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Preface to the first version

These lecture notes originate from the master course Numerical Analysis of Stochastic
Ordinary Differential Equations — also called Computational Methods in Quantitative
Finance I — which was taught at ETH Zürich from 2008 to 2011. It includes a review
on probability theory, basics on the generation of random numbers, and an introduction
to Monte Carlo methods in the first part. Then stochastic processes and stochastic
differential equations are introduced and solutions are approximated with strong and
weak approximation schemes.

Zürich, December 2011

Andrea Barth, Annika Lang, Christoph Schwab

Preface to the second version

These lectures notes are a rewritten version of the lecture notes written by Andrea Barth,
Annika Lang and Christoph Schwab. They have been written for the course “401-4657-
00L Numerical Analysis of Stochastic Ordinary Differential Equations” in the Autumn
Semester 2012. These lectures notes would be in a much worser shape without the help
of a number of people. I am particulary indebted to Sonja Cox and Raphael Kruse for
various valuable suggestions, for proofreading the lecture notes and for their very helpful
advice. Moreover, I am very grateful to Martin Hutzenthaler for his permission to use
parts of the material in [Hutzenthaler and Jentzen(2012)] for these lecture notes. Finally,
special thanks are due to the students of the course “401-4657-00L Numerical Analysis
of Stochastic Ordinary Differential Equations” for pointing out a number of misprints
and for various useful remarks and questions that helped to improve and correct these
lecture notes.

Zürich, December 2012

Arnulf Jentzen

Preface to the third version

Special thanks are due to Sonja Cox and Raphael Kruse for placing a number of excercises
and their permission to use these excercises as a part of these lecture notes. Stefan
Geiss, Johannes Muhle-Karbe and Josef Teichmann are also gratefully acknowledged for
a number of insightful comments concerning mathematical finance. The students of the
course “401-4657-00L Numerical Analysis of Stochastic Ordinary Differential Equations”
are also gratefully acknowledged for pointing out a number of misprints and for asking a
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number of questions that helped to improve these lecture notes. Finally, I am particulary
indebted to Florian Müller-Reiter from the swissQuant Group AG for a number of quite
instructive demonstrations from the financial pratice.

These lecture notes are still under construction. In particular, these lecture notes do not
yet contain an appropriate classification and an appropriate comparison of the presented
material with the relevant material from the literature. This will be the subject of a
later version of these lecture notes.

Zürich, December 2013

Arnulf Jentzen

Preface to the fourth version

These lecture notes are still under construction. In particular, these lecture notes do not
yet contain an appropriate classification and an appropriate comparison of the presented
material with the relevant material from the literature. This will be the subject of a
later version of these lecture notes. Special thanks are due to Lukas Herrmann and Ryan
Kurniawan for their substantial help with the solutions of the exercises.

Zürich, September 2014

Arnulf Jentzen

Preface to the fifth version

These lecture notes are still under construction. In particular, these lecture notes do not
yet contain an appropriate classification and an appropriate comparison of the presented
material with the relevant material from the literature. This will be the subject of a
later version of these lecture notes.

Zürich, September 2015

Arnulf Jentzen

Preface to the sixth version

These lecture notes are still under construction. In particular, these lecture notes do not
yet contain an appropriate classification and an appropriate comparison of the presented
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material with the relevant material from the literature. This will be the subject of a
later version of these lecture notes.

Zürich, September 2015

Arnulf Jentzen
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Exercises

Exercises series

Solutions to the exercises can be handed in before the start of the lecture or in the
designated mailbox in front of room HG G 53.2. Please also submit your Matlab code
and your figures at https://sam-up.math.ethz.ch.

Series Exercises Deadline Solutions
1 Exercises 0.2.8, 0.2.43, 0.4.7, & 0.4.14 03.10.2018, 13:15 PM Chapter 8
2 Exercises 1.2.16, 1.2.24, 1.2.25, & 1.2.26 10.10.2018, 13:15 PM Chapter 8
3 Exercises 1.2.27, 1.2.30, 1.2.38, & 1.2.39 17.10.2018, 13:15 PM Chapter 8
4* Exercises 1.3.7, 1.3.9, 1.3.11, & 2.1.12 24.10.2018, 13:15 PM Chapter 8
5* Exercises 2.1.13, 2.2.8, 2.2.10, & 2.2.13 31.10.2018, 13:15 PM Chapter 8
6* Exercises 2.3.9, 2.3.10, 2.4.10, & 3.1.9 07.11.2018, 13:15 PM Chapter 8
7* Exercises 3.1.10, 3.2.23, 3.3.9, & 3.3.10 14.11.2018, 13:15 PM Chapter 8
8 Exercises 3.3.11, 3.3.15, 3.4.20, & 3.4.22 21.11.2018, 13:15 PM Chapter 8
9* Exercises 5.2.4, 5.2.7, 5.3.3, & 5.3.4 05.12.2018, 13:15 PM Chapter 8
10* Exercises 5.5.6, 5.5.9, 5.6.7, & 5.6.8 12.12.2018, 13:15 PM Chapter 8

(..)∗ The PhD students of the Department of Mathematics of ETH Zurich must solve
this exercise series successfully to get the credit points of the course.

Rules for the Matlab exercises

For each Matlab exercise we expect that you hand in:

(i) A printout of the .m-file containing the Matlab commands.

(ii) A printout of the exact output of your .m-file (where all outputs are properly
labelled). This printout should also contain all graphics produced by your .m-file.
Your .m-file should only output those values for which you are asked for in the
Matlab exercise. You can use “;” at the end of your Matlab code lines to suppress
the output of intermediate results.

In addition, we also expect you to submit your .m-file at https://sam-up.math.ethz.
ch.
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0 Preliminaries from measure and
probability theory

These lecture notes use a number of concepts and results from measure and probability
theory. Some of these notions and results are briefly reviewed in this preliminary chapter
(see Sections 0.2, 0.3, and 0.4 below). Further concepts and results from measure and
probability theory can, for example, be found in [Klenke(2008)] and [Bauer(1991)]. In
addition, several important probability distributions from the literature are considered
in Section 0.4 of this preliminary chapter.

0.1 Basic notation

Definition 0.1.1 (Set of numbers). We denote by R the set of real numbers, we denote
by C the set of complex numbers, and we denote by N, N0, and R̄ the sets given by

N = {1, 2, . . . },
N0 = N ∪ {0} = {0, 1, 2, . . . },
R̄ = R ∪ {−∞} ∪ {∞}.

(0.1)

Definition 0.1.2 (Intervals of extended real numbers). Let a, b ∈ R̄. Then we denote
by [a, b], (a, b], [a, b), and (a, b) the sets given by

[a, b] = {x ∈ R̄ : a ≤ x ≤ b},
(a, b] = {x ∈ R̄ : a < x ≤ b},
[a, b) = {x ∈ R̄ : a ≤ x < b},
(a, b) = {x ∈ R̄ : a < x < b}.

(0.2)

Definition 0.1.3 (Absolute value). We denote by |·|
R

: R→ [0,∞) the function which
satisfies for all a ∈ [0,∞) that

|a|
R

= |−a|
R

= a, (0.3)

we denote by |·|C : C→ [0,∞) the function which satisfies for all a, b ∈ R that

|a+ ib|C =
√
a2 + b2, (0.4)

and we denote by |·| : C→ [0,∞) the function which satisfies for all a ∈ C that |a| = |a|C.

1



Chapter 0. Preliminaries from measure and probability theory

Definition 0.1.4 (Euclidean norm and Euclidean scalar product). Let n ∈ N. Then we
denote by ‖·‖

Rn
: Rn → [0,∞) and 〈·, ·〉

Rn
: Rn ×Rn → R the functions which satisfy

for all v = (v1, . . . , vn) ∈ Rn, w = (w1, . . . , wn) ∈ Rn that

‖v‖
Rn

=

[
n∑
i=1

|vi|2
]1/2

and 〈v, w〉
Rn

=
n∑
i=1

viwi. (0.5)

Note that for every n ∈ N it holds that (Rn, ‖·‖
Rn
, 〈·, ·〉

Rn
) is an inner product space.

Definition 0.1.5 (Identity function). Let A be a set. Then we denote by idA : A → A
the function which satisfies for all a ∈ A that

idA(a) = a (0.6)

and we call idA : A→ A the identity function on A.

Definition 0.1.6 (Identity matrix). Let d ∈ N. Then we denote by IRd ∈ Rd×d the
d× d-matrix given by

IRd =


1 0 . . . 0 0
0 1 0 . . . 0
...

. . . . . . . . .
...

0 . . . 0 1 0
0 0 . . . 0 1

 . (0.7)

Definition 0.1.7 (Transpose). Let n,m ∈ N be natural numbers and let A ∈ Rn×m be
an n×m-matrix. Then we denote by A> ∈ Rm×n the transpose of A.

Definition 0.1.8 (Power set). Let Ω be a set. Then we denote by P(Ω) the power set
of Ω (the set of all subsets of Ω).

Definition 0.1.9 (Set of functions). Let A and B be sets. Then we denote by M(A,B)
the set of all functions from A to B.

Definition 0.1.10 (Extended composition of functions). Let A, Ã, B, and B̃ be sets
and let f : A → Ã and g : B → B̃ be functions which satisfy that g(B) ⊆ A. Then we
denote by f ◦ g : B → Ã the function which satisfies for all b ∈ B that

(f ◦ g)(b) = f(g(b)) (0.8)

and we call f ◦ g the composition of f and g.
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Chapter 0. Preliminaries from measure and probability theory

0.2 Measure theory

0.2.1 Measurable spaces

Definition 0.2.1 (Sigma-algebra). We say that A is a sigma-algebra on Ω if and only
if it holds that

(i) ∅ ∈ A ⊆ P(Ω),

(ii) ∀A ∈ A : Ac = Ω\A ∈ A (A is closed under complementation), and

(iii) ∀A1, A2, . . . ∈ A : ∪n∈N An ∈ A (A is closed under countable unions).

Item (i) in Definition 0.2.1 is equivalent to the assumption that A is a non-empty sub-
set of P(Ω). More precisely, if A ⊆ P(Ω) is a non-empty set which is closed under
complementation in the sense of Item (ii) in Definition 0.2.1 and which is closed under
countable unions in the sense of Item (iii) in Definition 0.2.1, then there exists an A ∈ A
and Item (ii) and Item (iii) ensure that A 3 (A ∪ Ac)c = Ωc = ∅.

For every set Ω it holds that the power set P(Ω) is the largest sigma-algebra on Ω.
Moreover, for every set Ω it holds that the set {∅,Ω} is the smallest sigma-algebra on
Ω.

Definition 0.2.2 (Sigma-algebra). We say that A is a sigma-algebra if and only if there
exists a set Ω such that A is a sigma-algebra on Ω.

Definition 0.2.3 (Measurable space). We say that Ω is a measurable space if and only
if there exist sets Ω and A such that it holds

(i) that Ω = (Ω,A) and

(ii) that A is a sigma-algebra on Ω.

Definition 0.2.4 (Measurable set). We say that A is measurable with respect to Ω (we
say that A is measurable) if and only if there exist sets Ω and A such that it holds

(i) that A is a sigma-algebra on Ω,

(ii) that Ω = (Ω,A), and

(iii) that A ∈ A.

Let (Ω,A) be a measurable space and let A ⊆ Ω be an arbitrary subset of Ω which is
not necessarily measurable with respect to (Ω,A). In some situations one is interested
to equip the set A with a suitable sigma-algebra. For this the following two concepts,
Definition 0.2.5 and Definition 0.2.9, are useful.
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Chapter 0. Preliminaries from measure and probability theory

Definition 0.2.5 (Trace set). Let A and A be sets. Then we denote by A e A the set
given by

A eA = {A ∩B ∈ P(A) : B ∈ A} = {C ∈ P(A) : (∃B ∈ A : A ∩B = C)} (0.9)

and we call A eA the trace set of A in A (we call A eA the trace set).

Class exercise 0.2.6. What is {1, 2} e P(N)?

Class exercise 0.2.7. Prove or disprove the following statement: For all sets A and A
it holds that

(A eA) 6= ∅ (0.10)

if and only if A 6= ∅.

Exercise 0.2.8. Let (Ω,A) be a measurable space and let A ⊆ Ω be a subset of Ω. Prove
that (A,A eA) is a measurable space.

Definition 0.2.5 and Exercise 0.2.8 suggest the following notion.

Definition 0.2.9 (Trace sigma-algebra). Let (Ω,A) be a measurable space and let A ⊆ Ω
be a subset of Ω. Then we call AeA the trace sigma-algebra of A in A (the trace sigma-
algebra).

Observe that for every measurable space (Ω,A) and every A ∈ A it holds that

A eA = {B ∈ A : B ⊆ A} = P(A) ∩ A. (0.11)

Definition 0.2.10 (Generation of a sigma-algebra). Let Ω be a set and let A ⊆ P(Ω)
be a subset of the power set of Ω. Then we denote by σΩ(A) the set given by

σΩ(A) =
⋂

B is a sigma-algebra
on Ω with B⊇A

B (0.12)

and we call σΩ(A) the sigma-algebra on Ω generated by A (we call σΩ(A) the sigma-
algebra generated by A).

Note that for every set Ω and every subset A ⊆ P(Ω) of the power set of Ω it holds that
σΩ(A) is the smallest sigma-algebra on Ω that contains A.

Lemma 0.2.11 (Generator of a trace sigma-algebra). Let Ω be a set, let A ⊆ P(Ω) be
a subset of the power set of Ω, and let A ⊆ Ω be a subset of Ω. Then

A e σΩ(A) = σA(A eA). (0.13)

Lemma 0.2.11 is, e.g., proved as Corollary 1.83 in [Klenke(2008)].
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0.2.2 Topological spaces and their sigma-algebras

We first recall the notion of a topology.

Definition 0.2.12 (Topology). We say that E is a topology on Ω if and only if

(i) it holds that {∅,Ω} ⊆ E ⊆ P(Ω),

(ii) it holds for all A,B ∈ E that A ∩ B ∈ E (E is closed under finite intersections),
and

(iii) it holds for all sets I and all families (Ai)i∈I ⊆ E that ∪i∈IAi ∈ E (E is closed
under arbitrary unions).

Definition 0.2.13. We say that E is a topology if and only if there exists a set Ω such
that E is a topology on Ω.

Definition 0.2.14 (Topological space). We say that Ω is a topological space if and only
if there exist sets Ω and E such that it holds

(i) that Ω = (Ω, E) and

(ii) that E is a topology on Ω.

Definition 0.2.15 (Open set). We say that E is open in Ω (we say that E is open) if
and only if there exist sets Ω and E such that it holds

(i) that E is a topology on Ω,

(ii) that Ω = (Ω, E), and

(iii) that E ∈ E.

In the next step we briefly recall the notion of a metric.

Definition 0.2.16 (Metric). We say that d is a metric on E if and only if

(i) it holds that d ∈M(E × E, [0,∞)) is a function from E × E to [0,∞),

(ii) it holds for all x, y ∈ E that
(
d(x, y) = 0 if and only if x = y

)
( positive definite-

ness),

(iii) it holds for all x, y ∈ E that d(x, y) = d(y, x) ( symmetry), and

(iv) it holds for all x, y, z ∈ E that d(x, z) ≤ d(x, y) + d(y, z) ( triangle inequality).

Definition 0.2.17. We say that d is a metric if and only if there exists a set E such
that d is a metric on E.

Definition 0.2.18 (Metric space). We say that E is a metric space if and only if there
exist a set E and a metric d on E such that E = (E, d).

Work in progress. Copyright (C) with the authors.
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Observe that for every normed R-vector space (V, ‖·‖V ) it holds that the function

V × V 3 (v, w) 7→ ‖v − w‖V ∈ [0,∞) (0.14)

is a metric on V . In particular, note that for every d ∈ N it holds that the function

R
d ×Rd 3 (x, y) 7→ ‖x− y‖

Rd
∈ [0,∞) (0.15)

is a metric on Rd. In the next well-known lemma we recall that a metric space (E, d)
(see Definition 0.2.18) induces a topology on E (see Definition 0.2.12).

Lemma 0.2.19 (The topology induced by a metric). Let (E, d) be a metric space. Then
it holds that{

A ∈ P(E) :
(
∀ a ∈ A : ∃ ε ∈ (0,∞) : {b ∈ E : d(a, b) < ε} ⊆ A

)}
(0.16)

is a topology on E.

Definition 0.2.20 (The topology induced by a norm). Let (V, ‖·‖V ) be a normed R-
vector space. Then we denote by E(V, ‖·‖V ) the set given by

E(V, ‖·‖V ) = {U ⊆ V : (∀u ∈ U : ∃ ε ∈ (0,∞) : {y ∈ V : ‖u− y‖V < ε} ⊆ U)} . (0.17)

Observe that for every normed R-vector space (V, ‖·‖V ) it holds that the pair(
V, E(V, ‖·‖V )

)
is a topological space.

Definition 0.2.21 (Borel sigma-algebra). Let (E, E) be a topological space. Then we
denote by B(E) the set given by B(E) = σE(E) and we call B(E) the Borel sigma-algebra
of (E, E).

Definition 0.2.22 (Borel set). We say that A is a Borel set with respect to E if and
only if there exist a set E and a topology E on E such that

E = (E, E) and A ∈ B(E) = σE(E). (0.18)

Observe that for all d ∈ N it holds that

E(Rd, ‖·‖
Rd

) ⊆ B(Rd) ⊆ P(Rd). (0.19)

Work in progress. Copyright (C) with the authors.
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0.2.3 Measure spaces

Definition 0.2.23 (Measure). We say that µ is a measure on Ω if and only if there
exist sets Ω and A such that

(i) it holds that A is a sigma-algebra on Ω,

(ii) it holds that Ω = (Ω,A),

(iii) it holds that µ ∈M(A, [0,∞]) is a function from A to [0,∞),

(iv) it holds that µ(∅) = 0, and

(v) it holds for every function A : N → A with ∀n ∈ N,m ∈ N\{n} : An ∩ Am = ∅
that

µ

(⋃
n∈N

An

)
=
∞∑
n=1

µ
(
An
)
. (sigma additivity)

Definition 0.2.24. We say that µ is a measure if and only if there exists a measurable
space Ω such that µ is a measure on Ω.

Definition 0.2.25. We say that Ω is a measure space if and only if there exist a mea-
surable space (Ω,A) and a measure µ on (Ω,A) such that Ω = (Ω,A, µ).

Definition 0.2.26 (On sets of measure zero (null sets) and negligible sets). We say that
A is a µ-negligible set if and only if there exist Ω, A, and B such that it holds

(i) that µ is a measure on (Ω,A),

(ii) that A ⊆ B ∈ A, and

(iii) that µ(B) = 0.

Definition 0.2.27 (Completeness of a measure). Let µ be a measure. Then we say that
µ is complete if and only if there exist a set Ω and a sigma-algebra A on Ω such that µ
is a measure on (Ω,A) and such that for every µ-negligible set A it holds that A ∈ A.

Definition 0.2.28 (Completeness of a measure space). Let Ω = (Ω,A, µ) be a measure
space. Then we say that Ω is complete if and only if µ is a complete measure.

Any arbitrary (not necessarily complete) measure can be extended to a complete mea-
sure. This is the subject of the next concept.

Work in progress. Copyright (C) with the authors.
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Definition 0.2.29 (Completion of a measure). Let (Ω,A, µ) be a measure space. Then
we denote by A∗ the set given by

A∗ = {A ∈ P(Ω) : (∃B,C ∈ A : B ⊆ A ⊆ C and µ(C\B) = 0)} , (0.20)

we denote by µ∗ : A∗ → [0,∞] the function which satisfies for all A ∈ P(Ω), B,C ∈ A
with B ⊆ A ⊆ C and µ(C\B) = 0 that

µ∗(A) = µ(B), (0.21)

we call µ∗ the completion of µ, and we call the triple (Ω,A∗, µ∗) the completion of
(Ω,A, µ).

Observe that for every measure space (Ω,A, µ) it holds that the triple (Ω,A∗, µ∗) is a
complete measure space.

Definition 0.2.30 (Lebesgue-Borel measure). Let d ∈ N and let A ∈ B(Rd).
Then we denote by BorelRd : B(Rd) → [0,∞] the measure which satisfies for all
a1, . . . , ad, b1, . . . , bd ∈ R with a1 ≤ b1, . . . , ad ≤ bd that

BorelRd
(
(a1, b1]× · · · × (ad, bd]

)
=

d∏
i=1

(bi − ai) , (0.22)

we denote by BA : B(A) → [0,∞] the measure given by BA = BorelRd |B(A), and we call
BA the Lebesgue-Borel measure on A.

Definition 0.2.31 (Lebesgue measure). Let d ∈ N. Then we denote by λRd : B(Rd)∗ →
[0,∞] the measure given by λRd = B∗

Rd
and we call λRd the Lebesgue measure on Rd.

Definition 0.2.32. We say that P is a probability measure on Ω if and only if there
exists a measurable space (Ω,A) such that it holds

(i) that P is a measure on (Ω,A),

(ii) that P (Ω) = 1, and

(iii) that Ω = (Ω,A).

Definition 0.2.33 (Probability measure). We say that P is a probability measure if and
only if there exists a measurable space Ω such that P is a probability measure on Ω.

Definition 0.2.34. We say that Ω is a probability space if and only if there exist Ω, A,
and P such that Ω = (Ω,A, P ) and such that P is a probability measure on (Ω,A).
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Definition 0.2.35 (Indicator function). Let Ω be a set and let A ∈ P(Ω) be a subset of
Ω. Then we denote by 1Ω

A : Ω→ {0, 1} the function which satisfies for all x ∈ Ω that

1
Ω
A(x) =

{
1 : x ∈ A
0 : x /∈ A

(0.23)

and we call 1Ω
A : Ω→ {0, 1} the indicator function of A in Ω.

Definition 0.2.36. Let x and Ω be sets. Then we denote by 1Ω(x) ∈ R the real number
given by

1Ω(x) =

{
1 : x ∈ Ω

0 : x /∈ Ω
. (0.24)

Definition 0.2.37 (Dirac measure). Let Ω be a set and let x ∈ Ω. Then we denote by
δΩ
x : P(Ω)→ [0,∞] the function which satisfies for all A ∈ P(Ω) that

δΩ
x (A) = 1Ω

A(x) (0.25)

and we call δΩ
x the Dirac measure associated to x in Ω.

Definition 0.2.38 (Counting measure). Let Ω be a set. Then we denote by #Ω : P(Ω)→
[0,∞] the measure given by

#Ω =
∑
ω∈Ω

δΩ
ω (0.26)

and we call #Ω the counting measure on Ω.

Definition 0.2.39 (Number of elements of a set). Let Ω be a set. Then we denote by
#Ω ∈ N0 ∪ {∞} the extended real number given by

#Ω = #Ω(Ω). (0.27)

Definition 0.2.40 (Support of a measure). Let (E, E) be a topological space and let
µ : B(E)→ [0,∞] be a measure on (E,B(E)). Then we denote by supp(µ) the set given
by

supp(µ) = {x ∈ E : (∀U ∈ E : x ∈ U ⇒ µ(U) > 0)} (0.28)

and we call supp(µ) the support of µ.

Class exercise 0.2.41. Let x ∈ R. What is supp
(
δRx |B(R)

)
?

Class exercise 0.2.42. Let d ∈ N. What is supp(BRd)?

Exercise 0.2.43. Let (E, E) be a topological space and let µ : B(E) → [0,∞] be a
measure on (E,B(E)). Prove that supp(µ) is a closed set in (E, E), i.e., prove that
E\ supp(µ) ∈ E.
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0.2.4 Measurable functions

Definition 0.2.44 (Measurable function). We say that X is an A/Ã-measurable func-
tion (we say that X is a measurable function) if and only if it holds

(i) that X is a function,

(ii) that A is a sigma-algebra on domain(X),

(iii) that Ã is a sigma-algebra on codomain(X), and

(iv) that ∀A ∈ Ã : X−1(A) = {x ∈ domain(X) : X(x) ∈ A} ∈ A.

Lemma 0.2.45 (Measurability of functions). Let A and B be sets, let B ⊆ P(B) be a
subset of the power set of B, and let X : A→ B be a function. Then{

X−1(S) : S ∈ σB(B)
}

= σA
({
X−1(S) : S ∈ B

})
. (0.29)

Proof of Lemma 0.2.45. Throughout this proof let A, Ã, and B̃ be the sets given by

A =
{
X−1(S) : S ∈ σB(B)

}
,

Ã = σA
({
X−1(S) : S ∈ B

})
,

B̃ =
{
S ∈ P(B) : X−1(S) ∈ Ã

}
.

(0.30)

Next observe that the fact that σB(B) is a sigma-algebra on B, the fact that

∀S1, S2, . . . ∈ P(B) : X−1(∪n∈NSn) = ∪n∈NX−1(Sn), (0.31)

and the fact that

∀S ∈ P(B) : X−1(B\S) = X−1(B)\X−1(S) = A\X−1(S) (0.32)

ensure that A is a sigma-algebra on A. This and the fact that

A ⊇ {X−1(S) : S ∈ B} (0.33)

imply that A ⊇ Ã. It thus remains to prove that A ⊆ Ã. For this note that (0.31),
(0.32), and the fact that Ã is a sigma-algebra on A establish that B̃ is a sigma-algebra
on B. Next note that the fact that

Ã = σA
({
X−1(S) : S ∈ B

})
⊇
{
X−1(S) : S ∈ B

}
(0.34)

shows that for all S ∈ B ⊆ P(B) it holds that

X−1(S) ∈ Ã. (0.35)

Hence, we obtain that
B ⊆ B̃. (0.36)
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This and the fact that B̃ is a sigma-algebra on B prove that

σB(B) ⊆ B̃. (0.37)

Therefore, we get that for all S ∈ σB(B) it holds that S ∈ B̃. Hence, we obtain that for
all S ∈ σB(B) it holds that

X−1(S) ∈ Ã. (0.38)

This implies that A ⊆ Ã. The proof of Lemma 0.2.45 is thus completed.

Lemma 0.2.45 above is, for instance, also proved as Theorem 1.81 in [Klenke(2008)].
The next result, Corollary 0.2.46, is an immediate consequence of Lemma 0.2.45 above.

Corollary 0.2.46 (Measurability of functions on generators). Let Ω1 and Ω2 be sets, let
A1 ⊆ P(Ω1) be a subset of the power set of Ω1, let A2 ⊆ P(Ω2) be a subset of the power
set of Ω2, and let X : Ω1 → Ω2 be a function. Then it holds that X is σΩ1(A1)/σΩ2(A2)-
measurable if and only if it holds for all A ∈ A2 that

X−1(A) ∈ σΩ1(A1). (0.39)

Definition 0.2.47 (Sigma-algebra generated by a function). Let Ω be a set, let (Ω̃, Ã)
be a measurable space, and let X : Ω→ Ω̃ be a function. Then we denote by σΩ(X) the
set given by

σΩ(X) =
{
X−1(A) ∈ P(Ω) : A ∈ Ã

}
(0.40)

and we call σΩ(X) the sigma-algebra generated by X.

Note that for every set Ω, every measurable space (Ω̃, Ã), and every function X : Ω→ Ω̃
it holds that σΩ(X) is the smallest sigma-algebra A on Ω with respect to which X
is A/Ã-measurable. A measurable function on a measure space naturally induces a
measure on its range. This is the subject of the next definition.

Definition 0.2.48 (Image measure/Push forward measure). Let (A,A, µ) be a measure
space, let (B,B) be a measurable space, and let X : A → B be an A/B-measurable
function. Then we denote by X(µ)B : B → [0,∞] the function which satisfies for all
S ∈ B that

X(µ)B(S) = µ(X ∈ S) = µ
(
X−1(S)

)
(0.41)

and we call X(µ)B the image measure associated to X and B (we call X(µ)B the push
forward measure associated to X and B).

Definition 0.2.49 (Random variable). We say that X is a random variable on A with
respect to B (we say that X is a random variable on A, we say that X is a random
variable) if and only if there exist A,A, P , B, and B such that it holds

(i) that A = (A,A, P ) and B = (B,B),

(ii) that A is a probability space,

(iii) that B is a measurable space, and

(iv) that X is an A/B-measurable function.
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Definition 0.2.50 (Probability distribution of a random variable). We say that µ is the
probability distribution of X under P with respect to B (we say that µ is the distribution
of X under P with respect to B, we say that µ is the probability distribution of X under
P , we say that µ is the distribution of X under P , we say that µ is the probability
distribution of X, we say that µ is the distribution of X) if and only if there exist A, A,
and B such that it holds

(i) that P is a probability measure on (A,A),

(ii) that (B,B) is a measurable space,

(iii) that X is an A/B-measurable function, and

(iv) that µ = X(P )B.

0.2.5 Products of measurable spaces and measure spaces

Definition 0.2.51 (Product sigma-algebra). Let I be a non-empty set and let (Ωi,Fi),
i ∈ I, be measurable spaces. Then

(i) we denote by π
(i)
Ωj ,j∈I, : [×j∈IΩj] → Ωi, i ∈ I, the functions which satisfy for all

i ∈ I, (ωj)j∈I ∈ [×j∈IΩj] that

π
(i)
Ωj ,j∈I,

(
(ωj)j∈I

)
= ωi, (0.42)

(ii) for every i ∈ I we call π
(i)
Ωj ,j∈I, : [×j∈IΩj]→ Ωi the i-th projection function for Ωj,

j ∈ I,

(iii) we denote by ⊗i∈IFi the sigma-algebra given by

⊗i∈I Fi = σ×j∈IΩj

(
∪i∈I σ×j∈IΩj

(
π

(i)
Ωj ,j∈I,

))
, (0.43)

and

(iv) we call ⊗i∈IFi the product sigma-algebra of Fi, i ∈ I.

Note that the product sigma-algebra is the smallest sigma-algebra so that every projec-
tion function is a measurable function. Moreover, observe that for all measurable spaces
(Ω1,F1) and (Ω2,F2) it holds that

⊗i∈{1,2} Fi = F1 ⊗F2 = σΩ1×Ω2({A1 × A2 ⊆ Ω1 × Ω2 : A1 ∈ F1 and A2 ∈ F2}) . (0.44)

We also briefly recall the notion of the product measure (see, e.g., Section 38 in
[Halmos(1950)]). To do so, we first introduce the following concept.
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Definition 0.2.52 (Sigma-finiteness). Let Ω be a measure space. Then we say that Ω
is sigma-finite if and only if there exist sets Ω, F , and µ and a function $ : N → F
such that it holds

(i) that Ω = (Ω,F , µ),

(ii) that ∀n ∈ N : µ($n) <∞, and

(iii) that ∪n∈N$n = Ω.

Definition 0.2.53 (Products of measures). Let I be a non-empty finite set and let
(Ωi,Fi, µi), i ∈ I, be sigma-finite measure spaces. Then we denote by

⊗i∈I µi : ⊗i∈I Fi → [0,∞] (0.45)

the measure which satisfies for all n ∈ N, i1, . . . , in ∈ I, Ai1 ∈ Fi1, . . . , Ain ∈ Fin with
#{i1,...,in} = n that

(⊗i∈Iµi)
({
π

(i1)
Ωj ,j∈I, ∈ Ai1

}
∩ . . . ∩

{
π

(in)
Ωj ,j∈I, ∈ Ain

})
=

n∏
k=1

µik(Aik) (0.46)

and we call ⊗i∈Iµi the product measure of µi, i ∈ I.

Observe that (0.46) ensures that for all probability spaces (Ω1,F1, P1) and (Ω2,F2, P2)
and all A1 ∈ F1, A2 ∈ F2 it holds that

(P1 ⊗ P2)(A1 × A2) = P1(A1) · P2(A2). (0.47)

Definition 0.2.54 (Powers of a sigma-algebra). Let (Ω,F) be a measurable space and
let n ∈ N. Then we denote by F⊗n ⊆ P(Ωn) the sigma-algebra given by

F⊗n = ⊗k∈{1,2,...,n}F = F ⊗ . . .⊗F︸ ︷︷ ︸
n-times

. (0.48)

Definition 0.2.55 (Powers of a measure). Let (Ω,F , µ) be a sigma-finite measure space
and let n ∈ N. Then we denote by µ⊗n : F⊗n → [0,∞] the measure given by

µ⊗n = ⊗k∈{1,2,...,n} µ = µ⊗ . . .⊗ µ︸ ︷︷ ︸
n-times

. (0.49)
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0.2.6 Integration of measurable functions

Definition 0.2.56 (Lebesgue integral for nonnegative functions). Let (Ω,A, µ) be a
measure space and let X : Ω → R be an A/B(R)-measurable function with X(Ω) ⊆
[0,∞). Then we denote by

´
Ω
X dµ ∈ [0,∞] the extended real number given by

ˆ
Ω

X dµ

= sup

 ∑
y∈Y (Ω)

y · µ(Y −1({y})) ∈ [0,∞] :
Y : Ω→ [0,∞) is an

A/B([0,∞))-measurable function
with Y ≤ X and #Y (Ω) <∞

 .

(0.50)

Definition 0.2.57 (Lebesgue integral for real valued functions). Let (Ω,A, µ) be
a measure space and let X : Ω → R be an A/B(R)-measurable function with
min

{ ´
Ω

max{X, 0} dµ,
´

Ω
max{−X, 0} dµ

}
< ∞. Then we denote by

´
Ω
X dµ ∈

[−∞,∞] the extended real number given by

ˆ
Ω

X dµ =

ˆ
Ω

max{X, 0} dµ−
ˆ

Ω

max{−X, 0} dµ. (0.51)

Definition 0.2.58 (Lebesgue integral for vector/matrix valued functions). Let (Ω,A, µ)
be a measure space, let n,m ∈ N, and let X = (Xi,j)(i,j)∈{1,...,n}×{1,...,m} : Ω → R

n×m be
an A/B(Rn×m)-measurable function with

´
Ω
‖X‖Rn×m dµ < ∞. Then we denote by´

Ω
X dµ ∈ Rn×m the n×m-matrix given by

ˆ
Ω

X dµ =

( ˆ
Ω

Xi,j dµ

)
(i,j)∈{1,...,n}×{1,...,m}

. (0.52)

The next result is known as change of variables formula in the literature.

Theorem 0.2.59 (Change of variables formula). Let (Ω,A, µ) be a measure space, let
(Ω̃, Ã) be a measurable space, and let X : Ω→ Ω̃ be an A/Ã-measurable function. Then

(i) it holds for all Ã/B(R)-measurable functions f : Ω̃→ R that

ˆ
Ω

|f(X)| dµ =

ˆ
Ω̃

|f | dX(µ)Ã (0.53)

and

(ii) it holds for all Ã/B(R)-measurable functions f : Ω̃ → R with
´

Ω
|f(X)| dµ < ∞

that ˆ
Ω

f(X) dµ =

ˆ
Ω̃

f dX(µ)Ã. (0.54)
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0.2.7 Absolute continuity of measures

Definition 0.2.60 (Measures with densities). Let (Ω,A, µ) be a measure space and let
f : Ω→ [0,∞) be an A/B([0,∞))-measurable function. Then we denote by f �µ : A →
[0,∞] the function which satisfies for all A ∈ A that

(f � µ)(A) =

ˆ
Ω

f(ω) · 1Ω
A(ω)µ(dω) =

ˆ
Ω

f · 1Ω
A dµ. (0.55)

Lemma 0.2.61 (Measures with densities). Let (Ω,A, µ) be a measure space and let
f : Ω→ [0,∞) be an A/B([0,∞))-measurable function. Then (Ω,A, f �µ) is a measure
space.

Definition 0.2.62 (Densities and absolute continuity of measures). We say that ν is
absolutely continuous with respect to µ with density f if and only if there exists a mea-
surable space (Ω,A) such that it holds

(i) that µ is a measure on (Ω,A),

(ii) that f is an A/B([0,∞))-measurable function, and

(iii) that ν = f � µ.

Definition 0.2.63. We say that ν is absolutely continuous with respect to µ if and only
if there exists a f such that ν is absolutely continuous with respect to µ with density f .

Definition 0.2.64. We say that f is a density of ν with respect to µ if and only if ν is
absolutely continuous with respect to µ with density f .

Definition 0.2.65 (Absolute continuity with respect to the Lebesgue-Borel measure).
We say that ν is absolutely continuous with density f if and only if there exists a natural
number d ∈ N such that ν is absolutely continuous with respect to BRd with density f .

Definition 0.2.66 (Absolute continuity with respect to the Lebesgue-Borel measure).
We say that ν is absolutely continuous if and only if there exists a natural number d ∈ N
such that ν is absolutely continuous with respect to BRd.

Definition 0.2.67 (Density). We say that f is a density of ν if and only if ν is absolutely
continuous with density f .

Several important probability measures from the literature are absolutely continuous.
Probability measures that are discrete in a certain sense are not absolutely continuous.
Discrete measures are the subject of the next definition.

Definition 0.2.68 (Discrete measure). Let µ be a measure. Then we say that µ is
discrete if and only if there exist sets Ω and A and an at most countable set A ∈ A such
that µ is a measure on (Ω,A) which satisfies

µ(Ω\A) = 0. (0.56)
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Observe that for every measure space (Ω,A, µ) it holds that µ is discrete if and only if
there exist an at most countable set I, a family xi ∈ Ω, i ∈ I, of elements in Ω, and a
family pi ∈ [0,∞], i ∈ I, of real numbers such that

µ =
∑
i∈I

pi δ
Ω
xi
, (0.57)

i.e., such that for all A ∈ A it holds that

µ(A) =
∑
i∈I

pi · δΩ
xi

(A). (0.58)

0.3 Random variables

0.3.1 Expectation and covariance

Definition 0.3.1. Let (Ω,A, P ) be a probability space and let X : Ω→ R be an A/B(R)-
measurable function with min

{ ´
Ω

max{X, 0} dP,
´

Ω
max{−X, 0} dP

}
< ∞. Then we

denote by EP [X] ∈ [−∞,∞] the extended real number given by

EP [X] =

ˆ
Ω

X dP (0.59)

and we call EP [X] the P -expectation of X (the expectation of X).

The expectations of vector valued and matrix valued random variables are defined anal-
ogously; cf. Section 0.2.6.

Definition 0.3.2. Let (Ω,A, P ) be a probability space, let n,m ∈ N, and let X : Ω →
R
n×m be an A/B(Rn×m)-measurable function with EP

[
‖X‖Rn×m

]
<∞. Then we denote

by EP [X] ∈ Rn×m the n×m-matrix given by

EP [X] =

ˆ
Ω

X dP (0.60)

and we call EP [X] the expectation of X (the P -expectation of X).

Definition 0.3.3. Let (Ω,A, P ) be a probability space and let X : Ω→ R be an A/B(R)-
measurable function with EP

[
|X|R

]
< ∞. Then we denote by VarP (X) ∈ [0,∞] the

extended real number given by

VarP (X) = EP
[
(X − EP [X])2] (0.61)

and we call VarP (X) the P -variance of X (the variance of X).
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Definition 0.3.4. Let (Ω,A, P ) be a probability space, let n ∈ N, and let X =
(X1, . . . , Xn) : Ω → R

n and Y = (Y1, . . . , Yn) : Ω → R
n be A/B(Rn)-measurable func-

tions with EP
[
‖X‖2

Rn
+ ‖Y ‖2

Rn

]
< ∞. Then we denote by CovP (X, Y ) ∈ Rn×n the

n× n-matrix given by

CovP (X, Y ) = EP
[
(X − EP [X])(Y − EP [Y ])>

]
=
(
EP
[
(Xi − EP [Xi])(Yj − EP [Yj])

])
(i,j)∈{1,...,n}×{1,...,n}

(0.62)

and we call CovP (X, Y ) the P -covariance of X and Y (the covariance of X and Y ).

Definition 0.3.5. Let (Ω,A, P ) be a probability space, let n,m ∈ N, and let X =
(X1, . . . , Xn) : Ω → R

n be an A/B(Rn)-measurable function with EP
[
‖X‖2

Rn

]
< ∞.

Then we denote by CovP (X) ∈ Rn×n the n× n-matrix given by

CovP (X) = CovP (X,X) (0.63)

and we call CovP (X) the P -covariance of X (the covariance of X).

Definition 0.3.6 (Uncorrelated). We say that X and Y are P -uncorrelated (we say
that X and Y are uncorrelated) if and only if there exists a probability space (Ω,A, P )
such that it holds

(i) that X is a random variable on (Ω,A, P ) with respect to (R,B(R)),

(ii) that Y is a random variable on (Ω,A, P ) with respect to (R,B(R)),

(iii) that E
[
X2 + Y 2

]
<∞, and

(iv) that CovP (X, Y ) = 0.

In the next step we record a useful identity for the covariance matrix of a random
variable. More precisely, observe that for every probability space (Ω,A, P ), every d ∈ N,
and every A/B(Rd)-measurable function X : Ω → R

d with EP
[
‖X‖2

Rd

]
< ∞ it holds

that

CovP (X) = EP
[
(X − EP [X]) (X − EP [X])>

]
= EP

[
XX>

]
− EP [X]EP

[
X>
]
− EP [X]EP

[
X>
]

+ EP [X]EP
[
X>
]

= EP
[
XX>

]
− EP

[
X
]
EP
[
X>
]
.

(0.64)

0.3.2 Distribution functions

An important instrument to describe probability measures on (R,B(R)) are distribution
functions. They are the subject of the next definition.
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Definition 0.3.7 (Distribution function). We say that F is a distribution function if
and only if it holds

(i) that F ∈M(R, [0, 1]) is a function from R to [0, 1],

(ii) that F is non-decreasing (it holds for all x1, x2 ∈ R with x1 ≤ x2 that F (x1) ≤
F (x2)),

(iii) that limx→−∞ F (x) = 0 and limx→∞ F (x) = 1, and

(iv) that F is a càdlàg (continue à droite, limite à gauche) function (it holds for all
x ∈ R that limy↗x F (y) and limy↘x F (y) exist and that limy↘x F (y) = F (x)).

As announced above, a probability measure on (R,B(R)) induces a distribution function.
This is the subject of the next lemma.

Lemma 0.3.8. Let (Ω,A, P ) be a probability space with ΩeB(R) ⊆ A and P (Ω∩R) = 1.
Then it holds that the function

R 3 x 7→ P
(
(−∞, x] ∩ Ω

)
∈ [0, 1] (0.65)

is a distribution function.

The proof of Lemma 0.3.8 is elementary and left to the reader. Lemma 0.3.8 motivates
the next definition.

Definition 0.3.9 (Distribution function of a probability measure). We say that F is
the distribution function of P if and only if there exists a measurable space (Ω,A) such
that it holds

(i) that P is a probability measure on (Ω,A),

(ii) that Ω e B(R) = A, and

(iii) that F =
(
R 3 x 7→ P ((−∞, x] ∩ Ω) ∈ [0, 1]

)
.

We also present the definition of a distribution function of a random variable.

Definition 0.3.10 (Distribution function of a random variable). We say that F is the
distribution function of X if and only if there exists a probability space (Ω,A, P ) and a
set B ∈ P(R) such that it holds

(i) that X is an A/(B e B(R))-measurable function and

(ii) that F =
(
R 3 x 7→ P (X ≤ x) = P ({ω ∈ Ω: X(ω) ≤ x}) ∈ [0, 1]

)
.

Definition 0.3.11 (Equality in distribution). Let (Ω,A, P ) and (Ω̂, Â, P̂ ) be proba-
bility spaces, let (S,S) be a measurable space, let X : Ω → S be an A/S-measurable
function, and let X̂ : Ω̂ → S be an Â/S-measurable function. Then we write X = X̂
in distribution on S (we write X = X̂ in distribution) if and only if

X(P )S = X̂(P̂ )S . (0.66)
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Definition 0.3.12 (Distributed according to a given probability measure). We say that
X is P̂ -distributed on Ω (we say that X is P̂ -distributed) if and only if there exist a
probability space (Ω,F , P ) and a measurable space (Ω̂, F̂) such that it holds

(i) that Ω = (Ω,F , P ),

(ii) that X is an F/F̂-measurable function, and

(iii) that X(P )F̂ = P̂ .

0.4 Examples of probability distributions

This section briefly reviews a few important probability distributions from the literature.

0.4.1 Discrete probability distributions

0.4.1.1 Discrete uniform distribution

Definition 0.4.1 (Discrete uniform distribution). Let Ω be a non-empty finite set. Then
we denote by UnifΩ : P(Ω)→ [0,∞] the probability measure given by

UnifΩ =
1

#Ω

(∑
ω∈Ω

δΩ
ω

)
(0.67)

and we call UnifΩ the discrete uniform distribution on Ω.

0.4.1.2 Bernoulli distribution

Definition 0.4.2. Let p ∈ [0, 1]. Then we denote by Berp : B(R)→ [0,∞] the probability
measure given by

Berp = (1− p) · δR0 |B(R) + p · δR1 |B(R) (0.68)

and we call Berp the Bernoulli distribution with parameter p.

Observe that for every p ∈ [0, 1] and every x ∈ R it holds that

Berp((−∞, x]) =


0 : x < 0,

1− p : 0 ≤ x < 1,

1 : x ≥ 1.

(0.69)

Moreover, note that for every p ∈ [0, 1], every probability space (Ω,F , P ), and every
Berp-distributed random variable X : Ω→ R it holds that

EP [X] = p and VarP (X) = p (1− p) . (0.70)
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0.4.1.3 Binomial distribution

Definition 0.4.3 (Binomial distribution). Let p ∈ [0, 1], n ∈ N. Then we denote by
bn,p : B(R)→ [0,∞] the probability measure given by

bn,p =
n∑
k=0

(
n

k

)
pk (1− p)(n−k) δRk |B(R) (0.71)

and we call bn,p the binomial distribution with parameters n and p.

Observe that for all n ∈ N, p ∈ [0, 1], all probability spaces (Ω,F , P ), and all P -
independent Berp-distributed random variables X1, . . . , Xn : Ω→ R on (Ω,F , P ) it holds
that the function

Ω 3 ω 7→
n∑
k=1

Xk(ω) ∈ R (0.72)

(number of successes in n independent Bernoulli experiments with parameter p) is bn,p-
distributed (binomially distributed with parameters n and p).

0.4.1.4 Geometric distribution

Definition 0.4.4 (Geometric distribution). Let p ∈ (0, 1]. Then we denote by
geomp : B(R)→ [0,∞] the probability measure given by

geomp =
∞∑
n=0

p (1− p)n δRn |B(R) (0.73)

and we call geomp the geometric distribution with parameter p.

Note that for all p ∈ (0, 1], all probability spaces (Ω,F , P ), and all P -independent
Berp-distributed random variables X1, X2, . . . : Ω → R on (Ω,F , P ) it holds that the
function

Ω 3 ω 7→ 1
Ω
∪k∈N{Xk=1}(ω) ·min({k ∈ N0 : Xk+1(ω) = 1} ∪ {∞}) ∈ R (0.74)

(waiting time for the first success minus 1/number of failures before the first sucess) is
geomp-distributed (geometrically distributed with parameter p).

0.4.1.5 Shifted geometric distribution

Definition 0.4.5 (Shifted geometric distribution). Let p ∈ (0, 1]. Then we denote by
sgeomp : B(R)→ [0,∞] the probability measure given by

sgeomp =
∞∑
n=1

p (1− p)(n−1) δRn |B(R) (0.75)

and we call sgeomp the shifted geometric distribution with parameter p.
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Note that for all p ∈ (0, 1], all probability spaces (Ω,F , P ), and all P -independent
Berp-distributed random variables X1, X2, . . . : Ω → R on (Ω,F , P ) it holds that the
function

Ω 3 ω 7→ 1
Ω
∪k∈N{Xk=1}(ω) ·min({k ∈ N : Xk(ω) = 1} ∪ {∞}) ∈ R (0.76)

(waiting time for the first success) is sgeomp-distributed (shifted geometrically dis-
tributed with parameter p).

0.4.1.6 Poisson distribution

Definition 0.4.6 (Poisson distribution). Let λ ∈ (0,∞). Then we denote by
Poiλ : B(R)→ [0,∞] the probability measure given by

Poiλ =
∞∑
n=0

e−λλn

n!
δRn |B(R) (0.77)

and we call Poiλ the Poisson distribution with parameter λ.

The Poisson distribution with parameter λ ∈ (0,∞) appears, for example, as an ap-
proximation of the binomial distribution with parameters n ∈ N and p ∈ (0, 1) with n
large, p small, and np ≈ λ in a suitable sense. Details can be found in Theorem 0.4.8
below, which is sometimes also referred to as law of rare events in the literature. The
proof of Theorem 0.4.8 uses the following exercise on approximations of the exponential
function.

Exercise 0.4.7 (Approximations of the exponential function). Let al ∈ R, l ∈ N, be a
convergent sequence and let nl ∈ N, l ∈ N, satisfy lim inf l→∞ nl =∞. Prove that

lim
l→∞

[ [
1 + al

nl

]nl ]
= exp

(
lim
l→∞

al

)
. (0.78)

We now present the promised law of rare events in the following result, Theorem 0.4.8.
The proof of Theorem 0.4.8 uses Exercise 0.4.7.

Theorem 0.4.8 (Poisson approximation: Law of rare events). Let λ ∈ (0,∞), k ∈ N
and let nl ∈ N, l ∈ N, and pl ∈ [0, 1], l ∈ N, satisfy that lim inf l→∞ nl = ∞ and
lim supl→∞ |nlpl − λ| = 0. Then

lim sup
l→∞

|pl| = 0 and lim sup
l→∞

|bnl,pl({k})− Poiλ({k})| = 0. (0.79)

Proof of Theorem 0.4.8. First, we note that the assumptions lim inf l→∞ nl = ∞ and
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lim supl→∞ |nlpl − λ| = 0 ensure that lim supl→∞ |pl| = 0. Next observe that

lim
l→∞

bnl,pl({k}) = lim
l→∞

[(
nl
k

)
|pl|k (1− pl)(nl−k)

]
= lim

l→∞

[
nl (nl − 1) · . . . · (nl − k + 1)

(nl)
k

· 1

k!
· (nlpl)k · (1− pl)(nl−k)

]

=
1

k!
· lim
l→∞

[
nl (nl − 1) · . . . · (nl − k + 1)

(nl)
k

]
· lim
l→∞

[
(nlpl)

k
]
· lim
l→∞

[
(1− pl)(nl−k)

]
=
λk

k!
· lim
l→∞

[
(1− pl)nl

]
· lim
l→∞

[
(1− pl)−k

]
=
λk

k!
· lim
l→∞

[[
1− nlpl

nl

]nl]
.

(0.80)

Exercise 0.4.7 hence proves that

lim
l→∞

bnl,pl({k}) =
λk

k!
· exp

(
− lim

l→∞
nlpl

)
=
e−λλk

k!
. (0.81)

The proof of Theorem 0.4.8 is thus completed.

0.4.2 Absolutely continuous probability distributions

0.4.2.1 Continuous uniform distribution

Definition 0.4.9 (Continuous uniform distribution). Let d ∈ N and let A ∈ B(Rd) be
a set with 0 < λRd(A) <∞. Then we denote by UA : B(Rd)→ [0,∞] the function which
satisfies for all B ∈ B(Rd) that

UA(B) =
λRd(B ∩ A)

λRd(A)
(0.82)

and we call UA the uniform distribution on A.

0.4.2.2 Exponential distribution

Definition 0.4.10 (Exponential distribution). Let λ ∈ (0,∞). Then we denote by
expλ : B(R)→ [0,∞] the function which satisfies for all B ∈ B(R) that

expλ(B) =

ˆ
B

λ e−λx 1R(0,∞)(x) dx (0.83)

and we call expλ the exponential distribution with parameter λ.
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0.4.2.3 Cauchy distribution

Definition 0.4.11 (Cauchy distribution). Let µ ∈ R and λ ∈ (0,∞). Then we denote
by Cauµ,λ : B(R)→ [0,∞] the function which satisfies for all B ∈ B(R) that

Cauµ,λ(B) =

ˆ
B

1

πλ
(

1 + (x−µ)2

λ2

) dx (0.84)

and we call Cauµ,λ the Cauchy distribution with parameters µ and λ.

0.4.2.4 Laplace distribution

Definition 0.4.12 (Laplace distribution). Let λ ∈ (0,∞). Then we denote by
Laplaceλ : B(R)→ [0,∞] the function which satisfies for all B ∈ B(R) that

Laplaceλ(B) =
λ

2

ˆ
B

e−λ|x| dx

and we call Laplaceλ the Laplace distribution with parameter λ (we call Laplaceλ the
double exponential distribution with parameter λ).

0.4.3 Normal distribution

In the next definition we introduce the normal distribution. We achieve this by using
the explicit density in the case of the standard normal distribution and by means of an
affine transformation in the case of the general normal distribution.

Definition 0.4.13 (Normal distribution). Let d ∈ N, v ∈ Rd and let Q ∈ Rd×d be a
nonnegative symmetric d × d-matrix. Then we denote by N0,I

Rd
: B(Rd) → [0,∞] the

function which satisfies for all B ∈ B(Rd) that

N0,I
Rd

(B) =
1

(2π)d/2

ˆ
B

e
−1
2
‖x‖2

Rd dx, (0.85)

we call N0,I
Rd

the d-dimensional standard normal distribution, we denote by

Nv,Q : B(Rd)→ [0,∞] the function which satisfies for all B ∈ B(Rd) that

Nv,Q(B) = N0,I
Rd

(√
Q idRd +v ∈ B

)
= N0,I

Rd

({
x ∈ Rd :

√
Qx+ v ∈ B

})
, (0.86)

and we call Nv,Q the normal distribution with mean v and covariance Q.

We note that for all d ∈ N, v ∈ Rd and all symmetric nonnegative d × d-matrices
Q ∈ Rd×d it holds that Nv,Q(Rd) = 1. It thus holds for every d ∈ N, v ∈ Rd and
every nonnegative d × d-matrices Q ∈ Rd×d that Nv,Q is indeed a probability measure.
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Furthermore, we observe that for all d ∈ N, v ∈ Rd and all symmetric nonnegative d×d-
matrices Q ∈ Rd×d it holds that the probability measure Nv,Q is absolutely continuous
if and only if Q is invertible. Moreover, we note that for all d ∈ N, v ∈ Rd and all
symmetric nonnegative d × d-matrices Q ∈ Rd×d it holds that the probability measure
Nv,Q is discrete if and only if Q = 0 ∈ Rd×d. In the next exercise, Exercise 0.4.14, a
simple property of the probability measure N0,I

Rd
is formulated.

Exercise 0.4.14. Prove that for all d ∈ N, i, j ∈ {1, . . . , d} it holds that

ˆ
Rd

xi N0,I
Rd

(dx1, . . . , dxd) = 0,

ˆ
Rd

xi · xj N0,I
Rd

(dx1, . . . , dxd) =

{
1 : i = j

0 : else
.

The normal distributed is preserved under affine linear transformations. This is the
subject of the next proposition.

Proposition 0.4.15 (Affine linear transformations of the normal distribution). Let
(Ω,A, P ) be a probability space, let d,m ∈ N, v ∈ Rm, b ∈ Rd, A ∈ Rd×m, let
Q ∈ Rm×m be a nonnegative symmetric m×m-matrix, and let

X : Ω→ R
m (0.87)

be an Nv,Q-distributed random variable. Then the random variable

Ω 3 ω 7→ AX(ω) + b ∈ Rd (0.88)

is NAv+b,AQA>-distributed.

Proof of Proposition 0.4.15. We prove Proposition 0.4.15 by using characteristic func-
tions. More formally, note that for all x ∈ Rm it holds that

E
[
ei〈X,x〉Rm

]
= ei〈v,x〉Rm−

1
2
〈x,Qx〉

Rm (0.89)

(see, e.g., Remark 15.54 in Klenke [Klenke(2008)]). This implies that for all y ∈ Rd it
holds that

E
[
ei〈AX+b,y〉

Rd
]

= ei〈b,y〉Rd · E
[
ei〈AX,y〉Rd

]
= ei〈b,y〉Rd · E

[
ei〈X,A

>y〉
Rm

]
= ei〈b,y〉Rd · ei〈v,A

>y〉
Rm
− 1

2〈A>y,QA>y〉Rm

= ei〈Av+b,y〉
Rd
− 1

2〈y,AQA>y〉Rd .

(0.90)

This shows that
Ω 3 ω 7→ AX(ω) + b ∈ Rd (0.91)

is NAv+b,AQA>-distributed. The proof of Proposition 0.4.15 is thus completed.

The next result, Corollary 0.4.16, is an immediate consequence from Proposition 0.4.15
and Exercise 0.4.14.
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Corollary 0.4.16. Let (Ω,A, P ) be a probability space, let d ∈ N, v ∈ Rd, let Q ∈ Rd×d

be a nonnegative symmetric d × d-matrix, and let X : Ω → R
d be an Nv,Q-distributed

random variable. Then

EP [X] = v and CovP (X) = Q. (0.92)

Corollary 0.4.16 motivates the following notion.

Definition 0.4.17 (Normally distributed random variable). We say that X is normally
distributed on Ω (we say that X is normally distributed, we say that X is jointly normally
distributed, we say that X is Gaussian distributed, we say that X is jointly Gaussian
distributed) if and only if there exist a natural number n ∈ N and a probability space
(Ω,F , P ) such that it holds

(i) that Ω = (Ω,F , P ),

(ii) that X is an F/B(Rn)-measurable function,

(iii) that EP
[
‖X‖2

Rn

]
<∞, and

(iv) that X(P )B(Rn) = NEP [X],CovP (X).

Definition 0.4.18 (Standard normal random variable). We say that X is a standard
normal random variable on Ω (we say that X is a standard normal random variable) if
and only if there exists a probability space (Ω,F , P ) such that it holds

(i) that Ω = (Ω,F , P ),

(ii) that X is an F/B(R)-measurable function, and

(iii) that X(P )B(R) = N0,IR.
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1 Generation of random numbers

1.1 Pseudo random number generators

If one talks about random numbers, first of all the question arises what randomness
means. Does randomness exist? What do we mean by random numbers? Discussing
these questions, one very quickly ends up in a philosophical discussion. One possible
real random number generator is a USB stick which returns zeros and ones according
to physical phenomena like. Here we do not focus on this discussion but we will briefly
sketch the concept and the generation of U(0,1)-pseudo random numbers.

Definition 1.1.1. Let (Ω,A, P ) be a probability space and let Un : Ω → R, n ∈ N, be
a sequence of P -independent U(0,1)-distributed random variables. U(0,1)-pseudo random
numbers are sequences of real numbers that are calculated by a deterministic algorithm
and that have – in an appropriate sense – similiar statistical properties as (Un)n∈N.

Clearly, this is a very vague definition and the reader is referred to the literature
(e.g., [Knuth(1998), Kloeden and Platen(1992), Higham(2004), Glasserman(2004)] and
the references mentioned therein) for a more elaborate treatment of U(0,1)-pseudo ran-
dom numbers. An advantage of U(0,1)-pseudo random numbers compared to “real”
random numbers is the fact that they can be reproduced and one can repeat exper-
iments or variants of experiments with the same pseudo random input (cf. the com-
mand “rng(’default’)” in Matlab). The algorithms that produce U(0,1)-pseudo random
numbers are called U(0,1)-pseudo random number generators (U(0,1)-PRNGs for short).
Examples of classical U(0,1)-PRNGs are Knuth’s Algorithm K, Lehmer’s linear congru-
ent pseudo random number generator, which imitates Roulette, and IBM’s RANDU
(see, e.g., [Knuth(1998)]). These generators should not be used nowadays. When many
random numbers are needed, U(0,1)-PRNGs with large periods have to be used. Today ex-
amples of in this sense “good” U(0,1)-PRNGs are Marsaglia’s Mother, Mersenne Twister,
Kiss, . . . . The function “rand” in MATLAB allows to use different U(0,1)-PRNGs, where
Mersenne Twister is used in the R2011a release by default.

In the following we assume that we are given a method that generates independent U(0,1)-
distributed random numbers (compare with the command “rand” in Matlab). We then
present different methods how to transform these U(0,1)-distributed random numbers into
random numbers with other distributions. First, in Section 1.2, we present methods that
work for a general class of distributions. Later, in Section 1.3, specific methods for the
normal distribution are presented.
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The content of this chapter is well known in the literature on the generation of random
numbers. It can in a similar form be found in several books and lectures notes containing
a section on the generation of random numbers; cf., e.g., in [Kloeden and Platen(1992)],
[Wichura(2001)], [Glasserman(2004)], [Ross(2006)], [Asmussen and Glynn(2007)] and
[Müller-Gronbach et al.(2012)Müller-Gronbach, Novak, and Ritter].

1.2 Methods for general distributions

1.2.1 Inversion method

This subsection presents the inversion method (also known as inverse transformation
method) which transforms uniformly distributed random numbers to those of an arbi-
trary distribution by using a suitable generalized inverse of the distribution function.
This generalized inverse of the distribution function is the subject of the next definition.

Definition 1.2.1 (Generalized inverse distribution function associated to a distribution
function). Let F : R→ [0, 1] be a distribution function. Then we denote by IF : (0, 1)→
R the function which satisfies for all y ∈ (0, 1) that

IF (y) = inf{x ∈ R : F (x) ≥ y} = inf
(
F−1([y, 1])

)
(1.1)

and we call IF the generalized inverse distribution function associated to F .
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Definition 1.2.1 plays a key role in the inversion method which we present in Theo-
rem 1.2.7 below. In the following we present a few comments regarding Definition 1.2.1.

(i) Let F : R → [0, 1] be a distribution function. Then note that for every y ∈ (0, 1)
it holds that the set

{x ∈ R : F (x) ≥ y} (1.2)

(see Definition 1.2.1) is not empty and bounded from below. Indeed, the fact that
F satisfies

lim
x→∞

F (x) = 1 (1.3)

ensures that for every y ∈ (0, 1) it holds that {x ∈ R : F (x) ≥ y} is not empty.
Moreover, the fact that F satisfies

lim
x→−∞

F (x) = 0 (1.4)

implies that for every y ∈ (0, 1) it holds that {x ∈ R : F (x) ≥ y} is bounded from
below. Therefore, the function IF : (0, 1)→ R in Definition 1.2.1 is well defined.

(ii) Let F : R → [0, 1] be a distribution function. The generalized inverse distribution
function associated to F is sometimes also referred to as quantile function associated
to F (cf. Item (iii) below).

(iii) Let (Ω,F , P ) be a probability space, let X : Ω → R be an F/B(R)-measurable
function (we think of X as a model for the change of the value of a given portfolio
of financial assets within a given time period), let F : R→ [0, 1] be the distribution
function of −X and let α ∈ (0, 1) (we think of α as a confidence level for the
statement below, which is typically a number close to 1 such as 99% or 95%, and
we think of 1− α as a small number such as 1% or 5%). Then the real number

IF (α) = min{x ∈ R : F (x) ≥ α} = min{x ∈ R : P (−X ≤ x) ≥ α}
= min{x ∈ R : P (¬ [−X > x]) ≥ α}
= min{x ∈ R : P (−X > x) ≤ 1− α}

(1.5)

is sometimes referred to as the value at risk with confidence level α associated to −X
(VaR with confidence level α associated to −X) in the financial risk management
literature. Observe that (1.5) ensures that

P
(
−X ≤ IF (α)

)
= P

(
¬ [−X > IF (α)]

)
≥ α. (1.6)

It thus holds with a probability of at least α that the loss −X will not exceed the
number IF (α) (the value at risk with confidence level α).

In the next step we illustrate Definition 1.2.1 by means of a simple example.

Example 1.2.2 (Generalized inverse distribution function for the Bernoulli distribu-
tion). Let p ∈ [0, 1] be a real number and let F : R → [0, 1] be the distribution function
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of the Bernoulli distribution with parameter p ∈ [0, 1], i.e., assume that for all x ∈ R it
holds that

F (x) = Berp((−∞, x]) = (1− p) · δR0 ((−∞, x]) + p · δR1 ((−∞, x])

=


0 : x < 0,

1− p : 0 ≤ x < 1,

1 : x ≥ 1

(1.7)

(see Subsection 0.4.1.2). Then the generalized inverse distribution function IF : (0, 1)→
R associated to F satisfies that for all y ∈ (0, 1) it holds that

IF (y) = inf{x ∈ [0,∞) : F (x) ≥ y} =

{
0 : 0 < y ≤ 1− p
1 : 1− p < y < 1

. (1.8)

Class exercise 1.2.3. Let (Ω,F , P ) be a probability space, let c ∈ R, let X : Ω→ R be
an F/B(R)-measurable function which satisfies for all ω ∈ Ω that

X(ω) = c, (1.9)

and let F : R→ [0, 1] be the distribution function of X. What is IF (y), y ∈ (0, 1)?

A few essentially well-known properties of the inverse distribution function are collected
in the following two lemmas, Lemma 1.2.4 and Lemma 1.2.5. Most of the statements
and most of the proofs of Lemma 1.2.4 and Lemma 1.2.5 can, for example, be found in
Theorems 2 and 3 in the first section in [Wichura(2001)]. In particular, we also follow
[Wichura(2001)] by referring to the properties in Item (iv) and Item (v) in Lemma 1.2.4
as “switching formulas”.

Lemma 1.2.4 (Properties of generalized inverse distribution functions). Let F : R →
[0, 1] be a distribution function and let IF : (0, 1) → R be the generalized inverse distri-
bution function associated to F . Then IF fulfills the following properties:

(i) IF is non-decreasing, i.e., for all y1, y2 ∈ (0, 1) with y1 ≤ y2 : IF (y1) ≤ IF (y2),

(ii) for all y ∈ (0, 1) : F (IF (y)) ≥ y, F−1([y, 1]) = [IF (y),∞), and IF (y) =
min

(
F−1([y, 1])

)
(iii) for all x ∈ F−1((0, 1)) = {z ∈ R : F (z) ∈ (0, 1)} : IF (F (x)) ≤ x,

(iv) for all x ∈ R, y ∈ (0, 1) : IF (y) ≤ x if and only if y ≤ F (x) (switching formula),

(v) for all x ∈ R, y ∈ (0, 1) : IF (y) > x if and only if y > F (x) (switching formula),
and

(vi) for all open sets D ⊆ R with the property that F |D : D → [0, 1] is injective and all
y ∈ F (D) : F |−1

D (y) = IF (y).
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Proof of Lemma 1.2.4. First of all, observe that for all y1, y2 ∈ R with y1 ≤ y2 it holds
that

{x ∈ R : F (x) ≥ y1} ⊇ {x ∈ R : F (x) ≥ y2} . (1.10)

This proves the monotonicity of IF as asserted in Item (i). Next let y ∈ (0, 1) be
arbitrary and let (xn)n∈N ⊆ F−1([y, 1]) be a non-increasing sequence of real numbers
which satisfies

lim
n→∞

xn = inf{x ∈ R : F (x) ≥ y} = IF (y). (1.11)

The definition of the infimum ensures that such a sequence does indeed exist. The right
continuity of F assures that

y ≤ lim
n→∞

F (xn) = F
(

lim
n→∞

xn

)
= F (IF (y)). (1.12)

This proves Item (ii). In the next step we observe that for all x ∈ F−1((0, 1)) ⊆ R it
holds that

IF
(
F (x)

)
= inf{z ∈ R : F (z) ≥ F (x)} ≤ inf{x} = x. (1.13)

This establishes Item (iii). The switching formula in Item (iv) follows immediately from
Item (ii), from Item (iii), from the monotonicity of F , and from the monotonicity of IF
(see Item i). Clearly, the switching formula in Item (iv) is equivalent to the switching
formula in Item (v). Next let D ⊆ R be an open set such that F |D : D → [0, 1] is injective
(which is equivalent to the assumption that F |D : D → [0, 1] is strictly increasing). The
fact that F : R→ [0, 1] is non-decreasing and the fact that D is an open set ensure that
for all z ∈ F (D) it holds that

F−1({z}) = {x ∈ R : F (x) = z} = {F |−1
D (z)}. (1.14)

This implies that for all z ∈ F (D) it holds that

IF (z) = inf{x ∈ R : F (x) ≥ z} = inf{x ∈ R : F (x) = z}
= inf{F |−1

D (z)} = F |−1
D (z) .

(1.15)

The proof of Lemma 1.2.4 is thus completed.

Distribution functions are càdlàg (continue à droite, limitée à gauche) functions and
are, in particular, right continuous; recall Definition 0.3.7 in Chapter 0. The generalized
inverse distribution function associated to a given distribution function is, in turn, a
càglàd (continue à gauche, limitée à droite) function and is, in particular, left continuous.
This is the subject of the next lemma.
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Lemma 1.2.5 (Continuity properties of generalized inverse distribution functions). Let
F : R→ [0, 1] be a distribution function and let IF : (0, 1)→ R be the generalized inverse
distribution function associated to F . Then IF fulfills the following properties:

(i) IF is a càglàd (continue à gauche, limitée à droite) function, i.e., for all y ∈
(0, 1) : limz↗y IF (z) and limz↘y IF (z) exist and limz↗y IF (z) = IF (y),

(ii) for all y ∈ (0, 1) :
[
IF (y), limz↘y IF (z)

)
⊆ F−1({y}) ⊆

[
IF (y), limz↘y IF (z)

]
,

(iii) for all y ∈ (0, 1) : IF is continuous in y ∈ (0, 1) if and only if #R
(
F−1({y})

)
=

#R
(
{x ∈ R : F (x) = y}

)
≤ 1.

Proof of Lemma 1.2.5. First of all, observe that the fact that IF is non-decreasing (see
Item (i) in Lemma 1.2.5) implies that for every y ∈ (0, 1) it holds that the limits

lim
z↗y

IF (z) and lim
z↘y

IF (z) (1.16)

exist. The monotonicity of IF also proves that for all y ∈ (0, 1) it holds that

lim
z↗y

IF (z) ≤ IF (y). (1.17)

It thus remains to establish that for all y ∈ (0, 1) it holds that

lim
z↗y

IF (z) ≥ IF (y). (1.18)

For this observe that Item (ii) in Lemma 1.2.4 and the fact that F and IF are non-
decreasing imply that for all y ∈ (0, 1), ε ∈ (0, y) it holds that

F

(
lim
z↗y

IF (z)

)
≥ F (IF (y − ε)) ≥ y − ε. (1.19)

This, in turn, ensures that for all y ∈ (0, 1) it holds that

F

(
lim
z↗y

IF (z)

)
≥ y. (1.20)

The definition of IF hence establishes that for all y ∈ (0, 1) it holds that

IF (y) = inf{x ∈ R : F (x) ≥ y} ≤ inf

{
lim
z↗y

IF (z)

}
= lim

z↗y
IF (z). (1.21)

This proves Item (i). In the next step we note that for all y ∈ (0, 1) and all x ∈ F−1({y})
it holds that

F (x) ≥ y. (1.22)

The fact that
∀ y ∈ (0, 1) : IF (y) = min{z ∈ R : F (z) ≥ y} (1.23)
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hence implies that for all y ∈ (0, 1) and all x ∈ F−1({y}) it holds that

x ≥ IF (y). (1.24)

This ensures that for all y ∈ (0, 1) it holds that

F−1({y}) ⊆ [IF (y),∞). (1.25)

Next we note that for all x ∈ R, y ∈ (0, 1) with limz↘y IF (z) < x it holds that there
exists a real number z ∈ (y, 1) such that

IF (z) ≤ x. (1.26)

The switching formula in Item (iv) in Lemma 1.2.4 therefore implies that for every x ∈ R,
y ∈ (0, 1) with limz↘y IF (z) < x it holds that there exists a real number z ∈ (y, 1) such
that

z ≤ F (x). (1.27)

This proves that for every x ∈ R, y ∈ (0, 1) with limz↘y IF (z) < x it holds that

y < F (x). (1.28)

This implies that for all y ∈ (0, 1) it holds that(
lim
z↘y

IF (z),∞
)
⊆ {x ∈ R : F (x) > y} = F−1((y, 1]) . (1.29)

This, in turn, ensures that for every y ∈ (0, 1) it holds that

F−1({y}) ⊆ F−1([0, y]) = F−1
(
[0, 1]\(y, 1]

)
= R\F−1((y, 1])

⊆ R\
(

lim
z↘y

IF (z),∞
)

=

(
−∞, lim

z↘y
IF (z)

]
.

(1.30)

Combining (1.25) and (1.30) proves that for every y ∈ (0, 1) it holds that

F−1({y}) ⊆
[
IF (y),∞

)
∩
(
−∞, lim

z↘y
IF (z)

]
=

[
IF (y), lim

z↘y
IF (z)

]
. (1.31)

Next we note that for every x ∈ R, y ∈ (0, 1) with y < F (x) it holds that there exists a
real number z ∈ (y, 1) such that

z ≤ F (x). (1.32)

The switching formula in Item (iv) in Lemma 1.2.4 hence implies that for every x ∈ R,
y ∈ (0, 1) with y < F (x) it holds that there exists a real number z ∈ (y, 1) such that

IF (z) ≤ x. (1.33)

This ensures that for every x ∈ R, y ∈ (0, 1) with y < F (x) it holds that

lim
z↘y

IF (z) ≤ x. (1.34)
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This proves that for every y ∈ (0, 1) it holds that

F−1((y, 1]) = {x ∈ R : F (x) > y} ⊆
[

lim
z↘y

IF (z),∞
)

(1.35)

Hence, we obtain that for all y ∈ (0, 1) it holds that(
−∞, lim

z↘y
IF (z)

)
= R\

[
lim
z↘y

IF (z),∞
)
⊆ R\F−1((y, 1]) = F−1

(
[0, y]

)
. (1.36)

This together with the fact that

∀ y ∈ (0, 1) : [IF (y),∞) = F−1([y, 1]) (1.37)

(see Item (ii) in Lemma 1.2.4) implies that for every y ∈ (0, 1) it holds that[
IF (y), lim

z↘y
IF (z)

)
=

(
−∞, lim

z↘y
IF (z)

)
∩ [IF (y),∞)

⊆ F−1
(
[0, y]

)
∩ F−1([y, 1])

= F−1([0, y] ∩ [y, 1]) = F−1({y}).

(1.38)

This proves Item (ii). Item (iii) is an immediate consequence of Item (ii). The proof of
Lemma 1.2.5 is thus completed.

Class exercise 1.2.6. Prove or disprove the following statement: For every distribution
function F : R→ [0, 1] and every y ∈ (0, 1), x ∈ R it holds that F (x) > y if and only if
x > IF (y).

In the following we assume that there exists a method to generate U(0,1)-distributed
random numbers. Then the next proposition results in a method to generate realizations
of a real valued random variable with an arbitrary given distribution function. This
method is referred to as inversion method or inverse transformation method in the
literature.

Theorem 1.2.7 (Inversion method). Let F : R → [0, 1] be a distribution function, let
(Ω,F , P ) be a probability space, and let U : Ω→ R be an U(0,1)-distributed random vari-
able with U(Ω) ⊆ (0, 1). Then F is the distribution function of the F/B(R)-measurable
function IF (U) = IF ◦ U : Ω→ R, i.e., it holds for all x ∈ R that

P
(
IF (U) ≤ x

)
= F (x). (1.39)

Proof of Theorem 1.2.7. Observe that the switching formula in Item (iv) of Lemma 1.2.4
implies that for all x ∈ R it holds that

P
(
IF (U) ≤ x

)
= P

(
U ≤ F (x)

)
= F (x). (1.40)

This completes the proof of Theorem 1.2.7.
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We add some remarks concerning Theorem 1.2.7. Let (Ω,F , P ) be a probability space,
let U : Ω→ R be an U(0,1)-distributed random variable with U(Ω) ⊆ (0, 1), letX : Ω→ R

be an arbitrary F/B(R)-measurable function with distribution function F : R → [0, 1]
(i.e., assume for all x ∈ R that F (x) = P (X ≤ x)), and let X̂ : Ω→ R be the function
given by X̂ = IF (U). Theorem 1.2.7 proves that X̂ and X have the same distribution
on B(R), i.e., Theorem 1.2.7 proves that

X(P )B(R) = X̂(P )B(R). (1.41)

If we thus want to simulate a realization from X, it is thus sufficient to calculate the
generalized inverse distribution function IF : (0, 1) → R associated to F , to simulate a
realization from U , and then to put this realization as an argument of IF .

Class exercise 1.2.8. Let (Ω,F , P ) be a probability space, let U : Ω→ R be an U(0,1)-
distributed random variable, let X : Ω → R be a function which satisfies for all ω ∈ Ω
that

X(ω) = sin(U(ω)), (1.42)

and let F : R→ [0, 1] be the distribution function of X. What is IF (y), y ∈ (0, 1)?

We now calculate the generalized inverse distribution function for a few example prob-
ability distributions which are absolutely continuous with respect to the Lebesgue mea-
sure.

Example 1.2.9 (Absolutely continuous distributions). Let (Ω,F , P ) be a probability
space, let X : Ω → R be an F/B(R)-measurable function with distribution function
F : R→ [0, 1], and let U : Ω→ R be an U(0,1)-distributed random variable with U(Ω) ⊆
(0, 1).

(i) In this item let n ∈ N be a natural number and assume that F satisfies for all
x ∈ (0, 1) that

F (x) = xn. (1.43)

Then F |(0,1) : (0, 1)→ [0, 1] is injective and it holds for all y ∈ (0, 1) that

F |−1
(0,1)(y) = y

1
n . (1.44)

Item (vi) in Lemma 1.2.4 and Theorem 1.2.7 hence prove that

X = U
1
n (1.45)

in distribution on B(R).

(ii) In this item let λ ∈ (0,∞) be a real number and assume that X is expλ-distributed
( exponentially distributed with parameter λ; see Subsection 0.4.2.2). Then it holds
for all x ∈ R that

F (x) = expλ
(
(−∞, x]

)
=

{
0 : x < 0´ x

0
λ e−λy dy =

[
−e−λy

]y=x

y=0
= 1− e−λx : x ≥ 0

.

(1.46)
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In particular, it holds that F |(0,∞) : (0,∞) → [0, 1] is injective and Item (vi) in
Lemma 1.2.4 therefore shows that for all y ∈ (0, 1) it holds that

IF (y) =
− ln(1− y)

λ
. (1.47)

Theorem 1.2.7 hence proves that

X =
− ln(U)

λ
(1.48)

in distribution on B(R).

1 N = 10ˆ5;
2 lambda = 0 . 1 ;
3 X=−log (rand (1 ,N))/ lambda ;
4 hist (X, 1 0 ˆ 3 ) ;

Matlab code 1.1: A Matlab code which plots 105 realizations of a pseudo exp0.1-
distributed random variable in an histogram with 1000 bins.
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Figure 1.1: Result of a call of the Matlab code 1.1.
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(iii) In this item let µ ∈ R and λ ∈ (0,∞) be real numbers and assume that X is Cauµ,λ-
distributed ( Cauchy distributed with parameters µ and λ; see Subsection 0.4.2.3).
Then it holds for all x ∈ R that

F (x) = Cauµ,λ
(
(−∞, x]

)
=

ˆ x

−∞

1

πλ
(

1 + (y−µ)2

λ2

) dy
=

1

πλ

ˆ x

−∞
arctan′

(
y−µ
λ

)
dy =

1

π

ˆ x−µ
λ

−∞
arctan′(y) dy

=
1

π

[
arctan(x−µ

λ
) +

π

2

]
=

arctan(x−µ
λ

)

π
+

1

2
.

(1.49)

This shows that F : R→ [0, 1] is injective and that for all y ∈ (0, 1) it holds that

F−1(y) = λ tan
(
π(y − 1

2
)
)

+ µ. (1.50)

Item (vi) in Lemma 1.2.4 and Theorem 1.2.7 hence show that

X = λ tan
(
π(U − 1

2
)
)

+ µ (1.51)

in distribution on B(R).

After having presented the inverse transformation method for a few distributions that
are absolutely continuous with respect to the Lebesgue-Borel measure, we now intend
to illustrate the inverse transformation method in Theorem 1.2.7 in the case of a few
discrete distributions. For this the following two notions are used.

Definition 1.2.10 (Round down to the grid). We denote by b·ch : R→ R, h ∈ (0,∞),
the functions which satisfy for all h ∈ (0,∞), x ∈ R that

bxch = max((−∞, x] ∩ {0, h,−h, 2h,−2h, . . . }) . (1.52)

Definition 1.2.11 (Round up to the grid). We denote by d·eh : R → R, h ∈ (0,∞),
the functions which satisfy for all h ∈ (0,∞), x ∈ R that

dxeh = min([x,∞) ∩ {0, h,−h, 2h,−2h, . . . }) . (1.53)

Class exercise 1.2.12. Let x ∈ R, h ∈ (0,∞). What is max{x, bxch, dxeh} and
min{x, bxch, dxeh}?

Class exercise 1.2.13. What is b1/8c1/2, d−2e0.3, and b−2c0.3?

Example 1.2.14 (Discrete distributions). Let (pn)n∈N0 ⊆ [0, 1] be a family of real num-
bers with

∞∑
n=0

pn = 1, (1.54)
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let (Ω,F , P ) be a probability space, let U : Ω→ R be an U(0,1)-distributed random variable
with U(Ω) ⊆ (0, 1), let X : Ω→ R be an F/B(R)-measurable function with

X(P )B(R) =
∞∑
n=0

pnδ
R

n |B(R), (1.55)

and let F : R→ [0, 1] be the distribution function of X. Note that for all x ∈ R it holds
that

F (x) =
∞∑
n=0

1[n,∞)(x) · pn =
∞∑
n=0

1[n,n+1)(x)

(
n∑
k=0

pk

)
=

bxc1∑
n=0

pn. (1.56)

Hence, we get for all y ∈ (0, 1) that

IF (y) = min{n ∈ N0 : F (n) ≥ y} = min

{
n ∈ N0 :

n∑
k=0

pk ≥ y

}
. (1.57)

We illustrate (1.57) through a few more specific examples.

(i) In this item let p ∈ (0, 1) be a real number and assume that X is Berp-distributed
( Bernoulli distributed with parameter p; see Subsection 0.4.1.2). Then it holds for
all n ∈ N that

p0 = 1− p, p1 = p, and p1+n = 0. (1.58)

The distribution function F : R → [0, 1] of Berp and the generalized inverse dis-
tribution function IF : R → (0, 1) associated to F are presented in Example 1.2.2
above. According to Theorem 1.2.7, the following algorithm returns as an output a
realization of a random variable which is Bernoulli distributed with parameter p.

Output: Realization x of X ∼ Berp
Generate realization u of U ∼ U(0,1)

if u ≤ 1− p then
x = 0

else
x = 1

end if

Using the observations that

U = 1− U (1.59)

in distribution on B(R) and that for all u ∈ (0, 1) it holds that

u ≤ 1− p if and only if p ≤ 1− u (1.60)
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results in the following alternative algorithm.
Output: Realization x of X ∼ Berp
Generate realization u of U ∼ U(0,1)

if u < p then
x = 1

else
x = 0

end if

In Matlab the above algorithm can be implemented through the command “rand¡p”
(see Figure 1.2 below).

Figure 1.2: Simulating realizations of a pseudo Ber0.5-distributed random variable.

(ii) Let λ ∈ (0,∞) be a real number and assume that X is Poiλ-distributed ( Poisson
distributed with parameter λ; see Subsection 0.4.1.6). Then it holds for all n ∈ N0

that pn = λn

n! eλ
. Hence, we obtain for all n ∈ N0 that

pn+1 =
λ(n+1)

(n+ 1)! eλ
=

λ

(n+ 1)
pn . (1.61)
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Equation (1.57), equation (1.61), and Theorem 1.2.7 result in the following algo-
rithm for generating realizations of X.

Output: Realization x of X ∼ Poiλ
Generate realization u of U ∼ U(0,1)

n = 0
p = e−λ

F = p
while u > F do
p = p · λ/(n+ 1)
F = F + p
n = n+ 1

end while
x = n

If the parameter λ is large, then much more efficient algorithms can, e.g., be found
in Section 5 in [Ahrens and Dieter(1974)].

(iii) In this item let n ∈ N and p ∈ (0, 1) be real numbers and assume that X is bn,p-
distributed ( binomial distributed with parameters n and p; see Subsection 0.4.1.3).
Then it holds for all k ∈ {0, 1, . . . , n} that

pk =

(
n

k

)
pk (1− p)(n−k) (1.62)

and it holds for all k ∈ {n + 1, n + 2, . . . } that pk = 0. Note that the coefficients
(pk)k∈{0,1,...,n} satisfy the recursion that for all k ∈ {0, 1, . . . , n− 1} it holds that

p0 = (1− p)n (1.63)

and

pk+1 =

(
n

k + 1

)
p(k+1) (1− p)(n−(k+1))

=
p

(1− p)
n!

(n− k − 1)! (k + 1)!
pk (1− p)(n−k)

=
p

(1− p)
(n− k)

(k + 1)
pk.

(1.64)

Exploiting (1.57), (1.64), and Theorem 1.2.7 results in the following algorithm for
generating binomial distributed random numbers.

Output: Realization x of X ∼ bn,p
Generate realization u of U ∼ U(0,1)

k = 0
r = p/(1− p)
q = (1− p)n
F = q
while u > F do

Work in progress. Copyright (C) with the authors.
Dissemination prohibited. December 15, 2018

40



Chapter 1. Generation of random numbers

q = r · q · (n− k)/(k + 1)
F = F + q
k = k + 1

end while
x = k

(iv) In this item let p ∈ (0, 1) be a real number and assume that X is geomp-distributed
( geometrically distributed with parameter p; see Subsection 0.4.1.4). Then it holds
for all n ∈ N0 that

pn = p (1− p)n. (1.65)

This implies for all n ∈ {−1, 0, 1, 2, . . . } that

F (n) =
n∑
k=0

pk = p

(
n∑
k=0

(1− p)k
)

=
p
(
1− (1− p)(n+1)

)
(1− (1− p))

= 1− (1− p)(n+1).

Therefore, we obtain that for every u ∈ (0, 1) and every n ∈ N0 it holds that

F (n− 1) = 1− (1− p)n < u ≤ F (n) = 1− (1− p)(n+1)

⇔ (1− p)n > 1− u ≥ (1− p)(n+1)

⇔ n · ln(1− p) > ln(1− u) ≥ (n+ 1) · ln(1− p)

⇔ n <
ln(1− u)

ln(1− p)
≤ n+ 1

⇔
⌈

ln(1− u)

ln(1− p)

⌉
1

= n+ 1.

(1.66)

This shows for all u ∈ (0, 1) that

IF (u) =

⌈
ln(1− u)

ln(1− p)

⌉
1

− 1. (1.67)

Hence, we get

X =

⌊
ln(U)

ln(1− p)

⌋
1

(1.68)

in distribution on B(R). Please compare (1.68) for the geometric distribution with
(1.48) for the exponential distribution.

Above we have used the inversion method (see Theorem 1.2.7 above) for the simulation
of real valued random variables. The inversion method also has an interesting purely
analytical consequence. More precisely, Lemma 0.3.8 in Subsection 0.3.2 illustrates that
every probability measure on (R,B(R)) induces a distribution function. Corollary 1.2.18
below, in turn, shows that every distribution function also induces a probability mea-
sure on (R,B(R)). Corollary 1.2.18 is a consequence of Theorem 1.2.7. In our proof
of Corollary 1.2.18 we also employ the unique theorem for probability measures, see
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Theorem 1.2.15 below, as well as Lemma 1.2.17 below. Theorem 1.2.15 is, e.g., proved
as a special case of Lemma 1.42 in [Klenke(2008)].

Theorem 1.2.15 (Uniqueness theorem for probability measures). Let Ω be a set, let
A ⊆ P(Ω) be a set which satisfies for all A,B ∈ A that

A ∩B ∈ A, (1.69)

and let µk : σΩ(A)→ [0,∞], k ∈ {1, 2}, be probability measures which satisfy that

µ1|A = µ2|A. (1.70)

Then
µ1 = µ2. (1.71)

Exercise 1.2.16 (An ∩-stable generating system for the Borel sigma-algebra). Let d ∈
N and let A ⊆ P(Rd) be the set given by

A = ∪x1,...,xd∈R {(−∞, x1)× · · · × (−∞, xd)} . (1.72)

(i) Prove for all A,B ∈ A that

A ∩B ∈ A. (1.73)

(ii) Prove that

B(Rd) = σRd(A). (1.74)

The following lemma can, e.g., be proved analogously as Exercise 1.2.16.

Lemma 1.2.17 (Another ∩-stable generating system for the Borel sigma-algebra). Let
d ∈ N and let A ⊆ P(Rd) be the set given by

A = ∪x1,...,xd∈R {(−∞, x1]× · · · × (−∞, xd]} . (1.75)

Then

(i) it holds for all A,B ∈ A that
A ∩B ∈ A (1.76)

and

(ii) it holds that
B(Rd) = σRd(A). (1.77)

We now present the promised corollary of Theorem 1.2.22, Corollary 1.2.18 below. Ob-
serve that Lemma 0.3.8 in Subsection 0.3.2 above ensures that Φ in (1.78)–(1.79) in
Corollary 1.2.18 below does indeed exist.
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Corollary 1.2.18 (Bijection between probability measures on (R,B(R)) and distribu-
tion functions). Let

Φ:

{
P : B(R)→ [0,∞] :

P is a probability measure

}
→
{

F : R→ [0, 1] :
F is a distribution function

}
(1.78)

be the function which satisfies for all probability measures P : B(R) → [0,∞] and all
x ∈ R that (

Φ(P )
)
(x) = P

(
(−∞, x]

)
. (1.79)

Then Φ is bijective.

