Analysis and Construction of Artificial for the Heat Equations, and Their Associated
Parameters, Depths, and Accuracies.

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy in Mathematics

by

Shakil Ahmed Rafi
Troy University
Bachelor of Science in Mathematics, 2015
University of Arkansas
Master of Science in Mathematics, 2019

May 2024
University of Arkansas

This dissertation is approved for recommendation to the Graduate Council.

Joshua Lee Padgett, Ph.D.

Dissertation Director, ex-officio

Ukash Nakarmi, Ph.D. Jiahui Chen, Ph.D.

Committee Member Committee Member

Tulin Kaman, Ph.D.

Committee Member

Abstract

This dissertation seeks to explore a certain calculus for artificial neural networks. Specifi-
cally we will be looking at versions of the heat equation, and exploring strategies on how to

approximate them.

Our strategy towards the beginning will be to take a technique called Multi-Level Picard
(MLP), and present a simplified version of it showing that it converges to a solution of the

equation (2uy) (t,2) = (Viuyg) (t,2).

We will then take a small detour exploring the viscosity super-solution properties of so-
lutions to such equations. It is here that we will first encounter Feynman-Kac, and see that
solutions to these equations can be expressed the expected value of a certain stochastic in-

tegral.

The final and last part of the dissertation will be dedicated to expanding a certain neu-
ral network framework. We will build on this framework by introducing new operations,
namely raising to a power, and use this to build out neural network polynomials. This opens
the gateway for approximating transcendental functions such as exp (), sin (x), and cos ().
This, coupled with a trapezoidal rule mechanism for integration allows us to approximate

expressions of the form exp (fab Ddt).

We will, in the last chapter, look at how the technology of neural networks developed in
the previous two chapters work towards approximating the expression that Feynman-Kac
asserts must be the solution to these modified heat equations. We will then end by giving
approximate bounds for the error in the Monte Carlo method. All the while we will maintain

that the parameter estimates and depth estimates remain polynomial on é

As an added bonus we will also look at the simplified MLP technque from the previous
chapters of this dissertation and show that yes, they can indeed be approximated with ar-
tificial neural networks, and that yes, they can be done so with neural networks whose

parameters and depth counts grow only polynomially on %

Our appendix will contain code listings of these neural network operations, some of the

architectures, and some small scale simulation results.

© 2024 by Shakil Ahmed Rafi
All Rights Reserved.

Acknowledgements

I would like to acknowledge my advisor Dr. Joshua Padgett who has been instrumental in
me Ph.D. journey. I am incredibly thankful for him taking the time out of his busy schedule
to meet with me over the weekends and helping me finish my dissertation. Without his help,
guidance, and patience I would never have been where I am today. You not only taught me

mathematics, but also how to be a mathematician. Thank you.

I would also like to thank my department, and everyone there, including, but not limited to
Dr. Andrew Raich, for his incredible patience and helpful guidance throughout the years.
I would also like to thank Dr. Ukash Nakarmi for the excellent collaboartions I've had. I

would also like to thank Egan Meaux for all the little things he does to keep the department

going.

I would like to acknowledge Marufa Mumu for believing in me when I didn't. You re-

ally made the last few months of writing this dissertation, less painful.

I would like to acknowledge my cat, a beautiful Turkish Angora, Tommy. He was pretty

useless, but stroking his fur made me stress a little less.

I would like to acknowledge my office-mate Eric Walker, without whom I would never have

realized that rage and spite are equally as valid motivators as encouragement and praise.

Finally, I would like to thank Valetta Ventures, Inc. and their product Texifier. It is marvel
of software engineering and made the process of creating this dissertation much less painful

than it already was.

Dedication
To my grandparents,
M.A. Hye, M.A., & Nilufar Hye
who would've love to see this but can't;
to my parents,
Kamal Uddin Ahmed, M.A. & Shahnaz Parveen, M.A.,
who kept faith in me, always;
and finally to my brothers,
Wakil Ahmed Shabi, BBA & Nabbil Ahmed Sami, B.Eng.,

for whom I have been somewhat imperfect a role model.

Epigraph

Read, in the name of your Lord

—Surah Al-Alaq: 1

The conquest of nature must be achieved with number and measure.

—René Descartes

Contents

I On Convergence of Brownian Motion Monte Carlo

1 Introduction
1.1 Motivation L
1.2 Notation, Definitions & Basic notions.
1.2.1 Norms and Inner Products
1.2.2 Probability Space and Brownian Motion
1.2.3 Lipschitz and Related Notions
1.2.4 Kolmogorov Equations L0
1.2.5 Linear Algebra Notation and Definitions
1.2.6 O-type Notation and Function Growth

1.2.7 The Concatenation of Vectors & Functions

2 Brownian Motion Monte Carlo
2.1 Brownian Motion Preliminaries
2.2 Monte Carlo Approximations

2.3 Bounds and Covnvergence

3 That u is a Viscosity Solution
3.1 Some Preliminaries

3.2 Viscosity Solutions

10
11
14
16

19
19
26
27

3.3 Solutions, Characterization, and Computational
Bounds 62
IT A Structural Description of Artificial Neural Networks 69
4 Introduction and Basic Notions About Neural Networks 70
4.1 The Basic Definition of ANNs and instantiations of ANNs 71
4.2 Compositions of ANNs 74
4.3 Stacking of ANNs 80
4.3.1 Stacking of ANNs of Equal Depth 80
4.3.2 Stacking of ANNs of Unequal Depth 86
4.4 Affine Linear Transformations as ANNs and Their Properties. 88
4.5 Sums of ANNs of Same End-widths 91
4.5.1 Neural Network Sum Properties 93
4.5.2 Sum of ANNs of Unequal Depth But Same End-widths 101
4.6 Linear Combinations of ANNs and Their Properties 102
4.7 Neural Network Diagrams 114
5 ANN Product Approximations and Their Consequences 116
5.1 Approximation for Products of Two Real Numbers 116
5.1.1 The squares of real numbers in [0,1] 117
5.1.2 The Sqr?® Neural Networks and Squares of Real Numbers 127
5.1.3 The Prd?® Neural Networks and Products of Two Real Numbers . . . 133
5.2 Higher Approximations 141
5.2.1 The Tun? Neural Networks and Their Properties 141
5.2.2 The Pwr?® Neural Networks and Their Properties 149
5.2.3 Pnm]% and Neural Network Polynomials. 159

5.2.4 Xpn%© Csn®® Snel® and ANN Approximations of e”, cos(x), and sin(z).166

n

6 ANN first approximations
6.1 ANN Representations for One-Dimensional Identity
6.2 Trp", Etr™" and Neural Network Approximations For the Trapezoidal Rule. .
6.3 Maximum Convolution Approximations for Multi-Dimensional Functions . .
6.3.1 The Nrm{ Neural Networks
6.3.2 The Mxm? Neural Networks
6.3.3 The MCi\{ ;/d Neural Networks
6.3.4 Lipschitz Function Approximations

6.3.5 Explicit ANN Approximations

IIT Artificial Neural Networks for © and Brownian motions

7 ANN representations of Brownian Motion Monte Carlo
7.1 The E)"™%¢ Neural Networks
7.2 The UE){:" Neural Networks
7.3 The UEXZ&?(Z Neural Networks

7.4 The UESr]X’Gh;,Ig,n Neural Networks

8 Conclusions and Further Research
8.1 Further operations
8.2 Further Approximants

8.3 Algebraic Properties of this Framework

9 Bibliography and Code Listings

9.1 Code Listings

List of Figures

4.1
4.2
4.3
4.4

5.1

5.2

5.3

5.4

2.5
2.6

A neural network v with L (v) = (6,8,6,3) 74
Diagrammmatic representation of the stacking of unequal depth neural networks 88
Neural Network diagram of a neural network sum. 93

Neural network diagram of a neural network sum of unequal depth networks. 102

Plot of log,, of the L' difference between ®; and x? over [0,1] for different
values of k. L L 124
Contour plot of the L' difference between ® and z? over [0, 1] for different
values of €. . . . L 127
Left: logy, of depths for a simulation with ¢ € [2.1,4], ¢ € (0.1,2], and
x € [—5,5], all with 50 mesh-points for Sqr?®. Right: The theoretical upper
limits over the same range of values 133
Left: log,, of params for a simulation with ¢ € [2.1,4], ¢ € (0.1,2], and
x € [—5,5], all with 50 mesh-points for Sqr?®. Right: The theoretical upper
limits over the same range of values 134
Neural network diagram of the Prd®® network. 140
Left: logy, of deps for a simulation of Prd?® with ¢ € [2.1,4], € € (0.1,2], and
x € [—5, 5], all with 50 mesh-points. Right: The theoretical upper limits over

the same range of values.o L 141

5.7 Left: log,, of params for a simulation of Prd?® with ¢ € [2.1,4], £ € (0.1, 2],
and = € [—5, 5], all with 50 mesh-points. Right: The theoretical upper limits
over the same range of values. oL

5.8 Isosurface plot showing |z? — Sqr?®| for ¢ € [2.1,4], ¢ € [0.01,2], and x €
[—5,5] with 50 mesh-points ineach.

5.9 A representation of a typical Pwr®® network.o

5.10 Left: log,, of depths for a simulation of Pwr{® with ¢ € [2.1,4], ¢ € (0.1, 2],
and z € [—5, 5], all with 50 mesh-points. Right: The theoretical upper limits
over the same range of values

5.11 Left: log,, of params for a simulation of Pwr}® with ¢ € [2.1,4], ¢ € (0.1, 2],
and = € [—5, 5], all with 50 mesh-points. Right: The theoretical upper limits
over the same range of values

5.12 Tsosurface plot showing |23 — J.(Pwrd®)(z)| for ¢ € [2.1,4], € € [0.01,2], and
x € [=5,5] with 50 mesh-points in each.

5.13 Neural network diagram for an elementary neural network polynomial, with

all coefficients being uniformly 1.

6.1 Neural network diagram for Mxm®.

6.2 Neural network diagram for the MCi\{ ’yd network L.

7.1 Diagram of

7.2 Neural network diagram for UEQ{ g;q,e

N,h,q,e
Xnde7wi

7.3 Neural network diagram for UE

7.4 Neural network diagram for the UESZ’C{Z?S’H network.

List of Tables

5.1

5.2

2.3

Theoretical upper bounds for L' error, experimental L' error and their for-
ward difference, with ¢ € [2.1,4], € € (0.1,2], and = € [-5,5], all with 50
mesh-points for Sqr?c. 132
Table showing the experimental and theoretical 1-norm difference, depths,
and parameter counts respectively for Sqr?® with ¢ € [2.1,4], ¢ € [0.01, 2],
and z € [—5, 5] all with 50 mesh-points, and their forward differences. 135
Table showing the experimental and theoretical 1-norm difference, depths,
and parameter counts respectively for Pwr® with ¢ € [2.1,4], £ € [0.01, 2],

and z € [—5,5] all with 50 mesh-points, and their forward differences. 163

List of Published Papers

Parts of Chapter 5 have been made into a paper as An Algebraic Framework for Under-
standing Fully Connected Feedforward Artificial Neural Networks, and Their Associated Pa-
rameter, Depth, and Accuracy Properties by Rafi S., Padgett, J.L., and Nakarmi, U. and is

currently undergoing review for publication for ICML 2024 at Vienna, Austria.

Parts of the simulation codebase have been submitted for review as nnR: Neural Networks
Made Algebraic at The R Journal. They have further been published as a package nnR

currently available on CRAN.

Part 1

On Convergence of Brownian Motion

Monte Carlo

Chapter 1

Introduction

1.1 Motivation

Artificial neural networks represent a sea change in computing. They have successfully been
used in a wide range of applications, from protein-folding in Tsaban et al. (2022), knot the-

ory in Davies et al. (2022), and extracting data from gravitational waves in Zhao et al. (2023).

As neural networks become more ubiquitous, we see that the number of parameters re-
quired to train them increases, which poses two problems: accessibility on low-power devices
and the amount of energy needed to train these models, see for instance Wu et al. (2022) and
Strubell et al. (2019). Parameter estimates become increasingly crucial in an increasingly
climate-challenged world. That we know strict and precise upper bounds on parameter esti-
mates tells us when training becomes wasteful, in some sense, and when, perhaps, different

approaches may be needed.

Our goal in this dissertation is threefold:

(i) Firstly, we will take something called Multi-Level Picard first introduced in E et al.

(2019) and E et al. (2021), and in particular, the version of Multi-Level Picard that

(iii)

appears in Hutzenthaler et al. (2021). We show that dropping the drift term and
substantially simplifying the process still results in convergence of the method and
polynomial bounds for the number of computations required and rather nice properties

for the approximations, such as integrability and measurability.

We will then go on to realize that the solution to a modified version of the heat equation
has a solution represented as a stochastic differential equation by Feynman-Kac and
further that a version of this can be realized by the modified multi-level Picard tech-
nique mentioned in Item (i), with certain simplifying assumptions since we dropped
the drift term. A substantial amount of this is inspired by Beck et al. (2021c) and

much earlier work in Karatzas and Shreve (1991) and Da Prato and Zabczyk (2002).

By far, the most significant part of this dissertation is dedicated to expanding and
building upon a framework of neural networks as appears in Grohs et al. (2023). We
modify this definition highly and introduce several new neural network architectures
to this framework (Pwr?®, Pnm%°, Tun? Etr™" XpnZ¢ Csn?, Snel* Eg’h’q’E,UEgélf’a,
UEXnN7 Ghdqj , and UESTJZ Ghdqg‘; , among others) and show, for all these neural networks, that
the parameter count grows only polynomially as the accuracy of our model increases,
thus beating the curse of dimensionality. This finally paves the way for giving neural
network approximations to the techniques realized in Item (ii). We show that it is not
too wasteful (defined on the polynomiality of parameter counts) to use neural networks

to approximate MLP to approximate a stochastic differential equation equivalent to

certain parabolic PDEs as Feynman-Kac necessitates.

We end this dissertation by proposing two avenues of further research: analytical
and algebraic. This framework of understanding neural networks as ordered tuples of
ordered pairs may be extended to give neural network approximation of classical PDE

approximation techniques such as Runge-Kutta, Adams-Moulton, and Bashforth. We

also propose three conjectures about neural networks, as defined in Grohs et al. (2023).

They form a bimodule, and that instantiation is a functor.

This dissertation is broken down into three parts. At the end of each part, we will encounter
tent-pole theorems, which will eventually lead to the final neural network approximation
outcome. These tentpole theorems are Theorem 2.3.4, Theorem 3.3.1, and Theorem 7.4.4.
Finally, the culmination of these three theorems is Corollary 7.4.4.1, the end product of the

dissertation. We hope, you, the reader will enjoy this.

1.2 Notation, Definitions & Basic notions.

We introduce here basic notations that we will be using throughout this dissertation. Large
parts are taken from standard literature inspired by Matriz Computations by Golub & van
Loan, Golub and Van Loan (2013), Probability: Theory & Examples by Rick Durrett, Durrett

(2019), and Concrete Mathematics by Knuth, Graham & Patashnik, Graham et al. (1994).

1.2.1 Norms and Inner Products

Definition 1.2.1 (Euclidean Norm). Let |||, : R — [0,00) denote the Euclidean norm

defined for every d € Ny and for all x = {x1, 29, -+ ,14} € R? as:

ol = (Z) (121)

For the particular case that d = 1 and where it is clear from context, we will denote || - ||g as
- |-
Definition 1.2.2 (Max Norm). Let |||, : R? — [0,00) denote the max norm defined for

every d € N and for all ¥ = {x1, 29, -+ , 24} € R as:

— . 1.2.2
ol = _max {laif} (122

We will denote the maz norm ||-|| .. : R™*™ — [0, 00) defined for every m,n € N and for all

A € R™*"™ gs:

Allpay = ‘A g 1.2.3
IA] x| [A];; (1.2.3)
je{1,2,...,n}

Definition 1.2.3 (Frobenius Norm). Let || - || : R™*™ — [0, 00) denote the Frobenius norm

defined for every m,n € N and for all A € R™*" as:

1

Il F = (Z > [A]f,]) (1.2.4)

i=1 j=1

Definition 1.2.4 (Euclidean Inner Product). Let (-,-) : R? x R — R denote the Euclidean

inner product defined for every d € N, for all R > & = {x1, 2o, ..., 24}, and for all R > y =

{y1.92, .. ya} as:
d
i=1

1.2.2 Probability Space and Brownian Motion
Definition 1.2.5 (Probability Space). A probability space is a triple (0, F,P) where:
(i) Q is a set of outcomes called the sample space.

(i) F is a set of events called the event space, where each event is a set of outcomes

from the sample space. More specifically, it is a o-algebra on the set ().

(i) A measurable function P : F — [0,1] assigning each event in the event space a
probability. More specifically, P is a measure on €2 with the caveat that the measure of

the entire space is 1, i.e., P(Q2) = 1.

Definition 1.2.6 (Random Variable). Let (2, F,P) be a probability space, and let d € Ny.

For some d € Ny a random variable is a measurable function X : Q — R4

5

Definition 1.2.7 (Expectation). Given a probability space (2, F,P), the expected value of

a random variable X, denoted E [X] is the Lebesgue integral given by:
E[X] = / XdP (1.2.6)
Q

Definition 1.2.8 (Variance). Given a probability space (2, F,P), the variance of variable

X, assuming E [X] < 0o, denoted V [X], is the identity given by:
V[X]=E[X?] - (E[X])? (1.2.7)
Definition 1.2.9 (Stochastic Process). A stochastic process is a family of random variables
over a fixed probability space (Q, F,R), indexed over a set, usually [0,T] for T € (0,00).
Definition 1.2.10 (Stochastic Basis). A stochastic basis is a tuple (2, F,P,F) where:
(i) (Q, F,P) is a probability space equipped with a filtration F where,

(ii) F = (Fi)ier, is a collection of non-decreasing sets under inclusion where for every

1 € I, I being equipped in total order, it is the case that F; is a sub o-algebra of F.

Definition 1.2.11 (Brownian Motion Over a Stochastic Basis). Given a stochastic basis
(Q, F,P,F) a standard (F;)ep,r)-Brownian motion W; is a mapping W, : [0,T] x — R?

satisfying:
(i) Wi is F; measurable for all t € [0, 00)
(i) Wo = 0 with P-a.s.
(iii) Wy — Ws ~ Norm (0, — s) when s € (0,1).
(iv) Wy — W is independent of Wy whenever s < t.

(v) The paths that W, take are P-a.s. continuous.

Definition 1.2.12 ((F;),.(, rj-adapted Stochastic Process). Let T' € (0,00). Let (22, F,P,F)
be a filtered probability space with the filtration indexed over [0,T]. Let (S, %) be a measurable
space. Let X : [0,T] x Q = S be a stochastic process. We say that X is an (Fy)ejo.1)-adapted

stochastic process if it is the case that X, : Q — S is (Fi, ¥) measurable for each t € [0,T].

Definition 1.2.13 ((F;)cjo,r1-adapted stopping time). Let T' € (0,00), 7 € [0,T]. Assume
a filtered probability space (0, F,P,F). It is then the case that T € R is a stopping time if

the stochastic process X = (X;)co,1) define as:

l:t<r
X, = (1.2.8)

is adapted to the filtration F := (F;)icio.1)

Definition 1.2.14 (Strong Solution of Stochastic Differential Equation). Let d,m € N. Let
p:RY— RY o0 RY — RY™™ be Borel-measurable. Let (Q, F,P, (Fy)iep.r)) be a stochastic
basis, and let W : [0,T] x Q — R* be a standard (F;)iepor)-Brownian motion. For all
t € 0,7, z € RY, let X" = (X5%)sepr) X @ — RY be an (Fy)sepm-adapted stochastic

process with continuous sample paths satisfying that for all t € [0,T] we have P-a.s. that:

t t
2=+ [s [ot aiaw, (1.2.9)
0 0

A strong solution to the stochastic differential equation (1.2.9) on probability space
(Q,F, P, (Fy)cpo,r), w.r.t Brownian motion W, w.r.t to initial condition Xy = 0 is a stochas-

tic process (X;)icjo,00) Satisfying that:
(1) X, is adapted to the filtration (Fy)icpom-

(ii) P(Xy = 0) = 1.

(iit) for allt € [0,T] it is the case that P (f(f |p(r, X8| & + |lo(r, XE5) || pdW, < oo) =1

(iv) it holds with P-a.s. that X satisfies the equation:

t t
Xt’x = XO + / :U/(n X:’x)dr + / O-(T7 X:’x)dw'r (1210)
0 0

Definition 1.2.15 (Strong Uniqueness Property for Solutions to Stochastic Differential
Equations). Let it be the case that whenever we have two strong solutions X and /'?, w.r.t.
process YW and initial condition Xy = 0, as defined in Definition 1.2.14, it is also the case
that P(X, = X,) = 1 for all t € [0,T). We then say that the pair (u,0) ezhibits a strong

uniqueness property.

1.2.3 Lipschitz and Related Notions

Definition 1.2.16. Given a function f : R — R. We will say that this function is continuous

everywhere if the Lebesque measure of the subsets of the domain where it is not continuous

is 0. We will say that f € Cye (R, R).

Definition 1.2.17 (Globally Lipschitz Function). Let d € Ny. For every d € Ny, we say a
function f : RY — R? is (globally) Lipschitz if there exists an L € (0,00) such that for all

x,y € R? it is the case that :

1 (@) = FWlle < L-lle—ylg (1.2.11)

The set of globally Lipschitz functions over set X will be denoted Lipg(X)

Corollary 1.2.17.1. Let d € Ny. For every d € Ny, a continuous function f € C(R? R?)

over a compact set K C R? is Lipschitz over that set.

Proof. By Hiene-Cantor, f is uniformly continuous over set K. Fix an arbitrary € and let §

be from the definition of uniform continuity. By compactness we have a finite cover of IC by

balls of radius ¢, centered around z; € K:

K C CJBg(:Ci) (1.2.12)

i=1

Note that within a given ball, no point z; is such that |z; — z;| > §. Thus, by uniform

continuity, we have the following:
|f(z:) — f(z;)] <e Vi,je{l,2,..,N} (1.2.13)

and thus let £ be defined as:

£ = max S(@i) = f(=)) (1.2.14)
i,je{ll;z,;..,N} Ty — Xy
i#]

£ satisfies the Lipschitz property. To see this, let x1, x5 be two arbitrary points within AC.
Let Bs(z;) and Bs(z;) be two points such that x; € Bs(x;) and x5 € Bs(z;). The triangle

inequality then yields that:

[f (1) = f(@)| < |f(n) = Fl)| + [f (i) = flap)] + [f(25) = Fla2)]
|f (i) = f(2;)] + 2€

N

< Loy — x| + 2
<Lz —] + 2¢
for all € € (0, c0). O

Definition 1.2.18 (Locally Lipschitz Function). Let d € Ny. For every d € Ny a function

f:RY— R? 4s locally Lipschitz if for all zg € R? there exists a compact set K C Domain(f)

containing o, and a constant L € (0,00) for that compact set such that

sup J@) = () <L (1.2.15)
weeh TV e

The set of locally Lipschitz functions over set X will be denoted Lip, (X).

Corollary 1.2.18.1. A function f : R — R? that is globally Lipschitz is also locally

Lipschitz. More concisely Lip(X) € Lip; (X).

Proof. Assume not, that is to say, there exists a point x € Domain(f), a compact set

KC C Domain(f), and points z1, xs € K such that:

T1 — T2
This directly contradicts Definition 1.2.17. O

1.2.4 Kolmogorov Equations

Definition 1.2.19 (Kolmogorov Equation). We take our definition from (Da Prato and
Zabezyk, 2002, (7.0.1)) with, u ™~ u, G ™~ o, F <~ pu, and ¢ v g, and for our purposes
we set A : R? — 0. Given a separable Hilbert space H (in our case R?), and letting
[0, T xR — R o : [0,T] x RT — R>™ and g : R — R be at least Lipschitz, a

Kolmogorov Equation is an equation of the form:

(2u) (t,z) = 1 Trace (o (t,z) [0 (t,2)]" (Hess, u) (t,x)) + (u(t, x), (Vou) (¢,2))

u(0,z) = g(z)
(1.2.17)

Definition 1.2.20 (Strict Solution to Kolmogorov Equation). Let d € Ny. For every d € Ny

a function u : [0,T] x R? — R is a strict solution to (1.2.17) if and only if:

10

(i) ue CH* ([0,T] x R?) and u(0,-) =g
(ii) u(t,-) € UCT*([0,T] x RY, R)

(iii) For all x € Domain(A), u(-,z) is continuously differentiable on [0,00) and satisfies

(1.2.17).

Definition 1.2.21 (Generalized Solution to Kolmogorov Equation). A generalized solution

to (1.2.17) is defined as:
u(t,z) =E [g (X"7)] (1.2.18)

Where the stochastic process X* is the solution to the stochastic differential equation, for

reRY te|0,T):
t t
X = / (X" dr +/ o (X)) dw, (1.2.19)
0 0

Definition 1.2.22 (Laplace Operator w.r.t. z). Let d € Ny, and f € C? (Rd,R). For every

d € Ny, the Laplace operator V2 : C*(R% R) — R is defined as:

of
al’i

Af =Vif:=V-Vf=)" (1.2.20)

d
=1
1.2.5 Linear Algebra Notation and Definitions

Definition 1.2.23 (Identity, Zero Matrix, and the 1-matrix). Let d € N. We will define the

identity matriz for every d € N as the matriz Iy € R given by:
I = [La); ; = (1.2.21)

Note that I; = 1.

11

Let myn,i,j € N. For everym,n € N, i € {1,2,...,m}, and j € {1,2,...,n} we define the
zero matriz 0, , € R™*" as:

@m,n = [(H)m,n]i,j =0 (1222)

Where we only have a column of zeros, it is convenient to denote 04 where d is the height of
the column.
Let m,n,i,j € N. For every myn € N, i € {1,2,...,m}, and j € {1,2,...,n} we define

matriz of ones e, , € R™*" as:
enn = [e],; =1 (1.2.23)
Where we only have a column of ones, it is convenient to denote ey where d is the height of

the column.

Definition 1.2.24 (Single-entry matrix). Let m,n,k,l € N and let c € R. For k € NN[1,m]

and | € NN [1,n], we will denote by k;", € R™™ as the matriz defined by:

o - c k=i1Nl=
ke = (ki) = (1.2.24)

0 :else

Definition 1.2.25 (Complex conjugate and transpose). Let m,n,i,j € N, and A € C™*".
For every m,n € N, i € {1,2,...,m} and j € {1,2,...,n}, we denote by A* € C*™™™ the

matriz:

A" = [AT],; =TA], (1.2.25)

ihj

Where it is clear that we are dealing with real matrices, i.e., A € R™*" we will denote this

as AT.

12

Definition 1.2.26 (Column and Row Notation). Let m,n,i,j € N and let A € R™*". For

every m,n € N and i € {1,2,...,m} we denote i-th row as:
[Aliv = |aiy @iz -+ ain (1.2.26)

Similarly for every m,n € N and j € {1,2,...,n}, we done the j-th row as:

ai,;

az,j

[Ali =1 | (1.2.27)

Am,j

Definition 1.2.27 (Component-wise notation). Let m,n,i,j7 € N, and let A € R™ ™. Let
f:R = R. Forallmn € Nji € {1,2,....,m}, and j € {1,2,...,n} we will define
f ([A]**> € R™™ gs:

7(14.) = |7 (14)] (1:2.28)

2
Thus under this notation the component-wise square of A is ([A]**) , the component-wise sin

is sin ([A]**> and the Hadamard product of A, B € R™*" then becomes AOB = [A], ,x[B], ,.

Remark 1.2.28. Where we are dealing with a column vector x € R and it is evident

from the context we may choose to write f ([x],).

Definition 1.2.29 (The Diagonalization Operator). Let my,mg,ny,ny € N. Given A €

R™>™ gnd B € R™2*"2 we will denote by diag (A, B) the matriz:

®m1 12

A
diag (A, B) = (1.2.29)
Ormgny B

Remark 1.2.30. diag(A;, As, ..., A,) is defined analogously for a finite set of matrices

13

Ay Asy o Ay

Definition 1.2.31 (Number of rows and columns notation). Let m,n € N. Let A € R™*™.
Let rows : R™*™ — N and columns : R™*"™ — N, be the functions respectively rows (A) = m

and columns (A) = n.

1.2.6 O-type Notation and Function Growth

Definition 1.2.32 (O-type notation). Let g € C(R,R). We say that f € C(R,R) is in
O(g(x)), denoted f € O(g(x)), if there ezists ¢ € (0,00) and xy € (0,00) such that for all

x € [xg,00) it is the case that:

0< f(z) <c-g(x) (1.2.30)

We say that f € Q(g(x)) if there ezists ¢ € (0,00) and xy € (0,00) such that for all

x € [xg,00) it is the case that:

0<cg(r) < fl) (1.2.31)

We say that f € ©(g(x)) if there exists c1,c2,x0 € (0,00) such that for all x € [xg, 00) it is

the case that:

0 < cag(x) < f < cag(x) (1.2.32)

Corollary 1.2.32.1 (Bounded functions and O-type notation). Let f(z) € C(R,R), then:
(i) if f is bounded above for all x € R, it is in O(1) for some constant ¢ € R.
(i) if f is bounded below for all x € R, it is in (1) for some constant ¢ € R.

(iii) if f is bounded above and below for all x € R, it is in ©(1) for some constant c € R.

14

Proof. Assume f € C(R,R), then:

(i) Assume for all = € R it is the case that f(z) < M for some M € R, then there exists
an zg € (0,00) such that for all z € (xy,00) it is also the case that 0 < f(z) < M,

whence f(z) € O(1).

(ii) Assume for all x € R it is the case that f(z) > M for some M € R, then there exists
an zo € (0,00) such that for all x € [zg,00) it is also the case that f(z) > M > 0,

whence f(z) € Q(1).
(iii) This is a consequence of items (i) and (ii).
0

Corollary 1.2.32.2. Let n € Ny. For some n € Ny, let f € O(z™). It is then also the case

that f € O (z™1).

Proof. Let f € O(a™). Then there exists g, zg € (0,00), such that for all z € [z, 00) it is

the case that:

flz) <co-a™ (1.2.33)

Note however that for all n € Ny, there also exists ¢1, 21 € (0, 00) such that for all z € (x7, o)

it is the case that:

"< e -t (1.2.34)

Thus taken together this implies that for all z € (max {zo,z1},00) it is the case that:

fl@)<co-a"<co-ep -t (1.2.35)

15

Definition 1.2.33 (The floor and ceiling functions). We denote by -] : R — Z and |-] :
R — Z the functions satisfying for all x € R that |x| = max(Z N (—o0,x]) and [z] =

min (Z N (—o0, z]).

1.2.7 The Concatenation of Vectors & Functions

Definition 1.2.34 (Vertical Vector Concatenation). Letm,n € N. Letx = [x1 25 ... T,,)" €
R™ and y = [y1,Y2,---,Yn|" € R™. For every m,n € N, we will denote by x —~ y € R™ x R™

the vector given as:

o

T2

Tm
(1.2.36)

U1

Y2

Yn |

Remark 1.2.35. We will stipulate that when concatenating vectors as x1 — T, T1 1S on

top, and x5 is at the bottom.

Corollary 1.2.35.1. Let my,mao,ny,ns € N, such that my; = ny, ms = ng, and let x € R™,

y € R™, r e R™ andy € R"™. [tis then the case that [x ~ |+ [y ~ 9] = [z +y] ~ [t +v].

16

Proof. This follows straightforwardly from the fact that:

1 Y1 1+ W%
T2 Y2 To + Yo
2 ~t+y~o=| |+ =" | =ty ~ [+ (1.2.37)
I D1 i+
) N2 T2 + 92
sz _Unz_ _sz + Un2_

O

Definition 1.2.36 (Function Concatenation). Let mqy,ny,ma,ne € N. Let f : R™ — R™
and g : R™ — R™. We will denote by f —~ g : R™ x R™ — R™ x R" as the function
given for all v = {xy,z9,...,xym,} € R™, T € {T1,T3,...,Tm,} € R™, and x —~ T =

{531,1'2, R ,ZEml,Tl,fQ, R ,TmQ} e R™ x R™ by

X

T2

— | (1.2.38)

Corollary 1.2.36.1. Let m,n € N. Let v1 € R™ x5 € R", and f € C (R,R). It is then the
case that f (y ~ 73) = f (z2) ~ [(z2).

17

Proof. This follows straightforwardly from the definition of function concatenation. O

Lemma 1.2.37. Let my, mg,ni,ne € N. Let f € C(R™ R™) and g € C (R™ ,R"2). [t is

then also the case that f —~ g € C (R™ x R™ R™ x R™).

Proof. Let R™ x R™ be equipped with the usual product topology, i.e., the topology gen-
erated by all products X x Y of open subsets X € R™ and Y € R". In such a case let
V € R™2 x R™ be an open subset. Then let it be that V; and V| are the canonical projec-
tions to the first and second factors respectively. Since projection under the usual topology
is continuous, it is the case that V; C R™2 and V, C R™ are open sets, respectively. As
such it is then also the case that f~ (V) € R™ and g~'(V,) C R™ are open sets as well

by continuity of f and ¢g. Thus, their product is open as well, proving the lemma. O

18

Chapter 2

Brownian Motion Monte Carlo

2.1 Brownian Motion Preliminaries

We will present here some standard invariants of Brownian motions. The proofs are standard

and can be found in for instance Durrett (2019) and Karatzas and Shreve (1991).

Lemma 2.1.1 (Markov property of Brownian motions). Let T' € R, t € [0,7], and d € N.
Let (2, F,P) be a probability space. Let W; : [0,T] x Q — R? be a standard Brownian
motion. Fix s € [0,00). Let W, = Wy — Ws. Then 00 = {20, : t € [0,00)} is also a
standard Brownian motion independent of V.

Proof. We check against the Brownian motion axioms. First note that 2y = W, o—W; =0
with P-a.s.

Note that t — Wy, — W is P-a.s. continuous as it is the difference of two functions that

are also P-a.s. continuous.

Note next that for h € (0, 00) it is the case that:

E 2 1n — Wy = EWsitin — Wepn — Wapr + Wy
=E [Ws+t+h - Ws—l—t] —-E [Ws+h - Ws]

=0-0=0 (2.1.1)

19

We note finally that:

v [Qnt-l—h - mt] =V [Ws—i-t—i—h - Ws - Ws+t + Ws]

=V [Ws—l—t-i—h - Ws-l—t] -V [Ws - Ws] + Cov (Ws+t — s+t s+h — Ws)

=h—-0=h

Finally note that two stochastic processes W, X are independent whenever given a set of
sample points ti,ts,...,t, € [0,T] it is the case that the vectors [Wy,, Wy,, ..., W,]T and
(X, Xy - - -, A,]T are independent vectors.

That being the case note that the independent increments property of Brownian motions
yields that, Wsi¢, — Ws, Wity — Ws, ..., Wiy, — W is independent of Wy, , Wy, ..., W, ,

i.e. 20 and W are independent. O

Lemma 2.1.2 (Independence of Brownian Motion). Let T" € (0,00). Let (Q,F,P) be a
probability space. Let X,Y :[0,T] x Q — R? be standard Brownian motions. It is then the

case that they are independent of each other.

Proof. We say that two Brownian motions are independent of each of each other if given a
sampling vector of times (t1,ts,...,t,), the vectors (X, , X, ... A;,) and (Viy, Vin, -+ - Vi)
are independent. As such let n € N and let (¢1,%,...t,) be a vector or times with samples
as given above. Consider now a new Brownian motion X —), wherein our samples are now
(X — Yoy Xy — Vigy oo, &, — V). By the independence property of Brownian motions,
these increments must be independent of each other. Whence it is the case that the vectors

(X, Xy oo, X)) and (Vi Viy,y - - -5 W,) are independent. O

Lemma 2.1.3 (Scaling Invariance). Let T' € R, t € [0,T], and d € N. Let (2, F,P) be a

probability space. Let W, : [0,T] x Q@ — R? be a standard Brownian motion. Let a € R\ {0}.

It is then the case that X; = % 2.4 18 also a standard Brownian motion.

Proof. We check against the Brownian motion axioms. Note for instance that the function

20

t — X, is a product of a constant with a function that is P-a.s. continuous yielding a function
that is also P-a.s. continuous.
Note also for instance that X = % - W,2.0 = 0 with P-a.s.

Note that for all h € (0,00), and ¢ € [0,T] it is the case that:

1 1
]E [Xt-f—h _— Xt] -]E aWaQ.(t—’—h) - 5 a2.t
1
= EE [WaQ-(t—l—h) - Wa2-t]
=0

Note that for all A € (0,00), and t € [0, 7] it is the case that:

1 1
A\ [Xt—l—h - Xt] =V EWaQ-(H—h) - a a2+t

1
== \% [Wa2.(t+h) - Wa?-t]

=t h 1)

=h (2.1.2)

Finally note that for ¢ € [0,7] and s € [0,¢) it is the case that W,2, — W,2., is independent

of W,2.,. Whence it is also the case that X; — X is independent of A. O

Lemma 2.1.4 (Summation of Brownian Motions). Let T € R, t € [0,7] and d € N. Let
(Q, F,P) be a probability space. Let W;, X; : [0,T] x Q@ — R? be a standard independent
Brownian motions. It is then the case that the process V; defined as Y, = % W, + &) is

also a standard Brownian motion.

Proof. Note that t — % (W, + &) is P-a.s. continuous as it is the linear combination of
two functions that are also R-a.s. continuous.

Note also that Y, = % Wo + Xp) =0+ 0 = 0 with P-a.s.

21

Note that for all A € (0,00) and t € [t,T] it is the case that:
E[i(y —y)} —Eliw + Xpon — W — &)
o Wrth = o Ve A t — Xt
1

1
= —EWyn — W]+ —E X — X,
\/5 [t+h t] \/i [t—f—h t]
0

Note that for all h € (0,00), and ¢t € [0,T] it is the case that:

1 1
v [% (Vern — yt)] =V {ﬁ Wiph + Xgn — W, — Xt):|
1 1
=V NG Wesn = Wi) + NG (Xern — Xt)}
1 1
= §V[Wt+h—Wt]+§V[Xt+h—Xt]+Co s)
=h

O

Definition 2.1.5 (Of ¢, the modified Kahane-Kintchine constant). Let p € [2,00). We
denote by ¢, € R the real number given by ¢ := inf{c € R} where it holds that for every

probability space (2, F,P) and every random variable X : Q — R with E[|X|] < oo that

=

(E[|X —E X)) < c(E[X[))7 .

Definition 2.1.6 (Primary Setting For This Chapter). Let d,m € N, T, £ p € [0,00),
pe200)m="tp—1,0=27 gec C(RLR), assume for all t € [0,T],x € R? that:

max{|g(z)[} < £ (1 + [lz]z) (2.1.3)

and let (2, F,P) be a probability space. Let W? : [0,T] x Q — R?, 0 € © be independent

standard Brownian motions, let u € C([0,T] x R4, R) satisfy for all t € [0,T), x € R%, that

22

Ellg(z + W_,)|] < oo and:
u(t,z) =E[g (z+Wi_,)] (2.1.4)

and let let U% : [0,T] x R x Q — R, § € O satisfy, 0 € ©, t € [0,T], x € R%, that:

Ul (t,r) = % [Zg (z+ Wgt)] (2.1.5)

k=1

Lemma 2.1.7. Assume Setting 2.1.6 then:

(i) it holds for alln € Ny, 0 € © that U% : [0,T] x R? x Q — R is a continuous random

field.
(ii) it holds that for all 0 € © that o (U”) € o (W),).

(iii) it holds that (U?) (w?) are independent.

0co’ 0co’

(iv) it holds for alln,m €, i,k,i,€ € Z, with (i,k) # (i,8) that (U%"")4cq and (U(G“))eee

are independent and,
(v) it holds that (U9)9€® are identically distributed random variables.

Proof. For (i) Consider that WY_, are continuous random fields and that g € C'(R? R), we
have that UY(t,z) is the composition of continuous functions with m > 0 by hypothesis,

ensuring no singularities. Thus U? : [0, 7] x R? x Q — R is a continuous random field.

For (ii) observe that for all § € © it holds that W’ is B ([0, 7] @ o (W?)) /B (R?)-measurable,
this, and induction on prove item (ii).

Moreover observe that item (ii) and the fact that for all § € © it holds that <W§%g)), w?

are independent establish item (iii).

Furthermore, note that (ii) and the fact that for all 4, k,i,¢ € Z, 6 € O, with (i, k) # (i,¢) it

holds that (W@H#?)) _ and (W) are independent, establish item (iv).

YeO 9€O

23

Hutzenhaler (Hutzenthaler et al., 2020a, Corollary 2.5) establish item (v). This completes

the proof of Lemma 1.1. O

Lemma 2.1.8. Assume Setting 2.1.6. Then it holds for 0 € ©, s € [0,T], t € [s,T], x € R?

that:

IEHU0 (t,x%—Wf,s)” —i—IEHg (:L’+Wf,s)|] +/ IEHUQ (r,x+Wf,s)|] dr < oo (2.1.6)

s

Proof. Note that (2.1.3), the fact that for all r,a,b € [0,00) it holds that (a + b)" <
gmaxtr=10}(g" 4 p"), and the fact that for all § € © it holds that E [[|[WY]] < oo, assure

that for all s € [0,7], t € [s,T], 0 € © it holds that:

Ellglz+WL)|] <E[L(1+ [z +W/,|%)]
< g

(142020 (|1 + E [We%])] < oo (2.1.7)
We next claim that for all s € [0,77], t € [s,T], # € © it holds that:
T
E[[U° (6.2 + W[+ / E[|[U° (r. + WY_,)[] dr < oo (2.1.8)

To prove this claim observe the triangle inequality and (2.1.5), demonstrate that for all
s€[0,T], t e [s,T],0 € 0O, it holds that:

m

SE[lg(z+ W+ Wi)]] (2.1.9)

i=1

1
E[|U° (t,z +W,)|] < —

Now observe that (2.1.7) and the fact that (W?)yco are independent imply that for all

se€[0,T],t€[s,T],0 € 0O,iec Z it holds that:

E[|g (z+ W+ W) = E [lg (o + W)] = E [Jg (o + Wi_)|] < oo

(2.1.10)

24

Combining (2.1.9) and (2.1.10) demonstrate that for all s € [0,T], t € [s,T], 6 € © it holds

that:
E[|U°(t 2z +W,)|] <o (2.1.11)
Finally observe that for all s € [0, 7] 6 € © it holds that:
T
/ E[|U° (r,a+ W)|] < (T —s) sup E[|U° (r,a+W._,)|] <0 (2.1.12)
s re(s,T]

Combining (?7), (2.1.11), and (2.1.12) completes the proof of Lemma 2.1.8.

U
Corollary 2.1.8.1. Assume Setting 2.1.6, then we have:
(i) it holds that t € [0,T],z € R? that:
E[|U°(t,2)]] +E[|g (z + W)_))|] < o0 (2.1.13)
(ii) it holds that t € [0,T),z € R? that:
E[U°(t,2)] =E[g(z+Wp_,)] (2.1.14)
Proof. (i) is a restatement of Lemma 2.1.8 in that for all ¢ € [0, T):
E[|0° (¢ 2)|] +Eflg (z + Wr_,)]]
T
<E[JU° (o + WL +E[lg o+ W]+ [(07 (o4 W) Jar
< 00 (2.1.15)

Furthermore (ii) is a restatement of Lemma 2.1.8 with § = 0, m = 1, and k¥ = 1. This

25

completes the proof of Corollary 2.1.8.1. O

2.2 Monte Carlo Approximations

Lemma 2.2.1. Letp € (2,00), n € N, let (2, F,P), be a probability space and let X; : Q@ — R,

i€ {1,2,..,n} be i.i.d. random variables with E[|X;|] < oco. Then it holds that:

<E

Proof. The hypothesis that for all ¢ € {1,2,...,n} it holds that &} : — R are i.i.d. random

T =

D < {p‘ 1} CEln BRI (221)

n

Elx] - - (Z 2@)

variables ensures that:

p

E =E

Ex] - <Z Xi)

(2.2.2)

This combined with the fact that for all ¢ € {1,2,...,n} it is the case that &; : Q@ — R are
ii.d. random variables and e.g. (Rio, 2009, Theorem 2.1) (with p <~ p, (Si)ic{o,1,..n} O
(ZZ:l(E[Xk] — Xk))7 (Xi>i6{1,2 77777 n} ¥ (]E[XZ] — Xi)ie{l,? n} n the notation Of (].;{iO7 2009,

Theorem 2.1) ensures that:

n

IS)

(]E E X)) - % (i X) -) (E[X] - &)
< (E(E (%) - mﬁ]
_ pn‘; [0 ® B (2] - 4 7)F] (2.2.3)
=P ®(E[x) - 4 (2:2.4)
This completes the proof of the lemma. 0O

26

Corollary 2.2.1.1. Let p € [2,00), n € N, let (Q,F,P) be a probability space, and let

X Q=R ie{1,2,..,n} be ii.d random variables with E[|X;|] < co. Then it holds that:

<E

Proof. Observe that e.g. (Grohs et al., 2018, Proposition 2.3) and Lemma 2.3.1 establish
(2.2.5). O

n

D "< [f’;ﬂ CEN-E@I)E (225)

E] - - (Z 2@)

Corollary 2.2.1.2. Let p € [2,00), n € N, let (2, F,P), be a probability space, and let

X, Q=R ie{l,2,...,n}, be i.i.d. random variables with E[|X;|] < oo, then:

1
n p P
1 t,vp—1 1
(E Bl - (Z ‘“’) D < 22— (B [|4p)? 226
i=1 n:
Proof. This a direct consequence of Definition 2.1.5 and Corollary 2.2.1.1. U

2.3 Bounds and Covnvergence

Lemma 2.3.1. Assume Setting 2.1.6. Then it holds for all t € [0,T], x € R?

(E “Uo(t,it + Wto) —E [UO (t,x + Wto)] |p])%

<™ {(E [‘g<x+wg)}p]>i} (2.3.1)

Proof. For notational simplicity, let Gy : [0,T] x R? x Q — R, k € Z, satisfy for all k € Z,

t €[0,T], x € R? that:
Gy(t,w) = g (2 + W) (2.3.2)

Observe that the hypothesis that (W?)sce are independent Brownian motions and the hy-
pothesis that ¢ € C(R% R) assure that for all ¢ € [0,T],x € R? it holds that (G(t,7))rez

27

are i.i.d. random variables. This and Corollary 2.2.1.2 (applied for every t € [0,T], z € R?
with p ~ p, n m, (Xk)k:e{l,Z,.] m} O (Gr(t,2))ke(1,2,...m}), With the notation of Corollary

2.2.1.2 ensure that for all ¢ € [0,7], z € R?, it holds that:

(E

Combining this, with (2.1.4), (2.1.5), and Item (ii) of Corollary 2.1.8.1 yields that:

(E

— E[Gi(t,x)]

1
m

]) < =5 (E[|Gy(t, z)"))7 (2.3.3)

> Gilt,x)

NE

U°(t,) — E [U°(t, 2)] \”D’l’

| —

m P\ b
= (E % > Gilt)| —E[Gi(t,)] D (2.3.4)
k=1
< (E (iG] (2.3.5)
= (e lo e owior])] 239

This and the fact that W has independent increments ensure that for all m € N, ¢ € [0, T,

x € R? it holds that:

(B[JU° (t,2+ W) —E[0° (t,x+Wf)HpD%< h [(E [|g(m+w;)\p})%] (2.3.7)

m

N =

This completes the proof of Lemma 2.3.1. O

Lemma 2.3.2. Assume Setting 2.1.6. Then it holds for all, t € [0,T], x € R? that:

1 1
(B[JU° (¢ +00) —u(t.o+ W))[]) < ("Z) (E[lg@+n)I'])" @38
m2
Proof. Observe that from Corollary 2.1.8.1 item (ii) we have:

E[U°(t,2)] =E [g (z + W25 ™)] (2.3.9)

28

This and (2.1.4) ensure that:

u(t,z) —E[U°(t,z)] =0

E[U°(t,z)] —u(t,z) =0 (2.3.10)

This, and the fact that W has independent increments, assure that for all, t € [0, 7], z € R,

it holds that:
(B (& [0° (¢, + W] = u (t,+ W)]"])'1’ —0< (E|[u(tz+W)f]) @311)

This along with (2.1.4) ensure that:

o =

(E[|E [0 (ta+Wh)] —u(to+ WE)\"D% —0< (E|lg(z+W)])" (23.12)

Notice that the triangle inequality gives us:

(B [|0° (t,2+ W) —u(t,x+W?)]pD% <(E[lv°ta+w)-E [Uo(t,$+W§)ﬂ|p])%

+ (B[R 107 (o e)] -+ W)P])’

(2.3.13)

This, combined with (1.26), (1.21), the independence of Brownian motions, gives us:

() (& llste o))’
_ (m) <]E [\g (ng)}'“]); (2.3.14)

1
m?2

N

(E “UD (t,x+Wt0) —U(t,x+wt())}P]>%

This completes the proof of Lemma 2.3.2. U

29

Lemma 2.3.3. Assume Setting 2.1.6. Then it holds for allt € [0,T], x € R? that:

(B[|0° (t,2+ W) —u(t,x—l—WtO)]pD% <e (;‘) (i}é%]E 1+ ||g;+V\/gw;)*’]>E

(2.3.15)

Proof. Observe that Lemma 2.3.2 ensures that:

(B[|v° (t,2+ W) —U(f>f'3+W?)’pD% S <n:1

Observe next that (2.1.4) ensures that:

(2) €[eempr]) < () E[a+ lermily)) @

m 2

Which in turn yields that:

o () (E[0+lormtly]) <2 () (sggg]ﬂ*: 1+ ||x+wsug>1)

(2.3.18)

1
p

Combining (2.3.16), (2.3.17), and (2.3.18) yields that:

(10 ey e F]) < () (2 e 001

1
2

<o(2) (s el my])

(2.3.19)

This completes the proof of Lemma 2.3.3. O

30

Corollary 2.3.3.1. Assume Setting 2.1.6. Then it holds for allt € [0,T], x € R? that:

(E []UO (t,z) — u(t,a:)|p]>% <e (m1> (sup E [(1+] z + WP ||’;)”]> E (2.3.20)

m?2 s€[0,T7]

Proof. Observe that for all ¢ € [0,7 —t] and t € [0, 7], and the fact that W° has independent

increments it is the case that:
ut+tz) =Eg(z+Wp_10)] =E[g (= + Wir_y_p)] (2.3.21)
It is also the case that:
U(t+t,2) = % [ig (3: + W;(pogo(’tﬁg)] = % [i (a: + Wit ’“2)]

Then, applying Lemma 2.3.3, applied for all t € [0,T], with £ ~ £ p ~ p, p N p,

T~ (T —t) is such that for all t € [0, 7], t € [0,T — |, x € R? we have:

‘5|»~

(B[(t+ 6o+ WD) —u(t+ta+W)[])

Sﬂ(ml)< sup E[1+||a:+W°H "])
ma s€[0,7—4
< < ml) (sup E [(1+ ||z + W|[5)") (2.3.22)

€[0,7]

Thus we get for all t € [0,7], z € RY, n €:

o =

(B[jv° (t,) _ua,x)r’])‘l’ (B[l (b +W8) —u (b +W)[])
£ (%) (i}é%}E [(1 + ||z + WSHZI’E)”]) (2.3.23)

This completes the proof of Corollary 2.3.3.1. O

=

/A

31

Theorem 2.3.4. Let T, L,p,q,0 € [0,00),m € N, © = {J,.yZ", let g4 € C(R%,R), and
assume that d € N, t € [0,T], * = (21, 22,...,74) € RY, v,w € R and that max{|gs(z)|} <
LdP (1 + 3¢, |xk|q), let (Q, F,P) be a probability space, let W : [0,T] x Q — R¢, d € N,
0 € O, be independent standard Brownian motions, assume for every d € N that (Wdﬁ)eee

are independent, let ug € C([0,T] x R4, R), d € N, satisfy for alld € N, t € [0,T], z € R?
that E [gm (x + ng)] < oo and:

uq (t,) = E [gq (z + WE_,)] (2.3.24)

Let U [0, T] xR¢x Q- R, deN, meZ,0 €0, satisfy for all, deN, m € Z, § € O,
t€[0,T], z € R that:

Un(t,x) = % [Em: ga (z + W%_t)] (2.3.25)

k=1

and for every d,n,m € N let €4, € Z be the number of function evaluations of ug(0,-)
and the number of realizations of scalar random wvariables which are used to compute one
realization of UL%(T,0) : Q — R.

