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Artificial neural networks (ANNs) have become a very powerful 
tool in the approximation of high-dimensional functions. Especially, 
deep ANNs, consisting of a large number of hidden layers, have 
been very successfully used in a series of practical relevant 
computational problems involving high-dimensional input data 
ranging from classification tasks in supervised learning to optimal 
decision problems in reinforcement learning. There are also a 
number of mathematical results in the scientific literature which 
study the approximation capacities of ANNs in the context of 
high-dimensional target functions. In particular, there are a series 
of mathematical results in the scientific literature which show 
that sufficiently deep ANNs have the capacity to overcome the 
curse of dimensionality in the approximation of certain target 
function classes in the sense that the number of parameters of the 
approximating ANNs grows at most polynomially in the dimension 
d ∈ N of the target functions under considerations. In the proofs 
of several of such high-dimensional approximation results it is 
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crucial that the involved ANNs are sufficiently deep and consist 
a sufficiently large number of hidden layers which grows in the 
dimension of the considered target functions. It is the topic of this 
work to look a bit more detailed to the deepness of the involved 
ANNs in the approximation of high-dimensional target functions. 
In particular, the main result of this work proves that there 
exists a concretely specified sequence of functions which can be 
approximated without the curse of dimensionality by sufficiently 
deep ANNs but which cannot be approximated without the curse 
of dimensionality if the involved ANNs are shallow or not deep 
enough.

© 2023 Elsevier Inc. All rights reserved.
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1. Introduction

Artificial neural networks (ANNs) have become a very powerful tool in the approximation of high-
dimensional functions. Especially, deep ANNs, consisting of a large number of hidden layers, have 
been very successfully used in a series of practical relevant computational problems involving high-
dimensional input data ranging from classification tasks in supervised learning to optimal decision 
problems in reinforcement learning.

There are also a large number of mathematical results in the scientific literature which study 
the approximation capacities of ANNs; see, e.g., Cybenko [13], Funahashi [20], Hornik et al. [31,32], 
Leshno et al. [46], Bianchini & Scarselli [10], Mhaskar et al. [49,50], Guliyev & Ismailov [29], El-
brächter et al. [18], and the references mentioned therein. Moreover, in the recent years a series 
of articles have appeared in the scientific literature which study the approximation capacities of 
ANNs in the context of high-dimensional target functions. In particular, the results in such articles 
show that deep ANNs have the capacity to overcome the curse of dimensionality1 (cf., e.g., Bellman [7]
and Novak & Woźniakowski [51, Chapter 1]) in the approximation of certain target function classes 
in the sense that the number of parameters of the approximating ANNs grows at most polynomi-
ally in the dimension d ∈ N of the target functions under considerations. For example, we refer to 
Elbrächter et al. [17], Jentzen et al. [35], Gonon et al. [22,23], Grohs et al. [24,25,27], Kutyniok et 
al. [45], Reisinger & Zhang [55], Beneventano et al. [8], Berner et al. [9], Hornung et al. [33], Hutzen-
thaler et al. [34], and the overview articles Beck et al. [5] and E et al. [16] for such high-dimensional 
ANN approximation results in the numerical approximation of solutions of PDEs and we refer to Bar-
ron [2–4], Jones [36], Girosi & Anzellotti [21], Donahue et al. [15], Gurvits & Koiran [30], Kůrková 
et al. [41–44], Kainen et al. [37,38], Klusowski & Barron [40], Li et al. [47], and Cheridito et al. [12]
for such high-dimensional ANN approximation results in the numerical approximation of certain spe-
cific target function classes independent of solutions of PDEs (cf., e.g., also Maiorov & Pinkus [48], 
Pinkus [54], Guliyev & Ismailov [28], Petersen & Voigtlaender [53], and Bölcskei et al. [11] for related 
results). In the proofs of several of the above named high-dimensional approximation results it is 
crucial that the involved ANNs are sufficiently deep and consist a sufficiently large number of hidden 
layers which grows in the dimension of the considered target functions.

It is the key topic of this work to look a bit more detailed to the deepness of the involved ANNs 
in the approximation of high-dimensional target functions. More specifically, Theorem 6.1 in Section 6
below, which is the main result of this work, proves that there exists a concretely specified sequence 
of high-dimensional functions which can be approximated without the curse of dimensionality by 
sufficiently deep ANNs but which cannot be approximated without the curse of dimensionality if the 
involved ANNs are shallow or not deep enough. In the scientific literature related ANN approximation 
results can also be found in Daniely [14], Eldan & Shamir [19], and Safran & Shamir [57]. One of the 
differences between the results in the above named references and the results in this work is, roughly 
speaking, that the considered target functions in the above named references can be approximated 
by ANNs with two hidden layers without the curse of dimensionality but not with ANNs with one 
hidden layer while in this work the considered target functions can only be approximated without 
the curse of dimensionality if the number of the hidden layers of the approximating ANN grows like 
the dimensions of the target functions.

To illustrate the findings of this work in more detail, we now present in the following result, 
Theorem 1.1 below, a special case of Theorem 6.1. Below Theorem 1.1 we also add some explanatory 
comments regarding the mathematical objects appearing in Theorem 1.1 and regarding the statement 
of Theorem 1.1.

1 In the literature one usually says that ANN approximations suffer under the curse of dimensionality if the number of 
parameters of the approximating ANN grows at least exponentially in the dimension of the target functions under considerations 
(cf., e.g., Bellman [7] and Novak & Woźniakowski [51, Chapter 1]) and one usually speaks of polynomial tractability if the 
number of ANN parameters grows at most polynomially in the dimension of the target functions under considerations and the 
inverse of the prescribed approximation accuracy (cf., e.g., Novak & Woźniakowski [51, Chapter 1] and Novak & Woźniakowski 
[52, Section 9.1]).
3
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Theorem 1.1. Let ϕ : (∪d∈NRd) → R and R : (∪d∈NRd) → (∪d∈NRd) satisfy for all d ∈ N ,
x = (x1, . . . , xd) ∈Rd that ϕ(x) = (2π)

−d/2 exp(− 1
2 (
∑d

j=1|x j |2)) and R(x) = (max{x1, 0}, . . . , max{xd, 0}), 
let N = ∪L∈N ∪l0,l1,...,lL∈N (×L

k=1(R
lk×lk−1 × Rlk )), and let R : N → (∪k,l∈N C(Rk,Rl)), H : N → N0 ,

P : N → N , and |||·||| : N → R satisfy for all L ∈ N , l0, l1, . . . , lL ∈ N , v0 ∈ Rl0 , v1 ∈ Rl1 , . . . ,
v L ∈ RlL , � = ((W1, B1), . . . , (W L, B L)) = (((W1,i, j)(i, j)∈{1,...,l1}×{1,...,l0}, (B1,i)i∈{1,...,l1}), . . . ,
((W L,i, j)(i, j)∈{1,...,lL}×{1,...,lL−1}, (B L,i)i∈{1,...,lL })) ∈ (×L

k=1(R
lk×lk−1 × Rlk )) with ∀ k ∈ {1, 2, . . . , L} : vk =

R(Wk vk−1 + Bk) that R(�) ∈ C(Rl0 ,RlL ), (R(�))(v0) = W L v L−1 + B L , H(�) = L − 1, P(�) =∑L
k=1 lk(lk−1 + 1), and |||�||| = max1≤n≤L max1≤i≤ln max1≤ j≤ln−1 max{|Wn,i, j|, |Bn,i|}. Then there exist con-

tinuously differentiable fd : Rd → R, d ∈ N , such that for all δ ∈ (0, 1], ε ∈ (0, 1/2] there exists C ∈ (0, ∞)

such that

(i) it holds for all c ∈ [C, ∞), d ∈N that

min

⎧⎪⎨
⎪⎩p ∈N :

⎡
⎢⎣

∃� ∈ N : p = P(�), |||�||| ≤ cdc,

d ≤ H(�) ≤ cd, R(�) ∈ C(Rd,R),

[∫Rd |(R(�))(x) − fd(x)|2ϕ(x)dx]1/2 ≤ ε

⎤
⎥⎦
⎫⎪⎬
⎪⎭≤ cd3 (1.1)

and
(ii) it holds for all c ∈ [C, ∞), d ∈N that

min

⎧⎪⎨
⎪⎩p ∈N :

⎡
⎢⎣

∃� ∈ N : p = P(�), |||�||| ≤ cdc,

H(�) ≤ cd1−δ, R(�) ∈ C(Rd,R),

[∫Rd |(R(�))(x) − fd(x)|2ϕ(x)dx]1/2 ≤ ε

⎤
⎥⎦
⎫⎪⎬
⎪⎭≥ (1 + c−3)(d

δ). (1.2)

Theorem 1.1 is an immediate consequence of Theorem 6.1, respectively Corollary 6.2, the main 
results of this paper. They combine the results of Corollary 5.12 and Corollary 4.9, which establish 
items (i) and (ii), respectively.

In the following we provide some explanatory comments regarding the statement of and math-
ematical objects appearing in Theorem 1.1. In Theorem 1.1 we measure the error between the 
target function and the realization of the approximating ANN in the L2-sense on the whole Rd , 
d ∈ N , with respect to standard normal distribution. In particular, we observe that the function 
ϕ : (∪d∈NRd) → R in Theorem 1.1 appears in the L2-errors in items (i) and (ii) in Theorem 1.1 and 
describes the densities of the standard normal distribution. More formally, note that for all d ∈ N
it holds that the function Rd � x �→ ϕ(x) = (2π)

−d/2 exp(− 1
2 (
∑d

j=1|x j|2)) ∈ R is nothing else but the 
density of the d-dimensional standard normal distribution.

Theorem 1.1 is an approximation result for ANNs with the rectifier function as the activation 
function and the function R : (∪d∈NRd) → (∪d∈NRd) in Theorem 1.1 describes multidimensional 
versions of the rectifier function. More specifically, observe that for all d ∈ N it holds that the func-
tion Rd � x �→ R(x) = (max{x1, 0}, . . . , max{xd, 0}) ∈ Rd is the d-dimensional version of the rectifier 
activation function R � x �→ max{x, 0} ∈R.

The set N = ∪L∈N ∪l0,l1,...,lL∈N (×L
k=1(R

lk×lk−1 × Rlk )) in Theorem 1.1 represents the set of all 
ANNs and the function R : N → (∪k,l∈NC(Rk, Rl)) in Theorem 1.1 assigns to each ANN in N its 
realization function. More formally, note that for every ANN � ∈ N it holds that the function 
R(�) ∈ (∪k,l∈NC(Rk, Rl)) is the realization function associated to the ANN �.

The function H : N → N0 in Theorem 1.1 describes the number of hidden layers of the consid-
ered ANN, the function P : N → N in Theorem 1.1 counts the number of parameters (the number 
of weights and biases) used to describe the considered ANN, and the function |||·||| : N → R in The-
orem 1.1 specifies the size of the absolute values of the parameters of the considered ANN. More 
specificially, observe that for every ANN � ∈ N it holds that H(�) is the number of hidden layers of 
the ANN �, that P(�) is the number of real parameters used to describe the ANN �, and that |||�|||
is the maximum of the absolute values of the real parameters used to describe the ANN �.
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It is well-known that shallow ANNs with the rectifier function as activation function can approx-
imate any continuous function uniformly on compacta, see, e.g., Pinkus [54]. But this is a qualitative 
result and gives no information on the required number of ANN parameters for a given approximation 
error. Roughly speaking, Theorem 1.1 asserts that there exists a sequence of continuously differentiable 
target functions fd : Rd → R, d ∈ N , such that for every arbitrarily small prescribed approximation 
accuracy ε ∈ (0, 1/2] it holds that the class of all sufficiently deep ANNs can approximate the target 
functions fd : Rd →R, d ∈N , without the curse of dimensionality (with the number of ANN param-
eters growing at most cubically in the dimension d ∈ N; see (1.1) in item (i) in Theorem 1.1) and 
that the class of all shallow ANNs (with the absolute values of the parameters of the considered ANN 
growing at most polynomially in the dimension d ∈ N) can only approximate the target functions 
fd : Rd → R, d ∈ N , with the curse of dimensionality (with the number of ANN parameters growing 
at least exponentially in the dimension d ∈ N; see (1.2) in item (ii) in Theorem 1.1). In that sense 
Theorem 1.1 shows for a specific class of target functions that sufficiently deep ANNs can overcome 
the curse of dimensionality but shallow ANNs fail to do so. Let us also point out that for this specific 
class of target functions Theorem 1.1 does not only show that shallow ANNs fail to overcome the 
curse of dimensionality in the sense of (1.2) but also that all deep ANNs with the number of hidden 
layers growing less or equal than cd1−δ , with an arbitrarily small δ ∈ (0, 1) and a sufficiently large 
c ∈ (0, ∞), fail to overcome the curse of dimensionality; see item (ii) in Theorem 1.1 for details.

The target functions fd : Rd → R, d ∈ N , mentioned in Theorem 1.1 will be constructed explic-
itly in Corollary 6.2 and can be chosen as fd(x) = fd(x)[∫Rd | fd(y)|2ϕd(y) dy]−1/2, where fd(x) =∑d

j=1[max{|x j| −
√

2d, 0}]2. The proof of Theorem 1.1 exploits the fact that the values of the func-
tions fd grow at least exponentially in d ∈N (cf. Lemma 5.9 below for details) as well as the fact that 
the efficient and accurate approximation of such functions by non-sufficiently deep ANNs requires 
the weights of the approximating ANNs to grow at least exponentially in d ∈ N . A weakness of the 
statement of Theorem 1.1 is that there is no growth restriction on the values of the target functions 
fd : Rd →R, d ∈N , appearing in Theorem 1.1. In particular, beyond Theorem 1.1, an interesting topic 
of future research is to prove or disprove a statement of the type of Theorem 1.1 but for target func-
tions which do not grow at least exponentially but which may only grow at most polynomially in the 
dimension d ∈N instead.

Let us give some intuition why ANNs with the number of hidden layers growing at most like d1−δ , 
with an arbitrarily small δ ∈ (0, 1), can not approximate the target functions fd : Rd → R, d ∈ N , 
without the curse of dimensionality but ANNs with the number of hidden layers growing at least like 
d can approximate the target functions fd : Rd →R, d ∈N , without the curse of dimensionality. Very 
roughly speaking, only through the deepness of ANNs an exponential growth can be created. More 
specifically, if the parameters of the ANNs are assumed to be at most polynomially growing as in 
item (ii) (and item (i)) in Theorem 1.1, then an exponential growth in the approximating realization 
functions of the ANNs can only be generated through multiple compositions coming from deep ANNs 
(cf. Lemma 5.10). The absolute values of our target functions grow like ed (cf. Lemma 5.9) and, as a 
consequence of this, only ANNs whose number of compositions (number of layers) growing of order 
d can approximate functions growing like ed without the curse of dimensionality but those ANNs 
having polynomially strictly less than d compositions can not approximate functions growing like ed

without the curse of dimensionality.
The statement of Theorem 1.1 holds subject to the constraint that absolute values of the parameters 

of the considered ANNs grow at most polynomially in the dimension d ∈ N . The question whether 
Theorem 1.1 still holds without this constraint is open and might require different tools than used in 
the present paper.

The remainder of this article is organized as follows: In Section 2 we briefly recall a few gen-
eral concepts and results for ANNs. We proceed to collect some technical results on weighted and 
unweighted Gaussian tails in Section 3. The main work for proving item (ii) of Theorem 1.1 is done 
in Section 4 culminating in Corollary 4.9. Section 5 essentially establishes item (i) of Theorem 1.1
with Corollary 5.12. In Section 6 we combine those two results and obtain Theorem 6.1, respectively 
Corollary 6.2, the main ANN approximation results of this work with Theorem 1.1 as an immediate 
consequence.
5
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2. Basics on artificial neural networks (ANNs)

In this section we briefly recall a few general well-known concepts and well-known results for ar-
tificial neural networks (ANNs), which can mostly be found, e.g., in [26, Section 2] and [27, Section 3]. 
For the vectorized description of ANNs, i.e. Definition 2.22, we refer, e.g., to [6, Definition 2.11].

2.1. Structured description of ANNs

Definition 2.1. We denote by R : (∪d∈NRd) → (∪d∈NRd) the function which satisfies for all d ∈ N , 
x = (x1, x2, . . . , xd) ∈Rd that R(x) = (max{x1, 0}, max{x2, 0}, . . . , max{xd, 0}).

Definition 2.2. We denote by N the set given by

N =⋃
L∈N

⋃
l0,l1,...,lL∈N

(×L
k=1(R

lk×lk−1 ×Rlk )
)

(2.1)

and we denote by R : N → (∪k,l∈N C(Rk, Rl)), P : N → N , L : N → N , I : N → N , O : N → N , 
H : N → N0, D : N → (∪∞

L=2N
L), and Dn : N → N0, n ∈ N0, the functions which satisfy for all L ∈

N , l0, l1, . . . , lL ∈ N , � = ((W1, B1), (W2, B2), . . . , (W L, B L)) ∈ (×L
k=1(R

lk×lk−1 × Rlk )), v0 ∈ Rl0 , v1 ∈
Rl1 , . . . , v L ∈ RlL , n ∈ N0 with ∀ k ∈ {1, 2, . . . , L} : vk = R(Wk vk−1 + Bk) that R(�) ∈ C(Rl0 , RlL ), 
(R(�))(v0) = W L v L−1 + B L , P(�) =∑L

k=1 lk(lk−1 +1), L(�) = L, I(�) = l0, O(�) = lL , H(�) = L −1, 
D(�) = (l0, l1, . . . , lL), and

Dn(�) =
{

ln : n ≤ L

0 : n > L
(2.2)

(cf. Definition 2.1).

Definition 2.3 (Neural network). We say that � is a neural network if and only if it holds that � ∈ N
(cf. Definition 2.2).

2.2. Compositions of ANNs

Definition 2.4 (Compositions of ANNs). We denote by (·) • (·) : {(�1, �2) ∈ N × N : I(�1) =O(�2)} → N
the function which satisfies for all L, L ∈N , l0, l1, . . . , lL, l0, l1, . . . , lL ∈N , �1 = ((W1, B1), (W2, B2),

. . . , (W L, B L)) ∈ (×L
k=1(R

lk×lk−1 ×Rlk )), �2 = ((W1, B1), (W2, B2), . . . , (WL,BL)) ∈ (×L
k=1(R

lk×lk−1 ×
Rlk )) with l0 = I(�1) =O(�2) = lL that

�1 • �2 =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
(W1,B1), (W2,B2), . . . , (WL−1,BL−1), (W1WL, W1BL + B1),

(W2, B2), (W3, B3), . . . , (W L, B L)
) : L > 1 < L

(
(W1W1, W1B1 + B1), (W2, B2), (W3, B3), . . . , (W L, B L)

) : L > 1 = L(
(W1,B1), (W2,B2), . . . , (WL−1,BL−1), (W1WL, W1BL + B1)

) : L = 1 < L(
(W1W1, W1B1 + B1)

) : L = 1 = L

(2.3)

(cf. Definition 2.2).