Proof of Corollary 1.2.18. Theorem 1.2.15 and Lemma 1.2.17 ensure that Φ is injective.
It thus remains to prove that Φ is surjective. For this let F : R→ [0, 1] be an arbitrary
distribution function, let Ω = (0, 1), let A = B((0, 1)), let P : A → [0,∞] be the
probability measure given by

P = U(0,1)|A, (1.80)

and let U : Ω→ R be the function which satisfies for all x ∈ Ω that

U(x) = x. (1.81)

Then it holds that the triple (Ω,A, P ) is a probability space and that U : Ω→ R is an
U(0,1)-distributed random variable with U(Ω) = (0, 1). We can thus apply Theorem 1.2.7
to obtain that F : R→ [0, 1] is the distribution function of the random variable IF ◦U =
IF (U) : Ω→ R. We hence obtain that

Φ
((
IF ◦ U

)
(P )B(R)

)
= F. (1.82)

This completes the proof of Corollary 1.2.18.

In Theorem 1.2.22 below we intend to develop a deeper understanding of the relation
between a probability measure, a distribution function, and the generalized inverse dis-
tribution associated to it. The proof of Theorem 1.2.22 uses the following lemma.

Lemma 1.2.19 (Co-domain of the generalized inversion function). Let (Ω,F , P ) be a
probability space, let U : Ω → R be an U(0,1)-distributed random variable with U(Ω) ⊆
(0, 1), and let G : (0, 1) → R be a non-decreasing and left continuous function. Then it
holds that

G = IR3x 7→P (G(U)≤x)∈[0,1], (1.83)

i.e., it holds for all y ∈ (0, 1) that

G(y) = inf
{
x ∈ R : P

(
G(U) ≤ x

)
≥ y
}

= IR3x 7→P (G(U)≤x)∈[0,1](y). (1.84)
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Proof of Lemma 1.2.19. Throughout this proof let F : R → [0, 1] be the distribution
function of the measure (G ◦ U)(P )B(R), i.e., assume that for all x ∈ R it holds that

F (x) =
(
(G ◦ U)(P )B(R)

)(
(−∞, x]

)
= P

(
G(U) ≤ x

)
. (1.85)

Observe that the fact that G is non-decreasing ensures that for all x ∈ R it holds that

F (x) = P ({ω ∈ Ω: G(U(ω)) ≤ x}) = P
({
ω ∈ Ω: U(ω) ∈ G−1((−∞, x])

})
= λR

(
G−1((−∞, x])

)
= sup

(
G−1((−∞, x])

)
.

(1.86)

The left continuity of G hence proves that for all x ∈ F−1((0, 1)) it holds that

G(F (x)) = G
(
sup
(
G−1((−∞, x])

))
= sup

(
G
(
G−1((−∞, x])

))
≤ x. (1.87)

This and the fact that G is non-decreasing imply that for all y ∈ (0, 1), x ∈ R with
y ≤ F (x) < 1 it holds that

G(y) ≤ G(F (x)) ≤ x. (1.88)

Moreover, we note that (1.86) proves that for all y ∈ (0, 1), x ∈ R with F (x) = 1 it
holds that

G(y) ≤ x. (1.89)

This and (1.88) show that for all y ∈ (0, 1), x ∈ R with y ≤ F (x) it holds that

G(y) ≤ x. (1.90)

Hence, we obtain that for all y ∈ (0, 1) it holds that

G(y) ≤ min{x ∈ R : F (x) ≥ y} = IF (y). (1.91)

It thus remains to prove that for all y ∈ (0, 1) it holds that

G(y) ≥ IF (y). (1.92)

For this note that (1.86) implies that for all y ∈ (0, 1) it holds that

F (G(y)) = sup
(
G−1

(
(−∞, G(y)]

))
= sup{z ∈ (0, 1) : G(z) ≤ G(y)}

≥ sup{y} = y.
(1.93)

The switching formula in Item (iv) in Lemma 1.2.4 hence implies that for all y ∈ (0, 1)
it holds that

G(y) ≥ IF (y). (1.94)

The proof of Lemma 1.2.19 is thus completed.
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Combining Item (i) in Lemma 1.2.4 and Item (i) in Lemma 1.2.5 with Lemma 1.2.19
motivates the following definition.

Definition 1.2.20 (Generalized inverse distribution function). We say that G is a gen-
eralized inverse distribution function if and only if it holds

(i) that G ∈M((0, 1),R) is a function from (0, 1) to R,

(ii) that G is non-decreasing (it holds for all y1, y2 ∈ (0, 1) with y1 ≤ y2 that G(y1) ≤
G(y2)), and

(iii) that G is left-continuous (it holds for all y ∈ (0, 1) that limz↗y G(z) = G(y)).

Lemma 1.2.21. Let G : (0, 1) → R be a function. Then G is a generalized inverse
distribution function if and only if there exists a distribution function F : R → [0, 1]
such that

IF = G. (1.95)

Proof. Item (i) in Lemma 1.2.4 and Item (i) in Lemma 1.2.5 prove the “⇐” statement
in Lemma 1.2.21. Lemma 1.2.19 proves the “⇒” statement in Lemma 1.2.21. The proof
of Lemma 1.2.21 is thus completed.

Work in progress. Copyright (C) with the authors.
Dissemination prohibited. December 15, 2018

45



Chapter 1. Generation of random numbers

Theorem 1.2.22. Let (Ω,A, Q) be a probability space, let U : Ω → R be an U(0,1)-
distributed random variable with U(Ω) ⊆ (0, 1), let

Φ:

{
P ∈M(B(R), [0,∞]) :

P is a probability measure

}
→
{

F ∈M(R, [0, 1]) :
F is a distribution function

}
(1.96)

be the function which satisfies for all probability measures P : B(R) → [0,∞] and all
x ∈ R that (

Φ(P )
)
(x) = P

(
(−∞, x]

)
, (1.97)

let

I :

{
F ∈M(R, [0, 1]) :

F is a distribution function

}
→


G ∈M((0, 1),R) :

G is a generalized inverse
distribution function

 (1.98)

be the function which satisfies for all distribution functions F : R→ [0, 1] that

I(F ) = IF , (1.99)

and let

Ψ:


G ∈M((0, 1),R) :

G is a generalized inverse
distribution function

→
{

P ∈M(B(R), [0,∞]) :
P is a probability measure

}
(1.100)

be the function which satisfies for all generalized inverse distribution functions
G : (0, 1)→ R that

Ψ(G) = (G ◦ U)(Q)B(R). (1.101)

Then

(i) it holds that Φ, I, and Ψ are bijective and

(ii) it holds that

Φ ◦Ψ ◦ I = Iddom(I), I ◦Φ ◦Ψ = Iddom(Ψ), and Ψ ◦ I ◦Φ = Iddom(Φ) . (1.102)

Proof of Theorem 1.2.22. First, recall that Corollary 1.2.18 ensures that Φ is bijective.
Moreover, note that Theorem 1.2.7 proves that

Φ ◦Ψ ◦ I = Iddom(I) . (1.103)

This implies that
Ψ ◦ I = Φ−1. (1.104)

This and the fact that Φ−1 is bijective prove that

Ψ ◦ I (1.105)
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is bijective. This implies that I is injective. Next note that Lemma 1.2.19 ensures that
I is surjective. This together with the fact that I is injective ensures that I is bijective.
Furthermore, observe that (1.104) proves that

Ψ = Φ−1 ◦ I−1. (1.106)

This together with the fact that Φ and I are bijective ensures that Ψ is bijective too.
The second and the third identity in (1.102) follows from the first identity in (1.102).
The proof of Theorem 1.2.22 is thus completed.

Class exercise 1.2.23. Let F : R → [0, 1] be a distribution function, let (Ω,A, Q) be
a probability space, and let U : Ω → R be an U(0,1)-distributed random variable with
U(Ω) ⊆ (0, 1). What is

Φ
(
(IF ◦ U)(Q)B(R)

)
? (1.107)

Exercise 1.2.24. Let a, b ∈ R be real numbers with a < b and let F : R → [0, 1] be a
distribution function which satisfies for all y ∈ (0, 1) that

IF (y) = yb+ (1− y)a. (1.108)

Specify F (x), x ∈ R, explicitly and prove that your result is correct.

Exercise 1.2.25. In this exercise we do not distinguish between pseudo random num-
bers and actual random numbers. Write a Matlab function Cauchy(N,µ,λ) with
input N ∈ N, µ ∈ R, λ ∈ (0,∞) and output a realization of an (Cauµ,λ)

⊗N -
distributed random variable generated with the inversion method. The Matlab function
Cauchy(N,µ,λ) may use at most N realizations of an U(0,1)-distributed random vari-
able. Type Cauchy(10,0,1) to test your implementation.

Exercise 1.2.26. Let λ ∈ (0,∞) and let F : R → [0, 1] be the distribution function of
the Laplace distribution with parameter λ.

(i) Specify F (x), x ∈ R, explicitly.

(ii) Specify IF (y), y ∈ (0, 1), explicitly.

Exercise 1.2.27. In this exercise we do not distinguish between pseudo random numbers
and actual random numbers.

(i) Write a Matlab function Laplace(N,λ) with input N ∈ N, λ ∈ (0,∞) and
output a realization of an (Laplaceλ)

⊗N -distributed random variable generated with
the inversion method. The Matlab function Laplace(N,λ) may use at most N
realizations of an U(0,1)-distributed random variable. Type Laplace(10,0.5) to
test your implementation.

(ii) Write a Matlab function LaplacePlot() which plots 105 realizations of an
Laplace0.1-distributed random variable generated with your Matlab function
Laplace(N,λ) in a histogram with 1000 bins.
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1.2.2 Acceptance-rejection method

This subsection presents the acceptance-rejection method (also known as rejection sam-
pling). It is a method to simulate from a complicated distribution by using simulations
from a simpler distribution from which one assumes to be able to simulate from. To get
an idea of the acceptance-rejection method, we first consider the special situation of the
uniform distribution.

Lemma 1.2.28 (Acceptance-rejection method in the case of the continuous uniform
distribution). Let (Ω,A, P ) be a probability space, let d ∈ N, let A,B ∈ B(Rd) with
A ⊆ B and 0 < λRd(A) ≤ λRd(B) < ∞, let Yn : Ω → R

d, n ∈ N0, be P -independent
UB-distributed random variables, and let L : Ω → N0 be the function which satisfies for
all ω ∈ Ω that

L(ω) =

{
min({n ∈ N0 : Yn(ω) ∈ A}) : ω ∈ (∪n∈N0{Yn ∈ A})
0 : ω ∈ Ω\ (∪n∈N0{Yn ∈ A})

. (1.109)

Then it holds that YL : Ω→ R
d is UA-distributed.

Proof of Lemma 1.2.28. Note that for all C ∈ B(Rd) it holds that

P (YL ∈ C) =
∞∑
n=0

P ({YL ∈ C} ∩ {L = n})

=
∞∑
n=0

P ({Yn ∈ C ∩ A} ∩ {Y0, Y1, . . . , Yn−1 ∈ B\A})

=
∞∑
n=0

P (Yn ∈ C ∩ A) · P (Y0, Y1, . . . , Yn−1 ∈ B\A)

=
P (Y1 ∈ C ∩ A)

P (Y1 ∈ A)

∞∑
n=0

P (Yn ∈ A) · P (Y0, Y1, . . . , Yn−1 ∈ B\A)

=
UB(C ∩ A)

UB(A)

[
∞∑
n=0

P ({Yn ∈ A} ∩ {Y0, Y1, . . . , Yn−1 ∈ B\A})

]

=
λRd(C ∩ A)

λRd(A)

[
∞∑
n=0

P (L = n)

]
=
λRd(C ∩ A)

λRd(A)
= UA(C)

(1.110)

This completes the proof of Lemma 1.2.28.

Lemma 1.2.28 motivates the following algorithm. Let (Ω,A, P ) be a probability space,
let d ∈ N, let A,B ∈ B(Rd) with A ⊆ B and 0 < λRd(A) ≤ λRd(B) <∞, let Y : Ω→ R

d

be an UB-distributed random variable, and let X : Ω→ R
d be an UA-distributed random

variable. Then the following algorithm generates a realization from X.
Output : Realization x of X ∼ UA
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Generate realization y of Y ∼ UB
if y ∈ A then
x = y (ACCEPT)

else
Restart the algorithm (REJECT)

end if

Remark 1.2.29. Let us point out that the above presented algorithm is not completely
correct since it may happen that the algorithm never terminates and thus does not return
a realization of an UA-distributed random variable. In a Matlab implementation this is,
however, often not a problem since the U(0,1)-pseudo random number generator in Matlab
will in the case of many choices for A and B always produce at some point a realization
which is in A. In the following acceptance-rejection algorithms this point is neglected.

Exercise 1.2.30. In this exercise we do not distinguish between pseudo random numbers
and actual random numbers. Let A ⊆ R2 be the set given by

A =

{
(x, y) ∈ R2 :

x2

8
+ y2 ≤ 2

}
. (1.111)

(i) Write a Matlab function AcceptanceRejection(N) with input N ∈ N and out-
put a realization of an (UA)⊗N -distributed random variable generated with the
acceptance-rejection method. Type AcceptanceRejection(6) to test your imple-
mentation.

(ii) Write a Matlab function AcceptanceRejectionPlot() which uses your Matlab
function AcceptanceRejection(N) from Item (i) and the built-in Matlab func-
tion plot(...) to plot 105 realizations of an UA-distributed random variable in a
coordinate plane.

In the next step we extend the idea in Lemma 1.2.28 to more complicated distributions.
For this we need the notion of the subgraph of a nonnegative function. This is the subject
of the next definition.

Definition 1.2.31 (Subgraph of a real valued nonnegative function). Let d ∈ N and let
f : Rd → [0,∞) be a function. Then we denote by subgraph(f) the set given by

subgraph(f) = {(x, y) ∈ Rd ×R = Rd+1 : 0 ≤ y ≤ f(x)} (1.112)

and we call subgraph(f) the subgraph of f .

For every d ∈ N and every B(Rd)/B([0,∞))-measurable function f : Rd → [0,∞) it
holds that the set

subgraph(f) ⊆ Rd+1 (1.113)

is Borel measurable too. This is the subject of the next lemma.

Lemma 1.2.32. Let d ∈ N and let f : Rd → [0,∞) be an B(Rd)/B([0,∞))-measurable
function. Then

subgraph(f) ∈ B
(
R
d+1
)
. (1.114)

Work in progress. Copyright (C) with the authors.
Dissemination prohibited. December 15, 2018

49



Chapter 1. Generation of random numbers

Proof of Lemma 1.2.32. Throughout this proof let f̂ : Rd+1 → R be the function which
satisfies for all x ∈ Rd, y ∈ R that

f̂(x, y) = y − f(x). (1.115)

Observe that the assumption that f is B(Rd)/B([0,∞))-measurable ensures that f̂ is
B(Rd+1)/B(R)-measurable. This implies that

subgraph(f) = f̂−1
(
(−∞, 0]

)︸ ︷︷ ︸
∈B(Rd+1)

∩
(
R
d × [0,∞)

)︸ ︷︷ ︸
∈B(Rd+1)

∈ B(Rd+1). (1.116)

The proof of Proposition 1.2.35 is thus completed.

Observe that for all d ∈ N and all B(Rd)/B([0,∞))-measurable functions f : Rd →
[0,∞) it holds that

λRd+1

(
subgraph(f)

)
=

ˆ
Rd

ˆ f(x)

0

dy dx =

ˆ
Rd

f(x) dx. (1.117)

In the next step the acceptance-rejection method is presented and analyzed for more
general distributions. For this the following notion is used.

Definition 1.2.33 (Unnormalized density functions with respect to the Lebesgue-Borel
measure). We say that f is an unnormalized density of µ if and only if there exists a
natural number d ∈ N such that it holds

(i) that µ is a measure on (Rd,B(Rd)),

(ii) that f is an B(Rd)/B([0,∞))-measurable function,

(iii) that
´
Rd
f(x)λRd(dx) ∈ (0,∞), and

(iv) that for all A ∈ B(Rd) it holds that

µ(A) =

´
A
f(x)λRd(dx)´

Rd
f(x)λRd(dx)

. (1.118)

Lemma 1.2.34 (Properties of Usubgraph(f)-distributed random variables). Let d ∈ N, let
f : Rd → [0,∞) be an B(Rd)/B([0,∞))-measurable function with 0 <

´
Rd
f(x) dx <∞,

let (Ω,A, P ) be a probability space, and let X = (X1, . . . , Xd, Xd+1) : Ω → R
d+1 be

an Usubgraph(f)-distributed random variable. Then it holds that f : Rd → [0,∞) is an
unnormalized density of (X1, . . . , Xd)(P )B(Rd).

Proof of Lemma 1.2.34. Note that for all A ∈ B(Rd) it holds that

P ((X1, . . . , Xd) ∈ A) = P ((X1, . . . , Xd, Xd+1) ∈ A×R)

=
λRd+1

(
(A×R) ∩ subgraph(f)

)
λRd+1

(
subgraph(f)

) =

´
A
f(x) dx´

Rd
f(x) dx

.
(1.119)

This completes the proof of Lemma 1.2.34.
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The following proposition results in a method to generate Usubgraph(f)-distributed random
variables.

Proposition 1.2.35 (Generation of realizations of an Usubgraph(f)-distributed random
variable). Let d ∈ N, let (Ω,A, P ) be a probability space, let X : Ω→ R

d be an A/B(Rd)-
measurable function, let U : Ω→ R be an U(0,1)-distributed random variable, let f : Rd →
[0,∞) be an unnormalized density of X(P )B(Rd), and assume that X and U are P -
independent. Then the function Y : Ω→ R

d+1 given by

Y = (X, f(X) · U) (1.120)

is Usubgraph(f)-distributed.

Proof of Proposition 1.2.35. Let A ∈ B(Rd+1) and let Ax ∈ B(R), x ∈ Rd, be the sets
which satisfy for all x ∈ Rd that

Ax = {y ∈ R : (x, y) ∈ A}. (1.121)

Next observe that

P
(
Y ∈ A

)
= P

(
(X, f(X) · U) ∈ A

)
=

ˆ
Rd×(0,1)

1A(x, f(x) · u)
(
(X,U)(P )B(Rd+1)

)
(dx, du)

=

ˆ
Rd

ˆ 1

0

1A(x, f(x) · u) du
(
X(P )B(Rd)

)
(dx)

=

ˆ
Rd

ˆ 1

0

1Ax(f(x) · u) du
(
X(P )B(Rd)

)
(dx)

=
1´

Rd
f(x) dx

ˆ
Rd

ˆ 1

0

1Ax(f(x) · u) du f(x) dx.

(1.122)

This shows that

P
(
Y ∈ A

)
=

1

λR(d+1)

(
subgraph(f)

) ˆ
{y∈Rd : f(y)6=0}

ˆ 1

0

1Ax(f(x) · u) du f(x) dx

=
1

λR(d+1)

(
subgraph(f)

) ˆ
{y∈Rd : f(y)6=0}

ˆ f(x)

0

1Ax(u) du dx

=
1

λR(d+1)

(
subgraph(f)

) ˆ
Rd

ˆ f(x)

0

1Ax(u) du dx.

(1.123)

Work in progress. Copyright (C) with the authors.
Dissemination prohibited. December 15, 2018

51



Chapter 1. Generation of random numbers

This implies that

P
(
Y ∈ A

)
=

1

λR(d+1)

(
subgraph(f)

) ˆ
Rd

ˆ f(x)

0

1A(x, u) du dx

=
1

λR(d+1)

(
subgraph(f)

) ˆ
Rd

ˆ
R

1A(x, u) · 1[0,f(x)](u) du dx

=
1

λR(d+1)

(
subgraph(f)

) ˆ
R(d+1)

1A(x, u) · 1subgraph(f)(x, u)λR(d+1)(du, dx)

= Usubgraph(f)(A).

(1.124)

The proof of Proposition 1.2.35 is thus completed.

We now formulate the acceptance-rejection method. Let d ∈ N, let f, g : Rd → [0,∞)
be B(Rd)/B([0,∞))-measurable functions which satisfy for all y ∈ Rd that f(y) ≤ g(y)
and

0 <

ˆ
Rd

f(x) dx ≤
ˆ
Rd

g(x) dx <∞, (1.125)

let (Ω,A, P ) be a probability space, let X : Ω→ R
d be an A/B(Rd)-measurable function

which satisfies for all A ∈ B(Rd) that

X(P )B(Rd)(A) =

´
A
f(x) dx´

Rd
f(x) dx

, (1.126)

and let U : Ω → R and Y : Ω → R
d be P -independent random variables which satisfy

for all A ∈ B(Rd) that U is U(0,1)-distributed, that U(Ω) ⊆ (0, 1), and that

Y (P )B(Rd)(A) =

´
A
g(x) dx´

Rd
g(x) dx

. (1.127)

The goal of the acceptance-rejection method is to generate realizations from X where it
is assumed that one can generate realizations from (Y, U). Thus one can also generate
realizations from the Usubgraph(g)-distributed random variable (Y, g(Y ) · U) (see Propo-
sition 1.2.35). The condition f ≤ g ensures that subgraph(f) ⊆ subgraph(g). Using
Lemma 1.2.28 one can then obtain realizations from an Usubgraph(f)-distributed random
variable. For this observe that for every u ∈ (0, 1) and every y ∈ Rd it holds that

(y, g(y) · u) ∈ subgraph(f) if and only if g(y) · u ≤ f(y). (1.128)

According to Lemma 1.2.34, the first d-components of the Usubgraph(f)-distributed ran-
dom variable are then realizations from an X(P )B(Rd)-distributed random variable. The
algorithm thus reads as follows.

Acceptance-rejection method

Output : Realization x of X ∼ X(P )B(Rd) (with unnormalized density f)
Generate realization y of Y ∼ Y (P )B(Rd) (with unnormalized density g)
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Generate realization u of U ∼ U(0,1)

if g(y) · u ≤ f(y) then
x = y (ACCEPT)

else
Restart the algorithm (REJECT)

end if

Remark 1.2.36. Note that in the acceptance-rejection algorithm it is not assumed that
f is a probability density function, i.e., that

´
Rd
f(x) dx = 1 and it is also not assumed

that g is a probability density function, i.e., that
´
Rd
g(x) dx = 1.

Lemma 1.2.37 (Number of rejections before acceptance). Let d ∈ N, let f, g : Rd →
[0,∞) be B(Rd)/B([0,∞))-measurable functions which satisfy for all y ∈ Rd that f(y) ≤
g(y) and

0 <

ˆ
Rd

f(x) dx ≤
ˆ
Rd

g(x) dx <∞, (1.129)

let (Ω,A, P ) be a probability space, let Un : Ω → R, n ∈ N0, and Yn : Ω → R
d, n ∈ N0,

be P -independent random variables which satisfy for all n ∈ N0, A ∈ B(Rd) that Un is
U(0,1)-distributed, that Un(Ω) ⊆ (0, 1), and that

(
Yn(P )B(Rd)

)
(A) =

´
A
g(x) dx´

Rd
g(x) dx

, (1.130)

and let L : Ω→ N0 be the function which satisfies for all ω ∈ Ω that

L(ω) = (1.131){
min

({
n ∈ N0 : g(Yn(ω))Un(ω) ≤ f(Yn(ω))

})
: ω ∈ (∪n∈N0{g(Yn)Un ≤ f(Yn)})

0 : ω ∈ Ω\ (∪n∈N0{g(Yn)Un ≤ f(Yn)})
.

Then it holds that the function L : Ω → N0 is geom´
Rd

f(x) dx/
´
Rd

g(x) dx-distributed (geo-

metrically distributed with parameter p =
´
Rd

f(x) dx´
Rd

g(x) dx
).

Proof of Lemma 1.2.37. By definition it is clear that there exists a real number p ∈ (0, 1]
such that L is geomp-distributed (geometrically distributed with parameter p ∈ (0, 1]).
Moreover, observe that Proposition 1.2.35 ensures that

p = P (L = 0) = P
(
g(Y0)U0 ≤ f(Y0)

)
= P

((
Y0, g(Y0)U0

)
∈ subgraph(f)

)
= Usubgraph(g)

(
subgraph(f)

)
=
λRd+1

(
subgraph(f)

)
λRd+1

(
subgraph(g)

) =

´
Rd
f(x) dx´

Rd
g(x) dx

.
(1.132)

This completes the proof of Lemma 1.2.37.
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Exercise 1.2.38. In this exercise we do not distinguish between pseudo random numbers
and actual random numbers. Let f, f̃ : R→ [0,∞) be the functions which satisfy for all
x ∈ R that

f(x) =
1√
2π

e−
1
2
x2 and f̃(x) =

1

π (1 + x2)
(1.133)

and let Ã ⊆ R be the set given by

Ã =
{
C ∈ R :

(
∀x ∈ R : f(x) ≤ Cf̃(x)

)}
. (1.134)

Note that f is the density of N0,IR (1-dimensional standard normal distribution) and
that f̃ is the density of Cau0,1 (Cauchy distribution with parameters 0 and 1).

(i) Prove that for all C ∈ R it holds that C ∈ Ã if and only if for all y ∈ [0,∞) it
holds that

1 + 2y ≤
√

2C ey√
π

. (1.135)

(ii) Specify Ã explicitly and prove that your result is correct.

(iii) Specify
1´

R
f(x) dx

ˆ
R

[
sup
y∈R

f(y)

f̃(y)

]
f̃(x) dx (1.136)

explicitly and prove that your result is correct.

(iv) Write a Matlab function AcceptanceRejectionGaussianCauchy(N) with input
N ∈ N and output a realization of an (N0,IR)⊗N -distributed random variable gen-
erated with the acceptance-rejection method with f as the density of the target
distribution and

R 3 x 7→
[
sup
y∈R

f(y)

f̃(y)

]
f̃(x) ∈ [0,∞) (1.137)

as the unnormalized density of the proposal distribution Cau0,1. Your Matlab func-
tion AcceptanceRejectionGaussianCauchy(N) should use the inversion method
for the generation of realizations of an Cau0,1-distributed random variable. Type
AcceptanceRejectionGaussianCauchy(6) to test your implementation.

(v) Write a Matlab function AcceptanceRejectionGaussianCauchyPlot() which
plots 105 realizations of an N0,IR-distributed random variable generated with your
Matlab function AcceptanceRejectionGaussianCauchy(N) in a histogram with
1000 bins.

Exercise 1.2.39. In this exercise we do not distinguish between pseudo random numbers
and actual random numbers. Let f, f̂ : R→ [0,∞) be the functions which satisfy for all
x ∈ R that

f(x) =
1√
2π

e−
1
2
x2 and f̂(x) =

e−|x|

2
(1.138)
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and let Â ⊆ R be the set given by

Â =
{
C ∈ R :

(
∀x ∈ R : f(x) ≤ Cf̂(x)

)}
. (1.139)

Note that f is the density of N0,IR (1-dimensional standard normal distribution) and

that f̂ is the density of Laplace1 (Laplace distribution with parameter 1).

(i) Specify Â explicitly and prove that your result is correct.

(ii) Specify

1´
R
f(x) dx

ˆ
R

[
sup
y∈R

f(y)

f̂(y)

]
f̂(x) dx (1.140)

explicitly and prove that your result is correct.

(iii) Write a Matlab function AcceptanceRejectionGaussianLaplace(N) with in-
put N ∈ N and output a realization of an (N0,IR)⊗N -distributed random variable
generated with the acceptance-rejection method with f as the density of the target
distribution and

R 3 x 7→
[
sup
y∈R

f(y)

f̂(y)

]
f̂(x) ∈ [0,∞) (1.141)

as the unnormalized density of the proposal distribution Laplace1. Your Matlab
function AcceptanceRejectionGaussianLaplace(N) should use the inversion
method for the generation of realizations of an Laplace1-distributed random vari-
able. Type AcceptanceRejectionGaussianLaplace(6) to test your implementa-
tion.

(iv) Write a Matlab function AcceptanceRejectionGaussianLaplacePlot() which
plots 105 realizations of an N0,IR-distributed random variable generated with your
Matlab function AcceptanceRejectionGaussianLaplace(N) in a histogram with
1000 bins.

1.3 Methods for the normal distribution

This section considers several methods for the generation of realizations of independent
normally distributed random variables. We first consider methods for the generation
of (approximative) realizations of independent standard normal random variables; see
Subsection 1.3.1–Subsection 1.3.3. Then in Subsection 1.3.4 we consider methods for
the generation of realizations of independent normally distributed random variables with
mean v ∈ Rd and covariance matrix Q ∈ Rd×d where v ∈ Rd is a vector, where Q ∈ Rd×d

is a nonnegative symmetric matrix, and where d ∈ N is a natural number.

One possibility to generate realizations of standard normal random variables is to use the
inverse transform method presented in Subsection 1.2.1. For this the generalized inverse
distribution function associated to the one-dimensional normal distribution has to be
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calculated (cf. the function “erfinv” in Matlab). This is typically computationally very
expensive. Further methods for the generation of realizations of independent standard
normal random variables are the Box-Muller method which will be considered in Sub-
section 1.3.2 and the Marsaglia polar method which is the subject of Subsection 1.3.3.
Another method which will not be considered here is the Ziggurat method. It is nowa-
days used in the Matlab function “randn” and it is based on the acceptance-rejection
method presented in Subsection 1.2.2.

1.3.1 Central limit theorem

Before we present the Box-Muller method and the Marsaglia polar method for the gener-
ation of realizations of standard normal random variables, we briefly consider a method
for the generation of realizations of random variables that are approximatively normally
distributed in a suitable sense. For this we recall the central limit theorem.

Theorem 1.3.1 (Central limit theorem – scalar case). Let (Ω,A, P ) be a probability
space, let Yn : Ω → R, n ∈ N, be P -independent and identically distributed random
variables (i.i.d. random variables) which satisfy EP [|Y1|2] <∞ and VarP (Y1) > 0. Then
it holds that

Y1 + . . .+ Yn − n · EP [Y1]√
nVarP (Y1)

, n ∈ N, (1.142)

converges in distribution to N0,IR, i.e., it holds for all x ∈ R that

lim
n→∞

P

(
Y1 + . . .+ Yn − n · EP [Y1]√

nVarP (Y1)
≤ x

)
= N0,IR

(
(−∞, x]

)
. (1.143)

The proof can, e.g., be found in Theorem 15.37 in [Klenke(2008)]. Now let (Ω,A, P )
be a probability space and let Un : Ω → R, n ∈ N, be P -independent U(0,1)-distributed
random variables. Note that for all n ∈ N it holds that

E
[
Un
]

=
1

2
and VarP (Un) = E

[(
Un − 1

2

)2
]

=
1

12
. (1.144)

Next let Sn : Ω→ R, n ∈ N, be the functions which satisfy for all n ∈ N that

Sn =
U1 + . . .+ Un − E

[
U1 + . . .+ Un

]√
VarP (U1 + . . .+ Un)

=
U1 + . . .+ Un − n

2√
n
12

. (1.145)

The central limit theorem then proves that Sn, n ∈ N, converges in distribution to N0,IR .
Thus, if n ∈ N is large, then Sn(P )B(R) is a good approximation of N0,IR in the sense of
Theorem 1.3.1. In computer programs sometimes realizations of Sn for large n ∈ N are
used as approximative realizations of a standard normal random variable. For example,
in the case n = 12 we obtain S12 = U1 + . . . + U12 − 6 ∈ (−6, 6) and in that case the
algorithm reads as follows.

Output : Realization x of X ∼ S12(P )B(R) ≈ N0,IR
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s = 0
for n = 1→ 12 do

Generate realization u of Un ∼ U(0,1)

s = s+ u
end for
x = s− 6

In Matlab the command “sum(rand(1,12))-6” generates a realization of a pseudo
S12(P )B(R)-distributed random variable; cf. Figures 1.3 and 1.4 below.

Figure 1.3: Matlab commands for generating realizations of an approximatively pseudo
N0,IR-distributed random variable.

1.3.2 Box-Muller method

In this subsection the Box-Muller method is presented and analyzed and in the next
subsection the Marsaglia polar method is investigated. Both methods are based on
a polar representation result for the 2-dimensional standard normal distribution. To
present this result, we use the following definition.
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Figure 1.4: Output of the hist Matlab command in Figure 1.3.
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Definition 1.3.2 (arg-function). We denote by arg : {(x, y) ∈ R2 : x2+y2 = 1} → [0, 2π)
the function which satisfies for all α ∈ [0, 2π), (x, y) ∈ R2 with x2 + y2 = 1 that

arg
(

cos(α), sin(α)
)

= α (1.146)

and (
cos
(

arg(x, y)
)
, sin

(
arg(x, y)

))
= (x, y). (1.147)

The function arg introduced in Definition 1.3.2 is thus the inverse of the continuous and
bijective function

[0, 2π) 3 α 7→ (cos(α), sin(α)) ∈ {(x, y) ∈ R2 : x2 + y2 = 1}. (1.148)

Observe that arg is an B({(x, y) ∈ R2 : x2 + y2 = 1})/B([0, 2π))-measurable function.
We are now ready to present the polar representation result.

Proposition 1.3.3 (Polar representation for the two dimensional standard normal dis-
tribution). Let (Ω,A, P ) be a probability space, let R : Ω → [0,∞) be an A/B([0,∞))-
measurable function, and let S = (S1, S2) : Ω → {(x, y) ∈ R2 : x2 + y2 = 1} be an
A/B({(x, y) ∈ R2 : x2 + y2 = 1})-measurable function. Then it holds that

Ω 3 ω 7→ R(ω) · S(ω) =
(
R(ω) · S1(ω), R(ω) · S2(ω)

)
∈ R2 (1.149)

is N0,I
R2 -distributed if and only if

Ω 3 ω 7→
(
|R(ω)|2, arg

(
S(ω)

))
∈ R2 (1.150)

is (exp1/2⊗U(0,2π))-distributed.

Proof of Proposition 1.3.3. Let (Ω̄, Ā, P̄ ) be a probability space, let R̄ : Ω̄ → [0,∞) be
an Ā/B([0,∞))-measurable function, let S̄ = (S̄1, S̄2) : Ω̄→ {(x, y) ∈ R2 : x2 + y2 = 1}
be an Ā/B({(x, y) ∈ R2 : x2 + y2 = 1})-measurable function, assume that

Ω̄ 3 ω 7→ |R̄(ω)|2 ∈ R (1.151)

is exp1/2-distributed, assume that

Ω̄ 3 ω 7→ arg(S̄(ω)) ∈ R (1.152)

is U(0,2π)-distributed, and assume that R̄ and S̄ are P̄ -independent. (Observe that such
a probability space does indeed exist.) Next let X̄ : Ω̄ → R

2 be the function which
satisfies for all ω ∈ Ω that

X̄(ω)

=

{
R̄(ω) · S̄(ω) =

(
R̄(ω) · cos

(
arg(S̄(ω))

)
, R̄(ω) · sin

(
arg(S̄(ω))

))
: R̄(ω) > 0

S̄(ω) : R̄(ω) = 0
.

(1.153)
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The P̄ -independency of R̄2 and arg(S̄), the integral transformation theorem, and (1.153)
then prove that for all bounded B(R2)/B(R)-measurable functions g : R2 → R it holds
thatˆ

Ω̄

g(X̄) dP̄ =

ˆ
Ω̄

g(R̄ · S̄) dP̄

=

ˆ
Ω̄

g(|R̄| · S̄) dP̄ =

ˆ
Ω̄

g
(√

R̄2 · S̄
)
dP̄

=

ˆ
Ω̄

g
(√

R̄2 · cos(arg(S̄)),
√
R̄2 · sin(arg(S̄))

)
dP̄

=

ˆ
(0,∞)×[0,2π)

g(
√
r · cos(α),

√
r · sin(α))

(
R̄2, arg(S̄)

)
(P̄ )B([0,∞)×[0,2π))(dr, dα)

=
1

2π

ˆ
[0,2π)

ˆ
(0,∞)

g(
√
r · cos(α),

√
r · sin(α))

(
(R̄2)(P̄ )

)
B([0,∞))

(dr) dα

=
1

4π

ˆ
[0,2π)

ˆ
(0,∞)

g(
√
r · cos(α),

√
r · sin(α)) e

−r
2 dr dα

=
1

2π

ˆ 2π

0

ˆ ∞
0

g(r · cos(α), r · sin(α)) e
−r2
2 r dr dα.

(1.154)

A polar coordinate transform hence gives that for all bounded B(R2)/B(R)-measurable
functions g : R2 → R it holds thatˆ

Ω̄

g(X̄) dP̄ =
1

2π

ˆ
R2

g(x) e
−1
2
‖x‖2

R2 dx =

ˆ
R2

g(x) N0,I
R2 (dx) . (1.155)

This, in particular, implies that for all A ∈ B(R2) it holds that(
X̄(P̄ )B(R2)

)
(A) = N0,I

R2 (A). (1.156)

This proves the “⇐” statement in Proposition 1.3.3. Next assume that

Ω 3 ω 7→ R(ω) · S(ω) =
(
R(ω) · S1(ω), R(ω) · S2(ω)

)
∈ R2 (1.157)

is N0,I
R2 -distributed and let X : Ω → R

2 be the function with the property that for all
ω ∈ Ω it holds that

X(ω) =

{
R(ω) · S(ω) : R(ω) 6= 0

S(ω) : R(ω) = 0
. (1.158)

Then we obtain that
X(P )B(R2) = N0,I

R2 = X̄(P̄ )B(R2). (1.159)

Hence, we get that(
Ω 3 ω 7→

(
|R(ω)|2 , arg(S(ω))

)
∈ R2

)
(P )B(R2)

=
(

Ω 3 ω 7→
(
‖X(ω)‖2

R2 , arg
(

X(ω)
‖X(ω)‖

R2

))
∈ R2

)
(P )B(R2)

=
(

Ω̄ 3 ω 7→
(
‖X̄(ω)‖2

R2 , arg
(

X̄(ω)

‖X̄(ω)‖
R2

))
∈ R2

)
(P̄ )B(R2)

=
(

Ω̄ 3 ω 7→
(∣∣R̄(ω)

∣∣2 , arg
(
S̄(ω)

))
∈ R2

)
(P̄ )B(R2) = exp1/2⊗ U(0,2π).

(1.160)
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This proves the “⇒” statement in Proposition 1.3.3. The proof of Proposition 1.3.3 is
thus completed.

The following result, Corollary 1.3.4, presents a property for the 2-dimensional normal
distribution and is a slightly different perspective on Proposition 1.3.3. Corollary 1.3.4
follows immediately from Proposition 1.3.3.

Corollary 1.3.4 (A property for the 2-dimensional normal distribution). Let (Ω,A, P )
be a probability space, let X : Ω→ R

2 be an N0,I
R2 -distributed random variable, and let

Q,U : Ω→ R be the functions which satisfy for all ω ∈ Ω that

Q(ω) = ‖X(ω)‖2
R2 and U(ω) =

{
arg
(

X(ω)
‖X(ω)‖

R2

)
: X(ω) 6= 0

0 : otherwise
. (1.161)

Then it holds that Q and U are P -independent, that Q is exp1/2-distributed, and that U
is U(0,2π)-distributed.

Proof of Corollary 1.3.4. Throughout this proof let X̄ : Ω → R
2, R : Ω → [0,∞), and

S : Ω→ {(x, y) ∈ R2 : x2 + y2 = 1} be the functions which satisfy for all ω ∈ Ω that

X̄(ω) =

{
X(ω) : X(ω) 6= 0

(1, 0) : X(ω) = 0
, R(ω) =

∥∥X̄(ω)
∥∥
R2 , S(ω) =

X̄(ω)

R(ω)
. (1.162)

The fact that X is N0,I
R2 -distributed then shows that it holds P -a.s. that

X = X̄. (1.163)

Hence, we obtain that X̄ is N0,I
R2 -distributed too. Combining this and the fact that for

all ω ∈ Ω it holds that
X̄(ω) = R(ω) · S(ω) (1.164)

allows us to apply Proposition 1.3.3 to obtain that the function

Ω 3 ω 7→
(
|R(ω)|2 , arg(S(ω))

)
=
(
‖X̄(ω)‖2

R2 , arg
(

X̄(ω)

‖X̄(ω)‖
R2

))
∈ R2 (1.165)

is (exp1/2⊗U(0,2π))-distributed. This together with (1.163) completes the proof of Corol-
lary 1.3.4.

Class exercise 1.3.5. Does there exist a set A ∈ B(R) which satisfies that U(0,1)(A) 6=
U[0,1](A)?

The next result, Corollary 1.3.6, results in a method for the generation of realizations of
two independent standard normal random variables. The method is referred to as the
Box-Muller method in the literature and has been proposed in [Box and Muller(1958)].
Corollary 1.3.6 follows from Proposition 1.3.3.
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Corollary 1.3.6 (Box-Muller method). Let (Ω,A, P ) be a probability space and let
U1, U2 : Ω → R be two P -independent U(0,1)-distributed random variables which satisfy
U1(Ω) ⊆ (0, 1) and U2(Ω) ⊆ (0, 1). Then the function X = (X1, X2) : Ω→ R

2 given by

X1 =
√
−2 ln(U1) cos(2πU2),

X2 =
√
−2 ln(U1) sin(2πU2)

(1.166)

is N0,I
R2 -distributed.

Proof of Corollary 1.3.6. We prove Corollary 1.3.6 through an application of Proposi-
tion 1.3.3. For this let R : Ω → R and S : Ω → {(x, y) ∈ R2 : x2 + y2 = 1} be the
functions given by

R =
√
−2 ln(U1) (1.167)

and
S = (cos(2πU2), sin(2πU2)) . (1.168)

Note that the assumption that U1 and U2 are P -independent ensures that R and S are
P -independent. Moreover, observe that for all ω ∈ Ω it holds that

arg(S(ω)) = 2πU2(ω). (1.169)

This and the assumption that U2 is U(0,1)-distributed imply that

Ω 3 ω 7→ arg(S(ω)) ∈ R (1.170)

is U(0,2π)-distributed. Next note that for all ω ∈ Ω it holds that

[R(ω)]2 = −2 ln(U1(ω)) =
− ln(U1(ω))

1/2
. (1.171)

This and (1.48) prove that
Ω 3 ω 7→ [R(ω)]2 ∈ R (1.172)

is exp1/2-distributed. We can thus apply Proposition 1.3.3 to obtain that (X1, X2) : Ω→
R

2 is N0,I
R2 -distributed. The proof of Corollary 1.3.6 is thus completed.

Corollary 1.3.6 results in the following algorithm for the generation of two independent
standard normal distributed random variables.
Box-Muller method

Output : Realization (x1, x2) of (X1, X2) ∼ N0,I
R2

Generate realization (u1, u2) of (U1, U2) ∼ U(0,1)2

x1 =
√
−2 ln(u1) cos(2πu2)

x2 =
√
−2 ln(u1) sin(2πu2)

Exercise 1.3.7. In this exercise we do not distinguish between pseudo random numbers
and actual random numbers.
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(i) Write a Matlab function BoxMuller(N) with input N ∈ N and output a real-
ization of an N0,I

RN
-distributed random variable generated with the Box-Muller

method. Your Matlab function BoxMuller(N) may use at most N + 1 realiza-
tions of an U(0,1)-distributed random variable. Type BoxMuller(11) to test your
implementation.

(ii) Write a Matlab function BoxMullerPlot() which plots 105 realizations of
an N0,IR-distributed random variable generated with your Matlab function
BoxMuller(N) from (i) in a normalized histogram with 1000 bins and which also
plots the density of N0,IR in this histogram.

Hint: Use the built-in Matlab function hist(. . . ) to obtain the raw data of the
histogram, then normalize it, and then create the plot, for example, with the built-
in Matlab function bar(. . . ). For the plot of the density function of N0,IR use the
built-in Matlab function plot(. . . ) and the built-in Matlab command hold on.

1.3.3 Marsaglia polar method

The Marsaglia polar method is a slight modification of the Box-Muller method. It
avoids the computationally expensive evalutions of the sine- and the cosine-function and
is therefore typically faster than the Box-Muller method. The theorectical justification
of the method is provided through Lemma 1.2.28 and through the next proposition.

Proposition 1.3.8 (Marsaglia polar method). Let (Ω,A, P ) be a probability space,
let U : Ω → R

2 be an U{(x,y)∈R2 : x2+y2∈(0,1)}-distributed random variable with U(Ω) ⊆
{(x, y) ∈ R2 : x2 + y2 ∈ (0, 1)}, and let X : Ω→ R

2 be the function given by

X =
U
√
−2 ln

(
‖U‖2

R2

)
‖U‖R2

. (1.173)

Then X is N0,I
R2 -distributed.

Proof of Proposition 1.3.8. We prove Proposition 1.3.8 through an application of Propo-
sition 1.3.3. For this let R : Ω → [0,∞) and S : Ω → {(x, y) ∈ R2 : x2 + y2 = 1} be the
functions given by

R =
√
−2 ln

(
‖U‖2

R2

)
=

√
− ln

(
‖U‖2

R2

)
1/2

and S =
U

‖U‖R2

. (1.174)

Work in progress. Copyright (C) with the authors.
Dissemination prohibited. December 15, 2018

63



Chapter 1. Generation of random numbers

Next we observe that for all x, α ∈ R it holds that

P
((
‖U‖2

R2 , arg(S)
)
∈ (−∞, x)× (−∞, α)

)
= P

(
‖U‖2

R2 < x, arg(S) < α
)

=
(
U(P )B({u∈R2 : ‖u‖

R2∈(0,1)})
)({

u ∈ R2 : 0 < ‖u‖2
R2 < x, arg

(
u

‖u‖
R2

)
< α

})
=
λR2

({
u ∈ R2 : 0 < ‖u‖2

R2 < min{1, x}, arg
(

u
‖u‖

R2

)
< α

})
λR2({u ∈ R2 : ‖u‖R2 ∈ (0, 1)})

=
λR2

({
u ∈ R2 : 0 < ‖u‖R2 <

√
min{1,max{0, x}}, arg

(
u

‖u‖
R2

)
< α

})
λR2({u ∈ R2 : ‖u‖R2 ∈ (0, 1)})

=
πmin{1,max{0, x}} · min{2π,max{0,α}}

2π

π

= min{1,max{0, x}} · min{2π,max{0, α}}
2π

= U(0,1)((−∞, x)) · U(0,2π)((−∞, α)) =
(
U(0,1) ⊗ U(0,2π)

)(
(−∞, x)× (−∞, α)

)
.

(1.175)

Combining this with Exercise 1.2.16 and Theorem 1.2.15 implies for all A ∈ B(R2) that

P
((
‖U‖2

R2 , arg(S)
)
∈ A

)
=
(
U(0,1) ⊗ U(0,2π)

)
(A). (1.176)

This proves that

Ω 3 ω 7→ ‖U(ω)‖2
R2 ∈ R (1.177)

is U(0,1)-distributed, that

Ω 3 ω 7→ arg(S(ω)) ∈ R (1.178)

is U(0,2π)-distributed, and that (1.177) and (1.178) are P -independent. This together
with (1.48), in turn, implies that

Ω 3 ω 7→ [R(ω)]2 ∈ R (1.179)

is exp1/2-distributed and that (1.179) and (1.178) are P -independent. We can thus apply
Proposition 1.3.3 to obtain that

Ω 3 ω 7→ R(ω) · S(ω) = X(ω) ∈ R2 (1.180)

is N0,I
R2 -distributed. The proof of Proposition 1.3.8 is thus completed.

Combining Lemma 1.2.28 and Proposition 1.3.8 results in the following algorithm in
which V = (V1, V2) : Ω → R

2 is an U(0,1)2-distributed random variable with V (Ω) ⊆
(0, 1)2.
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Marsaglia polar method

Output : Realization (x1, x2) of (X1, X2) ∼ N0,I
R2

repeat
Generate realization (v1, v2) of (V1, V2) ∼ U(0,1)2

q = (2v1 − 1)2 + (2v2 − 1)2

until q ∈ (0, 1)
w =

√
−2 ln(q)/q

x1 = (2v1 − 1)w
x2 = (2v2 − 1)w

Finally, observe that the acceptance probability in the acceptance-rejection algorithm
in the Marsaglia polar method is

U(−1,1)2
(
{u ∈ R2 : ‖u‖R2 ∈ (0, 1)}

)
=
λR2({u ∈ R2 : ‖u‖R2 ∈ (0, 1)})

4
=
π

4
≈ 0.78

(1.181)
Thus on average the algorithm in the Marsaglia polar method runs 4

π
≈ 1.27-times

through the loop.

Exercise 1.3.9. In this exercise we do not distinguish between pseudo random numbers
and actual random numbers.

(i) Write a Matlab function MarsagliaPolar(N) with input N ∈ N and output a
realization of an N0,I

RN
-distributed random variable generated with the Marsaglia

polar method. Type MarsagliaPolar(11) to test your implementation.

(ii) Write a Matlab function MarsagliaPolarPlot() which plots 105 realizations
of an N0,IR-distributed random variable generated with the Matlab function
MarsagliaPolar(N) in a normalized histogram with 1000 bins and which also
plots the density of N0,IR in this histogram.

Hint: Use the built-in Matlab function hist(. . . ) to obtain the raw data of the
histogram, then normalize it, and then create the plot, for example, with the built-
in Matlab function bar(. . . ). For the plot of the density function of N0,IR use the
built-in Matlab function plot(. . . ) and the built-in Matlab command hold on.

1.3.4 Normally distributed random variables with general mean and
general covariance matrix

In this subsection we illustrate how realizations of a normally distributed random vari-
able with mean v ∈ Rd and covariance matrix Q ∈ Rd×d can be generated, where v ∈ Rd

is a vector, where Q ∈ Rd×d is a nonnegative symmetric matrix, and where d ∈ N is a
natural number. For this we use the following special case of Proposition 0.4.15.

Corollary 1.3.10. Let (Ω,A, P ) be a probability space, let d ∈ N, b ∈ Rd, A ∈ Rd×d,
and let X : Ω→ R

d be an N0,I
Rd

-distributed random variable. Then the function

Ω 3 ω 7→ AX(ω) + b ∈ Rd (1.182)
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is Nb,AA>-distributed.

Corollary 1.3.10 illustrates for every d ∈ N, v ∈ Rd and every strictly positive symmetric
d× d-matrix Q ∈ Rd×d that the Matlab command

chol(Q)’ * randn(d,1) + v (1.183)

generates a realization of a pseudo Nv,Q-distributed random variable.

Exercise 1.3.11 (Approximative realizations of a one-dimensional standard Brownian
motion). In this exercise we do not distinguish between pseudo random numbers and
actual random numbers. Let A be the set given by

A = ∪∞n=1 {t = (t1, . . . , tn) ∈ [0,∞)n : #R({t1, . . . , tn}) = n} , (1.184)

let length: A → N be the function which satisfies for all n ∈ N, t = (t1, . . . , tn) ∈
[0,∞)n ∩ A that

length(t) = n, (1.185)

and let Q : A → (∪∞n=1R
n×n) be the function which satisfies for all n ∈ N, t =

(t1, . . . , tn) ∈ [0,∞)n ∩ A that

Q(t) = (min{ti, tj})(i,j)∈{1,...,n}2 . (1.186)

Write a Matlab function StandardBrownianMotion(t) with input t ∈ A and out-
put a realization of an N0,Q(t)-distributed random variable. The Matlab function
StandardBrownianMotion(t) may use at most length(t) realizations of an N0,IR-
distributed random variable. Call the Matlab commands

1 rng ( ’ d e f a u l t ’ ) ;
2 N=10ˆ3;
3 preimage = ( 0 : 1 /N: 1 ) ;
4 X=StandardBrownianMotion ( preimage ) ;
5 plot ( preimage ,X) ;
6 hold on
7 X=StandardBrownianMotion ( preimage ) ;
8 plot ( preimage ,X, ’ r ’ ) ;
9 X=StandardBrownianMotion ( preimage ) ;

10 plot ( preimage ,X, ’ g ’ ) ;

to test your implementation.
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2 Monte Carlo integration methods

Let (A,A, µ) be a finite measure space with µ(A) 6= 0 and let f : A→ R be an A/B(R)-
measurable function with

´
A
|f(x)|

R
µ(dx) <∞. This chapter presents numerical meth-

ods for the approximative computation of the real numberˆ
A

f(x)µ(dx) ∈ R. (2.1)

If d ∈ N, a, b ∈ R with a < b, if A = [a, b]d ⊆ Rd, and if µ = BA is the Lebesgue-Borel
measure on A in (2.1), then (2.1) reduces to

ˆ
[a,b]d

f(x) dx ∈ R (2.2)

and in that case, classical deterministic numerical methods can be used for the ap-
proximative computation of (2.2) and (2.1) respectively. These deterministic numerical
integration methods are briefly reviewed in Section 2.2. Sections 2.3–2.6 present and
analyze a random method, the so-called Monte Carlo method, for the approximative
computation of (2.1).

The convergence speed of numerical integration methods for (2.1) and (2.2) often de-
pends on the regularity of the integrand function f : A→ R. To study these regularities,
a bit more notation is introduced in the next section, Section 2.1.

The content of this chapter can be found in a similar form in diverse books on nu-
merical integration methods and Monte Carlo methods respectively. We refer, e.g.,
to [Atkinson(1989)], [Fishman(1996)], [Kloeden and Platen(1992)], [Glasserman(2004)]
and [Müller-Gronbach et al.(2012)Müller-Gronbach, Novak, and Ritter].

2.1 Regularity of functions

Definition 2.1.1 (Separability). Let E be a topological space. Then we say that E is
separable if and only if there exist E, E, and F such that

(i) it holds that E = (E, E),

(ii) it holds that F is at most countable, and

(iii) it holds that E ∩ F E = E.
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Chapter 2. Monte Carlo integration methods

Definition 2.1.2. Let (A,A) and (B,B) be measurable spaces. Then we denote by
M(A,B) the set of all A/B-measurable functions.

Definition 2.1.3 (Lp-spaces for p ∈ [0,∞)). Let (Ω,A, µ) be a measure space, let
q ∈ (0,∞), and let (V, ‖·‖V ) be a separable normed R-vector space. Then we denote by
L0(µ; ‖·‖V ) the set given by

L0(µ; ‖·‖V ) =M
(
A,B(V )

)
, (2.3)

we denote by ‖·‖Lq(µ;‖·‖V ) : L0(µ; ‖·‖V ) → [0,∞] the function which satisfies for all f ∈
L0(µ; ‖·‖V ) that

‖f‖Lq(µ;‖·‖V ) =

[ˆ
Ω

‖f(ω)‖qV µ(dω)

]1/q

∈ [0,∞], (2.4)

and we denote by Lq(µ; ‖·‖V ) the set given by

Lq(µ; ‖·‖V ) =
{
f ∈ L0(µ; ‖·‖V ) : ‖f‖Lq(µ;‖·‖V ) <∞

}
. (2.5)

Observe that L0(µ; ‖·‖V ) and Lp(µ; ‖·‖V ) in Definition 2.1.3 are R-vector spaces. How-
ever, for every q ∈ [1,∞) it is in general not true that in the setting of Definition 2.1.3 it
holds that the function ‖·‖Lq(µ;‖·‖V ) is a norm on Lq(µ; ‖·‖V ). This lack of being definite
brings us to the next definition.

Definition 2.1.4 (Equivalence classes). Let (Ω,A, µ) be a measure space, let (E, E) be
a measurable space, let R be a set, and let f : Ω→ R be a function. Then we denote by
[f ]µ,E ⊆M(A, E) the set given by

[f ]µ,E =
{
g ∈M(A, E) :

(
∃A ∈ A : µ(A) = 0 and

{
ω ∈ Ω: f(ω) 6= g(ω)

}
⊆ A

)}
.

(2.6)

Note that for every measure space (Ω,A, µ), every separable normed R-vector space
(V, ‖·‖V ), every p ∈ [0,∞), and every f ∈ Lp(µ; ‖·‖V ) it holds that

[f ]µ,B(V ) ⊆ L
p(µ; ‖·‖V ). (2.7)

Definition 2.1.5 (Lp-spaces for p ∈ [0,∞)). Let p ∈ [0,∞), q ∈ (0,∞), let (Ω,A, µ)
be a measure space, and let (V, ‖·‖V ) be a separable normed R-vector space. Then we
denote by Lp(µ; ‖·‖V ) the set given by

Lp(µ; ‖·‖V ) =
{

[f ]µ,B(V ) ∈ P(Lp(µ; ‖·‖V )) : f ∈ Lp(µ; ‖·‖V )
}

(2.8)

and we denote by
‖·‖Lq(µ;‖·‖V ) : L0(µ; ‖·‖V )→ [0,∞] (2.9)

the function which satisfies for all f ∈ L0(µ; ‖·‖V ) that∥∥[f ]µ,B(V )

∥∥
Lq(µ;‖·‖V )

= ‖f‖Lq(µ;‖·‖V ) ∈ [0,∞]. (2.10)
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Chapter 2. Monte Carlo integration methods

Class exercise 2.1.6. Specify all possible relations (⊆, ⊇, 6⊆, 6⊇,  , and !) be-
tween the sets M([0, 3],R), C([0, 3],R), L0.5(B[0,3]; |·|R), L1.5(B[0,3]; |·|R), L3(B[0,3]; |·|R),
M(N,R), L0.5(#N; |·|

R
), L1.5(#N; |·|

R
), L3(#N; |·|

R
), L0.5(BR; |·|

R
), L1.5(BR; |·|

R
), and

L3(BR; |·|
R

).

Let p ∈ [0,∞), q ∈ [1,∞), let (Ω,A, µ) be a measure space, and let (V, ‖·‖V ) be a
separable normed R-vector space. Then observe that the pair(

Lq(µ; ‖·‖V ), ‖·‖Lq(µ;‖·‖V )

)
(2.11)

is a normed R-vector space. Moreover, note that if (V, ‖·‖V ) is complete, then so is(
Lq(µ; ‖·‖V ), ‖·‖Lq(µ;‖·‖V )

)
(2.12)

(see, e.g., Theorem 7.3 in [Klenke(2008)]). Moreover, as it is usual in the literature, we
do in the following often not distinguish between

f ∈ Lp(µ; ‖·‖V ) (2.13)

and its equivalence class

[f ]µ,B(V ) ∈ Lp(µ; ‖·‖V ) (2.14)

in Lp(µ; ‖·‖V ) ⊆ L0(µ; ‖·‖V ) and, in particular, sometimes we simply write f instead of
[f ]µ,B(V ). In the next step we introduce a tool to investigate continuity properties of a
function.

Definition 2.1.7 (Modulus of continuity). Let (E, dE) and (F, dF ) be metric spaces and
let f : E → F be a function. Then we denote by

wf : [0,∞]→ [0,∞] (2.15)

the function which satisfies for all h ∈ [0,∞] that

wf (h) = sup
({
dF
(
f(x), f(y)

)
∈ [0,∞) : x, y ∈ E, dE(x, y) ≤ h

}
∪ {0}

)
(2.16)

and we call wf the modulus of continuity of f .

Observe that Definition 2.1.7 ensures that for all metric spaces (E, dE) and (F, dF ) and
all f ∈M(E,F ), x, y ∈ E it holds that

dF (f(x), f(y)) ≤ wf (dE(x, y)) . (2.17)

Moreover, note that for all d, k ∈ N, A ∈ P(Rd), f ∈ M(A,Rk), x, y ∈ A, h ∈ [0,∞] it
holds that

wf (h) = sup
a,b∈A,

‖a−b‖
Rd
≤h

‖f(a)− f(b)‖Rk ∈ [0,∞] (2.18)
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and

‖f(x)− f(y)‖
Rk
≤ wf (‖x− y‖Rd). (2.19)

We also use spaces of Hölder continuous functions. This is the subject of the next
definition.

Definition 2.1.8 (Hölder continuous functions). Let (E, dE) and (F, dF ) be metric
spaces and let α ∈ (0, 1]. Then we denote by

|·|Cα(E,F ) : M(E,F )→ [0,∞] (2.20)

the function which satisfies for all f ∈M(E,F ) that

|f |Cα(E,F ) = sup

({
dF (f(x), f(y))

|dE(x, y)|α
R

∈ [0,∞) : x, y ∈ E, x 6= y

}
∪ {0}

)
∈ [0,∞] (2.21)

and we denote by Cα(E,F ) the set given by

Cα(E,F ) =
{
f ∈M(E,F ) : |f |Cα(E,F ) <∞

}
. (2.22)

Definition 2.1.9. We say that f is d/δ-α-Hölder continuous (we say that f is α-Hölder
continuous) if and only if there exist D and D such that

(i) it holds that d is a metric on D,

(ii) it holds that δ is a metric on D,

(iii) it holds that α ∈ (0, 1], and

(iv) it holds that f ∈ Cα(D,D).

Class exercise 2.1.10. Let α ∈ (0, 1] and let f : [0, 2]→ R be an α-Hölder continuous
function. Is it true that supx∈[0,2] |f(x)| <∞?

Class exercise 2.1.11. Let f : [0, 2]→ R be a Lipschitz continuous function. Is it true
that f is 1/2-Hölder continuous?

Exercise 2.1.12. Let (E, dE) and (F, dF ) be metric spaces and let f : E → F be a
function. Prove that f is uniformly continuous if and only if

lim
h↘0

wf (h) = wf (0). (2.23)

Exercise 2.1.13. Let (E, dE) and (F, dF ) be metric spaces, let α ∈ (0, 1], and let f : E →
F be a function. Prove that

|f |Cα(E,F ) = sup
h∈(0,∞)

[
wf (h)

hα

]
. (2.24)
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Exercise 2.1.13, in particular, ensures that for all metric spaces (E, dE) and (F, dF ) and
all α ∈ (0, 1], f ∈M(E,F ), h ∈ (0,∞) it holds that

wf (h) ≤ |f |Cα(E,F ) h
α. (2.25)

Definition 2.1.14 (Hölder continuity of derivatives). Let k ∈ N0, l, d ∈ N, α ∈ (0, 1],
a, b ∈ R with a < b. Then we denote by Ck,α([a, b]d,Rl) the set given by

Ck,α([a, b]d,Rl) =
{
f ∈ Ck([a, b]d,Rl) : |f (k)|Cα([a,b]d,L(k)(Rd,Rl)) <∞

}
. (2.26)

There are a number of relations between the above introduced spaces. Some of them
are illustrated in the following example.

Example 2.1.15. Let m,n ∈ {2, 3, . . . }, a, b ∈ R, α, β ∈ (0, 1], p, q ∈ [0,∞) with
m < n, a < b, α ≤ β and p ≤ q. Then

C∞([a, b],R) ⊆ Cn,β([a, b],R) ⊆ Cn,α([a, b],R) ⊆ Cm,β([a, b],R)

⊆ Cm,α([a, b],R) ⊆ C1,β([a, b],R) ⊆ C1,α([a, b],R) ⊆ C1([a, b],R)

⊆ C0,β([a, b],R) ⊆ C0,α([a, b],R) ⊆ C([a, b],R) ⊆ Lq(B[a,b]; |·|R)

⊆ Lp(B[a,b]; |·|R) ⊆ L0(B[a,b]; |·|R) =M(B([a, b]),B(R)) ⊆M([a, b],R).

(2.27)

2.2 Deterministic numerical integration methods

In this section some basic deterministic methods for the approximative calculation of
integrals of the form (2.2) are considered.

Definition 2.2.1 (Quadrature formula). We say that Q is a quadrature formula on A
with quadrature nodes x and quadrature weights w if and only if there exist a natural
number d ∈ N and a finite set I such that

(i) it holds that A ∈ B(Rd),

(ii) it holds that x ∈M(I, A),

(iii) it holds that w ∈M(I,R),

(iv) it holds that Q ∈M(L1(BA; |·|
R

),R), and

(v) it holds for all f ∈ L1(BA; |·|
R

) that Q[f ] =
∑

i∈I wi f(xi).

Definition 2.2.2. We say that Q is a quadrature formula if and only if there exist A, x,
and w such that Q is a quadrature formula on A with quadrature nodes x and quadrature
weights w.

Work in progress. Copyright (C) with the authors.
Dissemination prohibited. December 15, 2018

71



Chapter 2. Monte Carlo integration methods

The quadrature nodes and the quadrature weights are typically chosen so that the
quadrature formula Q : L1(BA; |·|

R
) → R in Definition 2.2.1 is – in a suitable sense

– a good approximation of the function

L1(BA; |·|
R

) 3 f 7→
ˆ
A

f(x) dx ∈ R, (2.28)

see Propositions 2.2.4 and 2.2.9 below for more details.

2.2.1 Rectangle method

Definition 2.2.3 (d-dimensional left rectangle method). Let d ∈ N, a, b ∈ R with a < b.
Then we denote by

Rn
[a,b]d : L1(B[a,b]d ; |·|R)→ R, n ∈ N, (2.29)

the functions which satisfy for all n ∈ N, f ∈ L1(B[a,b]d ; |·|R) that

Rn
[a,b]d [f ] =

(b− a)d

nd

 ∑
i1,...,id∈{0,1,...,n−1}

f
(
a+ i1

n
(b− a), . . . , a+ id

n
(b− a)

) (2.30)

and we call the sequence Rn
[a,b]d

, n ∈ N, the d-dimensional left rectangle method.

Observe that for every d, n ∈ N, a, b ∈ R with a < b it holds that Rn
[a,b]d

is a quadrature

formula on [a, b]d with quadrature nodes(
a+ i1

n
(b− a), . . . , a+ id

n
(b− a)

)
, (i1, . . . , id) ∈ {0, 1, . . . , n− 1}d, (2.31)

and quadrature weights

(b−a)d

nd
, (i1, . . . , id) ∈ {0, 1, . . . , n− 1}d. (2.32)

Moreover, note that for all a ∈ R, b ∈ (a,∞), n ∈ N, f ∈ L1(B[a,b]; |·|R) it holds that

Rn
[a,b][f ] =

(b− a)

n

(
n−1∑
i=0

f
(
a+ i

n
(b− a)

))
. (2.33)

In addition, observe that for all d ∈ N, a, b ∈ R with a < b and all f : [a, b]d → R with
∀ i = (i1, . . . , id) ∈ {0, 1, . . . , n− 1}d :[

a+
(b− a)i1

n
, a+

(b− a)(i1 + 1)

n

)
× · · · ×

[
a+

(b− a)id
n

, a+
(b− a)(id + 1)

n

)

⊆ f−1


f

 a

...
a

+ (b−a)i
n





(2.34)
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it holds that

Rn
[a,b]d [f ] =

ˆ
[a,b]d

f(x) dx. (2.35)

It thus holds for all d ∈ N that the d-dimensional left rectangle method is exact for
all functions that are piecewise constant on the corresponding grid. The error of the
d-dimensional left rectangle method is analyzed in the next proposition.

Proposition 2.2.4 (Error estimate for the d-dimensional left rectangle method). Let
d, n ∈ N, α ∈ (0, 1], a, b ∈ R with a < b and let f ∈ L1(B[a,b]d ; |·|R). Then∣∣∣∣Rn

[a,b]d [f ]−
ˆ

[a,b]d
f(x) dx

∣∣∣∣
R

≤ (b− a)dwf
( (b−a)

√
d

n

)
≤

(b− a)(d+α) d
α
2 |f |Cα([a,b]d,R)

nα
.

(2.36)

Proof of Proposition 2.2.4. Throughout this proof let 1 ∈ Rd be the vector given by
1 = (1, 1, . . . , 1). Note that∣∣∣∣Rn

[a,b]d [f ]−
ˆ

[a,b]d
f(x) dx

∣∣∣∣
R

=

∣∣∣∣∣∣(b− a)d

nd

 ∑
i=(i1,...,id)∈{0,1,...,n−1}d

f
(
a1 + (b−a)

n
i
)− ˆ

[a,b]d
f(x) dx

∣∣∣∣∣∣
R

=

∣∣∣∣∣ ∑
i=(i1,...,id)∈
{0,1,...,n−1}d

ˆ
[a+

(b−a)
n

i1,a+
(b−a)
n

(i1+1)]×···×[a+
(b−a)
n

id,a+
(b−a)
n

(id+1)]
f
(
a1 + (b−a)

n
i
)
dx

−
ˆ

[a,b]d
f(x) dx

∣∣∣∣∣.
(2.37)

The triangle inequality and (2.19) therefore prove that∣∣∣∣Rn
[a,b]d [f ]−

ˆ
[a,b]d

f(x) dx

∣∣∣∣
R

≤
∑

i=(i1,...,id)∈
{0,1,...,n−1}d

ˆ
[a+

(b−a)
n

i1,a+
(b−a)
n

(i1+1)]×···×[a+
(b−a)
n

id,a+
(b−a)
n

(id+1)]

∣∣∣f(a1 + (b−a)
n
i
)
− f(x)

∣∣∣
R

dx

≤
∑

i=(i1,...,id)∈
{0,1,...,n−1}d

ˆ
[a+

(b−a)
n

i1,a+
(b−a)
n

(i1+1)]×···×[a+
(b−a)
n

id,a+
(b−a)
n

(id+1)]
wf

(∥∥a1 + (b−a)
n
i− x

∥∥
Rd

)
dx.

(2.38)
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Inequality (2.25) hence shows that

∣∣∣∣Rn
[a,b]d [f ]−

ˆ
[a,b]d

f(x) dx

∣∣∣∣
R

≤
∑

i=(i1,...,id)∈
{0,1,...,n−1}d

ˆ
[a+

(b−a)
n

i1,a+
(b−a)
n

(i1+1)]×···×[a+
(b−a)
n

id,a+
(b−a)
n

(id+1)]
wf

(∥∥ (b−a)
n

1
∥∥
Rd

)
dx

=
∑

i∈{0,1,...,n−1}d

(b−a)d

nd
· wf

(
(b−a)
n
‖1‖Rd

)
= (b− a)dwf

(
(b−a)

√
d

n

)

≤ (b− a)d |f |Cα([a,b]d,R)

[
(b−a)

√
d

n

]α
=

(b− a)(d+α) d
α
2 |f |Cα([a,b]d,R)

nα
.

(2.39)

This completes the proof of Proposition 2.2.4.

Proposition 2.2.4 proves that for every d ∈ N, a, b ∈ R with a < b, every α ∈ (0, 1], and
every f ∈ C0,α([a, b]d,R) it holds that the approximation errors

∣∣∣∣Rn
[a,b]d [f ]−

ˆ
[a,b]d

f(x) dx

∣∣∣∣
R

(2.40)

for n ∈ N of the d-dimensional left rectangle method converge with rate α to zero as n
tends to infinity. The convergence rate of the d-dimensional left rectangle method does
in general not improve if f : [a, b]→ R in (2.40) enjoys more differentiability regularity.
This is illustrated in the next example.
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Example 2.2.5. Let d ∈ N and let f : [0, 1]d → R be the function which satisfies for all
x1, . . . , xd ∈ [0, 1] that

f(x1, . . . , xd) = x1. (2.41)

Then we observe that f is infinitely often differentiable and we note that for all n ∈ N
it holds that ∣∣∣∣Rn

[0,1]d [f ]−
ˆ

[0,1]d
f(x) dx

∣∣∣∣
R

=

ˆ
[0,1]d

f(x) dx−
∑

i=(i1,...,id)∈
{0,1,...,n−1}d

ˆ i1+1
n

i1
n

. . .

ˆ id+1

n

id
n

f
(
i
n

)
dxd . . . dx1

=
∑

i=(i1,...,id)∈
{0,1,...,n−1}d

ˆ i1+1
n

i1
n

. . .

ˆ id+1

n

id
n

[
f(x)− f

(
i
n

)]
dxd . . . dx1

=
∑

i=(i1,...,id)∈
{0,1,...,n−1}d

ˆ i1+1
n

i1
n

. . .

ˆ id+1

n

id
n

[
x1 − i1

n

]
dxd . . . dx1

= nd
[

1

n

](d−1) ˆ 1
n

0

x dx = n

[
x2

2

]x= 1
n

x=0

=
n

2n2
=

1

2n
.

(2.42)

The sequence |Rn
[0,1]d

[f ] −
´

[0,1]d
f(x) dx|, n ∈ N, thus converges to zero with rate 1 but

not with any higher rate.

Class exercise 2.2.6. Does there exist a function f ∈ L1(B[0,1]; |·|R) and a real number
c ∈ R such that for all n ∈ N it holds that∣∣∣∣Rn

[0,1][f ]−
ˆ 1

0

f(x) dx

∣∣∣∣
R

≤ c

n2
? (2.43)

2.2.2 Trapezoidal rule

In Example 2.2.5 above it is illustrated that the convergence rate of the d-dimensional
left rectangle method does in general not overcome the rate of convergence 1 even if
f : [a, b]→ R in (2.40) is infinitely often differentiable. However, the rate of convergence
does improve if f : [a, b] → R in (2.40) is smooth and if another quadrature method
is used. This is briefly illustrated in this subsection in the case of the 1-dimensional
trapezoidal method.
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Definition 2.2.7 (Trapezoidal method). Let a, b ∈ R with a < b. Then we denote by
T n[a,b] : L1(B[a,b]; |·|R) → R, n ∈ N, the quadrature formulas which satisfy for all n ∈ N,

f ∈ L1(B[a,b]; |·|R) that

T n[a,b][f ] =
(b− a)

n

(
f(a) + f(b)

2
+

n−1∑
i=1

f
(
a+ i

n
(b− a)

))

=
(b− a)

n

n−1∑
i=0

f
(
a+ i

n
(b− a)

)
+ f
(
a+ (i+1)

n
(b− a)

)
2

 (2.44)

and we call the sequence T n[a,b], n ∈ N, the 1-dimensional trapezoidal method.

Error estimates for the 1-dimensional trapezoidal method are given in the next exercise
and in Proposition 2.2.9 below.

Exercise 2.2.8. Let α ∈ (0, 1], n ∈ N, a, b ∈ R with a < b and let f ∈ L1(B[a,b]; |·|R).
Prove that

∣∣∣∣T n[a,b][f ]−
ˆ b

a

f(x) dx

∣∣∣∣
R

≤ (b− a) · wf ( (b−a)
2n

) ≤
(b− a)(1+α) |f |Cα([a,b],R)

(2n)α
. (2.45)

Proposition 2.2.9 (Error estimates for the trapezoidal method). Let n ∈ N, α ∈ (0, 1],
a, b ∈ R with a < b. Then

(i) it holds for all f ∈ L1(B[a,b]; |·|R) that∣∣∣∣T n[a,b][f ]−
ˆ b

a

f(x) dx

∣∣∣∣
R

≤ (b− a) · wf ( (b−a)
2n

) ≤
(b− a)(1+α) |f |Cα([a,b],R)

(2n)α
(2.46)

and

(ii) it holds for all f ∈ C1([a, b],R) that∣∣∣∣T n[a,b][f ]−
ˆ b

a

f(x) dx

∣∣∣∣
R

≤ (b−a)2

n
· wf ′( (b−a)

2n
) ≤

(b− a)(2+α) |f ′|Cα([a,b],R)

2α n(1+α)
. (2.47)

Proof of Proposition 2.2.9. Estimate (2.46) follows from Exercise 2.2.8. It thus remains
to show (2.47) to complete the proof of Proposition 2.2.9. For this observe that for all
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f ∈ C1([a, b],R) it holds that

T n[a,b][f ]−
ˆ b

a

f(x) dx

=
n−1∑
i=0

ˆ a+
(i+1)(b−a)

n

a+
i(b−a)
n

[
f
(
a+ i(b−a)

n

)
+ f
(
a+ (i+1)(b−a)

n

)
2

− f(x)

]
dx

=
n−1∑
i=0

ˆ a+
(i+1)(b−a)

n

a+
i(b−a)
n

[
f
(
a+ i(b−a)

n

)
+

1

2

ˆ a+
(i+1)(b−a)

n

a+
i(b−a)
n

f ′(y) dy

]
dx

−
n−1∑
i=0

ˆ a+
(i+1)(b−a)

n

a+
i(b−a)
n

[
f
(
a+ i(b−a)

n

)
+

ˆ x

a+
i(b−a)
n

f ′(y) dy

]
dx

=
n−1∑
i=0

ˆ a+
(i+1)(b−a)

n

a+
i(b−a)
n

[
1

2

ˆ a+
(i+1)(b−a)

n

a+
i(b−a)
n

f ′(y)− f ′
(
a+ (i+1/2)(b−a)

n

)
dy

]
dx

−
n−1∑
i=0

ˆ a+
(i+1)(b−a)

n

a+
i(b−a)
n

[ˆ x

a+
i(b−a)
n

f ′(y)− f ′
(
a+ (i+1/2)(b−a)

n

)
dy

]
dx.

(2.48)

Therefore, we obtain that for all f ∈ C1([a, b],R) it holds that∣∣∣∣T n[a,b][f ]−
ˆ b

a

f(x) dx

∣∣∣∣
R

≤ 1

2

n−1∑
i=0

ˆ a+
(i+1)(b−a)

n

a+
i(b−a)
n

ˆ a+
(i+1)(b−a)

n

a+
i(b−a)
n

∣∣∣f ′(y)− f ′
(
a+ (i+1/2)(b−a)

n

)∣∣∣
R

dy dx

+
n−1∑
i=0

ˆ a+
(i+1)(b−a)

n

a+
i(b−a)
n

ˆ x

a+
i(b−a)
n

∣∣∣f ′(y)− f ′
(
a+ (i+1/2)(b−a)

n

)∣∣∣
R

dy dx

≤ (b−a)2

n
· wf ′( (b−a)

2n
).

(2.49)

Combining this with (2.25) proves (2.47). The proof of Proposition 2.2.9 is thus com-
pleted.

Exercise 2.2.10. Prove or disprove the following statement: For all infinitely often
differentiable functions f : [0, 1]→ R it holds that

inf
n∈N

(
n2
∣∣T n[0,1][f ]− ∫ 1

0 f(x) dx
∣∣) = 0. (2.50)

Class exercise 2.2.11. Let a, b ∈ R with a < b. Does there exists a function f ∈
L2(B[a,b]; |·|R) such that[

infn∈N
∣∣Rn

[a,b][f ]− ∫ ba f(x) dx
∣∣ > 0 < infn∈N

∣∣T n[a,b][f ]− ∫ ba f(x) dx
∣∣ ]? (2.51)
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2.2.3 Curse of dimensionality

In the next step we analyze the number of function evaluations needed to compute the
multi-dimensional rectangle method. For this let d ∈ N, α ∈ (0, 1], a, b ∈ R with
a < b and let f ∈ C0,α([a, b]d,R). Then observe that for every n ∈ N it holds that the
computation of

Rn
[a,b]d [f ] (2.52)

requires N = nd ∈ N evaluations of the function f . Moreover, we get from Proposi-
tion 2.2.4 that for all N ∈ {1d, 2d, 3d, . . . } it holds that∣∣∣∣RN1/d

[a,b]d [f ]−
ˆ

[a,b]d
f(x) dx

∣∣∣∣
R

≤
(b− a)(d+α) d

α
2 |f |Cα([a,b]d,R)

N
α
d

. (2.53)

The quantity RN1/d

[a,b]d
[f ] thus converges to

´
[a,b]d

f(x) dx with order α
d

as the number of

function evaluations N ∈ {1d, 2d, 3d, . . . } tends to infinity. Note that if d ∈ N increases,
then the convergence order α

d
≤ 1

d
decreases. We have thus sketched that the convergence

speed of quadrature formulas such as (2.30) and (2.44) may be very poor

(i) if the dimension d ∈ N is large (see (2.53)) or

(ii) if the integrand function f : [a, b]d → R has low regularity properties (see, e.g,
(2.36) and (2.46)).

In both cases, Monte Carlo methods provide a competitive alternative. This is illustrated
in the next sections.

Remark 2.2.12 (Sparse grids). A deterministic numerical approximation method
which can be used in moderately high dimensional problems can, e.g., be found in
[Garcke(2008)] and in the references mentioned therein.

Exercise 2.2.13.

(i) Write a MATLAB function RecRule(a,b,d,n,f) with input a ∈ R, b ∈ (a,∞),
d, n ∈ N, f : [a, b]d → R ∈ L1(B[a,b]d ; |·|R) and output Rn

[a,b]d
[f ].

(ii) Let I be the set given by

I =(
{1, 2, . . . , 8} × {1, 2, . . . , 10}

)
∪
(
{9} × {1, 2, . . . , 8}

)
∪
(
{10} × {1, 2, . . . , 6}

)
.

(2.54)

Test your Matlab function RecRule(a,b,d,n,f) in the cases a = 0, b = 2, (d, n) ∈
I, and f = [0, 2]d 3 (x1, . . . , xd) 7→ x1 ∈ R and measure the runtime of your Matlab
function RecRule(a,b,d,n,f) in these cases.
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2.3 Monte Carlo methods

Let (A,A, µ) be a finite measure space with µ(A) 6= 0 and let f ∈ L1(µ; |·|
R

). This
section presents the Monte Carlo method for the approximative computation of the real
number

ˆ
A

f(x)µ(dx) ∈ R. (2.55)

It is based on the interpretation of (2.55) as an expectation of a random variable. More
precisely, let (Ω,F , P ) be a probability space and let Y : Ω→ A be an F/A-measurable
function which satisfies for all B ∈ A that

(
Y (P )A

)
(B) =

µ(B)

µ(A)
. (2.56)

(Observe that such a probability space and such a random variable do indeed exist. For

example, define (Ω,F) := (A,A), define P : F → [0,∞] through P (B) := µ(B)
µ(A)

for all

B ∈ F and define Y : Ω→ A through Y (ω) := ω for all ω ∈ Ω.) Next let X : Ω→ R be
given by

X = µ(A) · f(Y ) (2.57)

and observe that (2.1) reduces to

ˆ
A

f(x)µ(dx) = µ(A) ·
ˆ
A

f(x)

µ(A)
µ(dx) = µ(A) ·

ˆ
A

f(x)
(
Y (P )A

)
(dx)

= EP
[
µ(A) · f(Y )

]
= EP

[
X
]
∈ R.

(2.58)

The Monte Carlo method then uses realizations of the random variable X to obtain an
approximation of EP

[
X
]

and thereby produces an approximation of the quantity

ˆ
A

f(x)µ(dx) = EP
[
X
]

(2.59)

which we actually want to approximate. Let us formulate this more precisely in the next
definitions.
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Definition 2.3.1 (A Monte Carlo approximation with order n). Let c ∈ R. Then we say
that X is an n-Monte Carlo approximation of c on Ω (we say that X is a Monte Carlo
approximation of c on Ω with order n, we say that X is an n-Monte Carlo approximation
of c, we say that X is a Monte Carlo approximation of c with order n) if and only if
there exist Ω, F , P such that it holds

(i) that Ω = (Ω,F , P ) is a probability space,

(ii) that X ∈ L1(P ; |·|
R

),

(iii) that n ∈ N, and

(iv) that there exist exist Z1, Z2, . . . , Zn ∈ L1(P ; |·|
R

) such that Z1, Z2, . . . , Zn are
P -independent and such that

EP [Z1] = c, Z1(P )B(R) = . . . = Zn(P )B(R), and X =
Z1 + . . .+ Zn

n
. (2.60)

Definition 2.3.2 (A Monte Carlo approximation). Let c ∈ R. Then we say that X is a
Monte Carlo approximation of c on Ω (we say that X is a Monte Carlo approximation
of c, we say that X is a Monte Carlo approximation) if and only if there exist n ∈ N
such that X is an n-Monte Carlo approximation of c on Ω.

Definition 2.3.3 (A Monte Carlo approximation sequence). Let c ∈ R. Then we say
that X is a Monte Carlo approximation sequence of c on Ω (we say that X is a Monte
Carlo approximation sequence of c) if and only if there exist Ω, F , P such that it holds

(i) that Ω = (Ω,F , P ) is a probability space,

(ii) that X ∈M(N,L1(P ; |·|
R

)), and

(iii) that there exists a sequence Zn ∈ L1(P ; |·|
R

), n ∈ N, such that Zn, n ∈ N, are
P -independent and

∀n ∈ N : EP [Z1] = c, Z1(P )B(R) = Zn(P )B(R), and Xn = Z1+...+Zn
n

.
(2.61)

Let us illustrate this definition through the following simple example (see, e.g., Sec-
tion 21.4 in [Higham(2004)] for a similar example).

Example 2.3.4. Suppose in this example that we want to compute the integral

ˆ 1

−1

exp
(√
|x|
)
dx. (2.62)

In view of (2.58), we rewrite (2.62) by

ˆ 1

−1

exp
(√
|x|R

)
dx =

1

2

ˆ 1

−1

2 exp
(√
|x|
)
dx =

ˆ
R

2 exp
(√
|x|
)
U(−1,1)(dx). (2.63)
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Next let (Ω,F , P ) be a probabilty space and let Yn : Ω → R, n ∈ N, be a sequence of
independent U(−1,1)-distributed random variables. Then it holds that

2

N

(
e
√
|Y1| + . . .+ e

√
|YN |
)

(2.64)

for N ∈ N is a Monte Carlo approximation sequence of
´ 1

−1
exp
(√
|x|
)
dx. If Un : Ω→

R, n ∈ N, are independent U(0,1)-distributed random variables, then (2.64) suggests in
the case N = 100 the following algorithm.

Monte Carlo approximations

Output: Realization x of X ∼
(

1
50

[exp(
√
|Y1|) + . . . + exp(

√
|Y100|)]

)
(P )B(R) ≈´ 1

−1
exp(

√
|x|) dx

s = 0
for n = 1→ 100 do

Generate realization u of Un ∼ U(0,1)

y = 2u− 1
s = s+ exp(

√
|y|)

end for
x = s/50

In Matlab the above algorithm can be implemented through the command
“sum(exp(sqrt(abs(2*rand(1,100)-1))))/50”.

2.3.1 Bias of an estimator

In this subsection we investigate a certain property of Monte Carlo approximations. For
this the following definition is used.

Definition 2.3.5 (Bias). Let (Ω,F , P ) be a probability space, let c ∈ R be a real number,
and let X ∈ L1(P ; |·|

R
). Then we denote by BiasP,c(X) the real number given by

BiasP,c(X) = EP
[
X
]
− c (2.65)

and we call BiasP,c(X) the P -bias of X with respect to c.

Definition 2.3.6 (Unbiased). Let c ∈ R. Then we say that X is P -unbiased with respect
to c (we say that X is P -unbiased for c, we say that X is unbiased with respect to c, we
say that X is unbiased for c) if and only if it holds

(i) that P is a probability measure,

(ii) that X ∈ L1(P ; |·|
R

), and

(iii) that BiasP,c(X) = 0.
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Definition 2.3.7 (Biased). Let c ∈ R. Then we say that X is P -biased with respect to
c (we say that X is P -biased for c, we say that X is biased with respect to c, we say that
X is biased for c) if and only if it holds

(i) that P is a probability measure,

(ii) that X ∈ L1(P ; |·|
R

), and

(iii) that BiasP,c(X) 6= 0.

Lemma 2.3.8 (Unbiasedness of Monte Carlo approximations). Let (Ω,F , P ) be a prob-
ability space, let Xn ∈ L1(P ; |·|

R
), n ∈ N, be i.i.d. random variables, and let N ∈ N.

Then it holds that 1
N

(X1 + . . .+XN) is P -unbiased with respect to EP [X1], i.e., it holds
that

EP
[

1
N

(X1 + . . .+XN)
]

= EP
[
X1

]
. (2.66)

Lemma 2.3.8 follows immediately from the linearity of the expectation.

Exercise 2.3.9. Let A,B ⊆ R2 be the sets given by

A =
{

(x, y) ∈ R2 : |x− 2|2
R

+ y2 ≤ 4
}
, (2.67)

B =
{

(x, y) ∈ R2 : x2 + |y − 2|2
R
≤ 4
}
, (2.68)

let f : R2 → R be the function with the property that for all x, y ∈ R it holds that

f(x, y) = 1(A∩B)(x, y) · |x|2/3
R
, (2.69)

let (Ω,F , P ) be a probability space, let Yn, Zn : Ω → R, n ∈ N, be independent U(0,1)-
distributed random variables, and let IN : Ω → R, N ∈ N, be the functions with the
property that for all N ∈ N it holds that

IN =
4

N

[
N∑
n=1

f(2Yn, 2Zn)

]
. (2.70)

The random variables IN , N ∈ N, are thus Monte Carlo approximations of
EP
[
4f(2Y1, 2Z1)

]
.

(i) Prove or disprove the following statement: IN , N ∈ N, are P -unbiased with respect

to
´ 2

0

´ 2

0
f(x, y) dx dy.

(ii) Write a Matlab function MonteCarlo(N) with input N ∈ N and output a realiza-
tion of IN .