There then exists ¢ € R, and M : N x (0,1] — N such that for all d € N, € € (0, 1] it holds

that:
a0 [P1*
sup sup (E Hud(t,x) — Uniao)]) <e (2.3.26)
t€[0,T) z€[—L,L]4 ’
and:
Camide) nde) < cde”) (2.3.27)

Proof. Throughout the proof let m, = €,./p — 1, p € [2,00), let F¢ C F, d € N, t € [0, 7]

32

satisfy for all d € N, ¢ € [0, 7] that:

i — Necprio (0 (W0 irel0,s))U{Ae F:P(A)=0}) :t<T

o (o (W :sel0,T])U{A e F:P(A) =0}) t=T

Observe that (2.3.28) guarantees that F{ C F, d € N, t € [0, T] satisfies that:

(I) it holds for all d € N that {A € F : P(A) =0} C F¢

(1) it holds for all d € N, ¢ € [0,T], that F{ = (N1 Fs.

(2.3.28)

Combining item (I), item (II), (2.3.28) and (Hutzenthaler et al., 2020b, Lemma 2.17) assures

us that for all d € N it holds that W0 : [0, T] x Q — R? is a standard <Q, F,P, (FY)

tE[O7T]>_

Brownian motion. In addition (58) ensures that it is the case that for alld € N, z € R it

holds that [0, 7] xQ 3 (t,w) — 4+ W’ (w) € R%is an (Ff)te[o T /B (R%)-adapted stochastic

process with continuous sample paths.

This and the fact that for all d € N, t € [0, T], € R? it holds that a,4(¢,) = 0, and the fact

that for all d € N, ¢t € [0,7T], #,v € R? it holds that by(t,z)v = v yield that for all d € N,

x € R? it holds that [0, 7] x Q 3 (t,w) + o+ W*%(w) € R? satisfies for all ¢ € [0, 77 it holds

P-a.s. that:

t t t t
r4+ W =z + / 0ds + / AW = g + / aq(s,z + WHds + / ba(s, v + WE a0
0 0 0 0

(2.3.29)

This and (Hutzenthaler et al., 2020b, Lemma 2.6) (applied for every d € N, z € R? with

dd madTAT, C ~d Co 0, FAFLEAa,uan ag,0 N by, W A

W0 X A <[O, T x Q3 (t,w) =z + W (w) €]Rd> in the notation of (Hutzenthaler et al.,

33

2020b, Lemma 2.6) ensures that for all r € [0,00), d € N, z € R%, t € [0, T] it holds that

r(r+3)T

E [Hx—i—Wtd’o } < max{T,1} ((+lal?)? + (r+1)d%) exp <f> < oo (2.3.30)

This, the triangle inequality, and the fact that for all v,w € [0,00), r € (0,1], it holds that

(v+w)" < v" + w" assure that for all p € [2,00), d € N, 2 € R? it holds that:

sup (B[(1+ o+ W2)])" <1 s ([l wg])’
s€[0,T] s€[0,7]

<1+ sup (maX{T,l} ((1"‘”37H2E)%p+(qp+1) %>e p(w))%

s€[0,T

<1+ max{ 75,1} (14 Jo)}) * + (ap + 1 2p>exp(“3>)

<2 (1 1el) + (ap + 1%) exp (1P I)
2((1+Hx\|)% (qp + 1)d %) eXp<[q(qp+§)+1]T> .

Given that for all d € N, x € [—L, L]? it holds that ||z||, < Ldz, this demonstrates for all

p €[2,00), d € N, it holds that:

(mesup sup (E[(1+ Hﬁwgvoug)”])%)

[~L,L)4 s€[0,T]
(o) o 87 -) (0 2227)
<L (™) (14 220)% + (gp+ 1)d%) exp (AP £ FIT (2.3.32)

(=)) e (12T

34

Combining this with Corollary 2.3.3.1 tells us that:

1
(E [Juat, 2) - g (t.2)*])
1
<L (m—’i) (sup sup (E [(1 + ||:c + Wf’O”qE)pD p)
mz2 x€[—L,L]% s€[0,T]

<L <%> ((+220) % + (ap + 1)a¥) exp <[q<qp ha ;’) 1 T> (2.3.33)

This and the fact that for all d € N and € € (0,00) and the fact that m, < 2, it holds that

for fixed L, q,p,d, T there exists an My, a7 € R such that Mg > My 4,07 forces:

L= ((1 +L%d) % + (gp + 1)d%) exp ([Q(qp i ;’) 1 T) <e (2.3.34)
Nie

Thus (2.3.33) and (2.3.34) together proves (2.3.26).

Note that €qm,, m,. is the number of function evaluations of wu4(0,-) and the number
of realizations of scalar random variables which are used to compute one realization of
Ug’i’ze(T, 0):Q— R. Let ‘I/td\; be the value of 91, that causes equality in (2.3.34). In such a
situation the number of evaluations of u4(0, -) do not exceed ‘ﬁ;;. Each evaluation of u4(0, -)
requires at most one realization of scalar random variables. Thus we do not exceed 2‘3,17;.

Thus note that:

Cam,. . < [2 {me ((1+22) % + (gp + 1)a¥) exp (qu *;’) + 1 T)} 5_1-‘ (2.3.35)

Note that other than d and ¢ everything on the right-hand side is constant or fixed. Hence
(2.3.35) can be rendered as:

Comy .o, < cde™ (2.3.36)

Where both ¢ and £k are dependent on L,p, m, L O]

35

Chapter 3

That u is a Viscosity Solution

Our goal this chapter is to use Feynman-Kac to see that the solutions to certain versions of
the heat equations can be expressed as the expectation of a stocahstic integral. Parts of this

work is heavily inspired from Crandall et al. (1992) and esp. Beck et al. (2021a).

3.1 Some Preliminaries

We take work previously pioneered by It6 (1942a) and 1t (1942b), and then seek to re-apply

concepts applied in Beck et al. (2021a) and Beck et al. (2021b).

Lemma 3.1.1. Letd,m € N, T € (0,00). Let p € CY2([0,T] x RY, RY) and o € CH2([0, T) x
R R¥>™) satisfying that they have non-empty compact supports and let & = supp(p) U
supp(c) C [0,7] x R%. Let (Q, F,P, (Fy)icior)) be a filtered probability space satisfying usual
conditions. Let W : [0,T] x Q — R™ be a standard (Fy)cpo,r) -Brownian motion, and let
X [0,T] x Q@ — R* be an (Fy)se0,1)-adapted stochastic process with continuous sample paths

satisfying for all t € [0,T] with P-a.s. that:

t t
X =X, +/ w(s, Xs)ds + / o(s, Xs)dWy (3.1.1)
0 0

It then holds that:

36

(i) [(P(X ¢6)=1) = PVt e[0,T]: X =) =1)]
(ii) (P(Xe®)=1) = PMVte[0,T]: X, €&)=1)]

Proof. Assume that P(Xy ¢ &) = 1, meaning that the particle almost surely starts outside
S. It is then the case that P(Vt € [0,T] : [|u(t, Xo)|| g + ||o(t, Xo)||r = 0) = 1 as the p and o

are outside their supports, and we integrate over zero over time.

It is then the case that:
= ([0,T] x 23 (t,w) = Xy(w) € RY) (3.1.2)

is an (F;):cp,r) adapted stochastic process with continuous sample paths satisfying that for

all t € [0, T] with P-almost surety that:

t t
yt:XO’i‘/OdS-f‘/OdWS:X()'f‘/ SX()dS‘l‘/O’SXO
0 0 0

:XO+/ s, Vs d8+/ o(s,Vs)d (3.1.3)
0 0

Note that since u € C*2([0, T]x R4, R?) and o € C*2([0, T] x R?, R*™), and since continuous
functions are locally Lipschitz, and since this is especially true in the space variable for p
and o, the fact that G is compact and continuous functions over compact sets are Lipschitz
and bounded, and (Karatzas and Shreve, 1991, Theorem 5.2.5) allows us to conclude that

strong uniqueness holds, that is to say:

establishing the case (i).
Assume now that P(Xy € &) = 1 that is to say that the particle almost surely starts inside
S. We define 7 : Q — [0,7] as 7 = inf{t € [0,T] : X, &€ &}. 7 is an (F)sco,r-adapted

stopping time. On top of 7 we can define Y : [0,7] x Q — R?, for all t € [0,T], w €

37

as Vy(w) = Xinge,r} (w). YV is thus an (F;)icpo,m-adapted stochastic process with continuous
sample paths. Note however that for ¢ > 7 it is the case ||u(t, V) + o(t, V4)||g = 0 as we are
outside their supports. For t < 7 it is also the case that), = A;. This yields with P-a.s.

that:

min{¢,7} min{¢,7}
Vi = Xmin{t,r} = X +/ ,U(S, Xs)ds +/ O'(S, Xs)dWS
0 0
t

t
=X+ / 1{0<5<T}M<57 Xs)ds + / 1{0<S<T}U(S7 Xs)dWs
0 0

t t
=X —l—/ w(s, Vs)ds —|—/ o(s, Vs)dW; (3.1.5)
0 0

Thus another application of (Karatzas and Shreve, 1991, Theorem 5.2.5) and the fact that
within our compact support &, the continuous functions p and o are Lipschitz and hence

locally Lipschitz, and also bounded gives us:

Proving case (ii). O

Lemma 3.1.2. Let d,m € N, T € (0,00). Let g € C*(R%,R). Let u € CH3([0,T] x RY RY)
and o € CY3([0,T] x RY, R>™) have non-empty compact supports and let & = supp(u) U
supp(0). Let (Q,F, P, (Fi)icpr)) be a stochaastic basis and let W : [0,T] x Q@ — R™ be a
standard (F),eo.1)-Brownian motion. For every t € [0,T] , v € RY, let X' = (X5") i :

t,T] x Q — R? be an (Fy)sepr-adapted stochastic process with continuous sample paths

satisfying for all s € [t,T] with P-almost surety that:

2=t a2y [ot aiaw, (3.0.7)
t t

38

also let u : RY — R satisfy for allt € [0,T], x € R? that:
u(t,z) = E [g(X:")] (3.1.8)

then it is the case that we have:
(i) uw e C*2([0,T] x R4 R) and

(ii) for allt € [0,T], x € RY that u(T,x) = g(z) and:

<%u) (t,x) + % Trace (o (t,z) [0 (t,2)]" (Hess, u) (t,x)) + (u (¢, 2), (Veu) (¢, x)) =0

(3.1.9)

Proof. We break the proof down into two cases, inside the support & = supp(u) U supp(o)
and outside the support: [0,7] x (R?\ &).

For the case inside &. Note that we may deduce from Item (i) of Lemma 3.1.1 that for all
t€[0,T), x € RY\ & it is the case that P(Vs € [t,T] : X* = x) = 1. Thus for all ¢ € [0, T,

r € R?\ & we have, deriving from (3.1.8):

u(t,z) = E [g (X:")] = g(z) (3.1.10)

Note that g(z) only has a space parameter and so derivatives w.r.t. ¢t is 0. Inhereting from
the regularity properties of g and (3.1.10), we may assume for all t € [0,T], z € R\ &,
that ulj 7« rae) € CH*([0,T] x (R*\ &)). Note that the hypotheses that € C**([0,T] x
R? R?) and o € C13([0, T] x R4, R¥>*™) allow us to apply Theorem 7.4.3, Theorem 7.4.5 and
Theorem 7.5.1 from Da Prato and Zabczyk (2002) for ¢ € [0,T], x € R?\ &, to give us:

(i) u e C12([0,T] x RLR).

39

o
I

(%u) (t,x)
(%u) (t,z) + %Trace (o(t,x)[o(t,z)]" (Hess, u) (t,x)) + (u(t, x), (Viu) (¢, x))

(3.1.11)

Now consider the case within support &. Note that by hypothesis ;1 and o must at least be
locally Lipschitz. Thus (Karatzas and Shreve, 1991, Theorem 5.2.5) allows us to conclude
that within & the pair (u,0) for our our stochastic process X** defined in (3.1.7) must

exhibit a strong uniqueness property.

Further note that Item (#i) from Lemma 3.1.1 tells us that:
P(Vt € [0,T]: X" € &) = 1. (3.1.12)

Note that again the hypotheses that p € C*3([0, T] x R%, R?) and o € C13([0, T] x RY, R¥*™),
and g € C?(R%) allow us to apply Theorem 7.4.3, Theorem 7.4.5 and Theorem 7.5.1 from

Da Prato and Zabczyk (2002) for ¢t € [0,T], z € &, to give us:
(i) uwe CY%([0,T] x R% R).
(ii)

(%u) (t,z) + %Trace (o(t,x)[o(t,z)]" (Hess, u) (t,x)) + (u(t, x), (Viu) (t,2)) =0

(3.1.13)

Note that (3.1.7) and (3.1.8) together prove that u(T,z) = g(x). This completes the proof.
U

40

3.2 Viscosity Solutions

Definition 3.2.1 (Symmetric Matrices). Let d € N. The set of symmetric matrices is
denoted Sy given by Sg ={A €Sy : A* = A}.

Definition 3.2.2 (Upper semi-continuity). A function f: U — R is upper semi-continuous

at xqg if for every € > 0, there exists § > 0 such that:
f(x) < f(xo) +& forall x € B(x0,0) NU (3.2.1)

Definition 3.2.3 (Lower semi-continuity). A function f: U — R is lower semi-continuous

at xqg if for every € > 0, there exists 6 > 0 such that:
f(x) > f(xo) — e for all x € B (xy,0) NU (3.2.2)

Corollary 3.2.3.1. Given two upper semi-continuous functions f,g : R? — R, their sum

(f +9) : R — R is also upper semi-continuous.

Proof. From definitions, at any given zy € RY, for any ¢ € (0, 00) there exist neighborhoods

U and V around z(such that:

(Vz € U) (f(z) < f(zo) +¢) (3:2.3)
(Vz € V) (g(x) < g(20) +¢) (3:24)
and hence:
(Vz e UNV) (f(x)+g(x) < f(xo) + g(x0) + 2¢) (3.2.5)
O

Corollary 3.2.3.2. Given an upper semi-continuous function f : R* — R, it is the case

41

that (—f) : RT — R is lower semi-continuous.

Proof. Let f:R?— R be upper semi-continuous. At any given zy € RY, for any € € (0, 00)

there exists a neighborhood U around z(such that:
(Vo € U) (f(x) < flzo) +¢) (3.2.6)

This also means that:

(Ve € U) (= f(x) =2 —f(xo) —¢)
(3.2.7)
This completes the proof. O

Definition 3.2.4 (Degenerate Elliptic Functions). Let d € N, T' € (0,00), let O C R? be a
non-empty open set, and let (-,-) : R? x R — R be the standard Euclidean inner product on

Re. G is degenerate elliptic on (0,T) x O x R x R? x S, if and only if:
(i) G:(0,T)x O xR xR?x Sy — R is a function, and

(ii) for allt € (0,T), 2 € O, r €R, pe R, A B €Sy, with Vy € R (Ay,y) < (By,y)
that G(t,x,r,p, A) < G(t,z,r,p, B).

Remark 3.2.5. Lett € (0,7), 2 € R4, r e R, pe R? A€S,;. Letu € CV2([0,T] x R4 R),
and let o : RT — R and p : R — R be infinitely often differentiable. The function

G:(0,T) xRTx R x R? xSy — R given by:
Gtz rp, A) = %Trace (0(2) [o(2)]" (Hess, u) (£,2)) + (u(t 2), Vou (7)) (3.2.8)

where (t,z,u(t, z), u(z),o(z) [o(z)]") € (0,T) x R x R x R x Sy, is degenerate elliptic.

42

Lemma 3.2.6. Given a function G : (0,T) x O x R x R x S; — R that is degerate elliptic
on (0,T) x O x R x R? x Sy it is also the case that H : (0,T) x O x Rx RYx S; — R given

by H(t,x,r,p,A) = —G(t,z, —r, —p, —A) is degenerate elliptic on (0,T) x O x R x R% x S,.

Proof. Note that H is a function. Assume for y € R? it is the case that (Ay,y) < (By,y)
then it is also the case by (??) that (—Ay,y) > (=By,y) for y € R%. However since G is
monotoically increasing over the subset of (0,7) x O x R x R% x S; where (Ay,y) < (By,y)
then it is also the case that H(t,z,r,p, A) = -G(t,x,—r,—p, —A) = —G(t,x,—r,—p, —B) =
H(t,x,r,p, B).

0

Definition 3.2.7 (Viscosity subsolutions). Let d € N, T € (0,00), let O C R? be a
non-empty open set, and let G : (0, T)x OxRxRYxS; — R be degenrate elliptic. Then we say
that u is a viscosity solution of (%u) (t,z) + G (t,z,u(t,x), (Vyu) (t,x), (Hess, u) (t,z)) = 0

for (t,z,) € (0,T) x O if and only if there exists a set A such that:
(i) we have that (0,T) x O C A.
(i) we have that u: A — R is an upper semi-continuous function from A to R, and
(iii) we have that for allt € (0,T), z € O, ¢ € C**((0,T) x O,R) with ¢(t,z) = u(t,x)
and ¢ > u that:

(%ud> (t,x) + G (t,x,p(t,x), (V) (t,x), (Hess, @) (t,z)) = 0 (3.2.9)

Definition 3.2.8 (Viscosity supersolutions). Let d € N, T € (0,00), let O C R? be a
non-empty open set, and let G : (0, T)x OxRxR4xS; — R be degenrate elliptic. Then we say
that u is a viscosity solution of (%u) (t,z) + G (t,z,u(t,x),(Vyu) (t,x), (Hess, u) (t,z)) <0

for (t,x,) € (0,T) x O if and only if there exists a set A such that:
(i) we have that (0,T) x O C A.

43

(i) we have that u : A — R is an upper semi-continuous function from A to R, and
(iii) we have that for all t € (0,T), z € O, ¢ € C**((0,T) x O,R) with ¢(t,z) = u(t,x)
and ¢ < u that:

(%ud) (t,x)+ G (t,z,p(t,z), (V.0) (t,), (Hess, ¢) (t,2)) <0 (3.2.10)

Definition 3.2.9 (Viscosity solution). Let d € N, T' € (0,00), O C R? be a non-empty open
set and let G : (0,T) x O x R x R% x Sy — R be degenerate elliptic. Then we say that ug is

a viscosity solution to (Zuy) (t,2) + G(t,x,u(t,z), Vy(x,t), (Hess, ug)(t, z)) if and only if:

(i) w is a viscosity subsolution of (%ud) (t,2)+G(t, z,u(t,x), Vi(x,t), (Hess, uq)(t,z)) =0
for (t,x) € (0,T) x O

(i) w is a viscosity supersolution of (Suq) (t,2)+G(t, z, u(t, z), Vy(z,t), (Hess, uq)(t, x)) =
0 for (t,x) € (0,T) x O

Lemma 3.2.10. Let d € N, T € (0,00), t € (0,7T), let O C R? be an open set, let v € O,
¢ € CY2((0,T) x O,R), let G: (0,T) x O x R x R x Sy — R be degenerate elliptic and let
ug: (0,7) x O = R be a viscosity solution of

(Zuq) (t,z) + G (t,z,u(t,z), (Vyup) (¢,), (Hess, ug) (¢,) =0 for (t,z) € (0,T) x O, and

assume that u — ¢ has a local mazimum at (t,x) € (0,T) x O, then:

(%qﬁ) (t,v) + G (t, v, u(t,v), (V.0) (t,v), (Hess, ¢) (t,¢)) >0 (3.2.11)

Proof. That u is upper semi-continuous ensures that there exists as a neighborhood U around

(t,v) and ¢ € CH2((0,T) x O,R) where:
(i) for all (t,z) € (0,T) x O that u(t,r) — ¥ (t,) > u(t,x) — (¢,)

(ii) for all (¢,z) € U that ¢(t,x) = ¢(t, x).

44

We therefore obtain that:

<%¢) (t,v) + G (t,v,u(t,v), (V) (t ¢v), (Hess, ¢)(t,t))

= (%w) (61) + G (65, u(t, 1), (V) (4,1), (Hess, 4)(£,1)) > 0 (3:212)

0l

Lemma 3.2.11. Let d € N, T € (0,00), let O C R? be a non-empty open set, let u, :
(0,T) x O — R, n € Ny be functions, let G, : (0,T) x O xRxR¥xS; - R, n € N
be degenerate elliptic, assume that G is upper semi-continuous for all non-empty compact

KC(0,T)x OxRxR?xSy that:

lim sup
n—oo

sup (|un(t7'r> - U()(t, .’L‘)| + |Gn(t7 T, 7, D, A) - GO(tv'Tu EYZ A>|) =0 (3213)
(t,z,r,p,A)EK

and assume for all n € N that u,, is a viscosity solution of:

(%un) (t,x) + Gy (t,z,un(t,), (Viu,)(t, x), (Hess, u,)(t,x)) = 0 (3.2.14)

then ug is a viscosity solution of:

(%u()) (t,z) + Gy (t,x,up(t, x), (Vauo)(t,), (Hess, ug)(t, z)) = 0 (3.2.15)

Proof. Let (to,x¢) € (0,T) x O. Let ¢, € C**((0,T) x O,R) satisty for all € € (0,00),

s € (0,T), y € O that ¢o(to, o) = uo(to, o), Po(to, z0) = uoe(to, zo), and:

O=(5,9) = do(s,y) + € (|s — to| + [ly — 2ol) (3.2.16)

Let § € (0,00) be such that {(s,y) € R? x R : max (|s — to|?, ||y — z0[|%) < §}. Note that

this and (3.2.27) then imply for all € € (0, 00) there exists an v. € N such that for all n > v,

45

and max (|s — tol, ||y — xol|lg) < 9, it is the case that:

1)

sup ([un(s, y) = uo(s,9)|) < 5 (3.2.17)

Note that this combined with (3.2.16) tells us that for all ¢ € (0,00), n € NN [v,),

s€(0,7),y € O, with |s —tg| <9, ||ly — xollg <0, |s — to| + ||y — x|l > ¢ that:

Un(to, l’o) — ¢5(t0, ZL’()) = Un(to, l’o) — ¢0(t0, I’o) (3218)

= up(to, o) — uo(to, o)
—&d
2

V

V

= un(57y) - U0<8, y) —¢€ (|S - t0| + Hy - 'TOHE)
> un(8,y) — ¢o(s,y) — € ([s — tol + [ly — xol|p)

= un(87 y) - ¢6(S7 y) (3219)

Note that Corollary 3.2.3.1 implies that for all € € (0,00) and n € N that u,, — ¢. is upper
semi-continuous. There therefore exists for all € € (0,00) and n € N, a 75 € (top — 0,t9 + 6)

and a p:, where ||p5 — x¢|| < d such that:

Un (7o, 05) — (T, 05) = un(s,y) — ¢e(s,y) (3.2.20)

By Lemma 3.2.10, it must be the case that for all € € (0,00) and n € NN [v,, 00):

0
(agba) (7—57 pi) + Gn (Trgw piu Un (Trgm piz)) (v$¢€) (7—27 pi)) (HGSS;U ¢6) (Ts7 pi)) > 0 (3221)

Note however that (3.2.20) along with (3.2.16) and (3.2.27) yields that for all ¢ € (0, 00)

46

that:

lim sup [Un(Tza pfz) - ¢€(Ti7 pfw)]

n—oo

> limsup [un (7, pr,) = (P0(75,) + € (17 = tol + |2}, — ol|))]

n—oo

> limsup [un (7, p5,) — wo(7y, p5,) — € (|75 — to| + o5, — w0l £)]
n—oo

— limsup [~ (|7 — to] + 65 — zoll)] < 0 (3.2.22)

n—oo

However note also that since Gy is upper semi-continuous, further the fact that, ¢g €

((0,7) x O,R), and then (3.2.27), and (3.2.16), imply for all ¢ € (0,00) we have that:

lim sup,,_, ‘(%%) (75s PR) — (%%) (toﬂfo)‘ = 0 and:

Go (to, zo, ¢o (to, To) , (Vado) (to, zo) , (Hess, o) (to, xo) + Idga)

= GO (th Zo, Ug (tO) 370)) (vx¢s) <t07 l’o) 9 (HGSSx ¢a) (th xO))

> limsup [Go (7, 0, un (75, 07) » (Va@e) (75, 05) , (Hesse 6:) (7, 07,))] (3.2.23)
2 limsup G (7, o5, un (7, 07) 5 (Va®e) (7, 07) , (Hessy éc) (77, 07,))] (3.2.24)

This with (3.2.20) assures for all € € (0, 00) that:
0
a% (to, x9) + Go (to, Zo, ¢o (to, Zo) , (Vo) (to, zo) , (Hesss ¢o) (to, zo) + ldga) > 0
(3.2.25)
That Gy is upper semi-continuous then yields that:

(%%) (t[); 5170) + Gy (to, xo, Po (t07 330)) (dem) (t07 330)) (HeSSx ¢0) (to, xo) + dde) =0

(3.2.26)

47

This establishes (3.2.29) which establishes the lemma.
Ul

Corollary 3.2.11.1. Let d € N, T € (0,00), let O C R be a non-empty open set, let
Uy 2 (0,T) x O = R, n € Ny be functions, let G, : (0,T) x Ox RxR?xS; - R, neN
be degenerate elliptic, assume that Ggo is lower semi-continuous for all non-empty compact

KC(0,T) xOxRxR?xSy that:

sSup (|U,n(t,l') - UO(ta ZL’)| + |Gn(ta Z,T,D, A) - GO(t7$a D, A)|) =0 (3227)
(t,x,r,p,A)EK

lim sup
n—oo

and assume for all n € N that u,, is a viscosity solution of:

0

pT (t,z) + G, (t, 2, un(t, x), (Veu,)(t, z), (Hess, uy,)(t, x)) <0 (3.2.28)
then ug is a viscosity solution of:

(%w) (t,z) + Gy (t,x,up(t, x), (Vouo)(t,), (Hess, ug)(t, z)) <0 (3.2.29)

Proof. Let v, : (0,T) x O — R, n € Ny and H, : (0,7) x O x R x R x S; — R satisfy
foralln € Ny, t € (0,T),z€ O, r € R, p e R4, A €Sy that v,(t,2) = —u,(t,z) and that
H,(t,x) = -G, (t,x,—r,—p, —A).

Note that Corollary 3.2.3.2 gives us that Hj is upper semi-continuous. Note also that since
it is the case that for all n € Ny, G,, is degenerate elliptic then it is also the case by Lemma
3.2.6 that H, is degenerate elliptic for all n € Ny. These together with (3.2.28) ensure that

for all n € N, v,, is a viscosity solution of:

(%vn) (t,z)+ Hy, (t,z,v, (t,x), (Vyv,) (L,), (Hess, v,) (t,2)) =0 (3.2.30)

48

This together with (3.2.27) establish that:

n—r00 (t,z,r,p,A)EX

hmsup [sup (|un(t7x) —u0<t,$>‘ + |Hn(t,l’,7’,p, A) —Ho(t,x,r,p, A)') =0 (3231)
This (3.2.30) and the fact that Hy is upper semi-continuous then establish that:

<%vo> (t,x) + Ho (t, z,v0(t,x), (Vi) (t, z), (Hess, vo)(t, z)) =0 (3.2.32)

for (t,z) € (0,T) x O. Hence vy is a viscosity solution of:

(%u0> (t,x) + Ho (t, 2, uo(t,), (Viug)(t, z), (Hess, ug)(t,z)) <0 (3.2.33)

This completes the proof. O

Corollary 3.2.11.2. Let d € N, T € (0,00), let O C R? be a non-empty set, let u, :
(0,T) x O = R, n € Ny, be functions, let G,, : (0,T) x Ox Rx R¥xS; = R, n € Ny be
degenerate elliptic, assume also that Gy : (0,T) x O x R x R x Sy — R be consinuous and

assume for all non-empty compact K C (0,T) x O x R x R x Sy it is the case that:

limsup [sup (|Gn (t,xarvva)_GO (t,ZC,T,p,A)l“‘th (taif)—uo (tvl')') =0

n—00 (t,z,r,p,A)EK
(3.2.34)

and further assume for all n € N, that u, s a viscosity solution of:

0

pra (t,x) + Gy (t,x,u, (t,x), (Vauy,) (8, x) , (Hess, uy) (t,2)) =0 (3.2.35)
for (t,z) € (0,T) x O, then we have that uy is a viscosity solution of:

0

57 U0 (t,x) + Go (t,z,ug (t,x), (Vaug) (t,z), (Hess, up) (t,2)) =0 (3.2.36)

49

Proof. Note that Lemma 3.2.11 gives us that ug is a viscosity solution of:

(%w) (t,z) + Gy (t,x,up(t, x), (Vouo)(t,), (Hess, ug)(t, z)) = 0 (3.2.37)

for (t,x) € (0,7) x O. Also note that Corollary 3.2.11.1 ensures that v is a viscosity solution

of:

0

570 (t,z) + Gy (t,x,up(t, x), (Vauo)(t,), (Hess, ug)(t, z)) <0 (3.2.38)
Taken together these prove the corollary. O

Lemma 3.2.12. For all a,b € R it is the case that (a + b)* < 2a® + 20°.

Proof. Since for all a,b € R it is the case that (a — b)* > 0 we then have that:

(a+b)? < (a+b)?+ (a—b)?
< a® 4 2ab + b* + a® — 2ab + V?

= 2a?% + 2?

This completes the proof. O

Lemma 3.2.13. Let d,m € N, T € (0,00). Let O C R be a non-empty compact set, and

for all n € Ny, p,, € C([0,T] x O,R), o, € C([0,T] x O, R>™) assume also:

limsup | sup sup (|| pa(t,) = po(t,) |5 + [lon(t, #) = oo(t,)| p) | =0 (3.2.39)
n—oo | t€[0,T] z€O

Let (2, F,R) be a stochastic basis and let W : [0,T] x Q — R™ be a standard
(Fi)teqo,11-Brownian motion for every t € [0,T], v € O, let X" = (X1") st : [t,T] x Q —

S

R? be an (Fs)see,r) adapted stochastic process with continuous sample paths, satisfying for

20

all s € [t,T] we have P-a.s.
Xt = x—l—/ fn (1, Xs”’t’x)dr—l—/ o (r, XY AW, (3.2.40)
t t
then it is the case that:

lim sup [sup sup sup (IE [HXS"M — XSOMHZ])] =0 (3.2.41)

n—oo | t€[0,T] s€[t,T]) z€O

for (t,x) € (0,T) x R™.

Proof. Since O is compact, let L € R be such that for all ¢ € [0,7T], z,y € O it is the case

that:

0 (t, 2) = po(t,)l 2 = lloo(t,) + oo(t,y)llr < Lz —ylle (3.2.42)
Furthermore (Karatzas and Shreve, 1991, Theorem 5.2.9) tells us that:

sup E [[|X]|g] < oo (3.2.43)

s€[t,T]

Note now that (3.2.40) tells us that:

00— 200 — [, 1, 200) ol AN+ [, 220) = o, 22,
t t

(3.2.44)

Minkowski's Inequality applied to (3.2.44) then tells us for all n € N, t € [0,T], s € [t,T],

and z € O that:

ez = a2, 0)% < (8 ot 220) = s 22]) s

(IE 2]) 5 (3.2.45)

/ (0, X% — oo, X)) AW,
t

o1

[t0's isometry applied to the second summand yields:

N|=

1 s
(8 [l = 20)5 < [(B [lnatr2200) = ol 200 2]) e+

1
(/ E [Ho—n(r, X0T) — og(r, Xovtvf)Hi,] dr)) (3.2.46)
t

Applying Lemma 3.2.12 followed by the Cauchy-Schwarz Inequality then gives us for all
neN, tel0,T],seltT], and x € O that:

e - i) <2 [(8 [t 20 o 20)2]) |
+2 /1t E [, 70) = oo (r, 2247) 3] ar
<2T /:IE [”un(r, Xm0) _ o, vafvl‘)HQE} dr
+2 /t K [Han(r, XY — oo, Xf’t’x)HQF} dr (3.2.47)

Applying Lemma 3.2.12 again to each summand then yields for alln € N, ¢t € [0,T] s € [¢,T],

and x € O it is the case that:

B [l - x|
< 2T/ <2E [H,un(r, XY — po(r, Xf”)Hz] + 2K |:||/J,[)(’I", XY — pg(r, XSM)HQED dr
t

2
+2 [(2 [lon(r, 227) = ool 2)[2] + 28 [t &74%) = oatr, 22|])
t

(3.2.48)

However assumption (3.2.42) then gives us that foralln € N, ¢t € [0,7], s € [t,T],and z € O

02

that:

E[[|xpee — a0t |3] < 4237 +1) /SE ([0 — a0t dr
t

HAT(T +1) | sup sup (||a(r,y) — po(r,)5 + lon(r,y) — oo(r,y)[[2)

rel0,T] yeRd]

Finally Gronwall's Inequality with assumption (3.2.43) gives us for all n € N, t € [0,7],
s € [t,T], z € O that:

B [l — 202

2
<AT(T +1) | sup sup ([lun(r,y) = po(r,)% + lon(r,y) — oy(r,9)|17) | XY

rel0,T] yeRd

(3.2.49)

Applying limsup,,_,., to both sides and applying (3.2.39) gives us for all n € N, ¢ € [0, 7],
s € [t,T], z € O that:

limsup E ||| — 043] <
n—oo

lim sup
n—oo

2
AT(T +1) [sup sup (|la(r,y) — no(r, 9 + llow(ry) — oo(r, y)ll?)] et T(T“)]
rel0,7] yeRd

<
] 2
AT(T + 1) |limsup [sup_sup ([ln(r,y) = po(r,)l + llon(r, y) — oo(r, y)H?)” ety
n—oo [reg[0,T] ycRd
<0
This completes the proof. O

Lemma 3.2.14. Let d,m € N, T € (0,00), let O C [0,T] x R%, let u € C([0,T] x O,R?)
and o € C([0,T] x O,R>™) have compact supports such that supp(u) Usupp(o) C [0,T] x O
let g € C(R% R). Let (Q,]—", P, (Ft>te[0,T}) be a stochastic basis, let W : [0,T] x Q@ — R™ be

93

a standard (Fy)ieor) Brownian motion, for every t € [0,T], x € R, let X" = (X)) sep -
[t,T] x Q — R? be an (Fs)sefe,m adapted stochastic process with continuous sample paths

satisfying for all s € [t,T] with F-a.s. that:
X =z + /ts p(r, X5%) dr + /ts o (r, X5%) dW, (3.2.50)
and further let u : [0,T] x R? — R satisfy for all t € [0,T], x € R? that:
u(t,z) =E [g (XF")] (3.2.51)
Then u is a viscosity solution of:

(%u) (t,x) + %Trace (o(t,z) [o(t,x)]" (Hess, u) (t,) + (u(t, x), (Viu) (t,x)) =0
(3.2.52)
and where u(T,x) = g(x) for (t,z) € (0,T) x O.

Proof. Let S = supp(u) U supp(o) C [0,7] x O be bounded in space by p € (0,00), as
S C [0,T] x (—p, p)?. This exists as the supports are compact and thus by Hiene-Bérel is
closed and bounded. Let s,,, m,, € C>([0, T]xR* R*") where | J,, oy [supp(s,) U supp(m,,)] €

[0, T] x (—p, p)¢ satisfy for n € N that:
timsup | sup sup (Ima(t, 2) — (6, 7)1 + s — 006,)l)| = 0 (3259

n—00 te[0,T] zeR

We construct a set of degenerate elliptic functions, G™ : (0,T) x R x R x R? x S; — R with

o4

n € Ny such that:

GOt,z,r,p, A) = %Trace (o(t,x)[o(t,x)]"A) + (u(t,z),p) (3.2.54)
and
G (t, 2,7, p, A) — %Trace (s (t,)5 (£, 2)]" A) + (u(t, 7). p) (3.2.55)

Also let g, € C*(R% R) for n € N satisfy for all n € N that:

limsup sup sup (||gn(z) — g(x)||g) =0 (3.2.56)

n—oo te[0,T] xeR

Further let X™"* = (X2%)seper : [t, T) X Q — R be an (Fy) e, r-adapted stochastic process

with continuous sample paths that satisfy:
XMt =g /ts m,, (r, X5)dr + /ts 5, (1, XBY AW, (3.2.57)
Finally let u™ : [0,T] x R? — R for n € N be:
u" =E[g, (X3")] (3.2.58)
and:
u’ =E [g, (X)] (3.2.59)

Note that (Beck et al., 2021b, Lemma 2.2) with g « gk, g My, 0 A 5,, X7~ XHE

gives us u" € CH2([0,T] x R4, R), and u"(t,x) = gp(z) where:

<%un> (t,x) + %Trace (5n(t,) [, (¢, 2)]" (Hess, u™) (t,x)) + (m, (¢, z), (V,u") (t,2)) =0

(3.2.60)

95

And by Definitions 3.2.7, 3.2.8, and 3.2.9 we have that u” is a viscosity solution of

(%un> (t,z) + %Trace (5,(t,) [5,(¢, 2)]" (Hess, u™) (¢, x)) + (m, (¢, x), (V,u") (t,2)) =0

(3.2.61)

for (t,2) € (0,T) x R%.

Since for all n € N, it is the case that & = (supp(m,) U supp(s,) Usupp(u) Usupp(c)) C
[0, T]x (—p, p)? and because of (3.2.50) of (3.2.57) we have that (Beck et al., 2021a, Lemma 3.2,
Item (ii)) which yields that for all n € N, t € [0,T], z € R?\ (—p, p)¢ that P(Vs € [t,T] :
Xt = g = X4%) = 1. This in turn shows that for all n € N, x € R4\ (—p, p)¢ that

u"(t, z) = u%(t,) which along with (3.2.58) and (3.2.59) yields that:

sup sup Hu”(t,x) —uo(t,x)H = sup sup Hu"(t,x) —uo(t,x)H
te[0,T] zeRd te[0,T] ze(—p,p)?

< sup sup (E[|ge (X7°7) —g (XF9)[]) (3.2.62)
t€[0,T] ze(—p,p)?
Note that Lemma 3.2.13 allows us to conclude that:

n—oo | t€[0,T] z€(—p,p)?

lim sup [sup sup (E[||x7" — X;xHD] =0 (3.2.63)
But then we have that (3.2.62) which yields that:
lim sup [sup sup (|u"(t,z) — uo(t,x)D] =0 (3.2.64)
n—0 te[0,T] R4

However now note that (3.2.55) and (3.2.61) thus yield that for n € Ny, u™ is a viscosity

o6

solution to:
0
(aun> (t,z) + G" (t,x,u" (t,z),(Vu") (t,x), (Hess, u") (t,2)) =0 (3.2.65)

But since we've established (3.2.53) we have that for a non-empty compact set C C (0,7") x
O xR x R?* x S, that:

lim sup [sup ‘G” (t,z,7,p, A) — G° (t,,7,p, A)‘

n—00 (t7x7’r7p7A)€C

<limsup[sup IIM(t,x)—mn(t,:v)llEHpHE]

n_>m (t7x7,r‘7p7A) eC

+ lim sup [(sup |lo(t,x) [o(t,2)]" — sn(t,) [sn(t,)]z [|Al | =0 (3.2.66)

n—00 t,z,r,p,A)eC

This, together with (3.2.64), (3.2.65) and Corollary 3.2.11.2 yields that u° is also a viscosity

solution to:
9 o 0 0 0
(8tu > (t,z) + G° (t,2,u°(t, 2), (V,u°) (¢, x), (Hess,) (¢,2)) =0 (3.2.67)

Finally note that (3.2.53), (3.2.57), (3.2.59), and (3.2.67) yield that u is a viscosity solution
of::

(%u) (t,x) + %Trace (o(t,x)[o(t,z)]" (Hess, u) (t,2)) + (u(t, x), (V) (t,2)) =0 (3.2.68)

for (t,x) € [0,T] x R%. Finally (3.2.50) and (3.2.51) allows us to conclude that for all z € R?

it is the case that (7, z) = g(x). This concludes the proof. O

Lemma 3.2.15. Let d,m € N, T € (0,00), further let O C R? be a non, empty compact
set. Let every r € (0,00) satisfy the condition that O, C O, where O, = {x € O :

(lz|g <r and {y eR*: |ly — z||p < 1} CO)} let g € C(O,R), p € C([0,T) x O,R), V €

57

CH2([0,T] x O, (0,0)), assume that for all t € [0,T], x € O that:

It) — p(t,y)lle + llo(t,) — ot y)llr . . ~
sup ({ 12— olls :tel0,T],z,y € O,, #y}U{O}) <

(3.2.69)

<%V> (t,x) + %Trace (o(t,z) [o(t,)]" (Hess, V) (t,2)) + (u(t,z), (V.V) (t,z)) <0

(3.2.70)

assume that Sup,¢ g) [Infreoro, V (£, 2)] = 0o and inf,c(o) [Supte[o,T] SUPzco\O, (%)] =

0. Let (Q,]—", P, (Ft)te[()j’]) be a stochastic basis and let W : [0, T] x Q — R™ be a standard
(Fy)iejo,r)-Brownian motion, for everyt € [0,T], x € O let X** = (X5") s [t, T]xQ = O
be an (Fs)scpm-adapted stochastic process with continuous sample paths satisfying that for

all s € [t,T], we have P-a.s. that:
Xh =1z + /ts w(r, XH%)dr + /ts o(r, XH*)dW, (3.2.71)
also let u : [0,T] x R — R satisfy for all t € [0,T], x € R? that:
u(t,z) = E [u(T, &3] (3.2.72)
It is then the case that u is a viscosity solution to:

<%u) (t,xz) + %Trace (o(t,x) [o(t,z)]" (Hess, u) (t,2)) + (u(t, x), (V) (t,2)) =0 (3.2.73)

for (t,x) € (0,T) x O with u(T,z) = g(x).

Proof. Let it be the case, that throughout the proof, for n € N, we have that g,, € C(R?% R),

28

compactly supported and that [UneN Supp(gm)] C [0,T] x O and further that:

- [s s <|gn<m> - g<x>|)

=0 3.2.74
n—00 te[0,T]) z€O V(Ta l’) ()

Let is also be the case that for n € N, m,, € C([0,T] x R, R?) and s,, € C([0, T] x R? R¥>™)

satisfy:

(i) for all n € N:

[mn () = mn(t y)lle + [1$a(t %) = su(t)|z

sup sup =0 (3.2.75)
te[0,T] z,yeRa z#y ||.§L’ - yHE
(ii) for allalln e N, t € [0, 7], x € O:
Liveny(t, @) [[lmn(t, 2) = p(t, 2)|| 2 + [lsn(t, 2) — o(t,z)[[p] = 0 (3.2.76)
and
(iii) for allm € N, t € [0,T], x € R*\ {V < n + 1} that:
[mn (8,)l + llsn(t, 2)[[F = 0 (3.2.77)

Next for every n € N, t € [0,7] and z € R? let it be the case that X™5" = (X25%) 1y

[t,t] x Q. — R? be a stochastic process with continuous sample paths satisfying:
Xt =g +/ m, (7, %Z’t’m)dr+/ 5 (1, XVHT) AW, (3.2.78)
t t
Let u": [0,7] x R - R, k € N, n € Ny, satisfy for all n € N, t € [0, T], z € R? that:

u"(t,) = E [ge(X3")] (3.2.79)

29

and
u¥ (¢, 2) = E [gr, (X77)] (3.2.80)

and finally let, for every n € N, ¢t € [0,7], € O, there be ti* : Q — [t,T] which satisfy
th* = inf ({s € [t, T], max{V (s, X4*),V (s, X:*)} > n} U{T}). We may apply Lemma 3.2.14
with g~ m,, 0 N 5, g gi to show that for all n, k € N we have that u™* is a viscosity

solution to:

(%u”k) (t,x) + %Trace (sn(t, @) [5n(t, 2)]" (Hess, u™*) (t,2)) + (m, (¢, 2), (V. (u™") (¢, z))

=0

for (t,z) € (0,T) x R%. But note that items (i)-(iii) and 3.2.78 give us that, in line with

(Beck et al., 2021a, Lemma 3.5):
P (vs € (1T 1 pyogmy X007 =1 {sgt%m}xjw) —1 (3.2.81)
Further this implies that for all n,k € N, ¢t € [0, T], x € O that:

Bl (57) = [5 -)

<2 [sup ng(y)l} P (" <T)
yeO

Note that this combined with (Beck et al., 2021a, Lemma 3.1) implies for all ¢ € [0,7],

60

x € O, n € N we have that E [V (tff“’, /'\.’:t’,iﬂ < V(t,z), which then further proves that:

[uk(t, z) —u®*(t, @)| <2 {sup lok(y |} P(th" <T)
yeO
<2{sup\gk |][P> ttx Xif) /’fL)
yeO

<2 {sup |gk<y>|] E[v (4 X))

yeO
2
<2 lswplol| v .2.)

yeO

Together these imply that for all £ € N and compact I C [0,7] x O:

—0 (3.2.82)

lim sup [sup (|u™*(t,z) — u®*(t, z)|)
k—o00 (t,x)ek

But again note that since have that sup,c(o) [infiefor)cerno, V(£ x)] = oo and (3.2.76)

tell us that for all compact K C [0,7] x O we have that:

lim sup [(sup (|lm,(t,z) — p(t,2)||g + ||sn(t,) — a(t,x)||p)] =0 (3.2.83)

n—00 tx)ell

Note that (3.2.81), (3.2.82) and Corollary 3.2.11.2 tell us that for all £ € N we have that

0,k

u”" is a viscosity solution to:

(%uo’k> (t,x) + %Trace (o(t,z) [o(t, z)]" (Hess, u”) (¢, 2)) + (u(t, z), (V,u®*) (¢,2)) =0

(3.2.84)

for (¢t,z) € (0,7)xO. However note that (3.2.71),(3.2.74), (3.2.80) prove that for all compact
K C[0,T] x O we have:

limsup | sup |u®*(t,) —u(t,z)|| =0 (3.2.85)
k—o00 (t,z)eK

61

This together with (3.2.84), (3.2.74), Corollary 3.2.11.2 shows that ug is a viscosity solution

to:

(%u) (t,x) + %Trace (o(t,x)[o(t,z)]" (Hess, u) (t,x)) + (u(t,x), (Vou)) =0 (3.2.86)

for (t,z) € (0,T) x O. By (3.2.73) we are ensured that for all x € R? we have that

u(T, x) = g(x) which together with proves the proposition.

3.3 Solutions, Characterization, and Computational
Bounds

Theorem 3.3.1 (Existence and characterization of ug). Let T € (0,00). Let (9, F,P)
be a probability space. Let o4 € C(Rd,RdXd) and g € C(Rd,Rd) for d € N, let ug €

o2 ([O,T] X Rd,R) satisfy for alld € N, t € [0,T] , v € R? that:

(%ud) (t,x) + %Trace (a(x) [oa(z)]" (Hess, uq) (¢, x)) + (pa(x), (Viuq) (¢, x)) =0

(3.3.1)

let We: [0, T]xQ —R% d €N be a standard Brownian motions and let X : [t, T] x —
R?, d €N, t € [0,T], be a stochastic process with continuous sample paths satisfying for all

deN,tel0,T], selt,T], x € R we have P-a.s. that:
t t
X =3 4 / pa (X507) dr + / o (XM7) dwy (3.3.2)
Then for alld € N, t € [0,T], x € R, it holds that:
ua(t,z) = B [ud (T, x:’vtvwﬂ (3.3.3)

62

Furthermore, ug is a viscosity solution to (3.5.1).
Proof. This is a consequence of Lemma 3.1.2 and 3.2.14. O

Corollary 3.3.1.1. Let T € (0, 00),
let (Q, F,P) be a probability space, let ug € C*2 ([0,T] x R%,R), d € N satisfy for all d € N,
t€[0,T], x € RY that:

(%ud> (t,z) + % (Viua) (t,z) =0 (3.3.4)

Let W : [0, T] x Q — R?, d € N be standard Brownian motions, and let X4 : [t, T] x 0 —
RY, d e N, t€[0,T], z € R%, be a stochastic process with continuous sample paths satisfying

that for alld € N, t € [0,T], s € [t,T], v € R we have P-a.s. that:
X4 = g 4 /t AWV =2 + W, (3.3.5)
Then for alld € N, t € [0,T], x € R? it holds that:
ug(t,z) = E [ud (T, Xtd’T’x)} (3.3.6)

Proof. This is a special case of Theorem 3.3.1. It is the case where o4(z) = I, the uniform
identity function where I; is the identity matrix in dimension d for d € N, and uq(z) = 0y

where 0,4 is the zero vector in dimension d for d € N. O

Lemma 3.3.2. Let T € (0,00), let (2, F,P), be a probability space, let ag € C}? (Rd, R), and
a € O (2?) ford € N, be infinitey often differentiable function, let uq € C** ([0, T] x R%,R),
d € N, satisfy for alld € N, t € [0,T], z € RY, that:

(%ud) (t,x) + % (Viug) (t,x) + aq (x) uq (t,2) =0 (3.3.7)

Let W1 [0,T] x Q — R? be standard Brownian motions and let X4 : [t, T] x Q — R%,

63

deN,tel0,T], z € R be a stochastic process with continuous sample paths satisfying that

foralld e N, t€[0,T], s € (t,T], x € R, we have P-a.s. that:
dit,z 1o L
X =g [Sdwd = WL, (3.3.8)
Then for alld € N, t € [0,T], x € R? it holds that:

ug(t,) = E [exp (/t "o (xte) dr) a (T, chg,t,x)} (3.3.9)

Proof. Let vg : R — R be continuous. Throughout the proof let uy (t,) = et @ yy(t, x)
forall d € N, t € [0,T], € R%. For notational simplicity, we will drop the d, ¢, z wherever

it is obvious. Therefore the derivatives become:

uy = —ae v 4+ ey, (3.3.10)

1 1
5vfcu =3 [e7 V20 + 2(V,v, Ve ™) + uV2e ™ (3.3.11)

This then renders (3.3.7) as:

1
= v+ e+ < [e7VE0 + 2(V,, Ve ') +0Vie] + e 0 =0

2
e o, + % [e7*V2v = 2te™"*(V,v, Va) + 0Vie] =0
e vy + % [e7*V2v — 2te™"(V,v, Vo) — tue *Via] =0
vy + % [Viv —2t(V,v, V) — thia] =0
vy + % [Viv—2t(V,a,V,0) —tvVia] =0

1 1
v+ §V§v + (=tV,a, V,v) — étvvz,a =0 (3.3.12)

Let o(t, z) = Iy, i.e. the uniform identity function. Let u(t,z) = —tV,afort € [0,T],z € R4,

and for fixed a. Let f(t,z,v) = —1toV2a for t € [0,T],z € R

64

Claim 3.3.3. It is the case that for for all v € R? and t € [0,T] that {(z,u(t,z)) <

L(1+ ||z||g) for some constant L € (0, 00).

Proof. Since a has bounded first and second derivatives let:

B = max { sup ||V g, sup |Vfca‘} (3.3.13)
z€R

zcRd

Note that we then have the Cauchy-Schwarz inequality:

(z, u(t, 2)) < |z, =tVe)||p < |2 el[tVeal s
< T ([Jz]l=B)
ST (B +d)|=le

= Lljallz <L (1+ 23) (3.3.14)

It also follows that ||o(t,z)||r = Vd < L < L(1 + |||). o

Claim 3.3.4. It is the case that for all v,y € RY, and t € [0,T] that: ||u(t,z) — p(t,y)|ls +

lo(t,z) = ot y)lle < €(lzlle + lyllz) (v = ylz) for some constant € € (0, 00).

