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Abstract

Deep learning algorithms have been applied very successfully in recent years to a range of prob-
lems out of reach for classical solution paradigms. Nevertheless, there is no completely rigorous
mathematical error and convergence analysis which explains the success of deep learning algorithms.
The error of a deep learning algorithm can in many situations be decomposed into three parts, the
approximation error, the generalization error, and the optimization error. In this work we estimate
for a certain deep learning algorithm each of these three errors and combine these three error es-
timates to obtain an overall error analysis for the deep learning algorithm under consideration. In
particular, we thereby establish convergence with a suitable convergence speed for the overall error of
the deep learning algorithm under consideration. Our convergence speed analysis is far from optimal
and the convergence speed that we establish is rather slow, increases exponentially in the dimensions,
and, in particular, suffers from the curse of dimensionality. The main contribution of this work is,
instead, to provide a full error analysis (i) which covers each of the three different sources of errors
usually emerging in deep learning algorithms and (ii) which merges these three sources of errors into
one overall error estimate for the considered deep learning algorithm.
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1 Introduction

In problems like image recognition, text analysis, speech recognition, or playing various games, to name
a few, it is very hard and seems at the moment entirely impossible to provide a function or to hard-code
a computer program which attaches to the input — be it a picture, a piece of text, an audio recording,
or a certain game situation — a meaning or a recommended action. Nevertheless deep learning has been
applied very successfully in recent years to such and related problems. The success of deep learning
in applications is even more surprising as, to this day, the reasons for its performance are not entirely
rigorously understood. In particular, there is no rigorous mathematical error and convergence analysis
which explains the success of deep learning algorithms.

In contrast to traditional approaches, machine learning methods in general and deep learning methods
in particular attempt to infer the unknown target function or at least a good enough approximation thereof
from examples encountered during the training. Often a deep learning algorithm has three ingredients: (i)
the hypothesis class, a parametrizable class of functions in which we try to find a reasonable approximation
of the unknown target function, (ii) a numerical approzimation of the expected loss function based on the
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training examples, and (iii) an optimization algorithm which tries to approximately calculate an element
of the hypothesis class which minimizes the numerical approximation of the expected loss function from
(ii) given the training examples. Common approaches are to choose a set of suitable fully connected deep
neural networks (DNNs) as hypothesis class in (i), empirical risks as approximations of the expected loss
function in (ii), and stochastic gradient descent-type algorithms with random initializations as optimiza-
tion algorithms in (iii). Each of these three ingredients contributes to the overall error of the considered
approximation algorithm. The choice of the hypothesis class results in the so-called approzimation error
(cf., e.g., [3, [ 19, 38, 40, 41] and the references mentioned at the beginning of Section Bl), replacing the
exact expected loss function by a numerical approximation leads to the so-called generalization error (cf.,
e.g., [0, 10 18, B35 5] 68, [71] and the references mentioned therein), and the employed optimization algo-
rithm introduces the optimization error (cf., e.g., |2 16, O, 15, 20, 26, 43, 45] and the references mentioned
therein).

In this work we estimate the approximation error, the generalization error, as well as the optimization
error and we also combine these three errors to establish convergence with a suitable convergence speed
for the overall error of the deep learning algorithm under consideration. Our convergence speed analysis
is far from optimal and the convergence speed that we establish is rather slow, increases exponentially in
the dimensions, and, in particular, suffers from the curse of dimensionality (cf., e.g., Bellman []], Novak
& Wozniakowski [56, Chapter 1], and Novak & Wozniakowski [57, Chapter 9]). The main contribution of
this work is, instead, to provide a full error analysis (i) which covers each of the three different sources of
errors usually emerging in deep learning algorithms and (ii) which merges these three sources of errors into
one overall error estimate for the considered deep learning algorithm. In the next result, Theorem [LI]
we briefly illustrate the findings of this article in a special case and we refer to Section below for the
more general convergence results which we develop in this article.

Theorem 1.1. Letd € N, L,a € R, b € (a,00), R € [max{2, L, |al, |b|}, 00), let (2, F,P) be a probability
space, let X, Q — [a,b]?, m € N, be i.i.d. random variables, let ||-||: RY — [0,00) be the standard
norm on R%, let p: [a,b]? — [0,1] satisfy for all z,y € [a,b]? that |p(z) — o(y)| < Lllx — yl|, for every
0,18 € N, § € Ny, 0 = (64,05,...,0,) € RO withd > §+rs+r let Af;g: R* — R" satisfy for all
x = (r1,%9,...,25) € R® that

)

Agff@) = ([ xieé—i—i] + Osrst1, {Z $i96+s+z] + Os4rst2, - - -, [
=1 =1

(2

xi05+(r1)s+i:| + 95+rs+r) . @)
=1

let ¢: R — [0,1] and R,: R™ — R", 7 € N, satisfy for all 7 € N, x = (x1,29,...,2,) € R, y € R
that ¢(y) = min{l, max{0,y}} and R,(x) = (max{xy,0}, max{xs,0},..., max{x,,0}), for every 0,7 €
{3,4,..}, 0 e R witho > 7(d+1)+ (1 =3)7(7+ 1) + 7+ 1 let N> : R — R satisfy for all x € R? that

(me,ﬂ—) (l‘) _ (C o A%:(d—l—l)-{-(r—i&)r(r—f—l) oR. o A?_::(d+1)+(774)7—(7—+1) oM, 0...0 A?_::(dJrl) oK, o Af—:g) (l‘), (2)

let €y e [—R, R x Q — [0,00), 0, M, 7 € N, satisfy for alld,M € N, 7 € {3,4,...}, 0 € [-R, R]°,
weQuwithd>7(d+ 1)+ (r—=3)7(t+1)+7+1 that

1 M

Conrr(0,w) = 57 mzzl M7 (X (w)) = o(Xim (W), (3)

for every 0 € N let ©y: Q — [-R,R]°, k € N, be i.i.d. random variables, assume for all ® € N that
Oo1 is continuous uniformly distributed on [—R, R]°, and let Sy k-2 Q@ — [-R,R]°, 0, K, M, 7 € N,

AAAAA

there exists ¢ € (0,00) such that for all 0, K, M,7 € N, ¢ € (0,1] with 7 > 2d(2dLe~! + 2)¢ and
0>7(d+ 1)+ (1 —=3)7(1+ 1)+ 7+ 1 it holds that

IP’(/ |M=e KM T (1) — ()| Py, (dz) > 5) <exp(—K(cr) ™) 4+ 2exp(dIn((c7)e?) — 547M) (4)
[a,b]
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Theorem [[.1]is an immediate consequence of Corollary in Section below. Corollary follows
from Corollary .7 which, in turn, is implied by Theorem (.5 the main result of this article. In the
following we add some comments and explanations regarding the mathematical objects which appear in
Theorem [T above. For every 9,7 € {3,4,..},0 € R® with 0 > 7(d+ 1)+ (r = 3)7(t + 1) + 7 + 1 the
function 91%7: R — R in (@) above describes the realization of a fully connected deep neural network with
7 layers (1 input layer with d neurons [d dimensions], 1 output layer with 1 neuron [1 dimension], as well as
7 — 2 hidden layers with 7 neurons on each hidden layer [7 dimensions in each hidden layer|). The vector
6 € R® in () in Theorem [LTlabove stores the real parameters (the weights and the biases) for the concrete
considered neural network. In particular, the architecture of the deep neural network in (2]) is chosen so
that we have 7d + (7 — 3)72 + 7 real parameters in the weight matrices and (7 — 2)7 + 1 real parameters
in the bias vectors resulting in [7d + (7 = 3)72 + 7]+ [(t —2)7+ 1] =7(d+ 1)+ (r = 3)7(r + 1) + 7+ 1
real parameters for the deep neural network overall. This explains why the dimension 0 of the parameter
vector 6§ € R® must be larger or equal than the number of real parameters used to describe the deep
neural network in (2) in the sense that @ > 7(d+ 1) + (7 — 3)7(7 + 1) + 7 + 1 (see above (2))). The affine
linear transformations for the deep neural network, which appear just after the input layer and just after
each hidden layer in (2), are specified in ([{l) above. The functions R,: R™ — R, 7 € N, describe the
multi-dimensional rectifier functions which are employed as activation functions in (2)). Realizations of
the random variables (X,,,, Yy,) == (X, (X)), m € {1,2,..., M}, act as training data and the neural
network parameter vector §# € R® should be chosen so that the empirical risk in ([B) gets minimized.
In Theorem [Tl above, we use as an optimization algorithm just random initializations and perform
no gradient descent steps. The inequality in () in Theorem [ above provides a quantitative error
estimate for the probability that the L!-distance between the trained deep neural network approximation
M=k M7 () x € [a,b]?, and the function ¢(z), = € [a,b]?, which we actually want to learn, is larger
than a possibly arbitrarily small real number ¢ € (0, 1]. In (@) in Theorem 1.1 above we measure the error
between the deep neural network and the function ¢: [a,b]¢ — [0, 1], which we intend to learn, in the
L'-distance instead of in the L2-distance. However, in the more general results in Section below we
measure the error in the L?-distance and, just to keep the statement in Theorem [[LT] as easily accessible as
possible, we restrict ourselves in Theorem [T above to the L'-distance. Observe that for every ¢ € (0, 1]
and every 0,7 € {3,4,...} withd > 7(d+ 1)+ (7 — 3)7(7 + 1) + 7 + 1 we have that the right hand side
of (@) converges to zero as K and M tend to infinity. The right hand side of () also specifies a concrete
speed of convergence and in this sense Theorem [[1] provides a full error analysis for the deep learning
algorithm under consideration. Our analysis is in parts inspired by Maggi [50], Berner et al. [10], Cucker
& Smale [I8], Beck et al. [6], and Fehrman et al. [26].

The remainder of this article is organized as follows. In Section2lwe present two elementary approaches
how DNNs can be described in a mathematical fashion. Both approaches will be used in our error
analyses in the later parts of this article. In Section [3 we separately analyze the approximation error, the
generalization error, and the optimization error of the considered algorithm. In Section ] we combine the
separate error analyses in Section [3 to obtain an overall error analysis of the considered algorithm.

2 Deep neural networks (DNNs)

In this section we present two elementary approaches on how DNNs can be described in a mathematical
fashion. More specifically, we present in Section 2.1 a vectorized description for DNNs and we present
in Section a structured description for DNNs. Both approaches will be used in our error analyses in
the later parts of this article. Sections 211 2.2, and are partially based on material in publications
from the scientific literature such as Beck et al. [0, [7], Berner et al. [10], Goodfellow et al. [2§], and
Grohs et al. [31),32]. In particular, Definition .11 is inspired by, e.g., (25) in [7], Definition 2.2/ is inspired
by, e.g., (26) in [7], Definition is, e.g., [31l Definition 2.2], Definitions 2.4 23] 6] 2.7 and are
inspired by, e.g., [I0, Setting 2.3|, Definition 29 is, e.g., [31 Definition 2.1], Definition 210 is, e.g., [31]
Definition 2.3|, Definition 2-T6 is, e.g., [31, Definition 2.17|, Definition 217 is, e.g., [32, Definition 3.10],



Definition 2ZXT18 is, e.g., [32, Definition 3.15], Definition 219 is, e.g., [31], Definition 2.5], Definition 223 is,
e.g., [31], Definition 2.11], Definition 224 is, e.g., [31), Definition 2.12], and Theorem 2.36lis a strengthened
version of [I0, Theorem 4.2].

2.1 Vectorized description of DNNs
2.1.1 Affine functions

Definition 2.1 (Affine function). Let d,r,s € N, 6 € Ny, 0 = (0,0,,...,04) € R satisfy d > 6 +rs +r.
Then we denote by Af;g: R* — R" the function which satisfies for all x = (21,2, ..., xs) € R® that

Os41 0542 o O x Os1rst1
Os1 541 054512 o Osyos T2 Os4rst2
Afg(x) = 0512541 Osiospo -+ Osiss 23 | £ | Osprsts
95+(r71)s+1 ‘95+(r71)s+2 to ‘95+rs T ‘95+rs+r
S S [ S
= ([Zk:1 $k06+k] + 06—1—7"5—1—1’ [Zk:1 xk06+s+k] + 05+rs+2> SRR Zk:1 xkeé—l—(r—l)s—f—k] + 06+rs+r)-

2.1.2 Vectorized description of DNINs
Definition 2.2. Let d, L € N, Iy, 1,...,l; €N, § € Ny, 0 € R? satisfy

L
d>6+> Ll +1) (6)
k=1

.....

function which satisfies for all x € R% that

0,6,lo . 9,5+Z£;11 Ie(lg—1+1) 9,5+Z£;12 le(lg—1+1)
(N‘If17‘1’2 ----- ‘IJL) (l‘) - (\I/L © 'AILJLA oWy 1o AlL—lvlL—2 REER

...oUy0 Aol o v, o AP )(37) (7)

l27ll l17l0

(cf. Definition [2T]).

2.1.3 Activation functions

Definition 2.3 (Multidimensional version). Let d € N and let ¢): R — R be a function. Then we denote
by My.a: R? — R? the function which satisfies for all z = (x1, s, ...,74) € R? that

My,a(x) = (Y(21), Y(22), - Y (2a)) - (8)

Definition 2.4 (Rectifier function). We denote by t: R — R the function which satisfies for all x € R
that

t(x) = max{x, 0}. 9)

Definition 2.5 (Multidimensional rectifier function). Let d € N. Then we denote by Ry: RY — R? the
function given by

(cf. Definitions 23] and 2.4]).

Definition 2.6 (Clipping function). Let u € [—00,00), v € (u,00]. Then we denote by ¢, ,: R — R the
function which satisfies for all x € R that

Cup(2) = max{u, min{z, v}}. (11)
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Definition 2.7 (Multidimensional clipping function). Let d € N, u € [—00,00), v € (u,00]. Then we
denote by €, ,4: R? — R? the function given by

Q:u,v,d = mcuyv,d (12)

(cf. Definitions 23] and 2.6]).

2.1.4 Rectified DNNs

Definition 2.8 (Rectified clipped DNN). Let L,d € N, u € [—00,00), v € (u,00], I = (lp,l1,...,1l) €
NE+HL 0 € RY satisfy

d> i le(lk—1 +1). (13)

k=1
Then we denote by .4%!: R — R’ the function which satisfies for all € R that

(No’o’lo ) () L=1
A @) = § i (14)
7 (Nw}l’,g&lg ..... mlL_l,cu,v,lL)@) tL>1
(cf. Definitions 2.7 2.5 and 2.2]).
2.2 Structured description of DNNs
2.2.1 Structured description of DNNs
Definition 2.9. We denote by N the set given by
N = ULGN U(zo,h _____ IL)ENL+1 (X£:1<lexlk—1 « le)) (15)

and we denote by P,L,Z,O: N - N, H: N — Ny, and D: N — (Uzo:2 NL) the functions which satisfy
for all L € N, lo,l1,..., 1 € N, & € (Xp_ (R x RW)) that P(®) = v l(l—1 + 1), L(®) = L,
Z(P) =1y, O(®) =1, H(®) = L — 1, and D(P) = (lo, l1,...,11).

2.2.2 Realizations of DNNs

Definition 2.10 (Realization associated to a DNN). Let a € C(R,R). Then we denote by R,: N —
(Uk,leN C’(Rk,Rl)) the function which satisfies for all L € N, ly,l4,...,l, € N, & = (W, By), (Ws, By),
ooy (W, Br)) € (Xioy (RWXk=1 x RIk)) g € R0 2y € R, 2p g € RE-1 with VE € NN (0,L): oy =
mmlk (Wkﬂfk,1 -+ Bk) that

Raq(®) € C(RY R:) and (Ra(®)) (o) = Wrap 1+ Br (16)
(cf. Definitions 29 and 2.3]).

2.2.3 On the connection to the vectorized description of DNNs

Definition 2.11. We denote by 7: N — (UdeN Rd) the function which satisfies for all L,d € N,
lo, ll, R Iy, € N, P = ((Wl, Bl)7 (WQ, BQ), e (WL, BL)) S (X#Zl(leXl”ﬂ“l Xle)), 0= ((91, (92, . ,Gd) S



R ke {1,2,..., L} with T(®) = 0 that

G(Zf:_f li(li—1+1))+lklk_1+1
G(Zf:_f li(li—l +1))+lklk_1+2
d=P(®), Bi= |l uw sy |, and

9(25;11 Li(lim1+1)) el 1+,

‘9(21-“;11 li(li—14+1))+1 ‘9(25;11 Li(li—1+1))+2 e(zfql Li(limy+1)+lpq
S NN, SUR| O 11 +1)) 142 R AU REET FE

Wy = e(zf;fzi(zi71+1)>+2zk71+1 9(25;11zi(zi71+1>)+2zk71+2 9(2’“ Tl 1) +30e1 |

0 0 0

T G+ D))+ —Dl—1 A1 Y (1 + 1)+ (e — 1)1 +2 A (L1 +0) gl

(cf. Definition [2Z9]).

Lemma 2.12. Let a,b € N, W = (Wi ;) j)ef1,2,....a}x{1,2,..6} € R* B = (Bi)ieq1,2,...ay € R*. Then
T((W,B))) = (Wia, Wig, ..., Wiy, Way, Wan, ..., Wap, ..., Wa1,Waa,...,Way, Bi, Bs, ..., B,) (18)

(cf. Definition [211]).

