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Abstract

The Feynman—Kac formula implies that every suitable classical solution of a semilinear
Kolmogorov partial differential equation (PDE) is also a solution of a certain stochastic fixed
point equation (SFPE). In this article we study such and related SFPEs. In particular, the
main result of this work proves existence of unique solutions of certain SFPEs in a general
setting. As an application of this main result we establish the existence of unique solutions of
SFPEs associated with semilinear Kolmogorov PDEs with Lipschitz continuous nonlinearities
even in the case where the associated semilinear Kolmogorov PDE does not possess a classical
solution.
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1 Introduction

The Feynman—Kac formula implies that every suitable classical solution of a semilinear Kol-
mogorov partial differential equation (PDE) is also a solution of a certain stochastic fixed point
equation (SFPE). In this article we study such and related SFPEs. The main result of this article,
Theorem in Section below, shows the existence of unique solutions of certain SFPEs in an
abstract setting. As an application of Theorem 2.9 we establish in Theorem [3.§ the existence of
unique solutions of SFPEs associated with semilinear Kolmogorov PDEs with Lipschitz continuous
nonlinearities even in the case where the associated semilinear Kolmogorov PDE does not possess
a classical solution (see, for example, Hairer et al. [9]). To illustrate Theorem B.8 in more detail
we provide in the following result, Theorem [I.1] below, a special case of Theorem [3.8

Theorem 1.1. Letd,meN, L, T € (0,00), let -,->: R x R — R be the standard scalar product
on R, et || : RY — [0,00) be a norm on R?, let ||-|| : R>*™ — [0,00) be a norm on R¥>*™ let
p: RY— R4 and o: RT — RY™ be locally Lipschitz continuous, let f € C([0,T] x R? x R, R),
g € C(R%R) be at most polynomially growing, assume for all t € [0,T], v € RY, v,w € R that
max{(z, j1(2)), [lo (@)%} < L+ |o]?) and |f(t,2,0)— F (8, 2,0)] < Liv—ul, let (2, F, P, (Fu)icpor)
be a filtered probability space which satisfies the usual conditions, let W: [0, T] xQ — R™ be a stan-
dard (Fy)sepo,r)-Brownian motion, and for everyt € [0,T], z € R? let X" = (X5")serery: [t T ¥
Q — R? be an (Fs) seft,71-adapted stochastic process with continuous sample paths which satisfies

that for all s € [t,T] it holds P-a.s. that
X0 =t f WX dr + f o (X57) W, (1)
¢ ¢

Then there exists a unique at most polynomially growing u € C([0,T] x R4, R) such that for all
te[0,T], x € R it holds that

T

ult) = B[ + [ (s, X0 u(s, X0 s | @

SFPEs of the form as in (2) have a strong connection with semilinear Kolmogorov PDEs
and arise, for example, in models from the environmental sciences as well as in pricing problems
from financial engineering (cf., for example, Burgard & Kjaer [2], Crépey et al. [3], Duffie et
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al. [4], and Henry-Labordére [10]). SFPEs such as (2)) are also important for full-history recursive
multilevel Picard approximation (MLP) methods, which were recently introduced in [5], 11]; see
also [1, [6, 12, 13]. In [I1, 12] it has been shown that functions which satisfy SFPEs related
to semilinear Kolmogorov PDEs can be approximated by MLP schemes without the curse of
dimensionality. Theorem [[.1] above establishes existence of unique solutions of SFPEs related
to semilinear Kolmogorov PDEs with Lipschitz continuous nonlinearities within the class of at
most polynomially growing continuous functions. Theorem [[.1] is an immediate consequence of
Corollary B.I0in Section 3.4l below. Corollary 3.10] in turn, follows from Corollary [3.9 which itself
is a special case of Theorem 3.8 Theorem B.§ is an application of Theorem [2.9] the main result
of this article. Theorem [B.§ shows the existence of unique solutions of SFPEs associated with
suitable semilinear Kolmogorov PDEs with Lipschitz continuous nonlinearities within a certain
class of continuous functions. Related existence and uniqueness results can be found, e.g., in
Pazy [I8, Theorem 6.1.2], Segal [20, Theorem 1|, Weissler [22, Theorem 1|, and Hutzenthaler et
al. [I1, Corollary 3.11].

The remainder of this article is organized as follows. In Section 2] we investigate SFPEs in an
abstract setting. In Theorem in Section 2.5 the main result of this article, we obtain under
suitable assumptions an abstract existence and uniqueness result for solutions of SEFPEs. Its proof
is based on Banach’s fixed point theorem. In Sections 2.IH2.3] we establish the well-definedness
of the mapping to which Banach’s fixed point theorem is applied in the proof of Theorem [2.9]
In Section 2.4 we prove a Lipschitz estimate which establishes the contractivity property of the
mapping to which Banach’s fixed point theorem is applied in the proof of Theorem 2.9 In
Section [3] we apply the abstract theory from Theorem in Section ] in the context of certain
stochastic differential equations (SDEs) to obtain Theorem 3.8 the main result of Section Bl In
Sections B.IH3.3] we present several auxiliary results on certain SDEs in order to demonstrate
that the hypotheses of Theorem are satisfied in the setting of Theorem 3.8 The article is
concluded by means of two simple corollaries of Theorem B.8] (see Corollary B.9and Corollary
in Section 34 below).

2 Abstract stochastic fixed point equations (SFPEs)

In this section we study SFPEs from an abstract point of view. This section’s main result is
Theorem below. It is an application of Banach’s fixed point theorem to a suitable function.
Corollary 2.7 in Section 2.3] establishes the well-definedness of this function. Corollary 2.7 is a
direct consequence of Lemma 2.6l which we establish through an approximation argument building
upon Lemmas and The contractivity property of the function to which we apply Banach’s
fixed point theorem in the proof Theorem is established in Lemma 2.8 in Section 2.4] below.