Proposition 2.5. Let �1, �2 ∈ N satisfy I(�1) =O(�2) (cf. Definition 2.2). Then

(i) it holds that

D(�1 • �2) = (D0(�2),D1(�2), . . . ,DH(�2)(�2),D1(�1),D2(�1), . . . ,DL(�1)(�1)),

(2.4)
6
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(ii) it holds that H(�1 • �2) =H(�1) +H(�2),
(iii) it holds that R(�1 • �2) ∈ C(RI(�2), RO(�1)), and
(iv) it holds that R(�1 • �2) = [R(�1)] ◦ [R(�2)]

(cf. Definition 2.4).

A proof of Proposition 2.5 can be found, e.g., in [26, Proposition 2.6].

Lemma 2.6. Let �1, �2, �3 ∈ N satisfy I(�1) =O(�2) and I(�2) =O(�3) (cf. Definition 2.2). Then (�1 •
�2) • �3 = �1 • (�2 • �3) (cf. Definition 2.4).

A proof of Lemma 2.6 can be found, e.g., in [26, Lemma 2.8].

2.3. Powers of ANNs

Definition 2.7. Let n ∈N . Then we denote by In ∈Rn×n the identity matrix in Rn×n .

Definition 2.8. We denote by (·)•n : {� ∈ N : I(�) = O(�)} → N, n ∈ N0, the functions which satisfy 
for all n ∈N0, � ∈ N with I(�) = O(�) that

�•n =
{(

IO(�), (0,0, . . . ,0)
) ∈RO(�)×O(�) ×RO(�) : n = 0

� • (�•(n−1)) : n ∈N
(2.5)

(cf. Definitions 2.2, 2.4, and 2.7).

Lemma 2.9. Let d, i ∈ N , � ∈ N satisfy D(�) = (d, i, d) (cf. Definition 2.2). Then it holds for all n ∈ N0 that 
H(�•n) = n, D(�•n) ∈Nn+2 , and

D(�•n) =
{

(d,d) : n = 0

(d, i, i, . . . , i,d) : n ∈N
(2.6)

(cf. Definition 2.8).

A proof of Lemma 2.9 can be found, e.g., in [26, Lemma 2.13].

2.4. Parallelizations of ANNs

Definition 2.10 (Parallelization of ANNs with the same length). Let n ∈N . Then we denote by

Pn : {(�1,�2, . . . ,�n) ∈ Nn : L(�1) = L(�2) = . . . = L(�n)
}→ N (2.7)

the function which satisfies for all L ∈N , (l1,0, l1,1, . . . , l1,L), (l2,0, l2,1, . . . , l2,L), . . . , (ln,0, ln,1, . . . , ln,L) ∈
N L+1, �1 = ((W1,1, B1,1), (W1,2, B1,2), . . . , (W1,L, B1,L)) ∈ (×L

k=1(R
l1,k×l1,k−1 × Rl1,k )), �2 = ((W2,1,

B2,1), (W2,2, B2,2), . . . , (W2,L, B2,L)) ∈ (×L
k=1(R

l2,k×l2,k−1 ×Rl2,k )), . . . , �n = ((Wn,1, Bn,1), (Wn,2, Bn,2),

. . . , (Wn,L, Bn,L)) ∈ (×L
k=1(R

ln,k×ln,k−1 ×Rln,k )) that
7
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Pn(�1,�2, . . . ,�n) =

⎛
⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎝

W1,1 0 0 · · · 0
0 W2,1 0 · · · 0
0 0 W3,1 · · · 0
...

...
...

. . .
...

0 0 0 · · · Wn,1

⎞
⎟⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎜⎝

B1,1
B2,1
B3,1

...

Bn,1

⎞
⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎝

W1,2 0 0 · · · 0
0 W2,2 0 · · · 0
0 0 W3,2 · · · 0
...

...
...

. . .
...

0 0 0 · · · Wn,2

⎞
⎟⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎜⎝

B1,2
B2,2
B3,2

...

Bn,2

⎞
⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎠ , . . . ,

⎛
⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎝

W1,L 0 0 · · · 0
0 W2,L 0 · · · 0
0 0 W3,L · · · 0
...

...
...

. . .
...

0 0 0 · · · Wn,L

⎞
⎟⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎜⎝

B1,L

B2,L

B3,L
...

Bn,L

⎞
⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎠

(2.8)

(cf. Definition 2.2).

Proposition 2.11. Let n ∈N , � = (�1, �2, . . . ,�n) ∈ Nn satisfy L(�1) =L(�2) = . . . =L(�n) (cf. Defini-
tion 2.2). Then

(i) it holds that R(Pn(�)) ∈ C(R[∑n
j=1 I(� j)], R[∑n

j=1 O(� j)]) and
(ii) it holds for all x1 ∈RI(�1), x2 ∈RI(�2), . . . , xn ∈RI(�n) that(

R
(
Pn(�)

))
(x1, x2, . . . , xn)

= (
(R(�1))(x1), (R(�2))(x2), . . . , (R(�n))(xn)

) ∈R[∑n
j=1 O(� j)] (2.9)

(cf. Definition 2.10).

A proof of Proposition 2.11 can be found, e.g., in [26, Proposition 2.19].

Proposition 2.12. Let n ∈N , �1, �2, . . . ,�n ∈ N satisfy L(�1) =L(�2) = . . . =L(�n) (cf. Definition 2.2). 
Then

D
(
Pn(�1,�2, . . . ,�n)

)= (∑n
j=1 D0(� j),

∑n
j=1 D1(� j), . . . ,

∑n
j=1 DL(� j)

)
(2.10)

(cf. Definition 2.10).

A proof of Proposition 2.12 can be found, e.g., in [26, Proposition 2.20].

Definition 2.13. We denote by I = (Id)d∈N : N → N the function which satisfies for all d ∈N that

I1 =
(((

1
−1

)
,

(
0
0

))
,
((

1 −1
)
,0

)) ∈
((

R2×1 ×R2
)

×
(
R1×2 ×R1

))
(2.11)

and

Id = Pd(I1,I1, . . . ,I1) (2.12)

(cf. Definitions 2.2 and 2.10).
8
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Lemma 2.14. Let d ∈N . Then

(i) it holds that D(Id) = (d, 2d, d) ∈N3 ,
(ii) it holds that R(Id) ∈ C(Rd, Rd), and

(iii) it holds for all x ∈Rd that (R(Id))(x) = x

(cf. Definitions 2.2 and 2.13).

A proof of Lemma 2.14 can be found, e.g., in [27, Lemma 3.16].

2.5. Linear transformations as ANNs

Definition 2.15 (Affine linear transformation NN). Let m, n ∈N , W ∈Rm×n , B ∈Rm . Then we denote by 
AW ,B ∈ (Rm×n ×Rm) ⊆ N the neural network given by AW ,B = (W , B) (cf. Definitions 2.2 and 2.3).

Lemma 2.16. Let m, n ∈N , W ∈Rm×n, B ∈Rm. Then

(i) it holds that D(AW ,B) = (n, m) ∈N2 ,
(ii) it holds that R(AW ,B) ∈ C(Rn, Rm), and

(iii) it holds for all x ∈Rn that (R(AW ,B))(x) = W x + B

(cf. Definitions 2.2 and 2.15).

The proof of Lemma 2.16 is clear and therefore is omitted.

2.6. Scalar multiplications of ANNs

Definition 2.17 (Scalar multiplications of ANNs). We denote by (·) � (·) : R × N → N the function which 
satisfies for all λ ∈R, � ∈ N that λ �� = Aλ IO(�),0 • � (cf. Definitions 2.2, 2.4, 2.7, and 2.15).

Lemma 2.18. Let λ ∈R, � ∈ N (cf. Definition 2.2). Then

(i) it holds that D(λ ��) =D(�),
(ii) it holds that R(λ ��) ∈ C(RI(�), RO(�)), and

(iii) it holds for all x ∈RI(�) that (R(λ ��))(x) = λ
(
(R(�))(x)

)
(cf. Definition 2.17).

A proof of Lemma 2.18 can be found, e.g., in [27, Lemma 3.14].

2.7. Sums of ANNs

Definition 2.19. Let m, n ∈ N . Then we denote by Sm,n ∈ (Rm×(mn) × Rm) the neural network given 
by Sm,n = A(Im Im ... Im), 0 (cf. Definitions 2.3, 2.7, and 2.15).

Lemma 2.20. Let m, n ∈N . Then

(i) it holds that D(Sm,n) = (mn, m) ∈N2 ,
(ii) it holds that R(Sm,n) ∈ C(Rmn, Rm), and

(iii) it holds for all x1, x2, . . . , xn ∈Rm that (R(Sm,n))(x1, x2, . . . , xn) =∑n
k=1 xk

(cf. Definitions 2.2 and 2.19).

A proof of Lemma 2.20 can be found, e.g., in [27, Lemma 3.18].
9
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2.8. On the connection to the vectorized description of ANNs

Definition 2.21 (p-norm). We denote by ‖·‖p : (⋃∞
d=1 R

d
) → [0, ∞), p ∈ [1, ∞], the functions which 

satisfy for all p ∈ [1, ∞), d ∈ N , θ = (θ1, θ2, . . . , θd) ∈ Rd that ‖θ‖p = (∑d
i=1|θi |p

)1/p
and ‖θ‖∞ =

maxi∈{1,2,...,d}|θi |.

Definition 2.22. We denote by T : N → (⋃
d∈N Rd

)
the function which satisfies for all L, d ∈ N , 

l0, l1, . . . , lL ∈ N , � = ((W1, B1), (W2, B2), . . . , (W L, B L)) ∈ (×L
m=1(R

lm×lm−1 × Rlm )), θ = (θ1, θ2, . . . ,
θd) ∈Rd , k ∈ {1, 2, . . . , L} with T (�) = θ that

d = P(�), Bk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

θ
(
∑k−1

i=1 li(li−1+1))+lklk−1+1

θ
(
∑k−1

i=1 li(li−1+1))+lklk−1+2

θ
(
∑k−1

i=1 li(li−1+1))+lklk−1+3
...

θ
(
∑k−1

i=1 li(li−1+1))+lklk−1+lk

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, and

Wk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

θ
(
∑k−1

i=1 li(li−1+1))+1 θ
(
∑k−1

i=1 li(li−1+1))+2 · · · θ
(
∑k−1

i=1 li(li−1+1))+lk−1

θ
(
∑k−1

i=1 li(li−1+1))+lk−1+1 θ
(
∑k−1

i=1 li (li−1+1))+lk−1+2 · · · θ
(
∑k−1

i=1 li(li−1+1))+2lk−1

θ
(
∑k−1

i=1 li(li−1+1))+2lk−1+1 θ
(
∑k−1

i=1 li(li−1+1))+2lk−1+2 · · · θ
(
∑k−1

i=1 li(li−1+1))+3lk−1

.

.

.
.
.
.

. . .
.
.
.

θ
(
∑k−1

i=1 li(li−1+1))+(lk−1)lk−1+1 θ
(
∑k−1

i=1 li(li−1+1))+(lk−1)lk−1+2 · · · θ
(
∑k−1

i=1 li (li−1+1))+lklk−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(2.13)

(cf. Definition 2.2).

Lemma 2.23. Let L, L ∈ N , l0, l1, . . . , lL, l0, l1, . . . , lL ∈ N , �1 = ((W1, B1), (W2, B2), . . . , (W L, B L)) ∈
(×L

k=1(R
lk×lk−1 ×Rlk )), �2 = ((W1, B1), (W2, B2), . . . , (WL,BL)) ∈ (×L

k=1(R
lk×lk−1 ×Rlk )). Then

‖T (�1 • �2)‖∞ ≤ max
{‖T (�1)‖∞,‖T (�2)‖∞,‖T (((W1WL, W1BL + B1))

)‖∞
}

(2.14)

(cf. Definitions 2.4, 2.21, and 2.22).

Proof of Lemma 2.23. Observe that (2.3) and (2.13) establish (2.14). The proof of Lemma 2.23 is thus 
complete. �
3. Upper bounds for weighted Gaussian tails

In this section we establish suitable upper bounds for certain weighted Gaussian tail integrals 
in Lemma 3.9. Furthermore, we collect some upper and lower bounds for the Gamma function and 
unweighted Gaussian tail estimates needed in the subsequent sections.

3.1. Lower and upper bounds for evaluations of the Gamma function

Lemma 3.1. Let 
 : (0, ∞) → (0, ∞) satisfy for all x ∈ (0, ∞) that 
(x) = ∫∞
0 tx−1e−t dt. Then

(i) it holds that 
(1) = 1 and
(ii) it holds for all d ∈N that




(
d

2

)
=
⎧⎨
⎩
( d

2 − 1
)! : d

2 ∈N

(d−1)!√π

( d−1 )! 2d−1 : d
2 /∈N.

(3.1)
2

10
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Lemma 3.1 collects some basic well-known results of the Gamma function found, e.g., in Whittaker 
& Watson [58, Chapter XII] or Andrews et al. [1, Chapter 1].

Lemma 3.2. Let n ∈N . Then

√
2πn

[n
e

]n
e

1
12n+1 < n! < √

2πn

[n
e

]n
e

1
12n . (3.2)

The well-known Stirling inequalities of Lemma 3.2 are proved, e.g., in Robbins [56].

Corollary 3.3. Let m ∈N ∩ [2, ∞). Then

(i) it holds that

√
2π(m− 1)

[
m− 1

e

]m−1

≤ (m− 1)! ≤√
3π(m− 1)

[
m− 1

e

]m−1

(3.3)

and
(ii) it holds that

√
π

[
m− 1

e

]m−1

≤ (2m− 2)!√π

4m−1(m− 1)! ≤ √
2π

[
m− 1

e

]m−1

. (3.4)

Proof of Corollary 3.3. Note that Lemma 3.2 (applied with n �m − 1 in the notation of Lemma 3.2) 
implies that

√
2π(m− 1)

[
m− 1

e

]m−1

e
1

12m−11 ≤ (m− 1)! ≤√
2π(m− 1)

[
m− 1

e

]m−1

e
1

12m−12 . (3.5)

The fact that e ≤( 3
2

)(6m−6)
therefore assures that

√
2π(m− 1)

[
m− 1

e

]m−1

≤√
2π(m− 1)

[
m− 1

e

]m−1

e
1

12m−11 ≤ (m− 1)!

≤√
2π(m− 1)

[
m− 1

e

]m−1

e
1

12m−12 ≤√
3π(m− 1)

[
m− 1

e

]m−1

.

(3.6)

This establishes item (i). Moreover, observe that Lemma 3.2 (applied with n � 2m − 2 in the notation 
of Lemma 3.2) ensures that

√
2π(2m− 2)

[
2m− 2

e

]2m−2

e
1

24m−23 ≤ (2m− 2)! ≤√
2π(2m− 2)

[
2m− 2

e

]2m−2

e
1

24m−24 .

(3.7)

Combining this with (3.5) demonstrates that

√
2π

[
m− 1

e

]m−1

e
−12m+11

(24m−23)(12m−12) ≤ (2m− 2)!√π

4m−1(m− 1)! ≤ √
2π

[
m− 1

e

]m−1

e
−12m+13

(24m−24)(12m−11) .

(3.8)

The fact that e(11−12m) ≥ 2(24m−23)(6−6m) and the fact that for all x ∈ [1, ∞) it holds that x(−12m+13) ≤
1 hence ensure that
11
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√
π

[
m− 1

e

]m−1

≤ √
2π

[
m− 1

e

]m−1

e
−12m+11

(24m−23)(12m−12) ≤ (2m− 2)!√π

4m−1(m− 1)!

≤ √
2π

[
m− 1

e

]m−1

e
−12m+13

(24m−24)(12m−11) ≤ √
2π

[
m− 1

e

]m−1

.

(3.9)

This establishes item (ii). The proof of Corollary 3.3 is thus complete. �
Corollary 3.4. Let 
 : (0, ∞) → (0, ∞) satisfy for all x ∈ (0, ∞) that 
(x) = ∫∞

0 tx−1e−t dt. Then

(i) it holds for all m ∈N ∩ [2, ∞) that

√
2π(m− 1)

[
m− 1

e

]m−1

≤ 
(m) ≤√
3π(m− 1)

[
m− 1

e

]m−1

(3.10)

and
(ii) it holds for all m ∈N ∩ [2, ∞) that

√
π

[
m− 1

e

]m−1

≤ 


(
m− 1

2

)
≤ √

2π

[
m− 1

e

]m−1

. (3.11)

Proof of Corollary 3.4. Note that Corollary 3.3 and item (ii) in Lemma 3.1 establish items (i) and (ii). 
The proof of Corollary 3.4 is thus complete. �
3.2. Lower and upper bounds for Gaussian tails

Lemma 3.5. Let σ , s ∈ (0, ∞). Then

(i) it holds that 
∫∞

0 e−σ x2
dx =

√
π

2
√

σ
,

(ii) it holds that

∞∫
s

e−σ x2
dx ≤

[ √
π

2
√

σ

]
e−σ s2

, (3.12)

and
(iii) it holds that

s∫
0

e−σ x2
dx ≥

[ √
π

2
√

σ

](
1 − e−σ s2)

. (3.13)

Proof of Lemma 3.5. Observe that the integral transformation theorem shows that

∞∫
0

e−σ x2
dx = 1√

2σ

∞∫
0

exp(− x2

2 )dx =
√

π√
σ

∞∫
0

exp(− x2

2 )√
2π

dx =
√

π

2
√

σ
. (3.14)

This establishes item (i). Next note that the integral transformation theorem and (3.14) ensure that

∞∫
s

e−σ x2
dx =

∞∫
0

e−σ (x+s)2
dx =

∞∫
0

(
e−σ x2−2σ sx−σ s2

)
dx

= e−σ s2

⎡
⎣ ∞∫

e−σ x2−2σ sx dx

⎤
⎦≤ e−σ s2

⎡
⎣ ∞∫

e−σ x2
dx

⎤
⎦=

[ √
π

2
√

σ

]
e−σ s2

.

(3.15)
0 0

12
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This establishes item (ii). Next we combine (3.14) and (3.15) to obtain that

s∫
0

e−σ x2
dx =

∞∫
0

e−σ x2
dx −

∞∫
s

e−σ x2
dx =

√
π

2
√

σ
−

∞∫
s

e−σ x2
dx ≥

[ √
π

2
√

σ

](
1 − e−σ s2)

. (3.16)

This establishes item (iii). The proof of Lemma 3.5 is thus complete. �
Corollary 3.6. Let d ∈N , σ , s ∈ (0, ∞). Then

(i) it holds that ∫
{y∈Rd : ‖y‖2≤s}

[σ

π

]d/2

e−σ‖x‖2
2 dx ≥

[
1 − e−σ s2/d

]d
(3.17)

and
(ii) it holds that ∫

{y∈Rd : ‖y‖2≥s}

[σ

π

]d/2

e−σ‖x‖2
2 dx ≤ de−σ s2/d (3.18)

(cf. Definition 2.21).

Proof of Corollary 3.6. Observe that item (i) in Lemma 3.5 implies that∫
Rd

e−σ‖x‖2
2 dx =

∫
R

∫
R

. . .

