying a,,+1—; = a; and b,,_; = b; for all i (and b,,, = 0).
By Theorem I1.3.2, it is sufficient to consider the order conditions (5.16) for odd &
only.

I11.5.4 Composition Methods
We now consider composition methods (I1.4.6), viz.,

Up=®4,n0P5p0...0905, 0P 1 0Pp p, (5.17)

where @y, is a first-order method for ¢ = f(y) and &7}, is its adjoint. We assume
o), — exp(hCl FR2Cy + h3Cs + .. .)Id (5.18)

with differential operators C};, and such that C is the Lie derivative operator cor-
responding to y = f(y). For the splitting method &;, = @E] o @E] this follows
from (5.14), and for general one-step methods this is a consequence of Sect. IX.1 on

backward error analysis. The adjoint method then satisfies
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o = exp(hCl 2O, B3 — .. .)Id. (5.19)

From now on the procedure is similar to that of Sect. II1.5.3. We define ¥9) recur-
sively by _ _
v =14, 79 =, 40 & 40 pl-1, (5.20)

so that ¥("™) becomes (5.17). We apply the BCH formula to obtain
Poyn 0By, = exp(ﬁthl — B2h2Ch + .. ) exp(ozth'1 +a2h2Cy + .. .)Id
= exp((a + B))hEL + (o — B)R°ES
+(ad + BRUE + Losfioy + B)H0ES + ... )1d

where

EY =Cy, FE3=[C,Cy).
We then have the following result.
Lemma 5.7. The method W'9) of (5.20) can be formally written as
W) = exp(v1 hBL + 92 h2ES + 57 W ES + 43 BB + . )1d,
where all coefficients are zero for j = 0, and where for j =1,....m
M, = ’711,3'—1 + o5+ 05

7%,;’ = 7%,;'71 + a? - ﬁ?

Vij = ’Yij—l JFQ? Jrﬂ?

By = B+ 305005+ B) + 5o o2 — B2) — 293,105+ By).
Proof. Similar to Lemma 5.5, the result follows using the BCH formula. O
Theorem 5.8. The composition method (5.17) is of order p if

Nm=1, Vem =0 for k=2,....p andall L. (5.21)
The coefficients 'yzm are those defined in Lemma 5.7. O

It is interesting to see how these order conditions are related to those obtained
with the use of trees. The conditions 71 m = land o "= = .m = 0 are identical
to the ﬁrst three order conditions of Example 3.15. The remaining condition for
order 3, wg’m = (0, reads

m m k—1 m k—1
> anBrlan + Br) + Y (o = B D (i +8i) = Y (an+Br) Y _(af — B7)
k=1 k=1 i=1 =1 i=1

m k , m k
=D (@i =B (e +5i) = > (ar + Br) Z (af = 87) =
k=1 i=1

k=1 i=1
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This condition is just the difference of the order conditions for the trees @ o O and
@ o @, whose sum is zero by the Switching Lemma 3.8. Therefore the condition
vg’m = 0 is equivalent to (though more complicated than) the fourth condition of
Example 3.15.

Symmetric Composition of Symmetric Methods. Consider now a composition
Up =Py, p0...00, 0D, 0P ,50...0D, 4, (5.22)

where @), is a symmetric method that can be written as
@1 = exp(hS1 + h*Ss + 1785 + ... )1d

with S; the Lie derivative operator corresponding to ¢y = f(y). For the Strang

splitting &5, = @5}2 o <p£12] o @5}2 such an expansion follows from the symmetric

BCH formula (4.14), and for general symmetric one-step methods from Sect. IX.2.
The derivation of the order conditions is similar to the above with ¥() defined by

g — Dn, gl — P..po gl—-1 4 P,
so that ¥ (™) becomes (5.22).

Lemma 5.9. The method W'9) can be formally written as
w) = exp(aijhE% + 0% hBED + 0% WOED 4 0} hOES + .. .)Id,

where EY = Sy, ES = [S1[S1, Ss]], and where of | = ~F, 05, =0, and

k
01,5

k k
1j—1 J
5 _ 5 1/ 3/ 1 2 1 3 2 3 4 1
03,5 = 0'2,3’71"’_6('7]‘(0-1,]‘71) ~%01,j-101,5-1 — V01,51 +'7j01,j71)'

Proof. The result is a consequence of the symmetric BCH formula (4.14) with
vihS1 4+ 4}h*Ss + ... and o] ; hE} 4+ 0} ;_|hE} + ... in the roles of A and
tB, respectively. O

Theorem 5.10. The composition method (5.22) is of order p if
ol =1, Ofm =0 forodd k=3,...,p andall (. (5.23)
The coefficients O‘éf, m, are those defined in Lemma 5.9. O

Symmetric composition methods up to order 10 will be constructed and dis-
cussed in Sect. V.3.
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II1.6 Exercises

1. Find all trees of orders 5 and 6.
2. (A.Cayley 1857). Denote the number of trees of order g by a4. Prove that

ay + agx + azr® +agxd + .. = (1 —x)79(1 —2?) 72 (1 —2%) 7% .

q 1 2 3 4 5 6 7 8 9 10
aq 1 1 2 4 9 20 48 115 286 719

3. Independency of the elementary differentials: show that for every 7 € T there

is a system (1.1) such that the first component of F'(7)(0) equals 1, and the first
component of F'(u)(0) is zero for all trees u # t.
Hint. Consider a monotonic labelling of 7, and define y, as the product over all
Y4, where j runs through all labels of vertices that lie directly above the vertex
“”. For the first labelling of the tree of Exercise 4 this would be §; = y2ys3,
y2=1,93 =ys,and g4 = 1.