2.1 Integrability properties for certain stochastic processes

Lemma 2.1. Let d € N, T € (0,0), let O < R? be a non-empty open set, let (Q, F,P) be a
probability space, for everyt e [0,T], z € O let X"* = (X!")seer): [t, T] x Q@ — O be (B([t,T]) ®
F)/B(O)-measurable, let g: O — R be B(O) /B(R)-measurable, let h: [0,T]x O — R be B([0,T] x
0)/B(R)-measurable, let V: [0,T] x O — (0,0) be B([0,T] x O)/B((0,0))-measurable, and
assume for allt € [0,T], s € [t,T], x € O that E[V (s, X£)] < V/(t,7) and supie[o 7 SUP,eol aloll_ |

V(T,x)
|"}((§2))|] < 0. Then it holds for allt € [0,T], z € O that

T

B loX5) + [ (s, X2 s < 3)
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Proof of Lemma[2]. Throughout this proof let ¢ € [0, o0) satisfy for all ¢ € [0,T], z € O that
9@l < V(T,z)  and  |a(to)| < Vit 2). )

Observe that the hypothesis that g: O — R is B(O)/B(R)-measurable, the hypothesis that
h:[0,T] x O — R is B([0,T] x O)/B(R)-measurable, and the hypothesis that for every t € [0, T7],
z € O it holds that X»*: [t,T] x Q@ — O is (B([¢t,T]) ® F)/B(O)-measurable ensure that for
every t € [0,T], x € O it holds that Q 3 w — g(X5"(w)) € R is F/B(R)-measurable and
[t,T] x Q3 (s,w) — h(s, X" (w)) e Ris (B([t,T]) ® F)/B(R)-measurable. The hypothesis that
for all t € [0,T7], s € [t,T], x € O it holds that E[V (s, X:*)] < V/(¢,z), Fubini’s theorem, and ()
hence ensure that for all ¢t € [0,T], x € O it holds that

T

B[ lo(xi)| + [ It X0 ds | = Bl + fEnh(s, Xt%)] ds

T T
<E[eV(T, X3")] + J E[cV (s, X0)] ds < eV (t,2) + J cV(t,x)ds (5)
t t
<c(1+T)V(t,x) < 0.
This demonstrates (3]). The proof of Lemma 2] is thus completed. O

2.2 Continuity properties for solutions of SFPEs

In this section we establish in Lemma 2.2] Lemma 2.3l and Corollary [2.4] several elementary con-
vergence and approximation results. The convergence result in Lemma 2.2 and the approximation
result in Corollary 2.4] pave the way for Section 2.3l They will together with Lemma be em-
ployed in the proof of Lemma 2.6 in Section 2.3l Lemma 2.6, in turn, has Corollary 2.7 as a rather
direct consequence, which itself is one of the cornerstones of the proof of Theorem 2.9

Lemma 2.2. Let d € N, T € (0,0), let |-| : R? — [0,00) be a norm on R?, let O < RY be a
non-empty open set, for every r € (0,0) let O, < O satisfy O, = {x € O: |z| < r and {y €
Re: |y — x| < Yr} < O}, let (Q, F,P) be a probability space, for every t € [0,T], x € O let X'* =
(X0 ey s [8,T] x Q — O be (B([t,T]) ® F)/B(O)-measurable, let V e C([0,T] x O, (0,0))
satisfy for all t € [0,T], s € [t,T], x € O that E[V (s, X:")] < V(t,x), let g, € C(O,R), n € Ny,
and hy, € C([0,T] x O,R), n € Ny, satisfy for all n € N that inf,c(o .0)[SUDse(o,1) SUPze0\0, ( on(@)] |

V(T,x)
%)] = 0, and assume that
, |90 (x) — go()| | [hn(t, ) — ho(t,$)|)
limsup | sup su + = 0. 6
nHOOp [te[og] :ve(l’:)) ( V(T,x) V(t,x) (6)
Then
(i) it holds for every n € Ny that
|gn(2)] |hn(t,93)|]
sup su + < 00, 7
te[O};] a:e(lg lV(Ta ZL‘) V(ta ZL‘) ( )

(11) it holds for every n € Ny that there exists a unique u,: [0,T] x O — R which satisfies for all
te[0,T], x € O that

U (t, ) = Elgn(X;m) + f
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(111) it holds that

lim sup
n—aoo

I (|un<t,x> —uo<t,x>r)] o .

te[0,T] 2€0 Vit x)

and

(iv) it holds for every compact set KK < O that

lim sup [ sup sup |u, (¢, ) — ug(t, x)|] =0. (10)

n—0o0 te[0,T] zekC

Proof of Lemmal[24. First, observe that for every r € (0,0) it holds that O, is a compact set.

This and the fact that for every n € Ny it holds that O 3 z — ‘f’?T(mm)) eRand [0,T]x O 3 (t,x) —
han(t,z)

Vi € R are continuous imply that for all n e Ny, r € (0,00) it holds that

sup <{‘|}‘7(”T(x;|) + ’%gg' L te[0,T],ze Or} U {0}) < . (11)

The hypothesis that for every n € N it holds that inf,c (o .0 [SUDseo 7] SUP,eo Or<€?¥21 + %)] =0
hence ensures that for every n € N it holds that

|9 (2)] !hn(t,x)I]
sup su + < . 12
te[og] a:e(I’)) [V(T, x) V(t,x) (12)

Combining this with (6) demonstrates Item (). Next observe that Item (i) and Lemma 2.1]
establish Ttem (). Next note that the hypothesis that for all ¢t € [0,T], s € [¢t,T], x € O it holds
that E[V (s, X1*)] < V/(¢,z) ensures that for all n € N, t € [0,T], z € O it holds that

E[lg.(X7") — go(X7")[] _ E[ |92(X7") — go(Xz")| V(T X?”C)}

V(t, ) V(T, X5%) V(t, ) 13)
s (1@ =@\ EV(T X)) (1900) — 90(y)]
<l (M) e < (M)
This and (@) establish that
S . E[9n(X7")] = E[go(Xz)] I\ |
1 nﬁoop [te[og] xeg ( V(t7 I) )] =0 (14)

Furthermore, note that the hypothesis that for all t € [0,T], s € [t,T], € O it holds that
E[V (s, X:®)] < V(¢, ) assures that for all n € N, ¢t € [0,T], x € O it holds that
E[§ Ihn(s, X2%) = ho(s, X1%)] ds]
V(t,x)
_ JTE[|hn(57X£7m) - hO(Ssz’x” . V(Ssz’x):| ds
: V(s, X&) V(t,z)
E[V(s, X5

g |hn(ray) _hO(Tv y)|>
< sup su
J; ’TE[O,];Y)“] ye(IQ) < V(Tv y) V(t7 l‘)

. ’ s <|hn<r,y> — ha(r, y>|>] |

rel0,T] yeO V(Tv y)

(15)
ds
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This and (@) imply that

‘E[S? hy (s, X57) ds] — E[StT ho(s, X5%) ds])

—0. (16)

limsup | sup sup
n—0oo te[0,T] z€O V(t7 l‘)

The triangle inequality, (), and (I4]) hence yield that

N P e .

n—w | te[0,T] 20 V(t,r)

This establishes Item (i). Moreover, observe that Item (i) and the fact that V': [0,7] x O —
(0, 00) is continuous imply for every compact set L = O that

limsup | sup sup |u,(t,z) — ug(t, )|
n— 00 te[0,T] zekl

n tu B t7
< limsup | sup sup <|u (t, @) = uo( x)|) sup sup V(t,z)| =0. (18)
n—o | te[0,T] veK V(t, 90) te[0,T] zeK
This establishes Item (iv]). The proof of Lemma is thus completed. O