(iii) Write a Matlab function MonteCarloPlot() which plots for every k ∈ {2, 3, 4, 5, 6}
five realizations of I10k , each marked by a blue star, in a coordinate plane. Plot
k ∈ {2, 3, 4, 5, 6} on the x-axis and realizations of I10k on the y-axis. N.B.: Your
plot should thus contain a total of 25 blue stars.
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Exercise 2.3.10. In this exercise we do not distinguish between pseudo random numbers
and actual random numbers. Let d ∈ N, a ∈ R, b ∈ (a,∞), f ∈ L1(B[a,b]d ; |·|R), let
(Ω,F , P ) be a probability space, let Xj : Ω→ R

d, j ∈ N, be independent U[a,b]d-distributed
random variables with ∀ j ∈ N : Xj(Ω) ⊆ [a, b]d, and let IN : Ω → R, N ∈ N, be the
functions with the property that for all N ∈ N it holds that

IN =
(b− a)d

N

[
N∑
j=1

f(Xj)

]
. (2.71)

Write a Matlab function intMC(a,b,d,f,N) with input a ∈ R, b ∈ (a,∞), d ∈ N,
f ∈ L1(B[a,b]d ; |·|R), N ∈ N and output a realization of IN . Test your Matlab function
intMC(a,b,d,f,N) in the cases a = 0, b = 2, (d,N) ∈ ∪l∈{5,10} ∪k∈{3,5,7} {(k, lk)},
f = [a, b]d 3 x = (x1, . . . , xd) 7→ x1 ∈ R.

2.4 Error analysis of the Monte Carlo method

2.4.1 Consistency of the Monte Carlo method

This section presents consistency properties for Monte Carlo approximations.

Definition 2.4.1 (Consistency). Let c ∈ R. We say that X is P -consistent for c (we
say that X is consistent for c, we say that X is consistent) if and only if there exist a
measurable space (Ω,F) such that it holds

(i) that P is a probability measure on (Ω,F),

(ii) that X ∈M(N,M(F ,B(R))), and

(iii) that
∀ ε ∈ (0,∞) : lim sup

n→∞
P (|Xn − c|R ≥ ε) = 0. (2.72)

Definition 2.4.2 (Strong consistency). Let c ∈ R. We say that X is strongly P -
consistent for c (we say that X is strongly consistent for c, we say that X is strongly
consistent) if and only if there exist a measurable space (Ω,F) such that it holds

(i) that P is a probability measure on (Ω,F),

(ii) that X ∈M(N,M(F ,B(R))), and

(iii) that

∀ ε ∈ (0,∞) : P

(
lim sup
n→∞

|Xn − c|R ≥ ε

)
= 0. (2.73)

The convergence property in (2.73) is equivalent to almost sure convergence. This is the
subject of the next lemma.
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Lemma 2.4.3 (A characterization for almost sure convergence). Let (Ω,F , P ) be a
probability space and let Xn : Ω→ R, n ∈ N0, be F/B(R)-measurable functions. Then

sup
ε∈(0,∞)

P

(
lim sup
n→∞

|Xn −X0|R ≥ ε

)
= sup

ε∈(0,∞)

P

(
lim sup
n→∞

|Xn −X0|R > ε

)
= lim

ε↘0
P

(
lim sup
n→∞

|Xn −X0|R ≥ ε

)
= lim

ε↘0
P

(
lim sup
n→∞

|Xn −X0|R > ε

)
= P

(
lim sup
n→∞

|Xn −X0|R > 0

)
.

(2.74)

Lemma 2.4.3 is an immediate consequence from the fact that probability measures are
continuous from below. The next lemma provides a well-known relation between con-
sistency and strong consistency.

Lemma 2.4.4 (Almost sure convergence implies convergence in probability). Let
(Ω,F , P ) be a probability space and let Xn : Ω → R, n ∈ N0, be F/B(R)-measurable
functions which satisfy that

P

(
lim sup
n→∞

|Xn −X0|R = 0

)
= 1. (2.75)

Then it holds for all ε ∈ (0,∞) that

lim sup
n→∞

P (|Xn −X0|R ≥ ε) = lim sup
n→∞

P (|Xn −X0|R > ε) = 0. (2.76)

Proof of Lemma 2.4.4. First, note that (2.75) ensures that

P

(
lim sup
n→∞

|Xn −X0|R > 0

)
= 0 (2.77)

This and Lemma 2.4.3 imply that for all ε ∈ (0,∞) it holds that

P

(
lim sup
n→∞

|Xn −X0|R > ε

)
= 0. (2.78)

The fact that P is continuous from above and monotonicity of P hence establish that
for all ε ∈ (0,∞) it holds that

lim sup
n→∞

P (|Xn −X0|R > ε) ≤ lim sup
n→∞

P
(
∪m∈N∩[n,∞) {|Xm −X0|R > ε}

)
= P

(
∩n∈N ∪m∈N∩[n,∞) {|Xm −X0|R > ε}

)
= P

(
lim sup
n→∞

|Xn −X0|R > ε

)
= 0.

(2.79)

The proof of Lemma 2.4.4 is thus completed.
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The next theorem, known as strong law of large numbers, proves that Monte Carlo
approximations are strongly consistent and therefore, in particular, shows that Monte
Carlo approximations are consistent (see Lemma 2.4.4 above).

Theorem 2.4.5 (Strong law of large numbers). Let (Ω,F , P ) be a probability space and
let Xn ∈ L1(P ; |·|

R
), n ∈ N, be i.i.d. random variables. Then the sequence 1

N
(X1 + . . .+

XN), N ∈ N, converges P -almost surely to EP [X1], i.e., it holds that

P

(
lim sup
N→∞

∣∣∣∣[X1 + . . .+XN

N

]
− EP

[
X1

]∣∣∣∣
R

= 0

)
= 1. (2.80)

In other words, the Monte Carlo approximation sequence 1
N

(X1 + . . .+XN), N ∈ N, of
EP
[
X1

]
is strongly P -consistent for EP

[
X1

]
.

Theorem 2.4.5 is, for example, proved as Theorem 5.12 in [Klenke(2008)].

2.4.2 Root mean square error of the Monte Carlo method

Lemma 2.4.6 (Variance of a finite sum of random variables). Let (Ω,F , P ) be a prob-
abilty space, let N ∈ N, and let X1, . . . , XN ∈ L2(P ; |·|

R
). Then

VarP

(
N∑
i=1

Xi

)
=

N∑
i,j=1

CovP (Xi, Xj) =
N∑
i=1

VarP (Xi) +
∑

i,j∈{1,...,N},
i 6=j

CovP (Xi, Xj) . (2.81)

Proof of Lemma 2.4.6. Note that

VarP

(
N∑
i=1

Xi

)
= EP

( N∑
i=1

(Xi − EP [Xi])

)2


=
N∑

i,j=1

EP
[(
Xi − EP [Xi]

)(
Xj − EP [Xj]

)]
=

N∑
i,j=1

CovP (Xi, Xj) .

(2.82)

This completes the proof of Lemma 2.4.6.

Corollary 2.4.7 (Variance of a finite sum of uncorrelated random variables). Let
(Ω,F , P ) be a probabilty space, let N ∈ N, and let X1, . . . , XN ∈ L2(P ; |·|

R
) be pairwise

P -uncorrelated. Then

VarP (X1 + . . .+XN) = VarP (X1) + . . .+ VarP (XN) . (2.83)

Using Corollary 2.4.7, we now analyze the mean square error of Monte Carlo approxi-
mations.

Work in progress. Copyright (C) with the authors.
Dissemination prohibited. December 15, 2018

85



Chapter 2. Monte Carlo integration methods

Theorem 2.4.8 (Root mean square error of the Monte Carlo method). Let (Ω,F , P )
be a probability space and let Xn ∈ L2(P ; |·|

R
), n ∈ N, be i.i.d. random variables. Then

it holds for all N ∈ N that∥∥∥∥EP [X1

]
− X1 + . . .+XN

N

∥∥∥∥
L2(P ;|·|

R
)

=

√
VarP (X1)√

N
. (2.84)

Proof of Theorem 2.4.8. Lemma 2.3.8 and Corollary 2.4.7 imply that for all N ∈ N it
holds that

EP

[∣∣∣∣EP [X1

]
− X1 + . . .+XN

N

∣∣∣∣2
R

]
= VarP

(
X1 + . . .+XN

N

)
=

VarP (X1) + . . .+ VarP (XN)

N2
=
N · VarP (X1)

N2
=

VarP (X1)

N
.

(2.85)

This completes the proof of Theorem 2.4.8.

Theorem 2.4.8, in particular, proves that the Monte Carlo approximations 1
N

(
X1 + . . .+

XN

)
, N ∈ N, of EP

[
X1

]
converge in the root mean square sense with order 1

2
to the

real number EP
[
X1

]
and that the constant appearing in the error estimate (2.84) is the

standard deviation
√

VarP (X1) of X1.

Remark 2.4.9. Let (Ω,F , P ) be a probability space and let Xn ∈ L0(P ; |·|
R

), n ∈ N,
be i.i.d. random variables. Then observe that Theorem 2.4.8 is applicable under the
assumption that for all n ∈ N it holds that

Xn ∈ L2(P ; |·|
R

) ⊆ L1(P ; |·|
R

) (2.86)

while Theorem 2.4.5 is applicable under the assumption that for all n ∈ N it holds that

Xn ∈ L1(P ; |·|
R

). (2.87)

Exercise 2.4.10. Let (Ω,F , P ) be a probability space, let f ∈ M(B(R),B(R)) be a
bounded function, and let Un ∈ M(F ,B(R)), n ∈ N, be independent U(−1,1)-distributed
random variables. Prove or disprove the following statement: It holds that(

EP

[∣∣∣∣f(U1) + . . .+ f(U5000)

2500
−
ˆ 1

−1

f(x) dx

∣∣∣∣2
R

])1/2

≤ supx∈R |f(x)|
R

30
. (2.88)

2.4.3 Markov’s and Chebyshev’s inequality

In this subsection the Markov inequality (see Lemma 2.4.11 below) and the Chebyshev
inequality (see Corollary 2.4.12) are presented.
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Lemma 2.4.11 (Markov inequality). Let (Ω,F , µ) be a measure space, let ε ∈ (0,∞),
and let X : Ω→ [0,∞) be an F/B([0,∞))-measurable function. Then

µ
(
X ≥ ε

)
≤
´

Ω
X dµ

ε
. (2.89)

Proof of Lemma 2.4.11. The fact that X ≥ 0 proves that

1
Ω
{X≥ε} =

ε · 1Ω
{X≥ε}

ε
≤
X · 1Ω

{X≥ε}

ε
≤ X

ε
. (2.90)

Integration of (2.90) with respect to µ results in (2.89). This completes the proof of
Lemma 2.4.11.

A direct consequence of the Markov inequality is the Chebyshev inequality which is
presented in the next corollary.

Corollary 2.4.12 (Chebyshev inequality). Let (Ω,F , P ) be a probability space, let
X : Ω → R be an F/B(R)-measurable function with EP

[
|X|R

]
< ∞, and let ε, q ∈

(0,∞). Then

P
(
|X − EP [X]|

R
≥ ε
)
≤

(
EP
[
|X − EP [X]|q

]
εq

)
(2.91)

and P
(
|X − EP [X]|

R
≥ ε
)
≤ VarP (X)

ε2
. (2.92)

An immediate consequence of the Markov inequality is the fact that strong convergence
implies convergence in probability. This is the subject of the following lemma.

Lemma 2.4.13 (Lp-convergence implies convergence in probability). Let (Ω,F , P )
be a probability space, let p ∈ (0,∞), and let Xn ∈ Lp(P ; |·|

R
), n ∈ N, satisfy

lim supn→∞ ‖Xn‖Lp(P ;|·|
R

) = 0. Then (Xn)n∈N converges to zero in probability, i.e., it
holds for all ε ∈ (0,∞) that lim supn→∞ P (|Xn|R ≥ ε) = 0.

Proof of Lemma 2.4.13. First of all, observe that the Markov inequality proves that for
all n ∈ N, ε ∈ (0,∞) it holds that

P (|Xn|R ≥ ε) = P (|Xn|pR ≥ εp) ≤
EP
[
|Xn|pR

]
εp

. (2.93)

The assumption that lim supn→∞ EP
[
|Xn|pR

]
= 0 hence implies that for all ε ∈ (0,∞) it

holds that lim supn→∞ P (|Xn|R ≥ ε) = 0. The proof of Lemma 2.4.13 is thus completed.
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2.4.4 Examples and counterexamples

Proposition 2.4.14. Let Xn : [0, 1]→ R, n ∈ N, be the functions which satisfy for all
n ∈ N, x ∈ [0, 1] that

Xn(x) = 2n · 1[0,1]
(0,1/n)(x). (2.94)

Then

(i) it holds for all x ∈ [0, 1] that lim supn→∞ |Xn(x)| = 0,

(ii) it holds that B[0,1]

(
lim supn→∞ |Xn| = 0

)
= 1,

(iii) it holds for all ε ∈ (0,∞) that lim supn→∞B[0,1]

(
|Xn| ≥ ε

)
= 0, and

(iv) it holds for all p ∈ (0,∞) that lim infn→∞ EB[0,1]

[
|Xn|p

]
=∞.

Proof of Proposition 2.4.14. Observe that for all x ∈ (0, 1] and all n ∈ N ∩ ( 1
x
,∞) it

holds that
Xn(x) = 0. (2.95)

This proves Item (i). Item (ii) is an immediate consequence from Item (i). Item (iii)
follows from Item (ii) together with Lemma 2.4.4. Moreover, observe that for all n ∈ N,
p ∈ (0,∞) it holds that

EB[0,1]

[
|Xn|p

]
= 2np · 1

n
. (2.96)

This establishes Item (iv). The proof of Proposition 2.4.14 is thus completed.

Proposition 2.4.15. Let Xn : [0, 1]→ R, n ∈ N, be the functions which satisfy for all
n ∈ N, l ∈ N0, k ∈ {1, 2, 3, . . . , 2l}, x ∈ [0, 1] with n = 2l + k − 1 that

Xn(x) = 1
[0,1]

[ k−1

2l
, k
2l

]
(x). (2.97)

Then

(i) it holds for all p ∈ (0,∞) that lim supn→∞ EB[0,1]

[
|Xn|p

]
= 0,

(ii) it holds for all ε ∈ (0,∞) that lim supn→∞B[0,1]

(
|Xn| ≥ ε

)
= 0, and

(iii) it holds that {x ∈ [0, 1] : lim supn→∞ |Xn(x)| = 0} = ∅.

Proof of Proposition 2.4.15. Observe that for all p ∈ (0,∞), n ∈ N, l ∈ N0, k ∈
{1, 2, 3, . . . , 2l} with n = 2l + k − 1 it holds that

EB[0,1]

[
|Xn|p

]
= EB[0,1]

[
1

[0,1]

[ k−1

2l
, k
2l

]

]
= 1

2l
. (2.98)

This implies Item (i). Item (ii) is an immediate consequence from Item (i) and
Lemma 2.4.13. Item (iii) follows from the fact that for all x ∈ [0, 1] it holds that
lim supn→∞Xn(x) = 1. The proof of Proposition 2.4.15 is thus completed.
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2.5 Approximating the variance of a random variable

Let (Ω,F , P ) be a probability space and let Xn ∈ L2(P ; |·|
R

) be i.i.d. random variables.
Then Lemma 2.4.4, Theorem 2.4.5, and Theorem 2.4.8 prove that the Monte Carlo
approximation sequence

(X1 + . . .+XN)

N
, N ∈ N, (2.99)

of EP [X1] converges P -almost surely, in probability, and in the root mean square sense to
EP [X1]. In that sense the random variable 1

N
(X1 + . . .+XN) is a good approximation

of the expectation EP [X1] of the random variable X1 if N ∈ N is sufficiently large. In
this subsection we are interested to compute an approximation of the variance

VarP (X1) = EP
[
(X1 − EP [X1])2

]
(2.100)

of the random variable X1. A central reason why we are interested to obtain such an
approximation is that the variance of X1 appears on the right hand side of the root mean
square error estimate (2.84) in Theorem 2.4.8. To compute an approximation of (2.100),
we consider random variables X̄n ∈ L1(P ; |·|

R
), n ∈ N, which satisfy for all n ∈ N that

X̄n = (Xn − EP [X1])2 . (2.101)

Then we obtain from Theorem 2.4.5 that the sequence 1
N

(X̄1 + . . . + X̄N), N ∈ N, is
strongly P -consistent for EP [X̄1] = VarP (X1). This suggests that

X̄1 + . . .+ X̄N

N
=

1

N

(
N∑
n=1

(Xn − EP [X1])2

)
(2.102)

is a good approximation of VarP (X1) if N ∈ N is sufficiently large. However, (2.102) does
only help in simulations if one already knows the exact value of the expectation EP [X1]
of the random variable X1. If one does not know the exact value of the expectation
EP [X1] of the random variable X1 (which is often the case), then one can in general not
generate realizations of the random variables X̄n, n ∈ N. Instead we are looking for
random variables that are – in an appropriate sense – good approximations of VarP (X1)
and from which one can generate realizations without the explicit knowledge of EP [X1].
An obvious idea is to replace the expectation EP [X1] in (2.102) by its Monte Carlo
approximations. This leads to the random variables

1

N

N∑
n=1

(
Xn −

X1 + . . .+XN

N

)2

(2.103)

for N ∈ N as approximations of VarP (X1). The random variables (2.103) converge,
under suitable assumptions, in the mean square sense to VarP (X1) (see Subsection 2.5.3
below). However, we will note that the random variables (2.103) are P -biased with
respect to VarP (X1). This is the subject of the next subsection.
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2.5.1 On P -biased and P -unbiased variance approximations and
Bessel’s correction

The next result, Proposition 2.5.1, in particular, proves that the random variables (2.103)
are P -biased with respect to VarP (X1).

Proposition 2.5.1 (Biasedness and unbiasedness of approximations for the variance of
a random variable). Let (Ω,F , P ) be a probability space and let Xn ∈ L2(P ; |·|

R
), n ∈ N,

be i.i.d. random variables. Then

(i) it holds for all N ∈ N that

EP

[
N∑
n=1

(
Xn −

X1 + . . .+XN

N

)2
]

= (N − 1) · VarP (X1), (2.104)

(ii) it holds for every N ∈ N with VarP (X1) > 0 that the F/B(R)-measurable function
1
N

∑N
n=1

(
Xn − X1+...+XN

N

)2
is P -biased with respect to VarP (X1), and

(iii) it holds for every N ∈ {2, 3, . . . } that the F/B(R)-measurable function
1

(N−1)

∑N
n=1

(
Xn − X1+...+XN

N

)2
is P -unbiased with respect to VarP (X1).

Proof of Proposition 2.5.1. Lemma 2.4.6 shows that for all N ∈ N it holds that

EP

[
N∑
n=1

(
Xn −

X1 + . . .+XN

N

)2
]

=
N∑
n=1

EP

[(
Xn −

X1 + . . .+XN

N

)2
]

=
N∑
n=1

VarP

(
Xn −

X1 + . . .+XN

N

)

=
N∑
n=1

(
(N − 1)VarP

(
X1

N

)
+ VarP

(
(N−1)
N

X1

))
= N

(
(N−1)
N2 VarP (X1) + (N−1)2

N2 VarP (X1)
)

=
(

(N−1)
N

+ (N−1)2

N

)
VarP (X1)

= (N − 1)VarP (X1) .

(2.105)

This completes the proof of Proposition 2.5.1.

Proposition 2.5.1 shows that the random variables (2.103) are P -biased with respect to
VarP (X1) and Proposition 2.5.1 also shows that the random variables

1

(N − 1)

N∑
n=1

(
Xn −

X1 + . . .+XN

N

)2

(2.106)

for N ∈ {2, 3, . . . } are P -unbiased with respect to VarP (X1). These random variables
also converge in the root mean square sense to VarP (X1) if it holds for all n ∈ N that
Xn ∈ L4(P ; |·|

R
). This is the subject of the next subsection.
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2.5.2 Root mean square error of a P -unbiased variance
approximation (unbiased/corrected sample variance)

In Theorem 2.5.3 below we prove, in particular, that the random variables (2.106) con-
verge in the mean square sense to VarP (X1) if it holds for all n ∈ N that Xn ∈ L4(P ; |·|

R
).

The proof of Theorem 2.5.3 uses the following elementary identity.

Lemma 2.5.2. Let N ∈ N, x1, x2, . . . , xN ∈ R. Then

N∑
n=1

(
xn −

x1 + . . .+ xN
N

)2

=

(
N∑
n=1

(xn)2

)
− 1

N

(
N∑
n=1

xn

)2

. (2.107)

Proof of Lemma 2.5.2. Note that

N∑
n=1

(
xn −

x1 + . . .+ xN
N

)2

=

[
N∑
n=1

(xn)2

]
− 2

[
N∑
n=1

xn

(
x1 + . . .+ xN

N

)]
+

[
N∑
n=1

(
x1 + . . .+ xN

N

)2
]

=

(
N∑
n=1

(xn)2

)
− 1

N

(
N∑
n=1

xn

)2

.

(2.108)

The proof of Lemma 2.5.2 is thus completed.

Theorem 2.5.3. Let (Ω,F , P ) be a probability space and let Xn ∈ L4(P ; |·|
R

), n ∈ N,
be i.i.d. random variables. Then

(i) it holds for all N ∈ {2, 3, . . . } that∥∥∥∥∥VarP (X1)− 1

(N − 1)

N∑
n=1

(
Xn −

X1 + . . .+XN

N

)2
∥∥∥∥∥
L2(P ;|·|

R
)

=

√
(N − 1)2 EP [(X1 − EP [X1])4] + (4N −N2 − 3) |VarP (X1)|2

R√
N (N − 1)

(2.109)

and

(ii) it holds for all N ∈ {3, 4, . . . } that∥∥∥∥∥VarP (X1)− 1
(N−1)

N∑
n=1

(
Xn −

X1 + . . .+XN

N

)2
∥∥∥∥∥
L2(P ;|·|

R
)

≤

√
EP
[

(X1−EP [X1])4
]

√
N

.

(2.110)
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Proof of Theorem 2.5.3. Let Yn ∈ L4(P ; |·|
R

), n ∈ N, be random variables which satisfy
for all n ∈ N that

Yn = Xn − EP
[
Xn

]
. (2.111)

Next observe that Proposition 2.5.1 implies that

EP

∣∣∣∣∣VarP (X1)− 1

(N − 1)

N∑
n=1

(
Xn −

X1 + . . .+XN

N

)2
∣∣∣∣∣
2

R


= VarP

(
1

(N − 1)

N∑
n=1

(
Xn −

X1 + . . .+XN

N

)2
)

=
1

(N − 1)2 VarP

(
N∑
n=1

(
Xn −

X1 + . . .+XN

N

)2
)

=
1

(N − 1)2 VarP

(
N∑
n=1

(
Yn −

Y1 + . . .+ YN
N

)2
)
.

(2.112)

Lemma 2.5.2 and Lemma 2.4.6 and the fact that ∀ i ∈ {1, . . . , N} : EP
[
Yi
]

= 0 hence
show that for all N ∈ {2, 3, . . . } it holds that

EP

∣∣∣∣∣VarP (X1)− 1

(N − 1)

N∑
n=1

(
Xn −

X1 + . . .+XN

N

)2
∣∣∣∣∣
2

R


=

1

(N − 1)2 VarP

 N∑
n=1

(Yn)2 −

(∑N
n=1 Yn

)2

N


= 1

(N−1)2

{
VarP

(
N∑
n=1

(Yn)2

)
− 2CovP

(
N∑
n=1

(Yn)2 ,
(
∑N
n=1 Yn)

2

N

)
+ VarP

(
(
∑N
n=1 Yn)

2

N

)}

= 1
(N−1)2

{
N∑
n=1

VarP
(
(Yn)2)− 2

N

N∑
n,i,j=1

CovP
(
(Yn)2 , YiYj

)
+

Var
(
(
∑N
n=1 Yn)

2
)

N2

}
.

(2.113)
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Again Lemma 2.4.6 therefore shows that for all N ∈ {2, 3, . . . } it holds that

EP

∣∣∣∣∣VarP (X1)− 1

(N − 1)

N∑
n=1

(
Xn −

X1 + . . .+XN

N

)2
∣∣∣∣∣
2

R


= 1

(N−1)2

{
N VarP

(
(Y1)2)− 2

N

N∑
n=1

VarP
(
(Yn)2)+

EP
[
(
∑N
n=1 Yn)

4
]
−
∣∣∣EP [(∑N

n=1 Yn)
2
]∣∣∣2
R

N2

}

= 1
(N−1)2

{
(N − 2)VarP

(
(Y1)2)+

∑N
n1,n2,n3,n4=1 EP

[
Yn1Yn2Yn3Yn4

]
−|Var(∑N

n=1 Yn)|2R
N2

}
=

(N−2)Var((Y1)2)
(N−1)2

+
∑N
n=1 EP

[
(Yn)4

]
+3
∑
n,m∈{1,...,N},n6=m EP

[
(Yn)2(Ym)2

]
−|N ·Var(Y1)|2

R

N2(N−1)2

=
(N − 2)

(N − 1)2 VarP
(
(Y1)2)+

N EP
[
(Y1)4] + 3N(N − 1) |EP [(Y1)2]|2

R
−N2 |EP [(Y1)2]|2

R

N2 (N − 1)2

=
N (N − 2)

{
EP [(Y1)4]− |EP [(Y1)2]|2

R

}
N (N − 1)2 +

EP
[
(Y1)4] + (2N − 3) |EP [(Y1)2]|2

R

N (N − 1)2

=
(N − 1)2 EP [(Y1)4] + (4N −N2 − 3) |EP [(Y1)2]|2

R

N (N − 1)2 .

(2.114)

This proves equation (2.109). Moreover, combining (2.114) with the fact that ∀N ∈
{3, 4, . . . } : 4N −N2 − 3 ≤ 0 proves that for all N ∈ {3, 4, . . . } it holds that

EP

∣∣∣∣∣VarP (X1)− 1

(N − 1)

N∑
n=1

(
Xn −

X1 + . . .+XN

N

)2
∣∣∣∣∣
2

R


≤ (N − 1)2 EP [(Y1)4]

N (N − 1)2 =
EP [(Y1)4]

N
.

(2.115)

This completes the proof of Theorem 2.5.3.

2.5.3 Root mean square error of a P -biased variance approximation
(sample variance)

The random variables in (2.103) also converge in the mean square sense to VarP (X1) if
it holds for all n ∈ N that Xn ∈ L4(P ; |·|

R
). This is formulated in the next corollary.
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Corollary 2.5.4. Let (Ω,F , P ) be a probability space and let Xn ∈ L4(P ; |·|
R

), n ∈ N,
be i.i.d. random variables. Then it holds for all N ∈ N that∥∥∥∥∥VarP (X1)− 1

N

N∑
n=1

(
Xn −

X1 + . . .+XN

N

)2
∥∥∥∥∥
L2(P ;|·|

R
)

=

√
(N − 1)2 EP [(X1 − EP [X1])4] + (5N −N2 − 3) |VarP (X1)|2

R

N3/2

≤
√
EP [(X1 − EP [X1])4]√

N
.

(2.116)

Proof of Corollary 2.5.4. First of all, observe that Proposition 2.5.1 implies that for all
N ∈ {2, 3, . . . } it holds that∥∥∥∥∥VarP (X1)− 1

N

N∑
n=1

(
Xn −

X1 + . . .+XN

N

)2
∥∥∥∥∥

2

L2(P ;|·|
R

)

=
∣∣∣VarP (X1)− (N−1)VarP (X1)

N

∣∣∣2
R

+ VarP

(
1

N

N∑
n=1

(
Xn −

X1 + . . .+XN

N

)2
)

=
|VarP (X1)|2

R

N2
+

(N − 1)2

N2
VarP

(
1

(N − 1)

N∑
n=1

(
Xn −

X1 + . . .+XN

N

)2
)
.

(2.117)

Theorem 2.5.3 hence shows that for all N ∈ {2, 3, . . . } it holds that∥∥∥∥∥VarP (X1)− 1

N

N∑
n=1

(
Xn −

X1 + . . .+XN

N

)2
∥∥∥∥∥

2

L2(P ;|·|
R

)

=
|VarP (X1)|2

R

N2
+

(N − 1)2 EP [(X1 − EP [X1])4] + (4N −N2 − 3) |VarP (X1)|2
R

N3

=
(N − 1)2 EP [(X1 − EP [X1])4] + (5N −N2 − 3) |VarP (X1)|2

R

N3

=
EP [(X1 − EP [X1])4]

N
+

(1− 2N)EP [(X1 − EP [X1])4] + (5N −N2 − 3) |VarP (X1)|2
R

N3

(2.118)

The estimate EP [(X1 − EP [X1])4] ≥ |VarP (X1)|2
R

therefore proves that for all N ∈
{2, 3, . . . } it holds that∥∥∥∥∥VarP (X1)− 1

N

N∑
n=1

(
Xn −

X1 + . . .+XN

N

)2
∥∥∥∥∥

2

L2(P ;|·|
R

)

≤ EP [(X1 − EP [X1])4]

N
+

(3N −N2 − 2) |VarP (X1)|2
R

N3
≤ EP [(X1 − EP [X1])4]

N
.

(2.119)
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Combining (2.118) and (2.119) proves (2.116) in the case N ∈ {2, 3, . . . }. Next note
that it is clear that (2.116) holds in the case N = 1. The proof of Corollary 2.5.4 is thus
completed.

2.5.4 Comparison of the root mean square errors of an P -unbiased
and a P -biased variance approximation

In this subsection we compare the strong root mean square errors obtained in Corol-
lary 2.5.4 and Theorem 2.5.3.

Proposition 2.5.5. Let (Ω,F , P ) be a probability space and let X ∈ L4(P ; |·|
R

) satisfy
VarP (X) > 0. Then

(i) it holds for all N ∈ {2, 3, . . . } that

(N−1)2 EP [(X−EP [X])4]+(4N−N2−3)|VarP (X)|2
R

N(N−1)2
− (N−1)2 EP [(X−EP [X])4]+(5N−N2−3)|VarP (X)|2

R

N3

=

[
2− 3

N
+ 1

N2

]
EP
[
(X − EP [X])4

]
−
[
3− 8

N
+ 3

N2

]
|VarP (X)|2

R

N (N − 1)
(2.120)

and

(ii) it holds that

lim sup
N→∞

(
N (N − 1)

[
(N−1)2 EP [(X−EP [X])4]+(4N−N2−3)|VarP (X)|2

R

N(N−1)2

− (N−1)2 EP [(X−EP [X])4]+(5N−N2−3)|VarP (X)|2
R

N3

])

= lim inf
N→∞

(
N (N − 1)

[
(N−1)2 EP [(X−EP [X])4]+(4N−N2−3)|VarP (X)|2

R

N(N−1)2

− (N−1)2 EP [(X−EP [X])4]+(5N−N2−3)|VarP (X)|2
R

N3

])
= 2 EP

[
(X − EP [X])4

]
− 3 |VarP (X)|2

R
∈ R.

(2.121)
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Proof. Note that for all N ∈ {2, 3, . . . } it holds that

(N − 1)2 EP [(X − EP [X])4] + (4N −N2 − 3) |VarP (X)|2
R

N (N − 1)2

− (N − 1)2 EP [(X − EP [X])4] + (5N −N2 − 3) |VarP (X)|2
R

N3

=

[
1

N
− (N2 − 2N + 1)

N3

]
EP
[
(X − EP [X])4

]
+

[
(3−N)

N (N − 1)
− (5N −N2 − 3)

N3

]
|VarP (X)|2

R

=

[
(2N − 1)

N3

]
EP
[
(X − EP [X])4

]
+

[
N2(3−N)−(5N−N2−3)(N−1)

N3(N−1)

]
|VarP (X)|2

R
.

(2.122)

This implies that for all N ∈ {2, 3, . . . } it holds that

(N − 1)2 EP [(X − EP [X])4] + (4N −N2 − 3) |VarP (X)|2
R

N (N − 1)2

− (N − 1)2 EP [(X − EP [X])4] + (5N −N2 − 3) |VarP (X)|2
R

N3

=

[
(2N − 1)

N3

]
EP
[
(X − EP [X])4

]
+

[
(3N2−N3−5N2+N3+3N+5N−N2−3)

N3(N−1)

]
|VarP (X)|2

R

=

[
(2N − 1)

N3

]
EP
[
(X − EP [X])4

]
−
[

(3N2 − 8N + 3)

N3 (N − 1)

]
|VarP (X)|2

R
.

(2.123)

This shows that for all N ∈ {2, 3, . . . } it holds that

(N−1)2 EP [(X−EP [X])4]+(4N−N2−3)|VarP (X)|2
R

N(N−1)2
− (N−1)2 EP [(X−EP [X])4]+(5N−N2−3)|VarP (X)|2

R

N3

=
[2N2 − 3N + 1]EP

[
(X − EP [X])4

]
− [3N2 − 8N + 3] |VarP (X)|2

R

N3 (N − 1)

=

[
2− 3

N
+ 1

N2

]
EP
[
(X − EP [X])4

]
−
[
3− 8

N
+ 3

N2

]
|VarP (X)|2

R

N (N − 1)
.

(2.124)

This completes the proof of Proposition 2.5.5.

2.6 Confidence intervals

Let (Ω,F , P ) be a probability space and let Xn ∈ L2(P ; |·|
R

), n ∈ N, be i.i.d. random
variables. Then Lemma 2.4.4 and Theorems 2.4.5 and 2.4.8 prove that the Monte Carlo
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approximations 1
N

(X1 + . . .+XN), N ∈ N, converge P -almost surely, in probability,
and in the root mean square sense to EP [X1]. We thus know that the random variable

(X1 + . . .+XN)

N
(2.125)

is in the sense above close to the real number EP [X1] if N ∈ N is large. However, in
many situations it holds for all N ∈ N that

P

(
(X1 + . . .+XN)

N
= EP [X1]

)
= 0. (2.126)

For instance, identity (2.126) holds if X1(P )B(R) is absolutely continuous since in that
case it holds for all N ∈ N, c ∈ R that

P

(
(X1 + . . .+XN)

N
= c

)
= 0. (2.127)

Equation (2.126) is somehow plausible since the random variable in (2.125) is close to
EP [X1] if N ∈ N is large (according to Lemma 2.4.4 and Theorems 2.4.5 and 2.4.8 above)
but it is very unlikely that the random variable in (2.125) is precisely equal to EP [X1].
In this subsection we roughly speaking intend to quantify in a suitable sense how close
EP [X1] and the random variable in (2.125) are. For this the notion of a confidence
interval is crucial. To introduce this notion, a few technical issues are presented first.

Definition 2.6.1 (Measurable space of nonempty compact intervals). Define the set
CIR := {[a, b] ⊆ R : (a, b ∈ R and a ≤ b)} of all nonempty compact intervals of real
numbers and define the sigma-algebra

IR := σCIR

({
{A ∈ CIR : inf(A) < c} : c ∈ R

}
∪
{
{A ∈ CIR : sup(A) < c} : c ∈ R

})
= σCIR

(
CIR 3 A 7→ inf(A) ∈ R,CIR 3 A 7→ sup(A) ∈ R

)
(2.128)

on CIR.

The next lemma provides a describtion of the sigma-algebra IR on the set of nonempty
compact intervals CIR.

Lemma 2.6.2 (Sigma-algebra on the set of nonempty compact intervals). It holds for
all x ∈ R that {A ∈ CIR : x ∈ A} ∈ IR.

Proof of Lemma 2.6.2. Observe that

{A ∈ CIR : x ∈ A} = {A ∈ CIR : inf(A) ≤ x}︸ ︷︷ ︸
∈IR

∩{A ∈ CIR : sup(A) ≥ x}︸ ︷︷ ︸
∈IR

∈ IR (2.129)

for all x ∈ R. This completes the proof of Lemma 2.6.2.
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Definition 2.6.3 (random interval). Let (Ω,F , P ) be a probability space. Then an
F/IR-measurable function X : Ω→ CIR is called (nonempty compact) random interval.

Using Lemma 2.6.2 and Definition 2.6.3, we now introduce the notion of a confidence
interval.

Definition 2.6.4 (Confidence interval). Let (Ω,F , P ) be a probability space, let c ∈ R
and α ∈ [0, 1] be real numbers and let A : Ω → CIR be a random interval. Then we say
that A is an α-confidence interval for c if P (c ∈ A) ≥ α.

If A is an α-confidence interval for c in Definition 2.6.4, then the parameter α ∈ [0, 1]
is also referred as confidence level of the confidence interval A. Let us collect a few
properties of confidence intervals.

Lemma 2.6.5 (Supersets of confidence intervals). Let (Ω,F , P ) be a probability space,
let α ∈ [0, 1] and c ∈ R be real numbers, let A1 : Ω → CIR be an α-confidence interval
for c and let A2 : Ω → CIR be a random interval with A1(ω) ⊆ A2(ω) for all ω ∈ Ω.
Then A2 is an α-confidence interval for c.

Proof of Lemma 2.6.5. The assumption A1(ω) ⊆ A2(ω) for all ω ∈ Ω implies that

{c ∈ A1} = {ω ∈ Ω: c ∈ A1(ω)} ⊆ {ω ∈ Ω: c ∈ A2(ω)} = {c ∈ A2} (2.130)

and the assumption that A1 is an α-confidence interval for c and the monotonicity of
the probability measure P hence show that

α ≤ P (c ∈ A1) ≤ P (c ∈ A2) . (2.131)

This finishes the proof of Lemma 2.6.5.

Lemma 2.6.6 (Enlargement of independent confidence intervals). Let (Ω,F , P ) be a
probability space, let α1, α2 ∈ [0, 1] and c ∈ R be real numbers, let A1 : Ω→ CIR be an α1-
confidence interval for c, let A2 : Ω→ CIR be an α2-confidence interval for c and assume
that A1, A2 are independent. Then the random interval [inf(A1∪A2), sup(A1∪A2)] : Ω→
CIR is an (1− (1− α1)(1− α2))-confidence interval for c.

Proof of Lemma 2.6.6. Observe that

P
(
c ∈

[
inf(A1 ∪ A2), sup(A1 ∪ A2)

])
≥ P

(
{c ∈ A1} ∪ {c ∈ A2}

)
= 1− P

(
{c /∈ A1} ∩ {c /∈ A2}

)
= 1− P

(
c /∈ A1

)
· P
(
c /∈ A2

)
≥ 1− (1− α1) (1− α2) = α1 + α2 − α1α2.

(2.132)

This finishes the proof of Lemma 2.6.6.
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2.6.1 (Asymptotically valid) Confidence intervals based on the
Chebyshev inequality

In this subsection confidence intervals based on Monte Carlo approximations and the
Chebyshev inequality are derived.

Corollary 2.6.7 (Confidence intervals based on Monte Carlo approximations and the
Chebyshev inequality I). Let (Ω,F , P ) be a probability space, let α ∈ [0, 1) be a real
number and let Xn ∈ L2(P ; |·|

R
), n ∈ N, be i.i.d. random variables. Then

P

(
EP [X1] ∈

[
X1+...+XN

N
−
√

VarP (X1)√
(1−α)N

, X1+...+XN
N

+

√
VarP (X1)√
(1−α)N

])
= P

(∣∣∣∣EP [X1]− X1 + . . .+XN

N

∣∣∣∣
R

≤
√

VarP (X1)√
(1− α)N

)
≥ α.

(2.133)

In other words, for every N ∈ N the random interval[
X1+...+XN

N
−
√

VarP (X1)√
(1−α)N

, X1+...+XN
N

+

√
VarP (X1)√
(1−α)N

]
(2.134)

is an α-confidence interval for EP [X1].

Proof of Corollary 2.6.7. If VarP (X1) > 0, then the Chebyshev inequality in (2.92) in
Corollary 2.4.12, Lemma 2.3.8, and Theorem 2.4.8 imply that

P

(∣∣∣∣EP [X1]− X1 + . . .+XN

N

∣∣∣∣
R

≥
√
VarP (X1)√
(1− α)N

)
≤

VarP
(
X1+...+XN

N

)(√
VarP (X1)√
(1−α)N

)2

=
(1− α)N

VarP (X1)
· VarP

(
X1 + . . .+XN

N

)
=

(1− α)N

VarP (X1)
· VarP (X1)

N
= 1− α.

(2.135)

This shows in the case VarP (X1) > 0 that

P

(∣∣∣∣EP [X1]− X1 + . . .+XN

N

∣∣∣∣
R

<

√
VarP (X1)√
(1− α)N

)

= 1− P

(∣∣∣∣EP [X1]− X1 + . . .+XN

N

∣∣∣∣
R

≥
√
VarP (X1)√
(1− α)N

)
≥ α

(2.136)

and this proves (2.133) in the case VarP (X1) > 0. Moreover, note that (2.133) is clear
in the case VarP (X1) = 0. The proof of Corollary 2.6.7 is thus completed.

In many situations the variance VarP (X1) appearing in the confidence interval (2.134)
is not explicitly known and therefore, the confidence interval (2.134) can not be calcu-
lated in that case. However, in many situations at least an upper bound for VarP (X1)
in Corollary 2.6.7 is known and then confidence intervals can be calculcated. This is
illustrated in the following corollary.
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Corollary 2.6.8 (Confidence intervals based on Monte Carlo approximations and the
Chebyshev inequality II). Let (Ω,F , P ) be a probability space, let α ∈ [0, 1) and c ∈
(0,∞), let Xn ∈ L2(P ; |·|

R
), n ∈ N, be i.i.d. random variables with

√
VarP (X1) ≤ c

and define EN ∈ L2(P ; |·|
R

), N ∈ N, through EN := X1+...+XN
N

for all N ∈ N. Then

P

(
EP [X1] ∈

[
EN − c√

(1−α)N
, EN + c√

(1−α)N

])
≥ α for all N ∈ N. In other words, for

every N ∈ N the random interval
[
EN − c√

(1−α)N
, EN + c√

(1−α)N

]
is an α-confidence

interval for EP [X1].

Proof of Corollary 2.6.8. Corollary 2.6.8 follows immediately from Corollary 2.6.7 and
Lemma 2.6.5.

If the variance VarP (X1) appearing in the confidence interval (2.134) in Corollary 2.6.7
is not explicitly known and if there is also no upper bound for VarP (X1) available (cf.
Corollary 2.6.8), then it is not clear how to derive suitable confidence intervals for
EP [X1]. However, a certain weaker statement can be derived. This is the subject of the
next definition (cf. Appendix A in [Glasserman(2004)]).

Definition 2.6.9 (Asymptotically valid confidence intervals). Let (Ω,F , P ) be a prob-
ability space, let m ∈ N, α ∈ [0, 1), c ∈ R and let An : Ω → CIR, n ∈ {m,m + 1, . . . },
be random intervals. Then we say that (An)n∈{m,m+1,... } are asymptotically valid α-
confidence intervals for c if

lim inf
n→∞

P (c ∈ An) ≥ α. (2.137)

In Corollary 2.6.10 below we derive asymptotically valid confidence intervals for the
expectation of a random variable.

Corollary 2.6.10 (Asymptotically valid confidence intervals based on Monte Carlo
approximations, the Chebyshev inequality and variance approximations). Let (Ω,F , P )
be a probability space, let α ∈ [0, 1) be a real number, let Xn ∈ L4(P ; |·|

R
), n ∈ N,

be i.i.d. random variables and let EN ∈ L4(P ; |·|
R

), N ∈ N, and VN ∈ L2(P ; |·|
R

),
N ∈ {2, 3, . . . }, be defined through EN := X1+...+XN

N
for all N ∈ N and through VN :=

1
(N−1)

∑N
n=1 (Xn − EN)2 for all N ∈ {2, 3, . . . }. Then

lim inf
N→∞

P

(
EP [X1] ∈

[
EN −

√
VN√

(1−α)N
, EN +

√
VN√

(1−α)N

])
≥ α. (2.138)

In other words, the random intervals
[
EN −

√
VN√

(1−α)N
, EN +

√
VN√

(1−α)N

]
for N ∈ {2, 3, . . . }

are asymptotically valid α-confidence intervals for EP [X1].
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Proof of Corollary 2.6.10. Observe that

P

(
|EP [X1]− EN |R ≤

√
VN√

(1− α)N

)

≥ P

({
|EP [X1]− EN |R ≤

√
VN√

(1− α)N

}
∩
{
|VN − VarP (X1)|

R
≤ ε
})

≥ P

({
|EP [X1]− EN |R ≤

√
(VarP (X1)− ε)√

(1− α)N

}
∩
{
|VN − VarP (X1)|

R
≤ ε
})

= P

(
|EP [X1]− EN |R ≤

√
(VarP (X1)− ε)√

(1− α)N

)

− P

({
|EP [X1]− EN |R ≤

√
(VarP (X1)− ε)√

(1− α)N

}
∩
{
|VN − VarP (X1)|

R
> ε
})

(2.139)

and the Chebyshev inequality in (2.92) in Corollary 2.4.12 therefore shows that

P

(
|EP [X1]− EN |R ≤

√
VN√

(1− α)N

)

≥ P

(
|EP [X1]− EN |R ≤

√
(VarP (X1)− ε)√

(1− α)N

)
− P (|VN − VarP (X1)|

R
> ε)

≥ 1− P

(
|EP [X1]− EN |R >

√
(VarP (X1)− ε)√

(1− α)N

)
− P (|VN − VarP (X1)|

R
≥ ε)

≥ 1− VarP (EN)(
VarP (X1)−ε

(1−α)N

) − P (|VN − VarP (X1)|
R
≥ ε)

= 1− (1−α)VarP (X1)
(VarP (X1)−ε) − P (|VN − VarP (X1)|

R
≥ ε)

(2.140)

for all N ∈ {2, 3, . . . } and all ε ∈ (0,VarP (X1)) where we used Theorem 2.4.8 and
Lemma 2.3.8 in the last step. Combining this with Theorem 2.5.3 and Lemma 2.4.13
proves that

lim inf
N→∞

P

(
|EP [X1]− EN |R ≤

√
VN√

(1− α)N

)

≥ 1− (1− α)VarP (X1)

(VarP (X1)− ε)
− lim

N→∞
P (|VN − VarP (X1)|

R
≥ ε) = 1− (1− α)VarP (X1)

(VarP (X1)− ε)
(2.141)

for all ε ∈ (0,VarP (X1)). Letting ε↘ 0 in (2.141) results in (2.138) and this completes
the proof of Corollary 2.6.10.
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2.6.2 Asymptotically valid confidence intervals based on the
Central limit theorem

Another way to derive asymptotically valid confidence intervals is to use the central limit
theorem in Theorem 1.3.1. This is the subject of the next theorem.

Theorem 2.6.11 (Asymptotically valid confidence intervals based on Monte Carlo ap-
proximations and the central limit theorem). Let (Ω,F , P ) be a probability space, let
β, γ ∈ [0,∞) be real numbers, let Xn ∈ L2(P ; |·|

R
), n ∈ N, be i.i.d. random variables

and define EN ∈ L2(P ; |·|
R

), N ∈ N, through EN := X1+...+XN
N

for all N ∈ N. Then

lim
N→∞

P

(
EP [X1] ∈

[
EN −

β
√

VarP (X1)
√
N

, EN +
γ
√

VarP (X1)
√
N

])
=

1√
2π

ˆ γ

−β
e
−x2
2 dx. (2.142)

In particular, the random intervals
[
EN −

β
√

VarP (X1)
√
N

, EN +
γ
√

VarP (X1)
√
N

]
for N ∈ N are

asymptotically valid
(

1√
2π

´ γ
−β e

−x2
2 dx

)
-confidence intervals for EP [X1].

Proof of Theorem 2.6.11. Observe that

P

(
EP [X1] ∈

[
EN −

β
√

VarP (X1)
√
N

, EN +
γ
√

VarP (X1)
√
N

])
= P

(
EN −

β
√

VarP (X1)
√
N

≤ EP [X1] ≤ EN +
γ
√

VarP (X1)
√
N

)
= P

(
−γ
√

VarP (X1)
√
N

≤ EN − EP [X1] ≤ β
√

VarP (X1)
√
N

)
= P

(
−γ ≤ X1+...+XN−N ·EP [X1]√

N VarP (X1)
≤ β

)
(2.143)

for all N ∈ N. The central limit theorem (see Theorem 1.3.1) hence shows that

lim
N→∞

P

(
EP [X1] ∈

[
EN −

β
√

VarP (X1)
√
N

, EN +
γ
√

VarP (X1)
√
N

])
= lim

N→∞
P

(
−γ ≤ X1+...+XN−N ·EP [X1]√

N VarP (X1)
≤ β

)
=

1√
2π

ˆ β

−γ
e
−x2
2 dx =

1√
2π

ˆ γ

−β
e
−x2
2 dx.

(2.144)

This completes the proof of Theorem 2.6.11.

If the variance VarP (X1) in the asymptotically valid confidence intervals (2.134) is un-
known, then it can be approximated by variance approximations (see Section 2.5) as in
Corollary 2.6.10. This is the subject of the following corollary.
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Corollary 2.6.12 (Asymptotically valid confidence intervals based on Monte Carlo ap-
proximations, the central limit theorem and variance approximations). Let (Ω,F , P )
be a probability space, let β, γ ∈ [0,∞) be real numbers, let Xn ∈ L4(P ; |·|

R
),

n ∈ N, be i.i.d. random variables and define EN ∈ L4(P ; |·|
R

), N ∈ N, and
VN ∈ L2(P ; |·|

R
), N ∈ {2, 3, . . . }, through EN := X1+...+XN

N
for all N ∈ N and through

VN := 1
(N−1)

∑N
n=1 (Xn − EN)2 for all N ∈ {2, 3, . . . }. Then the random intervals[

EN − β
√
VN√
N
, EN + γ

√
VN√
N

]
for N ∈ {2, 3, . . . } are asymptotically valid

(
1√
2π

´ γ
−β e

− 1
2
x2dx

)
-

confidence intervals for EP [X1].

Proof of Corollary 2.6.12. W.l.o.g. we assume that VarP (X1) > 0. Then we obtain that

P
(
EP [X1] ∈

[
EN − β

√
VN√
N
, EN + γ

√
VN√
N

])
≥ P

({
EP [X1] ∈

[
EN − β

√
VN√
N
, EN + γ

√
VN√
N

]}
∩
{
VN ≥ VarP (X1)

ρ

})
≥ P

({
EP [X1] ∈

[
EN −

β
√

VarP (X1)
√
ρN

, EN +
γ
√

VarP (X1)
√
ρN

]}
∩
{
VN ≥ VarP (X1)

ρ

})
≥ P

(
EP [X1] ∈

[
EN −

β
√

VarP (X1)
√
ρN

, EN +
γ
√

VarP (X1)
√
ρN

])
− P

(
VN < VarP (X1)

ρ

)
(2.145)

for all N ∈ {2, 3, . . . } and all ρ ∈ (1,∞). Theorem 2.6.11 hence gives that

lim inf
N→∞

P
(
EP [X1] ∈

[
EN − β

√
VN√
N
, EN + γ

√
VN√
N

])
≥ lim

N→∞
P

(
EP [X1] ∈

[
EN −

β
√

VarP (X1)
√
ρN

, EN +
γ
√

VarP (X1)
√
ρN

])
− lim

N→∞
P
(
VN − VarP (X1) < VarP (X1)(1−ρ)

ρ

)
≥ 1√

2π

ˆ γ√
ρ

−β√
ρ

e
−x2
2 dx− lim

N→∞
P
(
|VN − VarP (X1)|

R
≥ VarP (X1)(ρ−1)

ρ

)
=

1√
2π

ˆ γ√
ρ

−β√
ρ

e
−x2
2 dx

(2.146)

for all ρ ∈ (1,∞) where we used Theorem 2.5.3 and Lemma 2.4.13 in the last step.
Letting ρ↘ 1 in (2.146) finishes the proof of Corollary 2.6.12.

2.6.3 Summary

The confidence intervals and the asymptotically valid confidence intervals derived above
are summarized in the following corollary. It follows immediately from Corollaries 2.6.7,
2.6.8 and 2.6.10 ((asymptotically valid) confidence intervals based on the Chebyshev
inequality) and Theorem 2.6.11 and Corollary 2.6.12 (asymptotically valid confidence
intervals based on the central limit theorem) and from Lemma 2.6.5.
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Corollary 2.6.13 (Summary for (asymptotically valid) confidence intervals). Let
(Ω,F , P ) be a probability space, let α ∈ [0, 1), c, β, γ ∈ [0,∞) be real numbers with

1√
2π

´ γ
−β e

−x2/2 dx ≥ α and
√
VarP (X1) ≤ c, let Xn ∈ L2(P ; |·|

R
), n ∈ N, be i.i.d. ran-

dom variables and define EN ∈ L2(P ; |·|
R

), N ∈ N, through EN := X1+...+XN
N

for all
N ∈ N. Then[

EN −
√

VarP (X1)√
(1−α)N

, EN +

√
VarP (X1)√
(1−α)N

]
, N ∈ N, and[

EN − c√
(1−α)N

, EN + c√
(1−α)N

]
, N ∈ N,

(Chebyshev inequality)

are α-confidence intervals and[
EN −

β
√

VarP (X1)
√
N

, EN +
γ
√

VarP (X1)
√
N

]
, N ∈ N, and[

EN − βc√
N
, EN + γc√

N

]
, N ∈ N,

(Central limit theorem)

are asymptotically valid α-confidence intervals. Moreover, if Xn ∈ L4(P ; |·|
R

) for
all n ∈ N and if VN ∈ L2(P ; |·|

R
), N ∈ {2, 3, . . . }, are defined through VN :=

1
(N−1)

∑N−1
n=1 (Xn − EN)2 for all N ∈ {2, 3, . . . } (variance approximations) in addition

to the above assumptions, then[
EN −

√
VN√

(1−α)N
, EN +

√
VN√

(1−α)N

]
, N ∈ {2, 3, . . . }, and (Chebys. & variance appr.)[

EN − β
√
VN√
N
, EN + γ

√
VN√
N

]
, N ∈ {2, 3, . . . }, (C.l.t. & variance appr.)

are asymptotically valid α-confidence intervals.

Let us briefly compare the (asymptotically valid) confidence intervals presented
in (Chebyshev inequality) in Corollary 2.6.13 and (Central limit theorem) in Corol-
lary 2.6.13 respectively. For this the following simple fact (see Lemma 2.22 in
Klenke [Klenke(2008)]) is used.

Lemma 2.6.14 (Tails for the normal distribution). For all x ∈ (0,∞) it holds that

N0,1([x,∞)) =

ˆ ∞
x

e−
1
2
y2

√
2π

dy <
e−

1
2
x2

x
√

2π
. (2.147)

Proof of Lemma 2.6.14. Integration by parts implies that for all x ∈ (0,∞) it holds that

ˆ ∞
x

e−
1
2
y2

√
2π

dy =

ˆ ∞
x

1

y
· y e

− 1
2
y2

√
2π

dy =

[
1

y
· −e

− 1
2
y2

√
2π

]y=∞

y=x

+

ˆ ∞
x

1

y2
· −e

− 1
2
y2

√
2π

dy

=
e−

1
2
x2

x
√

2π
−
ˆ ∞
x

1

y2
· e
− 1

2
y2

√
2π

dy <
e−

1
2
x2

x
√

2π
.

(2.148)

This completes the proof of Lemma 2.6.14.
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In the next step we use Lemma 2.6.14 to establish the following lemma.

Lemma 2.6.15. For all α ∈ [0, 1) it holds that

1√
2π

ˆ 1√
(1−α)

−1√
(1−α)

e−
1
2
x2dx > α. (2.149)

Proof of Lemma 2.6.15. First of all, we observe that the fact 1√
2π

´
R
e−

1
2
x2dx = 1 and

Lemma 2.6.14 imply that for all β ∈ [1,∞) it holds that

1√
2π

ˆ β

−β
e−

1
2
x2dx = 1− 1√

2π

ˆ −β
−∞

e−
1
2
x2dx− 1√

2π

ˆ ∞
β

e−
1
2
x2dx

= 1− 2√
2π

ˆ ∞
β

e−
1
2
x2dx > 1− 2 e−

1
2
β2

β
√

2π
≥ 1−

√
2 e−

1
2
β2

√
π

> 1− 1

e
1
2
β2
.

(2.150)

The fact that ∀ y ∈ [0,∞) : 1 + y + y2

2
≤ ey hence proves that for all β ∈ [1,∞) it holds

that

1√
2π

ˆ β

−β
e−

1
2
x2dx > 1− 1(

1 + β2

2
+ β4

8

) . (2.151)

The estimate ∀ y ∈ R : y ≤ 1 + y
2

+ y2

8
therefore shows that for all β ∈ [1,∞) it holds

that

1√
2π

ˆ β

−β
e−

1
2
x2dx > 1− 1(

1 + β2

2
+ β4

8

) ≥ 1− 1

β2
. (2.152)

This implies that for all α ∈ [0, 1) it holds that

1√
2π

ˆ 1√
(1−α)

−1√
(1−α)

e−
1
2
x2dx > 1− (1− α) = α. (2.153)

The proof of Lemma 2.6.15 is thus completed.

Lemma 2.6.15 proves that if VarP (X1) > 0, if β = γ and if 1√
2π

´ γ
−β e

−x2
2 dx =

α in Corollary 2.6.13, then the asymptotically valid α-confidence intervals in
(Central limit theorem) in Corollary 2.6.13 are smaller than the α-confidence intervals
in (Chebyshev inequality) in Corollary 2.6.13. However, observe that the concept of
asymptotically valid confidence intervals (see Definition 2.6.9) is a much weaker concept
than the concept of an confidence interval (see Definition 2.6.4).
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2.7 Monte Carlo algorithms for numerical integration

Let d ∈ N, let A ∈ B(Rd) be a bounded and Borel measurable set and let f ∈
L1(BA; |·|

R
). Suppose in this section that we want to approximate the real numberˆ

A

f(x) dx (2.154)

by Monte Carlo approximations. For this let (Ω,F , P ) be a probability space and let
Yn : Ω→ A, n ∈ N, be independent UA-distributed random variables. In view of (2.58),
we rewrite (2.154) byˆ

A

f(x) dx = λRd(A)

ˆ
A

f(x)

λRd(A)
dx = λRd(A)

[ˆ
A

f(x) UA(dx)

]
= E

[
λRd(A) · f(Y1)

]
.

(2.155)

Then the random variables

λRd(A)

N
(f(Y1) + . . .+ f(YN)) (2.156)

for N ∈ N are Monte Carlo approximations of
´
A
f(x) dx. If N ∈ N is a given natural

number, then the following algorithm computes realizations of (2.156).

Monte Carlo approximations I

Output : Realization x of X ∼ Pλ
Rd

(A)

N
(f(Y1)+...+f(YN ))

≈
´
A
f(x) dx

s = 0
for n = 1→ N do

Generate realization y of Yn ∼ UA
s = s+ f(y)

end for
x =

λ
Rd

(A)·s
N

The above algorithm requires the knowledge of λRd(A) and also requires realizations
from UA-distributed random variables (cf. Lemma 1.2.28). To avoid these requirements,
one can choose real numbers a1, . . . , ad, b1, . . . , bd ∈ R with a1 ≤ b1, . . . , ad ≤ bd and
A ⊆ [a1, b1]× . . .× [ad, bd]. (Such real numbers exist since A is assumed to be bounded.)
Next define a function f̃ : [a1, b1]× . . .× [ad, bd]→ R by f̃(x) := f(x) for all x ∈ A and
by f̃(x) := 0 for all x ∈

(
[a1, b1]× . . .× [ad, bd]

)
\A and assume that Un : Ω → [a1, b1]×

. . .× [ad, bd], n ∈ N, are independent U[a1,b1]×...×[ad,bd]-distributed random variables. Then
we obtain thatˆ

A

f(x) dx =

ˆ
[a1,b1]×...×[ad,bd]

f̃(x) dx

= λRd
(
[a1, b1]× . . .× [ad, bd]

) ˆ
[a1,b1]×...×[ad,bd]

f̃(x) U[a1,b1]×...×[ad,bd](dx)

= EP

[(
d∏
i=1

(bi − ai)

)
· f̃(U1)

]
.

(2.157)
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The following algorithm computes realizations of the Monte Carlo approximation(∏d
i=1 (bi − ai)

)
N

(
f̃(U1) + . . .+ f̃(UN)

)
(2.158)

of
´
A
f(x) dx where N ∈ N is a given natural number.

Monte Carlo approximations II

Output : Realization x of X ∼ P (b1−a1)·...·(bd−ad)
N (f̃(U1)+...+f̃(UN ))

≈
´
A
f(x) dx

s = 0
for n = 1→ N do

Generate realization u of Un ∼ U[a1,b1]×···×[ad,bd]

if u ∈ A then
s = s+ f(u)

end if
end for
x = (b1−a1)·...·(bd−ad)·s

N

Next we are interested in an algorithm that returns a confidence interval. For this let
α ∈ (0, 1) and c ∈ [0,∞) be real numbers and assume that(

d∏
i=1

(bi − ai)

)√
VarP (f̃(U1) ≤ c. (2.159)

For instance, if f is bounded, then(
d∏
i=1

(bi − ai)

)√
Var
(
f̃(U1)

)
≤

(
d∏
i=1

(bi − ai)

)∥∥f̃(U1)
∥∥
L2(P ;|·|

R
)

=

√√√√( d∏
i=1

(bi − ai)

)ˆ
[a1,b1]×...×[ad,bd]

∣∣f̃(x)
∣∣2 dx

=

√√√√( d∏
i=1

(bi − ai)

)ˆ
A

|f(x)|2 dx ≤

(
d∏
i=1

(bi − ai)

)[
sup
x∈A
|f(x)|

]
<∞.

(2.160)

Next define random variables X1
N , X

2
N : Ω→ R, N ∈ N, by

X1
N :=

1

N

(
d∏
i=1

(bi − ai)

)(
f̃(U1) + . . .+ f̃(UN)

)
− c√

(1− α)N
,

X2
N :=

1

N

(
d∏
i=1

(bi − ai)

)(
f̃(U1) + . . .+ f̃(UN)

)
+

c√
(1− α)N

(2.161)

for all N ∈ N. Corollary 2.6.8 then shows that

P

(ˆ
A

f(x) dx ∈
[
X1
N , X

2
N

])
≥ α (2.162)
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for all N ∈ N. The following algorithm returns realizations of X1
N and X2

N where N ∈ N
is a given natural number.

Confidence interval

Output : Realization (x1, x2) of (X1
N , X

2
N)

s = 0
for n = 1→ N do

Generate realization u of Un ∼ U[a1,b1]×···×[ad,bd]

if u ∈ A then
s = s+ f(u)

end if
end for
x1 = (b1−a1)·...·(bd−ad)·s

N
− c√

(1−α)N

x2 = (b1−a1)·...·(bd−ad)·s
N

+ c√
(1−α)N

The convidence level α ∈ (0, 1) can be increased to 1− (1− α)2 ∈ (α, 1) if we rerun the
above algorithm and then enlarge the confidence interval in the sense of Lemma 2.6.6.
The above algorithm can be used if the real number c ∈ [0,∞) in (2.159) is explicitly
known. We now consider the case where c ∈ [0,∞) in (2.159) is not explicitly known.
In that case we additionally assume that

´
A
|f(x)|4

R
dx <∞. Next define a real number

β ∈ (0,∞) through
1√
2π

ˆ β

−β
e−

1
2
x2 dx = α (2.163)

and define random variables EN , VN , Z
1
N , Z

2
N : Ω→ R, N ∈ {2, 3, . . . }, through

EN :=
1

N

(
d∏
i=1

(bi − ai)

)(
f̃(U1) + . . .+ f̃(UN)

)
,

VN :=
1

(N − 1)

N∑
n=1

((
d∏
i=1

(bi − ai)

)
f̃(Un)− EN

)2

,

Z1
N := EN −

β
√
VN√
N

and Z2
N := EN +

β
√
VN√
N

,

(2.164)

for all N ∈ {2, 3, . . . }. The value of β can, e.g., be computed approximatively with the
Matlab function “erfinv”. To be more specific, note that

α =
1√
2π

ˆ β

−β
e−

1
2
x2 dx =

1√
π

ˆ β/
√

2

−β/
√

2

e−x
2

dx =
2√
π

ˆ β/
√

2

0

e−x
2

dx ≈ “erf(β/sqrt(2))′′

(2.165)
and this illustrates that the Matlab command “erfinv(α)*sqrt(2)” returns an approxi-
mation of β ∈ (0,∞). In the next step we observe that Corollary 2.6.12 proves that

lim inf
N→∞

P

(ˆ
A

f(x) dx ∈
[
Z1
N , Z

2
N

])
≥ α. (2.166)
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In addition, note that Lemma 2.5.2 proves that for all N ∈ {2, 3, . . . } and all k ∈ {1, 2}
it holds that

Zk
N = EN +

(−1)k β
√
VN√

N

= EN +
(−1)k β√

N

[∑N
n=1 |f̃(Un)

∏d
i=1 (bi − ai)− EN |2

(N − 1)

]1/2

= EN +
(−1)k β

∏d
i=1(bi − ai)√
N

[
[
∑N

n=1 |f̃(Un)|2]− 1
N
|
∑N

n=1 f̃(Un)|2

(N − 1)

]1/2

=
∏d
i=1(bi−ai)√

N

[
f̃(U1)+...+f̃(UN )√

N
+ β (−1)k

[
[
∑N
n=1 |f̃(Un)|2]− 1

N
|
∑N
n=1 f̃(Un)|2

(N−1)

]1/2
]
.

(2.167)

The following algorithm uses (2.167) and returns realizations of Z1
N and Z2

N where N ∈
{2, 3, . . . } is a given natural number.

Asymptotically valid confidence intervals

Output : Realization (z1, z2) of (Z1
N , Z

2
N)

s = 0
r = 0
for n = 1→ N do

Generate realization u of Un ∼ U[a1,b1]×···×[ad,bd]

if u ∈ A then
x = f(u)
s = s+ x
r = r + x2

end if
end for
q =
√
N

r = β
√

1
(N−1)

(r − s2

N
)

ν = (b1−a1)·...·(bd−ad)
q

z1 = ν
(
s
q
− r
)

z2 = ν
(
s
q

+ r
)

If N ∈ {2, 3, . . . } is large, then the third last command in the above algorithm may
result in a roundoff error that can not be neglected. There are a few algorithms in
the literature that significantly reduce these roundoff errors (see, e.g., [Knuth(1998)]
and the references therein). We close this secton with the following remark on possibly
unbounded domains of integration.
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Remark 2.7.1. Let d ∈ N, let A ∈ B(Rd) be a Borel measurable set and let f ∈
L1(BA;R). Then

´
A
f(x) dx can also be approximated by Monte Carlo approximations

although A is not assumed to be bounded. For this one just needs to rewrite
´
A
f(x) dx

as the expectation of an random variable from which one can generate realizations. For

instance, define f̃ : Rd → R through f̃(x) :=
√

2π · f(x) · e
1
2
‖x‖2

Rd for all x ∈ A and
through f̃(x) := 0 for all x ∈ Rd\A. Moreover, let (Ω,F , P ) be a probability space and
let Yn : Ω→ R

d, n ∈ N, be independent N0,I-distributed random variables. Then

ˆ
A

f(x) dx =
1√
2π

ˆ
Rd

f̃(x) · e−
1
2
‖x‖2

Rd dx = EP
[
f̃(Y1)

]
(2.168)

and the random variables
f̃(Y1) + . . .+ f̃(YN)

N
(2.169)

for N ∈ N are thus Monte Carlo approximations of
´
A
f(x) dx.
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3 Stochastic processes and Itô
stochastic calculus

This chapter reviews basic ideas, concepts, and facts from the literature on stochastic
processes and Itô stochastic calculus to the extent that they are necessary for the anal-
ysis of numerical approximation schemes for stochastic ordinary differential equations
(SODEs) presented in the subsequent chapters.

Disclaimer: These notes are not intended as a mathematical introduction to stochastic
analysis or stochastic processes; they merely recapitulate main definitions, fix notation
to be used in the sequel, and collect key results from stochastic analysis which will be
used in the chapters ahead for the numerical analysis of SODEs. We therefore often
give results without proof but indicate where these can be found.

For a self-contained introduction to stochastic processes and stochastic analy-
sis, we refer to the course “Stochastic Processes and Stochastic Analysis” and,
in particular, to the Lecture Notes by M. Schweizer. We also recommend
[Kuo(2006), Øksendal(2003), Ikeda and Watanabe(1989), Karatzas and Shreve(1988),
Revuz and Yor(1999), Jacod and Shiryaev(2003)] as references for the content of this
chapter. For an introduction to SODEs with more general semimartingale integrators,
we refer, e.g., to [Métivier(1982), Protter(2004), Kühn(2004)].

3.1 Stochastic processes

Let us begin with the definition of a stochastic process.
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Definition 3.1.1 (Stochastic process). We say that X is an S-valued stochastic process
with time set T on Ω (we say that X is an S-valued stochastic process with time set T,
we say that X is a stochastic process on Ω, we say that X is a stochastic process) if and
only if there exist S, S, Ω, F , P such that it holds

(i) that T ⊆ R,

(ii) that Ω = (Ω,F , P ) is a probability space,

(iii) that S = (S,S) is a measurable space,

(iv) that X ∈M(T× Ω, S), and

(v) that for every t ∈ T it holds that

Ω 3 ω 7→ X(t, ω) ∈ S (3.1)

is F/S-measurable.

Definition 3.1.2 (Marginals). Let T ⊆ R be a subset of the real numbers, let t ∈ T, let
(Ω,F , P ) be a probability space, let (S,S) be a measurable space, and let X : T×Ω→ S
be a function. Then we denote by Xt : Ω→ S the function which satisfies for all ω ∈ Ω
that

Xt(ω) = X(t, ω). (3.2)

Definition 3.1.3 (State space). We say that S is the state space of the stochastic process
X (we say that S is the state space of X) if and only if there exist S, T, Ω such that X
is an (S,S)-valued stochastic process with time set T on Ω.

In many examples of stochastic processes it holds that there exist T ∈ (0,∞) and N ∈ N
such that the time interval set T appearing in Definition 3.1.1 is equal to [0,∞), [0, T ],
N0, or {0, 1, . . . , N}. Moreover, in the case of many examples of stochastic processes it
holds that there exists a natural number d ∈ N such that the measurable space (S,S)
in Definition 3.1.1 is equal to (Rd,B(Rd)).
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Example 3.1.4 (A simple stochastic process). Let (Ω,F , P ) be a probability space, let
Yn : Ω→ {−1, 1}, n ∈ N, be P -independent Unif{−1,1}-distributed random variables, and
let X : N0 × Ω→ R be the function which satisfies for all n ∈ N0 that

Xn =
n∑
k=1

Yk. (3.3)

Then it holds that X is an (R,B(R))-valued stochastic process with time set N0 on
(Ω,F , P ).

Remark 3.1.5. Let T ⊆ R be a subset of the real numbers, let (Ω,F , P ) be a probability
space, let (S,S) be a measurable space, and let X : T × Ω → S be a stochastic process.
There are several ways how a stochastic process X : T× Ω→ S can be interpreted:

• as a two-parameter function X : T × Ω → S from the cartesian product T × Ω to
S,

• as a one-parameter family Xt : Ω → S, t ∈ T, of random variables from Ω to S
with the index set T ⊆ R and

• as a family T 3 t 7→ Xt(ω) ∈ S, ω ∈ Ω, of functions from T to S with the index
set Ω (family of “sample paths”).

Example 3.1.6 (Deterministic functions). Let T ∈ (0,∞) be a real number, let
f : [0, T ] → R be an arbitrary not necessarily B([0, T ])/B(R)-measurable function, let
(Ω,F , P ) be the probability space given by

(Ω,F , P ) =
(
{∅}, {∅, {∅}}, δ{∅}∅

)
, (3.4)

and let X : [0, T ]× Ω→ R be the function which satisfies for all t ∈ [0, T ] that

Xt(∅) = f(t). (3.5)

Then it holds that X is an (R,B(R))-valued stochastic process with time set [0, T ] on
(Ω,F , P ). This example, in particular, illustrates that the sample paths of a stochastic
process do not necessarily need to be Borel measurable functions.

We are often interested in stochastic processes whose sample paths enjoy certain reg-
ularity properties (cf. Example 3.1.6) such as, for instance, stochastic processes whose
sample paths are continuous functions. This is the subject of the next notion.
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Definition 3.1.7 (Stochastic process with continuous sample paths). We say that X is
an E-valued stochastic process with continuous sample paths and time set T on Ω (we
say that X is an E-valued stochastic process with continuous sample paths, we say that
X is a stochastic process with continuous sample paths) if and only if there exist E, E,
Ω, F , P such that it holds

(i) that E = (E, E) is a topological space,

(ii) that X is an (E,B(E))-valued stochastic process with time set T on Ω,

(iii) that Ω = (Ω,F , P ), and

(iv) that for every ω ∈ Ω it holds that T 3 t 7→ Xt(ω) ∈ E is a continuous function.

Next we address two notions that somehow describe when two stochastic processes are
“equal up to sets of measure zero”.

Definition 3.1.8 (Modifications). Let (Ω,F , P ) be a probability space, let (S,S) be a
measurable space, let T ⊆ R be a set, and let X, Y : T× Ω→ S be stochastic processes.
Then we say that X and Y are (S,S)-valued modifications of each other on (Ω,F , P )
(we say that X and Y are modifications of each other, we say that X is a modification
of Y , we say that Y is a modification of X) if and only if for every t ∈ T it holds that
there exists an event A ∈ F with P (A) = 1 and

A ⊆ {Xt = Yt}. (3.6)

Exercise 3.1.9. Prove or disprove the following statement: For all measurable spaces
(Ω,F) it holds that {(ω, ω) ∈ Ω2 : ω ∈ Ω} ∈ F ⊗ F .

Exercise 3.1.10. Specify explicitly measurable spaces (Ω,F) and (S,S) and F/S-
measurable functions X, Y : Ω→ S such that

{X = Y } = {ω ∈ Ω: X(ω) = Y (ω)} /∈ F . (3.7)

Prove that your result is correct.

Definition 3.1.11 (Indistinguishablility). Let (Ω,F , P ) be a probability space, let (S,S)
be a measurable space, let T ⊆ R be a set, and let X, Y : T × Ω → S be stochastic
processes. Then we say that X and Y are indistinguishable from each other with values
in (S,S) on (Ω,F , P ) (we say that X and Y are indistinguishable from each other, we
say that X is indistinguishable from Y , we say that Y is indistinguishable from X) if
and only if there exists an event A ∈ F with P (A) = 1 and

A ⊆ (∩t∈T{Xt = Yt}) . (3.8)
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Let us illustrate Definitions 3.1.8 and 3.1.11 through a simple example (see, e.g.,
[Kühn(2004)]).

Example 3.1.12. Let (Ω,F , P ) be a probability space, let U : Ω → R be an U[0,1]-
distributed random variable with U(Ω) ⊆ [0, 1], and let X, Y : [0, 1] × Ω → R be the
functions which satisfy for all ω ∈ Ω, t ∈ [0, 1] that

Xt(ω) = 0 and Yt(ω) =

{
1 : t = U(ω)

0 : t 6= U(ω)
. (3.9)

Then

(i) it holds that{
ω ∈ Ω:

(
∀ t ∈ [0, T ] : Xt(ω) = Yt(ω)

)}
=
{
ω ∈ Ω:

(
∀ t ∈ [0, T ] : Yt(ω) = 0

)}
= ∅

(3.10)
and

(ii) it holds for all t ∈ [0, T ] that

P (Xt = Yt) = P (Yt = 0) = P (U 6= t) = 1. (3.11)

This shows that X and Y are modification of each other but X and Y are not indistin-
guishable from each other.

Lemma 3.1.13 (Modifications with continuous sample paths). Let (Ω,F , P ) be a prob-
ability space, let T ∈ [0,∞), m ∈ N, let X, Y : [0, T ]× Ω → R

m be stochastic processes
with continuous sample paths which satisfy for all t ∈ [0, T ] that P (Xt = Yt) = 1. Then
it holds that X and Y are indistinguishable from each other.

Proof of Lemma 3.1.13. First of all, observe that for all t ∈ [0, T ] it holds that

{Xt = Yt} ∈ F . (3.12)

This implies that
∩t∈[0,T ]∩Q {Xt = Yt} ∈ F . (3.13)

The continuity of the sample path of X and Y hence proves that

∩t∈[0,T ] {Xt = Yt} = {ω ∈ Ω: ∀ t ∈ [0, T ] : Xt(ω) = Yt(ω)}
= {ω ∈ Ω: ∀ t ∈ [0, T ] ∩Q : Xt(ω) = Yt(ω)}
= ∩t∈[0,T ]∩Q {Xt = Yt} ∈ F .

(3.14)

This proves that

P
(
∩t∈[0,T ] {Xt = Yt}

)
= P

(
∩t∈[0,T ]∩Q {Xt = Yt}

)
= 1− P

(
Ω\
[
∩t∈[0,T ]∩Q {Xt = Yt}

])
= 1− P

(
∪t∈[0,T ]∩Q {Xt 6= Yt}

)
≥ 1−

∑
t∈[0,T ]∩Q

P (Xt 6= Yt) = 1−
∑

t∈[0,T ]∩Q

0 = 1.
(3.15)

The proof of Lemma 3.1.13 is thus completed.
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3.2 Measurability properites of stochastic processes

3.2.1 Filtrations

The following definition is crucial for the investigation of measurability properites of
stochastic processes.

Definition 3.2.1 (Filtration). We say that F is a filtration on Ω if and only if there
exist Ω and F such that it holds

(i) that Ω = (Ω,F) is a measurable space,

(ii) that F is a mapping,

(iii) that domain(F) ⊆ [−∞,∞],

(iv) that codomain(F) = P(P(Ω)), and

(v) that for all t1, t2 ∈ domain(F) with t1 ≤ t2 it holds that σΩ(Ft1) = Ft1 ⊆ Ft2 ⊆ F .

3.2.1.1 Continuity properties of filtrations

Definition 3.2.2 (Filtrations associated to a filtration). Let (Ω,F) be a mea-
surable space and let F be a filtration on (Ω,F). Then we denote by F− ∈
M(domain(F),P(P(Ω))) and F+ ∈ M(domain(F),P(P(Ω))) the filtrations on (Ω,F)
which satisfy for all t ∈ domain(F) that

F−t =

{
σΩ

(
∪s∈T∩[−∞,t) Fs

)
: t > inf(domain(F))

Ft : t = inf(domain(F))
(3.16)

and

F+
t =

{
∩s∈T∩(t,∞] Fs : t < sup(domain(F))

Ft : t = sup(domain(F))
. (3.17)

Lemma 3.2.3 (Properties of the filtrations associated to a filtration). Let (Ω,F) be a
measurable space and let F be a filtration on (Ω,F). Then

(i) it holds for all t ∈ domain(F) that F−t ⊆ Ft ⊆ F+
t ,

(ii) it holds for all s, t ∈ domain(F) with s < t that Fs ⊆ F−t ⊆ Ft, and

(iii) it holds for all s, t ∈ domain(F) with s > t that Ft ⊆ F+
t ⊆ Fs.

Proof of Lemma 3.2.3. Items (i)–(iii) are an immediate consequence of Definition 3.2.1,
(3.16), and (3.17). The proof of Lemma 3.2.3 is thus completed.
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Lemma 3.2.4 (Further properties of the filtrations associated to a filtration). Let (Ω,F)
be a measurable space, let a ∈ [−∞,∞], b ∈ [a,∞], and let (Ft)t∈[a,b] be a filtration on
(Ω,F). Then it holds for all t ∈ [a, b] that(

(F−s )s∈[a,b]

)−
t

= F−t and
(
(F+

s )s∈[a,b]

)+

t
= F+

t . (3.18)

Proof of Lemma 3.2.4. Throughout this proof assume w.l.o.g. that a < b. Next note
that Item (ii) of Lemma 3.2.3 ensures that for all t ∈ (a, b], r ∈ [a, t) = [a, b] ∩ [−∞, t)
it holds that

Fr ⊆ (∪s∈[a,b]∩[−∞,t) F−s ). (3.19)

This implies for all t ∈ (a, b] that

(∪s∈[a,b]∩[−∞,t) Fs) ⊆ (∪s∈[a,b]∩[−∞,t) F−s ). (3.20)

Hence, we obtain for all t ∈ (a, b] that

F−t = σΩ

(
∪s∈[a,b]∩[−∞,t) Fs

)
= σΩ

(
∪s∈[a,b]∩[−∞,t) F−s

)
=
(
(F−s )s∈[a,b]

)−
t
. (3.21)

Next observe that Item (iii) in Lemma 3.2.3 shows that for all t ∈ [a, b), r ∈ (t, b] =
[a, b] ∩ (t,∞] it holds that

(∩s∈[a,b]∩(t,∞] F+
s ) ⊆ Fr. (3.22)

This implies for all t ∈ [a, b) that(
(F+

s )s∈[a,b]

)+

t
= (∩s∈[a,b]∩(t,∞] F+

s ) = (∩s∈[a,b]∩(t,∞] Fs) = F+
t . (3.23)

Combining (3.21) and (3.23) completes the proof of Lemma 3.2.4.

Definition 3.2.5 (Left-continuity of a filtration). We say that F is a left-continuous
filtration on Ω if and only if it holds that F is a filtration on Ω which satisfies for all
t ∈ domain(F) that

Ft = F−t . (3.24)

Definition 3.2.6 (Right-continuity of a filtration). We say that F is a right-continuous
filtration on Ω if and only if it holds that F is a filtration on Ω which satisfies for all
t ∈ domain(F) that

Ft = F+
t . (3.25)

Let (Ω,F), let T ⊆ [−∞,∞] be a set, and let (Ft)t∈T be a filtration on (Ω,F). Then, in
general, it does not hold that for all t ∈ T with t > inf(T) it holds that

F−t = ∪s∈T∩(−∞,t)Fs (3.26)

because, in general, it does not hold that for all t ∈ T with t > inf(T) it holds that
∪s∈T∩(−∞,t)Fs is a sigma-algebra on Ω. This is illustrated in the next example.
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Example 3.2.7. Let (Ω,F) be the measurable space given by Ω = N0 = {0, 1, 2, . . . }
and F = P(Ω), let T ⊆ R be the set given by T = [0, 1], and let Ft ⊆ P(Ω), t ∈ T, be
the sets which satisfy for all n ∈ N0, t ∈ [1− 1/2n, 1− 1/2(n+1)) that F1 = P(Ω) and

Ft = σΩ

({
{0}, {1}, {2}, . . . , {n}

})
. (3.27)

Then

(i) observe

• that for all t ∈ [0, 1/2) it holds that Ft = σΩ

({
{0}
})

,

• that for all t ∈ [1/2, 3/4) it holds that Ft = σΩ

({
{0}, {1}

})
,

• that for all t ∈ [3/4, 7/8) it holds that Ft = σΩ

({
{0}, {1}, {2}

})
,

• . . . ,

(ii) observe that (Ft)t∈T is a right-continuous filtration on (Ω,F),

(iii) observe that (Ft)t∈T is not a left-continuous filtration on (Ω,F),

(iv) observe that for all n ∈ Ω it holds that

{n} ∈ ∪s∈T∩(−∞,1)Fs = ∪s∈[0,1)Fs, (3.28)

(v) observe that

∪n∈{0,2,4,6,... } {n} = {0, 2, 4, 6, . . . } /∈ ∪s∈T∩(−∞,1)Fs = ∪s∈[0,1)Fs, (3.29)

and

(vi) observe that ∪s∈T∩(−∞,1)Fs = ∪s∈[0,1)Fs is not a sigma-algebra.

Class exercise 3.2.8. Let (Ω,F) be a measurable space, let T ⊆ [−∞,∞] be a set, and
let Ft ⊆ P(Ω), t ∈ T, be a filtration on (Ω,F).

(i) Is (F−t )t∈T a left-continuous filtration on (Ω,F)?

(ii) Is (F+
t )t∈T a right-continuous filtration on (Ω,F)?

3.2.1.2 Filtered probability spaces

Definition 3.2.9. We say that Ω is a filtered probability space if and only if it holds
that there exist Ω, F , P , F such that it holds

(i) that (Ω,F , P ) is a probability space,

(ii) that F is a filtration on (Ω,F), and

(iii) that Ω = (Ω,F , P,F).
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3.2.1.3 Stochastic bases

Next we present the notions of a normal filtration (cf., e.g., Definition 2.1.11
in [Prévôt and Röckner(2007)]) and of a stochastic basis (cf. Appendix E in
[Prévôt and Röckner(2007)]).

Definition 3.2.10 (Normal filtration). We say that F is a normal filtration on Ω if and
only if there exist Ω, F , P such that it holds

(i) that Ω = (Ω,F , P ) is a probability space,

(ii) that F is a right-continuous filtration on (Ω,F), and

(iii) that {A ∈ F : P (A) = 0} ⊆ (∩t∈domain(F)Ft).

Definition 3.2.11 (Stochastic basis). We say that Ω is a stochastic basis if and only if
there exist Ω, F , P , F such that it holds

(i) that Ω = (Ω,F , P,F) is a filtered probability space and

(ii) that F is a normal filtration on (Ω,F , P ).

Let a ∈ [−∞,∞], b ∈ [a,∞], let (Ω,F , P ) be a probability space, and let (Ft)t∈[a,b]

be a filtration on (Ω,F). Then sometimes the quadrupel (Ω,F , P, (Ft)t∈[a,b]) is called a
stochastic basis in the literature although (Ft)t∈[a,b] is not necessarily normal.

Proposition 3.2.12 (Construction of a stochastic basis). Let (Ω,F , P ) be a probability
space, let a ∈ [−∞,∞], b ∈ [a,∞], let (Ft)t∈[a,b] be a filtration on (Ω,F), and let
Gt ⊆ P(Ω), t ∈ [a, b], be the function which satisfies for all t ∈ [a, b] that

Gt = σΩ(Ft ∪ {A ∈ F : P (A) = 0}) . (3.30)

Then

(i) it holds that (Ω,F , P, (G+
t )t∈[a,b]) is a stochastic basis and

(ii) it holds for all normal filtrations (Ht)t∈[a,b] on (Ω,F , P ) with ∀ t ∈ [a, b] : Ft ⊆ Ht

that ∀ t ∈ [a, b] : G+
t ⊆ Ht.

Proof of Proposition 3.2.12. First, observe that (3.30) ensures that for all t ∈ [a, b] it
holds that

{A ∈ F : P (A) = 0} ⊆ Gt. (3.31)

Item (i) in Lemma 3.2.3 hence ensures that for all t ∈ [a, b] it holds that

{A ∈ F : P (A) = 0} ⊆ G+
t . (3.32)

Combining this with Lemma 3.2.4 establishes that (G+
t )t∈[a,b] is a normal filtration on

(Ω,F , P ). This proves (i). Next observe that (3.30) ensures that for all normal filtrations
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(Ht)t∈[a,b] on (Ω,F , P ) with ∀ t ∈ [a, b] : Ft ⊆ Ht it holds that ∀ t ∈ [a, b] : Gt ⊆ Ht. This
implies that for all normal filtrations (Ht)t∈[a,b] on (Ω,F , P ) with ∀ t ∈ [a, b] : Ft ⊆ Ht it
holds that

∀ t ∈ [a, b] : G+
t ⊆ H+

t = Ht. (3.33)

This establishes (ii). The proof of Proposition 3.2.12 is thus completed.

3.2.2 Adaptivity

Every stochastic process induces a filtration. This is the subject of the next definition.

Definition 3.2.13. Let (Ω,F , P ) be a probability space, let (S,S) be a measurable space,
let T ⊆ R be a set, and let X : T × Ω → S be a stochastic process. Then we denote by
FX = (FXt )t∈T ∈M(T,P(P(Ω))) the function which satisfies for all t ∈ T that

FXt = σΩ

(
(Xs)s∈T∩(−∞,t]

)
(3.34)

and we call FX the filtration on (Ω,F) generated by the (S,S)-valued stochastic process
X (we call FX the filtration generated by X).

Note that (FXt )t∈T in Definition 3.2.13 is indeed a filtration on (Ω,F). The next definition
relates the notion of a filtration with the notion of a stochastic process and is fundamental
in the theory of stochastic integration (which we will treat in Section 3.4 below).

Definition 3.2.14 (Adaptivity). We say that X is F/S-adapted (we say that X is
F-adapted, we say that X is an F/S-adapted stochastic process, we say that X is an
F-adapted stochastic process) if and only if there exist Ω, F , P , S such that it holds

(i) that F is a filtration on (Ω,F),

(ii) that X is an (S,S)-valued stochastic process with time set domain(F) on (Ω,F , P ),
and

(iii) that ∀ t ∈ domain(F) : Xt ∈M(Ft,S).

Class exercise 3.2.15. Let T ⊆ R be a set, let (Ω,F , P ) be a probability space, let
(S,S) be a measurable space, and let X : T × Ω → S be a stochastic process. Does it
holds that X is FX/S-adapted?

Lemma 3.2.16 (A characterization for adaptivity). Let T ⊆ R be a set, let (Ω,F , P )
be a probability space with a filtration (Ft)t∈T, let (S,S) be a measurable space, and let
X : T×Ω→ S be a stochastic process. Then the following two statements are equivalent:

(i) It holds that X is (Ft)t∈T-adapted.

(ii) It holds for every t ∈ T that FXt ⊆ Ft.
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Lemma 3.2.16 is an immediate consequence from Definition 3.2.13 and Definition 3.2.14.
Let us illustrate the notions presented above through a simple example; cf. Exam-
ple 3.1.4.