4. Prove that the coefficient a(7) of Defin-

ition 1.2 is equal to the number of possi- 4 4 3
ble monotonic labellings of the vertices 3 2 2 3 2 4
of 7, starting with the label 1 for the ) ) )

root. For example, the tree [[«], ¢] has
three different monotonic labellings.
In addition, deduce, from (1.22), the recursion formula

a(r)z( Il =1 )a(71)~...-a(7'm)

|71, -5 |Tm

O

where the integers f1, f2, . . . count equal trees among 71, . . . , T, and

(=1 )= (r=n
|71l - -y |Tonl |71t !

denotes the multinomial coefficient.
Remark. In the theoretical physics literature, the coefficients «(7) are written
CM(7) and called “Connes-Moscovici weights”.

5. If we denote by N (7) the number of elements in OST(7), then show that

N(s)=2, N(71,...,7m]) =1+ N(11) ...  N(Tmn).

Use this result to compute the number of subtrees of the christmas tree decorat-
ing formula (1.34). Answer: 6865.

6. Prove that the elementary differentials for partitioned problems are indepen-
dent. For a given tree (7 € TP, find a problem (2.1) such that a certain compo-
nent of F'(7)(p, ¢) vanishes for all u € TP except for 7.

Hint. Consider the construction of Exercise 3, and define the partitioning of y
into (p, ¢) according to the colours of the vertices.
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7.

10.

11.
12.
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The number of order conditions for partitioned Runge—Kutta methods (I1.2.2)
is 2a,. for order r, where a,. is given by (see Hairer, Ngrsett & Wanner (1993),
page 311)

T 1 2 3 4 5 6 7 8 9 10
ar 1 2 7 26 107 458 2058 9498 44987 216598

Find a formula similar to that of Exercise 2.

. For the special second order differential equation § = g(y) , and for a Nystrom

method

b = g(yo +eihgo + 02y aijfj),
s s 6.2)
yio= yo+hjo+h*D Bili, = go+h Y bili,
i=1 i=1
consider the simplifying assumption

S k

_ C;
CN('T]) Za”0§ 2:]@(?—1)’ k:2,...,77,
j=

k
C; Cj 1

=1
: e G 1 _
DN(Q): > bich au_bj(k(k_l) k_1+k), k=2,...C
=1

Prove that if the quadrature formula (b;, ¢;) is of order p, if 5; = b;(1 — ¢;)
for all 4, and if the simplifying assumptions C' N (n), DN (¢) are satisfied with
2n+2 > pand ¢ + n > p, then the Nystrom method has order p.

. Nystrém methods of maximal order 2s. Prove that there exists a one-parameter

family of s-stage Nystrom methods (6.2) for § = g(y), which have order 2s.
Hint. Consider the Gaussian quadrature formula and define the coefficients a;;
by C'N(s) and by

c Cs

. ; 1
;bicf 2ai8:bj<k(k—1) i)

fork=2,...,s.

Prove that the coefficient Cy in the series (4.11) of the Baker-Campbell-
Hausdorff formula is given by Cy = [A, [B, [B, A]]]/24.

Prove that the series (4.11) converges for [t| < In2/(]|A|| + || B]]).

By Theorem 5.10 four order conditions have to be satisfied such that the sym-
metric composition method (5.22) is of order 6. Prove that these conditions are
equivalent to the four conditions of Example V.3.15. (Care has to be taken due
to the different meaning of the ~;.)




Chapter IV.
Conservation of First Integrals and Methods
on Manifolds

This chapter deals with the conservation of invariants (first integrals) by numerical
methods, and with numerical methods for differential equations on manifolds. Our
investigation will follow two directions. We first investigate which of the methods
introduced in Chap. II conserve invariants automatically. We shall see that most of
them conserve linear invariants, a few of them quadratic invariants, and none of
them conserves cubic or general nonlinear invariants. We then construct new classes
of methods, which are adapted to known invariants and which force the numerical
solution to satisfy them. In particular, we study projection methods and methods
based on local coordinates of the manifold defined by the invariants. We discuss
in some detail the case where the manifold is a Lie group. Finally, we consider
differential equations on manifolds with orthogonality constraints, which often arise
in numerical linear algebra.

IV.1 Examples of First Integrals

Je nomme intégrale une équation u = Const. telle que sa différentielle
du = 0 soit vérifiée identiquement par le systeéme des équations différen-
tielles proposées . . . (C.G.J. Jacobi 1840, p. 350)

We consider differential equations

y=rw), (1.1)
where y is a vector or possibly a matrix.

Definition 1.1. A non-constant function I (y) is called a first integral of (1.1) if

I'(y)f(y) =0  forally. (1.2)

This implies that every solution y(¢) of (1.1) satisfies I (y(t)) = I(yo) = Const.
Synonymously with “first integral”, the terms invariant or conserved quantity or
constant of motion are also used.