Proof of LemmalZ13 Observe that (7)) establishes ([I]). The proof of Lemma [2.12]is thus completed. [

Lemma 2.13. Let L € N, ly,l1,...,l; € N, let W}, = (Wk,i,j)(i,j)e{1,2 ..... Udx{1,2,. 01—t} € lexhﬁ*l, k e
{1, 2,.. .,L}, and let B, = (Bk,i)i€{1,2 _____ L,y € le, k € {1, 2,.. ,L} Then

(i) it holds for all k € {1,2,..., L} that
T((Wi, Br)) = Wi, Wiz oo, Wit s Wiat, Wiz, o, Wiz 1o
Witets Wiste2s - - > Weiteite s Bits Brz, - Biy,)  (19)
and

(ii) it holds that
T(((Wl,Bl), (Wa, By), ... (WL,BL))>

= <W17171, WLLQ, ey WLLlO? ey lellvl’ WL[LQ, RN WLll,lo’ Bl,la BLQ, RN Bl,lm
20
Wat1, Watas oo, Wartys ooy Wass1, Watya, - .., Way 1,y Boty Baa, .., Bas, (20)

ey

Wit Weazs - Waasy oo Waists Witz Wiy o Buas Bras o Bra, )

(¢f. Definition[211)).

Proof of Lemma[ZI3. Note that Lemma T2 proves item [(i)] Moreover, observe that (I7) establishes
item The proof of Lemma .13 is thus completed. O

Lemma 2.14. Let a € C(R,R), ® € N, L € N, ly,ly,...,l, € N satisfy D(®) = (lo,l1,...,11) (cf.
Definition[2.9). Then it holds for all x € R that

(N0 () L L=1
(Ra(®))(x) = ()0, (21)
(mei,liiﬁﬁz,lg ----- fma,lL_lyidRzL)(x) P L>1

(cf. Definitions 210, 217, [Z.3, and[23).



Proof of Lemma[2.14 Throughout this proof let W; € Ri*lo B, € R W, € R*h B, € R,
Wy € Riexle—1 - By € R satisfy @ = (W1, By), (W, By), ..., (Wy, Br)). Note that (I7) shows that for
all k € {1,2,..., L}, z € R%*1 it holds that

k=171,
Wit + By = (A] (P2t oty g (22)

lylk—1

- iti : 0 ’, x yoey L1 -
(cf. Definitions 210l and BT)). This demonstrates that for all 2, € R, z; € R: rr_; € Ri-1 with
Vke NN (0,L): xp = My, (Wia,—1 + By) it holds that

Xrr—1 = (23)

{l‘o cL=1
T(®), 357 Ll +1) T(®), 5 il 1) T(9),0 .
(gﬁa lp—1 © 'AlL 1ln—2 © ma dr—2 © 'AlL 2,03 -9 m‘lvll © ‘Alh(lo) )(ZL‘O) cL>1
(cf. Definition 23)). Combining this and [22)) with (T) and ([I8) proves that for all zy € RY z; €
R, ...z € R with VE € NN (0,L): op = M,y (Wiar—1 + By) it holds that

(Ra(‘b))(%) =Wrrp 1+ Br = (AT@),ZZ,L:? li(li*lﬂ))(xL_l)

lplp—1
(N ) (o) ;D=1 (24)
- (N;fi%ib ..... z)naJL_l,ideL)(fUO) cL>1
(cf. Definitions and 2.2]). The proof of Lemma 2.T4]is thus completed. O

Corollary 2.15. Let ® € N (cf. Definition[2Z9). Then it holds for all x € R*®) that
(AT (@) = (Ru(®)) (@) (25)
(cf. Definitions[Z11), [2.8, and [Z10).

Proof of Corollary[2.14. Note that Lemma 2.14] (I4]), (I0), and the fact that for all d € N it holds that
C_oo.00.d = idga establish (25]) (cf. Definition [Z7]). The proof of Corollary is thus completed. O



2.2.4 Parallelizations of DNNs
Definition 2.16 (Parallelization of DNNs). Let n € N. Then we denote by

P,: {(®),®y,...,D,) € N": L(D)) = L(Py) = ... = L(P,)} = N (26)

the function which satisfies for all L € N, (lio, i1, .- 0.0), (oo loay -y lon)y - s (lnoslny -y lnr) €
N @ = (Wi, Bia), Whg, Bia),...,(Wir, Bi)) € (X£:1(Rll’kxh’k_l X Rll”“)), Dy = (Wa1, Ban),
(Wao, Baa), ..., (War,Bayr)) € (X (Rzexle—1 5 Rw)), 0 @, = (Wni, Bui), Whz, Bua)s - . .,
(Whozs Bupr)) € (X (Rinextni-t x Rinr)) that

Wi 0 0 0 Bi4
0 Wy 0 -~ 0 Bs,
P, (0, ®y,...,0,) = 0 0 Wi -+ 0 | | Bsa :
0 0 0 Wi By
Wis 0 0 0 Bi s

(27)

(cf. Definition 2Z9]).

2.2.5 Basic examples for DNNs

Definition 2.17 (Linear transformations as DNNs). Let m,n € N, W € R"™*". Then we denote by
My € R™™ x R™ the pair given by Ny = (W, 0).

Definition 2.18. We denote by J = (J4)gen: N — N the function which satisfies for all d € N that
~ 1 0
3, = <((_1> , <0>) ; ( (1 —1) ,0)) € ((R2X1 x R?) x (R™*? x Rl)) (28)

jd:Pd(jhjla"'aji) (29)

and

(cf. Definitions 29 and 2ZT0l).



2.2.6 Compositions of DNNs

Definition 2.19 (Composition of DNNs). We denote by (-) e (-): {(®1,P2) € N x N: Z(®y) = O(P2)}
— N the function which satisfies for all L, £ € N, Iy, ly,..., Iz, lo, 4, ..., le € N, &1 = (W4, By), (Ws, Bs),
...,(Wy,Bp)) € (Xézl(Rl’“Xl’“*l X le)), Oy = ((W1,B1), (Ws, Ba), ..., (We,Be)) € (Xﬁzl(R[kX[kfl %
R"%)) with ly = Z(®;) = O(®,) = Ig that

N
( (201, B1), (W, Bs), ..., (We_1, Be 1), (Wi2We, W1 B + By), Lol
(Wa, Bs), (W3, Bs), ..., (W, Br))
(WA20y, WiB, + By), (Wa, By), (W, By), ..., (W, Bp)) L>1=¢ (30)
(21, %,), (Ws, Bs), ..., (We_y, Be 1), (WiWe, WiBe+ By))  :L=1<g
L (W120,, W1B1 + By)) L=1=4¢
(cf. Definition [29)).
Definition 2.20 (Maximum norm). We denote by [[|-|[|: (U, R?) — [0, 00) the function which satisfies
foralld € N, § = (01,0, ...,04) € RY that
0l = max [6i]. (31)

ie{1,2,...,d}

Lemma 2.21. Let L,£ € N, lOvlh---ulL7[07[17---7[£ S N, (I)l = ((Wl,Bl),(WQ,BQ),...,(WL,BL)> S
(XE (REXo1 X R, By = (204, By), (Wa, By), ..., (We, Be)) € (XL, (RW*0-1 x R%)). Then

I7(21 @ )| < max{[[T(@o)ll, 1T ()], ||

T ((W128e, W1Be + By)) |||} (32)

(cf. Definitions 219, (211, and[Z.20).

Proof of Lemma[22]. Note that ([B0) and Lemma establish ([B2). The proof of Lemma 22T is thus
completed. O
2.2.7 Powers and extensions of DNNs

Definition 2.22. Let d € N. Then we denote by I; € R¥? the identity matrix in R4,

Definition 2.23. We denote by (-)*": {® € N: Z(®) = O(®)} — N, n € Ny, the functions which satisfy
for all n € Ny, ® € N with Z(®) = O(®) that

I 0.0,....0)) € RO@XxO(®) y RO@®) . —
P — {( (9(‘1’)7( y Uy ) )) X n (33)

P o (O*"1) :n €N

(cf. Definitions 2.9, 2.22] and [2.19).

Definition 2.24 (Extension of DNNs). Let L € N, U € N satisfy Z(¥) = O(V). Then we denote by
Erw: {® € N: (L(®) < Land O(®) = Z(¥))} — N the function which satisfies for all & € N with
L(P) < L and O(®) = Z(¥) that

Eru(®) = (T E®)) o @ (34)

(cf. Definitions 2.9 23], and 219)).
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Lemma 2.25. Let d,i, L, £ €N, lo,l1,...,ls1 €N, &, ¥ € N satisfy £ > L, D(®) = (o, b1, ..., 111, d)
and D(V) = (d,i,d) (cf. Definition[29). Then it holds that D(Eew(®)) € N* and

(lo,ll,...,lL_l,d) L£=1L

35
(lo,ll,...,lLfl,i,i,...,i,d) L8> L ( )

D(Eew(®)) = {

(cf. Definition[2.2]).
Proof of Lemma[ZZ3. Observe that item (i) in [31, Lemma 2.13] ensures that £(U**~1)) = ¢ — [ + 1,
D(\I/o(SfL)) c N27L+2’ and
L=1L
(d,i,i,...,i,d) £>1L

(cf. Definition[2.23). Combining this with [31], Proposition 2.6] shows that £((U*(*~5)) e &) = L£(W*E—1)) 4
L(®)—1=2¢g D((V**1)ed) c N and

s eny = (il e w

This and (34]) establish ([B5). The proof of Lemma 227 is thus completed. O
Lemma 2.26. Let d,L € N, ® € N satisfy L > L(®) and d = O(®) (cf. Definition[2.9). Then

T (ELs,(@))I < max{1, [|T(P)]} (38)

(cf. Definitions[2.18, [2.24), 211, and[2.20).

Proof of LemmalZ26. Throughout this proof assume w.l.o.g. that L > £(®) and let ly, [y, ..., lr—r@)+1 €
N satisfy (lo,lh, ..., l—z@)+1) = (d,2d,2d, . ..,2d,d). Note that [32, Lemma 3.16] ensures that D(J,) =
(d,2d,d) € N? (cf. Definition 2.I8)). Ttem (i) in [31, Lemma 2.13] hence establishes that

L((Tg)*EE@) =L — (D) +1 and  D((Jg)*EED) = (lo, .. 11 p(@y1) € NETE®IT2 0 (30)

(cf. Definition 223)). This shows that there exist W), € Rie*i—1 ke {1,2,...  L—L(®)+1}, and By € R,
ke{l,2,...,L— L(P)+ 1}, which satisfy

(34)"FF@) = (W1, By), Wa, Ba), ..., (Wi g@)+1, BLoci@)+1))- (40)
Next observe that 27), [28]), 29), (B30), and [B3]) demonstrate that
1 0 0
-1 0 0
0 1 0
Wi = 0 -1 0 c R(Qd)Xd
0 O 1 (41)
0 0 —1
1 =10 0 0 0
o o0 1 -1 --- 0 0
and Wi—c@) = S € R™E,
0 0 0 0 1 -1

11



Moreover, note that 27), 28), @9), [B0), and [B3) prove that for all k € NN (1, L — £(®) + 1) it holds
that

1 0 0
1 =10 0 0 0 -0 0
0 1 -1 0 0 0 I 0
Wi = | o -t 0
0 0 O OV 1 —1 1o 0 1
cRdx(2d) () () —1
cRGd)xd (42)
1 -1 0 0 0 0
-1 1 0 0 0 0
0 0 1 -1 0 0
—1 0 0o -1 1 0 0 c RCIx(2d)
0 0 0 0 1 -1
0 0 0 0 -1 1

In addition, observe that 28), [29), @7), (B3], and B0) show that for all k € NN [1, L — L(P)] it holds
that
By=0€R* and B =0€R™ (43)

Combining this, ([#1l), and (42) establishes that
T (@ =) =1 (44)

(cf. Definitions Z11] and 220)). Furthermore, note that (4Il) demonstrates that for all £ € N, 20 =
(wi,j>(i,j)€{1,2 _____ dyx{1,2,....k} € Rka it holds that

Wi,1 W2 - W1,k
—Wwi,1 —Wi2 0 —Wik
W 1 wa2 W3,k
W0 = | —w2n —wz2 -0 —wak | ¢ RGO (45)
Wq,1 Wq2 - Wy, k
—Wq1 —Wq2 -+ —Wqk

Next observe that (@) and ([@3) show that for all B = (b1, by, ..., bs) € R? it holds that

1 0 0 b
—1 0 0 ) —b
0 1 - 0 b1 by
Wi +B =0 -1 - 0 2= | b | e r® (46)
0 0 1 ba by
0 0 —1 —by

Combining this with (@3] proves that for all k£ € N, 20 € R™* 8 ¢ R? it holds that
17 (W22, W28 + B)) ||| = ||| T (20, %B)) || (47)
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This, Lemma 221 and (44]) establish that

7 (E25.(P) (305 e D) | (48)
<maX{}HT( R H! 7 (@ |||} = max{L, [[|T(®)[|l}
(cf. Definition [Z24]). The proof of Lemma [2.20 is thus completed. O

2.2.8 Embedding DNNs in larger architectures

Lemma 2.27. Leta € C(R,R), L € N, lo, l1,...,lp, lo,lh,..., I, € N satisfy for all k € {1,2,..., L} that
[0 = lo, [; = ZL, and [k > lk, fO’f’ every ke {1, 2, RN L} let Wk = (Wk,i,j)(i,j)€{1,2 _____ L dx{1,2, 011} c lexhﬁ*l,
Wi = (Whij) (i j)e{l,2, e} 541,21} € RU>lk-1 By = (Bri)ic{1,2,..0.} € R, B, = (Bri)icfr,2,..1,} € R,
assume for all k € {1,2,...,L}, i € {1,2,...,t}, 7 € NN (0,l;_1] that Wy ;; = Wi, ; and By; = By,
and assume for all k € {1,2,..., L}, i€ {1,2,..., i}, j € NN (lg_1, 1 + 1) that Wy, ; = 0. Then

Ra((Wh, By), (Wa, Ba), ..., (Wr, BL))) = Ra(((201,B1), (W2, B>), ..., (W, BL))) (49)
(cf. Definition [2Z10).

Proof of Lemma[2.27. Throughout this proof let m: R%* — R k € {0,1,..., L}, satisfy for all k €
{0,1,..., L}, x = (21,29, ..., 2) that

m(z) = (T1, 22, ..., 21,). (50)
Observe that the hypothesis that [ = [y and [, = [ shows that
Ra((Wi, By), (Wa, B), ..., (Wy, Byr))) € C(R",R'"™) (51)

(cf. Definition 210). Furthermore, note that the hypothesis that for all k € {1,2,..., L}, i € {1,2,..., 1},
J € NN (lp—1, lx_1+1) it holds that 20y, ; = 0 ensures that forall k € {1,2,..., L}, v = (21, 22,...,2_,) €
R'%-1 it holds that

MMr—1 MMe—1 T MMe—1
T (Wix + By) = ( Z Wi 15w | + B, Z Wi 2,iTi| +Broa, ..., Z Wy, 1, | + %k,lk>
:z—1 . L (52)
lk, 1 lk—l lk 1
= ( Z Wi 1.iwi | + B, Z W2 | +Bro,..., Z Wy, 1, | + %k,lk> -
Li=1 |

Combining this with the hypothesis that forall k € {1,2,... L}, i € {1,2,...,lk},j € NO(O, l—1] it holds
that 2y, ; = Wy, and By; = By, shows that for all k € {1,2,...,L}, x = (21,29, ...,2_,) € R 1 it
holds that

le—1 lk—1 le—1
T (Wix + By) = (LZl Wia,ixi| + B, ;szzl’z + B, ..., [; Wii,.,i%i +Bk,lk> (53)

= Wk(ﬂ'k_l(l‘)) -+ Bk

Moreover, observe that (50) and (B) ensure that for all k € {0,1,...,L}, x = (z1,29,...,7) € R it
holds that

(Mo () = mi(alz1), al@s), . alay,)) = (alr), alwz), .. alzy) = Moy (me(x). (54)

Combining this and (53) demonstrates that for all zp € R%, z; € R", ... 2, ; € R%1 k€ NN (0, L)
with Vm e NN (0,L): 2, = Moy, (W1 + Byy,) it holds that

k(zx) = T (Mo, (Wiak—1 + Bi)) = Moy, (m6(Wixk—1 + By)) = My, (Wimg—1(xk—1) + Bi) (55)
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(cf. Definition 2.3)). The hypothesis that Iy = [y and [, = [, and (B3) therefore prove that for all
rg €ERY xy e R ...z € RE with VE € NN (0, L): 2 = My, (Wiay_1 + By) it holds that

(Ra (((Wh Bl>7 (W27 BQ>7 ceey (Wln BL)))) ('TO) = (Ra(«le Bl>7 (W27 BQ>7 BRI (WLv BL)))) (7T0<SL’0))
= Wyrrp-1(zr-1) + Br

o6
:7TL<mL.IL,1+§BL):mLSL’L,1+%L ( )
= (Ra(((201,B1), (W2, Ba), - .., (W, BL)))) (o)
(cf. Definition Z10). The proof of Lemma is thus completed. O

Lemma 2.28. Let a € C(R,R), L € N, lo,l1,...,1l5,lo, b4, ..., [, € N satisfy for all k € {1,2,..., L} that
lo =1lo, lp =1, and [ > I, and let & € N satisfy D(®) = (lo, l1,...,l1) (¢f. Definition[2Z.9). Then there
exists ¥ € N such that

DY) = (lo,h, - k), T =(T@,  and  Ra(¥) = Ra(®) (57)

(cf. Definitions[2.11, [2.20, and[2.10).

Proof of Lemmal2.28. Throughout this proof let B, = (Byi)icf1,2,..1.} € Ri* ke {1,2,...,L}, and W), =
(Wk,l,j>(l,])€{172 7777 lk}x{lvzv'“?lk—l} E leXlk_17 k E {17 27 oty L}7 Satley @ = <<W17 Bl)’ (W27 B2)7 et (WL7 BL))
and let Wy, = (Wi ) (6.5) (1,2, b} < {1,201} € R%*-1 ke {1,2,...,L}, and By, = (Bri)icq1,2,..1.} € R,
ke{l,2,...,L}, satisfy for all k € {1,2,..., L}, i€ {1,2,..., Ik}, 7 €{1,2,...,l_1} that

Qﬂk,i,j = Fobod (Z B k) (j =k 1) and %k,i = k. Z F (58)
0 I<Z>lk)V(j>lk,1) 0 21> .