Example 3.2.17. Let N ∈ {3, 4, . . . }, let (Ω,F , P ) be the probability space given by

(Ω,F , P ) =
(
{−1, 1}N ,P({−1, 1}N),UnifΩ

)
, (3.35)

let Un : Ω → {−1, 1}, n ∈ {1, 2, . . . , N}, be the functions which satisfy for all ω =
(ω1, ω2, . . . , ωN) ∈ Ω, n ∈ {1, 2, . . . , N} that

Un(ω) = ωn, (3.36)

let T ⊆ R be the set given by T = {0, 1, . . . , N}, let X, Y : T× Ω→ R be the functions
which satisfy for all n ∈ T that

Xn =
n∑
k=1

Uk and Yn = U3, (3.37)

and let Ft, t ∈ T, be the sigma-algebras which satisfy for all t ∈ T that

Ft =

{∅,Ω} : t = 0

σΩ(U1) =

{
∅,Ω, {(−1, i2, . . . , iN) : i2, . . . , iN ∈ {−1, 1}} ,
{(1, i2, . . . , iN) : i2, . . . , iN ∈ {−1, 1}}

}
: t = 1

σΩ(U1, U2) = σΩ


{(−1,−1, i3, . . . , iN) : i3, . . . , iN ∈ {−1, 1}} ,
{(−1, 1, i3, . . . , iN) : i3, . . . , iN ∈ {−1, 1}}
{(1,−1, i3, . . . , iN) : i3, . . . , iN ∈ {−1, 1}}
{(1, 1, i3, . . . , iN) : i3, . . . , iN ∈ {−1, 1}}

 : t = 2

...
...

σΩ(U1, . . . , UN) = P(Ω) : t = N

.

(3.38)

Then observe

(i) that U1, U2, . . . , UN are P -independent Unif{−1,1}-distributed random variables,

(ii) that (Ft)t∈T is a filtration on (Ω,F),

(iii) that (Ft)t∈T = (FXt )t∈T, that is, ∀ t ∈ T : Ft = FXt ,

(iv) that X and Y are (R,B(R))-valued stochastic processes with time set T on
(Ω,F , P ),

(v) that X is (Ft)t∈T/B(R)-adapted, but

(vi) that Y is not (Ft)t∈T/B(R)-adapted as Y0 = U3 is not a F0/B(R)-measurable func-
tion.
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3.2.3 Predictability

Definition 3.2.18 (Predictable sigma-algebra). Let (Ω,F) be a measurable space, let F
be a filtration on (Ω,F), and let T be the set given by T = domain(F). Then we denote
by Pred(F) the sigma-algebra given by

Pred(F) = σT×Ω

({
((s, t] ∩ T)× A : A ∈ Fs, s ∈ T ∩ [−∞, t), t ∈ T

}
∪
{

({inf(T)} ∩ T)× A) : A ∈ ∩t∈TFt
})

(3.39)

and we call Pred(F) the predictable sigma-algebra of F.

Let T ∈ (0,∞) be a real number and let (Ω,F) be a measurable space with a filtration
(Ft)t∈[0,T ]. Then note that the definition of Pred

(
(Ft)t∈[0,T ]

)
depends on the specific

choice of the filtration (Ft)t∈[0,T ].

Definition 3.2.19 (Predictability). We say that X is F/S-predictable (we say that X
is F-predictable, we say that X is an F-predictable function, we say that X is an F-
predictable stochastic process, we say that X is an F/S-predictable function, we say that
X is an F/S-predictable stochastic process) if and only if there exist Ω and F such that
it holds

(i) that F is a filtration on (Ω,F) and

(ii) that X is a Pred(F)/S-measurable function.

Let T ∈ (0,∞), let (Ω,F , P ) be a probability space with a filtration (Ft)t∈[0,T ], let
(S,S) be a measurable space, and let X : [0, T ] × Ω → S be (Ft)t∈[0,T ]/S-predictable.
Then it holds that X is a stochastic process, that is, it holds for every t ∈ [0, T ] that
Xt is an F/S-measurable function (see Definition 3.1.1 above for the definition of a
stochastic process). This property is an immediate consequence of Corollary 3.2.21
below. Corollay 3.2.21, in turn, is a special case of the following lemma, Lemma 3.2.20.
Lemma 3.2.20 also helps us to better understand the notion of a predictable stochastic
process (cf., e.g., [Kühn(2004)]).

Lemma 3.2.20 ((Ft)t∈[0,T ]-Predictability implies (F−t )t∈[0,T ]-Adaptivity). Let T ∈ (0,∞)
be a real number, let (Ω,F , P ) be a probability space with a filtration (Ft)t∈[0,T ], let (S,S)
be a measurable space, and let X : [0, T ]×Ω→ S be an (Ft)t∈[0,T ]/S-predictable function.
Then it holds that X : [0, T ]× Ω→ S is (F−t )t∈[0,T ]/S-adapted.

Proof of Lemma 3.2.20. Lemma 0.2.11 implies that for every t0 ∈ [0, T ], A0 ∈ S it holds
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that

{t0} ×X−1
t0

(A0) = ({t0} × Ω) ∩ X−1(A0)︸ ︷︷ ︸
∈Pred((Ft)t∈[0,T ])

∈ ({t0} × Ω) e σ[0,T ]×Ω

(
{(s, t]× A : A ∈ Fs and s, t ∈ [0, T ] with s < t}

∪ {{0} × A : A ∈ F0}

)
︸ ︷︷ ︸

=Pred((Ft)t∈[0,T ])

= σ{t0}×Ω

(
({t0} × Ω) e

(
{(s, t]× A : A ∈ Fs and s, t ∈ [0, T ] with s < t}

∪ {{0} × A : A ∈ F0}

))
= σ{t0}×Ω

(
{{t0} × A : A ∈ Fs and s, t ∈ [0, T ] with s < t0 ≤ t}

∪ {({t0} ∩ {0})× A : A ∈ F0}

)

= σ{t0}×Ω

 {
{t0} × A : A ∈ ∪s∈[0,t0)Fs

}
⋃ {(

{t0} ∩ {0}
)
× A : A ∈ F0

} 
⊆ σ{t0}×Ω

({
{t0} × A : A ∈ F−t0

})
=
{
{t0} × A : A ∈ F−t0

}
.

(3.40)

This shows that for every t0 ∈ [0, T ], A0 ∈ S it holds that

X−1
t0

(A0) ∈ F−t0 . (3.41)

The proof of Lemma 3.2.20 is thus completed.

We now present the promised Corollary 3.2.21, which is a special case of Lemma 3.2.20
above.

Corollary 3.2.21 (Predictability implies adaptivity). Let T ∈ (0,∞) be a real number,
let (Ω,F , P ) be a probability space with a filtration (Ft)t∈[0,T ], let (S,S) be a measur-
able space, and let X : [0, T ] × Ω → S be an (Ft)t∈[0,T ]/S-predictable function. Then
X : [0, T ]× Ω→ S is (Ft)t∈[0,T ]/S-adapted.

Lemma 3.2.22 (Adaptivity together with continuous sample paths implies predictabil-
itiy). Let T ∈ (0,∞) be a real number, let (Ω,F , P ) be a probability space with a
filtration (Ft)t∈[0,T ], let (E, dE) be a metric space, and let X : [0, T ] × Ω → E be an
(Ft)t∈[0,T ]/B(E)-adapted stochastic process with continuous sample paths. Then X is
(Ft)t∈[0,T ]/B(E)-predictable.

The proof of Lemma 3.2.22 is omitted and can, e.g., be found in Lemma 2.5.1 in
[Kallenberg(2002)].

Exercise 3.2.23 (Product measurable random fields). Let (I, I), (Ω,F), and (S,S) be
measurable spaces and let X : I × Ω → S be an (I ⊗ F)/S-measurable function. Prove
then that for all ω ∈ Ω it holds that I 3 i 7→ X(i, ω) ∈ S is an I/S-measurable function.
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3.3 Standard Brownian motions

This subsection introduces a class of stochastic processes known as standard Brownian
motions. These stochastic processes are fundamental objects of probability theory (see,
e.g., Section 21 in [Klenke(2008)]). A detailed analysis of various aspects of standard
Brownian motions can be found in the book [Mörters and Peres(2010)] on standard
Brownian motions.

Definition 3.3.1 (Standard Brownian motion with respect to a filtration). We say that
W is an m-dimensional standard Ω-Brownian motion (we say that W is a standard
Ω-Brownian motion) if and only if there exist T , Ω, F , P , F such that it holds

(i) that T ∈ (0,∞), m ∈ N,

(ii) that Ω = (Ω,F , P,F) is a filtered probability space,

(iii) that W is an (Rm,B(Rm))-valued stochastic process with continuous sample paths
and time set [0, T ] on (Ω,F , P ),

(iv) that W is an F/B(Rm)-adapted stochastic process,

(v) that W0 = 0 ∈ Rm,

(vi) that for every t1, t2 ∈ [0, T ] with t1 ≤ t2 it holds that Wt2 −Wt1 is N0,(t2−t1)IRm -
distributed, and

(vii) that for every t1, t2 ∈ [0, T ] with t1 ≤ t2 it holds that σΩ(Wt2 −Wt1) and Ft1 are
P -independent.

Observe that the filtration F = (Ft)t∈[0,T ] in Definition 3.3.1 is a substantial ingredient
of the definition of a standard (Ω,F , P, (Ft)t∈[0,T ])-Brownian motion. In some situations,
the particular filtration is not of importance. For this the following notion is used.

Definition 3.3.2 (Standard Brownian motion). We say that W is an m-dimensional
P -standard Brownian motion (we say that W is an m-dimensional standard Brownian
motion, we say that W is a P -standard Brownian motion, we say that W is a standard
Brownian motion) if and only if there exist Ω, F , F such that it holds that W is an
m-dimensional standard (Ω,F , P,F)-Brownian motion.

3.3.1 Elementary properties of standard Brownian motions

In the next step a few elementary properties of standard Brownian motions are collected.
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Proposition 3.3.3 (Properties of standard Brownian motions). Let T ∈ (0,∞), m ∈ N,
let (Ω,F , P ) be a probability space, and let W : [0, T ]×Ω→ R

m be a standard Brownian
motion. Then

(i) it holds for all t ∈ [0, T ] that EP
[
Wt

]
= 0 ∈ Rm and CovP (Wt) = t · IRm ∈ Rm×m,

(ii) it holds for all t ∈ [0, T ], s ∈ (0, T ] that Wt =
√
t√
s
Ws in distribution on B(Rm),

(iii) it holds that W has P -independent increments, i.e., it holds for every n ∈
{3, 4, . . . }, t1, . . . , tn ∈ [0, T ] with t1 ≤ . . . ≤ tn that the random variables Wt2−Wt1,
. . . , Wtn −Wtn−1 are P -independent, and

(iv) it holds that W has stationary increments, i.e., it holds for every n ∈ {2, 3, . . . },
h, t1, . . . , tn ∈ [0, T ] with t1 ≤ . . . ≤ tn ≤ tn + h ≤ T that(

Wt2 −Wt1 , . . . ,Wtn −Wtn−1

)
=
(
Wt2+h −Wt1+h, . . . ,Wtn+h −Wtn−1+h

)
(3.42)

in distribution on B(Rn·m).

Proof of Proposition 3.3.3. Items (i) and (ii) follow immediately from Definition 3.3.2.
In the next step we show Item (iii). For this we observe that the fact thatW is (FWt )t∈[0,T ]-
adapted (see Lemma 3.2.16) proves that for all n ∈ {3, 4, 5, . . . }, t1, . . . , tn ∈ [0, T ] with
t1 ≤ . . . ≤ tn it holds that

σΩ

((
Wt2 −Wt1 , . . . ,Wtn−1 −Wtn−2

))
⊆ FWtn−1

. (3.43)

Item (vii) in Definition 3.3.1 hence implies that for all n ∈ {3, 4, 5, . . . }, t1, . . . , tn ∈ [0, T ]
with t1 ≤ . . . ≤ tn it holds that

σΩ

((
Wt2 −Wt1 , . . . ,Wtn−1 −Wtn−2

))
and σΩ

(
Wtn −Wtn−1

)
(3.44)

are P -independent. Therefore, we get that for all n ∈ {3, 4, 5, . . . }, t1, . . . , tn ∈ [0, T ],
A1, . . . , An−1 ∈ B(Rm) with t1 ≤ . . . ≤ tn it holds that

P
(
{Wt2 −Wt1 ∈ A1} ∩ · · · ∩

{
Wtn −Wtn−1 ∈ An−1

})
= P

(
{Wt2 −Wt1 ∈ A1} ∩ · · · ∩

{
Wtn−1 −Wtn−2 ∈ An−2

})
· P
(
Wtn −Wtn−1 ∈ An−1

)
.

(3.45)

Iterating (3.45), in turn, ensures that for all n ∈ {3, 4, 5, . . . }, t1, . . . , tn ∈ [0, T ],
A1, . . . , An−1 ∈ B(Rm) with t1 ≤ . . . ≤ tn it holds that

P
(
{Wt2 −Wt1 ∈ A1} ∩ · · · ∩

{
Wtn −Wtn−1 ∈ An−1

})
= P (Wt2 −Wt1 ∈ A1) · . . . · P

(
Wtn −Wtn−1 ∈ An−1

)
.

(3.46)

This proves Item (iii). It thus remains to show Item (iv). For this we observe that
Item (vi) in Definition 3.3.1 implies that for every t1, t2 ∈ [0, T ], h ∈ [0, T − t2] with
t1 ≤ t2 it holds that

Wt2+h −Wt1+h (3.47)
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is N0,(t2−t1)IRm -distributed. Combining this and Item (iii) proves Item (iv). The proof
of Proposition 3.3.3 is thus completed.

3.3.2 Gaussian stochastic processes

We first present a simple result for independency of jointly normal distributed random
variables is formulated.

Lemma 3.3.4 (Uncorrelated normally distributed random variables are indepen-
dent). Let (Ω,F , P ) be a probability space, let n ∈ N, k1, . . . , kn ∈ N, and let
(Y1,1, . . . , Y1,k1 , . . . , Yn,1, . . . , Yn,kn) : Ω → R

(k1+...+kn) be a normally distributed random

variable with the property that for all i, î ∈ {1, . . . , n}, l ∈ {1, . . . , ki}, l̂ ∈ {1, . . . , kî}
with i 6= î it holds that

Cov
(
Yi,l, Yî,l̂

)
= 0. (3.48)

Then the random variables (Y1,1, . . . , Y1,k1) : Ω → R
k1, . . . , (Yn,1, . . . , Yn,kn) : Ω → R

kn

are P -independent.

Lemma 3.3.4 is a straightforward consequence of Proposition 0.4.15 and Corollary 0.4.16.
The next result, Corollary 3.3.5, relates Definition 3.3.2 above to Exercise 1.3.11 in
Chapter 1. Combining Proposition 0.4.15, Lemma 3.3.4, and Proposition 3.3.3 results
in the next corollary.

Corollary 3.3.5 (Covariances for one-dimensional standard Brownian motions). Let
T ∈ (0,∞), let (Ω,F , P ) be a probability space, and let W : [0, T ]×Ω→ R be a stochastic
process with continuous sample paths and with W0 = 0. Then W is a one-dimensional
standard Brownian motion if and only if it holds for every n ∈ N, t1, . . . , tn ∈ [0, T ] that
the random variable (Wt1 , . . . ,Wtn) : Ω→ R

n is N0,(min{ti,tj})(i,j)∈{1,...,n}2 -distributed.

Proof of Corollary 3.3.5. If W is a one-dimensional standard Brownian motion, then
Proposition 3.3.3 implies that for all i, j ∈ {1, 2, . . . , n} it holds that

EP
[
WtiWtj

]
= EP

[
Wmax{ti,tj}Wmin{ti,tj}

]
= EP

[(
Wmax{ti,tj} −Wmin{ti,tj}

) (
Wmin{ti,tj} −W0

)]︸ ︷︷ ︸
=EP

[
Wmax{ti,tj}−Wmin{ti,tj}

]
EP
[
Wmin{ti,tj}−W0

]
=0

+EP
[∣∣Wmin{ti,tj}

∣∣2]

= min{ti, tj}.

(3.49)

Moreover, if W is a one-dimensional standard Brownian motion, then Proposition 3.3.3
and Proposition 0.4.15 ensure that (Wt1 ,Wt2 , . . . ,Wtn) : Ω→ R

n is normally distributed.
This and (3.49) show the “⇒” direction in Corollary 3.3.5. Let us now assume that for
every n ∈ N, t1, . . . , tn ∈ [0, T ] it holds that (Wt1 , . . . ,Wtn) is N0,(min(ti,tj))(i,j)∈{1,2,...,n}2

-

distributed. Proposition 0.4.15 then implies that for every n ∈ N, s1, s2, . . . , sn, t1, t2 ∈
[0, T ] with s1 ≤ · · · ≤ sn ≤ t1 ≤ t2 it holds that (Ws1 , . . . ,Wsn ,Wt2 −Wt1) is normally
distributed with the property that for all i ∈ {1, 2, . . . , n} it holds that

EP
[

(Wt2 −Wt1)Wsi

]
= min{t2, si} −min{t1, si} = 0 (3.50)
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and

EP
[
(Wt2 −Wt1)

2] = EP
[
(Wt2)

2
]

+ EP
[
(Wt1)

2
]
− 2EP [Wt1Wt2 ]

= t2 + t1 − 2t1 = t2 − t1.
(3.51)

Lemma 3.3.4 hence proves the “⇐” direction and this completes the proof of Corol-
lary 3.3.5.

Based on Definition 0.4.17, we now introduce the notion of a Gaussian stochastic process.

Definition 3.3.6 (Gaussian stochastic process). Let (Ω,F , P ) be a probability space, let
m ∈ N, let T ⊆ R be a set, and let X = (X1, . . . , Xm) : T × Ω → R

m be a stochastic
process with the property that for every n ∈ N, t1, . . . , tn ∈ T it holds that

Ω 3 ω 7→
(
X1
t1

(ω), . . . , Xm
t1

(ω), X1
t2

(ω), . . . , Xm
t2

(ω), . . . , X1
tn(ω), . . . , Xm

tn(ω)
)
∈ Rn·m

(3.52)
is Gaussian distributed. Then we say that X is a Gaussian stochastic process.

See, e.g., [Ash(2013)] and [Jentzen(2014)] for the next result.

Proposition 3.3.7 (Marginally normally distributed versus jointly normally dis-
tributed). Let (Ω,F , P ) be a probability space, let X : Ω → R be a standard normal
random variable, let Z : Ω → R be an

(
1
2
δR−1|B(R) + 1

2
δR1 |B(R)

)
-distributed random vari-

able with the property that X and Z are independent, and let Y : Ω → R be given by
Y = ZX. Then

• it holds that X and Y are standard normal random variables,

• it holds that X and Y are uncorrelated, i.e., Cov(X, Y ) = EP
[
XY

]
= 0, but

• it does not hold that Ω 3 ω 7→ (X(ω), Y (ω)) ∈ R2 is normally distributed.

Proof of Proposition 3.3.7. First of all, observe that the definition of Y and the assump-
tion that X and Z are independent ensures that for all x ∈ R it holds that

P (Y ≤ x) = P ({Y ≤ x} ∩ {Z = 1}) + P ({Y ≤ x} ∩ {Z = −1})
= P ({X ≤ x} ∩ {Z = 1}) + P ({−X ≤ x} ∩ {Z = −1})
= 1

2
· P (X ≤ x) + 1

2
· P (−X ≤ x) .

(3.53)

Next we note that the assumption that X(P )B(R) = N0,IR implies that X(P )B(R) =
(−X)(P )B(R) = N0,IR . This and (3.53) imply that for all x ∈ R it holds that

P (Y ≤ x) = 1
2
· N0,IR((−∞, x]) + 1

2
· N0,IR((−∞, x]) = N0,IR((−∞, x]). (3.54)

Moreover, we observe that

EP
[
XY

]
= EP

[
X(ZX)

]
= EP

[
X2Z

]
= EP

[
X2
]
EP
[
Z
]

= 1 · 0 = 0. (3.55)
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Furthermore, we note that

P (X + Y = 0) = P (X + ZX = 0) = P
(
(1 + Z)X = 0

)
= P (1 + Z = 0) = P (Z = −1) = 1

2
.

(3.56)

This proves that
Ω 3 ω 7→ X(ω) + Y (ω) ∈ R (3.57)

is not normal distributed. Proposition 0.4.15 hence proves that

Ω 3 ω 7→ (X(ω), Y (ω)) ∈ R2 (3.58)

is not normal distributed. The proof of Proposition 3.3.7 is thus completed.

3.3.3 Approximative simulation of sample paths of standard
Brownian motions

We now present a short Matlab code for the approximative generation of sample paths
of 1-dimensional standard Brownian motions (cf. Exercise 1.3.11). More formally, let
(Ω,F , P ) be a probability space, let T ∈ (0,∞), N ∈ N, let W : [0, T ] × Ω → R be a
1-dimensional P -standard Brownian motion, and let W̃ : [0, T ]×Ω→ R be the function

which satisfies for all n ∈ {0, 1, . . . , N − 1}, t ∈ [nT
N
, (n+1)T

N
] that

W̃t =
(
n+ 1− tN

T

)
WnT

N
+
(
tN
T
− n

)
W (n+1)T

N

. (3.59)

Observe that if N ∈ N is large, then (W̃t)t∈[0,T ] is in a suitable sense a good approx-
imation of (Wt)t∈[0,T ]. The following Matlab code plots a realization of an pseudo

W̃ (P )⊗t∈[0,T ]B(R)-distributed random variable in the case T = 1 and N = 1000.

1 T = 1 ;
2 N = 1000 ;
3 BM = cumsum( [ 0 , randn (1 ,N) ] ∗ sqrt (T/N) ) ;
4 plot ( ( 0 :T/N:T) , BM ) ;

Matlab code 3.1: A Matlab code which plots a realization of an pseudo W̃ (P )⊗t∈[0,T ]B(R)-

distributed random variable in the case T = 1 and N = 1000 in (3.59).

Definition 3.3.8 (Positive part and negative part). Let a ∈ R. Then we denote by
a+ ∈ R and a− ∈ R the real numbers given by

a+ = max{a, 0} and a− = max{−a, 0} = −min{a, 0}, (3.60)

we call a+ the positive part of a, and we call a− the negative part of a.
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Figure 3.1: Results of two calls of the Matlab code 3.1.
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Exercise 3.3.9 (Geometric Brownian motion). In this exercise we do not distinguish
between pseudo random numbers and actual random numbers. Let T, x0 ∈ (0,∞), α, β ∈
R, let (Ω,F , P ) be a probability space, let W : [0, T ] × Ω → R be a standard Brownian
motion, let X : [0, T ]× Ω→ R be the stochastic process which satisfies for all t ∈ [0, T ]
that

Xt = e(αt+βWt) x0, (3.61)

and let f ∈ L1(XT (P )B(R); |·|R). The stochastic process X is known
as geometric Brownian motion in the literature. Write a Matlab function
MonteCarloGBM(T,α,β,x0,f,N) with input T ∈ (0,∞), α, β ∈ R, x0 ∈ (0,∞),
f ∈ L1(XT (P )B(R); |·|R), N ∈ N and output a Monte Carlo approximation of

E
[
f(XT )

]
(3.62)

based on N ∈ N samples. Call your Matlab function MonteCarloGBM(T,
α,β,x0,f,N) in the case T = 1, β = 1

10
, α = ln(1.06) − β2

2
, x0 = 92, f = R 3

x 7→ [x− 100]+ ∈ R, N = 104.

Exercise 3.3.10. In this exercise we do not distinguish between pseudo random numbers
and actual random numbers. Let (Ω,F , P ) be a probability space, let m,N ∈ N, let
W : [0, T ] × Ω → R

m be a standard Brownian motion, and let W̃M : [0, T ] × Ω → R
m,

M ∈ N, be the functions which satisfy for all M ∈ N, n ∈ {0, 1, . . . ,M − 1}, t ∈[
nT
M
, (n+1)T

M

]
that

W̃M
t =

(
n+ 1− tM

T

)
WnT

M
+
(
tM
T
− n

)
W (n+1)T

M

. (3.63)

(i) Write a Matlab function BrownianMotion(T,m,N) with in-
put T ∈ (0,∞), m,N ∈ N and output a realization of an(
W0,W T

N
,W 2T

N
, . . . ,W (N−1)T

N

,WT

)
(P )B(Rm×(N+1))-distributed random variable.

(ii) Assume that T = 1 and that m = 2. Write a Matlab function
BrownianMotion2DPlot() which uses your Matlab function BrownianMotion(T,
m, N) to plot one realization of an (W̃ 1000)(P )⊗t∈[0,T ]B(R2)-distributed random
variable in a three-dimensional coordinate system.

Exercise 3.3.11 (Geometric Brownian motion revisited). Let T, x0, β ∈ (0,∞), α ∈ R,
let (Ω,F , P ) be a probability space, let W : [0, T ] × Ω → R be a standard Brownian
motion, let X : [0, T ]× Ω→ R be the function which satisfies for all t ∈ [0, T ] that

Xt = e(αt+βWt) x0 (3.64)

(cf. Exercise 3.3.9), and let Φ: R→ R be the function which satisfies for all y ∈ R that

Φ(y) =
´ y
−∞

1√
2π
e−

1
2
x2dx.

(i) Show that for all K ∈ R it holds that

E
[

max{XT −K, 0}
]

=

e
(α+ 1

2
β2)T x0 −K : K ≤ 0

e(α+ 1
2
β2)T x0 Φ

(
αT+ln(

x0
K

)

β
√
T

+ β
√
T
)
−K Φ

(
αT+ln(

x0
K

)

β
√
T

)
: K > 0

.
(3.65)
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(ii) Use Item (i) and the built-in Matlab function erf(. . . ) to calculate E
[

max{XT −
K, 0}

]
approximatively in the case T = 1, β = 1

10
, α = ln(1.06) − β2

2
, x0 = 92,

K = 100. Compare this result with the result of Exercise 3.3.9.

3.3.4 Temporal regularity of standard Brownian motions

This section investigates temporal regularity properties of standard Brownian motions.
To do so, a few notions are introduced.

Lemma 3.3.12 (Absolute moments of standard normal random variables). Let
(Ω,F , P ) be a probability space and let Y : Ω → R be an N0,1-distributed random vari-
able. Then

(i) it holds for all p ∈ [2,∞) that

EP
[
|Y |p

R

]
= (p− 1) · EP

[
|Y |(p−2)

R

]
, (3.66)

(ii) it holds for all p ∈ {2, 3, 4, . . . } that

EP
[
|Y |p

R

]
=

{
(p− 1) · (p− 3) · . . . · 5 · 3 · 1 : p even

(p− 1) · (p− 3) · . . . · 4 · 2 · EP
[
|Y |R

]
: p odd,

=

{
(p− 1) · (p− 3) · . . . · 5 · 3 · 1 : p even

(p− 1) · (p− 3) · . . . · 4 · 2 ·
√

2
π

: p odd,

(3.67)

and

(iii) it holds for all p ∈ [1,∞) that ‖Y ‖Lp(P ;|·|
R

) ≤
√
p.

Proof of Lemma 3.3.12. Note that integration by parts proves that for all p ∈ (2,∞) it
holds that

EP
[
|Y |p

R

]
=

ˆ
R

|y|p
R

1√
2π
e−

1
2
y2 dy = 1√

2π

ˆ
R

[
y |y|(p−2)

R

] [
y e−

1
2
y2
]
dy

= −1√
2π

[
y |y|(p−2)

R
e−

1
2
y2
]y=∞

y=−∞
+ 1√

2π

ˆ
R

[
(p− 1) |y|(p−2)

R

] [
e−

1
2
y2
]
dy

= (p− 1)

ˆ
R

|y|(p−2)
R

1√
2π
e−

1
2
y2 dy = (p− 1)EP

[
|Y |(p−2)

R

]
.

(3.68)

This proves (3.66). In addition, note that

EP
[
|Y |R

]
=

ˆ
R

|y|
R

1√
2π
e−

1
2
y2 dy = 2

ˆ ∞
0

y 1√
2π
e−

1
2
y2 dy

=
√

2
π

ˆ ∞
0

y e−
1
2
y2 dy = −

√
2
π

[
e−

1
2
y2
]y=∞

y=0
=
√

2
π
.

(3.69)
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Combining this and (3.66) establishes (3.67). Next we note that Jensen’s inequality,
Definition 1.2.11, and (3.67) imply that for all p ∈ (1,∞) it holds that

‖Y ‖Lp(P ;|·|
R

) ≤ ‖Y ‖Ldpe1 (P ;|·|
R

) ≤
(

(dpe1 − 1)
(dpe1−1)

2

) 1
dpe1 ≤ (dpe1 − 1)

1
2 ≤ √p. (3.70)

The proof of Lemma 3.3.12 is thus completed.

Theorem 3.3.13 (Kolmogorov-Chentsov theorem). Let T, p ∈ (0,∞), α ∈ (0, 1), m ∈
N with α > 1

p
, let (Ω,F , P ) be a probability space, and let X : [0, T ] × Ω → R

m be a

stochastic process with (Xt)t∈[0,T ] ∈ Cα([0, T ], Lp(P ; ‖·‖
Rm

)), i.e., with

sup
t1,t2∈[0,T ]
t1 6=t2

‖Xt2 −Xt1‖Lp(P ;‖·‖
Rm )

|t2 − t1|α
<∞. (3.71)

Then there exists a stochastic process Y : [0, T ]×Ω→ R
m which is a modification of X

(i.e., which fulfills that for all t ∈ [0, T ] it holds that P (Xt = Yt) = 1) and which satisfies
that for all ω ∈ Ω, β ∈ (0, α− 1

p
) it holds that Y (ω) ∈ Cβ([0, T ],Rm).

The proof of Theorem 3.3.13 is omitted. It can, e.g., be found in Theorem 21.6 in
[Klenke(2008)].

Proposition 3.3.14 (Temporal regularity of standard Brownian motions). Let
T ∈ (0,∞), m ∈ N, let (Ω,F , P ) be a probability space, and let W =(
W (1), . . . ,W (m)

)
: [0, T ] × Ω → R

m be an m-dimensional standard Brownian motion.
Then

(i) it holds for all p ∈ [1,∞), t1, t2 ∈ [0, T ] with t1 ≤ t2 that

‖Wt2 −Wt1‖L2(P ;‖·‖
Rm ) =

√
m (t2 − t1)1/2 , (3.72)

‖Wt2 −Wt1‖Lp(P ;‖·‖
Rm ) ≤ m

√
p (t2 − t1)1/2 , (3.73)

(ii) it holds for all α ∈ (0, 1
2
], p ∈ [1,∞) that (Wt)t∈[0,T ] ∈ Cα([0, T ], Lp(P ; ‖·‖

Rm
)) and

‖W‖C1/2([0,T ],Lp(P ;‖·‖
Rm )) ≤ m

√
p, and

(iii) it holds for all α ∈ (0, 1) that

P
(
W ∈ Cα([0, T ],Rm)

)
=

{
1 : α ∈ (0, 1

2
)

0 : α ∈ [1
2
, 1)

. (3.74)
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Proof of Proposition 3.3.14. Observe that for all t1, t2 ∈ [0, T ] with t1 ≤ t2 it holds that

EP
[
‖Wt2 −Wt1‖2

Rm

]
= EP

[
‖W(t2−t1)‖2

Rm

]
= EP

[
m∑
j=1

|W (j)
(t2−t1)|

2

]

=
m∑
j=1

EP
[
|W (j)

(t2−t1)|
2
]

= m EP
[
|W (1)

(t2−t1)|
2
]

= m (t2 − t1) .

(3.75)

This implies (3.72). Next note that the estimate

∀x = (x1, . . . , xn) ∈ Rm : ‖x‖
Rm

=

[
m∑
i=1

|xi|2
]1/2

≤
m∑
i=1

|xi| (3.76)

and Lemma 3.3.12 imply that for all p ∈ [1,∞), t1, t2 ∈ [0, T ] with t1 < t2 it holds that

‖Wt2 −Wt1‖Lp(P ;‖·‖
Rm ) = ‖W(t2−t1)‖Lp(P ;‖·‖

Rm ) =
∥∥∥∥W(t2−t1)

∥∥
Rm

∥∥
Lp(P ;|·|

R
)

≤

∥∥∥∥∥
m∑
j=1

∣∣W (j)
(t2−t1)

∣∣∥∥∥∥∥
Lp(P ;|·|

R
)

≤
m∑
j=1

∥∥∥W (j)
(t2−t1)

∥∥∥
Lp(P ;|·|

R
)

= m
∥∥W (1)

(t2−t1)

∥∥
Lp(P ;|·|

R
)

= m (t2 − t1)1/2
∥∥ 1

(t2−t1)1/2
W

(1)
(t2−t1)

∥∥
Lp(P ;|·|

R
)
≤ m
√
p (t2 − t1)1/2 .

(3.77)

This shows (3.73). In particular, we obtain that

∀ p ∈ [1,∞) : ‖W‖C1/2([0,T ],Lp(P ;‖·‖
Rm )) ≤ m

√
p. (3.78)

Clearly, this implies that

∀α ∈ (0, 1
2
], p ∈ [1,∞) : (Wt)t∈[0,T ] ∈ Cα([0, T ], Lp(P ; ‖·‖

Rm
)) . (3.79)

Theorem 3.3.13 and Lemma 3.1.13 hence show that

∀α ∈ (0, 1
2
) : P

(
W ∈ Cα([0, T ],Rm)

)
= 1. (3.80)

For the proof of the fact that

∀α ∈ [1
2
, 1) : P

(
W ∈ Cα([0, T ],Rm)

)
= 0, (3.81)

the reader is referred to [Mörters and Peres(2010)] (see Remark 1.21 in
[Mörters and Peres(2010)]). This completes the proof of Proposition 3.3.14.

Exercise 3.3.15 (Quadratic variation of standard Brownian motions). Let T ∈ (0,∞),
N ∈ N, 0 = t0 < t1 < · · · < tN = T , let (Ω,F , P ) be a probability space, and let
W : [0, T ]× Ω→ R be a standard Brownian motion. Prove that∥∥∥∥∥T −

N−1∑
n=0

(
Wtn+1 −Wtn

)2

∥∥∥∥∥
L2(P ;|·|

R
)

≤
√

2T

[
max

n∈{0,1,...,N−1}
|tn+1 − tn|

]1/2

. (3.82)

Work in progress. Copyright (C) with the authors.
Dissemination prohibited. December 15, 2018

133



Chapter 3. Stochastic processes and Itô stochastic calculus

3.3.5 Construction of standard Brownian motions

The purpose of this subsection is to show for every T ∈ (0,∞) and every m ∈ N
that there exists a probability space (Ω,F , P ) on which a standard Brownian motion
W : [0, T ]×Ω→ R

m is defined. To show this result we follow here a method that is known
as Paul Lévy’s construction of Brownian motion in the literature (see, e.g., Section 1.1
in [Mörters and Peres(2010)]). This method is based on Lemma 3.3.19 below. Before
Lemma 3.3.19 and the construction of a standard Brownian motion based on it are
presented, several preparations are presented first.

Definition 3.3.16. Let Ω be a set and let An ⊆ Ω, n ∈ N, be sets. Then define the
limes superior

lim sup
n→∞

An := ∩∞n=1 (∪∞m=nAm) = {a ∈ Ω: a ∈ An for infinitely many n ∈ N} (3.83)

and the limes inferior

lim inf
n→∞

An := ∪∞n=1 (∩∞m=nAm) = {a ∈ Ω: a ∈ An for almost all n ∈ N} (3.84)

of the sets An ⊆ Ω, n ∈ N.

In the setting of Definition 3.3.16, observe that lim infn→∞An ⊆ lim supn→∞An and
that Ω\ (lim infn→∞An) = lim supn→∞ (Ω\An).

Lemma 3.3.17 (Borel-Cantelli lemma). Let (Ω,F , P ) be a probability space and let
An ∈ F , n ∈ N, be events with

∑∞
n=1 P ((An)c) <∞. Then P (lim infn→∞An) = 1.

Proof of Lemma 3.3.17. Note that the assumption
∑∞

m=1 P ((Am)c) <∞ implies that

P

((
lim inf
n→∞

An

)c)
= P

(
lim sup
n→∞

(An)c
)

= P (∩n∈N (∪∞m=n (Am)c))

= lim
n→∞

P
(
∪∞m=n (Am)c

)
≤ lim

n→∞

(
∞∑
m=n

P
(

(Am)c
))

= 0

(3.85)

This completes the proof of Lemma 3.3.17.

We also use the following tool for limits of jointly normally distributed random variables.

Lemma 3.3.18 (The limit of centered jointly normally distributed random variables).
Let (Ω,F , P ) be a probability space, let k ∈ N, let Qn ∈ Rk×k, n ∈ N, be a con-
vergent sequence of (k × k)-matrices, let X : Ω → R

k and X(n) : Ω → R
k, n ∈ N,

be random variables such that for every n ∈ N it holds that X(n) is N0,Qn-distributed
and such that for every continuous and bounded function ϕ : Rk → R it holds that
limn→∞ EP [ϕ(X(n))] = EP [ϕ(X)]. Then X is N0,limn→∞Qn-distributed.
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Lemma 3.3.18 can, e.g., be proved by using characteristic functions (see, for example,
Theorem 15.8 in [Klenke(2008)]). We now present the promised lemma on which Paul
Lévy’s construction of Brownian motion is based on. Its proof makes use of Proposi-
tion 0.4.15.

Lemma 3.3.19 (Lemma for Levy’s construction of standard Brownian motions). Let
t1, t2, t3 ∈ [0,∞) be real numbers with t1 ≤ t3 and t2 = t1+t3

2
, let (Ω,F , P ) be a probabil-

ity space, let (Z1, Z3) : Ω → R
2 be an N0,(min(ti,tj))(i,j)∈{1,3}2

-distributed random variable,

let ∆: Ω → R be an N0,(t3−t1)/4-distributed random variable and assume that (Z1, Z3)
and ∆ are independent. Then the random variable (Z1,

Z1+Z3

2
+ ∆, Z3) : Ω → R

3 is
N0,(min(ti,tj))(i,j)∈{1,2,3}2

-distributed.

The proof of Lemma 3.3.19 is the subject of Exercise 3.5.6 below. In our fol-
lowing construction of a standard Brownian motion we follow the presentation in
[Wakolbinger(2004)] and now use Lemma 3.3.19 to construct a standard Brownian mo-
tion.

Let (Ω,F , P ) be a probability space and let Yn,k : Ω → R, n ∈ N0, k ∈ N, be in-
dependent standard normal distributed random variables. Recall that such a proba-
bility space does indeed exist. (It can, for instance, be constructed as the product
space

(
×(n,k)∈N0×NR,⊗(n,k)∈N0×N B(R),⊗(n,k)∈N0×NN0,1

)
; see, e.g., Corollary 14.33 in

[Klenke(2008)] for details.) Then we define a family t
(n)
i ∈ R, i ∈ {0, 1, . . . , 2n}, n ∈ N0,

of real numbers by

t
(n)
i :=

i

2n
(3.86)

for all i ∈ {0, 1, . . . , 2n} and all n ∈ N0. In the next step we define recursively a family
W (n) : [0, 1]× Ω→ R, n ∈ N, of stochastic processes with continuous sample paths by

W
(0)
t := t · Y0,1 (3.87)

for all t ∈ [0, 1] and by

W
(n)
t := W

(n−1)
t +

1−

∣∣∣t− t(n)
i

∣∣∣(
t
(n)
i − t

(n)
i−1

)
Yn,i

√√√√(t(n)
i+1 − t

(n)
i−1

)
4

(3.88)

for all t ∈
[
t
(n)
i−1, t

(n)
i+1

]
, i ∈ {1, 3, 5, . . . , 2n − 3, 2n − 1} and all n ∈ N. We now investigate

a few properties of the stochastic processes W (n), n ∈ N0.

First, we claim for every n ∈ N0 that(
W

(n)

t
(n)
0

,W
(n)

t
(n)
1

, . . . ,W
(n)

t
(n)
2n

)
is N

0,(min(t
(n)
i ,t

(n)
j ))(i,j)∈{0,1,2,...,2n}2

-distributed. (3.89)

We prove (3.89) by induction on n ∈ N0. Observe that (W
(0)
0 ,W

(0)
1 ) = (0, Y0,1) is

N0,(min(i,j))(i,j)∈{0,1}2
-distributed and this shows (3.89) in the base case n = 0. For the
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induction step N0 3 n− 1→ n ∈ N note for every n ∈ N that(
W

(n)

t
(n)
0

,W
(n)

t
(n)
1

, . . . ,W
(n)

t
(n)
2n

)
=

(
W

(n−1)

t
(n)
0

,
W

(n−1)

t
(n)
0

+W
(n−1)

t
(n)
2

2
+ Yn,1

√(
t
(n)
2 −t

(n)
0

)
4

,

W
(n−1)

t
(n)
2

,
W

(n−1)

t
(n)
2

+W
(n−1)

t
(n)
4

2
+ Yn,3

√(
t
(n)
4 −t

(n)
2

)
4

,

...
...

W
(n−1)

t
(n)
2n−1

,
W

(n−1)

t
(n)
2n−2

+W
(n−1)

t
(n)
2n

2
+ Yn,2n−1

√(
t
(n)
2n −t

(n)
2n−2

)
4

,W
(n−1)

t
(n)
2n

)
(3.90)

for all n ∈ N. Combining this with Proposition 0.4.15 and Lemma 3.3.19 then shows
that the induction step N0 3 n− 1→ n ∈ N. This completes the proof of (3.89).

In the next step for every n ∈ N the distance between W (n) and W (n−1) is estimated.
Observe that

sup
t∈[0,1]

∣∣∣W (n)
t −W (n−1)

t

∣∣∣ ≤
√(

t
(n)
2 −t

(n)
0

)
4

(
max

i∈{1,3,5,...,2n−1}
|Yn,i|

)
≤

maxi∈{1,2,...,2n} |Yn,i|
2(n+1)/2

(3.91)

for all n ∈ N and therefore

P

(
sup
t∈[0,1]

∣∣∣W (n)
t −W (n−1)

t

∣∣∣ > n

2(n+1)/2

)
≤ P

(
maxi∈{1,2,...,2n} |Yn,i|

2(n+1)/2
>

n

2(n+1)/2

)

= P

(
max

i∈{1,2,...,2n}
|Yn,i| > n

)
≤

2n∑
i=1

P (|Yn,i| > n) = 2nN0,1((n,∞) ≤ 2ne−
1
2
n2

n
√

2π
≤ 2n

e
1
2
n2

(3.92)

for all n ∈ N where we used Lemma 2.6.14 in the last step. Combining the fact that∑∞
n=1

2n

e
1
2n

2 < ∞ with the Borel-Cantelli lemma (see Lemma 3.3.17 above) therefore

shows that

1 = P

(
lim inf
n→∞

{
sup
t∈[0,1]

∣∣∣W (n)
t −W (n−1)

t

∣∣∣ ≤ n

2(n+1)/2

})

= P

(
∃n0 ∈ N : ∀n ∈ {n0, n0 + 1, . . . } : sup

t∈[0,1]

∣∣∣W (n)
t −W (n−1)

t

∣∣∣ ≤ n

2(n+1)/2

)
≤ P

(
(W (n))n∈N is a Cauchy sequence in C([0, 1],R)

)
= P

(
(W (n))n∈N is convergence in C([0, 1],R)

)
(3.93)
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where we used that the space C([0, 1],R) of continuous functions from [0, 1] to R is
complete in the last step. Next we define a stochastic process W : [0, 1] × Ω → R

through

Wt(ω) :=

{
limn→∞W

(n)
t (ω) : (W (n)(ω))n∈N is convergent in C([0, 1],R)

0 : else
(3.94)

for all t ∈ [0, 1] and all ω ∈ Ω. By construction we have that P
(

limn→∞ supt∈[0,T ] |Wt −
W

(n)
t | = 0

)
= 1 and that for every n ∈ N and every t1, . . . , tn ∈ ∪m∈N ∪2m

l=0 { l
2m
} it holds

that (Wt1 ,Wt2 , . . . ,Wtn) is N0,(min(ti,tj))(i,j)∈{1,2,...,n}2
-distributed. From Lemma 3.3.18 we

therefore get for every n ∈ N and every t1, . . . , tn ∈ [0, 1] that (Wt1 ,Wt2 , . . . ,Wtn) is
N0,(min(ti,tj))(i,j)∈{1,2,...,n}2

-distributed. Combining this with Corollary 3.3.5 results in the

following theorem.

Theorem 3.3.20 (Existence of a one-dimensional standard Brownian motion). There
exists a probability space (Ω,F , P ) on which a one-dimensional standard Brownian mo-
tion W : [0, 1]× Ω→ R is defined.

We have thus constructed a one-dimensional standard Brownian motion on the interval
[0, 1]. The following elementary transformation can be used to generalize this result to
arbitrary time intervals [0, T ] where T ∈ (0,∞).

Lemma 3.3.21 (Transformation of standard Brownian motions). Let T, T̂ ∈ (0,∞), let
(Ω,F , P ) be a probability space and let W : [0, T ]×Ω→ R be a one-dimension standard
Brownian motion. Then the stochastic process Ŵ : [0, T̂ ]× Ω→ R defined through

Ŵt :=

√
T̂
T
·W tT

T̂
(3.95)

for all t ∈ [0, T̂ ] is a one-dimension standard Brownian motion.

The proof of Lemma 3.3.21 is an easy exercise. The following generalization of Theo-
rem 3.3.20 follows from Lemma 3.3.21.

Corollary 3.3.22 (Existence of standard Brownian motions). Let T ∈ (0,∞), m ∈ N.
Then there exists a probability space (Ω,F , P ) and a mapping W : [0, T ]×Ω→ R

m such
that W : [0, T ]× Ω→ R

m is a standard Brownian motion.

Proof of Corollary 3.3.22. By Theorem 3.3.20, there exists a probability space (Ω,F , P )
and a one-dimensional standard Brownian motion W : [0, 1] × Ω → R. Next define
Ŵ : [0, T ]×Ω→ R through Ŵt :=

√
T ·W t

T
for all t ∈ [0, T ]. Lemma 3.3.21 shows that

Ŵ is a one-dimensional standard Brownian motion. In the next step define the product
space Ω̃ := Ωm, the product sigma-algebra F̃ := F⊗m = F⊗F⊗. . .⊗F and the product
probability measure P̃ := P⊗m = P⊗P⊗ . . .⊗P . Moreover, define W̃ : [0, T ]×Ω̃→ R

m

through W̃t(ω1, . . . , ωm) := (Ŵt(ω1), . . . , Ŵt(ωm)) for all ω = (ω1, . . . , ωm) ∈ Ω̃ and all
t ∈ [0, T ]. By construction, (Ω̃, F̃ , P̃ ) is a probability space and W̃ is an m-dimensional
standard Brownian motion on it.
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Theorem 3.3.23 (Existence of stochastic bases and standard Brownian motions). Let
T ∈ (0,∞), m ∈ N. Then there exists a stochastic basis

(
Ω,F , P, (Ft)t∈[0,T ]

)
and a

function
W : [0, T ]× Ω→ R

m (3.96)

such that W is an m-dimensional standard (Ω,F , P, (Ft)t∈[0,T ])-Brownian motion.

3.4 Stochastic Integration with respect to standard
Brownian motions

In this section the stochastic integral with respect to a standard Brownian motion
is defined and some of its properties are formulated. We follow the presentations in
[Jentzen(2014)].

3.4.1 Norms on matrices

3.4.1.1 Operator norm induced by the Euclidean norm

Definition 3.4.1 (Operator norm). Let d,m ∈ N. Then we denote by
‖·‖

Rd×m : Rd×m → [0,∞) the function which satisfies for all A ∈ Rd×m that

‖A‖
Rd×m = sup

v∈Rm\{0}

[
‖Av‖

Rd

‖v‖
Rm

]
(3.97)

and we call ‖·‖
Rd×m the operator norm on Rd×m.

Note that for every d,m ∈ N it holds that (Rd×m, ‖·‖
Rd×m) is a normed R-vector space

(it is even an R-Banach space).

3.4.1.2 Hilbert-Schmidt norm

Definition 3.4.2 (Hilbert-Schmidt norm). Let m, d ∈ N. Then we denote
by ‖·‖HS(Rm,Rd) : Rd×m → [0,∞) the function which satisfies for all A =

(Ai,j)i∈{1,...,d},j∈{1,...,m} ∈ Rd×m that

‖A‖HS(Rm,Rd) =

√√√√ d∑
i=1

m∑
j=1

|Ai,j|2 (3.98)

and we call ‖·‖HS(Rm,Rd) the Hilbert-Schmidt norm on Rd×m (we call ‖·‖HS(Rm,Rd) the

Frobenius norm on Rd×m).
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Observe that for every d,m ∈ N it holds that (Rd×m, ‖·‖HS(Rm,Rd)) is a normed R-vector
space (it is even an R-Hilbert space).

Example 3.4.3. Let A = (Ai,j)i∈{1,2},j∈{1,2} ∈ R2×2 be the 2× 2-matrix given by

A = IR2 =

(
1 0
0 1

)
. (3.99)

Then

(i) it holds that

‖A‖
R2×2 = sup

v∈R2\{0}

[
‖Av‖

R2

‖v‖
R2

]
= sup

v∈R2\{0}

[
‖v‖

R2

‖v‖
R2

]
= 1 (3.100)

and

(ii) it holds that

‖A‖HS(R2,R2) =

√√√√ 2∑
i,j=1

|Ai,j|2 =
√

2 > 1 = ‖A‖
R2×2 . (3.101)

Lemma 3.4.4 (Comparison between operator norm and Hilbert-Schmidt). Let d,m ∈ N
and let A = (Ai,j)i∈{1,...,d},j∈{1,...,m} ∈ Rd×m. Then

‖A‖
Rd×m ≤ ‖A‖HS(Rm,Rd) . (3.102)

Proof of Lemma 3.4.4. Note that the triangle inequality and the Cauchy-Schwarz in-
equality prove that for all v = (v1, . . . , vm) ∈ Rm it holds that

‖Av‖2
Rd

=

∥∥∥∥∥∥∥v1

 A1,1
...

Ad,1

+ . . .+ vm

 A1,m
...

Ad,m


∥∥∥∥∥∥∥

2

Rd

=

∥∥∥∥∥∥∥
m∑
k=1

vk

 A1,k
...

Ad,k


∥∥∥∥∥∥∥

2

Rd

≤

 m∑
k=1

|vk|

∥∥∥∥∥∥∥
 A1,k

...
Ad,k


∥∥∥∥∥∥∥
Rd


2

≤

[
m∑
k=1

|vk|2
] m∑

k=1

∥∥∥∥∥∥∥
 A1,k

...
Ad,k


∥∥∥∥∥∥∥

2

Rd


= ‖v‖2

Rm
‖A‖2

HS(Rm,Rd) .

(3.103)

This completes the proof of Lemma 3.4.4.
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3.4.2 Product measure on the predictable sigma-algebra

Remark 3.4.5. Let T ∈ (0,∞) and let (Ω,F) be a measurable space with a filtration
Ft ∈ P(P(Ω)), t ∈ [0, T ]. Then observe that

Pred((Ft)t∈[0,T ]) ⊆ σ[0,T ]×Ω

({
B×A : B ∈ B([0, T ]), A ∈ FT

})
= B([0, T ])⊗FT . (3.104)

This fact is used in the next definition.

Definition 3.4.6 (Product measure on the predictable sigma-algebra). Let T ∈ (0,∞)
and let (Ω,F , P ) be a probability space with a filtration (Ft)t∈[0,T ]. Then we denote by

PP,(Ft)t∈[0,T ]
: Pred((Ft)t∈[0,T ])→ [0,∞] (3.105)

the measure given by

PP,(Ft)t∈[0,T ]
= (B[0,T ] ⊗ P )|Pred((Ft)t∈[0,T ]). (3.106)

Let T ∈ (0,∞) and let (Ω,F , P ) be a probability space with a filtration (Ft)t∈[0,T ]. Then
note that for all t1, t2 ∈ [0, T ], A ∈ Ft1 with t1 < t2 it holds that

PP,(Ft)t∈[0,T ]
((t1, t2]× A) = (t2 − t1) · P (A). (3.107)

3.4.3 Vector spaces of equivalence classes of predictable stochastic
processes

Let T ∈ (0,∞), d,m ∈ N, let (Ω,F , P, (Ft)t∈[0,T ]) be a stochastic basis, and let
W : [0, T ] × Ω → R

m be a standard (Ω,F , P, (Ft)t∈[0,T ])-Brownian motion. Then ob-
serve that for all p ∈ [0,∞) it holds that

Lp
(
PP,(Ft)t∈[0,T ]

; ‖·‖HS(Rm,Rd)

)
=




Y : [0, T ]× Ω→ R
d×m :

Y is (Ft)t∈[0,T ]-predictable and´ T
0
EP
[
‖Xs − Ys‖HS(Rm,Rd)

]
ds = 0

 :

 X : [0, T ]× Ω→ R
d×m

is (Ft)t∈[0,T ]-predictable and´ T
0
EP
[
‖Xs‖pHS(Rm,Rd)

]
ds <∞


= Lp

(
PP,(Ft)t∈[0,T ]

; ‖·‖
Rd×m

)
.

(3.108)

Furthermore, note that for all p ∈ (0,∞), X ∈ Lp(PP,(Ft)t∈[0,T ]
; ‖·‖

Rd×m) it holds that

‖X‖Lp(PP,(Ft)t∈[0,T ]
;‖·‖

HS(Rm,Rd)
) =

(ˆ T

0

EP
[
‖Xs‖pHS(Rm,Rd)

]
ds

)1
p

,

‖X‖Lp(P|(Ft)t∈[0,T ]
;‖·‖

Rd×m ) =

(ˆ T

0

EP
[
‖Xs‖pRd×m

]
ds

)1
p

.

(3.109)
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3.4.4 Metrics for convergence in probability

Exercise 3.4.7 (Metrization of convergence in probability). Let d ∈ N and let
dp,c : L0(P ; ‖·‖

Rd
) × L0(P ; ‖·‖

Rd
) → [0,∞), p ∈ [1,∞), c ∈ (0,∞), be the mappings

with the property that for all p ∈ [1,∞), c ∈ (0,∞), X, Y ∈ L0(P ; ‖·‖
Rd

) it holds that

dp,c(X, Y ) = ‖min{c, ‖X − Y ‖
Rd
}‖Lp(P ;|·|

R
) =

∣∣EP [min
{
cp, ‖X − Y ‖p

Rd

}]∣∣1/p . (3.110)

Prove then that

(i) for all p ∈ [1,∞), c ∈ (0,∞) it holds that (L0(P ; ‖·‖
Rd

), dp,c) is a metric space

(ii) and for all p ∈ [1,∞), c ∈ (0,∞), (Xn)n∈N0 ⊆ L0(P ; ‖·‖
Rd

)
it holds that lim supn→∞ dp,c(Xn, X0) = 0 if and only if ∀ ε ∈
(0,∞) : lim supn→∞ P (‖Xn −X0‖Rd ≥ ε) = 0

Exercise 3.4.8. Let d,m ∈ N, T ∈ (0,∞) and let

dp,c :
{
X ∈ L0(PP,(Ft)t∈[0,T ]

; ‖·‖
Rd×m) : P

(
∫T0 ‖Xs‖2

Rd×m ds <∞
)

= 1
}2

→ [0,∞),

(3.111)
p ∈ [1,∞), c ∈ (0,∞), be the mappings with the property that for all p ∈ [1,∞),
c ∈ (0,∞), (X, Y ) ∈ dom(dp,c) it holds that

dp,c(X, Y ) =

∥∥∥∥∥∥
√

min

{
c,

ˆ T

0

‖Xs − Ys‖2
Rd×m ds

}∥∥∥∥∥∥
Lp(P ;|·|

R
)

. (3.112)

Prove then that

(i) for all p ∈ [1,∞), c ∈ (0,∞) it holds that
(
L0(PP,(Ft)t∈[0,T ]

; ‖·‖
Rd

), dp,c
)

is a metric
space

(ii) and for all p ∈ [1,∞), c ∈ (0,∞), (Xn)n∈N0 ⊆ L0(PP,(Ft)t∈[0,T ]
; ‖·‖

Rd×m) with

∀n ∈ N0 : P
( ´ T

0
‖Xn

s ‖2
Rd×m ds <∞

)
= 1 it holds that lim supn→∞ dp,c(X

n, X0) = 0

if and only if ∀ ε ∈ (0,∞) : lim supn→∞ P
( ´ T

0
‖Xn

s −X0
s‖2
Rd×m ds ≥ ε

)
= 0.

3.4.5 Simple processes

Definition 3.4.9 (Simple predictable process). Let T ∈ (0,∞), d,m ∈ N and let (Ω,F)
be a measurable space with a filtration (Ft)t∈[0,T ]. Then a mapping X : [0, T ]×Ω→ R

d×m

is called (Ft)t∈[0,T ]-simple (or just simple) if there exist n ∈ N, 0 ≤ t1 < . . . < tn ≤ T
and for every k ∈ {1, . . . , n − 1} an Ftk/B(Rd×m)-measurable mapping Hk : Ω → R

d×m

such that for all t ∈ [0, T ] it holds that

Xt =
n−1∑
k=1

Hk · 1(tk,tk+1](t) . (3.113)
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Simple processes in the sense of Definition 3.4.9 are predictable. This is an immediate
consequence of the next exercise.

Exercise 3.4.10 (Simple processes). Let T ∈ (0,∞), d,m ∈ N and let (Ω,F) be a
measurable space with a filtration (Ft)t∈[0,T ]. Prove that

Pred
(
(Ft)t∈[0,T ]

)
= σ[0,T ]×Ω

(
{{0} × A : A ∈ F0}

∪
{
X−1(A) : X : [0, T ]× Ω→ R

d×m is (Ft)t∈[0,T ]-simple, A ∈ B(Rd×m)
})

.
(3.114)

3.4.5.1 Density of simple processes

If T ∈ (0,∞), d,m ∈ N and if (Ω,F , P, (Ft)t∈[0,T ]) is a stochastic basis, then
simple stochastic processes that are in L2

(
PP,(Ft)t∈[0,T ]

; ‖·‖HS(Rm,Rd)

)
are dense in

L2
(
PP,(Ft)t∈[0,T ]

; ‖·‖HS(Rm,Rd)

)
. This is the topic of the next lemma.

Proposition 3.4.11 (Density of simple processes I). Let T ∈ (0,∞), d,m ∈ N and let
(Ω,F , P, (Ft)t∈[0,T ]) be a stochastic basis. Then it holds that the set{

Y ∈ L2
(
PP,(Ft)t∈[0,T ]

; ‖·‖HS(Rm,Rd)

)
: Y is (Ft)t∈[0,T ]-simple

}
(3.115)

is dense in L2
(
PP,(Ft)t∈[0,T ]

; ‖·‖HS(Rm,Rd)

)
, that is, for every X ∈

L2
(
PP,(Ft)t∈[0,T ]

; ‖·‖HS(Rm,Rd)

)
there exist (Ft)t∈[0,T ]-simple Y (n) ∈

L2
(
PP,(Ft)t∈[0,T ]

; ‖·‖HS(Rm,Rd)

)
, n ∈ N, such that

lim
n→∞

∥∥X − Y (n)
∥∥
L2(PP,(Ft)t∈[0,T ]

;‖·‖
HS(Rm,Rd)

)︸ ︷︷ ︸
=

(´ T
0 EP

[
‖Xs−X(n)

s ‖2
HS(Rm,Rd)

]
ds

)1/2

= 0. (3.116)

Proposition 3.4.11 is, e.g., proved as a special case of Theorem 25.9 in [Klenke(2008)].
Let T ∈ (0,∞), d,m ∈ N and let (Ω,F , P, (Ft)t∈[0,T ]) be a stochastic basis. Then note
that for all X ∈ L2

(
PP,(Ft)t∈[0,T ]

; ‖·‖HS(Rm,Rd)

)
it holds that

‖X‖2
L2(PP,(Ft)t∈[0,T ]

;‖·‖
HS(Rm,Rd)

) =

ˆ
[0,T ]×Ω

‖Xs(ω)‖2
HS(Rm,Rd)PP,(Ft)t∈[0,T ]

(ds, dω)

=

ˆ
[0,T ]×Ω

‖Xs(ω)‖2
HS(Rm,Rd) (B[0,T ] ⊗ P )(ds, dω)

=

ˆ T

0

EP
[
‖Xs‖2

HS(Rm,Rd)

]
ds <∞

(3.117)

and

P

(ˆ T

0

‖Xs‖2
HS(Rm,Rd) ds <∞

)
= 1. (3.118)
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Proposition 3.4.12 (Density of simple processes II). Let T ∈ (0,∞), d,m ∈ N, let
(Ω,F , P, (Ft)t∈[0,T ]) be a stochastic basis and let X ∈ L0

(
PP,(Ft)t∈[0,T ]

; ‖·‖HS(Rm,Rd)

)
with

the property that it hold P -a.s. that
´ T

0
‖Xs‖2

Rd×m ds < ∞. Then there exist (Ft)t∈[0,T ]-

simple Y (n) ∈ L0
(
PP,(Ft)t∈[0,T ]

; ‖·‖HS(Rm,Rd)

)
, n ∈ N, such that

lim
n→∞

∥∥∥∥min

{
1,

ˆ T

0

‖Xs − Y (n)
s ‖2

HS(Rm,Rd) ds

}∥∥∥∥
L1(P ;|·|

R
)

= 0. (3.119)

3.4.6 Lenglart’s inequality

Definition 3.4.13 (Random time). Let T ⊆ R be a set and let (Ω,F , P ) be a probability
space. Then a mapping τ : Ω → T is called a random time if τ is F/B(T)-measurable,
that is, if for every t ∈ T it holds that {τ ≤ t} ∈ F .

Definition 3.4.14 (Stopping time). Let T ⊆ R be a set and let (Ω,F , P ) be a probability
space with a filtration (Ft)t∈T. Then a mapping τ : Ω→ T is called an (Ft)t∈T-stopping
time if for all t ∈ T it holds that {τ ≤ t} ∈ Ft.

Exercise 3.4.15. Let T ⊆ R be a set, let (Ω,F , P ) be a probability space with a filtration
(Ft)t∈T, and let τ, ρ : Ω → T be (Ft)t∈T-stopping times. Prove then that min{τ, ρ} is an
(Ft)t∈T-stopping time.

In (3.122) in the following result, Proposition 3.4.16, we prove a very powerful inequality
which is known as Lenglart inequality in the literature. Proposition 3.4.16 and its proof
are extensions of Problem 1.4.15, Remark 1.4.17 and Solution 4.15 in Section 1.6 in
[Karatzas and Shreve(1988)].

Proposition 3.4.16 (Lenglart inequality). Let (Ω,F , P ) be a probability space with a
filtration (Ft)t∈[0,∞), let X, Y : [0,∞)×Ω→ [0,∞) be stochastic processes with continuous
sample paths such that for all bounded (Ft)t∈[0,∞)-stopping times τ : Ω→ [0,∞) it holds
that EP

[
Xτ

]
≤ EP

[
supt∈[0,τ ] Yt

]
. Then for all ε, δ ∈ (0,∞) and all (Ft)t∈[0,∞)-stopping

times τ : Ω→ [0,∞) it holds that

P
(
supt∈[0,τ ] Xt ≥ ε

)
≤ 1

ε
EP
[
supt∈[0,τ ] Yt

]
, (3.120)

P
(
supt∈[0,τ ] Xt ≥ ε, supt∈[0,τ ] Yt < δ

)
≤ 1

ε
EP
[
min

{
δ, supt∈[0,τ ] Yt

}]
, (3.121)

P
(
supt∈[0,τ ] Xt ≥ ε

)
≤ 1

ε
EP
[
min

{
δ, supt∈[0,τ ] Yt

}]
+ P

(
supt∈[0,τ ] Yt ≥ δ

)
, (3.122)

EP
[
min

{
ε, supt∈[0,τ ] Xt

}]
≤
[
2
√
ε+ ε√

δ

] ∣∣EP [min
{
δ, supt∈[0,τ ] Yt

}]∣∣1/2 , (3.123)

EP
[
min

{
1, supt∈[0,τ ] Xt

}]
≤ 3

∣∣EP [min
{

1, supt∈[0,τ ] Yt
}]∣∣1/2 . (3.124)
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Proof of Proposition 3.4.16. Throughout this proof let ρXε : Ω→ [0,∞], ε ∈ [0,∞), and
ρYε : Ω→ [0,∞], ε ∈ [0,∞), be the mappings with the property that for all ε ∈ [0,∞) it
holds that

ρXε = inf
({
t ∈ [0,∞) : Xt ≥ ε

}
∪ {∞}

)
, (3.125)

ρYε = inf
({
t ∈ [0,∞) : sups∈[0,t] Ys ≥ ε

}
∪ {∞}

)
. (3.126)

Then observe that for all ε ∈ [0,∞), n ∈ N and all (Ft)t∈[0,∞)-stopping times τ : Ω →
[0,∞) it holds that

ε P
(
supt∈[0,min{τ,n}] Xt ≥ ε

)
= ε P

(
∃ t ∈ [0,min{τ, n}] : Xt ≥ ε

)
= ε P

({
∃ t ∈ [0,min{τ, n}] : Xt ≥ ε

}
∩
{
ρXε ≤ min{τ, n}

})
= ε P

({
∃ t ∈ [0,min{τ, n}] : Xt ≥ ε

}
∩
{
ρXε ≤ min{τ, n}

}
∩
{
Xmin{τ,n,ρXε } ≥ ε

})
≤ ε P

(
Xmin{τ,n,ρXε } ≥ ε

)
= EP

[
ε1{X

min{τ,n,ρXε }
≥ε}

]
≤ EP

[
Xmin{τ,n,ρXε } 1{Xmin{τ,n,ρXε }

≥ε}

]
≤ EP

[
Xmin{τ,n,ρXε }

]
.

(3.127)

Combining this with the fact for all ε ∈ [0,∞), n ∈ N and all (Ft)t∈[0,∞)-stopping times
τ : Ω → [0,∞) it holds that min{τ, n, ρXε } is a bounded (Ft)t∈[0,∞)-stopping time (see
Exercise 3.4.15) ensures that for all ε ∈ [0,∞), n ∈ N and all (Ft)t∈[0,∞)-stopping times
τ : Ω→ [0,∞) it holds that

ε P
(
supt∈[0,min{τ,n}] Xt ≥ ε

)
≤ EP

[
Xmin{τ,n,ρXε }

]
≤ EP

[
supt∈[0,min{τ,n,ρXε }] Yt

]
≤ EP

[
supt∈[0,τ ] Yt

]
.

(3.128)

Hence, we obtain that for all ε ∈ [0,∞) and all (Ft)t∈[0,∞)-stopping times τ : Ω→ [0,∞)
it holds that

ε P
(
supt∈[0,τ ] Xt ≥ ε

)
= ε P

(
∪n∈N

{
supt∈[0,min{τ,n}] Xt ≥ ε

})
= ε lim

n→∞
P
(
supt∈[0,min{τ,n}] Xt ≥ ε

)
≤ EP

[
supt∈[0,τ ] Yt

]
.

(3.129)

This proves (3.120). In the next step we observe that (3.120) ensures that for all ε, δ ∈
(0,∞) and all (Ft)t∈[0,∞)-stopping times τ : Ω→ (0,∞) it holds that

P
(
supt∈[0,τ ] Xt ≥ ε, supt∈[0,τ ] Yt < δ

)
= P

(
supt∈[0,τ ] Xt ≥ ε, ρYδ > τ, supt∈[0,τ ] Yt < δ

)
= P

(
supt∈[0,min{τ,ρYδ }]

Xt ≥ ε, ρYδ > τ, supt∈[0,τ ] Yt < δ
)

≤ P
(

supt∈[0,min{τ,ρYδ }]
Xt ≥ ε

)
≤ 1

ε
EP
[
supt∈[0,min{τ,ρYδ }]

Yt

]
≤ 1

ε
EP
[
min

{
δ, supt∈[0,min{τ,ρYδ }]

Yt
}]
≤ 1

ε
EP
[
min

{
δ, supt∈[0,τ ] Yt

}]
.

(3.130)
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This proves (3.121). Furthermore, we observe that (3.121) shows that for all ε, δ ∈ (0,∞)
and all (Ft)t∈[0,∞)-stopping times τ : Ω→ (0,∞) it holds that

P
(
supt∈[0,τ ] Xt ≥ ε

)
≤ P

(
supt∈[0,τ ] Xt ≥ ε, supt∈[0,τ ] Yt < δ

)
+ P

(
supt∈[0,τ ] Yt ≥ δ

)
≤ 1

ε
EP
[
min

{
δ, supt∈[0,τ ] Yt

}]
+ P

(
supt∈[0,τ ] Yt ≥ δ

)
.

(3.131)

This proves (3.122). Next we note that (3.122) and the Markov inequality (see
Lemma 2.4.11) show that for all r, δ ∈ (0,∞) and all (Ft)t∈[0,∞)-stopping times
τ : Ω→ (0,∞) it holds that

P
(
supt∈[0,τ ] Xt ≥ r

)
≤ 1

r
EP
[
min

{
δ, supt∈[0,τ ] Yt

}]
+ P

(
min

{
δ, supt∈[0,τ ] Yt

}
≥ δ
)

≤
[

1
r

+ 1
δ

]
EP
[
min

{
δ, supt∈[0,τ ] Yt

}]
.

(3.132)

This implies that for all ε, δ, r ∈ (0,∞) and all (Ft)t∈[0,∞)-stopping times τ : Ω→ (0,∞)
it holds that

EP
[
min

{
ε, supt∈[0,τ ] Xt

}]
= EP

[
min

{
ε, supt∈[0,τ ] Xt

}
1{supt∈[0,τ ]Xt<r}

]
+ EP

[
min

{
ε, supt∈[0,τ ] Xt

}
1{supt∈[0,τ ]Xt≥r}

]
≤ min{ε, r}+ ε P

(
supt∈[0,τ ] Xt ≥ r

)
≤ min{ε, r}+ ε

[
1
r

+ 1
δ

]
EP
[
min

{
δ, supt∈[0,τ ] Yt

}]
≤ r + ε

[
1
r

+ 1
δ

]
EP
[
min

{
δ, supt∈[0,τ ] Yt

}]
.

(3.133)

Hence, we obtain that for all ε, δ ∈ (0,∞) and all (Ft)t∈[0,∞)-stopping times τ : Ω →
(0,∞) it holds that

EP
[
min

{
ε, supt∈[0,τ ] Xt

}]
≤ inf

r∈(0,∞)

(
r + ε

r
EP
[
min

{
δ, supt∈[0,τ ] Yt

}]
+ ε

δ
EP
[
min

{
δ, supt∈[0,τ ] Yt

}])
≤
∣∣εEP [min

{
δ, supt∈[0,τ ] Yt

}]∣∣1/2
+
√
ε
∣∣EP [min

{
δ, supt∈[0,τ ] Yt

}]∣∣1/2 + ε
δ
EP
[
min

{
δ, supt∈[0,τ ] Yt

}]
.

(3.134)

This proves (3.123). Moreover, we note that (3.124) is an immediate consequence of
(3.123). The proof of Proposition 3.4.16 is thus completed.

3.4.7 Construction of the stochastic integral

In the next result, Theorem 3.4.17, the existence and uniqueness of the stochastic integral
is established (cf., e.g., Proposition 2.26 in [Karatzas and Shreve(1988)]).
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Theorem 3.4.17 (Existence and uniqueness of the stochastic integral). Let T ∈ (0,∞),
a ∈ [0, T ], b ∈ [a, T ], d,m ∈ N, let (Ω,F , P, (Ft)t∈[0,T ]) be a stochastic basis, and let
W : [0, T ] × Ω → R

m be an m-dimensional standard (Ω,F , P, (Ft)t∈[0,T ])-Brownian mo-
tion. Then there exists a unique linear function

I :

{
X ∈M([0, T ]× Ω,Rd×m) :

X is (Ft)t∈[0,T ]-predictable with

P
(
∫ ba ‖Xs‖2

Rd×m ds <∞
)

= 1

}
→ L0(P ; ‖·‖

Rd
)

(3.135)
which satisfies

(i) that for all Xn ∈ dom(I), n ∈ N, with lim supn→∞ EP
[

min{1,
´ b
a
‖Xn

s ‖2
Rd×m ds}

]
=

0 it holds that lim supn→∞ EP
[

min{1, ‖I(Xn)‖Rd}
]

= 0 (continuity) and

(ii) that for all s ∈ [0, T ], t ∈ (s, T ], and all Fs/B(Rd×m)-measurable functions X : Ω→
R
d×m it holds that

I(X1(s,t]) =
[
X
(
Wmin{t,b} −Wmin{max{s,a},t,b}

)]
P,B(Rd) (3.136)

(stochastic integration of simple processes).

Definition 3.4.18 (Stochastic integration). Let T ∈ (0,∞), a ∈ [0, T ], b ∈ [a, T ],
d,m ∈ N, let (Ω,F , P, (Ft)t∈[0,T ]) be a stochastic basis, and let W : [0, T ] × Ω → R

m be
an m-dimensional standard (Ω,F , P, (Ft)t∈[0,T ])-Brownian motion. Then we denote by

IWa,b :

{
X ∈M([0, T ]× Ω,Rd×m) :

X is (Ft)t∈[0,T ]-predictable with

P
(
∫ ba ‖Xs‖2

Rd×m ds <∞
)

= 1

}
→ L0(P ; ‖·‖

Rd
)

(3.137)
the linear function which satisfies

(i) that for all Xn ∈ dom(IWa,b), n ∈ N, with

lim supn→∞ EP
[

min{1,
´ b
a
‖Xn

s ‖2
Rd×m ds}

]
= 0 it holds that

lim supn→∞ EP
[

min{1, ‖IWa,b(Xn)‖Rd}
]

= 0 (continuity) and

(ii) that for all s ∈ [0, T ], t ∈ (s, T ], and all Fs/B(Rd×m)-measurable functions X : Ω→
R
d×m it holds that

IWa,b(X1(s,t]) =
[
X
(
Wmin{t,b} −Wmin{max{s,a},t,b}

)]
P,B(Rd)

(3.138)

(stochastic integration of simple processes).
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Definition 3.4.19 (Stochastic integral). Let T ∈ (0,∞), a ∈ [0, T ], b ∈ [a, T ], d,m ∈ N,
let (Ω,F , P, (Ft)t∈[0,T ]) be a stochastic basis, let W : [0, T ]×Ω→ R

m be an m-dimensional
standard (Ω,F , P, (Ft)t∈[0,T ])-Brownian motion, and let X : [0, T ] × Ω → R

d×m be an

(Ft)t∈[0,T ]/B(Rd×m)-predictable stochastic process which satisfies P (
´ b
a
‖Xs‖2

Rd×m ds <

∞) = 1. Then we denote by
´ b
a
Xs dWs ∈ L0(P ; ‖·‖

Rd
) the set given by

ˆ b

a

Xs dWs = IWa,b(X) (3.139)

and we call
´ b
a
Xs dWs the stochastic integral of X from a to b with respect to W on

(Ω,F , P, (Ft)t∈[0,T ]) (we call
´ b
a
Xs dWs the stochastic integral of X from a to b).

3.4.8 Properties of the stochastic integral

Exercise 3.4.20. Let T ∈ [0,∞), t ∈ [0, T ], let (Ω,F , P, (Fs)s∈[0,T ]) be a stochastic
basis, let (S,S) be a measurable space, let X : Ω → S be an F/S-measurable function,
let Y : Ω→ S be an Ft/S-measurable function, and let A ∈ F satisfy P (A) = 1 and

A ⊆ {ω ∈ Ω: X(ω) = Y (ω)}. (3.140)

Prove that X is an Ft/S-measurable function.

Let d ∈ N, T ∈ (0,∞) and let (Ω,F , P, (Ft)t∈[0,T ]) be a stochastic basis. Then Exer-
cise 3.4.20, in particular, shows that for all t1, t2 ∈ [0, T ] with t1 ≤ t2 it holds that

L0
(
P |F0 ; ‖·‖Rd

)
⊆ L0

(
P |Ft1 ; ‖·‖

Rd

)
⊆ L0

(
P |Ft2 ; ‖·‖

Rd

)
⊆ L0

(
P ; ‖·‖

Rd

)
. (3.141)

In Exercise 3.4.20 it is crucial that the filtration is normal.

Theorem 3.4.21 (Properties of the stochastic integral). Let T ∈ (0,∞), d,m ∈ N,
a, b ∈ [0, T ] with a ≤ b, let (Ω,F , P, (Ft)t∈[0,T ]) be a stochastic basis, let W : [0, T ] ×
Ω → R

m be an m-dimensional standard (Ω,F , P, (Ft)t∈[0,T ])-Brownian motion, and let
X : [0, T ] × Ω → R

d×m be an (Ft)t∈[0,T ]/B(Rd×m)-predictable function which satisfies

P (
´ b
a
‖Xs‖2

Rd×m ds <∞) = 1. Then

(i) it holds that
´ b
a
Xs dWs ∈ L0

(
P |Fb ; ‖·‖Rd

)
,

(ii) it holds that (
´ t
a
Xs dWs)t∈[a,b] is an (Ft)t∈[a,b]/B(Rd)-adapted stochastic process,

(iii) it holds for all α, β ∈ R and all (Ft)t∈[0,T ]/B(Rd×m)-predictable stochastic processes

Y, Z : [0, T ] × Ω → R
d×m with P

( ´ b
a
‖Ys‖2

HS(Rm,Rd)
+ ‖Zs‖2

HS(Rm,Rd)
ds < ∞

)
= 1

that ˆ b

a

[αYs + βZs] dWs = α

ˆ b

a

Ys dWs + β

ˆ b

a

Zs dWs, (3.142)
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(iv) it holds for all (Ft)t∈[0,T ]/B(Rd×m)-predictable stochastic processes Y : [0, T ]×Ω→
R
d×m with

´ b
a
EP
[
‖Ys‖2

HS(Rm,Rd)

]
ds <∞ that

EP

[∥∥∥∥ˆ b

a

Ys dWs

∥∥∥∥2

Rd

]
=

ˆ b

a

EP
[
‖Ys‖2

HS(Rm,Rd)

]
ds, (Itô’s isometry)

∥∥∥∥ˆ b

a

Ys dWs

∥∥∥∥
L2(P ;‖·‖

Rd
)

=

(ˆ b

a

‖Ys‖2
L2(P ;‖·‖

HS(Rm,Rd)
) ds

)1
2

, (3.143)

EP
[ˆ b

a

Ys dWs

]
= 0, (3.144)

(v) it holds for all p ∈ [2,∞) that

∥∥∥∥ˆ b

a

Xs dWs

∥∥∥∥
Lp(P ;‖·‖

Rd
)

≤
√
p (p− 1)

2

(ˆ b

a

‖Xs‖2
Lp(P ;‖·‖

HS(Rm,Rd)
) ds

)1
2

(
EP

[∥∥∥∥ˆ b

a

Xs dWs

∥∥∥∥p
Rd

])1
p

≤
√
p (p− 1)

2

(ˆ b

a

(
EP
[
‖Xs‖pHS(Rm,Rd)

])2
p
ds

)1
2

,

(Burkholder-Davis-Gundy inequality I)

(vi) there exists an up to indistinguishability unique (Ft)t∈[a,b]/B(Rd)-adapted stochastic
process V : [a, b] × Ω → R

d with continuous sample paths which satisfies for all
t ∈ [a, b] that [Vt]P,B(Rd) =

´ t
a
Xs dWs (V is called a continuous modification of

(
´ t
a
Xs dWs)t∈[a,b]), and

(vii) it holds for all p ∈ [2,∞) and all continuous modifications V : [a, b] × Ω → R
d of

(
´ t
a
Xs dWs)t∈[a,b] that∥∥∥∥∥ sup

s∈[a,b]

‖Vs‖Rd

∥∥∥∥∥
Lp(P ;|·|

R
)

≤ p

(ˆ b

a

‖Xs‖2
Lp(P ;‖·‖

HS(Rm,Rd)
) ds

)1
2

,

(
EP

[
sup
s∈[a,b]

‖Vs‖pRd

])1
p

≤ p

(ˆ b

a

(
EP
[
‖Xs‖pHS(Rm,Rd)

])2
p
ds

)1
2

.

(Burkholder-Davis-Gundy inequality II)

The statements of Theorem 3.4.21 and their proofs can, for example, be found in
[Klenke(2008)] and [Da Prato and Zabczyk(1992)].

Exercise 3.4.22 (Stochastic integration of L2-continuous stochastic processes). Let T ∈
(0,∞), d,m ∈ N, let (Ω,F , P, (Ft)t∈[0,T ]) be a stochastic basis, let W : [0, T ]× Ω→ R

m

be an m-dimensional standard (Ω,F , P, (Ft)t∈[0,T ])-Brownian motion, let a ∈ [0, T ], b ∈

Work in progress. Copyright (C) with the authors.
Dissemination prohibited. December 15, 2018

148



Chapter 3. Stochastic processes and Itô stochastic calculus

[a, T ], and let X : [0, T ]×Ω→ R
d×m be an (Ft)t∈[0,T ]/B(Rd×m)-predictable function with

X ∈ C([0, T ], L2(P ; ‖·‖
Rd×m)). Prove that

lim sup
n→∞

∥∥∥∥∥
ˆ b

a

Xs dWs −

[
n−1∑
k=0

X
(a+

k(b−a)
n

)

(
W
a+

(k+1)(b−a)
n

−W
a+

k(b−a)
n

)]∥∥∥∥∥
L2(P ;‖·‖

Rd
)

= 0.

(3.145)

3.5 Itô stochastic calculus

3.5.1 Itô processes and Itô’s formula

This section presents the Itô formula from Itô stochastic calculus (Itô calculus), which
is the stochastic analogue of the fundamental theorem of calculus and the chain rule
respectively. For this we first briefly review basic properites from deterministic calculus.

Let T ∈ (0,∞) be a real number. Then the fundamental theorem of calculus proves that
a function (a process) x : [0, T ] → R is continuously differentiable if and only if there
exists a continuous function y : [0, T ]→ R such that for all t ∈ [0, T ] it holds that

x(t) = x(0) +

ˆ t

0

y(s) ds (3.146)

and in that case it holds for all t ∈ [0, T ] that x′(t) = y(t). Functions of the form
(3.146) are crucial in deterministic calculus. The chain rule proves that if f : R → R

and x : [0, T ] → R are continuously differentiable functions, then so is the composition
function [0, T ] 3 t 7→ f(x(t)) ∈ R and in that case it holds for all t ∈ [0, T ] that

d

dt
f(x(t)) = f ′(x(t))x′(t). (3.147)

Combining (3.146) and (3.147) proves that if f : R→ R and x : [0, T ]→ R are continu-
ously differentiable and if y : [0, T ]→ R is a continuous function satisfying (3.146), then
it holds for all t ∈ [0, T ] that

f(x(t)) = f(x(0)) +

ˆ t

0

f ′(x(s)) y(s) ds. (3.148)

Formula (3.148) is the combination of the fundamental theorem of calculus and of the
chain rule. In the following we present the stochastic generalization of (3.148) which
is known as Itô’s formula in the literature (see Theorem 3.5.5 below). Recall that the
sample paths of a standard Brownian motion are with probability one not continuously
differentiable; see (3.74) in Proposition 3.3.14 for details.
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Definition 3.5.1 (Itô process – stochastic analogue of a continuously differentiable
function/process). We say that X is an O-valued Itô process on Ω with drift Y , diffusion
Z, and standard Brownian motion W (we say that X is an Itô process on Ω with drift
Y , diffusion Z, and standard Brownian motion W , we say that X is an Itô process with
drift Y , diffusion Z, and standard Brownian motion W , we say that X is an Itô process)
if and only if there exist T , Ω, F , P , F, d, m such that it holds

(i) that T ∈ (0,∞), d,m ∈ N, O ∈ B(Rd),

(ii) that Ω = (Ω,F , P,F) is a stochastic basis,

(iii) that X ∈M([0, T ]×Ω, O) is an F/B(O)-adapted stochastic process with continuous
sample paths,

(iv) that Y ∈M([0, T ]× Ω,Rd) is an F/B(Rd)-predictable stochastic process,

(v) that Z ∈M([0, T ]× Ω,Rd×m) is an F/B(Rd×m)-predictable stochastic process,

(vi) that P
( ´ T

0
‖Ys‖Rd + ‖Zs‖2

Rd×m ds <∞
)

= 1,

(vii) that for all t ∈ [0, T ] it holds P -a.s. that

Xt = X0 +

ˆ t

0

Ys ds+

ˆ t

0

Zs dWs. (3.149)

Let T ∈ (0,∞), let (Ω,F , P, (Ft)t∈[0,T ]) be a stochastic basis, and let X be an O-valued
Itô process on (Ω,F , P, (Ft)t∈[0,T ]) with drift Y , diffusion Z, and standard Brownian
motion W . Then one often writes

dXt = Yt dt+ Zt dWt (3.150)

or

dXt = Yt dt+
∑m

i=1
Z

(∗,i)
t dW

(i)
t (3.151)

for t ∈ [0, T ] as an abbreviation for (3.149). Moreover, observe that for all t0, t ∈ [0, T ]
with t0 ≤ t it holds P -a.s. that

Xt = Xt0 +

ˆ t

t0

Ys ds+

ˆ t

t0

Zs dWs. (3.152)

Theorem 3.4.21 hence shows that for all t1, t2 ∈ [0, T ], p ∈ [2,∞) with t1 < t2 it holds
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that

‖Xt2 −Xt1‖Lp(P ;‖·‖
Rd

) ≤
ˆ t2

t1

‖Ys‖Lp(P ;‖·‖
Rd

) ds+ p

[ˆ t2

t1

‖Zs‖2
Lp(P ;‖·‖

HS(Rm,Rd)
) ds

] 1
2

≤

[
sup
s∈[0,T ]

‖Ys‖Lp(P ;‖·‖
Rd

)

]
(t2 − t1) + p

[
sup
s∈[0,T ]

‖Zs‖Lp(P ;‖·‖
HS(Rm,Rd)

)

]
(t2 − t1)

1
2

≤

[
√
T · sup

s∈[0,T ]

‖Ys‖Lp(P ;‖·‖
Rd

) + p · sup
s∈[0,T ]

‖Zs‖Lp(P ;‖·‖
HS(Rm,Rd)

)

]
(t2 − t1)

1
2 .

(3.153)

This proves in the setting of Definition 3.5.1 that for all α ∈ (0, 1
2
], p ∈ [2,∞) with

sup
s∈[0,T ]

‖Ys‖Lp(P ;‖·‖
Rd

) + sup
s∈[0,T ]

‖Zs‖Lp(P ;‖·‖
Rd×m ) <∞ (3.154)

it holds that

X ∈ Cα
(
[0, T ], Lp(P ; ‖·‖

Rd
)
)

(Temporal regularity for Itô processes)

(cf. Proposition 3.3.14).

Remark 3.5.2. Let T ∈ (0,∞), p ∈ [2,∞), d,m ∈ N, O ∈ B(Rd), let
(Ω,F , P, (Ft)t∈[0,T ]) be a stochastic basis, let W : [0, T ]× Ω→ R

m be an m-dimensional
standard (Ω,F , P, (Ft)t∈[0,T ])-Brownian motion, let X : [0, T ] × Ω → O be an Itô pro-
cess on (Ω,F , P, (Ft)t∈[0,T ]) with drift Y : [0, T ] × Ω → R

d, diffusion Z : [0, T ] ×
Ω → R

d×m, and standard Brownian motion W : [0, T ] × Ω → R
m, and assume that

supt∈[0,T ] EP
[
‖Yt‖pRd + ‖Zt‖pRd×m

]
<∞. Then observe that for all N ∈ N, α ∈ (0,∞) it

holds that

N−1∑
k=0

∥∥X(k+1)T/N −XkT/N

∥∥α
Lp(P ;‖·‖

Rd
)
≤

N−1∑
k=0

[
|X|C1/2([0,T ],Lp(P ;‖·‖

Rd
))

√
T√
N

]α
= T

α/2 |X|αC1/2([0,T ],Lp(P ;‖·‖
Rd

))N
(1−α/2).

(3.155)

This proves that for all α ∈ (2,∞) it holds that

lim
N→∞

[
N−1∑
k=0

∥∥X(k+1)T/N −XkT/N

∥∥α
Lp(P ;‖·‖

Rd
)

]
= 0. (3.156)
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Remark 3.5.3. Let T ∈ (0,∞), p ∈ [2,∞), m ∈ N, let (Ω,F , P ) be a probability space,
and let W : [0, T ] × Ω → R

m be an m-dimensional standard Brownian motion. Then
observe that for all N ∈ N, α ∈ (0,∞) it holds that

N−1∑
k=0

∥∥W(k+1)T/N −WkT/N

∥∥α
Lp(P ;‖·‖

Rd
)

=

∣∣∣∣∣
√
T√
N

∣∣∣∣∣
α N−1∑
k=0

∥∥∥∥∥
√
N√
T

[
W(k+1)T/N −WkT/N

]∥∥∥∥∥
α

Lp(P ;‖·‖
Rd

)

= T
α/2N (1−α/2)

∥∥∥∥∥
√
N√
T
W T

N

∥∥∥∥∥
α

Lp(P ;‖·‖
Rd

)

= T
α/2N (1−α/2)

∥∥∥∥WT√
T

∥∥∥∥α
Lp(P ;‖·‖

Rd
)

= N (1−α/2) ‖WT‖αLp(P ;‖·‖
Rd

) .