In Chap. I we have seen many examples of differential equations with invariants.
For example, the Lotka—Volterra problem (I.1.1) has I(u,v) = Inu —u+2lnv —wv
as first integral. The pendulum equation (1.1.13) has H (p, q¢) = p?/2—cos g, and the
Kepler problem (I.2.2) has two first integrals, namely H and L of (I1.2.3) and (1.2.4).
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Example 1.2 (Conservation of the Total Energy). Hamiltonian systems are of the
form

p=—Hy(p,q), 4= Hy(p,q),

where H, = V,H = (8H/8q)T and H, =V, H = (8H/6'p)T are the column
vectors of partial derivatives. The Hamiltonian function H (p, q) is a first integral.
This follows at once from H'(p, q) = (0H/0p, 0H/dq) and

8H( 8H)T 8H<8H>T_O

I\ g dg \op/
Example 1.3 (Conservation of the Total Linear and Angular Momentum of
N-Body Systems). We consider a system of N particles interacting pairwise with
potential forces which depend on the distances of the particles. This is formulated
as a Hamiltonian system with total energy (1.4.1), viz.,

N N i—1

H(p,q) = %Zm%pfpﬂrzzwg'(llqi ~gll) -

i=1 i=2 j=1

Here ¢;,p; € R? represent the position and momentum of the ith particle of mass
m;, and V;;(r) (¢ > j) is the interaction potential between the ith and jth particle.
The equations of motion read

1 N
%:Epm Pz‘:zll/ij(qz‘*qj')
j:

7

L . . ,
where, fori > j, wehave v;; = vj; = —Vij

arbitrary, say v;; = 0. The conservation of the total linear momentum P = Zfil i

(rij)/mij withr;; = [|gi—q;||, and vy, is

and the angular momentum L = Zivzl ¢; X p; is a consequence of the symmetry
relation v;; = vj;:

d N N N
7 D=1 vij(ai—q;) =0
=1

i=1j=1

P N N N

%Z(Zisz‘:ZﬁpiXpi+zzqixyij(Qi_Qj):0-
i=1 i=1 " i=1 j=1

Example 1.4 (Conservation of Mass in Chemical Reactions). Suppose that three
substances A, B, C undergo a chemical reaction such as!

A 2 B (slow)
107
B+B 2% c4+B  (veryfast)

B+C RN A+C (fast).

L This Robertson problem is very popular in testing codes for stiff differential equations.
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We denote the masses (or concentrations) of the substances A, B, C by y1, y2, Y3,
respectively. By the mass action law this leads to the equations

A: i1 = =004y +10" yoys
B: o = 0.04y; —10%yoy3 —3-107 32
C: U3 = 3107 y2

We see that ¢1 + 92 + y3 = 0, hence the total mass I(y) = y1 + y2 + y3 is an
invariant of the system.

As was noted by Shampine (1986), such linear invariants are generally con-
served by numerical integrators.

Theorem 1.5 (Conservation of Linear Invariants). All explicit and implicit
Runge—Kutta methods conserve linear invariants. Partitioned Runge—Kutta meth-
ods (11.2.2) conserve linear invariants if b; = b; for all i, or if the invariant depends
only on p or only on q.

Proof. Let I(y) = d”y with a constant vector d, so that d” f(y) = 0 for all y.
In the case of Runge-Kutta methods we thus have d”k; = 0, and consequently
dTy; = dTyo+hd? (3°;_, bik;) = d"yo. The statement for partitioned methods is
proved similarly. g

Next we consider differential equations of the form
Y = A(Y)Y, (1.3)

where Y can be a vector or a matrix (not necessarily a square matrix). We then have
the following result.

Theorem 1.6. If A(Y) is skew-symmetric for all Y (i.e., AT = —A), then the
quadratic function 1(Y') = YT'Y is an invariant. In particular, if the initial value Yy
consists of orthonormal columns (i.e., YOTYO = 1), then the columns of the solution
Y (t) of (1.3) remain orthonormal for all t.

Proof. The derivative of I(Y) is I'(Y)H = YTH + HTY. Thus, we have
I'YVfY)=TY)AY)Y)=YTAY)Y + YTA(Y)TY forall Y which van-
ishes, because A(Y) is skew-symmetric. This proves the statement. O

Example 1.7 (Rigid Body). The motion of a free rigid body, whose centre of mass
is at the origin, is described by the Euler equations

Y1 = a1y2ys, a1 = (I — Is) /(I215)
Yo = Q2Y3Y1, as = (Is — I)/(Ishh) (1.4)
Y3 = asyiye, az = (I — I) /(11 12)
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where the vector y = (yi1,¥2,y3)” represents the angular momentum in the
body frame, and I, I, I3 are the principal moments of inertia (Euler (1758b); see
Sect. VILS5 for a detailed description. This problem can be written as

1 0 ys/Is  —y2/ls Y1
v | = | —y3/I3 0 yi1/1 y2 |, (1.5)
U3 yo/Is  —y1/hh 0 Y3

which is of the form (1.3) with a skew-symmetric matrix A(Y"). By Theorem 1.6,
Y3 + y35 + y3 is an invariant. A second quadratic invariant is

2 2 2
R )

1
H(ylay27y3) = 5( Il I2 1—3

which represents the kinetic energy.

Inspired by the cover page of Marsden & Ratiu (1999), we present in Fig. 1.1
the sphere with some of the solutions of (1.4) corresponding to I} = 2, I, =1
and I3 = 2/3. They lie on the intersection of the sphere with the ellipsoid given
by H(y1,y2,y3) = Const. In the left picture we have included the numerical so-
lution (30 steps) obtained by the implicit midpoint rule with step size 1 = 0.3 and
initial value yo = (cos(1.1),0,sin(1.1))7. It stays exactly on a solution curve. This
follows from the fact that the implicit midpoint rule preserves quadratic invariants
exactly (Sect.IV.2).