Lemma 2.3. Let d € N, T € (0,0), let |-| : R — [0,00) be a norm on R%, let O < R? be
a non-empty open set, for every r € (0,) let O, < O satisfy O, = {xr € O: |z|| < r and {y €
R: [y — x| < Y} = O}, and et h € C([0,T]xO, R) satisfy infye(o.r [SUDyey r SuPsecro, [1(t. )]
0. Then there exist compactly supported b, € C([0,T] x O,R), n € N, which satisfy that

lim sup [ sup sup |h,(t,x) — h(t, SL’)|] =0. (19)

n—0o0 te[0,T] zeO

Proof of Lemmal[2.3. Throughout this proof let U, < O, n € N, be the sets given by U, = {r €
O: (3z€0,: |z— x| < 5)}. Note that for every n € N it holds that O,, = O is a compact set, it
holds that U, < R? is an open set which satisfies U,, € O, and it holds that O,, < U,. Urysohn’s
lemma (cf., for example, Rudin [19, Lemma 2.12]) hence ensures for every n € N that there exists
¢, € C(]0,T] x O,R) which satisfies for all t € [0,T], x € O that Ljgr)x0,(t,z) < pa(t,z) <
Lio,rxu, (t,z). Observe, in particular, that this implies that the functions ¢,: [0,7] x O — R,
n € N, have compact supports. In the next step we let b, : [0,7] x O — R, n € N, satisfy for all
neN, te[0,T], x € O that b,(t,z) = ¢,(t,x)h(t,z). Note that this and the fact that for every
n € N it holds that ¢, € C([0,T] x O,R) is compactly supported imply that for every n € N it
holds that h,,: [0,7] x O — R is a compactly supported continuous function. Moreover, observe
that

lim sup [ sup sup |b,(t,z) — h(t>$)|]

n—o te[0,T] zeO
(20)
= limsup | sup sup ([1 — (¢, 2)]|h(t,z)]) | <limsup [ sup sup [|h(¢,z)|| =0.
n—oo te[0,T] zeO n—00 te[0,T] zeO\On,
This establishes (I9). The proof of Lemma 23] is thus completed. O



Corollary 2.4. Let d € N, T € (0,0), let |- : — [0,00) be a norm on RY, let O < R be
a non empty open set, for every r € (0,0) let O < O satisfy O, = {x € O: HxH r and {y €

Sy —zx| < Y} < O}, let h e C([0,T] x O,R), V e C([0,T] x O,(0,:)), and assume that
1nfrE (0,00) [SUDeqo. 7] Spreo\or(lh(éz))l)] = 0. Then there exist compactly supported b, € C([0,T] x

O,R), n € N, which satisfy that

lim su sup su = 0. 21
nHoOp [te[og] xe(I’)) ( V(ta l’) ( )

Proof of Corollary[2.4. Throughout this proof let g: [0,7] x O — R satisfy forallt € [0,T],x € O

that g(t,x) = V(i (1) Observe that the assumption that h € C([0,T] x O,R), the assumption that

VeC(0,T]x0, ( ,00)), and the assumption that inf,c(o .0y [Supejo 7 supl,eo\or('h((t 3' )] = 0 prove
that g € C([0,T] x O,R) and
inf | sup sup |g(t,z)|| =0. (22)
r€(0,0) | te[0,7] zcO\O,

Lemma[2.3] (with A = ¢ in the notation of Lemma[2.3)) therefore ensures that there exist compactly
supported g, € C([0,7] x O,R), n € N, which satisfy that

lim sup [ sup sup |gn(t,x) — g(t,x)|] =0. (23)
n— 00 te[0,T] zeO

Next let h,: [0,7] x O — R, n € N, satisfy for all n € N, t € [0,T], x € O that b,(t,x) =
gn(t, )V (t,x). Hence, we obtain that for all n € N it holds that b, € C([0,7] x O,R) and

t — h(t
limsup | sup sup (|bk( @) = I ,x)|> = limsup | sup sup|gi(t,z) —g(t,z)]| =0. (24)
k—o0 te[0,T] zeO V(ta :E) k—o te[0,T] zeO
This establishes (21]). The proof of Corollary 2.4]is thus completed. U

2.3 Regularity properties for solutions of SFPEs

In this section we establish Corollary 2.7, one of the building blocks of the proof of Theorem 2.9
Corollary 2.7 is a rather direct consequence of Lemma which, in turn, we prove by means of
an argument building upon Lemmas 2.2H2.5]

Lemma 2.5. Let d € N, T € (0,0), let |-| : R? — [0,00) be a norm on R?, let O < RY be a
non-empty open set, let (0, F,P) be a probability space, for every t € [0,T], x € O let X"* =
(X0 sepry s [6,T] x Q@ — O be (B([t, T]) ® F)/B(O)-measurable, let g € C(O,R), h e C([0,T] x
O,R) be bounded, and assume for all € € (0,0), s € [0,T] and all (t,,r,) € [0,T] x O, n € Ny,

with lim Supnﬁooﬂtn - t0| + Hxn o FOH] =0 that lim Supnaoo[ (HXrtgai?s tn} B X:I(l)f;i?{s,to}H = 8)] = 0.
Then

(i) it holds for all t € [0,T], z € O that

El\g(x;x)\ - f |h(s, X07)| ds] <o (25)

and



(i1) it holds that
T
[0, 7] x O > (t,x) — E[g(X;m) + J h(s, X) ds] eR (26)
t
1S continuous.

Proof of Lemma[23. Throughout this prooflet (t,,r,) € [0, T]xO, n € Ny, satisfy limsup,,_, ,[|t,—
to| + |ltn — of] = 0. Note that Lemma 2] establishes Item ({). Next we prove Item (). For this

we intend to show that
T T
E[J h(s, X tmt) ds] - E[J h(s, Xo¥0) ds]
tn to

Next note that the fact that g: O — R and h: [0,7] x O — R are continuous ensures that for all
€ (0,00), s € [0, 7] it holds that

n—o0

lim sup [E[|g(X;”M) — Q(X;)’m)” +

] —0. (27)

i sup [B(g (X5 5) — g (X)) + [hls, Xio0) — s, X ) 2 2] =0 (29)
(cf., for example, Kallenberg [14, Lemma 4.3]). Combining this and the fact that g: O — R and

h:[0,7] x O — R are bounded with Vitali’s convergence theorem ensures that for all s € [0, 7] it
holds that

lim sup ( [lg(X75) — g(X2™)|] + E[\h (s leai’z&tn}) - h(s,XE;i){s’tO})\]) =0. (29)

n—o0
Lebesgue’s dominated convergence theorem and the fact that h: [0,77] x O — R is bounded hence
imply that
T
limsupf E[‘h Xt ) (s, X100 )‘] ds = 0. (30)
to

max{s,tn} max{s,to}
n—oo

This yields that

T T
Elf h(s, Xt ds] - Elf h(s, Xlow0) ds]
n to

lim sup
n—ao0

T T
- 11315;110 E[ J h(s, Xpln, tn})ds] — EH h(s, Xoivs, tO})ds]
{0 T
= limsup |E h(s, X't ds+f (tht“" h(s, X0 )ds]
n—>oop |:J;n ( max{s,tn }) ( max{s,tn }) ( max{s, to}) (31)

to
< lim sup <E[ J h( X:Iyllai?st } ] + Elf }h' Xrt:ai?st } h’< Xrtt(ljaig{s to} ‘d8]>
n—00 tn