(3.157)

This proves that for all α ∈ (0,∞) it holds that

lim
N→∞

[
N−1∑
k=0

∥∥W(k+1)T/N −WkT/N

∥∥α
Lp(P ;‖·‖

Rd
)

]
=


∞ : α < 2

‖WT‖αLp(P ;‖·‖
Rd

) : α = 2

0 : α > 2

. (3.158)

The stochastic version of the fundamental theorem of calculus and the chain rule is given
in the next result, Theorem 3.5.5. To formulate Theorem 3.5.5, the following notation
is used.

Definition 3.5.4 (Canonical basis). Let k ∈ N. Then we denote by e
(k)
1 , . . . , e

(k)
k ∈ Rk

the vectors given by

e
(k)
1 = (1, 0, . . . , 0), e

(k)
2 = (0, 1, 0, . . . , 0), . . . , e

(k)
k = (0, . . . , 0, 1) (3.159)

and we call {e(k)
1 , . . . , e

(k)
k } the canonical basis of the Rk.
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Theorem 3.5.5 (Itô’s formula – stochastic analogue of the fundamental theorem of
calculus and the chain rule). Let T ∈ (0,∞), t0 ∈ [0, T ], t ∈ [t0, T ], d,m, v ∈ N,
let O ⊆ Rd be an open set, let f ∈ C2(O,Rv), let (Ω,F , P, (Ft)t∈[0,T ]) be a stochas-
tic basis, let W = (W (1), . . . ,W (m)) : [0, T ] × Ω → R

m be an m-dimensional standard
(Ω,F , P, (Ft)t∈[0,T ])-Brownian motion, and let X : [0, T ] × Ω → O be an O-valued Itô
process on (Ω,F , P, (Ft)t∈[0,T ]) with drift Y = (Y (1), . . . , Y (d)) : [0, T ] × Ω → R

d, diffu-
sion Z = (Z(k,i))k∈{1,...,d},i∈{1,...,m} : [0, T ] × Ω → R

d×m, and standard Brownian motion
W : [0, T ]× Ω→ R

m. Then

(i) it holds P -a.s. that

f(Xt) = f(Xt0) +

ˆ t

t0

f ′(Xs)Ys ds+

ˆ t

t0

f ′(Xs)Zs dWs

+
1

2

m∑
i=1

ˆ t

t0

f ′′(Xs)
(
Zse

(m)
i , Zse

(m)
i

)
ds,

(Itô’s formula)

i.e.,

(ii) it holds P -a.s. that

f(Xt)

= f(Xt0) +

ˆ t

t0

[
d∑

k=1

(
∂
∂xk

f
)

(Xs) · Y (k)
s +

1

2

m∑
i=1

d∑
k,l=1

(
∂2

∂xk∂xl
f
)

(Xs) · Z(k,i)
s · Z(l,i)

s

]
ds

+
m∑
i=1

d∑
k=1

ˆ t

t0

(
∂
∂xk

f
)

(Xs) · Zk,i
s dW (i)

s ,

(3.160)

i.e.,

(iii) the stochastic process f(Xt), t ∈ [0, T ], is an R
v-valued Itô process on

(Ω,F , P, (Ft)t∈[0,T ]) with drift f ′(Xt)Yt + 1
2

∑m
i=1 f

′′(Xt)
(
Zte

(m)
i , Zte

(m)
i

)
, t ∈ [0, T ],

diffusion f ′(Xt)Zt, t ∈ [0, T ], and standard Brownian motion W .

Sketch of the proof of Theorem 3.5.5. We restrict ourself in this sketch of the proof of
Theorem 3.5.5 to the case where the derivatives of f : O → R

k are globally bounded and
globally Lipschitz continuous, where [t0, t] = [0, T ], and where supt∈[0,T ] EP

[
‖Yt‖4

Rd
+

‖Zt‖4
Rd×m

]
< ∞. The proof of Theorem 3.5.5 is based on discretisations of the time

interval [0, T ]. More precisely, let (tNk )k∈{0,1,...,N} ⊆ [0, T ] be real numbers with the
property that for all N ∈ N, k ∈ {0, 1, . . . , N} it holds that

tNk =
kT

N
. (3.161)
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Then observe that Taylor’s formula proves that for all N ∈ N it holds that

f(XT ) = f
(
XtNN

)
= f(X0) +

N−1∑
k=0

f
(
XtNk+1

)
− f

(
XtNk

)
= f(X0) +

N−1∑
k=0

f ′
(
XtNk

)(
XtNk+1

−XtNk

)
+

1

2

N−1∑
k=0

f ′′
(
XtNk

)(
XtNk+1

−XtNk
, XtNk+1

−XtNk

)
+

N−1∑
k=0

ˆ 1

0

[
f ′′
(
XtNk

+ r
(
XtNk+1

−XtNk

))
− f ′′

(
XtNk

)](
XtNk+1

−XtNk
, XtNk+1

−XtNk

)
(1− r) dr︸ ︷︷ ︸

→0 in probability as N→∞

.

(3.162)

Next observe that for all N ∈ N it holds P -a.s. that
N−1∑
k=0

f ′
(
XtNk

)(
XtNk+1

−XtNk

)
=

N−1∑
k=0

ˆ tNk+1

tNk

f ′
(
XtNk

)
Ys ds+

N−1∑
k=0

ˆ tNk+1

tNk

f ′
(
XtNk

)
Zs dWs

=

ˆ T

0

f ′
(
XbscT/N

)
Ys ds︸ ︷︷ ︸

→
´ T
0 f ′(Xs)Ys ds

in probability as N→∞

+

ˆ T

0

f ′
(
XbscT/N

)
Zs dWs︸ ︷︷ ︸

→
´ T
0 f ′(Xs)Zs dWs

in probability as N→∞

.

(3.163)

Furthermore, note that for all N ∈ N it holds P -a.s. that

N−1∑
k=0

f ′′
(
XtNk

)(
XtNk+1

−XtNk
, XtNk+1

−XtNk

)
=

N−1∑
k=0

f ′′
(
XtNk

)(ˆ tNk+1

tNk

Ys ds,

ˆ tNk+1

tNk

Ys ds

)
︸ ︷︷ ︸

→0 in probability as N→∞

+ 2
N−1∑
k=0

f ′′
(
XtNk

)(ˆ tNk+1

tNk

Ys ds,

ˆ tNk+1

tNk

Zs dWs

)
︸ ︷︷ ︸

→0 in probability as N→∞

+
N−1∑
k=0

f ′′
(
XtNk

)(ˆ tNk+1

tNk

Zs dWs,

ˆ tNk+1

tNk

Zs dWs

)
︸ ︷︷ ︸
→
∑m
i=1

´ T
0 f ′′(Xs)(Zse

(m)
i ,Zse

(m)
i ) ds in probability as N→∞

.

(3.164)

Combining (3.162)–(3.164) completes the proof of Theorem 3.5.5 in the case where the
above formulated additional assumptions are fulfilled.
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The function f ∈ C2(O,Rv) in Theorem 3.5.5 is often referred to as test function. Let
us illustrate the consequences of Theorem 3.5.5 by two examples.

Example 3.5.6 (Iterated stochastic integrals). Let T ∈ (0,∞), let (Ω,F , P, (Ft)t∈[0,T ])
be a stochastic basis, and let W : [0, T ] × Ω → R be a standard (Ω,F , P, (Ft)t∈[0,T ])-
Brownian motion. Then Itô’s formula applied to the function R 3 x 7→ x2 ∈ R proves
that for all t ∈ [0, T ] it holds P -a.s. that

(Wt)
2 = 2

ˆ t

0

Ws dWs + t. (3.165)

This shows, in particular, that for all t ∈ [0, T ] it holds P -a.s. thatˆ t

0

ˆ s

0

dWu dWs =

ˆ t

0

ˆ s

0

1 dWu dWs =
(Wt)

2 − t
2

. (3.166)

Example 3.5.7 (Geometric Brownian motion). Let T ∈ (0,∞), α, β, ξ ∈ R, let
(Ω,F , P, (Ft)t∈[0,T ]) be a stochastic basis, let W : [0, T ] × Ω → R is a standard
(Ω,F , P, (Ft)t∈[0,T ])-Brownian motion, and let X : [0, T ]× Ω→ R be the function which
satisfies for all t ∈ [0, T ] that

Xt = exp
((
α− β2

2

)
t+ β Wt

)
ξ. (3.167)

The process X is referred to as geometric Brownian motion; cf. Exercise 3.3.9, Exer-
cise 3.3.11, and Section 4.7.2. Itô’s formula applied to the test function R 3 x 7→ ex ·ξ ∈
R and the Itô process (α − β2

2
) t + β Wt, t ∈ [0, T ], proves that for all t ∈ [0, T ] it holds

P -a.s. that

Xt = exp
((
α− β2

2

)
t+ β Wt

)
ξ = ξ +

ˆ t

0

e((α−β
2/2)s+βWs) ξ

(
α− β2

2

)
ds

+

ˆ t

0

e((α−β
2/2)s+βWs) ξ β dWs +

1

2

ˆ t

0

e((α−β
2/2)s+βWs) ξ β2 ds

= ξ +

ˆ t

0

e((α−β
2/2)s+βWs) ξ α ds+

ˆ t

0

e((α−β
2/2)s+βWs) ξ β dWs.

(3.168)

Putting (3.167) into the integrands in (3.168) shows that for all t ∈ [0, T ] it holds P -a.s.
that

Xt = X0 +

ˆ t

0

αXs ds+

ˆ t

0

β Xs dWs. (3.169)

The process X is thus an Itô process with drift αX, diffusion βX, and standard Brownian
motion W (cf. Definition 4.2.1 below).

3.5.2 Itô’s formula for time-dependent test functions

In Theorem 3.5.5 Itô’s formula is presented for “test” functions f : O → R
v that are

twice continuously differentiable functions from O to Rv. Itô’s formula can be extended
so that it can be applied to test functions f : [t0, t] × O → R

v that depend on both
s ∈ [t0, t] and x ∈ O. This is the subject of the following corollary of Theorem 3.5.5.
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Corollary 3.5.8 (Itô’s formula for time-dependent test functions). Let T ∈ (0,∞),
t0 ∈ [0, T ), t ∈ (t0, T ] d,m, v ∈ N, let (Ω,F , P, (Ft)t∈[0,T ]) be a stochastic basis, let
W = (W (1), . . . ,W (m)) : [0, T ]× Ω→ R

m be a standard (Ft)t∈[0,T ]-Brownian motion, let
O ⊆ Rd be an open set, let

f : [t0, t]×O 3 (s, x) 7→ f(s, x) ∈ Rv (test function)

be a twice continuously differentiable function, and let X : [0, T ] × Ω → O be an Itô
process on (Ω,F , P, (Ft)t∈[0,T ]) with drift

Y = (Y (1), . . . , Y (d)) : [0, T ]× Ω→ R
d, (drift)

diffusion

Z = (Z(k,i))k∈{1,...,d},i∈{1,...,m} : [0, T ]× Ω→ R
d×m (diffusion)

and standard Brownian motion W = (W (1), . . . ,W (m)) : [0, T ]× Ω→ R
m. Then

(i) it holds P -a.s. that

f(t,Xt) = f(t0, Xt0)

+

ˆ t

t0

[(
∂
∂s
f
)
(s,Xs) +

(
∂
∂x
f
)
(s,Xs)Ys +

1

2

m∑
i=1

(
∂2

∂x2
f
)

(s,Xs)
(
Zse

(m)
i , Zse

(m)
i

)]
ds

+

ˆ t

t0

(
∂
∂x
f
)
(s,Xs)Zs dWs,

(Itô’s formula)

i.e.,

(ii) it holds P -a.s. that

f(t,Xt) = f(t0, Xt0) +

ˆ t

t0

[(
∂
∂s
f
)
(s,Xs) +

d∑
k=1

(
∂
∂xk

f
)

(s,Xs) · Y (k)
s

]
ds

+

ˆ t

t0

[
1

2

m∑
i=1

d∑
k,l=1

(
∂2

∂xk∂xl
f
)

(s,Xs) · Z(k,i)
s · Z(l,i)

s

]
ds

+
m∑
i=1

d∑
k=1

ˆ t

t0

(
∂
∂xk

f
)

(s,Xs) · Zk,i
s dW (i)

s .

(3.170)

Proof of Corollary 3.5.8. Throughout this proof let X̄ : [0, T ]×Ω→ R×O, Ȳ : [0, T ]×
Ω→ R

d+1, and Z̄ : [0, T ]× Ω→ R
(d+1)×m be (Ft)t∈[0,T ]-predictable stochastic processes

with the property that for all t ∈ [0, T ] it holds that

X̄t =

(
t
Xt

)
, Ȳt =

(
1
Yt

)
, and Z̄t =

(
0 0 . . . 0
Zt

)
∈ R(d+1)×m (3.171)
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and let f̄ : R×O → R
v be the twice continuously differentiable function which satisfies

for all (s, x) ∈ [t0, t]×O that

f̄(s, x) = f(s, x). (3.172)

Note that X̄ : [0, T ]×Ω→ R×O is an Itô process on (Ω,F , P, (Ft)t∈[0,T ]) with drift Ȳ ,
diffusion Z̄, and standard Brownian motion W . Theorem 3.5.5 then proves that it holds
P -a.s. that

f̄(X̄t) = f̄(X̄t0) +

ˆ t

t0

f̄ ′(X̄s) Ȳs ds+

ˆ t

t0

f̄ ′(X̄s) Z̄s dWs

+
1

2

ˆ t

t0

f̄ ′′(X̄s)
(
Z̄se

(m)
i , Z̄se

(m)
i

)
ds.

(3.173)

This completes the proof of Corollary 3.5.8.

3.6 Martingales

To introduce the notion of a martingale, we briefly recall the concept of conditional
expectations.

Definition 3.6.1 (Conditional expectation). Let d ∈ N, let (Ω,F , P ) be a probability
space, let G ⊆ F be a sigma-algebra on Ω, and let X ∈ L1(P ; ‖·‖

Rd
) be an F/B(Rd)-

measurable mapping. Then an G/B(Rd)-measurable mapping Y ∈ L1(P |G; ‖·‖Rd) is
called a conditional expectation of X given G if it holds for all A ∈ G that

EP
[
1AY

]
= EP

[
1AX

]
. (3.174)

Conditional expecations exist and are unique up to equivalence. This is subject of the
next theorem.

Theorem 3.6.2 (Conditional expectation). Let d ∈ N, let (Ω,F , P ) be a probability
space and let G ⊆ F be a sigma-algebra on Ω. Then there exists a unique mapping

EP
[
· |G
]
: L1(P ; ‖·‖

Rd
)→ L1(P |G; ‖·‖Rd) (3.175)

which fulfills for every X ∈ L1(P ; ‖·‖
Rd

) that EP
[
X|G

]
is a conditional expectation of X

given G. The function EP
[
· |G
]

is a linear mapping from L1(P ; ‖·‖
Rd

) to L1(P |G; ‖·‖Rd).

Theorem 3.6.2 is, e.g., proved as Theorem 8.2 in [Klenke(2008)]. We also refer Section 8
in [Klenke(2008)] for further properties of conditional expectations.

Work in progress. Copyright (C) with the authors.
Dissemination prohibited. December 15, 2018

157



Chapter 3. Stochastic processes and Itô stochastic calculus

Proposition 3.6.3 (Conditional expectation as best approximation). Let d ∈ N,
let (Ω,F , P ) be a probability space, let G ⊆ F be a sigma-algebra on Ω and let
X ∈ L2(P ; ‖·‖

Rd
). Then it holds for all Y ∈ L2(P |G; ‖·‖Rd) that

EP
[
‖X − Y ‖2

Rd

]
= EP

[∥∥X − EP [X|G]∥∥2

Rd

]
+ EP

[∥∥EP [X|G]− Y ∥∥2

Rd

]
(3.176)

and, in particular, it holds that

min
Y ∈L2(P |G ;‖·‖

Rd
)
‖X − Y ‖L2(P ;‖·‖

Rd
) =

∥∥X − EP [X|G]∥∥L2(P ;‖·‖
Rd

)
. (3.177)

Proof of Proposition 3.6.3. Note that for all Y ∈ L2(P |G; ‖·‖Rd) it holds that

EP
[
‖X − Y ‖2

Rd

]
= EP

[∥∥(X − EP [X|G])+
(
EP
[
X|G

]
− Y

)∥∥2

Rd

]
= EP

[∥∥X − EP [X|G]∥∥2

Rd
+ 2

〈
X − EP

[
X|G

]
,EP

[
X|G

]
− Y

〉
Rd

+
∥∥EP [X|G]− Y ∥∥2

Rd

]
= EP

[∥∥X − EP [X|G]∥∥2

Rd

]
+ EP

[∥∥EP [X|G]− Y ∥∥2

Rd

]
+ 2EP

[〈
X − EP

[
X|G

]
,EP

[
X|G

]
− Y

〉
Rd

]
.

(3.178)

Moreover, observe that the tower property of the conditional expectation proves that for
all Y ∈ L2(P |G; ‖·‖Rd) it holds that

EP
[〈
X − EP

[
X|G

]
,EP

[
X|G

]
− Y

〉
Rd

]
= EP

[
EP
[ 〈
X − EP

[
X|G

]
,EP

[
X|G

]
− Y

〉
Rd

∣∣∣G]]
= EP

[〈
EP
[
X − EP

[
X|G

]∣∣∣G],EP [X|G]− Y 〉
Rd

]
= EP

[ 〈
EP
[
X|G

]
− EP

[
X|G

]
,EP

[
X|G

]
− Y

〉
Rd

]
= 0.

(3.179)

Combining (3.178) and (3.179) completes the proof of Proposition 3.6.3.

In the case d = 1, Proposition 3.6.3 is, e.g., also proved as Corollary 8.16 in
[Klenke(2008)].

Definition 3.6.4 (Martingale). Let T ⊆ R be a set, let d ∈ N, let (Ω,F , P ) be a
probability space with a filtration (Ft)t∈T and let X : T× Ω→ R

d be an (Ft)t∈T-adapted
stochastic process with the property that for all t ∈ T it holds that Xt ∈ L1(P ; ‖·‖

Rd
).

Then X is called an (Ft)t∈T-martingale if

EP
[
Xt2 |Ft1

]
= Xt1 (3.180)

P -a.s. for all t1, t2 ∈ T with t1 ≤ t2.
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Proposition 3.6.5 (The stochastic integral process is a martingale). Let T ∈ (0,∞),
d,m ∈ N, let (Ω,F , P ) be a probability space with a normal filtration (Ft)t∈[0,T ],
let W : [0, T ] × Ω → R

m be a standard (Ft)t∈[0,T ]-Brownian motion and let X ∈
L2(PP,(Ft)t∈[0,T ]

; ‖·‖
Rd×m). Then the stochastic integral process (

´ t
0
Xs dWs)t∈[0,T ] is an

(Ft)t∈[0,T ]-martingale, i.e.,

EP
[ˆ t2

0

Xs dWs

∣∣∣∣Ft1] =

ˆ t1

0

Xs dWs (3.181)

P -a.s. for all t1, t2 ∈ [0, T ] with t1 ≤ t2.

Proof of Proposition 3.6.5. First, observe that

EP
[
Wt2

∣∣Ft1] = EP
[
Wt2 −Wt1

∣∣Ft1]+ EP
[
Wt1

∣∣Ft1] = EP
[
Wt2 −Wt1

∣∣Ft1]+Wt1

= EP [Wt2 −Wt1 ] +Wt1 = Wt1

(3.182)

P -a.s. for all t1, t2 ∈ [0, T ] with t1 ≤ t2. This proves that W is an (Ft)t∈[0,T ]-martingale.
Next observe that if X is (Ft)t∈[0,T ]-simple, then there exist n ∈ N, s1, . . . , sn with
s1 < · · · < sn and for every k ∈ {1, . . . , n − 1} an Fsk/B(Rd×m)-measurable mapping
Hk : Ω→ R

d×m such that

Xs =
n−1∑
k=1

Hk · 1(sk,sk+1](s) (3.183)

for all s ∈ [0, T ] and in that case, we obtain

ˆ t2

t1

Xs dWs =
∑

k∈{1,...,n−1},
t1<sk+1,
sk<t2

Hk

(
Wmin(sk+1,t2) −Wmax(sk,t1)

)
(3.184)

P -a.s. for all t1, t2 ∈ [0, T ] with t1 ≤ t2 and therefore

EP
[ˆ t2

t1

Xs dWs

∣∣∣Ft1] =
∑

k∈{1,...,n−1},
t1<sk+1,
sk<t2

EP
[
Hk

(
Wmin(sk+1,t2) −Wmax(sk,t1)

) ∣∣∣Ft1]

=
∑

k∈{1,...,n−1},
t1<sk+1,
sk<t2

EP
[
EP
[
Hk

(
Wmin(sk+1,t2) −Wmax(sk,t1)

) ∣∣∣Fmax(sk,t1)

] ∣∣∣Ft1]

=
∑

k∈{1,...,n−1},
t1<sk+1,
sk<t2

EP

Hk EP
[
Wmin(sk+1,t2) −Wmax(sk,t1)

∣∣∣Fmax(sk,t1)

]
︸ ︷︷ ︸

=0

∣∣∣Ft1
 = 0

(3.185)
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P -a.s. for all t1, t2 ∈ [0, T ] with t1 ≤ t2. Finally, if X(n) ∈ L2(PP,(Ft)t∈[0,T ]
; ‖·‖

Rd×m),

n ∈ N, are (Ft)t∈[0,T ]-simple with limn→∞
∥∥X −X(n)

∥∥
L2(PP,(Ft)t∈[0,T ]

;‖·‖
Rd×m )

= 0, then

EP
[ˆ t2

t1

Xs dWs

∣∣∣Ft1] = L1(P ; ‖·‖
Rd

) - lim
n→∞

EP
[ˆ t2

t1

X(n)
s dWs

∣∣∣Ft1]︸ ︷︷ ︸
=0

= 0 (3.186)

P -a.s. for all t1, t2 ∈ [0, T ] with t1 ≤ t2. Combining this with Proposition 3.4.11 com-
pletes the proof of Proposition 3.6.5.

Work in progress. Copyright (C) with the authors.
Dissemination prohibited. December 15, 2018

160



4 Stochastic differential equations
(SDEs)

In this chapter we specify what we mean by a stochastic differential equation (SDE for
short) and by a solution process of such an equation. The content of this chapter can,
e.g., be found in [Kloeden and Platen(1992)], [Øksendal(2003)], and [Kuo(2006)].

4.1 Setting

Throughout this chapter the following setting is frequently used. Let T ∈ (0,∞), d,m ∈
N, let (Ω,F , P, (Ft)t∈[0,T ]) be a stochastic basis, and let W = (W (1), . . . ,W (m)) : [0, T ]×
Ω→ R

m be an m-dimensional standard (Ω,F , P, (Ft)t∈[0,T ])-Brownian motion.

4.2 Solution processes of SDEs

The next definition describes what we mean by a solution process of a stochastic differ-
ential equation.
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Definition 4.2.1 (Solution processes of stochastic differential equations (SDEs)). Let
T ∈ (0,∞), d,m ∈ N, O ∈ B(Rd), µ ∈ M(B(O),B(Rd)), σ ∈ M(B(O),B(Rd×m)),
let (Ω,F , P, (Ft)t∈[0,T ]) be a stochastic basis, let ξ ∈ M(F0,B(O)), and let W =
(W (1), . . . ,W (m)) : [0, T ]× Ω → R

m be an m-dimensional standard (Ω,F , P, (Ft)t∈[0,T ])-
Brownian motion. Then we say that X is a solution process of the SDE

dXt = µ(Xt) dt+ σ(Xt) dWt, t ∈ [0, T ], X0 = ξ (4.1)

on (Ω,F , P, (Ft)t∈[0,T ]) (we say that X is a solution process of the SDE

dXt = µ(Xt) dt+ σ(Xt) dWt, t ∈ [0, T ], X0 = ξ) (4.2)

if and only if it holds

(i) that X : [0, T ]×Ω→ O is an (Ft)t∈[0,T ]/B(O)-adapted stochastic process with con-
tinuous sample paths,

(ii) that

P

(ˆ T

0

‖µ(Xs)‖Rd + ‖σ(Xs)‖2
Rd×m ds <∞

)
= 1, (4.3)

and

(iii) that for all t ∈ [0, T ] it holds P -a.s. that

Xt = ξ +

ˆ t

0

µ(Xs) ds+

ˆ t

0

σ(Xs) dWs. (4.4)

Equation (4.1) is referred to as stochastic differential equation (SDE), the function µ is
called drift coefficient (function) of the SDE (4.1), and the function σ is called diffusion
coefficient (function) of the SDE (4.1). Note in the setting of Definition 4.2.1 that
X : [0, T ] × Ω → O is an O-valued Itô process on (Ω,F , P, (Ft)t∈[0,T ]) with drift µ(Xt),
t ∈ [0, T ], diffusion σ(Xt), t ∈ [0, T ], and standard Brownian motion W .

4.3 Gronwall inequalities

4.3.1 Time continuous Gronwall inequality

The following elementary lemma is crucial to investigate properties of SDEs.

Work in progress. Copyright (C) with the authors.
Dissemination prohibited. December 15, 2018

162



Chapter 4. Stochastic differential equations (SDEs)

Lemma 4.3.1 (Gronwall lemma). Let T, β ∈ [0,∞), α ∈ R, f ∈ L1(B[0,T ]; |·|R) satisfy
for all t ∈ [0, T ] that

f(t) ≤ α + β

ˆ t

0

f(s) ds. (4.5)

Then it holds for all t ∈ [0, T ] that

f(t) ≤ α · eβt. (4.6)

Proof of Lemma 4.3.1. W.l.o.g. let T > 0. Next let u : [0, T ]→ R be the function which
satisfies for all t ∈ [0, T ] that

u(t) = α + β

ˆ t

0

f(s) ds. (4.7)

Then note that u is absolutely continuous and observe that inequality (4.5) implies that
for B[0,T ]-almost all t ∈ [0, T ] it holds that

u′(t) = β · f(t) ≤ β · u(t). (4.8)

This shows that for B[0,T ]-almost all t ∈ [0, T ] it holds that

0 ≥ e−βt (u′(t)− β · u(t)) =
d

dt

[
u(t) · e−βt

]
. (4.9)

The fundamental theorem of calculus hence gives that for all t ∈ [0, T ] it holds that

u(t)︸︷︷︸
≥f(t)

· e−βt − u(0)︸︷︷︸
=α

≤ 0. (4.10)

Rearranging (4.10) results in (4.6). This completes the proof of Lemma 4.3.1.

4.3.2 Time discrete Gronwall inequality

In the numerical analysis of SDEs, we also need the discrete counterpart of Lemma 4.3.1.

Lemma 4.3.2. Let N ∈ N, β ∈ [0,∞), α ∈ R, f0, f1, . . . , fN ∈ R ∪ {∞} satisfy for all
n ∈ {0, 1, . . . , N} that

fn ≤ α + β

(
n−1∑
k=0

fk

)
. (4.11)

Then it holds for all n ∈ {0, 1, . . . , N} that

fn ≤ α · (1 + β)n ≤ |α| · eβn <∞. (4.12)
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Proof of Lemma 4.3.2. First of all, we observe that induction and (4.11) prove that for
all n ∈ {0, 1, 2, . . . , N} it holds that fn ∈ R. Next let u0, u1, . . . , uN ∈ R be the real
numbers which satisfy for all n ∈ {0, 1, 2, . . . , N} that

un = α + β

(
n−1∑
k=0

uk

)
. (4.13)

Equation (4.13) ensures that for all n ∈ {0, 1, . . . , N − 1} it holds that

un+1 = α + β

(
n∑
k=0

uk

)
= α + β

(
n−1∑
k=0

uk

)
︸ ︷︷ ︸

=un

+βun = (1 + β)un. (4.14)

This implies that for all n ∈ {0, 1, . . . , N} it holds that

un = α · (1 + β)n . (4.15)

Moreover, observe that induction shows that for all n ∈ {0, 1, . . . , N} it holds that

fn ≤ un. (4.16)

Combining this with (4.15) completes the proof of Lemma 4.3.2.

4.4 Uniqueness of solution processes of SDEs

Theorem 4.4.2 below shows that solution processes of SDEs are unique up to indistin-
guishability if both the drift coefficient function and the diffusion coefficient function of
the considered SDE are locally Lipschitz continuous.
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Remark 4.4.1. Assume the setting in Section 4.1, let O ∈ B(Rd), ξ ∈ M(F0,B(O)),
µ ∈M

(
B(O),B(Rd)

)
, σ ∈M

(
B(O),B(Rd×m)

)
, and let X : [0, T ]×Ω→ O be a solution

process of the SDE

dXt = µ(Xt) dt+ σ(Xt) dWt, t ∈ [0, T ], X0 = ξ (4.17)

on (Ω,F , P, (Ft)t∈[0,T ]). Then observe that the fact that

∪y∈Rm (WT )−1({y}) = (WT )−1(∪y∈Rm{y}) = (WT )−1(Rm) = Ω 6= ∅ (4.18)

proves that there exists a real number y ∈ Rm such that (WT )−1({y}) 6= ∅. This implies
that there exists an A ∈ F\{∅} which satisfies

P (A) = 0. (4.19)

In the next step let Xv : [0, T ] × Ω → O, v ∈ O, be the functions which satisfy for all
v ∈ O, t ∈ [0, T ], ω ∈ Ω that

Xv
t (ω) = 1Ω\A(ω)Xt(ω) + 1A(ω) v. (4.20)

Then

(i) it holds for all v ∈ O that Xv is a solution process of the SDE (4.17) and

(ii) it holds for all v, w ∈ O with v 6= w that Xv 6= Xw.

Solution processes of the SDE (4.17) are thus typically not unique. However, under suit-
able additional assumptions (cf., e.g., (4.21) below), solution processes of the SDE (4.17)
are unique up to indistinguishability. This is the subject of the next result, Theorem 4.4.2
below.

Theorem 4.4.2. Assume the setting Section 4.1, let O ⊆ R
d be an open set, let

ξ ∈ M(F0,B(O)), let µ : O → R
d and σ : O → R

d×m be locally Lipschitz continuous
functions, i.e., assume for all compact subsets K ⊆ O of O that

sup

({
‖µ(x)− µ(y)‖

Rd
+ ‖σ(x)− σ(y)‖

Rd×m

‖x− y‖
Rd

: x, y ∈ K, x 6= y

}
∪ {0}

)
<∞, (4.21)

and let X, Y : [0, T ]× Ω→ O be solution processes of the SDE

dXt = µ(Xt) dt+ σ(Xt) dWt, t ∈ [0, T ], X0 = ξ (4.22)

on (Ω,F , P, (Ft)t∈[0,T ]). Then X and Y are indistinguishable from each other, i.e.,

P
(
∀ t ∈ [0, T ] : Xt = Yt

)
= 1. (4.23)

The proof of Theorem 4.4.2 uses Gronwall’s lemma (see Lemma 4.3.1) and is omitted.
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Remark 4.4.3. Local Lipschitz continuity of both the drift and the diffusion coefficient
function (see inequality (4.21)) is a sufficient (see Theorem 4.4.2) but not a necessary
condition to ensure that the solution processes of an SDE are unique up to indistin-
guishability.

Lemma 4.4.4 (Lebesgue’s number lemma). Let d ∈ N, let K ⊆ Rd be a compact (closed
and bounded) set, let I be a set, and let Ui ⊆ Rd, i ∈ I, be a family of open sets with

K ⊆ ∪i∈IUi. (4.24)

Then there exists a positive real number δ ∈ (0,∞) such that for every x ∈ K it holds
that there exists an i ∈ I such that

{y ∈ K : ‖x− y‖
Rd
≤ δ} ⊆ Ui. (4.25)

Proof of Lemma 4.4.4. We prove Lemma 4.4.4 by a contradiction. We thus assume that
there exists a family (xδ)δ∈(0,∞) ⊆ K with the property that for every δ ∈ (0,∞) and
every i ∈ I it does not hold that

{y ∈ K : ‖xδ − y‖Rd ≤ δ} ⊆ Ui. (4.26)

Since K ⊆ Rd is a compact set, there exists a sequence (δn)n∈N ⊆ (0,∞) of positive
real numbers with the property that for all n ∈ N it holds that δn ≤ 1

n
and with the

property that (xδn)n∈N ⊆ K is convergent to a vector x∗ ∈ Rd. Combining (4.24) and
the fact that x∗ ∈ K shows that there exists an i ∈ I such that x∗ ∈ Ui. This implies
that there exists a real number ε ∈ (0,∞) such that{

y ∈ Rd : ‖x∗ − y‖
Rd
≤ ε
}
⊆ Ui. (4.27)

Hence, we obtain that for all n ∈ N with 1
n
< ε

2
and ‖x∗ − xδn‖Rd ≤

ε
2

it holds that{
y ∈ Rd : ‖xδn − y‖Rd ≤ δn

}
⊆
{
y ∈ Rd : ‖x∗ − y‖

Rd
≤ δn + ‖x∗ − xδn‖Rd

}
⊆
{
y ∈ Rd : ‖x∗ − y‖

Rd
≤ 1

n
+ ε

2

}
⊆
{
y ∈ Rd : ‖x∗ − y‖

Rd
≤ ε
}
⊆ Ui.

(4.28)

This contradicts to (4.26). The proof of Lemma 4.4.4 is thus completed.

4.5 Existence and uniqueness of solution processes of
SDEs

The next theorem shows that if both the drift coefficient function and the diffusion
coefficient function of an SDE are globally Lipschitz continuous, then there exists an up
to indistinguishability unique solution process of the SDE.
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Theorem 4.5.1 (Existence and uniqueness of solution processes of SDEs with globally
Lipschitz continuous coefficients). Assume the setting in Section 4.1, let p ∈ [2,∞),
ξ ∈ Lp(P |F0 ; ‖·‖Rd), and let µ : Rd → R

d and σ : Rd → R
d×m be globally Lipschitz

continuous functions, i.e., assume that there exist a real number C ∈ [0,∞) such that
for all x, y ∈ Rd it holds that

‖µ(x)− µ(y)‖
Rd

+ ‖σ(x)− σ(y)‖
Rd×m ≤ C ‖x− y‖

Rd
. (4.29)

Then

(i) there exists an up to indistinguishability unique solution process X : [0, T ]×Ω→ R
d

of the SDE

dXt = µ(Xt) dt+ σ(Xt) dWt, t ∈ [0, T ], X0 = ξ (4.30)

on (Ω,F , P, (Ft)t∈[0,T ]),

(ii) it holds that supt∈[0,T ] ‖Xt‖Lp(P ;‖·‖
Rd

) <∞, and

(iii) it holds for all α ∈ (0, 1/2] that X ∈ Cα([0, T ], Lp(P ; ‖·‖
Rd

)).

Proof of Theorem 4.5.1. Throughout this proof we use the R-vector space V given by

V =




Y : [0, T ]× Ω→ R
d :

Y is (Ft)t∈[0,T ]-predictable
and a modification of X

 :

 X : [0, T ]× Ω→ R
d is

(Ft)t∈[0,T ]-predictable and
supt∈[0,T ] EP

[
‖Xt‖pRd

]
<∞

 . (4.31)

As usual, we do in the following not distinguish between an (Ft)t∈[0,T ]-predictable stochas-
tic process X : [0, T ]× Ω→ R

d with supt∈[0,T ] EP
[
‖Xt‖p

]
<∞ and its equivalence class

in V . In the next step let ‖·‖V,λ : V → [0,∞), λ ∈ R, be the functions with the property
that for all X ∈ V , λ ∈ R it holds that

‖X‖V,λ = sup
t∈[0,T ]

(
eλt ‖Xt‖Lp(P ;‖·‖

Rd
)

)
= sup

t∈[0,T ]

(
eλt
(
EP
[
‖Xt‖pRd

])1
p

)
. (4.32)

It can be shown that for every λ ∈ R it holds that
(
V , ‖·‖V,λ

)
is a complete normed

R-vector spaces (i.e., an R-Banach spaces). Next let Φ: V → V be the mapping with
the property that for all X ∈ V , t ∈ [0, T ] it holds P -a.s. that

(
Φ(X)

)
t

= ξ +

ˆ t

0

µ(Xs) ds+

ˆ t

0

σ(Xs) dWs. (4.33)

It follows from the linear growth estimates

‖µ(x)‖
Rd
≤ (C + ‖µ(0)‖

Rd
) (1 + ‖x‖

Rd
) ,

‖σ(x)‖HS(Rm,Rd) ≤
(
C + ‖σ(0)‖HS(Rm,Rd)

)
(1 + ‖x‖

Rd
)

(4.34)
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for all x ∈ Rd and from inequality (Burkholder-Davis-Gundy inequality I) in Theo-
rem 3.4.21 that Φ is indeed well-defined. In the next step we note that again in-
equality (Burkholder-Davis-Gundy inequality I) in Theorem 3.4.21 proves that for all
t ∈ [0, T ] and all X, Y ∈ V it holds that∥∥(Φ(X)

)
t
−
(
Φ(Y )

)
t

∥∥
Lp(P ;‖·‖

Rd
)

≤
∥∥∥∥ˆ t

0

(µ(Xs)− µ(Ys)) ds

∥∥∥∥
Lp(P ;‖·‖

Rd
)

+

∥∥∥∥ˆ t

0

(σ(Xs)− σ(Ys)) dWs

∥∥∥∥
Lp(P ;‖·‖

Rd
)

≤
ˆ t

0

‖µ(Xs)− µ(Ys)‖Lp(P ;‖·‖
Rd

) ds+ p

[ˆ t

0

‖σ(Xs)− σ(Ys)‖2
Lp(P ;‖·‖

HS(Rm,Rd)
) ds

] 1
2

≤ C

ˆ t

0

‖Xs − Ys‖Lp(P ;‖·‖
Rd

) ds+ pC

[ˆ t

0

‖Xs − Ys‖2
Lp(P ;‖·‖

Rd
) ds

] 1
2

≤ C
√
T

[ˆ t

0

‖Xs − Ys‖2
Lp(P ;‖·‖

Rd
) ds

] 1
2

+ pC

[ˆ t

0

‖Xs − Ys‖2
Lp(P ;‖·‖

Rd
) ds

] 1
2

≤ C
(√

T + p
)[ˆ t

0

‖Xs − Ys‖2
Lp(P ;‖·‖

Rd
) ds

] 1
2

.

(4.35)

Therefore, we obtain that for all λ ∈ (−∞, 0), t ∈ [0, T ] and all X, Y ∈ V it holds that

eλt
∥∥(Φ(X)

)
t
−
(
Φ(Y )

)
t

∥∥
Lp(P ;‖·‖

Rd
)

≤ C
(√

T + p
)[ˆ t

0

e2λ(t−s)
[
eλs ‖Xs − Ys‖Lp(P ;‖·‖

Rd
)

]2

ds

] 1
2

≤ C
(√

T + p
)[ˆ t

0

e2λ(t−s) ds

] 1
2

‖X − Y ‖V,λ

≤ C
(√

T + p
)[ˆ T

0

e2λs ds

] 1
2

︸ ︷︷ ︸
=

√
1−e2λT√

2|λ|
≤ 1√

|λ|

‖X − Y ‖V,λ .

(4.36)

This proves that for all λ ∈ (−∞, 0) and all X, Y ∈ V it holds that

‖Φ(X)− Φ(Y )‖V,λ ≤
C
(√

T + p
)

√
|λ|

‖X − Y ‖V,λ . (4.37)

Hence, we obtain that for all X, Y ∈ V it holds that

‖Φ(X)− Φ(Y )‖V,4C2[
√
T+p]

2 ≤ 1

2
‖X − Y ‖V,4C2[

√
T+p]

2 . (4.38)
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The mapping Φ is thus a contraction from
(
V , ‖·‖V,4C2[

√
T+p]

2

)
to
(
V , ‖·‖V,4C2[

√
T+p]

2

)
.

The Banach fixed point theorem hence proves that there exists a unique Y ∈ V with

Φ(Y ) = Y, (4.39)

i.e., that

Yt = ξ +

ˆ t

0

µ(Ys) ds+

ˆ t

0

σ(Ys) dWs (4.40)

P -a.s. for all t ∈ [0, T ]. Item (vi) in Theorem 3.4.21 then implies that there an (Ft)t∈[0,T ]-
adapted stochastic process X : [0, T ] × Ω → R

d with continuous sample paths which is
a modification of Y , i.e, which fulfills that for all t ∈ [0, T ] it holds that

P (Xt = Yt) = 1. (4.41)

Combining this with (4.40) proves that the stochastic process X is a solution process of
the SDE (4.30). It thus remains to prove that for all α ∈ (0, 1

2
] it holds that

X ∈ Cα([0, T ], Lp(P ; ‖·‖
Rd

)). (4.42)

This, in turn, follows immediately from (Temporal regularity for Itô processes). The
proof of Theorem 4.5.1 is thus completed.

4.6 Autonomization of SDEs with time-dependent
coefficient functions

Assume the setting in Section 4.1, let p ∈ [2,∞), ξ ∈ Lp(P |F0 ; ‖·‖Rd), and let µ : [0, T ]×
R
d → R

d and σ : [0, T ] × Rd → R
d×m be globally Lipschitz continuous functions, i.e.,

assume that

sup
x,y∈Rd
x 6=y

(
‖µ(t1, x1)− µ(t2, x2)‖

Rd
+ ‖σ(t1, x1)− σ(t2, x2)‖

Rd×m

|t1 − t2|+ ‖x1 − x2‖Rd

)
<∞. (4.43)

Theorem 4.5.1 then shows that there exists an up to indistinguishability unique
(Ft)t∈[0,T ]-adapted stochastic process X : [0, T ]×Ω→ R

d with continuous sample paths
such that for all t ∈ [0, T ] it holds P -a.s. that

Xt = ξ +

ˆ t

0

µ(s,Xs) ds+

ˆ t

0

σ(s,Xs) dWs (4.44)

and such that for all α ∈ (0, 1
2
] it holds that

X ∈ Cα([0, T ], Lp(P ; ‖·‖
Rd

)). (4.45)
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Indeed, define ξ̃ : Ω→ R
d+1 through

ξ̃(ω) := (0, ξ(ω)) (4.46)

for all ω ∈ Ω, define pT : R→ [0, T ] through

pT (t) := max
{

min{t, T}, 0
}

(4.47)

for all t ∈ R and define µ̃ : Rd+1 → R
d+1 and σ̃ : Rd+1 → R

(d+1)×m through

µ̃(t, x) :=
(
1, µ
(
pT (t), x

))
and σ̃(t, x) :=

(
0, σ
(
pT (t), x

))
(4.48)

for all t ∈ R and all x ∈ Rd. Then observe that assumption (4.43) ensures that µ̃ and
σ̃ are globally Lipschitz continuous, i.e., that

sup
x,y∈Rd+1

x 6=y

(
‖µ̃(x)− µ̃(y)‖

Rd+1 + ‖σ̃(x)− σ̃(y)‖
R(d+1)×m

‖x− y‖
Rd+1

)
<∞ (4.49)

and Theorem 4.5.1 hence proves the existence of an up to indistinguishability unique
(Ft)t∈[0,T ]-adapted stochastic process X̃ = (X̃(1), . . . , X̃(d+1)) : [0, T ] × Ω → R

d+1 with
continuous sample paths which fulfills

X̃t = ξ̃ +

ˆ t

0

µ̃(X̃s) ds+

ˆ t

0

σ̃(X̃s) dWs (4.50)

P -a.s. for all t ∈ [0, T ]. The process X : [0, T ]× Ω→ R
d defined through

Xt :=
(
X̃

(2)
t , . . . , X̃

(d+1)
t

)
(4.51)

for all t ∈ [0, T ] is then an (Ft)t∈[0,T ]-adapted stochastic process with continuous sample
paths which fulfills (4.44).

4.7 Examples of SDEs

In this section several examples of SDEs from the literature are presented. Most of this
section comes from [Hutzenthaler and Jentzen(2012)].

4.7.1 Setting

The following setting is used to formulate the examples. Assume the setting in Sec-
tion 4.1, let O ⊆ R

d be an open set, let ξ = (ξ(1), . . . , ξ(d)) ∈ O, let µ : O →
R
d and σ : O → R

d×m be locally Lipschitz continuous functions, and let X =
(X(1), . . . , X(d)) : [0, T ]× Ω→ O be a solution process of the SDE

dXt = µ(Xt) dt+ σ(Xt) dWt, t ∈ [0, T ], X0 = ξ (4.52)
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on (Ω,F , P, (Ft)t∈[0,T ]). In particular, we assume that for all t ∈ [0, T ] it holds P -a.s.
that

Xt = ξ +

ˆ t

0

µ(Xs) ds+

ˆ t

0

σ(Xs) dWs. (4.53)

Theorem 4.4.2 shows that the stochastic process X is unique up to indistinguishability.

4.7.2 Geometric Brownian motion

In addition to the assumptions in Subsection 4.7.1, let α, β ∈ R be real numbers, assume
that d = m = 1, O = R, and assume for all x ∈ R that

µ(x) = αx and σ(x) = βx. (4.54)

The SDE (4.52) reads as

dXt = αXt dt+ βXt dWt, t ∈ [0, T ], X0 = ξ. (4.55)

Observe that µ and σ are globally Lipschitz continuous. Theorem 4.5.1 hence proves
that an up to indistinguishability unique solution process X : [0, T ] × Ω → R of (4.55)
does indeed exist. Moreover, observe that Theorem 4.5.1 shows that for all p ∈ [0,∞)
it holds that

sup
t∈[0,T ]

EP
[
|Xt|pR

]
<∞. (4.56)

The solution process X : [0, T ] × Ω → R of (4.55) can be calculated explicitly. More
precisely, combining Example 3.5.7 and Theorem 4.5.1 proves that for all t ∈ [0, T ] it
holds P -a.s. that

Xt = exp
((
α− β2

2

)
t+ β Wt

)
ξ. (4.57)

The solution processes X of (4.55) is also referred to as geometric Brownian motion.
Taking expectations on both sides of (4.55) shows that the deterministic expectation
process EP

[
Xt

]
, t ∈ [0, T ], satisfies the ordinary differential equation

d
dt
EP
[
Xt

]
= α · EP

[
Xt

]
, EP

[
X0

]
= ξ. (4.58)

Hence, we obtain that for all t ∈ [0, T ] it holds that

EP
[
Xt

]
= eαt ξ. (4.59)

4.7.3 Black-Scholes model

In addition to the assumptions in Subsection 4.7.1, let r, α ∈ R, β ∈ (0,∞) be real
numbers, assume that d = 2, m = 1, O = (0,∞)2, and assume for all x = (x1, x2) ∈
(0,∞)2 that

µ(x) =

(
rx1

αx2

)
and σ(x) =

(
0
βx2

)
. (4.60)
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The SDE (4.52) then reads as(
dX

(1)
t = rX

(1)
t dt

dX
(2)
t = αX

(2)
t dt+ βX

(2)
t dWt

)
, t ∈ [0, T ], X0 = ξ. (4.61)

Observe that µ and σ are globally Lipschitz continuous. Theorem 4.5.1 hence proves
that an up to indistinguishability unique solution process X : [0, T ] × Ω → R of (4.61)
does indeed exist. Moreover, note that Theorem 4.5.1 shows that for all p ∈ [0,∞) it
holds that

sup
t∈[0,T ]

EP
[
‖Xt‖pR2

]
<∞. (4.62)

In the next step we observe that Subsection 4.7.2 shows that for all t ∈ [0, T ] it holds
P -a.s. that

X
(1)
t = ertξ(1) and X

(2)
t = exp

(
(α− β2

2
) t+ βWt

)
ξ(2). (4.63)

In the remainder of Subsection 4.7.3 we roughly illustrate a few basic ideas from the
theory of option pricing from mathematical finance and its applications in the financial
engineering industry. The remainder of Subsection 4.7.3 just intends to roughly illustrate
a few basic ideas and contains a number of improper and inaccurate descriptions of the
material. For a more proper and accurate presentation of this material the reader is
referred to the economics and mathematical finance literature including the references
mentioned below.

In the Black-Scholes model (see [Black and Scholes(1973), Merton(1973)]) the stochastic

process (X
(1)
t )t∈[0,T ] in (4.61) represents the price process of a ”risk-free” bank account

with

• the fixed interest rate r ∈ R and

• the initial price ξ(1) > 0

and the stochastic process (X
(2)
t )t∈[0,T ] in (4.61) models the price process of an underlying,

e.g., a stock, a commodity, a currency, or an index (e.g., the Standard & Poor’s 500 [S
& P 500], the Swiss Market Index [SMI]), with

• the expected interest rate α ∈ R (see (4.58) above and Lemma 4.7.1 below),

• the volatility β > 0, and

• the initial price ξ(2) > 0.

The Black-Scholes model is a popular model for estimating prices of certain financial
derivatives. A financial derivative is a suitable financial product that is in a certain way
derived from an (or some) underlying(s). Simple examples of financial derivatives are
European call options and European put options.
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4.7.3.1 Simple examples of financial derivatives: European put and call options

A European put option is a contract between two parties, the writer of the option and the
holder of the option, that gives the holder of the option the right but not the obligation
to sell a stipulated underlying (e.g., a stock or a currency) at the stipulated time T > 0
for the stipulated price K ∈ (0,∞) (strike price) to the writer of the option (cf., e.g.,
[Higham(2004)]). The holder of the European put option thus has the option to sell
(put) the underlying in the sense above. This explains the words “put” and “option” in
the label “European put option”. The word “European” refers to the in the European
put option contract in advance fixed stipulated time T > 0 in contrast to American put
options which can be exercised at any time until T > 0 (United States of America, “the
land of opportunity”/“the country of boundless possibilities”).

(i) If xT ∈ [0,∞) is the price of the underlying at time T and if the xT < K, then
the holder of the European put option would probably make use of his right and
exercise the European put option, that is, the holder would sell the underlying for
the price K. At the same time the holder of the European put option could (try
to) buy the underlying at a market (e.g., at a stock market if the underlying is a
stock) for the price xT and, as xT < K, this would result in a profit of

K − xT (4.64)

for the holder of the European put option.

(ii) If xT ∈ [0,∞) is the price of the underlying at time T and if the xT ≥ K, then
the holder of the European put option would probably do nothing and let his right
elapse.

Typically the concrete selling of the underlying at time T is replaced by a cash settlement
which is stipulated in the European put option contract. In particular, if xT ∈ [0,∞) is
the price of the underlying at time T > 0 and if a cash settlement is stipulated in the
European put option contract, then, in view of (i) and (ii), the holder of the option has
at time T the claim

max{K − xT , 0} (4.65)

to the writer of the European put option. Analogously, a European call option is a
contract between two parties, the writer of the option and the holder of the option, that
gives the holder the right but not the obligation to buy a stipulated underlying (e.g., a
stock or a currency) at the stipulated time T > 0 for the stipulated price K ∈ (0,∞)
(strike price) from the writer of the option (cf., e.g., [Higham(2004)]). The holder of
the European call option thus has the option to buy (call) the underlying in the sense
above.

(i) If xT ∈ [0,∞) is the price of the underlying at time T and if the xT > K, then
the holder of the European call option would probably make use of its right and
exercise the European call option, that is, the holder would buy the underlying for
the price K. At the same time the holder of the European call option could (try
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to) sell the underlying at a market (e.g., at a stock market if the underlying is a
stock) for the price xT and, as xT > K, this would result in a profit of

xT −K (4.66)

for the holder of the European call option.

(ii) If xT ∈ [0,∞) is the price of the underlying at time T and if the xT ≤ K, then
the holder of the European call option would probably do nothing and let his right
elapse.

If xT ∈ [0,∞) is the price of the underlying at time T > 0 and if a cash settlement is
stipulated in the European call option contract, then, in view of (i) and (ii), the holder
of the option has at time T the claim

max{xT −K, 0} (4.67)

to the writer of the European call option.

4.7.3.2 Trading of financial derivatives

Financial derivatives (such as European put options) can/are – depending on the specific
form of the financial derivative – purchased/concluded

• through an exchange including

– usual stock exchanges (e.g., the Frankfurt Stock Exchange) for warrants (op-
tions formulated as security papers)

– special exchanges for financial derivatives (often called as futures exchanges)
such as, for example,

∗ the Chicago Mercantile Exchange (CME ) (Chicago, USA, http://www.
cmegroup.com, approximatively 9 · 106 contracts per trading day (see
[FrankfurterAllgemeineZeitung(2006)]), October 17th, 2006),

∗ the European Exchange (Eurex ) (Eschborn, Germany, http://www.

eurexchange.com, approximatively 6 · 106 contracts per trading day (see
[FrankfurterAllgemeineZeitung(2006)]), October 17th, 2006)

∗ . . .

or

• over-the-counter (OTC ) (off-exchange trading) through contracts between two
parties with no supervision of an exchange.
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4.7.3.3 Purposes of financial derivatives

Central reasons why investors are interested in buying/concluding a financial derivative
include hedging and speculation. For example, a possibility to hedge against the risk
of falling stock prices, falling foreign exchange rates, and/or falling interest rates is to
hold/buy suitable put options.

For instance, in 2007 the pension fund of the Radobank (a multinational bank for
clients from the food and agribusiness with the head office in Utrecht (the Netherlands)
with approximatively 59000 employees; see http://en.wikipedia.org/wiki/Rabobank
and http://www.rabobank.de/) started to implement a hedging stragey consisting of
suitable financial derivatives which, in particular, intends to hedge the risk of both
“significant decreased” stock prices as well as “dramatically reduced interest rates”
(see http://www.cardano.com/risk_management_client_case.html?id=9 for further
details). At http://www.tagesschau.de/wirtschaft/banken-strafzahlungen100.

html (November 11th, 2013) it is reported that the Radobank payed approximatively
109 US Dollar to prevent further investigations regarding the Libor (London Interbank
Offered Rate) scandal.

4.7.3.4 Estimation of prices of financial derivatives

There are much more complex financial derivatives than European put options and
such financial derivatives result in much more complicated claims. For example, let
f : C([0, T ],R)→ [0,∞) be an at most polynomially growing Borel measurable function.
Then we consider in the following a financial derivative that results at time T in the
claim

f(x) (4.68)

of the holder of the financial derivative to the writer of the financial derivative where we
think of x = (xt)t∈[0,T ] as the price process of the underlying which is assumed to be a
continuous function on [0, T ]. In the special case of an European call option with cash
settlement, f : C([0, T ],R)→ [0,∞) satisfies that there exists a real number K ∈ [0,∞)
such that for all x = (xt)t∈[0,T ] ∈ C([0, T ],R) it holds that

f(x) = max
{
xT −K, 0

}
. (4.69)

The contract between the writer and the holder of the financial derivative is concluded
at time t = 0. At time T the holder of the financial derivative has the claim (4.68)
to the writer of the option. The holder of the financial derivative has to compensate
the writer for this claim when the contract is concluded, that is, at time t = 0. This
compensation is the price of the financial derivative at time t = 0. The topic of option
pricing or, more generally, derivative pricing, is to investigate what could in a certain
way be a ”fair” price for the financial derivative “today”, that is, at time t = 0.
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4.7.3.5 Derivative pricing in the Black-Scholes model

Under suitable simplifications and assumptions (which are not met in the “real life”
trading of financial derivatives), the Black-Scholes model provides an attempt to an
answer to this question. This is what we illustrate in the following. For this assume
the setting in the beginning of Subsection 4.7.3 and let f : C([0, T ],R) → [0,∞) be an
at most polynomially growing Borel measurable function. Then there exist an up to
indistinguishability unique (Ft)t∈[0,T ]-adapted stochastic process D : [0, T ]×Ω→ R with
continuous sample paths such that

DT = f(X(2)) (4.70)

and such that the financial market model (X(1), X(2), D) is in a certain sense arbitrage
free (see, e.g., [Kühn(2004)]). The process Dt, t ∈ [0, T ], represents in the Black-Scholes
model the price process of the financial derivative with the pay-off f(X(2)) at time T .
The random variable D0 can be represented explicitly as the expectation of a suitable
random variable. More precisely, if X̃ : [0, T ]× Ω→ R is a solution process of the SDE

dX̃t = rX̃t dt+ βX̃t dWt, t ∈ [0, T ], X̃0 = X
(2)
0 , (4.71)

then it holds P -a.s. that

D0 =
EP
[
f(X̃)

]
X

(1)
T

= e−rT EP
[
f(X̃)

]
(4.72)

(see, e.g., Subsection 4.1.2 in [Kühn(2004)]). The assertions (4.70) and (4.72) above
are a consequence of a powerful result that is known as fundamental theorem of asset
pricing in the mathematical finance literature (see, e.g., [Kallsen(2009)]). It is inter-
esting to observe that the right hand side of (4.72) is completely independent of the
expected interest rate α of the underlying in the Black-Scholes model. Let us illustrate
equation (4.72) in the case of a simple example, that is, in the case of an European call
option. For this the following well-known lemmas are used.

Lemma 4.7.1. Let (Ω,F , P ) be a probability space, let c ∈ (0,∞), and let X : Ω → R

be an N0,1-distributed random variable. Then EP
[
ecX
]

= exp
(

1
2
c2
)
.

Proof of Lemma 4.7.1. Note that

EP
[
ecX
]

=

ˆ
R

ecx 1√
2π
e−

1
2
x2 dx =

ˆ
R

1√
2π
e(cx−

1
2
x2) dx

=

ˆ
R

1√
2π
e−

1
2(x2−2cx+c2−c2) dx = e

1
2
c2
ˆ
R

1√
2π
e−

1
2(x2−2cx+c2) dx

= e
1
2
c2
ˆ
R

1√
2π
e−

1
2

(x−c)2 dx = e
1
2
c2
ˆ
R

1√
2π
e−

1
2
x2 dx = e

1
2
c2 .

(4.73)

The proof of Lemma 4.7.1 is thus completed.
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The statement and the proof of the following lemma can in a slightly different form, e.g.,
also be found in (4.91) in [Kühn(2004)].

Lemma 4.7.2. Let (Ω,F , P ) be a probability space, let α ∈ R, β ∈ (0,∞), let Y : Ω→
R be an Nα,β2-distributed random variable, and let Φ: R → R be the function which
satisfies for all x ∈ R that

Φ(x) =

ˆ x

−∞

1√
2π

e−
1
2
y2 dy. (4.74)

Then it holds for all K ∈ R that

EP
[
max

{
eY −K, 0

}]
=

eα+ 1
2
β2

Φ
(
α−ln(K)

β
+ β

)
−K Φ

(
α−ln(K)

β

)
: K > 0

eα+ 1
2
β2 −K : K ≤ 0

. (4.75)

Proof of Lemma 4.7.2. First of all, observe that Lemma 4.7.1 implies that for all K ∈
(−∞, 0] it holds that

EP
[
max

(
eY −K, 0

)]
= EP

[
eY −K

]
= EP

[
eY
]
−K

= eα
ˆ
R

eβy 1√
2π
e−

1
2
y2 dy −K = eα+ 1

2
β2 −K.

(4.76)

In addition, note that for all K ∈ (0,∞) it holds that

EP
[
max

(
eY −K, 0

)]
=

ˆ
R

max
(
eα+βy −K, 0

)
1√
2π
e−

1
2
y2 dy

=

ˆ
{x∈R : exp(α+βx)≥K}

(
eα+βy −K

)
1√
2π
e−

1
2
y2 dy

=

ˆ ∞
(ln(K)−α)

β

(
eα+βy −K

)
1√
2π
e−

1
2
y2 dy

= eα
ˆ ∞

(ln(K)−α)
β

1√
2π
e(βy−

1
2
y2) dy −K

ˆ ∞
(ln(K)−α)

β

1√
2π
e−

1
2
y2 dy.

(4.77)

This implies that for all K ∈ (0,∞) it holds that

EP
[
max

(
eY −K, 0

)]
= eα

ˆ ∞
(ln(K)−α)

β

1√
2π
e−

1
2(y2−2βy+β2−β2) dy −K Φ

(
α−ln(K)

β

)
= eα+ 1

2
β2

ˆ ∞
(ln(K)−α)

β

1√
2π
e−

1
2

(y−β)2 dy −K Φ
(
α−ln(K)

β

)
= eα+ 1

2
β2

ˆ ∞
[ (ln(K)−α)

β
−β]

1√
2π
e−

1
2
y2 dy −K Φ

(
α−ln(K)

β

)
= eα+ 1

2
β2

Φ
(
β − (ln(K)−α)

β

)
−K Φ

(
α−ln(K)

β

)
= eα+ 1

2
β2

Φ
(
α−ln(K)

β
+ β

)
−K Φ

(
α−ln(K)

β

)
.

(4.78)
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Combining (4.76) and (4.78) completes the proof of Lemma 4.7.2.

We now use Lemma 4.7.2 and (4.57) to compute the right hand side of (4.72) in the case
of an European call option. More precisely, Lemma 4.7.2, (4.57), and (4.72) prove that
in the case where there exists a real number K ∈ R such that f satisfies (4.69) it holds
P -a.s. that

D0 = e−rT EP
[
f(X̃)

]
= e−rT EP

[
max{X̃T −K, 0}

]
= e−rT EP

[
max

{
e(r− 1

2
β2)T+ln(X

(2)
0 )+βWT −K, 0

}] (4.79)

and hence it holds P -a.s. that

D0 =

X
(2)
0 Φ

(
(r+ 1

2
β2)T+ln(X

(2)
0 /K)

β
√
T

)
−Ke−rTΦ

(
(r− 1

2
β2)T+ln(X

(2)
0 /K)

β
√
T

)
: K > 0

X
(2)
0 −Ke−rT : K ≤ 0

.

(4.80)
Equation (4.80) is (a special case of) the famous Black-Scholes formula for option pricing.
Let us close this section with a few comments and concluding remarks.

• It is in some sense completely ridiculous to model the price process of a stock price
as a geometric Brownian motion (remark: there are a number of substantially
more general models; see, e.g., Subsection 4.7.8 below). It might also be quite
questionable to model the price process of a stock price as a stochastic process.

• There are also a number of other assumptions that are not fulfilled in the real life
trading of financial derivatives (e.g., bid-ask spread/transaction costs, default risk,
no arbitrage assumption, etc.; remark: there are also more general models that
intend to (partially) take such issues into account).

• The aim in the Black-Scholes model is not to predict the expected payoff of the
underlying nor the financial derivative at time T > 0. The aim in the Black-
Scholes model is to estimate the price of the financial derivative today, that is, at
time t = 0.

• This price of a financial derivative of the form (4.68) is in the setting of the Black-
Scholes model completely independent of the expected interest rate α of the un-
derlying.

To be more concrete, we now mention a simple illustrative example of a structured
product (which is somehow a combination of one or more underlyings together with
one or more financial derivatives) whose price has been estimated by using Monte Carlo
methods. Between November 26th, 2012 and Mai 26th, 2014 the price of the structured
product with the International Security Identification Number (ISIN) CH0197477877 has
been estimated every trading day, in particular, by the swissQuant Group AG (Zurich,
Switzerland; see http://www.swissquant.com/) by using Monte Carlo methods. The
estimates prizes are important to determine the collaterals that the issuer of the consid-
ered structured product has to provide. In the case of a bankruptcy of the issuer of the
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structured product, the collaterals are taken to (partially) hedge the risk of a bankruptcy
of the issuer of the considered structured product. The structured product with the ISIN
CH0197477877 (cf., e.g., http://ts.dp-research.com/131014IK014.pdf) is a “Multi
Barrier Reverse Convertible on Gold, Silver” and it is traded at the exchange Scoach
Schweiz AG (an exchange in Zurich (Switzerland) which is specialist in structured prod-
ucts).

4.7.4 Stochastic Ginzburg-Landau equation

In addition to the assumptions in Subsection 4.7.1, let α, β, β̄ ∈ R, δ ∈ (0,∞) be real
numbers, assume that d = m = 1, O = R, and assume for all x ∈ R that

µ(x) = αx− δx3 and σ(x) = βx+ β̄. (4.81)

The SDE (4.52) then reduces to the stochastic Ginzburg-Landau equation

dXt =
[
αXt − δX3

t

]
dt+

[
βXt + β̄

]
dWt, t ∈ [0, T ], X0 = ξ. (4.82)

Here the drift coefficient function µ is not globally Lipschitz continuous and Theo-
rem 4.5.1 can thus not be applied. Nonetheless, there exists an up to indinstinguisha-
bility unique solution process of (4.82) (see, e.g., [Gyöngy and Krylov(1996)]) and, in
addition, it holds for all p ∈ [0,∞) that

sup
t∈[0,T ]

EP
[
|Xt|pR

]
<∞. (4.83)

4.7.5 Stochastic Verhulst equation

In addition to the assumptions in Subsection 4.7.1, let c ∈ R, η, λ ∈ (0,∞) be real
numbers, assume that d = m = 1, O = (0,∞), and assume for all x ∈ R that

µ(x) =
(
η + c2

2

)
x− λx2 and σ(x) = cx. (4.84)

The SDE (4.52) then reads as

dXt =
[ (
η + c2

2

)
Xt − λ (Xt)

2
]
dt+ cXt dWt, t ∈ [0, T ], X0 = ξ. (4.85)

Equation (4.85) is known as stochastic Verhulst equation in the literature (see, e.g.,
Section 4.4 in Kloeden & Platen [Kloeden and Platen(1992)]). Here the drift coefficient
function µ is not globally Lipschitz continuous and Theorem 4.5.1 can thus not be
applied. Nonetheless, there exists an up to indinstinguishability unique solution process
of (4.82) (see, e.g., [Gyöngy and Krylov(1996)]) and, in addition, it holds for all p ∈
[0,∞) that

sup
t∈[0,T ]

EP
[
|Xt|pR

]
<∞. (4.86)
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4.7.6 Stochastic predator-prey model

In addition to the assumptions above, let c1, c2 ∈ R, α, β, γ, δ ∈ (0,∞) be real numbers,
assume that d = m = 2, O = (0,∞)2, and assume that for all x = (x1, x2) ∈ O it holds
that

µ

(
x1

x2

)
=

(
x1 (α− βx2)
x2 (γx1 − δ)

)
(4.87)

and

σ

(
x1

x2

)
=

(
c1x1 0

0 c2x2

)
. (4.88)

The SDE (4.52) then reduces to the stochastic predator-prey model

dXt =

(
X

(1)
t

(
α− β ·X(2)

t

)
X

(2)
t

(
γ ·X(1)

t − δ
)
)
dt+

(
c1 ·X(1)

t 0

0 c2 ·X(2)
t

)
dWt, t ∈ [0, T ], X0 = ξ.

(4.89)
The deterministic case (c1 = c2 = 0) of this model has been introduced by
Lotka [Lotka(1920)] and Volterra [Volterra(1926)]. Here the drift coefficient function µ is
not globally Lipschitz continuous and Theorem 4.5.1 can thus not be applied. Nonethe-
less, there exists an up to indinstinguishability unique solution process of (4.82) (see,
e.g., [Gyöngy and Krylov(1996)]) and, in addition, it holds for all p ∈ [0,∞) that

sup
t∈[0,T ]

EP
[
‖Xt‖pR2

]
<∞. (4.90)

4.7.7 Volatility processes

In addition to the assumptions in Subsection 4.7.1, let a ∈ [1,∞), b ∈ [1
2
,∞), α ∈ (0,∞),

β, δ ∈ [0,∞), γ ∈ R be real numbers with

a+ 1 ≥ 2b, δ > −1[1,∞)(b), and δ ≥ 1{ 1
2}(b) ·

β2

2
, (4.91)

assume that d = m = 1, O = (0,∞) and assume that for all x ∈ (0,∞) it holds that

µ(x) = δ + γ x− αxa and σ(x) = β xb. (4.92)

The SDE (4.52) then reads as

dXt =
[
δ + γXt − α (Xt)

a ] dt+ β (Xt)
b dWt, t ∈ [0, T ], X0 = ξ. (4.93)

Assumption (4.91) ensures the existence of an up to indistinguishability unique solution
process of (4.93). The proof of the existence of a solution process of (4.93) is omitted.
Let us consider three more specific examples of the SDE (4.93).
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4.7.7.1 Cox-Ingersoll-Ross process

In addition to the assumptions above, assume that a = 1, b = 1
2

and γ = 0. The
SDE (4.93) is then the Cox-Ingersoll-Ross process

dXt =
[
δ − αXt

]
dt+ β

√
Xt dWt, t ∈ [0, T ], X0 = ξ (4.94)

which has been introduced in [Cox et al.(1985)Cox, Ingersoll, and Ross] as a model for
instantaneous interest rates. Later, in [Heston(1993)], this process has been proposed
as a model for the squared volatility in a Black-Scholes type market model (see Subsec-
tion 4.7.8.1 below).

4.7.7.2 Simplified Ait-Sahalia interest rate model

In addition to the assumptions above, assume that a = 2 and b < 3
2
. Under these

additional assumptions, the SDE (4.93) reads as

dXt =
[
δ + γXt − α (Xt)

2 ] dt+ β (Xt)
b dWt, t ∈ [0, T ], X0 = ξ. (4.95)

A more general version hereof has been used in Ait-Sahalia [Ait-Sahalia(1996)]
for testing continuous-time models of the spot interest rate. More informa-
tion on these type of models can be found in the introductory section in
[Szpruch et al.(2011)Szpruch, Mao, Higham, and Pan] and in the references mentioned
therein.

4.7.7.3 Volatility process in the Lewis stochastic volatility model

In addition to the assumptions above, assume that a = 2, b = 3
2
, γ > 0 and δ = 0. The

SDE (4.93) is then the instantaneous variance process (squared volatility) in the Lewis
stochastic volatility model (see [Lewis(2000)] and Subsection 4.7.8.2 below)

dXt =
[
γXt − α (Xt)

2 ] dt+ β (Xt)
3
2 dWt, t ∈ [0, T ], X0 = ξ. (4.96)

The stochastic volatility model associated to (4.96) is a.k.a. 3/2-stochastic volatility
model.

4.7.8 Stochastic volatility models

In addition to the assumptions in Subsection 4.7.1, let â ∈ [1,∞), b̂ ∈ [1
2
,∞), α, α̂ ∈

(0,∞), β̂, δ̂ ∈ [0,∞), γ̂ ∈ R, ρ ∈ [0, 1] be real numbers with

â+ 1 ≥ 2b̂, δ̂ > −1[1,∞)(b̂), and δ̂ ≥ 1{ 1
2}(b̂) ·

(β̂)2

2
, (4.97)
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assume that d = m = 2, O = (0,∞)2, and assume that for all x = (x1, x2) ∈ (0,∞)2 it
holds that

µ

(
x1

x2

)
=

(
αx1

δ̂ + γ̂x2 − α̂ (x2)â

)
, σ

(
x1

x2

)
=

( √
x2 x1 0

β̂ (x2)b̂
√

1− ρ2 β̂ (x2)b̂ ρ

)
.

(4.98)
The SDE (4.52) then reads as

dXt =

(
αX

(1)
t

δ̂ + γ̂X
(2)
t − α̂

(
X

(2)
t

)â
)
dt

+

 √
X

(2)
t X

(1)
t 0

β̂
(
X

(2)
t

)b̂√
1− ρ2 β̂

(
X

(2)
t

)b̂
ρ

 dWt, t ∈ [0, T ], X0 = ξ.

(4.99)

In the next step let Ŵ : [0, T ] × Ω → R be the mapping with the property that for all
t ∈ [0, T ] it holds that

Ŵt =
√

1− ρ2W
(1)
t + ρW

(2)
t . (4.100)

Then we observe that Ŵ is an one-dimensional standard (Ft)t∈[0,T ]-Brownian motion.

Note that W (1) and Ŵ are independent if and only if ρ = 1. Using this notation, we
obtain that the stochastic process X(2) : [0, T ]×Ω→ (0,∞) is a solution process of the
SDE

dX
(2)
t =

[
δ̂+ γ̂X

(2)
t − α̂

(
X

(2)
t

)â]
dt+ β̂

(
X

(2)
t

)b̂
dŴt, t ∈ [0, T ], X

(2)
0 = ξ(2). (4.101)

Assumption (4.91) ensures the existence of an up to indistinguishability unique solution
process of (4.99). The proof of the existence of a solution process of (4.99) is omitted.
Let us consider two more specific examples of the SDE (4.99).

4.7.8.1 Heston model

In addition to the assumptions above, assume that â = 1, b̂ = 1
2

and γ̂ = 0. The
SDE (4.99) is then the Heston model

dXt =

(
αX

(1)
t

δ̂ − α̂ X(2)
t

)
dt+

 √
X

(2)
t X

(1)
t 0

β̂
√

1− ρ2

√
X

(2)
t β̂ ρ

√
X

(2)
t

dWt, t ∈ [0, T ], X0 = ξ

(4.102)

(see [Heston(1993)]).
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4.7.8.2 Lewis stochastic volatility model

In addition to the assumptions above, assume that â = 2, b̂ = 3
2
, γ̂ > 0 and δ̂ = 0. The

SDE (4.99) is then the Lewis stochastic volatility model (a.k.a. 3/2-stochastic volatility
model)

dXt =

(
αX

(1)
t

γ̂Xt − α̂
(
X

(2)
t

)2

)
dt+

 √
X

(2)
t X

(1)
t 0

β̂
√

1− ρ2
(
X

(2)
t

) 3
2 β̂ ρ

(
X

(2)
t

) 3
2

 dWt, t ∈ [0, T ], X0 = ξ

(4.103)

(see [Lewis(2000)] and, e.g., also [Henry-Labordère(2007), Higham(2011)]).
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5 Strong approximations for SDEs

Most of this chapter can, e.g., in a bit different form be found in
[Kloeden and Platen(1992)].

5.1 Setting

Throughout this chapter the following setting is frequently used. Let T ∈ (0,∞), d,m ∈
N, let (Ω,F , P, (Ft)t∈[0,T ]) be a stochastic basis, let W = (W (1), . . . ,W (m)) : [0, T ]×Ω→
R
m be an m-dimensional standard (Ω,F , P, (Ft)t∈[0,T ])-Brownian motion, let O ⊆ Rd

be an open set, let ξ = (ξ(1), . . . , ξ(d)) ∈ M(F0,B(O)), µ̄ ∈ M(B(Rd),B(Rd)), σ̄ ∈
M(B(Rd),B(Rd×m)), let

µ = (µ1, . . . , µd) : O → R
d, σ = (σj)j∈{1,...,m} = (σi,j)i∈{1,...,d},j∈{1,...,m} : O → R

d×m

(5.1)
be locally Lipschitz continuous functions, let X = (X(1), . . . , X(d)) : [0, T ]×Ω→ O be a
solution process of the SDE

dXt = µ(Xt) dt+ σ(Xt) dWt, t ∈ [0, T ], X0 = ξ, (5.2)

and assume for all x ∈ O that

µ̄(x) = µ(x) and σ̄(x) = σ(x). (5.3)

Remark 5.1.1. The functions µ̄ and σ̄ are thus Borel measurable extentions of µ and
σ. For instance, the functions

R
d 3 x 7→

{
µ(x) : x ∈ O

0 : x /∈ O

}
∈ Rd, R

d 3 x 7→

{
σ(x) : x ∈ O

0 : x /∈ O

}
∈ Rd×m

(5.4)
are Borel measurable extensions of µ and σ.

Remark 5.1.2. We observe that for all i ∈ {1, 2, . . . , d}, j ∈ {1, 2, . . . ,m} it holds that
σi,j : O → R and σj : O → R

d are functions which satisfy for all x ∈ O that

σj(x) = (σ1,j(x), . . . , σd,j(x)) . (5.5)
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5.2 Notions of convergence for stochastic processes

5.2.1 Growth properties for functions

Definition 5.2.1. Let (E, dE) and (F, dF ) be metric spaces. Then we say that f grows
at most linearly from (E, dE) to (F, dF ) (we say that f grows at most linearly) if and
only if f ∈M(E,F ) is a function from E to F which satisfies for all v ∈ E, w ∈ F that
there exists a real number c ∈ R such that for all x ∈ E it holds that

dF (w, f(x)) ≤ c (1 + dE(v, x)) . (5.6)

Definition 5.2.2. Let (E, dE) and (F, dF ) be metric spaces. Then we say that f grows
at most quadratically from (E, dE) to (F, dF ) (we say that f grows at most quadratically)
if and only if f ∈M(E,F ) is a function from E to F which satisfies for all v ∈ E, w ∈ F
that there exists a real number c ∈ R such that for all x ∈ E it holds that

dF (w, f(x)) ≤ c (1 + dE(v, x))2 . (5.7)

Definition 5.2.3. Let (E, dE) and (F, dF ) be metric spaces. Then we say that f grows
at most polynomially from (E, dE) to (F, dF ) (we say that f grows at most polynomially)
if and only if f ∈ M(E,F ) is a function from E to F which satisfies for all v ∈ E,
w ∈ F that there exists a real number c ∈ [0,∞) such that for all x ∈ E it holds that

dF (w, f(x)) ≤ c (1 + dE(v, x))c . (5.8)

Exercise 5.2.4. Let (E, dE) and (F, dF ) be metric spaces with E 6= ∅ and let f : E → F
be a function. Prove that f grows at most polynomially from (E, dE) to (F, dF ) if and
only if there exist v ∈ E, w ∈ F such that

lim sup
c→∞

sup
x∈E

[
dF (w, f(x))

[1 + dE(v, x)]c

]
<∞. (5.9)

5.2.2 Growth properties for derivatives of functions

Definition 5.2.5 (1-Hölder continuous). Let (E, dE) and (F, dF ) be metric spaces. Then
we say that f is globally Lipschitz continuous from (E, dE) to (F, dF ) (we say that f
is globally Lipschitz continuous, we say that f is Lipschitz continuous from (E, dE)
to (F, dF ), we say that f is Lipschitz continuous) if and only if f is dE/dF -1-Hölder
continuous.

Definition 5.2.6. Let k, l, v ∈ N. Then we say that f is v-times continuously differ-
entiable with at most polynomially growing derivatives from R

k to Rl (we say that f is
v-times continuously differentiable with at most polynomially growing derivatives) if and
only if f ∈ Cv(Rk,Rl) is a v-times continuously differentiable function from R

k to Rl

which satisfies that f (v) grows at most polynomially.
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Exercise 5.2.7. Let k, l, v ∈ N and let f : Rk → R
l be a v-times continuously dif-

ferentiable function with at most polynomially growing derivatives. Prove that for all
w ∈ {0, 1, . . . , v} it holds that f (w) grows at most polynomially.

Definition 5.2.8. Let k, l ∈ N. Then we say that f is infinitely often differentiable
with at most polynomially growing derivatives from R

k to Rl (we say that f is infinitely
often differentiable with at most polynomially growing derivatives) if and only if f ∈
C∞(Rk,Rl) is an infinitely often differentiable function from R

k to Rl which satisfies
that for every v ∈ N it holds that f (v) grows at most polynomially.

Corollary 5.2.9. Let k, l ∈ N and let f : Rk → R
l be a function. Then f grows at most

polynomially if and only if there exists a real number c ∈ [0,∞) such that for all x ∈ Rk

it holds that
‖f(x)‖

Rl
≤ c (1 + ‖x‖c

Rk
) (5.10)

Corollary 5.2.9 is a straightforward consequence of Definition 5.2.3 and Exercise 5.2.4
above.

5.2.3 Strong convergence

Definition 5.2.10. Let (Ω,F , P ) be a probability space, let d ∈ N, T, p ∈ (0,∞), and
let Y N : [0, T ] × Ω → R

d, N ∈ N0, be stochastic processes. Then we say that (Y N)N∈N
converges at time T in the strong Lp-sense to Y 0 on (Ω,F , P ) (we say that (Y N)N∈N
converges at time T in the strong Lp-sense to Y 0) if and only if

lim sup
N→∞

EP
[
‖Y 0

T − Y N
T ‖

p
Rd

]
= 0. (5.11)

Definition 5.2.11. Let (Ω,F , P ) be a probability space, let d ∈ N, T, p, α ∈ (0,∞), and
let Y N : [0, T ] × Ω → R

d, N ∈ N0, be stochastic processes. Then we say that (Y N)N∈N
converges at time T in the strong Lp-sense with order α to Y 0 on (Ω,F , P ) (we say that
(Y N)N∈N converges at time T in the strong Lp-sense with order α to Y 0) if and only if
there exists a real number C ∈ R such that for all N ∈ N it holds that∥∥Y 0

T − Y N
T

∥∥
Lp(P ;‖·‖

Rd
)
≤ C ·N−α, (5.12)

5.2.4 Almost sure convergence

Definition 5.2.12. Let (Ω,F , P ) be a probability space, let d ∈ N, T ∈ (0,∞), and
let Y N : [0, T ] × Ω → R

d, N ∈ N0, be stochastic processes. Then we say that (Y N)N∈N
converges at time T P -almost surely to Y 0 if and only if

P

(
lim sup
N→∞

‖Y 0
T − Y N

T ‖Rd = 0

)
= 1. (5.13)
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Definition 5.2.13. Let (Ω,F , P ) be a probability space, let d ∈ N, T, α ∈ (0,∞), and
let Y N : [0, T ] × Ω → R

d, N ∈ N0, be stochastic processes. Then we say that (Y N)N∈N
converges at time T P -almost surely with order α to Y 0 if and only if there exists an
F/B(R)-measurable function C : Ω→ R such that for all N ∈ N it holds that

P
(
‖Y 0

T − Y N
T ‖Rd ≤ C ·N−α

)
= 1. (5.14)

5.2.5 Convergence in probability

Definition 5.2.14. Let (Ω,F , P ) be a probability space, let d ∈ N, T ∈ (0,∞), and
let Y N : [0, T ] × Ω → R

d, N ∈ N0, be stochastic processes. Then we say that (Y N)N∈N
converges at time T in probability to Y 0 on (Ω,F , P ) (we say that (Y N)N∈N converges
at time T in probability to Y 0) if and only if it holds for all ε ∈ (0,∞) that

lim sup
N→∞

P
(
‖Y 0

T − Y N
T ‖Rd ≥ ε

)
= 0. (5.15)

5.2.6 Numerically weak convergence

Definition 5.2.15. Let (Ω,F , P ) be a probability space, let d ∈ N, T ∈ (0,∞), and
let Y N : [0, T ] × Ω → R

d, N ∈ N0, be stochastic processes. Then we say that (Y N)N∈N
converges at time T in the numerically weak sense to Y 0 if and only if it holds for every
infinitely often differentiable function ϕ : Rd → R with at most polynomially growing
derivatives that ∀N ∈ N0 : EP

[
|ϕ(Y N

T )|R
]
<∞ and

lim sup
N→∞

∣∣EP [ϕ(Y 0
T )
]
− EP

[
ϕ(Y N

T )
]∣∣
R

= 0. (5.16)

Definition 5.2.16. Let (Ω,F , P ) be a probability space, let d ∈ N, T, α ∈ (0,∞), and
let Y N : [0, T ] × Ω → R

d, N ∈ N0, be stochastic processes. Then we say that (Y N)N∈N
converges at time T in the numerically weak sense with order α to Y 0 on (Ω,F , P ) (we
say that (Y N)N∈N converges at time T in the numerically weak sense with order α to
Y 0) if and only if it holds for every infinitely often differentiable function ϕ : Rd → R

with at most polynomially growing derivatives that there exists a real number C ∈ R
such that for all N ∈ N it holds that EP

[
|ϕ(Y 0

T )|R + |ϕ(Y N
T )|R

]
<∞ and∣∣EP [ϕ(Y 0

T )
]
− EP

[
ϕ(Y N

T )
]∣∣
R
≤ C ·N−α. (5.17)

5.3 Euler-Maruyama scheme

Assume the setting in Section 5.1. Then for all t ∈ [0, T ] it holds P -a.s. that

Xt = ξ +

ˆ t

0

µ(Xs) ds+

ˆ t

0

σ(Xs) dWs. (5.18)
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This and (3.152) show that for all t0 ∈ [0, T ], t ∈ [t0, T ] with t − t0 “sufficiently small”
it holds P -a.s. that

Xt = Xt0 +

ˆ t

t0

µ(Xs)︸ ︷︷ ︸
≈µ(Xt0 )

ds+

ˆ t

t0

σ(Xs)︸ ︷︷ ︸
≈σ(Xt0 )

dWs

≈ Xt0 +

ˆ t

t0

µ(Xt0) ds+

ˆ t

t0

σ(Xt0) dWs

= Xt0 + µ(Xt0) (t− t0) + σ(Xt0) (Wt −Wt0) .

(5.19)

The approximation in (5.19) motivates the following definition (see [Maruyama(1953),
Maruyama(1955)]).

Definition 5.3.1 (Euler-Maruyama approximation). Let T ∈ (0,∞), d,m,N ∈ N,
µ ∈M(B(Rd),B(Rd)), σ ∈M(B(Rd),B(Rd×m)), let (Ω,F , P, (Ft)t∈[0,T ]) be a stochastic
basis, let ξ ∈ L0(P |F0 ; ‖·‖Rd), and let W : [0, T ] × Ω → R

m be an m-dimensional stan-
dard (Ω,F , P, (Ft)t∈[0,T ])-Brownian motion. Then we say that Y is an Euler-Maruyama
approximation for the SDE

dXt = µ(Xt) dt+ σ(Xt) dWt, t ∈ [0, T ], X0 = ξ (5.20)

with time step size T/N on (Ω,F , P, (Ft)t∈[0,T ]) (we say that Y is an Euler-Maruyama
approximation for the SDE

dXt = µ(Xt) dt+ σ(Xt) dWt, t ∈ [0, T ], X0 = ξ (5.21)

with time step size T/N) if and only if Y ∈M({0, 1, . . . , N}×Ω,Rd) is the function from
{0, 1, . . . , N} × Ω to Rd which satisfies for all n ∈ {0, 1, . . . , N − 1} that Y0 = ξ and

Yn+1 = Yn + µ(Yn) T
N

+ σ(Yn)
(
W (n+1)T

N

−WnT
N

)
. (5.22)

Sometimes Euler-Maruyama approximations are also simply referred to as Euler approx-
imations in the literature.
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Definition 5.3.2 (Linearly-interpolated Euler-Maruyama approximation). Let T ∈
(0,∞), d,m,N ∈ N, µ ∈ M(B(Rd),B(Rd)), σ ∈ M(B(Rd),B(Rd×m)), let
(Ω,F , P, (Ft)t∈[0,T ]) be a stochastic basis, let ξ ∈ L0(P |F0 ; ‖·‖Rd), and let W : [0, T ]×Ω→
R
m be an m-dimensional standard (Ω,F , P, (Ft)t∈[0,T ])-Brownian motion. Then we say

that Y is a linearly-interpolated Euler-Maruyama approximation for the SDE

dXt = µ(Xt) dt+ σ(Xt) dWt, t ∈ [0, T ], X0 = ξ (5.23)

with time step size T/N on (Ω,F , P, (Ft)t∈[0,T ]) (we say that Y is a linearly-interpolated
Euler-Maruyama approximation for the SDE

dXt = µ(Xt) dt+ σ(Xt) dWt, t ∈ [0, T ], X0 = ξ (5.24)

with time step size T/N) if and only if Y ∈M([0, T ]×Ω,Rd) is the function from [0, T ]×Ω

to Rd which satisfies for all n ∈ {0, 1, . . . , N − 1}, t ∈
[
nT
N
, (n+1)T

N

]
that Y0 = ξ and

Yt = YnT
N

+
(
tN
T
− n

) [
µ(YnT

N
) T
N

+ σ(YnT
N

)
(
W (n+1)T

N

−WnT
N

)]
. (5.25)

In Definition 5.3.1 we introduce Euler-Maruyama approximations at the discretization
points {0, T

N
, 2T
N
, . . . , T}, N ∈ N. In the literature sometimes approximations on more

complicated possibly non-equidistant discretization points are investigated/used.

5.3.1 Simulation of sample paths of Euler-Maruyama
approximations

In the next step two Matlab codes for the Euler-Maruyama method are presented in the
case d = m = 1.

1 function Y = EulerMaruyama (mu, sigma ,T, x0 ,N)
2 Y = zeros (1 ,N+1);
3 Y(1) = x0 ;
4 h = T/N;
5 sqr th = sqrt (h ) ;
6 for n = 1 :N
7 Y(n+1) = Y(n) + mu(Y(n ) )∗h + sigma (Y(n ) )∗ sqr th ∗randn ;
8 end
9 end

Matlab code 5.1: A Matlab function for the Euler-Maruyama method in the case d =
m = 1.

1 T = 1 ;
2 N = 1000 ;
3 mu = @( x)−x ˆ3 ;

Work in progress. Copyright (C) with the authors.
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4 plot ( ( 0 :T/N:T) , EulerMaruyama (mu, @( x )0 , T, 2 , N) , ’ r ’ ) ;
5 hold on
6 plot ( ( 0 :T/N:T) , EulerMaruyama (mu, @( x )1/10 , T, 2 , N) ) ;

Matlab code 5.2: A Matlab code for the Euler-Maruyama method.