∫
R

e−σ (|x1|2+|x2|2+...+|xd|2) dxd . . .dx2dx1

=
⎡
⎣∫
R

e−σ x2
dx

⎤
⎦d

=
⎡
⎣2

∞∫
0

e−σ x2
dx

⎤
⎦d

=
[π

σ

]d/2

(3.19)

(cf. Definition 2.21). Next note that item (iii) in Lemma 3.5 (applied with σ � σ , s � d−1/2s in the 
notation of Lemma 3.5) and the fact that

{y = (y1, y2, . . . , yd) ∈Rd : (∀ j ∈ {1,2, . . . ,d} : |y j| ≤ d−1/2s)} ⊆ {y ∈Rd : ‖y‖2 ≤ s} (3.20)

ensure that

∫
{y∈Rd : ‖y‖2≤s}

e−σ‖x‖2
2 dx ≥

d∏
j=1

⎡
⎢⎣

d−1/2s∫
−d−1/2s

e−σ |x j |2 dx j

⎤
⎥⎦

=
⎡
⎢⎣2

d−1/2s∫
0

e−σ |x|2 dx

⎤
⎥⎦

d

≥
[π

σ

]d/2[
1 − e−σ s2/d

]d
.

(3.21)

This immediately establishes item (i). For item (ii), we combine (3.19) and (3.21) with Bernoulli’s 
inequality, i.e., the well-known fact that for all α ∈ R\(0, 1) and for all x ∈ (−1, ∞) it holds that 
(1 + x)α ≥ 1 + αx, to obtain
13
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∫
{y∈Rd : ‖y‖2≥s}

[σ

π

]d/2

e−σ‖x‖2
2 dx=1 −

∫
{y∈Rd : ‖y‖2≤s}

[σ

π

]d/2

e−σ‖x‖2
2 dx

≤ 1 −
[

1 − e−σ s2/d
]d ≤1 −

[
1 − de−σ s2/d

]
= de−σ s2/d.

(3.22)

The proof of Corollary 3.6 is thus complete. �
Lemma 3.7. Let d ∈N , σ ∈ (0, ∞), α, s ∈ [0, ∞) and let 
 : (0, ∞) → (0, ∞) satisfy for all x ∈ (0, ∞) that 

(x) = ∫∞

0 tx−1e−t dt. Then

∫
{y∈Rd : ‖y‖2≥s}

[σ

π

]d/2 ‖x‖α
2 e−σ‖x‖2

2 dx = 2σ d/2



(

d
2

)
⎡
⎣ ∞∫

s

e−σ r2
rα+d−1 dr

⎤
⎦ (3.23)

(cf. Definition 2.21).

Lemma 3.7 is a direct consequence of the integral transformation theorem.

Lemma 3.8. Let d ∈N ∩ [3, ∞), β, σ ∈ (0, ∞). Then∫
{

y∈Rd :
√

d(1+β)√
2σ

≤‖y‖2≤ d
√

1+β√
2σ

}
[σ

π

]d/2

e−σ‖x‖2
2 dx ≤ d

[
1 + β

eβ

]d/2

(3.24)

(cf. Definition 2.21).

Proof of Lemma 3.8. Throughout this proof let 
 : (0, ∞) → (0, ∞) satisfy for all x ∈ (0, ∞) that 

(x) = ∫∞

0 tx−1e−t dt . Observe that Lemma 3.7 (applied with d � d, σ � σ , α � 0, s � (2σ)
−1/2(d(1 +

β))
1/2 in the notation of Lemma 3.7) implies that

∫
{

y∈Rd : ‖y‖2≥
√

d(1+β)√
2σ

}
[σ

π

]d/2

e−σ‖x‖2
2 dx = 2σ d/2



(

d
2

) ∞∫
√

d(1+β)√
2σ

e−σ r2
rd−1 dr (3.25)

(cf. Definition 2.21). Next note that Lemma 3.7 (applied with d � d, σ � σ , α � 0, s � (2σ)
−1/2d(1 +

β)
1/2 in the notation of Lemma 3.7) shows that

∫
{

y∈Rd : ‖y‖2≥ d
√

1+β√
2σ

}
[σ

π

]d/2

e−σ‖x‖2
2 dx = 2σ d/2



(

d
2

) ∞∫
d
√

1+β√
2σ

e−σ r2
rd−1 dr. (3.26)

Combining this with (3.25) ensures that∫
{

y∈Rd :
√

d(1+β)√
2σ

≤‖y‖2≤ d
√

1+β√
2σ

}
[σ

π

]d/2

e−σ‖x‖2
2 dx

=
∫

{
y∈Rd : ‖y‖2≥

√
d(1+β)√

2σ

}
[σ

π

]d/2

e−σ‖x‖2
2 dx −

∫
{

y∈Rd : ‖y‖2≥ d
√

1+β√
2σ

}
[σ

π

]d/2

e−σ‖x‖2
2 dx (3.27)
14
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= 2σ d/2



(

d
2

) ∞∫
√

d(1+β)√
2σ

e−σ r2
rd−1 dr − 2σ d/2



(

d
2

) ∞∫
d
√

1+β√
2σ

e−σ r2
rd−1 dr

= 2σ d/2



(

d
2

)
d
√

1+β√
2σ∫

√
d(1+β)√

2σ

e−σ r2
rd−1 dr.

Next observe that the chain rule ensures that for all x ∈ [(2σ)
−1/2d1/2, ∞) it holds that[

e−σ x2
xd−1]′= e−σ x2

xd−2(d − 1 − 2σ x2) ≤ e−σ x2
xd−2(d − 1 − d) < 0. (3.28)

This ensures that the function [(2σ)
−1/2d1/2, ∞) � x �→ e−σ x2

xd−1 ∈R is strictly decreasing. Hence, we 
obtain that

2σ d/2



(

d
2

)
d
√

1+β√
2σ∫

√
d(1+β)√

2σ

e−σ r2
rd−1 dr ≤ 2σ d/2



(

d
2

)
d
√

1+β√
2σ∫

√
d(1+β)√

2σ

[
e− d(1+β)

2

][d(1 + β)

2σ

] d−1
2

dr

= 2σ d/2



(

d
2

)[e− d(1+β)
2

][d(1 + β)

2σ

] d−1
2
[

(d − √
d)

√
1 + β√

2σ

]

≤ 2σ d/2



(

d
2

)[e− d(1+β)
2

][d(1 + β)

2σ

] d−1
2
[

d

[
1 + β

2σ

]1/2
]

= 2



(

d
2

)[e− d(1+β)
2

][
d

d+1
2

][1 + β

2

]d/2

.

(3.29)

Next note that item (i) in Corollary 3.4 and the fact that for all m ∈N ∩ [2, ∞) it holds that

[[
1 + 1

m − 1

]m−1
] 2m−1

2m−2

≤ e

[[
1 + 1

m − 1

]m−1
] 1

2m−2

= e

[
1 + 1

m − 1

]1/2

≤ e
[
21/2

]≤ 3e

2

(3.30)

assure that for all k, m ∈N with k = 2m ≥ 4 it holds that

2



(

k
2

)[e− k(1+β)
2

][
k

k+1
2

][1 + β

2

]k/2

= 2


(m)

[
e−m(1+β)

][
(2m)m+ 1

2

][1 + β

2

]m

≤ 2√
2π(m − 1)

[
e

m − 1

]m−1[
e−m(1+β)

][
(2m)m+ 1

2

][1 + β

2

]m

= 2m√
π

[
e−1−mβ

][[
1 + 1

m − 1

]m−1
] 2m−1

2m−2

(1 + β)m ≤ 2m√
π

[
e−1−mβ

][3e

2

]
(1 + β)m

= 3k

2
√

π

[
1 + β

eβ

]k/2

≤ k

[
1 + β

eβ

]k/2

.

(3.31)

Next observe that item (ii) in Corollary 3.4 and the fact that for all m ∈ N ∩ [2, ∞) it holds that 
(1 + (2m − 2)−1)2m−2 ≤ e show that for all k, m ∈N with k = 2m − 1 ≥ 3 it holds that
15
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⎡
⎣ 2



(

k
2

)
⎤
⎦[e− k(1+β)

2 k
k+1

2

][1 + β

2

]k/2

=
[

2



(
m − 1

2

)
][

e(−m+ 1
2 )(1+β)(2m − 1)m

][1 + β

2

]m− 1
2

≤ 2√
π

[
e

m − 1

]m−1[
e(−m+ 1

2 )(1+β)(2m − 1)m
][1 + β

2

]m− 1
2

=
[

2

π

]1/2[
(2m − 1)e−mβ+ β

2 − 1
2

][[
1 + 1

2m − 2

]2m−2
]1/2

(1 + β)m− 1
2

≤
[

2

π

]1/2

(2m − 1) e−mβ+ β
2 − 1

2 e
1
2 (1 + β)m− 1

2 =
[

2

π

]1/2

k

[
1 + β

eβ

]k/2

≤ k

[
1 + β

eβ

]k/2

.

(3.32)

Combining this with (3.29) and (3.31) assures that

2σ d/2



(

d
2

)
d
√

1+β√
2σ∫

√
d(1+β)√

2σ

e−σ r2
rd−1 dr ≤ d

[
1 + β

eβ

]d/2

. (3.33)

This and (3.27) imply that

∫
{

y∈Rd :
√

d(1+β)√
2σ

≤‖y‖2≤ d
√

1+β√
2σ

}
[σ

π

]d/2

e−σ‖x‖2
2 dx ≤ d

[
1 + β

eβ

]d/2

. (3.34)

The proof of Lemma 3.8 is thus complete. �
3.3. Upper bounds for weighted Gaussian tails

Lemma 3.9. Let d ∈N ∩[3, ∞), β, σ ∈ (0, ∞), k ∈N0 and let 
 : (0, ∞) → (0, ∞) satisfy for all x ∈ (0, ∞)

that 
(x) = ∫∞
0 tx−1e−t dt. Then∫

{
y∈Rd : ‖y‖2≥

√
d(1+β)√

2σ

}
[σ

π

]d/2‖x‖k
2 e−σ‖x‖2

2 dx

≤ d1+k
[

1 + β

2σ

]k/2[1 + β

eβ

]d/2

+


(

d+k
2

)


(

d
2

) [
d + k

σ k/2

]
e− d2(1+β)

2(d+k)

(3.35)

(cf. Definition 2.21).

Proof of Lemma 3.9. Note that Lemma 3.8 (applied with d � d, β � β , σ � σ in the notation of 
Lemma 3.8) ensures that∫

{
y∈Rd :

√
d(1+β)√

2σ
≤‖y‖2≤ d

√
1+β√
2σ

}
[σ

π

]d/2‖x‖k
2 e−σ‖x‖2

2 dx
16
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≤ dk
[

1 + β

2σ

]k/2 ∫
{

y∈Rd :
√

d(1+β)√
2σ

≤‖y‖2≤ d
√

1+β√
2σ

}
[σ

π

]d/2

e−σ‖x‖2
2 dx (3.36)

≤ d1+k
[

1 + β

2σ

]k/2[1 + β

eβ

]d/2

(cf. Definition 2.21). Moreover, observe that Lemma 3.7 (applied with d � d + k, σ � σ , α � 0, 
s � (2σ)

−1/2d(1 + β)
1/2 in the notation of Lemma 3.7) and item (ii) in Corollary 3.6 (applied with 

d � d + k, σ � σ , s � (2σ)
−1/2d(1 + β)

1/2 in the notation of Corollary 3.6) assure that

2σ
d+k

2



(

d+k
2

) ∞∫
d
√

1+β√
2σ

e−σ r2
rd+k−1 dr =

∫
{

y∈Rd+k : ‖y‖2≥ d
√

1+β√
2σ

}
[σ

π

] d+k
2

e−σ‖x‖2
2 dx ≤ (d + k)e− d2(1+β)

2(d+k) .

(3.37)

Lemma 3.7 (applied with d � d, σ � σ , α � k, s � (2σ)
−1/2d(1 +β)

1/2 in the notation of Lemma 3.7) 
hence shows that∫

{
y∈Rd : ‖y‖2≥ d

√
1+β√
2σ

}
[σ

π

]d/2‖x‖k
2 e−σ‖x‖2

2 dx = 2σ d/2



(

d
2

) ∞∫
d
√

1+β√
2σ

e−σ r2
rd+k−1 dr

=


(

d+k
2

)


(

d
2

)
σ k/2

⎡
⎢⎢⎢⎣ 2σ

d+k
2



(

d+k
2

) ∞∫
d
√

1+β√
2σ

e−σ r2
rd+k−1 dr

⎤
⎥⎥⎥⎦≤



(

d+k
2

)


(

d
2

) [
d + k

σ k/2

]
e− d2(1+β)

2(d+k) .

(3.38)

Combining this with (3.36) demonstrates that∫
{

y∈Rd : ‖y‖2≥
√

d(1+β)√
2σ

}
[σ

π

]d/2‖x‖k
2 e−σ‖x‖2

2 dx

=
∫

{
y∈Rd :

√
d(1+β)√

2σ
≤‖y‖2≤ d

√
1+β√
2σ

}
[σ

π

]d/2‖x‖k
2 e−σ‖x‖2

2 dx

+
∫

{
y∈Rd : ‖y‖2≥ d

√
1+β√
2σ

}
[σ

π

]d/2‖x‖k
2 e−σ‖x‖2

2 dx

≤ d1+k
[

1 + β

2σ

]k/2[1 + β

eβ

]d/2

+


(

d+k
2

)


(

d
2

) [
d + k

σ k/2

]
e− d2(1+β)

2(d+k) .

(3.39)

The proof of Lemma 3.9 is thus complete. �
4. Lower bounds for the number of ANN parameters in the approximation of high-dimensional 
functions

This section compiles the main work for proving item (ii) in Theorem 1.1. The key result is The-
orem 4.1, which establishes a lower bound for the depth, number and size of parameters of the 
17
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approximating ANN in terms of the approximation error and the concentration of the target function 
around the origin.

Theorem 4.1. Let d ∈ N ∩ [4, ∞), β, σ ∈ (0, ∞), � ∈ N satisfy I(�) = d and O(�) = 1, let ϕ : Rd → R, 
g : Rd →R, and g : Rd →R be measurable, and assume for all x ∈Rd that ϕ(x) = (σ/π)

d/2 exp
(−σ‖x‖2

2

)
, ∫

Rd |g(y)|2ϕ(y) dy ∈ (0, ∞), 
∫
Rd |(R(�))(y)| dy > 0, and g(x) = [ ∫

Rd |g(y)|2ϕ(y) dy
]−1/2

g(x) (cf. Defini-
tions 2.2 and 2.21). Then

L(�)

[
P(�)max{1,‖T (�)‖∞}

2L(�)

]L(�)

≥
[

eβ

1 + β

]d/6
[

2
√

σ
[∫

Rd |(R(�))(x)|2ϕ(x)dx
]1/2

d3/2(6 + 4β + σ)1/2

]

·

⎡
⎢⎢⎢⎢⎣1 −

⎡
⎢⎢⎢⎢⎣

∫
{

y∈Rd : ‖y‖2≤
√

d(1+β)√
2σ

} |g(x)|2ϕ(x)dx

⎤
⎥⎥⎥⎥⎦

1/2

−
∫
Rd

|(R(�))(x) − g(x)|2ϕ(x)dx

⎤
⎥⎥⎥⎥⎦

(4.1)

(cf. Definition 2.22).

The idea of this theorem is as follows: Given a measurable target function g : Rd → R with ∫
Rd |g(y)|2ϕ(y) dy = 1, the approximation error can be estimated by∫

Rd

|(R(�))(x) − g(x)|2ϕ(x)dx ≥ 1 − C�

∫
Rd

|(R(�))(x)| |g(x)|ϕ(x)dx

= 1 − C�

∫
{y∈Rd : ‖y‖2≤R}

|(R(�))(x)| |g(x)|ϕ(x)dx − C�

∫
{y∈Rd : ‖y‖2≥R}

|(R(�))(x)| |g(x)|ϕ(x)dx,
(4.2)

where C� = [∫
Rd |(R(�))(x)|2ϕ(x)dx

]−1/2
appears as a normalization term. Inequality (4.2) is already 

quite similar to (4.1) up to some rearranging, that is bringing the approximation error and the integral 
over {y ∈Rd : ‖y‖2 ≥ R} to their respective other side.

The main work of this section will be to bound the integral over {y ∈ Rd : ‖y‖2 ≥ R} in terms 
of ANN parameters. This will be done in Subsection 4.1 and Subsection 4.2. In Subsection 4.3 we 
verify the first inequality of (4.2). We then have all the technical tools to give a formal proof of 
Theorem 4.1 in Subsection 4.4. Finally in Subsection 4.5, we apply Theorem 4.1 to the functions 
gd : Rd → R defined by taking gd : Rd → R with gd(x) = ∑d

j=1[max{|x j| −
√

2d, 0}]2 and setting 
gd(x) = [∫Rd |gd(y)|2ϕ(y) dy]−1/2 gd(x). The result is Corollary 4.9, which establishes item (ii) of Theo-
rem 1.1.

4.1. Upper bounds for realizations of ANNs

Lemma 4.2. Let m, n ∈ N , A = (Ai, j)(i, j)∈{1,2,...,m}×{1,2,...,n} ∈ Rm×n, B = (B1, B2, . . . , Bm) ∈ Rm, x ∈ Rn. 
Then

(i) it holds that

‖Ax + B‖∞ ≤ √
n
[

max
i∈{1,2,...,m}

max
j∈{1,2,...,n}

|Ai, j|
]
‖x‖2 + ‖B‖∞ (4.3)

and
18
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(ii) it holds that

‖Ax + B‖∞ ≤ n
[

max
i∈{1,2,...,m}

max
j∈{1,2,...,n}

|Ai, j|
]
‖x‖∞ + ‖B‖∞ (4.4)

(cf. Definition 2.21).

Proof of Lemma 4.2. Throughout this proof let α ∈ R satisfy α = maxi∈{1,2,...,m} max j∈{1,2,...,n}|Ai, j |
and let β ∈ R satisfy β = ‖B‖∞ (cf. Definition 2.21). Note that the triangle inequality and the 
fact that for all v = (v1, v2, . . . , vn) ∈ Rn it holds that 

∑n
j=1|v j| ≤ √

n‖v‖2 ensure that for all 
v = (v1, v2, . . . , vn) ∈Rn it holds that

‖Av + B‖∞ = max
i∈{1,2,...,m}

∣∣∣∣Bi +
n∑

j=1

Ai, j v j

∣∣∣∣≤ max
i∈{1,2,...,m}

(
|Bi| +

n∑
j=1

|Ai, j v j|
)

≤ β + α

n∑
j=1

|v j| ≤ β + α
√

n‖v‖2.

(4.5)

This establishes item (i). Moreover, observe that the fact that for all v ∈ Rn it holds that 
√

n‖v‖2 ≤
n‖v‖∞ and item (i) demonstrate that for all v ∈Rn it holds that

‖Av + B‖∞ ≤ β + α
√

n‖v‖2 ≤ β + αn‖v‖∞. (4.6)

This establishes item (ii). The proof of Lemma 4.2 is thus complete. �
Lemma 4.3. Let L ∈ N ∩ [2, ∞), l0, l1, . . . , lL ∈ N , � = ((W1, B1), (W2, B2), . . . , (W L, B L)) ∈(×L

k=1(R
lk×lk−1 × Rlk )

)
, x0 ∈ Rl0 , x1 ∈ Rl1 , . . . , xL ∈ RlL satisfy for all k ∈ {1, 2, . . . , L} that xk =

R(Wkxk−1 + Bk) (cf. Definition 2.1). Then

(i) it holds for all k ∈ {1, 2, . . . , L}, j ∈ {1,2, . . . ,k} that

‖xk‖∞ ≤ lk−1lk−2 · · · lk− j (max{1,‖T (�)‖∞}) j(‖xk− j‖∞ + j) (4.7)

and
(ii) it holds that

‖(R(�))(x0)‖∞ ≤ lL−1lL−2 · · · l1(max{1,‖T (�)‖∞})L−1(‖x1‖∞ + L − 1) (4.8)

(cf. Definitions 2.2, 2.21, and 2.22).