Proof. The fact that for all x,y € R% and ¢ € [0, T it is the case that ||o(t,z) —o(t,y)||r = 0,
the fact that for all z,y € R? it is the case that (||x||g + ||lyl|z)(||z — y||z) = 0 and (3.3.13)

tells us that:

lpt,) = u(ty)lle + llot,2) = ot y)llr = llult, x) = pt,y)lle +0
= [[tVea(z) = tVea(y)| e
S T[Vea(z) = Vaa(y)le

< 2T'B (3.3.15)

Now consider a function § € C' ([O,T |]Rd,Rd), where for all z,y € R? it is the case that

65

f(x) —f(y) < E (||lzl|lg + |lyllg) (]]x + y|le). Note then that setting y = x + h gives us:

fx + h) —f(x)

< C(llzlle + llz + hlle)

>

lim

h—0

flz +h) —f(z)
h

<lim € (|2l + [lo + hlle)
h—0

Vaf (2)] < 2€||2]| 2 = A |z e (3.3.16)

This suggests that V,f € O (z) and in particular that f € O (z?). However with f <~ pu
we first notice that because p < 278 in (3.3.15) it must also be that case that u € O(1)
by Corollary 1.2.32.1. However since O(c) C O(z) C O (2*) by Corollary 1.2.32.2 it is also
the case that u € O (2?), and hence there exists a € satisfying the claim. This proves the

claim. O
Claim 3.3.5. [t is the case that |f(t,z,v) — f(t,z,w)| < L|v — w|

Proof. Note that by the absolute homogeneity property of norms, we have:

1 1
£t 2,0) — (b)) =];vvia - vt

1
~tV2 —
]2 Yo —wl

1
< §T |Via‘ |v —w|
1
< =TB|v—w
2
<ST(B+d)|v—w

= L|v—w| (3.3.17)

66

Note that we may rewrite (3.3.12) as:

(%v) (t,x) + %Trace (o (t,z) [0 (t,2)]" (Hess, v) (t,x)) + (u(t,x), (V.v) (¢, x))

+f(t,z,v(t,xz)) =0

We realize that (3.3.12) is a case of (Beck et al., 2021c, Corollary 3.9) where it is the case
that: u(t,z) «~ v(t,x), where o4(x) = I, for all x € RY, d € N, where u(t,z) = —tV,a for
fixed o and for all ¢ € [0, 7], x € R%, and where f (¢, z,u (t,x)) = —1tuV2a for fixed a and
for all t € [0,T], x € R%,

We thus have that there exists a unique, at most polynomially growing viscosity solution

v e C([0,T] x R4, R) given as:

T
v(t,z) =E |:U (T, Y5%) +/ f (s, V5% 0 (s, V07%)) ds (3.3.18)

Let V : [0,T] x @ — R™ be a standard (F¢)c(j-Brownian motion. Note that this also

implies that the Y in (3.3.18) is characterized as:
Ve =g+ / p (r, Vi) dr + / o (s, X") dV, (3.3.19)
t t
With substitution, this is then:

Yo' =x+ / —rVea (Y)7) dr + / 1dV,
t t

Vo = — / rV o (y;w) dr + Vs
t

67

Note that our initial substitution tells us: v(¢,z) = e!*@u(t,z). And so we have that:

- T
v(t,z) =E |v (T, X;x) + / f (s, b (s, XS”)) ds] (3.3.20)
I t

- T
v(t,x) = E |v (T, X5%) — % / to (s, X07) Via (X07) dS}
L ¢

- T
e *@y(t,x) = E |exp [Ta (Ap")] u (T, X5") — % / texp [ta (X57)] u (¢, X07) Via (X07) ds
i t

u(t,z) = E [exp [T (X%x) —ta(z)] u (T, X%m)]

1 g xr X xr
_E{Qem(m) /t exp [ta (X07)] u (1, X7) Va (X)ds]

68

Part 11

A Structural Description of Artificial

Neural Networks

69

Chapter 4

Introduction and Basic Notions

About Neural Networks

We seek here to introduce a unified framework for artificial neural networks. This framework
borrows from the work presented in Grohs et al. (2018), which was in turn inspired by work
done in Petersen and Voigtlaender (2018). The most recent exposition of this framework
can be found in Jentzen et al. (2023), and it is this exposition that our work will be based
on and extended upon.

With this framework in place, we wish to study ANNs from the perspective of trying to see
the number of parameters required to define a neural network to solve certain PDEs. The
curse of dimensionality here refers to the number of parameters and depths of neural networks
necessary to approximate functions to a certain accuracy. Specifically a scheme is said to
have beat the curse of dimensionality if the number of parameters and depths necessary to
approximate an underlying function to an accuracy (specifically the upper bound on the the
I-norm difference between the approximant and the function over the entire domain), only

grows polynomially or at-least sub-exponentially on %

70

4.1 The Basic Definition of ANNs and instantiations
of ANNs

Definition 4.1.1 (Rectifier Function). Let d € N and x € RY. We denote by t: R — R the

function given by:
t(x) = max {0,z} (4.1.1)

Remark 4.1.2. By analogy the multidimensional rectifier function, defined for x = [x1 xg -

x,)" € R is:
t([z].) = [max{0, 21} max{0,xs} - - max{0,x,}|" (4.1.2)

Definition 4.1.3 (Artificial Neural Networks). Denote by NN the set given by:

NN=() U (>L< [Rlext-1 Rﬂ) (4.1.3)

LeNlg,ly,...,.lpeN \k=1

An artificial neural network is a tuple (v,P,D,1,0,H,L, W) where v € NN and is equipped

with the following functions (referred to as auxiliary functions) satisfying for all

v e (Xy_ [RE x RY]):

(i) P : NN — N denoting the number of parameters of v, given by:

~

P(v) = I (i + 1) (4.1.4)

k=1

(ii) D : NN — N denoting the number of layers of v other than the input layer given by:

D(v) =L (4.1.5)

71

(7ii) | : NN — N denoting the width of the input layer, given by:
(v) =1 (4.1.6)

(iv) O : NN — N denoting the width of the output layer, given by:

(v) H: NN — Ny denoting the number of hidden layers (i.e., layers other than the input

and output), given by:
Hv)=L-1 (4.1.8)

(vi) L: NN — (U, N* denoting the width of layers as an (L + 1)-tuple, given by:

L(v) = (o, 11, b, ooy 11 (4.1.9)

We sometimes refer to this as the layer configuration or layer architecture of v.

(vit) W; : NN — Ny denoting the width of layer i, given by:

W) =14 (4.1.10)

Note that this implies that v = ((Wy,by), (Wa, ba),...(Wp,bL)) € (Xizl [R5]le}).
Note that we denote by Weight,.) , : (Weight,, ,)nef1,2,...0} {1,2,..,L} — (Um,keN Rmxk>
and also bias, : (biasn,), 7y 0 {1,2,...,L} — (U,en R™) the functions that satisfy for
alln € {1,2,..., L} that Weight, , = W; i.e. the weights matrix for neural network v at layer

¢ and bias; , = b;, i.e. the bias vector for neural network v at layer i.

72

We will call [y the starting width and [, the finishing width. Together, they will be referred

to as end-widths.

Remark 4.1.4. Notice that our definition varies somewhat from the conventional ones found
in Petersen and Voigtlaender (2018) and Grohs et al. (2023) in that whereas the former
talk about auxiliary functions as existing within the set NN we will talk about these auxiliary
functions as something elements of NN are endowed with. In other words, elements of NN may
exist whose depths and parameter counts, for instance, are undefined and non-determinate.
Note that we develop this definition to closely align to popular deep-learning frameworks such
as PyTorch, TensorFlow, and FLuXx, where, in principle, it is always possible to know
the parameter count, depth, number of layers, and other auxiliary information.

We will often say let v € NN, and it is implied that the tuple v with the auziliary functions
is what is being referred to. This is analogous to when we say that X is a topological but we
mean the pair (X, 7), i.e. X endowed with topology T, or when we say thatY is a measurable

space when we mean the triple (X,Q, u), i.e. X, endowed with c—algebra 2, and measure

L.

Definition 4.1.5 (Instantiations of Artificial Neural Networks with Activation Functions).
Let a € C (R, R), we denote by T, : NN — (Uk,leNC’ (Rk,Rl)) the function satisfying for
Al LEN, lo,l,olp €N, v = (Wi,b1), (Wa,ba) ooy (Wi, b)) € (xizl [RUxt-t R’k]),
rg €ERY zy e R L oxp 1 € RETL and withVk e NN (0,L) : 2 = a ([kak + bk]*7*>such
that:

ja (I/) eC (Rlo, RIL) and (ja (I/)) (xg) = WLJIL_l + bL (4111)

Remark 4.1.6. For an R implementation see Listings 9.1, 9.2, 9.3, and 9.4.
Lemma 4.1.7. Let v € NN, it is then the case that:
(i) L(v) € NP+ gnd

73

This also ensures that L(v) = (lo, 1, ...

N T
s =
SIS eSS IS SRE
SERSBEST T Soienes
O i OF s
AR

XX
i

N\
0

N
0

Figure 4.1: A neural network v with L (v) = (6, 8,6, 3)

(ii) for alla € C (R,R), J, € C (R'®),RO™)

Proof. By assumption:

veNN=|J U <>L< [RUexl=1]Rﬂ)

LEN (lg,ly,...,1p)eNE+1T \k=1

This ensures that there exist ly, 1, ...,{;, L € N such that:

Ve <>L< [Rlinﬂ"l X]RBJ']>

j=1

O(v) =1, and that D(v) = L. Together with (4.1.11), this proves the lemma.

4.2 Compositions of ANNs

of the composition.

74

(4.1.12)

(4.1.13)

) € NEFU = NP+ and further that I(v) = I,

Ul

The first operation we want to be able to do is to compose neural networks. Note that the
composition is not done in an obvious way; for instance, note that the last layer of the first

component of the composition is superimposed with the first layer of the second component

Definition 4.2.1 (Compositions of ANNs). We denote by () ® (+) : {(v1,2) € NN x NN :
l(r1) = O(v1)} — NN the function satisfying for all L, M € N ly,ly,....;lp,mg,mq,...,mpr €
N, w1 = (W, br) s (Wa,ba) oo, (W b)) € (X, [R¥50 X RY]), and v, =

(W3, 80), (W3, bh) o (Wi D)) € (KL, Rt s R™]) with by = (1) = O(v2) = may

and :
v ey = (4.2.1)
(((Wllvb/1>7 (W3 b)), oo (Wiap_, by 1), (WiWiy, Wiblyy + 1), (W, ba),
o (Wi, b)) (L>1DAM>1)
(WA W, WA, + by), (Wa, ba), (W, bs), ..., (Wib)) S(L>1)AM=1)
(W7, 01), (W3, 05), .o (Wiy_y, by g) (Wi, by + b1)) H(L=1)AM>1)
(WA W/, WAl + by)) (L=1)AM=1)
\ (4.2.2)

Remark 4.2.2. For an R implementation see Listing 9.7
Lemma 4.2.3. Let v, u € NN be such that O(u) = |(v). It is then the case that:
(i) D(v o) = D(v) + D(s) — 1

(ii) For alli € {1,2,...,D(vepn)} that:

(Weighti,(yo,u)) biasi,(uop))

;

(Weight, ,, bias;) i< D(p)
=9 (Weight, ,, Weightp,,) ., Weight, , biasp(,, . + biasi,) :i=D(u)
\ (Weighti_D(u)H,y bias;_p(u)+1.) 21> D(p)
Proof. This is a consequence of (4.2.1), which implies (i)—(ii). O

75

Lemma 4.2.4. Let vy,v5,v3 € NN satisfy that 1(v1) = O(va) and (va) = O(vs), it is then
the case

that:
(Vl (] 1/2) ey =11 @ (1/2 ° 1/3) (423)
Proof. This is a consequence of (Grohs et al., 2023, Lemma 2.8) with ®; « vy, $5 N 1y,

and ®3 v v3, and the functions Z A I, L A D and O <~ O. O

The following Lemma will be important later on, referenced numerous times, and found in
(Grohs et al., 2023, Proposition 2.6). For completion, we will include a simplified version of

the proof here.
Lemma 4.2.5. Let vy,v5 € NN. Let it also be that O (v1) = | (). It is then the case that:
(i) D(r1ev2) =D (1) +D(1n) — 1
(ii) L (1 ovs) = (Wi (10) ,Wa (1), ..., Wiy, Wi (1), Wa (1), ..., Wpgy) (1))
(iii) H (v @ 15) = H (1) + H (1)
(iv) P(v1evs) <P (v1)+ P (o) + Wi (1) - Wh) (2)

(v) for alla € C(R,R) that I, (11 @ 1) (x) € C (R'™2) ROU)) and further:

Ja(vy @15) = [T, (11)] 0 [Tq (12)] (4.2.4)

Proof. Note that Items (i)---(iii) are a simple consequence of Definition 4.2.1. Specifically,
given neural networks vq,5 € NN, and D (1) = n and D () = m, note that for all
four cases, we have that the depth of the composed neural network 1y e vy is given by

n—1+m—1=n+m—1 proving Item (i). Note that the outer neural network loses its

76

last layer, yielding Item (ii) in all four cases. Finally since, for all v € NN it is the case that
H(v) =D (v) — 1, Item (i) yields Item (iii).

Now, suppose it is the case that v3 = 1, @ 15 and that:

V= ((W1,1, b1,1) s (W1,27 b1,2) PRI (Wl,Lpbl,Ll))
vg = ((Wa1,b21), Waso,ba2), ..., War,,b21,))

vy = ((Ws1,b31),(Ws2,b39),...,(W51,,b31,))

(4.2.5)
And that:
L(y) = (11,12, -5 li,)
L(v2) = (lo1,l29,..,1l21,)
L(vy @) = (lg1,0l32,...,151,) (4.2.6)
and further let 2y € R20 2y € R21 .. ;. € R2L2-1 gatisfy the condition that:
Yk eNN(0,Ly) : 2 = a ([WQ,M,H + bQ,,f]M) (4.2.7)
also let yo € R0, g € Rivt gy) € Ri2L2-1 gatisfy:
V€N, L) s g = a ([Waapn s + i,) (4.2.8)
and finally let zp € R3¢ 2 € Rl . 2p | € RiLs—1 gatisfy:
VEeNN(0,Ls): 2 = a ([W?),kzk_l + b3,k]*7*) (4.2.9)

7

Note then that by Item (i) of Definition 4.1.3 we have that:

L3
P (Vl [] Vg) = Z lS,k (lg,kfl + 1)
k=1

[Lo—1 Ls
= Z s (g1 + 1) | + 150, (30,01 +1) + Z s (I3 -1+ 1)
L k=1 k=Lo+1
[Lo—1 T L3
= Z l27j (l27j_1 + 1) + l171 (lZ,L—l “" 1) + Z lj—Lz—I—l (ll,j—LQ + 1)
| k=1 i k=Lo+1
(Lo—1 7 L
= Z laj (log—1+1)| + le,j (g1 +1)| + 1l (o1 +1)
| k=1 i k=2

+ -+ 11,1 (lQ’L2_1 + 1)

-1
= Z log (lo -1+ 1)
| k=1

Ly
Z g (lig—1+1)
=1

—log, (lopy—1+1) —lig(ho+1)

=P () +P(v2) + i1 lar, (4.2.10)

Thus establishing Item (iv). Note by Definition 4.2.1, and the fact that a € C (R, R) it is

the case that
Ja (1 @ 1) € C (R') ROM)) (4.2.11)
Next note that by definition, it is the case that:
L(vyews) = (lao,la1, -y loro—1,0l11,l12,- -, l1L,) (4.2.12)
And further that:

Vke NN (O, L2> : (Wg,k, b37k) = <W2,k7 bg,k)
(W3 1,,b310,) = Wiy War,, Wiibsr, + b11)

and Vk € NN (Lg, L1 + LQ) . (Wg?k, ngg) = (Wl,j+1—L27 bl,j—i—l—Lg) (4213)

78

Since for all K € NN|0, L) it is the case that z; = x; and the fact that yo = Wy 20,1 +0bo 1,

ensures us that:

W3 r,20,-1+ b3 1, = Wa r,20,-1 + b3 1,
=Wy Wor,2r,—1 + Wiibar, + 011

= Wiy (Wa,r,@1,-1 + ban,) + b1 = Wiaye + bis (4.2.14)
We next claim that for all K € NN [Lg, Ly + Lo) it is the case that:
Wi gzk—1+ b3 = Wig1—1oYk—1o + b1 kg1-L, (4.2.15)

This can be proved via induction on k € NN[Ls, Ly + Lo). Consider that our base case of k =
Ly in (4.2.15) is fulfilled by (4.2.14). Now note that for all £ € NN [Ly,00)N (0, Ly + Ly — 1)

with:
W3 kzk—1+ b3 = Wikp1—1oYk—Lo + D1 pt1-1, (4.2.16)
it holds that:

W3 12k + b3 k1 = Wa ki ([Ws,kzk—l + b3,k]*,*> + b3 41
= Wi koo ((Wikt1-LoYk—1o) + b1 kt1-1,) + b1 ktro—1,

= Wi kso-Lo¥k+1-1o + b1 k21, (4.2.17)

Whence induction proves (4.2.15). This, along with the fact that Ly = L; + Ly — 1 then

indicates that:

Wi r,205-1 + 30, = Wari4ro—120,410—2 + 03 0140,-1 = Wi,n,yr, -1 + b1.1, (4.2.18)

79

Finally, the fact that v5 = v, @ 15, in addition with (4.2.7),(4.2.8), and (4.2.9) then tells us

that:
[Ja (1 @ 12)] (w0) = [Ja (v3)] (20) = [Ta (v3)] (20) = Wi 1,201 + b3,1,
= Wi, yr,—1+ b, = [Ja (1)) (v0)
= [Ja (11)] ([Wz,L2$L2—1 + bz,Lz]*,*)
= [Ja (1)} ([Ta (v2)] (z0)) = [Ta (1)] © [Ta (v2)] (20) (4.2.19)
This and (4.2.11) then prove Item (v), hence proving the lemma. O

4.3 Stacking of ANNs

We will introduce here the important concept of stacking of ANNs. Given an input vector
r € RY it is sometimes very helpful to imagine two neural networks working on them
simultaneously, whence we have stacking. Because vectors are ordered tuples, stacking v
and v, is not necessarily the same as stacking v, and ;. We will thus forego the phrase
"parallelization" used in e.g. Grohs et al. (2023) and Jentzen et al. (2023), and opt to use
the term "stacking". This because parallelization implies commutativity, but it is clearly not

the case that vy H vy is the ame as 15 H .

4.3.1 Stacking of ANNs of Equal Depth

Definition 4.3.1 (Stacking of ANNs of same depth). Let L,n € N, and let vy,vs,...,v, €
NN, such that D (v1) =D (1p) =--- =D (v,) = L. As such, for alli € {1,...,n}, let it also
be the case that L(v;) = (Wi, b0), (Wi, b)), ..., (Wi bh)). We then denote by B v;, the

30

neural network whose layer architecture is given by:

L(B,v;) = ((diag (W], WP, ..., W) by —~ bf, ~ -+ ~ b}),

(dig (W2, W2, .. WE) by ~ 02~ -~).

(diag (W5, W2, .. WE) BY ~ 02, ~ -~)

Remark 4.3.2. For an R implementation see Listing 9.5

Lemma 4.3.3. Let vy, v5 € NN, with D (v1) =D (1), 21 € R™ | 29 € R™2 and p € R™ ™2,
Let 3. (ry) : R™ — R™, and 3, : R™ — R"™. [t is then the case that J, (1 Bw) (r) =

Je (1) (21) —~ Te (v2) (22).

Proof. Let L (1) = (W1,b1),(W2,b2) ..., (W, b)) and
L (v2) = ((201,61), (W, bs), ..., (W, b)), and as such it is the case according to Definition
4.3.1 that:

L (Vl B VZ) = ((dlag (Wlaml) 7b1 — bl))

(dlag (Wg, mg) ,b2) []2) s

(diag (W,,20.,),b;, —~ by))

Note that for all, a € (R,R), j € {1,2,...,L—1} and for all x € Rectumns(Wj)+columns(@;) .

Rcolumns(Wj)’ o= Rcolumns(‘lﬂj)’ y € Rrows(Wj)—i-rows(QUj)’ Y € RrOWS(Wj)’ Yy €]Rrows(QUj)7 where

Y =a ([VVj xy + bl]*7*>a Yo =a ([QU]- F Ty + bj]&*), y=a ([diag(Wja‘mj) ~x+ (b ~ bj)]*,*>

81

it is the case that, Corollary 1.2.36.1 tells us that:

y=a ([diag (W;,20;) - © + (bj ~ bj)]*,*>

I
<
8
4

Sa

)
i

=

g
[\
+

=

=

*
N

ﬂ([(i

—a <[Wj ‘a1 + bjh,*) —a (ij S bj]*’*>

Note that this is repeated from one layer to the next, yielding that J, (1 Buwy) (r) =

Je (1) (1) —~ Ty (12) (22). O

Remark 4.3.4. Given n,L € N, vy,vs,...,v,, € NN such that L = D(v1) = D(1p) = ... =

D(v,) it is then the case, as seen from (?77?) that:
L
B v e (X [R(Z;Ll Wi (7)) % (721 Wi—1(v5)) > R(Z?:1 Wk(”j))] (4.3.2)
k=1

Lemma 4.3.5. Let n,L € N, vy,vs,...,v, € NN satisfty that L =D (1) =D (1p) = -+ =

D (v,). It is then the case that:

P([BiLm]) < % [Z P (vi)] (4.3.3)

82

Proof. Note that by Remark 4.4.2 we have that:

P(ELw]) = Z Z Lik (Z li,k—l) +1

k=1
L n 17T n T
=3 Zlm (sz_l) +1
k=1 Li j i
<Zzzl1k (lijg—1+1)
i=1 j=1 k=1
gzzzlzk J,.— 1+1
=1 j=1 (=1
n n [L L
Yy m] [z<m-1+1>
i=1 j=1 Lk=1 =1

- Z > % P (vi) P (v) = % [Z P (Vi)] (4.3.4)

This completes the proof of the lemma. O

Corollary 4.3.5.1. Let n € N. Let vy,vs,...,v, € NN satisfy that L(11) = L(1n) = -+ =

L (v,). It is then the case that:
P(BiL,v) <n’P (1) (4.3.5)

Proof. Since it is the case that for all j € {1,2,...,n} that: L(v;) = (lo,l,...,11), where

lo,l1,...,lp, L € N, we may say that:

'Fﬂ“
Mh

nlj 1 +1
7j=1]:1

= n2 [Z l]' (lj71 + 1)

Jj=1

) [(nl;—1) + n]

=n*P (1) (4.3.6)

83

O

Lemma 4.3.6. Let vy, € NN, such that D (v1) = D (vn) = L. It is then the case that

P(v1) +P(1e) <P (1 Bu).

Proof. Remark 4.3.4 tells us that:

L
== <>< [R(Wk(ul)+Wk(V2))X(Wk_l(V1)+Wk—1(V2)) X RWk(V1)+Wk(V2):|> (437)
k=1

The definition of P() from Defition 4.1.3, and the fact that W; > 1 for all i € {1,2,...,L}

tells us then that:

Mh

P(riBury) =) [(Wg (1) + Wy (12)) X (W1 (v1) + Wy (v2) +1)]

B
Il
—

Il
™) =

(Wi, (1) Wi—1 (1) + Wy (1) Wi—1 (1)

e
Il

1

+ Wi (1) + Wy (v2) Wi—1 (v1) + Wi (v2) Wi—y (v2) + Wi (12)]

- 2

[Wk (1/1) Wk 1 (1/1) + Wk (l/l) + Wk (VQ) Wk 1 (1/2) + Wk (l/g)]

k=1
— Z Wy, (v1) (We_y (1) +1)] + Z Wi (v2) (W1 (v2) + 1)]
=P (1) + P () (4.3.8)

O

Corollary 4.3.6.1. Let vy,15,v3 € NN. Let P (o) < P(v3). It is then the case that
Py Bry) <P (v Bus).

Proof. Lemma 4.3.6 tells us that:

0 < P (1/1) + P (V3> < P (1/1 = V3) (439)

0<P(n)+P(rn) <P(rnBuw) (4.3.10)

84

Subtracting (4.3.9) from (4.3.10) gives us that:

0<P(r3) —P(n) <P(yBrs) —P (11 Bur)

Py Burr) <Py Buw)

This completes the proof of the Corollary. O

Lemma 4.3.7. Let my,ma,ny,ny € N. Let vy, v, € NN, such that 3, (1) € C (R™,R™) and

T x

J: (rn) € C (R™2,R™). Itis then the case that (J,(v1 B 1y)) = (J4(r,B1y))

' T

for x € R™ 2’ € R™, upto transposition.

Proof. Note that this is a consequence of the commutativity of summation in the exponents
of (4.3.2), and the fact that switching 14 and v, with a transposition results in a transposed

output for transposed input.]

Lemma 4.3.8. Let a € C'(R,R), n € N, and v = B} ,v; satisfy the condition that D(vy) =
D(vs) = ... = D(vy,). It is then the case that J, (v) € C (R=i=1 %) R2-i= 0()

Proof. Let L = D(vy), and let l;0,0;;...1; . € N satisfy for all ¢ € {1,2,...,n} that L(v;) =

(l@o, li,h ey li,L)- Furthermore let ((VViJ, bi,l) s (V‘/i727 bi,?) g ooy (VVi,L, bi,L)) -

(szl [Rli,j xlij—1 w Rl’%i]) satisfy for all i € {1,2,...,n} that:

Vi = ((VVi,l, bi,l)) (Wi,27 bi,2) yeeny (I/Vi,La bi,L)) (4-3-11)

Let o; € N with j € {0,1,..., L} satisfy that a; = > | I; ; and let

(A1, b1), (Agybo) .y (AL, br)) € (szl [R5 @51 x Raa‘]) satisty that:
EI?:lVZ‘ = ((Al, bl> s (A27 b2) y ey (AL, bL)) (4312)

See Remark 5.3.2. Let x;0,21,...,TiL—1 € (Rli’o x Rb1 x « v X RlivL—l) satisfy for all ¢ €

85

{1,2,...,n} ke NN (0, L) that:
Lij = Mlﬂtff’j (Wi jxij—1 + bij) (4.3.13)

Note that (4.3.12) demonstrates that | (B ,v;) = ap and O (B_,v;) = ay. This and Item(ii)
of Lemma 4.1.7, and the fact that for all 7 € {1,2,...,n}it is the case that I(v;) = [, and

O(v;) = l; 1, ensures that:

3a (Bi) € O (R, R%) = C (RZ b0, REH= v

—C (Rzz;l 101), R om))
This proves the lemma. O

4.3.2 Stacking of ANNs of Unequal Depth

We will often encounter neural networks that we want to stack but have unequal depth.
Definition 4.3.1 only deals with neural networks of the same depth. We will facilitate this
situation by introducing a form of padding for our shorter neural network. Hence, they come
out to the same length before stacking them. This padding will be via the tunneling neural

network, as shown below.

Definition 4.3.9 (Identity Neural Network). Let d € N. We will denote by Id; € NN the

neural network satisfying for all d € N that:

()

86

(ii)
Id; = B9, Id; (4.3.15)

Ford e NN [2,00).
Remark 4.3.10. We will discuss some properties of ldg in Section 5.2.

Definition 4.3.11 (The Tunneling Neural Network). We define the tunneling neural net-

work, denoted as Tun,, forn € N and d € N by:

(

AfmeQ n=1

Tun? = < |4, n =2 (4.3.16)

" 2ld; neNNI3,00)

We will drop the requirement for d and Tun,, by itself will be used to denote Tun,ll.

Remark 4.3.12. We will discuss some properties of the Tuni network in Section 5.2. We

will also discuss properties of wider tunneling neural network in Lemma 5.2.6.

Definition 4.3.13. Letn € N, and vy, s, ..., v, € NN. We will define the stacking of unequal

length neural networks, denoted <. v; as the neural network given by:

n _/@n O(vi)
Sy =81, Tunmaxi{D(Vi)}H_D(w) oy (4.3.17)

Diagrammatically, this can be thought of as shown below.

Lemma 4.3.14. Let vy, € NN. [t is then the case that:
P (11©12) < 2- (max {P (1),P (1)} (4.3.18)

Proof. This is a straightforward consequence of Lemma 4.3.5. 0

87

%1 <

Tun < Vo

Figure 4.2: Diagrammmatic representation of the stacking of unequal depth neural networks

4.4 Affine Linear Transformations as ANNs and Their
Properties.

Affine neural networks present an important class of neural networks. By virtue of them
being only one layer deep, they may be instantiated with any activation function whatsoever
and still retain their affine transformative properties, see Definition 4.1.5. In addition, when
composing, they are subsumed into the function being somposed to, i.e. they do not change

the depth of a neural network once composed into it, see Lemma 4.2.5.

Definition 4.4.1. Let m,n € N, W € R™*", b € R™. We denote by Affy;, € (R™"™ x R™) C

NN the neural network given by Affy, = ((W,0)).

Lemma 4.4.2. Let m,n € N, W € R™*" b e R™. It is then the case that:
(i) L(Affyp) = (n,m) € N2,
(i7) for all a € C(R,R) it is the case that J,(Affy,) € C(R™, R™)

(iii) for all a € C(R,R), x € R™ we have (Jo(Affyyp))(x) = Wa +b

Proof. Note that (i) is a consequence of Definition 4.1.3 and 4.4.1. Note next that Affy, =
(W,b) € (R™™ x R™) C NN. Note that (4.1.11) then tells us that J,(Affy;,) = Wz + b

which in turn proves (ii) and (i) O

Remark 4.4.3. Given W € R™ ", and b € R™*!, it is the case that according to Definition

(4.1.4) we have: P(Affy,) =m xn+m

88

Remark 4.4.4. For an R implementation see Listing 9.6
Lemma 4.4.5. Let v € NN. It is then the case that:

(i) For allm € N, W € R™*0®)

L(Affy,p ov) = (Wo(v), Wi (), ..., Wp()-1 (), m) € NPWH! (4.4.1)

(ii) For all a € C(R,R), m € N, W € R™°W B € R™ we have that J,(Affyyp ev) €
C (R'™),R™).

(iii) For alla € C(R,R), m € N, W € R™OW B e R™, x € R'™ that:

(T (Affypov)) (x) =W (T, (v)) () + b (4.4.2)

(iv) For alln € N, W € R'®)>*" p e R that:

L(v e Affwy) = (1, Wi (1), Wa(v), ..., Wp(,y(v)) € NPWT (4.4.3)

(v) Foralla € C(R,R), n € N, W € R“>*" b e R'™ that I, (v e Affy,) € C (R",R°™))

and,

(vi) For alla € C(R,R), n€ N, W € R">" pc R™ 2 cR" that:

(Ja (v @ Affyyp)) () = (T4 (v)) (Wa +b) (4.4.4)

Proof. From Lemma 4.4.2 we see that J,(Affy,;) € C(R",R™) given by J,(Affy,) = W +b.
This and Lemma 4.2.5 prove (i) — (vi). O

Corollary 4.4.5.1. Let m,n € N, and W € R™*" and b € R™. Let v € NN. It is then the

case that:

89

(Z) f07’ all Affw"b € NN with | (Affw"b) =0 (I/) that:

P (Affyyp o1/) < [max {1, MH P (v) (4.4.5)

lL

(ii) for all Affy, € NN with O (Affy,) =1 (v) that:

| (Aff 1
P (v e Affyy) < [max {1, %H P (v) (4.4.6)
Proof. Let it be the case that L (v) = (lo, [y, ..., 1) for lo, 1, ..., 1, L € N. Lemma 4.4.5, Item

(i), and Lemma 4.2.5 then tells us that:

P (Affyy, o) (4.4.7)

[L—1
= | b (lmr + 1) | + O (Affyyy) (I + 1)
Lm=1

5

- i by (L1 + 1) | + [M} I (lp—1+1)

o P) SRR Y PN T2 P
ol e P B e e | LG

90

and further that:

P (v e Affyy) (4.4.8)

Lo (L1 + 1) | + 13 (1 (Affyp) + 1)

] =

[m=2 |
_ mézm (—— 1): [%} L (lo+1)
< :max{l,%ﬂ [élm m-1+1)| + [max{l,%ﬂ li(lo+1)
= [{1 MR 5 4] = [1.2)

This completes the proof of the lemma. O]

Lemma 4.4.6. Let ay,as be two affine neural networks as defined in Definition 4.4.1. It is

then the case that ay B ay is also an affine neural network

Proof. This follows straightforwardly from Definition 4.3.1, where, given that a; = (W1, b)),
and ay = ((Wa, by)), their stackings is the neural network ((diag (W1, Wa), by — by)), which

is clearly an affine neural network. O]

4.5 Sums of ANNs of Same End-widths

Definition 4.5.1 (The Cpy, ; Network). We define the neural network, Cpy, , € NN for

n,k € N as the neural network given by:

Cpy,, . = Aff (4.5.1)

I T - - Ti)" 0
e e

n—many

Where k represents the dimensions of the vectors being copied and n is the number of copies

of the vector being made.
Remark 4.5.2. See Listing 9.6.

91

Lemma 4.5.3. Let n,k € N and let Cpy,, ;. € NN, it is then the case for all n,k € N that:
(i) D (Cpy,;) =1
(ii) P (Cpy,) = nk*+nk

Proof. Note that (i) is a consequence of Definition 4.4.1, and (ii) follows from the structure

of Cpy,, 1 O

Definition 4.5.4 (The Sum,, ,, Network). We define the neural network Sum,, ;. for n,k € N

as the neural network given by:

Yk

n—many

Where k represents the dimensions of the vectors being added and n is the number of vectors

being added.

Remark 4.5.5. See again, Listing 9.6

Lemma 4.5.6. Let n,k € N and Sum,,;, € NN, it is then the case for all n,k € N that:
(i) D (Sum,) =1
(ii) P (Sum, ;) = nk? + k

Proof. (i) is a consequence of Definition 4.4.1 and (ii) follows from the structure of Sum,, .

O

Definition 4.5.7 (Sum of ANNs of the same depth and same end widths). Let u,v € Z with
u < v. Let vy, Uy, ..., vy € NN satisfy for all i € NN [u,v] that D(v;) = D(vy), l(vi) = (),
and O(v;) = O(v,). We then denote by ®F_,v; or alternatively v, ® vyi1 @ ... BV, the neural

network given by:

B Vi = (Sumv—u-i-LO(Vz) o [H_,vi|e pr(v—u+1),|(l/1)) (4.5.3)

92

Remark 4.5.8. For an R implementation, see Listing 9.9.

Remark 4.5.9. We may diagrammatically refer to this network as:

151

<—{ Sum,, Cpy,r <7

Vo

Figure 4.3: Neural Network diagram of a neural network sum.

4.5.1 Neural Network Sum Properties

Lemma 4.5.10. Let vy, v5 € NN satisfy that D(vy) = D(12) = L, I(v1) = l(12), and O(vy) =

O(va), and L(v1) = (lia, L2, - .lir) and L (v2) = (a1, 129, ..., lo.1) it is then the case that:

P(ry@®wy) =P (AfF[HO(Vz) Tog)]:90(r) o[y Bin|e Aff[]l](ul) H|(V1)]T702.|(V1)> (4.5.4)

<

N

(P (1) + P (1))

N | —

Proof. Note that by Lemma 4.3.5 we have that:

P(riBuw) == (Pn)+P)’ (4.5.5)

1
2

Note also that since Cpy and Sum are affine neural networks, from Corollary 4.4.5.1 we get

93

that:

|<I/1)+1
21 (1) +1

(P (1) + P (12))” (4.5.6)

[([Vl Huyle pr27|(l,1)) < max {1 } % (P(v)+P (VQ))2

N | —

and further that:

O (Affyp))1 1
P (Sum270(,,15,j2) ° [Vl H 1/2] [] pr2’|(l,1)) < {max {1, T(]jl)}} 5 (P (1/1) + P (y2))2

(P (1) + P (1))* (4.5.7)

1
2

Corollary 4.5.10.1. Let n € N. Let vy, vy, ...,v, € NN satisfy that L (v1) =L (1p) = -+ =

L (vy,). It is then the case that:

P (é I/i) <n?-P(n) (4.5.8)

Proof. Let L(v1) = (lo, 14, ...,11) where for all ¢+ € {0,1,..., L} it is the case that [;, L € N.

Corollary 4.3.5.1 then tells us that:
P(BEiLv) <n?P () (4.5.9)
Then from Corollary 4.4.5.1, and (4.5.6) we get that:
P ([B1,v1] ® Cpysyy) < 2P (1) (4.5.10)
And further that:

P (Squ,O(E?:lui) o[EiL,vi]e CPY2,|(V1)) <n?P (1) (4.5.11)

94

O

Lemma 4.5.11. Let vy, 2 € NN satisfy that D(vy) = D(1») = L, l(v1) = l(1»), and O(v,) =

O(va), and L(v1) = (li1, li2, - lir) and L (v2) = (Io1, 129, ..., lo,1) it is then the case that:
D (1/1 D VQ) =1L (4512)

Proof. Note that D (Cpy,, ;) = 1 = D (Sum,) for all n,k € N. Note also that D (1; B1y) =
D (1) = D (») and that for v, u € NN it is the case that D (v e 1) = D (v) +D (u) — 1. Thus:

[[Vl = 1/2] o Aff

Io(vy) Io(ua)]:00(wy)

D (Vl @ I/l) =D (I/l @ VQ) =D (Aﬂ:[[H|(,,1) HI(Vl)]Tv@}I(l/l))

=L

O

Lemma 4.5.12. Let vy, € NN, such that D(v1) = D(va) = L, I(1n) = (1) = ly, and
O(v1) = O(vn) = lp. It is then the case that I(vy & va) = I(va ® 14), i.e., the instantiated

sum of ANNs of the same depth and same end widths is commutative.

Proof. Let vy = (W1,by), (Wa,by), ..., (Wr,br)) and let vy = (W7, b)), (W3, b5), ..., (W[, b))).

Note that Definition 4.3.1 then tells us that:

W1 0 b1 W2 0 b2
131 = Vy =))) JEREY
AN o wyl |
Wy, 0 br,
o wil| |

95

Note also that by Claims 7?7 and ?? and Definition 4.4.1 we know that:

Aff

and:

(1 B e Aff[]I

T
|(u2)ﬂ|(u2)] 021(09),1

Liw,)

[H'(V2) HI(VQ):IT’®2|(V2),1 - » P21(v2),1 (4513)
L)
Aﬂ:[HO(Vl) HO(u1>]»@20(u1),1 - ([HO(V1) HO(yl):| 7®20(y1),1) (4514)
Applying Definition 4.2.1, specifically the second case, (4.5.3) and (7?) yields that:
by Wy 0 by W, 0 by
b 0 Wil |t o wil| |u
W2 O b2 WL O bL
0 Wyl |0 0wyl |

- Wiy 0 H|(V1)
0o W L)

Wi b

Wil ¥

Applying Claim 7?7 and especially the third case of Definition 4.2.1 to to the above then

gives us:

Aﬂ:[ﬂo(ﬂ) HO(W)]’

Wi B

))
!
Bl

Wi

Io(w,) Hom)} .

Wl bl
Wil b

0 [} []/1 = 1/2] [} Aﬂ:[

W, 0 b
o Wil v,
1]
7 | To@s) Tows)
wi .
W, 0 b
o Wil v,

96

T p—
Tiguy) Digwg)] 0

s ({WL Wi] ,br +b’L>) (4.5.15)

Now note that:

wroo | |, wy oo | (v
vrp,Hur =))) PIRREY
0 W1 b1 0 W2 b2
w0 | (v
0 Wp br,
And thus:
Aﬂ:[HO(VQ) HO(VQ)]’O ¢ [V2 = l/l] * Aﬂ:[ﬂl(m) HI(V1)]T’O
wil v, wy ool |
(BN [s] o)) s
W1 b1 O W2 bQ
Let z € R'™) note then that:
W1 bl Wl.fll' + bl
T+ =
W vl Wiy,

The full instantiation of (4.5.15) with activation function a € C' (R, R) is then given by:

a (WL_1<... Cl(Wg (Cl (Wlﬂf + bl)) + bg) +) + bL—l)
[WL Wi} +bp+0, (4.5.17)
a(Wi_,(..a(Wj (a(Wiz + b)) + b)) +...) + b))

The full instantiation of (4.5.16) is then given by:

a(W)_ (..a(Wj (a(Wiz + b)) + b)) +...) + b))
a (WL,1<... Cl(WQ (Cl (Wl.T + bl)) + b2> +) + bLfl)

{Wi WL] b+, (4.5.18)

Since (4.5.27) and (4.5.18) are the same this proves that vy ® vy = vy ® 1. O

Remark 4.5.13. This is a special case of (Grohs et al., 2022, Lemma 3.28).

97

Lemma 4.5.14. Let ly,ly,....,l; € N. Let v € NN with L(v) = (lo,l1,...,11). There then

1, Br) =v.

..........

.....

lo,l1,...,1;, € Nis given by:

Zrig gyt = (01465 01,) 5 (013,,0,) 4 ooy 0y, 1,0y,)) (4.5.19)

Thus, by (4.5.27), we have that:

0
I(Zryy gy, BV) = [0 WL] + b,
WL_l(...(W2 (Wlﬂf + bl) + bg) +) + bL_1
= WL(WL_l(.-.W2 (Wll’ + b1> + bg) +) + bL—l) + bL (4520)
. WLfl(...<W2 <W1£L’ + bl) + bg) +) + bL,1
I ®Zrygy,,.g,) = |W, 0 +br
0
= WL(WL_]_(...W2 (Wl.il'} + bl) + bg) +) + bL—l) + by, (4521)
And finally:
j(l/) = WL(WLfl(...WQ (Wla: + bl) + bg) +) + bL71> + bL (4522)
This completes the proof. O

Lemma 4.5.15. Given neural networks vy,ve,v3 € NN with fized depth L, fized starting
width of ly and fized finishing width of ly, it is then the case that T ((vy ® 1p) Brs) =
T (1 ® (e D 13)), i.e. the instantiation with a continuous activation function of & is asso-

ciative.

98

Proof. Let vy = ((W{,b1),(Wy,b3), ... (W, b)), va = (WE,01), (W3,03) ..., (WE,bL)),
and vz = (W3,63), (W3, 63), ..., (W2,b3)). Then (4.5.27) tells us that:

N Wl (. (W (Wia +b7) +b3) +...) + b}, L
@) =W, W} + b 402
WE_, (. (W3 (Wiz +b7) +b3) + ...) + b7 _,
And thus:
J(n @)) (z) =
Wi_y (o (Wy (Wi +b7) +b5) +...) + by L
. whow? SR
J {]I Wg} Wi (. (WE (Wi +03) +b3) +...) + b3, + b7
Wi (o (WS (Wz +b3) +03) +...) + b3,
(4.5.23)
Similarly, we have that:
Ja (1 @ (12 B 13)) (2) =
Wi (o (W (Wia +b7) +b3) +...) + b},
~ 1
J [Wg]I]) , Wiy (. (W3 (Wix+b7) +b3) +...) + b3, 2 4 + by,
WL WL 3 3 3 3 3 3 * L - L
Wiy (o (W5 (Wia +07) + b3) +...) + b4 |
(4.5.24)

Note that the associativity of matrix-vector multiplication ensures that (4.5.23) and (4.5.24)

are the same. O

Definition 4.5.16 (Commutative Semi-group). A set X equipped with a binary operation

is called a monoid if:
(i) for all x,y,z € X it is the case that (x xy) *xz = x * (y * z) and

(ii) for all x,y € X it is the case that x xy =y x x

99

Theorem 4.5.17. For fixed depth and layer widths, the set of instantiated neural networks

v € NN form a commutative semi-group under the operation of &.
Proof. This is a consequence of Lemmas 4.5.12, 4.5.14, and 4.5.15. 0

Lemma 4.5.18. Let v, € NN, with the same length and end-widths. It is then the case

that 3, (v @&) = Tq (V) + T ().

Proof. Let v = ((Wy,b1),(Wa,bs),...,(Wp,br)) and p = (W{,0)), (W3,b5),...,(W[,b))).

Note now that by (4.5.27) we have that:

Jo () =Wra(Wp_q1(...a(Woa (Wix 4+ by) + be) +...) + br—1) + bp, (4.5.25)
And:

Jo () = Wi a(W_i(..a(Wha(Wix + b)) +b5) +...) + b, 1) + b, (4.5.26)
In addition, because of the block matrix structure of the weights of our summands:

- a (WLfl(... a(Wg G(Wlﬂf + bl) —+ bg) +) + bLfl) ,
Jo(vep) (z)=|w, wy + by 4+,
a(W_i(...a(Wja(W{z + b)) +by) +...) + b))

= WL a (WLfl(... CI(WQ a (W1$ + bl) + bg) +) + bLgl) + bL
+Wia (Wi (a(Wya (Wiz +by) +) +...) + b) + b

=Ja (v) (x) + Ta (1) (z) (4.5.27)

This proves the lemma. O

Lemma 4.5.19. Let n € N. Let vq, 15, ...,v, € NN. It is then the case that:
Ja (@ yz-> => 3 (1) (4.5.28)
i=1 i=1

100

Proof. This is the consequence of a finite number of applications of Lemma 4.5.18. This

proves the Lemma. O

4.5.2 Sum of ANNs of Unequal Depth But Same End-widths

Definition 4.5.20 (Sum of ANNs of different depths but same end widths). Let n € N. Let
v, Vo, ...,V € NN such that they have the same end widths. We define the neural network

$i_,vi € NN, the neural network sum of neural networks of unequal depth as:
Qv = (Sumn,o(w) o[C_vile prn,l(ul)) (4.5.29)

Lemma 4.5.21. Let n € N. Let vy,v, € NN and assume also that they have the same

end-widths. It is then the case that:
T (1 ds) (x) =T, (1) + Te (1) (4.5.30)

Proof. Note that Lemma 5.2.3 tellls us that for all n € N it is the case that J. (Tun,,) (z) = .
This combined with Lemma 4.2.5 then tells us that for all n € N it is the case for all v € NN

that:
3. (Tun, ev) (z) = 3, (v) (2) (4.5.31)
Thus, this means that:

Je (1d12) () = (Sump oy @ [1912] @ Cpy,, i)
=7, () (z) + T (1) (2) (4.5.32)
This then proves the lemma. O
Lemma 4.5.22. Let n € N. Let vy, vs,...,v, € NN. Let it also be the case that they have

101

the same end-widths. It is then the case that:

n

34$ZJW)@3==§:JrO®($) (4.5.33)

Proof. This is a consequence of a finite number of applications of Lemma 4.5.21. This proves

the Lemma. O

Remark 4.5.23. We may represent this kind of sum as the neural network diagram shown

below:

151

<—{ Sum, Cpy,,.x < T

Tun < 12

Figure 4.4: Neural network diagram of a neural network sum of unequal depth networks.

4.6 Linear Combinations of ANNs and Their Proper-
ties

Definition 4.6.1 (Scalar left-multiplication with an ANN). Let A € R. We will denote
by (-)> () : R x NN — NN the function that satisfy for all A\ € R and v € NN that

Ab v = Affag,, 0 V.

Definition 4.6.2 (Scalar right-multiplication with an ANN). Let A € R. We will denote
by ()< (-) : NN xR — NN the function satisfying for all v € NN and A € R that v < X =

ve Aff)\]ll(y)70.

102

Remark 4.6.3. Note that whereas A € R, the actual neural network in question, properly
speaking, must always be referred to as \> or <\, and we shall do so whenever this comes
up in any neural network diagrams. This is by analogy with, for example, log, or Y for
A # 0, where the argument X\ is generally always written except for X = 10 for the logarithm

or A = 2 for the root.
Remark 4.6.4. For an R implementation, see Listing 9.8
Lemma 4.6.5. Let A € R and v € NN. it is then the case that:
(i) LA>v) =L(v)
(ii) For all a € C(R,R) that J,(A>v) € C (R'™), RO™)

(iii) For all a € C(R,R), and x € R'™) that:

Ja(A>v)=AT,(v) (4.6.1)

Proof. Let v € NN such that L(v) = (l1,12,...,11) and D(v) = L where ly,ls,...,l;, L € N.

Then Item (i) of Lemma 4.4.2 tells us that:

L (Affﬂo(y),o) — (O(v),0(r)) (4.6.2)

This and Item (i) from Lemma 4.4.5 gives us that:
LObw) =L (Affmo(u),o .y) = (I, 11+ oy 11-1,0(v)) = L() (4.6.3)

Which proves (i). Item (ii)—(iii) of Lemma 4.4.2 then prove that for all a € C(R,R),

103

z € R that J, (Apv) € C (R)0M) given by:

(Ja (A>0)) (2) = (Ja (Affmo(uw .y)) ()

= Alow) ((Ja () (2)) = A ((Ta (v)) ()

This establishes Items (ii)—(iii), completing the proof.
Lemma 4.6.6. Let A € R and v € NN. It is then the case that:
(i) L(r <) =L(v)
(it) For all a € C (R,R) that Jo(v < X) € C (R'™),RW)

(iii) For all a € C (R,R), and x € R'™) that:

Ja (v a) =Ta(v) ()

(4.6.5)

Proof. Let v € NN such that L(v) = (I3,ls,...,1;) and D(v) = L where By, ls,...,I;, L € N.

