
Journal of Scientific Computing           (2021) 88:73 
https://doi.org/10.1007/s10915-021-01590-0

Solving the Kolmogorov PDE by Means of Deep Learning

Christian Beck1,2 · Sebastian Becker1,3 · Philipp Grohs4 · Nor Jaafari3 ·
Arnulf Jentzen2,5

Received: 6 January 2020 / Revised: 16 April 2021 / Accepted: 18 April 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
Stochastic differential equations (SDEs) and the Kolmogorov partial differential equations
(PDEs) associated to them have been widely used in models from engineering, finance, and
the natural sciences. In particular, SDEs and Kolmogorov PDEs, respectively, are highly
employed in models for the approximative pricing of financial derivatives. Kolmogorov
PDEs and SDEs, respectively, can typically not be solved explicitly and it has been and still
is an active topic of research to design and analyze numerical methods which are able to
approximately solve Kolmogorov PDEs and SDEs, respectively. Nearly all approximation
methods for Kolmogorov PDEs in the literature suffer under the curse of dimensionality
or only provide approximations of the solution of the PDE at a single fixed space-time
point. In this paper we derive and propose a numerical approximation method which aims
to overcome both of the above mentioned drawbacks and intends to deliver a numerical
approximation of the Kolmogorov PDE on an entire region [a, b]d without suffering from
the curse of dimensionality. Numerical results on examples including the heat equation, the
Black–Scholes model, the stochastic Lorenz equation, and the Heston model suggest that
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the proposed approximation algorithm is quite effective in high dimensions in terms of both
accuracy and speed.

Keywords Numerical approximation method · Stochastic differential equations ·
Kolmogorov equations · Deep learning

1 Introduction

Stochastic differential equations (SDEs) and the Kolmogorov partial differential equations
(PDEs) associated to them have been widely used in models from engineering, finance, and
the natural sciences. In particular, SDEs and Kolmogorov PDEs, respectively, are highly
employed in models for the approximative pricing of financial derivatives. Kolmogorov
PDEs and SDEs, respectively, can typically not be solved explicitly and it has been and still
is an active topic of research to design and analyze numerical methods which are able to
approximately solve Kolmogorov PDEs and SDEs, respectively (see, e.g., [22,49] and the
references mentioned therein). In particular, there are nowadays several different types of
numerical approximation methods for Kolmogorov PDEs in the literature including deter-
ministic numerical approximation methods such as finite differences based approximation
methods (cf., for example, [11,43,60]) and finite elements based approximation methods (cf.,
for example, [12,61]) as well as random numerical approximation methods based on Monte
Carlo methods (cf., for example, [19,22]) and discretizations of the underlying SDEs (cf., for
example, [42,49] and the references mentioned therein). The above mentioned deterministic
approximation methods for PDEs work quite efficiently in one or two space dimensions but
cannot be used in the case of high-dimensional PDEs as they suffer from the so-called curse of
dimensionality (cf. Bellman [6]) in the sense that the computational effort of the considered
approximation algorithm grows exponentially in the PDE dimension. The above mentioned
random numerical approximation methods involving Monte Carlo approximations typically
overcome this curse of dimensionality but only provide approximations of the Kolmogorov
PDE at a single fixed space-time point.

The key contribution of this paper is to derive and propose a numerical approximation
method which aims to overcome both of the above mentioned drawbacks and intends to
deliver a numerical approximation of the Kolmogorov PDE on an entire region [a, b]d with-
out suffering from the curse of dimensionality. The numerical scheme, which we propose in
thiswork, is inspired by recently developed deep learning based approximation algorithms for
PDEs in the literature (cf., for example, [5,18,28,30,58,59]). To derive the proposed approx-
imation scheme we first reformulate the considered Kolmogorov PDE as a suitable infinite
dimensional stochastic optimization problem (see items (ii)–(iii) in Proposition 1.1 below
for details). This infinite dimensional stochastic optimization problem is then temporally
discretized by means of suitable discretizations of the underlying SDE and it is spatially dis-
cretized by means of fully connected deep artificial neural network approximations (see (38)
in Sect. 3.3 as well as Sects. 3.1–3.2 below). The resulting finite dimensional stochastic opti-
mization problem is then solved by means of stochastic gradient descent type optimization
algorithms (see (40) in Sect. 3.3, Framework 3.1 in Sect. 3.4, Framework 3.2 in Sect. 3.5, as
well as (54)–(55) in Sect. 4.1). We test the proposed approximation method numerically in
the case of several examples of SDEs and PDEs, respectively (see Sects. 4.2–4.6 below for
details). The obtained numerical results indicate that the proposed approximation algorithm
is quite effective in high dimensions in terms of both accuracy and speed.
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As mentioned above, a key component of the proposed approximation algorithm is to
reformulate aKolmogorov PDE as a learning problem, that is to say as an infinite dimensional
optimization problem. To familiarize the reader with this reformulation we present in the
following result a way how solutions of Kolmogorov PDEs can be identified as solutions of
infinite dimensional optimization problems.

Proposition 1.1 Let d,m ∈ N, T ∈ (0,∞), a ∈ R, b ∈ (a,∞), let μ : Rd → R
d and

σ : Rd → R
d×m be globally Lipschitz continuous, let ϕ : Rd → R be a function, let u =

(u(t, x))(t,x)∈[0,T ]×Rd ∈ C1,2([0, T ] × R
d ,R) be a function with at most polynomially

growing partial derivatives which satisfies for every t ∈ [0, T ], x ∈ R
d that u(0, x) = ϕ(x)

and

∂u
∂t (t, x) = 1

2 TraceRd

(
σ(x)[σ(x)]∗(Hessx u)(t, x)

)+ 〈μ(x), (∇xu)(t, x)〉Rd , (1)

let (�,F,P) be a probability space with a normal filtration (Ft )t∈[0,T ], let W : [0, T ]×� →
R
m bea standard (Ft )t∈[0,T ]-Brownianmotion, let ξ : � → [a, b]d be a continuous uniformly

distributed F0/B([a, b]d)-measurable random variable, and let X = (Xt )t∈[0,T ] : [0, T ] ×
� → R

d be an (Ft )t∈[0,T ]-adapted stochastic process with continuous sample paths which
satisfies that for every t ∈ [0, T ] it holds P-a.s. that

Xt = ξ +
∫ t

0
μ(Xs) ds +

∫ t

0
σ(Xs) dWs . (2)

Then

(i) it holds that there exists a unique continuous U : [a, b]d → R such that

E
[|ϕ(XT ) −U (ξ)|2] = inf

v∈C([a,b]d ,R)
E
[|ϕ(XT ) − v(ξ)|2], (3)

and
(ii) it holds for every x ∈ [a, b]d that U (x) = u(T , x).

Proposition 1.1 is an extract of Corollary 2.4 (see Sect. 2.3 below) which constitutes the
main theoretical motivation for the proposed approximation algorithm.

The remainder of this article is organized as follows. In Sect. 2 we derive the proposed
approximation algorithm (see Sects. 2.1–3.3 below) and we present a detailed description of
the proposed approximation algorithm in a special case (see Sect. 3.4 below) as well as in
the general case (see Sect. 3.5 below). In Sect. 4 we test the proposed algorithm numerically
in the case of several examples of SDEs and PDEs, respectively. The employed source codes
for the numerical simulations in Sect. 4 can be found on GitHub (see https://github.com/seb-
becker/kolmogorov).

2 Reformulation of Kolmogorov Partial Differential Equations (PDEs) as
Stochastic Learning Problems

In this section we describe the approximation problemwhich we intend to solve (see Sect. 2.1
below) and we derive (see Sects. 2.2–3.3 below) and specify (see Sects. 3.4–3.5 below) the
numerical scheme which we suggest to use to solve this approximation problem (cf., for
example, E et al. [58], Han et al. [28], Fujii et al. [18], and Henry-Labordere [30] for related
derivations and related approximation schemes).
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2.1 Kolmogorov Partial Differential Equations (PDEs)

Let T ∈ (0,∞), d ∈ N, let μ : Rd → R
d and σ : Rd → R

d×d be Lipschitz continuous,
let ϕ : Rd → R be a function, and let u = (u(t, x))(t,x)∈[0,T ]×Rd ∈ C1,2([0, T ] × R

d ,R)

be a function with at most polynomially growing partial derivatives which satisfies for every
t ∈ [0, T ], x ∈ R

d that u(0, x) = ϕ(x) and

∂u
∂t (t, x) = 1

2 TraceRd

(
σ(x)[σ(x)]∗(Hessx u)(t, x)

)+ 〈μ(x), (∇xu)(t, x)〉Rd . (4)

Our goal is to approximately calculate the function Rd 	 x 
→ u(T , x) ∈ R on some subset
of Rd . To fix ideas we consider real numbers a, b ∈ R with a < b and we suppose that our
goal is to approximately calculate the function [a, b]d 	 x 
→ u(T , x) ∈ R.