Proof of Lemma 4.3. Throughout this proof let α = max{1,‖T (�)‖∞} (cf. Definitions 2.21 and 2.22). 
Note that the fact that for all x ∈ R it holds that |max{x, 0}| ≤ |x| and item (ii) in Lemma 4.2 (ap-
plied for every k ∈ {1, 2, . . . , L} with m � lk , n � lk−1, A � Wk , B � Bk , x � xk−1 in the notation of 
Lemma 4.2) imply that for all k ∈ {1, 2, . . . , L} it holds that

‖xk‖∞ = ‖R(Wkxk−1 + Bk)‖∞ ≤ ‖Wkxk−1 + Bk‖∞
≤ α lk−1‖xk−1‖∞ + α ≤ α lk−1(‖xk−1‖∞ + 1).

(4.9)

This demonstrates that for all k ∈ {2, 3, . . . , L}, i ∈ {1,2, . . . ,k − 1} with ‖xk‖∞ ≤ lk−1lk−2 · · · lk−i

αi(‖xk−i‖∞ + i) it holds that

‖xk‖∞ ≤ lk−1lk−2 · · · lk−iα
i(‖xk−i‖∞ + i)

≤ lk−1lk−2 · · · lk−iα
i(αlk−i−1(‖xk−i−1‖∞ + 1) + i)

≤ l l · · · l l αi+1(‖x ‖ + i + 1).

(4.10)
k−1 k−2 k−i k−i−1 k−i−1 ∞
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This, (4.9), and induction show that for all k ∈ {1, 2, . . . , L}, j ∈ {1,2, . . . ,k} it holds that

‖xk‖∞ ≤ lk−1lk−2 · · · lk− j (max{1,‖T (�)‖∞}) j(‖xk− j‖∞ + j). (4.11)

This establishes item (i). Next observe that item (ii) in Lemma 4.2 (applied with m � lL , n � lL−1, 
A � W L , B � B L , x � xL−1 in the notation of Lemma 4.2) ensures that

‖(R(�))(x0)‖∞ = ‖W L xL−1 + B L‖∞ ≤ αlL−1‖xL−1‖∞ + α ≤ αlL−1(‖xL−1‖∞ + 1) (4.12)

(cf. Definition 2.2). This and item (i) demonstrate that

‖(R(�))(x0)‖∞ ≤ αlL−1(‖xL−1‖∞ + 1)

≤ αlL−1([lL−2lL−3 · · · l1α
L−2(‖x1‖∞ + L − 2)] + 1)

≤ lL−1lL−2 · · · l1α
L−1(‖x1‖∞ + L − 1).

(4.13)

This establishes item (ii). The proof of Lemma 4.3 is thus complete. �
Corollary 4.4. It holds for all � ∈ N, x ∈RI(�) that

‖(R(�))(x)‖∞ ≤
[
P(�)max{1,‖T (�)‖∞}

2L(�)

]L(�)

(‖x‖2 +L(�)) (4.14)

(cf. Definitions 2.2, 2.21, and 2.22).

Proof of Corollary 4.4. Throughout this proof let L ∈N , l0, l1, . . . , lL ∈N , � = ((W1, B1), (W2, B2), . . . ,
(W L, B L)) ∈ (×L

k=1(R
lk×lk−1 ×Rlk )), α = max{1,‖T (�)‖∞}, x0 ∈Rl0 , x1 ∈Rl1 satisfy x1 = R(W1x0 +

B1) (cf. Definitions 2.1, 2.21, and 2.22). Note that item (i) in Lemma 4.2 (applied with m � l1, n � l0, 
A � W1, B � B1, x � x0 in the notation of Lemma 4.2) ensures that

‖W1x0 + B1‖∞ ≤ α
√

l0‖x0‖2 + α ≤ α
√

l0(‖x0‖2 + 1). (4.15)

In the following we distinguish between the case L(�) = 1 and the case L(�) > 1. We first prove
(4.14) in the case L(�) = 1. Observe that (4.15) demonstrates that

‖(R(�))(x0)‖∞ = ‖W1x0 + B1‖∞ ≤ α
√

l0(‖x0‖2 + 1)

≤ (l0 + 1)α

2
(‖x0‖2 + 1) ≤ l1(l0 + 1)α

2
(‖x0‖2 + 1)

=
[
P(�)max{1,‖T (�)‖∞}

2L(�)

]L(�)

(‖x0‖2 +L(�)).

(4.16)

This proves (4.14) in case L(�) = 1. We now prove (4.14) in the case L(�) > 1. Note that (4.15) and 
the fact that for all x ∈R it holds that |max{x, 0}| ≤ |x| show that

‖x1‖∞ = ‖R(W1x0 + B1)‖∞ ≤ ‖W1x0 + B1‖∞ ≤ α
√

l0(‖x0‖2 + 1). (4.17)

This and item (ii) in Lemma 4.3 (applied with L � L, l0 � l0, l1 � l1, . . . , lL � lL , � � �, x0 � x0, 
x1 � x1 in the notation of Lemma 4.3) ensure that

‖(R(�))(x0)‖∞ ≤ lL−1lL−2 · · · l1α
L−1(‖x1‖∞ + L − 1)

≤ lL−1lL−2 · · · l1α
L−1(α

√
l0(‖x0‖2 + 1) + L − 1)

≤ lL−1lL−2 · · · l1
√

l0 αL(‖x0‖2 + L).

(4.18)

In the next step observe that the inequality of arithmetic and geometric means assures that
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P(�) =
L∑

k=1

lk(lk−1 + 1) = l1 + l2 + . . . + lL + l0l1 + l1l2 + . . . + lL−1lL

≥ 2L[(l1l2 · · · lL)(l0l1l1l2 · · · lL−1lL)]1/2L = 2L
[
l0(l1)

3(l2)
3 · · · (lL−1)

3(lL)
2
]1/2L

≥ 2L
[
l0(l1)

2(l2)
2 · · · (lL−1)

2
]1/2L

.

(4.19)

Hence, we obtain that

lL−1lL−2 · · · l1
√

l0 ≤
[
P(�)

2L

]L

. (4.20)

Combining this and (4.18) shows that

‖(R(�))(x0)‖∞ ≤ lL−1lL−2 · · · l1
√

l0 αL(‖x0‖2 + L)

≤
[
P(�)α

2L

]L

(‖x0‖2 + L)

=
[
P(�)max{1,‖T (�)‖∞}

2L(�)

]L(�)

(‖x0‖2 +L(�)).

(4.21)

This proves (4.14) in the case L(�) > 1. The proof of Corollary 4.4 is thus complete. �
Lemma 4.5. Let d ∈N ∩ [4, ∞), β, σ ∈ (0, ∞), � ∈ N satisfy I(�) = d and O(�) = 1 and let ϕ : Rd →R
satisfy for all x ∈Rd that ϕ(x) = (σ/π)

d/2 exp(−σ‖x‖2
2) (cf. Definitions 2.2 and 2.21). Then∫

{
y∈Rd : ‖y‖2≥

√
d(1+β)√

2σ

} |(R(�))(x)|2ϕ(x)dx

≤ |L(�)|2
[
P(�)max{1,‖T (�)‖∞}

2L(�)

]2L(�)[1 + β

eβ

]d/3[d3(6 + 4β + σ)

4σ

] (4.22)

(cf. Definition 2.22).

Proof of Lemma 4.5. Throughout this proof let R ∈R satisfy 
√

2σR =√
d(1 + β). Note that the fact 

that for all a, b ∈ R it holds that (a + b)2 ≤ 2(a2 + b2) and Corollary 4.4 imply that for all x ∈ Rd it 
holds that

|(R(�))(x)|2 = ‖(R(�))(x)‖2∞ ≤
[
P(�)max{1,‖T (�)‖∞}

2L(�)

]2L(�)

(‖x‖2 +L(�))2

≤ 2

[
P(�)max{1,‖T (�)‖∞}

2L(�)

]2L(�)

(‖x‖2
2 + |L(�)|2)

(4.23)

(cf. Definition 2.22). Observe that Lemma 3.1 ensures that 
 (d/2 + 1) = [d/2]
 (d/2). Combining this 
with Lemma 3.9 (applied with d � d, β � β , σ � σ , k � 0, k � 2 in the notation of Lemma 3.9) 
assures that ∫

{y∈Rd : ‖y‖2≥R}

[|L(�)|2 + ‖x‖2
2

]
ϕ(x)dx

= |L(�)|2
∫

{y∈Rd : ‖y‖ ≥R}
ϕ(x)dx +

∫
{y∈Rd : ‖y‖ ≥R}

‖x‖2
2 ϕ(x)dx
2 2
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= |L(�)|2
∫

{y∈Rd : ‖y‖2≥R}

[σ

π

]d/2

e−σ‖x‖2
2 dx +

∫
{y∈Rd : ‖y‖2≥R}

[σ

π

]d/2‖x‖2
2 e−σ‖x‖2

2 dx

≤ |L(�)|2
[

d

[
1 + β

eβ

]d/2

+ de− d(1+β)
2

]
(4.24)

+
⎡
⎣d3(1 + β)

2σ

[
1 + β

eβ

]d/2

+


(

d
2 + 1

)


(

d
2

) [
d + 2

σ

]
e− d2(1+β)

2(d+2)

⎤
⎦

= |L(�)|2
[

d

[
1 + β

eβ

]d/2

+ de− d(1+β)
2

]
+
[

d3(1 + β)

2σ

[
1 + β

eβ

]d/2

+
[

d(d + 2)

2σ

]
e− d2(1+β)

2(d+2)

]

≤ |L(�)|2
[

d

[
1 + β

eβ

]d/2

+ de− d(1+β)
2 +

[
d3(1 + β)

2σ

][
1 + β

eβ

]d/2

+
[

d(d + 2)

2σ

]
e− d2(1+β)

2(d+2)

]
.

This, the fact that d3(1 + β) + d(d + 2) + 4dσ ≤ d3
( 3

2 + β + σ
4

)
, and the fact that

max

{
e

−d(1+β)
2 , e− d2(1+β)

2(d+2) ,

[
1 + β

eβ

]d/2
}

≤
[

1 + β

eβ

]d/3

(4.25)

imply that ∫
{y∈Rd : ‖y‖2≥R}

[|L(�)|2 + ‖x‖2
2

]
ϕ(x)dx ≤ |L(�)|2

[
1 + β

eβ

]d/3[d3(1 + β) + d(d + 2) + 4dσ

2σ

]

≤ |L(�)|2
[

1 + β

eβ

]d/3[d3(6 + 4β + σ)

8σ

]
.

(4.26)

Combining this with (4.23) demonstrates that∫
{

y∈Rd : ‖y‖2≥
√

d(1+β)√
2σ

} |(R(�))(x)|2ϕ(x)dx =
∫

{y∈Rd : ‖y‖2≥R}
|(R(�))(x)|2ϕ(x)dx

≤ 2

[
P(�)max{1,‖T (�)‖∞}

2L(�)

]2L(�)

⎡
⎢⎣ ∫
{y∈Rd : ‖y‖2≥R}

[|L(�)|2 + ‖x‖2
2

]
ϕ(x)dx

⎤
⎥⎦

≤ |L(�)|2
[
P(�)max{1,‖T (�)‖∞}

2L(�)

]2L(�)[1 + β

eβ

]d/3[d3(6 + 4β + σ)

4σ

]
.

(4.27)

The proof of Lemma 4.5 is thus complete. �
4.2. Upper bounds for scalar products involving realizations of ANNs

Lemma 4.6. Let d ∈ N ∩ [4, ∞), β, σ ∈ (0, ∞), � ∈ N satisfy I(�) = d and O(�) = 1, let ϕ : Rd → R, 
f : Rd → R, and g : Rd → R be measurable, and assume for all x ∈ Rd that ϕ(x) = (σ/π)

d/2 exp(−σ‖x‖2
2), ∫

Rd |(R(�))(y)| dy > 0, 
∫
Rd |g(y)|2 dy = 1, and

f(x) =[∫
Rd |(R(�))(y)|2ϕ(y)dy

]−1/2
(R(�))(x) [ϕ(x)]1/2 (4.28)
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(cf. Definitions 2.2 and 2.21). Then

∫
Rd

|f(x)g(x)|dx ≤

⎡
⎢⎢⎢⎢⎣

∫
{

y∈Rd : ‖y‖2≤
√

d(1+β)√
2σ

} |g(x)|2 dx

⎤
⎥⎥⎥⎥⎦

1/2

+L(�)

[
P(�)max{1,‖T (�)‖∞}

2L(�)

]L(�)[1 + β

eβ

]d/6
[

d3/2(6 + 4β + σ)
1/2

2
√

σ
[∫

Rd |(R(�))(y)|2ϕ(y)dy
]1/2

]

(4.29)

(cf. Definition 2.22).

Proof of Lemma 4.6. Throughout this proof let 
 : (0, ∞) → (0, ∞) satisfy for all x ∈ (0, ∞) that 

(x) = ∫∞

0 tx−1e−t dt , let a ∈ R satisfy a = [∫
Rd |(R(�))(y)|2ϕ(y)dy

]1/2
, and let R ∈ R satisfy √

2σR =√
d(1 + β). Note that a ∈ (0, ∞) and

∫
Rd

|f(x)|2 dx =
⎡
⎢⎣∫
Rd

|(R(�))(y)|2ϕ(y)dy

⎤
⎥⎦

−1∫
Rd

|(R(�))(x)|2ϕ(x)dx = 1. (4.30)

Combining this with the Hölder inequality shows that∫
Rd

|f(x)g(x)|dx =
∫

{y∈Rd : ‖y‖2≤R}
|f(x)g(x)|dx +

∫
{y∈Rd : ‖y‖2≥R}

|f(x)g(x)|dx

≤
⎡
⎢⎣ ∫
{y∈Rd : ‖y‖2≤R}

|f(x)|2 dx

⎤
⎥⎦

1/2⎡⎢⎣ ∫
{y∈Rd : ‖y‖2≤R}

|g(x)|2 dx

⎤
⎥⎦

1/2

+
⎡
⎢⎣ ∫
{y∈Rd : ‖y‖2≥R}

|f(x)|2 dx

⎤
⎥⎦

1/2⎡⎢⎣ ∫
{y∈Rd : ‖y‖2≥R}

|g(x)|2 dx

⎤
⎥⎦

1/2

≤
⎡
⎢⎣∫
Rd

|f(x)|2 dx

⎤
⎥⎦

1/2⎡⎢⎣ ∫
{y∈Rd : ‖y‖2≤R}

|g(x)|2 dx

⎤
⎥⎦

1/2

+
⎡
⎢⎣ ∫
{y∈Rd : ‖y‖2≥R}

|f(x)|2 dx

⎤
⎥⎦

1/2⎡⎢⎣∫
Rd

|g(x)|2 dx

⎤
⎥⎦

1/2

=
⎡
⎢⎣ ∫
{y∈Rd : ‖y‖2≤R}

|g(x)|2 dx

⎤
⎥⎦

1/2

+
⎡
⎢⎣ ∫
{y∈Rd : ‖y‖2≥R}

|f(x)|2 dx

⎤
⎥⎦

1/2

.

(4.31)

Next we obtain that Lemma 4.5 (applied with d � d, β � β , σ � σ , � � �, ϕ � ϕ in the notation 
of Lemma 4.5) implies that
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∫
{y∈Rd : ‖y‖2≥R}

|f(x)|2 dx = a−2
∫

{y∈Rd : ‖y‖2≥R}
|(R(�))(x)|2ϕ(x)dx

≤ a−2|L(�)|2
[
P(�)max{1,‖T (�)‖∞}

2L(�)

]2L(�)[1 + β

eβ

]d/3[d3(6 + 4β + σ)

4σ

]
.

(4.32)

This and (4.31) imply that

∫
Rd

|f(x)g(x)|dx ≤
⎡
⎢⎣ ∫
{y∈Rd : ‖y‖2≤R}

|g(x)|2 dx

⎤
⎥⎦

1/2

+
⎡
⎢⎣ ∫
{y∈Rd : ‖y‖2≥R}

| f (x)|2 dx

⎤
⎥⎦

1/2

≤
⎡
⎢⎣ ∫
{y∈Rd : ‖y‖2≤R}

|g(x)|2 dx

⎤
⎥⎦

1/2

+ a−1L(�)

[
P(�)max{1,‖T (�)‖∞}

2L(�)

]L(�)[1 + β

eβ

]d/6[d3/2(6 + 4β + σ)
1/2

2
√

σ

]
.

(4.33)

The proof of Lemma 4.6 is thus complete. �
4.3. On the connection of distances and scalar products

Lemma 4.7. Let d ∈N , α ∈ R, let f : Rd → R and g : Rd → R be measurable, and assume 
∫
Rd |f(x)|2 dx =∫

Rd |g(x)|2 dx = 1. Then∫
Rd

|αf(x) − g(x)|2 dx ≥ 1 −
∫
Rd

|f(x)g(x)|dx. (4.34)

Proof of Lemma 4.7. Observe that the Hölder inequality implies that

∫
Rd

|f(x)g(x)|dx ≤
⎡
⎢⎣∫
Rd

|f(x)|2 dx

⎤
⎥⎦

1/2⎡⎢⎣∫
Rd

|g(x)|2 dx

⎤
⎥⎦

1/2

= 1. (4.35)

Next note that∫
Rd

|αf(x) − g(x)|2 dx = α2 + 1 − 2α

∫
Rd

f(x)g(x)dx

=
⎡
⎢⎣α −

∫
Rd

f(x)g(x)dx

⎤
⎥⎦

2

+ 1 −
⎡
⎢⎣∫
Rd

f(x)g(x)dx

⎤
⎥⎦

2

≥ 1 −
⎡
⎢⎣∫
Rd

f(x)g(x)dx

⎤
⎥⎦

2

≥ 1 −
⎡
⎢⎣∫
Rd

|f(x)g(x)|dx

⎤
⎥⎦

2

.

(4.36)

This and (4.35) ensure that

∫
d

|αf(x) − g(x)|2 dx ≥ 1 −
⎡
⎢⎣∫

d

|f(x)g(x)|dx

⎤
⎥⎦

2

≥ 1 −
∫

d

|f(x)g(x)|dx. (4.37)
R R R
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The proof of Lemma 4.7 is thus complete. �
4.4. ANN approximations for a class of general high-dimensional functions

Proof of Theorem 4.1. Throughout this proof let f : Rd →R and g : Rd →R satisfy for all x ∈Rd that 
g(x) = g(x) [ϕ(x)]1/2 and f(x) =[∫

Rd |(R(�))(y)|2ϕ(y)dy
]−1/2

(R(�))(x) [ϕ(x)]1/2 and let R ∈ R satisfy √
2σR = √

d(1 + β) (cf. Definition 2.22). Observe that ∫Rd |f(x)|2 dx = ∫
Rd |g(x)|2 dx = 1. Lemma 4.7

(applied with d � d, α �

[∫
Rd |(R(�))(y)|2ϕ(y)dy

]1/2
, f � f, g � g in the notation of Lemma 4.7) 

hence ensures that

∫
Rd

|(R(�))(x) − g(x)|2ϕ(x)dx =
∫
Rd

∣∣∣∣∣∣∣f(x)

⎡
⎢⎣∫
Rd

|(R(�))(y)|2ϕ(y)dy

⎤
⎥⎦

1/2

− g(x)

∣∣∣∣∣∣∣
2

dx

≥ 1 −
∫
Rd

|f(x)g(x)|dx.