Note that ([H) ensures that ((20;,B1), (W, Bs), ..., (W, B)) € (X7, (Rt x R¥)) C N and
D(((W1,B1), (W, B2), ..., (W, BL))) = (o, b, ..., [1). (59)
Furthermore, observe that Lemma 213 and (58) show that
7 (W1, B1), (Ws, By), ..., (W, BL))) Il = I T(D)]] (60)
(cf. Definitions 2111 and 2220)). In addition, note that Lemma establishes that
Ra(®) = Ra((W1, Br), (Wa, Ba), ..., (Wi, Br))) = Ra(((21,B1), (Wa, Ba), - .., (W, BL)))  (61)
(cf. Definition 2.I0). The proof of Lemma is thus completed. O

Lemma 2.29. Let L,£ € N, lo,ly,..., 05, lo,l1,...,le € N satisfy for all i € NN [0,L) that £ > L
lo = lo, e = Iz, and l; > 1;, assume for alli € NN (L —1,£) that I; > 2l;, and let & € N satisfy
D(®) = (lo, L1, -..,1l) (¢f Definition[2.9). Then there exists V € N such that

DY) = (lo,l1,.... L), T < max{L [[T(D)[I},  and  R(¥)=R:(P) (62)

(cf. Definitions (211, [2.20, and[210).

Proof of Lemma[2.29 Throughout this proof let = € N satisfy = = ey, (P) (cf. Definitions
and 2.24). Note that item (i) in [32, Lemma 3.16] demonstrates that D(J;,) = (I1,2l;,1;) € N3. Com-
bining this with Lemma shows that D(Z) € N**! and

loy Uy .1 L8=1L
D(E) _ ( 051, ) L) (63)
(lo,ll,...,lL_1,2lL,2lL,...,2lL,lL) 8> L.
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Moreover, observe that Lemma 2.26] (with d < [, L < £, ® < & in the notation of Lemma [2.20])
establishes that

T (E) < max{1, [T (®)} (64)

(cf. Definitions 2TT] and Z20). In addition, note that item (iii) in [32] Lemma 3.16] ensures that for all
x € R it holds that

(Re(T1,))(2) = @ (65)
(cf. Definitions 2.4l and 2.T0)). This and item (ii) in [31, Lemma 2.14] prove that
R:(E) = Re(P). (66)

In the next step, we observe that (G3]), the hypothesis that for all i € [0, L) it holds that [y = Iy, ¢ = Iz,
and [; < [;, the hypothesis that for all i € NN (L—1, £) it holds that [; > 2{;, and Lemma[228] (with a < «,
L+ £ (lo,lh,...,lp) < D(E), (lo,l,...,le) < (lo,l,...,lg), ® < = in the notation of Lemma 228
ensure that there exists W € N such that

D(V) = (o, b, le)s [T =T EIl and  Re(¥) = Re(F). (67)
Combining this with (64]) and (60) establishes (62). The proof of Lemma is thus completed. O

Lemma 2.30. Let u € [—00,00), v € (u,00], L, L£,d,0 €N, 0 € R, Iy, ly,...,1p, 1o, l1,...,lc €N satisfy
fOT all i € NN [O,L) that d > ZiLzl li<l¢71 + 1), 0> Zle [i<[i71 + 1), £ > L, [0 = lo, [2 = lL, and [z > ll
and assume for all i € NN (L — 1, L) that I; > 2l;,. Then there exists ¥ € R such that

01l < max{L, 6} and Al te) = g0l tntn) (68)
(¢f. Definitions[2.20 and [Z38).
Proof of Lemma[2.30. Throughout this proof let ny,1ns,...,n4 € R satisfy

0 = (77177727---77%1) (69)
and let ® € (X[, Rixli-1 x RY) satisfy
T(®) = (12, -, p(a)) (70)
(cf. Definition [Z11]). Note that Lemma establishes that there exists W € N which satisfies
D) = (lo,lr, ., L), [T < max{L[IT(®)[I},  and  Re(¥) = Re(P) (71)
(cf. Definitions 9] 2220, 24l and 2.T0). Next let ¥ = (1,09, ...,1%) € R? satisfy
Note that ([€9), (70), (71), and (72]) show that
II9[IF = T ()l < max{1, [[T(@)[fI} < max{1, [|6]]}- (73)
Next observe that Corollary and ([T0) establish that for all z € R it holds that
(A ) (@) = (VL) (@) = (Re(@)) (). (74)
In addition, observe that Corollary 2218, (1)), and (72)) prove that for all x € R" it holds that
(A ) @) = (AT (@) = (Re(©)) (). (75)
Combining this and (74)) with (71) and the hypothesis that [y = [y and [¢ = [}, demonstrates that
¢/V€7(l0,l1 ..... lL) — JVﬁ,([O7[1 ..... [g)' (76)
Hence, we obtain that
A = @1, 0 ML) = €y 0 ML) = A0t (77)
(cf. Definition [Z7). This and (73)) establish (6X)). The proof of Lemma is thus completed. O
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2.3 Local Lipschitz continuity of the parametrization function
Lemma 2.31. Let a,z,y € R. Then

max{z, a} — max{y, a}| < max{z,y} — min{z,y} = |z — | (78)
Proof of LemmalZ.31. Observe that

lmax{z,a} — max{y,a}| = |max{max{z,y},a} — max{min{z, y}, a}|

= max{max{x, v}, a} — max{min{x, y}, a}

= max{max{x, y} — max{min{z,y},a},a — max{min{z, y}, a}}

< max{max{x, y} — max{min{z, y},a},a - a} (79)
= max{max{x, y} — max{min{z, y},a}, O} < max{max{x, y} —min{z,y}, O}
= max{z,y} — min{z,y} = |max{z,y} — min{z,y}| = |z — y|.
The proof of Lemma 2.3T] is thus completed. O
Corollary 2.32. Let a,x,y € R. Then
|min{x,a} — min{y, a}| < max{z,y} — min{z,y} = |z — y|. (80)
Proof of Corollary[2.33. Note that Lemma [2.3T] ensures that
|min{z,a} — min{y, a}| = |- (min{z, a} — min{y, a})| = |max{—x, —a} — max{—y, —a}| (81)
<|(=z) = (=y)l = |z —yl.
The proof of Corollary is thus completed. O
Lemma 2.33. Letd € N, u € [~00,0), v € (u,00]. Then it holds for all z,y € R? that
I€u0,4(2) = Cupa)ll < Ml =yl (82)

(cf. Definitions[2.7 and [2.20).

Proof of Lemmal2.33. Note that Lemma P31l Corollary 2.32] and the fact that for all z € R it holds that
max{—o0, 2} = x = min{z, oo} show that for all z,y € R it holds that

|Cuw(2) — €uou(y)] = [max{u, min{z,v}} — max{u, min{y, v}}| < |min{z,v} — min{y, v}| < |z —y| (83)

(cf. Definition 2.6]). Hence, we obtain that for all @ = (21, za,...,74),y = (Y1, Y2, ..., ya) € R? it holds
that

qu _Qtuv = uw(Ti) = Cupw (i) < i — Yi| — - 84
1€0ae) = Cualy)ll = _mnax [euo(o) = o] < _max la—ul = lle—yll (59
(cf. Definitions 27 and 2Z20]). The proof of Lemma 2.33]is thus completed. O

Lemma 2.34. Let d € N. Then it holds for all x,y € R that
1Ra(z) — Ra(w)ll < lllz =yl (85)
(cf. Definitions 2.4 and [2.20).

Proof of Lemma [2.3]). Note that Lemma and the fact that R; = € o 4 establish (&5]). The proof of
Lemma [2.34] is thus completed. O
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Lemma 2.35. Let a,b c N, M = (Mi,j)(i,j)e{l,Q ..... a}yx{1,2,....b} S RaXb. Then

M
sup [m Um} Z | M, ;| [ max max | M, ;| (86)
vern\ (o} L[]l e{l S a} i€{1,2,....a} j€{1,2,....b}

(cf. Definition [2.20).
Proof of Lemmal2.33. Observe that

[l Mol
sup [ sp  [IMoll=  swp M|
verr | T ] vest it o= (01,02,.00)E[—1,1]?
b
= sup max | Y, M, v, ]7
v=(v1,v2,...,05) €[~ 1,1]" (i€{1,2 """ a}t |j=1 ]J> (87)

b b
= max sup > M;jv;| | = max > ‘MZJ‘
1€{1,2,...,a} v=(v1,v2,....0)E[—1,1]b |j=1 1€{1,2,...,a} j=1

(cf. Definition 2.20). The proof of Lemma [2.38] is thus completed. O
Theorem 2.36. Leta € R, b€ [a,0), d,L € N, | = (lo,l1,...,1;) € N satisfy

d> Z l(l—1 + 1). (88)

k=1
Then it holds for all 0,9 € R? that
sup (| A% o) = A% (@)l

z€la,b]lo
L—-1

< max{1,|al, [b[}[[|0 — I| [H

Z (max{l, o™y IIIﬁIII“")]

" (89)

m=0

< Lmax{L, [al, [b|} (max{1, ]l [19[I[})" [H )| 116 =2l

< Lmax{1, [al, [} ([12[Il + 1)* (max {1, [0, 12/} {16 — 2|l
(cf. Definitions 2.8 and [2.20).

Proof of Theorem[2:38. Throughout this proof let 6; = (0;1,0;2,...,0;4) € RY, j € {1,2}, let 0 € N
satisfy that

0= Zlk(lk—l + 1), (90)

let Wy € Rexlr ke {1,2,... L}, j € {1,2}, and By € Ri*, k € {1,2,..., L}, j € {1,2}, satisfy for
all j € {1,2}, k€ {1,2,..., L} that

T (Wi, Bja), (Wia, Bia), -, (Wyn, Bin))) = (051,02, - - 050), (91)
let ;. € N, ke{1,2,...,L}, j € {1,2}, satisty for all j € {1,2}, k € {1,2,..., L} that
djw = (W1, Bj1), Wiz, Bja), ..., (Wix, Bjx)) € [Xi?:l (Rixli-1 5 RY) T, (92)
let D = [a,b)', let m;; € [0,00), j € {1,2}, k € {0,1,..., L}, satisfy for all j € {1,2}, k € {0,1,...,L}
that
max{1,|al,|b k=0
Y (e N )
max{1, sup,ep [[[(Re(jp)) ()]} k>0,
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and let ¢, € [0,00), k € {0,1,..., L}, satisfy for all k € {0,1,..., L} that
0 k=0
- (94)
sup,ep [[[(Re(dre)) (@) — (Re(do)) (@)l : k>0
(cf. Definitions 211, 2.4], 210, and 20]). Note that Lemma demonstrates that
e1 = sup [[|(Re(¢1,1))(2) — (Re(¢2,1)) (@)l = sup (W2 + Bi1) = (Wapz + Bag )|
jAS]

xzeD

< {SUP I[(Wr1 — W2,1)9€|||} + [[[B11 — Ba il
xeD

Wia — Wai)v (95)
S[ ap (U001 W) |||)] suplell] + 151~ Bl
(S

veRI0\ {0} [l
<o [[[62 = Ozl max{lal, [b[} + [[[B1,x — Baalll < lo[l01 — b2[[| max{]al, 6]} + [[|01 — 62l
= [0+ = Oal| (o max{|al, [b]} + 1) < myo[[|0r = G|l (o + 1) -

Moreover, observe that the triangle inequality assures that for all k € {1,2,..., L} N (1, 00) it holds that

e = sup [[[(Re(¢1,1)) () — (Re(dar)) ()]l

= 2161];:)) m [Wl,k (%lk_l ((Rt(¢1,k—1))($))> + BLk] - |:W2,k (‘ﬁlk_l ((Rt(@,k—l))(x))) + B2,k] ’H
=~ Elelg ‘HWM@C{@ 1 ((Rt(%,kq))(l’))) - W2,k (%lk,l ((Rt<¢2,k71>>(x))> H” + |||91 - ‘92|||-

The triangle inequality hence implies that for all j € {1,2}, k € {1,2,..., L} N (1,00) it holds that
ey < {SUP}H(Wlk—WQk)(mlk (Re(@n-1) ))M

- [sup [ Wi (38, (R = 9 (Relna))) [ | + 16 = e

xeD

< [ sup (III(Wl,k—WQ,k)UIH)] E}égmmlk_l((Rt(¢j7k_1))(x))\}\} + 116, — 65|

veR%—1\{0} o]l

H‘Wfifj,kvm B
sup (T )| fsup [ (Re(61x-1)) (@) = Ri, (Re(b2-0)(@)) ]|
veR'k-1\{0} o]l x€D

Lemma and Lemma 234 therefore show that for all j € {1,2}, k € {1,2,...,L} N (1,00) it holds
that

_|_

e < it 161 — o] [igg 9%, (Re(dy-1))(@)) m] Al

a1 s 198, (Relnse)(@) = o (Rela) o) ]

98
< s 161 = 6l sup Re(@ya) 1| + 1164 — el o
i sl [sup 1 Ru(614-0)0) = (Re(e )|
< 161 = Oalll (Bemy w1+ 1) 4 Lo [[1651 ex-1.
Hence, we obtain that for all j € {1,2}, k € {1,2,..., L} N(1,00) it holds that
er < M1 101 — Oafll (o1 + 1) + Lot 105l ex—1- (99)
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Combining this with (93), the fact that e¢; = 0, and the fact that m; o = my demonstrates that for all
je{1,2}, ke {1,2,...,L} it holds that

er < Wy (r + 1) 100 — Oafll + Lo [[I05—; ] €1 (100)
This shows that for all j = (ju)neqo1,...03: {0,1,..., L} = {1,2} and all k € {1,2,..., L} it holds that
e <, po1 (o1 + D) {100 = Oall + b 11055, [ €1 (101)

Therefore, we obtain that for all j = (ju)neqo,1,...23: {0,1,..., L} — {1,2} and all k € {1,2,...,L} it
holds that

%Siid]j(%WwﬂqmmNMJW%—MD

n=0 m=n+1

1 /T ke (102)
= [l61 — 62 [Z <[ LT GnllOslll) | myon (ln+1)> :
n=>0 m=n+1

Next observe that Lemma 230 ensures that for all j € {1,2}, k € {1,2,..., L} N (1,00), € D it holds
that

< [ sup ”“kik“m]\Haak_1«7e4¢yk_1»<x>)H\+mz%kn|

veRk—-1\{0} o]l
< Lo 10501 ][Ry (Re(jpe1)) (@) ||| + 1116511
< Lo (1051 N (Re(D—1)) () 1| 4 111651
= (l—1 I1(Re(Pj 1)) ()|l + 1) 1116511l
< (a1 + D) [[105]]] < myeoy (o1 + 1) [[605]]]-

R @I = ||| W5 (R, (Re(di))() ) + B

(103)

Hence, we obtain for all j € {1,2}, k€ {1,2,..., L} N (1,00) that
my e < max{l,m; k1 (Il + 1) 105} (104)
Furthermore, note that Lemma assures that for all j € {1,2}, x € D it holds that
1 Re(0.)) @)[F = W22 + Bjall

W]l
< | sup ; 1] =+ 11l Bl
verio\oy V]l

< lo [lI0;1[Hll[ll + 116511 < lo [[16;]| max{]al, 6]} + [[|0; ]
= (lomax{[al, [b[} + 1) [l|6;]l] <m0 (lo + 1) [[I6;]]-

Therefore, we obtain that for all j € {1,2} it holds that

(105)

m;1 < max{1,m;o (lo + 1) [[|6;(]]}- (106)
Combining this with (I04]) demonstrates that for all j € {1,2}, k € {1,2,..., L} it holds that
m; e < max{1l,m; ey (le—1 + 1) [[|6; ][]} (107)

Hence, we obtain that for all j € {1,2}, k € {0,1,..., L} it holds that

k-1

m; e < My [H (I, +1)

n=0

[max{1,[6,I}]". (108)
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Combining this with (I02) proves that for all j = (jn)negoa,..23: 10,1,...,L} — {1,2} and all k €

{1,2,..., L} it holds that
i < 1102 — 6] [Z ([ T (0o 1160, ] (mjn,o [H(zv 1) | masc{L, 16,1} (G + 1)))]

n=0 =n+1 v=0
[ k— [ k-1 n
= myol6s — sl D ( I @ |||93jm|||)] ( [T+ 1) | max{1, H\%\H"}))]
L n=0 Lm=n+1 v=0
et (109)
< myg |61 — G Z( H 1165 Jm\H] [H( 1) maX{LHan\H"})]
=0 Lm=n+1
-1 k-1 k—1
= my [[|61 — o] H N ([ 1T |||93—jm|||] max{1, |||9jn|||"}>] :
n=0 n=0 m=n+1
Therefore, we obtain that for all j € {1,2}, k € {1,2,..., L} it holds that
k-1 1 k-1 k—1
ex < o6 — ol | ]2 + 1) ([ 1T |||93j\H] max{1, \H9j|||"}>]
L.n=0 1 Ln=0 m=n+1
M1 1 k-1
=m0l = ol | [T + 1) (max{1,|||ejm"}|||esj|||’f1")] (110)
Ln=0 1 Ln=0
< kmyg 162 — O] (max{1, [6a]], [l62/I1})"" [H
The proof of Theorem is thus completed. O

Corollary 2.37. Let a € R, b € [a,0), u € [—00,00), v € (u,00], d,L € N, I = (lg,l1,...,1;) € NL+!
satisfy

d> li(le—r +1). (111)

Then it holds for all 0,9 € R? that

sup [ A% (@) — A5 (@)l < Lmax{1, [al, [b[} (2] + 1)* (max{L, [0l 19111 0 — 9l (112)

z€[a,b)lo
(cf. Definitions and [2.20).

