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Abstract

Artificial neural networks (ANNSs) have very successfully been used
in numerical simulations for a series of computational problems rang-
ing from image classification/image recognition, speech recognition,
time series analysis, game intelligence, and computational advertising
to numerical approximations of partial differential equations (PDEs).
Such numerical simulations suggest that ANNs have the capacity to
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very efficiently approximate high-dimensional functions and, espe-
cially, such numerical simulations indicate that ANNs seem to admit
the fundamental power to overcome the curse of dimensionality when
approximating the high-dimensional functions appearing in the above
named computational problems. There are also a series of rigorous
mathematical approximation results for ANNs in the scientific litera-
ture. Some of these mathematical results prove convergence without
convergence rates and some of these mathematical results even rigor-
ously establish convergence rates but there are only a few special cases
where mathematical results can rigorously explain the empirical suc-
cess of ANNs when approximating high-dimensional functions. The
key contribution of this article is to disclose that ANNs can efficiently
approximate high-dimensional functions in the case of numerical ap-
proximations of Black-Scholes PDEs. More precisely, this work reveals
that the number of required parameters of an ANN to approximate
the solution of the Black-Scholes PDE grows at most polynomially in
both the reciprocal of the prescribed approximation accuracy € > 0
and the PDE dimension d € N and we thereby prove, for the first
time, that ANNs do indeed overcome the curse of dimensionality in
the numerical approximation of Black-Scholes PDEs.
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1 Introduction

Artificial neural networks (ANNs) (cf., e.g., Goodfellow et al. [29], McCul-
loch & Pitts [50], Priddy & Keller [63], Schmidhuber [66]) have very success-
fully been used in numerical simulations for a series of computational prob-
lems ranging from image classification/image recognition (cf., e.g., Huang et
al. [40], Krizhevsky et al. [47], Simonyan & Zisserman [71]), speech recog-
nition (cf., e.g., Dahl et al. [20], Hinton et al. [35], Graves et al. [30], Wu
et al. [73]), time series analysis (cf., e.g., Goodfellow et al. [29], LeCun et
al. [48]), game intelligence (cf., e.g., Silver et al. [69, [70]), and computa-
tional advertising to numerical approximations of partial differential equa-
tions (PDEs) (cf., e.g., [4, 5 6, 22 23] 26, 32] 34] 45], 54], 56, 64], [72]). Such
numerical simulations suggest that ANNs have the capacity to very efficiently
approximate high-dimensional functions. Particularly, such numerical sim-
ulations indicate that ANNs seem to admit the fundamental power to re-
solve the curse of dimensionality (cf., e.g., Bellman [7]) in the sense that
the number of parameters of an ANN to approximate the high-dimensional
functions appearing in the above named computational problems grows at
most polynomially in both the reciprocal of the prescibed accuracy ¢ > 0
and the dimension d € N. There are also a series of rigorous mathemat-
ical approximation results for ANNs in the scientific literature (cf., e.g.,
[, 2, 3, 8, O, 10, 11, 12 13| 18, 211, 24 25, 27, B3] 36, 87, B8, B39 49| 511
52, (3L 57, B8, B9, 60, 61, 62, 67, 68, 72, 74, [75] and the references men-
tioned therein). Some of these mathematical results prove convergence with-
out convergence rates and some of these mathematical results even rigorously
establish convergence rates but there are only a few special cases where math-
ematical results can rigorously explain the empirical success of ANNs when
approximating high-dimensional functions.

The key contribution of this article is to disclose that ANNs can efficiently



approximate high-dimensional functions in the case of numerical approxima-
tions of Black-Scholes PDEs. More accurately, Theorem [3.14] below, which is
the main result of this paper, reveals that the number of required parameters
of an ANN to approximate the solution of the Black-Scholes PDE grows at
most polynomially in both the reciprocal of the prescribed approximation
accuracy € > 0 and the PDE dimension d € N and we thereby prove, for
the first time, that ANNs do indeed resolve the curse of dimensionality in
the numerical approximation of Black-Scholes PDEs. To illustrate the main
result of this article (Theorem B.14]in Subsection B:6] below), we now present
in the following theorem a special case of Theorem B.14 below.

Theorem 1.1. Let T, ¢ € (0,00), for every d € N let ||-||ga : RY — [0, 00) be
the d-dimensional Euclidean norm and let ||| gg g gay : R4 — [0, 00) be the
Hilbert-Schmidt norm on R4 let Ay € C(RY R?), d €N, and a € C(R,R)
be functions which satisfy for all d € N, v = (x1,2s,...,24) € R? that
Ay(z) = (alzy),a(zs),...,a(zq)), let pg: RT — R, d € N, be continuous
functions, let pig: RY — RY, d € N, and o4: R — R¥>4 d € N, be functions
which satisfy for alld € N, v,y € R4, A € R that

pa(Ar +y) + M1a(0) = Ara(w) + pa(y), (1)

ca(Ar +y) + Aa(0) = Aog(x) + aa(y), (2)
and ||pa(@)||ge + loa(@) | ggre ray < (1 + [|z][ga), let

N = Urea..3 Yodn,te)e(@e)x 1y (Ko (REH1 X RY)) | (3)

let P: N — N and R: N — UL ,C(RYR) be the functions which satisfy
fOT all L c {2, 3,‘. : .}, (lo,ll, ey lﬁ) c ((Nﬁ)x {1}), b = ((Wl, Bl), ey
(Wi, Be)) = (Wi )icq by de 2t (BYie 2ot} ke 2ncy € (XE
(R x RE)), 29 € R,z € R, zpy € RE with Vk € NN
(0,£)Z T — Alk(kak—l"i‘Bk) that R((I)) S C(RlO,R), (R((I)))(SL’(]) = Wﬁxﬁ_l
+ B, and P(P) = Zle U(lo—1 + 1), and let (¢q5)aen,se0,] SN satisfy for
alld € N, § € (0,1], z € R? that P(¢as) < c¢ddF, R(das) € C(RYR),
[(R(¢a,5)) ()| < c¢d*(1+ [|z]|ka), and

|pa(e) = (R(das)) ()] < cd®6 (1 + [|][fa)- (4)

Then



(i) there exist unique continuous functions ug: [0,T] x R — R, d € N,
which satisfy for all d € N, x € R? that ug(0,z) = oq(x), which satisfy

. uq(t,r .
for all d € N that infye(0,00) SUP(t z)ef0, 7] xRE ﬁ < 00, and which

satisfy for all d € N that ug|orxrae s a viscosity solution of
(Zug)(t,z) = Trace(oq(z)[oq(z)]* (Hess, uq)(t, z))
+ (g5ua) (t, ) pa(@)

for (t,z) € (0,T) x R and

(5)

(i) for every p € (0,00) there exist € € (0,00), (Yac)den,c01] S N such
that for all d € N, € € (0,1] it holds that P(tg.) < €d®e™%, R(Ya.) €
C(R% R), and

l/p
[ o) = R ] < ©)

Theorem [[.1] is an immediate consequence of Corollary in Subsec-
tion B8 below (with r = 1 in the notation of Corollary B.I6). Corollary B.10],
in turn, follows from Theorem BI4] (see Subsection below). Note that
in Theorem [Tl above the set N in ([B]) corresponds to the set of all fully-
connected artifical neural networks (with £+ 1 layers, £ — 1 hidden layers, [,
neurons on the input layer, [; neurons on the first hidden layer, [, neurons on
the second hidden layer, ..., {1 neurons on the (£ —1)-th hidden layer, and
Iz = 1 neurons on the output layer). Moreover, observe that the function a in
Theorem [[T]is the activation function which is used in the employed artifical
neural networks in Theorem [[.I] and observe that the functions Ay, d € N,
are the multidimensional versions associated to the activation function a. In
addition, note that for every artifical neural network ® € A in Theorem [L1lit
holds that P(®) is the number of parameters used in the artifical neural net-
work @ and note that for every artifical neural network ® € N in Theorem 1]
it holds that R(®) is the mathematical function associated to the artifical
neural network ® (the realization associated to the artifical neural network
®). In Section Ml below we apply Theorem [T above and Theorem [3.14] be-
low, respectively, to the Black-Scholes derivative pricing PDE with different
payoff functions. More specifically, in Subsection we apply Theorem [B.14]
in the case of basket call options (cf. Proposition 7)), in Subsection [1.4] we
apply Theorem [B.I4] in the case of basket put options (cf. Proposition [.9]),
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in Subsection we apply Theorem [3.14] in the case of call on max options
(cf. Proposition [.13]), and in Subsection we apply Theorem [B.14] in the
case of call on min options (cf. Proposition 13)). Our proofs of Theorem [[]
and Theorem B.I4] respectively, are based on probabilistic arguments. More
formally, our proofs of Theorem [[LT] and Theorem B.I4] respectively, employ
— besides other arguments — the Feynman-Kac formula for viscosity solutions
of Kolmogorov PDEs (cf. Proposition in Subsection below, (217
in the proof of Proposition 3.4l in Subsection below, and, e.g., Hairer et
al. [31], Corollary 4.17]), Monte-Carlo approximations for the expected value
in the Feynman-Kac formula (cf. Corollary in Subsection 2] below and
([226) in the proof of Proposition B.4]in Subsection below), the fact that
the solution of the associated stochastic differential equation (SDE) depends
affine linearly on the initial value (cf. Proposition in Subsection 2.4] be-
low and (2I3)) in the proof of Proposition B:4]in Subsection B2 below) since
the considered SDE is affine linear, and an argument to prove the existence of
a random realization with the desired approximation properties (cf. Propo-
sition in Subsection Bl below and (230) in the proof of Proposition 3.4l
in Subsection below) on the artifical probability space which we employ
in our proof of Theorem [T and Theorem B.I4], respectively.

The remainder of this article is organized as follows. In Section 2 we sup-
ply several auxiliary results on Monte Carlo approximations (Subsection 2.7]),
affine functions (Subsection [2.2)), SDEs (Subsections 2.3H2.4]), and viscosity
solutions for PDEs (Subsection [2Z3]). These auxiliary results are then used
in Section [ to establish the approximation result for ANNs illustrated in
Theorem [[Tabove. In particular, we prove in Theorem B.14]in Section 3] the
main result approximation result of this article. In Section ] we illustrate
the application of Theorem [3.14] in the case of the Black-Scholes PDE with
different payoff functions.

2 Probabilistic and analytic preliminaries

In this section we provide several basic and in parts well-known auxiliary re-
sults on Monte Carlo approximations (Subsection 2.1), affine functions (Sub-
section 22)), SDEs (Subsections 2:3HZ4)), and viscosity solutions for PDEs
(Subsection 2.5]).



2.1 Monte Carlo approximations

In this subsection we employ Kahane-Khintchine-type estimates from the lit-
erature (cf., e.g., Hytonen et al. [41, Theorem 6.2.4 in Subsection 6.2b]) to
present the known LP-Monte Carlo estimate in Corollary below. Corol-
lary is an immediate consequence of Lemma and Proposition 2.4]
below. Lemma 2.2] in turn, follows from Hyténen et al. [41, Theorem 6.2.4
in Subsection 6.2b] and Proposition 2.4 is, e.g., proved as Corollary 5.12 in
Cox et al. [I5]. To simplify the accessibility of Proposition 2.4 and Corol-
lary 2.5 below, we include in this subsection also the statement and the proof
of the well-known L2-Monte Carlo error analysis in Lemma below.

Definition 2.1. Let p,q € (0,00). Then we denote by R,, € [0,00] the
extended real number given by

Rpq =
( [ IR-Banach space (E, ||-||5): 1)
I probability space (2, F,P):

dP-Rademacher family r;: Q@ — {—1,1},j € N:
Jk e N: Jay, 29,..., 2, € E\{0}:

i (E[H > rthjH%})l/p =c (E[H S WJH%])l/q_

supy ¢ € [0,00):

(7)
and we call R, , the (p, q)-Kahane-Khintchine constant.

Lemma 2.2. For every p € [2,00) let R,2 be the (p,2)-Kahane-Khintchine
constant (cf. Definition[21). Then it holds for all p € [2,00) that

K2 <Vp— 1L (8)

Proof of Lemmal2.4. Throughout this proof let (E,|-||;) be a R-Banach
space, let (2, F,P) be a probability space, let r;: Q@ — {-1,1}, j € N,
be independent random variables which satisfy for all j € N that

Pirj=-1)=P(r;=1)= 5, 9)

and let k € N, z1, 29, ..., 2, € E\{0}. Note that Hytonen et al. [41, Theorem
6.2.4 in Subsection 6.2b] (with X = E, ¢ = p, p = 2 for p € [2,00) in the
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notation of [41l Theorem 6.2.4]) implies that for all p € [2, 00) it holds that

1/2

BN ral])” < o- 0 (IS rali]) . o

Combining this with (7) and the fact that E || Z?:l r;z;j||%] > 0 ensures that

for all p € [2,00) it holds that &,5 < (p — 1)'/2. The proof of Lemma 2.2 is
thus completed. O

Lemma 2.3. Letn € N, let (2, F,P) be a probability space, and let X;: Q —
R, i € {1,2,...,n}, be i.i.d. random variables with E[\Xl\] < 00. Then it
holds that

E[EX)] - 2(Xr, X)) =2 (B[1X) - EXP])?. a1

Proof of Lemmal2.3. Note that the fact that for all independent random
variables Y, Z: Q — R with E[|Y| +|Z]|] < oo it holds that E[|Y Z|] < co and
E[YZ] = E[Y]E[Z] (cf., e.g., Klenke [46, Theorem 5.4]) and the hypothesis
that X;: Q - R, i € {1,2,...,n}, are i.i.d. random variables assure that

E|[Bx] - (S X))

n 2
= LE|| Zi BLX - X
= & [0 BIELX] - X)(E[X,) - X;)]] 12
=5 [;E[IE[XJ - Xﬂ]
+o | X E[EX] - X)(EX] - Xj)]]
i j=1i#j
= L(nE[E[X1] - X1°]) = n'E[|X; — E[X4]*].
The proof of Lemma is thus completed. O
Proposition 2.4. Let p € [2,00), d,n € N, let ||-||: R? — [0,00) be

the d-dimensional Euclidean norm, let 8,5, € (0,00) be the (p,2)-Kahane-
Khintchine constant (cf. Definition[21), let (2, F,P) be a probability space,



and let X;: Q — R, i € {1,2,...,n}, be ii.d. random wvariables with
E[|X1]]] < oc. Then it holds that

(E[IELX] - 3(Ti X)) < 2222 (1% - RGP ). (1)

Corollary 2.5. Let p € [2,00), d,n € N, let ||-]|: R — [0,00) be the
d-dimensional Euclidean norm, let (Q, F,P) be a probability space, and let
Xi: Q=R i e {1,2,...,n}, bei.id random variables with E[||X;|] < oc.
Then it holds that
. e _ o =177 Up
(E[IE] - (S X)) <2 [P (@l - B
(14)

Proof of Corollary[2.3. Note that Proposition 2.4 and Lemma demon-
strate that

(BIIELX] - (T X)IP) < 2222 (B[1% - Bl 7))

\/_
2¢/p—1 1
< =0 E[IX% - ExIP])™
P — 1 1/2 P 1/1’7
=2 T (E[IX: —EX]P])"".
(15)
The proof of Corollary is thus completed. O

2.2 Properties of affine functions

This subsection recalls in Lemmas[2.6H2.7 and Corollaries 2.8H2.10 a few well-
known properties for affine functions. For the sake of completeness we include
in this subsection also proofs for Lemmas 2.6H2.7 and Corollaries 2.8-2.10

Lemma 2.6. Let d,m € N, A € R™*? b c R™ and let p: R? — R™ be the
function which satisfies for all z € R? that

o(x) = Az +b. (16)
Then it holds for all x,y € R%, X\ € R that
p(Az +y) + Ap(0) = dp(z) + ¢(y). (17)
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Proof of Lemma[Z.8. Observe that (I8]) assures that for all 7,y € R4, A € R
it holds that

oAz +1y)+ Xp(0) = Az +y) + b+ AN(A-0+b)

18
= ANAz +b) + Ay + b= do(z) + ¢(y). (18)
The proof of Lemma is thus completed. O

Lemma 2.7. Let d,m € N, ey, e,...,eq € R? satisfy e; = (1,0,...,0), ex =
(0,1,0,...,0),..., eq = (0,...,0,1), let © = (01,02, ..., 0m): RE — R™ be
a function which satisfies for all z,y € RY, A € R that

P(AT +y) + Ap(0) = Ap(z) + ¢(v), (19)

and let A € R™*4 b € R™ satisfy b = ©(0) and

pi(er) —1(0)  pi(e2) —p1(0) ... pi(ea) — 1(0)
A pa(€e1) — p2(0)  pa(e2) —p2(0) ... a2(eq) — p2(0)
omler) = on(0) pmles) = on(0) . ulea) —om(®)) P
= (wlen) = 900 tea) = 410) -+ | tea) - 1))
Then it holds for all x € RY that
o(z) = Az +b. (21)

Proof of Lemma[2.7. First, note that (Id) implies that for all z,y € RY,
A € R it holds that

p(Az +y) = Ap(2) = 9(0)) + ¢ (y). (22)

This, induction, and (20) assure that for all = (z1, 72, ..., 24) € R? it holds
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that

RSN IR

1=2

~ naplen) = #(O) + o £ s

-min{l,d} d

=1 2 mlele) —00)]| +¢ . me
| =1 t=min{1,d}+1
_min{2,d} T

— Z zi(pe;) —p(0) | + @( Zd: xm) (23)

i=min{2,d}+1

[min{d,d} ] d
=1 > wi(ple:) —0)] +¢ > Ti€;
| i=1 ] i=min{d,d}+1
M d
- |Zatete) - )] + 00
= Ax + 0.
The proof of Lemma 27 is thus completed. O

Corollary 2.8. Let d,m € N and let p: R — R™ be a function. Then the
following two statements are equivalent:

(i) There exist A € R™4 b e R™ such that for all x € RY it holds that
p(x) = Ax +b. (24)
(ii) It holds for all z,y € R%, A € R that
p(Az +y) +2p(0) = Ap(a) + ¢(y). (25)

Proof of Corollary[2.8 Note that Lemma establishes that (({) = (&)).
In addition, observe that Lemma [Z7 demonstrates that (([) = (@)). The
proof of Corollary [2.§ is thus completed. O

Corollary 2.9. Let d,m € N, let ¢: R? — R™ be a function which satisfies
for all z,y € R%, X\ € R that

p(Ar +y) + Ap(0) = Ap(x) + »(y), (26)
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and for every k € N let ||||ge : R¥ — [0, 00) be the k-dimensional Euclidean
norm. Then there erxists ¢ € [0,00) such that for all z,y € R? it holds that

le(@)[gm < (1 + |2llga) and [[o(2) = @(H)llgn < clle = yllga- (27)

Proof of Corollary[2.9. Throughout this proof let A € R™*< p € R™ satisfy
for all # € R? that
olx) =Az+0b (28)

(cf. Corollary E8)) and let ¢ € [0, 00) be given by

R} . (29)

Note that ([28) and ([29) assure that for all z € R it holds that

Av m
c = max{ [SUPUGRd\{O} ﬁ} ' Hb

le(@)lgm = [[Az + bl[gm < [|Az

Rm + Hb Rm

Av||pm
< [supueroroy Tz ] Nl + 16llgm < elllzlza +1).

Furthermore, observe that 28) and ([29) imply that for all z,y € R? it holds
that

lo(@) = e(W)llgm = [|(Az + b) = (Ay + b)[|gm = [[A(z — Y)[|lgm
Avl|gm
< |SUPyerd\ {0} Hllvllli}fd ] |2 = yllga (31)

< cllz = yllpa -

Combining this and ([B0) establishes ([27)). The proof of Corollary 2X9lis thus
completed. O

Corollary 2.10. Let d,k,m € N, let o: R? — R¥*™ be a function which
satisfies for all x,y € R, X\ € R that

oAz +y)+ Ao (0) = Ao (z) + o(y), (32)

let ||-]] : RY — [0,00) be the d-dimensional Euclidean norm, and let ||| :
R¥>*™ — [0,00) be the Hilbert-Schmidt norm on R¥*™. Then there exists
c € [0,00) such that for all x,y € R it holds that

o)l < e(@+lzll)  and flo(z) —o@)ll <cllz =yl (33)

12



Proof of Corollary[210. Throughout this proof for every 9 € Nlet [|-||go : R?
— [0, 00) be the d-dimensional Euclidean norm, let ey, es, . .., €, € R satisfy
e1 = (1,0,...,0), e = (0,1,0,...,0),..., em = (0,...,0,1), and let ¢: R? —
R(™F) be the function which satisfies for all z € R? that

(o(z))er
ola) = | e | (34
(o(x))em
Note that (B2) and (34 ensure that for all z,y € R%, X € R it holds that
(c(Az +y))er (0(0))er
p(Az +y) + Ap(0) = (U(MT wea | (U('O')?@
(c(A\z +y))em (a(0))em
(c(Az +y))er + A(0(0))e [c(Az +y)+ Ao (0)] e
_ | ez +y)ea+ Ao(0)ex | _ [ [o(Az +y) + Ac(0)] es
(0O +1)em + M(0en)  \[o(Az +y) + Ao(0)] em
[Ao(x) +o(y)] er (o(x))er (a(y))er
[Ao(z) +o(y)] em (o(z))em (o(y))em

(35)

This and Corollary (with d = d, m = mk, ¢ = ¢ in the notation of
Corollary 29) imply that there exists ¢ € [0,00) such that for all z,y € R?
it holds that

le(@)[gemey < c(1+||2llga) and  [l(z) = @(¥)llgemn < cllz = Yllga - (36)
Furthermore, note that for all =,y € R? it holds that

llo ()1II* = Z [ ()]sl = (@) lzomn (37)

and

Fo - (38)

llo(z) = o (y)II* = Z llo(@) = aWejlzn = o) — o)

13



Combining this with (386]) ensures that for all z,y € R? it holds that

llo (@)l = [le(@) g < (1 + ||z]|za) (39)

and
llo(z) =@l = lle(z) = o) g < cllz—yllga- (40)
The proof of Corollary is thus completed. O

2.3 A priori estimates for solutions of stochastic dif-
ferential equations

In this subsection we establish in Proposition [2Z.14] below an elementary a pri-
ori estimate for solutions of SDEs with at most linearly growing coefficient
functions (see (B0) in Proposition 2.14] below for details). Our proof of Propo-
sition ZT4l employs the Gronwall integral inequality (see Lemma 21T below),
a special case of Minkowksi’s integral inequality (see Lemma below),
and the Burkholder-Davis-Gundy type inequality in Da Prato & Zabczyk
[19, Lemma 7.7] (see Lemma below). For the sake of completeness we
include in this subsection also the proof of Lemma 2.1l Lemma 2.12] follows,
e.g., from Garling [28, Corollary 5.4.2] or Jentzen & Kloeden [42, Corollary
A.1 in Appendix A]. Lemma is, e.g., proved as Lemma 7.7 in Da Prato
& Zabezyk [19].

Lemma 2.11. Let o, 8, T € [0,00) and let f: [0,T] — R be a B([0,T])/B(R)-
measurable function which satisfies for all t € [0,T] that fOT |f(s)]ds < o0
and

ft<ass [ fo)ds (41)
0
Then it holds for all t € [0,T] that
ft) < ae’ (42)

Proof of Lemma 211 Throughout this proof assume w.l.o.g. that 7" > 0 and
let u: [0,7] — R be the function which satisfies for all ¢ € [0, T that

u(t) = a+ 8 /Ot £(s) ds. (43)

14



Observe that ({1 and ([@3) imply that for all ¢ € [0,77] it holds that
f(t) < u(t). (44)

Next note that (43)) and the assumption that fOT |f(s)|ds < oo assure that u
is absolutely continuous and that for Lebesgue-almost all ¢ € [0, 7] it holds
that

u'(t) = Bf(t) (45)

(cf., e.g., Jones [43, Page 550 in Section E in Chapter 16]). This, the inte-
gration by parts formula for absolutely continuous functions (cf., e.g., Jones
[43, Page 553 in Section F in Chapter 16]), (43]), and ({#4]) imply that for all
t € [0, 7] it holds that

u(t)e P = u(0)e’ + /t [W/(s)e™ " + u(s)L(e )] ds
0
=a+ / [Bf(s)e™ +u(s)(—B)e "] ds (46)
0
=+ /t Be P [f(s) —u(s)] ds < a.
0
Combining this and (@) assures that for all ¢ € [0, T it holds that
f(t) < u(t) = u(t)ePe’ < ae. (47)

The proof of Lemma [2.11]is thus completed. O

Lemma 2.12 (Moments of pathwise integrals). Let T' € (0,00), p € [1,00),
let (2, F,P) be a probability space, and let X: [0,T] x Q — [0,00) be a
(B([0, T))®F)/B([0, 00))-measurable function. Then it holds for allt € [0, T)

that y .