Then Item (i) of Lemma 4.4.2 tells us that:
L (Affyy0) = (10),10))
This and Item (iv) of Lemma 4.4.5 tells us that:

L(va)) =L (y . Affml(u)) = (), 11, I, ., 1) = L(v)

(4.6.6)

(4.6.7)

Which proves (i). Item (v)—(vi) of Lemma 4.4.5 then prove that for all a € C(R,R),

104

x € R'™ that J, (v 4 \) € C (R'™00) given by:

(Ja (v aN)) (z) = (Ja (y . Affml(um)) (2)
= (3. () (Aff,) (@)

= (Ja (v)) (A2) (4.6.8)

This completes the proof. O

Lemma 4.6.7. Let v, € NN with the same length and end-widths, and A € R. It is then
the case, for all a € C (R, R) that:

Ja((v@) <A) (2) = Ta (v aX) @ (pad)) (x)

= (Ja (v)) Az) + (Ja () (A2)

Proof. Let v = ((Wy,b1),(Wa,ba),...,(Wr,br)) and p = (W{,0,), (W3,b5), ..., (W[, b))).
Then from Lemma 4.6.6 and (4.5.27) we have that:

(Ja (v p) <A) (z)
= (Ja (v @ p)) (Az)

|: :| Cl(WL_l(...(Cl (WQ (Q(Wl)\iE+b1>)+b2)) +) +bL—1) ,
= |\Wy W]é +bL+bL
a (W] _ (..la (W5 (a(Wikz + b)) +b5)) + ...) + b, _,)

Note that:
(ja (l/)) (/\l’) = WL -a (WL_1<...(Cl (Wg (CL (Wl/\l’ + bl)) + b2)) +) + bL_1> + bL (469)
and that:

(Ta () Az) = W[-a(W_i(..(a (W3 (a (WiAz + b)) + b5)) + ...) + b ;) +b], (4.6.10)

105

This, together with Lemma 4.5.18, completes the proof. O
Lemma 4.6.8. Let v, € NN with the same length and end-widths, and A € R. It is then

the case, for all a € C' (R, R) that:

Ja(A> (@ p) (2) =Ta(A>v) & (A>p)) (2)

=X (T () (2) + X+ (Ta () (2)

Proof. Let v = (Wi,b1), (W, b2), ..., (Wi, bp)) and p = (W7, b)), (W3, b5) ... (WL, bL)).
Then from Lemma 4.6.6 and (4.5.27) we have that:

Ja(A (v @ p)(2)
=Ja (A (v © p)) (M)

|: :| jt (WL—l(---(jt (W2 (jt (Wll' + bl)) + bz)) +) + bL—l) ,
=\ Wi, Wl// +bL+bL
3e (W1 ((3e (W5 (3 (Wiz + b)) + 05)) +) + b, 4)

Note that:
A (ja (l/)) (ZL’) == WL . jt (WL_1<...(jt (WQ (jt (Wll' + bl>> + bQ)) +) + bL—l) + bL (4611)

and that:

A (3o (w) (@) = Wp - T (W oy (o (e (W (T (Wi +) +05)) + o) +bq) +
(4.6.12)

This, together with Lemma 4.5.18, completes the proof. 0

Lemma 4.6.9. Let u,v € Z with u < v andn =v—u-+ 1. Let Ay, A\ys1,..., Ay € R. Let

Vas Vasls ooy Voo i € NN, By, Byy1, ..., B, € R'W satisfy that L(v,) = L(vus1) = ... = L(1)

106

and further that:

5= [@;f:u (cl- > (ui . Affﬂl(ul),Bi))] (4.6.13)

It then holds:

(i) That:

L(k)

(I(uu), Z Wi (v), Z Wy (V) .o Z Wo -1 (V) , O(Vu)>

= (I(va), n Wi (v),n Wa (1), ..., n Wp, 1y, O(1,))

(it) that for all a € C (R,R), that Jo(p) € C (R'@=) RO and

(iii) for all a € C (R,R) and v € R'™) that:

(Ja () (2) =i (Ja () (z + By) (4.6.14)
Proof. Assume hypothesis that L(v,) = L(vy4+1) = ... = L(v,). Note that Item (i) of Lemma

4.4.2 gives us that for all ¢ € {u,u+1,...,v} that:

L (Afrﬂ,(ul_),si) —L (Affﬂl(m> = (I(n),| () € N? (4.6.15)

This together with Lemma 4.2.5, Ttem (i), assures us that for all i € {u,u+1,...,v} it is the

case that:

L (w . Affﬂwi),&) = (10v), Wy (), Wa (1) , ... W (1)) (4.6.16)

This and (Grohs et al., 2022, Lemma 3.14, Item (i)) tells us that for all i € {u,u+1,...,v}

107

it is the case that:

L (cio (vioAfly, 4)) =L (vieAfhy,,,) (4.6.17)

This, (4.6.16), and (Grohs et al., 2022, Lemma 3.28, Item (ii)) then yield that:

L(< (l/l.AfF]II(.55)))
(I Va) ZWl V) ZWQ Vu), ZWD(W Uy, ,O(Vu))

1(va), n Wi (), n Wa(1y), ooy n W) -1 (1), O(1)) (4.6.18)

This establishes item (i). Items (v) and (vi) from Lemma 4.4.5 tells us that for all i € {u, u+
1,..,v}, a € C(R,R), » € R'™) it is the case that J, (I/i OAffﬂl(]/%Bi) eC (R'(”“),RO(V“))

and further that:

<3a (V,- . Affﬂ|<yi)7bi>> () = (34 (1)) (x + by) (4.6.19)

This along with (Grohs et al., 2022, Lemma 3.14) ensures that for all i € {u,u + 1,...,v},

a € C(R,R), z € R™) it is the case that:
Ja (i (yi . Affﬂ,(m,&)) € C (R'*), RO (4.6.20)

and:

/N
2
=1

VS
S

> (yz- . Affﬂl(ui),bi») (2) = ¢; (Ja () (x +) (4.6.21)

Now observe that (Grohs et al., 2022, Lemma 3.28) and (4.6.17) ensure that for all a €

108

C (R,R), z € R'™) it is the case that J (1) € C (R'™), RO} and that:

(30 () (2) = (30 (@ (e (v 0 Affi 0))) (@)
=3 (3 (e (e Ay 0))) @)
= i ¢i (Ja (1)) (x + b;)
This establishes items (ii)--(iii); thus, the proof is complete. H

Lemma 4.6.10. Let u,v € Z with u < v. Let Ay, Ays1,..s Ay € R. Let vy, Vyy1y ooy Uy, b €

NN, By, Buy1, ..., B, € R'W satisfy that L(v,) = L(Vyy1) = ... = L(v,) and further that:

= [@;’:u ((Affﬂl(yl),bi .,,) < c)] (4.6.22)

It then holds:

(i) That:

L (1)

<|(yu), Zwl (V) ,Zw2 (V) s s ZWD(%)_1 (V) ,O(VU))

= (I(vu), n Wi (), n Wa (), ..., n Wpy, 1), O(1)) (4.6.23)

(it) that for all a € C (R,R), that Jo(p) € C (R'™=) RO and

(iii) for all a € C (R,R) and v € R'™) that:

v

(Ja () () =) (3a (1)) (ciz + by) (4.6.24)
Proof. Assume hypothesis that L(v,) = L(vy41) = ... = L(v,,). Note that Item (i) of Lemma

109

4.4.2 gives us that for all i € {u,u+1,...,v} that:

L (Affi,,,) = L (Aff,,,) = (1) 1 () € N2 (4.6.25)

Note then that Lemma 4.2.5, Item (ii), tells us that for all i € {u,u + 1,...,v} it is the case

that:
L (Affﬂlw& .,,) = (1(v), Wi (), Ws (1) , ... Wi o) () (4.6.26)
This and Item (i) of Lemma 4.6.6 tells us that for all i € {u,u + 1,...,v} it is the case that:

L((Affy,,,, o) aci) =L (Affy,,, ov) (4.6.27)

This, (4.6.26), and (Grohs et al., 2022, Lemma 3.28, Item (ii)) tell us that:

(<<Affﬂl<y ui) <lc,->)
(I Vu) ZWl Vi) ZWQ Vu), ZWD(yu Uy, ,O(Vu)>

L
= (), n Wy (), n Wa (1), ..., n Wp,)—1 (), O(1) (4.6.28)

This establishes Item (i). Items (i) and (ii) from Lemma 4.4.5 tells us that for all i € {u,u+
L,..,v},a € C(R/R), z € R'™) it is the case that J, (Vi oAffﬂl(V,%Bi) eC (R'(Z’“),RO(”“))

and further that:

(3a (Affﬂ,wbi .yi)) (2) = (Jo (1)) (x) + bi (4.6.29)

This along with Lemma 4.6.6 ensures that for alli € {u,u+1,...,v}, a € C (R,R), z € R,

110

it is the case that:
Ta ((Affﬂl(uv),bi .yi> 4 ci> € C (R0 ROM)) (4.6.30)

and:

(30 ((Affy 0 004) 0i)) (@) = (3 () (ci +) (4.6.31)

Now observe that (Grohs et al., 2022, Lemma 3.28) and (??7) ensure that for all a € C' (R, R),

x € R it is the case that J, (u) € C (R'™), RO and that:

(Ja () (@) = (Ja (@, (Affy, 0 00)) i) () (4.6.32)
Z (a ((Aff]l,(b .Vz) <161>) (x) (4.6.33)

v
Z Jo (%)) (ciz + b;)

This establishes items (ii)—(iii); thus, the proof is complete. O

Lemma 4.6.11. Let L € N, u,v € Z with u < v. Let ¢y, Cys1y.es €y € Ro Uy Vysqy ey Uy 1 €
NN, By, But1, ..., B, € R a € C(R,R), satisfy for all j € NN [u,v] that L = MAX; eNA[u,0]
D(v), (v;) = l(vu), O(v;) = 1(J) = O(3), H(TJ) =1, 3.(3) = Ir, and that:

p= 9 uq< (Vi-Aan.w,,bi» (4.6.34)

We then have that:

(i) it holds that Jo(p) € C (R'™) RO and that,

111

(ii) it holds for all x € R'™) that:
(Ja (1)) (z) = Z ci (Ja (1)) (z + by) (4.6.35)

Proof. Note that Item(i) from Lemma 4.6.9 establish Item(i) and (4.5.25); in addition, items
(v) —(vi) from Lemma 4.4.5 tell us that for all i € NN [u,v], € R'™«_ it holds that

Ja (ui ° Affﬂl(u,)’gi eC (R'(”“), RO(”“))) and further that:

(Ja (yi . Affﬂl(w),Bi)) () = (3o (1)) (z + by) (4.6.36)

This, Lemma 4.6.5 and (Grohs et al., 2023, Lemma 2.14, Item (ii)) show that for all i €

NN [u,v], 2 € R'®) it holds that:

Ta (csm (ci > (VZ- . Affﬂl(w),bi») - (ci > (,,z. . Affﬂl(w)’bi)> € C (R RO™) (4.6.37)

and:

<3a <(’3ij (ci > (Vi ° Affﬂl(yi)ybi>))) (x) = (TJu (ci > (I/i . AfF]II(Vi)vbi)>> (x)

=G (ja (Vz>> (117 + bz) (4638)

This combined with (Grohs et al., 2022, Lemma 3.28) and (4.6.17) demonstrate that for all
z € R'™) it holds that J, (1) € C (R'™), R°)) and that:

(Ja (1)) (z) = (Ja (Bﬂ;f:u,j (ci > (yi . Affﬂl(ui))))) (z)

= <3a (@;’:u €Ly (ci > (Vi . Aﬂ:ﬂ,(,,i),bi>))) (z)

v

= ¢ (Ja (1)) (z+by) (4.6.39)
This establishes Items(ii)--(iii), thus proving the lemma. O

112

Lemma 4.6.12. Let L € N, u,v € Z withu < v. Let ¢y, Cys1y .oy Co € R. Vs Vyiny ooy Vayy J, J €
NN, By, Bui1, ..., B, € R a € C(R,R), satisfy for all j € NN [u,v] that L =
maXiENﬂ[u,v] D(Vi)J I<Vj) - l(VU>7 O(”j) = |<j) - 0(3)7 H(j) = 17 ja(j) = HR; CLTLd that

p=H0_,; ((Affﬂl(yi)’bi 0%) q cz-> (4.6.40)

We then have:

(i) it holds that:

L(n) = ('(Vu), D W€y (1), Z Wa (€15 (1)) s Y Wi (€ (1), O (Vu))>

(4.6.41)
(it) it holds that Js(p) € C (R'"=), RO™)) and that,
(iii) it holds for all x € R'™) that:
(Ja (1) (2) = (Ja (1)) (i + b) (4.6.42)

1=u

Proof. Note that Item(i) from Lemma 4.6.10 establish Item(i) and (4.5.25); in addition,
items (ii) and (iii) from Lemma 4.4.5 tell us that for all i € NN [u,v], z € R'™« it holds that

30 (Affy,.5, evi € C (R, RO0))) and further that:

(Ja (Affﬂl(yi),Bi .yi)) (@) = (Fo () () + by (4.6.43)

This, Lemma 4.6.6 and (Grohs et al., 2023, Lemma 2.14, Item (ii)) show that for all i €

NN [u,v], € R"™) it holds that:

3 (€ ((Afhy,0000) i) = o ((Affi, 0 0m) aci) € C (RO RO (46.44)

113

and:

<’Ja (QELJ ((Affﬂl(ywbi ow) q cz>>) () = (Ju (ci > (1/1- . Affﬂl<ui>7bi))> (x)

= (Ja (1)) (ciz + by) (4.6.45)

This and (Grohs et al., 2022, Lemma 3.28) and (4.6.27) demonstrate that for all 2 € R'®)
it holds that J, (1) € C (R'®) RO} and that:

(30 (1)) (@) = (3a (Biws ((Afag, o11) aci))) (@)

(ja (@Lu Ers ((Affﬂl(yi),bi on-) 4 cl>>> ()

= (Fa () (ciz + b)) (4.6.46)

i=u

Q2

This completes the proof. U

4.7 Neural Network Diagrams

Conceptually, it will be helpful to construct what are called " “neural network diagrams''.
They take inspiration from diagrams typically seen in the literature, for instance, Vaswani
et al. (2017), Arik and Pfister (2021), and Chollet (2017). They are constructed as follows.

Lines with arrows indicate the flow of data:

T

—

<7

T

Named neural networks are always enclosed in boxes with serif fonts:

A
a,b

Where possible, we seek to label the arrows going in and going out of a boxed neural network

with the appropriate operations that take place:

114

am—i—b- x

It is often more helpful to draw the arrows from right to left, as above.

Stacked neural networks are drawn in adjacent boxes.

ax—i—b- T

cx+d Z

For neural networks that take in two inputs and give out one output, we use two arrows

going in and one arrow going out:

r+vy
+—— Sumy

For neural networks that take in one input and give out two outputs, we use one arrow going

in and two arrows going out:

Cpy1 p——

Thus taking this all together the sum of neural networks Aff,;, Aff. 4 € NN is given by:

ar+b+cx+d

115

Chapter 5

ANN Product Approximations and

Their Consequences

5.1 Approximation for Products of Two Real Numbers

We will build up the tools necessary to approximate e via neural networks in the framework
described in the previous sections. While much of the foundation comes from, e.g., Grohs
et al. (2023) way, we will, along the way, encounter neural networks not seen in the literature,
such as the Tay, Pwr, Tun, and finally a neural network approximant for e*. For each of these

neural networks, we will be concerned with at least the following:

(i) whether their instantiations using the ReLU function (often just continuous functions)

are continuous.

(ii) whether their depths are bounded, at most polynomially, on the type of accuracy we

want, €.

(iii) whether their parameter estimates are bounded at most polynomially on the type of

accuracy we want, €.

(iv) The accuracy of our neural networks.

116

The sections pertaining to squaring and taking the product of neural networks derive mostly

from Yarotsky (2017) via Jentzen et al. (2023).

5.1.1 The squares of real numbers in [0, 1]

One of the most important operators we will approximate is the product operator x for two
real numbers. The following sections takes a streamlined version of the proof given in (Grohs
et al., 2023, Section 3.1). In particular we will assert the existence of the neural network ®

and ¢4 and work our way towards its properties.
Definition 5.1.1 (The iy Network). For all d € N we will define the following set of neural

networks as " ‘activation neural networks'' denoted iz as:

i = (L1, 04) , (Is, 04)) (5.1.1)

Lemma 5.1.2. Let d € N. It is then the case that:
(i) J: (i) € C (R, RY).
(ii) L (iq) = (d,d,d)

(iii) P (i4) = 2d% + 2d

Proof. Ttem (i) is straightforward from the fact that for all d € N it is the case that J, (iz) =
Iy (T ([I4],) + 04) + 04. Ttem (ii) is straightforward from the fact that I; € R4 We realize

Item (iii) by observation. O

Lemma 5.1.3. Let (¢g)cy C R, (Ag)pey € RV, B € RYY, (C)oy satisfy for all k € N

117

that:

2 -4 2 0 0
2 -4 2 0 -3
Ak = B = Ok: = [—Ck 2Ck —Cp 1 (512)
2 -4 2 0 -1
—Cg 2Ck —Cg 1 0
and that:
¢ = 212 (5.1.3)

Let &, € NN, k € N satisfy for all k € [2,00) NN that 1 = (Affc, o 8iy) ® Affe, 5, that for all
deN,i;= ((]Id, @d) , (Hd, ®d)) and that:

Q) = (Affe, o ®iy) @ (AffAk_l,B oi4) oo (Affy, peiy) e Aff,, 5, (5.1.4)

It is then the case that:
(i) for all k € N, x € R we have 3, (®y) (z) € C (R,R)
(ii) for all k € N we have L (®y) = (1,4,4,...,4,1) € Nk+2
(iii) for all k € N, x € R\ [0,1] that (T, (Py)) (z) =t (x)
(iv) for all k € N, x € [0,1], we have |22 — (T, (®1)) (z)| < 27272, and
(v) for al k € N ;| we have that P (®y) = 20k — 7

Proof. Firstly note that Lemma 4.4.2, Lemma 4.2.5, and Lemma 5.1.2 ensure that for all
k € N, z € R it is the case that J, () (x) € C (R,R). This proves Item (i).

Note next that Lemma 4.4.2, Lemma 5.1.2, and Lemma 4.2.5 tells us that:

L(®,) = L (Aff.,, B) = (1,4,1) (5.1.5)

118

and for all k € N it is the case that:

L (Affa, ;o) = (4,4,4,4) (5.1.6)

Whence it is straightforward to see that for ®; where k € NN [2,00), Lemma 4.2.5 tells us

then that:

|_ ((I)k) = |_ ((Aﬂ:cm() .i4) o (AffAk_l,B ‘14) ®---0 (Aﬂ:Al,B .i4) L] AfF®47B)

k—1 many
. merged merged merged merged merged h
~~ ~~ ~~ A~ ~~
= (1,4) (4 ,4,4,4) (4,44, 74 ... @ 44,74 @41) (5.1.7)
This thus finally yields that:
L(®)) = (1,4,4,...,4,1) € N¥2 (5.1.8)

Let gr : R — [0,1], & € N be the functions defined as such, satisfying for all k € N, z € R

that:
r
2x T e [0, %)
g(r)=92-22 :xe[i1] (5.1.9)
0 cx € R\ [0, 1]

Jk+1 = 01 (gk)

and let f : [0,1] — [0, 1], k € Ny be the functions satisfying for all k € No, n € {0,1,...,2"—

1}, z € [2%, "2—*,;1) that fi(1) =1 and:

2n+1 2
i} r— nrn (5.1.10)

fr(x) = { oF o2

119

and let ry, = (rk1, 762,763, Tka) : R = RY & € N be the functions which which satisfy for all

r € R, k € N that:

r1.1(2) T

ry (x) = @] |77 (5.1.11)
7"3,1(1’) r—1
7’4,1(33) |z

Tk41 = t(Ak+1Tk(l') + B)

Note that since it is the case that for all z € R that t(z) = max{z,0}, (5.1.9) and (5.1.11)

shows that it holds for all z € R that:

1
2ry1(z) — 4roq(x) + 2r51(x) = 2¢v(x) — 4t <:c — 5) +2e(x—1)
1
= 2max{z,0} — 4max{x - 5,0} + 2max{z — 1,0}

= g1(2) (5.1.12)

Note also that combined with (5.1.10), the fact that for all z € [0, 1] it holds that fo(x) =

x = max{z, 0} tells us that for all z € R:

fo(z) cx € [0,1]
rq1(z) = max{z,0} = (5.1.13)

max{z,0} :xe€R\]I0,1]

We next claim that for all £ € N, it is the case that:

(Vo e R:2ry 4(z) — 4drop(z) + 2r34(z) = g(2)) (5.1.14)

120

and that:

Vo € R:ryp(z) = fialz) oelhl (5.1.15)

max{z,0} :z€eR\|[0,]1]

We prove (5.1.14) and (5.1.15) by induction. The base base of k = 1 is proved by (5.1.12)
and (5.1.13) respectively. For the induction step N 5 & — k + 1 assume there does exist a

k € N such that for all x € R it is the case that:
2r1 g (2) — dro k() + 2135 (2) = gi(2) (5.1.16)

and:

ra(e) = fiale) e e (5.1.17)

max{z,0} :x€R\|[0,1]

Note that then (5.1.9), (5.1.11), and (5.1.12) then tells us that for all z € R it is the case

that:

g1 () = g1(gw(2)) = 91(2r1 k(@) + 412 (2) + 2734 (7))

=2t (2T1,k(37)) + 4T2,k + 27"3&(%))

1

—4r (27"17;c (x) —4drop + 213 (z) — 5)

+ 2t (2ry ,(z) — drop(x) + 213 (z) — 1)

= 27"1,k+1($) - 47“2,/c+1($) + 2T3,k+1(9€) (5.1.18)

121

In addition note that (5.1.10), (5.1.11), and (5.1.13) tells us that for all z € R:

I
a

R <(_2)3—2(k+1) rog () + 2072000 () 1 (_2)3—2(k+1) rage (2) + T4 (@)
((—2)172]C Tl,k (m) + 22_%7’].372 (%) + (—2)17% 7”37;C ($) + T4,k ($)>

2720 [=2ry () + 2o (2) = 2r ()] + g (2))

I
a

I
a

(
(— [2_2’“} 271 g (2) — 4roy () + 2rsk ()] + rak (m))
v

= [27%] g (@) + 7 (2)) (5.1.19)

This and the fact that for all z € R it is the case that v () = max{z, 0}, that for all z € [0, 1]

it is the case that fi (x) > 0, (5.1.17), shows that for all x € [0, 1] it holds that:

rappr (2) =v (=2 [27%g] + fii () = (—2 (27%gi (z)) + 2 —

k—1
Z (27%g; (l’))])
k
—t <x— [Z 272, @)D =t (fy () = fi (2) (5.1.20)
Note next that (5.1.17) and (5.1.19) then tells us that for all x € R\ [0, 1]:

ragper (2) = max {— (27%g, (z)) + rop (2)} = max{max{z,0},0} = max{z,0} (5.1.21)

Combining (5.1.18) and (5.1.20) proves (5.1.14) and (5.1.15). Note that then (5.1.2) and

122

(5.1.14) assure that for all k € N, 2 € R it holds that J, (®;) € C' (R,R) and that:

(Te (B1)) ()
= (J: ((Affc, 0 @iy) @ (Affs, | pois) @ o (Affy, peiy) @ Aff, 1)) (z)

= (=2 (@) + 25 Py (1) + (=2) T g (@) + rag (2)

= (—2)* ({“”f (x)j;?”’“ m} +ra (x)) + 74 ()

— 92-2k ([Tl’k (x)j;?”k (x)} + Tk (a:)) + 1k ()

=% (Arog () — 2r 4 (z) — 2134 (7)) + rap ()

= — [27%] [2r1x (x) — drog (2) + 2rs (2)] + rag (2) = — [277%]) g () + rap (2) (5.1.22)

This and (5.1.15) tell us that:

(3e (@1)) (2) = = (27 gk (2)) + frmr (2) = = (27%gx (2)) + 2 —

k—1
> 27y, (x)]
j=1

k .

=T [Z 27%g; (@] = fi (2)
j=1
Which then implies for all k£ € N, z € [0,1] that it holds that:
|2 — (3c (D)) (z)]| < 27272 (5.1.23)

This, in turn, establishes Item (i).

Finally observe that (5.1.22) then tells us that for all £ € N, x € R\ [0, 1] it holds that:
(T (D)) (7) = =272 g (2) + 74p () = 14 (z) = max{z,0} = t(x) (5.1.24)

This establishes Item(iv). Note next that Item(iii) ensures for all k¥ € N that D (&) = k+ 1,

123

and:

k

P(@) =41+ 1)+ |Y 4@+ 1)| +(4+1)=8+20(k—1)+5=20k—7 (5.1.25)
=2

This, in turn, proves Item(vi). The proof of the lemma is thus complete. O

Remark 5.1.4. For an R implementation see Listing 9.13

1e+01 -
— NIVERVERY/
S A
[
‘T 1e-03 -
S
S factor(k)
©
o — 1
3
N — 2
o
— — 5
[b]

1e-07 -
£ — 10
o
= — 15
:aga — 20
IS
(@)
o, le11-
o

Figure 5.1: Plot of log,, of the L! difference between ®; and z? over [0, 1] for different values
of k

Corollary 5.1.4.1. Let ¢ € (0,00), M = min{3log, (¢7') — 1,00} NN, (ck)pcy € R,

124

(Ap)peny € R, B € R (Ch)ey satisfy for all k € N that:

2 -4 2 0 0
2 -4 2 0 —%
Ak = , B = Ok: = |—c 2C)k —cy, 1 (5126)
2 -4 2 0 -1
—Ck QCk —Cp 1 0
where:
cp = 21 (5.1.27)
and let ® € NN be defined as:
[Affe, o ®iy] @ Affe, M=1
o = (5.1.28)

[Affc,,.0 ®ig) [AfFAtho oi4} o - o[Affy, poiy)oAff,, 5 : M €[2,00)NN

it is then the case that:
(i) 3. (®) € C(R,R)
(ii) L(®) = (1,4,4,...,4,1) € NM+2
(iii) it holds for all x € R\ [0, 1] that (3. (®)) (z) = v(x)
(iv) it holds for all x € [0,1] that |2* — (T, (®)) (z)] < 272M2 L ¢
(v) D(®) < M +1 < max{3log, (¢7*) + 1,2}, and
(vi) P(®)=20M — 7 < max {10log, (¢') — 7,13}

Proof. Ttems (i)--(iii) are direct consequences of Lemma 5.1.3, Items (i)--(iii). Note next the

125

fact that M = min {N N [1log, (67') — 1] ,c0} ensures that:

M = min {N N B log, (e7') — 11 ,oo} (5.1.29)
> min { [max {1, % log, (e7") — 1} ,oo} } (5.1.30)
> %logQ (eh) -1 (5.1.31)

This and Item (v) of Lemma 5.1.3 demonstrate that for all x € [0, 1] it then holds that:
2% — (3. (B)) ()] < 272M2 = 27204 g loma(=7!) — ¢ (5.1.32)

Thus establishing Item (iv). The fact that M = min {NN [$log, (67') — 1,00]} and Item

(ii) of Lemma 5.1.3 tell us that:
D(®)=M+1 émax{%logQ (7Y +1,2} (5.1.33)
Which establishes Item(v). This and Item (v) of Lemma 5.1.3 then tell us that:
P(®y) <20M — 7 < 20max {% log, (¢71) ,2} — 7=max {10log, (¢') — 7,13} (5.1.34)

This completes the proof of the corollary. O

Remark 5.1.5. For an implementation in R, see Listing 9.15

Remark 5.1.6. Note that (5.1.28) implies that D (®) > 4.

Now that we have neural networks that perform the squaring operation inside [—1, 1], we
may extend to all of R. Note that this neural network representation differs somewhat from

the ones in Grohs et al. (2023).

126

Contour plot of the 1-norm difference for values of x and eps

1.00

,0.005]
,0.010]
,0.015]
,0.020]
,0.025]
,0.030]
,0.035]
,0.040]
,0.045]
,0.050]
,0.055]
,0.060]
, 0.065]

0.75

8050
20

0.25

0.00

0.00 0.25 0.50 0.75 1.00

Figure 5.2: Contour plot of the L' difference between ® and x? over [0, 1] for different values
of €.

5.1.2 The Sqr’* Neural Networks and Squares of Real Numbers

Lemma 5.1.7. Let §,e € (0,00), a € (0,00), q € (2,00), ® € NN satisfy that 6 = 2‘1_7226‘1%2,
o= (£)72, 3, () € C(R,R), D(®) < max {Llog,(6-1) + 1,2}, P(®) < max {10log, (651)
—7,13}, sup,ep\ .1 | (3e (@) — v(2)| = 0, and sup,cpoq [2* — (3e (®)) (x) | < 9, let T € NN be

the neural network given by:

U = (Affy2 0D o Aff, o)) (Aff, 2 0D 0 Aff_ o) (5.1.35)

127

(i) it holds that 3. (V) € C (R, R).
(ii) it holds that (3, (¥)) (0) = 0
(iii) it holds for all x € R that 0 < (3. (V) (z) < &+ |z|?
(iv) it holds for all z € R that |2? — (T, (¥)) (z) | < e max{1,|z|?}
(v) it holds that D(¥) < max {1 + 25+ gy logs (671), 2}, and
(vi) it holds that P (¥) < max { [%} log, (e71) + % — 28, 52}

Proof. Note that for all x € R it is the case that:

(T (V) (z) = (T (Affy—2 0D @ Aff, o) D (Aff,—2 o 0D @ Aff_,))) (x)

= (3 (Aff,—2 0D @ Aff,) (2) + (J; (Aff—2 g 0D @ Aff_, () (2)
1

= 2 (0.(®) (a) + 5 (3 (®)) (~x)

1

-)1;’2 {(m (@)) <(§) x> + (3. (®)) (- (%>_x>] (5.1.36)

This and the assumption that ® € C (R, R) along with the assumption that sup,cg, o.1) [(J¢ (®))

() —t(z)] = 0 tells us that for all x € R it holds that:

|
N

—
2
-
—~
S
~—
~—
—~
(=)
~—
I
_
|
M
—
2
-
—~
K
~
~—
—
S
~—
+
—
2
-
—~
S
~—
~—
—~
S
=

|
8

NI M DN M
N—— ——
s
|
M
o
—~
(=)
~—
+
fxi
—~
(=)
=

I
S~

(5.1.37)

This, in turn, establishes Item (i)--(ii). Observe next that from the assumption that J, (®) €

C (R,R) and the assumption that sup,cg\jo1] | (Jc (?)) (z) — t(x)[= 0 ensure that for all

128

x € R\ [—1,1] it holds that:

[T (®)] (2) + [Te (@) (—2)] =t (x) + t(—2) = max{z, 0} + max{—=z,0}

= |z| (5.1.38)

The assumption that for all sup,cg, (1 | (3. (®)) (z) — ¢ (z)| = 0 and the assumption that
SUDze(0,1] |22 — (3. (®)) (z) | < 6 show that:
2

sup [a” — ([3: (2)] () + [3: () (2)])]

z€e[—1,1]

= max{ sup {$2 — (v(x) + [3: (P)] (—:L‘))| , sup {xQ — ([3:(®)] (z) + t(—x))‘}

z€[—1,0] x€(0,1]

z€[—1,0] z€(0,1]

= max{ sup !(—x)2 — (3. () (—x)‘ , sup ‘xz — (3. (P)) (:E)‘}

= sup |z” — (3. (®)) (z)| <0 (5.1.39)

z€[0,1]

-1 -1

Next observe that (5.1.36) and (5.1.38) show that for all x € R\ [— (g)2, (%)m} it holds
that:

129

—1 —1

The triangle inequality then tells us that for all z € R\ [— (5)77, (5

—1 =1
= ()7 < (w4 ()7)

1

= (1ol ol 4 (5) ™ ol o)
-2 -1 -1
< (5)7 ()R ()T
(‘x’ o) Tg) kG

€ 9

- <§ + 5) lz|* = e |z]? < emax {1, |z|*}

2% = (3: (1)) ()] =

Note that (5.1.39), (5.1.36) and the fact that 6 = 277277 then tell for all z €
[~ (5)77.(5)7*] it holds that:

<(3) - [sup [y — [3(®)] () + [3:(®)] ()]

yE[—l,l}

-2 E
<(5)7 6= (5)7 2t = <emax{1 2)

Now note that this and (5.1.41) tells us that for all x € R it is the case that:

22 = (3 (1)) (@)] < emax{1, |27}

)72 | it holds that:

(5.1.41)

(5.1.43)

1

This establishes Item (v). Note that, (5.1.42) tells that for all x € [— (g)2, (%)‘IT?} it is

the case that:

=
ks
£
S
N
ER
[N}
|
=

() (@) +lal® < e+ Jaf’

130

(5.1.44)

This and (5.1.41) tells us that for all x € R:

|(3e) ()] < e+ [af? (5.1.45)

This establishes Item (iv).
Note next that by Corollary 4.4.5.1, Remark 4.4.2, the hypothesis, and the fact that § =

2(1%22&%%2 tells us that:

:max{ ! +{q32}10g2(6)+1,2} (5.1.46)

This establishes Item (v).

Notice next that the fact that § = 2(1_—_225# tells us that:

log, (671) = log, (2—5—) = q_% + Hq—%} log, (51)] (5.1.47)

Note that by , Corollary 4.4.5.1 we have that:

| (Aff_q0) + 1

<
P(PeAff_,o) < [max{l, (@) 11

H P(®) =P (®) (5.1.48)

and further that:

o O (Aﬂ:‘,a270)
P (Aff,—2 oD o Aff_, o) = |max {1, O (® o Aff o) }1 P (D eAff_,0)

< P(®) (5.1.49)

By symmetry note also that P (Aff,—2,e® e Aff, o) = P (Aff,—2,ed e Aff_,) and also that
L (Aff,—2 oD o Aff, o) = L (Aff,—2 o eD e Aff_,). Thus Lemma 4.5.10, Corollary 4.3.5.1, and

131

the hypothesis tells us that:

P(U)=P(®BEP)
< 4P (9)

= 4max {10log, (6~ ') — 7,13} (5.1.50)
This, and the fact that § = 2272 renders (5.1.50) as:

4max {101log, (67") — 7,13} = 4max {10log, (67 ') — 7,13}

2 q 1
- 4max{1() (q——2 + q_210g2 (e)) —7, 13}

40q _ 80

0

Remark 5.1.8. We will often find it helpful to refer to this network for fized ¢ € (0,00) and

q € (2,00) as the Sqr’ network.

Remark 5.1.9. For an R implementation see Listing 9.17

| Min. 18 Qu. Median Mean 3 Qu. Max.
Experimental |22 — J.(Sqr®®)(z) ‘ 0.00000 0.08943 0.33787 3.14893 4.67465 20.00
Theoretical |22 — J.(Sqr™*)(z) | 0.010 1.715 10.402 48.063 45.538 1250.00
Forward Difference ’ 0.01 1.6012 9.8655 44.9141 40.7102 1230

Table 5.1: Theoretical upper bounds for L! error, experimental L! error and their forward
difference, with ¢ € [2.1,4], ¢ € (0.1,2], and = € [—5, 5], all with 50 mesh-points for Sqr?*.

132

log 10 experimental depths Log10 upper limits of depth

B 204 . 02,0.4]
B o208 . (0.4,06]
B o508 B ©s.08
2 M cs10 » . (0.8, 1.0]
2 22
@ | JCERE: @ . (1.0,1.2)
| IGEXP | CEXR)
(1.4,1.6] W (418
(16,18] (16,18
1 (1.8,2.0] 1 (1.8,2.0]
0 0
2 4 6 8 10 2 4 6 8 10
q q

Figure 5.3: Left: log,, of depths for a simulation with ¢ € [2.1,4], € € (0.1, 2], and z € [-5, 5],
all with 50 mesh-points for Sqr?*. Right: The theoretical upper limits over the same range
of values

5.1.3 The Prd?® Neural Networks and Products of Two Real Num-

bers

We are finally ready to give neural network representations of arbitrary products of real
numbers. However, this representation differs somewhat from those found in the literature,
especially Grohs et al. (2023), where parallelization (stacking) is used instead of neural
network sums. This will help us calculate W; and the width of the second to last layer for

later neural network calculations.

Lemma 5.1.10. Let 6, € (0,00), ¢ € (2,00), A1, Ay, A3 € RY*2 U € NN satisfy for all
v ERthat 6 = (2 +1)", A, =[1 1, As=[1 0], 43 = [0 1], % € C(R,R),

(3:(¥)) (0) = 0, 0 < (3 (V) (2) < 0+ [af, |22 = (3: (V) (2) | < dmax{L, |z[7}, D(¥) <
maX{H—q 5+ 252y 108, (67 1,2}, and P (0) < max{ [4] log, (671) + (18_—02 - 28,52}, then:

(i) there exists a unique I' € NN satisfying:

r— e > (Te AfFAhO)) P ((—%) > (T e AfFAz,o))) ((—%) > (T o Afng,o))

133

Log 10 number of parameters -
Log10 upper limits of parameters

(1.2,1.4]
[| . (16, 18]
3 = (14,18 3 . (1.8,20]
(16,18
B cozo B o2z
u N . (2.2,2.4]
(20,22]
B eeze
» B c224 »
g R g M co2a
u EZ’:”: B 830
- (3.0,3.2]
.(23'301 .(3234]
(30,32 @ 4’ 3.6]
! (32,341 ! @ sv s.e]
(3.4,3.6] o 8' 4'0]
(3.6,3.8] o
0 0
2 4 6 8 10 2 4 6 8 10

Figure 5.4: Left: log,, of params for a simulation with ¢ € [2.1,4], ¢ € (0.1,2], and = €
[—5, 5], all with 50 mesh-points for Sqr?“. Right: The theoretical upper limits over the same
range of values

(ii) it that 3. (T') € C' (R* R)
(iii) it holds for all x € R that (3, (T")) (z,0) = (3. (I")) (0,y) =0

x
(iv) it holds for any z,y € R that |zy — (3, (")) < emax{l, |z]9, |y|?}

Y

(v) it holds that P(T") < 2% [log, (¢7') + ¢ + 1] — 252
(vi) it holds that D (T) < ;%5 [log, (¢7") +q]
(vii) it holds that Wy (') = 24

(viii) it holds that Wyry = 24

134

Min Ist. Qu Median Mean 3rd Qu Max.
Experimental
|2? — T, (Sqr®®) ()| 0.0000 0.0894 0.3378 3.1489 4.6746 20.0000
Theoretical upper limits for
|22 — J.(Sqr?®)(x) 0.010 1.715 10.402 48.063 45.538 1250.000
Forward Difference 0.001 1.6012 9.8655 44.9141 40.7102 1230
Experimental depths 2 2 2 2.307 2 80
Theoretical upper bound on
depths 2 2 2 2.73 2 91
Forward Difference 0 0 0 0.423 0 11
Experimental params 25 25 25 47.07 25 5641
Theoretical upper limit on
params 52 52 52 82.22 52 6353
Forward Differnce 27 27 27 35.16 27 712

Table 5.2: Table showing the experimental and theoretical 1-norm difference, depths, and
parameter counts respectively for Sqr?® with ¢ € [2.1,4], ¢ € [0.01,2], and =z € [-5,5] all
with 50 mesh-points, and their forward differences.

Proof. Note that:

|

(3. (1)

(IRELD)

=7, G > (T e AffAl,o))

+

1 x
o |1 y
1, x
5o] y]
= O ()~ 5

5 (1) wenri)

X

Y

z 7, ((% > (Ve AffAl,O)) D <(

135

1

2) >(Ue AffAz,O)) B (153

(5.1.54)

Note that this, and the assumption that (J, (¥)) (z) € C (R,R) and that (J,(¥))(0) =0

ensures:

) | [] =300 = 5 G @) = 5 Ge@) O
=0
1 I L
= 5 O (W) (04) — 5 (3 ()) (0) = 5 (30 () ()
0
= (3.(I")) (5.1.55)
Y

Next, observe that since by assumption it is the case for all x,y € R that |2%— (3. (¥)) (z) | <
dmax{1l, |z|?}, zy = Lz + y|* — |z[* — L|y[% triangle Inequality and from (5.1.54) we have

that:

(3 (1) (2, 9)) — 2y

= 15100 @+ 9) = o+ o] = 5 [0 (9) (@) = o] = 5 [(¥)) (2) — o]
<[5 @) @t~ o o]+ 5 009 () I+ 5 [.(9) () - b
< % fmanc {1, fo + 917} + max {1, of*) + max {1, 3/}

Note also that since for all a, 3 € R and p € [1,00) we have that |a+ B[P < 277 (Ja|? + |5]P)

we have that:

(3 (1)) (z) — zy|

< 3 fmax {1,207 ol + 2070 [y} + max {1, o} + masx {1, |y}
< % [{127t} + 207 7 4 mae {1, o) + e {1,y
< g [29 + 2] max {1, |z|?, |y|"} = e max {1, |z|?, |x|?}

136

This proves Item (iv).
By symmetry it holds that P (3> (U e Aff4, o))
= P(—3>(VeAffy,0) = P(—10(VeAffy,o)) and further that L (3> (Ve Affy, o)) =

L(—4>(VeAffs,g)) =L (3> (¥ eAffs,)). Note also that Corollary 4.4.5.1 tells us that

1
2

for all i € {1,2,3} and a € {1, —3} it is the case that:

P(a> (T eAffy, o)) =P (T) (5.1.56)
This, together with Corollary 4.5.10.1 indicates that:

P(I) < 9P (D)

40q) 80

Combined with the fact that § = & (2971 + 1)_1, this is then rendered as:

40q B 80
9max { l(r—2:| 10g2 (5 1) -+ —2 - 28, 52}

= 9max { [%} (logy (7") +log, (297" +1)) + % — 28, 52} (5.1.58)

Note that:

log, (297! +1) =log, (27" +1) —log, (29) + ¢

90-1 4 1
= log, (57) +g=1log, (27" +27%) +g¢

3
<log, (271 +27%) + ¢ = log, <1> +q=1log,(3) —2+¢q (5.1.59)

Combine this with the fact that for all ¢ € (2, 00) it is the case that % > 2 then gives us

137

that:

40q _ 40q _
{(]_—2} log, (2971 +1) —28 > {q?} log, (2071) — 28 =

40q(q — 1)

—28 =252 (5.1.60
- (5.1.60)

This then finally renders (5.1.58) as:

9Inax<{[&£g2§] (logy (e71) +log, (297" 4 1)) +-&5¥1§ —-28,52}
<9:§?%:0%2@1)+b&cﬂ—2+qy+5?§—2ﬂ
—9:5%%:1%2@”)+b&ﬁﬂ—2+§)—24
<9:52%:0%2@*)+m&¢n_1y_%}

= ggg% [log, (67') + ¢ + log, (3) — 1] — 252 (5.1.61)

Note that Lemma 4.5.11, Lemma 4.4.5, the hypothesis, and the fact that § = ¢ (277! + 1)_1

tell us that:

1 q _
1+ + lo 51,2}
q—2 2@—2)gﬂ)

q—2 2(q—2)

1 q -1
1+q—2+2m—2ﬁb&@)+Q—Uﬂ} (5.1.62)

{
:max{1+ S [1og2(g1)+1og2(2q1+1)},2}
{

q(g—1)
2(q—2)

Since it is the case that > 2 for ¢ € (2,00) we have that:

nmx{1+- S)(ng@—U-+q—-m,2}

q—2 2(¢-2
_ 1 q -1 _
_1+q—2+2(q—2) (logy (e7') +q—1)
< a1 + q (log2 (5_1) —l—q)

q—2 2(q—2)
(5.1.63)

138

Observe next that for ¢ € (0,00), € € (0,00), I' consists of, among other things, three
stacked (U e Affy, o) networks where i € {1,2,3}. Corollary 4.4.5.1 tells us therefore, that
Wi (T') = 3-Wj (¥). On the other hand, note that each W networks consist of, among other
things, two stacked ® networks, which by Corollary 4.4.5.1 and Lemma 5.1.7, yields that
W, (I') = 6 - Wy (®). Finally from Corollary 5.1.4.1, and Corollary 4.4.5.1, we see that the
only thing contributing to the Wy (®) is Wy (i4), which was established from Lemma 5.1.2
as 4. Whence we get that W; (I') = 6 - 4 = 24, and that Wy (I') = 24. This proves Item

(vii)—(viii). This then completes the proof of the Lemma. O

Corollary 5.1.10.1. Let §,e € (0,00), q € (2,00), Ay, Ay, A3 € R¥™2 U € N satisfy for
allz € R that 6 = (207 +1)"", Ay =1 1], Ay =1 0], 43 =100 1], 3. € C(R,R),
B (1) (0) = 0, 0 < (3. (1)) () < 6+ o, 12 — (3 (¥)) ()| < Smax{L, 2]}, D () <
max{1+ q_% + 35597 108 (67,2}, and P (¥) < max { [;%] log, (671) + q8_—02 — 28, 52}, and

finally let T" be defined as in Lemma 5.1.10, i.e.:

— (% ® (Ve AfFAhO)) & ((—%) ® (Vo AfFAQ,o)) &b ((—%) ® (Ve Afng,o))

It is then the case for all x,y € R that:

[\CR GV

3. (D) (z,y) < <§ + 2+ y2> < e+ 227 + 297 (5.1.65)

Proof. Note that the triangle inequality, the fact that § = (297! + 1)_1, the fact that for

139

all z,y € R it is the case that |z + y|* < 2(]z|* + |y|?) and (5.1.54) tell us that:

N 1, 1 1
B (D) ()| < & 130 4)] + 5 3 (0) ()] + 5 136 (9) ()
1 1 1
<5(6+|x+y|2)+§(5+|x|2)+§(5+|y|2)
30 3¢ _ 1
<B4l = (5) @) (ol +)
3 2 2 3 2 2
p——_ < —_— fa—
> (g +1oP + 1) <3 (5 + 1P +)
< e+ 227 + 2y (5.1.66)
L]

Remark 5.1.11. We shall refer to this neural network for a given q € (2,00) and given

e € (0,00) from now on as Prd®®.
Remark 5.1.12. For an R implementation see Listing 9.20

Remark 5.1.13. Diagrammatically, this can be represented as:

> ((D [Aﬂ:Al,O)

1
2

=~ Sum Io (PeAffy,y) [<— Cpy <=—

> (CD [AfFAz’D)

1
2

Figure 5.5: Neural network diagram of the Prd?* network.

140

Log10 upper limits of depth

. (02,0.4]
- (0.4,0.6]
. (06,0.8]
. (0.8,1.0]
. (1.0,1.2)
| CEXR)

(1.4,1.6]
(16, 1.8]
(1.8,2.0]

Log10 Depth

Mo

(1.2

eps
o

eps
o

Figure 5.6: Left: log,, of deps for a simulation of Prd®® with ¢ € [2.1,4], ¢ € (0.1,2], and
x € [—5, 5], all with 50 mesh-points. Right: The theoretical upper limits over the same range
of values.

5.2 Higher Approximations

We take inspiration from the Sum neural network to create the Prd neural network. However,
we first need to define a special neural network called tunneling neural network to stack two

neural networks not of the same length effectively.

5.2.1 The Tun’ Neural Networks and Their Properties

Definition 5.2.1 (R—,2023, The Tunneling Neural Networks). We define the tunneling

neural network, denoted as Tun, forn € N by:

p

AfFLO n=1

Tun, = 1 1d, ‘n =9 (5.2.1)

" 2ld; neNN[3,00)

\

Where Idy is as in Definition 6.1.1.

Remark 5.2.2. For an R implementation see Listing 9.12

141

Log10 Number of parameters

B o520
B co.22
3 B 224 5
- (2.4,2.6] Log10 upper limits of parameters
B ces.28 ll(nszm
B s.30 Il(zaam
2, B co32 2, B @530
@ B c234 @ B coss
B ce30 B 540
B csas (4.0, 45]
W 840 (4.5,5.0]

(4.0,4.2] 1
(42,44
(4.4,4.8]

(46,4.8)

Figure 5.7: Left: log,, of params for a simulation of Prd?® with ¢ € [2.1,4], ¢ € (0.1,2],
and z € [—5, 5], all with 50 mesh-points. Right: The theoretical upper limits over the same
range of values.

Lemma 5.2.3. Letn € N, z € R and Tun, € NN. For alln € N and x € R, it is then the

case that:
(i) 3. (Tun,) € C(R,R)
(ii) D (Tun,) =n
(iii) (3. (Tun,)) (x) ==
2 n=1
(iv) P (Tun,) =
7T+6(n—2) :neNN[2,00)

(’U) L(Tunn) = (lo,ll, ...,lLfl,lL) = (1,2, ...,2, 1)

Proof. Note that Affy; € C' (R,R) and by Lemma 6.1.2 we have that Id; € C (R, R). Finally,
the composition of continuous functions is continuous, hence Tun, € C' (R,R) for n € NN
[2,00). This proves Item (i).

Note that by Lemma 4.4.2 it is the case that D (Aff, y) = 1 and by Lemma 6.1.1 it is the case

that D (Id;) = 2. Assume now that for all n < N that D (Tun,,) = n, then for the inductive

142

Figure 5.8: Isosurface plot showing |z* — Sqr?< | for ¢ € [2.1,4], € € [0.01,2], and x € [-5, 5]
with 50 mesh-points in each.

step, by Lemma 4.2.5 we have that:
D (Tun,41) = D (¢" " 1d)

=D ((o”_2 |d1> ° |d1)

=n+2-1=n+1 (5.2.2)

This completes the induction and proves Item (i)—(iii). Note next that by (4.1.11) we have

that:

[

(Je (Affrp)) (z) = = (5.2.3)

143

Lemma 6.1.2, Item (iii) also tells us that:
(J:(Idy)) (x) =¢(z) —t(—2) == (5.2.4)

Assume now that for all n < N that Tun,, () = z. For the inductive step, by Lemma 6.1.2,

Item (iii), and we then have that:

—z (5.2.5)
This proves Item (ii). Next note that P (Tun;) = P (Affy) = 2. Note also that:
1 0
P (Tuns) = P (Idy) = P 1 (=]]o])
—1 0
=7
And that by definition of composition:

P (Tuns) (5.2.6)

(- e)

=13

144

Now for the inductive step assume that for all n < N € N, it is the case that P (Tun,) =

7+ 6(n — 2). For the inductive step, we then have:

P(Tun,. 1) =P (Tun,eld;) =

-
I =
—_
o o
I
[S—
p_kl
p—
o o
N
1
[
|
—_
—_
o
—_
~
°
o
o
Il

1 0 1 -1 0 1 -1 0 i
P))) y T) 7(1 —1:|7|:0:|)
-1 0 -1 1 0 -1 1 0 L

—74+6(n—2)+6=T+6((n+1)—2) (5.2.7)

This proves Item (iv).

Note finally that Item (v) is a consequence of Lemma 6.1.2, Item (i), and Lemma 4.2.5 [
Definition 5.2.4 (R—, 2023, The Multi-dimensional Tunneling Network). We define the
multi-dimensional tunneling neural network, denoted as Tun? forn € N and d € N by:

¢

AfFHd,@d n=1

Tun;, = Idy n=2 (5.2.8)

" 2ld; :neNNJ3 00)

\
Where |dg is as in Definition 6.1.1.

Remark 5.2.5. We may drop the requirement for a d and write Tun, where d = 1, and it

is evident from the context.

Lemma 5.2.6. Letn € N, d e N, z € R and TunZ € NN. Foralln e N, deN, and x € R,

it is then the case that:
(i) 3: (Tun?) € C (R, R)
(ii) D (Tun) =n

145

(iii) (3¢ (Tunl)) (z) ==
8d? + 5d n=1
(iv) P (Tunl) =
4d? +3d+ (n—1)(4d* +2d) :neNN[2,00)
(v) L(Tun?) = (lo, by, oo lp—1, 1) = (d,2d, ..., 2d, d)
Proof. Note that Items (i)—(iii) are consequences of Lemma 6.1.2 and Lemma 4.2.5 respec-
tively. Note now that by observation P (Tun‘li) = d? + d. Next Lemma 6.1.4 tells us that

P (Tung) = 4d? 4 3d Note also that by definition of neural network composition, we have the

146

following:

P (Tung) (5.2.9)
_ g - _O_
-1 0 1 -1 0
) N 7 e . (5.2.10)
1 0 1 -1 0
L L —1] 1Y)
[1] -0- -
-1 0 1 -1 0
1 0 1 -1 0
I —1] [0] i
(1 1 ol (1 -1 1 o]
1 0 -1 1 0
P N 7 e , (5.2.11)
1 0 1 -1 0
| i —1| [0 i -1 1] 0]
1 -1 0
1 -1 0

=2dxd+2d+2d x 2d+2d + 2d x d + d
= 2d® +2d + 4d*> + 2d + 2d*> + d

_ 8+ 5d (5.2.12)

Suppose now that for all naturals up to and including n, it is the case that P (Tuni) =

147

4d* + 3d + (n — 2) (4d* + 2d). For the inductive step, we have the following:

P (Tunl,,

1
-1

) = P (Tun? e ld,)

0
0

0

0

-1
1
1
-1
—1
1
1
-1
—1
1

=Ad®> + 3d + (n — 2) (4d® + 2d) + 4d* + 2d

=4d®> + 3d + (n — 1) (4d® + 2d)

This proves Item (iv). Finally, Item (v) is a consequence of Lemma 4.4.2

148

(5.2.13)

(5.2.14)

Pwr

TunD(PwrZ’fl)

Figure 5.9: A representation of a typical Pwr?® network.