(4.38)

Combining this with Lemma 4.6 (applied with d � d, β � β , σ � σ , � � �, ϕ � ϕ , f � f, g � g in 
the notation of Lemma 4.6) demonstrates that

∫
Rd

|(R(�))(x) − g(x)|2ϕ(x)dx ≥ 1 −
∫
Rd

|f(x)g(x)|dx ≥ 1 −
⎡
⎢⎣ ∫
{y∈Rd : ‖y‖2≤R}

|g(x)|2 dx

⎤
⎥⎦

1/2

−L(�)

[
P(�)max{1,‖T (�)‖∞}

2L(�)

]L(�)[1 + β

eβ

]d/6
[

d3/2(6 + 4β + σ)
1/2

2
√

σ
[∫

Rd |(R(�))(y)|2ϕ(y)dy
]1/2

]

= 1 −
⎡
⎢⎣ ∫
{y∈Rd : ‖y‖2≤R}

|g(x)|2ϕ(x)dx

⎤
⎥⎦

1/2

−L(�)

[
P(�)max{1,‖T (�)‖∞}

2L(�)

]L(�)[1 + β

eβ

]d/6
[

d3/2(6 + 4β + σ)
1/2

2
√

σ
[∫

Rd |(R(�))(y)|2ϕ(y)dy
]1/2

]
.

(4.39)

This implies that

L(�)

[
P(�)max{1,‖T (�)‖∞}

2L(�)

]L(�)

≥
[

eβ

1 + β

]d/6
[

2
√

σ
[∫

Rd |(R(�))(x)|2ϕ(x)dx
]1/2

d3/2(6 + 4β + σ)1/2

]

·
⎡
⎢⎣1 −

⎡
⎢⎣ ∫
{y∈Rd : ‖y‖2≤R}

|g(x)|2ϕ(x)dx

⎤
⎥⎦

1/2

−
∫
Rd

|(R(�))(x) − g(x)|2ϕ(x)dx

⎤
⎥⎦. (4.40)

The proof of Theorem 4.1 is thus complete. �
4.5. ANN approximations for certain specific high-dimensional functions

Corollary 4.8. Let d ∈ N ∩ [4, ∞), ε ∈ (0, 1/4], let ϕ : Rd → R and g : Rd → R satisfy for all x =
(x1, x2, . . . , xd) ∈ Rd that ϕ(x) = (2π)−d/2 exp(− 1

2 ‖x‖2
2) and g(x) = ∑d

j=1[max{|x j | −
√

2d, 0}]2 , let 
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g : Rd → R satisfy for all x ∈Rd that g(x) = [∫Rd |g(y)|2ϕ(y) dy]−1/2 g(x), and let � ∈ N satisfy I(�) = d, 
O(�) = 1, and 

∫
Rd |(R(�))(x) − g(x)|2ϕ(x) dx ≤ ε (cf. Definitions 2.2 and 2.21). Then

P(�)max{1,‖T (�)‖∞}≥[ 2
7

]
d−3/2 exp

( d
20L(�)

)
(4.41)

(cf. Definition 2.22).

Proof of Corollary 4.8. Note that the triangle inequality ensures that⎡
⎢⎣∫
Rd

|(R(�))(x)|2ϕ(x)dx

⎤
⎥⎦

1/2

≥
⎡
⎢⎣∫
Rd

|g(x)|2ϕ(x)dx

⎤
⎥⎦

1/2

−
⎡
⎢⎣∫
Rd

|(R(�))(x) − g(x)|2ϕ(x)dx

⎤
⎥⎦

1/2

= 1 −
⎡
⎢⎣∫
Rd

|(R(�))(x) − g(x)|2ϕ(x)dx

⎤
⎥⎦

1/2

≥ 1 − ε
1/2

≥ 1 − 4−1/2 = 1

2
> 0.

(4.42)

Hence, we obtain that 
∫
Rd |(R(�))(x)| dx > 0. Next observe that for all x = (x1, x2, . . . , xd) ∈ {y ∈

Rd : ‖y‖2 ≤ √
2d}, j ∈ {1, 2, . . . , d} it holds that |x j | ≤ ‖x‖2 ≤ √

2d. This ensures that for all x =
(x1, x2, . . . , xd) ∈ {y ∈ Rd : ‖y‖2 ≤ √

2d} it holds that g(x) = g(x) = 0. Combining Theorem 4.1 (ap-
plied with d � d, β � 1, σ � 1/2, � � �, ϕ � ϕ , g � g , g � g in the notation of Theorem 4.1), the 
fact that e/2 ≥ e3/10, the fact that 

∫
Rd |(R(�))(x)| dx > 0, and (4.42) therefore implies that

L(�)

[
P(�)max{1,‖T (�)‖∞}

2L(�)

]L(�)

≥
[ e

2

]d/6
[√

2
[∫

Rd |(R(�))(x)|2ϕ(x)dx
]1/2

d3/2(6 + 4 + 1/2)1/2

]

·
⎡
⎢⎣1 −

⎡
⎢⎣ ∫
{y∈Rd : ‖y‖2≤√

2d}

|g(x)|2ϕ(x)dx

⎤
⎥⎦

1/2

−
∫
Rd

|(R(�))(x) − g(x)|2ϕ(x)dx

⎤
⎥⎦

=
[ e

2

]d/6
[√

2
[∫

Rd |(R(�))(x)|2ϕ(x)dx
]1/2

d3/2(6 + 4 + 1/2)1/2

]⎡⎢⎣1 −
∫
Rd

|(R(�))(x) − g(x)|2ϕ(x)dx

⎤
⎥⎦

≥ [(21)
−1/2]

[ e

2

]d/6

d−3/2(1 − ε) ≥ ed/20

7d3/2

(4.43)

(cf. Definition 2.22). Hence, we obtain that

P(�)max{1,‖T (�)‖∞} ≥ 2L(�)

[
ed/20

7d3/2L(�)

]1/L(�)

≥
[

2

7

]
d−3/2 exp

(
d

20L(�)

)
. (4.44)

The proof of Corollary 4.8 is thus complete. �
Corollary 4.9. Let ϕd : Rd →R, d ∈N , and gd : Rd →R, d ∈N , satisfy for all d ∈N , x = (x1, x2, . . . , xd) ∈
Rd that ϕd(x) = (2π)

−d/2 exp(− 1
2 (
∑d

j=1|x j |2)) and gd(x) =∑d
j=1[max{|x j | −

√
2d, 0}]2 , let gd : Rd →R, 
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d ∈ N , satisfy for all d ∈ N , x ∈ Rd that gd(x) = [∫Rd |gd(y)|2ϕd(y) dy]−1/2 gd(x), and let δ ∈ (0, 1], C ∈
[100(δ ln(1.03))−2, ∞) satisfy 2C5/δ ≤(1.03)

√
C . Then it holds for all c ∈ [C, ∞), d ∈ N , ε ∈ (0, 1/2], � ∈ N

with I(�) = d, O(�) = 1, H(�) ≤ cd1−δ , ‖T (�)‖∞ ≤ cdc , and 
[∫

Rd |(R(�))(x) − gd(x)|2ϕd(x)dx
]1/2 ≤ ε

that P(�) ≥ (1 + c−3)(d
δ ) (cf. Definitions 2.2, 2.21, and 2.22).

Proof of Corollary 4.9. Note that the assumption that C ∈[100(δ ln(1.03))−2,∞) and the chain rule 
ensure that for all x ∈ [C, ∞) it holds that

[
2−1(1.03)

√
xx−5/δ

]′= (1.03)
√

x ln(1.03)

[
1

4
√

x

]
x−5/δ − (1.03)

√
x
[

5

2δx

]
x−5/δ

= (1.03)
√

x
[

x−5/δ

4x

]
ln(1.03)

[√
x − 10(δ ln(1.03))−1]

≥ (1.03)
√

x
[

x−5/δ

4x

]
ln(1.03)

[√
C− 10(δ ln(1.03))−1]≥ 0.

(4.45)

This implies that the function [C, ∞) � x �→ 2−1(1.03)
√

xx−5/δ ∈ R is non-decreasing. The assumption 
that C ∈[100(δ ln(1.03))−2,∞) and the assumption that 2C5/δ ≤(1.03)

√
C therefore assure that for all 

c ∈ [C, ∞) it holds that c ≥ 100(δ ln(1.03))−2 and

2−1(1.03)
√
cc

−5/δ ≥ 2−1(1.03)
√
C C

−5/δ ≥ 1. (4.46)

The fact that for all x ∈ (0, ∞) it holds that (1 + x−1)x ≤ e hence ensures that for all c ∈ [C, ∞), d ∈N , 
� ∈ N with d ≤ c5/(2δ) it holds that

(1 + c−3)(d
δ) ≤ (1 + c−3)(c

5/2) =[
(1 + c−3)(c

3)
] 1√

c ≤ e
1√
c ≤ 2 ≤ P(�) (4.47)

(cf. Definition 2.2). Moreover, observe that the chain rule and (4.46) show that for all c ∈ [C, ∞), 
x ∈ [c5/(2δ), ∞) it holds that

[
(1.03)

(xδ )/cx−2c]′ = (1.03)
(xδ )/c ln(1.03)

[
δ

c

]
x−2c−1+δ − 2c(1.03)

(xδ )/cx−2c−1

= (1.03)
(xδ )/c x−2c−1

[
δ

c

]
ln(1.03)[xδ − 2c2(δ ln(1.03))−1]

≥ (1.03)
(xδ )/c x−2c−1

[
δ

c

]
ln(1.03)[c5/2 − 2c2(δ ln(1.03))−1]

= (1.03)
(xδ )/c x−2c−1δc ln(1.03)[√c− 2(δ ln(1.03))−1]

≥ (1.03)
(xδ )/c x−2c−1 8c> 0.

(4.48)

This implies for all c ∈ [C, ∞) that the function [c5/(2δ), ∞) � x �→ (1.03)
(xδ )/cx−2c ∈ R is strictly in-

creasing. The fact that e1/30 ≥ 1.03, (4.46), and the fact that for all c ∈ [C, ∞) it holds that 2c+1 ≥ 7c
therefore demonstrate that for all c ∈ [C, ∞), d ∈N with d ≥ c5/(2δ) it holds that

e(dδ)/(30c)d−2c ≥ (1.03)
(dδ )/cd−2c ≥ (1.03)(c

3/2)c
−5c/δ =[

(1.03)
√
cc

−5/δ
]c≥ 2c ≥

[
7

2

]
c. (4.49)

The fact that for all c ∈ [C, ∞) it holds that (25c)−1 ≥ (30c)−1 + c−3, the fact that for all x ∈
R it holds that ex ≥ 1 + x, and Corollary 4.8 hence ensure that for all c ∈ [C, ∞), d ∈ N , 
ε ∈ (0, 1/2], � ∈ N with d ≥ c5/(2δ) , I(�) = d, O(�) = 1, H(�) ≤ cd1−δ , ‖T (�)‖∞ ≤ cdc , and [∫

Rd |(R(�))(x) − gd(x)|2ϕd(x)dx
]1/2 ≤ ε it holds that
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P(�) ≥ (max{1,‖T (�)‖∞})−1
[

2
7

]
d−3/2 exp

( d
20L(�)

)≥
[

2
7

]
exp

( dδ

25c

)
d−2cc−1

≥
[

2
7

]
exp

( dδ

30c

)
d−2cc−1 exp

( dδ

c3

)≥ exp
( dδ

c3

)≥ (1 + c−3)(d
δ)

(4.50)

(cf. Definitions 2.21 and 2.22). Combining this with (4.47) assures that for all c ∈ [C, ∞), d ∈ N , 
ε ∈ (0, 1/2], � ∈ N with I(�) = d, O(�) = 1, H(�) ≤ cd1−δ , ‖T (�)‖∞ ≤ cdc , and 

[∫
Rd |(R(�))(x) −

gd(x)|2ϕd(x) dx
]1/2 ≤ ε it holds that P(�) ≥ (1 + c−3)(d

δ ) . The proof of Corollary 4.9 is thus com-
plete. �
5. Upper bounds for the number of ANN parameters in the approximation of high-dimensional 
functions

Recall the sequence of functions gd : Rd → R satisfying Corollary 4.9, i.e., item (ii) of Theo-
rem 1.1: Let gd : Rd → R be defined by gd(x) = ∑d

j=1[max{|x j| −
√

2d, 0}]2, then we set gd(x) =
[∫Rd |gd(y)|2ϕ(y) dy]−1/2 gd(x).

The goal of this section is to approximate gd by a suitably deep ANN satisfying the conditions 
in item (i) of Theorem 1.1. This approximation is done in Theorem 5.11 employing (i) the ele-
mentary ANN approximation result for shifted squared rectifier functions established throughout 
Subsections 5.1, 5.2, and 5.3, (ii) the lower and upper bounds for Gaussian integrals presented in 
Subsection 5.4, and (iii) the elementary ANN representation result for multiplications with powers 
of real numbers established in Subsection 5.5. We conclude this section with Corollary 5.12, which 
establishes item (i) of Theorem 1.1.

5.1. ANN approximations for the square function

The approximations of the square function presented in Lemma 5.1 and Lemma 5.2 are based on 
the well-known result in Yarotsky [59, Proposition 2]. In the current form Lemma 5.1 and Lemma 5.2
are slight extensions of, e.g., [17, Lemma 6.1] and [26, Proposition 3.3].

Lemma 5.1. Let (Ak)k∈N ⊆R4×4 , B ∈R4×1 , (ck)k∈N ⊆R satisfy for all k ∈N that

Ak =

⎛
⎜⎜⎝

2 −4 2 0
2 −4 2 0
2 −4 2 0

−ck 2ck −ck 1

⎞
⎟⎟⎠, B =

⎛
⎜⎜⎝

0
− 1

2−1
0

⎞
⎟⎟⎠, and ck = 21−2k, (5.1)

let gn : R → [0, 1], n ∈N , satisfy for all n ∈N , x ∈R that

g1(x) =

⎧⎪⎪⎨
⎪⎪⎩

2x : x ∈ [0, 1
2 )

2 − 2x : x ∈ [ 1
2 ,1]

0 : x ∈R\[0,1]
(5.2)

and gn+1(x) = g1(gn(x)), let fn : [0, 1] → [0, 1], n ∈ N0 , satisfy for all n ∈ N0 , k ∈ {0, 1, . . . , 2n − 1}, x ∈[ k
2n , k+1

2n

)
that fn(1) = 1 and

fn(x) =[ 2k+1
2n

]
x − (k2+k)

22n , (5.3)

and let rk = (rk,1, rk,2, rk,3, rk,4) : R → R4 , k ∈ N , satisfy for all k ∈ N , x ∈ R that r1(x) = R(x, x − 1
2 , x −

1, x) and rk+1(x) = R(Akrk(x) +B) (cf. Definition 2.1). Then

(i) it holds for all k ∈N , x ∈R that

2rk,1(x) − 4rk,2(x) + 2rk,3(x) = gk(x) (5.4)

and
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(ii) it holds for all k ∈N , x ∈R that

rk,4(x) =
{

fk−1(x) : x ∈ [0,1]
max{x,0} : x ∈R\[0,1]. (5.5)

Proof of Lemma 5.1. We prove (5.4) and (5.5) by induction on k ∈ N . Note that (5.2) and the as-
sumption that for all x ∈ R it holds that r1(x) = R

(
x, x − 1

2 , x − 1, x
)

show that for all x ∈ R it holds 
that

2r1,1(x) − 4r1,2(x) + 2r1,3(x) = 2R(x) − 4R(x − 1
2 ) + 2R(x − 1)

= 2 max{x,0} − 4 max{x − 1
2 ,0} + 2 max{x − 1,0} = g1(x). (5.6)

Furthermore, observe that the assumption that for all x ∈ R it holds that r1(x) = R(x, x − 1
2 , x − 1, x)

and the fact that for all x ∈ [0, 1] it holds that f0(x) = x = max{x, 0} imply that for all x ∈ R it holds 
that

r1,4(x) = max{x,0} =
{

f0(x) : x ∈ [0,1]
max{x,0} : x ∈R\[0,1]. (5.7)

Combining this with (5.6) proves (5.4) and (5.5) in the base case k = 1. For the induction step let 
k ∈N satisfy for all x ∈R that

2rk,1(x) − 4rk,2(x) + 2rk,3(x) = gk(x) (5.8)

and

rk,4(x) =
{

fk−1(x) : x ∈ [0,1]
max{x,0} : x ∈R\[0,1]. (5.9)

Note that (5.1), (5.6), (5.8), and the assumption that for all n ∈ N , x ∈ R it holds that rn+1(x) =
R(Anrn(x) +B) ensure that for all x ∈R it holds that

gk+1(x) = g1(gk(x)) = g1(2rk,1(x) − 4rk,2(x) + 2rk,3(x))

= 2R
(
2rk,1(x) − 4rk,2(x) + 2rk,3(x)

)
− 4R

(
2rk,1(x) − 4rk,2(x) + 2rk,3(x) − 1

2

)
+ 2R

(
2rk,1(x) − 4rk,2(x) + 2rk,3(x) − 1

)
= 2rk+1,1(x) − 4rk+1,2(x) + 2rk+1,3(x).

(5.10)

In addition, observe that (5.1), (5.8), and the assumption that for all n ∈ N , x ∈ R it holds that 
rn+1(x) = R(Anrn(x) +B) demonstrate that for all x ∈R it holds that

rk+1,4(x) =R(−ckrk,1(x) + 2ckrk,2(x) − ckrk,3(x) + rk,4(x))

=R(−[21−2k]rk,1(x) + [22−2k]rk,2(x) − [21−2k]rk,3(x) + rk,4(x))

=R(−[2−2k][2rk,1(x) − 4rk,2(x) + 2rk,3(x)] + rk,4(x))

=R(−[2−2k]gk(x) + rk,4(x)).

(5.11)

Combining this with (5.9), [26, Lemma 3.2], and the fact that for all x ∈ [0, 1] it holds that fk(x) ≥ 0
shows that for all x ∈ [0, 1] it holds that

rk+1,4(x) =R(−[2−2k]gk(x) + rk,4(x)) = R(−[2−2k gk(x)] + fk−1(x))

=R
(− [2−2k gk(x)] + x −[∑k−1

j=1[2−2 j g j(x)]])
=R

(
x −[∑k [2−2 j g j(x)]])= R( fk(x)) = fk(x).