For the explicit Euler method (right picture of Fig. 1.1, 320 steps with h =
0.05 and the same initial value) we see that the numerical solution shows a wrong
qualitative behaviour (it should lie on a closed curve). The numerical solution even
drifts away from the sphere.

expcit Euler

Fig. 1.1. Solutions of the Euler equations (1.4) for the rigid body
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IV.2 Quadratic Invariants

Quadratic invariants appear often in applications. Examples are the conservation
law of angular momentum in N-body systems (Example 1.3), the two invariants of
the rigid body motion (Example 1.7), and the invariant Y7'Y" of Theorem 1.6. We
therefore consider differential equations (1.1) and quadratic functions

Qly) =y" Cy, 2.1)

where C is a symmetric square matrix. It is an invariant of (1.1) if y7C f(y) = 0
for all y.

IV.2.1 Runge-Kutta Methods

We shall give a complete characterization of Runge—Kutta methods which automati-
cally conserve all quadratic invariants. We first of all consider the Gauss collocation
methods.

Theorem 2.1. The Gauss methods of Sect. I1.1.3 (collocation based on the shifted
Legendre polynomials) conserve quadratic invariants.

Proof. Let u(t) be the collocation polynomial of the Gauss methods (Defini-
tion IL.1.3). Since £Q(u(t)) = 2u(t)”Cu(t), it follows from u(ty) = yo and
u(to + h) = y; that

to+h
yi Cy —yg Cyp = 2 / u(t)" Cri(t) dt. (2.2)
to

The integrand u(¢)”7 C7(t) is a polynomial of degree 2s — 1, which is integrated
without error by the s-stage Gaussian quadrature formula. It therefore follows from
the collocation condition

u(to + c;h) T Calty + c;h) = ulto + ¢;h) " C f (u(to + c;h)) =0
that the integral in (2.2) vanishes. ad

Since the implicit midpoint rule is the special case s = 1 of the Gauss methods,
the preceding theorem explains its good behaviour for the rigid body simulation in
Fig 1.1.

Theorem 2.2 (Cooper 1987). If the coefficients of a Runge—Kutta method satisfy
bia;; + bja;; = b;b; forall 1,7 =1,...,s, 2.3)
then it conserves quadratic invariants.”

2 For irreducible methods, the conditions of Theorem 2.2 and Theorem 2.4 are also neces-
sary for the conservation of all quadratic invariants. This follows from the discussion in
Sect. VI.7.3.
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Proof. The proof is the same as that for B-stability, given independently by Burrage
& Butcher and Crouzeix in 1979 (see Hairer & Wanner (1996), Sect. IV.12).
The relation y; = yo + h Zle b;k; of Definition II.1.1 yields

U Cyy =g Cyo+h Y _bi ki Cyo+h > by yd Chj+h* Y bibj k] Chj. (2.4)
=1

j=1 ij=1

We then write k; = f(Y;) with Y; = 3o + thzl a;jk;. The main idea is to
compute yo from this relation and to insert it into the central expressions of (2.4).
This yields (using the symmetry of C')

vl Cyy =45 Cyo+2h Y b Y CF(Yi) +h* Y (bibs — bias; — bjaz) kf Ch;.

i=1 ij=1

The condition (2.3) together with the assumption ¥ C'f(y) = 0, which states that
yT'Cy is an invariant of (1.1), imply y¥ Cy, = yI'Cy,. ad

The criterion (2.3) is very restrictive. One finds that among all collocation and
discontinuous collocation methods (Definition II.1.7) only the Gauss methods sat-
isfy this criterion (Exercise 6). On the other hand, it is possible to construct other
high-order Runge—Kutta methods satisfying (2.3). The key for such a construction is
the W-transformation (see Hairer & Wanner (1996), Sect. IV.5), which is exploited
in the articles of Sun (1993a) and Hairer & Leone (2000).

IV.2.2 Partitioned Runge—Kutta Methods

We next consider partitioned Runge-Kutta methods for systems § = f(y, 2),
%2 = ¢g(y,2). Usually such methods cannot conserve general quadratic invariants
(Exercise 4). We therefore concentrate on quadratic invariants of the form

Q(y,2) =y" Dz, 2.5)

where D is a matrix of the appropriate dimensions. Observe that the angular mo-
mentum of N-body systems (Example 1.3) is of this form.

Theorem 2.3 (Sun 1993b). The Lobatto IIIA - IIIB pair conserves all quadratic
invariants of the form (2.5). In particular, this is true for the Stormer—Verlet scheme
(see Sect. 11.2.2).

Proof. Let u(t) and v(t) be the (discontinuous) collocation polynomials of the Lo-
batto IITA and Lobatto IIIB methods, respectively (see Sect.11.2.2). In analogy to
the proof of Theorem 2.1 we have

Q(u(to + h),v(to + h)) — Q(u(to), v(to))
to+h
= / (Q(u(t),v(t)) + Q(u(t),i;(t))) dt.

to

2.6)
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Since u(t) is of degree s and v(t) of degree s — 2, the integrand of (2.6) is a poly-
nomial of degree 2s — 3. Hence, an application of the Lobatto quadrature yields the
exact result. Using the fact that Q(y, z) is an invariant of the differential equation,
ie, Q(f(y,2),2) + Q(y,9(y,z)) =0, we thus obtain for the integral in (2.6)

hbl Q(u(t()), 5(t())) + hbs Q(u(to =+ h), (;(t() + h)),

where 6(t) = 0(t) — g(u(t),v(t)) denotes the defect. It now follows from u(to) =
Yo, u(to + h) = yi1 (definition of Lobatto IITA) and from v(tg) = 2o — hb19(to),
v(to + h) = z1 + hbsd(to + h) (definition of Lobatto IIIB) that Q(y1,21) —
Q(yo, 20) = 0, which proves the theorem. O

Exchanging the role of the IIIA and IIIB methods also leads to an integrator
that preserves quadratic invariants of the form (2.5). The following characterization
extends Theorem 2.2 to partitioned Runge—Kutta methods.