5.2.2 The Pwr!® Neural Networks and Their Properties

Definition 5.2.7 (R—, 2023, The Power Neural Network). Let n € N. Let §,e € (0,00),
q € (2,00), satisfy that § = ¢ (2972 +1)"". We define the power neural networks Pwr®* € NN,

denoted for n € Ny as:

Affo,l n=20

9,€ _
Pwrl® =

Prd" o | Tunp(purye) EPWLS, | o Gy, ime N

Diagrammatically, this can be represented as:
Remark 5.2.8. For an R implementation see Listing 9.20

Remark 5.2.9. Note that for all i € N, q¢ € (2,0), ¢ € (0,00), each Pwrl® differs from

Pwrl?, by atleast one Prd?® networtk.

Lemma 5.2.10. Let z,y € R, € € (0,00) and q € (2,00). It is then the case for all z,y € R

that:
emax {1, |z|% |y|?} < e+ elx|? +ely|® (5.2.15)
Proof. We will do this in the following cases:

149

For the case that |z| < 1 and |y| < 1 we then have:

emax {1, |z|% |y|'} = e < e +elz|? + ¢|y|? (5.2.16)

For the case that |z| < 1 and |y| > 1, without loss of generality we have then:

emax {1, [z[?, [y|"} < ely|” <e+elx|? +ely|*: (5.2.17)

For the case that |x| > 1 and |y| > 1, and without loss of generality that |z| > |y| we have

that:

emax{1l, |z|% |y|} = elz|? < e+ e|z|? + e|y|? (5.2.18)

O

Lemma 5.2.11. Let p; fori € {1,2,...} be the set of functions defined for € € (0,00), and

x € R as follows:

P =¢e+2+ 2|z

P =c+2(pi1)? + 2lzf? fori =2 (5.2.19)

For alln € N and € € (0,00) and q € (2,00) it holds for all x € R that:

[T, (Pwr®®) (2)] < pp (5.2.20)

Proof. Note that by Corollary 5.1.10.1 it is the case that:

|Te (Pwr?®) (x)] = |3, (Prd?®) (1,2)| < p1 (5.2.21)

150

and applying (5.2.21) twice, it is the case that:

T (Pwr?) (z)| = |3, (Prd®) (3. (Prd® (1, 2)) ,)|
< e+ 2|73, (Prd?®) (1,x)\2 + 2\:5']2

<e+2p7 +2|z* = po (5.2.22)

Let's assume this holds for all cases up to and including n. For the inductive step, Corollary

5.1.10.1 tells us that:

|3 (Pwr?)) (@)] < |3, (Prd®® (3, (Prd®® (3, - -+ (1,2) ,2) ,x) -+ -))]
< J¢ [Prd®® (Pwri® (2) , z)]

<e+2p2 + 20z = pona (5.2.23)

This completes the proof of the lemma. 0

Remark 5.2.12. Note that since any instance of p; contains an instance of p;_1 for i €

NN[2,00), we have that p, € O (52(n—l))

Lemma 5.2.13. Foralln € N, g € (2,00), ande € (0,00), it is the case that P (TU”D(PW#;E)>
P (Pwr®e).

<

Proof. Note that for all n € N it is straightforwardly the case that P (Pwr®®) > P (TunD (Pqu’il)>

because for all n € N, a Pwr?® network contains a TunD(PwrfL’fl) network. Note now that
for all i € N we have from Lemma 5.2.3 that 5 < P (Tun;41) — P (Tun;) < 6. Recall from
Corollary 5.1.4.1 that every instance of the ® network contains atleast one i, network, which
by Lemma 5.1.2 has 40 parameters, whence the Prd?® network has atleast 40 parameters
for all € € (0,00) and ¢ € (2,00). Note now that for all i € N, Pwr!® and Pwr{y, differ by

atleast as many parameters as there are in Prd?, since, indeed, they differ by atleast one

more Prd?®. Thus for every increment in 7, Pwr?® outstrips Tun; by at-least 40 — 6 = 34

151

parameters. This is true for all : € N. Whence it is the case that for all 7 € N, it is the case

that P (Tun;) < P (Pwr?®). O

Lemma 5.2.14 (R—2023). Let 6,¢ € (0,00), ¢ € (2,00), and § = (271 +1)"". Let

n € Ny, and Pwr, € NN. It is then the case for all n € Ny, and x € R that:

(1) (Je (Pwri%)) (x) € C(R,R)

(ii) D(Pwr?¢) <

(7ii) Wy (Pwr®) =
24+2(n—1) :neN

2 n=20
(iv) P(Pwrl®) <

4y (252 (5% flog, (1) + g+ 1]+ 372) ineN

0 n=20
(v) 2" = (3 (Pwry®)) (2)] <

|z (2"t = T, (Pwrley) ()| + e+ |z[7+pl, :n€eN

Where we let p; fori € {1,2,...} be the set of functions defined as follows:

p1:€+2+2|x|2

pi=e+2(pis1)’ + 2z (5.2.24)
And whence we get that:

|z™ — T, (Pwr?®) ()| € O (62‘7("_1)) forn =2 (5.2.25)

152

_ 1 n=0
(UZ) WH(PWrZ’s) (PWI’Z’E) =
24 neN

Proof. Note that Item (ii) of Lemma 4.4.2 ensures that J. (Pwry) = Aff; o € C' (R, R). Note

next that by Item (v) of Lemma 4.2.5, with &1 vy, Py v\ 15,4 N ¢, we have that:

(Te (1 @ 1)) () = ((Te (1)) 0 (Te (12))) () (5.2.26)

This, with the fact that the composition of continuous functions is continuous, the fact the
stacking of continuous instantiated neural networks is continuous tells us that (J, Pwr,) €
C (R,R) for n € NN [2,00). This establishes Item (i).

Note next that by observation D (Pwr{®) = 1 and by Item (iv) of Lemma 6.1.2, it is the case
that D (Id;) = 2. By Lemmas 4.5.3 and 4.2.3 it is also the case that

D <Prdq’€ o [TunD(pwerl) = Pwrf{fl] . pr) =D (Prdq’e ° [TUnD(pWrZ’il) = Pwri’fl]) Note also
that by Lemma we have that D <TunD(P <) HPwr?®) = D (Pwr??,). This with Lemma

4.2.5 then yields for n € N that:

D (PwrZ*)

D(Prde [TunD (Pwie=,) B Pwri’il] * CPY2,1)

(
D (Pl’d ° [TunD (Pwrde,) = PWI’Z’il])
(

D (Prd) +D (TunD(Pwr)> -1

= 4 s [log2() —I—q] +D (TunD(PWr)) -1

= 5 [loga (=)) + D (Pwil) — 1 (5.2.27)

//\

And hence for all n € N it is the case that:

D (Pwr?¢) — D (PwrZ’fl) < —q d

— [logy () +4] 1 (5.2.28)

153

This, in turn, indicates that:

<n [— [log, (7') +¢] — 1] +1 (5.2.29)

This proves Item (ii).

Note now that Wy (Pwr{®) = W, (Affg1) = 1. Further Lemma 4.2.5, Remark 4.4.2, tells us
that for all i,k € N it is the case that W; (Tun;) < 2. Observe that since Cpy,,, Pwrg”®,
and TunD(Pwrg’E) are all affine neural networks, Lemma 4.4.5, Corollary 4.4.5.1, and Lemma

5.1.10 tells us that:

Wi (Pwr?®) = W, (Prd‘m ¢ {T”nD(Pwrg’s) = Pwrg’a} ¢ pr?,l)

=W, (Prd?®) =24 (5.2.30)
And that:

W, (Pwr§®) = W, (Prd® o [Tunppyee) B Pwri<] Cpy, ;)

=W, <[TU”D(PW#{’E) = Pwr%‘ED

=244+2=26

This completes the base case. For the inductive case, assume that for all ¢ up to and including

1 1=0
k € N it is the case that Wy (Pwr!®) < . For the case of k + 1, we

2442(i—1) :ieN

154

get that:

Wi (Pwrf,) = Wi (Prd®* e | Tuno(e, B Pwri<| « Cpy,)
=Wy ([Tunp e B Pwri?])
=W, (TunD(PwrZ’E)) + Wy (Pwri®)
2 k=20

< (5.2.31)
2442k :keN

This establishes Item (iii).
For Item (iv), we will prove this in cases.
Case 1: Pwrl”:

Note that by Lemma 4.4.2 we have that:
P (Pwrl®) = P (Affy1) =2 (5.2.32)

This completes Case 1.
Case 2: Pwr?® where n € N:
Note that Lemma 4.3.5, Lemma 5.2.13, Corollary 4.3.5.1, Lemma 4.3.6, and Corollary 4.3.6.1,

tells us it is the case that:

n—1

P (Pwrl) B Tung (pypae)) < P (Pwris, BPwric)

< 4P (Pwrl?) (5.2.33)

155

Then Lemma 4.2.5 and Corollary 4.4.5.1 tells us that:

P ([Pwric, B Tung pueae)| ® Coya)
=P ([Pwrfﬁl B TunD(Pqu’fl)D

< 4P (Pwrle,) (5.2.34)

n—1

Note next that by definition for all ¢ € (2, 00), and £ € (0, 00) it is case that WH(Pwrg,E) Pwrd©
Wh(affo,) = 1. Now, by Lemma 5.1.10, and by construction of Pwr{® we may say that for

1 € N it is the case that:
WH(PWI’?’E) = WH(Prdq’E) = 24 (5235)
Note also that by Lemma 5.2.3 it is the case that:

W) (Tunppuerc,)) =2 (5.2.36)

H (TunD(Pwrgfl)

Furthermore, note that for n € [2,00) NN Lemma 5.1.10 tells us that:

W ([Pwr, B Tung pye)|) = 24+2 =26 (5.2.37)
H<|:Pwrg’€1ElTun]) n—1

q,€
D(Pwrn_l)

Finally Lemma 4.2.5, (5.2.34), a geometric series argument, and Corollary 4.3.5.1, also tells

156

us that:

P (Pwre) (5.2.38)
=P (Prd‘f”E o [Pwrg’il E]TunD(PwrZ,;)] o CPY2,1>

=P (Prdq’E ° [PWF%’: E]TunD(PwrZ’fl)])

< P (Prd?®) + 4P (Pwrls,) +

+ W, (Prd®®) - W ([PwrZ’fl B TU”D(Pqu*El)})
H([Pwrgfl ElTunD(Pwrg;il):|> n—

=P (Prd?®) + 4P (Pwrl®)) + 624

4n+1 _
= 4" P (Pwrf*) + (;3) (P (Prd®®) + 624)
Ant — 1Y (360
=4t 4 (3) (‘; [logy (e7') +q+1] + 372) (5.2.39)
q —_—

Next note that (J, (Pwrg 1)) (x) is exactly 1, which implies that for all z € R we have that
|2° — (3 (Pwrg1) (z)) | = 0. Note also that the instantiations of Tun, and Cpy,, are exact.
Note next that since Tun, and Cpy,, are exact, the only sources of error for Pwrl® are n
compounding applications of Prd?®.

Note also that by definition, it is the case that:

J (Pwrd®) =3, | Prd?® (3, [Prd?® (- - - T, [Prd?* (1, 2)],- - -)] , @) (5.2.40)
nfc‘o,pies

Lemma 5.1.10 tells us that:

|z — T, (Prd?® (1,2))] < emax{1, |z|'} < e+ |z|* (5.2.41)

The triangle inequality, Lemma 5.2.10, Lemma 5.1.10, and Corollary 5.1.10.1 then tells us

157

that:

2% = 3¢ (Pwr§) ()]

= |z -2 — T3 (Prd?® (3, (Prd?* (1,2)) ,x))]
<l|le-z—x- -3 (Prd? (1,2))| + |2 - T, (Prd®® (1,2)) — T, (Prd?® (3, (Prd?* (1,2)) ,x))]
= | (z = Je (Prd®* (1,2)))| + € + & |2[* + £ [Je (Prd®* (1, 2)) "
<lzetaelol'|+e+ela|'+ele+2+a

2|q

= |ze + ze |z|!] + € + € |z|? + ep] (5.2.42)

Note that this takes care of our base case. Assume now that for all integers up to and

including n, it is the case that:

|z™ — T (Pwr®) (2)] < ‘1‘ N, B (Pwrg’fl) (x)‘ + ‘x - (Pwri’fl) (x) — T, (Pwrd®) (a:)’
< o (@ =3 (Pwrls)) (@) | + & + elz|? + | Te (Pwriey) (x)‘q

< o (@ = 3 (Pwrl) (@) | + &+ ela| + epl_, (5.2.43)

For the inductive case, we see that:

a7, (Pwri’il) (33)‘ < ‘x"“ —x - Je (Pwr??) (x)‘ + ‘x T (Pwr?®) (z) — 7, (PwrZ’il)’
< o (2™ — T (Pwrde) (2))] + € + ¢|z|? 4+ € | T, (Pwr®) (z)|?
< (2" = T (Pwrd®) ()] + € + elx]? + epd (5.2.44)

Note that since p, € O ("7V) for n € NN [2,00), it is the case for all z € R then that
2" — T, (Pwrl®) (z)| € O (e24"D) for n > 2.
Finally note that W\, (Pur) (Pwrd®) =1 from observation. For n € N, note that the second

to last layer is the second to last layer of the Prd?® network. Thus Lemma 5.1.10 tells us

158

that:

Whi(purte) (Pwri®) = (5.2.45)

This completes the proof of the lemma. O

Remark 5.2.15. Note each power network Pwrl® is at least as deep and parameter-rich as

the previous power network Pwr®=, = one differs from the next by one Prd® network.

Log10 upper limits of depth

B ©s.08
B s
W ooz
W oza
B osa
| GERE
B 820
B o022

(22,24]
(2.4,26]
(256, 28]

10g10 depths

Mo
|

23]

eps
o

eps
o

2 4 6 8 10 2 4
q q

o
©
=)

Figure 5.10: Left: log;, of depths for a simulation of Pwri® with ¢ € [2.1,4], ¢ € (0.1, 2],
and z € [—5, 5], all with 50 mesh-points. Right: The theoretical upper limits over the same
range of values

5.2.3 an%’fc and Neural Network Polynomials.

Definition 5.2.16 (Neural Network Polynomials). Let 6, € (0,00), g € (2,00) and 6 =
g (2071 + 1)_1. For fived q,¢, fivred n € Ny, and for C = {co,c1,...,c,} € R (the set of
coefficients), we will define the following objects as neural network polynomials:
anZ”EC = @ (Ci > [Tunmaxi{D(Pwr‘.”s)}—l—l—D(Pwr‘.”E) ° PWF?’E]) (5.2.46)
i=0

Remark 5.2.17. Diagrammatically, these can be represented as

159

eps
o

log 10 # of parameters

. (30,32)
. (3.2,3.4] 3 Log10 upper limits of parameters
B ¢z B 254
B cs.s8 B sesa
W cs.c0 B sosa
W o< g2 M a0
B ¢24a B Gosa
B ¢sa0 B 6264
B @648 (6.4,66]

48,50] , (656, 68]

(50,52]

(5.2,5.4]

0
8 10 2 4 6 8 10

Figure 5.11: Left: log;, of params for a simulation of Pwry® with ¢ € [2.1,4], £ € (0.1, 2],
and z € [—5, 5], all with 50 mesh-points. Right: The theoretical upper limits over the same

range of values

Lemma 5.2.18 (R—,2023). Let 6, € (0,00), ¢ € (2,00) and § = (2971 +1)"" and let

C ={ci,co,...c,} € R" be a set of real numbers, i.e. the set of coefficients. It is then the

case for all n € Ny and x € R that:

(i) 3. (Pam%.) € C (R.R)

(ii) D (Pnml%,) <

(iii) P (PnmZ%,) <

(

\

7

1 n=20

n|-%[log,(e!)+q—1|+1 :neN
X\ q

2 n=20

(n+1) [4’”3 - (%) (% [logy (7)) + ¢+ 1] + 372)} :neN

(iv) !Z?:O vt — T, (anfl’fc) (x)‘ <YhG (|1: (xi_l -7, (Pwrg’fl) (x))‘ +e+|z]7+ pf_l)

160

Figure 5.12: Isosurface plot showing |23 — J.(Pwr®)(x)| for ¢ € [2.1,4], € € [0.01,2], and
x € [—5,5] with 50 mesh-points in each.

Where p; are the set of functions defined for i € N as such:

pr=c+ 1+ |z

pi=ce+ (pic1)’ + |2l (5.2.47)

Whence it is the case that:
Z cir' — 7, (Pnm?%) (x)| € O (e2a(n=D) (5.2.48)

i=0

(v) Wy (Pnm?%) = 24 23n +n’

161

Tun PW',g@

/ o e \

<— Sum,, Cpy <
+1,1 n+1,1
\ Tun - Pwrg,E

q,€
Pwr

Figure 5.13: Neural network diagram for an elementary neural network polynomial, with all
coefficients being uniformly 1.

1 :n=20
(UZ) WH(anZ’

€
,C

) (Pnmi%) <
24+2n :neN

Proof. Note that by Lemma 4.6.5, Lemma 5.2.14, and Lemma 4.2.5 indicate for all n € Ny

it is the case that:

e (Prmie) =3 <é [Ci g [Tunma"i{D(PWf?’E)}+1_D(Pwrg*f) . PWVi’”H)

1=0

ci I, (Tun . Pwr;”)

maxi{D(Pwrg’s)}+1,D(Pwrg,e)

n
= Z ¢; Je (Pwr?®)

Since Lemma 5.2.14 tells us that (J, (Pwr?®)) (z) € C (R,R), for all n € Ny and since the
finite sum of continuous functions is continuous, this proves Item (i).
Note that PnmZ< is only as deep as the deepest of the Pwr?® networks, which from the

definition is Pwr?® which in turn also has the largest bound. Therefore, by Lemma 4.2.5,

n

162

Min Ist. Qu Median Mean 3rd Qu Max.
Experimental
|23 — T, (Pwr®®) (z)] 0.0000 0.2053 7.2873 26.7903 45.4275 125.00
Experimental depths 4 4 4 4.92 4 238
Theoretical upper bound on
depths 4.30 17.82 23.91 25.80 29.63 548.86
Forward Difference 0.30 13.82 19.91 20.88 25.63 310.86
Experimental params 1483 1483 1483 1546 1483 5711
Theoretical upper limit on
params 9993 9993 9993 11589 9993 126843
Forward Differnce 8510 8510 8510 10043 8510 121132

Table 5.3: Table showing the experimental and theoretical 1-norm difference, depths, and
€ [0.01,2], and = € [-5,5] all

parameter counts respectively for Pwrl® with ¢ € [2.1,4], ¢

with 50 mesh-points, and their forward differences.

Lemma 4.4.5, Lemma 4.5.11, and Lemma 5.2.14, we have that:

an

This proves Item (ii).

< D (Pwr?*)

q

2 log2

Note next that for the case of n = 0, we have that:

Pnm®® = ¢; > Pwrl*

This then yields us 2 parameters.

Note that each neural network summand in Pnm?*

g -1 +1

(5.2.49)

consists of a combination of Tun; and

Pwry for some £ € N. Each Pwry has at least as many parameters as a tunneling neural

network of that depth, as Lemma 5.2.13 tells us. This, finally, with Lemma 4.4.5, Corollary

4.4.5.1, and Lemma 5.2.14 then implies that:

163

=0

P (Pnmy%) =P (@ [ci > [TunmaXi (D(Pwrt) }+1-D(Purt) ® PM?,ﬂ)
< (n+1)-P(¢;>[Tuny e Pwrde])

< (n+1)-P(Pwrf?)

2 n=20
<

(n+1) [4’”% + (%) (% logy, (67! +q+ 1] + 372)} :n €N
This proves Item (iii).
Finally, note that for all 7 € N, Lemma 5.2.14, and the triangle inequality then tells us that

it is the case for all i € N that:

‘:ci — T, (Pwr?*) (:v)‘ < ‘:c’ —x-7J, (Pwr?fl) (x)’ + |:c T, (Pwr;’fl) () — T, (Pwr?®) (a:)‘

(5.2.50)

This, Lemma 5.2.29, and the fact that instantiation of the tunneling neural network leads to
the identity function (Lemma 5.2.3 and Lemma 4.2.5), together with Lemma 4.6.8, and the

absolute homogeneity condition of norms, then tells us that for all z € R, and ¢y, cq,...,¢c, €

164

R it is the case that:

n
Z it — 3, (anffc (x))‘
=0

_ Z et — 73, [@ [ci > Tunmaxi{D(Pwr?’E)}+1_D(PW'§1’E) ° Pwrgvf}] (x)

i=0 =0

= Z CiIBi - Z Ci <jt [Tunmaxi{D(Pwrg'g)}+1—D(Pwr§’s) ® PWF?’E] (:B)) ‘
=1

=0

< Z |Cz| : ’xl - T [Tunmaxi{D(Pwrg"S)}JrlfD(Pwrg’s) ¢ PWI’;-LE] (CL’)‘
i=1
< Z Sk (‘x (:ci_l -7, (Pwrgfl) (m))’ +e+|z|7+ pg_l)

=1

Note however that since for all x € R and i € NN [2,00), Lemma 5.1.10 tells us that
|2t — T, (Pwr?®) (z)| € O (e240=D), this, and the fact that f+ g € O (z%) if f € O (29),

ge O (xb), and a > b, then implies that:
Z il - (|z (2" = 3 (Pwrs) ()| + e+ 2" +pf,) € O (e22=1) (5.2.51)
i=1

This proves Item (iv).
Note next in our construction Affy; will require tunneling whenever ¢ € N in Pwr?®. Lemma

4.4.5 and Corollary 4.4.5.1 then tell us that:

W, (Pnmfe) = W, (@ i [TUn, o (purt) o1 D (purt) ® PW”“H)

=0
= Wl (@ PWrg’6>
i=0
<YW, (Pwr?) :2+g(24—|—24+2(n— 1)) = 2 + 23n + n?
=0

(5.2.52)

This proves Item (v).

165

Finally note that from the definition of the Pnm{,, it is evident that Wii(purt,) (Pwrie) =1
since Pwrd’e, = Affy 1. Other than this network, for all i € N, Pwr?7, end in the Prd?* network,
and the deepest of the Pwr{* networks is Pwrl® inside Pnm'.. All other Pwr{" must end in

tunnels. Whence in the second to last layer, Lemma 5.1.10 tells us that:

1 n=0
WH(anZL,VEC) < (5253)
244+2n :neN

This completes the proof of the Lemma. O

Remark 5.2.19. Note that we will implement this in R as the so-called Tay function. Our
implementations of neural network exponentials, cosines, and sines will be instantiations of
this Tay function with the appropriate coefficients and exponents being replaced to give the

appropriate Taylor expansions.

5.2.4 Xpn®®, Csn’®, Sne’*, and ANN Approximations of e”, cos(z),
and sin(z).

Once we have neural network polynomials, we may take the next leap to transcendental
functions. For approximating them we will use Taylor expansions which will swiftly give us
our approximations for our desired functions. Here, we will explore neural network approx-

imations for three common transcendental functions: e”, cos(x), and sin(x).

Lemma 5.2.20. Let v,v5 € NN, f,g € C(R,R), and &1,e5 € (0,00) such that for all z € R
it holds that |f(x) — 3. ()| < €1 and |g(x) — T, (12)| < 9. 1t is then the case for all x € R

that:

f + 9] (x) = T (1 @ 1)) ()] < &1+ &3 (5.2.54)

166

Proof. Note that the triangle inequality tells us:

[f + 9] () = Te [y @ wo] (@) = [f (2) + g (x) = Te (1) (x) = Te () ()]
< (@) = T (1) (@) + g () = Te (v2) ()]

< €1t e

0

Lemma 5.2.21. Let n € N. Let vy,vs,...,v, € NN, €1,89,...,6, € (0,00) and f1, fa, ..., fn €
C (R,R) such that for alli € {1,2,...,n}, and for all x € R, it is the case that,

|fi (x) = 3 () ()| < &;. It is then the case for all x € R, that:

d file) =P G w) ()| < e (5.2.55)
i=1 i=1 i=1
Proof. This is a consequence of a finite number of applications of (5.2.54). O

Definition 5.2.22 (R—2023, Xpn?© and the Neural Network Taylor Approximations for e®
around z = 0). Let 6, € (0,00), q € (2,00) and § = ¢ (271 +1)"", and let Pwr% C NN be
as in Lemma 5.2.14. We define, for all n € Ny, the family of neural networks Xpn%© as:
~ [1
Xpngf = @ |:_ > [Tunmaxi{D(Pwr‘?’e>}+1—D(Pwr7'5) hd PWI’;-I’E:|:| (5256)

1!
=0

Lemma 5.2.23 (R—,2023). Let 6,c € (0,00), ¢ € (2,00) and § = & (2971 +1)"". It is then

the case for alln € Ny and x € R that:
(1) J: (Xpng©) (z) € C(R, R)

1 n=0
(i) D (Xpn}®) <

n[q%[logZ(e_l)nLq]—l]%—l :neN

167

2 :n=20
(i) P (Xpny©) <

q—2

(n+ 1) [445 4+ (£522) (2% [log, (=) + ¢ +1] +372)] ineN

(iv)

S| =

(Jo (27! = 3 (Pwris)) (2)) | + e + |2 + pZ,)

Where p; are the set of functions defined for i € N as such:

p1:€+1+|x|2

pi=c+ (pio1)’ + |zl (5.2.57)
Whence it is the case that:

€ O (g2D) (5.2.58)

(v) Wy (Xpn®©) = 2 + 23n + n?
(vi) WH(xpn;E) (Xpn©) < 24 + 2n

Proof. This follows straightforwardly from Lemma 5.2.18 with ¢; v 1—1, for all n € N and
i €40,1,...,n}. In particular, Item (iv) benefits from the fact that for all i € Ny, it is the

case that % > 0. m

Lemma 5.2.24 (R—, 2023). Let 6,¢ € (0,00), q € (2,00) and § = (2772 +1)"" . It is then

168

the case for alln € Ny and z € [a,b] C R, where 0 € [a,b] C R that:

. N _ n 1 e - - eb . |:U|n+1
le” — 3, (XpnZ©) (2)] < ; 7 (Jo ("1 =3 (Pwrisy) ()| +e + [l + 97) + CE
(5.2.59)
Proof. Note that Taylor's theorem states that for x € [a,b] C R it is the case that:
L N R
T = - — 5.2.60
¢ Z{i!]*(nﬂ)! (5.2.60)

=0

Where € is between 0 and z in the Lagrange form of the remainder. Note then, for all n € Ny,
x € [a,b] € R, and £ between 0 and z, it is the case, by monotonicity of e” that the second

summand is bounded by:

e{ . xn+1 eb . |x|n+1

(n+1)! = (n+1)!

(5.2.61)

This, and the triangle inequality, then indicates that for all z € [a,b] C R, and & between 0

and z that:

e = 3 (Xpnl) (o)l = D_ |5

:L,i ef_xn+1
3, (Xpnt
> |5+ o -2 o @
n g e - |z
<> 15| - 30 (xpnt® il Ll

[z!] « (Xpna®) (@) +)
"1 eb-|x|”+1
Z ﬁ Je (Pwrls)) (@) + e+ |27 +pl_y) + T

Whence we have that for fixed n € Ny and b € [0, 00), the last summand is constant, whence

it is the case that:

le” — 3. (Xpn&?) (z)| € O (2) (5.2.62)

169

O

Definition 5.2.25 (The Csn?® Networks, and Neural Network Cosines). Let d,¢ € (0,00),
g€ (2,00) and § = (271 +1)"". Let Pwr® be a neural networks as defined in Definition

5.2.7. We will define the neural networks Csn® as:

15 T (_1>Z £
Csnyy :EB{ 51 [Tunmaxi{o(pwrg»f)}HfD(pwrgvs)”’Wféﬁ-] (5.2.63)

1=0

Lemma 5.2.26 (R—, 2023). Let 6,¢ € (0,00), q € (2,00) and § = ¢ (2771 +1)"". It is then

the case for alln € Ny and v € R that:

(i) 3. (Csnl®) (z) € C'(R,R)

1 n=20
(ii) D (Csn?) <

2n [ﬁ[log2(5*1)+q]—1]+1 :neN

\

(

2 n=20
(7ii) P (Csn®) < <

q—2

(2n+1) [£03 + (£522) (2% [log, (=) + ¢+ 1] +372)] neN

\

(iv) | G a® = 30 (Con?) ()

no (=Y
< 2in ’ 2!

(|93 (93'%_1 —J; (Pwrg;‘il) (:13))‘ +e+|z|7+ pgz‘q)

Where p; are the set of functions defined for i € N as such:

p1:€+1+]:c|2

pi=ce+ (pi1)’ + |2 (5.2.64)

170

Whence it is the case that:

S Gl o (cont) ()| € 0 (22200 (5.2.65)
i=0 ’

Proof. Item (i) derives straightforwardly from Lemma 5.2.18. This proves Item (i).

q?E

Next, observe that since Csn?* will contain, as the deepest network in the summand, Pwr-,

we may then conclude that

D (Csn%) < D (Pwrl?)
1 :n=20
<
2n [q%?[logz(s_l)nLq]—l +1 :neN

This proves Item (ii).

A similar argument to the above, Lemma 4.4.5, and Corollary 4.4.5.1 reveals that:

€ 1 —1 i 9:€
P (Csn%’) =P (@ [(22|) > {Tunmaxi{D(Pwrg’s)}—i-l—D(Pwr?’E) ° PWI’i]])

=0

< (n+1)-P(¢>[Tun; e Pwrls))

< (n+1)-P(Pwrd®)

2 n=0
<

(n+1) [42"+% + (44%;1_1) (% logy (™) +q+1] + 372)} :neN

This proves Item (iii).

In a similar vein, we may argue from Lemma 5.2.18 and from the absolute homogeneity

171

property of norms that:

22l

) Z SR [@ [(;@'1!)1 > T (o) }+1-0(Pur) ® Pwr%f” (@)
— lz:; (;il!)z:c% _ i; (;il!)z (’Jt [Tunmaxm{D(Pwrgf)}+1—D(Pwrgf> . Pwrgf] ($)>'
s Z S = 30 [T (oo -t * P])

n _1 i ']
< Z (2“) (| (22 = 3 (Pwrl) (@) + &+ |2|” + pl,) |

Whence we have that:

o € O (2tr1) (5.2.66)
7!

1=

y [—Hf] — 3, (Csn#) (2)

This proves Item (iv). O

Lemma 5.2.27 (R—, 2023). Let 6, € (0,00), ¢ € (2,00) and § = & (2972 +1)"". It is then

the case for alln € Ny and x € [a,b] C [0,00) that:

|cos (x) (Csn%) (z)| (5.2.67)

_ jt
(1)
, 21!
=0

|ZE|n+1

<
(n+1)!

(Jo (z" " = 3 (Pwrl®)) (2)) |+ + [2]? +pl_y) + +

Proof. Note that Taylor's theorem states that for all « € [a,b] € R, where 0 € [a, b], it is the

case that:

n (_1)1' . COS(n+1) (5) . pntl
xXr
2i! (n+1)!

(5.2.68)

Note further that for all n € Ny, and # € R, it is the case that cos™ (z) < 1. Whence we

172

may conclude that for all n € Ny, z € [a,b] C R, where 0 € [a,b] and £ between 0 and x, we

may bound the second summand by:

Cos(n+1) (6) .l ’J?‘TH_I

(n+1)! S (n+1)!

(5.2.69)

This, and the triangle inequality, then indicates that for all 2 € [a,b] C [0,00) and & € [0, x]:

lcos (z) — T, (Csn®*) ()| = ; %w + Cos(n::fi)'!w 3, (Csn®) (z)

|x|n+1

<TG - e @) +

n
<>
i=1

|x|n+1

(n+1)!

+

—1) , .
<2i!) (| (2% = 3 (Pwede) (@)] + e + |27 +)|

This completes the proof of the Lemma. O

Definition 5.2.28 (R—, 2023, The Sne?® Newtorks and Neural Network Sines.). . Let
d,e € (0,00), q € (2,00) and § = ¢ (277! + 1)71. Let Pwr®® be a neural network defined in

Definition 5.2.7. We will define the neural network Csn,, . as:
Snel® = Csn®" @ Aff; = (5.2.70)

Lemma 5.2.29 (R—, 2023). Let 6, € (0,00), ¢ € (2,00) and § = & (2972 +1)"". It is then
the case for alln € Ny and x € R that:
(i) 3. (Snel®) € C' (R, R)
1 n =0

(i7) D (Snel*) <
on [q;zz[logg(g—l)+q]—1 +1 :neN

173

2 n=20
(iii) P (Snel®) <

(2n+1) [205 + (£521) (2% [log, (=) + ¢+ 1] +372)] :neN

q—2

(iv)

(J=5) (= 5)" ~cpwrts) (0= 5)) |+ hatr

Where p; are the set of functions defined for i € N as such:

pr=¢c+ 1+ |z

pi=c+ (pic1)” + |z (5.2.71)

Whence it is the case that:

> (Qi)i (v = 2)" ~ 3 (Snef) (2)

1=0

€ O (e2Cn1) (5.2.72)

Proof. This follows straightforwardly from Lemma 5.2.26, and the fact that by Corollary
4.4.5.1, there is not a change to the parameter count, by Lemma 4.2.11, there is no change
in depth, by Lemma 4.4.2, and Lemma 5.2.26, continuity is preserved, and the fact that
Aff; _z is exact and hence contributes nothing to the error, and finally by the fact that

Affi = — (-) — § under instantiation, assures us that the Sne}® has the same error bounds

174

as Csn?®. O
n

Lemma 5.2.30 (R—, 2023). Let 6, € (0,00), ¢ € (2,00) and § = & (2972 +1)"". It is then

the case for alln € Ny and x € [a,b] C [0,00) that:

n

53

[sin () — Je (Sney) ()]

(Gl (‘ (:c - g) ((1’ - g)%_l — T, (Pwrf%) (:z — g))‘ +e+ [z +P?1)
"

2i
i 2.
A T (5.2.73)

Proof. Note that the fact that sin (z) = cos (q: — g), Lemma 4.2.5, and Lemma 4.4.2 then
renders (5.2.73) as:

|sin (z) — T, (Snel*)|

- ‘cos T — g) -7, (Csn‘};6 ° Affl,_g) (:U)’

(
= ‘COS (x — g) — jt Csn?f <£L‘ — g) ’
<y (;3!)@ (‘ («-7) ((m O s) (o g)) ’ +e+lali+ p?_l)
i=1
"

(n+1)!

O

Remark 5.2.31. Note that under these neural network architectures the famous Pythagorean
identity sin? (x) + cos? (x) = 1, may be rendered approzimately, for appropriately fized n,q, e
as: [Sqr?© e Csn®®| @ [Sqr?© e Sne’“| ~ 1. On a similar note, it is the case, with appropriate
n,q, e that 3. (Xpn?© <i) (7) = —1

A full discussion of the associated parameter, depth, and accuracy bounds are beyond the

scope of this dissertation, and may be appropriate for future work.

175

Chapter 6

ANN first approximations

We will give here a few ANN representations of common functions. Specifically we will posit
the existence of a 1-dimensional identity and show that it acts as a compositional idenity for
neural networks with fixed end-widths. Thus under composition neural networks with fixed
end-widths under composition act as a monoid with ld; as the compositional identity.

We will also posit two new neural networks Trp”, and Etr™" neural networks for approxi-
mating trapezoidal rule integration.

We will then go on to posit the Nrm‘f and Mxm? network, taken mainly from (Jentzen et al.,
2023, Chapter 3), our contribution will be to add parameter estimates.

We will finally go on to show the MCi\f jyd neural network which will perform the maximum
convolution approximation for functions f : R? — R. Our contribution will be to show that

the parameter counts are polynomial on dimension, d.

6.1 ANN Representations for One-Dimensional Iden-
tity

Definition 6.1.1 (One Dimensional Identity Neural Network). We will denote by ld; € NN

the neural network satisfying for all d € N that:

176

(i)

) = _11 2 ([=1 [o])] e (@ xmy « @)
(6.1.1)
(i)
4 = B2, 1d, (6.1.2)
Ford>1.

Lemma 6.1.2. Let d € N, it is then the case that:
(i) L(Idg) = (d,2d,d) € N5.
(ii) T (Idg) € C (R, R?).

(iii) For all x € R? that:
(Fe (Ida)) () = @

(iv) For d € N it is the case that D (Idg) = 2

Proof. Note that (6.1.1) ensure that L(ld;) = (1,2,1). Furthermore, (6.1.2) and Remark
4.3.12 prove that L(ldg) = (d,2d,d) which in turn proves Item (i). Note now that Remark

4.3.12 tells us that:

L

ldg =B}, (Id;) € ([Rxdliz1 Rdli}> = ((R*™4 x R*) x (R”* x RY)) (6.1.3)

=1

177

Note that 6.1.1 ensures that for all z € R it is the case that:
(3. (Idy)) () = v(x) — v(—2) = max{z,0} — max{—z,0} =z (6.1.4)

And Lemma 4.3.8 shows us that for all = (21, 2o, ..., 74) € R? it is the case that J, (Id;) €

C (]Rd,]Rd) and that:

(34 (Idg)) (z) = (Ja (Elfl:1 (Idl))) (r1, %9, ..., xq)
= ((Ta (Id1)) (z1), (Fa (1d1)) (21) ..., (Ta (1d1)) (2a))

= (21,22, ..., xq) = T (6.1.5)

This proves Item (ii)—(iii). Item (iv) follows straightforwardly from Item (i). This estab-

lishes the lemma. O
Remark 6.1.3. Note here the difference between Definition 5.1.1 and Definition 6.1.1.

Lemma 6.1.4 (R—, 2023). Let d € N. It then the case that for all d € N we have that
P(Idy) = 4d* + 3d

Proof. By observation we have that P (Id;) = 4(1)? + 3(1) = 7. By induction, suppose that
this holds for all natural numbers up to and including n, i.e., for all naturals up to and
including n; it is the case that P (Id,) = 4n* + 3n. Note then that Id,,+; = Id, &1d;. For W,
and Wy of this new network, this adds a combined extra 8n + 4 parameters. For b; and by

of this new network, this adds a combined extra 3 parameters. Thus, we have the following:

4n*+3n+8n+4+3=4n+1)*+3(n+1) (6.1.6)

This completes the induction and hence proves the Lemma. O

Lemma 6.1.5. Let v € NN with end-widths d. It is then the case that J.(ldgev)(z) =

J.(veldy) =7, (v), i.e. 1dy acts as a compositional identity.

178

Proof. From (4.2.1) and Definition 6.1.1 we have eight cases.

Case 1 where d = 1 and subcases:
(1.i) Idgev where D(v) =1

(1.ii) Id;er where D(v) > 1

(1.iii) v eld,; where D(v) =1

(Liv) v eld; where D(v) > 1
Case 2 where d > 1 and subcases:
(2.i) Id; ev where D(v) =1

(2.ii) Idger where D(v) > 1

(2.iii) v eld; where D(v) =1

(2.iv) v eld; where D(v) > 1

Case 1.i: Let v = ((W3,b;)). Deriving from Definitions 6.1.1 and 4.2.1 we have that:

1 1 0
Idl oy = W17 bl +) (|:1 — 1,:|) |:0:|)
-1 —1 0

a IS O RO R0

Let x € R. Upon instantiation with v and d = 1 we have:

(Je (Idy ov)) () = e(Wiz + by) — v(=Wiz — by)

= max{Wix + by,0} — max{—Wjz — b;,0}

= W1I+b1

=T:(v)

179

Case 1.7i: Let v = (W1, b1), (Wa,bs), ..., (W, br)). Deriving from Definition 6.1.1 and 4.2.1

we have that:

|d1 (1%

= | (Wi, b1), (Wa, be) oy (Wi, bra), Wi, br + : ([1 - 1] , {OD

W) Wb o Wb [| ([1 _1H0D

Let x € R. Note that upon instantiation with v, the last two layers are:

'C(WLLE + bL) — t(—WL.T — bL, O)
= max{Wrx + by,0} — max{—Wpx — b.,0}

= Wrx + bg, (619)

This, along with Case 1. i, implies that the uninstantiated last layer is equivalent to (W7, by)
whence Id; o = v.

Case 1.iii: Let v = ((W7,b1)). Deriving from Definition 6.1.1 and 4.2.1 we have:
1 0
veld, =) ,(Wl{l —1},W1 [0}‘”71)
-1 0

1 0
=)) (|:W1 — W1:| 7b1)
—1 0

180

Let z € R. Upon instantiation with ¢ we have that:

<m<mld1>><x>=[wl _wl]r 1

= W1 'C(I’) — W1 'C(—QZ) + bl
=W (¢(z) —t(—z)) + by

=W, + by =3 (v) (6.1.10)

Case 1.v: Let v = (Wy,b1), (Wa,ba),...,(Wr,b)). Deriving from Definitions 6.1.1 and

4.2.1 we have that:

1 0
veld, =)) <|:W1 - W1:| >b1)) <W27 b2) REEY) (WL7 bL) (6111)
-1 0

Let x € R. Upon instantiation with t, we have that the first two layers are:

[Wl — W1:| t ! + by
=Wit(x) — Wie(—z) + by
=W (v(z) —t(—x)) + b

= Wlx + bl = jt (l/) (6112)

This, along with Case 1. iii, implies that the uninstantiated first layer is equivalent (W7, b;)

whence we have that v e ld; = v.

Observe that Definitions 4.3.1 and 6.1.1 tells us that:

181

3, 1d;

d—many
o\

Weightyy, 4

) @2d

V\feigh’cldl,1

d—many
N

Weightyy, 5

VVeight,dh2

Case 2.iLet d € NN [1,00). Let v € NN be v = (W}, b) with end-widths d. Deriving from

Definitions 4.2.1 and 6.1.1 we have:

VVeightmh1

Wla

Weightmh1
|dd ey —
VVeight,dl,1
[Wil1s [b1)1
—Wilie| | =[ba)s
(Wila,« [b1]a
| —[Wilax| [—[b1)a

182

Weight|d1’2

VVeightldh2

bl)

Let € R%. Upon instantiation with t we have that:

(T, (Idgev)) (2)

= U(Wiie -2+ [bi]y) —e(=[Wh]iw -2 = [br]1) + -
+ t((Wh]as - + [br]a) — e(=[Wia - 2 — [ba]a)

= Wilis o+ [Di)i+ - 4 [Wilaw - 2+ [bia

=Wix + b =73, (v)

Case 2.1i: Let v = (Wy,b1), (Wa,b2), ..., (W, br)). Deriving from Definition 6.1.1 and 4.2.1

we have that:

Id; ev
Wi | [Bl |
—Wili| | =[be]
= | (Wi,b1), (Wa,ba) ..., Wr_1,b—1), : , : , ({1 —1} , [0})
(WLlas [brla
| —[Wilax| [—[br]a]

Note that upon instantiation with v, the last two layers become:

e((Welie @+ [br]1) — e(=[Wiliw - @ = [br]) + -+
+ (Wl - @+ [brla) — o(=[Wilax - @ — [br]a)
= [WL]L* - T+ [bL]l + -+ [WL]d,* -+ [bL]d

= Wy + by, (6.1.14)

This, along with Case 2.i implies that the uninstantiated last layer is equivalent to (Wp,by)

whence |d; ev = v.

183

Case 2.iii: Let v = ((W1,b1)). Deriving from Definition 6.1.1 and 4.2.1 we have:

veld; =

Weightyy, 4 Weightyy, ,
) ®2d 3 Wl .) bl

Weightyy, 4 Weightyy, ,

Upon instantiation with vt we have that:

(T (v)) () (6.1.15)
T
—[z]
= |[Wilia — [Wilia -+ Wilsa — [Wilsal © : + by
2]
[~ [#la)

= [Wilaae([z]i) — [Wilaae(=[z]i) + -+ - + [Wi]wav([z]a) — [Wileat(=[2]a) + by
= [Wili1- [z + -+ [Wilea - [2]a

= W1$ + b1 = jt(V) (6116)

Case 2.1v: Let v = ((Wy,b1), (Wa,ba),...,(Wr,br)). Deriving from Definitions 6.1.1 and

4.2.1 we have:

l/0|dd

VVeight,dl’1
= ;024 | <|:[W1]*1 - [Wl]*,l [WI]*,d - [Wl]*,d] 7b1) y e

Weightyy, 4

(Wa,bs) ..y (W, b1))

184

Upon instantiation with t, we have that the first two layers are:

(3 (v)) (2) (6.1.17)
o
—[zh
= |Wilex = Wilr - [Wilea — [Wieal ® : + by
[#]a
| —[z]a]

= [Wilia - [z + -+ [Wilea - [2]a

This, along with Case 2. iii, implies that the uninstantiated first layer is equivalent to
(Wp,br) whence Id; ev = v.

This completes the proof. O

Definition 6.1.6 (Monoid). Given a set X with binary operation x, we say that X is a

monoid under the operation x if:

(i) For all z,y € X it is the case that v xy € X

(ii) For all x,y,z € X it is the case that (x *y) * 2 = x * (y * 2)
(iii) The exists a unique element e € X such thatexx =xxe =2x

Theorem 6.1.7. Let d € N. For a fized d, the set of all neural networks v € NN with

instantiations in v and end-widths d form a monoid under the operation of e.
Proof. This is a consequence of Lemma 6.1.5 and Lemma 4.2.4. O

Remark 6.1.8. By analogy with matrices, we may find it helpful to refer to neural networks

of end-widths d as " ‘square neural networks of size d''.

185

6.2 Trph , Etr"" and Neural Network Approximations For
the Trapezoidal Rule.

Definition 6.2.1 (The Trp neural network). Let h € [0,00). We define the Trp" € NN

neural network as:

Trp" = Aff| (6.2.1)

NI
SIE

K

Lemma 6.2.2. Let h € (—o00,00). It is then the case that:
(i) for x = {z1, 22} € R? that (3. (Trp")) (z) € C (R%,R)
(ii) for v ={x1, 22} € R? that (J; (Trp")) (z) = Lh (21 + 22)
(iii) D (Trp") =1
(iv) P (Trp") =3
(v) L(Trp") = (2,1)
Proof. This a straight-forward consequence of Lemma 4.4.1 U

Definition 6.2.3 (The Etr neural network). Letn € N and h € [0,00). We define the neural

network Etr™" € NN as:

Etr™" = Aff{ L h] (6.2.2)
0

n+l—many

Lemma 6.2.4. Let n € N. Let xy € (—00,00), and x,, € [z9,00). Let v = [zgzy ... x| €
R" and h € (—00,00) such that for all i € {0,1,...,n} it is the case that x; = xo+ 1 - h.

Then:

(i) for all z € R"*! it is the case that (J; (Etr”’h)) (z) € C (R, R)

186

(ii) for alln € N, and h € (0,00) it is the case that (I, (Etr™")) (z) = & - 2o+ h -1 +

...+h.xn_1+%.xn
(iii) for alln € N, and h € (0,00) it is the case that D (Etr™") =1
(iv) for alln € N and h € (0,00) it is the case that P (Etr™") =n +2

(v) for alln € N and h € (0,00) it is the case that L (Etr™") = (n+1,1)
Proof. This a straightforward consequence of Lemma 4.4.1. Ol
Remark 6.2.5. Let h € (0,00). Note then that Trp" is simply Etr*".

Remark 6.2.6. For an R implementation, see Listing 9.27

6.3 Maximum Convolution Approximations for Multi-
-Dimensional Functions

We will present here an approximation scheme for continuous functions called maximum
convolution approximation. This derives mainly from Chapter 4 of Jentzen et al. (2023),
and our contribution is mainly to show parameter bounds, and convergence in the case of

1-D approximation.

6.3.1 The Nrm¢ Neural Networks

Definition 6.3.1 (The Nrm¢ neural network). We denote by (Nrmil)dGN C NN the family of

neural networks that satisfy:

(i) ford=1:

Nrmy = : , ([1 1] : {OD € (R”' x R?) x (R™? x R)
(6.3.1)

187

(ii) ford e {2,3,..}:

Nrm{ = Sum; o [B., Nrmj] (6.3.2)

Lemma 6.3.2. Let d € N. It is then the case that:
(i) L (Nm) = (d, 24,1
(i) (3, (Nem)) () € C (R, R)

(iii) that for all x € R? that (I, (Nrm{)) (z) = ||z|,
(iv) it holds H (Nrm{) = 1
(v) it holds that P (Nrm{) < 7d

(vi) it holds that D (Nrm{) = 2

Proof. Note that by observation, it is the case that L (Nrmf) = (1,2,1). This and Re-
mark 4.4.2 tells us that for all d € {2,3,...} it is the case that L (BL, Nrm{) = (d,2d, d).
This, Lemma 4.2.5, and Lemma 4.4.2 ensure that for all d € {2,3,4,...} it is the case that
L (Nrm‘ll) = (d,2d, 1), which in turn establishes Item (i).

Notice now that (6.3.1) ensures that:
(3 (Nrm{)) () = v (z) + v (—2) = max{z, 0} + max{—=,0} = |z| = ||lz| (6.3.3)

This along with (Grohs et al., 2023, Proposition 2.19) tells us that for all d € {2,3,4, ...}

and x = (21, 79, ..., 74) € R? it is the case that:

(3 [BLNmy]) (2) = (|o], |22 s ..oy |24]) (6.3.4)

188

This together with Lemma 4.2.3 tells us that:

(3. (Nrmf)) = (3 (Sumg,1 @ [BL, Nrmf])) (x)

= (3¢ (Sumaa)) (|21, |2a], s lal) = Y |l = [l (6.3.5)

i=1

Note next that by observation H (Nrm%) = 1. Remark 4.4.2 then tells us that since the
number of layers remains unchanged under stacking, it is then the case that H (Nrm%) =
H (B, Nrm}) = 1. Note next that Lemma 4.2.4 then tells us that H (Sumg;) = 0 whence

Lemma 4.2.5 tells us that:

H (Nrmcf) =H (Sumd,l o [Elzc‘lzl Nrmﬂ)

=H (Sumg;) +H ([BL;Nmj]) =0+1=1 (6.3.6)

Note next that:

Nrm; = _11 : 2 ({1 1} : M) € (R xR*) x (R™* xR") (6.3.7)

and as such P (Nrm%) = 7. This, combined with Cor 4.3.5.1, and the fact that we are stacking

identical neural networks then tells us that:
P ([BL, Nrmi]) < 7d° (6.3.8)
Then Lemma Corollary 4.4.5.1, Lemma 4.5.6, and Lemma 4.2.5 tells us that:

P (Nrm‘f) =P (Sumd,l . [Efﬂ Nrmﬂ)

<P ([BLNrmy]) < 7d? (6.3.9)

189

This establishes Item (v).

Finally, by observation D (Nrm%) = 2, we are stacking the same neural network when
we have Nrm‘f. Stacking has no effect on depth from Definition 4.3.1, and by Lemma
4.2.5, D (Sumg,; @ [E?Zl Nrmﬂ) = D (BNrm;). Thus we may conclude that D (Nrm?) =
D (Nrm%) = 2.

This concludes the proof of the lemma. O

Remark 6.3.3. For an R implementation, see Listing 9.22

6.3.2 The Mxm? Neural Networks

Given z € R, it is straightforward to find the maximum; z is the maximum. For z € R? we

may find the maximum via network (6.3.11.1), i.e. Mxm?. The strategy is to find maxima

for half our entries and half repeatedly until we have one maximum. For € R? where d is

even we may stack d copies of Mxm? to halve, and for 2 € R? where d is odd and greater than
d—

3 we may introduce " padding'' via the Id; network and thus require Tl copies of Mxm? to

halve.

Definition 6.3.4 (Maxima ANN representations). Let (Mxmd)deN C NN represent the neu-

ral networks that satisfy:
(i) for alld € N that | (Mxm?) = d
(ii) for all d € N that O (Mxm?) =1

(iii) that Mxm' = Aff, ; € R x R!

(iv) that:
1 -1 0
Mxm? = 0 11,0 ({1 1 _1H0D (6.3.10)
0 -1 0

(v) it holds for all d € {2,3,...} that Mxm*! = Mxm®e [BL, Mxm®], and
vi) it holds for all d € {2,3,...} that Mxm?*! = Mxm?e [(B%, Mxm?) B 1d,].
=1

Remark 6.3.5. Diagrammatically, this can be represented as:

/ Mxm?
Mxm?
/ \ Mxm?
Mxm?
Mxm?
< | Mxm? /
Mxm?
/ \ Mxm?
Mxm?
\ " YT

Figure 6.1: Neural network diagram for Mxm?®.