(5.12)
j=1

29



P. Grohs, S. Ibragimov, A. Jentzen et al. Journal of Complexity 77 (2023) 101746
Next note that (5.9), (5.11), and the fact that for all x ∈R\[0, 1] it holds that gk(x) = 0 prove that for 
all x ∈R\[0, 1] it holds that

rk+1,4(x) =R(−[2−2k]gk(x) + rk,4(x)) = R(rk,4(x)) = R(max{x,0}) = max{x,0}. (5.13)

Combining (5.10) and (5.12) hence proves (5.4) and (5.5) in the case k + 1. Induction thus establishes 
items (i) and (ii). The proof of Lemma 5.1 is thus complete. �
Lemma 5.2. Let M ∈ N , (Ak)k∈N ⊆ R4×4 , A, B ∈ R4×1 , (Ck)k∈N ⊆ R1×4 , (ck)k∈N ⊆ R satisfy for all 
k ∈N that

Ak =

⎛
⎜⎜⎝

2 −4 2 0
2 −4 2 0
2 −4 2 0

−ck 2ck −ck 1

⎞
⎟⎟⎠, A =

⎛
⎜⎜⎝

1
1
1
1

⎞
⎟⎟⎠, B =

⎛
⎜⎜⎝

0
− 1

2−1
0

⎞
⎟⎟⎠, Ck =(−ck 2ck −ck 1

)
,

(5.14)

and ck = 21−2k and let � ∈ N satisfy

� =
{

((A,B), (C1,0)) : M = 1

((A,B), (A1,B), (A2,B), . . . , (AM−1,B), (CM ,0)) : M > 1
(5.15)

(cf. Definition 2.2). Then

(i) it holds that R(�) ∈ C(R, R),
(ii) it holds for all x ∈ [0, 1] that |x2 − (R(�))(x)| ≤ 4−M−1 ,

(iii) it holds for all x ∈R\[0, 1] that (R(�))(x) = R(x),
(iv) it holds that D(�) = (1, 4, 4, . . . , 4, 1) ∈NM+2 ,
(v) it holds that ‖T (�)‖∞ ≤ 4,

(vi) it holds that H(�) = M, and
(vii) it holds that P(�) = 20M − 7

(cf. Definitions 2.1, 2.21, and 2.22).

Proof of Lemma 5.2. Throughout this proof let gn : R → [0, 1], n ∈N , satisfy for all n ∈N , x ∈R that

g1(x) =

⎧⎪⎨
⎪⎩

2x : x ∈ [0, 1
2 )

2 − 2x : x ∈ [ 1
2 ,1]

0 : x ∈R\[0,1]
(5.16)

and gn+1(x) = g1(gn(x)), let fn : [0, 1] → [0, 1], n ∈ N0, satisfy for all n ∈ N0, k ∈ {0, 1, . . . , 2n − 1}, 
x ∈[ k

2n , k+1
2n

)
that fn(1) = 1 and

fn(x) =[ 2k+1
2n

]
x − (k2+k)

22n , (5.17)

and let rk = (rk,1, rk,2, rk,3, rk,4) : R →R4, k ∈N , satisfy for all k ∈N , x ∈R that

r1(x) = R
(
x, x − 1

2 , x − 1, x
)

(5.18)

and

rk+1(x) = R
(

Akrk(x) +B
)

(5.19)

(cf. Definition 2.1). Observe that item (i) in Lemma 5.1 (applied with (Ak)k∈N � (Ak)k∈N , B � B, 
(ck)k∈N � (ck)k∈N , (gn)n∈N � (gn)n∈N , ( fn)n∈N � ( fn)n∈N , (rk)k∈N � (rk)k∈N in the notation of 
Lemma 5.1), (5.14), (5.15), (5.18), and (5.19) assure that for all x ∈R it holds that
30



P. Grohs, S. Ibragimov, A. Jentzen et al. Journal of Complexity 77 (2023) 101746
(R(�))(x) = −cMrM,1(x) + 2cMrM,2(x) − cMrM,3(x) + rM,4(x)

= −[21−2M ]rM,1(x) + [22−2M ]rM,2(x) − [21−2M ]rM,3(x) + rM,4(x)

= −[2−2M ][2rM,1(x) − 4rM,2(x) + 2rM,3(x)] + rM,4(x)

= −[2−2M ]gM(x) + rM,4(x).

(5.20)

This establishes item (i). Moreover, note that (5.20), [26, Lemma 3.2], and item (ii) in Lemma 5.1
(applied with (Ak)k∈N � (Ak)k∈N , B � B, (ck)k∈N � (ck)k∈N , (gn)n∈N � (gn)n∈N , ( fn)n∈N �

( fn)n∈N , (rk)k∈N � (rk)k∈N in the notation of Lemma 5.1) show that for all x ∈ [0, 1] it holds that

(R(�))(x) = −[2−2M ]gM(x) + rM,4(x) = −[2−2M gM(x)] + f M−1(x)

= −[2−2M gM(x)] + x −[∑M−1
j=1 [2−2 j g j(x)]]

= x −[∑M
j=1[2−2 j g j(x)]]= f M(x).

(5.21)

This and [26, Lemma 3.2] imply that for all x ∈ [0, 1] it holds that

|x2 − (R(�))(x)| = |x2 − f M(x)| ≤ 2−2M−2 = 4−M−1. (5.22)

This establishes item (ii). Furthermore, observe that (5.20), the fact that for all x ∈ R\[0, 1] it holds 
that gM(x) = 0, and item (ii) in Lemma 5.1 (applied with (Ak)k∈N � (Ak)k∈N , B � B, (ck)k∈N �

(ck)k∈N , (gn)n∈N � (gn)n∈N , ( fn)n∈N � ( fn)n∈N , (rk)k∈N � (rk)k∈N in the notation of Lemma 5.1) 
ensure that for all x ∈R\[0, 1] it holds that

(R(�))(x) = −[2−2M ]gM(x) + rM,4(x) = rM,4(x) = max{x,0} =R(x). (5.23)

This establishes item (iii). In addition, note that (5.14) and (5.15) imply that D(�) = (1, 4, 4, . . . , 4, 1) ∈
NM+2, ‖T (�)‖∞ ≤ 4, H(�) = M , and

P(�) = 4(1 + 1) +[∑M
j=2 4(4 + 1)

]+ (4 + 1) = 8 + 20(M − 1) + 5 = 20M − 7. (5.24)

This establishes items (iv), (v), (vi), and (vii). The proof of Lemma 5.2 is thus complete. �
5.2. ANN approximations for the squared rectifier function

Corollary 5.3. Let M ∈ N , R ∈ [1, ∞), q ∈ (2, ∞), (Ak)k∈N ⊆ R4×4 , A, B ∈ R4×1 , (Ck)k∈N ⊆ R1×4 , 
(ck)k∈N ⊆R satisfy for all k ∈N that

Ak =

⎛
⎜⎜⎝

2 −4 2 0
2 −4 2 0
2 −4 2 0

−ck 2ck −ck 1

⎞
⎟⎟⎠, A =

⎛
⎜⎜⎝

1
1
1
1

⎞
⎟⎟⎠, B =

⎛
⎜⎜⎝

0
− 1

2−1
0

⎞
⎟⎟⎠, Ck =(−ck 2ck −ck 1

)
,

(5.25)

and ck = 21−2k, and let �, � ∈ N satisfy

� =
{

((A,B), (C1,0)) : M = 1

((A,B), (A1,B), (A2,B), . . . , (AM−1,B), (CM ,0)) : M > 1
(5.26)

and � = AR2,0 • � • AR−1,0 (cf. Definitions 2.2, 2.4, and 2.15). Then

(i) it holds that R(�) ∈ C(R, R),
(ii) it holds for all x ∈ (−∞, 0] that 

∣∣[R(x)]2 − (R(�))(x)
∣∣= 0,

(iii) it holds for all x ∈ [0, R] that 
∣∣[R(x)]2 − (R(�))(x)

∣∣≤ 4−M−1 R2 ,
(iv) it holds for all x ∈ [R, ∞) that 

∣∣[R(x)]2 − (R(�))(x)
∣∣≤ |R(x)|q R2−q,
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(v) it holds that D(�) = (1, 4, . . . , 4, 1) ∈NM+2 ,
(vi) it holds that H(�) = M,

(vii) it holds that P(�) = 20M − 7, and
(viii) it holds that ‖T (�)‖∞ ≤ max{4, R2}

(cf. Definitions 2.1, 2.21, and 2.22).

Proof of Corollary 5.3. Observe that Lemma 5.2 (applied with M � M , (Ak)k∈N � (Ak)k∈N , A �A, 
B�B, (Ck)k∈N � (Ck)k∈N , (ck)k∈N � (ck)k∈N , � �� in the notation of Lemma 5.2) assures that

(I) it holds that R(�) ∈ C(R, R),
(II) it holds for all x ∈R\[0, 1] that (R(�))(x) = R(x), and

(III) it holds for all x ∈ [0, 1] that |x2 − (R(�))(x)| ≤ 4−M−1

(cf. Definition 2.1). Next note that Proposition 2.5 and Lemma 2.16 imply that for all x ∈ R it holds 
that R(�) ∈ C(R, R) and

(R(�))(x) = (R(AR2,0 • � • AR−1,0))(x) = (
R(AR2,0)

)((
R(�)

)(
(R(AR−1,0))(x)

))
= (R(AR2,0))

(
(R(�))

(
R−1x

))= R2[(R(�))
(

R−1x
)]

.

(5.27)

This establishes item (i). Moreover, observe that (5.27), item (I), item (II), and the fact that for all 
x ∈ (−∞, 0] it holds that R−1x ∈ (−∞, 0] ensure that for all x ∈ (−∞, 0] it holds that∣∣∣[R(x)]2 − (R(�))(x)

∣∣∣=∣∣∣[R(x)]2 − R2[(R(�))
(

R−1x
)]∣∣∣

=
∣∣∣[R(x)]2 − R2R

(
R−1x

)∣∣∣= 0.
(5.28)

This establishes item (ii). In the next step we note that item (II), (5.27), and the fact that for all 
x ∈ [R, ∞) it holds that R−1x ∈ [1, ∞) demonstrate that for all x ∈ [R, ∞) it holds that

0 ≤ (R(�))(x) = R2[(R(�))
(

R−1x
)]= R2R

(
R−1x

)= Rx ≤ x2 = |R(x)|2. (5.29)

The triangle inequality and the assumption that q ∈ (2, ∞) therefore ensure that for all x ∈ [R, ∞) it 
holds that∣∣∣[R(x)]2 − (R(�))(x)

∣∣∣= |R(x)|2 − (R(�))(x) ≤ |R(x)|2

= |x|2 = |x|q|x|2−q ≤ |x|q R2−q = |R(x)|q R2−q.

(5.30)

This establishes item (iv). Next observe that item (III), (5.27), and the fact that for all x ∈ [0, R] it 
holds that R−1x ∈ [0, 1] demonstrate that for all x ∈ [0, R] it holds that∣∣∣[R(x)]2 − (R(�))(x)

∣∣∣=∣∣∣x2 − R2[(R(�))
(

R−1x
)]∣∣∣

= R2
∣∣∣[R−1x]2 − (R(�))

(
R−1x

)∣∣∣≤ 4−M−1 R2.
(5.31)

This establishes item (iii). Next note that (5.25) and (5.26) show that

R2CM =
(
−21−2M R2 22−2M R2 − 21−2M R2 R2

)
∈R1×4 (5.32)

and

� = AR2,0 • � • AR−1,0 =
{(

(R−1A,B), (R2C1,0)
) : M = 1(

(R−1A,B), (A1,B), . . . , (AM−1,B), (R2CM ,0)
) : M > 1.

(5.33)
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Combining this with (5.25) implies that D(�) = (1, 4, . . . , 4, 1) ∈ NM+2, H(�) = M , P(�) = 20M −
7, and ‖T (�)‖∞ ≤ max{4, R2} (cf. Definitions 2.21 and 2.22). This establishes items (v), (vi), (vii), 
and (viii). The proof of Corollary 5.3 is thus complete. �
5.3. ANN approximations for shifted squared rectifier functions

Lemma 5.4. Let a ∈R, J , �, � ∈ N satisfy

J =
(((

1
−1

)
,

(
0
0

))
,
((

1 1
)
, (−a)

)) ∈
((

R2×1 ×R2
)

×
(
R1×2 ×R1

))
, (5.34)

I(�) = 1, and � = � • J (cf. Definitions 2.2 and 2.4). Then

(i) it holds that D(�) =(
1,2,D1(�), . . . ,DL(�)(�)

)∈NL(�)+2 ,
(ii) it holds for all x ∈R that (R(J))(x) = |x| − a,

(iii) it holds for all x ∈R that (R(�))(x) = (R(�))(|x| − a), and
(iv) it holds that ‖T (�)‖∞ ≤ (|a| + 1) max{1,‖T (�)‖∞}

(cf. Definitions 2.21 and 2.22).

Proof of Lemma 5.4. Throughout this proof let L ∈ N , l0, l1, . . . , lL ∈ N satisfy (l0, l1, . . . , lL) = D(�)

and let Wk ∈ Rlk×lk−1 , k ∈ {1, 2, . . . , L}, and Bk ∈ Rlk , k ∈ {1, 2, . . . , L}, satisfy � = ((W1, B1),

(W2, B2), . . . , (W L, B L)). Observe that D(J) = (1, 2, 1) ∈ N3. Proposition 2.5 therefore ensures that 
D(�) = D(� • J) = (1, 2, D1(�), . . . ,DL(�)(�)) ∈ NL(�)+2. This establishes item (i). Next note that 
for all x ∈R it holds that

(R(J))(x) = (
1 1

)( R(x + 0)

R(−x + 0)

)
− a = R(x) +R(−x) − a = |x| − a (5.35)

(cf. Definition 2.1). This establishes item (ii). Moreover, observe that (5.35) and Proposition 2.5 assure 
that for all x ∈R it holds that

(R(�))(x) = (R(� • J))(x) = (R(�))((R(J))(x)) = (R(�))(|x| − a). (5.36)

This establishes item (iii). In addition, note that

� = � • J =
(((

1
−1

)
,

(
0
0

))
,
(

W1
(

1 1
)
, W1(−a) + B1

)
, (W2, B2), . . . , (W L, B L)

)
.

(5.37)

The fact that for all W = (wi)i∈{1,2,...,l1} ∈Rl1×1, B = (b1, b2, . . . , bl1) ∈Rl1 it holds that

W
(

1 1
)=

⎛
⎜⎜⎜⎝

w1 w1
w2 w2
...

...

wl1 wl1

⎞
⎟⎟⎟⎠∈Rl1×2 and W (−a) +B =

⎛
⎜⎜⎜⎝

−aw1 + b1
−aw2 + b2

...

−awl1 + bl1

⎞
⎟⎟⎟⎠∈Rl1 (5.38)

hence demonstrates that

‖T (�)‖∞ ≤ max{1,‖T (�)‖∞, (|a| + 1)‖T (�)‖∞} = max{1, (|a| + 1)‖T (�)‖∞}
≤ max{(|a| + 1), (|a| + 1)‖T (�)‖∞} = (|a| + 1)max{1,‖T (�)‖∞} (5.39)

(cf. Definitions 2.21 and 2.22). This establishes item (iv). The proof of Lemma 5.4 is thus complete. �
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Corollary 5.5. Let a ∈ [0, ∞), M ∈ N ∩ [2, ∞), R ∈ [1, ∞), q ∈ (2, ∞), (Ak)k∈N ⊆ R4×4 , A, B ∈ R4×1 , 
(Ck)k∈N ⊆R1×4 , (ck)k∈N ⊆R satisfy for all k ∈N that

Ak =

⎛
⎜⎜⎝

2 −4 2 0
2 −4 2 0
2 −4 2 0

−ck 2ck −ck 1

⎞
⎟⎟⎠, A =

⎛
⎜⎜⎝

1
1
1
1

⎞
⎟⎟⎠, B =

⎛
⎜⎜⎝

0
− 1

2−1
0

⎞
⎟⎟⎠, Ck =(−ck 2ck −ck 1

)
,

(5.40)

and ck = 21−2k and let �, J , � ∈ N satisfy

� =
(
(R−1A,B), (A1,B), . . . , (AM−1,B), (R2CM ,0)

)
, (5.41)

J =
(((

1
−1

)
,

(
0
0

))
,
((

1 1
)
, (−a)

))
, (5.42)

and � = � • J (cf. Definitions 2.2 and 2.4). Then

(i) it holds that R(�) ∈ C(R, R),
(ii) it holds that D(�) = (1, 2, 4, 4, . . . , 4, 1) ∈NM+3 ,

(iii) it holds that H(�) = M + 1,
(iv) it holds that P(�) = 20M + 1,
(v) it holds that ‖T (�)‖∞ ≤ (|a| + 1) max{4, R2},

(vi) it holds for all x ∈R that (R(�))(x) = (R(�))(−x),
(vii) it holds for all x ∈R with |x| ≤ a that 

∣∣[R(|x| − a)]2 − (R(�))(x)
∣∣= 0,

(viii) it holds for all x ∈R with a ≤ |x| ≤ R + a that 
∣∣[R(|x| − a)]2 − (R(�))(x)

∣∣≤ 4−M−1 R2 , and
(ix) it holds for all x ∈R with |x| ≥ R + a that 

∣∣[R(|x| − a)]2 − (R(�))(x)
∣∣≤ [|x| − a]q R2−q

(cf. Definitions 2.1, 2.21, and 2.22).

Proof of Corollary 5.5. Observe that Corollary 5.3 (applied with M � M , R � R , q � q, (Ak)k∈N �

(Ak)k∈N , A �A, B� B, (Ck)k∈N � (Ck)k∈N , (ck)k∈N � (ck)k∈N , � � � in the notation of Corol-
lary 5.3) implies that

(I) it holds that R(�) ∈ C(R, R),
(II) it holds for all x ∈ (−∞, 0] that 

∣∣[R(x)]2 − (R(�))(x)
∣∣= 0,

(III) it holds for all x ∈ [0, R] that 
∣∣[R(x)]2 − (R(�))(x)

∣∣≤ 4−M−1 R2,
(IV) it holds for all x ∈ [R, ∞) that 

∣∣[R(x)]2 − (R(�))(x)
∣∣≤ |R(x)|q R2−q ,

(V) it holds that D(�) = (1, 4, . . . , 4, 1) ∈NM+2, and
(VI) it holds that ‖T (�)‖∞ ≤ max{4, R2}

(cf. Definitions 2.1, 2.21, and 2.22). Next note that Lemma 5.4 (applied with a � a, J � J , � � �, 
� �� in the notation of Lemma 5.4), item (V), and item (VI) ensure that

D(�) =(
1,2,D1(�), . . . ,DL(�)(�)

)= (1,2,4, . . . ,4︸ ︷︷ ︸
M

,1) ∈NM+3, H(�) = M + 1,

(5.43)

P(�) = 2(1 + 1) + 4(2 + 1) + 4(4 + 1) + . . . + 4(4 + 1)︸ ︷︷ ︸
M−1

+1(4 + 1) = 20M + 1, (5.44)

and

‖T (�)‖∞ ≤ (|a| + 1)max{1,‖T (�)‖∞}≤ (|a| + 1)max{4, R2}. (5.45)
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This establishes items (i), (ii), (iii), (iv), and (v). Next observe that Lemma 5.4 (applied with a � a, 
J � J , � ��, � �� in the notation of Lemma 5.4) assures that for all x ∈R it holds that

(R(J))(x) = |x| − a (5.46)

and

(R(�))(x) = (R(�))(|x| − a) = (R(�))(|−x| − a) = (R(�))(−x). (5.47)

This establishes item (vi). Furthermore, note that (5.46) shows that for all x ∈ [−a, a] it holds that 
(R(J))(x) = |x| − a ≤ 0. Combining this with item (II) proves that for all x ∈ [−a, a] it holds that∣∣∣[R(|x| − a)]2 − (R(�))(x)

∣∣∣=∣∣∣[R((R(J))(x))]2 − (R(�))((R(J))(x))
∣∣∣= 0. (5.48)

This establishes item (vii). Moreover, observe that (5.46) demonstrates that for all x ∈ R with a ≤
|x| ≤ R + a it holds that (R(J))(x) = |x| − a ∈ [0, R]. This and item (III) ensure that for all x ∈R with 
a ≤ |x| ≤ R + a it holds that∣∣∣[R(|x| − a)]2 − (R(�))(x)

∣∣∣=∣∣∣[R((R(J))(x))]2 − (R(�))((R(J))(x))
∣∣∣≤ 4−M−1 R2. (5.49)

This establishes item (viii). In addition, note that (5.46) proves that for all x ∈ R with |x| ≥ R + a it 
holds that (R(J))(x) = |x| − a ∈ [R, ∞). Item (IV) hence shows that for all x ∈ R with |x| ≥ R + a it 
holds that∣∣∣[R(|x| − a)]2 − (R(�))(x)

∣∣∣=∣∣∣[R((R(J))(x))]2 − (R(�))((R(J))(x))
∣∣∣

≤ |R((R(J))(x))|q R2−q = |R(|x| − a)|q R2−q.