2.2 On Stochastic Differential Equations and Kolmogorov PDEs

In this subsection we provide a probabilistic representation for the solutions of the PDE (4),
that is, we recall the classical Feynman–Kac formula for the PDE (4) (cf., for example,
Øksendal [52, Chapter 8]).

Let (�,F,P) be a probability space with a normal filtration (Ft )t∈[0,T ], let W : [0, T ] ×
� → R

d be a standard (�,F,P, (Ft )t∈[0,T ])-Brownian motion, and for every x ∈ R
d let

Xx = (Xx
t )t∈[0,T ] : [0, T ] × � → R

d be an (Ft )t∈[0,T ]-adapted stochastic process with
continuous sample paths which satisfies that for every t ∈ [0, T ] it holds P-a.s. that

Xx
t = x +

∫ t

0
μ(Xx

s ) ds +
∫ t

0
σ(Xx

s ) dWs . (5)

The Feynman–Kac formula (cf., for example, Hairer et al. [27, Corollary 4.17 and Remark
4.1]) and (4) hence yield that for every x ∈ R

d it holds that

u(T , x) = E
[
u(0, Xx

T )
] = E

[
ϕ(Xx

T )
]
. (6)

2.3 Formulation as Minimization Problem

In the next step we exploit (6) to formulate a minimization problem which is uniquely solved
by the function [a, b]d 	 x 
→ u(T , x) ∈ R (cf. (4) above). For this we first recall the L2-
minimization property of the expectation of a real-valued random variable (see Lemma 2.1
below). Then we extend this minimization result to certain random fields (see Proposition 2.2
below). Thereafter, we apply Proposition 2.2 to random fields in the context of the Feynman–
Kac representation (6) to obtain Corollary 2.4 below. Corollary 2.4 provides a minimization
problem (see, for instance, (28) below)which has the function [a, b]d 	 x 
→ u(T , x) ∈ R as
the unique global minimizer. Our proof of Corollary 2.4 is based on the elementary auxiliary
result in Lemma 2.3.

Lemma 2.1 Let (�,F,P) be a probability space and let X : � → R be an F /B(R)-
measurable random variable which satisfies E[|X |2] < ∞. Then

(i) it holds for every y ∈ R that

E
[|X − y|2] = E

[|X − E[X ]|2]+ |E[X ] − y|2, (7)

(ii) it holds that there exists a unique real number z ∈ R such that

E
[|X − z|2] = inf

y∈RE
[|X − y|2], (8)
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and
(iii) it holds that

E
[|X − E[X ]|2] = inf

y∈RE
[|X − y|2]. (9)

Proof of Lemma 2.1 Observe that the fact that E[|X |] < ∞ ensures that for every y ∈ R it
holds that

E
[|X − y|2] = E

[|X − E[X ] + E[X ] − y|2]

= E
[|X − E[X ]|2 + 2(X − E[X ])(E[X ] − y) + |E[X ] − y|2]

= E
[|X − E[X ]|2]+ 2(E[X ] − y)E

[
X − E[X ]]+ |E[X ] − y|2

= E
[|X − E[X ]|2]+ |E[X ] − y|2.

(10)

This establishes item (i). Item (ii) and item (iii) are immediate consequences of item (i). The
proof of Lemma 2.1 is thus completed. ��
Proposition 2.2 Let a ∈ R, b ∈ (a,∞), let (�,F,P) be a probability space, let X =
(Xx )x∈[a,b]d : [a, b]d × � → R be (B([a, b]d) ⊗ F)/B(R)-measurable, assume for every
x ∈ [a, b]d that E[|Xx |2] < ∞, and assume that [a, b]d 	 x 
→ E[Xx ] ∈ R is continuous.
Then

(i) it holds that there exists a unique continuous u : [a, b]d → R such that
∫

[a,b]d
E
[|Xx − u(x)|2] dx = inf

v∈C([a,b]d ,R)

(∫

[a,b]d
E
[|Xx − v(x)|2] dx

)
(11)

and
(ii) it holds for every x ∈ [a, b]d that u(x) = E[Xx ].
Proof of Proposition 2.2 Observe that item (i) in Lemma 2.1 and the hypothesis that ∀ x ∈
[a, b]d : E[|Xx |2] < ∞ ensure that for every u : [a, b]d → R and every x ∈ [a, b]d it holds
that E

[|Xx − u(x)|2] = E
[|Xx −E[Xx ]|2

]+ |E[Xx ] − u(x)|2. Fubini’s theorem (see, e.g.,
Klenke [40, Theorem 14.16]) hence proves that for every continuous u : [a, b]d → R it holds
that
∫

[a,b]d
E
[|Xx − u(x)|2] dx =

∫

[a,b]d
E
[|Xx − E[Xx ]|2

]
dx +

∫

[a,b]d
|E[Xx ] − u(x)|2 dx .

(12)

The hypothesis that [a, b]d 	 x 
→ E[Xx ] ∈ R is continuous therefore demonstrates that
∫

[a,b]d
E
[|Xx − E[Xx ]|2

]
dx ≥ inf

v∈C([a,b]d ,R)

(∫

[a,b]d
E
[|Xx − v(x)|2] dx

)

= inf
v∈C([a,b]d ,R)

(∫

[a,b]d
E
[|Xx − E[Xx ]|2

]
dx +

∫

[a,b]d
|E[Xx ] − v(x)|2 dx

)

≥ inf
v∈C([a,b]d ,R)

(∫

[a,b]d
E
[|Xx − E[Xx ]|2

]
dx

)
=
∫

[a,b]d
E
[|Xx − E[Xx ]|2

]
dx .

(13)

Hence, we obtain that
∫

[a,b]d
E
[|Xx − E[Xx ]|2

]
dx = inf

v∈C([a,b]d ,R)

(∫

[a,b]d
E
[|Xx − v(x)|2] dx

)
. (14)
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Again the fact that [a, b]d 	 x 
→ E[Xx ] ∈ R is continuous therefore proves that there exists
a continuous u : [a, b]d → R such that

∫

[a,b]d
E
[|Xx − u(x)|2] dx = inf

v∈C([a,b]d ,R)

(∫

[a,b]d
E
[|Xx − v(x)|2] dx

)
. (15)

Next observe that (12) and (14) yield that for every continuous u : [a, b]d → R with
∫

[a,b]d
E
[|Xx − u(x)|2] dx = inf

v∈C([a,b]d ,R)

(∫

[a,b]d
E
[|Xx − v(x)|2] dx

)
(16)

it holds that
∫

[a,b]d
E
[|Xx − E[Xx ]|2

]
dx

= inf
v∈C([a,b]d ,R)

(∫

[a,b]d
E
[|Xx − v(x)|2] dx

)
=
∫

[a,b]d ]
E
[|Xx − u(x)|2] dx

=
∫

[a,b]d
E
[|Xx − E[Xx ]|2

]
dx +

∫

[a,b]d
|E[Xx ] − u(x)|2 dx .

(17)

Hence, we obtain that for every continuous u : [a, b]d → R with
∫

[a,b]d
E
[|Xx − u(x)|2] dx = inf

v∈C([a,b]d ,R)

(∫

[a,b]d
E
[|Xx − v(x)|2] dx

)
(18)

it holds that
∫
[a,b]d |E[Xx ] − u(x)|2 dx = 0. This and again the hypothesis that [a, b]d 	

x 
→ E[Xx ] ∈ R is continuous yield that for every continuous u : [a, b]d → R with
∫

[a,b]d
E
[|Xx − u(x)|2] dx = inf

v∈C([a,b]d ,R)

(∫

[a,b]d
E
[|Xx − v(x)|2] dx

)
(19)

and every x ∈ [a, b]d it holds that u(x) = E[Xx ]. Combining this with (15) completes the
proof of Proposition 2.2. ��
Lemma 2.3 Let d,m ∈ N, T ∈ (0,∞), L, a ∈ R, b ∈ (a,∞), let μ : Rd → R

d

and σ : Rd → R
d×m satisfy for every x, y ∈ R

d that max{‖μ(x) − μ(y)‖Rd , ‖σ(x) −
σ(y)‖HS(Rm ,Rd )} ≤ L‖x − y‖Rd , let � : C([0, T ],Rd) → R be an at most polynomi-
ally growing continuous function, let (�,F,P) be a probability space with a normal
filtration (Ft )t∈[0,T ], let ξ : � → [a, b]d be a continuous uniformly distributedF0/B([a, b]d)-
measurable random variable, let W : [0, T ] × � → R

m be a standard (Ft )t∈[0,T ]-Brownian
motion, for every x ∈ [a, b]d let X x = (Xx

t )t∈[0,T ] : [0, T ] × � → R
d be an (Ft )t∈[0,T ]-

adapted stochastic process with continuous sample paths which satisfies that for every
t ∈ [0, T ] it holds P-a.s. that