Lemma 6.3.6. Let d € N, it is then the case that:
(i) H (Mxm*) = [log, ()]
(i) for alli € N that W; (Mxm?) < 3 [4]
(iii) 3. (Mxm?) € C (R%,R) and
(iv) for all x = (x1,22,...,74) € R? we have that (I, (Mxm?)) (z) = max{z1, 2, ..., x4}
(v) P (Mxm®) < (42 +3d) (1+ §1=0T)

2

(vi) D (Mxm?) = [log, (d)] + 1

191

Proof. Assume w.l.o.g. that d > 1. Note that (6.3.10) ensures that H (Mxmd) = 1. This and

(4.3.1) then tell us that for all d € {2,3,4, ...} it is the case that:
H(BL, Mxm?) = H ([BL, Mxm*] B1d;) = H (Mxm?) =1
This and Lemma 4.2.5 tells us that for all d € {3,4,5,...} it holds that:
H (Mxm?) = H (Mxm 1) 41 (6.3.11)

And for d € {4,6,8,...} with H (Mxm!%]) = [log, ()] it holds that:

H (Mxm?) = [k)g2 (gﬂ + 1 = [log, (d) — 17 + 1 = [log, (d)] (6.3.12)

Moreover (6.3.11) and the fact that for all d € {3,5,7,...} it holds that [log, (d+1)] =

d
2

[log, (d)] ensures that for all d € {3,5,7,...} with H (Mxm[1) = [log, ([4])] it holds that:
s 4] 1= o (452)] -
= Mlog, (d+ 1) — 1] + 1 = [log, (d + 1)] = [log, (d)] (6.3.13)

This and (6.3.12) demonstrate that for all d € {3,4,5,...} with Vk € {2,3,....,d — 1} :
H (Mxm?) = [log, (k)] it holds htat H (Mxm?) = [log, (d)]. The fact that H (Mxm?®) = 1
and induction establish Item (i).

We next note that L (Mxm?) = (2,3,1). This then indicates that for all i € N that:

W; (Mxm?) <3 =3 [—w : (6.3.14)

192

Note then that Lemma 4.2.5 and Remark 4.4.2 tells us that:
W; (Mxm??) = ' (6.3.15)

And:

3d—1 i=1
W; (Mxm** 1) = (6.3.16)

Wi,1 (l\/lxmd) 17 2 2

This in turn assures us that for all d € {2,4,6, ..., } it holds that:

d d
W, (Mxm?) =3 (=) <3|~ 6.3.17
() =3 (5) <315 6217
Moreover, note that (6.3.16) tells us that for all d € {3,5,7,...} it holds that:

Wi (Mxm?) =3 [gw ~1<3 Bﬁ (6.3.18)

This and (6.3.17) shows that for all d € {2, 3, ...} it holds that:

W; (Mxm?) <3 M (6.3.19)

Additionally note that (6.3.15) demonstrates that for all d € {4,6,8,...}, i € {2,3,...} with
Wiy (Mxm?) <3[(4) 7] it holds that:

2) 2i—1

Wi (Mxm) = Wi (Mxm?) < 3 Kg) 21:} =3 gw (6.3.20)

Furthermore note also the fact that for all d € {3,5,7,...}, i € N it holds that (d;ﬂ =

[4] and (6.3.16) assure that for all d € {3,5,7,..}, i € {2,3,...} with W,_; (Mxm(gw <

2t

193

3[[2] 52] it holds that:

W; (Mxm?) = W,_, (Mxm[ﬂ) <3 H%ﬂ zil_lw - [d;ﬂ - [;W (6.3.21)

This and (6.3.20) tells us that for all d € {3,4,...}, i € {2,3,...} with Vk € {2,3,...,d — 1},

jed{l,2,.,i—1} W, (Mxmk) <3 [ﬁw it holds that:

27

W; (Mxm?) < 3 [gw (6.3.22)

This, combined with (6.3.14), (6.3.19), with induction establishes Item (ii).

x
Next observe that (6.3.10) tells that for x = ' € R? it becomes the case that:
L2

(3 (Mxm?)) (z) = max{z; — 22,0} + max{z,, 0} — max{—w,,0}

= max{x; — x9,0} + 9 = max{xy, z2} (6.3.23)

Note next that Lemma 6.1.2, Lemma 4.2.5, and (Grohs et al., 2023, Proposition 2.19) then
imply for all d € {2,3,4,..}, z = {a1,22,...,74} € R? it holds that (J, (Mxmd)) (x) €
C (R4,R). and (3, (Mxm?)) (z) = max{x1, 22, ..., 74}. This establishes Items (iii)—(iv).

Consider now the fact that Item (ii) implies that the layer architecture forms a geometric

series whence we have that the number of bias parameters is bounded by:

log, (d
W1 (= | Noga(d)]+1
- =3d(1-=
3 2

1 Noga ()] +1
< [Sd (1 -5 ﬂ (6.3.24)

For the weight parameters, consider the fact that our widths follow a geometric series with

ratio %, and considering that we have an upper bound for the number of hidden layers, and

the fact that W, (Mxmd) = d, would then tell us that the number of weight parameters is

194

bounded by:

) vt ()t

=0
[logy(d)] 1\ 2t o
S [(5) (Wo (Mxem))]
=0
| Noga@1 [7\ AT Mm@y
_ - S - 2
=3 2; ((2) Wy (Mxm)) : z; [(4) d] (6.3.25)

Notice that this is a geometric series with ratio i which would then reveal that:

[logy(d)] i 2(logy (d)]+1)
1 1 2 1#tos2
5 y [(Z) d2] < §d2 (1 -5) (6.3.26)

1=0

Thus, we get that:

P (Mxmd) < 22 (1 1 2([loga (N)+1 2 (1 1 Noga(d)1+1
<_ - — - —
ety <51y T)l]
2d2) 12([log2(d)])+1 (1 12(ﬂog2(d)]+1))
<3t (1-3 -3 3
3 (2)+ {3 (5 ﬂ (6.3.27)
2 1 2(logz(d)]+1)
() (o5 o0

This proves Item (v).
Item (vi) is a straightforward consequence of Item (i). This completes the proof of the

lemma.]

Remark 6.3.7. For an R implementation, see Listing 9.26

6.3.3 The I\/ICﬁX é/d Neural Networks

Let f : [a,b] = R be a continuous bounded function with Lipschitz constant L. Let zy <

x1 < -+ < oy be a set of sample points within [a, b], with it being possibly the case that

that for all i € {0,1,...,N}, 2; ~ Unif([a,b]). For all i € {0,1,..., N}, define a series of

195

functions fo, f1,... fx : [a,b] = R, as such:

fi=flxi) = L-|x— (6.3.29)
We will call the approximant max;co,1,..., N}{ fi}, the mazimum convolution approximation.
This converges to f, as shown in
Lemma 6.3.8. Let d,N € N, L € [0,00), z1,72,...,2x € RY, y = (y1,92,...,yn) € RY
and MC € NN satisfy that:

MCLy = Mxm™ e Aff_;, , o (BiL, [Nrm{ e Affy, _,.]) ® Cpyy (6.3.30)

It is then the case that:
(i) 1(MC:") =d
(ii) O (MC)) =1
(iii) H (MC2) = [log, (N)] +1

(iv) Wy (MCY1) = 2dN

(v) for alli € {2,3,...} we have W; (MCi\fzyd) <3 [555]

(vi) it holds for all x € R? that (Jt (MCQ’:)) () = maxjeqi2,. .~y (Ui — Lz — a4)
(vid) it holds that P (MCY") < [(22 + 3d) (1 -+ §2M=@T0) 1] 4 78202 43[4 - 2aN
Proof. Throughout this prooflet S; € NN satisfy for alli € {1,2, ..., N} that S; = Nrm? e Affy, .

and let X € NN satisfy:

X =Aff_p1, @ ([B1Si]) ® Cpyna (6.3.31)

196

Note that (6.3.30) and Lemma 4.2.5 tells us that O (R) = O (Mxm™) =1 and | (MCQ;) =
| (Cpyng4) = d. This proves Items (i)--(ii). Next observe that since it is the case that
H (prN,d) and H (Nrm‘f) =1, Lemma 4.2.5 then tells us that:

H(X) = H (Aff_p1y) + H (BY,S;) + H (Cpyy) =1 (6.3.32)
Thus Lemma 4.2.5 and Lemma 6.3.6 then tell us that:
H(MC) = H (Mxm" oX) = H (Mxm”™) + H (X) = [log, (N)] + 1 (6.3.33)

Which in turn establishes Item (iii).

Note next that Lemma 4.2.5 and (Grohs et al., 2023, Proposition 2.20) tells us that:

N N
Wi (MCYH) = Wi (X) = Wy (B,S:) = > Wi (S) =Y Wi (Nrm{) =2dN (6.3.34)
i=1 i=1
This establishes Item (iv).
Next observe that the fact that H (X) = 1, Lemma 4.2.5 and Lemma 6.3.6 tells us that for

all i € {2,3,...} it is the case that:

W; (MC) = W,y (Mxm™) < 3 U\ﬂ (6.3.35)

This establishes Item (v).
Next observe that Lemma 6.3.2 and Lemma 4.4.5 tells us that for all z € R%, i € {1,2,..., N}

it holds that:
(Te (MCEN) () — (Ic (NrmY) 0 3¢ (Affy, o)) (2) = ||z — zi, (6.3.36)

This an (Grohs et al., 2023, Proposition 2.20) combined establishes that for all z € R? it

197

holds that:

(3: ([BiLiSi] @ Cpyna)) (@) = (2 = 1l |z = 2ally, s |2 — 2wllr)

(6.3.37)
This and Lemma 4.4.5 establishes that for all z € R? it holds that:
(3 (X)) () = (T (Aff_L1y) © (Te ([BIL,S:] @ Cpyna)) ()
— (1 — Lz — 21l ye — Lz — 2l oy — LIz —anlh) (6:3.38)

Then Lemma 4.2.5 and Lemma 6.3.6 tells us that for all z € R it holds that:

(3 (MCYN) (z) = (3 (Mxm™) 0 (3¢ (X)) (2)
= (3 (Mxm™)) (41 — Lll& — z1]l1, y2 — Ll — 221, ..., yn — Lllz — zx]1)
= max (v — L||lz — 24]1) (6.3.39)

ie{1,2,....N}

This establishes Item (vi).
For Item (vii) note that Lemma 6.3.2, Remark 4.3.4, Lemma 6.3.2, and Corollary 4.4.5.1

tells us that for all d € N and = € R? it is the case that:
P (Nrm{ e Affy, _,) < P (Nrm{) < 7d? (6.3.40)

This, along with Corollary 4.3.5.1, and because we are stacking identical neural networks,

then tells us that for all N € N, it is the case that:
P (BY, [Nrm{ e Affy, _,]) < TN?d? (6.3.41)

Observe next that Corollary 4.4.5.1 tells us that for all d, N € N and = € R? it is the case

198

that:
P((BY, [Nrm{eAff;, _,]) e Cpyyy) <P (B, [Nrm{ e Affy, _,]) < TN?d? (6.3.42)

Now, let d,N € N, L € [0,00), let z1,7,...,2x € R and let y = {y1,v0,...,yn} € RV.

Observe that again, Corollary 4.4.5.1, and (6.3.42) tells us that:

P (Aff_rry, @ (BN, [Nrm{ e Affi, —..]) ® Cpyy)

<P (BY, [Nrm{eAff;, _,]) < TN?*d®
Finally Lemma 4.2.5, (6.3.34), and Lemma 6.3.6 yields that:

P(MC:)

P (Mxm®™ e Aff_;;, , o (B, [Nrm{ e Affy, _,.]) ® Cpyy.,)
<P (Mxm" o (BY, [Nrm{ e Aff;, _.]))
(

<P (Mxm™) + P ((BY, [Nrm{ 0 Affy, _.])) +

BN, [Nrm{ e Affy, _,

2 1 2([logy(d)+1) N
< Kgdz 1 3d (1 + =) + 1} +7N%d* + 3 [ﬂ -2dN (6.3.43)

Wy (Mxm) - Wy) (B, [Nrmf o Affy, .])
2

O

Remark 6.3.9. We may represent the neural network diagram for Mxm® below.

Remark 6.3.10. For an R implementation, see Listing 9.28.

6.3.4 Lipschitz Function Approximations

Lemma 6.3.11. Let (E,d) be a metric space. Let L € [0,00), D C E, @ # C C D.

Let f : D — R satisfy for all x € D, y € C that |f(z)— f(y)| < Ld(x,y), and let

199

Affy, o,
Nrm¢ ‘
Nrm¢? Affta—.
< N Aff_
Mxm Lliyy Coyna | <
Nrm¢ Affta -,
Nrm‘f Affy,—,
Figure 6.2: Neural network diagram for the MCZ ;Jd network
F:E — RU{co} satisfy for all x € E that:
F(z) = sup[f (y) — Ld (,y)] (6.3.44)
yeC
It is then the case that:
(i) for all x € C that F(z) = f(z)
(i) it holds for all x € D, that F(x) < f(z)
(iii) it holds for all x € E that F (z) < 00
w) it holds for all x,y € E that |F(x) — F < Ld(z,y) and,
(iv) y y y
(v) it holds for all x € D that:
IF ()~ f (1)) < 2L [iggd (z, y>] (6.3.45)
y

200

Proof. The assumption that Vo € D,y € C: |f(z) — f(y)| < Ld (z,y) ensures that:

fy) = Ld(z,y) < f (z) < f(y) + Ld (z,y) (6.3.46)

For x € D, it then renders as:

f(x) = sup [f(y) — Ld (x,y)] (6.3.47)

yeC

This establishes Item (i). Note that (6.3.45) then tells us that for all x € C it holds that:

F(x) > f(z) = Ld(z,y) = f (z) (6.3.48)

This with (6.3.47) then yields Item (i).
Note next that (6.3.46, with z v~ y and y v~ z) and the triangle inequality ensure that for

all z € E, y,z € C it holds that:
F(y) = Ld (2,9) < f(2) + Ld(y,2) — Ld (2,) < f() + Ld (z,2) (6.3.49)
We then obtain for all x € F, 2z € C' it holds that:
F(r) = sup [f(y) = Ld (z,y)] < f () + Ld (2, 2) < o0 (6.3.50)

This proves Item (iii). Item (iii), (6.3.44), and the triangle inequality then shows that for all

201

xr,y € F, it holds that:

Fla) = F(5) = [sup (£(0) = La (2,0))| = [sup (7(0) = Ld ()

veC welC

= sup [f(v) — Ld (z,v) —sup (f(w) — Ld (y,w))}

veC welC

< sup [f(v) = Ld (z,v) = (f(v) — Ld (y, w))]

= 31615 (Ld (y,v) + Ld (z,v) — Ld (x,v)) = Ld (z,y) (6.3.51)

This establishes Item (v). Finally, note that Items (i) and (iv), the triangle inequality, and

the assumption that Vo € D,y € C' : |f(z) — f(y)| < Ld (z,y) ensure that for all z € D it

holds that:
|F(z) = f(2)| = f |F(z) — Fy) + f(y) — f(2)]
< inf (IF(2) - F(y)l + /() - f@)])
< inf (2Ld (x,y)) = 2L | inf : .3.52
inf (2L (5.9)) = 2L | nf d z.1)] (6:352)
This establishes Item (v) and hence establishes the Lemma. 0

Corollary 6.3.11.1. Let (E,d) be a metric space, let L € [0,00), @ #C C E, letf: E—R
satisfy for allx € E, y € C that ||f(x) — f(y)| < Ld(x,y), and let F : E — RU{oo} satisfy
for all x € E that:

F(z) = sup [f(y) — Ld (z,y)] (6.3.53)

yeC
It is then the case that:
(i) for all x € C that F(z) = f(z)

(ii) for all x € E that F(x) < f(x)

202

(iii) for all x,y € E that |F(z) — f(y)| < Ld(x,y) and

(iv) for all x € E that:
|F (z) — f(z)| <2L {igéd (x, y)] (6.3.54)
Y
Proof. Note that Lemma 6.3.4 establishes Items (i)—(iv). O

6.3.5 Explicit ANN Approximations

Lemma 6.3.12. Let d,N € N, L € [0,00). Let E C R%. Let zy,75,...,25y € E, let
[+ E = R satisfy for all x1,y1 € E that |f(x1) — f(y1)| < L||z1 — 22|, and let MC € NN

and y = (f (x1), f (x2), ..., f (zN)) satisfy:
MCL = Mxm™ o Aff_;, , o [BL; Nrm{ @ Affy, _,.] @ Cpyy 4 (6.3.55)

It is then the case that:

sup [(3. (MCL)) (z) — f(x)| < 2L [Sup (min ||z — xi||1)} (6.3.56)

reER xeFR i€{1,2 N}

Proof. Throughout this proof let F': R? — R satisfy that:

F(z)= max (f(z;)—L|z—) (6.3.57)

i€{1,2,...,N}
Note then that Corollary 6.3.11.1, (6.3.57), and the assumption that for all x,y € F it holds

that |f(z) — f(y)| < L ||z — y||, assures that:

sup |F(z) — f(x)| < 2L [sup (min |z — xi||1)} (6.3.58)

z€E zcE i€{1,2 N}

Then Lemma 6.3.8 tells us that for all z € E it holds that F(z) = (3, (MC)) (). This

203

combined with (6.3.58) establishes (6.3.56). O

Lemma 6.3.13. Let d, N € N, L € [0,00). Let [a,b] € R%. Let z1,9,....,2x € [a,b],

let f: [a,b] — R satisfy for all 1,29 € [a,b] that |f(x1) — f(x2)| < Lz — 23] and let
N1 _ s

MC,, € NN and y = f ([z],) satisfy:

MCi\fy;l = Mxm" o Aff_;;. o [Bﬁ\il Nrm; o Affy _,,] ® Cpyn. (6.3.59)

It is then the case that for approximant IVICQ; that:
(i) 1(MC))) =1

(ii) O (MC):)) =1

(iii) H(MCL:1) = [log, (N)] +1

(iv) Wi (MCL)) = 2N

(v) for alli € {2,3,...} we have W, (MC;\T;) <3 [5]
(vi) it holds for all x € R? that (3t (MCQ&})) () = maxjeq 2, Ny (Yi — L | — x4))
(vii) it holds that P (MC}}) < 6+ TN? +3[%] - 2N

(viii) SUp,eiqy |F(2) — f(z)| < 2L12H

Proof. Ttems (i)—(vii) is an assertion of Lemma 6.3.8. Item (viii) is an assertion of Lemma

6.3.12 with d 1. O

204

Part 111

Artificial Neural Networks for u and

Brownian motions

205

Chapter 7

ANN representations of Brownian

Motion Monte Carlo

We will now take the modified and simplified version of Multi-level Picard introduced in
Chapter 2 and show a neural network representation and associated, parameters, depth,
and accuracy bounds. However we will also try a different approach in that we will also
give a direct neural network representation of the expectation of the stochastic process that
Feynman-Kac asserts in Lemma 7.4.4, and to build up to it we must build the requisite

technology in Lemma 7.1.1, Lemma 7.2.1, Lemma 7.3.1.

Lemma 7.0.1 (R—,2023). Let d,M € N, T € (0,00) , a € C(R,R), I' € NN, satisfy that
J.(Gq) € C(RLR), for every 6 € ©, let U’ : [0,T] — [0,T] and W’ : [0,T] — R? be
functions , for every 6 € ©, let U? : [0,T] — R — R satisfy satisfy for allt € [0,T], v € R?

that:

U(t,2) = = |3 (30 (Ga)) (1 + WOOD) (7.0.1)

206

Let U? € NN , 6 € © satisfy for all § € ©, t € [0,T] that:

M
u? = [@ (% > (Gd . AffHd’W(Teﬁ,_k)))] (7.0.2)

k=1

It is then the case that:
(i) for all 01,05 € ©, ty,t, € [0,T] that L (U]") =L (Ug?).
(ii) for all§ € ©, t € [0,T], that D (U}) < D(Gy)

(iit) for all 0 € ©, t € [0,T] that:

LUl < IL(Ga) s (1+v2) M (7.03)

(iv) for alld € ©, t € [0,T)], x € R? that U°(t,z) = (Jq (Uf)) (x) and

(v) for all@ € ©, t € [0,T] that:

P (U?) < 2D (Gy) [(1 + \@) ML (Gd)||oo]2 (7.0.4)

Proof. Throughout the proof let P/ € NN, 6 € ©, t € [0, T] satisfy for all 6 € ©, t € [0,T]

that:

M
P =P [% > (Gue Affﬂd,wgt)} (7.0.5)

k=1

Note the hypothesis that for all § € ©, t € [0,T] it holds that W! € R? and Lemma

""" ke{1,2,...M} v
with the notation of Lemma 4.6.9 tells us that for all @ € ©, t € [0,7], and z € R? it holds

207

that:

L (P{) = (d. MW, (G), M W5 (G),.... M Wp)_1 (G),1) = L (Pj) € NP@+!

and that:
(30 #1))= 57 (300) (e w427
= U%(t,2)

This proves Item (i).
Note that (7.0.6), and (7.0.7) also implies that:

L(U7) =L (P7)
= (d, Wi (P}) ,Wa (PY) , ., Wo(q) (PY) ;1)

=L (Uj) € NP©@H!
This indicates that for all € ©, ¢t € [0, 7] it is the case that:

It (Ul = It (V) ..

_ 0
N ke{lg,l?,XD(G)} (Wi (Po))

(7.0.6)

(7.0.7)

(7.0.8)

This, (7.0.6), and Lemma 4.2.5 ensure that for all § € ©, ¢ € [0,77] it is the case that:

IL (U = It (Uo) |l < IL(PO)[|.e < MIIL(G)],

<SMLG) [l + M L (WD)]

Then (Hutzenthaler et al., 2021, Corollary 4.3), with v ~ 0, 8~ M, k1, a9 N ||L(G)

(7.0.9)

oo

a1 N0, (T icqo, 5y O (||t (ug) ||oo)i€{0 Loy 1D the notation of (Hutzenthaler et al., 2021,

208

Corollary 4.3) yields for all € ©, t € [0, T] that:

JL). <5 (L@ (1+v2) M

o S
<(IL(©)) (1+v2) M
Note that Lemma 4.2.5, Item (iii), proves that for all § € ©, t € [0,T] it is the case that:
D (U7) =D (U3) =D (G) (7.0.10)

This proves Items (ii)--(iii) and (7.0.7) proves Item (iv).

Items (ii)--(iii) together shows that for all # € ©, t € [0, 7] it is the case that:

o(1%)
PUD) < 2 1L (U)o

=D (W) L (W)
<D (W) (IL©)ll) (1+v2) M
=D (6)(IL(6)].) (1+v2) M

This proves Item (v) and hence the whole lemma. O

While we realize that the modified Multi-Level Picard may approximate solutions to non--
linear PDEs we may chose a more circuitous route. It is quite possible, now that we have
networks Pwr?® to approximate polynomials using these networks. Once we have polyno-

mials we may approximate more sophisticated PDEs.

7.1 The E)"%¢ Neural Networks

Lemma 7.1.1 (R—, 2023). Let n,N € N and h € (0,00). Let d,e € (0,00), q € (2,00),

satisfy that § = (2972 +1)"". Leta € (—o00,00), b € [a,00). Let f : [a,b] — R be continuous

209

and have second derivatives almost everywhere in [a,b]. Let a = v < 7 < -+- < xy_1 <

xny = b such that for alli € {0,1,..., N} it is the case that h = I’_T“, and x; = xo+1-h . Let

x=[zoxy -+ xN| and as such let f ([:c]**) = [f(zo) f(z1) - flzn)]. Let EN™%5 € NN be

the neural network given by:
ENM2e — Xpn?< o Etr™V" (7.1.1)

It is then the case that:
(i) for all x € RN we have that (3, (E}™%%)) (z) € C (RN, R)

1 n=0
(ii) D (EN"9) <

n[q_%[logQ(e_l)—l—q]—l]—i—l n>1

(iii)

P (EN"™7¢)

N+ 2 n=20
<

(AN+1)(n+1) [4n+% + (Lg—l) (@ [logy (7" +q+ 1] + 372)] :n€N

q—2

(ZIU) for a'llx = {x[))xla-.-)xN} € RN+1, ’wh€7"6 a = Ty < 1 < .o g TN_1 g TN = b we
have that:
b
exp { / fd:r} =3 (BN (f (m*,*))'
n—1

(b — a)3 1" 2 | = (b - a)3 "
< 2. |=
S e /@) |2 g ()

n+1
"1 - e - ‘fab fdx
_ = (=1 _ 75 q,€ — —Iq q

* ; i (=E 3 (Pwrl5) ()| +e+ 217 +pl,y) + (m+ 1) (7.1.2)

Where = = 3, (Etr™") (f ([x]**))

210

(v) it is the case that WH(Erly,h,q,s) (ENM92) < 24+ 2n

Proof. Note that Lemma 6.2.4 tells us that J, (EtrN’h) eC (RN“,]R), and Lemma 5.2.23
tells us that J. (Xpn%?) (z) € C' (R,R). Next, note that Lemma 4.2.5 and the fact that the

composition of continuous functions is continuous yields that:

3¢ (EX9) = 3 (Xpni @ Affn 0

— 3, (Xpn?*) o (Aff[e h 3]0)EO(RN“,]R)

Since both component neural networks are continuous, and the composition of continuous

NyhylLE
E'FL

functions is continuous, so is . This proves Item (i).

Next note that D (Aff[Wk h]) =1, and thus Lemma 4.2.5 and Lemma 5.2.23 tells us that:

D (EN"¢) = D (Xpns* oAfF[

ﬁ
2
qa _
= D (Xpn) +D (Affy, 4,) — 1
= D (XpnZ*)
1 n=20

<
n q%[logﬂe*)—%q]—l]—l—l :neN

This proves Item (ii).

Next note that by Corollary 4.4.5.1, Lemma 5.2.23, Lemma 6.2.4, and the fact that | (EtrN’h) =

211

N + 1, and | (Xpn%©) = 1, tells us that, for all N € N it is the case that:

P (EN™9°)
| (Etr™") +1
< 1, ——=——¢| - P (Xpnk*
[max{ | (XpnZ©) + 1 (Xpriz*)
1
= (iN + 1> - P (Xpn?#)
N +2 :n=20

<
BN +1) (n+1) [475 + (£52) (2% flog, (=) + g+ 1] +372)] ineN

This proves Item (iii).

Note next that:
Aff[g heh2]0= Etr™" (7.1.3)

Thus the well-known error term of the trapezoidal rule tells us that for [a,b] C R, and for

€ € la,b] it is the case that:

[s@w- o) (1)) < e c

and for n € Ny, 0,e € (0,00), ¢ € (2,00) and § = ¢ (271 + 1)"", and for z € [a, b] C R, with

0 € [a, b] it is the case, according to Lemma 7.1.1, that:

n

r o~ e 1 n— ~ € e’ - |m|n+1
le® — T (Xpn©) (x)] < Z:ZI P (| (2"" = T (Pwrley) (@) | + e+ ||+ pl_y) + (£ 1)1
(7.1.5)

Note now that for f € C,. (R, R), ff fdz € [a,b] C R, 0 € [a, b], and & between 0 and fab fdx

212

it is the case that:

ek - ‘fab falx‘wrl
(n+1)!

(7.1.6)

o [[102] = ”1 [(] fdx)i

1=

And thus the triangle inequality, Lemma 4.2.5, and Lemma 5.2.23, tells us that for z =

{zo,21,...;28}, a =20 <27 < --- <2y =band [a,b] C R that:

exp [/ b fdx] — T (B ") (f ([w]))‘
5 [()] R e)
- | [} f|

2'1! </b fdx)i = 3 (Xpn') (o) o3 (Eu™) (1 (M))‘ M]

(7.1.7)

n+1

3

N
|

i=1

Note that the instantiation of Etr’™" is exact as it is the instantiation of an affine neural

network. For notational simplicity let = = J, (Etr™") < f ([x]**>> Then Lemma 5.2.23 tells

us that:

n E,Z E _‘ n 1 _ '— = q
Z{Fl—Jt(Xpnq =) Zﬁ E(ET =3 (Pwrt) @) +e+ 217+ (p70)")
=0 i=1

(7.1.8)
Where for i € N, let pZ | be the family of functions defined as such:
pr=c+1+|2]
P =c+ (pis1)’ + 2P (7.1.9)

213

This then leaves us with:

()] S

1=0

1
1€{0,1,...,n}]
b 7
< — = 1.
n 16?117?.}7(”} i </a fdx) (7.1.10)
Note that for each ¢ € {1,...,n} it holds that:
b i ' b b i—1 b i—2
(/ fda:) —E’:(/ fda:—E) (/ fdx) +(/ fd:v) B2t
(7.1.11)

Note that the well-known error bounds for the trapezoidal rule tell us that = and fab fdx

differ by at most % 1" (&) in absolute terms, and thus:
b 3
b
max {E,/a fda:} <E+ (12]\?2) (&) (7.1.12)

This then renders (7.1.11) as:

)

’ —i (b_a>3 " .
(/ fdfv> 2O g

Note that this also renders (7.1.10) as:

S ()] 5[

(b_a)3 1" o
+ V2 f ({)] (7.1.13)

[1]

(b_a)3 " 2 —_ " "
N R RN A 151 I CARTE)

1=0 =0

214

This, the triangle inequality and (7.1.8), then tell us for all x € [a,b] C [0, c0) that:

> [?1' (/b I d“’)] =3 (Xpnji?) (x) o 2

=0 » 1 b 7 n =i n E'L
S ; [ﬁ (/a fdff) - Z; {?} ; {_l} — T (Xpnk®) () o =
b-a)® L w-ap,]
= 12N2 1) -n =+ 12N2 7 (6) +
> G (EET =0 (Pwrts) B)] +e+ 21+ (b71)") (7.1.15)
i=1

This, applied to (7.1.7) then gives us that:

exp {/ab fdx] — 3, (ENhae) <f ([x]**))‘

- ¢ b n+1
n [q b e ‘fa fd:v’
< - o~ q, ~ N,h
3 [, (/ fdw> 3 (Xpn?) () 0 3 (Bt (£ (1al..))|+
r n—1
(b — a)3 1" 2 = (b — a)3 "
e RGN S L3]
n+1
n 4 1 . ef ‘fa” fdx
= (=i €\ (= = E
Zlﬁ (‘u(u —J (Pwrz 1) (H)){ +e+ |27+ (pi—l)) + (4 1) (7.1.16)
This proves Item (iv).
Finally note that Lemma 5.2.23 tells us that:
Wi(ezvnae) (E)"9) = Whi(xpng<) (XPn7%)
<24+ 2n (7.1.17)

Remark 7.1.2. We may represent the Eflv’h’q’e diagrammatically as follows:

215

AeR
1 q
o Tun Pwrg <R
his Tun Pwr! \
h
prn,l EtrN
—~<— Sum,, ;

- ~<—R

ke Pwri

Figure 7.1: Diagram of E"%¢,

7.2 The UETLN’(?C’lq’éj Neural Networks

Lemma 7.2.1 (R—,2023). Let n, N € N, h € (0,00). Let §,e € (0,00), q € (2,00), satisfy
that 6 = £ (2971 +1)"". Let a € (—o0,00), b € [a,00). Let f : [a,b] = R be continuous and
have second derivatives almost everywhere in [a,b]. Leta =29 < x; < - <oy_1 <2y =0
such that for all © € {0,1,..., N} it is the case that h = b_T“, and x; = xo+1-h . Let
x = [rox; ---xN] and as such let f ([m]**> = [f(x0) f(z1) -+ flzn)]. Let B}, . € NN be

the neural network given by:
ENMae — Xpn?© o Etr" (7.2.1)

Let G4 € NN be the neural network which instantiates as uqg = 3, (Gq) (z) € C (Rd,]R) for all

x € R?,

216

Let UET]X’GhL’iq’E be the neural network given as:
UE)(7¢ = Prd?< o [EN"9°0G, (7.2.2)

It is then the case that for all x = {xg,z1,...,ox} € RN and x € R? that:

(i) 3 (UEMW) (f ([t).) ~ z) € C (RN+1 x R4, R)

n,Gq

2 flog, (=) +¢] + D (Ga) — 1 =0
(ii) D (UENLS) <77
P [log, (¢71) + ¢| + max {D (EN’h’q’5> ,.D (Gd)} -1 :n>1

’I’L,Gd

(7ii) It is also the case that:

P(UENL™) < 5’6_—0% [log, (671) + g + 1] + 324 + 48n
+ 24 Wy, (Ga) + 4max {P (EY"4°) [P (Gy)} (7.2.3)

(iv) It is also the case that:

oo ([1) wate) =32 (VEXE) (1. ~ 0

b q b q
< 3e + 2¢ u(z)|? + 2¢ |exp </ fdm) + ¢ |exp (/ fdx) —e| —eu(x)
Where, as per Lemma 7.1.1, ¢ is defined as:
b
e (7 (1))~ exp [)| < (7.2.4)

Remark 7.2.2. Diagrammatically UEg’h’q’E can be represented as:

Proof. Note that from Lemma 4.2.5, and Lemma 4.3.3, we have that for r € RN*! and « €

R? it is the case that J, (Prd?® e [EN"7°0G,]) (f ([t], ~ x)) = J; (Prd?*) 0T, ([EN1°©G,])

217

N,h,q.e
Tun E, " < RN+1

\ Tun Gq <—— RM

N7h7q76
En G

<~ | Prd?®

Figure 7.2: Neural network diagram for U

(f ([t],) — x). Then Lemma 5.1.10 tells us that J, (Prd?®) € C (R?)R). Lemma 7.1.1
tells us that J. (Efy’h’q’s) e C (RN“,R) and by hypothesis it is the case that J,(G4) €
C (]Rd,]R). Thus, by the stacking properties of continuous instantiated networks and the fact
that the composition of continuous functions is continuous, we have that J. (UEfZ’th’iq’E> €
C (RNt x R%R).
Note that by Lemma 4.2.5 it is the case that:

n,Ga

D (UEN’h’q’E) = D (Prd?®) + D (EN"9°6G,) — 1 (7.2.5)

Lemma 7.1.1 and Lemma 5.1.10 then tell us that:

D (UENZ)
(]%2[10&(5_1)"‘61]4"3((5@—1 :n=20
S (7.2.6)

4 [log, (e71) 4 ¢] + max {D (E}""*) . D (Gg)} -1 :n>1

q—2

218

Note that then Lemma 4.2.5, Lemma 5.2.23, and Lemma 7.1.1 tell us that:

P <UEN’“”) < P (Prd®®) + 4max {P (EV"%) P (G,)}

n,Gg

+ Wy (Prdq7a) . WH(E;V*’“‘?*SQGd) (Egvh,q,aeGd)

< P (Prd”®) 4 4max {P (E)""%%) ,P (G,)}
+ 24 [(24 + 2n) + Wh,) (Ga)]
= P (Prd?®) + 4max {P (E}""%) ,P (G,)}
+ 576 + 48n + 24 - Wy, (Gy)
< 56092 llogy (™) 4+ + 1] + 324 + 48n

+ 24 Wy, (Ga) + 4max {P (EY"4°) | P (Gy)} (7.2.7)

Now note that Lemma 4.2.5, and Lemma 4.3.3 tells us that for all r = {zy,22,...,2,} € R"

and z € R%:

3, (Prd®< o [EN""1°0G,]) (f ([t],) —~ @) = Te (Prd®) (Jc (EZ""7°) , 3e (Ga)) (f ([¢],) — @)
(7.2.8)

Note then that the triangle inequality tells us that:

v ([1) wae) - 3. (VEZE) (7 (6 ~
exp (/b fdx> ‘g (z) — Je (Prd?®) (3, (EN™7°) .3, (Ga)) (f ([t],) —)

exp (/b fda:> ‘g (z) — I, (Prd®?) <exp (/b fdx> , Ug (@)‘

+ |3, (Prdv) (exp (/ b fdw) <x>) — 3, (Prd™®) (3, (EX9) .3, (G) (/ ([¢]) ~ @)

(7.2.9)

<

Note that Lemma 5.1.10 bounds the first summand. Note that by hypothesis J, (G,) is

219

exactly uy (z). Note also that by Lemma 7.1.1, Lemma 5.1.10, we realize that the second

summand can be bounded as such:

J, (Prd®€) (exp (/b fdx) Uy (g;)> — T (Prd?®) (3¢ (™€), 3 (Ga)) (f ([],) — =)

b b q
< exp </ fdx) uq (z) + €+ ¢ lexp (/ fdx)

+ e fuq (@)
= [3c (BE"%) (f ([1).)) Fe (Ga) (x) — & — & | Te (E7%) (£ ([¥.)]" = £13¢ (Ga) ()]
(7.2.10)

Per Lemma 7.1.1, let e represent the error in approximation of Ef:f a2 that is to say for all

r € RV and corresponding f ([x],), let it be the case that:

e () e ([1)

<e (7.2.11)

Thus EY™9€ (f ([x],)) is maximally ¢ + exp (ff fdx) and minimally exp (ff fdx) —¢. Thus
(7.2.10) is rendered as:

exp (/abfdx> ug () +e+¢exp (/jfdx)

= [3c (EX") 3c (Ga) (£ ([e].) ~ @) — e — e |3 (EX™%) (f (W)]" — €13 (Ga) (2)]]

q
+ ¢ fug (z) /"

q

gexp</abfd:c>ud(x)+a+s exp(/jfdx) + € Jug (z)?
_ (e—i—exp(/bfd:v))ud()—5—5exp(/abfd:c)—eq—g\ud(:c)\q]
= exp T | ug (z +€+€exp< fdx)q+s|ud(x)\q
— eu(t,z) — exp 7| ug (2 +z—:+eexp(afd:c)—qurelud(fE)lq

q

=2+ 2 |ug(x)|" +¢ +e — eug () (7.2.12)

exp (/ fdx) e

exp (/ b fdx)

220

This, together with (7.2.9), then tells us that:

exp ([1) ua () 20 (VEXE) (5 11 ~)

exp (/ ’ fda:) g () — 3, (Pr®) (exp (/ ’ fdx) u (x)) ‘

acprare) (e ([b Fie) cua)) = 3 (Prer?) (3, (EX99) (£ (1)), 3 (G4 ()
exp (/b fd:c) e (a)f
exp</abfdx) —¢
exp (/ ’ fd:p) q

<

+

<e+te

— ety ()

q

+ 2+ 2¢|ug (2)|" + ¢ +¢

exp (b/ b fdx)
exp (/ fdx) e

q

= 3e + 2¢ Jug (z)|* + 2¢ +e — euy (1)

7.3 The UEXV%* Neural Networks

n,Gg,w;
Lemma 7.3.1 (R—,2023). Let n, N € N, h € (0,00). Let d,e € (0,00), q € (2,00), satisfy
that 6 = £ (297 +1)"". Let a € (—o0,00), b € [a,00). Let f : [a,b] — R be continuous and
have second derivatives almost everywhere in [a,b]. Leta =29 < x; < - <zy_1 <y =0
such that for all i € {0,1,..., N} it is the case that h = ”_T“, and x; = xo+1-h . Let
x=lrox -+ xn| and as such let f ([a:]**) = [f(zo) f(z1) -+ f(an)]. Let EJY . € NN be

the neural network given by:
ENMae — Xpn?© o Etr™V" (7.3.1)

Let G; € NN be the neural networks which, for d € N, instantiate as ug = 3, (Gq) (z) €

C (R4, R) for all z € RY.

221

Let UETJZ’G}L:”E C NN be the neural networks given as:
UE)8:7¢ = Prd?< o [EN"7°0G,| (7.3.2)

Finally let UEXN’Gh’q’E_ C NN be given the neural networks given by:
n,Gq -

Wi

UEXN,h,q,E _ UEN,h,q,E ° [Tuni\f—i-l EAff@)d,d,XwJ (733)

1,Gg,w; n,Ggq

It is then the case that for allx = {xg,x1,...,2n} € RN and x € R? that:

(i) 3. (UEX)E5) € ¢ (RVH < R R)

77'1Gd7wi

(ii)

D (UEXN’h’q’E) =D (UENW»’MLS)

n,Gq,w; n,Gq

_ qu[logﬂs_l)—i—q]—kD(Gd)—l n=0

743 logy (=) + g +max {D (E§%],.) .D(Ga)} 1 :neN

(7ii) It is also the case that:

360q

P (UEX)ge) =P (VENE™) < g llos (7) q 1] + 324 + 48

+ 24 Wy, (Ga) + 4max {P (EY"%%) P (Gy)}

(7.3.4)
(iv) It is also the case that:
! N,h
exp ([as) i) -3 (UBXLES) (7 () ~ 0
t
b q b q
< 3e+ 2]ug (t,x)‘q + 2¢ |exp (/ fdx) + ¢ |exp </ fdx) —¢| —eul (2)

222

Where, as per Lemma 7.1.1, ¢ is defined as:

e (7 () - exo ([b far) < (735)

Proof. Note that (7.4.9) is an assertion of Feynman-Kac. Now notice that for z € RV*! x R4

it is the case that:

3 (UEXN”“‘”E> ()

1,Ggq,wi

3, (UETJX’G’Z"’E o [Tun)™' B Aff@d,d,xwi]) (x)

’I’L,Gd

J, (U EN’h’q’€> o J, ([Tun}™ BAffy, , x..]) (2)

Note that by Lemma 7.2.1 it holds that J, (UEZ’éZq’E) € C (RM*! x R R). Note also that
by Lemma 5.2.6, Tun} ™! is continuous and by Lemma 4.4.2, Aff, 40X, 1 continuous, and
whence by Lemma 5.2.6 and Lemma 4.4.5 it is the case that J, ([Tun} "' B Aff@d,d,XwJ) (x) €
C (RV*! x RY, RY x R?). Finally, since the composition of continuous functions is con-
tinuous, and since we have functions (R¥™ x R?) — (R¥ xR?) — R we have that
3 (VEXYE5) € C RV x RY,R). This proves Ttem (i)

Note next that by Lemma 5.2.6, it is the case that D (Tunjl\”rl) =D <Aff@d,dyxwi) = 1. Thus

n’Gdyw'L'

by Lemma 4.2.5 it is the case that D (UEXN’h’W) =D (U ETJZ&;‘I’€>. This proves Item (ii)

Next note that:

P (UBX)Es) = P (UENL™ o [Tun)*! BAfRy, 0]) (7.3.6)

n,Gq,w; n,Gg

Note carefully that Definition 5.2.4 tells us that Tun]' ™" = Affi, ., .., 0y.,, and so by Lemma

4.4.6, it must be the case that Tuniv 18 Aff, 20X, 18 also an affine neural network. Whence,

223

Corollary 4.4.5.1 tells us that:

nadewi

P <UEXN’h7q’€) =P (UEfZél;qﬁ ® [Tunjlwrl E'Aff@d’df‘/w})

| (Tun¥ ! B Aff, +1
< |max 1’ (1 — @d,d,/\’wi) .P (UEfZél;q,f;')
I (UEm’Gf’) +1

—p (UEZ{J;”)

360
< = [logy (£7") + g + 1] + 324+ 48n

q—
+ 24 Wi, (Ga) + 4max {P (EX"%%) ,P(Gy)} (7.3.7)

Finally, note that both Affy;;, and Tu ni are exact and contribute nothing to the uncertainty.

Thus UEijgf‘fZ_ has the same error bounds as UE" élf’g. That is to say that:

exp ([s) f) = (UBXSEES) 7 (1) ~

exp(/abfda:) exp(/abfdx)_e

q
+¢€

q

< 3e + 2¢ [uf (t,a:)|q+2€ —eul (2)

O

Corollary 7.3.1.1 (R—, 2024, Approximants for Brownian Motion). Let t € (0,00) and
T € (t,00). Let (Q,F,P) be a probability space. Let n,N € N, and h € (0,00). Let
d,e € (0,00), q € (2,00), satisfy that § = € (277 + 1)_1. Let f : [t,T] — R be continuous
almost everywhere in [t,T]. Let it also be the case that f = gobh, where b : [t,T] — R%,
and g : R* - R. Lett =ty <t < -+ <ty_1 <ty =T such that for all i € {0,1,..., N}
it is the case that h = %, and t; = to+1-h . Lett = [toty ---tn]| and as such let

f ([t]**) = [f(to) f(t) --- f(tn)]. Let EN™%¢ € NN be the neural network given by:

Eﬁf,h,q,a _ Xpn?f o EtrV" (7.3.8)

224

Let ug € CH2 ([0,T] x R, R) satisfy for alld € N, t € [0,T], x € R? that:

(%ud> (t,z) + (Viua) (¢, 2) + aq (z) ug (t,2) = 0 (7.3.9)

Furthermore, let ul (z) = ug(T,x). Let Gz C NN be the neural networks which instantiate as
ul =7, (Gy) € C (R, R).

Let We:[0,T] x Q — R?, d € N be standard Brownian motions, and let X' : [t, T] x Q —
RY deN, t€[0,T], z € R? be stochastic processes with continuous sample paths satisfying

that for alld € N, t € [0,T], s € [t,T], v € R? we have P-a.s. that:
t
AT = g 4 / V2aW? (7.3.10)
It is then the case that for alld € N, t € [0,T], x € R it holds that:
T
ug (t,r) =E {eXp (/ (g o XHH) dr) Ug (T, Xﬁm)] (7.3.11)
t
Let UEfX’th’lq’e be the neural network given as:
UE)L:7¢ = Prd?® o [EN9°0G,| (7.3.12)
Finally let UEX,]:]équj be given by:

UEX(4 = VBN o [Ton)'™ B A, v, (73.13)

nzGd7wi

It is then the case that for all x = {xg,z1,...,ox} € RN and x € R? that:

exp ([s) f) = . (UBXIEES) 7 (1) ~

exp(/abfdx>q exp(/abfdx)_e

+e€
225

q

< 3e + 2¢ [uf (t,a:)]q—irZe —eul (2)

Where, as per Lemma 7.1.1, ¢ is defined as:

Ex""0° (f ([1].)) — exp (/b fdx)‘ <e (7.3.14)

Proof. Note that for a fixed T' € (0,00) it is the case that u, (t,z) € C*?([0,T] x R%, R)
projects down to a function ul (z) € C? (Rd,R). Furthermore given a probability space
(©, F,P) and a stochastic process X4 : [t, T] x Q — R?, for a fixed outcome space w; € {2
it is the case that X%"® projects down to Xﬂf’r . [t,T] — RY. Thus given ag : R? — R that
is infinitely often differentiable, we get that og o X% : [t, T| — R.

Taken together with Lemma 7.2.1 with o~ X7 f A~ ago X4 b AT, a ~ t, and

rw

ul ()~ ug (T, X%5"), our error term is rendered as:

T
exp (/t (aqo Xffjfds)) g (T, 204) = 3, (UBX) s)‘

exp(/abfdx>q exp(/abfdx)_e

+e€
This completes the proof of the Lemma. 0

q

< 3e + 22 [ug (T, X2L7) | + 2 — eug (T, X7)

Remark 7.3.2. Diagrammatically, this can be represented as:

exp, f | RN+1
/ Tun T ENhge Tunf[+1 <—
< | Prd?*®
u Gd <— Aff®d’d,Xgi,iz < R4

N,h,q,e
ndevwi

Figure 7.3: Neural network diagram for UEX

226

7.4 The UES;VéLU’qu’Z’S . Neural Networks

Lemma 7.4.1. Let vy,vs,...,v, € NN such that for alli € {1,2,...,n} it is the cast that
O (v;) = 1, and it is also the case that D (1) = D (vp) = -+~ = D(v,). Let x; € R 1y €

R'®2) oz, € R0 gnd r € RE=1'®) | [t is then the case that we have that:
3. (Sum,, ; o [H ,11]) ZJ v;) (x;) (7.4.1)

Proof. Throughout the proof let z; € R'®) 2, € R'™) . 2, € R'™) and r € RXi=1!()

such that r =21 —~ x5 —~ -+ —~ x,. Observe that by Lemma 4.2.5 we have that:
J: (Sum,, ; o [H ,14]) (r) = T (Sum,, 1) o T, (B 1) (x) (7.4.2)

Note however that Defiition 4.1.5 yields that J, (Sum,,;) (z) =[11 --- 1] -2 + 0 for z € R™.
On the other hand O (B ,v;) = n and furthermore by Lemma 4.3.3 it is the case for
r € REi=1'0) that J, (87 ,1) (r) = Je (1) (21) —~ Te (1) (z2) —~ -+ —~ Te () (2,). Thus

J. (Sum,,; @ [H,14]) (¢) is rendered as:

Je (1) (1)
[1 1 ... 11 . (W.) (2) +0= i 3. (v) () (7.4.3)

This completes the proof of the lemma. O
Lemma 7.4.2. Let vy,v,...,v, € NN with | (1) = 1(1n) = ... = I(v,) and O (1) =
O(rr) = ... = O(vy) = 1 such that for all i € {1,2,....,n} it is the case that there

exists f; € C (R'™) R) and &; € (0,00), where for all x; € R'™) it is the case that

| e (V) (z3) — f (23) | < ;. It is then the case that for all ¥ € R™) and x; € R'®) with

227

r=2x1 —~ Ty —~ - —~ X, that:

1Te (Bvi) (¢) = [~i fil (@] < ZS (7.4.4)

Proof. We will prove this with induction. This is straight-forward for the case where we have
just one neural network where for all z € R'™) it is the case that ||J, (v1) (z) — f (2)]|, <
e1 = Y, €. Suppose now, that, [T (B7v;) (x) — [~%, fi] @), < 3, & holds true for
all cases upto and including n. Consider what happens when we have a triple, a function
fns1, a neural network v,,1, and €,4; € (0,00) with a maximum error over all z € R'™) of
| T (Vnt1) () — faz1 ()| € epg1. Then Lemma 4.3.3, Corollary 1.2.35.1, and the triangle

inequality tells us that:

19 (B v (0) = [~] @,

< 9 Bva) (1) = [~im Al @l + 1T (i) (2) = faga (2) |

<) e (7.4.5)
=1

This proves the inductive case and hence the Lemma. 0

Lemma 7.4.3. Let (Q, F,P) be a probability space. Let X, : Q — Ry be a random variable.
Let f : Ry — R be a function such that for all x,x € R? it is the case that || f (z) — f (¥)]| 5 <
Lz —x|. It is then the case that V [f (X4)] < 282V [X,].

Proof. Let X4 be an i.i.d. copy of X,. As such it is the case that Cov (Xy4, X4) = 0, whence
it is the case that V[Xy, X4 = V[X4+ V[Xy] = VI Xy + V[-X4) = VX4 — X4) = 2V [X].
Note that f(X,;) and f(X4) are also indepentend and thus Cov (f (Xy), f (X4)) = 0, and

228

whence we get that V[f (X4) — f (X4)] = 2V [X,]. This then yields that:

2V[f (Xa)] = VI[f (Xa) = f (Xa)]
=E[(f (Xa) — f (X2))°] = (E[f (Xa) — [(Xa)])*
=E[(f (Xa) = [(X4))"]
= £ E[(Xs -~ Xa)"]
= £2.2V[X,]

— VI[f(Xo)] = £2-V[X,] (7.4.6)

This proves the Lemma. O

Lemma 7.4.4 (R—, 2024, Approximants for Brownian Motion). Let t € (0,00) and T €
(t,00). Let (2, F,P) be a probability space. Let n, N € N, and h € (0,00). Let d,e € (0,00),

q € (2,00), satisfy that § = (2971 + 1),

Let f : [t,T] — R be continuous almost
everywhere in [t,T]. Let it also be the case that f = gob, where b : [t,T] — R?, and
g:RT 5 R, Lett =ty <t; < - <ty <ty =T such that for all i € {0,1,...,N}
it is the case that h = %, and t; = to+1i-h . Lett = [toty ---tx| and as such let
f ([t]**> = [f(to) f(t1) -+ f(tn)]. Let ug € C (R4 R), bounded by M, q satisfy for all
deN,tel0,T], x € R? that:

(%ud) (t,2) + (Vaug) (t,2) + aq (2) ug (t,z) = 0 (7.4.7)

Furthermore, let ul (z) = uq(T,x). Let G4 C NN be the neural network which instantiates as
ul =73, (Gy) € C (R, R).
Let W : [0, T] x Q — R?, d € N be standard Brownian motions, and let X4 : [t,T] x Q —

RY deN, te[0,T], z € R? be stochastic processes with continuous sample paths satisfying

229

that for alld € N, t € [0,T], s € [t,T], * € R? we have P-a.s, that:
t
AT = g 4 / V2awW? (7.4.8)

It is then the case that for alld € N, t € [0,T], x € R? it holds that:

ug (t,z) =R {eXp (/t ' (g o XH7) dr> Ug (T, X;f’t’”)} (7.4.9)

Let EN™% C NN be neural networks given by:
ENMe — Xpn?< o EtrV:" (7.4.10)

Furthermore, let G € NN C NN be neural networks which instantiate as ug = 7. (Gy) €
C (R%,R).