(5.50)

This establishes item (ix). The proof of Corollary 5.5 is thus complete. �
5.4. Lower and upper bounds for integrals of certain specific high-dimensional functions

The goal of this subsection is to establish in Lemma 5.9 below lower and upper bounds for the 
weighted L2-norm of the function Rd � (x1, . . . , xd) �→ ∑d

j=1[max{|x j| −
√

2d, 0}]2 ∈ R. To this end, 
we recollect some well-known Gaussian tail estimates in Lemma 5.6 and Lemma 5.7. The first can be 
found, e.g., in Klenke [39, Lemma 22.2], but for completeness, we include their short proof.

Lemma 5.6. Let s ∈ (0, ∞). Then

∞∫
s

e− 1
2 x2

dx ≥ e− 1
2 s2

s + s−1 . (5.51)

Proof of Lemma 5.6. Observe that the integration by parts formula ensures that

∞∫
s

e− 1
2 x2

dx =
∞∫

s

−x−1[e− 1
2 x2]′

dx = lim
T →∞

([
−x−1e− 1

2 x2
]x=T

x=s

)
−

∞∫
s

[
x−2e− 1

2 x2
]
dx

= s−1e− 1
2 s2 −

∞∫
s

[
x−2e− 1

2 x2
]
dx ≥ s−1e− 1

2 s2 − s−2

∞∫
s

e− 1
2 x2

dx.

(5.52)

Hence, we obtain that
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∞∫
s

e− 1
2 x2

dx =
[

s2

1 + s2

][
1 + 1

s2

]⎡⎣ ∞∫
s

e− 1
2 x2

dx

⎤
⎦

=
[

s2

1 + s2

]⎡⎣ ∞∫
s

e− 1
2 x2

dx + 1

s2

∞∫
s

e− 1
2 x2

dx

⎤
⎦

≥
[

s2

1 + s2

][
e− 1

2 s2

s

]
= e− 1

2 s2

s + s−1 .

(5.53)

The proof of Lemma 5.6 is thus complete. �
Lemma 5.7. Let σ , s ∈ (0, ∞). Then

∞∫
s

e−σ x2
dx ≥ e−σ s2

s−1 + 2σ s
. (5.54)

Proof of Lemma 5.7. Note that the integral transformation theorem and Lemma 5.6 (applied with 
s � s

√
2σ in the notation of Lemma 5.6) ensure that

∞∫
s

e−σ x2
dx = 1√

2σ

∞∫
s
√

2σ

e− 1
2 x2

dx ≥ 1√
2σ

[
e− 1

2 (s
√

2σ)2

s
√

2σ + (s
√

2σ)−1

]
= e−σ s2

s−1 + 2σ s
. (5.55)

The proof of Lemma 5.7 is thus complete. �
Lemma 5.8. Let d ∈N . Then

√
2d(2d + 1)

4d2(4d2 + 6d + 1)

[
2

π

]1/2

e−1− 1
4d ≥ 50−1d−5/2. (5.56)

Proof of Lemma 5.8. Observe that 48d2 − 28d ≥ 20d2 ≥ 13. This implies that 4d2 + 6d + 1 ≤
(25/13)(4d2 + 2d) = (50/13)d(2d + 1). The fact that 13 ≥ 2

√
πe5/4 and the fact that −1 − 1

4d ≥ − 5
4

hence ensure that
√

2d(2d + 1)

4d2(4d2 + 6d + 1)

[
2

π

]1/2

e−1− 1
4d ≥

√
2d

4d2

[
13

50d

][
2

π

]1/2

e−5/4 ≥
√

2d

4d2

[
2
√

2

50d

]
= 50−1d−5/2.

(5.57)

The proof of Lemma 5.8 is thus complete. �
Lemma 5.9. Let d ∈ N and let ϕ : Rd → R and g : Rd → R satisfy for all x = (x1, x2, . . . , xd) ∈ Rd that 
ϕ(x) = (2π)

−d/2 exp(− 1
2 (
∑d

j=1|x j |2)) and g(x) =∑d
j=1[max{|x j| −

√
2d, 0}]2 . Then

(50)−1d−3/2e−d ≤
∫
Rd

|g(x)|2ϕ(x)dx ≤ 3d2e−d. (5.58)

Proof of Lemma 5.9. Throughout this proof let 
 : (0, ∞) → (0, ∞) satisfy for all x ∈ (0, ∞) that 

(x) = ∫∞

0 tx−1e−t dt . Note that the fact that for all k ∈N , a1, a2, . . . , ak ∈R it holds that

|a1|2 + |a2|2 + . . . + |ak|2 ≤ (|a1| + |a2| + . . . + |ak|)2 ≤ k(|a1|2 + |a2|2 + . . . + |ak|2) (5.59)
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ensures that for all (x1, x2, . . . , xd) ∈Rd it holds that

d∑
j=1

[
R
(|x j| −

√
2d
)]4≤

⎡
⎣ d∑

j=1

[
R
(|x j| −

√
2d
)]2

⎤
⎦2

≤ d

⎡
⎣ d∑

j=1

[
R
(|x j| −

√
2d
)]4

⎤
⎦ (5.60)

(cf. Definition 2.1). The fact that for all k ∈N it holds that 
∫
Rk (2π)

−k/2e− 1
2 ‖x‖2

2 dx = 1 therefore demon-
strates that

d

∫
R

[
R
(|x| − √

2d
)]4

(2π)
−1/2e− 1

2 x2
dx

= d

∫
R

∫
R

. . .

∫
R

[
R
(|x1| −

√
2d
)]4

(2π)
−d/2e− 1

2 [∑d
j=1|x j |2] dxd . . .dx2 dx1

=
d∑

j=1

∫
R

∫
R

. . .

∫
R

[
R
(|x j| −

√
2d
)]4

(2π)
−d/2e− 1

2 [∑d
j=1|x j |2] dxd . . .dx2 dx1

=
∫
R

∫
R

. . .

∫
R

⎡
⎣ d∑

j=1

[
R
(|x j| −

√
2d
)]4

⎤
⎦(2π)

−d/2e− 1
2 [∑d

j=1|x j |2] dxd . . .dx2 dx1

≤
∫
R

∫
R

. . .

∫
R

⎡
⎣ d∑

j=1

[
R
(|x j| −

√
2d
)]2

⎤
⎦2

(2π)
−d/2e− 1

2 [∑d
j=1|x j |2] dxd . . .dx2 dx1

=
∫
Rd

|g(x)|2ϕ(x)dx

(5.61)

and

d2
∫
R

[
R
(|x| − √

2d
)]4

(2π)
−1/2e− 1

2 x2
dx

= d2
∫
R

∫
R

. . .

∫
R

[
R
(|x1| −

√
2d
)]4

(2π)
−d/2e− 1

2 [∑d
j=1|x j |2] dxd . . .dx2 dx1

= d

∫
R

∫
R

. . .

∫
R

⎡
⎣ d∑

j=1

[
R
(|x j| −

√
2d
)]4

⎤
⎦(2π)

−d/2e− 1
2 [∑d

j=1|x j |2] dxd . . .dx2 dx1

≥
∫
R

∫
R

. . .

∫
R

⎡
⎣ d∑

j=1

[
R
(|x j| −

√
2d
)]2

⎤
⎦2

(2π)
−d/2e− 1

2 [∑d
j=1|x j |2] dxd . . .dx2 dx1

=
∫
Rd

|g(x)|2ϕ(x)dx

(5.62)

(cf. Definition 2.21). Hence, we obtain that
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d

∫
R

[
R
(|x| − √

2d
)]4

(2π)
−1/2e− 1

2 x2
dx ≤

∫
Rd

|g(x)|2ϕ(x)dx

≤ d2
∫
R

[
R
(|x| − √

2d
)]4

(2π)
−1/2e− 1

2 x2
dx.

(5.63)

Next observe that Lemma 5.7 (applied with σ � 1/2, s � (2d)
1/2 + (2d)

−1/2 in the notation of 
Lemma 5.7) and Lemma 5.8 (applied with d � d in the notation of Lemma 5.8) ensure that∫

R

[
R
(|x| − √

2d
)]4

(2π)
−1/2e− 1

2 x2
dx

= 2

⎡
⎣ ∞∫

0

[
R
(|x| − √

2d
)]4

(2π)
−1/2e− 1

2 x2
dx

⎤
⎦=

[
2

π

]1/2

⎡
⎢⎣

∞∫
√

2d

[
x − √

2d
]4

e− 1
2 x2

dx

⎤
⎥⎦

≥ 1

4d2

[
2

π

]1/2

⎡
⎢⎣

∞∫
(2d)1/2+(2d)−1/2

e− 1
2 x2

dx

⎤
⎥⎦≥ 1

4d2

[
2

π

]1/2
[

[(2d)
1/2 + (2d)

−1/2]e− 1
2 (2d+2+(2d)−1)

1 + (2d + 2 + (2d)−1)

]

= e−d

[ √
2d(2d + 1)

4d2(4d2 + 6d + 1)

[
2

π

]1/2

e−1− 1
4d

]
≥ 50−1d−5/2e−d.

(5.64)

Moreover, note that the integral transformation theorem and Lemma 3.1 demonstrate that∫
R

[
R
(|x| − √

2d
)]4

(2π)
−1/2e− 1

2 x2
dx

= 2

⎡
⎣ ∞∫

0

[
R
(|x| − √

2d
)]4

(2π)
−1/2e− 1

2 x2
dx

⎤
⎦=

[
2

π

]1/2

⎡
⎢⎣

∞∫
√

2d

[
x − √

2d
]4

e− 1
2 x2

dx

⎤
⎥⎦

=
[

2

π

]1/2

⎡
⎣ ∞∫

0

x4 e− 1
2 (x+√

2d)2
dx

⎤
⎦=

[
2

π

]1/2

e−d

⎡
⎣ ∞∫

0

x4 e− 1
2 (x2+2

√
2dx) dx

⎤
⎦

≤
[

2

π

]1/2

e−d

⎡
⎣ ∞∫

0

x4 e− 1
2 x2

dx

⎤
⎦=

[
4√
π

]
e−d

⎡
⎣ ∞∫

0

x3/2e−x dx

⎤
⎦=

[
4√
π

]
e−d 


(
5

2

)
= 3e−d.

(5.65)

Combining this with (5.63) and (5.64) demonstrates that

50−1d−3/2e−d ≤
∫
Rd

|g(x)|2ϕ(x)dx ≤ 3d2e−d. (5.66)

The proof of Lemma 5.9 is thus complete. �
5.5. ANN representations for multiplications with powers of real numbers

Lemma 5.10. Let n ∈ N , λ ∈ R, �, I , � ∈ N satisfy I = (λ � IO(�)) • Aλ IO(�),0 and � = (I •n) • � (cf. 
Definitions 2.2, 2.4, 2.7, 2.8, 2.13, 2.15, and 2.17). Then
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(i) it holds that I(�) = I(�),
(ii) it holds that H(�) =H(�) + n,

(iii) it holds that P(�) ≤ 2P(�) + 6n|O(�)|2 ,
(iv) it holds that ‖T (�)‖∞ ≤ max{1, |λ|}max{|λ|,‖T (�)‖∞}, and
(v) it holds for all x ∈RI(�) that (R(�))(x) = λ2n(R(�))(x)

(cf. Definitions 2.21 and 2.22).

Proof of Lemma 5.10. Throughout this proof let d, l0, l1, l2 ∈N satisfy l0 = l2 = d =O(�) and l1 = 2d, 
let On ∈ Rn , n ∈ N , satisfy for all n ∈ N that On = 0, and let Wk ∈ Rlk×lk−1 , k ∈ {1, 2}, satisfy Id =
((W1, O 2d), (W2, O d)) (cf. Lemma 2.14). Observe that Lemma 2.9, Proposition 2.5, and Lemma 2.18
show that

D(I •n) = (d,2d,2d, . . . ,2d,d) ∈Nn+2, H(I •n) = n, H(�) = H(�) + n,

and D(�) = (D0(�),D1(�), . . . ,DH(�)(�),2d,2d, . . . ,2d︸ ︷︷ ︸
n

,d) ∈NL(�)+n+1. (5.67)

Therefore, we obtain that

P(�) = P(�) +DL(�)(�)(DH(�)(�) + 1) + 2d(2d + 1) + . . . + 2d(2d + 1)︸ ︷︷ ︸
n−1

+d(2d + 1)

= P(�) +DL(�)(�)(DH(�)(�) + 1) + (n − 1)(4d2 + 2d) + (2d2 + d)

≤ 2P(�) + 6d2n = 2P(�) + 6n|O(�)|2.
(5.68)

Moreover, note that (2.3) and the fact that for all α ∈ R, φ ∈ N it holds that α � φ = Aα IO(φ),0 • φ

ensure that I = ((λW1, O 2d), (λW2, O d)). Therefore, we obtain that

I •n = ((λW1, O 2d), (λ
2W1W2, O 2d), . . . , (λ

2W1W2, O 2d)︸ ︷︷ ︸
n−1

, (λW2, O d)). (5.69)

Next observe that the fact that Id = ((W1, O 2d), (W2, O d)), (2.8), (2.11), and (2.12) demonstrate 
that ‖T (((W1, O 2d)))‖∞ = ‖T (((W2, O d)))‖∞ = ‖T (((W1W2, O 2d)))‖∞ = 1 (cf. Definitions 2.21 and 
2.22). Combining this with (5.69) establishes that

∥∥T (I •n)∥∥∞ =
{

|λ| : n = 1

|λ|max{1, |λ|} : n > 1.
(5.70)

Furthermore, note that the fact that Id = ((W1, O 2d), (W2, O d)), (2.8), (2.11), and (2.12) show that for 
all k ∈N , W ∈Rd×k , B ∈Rd it holds that

‖T (((λW1W, λW1B+ O 2d)))‖∞ = |λ|‖T (((W,B)))‖∞. (5.71)

This, Lemma 2.23, (5.69), and (5.70) establish that

‖T (�)‖∞ = ∥∥T ((I •n) • �
)∥∥∞ ≤ max

{‖T (I •n)‖∞,‖T (�)‖∞, |λ|‖T (�)‖∞
}

≤ max
{|λ|max{1, |λ|} ,‖T (�)‖∞, |λ|‖T (�)‖∞

}
= max{1, |λ|}max{|λ|,‖T (�)‖∞}.

(5.72)

In addition, observe that Proposition 2.5, Lemma 2.14, Lemma 2.16, and Lemma 2.18 demonstrate that 
for all x ∈Rd it holds that

(R(I ))(x) = (R((λ� Id) • Aλ Id,0))(x) = (R(λ� Id))((R(Aλ Id,0))(x))

= (R(λ� I ))(λx) = λ[(R(I ))(λx)] = λ[λx] = λ2x.
(5.73)
d d
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Induction therefore shows that for all x ∈Rd it holds that (R(I •n))(x) = λ2nx. Hence, we obtain that 
for all x ∈RI(�) it holds that

R(�)(x) = (R((I •n) • �))(x) = (R(I •n))((R(�))(x)) = λ2n(R(�))(x). (5.74)

Combining this with (5.67), (5.68), and (5.72) establishes items (i), (ii), (iii), (iv), and (v). The proof of 
Lemma 5.10 is thus complete. �
5.6. ANN approximations for certain specific high-dimensional functions

Theorem 5.11. Let d ∈N , M ∈N ∩ [2, ∞), R ∈ [1, ∞), let ϕ : Rd → R and g : Rd → R satisfy for all x =
(x1, x2, . . . , xd) ∈ Rd that ϕ(x) = (2π)

−d/2 exp(− 1
2 (
∑d

j=1|x j|2)) and g(x) = ∑d
j=1[max{|x j| −

√
2d, 0}]2, 

and let g : Rd →R satisfy for all x ∈Rd that g(x) = [∫Rd |g(y)|2ϕ(y) dy]−1/2 g(x). Then there exists � ∈ N
such that

(i) it holds that R(�) ∈ C(Rd, R),
(ii) it holds that H(�) = d + M + 1,

(iii) it holds that P(�) ≤ 42d2 M + 6d,
(iv) it holds that ‖T (�)‖∞ ≤ 12d3/2max{4, R2}, and
(v) it holds that 

∫
Rd |(R(�))(x) − g(x)|2ϕ(x) dx ≤ 50d7/2

[
16−M−1 R4 + 105R−4

]
(cf. Definitions 2.2, 2.21, and 2.22).

Proof of Theorem 5.11. Throughout this proof let 
 : (0, ∞) → (0, ∞) satisfy for all x ∈ (0, ∞) that 

(x) = ∫∞

0 tx−1e−t dt , let ψ ∈ N satisfy that

(I) it holds that R(ψ) ∈ C(R, R),
(II) it holds that D(ψ) = (1, 2, 4, . . . ,4︸ ︷︷ ︸

M

, 1) ∈NM+3,

(III) it holds that ‖T (ψ)‖∞ ≤ (
√

2d + 1) max{4, R2},
(IV) it holds for all x ∈R that (R(ψ))(x) = (R(ψ))(−x),
(V) it holds for all x ∈R with |x| ≤ √

2d that 
∣∣[R(|x| − √

2d)]2 − (R(ψ))(x)
∣∣= 0,

(VI) it holds for all x ∈R with 
√

2d ≤ |x| ≤ R + √
2d that∣∣[R(|x| − √

2d)]2 − (R(ψ))(x)
∣∣≤ 4−M−1 R2, (5.75)

and
(VII) it holds for all x ∈R with |x| ≥ R + √

2d that∣∣[R(|x| − √
2d)]2 − (R(ψ))(x)

∣∣≤[|x| − √
2d
]4

R−2 (5.76)

(cf. Corollary 5.5), let λ ∈ R satisfy λ = [∫Rd |g(y)|2ϕ(y) dy]−1/(4d), and let I , �, � ∈ N satisfy I =
(λ � I1) • Aλ,0, � = S1,d • Pd(ψ, ψ, . . . , ψ), and � = (I •d) • � (cf. Definitions 2.1, 2.2, 2.4, 2.8, 2.10, 
2.13, 2.15, 2.17, 2.19, 2.21, and 2.22). Note that Lemma 5.9 (applied with d � d, ϕ � ϕ , g � g in the 
notation of Lemma 5.9) implies that

0 < λ =
⎡
⎢⎣∫
Rd

|g(y)|2ϕ(y)dy

⎤
⎥⎦

− 1
4d

≤
[

50−1d−3/2e−d
]− 1

4d =
[

50d3/2ed
] 1

4d

≤
[

64d24d
] 1

4d =
[

8d 2d
] 1

2d ≤
[

8d 2d
] 1

2d =
[

16d
] 1

2d =
[

42d
] 1

2d = 4.