Xx
t = x +

∫ t

0
μ(Xx

s ) ds +
∫ t

0
σ(Xx

s ) dWs, (20)

and let X : [0, T ] × � → R
d be an (Ft )t∈[0,T ]-adapted stochastic process with continuous

sample paths which satisfies that for every t ∈ [0, T ] it holds P-a.s. that

Xt = ξ +
∫ t

0
μ(Xs) ds +

∫ t

0
σ(Xs) dWs . (21)

Then
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(i) it holds for every x ∈ [a, b]d that � 	 ω 
→ �((Xx
t (ω))t∈[0,T ]) ∈ R and � 	 ω 
→

�((Xt (ω))t∈[0,T ]) ∈ R are F /B(R)-measurable,
(ii) it holds for every p ∈ [2,∞), x, y ∈ [a, b]d that

(

E

[

sup
t∈[0,T ]

‖Xx
t − X y

t ‖p
Rd

])1/p

≤ √
2 exp

(
L2T

[
p + √

T
]2) ‖x − y‖Rd , (22)

(iii) it holds for every x ∈ [a, b]d that E
[|�((Xx

t )t∈[0,T ])| + |�((Xt )t∈[0,T ])|
]

< ∞,

(iv) it holds that [a, b]d 	 x 
→ E[�((Xx
t )t∈[0,T ])] ∈ R is continuous, and

(v) it holds that

E
[
�((Xt )t∈[0,T ])

] = 1
(b−a)d

(∫

[a,b]d
E
[
�((Xx

t )t∈[0,T ])
]
dx

)
. (23)

Proof of Lemma 2.3 The proof of Lemma 2.3 is essentially well-known in the scientific liter-
ature; cf., for instance, Rogers and Williams [53, Corollary V.11.7 and Theorem V.13.1] or
the arXiv version of this article. ��
Corollary 2.4 Let d,m ∈ N, T ∈ (0,∞), a ∈ R, b ∈ (a,∞), let μ : Rd → R

d and
σ : Rd → R

d×m be globally Lipschitz continuous, let ϕ : Rd → R be a function, let u =
(u(t, x))(t,x)∈[0,T ]×Rd ∈ C1,2([0, T ] × R

d ,R) be a function with at most polynomially
growing partial derivatives which satisfies for every t ∈ [0, T ], x ∈ R

d that u(0, x) = ϕ(x)
and

∂u
∂t (t, x) = 1

2 TraceRd

(
σ(x)[σ(x)]∗(Hessx u)(t, x)

)+ 〈μ(x), (∇xu)(t, x)〉Rd , (24)

let (�,F,P) be a probability space with a normal filtration (Ft )t∈[0,T ], let W : [0, T ]×� →
R
m bea standard (Ft )t∈[0,T ]-Brownianmotion, let ξ : � → [a, b]d be a continuous uniformly

distributed F0/B([a, b]d)-measurable random variable, and let X = (Xt )t∈[0,T ] : [0, T ] ×
� → R

d be an (Ft )t∈[0,T ]-adapted stochastic process with continuous sample paths which
satisfies that for every t ∈ [0, T ] it holds P-a.s. that

Xt = ξ +
∫ t

0
μ(Xs) ds +

∫ t

0
σ(Xs) dWs . (25)

Then

(i) it holds that ϕ : Rd → R is twice continuously differentiable with at most polynomially
growing derivatives,

(ii) it holds that there exists a unique continuous U : [a, b]d → R such that

E
[|ϕ(XT ) −U (ξ)|2] = inf

v∈C([a,b]d ,R)
E
[|ϕ(XT ) − v(ξ)|2], (26)

and
(iii) it holds for every x ∈ [a, b]d that U (x) = u(T , x).

Proof of Corollary 2.4 Corollary 2.4 is a direct consequence of combining Proposition 2.2 and
Lemma 2.3 with, e.g., Cox et al. [14, Theorem 3.5], Hutzenthaler et al. [34, Proposition 4.5],
Aliprantis and Border [2, Lemma 4.51], and Hairer et al. [27, Corollary 4.17]. ��

In the next step we use Corollary 2.4 to obtain a minimization problem which is uniquely
solved by [a, b]d 	 x 
→ u(T , x) ∈ R. More specifically, let ξ : � → [a, b]d be
a continuously uniformly distributed F0/B([a, b]d)-measurable random variable, and let
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X : [0, T ] × � → R
d be an (Ft )t∈[0,T ]-adapted stochastic process with continuous sam-

ple paths which satisfies that for every t ∈ [0, T ] it holds P-a.s. that

Xt = ξ +
∫ t

0
μ(Xs) ds +

∫ t

0
σ(Xs) dWs . (27)

Corollary 2.4 then guarantees that [a, b]d 	 x 
→ u(T , x) ∈ R is the unique globalminimizer
of

C([a, b]d ,R) 	 v 
→ E
[|ϕ(XT ) − v(ξ)|2] ∈ R. (28)

In the following two subsections we derive an approximated minimization problem by dis-
cretizing the stochastic processX : [0, T ]×� → R

d (see Sect. 3.1 below) and by employing
a deep neural network approximation for Rd 	 x 
→ u(T , x) ∈ R (see Sect. 3.2 below).

3 Derivation and Description of the Proposed Approximation
Algorithm

3.1 Discretization of the Stochastic Differential Equation

In this subsection we use the Euler–Maruyama scheme (cf., for example, Kloeden and Platen
[41] and Maruyama [46]) to temporally discretize the solution process X of the SDE (27).

More specifically, let N ∈ N, let t0, t1, . . . , tN ∈ [0,∞) satisfy that

0 = t0 < t1 < . . . < tN = T . (29)

Note that (27) implies that for every n ∈ {0, 1, . . . , N − 1} it holds P-a.s. that

Xtn+1 = Xtn +
∫ tn+1

tn
μ(Xs) ds +

∫ tn+1

tn
σ(Xs) dWs . (30)

This suggests that for sufficiently small mesh size supn∈{0,1,...,N−1}(tn+1 − tn) it holds that

Xtn+1 ≈ Xtn + μ(Xtn ) (tn+1 − tn) + σ(Xtn ) (Wtn+1 − Wtn ). (31)

Let X : {0, 1, . . . , N } × � → R
d be the stochastic process which satisfies for every n ∈

{0, 1, . . . , N − 1} that X0 = ξ and

Xn+1 = Xn + μ(Xn) (tn+1 − tn) + σ(Xn) (Wtn+1 − Wtn ). (32)

Observe that (31) and (32) suggest, in turn, that for every n ∈ {0, 1, 2, . . . , N } it holds that
Xn ≈ Xtn . (33)

Convergence results for the Euler–Maruyama scheme are well-known in the literature (cf.,
for example, Kloeden and Platen [41], Milstein [48], Müller-Gronbach and Ritter [51], and
the references mentioned therein).

3.2 Deep Artificial Neural Network Approximations

In this subsection we employ suitable approximations for the solution Rd 	 x 
→ u(T , x) ∈
R of the PDE (4) at time T .
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More specifically, let ν ∈ N and let U = (U(θ, x))(θ,x)∈Rν×Rd : Rν × R
d → R be

continuous. For every suitable θ ∈ R
ν and every x ∈ [a, b]d we think of U(θ, x) ∈ R as an

appropriate approximation

U(θ, x) ≈ u(T , x) (34)

of u(T , x).We suggest to chooseU : Rν×R
d → R as a deep neural network (cf., for example,

Bishop [9]). For instance, let Ld : Rd → R
d satisfy for every x = (x1, x2, . . . , xd) ∈ R

d

that

Ld(x) =
(

exp(x1)

exp(x1) + 1
,

exp(x2)

exp(x2) + 1
, . . . ,

exp(xd)

exp(xd) + 1

)
(35)

(multidimensional version of the standard logistic function), for every k, l ∈ N, v ∈ N0 =
{0} ∪ N, θ = (θ1, θ2, . . . , θν) ∈ R

ν with v + l(k + 1) ≤ ν let Aθ,v
k,l : Rk → R

l satisfy for

every x = (x1, x2, . . . , xk) ∈ R
k that

Aθ,v
k,l (x) =

⎛

⎜
⎜
⎜
⎝

θv+1 θv+2 . . . θv+k

θv+k+1 θv+k+2 . . . θv+2k
...

...
. . .

...

θv+(l−1)k+1 θv+(l−1)k+2 . . . θv+lk

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

x1
x2
...

xk

⎞

⎟
⎟
⎟
⎠

+

⎛

⎜
⎜
⎜
⎝

θv+kl+1

θv+kl+2
...