Proof of Corollary[2.57 Observe that Theorem and Lemma demonstrate that for all 6,9 € R?
it holds that

sup 145 (2) = A% @l = sup [[[€ua, (A% 00) (%)) = Cuoay (A% 00) (@) ]

x€la,b]lo z€la,b]lo

< s I ) - (L 113
x€|a,b|'0

< Lmax{L, |al, [b[} (2]l + 1)* (max{L, [[O]], [I91lI})" Il — ]l

(cf. Definitions 2.8 22201 and 27)). This completes the proof of Corollary 237 O
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3 Separate analyses of the error sources

In this section we study separately the approximation error (see Section Bl below), the generalization
error (see Section 3.2 below), and the optimization error (see Section 3.3 below).

In particular, the main result in Section B.1] Proposition below, establishes an upper bound for
the error in the approximation of a Lipschitz continuous function by DNNs. This approximation result
is obtained by combining the essentially well-known approximation result in Lemma Bl with the DNN
calculus in Section Z2 above (cf., e.g., Grohs et al. [31,[32]). Some of the results in Section B are partially
based on material in publications from the scientific literature. In particular, the elementary result in
Lemma is basically well-known in the scientific literature. For further approximation results for DNNs
we refer, e.g., to [1I, i3, 4, (LT, 02} (13, [14] (16} 17, 19, 21, 22} 23, 24] 25| 27, 29} 30, BT} 33, 34} 36} 38}, 39, 40
41, [42] (441 147, 491 52) 53] 541 (55, 58|, 59, (60, 61, 162, 63, 64], (65, 66], 67, 69] [70, [72, (73], [74] and the references
mentioned therein.

In Lemmas and B.2T] in Section below we study the generalization error. Our analysis in
Section is in parts inspired by Berner et al. [I0] and Cucker & Smale [I8]. Proposition B.I0 in
Section B.2.1] is known as Hoeffding’s inequality in the scientific literature and Proposition is, e.g.,
proved as Theorem 2 in Hoeffding [37]. The proof of Proposition can be found, e.g., in Cucker
& Smale [I8, Proposition 5] (cf. also Berner et al. [I0, Proposition 4.3]). For further results on the
generalization error we refer, e.g., to [5, B85, 511 [68] [7T] and the references mentioned therein.

In the two elementary results in Section 3.3 Lemmas and B.23] we study the optimization error of
the minimum Monte Carlo algorithm. A related result can be found, e.g., in [0, Lemma 3.5]. For further
results on the optimization error we refer, e.g., to [2, [0 15, 20, 26, 43| 45, 46, 48] and the references
mentioned therein.

3.1 Analysis of the approximation error

3.1.1 Approximations for Lipschitz continuous functions

Lemma 3.1. Let (E, ) be a metric space, let M C E satisfy M # 0, let L € [0,00), let f: E — R
satisfy for allx € E, y € M that |f(x) — f(y)| < Lé(x,y), and let F: E — RU{oo} satisfy for allz € E
that

F(x) = sup [f(y) — Li(z,y)]. (114)
yeM
Then
(i) it holds for all x € E that F(x) < f(x),
(i1) it holds for all x € M that F(z) = f(x),
(#i) it holds for all z,y € E that |F(x) — F(y)| < Lé(x,y), and
(iv) it holds for all x € E that
|F(z) — f(x)] < QL{ienAf/t 5(:c,y)}. (115)

Proof of Lemmal31l First, observe that the hypothesis that for all z € E, y € M it holds that |f(x) —
f(y)| < Lé(x,y) ensures that for all z € E, y € M it holds that

f(@) = fly) — Lo(z,y). (116)
Hence, we obtain that for all x € E it holds that
f(w) 2 sup [f(y) = Lo(w, y)] = F(z). (117)
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This establishes item Next observe that (I14)) implies that for all z € M it holds that
F(z) > f(x) - La(e,2) = (). (118)

Combining this with item [(i)] establishes item [(ii)] In the next step we note that (I14)) and the fact that
for all x € E it holds that F(x) < f(x) < oo show that for all z,y € E it holds that

Plo) = Fy) = |sup () — £8(a,0))| | sup () - £6(0. 0)]

veEM weM

= sup lf(v) — Lé(:c,v) — sup (f(w) - Lé(@/u w)):|
veM weM

< sup [f(v) — Lo(z,v) = (f(v) — Lo(y,v))] (119)
veM

=L [sup(é(y, v) — 5(%”))}

veEM

< L{q}sgja(é(y,x) +d(x,v) — 5(3:,1}))} = Li(z,y).

Combining this with the fact that for all 2,y € E it holds that d(z,y) = d(y,x) establishes item
Observe that item , the triangle inequality, item and the hypothesis that for all x € £, y € M it
holds that |f(x) — f(y)| < Ld(z,y) ensure that for all x € F it holds that

F(&) = f@)] = inf |F() = Fly) + ) = (@)
< inf (1P(@) = F)| +1f0) = £ (@) (120)

ye

< ylélj\fA(QLé(:p,y)) =2L Llen/f/t o(z, y)] .

This establishes item . The proof of Lemma B.1] is thus completed. O

3.1.2 DNN representations for maxima

Lemma 3.2. Let & € N satisfy

1 -1 0
P = 0 1 ). (o] ].((0 1 =1),0) ] € (R*”*x R?) x (R™* x R)) (121)
0 —1 0

(cf. Definition[2.9). Then
(i) it holds for all k € N that L(Jy) = 2,

(ii) there exist unique ¢ € N, k € {2,3,...}, which satisfy for all k € {2,3,...} that ¢po = ©, I(px) =
O(PQ((I)7 jk*l))) and
Prr1 = O ® (Pa(®,Tp1)), (122)

(#1) it holds for all k € {2,3,...} that L(¢x) = k, and
(iv) it holds for all k € {2,3,...} that D(¢y) = (k,2k — 1,2k —3,...,3,1) € N**! and
(v) it holds for all k € {2,3,...}, x = (21,29, ..., 7;) € R® that

(Rt(gbk))(x) = max{xy, Ta,..., Tk} (123)
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(cf. Definitions 218, 210, [2.19, and [2Z10).

Proof of Lemma[32. First, note that, e.g., item (i) in [32] Lemma 3.16] shows that for all £ € N it holds
that
D(3y) = (k, 2k, k). (124)

This establishes item Next note that (I2I) demonstrates that
D(D) = (2,3,1). (125)
Combining this and (I24]) with item (i) in [31], Proposition 2.20] shows that for all & € N it holds that
D(Py(®,3y)) = (k + 2,2k + 3,k + 1) (126)
(cf. Definition 2T6]). Hence, we obtain that for all £ € {2,3,...} it holds that
D(Py(®, Jp_1)) = (k+ 1,2k + 1, k). (127)
Combining this with (I26]) ensures that for all £ € {2,3,...} it holds that
O(Py(®,Tk)) =k +1 = Z(Py(P, Tp—1))- (128)
Moreover, note that (I2I)) and (I26) assure that
Z(®) = 2 = O(Py(®,71)). (129)

Furthermore, observe that item (i) in [31, Proposition 2.6] and (I28) show that for all & € {2,3,...},
¢ € N with Z(¢) = O(Po(P,Tx_1)) it holds that

I(Q/J b (P2<(I)7 jkfl))) =Z(P2(®,TJ-1)) = O(P2(®, 1)) (130)

(cf. Definition [Z19). Combining this and (I29]) with induction establishes item In the next step we
note that (I22) and item (ii) in [31, Proposition 2.6] imply that for all £ € {2,3,...} it holds that

L(Pr41) = L(Dk) + L(Po(d2,Tp-1)) — 1 = L(¢w) + 1. (131)

Combining this and the fact that £(¢2) = 2 with induction establishes item Furthermore, observe
that (122), (I27)), and item (i) in [31, Proposition 2.6] demonstrate that for all k € {2,3,...}, lo, l1,...,lx €
N with D(¢r) = (lo, 11, ..., ;) it holds that

D(¢r1) = D(dp @ (Pa(®,Tp-1))) = (k+ 1,2k + 1,11, b, ..., 1y). (132)

This, item (iii), the fact that D(¢2) = (2,3, 1), and induction establish item Moreover, note that
(I2T) ensures that for all (z1,25) € R? it holds that

+0

o O O

1 -1 .
(Rt<q)))<x17ﬂf2>:(1 1 —1) f):)’tt,3 0 1 (1) +

max{z; — x2,0}
(11 -1) max{zy, 0}
max{—xs,0}

(133)

= max{r; — 2,0} + max{zy, 0} — max{—x,,0}

= max{x; — oa,0} + x5 = max{zy, x2}
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(cf. Definitions 2.4], 2.T0] and 23). Combining this and item (iii) in [32] Lemma 3.16] with [31, Proposi-
tion 2.19] proves that for all k € {2,3,...}, z = (21,22, ...,7k11) € R¥ 1 it holds that

(Rt(PQ((I), jk—l))) (l‘) = ((Rt(q))) (l‘l, ZL‘Q), (Rt(jk_l))(l'g, Ty ... ,IL‘k+1))

134
= (max{zy, zo}, 23,74, ..., Tpp1) € R” (134)

Item (v) in [31), Proposition 2.6] and (I22)) hence show that for all k € {2,3,...}, z = (21,22, ..., 2k41) €
R**1 it holds that
(Re(drs1)) (x) = (Rt(¢k . (P2(¢,jk—1))))($) = ([Re(dn)] o [Re(Pa(®,Tp-1))]) (2)

(135)
= (Rt(¢k))(max{x1, To}, T3, T4, -, Thy1)

This, the fact that ¢ = @, (I33)), and induction establish item The proof of Lemma is thus
completed. O

Lemma 3.3. Let A, € REF=DXF L c 2.3 .}, and C, € RE=DXCh=1 "L c 123 .}, satisfy for all
ke{23,...} that

1 -1 0 0
0 1 0 0
0 -1 0 0 11 -1 0 0 0 0
0 0 1 0 o0 0 1 -1 - 0 0
Ay, = 0 0 -1 0 and Cr = S S (136)
D : PR 00 0 0 O 1 -1
o o0 --- 1
o o0 --- -1

and let ¢, = (Wi1, Br1)s Wk, Be2), . ... Wik, Bri)) € N, k€ {2,3,...}, satisfy for all k € {2,3,...}
that Z(¢r) = O(Pa(¢2, Ip-1)), drs1 = dr @ (P2(¢2,Tp—1)), and

1 -1\ /0
¢ = 0 1), [o]].((01 1 =1),0)] e ((R”*xR’) x (R xR)) (137)
0 -1/ \0

(cf. Definitions 2.9, 218, [2.19, and 218 and Lemmal33). Then

(i) it holds for all k € {2,3,...} that Wy, = Ay,

(i) it holds for all k € {2,3,...}, 1 € {1,2,...,k} that By, = 0 € R2+=0+1

(iii) it holds for all k € {2,3,...}, 1 € {3,4,...,k + 1} that (Wyi14, Bry11) = Wii—1, Bri-1),
(iv) it holds for all k € {2,3,...} that Wii12 = Wi 1Cy1,

(v) it holds for all k € {2,3,...} that (0,0,...,0) # T(¢y) € ({—1,0,1}7@)) and

(vi) it holds for all k € {2,3,...} that || T (¢x)]]| = 1
(cf. Definitions 211 and[2.20).

Proof of Lemmal3.3. First, note that (28), (29), (I34)), and (I37) ensure that for all & € {2,3,...} it holds
that

Py(¢2, Tp—1) = Ma, 1, Ney,y) (138)
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(cf. Definition [Z17)). This and (I37)) imply that for all k£ € {2,3,...} it holds that

Qry1 = O ® (P2(¢2, 31971))
= ((Wk1,Bka), Wia, Bra)s .., Wik, Beg)) ® (‘ﬁAkH, kaH) (139)
= MNaps s WriCryr, Bra), Wi, Bra), - s (Wik, Bri))-
This, (I36), and (I37) establish item [(i)] Next observe that (I37), ([I39), item in Lemma B.2] and

induction prove item Moreover, note that ([I39) establishes items and [(iv)] In addition, observe
that item |(i)| proves that for all £ € {2,3,...} it holds that

1 -1 0 - 0
0 1 0 0
0 -1 0 0 11 -10 0 0 0
0 0 1 0 00 0 1 -1 0 0
WiiCri = A4Chai= g o _1 0 L :
Do : : 00 0 0 O 1 -1
0 0 0 1
0 0 -1
(140)
11 -1 -1 1 0 0 0 O
o0 o 1 -1 0 O 0 O
o0 0o -1 1 0 0 0 O
oo o o0 o0 1 -1 0 O
—]100 0O O 0 -1 1 0 O
oo o o0 o o o0 - 1 -1
oo o o0 o o o0 - =11
Combining this, (I37)), and (I39) with induction proves item |(v)l Next note that item establishes
item . The proof of Lemma is thus completed. O

3.1.3 Interpolations through DNNs

Lemma 3.4. Let ¢, € N, k € {2,3,...}, satisfy for all k € {2,3,...} that Z(¢y) = O(Pa(¢2,Tr_1)),
Pr1 = Pr ® (Pa(d2,Tj—1)), and

1 -1 0
Py = 0 1 ].{o]].((0 1 =1),0)] € (R*”* x R?) x (R™* x R)), (141)
0 —1 0

letd €N, L €[0,00), let M CR? satisfy M| € {2,3,...}, let m: {1,2,...,|M|} = M be bijective, let
f: M =R and F: R — R satisfy for all v = (z1,7,...,24) € R? that

d
Fa)=  max [f(y) - L(Z s — y|)] (142)

y=(y1,Y2---,Yd

let Wy € RCDxd 17, ¢ R™*CD and B, € R*, z € M, satisfy for all z = (21, 2z, ..., 24) € M that

1 0 0 —2Z21
—1 0 0 21
0 1 0 —2
w,=|0 -1 01, B,=| = [, and Wy = (—L -L --. —L) ) (143)
o o --- 1 —2q
o o .- -1 Zq
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let W, € RCAMDxd B c R2MI W, ¢ RMIXCIMD) B, ¢ RMI sqtisfy

Wi B Wy 0 -+ 0 f(m(1))
W, B,, 0o Wy --- 0 m(2

wi=| o= " me=| T | ad B = I :( D
Wi Bimy o 0 - W f(m(|M]))

and let ® € N satisfy © = ¢ @ (Wh,B1), Wa, B2)) (cf. Definitions (23, (218, (216, and (219 and
Lemmal33). Then

(i) it holds that D(®) = (d,2d|M|,2|M| — 1,2|M| = 3,...,3,1) € NMI+2
(1) it holds that L(®) = M|+ 1,
(iit) it holds that |[[T(®)[| < max{1, L,sup,cnqlllzlll, 2[sup.ene [ f(2)[]}. and
(iv) it holds that ' = R.(P)
(cf. Definitions [Z11, [Z20, and [Z10).

Proof of Lemma[3-4 Throughout this proof let U € N satisfy U = (W, B1), W2, Bs)) and let m;; € R,
i€ {1,2,...,|M|}, j € {1,2...,d}, satisfy for all i € {1,2,...,|M|}, 7 € {1,2...,d} that m(i) =
(M;1,M9,...,m;4). Note that Lemma 3.2 establishes that there exist 2, € REMI=DxIMI 93, ¢ R2AMI-T
20, € R(2\M\73)><(2\M\71)’ B, € R2|M|73, RN QB‘MH S R3X5, %|M|,1 c R3, QBM S RIX?’, ’B‘M‘ € R such
that

Pm| = (W1, B1), (Wa, Ba), - - -, (Wiag; Bjwmy))- (145)
Next observe that (I44) establishes that £(V) = 2 and
D(V) = (d, 2d| M|, |IM]). (146)
Moreover, note that item in Lemma ensures that
D(dpm) = (IM[,2lM| — 1,2|M| —3,...,3,1) € NMIHL, (147)

This, the fact that ® = ¢rq @ ¥, ([[48)), and item (i) in [31, Proposition 2.6] show that £(®) = M|+ 1
and
D(®) = (d,2d| M|, 2lM| —1,2lM| = 3,...,3,1) € NMI+2, (148)

This establishes items and . In the next step we note that the hypothesis that ® = ¢ @
(Wi, By), Wh, By)) and ([I43]) ensure that

D = ((W1,B1), (W, Ba), . - -, (Wiaq), Biagy)) ® (W, Br), (We, By))
= ((W1, Bl), (QIHWQ,QIHBQ + %1), (QUQ, ’Bz), e (QB‘M‘, sBV\/”)).