(B[] fy X.as]"]) " < /0 (E[1X.1])" ds. (48)
Lemma 2.13. Let d,m € N, p € [2,00), T € (0,00), let ||-]| : RY — [0, 00)
be the d-dimensional Euclidean norm, let |||-||: R™™ — [0, 00) be the Hilbert-

Schmidt norm on R>™ et (Q, F, P, (Fi)ep,1)) be a filtered probability space
which fulfils the usual conditions, let W: [0,T] x @ — R™ be a standard
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(F+)iefo, 11 -Brownian motion, and let X : [0,T] x @ — R™™ be an (Ft)ieor)-
predictable stochastic process which satisfies P( fOT I X1 ds < 00) = 1. Then
it holds for allt € [0,T], s € [0,t] that

(s [ ][ ])" <[22 [ emcamya] " o

Proposition 2.14. Let d,m € N, p € [2,00), T,my, my, 51,5 € [0,00),
€€ R et ||| : R — [0,00) be the d-dimensional Euclidean norm, let
Il : R¥>*™ — [0,00) be the Hilbert-Schmidt norm on R™>™ let (Q, F,P,
(F4)icpo,m) be a filtered probability space which fulfils the usual conditions, let
W:[0,T] x Q — R™ be a standard (IF;)icpo,r)-Brownian motion, let fu: R¢ —
R? be B(R?)/B(R?)-measurable, let o: RY — R>*™ be B(RY) /B(RY>™)-mea-
surable, assume for all v € R? that

(@) <my+mp [zl and  lo(@)]] < s +s2 2, (50)

and let X:[0,T] x Q@ = R? be an (F,)ep,r-adapted stochastic process with
continuous sample paths which satisfies that for all t € [0,T) it holds P-a.s.
that

Xe=&+ /t w(Xs)ds + /t o(Xs) dWs. (51)

Then it holds for all t € [0,T] that

(E[I1X.[7])"

2
< Va(lel+ T+ e ma T 2] o) o)
< V2(llgll + mT + sipVT) eXp([m2ﬁ+52p]2t).

Proof of Proposition [2.1]]. Throughout this proof assume w.l.o.g. that 7" > 0
and let 7,,: Q© — [0,7], n € N, be the functions which satisfy for every n € N
that

T, =1inf({t € [0,T]: || Xy|| > n} U{T}). (53)

Note that the hypothesis that X : [0,T] x Q@ — R? is an (F¢)sejo,m-adapted
stochastic process with continuous sample paths ensures that for all ¢ € (0,77,
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n € N it holds that
{m <t} ={3s€0,t): | Xs]| >n}
={3s€[0,t)NQ: [|X,|| > n} (54)
= (Useonal | Xsll > n}) € Fy.
This demonstrates that for all t € [0,T), r € (t,7], n € N it holds that
{rn <t} = (Mken{m <t+ £}) = (Mhew,tryer{mn <t +1}) €F.. (55)

The hypothesis that (Q,F,P, (IF;)icjo,r1) fulfils the usual conditions hence
ensures that for all t € [0,7), n € N it holds that {r, < t} € F/ = F,.
Therefore, we obtain that for all n € N it holds that 7, is an (Fy)icpo,1)-
stopping time. Moreover, observe that (51l) and the triangle inequality assure
that for all ¢t € [0, 7], n € N it holds that

I

min{¢,m }
(B[ Xomingemay [P]) 7" < 1161 + <E / p(X,) ds

min{¢,m } PN
+<E / o (X,) dW, ) |
0

Next note that Lemma 2.12] (50), and the triangle inequality demonstrate
that for all ¢t € [0,7], n € N it holds that
p] )Vﬂ

min{t, 7 } Y min{t,7n }
B / 1(X,) ds < (E / la(X)]| ds
0 0

t

< [ UML) i
t

< /(; (E[HM(Xmm{s,Tn})Hp]) " ds

t
S/O (E[(ml+m2||Xmin{s,m}||)pD/pds

(56)

p

t
< /0 [ml + my (B[ | Xomings,mt17]) /p] ds

t
=mt+my (/ (E[HXmin{S,Tn}Hp] )1/P ds) .
0

(57)
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The Cauchy-Schwarz inequality hence proves that for all t € [0,7], n € N it

holds that
min{t,m } p Yp
e ]
0
1/2

t 1/2 t /
S mlT + my |:/ 12 d8:| [/ (E [HXmin{s,Tn} ||p} )2/” d$:| (58)
0 0

1/2

t
<myT +moVT [ / (E [l Xmings,mt 7] )2/ ’ ds]
0

Moreover, note that the hypothesis that X : [0, 7] x @ — R% is an (F)ej,7)-
adapted stochastic process with continuous sample paths shows that X : [0, 7]
x Q — R?%is an (IF4)scpo,m-predictable stochastic process. The fact that for
every n € N it holds that ([0,7] x Q > (t,w) = ILp<nwy € {0,1}) is
an (IF;)secp,m-predictable stochastic process (cf., e.g., Kallenberg [44, Lemma
22.1]) and the hypothesis that o: R? — R¥>™ is a B(RY) /B(R?¥*™)-measurable
function hence ensure that for every n € N it holds that

([0, 7] x 23 (t,w) = o(Xe(w)) Ljr<r, @)y € R™) (59)

is an (IF;)scp0,77-predictable stochastic process. Combining this, (B0), and (G3))
with the hypothesis that X : [0,7] x  — R? has continuous sample paths
demonstrates that for all n € NN (]|£]|, 00) it holds that

) _
/0 (X Liszr || ds < 7| sup H\a()@)\lﬁ]

s€(0,mn,

: (60)
<T | sup [(s +52’|Xs“>2]]

$€[0,7n]

< T(s; + s9m)* < 00.

Lemma 213 (59), (B0), and the triangle inequality therefore establish that
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forallt € [0,T], n € NN (||€||, 00) it holds that

min{t,m} "1\
(= mm)
0

t P l/p
- (IEH/ o(X)Lis<r,y dW; D
0
o ([ o\
< ([ E oI ) i)
o ([ o\
< /R (/ (E|:|||O'(Xmin{s,7'n})|||p}) ds)
; (61)
— t 2/p &
< ([ Bller 50 o]0
—1) ! 15 2 1/2
< P(p2 (/0 <51 + $9 (E[HXmin{s,Tn}Hp]) ) dS)
t 1/2 t 2 1/2
< \fre) (51 {/ 1%1:;} + 5 [/( [ Xingsr 17]) 77 d ] )
0 0

t 1/2
< s p(p;l)TJr52 @{/0( |:HXm1n{STn}||:|)2/p ] ‘

Combining this, (B6]), and (E8) proves that for all ¢ € [0, 7], n € NN (|||, o)
it holds that

(B[l Xusingemy 17]) 7"

< Jlgll + miT 4 51/ 2051

t 2
+ <m2ﬁ+sz\/@) Uo (B[ X mintorr 1) ds|

The fact that for all x,y € R it holds that |z + y|? < 2(2? + y?) therefore

(62)
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demonstrates that for all t € [0,7], n € NN (||£]], 00) it holds that

(B[l Xminge.my [IP])”

2
<2l + w7+ 25T B
2 t
+ 2 |:m2ﬁ+52\/@:| |:/0 ( [HXmm{s Tn}Hp} )2/p

Next note that (G3) ensures for all n € NN (||€||, 00) that
’ /v g /v 2
(E[HXmm{s,Tn}Hp]) ds < (E [np]) ds =Tn* < oo. (64)
0 0

Combining this and (63) with Lemma 2IT (with a = 2[[|£]| + mT + s

plp —DTPR)" 6 = 2[mVT +s0\/plp ~D/2)", T =T, f = (0.7] 5
t = (B[l Xumingt,ra} 7] )2/p € R) in the notation of Lemma ZTT)) demonstrates
that for all t € [0,7], n € NN (||£]], 00) it holds that

(B[ Xmingery 1)
i 2\ (65)
<2 [Hf” +m1T+51\/@] exp( {m2f+5 \/pe=1) 1)] t) .

Therefore, we obtain that for all ¢ € [0,7], n € NN (||£]], c0) it holds that
1/p
(B [l Xomingery 17])

< VE[ el + mi T+ o125 f]equmg\rﬂ\/mrt). (66)

Furthermore, observe that (G3) and the fact that X: [0,7] x @ — R? is a
stochastic process with continuous sample paths ensure that for all ¢ € [0, 7]
it holds that lim,,_,,, min{t,7,,} = t. Therefore, we obtain that for all ¢ €
[0, 77 it holds that

Xl = 11X i, e mingerap) [| = ] B Xninge o || = ([ Xningerp ] (67)
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Fatou’s Lemma and (66 hence imply for all ¢ € [0, 7] that

1

E%07)" = (B[ lim | Xoiagery 7]

. . I/P :
< (i E [ Xoingey 7)< swp (BN )" g

neNN([[]l,00)

2
s¢ﬂwummmlﬁgﬁ%mqmﬁq@p%ﬂ0_

The fact that 4/ ’@ < \/p? — p < /p? = p therefore establishes (52). The
proof of Proposition 2.4l is thus completed. O

2.4 Stochastic differential equations with affine coeffi-
cient functions

In this subsection we establish in Proposition elementary regularity
properties for SDEs with affine coefficient functions. Our proof of Propo-
sition 2.20] roughly speaking, employs the elementary results in Lemma
and Proposition 217 (which are, loosely speaking, alleviated versions of
Proposition[2.20)), the well-known fact that modifications of continuous stoch-
astic processes are indistinguishable (cf. Lemma below), the well-known
fact that a modification of an adapted stochastic process is an adapted
stochastic process (see Lemma 2.I8 below for details), and a version of the
Kolmogorov-Chentsov theorem (see Lemma below for details). Results
similar to Lemma can, e.g., be found in Cox et al. [14, Theorem 3.5
in Subsection 3.1] and Mittmann & Steinwart [55, Theorem 2.1 in Section
2]. For the sake of completeness we include in this subsection also proofs for
Lemmas and 218

Lemma 2.15. Let d € N, T' € (0,00), let (Q, F,P, (Fy)iejor)) be a filtered
probability space which fulfils the usual conditions, let W: [0,T] x Q — R? be
a standard (Fy).ei0.r1-Brownian motion, let i R — R? gnd o: R? — RIxd
be functions which satisfy for all z,y € R?, A € R that

p(Az +y) + Au(0) = Au(z) + p(y) (69)

and
oAx+y)+ Ao(0) = Mo(x) + o(y), (70)
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and let X*: [0,T] x Q@ — R% z € RY be (Fy)epr-adapted stochastic
processes with continuous sample paths which satisfy that for all + € R?,
t €[0,T] it holds P-a.s. that

t t
X/ =x +/ u(X7T) ds+/ o(X7)dWs. (71)
0 0
Then it holds for all t € [0,T], z,y € RY, X € R that
IP’(X?“y FAX? = AXT Xf) — 1. (72)

Proof of Lemmal213. Throughout this proof let =,y € R% X\ € R and let
Y: [0, 7] x © — R? be the stochastic process which satisfies for all ¢ € [0, 7]
that

Y, = MXP — X)) + X7, (73)

Note that the hypothesis that for all z € R? it holds that X*: [0,7] x Q —
R? is an (IF¢)iefo,m-adapted stochastic process with continuous sample paths
assures that Y is an (IF¢).ejo,r1-adapted stochastic process with continuous
sample paths. Moreover, observe that ({1l and (73]) ensure that for all ¢t €
[0, 77 it holds P-a.s. that
= MX7 — XP) + X!
)\([x+f0 (X2)ds + fy o(X2) aw]
— 0+ Jy u(XO) ds+ [y o(X0) W] )
[y Jy () ds+f0 (xX2)dw.]
—M+y+f0 p(XT) — p(XY)) + p(XY)] ds
+ [ N (o(XE) - U(XO)) + o (XY)] dW.

In addition, note that (69) and (Z0) ensure that for all v € {u, o}, a,b,c € RY,
A € R it holds that

A(v(a) —v(b) +v(c) = Av(a) + v(c) — Av(b)
=v(Aa+c)+ Av(0) — Av(b)
= (=A\)v(b) + v(Aa + ¢) + Av(0) (75)
=v((=A\)b+ Aa+c)+ (=A)v(0) + Av(0)
=v(Aa—0b)+c).
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Combining this with (74]) implies that for all ¢ € [0, 7] it holds P-a.s. that

Vi =r+y+ fo p(AMXE — X0) + X¥) ds
+ [T o (N x—X°)+Xy) AW, (76)
=Xz +y+ [y u(Ys)ds+ [y o(Ys)dW,.

The fact that for all £ € [0,77] it holds P-a.s. that
XM = Moy + [) p(X20) ds + [y o(X00H) dW, (77)

Corollary 29] Corollary .10, and, e.g., Da Prato & Zabczyk [19, Item (i) in
Theorem 7.4] (cf., e.g., Klenke 46, Theorem 26.8]) hence demonstrate that
for all t € [0,T] it holds that

P(Xt”ﬂ’ - Yt> ~ 1. (78)

This and (73]) imply that for all ¢t € [0, 7] it holds that
P(X 4+ AXD = AXF + XY) = P(XM = A(XT - X0) + XY)
(79)
- P(X?“y - Yt> ~ 1.
The proof of Lemma is thus completed. O

Lemma 2.16 (Modifications of continuous random fields are indistinguish-
able). Let d € N, let (E,0) be a separable metric space, let (Q,F,P) be a
probability space, let X,Y : E x Q — R? be random fields, assume for all
w € Q that

(E3e Xe(w) €RY), (Es e Yo(w) €RY) € C(E,RY),  (80)
and assume for all e € E that P(X, =Y,) = 1. Then
(i) it holds that {Ve € E: X, =Y.} € F and
(ii) it holds that P(Ve € E: X, =Y,) = 1.

Proof of Lemma[214. Throughout this proof assume w.l.o.g. that E # (), let
(en)nen C E satisfy that

{en, € E:neN}=F, (81)
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and let N' C Q satisfy that
N - UNEN{Xen # }/en}' (82)

Note that the fact that X and Y are random fields assures that for all e € £
it holds that
{X. =Y.} ={X.-Y. =0} e F. (83)

Hence, we obtain that
(Mnen{Xe, =Y., }) € F. (84)
Combining this and (82) implies that
N =[O\ (Mpen{Xe, =Ye, P € F. (85)

Moreover, observe that the hypothesis that for all e € E it holds that P(X, =
Y.) = 1 ensures that for all n € N it holds that P(X,., # Y.,) = 0. Therefore,
we obtain that

PN) <> P(X., #Y.,)=0. (86)

n=1
Next note that (BIl) implies that for every v € E there exists a strictly
increasing function n,: N — N such that limsup,_, . é(en,x),v) = 0. Com-
bining this with (80) ensures that for every v € FE there exists a strictly

increasing function n,: N — N such that for every w € {Vk € N: X, =Y., }
it holds that limsup,_,., d(en, k), v) = 0 and

Xy(w) = lim X, (w)= kh_)m Yo o (w) =Y, (w). (87)

k—o0 oo Enu (k)

This and (&4]) demonstrate that

{(VecE: X.=Y,}={VneN: X, =V, }

88
= (e X, = Yo ) € F. o
This proves item (). Combining (85]) and (86 hence implies that
PVee E: X, =Y,) =P(Mpen{X,, =Y., }) =P(QON) =1-PN) = 1.
(89)

This establishes item (). The proof of Lemma 216 is thus completed. O
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Proposition 2.17. Let d € N, T € (0,00), let (2, F,P, (Fy)icpo,m) be a
filtered probability space which fulfils the usual conditions, let W: [0,T] x
QO — R? be a standard (F'¢)sejo,r1-Brownian motion, let fi: RY — RY and
o: RT — R be functions which satisfy for all z,y € R?, X\ € R that

p(Az +y) + Au(0) = Ap(z) + p(y) (90)

and
oAx+y)+ Ao(0) = Mo(x) + a(y), (91)

let X7:[0,T] x Q — RY, z € RY, be (Fy)iepo-adapted stochastic processes,
assume for all w € € that

(RY x [0,T] 2 (z,t) = X/ (w) € RY) € C(R? x [0, T],R?), (92)

and assume that for all x € RY, t € [0,T] it holds P-a.s. that

t t
X/ =x+ / w(X3)ds + / o(X7)dWs. (93)
0 0

Then
(i) it holds that
{vx,y eRLAER, €0, T]: X} 4+ AX? = AXf+Xty} cF

(94)
and

(i1) it holds that
P(v:c,y eRLAER, t€[0,T]: X)W 4+ AX0 = AX? +X§/) — 1.
(95)

Proof of Proposition[2.17. Throughout this proof let Y, Z: (R x R? x R x
[0,7]) x Q — R? be the random fields which satisfy for all z,y € RY, X € R,
t € [0, 7] that

Ygrn = X0 4 AXY and  Zyyan = AXT+ XY (96)

Observe that Lemma assures that for all z,y € R4, N € R, t € [0,7T] it
holds that

P(Yayrn = Zayrn) = P(XD +AXP = AXF + X)) = 1. (97)
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Moreover, note that (02) and the fact that
(RYxR*x R x [0,T] 3 (z,y,\,t) — (Az +y,t) € R? x [0,T))
cCR*xRYx R x [0,T],R% x [0,T]) (98)
demonstrate that for all w € €2 it holds that
Y.(w), Z(w) € C(R? x R? x R x [0,T],R%). (99)

Combining this, [@7), and Lemma T8 (with d = d, E = RYx R4 x R x [0, T,
(Q, F,P)=(Q,F,P), X =Y,Y = Z in the notation of Lemma 2.T6]) proves
that

{(Vo,y e RENER L € [0,T): Yiuyry = Zwypn)} €F (100)
and
P(Vz,y e RENER, € [0,T): Yiuyry = Zyry) = L. (101)
This and (96]) demonstrate that
{vx,y ERLAER, ¢ € [0,T]: X} + AXD = AX? + Xf} 0
={Va,y e RENERt €[0,T]: Yiuyrt) = Zwyrt)} €F

and

P(Vsc,y eRLAER,E€[0,T]: X" £ AX0 = \X? +X§/)

(103)
=P(Vaz,y e RLAERt € [0,T): Yuyrn = Zwyry) = L.

This establishes items ({)—(i). The proof of Proposition R.I7 is thus com-
pleted. O

Lemma 2.18 (Modifications of adapted processes are adapted). Let d €
N, T € (0,00), let (2, F,P, (Fy)cpo,r)) be a filtered probability space which
fulfils the usual conditions, let X,Y : [0, T] x Q — R? be stochastic processes,
assume that X is an (IF;)scp0,1)-adapted stochastic process, and assume for all
t € [0,T] that P(X; =Y;) = 1. Then it holds that Y is an (IF;)e(o,r-adapted
stochastic process.
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Proof of Lemma[2.18. Throughout this proof let ¢ € [0,7]. Note that the
hypothesis that P(X; = Y;) = 1 ensures that

P(X; #Y;) =0. (104)

This and the hypothesis that (€2, F,P, (IF;)co,r)) is a filtered probability
space which fulfils the usual conditions imply that {X; # Y;} € Fy C F,.
Hence, we obtain that

{Xi =Y} =O\{X; #V;} € F.. (105)

Moreover, observe that (I04) demonstrates that for all B € B(R?) it holds
that
P({Y, € BN {X, £ Y,}) < P(X, £ ) = 0. (106)

The hypothesis that (2, F,P, (F);c0,1) is a filtered probability space which
fulfils the usual conditions therefore implies that for all B € B(R?) it holds
that

(i€ B} N {X, £ Y,}) e Fy CF,. (107)

Combining this with the hypothesis that X is an (IF;)c[o,r-adapted stochas-
tic process and (I05) demonstrates that for all B € B(R?) it holds that

{(Vie B} =({Y; e Bn{X, =Y:})U({V: € B} n{X; #V}})

— (X, eBYN{X,=V,)U{Y,e BYn{X, #Y:}) € F,. (108)

This establishes that Y is an (IF).c[0,r-adapted stochastic process. The proof
of Lemma 2.18 is thus completed. O

Lemma 2.19 (A version of the Kolmogorov-Chentsov theorem). Let d, k €
N, p € (d,00), @ € (4/p,00), for everyd € N let ||||go : R® — [0, 00) be the d-
dimensional Euclidean norm, let (Q, F,P) be a probability space, let D C R?
be a non-empty set, and let X : D x ) — RF be a random field which satisfies
for alln € N that

p 1\Y/»
sup<{ (E[HXU _ XwHRkD cv,w € DN [—n,n)? v # w}

lv — wllge

U{ EB[IX.12])" :ve DN [-n,n} U {0}> < o0. (109)

Then there exists a random field Y : D x Q — R which satisfies
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(i) that for all w € Q it holds that (D > v — Y,(w) € R¥) € C(D,R*) and
(i) that for all v € D it holds that P(X, =Y,) = 1.

Proof of Lemma[ZI3 Throughout this proof let g,: D N [—n,n|? — LP(Q;
R¥), n € N, be functions which satisfy that for all n € N, v € D N [-n,n]?
it holds P-a.s. that X, = g,(v) (cf. (I09)), let ¢ € [0,00) be a real number
which satisfies that for all n € N, v,w € D N [—n,n]? it holds that

(B[1X, — Xul2])"” < ¢ o — w]|2 (110)

(cf. (I09)), let a = min{e, 1}, and let ()*: R — [0,00) be the function
which satisfies for all ¢ € R that (¢)T = max{q,0}. Note that for all n € N,
v,w € DN [—n,n]? it holds that

a— 1 a— 1
o —wl&™" < (Jollga + llw]lg) @D < (0Vd + nv/d)'

< (20v/ad)"", ! )

Combining this and (II0) with the fact that « — a = (o — 1)™ ensures that
for all n € N, v,w € DN [—n,n]¢ it holds that

(BIXy = Xul2]) " < el = wilga < ¢l = wilfa lo = wlgz

+
= c|lv — w|ga v - wlg (112)

< cflo—wl 20V

This and (I09) imply that for all n € N it holds that

p 1\P
sup({ (E[HXU _ XwHRkD cv,w € DN [—n,n)? v # w}

lv — wllg

U { (E[||Xv||§k})l/p cv € DN—n, n]d} U {O}) < oo. (113)

Therefore, we obtain that for all n € N it holds that g, is a globally bounded
and globally a-Hélder continuous function. Mittmann & Steinwart [55, The-
orem 2.2] hence ensures that for every n € N there is a globally bounded and
globally a-Hélder continuous function G,,: R? — LP(Q;R*) which satisfies
for all v € D N [—n,n]? that G,,(v) = g,(v). This assures that there exist
random fields &,: R? x Q — R* n € N, which satisfy
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(a) that for all n € N, v € R it holds P-a.s. that (£,), = G,(v) and
(b) that for all n € N it holds that

E[(En)e — (E)ullZe])

sup

ViRl e
. (114)
E _ p 1\Y»
S sup ( [||(§n)v (gnzleRk]) < 50
v,wERY, v — wHRd
vAwW
and sup (E[H(gn)vH%k})l/p < sup (E[H(gn)vH%k})l/p < 0.
ve[—n,n+1)4 vERA
(115)

Combining this and, e.g., Revuz & Yor [65, Theorem 2.1 in Section 2 in
Chapter I] (with X =¢&,, v = p, d = d, € = ap — d in the notation of [63],
Theorem 2.1 in Section 2 in Chapter I]) ensures that there exist random fields
Y,: [-n,n]? x Q@ — R¥ n € N, which satisfy

(A) that for all n € N, w € Q it holds that
([—n,n]d Svi (Vo)(w) € Rk) c C([-n,n]*, RY) (116)
and
(B) that for all n € N, v € [—n,n|? it holds that P((Y,), = (&,),) = 1.

The fact that for all n € N, v € DN [—n,n]? it holds that P(X, = (&,),) = 1
therefore implies that for all n € N, v € D N [-n,n]? it holds that

P((Ya)y = Xy) = 1. (117)

This assures that for all n € N;m € NN[1,n],v € DN[—m,m]¢ it holds that

]P)({(YN)U - Xv} N {(YM)U - Xv}) =1 (118)
The fact that for all n € Nym € NN [1,n],v € DN [—m,m]? it holds that
{(Yn)v = Xv} N {(Ym)v = Xv} C {(Yn)v = (YM)U} (119)
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therefore demonstrates that for all n € N;m € NN [1,n],v € DN [—m,m]?
it holds that
P(Ya)o = (Yi)o) = 1. (120)

Combining this with (II6) and Lemma (with d = k, E = DN [—m,m]
for m € NN [1,n], n € N in the notation of Lemma 2T6]) establishes that for
all n € N, m € NN [1,n] it holds that

P(Vve DN [-mm]": (V)= (Yim)) = 1. (121)
Next let II € F be the event given by
I={vneN, meNnN[lnl,veDn[-mm (YV,),=Yn)}. (122)
Observe that (I22)) and (I2I)) show that
P(II) = P(nye, My {Vv € DN [—m,m]*: (Yo,), = (Yin)o}) = 1. (123)

Moreover, note that (I22) ensures that there exists a unique random field
Z: D x Q — RF which satisfies

(I) that for all w € II, n € N, v € DN [-n,n]? it holds that Z,(w) =
(Y,)p(w) and

(IT) that for w € Q\II, v € D it holds that Z,(w) = 0.