θv+kl+l

⎞

⎟
⎟
⎟
⎠

, (36)

let s ∈ {3, 4, 5, 6, . . .}, assume that (s − 1)d(d + 1) + d + 1 ≤ ν, and let U : Rν ×R
d → R

satisfy for every θ ∈ R
ν , x ∈ R

d that

U(θ, x) = (
Aθ,(s−1)d(d+1)
d,1 ◦ Ld ◦ Aθ,(s−2)d(d+1)

d,d ◦ . . . ◦ Ld ◦ Aθ,d(d+1)
d,d ◦ Ld ◦ Aθ,0

d,d

)
(x).

(37)

The function U : Rν × R
d → R in (37) describes an artificial neural network with s + 1

layers (1 input layer with d neurons, s − 1 hidden layers with d neurons each, and 1 output
layer with 1 neuron) and standard logistic functions as activation functions (cf., for instance,
Bishop [9]).

3.3 Stochastic Gradient Descent-TypeMinimization

As described in Sect. 3.2 for every suitable θ ∈ R
ν and every x ∈ [a, b]d we think of

U(θ, x) ∈ R as an appropriate approximation of u(T , x) ∈ R. In this subsection we intend
to find a suitable θ ∈ R

ν as an approximate minimizer of

R
ν 	 θ 
→ E

[|ϕ(XN ) − U(θ, ξ)|2] ∈ R. (38)

To be more specific, we intend to find an approximate minimizer of the function in (38)
through a stochastic gradient descent-type minimization algorithm (cf., for instance, Ruder
[54, Sect. 4], Jentzen et al. [37], and the references mentioned therein). For this we approx-
imate the derivative of the function in (38) by means of the Monte Carlo method. In this
subsection we employ for illustrative reasons as minimization algorithm a stochastic gradient
descent minimization scheme with constant learning rate. However, later and, in particular,
in the numerical experiments we employ more sophisticated stochastic gradient descent type
minimization schemes like, e.g., the Adam optimizer.

More precisely, let ξ (m) : � → [a, b]d , m ∈ N0, be i.i.d. continuously uniformly
distributed F0/B([a, b]d)-measurable random variables, let W (m) : [0, T ] × � → R

d ,
m ∈ N0, be i.i.d. standard (Ft )t∈[0,T ]-Brownian motions, for every m ∈ N0 let X (m) =
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(X (m)
n )n∈{0,1,...,N } : {0, 1, . . . , N } × � → R

d be the stochastic process which satisfies for

every n ∈ {0, 1, . . . , N − 1} that X (m)
0 = ξ (m) and

X (m)
n+1 = X (m)

n + μ(X (m)
n ) (tn+1 − tn) + σ(X (m)

n ) (W (m)
tn+1

− W (m)
tn ), (39)

let γ ∈ (0,∞), and let � : N0 × � → R
ν be a stochastic process which satisfies for every

m ∈ N0 that

�m+1 = �m − 2γ · (U(�m, ξ (m)) − ϕ(X (m)
N )

) · (∇θU)(�m, ξ (m)). (40)

Roughly speaking, we think for every sufficiently large m ∈ N of the random variable
�m : � → R

ν as a suitable approximation of a local minimum point of the function in (38).
Moreover, we think for every sufficiently largem ∈ N of the random function [a, b]d 	 x 
→
U(�n, x) ∈ R as a suitable approximation of [a, b]d 	 x 
→ u(T , x) ∈ R.

3.4 Description of the Algorithm in a Special Case

In this subsection we give a description of the proposed approximation method in a special
case, that is, we describe the proposed approximation method in the specific case where a
particular neural network approximation is chosen and where the plain-vanilla stochastic
gradient descent method with a constant learning rate is the employed stochastic minimiza-
tion algorithm (cf. (40) above). For the purpose of readability we describe a special case
that abstains from elaborate Machine Learning tools such as the Adam optimizer or batch
normalization. For a more general description of the proposed approximation method we
refer the reader to Sect. 3.5 below. For a description of the specific implementation used to
test the proposed approximation algorithm see Sect. 4 below.

Framework 3.1 Let T , γ ∈ (0,∞), a ∈ R, b ∈ (a,∞), d, N ∈ N, s ∈ {3, 4, 5, . . .}, let
ν = sd(d + 1), let t0, t1, . . . , tN ∈ [0, T ] satisfy

0 = t0 < t1 < · · · < tN = T , (41)

let μ : Rd → R
d and σ : Rd → R

d×d be continuous, let (�,F,P, (Ft )t∈[0,T ]) be a filtered
probability space, let ξ (m) : � → [a, b]d ,m ∈ N0, be i.i.d. continuously uniformly distributed
F0/B([a, b]d)-measurable random variables, let W (m) : [0, T ] × � → R

d , m ∈ N0, be
i.i.d. standard (Ft )t∈[0,T ]-Brownian motions, for every m ∈ N0 let X (m) : {0, 1, . . . , N } ×
� → R

d be the stochastic process which satisfies for every n ∈ {0, 1, . . . , N − 1} that
X (m)
0 = ξ (m) and

X (m)
n+1 = X (m)

n + μ(X (m)
n ) (tn+1 − tn) + σ(X (m)

n ) (W (m)
tn+1

− W (m)
tn ), (42)

let Ld : Rd → R
d satisfy for every x = (x1, x2, . . . , xd) ∈ R

d that

Ld(x) =
(

exp(x1)

exp(x1) + 1
,

exp(x2)

exp(x2) + 1
, . . . ,

exp(xd)

exp(xd) + 1

)
, (43)

for every k, l ∈ N, v ∈ N0 = {0} ∪ N, θ = (θ1, θ2, . . . , θν) ∈ R
ν with v + l(k + 1) ≤ ν let

Aθ,v
k,l : Rk → R

l be as in (36), let U : Rν × R
d → R satisfy for every θ ∈ R

ν , x ∈ R
d that

U(θ, x) = (
Aθ,(s−1)d(d+1)
d,1 ◦ Ld ◦ Aθ,(s−2)d(d+1)

d,d ◦ . . . ◦ Ld ◦ Aθ,d(d+1)
d,d ◦ Ld ◦ Aθ,0

d,d

)
(x),

(44)
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and let � : N0 × � → R
ν be a stochastic process which satisfies for every m ∈ N0 that

�m+1 = �m − 2γ · (U(�m, ξ (m)) − ϕ(X (m)
N )

) · (∇θU)(�m, ξ (m)) (45)

Loosely speaking,we think for every sufficiently largem ∈ N and every x ∈ [a, b]d of the ran-
dom variableU(�m, x) : � → R in Framework 3.1 as a suitable approximationU(�m, x) ≈
u(T , x) of the quantity u(T , x) ∈ Rwhere u = u(t, x)(t,x)∈[0,T ]×Rd ∈ C1,2([0, T ]×R

d ,R)

is a function with at most polynomially growing partial derivatives which satisfies for every
t ∈ [0, T ], x ∈ R

d that u(0, x) = ϕ(x) and

∂u
∂t (t, x) = 1

2 TraceRd

(
σ(x)[σ(x)]∗(Hessx u)(t, x)

)+ 〈μ(x), (∇xu)(t, x)〉Rd (46)

(cf. (4) above).

3.5 Description of the Algorithm in the General Case

In this subsection we provide a general framework which covers the approximation method
derived in Sects. 2.1–3.3 above and which allows, in addition, to incorporate other mini-
mization algorithms (cf., for example, Kingma and Ba [39], Ruder [54], E et al. [58], and
Han et al. [28]) than just the plain vanilla stochastic gradient descent method. The proposed
approximation algorithm is an extension of the approximation algorithm in E et al. [58] and
Han et al. [28] in the special case of linear Kolmogorov partial differential equations.

The overall error of the proposed approximation algorithm typically emerges from three
different sources: the approximation error, the statistical or generalization error, and the
optimization error (cf., for example, [4]). In our situation, the approximation error would
measure how well the exact solution of a Kolmogorov partial differential equation may be
approximated by neural nets of certain architectures. Several results for the approximation
of exact solutions of partial differential equations by neural nets are by now available in the
scientific literature (see, e.g., [10,23–25,44] and the references mentioned therein). The gen-
eralization error would measure howwell the exact distributions of the solutions of stochastic
differential equations associated with Kolmogorov partial differential equations are reflected
by (approximatively) sampling from the corresponding stochastic differential equations. For
results on the generalization error see, for example, [8,15,26,47,57] and the references men-
tioned therein. The optimization error would measure how close the output of the employed
optimization algorithm gets to the exact solution of the approximative optimization problem.
The optimization error has been successfully analyzed in the scientific literature in the case of
convex objective functions (see, for example, [3,7,37] and the references mentioned therein).
The optimization problems which appear in connection with the approximation scheme pro-
posed in this article, however, are nonconvex optimization problems (see, e.g., [13,16,17,45]
and the references mentioned therein for first results on nonconvex optimization problems).
Nevertheless, analyzing the optimization error in the context of the approximation scheme
proposed in this article as well as, more generally, in the context of training neural networks,
remains a topic of future research.