Furthermore, let UET]Z’G}ZL;Q’8 C NN be neural networks given by:
UE) 87 = Prd?® o [EN"7°0G,| (7.4.11)

Futhermore, let UEXY:2%¢ C NN be neural networks given by:

n7Gd7wi -

UEXNhae — UE’{‘XéI;LE . [-I-unll\url E,Aff@d,d,XwJ (7.4.12)

ndevwi

Finally let UESN’C};"%&n C NN be neural networks which, for w; € Q, is given as:
n,Gq,3L, -

UESNEae — % > (Sumyi o[BI UEXY 2 |) (7.4.13)

n,Gq,w;

It is then the case that for all X € RMVN+D x R

(i) 7 (VES)E45,) (%) € C (R x R, R)

230

L5 llogy (e7') + ¢ + D (Gg) — 1 =0

-2

)

(ii) D (VESYE4,) <
45 [logy (e7') + ¢] + max {D (E}""?°) \D(G4)} =1 :neN

(7ii) It is also the case that:

P (UEsfjgfgm) <n?- E’ﬁ__o‘; [logy (e7") +q + 1] + 324 + 48n
+24 Wiy, (Ga) + 4max {P (E)""%°) , P (Gg) }] (7.4.14)

(iv) It is also the case that:

n T
% [Z [exp (/ f(X5T) ds - ug (Xfaff))u -3 (VES)¢ %) ()
t

i=1

b q b q
< 3e + 2¢ [uf (:L')|q + 2¢ |exp (/ fdx) + ¢ |exp (/ fda:) —e¢| —eul (2)
Where, as per Lemma 7.1.1, ¢ is defined as:
b
ENMas _ exp (/ fdx) <e (7.4.15)

Proof. Note that for all i € {1,2,...,n}, Lemma 7.3.1 tells us that J, (UEXN’h’q’E)

ndevwi

€ C (RV! x R, R). Lemma 4.5.19 and Lemma 4.5.18, thus tells us that

J; ((@:‘:1 [UEngdqj D) =>, [Jt (UEXgGhdqj)} The sum of continuous functions is
continuous. Note next that %D is an affine neural network, and hence, by Lemma 4.4.2, must
be continuous.

Then Lemmas 4.2.5, 4.3.8, and the fact that by Lemma 7.3.1 each of the individual stacked

N . .)
UEX, g;qfi neural networks is continuous then ensures us that it must therefore be the case

that: J, (UESY2%¢) e ¢ (R*WV+D x R™ R). This proves Item (i).
n,Gd,Q,n

N,h,q,e
ndevwi

Next note that by construction each UEX has the same depth, indeed for each i the

only thing different for each of the UEX,,]:[gdqj is the parameters themselves and not the count

231

or depth or layer architecture. Note that D (Sum,;) =D (i>) =D <AfF%7O) =1

Whence by Lemma 4.2.5 it is the case that D (UESfXéﬁ;‘ﬁn) =D (UEXi:[Ghqui) This then
proves Item (ii).

Next, observe that each of the UEXfXéLfi networks has the same architecture for all w; € 2
by construction. Corollary 4.3.5.1 then yields that:

P <E;‘:1UEXN”""’5> <n?-P (UEXN’h’q’5> (7.4.16)

1,Gq,w; n,Gq,w;

Note for instance also that by Remark 4.4.3, it is the case that P (Sum, ;) = n+ 1. Further-
more, since the output of the Sum neural network has length one, by Definition 4.6.1 it is
the case that P (%D) = 2. Then Corollary 4.4.5.1 leads us to conclude that:

P (summ1 . [B;?:lUExﬁjgj;i D <P (E;?:1UExﬁjgj;i)

<n- P (UEX) L)

TZ,Gd,UJi

(7.4.17)

and therefore that:

n,Gd,Wi

5 %» (Sumn,l . [E;‘ZIUExN,h,q,sD)

'Tl,Gd,OJi

<P (sumn,1 . [B;‘ﬂUExN’h’q’ED

<P (E;?:lUEXN’h"”E)

nde7wi

<n?-P(UEX)L1s)

nde7wi

<n?- {56__0(]2 [log, (e7") + ¢ + 1] + 324 + 48n

+24 W6, (Ga) + 4max {P (E)"™%%) P (Gy)}] (7.4.18)

Observe that the absolute homogeneity condition for norms, the fact that the Brownian

232

motions are independent of each other, Lemma 7.4.1, the fact that n € N, the fact that the
upper limit of error remains bounded by the same bound for all w; € €2, and Lemma 7.4.2,

then yields us:

1 Zn: ex Tf(Xd’t’x)d Xd”
n |4 p] Wi S ud Wi
= 1 z“: exp /Tf(/'\’d’t’””)ds ul Xd“” Sum O[E“ UEXthED
n |4) Wi d Wi n,1 =1 1,Gq,w
- ,
Zexp (/ (XY ds - uf (erjx] [[UEX?&%D] I
T
exp (/ F(XE) ds - u (de)) - (UEchhdqj)
— t
1 T

= |exp (/ F (XY ds - u (X;ﬁfﬂ) - (UExfj(’;dqj)‘

t

exp(/abfd:v)q exp(/abfdx)—e

U Esflvgdqé n)

V/A\
=R

q

< 3e + 2¢ |uy (t,x)|q+25 +e —eul (2)

O

Corollary 7.4.4.1. Let N\n,n € N, h,e € (0,00), q € (2,00), given UESnthffn C NN, it is

then the case that:

T
(IE HE {exp (/ Qg o X;féwds) uy ()(rdéx)}
t
n 2
(B[o) o]
i=1
T
exp (/ Qg © Xf’é’xds) uy (erftzx>
t

Proof. Note that E [Xf éx] < 00, and u” being bounded yields that E [uT (eréxﬂ < o0,

D=

:If—‘

=

2

(7.4.19)

and also that E [ad o X: éx] < 00. Thus we also see that E [ftT Qg 0 X: ’é’xds] < 00, and thus
E [exp < ftT Qg © Xgé’xdsﬂ < 00. Thus together these two facts, along with the fact that the

two factors are independent by (Hutzenthaler et al., 2020a, Corollary 2.5), then assert that

233

E [exp (LT Qg O Xfém> ~ul <X7fléx)] < 0.
Note that (Hutzenthaler et al., 2021, Corollary 3.8) tells us that:

T
(]E HE {exp (/ Qg o X:gwd.s) uy <ng§x>}
t
n T 2
([exp (/ Qg © X;f;jfds) uy (ijﬂ])
i=1 t
T 27
exp (/t Qg © Xgé’xds) cul (Xgé@) >

N=

Sl
N

(7.4.20)

This, combined with Lyapunov's Inequality for Expectation and the Triangle Inequality

yields that:
T
E HE {exp </ Qg o X;fémds) uy (erém)]
¢
IWES ’
- (Z [exp </ Qg o Xfﬁfds) uy (ijﬂ]) “
, ¢

(7.4.21)
Finally, combined with, the linearity of expectation, and the fact that the expectation of a
deterministic constant and a deterministic function is, respectively, the constant and function
itself, and the triangle inequality then yields that:
T
E HE {exp (/ ago Xifé“ds) ug (X;fé””)] -3 (UES)g%.) }
t

(exp (T — 1) M,y) M,)
exp(/abfdx> .y

([2]

This completes the proof of the corollary.

<

=3
|

q q

—eul (2)

+é€

+ 3¢+ 2¢ |uy (t,x)|q + 2¢

234

Remark 7.4.5. Note that diagrammatically, this can be represented as in figure below.

/

Prd¥*®

AN

Sum

Prd%®

/
™

Figure 7.4: Neural network diagram for the UES

N,h,qe | N+1
Tun En TuniVH <R
Affg . A
Tun Gy R
N,h,q.e N+1
Tun E, Tun{VH‘é‘R
Aff
Tun Gy 040X L pd
N,h,q,e
n.Go network.

235

Chapter 8

Conclusions and Further Research

We will present three avenues of further research and related work on parameter estimates
here. We will present these as a series of recommendations and conjectures to further extend

this framework for understanding neural networks.

8.1 Further operations

Note, for instance, that several classical operations are done on neural networks that have
yet to be accounted for in this framework and talked about in the literature. We will discuss
two of them dropout and merger and discuss how they may be brought into this framework.
Overfitting presents an important challenge for all machine learning models, including deep

learning. There ex

Definition 8.1.1 (Hadamard Product). Let m,n € N. Let A,B € R™ ™. For all i €
{1,2,...,m} and j € {1,2,...,n} define the Hadamard product ® : R™*™ x R™*" — R™*"

as:

AOB = [AQBL‘,J' = [4],; x [B],

l?j

Vi, j (8.1.1)

i7j

We will also define the dropout operator introduced in Srivastava et al. (2014), and explained

236

further in Goodfellow et al. (2016).

Definition 8.1.2 (Instantiation with dropout). Let v € NN, L,n € N, p € (0,1), L(v) =
(lo,l1,...,Br), and that v = (Wy,b1), (Wa,ba),...,(Wyp,br)). Let it be the case that for
eachn € N, p, = {x1,29,...,2,} € R where for each i € {1,2,...,n} it is the case that
z; ~ Bern(p). We will then denote IV* (v) € C (R'™),RO™), the continuous function given

by:
PP W) =p, ©@a(Wi (pr,, ©a(Wr_i (...) +br_1)) +by) (8.1.2)

Dropout is an example of ensemble learning, a form of learning where versions of our model
(e.g. random forests or neural networks) are made (e.g. by dropout for neural networks or
by enforcing a maximum depth to the trees in our forest), and a weighted average of the
predictions of our different models is taken to be the predictive model. That such a model

can work, and indeed work well, is the subject of Schapire (1990).

8.2 Further Approximants

q,€

b= and Snel® given

In theory the approximation schemes given in the case of Xpn?©, Csn
in the previous sections, could be used to approximate more transcendental functions, and
identities such as alluded to in Remark 5.2.31. Indeed, recent attempts have been made
to approximate backwards and forward Euler methods as in Grohs et al. (2023). In fact,
this architecture was originally envisioned to approximate, Multi-Level Picard iterations,
as seen in Ackermann et al. (2023). These neural network methods have been proven to
beat the curse of dimensionality in the sense that the size of these networks (parameter and
depth counts) grow only polynomially with respect to the desired accuracy. In practice, it
remains to be seen whether for larger dimensions, the increased number of operations and

architectures to contend with do not make up for the polynomial increase in parameter and

depths, especially when it comes to computaiton time.

237

In a similar vein, these architectures have so far lacked a consistent implementation in a
widely available programming language. Part of the dissertation work has been focused on

implementing these architectures as an R package, available at CRAN.

8.3 Algebraic Properties of this Framework

It is quite straightforward to see that the instantiation operation has sufficiently functorial
properties, at the very least, when instantiating with the identity function. More specifically
consider the category Mat whose objects are natural numbers, m,n, and whose arrows
m <& n are matrices A € R™*" i.e. a continuous function between vector spaces R"™ and
R™ respectively. Consider as well the set of neural networks v C NN where | (v) = n and
O(v) =m.

In such a case, note that the instantiation operation preserves the axiom of functoriality,
namely that composition is respected under instantiation. Note also that we have alluded
to the fact that under neural network composition, with Id (the appropriate one for our
dimension) behaves like a monoid under instantiation.

Note for example that a neural network analog for derivatives, one that respects the chain
rule under instantiation already exist in the literature, e.g. Berner et al. (2019). Thus there
is a growing and rather rich and growing set of algebraic operations that are and have been
proposed for neural networks.

Taken together, these facts seem to imply that a further exploration of the algebraic prop-
erties of this artificial neural network framework could present a fruitful avenue of future
study. Much remains to be studied.

This completes this Dissertation.

238

Chapter 9

Bibliography and Code Listings

239

Bibliography

Ackermann, J., Jentzen, A., Kruse, T., Kuckuck, B., and Padgett, J. L. (2023). Deep neural
networks with relu, leaky relu, and softplus activation provably overcome the curse of
dimensionality for kolmogorov partial differential equations with lipschitz nonlinearities in
the [P-sense.

Arik, S. n and Pfister, T. (2021). TabNet: Attentive Interpretable Tabular Learning. Pro-
ceedings of the AAAI Conference on Artificial Intelligence, 35(8):6679--6687. Number:
8.

Beck, C., Gonon, L., Hutzenthaler, M., and Jentzen, A. (2021a). On existence and unique-
ness properties for solutions of stochastic fixed point equations. Discrete & Continuous
Dynamical Systems - B, 26(9):4927.

Beck, C., Hutzenthaler, M., and Jentzen, A. (2021b). On nonlinear Feynman—Kac formulas
for viscosity solutions of semilinear parabolic partial differential equations. Stochastics
and Dynamics, 21(08).

Beck, C., Hutzenthaler, M., and Jentzen, A. (2021c). On nonlinear Feynman—Kac formulas
for viscosity solutions of semilinear parabolic partial differential equations. Stochastics
and Dynamics, 21(08):2150048.

Berner, J., Elbrachter, D., Grohs, P., and Jentzen, A. (2019). Towards a regularity theory
for relu networks — chain rule and global error estimates. In 2019 15th International
conference on Sampling Theory and Applications (SampTA), page 1—5.

Chollet, F. (2017). Xception: Deep learning with depthwise separable convolutions. In 2017
IEEFE Conference on Computer Vision and Pattern Recognition (CVPR), page 18001807,
Los Alamitos, CA, USA. IEEE Computer Society.

Crandall, M. G., Ishii, H., and Lions, P.-L. (1992). User’s guide to viscosity solutions of
second order partial differential equations. Bull. Amer. Math. Soc., 27(1):1-67.

Da Prato, G. and Zabczyk, J. (2002). Second Order Partial Differential Equations in Hilbert
Spaces. London Mathematical Society Lecture Note Series. Cambridge University Press.

Davies, A., Juhasz, A., Lackenby, M., and Tomasev, N. (2022). The signature and cusp

geometry of hyperbolic knots. Geometry and Topology. Publisher: Mathematical Sciences
Publishers.

240

Durrett, R. (2019). Probability: Theory and Examples. Cambridge Series in Statistical and
Probabilistic Mathematics. Cambridge University Press.

E, W., Hutzenthaler, M., Jentzen, A., and Kruse, T. (2019). On Multilevel Picard Numerical
Approximations for High-Dimensional Nonlinear Parabolic Partial Differential Equations
and High-Dimensional Nonlinear Backward Stochastic Differential Equations. J Sci Com-
put, 79(3):1534--1571.

E, W., Hutzenthaler, M., Jentzen, A., and Kruse, T. (2021). Multilevel Picard iterations for
solving smooth semilinear parabolic heat equations. Partial Differ. Equ. Appl., 2(6):80.

Golub, G. and Van Loan, C. (2013). Matriz Computations. Johns Hopkins Studies in the
Mathematical Sciences. Johns Hopkins University Press.

Goodfellow, 1., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press. http:
//ww .deeplearningbook.org.

Graham, R., Knuth, D., and Patashnik, O. (1994). Concrete Mathematics: A Foundation
for Computer Science. Addison-Wesley Professional, Upper Saddle River, NJ, 2nd edition
edition.

Grohs, P., Hornung, F., Jentzen, A., and von Wurstemberger, P. (2018). A proof that artifi-
cial neural networks overcome the curse of dimensionality in the numerical approximation
of Black-Scholes partial differential equations. Papers 1809.02362, arXiv.org.

Grohs, P., Hornung, F., Jentzen, A., and Zimmermann, P. (2023). Space-time error es-
timates for deep neural network approximations for differential equations. Advances in
Computational Mathematics, 49(1):4.

Grohs, P., Jentzen, A., and Salimova, D. (2022). Deep neural network approximations for
solutions of PDEs based on monte carlo algorithms. Partial Differential Equations and
Applications, 3(4).

Hutzenthaler, M., Jentzen, A., Kruse, T., Anh Nguyen, T., and von Wurstemberger, P.
(2020a). Overcoming the curse of dimensionality in the numerical approximation of semi-
linear parabolic partial differential equations. Proceedings of the Royal Society A: Math-
ematical, Physical and Engineering Sciences, 476(2244):20190630.

Hutzenthaler, M., Jentzen, A., Kuckuck, B., and Padgett, J. L. (2021). Strong LP-error
analysis of nonlinear Monte Carlo approximations for high-dimensional semilinear partial
differential equations. Technical Report arXiv:2110.08297, arXiv. arXiv:2110.08297 [cs,
math] type: article.

Hutzenthaler, M., Jentzen, A., and von Wurstemberger (2020b). Overcoming the curse
of dimensionality in the approximative pricing of financial derivatives with default risks.
FElectronic Journal of Probability, 25(none):1-73.

It6, K. (1942a). Differential equations determining Markov processes (original in Japanese).
Zenkoku Shijo Sugaku Danwakai, 244(1077):1352-1400.

241

http://www.deeplearningbook.org

It6, K. (1942b). On a stochastic integral equation. Proc. Imperial Acad. Tokyo,
244(1077):1352-1400.

Jentzen, A., Kuckuck, B., and von Wurstemberger, P. (2023). Mathematical introduction to
deep learning: Methods, implementations, and theory.

Karatzas, 1. and Shreve, S. (1991). Brownian Motion and Stochastic Calculus. Graduate
Texts in Mathematics (113) (Book 113). Springer New York.

Petersen, P. and Voigtlaender, F. (2018). Optimal approximation of piecewise smooth func-
tions using deep ReLLU neural networks. Neural Netw, 108:296-330.

Rafi, S. (2024). nnR.

Rafi, S. and Padgett, J. L. (2024). nnR: Neural Networks Made Algebraic. R package version
0.1.0.

Rio, E. (2009). Moment Inequalities for Sums of Dependent Random Variables under Pro-
jective Conditions. J Theor Probab, 22(1):146-163.

Schapire, R. E. (1990). The strength of weak learnability. Mach Learn, 5(2):197-227.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, 1., and Salakhutdinov, R. (2014).
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res.,
15(1):1929--1958.

Strubell, E., Ganesh, A., and McCallum, A. (2019). Energy and policy considerations for
deep learning in nlp.

Tsaban, T., Varga, J. K., Avraham, O., Ben-Aharon, Z., Khramushin, A., and Schueler-Fur-
man, O. (2022). Harnessing protein folding neural networks for peptide—protein docking.
Nat Commun, 13(1):176. Number: 1 Publisher: Nature Publishing Group.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, 1,
and Polosukhin, I. (2017). Attention is All you Need. In Advances in Neural Information
Processing Systems, volume 30. Curran Associates, Inc.

Wu, C.-J., Raghavendra, R., Gupta, U., Acun, B., Ardalani, N., Maeng, K., Chang, G.,
Behram, F. A., Huang, J., Bai, C., Gschwind, M., Gupta, A., Ott, M., Melnikov, A.,
Candido, S., Brooks, D., Chauhan, G., Lee, B., Lee, H.-H. S., Akyildiz, B., Balandat, M.,
Spisak, J., Jain, R., Rabbat, M., and Hazelwood, K. (2022). Sustainable ai: Environmental
implications, challenges and opportunities.

Yarotsky, D. (2017). Error bounds for approximations with deep ReL.U networks. Neural
Networks, 94:103--114.

Zhao, T., Lyu, R., Wang, H., Cao, Z., and Ren, Z. (2023). Space-based gravitational wave
signal detection and extraction with deep neural network. Commun Phys, 6(1):1-12.
Number: 1 Publisher: Nature Publishing Group.

242

9.1 Code Listings

Parts of this code have been released on CRAN under the package name nnR; and can be
found in Rafi and Padgett (2024), with the corresponding repository being found at Rafi

O W N O R W N R

10
11
12
13
14
15
16
17
18
19
20
21

22

23
24
25
26
27
28

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

(2024):

Listing 9.1: R code for neural network generation

#' Function to generate a random matrix with specified dimensions.

#I

#' @param rows number of rows.

#' @param cols number of columns.

#I

#' @return a random matrix of dimension rows times columns with elements from
#' a standard normal distribution

generate_random_matrix <- function(rows, cols) {
(rows * cols) |>
rnorm() |>
matrix(rows, cols) -> result
return(result)

}

#' @title create_neural_network

#' @description Function to create a list of lists for neural network layers
#I

#' aparam layer_architecture a list specifying the width of each layer

#I

#' @return An ordered list of ordered pairs of \eqn{(w,b)}. Where \eqn{W} is

the matrix

#' representing the weight matrix at that layer and \eqn{b} the bias vector.
Entries

#' on the matrix come from a standard normal distribution. Neural networks

#' are defined to be elements belonging to the following set:

#' \degn{

#

#' \mathsf{NN} = \bigcup_{L\in \N} \bigcup_{1_0,1_1,...,1_L \in \N}

#' \left(\times”L_{k=1} \left[\mathbb{R}"{1 k \times 1_{k-1}} \times \R"{l _k
Nright] \right)

#'

#

#' }

#

#'

#

1

#' We will use the definition of neural networks as found in:

#' areferences Grohs, P., Hornung, F., Jentzen, A. et al.

#' Space-time error estimates for deep neural network approximations
#' for differential equations. Adv Comput Math 49, 4 (2023).

#' \url{https://doi.org/10.1007/s10444-022-09970-2}.

#' @export

243

44

45

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

O O N O U s W N R

10
11

12
13
14
15
16
17

create_neural_network <- function(layer_architecture) {
if (all(sapply(layer_architecture, function(x) is.numeric(x) &§& x %% 1 ==
§& x > 0)) == FALSE) {

stop("Non_integer_or_negative_neural_network_width_specified.")

} else if (layer_architecture |> length() < 2) {
stop("Neural_network_must_have_atleast_two_layers.")

} else {
layer_architecture |> length() -> L

Initialize the list of lists
neural_network <- list()

Generate matrices W and vectors b for each layer
for (i in 1:(L - 1)) {
Set dimensions for W and b
layer_architecture[i] -> input_size
layer_architecture[i + 1] -> output_size

Create matrix W
generate_random_matrix(output_size, input_size) -> W

Create vector b

output_size |[>
rnorm() |>
matrix(output_size, 1) -> b

Add W and b to the list
list(W = W, b = b) -> neural _network[[i]]
}

return(neural _network)
}
}

Listing 9.2: R code for auxilliary functions

source("R/is_nn.R")

#' atitle hid

#l

#' adescription The function that returns the number of hidden layers of a
#' neural network. Denoted \eqn{\mathsf{H}}

#I

#' @param nu a neural network of the type generated by create_neural_network()

#I

#' By definition \egn{\mathsf{H}(\nu) = \mathsf{D}(\nu) - 1}

#I

#' areferences Definition 1.3.1. Jentzen, A., Kuckuck, B., and von
Wurstemberger, P. (2023).

Mathematical introduction to deep learning: Methods, implementations,
" and theory. \url{https://arxiv.org/abs/2310.20360}.

areturn Integer representing the number of hidden layers.
aexport

244

18
19
20
21
22
23
24
25
26
27

28
29
30
31
32
33
34

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

57
58
59
60
61
62
63
64
65
66
67

hid <- function(nu) {
if (nu |> is_nn() == TRUE) {
return(length(nu) - 1)
} else {
stop("Only_neural_networks_can_have_hidden_layers")

#' atitle dep

#' @description The function that returns the depth of a neural network.
Denoted

#' \eqgn{\mathsf{D}}.

#' @param nu a neural network of the type generated by

#' create_neural_network(). Very straightforwardly it is the

#' length of the list where neural networks are defined as an odered list of

#' lists.

#' @references Definition 1.3.1. Jentzen, A., Kuckuck, B., and von
Wurstemberger, P. (2023).

#' Mathematical introduction to deep learning: Methods, implementations,

#' and theory. \url{https://arxiv.org/abs/2310.20360}.

#

#' @return Integer representing the depth of the neural network.

#' @export

dep <- function(nu) {
if (nu |> is_nn() == TRUE) {

return(length(nu))
} else {
stop("Only_neural_networks_can_have_depth")
}
}
#' atitle inn
#' @description The function that returns the input layer size of a neural
#' network. Denoted \eqn{\mathsf{I}}
1
#' @param nu A neural network of the type generated by
#' create_neural_network().

#' areferences Definition 1.3.1. Jentzen, A., Kuckuck, B., and von
Wurstemberger, P. (2023).

Mathematical introduction to deep learning: Methods, implementations,
" and theory. \url{https://arxiv.org/abs/2310.20360}.

areturn An integer representing the input width of the neural network.
aexport

inn <- function(nu) {
if (nu |> is_nn() == TRUE) {
return(dim(nul[2]]$W)[2])
} else {
stop("Only_neural_networks_can_have_size_of_input_layers")

245

68
69
70
71
72
73
74
75
76

77
78

79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101

102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

#l
#I
#l
#l
#l

#I
#l

#I
#l
#l
#l
#I

atitle out
@description The function that returns the output layer size of a neural
network. Denoted \eqn{\mathsf{0}}.

@param nu A neural network of the type generated by create_neural_network()

areferences Definition 1.3.1. Jentzen, A., Kuckuck, B., and von
Wurstemberger, P. (2023).

Mathematical introduction to deep learning: Methods, implementations,
and theory. \url{https://arxiv.org/abs/2310.20360}.

areturn An integer representing the output width of the neural network.
@export

out <- function(nu) {

#l
#I
#l
#l
#I

if (nu |> is_nn() == TRUE) {
return(dim(nu[[length(nu)]]1$w)[1])

} else {
stop("Ony_neural_networks_can_have_size_of_output_layers")

atitle lay
@description The function that returns the layer architecture of a neural
network.

@param nu A neural network of the type generated by
create_neural_network(). Denoted \eqn{\mathsf{L}}.

areferences Definition 1.3.1. Jentzen, A., Kuckuck, B., and von
Wurstemberger, P. (2023).

Mathematical introduction to deep learning: Methods, implementations,
and theory. \url{https://arxiv.org/abs/2310.20360}.

areturn A tuple representing the layer architecture of our neural network.
@export

lay <- function(nu) {

if (nu |> is_nn() == TRUE) {
layer_architecture <- list()
for (i in 1:length(nu)) {
layer_architecture |> append(dim(nu[[i]]$w)[1]) -> layer_architecture
}

inn(nu) |> append(layer_architecture) -> layer_architecture
return(layer_architecture)

} else {
stop("Only_neural_networks_can_have_layer_architectures")

246

118
119
120
121
122
123
124
125
126
127
128
129

130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146

o v E W N R

10
11
12
13
14
15
16
17
18
19
20

#' atitle param
#' adescription The function that returns the numbe of parameters of a neural
#' network.

#' @param nu A neural network of the type generated by
#' create_neural_network(). Denoted \eqn{\mathsf{P}}.

#' areferences Definition 1.3.1. Jentzen, A., Kuckuck, B., and von
Wurstemberger, P. (2023).

#' Mathematical introduction to deep learning: Methods, implementations,

#' and theory. \url{https://arxiv.org/abs/2310.20360}.

#' @return An integer representing the parameter count of our neural network.
#' @export

param <- function(nu) {

if (nu |> is_nn() == TRUE) {
0 -> param_count
for (i in 1:length(nu)) {

param_count + length(nu[[i]]$w) + length(nu[[i]]$b) -> param_count

}
return(param_count)

} else {
stop("Only_neural_networks_can_have_parameters")

Listing 9.3: R code for activation functions ReLLU and Sigmoid

#' atitle: RelLU

#' @description: The RelLU activation function

#I

#' @param x A real number that is the input to our RelLU function.

#I

#' @return The output of the standard ReLU function, i.e. \egn{\max\{0,x\}}.
See also \code{\link{Sigmoid}}.

71#' and \code{\link{Tanh}}.

#' @export

ReLU <- function(x) {
if (x > is.numeric() &5 x |> length() == 1 &5 x |> is.finite()) {
return(x |> max(0))
} else {
stop("x_must_be_a_real_number")

}

#' qtitle: Sigmoid
#' @description The Sigmoid activation function.
#l

247

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

O N O R W N

10
11
12
13
14

15
16

17

#' @param x a real number that is the input to our Sigmoid function
1

#' @return The output of a standard Sigmoid function,

#' i,e. \egn{\frac{1}{1 + \exp(-x)}}.

#' See also \code{\link{Tanh}}.and \code{\link{ReLU}}.

#' @export

Sigmoid <- function(x) {
if (x |> is.numeric() &5 x |> length() == 1 &5 x |> is.finite()) {
return(1 / (1 + exp(-x)))
} else {
stop("x_must_be_a_real_number")

}

#' atitle Tanh

#' @description The tanh activation function

#I

#' @param x a real number

#l

#' areturn the \egn{tanh} of x. See also \code{\link{Sigmoid}} and
#' \code{\link{RelLU}}.

#' @export

Tanh <- function(x) {
if (x |> is.numeric() &5 x |> length() == 1 &5 x |> is.finite()) {
return(x |> tanh())
} else {
stop("x_must_be_a_real_number")
}
}

Listing 9.4: R code for intanitation

source("R/aux_fun.R")
source("R/is_nn.R")

atitle inst
@description The function that instantiates a neural network as created
by create_neural_network().

#
1
#'
#'
#
#' @param neural_network An ordered list of lists, of the type generated by
#' create_neural_network() where each element in the

#' list of lists is a pair \eqn{(wW,b)} representing the weights and biases of
#' that layer.

#

#

\emph{NOTE:} We will call istantiation what Grohs et. al. call "realization

#

#' areferences Grohs, P., Hornung, F., Jentzen, A. et al. Space-time error
estimates for deep

#' neural network approximations for differential equations. Adv Comput Math
49, 4 (2023).

248

18
19
20

21
22
23
24

25

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

52
53
54
55
56
57
58
59
60
61

W N R

ins
i

}

https://doi.org/10.1007/s10444-022-09970-2.

Definition 1.3.4. Jentzen, A., Kuckuck, B., and von Wurstemberger, P.
(2023).

Mathematical introduction to deep learning: Methods, implementations,
and theory. \url{https://arxiv.org/abs/2310.20360}

@param activation_function A continuous function applied to the output of
each layer

@param x our input to the continuous function formed from activation. Our
input will

be an element in \eqn{\mathbb{R}"d} for some appropriate \eqn{d}.

areturn The output of the function that is the instantiation of the given
neural network with the given activation function at the given \eqn{x}.

aexport

t <- function(neural network, activation_ function, x) {

f (neural _network |> is nn() == FALSE) {

stop("Only_neural_networks_can_be_instantiated")

else if (neural _network [> inn() !'= x |>

matrix() |>

nrow()) {

stop("x_does_not_match_input_size_required_by_neural_network")

else {

if (dep(neural_network) == 1) {

neural_network[[1]]$wW %*% x + neural_network[[1]]$b -> output
return(output)

}

X |> matrix() -> output

for (i in 1:(length(neural_network) - 1)) {
neural network[[i]]$W %*% output + neural network[[i]]$b -> linear_
transform
apply(linear_transform,
MARGIN = 1,
FUN = activation_function
) -> output

neural_network[[length(neural_network)]]$W %*% output +
neural_network[[length(neural_network)]]$b -> output
return(output)

Listing 9.5: R code for parallelizing two neural networks

source("R/aux_fun.R")
source("R/Tun.R")
source("R/is_nn.R")

249

O 0 N o U

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

36
37
38
39
40
41

42
43
44
45

46
47
48
49
50
51

52

#I
#I
#I
#I
#I
#l
#l

Function for creating a block diagonal given two matrices.

@param matrixl A matrix.
Qparam matrix2 A matrix

areturn A block diagonal matrix with matrixl on top left
and matrix2 on bottom right.

create_block_diagonal <- function(matrixl, matrix2) {

nrow(matrix1l) -> ml
nrow(matrix2) -> m2
ncol(matrixl) -> nil
ncol(matrix2) -> n2

Create a block diagonal matrix

0 |> matrix(ml + m2, nl + n2) -> block_diagonal_matrix

block_diagonal_matrix[1:ml, 1:n1] <- matrixil

block_diagonal matrix[(m1 + 1):(m1 + m2), (n1 + 1):(n1 + n2)] <-
matrix2

return(block_diagonal_matrix)

atitle stk
@description A function that stacks neural networks.

aparam nu neural network.
aparam mu neural network.

areturn A stacked neural network of \egn{\nu} and \egn{\mu}, i.e. \egn{\nu
\boxminus \mu}

\strong{NOTE:} This is different than the one given in Grohs, et. al. 2023.
While we use padding to equalize neural networks being parallelized our
padding is via the Tun network whereas Grohs et. al. uses repetitive
composition of the i network. We use repetitive composition of the \egn{\
mathsf{Id 1}}

network. See \code{\link{Id}} \code{\link{comp}}

\strong{NOTE:} The terminology is also different from Grohs et. al. 2023.
We call stacking what they call parallelization. This terminology change
was

inspired by the fact that parallelization implies commutativity but this
operation is not quite commutative. It is commutative up to transposition
of our input x under instantiation with a continuous activation function.

Also the work parallelization has a lot of baggage when it comes to
artificial neural networks in that it often means many different CPUs
working

together.

250

53
54

55
56
57
58
59
60
61
62

63

64
65
66
67
68
69
70
71
72
73
74
75

76
77
78
79
80
81
82
83
84
85
86
87
88
89
20
91
92
93
94
95
9%
97
98
99
100
101

#' \emph{Remark:} We will use only one symbol for stacking equal and unequal
depth

#' neural networks, namely "stk". This is for usability but also that

#' for all practical purposes only the general stacking of neural networks

#' of different sizes is what is needed.

#I

#' \emph{Remark:} We have two versions, a prefix and an infix version.

#I

#' This operation on neural networks, called "parallelization" is found in:

#' areferences Grohs, P., Hornung, F., Jentzen, A. et al. Space-time error
estimates for deep

#' neural network approximations for differential equations. Adv Comput Math
49, 4 (2023).

#' https://doi.org/10.1007/s10444-022-09970-2

#' @export

stk <- function(nu, mu) {
if (nu |> is_ nn() & mu [> is nn()) {
if (dep(nu) == dep(mu)) {

list() -> parallelized_network

for (i in 1:length(nu)) {
create_block_diagonal(nu[[i]I$w, mu[[i]I$w) -> parallelized W
rbind(nu[[1]1$b, mu[[1]]1$b) -> parallelized b
list(w = parallelized W, b = parallelized_b) -> parallelized_network[[

il]
}

return(parallelized_network)

}

if (dep(nu) > dep(mu)) {
(dep(nu) - dep(mu) + 1) [> Tun(d = out(mu)) -> padding
padding |> comp(mu) -> padded_network
nu |> stk(padded_network) -> parallelized_network
return(parallelized_network)

if (dep(nu) < dep(mu)) {
(dep(mu) - dep(nu) + 1) [> Tun(d = out(nu)) -> padding
padding |> comp(nu) -> padded_network
padded_network |> stk(mu) -> parallelized_network
return(parallelized_network)

} else {
stop("Please_try_stacking_neural_networks")
}
#' The stk function.
1
#' @param nu neural network.
#' @param mu neural network.

251

102
103
104

106
107
108
109
110
111
112
113
114

115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
13

N

13

w

134
135

O ©® N O U B~ W N R

10

11
12
13

#I
#l
#I

areturn A stacked neural network of nu and mu.
@export

“%stk%~ <- function(nu, mu) {

if (nu |> is_ nn() 65 mu |> is_nn()) {
if (dep(nu) == dep(mu)) {

list() -> parallelized network

for (i in 1:length(nu)) {
create_block_diagonal(nu[[i]I$w, mu[[i]I$w) -> parallelized W
rbind(nu[[1]1$b, mu[[1]]1$b) -> parallelized b
list(wW = parallelized W, b = parallelized_b) -> parallelized network][[

il]
}

return(parallelized_network)

}

if (dep(nu) > dep(mu)) {
(dep(nu) - dep(mu) + 1) [> Tun(d = out(mu)) -> padding
padding [|> comp(mu) -> padded_network
nu |> stk(padded_network) -> parallelized network
return(parallelized_network)

}

if (dep(nu) < dep(mu)) {
(dep(mu) - dep(nu) + 1) [> Tun(d = out(nu)) -> padding
padding |> comp(nu) -> padded_network
padded _network |> stk(mu) -> parallelized_network
return(parallelized_network)

t
} else {
stop("Please_try_stacking_neural_networks")
}
Listing 9.6: R code for affine neural networks
#' atitle Aff
#' @description The function that returns \eqn{\mathsf{Aff}} neural networks.
1
#' aparam W An \egn{m \times n} matrix representing the weight of the affine
#' neural network
#' @param b An \egn{m \times 1} vector representing the bias of the affine
#' neural network
#. 1
#' areferences Grohs, P., Hornung, F., Jentzen, A. et al. Space-time error
estimates for deep
#' neural network approximations for differential equations. Adv Comput Math
49, 4 (2023).
#' https://doi.org/10.1007/s10444-022-09970-2
1
#' Definition 2.3.1. Jentzen, A., Kuckuck, B., and von Wurstemberger, P.

(2023).

252

14
15
16
17

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

34
35
36
37
38
39

40

41
42

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

Mathematical introduction to deep learning: Methods, implementations,
and theory. \url{https://arxiv.org/abs/2310.20360}

@return Returns the network \eqn{((W,b))} representing an affine neural
network. Also

denoted as \eqgn{\mathsf{Aff}_{w,b}}

See also \code{\link{Cpy}} and \code{\link{Sum}}.

Qexport

Aff <- function(W, b) {

}

#I
#l
#I
#I
#I

#I
#I
#I
#I
#I
#l

1

#I
#I

#I
#I
#l
#l
#I

if (W |> is.matrix() == FALSE) (W |> matrix() -> W)
if (b |> is.matrix() == FALSE) (b [> matrix() -> b)
list(list(W = W, b = b)) -> return_network
return(return_network)

atitle Cpy

adescription The function that returns \eqn{\mathsf{Cpy}} neural networks.
These are neural networks defined as such

\deqn{

\mathsf{Aff}_{\left[\mathbb{I} k \: \mathbb{I}_k \: \cdots \: \mathbb{I} k
\right]"T,0_{k}}

}

@param n number of copies to make.
aparam k the size of the input vector.

@Qreturn Returns an affine network that makes a concatenated vector that is
\egn{n}

copies of the input vector of size \eqn{k}. See \code{\link{Aff}} and \code
{\link{Sum}}.

areferences Definition 2.4.6. Jentzen, A., Kuckuck, B., and von
Wurstemberger, P. (2023).

Mathematical introduction to deep learning: Methods, implementations,
and theory. \url{https://arxiv.org/abs/2310.20360}

Qexport

Cpy <- function(n, k) {

if (n%%1 '=0 ||

n<1 ||

k %% 1 '=0 ||

k < 1) {

stop("n_and_k_must_be_natural_numbers")
} else {

k |> diag() -> W
for (1 in 2:n) {
W |> rbind(k |> diag()) -> W
}
@ |> matrix(n * k) -> b
list(list(W = W, b = b)) -> return_network

253

62
63
64
65
66
67
68
69
70
71

72
73
74
75
76
77
78
79
80
81

82
83
84
85
86
87
88
89
90
91
92
93
94
95
9%
97
98
99

100

101

102

104
105
106

}

4
4
#
#'
4
#'

#l
#I
#I
#I
#l
#l
#I
#l
#I
#I

4
4
4
4
4
4

return(return_network)

}

atitle Sum
ddescription The function that returns \eqn{\mathsf{Sum}} neural networks.

These are neural networks defined as such

\deqgn{

\mathsf{Aff}_ {\left[\mathbb{I} k \: \mathbb{I} k \: \cdots \: \mathbb{I} k
\right],0_{k}}

t

@param n number of copies of a certain vector to be summed.
aparam k the size of the summation vector.

areturn An affine neural network that will take a vector of size
\egn{n \times k} and return the summation vector that is of length
\egn{k}. See also \code{\link{Aff}} and \code{\link{Cpy}}.

areferences Definition 2.4.1. Jentzen, A., Kuckuck, B., and von
Wurstemberger, P. (2023).

Mathematical introduction to deep learning: Methods, implementations,
and theory. \url{https://arxiv.org/abs/2310.20360}

Qexport

Sum <- function(n, k) {

if (n%%1!'=0 ||

n<1 ||

k %% 1 '=0 ||

k < 1) {

stop("n_and_k_must_be_natural_numbers")
} else {

k |> diag() -> W
for (i in 2:n) {
W |> cbind(k |> diag()) -> W

0 |> matrix(k) -> b
list(list(W = W, b = b)) -> return_network

return(return_network)

Listing 9.7: R code for composition of two neural networks

1’source("R/aux_fun.R")
2| source("R/is_nn.R")

3
4

254

O ® N o u

10
11
12
13
14
15

16
17
18
19
20

21

22
23

24
25
26
27
28
29
30
31
32
33
34
35

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

#I
#I
#l
#I
#I
#l
#I
#I
#I
#l
#I

#I
#I
#I
#I
#l

#l
#l

#I
#I
#l
#I
#I
#I
#I
#I
#I

#l
#I
#I
#I
#I
#I
#l
#I
#I

atitle comp

@description The function that takes the composition of two neural
networks assuming they are compatible, i.e., given

\egn{\nu_1, \nu_2 \in \mathsf{NN}}, it must be the case that
\egn{\mathsf{I}(\nu)_1 = \mathsf{0}(\nu_2)}.

aparam phi_1 first neural network to be composed, goes on the left
@param phi_2 second neural network to be composed, goes on right

areturn The composed neural network. See also \code{\link{dep}}.
Composition of neural networks is the operation defined for \egn{\nu_1 \in
\mathsf{NN}}

and \egn{\nu_2 \in \mathsf{NN}} as:

\deqn{

\nu_1 \bullet \nu_2 = \begin{cases} ((wW'_1,b'_1),

(W 2 b' 2), ...,(W'_{M—l}, b' {mM-1}), (w_1w'_ M, W_1b'_{M} + b 1), (w_
2,) W o

(w_ L)) 5 :CL>1) \land (M > 1) \\((w_1w'_1,w_1b'_1+b_1),(W_2,b_2)
(w_3,b_3),.
(w Lb L)) & (L>1) \land (M=1) \\((W'_1, b'_1),(W'_2,b'_2), ...,

(w'_{M-1}, b' {M-1})(W.1, b' M + b_1)) 5t (L=1) \land (M>1) \\ ((w_iw'_1, w_
1b' 1+b 1)) &:(L=1)
\land (M=1)\end{cases}

areferences Grohs, P., Hornung, F., Jentzen, A. et al.

Space-time error estimates for deep neural network approximations
for differential equations. Adv Comput Math 49, 4 (2023).
\url{https://doi.org/10.1007/s10444-022-09970-2}.

areferences Definition 2.1.1. Jentzen, A., Kuckuck, B., and von
Wurstemberger, P. (2023).

Mathematical introduction to deep learning: Methods, implementations,
and theory. \url{https://arxiv.org/abs/2310.20360}

\emph{Remark:} We have two versions of this function, an
infix version for close resemblance to mathematical notation and
prefix version.

@encoding utf8
Qexport

comp <- function(phi_1, phi_2) {

if (phi_1 [|> is_nn() && phi_2 [|> is_nn()) {

dep(phi_1) -> L
dep(phi_ 2) -> L_

255

53

54

56
57
58
59
60
61
62
63

64

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
20
91
92
93
94
95
%
97
98
99
100
101
102
103
104
105

}
}

if(L>16&81L >1) {
phi 2[-L_] -> beginning
phi_1[-1] -> end
phi 1[[111$W %*% phi 2[[L_11$W -> mid_W
phi_1[[1]11%w %% phi_2[[L_]11$b + phi_1[[1]]1$b -> mid_b
list(W = mid_ W, b = mid_b) -> mid
c(
beginning,
list(mid),
end
) -> composed_network
return(composed_network)
} else if (L>1 8L ==1) {
phi 1[[1]11$W %+% phi 2[[1]11$W -> beginning W
phi 1[[1]11$W %*% phi_2[[1]11$b + phi_1[[1]11$b -> beginning b

list(
W = beginning W,
b = beginning b

) -> beginning
phi_1[-1] -> end
c(
list(beginning),
end
) -> composed_network
return(composed_network)
} elseif (L==181L_>1) {
phi 2[-L_] -> beginning
phi 1[[1]11$wW %+% phi 2[[L_]11$W -> end W
phi_1[[1]11%w %*% phi_2[[L_]11$b + phi_1[[1]]1$b -> end_b
list(
W = end W,
b end_b
) -> end
c(
beginning,
list(end)
) -> composed_network
return(composed_network)
} else if (L ==18§ L_ == 1) {
list() -> composed network
phi 1[[1]11$W %*% phi 2[[1]1]1$W -> W
phi_1[[1]11$w %% phi_2[[1]1]1$b + phi_1[[1]11$b -> b

list(
W= W,
b=>b

) -> composed_network[[1]]
return(composed_network)
} else {
stop("Dimensionality_mismatch")
}
else {
stop("Only_neural_networks_can_be_composed.")

256

106 }

107
ws|#' The “infix version of comp function

100| #'

10| #' @param phi_1 first neural network to be composed, goes on the left
u1|#' @param phi_2 second neural network to be composed, goes on right
12| #'

13| #' @rdname comp

14| #' @export

115
116
117| “%comp%” <- function(phi_1, phi_2) {

18| if (phi_1 |> is_nn() &5 phi_2 |> is_nn()) {
119 dep(phi_l) -> L

120 dep(phi_2) -> L_

121

122 if(L>168L >1) {

123 phi_2[-L_] -> beginning

124 phi_l[-l] -> end

125 phi_l[[l]]$W %*% phi_2[[L_]]$W -> mid W

126 phi_1[[111$W %% phi_2[[L_]1$b + phi_1[[1]1]$b -> mid_b
127 list(W = mid_ W, b = mid_b) -> mid

128 C(

129 beginning,

130 list(mid),

131 end

132) -> composed_network

133 return(composed_network)

134 } else if (L>1 6L ==1) {

135 phi 1[[111$W %*% phi_2[[1]11$W -> beginning W
136 phi 1[[1]11$W %*% phi_2[[1]11$b + phi_1[[1]1$b -> beginning b
137 list(

138 W = beginning W,

139 b = beginning_b

140) -> beginning

141 phi_l[-l] -> end

142 C(

143 list(beginning),

144 end

145) -> composed_network

146 return(composed_network)

147 } else if (L==18&8L_ > 1) {

148 phi_2[-L_] -> beginning

149 phi 1[[1]11$W %*% phi 2[[L_11$W -> end W

150 phi 1[[1]1$wW %% phi_2[[L_11$b + phi_1[[1]]$b -> end_b
151 list(

152 W = end W,

153 b = end_b

154) -> end

155 C(

156 beginning,

157 list(end)

158) -> composed_network

257

159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175

O N o U B W N

10
11
12
13
14

15
16
17

18

19

20
21
22

23
24
25
26
27
28
29

return(composed_network)
} else if (L==16L_==1) {
list() -> composed_network
phi_1[[1]1$W %*% phi_2[[1]11$W -> W
phi 1[[1]11$W %% phi_2[[1]11$b + phi_1[[1]1]$b -> b

list(
W= w,
b=>b

) -> composed_network[[1]]
return(composed_network)

} else {
stop("Dimensionality_mismatch")

}

} else {

stop("Only_neural_networks_can_be_composed.")

Listing 9.8: R code for scalar multiplication

source("R/comp.R")
source("R/aux_fun.R")
source("R/is_nn.R")

4
4
4
4
#
4
4
4
#
4

#l
#I
#l
#I
#l
#I

atitle slm

@description The function that returns the left scalar multiplication
neural network

aparam a A real number.
@param nu A neural network of the kind created by create_neural_network.

@return Returns a neural network that is \eqgn{a \triangleright \nu}. This
instantiates as \egn{a \cdot f(x)} under continuous function activation.
More specifically

we define operation as:

Let \egn{\lambda \in \mathbb{R}}. We will denote by \egn{(\cdot) \
triangleright (\cdot):

\mathbb{R} \times \mathsf{NN} \rightarrow \mathsf{NN}} the function
satisfying for all

\egn{\nu \in \mathsf{NN}} and \egn{\lambda \in \mathbb{R}} that \egn{\
lambda \triangleright \nu =

\mathsf{Aff}_{\lambda \mathbb{I} {\mathsf{I}(\nu)},0} \bullet \nu}.

areferences Definition 2.3.4. Jentzen, A., Kuckuck, B., and von
Wurstemberger, P. (2023).

Mathematical introduction to deep learning: Methods, implementations,
and theory. \url{https://arxiv.org/abs/2310.20360}.

\emph{Note:} We will have two versions of this operation, a prefix and an

infix version.
aexport

258

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

53
54
55
56

57
58
59

60

61

62
63
64

65
66
67
68
69
70
71
72
73
7

~

75
76

slm <- function(a, nu) {

#l
#I
#I
#I
#I
#I

if (a |> is.numeric() &&
length(a) == 1 &&
a |> is.finite() &&
nu |> is_nn()) {
nu |> out() -> constant matrix_size
list() -> multiplier_network
a |> diag(constant_matrix_size) -> W
® |> matrix(constant matrix size) -> b
list(W = W, b = b) -> multiplier network[[1]]
multiplier_network |> comp(nu) -> return_network
return(return_network)
} else {
stop("a_must_be_a_real_number_and_nu_must_be_a_neural_network")

Qtitle srm
adescription The function that returns the right scalar multiplication
neural network

@param nu A neural network of the type generated by create_neural_network()
aparam a A real number.

areturn Returns a neural network that is \eqgn{\nu \triangleleft a}. This
instantiates as \eqn{f(a \cdot x)}.under continuous function activation.
More

specifically we will define this operation as:

Let \egn{\lambda \in \mathbb{R}}. We will denote by \egn{(\cdot) \
triangleleft (\cdot):

\mathsf{NN} \times \mathbb{R} \rightarrow \mathsf{NN}} the function
satisfying for all

\egn{\nu \in \mathsf{NN}} and \egn{\lambda \in \mathbb{R}} that \egn{\nu \
triangleleft \lambda =

\nu \bullet \mathsf{Aff}_{\lambda \mathbb{I} {\mathsf{I}(\nu)},0}}.

areferences Definition 2.3.4. Jentzen, A., Kuckuck, B., and von
Wurstemberger, P. (2023).

Mathematical introduction to deep learning: Methods, implementations,
and theory. \url{https://arxiv.org/abs/2310.20360}.