< lim sup <|’tn - f0|’ sup sup|h(s y)|] f [‘h (s Xrt:ai?st }) h(s, Xrtt(l)ai?{s to})‘] ds)
to

n—o s€[0,T] vy

= 0.
Combining this with ([29) demonstrates (27)). The proof of Lemma 2.5 is thus completed. O

Lemma 2.6. Let d € N, T € (0,0), let |-|: RY — [0,00) be a norm on R?, let O < R?
be a non-empty open set, for every r € (0,00) let O, < O satisfy O, = {x € O: |z| <
roand {y € RY: |y —z| < Y} < O}, let (Q, F,P) be a probability space, for every t € [0,T],
r e O let XY = (X0")sepr: [t,T] x Q — O be (B([t,T]) ® F)/B(O)-measurable, assume
for all e € (0,0), s € [0,T] and all (t,,x,) € [0,T] x O, n € Ny, with limsup,_, [|t, —
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tol + |zn — o] = 0 that limsup, . [P(|1 X777 Xoidosyl = €)1 = 0, let g € C(O,R),

max{s,tn} max{s to}

heC(0,T] x O,R), Ve C([0,T] x O,(0,0)) and u: [0,T] x O — R satisfy for all t € [0,T],

s € [t,T], x € O that E[V (s, X}")] < V(t x), and assume for all t € [0,T], x € O that

1 h(s
lnfre(O,oo) [Supse[O,T] supyE@\OT(% + ‘V((s?/ )] =0 and

u(t,z) = Elg(Xfpx) + JtT h(s, X) ds] (32)

(cf. Item () of Lemmal2.2). Then
(1) it holds that u e C([0,T] x O,R) and

(i) it holds in the case of SUP,.¢( o0 [infiefo,r) infreoro0, V(¢ )] = o0 that

lim | sup sup (M> = 0. (33)
=% | te[0,T] zeO\O;- V(t,l‘)

Proof of Lemma[2Z4. Throughout this proof let g,: O — R, n € N, and b,: [0,T] x O — R,
n € N, be compactly supported continuous functions which satisfy that

hmsuplsup Sup(mn(x) g(@)|  lbult.x >m)<t:c>|)]:0 (34

n—o | te[0,T] z€O V(T,x) V(

(cf. Corollary 24) and let u,: [0,7] x O — R, n € N, satisfy for all n e N, ¢t € [0,T], z € O that

wltr) = B[ x5+ | (s, X0) | (3)

(cf. Lemma 2.T)). Note that Lemma assures for every n € N that u,: [0,7] x O — R is
continuous. Next observe that the fact that g,: O - R, ne N, and b,,: [0,7] x O - R, ne N,
are compactly supported ensures that for every n € N there exists r € (0,0) which satisfies that
for all t € [0,T], x € O\O, it holds that g,(x) = 0 = b,(¢,x). This implies for every n € N that

. jgn (@) [Ba(t, fﬁ)|)
inf sup sup ( + =0. 36
L Lm b \ VT T Vi) (30)
Item (iv)) of Lemmal[2.2] (B4]), and the fact that u,,: [0,7] x O — R, n € N, are continuous therefore
imply that u: [0,7] x O — R is continuous. This establishes Item (f). In the next step we prove

Item (i). For this we assume that sup,.( o) [infiefo,r) infzco\0, V (¢, 2)] = c0. Note that this entails
for every n € N that

lim su [ (7|un(t,x)|)
p| sup sup Vs

r—00 te[0,T] zeO\Or
[ 1
sup sup ( ) (37)
_tE[O,T] zeO\Oy. V(tv SL’)

[ 1
< limsup <sup |gn(:v)|) + T | sup sup|b,(t, x| sup sup ( ) = 0.
r—00 ze® te[0,T] €O te[0,T'] zeO\Oy- V(tv SL’)

< limsup [ | sup sup |u,(¢, x)]
r—00 _te[07T] zeO




Combining this with Item (iil) of Lemma 2.2 yields that

limsup | sup sup <|u(t, :1:)|)
r—00 te[0,T] zeO\O»- V(tv SL’)

< inf [ limsup | sup sup <|U(t’ 7) ~tnlt, )|+ fun, x)|)]>

neN r—0 _te[O,T] 2€O\Or V(t7 SL’)

= inf [ limsup | sup sup <|u(t,x)—un(t,x)|)]> (38)

neN r—00 _te[O,T] 2€O\Or V(t7 .T)

< o (M)

neN \ te[0,T] 2eO V(t,x)

tx) — w,(t,
<limsup[sup sup<|u( 1) — th x)|)] = 0.

n—a te[0,T] zeO V(tv SL’)

This establishes Item (). The proof of Lemma is thus completed. O

Lemma allows to infer the next result, Corollary 2.7 which constitutes an important
ingredient of the proof of Theorem 2.9

Corollary 2.7. Let d € N, L,T € (0,), let |-||: R? — [0,0) be a norm on R%, let O <
R? be a non-empty open set, for every r € (0,0) let O, < O satisfy O, = {x € O: |z| <
roand {y € RY: |y —z| < Y} < O}, let (Q, F,P) be a probability space, for every t € [0,T],
v e O let X' = (X)sep): [6,T] x Q@ — O be (B([t,T]) ® F)/B(O)-measurable, assume for
all e € (0,00), s € [0,T] and all (t,,z,) € [0,T] x O, n € Ny, with limsup,,_,, [|t» — to| +
|, — xo|] = 0 that lim supnﬁoo[IP’(Hnga’iFs,tn} - ng;f(?&to}H >¢)]=0,let feC([0,T] x OxR,R),
g € C(O,R), u e C(0,T] x O,R), V e C([0,T] x O,(0,0)) satisfy for all t € [0,T], s €
[t,T], x € O that E[V (s, X}")] < V(t,x), and assume for all t € [0,T], x € O, v,w € R that

. s,y,0 u(s,
inf e 000) [SUPefo 71 SUD 0,0, (LELALLED o 8WLY] — 0 and | £ (£, 2,0) — f(t,2,w)] < Llv —w].