Exercise 5.3.3 (Euler-Maruyama). In this exercise we do not distinguish between
pseudo random numbers and actual random numbers. Let T ∈ (0,∞), d,m,N ∈ N,
ξ ∈ Rd, µ ∈ M

(
B(Rd),B(Rd)

)
, σ ∈ M

(
B(Rd),B(Rd×m)

)
, let (Ω,F , P, (Ft)t∈[0,T ])

be a stochastic basis, let W : [0, T ] × Ω → R
m be an m-dimensional standard

(Ω,F , P, (Ft)t∈[0,T ])-Brownian motion, and let Y : {0, 1, . . . , N} × Ω → R
d be an Euler-

Maruyama approximation for the SDE

dXt = µ(Xt) dt+ σ(Xt) dWt, t ∈ [0, T ], X0 = ξ (5.26)

with time step size T/N. Write a Matlab function EulerMaruyama(T,d,m,N,ξ,µ,σ)
with input T ∈ (0,∞), d,m,N ∈ N, ξ ∈ R

d, µ ∈ M(B(Rd),B(Rd)), σ ∈
M(B(Rd),B(Rd×m)) and output a realization of an YN(P )B(Rd)-distributed random vari-
able.

Exercise 5.3.4 (Monte Carlo Euler for geometric Brownian motion). In this exercise
we do not distinguish between pseudo random numbers and actual random numbers.
Let T, α, β, ξ,K ∈ (0,∞), N,M ∈ N, let (Ω,F , P, (Ft)t∈[0,T ]) be a stochastic basis, let
W k : [0, T ] × Ω → R, k ∈ N, be P -independent standard (Ω,F , P, (Ft)t∈[0,T ])-Brownian
motions, and for every k ∈ N let Y k : {0, 1, . . . , N} × Ω → R be an Euler-Maruyama
approximation for the SDE

dXt = αXt dt+ β Xt dW
k
t , t ∈ [0, T ], X0 = ξ (5.27)

with time step size T/N. Write a Matlab function
MonteCarloEulerGBM(T,α,β,ξ,K,N,M) with input T, α, β, ξ,K ∈ (0,∞), N,M ∈
N and output a realization of an

(
1
M

∑M
k=1 max

{
Y k
N −K, 0

})
(P )B(R)-distributed random

variable. Type MonteCarloEulerGBM(1,log(1.06)-1/200,1/10,92,100,100,10000)

to test your implementation. Compare this result with the results of Exercise 3.3.9 and
Exercise 3.3.11.

5.3.2 Strong convergence of the Euler-Maruyama method

In Theorem 5.3.10 below we prove strong convergence of the Euler-Maruyama method
under the assumption that the coefficients of the SDE are globally Lipschitz continuous.
The proof of Theorem 5.3.10 uses the well-known Hölder inequality. For completeness
we now present (a special case of) the Hölder inequality.
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Figure 5.1: Results of two calls of the Matlab code 5.2.
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Theorem 5.3.5 (Hölder inequality). Let (Ω,F , µ) be a measure space and let r ∈ (0,∞),
f ∈ L1+r(µ; |·|

R
), g ∈ L1+1/r(µ; |·|

R
). Then

ˆ
Ω

|f(x) · g(x)|µ(dx) = ‖f · g‖L1(µ;|·|
R

) ≤ ‖f‖L1+r(µ;|·|
R

) ‖g‖L1+1/r(µ;|·|
R

) . (5.28)

Proof of Theorem 5.3.5. Throughout this proof we assume w.l.o.g. that

‖f‖L1+r(µ;|·|
R

) > 0 and ‖g‖L1+1/r(µ;|·|
R

) > 0 (5.29)

(otherwise (5.28) is clear). Next observe that Young’s inequality proves that

ˆ
Ω

[
|f(x)|

‖f‖L1+r(µ;|·|
R

)

]
·

[
|g(x)|

‖g‖L1+1/r(µ;|·|
R

)

]
µ(dx)

≤
ˆ

Ω

1

(1 + r)

[
|f(x)|

‖f‖L1+r(µ;|·|
R

)

](1+r)

+
1

(1 + 1
r
)

[
|g(x)|

‖g‖L1+1/r(µ;|·|
R

)

](1+ 1
r

)

µ(dx)

=
1

(1 + r)

´Ω |f(x)|(1+r) µ(dx)

‖f‖(1+r)

L1+r(µ;|·|
R

)

+
1

(1 + 1
r
)

´Ω |g(x)|(1+1/r) µ(dx)

‖g‖(1+1/r)

L1+1/r(µ;|·|
R

)


=

1

(1 + r)
+

1

(1 + 1
r
)

= 1.

(5.30)

The proof of Theorem 5.3.5 is thus completed.

The following inequality is known as Minkowski’s integral inequality (see, e.g.,
[Jentzen and Kloeden(2011)]).

Lemma 5.3.6. Let p ∈ [1,∞), let (Ω1,F1, µ1) and (Ω2,F2, µ2) be finite measure spaces,
and let f : Ω1 × Ω2 → [0,∞) be a globally bounded (F1 ⊗ F2)/B([0,∞))-measurable
function. Then it holds that[ˆ

Ω1

(ˆ
Ω2

f(x, y)µ2(dy)

)p
µ1(dx)

] 1
p

≤
ˆ

Ω2

(ˆ
Ω1

|f(x, y)|p µ1(dx)

)1
p

µ2(dy). (5.31)

Proof of Lemma 5.3.6. First, observe that (5.31) follows from Tonelli’s theorem in the
case p = 1. Throughout the rest of this proof assume w.l.o.g. that p > 1 and let
q ∈ (1,∞) be the real number which satisfies that

1
p

+ 1
q

= 1. (5.32)
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Note that Fubini’s theorem ensures that
ˆ

Ω1

(ˆ
Ω2

f(x, y)µ2(dy)

)p
µ1(dx)

=

ˆ
Ω1

(ˆ
Ω2

f(x, y)µ2(dy)

)(p−1)(ˆ
Ω2

f(x, y)µ2(dy)

)
µ1(dx)

=

ˆ
Ω1

(ˆ
Ω2

f(x, y)µ2(dy)

)(p−1)(ˆ
Ω2

f(x, u)µ2(du)

)
µ1(dx)

=

ˆ
Ω1

ˆ
Ω2

(ˆ
Ω2

f(x, y)µ2(dy)

)(p−1)

f(x, u)µ2(du)µ1(dx)

=

ˆ
Ω2

ˆ
Ω1

(ˆ
Ω2

f(x, y)µ2(dy)

)(p−1)

f(x, u)µ1(dx)µ2(du).

(5.33)

Hölder’s inequality therefore proves that

ˆ
Ω1

(ˆ
Ω2

f(x, y)µ2(dy)

)p
µ1(dx)

≤
ˆ

Ω2

[ˆ
Ω1

(ˆ
Ω2

f(x, y)µ2(dy)

)(p−1)q

µ1(dx)

] 1
q

·
[ˆ

Ω1

|f(x, u)|p µ1(dx)

] 1
p

µ2(du)

=

[ˆ
Ω1

(ˆ
Ω2

f(x, y)µ2(dy)

)p
µ1(dx)

](1− 1
p

) ˆ
Ω2

[ˆ
Ω1

|f(x, u)|p µ1(dx)

] 1
p

µ2(du).

(5.34)

Next observe that the assumption that f is globally bounded implies that[ˆ
Ω1

(ˆ
Ω2

f(x, y)µ2(dy)

)p
µ1(dx)

](1− 1
p

)

<∞. (5.35)

This and (5.34) establish that[ˆ
Ω1

(ˆ
Ω2

f(x, y)µ2(dy)

)p
µ1(dx)

] 1
p

≤
ˆ

Ω2

(ˆ
Ω1

|f(x, y)|p µ1(dx)

)1
p

µ2(dy). (5.36)

The proof of Lemma 5.3.6 is thus completed.

Lemma 5.3.7. Let p ∈ [1,∞), let (Ω1,F1, µ1) and (Ω2,F2, µ2) be finite measure spaces,
and let f : Ω1 × Ω2 → [0,∞] be an (F1 ⊗ F2)/B([0,∞])-measurable function. Then it
holds that[ˆ

Ω1

(ˆ
Ω2

f(x, y)µ2(dy)

)p
µ1(dx)

] 1
p

≤
ˆ

Ω2

(ˆ
Ω1

|f(x, y)|p µ1(dx)

)1
p

µ2(dy). (5.37)
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Proof of Lemma 5.3.7. Throughout this proof let fN : Ω1×Ω2 → [0,∞), N ∈ N, be the
functions which satisfy for all N ∈ N, x ∈ Ω1, y ∈ Ω2 that

fN(x, y) = min{f(x, y), N}. (5.38)

Note that for all N ∈ N it holds that fN is globally bounded and (F1 ⊗F2)
/
B([0,∞))-

measurable. Lemma 5.3.6 hence establishes that for all N ∈ N it holds that[ˆ
Ω1

(ˆ
Ω2

fN(x, y)µ2(dy)

)p
µ1(dx)

] 1
p

≤
ˆ

Ω2

(ˆ
Ω1

|fN(x, y)|p µ1(dx)

)1
p

µ2(dy). (5.39)

This and monotone convergence theorem for Lebesgue integral yield that[ˆ
Ω1

(ˆ
Ω2

f(x, y)µ2(dy)

)p
µ1(dx)

] 1
p

=

[ˆ
Ω1

(ˆ
Ω2

lim
N→∞

fN(x, y)µ2(dy)

)p
µ1(dx)

] 1
p

= lim
N→∞

[ˆ
Ω1

(ˆ
Ω2

fN(x, y)µ2(dy)

)p
µ1(dx)

] 1
p

≤ lim
N→∞

ˆ
Ω2

(ˆ
Ω1

|fN(x, y)|p µ1(dx)

)1
p

µ2(dy)

=

ˆ
Ω2

(ˆ
Ω1

lim
N→∞

|fN(x, y)|p µ1(dx)

)1
p

µ2(dy)

=

ˆ
Ω2

(ˆ
Ω1

|f(x, y)|p µ1(dx)

)1
p

µ2(dy).

(5.40)

The proof of Lemma 5.3.7 is thus completed.

Proposition 5.3.8. Let p ∈ [1,∞), let (Ω1,F1, µ1) and (Ω2,F2, µ2) be sigma-finite
measure spaces, and let f : Ω1 × Ω2 → [0,∞] be an (F1 ⊗ F2)/B([0,∞])-measurable
function. Then it holds that[ˆ

Ω1

(ˆ
Ω2

f(x, y)µ2(dy)

)p
µ1(dx)

] 1
p

≤
ˆ

Ω2

(ˆ
Ω1

|f(x, y)|p µ1(dx)

)1
p

µ2(dy). (5.41)

Proof of Proposition 5.3.8. Throughout this proof let Ω
(n)
i ∈ Fi, n ∈ N, i ∈ {1, 2}, be

sets which satisfy for all n ∈ N, i ∈ {1, 2} that

µi(Ω
(n)
i ) <∞, Ω

(n)
i ⊆ Ω

(n+1)
i , and

⋃
k∈N

Ω
(k)
i = Ωi, (5.42)
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let µ
(n)
i : Ω

(n)
i e Fi → [0,∞], n ∈ N, i ∈ {1, 2}, be the measures which satisfy for all

n ∈ N, i ∈ {1, 2} that

µ
(n)
i = µ|

Ω
(n)
i eFi

, (5.43)

and let fn : Ω
(n)
1 × Ω

(n)
2 → [0,∞], n ∈ N, be the functions which satisfy for all n ∈ N

that

fn = f |
Ω

(n)
1 ×Ω

(n)
2
. (5.44)

Observe that (5.42) and (5.43) ensure that for all n ∈ N it holds that
(
Ω

(n)
1 ,Ω

(n)
1 eF1, µ

(n)
1

)
and

(
Ω

(n)
2 ,Ω

(n)
2 eF2, µ

(n)
2

)
are finite measure spaces. The fact that for all n ∈ N it holds

that fn is ((Ω
(n)
1 e F1) ⊗ (Ω

(n)
2 e F2))/B([0,∞])-measurable hence allows us to apply

Lemma 5.3.7 to obtain that for all n ∈ N it holds that

[ˆ
Ω

(n)
1

(ˆ
Ω

(n)
2

fn(x, y)µ
(n)
2 (dy)

)p
µ

(n)
1 (dx)

] 1
p

≤
ˆ

Ω
(n)
2

(ˆ
Ω

(n)
1

|fn(x, y)|p µ(n)
1 (dx)

)1
p

µ
(n)
2 (dy).

(5.45)
This implies that for all n ∈ N it holds that

[ˆ
Ω1

(ˆ
Ω2

f(x, y)1{
Ω

(n)
1 ×Ω

(n)
2

}(x, y)µ2(dy)

)p
µ1(dx)

] 1
p

=

[ˆ
Ω

(n)
1

(ˆ
Ω

(n)
2

fn(x, y)µ
(n)
2 (dy)

)p
µ

(n)
1 (dx)

] 1
p

≤
ˆ

Ω
(n)
2

(ˆ
Ω

(n)
1

|fn(x, y)|p µ(n)
1 (dx)

)1
p

µ
(n)
2 (dy)

=

ˆ
Ω2

(ˆ
Ω1

∣∣∣∣f(x, y)1{
Ω

(n)
1 ×Ω

(n)
2

}(x, y)

∣∣∣∣p µ1(dx)

)1
p

µ2(dy).

(5.46)
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Monotone convergence theorem for Lebesgue integral therefore assures that

[ˆ
Ω1

(ˆ
Ω2

f(x, y)µ2(dy)

)p
µ1(dx)

] 1
p

=

[ˆ
Ω1

(ˆ
Ω2

lim
n→∞

[
f(x, y)1{

Ω
(n)
1 ×Ω

(n)
2

}(x, y)

]
µ2(dy)

)p
µ1(dx)

] 1
p

= lim
n→∞

[ˆ
Ω1

(ˆ
Ω2

f(x, y)1{
Ω

(n)
1 ×Ω

(n)
2

}(x, y)µ2(dy)

)p
µ1(dx)

] 1
p

≤ lim
n→∞

ˆ
Ω2

(ˆ
Ω1

∣∣∣∣f(x, y)1{
Ω

(n)
1 ×Ω

(n)
2

}(x, y)

∣∣∣∣p µ1(dx)

)1
p

µ2(dy)

=

ˆ
Ω2

(ˆ
Ω1

lim
n→∞

∣∣∣∣f(x, y)1{
Ω

(n)
1 ×Ω

(n)
2

}(x, y)

∣∣∣∣p µ1(dx)

)1
p

µ2(dy)

=

ˆ
Ω2

(ˆ
Ω1

|f(x, y)|p µ1(dx)

)1
p

µ2(dy).

(5.47)

The proof of Proposition 5.3.8 is thus completed.

The next result, Corollary 5.3.9, follows immediately from Proposition 5.3.8.

Corollary 5.3.9. Let T ∈ (0,∞), p ∈ [1,∞), let (Ω,F ,P) be a probability space, and
let Y : [0, T ] × Ω → [0,∞] be a (B([0, T ]) ⊗ F)/B([0,∞])-measurable function. Then it
holds that

(
E
[∣∣∣∣ˆ T

0

Ys ds

∣∣∣∣p])
1
p

≤
ˆ T

0

(
E
[
|Ys|p

])1
p
ds. (5.48)
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Theorem 5.3.10 (Strong convergence of the Euler-Maruyama method). Let T ∈ (0,∞),
Lµ, Lσ ∈ [0,∞), p ∈ [2,∞), d,m,N ∈ N, let (Ω,F , P, (Ft)t∈[0,T ]) be a stochastic basis,
let W : [0, T ] × Ω → R

m be an m-dimensional standard (Ω,F , P, (Ft)t∈[0,T ])-Brownian
motion, let ξ ∈ Lp(P |F0 ; ‖·‖Rd), let µ : Rd → R

d and σ : Rd → R
d×m be functions which

satisfy for all x, y ∈ Rd that

‖µ(x)− µ(y)‖
Rd
≤ Lµ ‖x− y‖Rd , ‖σ(x)− σ(y)‖HS(Rm,Rd) ≤ Lσ ‖x− y‖Rd , (5.49)

let X : [0, T ]× Ω→ R
d be a solution process of the SDE

dXt = µ(Xt) dt+ σ(Xt) dWt, t ∈ [0, T ], X0 = ξ, (5.50)

and let Ȳ : [0, T ] × Ω → R
d be a linearly interpolated Euler-Maruyama approximation

for the SDE (5.50) with time step size T/N. Then

sup
t∈[0,T ]

(
EP
[
‖Xt − Ȳt‖pRd

])1/p
= sup

t∈[0,T ]

‖Xt − Ȳt‖Lp(P ;‖·‖
Rd

)

≤

[
exp

(
√
T +

(
T + T 2

) [
Lµ
√
T + Lσ

√
p (p−1)

2

]2
)
‖X‖C1/2([0,T ],Lp(P ;‖·‖

Rd
))

]
︸ ︷︷ ︸

<∞

1√
N
.

(5.51)

Proof of Theorem 5.3.10. Throughout this proof let X̄ : [0, T ]×Ω→ R
d be the function

which satisfies for all n ∈ {0, 1, . . . , N − 1}, t ∈
[
nT
N
, (n+1)T

N

]
that

X̄t =
(
tN
T
− n

)
X(n+1)T/N +

(
n+ 1− tN

T

)
XnT/N . (5.52)

Next observe that for all t ∈ {0, T
N
, . . . , T} it holds P -a.s. that

Ȳt = ξ +

ˆ t

0

µ
(
ȲbscT/N

)
ds+

ˆ t

0

σ
(
ȲbscT/N

)
dWs. (5.53)

This implies that for all t ∈ {0, T
N
, . . . , T} it holds P -a.s. that

Xt − Ȳt =

ˆ t

0

µ
(
Xs

)
− µ

(
ȲbscT/N

)
ds+

ˆ t

0

σ
(
Xs

)
− σ

(
ȲbscT/N

)
dWs

=

ˆ t

0

µ
(
Xs

)
− µ

(
XbscT/N

)
ds+

ˆ t

0

σ
(
Xs

)
− σ

(
XbscT/N

)
dWs

+

ˆ t

0

µ
(
XbscT/N

)
− µ

(
ȲbscT/N

)
ds+

ˆ t

0

σ
(
XbscT/N

)
− σ

(
ȲbscT/N

)
dWs.

(5.54)
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The triangle inequality hence proves that for all t ∈ {0, T
N
, . . . , T} it holds that

‖Xt − Ȳt‖Lp(P ;‖·‖
Rd

)

≤
ˆ t

0

∥∥µ(Xs

)
− µ

(
XbscT/N

)∥∥
Lp(P ;‖·‖

Rd
)
ds

+

∥∥∥∥ˆ t

0

σ
(
Xs

)
− σ

(
XbscT/N

)
dWs

∥∥∥∥
Lp(P ;‖·‖

Rd
)

+

ˆ t

0

∥∥µ(XbscT/N)− µ(Ȳ N
bscT/N

)∥∥
Lp(P ;‖·‖

Rd
)
ds

+

∥∥∥∥ˆ t

0

σ
(
XbscT/N

)
− σ

(
Ȳ N
bscT/N

)
dWs

∥∥∥∥
Lp(P ;‖·‖

Rd
)

.

(5.55)

The Hölder inequality and inequality (Burkholder-Davis-Gundy inequality I) therefore
imply that for all t ∈ {0, T

N
, . . . , T} it holds that

∥∥Xt − Ȳt
∥∥
Lp(P ;‖·‖

Rd
)

≤
[
T

ˆ t

0

∥∥µ(Xs

)
− µ

(
XbscT/N

)∥∥2

Lp(P ;‖·‖
Rd

)
ds

]1/2

+

[
p (p−1)

2

ˆ t

0

∥∥σ(Xs

)
− σ

(
XbscT/N

)∥∥2

Lp(P ;‖·‖
HS(Rm,Rd)

)
ds

]1/2

+

[
T

ˆ t

0

∥∥µ(XbscT/N)− µ(ȲbscT/N)∥∥2

Lp(P ;‖·‖
Rd

)
ds

]1/2

+

[
p (p−1)

2

ˆ t

0

∥∥σ(XbscT/N)− σ(ȲbscT/N)∥∥2

Lp(P ;‖·‖
HS(Rm,Rd)

)
ds

]1/2

.

(5.56)

Assumption (5.49) hence shows that for all t ∈ {0, T
N
, . . . , T} it holds that

∥∥Xt − Ȳt
∥∥
Lp(P ;‖·‖

Rd
)

≤ Lµ

[
T

ˆ t

0

∥∥Xs −XbscT/N
∥∥2

Lp(P ;‖·‖
Rd

)
ds

]1/2

+ Lσ

[
p (p−1)

2

ˆ t

0

∥∥Xs −XbscT/N
∥∥2

Lp(P ;‖·‖
Rd

)
ds

]1/2

+ Lµ

[
T

ˆ t

0

∥∥XbscT/N − ȲbscT/N∥∥2

Lp(P ;‖·‖
Rd

)
ds

]1/2

+ Lσ

[
p (p−1)

2

ˆ t

0

∥∥XbscT/N − ȲbscT/N∥∥2

Lp(P ;‖·‖
Rd

)
ds

]1/2

.

(5.57)
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This implies that for all t ∈ {0, T
N
, . . . , T} it holds that∥∥Xt − Ȳt

∥∥
Lp(P ;‖·‖

Rd
)

≤
[
Lµ
√
T + Lσ

√
p (p−1)

2

] [ˆ T

0

∥∥∥Xs −XbscT/N
∥∥∥2

Lp(P ;‖·‖
Rd

)
ds

]1/2

+

[
Lµ
√
T + Lσ

√
p (p−1)

2

] [ˆ t

0

∥∥XbscT/N − ȲbscT/N∥∥2

Lp(P ;‖·‖
Rd

)
ds

]1/2

.

(5.58)

The well-known fact that for all n ∈ N, a1, . . . , an ∈ R it holds that

(a1 + . . .+ an)2 ≤ n
(
(a1)2 + . . .+ (an)2) (5.59)

hence proves that for all t ∈ {0, T
N
, . . . , T} it holds that∥∥Xt − Ȳt

∥∥2

Lp(P ;‖·‖
Rd

)

≤ 2

[
Lµ
√
T + Lσ

√
p (p−1)

2

]2 ˆ T

0

∥∥Xs −XbscT/N
∥∥2

Lp(P ;‖·‖
Rd

)
ds

+ 2

[
Lµ
√
T + Lσ

√
p (p−1)

2

]2 ˆ t

0

∥∥XbscT/N − ȲbscT/N∥∥2

Lp(P ;‖·‖
Rd

)
ds.

(5.60)

The discrete Gronwall lemma (see Lemma 4.3.2) therefore shows that

sup
t∈{0,T/N,...,T}

∥∥Xt − Ȳt
∥∥2

Lp(P ;‖·‖
Rd

)
≤ exp

(
2T

[
Lµ
√
T + Lσ

√
p (p−1)

2

]2
)

· 2
[
Lµ
√
T + Lσ

√
p (p−1)

2

]2 [ˆ T

0

∥∥Xs −XbscT/N
∥∥2

Lp(P ;‖·‖
Rd

)
ds

]
.

(5.61)

This implies that

sup
t∈{0,T/N,...,T}

∥∥Xt − Ȳt
∥∥
Lp(P ;‖·‖

Rd
)
≤ exp

(
T

[
Lµ
√
T + Lσ

√
p (p−1)

2

]2
)

·
√

2

[
Lµ
√
T + Lσ

√
p (p−1)

2

] [ˆ T

0

∥∥Xs −XbscT/N
∥∥2

Lp(P ;‖·‖
Rd

)
ds

]1/2

.

(5.62)

This shows that

sup
t∈{0,T/N,...,T}

∥∥Xt − Ȳt
∥∥
Lp(P ;‖·‖

Rd
)
≤ exp

(
T

[
Lµ
√
T + Lσ

√
p (p−1)

2

]2
)

·
√

2

[
Lµ
√
T + Lσ

√
p (p−1)

2

]
‖X‖C1/2([0,T ],Lp(P ;‖·‖

Rd
))

T√
N

≤ exp

((
T + T 2

) [
Lµ
√
T + Lσ

√
p (p−1)

2

]2
)
‖X‖C1/2([0,T ],Lp(P ;‖·‖

Rd
))√

N
.

(5.63)
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The triangle inequality therefore proves that

sup
t∈[0,T ]

∥∥Xt − Ȳt
∥∥
Lp(P ;‖·‖

Rd
)

≤ sup
t∈[0,T ]

∥∥Xt − X̄t

∥∥
Lp(P ;‖·‖

Rd
)
+ sup

t∈[0,T ]

∥∥X̄t − Ȳt
∥∥
Lp(P ;‖·‖

Rd
)

≤ ‖X‖C1/2([0,T ],Lp(P ;‖·‖
Rd

))

√
T√
N

+ sup
t∈[0,T ]

∥∥X̄t − Ȳt
∥∥
Lp(P ;‖·‖

Rd
)

≤

[
√
T + exp

((
T + T 2

) [
Lµ
√
T + Lσ

√
p (p−1)

2

]2
)]
‖X‖C1/2([0,T ],Lp(P ;‖·‖

Rd
))√

N

≤ exp

(
√
T +

(
T + T 2

) [
Lµ
√
T + Lσ

√
p (p−1)

2

]2
)
‖X‖C1/2([0,T ],Lp(P ;‖·‖

Rd
))√

N
.

(5.64)

The proof of Theorem 5.3.10 is thus completed.

5.3.3 Uniform strong convergence of the Euler-Maruyama method

Theorem 5.3.11 (Uniform strong convergence of the Euler-Maruyama method). Let
T ∈ (0,∞), p ∈ [2,∞), d,m ∈ N, let (Ω,F , P, (Ft)t∈[0,T ]) be a stochastic basis, let
W : [0, T ] × Ω → R

m be an m-dimensional standard (Ω,F , P, (Ft)t∈[0,T ])-Brownian mo-
tion, let ξ ∈ Lp(P |F0 ; ‖·‖Rd), let µ : Rd → R

d and σ : Rd → R
d×m be globally Lipschitz

continuous functions, let X : [0, T ]× Ω→ R
d be a solution process of the SDE

dXt = µ(Xt) dt+ σ(Xt) dWt, t ∈ [0, T ], X0 = ξ, (5.65)

and for every N ∈ N let Ȳ N : [0, T ]×Ω→ R
d be a linearly interpolated Euler-Maruyama

approximation for the SDE (5.65) with time step size T/N. Then there exists a real
number C ∈ R such that for all N ∈ N it holds that(

EP

[
sup
t∈[0,T ]

‖Xt − Ȳ N
t ‖

p
Rd

]) 1
p

=

∥∥∥∥∥ sup
t∈[0,T ]

∥∥Xt − Ȳ N
t

∥∥
Rd

∥∥∥∥∥
Lp(P ;|·|

R
)

≤
C
√

1 + ln(N)√
N

.

(5.66)

Remark 5.3.12. The proof of Theorem 5.3.11 can be performed similarly as Theo-
rem 5.3.10 but uses inequality (Burkholder-Davis-Gundy inequality II) instead of in-
equality (Burkholder-Davis-Gundy inequality I) and also additionally expoits an argu-
ment from [Müller-Gronbach(2002)].
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5.4 Strong Lp-convergence with order α > 1/p implies
almost sure convergence

In this section a relation between strong Lp-convergence for p ∈ (0,∞) and almost
sure convergence is presented. To be more precise, Lemma 5.4.1 below shows for every
p, β ∈ (0,∞) with β > 1/p that strong Lp-convergence with order β implies for every
arbitrarily small ε ∈ (0, β − 1/p) almost sure convergence with order β − 1/p− ε

Lemma 5.4.1 and its proof are slightly modified versions of Lemma 3.21
and its proof in [Hutzenthaler and Jentzen(2012)] respectively. Lemma 3.21
in [Hutzenthaler and Jentzen(2012)] is a slight generalization of Lemma 2.1 in
[Kloeden and Neuenkirch(2007)]. In particular, the last statement in Lemma 5.4.1 (see
(5.69)) is precisely the statement of Lemma 2.1 in [Kloeden and Neuenkirch(2007)].

Lemma 5.4.1 (Lp-convergence with order α ∈ (1/p,∞) implies almost sure conver-
gence). Let (Ω,F , P ) be a probability space and let YN : Ω → R, N ∈ N, be F/B(R)-
measurable functions. Then

(i) it holds for all p ∈ (0,∞), α ∈ (1/p,∞), β ∈ (0, α− 1/p) that

∥∥∥∥sup
N∈N

(
Nβ · |YN |

)∥∥∥∥
Lp(P ;|·|R)

≤

[
∞∑
N=1

N (β−α)p

]1/p

︸ ︷︷ ︸
<∞

[
sup
N∈N

(
Nα · ‖YN‖Lp(P ;|·|R)

)]
,

(5.67)

(ii) it holds for all p ∈ (0,∞), α ∈ (1/p,∞), β ∈ (0, α − 1/p) with
supN∈N(Nα ‖YN‖Lp(P ;|·|R)) <∞ that

P

(
sup
N∈N

(
Nβ · |YN |

)
<∞

)
= 1, (5.68)

and

(iii) it holds for all α ∈ (0,∞), β ∈ (0, α) with ∀ p ∈
(0,∞) : supN∈N(Nα ‖YN‖Lp(P ;|·|R)) <∞ that

P

(
sup
N∈N

(
Nβ · |YN |

)
<∞

)
= 1. (5.69)

Proof of Lemma 5.4.1. Note that for all p ∈ (0,∞), α ∈ R, β ∈ (−∞, α − 1/p) it holds
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that

EP
[{

sup
N∈N

(
Nβ · |YN |

)}p]
= EP

[
sup
N∈N

(
Nβp · |YN |p

)]
≤ EP

[
∞∑
N=1

(
Nβp · |YN |p

)]
=

∞∑
N=1

(
Nβp · EP

[
|YN |p

])
≤

(
∞∑
N=1

N (β−α)p

)(
sup
N∈N

Nαp · EP
[
|YN |p

])
.

(5.70)

This proves inequality (5.67). The assertions in (5.68) and (5.69) follow immediately
from inequality (5.67). The proof of Lemma 5.4.1 is thus completed.

5.4.1 Almost sure convergence of the Euler-Maruyama method

Combining Lemma 5.4.1 with Theorem 5.3.11 results in the following corollary.

Corollary 5.4.2 (Almost sure convergence of the Euler-Maruyama scheme). Let
T ∈ (0,∞), d,m ∈ N, let (Ω,F , P, (Ft)t∈[0,T ]) be a stochastic basis, let W : [0, T ] ×
Ω → R

m be an m-dimensional standard (Ω,F , P, (Ft)t∈[0,T ])-Brownian motion, let
ξ ∈ ∩p∈(0,∞)Lp(P |F0 ; ‖·‖Rd), let µ : Rd → R

d and σ : Rd → R
d×m be globally Lipschitz

continuous functions, let X : [0, T ]× Ω→ R
d be a solution process of the SDE

dXt = µ(Xt) dt+ σ(Xt) dWt, t ∈ [0, T ], X0 = ξ (5.71)

on (Ω,F , P, (Ft)t∈[0,T ]), and for every N ∈ N let Ȳ N : [0, T ] × Ω → R
d be a linearly

interpolated Euler-Maruyama approximation for the SDE (5.71) with time step size T/N.
Then for every ε ∈ (0, 1/2) there exists an F/B([0,∞))-measurable function C : Ω →
[0,∞) such that for all N ∈ N it holds that

P

(
sup
t∈[0,T ]

∥∥Xt − Ȳ N
t

∥∥
Rd
≤ C ·N(ε− 1

2)

)
= 1. (5.72)

5.5 Numerical methods for SDEs with non-globally
Lipschitz continuous coefficient functions

5.5.1 Almost sure convergence of the Euler-Maryuama method
revisited

The assumptions of Corollary 5.4.2 can be significantly relaxed. In particular, the coeffi-
cient functions µ and σ of the SDE (5.2) do not need to be globally Lipschitz continuous.
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This is subject of the next theorem which is a slightly modified version of Theorem 2.4
in [Gyöngy(1998)].

Theorem 5.5.1 (Almost sure convergence of the Euler-Maruyama scheme). Assume
the setting in Section 5.1 and for every N ∈ N let Ȳ N : [0, T ] × Ω → R

d be a linearly
interpolated Euler-Maruyama approximation for the SDE

dXt = µ̄(Xt) dt+ σ̄(Xt) dWt, t ∈ [0, T ], X0 = ξ (5.73)

with time step size T/N on (Ω,F , P, (Ft)t∈[0,T ]). Then for every ε ∈ (0, 1/2) there exist an
F/B([0,∞))-measurable function C : Ω→ [0,∞) such that for all N ∈ N it holds that

P

(
sup
t∈[0,T ]

∥∥Xt − Ȳ N
t

∥∥
Rd
≤ C ·N(ε− 1

2)

)
= 1. (5.74)

5.5.2 Strong and numerically weak divergence of the
Euler-Maruyama scheme

Theorems 5.3.10 and 5.3.11 can not be generalized to the case where µ
and σ are merely locally Lipschitz continuous. This is the subject of The-
orem 5.5.2 below. Theorem 5.5.2 is a special case of Theorem 2.1 in
[Hutzenthaler et al.(2011b)Hutzenthaler, Jentzen, and Kloeden] (cf. also Theorem 2.1 in
[Hutzenthaler et al.(2011a)Hutzenthaler, Jentzen, and Kloeden]).

Theorem 5.5.2 (Strong and weak divergence of the Euler method for SDEs with su-
perlinearly growing coefficients). Let T ∈ (0,∞), let (Ω,F , P, (Ft)t∈[0,T ]) be a stochas-
tic basis, let ξ ∈ M(F0,B(R)), µ, σ ∈ M(B(R),B(R)) satisfy P

(
σ(ξ) 6= 0

)
> 0, let

W : [0, T ] × Ω → R be a one-dimensional standard (Ω,F , P, (Ft)t∈[0,T ])-Brownian mo-
tion, let X : [0, T ]× Ω→ R be a solution process of the SDE

dXt = µ(Xt) dt+ σ(Xt) dWt, t ∈ [0, T ], X0 = ξ (5.75)

on (Ω,F , P, (Ft)t∈[0,T ]), for every N ∈ N let Ȳ N : [0, T ]× Ω→ R a linearly interpolated
Euler-Maruyama approximation for the SDE (5.75) with time step size T/N, and let
p, ε ∈ (0,∞) satisfy EP

[
|XT |p

]
<∞ and ∀x ∈ (−∞,−1/ε] ∪ [1/ε,∞) :

|µ(x)|+ |σ(x)| ≥ ε |x|(1+ε) . (5.76)

Then it holds for all q ∈ (0, p] that

lim
N→∞

EP
[∣∣XT − Ȳ N

T

∣∣q] =∞ and lim
N→∞

EP
[∣∣Ȳ N

T

∣∣q] =∞ 6= EP
[∣∣XT

∣∣q]. (5.77)

Theorem 5.5.2 applies, for instance, to the stochastic Ginzburg-Landau equation in
Subsection 4.7.4. Long time divergence results for Euler’s method as T → ∞ can be
found in Mattingly et al. [Mattingly et al.(2002)Mattingly, Stuart, and Higham]
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and in the references mentioned therein (see also Milstein &
Tretyakov [Milstein and Tretyakov(2004), Milstein and Tretyakov(2005)] for fur-
ther remarks on this topic). Theorem 5.5.2 is proved as Theorem 2.1 in
[Hutzenthaler et al.(2011b)Hutzenthaler, Jentzen, and Kloeden].

5.5.3 Drift-implicit Euler-Maruyama scheme

Definition 5.5.3 (Drift-implicit Euler-Maruyama approximation). Let T ∈ (0,∞),
d,m,N ∈ N, µ ∈ M(B(Rd),B(Rd)), σ ∈ M(B(Rd),B(Rd×m)), let (Ω,F , P, (Ft)t∈[0,T ])
be a stochastic basis, let ξ ∈ L0(P |F0 ; ‖·‖Rd), and let W : [0, T ] × Ω → R

m be an m-
dimensional standard (Ω,F , P, (Ft)t∈[0,T ])-Brownian motion. Then we say that Y is a
drift-implicit Euler-Maruyama approximation for the SDE

dXt = µ(Xt) dt+ σ(Xt) dWt, t ∈ [0, T ], X0 = ξ (5.78)

with time step size T/N on (Ω,F , P, (Ft)t∈[0,T ]) (we say that Y is a drift-implicit Euler-
Maruyama approximation for the SDE

dXt = µ(Xt) dt+ σ(Xt) dWt, t ∈ [0, T ], X0 = ξ (5.79)

with time step size T/N) if and only if Y ∈M({0, 1, . . . , N}×Ω,Rd) is the function from
{0, 1, . . . , N} × Ω to Rd which satisfies for all n ∈ {0, 1, . . . , N − 1} that Y0 = ξ and

Yn+1 = Yn + µ
(
Yn+1

)
T
N

+ σ
(
Yn
)(
W (n+1)T

N

−WnT
N

)
. (5.80)

Remark 5.5.4. Sometimes drift-implicit Euler-Maruyama approximations
are also referred to as semi-implicit Euler-Maruyama approximations or
Backward Euler approximations in the literature; cf., e.g., [Hu(1996)] and
[Higham et al.(2002)Higham, Mao, and Stuart].

Proposition 5.5.5 (Unique existence of drift-implicit Euler-Maruyama approxima-
tions). Let d ∈ N, h ∈ (0,∞), L ∈ R satisfy Lh < 1 and let µ : Rd → R

d be a
locally Lipschitz continuous function which satisfies for all x, y ∈ Rd that

〈x− y, µ(x)− µ(y)〉
Rd
≤ L ‖x− y‖2

Rd
. (5.81)

Then it holds that the function Rd 3 x 7→ x − µ(x)h ∈ Rd is bijective, that is, it holds
for all y ∈ Rd that #Rd

({
x ∈ Rd : x = y + µ(x)h

})
= 1.

In many situations the drift-implicit Euler approximations converge strongly to the
solution process of the SDE (5.2) although the (explicit) Euler-Maruyama approxi-
mations fail to converge strongly (see Theorem 5.5.2 above). Assumptions that are
sufficient to ensure that the drift-implicit Euler-Maruyama approximations converge
strongly to the solution process of the SDE (5.2) can, e.g., be found in [Hu(1996)],
[Higham et al.(2002)Higham, Mao, and Stuart] and [Hutzenthaler and Jentzen(2012)].
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Exercise 5.5.6. Let µ ∈ C1(R,R), L ∈ R. Prove that supx∈R µ
′(x) ≤ L if and only if

∀x, y ∈ R : (x− y) · (µ(x)− µ(y)) ≤ L (x− y)2.

5.5.4 Increment-tamed Euler-Maruyama scheme

In this subsection increment-tamed Euler-Maryuama approximations are presented; see
[Hutzenthaler and Jentzen(2012)].

Definition 5.5.7 (Increment-tamed Euler-Maruyama approximation). Let T ∈ (0,∞),
d,m,N ∈ N, µ ∈ M(B(Rd),B(Rd)), σ ∈ M(B(Rd),B(Rd×m)), let (Ω,F , P, (Ft)t∈[0,T ])
be a stochastic basis, let ξ ∈ L0(P |F0 ; ‖·‖Rd), and let W : [0, T ] × Ω → R

m be an m-
dimensional standard (Ω,F , P, (Ft)t∈[0,T ])-Brownian motion. Then we say that Y is an
increment-tamed Euler-Maruyama approximation for the SDE

dXt = µ(Xt) dt+ σ(Xt) dWt, t ∈ [0, T ], X0 = ξ (5.82)

with time step size T/N on (Ω,F , P, (Ft)t∈[0,T ]) (we say that Y is an increment-tamed
Euler-Maruyama approximation for the SDE

dXt = µ(Xt) dt+ σ(Xt) dWt, t ∈ [0, T ], X0 = ξ (5.83)

with time step size T/N) if and only if Y ∈M({0, 1, . . . , N}×Ω,Rd) is the function from
{0, 1, . . . , N} × Ω to Rd which satisfies for all n ∈ {0, 1, . . . , N − 1} that Y0 = ξ and

Yn+1 = Yn +
µ(Yn) T

N
+ σ(Yn) (W(n+1)T/N −WnT/N)

max
{

1, T
N

∥∥µ(Yn) T
N

+ σ(Yn) (W(n+1)T/N −WnT/N)
∥∥
Rd

} . (5.84)

Remark 5.5.8 (Implementation of the increment-tamed Euler-Maruyama scheme).
Let T ∈ (0,∞), d,m,N ∈ N, let (Ω,F , P, (Ft)t∈[0,T ]) be a stochastic basis, let
ξ ∈ M(F0,B(Rd)), µ ∈ M(B(Rd),B(Rd)), σ ∈ M(B(Rd),B(Rd×m)), let W : [0, T ] ×
Ω → R

m be an m-dimensional standard (Ω,F , P, (Ft)t∈[0,T ])-Brownian motion, and let
Y : {0, 1, . . . , N} × Ω→ R

d be an increment-tamed Euler-Maruyama approximation for
the SDE

dXt = µ(Xt) dt+ σ(Xt) dWt, t ∈ [0, T ], X0 = ξ (5.85)

with time step size T/N. Then observe that for all n ∈ {0, 1, . . . , N − 1} it holds that

Yn+1 = Yn

+ 1{∥∥µ(Yn) T
N

+σ(Yn) (W (n+1)T
N

−WnT
N

)

∥∥
Rd
≤N
T

} [µ(Yn) T
N

+ σ(Yn) (W (n+1)T
N

−WnT
N

)
]

+ 1{∥∥µ(Yn) T
N

+σ(Yn) (W (n+1)T
N

−WnT
N

)

∥∥
Rd
>N
T

} N
T

[
µ(Yn) T

N
+ σ(Yn) (W (n+1)T

N

−WnT
N

)
]

∥∥µ(Yn) T
N

+ σ(Yn) (W (n+1)T
N

−WnT
N

)
∥∥
Rd

.

(5.86)
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The scheme in Definition 5.5.7 is only one possible suggestion of an explicit
scheme that overcomes the divergence behaviour of the Euler-Maruyama method
in the case of SDEs with superlinearly growing coefficients (see Theorem 5.5.2
above). In particular, the norm ‖·‖

Rd
in Definition 5.5.7 could be replaced by

any other norm on the Rd and further “suitable tamings” are possible, cf., e.g.,
[Roberts and Tweedie(1996), Milstein et al.(1998)Milstein, Platen, and Schurz,
Hutzenthaler et al.(2012)Hutzenthaler, Jentzen, and Kloeden,
Hutzenthaler and Jentzen(2012)] and the references mentioned therein.

In many situations the increment-tamed Euler-Maruyama approximations in (5.84) con-
verge strongly to the solution process of the SDE (5.2) although the (explicit) Euler-
Maruyama approximations fail to converge strongly (see Theorem 5.5.2 above). As-
sumptions that are sufficient to ensure that the increment-tamed Euler-Maruyama ap-
proximations converge strongly to the solution process of the SDE (5.2) can be found in
[Hutzenthaler and Jentzen(2012)].

Exercise 5.5.9 (Increment-tamed Euler-Maruyama method). In this exercise we do
not distinguish between pseudo random numbers and actual random numbers. Let T ∈
(0,∞), d,m,N ∈ N, ξ ∈ Rd, µ ∈ M(B(Rd),B(Rd)), σ ∈ M(B(Rd),B(Rd×m)), let
(Ω,F , P, (Ft)t∈[0,T ]) be a stochastic basis, let W : [0, T ]× Ω→ R

m be an m-dimensional
standard (Ω,F , P, (Ft)t∈[0,T ])-Brownian motion, and let Y : {0, 1, . . . , N} × Ω → R

d be
an increment-tamed Euler-Maruyama approximation for the SDE

dXt = µ(Xt) dt+ σ(Xt) dWt, t ∈ [0, T ], X0 = ξ (5.87)

with time step size T/N on (Ω,F , P, (Ft)t∈[0,T ]) (see Definition 5.5.7). Write a Matlab
function IncrementTamed(T,d,m,N,ξ,µ,σ) with input T ∈ (0,∞), d,m,N ∈ N,
ξ ∈ Rd, µ ∈M(B(Rd),B(Rd)), σ ∈M(B(Rd),B(Rd×m)) and output a realization of an
YN(P )B(Rd)-distributed random variable.

5.6 Stochastic Taylor expansions and higher order
numerical methods for SDEs

In Theorem 5.3.10 above it has been shown that the Euler-Maruyama method converges,
under suitable assumptions, at time T in the strong L2-sense with order 1/2 to the solution
process of the SDE under consideration. In this section we will derive other numerical
methods that converge, under suitable assumptions, with a higher order than 1/2 to the
solution process of the SDE under consideration. These “higher order schemes” are
based on certain stochastic Taylor expansions which will be presented first. For this
we assume the setting in Section 5.1 and observe that Itô’s formula implies that for all
f =

(
f(x1, . . . , xd)

)
(x1,...,xd)∈O ∈ ∪k∈NC

2(O,Rk), t0, t ∈ [0, T ] with t0 ≤ t it holds P -a.s.
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that

f(Xt)

= f(Xt0) +

ˆ t

t0

[
f ′(Xs)µ(Xs) +

1

2

m∑
i=1

f ′′(Xs)
(
σi(Xs), σi(Xs)

)]
ds

+
m∑
i=1

ˆ t

t0

f ′(Xs)σi(Xs) dW
(i)
s

= f(Xt0) +
m∑
i=1

ˆ t

t0

[
d∑

k=1

(
∂
∂xk

f
)
(Xs) · σk,i(Xs)

]
dW (i)

s

+

ˆ t

t0

[
d∑

k=1

(
∂
∂xk

f
)
(Xs) · µk(Xs) + 1

2

m∑
i=1

d∑
k,l=1

(
∂2

∂xk∂xl
f
)
(Xs) · σk,i(Xs) · σl,i(Xs)

]
ds.

(5.88)

Equation (5.88) is Itô’s formula in the special case where the considered Itô process is a
solution process of an SDE.

5.6.1 Generator and noise operators associated to an SDE

In this subsection we introduce a few differential operators that allow us to shorten
the presentation of identity (5.88) and that play an important role in the analysis of
solutions of SDEs.

Definition 5.6.1 (Generator of SDEs). Let d,m ∈ N, let O ⊆ Rd be an open set, and
let µ : O → R

d and σ = (σi)i∈{1,2,...,m} = (σk,i)k∈{1,...,d},i∈{1,...,m} : O → R
d×m be functions.

Then we denote by

L0
µ,σ : ∪k∈N C2(O,Rk)→ ∪k∈NM(O,Rk) (5.89)

the function which satisfies for all f ∈ ∪k∈NC2(O,Rk), x ∈ O that

(
L0
µ,σf

)
(x) = f ′(x)µ(x) +

1

2

m∑
i=1

f ′′(x)
(
σi(x), σi(x)

)
=

d∑
k=1

(
∂
∂xk

f
)
(x) · µk(x) +

1

2

m∑
i=1

d∑
k,l=1

(
∂2

∂xk∂xl
f
)
(x) · σk,i(x) · σl,i(x)

(5.90)

and we call L0
µ,σ the 0-th noise operator associated to (µ, σ) (we call L0

µ,σ the generator
associated to (µ, σ)).
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Definition 5.6.2 (Noise operator associated to a stochastic differential equation). Let
d,m ∈ N, i ∈ {1, 2, . . . ,m}, let O ⊆ R

d be an open set, and let µ : O → R
d and

σ = (σi)i∈{1,2,...,m} = (σk,i)k∈{1,...,d},i∈{1,...,m} : O → R
d×m be functions. Then we denote

by
Liµ,σ : ∪k∈N C1(O,Rk)→ ∪k∈NM(O,Rk) (5.91)

the function which satisfies for all f ∈ ∪k∈NC1(O,Rk), x ∈ O that

(
Liµ,σf

)
(x) = f ′(x)σi(x) =

d∑
k=1

(
∂
∂xk

f
)
(x) · σk,i(x) (5.92)

and we call Liµ,σ the i-th noise operator associated to (µ, σ).

In the next step we employ Definitions 5.6.1 and 5.6.2 to shorten the presentation of
identity (5.88). More precisely, assume the setting in Section 5.1 and observe that (5.88)
and Definitions 5.6.1 and 5.6.2, ensure that for all f ∈ ∪k∈NC2(O,Rk), t0, t ∈ [0, T ] with
t0 ≤ t it holds P -a.s. that

f(Xt) = f(Xt0) +

ˆ t

t0

(L0
µ,σf)(Xs) ds+

m∑
i=1

ˆ t

t0

(Liµ,σf)(Xs) dW
(i)
s . (5.93)

5.6.2 Taylor approximations

Throughout Section 5.6.2 assume the setting in Section 5.1, assume that µ ∈ C∞(O,Rd)
and σ ∈ C∞(O,Rd×m), let k ∈ N, f ∈ C∞(O,Rk), t0 ∈ [0, T ], and let W (0) : [0, T ]→ R

be the function which satisfies for all t ∈ [0, T ] that W
(0)
t = t. Equation (5.93) and the

fact that ∀ t ∈ [0, T ] : W
(0)
t = t show that for all t ∈ [t0, T ] it holds P -a.s. that

f(Xt) = f(Xt0) +
m∑
i=0

ˆ t

t0

(Liµ,σf)(Xs) dW
(i)
s . (5.94)

5.6.2.1 Trivial Taylor approximations

Equation (5.94) assures that for all s0 ∈ [t0, T ] it holds P -a.s. that

f(Xs0) = f(Xt0)︸ ︷︷ ︸
Taylor approximation

+
m∑

α1=0

ˆ s0

t0

(Lα1
µ,σf)(Xs1) dW

(α1)
s1︸ ︷︷ ︸

remainder of the Taylor expansion

.
(5.95)

This suggests the approximation

f(Xs0) ≈ f(Xt0) (5.96)

for s0 ∈ [t0, T ]. In the case where f = O 3 x 7→ x ∈ Rd, (5.96) reduces to

Xs0 ≈ Xt0 (5.97)

for s0 ∈ [t0, T ].
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5.6.2.2 Taylor approximations corresponding to the Euler-Maruyama scheme

In the next step again equation (5.94) (again Itô’s formula) implies that for all s1 ∈
[t0, T ], α1 ∈ {0, 1, . . . ,m} it holds P -a.s. that

(Lα1
µ,σf)(Xs1) = (Lα1

µ,σf)(Xt0) +
m∑

α2=0

ˆ s1

t0

(
Lα2
µ,σ(Lα1

µ,σf)
)
(Xs2)︸ ︷︷ ︸

=(L
α2
µ,σL

α1
µ,σf)(Xs2 )

dW (α2)
s2

(5.98)

Putting (5.98) into (5.95) shows that for all s0 ∈ [t0, T ] it holds P -a.s. that

f(Xs0) = f(Xt0) +
m∑

α1=0

ˆ s0

t0

(Lα1
µ,σf)(Xt0) dW

(α1)
s1︸ ︷︷ ︸

Taylor approximation

+
m∑

α1,α2=0

ˆ s0

t0

ˆ s1

t0

(Lα2
µ,σL

α1
µ,σf)(Xs2) dW

(α2)
s2

dW (α1)
s1︸ ︷︷ ︸

remainder of the Taylor expansion

.

(5.99)

Identity (5.99) suggests the approximation

f(Xs0) ≈ f(Xt0) +
m∑

α1=0

ˆ s0

t0

(Lα1
µ,σf)(Xt0) dW

(α1)
s1

= f(Xt0) +
m∑

α1=0

(Lα1
µ,σf)(Xt0) ·

ˆ s0

t0

dW (α1)
s1

= f(Xt0) +
m∑

α1=0

(Lα1
µ,σf)(Xt0)

(
W (α1)
s0
−W (α1)

t0

)
(5.100)

P -a.s. for s0 ∈ [t0, T ]. In the case where f = O 3 x 7→ x ∈ Rd, (5.100) reads as

Xs0 ≈ Xt0 +
m∑

α1=0

(Lα1
µ,σf)(Xt0)

(
W (α1)
s0
−W (α1)

t0

)
= Xt0 + (L0

µ,σf)(Xt0)
(
W (0)
s0
−W (0)

t0

)
+

m∑
i=1

(Liµ,σf)(Xt0)
(
W (i)
s0
−W (i)

t0

)
= Xt0 + µ(Xt0) (s0 − t0) +

m∑
i=1

σi(Xt0)
(
W (i)
s0
−W (i)

t0

)
= Xt0 + µ(Xt0) (s0 − t0) + σ(Xt0)

(
Ws0 −Wt0

)
(5.101)

P -a.s. for s0 ∈ [t0, T ].
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5.6.2.3 Taylor approximations corresponding to the Milstein scheme

Next note that again equation (5.94) (again Itô’s formula) implies that for all s2 ∈ [t0, T ],
α1, α2 ∈ {0, 1, . . . ,m} it holds P -a.s. that

(Lα2
µ,σL

α1
µ,σf)(Xs2) = (Lα2

µ,σL
α1
µ,σf)(Xt0) +

m∑
α3=0

ˆ s2

t0

(Lα3
µ,σL

α2
µ,σL

α1
µ,σf)(Xs3) dW

(α3)
s3

. (5.102)

Putting (5.102) into (5.99) proves that for all s0 ∈ [t0, T ] it holds P -a.s. that

f(Xs0) = f(Xt0) +
m∑

α1=0

(Lα1
µ,σf)(Xt0) ·

ˆ s0

t0

dW (α1)
s1︸ ︷︷ ︸

Taylor approximation

+
m∑

α1,α2=1

(Lα2
µ,σL

α1
µ,σf)(Xt0) ·

ˆ s0

t0

ˆ s1

t0

dW (α2)
s2

dW (α1)
s1︸ ︷︷ ︸

Taylor approximation cont’d

+
∑

α1,α2∈{0,1,...,m}
α1·α2=0

ˆ s0

t0

ˆ s1

t0

(Lα2
µ,σL

α1
µ,σf)(Xs2) dW

(α2)
s2

dW (α1)
s1

︸ ︷︷ ︸
remainder of the Taylor expansion

+
m∑

α1,α2=1

m∑
α3=0

ˆ s0

t0

ˆ s1

t0

ˆ s2

t0

(Lα3
µ,σL

α2
µ,σL

α1
µ,σf)(Xs3) dW

(α3)
s3

dW (α2)
s2

dW (α1)
s1︸ ︷︷ ︸

remainder of the Taylor expansion cont’d

.

(5.103)

This suggests the approximation

f(Xs0) ≈ f(Xt0) +
m∑

α1=0

(Lα1
µ,σf)(Xt0) ·

ˆ s0

t0

dW (α1)
s1

+
m∑

α1,α2=1

(Lα2
µ,σL

α1
µ,σf)(Xt0) ·

ˆ s0

t0

ˆ s1

t0

dW (α2)
s2

dW (α1)
s1

= f(Xt0) +
m∑

α1=0

(Lα1
µ,σf)(Xt0)

(
W (α1)
s0
−W (α1)

t0

)
+

m∑
α1,α2=1

(Lα2
µ,σL

α1
µ,σf)(Xt0) ·

ˆ s0

t0

ˆ s1

t0

dW (α2)
s2

dW (α1)
s1

(5.104)
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P -a.s. for s0 ∈ [t0, T ]. In the case where f = O 3 x 7→ x ∈ Rd, (5.104) reads as

Xs0 ≈ Xt0 +
m∑

α1=0

(Lα1
µ,σf)(Xt0)

(
W (α1)
s0
−W (α1)

t0

)
+

m∑
α1,α2=1

(Lα2
µ,σL

α1
µ,σf)(Xt0) ·

ˆ s0

t0

ˆ s1

t0

dW (α2)
s2

dW (α1)
s1

= Xt0 + µ(Xt0) (s0 − t0) + σ(Xt0)
(
Ws0 −Wt0

)
+

m∑
α1,α2=1

(σα1)
′(Xt0)σα2(Xt0) ·

ˆ s0

t0

ˆ s1

t0

dW (α2)
s2

dW (α1)
s1

(5.105)

P -a.s. for s0 ∈ [t0, T ]. This stochastic Taylor approximation motivates the scheme pre-
sented in the following subsection.

5.6.3 Milstein scheme

In this subsection we present the Milstein scheme (see [Milstein(1974)]), which is beside
the Euler-Maruyama scheme probably the most known numerical scheme for stochastic
differential equations.

Definition 5.6.3 (Milstein approximation). Let T ∈ (0,∞), d,m,N ∈ N, µ ∈
M(B(Rd),B(Rd)), σ = (σj)j∈{1,...,m} ∈ C1(Rd,Rd×m), let (Ω,F , P, (Ft)t∈[0,T ]) be a
stochastic basis, let ξ ∈M(F0,B(Rd)), and let W : [0, T ]×Ω→ R

m be an m-dimensional
standard (Ω,F , P, (Ft)t∈[0,T ])-Brownian motion. Then we say that Y is a Milstein ap-
proximation for the SDE

dXt = µ(Xt) dt+ σ(Xt) dWt, t ∈ [0, T ], X0 = ξ (5.106)

with time step size T/N on (Ω,F , P, (Ft)t∈[0,T ]) (we say that Y is a Milstein approximation
for the SDE

dXt = µ(Xt) dt+ σ(Xt) dWt, t ∈ [0, T ], X0 = ξ (5.107)

with time step size T/N) if and only if Y ∈M({0, 1, . . . , N} ×Ω,Rd) is an (Rd,B(Rd))-
valued stochastic process with time set {0, 1, . . . , N} on (Ω,F , P ) which satisfies that for
all n ∈ {0, 1, . . . , N − 1} it holds P -a.s. that Y0 = ξ and

Yn+1 = Yn + µ(Yn) T
N

+ σ(Yn)
(
W (n+1)T

N

−WnT
N

)
+

m∑
i,j=1

(σi)
′(Yn)σj(Yn)

ˆ (n+1)T
N

nT
N

ˆ s

nT
N

dW (j)
u dW (i)

s .
(5.108)
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Definition 5.6.4 (Linearly-interpolated Milstein approximation). Let T ∈ (0,∞),
d,m,N ∈ N, µ ∈ M(B(Rd),B(Rd)), σ = (σj)j∈{1,...,m} ∈ C1(Rd,Rd×m), let
(Ω,F , P, (Ft)t∈[0,T ]) be a stochastic basis, let ξ ∈M(F0,B(Rd)), and let W : [0, T ]×Ω→
R
m be an m-dimensional standard (Ω,F , P, (Ft)t∈[0,T ])-Brownian motion. Then we say

that Y is a linearly-interpolated Milstein approximation for the SDE

dXt = µ(Xt) dt+ σ(Xt) dWt, t ∈ [0, T ], X0 = ξ (5.109)

with time step size T/N on (Ω,F , P, (Ft)t∈[0,T ]) (we say that Y is a linearly-interpolated
Milstein approximation for the SDE

dXt = µ(Xt) dt+ σ(Xt) dWt, t ∈ [0, T ], X0 = ξ (5.110)

with time step size T/N) if and only if Y ∈ M([0, T ] × Ω,Rd) is an (Rd,B(Rd))-
valued stochastic process with time set [0, T ] on (Ω,F , P ) which satisfies that for all

n ∈ {0, 1, . . . , N − 1}, t ∈
[
nT
N
, (n+1)T

N

]
it holds P -a.s. that

Yt = YnT
N

+
(
tN
T
− n

) [
µ
(
YnT
N

)
T
N

+ σ
(
YnT
N

)(
W (n+1)T

N

−WnT
N

)]
+
(
tN
T
− n

) [ m∑
i,j=1

(σi)
′(YnT

N

)
σj
(
YnT
N

) ˆ (n+1)T
N

nT
N

ˆ s

nT
N

dW (j)
u dW (i)

s

]
.

(5.111)

5.6.3.1 Strong convergence of the Milstein scheme

Under suitable assumptions, the Milstein approximations converge at time T in the
strong Lp-sense to the solution process X : [0, T ]×Ω→ D of the SDE (5.2). This is the
subject of Theorem 5.6.5 below which is a slightly modified version of the convergence
results in [Kloeden and Platen(1992)].

Theorem 5.6.5 (Strong convergence of the Milstein method). Let T ∈ (0,∞), d,m,N ∈
N, p ∈ [2,∞), let (Ω,F , P, (Ft)t∈[0,T ]) be a stochastic basis, let ξ ∈ L2p(P |F0 ; ‖·‖Rd), let
W : [0, T ] × Ω → R

m be an m-dimensional standard (Ω,F , P, (Ft)t∈[0,T ])-Brownian mo-
tion, let µ : Rd → R

d and σ : Rd → R
d×m be twice continuously differentiable functions

with globally bounded derivatives, let X : [0, T ] × Ω → R
d be a solution process of the

SDE
dXt = µ(Xt) dt+ σ(Xt) dWt, t ∈ [0, T ], X0 = ξ (5.112)

on (Ω,F , P, (Ft)t∈[0,T ]), and for every N ∈ N let Y N : [0, T ] × Ω → R
d be a linearly-

interpolated Milstein approximation for the SDE (5.112) with time step size T/N. Then
there exists a real number C ∈ R such that for all N ∈ N it holds that(

EP
[∥∥XT − Y N

T

∥∥p
Rd

])1
p =

∥∥XT − Y N
T

∥∥
Lp(P ;‖·‖

Rd
)
≤ C

N
. (5.113)

The proof of Theorem 5.6.5 is omitted. Theorem 5.6.5 shows that under the assumptions
of Theorem 5.6.5 it holds that the linearly-interpolated Milstein approximations (Y N)N∈N
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converge at time T in the strong Lp-sense with order 1 to X.

5.6.3.2 Simulation of sample paths of Milstein approximations

In general, the Milstein scheme is difficult/impossible to simulate/implement. How-
ever, under a suitable further assumption (see (Commutative noise) below), the Milstein
scheme can be simulated efficiently. This is the subject of the next proposition.

Proposition 5.6.6. Let T ∈ (0,∞), d,m,N ∈ N, µ ∈ M(B(Rd),B(Rd)),
σ = (σj)j∈{1,...,m} ∈ C1(Rd,Rd×m), let (Ω,F , P, (Ft)t∈[0,T ]) be a stochastic basis,
let ξ ∈ M(F0,B(Rd)), let W : [0, T ] × Ω → R

m be an m-dimensional standard
(Ω,F , P, (Ft)t∈[0,T ])-Brownian motion, let Y : {0, 1, . . . , N} × Ω→ R

d be a Milstein ap-
proximation for the SDE

dXt = µ(Xt) dt+ σ(Xt) dWt, t ∈ [0, T ], X0 = ξ (5.114)

with time step size T/N on (Ω,F , P, (Ft)t∈[0,T ]), and assume for all x ∈ Rd, i, j ∈
{1, 2, . . . ,m} that

(σi)
′(x)σj(x) = (σj)

′(x)σi(x). (Commutative noise)

Then for all n ∈ {0, 1, . . . , N − 1} it holds P -a.s. that

Yn+1 = Yn + µ(Yn) T
N

+ σ(Yn)
(
W (n+1)T

N

−WnT
N

)
+

1

2
σ′(Yn)

(
σ(Yn)

(
W (n+1)T

N

−WnT
N

))(
W (n+1)T

N

−WnT
N

)
− T

2N

m∑
i=1

(σi)
′(Yn)σi(Yn)

= Yn + µ(Yn) T
N

+
m∑
j=1

σj(Yn)
(
W

(j)
(n+1)T
N

−W (j)
nT
N

)
− T

2N

m∑
i=1

(σi)
′(Yn)σi(Yn)

+
1

2

m∑
i,j=1

(σi)
′(Yn)σj(Yn)

(
W

(i)
(n+1)T
N

−W (i)
nT
N

) (
W

(j)
(n+1)T
N

−W (j)
nT
N

)
.

(5.115)

Proof of Proposition 5.6.6. Observe that Itô’s formula (cf. Example 3.5.6) shows that
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for all n ∈ {0, 1, . . . , N − 1} it holds P -a.s. that

m∑
i,j=1

(σi)
′(Yn)σj(Yn) ·

ˆ (n+1)T
N

nT
N

ˆ s

nT
N

dW (j)
u dW (i)

s

=
m∑
i=1

(σi)
′(Yn)σi(Yn) ·

ˆ (n+1)T
N

nT
N

ˆ s

nT
N

dW (i)
u dW (i)

s

+
1

2

∑
i,j∈{1,2,...,m},

i 6=j

[
(σi)

′(Yn)σj(Yn) ·
ˆ (n+1)T

N

nT
N

ˆ s

nT
N

dW (j)
u dW (i)

s

+ (σj)
′(Yn)σi(Yn) ·

ˆ (n+1)T
N

nT
N

ˆ s

nT
N

dW (i)
u dW (j)

s

]

=
1

2

m∑
i=1

(σi)
′(Yn)σi(Yn)

[[
W

(i)
(n+1)T
N

−W (i)
nT
N

]2

− T

N

]

+ 1
2

∑
i,j∈{1,2,
...,m},i 6=j

(σi)
′(Yn)σj(Yn)

[ˆ (n+1)T
N

nT
N

ˆ s

nT
N

dW (j)
u dW (i)

s +

ˆ (n+1)T
N

nT
N

ˆ s

nT
N

dW (i)
u dW (j)

s

]
.

(5.116)

Again Itô’s formula hence gives that for all n ∈ {0, 1, . . . , N − 1} it holds P -a.s. that

m∑
i,j=1

(σi)
′(Yn)σj(Yn) ·

ˆ (n+1)T
N

nT
N

ˆ s

nT
N

dW (j)
u dW (i)

s

=
1

2

m∑
i=1

(σi)
′(Yn)σi(Yn)

[[
W

(i)
(n+1)T
N

−W (i)
nT
N

]2

− T

N

]

+
1

2

∑
i,j∈{1,2,...,m},

i 6=j

(σi)
′(Yn)σj(Yn)

[
W

(i)
(n+1)T
N

−W (i)
nT
N

] [
W

(j)
(n+1)T
N

−W (j)
nT
N

]

=
1

2

∑
i,j∈{1,2,...,m}

(σi)
′(Yn)

(
σj(Yn)

(
W

(j)
(n+1)T
N

−W (j)
nT
N

))(
W

(i)
(n+1)T
N

−W (i)
nT
N

)
− T

2N

m∑
i=1

(σi)
′(Yn)σi(Yn)

=
1

2
σ′(Yn)

(
σ(Yn)

(
W (n+1)T

N

−WnT
N

))(
W (n+1)T

N

−WnT
N

)
− T

2N

m∑
i=1

(σi)
′(Yn)σi(Yn).

(5.117)

The proof of Proposition 5.6.6 is thus completed.
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Assumption (Commutative noise) is, for example, fulfilled in the case where m = 1 (cf.
Example 3.5.6).

Exercise 5.6.7 (Milstein method). In this exercise we do not distinguish between pseudo
random numbers and actual random numbers. Let T ∈ (0,∞), d,N ∈ N, ξ ∈ Rd, µ ∈
M(B(Rd),B(Rd)), σ ∈ C1(Rd,Rd), σ̃ ∈ C(Rd,Rd×d) satisfy for all x ∈ Rd that σ̃(x) =
σ′(x), let (Ω,F , P, (Ft)t∈[0,T ]) be a stochastic basis, let W : [0, T ] × Ω → R be a one-
dimensional standard (Ω,F , P, (Ft)t∈[0,T ])-Brownian motion, and let Y : {0, 1, . . . , N} ×
Ω→ R

d be a Milstein approximation for the SDE

dXt = µ(Xt) dt+ σ(Xt) dWt, t ∈ [0, T ], X0 = ξ (5.118)

with time step size T/N on (Ω,F , P, (Ft)t∈[0,T ]) (see Definition 5.6.3). Write a Matlab
function Milstein(T,d,N,ξ,µ,σ,σ̃) with input T ∈ (0,∞), d,N ∈ N, ξ ∈ Rd, µ ∈
M(B(Rd),B(Rd)), σ ∈ C1(Rd,Rd), σ̃ ∈ C(Rd,Rd×d) and output a realization of an
YN(P )B(Rd)-distributed random variable.

Exercise 5.6.8 (Milstein method in two dimensions). In this exercise we do not dis-
tinguish between pseudo random numbers and actual random numbers. Let T ∈ (0,∞),
N ∈ N, ξ ∈ R2, let (Ω,F , P, (Ft)t∈[0,T ]) be a stochastic basis, let W : [0, T ]×Ω→ R

2 be
a two-dimensional standard (Ω,F , P, (Ft)t∈[0,T ])-Brownian motion, let A1, A2 ∈ R2×2 be
the 2× 2-matrices given by

A1 =

(
1 1
1 0

)
and A2 =

(
1 −1
−1 2

)
, (5.119)

let σ = (σ1, σ2) : R2 → R
2×2 be the function which satisfies for all x = (x1, x2), u =

(u1, u2) ∈ R2 that
σ(x)u = u1A1x+ u2A2x, (5.120)

and let Y : {0, 1, . . . , N} × Ω→ R
2 be a Milstein approximation for the SDE

dXt = σ(Xt) dWt, t ∈ [0, T ], X0 = ξ (5.121)

with time step size T/N on (Ω,F , P, (Ft)t∈[0,T ]) (see Definition 5.6.3 and Proposi-
tion 5.6.6).

(i) Prove that for all x ∈ R2 it holds that σ′1(x)σ2(x) = σ′2(x)σ1(x).

(ii) Write a Matlab function Milstein2D(T,N,ξ) with input T ∈ (0,∞), N ∈ N,
ξ ∈ R2 and output a realization of an YN(P )B(R2)-distributed random variable.

5.6.4 General stochastic Taylor expansions and hierarchical sets

In Subsections 5.6.2.1–5.6.2.3 three stochastic Taylor expansions have been pre-
sented. For formulating general stochastic Taylor expansions, a bit more notation
is used (see, e.g., Chapter 5 in [Kloeden and Platen(1992)] and, e.g., Section 3.2.4
in [Da Prato et al.(2012)Da Prato, Jentzen, and Roeckner] for the following presenta-
tions).
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5.6.4.1 Multi-indices notation and hierarchical sets

Definition 5.6.9 (Set of multi-indices). Let S ⊆ N0 be a non-empty subset of N0. Then
we denote by MS the set given by

MS = {∅} ∪ (∪∞n=1S
n) (5.122)

and we call MS the set of S-valued multi-indices.

Note that for all S1, S2 ∈ P(N0) with ∅ 6= S1 ⊆ S2 ⊆ N0 it holds that

MS1 ⊆MS2 ⊆MN0 . (5.123)

Definition 5.6.10 (Length of an multi-index). Let S ⊆ N0 be a non-empty subset of
N0. Then we denote by |·|

MS
: MS → N0 the function with the property that for all

n ∈ N, α1, . . . , αn ∈ S it holds that

|(α1, . . . , αn)|
MS

= n and |∅|
MS

= 0. (5.124)

Definition 5.6.11 (Truncation of multi-indices). We denote by (·)− :
(
MN0\{∅}

)
→

MN0 the function with the property that for all n ∈ N, α1, . . . , αn ∈ N0 it holds that

(α1, α2, . . . , αn)− =

{
(α1, α2, . . . , αn−1) : n ≥ 2

∅ : n = 1
. (5.125)

Observe that Definitions 5.6.9–5.6.11, in particular, ensure that for all m ∈ N and all
α =

(
α1, . . . , α|α|M{0,1,...,m}

)
∈M{0,1,...,m}\{∅} it holds that

|α|M{0,1,...,m} ≥ 1 and α1, . . . , α|α|M{0,1,...,m} ∈ {0, 1, . . . ,m}. (5.126)

Definition 5.6.12 (Hierarchical set). A finite non-empty subset A ⊆ MN0 of MN0 is
called a hierarchical set if it holds for all α ∈ A\{∅} that

α− ∈ A. (5.127)

Definition 5.6.13 (Remainder set). Let S ⊆ N0 be a non-empty subset of N0. Then
we denote by BS : P(MS)→ P(MS) the function with the property that for all A ⊆MS

it holds that
BS(A) = {α ∈MS\A : α− ∈ A}. (5.128)

5.6.4.2 General stochastic Taylor expansions

We are now ready to present general stochastic Taylor expansions.
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Theorem 5.6.14 (Stochastic Taylor expansions). Assume the setting in Section 5.1,
assume that µ ∈ C∞(O,Rd) and σ ∈ C∞(O,Rd×m), let k ∈ N, f ∈ C∞(O,Rk). Then
for all t0, s0 ∈ [0, T ] with t0 ≤ s0 and all hierarchical sets A ⊆M{0,1,...,m} it holds P -a.s.
that

f(Xs0) = (5.129)

f(Xt0) +
∑

α∈A\{∅}

(
L
α|α|MN0
µ,σ . . . Lα2

µ,σ L
α1
µ,σf

)(
Xt0

)
·
s0
∫
t0

s1
∫
t0

. . .

s|α|MN0
−1

∫
t0

dW
(α|α|MN0

)

s|α|MN0

. . . dW (α2)
s2

dW (α1)
s1︸ ︷︷ ︸

Taylor approximation

+
∑

α∈B{0,1,...,m}(A)

s0
∫
t0

s1
∫
t0

. . .

s|α|MN0
−1

∫
t0

(
L
α|α|MN0
µ,σ . . . Lα2

µ,σ L
α1
µ,σf

)(
Xs|α|MN0

)
dW

(α|α|MN0

)

s|α|MN0

. . . dW (α2)
s2

dW (α1)
s1︸ ︷︷ ︸

remainder of the Taylor expansion

.

Let m ∈ N. Then observe in the case of the hierarchical set

A = {∅} (5.130)

that

B{0,1,...,m}(A) = {0, 1, . . . ,m} (5.131)

and hence, formula (5.129) reduces to (5.95). Moreover, note in the case of the hierar-
chical set

A = {∅, 0, 1, . . . ,m} (5.132)

that

B{0,1,...,m}(A) = {0, 1, . . . ,m}2 (5.133)

and formula (5.129) therefore reduces to (5.99). Furthermore, in the case of the hierar-
chical set

A = {∅, 0, 1, . . . ,m} ∪ {1, 2, . . . ,m}2 (5.134)

we obtain that

B{0,1,...,m}(A)

=
(
{0} × {0, 1, . . . ,m}

)
∪
(
{0, 1, . . . ,m} × {0}

)
∪
(
{1, 2, . . . ,m}2 × {0, 1, . . . ,m}

)
(5.135)

and hence, formula (5.129) reduces to (5.103). Finally, in the case of the hierarchical set

A = {∅, 0, 1, . . . ,m} ∪ {0, 1, . . . ,m}2 (5.136)

we obtain that

B{0,1,...,m}(A) = {0, 1, . . . ,m}3 (5.137)
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and formula (5.129) hence reduces to the fact that under the assumptions of Theo-
rem 5.6.14 we have that for all s0, t0 ∈ [0, T ] with s0 ≤ t0 it holds P -a.s. that

f(Xs0) = f(Xt0) +
m∑

α1=0

(
Lα1
µ,σf

)(
Xt0

)
·
ˆ s0

t0

dW (α1)
s1︸ ︷︷ ︸

Taylor approximation

(5.138)

+
m∑

α1,α2=0

(
Lα2
µ,σ L

α1
µ,σf

)(
Xt0

)
·
ˆ s0

t0

ˆ s1

t0

dW (α2)
s2

dW (α1)
s1︸ ︷︷ ︸

Taylor approximation cont’d

+
m∑

α1,α2,α3=0

ˆ s0

t0

ˆ s1

t0

ˆ s2

t0

(
Lα3
µ,σ L

α2
µ,σ L

α1
µ,σf

)(
Xs3

)
dW (α3)

s3
dW (α2)

s2
dW (α1)

s1︸ ︷︷ ︸
remainder of the Taylor expansion

and

Xs0 = Xt0 + µ(Xt0) (s0 − t0) + σ(Xt0)
(
Ws0 −Wt0

)
+ (L0

µ,σµ)(Xt0) ·
(s0 − t0)2

2︸ ︷︷ ︸
Taylor approximation

+
m∑

i,j=1

σ′i(Xt0)σj(Xt0) ·
ˆ s0

t0

ˆ s1

t0

dW (j)
s2
dW (i)

s1
+

m∑
i=1

(L0
µ,σσi)(Xt0) ·

ˆ s0

t0

ˆ s1

t0

ds2 dW
(i)
s1︸ ︷︷ ︸

Taylor approximation cont’d

+
m∑
i=1

µ′(Xt0)σi(Xt0) ·
ˆ s0

t0

ˆ s1

t0

dW (i)
s2
ds1︸ ︷︷ ︸

Taylor approximation cont’d

+
m∑

α1,α2,α3=0

ˆ s0

t0

ˆ s1

t0

ˆ s2

t0

(
Lα3
µ,σ L

α2
µ,σ L

α1
µ,σidO

)(
Xs3

)
dW (α3)

s3
dW (α2)

s2
dW (α1)

s1︸ ︷︷ ︸
remainder of the Taylor expansion

.

(5.139)

In the next step the proof of Theorem 5.6.14 is presented.

Proof of Theorem 5.6.14. IfA ⊆M{0,1,...,m} is a hierarchical set, then we show (5.129) by
induction on maxα∈A |α|MN0

∈ N0. The base case maxα∈A |α|MN0
= 0, that is, A = {∅},

follows from (5.95). For the induction step we observe that if n ∈ N0 and if (5.129) holds
for all hierarchical sets A ⊆M{0,1,...,m} with maxα∈A |α|MN0

≤ n, then combining (5.94)
and (5.129) for all hierarchical sets A ⊆M{0,1,...,m} with maxα∈A |α|M{0,1,...,m} = n results
in (5.129) for all hierarchical sets A ⊆M{0,1,...,m} with maxα∈A |α|M{0,1,...,m} = n+ 1. The
proof of Theorem 5.6.14 is thus completed.
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5.6.4.3 General stochastic Taylor approximations

Theorem 5.6.14 formulates stochastic Taylor expansions for solution processes of SDEs.
In particular, in the case f =

(
O 3 x 7→ x ∈ Rd

)
, Theorem 5.6.14 represents the

solution process X of an SDE at some time instance s0 ∈ [0, T ] by the sum of two
terms, a stochastic Taylor approximation depending on the solution process X only at
time t0 ∈ [0, s0] and a remainder term of the stochastic Taylor expansion depending
on the “whole” solution process Xu, u ∈ [t0, s0]. Omitting the remainder term does,
of course, not give a representation of the solution anymore but results, under suitable
assumptions, in a (in an appropriate way) good approximation of Xs0 . Corollary 5.6.15
below quantifies, under suitable assumptions, how “good” this approximation is. The
whole identity (5.129) is referred to as stochastic Taylor expansion.

Corollary 5.6.15 (Estimation of the remainder terms). Assume the setting in Sec-
tion 5.1, assume that µ ∈ C∞(O,Rd) and σ ∈ C∞(O,Rd×m), let k ∈ N, f ∈ C∞(O,Rk),
t0 ∈ [0, T ], s0 ∈ [t0, T ], let A ⊆Mm be a hierarchical set, and assume for all α ∈ A∪B(A)
that

sup
u∈[t0,s0]

∥∥(Lα|α|N0
µ,σ . . . Lα2

µ,σ L
α1
µ,σf

)(
Xu

)∥∥
L2(P ;‖·‖

Rk
)
<∞. (5.140)

Then∥∥∥∥∥f(Xs0)− f(Xt0)−
∑

α∈A\{∅}

(
L
α|α|N0
µ,σ . . . Lα2

µ,σ L
α1
µ,σf

)(
Xt0

)
·
ˆ s0

t0

ˆ s1

t0

. . .

ˆ s|α|N0
−1

t0

dW
(α|α|N0

)

s|α|N0
. . . dW (α2)

s2
dW (α1)

s1

∥∥∥∥∥
L2(P ;‖·‖

Rk
)

≤ max
{
Tmaxα∈B(A) |α|N0 , 1

} ∑
α∈B(A)

sup
u∈[t0,s0]

∥∥(Lα|α|µ,σ . . . L
α2
µ,σ L

α1
µ,σf

)(
Xu

)∥∥
L2(P ;‖·‖

Rk
)


· [s0 − t0][

1
2

min{|α|N0
+#R({i∈{1,2,...,|α|N0

} : αi=0}) : α∈B(A)}]
(5.141)

and ∥∥∥∥∥EP [f(Xs0)]− EP [f(Xt0)]−
∑

α∈A\{∅}

EP
[(
L
α|α|N0
µ,σ . . . Lα2

µ,σ L
α1
µ,σf

)(
Xt0

)
·
ˆ s0

t0

ˆ s1

t0

. . .

ˆ s|α|N0
−1

t0

dW
(α|α|N0

)

s|α|N0
. . . dW (α2)

s2
dW (α1)

s1

]∥∥∥∥∥
Rk

≤

 ∑
α∈B(A),

α1=...=α|α|N0
=0

sup
u∈[t0,s0]

∥∥EP [(Lα|α|N0
µ,σ . . . Lα2

µ,σ L
α1
µ,σf

)(
Xu

)]∥∥
Rk


·max

{
Tmaxα∈B(A) |α|N0 , 1

}
· [s0 − t0]

min
{
|α|
N0

: α∈B(A), α1=...=α|α|N0
=0
}
.

(5.142)
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Proof of Corollary 5.6.15. Observe that for all α ∈Mm\{∅} it holds that∥∥∥∥ˆ s0

t0

. . .

ˆ s|α|N0
−1

t0

(
L
α|α|N0
µ,σ . . . Lα2

µ,σ L
α1
µ,σf

)(
Xs|α|

)
dW

(α|α|N0
)

s|α|N0
. . . dW (α1)

s1

∥∥∥∥2

L2(P ;‖·‖
Rk

)

≤
[ˆ s0

t0

. . .

ˆ s|α|N0
−1

t0

∥∥(Lα|α|N0
µ,σ . . . Lα2

µ,σ L
α1
µ,σf

)(
Xs|α|N0

)∥∥2

L2(P ;‖·‖
Rk

)
ds|α|N0

. . . ds1

]
· [s0 − t0]#R({i∈{1,2,...,|α|N0

} : αi=0})

≤

[
sup

u∈[t0,s0]

∥∥(Lα|α|µ,σ . . . L
α2
µ,σ L

α1
µ,σf

)(
Xu

)∥∥2

L2(P ;‖·‖
Rk

)

]
· [s0 − t0]|α|N0

+#R({i∈{1,2,...,|α|N0
} : αi=0}) .

(5.143)

Moreover, note for all α ∈ A ∪ B(A) that∥∥∥∥∥EP
[
s0
∫
t0

s1
∫
t0

. . .

s|α|N0
−1

∫
t0

(
L
α|α|N0
µ,σ . . . Lα2

µ,σ L
α1
µ,σf

)(
Xs|α|N0

)
dW

(α|α|)
s|α|N0

. . . dW (α2)
s2

dW (α1)
s1

]∥∥∥∥∥
Rk

≤ 1{0}
(∑|α|N0

i=1 αi

)
·
s0ˆ

t0

s1ˆ

t0

. . .

s|α|N0
−1ˆ

t0

∥∥∥EP[(Lα|α|N0
µ,σ . . . Lα2

µ,σ L
α1
µ,σf

)(
Xs|α|N0

) ]∥∥∥
Rk
ds|α|N0

. . . ds2 ds1.

(5.144)

Combining (5.143) and (5.144) with Theorem 5.6.14 completes the proof of Corol-
lary 5.6.15.

In the next step we illustrate Corollary 5.6.15 in the case of the examples (5.95), (5.99),
(5.103), and (5.139) above. If it holds for all α = (α1, . . . , α|α|N0

) ∈M{0,1,...,m}\{∅} that

sup
u∈[0,T ]

∥∥(Lα|α|µ,σ . . . L
α2
µ,σ L

α1
µ,σidO

)(
Xu

)∥∥
L2(P ;‖·‖

Rd
)
<∞ (5.145)

(this is, e.g., fulfilled if ∀ p ∈ (0,∞) : supu∈[0,T ] ‖Xt‖Lp(P ;‖·‖
Rd

) < ∞ and if µ and σ
are infinitely often differentiable with at most polynomially growing derivatives), then
Corollary 5.6.15 proves that

sup
s0∈(t0,T ]

(
‖Xs0 −Xt0‖L2(P ;‖·‖

Rk
)

(s0 − t0)
1
2

)
<∞ (5.146)

(Corollary 5.6.15 applied to the hierarchical set A = {∅}; see (5.130)), that

sup
t∈(t0,T ]

(∥∥Xt −
[
Xt0 + µ(Xt0) (t− t0) + σ(Xt0) (Wt −Wt0)

]∥∥
L2(P ;‖·‖

Rk
)

(t− t0)

)
<∞ (5.147)
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(Corollary 5.6.15 applied to the hierarchical set A = {∅, 0, 1, . . . ,m}; see (5.132)), that

sup
t∈(t0,T ]


∥∥∥∥Xt −

[
Xt0 + µ(Xt0) (t− t0) + σ(Xt0) (Wt −Wt0)

+
∑m

i,j=1 σ
′
i(Xt0)σj(Xt0)

´ t
t0

´ s
t0
dW

(j)
u dW

(i)
s

]∥∥∥∥
L2(P ;‖·‖

Rk
)

(t− t0)
3
2

 <∞

(5.148)
(Corollary 5.6.15 applied to the hierarchical set A = {∅, 0, 1, . . . ,m}∪{1, 2, . . . ,m}2; see
(5.134)) and that

sup
t∈(t0,T ]


∥∥∥∥Xt −

[
Xt0 + µ(Xt0) (t− t0) + σ(Xt0) (Wt −Wt0)∑m
i,j=0

(
Ljµ,σ L

i
µ,σf

)(
Xt0

)
·
´ t
t0

´ s
t0
dW

(j)
u dW

(i)
s

]∥∥∥∥
L2(P ;‖·‖

Rk
)

(t− t0)
3
2

 <∞

(5.149)
(Corollary 5.6.15 applied to the hierarchical set A = {∅, 0, 1, . . . ,m}∪{0, 1, . . . ,m}2; see
(5.136)). Theorem 5.6.14 and Corollary 5.6.15 motivate the following definition.

5.6.4.4 General higher order stochastic Taylor schemes

Definition 5.6.16 (A-stochastic Taylor approximation). Let T ∈ (0,∞), d,m,N ∈ N,
A ∈ P(M{0,1,...,m}), µ ∈ C∞(Rd,Rd), σ ∈ C∞(Rd,Rd×m), let (Ω,F , P, (Ft)t∈[0,T ]) be a
stochastic basis, let ξ ∈ L0(P |F0 ; ‖·‖Rd), let W = (W (1), . . . ,W (m)) : [0, T ]×Ω→ R

m be a
standard (Ft)t∈[0,T ]-Brownian motion, and let Y : {0, 1, . . . , N}×Ω→ R

d be a stochastic
process such that Y0 = ξ and such that for all n ∈ {0, 1, . . . , N − 1} it holds P -a.s. that

Yn+1 = Yn +
∑

α∈A\{∅}

(
L
α|α|MN0
µ,σ . . . Lα2

µ,σ L
α1
µ,σ idRd

)(
Yn
)

·
ˆ (n+1)T

N

nT
N

ˆ s1

nT
N

. . .

ˆ s|α|MN0
−1

nT
N

dW
(α|α|MN0

)

s|α|MN0

. . . dW (α2)
s2

dW (α1)
s1

.

(5.150)

Then we call Y an A-stochastic Taylor approximation for the SDE

dXt = µ(Xt) dt+ σ(Xt) dWt, t ∈ [0, T ], X0 = ξ (5.151)

with time step size T/N.
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Remark 5.6.17. Let T ∈ (0,∞), d,m,N ∈ N, µ ∈ C∞(Rd,Rd), σ ∈ C∞(Rd,Rd×m),
let (Ω,F , P, (Ft)t∈[0,T ]) be a stochastic basis, let ξ ∈ L0(P |F0 ; ‖·‖Rd), let W =
(W (1), . . . ,W (m)) : [0, T ] × Ω → R

m be a standard (Ft)t∈[0,T ]-Brownian motion, and let
X : [0, T ]× Ω→ R

d be a solution process of the SDE

dXt = µ(Xt) dt+ σ(Xt) dWt, t ∈ [0, T ], X0 = ξ. (5.152)

Note

(i) that Euler-Maruyama approximations for the SDE (5.152) with time step size T/N
(see Definition 5.3.1) are {∅, 0, 1, . . . ,m}-stochastic Taylor approximations for the
SDE (5.152) with time step size T/N,

(ii) that Milstein approximations for the SDE (5.152) with time step size T/N (see
Definition 5.6.3) are

(
{∅, 0, 1, . . . ,m} ∪ {1, 2, . . . ,m}2 )-stochastic Taylor approxi-

mations for the SDE (5.152) with time step size T/N,

(iii) that
(
{∅, 0, 1, . . . ,m} ∪ {0, 1, . . . ,m}2 )-stochastic Taylor approximations for the

SDE (5.152) with time step size T/N are also referred to as Milstein-Talay approx-
imations for the SDE (5.152) with time step size T/N, and

(iv) that
(
{∅, 0, 1, . . . ,m} ∪ {0, 1, . . . ,m}2 ∪ {1, 2, . . . ,m}3 )-stochastic Taylor approxi-

mations for the SDE (5.152) with time step size T/N are also referred to as Wagner-
Platen approximations for the SDE (5.152) with time step size T/N.