Observe that (I), (IT7), and ([I23) demonstrate that for all n € N, v €
D N [—n,n]¢ it holds that

P(Zv = Xv) = ]P)({Zv = Xv} N H)

(124)
= P({(Yn)v = Xv} N H) = P((Yn>v = Xv) =1
This shows that for all v € D it holds that
P(Z,=X,) =1. (125)

Moreover, observe that (II6) and (Il) imply that for all w € TI, n € N it holds
that

(DN [-n,n]? 3 v+ Z,(w) € R¥)

= (DNn[-nn]'3 v+ (Ya)(w) € RY) € C(DN[—n,n]", RF). (126)
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This ensures that for all w € II it holds that
(D3v+ Z,(w) € RY) € C(D,R"). (127)
In addition, note that ([Il) assures that for all w € Q\II it holds that
(D3ve Z,(w) eRY) = (D3>v— 0€RY) e C(D,RF). (128)

Combining this and (I27)) demonstrates that for all w € €2 it holds that

(D3v+ Z,(w) €RY) € C(D,R"). (129)
This and (I25]) complete the proof of Lemma 0O

Proposition 2.20. Let d € N, T € (0,00), let (2, F,P, (Fy)icpom) be a
filtered probability space which fulfils the usual conditions, let W: [0,T] x
QO — R? be a standard (F)iejo,r-Brownian motion, and let ju: R? - R? and
o: RT — R be functions which satisfy for all z,y € R?, X\ € R that

Az +y) + Au(0) = Ap(z) + p(y) (130)

and
oAz +y)+ Ao (0) = \o(x) + o(y). (131)

Then there exist up to indistinguishability unique (IFy).c(0.1)-adapted stochas-
tic processes with continuous sample paths X®: [0,T] x Q — R, z € R4,
which satisfy

(i) that for all z € RY, t € [0,T] it holds P-a.s. that

t t
XT g4 / W(XT)ds + / o (X7) IV, (132)
0 0

and

(ii) that for all z,y € R4, N € R, t € [0,T], w € Q it holds that

X (W) + AX(w) = AXT (w) 4+ XY (w). (133)
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Proof of Proposition[2Z.20. Throughout this proof let p € (2(d + 1), 00), for
every k € N let ||-|[gx : R¥ — [0,00) be the k-dimensional Euclidean norm,
let |||l s ra ) : R%4 — [0, 00) be the Hilbert-Schmidt norm on R%*¢ let

m, s € (0, 00) satisfy for all z € R? that

[1(2)[[ge < (L +[|zflga)  and  [lp(@) = p(Y)llge < m |2 = yllga
(134)

and

llo () lns@e ray < 81+ [l2llga) and  [lo(x) = o(W)llusgapy <l —(y||Rv;
135
(cf. Corollary 2.9 and Corollary 2.10), and let C' € (0, 00) be given by

C = 4dv2(1 +mT + spv/T) exp([mv'T + p]°T). (136)

Note that (I34), (I35), e.g., Jentzen & Kloeden [42] Theorem 5.1] (with
T = T’ (QaFaP> (Ft)tE[O,T}) = (Q>~F>]P)a (]Ft)tE[O,T})a H = Rda ||||H = ||'||Rda
U =R, ||y = [Fllge Qv = v, (Woheorm = Woliepoy, D(A) = R, Av =0,
n=1,a=0,§ =0, F(v)=puw), =0, Blo)u=o0c@u,y=0,p=4,
E=(Q 3w~z eR? for u,v,2 € R? in the notation of [42, Theorem 5.1])
(cf., e.g., Da Prato & Zabczyk [19, Item (i) in Theorem 7.4] and Klenke [46],
Theorem 26.8]), and, e.g., the Kolmogorov-Chentsov type theorem in Lemma
(withd =1,k =d, p =4, a = 1/2, D = [0,7] in the notation of
Lemma [2.19) assure that there exist (IF;);cpo,r1-adapted stochastic processes
with continuous sample paths X®: [0,7] x Q — R, x € R? which satisfy
that for all x € R% ¢ € [0,7] it holds P-a.s. that

t t
X! =z +/ u(X?)ds +/ o(X7)dWs. (137)
0 0
Observe that (I37) and Lemma prove that for all t € [0,7], =,y € RY,
A € R it holds P-a.s. that
XM 4 AXD = AXT 4+ XY (138)
This implies that for all ¢ € [0, 7], v € R¥\{0} it holds P-a.s. that

) ”U“Rdm ||U||Rd_uu|1|1Rd 0 0
xro X - (x, + llollnaX?) = o]z X;

v

Tolioa ol
— (ol X 4+ XP) = ol X = folles (X, = X0) + X7.
(139)
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Combining this and ([I38)) (witht =t, z =y, y =z, A = —1 for t € [0,7],
z,y € R? in the notation of (I38)) implies that for all ¢t € [0,7], z,y € R?
with x # y it holds that

E[IXF - XxP2]) " = E[x - Xx0n.])"”

_w—y /p
— (E[H”I — g (thlz—yHRd _ Xf) + Xf — XEH‘%J) (140)

= ([~ x01]) e - vl

In addition, observe that (I34]), (I33), (I31), Proposition 214 (with d = d,
m=d,p=p, T=T, m =m, my =m, 6§ =8, 656 = 6 in the notation of
Proposition 214)), and the triangle inequality assure that for all ¢ € [0, 7] it
holds that

sup  (E[| X7 — x°[2.])"

VERY,[|v]|pa=1

< EIXTI))"+ s (E[IX7IR])”

vERY ||v]|pg=1
< \/§(mT + ﬁp\/T) exp <[m\/T + Sp} 2T> (141)

+  sup [\/§(||v|| +mT + spVT) exp ([m\/f + sp] 2T)}

vERY [|v[|q=1

< 2\/5(1 +mT + spﬁ) exp <[m\/f +5p}2T).

This, (I30)), (I40), and the fact that for all n € N, x = (21, 22,...,24),y =
(Y1, Y2, - - -, Ya) € [—n, n]d it holds that

1
|z — yllge = |1z — ylliallz — yl|

= [ller = wil* + -+ |2a = yal’]”?]
1/ 1

< [[@@n)"] " e -yl

= [2aVd] "}z — y|lg: < 2dn]jx — y|| L

1/2
R4

Pz —y||2
R (142)
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assure that for all ¢ € [0, 7], n € N, z,y € [-n,n|? with z # y it holds that

B1xE - x1)" = (17 = x2]) e = vl

< [ sup  (B[JIX = X7[2.])"

|2 = y||ra
VERY ||| g =1

) (143)
< 2v2(1+mT +spVT) exp([mﬁ + sp] T) |z — y|ra

< 2v2(1 +mT + spVT) exp ([mﬁ +5p]2T> 2dn||z — y||;§/§

1
= nClx -yl

Moreover, note that (I37) and the triangle inequality imply that for all x €
R%, s,t € [0,T] with s <t it holds that

(BIX7 - X212])"

= (B[l + f nx2) du+ o) v,
— (x4 [ (X2 du+ [} o(XT)dW,) |2 D/ (144)
= (B[ Xy du+ [ oty awi,]) "

< (B[ pex) dul]) " + (B[ [ ox) ami] )

Furthermore, observe that Lemma 212, Proposition 214}, (I34]), and the fact
that for all s,t € [0, T] it holds that |t — s| = |t — s|"/*|t — s|"> < V/T|t — 5|
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ensure that for all n € N, z € [-n,n]?, s,t € [0,7] with s <t it holds that

(e[l oo ]} = (= woonecad )
< [ @I d< [ m+ @) o
< /Stm[l V(o] + w7 + spvT) exp([my/T +5p]°7) | d
— m[1 +V2(nVd +mT + spvVT) exp ([m\/T +sp}2T)] (t—s)
< m(1+ V2)nd(1 +mT + spvV'T) exp ([mﬁ +sp}2T) |t — s

(12
-5

Moreover, note that the fact that for all z € R? it holds that X*: [0, T]x Q) —
R? is an (IF¢)sej0,71-adapted stochastic process with continuous sample paths
and (I35]) ensure that it holds P-a.s. that

(145)

) mnC|t — s| < mnCVT|t — 5|72

sup o (X7 s e Rd)]
s€[0,T]

T
z\ |12
| 1o sy ds < 7

<T | sup [m*(1+4 || XZ||ra)?]

s€[0,T7

< 2Tm? (1 + sup ||X:”||Rd> < 00.

s€[0,T

(146)
Lemma I3, Proposition Z.14], the fact that for all z € R? it holds that

X% 00,7T] x Q@ — R? is an (IF¢)scpo,m-adapted stochastic process with con-
tinuous sample paths, and (I35) hence demonstrate that for all n € N,
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r € [-n,n]? s,t €[0,T] with s <t it holds that
/p
(B[S o(x2) awilia))

< (p%‘ 1))1/2 ([ o0 gz )
<o [/ [EMo M) ] )

< p(/: [5 (1 + (E[IIXgH%le/p) rdu) /2
- pﬁ{ (/ v d“) " ( / t [(E[||X:||ggd})%fdu)lh} o

Sps{lt—SIW

+ (/st [\/§(||:c|| +mT + spVT) exp([mﬁ%—sp]zT)rdu 1/2]

< ps|t — s\/2[1+\f(n\/_+mT+5p\/_)exp<m\/_+5p 2T]
< ps|t — |21+ V2)nvVd(1 +mT + spvV'T) exp([m\/_+5p] T)

1 2
= psnCl|t — s|"* ( +\/7> < psnClt — s|"°.

4v/2d

Combining this with (I44]) and (I43]) establishes that for all n € N, = €
[—n,n]¢, s,t € [0,T] it holds that

(E[l1x7 = X2115.]) " < mnCVTt = 5| + psnClt — 5|

(148)
= nC(mVT + ps)|t — 5|2

Moreover, observe that the fact that for all a,b € [0, 00) it holds that a+b <
V2(a% + b*)"/? ensures that for all a,b € [0, 00) it holds that

Va+ Vb < V2(a+b)"” < V2(V2(a® + 1)) < 2((0® + %)) . (149)

This, ([43), and (I48) demonstrate that for all n € N, z,y € [-n,n]?,
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s,t € [0,7] it holds that

(E[17 ~ 1))
< (BIIXT = X)) + (B[ - 1))

IA

Cllz = yl|L2 + nC(mvVT + ps)|t — 5|2

C(1+mVT +ps)(|le — yll i + [t — s[*)
nC (1 +myT + ps)2 [(|z — ylf2 + [t — 51%)7]
2nC(1+mVT +ps) || (2,1) = (. 5) [ i -

(150)

IA A

Hence, we obtain for all n € N that

sup ((E[HXEC xv|?, Wp)

(2.0, ® x0T -nali, \ (2, 8) = (3, 8)|[ o
(2.4)(y,5)

< 2nC(1 4+ mVT + ps) < co.

(151)

In addition, note that (I34]), (I3H), and Proposition 214 assure that for all
n € N it holds that

sup [E1xE0) "]

(z,t)e(REx[0,T])N[—n,n]dt1

< sup [\/§(||:c]| +mT + spVT) exp <[mﬁ + sp] 2T>]

(z,t)e(REx[0,T])N[—n,n]d+1

< V2(nVd+mT + spVT) exp <[mﬁ + sp] 2T> < 00
(152)
Lemma 219 (with d = d+ 1, k =d, p = p, o = Y2, (Q, F,P) = (Q, F,P),
D=RIx[0,T], X = (R*x [0,T]) x Q> ((x,t),w) = X¥(w) € RY) in the
notation of Lemma [2Z19) and (I5I) hence prove that there exist stochastic
processes Y7: [0, 7] x Q — R z € R?, which satisfy
(I) that for all w € © it holds that
(RY % [0,T] 2 (z,t) = YV (w) € RY) € C(R? x [0,T],R?)  (153)

and
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(IT) that for all z € R4, ¢ € [0,T] it holds that

P(Y® = X7) = 1. (154)

The fact that for all z € R? it holds that X® is an (IF¢)sepo,m-adapted stochas-
tic process and Lemma 218 therefore ensure that for all z € R? it holds that
Y* is an (IFy)c0,r-adapted stochastic process. Next note that (I53), (I54),
and the fact that for all z € R? it holds that X* has continuous sample paths
assure that for all z € R? it holds that

P(Vte[0,T]: V' =X])=P(Vt€[0,T]NQ: Y =X])=1.  (155)

Moreover, observe that (I54]) implies that for all z € R, ¢ € [0, 7] it holds
P-a.s. that

t t t t
/ (XY ds = / W(Y?)ds  and / (X)W, = / (V) dW,.
0 0 0 0
(156)
Combining this, ([54)), and ([I37) ensures that for all x € R?, ¢ € [0,T] it
holds P-a.s. that

t t
}/Z”:X;”:ij/ ,u(X;”)ds—l—/ o(X7) dW;
0 0 (157)

t t
= +/ n(YE)ds +/ o(YF) dWs.
0 0
Next let IT C €2 be the set given by
1= {vx,y eRLNER,E€[0,T]: Y £ AY0 = AY® +Yty}. (158)

Combining (I30), (I31), (I53) (I57), and ([I58) with Proposition 217 demon-

strates that
eF and P(II)=1. (159)

This proves that there exist unique stochastic processes Z%: [0, 7] x  — R¢,
r € RY which satisfy for all z € R?, ¢ € [0,T], w € § that

oy Y (W) well
Zilw) = { 0 cowe Q\IL (160)
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Observe that ([I58) and (I60) imply that for all z,y € R X\ € R, t € [0, 7],
w € II it holds that

2" (w) + AZ)(w) = Y (W) + AY ()

AP (@) +YP) = ML) + 2 ). O

Moreover, note that ([60) assures that for all z,y € R, X\ € R, t € [0,T],
w € Q\II it holds that

ZY(W) + MZ2(w) = 040 = \Z8(w) + Z! (w). (162)

Combining this with (I61) demonstrates that for all z,y € RY X € R,
t €[0,7], w e Q it holds that

ZYY (W) + A2 (w) = AZE (W) + Z¢ (w). (163)
Furthermore, observe that (IGQ) ensures for all z € R that
IIC{Vtel0,T]: ZF =Y/} (164)
This and (I59) show for all z € R that
P(Vte[0,T]: Zf =Y) =1. (165)

The fact that for all x € R it holds that Y* is an (F¢)sej0,r-adapted stochas-
tic process with continuous sample paths, Lemma 2.I8, and (I60) therefore
imply that for all 2 € R? it holds that Z* is an (F)ejor-adapted stochastic
process with continuous sample paths. Combining this and (I57) with (IG5
demonstrates that for all z € RY, ¢ € [0, T it holds P-a.s. that

t t
Zf:x—l—/ w(Z?) ds—l—/ o(Z7) dWs. (166)

0 0
This, (I34), (I33), and, e.g., Jentzen & Kloeden [42, Theorem 5.1] (with
T = T7 (Qufu]P)v (]Ft)te[O,T}) = (Qvapu (]Ft)tE[OvT})? H = Rd? ||||H = ||'||Rd7
U= Rd> ||||U = ||'||Rd> Qu = v, (Wt)te[O,T} = (Wt)te[O,T]a D(A) = Rd> Av =

0,m=1a=00=0 F@) = pw), =0 Bou=oawvu vy =0,
p=2¢6= (23w xeRY for u,v,7 € R? in the notation of [42]
Theorem 5.1]) (cf., e.g., Da Prato & Zabczyk [19, Item (i) in Theorem 7.4]

39



and Klenke [46], Theorem 26.8]) establish that for all z € R? and all (F})e(o,7)-
adapted stochastic processes with continuous sample paths V': [0,7] x Q —
R? which satisfy that for all ¢ € [0, 7] it holds P-a.s. that

Vimar [ (V) ds + / (V) aw, (167)

it holds that V¢ € [0,7]: P(V; = Z}) = 1. Lemma hence demonstrates
that for all z € R? and all (F¢)sejo,r-adapted stochastic processes with con-
tinuous sample paths V': [0, 7] x Q — R? which satisfy that for all ¢ € [0, T]
it holds P-a.s. that

Vimar [ (V) ds + / (V) aw, (168)

it holds that P(Vt € [0,T]: V; = Z7) = 1. Combining this with (I63]) and
(IGA) completes the proof of Proposition 220 O

2.5 Viscosity solutions for partial differential equations

In this subsection we apply results on viscosity solutions for PDEs from the
literature (cf., e.g., Crandall et al. [16], Crandall&Lions [I7], and Hairer et al.
[31, Subsections 4.3-4.4]) to establish in Proposition 22221 and Corollary
the existence, uniqueness, and regularity results for viscosity solutions which
we need for our proofs of the ANN approximation results. Our proof of
Proposition employs the following well-known result, Lemma 2.21] on
the existence of a Lyapunov-type function for SDEs under the coercivity-
type hypothesis in (IGJ). For the sake of completeness we include in this
subsection also a proof of Lemma 2211

Lemma 2.21. Let d,m € N, p € [4,00), let (-,-): RY x RT — R be the
d-dimensional Euclidean scalar product, let ||| : RY — [0,00) be the d-
dimensional Euclidean norm, let ||-|||: R>*™ — [0, 00) be the Hilbert-Schmidt
norm on R™>™ et p1: R — RY and o: RY — R¥>™ be functions which satisfy

that
Szop@)) | [y M@l
Lsélﬂgi (1+ ||x]|2)} i Leﬂgf 1+ ||xy|)} < 00, (169)

and let V: RY — R be the function which satisfies for all x € R that V (z) =
1+ ||z||’. Then
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(i) it holds that V € C?*(R%, (0,00)) and
(ii) there exists p € (0,00) such that for all x € R? it holds that

(u(x), (VV)(x)) + Trace(o(z)[o(z)]* (Hess V) (z)) < pV(z). (170)

Proof of LemmalZZ1. Throughout this proof let u;: RY — R, i € {1,2,...,
d}, and 0,;: RY — R, i € {1,2,...,d}, j € {1,2,...,m}, satisfy for all
z € R that pu(x) = (1:(2))ieqr,2,...qy and o(2) = (07;(x))ieq1.2,...ap.je1.2,m}
and let ¢ € [0, 00) satisfy for all z € R? that

(o, p(@) <c+z]*)  and  lo@)] < e+ |lz]). (171)

Note that the fact that for all x = (zy,29,...,24) € R% i € {1,2,...,d} it
holds that V (z) = 1+ P \xi|2}p/2 assures that for all z = (21,29, ...,24) €
R? i€ {1,2,...,d} it holds that

p/2—1 -~
(V)@ =5 [ Sl o] 2w = pal” (172)

This ensures that for all ¥ = (21, 29, ..., 24) € R% 4,5 € {1,2,...,d} it holds
that

—4 . .
o p(p —2) 2" iz, i A
() {p<p—2> e il + p |72 ci=

Combining this and (I72) proves item ({l). Next observe that (I72) and (I73)
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demonstrate that for all z = (21, 29, ...,74) € R? it holds that
((x), (V) (@) + Trace(o(x)[o (2)]" (Hess V) (x))
=[Sl @) (V) @)] + [ Lo S o @)oil@) (755 V) @)]
=[Sl i@ p el ] + [ i ois(@)oin(@) p 2]
+ (2 S e@)oia(@) plo = 2) 2l wia
= p el G o)) + p el [ S o)
+p(p = 2) 2l [, i o)) aia
= p el G, ) + p 2l ()
+p(p = 2) |2l ("o (@) (@) 2)

< plall”™ (2, p(@)) +p llll” o (@) I +pp — 2) 2l lo ()1
= pllz]"* (&, p()) + plp = 1) [|2]7* lo (2) .

[ E——

(174)
This and (7)) ensure that for all z € R? it holds that

(u(x), (VV)(x)) + Trace(o(z)[o(x)]* (Hess V)(z))

<p P et + [l2*) + plp — 1) =[P (1 + [l2]))?

= (pe+plp = DE) [l + 2p(p — DE (|2 + (pe + p(p — 1)) ||]|”

< (pe+p(p = 1)1+ [J2]”) + 2p(p — 1) (1 + [|=]]")

+ (pe+pp — D)1+ [|[7)
= (2pc + 4p(p — )e*) (1 + [|2[|") = (2pe + 4p(p — 1))V (2).
(175)

This establishes item (). The proof of Lemma 221l is thus completed. [

Proposition 2.22 (Existence and uniqueness of viscosity solutions). Let
d,m €N, c€[0,00), let {-,-): R? x RY — R be the d-dimensional Euclidean
scalar product, let ||-|| : R? — [0, 00) be the d-dimensional Euclidean norm, let
Il : R¥>™ — [0, 00) be the Hilbert-Schmidt norm on R>*™ et ¢: RY — R be
a continuous and at most polynomially growing function, and let p: R? — R?
and o: R? — R¥>X™ be functions which satisfy for all x,y € R? that

(o, p(@) <@+ z*),  lo@)ll < e+ |z, (176)
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and  [|p(z) — p@)| +llo(@) — oWl < cllz -yl . (177)
Then

(i) there exists a continuous function u: [0,00) x R? — R which satisfies
for all x € R? that u(0, x) = p(x), which satisfies for all T € (0, 00) that
|u(t )]

nf e (0,00) SUP(1,2)[0,7] xR Tt < 0, and which satisfies that u|( oo)xrd

is a viscosity solution of

(Zu)(t, ) = 1 Trace(o(z)[o(z)]* (Hess, u)(t, ) + ((Vu)(t, z), p(z))
(178)

for (t,x) € (0,00) x RY,
(ii) for all T € (0,00) it holds that u|rxre s a viscosity solution of

(%u)(t, x) = 1 Trace(o(z)[o(z)]" (Hess, u) (¢, z)) + ((Vou)(t, x), p(x))
(179)

for (t,z) € (0,T) x R4,

(iii) for all T € (0,00) and all continuous functions v: [0,T] x RY — R
which satisfy for all x € Re that v(0,2) = @(x), which satisfy that
v(t,x)|

Infye(0,00) SUP(1,2)[0,7] xR w < 00, and which satisfy that vy r)xra

is a viscosity solution of

(%v)(t, x) = %Trace(a(x)[a(a:)]*(Hessx v)(t,a?)) + (V) (t,x), p(x))
(180)

for (t,z) € (0,T) x R it holds that v = uljo 1yxrd, and

(iv) for every T € (0,00), x € RY, every filtered probability space (Q, F,P,
(F)iejo,r) which fulfils the usual conditions, every standard (IFy).cpo11-
Brownian motion W: [0,T] x Q — R™, and every (IF;).co,r-adapted
stochastic process with continuous sample paths X : [0,T] x Q — R4
which satisfies that for all t € [0,T] it holds P-a.s. that

X, = x+/t,u(Xs) ds + /ta(Xs) dw, (181)

it holds that
u(T,2) = E[o(Xr)]. (182)
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Proof of Proposition[2.23. Throughout this proof let C,, € RY, n € N, be
the sets which satisfy for all n € N that C, = {z € R?: ||z|| > n} and
for every p € (0,00) let V,: RY — (0,00) be the function which satisfies
for all z € R that V,(z) = 1 + [|z]|”. Note that the hypothesis that ¢ is
a continuous and at most polynomially growing function, (I76), (I71), and
Hairer et al. [31, Corollary 4.17] demonstrate that there exists a continuous
function u: [0, 00) x R? — R which satisfies for all x € R? that u(0, ) = ¢(z),
which satisfies for all T' € (0, 00) that

t
inf sup 7|u( )]

00, (183)
9€(0,00) (1. 2)e0,T) xR L + [Edlis

and which satisfies that u|( .)xra is a viscosity solution of

(Zu)(t,x) = L Trace(o(z)[o(z)]* (Hess, u)(t, z)) + ((V,u)(t, z), p(z))
(184)

for (t,x) € (0,00) x R% This establishes items ({)-(f). For the next step let
T € (0,00) and let v = (v(t, 2)) e rxre: [0,T] x R = R be a continuous
function which satisfies for all x € R that v(0,2) = ¢(x), which satisfies
that .
inf sup vt 2)|

I < o, (185)
9€(0,00) (¢ 2)e0,T) xR L + [Edls

and which satisfies that vy 1)xre is a viscosity solution of
(2v)(t,z) = % Trace(o(z)[o(2)]* (Hess, v)(t, 2)) + ((V,0)(t, ), pu(x)) (186)
for (t,z) € (0,T) x R% Observe that (I83]) and (I85) show that

t t
inf sup M < oo and inf sup M
4€3.00) (1, yelo.rxre 1 + |z 4€[3.00) (1, 2)efo,7xre 1+ [|2]]
(187)
Therefore, we obtain that there exists p € [3,00) such that
t t
sup L’I)L < 0 and sup L’x”p (188)
to)ep.r]xre 1+ |2 (tayeo.r)xrd 1+ |||

Next note that the fact that there exists ro > 0 such that the function
([ro, 00) D 1 1}:;;11) is monotonically decreasing ensures that there exists
no € N such that for all n € NN [ng, 00), z € C, it holds that

Lt|=|” 14nP
1|[z][PTT = T+np¥l
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Therefore, we obtain that for all w € {u,v} it holds that

lim sup Jw(t,2)|

V,
=00 (¢ p)el0,11xC 7"

e [w(ta)| 1+]z|]”
= sup <1+||:c||” o7
(t,2)€[0,T]xCh,

(189)

1|
Lt l]P*

(VAN
=
8

lim sup
=0 (¢ 4)e[0,T)x Ch,

sup
_(t,m)E[O,T] xRd

. 1+np .
T | m per =0

< sup
_(t,m)E[O,T] xRd

In addition, note that (I7Gl), the fact that p + 1 € [4,00), and Lemma 22T]
(withd =d, m=m,p=p+1, u=p, o =2"20,V =V, in the notation
of Lemma 2.2T]) prove that there exists p € (0, 00) such that for all z € R? it
holds that V.1 € C*(R%, (0, 00)) and

((2), (VVpi1)(@)) + 3 Trace(o(x)[o(x)]" (Hess Vpi1) (7)) < pVpsa(@). (190)

Combining this, (I77), item (i), the fact that for all # € R? it holds that
u(0,z) = ¢(x) = v(0,x), [I80), and ([I89) with Hairer et al. [31, Corollary
4.14] (with T =T, d=d,m=m, p=p, O =R p =0, v=0pu=yu,
o =226V =V, in the notation of Hairer et al. [31, Corollary 4.14])
establishes that v = u|(g 7)xre. This proves item ({l). It thus remains to prove
item ([v). For thislet T € (0,00), z € R?, let (Q, F, P, (F)ep,r)) be a filtered
probability space which fulfils the usual conditions, let W: [0, 00) x Q — R™
be a standard (IF});e(o,00)-Brownian motion, and let X : [0,7] x @ — R? be
an (IF)¢ejo,m-adapted stochastic process with continuous sample paths which
satisfies that for all ¢ € [0, 7] it holds [P-a.s. that

X, = x+/t,u(Xs) ds + /ta(Xs) dw,. (191)

