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1.1 We first need to establish a lemma:

Lemma 1. hf(tn+ 1
2
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2
, y(tn+ 1

2
)) + η where η is

O(h3).
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2
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2
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2
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Then Taylor expansion around y(tn) gives us:
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Proving the convergence of the implicit midpoint rule:
The implicit midpoint rule is:

yn+1 = yn + hf(tn +
h

2
,

1

2
(yn + yn+1)). (1)

Substituting the exact value then gives us:

y(tn+1) = y(tn) + hf(tn +
h

2
,

1

2
(y(tn) + y(tn+1)) +O(h2) (2)

Following closely the proof of (1.9) and (1.4) we subtract (2) from (1), and
applying the lemma to get:
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2
)) +O(h3)
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We then reproduce the steps in Iserles:
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And similar to Iserles we claim that:
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We will use induction to prove this step. Clearly it holds for n = 0. Assume
that the above inequality holds upto and including n ∈ N, then for n + 1 we
have:
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To show that the θ method is convergent, we define the theta method as:

yn+1 = yn + h[θf(tn, yn) + (1− θ)f(tn+1, yn+1)]

Whereas substituting exact solutions gives us:

y(tn+1)y(tn) + h[θf(tn, y(tn)) + (1− θ)f(tn+1, y(tn+1))] +O(h3)

Once again subtracting (3) from (4) gives us:

en+1 = en + h[θf(tn, yn)− θf(tn, y(tn)) + (1− θ)f(tn+1, y(tn+1)) + (1− θ)f(tn+1, y(tn+1))] +O(h3)

||en+1|| ≤ ||en||+ h[θλ||en||+ (1− θ)λ||en+1||] +O(h3)

||en+1|| ≤
(

1 + hθλ

1− h(1− θ)λ

)
||en||+

c

1− h(1− θ)λ
+ ch3 for some c

Similar to the trapezoid method we will argue:
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c

λ
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1− h(1− θ)λ
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We argue via induction. Clearly we have that it is true for n = 0 as at that
point the exact and approximate solutions are the same. Assume now that it is
true upto and including n. We need to prove for n+ 1:

||en+1|| ≤
(

1 + hθλ

1− h(1− θ)λ

)
||en||+

c

1− h(1− θ)λ
+ ch3

||en+1|| ≤
(

1 + hθλ

1− h(1− θ)λ

)(
c

λ

[(
1 + hθλ

1− h(1− θ)λ

)n
− 1

]
h2

)
+

c

1− h(1− θ)λ
+ ch3

Now observe that θ varies between 1 and 0. Thus

(
1+hθλ

1−h(1−θ)λ

)
varies between

1 + hλ and 1
1−hλ , both of which are bigger than one. As such we can continue

and say:

||en|| ≤
c

λ

[(
1 + hθλ

1− h(1− θ)λ

)n+1

− 1

]
h2

1.2a Let y′ = Ay, and let en = yn − y(nh) We want to prove using induction:

||en||2 ≤ ||y0||2 max
λ∈σ(A)

|(1− hλ)n − enhλ|

But before that we make an observation:

en = yn − y(nh)

And since we are using Euler method, we can say:

y(tn+1) = y(tn) + hy′(t) +O(h2)

yn+1 − y(tn−1) = yn − y(nh) + h[(f(tn, y(tn))− f(tn, yn))]

Substitution A gives us:

en+1 = en + h[Ayn −Ay(nh)] +O(h2)

||en+1|| ≤ ||en||2 + hλ||en||2 +O(h2)

||en+1|| ≤ ||en||2(1 + hλ) +O(h2)

For the induction part we observe that the statement clearly holds true for n = 0
since then we get:

||e0||2 ≤ ||y0||2 max
λ∈σ(A)

|(1 + hλ)0 − e0|

0 ≤ 0
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Using it as our base case, assume the inequality holds for upto and including n
the for ||en+1|| we have:

||en+1||2 ≤ ||en||2(1 + hλ) +O(h2)

||en+1||2 ≤ ||y0||2 max
λ∈σ(A)

|(1 + hλ)n − enhλ|(1 + hλ) +O(h2x)

≤ ||y0||2 max
λ∈σ(A)

|(1 + hλ)n+1 − [enhλ + hλenhλ]|

≤ ||y0||2 max
λ∈σ(A)

|(1 + hλ)n+1 − e(n+1)hλ|

1.2b From the hint, we first seek to prove 1 + x ≤ ex. Let f(x) = ex − x − 1,
then f ′(x) = ex − 1 and f ′′(x) = ex. There is a global minimum of 0 and this
function is concave up, and so f(x) > 0 over all x and hence ex ≥ 1 + x.

Following the hint again we seek to prove that 1 + x + x2

2 ≥ ex. Observe the

series expansion of ex is ex = 1 + x+ x2

2! + x3

3!O(x3). Thus:

1 + x+
x2

2
+
x3

3!
+O(h4)− 1− x− x2

2

�1 + �x+
�
��x
2

2
+
x3

3!
+O(h4)− �1− �x−

�
��x
2

2
x3

3!
+O(h4) < 0 as x ∈ [−1, 0]

We use a similar logic for the last part of the hint. Observe that: (a − b)n =
Σni=0

(
n
i

)
an−ibi = an − nan−1b+ .... So:

Σni=1

(
n

i

)
an−ibi − an + nan−1b

Σni=2

(
n

i

)
an−ibi ≥ 0 as a is close to being 1 and b is small

For the actual proof, let a = ex and b = 1
2x

2. We then get:

enx − 1

2
nx2e(n−1)x ≤ (ex − x2

2
)n ≤ (1 + x)n ≤ enx

1.4
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