Then

(i) it holds for all t € [0,T], x € O that
T
E[|g<x;x>| [ 1 X0l X0 ds} <o, (30)
t

(i1) it holds that

T

[0,T] x O > (t,x) — E[g(Xl}w) + L f(s, X5 u(s, X07)) ds] eR (40)

s continuous, and

(ii) it holds in the case of SUp,¢( o)[infiefo, ) infreoro0, V(¢ )] = 0 that

E[g(xf) + 7 (s, X0 u(s, X2) ds |
lim | sup sup

=0. 41
=% | 4e[0,T] zeO\O- V(t, ) (41)
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Proof of Corollary[27. First, observe that
[0, 7] x O3 (t,2) — f(t,z,u(t,z)) € R (42)
is a continuous function which satisfies for all ¢ € [0,T], z € O that

[f(t, 2, u(t, )] < [f(t2,0)] + Llu(t, z)|. (43)

Lf (t,2,0)|+]u(t,z)|
V(t,z)

t t
ot | sup sup (|f( u ,x>>|)
r€(0,00) [ ¢e[0,7] zeO\O, V(t,x)

|f(t,2,0)] u(t, )|
Vit PV >

The hypothesis that inf,e(,.0)[SUDejo 7] SUPseo 0, ( )| = 0 therefore ensures that

(44)

< inf sup sup <
r€(0,00) | te[0,7] zO\O»

Lemma 2.1 and Item (i) of Lemma hence establish Item (). Moreover, Lemma (with
g=9,h=(0T] xO >3 (t,x) — f(t,v,ult,r)) e R), u = ([0,T] x O > (t,x) — E[g(X;") +
StT f(s, Xb% u(s, X*)) ds] € R) in the notation of Lemma [2.0]) establishes Items (@) and (il). The
proof of Corollary 2.7 is thus completed. O

2.4 Contractivity properties for SFPEs

In this section we establish an elementary Lipschitz estimate (see Lemma 2.8 below) which will
yield the contractivity needed in the proof of Theorem [2.9]

Lemma 2.8. Let d e N, L,T € (0,0), let O < R be a non-empty open set, let (Q, F,P) be a
probability space, for everyt e [0,T], z € O let X'"* = (X1")seery: [t, T] x Q — O be (B([t,T]) ®
F)/B(O)-measurable, let V: [0,T] x O — (0,00) be B([0,T] x O)/B((0, 0))-measurable, assume
for allt € [0,T], s € [t,T], x € O that E[V (s, X'"*)] < V(t,2), let f:[0,T] x O x R — R be
B([0,T] x O x R)/B(R)-measurable, assume for all t € [0,T], z € O, v,w € R that |f(t, z,v) —
ft,z,w)| < Llv —w|, let v,w: [0,T] x O — R be B([0,T] x O)/B(R)-measurable, and assume

ot v(t, )| + |w(t, )]
v(t,z)| + |w(t,z
sup sup ’ ’ < . 45

te[0,T] 2€© [ V(t,x) } (45)

Then it holds for all X € (0,0), t € [0,T], x € O that

U £ (s X370 X”>)—f(saXﬁ’”%w(s,X;w))}ds]

. (46)

As
< _e—AtV t,x SUD Su (6 |U(S7 y) _ U)(S, y)|) )
A ( ) [SE[O,IQ)"] yE(I;) V(87 y)

Proof of LemmalZ2.8. First, note that the fact that f: [0, T]xOxR — Ris B([0, T]xOxR)/B(R)-
measurable, the fact that v,w: [0,T] x O — R are B([0,T] x O)/B(R)-measurable, and the fact
that for all ¢ € [0, 7], z € O it holds that X"*: [t,T] x Q — O is (B([t,T]) ® F)/B(O)-measurable
ensure that for all ¢ € [0,7], x € O it holds that

[t,T] x Q3 (s,w) = | f(s, X0 (w),v(s, X0 (w))) — f(s, Xo¥(w), w(s, X0 (w)))| e R (47)

s (B([t,T]) ® F)/B(R)-measurable. Next observe that the hypothesis that for all ¢t € [0,T],
€ [t,T], x € O it holds that E[V (s, X5*)] < V(t, ), the hypothesis that for all ¢ € [0,T], z € O,
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a,b € R it holds that |f(t,z,a) — f(t,z,b)| < L|a — b|, and Fubini’s theorem ensure that for all
A€ (0,00),t€[0,T], z € O it holds that

B [ 1o X000 X09) = 16 X0 w5 609) 5

N

EUt Llv(s, XI") — w(s, X7)| ds]

T As t,x t,x

Xb7) — (s, Xb

_ LJ El@ |U(57 s ) t'l;](sa s )|V(S,X§’x):| ef)\s dS
t VV(S,AXVS7 )

LLT [ I <€M|U(T%/y()f,»;;(r’ y)l)] E[V (s, X'%)] e ds

N

re[0,T] ye©

Ar o T
< L sup sup <€ |U(T7 y) 'LU(T, y)|) V(t, .T) J €7>\S dS
re[0,T] yeO V<T7 y) t

L [ ap up (1) 0t

A re0,T] yeO Viry

e MV (t,x).

This establishes ([@6]). The proof of Lemma 2.8 is thus completed. O

2.5 Existence and uniqueness properties for solutions of SFPEs

Combining Banach’s fixed point theorem with Corollary 2.7 and Lemma 2.§] allows to conclude
the main result of this section, Theorem [2.9] below.

Theorem 2.9. Let d € N, L,T € (0,0), let |-|: RY — [0,00) be a norm on R, let O <
R? be a non-empty open set, for every r € ( ,0) let O, < O satisfy O, = {x € (9 |z <
rand {y € R |y—z| < Yo} < O}, let (2, F,P) be a probability space, for every t € [0,T],

v e O let X' = (XI)sepy: [6,T] x Q@ — O be (B([t,T]) ® F)/B(O)-measurable, assume for
all e € (0,00), s € [0,T] and all (t,,z,) € [0,T] x O, n € Ny, with limsup,,_,,[|t» — to| +
|z, — x0|] = 0 that limsup,,_, [P (HXZL;ELS i) ngaf({s wll =€) =0, let feC(0,T]x0O x
R,R), g € C(O,R), V e C([0,T] x O,(0,0)) satisfy for all t € [0,T], s € [t,T], = € O,
v,w € R that E[V (s, X5*)] < V(t x) and |f(t,x,v) — f(t,z,w)| < Llv — w|, and assume that
inf, e (0,00) [SUDsepo, 11 super\OT(U‘St(’;fmo))‘ + ‘gz( )‘))] = 0 and sup,¢ (g o [infiejo.r) infreoro, V (£, 7)] = 0.
Then there ezists a unique u € C([0,T] x O,R) such that

(i) it holds that

. |u(t, x)|)
lim su su su — =0 49
r—>OOp [te[O,IT)’] :ve(’)\pOr ( V(t7 l‘) ( )
and

(i) it holds for all t € [0,T], x € O that
T
u(t,z) = E[g(X;x) + J f(s, X0 u(s, Xo7)) ds} (50)
t
Proof of Theorem[2.9. Throughout this proof let )V be the set given by

