\documentclass[12pt]{article} \usepackage{amsmath, mleftright, amssymb, amsthm, nicefrac, etoolbox, xparse, geometry, enumitem, mathtools, bbm } \mleftright \usepackage[colorlinks=true]{hyperref} \geometry{margin=1in} \usepackage[sort,capitalize]{cleveref} \newcommand{\creflastconjunction}{, and\nobreakspace} \crefformat{equation}{(#2#1#3)} \crefname{enumi}{item}{items} \crefname{equation}{}{} \theoremstyle{plain} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{example}[theorem]{Example} \newtheorem{setting}[theorem]{Setting} \newtheorem{conjecture}[theorem]{Conjecture} \theoremstyle{remark} \newtheorem{remark}[theorem]{Remark} \theoremstyle{definition} \newtheorem{definition}[theorem]{Definition} \numberwithin{equation}{section} %%% \input{commands.tex} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{document} % % % \title{MLP starting ideas} % % % \author{ %%%Joshua Lee Padgett$^{1,2}$ %%%\bigskip %%%\\ %%%\small{$^1$ Department of Mathematical Sciences, University of Arkansas,} %%%\vspace{-0.1cm}\\ %%%\small{Arkansas, USA, e-mail: \texttt{padgett@uark.edu}} %%%\smallskip %%%\\ %%%\small{$^2$ Center for Astrophysics, Space Physics, and Engineering Research,} %%%\vspace{-0.1cm}\\ %%%\small{Baylor University, Texas, USA, e-mail: \texttt{padgett@uark.edu}} } % % % \date{\today} % % % \maketitle \begin{abstract} % Abstract goes here\dots % \end{abstract} % % % \tableofcontents % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Introduction} \label{sec:intro} % % % Add an appropriate introduction\dots % % % % % \section{Multilevel Picard approximations for the heat equation} \label{sec:mlp} % % % \begin{athm}{theorem}{th:1} % % Let $T,\kappa, \delta \in (0,\infty)$, $\Theta = \bigcup_{n\in\N}\! \Z^n$, % let $\smallU_d \in C^{1,2}([0,T]\times \R^d,\R)$, $d\in\N$, satisfy for all $d\in\N$, $t \in [0,T]$, $x=(x_1,\allowbreak x_2,\allowbreak \dots, \allowbreak x_d)\in\R^d$ that % \begin{equation}\label{eq:1} \abs{ \smallU_d(t,x)} \le \kappa d^\kappa \pr[\big]{ 1 + \textstyle\sum_{k=1}^d \abs{ x_k } }^\kappa \qquad \text{and} \qquad \pr[]{\tfrac{\partial}{\partial t}\smallU_d}(t,x) = \pr[]{\Delta_x \smallU_d}(t,x) \dc \end{equation} % let $(\Omega, \cF ,\P)$ be a probability space, % let $W^{d,\theta} \colon [0,T] \times \Omega\to \R^d$, $d\in\N$, $\theta\in\Theta$, be independent standard Brownian motions, % let $\mlp{\littleM}{d}{\theta} \colon [0,T] \times \R^d \times \Omega \to \R$, $d,\littleM \in \Z$, $\theta \in \Theta$, satisfy for all $d,\littleM \in \N$, $\theta \in \Theta$, $t \in [0,T]$, $x \in \R^d$ that % \begin{align} & \mlp{\littleM}{d}{\theta}(t,x) = \frac{1}{\littleM} \biggl[ \SmallSum{k=1}{\littleM} \smallU_d \pr[\big]{ 0,x + \sqrt{2}\,W_{t}^{d,(\theta,0,-k)} } \biggr], \nonumber \end{align} % and for every $d,n,\littleM \in \N$ let $\cost{n}{\littleM}{d} \in \N$ be the number of function evaluations of $\smallU_d(0,\cdot)$ and the number of realizations of scalar random variables which are used to compute one realization of $\mlp{\littleM}{d}{0}(T,0) \colon \Omega \to \R$. % % Then there exist $c\in\R$ and $\fR \colon \N \times (0,1] \to \N$ such that for all $d \in \N$, $\varepsilon \in (0,1]$ it holds that % \begin{equation} \textstyle \pr[\Big]{\E\br[\big]{\abs{\smallU_d(T,0) - \mlp{\fR(d,\varepsilon)}{d}{0}(T,0)}^2}}^{\!