Lemma hence implies that
T(2) = (T (W1, B1))), T ((W1V2, W1 B, + B4))), T (W2, B2))), - T ((Wiag, Biae))))  (150)
(cf. Definition 2ZTT)). Moreover, note that (I44) and item |(i)|in Lemma B3] imply that

(149)

1 -1 0 0 Wy, =W, 0 - 0

0 1 0 0 0 W, 0 0

0 -1 0 0 0 —W, 0 0

0 0 1 0 0 0 W 0

WWVa=10 0 -1 o |™=fo o -w 0 (151)

0 0 - 1 0 0 0 - W
0 0 - —1 0 0 0 - -
CREIMI 1) x| M] CREIMI—1)x (2d|M])
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In addition, observe that (I44)) and items (i) and in Lemma show that

1 -1 0 0 0

0O 1 0 0 0

0 -1 0 0 0

0 0 1 0 0

w162+%1: 0 0 -1 0 BQ+ 0
0 O | 0
o o0 --- -1 0

- ~- g —

EREIM[=1)x|M] cR2IM|—-1 (152)

1 -1 0 0 f(m(1)) = f(m(2)

0 1 0 0 f(m(2))

0 -1 0 0 | [ rom(n)) ~Fm(2))
|0 0 1 0 fm(2)) | f(m(3))
=lo 0o -1 0 : - —f(m(3))

Don T f(m(IM])) :

000 1| Fm(IM]))
0 0 1) Sl )
EREIMI=1)x | M| CR2IMI -1

This and (I5]]) demonstrate that
17 (2,2, 20,8: + 8.))) |
= max{L, [f(m(1)) = f(m(2)[, [f(m@)], [f(m3))],.... [f(m(M]))[} < maX{L,Q{Sup |f(Z)|} }

zeM
(153)
(cf. Definition 2220). Combining this, (IZ4)), and item [(vi)]in Lemma B3 with (I50) proves that
T (@) < max{ [[|7((OV, BO)) || 1|7 (022, W85 + BO)) [ T (D)l
(154)

< m{1 sup ||2[l L, 2 [ sup |f<z>|} }
zeM zeM

This establishes item [(ii)] Observe that (IZ3) ensures that for all z = (21,29,...,24) € R?, 2 =
(21, 29,...,24) € M it holds that

1 0 0 - T —21 T — 2
-1 0 0 . 2 —I 2 —(x1 — 1)
0 1 0 xl —29 To —2 To — 29
Wiz+B, =] 0 -1 0 HEN N A EY E R S
0 0 s 1 d —Zd Tdq —2Zd Tq — 24
0 0 s —1 Zd —Xy Zd —(.Td — Zd)

~
cR(2d) xd
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This and ([I44]) prove that for all x = (2,2, ...,24) € RY 2 = (21, 29,...,24) € M it holds that

max{z; — 21,0}
max{z; —x1,0}
max{zy — 29,0}
Wy (Rog(Wiz + B.)) = (-L —L --- —L) [ max{z —z,,0}

J/

GR?;(M) :
max{zy — 24,0}
max{z; — 4,0}

d

=—L Z (max{z; — z;,0} + max{z; — z, O})] =—L [Z |x; — ZZ|]

i=1

(cf. Definition 2.5). Moreover, note that (I44]) implies that for all z € R? it holds that

Wiz + B
Wiz + By = Wiz i B
Wz + B
Therefore, we obtain that for all # € R? it holds that
Rog(Wiz + Br))
Roa|(Wha + By) = m2d<W1$:—|— Bun)
Ras(Wz + Boiaay)

This, (I44)), and ([I58) imply that for all z = (21, 29, ..., 74) € R? it holds that
(Re(W)) () = Wa(Roappg Wh + By)) + B

Wy 0 -+ 0 Roa(Wiz + Bpgr)
0 W2 s 0 %gd(Wll’ —+ Bm(2))

0 0 tet W2 de(Wll‘ + Bm(|M|))

W, (mZd(Wlx + Bm(l))) f(m(1))
Wy (%Qda/le + Bm(2))) . f(m(2))

Wa (Raa(Wiz + Bugaay)) ) \F(m(IM]))

F(m(1)) = L[> i — my ]
Fm(2)) = L[XL o — ma]

Fom(IM0) — L[S, [ — myaal]

(156)

(157)

(158)

(159)

(cf. Definitions 241 and 2.T0)). This, the fact that ® = ¢rq @ ¥, item in Lemma 3.2 and item (v) in

[31, Proposition 2.6] ensure that for all # = (z1, s, ...,74) € R? it holds that

(Re(@)) () = ([Re(dpma)] © [Re(¥)]) (2) =

= max
i€{1,2,. [ M|}

d
— max z) =L Ti =Yl -
y=(y1,y2---.ya) EM [f( ) (;| ! |>]

This establishes item . The proof of Lemma [3.4] is thus completed.
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f(m(i)) — L (Z |z — mm’|)]

(160)



3.1.4 Explicit approximations through DNNs

Proposition 3.5. Let ¢, € N, k € {2,3,...}, satisfy for all k € {2,3,...} that Z(¢r) = O(Pa(da, Tp_1)),
Orr1 = O ® (Po(p2,Ti—1)), and

1 -1 0
by = 0 1], (o] ]. (0 1 =1),0)] € (R*”*xR?) x (R™* x R)), (161)
0 -1 0

let d € N, L € R, let D C R? be a set, let f: D — R satisfy for all v = (x1,79,...,2q), y =
(y1,Y2,-.-,ya) € D that |f(x) — f(y)| < L[E?:1|:Ei —yil], let M C D satisfy |M| € {2,3,...}, let
m: {1,2,...,|M|} = M be bijective, let W, € RCDxd W, ¢ RI*CD gnd B, € R¥, 2 € M, satisfy for
all z = (z1,29,...,24) € M that

1 0 0 —2Z21
—1 0 0 21
0 1 . 0 —2Z9
wy=|0 -1 - 07, B,=| 2 |, and  Wo=(-L —-L --- —L), (162)
0o 0 --- 1 — 2
o 0 --- -1 24

let W, € RCAMDxd B R2M| W), ¢ RMIXCAMD) B, ¢ RMI satisfy

Wy B Wy 0 -+ 0 f(m(1))
W, B,, o Wy, --- 0 m(2

W1 = :1 s Bl = (2) s WQ = : :2 . : s cmd BQ = f( :( )) s (163)
Wi Bom) o 0 - Wy f(m(M]))

and let ® € N satisfy © = ¢ ® (Wh,B1), Wa, B2)) (cf. Definitions (23, (218, (216, and (219 and
Lemmal33). Then

(i) it holds that D(®) = (d, 2d|M|,2|M| —1,2|M| —3,...,3,1) € NMI+2,
(ii) it holds that ||| T(®)|l| < max{1, L, sup.callllll, 2fsup.eps [ (2)]]}, and
(iii) it holds that

d
sup ’f(x) - (Rt(q))) (x)’ < 2L[ sup (y:( inf Z |x; — yl|>] (164)

zeD a=(z1,22,...,24)ED Y1,Y2,5-,Ya) EM £
(cf. Definitions (211, [2.20, and[210).
Proof of Proposition[3.3. Throughout this proof let F': R — R satisfy for all x = (21,29, ...,74) € RY

that .
F(z) = max [f(y) —L<Z\xi —w\)]- (165)

y=(1,y2...,.yqa) EM

Observe that Lemma [B.4] establishes that
(A) it holds that D(®) = (d, 2d| M|, 2|M| — 1,2|M| = 3,...,3,1) € NMI+2,

(B) it holds that |||7(®)||| < max{1, L, sup,c /| 2]l]; 2[sup,erq | f(2)]]}, and
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(C) it holds for all z € D that (R.(®))(z) = F()

(cf. Definitions 2.TT], 220, 2.4, and 2.10). Note that items and prove items and Next
observe that item and Lemma BJ] (with E < D, § < (D x D 3 ((z1,%2,...,%a), (Y1, Y2, - - -, Yd)) —

Z?:1|xi -yl €10,00)), M~ M, L+ L, f+ [, F <« (D>z+— F(x) € RU{oo0}) in the notation of
Lemma [3]) ensure that

sup | f(2) — (Re(®)) (2)| = sup | f(z) — F(x)|

zeD zeD

d (166)
< 2L[ sup ( inf Z|:pz —yi|>].

r=(x1,22,...,x4)ED y=(y1,Y2,--,Yd) EM =1

The proof of Proposition is thus completed. O

3.1.5 Implicit approximations through DNNs

Corollary 3.6. Letd, 0 € N, L € R, let D C R? be a set, let f: D — R satisfy for allx = (1,2, ..., 14),
y=(y1,Y2,---,ya) € D that |f(x)— f(y)| < L[Zle |;1:i—yl-|], let M C D satisfy IM| € {2,3,...}, and let

L= (lo) 11, pan) € N2 satisfy | = (d, 2d| M|, 2| M|=1,2| M| =3, ..., 3,1) and S0 (1 41) <
0. Then there exists 0 € R® such that [||0]|| < max{1, L, sup,c p|l|2]ll, 2[sup,enq | f(2)]]} and

supyf<x>—<m9;7w><x>»s2L[ sup ( inf Z\xi—y@-\)] (167)

zeD $:($17$2 _____ $d)€D y:(y17y2 ~~~~~ yd)eM i=1

(¢f. Definitions[2.20 and [Z38).

Proof of Corollary[3.4. Observe that Proposition B.5 and item in Lemma [3:2] ensure that there exists
® € N such that

(A) it holds that D(®) = I,
(B) it holds that [[[7(®)|[| < max{1, L, sup.epllz[ll, 2[sup.cpq | f(2)I]}, and
(C) it holds that

sup ‘f(a:) — (Rt(CID))(x)‘ < 2L sup < inf Wy Z |z; — yJ)] (168)

zeD [x(azl,xg ..... zg)eD \ ¥Y=1,y2,-Ya)€ —

(cf. Definitions 2.9 2111 220, 2.4] and [Z10). Combining this with Corollary establishes (IG7). The
proof of Corollary is thus completed. O

Corollary 3.7. Let d,0 € N, L € R, u € [~00,0), v € (u,00], let D C R? be a set, let f: D — [u,]
satisfy for all x = (x1,x9,...,24), ¥y = (Y1,Y2,...,ya) € D that |f(x) — f(y)] < L[Zfil |x; — ylﬂ, let
M C D satisfy M| € {2,3,...}, letl = (lp, L1, . .., lamg41) € NMIF2 satisfy | = (d, 2d| M|, 2| M|—1, 2| M|—
3,...,3,1) and 0 > ZLA:AIHI l(ly—1+1). Then there exists 0 € R® such that |||0]]] < max{1, L, sup,cvl|z]ll,
2[sup.eum [f(2)[]} and

d
sup!f<x>—%?;’<x>}s2LL( sup ( infyd)eM;\x@-—y@-\)] (169)

zeD 1,22, Tg)ED Y=(Y1,Y25-s

(cf. Definitions[2.20 and [Z38).
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Proof of Corollary[3.7] First, observe that Corollary B.6] (with d <~ d, 9+ 0, L« L, D« D, f < (D>
x— f(z) € R), M+ M, [ + [ in the notation of Corollary B.6)) ensures that there exists § € R? which
satisfies [[|6]| < max{1, L, sup.cm ||z, 2[sup.erq [f(2)]]} and

d
su z) — (A ()] < 2L su inf T — Yi 170
xeg ’f< ) ( ' )< )} L}(a}l,a}z,.p.,ard)eD <y=(y1,y2 ..... Ya)EM Z ‘ y ‘>] ( )

=1

(cf. Definitions and 2.8). The assumption that for all x € D it holds that u < f(z) < v and
Lemma hence imply that

sup | f(z) — A0 (x)| = sup 1€t (f(@)) = Coon (AL ) (@)

zeD

d (171)
Ssup’f(:p)—((/l/_(’éivoo)(:p)} < 2L[ sup ( inf Z|xz—y,|>]

zeD $:($17$2 ..... l"d)eD y:(y17y2 ~~~~~ yd)eM i=1

(cf. Definition 27]). The proof of Corollary B is thus completed. O

Corollary 3.8. Letd,0,£ € N, L € R, u € [~00,00), v € (u,00], let D C R? be a set, let f: D — ([u,v]N
R) satisfy for all x = (x1,x9,...,24), Yy = (Y1, Y2, ---,Ya) € D that |f(x) — f(y)| < L[Z?Zl |z — yil], let
M C D satisfy |IM] € {2,3,...}, let I = (lo, Iy, ...,le) € N*T! satisfy for all k € {2,3,...,|M]|} that £ >
IMI+1, 8 Ll +1) €0, lg =d, le = 1,1y > 2d|M|, and I, > 2|M|—2k+3, and assume for alli € NN
(M|, L) that I; > 2. Then there exists 0 € R® such that |||0]]] < max{1l, L,sup,c|||z]lls 2[sup,en | F(2)]] }
and

d
su z) — N0 (z)| < 2L su inf T — Y 172
l‘eg ’f( ) ’ ( )} [$($17$27?7$d)6D (y:(ylny ~~~~~ yd)eM Zzl | y |>] ( )
(cf. Definitions and [2.8).

Proof of Corollary[3.8. Throughout this proof let [ = (lo, I1, ..., [r41) € NMF2 satisfy [ = (d, 2d|M],
2IM|—1,2IM|—3,...,3,1). First, note that Corollary B.17 (with d < d, ? < ZLAZAI‘H le(lk—1+1), L < L,
uu, v+ v, D+ D, f+ fi, M+ M, <« [in the notation of Corollary B.7)) establishes that there
exists 7 € RE1 w(1+1) which satisfies lInlll < max{1, L, sup,c ull||ll; 2[sup,eq | f(2)]]} and

d
sup | f(z) — A" (2)| < 2L sup inf T — Yi 173
wplf@) il <on| s (ot S el (173)
(cf. Definitions and [Z8)). Next observe that Lemma 230 (with u < u, v v, L + M|+ 1, £ + £,

d — ZLJ\:AlHl [k<[k71 + 1), 0« D, 0« n, (lo, ll, cey ZL) <— ([0, [1, R [|M|+1)7 ([0, [1, cey [2) <— (lo, ll, R lg),
in the notation of Lemma E30) shows that there exists # € R? such that

0Nl < max{1, [lmlll}  and AT = AL (174)
Combining this with (I73]) proves (I2). The proof of Corollary B8 is thus completed. O

Corollary 3.9. Let d,0, N € N, L € R, u € [-00,00), v € (u, 0] satisfy 0 > 2d*(N +1)?+5d(N +1)* +
S(N +1)% et ||-]]: RY — [0,00) be the standard norm, let p = (p1,pa,- ... pa), ¢ = (41,42, - - .. qa) € R
satisfy for all v € {1,2,...,d} that p; < ¢; and maxjc1 0. a1(q; —pj) > 0, let D = H?Zl[pi, qi], let M C D

satisfy
Ik, kg, ... ke € {0,1,...,N}:
M=dy= ..., eRd:(' Lo dbg=p b >} "
{y (Y1, 92 Ya) V'LE{1,2,...,d}1yi:pi+%(Qi_pi) (175)
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and let f: D — ([u,v]NR) satisfy for all z,y € D that |f(z)— f(y)| < L|jz —y||. Then there exist § € R®,
£eN, 1= (lo, i, 1) € N such that ||0]]| < max{1, L, [llpll, llall, 2lsup.ep | f ()T}, Spmy el +
1) <0, and

sup‘f ,/V(” %[ZVL pz] (176)

xzeD
(cf. Definitions[2.20 and[Z.8).
Proof of Corollary[3.9. Throughout this proof let [ = (lo,l1,... . [pm+1) € NMI+2 gatisfy | = (d, 2d| M|,
2IM| —1,2|M]| —3,...,3,1). Observe that the fact that |M| < (N + 1)4, the fact that for all n € N it
holds that 37" | (2i — 1) = n?, and the fact that for all n € N it holds that Y i% = MG < (’”3”3

ensure that
|M|+1

> h(limr + 1)
k=1

IM|—1 M|
= d(2d| M) + 2d|M|2IM| = 1) + | D (20 +1)(2i — 1) | +2d| M| + | ) (2i — 1)]
i=1 =1
number?)?weights numbe;gf biases
1 (177)
= 2d°| M| + 4d|M[” = 2d| M| + | D (4i® = 1)| + 2d| M| + |[M[?
=1
|IM|-1
= 2d?| M|+ (4d + 1)|M|* + 4 Z i2] — (M| =1)
=1

<24\ M|+ 5AM? + EM|P < 2d°(N + 1) + 5d(N +1)* + 2(N +1)* <.

In addition, note that the hypothesis that for all z,y € D it holds that |f(z) — f(y)| < L||z — y|| implies
that for all x = (1, z9,...,24), ¥y = (Y1, Y2, ..., ya) € D it holds that

[f(z) = f(y)l SL[ZI%—%I]- (178)

Furthermore, observe that the hypothesis that max;jeqi 2. 4 (¢; — pj) > 0 ensures that |M| > 2. Com-
bining this, (IT7), and (I78) with Corollary B establishes that there exists § € R® such that [[|0]|| <

max{1, L, sup_ ¢ v lll2[ll, 2[sup.epq [ f(2)[]} and

d
sup | f(z) — %%l(:p)} < 2L[ sup - ( inf i ; |x; — y,|>] (179)

zeD 2=(21,22,...,T4 y=(y1,Y25--Yd)

(cf. Definitions and 2Z8). Next note that the hypothesis that M C D =[], [p;, ¢;] implies that for
all z € M it holds that

1zl < max{|[[pl[l, lllalll}- (180)
Therefore, we obtain that

Mol < mese {1, 2.l 2 s 71| b < maox {2l a2 sp o] . s

In the next step we note that the fact that for all N € N, r € R, s € [r,00), © € [r,s]| there exists
k€ {0,1,..., N} such that [z — (r + £(s —r))| < £ ensures that for all « = (21,25,...,24) € D there
exists y = (Y1, Y2, - - -, Ya) € M such that

d d
1
i — Yl < 5% i — Dil | - 182
;llx il 2N[;1|q pl] (182)
Combining this, (I'77), (I'79), and (I81]) establishes (I76). The proof of CorollaryB.9is thus completed. [
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3.2 Analysis of the generalization error
3.2.1 Hoeffding’s concentration inequality

Proposition 3.10. Let (2, F,P) be a probability space, let N € N, ¢ € [0,00), ay,as,...,ay € R,
by € [a1,00), by € [ag,00), ..., by € [an,0), assume S (b, — an)? # 0, and let X2 Q — [an, by),
n e {1,2,...,N}, be independent random variables. Then

1 —2e2N?
P(N > 5) < 2exp (Zﬁfl(bn - an)2>. (183)

3.2.2 Covering number estimates
Definition 3.11 (Covering number). Let (E, ) be a metric space and let r € [0, 0c]. Then we denote by
C(es),r € NgU {00} (we denote by Cg, € Ny U {oco}) the extended real number given by

> (X~ E[X.))