V=<{ueC([0,T] x O,R): limsup | sup sup <|u(t,x)|) =0y, (51)
r—00 te[0,T] zeO\O» V(t7 l‘)
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let Wy and W, be the sets given by

W, = {u e C([0,T] x O,R): sup sup |u(t,z)| < oo} (52)
te[0,T] €O
and
Wy = {u e C([0,T] x O,R): limsup [ sup sup |u(t,:p)|] = O}, (53)
r—00 te[0,T] zeO\O-
let ||, :V —[0,0), X € R, satisfy for every A € R, v € V that
et 37)|)
v|x= sup sup | ———+ 54
s = st o (S5 (54)

(see Item (i) of Lemma 2.2)), and let |-[|,,, : W; — [0,0), i € {1,2}, satisfy for every i € {1, 2},
w € W, that

[l = sup sup fu(t, )] (53)

te[0,T] zeO

Recall that (W4, |-],y,) is an R-Banach space. Combining this with the fact that W is a closed
subset of Wi, ||y, ) (see Lemma 22) implies that (W, ||-|,,,) is an R-Banach space. Moreover,
observe that (V,|-]|,), A € R, are normed R-vector spaces. In the next step we show that (V, |-|,)
is complete. For this let v, € V, n € N, satisfy limsup,,_,.[Sup,,>,, |vn — Um],] = 0. This implies
that 32: [0,7] x O — R, n € N, is a Cauchy sequence in (W, |-|,,). Thus, there exists ¢ € W,

which satisfies that limsup,,_, o, [Sup,cpo 7] SUP.co |1$((f”;)) — ¢(t,x)]] = 0. Hence, we obtain that
oV = ([0,T] x O > (t,z) — ¢(t,x)V(t,z) € R) € V and limsup,,_,, |v, — ¢V, = 0. This
demonstrates that (V,|[-|,) is an R-Banach space. Combining this with the fact that for every
veR, \e [r,0), ve Vit holds that |v], < |jv], < e* 7T |v]|, shows that for every A € R it
holds that (V, |-|,) is an R-Banach space. Next note that Corollary 2.7 yields that there exists a

unique ®: V — V which satisfies for all t € [0,T], x € O, v € V that

[®(v)](t,x) = Elg(X;m) + fo(s,Xﬁ’m, v(s, XE%)) ds . (56)
t
Moreover, observe that Lemma 2.8 ensures for all A € (0,0), v,w € V that
|®(v) = ®(w)x < %\v — w|x. (57)
Hence, we obtain for all A\ € [2L, ), v,w € V that
|2(0) ~ ()l < 5o~ wlh, (59)

Banach’s fixed point theorem therefore demonstrates that there exists a unique u € V which
satisfies ®(u) = u. The proof of Theorem is thus completed. O

3 SFPEs associated with stochastic differential equations (SDEs)

In this section we apply the abstract existence and uniqueness result which we obtained in the
previous section (see Theorem 2.9 in Section 2] above) to certain SDEs (see Section 3.4 below). In
Sections we present, for the reader’s convenience and for the sake of completeness, some
elementary and essentially well-known results on SDEs. These results are employed to show that
the hypotheses of Theorem are indeed satisfied in the setting of Theorem [B.§] (cf. Lemmas 3]

and [3.7)).
13



3.1 A priori estimates for solutions of SDEs

The following well-known result, Lemma 1] below (cf., for example, Gyongy & Krylov []]), can
be seen as an extension of moment bounds for solutions of SDEs in the presence of a Lyapunov
function or, in other words, a non-negative supersolution of the corresponding Kolmogorov PDE.

Lemma 3.1. Let d,;m € N, T € (0,0), let O < R? be an open set, let {-,->: R? x R —» R
be the standard scalar product on RY, let € C([0,T] x O,R?), 0 € C([0,T] x O,R>™) V €
CL2([0,T] x O,[0,2)) satisfy for allt € [0,T], x € O that

(%—‘;)(t, x) + %Trace(a(t, x)[o(t, z)]* (Hess, V)(t, x)) + {u(t, x), (VV)(t,x)) <0, (59)

let (Q, F, P, (Ft)seqo,r) be a filtered probability space which satisfies the usual conditions, let W : [0, T']x
Q — R™ be a standard (Fy)sejo,r-Brownian motion, let 7: Q@ — [0,T] be an (Fy)weo,r)-stopping
time, and let X : [0,T]xQ — O be an (Fy)se[0,11-adapted stochastic process with continuous sample
paths which satisfies that for all t € [0,T] it holds P-a.s. that

t t

(s, Xs)ds + J o(s, Xs) dWs. (60)

Xt:XO+J
0

0
Then it holds that

Proof of Lemma[31. Throughout this proof let |-|| : R¢ — [0,00) be the standard norm on R?
let [[-]| : R¥*™ — [0,0) be the Frobenius norm on R¥*™ for every r € (0,) let O, € O satisfy
O, ={z€0O: |z|] <rand {ye R |y—z| <Vr} = O}, let Y: [0,T] x @ - R be an (Fy)efo.17-
adapted stochastic process with continuous sample paths which satisfies that for all ¢ € [0,T7] it
holds P-a.s. that

t
Y, = f (VLV)(s, Xs),0(s, X)) dWs), (62)
0
and let p,: Q — [0,T], n € N, be the (It )sefo,ry-stopping times which satisfy for all n € N that
pn =inf({t € [0,T]: X; ¢ O} u{T}). (63)

Observe that the fact that X has continuous sample paths and the fact that [0,7] is compact
ensure that for all w € Q it holds that {X;(w): ¢t € [0,T]} is compact. Combining this with the fact
that R? 3 z — |z| € [0,00) and R? 5 2 — inf({1} U {||z — y| : y € R\O}) € [0, 1] are continuous
implies that for every w € Q there exist e, € (0,00) such that for all ¢ € [0,T] it holds that
{y e R%: |y — Xi(w)| < e} = O and sup,o 7 | X¢(w)| < . Combining this with the fact that for
all e,7 € (0, 00) there exists n € N such that for all k € N with k£ > n it holds that r < k and Yk < e
implies that for every w € Q there exists n € N such that for all £ € N with k£ > n it holds that
pr(w) = T. Next note that the assumption that V,V: [0,T] x O — R?and ¢: [0,T] x O — R¥>™
are continuous implies that for all n € N it holds that

sup ({I(ZV) (6 2)] + llo(t, @) < & [0, 7], € O,} U {0}) < e, (64)

This yields for all n € N that

T
IELLKV?VXsHXJP|wnsxeﬂu&$<mmﬂﬁﬁuzd{

<TEw(ﬂWAWt@HWdL@%tﬂ&ﬂwEQﬁumDT<w'
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Combining (62) and (63) hence assures for all n € N that

T
E[Ymin{ﬂpn}] = ElL <(V:BV)(37 Xs)7 0(87 Xs>]]-{0<s<min{’r,pn}} dWs> = 0. (66)

Next note that It6’s formula ensures that for all ¢ € [0, T] it holds P-a.s. that
V(t, Xt)

t

V0, X0) + f ()(s, X,) ds + L«vxvxs, X.), (s, X,) dW.)

t
0

+ L [{(V2V) (s, Xs), u(s, X)) + 3 Trace(o(s, X,)[o(s, X,)]" (Hess, V)(s, X)) ] ds (67)

= V(0,X,) + Jt(%—‘;)(s, X,)ds+Y,

0

+ L [<,u(s, Xs), (ViV)(s, Xs)) + % Trace(cr(s, X,)[o(s, X,)]* (Hess, V) (s, XS))] ds.