Framework 3.2 Let T ∈ (0,∞), N , d, , ν, ς ∈ N, let H : [0, T ]2 × R
d × R

d → R
d ,

ϕ : Rd → R be functions, let (�,F,P, (Ft )t∈[0,T ]) be a filtered probability space, let
Wm, j : [0, T ] × � → R

d , m ∈ N0, j ∈ N, be i.i.d. standard (Ft )t∈[0,T ]-Brownian motions
on (�,F,P), let ξm, j : � → R

d , m ∈ N0, j ∈ N, be i.i.d. F0/B(Rd)-measurable ran-
dom variables, let t0, t1, . . . , tN ∈ [0, T ] satisfy 0 = t0 < t1 < . . . < tN = T , for every
θ ∈ R

ν , j ∈ N, s ∈ R
ς let Uθ, j,s : Rd → R be a function, for every m ∈ N0, j ∈ N let
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Xm, j = (Xm, j
n )n∈{0,1,...,N } : {0, 1, . . . , N }×� → R

d be a stochastic process which satisfies

for every n ∈ {0, 1, . . . , N − 1} that Xm, j
0 = ξm, j and

Xm, j
n+1 = H(tn, tn+1,Xm, j

n ,Wm, j
tn+1

− Wm, j
tn ), (47)

let (Jm)m∈N0 ⊆ N be a sequence, for every m ∈ N0, s ∈ R
ς let φm,s : Rν × � → R satisfy

for every (θ, ω) ∈ R
ν × � that

φm,s(θ, ω) = 1

Jm

Jm∑

j=1

[
U

θ, j,s(ξm, j (ω)) − ϕ
(Xm, j

N (ω)
)]2

, (48)

for every m ∈ N0, s ∈ R
ς let Gm,s : Rν × � → R

ν satisfy for every ω ∈ �, θ ∈ {η ∈
R

ν : φm,s(·, ω) : Rν → R is differentiable at η} that
Gm,s(θ, ω) = (∇θφ

m,s)(θ, ω), (49)

let S : Rς × R
ν × (Rd)N → R

ς be a function, for every m ∈ N0 let �m : R → R
ν

and �m : R × R
ν → R

 be functions, let � : N0 × � → R
ν , S : N0 × � → R

ς , and
� : N0 × � → R

 be stochastic processes which satisfy for every m ∈ N0 that

Sm+1 = S(Sm,�m, (Xm,i
N )i∈N

)
, �m+1 = �m(�m,Gm,Sm+1(�m)), (50)

and �m+1 = �m − �m(�m+1). (51)

Roughly speaking, we think for every sufficiently large m ∈ N and every x ∈ [a, b]d of
the random variable U

�m ,1,Sm (x) : � → R in Framework 3.2 as a suitable approximation
U

�m ,1,Sm (x) ≈ u(T , x) of the quantity u(T , x) ∈ R where u = u(t, x)(t,x)∈[0,T ]×Rd ∈
C1,2([0, T ] × R

d ,R) is a function with at most polynomially growing partial derivatives
which satisfies for every t ∈ [0, T ], x ∈ R

d that u(0, x) = ϕ(x) and

∂u
∂t (t, x) = 1

2 TraceRd

(
σ(x)[σ(x)]∗(Hessx u)(t, x)

)+ 〈μ(x), (∇xu)(t, x)〉Rd , (52)

where μ : Rd → R
d and σ : Rd → R

d×d are sufficiently regular functions (cf. (4) above).

4 Examples

In this section we test the proposed approximation algorithm (see Sect. 2 above) in the case of
several examples of SDEs and Kolmogorov PDEs, respectively. In particular, in this section
we apply the proposed approximation algorithm to the heat equation (cf. Sect. 4.2 below), to
independent geometric Brownian motions (cf. Sect. 4.3 below), to the Black–Scholes model
(cf. Sect. 4.4 below), to stochastic Lorenz equations (cf. Sect. 4.5 below), and to the Heston
model (cf. Sect. 4.6 below). In the case of each of the examples below we employ the general
approximation algorithm in Framework 3.2 above in conjunction with the Adam optimizer
(cf. Kingma and Ba [39]) with mini-batches of size 8192 in each iteration step (see Sect. 4.1
below for a precise description). Moreover, we employ a fully-connected feedforward neural
network with one input layer, two hidden layers, and one one-dimensional output layer in our
implementations in the case of each of these examples. We also use batch normalization (cf.
Ioffe and Szegedy [36]) just before the first linear transformation, just before each of the two
nonlinear activation functions in front of the hidden layers as well as just after the last linear
transformation. For the two nonlinear activation functions we employ the multidimensional
version of the function R 	 x 
→ tanh(x) ∈ (−1, 1). All weights in the neural network are
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initialized by means of the Xavier initialization (cf. Glorot and Bengio [20]). The runtimes in
seconds in Tables 1, 2, 3, 4, 5 and 6 represent average computation times in seconds for our
implementations of the proposed approximationmethod over 5 independent runs (see https://
github.com/seb-becker/kolmogorov for more details on the implementation). In particular,
the runtimes take the model construction times as well as the training times into account. All
computations were performed in single precision (float32) on a NVIDIAGeForce GTX 1080
GPU with 1974 MHz core clock and 8 GB GDDR5X memory with 1809.5 MHz clock rate.
The underlying system consisted of an Intel Core i7-6800K CPU with 64 GB DDR4-2133
memory running Tensorflow 1.5 on Ubuntu 16.04.

4.1 Setting

Framework 4.1 Assume Framework 3.2, let ε = 10−8, b1 = 9
10 , b2 = 999

1000 , (γm)m∈N0 ⊆
(0,∞), let Powr : Rν → R

ν , r ∈ (0,∞), satisfy for every r ∈ (0,∞), x = (x1, . . . , xν) ∈
R

ν that

Powr (x) = (|x1|r , . . . , |xν |r ), (53)

assume for every m ∈ N0, i ∈ {0, 1, . . . , N } that Jm = 8192, ti = iT
N ,  = 2ν, T = 1,

γm = 10−31[0,250,000](m) + 10−41(250,000,500,000](m) + 10−51(500,000,∞)(m), assume for
every m ∈ N0, x = (x1, . . . , xν), y = (y1, . . . , yν), η = (η1, . . . , ην) ∈ R

ν that

�m(x, y, η) = (b1x + (1 − b1)η,b2y + (1 − b2)Pow2(η)) (54)

and

�m(x, y) =
([√ |y1|

1−(b2)m+1 + ε
]−1 γmx1

1 − (b1)m+1 , . . . ,
[√ |yν |

1−(b2)m+1 + ε
]−1 γmxν

1 − (b1)m+1

)
.

(55)

Equations (54) and (55) in Framework 4.1 describe the Adam optimizer (cf. Kingma and Ba
[39], e.g., Han et al. [28, (32)–(33) in Sect. 4.2 and (90)–(91) in Sect. 5.2]). In the setting of
Framework 4.1we present for D = [0, 1]d in Table 1 in Sect. 4.2, for D = [90, 110]d in Table
3 in Sect. 4.3, for D = [90, 110]d in Table 4 in Sect. 4.4, for D = [ 12 , 3

2 ]× [8, 10]× [10, 12]
in Table 5 in Sect. 4.5, and for D = ×25

i=1

([90, 110] × [0.02, 0.2]) in Table 6 in Sect. 4.6
statistical estimations of the relative L1(|λ(D)|−1λD;R)-approximation error

1

λ(D)

∫

D

∣∣∣∣∣
u(T , x) − U

�m ,1,Sm (x)

u(T , x)

∣∣∣∣∣
dx (56)

associated to (U�m ,1,Sm (x))x∈D , of the relative L2(|λ(D)|−1λD;R)-approximation error
√

1

λ(D)

∫

D

∣∣∣∣
u(T , x) − U�m ,1,Sm (x)

u(T , x)

∣∣∣∣

2

dx (57)

associated to (U�m ,1,Sm (x))x∈D , and of the relative L∞(λD;R)-approximation error

sup
x∈D

∣∣∣∣∣
u(T , x) − U

�m ,1,Sm (x)

u(T , x)

∣∣∣∣∣
(58)

associated to (U�m ,1,Sm (x))x∈D against certain values of m ∈ N0.
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4.2 Heat Equation

In this subsection we apply the proposed approximation algorithm to the heat equation (see
(59) below).