Theorem 2.4. If the coefficients of a partitioned Runge—Kutta method (11.2.2) sat-
isfy

la\” —I—Bjaji = bi/b\j for i,5=1,...,s, 2.7
=b;  fori=1,...,s, 2.8)

then it conserves quadratic invariants of the form (2.5).
If the partitioned differential equation is of the special form § = f(z), 2 = g(y),
then condition (2.7) alone implies that invariants of the form (2.5) are conserved.

Proof. The proof is nearly identical to that of Theorem 2.2. Instead of (2.4) we get
S S S
YDz =yi Dz +h > bkl Dzg+h> byyd Dl +h* > bib; kI De;.
i=1 Jj=1 1,5=1
Denoting by (Y;, Z;) the arguments of k; = f(Y;, Z;) and ¢; = g(Y;, Z;), the same

trick as in the proof of Theorem 2.2 gives

S S
Yl Dz, = y§ Dzy + hY b f(Yi, Z)"DZi+hY_b; Y] Dg(Y;, Z;)

i—1 j=1
+ h? Z (bj)\] — biEiij —/b\jaji) kZTDEJ 2.9)
ij=1

Since (2.5) is an invariant, we have f(y, 2)T Dz + y* Dg(y, z) = 0 for all y and z.
Consequently, the two conditions (2.7) and (2.8) imply y¥ Dz, = yI Dz,.

For the special case where f depends only on z and g only on y, the assumption
f(2)TDz + y"Dg(y) = 0 (for all y, 2) implies that f(2)T Dz = —yT Dg(y) =
Const. Therefore, condition (2.8) is no longer necessary for the proof of the state-
ment. O
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IV.2.3 Nystrom Methods

An important class of partitioned differential equations is y = z, £ = g(y) or,
equivalently,
§=9). (2.10)

Many examples of Chap.I are of this form, in particular the N-body problem of
Example 1.3 for which the angular momentum is a quadratic first integral. Nystrom
methods (Definition I1.2.3),

b = g(yo + cih o + b2 Zaijgj)a
s 7 s (2.11)
yio= yot+hijo+h>D Bili, i = Go+h Y bili,
i=1 i=1
are adapted to the numerical solution of (2.10) and it is interesting to investigate

which methods within this class can conserve quadratic invariants.

Theorem 2.5. If the coefficients of the Nystrom method (2.11) satisfy

ﬁi = bi(l—ci) fOFiZl,...7S,

- (2.12)
bi(Bj —aij) = bj(Bi —aj)  for i, j=1,...,s,

then it conserves all quadratic invariants of the form y* D .

Proof. The quadratic form Q(y, ) = y* Dy is a first integral of (2.10) if and only
if
y'Dy+yTDg(y)=0  forall y,5 € R". (2.13)
This implies that D is skew-symmetric and that y* D g(y) = 0.
In the same way as for the proofs of Theorems 2.2 and 2.4 we now com-
pute y7 D 9, using the formulas of (2.11) and we substitute yo by Y; — c;hgjo —
h? Z] ai;l;, where Y; denotes the argument of g in (2.11). This yields

yiDin = ys Dijo+hiiDio+hY b Y, DL

=1

+ h2ZWTDyO+h22b ) IE DY,
=1 =1
+ WP Z bi(B; — aij) (] D¢;.

i,j=1

Using the skew-symmetry of D and Y;" D ¢; = Y;" D g(Y;) = 0, condition (2.12)
implies the conservation property yj D 11 = y& D yo. O
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Remark 2.6 (Composition Methods). If a method @}, conserves quadratic invari-
ants (e.g., the mid-point rule by Theorem 2.1 or the Stormer—Verlet scheme by Theo-
rem 2.3 or a Nystrom method of Theorem 2.5), then so does the composition method

U, =@ po... 0D, (2.14)

This obvious property is one of the most important motivations for considering com-
position methods.

IV.3 Polynomial Invariants

We consider two classes of problems with polynomial invariants for degree higher
than two. First, we treat linear problems for which the determinant of the resolvent is
an invariant, and we show that (partitioned) Runge—Kutta methods cannot conserve
them automatically. Second, we study isospectral flows.

IV.3.1 The Determinant as a First Integral
We consider quasi-linear problems
Y =AY)Y, Y(0)=Y, (3.1)

where Y and A(Y") are n x n matrices. In the following we denote the trace of a
matrix A = (a;;)j;—, by trace A =31 | aj;.

Lemma 3.1. If trace A(Y) = 0 forall Y, then g(Y) := detY is an invariant of
the matrix differential equation (3.1).

Proof. Tt follows from
det(Y +eAY) = det(I + cA) det Y = (1 + ctrace A+ O(c?)) det Y

that ¢'(Y)(AY') = trace A-det Y (this is the Abel-Liouville~Jacobi—Ostrogradskii
identity). Hence, the determinant g(Y) = detY is an invariant of the differential
equation (3.1) if trace A(Y') = 0 forall Y. O

Since detY represents the volume of the parallelepiped generated by the
columns of the matrix Y, the conservation of the invariant g(Y') = det Y is related
to volume preservation. This topic will be further discussed in Sect. VI.9. Here, we
consider detY as a polynomial invariant of degree n, and we investigate whether
Runge—Kutta methods can automatically conserve this invariant for n > 3. The key
lemma for this study is the following.
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Lemma 3.2 (Feng Kang & Shang Zai-jiu 1995). Let R(z) be a differentiable
function defined in a neighbourhood of z = 0, and assume that R(0) = 1 and
R’(0) = 1. Then, we have forn > 3

det R(A) =1 forall n x n matrices A satisfying trace A = 0, (3.2)
ifand only if R(z) = exp(z).