This and the fact that X has continuous sample paths imply that for all n € N it holds P-a.s. that
V(min{Ta Pn}, Xmin{T,pn})

min{r,pn}

min{7,pn}
= V<07 XO) + Ymin{’ﬂpn} + J;) (6_‘:)(37 XS) ds + L <:u<57 XS)? (vmV)<S, XS)> ds (68)

min{r,pn }
+ f 1 Trace (o (s, X,)[o(s, X,)]" (Hess, V)(s, X)) ds.
0

This and (B9)) guarantee that for all n € N it holds P-a.s. that

V(min{7, pn}, Xmingr,pnt) < V(0, X0) + Yiningrp,}- (69)

Combining this and (66) yields for all n € N that
E[V (min{r. pu}, Xusuirp))] < E[V(0, X0)] (70)

Fatou’s lemma hence ensures that

E[V(r, X,)] = E[hgiogf V(min{r, pu}. Xmin{w})]

< ligliorole[V(min{T, Puts Xmingrpny) | < E[V(0, X0)] .
The proof of Lemma B.1] is thus completed. O

The next elementary result, Lemma[3.2] below, provides a way to construct from a supersolution
of a suitable elliptic PDE a supersolution of a Kolmogorov PDE (cf. Lemma [B.1] above). Later we
will employ Lemma to infer Corollary from Theorem [3.8

Lemma 3.2. Letd,me N, T € (0,0), pe R, let{-,-): R¥xR? — R be the standard scalar product
on R?, let O < R? be a non-empty open set, let pe C([0,T] x O,RY), o € C([0,T] x O, R>*™),
V e C?*(0,(0,)) satisfy for all t € [0,T], x € O that

1 Trace(o(t,z)[o(t, z)]*(Hess V) (x)) + {u(t, z), (VV)(z)) < pV (2), (72)
and let V: [0, T] x O — (0,00) satisfy for allt € [0,T], z € O that
V(t,z) = e "V (x). (73)

Then
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(i) it holds that V e C*([0,T] x O, (0,0)) and
(1) it holds for all t € [0,T], x € O that

(%—Y)(t, z) + 3 Trace(o(t, )[o(t, )" (Hess, V) (¢, 2)) + (u(t, z), (V. V)(t,2)) < 0. (74)

Proof of Lemmal3.2. First, note that the chain rule and the fact that V' € C?*(O, (0,0)) ensure
for all t € [0,T], z € O that
() Ve C([0,T] x O,R),

)
(1) (59)(t x) = —pe ™V (x) = —pV(t, ),
(II1) (V,V)(t,z) = e "(VV)(z), and
(IV)

Note that Item () establishes Item (f). Moreover, combining (72)) with Items ([I)—(IV]) yields for
all t € [0, T], z € O that

(%—Y)(t, x) + %Trace(a(t, x)[o(t, x)]* (Hess, V)(t, x)) +{u(t, x), (VL V) (¢, x))

(Hess, V)(t,x) = e ?"(Hess V) (z).

75
=e " (—pV(z) + L Trace(o(t, 2)[o(t, z)]* (Hess V))(z)) + {u(t, z), (VV)(z))) < 0. (75)
This establishes Item (). The proof of Lemma is thus completed. O

The next elementary result, Lemma[3.3/below, establishes in conjunction with Lemma[3.2]above
that under certain coercivity and linear growth conditions (see (7€) in Lemma [3.3]) Lyapunov-type
functions with polynomial growth are available (cf. also Grohs et al. [7, Lemma 2.21]). Lemma 3.3
will later on allow to infer Corollary [3.10] from Corollary

Lemma 3.3. Letd,meN, ¢, T,p,p € (0,0) satzsfyp— Cmax{p + 1,3}, let (-, ): RT x RY > R
be the standard scalar product on RY, let || : — [O w) be the standard norm on RY, let

[ : RE>™ — [0, 00) be the Frobenius norm on Rdxm, let O < RY be a non-empty open set, and
let u: [0, T]x O - R, o: [0, T] x O — R>™ V: O — (0,0) satisfy for allt € [0,T], x € O that

max{(z, u(t, ), [lo(t,2)[°} < c(L+ [2*)  and  V(x) = (1+[2]*)". (76)
Then
(i) it holds that V e C* (0O, (0,0)) and
(ii) it holds for all t € [0,T], z € O that

1 Trace(o(t,z)[o(t, z)]*(Hess V) (x)) + {u(t, z), (VV)(z)) < pV (z). (77)

Proof ofLemma- Throughout this proof let o;,: [0,7] x O — R, i € {1,2,...,d}, j €
{1,2,...,m}, satisfy for all t € [0,T], x € O that

o11(t,x) o12(t,x) ... orm(t,x)
oo1(t,x) o99(t,x) ... Oom(l,x

)< | ) ) o) | -
O'd71(t, SL’) O'd72(t, SL’) Ce O'd,m(t, SL’)
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Note that the chain rule, the fact that R? 3 z — 1+ || € (0, o0) is infinitely often differentiable,
and the fact that (0,00) 3 s — 52 € (0,00) is infinitely often differentiable establish Item (f). It
thus remains to prove Item (). For this, we observe for all z € O, i,j € {1,2,...,d} that

-1

MI'U

(VV)() = (14 25 20) = pV () 2 (79)

and

(2 @) = & V@) 2| = p (@) i + Vi) - |

(i)

v \ Tl

— 2 Tily i (L) ) 22

= PV @) e + PV @ (80)

_ T 9ij
=p(p-2)V(z )(1+qu2)2 +pV(z )1+H:vH2
. o T;Tj 52’]’
= pV(z) [(P 2>(1+HxH2)2 + 1+Hw|\2]'
This yields for all ¢ € [0, T], x € O that

4 oot )t )] (Bess V(o) + Gt ). (9 )

— % Z Zl k(t,x)o;k(t :L‘)(afa‘; ] + <,u(t,x),pV(x)m>

117
m

d
_ TiTj dij 2 p(t,x),x) (81)
= g 2 2 £t 2)ojx(t, ) <(p 2) el 1+|i|2>> + e | V@)
m d 2
| w2 | | o)) 2ultan).a)
T2 | ) Z_: [; oinll; "3)%] o e | V@)