\!\nicefrac{1}{2}} \le \varepsilon \qquad \text{and} \qquad \cost{\fR(d,\varepsilon)}{\fR(d,\varepsilon)}{d} \le c d^c \varepsilon^{-(2+\delta)} \dpp \end{equation} % % \end{athm} % % % \section{Stochastic solutions to parabolic partial differential equations} \label{sec:sfp} % % % \begin{athm}{lemma}{lem:feynman-kac_1} % % Let $T \in (0,\infty)$, % let $(\Omega,\mathcal{F},\mathbb{P})$ be a probability space, % let $\smallU_d \in C^{1,2}([0,T]\times\R^d,\R)$, $d\in\N$, satisfy for all $d\in\N$, $t\in[0,T]$, $x\in\R^d$ that % \begin{equation}\label{eq:pde_1} \pr[]{\tfrac{\partial}{\partial t}\smallU_d}(t,x) + \pr[]{\Delta_x \smallU_d}(t,x) = 0 \dc \end{equation} % let $\fwpr^d \colon [0,T] \times \Omega \to \R^d$, $d\in\N$, be standard Brownian motions, % and let $\cX^{d,t,x} \colon [t,T] \times \Omega \to \R^d$, $d\in\N$, $t\in[0,T]$, $x\in\R^d$, be a stochastic process with continuous sample paths satisfying that for all $d\in\N$, $t\in[0,T]$, $s \in [t,T]$, $x\in\R^d$ we have $\mathbb{P}$-a.s.\ that % \begin{equation}\label{eq:stochastic_process_1} \cX_{s}^{d,t,x} = x + \int_t^s \sqrt{2} \dx \fwpr_r^d = x + \sqrt{2} \, \fwpr_{t-s}^d \dpp \end{equation} % Then for all $d\in\N$, $t\in[0,T]$, $x\in\R^d$ it holds that % \begin{equation}\label{eq:feynman-kac_sol_1} \smallU_d(t,x) = \E\br[\bpig]{ \smallU_d\pr[\big]{ T , \cX_{T}^{d,t,x} } } \dpp \end{equation} % % \end{athm} % % % \begin{aproof} % % \end{aproof} % % % \newcommand{\Hess}{\operatorname{Hess}} \newcommand{\Trace}{\operatorname{Trace}} \begin{athm}{lemma}{lem:feynman-kac_2} % % Let $T \in (0,\infty)$, % let $(\Omega,\mathcal{F},\mathbb{P})$ be a probability space, % let $\sigma_d \colon \R^d \to \R^{d\times d}$, $d\in\N$, be infinitely often differentiable functions, % let $\smallU_d \in C^{1,2}([0,T]\times\R^d,\R)$, $d\in\N$, satisfy for all $d\in\N$, $t\in[0,T]$, $x\in\R^d$ that % \begin{equation}\label{eq:pde_2} \pr[]{\tfrac{\partial}{\partial t}\smallU_d}(t,x) + \Trace \pr[\pig]{ \sigma(x) \br[]{ \sigma(x) }^* \pr[]{\Hess_x \smallU_d}(t,x) } = 0 \dc \end{equation} % let $\fwpr^d \colon [0,T] \times \Omega \to \R^d$, $d\in\N$, be standard Brownian motions, % and let $\cX^{d,t,x} \colon [t,T] \times \Omega \to \R^d$, $d\in\N$, $t\in[0,T]$, $x\in\R^d$, be a stochastic process with continuous sample paths satisfying that for all $d\in\N$, $t\in[0,T]$, $s\in[t,T]$, $x\in\R^d$ we have $\P$-a.s.\ that % \begin{equation}\label{eq:stochastic_process_2} \cX_{s}^{d,t,x} = x + \int_s^t \sqrt{2} \, \sigma\pr[]{ \cX_r^{d,t,x} } \dx \fwpr_r^d \dpp \end{equation} % Then for all $d\in\N$, $t\in[0,T]$, $x\in\R^d$ it holds that % \begin{equation}\label{eq:feynman-kac_sol_2} \smallU_d(t,x) = \E\bpigl[ \smallU_d\pr[\big]{ T , \cX_{T}^{d,t,x} } \bpigr] \dpp \end{equation} % % \end{athm} % % % \begin{aproof} % % \end{aproof} % % % \begin{athm}{lemma}{lem:feynman-kac_3} % % Let $T \in (0,\infty)$, % %%%let $\vt{\cdot,\cdot} \colon \bigcup_{d\in\N} \pr[]{ \R^d \times \R^d} \to \bigcup_{d\in\N}\!