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FUNCTIONS OF BROWNIAN MOTION

JOHN B.WALSH

ABSTRACT.    The class of continuous functions h  for which h (Brown-

ian motion) is a Markov process is determined.

Let  ß   be a one-dimensional Brownian motion.   For what continuous real

valued functions  h  is  {h(B ), / > 0\ again a Markov process?  If we require

that h(B ) be again a Brownian motion, Dudley [l] has shown that h must

be either x  or   — x; there should be a larger class of functions which trans-

form Brownian motion into a Markov process.  What is perhaps surprising is

that the class is still relatively small.

To be definite, suppose  B  is defined canonically on the space Q, of

all continuous real valued functions on [0, oo), i.e.  B = (il, F , B , Px),

where  ß    is the canonical process, F   = crfß  , s < t\, and  Px is the dis-

tribution of Brownian motion with initial value x.  When we say h(B ) is a

Markov process, we mean that there is a transition function Q(t, x, A) on

k(R)  such that for any initial distribution, {h(B ), t > 0\ is a Markov process

with transition function Q. We let H  be the class of all continuous functions

with this property.

There is a general criterion, due to Rosenblatt for Markov chains [4]

(see also [2, p. 325]).  A continuous function h is in K  iff for all x and

y, h(x) = h(y) implies that  Pt(x, h~ 1(A)) = P((y, h~ l(A)) for all / > 0 and

Borel sets  A.  Equivalently,

(1) h eK iff h(x) = h(y) implies that the process  {h(B ), t > 0} has

the same distribution under  Py  as under  Px.

It is clear that K  contains constants and strictly monotone functions.

What is more interesting is that the remainder of K is composed of two

classes of functions:

(I) functions  h having a unique maximum or minimum, say at x  .  Then

h  is symmetric about xQ   and strictly monotone on either side;

(II) nonconstant functions  h having more than one local extremum.  In
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this case h is periodic, symmetric about any local extremum, and strictly

monotone between adjacent maxima and minima.

There isa more compact description of H.  Let

fA\x) = 0,        f2ix) = x,

f3ix) = 1*1,    /4(x) = dix, 2N),

i.e.  /<(*) is the distance from x to the nearest even integer.

Theorem. K  is the class of functions h  of the form

(2) h(x) = gofA.ax + b),        1<i<4,

where  a  and b are constants and g  is continuous and strictly monotone.

We can dispatch three-quarters of the theorem directly.  If h  is of the

form (2), h(B ) is a Markov process.   Indeed, f AB A is reflecting Brownian

motion and f AB A is Brownian motion on  [0, l], reflecting at both endpoints,

while a strictly monotone (hence one-to-one) function of a Markov process

is again a Markov process.   Conversely, constants and strictly monotone

functions can certainly be written in the form (2).  It remains to deal with

functions which are neither constant nor strictly monotone—and which are

consequently not one-to-one.

Lemma 1.  Let h eK.   Then any local maximum (resp. minimum) of h

is also a global maximum (resp. minimum).   If h  is constant on any interval,

it is a constant function.

Proof.   Suppose h(xQ) = b, a local maximum of h.  If h(x) = h(x ), then

by(l)

PxiMß() < b for all small enough  r!

= PX°{h(B) < b tot all small enough  tj = 1.

This implies that x  is also a local 7naximum of h.   As h  is continuous, we

can conclude h(x) < b  tot all x.   Finally, if h  is constant on some interval,

it has points which are simultaneously local (hence global) maxima and min-

ima.  Thus inf h = sup h, and h is constant.   Q.E.D.

A consequence of Lemma 1 is that if h £ K  is nonconstant and has no

global extremum in some interval, it is strictly monotone there.

Define AQ = jx: h(x) = a] ,and let d(x, Aa) be the distance from  x to

Aa'
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Lemma 2.  Let /) eH.  // A    / 0, there is a function u on h(Y{) such

that d(x, Aa) = u ° h(x) ¡or all x.

Proof.  Suppose h(x) = h(x')  and let /  and /    be the maximal open

subintervals of R - A     which contain   x  and x    respectively.   Write  / =

(* - c, x + d) and /' = (*' - c', x' + a").  We define Tfl = inf it: h(B ) = a\.

If ß    = x, then  Ta = inf ir: Bt - BQ = - c or d\, and if BQ = x', then  Ta =

inf ii: B   - ß    = - c'  or d'\.  Since h(x) = h(x'), Ta has the same distribu-

tion under Px  as under Px .  By Lemma 3 below, we conclude that

d(x, A  ) = min(c, d) = min(c , d) = d(x , A  ).