5.6.5 Runge-Kutta schemes for SDEs

Similar as in the case of ordinary differential equations (ODEs), derivative-free Runge-
Kutta type numerical approximation schemes for SDEs can be derived on the basis of
stochastic Taylor schemes (such as the Milstein scheme and the Wagner-Platen scheme).
For example, assume that the setting in Section 5.1, assume that σ̄ is continuously
differentiable, and let ZN : {0, 1, . . . , N} × Ω → R

d, N ∈ N, be stochastic processes
which satisfy for all N ∈ N, n ∈ {0, 1, . . . , N − 1} that ZN

0 = ξ and P -a.s. that

ZN
n+1 = ZN

n + µ̄
(
ZN
n

)
T
N

+ σ̄
(
ZN
n

)(
W (n+1)T

N

−WnT
N

)
+

m∑
i,j=1

σ̄′i(Z
N
n ) σ̄j(Z

N
n ) ·
ˆ (n+1)T

N

nT
N

ˆ s

nT
N

dW (j)
u dW (i)

s .
(5.153)

Then observe that the Taylor approximation(
σ̄i

(
Y N
n + σ̄j(Y

N
n )

√
T√
N

)
− σ̄i(Y N

n )
)

√
T
N

≈ σ̄′i(Z
N
n ) σ̄j(Z

N
n ) (5.154)
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for n ∈ {0, 1, . . . , N − 1}, N ∈ N suggests the approximation

ZN
n+1 ≈ ZN

n + µ̄
(
ZN
n

)
T
N

+ σ̄
(
ZN
n

)(
W (n+1)T

N

−WnT
N

)
+
√

N
T

m∑
i,j=1

(
σ̄i

(
Y N
n + σ̄j(Y

N
n )

√
T√
N

)
− σ̄i(Y N

n )
)ˆ (n+1)T

N

nT
N

ˆ s

nT
N

dW (j)
u dW (i)

s

(5.155)

for n ∈ {0, 1, . . . , N − 1}, N ∈ N. This motivates the following definition (see, e.g.,
Section 11.1 in [Kloeden and Platen(1992)]).

Definition 5.6.18 (Milstein-Runge-Kutta approximation). Let T ∈ (0,∞), d,m,N ∈
N, µ ∈ M(B(Rd),B(Rd)), σ = (σj)j∈{1,...,m} ∈ M(B(Rd),B(Rd×m)), let
(Ω,F , P, (Ft)t∈[0,T ]) be a stochastic basis, let ξ ∈ L0(P |F0 ; ‖·‖Rd), let W =
(W (1), . . . ,W (m)) : [0, T ] × Ω → R

m be a standard (Ft)t∈[0,T ]-Brownian motion, and let
Y : {0, 1, . . . , N} × Ω → R

d be a stochastic process such that Y0 = ξ and such that for
all n ∈ {0, 1, . . . , N − 1} it holds P -a.s. that

Yn+1 = Yn + µ(Yn) T
N

+ σ(Yn)
(
W (n+1)T

N

−WnT
N

)
+
√
N√
T

m∑
i,j=1

[
σi

(
Yn + σj(Yn)

√
T√
N

)
− σi(Yn)

] ˆ (n+1)T
N

nT
N

ˆ s

nT
N

dW (j)
u dW (i)

s .
(5.156)

Then we call Y a Milstein-Runge-Kutta approximation for the SDE

dXt = µ(Xt) dt+ σ(Xt) dWt, t ∈ [0, T ], X0 = ξ (5.157)

with time step size T/N.

Definition 5.6.19 (Linearly-interpolated Milstein-Runge-Kutta approximation). Let
T ∈ (0,∞), d,m,N ∈ N, µ ∈ M(B(Rd),B(Rd)), σ = (σj)j∈{1,...,m} ∈
M(B(Rd),B(Rd×m)), let (Ω,F , P, (Ft)t∈[0,T ]) be a stochastic basis, let ξ ∈
L0(P |F0 ; ‖·‖Rd), let W : [0, T ] × Ω → R

m be a standard (Ft)t∈[0,T ]-Brownian motion,
and let Y : [0, T ] × Ω → R

d be a stochastic process with continuous sample paths such

that Y0 = ξ and such that for all n ∈ {0, 1, . . . , N − 1}, t ∈
[
nT
N
, (n+1)T

N

]
it holds P -a.s.

that

Yt = YnT
N

+
(
tN
T
− n

) [
µ
(
YnT
N

)
T
N

+ σ
(
YnT
N

)(
W (n+1)T

N

−WnT
N

)]
(5.158)

+
(
tN
T
− n

) [√
N√
T

m∑
i,j=1

[
σi

(
Yn + σj(Yn)

√
T√
N

)
− σi(Yn)

] ˆ (n+1)T
N

nT
N

ˆ s

nT
N

dW (j)
u dW (i)

s

]
.

Then we call Y a linearly-interpolated Milstein-Runge-Kutta approximation for the SDE

dXt = µ(Xt) dt+ σ(Xt) dWt, t ∈ [0, T ], X0 = ξ (5.159)

with time step size T/N.
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Further derivative free approximation schemes for SDEs of this type can, e.g., be found in
[Kloeden and Platen(1992)] and [Rößler(2010)] and in the references mentioned therein.
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6 Weak approximations for SDEs

In Chapter 5 it has, under suitable assumptions, been demonstrated that the Euler-
Maruyama approximations (and other schemes) converge, under suitable assmptions, in
the strong Lp-sense with order 1

2
to the solution process of the SDE (5.2). This chapter,

in particular, shows that the Euler-Maruyama converge, under suitable assumptions, in
the numerically weak sense with order 1 to the solution process of the SDE (5.2); see The-
orem 6.2.4 below. The proof of this theorem uses the deterministic Kolmogorov partial
differential equation. This topic will be considered first; see Subsection 6.1. The content
of this chapter can, e.g., be found in a bit different form in [Kloeden and Platen(1992)].
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6.1 Kolmogorov backward equation

Theorem 6.1.1 (Kolmogorov backward equation). Assume the setting in the beginning
of Chapter 5, let p ∈ [3,∞), let f : Rd → R be a three times continuously differentiable
function with

sup
x∈Rd

∥∥f (3)(x)
∥∥
L(3)(Rd,R)

(1 + ‖x‖Rd)(p−3)
<∞, (6.1)

assume that O = Rd and that µ and σ are globally Lipschitz continuous and three times
continuously differentiable with at most polynomially growing derivatives. Moreover, let
X t0,x : [t0, T ]×Ω→ R

d, t0 ∈ [0, T ], x ∈ Rd, be up to indistinguishability unique solution
processes of the SDEs

dXt = µ(Xt) dt+ σ(Xt) dWt, t ∈ [t0, T ], Xt0 = x (6.2)

for (t0, x) ∈ [0, T ]×Rd, that is, assume for every t0 ∈ [0, T ] and every x ∈ Rd that X t0,x

is an (Ft)t∈[t0,T ]-adapted stochastic processes with continuous sample paths satisfying that
for every t ∈ [t0, T ] it holds that

X t0,x
t = x+

ˆ t

t0

µ(X t0,x
s ) ds+

ˆ t

t0

σ(X t0,x
s ) dWs (6.3)

P -a.s. Then the function u : [0, T ]×Rd → R given by

u(t, x) = E
[
f(X t,x

T )
]

(6.4)

for all (t, x) ∈ [0, T ]×Rd is the unique function satisfying

sup
s∈[0,T ]

sup
x∈Rd

|u(s, x)|
(1 + ‖x‖Rd)p

<∞, (Growth condition)

u(T, x) = f(x) (End value condition)

and

∂
∂t
u(t, x) = −1

2

m∑
i=1

d∑
k,l=1

σk,i(x) · σl,i(x) · ∂2

∂xk∂xl
u(t, x)−

d∑
k=1

µk(x) · ∂
∂xk

u(t, x)

= −1

2
Trace

(
σ(x)σ(x)>(Hessx u)(t, x)

)
− 〈µ(x), (∇xu)(t, x)〉

Rd

= −
(
L0u(t, ·)

)
(x)

(Kolmogorov partial differential equation (Kolmogorov PDE))

for all t ∈ [0, T ] and all x ∈ Rd.

Sketch of the proof of Theorem 6.1.1. First of all, observe that for all x ∈ Rd it holds
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that
u(T, x) = E

[
f(XT,x

T )
]

= E[f(x)] = f(x) (6.5)

and this proves (End value condition). Next define a real number c ∈ [0,∞) by

c := sup
x∈Rd

|f(x)|(
1 + ‖x‖p

Rd

) <∞ (6.6)

and observe that for all x ∈ Rd it holds that

|f(x)| ≤ c
(
1 + ‖x‖p

Rd

)
(6.7)

This implies that

sup
t∈[0,T ]

sup
x∈Rd

|u(t, x)|
(1 + ‖x‖Rd)p

= sup
t∈[0,T ]

sup
x∈Rd

∣∣E[f(X t,x
T )
]∣∣

(1 + ‖x‖Rd)p

≤ c

(
sup
t∈[0,T ]

sup
x∈Rd

(
1 + E

[
‖X t,x

T ‖
p
Rd

])
(1 + ‖x‖Rd)p

)
<∞

(6.8)

and this shows (Growth condition). Next w.l.o.g. assume that for every t0, t ∈ [0, T ]
with t0 ≤ t and every ω ∈ Ω it holds that the function Rd 3 x 7→ X t0,x

t (ω) ∈ Rd is
continuous. Then observe that

X t0,x
t2 = X

t1,X
t0,x
t1

t2 (6.9)

P -a.s. for all t0, t1, t2 ∈ [0, T ] with t0 ≤ t1 ≤ t2 and all x ∈ Rd. This illustrates that for
all t, h ∈ [0, T ] with t+ h ≤ T and all x ∈ Rd it holds that

u(t, x) = E
[
f
(
X t,x
T

)]
= E

[
f

(
X
t+h,Xt,x

t+h

T

)]
= E

[
u(t+ h,X t,x

t+h)
]
. (6.10)

Itô’s formula hence proves that for all t, h ∈ [0, T ] with t+h ≤ T and all x ∈ Rd it holds
that

u(t+ h, x)− u(t, x) = u(t+ h, x)− E
[
u(t+ h,X t,x

t+h)
]

= −
ˆ t+h

t

d∑
k=1

E
[(

∂
∂xk

u
)

(t+ h,X t,x
s ) · µk(X t,x

s )
]
ds

−
ˆ t+h

t

1

2

m∑
i=1

d∑
k,l=1

E
[(

∂2

∂xk∂xl
u
)

(t+ h,X t,x
s ) · σk,i(X t,x

s ) · σl,i(X t,x
s )
]
ds.

(6.11)

This implies that for all t ∈ [0, T ) and all x ∈ Rd it holds that

∂
∂t
u(t, x) = lim

h↘0

(
u(t+ h, x)− u(t, x)

h

)
= −

d∑
k=1

(
∂
∂xk

u
)

(t, x) · µk(x)− 1

2

m∑
i=1

d∑
k,l=1

(
∂2

∂xk∂xl
u
)

(t, x) · σk,i(x) · σl,i(x).

(6.12)
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This proves (Kolmogorov partial differential equation (Kolmogorov PDE)).
The fact that u is the unique function satisfying (Growth condition)–
(Kolmogorov partial differential equation (Kolmogorov PDE)) follows, e.g., from
Corollary 4.7 in [Hairer et al.(2012)Hairer, Hutzenthaler, and Jentzen]. This completes
the sketch of the proof of Theorem 6.1.1.

In the setting of Theorem 6.1.1 it holds that the function v : [0, T ]×Rd → R given by

v(t, x) = u(T − t, x) = E
[
f(X0,x

t )
]

(6.13)

for all (t, x) ∈ [0, T ]×Rd is the unique function satisfying

sup
t∈[0,T ]

sup
x∈Rd

|v(t, x)|
(1 + ‖x‖Rd)p

<∞ (6.14)

and

v(0, x) = f(x) (Initial value condition)

for all x ∈ Rd and

∂
∂t
v(t, x) =

1

2

m∑
i=1

d∑
k,l=1

σk,i(x) · σl,i(x) · ∂2

∂xk∂xl
v(t, x) +

d∑
k=1

µk(x) · ∂
∂xk

v(t, x)

=
1

2
Trace

(
σ(x)σ(x)> (Hessxv)(t, x)

)
+ 〈µ(x), (∇xv)(t, x)〉

Rd

=
(
L0v(t, ·)

)
(x)

(Kolmogorov PDE revisited)

for all t ∈ [0, T ] and all x ∈ Rd.
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6.2 Numerically weak convergence of the
Euler-Maruyama scheme

6.2.1 Generator and noise operator associated to the Euler scheme

Definition 6.2.1 (Generator associated to the Euler-Maruyama scheme). Let d,m ∈ N,
let O ⊆ R

d be an open set, and let µ : D → R
d and σ : D → R

d×m be continuous
functions. Then we denote by

L̂0
µ,σ : ∪k∈N C2(O,Rk)→ ∪k∈NC(O ×O,Rk) (6.15)

the function with the property that for all x ∈ O it holds that

(
L̂0
µ,σf

)
(x, y) = f ′(x)µ(y) +

1

2

m∑
i=1

f ′′(x)
(
σi(y), σi(y)

)
=

d∑
k=1

(
∂
∂xk

f
)
(x) · µk(y) +

1

2

m∑
i=1

d∑
k,l=1

(
∂2

∂xk∂xl
f
)
(x) · σk,i(y) · σl,i(y).

(6.16)

Definition 6.2.2 (Noise operator associated to the Euler-Maruyama scheme). Let
d,m ∈ N, let O ⊆ R

d be an open set, and let µ : D → R
d and σ : D → R

d×m be
continuous functions. Then we denote by

L̂iµ,σ : ∪k∈N C1(O,Rk)→ ∪k∈NC(O ×O,Rk) (6.17)

for i ∈ {1, 2, . . . ,m} the functions with the property that for all x ∈ O, i ∈ {1, 2, . . . ,m}
it holds that

(
L̂iµ,σf

)
(x, y) = f ′(x)σi(y) =

d∑
k=1

(
∂
∂xk

f
)
(x) · σk,i(y). (6.18)

Work in progress. Copyright (C) with the authors.
Dissemination prohibited. December 15, 2018

231



Chapter 6. Weak approximations for SDEs

6.2.2 Weak error representation for the Euler scheme

Lemma 6.2.3 (Weak error representation for the Euler-Maruyama scheme). Let T ∈
(0,∞), d,m,N ∈ N, let (Ω,F , P, (Ft)t∈[0,T ]) be a stochastic basis, let W : [0, T ]×Ω→ R

m

be a standard (Ft)t∈[0,T ]-Brownian motion, let ξ ∈ ∩p∈(0,∞)Lp(P |F0 ; ‖·‖Rd), let f : Rd →
R, µ : Rd → R

d, and σ : Rd → R
d×m be four times continuously differentiable functions

with at most polynomially growing derivatives, assume that µ and σ are globally Lipschitz
continuous, let X : [0, T ]× Ω→ R

d be a solution process of the SDE

dXt = µ(Xt) dt+ σ(Xt) dWt, t ∈ [0, T ], X0 = ξ, (6.19)

let u ∈ C2([0, T ]×Rd,R) be a function with the property that for all t ∈ [0, T ], x ∈ Rd

it holds that u(T, x) = f(x), lim supp↗∞ sups∈[0,T ] supy∈Rd
|u(s,y)|

(1+‖y‖
Rd

)p
<∞, and

∂
∂t
u(t, x) = −1

2

m∑
i=1

d∑
k,l=1

σk,i(x) · σl,i(x) · ∂2

∂xk∂xl
u(t, x)−

d∑
k=1

µk(x) · ∂
∂xk

u(t, x)

= −1

2
Trace

(
σ(x)σ(x)>(Hessx u)(t, x)

)
− 〈µ(x), (∇xu)(t, x)〉

Rd

= −
(
L0u(t, ·)

)
(x),

(6.20)

and let Y : [0, T ]×Ω→ R
d be an (Ft)t∈[0,T ]-adapted stochastic processes with continuous

sample paths which satisfies that for all t ∈ [0, T ] it holds P -a.s. that

Yt = ξ +

ˆ t

0

µ
(
YbscT/N

)
ds+

ˆ t

0

σ
(
YbscT/N

)
dWs. (6.21)

Then

E
[
f(YT )

]
− E

[
f(XT )

]
=

ˆ T

0

ˆ t

btcT/N
E
[(
L̂0
µ,σL

0
µ,σut

)
(Ys, YbtcT/N ) +

(
L̂0
µ,σ

[(
L̂0
µ,σut

)
(·, YbtcT/N )

])
(Ys, YbtcT/N )

]
ds dt.

(6.22)

Proof of Lemma 6.2.3. Theorem 6.1.1 and Itô’s formula for time-dependent test func-
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tions (see Corollary 3.5.8) proves that

E
[
f(YT )

]
− E

[
f(XT )

]
= E[f(YT )− u(0, X0)]

= E[u(T, YT )− u(0, Y0)]

= E

[ˆ T

0

(
∂
∂t
u
)
(t, Y N

t ) +
(
∂
∂x
u
)
(t, Y N

t )µ(Y N
btcT/N )

+
1

2

m∑
i=1

(
∂2

∂x2
u
)
(t, Yt)

(
σi(YbtcT/N ), σi(YbtcT/N )

)
dt

]

=

ˆ T

0

E
[(

∂
∂t
u
)
(t, Y N

t ) +
(
L̂0
µ,σut

)
(Yt, YbtcT/N )

]
dt.

(6.23)

This and (6.20) show that

E
[
f(XT )

]
− E

[
f(YT )

]
=

ˆ T

0

E
[(
L0
µ,σut

)
(Yt)−

(
L̂0
µ,σut

)
(Yt, YbtcT/N )

]
dt. (6.24)

Therefore, we obtain that

E
[
f(XT )

]
− E

[
f(YT )

]
=

ˆ T

0

E
[(
L0
µ,σut

)
(Yt)−

(
L0
µ,σut

)
(YbtcT/N )

]
dt

+

ˆ T

0

E
[(
L̂0
µ,σut

)
(YbtcT/N , YbtcT/N )−

(
L̂0
µ,σut

)
(Yt, YbtcT/N )

]
dt.

(6.25)

Again Itô’s formula for time-independent test functions (see Corollary 3.5.8) hence shows
that

E
[
f(XT )

]
− E

[
f(YT )

]
=

ˆ T

0

ˆ t

btcT/N
E
[(
L̂0
µ,σL

0
µ,σut

)
(Ys, YbtcT/N )

]
ds dt

+

ˆ T

0

ˆ t

btcT/N
E
[(
L̂0
µ,σ

[(
L̂0
µ,σut

)
(·, YbtcT/N )

])
(Ys, YbtcT/N )

]
ds dt.

(6.26)

The proof of Lemma 6.2.3 is thus completed.
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6.2.3 Weak convergence analysis

Theorem 6.2.4 (Numerically weak convergence with order 1 of the Euler-Maruyama
scheme). Let T ∈ (0,∞), d,m ∈ N, let (Ω,F , P, (Ft)t∈[0,T ]) be a stochastic ba-
sis, let W : [0, T ] × Ω → R

m be a standard (Ft)t∈[0,T ]-Brownian motion, let ξ ∈
∩p∈(0,∞)Lp(P |F0 ; ‖·‖Rd), let f : Rd → R, µ : Rd → R

d, and σ : Rd → R
d×m be four

times continuously differentiable functions with at most polynomially growing deriva-
tives, assume that µ and σ are globally Lipschitz continuous, let X : [0, T ]× Ω→ R

d be
a solution process of the SDE

dXt = µ(Xt) dt+ σ(Xt) dWt, t ∈ [0, T ], X0 = ξ, (6.27)

and for every N ∈ N let Y N : [0, T ]×Ω→ R
d be a linearly interpolated Euler-Maruyama

approximation for the SDE (6.27) with time step size T/N. Then there exists a real
number C ∈ R such that for all N ∈ N it holds that∣∣E[f(XT )

]
− E

[
f(Y N

T )
]∣∣
R
≤ C ·N−1. (6.28)

Proof of Theorem 6.2.4. Throughouht this proof let Ỹ N : [0, T ] × Ω → R
d, N ∈ N, be

(Ft)t∈[0,T ]-adapted stochastic processes with continuous sample paths satisfying

Ỹ N
t = ξ +

ˆ t

0

µ
(
Ȳ N
bscN

)
ds+

ˆ t

0

σ
(
Ȳ N
bscN

)
dWs (6.29)

P -a.s. for all t ∈ [0, T ] and all N ∈ N. Observe that Ỹ N , N ∈ N, are Itô processes and
that

Ỹ N
t = Ȳ N

t (6.30)

P -a.s. for all t ∈ {0, T
N
, . . . , T} and all N ∈ N and that

Ỹ N
t = ξ +

ˆ t

0

µ
(
Ỹ N
bscN

)
ds+

ˆ t

0

σ
(
Ỹ N
bscN

)
dWs (6.31)

P -a.s. for all t ∈ [0, T ] and all N ∈ N. Lemma 6.2.3 implies that for all N ∈ N it holds
that∣∣E[f(XT )

]
− E

[
f(Ȳ N

T )
]∣∣

≤

∣∣∣∣∣
ˆ T

0

ˆ t

btcN
E
[(
L̂0
µ,σL

0
µ,σut

)
(Ỹ N

s , Ỹ
N
btcN ) +

(
L̂0
µ,σ

[(
L̂0
µ,σut

)
(·, Ỹ N

btcN )
])

(Ỹ N
s , Ỹ

N
btcN )

]
ds dt

∣∣∣∣∣
≤
(

sup
s,t∈[0,T ]

∣∣∣E[(L̂0
µ,σL

0
µ,σut

)
(Ỹ N

s , Ỹ
N
btcN ) +

(
L̂0
µ,σ

[(
L̂0
µ,σut

)
(·, Ỹ N

btcN )
])

(Ỹ N
s , Ỹ

N
btcN )

]∣∣∣ )T 2

N

<∞.
(6.32)

The proof of Theorem 6.2.4 is thus completed.
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6.3 Higher order weak numerical methods

Theorem 6.3.1 (Numerically weak convergence with order 2 of the Milstein-Talay
scheme). Assume that the setting in Section 5.1, let Ȳ N : [0, T ] × Ω → R

d, N ∈ N, be
linearly interpolated ({∅, 0, 1, . . . ,m} ∪ {0, 1, . . . ,m}2)-stochastic Taylor approximations
(see Definition 5.6.16), assume that O = Rd, assume that ∀ p ∈ [1,∞) : E

[
‖ξ‖p

Rd

]
<∞,

assume that f : Rd → R, µ : Rd → R
d, and σ : Rd → R

d×m are six times continuously
differentiable with at most polynomially growing derivatives, and assume that µ and σ
are globally Lipschitz continuous. Then there exists a real number C ∈ [0,∞) such that
for all N ∈ N it holds that∣∣E[f(XT )

]
− E

[
f(Ȳ N

T )
]∣∣
R
≤ C ·N−2. (6.33)

The proof of Theorem 6.3.1 is omitted. Under a bit different assumptions, a proof of
(6.33) can be found in Section 14.5 in [Kloeden and Platen(1992)] (see Theorem 14.5.2 in
Chapter 14 in [Kloeden and Platen(1992)]). There also exists a simplified version of the
{∅, 0, 1, . . . ,m}∪{0, 1, . . . ,m}2-stochastic Taylor scheme in which the iterated stochastic
integrals appearing in it are replaced by random variables that can be simulated easily.
More details on this issue can be found in Section 14.2 in [Kloeden and Platen(1992)].
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7 Monte Carlo integration methods for
SDEs

We refer, e.g., to [Milstein(1995)] and [Glasserman(2004)] as basic references for the
content of this chapter.

7.1 Monte Carlo Euler method

Combining the Monte Carlo method from Chapter 2 and the Euler-Maruyama method
from Chapter 5 results in the so-called Monte Carlo Euler method. This is the subject
of the next definition.

Definition 7.1.1 (Monte Carlo Euler method). Let T ∈ (0,∞), d,m,N,K ∈ N,
µ ∈M(B(Rd),B(Rd)), σ ∈M(B(Rd),B(Rd×m)), let (Ω,F , P, (Ft)t∈[0,T ]) be a stochastic
basis, let ξ ∈ M(F0,B(Rd)), let W : [0, T ] × Ω → R

m be an m-dimensional standard
(Ω,F , P, (Ft)t∈[0,T ])-Brownian motion, let X : [0, T ] × Ω → R

d be a solution process of
the SDE

dXt = µ(Xt) dt+ σ(Xt) dWt, t ∈ [0, T ], X0 = ξ (7.1)

on (Ω,F , P, (Ft)t∈[0,T ]), let ξ[k] ∈ M(F0,B(Rd)), k ∈ N, be i.i.d. random variables with
ξ[1](P )B(Rd) = ξ(P )B(Rd), let W [k] : [0, T ]×Ω→ R

m, k ∈ {1, . . . , K}, be P -independent m
-dimensional standard (Ω,F , P, (Ft)t∈[0,T ])-Brownian motions, for every k ∈ {1, . . . , K}
let Y k : [0, T ] × Ω → R

d be a linearly-interpolated Euler-Maruyama approximation for
the SDE

dXt = µ(Xt) dt+ σ(Xt) dW
[k]
t , t ∈ [0, T ], X0 = ξ[k] (7.2)

with time step size T/N, and let f : C([0, T ],Rd) → R be a B(C([0, T ],Rd))/B(Rd)-
measurable function with EP

[
|f(X)|R

]
<∞. Then we call the random variable

1

K

K∑
k=1

f
(
Y k
)

(7.3)

a Monte Carlo Euler approximation (of EP
[
f(X)

]
based on K samples (Monte Carlo

runs) and time step size T/N).

Exercise 7.1.2 (Monte Carlo Euler method). In this exercise we do not distin-
guish between pseudo random numbers and actual random numbers. Let T ∈ (0,∞),
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d,m,N,K ∈ N, ξ ∈ R
d, µ ∈ M(B(Rd),B(Rd)), σ ∈ M(B(Rd),B(Rd×m)), let

(Ω,F , P, (Ft)t∈[0,T ]) be a stochastic basis, let W : [0, T ]× Ω→ R
m be an m-dimensional

standard (Ω,F , P, (Ft)t∈[0,T ])-Brownian motion, let X : [0, T ] × Ω → R
d be a solution

process of the SDE

dXt = µ(Xt) dt+ σ(Xt) dWt, t ∈ [0, T ], X0 = ξ (7.4)

on (Ω,F , P, (Ft)t∈[0,T ]) and let f ∈ M(B(Rd),B(R)) satisfy EP
[
|f(XT )|R

]
<∞. Write

a Matlab function MonteCarloEuler(T,d,m,N,K,ξ,µ,σ,f) with input T ∈ (0,∞),
d,m,N,K ∈ N, ξ ∈ Rd, µ ∈ M(B(Rd),B(Rd)), σ ∈ M(B(Rd),B(Rd×m)), f ∈
M(B(Rd),B(R)) and output a realization of a Monte Carlo Euler approximation of
EP
[
f(XT )

]
based on K samples and time step size T/N (see Definition 7.1.1).

The root mean square approximation error of the Monte Carlo Euler method is estimated
in the following theorem.

Theorem 7.1.3 (Monte Carlo Euler method). Assume the setting in Section 5.1,
assume that O = R

d, let ξ[k] : Ω → R
d, k ∈ N, be i.i.d. F0/B(Rd)-measurable

mappings with ξ[1](P )B(Rd) = ξ(P )B(Rd) and ∀ p ∈ (0,∞) : EP
[
‖ξ‖p

Rd

]
< ∞, let

W [k] : [0, T ] × Ω → R
m, k ∈ N, be independent standard (Ft)t∈[0,T ]-Brownian motions,

let Y N,k : {0, 1, . . . , N}×Ω→ R
d, N, k ∈ N, be stochastic processes which satisfy for all

N, k ∈ N, n ∈ {0, 1, . . . , N − 1} that Y N,k
0 = ξ[k] and

Y N,k
n+1 = Y N,k

n + µ
(
Y N,k
n

)
T
N

+ σ
(
Y N,k
n

)(
W

[k]
(n+1)T
N

−W [k]
nT
N

)
(7.5)

(i.i.d. Euler-Maruyama approximations), assume that f : Rd → R, µ : Rd → R
d, and

σ : Rd → R
d×m are four times continuously differentiable with at most polynomially

growing derivatives, and assume that µ and σ are globally Lipschitz continuous. Then
there exists a real number C ∈ [0,∞) such that for all N,K ∈ N it holds that∥∥∥∥∥EP[f(XT )

]
− 1

K

K∑
k=1

f
(
Y N,k
N

)∥∥∥∥∥
L2(P ;|·|

R
)

≤ C

(
1√
K

+
1

N

)
. (7.6)

Proof of Theorem 7.1.3. First of all, note that Theorem 6.2.4 implies that there exists
a real number C ∈ [0,∞) such that for all N ∈ N it holds that

∣∣∣EP[f(XT )
]
− EP

[
f(Y N,1

N )
]∣∣∣
R

≤ C

N
. (7.7)
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This together with Theorem 2.4.8 proves that for all N,K ∈ N it holds that

EP

∣∣∣∣∣EP[f(XT )
]
− 1

K

K∑
k=1

f
(
Y N,k
N

)∣∣∣∣∣
2

R


=
∣∣∣EP[f(XT )

]
− EP

[
f
(
Y N,1
N

)]∣∣∣2
R︸ ︷︷ ︸

squared bias

+EP

∣∣∣∣∣EP[f(Y N,1
N

)]
− 1

K

K∑
k=1

f
(
Y N,k
N

)∣∣∣∣∣
2

R


=
∣∣∣EP[f(XT )

]
− EP

[
f
(
Y N,1
N

)]∣∣∣2
R︸ ︷︷ ︸

squared bias

+
Var(f(Y N,1

N ))

K

≤ C2

N2
+

Var(f(Y N,1
N ))

K
≤ max

{
C2, sup

M∈N
Var(f(Y M,1

M ))

}[
1

N2
+

1

K

]
.

(7.8)

Next note that by assumption there exists a real number c ∈ [1,∞) such that for all
x ∈ Rd it holds that

|f(x)|
R
≤ c (1 + ‖x‖c

Rd
) . (7.9)

This implies that for all M ∈ N it holds that√
Var(f(Y M,1

M )) ≤
∥∥∥f(Y M,1

M )
∥∥∥
L2(P ;|·|)

≤ c

(
1 +

∥∥∥Y M,1
M

∥∥∥c
L2c(P ;‖·‖

Rd
)

)
≤ c

[
1 +

∥∥∥Y M,1
M

∥∥∥
L2c(P ;‖·‖

Rd
)

]c
≤ c

[
1 + ‖XT‖L2c(P ;‖·‖

Rd
) +
∥∥∥XT − Y M,1

M

∥∥∥
L2c(P ;‖·‖

Rd
)

]c
≤ c

[
1 + ‖XT‖L2c(P ;‖·‖

Rd
) + sup

N∈N

∥∥∥XT − Y N,1
N

∥∥∥
L2c(P ;‖·‖

Rd
)

]c
<∞

(7.10)

where the last inequality follows from Theorem 5.3.10. Inequality (7.10) proves that

sup
M∈N

Var
(
f(Y M,1

M )
)
<∞. (7.11)

Combining this with (7.8) shows that for all N,K ∈ N it holds that∥∥∥∥∥EP[f(XT )
]
− 1

K

K∑
k=1

f
(
Y N,k
N

)∥∥∥∥∥
L2(P ;|·|

R
)

≤ max

{
C, sup

M∈N

√
Var(f(Y M,1

M ))

}
︸ ︷︷ ︸

<∞

[
1√
K

+
1

N

]
.

(7.12)

The proof of Theorem 7.1.3 is thus completed.
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The term 1√
K

on the right hand side of (7.6) appears due to approximating the expec-

tation in (7.6) with Monte Carlo approximations (cf. Theorem 2.4.8). The term 1
N

on
the right hand side of (7.6) appears due to approximating the solution process X of the
SDE (5.2) with Euler-Maruyama approximations (cf. Theorem 6.2.4). The right hand
side of (7.6) converges to zero as both K and N on the right hand side of (7.6) tend
to ∞. In order to balance the error on the right hand side of (7.6), it turns out to be
asymptotically optimal to choose K ≈ N2 (cf., e.g., the references mentioned in the
introductory section in [Hutzenthaler and Jentzen(2011)]). The choice K = N2 in (7.6)
in Theorem 7.1.3 proves in the setting of Theorem 7.1.3 that there exists a real number
C ∈ [0,∞) such that for all N ∈ N it holds that∥∥∥∥∥EP[f(XT )

]
− 1

N2

N2∑
k=1

f
(
Y N,k
N

)∥∥∥∥∥
L2(P ;|·|

R
)

≤ C

N
. (7.13)

Observe that if the initial random variable ξ is deterministic, that is, ξ(ω) = ξ(ω̃) for all
ω, ω̃ ∈ Ω, then

N ·K ·m = m ·N3 (7.14)

realizations of independent standard normal random variables (cf. “randn” calls in
Matlab) are needed to compute a realization of

1

N2

N2∑
k=1

f
(
Y N,k
N

)
(7.15)

for N ∈ N and in that case, the Monte Carlo Euler method converges under the assump-
tions of Theorem 7.1.3 with the order 1

3
with respect to the number of used independent

standard normal random variables. In other words, O(ε−3) independent standard normal
random variables are used in (7.15) to compute an approximation of

EP
[
f(X)

]
(7.16)

with a root mean square approximation error of size ε > 0 (cf. (7.6) in Theorem 7.1.3).
In the next step two simple illustrative Matlab codes for the Monte Carlo Euler method
are presented (cf. Exercises 3.3.9 and 3.3.11).

1 function mc = MonteCarloEuler (mu, sigma , BM dim ,T, x0 , f ,N,M)
2 mc = 0 ;
3 h = T/N;
4 sqr th = sqrt (h ) ;
5 for m = 1 :M
6 Y = x0 ;
7 for n = 1 :N
8 Y = Y + mu(Y)∗h + sigma (Y)∗ sqr th ∗randn(BM dim , 1 ) ;
9 end

Work in progress. Copyright (C) with the authors.
Dissemination prohibited. December 15, 2018

240



Chapter 7. Monte Carlo integration methods for SDEs

10 mc = mc + f (Y) ;
11 end
12 mc = mc/M;
13 end

Matlab code 7.1: A Matlab function for the Monte Carlo Euler method. Matlab/Mon-
teCarloEuler.m

1 mu = @( x ) log ( 1 . 0 6 )∗ x ;
2 sigma = @( x ) x /10 ;
3 no i se d im = 1 ;
4 T = 1 ;
5 x0 = 92 ;
6 f = @( x ) max(x−100 ,0) ;
7 N = 100 ;
8 M = Nˆ2 ;
9 t ic

10 MonteCarloEuler (mu, sigma , noise dim ,T, x0 , f ,N,M)
11 MonteCarloEuler (mu, sigma , noise dim ,T, x0 , f ,N,M)
12 MonteCarloEuler (mu, sigma , noise dim ,T, x0 , f ,N,M)
13 toc

Matlab code 7.2: A Matlab code for the Euler-Maruyama method. Matlab/RunMonte-
CarloEuler.m

The Matlab code 7.2 prints three realizations of a Monte Carlo Euler approximation of

EP
[

max{X1 − 100, 0}
]

(7.17)

based on 10000 samples and time step size 1/100 where (Xt)t∈[0,1] is a solution process
of the SDE (4.55) with α = ln(1.06), β = 1/10, and T = 1. We would like to point
out that the Matlab codes 7.1 and 7.2 respectively can be significantly improved by
vectorization to obtain more efficient computations for the Monte Carlo Euler method.
This is illustrated in the following two Matlab codes.

1 function mc = MonteCarloEuler2 (mu, sigma ,T, x0 , f ,N,M)
2 h = T/N;
3 sqr th = sqrt (h ) ;
4 Y = ones (M, 1 )∗ x0 ;
5 for n = 1 :N
6 Y = Y + mu(Y)∗h + sigma (Y) . ∗ randn(M, 1 )∗ sqr th ;
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Figure 7.1: Result of a call of the Matlab code 7.2.

7 end
8 mc = sum( f (Y) )/M;
9 end

Matlab code 7.3: A Matlab function for the Monte Carlo Euler method. Matlab/Mon-
teCarloEuler2.m

1 mu = @( x ) log ( 1 . 0 6 )∗ x ;
2 sigma = @( x ) x /10 ;
3 T = 1 ;
4 x0 = 92 ;
5 f = @( x ) max(x−100 ,0) ;
6 N = 100 ;
7 M = Nˆ2 ;
8 t ic
9 MonteCarloEuler2 (mu, sigma ,T, x0 , f ,N,M)

10 MonteCarloEuler2 (mu, sigma ,T, x0 , f ,N,M)
11 MonteCarloEuler2 (mu, sigma ,T, x0 , f ,N,M)
12 toc

Matlab code 7.4: A Matlab code for the Euler-Maruyama method. Matlab/RunMonte-
CarloEuler2.m
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Figure 7.2: Result of a call of the Matlab code 7.4.

7.2 Further one-level Monte Carlo methods for SDEs

The next theorem, Theorem 7.2.1, is proved similar as Theorem 7.1.3 above (cf. Theo-
rem 6.3.1 above).
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Theorem 7.2.1 (Monte Carlo {∅, 0, 1, . . . ,m} ∪ {0, 1, . . . ,m}2-stochastic Taylor
method). Assume the setting in the beginning of Chapter 5, assume that O = R

d,
that f : Rd → R, µ : Rd → R

d and σ : Rd → R
d×m are six times continuously dif-

ferentiable with at most polynomially growing derivatives and that µ and σ are glob-
ally Lipschitz continuous. Moreover, let ξ[k] : Ω → R

d, k ∈ N, be i.i.d. F0/B(Rd)-
measurable mappings with Pξ[1] = Pξ and EP

[
‖ξ‖p

Rd

]
< ∞ for all p ∈ (0,∞), let

W [k] = (W [k],(1), . . . ,W [k],(m)) : [0, T ] × Ω → R
m, k ∈ N, be independent standard

(Ft)t∈[0,T ]-Brownian motions, let Y N,k : {0, 1, . . . , N}×Ω→ R
d, N, k ∈ N, be stochastic

processes satisfying Y N,k
0 = ξ[k] and

Y N,k
n+1

= Y N,k
n + µ(Y N,k

n ) T
N

+ σ(Y N
n )
(
W

[k]
(n+1)T
N

−W [k]
nT
N

)
+
(
L0
µ,σ L

0
µ,σidRd

)(
Y N,k
n

)
· T 2

2N2

+
m∑
i=1

(
L0
µ,σ L

i
µ,σidRd

)(
Y N,k
n

)
·
ˆ (n+1)T

N

nT
N

ˆ s1

nT
N

ds2 dW
[k],(i)
s1

+
m∑
j=1

(
Ljµ,σ L

0
µ,σidRd

)(
Y N,k
n

)
·
ˆ (n+1)T

N

nT
N

ˆ s1

nT
N

dW [k],(j)
s2

ds1

+
m∑

i,j=1

(
Ljµ,σ L

i
µ,σidRd

)(
Y N,k
n

)
·
ˆ (n+1)T

N

nT
N

ˆ s1

nT
N

dW [k],(j)
s2

dW [k],(i)
s1

(7.18)

P -a.s. for all n ∈ {0, 1, . . . , N − 1}, k,N ∈ N (i.i.d. {∅, 0, 1, . . . ,m} ∪ {0, 1, . . . ,m}2-
stochastic Taylor approximations). Then there exists a real number C ∈ [0,∞) such that
for all N,K ∈ N it holds that∥∥∥∥∥EP[f(XT )

]
− 1

K

K∑
k=1

f
(
Y N,k
N

)∥∥∥∥∥
L2(P ;|·|)

≤ C

(
1√
K

+
1

N2

)
. (7.19)

Proof of Theorem 7.2.1. First of all, note that Theorem 6.3.1 implies that there exists
a real number C ∈ [0,∞) such that for all N ∈ N it holds that

∣∣∣EP[f(XT )
]
− EP

[
f(Y N,1

N )
]∣∣∣ ≤ C

N2
. (7.20)
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This together with Theorem 2.4.8 proves that for all N,K ∈ N it holds that

EP

∣∣∣∣∣EP[f(XT )
]
− 1

K

K∑
k=1

f
(
Y N,k
N

)∣∣∣∣∣
2


=
∣∣∣EP[f(XT )

]
− EP

[
f
(
Y N,1
N

)]∣∣∣2︸ ︷︷ ︸
squared bias

+EP

∣∣∣∣∣EP[f(Y N,1
N

)]
− 1

K

K∑
k=1

f
(
Y N,k
N

)∣∣∣∣∣
2


=
∣∣∣EP[f(XT )

]
− EP

[
f
(
Y N,1
N

)]∣∣∣2︸ ︷︷ ︸
squared bias

+
Var(f(Y N,1

N ))

K

≤ C2

N4
+

Var(f(Y N,1
N ))

K
≤ max

{
C2, sup

M∈N
Var(f(Y M,1

M ))

}[
1

N4
+

1

K

]
≤ max

{
C2, sup

M∈N
EP
[(
f(Y M,1

M )
)2
]}[ 1

N4
+

1

K

]
.

(7.21)

Next observe that again Theorem 6.3.1 implies that there exists a real number Ĉ ∈ [0,∞)
such that for all N ∈ N it holds that∣∣∣EP[(f(XT )

)2
]
− EP

[(
f(Y N,1

N )
)2
]∣∣∣ ≤ Ĉ

N2
. (7.22)

This ensures that

sup
N∈N

∣∣∣EP[(f(XT )
)2
]
− EP

[(
f(Y N,1

N )
)2
]∣∣∣ <∞ (7.23)

and therefore, we obtain that

sup
N∈N

EP
[(
f(Y N,1

N )
)2
]
<∞. (7.24)

Putting this into (7.21) completes the proof of Theorem 7.2.1.

If we choose K = N4 in the setting of Theorem 7.2.1, then (7.19) proves that there
exists a real number C ∈ [0,∞) such that for all N ∈ N it holds that∥∥∥∥∥EP[f(XT )

]
− 1

N4

N4∑
k=1

f
(
Y N,k
N

)∥∥∥∥∥
L2(P ;|·|)

≤ C

N2
. (7.25)

Note that if the initial random variable ξ is deterministic, that is, ξ(ω) = ξ(ω̃) for all
ω, ω̃ ∈ Ω, then

N ·K ·m = m ·N5 (7.26)
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realizations of independent standard normal random variables (cf. “randn” calls in
Matlab) are needed to compute a realization of

1

N4

N4∑
k=1

f
(
Y N,k
N

)
(7.27)

for N ∈ N and in that case, the Monte Carlo method in (7.19) converges under the
assumptions of Theorem 7.1.3 with the order 2

5
= 0.4

(
> 0.333 . . . = 1

3

)
with respect to

the number of used independent standard normal random variables. In other words,
O(ε−

5
2 ) = O(ε−2.5) independent standard normal random variables are used in (7.27) to

compute an approximation of
EP
[
f(XT )

]
(7.28)

with a root mean square approximation error of size ε > 0 (cf. (7.19) in Theorem 7.2.1).

7.3 Multilevel Monte Carlo Euler method

This subsection presents and briefly investigates multilevel Monte Carlo Euler approxi-
mations; see [Giles(2008)] and [Heinrich(2001)].

Definition 7.3.1 (Multilevel Monte Carlo Euler method). Assume the setting in the
beginning of Chapter 5, let f : C([0, T ],Rd) → R be a Borel measurable function with
EP
[
|f(X)|

]
< ∞, let ξk,l : Ω → R

d, k ∈ N, l ∈ N0, be i.i.d. F0/B(Rd)-measurable
mappings with Pξ1,0 = Pξ, let W k,l : [0, T ] × Ω → R

m, k ∈ N, l ∈ N0, be independent
standard (Ft)t∈[0,T ]-Brownian motions, let Y N,k,l : {0, 1, . . . , N} × Ω → R

d, N, k ∈ N,

l ∈ N0, be stochastic processes satisfying Y N,k,l
0 = ξk,l and

Y N,k,l
n+1 = Y N,k,l

n + µ̄
(
Y N,k,l
n

)
T
N

+ σ̄
(
Y N,k,l
n

)(
W k,l

(n+1)T
N

−W k,l
nT
N

)
(7.29)

for all n ∈ {0, 1, . . . , N − 1}, N, k ∈ N, l ∈ N0 ( i.i.d. Euler-Maruyama approximations)
and let Ȳ N,k,l : [0, T ]× Ω→ R

d, N, k ∈ N, l ∈ N0, be stochastic processes satisfying

Ȳ N,k,l
t =

(
tN
T
− n

)
Y N,k,l
n+1 +

(
n+ 1− tN

T

)
Y N,k,l
n (7.30)

for all t ∈
[
nT
N
, (n+1)T

N

]
, n ∈ {0, 1, . . . , N − 1}, N, k ∈ N, l ∈ N0 ( i.i.d. lin-

early interpolated Euler-Maruyama approximations). Then for every L ∈ N0,
N0, N1, . . . , NL, K0, K1, . . . , KL ∈ N the random variable

1

K0

K0∑
k=1

f
(
Ȳ N0,k,0

)
+

L∑
l=1

1

Kl

[
Kl∑
k=1

f
(
Ȳ Nl,k,l

)
− f

(
Ȳ Nl−1,k,l

)]
(7.31)

is called a Multilevel Monte Carlo Euler approximation (of EP
[
f(X)

]
based on L Levels,

K0 samples on level zero, K1 samples on level one, . . . , KL samples on level L and time
step sizes T

N0
, T
N1

, . . . , T
NL

).
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The root mean square approximation error of the multilevel Monte Carlo Euler method
is estimated in Theorem 7.3.2 below. Theorem 7.3.2 is, e.g., similar to Proposition 6.2
in [Hutzenthaler et al.(2011b)Hutzenthaler, Jentzen, and Kloeden].

Theorem 7.3.2 (Multilevel Monte Carlo Euler method). Assume the setting in the
beginning of Chapter 5, assume that O = Rd, let ξk,l : Ω→ R

d, k ∈ N, l ∈ N0, be i.i.d.
F0/B(Rd)-measurable mappings with Pξ1,0 = Pξ and EP

[
‖ξ‖p

Rd

]
<∞ for all p ∈ (0,∞),

let W k,l : [0, T ]×Ω→ R
m, k ∈ N, l ∈ N0, be independent standard (Ft)t∈[0,T ]-Brownian

motions, let Y N,k,l : {0, 1, . . . , N} × Ω → R
d, N, k ∈ N, l ∈ N0, be stochastic processes

satisfying Y N,k,l
0 = ξk,l and

Y N,k,l
n+1 = Y N,k,l

n + µ
(
Y N,k,l
n

)
T
N

+ σ
(
Y N,k,l
n

)(
W k,l

(n+1)T
N

−W k,l
nT
N

)
(7.32)

for all n ∈ {0, 1, . . . , N − 1}, N, k ∈ N, l ∈ N0 (i.i.d. Euler-Maruyama approximations)
and let Ȳ N,k,l : [0, T ]× Ω→ R

d, N, k ∈ N, l ∈ N0, be stochastic processes satisfying

Ȳ N,k,l
t =

(
tN
T
− n

)
Y N,k,l
n+1 +

(
n+ 1− tN

T

)
Y N,k,l
n (7.33)

for all t ∈
[
nT
N
, (n+1)T

N

]
, n ∈ {0, 1, . . . , N − 1}, N, k ∈ N, l ∈ N0 ( i.i.d. linearly inter-

polated Euler-Maruyama approximations). Moreover, let µ and σ be globally Lipschitz
continuous, let c ∈ [0,∞) be a real number and let f : C([0, T ],Rd) → R be a function
satisfying

|f(v)− f(w)| ≤ c
(

1 + ‖v‖cC([0,T ],Rd) + ‖w‖cC([0,T ],Rd)

)
‖v − w‖C([0,T ],Rd)

= c

(
1 + sup

t∈[0,T ]

‖v(t)‖c
Rd

+ sup
t∈[0,T ]

‖w(t)‖c
Rd

)[
sup
t∈[0,T ]

‖v(t)− w(t)‖
Rd

]
(7.34)

for all v, w ∈ C([0, T ],Rd). Then there exists a real number C ∈ [0,∞) such that for all
L ∈ N0, N0, N1, . . . , NL, K0, K1, . . . , KL ∈ N with N0 ≤ N1 ≤ · · · ≤ NL it holds that∥∥∥∥∥EP[f(X)

]
− 1

K0

K0∑
k=1

f
(
Ȳ N0,k,0

)
−

L∑
l=1

1

Kl

[
Kl∑
k=1

f
(
Ȳ Nl,k,l

)
− f

(
Ȳ Nl−1,k,l

)]∥∥∥∥∥
L2(P ;|·|)

≤ C
√

(1 + ln(NL))

√√√√( 1

K0

+

[
L∑
l=1

1

KlN(l−1)

]
+

1

NL

)
.

(7.35)

Proof of Theorem 7.3.2. First of all, note that Theorem 5.3.11 implies that there exists
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a real number C ∈ [0,∞) such that for all N ∈ N it holds that

(
EP

[
sup
t∈[0,T ]

∥∥∥Xt − Ȳ N,1,0
t

∥∥∥4

Rd

])1
4

=

∥∥∥∥∥ sup
t∈[0,T ]

∥∥∥Xt − Ȳ N,1,0
t

∥∥∥
Rd

∥∥∥∥∥
L4(P ;|·|)

=
∥∥∥∥∥X − Ȳ N,1,0

∥∥
C([0,T ],Rd)

∥∥∥
L4(P ;|·|)

=
∥∥X − Ȳ N,1,0

∥∥
L4(P ;C([0,T ],Rd))

≤
C
√

1 + ln(N)√
N

.

(7.36)

Assumption (7.34) and Hölder’s inequality hence show that for all N ∈ N it holds that

∥∥f(X)− f(Ȳ N,1,0)
∥∥
L2(P ;|·|)

≤
∥∥∥(1 + ‖X‖cC([0,T ],Rd) +

∥∥Ȳ N,1,0
∥∥c
C([0,T ],Rd)

)∥∥X − Ȳ N,1,0
∥∥
C([0,T ],Rd)

∥∥∥
L2(P ;|·|)

≤
∥∥∥(1 + ‖X‖cC([0,T ],Rd) +

∥∥Ȳ N,1,0
∥∥c
C([0,T ],Rd)

)∥∥∥
L4(P ;|·|)

∥∥∥∥∥X − Ȳ N,1,0
∥∥
C([0,T ],Rd)

∥∥∥
L4(P ;|·|)

≤
(

1 + ‖X‖cL4c(P ;C([0,T ],Rd)) +
∥∥Ȳ N,1,0

∥∥c
L4c(P ;C([0,T ],Rd))

)∥∥X − Ȳ N,1,0
∥∥
L4(P ;C([0,T ],Rd))

≤
(

1 + ‖X‖cL4c(P ;C([0,T ],Rd)) + sup
M∈N

∥∥Ȳ M,1,0
∥∥c
L4c(P ;C([0,T ],Rd))

)
C
√

1 + ln(N)√
N

.

(7.37)

This implies that there exists a real number Ĉ ∈ [0,∞) such that for all N ∈ N it holds
that

∥∥f(X)− f(Ȳ N,1,0)
∥∥2

L2(P ;|·|) = EP
[∣∣f(X)− f(Ȳ N,1,0)

∣∣2] ≤ Ĉ (1 + ln(N))

N
. (7.38)

Next observe that for all L ∈ N0, K0, K1, . . . , KL, N0, N1, . . . , NL ∈ N it holds that

EP

[
1

K0

K0∑
k=1

f
(
Ȳ N0,k,0

)
+

L∑
l=1

1

Kl

[
Kl∑
k=1

f
(
Ȳ Nl,k,l

)
− f

(
Ȳ Nl−1,k,l

)]]

= EP
[
f
(
Ȳ N0,1,0

)]
+

L∑
l=1

EP
[
f
(
Ȳ Nl,1,0

)
− f

(
Ȳ Nl−1,1,0

)]
= EP

[
f
(
Ȳ NL,1,0

)]
.

(7.39)

Therefore, we obtain that for all L ∈ N0, K0, K1, . . . , KL, N0, N1, . . . , NL ∈ N it holds
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that

EP

∣∣∣∣∣EP[f(X)
]
− 1

K0

K0∑
k=1

f
(
Ȳ N0,k,0

)
−

L∑
l=1

1

Kl

[
Kl∑
k=1

f
(
Ȳ Nl,k,l

)
− f

(
Ȳ Nl−1,k,l

)]∣∣∣∣∣
2


=
∣∣∣EP[f(X)

]
− EP

[
f
(
Ȳ NL,1,0

)]∣∣∣2︸ ︷︷ ︸
squared bias

+ Var

(
1

K0

K0∑
k=1

f
(
Ȳ N0,k,0

)
+

L∑
l=1

1

Kl

[
Kl∑
k=1

f
(
Ȳ Nl,k,l

)
− f

(
Ȳ Nl−1,k,l

)])

=
∣∣∣EP[f(X)

]
− EP

[
f
(
Ȳ NL,1,0

)]∣∣∣2︸ ︷︷ ︸
squared bias

+Var

(
1

K0

K0∑
k=1

f
(
Ȳ N0,k,0

))

+
L∑
l=1

Var

(
1

Kl

[
Kl∑
k=1

f
(
Ȳ Nl,k,l

)
− f

(
Ȳ Nl−1,k,l

)])
(7.40)

and hence, we get that for all L ∈ N0, K0, K1, . . . , KL, N0, N1, . . . , NL ∈ N it holds that

EP

∣∣∣∣∣EP[f(X)
]
− 1

K0

K0∑
k=1

f
(
Ȳ N0,k,0

)
−

L∑
l=1

1

Kl

[
Kl∑
k=1

f
(
Ȳ Nl,k,l

)
− f

(
Ȳ Nl−1,k,l

)]∣∣∣∣∣
2


=
∣∣∣EP[f(X)

]
− EP

[
f
(
Ȳ NL,1,0

)]∣∣∣2︸ ︷︷ ︸
squared bias

+
Var
(
f
(
Ȳ N0,1,0

))
K0

+
L∑
l=1

Var
(
f
(
Ȳ Nl,1,0

)
− f

(
Ȳ Nl−1,1,0

))
Kl

≤ EP
[∣∣f(X)− f

(
Ȳ NL,1,0

)∣∣2]+
supM∈N

∥∥f(Ȳ M,1,0
)∥∥2

L2(P ;|·|)

K0

+
L∑
l=1

∥∥f(Ȳ Nl,1,0
)
− f

(
Ȳ Nl−1,1,0

)∥∥2

L2(P ;|·|)

Kl

.

(7.41)

The triangle inequality and the estimate (a+ b)2 ≤ 2a2 +2b2 for all a, b ∈ R hence imply
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that for all L ∈ N0, K0, K1, . . . , KL, N0, N1, . . . , NL ∈ N it holds that

EP

∣∣∣∣∣EP[f(X)
]
− 1

K0

K0∑
k=1

f
(
Ȳ N0,k,0

)
−

L∑
l=1

1

Kl

[
Kl∑
k=1

f
(
Ȳ Nl,k,l

)
− f

(
Ȳ Nl−1,k,l

)]∣∣∣∣∣
2


≤
∥∥f(X)− f

(
Ȳ NL,1,0

)∥∥2

L2(P ;|·|) +
supM∈N

∥∥f(Ȳ M,1,0
)∥∥2

L2(P ;|·|)

K0

+
L∑
l=1

2
∥∥f(Ȳ Nl,1,0

)
− f

(
X
)∥∥2

L2(P ;|·|) + 2
∥∥f(X)− f(Ȳ Nl−1,1,0

)∥∥2

L2(P ;|·|)

Kl

.

(7.42)

Inequality (7.38) therefore proves that for all L ∈ N0, K0, K1, . . . , KL, N0, N1, . . . , NL ∈
N it holds that

EP

∣∣∣∣∣EP[f(X)
]
− 1

K0

K0∑
k=1

f
(
Ȳ N0,k,0

)
−

L∑
l=1

1

Kl

[
Kl∑
k=1

f
(
Ȳ Nl,k,l

)
− f

(
Ȳ Nl−1,k,l

)]∣∣∣∣∣
2


≤ Ĉ (1 + ln(NL))

NL

+
supM∈N

∥∥f(Ȳ M,1,0
)∥∥2

L2(P ;|·|)

K0

+
L∑
l=1

1

Kl

(
2Ĉ (1 + ln(Nl))

Nl

+
2Ĉ (1 + ln(Nl−1))

Nl−1

)
.

(7.43)

The fact that the function

[1,∞) 3 x 7→ 1 + ln(x)

x
∈ (0,∞) (7.44)

is strictly decreasing hence proves that for all L ∈ N0, K0, K1, . . . , KL, N0, N1, . . . , NL ∈
N with N0 ≤ N1 ≤ · · · ≤ NL it holds that

EP

∣∣∣∣∣EP[f(X)
]
− 1

K0

K0∑
k=1

f
(
Ȳ N0,k,0

)
−

L∑
l=1

1

Kl

[
Kl∑
k=1

f
(
Ȳ Nl,k,l

)
− f

(
Ȳ Nl−1,k,l

)]∣∣∣∣∣
2


≤ Ĉ (1 + ln(NL))

NL

+
supM∈N

∥∥f(Ȳ M,1,0
)∥∥2

L2(P ;|·|)

K0

+
L∑
l=1

4Ĉ (1 + ln(Nl−1))

KlNl−1

≤
(

1 + 4Ĉ + sup
M∈N

∥∥f(Ȳ M,1,0
)∥∥2

L2(P ;|·|)

)
(1 + ln(NL))

(
1

NL

+
1

K0

+
L∑
l=1

1

KlNl−1

)
.

(7.45)

The proof of Theorem 7.1.3 is thus completed.
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If we choose

L = ld(N), N0 = 20 = 1, N1 = 21 = 2, N2 = 22 = 4, . . . , NL = 2L = N
(7.46)

and

K0 =
N

20
= N, K1 =

N

21
=
N

2
, K2 =

N

22
=
N

4
, . . . , KL =

N

2L
= 1 (7.47)

for N ∈ {20, 21, 22, 23, . . . } in the setting of Theorem 7.3.2, then (7.35) proves that there
exists a real number C ∈ [0,∞) such that for all N ∈ {20, 21, 22, 23, . . . } it holds that∥∥∥∥∥∥EP

[
f(XT )

]
− 1

N

N∑
k=1

f
(
Ȳ 1,k,0

)
−

ld(N)∑
l=1

2l

N

 N

2l∑
k=1

f
(
Ȳ 2l,k,l

)
− f

(
Ȳ 2l−1,k,l

)∥∥∥∥∥∥
L2(P ;|·|)

≤ C
√

(1 + ln(N))

 1√
N

+

√√√√ld(N)∑
l=1

1(
N
2

)
 = C

√
(1 + ln(N))

(
1√
N

+

√
2 ld(N)√
N

)

=
C
√

(1 + ln(N))
(

1 +
√

2 ld(N)
)

√
N

≤

(√
2C
)√

(1 + ln(N))
(

1 +
√

1 + ld(N)
)

√
N

≤
(√

8C
)√

(1 + ln(N))
√

(1 + ld(N))
√
N

≤
(√

8C
)

(1 + ld(N))
√
N

.

(7.48)

Observe that if the initial random variable ξ is deterministic, that is, ξ(ω) = ξ(ω̃) for all
ω, ω̃ ∈ Ω, then N +

ld(N)∑
l=1

N

2l
(
2l + 2l−1

)m =

N +

ld(N)∑
l=1

3N

2

m

= Nm

(
1 +

3ld(N)

2

)
≤
(

3m

2

)
N (1 + ld(N))

(7.49)

realizations of independent standard normal random variables (cf. randn calls in Matlab)
are needed to compute a realization of

1

N

N∑
k=1

f
(
Ȳ 1,k,0

)
+

ld(N)∑
l=1

2l

N

 N

2l∑
k=1

f
(
Ȳ 2l,k,l

)
− f

(
Ȳ 2l−1,k,l

) (7.50)

for N ∈ {20, 21, 22, 23, . . . } and in that case, for every arbitrarily small δ ∈ (0,∞), the
multilevel Monte Carlo Euler method converges with the order 1

2
− δ with respect to

the number of used independent standard normal random variables. In other words, for
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every δ ∈ (0,∞) it holds that O(ε−(2+δ)) independent standard normal random variables
are used in (7.50) to compute an approximation of

EP
[
f(X)

]
(7.51)

with a root mean square approximation error of size ε > 0 (cf. (7.35) in Theorem 7.3.2).
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8 Solutions to the exercises

In this chapter we do not distinguish between pseudo random numbers and actual ran-
dom numbers.

8.1 Chapter 0

8.1.1 Solution to Exercise 0.2.8

Lemma 8.1.1. Let (Ω,A) be a measurable space and let A ⊆ Ω be a subset of Ω. Then
(A,A eA) is a measurable space.

Proof of Lemma 8.1.1. First of all, observe that the fact that A is a sigma-algebra on
Ω ensures that ∅ ∈ A and this implies that

∅ = A ∩ ∅︸︷︷︸
∈A

∈ A eA. (8.1)

Next we observe that for all B ∈ A it holds that Ω\B ∈ A. This shows that for all
B ∈ A it holds that

A\ (A ∩B)︸ ︷︷ ︸
∈AeA

= A\B = A ∩ (Ω\B)︸ ︷︷ ︸
∈A

∈ A eA. (8.2)

It thus remains to verify that AeA is closed under countable unions; see Definition 0.2.1.
To see this observe that for all functions B : N→ A it holds that

∪n∈N (A ∩B(n)) = A ∩ (∪n∈NB(n)) . (8.3)

Combining (8.1), (8.2), and (8.3) proves that AeA is a sigma-algebra on A. The proof
of Lemma 8.1.1 is thus completed.

8.1.2 Solution to Exercise 0.2.43

Lemma 8.1.2. Let (E, E) be a topological space and let µ : B(E)→ [0,∞] be a measure
on (E,B(E)). Then it holds that E\ supp(µ) ∈ E.
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Proof of Lemma 8.1.2. First, note that

supp(µ) =
{
x ∈ E :

(
∀U ∈ E : (x ∈ U ⇒ µ(U) > 0)

)}
=
{
x ∈ E :

(
∀U ∈ E : (x /∈ U) ∨ (µ(U) > 0)

)}
.

(8.4)

This implies that

E\ supp(µ) =
{
x ∈ E : ¬

(
∀U ∈ E : (x /∈ U) ∨ (µ(U) > 0)

)}
=
{
x ∈ E :

(
∃U ∈ E : ¬ [(x /∈ U) ∨ (µ(U) > 0)]

)}
=
{
x ∈ E :

(
∃U ∈ E : (x ∈ U) ∧ (µ(U) = 0)

)}
= ∪U∈E,µ(U)=0U ∈ E .

(8.5)

The proof of Lemma 8.1.2 is thus completed.

8.1.3 Solution to Exercise 0.4.7

Lemma 8.1.3 (Approximations of the exponential function). Let al ∈ R, l ∈ N, be a
convergent sequence and let nl ∈ N, l ∈ N, satisfy liml→∞ nl =∞. Then

lim
l→∞

[ [
1 + al

nl

]nl ]
= exp

(
lim
l→∞

al

)
. (8.6)

Proof of Lemma 8.1.3. Let fl : N0 → R, l ∈ N, be the functions which satisfy for all
l ∈ N, k ∈ N0 that

fl(k) =

{
nl(nl−1)·...·(nl−k+1)

(nl)k
· (al)

k

k!
: k ≤ nl

0 : k > nl
. (8.7)

Next observe that the binomial theorem proves that[
1 + al

nl

]nl
=

nl∑
k=0

(
nl
k

)[
al
nl

]k
=
∞∑
k=0

fl(k) =

ˆ
N0

fl(k) #N0(dk). (8.8)

Moreover, note that for all k ∈ N0 it holds that

lim
l→∞

fl(k) =
[liml→∞ al]

k

k!
and sup

l∈N
|fl(k)| ≤ [supl∈N |al|]

k

k!
. (8.9)

Lebesgue’s theorem of dominated convergence hence proves that

lim
l→∞

ˆ
N0

fl(k) #N0(dk) =

ˆ
N0

lim
l→∞

fl(k) #N0(dk) =

ˆ
N0

[liml→∞ al]
k

k!
#N0(dk)

=
∞∑
k=0

[liml→∞ al]
k

k!
= exp

(
lim
l→∞

al

)
.

(8.10)
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This and (8.8) ensure that

lim
l→∞

[ [
1 + al

nl

]nl ]
= exp

(
lim
l→∞

al

)
. (8.11)

The proof of Lemma 8.1.3 is thus completed.

8.1.4 Solution to Exercise 0.4.14

Lemma 8.1.4. Let d ∈ N. Then it holds that

N0,I
Rd

(
R
d
)

= 1. (8.12)

Proof of Lemma 8.1.4. First of all, observe that a polar coordinate transform ensures
that

N0,I
R2

(
R

2
)

=

ˆ
R2

1 N0,I
R2 (dx) =

1

2π

ˆ
R2

exp
(
−‖x‖2

R2

2

)
λR2(dx)

=
1

2π

ˆ ∞
0

ˆ 2π

0

r exp
(
−r2

2

)
dα dr =

ˆ ∞
0

r exp
(
−r2

2

)
dr

=

[
− exp

(
−r

2

2

)]r=∞
r=0

= 1.

(8.13)

This implies that

N0,I
Rd

(Rd) =

ˆ
Rd

1 N0,I
Rd

(dx) =
1

(2π)d/2

ˆ
Rd

e
−1
2
‖x‖2

Rd dx

=

[
1√
2π

ˆ
R

e
−x2
2 dx

]d
=

[
1

2π

ˆ
R2

e
−1
2
‖x‖2

R2 dx

]d/2
=
[
N0,I

R2 (R2)
]d/2

= 1.

(8.14)

The proof of Lemma 8.1.4 is thus completed.

Lemma 8.1.5 (First and second moments). Let d ∈ N. Then it holds for all i, j ∈
{1, 2, . . . , d} that ˆ

Rd

xi N0,I
Rd

(dx1, . . . , dxd) = 0 (8.15)

and ˆ
Rd

xi · xj N0,I
Rd

(dx1, . . . , dxd) =

{
1 : i = j

0 : else
. (8.16)
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Proof of Lemma 8.1.5. First, observe that for all x ∈ R it holds that

d
dx

[
e
−1
2
x2
]

= (−x) e
−1
2
x2 . (8.17)

This ensures thatˆ
R

x e
−1
2
x2dx = −

ˆ
R

(−x) e
−1
2
x2dx =

[
e
−1
2
x2
]x=∞

x=−∞
= 0. (8.18)

Moreover, note that (8.17), Lemma 8.1.4, and integration by parts imply that

1√
2π

ˆ
R

x2 e−
1
2
x2dx = − 1√

2π

ˆ
R

x ·
[
(−x) e−

1
2
x2
]
dx

= − 1√
2π

[
x · e−

1
2
x2
]x=∞

x=−∞
+

1√
2π

ˆ
R

e−
1
2
x2 dx = 1.

(8.19)

Combining Lemma 8.1.4, (8.18), and (8.19) proves that for all k ∈ {0, 1, 2} it holds that

1√
2π

ˆ
R

xk e−
1
2
x2dx =

{
0 : k = 1

1 : k ∈ {0, 2}
. (8.20)

This shows that for all i ∈ {1, 2, . . . , d}, k ∈ {1, 2} it holds thatˆ
Rd

[xi]
kN0,I

Rd
(dx1, . . . , dxd) =

1

(2π)d/2

ˆ
Rd

[xi]
k e−

1
2
‖x‖2

Rd dx

=

[
1√
2π

ˆ
R

e−
1
2
x2dx

](d−1) [
1√
2π

ˆ
R

xk e−
1
2
x2dx

]
=

1√
2π

ˆ
R

xk e−
1
2
x2dx =

{
0 : k = 1

1 : k = 2
.

(8.21)

Next note that (8.20) ensures that for all i, j ∈ {1, 2, . . . , d} with i 6= j it holds thatˆ
Rd

xi · xj N0,I
Rd

(dx1, . . . , dxd) =
1

(2π)d/2

ˆ
Rd

xi xj e
− 1

2
‖x‖2

Rd dx

=

[
1√
2π

ˆ
R

e−
1
2
‖x‖2

Rd dx

](d−2) [
1√
2π

ˆ
R

x e−
1
2
x2 dx

]2

=

[
1√
2π

ˆ
R

x e−
1
2
x2 dx

]2

= 0.

(8.22)

This and (8.21) complete the proof of Lemma 8.1.5.

8.2 Chapter 1

8.2.1 Solution to Exercise 1.2.16

Lemma 8.2.1 (∩-stability of the class of ”southwest rectangles”). Let d ∈ N and let
A ⊆ P(Rd) be the set given by A = ∪x1,...,xd∈R {(−∞, x1)× · · · × (−∞, xd)}. Then it
holds that A is ∩-stable.
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Proof of Lemma 8.2.1. Let (a1, . . . , ad), (b1, . . . , bd) ∈ Rd and let A,B ∈ A be the sets
given by

A = ×dj=1(−∞, aj) and B = ×dj=1(−∞, bj). (8.23)

Then it holds for all x = (x1, . . . , xd) ∈ A ∩B, j ∈ {1, . . . , d} that

xj < aj and xj < bj. (8.24)

Moreover, it holds for all x ∈ ×dj=1(−∞,min{aj, bj}) that x ∈ A ∩ B. This and (8.24)
imply that

A ∩B = ×dj=1(−∞,min{aj, bj}) ∈ A. (8.25)

The proof of Lemma 8.2.1 is thus completed.

Lemma 8.2.2 (Generation of B(Rd) by rectangles). Let d ∈ N and let R ⊆ P(Rd) be
the set given by

R =
⋃

a1,...,ad,
b1,...,bd∈Q

{
[a1, b1)× · · · × [ad, bd)

}
. (8.26)

Then it holds that B(Rd) = σRd(R).

Proof of Lemma 8.2.2. Throughout this proof for every open set G ⊆ R
d and every

y ∈ G let AGy ∈ R be a set with the property that y ∈ AGy and AGy ⊆ G. Hence, we
obtain for all open sets G ⊆ Rd that

G = ∪y∈GAGy . (8.27)

Combining (8.27) with the fact that R is countable implies that for every open set
G ⊆ Rd there exists a countable set J ⊆ G such that

G = ∪y∈GAGy = ∪y∈JAGy . (8.28)

This and the fact that B(Rd) is generated by the open sets in the normed R-vector space
(Rd, ‖·‖

Rd
) shows that B(Rd) ⊆ σRd(R). Next observe that for all a1, . . . , ad, b1, . . . , bd ∈

Q it holds that
×dj=1 [aj, bj) = ∩n∈N ×dj=1 (aj − 1

n
, bj). (8.29)

This, the fact that for all a1, . . . , ad, b1, . . . , bd ∈ Q it holds that the set ×dj=1(aj, bj)
is open in Rd, and the fact that B(Rd) is generated by the open sets in the normed
R-vector space (Rd, ‖·‖

Rd
) show that

σRd(R) ⊆ B(Rd). (8.30)

This completes the proof of Lemma 8.2.2.

Proposition 8.2.3 (An ∩-stable generating system for the Borel sigma-algebra). Let d ∈
N and let A ⊆ P(Rd) be the set given by A = ∪x1,...,xd∈R {(−∞, x1)× · · · × (−∞, xd)}.
Then it holds that B(Rd) = σRd(A).
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Proof of Proposition 8.2.3. Throughout this proof let S(x1,...,xd) ⊆ Rd, (x1, . . . , xd) ∈ Rd,
be the sets with the property that for all (x1, . . . , xd) ∈ Rd it holds that

S(x1,...,xd) = ×dj=1(−∞, xj) (8.31)

and let R,Q ⊆ P(Rd) be the sets given by

R =
⋃

a1,...,ad,
b1,...,bd∈Q

{[a1, b1)× · · · × [ad, bd)} and Q =
⋃

x1,...,xd∈Q

{
S(x1,...,xd)

}
. (8.32)

We first prove that B(Rd) = σRd(Q). Observe that every element of Q is open in Rd.
This implies that σRd(Q) ⊆ B(Rd). Moreover, note that for all a1, . . . , ad, b1, . . . , bd ∈ Q
it holds that

×dj=1 [aj, bj) = S(b1,...,bd)\
[
S(a1,b2,...,bd) ∪ S(b1,a2,...,bd) ∪ · · · ∪ S(b1,b2,...,ad)

]
. (8.33)

This and Lemma 8.2.2 imply that

B(Rd) = σRd(R) ⊆ σRd(Q). (8.34)

Therefore, we obtain that B(Rd) = σRd(Q). In addition, observe that

B(Rd) = σRd(Q) ⊆ σRd(A). (8.35)

Next note that every element of A is open in Rd. This implies that B(Rd) ⊇ σRd(A).
Hence, we obtain that

B(Rd) = σRd(A). (8.36)

The proof of Proposition 8.2.3 is thus completed.

8.2.2 Solution to Exercise 1.2.24

Lemma 8.2.4. Let a, b ∈ R be real numbers with a < b and let F : R → [0, 1] be a
distribution function which satisfies for all y ∈ (0, 1) that

IF (y) = yb+ (1− y)a. (8.37)

Then it holds for all x ∈ R that

F (x) = max

{
0,min

{
1,

(x− a)

(b− a)

}}
=


0 : x ≤ a
(x−a)
(b−a)

: a ≤ x ≤ b

1 : b ≤ x

. (8.38)
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Proof of Lemma 8.2.4. Throughout this proof let Ω and F be the sets given by Ω = (0, 1)
and F = B((0, 1)), let P : F → [0,∞] be a measure given by

P = B(0,1), (8.39)

and let U : Ω→ R be the function which satisfies for all ω ∈ Ω that

U(ω) = ω. (8.40)

Then it holds that (Ω,F , P ) is a probability space and it holds that U : Ω → R is an
U(0,1)-distributed random variable which satisfies that

U(Ω) ⊆ (0, 1). (8.41)

Proposition 1.2.7 hence proves that for all x ∈ R it holds that

F (x) = P
(
IF (U) ≤ x

)
= P

(
Ub+ (1− U) a ≤ x

)
= P

(
U (b− a) + a ≤ x

)
= P

(
U (b− a) ≤ x− a

)
= P

(
U ≤ (x− a)

(b− a)

)
= max

{
0,min

{
1,

(x− a)

(b− a)

}}
.

(8.42)

The proof of Lemma 8.2.4 is thus completed.

8.2.3 Solution to Exercise 1.2.25

1 function X=Cauchy (N,mu, lambda )
2 U=rand (1 ,N) ;
3 X=lambda∗tan ( pi ∗(U − 0 . 5 ) ) + mu;
4 end

Matlab code 8.1: A Matlab function Cauchy(N,µ,λ) with input N ∈ N, µ ∈ R, λ ∈
(0,∞) and output a realization of an (Cauµ,λ)

⊗N -distributed random
variable generated with the inversion method. The Matlab function
Cauchy(N,µ,λ) uses exactly N realizations of an U(0,1)-distributed
random variable.

Work in progress. Copyright (C) with the authors.
Dissemination prohibited. December 15, 2018

259



Chapter 8. Solutions to the exercises

8.2.4 Solution to Exercise 1.2.26

Lemma 8.2.5 (Distribution function of the Laplace distribution). Let λ ∈ (0,∞) and
let F : R→ [0, 1] be the distribution function of Laplaceλ. Then

(i) it holds for all x ∈ R that

F (x) = Laplaceλ((−∞, x]) =

{
1
2
eλx : x < 0

1− 1
2
e−λx : x ≥ 0

(8.43)

and

(ii) it holds for all y ∈ (0, 1) that

IF (y) =

{
1
λ

ln(2y) : 0 < y < 1
2

− 1
λ

ln(2− 2y) : 1
2
≤ y < 1

. (8.44)

Proof of Lemma 8.2.5. First of all, observe that for all x ∈ R it holds that

F (x) = Laplaceλ((−∞, x]) =
λ

2

ˆ x

−∞
e−λ|u| du

=
λ

2

[ˆ min{x,0}

−∞
eλu du+

ˆ x

min{x,0}
e−λu du

]

=
λ

2

[
1

λ
eλu
]u=min{x,0}

u=−∞
+
λ

2

[
−1

λ
e−λu

]u=x

u=min{x,0}

=
1

2

[
eλu
]u=min{x,0}
u=−∞ − 1

2

[
e−λu

]u=x

u=min{x,0}

=
1

2

[
eλmin{x,0} + e−λmin{x,0} − e−λx

]
=

{
1
2
eλx : x < 0

1− 1
2
e−λx : x ≥ 0

.

(8.45)

This, in particular, ensures that F is strictly increasing. Lemma 1.2.4 hence proves that
for all y ∈ (0, 1) = F (R) it holds that

y = F (F−1(y)) = F (IF (y)). (8.46)

The fact that F ([0,∞)) = [1
2
, 1) and (8.45) therefore ensure that for all y ∈ (0, 1

2
) it

holds that
1

2
> y = F (IF (y)) = 1

2
eλIF (y). (8.47)

This shows that for all y ∈ (0, 1
2
) it holds that

1
λ

ln(2y) = IF (y). (8.48)

Work in progress. Copyright (C) with the authors.
Dissemination prohibited. December 15, 2018

260



Chapter 8. Solutions to the exercises

In addition, we observe that (8.45), (8.46), and the fact that F ((−∞, 0)) ⊆ (0, 1
2
) imply

that for all y ∈ [1
2
, 1) it holds that

1

2
≤ y = F (IF (y)) = 1− 1

2
e−λIF (y). (8.49)

Hence, we obtain that for all y ∈ [1
2
, 1) it holds that

ln(2− 2y) = −λIF (y). (8.50)

This proves that for all y ∈ [1
2
, 1) it holds that

− 1
λ

ln(2− 2y) = IF (y). (8.51)

Combining this with (8.48) completes the proof of Lemma 8.2.5.

8.2.5 Solution to Exercise 1.2.27

1 function X=Laplace (N, lambda )
2 U=rand (1 ,N) ;
3 X=InvDFLaplace (U, lambda ) ;
4 end

Matlab code 8.2: A Matlab function Laplace(N,λ) with input N ∈ N, λ ∈ (0,∞)
and output a realization of an (Laplaceλ)

⊗N -distributed random vari-
able generated with the inversion method. The Matlab function
Laplace(N, λ) uses exactly N realizations of an U(0,1)-distributed
random variable.

1 function x=InvDFLaplace (y , lambda )
2 x=zeros ( s ize ( y ) ) ;
3 I=(y<0 .5) ;
4 x ( I )=log (2∗y ( I ) )/ lambda ;
5 I=l o g i c a l (1− I ) ;
6 x ( I)=−log (2∗(1−y ( I ) ) ) / lambda ;
7 end

1 function LaplacePlot ( )
2 rng ( ’ d e f a u l t ’ ) ;
3 N=10ˆ5;
4 lambda =0.1;
5 X=Laplace (N, lambda ) ;
6 hist (X,10ˆ3 )
7 end
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Matlab code 8.3: A Matlab function LaplacePlot() which plots 105 realizations of
an Laplace0.1-distributed random variable generated with the Matlab
function Laplace(N,λ) in a histogram with 1000 bins.

−150 −100 −50 0 50 100
0

200

400

600

800

1000

1200

Figure 8.1: Result of a call of the Matlab function 8.3.

8.2.6 Solution to Exercise 1.2.30

1 function X = AcceptanceReject ion (N)
2 X = [ ] ;
3 while ( length (X) < N )
4 U = rand (2 , N−length (X) ) ;
5 U = [ 8 0 ; 0 sqrt ( 8 ) ] ∗U;
6 U( 1 , : ) = U( 1 , : ) − 4 ;
7 U( 2 , : ) = U( 2 , : ) − sqrt ( 2 ) ;
8 I = ( U( 1 , : ) . ˆ 2 / 8 + U( 2 , : ) . ˆ 2 <= 2 ) ;
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9 X = [ X, U( : , I ) ] ;
10 end
11 end

Matlab code 8.4: A Matlab function AcceptanceRejection(N) with input N ∈ N and
output a realization of an (UA)⊗N -distributed random variable gener-
ated with the acceptance-rejection method.

1 function AcceptanceReject ionPlot ( )
2 rng ( ’ d e f a u l t ’ ) ;
3 N=10ˆ5;
4 X=AcceptanceReject ion (N) ;
5 plot (X( 1 , : ) ,X( 2 , : ) , ’∗ ’ )
6 axis ( [−4.5 4 .5 −1.7 1 . 7 ] ) ;
7 daspect ( [ 1 1 1 ] ) ;
8 end

Matlab code 8.5: A Matlab function AcceptanceRejectionPlot() which uses the
Matlab function AcceptanceRejection(N) and the built-in Matlab
function plot(...) to plot 105 realizations of an UA-distributed ran-
dom variable in a coordinate plane.

8.2.7 Solution to Exercise 1.2.38

Lemma 8.2.6. Let f, f̃ : R→ [0,∞) be the functions which satisfy for all x ∈ R that

f(x) =
1√
2π

e−
1
2
x2 and f̃(x) =

1

π (1 + x2)
(8.52)

and let Ã ⊆ R be the set given by Ã =
{
C ∈ R :

(
∀x ∈ R : f(x) ≤ Cf̃(x)

)}
. Then it

holds that C ∈ Ã if and only if
(
∀ y ∈ [0,∞) : 1 + 2y ≤

√
2C ey√
π

)
.

Proof of Lemma 8.2.6. The definition of Ã and (8.52) ensure that C ∈ Ã if and only if
for all x ∈ R it holds that

1√
2π

e−
1
2
x2 ≤ C

1

π(1 + x2)
= C

1

π
(
1 + 2

[
1
2
x2
]) . (8.53)

The fact that
{

1
2
x2 ∈ R : x ∈ R

}
= [0,∞) hence proves that C ∈ Ã if and only if for all

y ∈ [0,∞) it holds that
1√
2π
e−y ≤ C

1

π(1 + 2y)
. (8.54)
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Figure 8.2: Result of a call of the Matlab function 8.5.
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Reorganizing the terms in (8.54) shows that C ∈ Ã if and only if for all y ∈ [0,∞) it
holds that

1 + 2y ≤
√

2C ey√
π

. (8.55)

The proof of Lemma 8.2.6 is thus completed.

Lemma 8.2.7. Let f, f̃ : R→ [0,∞) be the functions which satisfy for all x ∈ R that

f(x) =
1√
2π

e−
1
2
x2 and f̃(x) =

1

π (1 + x2)
(8.56)

and let Ã ⊆ R be the set given by Ã =
{
C ∈ R :

(
∀x ∈ R : f(x) ≤ Cf̃(x)

)}
. Then it

holds that

Ã =

[
sup
x∈R

(
f(x)

f̃(x)

)
,∞
)
. (8.57)

Proof of Lemma 8.2.7. Throughout this proof let κ ∈ R be the real number given by

κ = sup
y∈R

f(y)

f̃(y)
. (8.58)

The definition of the set Ã assures that for all C ∈ Ã, x ∈ R it holds that

f(x)

f̃(x)
≤ C. (8.59)

Hence, we obtain for all C ∈ Ã that

κ ≤ C. (8.60)

This implies that
Ã ⊆ [κ,∞). (8.61)

Next observe that the definition of κ ensures that for all x ∈ R, C ∈ [κ,∞) it holds that

f(x)

f̃(x)
≤ sup

y∈R

(
f(y)

f̃(y)

)
= κ ≤ C. (8.62)

Therefore, we obtain that for all x ∈ R, C ∈ [κ,∞) it holds that

f(x) ≤ Cf̃(x). (8.63)

This proves that
[κ,∞) ⊆ Ã. (8.64)

Hence, we obtain that Ã = [κ,∞). The proof of Lemma 8.2.7 is thus completed.
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Lemma 8.2.8. Let f, f̃ : R→ [0,∞) be the functions which satisfy for all x ∈ R that

f(x) =
1√
2π

e−
1
2
x2 and f̃(x) =

1

π (1 + x2)
. (8.65)

Then it holds that

sup
x∈R

f(x)

f̃(x)
=

√
2π

e
and

´
R

[
supy∈R

f(y)

f̃(y)

]
f̃(x) dx´

R
f(x) dx

=

√
2π

e
. (8.66)

Proof of Lemma 8.2.8. Throughout this proof let κ ∈ R be the real number given by

κ = sup
y∈R

f(y)

f̃(y)
, (8.67)

let Ã ⊆ R be the set given by Ã =
{
C ∈ R :

(
∀x ∈ R : f(x) ≤ Cf̃(x)

)}
, and let

g : [0,∞)→ R be the function with the property that for all y ∈ [0,∞) it holds that

g(y) = e−y(1 + 2y). (8.68)

Lemma 8.2.7 implies that min(Ã) = κ. Hence, Lemma 8.2.6 ensures for all ε ∈ (0,∞)
that there exists a real number y0 ∈ [0,∞) such that

1 + 2y0 >

√
2(κ− ε)ey0√

π
. (8.69)

This implies that for every ε ∈ (0,∞) there exists a real number y0 ∈ [0,∞) such that√
π

2
e−y0(1 + 2y0) > κ− ε. (8.70)

Similarly, Lemma 8.2.6 proves that for all y ∈ [κ,∞) it holds that√
π

2
e−y(1 + 2y) ≤ κ. (8.71)

Combining (8.70) and (8.71) proves that√
π

2
sup

y∈[0,∞)

e−y(1 + 2y) =

√
π

2
sup

y∈[0,∞)

g(y) = κ. (8.72)

The fact that g is smooth enables us to find its extrema by analyzing its derivatives.
Note that for all y ∈ (0,∞) it holds that

g′(y) = e−y(1− 2y) (8.73)

and
g′′(y) = e−y(−3 + 2y). (8.74)
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Next note that g′(1
2
) = 0 and g′′(1

2
) < 0. This implies that g has a local maximum point

at 1
2
. Observe that g′ has no roots in (0,∞)\{1

2
}. This shows that 1

2
is the only local

maximum point of the function g|(0,∞). Combining the fact that g(0) = 1 ≤ g(1
2
) = 2√

e

and

lim
y→∞

e−y(1 + 2y) = lim
y→∞

1 + 2y

ey
= 0 (8.75)

with (8.72) proves that

κ =

√
π

2
sup

y∈[0,∞)

e−y(1 + 2y) =

√
π

2

2√
e

=

√
2π

e
. (8.76)

Furthermore, Lemma 8.2.7 and the fact that f and f̃ are probability density functions
imply that ´

R

[
supy∈R

f(y)

f̃(y)

]
f̃(x) dx´

R
f(x) dx

= sup
y∈R

f(y)

f̃(y)
= κ =

√
2π

e
. (8.77)

The proof of the Lemma 8.2.8 is thus completed.

Please be aware that the following Matlab function makes use of the Matlab function
Cauchy(N,mu, lambda), which is part of the solution to Exercise 1.2.25.

1 function X = AcceptanceRejectionGaussianCauchy (N)
2 X = [ ] ;
3 while ( length (X) < N )
4 Y = Cauchy (N − length (X) , 0 , 1 ) ;
5 U = rand (1 , N − length (X) ) ;
6 kappa = sqrt ( 2∗pi/exp (1 ) ) ;
7 I = ( U / pi . / ( 1 + Y. ˆ 2 ) ∗ kappa . . .
8 <= 1/ sqrt (2∗pi )∗exp(−1/2∗Y. ˆ 2 ) ) ;
9 X = [ X, Y( I ) ] ;

10 end
11 end

Matlab code 8.6: A Matlab function AcceptanceRejectionGaussianCauchy(N) with
input N ∈ N and output a realization of an (N0,IR)⊗N -distributed
random variable generated with the acceptance-rejection method with
f as the density of the target distribution and κf̃ as the unnormalized
density of the proposal distribution Cau0,1.

1 function AcceptanceReject ionGaussianCauchyPlot ( )
2 rng ( ’ d e f a u l t ’ ) ;
3 N=10ˆ5;
4 X=AcceptanceRejectionGaussianCauchy (N) ;
5 hist (X, 1 0 0 0 ) ;
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6 end

Matlab code 8.7: A Matlab function AcceptanceRejectionGaussianCauchyPlot()

which plots 105 realizations of an N0,IR-distributed
random variable generated with the Matlab function
AcceptanceRejectionGaussianCauchy(N) in a histogram with
1000 bins.
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Figure 8.3: Result of a call of the Matlab function 8.7.