\R^d$ satisfy for all $d\in\N$, $v = (v_1,\dots,v_d), w = (w_1,\dots,w_d) \in \R^d$ that $\vt{v,w} = \sum_{k=1}^d v_k w_k$, % let $(\Omega,\mathcal{F},\mathbb{P})$ be a probability space, % let $\mu_d \in \R^d \to \R^d$, $d\in\N$, be infinitely often differentiable functions, % let $\smallU_d \in C^{1,2}([0,T]\times\R^d,\R)$, $d\in\N$, satisfy for all $d\in\N$, $t\in[0,T]$, $x\in\R^d$ that % \begin{equation}\label{eq:pde_3} \pr[]{\tfrac{\partial}{\partial t}\smallU_d}(t,x) + \pr[]{\Delta_x \smallU_d}(t,x) + \br[]{ \mu_d(x) }^* \pr[]{ \nabla_x \smallU_d }(t,x) = 0 \dc \end{equation} % let $\fwpr^d \colon [0,T] \times \Omega \to \R^d$, $d\in\N$, be standard Brownian motions, % and let $\cX^{d,t,x} \colon [t,T] \times \Omega \to \R^d$, $d\in\N$, $t\in[0,T]$, $x\in\R^d$, be a stochastic process with continuous sample paths satisfying that for all $d\in\N$, $t\in[0,T]$, $s\in[t,T]$, $x\in\R^d$ we have $\P$-a.s.\ that % \begin{equation}\label{eq:stochastic_process_3} \cX_{s}^{d,t,x} = x + \int_s^t \mu_d\pr[]{ \cX_r^{d,t,x} } \dx r + \int_s^t \sqrt{2} \dx \fwpr_r^d \dpp \end{equation} % Then for all $d\in\N$, $t\in[0,T]$, $x\in\R^d$ it holds that % \begin{equation}\label{eq:feynman-kac_sol_3} \smallU_d(t,x) = \E\bpigl[ \smallU_d\pr[\big]{ T , \cX_{T}^{d,t,x} } \bpigr] \dpp \end{equation} % % \end{athm} % % % \begin{aproof} % % \end{aproof} % % % \begin{athm}{lemma}{lem:feynman-kac_4} % % Let $T \in (0,\infty)$, % % let $(\Omega,\mathcal{F},\mathbb{P})$ be a probability space, % let $\alpha_d \in \R^d \to \R$, $d\in\N$, be infinitely often differentiable functions, % let $\smallU_d \in C^{1,2}([0,T]\times\R^d,\R)$, $d\in\N$, satisfy for all $d\in\N$, $t\in[0,T]$, $x\in\R^d$ that % \begin{equation}\label{eq:pde_4} \pr[]{\tfrac{\partial}{\partial t}\smallU_d}(t,x) + \pr[]{\Delta_x \smallU_d}(t,x) + \alpha_d(x) \smallU_d(t,x) = 0 \dc \end{equation} % let $\fwpr^d \colon [0,T] \times \Omega \to \R^d$, $d\in\N$, be standard Brownian motions, % and let $\cX^{d,t,x} \colon [t,T] \times \Omega \to \R^d$, $d\in\N$, $t\in[0,T]$, $x\in\R^d$, be a stochastic process with continuous sample paths satisfying that for all $d\in\N$, $t\in[0,T]$, $s\in[t,T]$, $x\in\R^d$ we have $\P$-a.s.\ that % \begin{equation}\label{eq:stochastic_process_4} \cX_{s}^{d,t,x} = x + \int_s^t \sqrt{2} \dx \fwpr_r^d \dpp \end{equation} % Then for all $d\in\N$, $t\in[0,T]$, $x\in\R^d$ it holds that % \begin{equation}\label{eq:feynman-kac_sol_4} \smallU_d(t,x) = \E\br[\bpig]{ \exp\pr[\big]{ \textstyle\int_t^T \alpha_d( \cX_r^{d,t,x} ) \dx r } \smallU_d\pr[\big]{ T , \cX_{T}^{d,t,x} } } \dpp \end{equation} % % \end{athm} % % % \begin{aproof} % % \end{aproof} % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%\bibliographystyle{acm} %%%\bibliography{bibfile} \end{document}