Proof. The “if” part follows from Lemma 3.1, because for constant A the solution
of Y = AY, Y (0) = I is given by Y (t) = exp(At).

For the proof of the “only if” part, we consider diagonal matrices of the form
A = diag(u,v,—(u+v),0,...,0), which have trace A = 0, and for which

R(A) = diag (R(2), RW), R(~(u +v)), R(O), ..., R(0)).
The assumptions R(0) = 1 and (3.2) imply
R(WRW)R(~(n+v)) = 1 (33)

for all y, v close to 0. Putting v = 0, this relation yields R(u)R(—pu) = 1 for all p,
and therefore (3.3) can be written as

R(u)R(v) = R(u+v) for all i, v close to 0. 3.4

This functional equation can only be satisfied by the exponential function. This is
seen as follows: from (3.4) we have

Rp+e)— R(p) _
€ €

Taking the limit ¢ — 0 we obtain R'(u) = R(u), because R’'(0) = 1. This implies
R(p) = exp(p). 0

Theorem 3.3. For n > 3, no Runge—Kutta method can conserve all polynomial
invariants of degree n.

Proof. Tt is sufficient to consider linear problems Y = AY with constant matrix A
satisfying trace A = 0, so that g(Y) = detY is a polynomial invariant of degree
n. Applying a Runge—Kutta method to such a differential equation yields Y; =
R(hA)Yy, where

R(z) =1+ 2b"(I —zA)~11

" = (by,...,bs), 1 = (1,...,1)" and A = (ay;) is the matrix of Runge—
Kutta coefficients) is the so-called stability function. It is seen to be rational.
By Lemma 3.2 it is therefore not possible that det R(hA) = 1 for all A with
traceA = 0. O

This negative result motivates the search for new methods which can conserve
polynomial invariants (see Sects.IV.4, IV.8 and VI.9). We consider here another
interesting class of problems with polynomial invariants of degree higher than two.
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IV.3.2 Isospectral Flows

Such flows are created by a matrix differential equation

where L is a given symmetric matrix, B(L) is skew-symmetric for all L, and
[B, L] = BL — LB is the commutator of B and L. Many interesting problems can
be written in this form. We just mention the Toda system, the continuous realization
of QR-type algorithms, projected gradient flows, and inverse eigenvalue problems
(see Chu (1992) and Calvo, Iserles & Zanna (1997) for long lists of references).

Lemma 3.4 (Lax 1968, Flaschka 1974). Let Lo be symmetric and assume that
B(L) is skew-symmetric for all L. Then, the solution L(t) of (3.5) is a symmetric
matrix, and its eigenvalues are independent of t.

Proof. The symmetry of L(t) follows from the fact that the commutator of a skew-
symmetric with a symmetric matrix gives a symmetric matrix.
To prove the isospectrality of the flow, we define U (¢) by

U=B(Lt)U, U0 =1 (3.6)

Then, we have (d/dt)(U~'LU) = U~Y(L — BL + LB)U = 0, and hence
Ut)"YL(t)U(t) = Lo for all t, so that L(t) = U(t)LoU(t)~! is the solution
of (3.5). This proves the result. O

Note that, since B(L) is skew-symmetric, the matrix U (t) of (3.6) is orthogonal
by Theorem 1.6.

Lemma 3.4 shows that the characteristic polynomial det(L—AI) = Y7 ja;\’
and hence the coefficients a; also are independent of ¢. These coefficients are all
polynomial invariants (e.g., ap = det L, a,—1 = =trace L). Because of Theo-
rem 3.3 there is no hope that Runge—Kutta methods applied to (3.5) can conserve
these invariants automatically for n > 3.

Isospectral Methods. The proof of Lemma 3.4, however, suggests an interesting
approach for the numerical solution of (3.5). Forn = 0, 1, ... we solve numerically

U=BUL,UNU, U0 =I (3.7)

and we put Ly, 1 = U L, UT, where U is the numerical approximation UrU (h)
after one step (cf. Calvo, Iserles & Zanna 1999). If B(L) is skew-symmetric for all
matrices L, then UTU is a quAadratic invariant of (3.7) and the methods of Sect.I1V.2
will produce an orthogonal U. Consequently, L,,;; and L,, have exactly the same
eigenvalues, and they remain symmetric.

Diele, Lopez & Politi (1998) suggest the use of the Cayley transform U =
(I =Y)~Y(I +Y), which transforms (3.7) into

— %(I —Y)B(UL,UT)(I+Y),  Y(0)=0,
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and the orthogonality of U into the skew-symmetry of Y (see Lemma 8.8 below).
Since all (also explicit) Runge—Kutta methods preserve the skew-symmetry of Y,
which is a linear invariant, this yields an approach to explicit isospectral methods.