CEoyr = inf({n eNg: BACE: [(|A|<n)A(VzeE:Jae A:d(a,x) < T)])} U {oo}) (184)

Proposition 3.12. Let (X, ||-||) be a finite-dimensional Banach space, let R,r € (0,00), B = {6 €
X: |0l < R}, and let 6: B x B — [0, 00) satisfy for all 0,9 € B that 6(0,9) = ||6 —¥||. Then

1 r>R
C(Bvé)ﬂ" < [ﬁ]dim(X) r <R (185)

(cf. Definition [311).

3.2.3 Measurability properties for suprema

Lemma 3.13. Let (E,&) be a topological space, assume E # 0, let E C E be an at most countable
set, assume that E is dense in E, let (0, F) be a measurable space, let f,.: Q — R, x € E, be F/B(R)-
measurable functions, assume for all w € Q that E 3> x — f.(w) € R is a continuous function, and let
F: Q — RU{oo} satisfy for all w € Q that F(w) = sup,cp fz(w). Then

(1) it holds for all w € Q that F(w) = sup,cg fo(w) and
(i1) it holds that F is an F /B(R U {oo})-measurable function.

Proof of LemmalZ13 Note that the hypothesis that E is dense in E implies that for all ¢ € C'(E,R) it
holds that

sup g(z) = sup g(z). (186)

zeFE zeE

This and the hypothesis that for all w € € it holds that £ 5 = +— f,(w) € R is a continuous function
show that for all w € €2 it holds that

F(w) = sup fi(w) = sup f.(w). (187)

el z€E
This establishes item (i) Next note that item and the hypothesis that for all x € E it holds that
fo: Q@ = R is an F/B(R)-measurable function demonstrate item [(ii)] The proof of Lemma is thus
completed. O

Lemma 3.14. Let (E,0) be a separable metric space, assume E # 0, let (Q, F,P) be a probability space,
let LR, andlet Z,: Q — R, x € E, be random variables which satisfy for all x,y € E that E[|Z,]] < oo
and |Z, — Z,| < Lé(x,y). Then
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(1) it holds for all z,y € E, n € Q that |(Z.(n) — E[Z,]) — (Z,(n) — E[Z,])| < 2Lé(x,y) and
(11) it holds that Q > 1 — sup,cp|Z.(n) — E[Z,]| € [0, 00] is an F /B([0, o00])-measurable function.

Proof of Lemma[3.1]. Note that the hypothesis that for all z,y € E it holds that |Z, — Z,| < Ld(x,y)
shows that for all z,y € F, n € € it holds that

(Zo(n) = ElZ:]) = (Zy(n) = E[Z,])] = [(Z:(n) = Z,(n)) + (E[Z,] = E[Z,])]
< |Za(n) = Zy()| + [E[Z.] = E[Z,]| < Ld(x,y) + |[E[Z,] — E[Z,]] (188)

This proves item Next observe that item implies that for all n € € it holds that £ > = —

|Z.(n) —E[Z,]| € R is a continuous function. Combining this and the hypothesis that E is separable with
Lemma establishes item The proof of Lemma [3.14] is thus completed. O

3.2.4 Concentration inequalities for random fields

Lemma 3.15. Let (E,0) be a separable metric space, let e, L. € R, N € N, 21,29, ...,2y € E satisfy
E C Uf\il{x € E:2L6(x,2) < e}, let (0, F,P) be a probability space, and let Z,: Q@ — R, x € E, be
random variables which satisfy for all x,y € E that |Z, — Z,| < Lé(x,y). Then

=

P(sup,cp|Zs| > €) Z |ZZz| > 5 (189)

(cf. Lemmal313).

Proof of Lemma[314. Throughout this proof let By, B, ..., By C E satisfy for all i € {1,2,..., N} that
B, = {x € E: 2Ld(x,z) < €}. Observe that the triangle inequality and the hypothesis that for all
x,y € E it holds that |Z, — Z,| < Li(x,y) show that for all i € {1,2,..., N}, x € B; it holds that

| Zo| = | Ze — 2oy + 22| <2y — Z,| + | 22| < Lo(x,2) + | 22| < % + 12z (190)
Combining this with Lemma proves that for all i € {1,2,..., N} it holds that

P(supxeBi\Zm\ > 5) < ]P’(%

zil Z ) = P(‘Zzi‘ = %) (191)
This and Lemma establish that

P(sup,celZel > £) = P(sup,c gyl %] > ¢

N——

(Uz]\il {SupxeBi|Zﬂc| = 5})

3 S (192)
<D B(supen 2 2 €) < D B(1Z.| 2 5).
i=1 —
This completes the proof of Lemma [3.15] -

Lemma 3.16. Let (E,0) be a separable metric space, assume E # (), let e, L € (0,00), let (Q, F,P) be
a probability space, and let Z,: Q) — R, x € E, be random variables which satisfy for all x,y € E that
\Z, — Z,| < Lé(x,y). Then

1 €
[C(Eﬁ),ﬁ} P<SqueE|Z:v| >¢e) < SqueEP(|Z:v| > 5)' (193)

(cf. Definition[T11 and Lemma[313).
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Proof of LemmalZ168. Throughout this proof let N € N U {oo} satisfy N = C(k), 5, assume without

loss of generality that N < oo, and let 2z, 29,..., 2y € E satisfy E C Y {z € E: d(z,2) < 57} (cf.
Definition B.IT]). Observe that Lemma and Lemma establish that

N
BlopucplZo] 2 9) < D B(12:] 2 §) < N supuer P20 2 1)) (194)
This completes the proof of Lemma B.10 O

Lemma 3.17. Let (E,0) be a separable metric space, assume E # (), let e, L € (0,00), let (2, F,P) be
a probability space, and let Z,: Q) — R, x € E, be random variables which satisfy for all x,y € E that
E[|Z.|] < o0 and |Z, — Z,| < Lé(x,y). Then

71 €
[C(Eﬁ)’ﬁ] P(sup,cp|Z: — E[Z,]| > €) < sup,cp IP)(|Z$ —E[Z,]| > 5). (195)

(cf. Definition[311) and Lemma [3.17).

Proof of Lemma[3.17. Throughout this proof let Y,: @ — R, = € E, satisty for all x € E, n € § that
Y.(n) = Z,(n) — E[Z,]. Observe that Lemma B.I4] ensures that for all z,y € E' it holds that

Y, = Y, < 2L0(x,y). (196)

This and Lemma B.10 (with (F,6) < (F,0), € < ¢, L <= 2L, (Q, F,P) < (0, F,P), (Zs)ser < (Ya)zer
in the notation of Lemma B.10) establish (I95). The proof of Lemma B.17 is thus completed. O

Lemma 3.18. Let (E,0) be a separable metric space, assume E # (), let M € N, ¢, L, D € (0,00),
let (2, F,P) be a probability space, for every x € E let Yy 1,Yz0,..., Yot Q — [0, D] be independent
random variables, assume for all xv,y € E, m € {1,2,..., M} that |Yym — Yym| < Lé(x,y), and let
Zy: Q2 —[0,00), x € E, satisfy for all x € E that

1

M

m=1

(197)

T

Then
(i) it holds for all x € E that E[|Z,|] < D < o0,
(11) it holds that Q > n — sup,c|Z.(n) — E[Z,]| € [0, 00] is an F /B([0, 00])-measurable function, and

(iii) it holds that

—e2M
Bloupscpl 2o — B2 2 2) < e v Sy ) (198)
(cf. Definition[311).

Proof of Lemma 318 First, observe that the triangle inequality and the hypothesis that for all z,y € F,
m € {1,2,..., M} it holds that |Y, ., — Y, | < Lo(z,y) imply that for all z,y € E it holds that

1 M M 1 M
|Zx_Zy| = ‘M mzlyx,m _M leY;/,m M mz:l(y
v (199)
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Next note that the hypothesis that for allz € E, m € {1,2,..., M}, w € it holds that |Y, ,,(w)| € [0, D]
ensures that for all x € E it holds that

1| & 1| &
E[Z:|] =E| 21D Yem|| = 77| 2 E[em]| <D < oo (200)
m=1 m=1

This proves item [(i)} Furthermore, note that item (I99), and Lemma .14 establish item Next
observe that (I97) shows that for all z € E' it holds that

M M
E Ym,m E Y:v,m
m=1 m=1

Combining this with Proposition (with (2, F,P) < (4, F,P), N < M, € < 5, (a1, az,...,an) <

(0, 0,..., 0), (bl, bg, e bN) — (D, D, e D), (Xn)ne{l,Q ..... N} & (Yx,m)me{l,Q ..... M} for x € E in the nota-
tion of Proposition B.I0) ensures that for all x € E it holds that

P(|Z, —E[Z]| > %) < 26Xp<M> = 2exp<_€2M). (202)

M

1 1 1
2. ~ElZ)| = | ~E|- ‘ =+ 1(Yx,,ﬂ,b —E[Yam])|. (201)

m=

M D? 2D?

Combining this, (I99), and 200) with Lemma BT establishes item The proof of Lemma is
thus completed. O

3.2.5 Uniform estimates for the statistical learning error

Lemma 3.19. Let (E,d) be a separable metric space, assume E # (), let M € N, e, L, D € (0,00), let
(Q, F,P) be a probability space, let X, m: Q2 — R, z € E, m € {1,2,..., M}, and Y,,,: @ - R, m €
{1,2,..., M}, be functions, assume for all v € E that (Xym, Ym), m € {1,2,..., M}, are i.i.d. random
variables, assume for all x,y € E, m € {1,2,..., M} that | X, .m—Xym| < Lo(z,y) and | Xy m — Y| < D,
let €,: Q — [0,00), x € E, satisfy for all x € E that

M

Z‘Xm,m - Ym|2

m=1

1

i : (203)

and let £, € [0,00), x € E, satisfy for allz € E that £, = E[|X,1—Y1|?]. Then Q 3 w > sup,cp|€.(w) —
E:| €[0,00] is an F /B([0, 0c])-measurable function and

—2M
P(sup,ep|€: — &f > €) < 2C(5,4), .= exp <W) (204)

(cf. Definition[311).

Proof of Lemma[ZI9. Throughout this proof let &, ,,: Q@ — [0, D?], z € E, m € {1,2,..., M}, satisfy for
all z € E, me {1,2,..., M} that
Evm = | Xom — Yol*. (205)

Observe that the fact that for all x;, x5, y € R it holds that (z1—y)*—(22—y)? = (z1—22)((x1—y)+(22—y)),
the hypothesis that for all v € £, m € {1,2,..., M} it holds that | X, ,, — Y},| < D, and the hypothesis
that for all z,y € £, m € {1,2,..., M} it holds that | X, ,,, — X, ,»| < Lé(z,y) imply that for all z,y € E,
m € {1,2,..., M} it holds that

|(g)x,m - éay,m| - ’(Xx,m - Ym)2 - (Xy,m - Ym)2’ - |Xx,m - XymH(Xmm - Ym) + (Xy,m - Ym)}

(206)
S |Xa:,m - Xy,m| (|Xa:,m - Ym| + |Xy,m - Ym|) S 2D|Xaz,m - Xy,m| S 2LD5(:E’ y)
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In addition, note that (203) and the hypothesis that for all x € E it holds that (X,,,,Y,,), m €
{1,2,..., M}, are i.i.d. random variables show that for all z € E it holds that

1 M M
- mzl B[ Xy m — = [Z 536] . (207)

1
Furthermore, observe that the hypothesis that for all z € E it holds that (X, ,,,Y, ) me{1,2,..., M},
are i.i.d. random variables ensures that for all x € FE it holds that éax,m, m € {1,2,..., M}, are ii.d.
random variables. Combining this, ([200), and (207) with Lemma BI§ (with (E, 5) (E,6), M < M,
€ £ g, L <« 2LD7 D « D27 (Q,f,]P)) < (Q F ]P)) ( J:m)er me{1,2,...M} — ((g)x,m)er,mE{l,Q ..... M}y
(Zs)zer = (€;)zcp in the notation of Lemma [B.I8) establishes (204]). The proof of Lemma is thus
completed. O

ZE|XM—Y1

Lemma 3.20. Let d,0,M € N, R,L,R,e € (0,00), let D C R? be a compact set, let (0, F,P) be a
probability space, let X,,,: Q@ — D, m e {1,2,..., M}, and Y,,: Q@ = R, m € {1,2,..., M}, be functions,
assume that (Xp,,Yn), m € {1,2,..., M}, are i.i.d. random variables, let H = (Hp)ge|-r,rp: [—R, R]° —
C(D,R) satisfy for all 0,9 € [-R,R]°, x € D that |Hy(x) — Hy(z)| < L|||0 — V|||, assume for all 6 €
[—R, R, m € {1,2,..., M} that |Ho(X,,) — Yiu| <R and E[|Y1|*] < o, let £: C(D,R) — [0,00) satisfy
for all f € C(D,R) that £E(f) = E[|f(X1) — V1], and let €: [-R,R]® x Q — [0,00) satisfy for all

0 €[-R,R]°, weQ that
)= [DHa(Xm(w)) Yl

(cf. Definition[Z20). Then Q2 > w = suPye(_p gpl€(0,w) — E(Hy)| € [0, 00] is an F /B([0, ool)-measurable

function and
2LRR]" —2M
P(supee[_RvRMQf(ﬁ) —E(Hp)| >¢) < Qmax{l, [3 ERR] }exp( ° ) . (209)

(208)

2R4

Proof of Lemmal320. Throughout this proof let B C R? satisfy B = [-R, R|°> = {6 € R®: |||0]]]| < R}
and let 0: B x B — [0, 00) satisfy for all 6,9 € B that

6(0,9) = [[I6 = Il (210)

Observe that the hypothesis that (X,,,Y,,), m € {1,2,..., M}, are i.i.d. random variables and the hy-
pothesis that for all § € [—R, R]° it holds that Hy is a continuous function imply that for all § € B it holds
that (Hyg(X,),Ym), m € {1,2,..., M}, are i.i.d. random variables. Combining this, the hypothesis that
for all 0,9 € B, x € D it holds that |Hy(z) — Hy(z)| < L|||6 — J|||, and the hypothesis that for all § € B,
m € {1,2,..., M} it holds that |Hy(X,,) — Yin| < R with Lemma B.I9 (with (E,9) < (B,0), M < M,
e+ L« L D+ R, (UFP) « (UFP), (Xemermeiz..my < (Ho(Xn))oeB me(12,...13,
(Ym)me{l,Q ..... M} < (Ym)me{1,2 ..... M} (€1)acr ((Q > w = €(0,w) €0, OO)))geB, (Ex)ece — (E(Hy))ocn
in the notation of Lemma [B10) establishes that Q > w — supyep|€(d,w) — E(Hp)| € [0,00] is an
F/B([0, 00])-measurable function and

—e*M
P(supgep|€(0) — E(Hy)| > €) < 2C(B,6), s exp( SR ) (211)

(cf. Definition BIT]). Moreover, note that Proposition B2 (with X < R® ||| «+ (R* 3 z — |||z]|] €
[0,00)), R<+ R, r + B + B, § < ¢ in the notation of Proposition B.12) demonstrates that

IR
32LRR]"
6(375)78571 S max{l, |: - :| } (212)
This and (2I1]) prove (209). The proof of Lemma B.20 is thus completed. O
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Lemma 3.21. Let 0, ML € N, u € R, v € (u,0), R € [1,00), &,b € (0,00), | = (lp,1y,...,1;) € N+
satisfy I, = 1 and Sy_ k(ls—1 + 1) <0, let D C [=b,b]® be a compact set, let (Q, F,P) be a probability
space, let Xp: Q@ — D, m e {1,2,..., M}, and Y,,: Q — [u,v], m € {1,2,..., M}, be functions, assume
that (X, Ynm), m € {1,2,..., M}, are i.i.d. random variables, let £: C(D,R) — [0,00) satisfy for all
f € C(D,R) that E(f) = E[|f(X1) — Y1|%], and let €: [-R, R]® x Q — [0, 00) satisfy for all 0 € [-R, R]°,
w € () that

[2{:|u4”91 linﬁu)F] (213)

(cf. Definitions2.20 and[Z8). Then Q3 w — suppe;_p gp| €0, w)—E (A p)| € [0,00] is an F /B([0, 0])-
measurable function and

P(supger_ g gp |€(0) — 5(%?13”[’)} > <)

PR —u)]” —¢? 214
a1 [BEmL BN+ DR =) M 1)
6 3o~y
Proof of Lemma[3.21. Throughout this proof let £ € (0, c0) satisfy
&= Lmax{1,b) (1] + )R 15

Observe that Corollary 237 (with a@ <= —b, b <= b, u < u, v <= v, d <= 0, L + L, | < [ in the notation of
Corollary 237) and the hypothesis that D C [—b, b]"® show that for all 6,9 € [~ R, R]° it holds that

sup [ A0 () = A0 (@) < sup A0 (@) = AL ()]
z€D z€[—b,b]l0
< Lmax{1,} (Il + 1)* (max{1, 6]}, I} ol (216)
< Lmax{1,0} (|l + D*R* |6 — 9]l = £[l|6 - 2]l
Furthermore, observe that the fact that for all € R?, 2 € R it holds that .4;%/(x) € [u,v] and the

hypothesis that for all m € {1,2,..., M}, w € Q it holds that Y,,(w) € [u,v] demonstrate that for all
0 € |[—R,R°, me{l,2,..., M} it holds that

[ A (Xim) = Yo S0 — . (217)
Combining this and ([2I6]) with Lemma B.20] (with d <= lp, 0 <=0, M < M, R« R, L + £, R < v —u,
E<4 ¢, D + D (Q f IP)) (Q f IP)) ( m)m€{1,2 _____ M} <— (XTTL)mE{LQ _____ M} (Ym)mE{l,Q _____ M} <— ((Q S W
Yi(w) € R))m€{1,2 77777 my, H + ([-R,RP° 3 0 = A 2|p € C(D,R)), £ < &, € < € in the notation of
Lemma [320) establishes that Q 3 w +— supee[_RvR}a}G(ﬁ,w) — E(A2p)| € [0,00] is an F/B([0, oc])-

measurable function and

P(suppe_p rp | €0) — E(A5D)| > €) §f2nmx{1,[§g§§£3:39}0}exp(§é§§%%z). (218)

The proof of Lemma [B.2T] is thus completed. O

3.3 Analysis of the optimization error
3.3.1 Convergence rates for the minimum Monte Carlo method

Lemma 3.22. Let (2, F,P) be a probability space, let 9, N € N, let [|-]| : R® — [0,00) be a norm, let
HCR be a set, let ) € 9, L,e € (0,00), let €: Hx Q=R be a (B($H) ®F)/B(R)-measurable function,
assume for all z,y € 9, w € Q that |€(z,w) — E(y,w)| < L||z—vyl, and let ©,,: Q@ — H, n € {1,2,..., N},
be i.1.d. random variables. Then

P([minnc iz €(0,)] — €0) > ) < [P(16: — 0]l > £)]¥ < exp(~NB(|0r — 9] < 5)). (219
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Proof of Lemmal322. Note that the hypothesis that for all z,y € $, w € Q it holds that |€(x,w) —
¢(y,w)| < L||x — y|| implies that
[minne{l,z ..... N} e(@nﬂ — €)= MiNyef12.. N} [€(0,) — ¢(V)]
S minn€{1,2 ..... N} |€(@n) - 6(19)| S minn€{1,2 ..... N} [LH@n - 19”] (220)
:L[minn€{1,2 ..... N} ||@n_19|”

The hypothesis that ©,,, n € {1,2,..., N}, are i.i.d. random variables and the fact that Vo € R: 1 —x <
e~ " hence show that

.....