Observe that ([I77) and Klenke [46] Theorem 26.8] assure that there ex-
ists an (IF;):e(0,00)-adapted stochastic process with continuous sample paths
Y: [0,00) x  — RY which satisfies that for all ¢ € [0, 00) it holds P-a.s. that

Y, =2+ /tu(ys) ds + /ta(Ys) aw, (192)
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and P(Vs € [0,7]: Yy = X,) = 1. This, item (i), and the Feynman-Kac
formula in Hairer et al. [31], Corollary 4.17] demonstrate that

u(T,z) = Efp(Yr)] = E[p(X7)]. (193)
This implies item ([iv]). The proof of Proposition 222 is thus completed. O

Corollary 2.23. Let d,m € N, T € (0,00), let ||-]| : RY — [0,00) be the
d-dimensional Euclidean norm, let ¢: R — R be a continuous and at most
polynomially growing function, and let p: R* — R and o: R — R>™ pe
functions which satisfy for all z,y € R?, X\ € R that

1Az +y) + Au(0) = Ap(z) + p(y)

and  o(Ax+y)+ Ao(0) = Ao (z) + o(y). (194)

Then

(i) there erists a unique continuous function w: [0,T] x R? — R which
satisfies that infye(0,00) SUP (1 z)efo, 1] xRd % < o0, which satisfies for
all x € R? that u(0,x) = ¢(z), and which satisfies that ulor)xrd 15 @

viscosity solution of

(%u)(t, z) = 1 Trace(o(z)[o(z)]" (Hess, u) (¢, z)) + ((Vou)(t, x), p(x))
(195)

for (t,z) € (0,T) x R and

(ii) for every x € RY, every filtered probability space (0, F, P, (Fy)icio1])
which fulfils the usual conditions, every standard (IF;)cpor-Brownian
motion W: [0,T] x Q@ — R™, and every (IF;).co,1r1-adapted stochastic
process with continuous sample paths X : [0,T] x Q — RY which satis-
fies that for all t € [0,T] it holds P-a.s. that X; = = + [ u(X,) ds +

Lo (X.)dW, it holds that

u(T,z) = E[p(Xr)]. (196)

Proof of Corollary[2.23. Throughout this proof let (-,-): RY x R — R be
the d-dimensional Euclidean scalar product and let |[|-[||: R¥™*™ — [0, 00) be
the Hilbert-Schmidt norm on R¥™. Note that ([94), Corollary 29, and
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Corollary assure that there exists k € (0,00) such that for all z,y € R?
it holds that
() |+ Mlo (@)l < w1+ [l]) (197)

and
() = u@)[ + llo(z) — o)l < & llz -yl (198)
This ensures that for all z € R? it holds that

(@, p(@)) < el ln(@)Il < llz w1+ llz]) = s(llz] + )

199
< KL+ [lll” + ll2]®) < 26(1 + Jl]]?). )

Combining this, the hypothesis that ¢ is a continuous function, and (I97))—
(198) with items ({)—(fi) in Proposition (with d = d, m = m, ¢ = 2k,
© = ¢, it = u, 0 = o in the notation of Proposition Z22) proves item ().
Moreover, note that item ([v]) in Proposition and item (@) establish
item (). The proof of Corollary is thus completed. O

3 Artificial neural network approximations

3.1 Construction of a realization on the artificial prob-
ability space

In Theorem [B.14] in Subsection below we establish that the number of
required parameters of an ANN to approximate the solution of the Black-
Scholes PDE grows at most polynomially in both the reciprocal of the pre-
scribed approximation accuracy € > 0 and the PDE dimension d € N. An
important ingredient in our proof of Theorem B.14] is an artificial probabil-
ity space on which we establish the existence of a suitable realization with
the desired approximation properties. In this subsection we provide, roughly
speaking, in the elementary result in Proposition below on a very ab-
stract level the argument for the existence of such a realization on the arti-
ficial probability space. Proposition is an immediate consequence from
the elementary result in Corollary below. Corollary B.2], in turn, follows
from the following elementary lemma, Lemma [3.11

Lemma 3.1. Let ¢ € R, let (2, F,P) be a probability space, and let X :  —
R be a random variable which satisfies that P(X > ) = 1. Then

(i) it holds that Elmax{—X,0}] < co and
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(ii) it holds that E[X] > e.

Proof of Lemma[3]. Observe that the hypothesis that P(X > ¢) = 1 estab-
lishes item (). Next note that the fact that

{X >e} =Upen{X >+ 1}, (200)

the hypothesis that P(X > ¢) = 1, and the fact that P is continuous from
below imply that

0<1=P(X >e)=P(Upen{X >c+1})=lim P(X >e+2). (201)

n—oo

Hence, we obtain that there exists € (0, 00) such that
P(X >ec+46)>0. (202)
The hypothesis that P(X > ¢) = 1 therefore ensures that

E[X] = ]E[X:H'{XZE-HS} + X]].{XE(E,&-F&)}}
> E[(e +0)Lixsets) + lixe(ccta]
=(E+0)P(X >ec+0)+eP(X € (g,e +9))
=0P(X >e+0)+c[P(X >e+0)+P(X € (c,6+0))]
=0P(X >ec+0)+eP(X > ¢)
=0P(X >e+d)+e>e.

(203)

This establishes item (). The proof of Lemma [B1]is thus completed. O

Corollary 3.2. Let ¢ € [0,00), let (2, F,P) be a probability space, and let
X:Q — R be a random variable which satisfies that P(|X| > €) = 1. Then
it holds that

E[|X]] > e. (204)

Proof of Corollary[32. Note that item () in Lemma B1] (with ¢ = ¢, X =
| X| in the notation of Lemma 2.TT]) ensures that E[|X|] > . The proof of
Corollary B2 is thus completed. O

Proposition 3.3. Let ¢ € [0, 00), let (Q, F,P) be a probability space, and let
X:Q — R be a random variable which satisfies that

E[X]) < e (203)
Then it holds that P(|X| <¢e) > 0.

48



Proof of Proposition[3.3. Note that Corollary[B.2and (203]) ensure that P(|.X|
> ¢) < 1. Therefore, we obtain that

P(|X|<e)=1-P(X|>e) > 0. (206)
The proof of Proposition is thus completed. O

3.2 Approximation error estimates

Proposition 3.4. Let d,n € N, p € [2,00), T € (0,00), ¢,e,L € [0,00),
v,w € [1/p,0), let (-,-): R? x RY — R be the d-dimensional Euclidean
scalar product, let ||-|| : RS — [0,00) be the d-dimensional Euclidean norm,
let ||||II: R — [0, 00) be the Hilbert-Schmidt norm on R>? et v: B(R?) —
[0,1] be a probability measure, let o: R — R be a continuous function,
let o: RT — R be a B(R?)/B(R)-measurable function which satisfies for all
r € R? that

p(2)] <c(X+[l2¥)  and  p(z) = ¢(2)] < e(l+ |[=]|7),  (207)

and let ;- RT — R and o: R? — R>? be functions which satisfy for all
z,y € R X €R that
p(Az +y) + Au(0) = Au(z) + puly), (208)
oAz +y)+ Aa(0) = Ao (z) + o(y), (209)
and [|p(z)|| + llo(@)ll < L1+ [[z]]). Then

(i) there erists a unique continuous function u: [0,T] x R? — R which
satisfies that infge(0,00) SUP(1 z)ejo, 7] xRE % < o0, which satisfies for
all x € R? that u(0,x) = ¢(x), and which satisfies that ul(or)xrd 15 @

viscosity solution of

(%u)(t, z) = 1 Trace(o(z)[o(z)]" (Hess, u) (¢, z)) + ((Vou)(t, x), p(x))
(210)

for (t,z) € (0,T) x R and
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(ii) there exist Ay, Ay, ..., A, € R by by, ..., b, € R? such that

1/p
[ g ‘u(T, x) — %[Z:;l o(Ax + bl)} ‘p I/(dCL’):|

<e (1 4 2w/2 exp([ﬁ + max{2, W}}ZL2 TW)
: [L (7 + mas (2, WIVT) + [ o o] ()] (W”)} k )
+n 1V 24¢(p—1)Y? (1 +2v/2 exp([ﬁ + max{2, vp}]zL2 Tv)

: [L(T + max{2, vp}vT) + [fRd |z|"? I/(dx)] va)]v).
(211)

Proof of Proposition[3.. Throughout this prooflet e; € R?, j € {1,2,...,d},
be given by e; = (1,0,...,0),e5 = (0,1,0,...,0),...,e4 = (0,...,0,1), let
m: (0,00) — [2,00) be the function which satisfies for all z € (0, 00) that
m(z) = max{2,z}, let (0, F, P, (IF;)icpo,r)) be a filtered probability space
which fulfils the usual conditions, let W: [0,7] x Q — R% i € N, be in-
dependent standard (F)e(o 7)-Brownian motions, let X%*: [0,7] x Q@ — R,
i € N,z € R? be (F¢)sej0,r-adapted stochastic processes with continuous
sample paths which satisfy that for alli € N, x € R? ¢ € [0, T it holds P-a.s.
that

t t
X =x+ / (X5 ds + / o (X5 dW! (212)
0 0
and that for alli € N, t € [0,7], w € Q, A € R, z,y € R? it holds that
XZ”\Hy(w) + )\XZ’O(w) = )\X,f’x(w) + Xti’y(w) (213)
(cf. Proposition 2.20)), and let o7 : Q — R™? i € N, and %;: Q — R? i € N,
be the random variables which satisfy that for all i € N, w € € it holds that
PBi(w) = X2’ (w) and

(W)
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= (X171 @) - X X - X)X - X)) (2)

Observe that (207) assures for all z € R? that

()] < lo(2)] + le(x) = o(z)] < (1 + [[zf]) + (1 + [lz]™)
< o2+ [l e (24 et (215)
< 2(c+ &) (1 + |Jz|meaxtvwhy,
Therefore, we obtain that ¢ is an at most polynomially growing function.
This, ([208), [209), and item (@) in Corollary (with d = d, m = d,
T=T,p=p, u=pu o= o in the notation of Corollary 223) demon-

strate that there exists a unique continuous function w: [0,7] x RY — R

which satisfies for all x € R? that u(0,2) = @(x), which satisfies that

infye(0,00) SUD(1,2)€[0,7] xR lutta)l - oo, and which satisfies that wuf( r)xga is

) X § L[|
a viscosity solution of

(%u)(t,z) = 1 Trace(o(z)[o(2)]" (Hess, u) (¢, 2)) + ((Vou)(t, x), p(x))
(216)

for (t,z) € (0,T) x R% This proves item (). Moreover, note that item (i) in
Corollary 223, item (f), and ([ZIZ) establish that for all z € R? it holds that

w(T,z) = E[p(X)]. (217)

Moreover, note that (2I3)), ([2I4), and Lemma [Z7] demonstrate that for all
ieN, zeRY we it holds that

Xt (w) = d(w)x + Bi(w). (218)
This ensures that for all 7+ € N, w € €2 it holds that the function
R? 5z +— Xi*(w) € R? (219)

is continuous. Combining this and the fact that for all : € N, = € R? it holds
that X;": Q — R? is F/B(R?%)-measurable with Beck et al. [4, Lemma 2.4]
establishes that for all + € N it holds that the function

R? x Q3 (2,w) = X5"(w) € R (220)
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is (B(R?) @ F)/B(RY)-measurable. This, ([207), and the triangle inequality
assure that for all z € R? it holds that

1/p
[ Bl — Bl viae)

_ ’
~ | [ Bletxi) - s0e) vt

VAN

[ @llecci) - o0e]) vian]|
[ (Bl ey )]
:g[/Rd (1 +E[|[x5["])" dx)}l/p

(1 [ [ iy van] )
([ )

Furthermore, observe that Jensen’s inequality, the hypothesis that for all x €
R? it holds that ||u(z)|| + ||lo(z)]| < L(1+ ||z||), @IZ), and Proposition 214
(withd=d, p=m(z),my=mo=s51=6=L T=T,{=x,p=p,0=0
for z € (0,00), 2 € R? in the notation of Proposition 2.14]) prove that for all
r € R4, 2 € (0,00) it holds that

el =] [l )™ < (i)™
< [V2(lell + LT + Lm(:VT) exp([LVT + Lm(2))*T) | (222)
:22/2[||z||+L(T+m(z)f)} exp([\/_—l—m( )] L2Tz>.

(221)

VAN

The fact that wp > 1 and the triangle inequality hence prove that for all
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x € R? it holds that

[ EO 1) vian]
< [/Rd {2w/2[||a;|| +L(T+m(w)ﬁ)]w

) /o
-exp([ﬁ—l— m(w)}sz TW>:| u(d;v)]

= 2% exp ( [\/T + m(w)] 12 Tw) (223)
Ywp) W

[/R el + L(T+m(w>ﬁ)}w”u(dm)]
< ow/2 exp([ﬁ + m(w)}zL2 Tw)

: “/R [Elk y(dx)] o + L(T +m(w)VT)

w

Combining this and (221)) demonstrates that for all z € R? it holds that
1/p
[ Bl - Bl viae)

<e (1 + 2W/2 exp([ﬁ + m(w)] L TW) (224)

Moreover, observe that the fact that Wi: [0,7] x Q — R<, i € N, are in-
dependent Brownian motions ensures for every z € R? that X%x: Q — R4,
i € N, are i.i.d. random variables (cf., e.g., Beck et al. [4, Theorem 2.8] and
Klenke [46, Theorem 15.8]). Combining this, (207), (222), and the hypoth-
esis that ¢: RY — R is a B(R?)/B(R)-measurable function proves for every
r € R? that ¢(X;"): Q — R, i € {1,2,...,n}, are i.i.d. random variables
which satisfy for every x € R? that

Efle(xz)|] < e (1 +E[[[X7]]]) < oc. (225)

: H/R [Ellg y(dx)] " + L(T +m(w)VT)
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This, Holder’s inequality, Fubini’s theorem, and Corollary demonstrate
that

| o
g| [ [ efoocto] - HE el wian] |

. Yp
B[ [ [Blo0x) - Sy o) vl )
[ B[ lo0c) - 215t o) ) (226)

) [MFEWX%’I) ~E[(x)]["] u(dw)%

nl/2
o 1/2 G
2D ([ o~ Bloxk] Tl )

Moreover, observe that Holder’s inequality demonstrates that for all z € R?
it holds that

E|[E[s(x)] ] = [E[e(X3)] ] < E[lo(x3")["]. (227)

The triangle inequality, Holder’s inequality, ([207)), and (220) hence imply
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that

E

[/Rd [E[o(Xz")] = 2 [ o(X)][" v (dx)] 1/1

P o
§2(p 1/12) [( dEW(Xflf’x)\p}V(dx))

e
E[lo(xr)|'] y(dx)) (228)

/p
Efle(+ 1271 v(dx>)
/

—
—~

L XY i) )

o
CE[IX27] y(dx)] ) ‘

=
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This, (222]), the triangle inequality, and the fact that vp > 1 assure that

E

| o
[ ot - 1 st van)] |

< M (1 + [/d 9(vp)/2 [HxH + L(T + M(Vp)ﬁ)}vp

nl/2

- exp ( [\/T +m(vp)] L2 Tvp) V(d:c)] Vp)

c(p — 1)Y/? 2
_ 4(1?7117/21) (1 + 2P exp([VT + m(vp) "I Tv) (229)

| H/R el + 27 + mviVT)] vt W)]v)

de(p —1)Y?
nl/z2

(1 +2v/2 exp([ﬁ +m(vp)] L2 Tv)

)

Proposition hence demonstrates that there exists w € €2 such that

: H/R [EIMG V(dx)} va) + L(T + m(vp)VT)

[AJMWX#H_%EXﬂaxgw»WVM@Th

4e(p — 1)1/2

< — 7 (1 +2v/2 exp([ﬁ +m(vp)|*L? Tv) (230)

)

Combining this, the triangle inequality, (2I7), [2I8)), and 224 establishes

. H/R || V(dx)] B L(T +m(vp)VT)
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that

L

= | [ Bletxi] - S, a0 ) vido)

) Y
l,5) =[S olwin + (@) [ i)
1/p

1/p
< | [ [Blo(xi] - Bloce] P viao)

+ |:/Rd E[o(X7")] = 2[5, (X7 (@))][" u(dg;)} s

(1 +2v/2 exp([ﬁ + m(vp)}zL2 TV)

: H/R [EA V(d:c)] o + L(T +m(vp)VT) v) .

The proof of Proposition B.4]is thus completed. O

Corollary 3.5. Let d,n € N, T € (0,00), ¢,¢,L,C € [0,00), v,p € [2,00),
let (-,-): R x RY — R be the d-dimensional Euclidean scalar product, let
-] : RY — [0,00) be the d-dimensional Euclidean norm, let |||-||: R¥>¢ —
0, 00) be the Hilbert-Schmidt norm on R>?, let v: B(R?) — [0, 1] be a prob-
ability measure, assume that

C = (p—1)"2exp(Bv(1+ L T(VT +vp)*)) (14 [fu [l v(d2)] "), (232)

let o: RY — R be a continuous function, let ¢: R — R be a B(R?)/B(R)-
measurable function which satisfies for all x € R that

o)l < c(X+[lzl¥)  and  fe(z) = o(z)] <e(T+[l2),  (233)

and let ;1: RT = R? and o: RY — R be functions which satisfy for all
z,y € RY X\ eR that

1Az +y) + Au(0) = Ap(z) + p(y), (234)

<€ <1 + 2/ eXp([\/? +m(w)] L2 Tw) (231)

: “/R (B y(dx)] " + L(T +m(w)VT)

de(p —1)M?
/2
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oAz +y)+ Ao (0) = Aao(x) + o(y), (235)
and |[p(z)|| + [lo(@)]] < L1+ [lz]l). Then

(i) there erists a unique continuous function w: [0,T] x R? — R which
satisfies that infye(0,00) SUP(1 z)efo, 7] xRd % < 00, which satisfies for
all x € R? that u(0,x) = ¢(x), and which satisfies that ulor)xre 15 @

viscosity solution of

(Zu)(t,z) = L Trace(o(z)[o(2)]* (Hess, u)(t, ) + ((V,u)(t, z), p(z))

(236)
for (t,z) € (0,T) x R and
(ii) there exist Ay, As, ..., Ay € R4 by by, ... b, € R such that
{ (T, 2) = L [0 oA+ )] | v(da) U< antoo
“ (237)

Proof of Corollary[33. Throughout this proof let r € (0,00) be given by
r = LT (VT + vp). Note that ([233) implies that ¢ is an at most polyno-
mially growing function. Combining this, (234]), and ([235) with item (@) in
Corollary R23] (with d =d, m =d, T =T, p = ¢, 4 = p1, 0 = o in the no-
tation of Corollary 223)) demonstrates that there exists a unique continuous
function u: [0, T] x R? — R which satisfies for all z € R? that u(0,x) = ¢(z),
which satisfies that infge(o,00) SUP(1 z)ej0, 7] xRd % < 00, and which satisfies

that u|r)xre is a viscosity solution of

(Zu)(t,z) = L Trace(o(z)[o(z)]* (Hess, u)(t, z)) + ((V,u)(t, z), p(z))
(238)

for (t,x) € (0,7) x R%. This proves item ({l). Furthermore, note that item (i)
in Proposition B4] (with d = d, n =n, p=p, T =T, c = ¢, € = ¢,
L=L v=v,w=vVv,Vv=Vv ¢=¢ ¢=0¢ 4 =u c= o in the
notation of Proposition 4] assures that there exist Aj, Ay, ..., A, € R4,
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bi,bs, ..., b, € R? such that
P T
[ g }u(T, x) — %[Z:;l o(Ax + bl)} ‘ I/(dl’):|

<e (1 +2v/2 exp([ﬁ + max{2, v}}ZL2 Tv)
. [L (T + max{2, VIVT) + | fya 2] y(dx)]l/(vp)} ) ) (239)
+n"dce(p—1)Y2 (1 + 2V/2 exp([ﬁ + max{2, Vp}}2L2 TV)

: {L(T + max{2,vp}ﬁ) + [fRd ||| V? I/(dzv)] 1/<vp)]">‘

Next note that the fact that vp > 2 and the fact that p > 1 imply that
max{2, v} < max{2,vp} = vp. (240)
This demonstrates that

14 2v/2 eXp([ﬁ + max{2, V}}2L2 TV)

LT + max{2, V) + [ el )] (”’)] )

<14ov exp([ﬁ + max{2, vp}]* L2 Tv)

|2 s w2 T) + [l van)] ]
1+ 2P exp (L TIVE + vplv)

(LVEVT ) + el vtan] |

Yo Y
=1+2"2exp(r’v) [7“ + [fRd | z||¥P I/(dx)] } :

In addition, note that the fact that for all x € R it holds that 1+x < exp(x)
and the fact that for all y € (0, 00) it holds that 14y +y* < 3(1+y?) ensure
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that

L+ 22exp(r2) [t [ lalotan)] ]
<1+ exp(v/2) exp(r’v) {(1 + ) max {1, [fRd |][? V(dx)}l/(vm}} v

< 1+ exp(v)2) exp(r2v) {exp(r) max{l, [ Joa 1277 y(dx)}l/(vp)}]v (242)

< 2exp(v -+ ) explr) e {1 [ Lol (o]

< 2exp((1 +7r+ r2)v) (1 + [fRd || V(dz)]l/p)

< 2exp(3(1+7%)Vv) (1 + [fRd |z ||¥P I/(dx)]l/p) :

Moreover, note that the fact that v > 2 implies that 8 = 2% < exp(3) <
exp(2v) < exp(2(1 4 r?)v). Hence, we obtain that

8exp(2(1+7%)v) <exp(2(14r*)v) exp(2(1 +r*)v) = exp(3(1 +r?)v).
(243)

Combining this, ([232), (239), (241), and (242)) establishes that
l/p
l ) ‘u(T, x) — %[2?21 o(Ax + bl)} ‘p I/(dl’):|
R

<e (1 +2¥/2 exp(r*v) [7“ + [fRd |z ||¥P V(d:c)}l/(vp)} V)

Yop) ]V
+n—1/24c<p—1>1/2<1+2v/2exp(r2v> o [l otan)] | )

1/p

< [e+ R aclp- 1% 2esp(30+ ) (14 [fe el vian)] )

<(e+n"c)(p—1)"*8exp(3(1+1%)v) <1 + [fRd ||z ||¥P l/(dl")}l/p)

l/p

< (e 7)o~ ) Pexp(31+ ) (14 [ el ()] )

= (e+n""c)C.
(244)
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The proof of Corollary is thus completed. O

3.3 Cost estimates

Proposition 3.6. Letd € N, T,e € (0,00), ¢, L,C € [0,00), V,p € [2,00),
n € NN[2C?%c72 00), let {-,-): RTx R? — R be the d-dimensional Euclidean
scalar product, let ||-|| : R? — [0,00) be the d-dimensional Euclidean norm,
let |||-|||: R™*? — [0, 00) be the Hilbert-Schmidt norm on R™? et v: B(RY) —
[0,1] be a probability measure, assume that

C = 2p—1)"2 exp(Bv(1+ L’ T(VT+vp)?)) (14 [ 12 ]|7¥ v(d2)] "), (245)

let o: RT — R be a continuous function, let ¢: R — R be a B(R?)/B(R)-
measurable function which satisfies for all x € R that
(@) < c(L+[|l2]]¥Y)  and  fp(x) - ¢(z)] < CTe(L+ [l])  (246)
and let ;1 RY — R and o: R? — R be functions which satisfy for all
z,y € RY X\ €R that
pAz +y) + Ap(0) = Au(x) + p(y), (247)
oAz +y)+ Ao (0) = Aao(x) + o(y), (248)
and || ()| + o ()] < L1 + [lz[]). Then

(i) there exists a unique continuous function u: [0,T] x R* — R which
satisfies that infge(o,00) SUD ¢ 1) ef0, 7] xR % < o0, which satisfies for

all z € R that u(0,z) = ¢(z), and which satisfies that u|ryxga is a
viscosity solution of

(%u)(t, z) = 1 Trace(o(z)[o(z)]" (Hess, u) (¢, z)) + ((Vou)(t, x), p(x))

(249)
for (t,z) € (0,T) x R and
(ii) there exist Ay, Ay, ..., A, € R by by, ..., b, € R such that
{ 5 (T, z) — L[S0, ¢(Aw + b;)]|” v(dx) " <e. (250)
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Proof of Proposition[3.8. Note that (24€]) implies that ¢ is an at most poly-

nomially growing function. Combining this, (247), and (248) with item (f)

in Corollary 223 (with d =d, m =d, T =T, ¢ = ¢, 4 = p, 0 = o in the

notation of Corollary 2.23) establishes that there exists a unique continuous

function u: [0, T] x R? — R which satisfies for all z € R? that u(0,x) = ¢(z),
|u(t,2)|

which satisfies that infge(,00) SUP(1 z)ej0,7]xRd T < 0 and which satisfies
that u| r)xre is a viscosity solution of

(Zu)(t,x) = L Trace(o(z)[o(z)]* (Hess, u)(t, z)) + ((V,u)(t, z), p(z))
(251)

for (t,z) € (0,T7) x R% This proves item (). Next note that Corollary
(withd=d,n=nT=T,e=Cle,c=c, L=L v=v,p=p,v=ur,
¢ = ¢, u = p, 0 = o in the notation of Corollary [31]) assures that there exist
Al, AQ, cey An S RdXd, bl, bg, ceey bn S Rd such that

N va C
{ g (w(T,z) — L[S0, (A +by)]| I/(dx)] < (Cle+n” & ) =.

2
(252)
The hypothesis that n > c¢2C?c~2 hence assures that
l/p
[ ) = A st + 0] o)
R
< (C—IE X (02028—2)—1/2 c) % (253)

= (C7'e+ C ) % =.