Connection with the QR Algorithm. In a diversion from the main theme of this
section, we now show the relationship of the flow of (3.5) with the QR algorithm for
the symmetric eigenvalue problem. Starting from a real symmetric matrix A, the
basic QR algorithm (without shifts) computes a sequence of orthogonally similar
matrices A, Ag, As, ... , expected to converge towards a diagonal matrix carrying
the eigenvalues of Ay. Iteratively for k = 0,1, 2, ..., one computes the QR decom-
position of Ay:
A = QR

with @, orthogonal, Ry, upper triangular (the decomposition becomes unique if the
diagonal elements of Ry are taken positive). Then, Ay is obtained by reversing
the order of multiplication:

Apy1 = R Q.

It is an easy exercise to show that Q(k) = QoQ1 ... Qk—1 is the matrix in the
orthogonal similarity transformation between Ag and Ay:

A = Q(k)" ApQ(k) (3.8)
and the same matrix Q(k) is the orthogonal factor in the QR decomposition of A}:
Al = Q(k)R(E). (3.9)

Consider now, for an arbitrary real function f defined on the eigenvalues of a real
symmetric matrix Lg, the QR decomposition

exp(tf(Lo)) = Q(t)R(?) (3.10)

and define

L(t) = Q1) LoQ(t). (3.11)
The relations (3.8) and (3.9) then show that for integer times ¢ = k, the matrix
exp(f(L(k))) = Q(k)" exp(f(Lo))Q(k) coincides with the kth matrix in the QR
algorithm starting from Ay = exp(f(Lo)):

exp(F(L(K))) = Ay (3.12)

Now, how is all this related to the system (3.5)? Differentiating (3.11) as in the
proof of Lemma 3.4 shows that L(¢) solves a differential equation of the form L=
[B, L] with the skew-symmetric matrix B = fQTQ. At first sight, however, B is a
function of ¢, not of L. On the other hand, differentiation of (3.10) yields (omitting
the argument ¢ where it is clear from the context)

F(Lo)QR = f(Lo) exp(tf(Lo)) = exp(tf(Lo))f(Lo) = QR+ QR,
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and since f(L) = QT f(Lo)Q by (3.11), this becomes
f(L)=Q"Q+RR™".

Here the left-hand side is a symmetric matrix, and the right-hand side is the sum of a
skew-symmetric and an upper triangular matrix. It follows that the skew-symmetric
matrix B = —Q7'Q is given by

B(L) = f(L)y — f(L)}, (3.13)

where f (L) denotes the part of f(L) above the diagonal. Hence, L(t) is the solu-
tion of an autonomous system (3.5) with a skew-symmetric B(L).

For f(z) = « and assuming L, symmetric and tridiagonal, the flow of (3.5) with
(3.13) is known as the Toda flow. The QR iterates Ay = exp(Ly), A1, Aa, ... of the
exponential of Ly are seen to be equal to the exponentials of the solution L(t) of
the Toda equations at integer times: Ay, = exp(L(k)), a discovery of Symes (1982).
An interesting connection of the Toda equations with a mechanical system will be
discussed in Sect. X.1.5.

For f(z) = log , the above arguments show that the QR iteration itself, starting
from a positive definite symmetric tridiagonal matrix, is the evaluation A, = L(k)
at integer times of a solution L(¢) of the differential equation (3.5) with B given
by (3.13). This relationship was explored in a series of papers by Deift, Li, Nanda
& Tomei (1983, 1989, 1993).

Notwithstanding the mathematical beauty of this relationship, it must be re-
marked that the practical QR algorithm (with shifts and deflation) follows a different
path.

IV.4 Projection Methods

Und bist du nicht willig, so brauch ich Gewalt.
(J.W. Goethe, Der Erlkonig)

Suppose we have an (n — m)-dimensional submanifold of R",
M={y; gly) =0} “.1)
(g : R™ — R™), and a differential equation y = f(y) with the property that
Yo € M implies y(t) € M forall t. 4.2)

We want to emphasize that this assumption is weaker than the requirement that
all components g;(y) of g(y) are invariants in the sense of Definition 1.1. In fact,
assumption (4.2) is equivalent to ¢'(y) f(y) = 0 for y € M, whereas Definition 1.1
requires g'(y) f(y) = 0 for all y € R™. In the situation of (4.2) we call g(y) a weak
invariant, and we say that § = f(y) is a differential equation on the manifold M.
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1.000
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Fig. 4.1. The implicit midpoint rule apglied to the differential equation (4.3). The picture
shows the numerical values for ¢? + ¢35 obtained with step size h = 0.1 (thick line) and
h = 0.05 (thin line)

Example 4.1. Consider the pendulum equation written in Cartesian coordinates:

41 = p1, D1 = —q1,

. . 4.3)
G2 = D2, P2 = —1— @2,

where A = (p? +p3 — ¢2)/(¢} + ¢3). One can check by differentiation that ¢ p; +
q2p2 (orthogonality of the position and velocity vectors) is an invariant in the sense
of Definition 1.1. However, g2+ (Iength of the pendulum) is only a weak invariant.
The experiment of Fig. 4.1 shows that even methods which conserve quadratic first
integrals (cf. Sect.IV.2) do not conserve the quadratic weak invariant g7 + ¢3. No
numerical method that is allowed to evaluate the vector field f(y) outside M can
be expected to conserve weak invariants exactly. This is one of the motivations for
considering the methods of this and the subsequent sections.

A natural approach to the numerical solution of differential equations on mani-
folds is by projection (see e.g., Hairer & Wanner (1996), Sect. VII.2, Eich-Soellner
& Fiihrer (1998), Sect. 5.3.3).