1k (221)

P([minnep s, ) €(0,)] — €(0) > ) < P(L[minyep
3180 =9 > ) = [P([|©1 = d]| > {)
= [1-P(loy ~ 9| < §)]" < exp(-NP(|€: ~ 9] < 5)).

-----

= ]P)( minne{l,z

The proof of Lemma is thus completed. O

3.3.2 Continuous uniformly distributed samples

Lemma 3.23. Let (2, F,P) be a probability space, let 9, N € N, a € R, b € (a,00), ¥ € [a,b]°, L,e €
(0,00), let €: [a,b]° x Q2 — R be a (B([a,b]’) @ F)/B(R)-measurable function, assume for all x,y € [a,b]°,
w € Q that |€(r,w) — E(y,w)| < L|||z — yll|, let On: Q@ — [a,b]°, n € {1,2,..., N}, be i.i.d. random
variables, and assume that ©1 is continuous uniformly distributed on [a,b]® (cf. Definition[Z20). Then

P([min,eqi2,. 1 €(0,)] — €(W) > ¢) <exp (—N min{l, ﬁia)a}) (222)

Proof of LemmalZ2Z3. Note that the hypothesis that ©; is continuous uniformly distributed on [a, b]°
ensures that

P(10: 0]l < £) > P(l161 — (.a.....a)[| < £) = P([6: — (@a.....a)]]| < min{5,b—a})

Combining this with Lemma B:22 proves ([222]). The proof of Lemma B.23]is thus completed. O

4 Overall error analysis

In this section we combine the separate error analyses of the approximation error, the generalization error,
and the optimization error in Section 8l to obtain an overall analysis (cf. Theorem [0 below). We note that,
e.g., [0, Lemma 2.4] ensures that the integral appearing on the left-hand side of ([238) in Theorem
and subsequent results (cf. (25]I]) in Corollary L6 (259) in Corollary A7 (269) in Corollary .8, and
[274) in Corollary LI0]) is indeed measurable. In Lemma [L1] below we present the well-known bias-
variance decomposition result. To formulate this bias-variance decomposition lemma we observe that
for every probability space (€2, F,P), every measurable space (5,S), every random variable X: Q — S|
and every A € § it holds that Px(A) = P(X € A). Moreover, note that for every probability space
(Q, F,P), every measurable space (5, S), every random variable X : 2 — S, and every S/B(R)-measurable
function f: S — R it holds that [ |f[*dPx = [|f(z)]?Px(dz) = [, |f(X(w))]?P(dw) = [, [f(X)]*dP =
E[|f(X)[?]. A result related to Lemmas 1] and B2l can, e.g., be found in Berner et al. [10, Lemma 2.8].
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4.1 Bias-variance decomposition

Lemma 4.1 (Bias-variance decomposition). Let (€2, F,P) be a probability space, let (S,S) be a measurable
space, let X: Q — S and Y : Q — R be random variables with E[|Y'|?] < oo, and let £: L*(Px;R) — [0, 00)
satisfy for all f € L2(Px;R) that E(f) = E[|f(X) — Y|?]. Then

(i) it holds for all f € L*(Px;R) that
E(f) =E[|f(X) - E[Y|X][*] + E[|Y — E[Y[X]], (224)
(ii) it holds for all f,g € L2(Px:R) that
E(f) - E(g) = E[|f(X) — E[Y|X]]"] - E[|g(X) — E[Y|X]|], (225)
and
(iii) it holds for all f,g € L*(Px;R) that
E[|f(X) - EY[X]]"] = E[|lg(X) - EY [X]]"] + (£(f) — £(9))- (226)

Proof of Lemma[{.1 First, observe that the hypothesis that for all f € £L2(Px;R) it holds that £(f) =
E[|f(X) — Y|?] shows that for all f € £2(Px;R) it holds that

EN=E[f(X) - Y] =E[|(f(X) ~ [YlX]) + (E[Y|X] - Y)’]
—E[|f(X) - E[ Y|X 2 1 2E[(f(X) — E[Y|X)) (B[Y|X] — V)] + E[|E[Y|X] - V|’]
—E[|f(X) - E[Y|X]] +2E[E[ E[Y|X]) (E[Y]|X] - Y)] XH E[[E[Y|X] - Y] .
= E[|f(X) — E[Y]|X]"] + QE[(f E[Y|X])E[(E[Y|X] XH E[[E[Y|X] - Y]
— E[|£(X) — EY|X)] + 2E[(£(X) — E[Y|X]) (E[Y |X] ~ E[Y|X])] + E[[B[Y]X] - Y]
=E[|f(X) - E[Y]X]]"] +EUE[Y\X] Y],
This implies that for all f, g € £?(Px;R) it holds that
E(f) — E(9) = E[If(X) - E[Y|X]]"] —E[|g(X) — E[Y|X]]. (228)
Hence, we obtain that for all f,g € £?(Px;R) it holds that
E[|f(X) - E[Y|X]]"] = E[lg(X) — E[Y|X]]"] +&£(f) = £(9). (229)
Combining this with ([227) and (228) establishes items [(1)] and The proof of Lemma [l is thus
completed. O

4.2 QOverall error decomposition

Lemma 4.2. Let (Q, F,P) be a probability space, let d, M € N, let D C R be a compact set, let X,,: Q —
D, me{l,2,...,.M}, and Y,,,: @ — R, m € {1,2,..., M}, be functions, assume that (X,,,Yn), m €
{1,2,..., M}, are i.i.d. random variables, assume E[|Y1[’] < oo, let £: C(D,R) — [0,00) satisfy for all
f € C(D,R) that E(f) = E[|f(X1) — Y1/?], and let €: C(D,R) x Q — [0, 00) satisfy for all f € C(D,R),

w € Q that y
1
m=1
Then it holds for all f,¢ € C(D,R) that

E[|£(X1) — EMi|X0]["] = E[|6(X1) — EVIXAP] + E(f) - €(9)

< E[l0(X)) ~ EIIXP] + [€) - €] + 2 max €(0) - €)1

(231)
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Proof of Lemma[{.9 Note that Lemma [L.I] ensures that for all f, ¢ € C'(D,R) it holds that

E[|f(X1) - EMIX])]

= E[|¢(X1) — EV[X0][*] + E(F) — £(9)
— E[Jo(X,) ~ EIIX\IP] + £(f) - €(f) + €(1) — €(6) + €(6) — £(0)
= E[lo(x0) - EMXF] + [(E(f) = €() + (€(¢) — £(0))] + [€(f) — €(9)] (232)
< E[|6(X)) — EYi| X)) RO + [€(f) - €(¢)]
ve{f,o}
B[Jo(X,) ~ BV, +2 L?%%} (o) - 5@)@ + [e() - €0)]
The proof of Lemma is thus completed. O

Lemma 4.3. Let (Q, F,P) be a probability space, let d,0, M € N, let D C R? be a compact set, let
B C R? be a set, let H = (Hp)pep: B — C(D,R) be a function, let X,,: Q — D, m € {1,2,..., M},
and Yy, : Q@ = R, m € {1,2,..., M}, be functions, assume that (X, Yn), m € {1,2,..., M}, are i.i.d.
random variables, assume E[|Y1|?] < oo, let ¢: D — R be a B(D)/B(R)-measurable function, assume
that it holds P-a.s. that p(X1) = E[Y1|X4], let £: C(D,R) — [0,00) satisfy for all f € C(D,R) that
E(f) =E[|f(X1) —Y1]?], and let €: B x Q — [0, 00) satisfy for all § € B, w € Q) that

w) = % [Z | Hp(Xn(w)) = Ym(w)[?|. (233)
Then it holds for all 0,9 € B that
/ | Hy(x 2)|* Px, (dx) / |Hy(z) — @(2)|* Px, (dx) + E(Hy) — E(Hy)
(234)
/ Holi) = l)* P) + [€06) — €(0)] + 2 suplelo) ~ (11|

Proof of Lemma[{.3 First, observe that Lemma .2 (with (2, F,P) < (Q,F,P), d <+ d, M < M, D +
D, (Xm)mefr2,...my & (Xo)meqr2,.arys, (Ym)mer2,..my < (Yo)meqr 2.y, € < &, € < (C(D,R) X3
(fiw) — ﬁ[zg{:l | f(Xn(w)) = Yi(w)]?] € [0,00)) in the notation of Lemma E2) shows that for all
0,9 € B it holds that

E[|Hy(X1) — E[Y1|X:1])?] = E[|Hy(X1) — EY1|X4]]%] + E(Hp) — E(Hy)

< E[|Hy(X1) — EM|X4)1] + [€(6) — e(9)] + 2[ max_|€(n) - 6<Hn>|]

ne{0,0} (235)

E[|Hy (X)) — EIIX\]P] + [€(6) — €(9)] + 2 [sup ) - e(Hn>|].

neB

In addition, note that the hypothesis that it holds P-a.s. that ¢(X;) = E[Y|X}] ensures that for alln € B
it holds that

E[|H,(X1) — EY1|X4]]"] = E[|H,(X1) — / | Hy (2 z)|” Px, (d). (236)
Combining this with (235]) establishes ([234]). The proof of Lemma [£.3] is thus completed. O
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4.3 Analysis of the convergence speed
4.3.1 Convergence rates for convergence in probability

Lemma 4.4. Let (2, F,P) be a probability space, let u € R, v € (u,00), 0, L € N, let | = (lp,ly,...,l1) €
N+ satisfy I, = 1 and 25:1 Li(li_1+1) <0, let B C R® be a non-empty compact set, and let X : Q — Rl
and Y : Q — [u,v] be random variables. Then

(i) it holds for all 0 € B, w € Q that |A0}/(X(w)) =Y (w)]* € [0, (v —u)?],
(i) it holds that B 5 0 — E[|A42(X) — Y]] € [0,00) is continuous, and

(iii) there exists ¥ € B such that E[L/I{ji;l(X) —Y)?] = inf EUJI{&}(X) —Y)?]

0eB
(cf. Definition[2.8).

Proof of Lemma[f7 First, note that the fact that for all € R?, € R it holds that 4;%/(z) € [u,v]
and the hypothesis that for all w € Q it holds that Y (w) € [u,v] demonstrate item [(i)] Next observe
that Corollary 237 ensures that for all w € Q it holds that B 3 0 — [A4%(X(w)) — Y (w)|* € [0,00)
is a continuous function. Combining this and item |(i)| with Lebesgue’s dominated convergence theorem
establishes item Furthermore, note that item and the assumption that B C R® is a non-empty
compact set prove item . The proof of Lemma 4] is thus completed. O

Theorem 4.5. Let (2, F,P) be a probability space, let d,0, K, M € N, € € (0,00), L,u € R, v € (u,0),
let D C R? be a compact set, assume |D| > 2, let X,,: Q — D, m € {1,2,..., M}, and Y,,: Q — [u, ],
m € {1,2,..., M}, be functions, assume that (X,,,Y,), m € {1,2,..., M}, are i.i.d. random variables, let
§: Dx D — [0,00) satisfy for all x = (x1, 29, ..., 7a),y = (Y1, Y2, - -, ¥a) € D that 6(z,y) = S0 |z —vil,
let p: D — [u,v] satisfy P-a.s. that o(X,) = E[Y1|X1], assume for all x,y € D that |p(x) — p(y)| <
Lo(z,y), let N € NN [max{2,Cpg), = },00), let | € NN (N,00), let [ = (lp,lh,..., ) € N satisfy
fO’f’ all 1 € Nﬂ[Q,N], j € NH[N,Z) that [0 = d, [1 Z 2dN, [z Z 2N—2’L+3, [j Z 2, [l = 1,
and 22:1 (1 + 1) < 0, let R € [max{l, L,sup,cpllz||,2[sup,ep |¢(2)[]}, 00), let B C R® satisfy
B =[-R,R]° let €: B x Q — [0,00) satisfy for all 0 € B, w € Q2 that

M
1 0, 2
€(0,w) =+ Lzl NI X (W) = V()] ] (237)
let ©r: Q — B, ke {1,2,...,K}, be i.i.d. random variables, assume that © is continuous uniformly dis-

tributed on B, and let Z: Q — B satisfy = = Omin{re(1,2,..K}: €(©4)=mine 10, 1) €(O1)} (cf. Definitions[3.11),
2.20, and[2.8). Then

([ 1430 ool By ) > <) < o~ min{ 1 S+ })
+ 2exp (a ln(max{l, 128U+ V'R — ) }) - 32547]”) (238)

g2 (v—u)?

Proof of Theorem[{.5 Throughout this proof let M C D satisfy |M| = maX{Z,C(D75)7ﬁ} and

AL inf §(z, <e 239
EEB(JE% (x y))} <e (239)
let b € [0, 00) satisfy b = sup,.pl||z]l[, let £: C(D,R) — [0, 00) satisfy for all f € C'(D,R) that E(f) =
E[|f(X1) — Y1[?], and let ¥ € B satisfy £(A,%'|p) = infoep E(A|p) (cf. Lemma E4). Observe that the
hypothesis that for all z,y € D it holds that |p(z) — ¢(y)| < Lé(z,y) implies that ¢ is a B(D)/B([u, v])-
measurable function. Lemma 3] (with (Q, F,P) < (Q, F,P),d <+ d, 0+ 0, M < M, D < D, B + B,
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H<+— (B30~ e/%?{}[b € C(D,R)), (Xp)meqr2,..m1 < (X)meqr2,. vy (Ym)megrz,..my < (23w
Yi(w) € R))mepio,.ay, ¢ < (D 22— p(x) € R), £ < &, € < € in the notation of Lemma [A.3)
therefore ensures that for all w € €2 it holds that

| AZH () = p(a)]” Px, (d)

D
— 24
< [ 1A @) — o) B, () + [E(E (). ) — €0,0)] +2{sup€(6.0) — (AN | P
N -~ 0eB
<& N~ - Optimization error ~ - ~~ -~
Approximation error Generalization error

Next observe that the assumption that N > max{2,Cps) =} = | M| shows that for all i € NN [2, N]
it holds that | > M|+ 1, [; > 2d|M| and [; > 2|M| — 2 + 3. The hypothesis that for all x,y € D
it holds that |p(x) — p(y)| < Lé(x,y), the hypothesis that R > max{1, L,sup,cp|l|zl[, 2[sup,cp [¢ ()]}
Corollary B8 (with d <~ d, 0«0, £« [, L+ Lyu<u,v< v, D+ D, f + ¢, M+ M, [ < lin the
notation of Corollary B.8)), and (239) hence ensure that there exists n € B which satisfies

d
su ,/1@’7;)[ z) —o(x)| < 2L su inf T — Y;
pLA() — () [ b )ED(_ LY y|>]

reD r=(x1,22,....24 y=(y1,Y25--,Yd)

= 9L {ffég (mf 8(z, y))] %

Lemma A3 (with (Q,F,P) « (Q,F,P),d + d, 0 < o, M «< M, D « D, B+ B, H <« (B>
0 — %ﬂ;{b e C(D,R)), (Xm)me{LQ ..... M} & (Xm)me{l,Z ..... M}, (Ym)me{l,Z ..... M} (23w Y,(vw) €
R))meqi2,.. vy, @ < (D 2 2 = ¢(r) € R), £ < &, € < € in the notation of Lemma A.3) and the
assumption that £(A4,%'|p) = infeep E(A}|p) therefore prove that

(241)

[ 128a) = (@) P, d) = [ |420) = o P o) + EAY ) = EAn)

<0 (242)

< [ A% (@) — (@) Px, (dz) < sup [ A7 (2) — o(2)]* <

c
D z€D 4
Combining this with ([240]) shows that for all w € € it holds that

A2 (@) = (@) Px, (do) <

NG EZ + [E(E(W),w) — €W, w)] +2 [sup |€(0,w) — 5(%?JID>|]- (243)

0eB

Hence, we obtain that
2
P( [ 13 @) - @) () > 2 ) < P [e(2) - €0)] +2supe(6) — (45101 > %)
D 0eB

< P(@(E) — &) > 1—2) +IP><21£ €(6) — (A )| > %2) (244)

Next observe that Corollary 237 (with a <— —b, b < b, u <= u, v <= v, d <= 0, L < [, [ < [ 'in the notation
of Corollary 2.37)) demonstrates that for all 6,£ € B it holds that

sup [ A% (x) — A5 (@) < sup [ A0 (@) — A5 ()]

xzeD z€[—b,b]?