This establishes item (). The proof of Proposition B.6lis thus completed. [

3.4 Representation properties for artificial neural net-
works

Setting 3.7. For every | € N let M; be the set of all Borel measurable
functions from R! to R, let

N = Uregs..3 Utodrte)e(@ie)xty) (Xao (REH1 5 RF)) (254)
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let Aj: R - R, I €N, and a € M, be functions which satisfy for all | € N,
v = (21,29,...,1) € R that

Ai(z) = (a(xy),a(xs), ..., a(x)), (255)

and let P, 2: N = N and R: N — U2, M, be the functions which satisfy

forall £ €{2,3,...}, (lo,h,....1c) € (NF) x {1}), @ = (W1, By),.... (W,

Br)) = (W setion iy ietizin ity (BN iction. i keqio,.oy € (XE,

(Rixxl-1 x RW)), o9 € RO,y € RO, ... xpy € Rlet with Vk € NN
(0,£)Z T = Alk(kak—l + Bk) that

R(P) € M,,, (R(®))(x¢) = Wear_1 + B, (256)
L I ' [ N
P(@) =) (ﬂR\{0}<BS>> + X ﬂR\{0}<W,§”>>) : (257)
k=1 i=1 J=

and P(®) = S°6_ lu(le—y +1).

Lemma 3.8. Assume Setting[3.7 and let d,n € N, Ay, Ay, ..., A, € R>?
bi, by, ..., by €RY ¢ € N satisfy that R(p) € Mgy. Then there exists ) € N
such that for all x € RY it holds that P(¢) < n?P(¢), P() < nP(e),
R(v) € My, and

(R@))(x) = 7 [ i1 (R(9))(Aiw + bi) ] (258)

Proof of Lemma[3.8 Throughout this prooflet z € R?, forall £ € {2,3,...},
(o by, - - 1) € (NE) x {1}), ® € (xE_, (Rixh-1 x RIx)) let W) € Rixb,
Wit e Rlxh WP e Rlexier B e R B(® e R, ... B € R
satisfy that

o = (W, B"), (Wi B, ..., (Wi, B, (259)

let N €{2,3,...}, (ug,us,...,uy) € ({d} x (NV71) x {1}) satisfy that ¢ €
X (Ru=ur-1 xR (i.e., ¢ corresponds to a fully connected feedforward ar-
tificial neural network with N +1 layers with dimensions (ug, uy, ..., uy)), let
P E (R(nul)Xuo xR x ( X}i\f:al (R(”uk)x(numﬂ X R™)) x (RN x(nun—1) xRN C
N (i.e., ¥ corresponds to a fully connected feedforward artificial neural net-
work with N +1 layers with dimensions (ug, nuy, nug, . .., nuy_1, uy)) satisfy
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forall k € {2,3,..., N — 1} that

W1(¢)A1
W(¢)A2
W = [ TR e Rimxwo = Rimoxd, (260)
Wi A,
Wi, + B B
W(¢)b + B(¢) B(¢)
Bgdj) _ 1 2. 1 c an, B}(j’) _ k c Rnuk7 (261)
Wb, + B B,
(#)
: : - 0
0 e 0 Wéqﬁ)
W](Vw) _ (%ngfqﬁ) %W]S;ﬁ) . %W](Vd))) c Runx(nun—1) _ RIX(TMLN—I)’ (263)
and BV =BY e R =R, (264)

let v, € R*, i € {1,2,...,n}, k € {0,1,..., N}, satisty for all i €
{1,2,...,n}, k€ {1,2,..., N — 1} that

Yio = Aiz + by, Yik = Auk(W;§¢)yi,k—1 + B;(f)), (265)

and YiN = W](Vd))yi,N—l + B](\?), (266)

and let zp € R", 2z € R™1 29 € R™2 ... zy_1 € R™N-1 2y € R* satisfy
that

20 = 1, 2k = Anuk(Wéw)zk_l + B,(j})), (267)

and  zy = W2y + BY. (268)

Observe that (255) proves that for all [, L € N, v = (vy,va, ...,vy) € RED
it holds that

ALI(U) = (a(vl), a(’l}g), ey a(vu))
= (Al(’l}l,’l}g, e ,Ul), Al(’l}l+1,’l}l+2, Ceey Ugl), ey (269)

A(V(L-1)41, V(L1425 - - -5 VL1)).
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Furthermore, note that the fact that ug = d ensures that R(¢)) € M,, =

M. Next observe that ([256]), ([259), ([263), and (266) imply that for all
i€{1,2,...,n} it holds that

yin = (R(9))(yi0) = (R(9))(Aiz + ;). (270)
Moreover, observe that ([250]), ([259), ([267), and (268) ensure that
av = (R(¥))(20) = (R(¥))(2). (271)

Next we claim that for all k € {1,2,..., N — 1} it holds that

2k = (yl,ka Y2,k5 - - - 7yn,k)- (272)

We now prove ([272) by induction on k € {1,2,..., N —1}. For the base case
k = 1 note that (260]) assures that for all i € {1,2,...,n} it holds that

yin = A, (W) + BY)
= A, (WP Az + b)) + BY) (273)
= Ay, (WP Az + WP + BI?).
This, (260), [261)), [267), and (269) demonstrate that

2= A, (W2 + B

WP Ay Wb, + B
Wi Ag . W%b, + B

= Anu1 .
W9 A,z w9, + B (274)
A, (WD Az + W, + B i1
| ALV A+ Wb, + BYY) Yo
A, (WD A2 + W, + BI?) Yn.1

This establishes (272) in the base case k = 1. For the induction step
{1,2,...,N =2} > k-1 — k € {2,3...,N — 1} observe that (261,

65



[262), 263), @67), and ([269) imply that for all £ € {2,3..., N} with

Zi—1 = (Y1,k—1, Y2,k—15 - - - Ynk—1) it holds that

Y1,k—1
Y2,k—1
= A [ WL [+ B
yn,k—l
W]%¢;y1,k—l B;%qj;
Wy Y2,k—1 B¢
W) \8P
A, (W11 + BY) Y1k
_ Auk(ngd))ka—l + B,(f)) | ver
Auk(Wé(b)yn,k—l + B,(f’)) Yn.k

Induction thus proves (272). Next note that (263), [264), (266), [268), and
([272) demonstrate that

Y1,N-1
ZN = W](Vw)z]v—1 + B](\qfl}) = <%W](V¢) %W](Vd)) %WJS,¢)> yQJ.V_l + B](\(f)
Yn,N-1
= %[Zznzl Wzsf(ﬁ)yi,N—l} + B](\?) = %[Z?:l W](\/¢)yi,N—1 + Bz(\(m
= %[Zznzl Yi N}
(276)

Combining this with (270) and (271]) establishes that
(R(W))(2) = 2n = 5[ i ] = 5[ 2L (R(O) (A + b)) ] (277)

In addition, observe that the fact that P(¢) = fozl ug(up—1 + 1) assures

66



that

N-1
Pw) = nun(un+ 1)+ | 5 mntoecs + 1)+ ux (o 1)
k=2
N-1
< n?uy(ug + 1) + [ S nPug (w1 + 1)] +nfuy(uy_y +1)  (278)
k=2
N
<o [l + 1] = 12 P(0).
k=1
Furthermore, note that (260) — (264) and (278) demonstrate that
N-1
e@(w) < nujug + nuy + [Z NUuEUE—1 + nuk] + UNNUN_1 T+ UN
k=2

8wt )] =70 o

Combining this, (271), and (278)) completes the proof of Lemma 3.8 O

3.5 Cost estimates for artificial neural networks

Lemma 3.9. Assume Setting[3.7, letd € N, T, e € (0,00), L,C,C € [0, 00),
c € [1,00), v,p € [2,00), let (-,-): RY x R? — R be the d-dimensional Eu-
clidean scalar product, let ||-]| : RY — [0,00) be the d-dimensional Buclidean
norm, let ||-|]: R>? — [0,00) be the Hilbert-Schmidt norm on R4, et
v: B(RY) — [0,1] be a probability measure, assume that

C =2(p—1)"exp(3v(1+L*T(VT+vp)®)) (1+ [fpu | 7]¥ u(dx)}l/”), (280)

assume that C = 4(max{C,e})*, let o: R? — R be a continuous function, let
pw: R = R and o: R — R be functions which satisfy for all .,y € RY,
A € R that

p(Az +y) + Au(0) = Au(z) + puly), (281)
oAz +y)+ Ao (0) = Ao(x) + o(y), (282)

and || p(2)|| + lo(2)|| < L(1+||z]]), and let ¢ € N satisfy for all x € R? that
R(¢) € Ma, [(R(¢))(2)| < c(1+ [|l2[["), and

[o(z) = (R(9)) ()] < C™re(1 + [lz]|Y). (283)
Then
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(i) there erists a unique continuous function w: [0,T] x R? — R which
satisfies that infye(0,00) SUP (1 z)efo, 7] xRd % < 00, which satisfies for
all x € R? that u(0,2) = ¢(x), and which satisfies that ulor)xrd 15 @

viscosity solution of

(Zu)(t,z) = L Trace(o(z)[o ()] (Hess, u)(t, ) + ((V,u)(t, z), p(z))
(284)

for (t,z) € (0,T) x R? and

(ii) there exists ) € N such that P(1) < ' CP(p)e™, 2(¢) < > CP(o)
e 2, R(Y) € My, and

/p
{ y (T, x) = (R()) (@) v(dz)| <e. (285)

Proof of Lemma[39. Throughout this proof let n = min(N N [¢?C?%e™2, c0)).
Note that (283) implies that ¢ is an at most polynomially growing function.
Combining this, (281]), and (282]) with item ({) in Corollary 2.23] (with d = d,
m=d, T =T, ¢ =¢, p=p 0= o in the notation of Corollary Z23)
establishes that there exists a unique continuous function u: [0, 7] x RY —
R which satisfies for all # € R? that u(0,z) = ¢(z), which satisfies that
Inf g (0,00) SUD(1,2)€[0,7] xR % < 0o, and which satisfies that u r)xra is a
viscosity solution of

(Zu)(t,x) = L Trace(o(z)[o(2)]* (Hess, u)(t, z)) + ((V,u)(t, z), p(z))
(286)

for (t,x) € (0,T) x R This proves item ({l). Next note that Proposition 3.0
(withd=d, T=T,e=¢,L=L,c=c¢,v=vVv,p=p, V=r,n=n,
=1, ¢ =R(¢), p = pu, 0 = o in the notation of Proposition B.G)) ensures
that there exist Ay, Ao, ..., A, € R b by, ..., b, € R? such that

l/p
[ ) - SR A+ ) vian)] < s

Moreover, observe that Lemma demonstrates that there exists ¥ € N
such that for all x € R? it holds that P(v) < n?P(¢), 2(W) < nP(¢),
R(v) € Mg, and

(R@))(@) = 7 [ X1 (R(9))(Aiw + bi)]. (288)
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This and (287)) assure that
l/p
[ (o) - RN via)

" (289)

_ [ [ ()~ [ (R A+ )] vlde) | <<
Moreover, note that the hypothesis that C = 4(max{C,e})* implies that
2V Ce™? > +/4et 72 = 2. This ensures that

n<AC?e?241< Qma'x{02 C?e72, 1}
= max{c?2C?e72 2}

2
< max{c*VCe? 2} (200)
=c*VCe™2
This and the fact that P(¢)) < n?P(¢) imply that
P() < (2VCe?)?P(p) ="' CP(p) ™™ (291)

Furthermore, note that (290), the fact that &?(¢) < nP(¢), and the fact
that C > 1 ensure that

P) < VCe?P(d) < FCP(d) e (292)
This, 289), (2910), and the fact that R(v)) € M, establish item (@). The
proof of Lemma is thus completed. O

Proposition 3.10. Assume Setting [3.7, let d € N, T,a,r,R € (0,00),
L,C,z € [0,00), byc € [1,00), v,p € [2,00), let (-,): RT x R — R be
the d-dimensional Euclidean scalar product, let ||-| : RY — [0,00) be the d-
dimensional Euclidean norm, let ||-||: R™¢ — [0,00) be the Hilbert-Schmidt
norm on R et v: B(R?) — [0,1] be a probability measure, assume that
C = 4[max{1, £} max{2(p — 1) exp(3v(1 + L*T(VT + vp)?))
(1 [fg 2l w(d)] ™) R, (293)

let p: R — R be a continuous function, let u: R* — R? and o: RY — R9*4
be functions which satisfy for all z,y € R?, X\ € R that

p(Az +y) + Au(0) = Ap(z) + p(y), (294)
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oAz +y)+ Ao (0) = Aao(x) + o(y), (295)

and ()| + ||o(z)|| < L(1+||z]]), and let (¢s)ser] € N satisfy for all 6 €
(0,7], € R? that P(¢s) < ad~*, R(¢s) € Ma, |(R(95))(x)| < e(1+ ||z[]v),

and

|o(x) = (R(ds)) ()] < 06 (1 + [[]"). (296)

Then
(i) there exists a unique continuous function u: [0,T] x R* — R which
satisfies that infge(0,00) SUP(1 z)efo, 7] xRd % < o0, which satisfies for

all z € R that u(0,z) = ¢(z), and which satisfies that u|ryxga is a
viscosity solution of

(Zu)(t,z) = 1 Trace(o(z)[o()]* (Hess, u)(t, ) + ((V,u)(t, z), p(z))
(297)

for (t,z) € (0,T) x R and

(ii) there exist (1.)cco,s) © N such that for all € € (0, R] it holds that
P(p.) < Cab*cte 72 P.) < Cab?c?e 2% R(.) € My, and

l/p
[ » (T, ) = (R(ye))(@)|" v(dz)| <& (298)

Proof of Proposition[3.10. Throughout this proof let ¢ € (0, R] and let C' €
[0, 00) be given by

C = 2(p—1)"2 exp(Bv(1+ L’ T(VT+vp)?)) (14 [ 12 ]|7¥ v(d2)] 7). (299)

Note that (296€) implies that ¢ is an at most polynomially growing function.
Combining this, (294]), and (295]) with item (f) in Corollary 2.23] (with d = d,
m=d,T=T, 9=y, p=p 0= o in the notation of Corollary Z23)
establishes that there exists a unique continuous function u: [0, 7] x RY —
R which satisfies for all # € R? that u(0,z) = ¢(z), which satisfies that
Inf e (0,00) SUD(1,2)€[0,7] xR % < 0o, and which satisfies that u r)xra is a
viscosity solution of

(Zu)(t,z) = 1 Trace(o(z)[o(x)]* (Hess, u)(t, z)) + (Vou)(t, z), p(z))
(300)
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for (t,x) € (0,7) x RY. This proves item ({l). Next observe that (296]) ensures
that for all z € R? it holds that

‘go(x) — (R(qum{bflcqe,r}))(x)‘ < min{b~'C 7 e, r} b(1 + ||z[|¥)
< b 'O e b(1 4 ||z|Y) (301)
=C7te(1+ |z|Y).

LemmaBA (withd =d, T =T, e =¢,L=L,c=c¢,v=v,p=p, V=r,
© =, fb=[,0 =0, 9= Qninpp-1c-1c,} i the notation of Lemma B.9)
hence assures that there exists ¢ € A such that

7)(1?) < C4 4(max{C, 5}>4 7D((érnin{b*lC*le,r}) 5_4, (302)

P() < & 4(max{C,e})" P(Gminfo-1¢-12}) g2, (303)

l/p
R(W) € My,  and [Rd (T, ) — (RW) (@) v(dz)| <e. (304)

Moreover, note that the fact that b, C' > 1 and the fact that eR~! < 1 assures
that
min{b~'C~"e,r} > min {b~'C e, rb"'C 'R}

305
= min{l, £} b~'C e, (305)

This, the fact that C' > 1, the fact that ¢ € (0, R], (293), and (299) ensure
that
4(max{C, e})*(min{b~'C e, r})
< 4(max{C, R})* (min{1, £} b'Cte) "
= 4(max{C, R})*(max{1, £})*v* C* ™~ (306)
< 4(max{C, R})"*(max{1, £})***p* e~
=Cbe”
Combining this with the hypothesis that for all 6 € (0,r] it holds that
P(ps) < ad~? and ([B02) demonstrates that

P() < ¢* 4(max{C,})* a (min{b'C~'e, r}) =~

307
< AaClhe et =Calb?te 2 (307)
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Furthermore, observe that the hypothesis that for all § € (0, ] it holds that
P(os) < ad~2, [B03), and (B06) demonstrate that

P() < 4(max{C, e} a (min{b'C e, r}) %2
<aCle 2?2 =Cab*Pe 22

Combining this, ([804)), and (B07) establishes item (@). The proof of Propo-
sition [3.10] is thus completed. O

Corollary 3.11. Assume Setting[3.7, letd € N, T,r, R € (0,00), L, &, v, w, z,
z € [0,00), ¢ € [1,00), v,p € [2,00), let {-,-): RI x RT — R be the
d-dimensional Euclidean scalar product, let |- : R? — [0,00) be the d-
dimensional Buclidean norm, let ||-||: R™*? — [0, 00) be the Hilbert-Schmidt
norm on R et v: B(R?Y) — [0,1] be a probability measure, assume that

(308)

¢ = [cmax{l, B} max{2(p — 1)"? exp(3v(1 + L*T(VT + vp)?))
(14 [fa lll? w(da)] ™), R}, (309)

let p: R — R be a continuous function, let p: R* — R? and o: RY — RI*4
be functions which satisfy for all z,y € RY, A € R that

p(Az +y) + Au(0) = Au(z) + ply), (310)
oAz +y)+ Ao (0) = Ao(x) + o(y), (311)

and ||p(@)]] + [lo(@)|| < L + [lz]]), and let (¢5)seor S N satisfy for all
§ € (0,r], x € RY that P(ps) < cd*67%, R(ds) € My, |(R(¢s))(x)] <
cd’(1+ [|z||¥), and

lp(z) — (R(¢s))(z)| < ed”d (1 + [[z]V). (312)
Then

(i) there exists a unique continuous function u: [0,T] x R* — R which
satisfies that infge(0,00) SUP(1 z)efo, 7] xRd % < oo, which satisfies for
all x € R* that u(0,x) = ¢(x), and which satisfies that ul r)xga is a

viscosity solution of

(2u)(t,z) = 1 Trace(o(z)[o(2)]* (Hess, u)(t, ) + (V) (t, z), p(z))
(313)

for (t,z) € (0,T) x R? and
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(ii) there exist (Y:)-co,r) C N such that for all e € (0,R] it holds that
P(wa) S €dz+wz+4v 6_4_Z, c@(@ba) S €dz+wz+2v 5—2—z; R(¢a) c Md,

and
1/p

l y (T, ) = (R(¢e)) ()" v(do)|  <e. (314)

Proof of Corollary[3.11. Throughout this proof let C,C € [0,00) be given
by

C = 2(p— 1) exp(3v(1+ L’ T(VT+vp)?)) (14 [fu |2 ]|?¥ v(dz)]"") (315)

and
44z

C = 4[max{1, £} max{C, R}] (316)
Note that (BI2) implies that ¢ is an at most polynomially growing function.
Combining this, (310), and (BII]) with item (f) in Corollary 2:23] (with d = d,
m=d,T =T, p=¢, p =pu, o= o in the notation of Corollary 2.23))
establishes that there exists a unique continuous function u: [0,7] x R? — R
which satisfies that infge(0,00) SUD (¢ 2)e0,1xRY % < 00, which satisfies for
all # € R that u(0,2) = ¢(x), and which satisfies that u| g 7)xra is a viscosity

solution of

(Zu)(t,z) = L Trace(o(z)[o(z)]* (Hess, u)(t, z)) + ((V,u)(t, z), p(z))
(317)

for (t,x) € (0,7) x R% This proves item (). Next observe that Proposi-
tionBI0 (withd=d, T=T,a=c¢d*, r=r,R=R,L=L,z=12,b=cd",
c=cd', v=v,p=p,v=v,p =9, p=[,0 =0, (9s)sc0s = (s)sc0s]
in the notation of Proposition B.I0) proves that there exist (1:).c0,r) € N
such that for all € € (0, R] it holds that

P(y.) < Ced?(cd”)?(cd’)e*7%, (318)
D) < Ced(cd”) (cd’)2e ", (319)
l/p
R(L) € My and [ [ () - RE)@P )] <
(320)

Furthermore, note that the fact that p, v > 2 assures that

C>2(p—1)Y? exp(3v(l+ L*T(VT + vp)?)) > 2exp(6) > 4. (321)
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This implies that
¢ C = > 4[max{1, £} max{C, R}}4+Z
< ¢ C'lmax{1, £} max{C, R} e

32
< ¢ [max{1, £} max{C, R}]
=C.
This and (BI8)) demonstrate that for all € € (0, R] it holds that
P(¢5) S C c5—|—zdz—l—wz—l—4vé,5—4—z S Q:dz+wz+4v€—4—z' (323>

Moreover, observe that (319), [322), and the fact that ¢ > 1 assure that

(@(wa) S C c3-|—zdz—l—wz-l—2v€—2—z

S C c5-|-zdz—l—wz—|—2v (324)

—2—z S €d2+wz+2v —2—z'

€ 9

Combining this, [320), and (B23)) establishes item (). The proof of Corol-
lary B.11] is thus completed. O

Proposition 3.12. Assume Setting[3.7, let T be a set, let 0 = (3;)icz: T —
N be a function, for every d € N let (-, -)ga: R x RY — R be the d-
dimensional Euclidean scalar product, for everyd € N let ||-||ga : R — [0, 00)
be the d-dimensional Euclidean norm and let ||| gsra ga): R4 — [0, 00) be

the Hilbert-Schmidt norm on R4, let T,r, R € (0,00), €, L,v,w,2,2,0 €
[0,00), ¢ € [1,0), v,p € [2,00), let vg: B(RY) — [0,1], d € Im(d), be
probability measures, assume that

¢ = [emax{1, £} max{2(p — 1)1/2 exp(3v(l + L*T(VT + vp)?))

(1 + supicy [(00) [foor I2l12, o, (d)] 1), R}, (325)

let p;: R% — R, i € Z, be continuous functions, let ji;: R% — R% i€ T, and
o;: R% — R%¥% 4 € T, be functions which satisfy for all i € T, x,y € R,
A € R that

pi(AT +y) + Api(0) = () + paly), (326)

gi(Ar +y) + Ao (0) = Aoy (z) + 0:(y), (327)
and |[pi(2)[|lgo; + lloi(2) lngos goiy < L1+ |2llge; ), and let (¢is)iez,se0m S
N satisfy for alli € Z, 6 € (0,r], x € R% that P(dis) < ¢ (0:)707%, R(¢is) €
Mo, [(R(9is)) ()] < ¢ (05)"(1 + [lz[[§e;), and

pi(z) = (R(¢i5)) ()] < ¢ ()" 6 (1 + |||z, )- (328)

Then
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(1) there exist unique continuous functions u;: [0,T] x R% — R, i € Z,

which satisfy for all i € T, x € R% that u;(0,x) = ¢;(x), which satisfy
Jui (t,2)]
xR TH[[al]7,,

satisfy for all i € T that u;|ryxre: is a viscosity solution of

Jor all i € T that infe(0,00) SUD ¢ 2)ef0,1] < oo, and which

(%ui)(t, x) = % Trace(ai(:z) [o: ()] (Hess, u;) (t, :5))
+ (Vaou) (L, @), pi(2) ) pa

for (t,z) € (0,T) x R% and

(329)

(ii) there exist (V;c)iet,cco,5) © N such that for alli € I, e € (0,R] it
holds that
(¢2€) < Q:( )(5+z )0+z+wz+4v 5_4 z (330>

(wz e) < Qt( ) (5+2)0+z+wz+2v 8_2 z7 (¢i’€> c Ma“ (331)

1/p
and { y |ui(T, ) — (R(hie))(@)[" 1o, (dx)|  <e. (332)

Proof of Proposition[314. Throughout this proof let i € Z, let ¢q € (0, 00)
be given by

co=2(p—1)"?exp(3v(l + L*T(VT + vp)?)), (333)
and let C € [0, 00) be given by

C = [emax{1, £} max{R, co( (a7 (334)

Note that the fact that for all § € [0,00), i € Z it holds that (9;,)7% < 1
implies that

max{co(1 + [fyo, 122, vo,(d2)] "), R}

Smax{co ((ai)"(ai)—“r(a sup[ 0 (Lo 1173, vo,( ))1/”]),]%}
< o (o) (14500 [0 (o el (2] ). 00 R
< 00" max{an (1 sup [(007* (o o1, v, (00)"] ) . 22}

(335)
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Therefore, (334)), (333]), and (B25) ensure that
C = [emax{1, £} max{co(1 + [[po, lz]|5, Val(dx)}l/p),R}]Hz
< 0" [emax(1. 2

max{ (1+sup[ (o, (dx))” D,RHHZ

< (0,)76+2 {c max{1, £} max{?(p — 1) exp(3v(1 + L*T(VT + vp)?))