Work in progress. Copyright (C) with the authors.
Dissemination prohibited. December 15, 2018

268



Chapter 8. Solutions to the exercises

8.2.8 Solution to Exercise 1.2.39

Lemma 8.2.9. Let f, f̂ : R→ [0,∞) be the functions which satisfy for all x ∈ R that

f(x) =
1√
2π

e−
1
2
x2 and f̂(x) =

e−|x|

2
(8.78)

and let Â ⊆ R be the set given by Â =
{
C ∈ R :

(
∀x ∈ R : f(x) ≤ Cf̂(x)

)}
. Then

Â =

[
sup
x∈R

(
f(x)

f̂(x)

)
,∞

)
. (8.79)

Proof of Lemma 8.2.9. Throughout this proof let κ̂ ∈ R be the real number given by
κ̂ = supy∈R

f(y)

f̂(y)
. The definition of the set Â implies that for all C ∈ Â, x ∈ R it holds

that
f(x)

f̂(x)
≤ C. (8.80)

Hence, we obtain that for all C ∈ Â it holds that

κ̂ ≤ C. (8.81)

This implies that Â ⊆ [κ̂,∞). Moreover, the definition of κ̂ implies that for all C ∈
[κ̂,∞), x ∈ R it holds that

f(x)

f̂(x)
≤ sup

y∈R

f(y)

f̂(y)
= κ̂ ≤ C. (8.82)

This shows that for all x ∈ R, C ∈ [κ̂,∞) it holds that

f(x) ≤ Cf̂(x). (8.83)

This proves that [κ̂,∞) ⊆ Â. Hence, we obtain that Â = [κ̂,∞). The proof of
Lemma 8.2.9 is thus completed.

Lemma 8.2.10. Let f, f̂ : R→ [0,∞) be the functions which satisfy for all x ∈ R that

f(x) =
1√
2π

e−
1
2
x2 and f̂(x) =

e−|x|

2
. (8.84)

Then it holds that

supx∈R
f(x)

f̂(x)
=

√
2e

π
and

´
R

[
supy∈R

f(y)

f̂(y)

]
f̂(x) dx´

R
f(x) dx

=

√
2e

π
. (8.85)
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Proof of Lemma 8.2.10. Throughout this proof let h : R → R be the function which
satisfies for all x ∈ R that

h(x) =
f(x)

f̂(x)
=

√
2

π
e−

1
2
x2e|x|. (8.86)

We are interested in the local maxima of the function h. The fact that h is an even
function, i.e., ∀x ∈ R : h(x) = h(−x), implies that it is enough to analyze h over (0,∞).
First of all, note that h|(0,∞) : (0,∞)→ R is smooth. Next observe that for all x ∈ (0,∞)
it holds that

h′(x) =

√
2

π
(1− x)e−

1
2
x2ex (8.87)

and

h′′(x) =
d

dx

[√
2

π
(1− x)e−

1
2
x2ex

]
=

√
2

π

[ d

dx
(1− x)

]
e−

1
2
x2ex +

√
2

π
(1− x)

[ d

dx
e−

1
2
x2ex

]
=

√
2

π

[
− 1 + (1− x)2

]
e−

1
2
x2ex.

(8.88)

Additionally, note that h′(1) = 0 and h′′(1) < 0. Combining (8.87) with (8.88) hence
proves that h has a local maximum point at 1 with value

h(1) =

√
2e

π
. (8.89)

The function h′|(0,∞)\{1} : (0,∞)\{1} → R has no roots. This implies that 1 is the only
local maximum point of h|(0,∞). Combining this with the fact that

h(0) =

√
2

π
< h(1) (8.90)

and
lim
|x|→∞

h(x) = 0 (8.91)

implies that

sup
x∈R

f(x)

f̂(x)
= h(1) =

√
2e

π
. (8.92)

The fact that f and f̂ are normalized density functions hence proves that

´
R

[
supy∈R

f(y)

f̂(y)

]
f̂(x) dx´

R
f(x) dx

=

´
R

[
supy∈R

f(y)

f̂(y)

]
f̂(x) dx´

R
f(x) dx

=

√
2e

π
. (8.93)

The proof of Lemma 8.2.10 is thus completed.
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Please be aware that the following Matlab function makes use of the Matlab function
Laplace(N,lambda), which itself uses the Matlab function InvDFLaplace(y, lambda).
These are both part of the solution to Exercise 1.2.27.

1 function X = AcceptanceReject ionGauss ianLaplace (N)
2 X = [ ] ;
3 while ( length (X) < N )
4 Y = Laplace (N − length (X) , 1 ) ;
5 U = rand (1 ,N − length (X) ) ;
6 kappa = sqrt (2∗exp (1)/ pi ) ;
7 I = ( U .∗ exp(−abs (Y))/2 ∗ kappa . . .
8 <= 1/ sqrt (2∗pi )∗exp(−1/2∗Y. ˆ 2 ) ) ;
9 X = [ X, Y( I ) ] ;

10 end
11 end

Matlab code 8.8: A Matlab function AcceptanceRejectionGaussianLaplace(N) with
input N ∈ N and output a realization of an (N0,IR)⊗N -distributed
random variable generated with the acceptance-rejection method with
f as the density of the target distribution and κ̂f̂ as the unnormalized
density of the proposal distribution Cau0,1.

1 function AcceptanceReject ionGauss ianLaplacePlot ( )
2 rng ( ’ d e f a u l t ’ ) ;
3 N=10ˆ5;
4 X=AcceptanceReject ionGauss ianLaplace (N) ;
5 hist (X, 1 0 0 0 ) ;
6 end

Matlab code 8.9: A Matlab function AcceptanceRejectionGaussianLaplacePlot()

which plots 105 realizations of an N0,IR-distributed
random variable generated with the Matlab function
AcceptanceRejectionGaussianLaplace(N) in a histogram with
1000 bins.

8.2.9 Solution to Exercise 1.3.7

1 function X = BoxMuller ( N )
2 % a l l o c a t i n g memory f o r the output
3 % and s i m u l t a n e o u s l y g e n e r a t i n g uni formly d i s t r i b u t e d
4 % random v a r i a b l e s
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Figure 8.4: Result of a call of the Matlab function 8.9.
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5 % ( one in a d d i t i o n to N i f N i s odd )
6 X = rand ( 2 , ce i l ( N / 2 ) ) ;
7
8 X = [ sqrt ( −2∗log ( X( 1 , : ) ) ) .∗ . . .
9 cos ( 2∗pi ∗ X( 2 , : ) ) , . . .

10 sqrt ( −2∗log ( X( 1 , 1 : f loor ( N / 2 ) ) ) ) .∗ . . .
11 sin ( 2∗pi ∗ X( 2 , 1 : f loor ( N / 2 ) ) ) ] ;
12 end

Matlab code 8.10: A Matlab function BoxMuller(N) with input N ∈ N and output a
realization of an N0,I

RN
-distributed random variable generated with

the Box-Muller method.

1 function BoxMullerPlot ( )
2 rng ( ’ d e f a u l t ’ ) ;
3 N = 10ˆ5 ;
4 % P r o b a b i l i t y d e n s i t y f u n c t i o n o f the normal d i s t r i b u t i o n
5 f = @( x ) exp(−0.5∗x . ˆ2 )/ sqrt (2∗pi ) ;
6 % Generating the normal ized his togram f o r the Box−Mul ler
7 % sampling method
8 X BM = BoxMuller (N) ;
9 f igure (1 )

10 c l f
11 [N BM, x]= hist (X BM, 1 0 0 0 ) ;
12 % Normaliz ing the b i n s such t h a t they have area 1
13 bar (x ,N BM/N/( x(2)−x ( 1 ) ) )
14 hold on
15 plot (x , f ( x ) , ’ r ’ )
16 legend ( ’ normal ized histogram ’ , ’ normal d i s t r i b u t i o n ’ )
17 hold o f f
18 end

Matlab code 8.11: A Matlab function BoxMullerPlot() which plots 105 realizations
of an N0,IR-distributed random variable generated with the Matlab
function BoxMuller(N) in a normalized histogram with 1000 bins
and which also plots the density of N0,IR in this histogram.

8.2.10 Solution to Exercise 1.3.9
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Figure 8.5: Result of a call of the Matlab function 8.11.
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1 function X = Marsag l iaPo lar ( N )
2 % Sampling from uni formly d i s t r i b u t e d random v e c t o r s
3 % over the u n i t d i s k
4 % in the 2−dimensiona l r e a l space
5 X = AcceptanceReject ionUnitDisk ( ce i l ( N / 2 ) ) ;
6 q = sum(X. ˆ 2 , 1 ) ;
7 q = sqrt ( −2∗log ( q ) . / q ) ;
8 X = [ q .∗X( 1 , : ) , q ( 1 : f loor (N/2) ) . ∗ . . .
9 X( 2 , 1 : f loor (N/2) ) ] ;

10 end

Matlab code 8.12: A Matlab function MarsagliaPolar(N) with input N ∈ N and out-
put a realization of an N0,I

RN
-distributed random variable generated

with the Marsaglia polar method.

1 function X = AcceptanceReject ionUnitDisk (N)
2 X = [ ] ;
3 while ( length (X) < N )
4 RV = rand ( 2 , N−length (X) ) ;
5 RV = 2∗RV − 1 ;
6 I = ( RV( 1 , : ) . ˆ 2 + RV( 2 , : ) . ˆ 2 < 1 ) ;
7 X = [ X, RV( : , I ) ] ;
8 end
9 end

Matlab code 8.13: A Matlab function AcceptanceRejectionUnitDisk(N) with input
N ∈ N and output N realizations of uniformly-distributed random
variables over the unit disk generated with the acceptance-rejection
method.

1 function Marsag l iaPo larPlot ( )
2 rng ( ’ d e f a u l t ’ ) ;
3 N = 10ˆ5 ;
4 % P r o b a b i l i t y d e n s i t y f u n c t i o n o f the normal d i s t r i b u t i o n
5 f = @( x ) exp(−0.5∗x . ˆ2 )/ sqrt (2∗pi ) ;
6 % Generating the normal ized his togram f o r the Marsag l ia
7 % p o l a r sampling method
8 X MP = Marsag l iaPolar (N) ;
9 f igure (1 )

10 c l f
11 [N MP, x]= hist (X MP, 1 0 0 0 ) ;
12 % Normaliz ing the b i n s such t h a t they have area 1
13 bar (x ,N MP/N/( x(2)−x ( 1 ) ) )
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14 hold on
15 plot (x , f ( x ) , ’ r ’ )
16 legend ( ’ normal ized histogram ’ , ’ normal d i s t r i b u t i o n ’ )
17 hold o f f
18 end

Matlab code 8.14: A Matlab function MarsagliaPolarPlot() which plots 105 realiza-
tions of an N0,IR-distributed random variable generated with the
Matlab function MarsagliaPolar(N) in a normalized histogram
with 1000 bins and which also plots the density of N0,IR in this his-
togram.
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Figure 8.6: Result of a call of the Matlab function 8.14.

8.2.11 Solution to Exercise 1.3.11

1 function X = StandardBrownianMotion ( t )
2 %g e t t i n g r i d o f 0−va lued t ’ s
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3 I = ( t >0); Q = t ( I ) ;
4 %c o n s t r u c t i n g the d e s i r e d covar iance matrix
5 Q = repmat ( Q, s ize (Q’ ) ) ;
6 Q = min(Q,Q’ ) ;
7 %a s s i g n i n g the Brownian Motion at t imes t to X
8 Q = chol (Q) ’∗randn(sum( I ) , 1 ) ;
9 X = zeros ( length ( I ) , 1 ) ;

10 X( I ) = Q;
11 end

Matlab code 8.15: A Matlab function StandardBrownianMotion(t) with input t ∈ A
and output a realization of an N0,Q(t)-distributed random variable.

1 rng ( ’ d e f a u l t ’ ) ;
2 N=10ˆ3;
3 preimage = (0 : 1/N: 1 ) ;
4 X=StandardBrownianMotion ( preimage ) ;
5 plot ( preimage ,X) ;
6 hold on
7 X=StandardBrownianMotion ( preimage ) ;
8 plot ( preimage ,X, ’ r ’ ) ;
9 X=StandardBrownianMotion ( preimage ) ;

10 plot ( preimage ,X, ’ g ’ ) ;

Matlab code 8.16: A Matlab function StandardBrownianMotionPlot() which
plots linearly interpolated 3 realizations of an N0,Q(t)-
distributed random variable generated with the Matlab function
StandardBrownianMotion(t).

8.3 Chapter 2

8.3.1 Solution to Exercise 2.1.12

Lemma 8.3.1. Let (E, dE) and (F, dF ) be metric spaces and let f : E → F be a function.
Then it holds that f is uniformly continuous if and only if

lim
h↘0

wf (h) = wf (0). (8.94)
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Figure 8.7: Result of a call of the Matlab function 8.16.
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Proof of Lemma 8.3.1. Without loss of generality we assume that E 6= ∅. Next
observe that the fact that wf (0) = 0 ensures that it holds that limh↘0wf (h) =
limh↘0 supx,y∈E,dE(x,y)≤h dF

(
f(x), f(y)

)
= wf (0) if and only if it holds that

∀ ε ∈ (0,∞) : ∃h ∈ (0,∞) : sup
x,y∈E,dE(x,y)≤h

dF
(
f(x), f(y)

)
≤ ε. (8.95)

This implies that limh↘0wf (h) = wf (0) if and only if

∀ ε ∈ (0,∞) : ∃ δ ∈ (0,∞) : ∀x, y ∈ E with dE(x, y) ≤ δ : dF
(
f(x), f(y)

)
≤ ε. (8.96)

This completes the proof of Lemma 8.3.1.

8.3.2 Solution to Exercise 2.1.13

Lemma 8.3.2. Let (E, dE) and (F, dF ) be metric spaces, let α ∈ (0, 1] be a real number,
and let f : E → F be a function. Then it holds that

|f |Cα(E,F ) = sup
h∈(0,∞)

[
wf (h)

hα

]
. (8.97)

Proof of Lemma 8.3.2. Without loss of generality we assume that #E > 1. Note that for
all x, y ∈ E, h ∈ (0,∞) with x 6= y it holds that dE(x, y) ≤ h implies that 1

|dE(x,y)|α ≥
1
hα
.

This together with the definition of |·|Cα(E,F ) and wf imply for all h ∈ (0,∞) that

|f |Cα(E,F ) = sup
x,y∈E,
x 6=y

[
dF (f(x), f(y))

|dE(x, y)|α

]
≥ 1

hα

 sup
x,y∈E,

dE(x,y)≤h

dF (f(x), f(y))

 =
wf (h)

hα
. (8.98)

This implies that

|f |Cα(E,F ) ≥ sup
h∈(0,∞)

[
wf (h)

hα

]
. (8.99)

Again the definition of | · |Cα(E,F ) and wf show that for all x′, y′ ∈ E with x′ 6= y′ it holds
that

sup
h∈(0,∞)

[
wf (h)

hα

]
≥ wf (dE(x′, y′))

(dE(x′, y′))α

=
1

(dE(x′, y′))α
sup
x,y∈E,

dE(x,y)≤dE(x′,y′)

dF (f(x), f(y))

≥ dF (f(x′), f(y′))

|dE(x′, y′)|α
.

(8.100)

This implies that

sup
h∈(0,∞)

[
wf (h)

hα

]
≥ |f |Cα(E,F ). (8.101)

The proof of Lemma 8.3.2 is thus completed.
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8.3.3 Solution to Exercise 2.2.8

Lemma 8.3.3. Let n ∈ N, a, b ∈ R with a < b and let f ∈ L1(B[a,b]; |·|R). Then

T n[a,b][f ]−
ˆ b

a

f(x) dx =
n−1∑
i=0

[ˆ a+
(i+1/2)(b−a)

n

a+
i (b−a)
n

f
(
a+ i

n
(b− a)

)
− f(x) dx

+

ˆ a+
(i+1)(b−a)

n

a+
(i+1/2)(b−a)

n

f
(
a+ (i+1)

n
(b− a)

)
− f(x) dx

]
.

(8.102)

Proof of Lemma 8.3.3. Note that (2.44) implies that

T n[a,b][f ]−
ˆ b

a

f(x) dx

=
(b− a)

n

n−1∑
i=0

f
(
a+ i

n
(b− a)

)
+ f
(
a+ (i+1)

n
(b− a)

)
2


−

n−1∑
i=0

(ˆ a+
(i+1/2)(b−a)

n

a+
i (b−a)
n

f(x) dx+

ˆ a+
(i+1)(b−a)

n

a+
(i+1/2)(b−a)

n

f(x) dx

)

=
n−1∑
i=0

(ˆ a+
(i+1/2)(b−a)

n

a+
i (b−a)
n

f

(
a+

i

n
(b− a)

)
− f(x) dx

+

ˆ a+
(i+1)(b−a)

n

a+
(i+1/2)(b−a)

n

f

(
a+

(i+ 1)

n
(b− a)

)
− f(x) dx

)
.

(8.103)

The proof of Lemma 8.3.3 is thus completed.

Proposition 8.3.4. Let α ∈ (0, 1], n ∈ N, a, b ∈ R with a < b and let f ∈
L1(B[a,b]; |·|R). Then∣∣∣∣T n[a,b][f ]−

ˆ b

a

f(x) dx

∣∣∣∣ ≤ (b− a) · wf ( (b−a)
2n

) ≤
(b− a)(1+α) |f |Cα([a,b],R)

(2n)α
. (8.104)

Proof of Proposition 8.3.4. Note that for all i ∈ {0, 1, . . . , n − 1}, x ∈ (a + i (b−a)
n

, a +
(i+1/2)(b−a)

n
), y ∈ (a+ (i+1/2)(b−a)

n
, a+ (i+1)(b−a)

n
) it holds that∣∣∣∣x− (a+

i (b− a)

n

)∣∣∣∣ ≤ (b− a)

2n
,

∣∣∣∣y − (a+
(i+ 1) (b− a)

n

)∣∣∣∣ ≤ (b− a)

2n
. (8.105)
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Combining this with Lemma 8.3.3 and the fact that wf is non-decreasing implies that

∣∣∣∣T n[a,b][f ]−
ˆ b

a

f(x) dx

∣∣∣∣
≤

n−1∑
i=0

[ ˆ a+
(i+1/2)(b−a)

n

a+
i (b−a)
n

∣∣∣∣f(a+
i

n
(b− a)

)
− f(x)

∣∣∣∣ dx
+

ˆ a+
(i+1)(b−a)

n

a+
(i+1/2)(b−a)

n

∣∣∣∣f(a+
(i+ 1)

n
(b− a)

)
− f(x)

∣∣∣∣ dx
]

≤
n−1∑
i=0

[ ˆ a+
(i+1/2)(b−a)

n

a+
i (b−a)
n

wf

(
(b− a)

2n

)
dx+

ˆ a+
(i+1)(b−a)

n

a+
(i+1/2)(b−a)

n

wf

(
(b− a)

2n

)
dx

]

= wf

(
(b− a)

2n

) n−1∑
i=0

[ˆ a+
(i+1/2)(b−a)

n

a+
i (b−a)
n

dx+

ˆ a+
(i+1)(b−a)

n

a+
(i+1/2)(b−a)

n

dx

]

= (b− a) · wf
(

(b− a)

2n

)
.

(8.106)

Moreover, observe that Lemma 8.3.2 proves that

(b− a) · wf ( (b−a)
2n

) ≤
(b− a)(1+α) |f |Cα([a,b],R)

(2n)α
. (8.107)

This and (8.106) complete the proof of Proposition 8.3.4.

8.3.4 Solution to Exercise 2.2.10

Proposition 8.3.5. Let f : [0, 1] → R be a function with the property that for all x ∈
[0, 1] it holds that f(x) = x2. Then

(i) it holds that f is infinitely often differentiable and

(ii) it holds for all n ∈ N that

n2

[
T n[0,1][f ]−

ˆ 1

0

f(x) dx

]
=

1

6
. (8.108)

Proof of Proposition 8.3.5. The fact that f is a polynomial implies that it is infinitely
often differentiable. Next note that Lemma 8.3.3 and the integral transform theorem
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show that for all n ∈ N it holds that

T n[0,1][f ]−
ˆ 1

0

f(x) dx

=
n−1∑
i=0

(ˆ (i+1/2)
n

i
n

[(
i
n

)2 − x2
]
dx+

ˆ (i+1)
n

(i+1/2)
n

[(
(i+1)
n

)2

− x2

]
dx

)

=
n−1∑
i=0

(ˆ (i+1/2)
n

i
n

[
i
n
− x
] [

i
n

+ x
]
dx+

ˆ (i+1)
n

(i+1/2)
n

[
(i+1)
n
− x
] [

(i+1)
n

+ x
]
dx

)

=
n−1∑
i=0

(ˆ 0

− 1
2n

u
[

2i
n
− u
]
du+

ˆ 1
2n

0

u
[

2(i+1)
n
− u
]
du

)

=
n−1∑
i=0

(
2i

n

[
u2

2

]u=0

u=− 1
2n

−
[
u3

3

]u=0

u=− 1
2n

+
2(i+ 1)

n

[
u2

2

]u= 1
2n

u=0

−
[
u3

3

]u= 1
2n

u=0

)

=
n−1∑
i=0

(
− i

4n3
− 1

24n3
+

(i+ 1)

4n3
− 1

24n3

)
= n

(
1

6n3

)
=

1

6n2
.

(8.109)

This shows that for all n ∈ N it holds that

n2

[
T n[0,1][f ]−

ˆ 1

0

f(x) dx

]
=

1

6
. (8.110)

The proof of Proposition 8.3.5 is thus completed.

8.3.5 Solution to Exercise 2.2.13

1 function R n=RecRule ( f , a , b , d , n )
2 gr id1d = linspace ( a , b , n+1);
3 gr id1d = gr id1d ( 1 : end−1);
4 h = (b−a )/n ;
5 % empty array f o r the r e c u r s i o n
6 x = [ ] ;
7 R n = RecRuleRecursion ( f , x , grid1d , h , d ) ;
8 end
9

10 function R n = RecRuleRecursion ( f , x , grid1d , h , d)
11 % Subfunct ion , which conta ins the r e c u r s i v e
12 % e v a l u a t i o n o f f over the
13 % d−dimensiona l g r i d .
14 R n = 0 ;
15 i f d > 1
16 y = [ x 0 ] ;
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17 for i= 1 : length ( gr id1d )
18 y (end) = gr id1d ( i ) ;
19 R n = R n + h∗RecRuleRecursion ( f , y , grid1d , h , d−1);
20 end
21 else
22 a=repmat (x , length ( gr id1d ) , 1 ) ;
23 R n = R n + h ∗ sum( f ( [ a , gr id1d ’ ] ) ) ;
24 end
25 end

Matlab code 8.17: A Matlab function RecRule(a, b, d, n, f) with input a ∈ R, b ∈
(a,∞), d, n ∈ N, and a function f : [a, b]d → R ∈ L1(B[a,b]d ; | · |R)

and output Rn
[a,b][f ].

1 function RecRuleTest ( )
2 % Warning : wi th the g iven parameter v a l u e s
3 % the programs runs f o r about 30 mins .
4 % parameter
5 a = 0 ;
6 b = 2 ;
7 f = @( x ) x ( : , 1 ) ;
8 d l i s t =1:8 ;
9 n l i s t =5:10;

10 % Array f o r the error
11 e r r l i s t = zeros ( length ( d l i s t ) , length ( n l i s t ) ) ;
12 t i m e l i s t = zeros ( length ( d l i s t ) , length ( n l i s t ) ) ;
13
14 for i = 1 : length ( d l i s t )
15 % e x a c t v a l u e o f the i n t e g r a l
16 i n t = 0 .5∗ ( b−a )ˆ d l i s t ( i )∗ ( b+a ) ;
17 for j = 1 : length ( n l i s t )
18 % computing the error and measure run time
19 t ic
20 e r r l i s t ( i , j ) = abs ( RecRule ( f , a , b , d l i s t ( i ) , . . .
21 n l i s t ( j ) ) − i n t ) ;
22 t i m e l i s t ( i , j ) = toc ;
23 end
24 end
25
26 format shor t ;
27 f1 = f igure ;
28 cnames = n l i s t ;
29 rnames = d l i s t ;
30 t e r r = u i t a b l e ( ’ Parent ’ , f1 , ’ Data ’ , e r r l i s t , . . .
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31 ’ColumnName ’ , cnames , ’RowName ’ , rnames , . . .
32 ’ Po s i t i on ’ , [ 0 210 525 2 0 0 ] ) ;
33 set ( t e r r , ’ columnwidth ’ ,{80} ) ;
34 t t ime = u i t a b l e ( ’ Parent ’ , f1 , ’ Data ’ , t i m e l i s t , . . .
35 ’ColumnName ’ , cnames , . . .
36 ’RowName ’ , rnames , ’ Po s i t i on ’ , [ 0 0 525 2 0 0 ] ) ;
37 set ( t t ime , ’ columnwidth ’ ,{80} ) ;
38
39
40 d l i s t = 9 ;
41 n l i s t = 3 : 8 ;
42 % Array f o r the error
43 e r r l i s t = zeros ( length ( d l i s t ) , length ( n l i s t ) ) ;
44 t i m e l i s t = zeros ( length ( d l i s t ) , length ( n l i s t ) ) ;
45 % e x a c t v a l u e o f the i n t e g r a l
46 i n t = 0 .5∗ ( b−a )ˆ d l i s t ∗(b+a ) ;
47 for j = 1 : length ( n l i s t )
48 % computing the error and measure run time
49 t ic
50 e r r l i s t ( j ) = abs ( RecRule ( f , a , b , d l i s t , . . .
51 n l i s t ( j ) ) − i n t ) ;
52 t i m e l i s t ( j ) = toc ;
53 end
54
55 f2 = f igure ;
56 cnames = n l i s t ;
57 rnames = d l i s t ;
58 t e r r = u i t a b l e ( ’ Parent ’ , f2 , ’ Data ’ , e r r l i s t , . . .
59 ’ColumnName ’ , cnames , ’RowName ’ , rnames , . . .
60 ’ Po s i t i on ’ , [ 0 60 525 5 0 ] ) ;
61 set ( t e r r , ’ columnwidth ’ ,{80} ) ;
62 t t ime = u i t a b l e ( ’ Parent ’ , f2 , ’ Data ’ , t i m e l i s t , . . .
63 ’ColumnName ’ , cnames , ’RowName ’ , rnames , . . .
64 ’ Po s i t i on ’ , [ 0 0 525 5 0 ] ) ;
65 set ( t t ime , ’ columnwidth ’ ,{80} ) ;
66
67 d l i s t =10;
68 n l i s t =1:6 ;
69 % Array f o r the error
70 e r r l i s t = zeros ( length ( d l i s t ) , length ( n l i s t ) ) ;
71 t i m e l i s t = zeros ( length ( d l i s t ) , length ( n l i s t ) ) ;
72 % e x a c t v a l u e o f the i n t e g r a l
73 i n t = 0 .5∗ ( b−a )ˆ d l i s t ∗(b+a ) ;
74 for j = 1 : length ( n l i s t )
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75 % computing the error and measure run time
76 t ic
77 e r r l i s t ( j ) = abs ( RecRule ( f , a , b , d l i s t , . . .
78 n l i s t ( j ) ) − i n t ) ;
79 t i m e l i s t ( j ) = toc ;
80 end
81
82 f3 = f igure ;
83 cnames = n l i s t ;
84 rnames = d l i s t ;
85 t e r r = u i t a b l e ( ’ Parent ’ , f3 , ’ Data ’ , e r r l i s t , . . .
86 ’ColumnName ’ , cnames , ’RowName ’ , rnames , . . .
87 ’ Po s i t i on ’ , [ 0 60 525 5 0 ] ) ;
88 set ( t e r r , ’ columnwidth ’ ,{80} ) ;
89 t t ime = u i t a b l e ( ’ Parent ’ , f3 , ’ Data ’ , t i m e l i s t , . . .
90 ’ColumnName ’ , cnames , ’RowName ’ , rnames , . . .
91 ’ Po s i t i on ’ , [ 0 0 525 5 0 ] ) ;
92 set ( t t ime , ’ columnwidth ’ ,{80} ) ;
93 end

Matlab code 8.18: A Matlab function RecRuleTest() which outputs error and mea-
sured run time of the Matlab function 8.17 in the case of f =
[0, 2]d 3 (x1, . . . , xn) 7→ x1 ∈ R, a = 0, b = 2, (d, n) ∈ {1, . . . , 8} ×
{5, . . . , 10} ∪ {9} × {3, . . . , 8} ∪ {10} × {1, . . . , 6}.
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Figure 8.8: Partial result of a call of the Matlab function 8.18 for (d, n) ∈ {1, . . . , 8} ×
{5, . . . , 10}. The upper table presents the approximation errors and the lower
table presents the measured run times in seconds, where d ∈ {1, . . . , 8} is
the row index and where n ∈ {5, . . . , 10} is the column index.

Figure 8.9: Partial result of a call of the Matlab function 8.18 for (d, n) ∈ {9} ×
{3, . . . , 8}. The upper table presents the approximation errors and the lower
table presents the measured run times in seconds, where n ∈ {3, . . . , 8} is
the column index.
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Figure 8.10: Partial result of a call of the Matlab function 8.18 for (d, n) ∈ {10} ×
{1, . . . , 6}. The upper table presents the approximation errors and the lower
table presents the measured run times in seconds, where n ∈ {1, . . . , 6} is
the column index.

8.3.6 Solution to Exercise 2.3.9

Lemma 8.3.6. Let A,B ⊆ R2 be the sets given by

A =
{

(x, y) ∈ R2 : |x− 2|2
R

+ y2 ≤ 4
}
, (8.111)

B =
{

(x, y) ∈ R2 : x2 + |y − 2|2
R
≤ 4
}
, (8.112)

let f : R2 → R be the function with the property that for all x, y ∈ R it holds that
f(x, y) = 1(A∩B)(x, y) · |x|2/3

R
, let (Ω,F , P ) be a probability space, let Yn, Zn : Ω → R,

n ∈ N, be independent U(0,1)-distributed random variables, and let IN : Ω→ R, N ∈ N,
be functions with the property that for all N ∈ N it holds that

IN =
4

N

[
N∑
n=1

f(2Yn, 2Zn)

]
. (8.113)

Then it holds for all N ∈ N that IN is P -unbiased with respect to
´ 2

0

´ 2

0
f(x, y) dx dy.

Proof of Lemma 8.3.6. Observe that for all N ∈ N it holds that (2Yn, 2Zn), n ∈
{1, . . . , N}, are independent U(0,2)2-distributed random variables. This implies that for
all N ∈ N it holds that

EP [IN ] =
4

N

N∑
n=1

ˆ
(0,2)2

f(x, y)
1

4
BR2(dx, dy) =

ˆ 2

0

ˆ 2

0

f(x, y) dx dy. (8.114)

Hence, we obtain for all N ∈ N that the random variable IN is P -unbiased with respect
to
´ 2

0

´ 2

0
f(x, y) dx dy. The proof of Lemma 8.3.6 is thus completed.

1 function Int=MonteCarlo (N)
2 RV = 2 ∗ rand (2 ,N) ;
3 I = ( RV( 1 , : ) . ˆ 2 + (RV( 2 , : ) − 2 ) . ˆ 2 <=4). . .
4 & ( (RV( 1 , : ) − 2 ) . ˆ2 + RV( 2 , : ) . ˆ 2 <=4);
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5 Int = 4/N ∗ sum(RV(1 , I ) . ˆ ( 2 / 3 ) ) ;
6 end

Matlab code 8.19: A Matlab function MonteCarlo(N) with input N ∈ N and output a
realization of IN .

1 function MonteCarloPlot ( )
2 rng ( ’ d e f a u l t ’ ) ;
3 Int = zeros ( 25 , 1 ) ;
4 k = zeros ( 25 , 1 ) ;
5 for j = 2 :6
6 for i = 1 :5
7 Int ( ( j −2)∗5 + i ) = MonteCarlo ( 10ˆ j ) ;
8 k ( ( j −2)∗5 + i ) = j ;
9 end

10 end
11 plot (k , Int , ’∗ ’ )
12 end

Matlab code 8.20: A Matlab function MonteCarloPlot() which plots for every k ∈
{2, 3, 4, 5, 6} five realizations of I10k , each marked by a blue star, in
a coordinate plane.

8.3.7 Solution to Exercise 2.3.10

1 function I = intMC(a , b , d , f ,N)
2 RV = (b−a ) ∗ rand (N, d) + a ;
3 I = (b − a )ˆd/N ∗ sum( f (RV) ) ;
4 end

Matlab code 8.21: A Matlab function intMC(a, b, d, f,N) for a Monte Carlo estimator
of the integral

´
[a,b]d

f(x) dx with N i.i.d. samples of U[a,b]d-distributed

random vectors.

1 function intMCTest ( )
2 a = 0 ;
3 b = 2 ;
4 f = @( x ) x ( : , 1 ) ;
5 d l i s t = 3 : 2 : 7 ;
6 N l i s t = [ 5 . ˆ d l i s t , 10 .ˆ d l i s t ] ;
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Figure 8.11: Result of a call of the Matlab function 8.20.
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7 % Array f o r the error
8 e r r l i s t = zeros ( length ( d l i s t ) , length ( N l i s t ) ) ;
9 t i m e l i s t = zeros ( length ( d l i s t ) , length ( N l i s t ) ) ;

10
11 for i = 1 : length ( d l i s t )
12 % e x a c t v a l u e o f the i n t e g r a l
13 i n t = 0 .5∗ ( b−a )ˆ d l i s t ( i )∗ ( b+a ) ;
14 for j = 1 : length ( N l i s t )
15 % computing the error and measure run time
16 t ic
17 e r r l i s t ( i , j ) = abs ( intMC(a , b , d l i s t ( i ) , f , . . .
18 N l i s t ( j ) ) − i n t ) ;
19 t i m e l i s t ( i , j ) = toc ;
20 end
21 end
22
23 format shor t ;
24 f1 = f igure ;
25 cnames = N l i s t ;
26 rnames = d l i s t ;
27 t e r r = u i t a b l e ( ’ Parent ’ , f1 , ’ Data ’ , e r r l i s t , . . .
28 ’ColumnName ’ , cnames , ’RowName ’ , rnames , . . .
29 ’ Po s i t i on ’ , [ 0 100 525 9 0 ] ) ;
30 set ( t e r r , ’ columnwidth ’ ,{80} ) ;
31 t t ime = u i t a b l e ( ’ Parent ’ , f1 , ’ Data ’ , t i m e l i s t , . . .
32 ’ColumnName ’ , cnames , . . .
33 ’RowName ’ , rnames , ’ Po s i t i on ’ , [ 0 0 525 9 0 ] ) ;
34 set ( t t ime , ’ columnwidth ’ ,{80} ) ;
35
36
37 end

Matlab code 8.22: A Matlab function intMCTest() which outputs error and measured

run time of the Matlab function 8.21 with a = 0, b = 2, f = [0, 2]d 3
(x1, . . . , xd) 7→ x1 ∈ R, (d,N) ∈ {3, 5, 7} × {53, 55, 57, 103, 105, 107}.
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Figure 8.12: Result of a call of the Matlab function 8.22. The upper table presents the
approximation errors and the lower table presents the measured run times
in seconds, where the dimension d ∈ {3, 5, 7} is the row index and where the
number of used samples N ∈ {53, 55, 57, 103, 105, 107} is the column index.

8.3.8 Solution to Exercise 2.4.10

Lemma 8.3.7. Let (Ω,F , P ) be a probability space, let f ∈M(B(R),B(R)) be a globally
bounded function, and let Un ∈ M(F ,B(R)), n ∈ N, be independent U(−1,1)-distributed
random variables. Then(

EP

[∣∣∣∣f(U1) + . . .+ f(U5000)

2500
−
ˆ 1

−1

f(x) dx

∣∣∣∣2
R

])1/2

≤ supx∈R |f(x)|
R

30
. (8.115)

Proof of Lemma 8.3.7. The assumption that f is globally bounded ensures that for all
n ∈ N it holds that f ◦Un ∈ L2(P ; |·|

R
). Theorem 2.4.8 hence implies that for all n ∈ N

it holds that(
EP

[∣∣∣∣EP [f(U1)
]
− f(U1) + . . .+ f(Un)

n

∣∣∣∣2
R

])1/2

=

√
VarP (f(U1))√

n
. (8.116)

This proves that for all n ∈ N it holds thatEP
∣∣∣∣∣f(U1) + . . .+ f(Un)

n
−
´ 1

−1
f(x) dx

2

∣∣∣∣∣
2

R

1/2

=

√
VarP (f(U1))√

n

=

√
EP
[
|f(U1)|2

R

]
− |EP [f(U1)]|2

R√
n

≤

√
EP
[
|f(U1)|2

R

]
√
n

≤ supx∈R |f(x)|
R√

n
.

(8.117)

Hence, we obtain that for all n ∈ N it holds that(
EP

[∣∣∣∣f(U1) + . . .+ f(Un)

[n/2]
−
ˆ 1

−1

f(x) dx

∣∣∣∣2
R

])1/2

≤ 2 [supx∈R |f(x)|
R

]√
n

. (8.118)
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This and the fact that
√

5000 ≥
√

3600 = 60 = 2 · 30 show that(
EP

[∣∣∣∣f(U1) + . . .+ f(U5000)

2500
−
ˆ 1

−1

f(x) dx

∣∣∣∣2
R

])1/2

≤ supx∈R |f(x)|
R[√

5000/2
] ≤ supx∈R |f(x)|

R

30
.

(8.119)

The proof of Lemma 8.3.7 is thus completed.

8.4 Chapter 3

8.4.1 Solution to Exercise 3.1.9

Lemma 8.4.1. Let Ω, F be the sets given by Ω = {1, 2} and F = {∅, {1, 2}}. Then it
holds that (Ω,F) is a measurable space and it holds that

{(ω, ω) ∈ Ω2 : ω ∈ Ω} = {(1, 1), (2, 2)} /∈ {∅,Ω× Ω} = F ⊗ F . (8.120)

Proof of Lemma 8.4.1. Clearly, it holds that (Ω,F) is a measurable space. Moreover,
observe that

F ⊗ F = σΩ×Ω({A×B ∈ P(Ω× Ω): A,B ∈ F}) = σΩ×Ω({Ω× Ω})

= {∅,Ω× Ω} =
{
∅,
{

(1, 1), (1, 2), (2, 1), (2, 2)
}}
63
{

(1, 1), (2, 2)
}
.

(8.121)

The proof of Lemma 8.4.1 is thus completed.

8.4.2 Solution to Exercise 3.1.10

Lemma 8.4.2. Let Ω,F , S,S be the sets given by Ω = S = {1, 2} and F = S ={
∅, {1, 2}

}
and let X, Y : Ω→ S be the functions with the property that for all ω ∈ Ω it

holds that
X(ω) = ω and Y (ω) = 1. (8.122)

Then

(i) it holds that (Ω,F) and (S,S) are measurable spaces,

(ii) it holds that X and Y are F/S-measurable functions, and

(iii) it holds that
{ω ∈ Ω: X(ω) = Y (ω)} /∈ F . (8.123)
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Proof of Lemma 8.4.2. Clearly, it holds that (Ω,F) and (S,S) are measurable spaces.
Moreover, note that

X−1(∅) = Y −1(∅) = ∅ ∈ F and X−1(S) = Y −1(S) = Ω ∈ F . (8.124)

It thus holds that X and Y are F/S-measurable functions. Furthemore, observe that

{ω ∈ Ω: X(ω) = Y (ω)} = {1} /∈
{
∅,
{

1, 2
}}

= F . (8.125)

The proof of Lemma 8.4.2 is thus completed.

8.4.3 Solution to Exercise 3.2.23

Lemma 8.4.3 (Product measurable random fields). Let (I, I), (Ω,F), and (S,S) be
measurable spaces, let X : I × Ω → S be an (I ⊗ F)/S-measurable function, and let
ω ∈ Ω. Then it holds that I 3 i 7→ X(i, ω) ∈ S is I/S-measurable.

Proof of Lemma 8.4.3. First of all, let R : I → (I×Ω) be the function with the property
that for all i ∈ I it holds that

R(i) = (i, ω). (8.126)

Next note that for all A ∈ I, B ∈ F it holds that

R−1(A×B) = {i ∈ I : R(i) ∈ A×B} = {i ∈ I : (i, ω) ∈ A×B} =

{
A : ω ∈ B
∅ : ω /∈ B

.

(8.127)
This and the fact that

I ⊗ F = σI×Ω({A×B : A ∈ I, B ∈ F}) (8.128)

prove that R is I/(I⊗F)-measurable. The assumption that X is (I⊗F)/S-measurable
hence ensures that

X ◦R =
[
I 3 i 7→ (X ◦R)(i) = X(R(i)) = X(i, ω) ∈ S

]
(8.129)

is I/S-measurable. The proof of Lemma 8.4.3 is thus completed.

8.4.4 Solution to Exercise 3.3.9

1 function E N = MonteCarloGBM(T, alpha , beta , x0 , f ,N)
2 W T = sqrt (T) ∗ randn (1 ,N) ;
3 X T = exp( alpha∗T + beta∗W T ) ∗ x0 ;
4 E N = 1/N ∗ sum( f (X T) ) ;
5 end
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Matlab code 8.23: A Matlab function MonteCarloGBM(T,α,β,x0,f,N) with input T ∈
(0,∞), α, β ∈ R, x0 ∈ (0,∞), f ∈ L1(XT (P )B(R); |·|R), N ∈ N and
output a Monte Carlo approximation of E

[
f(XT )

]
based on N ∈ N

samples; see Exercise 3.3.9.

1 T = 1 ;
2 beta = 1/10 ;
3 alpha = log ( 1 . 0 6 ) − beta ˆ2/2 ;
4 f = @( x ) subplus ( x − 100 ) ;
5 x0 = 92 ;
6 N = 10ˆ4 ;
7 MonteCarloGBM(T, alpha , beta , x0 , f ,N)
8
9 ans =

10
11 2.7708

Matlab code 8.24: A script in the Matlab console to test the Matlab function 8.23 in

the case T = 1, β = 1
10

, α = ln(1.06) − β2

2
, x0 = 92, f = R 3 x 7→

[x− 100]+ ∈ R, N = 104.

8.4.5 Solution to Exercise 3.3.10

1 function BM = BrownianMotion (T,m,N)
2 BM = cumsum( [ zeros (m, 1 ) , randn(m,N) ]∗ sqrt (T/N) , 2 ) ;
3 end

Matlab code 8.25: A Matlab function BrownianMotion(T,m,N) with input
T ∈ (0,∞), m,N ∈ N and output a realization of an(
W0,W T

N
,W 2T

N
, . . . ,W (N−1)T

N

,WT

)
(P )B(Rm×(N+1))-distributed ran-

dom variable; see Exercise 3.3.10.

1 function BrownianMotion2DPlot ( )
2 rng ( ’ d e f a u l t ’ ) ;
3 T = 1 ; N = 1000 ;
4 BM = BrownianMotion (T, 2 ,N) ;
5 InterpolatedBMx = @( t ) ( f loor ( t∗N/T) + 1 − t∗N/T ) . ∗ . . .
6 BM(1 , f loor ( t∗N/T)+1) + ( t∗N/T − f loor ( t∗N/T ) ) . ∗ . . .
7 BM(1 , ce i l ( t∗N/T)+1);
8 InterpolatedBMy = @( t ) ( f loor ( t∗N/T) + 1 − t∗N/T ) . ∗ . . .
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9 BM(2 , f loor ( t∗N/T)+1) + ( t∗N/T − f loor ( t∗N/T ) ) . ∗ . . .
10 BM(2 , ce i l ( t∗N/T)+1);
11 t g r i d = [ 0 :T/(1 e3∗N) :T ] ;
12 c l f
13 hold on
14 plot3 ( InterpolatedBMx ( 0 ) , 0 , InterpolatedBMy ( 0 ) , ’ r∗ ’ ) ;
15 plot3 ( InterpolatedBMx (T) ,T, InterpolatedBMy (T) , ’ r∗ ’ ) ;
16 plot3 ( InterpolatedBMx ( t g r i d ) , tg r id , . . .
17 InterpolatedBMy ( t g r i d ) ) ;
18 xlabel ( ’ x ’ ) ; ylabel ( ’ t ’ ) ; zlabel ( ’ y ’ ) ;
19 grid on ; daspect ( [ 1 1 1 ] ) ; view (−30 ,15);
20 hold o f f
21 end

Matlab code 8.26: A Matlab function BrownianMotion2DPlot() which uses the Matlab
function 8.25 to plot in the case T = 1, m = 2 one realization
of an (W̃ 1000)(P )⊗t∈[0,1]B(R2)-distributed random variable in a three-

dimensional coordinate system; see Exercise 3.3.10.

8.4.6 Solution to Exercise 3.3.11

Lemma 8.4.4 (Geometric Brownian motion revisited). Let T, x0, β ∈ (0,∞), α ∈ R,
let (Ω,F , P ) be a probability space, let W : [0, T ] × Ω → R be a standard Brownian
motion, let X : [0, T ] × Ω → R be the function which satisfies for all t ∈ [0, T ] that
Xt = e(αt+βWt) x0, and let Φ: R → R be the function which satisfies for all y ∈ R that
Φ(y) =

´ y
−∞

1√
2π
e−

1
2
x2 dx. Then for all K ∈ R it holds that

E
[
max

{
XT −K, 0

}]
=

{
e(α+ 1

2
β2)T x0 −K : K ≤ 0

e(α+ 1
2
β2)T x0 Φ

(
αT+ln(

x0
K

)

β
√
T

+ β
√
T
)
−K Φ

(
αT+ln(

x0
K

)

β
√
T

)
: K > 0

.
(8.130)

Proof of Lemma 8.4.4. Observe that ln(x0) +αT +βWT is an Nln(x0)+αT,β2T -distributed
random variable and note that

max
{
XT −K, 0

}
= max

{
eln(x0)+αT+βWT −K, 0

}
. (8.131)

This and Lemma 4.7.2 complete the proof of Lemma 8.4.4.
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Figure 8.13: Result of a call of the Matlab function 8.26. The two red stars mark the
starting point and the end point of the plotted sample path.
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1 T = 1 ;
2 beta = 1/10 ;
3 alpha = log ( 1 . 0 6 ) − beta ˆ2/2 ;
4 K = 100 ;
5 x0 = 92 ;
6
7 Z1 = ( alpha∗T + log ( x0/K) )/ beta/sqrt (T) ;
8 Z2 = Z1 + beta∗sqrt (T) ;
9

10 p r i c e = exp( ( alpha + betaˆ2/2)∗T ) ∗ x0 ∗ . . .
11 1/2 ∗ ( erf ( Z2/sqrt (2 ) ) + 1 ) − K ∗ . . .
12 1/2 ∗ ( erf ( Z1/sqrt (2 ) ) + 1 )
13
14 p r i c e =
15
16 2 .8217

Matlab code 8.27: A Matlab script in the Matlab console to price the European call
option according to the Black–Scholes model with the parameters
specified in Exercise 3.3.11.

8.4.7 Solution to Exercise 3.3.15

Lemma 8.4.5 (Quadratic variation of Brownian motion). Let T ∈ (0,∞), N ∈ N, 0 =
t0 < t1 < · · · < tN = T , let (Ω,F , P ) be a probability space, and let W : [0, T ]× Ω→ R

be a standard Brownian motion. Then∥∥∥∥∥T −
N−1∑
n=0

(
Wtn+1 −Wtn

)2

∥∥∥∥∥
L2(P ;|·|

R
)

≤
√

2T

[
max

n∈{0,1,...,N−1}
|tn+1 − tn|

]1/2

. (8.132)

Proof of Lemma 8.4.5. Observe that Corollary 2.4.7 and the fact that T =
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∑N−1
n=0 (tn+1 − tn) prove that∥∥∥∥∥T −

N−1∑
n=0

(
Wtn+1 −Wtn

)2

∥∥∥∥∥
2

L2(P ;|·|
R

)

= EP

∣∣∣∣∣
N−1∑
n=0

[(
Wtn+1 −Wtn

)2 − (tn+1 − tn)
]∣∣∣∣∣

2

R


= VarP

(
N−1∑
n=0

[(
Wtn+1 −Wtn

)2 − (tn+1 − tn)
])

=
N−1∑
n=0

VarP
((
Wtn+1 −Wtn

)2 − (tn+1 − tn)
)
.

(8.133)

This and Lemma 3.3.12 imply that∥∥∥∥∥T −
N−1∑
n=0

(
Wtn+1 −Wtn

)2

∥∥∥∥∥
2

L2(P ;|·|
R

)

=
N−1∑
n=0

EP
[∣∣∣(Wtn+1 −Wtn

)2 − (tn+1 − tn)
∣∣∣2
R

]

=
N−1∑
n=0

(
EP
[(
Wtn+1 −Wtn

)4
]
− 2EP

[(
Wtn+1 −Wtn

)2
(tn+1 − tn)

]
+ (tn+1 − tn)2

)
=

N−1∑
n=0

(
3
∣∣∣EP[(Wtn+1 −Wtn

)2
]∣∣∣2
R

− (tn+1 − tn)2

)
= 2

N−1∑
n=0

(tn+1 − tn)2

≤ 2T

[
max

n∈{0,1,...,N−1}
|tn+1 − tn|R

]
.

(8.134)

The proof of Lemma 8.4.5 is thus completed.

8.4.8 Solution to Exercise 3.4.7

Lemma 8.4.6. Let (E, ρ) be a metric space, let c ∈ (0,∞), and let % : E × E → [0,∞)
be the function with the property that for all x, y ∈ E it holds that

%(x, y) = min{c, ρ(x, y)}. (8.135)

Then % is a globally bounded metric on E.

Proof of Lemma 8.4.6. First, we observe that for all x, y ∈ E it holds that

%(x, y) ≤ c. (8.136)
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Therefore, it holds that % is a globally bounded function. It thus remains to prove that
% is a metric on E. Note that for all x, y ∈ E it holds that

%(x, y) = min{c, ρ(x, y)} = min{c, ρ(y, x)} = %(y, x). (8.137)

This shows that % is symmetric. Moreover, we note that for all x, y ∈ E it holds that

%(x, y) = 0⇔ ρ(x, y) = 0. (8.138)

The positive definiteness of the metric ρ thus shows that % is positive definite. In
addition, we observe that the fact that the metric ρ satisfies the triangle inequality
shows that for all x, y, z ∈ E with

(
(ρ(x, y) ≤ c) and (ρ(y, z) ≤ c)

)
it holds that

%(x, z) = min{c, ρ(x, z)} ≤ min{c, ρ(x, y) + ρ(y, z)} ≤ ρ(x, y) + ρ(y, z)

= min{c, ρ(x, y)}+ min{c, ρ(y, z)}.
(8.139)

Similarly, we note that for all x, y, z ∈ E with
(
(ρ(x, y) > c) or (ρ(y, z) > c)

)
it holds

that

%(x, z) = min{c, ρ(x, z)} ≤ c ≤ min{c, ρ(x, y)}+ min{c, ρ(y, z)}. (8.140)

Combining (8.139) and (8.140) proves that for all x, y, z ∈ E it holds that

%(x, z) ≤ %(x, y) + %(y, z). (8.141)

This proves that % satisfies the triangle inequality. The proof of Lemma 8.4.6 is thus
completed.

Lemma 8.4.7. Let d ∈ N, p ∈ [1,∞), let (Ω,F , P ) be a probability space, let ρ : Rd ×
R
d → [0,∞) be a globally bounded B(Rd × Rd)/B([0,∞))-measurable metric, and let

% : L0(P ; ‖ · ‖Rd)× L0(P ; ‖ · ‖Rd)→ [0,∞) be the function with the property that for all
X, Y ∈ L0(P ; ‖ · ‖Rd) it holds that

%(X, Y ) = ‖ρ(X, Y )‖Lp(P ;|·|R) = (E[|ρ(X, Y )|p])1/p . (8.142)

Then % is a metric on L0(P ; ‖ · ‖Rd).

Proof of Lemma 8.4.7. First, we note that the symmetry of % follows immediately from
the symmetry of ρ. Next we observe that for all X, Y ∈ L0(P ; ‖ · ‖Rd) with %(X, Y ) =
‖ρ(X, Y )‖Lp(P ;|·|R) = 0 it holds P -a.s. that ρ(X, Y ) = 0. Combining this with the positive
definiteness of the metric ρ proves the positive definiteness of %. Finally, we observe that
for all X, Y, Z ∈ L0(P ; ‖ · ‖Rd) it holds that

%(X,Z) = ‖ρ(X,Z)‖Lp(P ;|·|R) ≤ ‖ρ(X, Y ) + ρ(Y, Z)‖Lp(P ;|·|R)

≤ ‖ρ(X, Y )‖Lp(P ;|·|R) + ‖ρ(Y, Z)‖Lp(P ;|·|R) = %(X, Y ) + %(Y, Z).
(8.143)

This shows that % satisfies the triangle inequality and therefore is a metric on L0(P ; ‖ ·
‖Rd). The proof of Lemma 8.4.7 is thus completed.
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Proposition 8.4.8 (Metrization of convergence in probability). Let d ∈ N, p ∈ [1,∞),
c ∈ (0,∞), let (Ω,F , P ) be a probability space, and let ρ : L0(P ; ‖·‖Rd)×L0(P ; ‖·‖Rd)→
[0,∞) be the function with the property that for all X, Y ∈ L0(P ; ‖ · ‖Rd) it holds that

ρ(X, Y ) = ‖min{c, ‖X − Y ‖Rd}‖Lp(P ;|·|R) =
(
E
[
min{cp, ‖X − Y ‖p

Rd
}
])1/p

. (8.144)

Then
(
L0(P ; ‖ · ‖Rd), ρ

)
is a metric space.

Proof of Proposition 8.4.8. Combining Lemma 8.4.6 and Lemma 8.4.7 completes the
proof of Proposition 8.4.8.

Proposition 8.4.9 (Metrization of convergence in probability). Let d ∈ N, p ∈ [1,∞),
c ∈ (0,∞), let (Ω,F , P ) be a probability space, and let ρ : L0(P ; ‖·‖Rd)×L0(P ; ‖·‖Rd)→
[0,∞) be the function with the property that for all X, Y ∈ L0(P ; ‖ · ‖Rd) it holds that

ρ(X, Y ) = ‖min{c, ‖X − Y ‖Rd}‖Lp(P ;|·|R) =
(
E
[
min{cp, ‖X − Y ‖p

Rd
}
])1/p

. (8.145)

Then for all Xn ∈ L0(P ; ‖ · ‖Rd), n ∈ N0, it holds that lim supn→∞ ρ(Xn, X0) = 0 if and
only if ∀ε ∈ (0,∞) : lim supn→∞ P

(
‖Xn −X0‖Rd ≥ ε

)
= 0.

Proof of Proposition 8.4.9. Observe that the Markov inequality proves the for all ε ∈
(0,∞), X, Y ∈ L0(P ; ‖ · ‖Rd) it holds that

P
(
‖X − Y ‖Rd ≥ ε

)
≤ P

(
min{cp, ‖X − Y ‖p

Rd
} ≥ min{cp, εp}

)
≤
E
[
min{cp, ‖X − Y ‖p

Rd
}
]

min{cp, εp}
=

∣∣∣∣ ρ(X, Y )

min{c, ε}

∣∣∣∣p . (8.146)

This proves that for all Xn ∈ L0(P ; ‖ · ‖Rd), n ∈ N0, with lim supn→∞ ρ(Xn, X0) = 0
it holds that ∀ε ∈ (0,∞) : lim supn→∞ P

(
‖Xn − X0‖Rd ≥ ε

)
= 0. Next we note

that for all ε, δ ∈ (0,∞) and for all Xn ∈ L0(P ; ‖ · ‖Rd), n ∈ N0, with ∀ε̃ ∈
(0,∞) : lim supn→∞ P

(
‖Xn − X0‖Rd ≥ ε̃

)
= 0 there exists an N0 ∈ N such that for

all n ∈ {N0, N0 + 1, . . .} it holds that

P
(
‖Xn −X0‖Rd ≥ ε

)
< δ. (8.147)

This ensures that for all ε ∈ (0,∞) and all Xn ∈ L0(P ; ‖ · ‖Rd), n ∈ N0, with ∀ε̃ ∈
(0,∞) : lim supn→∞ P

(
‖Xn −X0‖Rd ≥ ε̃

)
= 0 there exists an N0 ∈ N such that for all
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n ∈ {N0, N0 + 1, . . .} it holds that P
(
‖Xn −X0‖Rd ≥ ε

21/p

)
< εp

2 cp
and

ρ(Xn, X0) =
∣∣E[min{cp, ‖Xn −X0‖pRd}

]∣∣1/p
=
∣∣∣E[min{cp, ‖Xn −X0‖pRd}1{‖Xn−X0‖Rd≥

ε

21/p
}

]
+ E

[
min{cp, ‖Xn −X0‖pRd}1{‖Xn−X0‖Rd<

ε

21/p
}

] ∣∣∣1/p
≤
∣∣∣cp · P(‖Xn −X0‖Rd ≥ ε

21/p

)
+ min{cp, εp

2
} · P

(
‖Xn −X0‖Rd < ε

21/p

)∣∣∣1/p
<
∣∣∣ εp2 + εp

2

∣∣∣1/p = ε.

(8.148)

The proof of Proposition 8.4.9 is now completed.

8.4.9 Solution to Exercise 3.4.8

Lemma 8.4.10. Let d,m ∈ N, T ∈ (0,∞), p ∈ [1,∞), let (Ω,F , P, (Ft)t∈[0,T ])
be a stochastic basis, let ρ : L2(λ[0,T ];R

d×m) × L2(λ[0,T ];R
d×m) → [0,∞) be a glob-

ally bounded Pred((Ft)t∈[0,T ]) ⊗ Pred((Ft)t∈[0,T ])/B([0,∞))-measurable metric, and let
% : L0(P(Ft)t∈[0,T ]

; ‖ · ‖Rd×m)× L0(P(Ft)t∈[0,T ]
; ‖ · ‖Rd×m) → [0,∞) be the function with the

property that for all X, Y ∈ L0(P(Ft)t∈[0,T ]
; ‖ · ‖Rd×m) it holds that

%(X, Y ) = ‖ρ(X, Y )‖Lp(P(Ft)t∈[0,T ]
;|·|R) = (E[|ρ(X, Y )|p])1/p . (8.149)

Then % is a metric on L0(P(Ft)t∈[0,T ]
; ‖ · ‖Rd×m).

Proof of Lemma 8.4.10. The proof of Lemma 8.4.7 can be copied line by line with
L0(P ; ‖ · ‖Rd) replaced by L0(P(Ft)t∈[0,T ]

; ‖ · ‖Rd×m). The proof of Lemma 8.4.10 is thus
completed.

Proposition 8.4.11 (Metrization of convergence in probability). Let d,m ∈ N, T ∈
(0,∞), p ∈ [1,∞), c ∈ (0,∞), let (Ω,F , P, (Ft)t∈[0,T ]) be a stochastic basis, and let

dp,c :

{
X ∈ L0(P(Ft)t∈[0,T ]

; ‖ · ‖Rd×m) : P (
T

∫
0
‖Xs‖2

Rd×m ds <∞) = 1

}2

→ [0,∞), (8.150)

be the function with the property that for all X, Y ∈ dom(dp,c) it holds that

dp,c(X, Y ) =

∥∥∥∥∥∥
√

min

{
c,

ˆ T

0

‖Xs − Ys‖2
Rd×m

ds

}∥∥∥∥∥∥
Lp(P ;|·|R)

. (8.151)

Then
(
L0(P(Ft)t∈[0,T ]

; ‖ · ‖Rd×m), dp,c
)

is a metric space.
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Proof of Proposition 8.4.11. Note that for all a ∈ [0,∞) it holds that
√

min{c, a} =

min{
√
c,
√
a}. Combining the fact that the function ρ :

(
L2(λ[0,T ];R

d×m)
)2

→ [0,∞)

with the property that for all f, g ∈ L2(λ[0,T ];R
d×m) it holds that

ρ(f, g) =

√ˆ T

0

‖f(s)− g(s)‖2
Rd×m

ds (8.152)

is a metric, Lemma 8.4.7, and Lemma 8.4.10 completes the proof of Proposition 8.4.11.

Proposition 8.4.12 (Metrization of convergence in probability). Let d,m ∈ N, T ∈
(0,∞), p ∈ [1,∞), c ∈ (0,∞), let (Ω,F , P, (Ft)t∈[0,T ]) be a stochastic basis, and let

dp,c :

{
X ∈ L0(P(Ft)t∈[0,T ]

; ‖ · ‖Rd×m) : P (
T

∫
0
‖Xs‖2

Rd×m ds <∞) = 1

}2

→ [0,∞), (8.153)

be the function with the property that for all X, Y ∈ dom(dp,c) it holds that

dp,c(X, Y ) =

∥∥∥∥∥∥
√

min

{
c,

ˆ T

0

‖Xs − Ys‖2
Rd×m

ds

}∥∥∥∥∥∥
Lp(P ;|·|R)

. (8.154)

Then for all Xn ∈ L0(P(Ft)t∈[0,T ]
; ‖ · ‖Rd×m), n ∈ N0, it holds that

lim supn→∞ dp,c(Xn, X0) = 0 if and only if ∀ε ∈ (0,∞) : lim supn→∞ P
( ´ T

0
‖Xn −

X0‖2
Rd×m ≥ ε

)
= 0.

Proof of Proposition 8.4.12. The proof of Proposition 8.4.9 can be copied line by line
with the the usual metric on Rd replaced by the metric defined in (8.152). Thus the
proof of Proposition 8.4.12 is completed.

8.4.10 Solution to Exercise 3.4.20

See, e.g., Lemma 4.4.25 in [Jentzen(2014)] for the statement and the proof of the follow-
ing lemma.

Lemma 8.4.13. Let T ∈ [0,∞), t ∈ [0, T ], let (Ω,F , P, (Fs)s∈[0,T ]) be a stochastic basis,
let (S,S) be a measurable space, let X : Ω → S be an F/S-measurable function, let
Y : Ω→ S be an Ft/S-measurable function, and let A ∈ F satisfy P (A) = 1 and

A ⊆ {ω ∈ Ω: X(ω) = Y (ω)}. (8.155)

Then it holds that X is an Ft/S-measurable function.
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Proof of Lemma 8.4.13. First, note that for all ω ∈ A it holds that X(ω) = Y (ω). Next
observe that for all B ∈ S it holds that

X−1(B) =
[
X−1(B) ∩ A

]
∪
[
X−1(B)\A

]
= {ω ∈ A : X(ω) ∈ B} ∪

[
X−1(B)\A

]
= {ω ∈ A : Y (ω) ∈ B} ∪

[
X−1(B)\A

]
=
[
Y −1(B) ∩ A

]
∪
[
X−1(B)\A

]
.

(8.156)

Moreover, observe that the assumption that (Fs)s∈[0,T ] is a normal filtration together
with the fact that P (A) = 1 implies that

A,Ac ∈ F0 ⊆ Ft ⊆ F . (8.157)

This and the assumption that Y is Ft/S-measurable prove that for all B ∈ S it holds
that

Y −1(B) ∩ A ∈ Ft. (8.158)

Furthemore, note that the monotonicity of the probability measure P ensures that for
all B ∈ S it holds that P (X−1(B)\A) = 0. The assumption that (Fs)s∈[0,T ] is normal
hence shows that for all B ∈ S it holds that

X−1(B)\A ∈ Ft. (8.159)

Combining (8.156) with (8.158) and (8.159) proves that for all B ∈ S it holds that
X−1(B) ∈ Ft. The proof of Lemma 8.4.13 is thus completed.

8.4.11 Solution to Exercise 3.4.22

Lemma 8.4.14. Let T ∈ (0,∞), d,m ∈ N, let (Ω,F , P, (Ft)t∈[0,T ]) be a stochastic basis,
let W : [0, T ] × Ω → R

m be an m-dimensional standard (Ω,F , P, (Ft)t∈[0,T ])-Brownian
motion, let a, b, c, d ∈ [0, T ] with a ≤ b ≤ c ≤ d, and let X, Y : [0, T ] × Ω → R

d×m be
(Ft)t∈[0,T ]/B(Rd×m)-predictable functions with X, Y ∈ C([0, T ], L2(P ; ‖·‖

Rd×m)). Then´ b
a
EP
[
‖Xs‖2

HS(Rm,Rd)
+ ‖Ys‖2

HS(Rm,Rd)

]
ds <∞ and

EP
[〈ˆ b

a

Xs dWs,

ˆ d

c

Ys dWs

〉
Rd

]
= 0. (8.160)

Proof of Lemma 8.4.14. Throughout this proof let Z,R : [0, T ]×Ω→ R
d×m be stochas-

tic processes which satisfy for all t ∈ [0, T ] that

Zt = 1(a,b](t) ·Xt + 1(c,d](t) · Yt (8.161)

and
Rt = 1(a,b](t) ·Xt − 1(c,d](t) · Yt. (8.162)
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Then note that Item (iv) in Theorem 3.4.21, the fact that ‖·‖
Rd×m and ‖·‖HS(Rm,Rd) are

equivalent norms on Rd×m, and the assumption that X, Y ∈ C([0, T ], L2(P ; ‖·‖
Rd×m))

imply that
´ b
a
EP
[
‖Xs‖2

HS(Rm,Rd)
+ ‖Ys‖2

HS(Rm,Rd)

]
ds < ∞,

´ b
a
EP
[
‖Zs‖2

HS(Rm,Rd)
+

‖Rs‖2
HS(Rm,Rd)

]
ds <∞, and

EP
[〈ˆ b

a

Xs dWs,

ˆ d

c

Ys dWs

〉
Rd

]
= 1

4

(
EP

[∥∥∥∥ˆ b

a

Xs dWs +

ˆ d

c

Ys dWs

∥∥∥∥2

Rd

]
− EP

[∥∥∥∥ˆ b

a

Xs dWs −
ˆ d

c

Ys dWs

∥∥∥∥2

Rd

])

= 1
4

(
EP

[∥∥∥∥ˆ d

a

Zs dWs

∥∥∥∥2

Rd

]
− EP

[∥∥∥∥ˆ d

a

Rs dWs

∥∥∥∥2

Rd

])

= 1
4

(ˆ d

a

EP
[
‖Zs‖2

HS(Rm,Rd)

]
ds−

ˆ d

a

EP
[
‖Rs‖2

HS(Rm,Rd)

]
ds

)
= 1

4

(ˆ b

a

EP
[
‖Xs‖2

HS(Rm,Rd)

]
ds+

ˆ d

c

EP
[
‖Ys‖2

HS(Rm,Rd)

]
ds

−
ˆ b

a

EP
[
‖Xs‖2

HS(Rm,Rd)

]
ds−

ˆ d

c

EP
[
‖−Ys‖2

HS(Rm,Rd)

]
ds

)
= 0.

(8.163)

The proof of Lemma 8.4.14 is thus completed.

Lemma 8.4.15. Let T ∈ (0,∞), d,m ∈ N, let (Ω,F , P, (Ft)t∈[0,T ]) be a stochastic
basis, let W : [0, T ] × Ω → R

m be an m-dimensional standard (Ω,F , P, (Ft)t∈[0,T ])-
Brownian motion, let a ∈ [0, T ], b ∈ [a, T ], and let X : [0, T ] × Ω → R

d×m be
an (Ft)t∈[0,T ]/B(Rd×m)-predictable function with X ∈ C([0, T ], L2(P ; ‖·‖

Rd×m)). Then´ b
a
EP
[
‖Xs‖2

HS(Rm,Rd)

]
<∞ and

lim sup
n→∞

∥∥∥∥∥
ˆ b

a

Xs dWs −

[
n−1∑
k=0

X
(a+

k(b−a)
n

)

(
W
a+

(k+1)(b−a)
n

−W
a+

k(b−a)
n

)]∥∥∥∥∥
L2(P ;‖·‖

Rd
)

= 0.

(8.164)

Proof of Lemma 8.4.15. Lemma 8.4.14 proves for all n ∈ N that
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´ b
a
EP
[
‖Xs‖2

HS(Rm,Rd)

]
<∞ and

∥∥∥∥∥
ˆ b

a

Xs dWs −

[
n−1∑
k=0

X
(a+

k(b−a)
n

)

(
W
a+

(k+1)(b−a)
n

−W
a+

k(b−a)
n

)]∥∥∥∥∥
2

L2(P ;‖·‖
Rd

)

=

∥∥∥∥∥
n−1∑
k=0

ˆ a+
(k+1)(b−a)

n

a+
k(b−a)
n

(
Xs −X(a+

k(b−a)
n

)

)
dWs

∥∥∥∥∥
2

L2(P ;‖·‖
Rd

)

= EP

n−1∑
k=0

∥∥∥∥∥
ˆ a+

(k+1)(b−a)
n

a+
k(b−a)
n

(
Xs −X(a+

k(b−a)
n

)

)
dWs

∥∥∥∥∥
2

Rd


=

n−1∑
k=0

∥∥∥∥∥
ˆ a+

(k+1)(b−a)
n

a+
k(b−a)
n

(
Xs −X(a+

k(b−a)
n

)

)
dWs

∥∥∥∥∥
2

L2(P ;‖·‖
Rd

)

.

(8.165)

Item (iv) in Theorem 3.4.21 and the fact that ‖·‖
Rd×m and ‖·‖HS(Rm,Rd) are equivalent

norms on Rd×m hence prove for all n ∈ N that∥∥∥∥∥
ˆ b

a

Xs dWs −

[
n−1∑
k=0

X
(a+

k(b−a)
n

)

(
W
a+

(k+1)(b−a)
n

−W
a+

k(b−a)
n

)]∥∥∥∥∥
2

L2(P ;‖·‖
Rd

)

=
n−1∑
k=0

ˆ a+
(k+1)(b−a)

n

a+
k(b−a)
n

∥∥Xs −X(a+
k(b−a)
n

)

∥∥2

L2(P ;‖·‖
HS(Rm,Rd)

)
ds

≤ (b− a)
[
wX
(
b−a
n

)]2
supx∈Rd×m\{0}

[‖x‖
HS(Rm,Rd)

‖x‖
Rd×m

]2

<∞.

(8.166)

The fact that X ∈ C([0, T ], L2(P ; ‖·‖
Rd×m)) and the compactness of the interval [0, T ]

imply that the function [0, T ] 3 t 7→ Xt ∈ L2(P ; ‖·‖
Rd×m) is uniformly continuous.

Combining this with (8.166) and Lemma 8.3.1 completes the proof of Lemma 8.4.15.

8.5 Chapter 5

8.5.1 Solution to Exercise 5.2.4

Lemma 8.5.1. Let (E, dE) and (F, dF ) be metric spaces, let v ∈ E, w ∈ F , c ∈ [0,∞),
and let f : E → F be a function which satisfies for all x ∈ E that

dF (w, f(x)) ≤ c
(
1 + dE(v, x)

)c
. (8.167)

Then f grows at most polynomially from (E, dE) to (F, dF ).
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Proof of Lemma 8.5.1. Observe that (8.167) and the triangle inequality ensure that for
all ṽ, x ∈ E, w̃ ∈ F it holds that

dF (w̃, f(x)) ≤ dF (w̃, w) + dF (w, f(x))

≤ dF (w̃, w) + c
(
1 + dE(v, x)

)c
≤ dF (w̃, w) + c

(
1 + dE(v, ṽ) + dE(ṽ, x)

)c
≤
(
dF (w̃, w) + c

) [
1 +

(
1 + dE(v, ṽ) + dE(ṽ, x)

)c]
≤
(
dF (w̃, w) + c

) (
1 + dE(v, ṽ)

)c [
1 +

(
1 + dE(ṽ, x)

)c]
≤ 2

(
dF (w̃, w) + c

) (
1 + dE(v, ṽ)

)c (
1 + dE(ṽ, x)

)c
≤
[
2
(
dF (w̃, w) + c

) (
1 + dE(v, ṽ)

)c](
1 + dE(ṽ, x)

)[2 (dF (w̃,w)+c) (1+dE(v,ṽ))c
]
.

(8.168)

The proof of Lemma 8.5.1 is thus completed.

Proposition 8.5.2. Let (E, dE) and (F, dF ) be metric spaces with E 6= ∅. Then for all
functions f : E → F it holds that f grows at most polynomially from (E, dE) to (F, dF )
if and only if there exist v ∈ E, w ∈ F such that

lim sup
c→∞

sup
x∈E

[
dF (w, f(x))

[1 + dE(v, x)]c

]
<∞. (8.169)

Proof of Proposition 8.5.2. Throughout this proof let f : E → F be an at most polyno-
mially growing function and let g ∈M(E,F ), ṽ ∈ E, w̃ ∈ F satisfy that

lim sup
c→∞

sup
x∈E

[
dF (w̃, g(x))

[1 + dE(ṽ, x)]c

]
<∞. (8.170)

Observe that (8.170) implies that there exist real numbers K, c̃ ∈ [0,∞) such that for
all x ∈ E it holds that

dF (w̃, g(x)) ≤ K
(
1 + dE(ṽ, x)

)c̃ ≤ max{K, c̃}
(
1 + dE(ṽ, x)

)max{K,c̃}
. (8.171)

Lemma 8.5.1 hence shows that g grows at most polynomially from (E, dE) to (F, dF ).
It thus remains to prove that there exist v ∈ E, w ∈ F such that

lim sup
c→∞

sup
x∈E

[
dF (w, f(x))

[1 + dE(v, x)]c

]
<∞. (8.172)

The assumption that f is polynomially growing ensures that for all v ∈ E, w ∈ F there
exists a real number c ∈ [0,∞) such that

sup
x∈E

[
dF (w, f(x))

[1 + dE(v, x)]c

]
<∞. (8.173)

Combining this with the fact that for all v, x ∈ E, w ∈ F it holds that the function

(0,∞) 3 r 7→
[
dF (w, f(x))

[1 + dE(v, x)]r

]
∈ [0,∞) (8.174)

is non-increasing implies (8.172). The proof of Proposition 8.5.2 is thus completed.
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8.5.2 Solution to Exercise 5.2.7

Lemma 8.5.3. Let k, l ∈ N and let f : Rk → R
l be a continuously differentiable function

with at most polynomially growing derivative. Then f grows at most polynomially.

Proof of Lemma 8.5.3. Observe that the fundamental theorem of calculus ensures that
for all x, y ∈ Rk it holds that

f(y)− f(x) =

ˆ 1

0

f ′(x+ r (y − x)) (y − x) dr. (8.175)

The assumption that f ′ grows at most polynomially hence implies that there exists a
real number c ∈ [0,∞) such that for all x ∈ Rk it holds that

‖f(x)‖Rl ≤ ‖f(x)− f(0)‖Rl + ‖f(0)‖Rl

≤
ˆ 1

0

‖f ′(rx)x‖Rl dr + ‖f(0)‖Rl

≤
ˆ 1

0

‖f ′(rx)‖L(Rk,Rl) ‖x‖Rk dr + ‖f(0)‖Rl

≤
ˆ 1

0

c
(
1 + r ‖x‖Rk

)c ‖x‖Rk dr + ‖f(0)‖Rl

≤ c
(
1 + ‖x‖Rk

)c ‖x‖Rk + ‖f(0)‖Rl

≤ (c+ ‖f(0)‖Rl)
(
1 + ‖x‖Rk

)(c+1)

≤ (c+ ‖f(0)‖Rl + 1)
(
1 + ‖x‖Rk

)(c+‖f(0)‖
Rl

+1)
.

(8.176)

This and Lemma 8.5.1 imply that f grows at most polynomially. The proof of
Lemma 8.5.3 is thus completed.

Proposition 8.5.4. Let k, l, v ∈ N and let f : Rk → R
l be a v–times continuously

differentiable function with at most polynomially growing derivatives. Then it holds for
all w ∈ {0, 1, . . . , v} that f (w) grows at most polynomially.

Proof of Proposition 8.5.4. The proof of Proposition 8.5.4 in the case v = 1 fol-
lows directly from Lemma 8.5.3. Therefore, assume without loss of generality that
v ∈ {2, 3, . . .}. Next we show by induction that for all j ∈ {1, 2, . . . , v} it holds that
f (j) grows at most polynomially. It is clear that f (v) grows at most polynomially. Let
w ∈ {1, . . . , v−1} satisfy that f (w+1) grows at most polynomially. Note that the function

R
k 3 x 7→ f (w)(x) ∈ L(w)(Rk,Rl) (8.177)

is continuously differentiable with at most polynomially growing derivative. This, the
fact that L(w)(Rk,Rl) ∼= R

kw·l, and Lemma 8.5.3 show that f (w) grows at most poly-
nomially. Induction implies that for all j ∈ {1, . . . , v} it holds that f (j) grows at most
polynomially. In addition, Lemma 8.5.3 proves that f grows at most polynomially. The
proof of Proposition 8.5.4 is thus completed.
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8.5.3 Solution to Exercise 5.3.3

1 function Y = EulerMaruyama (T, d ,m,N, xi ,mu, sigma )
2 h = T/N;
3 sqr th = sqrt (h ) ;
4 Y = xi ;
5 for i =1:N
6 Y = Y + mu(Y)∗h + sigma (Y)∗ sqr th ∗randn(m, 1 ) ;
7 end
8 end

Matlab code 8.28: A Matlab function EulerMaruyama(T,d,m,N,ξ,µ,σ) with input
T ∈ (0,∞), d,m,N ∈ N, ξ ∈ R

d, µ ∈ M(B(Rd),B(Rd)),
σ ∈M(B(Rd),B(Rd×m)) and output a realization of an YN(P )B(Rd)-
distributed random variable.

8.5.4 Solution to Exercise 5.3.4

1 function E = MonteCarloEulerGBM (T, alpha , beta , xi ,K,N,M)
2 Y = xi ;
3 h = T/N;
4 sqr th = sqrt (h ) ;
5 for i =1:N
6 Y = Y + alpha∗Y∗h + beta∗Y.∗ randn(M, 1 )∗ sqr th ;
7 end
8 E = sum(max( Y − K, 0 ) )/M;
9 end

Matlab code 8.29: A Matlab function MonteCarloEulerGBM(T,α,β,ξ,K,N,M) with
input T, α, β, ξ,K ∈ (0,∞), N,M ∈ N and output a realization of
an
(

1
M

∑M
k=1 max

{
Y k
N −K, 0

})
(P )B(R)-distributed random variable.

1 MonteCarloEulerGBM (1 , log (1 .06)−1/200 ,1/10 ,92 ,100 ,100 ,10000)
2
3 ans =
4
5 2.6618

Matlab code 8.30: Result of the Matlab function 8.29 with specified values in the Matlab
console.
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8.5.5 Solution to Exercise 5.5.6

Lemma 8.5.5. Let L ∈ R. Then for all µ ∈ C1(R,R) it holds that supx∈R µ
′(x) ≤ L if

and only if ∀x, y ∈ R : (x− y) · (µ(x)− µ(y)) ≤ L (x− y)2.

Proof of Lemma 5.5.6. Throughout this proof let µ, η ∈ C1(R,R) satisfy for all x, y ∈ R
that supt∈R µ

′(t) ≤ L and (x− y) · (η(x)− η(y)) ≤ L (x− y)2 . Observe that for all
x ∈ R, y ∈ [x,∞) it holds that

µ(x)− µ(y) = −
ˆ y

x

µ′(t) dt ≥ −
ˆ y

x

sups∈R µ
′(s) dt = (x− y) supt∈R µ

′(t). (8.178)

Next note that for all x ∈ R, y ∈ (−∞, x] it holds that

µ(x)− µ(y) =

ˆ x

y

µ′(t) dt ≤
ˆ x

y

sups∈R µ
′(s) dt = (x− y) supt∈R µ

′(t). (8.179)

Combining (8.178) and (8.179) implies that for all x, y ∈ R it holds that

(x− y)(µ(x)− µ(y)) ≤ (x− y)2 supt∈R µ
′(t). (8.180)

This shows for all x, y ∈ R that (x − y) · (µ(x) − µ(y)) ≤ L(x − y)2. Furthermore, for

all x, y ∈ R with x 6= y it holds that η(x)−η(y)
x−y ≤ L. Therefore, for all x ∈ R it holds

that η′(x) = limy→x
η(x)−η(y)

x−y ≤ L. Hence, it holds that supx∈R η
′(x) ≤ L. The proof of

Lemma 5.5.6 is thus completed.

8.5.6 Solution to Exercise 5.5.9

1 function Y = IncrementTamed (T, d ,m,N, xi ,mu, sigma )
2 h = T/N;
3 sqr th = sqrt (h ) ;
4 Y = xi ;
5 for i =1:N
6 Z = mu(Y)∗h + sigma (Y)∗ sqr th ∗randn(m, 1 ) ;
7 Y = Y + Z/max( [ 1 , h∗norm(Z ) ] ) ;
8 end
9 end

Matlab code 8.31: A Matlab function IncrementTamed(T,d,m,N,ξ,µ,σ) with in-
put T ∈ (0,∞), d,m,N ∈ N, ξ ∈ Rd, µ ∈ M(B(Rd),B(Rd)),
σ ∈M(B(Rd),B(Rd×m)) and output a realization of an YN(P )B(Rd)-
distributed random variable.
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8.5.7 Solution to Exercise 5.6.7

1 function Y = M i l s t e i n (T, d ,N, xi ,mu, sigma , s igma t )
2 h = T/N;
3 sqr th = sqrt (h ) ;
4 Y = xi ;
5 for i =1:N
6 Delta W = randn (1 ,1 )∗ sqr th ;
7 Y = Y + mu(Y)∗h + sigma (Y)∗Delta W . . .
8 + 1/2∗ s igma t (Y)∗ sigma (Y)∗Delta Wˆ2 . . .
9 − h/2∗ s igma t (Y)∗ sigma (Y) ;

10 end
11 end

Matlab code 8.32: A Matlab function Milstein(T,d,N,ξ,µ,σ,σ̃) with input T ∈
(0,∞), d,N ∈ N, ξ ∈ Rd, µ ∈ M(B(Rd),B(Rd)), σ ∈ C1(Rd,Rd),
σ̃ ∈ C1(Rd,Rd×d) and output a realization of an YN(P )B(Rd)-
distributed random variable.

8.5.8 Solution to Exercise 5.6.8

Lemma 8.5.6. Let A1, A2 ∈ R2×2 be the 2× 2-matrices given by

A1 =

(
1 1
1 0

)
and A2 =

(
1 −1
−1 2

)
(8.181)

and let σ = (σ1, σ2) : R2 → R
2×2 be the function which satisfies for all x = (x1, x2),

u = (u1, u2) ∈ R2 that
σ(x)u = u1A1x+ u2A2x. (8.182)

Then for all x ∈ R2 it holds that σ′1(x)σ2(x) = σ′2(x)σ1(x).

Proof of Lemma 8.5.6. Observe that for all x ∈ R2 it holds that

σ1(x) = A1x , σ2(x) = A2x , σ′1(x) = A1 and σ′2(x) = A2 . (8.183)

Observe that

A1A2 =

(
1 1
1 0

)(
1 −1
−1 2

)
=

(
0 1
1 −1

)
. (8.184)

and

A2A1 =

(
1 −1
−1 2

)(
1 1
1 0

)
=

(
0 1
1 −1

)
. (8.185)

The proof of Lemma 8.5.6 is thus completed.
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1 function Y = Milste in2D (T,N, x i )
2 A1 = [ 1 , 1 ; 1 , 0 ] ;
3 A2 = [ 1 , −1; −1, 2 ] ;
4 sigma1 = @( x ) A1∗x ;
5 sigma2 = @( x ) A2∗x ;
6 sigma = @( x ) [ sigma1 ( x ) , sigma2 ( x ) ] ;
7 h = T/N;
8 sqr th = sqrt (h ) ;
9 Y = xi ;

10 for i =1:N
11 Delta W = randn (2 ,1 )∗ sqr th ;
12 Y = Y + sigma (Y)∗Delta W . . .
13 − h/2∗( A1∗ sigma1 (Y) + A2∗ sigma2 (Y) ) . . .
14 + 1/2∗Delta W (1)∗A1∗( sigma1 (Y)∗Delta W (1) . . .
15 + sigma2 (Y)∗Delta W ( 2 ) ) . . .
16 + 1/2∗Delta W (2)∗A2∗( sigma1 (Y)∗Delta W (1) . . .
17 + sigma2 (Y)∗Delta W ( 2 ) ) ;
18 end
19 end

Matlab code 8.33: A Matlab function Milstein2D(T,N,ξ) with input T ∈ (0,∞),
N ∈ N, ξ ∈ R2 and output a realization of an YN(P )B(R2)-distributed
random variable.
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[Kühn(2004)] C. Kühn. Stochastische Analysis mit Finanzmathematik. Lecture notes.
http://www.math.uni-frankfurt.de, 2004.

[Kuo(2006)] H.-H. Kuo. Introduction to Stochastic Integration. Universitext. Springer,
New York, 2006. ISBN 978-0387-28720-1; 0-387-28720-5.

[Lewis(2000)] A. L. Lewis. Option valuation under stochastic volatility. Finance Press,
Newport Beach, CA, 2000. ISBN 0-9676372-0-1. With Mathematica code.

[Lotka(1920)] A. J. Lotka. Undamped oscillations derived from the law of mass action.
Journal of the American Chemical Society, 42(8):1595–1599, 1920.

[Maruyama(1953)] G. Maruyama. Markov processes and stochastic equations. Nat. Sci.
Rep. Ochanomizu Univ., 4:40–43, 1953. ISSN 0029-8190.

[Maruyama(1955)] G. Maruyama. Continuous Markov processes and stochastic equa-
tions. Rend. Circ. Mat. Palermo (2), 4:48–90, 1955. ISSN 0009-725X.

[Mattingly et al.(2002)Mattingly, Stuart, and Higham] J. C. Mattingly, A. M. Stuart,
and D. J. Higham. Ergodicity for SDEs and approximations: locally Lipschitz
vector fields and degenerate noise. Stochastic Process. Appl., 101(2):185–232, 2002.
ISSN 0304-4149. doi: 10.1016/S0304-4149(02)00150-3. URL http://dx.doi.org/

10.1016/S0304-4149(02)00150-3.

[Merton(1973)] R. C. Merton. Theory of rational option pricing. The Bell Journal of
Economics and Management Science, 4:141–183, 1973.

Work in progress. Copyright (C) with the authors.
Dissemination prohibited. December 15, 2018

316

http://dx.doi.org/10.1137/1.9781611972016
http://dx.doi.org/10.1016/S0304-4149(02)00150-3
http://dx.doi.org/10.1016/S0304-4149(02)00150-3


Bibliography

[Métivier(1982)] M. Métivier. Semimartingales: A Course on Stochastic Processes, vol-
ume 2 of De Gruyter Studies in Mathematics. Berlin - New York: Walter de Gruyter,
1982.

[Milstein(1974)] G. N. Milstein. Approximate integration of stochastic differential equa-
tions. Teor. Verojatnost. i Primenen., 19:583–588, 1974. ISSN 0040-361x.

[Milstein(1995)] G. N. Milstein. Numerical integration of stochastic differential equa-
tions, volume 313 of Mathematics and its Applications. Kluwer Academic Publish-
ers Group, Dordrecht, 1995. ISBN 0-7923-3213-X. Translated and revised from the
1988 Russian original.

[Milstein and Tretyakov(2004)] G. N. Milstein and M. V. Tretyakov. Stochastic numer-
ics for mathematical physics. Scientific Computation. Springer-Verlag, Berlin, 2004.
ISBN 3-540-21110-1.

[Milstein and Tretyakov(2005)] G. N. Milstein and M. V. Tretyakov. Numerical inte-
gration of stochastic differential equations with nonglobally Lipschitz coefficients.
SIAM J. Numer. Anal., 43(3):1139–1154 (electronic), 2005. ISSN 0036-1429. doi:
10.1137/040612026. URL http://dx.doi.org/10.1137/040612026.

[Milstein et al.(1998)Milstein, Platen, and Schurz] G. N. Milstein, E. Platen, and
H. Schurz. Balanced implicit methods for stiff stochastic systems. SIAM J. Nu-
mer. Anal., 35(3):1010–1019 (electronic), 1998. ISSN 0036-1429. doi: 10.1137/
S0036142994273525. URL http://dx.doi.org/10.1137/S0036142994273525.

[Mörters and Peres(2010)] P. Mörters and Y. Peres. Brownian motion. Cambridge Series
in Statistical and Probabilistic Mathematics. Cambridge University Press, Cam-
bridge, 2010. ISBN 978-0-521-76018-8. With an appendix by Oded Schramm and
Wendelin Werner.

[Müller-Gronbach(2002)] T. Müller-Gronbach. The optimal uniform approximation of
systems of stochastic differential equations. Ann. Appl. Probab., 12(2):664–690,
2002. ISSN 1050-5164. doi: 10.1214/aoap/1026915620. URL http://dx.doi.org/

10.1214/aoap/1026915620.

[Müller-Gronbach et al.(2012)Müller-Gronbach, Novak, and Ritter] T. Müller-
Gronbach, E. Novak, and K. Ritter. Monte Carlo-Algorithmen. Springer-Lehrbuch.
[Springer Textbook]. Heidelberg: Springer, 2012.

[Øksendal(2003)] B. Øksendal. Stochastic Differential Equations. An Introduction with
Applications. 6th ed. Universitext. Berlin: Springer, 2003.
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