Assume Framework 4.1, assume for every s, t ∈ [0, T ], x, w ∈ R
d , m ∈ N0 that N = 1,

d = 100, ν = d(2d) + (2d)2 + 2d = 2d(3d + 1), ϕ(x) = ‖x‖2
Rd , H(s, t, x, w) =

x + √
2 IdRd w, assume that ξ0,1 : � → R

d is continuous uniformly distributed on [0, 1]d ,
and let u = (u(t, x))(t,x)∈[0,T ]×Rd ∈ C1,2([0, T ] × R

d ,R) be an at most polynomially
growing function which satisfies for every t ∈ [0, T ], x ∈ R

d that u(0, x) = ϕ(x) and

( ∂u
∂t )(t, x) = (�xu)(t, x). (59)

Combining, e.g., Lemma 4.2 below with, e.g., Hairer et al. [27, Corollary 4.17 and Remark
4.1] shows that for every t ∈ [0, T ], x ∈ R

d it holds that

u(t, x) = ‖x‖2
Rd + 2dt . (60)

Table 1 approximately presents the relative L1(λ[0,1]d ;R)-approximation error associated to
(U�m ,1,Sm (x))x∈[0,1]d (cf. (56) above), the relative L2(λ[0,1]d ;R)-approximation error associ-
ated to (U�m ,1,Sm (x))x∈[0,1]d (cf. (57) above), and the relative L∞(λ[0,1]d ;R)-approximation
error associated to (U�m ,1,Sm (x))x∈[0,1]d (cf. (58) above) against m ∈ {0, 10,000, 50,000,
100,000, 150,000, 200,000, 500,000, 750,000}. Figure 1 approximately depicts the rela-
tive L1(λ[0,1]d ;R)-approximation error associated to (U�m ,1,Sm (x))x∈[0,1]d (cf. (56) above),
the relative L2(λ[0,1]d ;R)-approximation error associated to (U�m ,1,Sm (x))x∈[0,1]d (cf. (57)
above), and the relative L∞(λ[0,1]d ;R)-approximation error associated to (U�m ,1,Sm (x))x∈[0,1]d
(cf. (58) above) against m ∈ {0, 100, 200, 300, . . . , 299,800, 299,900, 300,000}. In our
numerical simulations for Table 1 and Fig. 1 we calculated the exact solution of the PDE (59)
by means of Lemma 4.2 below (cf. (60) above) and we approximately calculated the relative
L1(λ[0,1]d ;R)-approximation error (cf. (56) above), the relative L2(λ[0,1]d ;R)-approxima-
tion error (cf. (57) above), and the relative L∞(λ[0,1]d ;R)-approximation error (cf. (58)
above) for m ∈ {0, 10,000, 50,000, 100,000, 150,000, 200,000, 500,000, 750,000} by
means of Monte Carlo approximations with 10240000 samples in the case of each one of the
above mentioned error criteria (see Lemma 4.3 below). In addition, we present in Table 2
statistical estimations of the relative L1(P; L1(λ[0,1]d ;R))-approximation error associated to
(U�m ,1,Sm (x))x∈[0,1]d (cf. (61) below), the relative L2(P; L2(λ[0,1]d ;R))-approximation error
associated to (U�m ,1,Sm (x))x∈[0,1]d (cf. (62) below), and the relative L2(P; L∞(λ[0,1]d ;R))-
approximation error associated to (U�m ,1,Sm (x))x∈[0,1]d (cf. (63) below) against m ∈ {0,
10,000, 50,000, 100,000, 150,000, 200,000, 500,000, 750,000}. In our numerical simula-
tions for Table 2 we calculated the exact solution of the PDE (59) by means of Lemma 4.2
below (cf. (60) above), we approximately calculated the relative L1(P; L1(λ[0,1]d ;R))-ap-
proximation error

E

[ ∫

[0,1]d

∣∣∣∣∣
u(T , x) − U

�m ,1,Sm (x)

u(T , x)

∣∣∣∣∣
dx

]
(61)

for m ∈ {0, 10,000, 50,000, 100,000, 150,000, 200,000, 500,000, 750,000} by means of
Monte Carlo approximationswith 10240000 samples for the Lebesgue integral and 5 samples
for the expectation, we approximately calculated the relative L2(P; L2(λ[0,1]d ;R))-appro-
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Table 1 Approximative presentations of the relative approximation errors in (56)–(58) for the heat equation
in (59)

Number of
steps

Relative
L1(λ[0,1]d ;R)-
error

Relative
L2(λ[0,1]d ;R)-
error

Relative
L∞(λ[0,1]d ;R)-
error

Runtime in seconds

0 0.998253 0.998254 1.003524 0.5

10,000 0.957464 0.957536 0.993083 44.6

50,000 0.786743 0.786806 0.828184 220.8

100,000 0.574013 0.574060 0.605283 440.8

150,000 0.361564 0.361594 0.384105 661.0

200,000 0.150346 0.150362 0.164140 880.8

500,000 0.000882 0.001112 0.007360 2200.7

750,000 0.000822 0.001036 0.007423 3300.6

ximation error
⎛

⎝E

⎡

⎣
∫

[0,1]d

∣∣∣∣∣
u(T , x) − U

�m ,1,Sm (x)

u(T , x)

∣∣∣∣∣

2

dx

⎤

⎦

⎞

⎠

1/2

(62)

for m ∈ {0, 10,000, 50,000, 100,000, 150,000, 200,000, 500,000, 750,000} by means of
Monte Carlo approximationswith 10240000 samples for the Lebesgue integral and 5 samples
for the expectation, and we approximately calculated the relative L2(P; L∞(λ[0,1]d ;R))-ap-
proximation error

⎛

⎝E

⎡

⎣ sup
x∈[0,1]d

∣∣∣∣∣
u(T , x) − U

�m ,1,Sm (x)

u(T , x)

∣∣∣∣∣

2
⎤

⎦

⎞

⎠

1/2

(63)

for m ∈ {0, 10,000, 50,000, 100,000, 150,000, 200,000, 500,000, 750,000} by means
of Monte Carlo approximations with 10240000 samples for the supremum (see Lemma 4.3
below) and 5 samples for the expectation. The following elementary result, Lemma 4.2 below,
specifies the explicit solution of the PDE (59) above (cf. (60) above). For completeness we
also provide here a proof for Lemma 4.2.

Lemma 4.2 Let T ∈ (0,∞), d ∈ N, let C ∈ R
d×d be a strictly positive and symmetric

matrix, and let u : [0, T ] × R
d → R satisfy for every (t, x) ∈ [0, T ] × R

d that

u(t, x) = ‖x‖2
Rd + t TraceRd (C). (64)

Then

(i) it holds that u ∈ C∞([0, T ] × R
d ,R) is at most polynomially growing and

(ii) it holds for every t ∈ [0, T ], x ∈ R
d that

( ∂u
∂t )(t, x) = 1

2 TraceRd

(
C(Hessx u)(t, x)

)
. (65)

Proof of Lemma 4.2 First, note that u is a polynomial. This establishes item (i). Moreover,
note that for every (t, x) ∈ [0, T ] × R

d it holds that

( ∂u
∂t )(t, x) = TraceRd (C), (∇xu)(t, x) = 2x, (66)

and (Hessx u)(t, x) = (
∂
∂x (∇xu)

)
(t, x) = 2 IdRd . (67)
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Fig. 1 Approximative plots of the relative approximation errors in (56)–(58) for the heat equation in (59)

Hence, we obtain for every (t, x) ∈ [0, T ] × R
d that

( ∂u
∂t )(t, x) − 1

2 TraceRd

(
C(Hessx u)(t, x)

) = TraceRd (C) − 1
2 TraceRd (2C) = 0. (68)

This proves item (ii). The proof of Lemma 4.2 is thus completed. ��
Lemma 4.3 below discloses the strategy how we approximatively calculate the

L∞(λ[0,1]d ;R)-errors in (58) and (63) above. For completeness,we provide a proof of Lemma
4.3.

Lemma 4.3 Let d ∈ N, a ∈ R, b ∈ (a,∞), let f : [a, b]d → R be continuous, let (�,F,P)

be a probability space, let Xn : � → [a, b]d , n ∈ N, be i.i.d. random variables, and assume
that X1 is continuous uniformly distributed on [a, b]d . Then
(i) it holds that

P

(

lim sup
N→∞

∣∣∣∣∣

[
max

1≤n≤N
f (Xn)

]
−
[

sup
x∈[a,b]d

f (x)

]∣∣∣∣∣
= 0

)

= 1 (69)

and
(ii) it holds for every p ∈ (0,∞) that

lim sup
N→∞

E

[∣∣∣∣∣

[
max

1≤n≤N
f (Xn)

]
−
[

sup
x∈[a,b]d

f (x)

]∣∣∣∣∣

p]

= 0. (70)

Proof of Lemma 4.3 First, observe that the fact that f : [a, b]d → R is continuous and the
fact that [a, b]d ⊆ R

d is compact demonstrate that

(I) there exists ξ ∈ [a, b]d which satisfies that f (ξ) = supx∈[a,b]d f (x),
(II) there exists ε : (0,∞) → (0,∞) which satisfies that for all δ ∈ (0,∞), x ∈ [a, b]d with

‖x − ξ‖Rd < δ it holds that | f (x) − f (ξ)| ≤ ε(δ), and
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(III) there exists a random variable Y : � → R which satisfies that

P

(
lim sup
N→∞

∣
∣
∣
∣

[
max

1≤n≤N
f (Xn)

]
− Y

∣
∣
∣
∣ = 0

)
= 1. (71)

Hence, we obtain for all δ ∈ (0,∞) that

P

(

sup
x∈[a,b]d

f (x) − Y ≥ δ

)

≤ P

(
⋂

n∈N

{
‖Xn − ξ‖Rd ≥ ε(δ)

}
)

≤ lim sup
n→∞

[

1 −
(

2ε(δ)√
d(b − a)

)d]n
= 0.