(gl i) o]
(336)

_ (Di)6(5+z)¢.
Moreover, observe that ([B28]) implies that ; is an at most polynomially
growing function. Combining this, (820]), and ([327) with item (@) in Corol-
lary 223 (withd =0, m =0;, T =T, p = ¢, it = lu;, © = 0; in the notation
of Corollary 2.23)) establishes that there exists a unique continuous function
w;: [0, T]xR% — R which satisfies for all z € R% that u;(0, z) = ¢;(x), which

RV W < 00, and which satisfies that

satisfies that infe(0,00) SUP (1,2)e0,1]

gl (0,1 xwes 18 a viscosity solution of

(Zu;)(t, ) = § Trace(oy(x)[0;(x)]" (Hess, w;) (¢, 2)) + (Vo) (t, @), 1i(2))pa
(337)

for (t,x) € (0,T)xR%. This proves item (). Next observe that Corollary B.11]
(withd =0, T=T,r=r,R=Rv=v,w=w,2=22=12,¢=C,

V=V, p=pV="V,¢=%Pi,[=Hi, 0 =0 (¢5)5e(o,r} = (¢i,5)6€(0,r] in the
notation of Corollary BIT)) demonstrates that there exists (¢;.)-c0,r) S N
such that for all € € (0, R] it holds that

(¢2€) < C( )z+wz+4v 5_4 z7 (338)
P(Wie) SC Q)T R(Yie) € M, (339)
1/p
md | [ ) - RGP )| <e G0)

Combining this with (330]) establishes item (fl). The proof of Proposition B.12]
is thus completed. O
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Corollary 3.13. Assume Setting[3.7, let T,r, R € (0,00), €, L,v,w, 2,2,0 €
[0,00), ¢ € [1,00), v,p € [2,00), for every d € N let (-, -)ga: RT x RT — R be
the d-dimensional Euclidean scalar product, for every d € N let ||-||ga : R —
[0,00) be the d-dimensional Euclidean norm and let ||-[|ysga o) : RIxd

[0,00) be the Hilbert-Schmidt norm on R4, let v4: B(RY) — [0,1], d € N,
be probability measures, assume that

¢ = [emax{1, £} max{2(p — 1)/2 exp(3v(l + L*T(VT + vp)?))

(1 + supgen [d7° [ Il va(da)] " 1), R} T, (341)

let pg: RY — R, d € N, be continuous functions, let jig: R — R?, d € N, and
oq: R — R™ d € N, be functions which satisfy for all d € N, z,y € R?,
A€ R that

ta(AT +y) + Aa(0) = Aa(z) + pa(y), (342)

oi(Ax 4+ y) + Aoa(0) = Aag(z) + 04(y), (343)
and ||11a(x) g+ loa(2) s gay < L(1+([2]lga), and let (¢a,6)den, se0,) €N
satisfy for alld € N, 6 € (0,7], x € R that P(pas) < ¢d?072, R(das) € Ma,
[(R(¢as))(@)] < c¢d”(1+ ||z[|za), and

[pa(z) — (R(Gas))(@)] < ¢d” 6 (1 + [|z[[ga)- (344)
Then

(i) there exist unique continuous functions ug: [0,T] x RY — R, d € N,
which satisfy for all d € N, x € R? that ug(0,z) = oq(x), which satisfy

for all d € N that infye(0,00) SUP(1 z)ef0, 7] xRE % < o0, and which

d
satisfy for all d € N that ug|rxrae s a viscosity solution of

(Zuy)(t,x) = § Trace(oy(z)[oq(x)]"* (Hess, ug)(t, z))
+ (Vaua)(t, @), pa(x)) pa
for (t,x) € (0,T) x R? and

(345)

(ii) there exist (Yac)aen, cco,r) C N such that for all d € N, ¢ € (0, R] it

holds that
P(¢d,a) S €d(5+z)€+z+wz+4v 5_4_Z, (346)
(@(wd’a) S €d(5+z)6+z+wz+2v 5_2_Z, R(wd,a) c Md, (347)
1/p
and [ lug(T, x) — (R(Yae))(2)|” va(dz)| <e. (348)
Rd
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Proof of Corollary[313. Observe that Proposition B12] (with Z = N, ? =
dy, T =T, r=r, R=R, L=L v=v,w=w,2=22=12 0=20,
c=¢ V=YV, Dp=0D, (Vd)delm(a) = (Vd)deNa (%)iez = (SOd)deNa (Ni)iEZ =

(ta)den, (03)iez = (0a)den, (@is)icz,oc0] = (Pa5)den, se(o, in the notation
of Proposition B:12) establishes items ({l)—(i). The proof of Corollary B.I3lis
thus completed. O

3.6 Artificial neural networks with continuous activa-
tion functions

In this subsection we establish in Theorem B.14] below the main result of this
article. Theorem B.14] proves, roughly speaking, that fully-connected artifi-
cial neural networks overcome the curse of dimensionality in the numerical
approximation of Black-Scholes PDEs (see (827 in item (i) in Theorem B.14]
for details). In Theorem [B.I4] the approximation error between the solu-
tion of the PDE and the artificial neural network is measured by means of
LP-norms with respect to the general probability measures vy, d € N, in
Theorem BI4 To make Theorem B.14] easier accessible, we derive a sim-
plified and specialized version of Theorem [3.14] in Corollary below. In
particular, in Corollary below we specialize Theorem B.14] to the case
where the general probability measures v, d € N, are nothing else but the
continuous uniform distribution on [0, 1]%. Our proof of Corollary uses
the elementary estimate in Lemma [3.15] below. For the sake of completeness
we also present in this subsection a detailed proof of Lemma

Theorem 3.14. Let T,r,R € (0,00), v,w,2,2,0 € [0,00), ¢ € [1,00),
v,p € [2,00), for every d € N let (-, )ga: R? x R? — R be the d-dimensional
Euclidean scalar product, for every d € N let ||||ga : RT — [0,00) be the
d-dimensional Euclidean norm and let ||| yggaga): R4 — [0,00) be the
Hilbert-Schmidt norm on R™? let vy: B(R?Y) — [0,1], d € N, be probability
measures, let pz: R? — R, d € N, be continuous functions, let jg: R* — R,
deN, and oq: R — R4 d € N, be functions which satisfy for all d € N,
z,y € R, X ER that

pa(Ar +y) + AM1a(0) = Apa() + pa(y), (349)

og(Ax +y) + Aog(0) = Aoy(z) + o4(y), (350)
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and ||pa(2)||ga + lloa(@) s e gay < (1 + (|2 [ga), let
N = Uregs.. Utodrto)e(@ie)x(ty) (Xazg (RFH1 5 RE)) (351)

assume that sup ey [ [ou [|2]|2% va(dz)] < oo, let Ay € C(RY,R?), d € N,
and a € C(R,R) be functions which satisfy for alld € N, x = (x1, 29, ..., 2q)
€ R? that

Ay(x) = (a(zy),a(zs),...,a(zy)), (352)

let P,Z2: N — N and R: N — UL, C(R4R) be the functions which sat-
isfy for all L € {2,3,...}, (lo,11,..., 1) € (NF) x {1}), ® = (W41, By), ...,
(We, Be)) = (Wi icpna, iy itz iy (B )iepa, o)ke2..cp € (XE;
(Rsxle—1 x RB)), 7o € RO,z € RY,...,ap 1 € Rt with Vk € NN
(0, £) T = Alk(kak—l + Bk) that

R(®) € C(R" R), (R(®))(w0) = Weap_1 + By, (353)
£ lk—1

(@) = (JlR\{O}(Bk )+ X w0 (W ))> , (354)
k=1 i=1 j=1

[pa(z) — (R(das)) (@) < cd¥d (1 + [|z][ga). (355)
Then

(i) there exist unique continuous functions ug: [0,T] x RY — R, d € N,
which satisfy for all d € N, x € R? that ug(0,z) = oq(x), which satisfy

for all d € N that infe(0,00) SUP(1 z)ef0, 7] xRE % < o0, and which

satisfy for all d € N that ug|rxrae s a viscosity solution of

(%ud)(t, z) = 5 Trace(oq(z)[oa(x)]* (Hess, ug)(t, x))
+ (Vaua)(t, ), pa(x)) o

for (t,z) € (0,T) x R and

(356)
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(ii) there exist € € (0,00), (Vae)den,cc0,r) © N such that for all d € N,
e € (0,R] it holds that P(ig.) < €dO+aftztwatio c—d=z = gp(y), ) <
Qtd(5+z)0+z+wz+2v 8_2_z, R(wd,e) c C(Rd,R), and

1/p
[ Ju?0) = R @l watin)| < (0

Proof of Theorem[3.1]. Throughout this proof let € € (0, 00) be given by
¢ = [c max{1, £} maX{R, 2(p — 1) exp(3v(1 + AT(VT + vp)?))
L, , o 1a 115+ (358)
(1 + supyers [0 [fa o5 vald)] 1) }

and for every d € N let My be the set of all Borel measurable functions from
R? to R. Note that Corollary (with T'=T,r =r, R=R, L = ¢,
'U:U,w:'w,Z:Z,Z:Z,HZQ,C:C,V:V,p:p, (Vd)dEN:(Vd)dENa
(SDd)deN = (@d)deN, (Md)deN = (,ud)deNa (O'd)deN = (Ud)deNa (¢d,5)deN,ae(0,r] =
(¢d,5)den, se(o, in the notation of Corollary B.I3) demonstrates that there
exist unique continuous functions uy: [0,7] x RY — R, d € N, which satisfy
for all d € N, x € R? that ug(0, ) = ¢4(z), which satisfy for all d € N that

Inf g (0,00) SUD(1,2)€[0,7] xR % < oo, and which satisfy for all d € N that

Ud|(o,m)xra 18 & Viscosity solution of

(%ud)(t, x) = %Trace(ad(x)[ad(x)]*(Hessx uq)(t, :B)) + ((Vaug)(t, x), pa(r))ga
(359)

for (t,z) € (0,T) x R* and that there exist (ac)aen,ce0,55 € N such that
for all d € N, ¢ € (0, R] it holds that P(ig.) < €dO+a)0Fztwativ —d-z
'@(wdﬁ) S Q:d(5+z)0+z+wz+2v 5—2—z7 R(¢d’€) c Md’ and

l/p
l y |ua(T, 2) = (R(thae))(@)[" va(dr)| <e. (360)

The fact that Im(R) C U, C(R? R) hence demonstrates that for all d € N,
e € (0, R] it holds that R(vg.) € C(RY,R) C M, Combining this with
(B59) and (B60Q) establishes items ({l)—(i). The proof of Theorem B.I4lis thus
completed. O
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Lemma 3.15. Letd € N, p € [2,00), u € R, v € (u,0), and let ||-|| : R —
[0,00) be the d-dimensional Euclidean norm. Then it holds that

1 P,
m/{ . |z||” dz < d”” max {|u], [v["}. (361)

Proof of Lemmal3 14 Observe that the Holder inequality implies that for
all v = (21, 9,...,24) € R? it holds that

d d % s oy 1-2/p
2
el = laif* < (Z‘xi'p> <Zl>
=1 =1 =1
d */p
() 0

i=1

(362)

Next note that the Fubini theorem ensures that

d
/[ . <Z|x,|p> 1’1,1’2,...,l’d):Z/[ . | [P d(xy, 29,y ..., 24)
wv i=1 [uo

i (/ P d:cl) (/u 1dt)d_1 —d (/u ‘t|pdt) 0wy (363)

< d(v—u)? sup [[t]"] = d(v — ) max {|ul", [0},

te(u,v

Combining this with (B62) demonstrates that

1 /
— ]| da
('U - u)d [u,v]@
d
1 ) (364)
< 2 [ Yl ) dlanz )
(U - u)d [u,v]@ ( b

i=1
< d”? max {|ul?, [v]"}.

The proof of Lemma [B.15]is thus completed. O

Corollary 3.16. Let T,r,¢,p € (0,00), for every d € N let ||-||ga : RY —
[0,00) be the d-dimensional Buclidean norm and let ||-||ysga ga): Raxd
[0,00) be the Hilbert-Schmidt norm on R let pq: R — R, d € N, be

81



continuous functions, let jg: R — R4, d € N, and o4: R — R4, d € N,
be functions which satisfy for alld € N, z,y € R, X\ € R that

pa(Ar +y) + A1a(0) = Apa() + pa(y), (365)

ga(Ar +1y) + Xog(0) = Nag(z) + oq(y), (366)
and ||pa(@)||ga + loa(@) | gg e ray < (1 + [|z][ga), let

N = Uregas.. Utodrto)e(@ie)xty) (Xaog (RFH1 5 RE)) (367)

let Ay € C(RY,RY), d € N, and a € C(R,R) be functions which satisfy for
alld €N, z = (21,29, ...,14) € R? that

Ay(z) = (a(1),a(x2), - . ., a(xq)), (368)
let P: N = N and R: N' = UX,C(RER) be the functions which satisfy

for all £ € {2,3,...}, (lo,lr,...,1e) € (N%) x {1}), ® = (W1, By),. ..,

(We, Br)) = (W ictron iy ictize ey (B ictio, i keqio,.oy € (XE_,
(Rixxt-1 % R&)), 29 € R,z € R, ... 2y € Rt with VE € NN
(O,E)Z T = Alk(Wkl'k—l + Bk) that

R(®) € C(R",R), (R(®))(x0) = Wexp_1 + By, (369)

and P(®) = S5 L(le—1 + 1), and let (¢as)aen.seor] C N satisfy for all
d €N, ¢ € (0,r], v € R? that P(das) < ¢d9, R(¢as) € C(RYR),
[(R(as)) ()] < ¢d*(1+[[z][za), and

[pa(z) — (R(das))(@)| < cd*0(1+ [lzfga)- (370)
Then

(i) there exist unique continuous functions ug: [0,T] x R — R, d € N,
which satisfy for all d € N, x € R? that uq(0,z) = @4(x), which satisfy

for all d € N that inf e (0,00 SUD (1) e 0110 R Jiﬁfi’ﬁj{l < oo, and which

satisfy for all d € N that ug| o rxra is a viscosity solution of

(%ud)(t, x) = Trace(ad(x)[Ud(x)]*(Hessx uq)(t, :B))
+ (Zua)(t, z) palz)

for (t,x) € (0,T) x R and

(371)
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(ii) there exist € € (0,00), (Yae)den, cc01] € N such that for all d € N,
€ (0,1] 4t holds that P(va.) < €d®e™%, R(va.) € C(RYR), and

Yp
{/{0 1 |ud(Ta ZL’) - (R(wd,a))(l'”p dx <e. (372)

Proof of Corollary[3.18. Throughout this proof let m: (0,00) — [2,00) be
the function which satisfies for all z € (0, c0) that m(z) = max{2, z} and for
every d € N let v4: B(R?) — [0, 00] be the d-dimensional Lebesgue measure.
Note that Lemma B.15] (with d = d, p = m(c)m(p), u=0,v =1, ||-|| = ||-||ga
in the notation of Lemma [B.15) implies for all d € N that

/[0 " i < e ) (373)

This ensures that

sup [d—l/z<m(p>m<c>> / O™ e )}
© * (374)
= sup [d—l/Z(m(p) m(c))/ [EA(S5 (m(c) m ]
deN [0,1]¢
Theorem BI4 (with 7" = T, r = r, R = 1, v = ¢, w = ¢, 2 = ¢,
z = ¢, 0 =m(c)/2, ¢ = max{v/2¢ 1}, v = m(c), p = m(p), (yd)deN =

(Vd|[0,1]d)deNa (Pa)aen = (Pa)den, (Hd)aen = (Hd)den, (O'd)deN = (ﬂad)deNa
(¢d,5)den, seo0,r] = (@d,5)den, se(o,] in the notation of Theorem B.14]) hence en-
sures that

(A) there exist unique continuous functions ug: [0,7] x R? — R, d € N,
which satisfy for all d € N, x € R? that u4(0, ) = p4(z), which satisfy

for all d € N that infge(o,0) SUD (¢ 2 [0, 7] x B¢ %

satisfy for all d € N that ug|(or)xre is a viscosity solution of

< 00, and which

(%ud)(t, x) = Trace(ad(:c)[ad(:c)]*(Hessm uq)(t, x))
+ (Fug)(t, x) pa(z)

for (t,x) € (0,T) x R? and

(375)

83



(B) there exist C' € (0,00), (Vg )aen,cc01) € N such that for all d € N,
e € (0,1] it holds that P(yg.) < C d/2GHom@tcte e ~d—c Ry, ) ¢
C(R%,R), and

1/m(p)

[ ) = R D@ vl <2 @10

This implies item (). Moreover, note that (Bl) and the Holder inequality
demonstrate that for all € € [max{C,4 + ¢, /2(5 + ¢)m(c) + ¢ + ¢* + 4c} , 00)
it holds that

P(¢d,s) < Cd1/2(5+c)m(c)+c+c2+4c 6—4—c < Qtde 8—(4+c) < Qtde 6—&‘ (377)

and

u%d lug(T, z) — (R(ae)) ()P da:} W
< {/[0,1}(1 lug(T, x) — (R(@bd@))(x”m(p) dx} Ym(p) -

1/m(p)
= | [ ll0) = RO D@ vl <

This establishes item (). The proof of Corollary B.I6lis thus completed. [

4 Artifical neural network approximations for
Black-Scholes partial differential equations

4.1 Elementary properties of the Black-Scholes model

In this subsection we establish in Lemma below a few elementary prop-
erties of the coefficient functions in the Black-Scholes model. For the sake of
completeness we also provide in this subsection a detailed proof of Lemma (4.2

Setting 4.1. Let p € [2,00), T € (0,00), 6 € [0,00), (q;i)den,ic{1,2,..d}>
(Bai)denie(1,2,...ay © R satisfy that supgey e o,...ay(|ail + [Bai]) < oo, for
every d € N let ||-||ga : R? — [0,00) be the d-dimensional Euclidean norm,
for every d € N let (-, )ga: RY x RY — R be the d-dimensional Euclidean
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scalar product, for every d € N let ||| ygra ra): R4 — [0,00) be the
Hilbert-Schmidt norm on R et eq; € RY, d € N, i € {1,2,...,d},
satisfy for all d € N that eq; = (1,0,...,0), eq2 = (0,1,0,...,0), ...,
€d,d = (O, ..., 0, 1), let By = (Bg’j))i7je{172 ,,,,, dy € RdXd, d e N, SCLtiSfy fOT’ all
deN,ie{l,2,...,d} that {eq;, B;Bjeai)ra = 1, let pg: RY = R? d € N,
and o4: R* — R d € N, be the functions which satisfy for all d € N,
= (x1,72,...,24) € R? that

pa(x) = (@ga1, ..., aqqrq) and o4(z) = diag(Ba121, - - -, Baara)Ba,
(379)
let vg: B(RY) — [0,1], d € N, be probability measures which satisfy for all
q € (0,00) that
sup [ [ flallg va(dn)] < oo, (380)
€

let

N = Ures.. Utorte)e(@ie)x(ty) (Xaog (REH1 5 RF)) (381)

let Ay € C(RERY), d € N, be the functions which satisfy for all d € N,
= (x1,72,...,24) € R? that

A () = (max{zy, 0}, max{xzy, 0}, ..., max{xy, 0}), (382)
and let 2, P: N — N and R: N = UL ,C(R%,R) be the functions which
satisfy for all £ € {2,3,...}, (lo, i, .., le) € (NF)x{1}), & = (W, By), .. .,

(We, Be)) = (W ieqonanrietizin 1y (B ieqi 2t et 2ncy € (X5
(Rt x R)), 2o € RO, 2y € RI,... 201 € RE with Yk € N
(0,£)Z T = Alk(kak—l + Bk) that

R(®) € C(R" R), (R(®))(20) = Weap_y + By, (383)
Ll s
P(d) =) <1R\{0}(Bk LD Le g0y (W >>) . (384)

Lemma 4.2. Assume Setting[{.1. Then
(i) it holds for alld € N, x,y € R?, X\ € R that

pa(Ar +y) + AM1a(0) = Apa() + pa(y), (385)
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(ii) it holds for all d € N, z,y € R, X € R that
oa(Ar +y) + Aa(0) = Aoa(z) + oa(y), (386)

and

(iii) for all d € N, x € RY it holds that
deNie{1,2,...,d}

(@) llga + lloa(@) s @ ma) §2[ sup  (laai| +[Bail) | [|7]|ga

<2 sup (loai| + 1Bagl)
deN,ie{1,2,....d}

(14 [|2]|ga) < o0

(387)

Proof of Lemma[{.3 Throughout this proof let L € (0,00) be given by

L=sup sup (|lag:|+ |Bail)- (388)
deN ie{1,2,...,d}

First, note that the fact that for all d € N, z € R? it holds that us(x) =
diag(ag, ..., aqq)r and Lemma prove item (). Moreover, observe that
(BT9) implies that for all d € N, 2,y € R%, A € R it holds that ¢4(0) = 0 and

ga(Ax +y) = Aog(x) + oq(y). (389)

This establishes item (). In addition, note that foralld € N, z = (x1,...,24) €
R? it holds that

1/2
la(@) s = N@arn, - s aara) I = [ Sy laaeil?]
2 d 2 1/2
< [(maX{|ad,1|,---,|ad,d|}) > e il ] (390)
= max{|agi], - ., laaal} [#]gs < L 7]

< L1+ e]za) < oc.

Moreover, observe that the fact that for alld € N, x = (21,...,74) € R? it
holds that og(x) = (ﬁd7ia:iBg’]))i7je{172 ,,,,, 4y € R4 assures that for all d € N,
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r=(11,...,74) € R?it holds that

d
2 i) 12
lloa() s e ray = ,Zl BBy |
)=

d
d i,7) 12
=3 (180 £ BT

) (391)
2 d (i,5) |2
< LE{III}%}.C.A} <|ﬁdz| ijl }Bd J } )} 1221 | |2
_ 2 \d (4,5) |2 2
- Le{llr,lffd} ('B‘“‘ i [Ba”] )} Izl -
The fact that for all d € N, ¢ € {1,2,...,d} it holds that
i,5)|2 * * *
S BYY P = (Bieas, Bieaine = (eai, ByBhea)ns = 1 (392)

hence demonstrates that for all d € N, x = (21,...,74) € R? it holds that

1/2
2
Moo ez < |, _gma, 18asF] Tl

393
= | e 190 e )

1€{1,2,...,
< Lfzllga < L1+ [[2]|ga) < o0
Combining this and (390) assures that for all d € N, z € R? it holds that
la(@)llga + loa(@)llas@epa < 2L [#llge < 2L(1 + [[2]lge) < o0.  (394)

This establishes item (il). The proof of Lemma .2 is thus completed. O

4.2 Transformations of viscosity solutions

In this subsection we establish in Proposition 4.3 Corollary [4.4], and Corol-
lary a few elementary and essentially well-known transformation results
for viscosity solutions of certain second-order PDEs.

Proposition 4.3. Letd € N, a,\ € R, b € (a,0), let f: (a,b) x RY x R x
R? x R4 — R be a function which satisfies for allt € (a,b), v € RY, a € R,
neRY, A Be{CeR™: C*=C} with A< B that

[t 0,n, A) < f(t @, 0,n, B), (395)
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let u: (a,b) x RY — R be a continuous function which satisfies that u is a
viscosity solution of

NEu)(t,z) = f(t, z,u(t,z), (Vou)(t, z), (Hess, u)(t, ) (396)

for (t,xz) € (a,b) x RY, let R: [a,b] — [a,b] be the function which satisfies
for allt € [a,b] that R(t) =a+b—t, let U: (a,b) x R? — R be the function
which satisfies for all t € (a,b), x € RY that U(t,z) = u(R(t),z), and let
F: (a,b) x RE x R x RY x R™>? — R be a function which satisfies for all
te(a,b), z€RY, aeR, neRY, Aec R that

F(t,z,a,n, A) = f(R(t),z, 0,1, A). (397)

Then it holds that U : (a,b) x R? — R is a continuous function which satisfies
that U is a viscosity solution of

— A(%U) (t,x) = F(t, z,U(t,x), (V,U)(t, x), (Hess, U)(t, SL’)) (398)

for (t,z) € (a,b) x R%.

Proof of Proposition[].3 Throughout this proof let (s,y) € (a,b) x R%, let
U= (V(t, 7)) ta)e(ab xrt, @ = (P, 7)) (t.0)e(@p)xra (@, D) X R? =R (399)

be twice continuously differentiable functions which satisfy that & > U,
P(s,y) =U(s,y), ¥ < U, and U(s,y) = U(s,y), let

’QD = (,lvb(ta x))(t,m)e(a,b)de> Y = (QO(t, z))(t,x)e(a,b)XRd: (CI,, b) X Rd - R (400)
be the functions which satisfy for all (¢,7) € (a,b) x R? that
o) = U(R()7)  and  p(te) = B(R(E),2).  (401)

Observe that R: [a,b] — [a,b] is a bijective function which satisfies that
R|ap: (a,b) — (a,b) is twice continuously differentiable and which satisfies
for all ¢ € [a,b], r € (a,b) that

R(R(t)) =t and  R'(r)=—1. (402)
Combining this and (@01 ensures for all (¢,7) € (a,b) x R? that

U(t,x) =(R(t), x) and O(t,z) = p(R(t), x). (403)
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Next note that (01]), (E02), and the hypothesis that for all (¢, z) € (a, b) x R?
it holds that U(t,z) = u(R(t), ) imply that for all (t,z) € (a,b) x R? it holds
that ¢ € C?((a,b) x RY R),

U(t,x) = U(R(t), z) < U(R(t),z) = u(R(R(t)), z) = u(l, z), (404)
and

(R(s),y) = V(s,y) = U(s,y) = u(R(s),y). (405)

Moreover, observe that (@01, ([@02)), and the hypothesis that for all (¢,z) €
(a,b) x R? it holds that U(t, ) = u(R(t), r) demonstrate that for all (¢t,z) €
(a,b) x R? it holds that ¢ € C?%((a,b) x R% R),

o(t,x) = ®(R(t),x) > U(R(t),x) = u(R(R(t)), x) = u(t, z), (406)

and
P(R(s),y) = (s,y) = U(s,y) = u(R(s),y). (407)

Combining this, (A04), and (@05) with the hypothesis that u is a viscosity
solution of

)\(%u)(t, x) = f(t, z,ut, z), (Vou)(t, ), (Hess, u)(t, ) (408)

for (t,z) € (a,b) x R? implies that

M) (R(s).y) < f(R(s),y,0(R(5),9), (Va) (R(s), y), (Hess, 0)(R(s), y))

(409)
and
M) (R(s),y) = f(R(s), y, ¥ (R(s). y), (Vo)) (R(s),y), (Hess, ¢)(R(S)£§fgj
This, (397), [@02), and [{@03]) ensure that
= AM5®)(s5,y) = M50 (R(s),y)
< F(RE). 1. (R, (F-0) (R(S) ), (ess, ) RELY)

= F(R().y. B(5.9). (V,2)(s.v). (Hess, )(s.v)
= F (5,5, B(5.9). (V,2)(s,). (Hess, ®)(s,y)).
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Moreover, observe that ([397), (402), (403), and (410) demonstrate that

— ANZ0)(s,y) = M&Y)(R(s), y)

> f(R(s),y,¥(R(s),y), (Vo) (R(s),y), (Hess, 1) (R(s), y))
= f(R(s),y. 9(s,y), (Vo¥)(s,y), (Hess, ¥)(s,y))

= F(s,4,9(s,9), (Va¥)(s,y), (Hess, ¥)(s,9)).