\emph{Note:} We will have two versions of this operation, a prefix
and an infix version.
aexport

srm <- function(nu, a) {

if (a |> is.numeric() &&
length(a) == 1 &6&
a |> is.finite() &&
nu |> is nn()) {

259

77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

93
94
95
96
97
98
99

100

101

102

103

104

105

106

107

108

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128

nu |> inn() -> constant _matrix_size
list() -> multiplier_network
a |> diag(constant_matrix_size) -> W
® |> matrix(constant matrix size) -> b
list(W = W, b = b) -> multiplier_network[[1]]
nu |> comp(multiplier_network) -> return_network
return(return_network)
} else {
stop("a_must_be_a_real_number_and_nu_must_be_a_neural_network")

1
#' @param a A real number.
#' @param nu A neural network of the type generated by create_neural_network()

1
#' @rdname slm
#' @export

“%s1m%~ <- function(a, nu) {
if (a |> is.numeric() &&
length(a) == 1 &&
a |> is.finite() §&
nu |> is nn()) {
nu |> out() -> constant _matrix_size
list() -> multiplier_network
a |> diag(constant_matrix_size) -> W
0 |> matrix(constant_matrix_size) -> b
list(W = W, b = b) -> multiplier_network[[1]]
multiplier_network |> comp(nu) -> return_network
return(return_network)
} else {
stop("a_must_be_a_real_number_and_nu_must_be_a_neural_network")
}

}

#' @param nu A neural network
#' @param a A real number.

1
#' ardname srm
#' @export

“%srm%” <- function(nu, a) {
if (a |> is.numeric() &&

length(a) == 1 &6&
a |> is.finite() §&&
nu |> is nn()) {
nu |> inn() -> constant matrix_size
list() -> multiplier_network
a |> diag(constant_matrix_size) -> W
@ |> matrix(constant matrix size) -> b

260

129
130
131
13

N

133
134
135

O © N O U W N R

10
11
12
13

14
15
16
17
18
19
20
21
22
23
24

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

list(W = W, b = b) -> multiplier_network[[1]]
nu |> comp(multiplier_network) -> return_network
return(return_network)
} else {
stop("a_must_be_a_real_number_and_nu_must_be_a_neural_network")
}
}

Listing 9.9: R code for sum of two neural networks

source("R/comp.R")
source("R/stacking.R")
source("R/aux_fun.R")
source("R/Aff.R")
source("R/is_nn.R")

#' @title nn_sum

#' adescription A function that performs the neural network sum for two

#' neural networks of the type generated by

#' create_neural _network(). Neural network sums are defined for

#' \egn{\nu_1 \in \mathsf{NN}} and \egn{\nu_2 \in \mathsf{NN}} as:

#' \deqn{

#' \oplus™v_{i=u}\nu_i \coloneqq \left(\mathsf{Sum}_{v-u+1,\mathsf{0}(\nu_2)}
\bullet \left[\boxminus®v_{i=u}\nu_i \right] \bullet \mathsf{Cpy}_{(v-u
+1),\mathsf{I}(\nu_1)} \right)

}

#

#

#' areferences Grohs, P., Hornung, F., Jentzen, A. et al.

#' Space-time error estimates for deep neural network approximations
#' for differential equations. Adv Comput Math 49, 4 (2023).

#' \url{https://doi.org/10.1007/s10444-022-09970-2}.
#
#
#
#
#

aparam nu_1 A neural network.
@param nu_2 A neural network.

areturn A neural network that is the neural network sum of \egn{\nu_1} and
\egn{\nu_2}
"i.e. \egn{\nu_1 \oplus \nu_2}.

" \emph{Note:} We have two versions, an infix version and a prefix version.
' @export

nn_sum <- function(nu_1, nu 2) {
if (nu_1 |> is_nn() &§

nu 2 |> is nn() &§&
inn(nu_1) == inn(nu_ 2) &&
out(nu_ 1) == out(nu_ 2)) {
Cpy(2, inn(nu_1)) -> first_third
nu_1 |> stk(nu 2) -> mid_third
sum(2, out(nu_ 1)) -> last third

last_third |>

comp(mid_third) |>
comp(first_third) -> return_network

261

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

O ® N O U A W N R

e e e
a2 W N Rk S

return(return_network)
} else {
stop("Only_neural_networks_with_same_end-widths_may_be_summed")

}

#' Function for calculating neural network sums
#I

#' @param nu_1 A neural network.

#' @param nu_2 A neural network.

#l

#' @rdname nn_sum

#' @export

#I

“%nn_sum%” <- function(nu_ 1, nu 2) {
if (nu_1 |> is_nn() &&

nu_2 |> is_nn() &§&
inn(nu_1) == inn(nu_ 2) &&
out(nu_1) == out(nu 2)) {
Cpy(2, inn(nu_1)) -> first_third
nu 1 |> stk(nu 2) -> mid _third
Ssum(2, out(nu_ 1)) -> last third

last_third |>
comp(mid_third) |[>
comp(first_third) -> return_network
return(return_network)
} else {
stop("Only_neural_networks_of_same_end_widths_may_be_summed")

}
Listing 9.10: R code for i

#' atitle: 1
#' @description The function that returns the \egn{\mathbb{i}} network.
#l
#' @param d the size of the \eqn{\mathsf{i}} network
#l
#' @return returns the i_d network
i <- function(d) {

list() -> return_network

d |> diag() > w

@ |> matrix(d, 1) -> b

list(W = W, b = b) -> return_network[[1]]

list(W = W, b = b) -> return_network[[2]]

return(return_network)
}

Listing 9.11: R code for Id neural networks

1| #' @title: Id

2| #' @description The function that returns the \egn{\mathsf{Id_1}} networks.

262

O O N o U W

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

o U s W N R

10

11
12
13
14
15
16
17
18
19

#' aparam d the dimension of the \eqn{Id} network, by default it is \eqn{1}.

4
#' @Qreturn Returns the \egn{\mathsf{Id_1}} network.
#' @export
Id <- function(d = 1) {
if (d%%1!=0 ||
d<1
) {
stop("d_must_be_natural_numbers")
} else if (d == 1) {
W1 <-c(1, -1) |> matrix()
b 1<- c(0, 0) |> matrix()
layer 1 <- list(W =W 1, b = b 1)
W2 <-c(1, -1) |> matrix(1, 2)
b 2<-0 |>matrix()
layer 2 <- list(W =W 2, b = b_2)
result <- list(layer_1, layer 2)
return(result)
} else if (d > 1) {
Id() -> return_network
for (j in 2:d) {
return_network |> stk(Id()) -> return_network
}
return(return_network)
} else {
stop("Unknown_error")
}
}
Listing 9.12: R code for Tun
source("R/comp.R")
source("R/Id.R")
#' Tun: The function that returns tunneling neural networks
#'
#' @param n The depth of the tunnel network where \egn{n \in \mathbb{N} \cap
[1,\infty)}.
#' @param d The dimension of the tunneling network. By default it is assumed
to be \egn{1}.
4
#' areturn A tunnel neural network of depth n. A tunneling neural
#' network is defined as the neural network \egn{\mathsf{Aff}_{1,0}} for \eqgn{
n=1}r
#' the neural network \egqn{\mathsf{Id}_1} for \egn{n=1} and the neural network
#' \egn{\bullet™{n-2}\mathsf{Id}_1} for \egn{n >2}. For this to work we
#' must provide an appropriate \eqni{n} and instantiate with RelLU at some
#' real number \eqgn{x}.
#' @export
4

Tun <- function(n, d = 1) {

i

f(n%%1'!=0 ||
n<1 ||

263

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

O N O U W N R

10
11
12
13
14
15

d%% 1 !'=0 ||

d <1
) {
stop("n_and_d_must_be_natural_numbers")
}
if (d == 1) {
if (n == 1) {

return(Aff(1, 0))
} else if (n == 2) {
return(Id())
} else if (n > 2) {
Id() -> return_network
for (1 in 3:n) {
return_network |> comp(Id()) -> return_network

}

return(return_network)
}
} else if (d > 1) {
if (n == 1) {
return(Aff(diag(d), @ |> matrix()))
} else if (n == 1) {
return(Id(d))
} else if (n == 2) {
return(Id(d))
} else if (n > 2) {
Id(d) -> return_network
for (1 in 3:n) {
return_network |> comp(Id(d)) -> return_network
}

return(return_network)

}
} else {
stop("Unknown_error")
}

}

Listing 9.13: R code for @

source("R/comp.R")
source("R/Aff.R")
source("R/i.R")
source("R/aux_fun.R")
source("R/activations.R")

#' The c_k function

#l

#' @param k an integer in \egn{[1,\infty)}

#I

#' Qreturn the real number \eqn{2”{1-2k}}

#' @references Grohs, P., Hornung, F., Jentzen, A. et al.

#' Space-time error estimates for deep neural network approximations
#' for differential equations. Adv Comput Math 49, 4 (2023).

#' https://doi.org/10.1007/s10444-022-09970-2

264

16
17

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

#

#' areferences Definition 2.3.4. Jentzen, A., Kuckuck, B., and von
Wurstemberger, P. (2023).

#' Mathematical introduction to deep learning: Methods, implementations,

#' and theory. \url{https://arxiv.org/abs/2310.20360}.

c_k <- function(k) {
27
1 -2 %k
} -> result
return(result)

}

#' This is an intermediate variable, see reference.
c(o, -1/ 2, -1, 0) |> matrix() -> B

#' C_k: The function that returns the C_k matrix

#l

#' @param k Natural number, the precision with which to approximate squares
#' within \eqgn{[0,1]}

#l
#' areturn A neural network that approximates the square of any real within
#' \eqn{[o,1]}

C_k <- function(k) {
c(-c_k(k), 2 * c_k(k), -c_k(k), 1) |> matrix(1, 4) -> result
return(result)

}

#' A_k: The function that returns the matrix A_k
#I
#' @param k Natural number, the precision with which to approximate squares
#' within \eqgn{[0,1]1}
#I
#' @return A neural network that approximates the square of any real within
#' \eqn{[0,1]}
#I
A k <- function(k) {
c(2, 2, 2, -c_ k(k)) |>

c(-4, -4, -4, 2 » c_k(k)) |>

c(2, 2, 2, -c_k(k)) I>

c(o, 0, 0, 1) |>

matrix(4, 4) -> result

return(result)
}
#' This is an intermediate variable. See the reference
1

c(1, 1, 1, 1) |> matrix(4, 1) -> A

265

68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
9%
97
98
99

100

101

102

103

10

=

105
106
107

#' The Phi_k function
#'
#' @param k an integer \eqn{k \in (2,\infty)}
4
#' @return The Phi_k neural network
#' @references Grohs, P., Hornung, F., Jentzen, A. et al.
#' Space-time error estimates for deep neural network approximations
#' for differential equations. Adv Comput Math 49, 4 (2023).
#' https://doi.org/10.1007/s10444-022-09970-2
4
Phi_k <- function(k) {
if (k |> is.numeric() &&
k |> length() == 1 §&
k >= 1 &&
k |> is.finite() &&
k %% 1 == 0) {
if (k ==1) {
C k(1) |»>
Aff(o) |>
comp(i(4)) |>
comp(Aff(A, B)) -> return_network
return(return_network)

}
if (k >= 2) {
C k(k) |>
Aff(0) |>
comp(i(4)) -> return_network
for (7 in (k - 1):1) {
A k(3) I|>
Aff(B) |>
comp(i(4)) -> intermediate network
return_network |> comp(intermediate_network) -> return_network
}
return_network |> comp(A |> Aff(B)) -> return_network
return(return_network)
}
} else {
stop("k_must_a_natural_number")

266

O N O U W N R

10
11
12
13
14
15
16
17
18
19
20
21

Listing 9.14: R code for simulations involving @

source("Phi_k.R")
source("aux_fun")
source("realization.R")
source("activations.R")

library(ggplot2)

#' The Phi_k_diff function
#l
#' @param x the number to be squared in [0,1]
#' @param k a parameter for Phi_k in [0, \infty)]
#I
#' Qreturn the 1-norm error between x"2 and Phi_k approximation
Phi_k_diff <- function(x, k) {
return <- (k |> Phi k() |> rlz(ReLU, x) - x"2) |>

abs() -> result
return(result)

}

k_values <- c(1, 2, 5, 10, 15, 20)

267

N

N o u o~ W

x_values <- seq(-2, 2, length.out = 200)
Phi k diff v <- Vectorize(Phi k diff)

Phi_k_diff_data <- expand.grid(k = k_values, x = x_values)
Phi_k_diff_data$diff <- Phi_k_diff_v(Phi_k_diff_data$x, Phi_k_diff_data$k)

library(ggplot2)

ggplot(Phi_k_diff_data, aes(x = x, y = diff, color = factor(k))) +
scale_y_logio() +
geom_line() +
geom_line(aes(y = 2"(-2 = k - 2))) +

labs(
X = IIXII’
y = "logl0_of_the_1-norm_error_over_domain_[0,1]"

) -> Phi_k_diff_plot
ggsave("Phi_k_properties/diff.png", plot = Phi_k_diff_plot, width = 6, height
= 5, units = "in"

vectorized Phi k <- Vectorize(Phi k)
vectorized_param <- Vectorize(param)

param_data <- data.frame(x = 1:100, y = vectorized param(vectorized Phi_k
(1:100)))

ggplot(param_data, aes(x = x, y = y)) +
geom_line() +
theme minimal() +
xlab("Size_of_k") +
ylab("Number_of_parameters") +
ggtitle("Plot_of_the_number_of_parameters_of_¢(k)_against_k") +
geom_smooth(method = "lm", se = FALSE, color = "blue")

vectorized dep <- Vectorize(dep)
dep_data <- data.frame(x = 1:100, y = vectorized dep(vectorized Phi_k(1:100)))

ggplot(dep_data, aes(x = x, y = y)) +
geom_line() +
theme minimal() +
xlab("Size_of_k") +
ylab("Depth_of_network") +
ggtitle("Plot_of_the_depth_of_¢(k)_against_k") +
geom_smooth(method = "lm", se = FALSE, color = "blue")

Listing 9.15: R code for ¢

source("R/Phi_k.R")
source("R/i.R")
source("R/Aff.R")

#' The Phi function
1

268

O

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

0 N O R W N R

#' @param eps parameter for Phi

#' @references Grohs, P., Hornung, F., Jentzen, A. et al.

#' Space-time error estimates for deep neural network approximations

#' for differential equations. Adv Comput Math 49, 4 (2023).

#' https://doi.org/10.1007/s10444-022-09970-2

#

#' @return neural network Phi that approximately squares a number between
#' 0 and 1.

Phi <- function(eps) {
if (eps |> is.numeric() &&
eps |> length() == 1 &&
eps |> is.finite() &&
eps > 0) {
(0.5 * 1og2(1 / eps) - 1) |> ceiling() -> M

if (M<=0)1->M

if (M == 1) {
Cc k(1) I>
Aff(0) |>
comp(i(4)) I>
comp(Aff(A, B)) -> return_network
return(return_network)

}

if (M >=2) {
C_k(m) [>
Aff(0) |>
comp(i(4)) -> return_network
for (j in (M - 1):1) {
A_k(3) I>
Aff(B) |>
comp(i(4)) -> intermediate_network
return_network |> comp(intermediate_network) -> return_network
}
return_network |> comp(A |> Aff(B)) -> return_network
return(return_network)
}
} else {
stop("eps_must_be_a_positive_real_number")

Listing 9.16: R code for simulations involving ®

source("Phi.R")
source("aux_fun.R")
source("realization.R")
source("activations.R")

#' The Phi diff function
1
#' @param eps parameter for Phi

269

©

11
12
13

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

35
36
37
38
39

40
41
42
43
44
45
46
47
48
49
50
51
52

53

55
56
57

#' @param x number to be squared

1
#' @Qreturn the 1-norm error between the result
#' and x"2

diff <- function(eps, x) {
(x*2 - eps |> Phi() |> rlz(ReLU, x)) [|>
abs() -> result
return(result)

}

eps_values <- c(1, 0.5, 0.1, 0.01, 0.001, 0.0001)
x_values <- seq(®@, 1, length.out = 100)
vectorized diff <- Vectorize(diff)

diff_data <- expand.grid(eps = eps_values, x = x_values)
diff_data$Phi_diff <- vectorized diff(diff_data$eps, diff_data$x)
library(ggplot2)
ggplot(diff_data, aes(x = x, y = eps, z = Phi_diff)) +
geom_contour_filled()

ggtitle("Contour_plot_of_the_1-norm_difference_for_values_of_x_and_eps") +
theme_minimal() -> Phi_diff_contour_plot

ar | (I

ggsave("Phi_properties/Phi_diff_contour.png", plot = Phi_diff_contour_plot,
width = 6, height = 5, units = "in"

vectorized Phi _k <- Vectorize(Phi_k)
vectorized param <- Vectorize(param)

param_data <- data.frame(x = 1:100, y = vectorized_ param(vectorized Phi_k
(1:100)))

ggplot(param_data, aes(x, y)) +
geom_line() +
theme_minimal()

vectorized dep <- Vectorize(dep)
dep_data <- data.frame(x = 1:100, y = vectorized dep(vectorized Phi_k(1:100)))

ggplot(dep_data, aes(x = x, y = y)) +
geom_line() +
theme minimal() +
xlab("Size_of_k") +
ylab("Depth_of_network") +
ggtitle("Plot_of_the_depth_of_¢(k)_against_k") +
geom_smooth(method = "lm", se = FALSE, color = "blue")

270

0 N o U W N R

10
11
12
13
14
15
16
17

18

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

Listing 9.17: R code for Sqr

source("R/comp.R")
source("R/Aff.R")
source("R/nn_sum.R")
source("R/Phi.R")
source("R/aux_fun.R")

#I
#l

#I
#I
#I
#l
#I
#I
#l
#l
#I
#I
#I
#I
#I
#I

atitle Sqr
ddescription A function that returns the \eqn{\mathsf{Sqr}} neural networks

dparam q parameter for the Sqr network. \eqn{2 \in (2,\infty)}
dparam eps parameter for the Sqr network. \egn{eps \in (0,1]}. You may
choose epsilon to be greater than 1 but that leads to large errors

areturn A neural network that approximates the square of a real number.when
provided appropriate \eqn{q,\varepsilon} and upon instantiation with RelU,
and a real number \eqn{x}

areferences Grohs, P., Hornung, F., Jentzen, A. et al. Space-time error
estimates for deep

neural network approximations for differential equations. Adv Comput Math
49, 4 (2023).

https://doi.org/10.1007/s10444-022-09970-2

Qexport

Sqr <- function(q, eps) {

if (g <=2 || eps <= 0) {
stop("q_must_be_>_2_and_eps_must_be_>_0")

} else {
27°(-2 / (q - 2)) * eps”™(q / (g - 2)) -> delta
(eps / 2)"(1 / (g - 2)) -> alpha

(0.5 * 1og2(1 / eps) - 1) |> ceiling() -> M
if (M<=10) 1 elseM->M

(Aff(alpha”™(-2), 0) |> comp(Phi(delta))) |>
comp(Aff(alpha, 0)) -> first_summand

(Aff(alpha”™(-2), 0) |> comp(Phi(delta))) I|>
comp(Aff(-alpha, 0)) -> second_summand

first summand |>
nn_sum(second summand) -> return_network

return(return_network)

271

O O N o U W N R

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

48
49
50
51

Listing 9.18: R code simulations involving Sqr

source("aux_fun.R")
source("Sqr.R")
source("instantiation.R")
source("activations.R")
library("tidyverse")

#' Sqr_diff function

#I

#' @param q parameter for the Sqr network

#' @param eps parameter for the Sqr network

#' @param x the number to be squered

#I

#' @return a neural network that approximately squares X.

Sqr_diff <- function(q, eps, x) {
return <- (Sqr(q, eps) I> rlz(ReLU, x) - x"2) [|> abs()
return(return)

}
Sqr_diff_v <- Vectorize(Sqr_diff)

Sqr_data <- expand.grid(
q = seq(2.1, 4, length.out = 50),
eps = seq(@0.01, 2, length.out = 50),
x = seq(-5, 5, length.out = 50)

)

Sqr_data$diff <- Sqr_diff_v(Sqr_dataq, Sqr_dataeps, Sqr_data$x)

#' Function to calculate the theoretical upper bounds of the 1-norm error
#' over \mathbb{R}

#I

#' @param q parameter for the Sqr network

#' @param eps parameter for the Sqr network

#' @param x the number to be squered

#I

#' @Qreturn the maximum 1-norm error over \mathbb{R}

diff_upper_limit <- function(q, eps, x) {
eps * max(1, abs(x)"q)
}
diff_upper_limit_v <- Vectorize(diff_upper_limit)

Sqr_data$diff_upper_limit <- diff_upper_limit_v(Sqr_dataq, Sqr_dataeps, Sqr_
data$x)

write_csv(Sqr_data, "Sqr_properties/Sqr_data.csv")

library(plotly)

272

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

83
84
85

86
87
88
89
920
91
92
93

94
95
96

97
98
99
100

fig <- plot_1ly(
type = "isosurface",
X = Sqr_data$x,
y = Sqr_data$q,
z = Sqr_data$eps,
value = Sqr_data$diff,
isomin = 0.0001,
isomax = 5,

colorscale = "RdBu"
) >
layout(scene = list(
xaxis = list(title = "x"),
yaxis = list(title = "q"),
zaxis = list(title = "eps")
) >
layout(scene = list(legend = list(title = "Diff_from_x"2")))
fig
library(ggplot2)

Sqr_data_aux <- expand.grid(
q = seq(2.1, 10, length.out = 100),
eps = seq(0.01, 4, length.out = 100)
)

Sqr_data_aux$param <- 0

for (k in 1:10000) {
Sqr_data_aux$param[k] <- Sqr(Sqr_data_aux$qlk], Sqr_data_aux$eps[k]) |>
param()

experimental_params <- ggplot(Sqr_data_aux, aes(x = g, y = eps, z = logl10(
param))) +
geom_contour_filled() +
theme minimal() +
labs(fill = "Log_10_number_of_parameters")

Sqr_data_aux$dep <- @

for (k in 1:10000) {
Sqr_data_aux$dep[k] <- Sqr(Sqr_data_aux[k, 1$q, Sqr_data_aux[k, 1$eps) [>
dep()

experimental_deps <- ggplot(Sqr_data_aux, aes(x = q, y = eps, z = logl0(dep)))
+
geom_contour_filled(alpha = 0.8) +
scale_fill_continuous(breaks = seq(@, max(Sqr_data_aux$dep), by = 1)) +
theme minimal() +
labs(fill = "log_10_experimental_depths")

273

101
102
103
104

105
106
107
108

109
110
111
112
113
114

115
116
117
118

119
120
121
122
123
124
125

126

127
128
129

131
132
133
134
135

136

137

139

140
141

param_upper_limit <- function(q, eps) {
(((ZEQ *)Q) / (q-2)) % ((1/ eps) I> log(2)) + 80 / (q - 2) - 28) |> max
52
}

dep_upper_limit <- function(q, eps) {
((q(/)(z * q - 4)) log2(1 / eps) +1/ (q-2)+1/(q-2)+1) |>max
2

}

Sqr_data_aux$param_upper_limit <- 0

for (k in 1:10000) {
Sqr_data_aux$param_upper_limit[k] <- param_upper_limit(Sqr_data_aux[k, 1%q,
Sqr_data_aux[k, I1%eps) [>
ceiling()

param_theoretical upper_limits <- ggplot(Sqr_data_aux, aes(x = q, y = eps, z =
logl0(param_upper_limit))) +
geom_contour_filled() +
theme minimal() +
labs(fill = "Logl@_upper_limits_of_parameters")

Sqr_data_aux$dep_upper_limit <- 0

for (k in 1:10000) {
Sqr_data_aux$dep_upper_limit[k] <- dep_upper_limit(Sqr_data_aux[k, 1$q, Sqr_
data_aux[k, I$eps) [|>
ceiling()

dep_theoretical_upper_limits <- ggplot(Sqr_data_aux, aes(x = q, y = eps, z =
logl0(dep_upper_limit))) +
geom_contour_filled() +
theme minimal() +
labs(fill = "Logl0_upper_limits_of_depth")

ggsave("Sqr_properties/param_theoretical upper_limits.png", plot = param_
theoretical_upper_limits, width = 6, height = 5, units = "in"

ggsave("Sqr_properties/dep_theoretical upper_limits.png", plot = dep_
theoretical upper_limits, width = 6, height = 5, units = "in"

ggsave("Sqr_properties/experimental_deps.png", plot = experimental_deps, width
= 6, height = 5, units = "in"

ggsave("Sqr_properties/experimental_params.png", plot = experimental_params,
width = 6, height = 5, units = "in"

274

O O N o U W N R

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

48
49
50
51

Listing 9.19: R code simulations involving Sqr

source("aux_fun.R")
source("Sqr.R")
source("instantiation.R")
source("activations.R")
library("tidyverse")

#' Sqr_diff function

#I

#' @param q parameter for the Sqr network

#' @param eps parameter for the Sqr network

#' @param x the number to be squered

#I

#' @return a neural network that approximately squares X.

Sqr_diff <- function(q, eps, x) {
return <- (Sqr(q, eps) I> rlz(ReLU, x) - x"2) [|> abs()
return(return)

}
Sqr_diff_v <- Vectorize(Sqr_diff)

Sqr_data <- expand.grid(
q = seq(2.1, 4, length.out = 50),
eps = seq(@0.01, 2, length.out = 50),
x = seq(-5, 5, length.out = 50)

)

Sqr_data$diff <- Sqr_diff_v(Sqr_dataq, Sqr_dataeps, Sqr_data$x)

#' Function to calculate the theoretical upper bounds of the 1-norm error
#' over \mathbb{R}

#I

#' @param q parameter for the Sqr network

#' @param eps parameter for the Sqr network

#' @param x the number to be squered

#I

#' @Qreturn the maximum 1-norm error over \mathbb{R}

diff_upper_limit <- function(q, eps, x) {
eps * max(1, abs(x)"q)
}
diff_upper_limit_v <- Vectorize(diff_upper_limit)

Sqr_data$diff_upper_limit <- diff_upper_limit_v(Sqr_dataq, Sqr_dataeps, Sqr_
data$x)

write_csv(Sqr_data, "Sqr_properties/Sqr_data.csv")

library(plotly)

275

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

83
84
85

86
87
88
89
920
91
92
93

94
95
96

97
98
99
100

fig <- plot_1ly(
type = "isosurface",
X = Sqr_data$x,
y = Sqr_data$q,
z = Sqr_data$eps,
value = Sqr_data$diff,
isomin = 0.0001,
isomax = 5,

colorscale = "RdBu"
) >
layout(scene = list(
xaxis = list(title = "x"),
yaxis = list(title = "q"),
zaxis = list(title = "eps")
) >
layout(scene = list(legend = list(title = "Diff_from_x"2")))
fig
library(ggplot2)

Sqr_data_aux <- expand.grid(
q = seq(2.1, 10, length.out = 100),
eps = seq(0.01, 4, length.out = 100)
)

Sqr_data_aux$param <- 0

for (k in 1:10000) {
Sqr_data_aux$param[k] <- Sqr(Sqr_data_aux$qlk], Sqr_data_aux$eps[k]) |>
param()

experimental_params <- ggplot(Sqr_data_aux, aes(x = g, y = eps, z = logl10(
param))) +
geom_contour_filled() +
theme minimal() +
labs(fill = "Log_10_number_of_parameters")

Sqr_data_aux$dep <- @

for (k in 1:10000) {
Sqr_data_aux$dep[k] <- Sqr(Sqr_data_aux[k, 1$q, Sqr_data_aux[k, 1$eps) [>
dep()

experimental_deps <- ggplot(Sqr_data_aux, aes(x = q, y = eps, z = logl0(dep)))
+
geom_contour_filled(alpha = 0.8) +
scale_fill_continuous(breaks = seq(@, max(Sqr_data_aux$dep), by = 1)) +
theme minimal() +
labs(fill = "log_10_experimental_depths")

276

101
102
103
104

105
106
107
108

109
110
111
112
113
114

115
116
117
118

119
120
121
122
123
124
125

126

127
128
129

131
132
133
134
135

136

137

139

140
141

param_upper_limit <- function(q, eps) {
(((ZEQ *)Q) / (q-2)) % ((1/ eps) I> log(2)) + 80 / (q - 2) - 28) |> max
52
}

dep_upper_limit <- function(q, eps) {
((q(/)(z * q - 4)) log2(1 / eps) +1/ (q-2)+1/(q-2)+1) |>max
2

}

Sqr_data_aux$param_upper_limit <- 0

for (k in 1:10000) {
Sqr_data_aux$param_upper_limit[k] <- param_upper_limit(Sqr_data_aux[k, 1%q,
Sqr_data_aux[k, I1%eps) [>
ceiling()

param_theoretical upper_limits <- ggplot(Sqr_data_aux, aes(x = q, y = eps, z =
logl0(param_upper_limit))) +
geom_contour_filled() +
theme minimal() +
labs(fill = "Logl@_upper_limits_of_parameters")

Sqr_data_aux$dep_upper_limit <- 0

for (k in 1:10000) {
Sqr_data_aux$dep_upper_limit[k] <- dep_upper_limit(Sqr_data_aux[k, 1$q, Sqr_
data_aux[k, I$eps) [|>
ceiling()

dep_theoretical_upper_limits <- ggplot(Sqr_data_aux, aes(x = q, y = eps, z =
logl0(dep_upper_limit))) +
geom_contour_filled() +
theme minimal() +
labs(fill = "Logl0_upper_limits_of_depth")

ggsave("Sqr_properties/param_theoretical upper_limits.png", plot = param_
theoretical_upper_limits, width = 6, height = 5, units = "in"

ggsave("Sqr_properties/dep_theoretical upper_limits.png", plot = dep_
theoretical upper_limits, width = 6, height = 5, units = "in"

ggsave("Sqr_properties/experimental_deps.png", plot = experimental_deps, width
= 6, height = 5, units = "in"

ggsave("Sqr_properties/experimental_params.png", plot = experimental_params,
width = 6, height = 5, units = "in"

277

O N O U R W N R

10
11
12
13
14

15
16
17

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

37
38
39
40
41
42
43
44
45
46

Listing 9.20: R code for Pwr?® networks

source("R/Prd.R")
source("R/Aff.R")
source("R/stacking.R")
source("R/Tun.R")
source("R/aux_fun.R")

4
Iy
4
4
4
4
4
4

atitle Pwr
@description
A function that returns the \egn{\mathsf{Pwr}} neural networks.

dparam q inside \eqn{(2,\infty)}.

dparam eps inside \eqn{(0,\infty)}.

aparam exponent the exponent which the Pwr network will approximate. Must
be

a non-negative integer.

areturn A neural network that approximates raising a number to exponent,
when

given appropriate \eqn{q,\varepsilon} and exponent when isntanatiated
under RelLU activation at \eqn{ix}.

Qexport

Pwr <- function(q, eps, exponent) {

if (q <= 2) {
stop("Too_small_qg,_g_must_be_>=_2")
} else if (eps <= 0) {
stop("Too_small_eps,_eps_must_be_>=_0")
} else if (exponent %% 1 != @ || exponent < 0) {
stop("Exponent_must_be_a_non-negative_integer")
} else {
if (exponent == 0) {
Aff(@, 1) -> return_network
return(return_network)
} else if (exponent >= 1) {
Cpy(2, 1) -> first_third
Pwr(q, eps, exponent - 1) |> stk(Pwr(qg, eps, exponent - 1) |> dep() [|>
Tun()) -> mid_third
Prd(q, eps) -> last_third
last_third |>
comp(mid_third) |>
comp(first_third) -> return_network
} else {
return("Invalid_exponent,_must_be_non-negative_integer")
}

return(return_network)

Listing 9.21: R code simulations involving Pwri*

278

O N O U s W N R

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

source("Pwr.R")
library(tidyverse)

#' Pwr_3_diff function

1

#' @param q parameter for Pwr_3

#' @param eps parameter for Pwr_3

#' @param x the number to be cubed

#' @param exponent = 3, i.e. cubing a number

Pwr 3 diff <- function(qg, eps, x, exponent = 3) {
return <- (Pwr(q, eps, exponent = 3) [> rlz(ReLU, x) - x"3) [> abs()
return(return)

}
Pwr 3 diff v <- Vectorize(Pwr 3 diff)

Pwr_3_data <- expand.grid(
q = seq(2.1, 4, length.out = 50),
eps = seq(@.01, 2, length.out = 50),
x = seq(-5, 5, length.out = 50)

)

Pwr_3_data$diff <- Pwr_3_diff_v(Pwr_3_dataq, Pwr_3_dataeps, Pwr_3_data$x)
library(ggplot2)

ggplot(Pwr_3_data, aes(diff)) +
scale_x_loglo() +
geom_density() +
theme_minimal()

library(plotly)

fig <- plot_1ly(
type = "isosurface",
x = Pwr_3_data$x,
y = Pwr_3_data$q,
z = Pwr_3_data$eps,
value = Pwr_3 data$diff,
isomin = 0.0001,
isomax = 5,
colorscale = "RdBu"
) |>
layout(scene = list(
xaxis = list(title
yaxis = list(title
zaxis = list(title
) 1>
layout(scene = list(legend = list(title = "Diff_from_x"2")))

"x"),
"q"),
"eps")

fig

279

54
55
56
57
58
59
60
61
62

63
64
65

66
67
68
69
70
71
72
73

74
75

76

77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
9%
97
98
99

100

101

102

Pwr_3_data_aux <- expand.grid(
q = seq(2.1, 10, length.out = 100),
eps = seq(0.01, 4, length.out = 100)
)

Pwr_3 data_aux$param <- 0

for (k in 1:10000) {
Pwr_3_data_aux$param[k] <- Pwr(Pwr_3 data_aux$q[k], Pwr_3 data_aux$eps[kl],
exponent = 3) |> param()

}

experimental_params <- ggplot(Pwr_3_data_aux, aes(x = g, y = eps, z = logl0(
param))) +
geom_contour_filled() +
theme minimal() +
labs(fill = "log_10_#_of_parameters")

Pwr_3 data_aux$dep <- 0

for (k in 1:10000) {
Pwr_3_data_aux$dep[k] <- Pwr(Pwr_3 data_aux[k, 1$q, Pwr_3 data_aux[k,]$eps,
exponent = 3) |> dep()
}

experimental_deps <- ggplot(Pwr_3_data_aux, aes(x = q, y = eps, z = logl0(dep)
)) +
geom_contour_filled(alpha = 0.8, breaks = seq(0, 10, 1)) +
scale_fill_continuous(breaks = seq(@, max(Pwr_3_data_aux$dep), by = 1)) +
theme minimal() +
labs(fill = "logl0_depths")

#' The param_upper_limit funnction
#I
#' @param q parameter for the Pwr network

#' @param eps parameter for the Pwr network

#I

#' areturn the theoretical upper limit for the number of parameters

param_upper_limit <- function(q, eps) {
4™(4.5) -> first summand
(4™4-1)/3 -> second_summand_a
((360%q)/(q-2))*(log2(1/eps)+q+1)+372 -> second_summand_b
first summand + (second summand _a * second summand b) -> result
return(result)

}

#' The dep_upper_limit function

#l

#' @param q parameter for the Pwr_3 network
#' @param eps parameter for the Pwr_3 network
#I

280

103
104
105
106
107
108

110
111
112

113
114
115
116

117
118
119
120
121
122
123
124

125
126
127

128
129
130
131
132

133

134

O W N O R W N R

#' areturn the theoretical upper limit for the depth

dep_upper_limit <- function(q, eps) {
(Cqg / (g -2)) (log2(1 / eps) +q) - 1) * 3 + 1

Pwr_3_data_aux$param_upper_limit <- 0

for (k in 1:10000) {
Pwr 3 data_aux$param_upper_limit[k] <- param_upper_ limit(Pwr_3_data_aux[k,]
$q, Pwr_3_data_aux[k, I$eps) |>
ceiling()
}

param_theoretical upper_limits <- ggplot(Pwr_3 data_aux, aes(x = g, y = eps, z
= logl0(param_upper_limit))) +
geom_contour_filled() +
theme_minimal() +
labs(fill = "Log10_upper_limits_of_parameters")

Pwr_3_data_aux$dep_upper_limit <- 0

for (k in 1:10000) {
Pwr_3_data_aux$dep_upper_limit[k] <- dep_upper_limit(Pwr_3_data_aux[k, 1%q,
Pwr_3_data_aux[k,]$eps)
}

dep_theoretical upper_limits <- ggplot(Pwr_3_data_aux, aes(x = g, y = eps, z =
logl0(dep_upper_limit))) +
geom_contour_filled() +
theme minimal() +
labs(fill = "Logl0_upper_limits_of_depth")

ggsave("Pwr_3_properties/param_theoretical upper_limits.png", plot = param_

theoretical_upper_limits, width = 6, height = 5, units = "in"
ggsave("Pwr_3 properties/dep_theoretical upper_limits.png", plot = dep_
theoretical upper_limits, width = 6, height = 5, units = "in"

ggsave("Pwr_3_properties/experimental_deps.png", plot = experimental_deps,
width = 6, height = 5, units = "in")

s|ggsave("Pwr_3_properties/experimental_params.png", plot = experimental_params,

width = 6, height = 5, units = "in"

Listing 9.22: R code simulations involving Nrm(f

source("R/Aff.R")
source("R/stacking.R")
source("R/comp.R")
source("R/nn_sum.R")

#' @title Nrm

4

#' adescription

#' A function that creates the \egn{\mathsf{Nrm}} neural networks.that take

281

10
11
12
13
14
15
16
17
18
19
20

21

22

23

24
25
26
27
28
29
30
31
32

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

the 1- norm of a \eqgn{d}-dimensional vector when instantiated with RelU
activation.

aparam d the dimensions of the vector being normed.

areturn a neural network that takes the 1-norm of a vector of

size d.under RelLU activation. This is the neural network that is:

\deqn{

\mathsf{Nrm}”*1_1 = \left(\left(\begin{bmatrix} 1 \\ -1\end{bmatrix},

\begin{bmatrix} @ \\ @ \end{bmatrix}\right), \left(\begin{bmatrix}1 && 1\

end{bmatrix},

#' \begin{bmatrix}@\end{bmatrix}\right) \right) \in \left(\mathbb{R}"{2 \
times 1} \times

#' \mathbb{R}"2 \right) \times \left(\mathbb{R}"{1 \times 2} \times \mathbb{R
}71 \right) \quad d=1 \\

#' \mathsf{Nrm} 1°d = \mathsf{Sum} {d,1} \bullet \left[\boxminus_ {i=1}"d \

mathsf{Nrm}_1"1 \right] \quad d>1

}

\emph{Note:} This function is split into two cases
much like the definition itself.

areferences Lemma 4.2.1. Jentzen, A., Kuckuck, B., and von Wurstemberger, P
. (2023).

#' Mathematical introduction to deep learning: Methods, implementations,

#' and theory. \url{https://arxiv.org/abs/2310.20360}

#' @export
4
Nrm <- function(d) {
if (d%% 1 '!'=0 |] d< 1) {
stop("d_must_be_a_natural_number")
} else {
if (d == 1) {
c(1, -1) |> matrix() -> W 1
c(o, 0) |> matrix() -> b_1
c(1, 1) |> matrix(1, 2) -> w2
@ |> matrix() -> b 2

list(w
list(w

b 1) -> layer_1
b 2) -> layer 2

b
b

w1,
w_2,
list(layer_1, layer_2) -> return_network

return(return_network)
} else if (d > 1) {
1 |> Nrm() -> first_compose
for (1 in 1:(d - 1)) {
first_compose |> stk(Nrm(1)) -> first_compose

282

58
59
60
61
62
63
64
65

N o U W N R

10
11
12
13

14

15
16
17

18

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

34
35
36
37

Sum(d, 1) |> comp(first_compose) -> return_network
return(return_network)

} else {
stop("Possibly_taking_the_norm_of_an_invalid_sized_array")

Listing 9.23: R code simulations involving Mxmj

source("R/Aff.R")
source("R/stacking.R")
source("R/comp.R")
source("R/nn_sum.R")
source("R/Id.R")

#' @title Mxm
#' @description The function that returns the \eqgn{\mathsf{Mxm}} neural

networks.

#' These are neural networks of the type:

#' \degn{

#'\mathsf{Mxm}*1 = \mathsf{Aff}_{1,0} \quad d = 1 \\

#'\\

#'\mathsf{Mxm}*2 = \left(\left(\begin{bmatrix} 1 6§ -1 \\ 0 &§ 1 \\ 0 &§ -1\end
{bmatrix},

#'\begin{bmatrix} @ \\ 0 \\0\end{bmatrix}\right), \left(\begin{bmatrix}161&
-1\end{bmatrix},

#'\begin{bmatrix}o\end{bmatrix}\right)\right) \quad d = 2 \\

#'\\

#'\mathsf{Mxm}"*{2d} = \mathsf{Mxm}"d \bullet \left[\boxminus {i=1}"d \mathsf{
Mxm}”*2\right] \quad d > 2\\

#'\mathsf{Mxm}"“{2d-1} = \mathsf{Mxm}“d \bullet \left[\left(\boxminus”d_{i=1}

\mathsf{Mxm}"2 \right)

#'\boxminus \mathsf{Id}_1\right] \quad d > 2

#I

#'}

#l

#' \emph{Note:} Because of certain quirks of R we will have split

#' into five cases. We add an extra case for \eqn{d = 3}. Unlike the paper

#' we will simply reverse engineer the appropriate \emph{d}.

#I

#' @param d The dimension of the input vector on instantiation.

#I

#' @return The neural network that will ouput the maximum of a vector of

#' size \eqn{d} when activated with the ReLU function.

#l

#' @references Lemma 4.2.4. Jentzen, A., Kuckuck, B., and von Wurstemberger, P
. (2023).

#' Mathematical introduction to deep learning: Methods, implementations,

#' and theory. \url{https://arxiv.org/abs/2310.20360}

283

38
39
40
41
42
43
44

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

#' @export

Mxm <- function(d) f{
if (d%%1!'=01]1d<1){
stop("d_must_be_a_natural_number")

}
if (d == 1) {
return(Aff(1, 0))
} else if (d == 2) {
c(1, o, 0, -1, 1, -1) |> matrix(3, 2) -> W 1
c(o, 0,) |> matrix() -> b_1
c(1, 1, -1) |> matrix(1, 3) -> w2
@ |> matrix() -> b 2
list(W = W1, b =b 1
list(W =w2, b =b2
list(layer_1, layer_2
return(return_network
} else if (d == 3) {
Mxm(2) |> stk(Id()) -> first_compose
Mxm(2) |> comp(first_compose) -> return_network
return(return_network)
} else if ((d %% 2 == 0) § (d > 3)) {
d/ 2 ->d
Mxm(2) -> first _compose
for (1 in 1:(d - 1)) {
first_compose |> stk(Mxm(2)) -> first_compose
}
Mxm(d) |> comp(first_compose) -> return_network
return(return_network)
} else if ((d %% 2 '=0) § (d > 3)) {
(d-1)/2->d

b 1) -> layer_1
b 2) -> layer_ 2
)
)

-> return_network

Mxm(2) -> first_compose
for (i in 1:(d - 1)) {
first_compose |> stk(Mxm(2)) -> first_compose
}
first_compose |> stk(Id()) -> first_compose
Mxm(d + 1) |> comp(first_compose) -> return_network
return(return_network)
} else {
stop("Possibly_taking_max_of_vector_of_length_0")

Listing 9.24: R code simulations involving Tay, note that this implementation is different
from how it is presented in the exposition. We chose to explicitly define the Tay network,
and let neural network exponentials, cosines, and sines be instantiations of this network with
various different coefficients.

1'source("R/Pwr.R")

2| source("R/nn_sum.R")
source("R/scalar _mult.R")
source("R/Aff.R")

3

4

284

o 0 N o wu

10
11
12
13
14
15
16
17
18
19
20
21
22

23
24
25
26
27
28
29
30

31
32
33
34
35
36
37
38
39
40
41
42
43

44
45
46
47
48
49
50
51
52
53
54

#' The Tay function

#' @param f the function to be Taylor approximated, for now "exp", "sin"
#' and "cos". NOTE use the quotation marks when using this arguments

#' @param n the extent of Taylor approximations, a natural number

#' @param g argument for the Pwr networks \eqn{q \in (2,\infty)}

#' @param eps argument for the Pwr networks \eqn{eps \in (0,\infty)}

#' @return a neural network that approximates the function f

Tay <- function(f, n, q, eps) {
if (n%%1!=0 11 n<0){
stop("Number_of_Taylor_iteration_must_be_a_non_negative_integer")
} else if (q <2 || eps < 0) {
stop("q_must_be_>_2_and_eps_must_be_>_0")
} else if (f != "exp" & f != "sin" &6 f != "cos") {
stop("For_now,_only_Taylor_approximations_for_exp,_sin,_and_cos_is_
available")
} else {
if (f == "exp") {
(1 / factorial(@)) |> slm(Pwr(q, eps, 0)) -> return_network
if (n ==0) {
return(return_network)
}

for (1 in 1:n) {
return_network [> nn_sum((1 / factorial(i)) [> slm(Pwr(q, eps, i))) ->
return_network

}

return(return_network)

}

if (f == "cos") {
1 |> slm(Pwr(qg, eps, 0)) -> return_network
if (n == 0) {
return(return_network)

}

for (i in 1:n) {
((-1)"1) / factorial(2 * 1) -> coeff
return_network |> nn_sum(coeff |> slm(Pwr(q, eps, 2 * i))) -> return_
network
}

return(return_network)

}

if (f == "sin") {
Tay("cos", n, g, eps) -> return_network
return_network |> comp(Aff(1, -pi / 2)) -> return_network
return(return_network)
}
t
}

285

O O N OO U s W N R

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

O ® N O U s W N R

10
11
12
13
14
15
16
17
18
19
20
21
22

Listing 9.25: R code simulations for Csn?*®

source("R/Tay.R")

atitle Csn
ddescription The function that returns \eqgn{\mathsf{Csn}}.

@param n The number of Taylor iterations
dparam q a real number in \eqn{(2,\infty)}
dparam eps a real number in \eqn{(0,\infty)}

\emph{Note: } In practice for most desktop uses
\eqn{q < 2.05} and \egn{\varepsilon< 0.05} tends to cause problems in
"too long a vector", atleaast as tested on my computer.

areturn A neural network that approximates \eqn{\cos} under instantiation
with ReLU activation. See also \code{\link{Sne}}.
aexport

Csn <- function(n, q, eps) {

if (g <=2 || eps <= 0) {
stop("q_must_be_>_2_and_eps_must_be_>_0")
} else if (n %% 1 '= 0 || n < 0) {
stop("The_number_of_Taylor_iterations_must_be_non_negative_integer")
} else {
Tay("cos", n, g, eps) -> return_network
return(return_network)

Listing 9.26: R code simulations for Sne’*

source("R/Tay.R")

' Qtitle Sne

ddescription Returns the \eqgn{\mathsf{Sne}} neural networks

" @param n the number of Taylor iterations

Qparam q a real number in \eqn{(2,\infty)}
dparam eps a real number in \eqn{(0,\infty)}

\emph{Note: } In practice for most desktop uses
\egn{q < 2.05} and \eqn{\varepsilon< 0.05} tends to cause problems in
"too long a vector", atleaast as tested on my computer.

areturn a neural network that approximates \eqn{\sin} when given
an appropriate \eqn{in,q,\varepsilon} and instantiated with RelU
activation and given value \eqn{x}.

aexport

Sne <- function(n, q, eps) {

if (g <=2 || eps <= 0) {
stop("q_must_be_>_2_and_eps_must_be_>_0")

286

23
24
25
26
27
28

O N O U W N R

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

else if (n %% 1 '= 0 || n < @) {
stop("The_number_of_Taylor_iterations_must_be_non_negative_integer")
else {

return(Tay("sin", n, q, eps))

}
Listing 9.27: R code simulations involving Etr
#' atitle Trp
#' @description The function that returns the \egn{\mathsf{Trp}} networks.
1
#' @param h the horizontal distance between two mesh points
1
#' @return The \egn{\mathsf{Trp}} network that gives the area
#' when activated with RelLU and two meshpoint values x_1 and x_2.
#' @wexport

Trp <- function(h) {

}

#I
#I
#I
#I
#I
#I
#I
#I
#I
#I
#I
#I
#I
#I
#I
#I
#I

if (h |> is.numeric() &&

h |> length() == 1 &§&

h |> is.finite() &&

h>0){

cch /2, h/2) |>matrix(1, 2) -> W

@ |> matrix() -> b

list(list(W = W, b = b)) -> return_network
return(return_network)

else {
stop("h_must_be_a_positive_real_number")

atitle Etr
odescription The function that returns the \eqn{\mathsf{Etr}} networks.

@param n number of trapezoids to make. Note this will result in a set of
trapezoids.

Note that this will result in n+1 meshpoints including the starting a and
ending b

\emph{Note: } Upon instantiation with any continuous function this neural
network must be fed with \eqn{n+1} real numbers representing the values
of the function being approximated at the \eqn{n+1} meshpoints which are
the legs of the \egn{n} triangles as stipulated in the input parameters.

aparam h width of trapezoids

areturn an approximation for area of the integral
Qexport

Etr <- function(n, h) {

if (h |> is.numeric() &&

h |> length() == 1 &§&
h |> is.finite() &&

287

46
47
48
49
50
51
52
53
54
55
56
57
58

O O N o U~ W N R

10
11
12
13
14

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

34
35

h >0 &6&
n % 1 == 0 &&
n>1) {
cth / 2, repth, n - 1), h/2) |>
matrix() |>
t() > W
@ |> matrix() -> b
list(list(W = W, b = b)) -> return_network
return(return_network)
} else {
stop("n_must_be_a_natural_number_and_h_must_be_a_positive_real_number.")

Listing 9.28: R code simulations involving Etr

source("R/stacking.R")
source("R/comp.R")
source("R/Nrm.R")
source("R/Mxm.R")

#' The P neural network

#I

#' @param X a matrix. More precisely a collection of n row vectors of size d.

#' That is to say an d by n matrix

#' @param y a row vector of size m that is the ouput of the function at each

#' of the n sample points

#' @param L the Lipschitz constant for the function.

#I

#' @references Lemma 4.2.9. Jentzen, A., Kuckuck, B., and von Wurstemberger, P
. (2023).

#' Mathematical introduction to deep learning: Methods, implementations,

#' and theory. \url{https://arxiv.org/abs/2310.20360}.

#I

#' @return A neural network that gives the maximum convolution approximation

#' of a function whose outputs is \eqgn{y} at \egn{n} sample points given by

#' each row of \egn{X}, when instantiated with RelLU.

#' @export

P <- function(X, vy, L) {
if (X |> is.matrix() == FALSE) (X [|> matrix() -> X)
if (y |> is.matrix() == FALSE) (y |> matrix() -> vy)
X |> nrow() -> d # the dimensionality of our x samples
X |> ncol() -> n # the number of samples to be taken

if (n==1) {
return("Enter_atleast_2_interpolating_points")
}
Cpy(n, d) -> first_compose # the first neural network to be hit with x
Nrm(d) |> comp(Aff(diag(d), -X[, 1])) -> second_compose # the second neural
network to be hit
for (j in 2:n) {
second_compose |> stk(Nrm(d) |> comp(Aff(diag(d), -X[, j1))) -> second_
compose

288

36
37
38
39
40
41
42
43
44
45

}
Aff(-L = diag(n), y) -> third_compose # the third neural network to be hit

n |> Mxm() -> fourth_compose # the fourth neural network to be hit
fourth_compose |[>
comp(third_compose) |>
comp(second_compose) |>
comp(first_compose) -> return_network
the final neural network
return(return_network)

289

Vita

The author was born in November 1%, 1992 in the city of Dhaka in the heart of Bangladesh.
He grew up in the large city with a childhood that included setting things on fire, and very
occasionally focusing on mathematics. He failed to achieve his childhood goal of becoming
an astronomer however when he entered college at Troy University in 2011 and realized it
would involve cold nights outside, and so chose mathematics instead. He has continued his
pursuits in mathematics and is now a graduate student at the University of Arkansas trying
to graduate.

290