Thus we can set u(h(x)) = min (c, d).  This proves the lemma.

Lemma 3.   Let 0 < c < d be (possibly infinite) reals, and let T =

inf ir: ß   = - c  or d\.   Suppose  B    = 0.   Then both  c and d are determined

by the distribution of T.

Proof.  First, c = d = <x iff P°jT = ooj = 1, so we may as well suppose

c < oo.   For the moment, we also suppose d < oo.  Let

fa(x) = Ex{e-aT\,       -c<x<d.

Then [3, p. 129] f a satisfies

(3) y2Ía=*fa>        /.W-/.«)-l.

Solving this and setting x = 0:

(A) fa(0) = (sinh y/2ac + sinh V2a^)/sinh'v/2a(c + d).

Now the distribution of T  determines /a(0), and this in turn determines both

c  and d.   Indeed

c = - lim   (2a)-^log/a(0),
(5) a~~x —

d = - Hm   (2a)- * log [/a(0) - exp (- ^J2a c)].
a ~oo

In fact, (5) holds even if d = oo, fot then the condition f a(d) = 1  is replaced

by 0 < fa< 1, and we get f J.0) =   exp (- y/2ac).

We can now complete the proof of the Theorem.  Suppose h £si has a

single local (hence global) extremum at x .   We may as well suppose x

is a minimum. Let a = h(x ).  By Lemma 2 applied to A    = {xA:

(6) \x -  *    |  =   22 o h(x).
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But h is continuous and strictly monotone on (-00, xQ]  and on [xQ , 00) (for

it is nowhere constant) so that   u must also be continuous and strictly in-

creasing on the range of h. In particular, it is invertible, so (6) gives us

(7) h(x) = u~1 o /3(x-x0).

This leaves the case where  h  is nonconstant and has more than one

local extremum.  Let a = inf h < sup h = b.  Noting that there is a local

(hence global) minimum between any two local maxima, we may assume

there exist xQ   and Xj   such that h(x A = a, h(x A = b, and h  is strictly

monotone between x     and *,.   To fix our ideas, suppose x    <x .   By Lem-

ma 2

(8) d(x, A  ) = 22 o h(x).
a

Consider Afl.    Afl ^ I^q!, for, as x^ is a strict local maximum, we can find

z  and z    in some neighborhood (*x - e,*j + e)  such that x    < z < x    < z

and h(z) = h(z').  Then ri(z', Afl) = a'iz, Aß), which requires a point x' >

x\  in ^a"   Evidently, *'=*' + (*- xQ).  Letting f —>0 we see that x' = x

+ d, where ¿ = 2|xj - xQ \. Similarly, Xj - d £ A¿.   Repeating this argument,

one sees that

Aa = ix0 ±nd, re = 0, 1, 2,--- !,       Ab = \xx ±nd, re = 0, 1, 2, • ■ • I

Thus

(9) d(x,Aa) = f4((x-x0)/d).

But both  ¿(x)   and / ,((x - x )/d)  ate strictly monotone on xQ, Xj, hence 22

is strictly monotone on  [a, b], the range of h.  In particular, 72""     exists, and

(8) and (9) give

(10) h(x)=u~1 of4((x-x0)/d),

which completes the proof.

One can ask the more general question:  "What Borel measurable func-

tions h  transform Brownian motion into a strong Markov process?"  The

function h may no longer have local maxima, but Lemma 2 remains valid (the

continuity of h  did not enter into its proof), and one can use it and argu-

ments similar to those in its proof to determine the sets A     directly.   For

example, if Aa is a singleton for all  a, h must be one-to-one.   If A    =

{xy x2\ tot some a, one argues using Lemma 2 that ii x   = (x   + xA/2,
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then A, ,     , = ixA, and that for any other c tot which A     is nonempty, A    =
r) \X   ) u c c

{x   —y, x    + y\ fot some y > 0.   This would imply that h  is of the form

g ° f Ax — x ), where g  is one-to-one.  Similar arguments can be used to

establish that if A     contains more than two points, its elements form an
a * '

arithmetic progression.

Thus no new ideas are involved in this more general question, but the

details are both more complicated and less interesting than before.  The

answer is not, however.  If we add the function f Ax) = x — [x]  to our list,

then if h  is a real valued Borel measurable function, h(B )  will be a strong

Markov process  iff h(x) = g ° f .(ax + b), 1 < 2 < 5, where a  and  b  ate con-

stants and g is one-to-one Borel measurable.
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