B(s 412
R(s (412)

Next note that the hypothesis that u: (a,b)xR? — R is a continuous function
and the hypothesis that for all t € (a,b), € R? it holds that U(t,z) =
u(R(t),z) demonstrate that U: (a,b) x R? — R is a continuous function.
Combining this with [@II]) and [I2) assures that U: (a,b) x R — R is a
continuous function which satisfies that U is a viscosity subsolution and a
viscosity supersolution of

— MEU)(t,z) = F(t,z,U(t, z),(V,U)(t, z), (Hess, U)(t, z)) (413)

for (t,x) € (a,b) x RY. This proves that U: (a,b) x R? — R is a continuous
function which satisfies that U is a viscosity solution of

— MEU)(t,z) = F(t,z,U(t, z),(V,U)(t, z), (Hess, U)(t, z)) (414)

for (t,z) € (a,b) x RY. The proof of Proposition is thus completed. [

Corollary 4.4. Let d € N, a,a,b, X € R, b € R\{a}, let v: B(R?) — [0, 0]
be a measure, let o: R — R be a continuous function, let ®: R? — R be a
B(RY)\B(R)-measurable function, let f: RIxRxRIxR™4 — R be a function
which satisfies for allz € R4, a € R, n € RY, A, B € {C € R™¢: C* = C}
with A < B that

f(if,aﬂ%A) Sf(if,aﬂ%B)’ (415)

assume that @ = min{a, b} and b = max{a,b}, and assume that there exists
a unique continuous function u: [a, b] x RY — R which satisfies for all z € RY
that u(b, x) = @(x), which satisfies that

t
inf sup [ut, 2)]

— <0, (416)
9€(0,%0) (¢ z)efa,b) xR 1 + H$||§d

and which satisfies that u| p)xra is a viscosity solution of

)\(%u)(t, x) = f(z,u(t, ), (Vou)(t,z), (Hess, u)(t, z)) (417)
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for (t,x) € (a,b) x R? and it holds that

1/p
[ lu(a,z) — ®(x)|’ v(dx)| <e. (418)
R4

Then there exists a unique continuous function v: [a,b] x R? — R which
satisfies for all z € R? that v(a,x) = p(x), which satisfies that

t
inf sup 7|U( ’x)q|
q€(0,00) (t,z)€la,b] xR 1+ HIHRd

00, (419)

which satisfies that v|p)xre s a viscosity solution of
— AGv)(t,2) = f(z,0(t,2), (Vo) (t, x), (Hess, v)(t, ) (420)

for (t,x) € (a,b) x R? and it holds that
l/p
[ » lv(b,x) — ®(x)|” v(dx)| <e. (421)

Proof of Corollary[f.7} Throughout this proof let v: [a, b] x R? — R be the
function which satisfies for all ¢ € [a, b], * € R? that v(t,z) = u(a+b—t, ).
Note that for all ¢ € [a,b], x € R? it holds that

v(t,z) =u(la+b—t,x) =ula+b—t ). (422)
This and ([{I8]) ensure that
l/p
[ lv(b,z) — ®(2)|” v(dz)| <e. (423)
R4

Next note that (4I7) and Proposition (withd=d,a=a, A=\ b=0,
.f(t> €T, 1), A) = f(l’, Q, 1, A)’ U(t, ZL’) = u(t’ ZL’), U(t> ZL’) = U(t’ ZL’) fort € (Cl, b)a
r €RY, a e R npe R A€ R™ in the notation of Proposition 3]
demonstrate that v|p)«rae is a viscosity solution of

— MEv)(t,z) = f(z,v(t, z), (V,0)(t, z), (Hess, v)(t, )) (424)
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for (t,z) € (a,b) x R% Furthermore, observe that ([#I6), ([@2J), and the
hypothesis that for all x € R? it holds that u(b, z) = ¢(x) imply that for all
r € R? it holds that v(a, z) = p(x) and

: lvu(t, )| : lu(a+b—t, )
inf sup ———— = inf sup 7
4€(0,00) (¢ ) e[a,b] xR 1 + H$||Rd 9€(0,%0) (1 p)efab]xRE L T+ ||~”C’|Rd
(425)
- ju(t, )]
= sup < 00

9€(00) (1,0)efab)xre 1+ [|Z]|ga

Next let w: [a, b] x R? — R be a continuous function which satisfies for all z €

R? that w(a, ) = ¢ (), which satisfies that inf e (0 00) SUD (1 2)e[a,5] x4 % <
R

oo, which satisfies that w|(, p)xra is a viscosity solution of
= Mgw)(t,2) = f(z,w(t,2), (Vow)(t, ), (Hess, w)(t, x)) (426)

for (t,x) € (a,b) x R and which satisfies that

1/p
{ g lw(b, z) — ®(2)|” v(dr)| <e, (427)

and let z: [a,b] x R? — R be the function which satisfies for all ¢ € [a, b],
z € R? that
2(t,z) =w(a+b—t,z)=wla+b—t ). (428)

Observe that z is a continuous function which satisfies that for all x € R? it

holds that z(b, x) = ¢(x), which satisfies that inf,e(0,00) SUD 1 2)e[a,6)x R4 %
R

< 00, which satisfies that z|(qp)«ra is a viscosity solution of
)\(%z)(t, x) = f(x, 2(t,x), (V,2)(t, x), (Hess, 2)(t, :c)) (429)

for (t,x) € (a,b) x R? (cf. Proposition 3 (withd =d, a =a, A= —\,b=b,
flt,x,a,n, A) = flz,a,n, A), u(t,x) = w(t,z), Ult,z) = z(t,z) for t €
(a,b), 2 € RY o € R, n € RY A € R in the notation of Proposition E3)),
and which satisfies that

l/p
[ |2(a,z) — ®(2)|” v(dz)| <e. (430)
Rd

Hence, we obtain that for all ¢ € [a,b], z € R? it holds that z(¢,z) = u(t, z).
The fact that for all ¢ € [a,b], z € R? it holds that v(t,z) = u(a+ b — ¢, )
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and w(t,x) = z(a + b — ¢, x) therefore demonstrates that for all ¢ € [a, b],
r € R? it holds that

w(t,z) =z(a+b—t,z) =ula+b—1t,x) =0t ). (431)

Combining this, the fact that for all x € R? it holds that v(a,z) = o(x),
([@23), ([24), and ([@25) completes the proof of Corollary F4l. O

Corollary 4.5. Assume Setting[{.1, letd € N, &, T € (0,00), p € C(R4,R),
and ¢ € N'. Then the following two statements are equivalent:

(i) There exists a unique continuous function u: [0, T] x R? — R which sat-
isfies for all v € R? that w(T,z) = ¢(x), which satisfies that inf (g o)

SUD (¢,2)€[0, 7] x R % < 00, which satisfies that u| ryxre is a viscosity

q
. R
solution of

(gru)(t,2) + ((Vau)(t, 2), ta(®)) g

+ 1 Trace(oq(x)[oq(z)]"(Hess, u)(t,z)) =0 (432)
for (t,z) € (0,T) x R, and which satisfies that
1/p
[ 0.0 = RE@)@P wian)| <e sy

(ii) There exists a unique continuous function v: [0,T] x R? — R which
satisfies for all v € R that v(0,z) = @(x), which satisfies that inf e (0,0

SUD (¢,2)€[0, 7] x R % < 00, which satisfies that v| 7)xra is a viscosity

Rd
solution of

(2v)(t,z) = 3 Trace(oq(x)[oa(z)]* (Hess, v)(t, z))

ot
+ ((Vo0) (8 ), () )ga (434)
for (t,x) € (0,T) x RY, and which satisfies that
o
[ @) = RE)@F valdr)| - <. (435)
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Proof of Corollary[{.3. Observe that Corollary B4 (with d = d, a = 0,

A=-Lb=T v=uw,px)=p), o) = (R)(), fr,anA) =
(n, pta(2))ga + 5 Trace(o4(z)[oa(x)]* A), u(t,z) = u(t,z) for t € [0,T], z € RY,

a € R, ne R A€ R™ in the notation of Corollary E5) proves that
item () implies item (). Next note that Corollary @4l (with d = d, a = T,
A=10b0=0 v =y, QO(I) = SO(I)’ (I)(:L') = (R('@D))(I)a f(iE,CW%A) =
(1, pa())ra+ 3 Trace(oq(x)[oq(2)]* A), u(t, z) = v(t,z) for t € [0,T], z € R,
a € R, ne R A€ R™ in the notation of Corollary E5) proves that
item () implies item (). The proof of Corollary is thus completed. [

4.3 Artificial neural network approximations for bas-
ket call options

In this subsection we establish in Proposition 4.7 below that ANN approxima-
tions overcome the curse of dimensionality in the numerical approximations
of the Black-Scholes model in the case of basket call options. Our proof of
Proposition 7] employs the elementary ANN representation result for the
payoff functions associated to basket call options in Lemma below. For
the sake of completeness we also provide in this subsection a detailed proof
of Lemma

Lemma 4.6. Assume Setting [{.1] and let (cq;)denief1,2,..d}> (Ka)aen € R.
Then there exists (¢q)aen € N such that for alld € N, v = (x1,29,...,2q) €
R? it holds that P(pq) < 4d, R(¢q) € C(RY,R), and

(R(¢a))(x) = max{cg 121 + cgoxa + ... + cqarq — Kq,0}. (436)

Proof of Lemma[f.6 Throughout this proof let (¢q)aen € N satisfy for all
d € N that

¢a = (((ca1,Ca2, -, caa), —Ka), (1,0)) € (R x R) x (R xR)  (437)

(i.e., ¢4 corresponds to a fully connected feedforward artificial neural network
with 3 layers with dimensions (d, 1,1)). Note that (382) and (B83]) ensure
that for all d € N, z = (21,29, ...,24) € R? it holds that R(¢y) € C(RY, R)
and

(R(¢a))(x) =1- maX{(Cd,l Cd2 - Cd,d) x+ (—Ka), 0} +0

438
= max{ch:lfl + Ci2To + ...+ CgaTqg — Ky, 0} ( )
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Moreover, observe that for all d € N it holds that

P(dg) =1(d+1)+1(1+1)=d+ 3 < 4d. (439)
This and ([@38)) complete the proof of Lemma LA 0O

Proposition 4.7. Assume Setting[{-1}, let (ca;)aen,ic(1,2,..ay € [0, 1], (Kq)aen
€ (0,00), and assume for all d € N that Zle cai =1. Then
(i) there exist unique continuous functions ug: [0,T] x RY — R, d € N,
which satisfy for alld € N, x = (x1,29,...,24) € R? that ug(T,x) =
max{cg121+cqora+. . .+cgara—Kq, 0}, which satisfy for alld € N that

Inf e (0,00) SUD(1,2)€[0,7] xR % < 00, and which satisfy for all d € N
R
that uq| o 1)xre 5 a viscosity solution of

(Frua)(t, 2) + ((Voua)(t, ), pa(2)) ga

+ 3 Trace(oq4(z)[oq(x)]" (Hess, uq)(t, z)) =0 (440)
for (t,z) € (0,T) x R and

(ii) there exist € € (0,00), (Yae)den, 1] € N such that for all d € N,
e € (0,1] it holds that P(g.) < €d¥ et P(y.) < €+ &2,
R(wd,t‘) < C(RdvR); and

1/p
[ |ua(0, 2) = (R(Yae)) ()" va(dz)|  <e. (441)
R4
Proof of Proposition [[.7. Throughout this proof let ¢;: RY — R, d € N,
satisfy for all d € N, x = (21, 29, ..., 74) € R? that
(pd(l’) = max{cd,lxl + Cd4,2T2 +...+ Cq,dld — Kd, 0} (442)

and let (Xa)aen, (Gas)aenseo1 C N satisfy for all d € N, z € R, § € (0,1]
that P(xa) < 4d, R(xa) € C(RLR), (R(xa))(x) = wa(z) (cf. Lemma EG),
and ¢45 = xa- Note that for all d € N, § € (0,1] it holds that

R(¢as) = R(xa) = va € C(RY,R). (443)
This implies that for all d € N, 2 € R%, § € (0, 1] it holds that

[pa() = (R(9as))(2)| = lpa(z) = pa(e)| = 0 < d°0°(1 + [|z[za).  (444)
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Moreover, observe that (d43) and the hypothesis that for all d € N, i €
{1,2,...,d} it holds that c¢,4; > 0 and Zle cq; = 1 assure that for all d € N,
= (x1,79,...,24) € RY § € (0,1] it holds that

[(R(¢a,6)) (@) = [(R(xa))(2)] = [@a(z)|

= max{ch:Cl + Cd4,2T2 +...+ Cq,dld — Kd, 0}

< carlri| + caglra] + ...+ caalval (445)

[Zle cd,i] max{ ||, |zal,. .., |z4|}

2
< [lollpe < d°(1+ [lz]l0)-

IN

In addition, observe that for all d € N, § € (0, 1] it holds that
P(¢as) = P(xa) < 4d = 4d'67°. (446)

Combining this, (443), ([@44)), [#45), the hypothesis that for all ¢ € (0, 00) it
holds that
iug [d_eq Jea 1zl Vd(dx)} < 0, (447)
S

and Lemma [1.2] with Theorem BI4l (with T =T, r=1, R=1,v =0, w =0,

z=1,2=0,0=0,c=max{4,2 [supgenicro. ool + [Bail)]}, v = 2,

P =D, Vg = Va, Pa = Pd, td = Hd, 0a = 0q, a(x) = max{x,0}, ¢g5 = Pas for

de N,z €R, € (0,1] in the notation of Theorem B.14) demonstrates that

there exist unique continuous functions vg: [0,7] x R — R, d € N, which

satisfy for all d € N, z € R? that v4(0, x) = ¢4(x), which satisfy for all d € N
[va (t,z)]

that infye(0,00) SUD (1 2)e[0,7] xR e < o0, and which satisfy for all d € N

that vg|(7)xre is a viscosity solution of

(Zvg)(t, z) = 4 Trace(o4(z)[oq(2)]* (Hess, va)(t, z))
+ <(vxvd)(t’ ZL’), /J“d(x)>Rd

for (t,z) € (0,7) x R and that there exist € € (0,00), (Va.c)aen,ce(0,1]

(448)

N such that for all d € N, e € (0,1] it holds that P(¢pg.) < €d0Fle 4
P(hae) < EP 2 R(ae) € C(RYR), and

l/p
[ - RO )| <e )
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Corollary hence assures that there exist unique continuous functions
ug: [0,T] x R — R, d € N, which satisfy that for all d € N, z = (21,29, ...,
74) € R? it holds that

ud(T, l’) = gOd(ZL') = max{cd,lzl + CgoTo + ...+ CaqTq — K. O}, (450)

|ua(t,2)|
xR T[], < 00, and

which satisfy for all d € N that ug7)xre is a viscosity solutlon of

which satisfy for all d € N that infe(o,00) SUP (¢ 2)ef0,1]

( ud)(tl’ +<Vudtl’ palx >Rd

+ 3 Trace(oq(x)[oq(2)]" (Hess, uq)(t, ) = 0 (451)
for (t,z) € (0,T) x R? and that it holds for all d € N, ¢ € (0, 1] that
l/p
[ 0.0 - R @ witan)| <= @

Combining this with the fact that for all d € N, ¢ € (0,1] it holds that
Ppge) < € e P(1hy.) < €dH1e72 and R(vq.) € C(RY, R) estab-
lishes items ([l)—(ml). The proof of Proposition L1 is thus completed. O

4.4 Artificial neural network approximations for bas-
ket put options

In this subsection we establish in Proposition below that ANN approxi-
mations overcome the curse of dimensionality in the numerical approximation
of the Black-Scholes model in the case of basket put options. Our proof of
Proposition employs the elementary ANN representation result for the
payoff functions associated to basket put options in Lemma [4.8 below. For
the sake of completeness we also provide in this subsection a detailed proof

of Lemma [4.8]

Lemma 4.8. Assume Setting [{.1] and let (cq;)aenicqiz,..qp © R, K € R.
Then there exists (¢q)aen € N such that for alld € N, v = (x1,29,...,24) €
R it holds that P(¢q) < 4d, R(dq) € C(RYR), and

(R(¢d))($) = maX{K — (Cd71$1 + Cd,2%2 4+ ...+ Cd,dxd>7 0} (453)
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Proof of Lemma[{.§ Note that Lemma [L.6] (with ¢;; = —cq;, Kq = —K for
d e N, i€ {1,2,...,d} in the notation of Lemma [£.6) demonstrates that
there exists (¢q)gen € N such that for alld € N, o = (z1,79,...,74) € R it
holds that P(¢y) < 4d, R(¢q) € C(R% R), and

(R(¢a))(x) = max{—cq121 — 4272 — ... — cgara + K, 0}

454

= max{K — (cg121 + cq2%2 + ... + caarq),0}. (454)

The proof of Lemma .8 is thus completed. O
Proposition 4.9. Assume Setting [{.1 and let (cq;)aen,ic(i,2,...ap < [0,1],

K € (0,00) satisfy for all d € N that Zle cai=1. Then

(i) there exist unique continuous functions ug: [0,T] x RY — R, d € N,
which satisfy for alld € N, x = (x1,29,...,24) € R? that ug(T,x) =
max{ K —(cq121+Ca2T2+. . .+Ccaaxaq), 0}, which satisfy for alld € N that
Infye(0,00) SUP(1,2)€ (0,7 x R4 % < 00, and which satisfy for all d € N

that uq| o 7)xre 5 a viscosity solution of

(Frua)(t @) + ((Vara) (t, ), a(x) )

+ £ Trace(o4(z)[oq(z)]" (Hess, uq)(t, z)) =0 (455)
for (t,z) € (0,T) x R and

(i) there exist € € (0,00), (Yac)den, cc01] € N such that for all d € N,
e € (0,1] it holds that P(ta.) < €d¥T e, P(hy.) < €dT1 7?2
R(taz) € C(R,R), and

1/p
{ » |1a(0, ) = (R(¥ae)) ()| va(dz)|  <e. (456)

Proof of Proposition[{.9. Throughout this proof let ¢4: R — R, d € N,
satisfy for all d € N, z = (21, 29, ..., 74) € R? that
wa(x) = max{K — (cq121 + cao®a + ...+ Ccaaq),0} (457)

and let (Xa)den: (Pas)dense01] C N satisty for all d € N, z € R, § € (0, 1]
that P(xa) < 4d, R(xa) € C(RYLR), (R(xa))(x) = wa(z) (cf. Lemma A,
and ¢4s = xa- Note that for all d € N, § € (0,1] it holds that

R($4s) = R(xa) = 4 € C(R,R). (458)
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This and the hypothesis that for all d € N, i € {1,2,...,d} it holds that
ca; € [0,1] and Zle ca; = 1 assure that for all d € N, x = (21, 29,...,24) €
RY, 6 € (0,1] it holds that

[(R(¢as))(@)] = [(R(xa))(@)] = |pa(z)|
= maX{K — (Cd71£L’1 + Cd,2T2 4+ ...+ cd,dxd), 0}
< K+ Cd,1|£171| + Cd72|£172| +... 4+ Cd,d|1'd|

<K+ [Zle Cd,z} max{|xy|, |ral, ..., x4} (459)
<K+ [[2]lga < K+ 14 |25
< (K + 1) d(1+ [|2]30)-
In addition, observe that for all d € N, § € (0, 1] it holds that
P(pas) = P(xa) < 4d = 4d'57°. (460)

Furthermore, note that ([@58)) ensures that for all d € N, z € R, § € (0, 1] it
holds that

|Pa(®) = (R(¢as))(@)] = [¢a(z) = (R(xa))(2)]

00 ) (461)
= lpa(r) = pa(x)] = 0 < "5 (1 + [z]|ga)-

Combining this, (458)—-@G0), the fact that (¢4)qen are continuous functions,
the hypothesis that for all ¢ € (0, 00) it holds that

sup [d7 fea llellfs va(de)] < oo, (462)
S

and Lemma [1.2] with Theorem BI4l (with T =T, r=1, R=1,v =0, w =0,
z=1,0=0,2z=0,c=max{4, K +1,2 [SupdeN,i€{1,2 ..... d}(|ad,i| + Wd,im}a
V=2,p=D Vg = Vg i = Pd, lta = Md, 04 = 0q4, a(x) = max{z,0},
Gas = ¢as for d € N, z € R, § € (0,1] in the notation of Theorem [B.14])
demonstrate that there exist unique continuous functions vy: [0, T]xR% — R,
d € N, which satisfy for all d € N, x € R? that v4(0, z) = p4(x), which satisfy
for all d € N that infe(0,00) SUD (¢ 2)e0,7]xRY %

for all d € N that va| o r)xra is a viscosity solution of

< oo, and which satisfy

(2vg)(t, z) = % Trace(o4(z)[oq(z)]* (Hess, va)(t, z))
+ ((Vova) (t, ), 4a()) g

99

(463)



for (t,z) € (0,7) x R? and that there exist € € (0,00), (¢ac)den, e,
N such that for all d € N, € € (0,1] it holds that P(¢pg.) < €T e
P(hge) < CdT 2 R(g.) € C(RYR), and

1/p

[ 1) - RO D@ i) < (464)

Corollary hence assures that there exist unique continuous functions
ug: [0,T] x R — R, d € N, which satisfy that for all d € N, 2 = (21, 2o, . ..
74) € R? it holds that

Y

ud(T, l’) = gOd(:L') = maX{K — (Cd,ll’l + Cd,2T2 + ...+ Cd,dl'd)a O}, (465)

|u (1‘)\

which satisfy for all d € N that ugg )« is a viscosity solutlon of

which satisfy for all d € N that infe(0,00) SUD ¢ 2)ef0,1]

(8tud)t:)s + ((Vaug)(t, z), pa(x >Rd

+ 1 Trace(oq(x)[oq(z)]" (Hess, uq)(t, z)) = 0 (466)
for (t,x) € (0,T) x R? and that it holds for all d € N, e € (0, 1] that
1/p
[ 0.0 = R @ watan)| <= a6

Combining this with the fact that for all d € N, ¢ € (0,1] it holds that
Phge) < € et P(1hy.) < €de72 and R(¢a.) € C(RY R) estab-
lishes items ({l)—(m). The proof of Proposition is thus completed. a

4.5 Artificial neural network approximations for call
on max options

In this subsection we establish in Proposition below that ANN approxi-
mations overcome the curse of dimensionality in the numerical approximation
of the Black-Scholes model in the case of call on max options. Our proof of
Proposition employs the ANN representation result for the payoff func-
tions associated to call on max options in Lemma below. Our proof of
Lemma [4.12 in turn uses the elementary and essentially well-known facts
in Lemmas [ | For the sake of completeness we also provide in this
subsection detalled proofs of Lemmas AT0HATTL
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Lemma 4.10. Let 2,y € R and let (-)": R — [0,00) be the function which
satisfies for all ¢ € R that (¢)* = max{q,0}. Then

(i) it holds that x = ()" — (—x)" and

(ii) it holds that max{x,y} = (x —y)* +y.
(iii) it holds that min{z,y} = —(z —y)* + z.
Proof of Lemma[{.10. Observe that

(2)* — (—2)" = max{z,0} — max{—=,0}

(468)
— [ = 0] Lp) (@) + [0 — (—2)|L (e () = .
This establishes item (fl). Next note that
(z —y)" +y =max{z —y,0} +y = max{z, y}. (469)
This proves item (@). Moreover, observe that
eyt = (maxfe =y 0 —a) = —max(y )

= min{y, x}.
This establishes item (il). The proof of Lemma 10 is thus completed. O

Lemma 4.11. Let (a,)nen C [0,00) be the sequence which satisfies for all
n € N that

a, =2(n—-1)+1)(n+1)
+ [ = (k+ 1)+ )20 —k) + 1+ 1)] +1(1 +1).
Then it holds for allm € N that
an < 6n°. (472)
Proof of Lemma [{.-11. Observe that for all n € N it holds that
a,=2n—-1)4+1)(n+1)
+ [ = (k+ D))+ D) @2mn—k) + 1+ )] +1(1+1)
=©2n—1D(n+1)+ [0 20n—k) = 1)(2(n — k) +2)] +2
=2 +n—1+[Yr 4n—k)?+2(n—Fk) —2] +2 (473)
=207 +n+ 1+ [Yp) 4n® — 8nk + 4k% + 2n — 2k — 2]
=207 +n+1+4n’(n—1) — 8n [72 k] +4 [0 k2
+2n(n—1) = 2[5 k] —2(n —1).