Algorithm 4.2 (Standard Projection Method). Assume that y, € M. One step
Yn — Yn+1 is defined as follows (see Fig.4.2):

o Compute y, 11 = Pp(yn), where @y, is an arbitrary one-step method applied to

y=fly);

e project the value ¥, 1 onto the manifold M to obtain y,+1 € M.

M

Fig. 4.2. Ilustration of the standard projection method

For y,, € M the distance of ¥,,+1 to the manifold M is of the size of the local
error, i.e., O(hPT1). Therefore, the projection does not deteriorate the convergence
order of the method.



IV.4 Projection Methods 111

For the computation of y,4+; we have to solve the constrained minimization
problem

lYn+1 — Ynt1|| — min subject to 9(Ynt1) = 0. (4.4)

In the case of the Euclidean norm, a standard approach is to introduce Lagrange mul-
tipliers A = (A1,..., \)7, and to consider the Lagrange function £(y,41,\) =
|Uns1 — ns1l?/2 — g(yn+1)T A The necessary condition dL/dy,,+1 = 0 then
leads to the system
Yol = Unt1+ 9 U)X
0 = g(¥n+1):

We have replaced y,,+1 with 4,11 in the argument of ¢'(y) in order to save some
evaluations of ¢’(y). Inserting the first relation of (4.5) into the second gives a non-
linear equation for A, which can be efficiently solved by simplified Newton itera-
tions:

AN = —(9/(§n+1)9'(?7n+1)T) g(ﬂnﬂ +gl@n+1)T)\i), Air1 = N+ AN

For the choice \g = 0 the first increment A) is of size O(hP*!), so that the conver-
gence is usually extremely fast. Often, one simplified Newton iteration is sufficient.

4.5)

-1

Example 4.3. As a first example we consider the
perturbed Kepler problem (see Exercise 1.12) with
Hamiltonian function

1 1
H(p, (P} +p3) — ——
0.005

2v/(af +a3)*
and initial values ¢1(0) = 1 — e, g2(0) = 0,
p1(0) =0, p2(0) = /(1 +¢€)/(1 — e) (eccentric-
ity e = 0.6) on the interval 0 < ¢ < 200. The exact
solution (plotted to the right) is approximately an ellipse that rotates slowly around
one of its foci. For this problem we know two first integrals: the Hamiltonian func-
tion H (p, q) and the angular momentum L(p, ¢) = ¢1p2 — gap1-

We apply the explicit Euler method and the symplectic Euler method (1.1.9),
both with constant step size h = 0.03. The result is shown in Fig.4.3. The nu-
merical solution of the explicit Euler method (without projection) is completely
wrong. The projection onto the manifold { H (p, ¢) = H(po, qo)} improves the nu-
merical solution, but it still has a wrong qualitative behaviour. Only projection onto
both invariants, H(p,q) = Const and L(p,q) = Const gives the correct behav-
iour. The symplectic Euler method already shows the correct behaviour without
any projections (see Chap.IX for an explanation). Surprisingly, a projection onto
H(p,q) = Const destroys this behaviour, the numerical solution approaches the
centre and the simplified Newton iterations fail to converge beyond ¢t = 25.23. Pro-
jection onto both invariants re-establishes the correct behaviour.

T
exact solution
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explicit Euler, h = 0.03

T T T T
without projection with projection onto H with projection onto H and L
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symplectic Euler, » = 0.03
without p;rojection with projecéjon onto H with projectionr onto H and L
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Fig. 4.3. Numerical solutions obtained with and without projections

explicit Euler, projection onto H explicit Euler, projection onto H and L

Fig. 4.4. Explicit Euler method with projections applied to the outer solar system, step size
h = 10 (days), interval 0 < ¢ < 200000

Example 4.4 (Outer Solar System). Having encountered excellent experience
with projections onto H and L for the perturbed Kepler problem (Example 4.3),
let us apply the same idea to a more realistic problem in celestial mechanics. We
consider the outer solar system as described in Sect.1.2. The numerical solution
of the explicit Euler method applied with constant step size h = 10, once with
projection onto H = Const and once with projection onto H = Const and
L = Const, is shown in Fig.4.4 (observe that the conservation of the angular
momentum L(p, q) = Zf\il q; X p; consists of three first integrals). We see a slight
improvement in the orbits of Jupiter, Saturn and Uranus (compared to the explicit
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Euler method without projections, see Fig.1.2.4), but the orbit of Neptune becomes
even worse. There is no doubt that this problem contains a structure which cannot
be correctly simulated by methods that only preserve the total energy H and the
angular momentum L.

Example 4.5 (Volume Preservation). Consider the matrix differential equation
Y = A(Y)Y, where trace A(Y) = 0 for all Y. We know from Lemma 3.1 that
g(Y) = detY is an invariant which cannot be automatically conserved by Runge—
Kutta methods. Here, we show how we can enforce this invariant by projection. Let
Y, +1 be the numerical approximation obtained with an arbitrary one-step method.

We consider the Frobenius norm |[Y'||r = />, + [yi;|? for measuring the distance

to the manifold {Y"; g(Y") = 0}. Using ¢/(Y)(AY") = traceA det Y (see the proof
of Lemma 3.1) with A chosen such that the product AY contains only one non-zero
element, the projection step (4.5) is seen to become (Exercise 9)

Yoi1 =Y + Mf/nfl (4.6)

with the scalar p = Adet ?,H_l. This leads to the scalar nonlinear equation
det (Y41 + pY, ;) = detY,,, for which simplified Newton iterations become

det (?n-&-l + /“Lli;'r;i-,ll) (1 + (