(72)

This establishes item (i). The fact that f : [a, b]d → R is globally bounded, item (i), and
Lebesgue’s dominated convergence theorem ensure that for every p ∈ (0,∞) it holds that

lim sup
N→∞

E
[∣
∣max1≤i≤N f (Xi ) − supx∈[a,b]d f (x)

∣
∣p
]

= 0. (73)

This establishes item (ii). The proof of Lemma 4.3 is thus completed. ��

4.3 Geometric BrownianMotions

In this subsection we apply the proposed approximation algorithm to a Black–Scholes PDE
with independent underlying geometric Brownian motions.

Assume Framework 4.1, let1 r = 1
20 , δ = 1

10 , μ = r − δ = − 1
20 , σ1 = 1

10 + 1
200 ,

σ2 = 1
10+ 2

200 ,…,σ100 = 1
10+ 100

200 , assume for every s, t ∈ [0, T ], x = (x1, x2, . . . , xd),w =
(w1, w2, . . . , wd) ∈ R

d ,m ∈ N0 thatd = 100,ϕ(x) = exp(−rT )max
{[maxi∈{1,2,...,d} xi ]−

100, 0
}
, N = 1, and

H(s, t, x, w) =
(
x1 exp

((
μ − |σ1|2

2

)
(t − s) + σ1w1

)
, . . . ,

xd exp
((

μ − |σd |2
2

)
(t − s) + σdwd

))
,

(74)

assume that ξ0,1 : � → R
d is continuous uniformly distributed on [90, 110]d , and let u =

(u(t, x))t∈[0,T ],x∈Rd ∈ C([0, T ]×R
d ,R)be an atmost polynomially growing functionwhich

satisfies for every t ∈ (0, T ], x ∈ R
d that u(0, x) = ϕ(x), u|(0,T ]×Rd ∈ C1,2((0, T ]×R

d ,R),
and

( ∂u
∂t )(t, x) = 1

2

d∑

i=1

|σi xi |2( ∂2u
∂x2i

)(t, x) + μ

d∑

i=1

xi (
∂u
∂xi

)(t, x). (75)

The Feynman–Kac formula (cf., for example, Hairer et al. [27, Corollary 4.17]) shows that
for every standard Brownian motion W = (W(1), . . . ,W(d)) : [0, T ] × � → R

d and every
t ∈ [0, T ], x = (x1, . . . , xd) ∈ R

d it holds that

u(t, x) = E
[
ϕ
(
x1 exp

(
σ1W(1)

t +
(
μ − |σ1|2

2

)
t
)

, . . . , xd exp
(
σdW(d)

t +
(
μ − |σd |2

2

)
t
))]

.

(76)

1 The parameter r models a riskless interest rate and the parameter δ models a continuous dividend payment.
For simplicity we assumed that every stock has the same dividend rate.
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Table 3 approximately presents the relative L1(20−dλ[90,110]d ;R)-approximation error
associated to (U�m ,1,Sm (x))x∈[90,110]d (cf. (56) above), the relative L2(20−dλ[90,110]d ;R)-
approximation error associated to (U�m ,1,Sm (x))x∈[90,110]d (cf. (57) above), and the relative
L∞(λ[90,110]d ;R)-approximation error associated to (U�m ,1,Sm (x))x∈[90,110]d (cf. (58)
above) against m ∈ {0, 25,000, 50,000, 100,000, 150,000, 250,000, 500,000, 750,000}.
In our numerical simulations for Table 3 we approximately calculated the exact solution of
the PDE (75) by means of (76) and Monte Carlo approximations with 1048576 samples
and we approximately calculated the relative L1(20−dλ[90,110]d ;R)-approximation error (cf.
(56) above), the relative L2(20−dλ[90,110]d ;R)-approximation error (cf. (57) above), and the
relative L∞(λ[90,110]d ;R)-approximation error (cf. (58) above) form ∈ {0, 25,000, 50,000,
100,000, 150,000, 250,000, 500,000, 750,000} by means of Monte Carlo approximations
with 81920 samples in the case of each one of the above mentioned error criteria (see Lemma
4.3 above).

4.4 Black–Scholes Model with Correlated Noise

In this subsection we apply the proposed approximation algorithm to a Black–Scholes PDE
with correlated noise.

Assume Framework 4.1, let r = 1
20 , δ = 1

10 , μ = r − δ = − 1
20 , β1 = 1

10 + 1
200 , β2 =

1
10 + 2

200 , . . ., β100 = 1
10 + 100

200 , Q = (Qi, j )(i, j)∈{1,2,...,100}, � = (�i, j )(i, j)∈{1,2,...,100} ∈
R
100×100, ς1, ς2, . . . , ς100 ∈ R

100, assume for every s, t ∈ [0, T ], x = (x1, x2, . . . , xd),
w = (w1, w2, . . . , wd) ∈ R

d , m ∈ N0, i, j, k ∈ {1, 2, . . . , 100} with i < j that N = 1,
d = 100, ν = d(2d) + (2d)2 + 2d = 2d(3d + 1), Qk,k = 1, Qi, j = Q j,i = 1

2 , �i, j = 0,
�k,k > 0, ��∗ = Q (cf., for example, Golub and Van Loan [21, Theorem 4.2.5]), ςk =
(βk�k,1, βk�k,2, . . . , βk�k,100), ϕ(x) = exp(−μT )max

{
110− [mini∈{1,2,...,d} xi ], 0

}
, and

H(s, t, x, w) =
(
x1 exp

(
(μ − 1

2‖ς1‖2Rd )(t − s) + 〈ς1, w〉Rd

)
, . . . ,

xd exp
(
(μ − 1

2‖ςd‖2Rd )(t − s) + 〈ςd , w〉Rd

) )
, (77)

assume that ξ0,1 : � → R
d is continuous uniformly distributed on [90, 110]d , and let u =

(u(t, x))t∈[0,T ],x∈Rd ∈ C([0, T ] × R
d ,R) be an at most polynomially growing continuous

function which satisfies for every t ∈ (0, T ], x ∈ R
d that u(0, x) = ϕ(x), u|(0,T ]×Rd ∈

C1,2((0, T ] × R
d ,R), and

( ∂u
∂t )(t, x) = 1

2

d∑

i, j=1

xi x j 〈ςi , ς j 〉Rd ( ∂2u
∂xi x j

)(t, x) + μ

d∑

i=1

xi (
∂u
∂xi

)(t, x). (78)

The Feynman–Kac formula (cf., for example, Hairer et al. [27, Corollary 4.17]) shows that
for every standard Brownian motion W = (W(1), . . . ,W(d)) : [0, T ] × � → R

d and every
t ∈ [0, T ], x = (x1, . . . , xd) ∈ R

d it holds that

u(t, x) = E

[
ϕ

(
x1 exp

(〈
ς1,Wt

〉
Rd +

(
μ − ‖ς1‖2

Rd

2

)
t

)
, . . . ,

xd exp

(〈
ςd ,Wt

〉
Rd +

(
μ − ‖ςd‖2

Rd

2

)
t

))]
. (79)
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Table 4 approximately presents the relative L1(20−dλ[90,110]d ;R)-approximation error
associated to (U�m ,1,Sm (x))x∈[90,110]d (cf. (56) above), the relative L2(20−dλ[90,110]d ;R)-
approximation error associated to (U�m ,1,Sm (x))x∈[90,110]d (cf. (57) above), and the relative
L∞(λ[90,110]d ;R)-approximation error associated to (U�m ,1,Sm (x))x∈[90,110]d (cf. (58)
above) against m ∈ {0, 25,000, 50,000, 100,000, 150,000, 250,000, 500,000, 750,000}.
In our numerical simulations for Table 4 we approximately calculated the exact solution of
the PDE (78) by means of (79) and Monte Carlo approximations with 1048576 samples
and we approximately calculated the relative L1(20−dλ[90,110]d ;R)-approximation error (cf.
(56) above), the relative L2(20−dλ[90,110]d ;R)-approximation error (cf. (57) above), and the
relative L∞(λ[90,110]d ;R)-approximation error (cf. (58) above) form ∈ {0, 25,000, 50,000,
100,000, 150,000, 250,000, 500,000, 750,000} by means of Monte Carlo approximations
with 81920 samples in the case of each one of the above mentioned error criteria (see Lemma
4.3 above).