(5.77)
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This and Lemma 5.10 (applied with n � d, λ � λ, � � �, I � I , � � � in the notation of 
Lemma 5.10) ensure that for all x ∈RI(�) it holds that

(R(�))(x) = λ2d(R(�))(x) =
⎡
⎢⎣∫
Rd

|g(y)|2ϕ(y)dy

⎤
⎥⎦

−1/2

(R(�))(x). (5.78)

Next observe that item (I), Lemma 2.20 (applied with m � 1, n � d in the notation of Lemma 2.20), 
and Proposition 2.11 (applied with n � d, (�1, �2, . . . , �n) � (ψ, ψ, . . . , ψ) in the notation of Propo-
sition 2.11) assure that for all x = (x1, x2, . . . , xd) ∈Rd it holds that R(�) ∈ C(Rd, R) and

(R(�))(x) =
d∑

j=1

(R(ψ))(x j). (5.79)

Combining this with (5.78) establishes item (i). In the next step note that item (II), Lemma 2.20
(applied with m � 1, n � d in the notation of Lemma 2.20), Proposition 2.12 (applied with n � d, 
(�1, �2, . . . , �n) � (ψ, ψ, . . . , ψ) in the notation of Proposition 2.12), and Proposition 2.5 (applied 
with �1 �S1,d , �2 � Pd(ψ, ψ, . . . , ψ) in the notation of Proposition 2.5) show that

D(Pd(ψ, . . . ,ψ)) = (d,2d,4d, . . . ,4d︸ ︷︷ ︸
M

,d) ∈ NM+3 (5.80)

and

D(�) = (d,2d,4d, . . . ,4d︸ ︷︷ ︸
M

,1) ∈NM+3. (5.81)

Therefore, we obtain that H(�) = M + 1 and

P(�) = 2d(d + 1) + 4d(2d + 1) + 4d(4d + 1) + . . . + 4d(4d + 1)︸ ︷︷ ︸
M−1

+1(4d + 1)

= 10d2 + 10d + 1 + (M − 1)(16d2 + 4d) ≤ 21d2M.

(5.82)

Combining this with Lemma 5.10 (applied with n � d, λ � λ, � � �, I � I , � � � in the 
notation of Lemma 5.10) ensures that H(�) = H(�) + d = d + M + 1 and P(�) ≤ 2P(�) +
6d|O(�)|2 ≤ 42d2 M + 6d. This establishes items (ii) and (iii). Next observe that for all W =
(wi, j)(i, j)∈{1,2,...,d}×{1,2,...,4d} ∈Rd×4d , B = (b1, b2, . . . , bd) ∈Rd it holds that(

1 1 · · · 1
)︸ ︷︷ ︸

∈R1×d

W =
([∑d

i=1 wi,1
]
,
[∑d

i=1 wi,2
]
, . . . ,

[∑d
i=1 wi,4d

])∈R1×4d (5.83)

and (
1 1 · · · 1

)︸ ︷︷ ︸
∈R1×d

B+ 0 = [∑d
i=1 bi

] ∈ R. (5.84)

The fact that ‖T (Pd(ψ, ψ, . . . , ψ))‖∞ = ‖T (ψ)‖∞ therefore implies that

‖T (�)‖∞ = ‖T (S1,d • Pd(ψ,ψ, . . . ,ψ))‖∞ ≤ d ‖T (Pd(ψ,ψ, . . . ,ψ))‖∞ = d ‖T (ψ)‖∞.

(5.85)

Combining this with item (III) assures that

‖T (�)‖∞ ≤ d ‖T (ψ)‖∞ ≤ d
(√

2d + 1
)
max{4, R2} ≤ 3d3/2max{4, R2}. (5.86)
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Lemma 5.10 (applied with n � d, λ � λ, � ��, I �I , � �� in the notation of Lemma 5.10) and
(5.77) hence demonstrate that

‖T (�)‖∞ ≤ max{1, |λ|}max{|λ|,‖T (�)‖∞}
≤ 4 max

{
4,3d3/2max{4, R2}

}
= 12d3/2max{4, R2}. (5.87)

This establishes item (iv). Moreover, note that the fact that for all a1, a2, . . . , ad ∈ R it holds that 
(a1 +a2 + . . .+ad)

2 ≤ d(|a1|2 +|a2|2 + . . .+|ad|2) and (5.79) ensure that for all x = (x1, x2, . . . , xd) ∈Rd

it holds that

|(R(�))(x) − g(x)|2 =
∣∣∣∣∣∣

d∑
j=1

[
(R(ψ))(x j) −[

R
(|x j| −

√
2d
)]2

]∣∣∣∣∣∣
2

≤ d
d∑

j=1

[
(R(ψ))(x j) −[

R
(|x j| −

√
2d
)]2

]2
.

(5.88)

Combining this with the fact that for all k ∈ N it holds that 
∫
Rk (2π)

−k/2e− 1
2 ‖x‖2

2 dx = 1, Lemma 5.9
(applied with d � d, ϕ � ϕ , g � g in the notation of Lemma 5.9), and (5.78) implies that∫

Rd

|(R(�))(x) − g(x)|2ϕ(x)dx

=
⎡
⎢⎣∫
Rd

|g(y)|2ϕ(y)dy

⎤
⎥⎦

−1∫
Rd

|(R(�))(x) − g(x)|2ϕ(x)dx

≤ 50d3/2ed
∫
Rd

|(R(�))(x) − g(x)|2ϕ(x)dx

≤ 50d5/2ed
∫
Rd

⎡
⎣ d∑

j=1

[
(R(ψ))(x j) −[

R
(|x j| −

√
2d
)]2

]2

⎤
⎦ϕ(x1, x2, . . . , xd)d(x1, x2, . . . , xd)

= 50d5/2ed

⎡
⎢⎣ d∑

j=1

∫
Rd

[
(R(ψ))(x j) −[

R
(|x j| −

√
2d
)]2

]2
ϕ(x1, x2, . . . , xd)d(x1, x2, . . . , xd)

⎤
⎥⎦

= 50d7/2ed
∫
Rd

[
(R(ψ))(x1) −[

R
(|x1| −

√
2d
)]2

]2
ϕ(x1, x2, . . . , xd)d(x1, x2, . . . , xd)

= 25

√
2

π
d7/2ed

∫
R

[
(R(ψ))(x) −[

R
(|x| − √

2d
)]2

]2
e− 1

2 x2
dx.

(5.89)

The integral transformation theorem and items (IV), (V), (VI), and (VII) therefore demonstrate that∫
Rd

|(R(�))(x) − g(x)|2ϕ(x)dx

≤ 25

√
2

π
d7/2ed

∫ [
(R(ψ))(x) −[

R
(|x| − √

2d
)]2

]2
e− 1

2 x2
dx
R
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= 50

√
2

π
d7/2ed

∞∫
√

2d

[
(R(ψ))(x) −[

R
(|x| − √

2d
)]2

]2
e− 1

2 x2
dx

= 50

√
2

π
d7/2ed

R+√
2d∫

√
2d

[
(R(ψ))(x) −[

R
(|x| − √

2d
)]2

]2
e− 1

2 x2
dx

+ 50

√
2

π
d7/2ed

∞∫
R+√

2d

[
(R(ψ))(x) −[

R
(|x| − √

2d
)]2

]2
e− 1

2 x2
dx (5.90)

≤ 50

√
2

π
d7/2ed

⎡
⎢⎣4−2M−2 R4

R+√
2d∫

√
2d

e− 1
2 x2

dx + R−4

∞∫
R+√

2d

[
x − √

2d
]8

e− 1
2 x2

dx

⎤
⎥⎦

= 50

√
2

π
d7/2ed

⎡
⎣16−M−1 R4

R∫
0

e− 1
2 (x2+2x

√
2d+2d) dx + R−4

∞∫
R

x8e− 1
2 (x2+2x

√
2d+2d) dx

⎤
⎦

= 50

√
2

π
d7/2

⎡
⎣16−M−1 R4

R∫
0

e− 1
2 (x2+2x

√
2d) dx + R−4

∞∫
R

x8e− 1
2 (x2+2x

√
2d) dx

⎤
⎦

≤ 50

√
2

π
d7/2

⎡
⎣16−M−1 R4

∞∫
0

e− 1
2 x2

dx + R−4

∞∫
0

x8e− 1
2 x2

dx

⎤
⎦.

Next observe that the integral transformation theorem and Lemma 3.1 ensure that

∞∫
0

x8e− 1
2 x2

dx = 8
√

2

∞∫
0

x7/2e−x dx = 8
√

2


(
9

2

)

= 8
√

2

[
7

2

][
5

2

][
3

2

][
1

2

]



(
1

2

)
= 105

√
π√

2
.

(5.91)

The fact that 
∫∞

0 e− 1
2 x2

dx =
√

π
2

∫
R(2π)

−1/2e− 1
2 x2

dx =
√

π
2 and (5.90) therefore assure that

∫
Rd

|(R(�))(x) − g(x)|2ϕ(x)dx

≤ 50

√
2

π
d7/2

⎡
⎣16−M−1 R4

∞∫
0

e− 1
2 x2

dx + R−4

∞∫
0

x8e− 1
2 x2

dx

⎤
⎦

= 50d7/2
[

16−M−1 R4 + 105R−4
]
.

(5.92)

This establishes item (v). The proof of Theorem 5.11 is thus complete. �
Corollary 5.12. Let ε ∈ (0, 1], C ∈ [1000ε−1, ∞), c ∈ [C, ∞), d ∈N , let ϕ : Rd →R and g : Rd →R satisfy 
for all x = (x1, x2, . . . , xd) ∈ Rd that ϕ(x) = (2π)

−d/2 exp(− 1
2 (
∑d

j=1|x j|2)) and g(x) = ∑d
j=1[max{|x j| −√

2d, 0}]2 , and let g : Rd → R satisfy for all x ∈ Rd that g(x) = [∫Rd |g(y)|2ϕ(y) dy]−1/2 g(x). Then 
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there exists � ∈ N such that I(�) = d, O(�) = 1, d ≤ H(�) ≤ cd, ‖T (�)‖∞ ≤ cdc , P(�) ≤ cd3 , and 
[∫Rd |(R(�))(x) − g(x)|2ϕ(x) dx]1/2 ≤ ε (cf. Definitions 2.2, 2.21, and 2.22).

Proof of Corollary 5.12. Throughout this proof let M ∈N ∩ [2, ∞), R ∈ [1, ∞) satisfy M = max((−∞,

R]∩N) and R = 9dε−1/2. Note that Theorem 5.11 (applied with d � d, M � M , R � R , ϕ � ϕ , g � g , 
g � g in the notation of Theorem 5.11) ensures that there exists � ∈ N which satisfies that

(I) it holds that R(�) ∈ C(Rd, R),
(II) it holds that H(�) = d + M + 1,

(III) it holds that P(�) ≤ 42d2M + 6d,
(IV) it holds that ‖T (�)‖∞ ≤ 12d3/2max{4, R2}, and
(V) it holds that 

∫
Rd |(R(�))(x) − g(x)|2ϕ(x) dx ≤ 50d7/2

[
16−M−1 R4 + 105R−4

]
(cf. Definitions 2.2, 2.21, and 2.22). Therefore, we obtain that I(�) = d, O(�) = 1, d ≤ H(�) =
d + M + 1 ≤ d + R + 1 = d + 9dε−1/2 + 1 ≤ 11dε−1/2 ≤ Cd ≤ cd, ‖T (�)‖∞ ≤ 12d3/2max{4, R2} =
972d7/2ε−1 ≤ CdC ≤ cdc , and P(�) ≤ 42d2 M + 6d ≤ 42d2 R + 6d = 378d3ε−1/2 + 6d ≤ 384d3ε−1/2 ≤
Cd3 ≤ cd3. Moreover, observe that the fact that for all x ∈ [4, ∞) it holds that x2 ≤ 2x , the assumption 
that M = max((−∞, R] ∩N), and the assumption that R = 9dε−1/2 show that 16−M−1 R4 + 105R−4 ≤
106R−4 = 106ε2(9d)−4 ≤ (50d7/2)−1ε2. Combining this with item (V) implies that [∫Rd |(R(�))(x) −
g(x)|2ϕ(x) dx]1/2 ≤ [50d7/2[16−M−1 R4 + 105R−4]]1/2 ≤ ε. The proof of Corollary 5.12 is thus com-
plete. �
6. Lower and upper bounds for the number of ANN parameters in the approximation of 
high-dimensional functions

In this section we combine the lower bounds for the number of parameters of certain ANNs of 
Corollary 4.9 with the upper bounds of Corollary 5.12 to establish Theorem 6.1, the main ANN approx-
imation result this paper. Theorem 1.1 is then an immediate consequence of Theorem 6.1, respectively 
Corollary 6.2.

6.1. ANN approximations with specifying the target functions

Theorem 6.1. Let ϕd : Rd →R, d ∈N , and fd : Rd →R, d ∈N , satisfy for all d ∈N , x = (x1, x2, . . . , xd) ∈
Rd that ϕd(x) = (2π)

−d/2 exp(− 1
2 (
∑d

j=1|x j |2)) and fd(x) =∑d
j=1[max{|x j | −

√
2d, 0}]2 , let fd : Rd →R, 

d ∈ N , satisfy for all d ∈ N , x ∈ Rd that fd(x) = [∫Rd | fd(y)|2ϕd(y) dy]−1/2 fd(x), and let δ ∈ (0, 1], ε ∈
(0, 1/2]. Then there exists C ∈ (0, ∞) such that

(i) it holds for all c ∈ [C, ∞), d ∈N that

min

⎧⎪⎨
⎪⎩p ∈N :

⎡
⎢⎣

∃� ∈ N : p = P(�), I(�) = d, O(�) = 1,

d ≤ H(�) ≤ cd, ‖T (�)‖∞ ≤ cdc,

[∫Rd |(R(�))(x) − fd(x)|2ϕd(x)dx]1/2 ≤ ε

⎤
⎥⎦
⎫⎪⎬
⎪⎭≤ cd3 (6.1)

and
(ii) it holds for all c ∈ [C, ∞), d ∈N that

min

⎧⎪⎨
⎪⎩p ∈N :

⎡
⎢⎣

∃� ∈ N : p = P(�), I(�) = d, O(�) = 1,

H(�) ≤ cd1−δ, ‖T (�)‖∞ ≤ cdc,

[∫Rd |(R(�))(x) − fd(x)|2ϕd(x)dx]1/2 ≤ ε

⎤
⎥⎦
⎫⎪⎬
⎪⎭≥ (1 + c−3)(d

δ) (6.2)

(cf. Definitions 2.2, 2.21, and 2.22).
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Proof of Theorem 6.1. Throughout this proof let C ∈ [100(δ ln(1.03))−2, ∞) ∩ [1000ε−1, ∞), c ∈
[C, ∞), d ∈ N satisfy 2C5/δ ≤ (1.03)

√
C . Note that Corollary 5.12 (applied with ε � ε, C � C, 

c � c, d � d, ϕ � ϕd , g � fd , g � fd in the notation of Corollary 5.12) assures that there ex-
ists � ∈ N such that I(�) = d, O(�) = 1, d ≤ H(�) ≤ cd, ‖T (�)‖∞ ≤ cdc , P(�) ≤ cd3, and 
[∫Rd |(R(�))(x) − gd(x)|2ϕd(x) dx]1/2 ≤ ε (cf. Definitions 2.2, 2.21, and 2.22). This establishes item (i). 
Moreover, observe that Corollary 4.9 (applied with ϕd � ϕd , gd � fd , gd � fd , δ � δ, C � C in 
the notation of Corollary 4.9) ensures that for all � ∈ N with I(�) = d, O(�) = 1, H(�) ≤ cd1−δ , 
‖T (�)‖∞ ≤ cdc , and [∫Rd |(R(�))(x) − fd(x)|2ϕd(x) dx]1/2 ≤ ε it holds that P(�) ≥ (1 + c−3)dδ

. This 
establishes item (ii). The proof of Theorem 6.1 is thus complete. �
6.2. ANN approximations without specifying the target functions

Corollary 6.2. Let ϕd : Rd →R, d ∈N , satisfy for all d ∈N , x ∈Rd that ϕd(x) = (2π)
−d/2 exp(− 1

2 ‖x‖2
2) (cf. 

Definition 2.21). Then there exist continuously differentiable fd : Rd → R, d ∈ N , such that for all δ ∈ (0, 1], 
ε ∈ (0, 1/2] there exists C ∈ (0, ∞) such that

(i) it holds for all c ∈ [C, ∞), d ∈N that

min

⎧⎪⎨
⎪⎩p ∈N :

⎡
⎢⎣

∃� ∈ N : p = P(�), I(�) = d, O(�) = 1,

d ≤ H(�) ≤ cd, ‖T (�)‖∞ ≤ cdc,

[∫Rd |(R(�))(x) − fd(x)|2ϕd(x)dx]1/2 ≤ ε

⎤
⎥⎦
⎫⎪⎬
⎪⎭≤ cd3 (6.3)

and
(ii) it holds for all c ∈ [C, ∞), d ∈N that

min

⎧⎪⎨
⎪⎩p ∈N :

⎡
⎢⎣

∃� ∈ N : p = P(�), I(�) = d, O(�) = 1,

H(�) ≤ cd1−δ, ‖T (�)‖∞ ≤ cdc,

[∫Rd |(R(�))(x) − fd(x)|2ϕd(x)dx]1/2 ≤ ε

⎤
⎥⎦
⎫⎪⎬
⎪⎭≥ (1 + c−3)(d

δ) (6.4)

(cf. Definitions 2.2 and 2.22).

Proof of Corollary 6.2. Throughout this proof let fd : Rd → R, d ∈ N , satisfy for all d ∈ N , x =
(x1, x2, . . . , xd) ∈ Rd that fd(x) = ∑d

j=1[max{|x j| −
√

2d, 0}]2, let fd : Rd → R, d ∈ N , satisfy for all 
d ∈N , x ∈Rd that fd(x) = fd(x)[∫Rd | fd(y)|2ϕd(y) dy]−1/2, and let δ ∈ (0, 1], ε ∈ (0, 1/2]. Note that The-
orem 6.1 (applied with (ϕd)d∈N � (ϕd)d∈N , ( fd)d∈N � ( fd)d∈N , (fd)d∈N � (fd)d∈N , δ � δ, ε � ε in 
the notation of Theorem 6.1) establishes items (i) and (ii). The proof of Corollary 6.2 is thus com-
plete. �
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