< Imax {1, 0}(|10]l + )" (max{L, [0l N[} 1116 — €]l (245)
< IR([I -+ 1D'RHIE = &lll = il + D' RIl6 — €]l

Combining this with the fact that for all § € R®, z € D it holds that .4,%/(x) € [u,v], the hypothesis that
for all m € {1,2,..., M}, w € Q it holds that Y,,(w) € [u,v], the fact that for all z1, 29,y € R it holds
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that (21 —y)* — (z2 —y)*> = (v1 — 22) (w1 — v) + (z2 — y)), and ([237) ensures that for all §,& € B, w € Q
it holds that

€0, w) — €(&,w)

[Z AN X — Yy ] - — [Z | ASH (X Ym(w)|2] (246)
= % Z( (A (X — A5 (X (W) [(A5 (X (W) = YVin(w)) + (A5 (X (w)) —Ym<w))})‘
< ﬁ Z( A (X — AN X (W))] [[ AKX (w)) = Vin (@) + [ A5 (X (w)) —Ym(w)ll)]

<2(v—u)

< 2(v = w)l([ldl + V'R0 — €]l

Lemma [3.23] (Wlth (QFP)«— (QF,P)L,o—0 N K,a+ —R b+ R, U<+ 9, L+ 2v—u)l(|]|l|] +
'R e+ Iv € €& (On)nefi2,...N} < (Ok)keqi2,..k3 in the notation of Lemma B.23) therefore shows
that

IP’(QS(E) — () > %2) - p([ min e(@k)} — () > 2—2)

ke{1,2,...,K}
(5)°
4

2o = (] + PR ) (247)
= eXp(—Kmin{lv (16(v — “)l(|i[||| T 1)RELY })

Moreover, note that Lemma B2T] (with 0@ «+— 0, M < M, L + I, u < u, v + v, R + R, ¢ + %,

b < bu [+ [7 D «+ D7 (Q7'F7 ]P) A (Q7'F7 ]P), (Xm>m6{1,2 ..... M} — (Xm)me{l,Q ..... M}y (Ym)me{l,Q ..... M} —
(Yo )mefi,2,..m}, € <= &, € <= € in the notation of Lemma B.2T]) establishes that

< exp <—K min{l,

P (supsesl€(0) ~ ECA280)| = T )

12 Ipl(, _ 0 4
< omaxd 1, |28 max{1, b} (|[[| + 1)'R'(v — u) exp —=M
g2 32(v —u)t (248)
1281()|1l| + DR (v — u)]° —e*tM
< 2max< 1, exp| ———
g2 32(v —u)*
Lpl+l(,), _ 4
= 2exp| 0In| max< 1, 1281l + 1) B (v = w) — i .
g2 32(v —u)t
Combining this and (247) with (244]) proves that
, o2
Px, (d < —K min< 1
P( [, 140 — oo Pran) > ) < o ~wmind iy )
128011l + DR (v — u) etM
—+ 2 exXp (0 ln (maX{ 1, 52 — m . (249)
The proof of Theorem is thus completed. O

Corollary 4.6. Let (2, F,IP) be a probability space, let d,0, K,M,7 € N, ¢ € (0,00), L,a,u € R,
b € (a,00), v € (u,00), R € [max{1,L,|al,|b|,2]ul,2[v]}, ), let X,,: @ = [a,b]¢, m € {1,2,..., M},
be i.i.d. random wvariables, let ||-||: R — [0,00) be the standard mnorm on RY, let p: [a,b]* — [u,v]
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satisfy for all x,y € [a,b]? that |o(z) — o(y)| < L||lz — yl||, assume 7 > 2d(2dL(b — a)e~! + 2)* and
0> 7d+ 1)+ (r=3)7(r+1)+7+1, let L € N satisfy | = (d,7,7,...,7,1), let B C R® satisfy
B =[—R,R]°, let €: B x Q — [0,00) satisfy for all € B, w € Q) that

[Z | A (X — (X)) |, (250)
let ©: Q— B, ke {l,2,...,K}, be i.i.d. random variables, assume that ©1 is continuous uniformly dis-

tributed on B, and let Z: Q — B satisfy = = Ominfre{1,2,..K}: ¢(©,)= minie (1.0, x) €(O1)} (cf. Definition[Z8).
Then

P < { /[a,b]d NN () — ()2 le(dx>] " 5> < exp (—Kmin{l, 60— u)i: TR })

+2exp (a ln(max{l, 128(r + " R7(v — v) }) - %) (251)

c2

Proof of Corollary[{.6. Throughout this proof let N € N satisfy

2 L(b —
N:min{keN:k:ZM}, (252)
19

let M C [a,b]? satisfy M = {a,a+ 5%, ...,a+ M b}, let 0: [a, b]? x [a,b]? — [0, 00) satisfy for
all x = (v, 29, ..., 2a),y = (Y1, Y2, - - -, Ya) € [a, b4 that o(z,y) = Zi:1|xl yi|, and let ly,ly,...,l,—1 €N

satisty [ = (lo,l1,...,l,_1). Observe that for all x € [a, b] there exists y € {a,a+ b_T“, a+ M ,b}
such that |z —y| < &2
d 2Ld(b — a)
4L sup inf Z |l —yi| || £ ———= <e. (253)
r=(x1,22,...,24)E[a,b]? y=(y1,92;--,ya) EM i—1 N
Hence, we obtain that
Cllapts) o < IM|=(N+1)". (254)

Next note that (252)) implies that N < 2dL(b—a)e~* + 1. The hypothesis that 7 > 2d(2dL(b—a)e~! +2)¢
therefore ensures that
7>2d(N+1)%>(N+1)%+2. (255)

Hence, we obtain that for all i € {2,3,...,(N+ 1)}, j € {(N+1)4+1,(N+1)4+2,...,7—2} it holds
that
lo=d, L=7>2dN+1)% I, =1 L=7>2(N+1)*-2i+3, and l;=7>2  (256)

Furthermore, observe that the hypothesis that for all 2,y € [a,b]? it holds that |¢(x) — p(y)| < Lz — y||
implies that for all z,y € [a,b]? it holds that |p(z) — ¢(y)| < Li(x,y). Combining this, 254), (253,
([Z56), and the hypothesis that @ > 7(d+ 1)+ (7 —3)7(7 + 1) +7+1 = 3.7 [;(l;_; + 1) with Theorem
(with (Q, F,P) < (Q, F,P),d+d, 0+ 0, K+ K, M+ M,e+ ¢, L+ L, u<u, v+ v, D+ [a,b]‘,
(Xon)meq1,2,.m} < (Xo)meqi2,mp, Ydmei,2,...a01 < (0(Xin))meq1,2,..m3, 0 <= 8, @ < ¢, N <= (N+1)<,
I 717—-11< LR+ R, B+ B, €« €& (O)kc12,...k} < (On)ke(1,2,...k}, = < Z in the notation of
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Theorem [1.5]) establishes that

P(U[ab' =) - so<x>|2ﬂmxl<dx>]1/2>e>

620
< K 1
= eXp( mm{ " (16(v — u)(r — 1)(r +1)T—1RT)D}>

+ 2exp Dln(max{ 128(7 — 1)(7 ti)TlRT(v—u)})_%) (257)

- exp(—Kmln L (16(v — u) +1)7RT) })

T 2exp (o ln(max{l, SUR LT }) - &)

g2 32(v —u)t
The proof of Corollary is thus completed. O
Corollary 4.7. Let (Q,F,P) be a probability space, let d € N, L,a,u € R, b € (a,0), v € (u,0),
R € [max{1, L, |a|, |b|, 2|ul|,2|v|}, 00), let X,,,: Q© — [a,b]?, m € N, be i.i.d. random variables, let ||-| : RY —
[0,00) be the standard norm on R, let ¢: |a,b]? — [u,v] satisfy for all z,y € [a,b]? that |o(z) — ¢(y)| <
Lijx—yl|, let [, € N7, 7 € N, satisfy for all T € NN[3,00) that . = (d,7,7,...,7,1), let € pr-: [—R, R]° X
Q — [0,00), 0, M, 7 € N, satisfy for allo, M € N, 7 € NN [3,00), § € [-R,R]°, w € Q with 0 >

Td+ 1)+ (71 =3)7(t+ 1)+ 7+1 that

Eo (0, w) = % [Z [ A (X (@) = o(Xm(@)) |, (258)

m=1

for every @ € N let Oy Q@ — [-R,R]°, k € N, be i.i.d. random variables, assume for all ® € N
that @a 1 is continuous uniformly distributed on [ R, R] , and let =y g r: 2 — [ R, R]°, 0, K,M,T €

,,,,,

Deﬁmtwn Z3). Then there exists ¢ € (O oo) such that for all D K M T € N, e € (0, \/v —u] wzth
7> 2d(2dL(b—a)e™' +2) and 0 > 7(d+ 1) + (1 — 3)7(T + 1) + 7 + 1 it holds that

Eo,K,M,r\lr 2 v
P([ [ 1) — P e )| > ) )
< exp(—K(ct)7e®) + 2exp(dIn((cr)7e7?) — ¢ e M).

Proof of Corollary[4.7]. Throughout this proof let ¢ € (0, 00) satisfy
c = max{32(v — u)* 256(v — u + 1)R}. (260)

Note that Corollary .6 establishes that for all 0, K, M, 7 € N, ¢ € (0, 00) with 7 > 2d(2dL(b — a)e~* +2)¢
and 0 > 7(d+ 1)+ (1 —3)7(7 + 1) + 7 + 1 it holds that

P ( U{W | AE Rt (1) — ()2 Py, (daz)} " 5> < exp (—K min{l, 60— u)€(2:+ TR })
+2exp (o ln(max{l, 128(r + V" R7(v — w) }) - %) (261)

g2 (v—u)

Next observe that (260) ensures that for all 7 € N it holds that
16(v —u)(7+1)"R" < (16(v —u+1)(t+1R)” < (32(v—u+ 1)R7)" < (7). (262)
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The fact that for all € € (0,1/v — u], 7 € N it holds that e < 16(v — u)(7 + 1)"R" therefore shows that
for all € € (0,4/v — u], 7 € N it holds that

- mm{l’ (160 —u)(r + 1) R } W60 =)+ 1) R = (e

Furthermore, note that (260) implies that for all 7 € N it holds that
128(1+ 1)"R™(v —u) < 128(27)"R"™ (v — u) < (256R7(v —u+ 1)) < (c7)". (264)

The fact that for all € € (0, /v — u], 7 € N it holds that e < 128(7 + 1)"R" (v — u) hence proves that for
all € € (0, /v —ul, 7 € N it holds that

. (max{l, 128(7 + 1)"R™ (v — u) }) _ 1n(128(7 +1)"R™ (v — u)) < 111((07—2)T) (265)

e2 32 g

(263)

In addition, observe that (260) ensures that
-1 - -1
2w —u)*r " ¢

Combining this, [263), and (263) with (261) proves that for all 0, K, M,7 € N, ¢ € (0,v/v — u| with
7> 2d(2dL(b—a)e™t +2)?and 0 > 7(d + 1) + (1 — 3)7(7 + 1) + 7 + 1 it holds that

1/2
P ( U [ At (x) — () P, (dfl?)} > 6)
[u,0]?
—Ke® (eT)” etM
< exp +2exp|(0ln — .
(cT)m® g2 c

The proof of Corollary .7 is thus completed. O

Corollary 4.8. Let (2, F,P) be a probability space, let d € N, Lya,u € R, b € (a,0), v € (u,0),
R € [max{1, L, |al, |b|, 2|ul|,2|v|}, 00), let X,,,: Q© — [a,b]?, m € N, be i.i.d. random variables, let ||-| : RY —
[0,00) be the standard norm on R?, let ¢: [a,b]? — [u,v] satisfy for all z,y € [a,b]? that |o(z) — (y)| <
Lljx—yl|, let [, € N7, 7 € N, satisfy for all T € NN[3,00) that l, = (d,7,7,...,7,1), let € prr: [-R, R]° X
Q — [0,00), 0,M,7 € N, satisfy for allo, M € N, 7 € NN [3,00), § € [-R,R]°, w € Q with 0 >
T(d+ 1)+ (r—=3)7(t+ 1)+ 7+ 1 that

(266)

(267)

Eonrr (6, w) [Z AL (X (W) = (X (w)?], (268)

for every 0 € N let ©yp: Q — [-R,R]°, k € N, be i.i.d. random variables, assume for all @ € N
that ©,1 is continuous uniformly distributed on [—R, R]°, and let Zy gy @ — [-R,R]°, 0, K, M, T €
N, satisfy for all 0, K, M,7 € N that Zp g mr = Ovminke(1,2,.K}: € ar7 (00 i)=minie 12, i) € 11,(00,)) (6
Definition [2.8). Then there exists ¢ € (0,00) such that for all 0, K, M,7 € N, ¢ € (0,v/v —u] with
7> 2d(2dL(b—a)e ' +2) and 0 > 7(d + 1) + (7 — 3)7(7 + 1) + 7 + 1 it holds that

IP( [zt (@) - pla)| P ) > )
[a,b]d

< exp(—K(ct) ™e®) + 2exp(dIn((cr)7e7?) — ¢ e M).

(269)

Proof of Corollary[].8. Note that Jensen’s inequality shows that for all f € C([a,b]?,R) it holds that

%
[ g < | [ reres)] (270)
[a,b]¢ [a,b]
Combining this with Corollary 7] proves (269). The proof of Corollary is thus completed. O
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4.3.2 Convergence rates for strong convergence

Lemma 4.9. Let (2, F,P) be a probability space, let ¢ € [0,00), and let X: Q — [—c¢,c| be a random
variable. Then it holds for all ,p € (0,00) that

E[|X]7] < P P(|X] <€) + PP(|X| > ¢) < e + P P(|X] > e). (271)

Proof of Lemma[.9. Observe that the hypothesis that for all w € €2 it holds that | X (w)| < ¢ ensures that
for all €,p € (0, 00) it holds that

E[| X" = E[|X|PL{xi<e}] +E[|XPLyxise] < PP X| <)+ PP(X| > e) <P+ PP(|X| > ). (272)
The proof of Lemma is thus completed. O

Corollary 4.10. Let (2, F,P) be a probability space, let d € N, Lya,u € R, b € (a,0), v € (u,0),
R € [max{1, L, |a|,|bl], 2|u|,2Jv|}, o0), let X, Q@ — [a,b]?, m € N, be i.i.d. random variables, let ||-||: R? —
[0,00) be the standard norm on R?, let p: [a,b]? — [u,v] satisfy for all z,y € [a,b]? that |p(x) — p(y)| <
Lz —yl|, let [, € N7, 7 € N, satisfy for all T € NN[3,00) that |, = (d,7,7,...,7,1), let € prr: [—R, R]° X
Q — [0,00), 0,M,7 € N, satisfy for allo, M € N, 7 € NN [3,00), § € [-R,R]°, w € Q with 0 >
T(d+1)+ (1 =3)7(r+1)+7+1 that

QEDMT 0 w

Z [ A (X (W) = sD(Xm(w))F], (273)

for everyd € N let ©y: Q — [—R, R]°, k € N, be i.i.d. random variables, assume for alld € N that O, ; is
continuous uniformly distm’buted on [ R, R, and let Sy kv Q@ — [-R,R]°, 0, K, M, T € N, satisfy for

,,,,,

Then there exists ¢ € (0 oo) such that for all 0, K M T e N, p c 1, oo) € 6 (0 \/v—u] wzth T 2
2d(2dL(b—a)e™ ' +2) and o > 7(d+ 1) + (T — 3)7(7’ + 1)+ 7+ 1 it holds that

p/2 Yp
E (/I/Ea,K,M,T,[T . 2 P d )
( ([, 1wt @) = o) PR ) -

< (v—u) [exp(—K(cT) ) + 2exp(d1n((cr)e?) — ¢ 'e'M)] ELI

Proof of Corollary[4.10. First, observe that Corollary B ensures that there exists ¢ € (0,00) which
satisfies for all 0, K, M,7 € N, € € (0, v — u] with 7 > 2d(2dL(b—a)e > +2)? and 0 > 7(d + 1) + (7 —
3)71(r+ 1)+ 7+ 1 that

1/2
P / N sMl (1) o(7)]? Py, dx} > €
([ [ HE @) = o)y, ) -

< exp(—K(ct) e®) + 2exp(dIn((cr)7e7?) — ¢ e M).

Lemma [ (Wlth (Q,F,P) < (QF,P),c+ v—u X + (2 3w+ [f[a o |%,EJ’K’M’T(°J)’[T(x) -
o(x)|? le(dx)] € [u—v,v—u]) in the notation of Lemma [£9) hence ensures that for all 9, K, M, T € N,
e € (0,v/v—u], pe (0,00) with 7 > 2d(2dL(b—a)e ™ +2) and 0 > 7(d+ 1) + (= 3)7(t+ 1)+ 7+ 1 it
holds that

E

p/2
([ 1zt - e e ) ]
[a,b]¢ (276)

<P+ (v—u) [exp(—K(CT) 7e?) + 2exp(0In((er)e7?) — 07154M)]

The fact that for all p € [1,00), z,y € [0,00) it holds that (z + y)7/? < z'/7 + y*/» therefore establishes
274)). The proof of Corollary is thus completed. O
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