(471)
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The fact that for all n € N it holds that

Pk =02 and SR k2 = e nGenl) (474)

therefore assures for all n € N that

@n=2n2+n+1+4n2(n—1)—8n[( Ln }+4[%}

+2n(n—1)—2[@] —92(n—1)
=% +n+1+4n —4n* — [4n3—4n2}

+[8n3+4( Un? 4+ n}+2n2—2n—[n2—n}—2n+2 (475)
=(4-4+Hn*+2-4+4-2+2-1)n
+(1+2-2+1-2)n+1+2
<4’ +n*+3< (34 1+3)n° <6n’.
The proof of Lemma [4.11]is thus completed. O
Lemma 4.12. Assume Setting [{.1] and let (Kq)den, (Ca;i)aenicfi2,..ap © R

Then there exists (¢q)aen € N such that for alld € N, v = (x1,29,...,24) €
R? it holds that P(¢y) < 6d%, R(dg) € C(RLR), and
(R(¢d))($) = max{max{cd,lxl, Cd’gl’g, ceey Cd,dxd} — Kd, O} (476)
Proof of Lemma[{.13. Throughout this proof let d € N, let
¢: ((W17Bl) (WQaBQ) (WdaBd)a(Wd-i-laBd-i-l))
c (R( (d—1)+1)x X R2 )

% (Xz;i(R( (d=k)=1)x(2(d=k)+1) o R2(d—k)—1))
% (Rlxl % ]Rl)

(477)

(i.e. ¢ corresponds to fully connected feedforward artificial neural network
with d + 2 layers with dimensions (d,2(d — 1) +1,2(d —2) + 1,2(d — 3) +
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1,...,3,1,1)) satisfy for all k£ € {1,2,...,d — 2} that

ciqp —cCa2 0 0
0 Cd.2 0 0
0 —cqp 0 0
0 0 c 0
Wi=|o o —en o | e REEDIx (478)
0 0 0 Cd,d
0 0 0 —Cd.d
11 -1 -1 1 0 0 0 0
00 O 1 -1 0 0 0 0
00 0 -1 1 0 0 0 0
W 00 O 0 0 1 -1 0 0
1= 10 0 0 0 0o -1 1 0 0 (479)
00 O 0 0 0 o ... 1 -1
00 O 0 0 0 o ... =1 1
€ R2(A—k)=1)x(2(d—k)+1)
We=(1 1 -1), Wga=(1)eR™, B =0, (480)
Bg = O, cey Bd_1 = 0, Bd = —Kd, and Bd+1 = O, (481)

let 2 = (z1,72,...,74) € R let 2y € R 2, € RATD-L o) ¢ R+
za-1 € R3 24 € R, 2411 € R satisfy for all k € {1,2,...,d — 1} that 2y = =,
2k = Aoy 1(Wrze—1 + Br), 2a = A1(Wyz4—1 + By), and

Zd+1 = Wd+12d + Bd+1, (482)

and let (-)T: R — [0,00) be the function which satisfies for all ¢ € R that

(¢)" = max{q,0}. Note that (B83)), [@77), and [@R2) imply that (R(¢)) €

C(R%,R) and
zan = (R(9))(2). (483)
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Next we claim that for all k£ € {1,2,...,d — 1} it holds that

N
(max{ca121, Caata, - - -, CapTr} — Capi1Thin)
(Cd,k+1xk+1)+
(_Cd,k+155k+1)+
(Cd,k+2xk+2)+

ok = (_Cd,k+2xk+2)+

(484)

(Cd,d$d)+
(—caara)™

We now prove ([@84) by induction on k € {1,2,...,d — 1}. For the base case

k = 1 note that (B82), (@TS), (80), and (@82) assure that
21 = Asg—1)+1(Wizo + Br) = Aga—1y1 (W)

Cd,1T1 — Cq,272 (maX{Cd,1£E1} - Cd,2952)Jr
Cq,2T2 (Cd,21'2)+
—Cq,2T2 (—Cd,2152)+
A Cd,373 (casrs)™ (485)
= 2(d—1)+1 —Cq,373 - (_Cd,3x3)+ .
Cq,dTq (Cd,dl'd)+
—Cq,d%d (—Cd,dId)+

This establishes (@84) in the base case k& = 1. Next note that item (@) in
Lemma implies that for all a,b,c € R it holds that

(b—a)" +a—c=max{a,b} —c. (486)
For the induction step {1,2,...,d—2} > k - k+1 € {2,3,...,d—1}
observe that (B82), 79), @RI), {@82), HEBG) (with a = cgpr12ri1, b =

max{cq121, Ci2%2, - - -, CapTr}, C = CartaTr+2 0 the notation of ([@84])), and
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item () in Lemma [0l demonstrate that for all k € {1,2,...,d — 2} with

+
(maX{Cd,ﬂl, Cd2X2, .. -, Cd,kxk} - Cd,k+1xk+1)
(Cd,chrliEkJrl)Jr
(_Cd,k+1xk+1)+
(Cd,k+2ifk+2)+

(—Cd,k+236k+2)+ (487)

Rk —

(Cd,d$d>+

(—caara)”

105



it holds that

21 = Ao (1)1 (Wis12e + Big1) = Aoa—es1))+1 (Wit121)

= Agd—(k+1))+1

= Ap—(k+1))+1

( max{cg121, . . .

(max{cq, 121, ,Cd,kTh }—Cd,k+1Ck+1)
+(capr1Tr41) T —(—Cakr1Tr11) T —(Cakr2Trr2) T H(—Cd kt-2Thy2)

(Cd,k+2xk+2)+ - (—Cd,k+236’k+2)+
—(CaproTri2)T + (—CaproTite)”
(Cd,k+3£5k+3)+ - (—Cd,k+3$k+3)+
—(Cap+3Trs) + (—CaprsTirs)™

+
+

(Cd,d$d>+ - (—Cd,dxd)
—(cgara)t + (—caaza)
(max{Ccq,1 21, ,Cd,kTh } =Cd,k+1Ck+1) T +Cd, k- 1Tkt 1—Cd, k2T k42
Cd k42T k42
—Cd k42T k42
Cd,k+3Tk+3
—Cd k+3Tk+3

Cd,dZd
—Cq,d%d

y Cd kL, Cd,k—i—lxk—i-l} - Cd,k+2xk+2)+
(Cd,k+2xk+2)+
(—Cd,k+2l’k+2)+
(Cd,k+3a7k+3)+
(_Cd,k+3xk+3)+

(Cd,d$d>+
(—Cd,dl’d)+

!

(488)

Induction thus proves ([@84). Next observe that ({S0), {@RI), {R2), [@ER4),
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and item (i) in Lemma .10 imply that
za = Ay (Wazg—1 + By)

(maX{Cd,wl, cees Cad-1Td-1} — Cd,difd)+
= A1 (1 1 —1) (Cd’dl’d)—i_ - Kd
(_Cd,dxd)+
=A <(maX{Cd,136’1, ceey Cd,d—136d—1} - Cd,dSCd)+

+ (Cd,d$d)+ - (—Cd,dfb’d)Jr - Kd)

= Al <( max{cdlel, RN Cd,d—lxd—l} — Cd,dxd)+ -+ Cd,dld — Kd>
= A1(maX{0d,1SC17 < Cdd—1Td—1, Cd,dSCd} - Kd)
= max{max{cy121, ..., cqa%qs} — Kq4,0}.
(489)
Combining this with (480)-(Z83) establishes that
R T) = =W, + B
( (¢))( ) “2d+1 d+1%d d+1 (490)

= 24 = max{max{cy121, ..., cqa%qs} — Kq4,0}.
In addition, observe that Lemma .11l implies that
P(¢) = (2(d—=1)+1)(d+1)
+ (S b+ 1) + DEA— k) + 1+ 1] +1(1+1) (491)
< 6d°.
Combining this, ([#83]), and ([@90) completes the proof of Lemma 12 O

Proposition 4.13. Assume Setting[{.1] and let (Kg)aen, (Ca;)denic{1,2
[0,00) satisfy that SUpew icq1 2,y Cai < 0. Then

.....

(i) there exist unique continuous functions ug: [0,T] x R — R, d € N,
which satisfy for alld € N, x = (x1,29,...,24) € R? that ug(T,x) =
max{max{cq 171, Ca2Ta, ..., Caata} — Kq,0}, which satisfy for alld € N
that infye(0,00) SUD (1,21 (0,1 x R % < 00, and which satisfy for all

d € N that ug|(oryxre is a viscosity solution of

(Frua)(t ) + ((Vaora) (t, ), a(z) )

+ $ Trace(o4(z)[oq(z)]" (Hess, uq)(t, z)) =0 (492)
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for (t,z) € (0,T) x R and

(ii) there exist € € (0,00), (Yac)den,cc01] © N such that for all d € N,
e € (0,1] it holds that P(va.) < €&, P(y.) < €32,
R(wd,t‘) < C(RdvR); and

1/p
{ » |1a(0, ) = (R(Yae)) ()| valdz)| <e. (493)

Proof of Proposition[{.13. Throughout this proof let ps: R? — R, d € N,
satisfy for all d € N, x = (11, 29, ..., 24) € R? that

wa(r) = max{max{cg 121, C42%a, . .., Caatq} — Kq4,0}, (494)

let (Xa)aen, (¢a5)dense,1] © N satisfy for alld € N, z € R% § € (0,1] that

P(xa) < 6d°, R(xa) € C(R,R), (R(xa))(x) = @alz) (cf. Lemmam) and
¢as = Xa» and let C' € [0,00) be given by C' = SUDgen ie(1,2,...a} Cdi- Note

that for all d € N, § € (0, 1] it holds that

R($4s) = R(xa) = pq € C(RY, R). (495)

This and the fact that for all d € N, 7 € {1,2,...,d} it holds that ¢4, € [0, c0)
ensures that for all d € N, 2 = (21,29, ...,14) € RY 6 € (0,1] it holds that
[(R(¢4,5)) ()] = [(R(xa))(x)| = [¢a()|
= max{max{cy 121, C42%2, ..., Caata} — K4,0}

< max{cd,1|181|, Cd,2|552|> s aCd,d|37d|} (496)
S Cmax{\:b’ﬂ, ‘xQ‘v R ‘l’d‘}

< O allga < Cd°(1 + [|]3a)-
In addition, observe that for all d € N, § € (0, 1] it holds that
P(das) = P(xa) < 6d° = 6d°5". (497)

Furthermore, note that ([@35)) ensures that for all d € N, # € R4, § € (0, 1] it
holds that

|pa(®) = (R(¢as))(@)] = [a(z) = (R(xa))(2)]

00 9 (498)
= [pa(®) = pa(@)| = 0 < 67 (1 + [J]|ga)-
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Combining this, (493), [#96), @97), the fact that (¢g)4eny are continuous
functions, the hypothesis that for all ¢ € (0, 00) it holds that

Zlelg [d‘eq Jra 1z l/d(diE)] < 00, (499)

and Lemma [L2 with Theorem B4 (with T =T, r=1, R=1,v =0, w = 0,
2=3,2=0,0=0,c=max{6,C,2 [SuPyericq12. _ay(|ail + [Bail)]}, v =2,
P =D, Vi = Vg, Pa = Pd, ltd = ld, Oa = 0q, a(r) = max{z,0}, @45 = ¢qs for
de N,z eR, §e(0,1] in the notation of Theorem B.14]) demonstrates that
there exist unique continuous functions vg: [0,7] x R — R, d € N, which
satisfy for all d € N, z € R? that v4(0, z) = ¢4(x), which satisfy for all d € N
that infye(0,00) SUP (¢ 2)ef0, 7] xR w < o0, and which satisfy for all d € N

that vg|(o7)xre is a viscosity solutlon of

(%vd)(t,x) =1 Trace(ad( Voa(z)]* (Hess, vd)(t,x))
+ ((Vava)(t, @), pa(z ) pa

for (t,z) € (0,7) x R? and that there exist € € (0,00), (Va.e)aen,ee(0,1]

N such that for all d € N, e € (0,1] it holds that P(g.) < €d+3 e,
‘gz(,lvbd,a) S €d5€+3 5_2a R(wd,a) € C(Rd>R)> and

(500)

1/p

[ 1) - RO D@ wido)] < (501)

Corollary hence assures that there exist unique continuous functions
ug: [0,T] x R — R, d € N, which satisfy that for all d € N, z = (21, 2o, . ..,
r4) € R? it holds that

ug(T, ) = pq(x) = max{max{cqs 121, C42%2, . .., Caara} — K4,0},  (502)

lug(t,z)|
T+l < oo, and

which satisfy for all d € N that ug )« is a viscosity solutlon of

which satisfy for all d € N that infe(,00) SUP(t z)e[0,7]xRd

(atud)tx —|-<de tZL' ,Ud >Rd

+ 1 Trace(oq(x)[oq(z)] " (Hess, uq)(t, z)) = 0 (503)
for (t,z) € (0,T) x R? and that it holds for all d € N, ¢ € (0, 1] that
l/p
[ ui0.0) - R @ witan)| <= G0y
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Combining this with the fact that for all d € N, ¢ € (0,1] it holds that
Phge) < €8 et P(1hy.) < €d3e72 and R(va.) € C(RY, R) estab-
lishes items ({l)—(m). The proof of Proposition is thus completed. a

4.6 Artificial neural network approximations for call
on min options

In this subsection we establish in Proposition below that ANN approxi-
mations overcome the curse of dimensionality in the numerical approximation
of the Black-Scholes model in the case of call on min options. Our proof of
Proposition employs the ANN representation result for the payoff func-
tions associated to call on min options in Lemma [Z.14] below.

Lemma 4.14. Assume Setting [{.1] and let (Kq)gen, (Ca;i)deniefi,2,...
Then there exists (¢q)aen C N such that for alld € N, x = (x1,22,...,24) €
R? it holds that P(¢y) < 6d%, R(dq) € C(RLR), and

(R(¢d))(x) = max{min{cd,lxb Cd2T2, ..., Cd,clxd} - Kda O} (505)
Proof of Lemma[{.1]]. Throughout this proof let d € N, let

(Z) = ((le Bl)? (W27 B2>7 R (Wd7 Bd)u (Wd+17 Bd+1))

c (R(2(d—1)+1)><d % R2(d—1)+1) -
% (Xg:i(R(2(d—k)—l)><(2(d—k)+l) % R2(d—k)—l)) ( )

% (Rlxl % Rl)
(i.e., ¢ corresponds to fully connected feedforward artificial neural network

with d + 2 layers with dimensions (d,2(d — 1) +1,2(d — 2) + 1,2(d — 3) +
1,...,3,1,1)) satisfy for all k € {1,2,...,d — 2} that

—Cd,1 Cd.2 0 0
0 cg2 O 0
0 —cq2 O 0
0 0 ¢ 0
W, = 0 0 —2;23 0 € RCE-D+)xd (507)
0 0 0 cee Cd.d
0 0 0 s —Cad
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1 -11 1 -1 0 O 0 0

0o 0 0 1 -1 0 0 0 O

0o 0 0 -1 1 0 0 0 O

W o0 0 0 0 1 -1 0 0
1=00 0 0 0 0 -1 1 0 0 (508)

o o0 o0 o0 0 o 0 ... 1 -1

oo o0 o0 o o 0 ... =11

c R(2(d—k)—l)><(2(d—k)+l)

Wy=(-11 —=1), War=(1)eR™, B =0, (509)
B2 = O, ceey Bd—l = 0, Bd = —Kd, and Bd+1 = O, (510)

let @ = (21, 7,...,7q) € R let 2y € R, 2z, € RAD1 5y ¢ RAEDHL
za-1 € R3 24 € R, 2411 € R satisfy for all k € {1,2,...,d — 1} that 2y = =,
2k = Aga—ry+1(Wrzk—1 + Bi), za = A1(Waza—1 + By), and

Zqy1 = Way12a + Baya, (511)

and let (-)T: R — [0,00) be the function which satisfies for all ¢ € R that

(¢)" = max{q,0}. Note that [B83)), (506), and (BII) imply that (R(¢)) €

C(R4,R) and
Zan1 = (R(9))(x). (512)
Next we claim that for all &k € {1,2,...,d — 1} it holds that

. +
(Cd,k+1$k+1 - mln{cd,lxla Cd2X2, ..., Cd,kifk})
(Cd,k+1xk+1)+
(—Cd,k+1$k+1)+
(Cd,k+2$k+2)+
(_Cd,k+2xk+2)+

(513)

Rk —

(Caara)”
(—caazra)™

We now prove (GI13)) by induction on k € {1,2,...,d — 1}. For the base case
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k = 1 note that ([B82), (507), (509), and (E1I]) assure that
21 = Agg—1)+1(Wizo + By) = Agg1)41 (W)

—C4,1T1 + Cap (capms — minfeqrzi})”
Cd,2%2 (caomwe)™
—C42T2 (—caoz2)™t
Ca,37T3 (casrs)t (514)
= Asg—1)+1 — 4373 = (—casms)t .
Cd,d%d (Caara)™
—Cq,dTd (_Cd,dxd)+

This establishes (5I3)) in the base case k = 1. Next note that item (fl) in
Lemma [4.10] implies that for all a, b, ¢ € R it holds that

(a —b)* —a+c=c—min{a,b}. (515)

For the induction step {1,2,...,d—2} > k - k+1 € {2,3,...,d—1}
observe that ([B82), (B08), (GI0), (GII), (GI5) (with a = cipr1Tp41, b =
min{cy 121, Cao%a, ..., CikTr}, € = Cari2Tr+2 in the notation of (5I3)), and
item (fl) in Lemma .10 demonstrate that for all £ € {1,2,...,d — 2} with

. +
(Cd,k+136k+1 - mln{cd,ﬁl, Cd2X2, . . . ,Cd,kfb’k})
(Cd,k+1~”€k+1)+
(_Cd,k+1xk+1)+
(Cd,k+255k+2)+

%= (_Cd,k+2xk+2)+

(516)

N

(Cd,dxd
(—Cd,dSCd)
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it holds that

Zkr1 = Ao (k1)1 (Whs12k + Brr1) = Ao er1) 01 (Wit 2x)
(Cd,k+1Tk+1—min{cq 1%1,C4,202,..,Cq, Tk }) T
—(capt1Th+1) T+ (—capr1Tr+1) TH(Cd ktoTht2) T —(—Ca pt2Thy2) T
(Cd,k+2$k+2)+ — (—Capr2Trs2)”
_(Cd,k+2$k+2)+ + (_Cd,k+2$k+2)+

A (Cd,k+3ifk+3)+ - (—Cd,k+393k+3)+

- 2(d—(k+1))+1 4 +
—(Cak+3Tr43)" + (—Cart3Trss)
+

+

(Cd,d$d>+ - (—Cd,dxd)
—(cqgaza)t + (—Caarq)

(Cd,kt1Tk+1—IN{Cq,121,Cd,2%2,-,Ca 1Tk }) T —Cd, k1Tt 1 +HCd, k2T k42
Cd,k+2TLk+2
—Cd k42T k42
Cd,k+3Lk+3

= As(a—(k+1))+1 —Cd k+3Tk+3

Cd,dZd
—Cq,d%d

(Cd,k+2l’k+2 — min{cg121, - . ., CapTk, Cd,k+1$k+1})+
(Cd,k+2$k+2)+
(—Cd,k+2l’k+2)+
(Cd,k+3xk+3)+
(_Cd,k+3xk+3)+

(Cd,d$d)+
(—Cd,dl’d)+

(517)

Induction thus proves (5I3). Next observe that (E08), (G10), (G1I), GI3),
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and item (i) in Lemma IO imply that
Zd = Al(WdZd_l + Bd)

(cd,dzzd —min{cg 2, . .. ,cd,d_lz)sd_l})Jr
= Al (—1 1 —1) (Cd,dxd>+ - Kd
(—caara)”
= A1< — (Cgqra — min{cg 121, . .., Cd,d—lxd—1})+

+ (Cd,d$d>+ - (—Cd,d$d)+ - Kd)

= Al( — (Cd,dl'd — min{cd,lxl, ceey Cd,d—ll'd—l})—i_ -+ Cd,dld — Kd)
= A1(miﬂ{0d,136’17 ey Cdd—1Td—1, Cd,dTd} — Kd)
= max{min{cy 121, ..., cqazrqs} — Kq4,0}.
(518)
Combining this with (509)-(512) establishes that
R = =W, + B
( ((b))(x) Zd+1 d+17d d+1 (519)

= zg = max{min{cg121, ..., cgara} — Kq,0}.
In addition, observe that Lemma .I1] implies that
P(#) = (2(d—-1)+1)(d+1)
+ [SE A b+ 1) + DEA— k) + 1+ 1] +1(1+1) (520)
< 6d°.
Combining this, (5I12)), and (EI9) completes the proof of Lemma T4 O

.....

Proposition 4.15. Assume Setting[{.1] and let (Kg)aen, (Ca:)den,ic{1,2
[0,00) satisfy that SUpew icq1 2,y Cai < 0. Then

(i) there exist unique continuous functions ug: [0,T] x R — R, d € N,
which satisfy for alld € N, x = (x1,29,...,24) € R? that ug(T,x) =
max{min{cg 121, Cg2%a, ..., Caara} — Kq,0}, which satisfy for alld € N
that infye(0,00) SUD (1 210,17 x R % < 00, and which satisfy for all

d € N that ug|(oryxre is a viscosity solution of

(Frua)(t ) + ((Vaora) (t, ), a(z) )

+ $ Trace(o4(z)[oq(z)]" (Hess, uq)(t, z)) =0 (521)

114



for (t,z) € (0,T) x R and

(i) there exist € € (0,00), (Yac)den, cc01] S N such that for all d € N,
e € (0,1] it holds that P(ta.) < €d¥3e™, P(hy.) < €d 372
R(taz) € C(RY,R), and

1/p
[ y |1a(0, ) = (R(thae))(2)[ valdz)|  <e. (522)

Proof of Proposition[J.13. Throughout this proof let ps: R? — R, d € N,
satisfy for all d € N, x = (11, 29, ..., 24) € R? that
wa(x) = max{min{cy 121, c42%2, . . ., Caara} — Kq4,0}, (523)

let (Xa)den, (¢a5)denseo1 C N satisfy for all d € N, z € R, § € (0,1] that

P(xa) < 6% R(xa) € C(RY,R), (R(xa))(z) = palz )(Cf Lemmam) and
¢as = Xa,» and let C' € [0,00) be given by C' = SUDgen ie{1,2,...d} Cdi- Note

that for all d € N, § € (0, 1] it holds that

R($4s) = R(xa) = pq € C(R,R). (524)

This ensures that for all d € N, 2 = (21, 29,...,24) € R%, § € (0,1] it holds
that

[(R(a.5))(@)] = [(R(xa)) ()| = [#a()]

= max{min{cy 121, c42%2, ..., caaa} — K4,0}
< max{cg1|r1], cazlTal, .., caalral} (525)
< Cmax{|z1], |xa|, ..., |za4|}

< Cllzflga < C°(1 + ||7a)-
In addition, observe that for all d € N, § € (0, 1] it holds that
P(¢pas) = P(xa) < 6d* = 6d°5°. (526)

Furthermore, note that (524)) ensures that for all d € N, z € R4, § € (0, 1] it
holds that

|pa(®) = (R(¢as))(@)] = [a(z) = (R(xa))(2)]

00 ) (527)
= [pa(z) = pa(z)| = 0 < 67 (1 + [J]|ga)-
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Combining this, (524), (G25), (B26), the fact that (¢g)4eny are continuous
functions, the hypothesis that for all ¢ € (0, 00) it holds that

Zlelg [d‘eq Jra 1z l/d(diE)] < 00, (528)

and Lemma [L2 with Theorem B4 (with T =T, r=1, R=1,v =0, w = 0,
2=3,2=0,0=0,c=max{6,C,2 [SuPyericq12. _ay(|ail + [Bail)]}, v =2,
P =D, Vi = Vg, Pa = Pd, ltd = ld, Oa = 0q, a(r) = max{z,0}, @45 = ¢qs for
de N,z eR, §e(0,1] in the notation of Theorem B.14]) demonstrates that
there exist unique continuous functions vg: [0,7] x R — R, d € N, which
satisfy for all d € N, z € R? that v4(0, z) = ¢4(x), which satisfy for all d € N
that infye(0,00) SUP (¢ 2)ef0, 7] xR w < o0, and which satisfy for all d € N

that vg|(o7)xre is a viscosity solutlon of

(%vd)(t,x) =1 Trace(ad( Voa(z)]* (Hess, vd)(t,x))
+ ((Vava)(t, @), pa(z ) pa

for (t,z) € (0,7) x R? and that there exist € € (0,00), (Va.e)aen,ee(0,1]

N such that for all d € N, e € (0,1] it holds that P(g.) < €d+3 e,
‘gz(,lvbd,a) S €d5€+3 5_2a R(wd,a) € C(Rd>R)> and

(529)

1/p

[ 1) - RO D@ wido)] < (530)

Corollary hence assures that there exist unique continuous functions
ug: [0,T] x R — R, d € N, which satisfy that for all d € N, z = (21, 2o, . ..,
r4) € R? it holds that

ug(T, ) = @a(x) = max{min{cq 121, cgo22, . .., caara} — K4,0},  (531)

ug(t,z)|
T+l < oo, and

which satisfy for all d € N that ug )« is a viscosity solutlon of

which satisfy for all d € N that infe(,00) SUP(t 1)ef0,7]xRd

(atud)tx —|-<de tZL' ,Ud >Rd

+ 1 Trace(oq(x)[oq(z)] " (Hess, uq)(t, z)) = 0 (532)
for (t,z) € (0,T) x R? and that it holds for all d € N, ¢ € (0, 1] that
l/p
[ 0.0 - R @ witan)| < 6
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Combining this with the fact that for all d € N, ¢ € (0,1] it holds that
Phge) < €8 et P(1hy.) < €d3e72 and R(va.) € C(RY, R) estab-
lishes items ({l)—(m). The proof of Proposition is thus completed. a
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