4.5 Stochastic Lorenz Equations

In this subsection we apply the proposed approximation algorithm to the stochastic Lorenz
equation.

Assume Framework 4.1, let α1 = 10, α2 = 14, α3 = 8
3 , β = 3

20 , D = [ 12 , 3
2 ] × [8, 10] ×

[10, 12], letμ : Rd → R
d be a function, assume for every s, t ∈ [0, T ], x = (x1, x2, . . . , xd),

w = (w1, w2, . . . , wd) ∈ R
d , m ∈ N0 that N = 100, d = 3, ν = (d + 20)d + (d + 20)2 +

(d + 20) = (d + 20)(2d + 21), μ(x) = (α1(x2 − x1), α2x1 − x2 − x1x3, x1x2 − α3x3),
ϕ(x) = ‖x‖2

Rd , and

H(s, t, x, w) = x + μ(x)(t − s)1[0,N/T ](‖μ(x)‖Rd ) + βw (80)

(cf., for example, Hutzenthaler et al. [32], Hutzenthaler et al. [33], Hutzenthaler et al. [35],
Milstein andTretyakov [50], Sabanis [55,56], and the referencesmentioned therein for related
temporal numerical approximation schemes for SDEs), assume that ξ0,1 : � → R

d is contin-
uous uniformly distributed on D, and let u = (u(t, x))(t,x)∈[0,T ]×Rd ∈ C1,2([0, T ]×R

d ,R)

be an at most polynomially growing function (cf., for example, Hairer et al. [27, Corollary
4.17] and Hörmander [31, Theorem 1.1]) which satisfies for every t ∈ [0, T ], x ∈ R

d that
u(0, x) = ϕ(x) and

( ∂u
∂t )(t, x) = β2

2 (�xu)(t, x) + α1(x2 − x1)(
∂u
∂x1

)(t, x)

+ (α2x1 − x2 − x1x3)(
∂u
∂x2

)(t, x) + (x1x2 − α3x3)(
∂u
∂x3

)(t, x).
(81)

Table 5 approximately presents the relative L1(4−1λD;R)-approximation error associated to
(U�m ,1,Sm (x))x∈D (cf. (56) above), the relative L2(4−1λD;R)-approximation error associ-
ated to (U�m ,1,Sm (x))x∈D (cf. (57) above), and the relative L∞(λD;R)-approximation error
associated to (U�m ,1,Sm (x))x∈D (cf. (58) above) against m ∈ {0, 25,000, 50,000, 100,000,
150,000, 250,000, 500,000, 750,000}. In our numerical simulations for Table 5 we approxi-
mately calculated the exact solution of the PDE (81) bymeans ofMonteCarlo approximations
with 1048576 samples and temporal SDE-discretizations based on (80) with 100 equidis-
tant time steps and we approximately calculated the relative L1(4−1λD;R)-approximation
error (cf. (56) above), the relative L2(4−1λD;R)-approximation error (cf. (57) above), and
the relative L∞(λD;R)-approximation error (cf. (58) above) for m ∈ {0, 25,000, 50,000,
100,000, 150,000, 250,000, 500,000, 750,000} by means of Monte Carlo approximations
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with 20480 samples in the case of each one of the above mentioned error criteria (see Lemma
4.3 above).

4.6 HestonModel

In this subsection we apply the proposed approximation algorithm to the Heston model in
(83) below.

Assume Framework 4.1, let δ = 25, α = 1
20 , κ = 6

10 , θ = 1
25 , β = 1

5 ,  = − 4
5 ,

D = ×δ
i=1

([90, 110] × [0.02, 0.2]), let ei ∈ R
50, i ∈ {1, 2, . . . , 50}, satisfy that e1 =

(1, 0, 0, . . . , 0, 0) ∈ R
50, e2 = (0, 1, 0, . . . , 0, 0) ∈ R

50, …, e50 = (0, 0, 0, . . . , 0, 1) ∈
R
50, assume for every s, t ∈ [0, T ], x = (x1, x2, . . . , xd), w = (w1, w2, . . . , wd) ∈ R

d that
N = 100, d = 2δ = 50, ν = (d + 50)d + (d + 50)2 + (d + 50) = (d + 50)(2d + 51),
ϕ(x) = exp(−αT )max

{
110 − [∑δ

i=1
x2i−1

δ
], 0}, and

H(s, t, x, w) =
δ∑

i=1

([
x2i−1 exp

(
(α − x2i

2 )(t − s) + w2i−1
√
x2i
)]

e2i−1

+
[
max

{[
max

{
β
2

√
t − s,max

{ β
2

√
t − s,

√
x2i
}+ β

2
(
ρw2i−1 + [1 − ρ2]1/2w2i

)}]2

+ (
κθ − β2

4 − κx2i
)
(t − s), 0

}]
e2i

)
(82)

(cf. Hefter and Herzwurm [29, Sect. 1]), assume that ξ0,1 : � → R
d is continuous uniformly

distributed on D, and let u = (u(t, x))t∈[0,T ],x∈Rd ∈ C([0, T ] × R
d ,R) be an at most

polynomially growing function (cf., for example, Alfonsi [1, Proposition 4.1]) which satisfies
for every t ∈ (0, T ], x ∈ R

d that u(0, x) = ϕ(x), u|(0,T ]×Rd ∈ C1,2((0, T ] × R
d ,R), and

( ∂u
∂t )(t, x) =

[ δ∑

i=1

(
αx2i−1(

∂u
∂x2i−1

)(t, x) + κ(θ − x2i )(
∂u

∂x2i
)(t, x)

)]

+
[ δ∑

i=1

|x2i |
2

(
|x2i−1|2( ∂2u

∂x22i−1
)(t, x) + 2x2i−1β( ∂2u

∂x2i−1∂x2i
)(t, x) + β2( ∂2u

∂x22i
)(t, x)

)]
.

(83)

Table 6 approximately presents the relative L1(|λ(D)|−1λD;R)-approximation error associ-
ated to (U�m ,1,Sm (x))x∈D (cf. (56) above), the relative L2(|λ(D)|−1λD;R)-approximation
error associated to (U�m ,1,Sm (x))x∈D (cf. (57) above), and the relative L∞(λD;R)-appro-
ximation error associated to (U�m ,1,Sm (x))x∈D (cf. (58) above) against m ∈ {0, 25,000,
50,000, 100,000, 150,000, 250,000, 500,000, 750,000}. In our numerical simulations
for Table 6 we approximately calculated the exact solution of the PDE (83) by means
of Monte Carlo approximations with 1048576 samples and temporal SDE-discretizations
based on (82) with 100 equidistant time steps and we approximately calculated the relative
L1(|λ(D)|−1λD;R)-approximation error (cf. (56) above), the relative L2(|λ(D)|−1λD;R)-
approximation error (cf. (57) above), and the relative L∞(λD;R)-approximation error (cf.
(58) above) for m ∈ {0, 25,000, 50,000, 100,000, 150,000, 250,000, 500,000, 750,000}
by means of Monte Carlo approximations with 10240 samples in the case of each one of the
above mentioned error criteria (see Lemma 4.3 above).
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4.7 Conclusion

In Tables 1, 2, 3, 4, 5 and 6 above we present for a number of examples statistical estimations
of different relative approximation errors for the proposed deep learning based approxi-
mation method, where the approximation errors are measured in the L1, the L2, and the
L∞ sense. The numerical simulations suggest that the deep learning based approximation
method proposed in this work (see Framework 3.2 in Sect. 3.5 above) is indeed able to
approximately calculate the solution of high-dimensional Kolmogorov PDEs not just at fixed
space-time points but even on entire regions, that is, for example, on [0, 1]100 in the case of
the 100-dimensional heat equation in (59) in Sect. 4.2, on [90, 110]100 in the case of the 100-
dimensional Black–Scholes PDE with underlying independent geometric Brownian motions
in (75) in Sect. 4.3, on [90, 100]100 in the case of the 100-dimensional Black–Scholes PDE
with correlated noise in (78) in Sect. 4.4, and on ×25

i=1

([90, 110] × [0.02, 0.2]) in the case
of the 50-dimensional Kolmogorov PDE in (83) in Sect. 4.6. In constrast to the results for
the relative L1-approximation error and the relative L2-approximation errors, however, the
results for the relative L∞-approximation errors in Tables 1 and 3, 4, 5 and 6 should be taken
with great caution as the L∞-approximation errors were calculated by means of Monte Carlo
approximations according to Lemma 4.3 and the convergence rate there might very well be
extremely slow (see, e.g., [38, Sect. 5.2]).
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