Next note that for all ¢t € [0, T], z € O it holds that

i[Za (.2)0 ] i(im(m )(Zvcﬁ)—ua(t AL

k=1 \2=1

<e(L+ ) |2 < e[1+ [2]7]
Combining this with (8T]) shows that for all ¢ € [0,T], z € O it holds that

L Trace(o(t,z)[o(t, 2)]*(Hess V) (x)) + {u(t, x), (VV)(z))

83
< §[max{p — 2,0}c + 3c] V(z) = & max{p + 1,3}V (z) = pV(z). (83)
This establishes Item (). The proof of Lemma is thus completed. O

3.2 Locality properties for solutions of SDEs

In this section we present two elementary results concerning the local behaviour of solutions
to SDEs. These results, Lemmas [3.4] and below, are used in the proof of Lemma B.7] (see
Section B4 below). Lemma [B4] asserts, loosely speaking, that a particle whose movements are
governed by a SDE with sufficiently regular coefficients is almost surely at rest when it finds itself
in a region away from the supports of the coefficients.
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Lemma 3.4. Let d,m € N, T € (0,0), let ||-| : R? — [0,00) be the standard norm on R?, let
[l : RE>™ — [0, 00) be the Frobenius norm on R¥™>™ let u e C([0,T] x R R%), o € C([0,T] x
R, R¥>™) satisfy for all v € (0,00) that

wp  sup |62 = pty)l + llot2) —o(ty)

I < o, (84)
te[0,T] x,yeRY, HZL‘ - yH

T#Y,
[z ly|<r

let O = R be an open set which satisfies supp(p) usupp(o) < [0, T] x O, let (Q, F, P, (Ft)wepo,r)) be
a filtered probability space which satisfies the usual conditions, let W: [0, T|x — R™ be a standard
(Ft)sefo,r-Brownian motion, and let X : [0,T] xQ — R? be an (It )sefo,r-adapted stochastic process
with continuous sample paths which satisfies that for all t € [0,T] it holds P-a.s. that

t t

(s, Xs)ds + J o(s, Xs) dWs. (85)

Xt:X(]‘i‘J
0

0
Then

(i) it holds that [(]P’(XO ¢0)=1)= (P(¥te[0,T]: X, = Xo) = 1)] and

(ii) it holds that [(IP’(XO e0)=1) = (P(Vte[0,T]: X, e 0) = 1)].

Proof of Lemma[34. We first prove Item (). For this we assume that P(X, ¢ O) = 1. Observe
that this implies P(Vt € [0,T]: |u(t, Xo)|| + [|o(t, Xo)|| = 0) = 1. Therefore, we obtain that

Y = ([0,T] x Q 3 (t,w) — Xo(w) € RY) (86)

is an (F)sepo,r-adapted stochastic process with continuous sample paths which satisfies that for
all t € [0,T] it holds P-a.s. that

t t

w(s, Xo)ds + J o(s, Xo) dWy

t t
}QZXQ:XQ‘f—J‘OdS'FJVOdWS:Xo"‘JV
" (87)

0 0 0
t

t
X+ f (s, Yy) ds + f o(s,Y.) dIV..
0 0

Karatzas & Shreve |15, Theorem 5.2.5] and (84)—(86]) hence assure that
P(Vte[0,T]: X, =Xo)=P(te[0,T]: X,=Y) =1 (88)

This establishes Item (fl). Next we prove Item (). For this we assume that P(X, € O) = 1 and let
7: Q — [0,T] satisfy 7 = inf({t € [0,T]: X; ¢ O} u {T'}). Note that 7 is an (F;)c[o,r)-stopping
time. Let Y': [0, 7] x Q — R? satisfy for all t € [0,7], w € Q that Y;(w) = Xuin{t,r(w)} (w). Observe
that Y': [0, 7] x Q@ — R% is an (F)ejo,r)-adapted stochastic process with continuous sample paths.
Moreover, note that for all ¢ € [0, T] it holds P-a.s. that

min{t,} min{t,7}
Y;ﬁ = Xmin{t,T} = XO + J M(Su XS) ds + J U(S7Xs) dWs
0 0
. . (89)
= Xy + J ]l{0<3<7.},u(8, XS) ds + J ]l{0<3<7.}0'(8, XS) dW.
0 0

Combining this with the fact that for all ¢ € [0,7] it holds that L1y Xy = Ly<nY; and
Liren[[pe(t, Y2)| + [[o(t, Y2)[[]] = O we obtain that for all ¢ € [0,T] it holds P-a.s. that

t t

(s, Yy)ds + J o(s,Ys)dWs. (90)

YthOJrJ
0

0
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Karatzas & Shreve [15, Theorem 5.2.5], (84]), and (85) hence demonstrate that
P(Vtel0,T]: X;=Y:) =1. (91)
This establishes Item (). The proof of Lemma [3.4l is thus completed. O

The next result, Lemma below, basically asserts that the solutions of SDEs coincide as
long as the trajectories stay in a domain in which the drift and diffusion coefficients are the same.

Lemma 3.5. Let d,m € N, T € (0,0), let ||-| : R? — [0,00) be the standard norm on R?, let
-] : R¥™ — [0,00) be the Frobenius norm on R¥*™ let O < R be an open set, for every

€ (0,00) let O, < O satisfy O, = {x € O: |z| < r and {y € R:: |y —z| < Y} < O}, let
C < [0,T] x RY be a closed set which satisfies C < [0,T] x O, let uy, s € C([0,T] x O,RY),
01,00 € C([0,T] x O,R¥>™) satisfy for all r € (0,0) that uilec = psle, o1lc = oalc, and

[z—yll

Sup<{um<m> ot ¢ ¢ [0, 7], 2,y € Oy, z # y} 0 {T}> (92)

let (Q, F, P, (Fy)iefor) be a filtered probability space which satisfies the usual conditions, let W : [0,T] x

Q — R™ be a standard (F;)iwe[o,r)-Brownian motion, let X0 = (Xt(i))te[QT]- [0,T] x Q@ - O,
i € {1,2}, be (F¢)po,m-adapted stochastic processes with continuous sample paths which satisfy
that for every i € {1,2}, t € [0, T] it holds P-a.s. that

X7 = x{ + f 1i(s, XY ds +f oi(s, X0) dW, (93)
0 0
assume that Xél) = XO(Z), and let 7: Q — [0,T] satisfy m = inf({t € [0, T]: (t, X)) ¢ C or (t, X?) ¢
C} u{T}). Then it holds that

P(¥te[0,T]: Lper XV - X7 = 0) = 1. (94)

Proof of Lemma[33. Throughout this proof let p,: Q@ — [0,7], n € N, satisfy for all n € N that
pn = inf({t € [0,T7]: xM e 00, or X e 0\0,} v {T'}) and let L, € [0,%0), n € N, be real
numbers which satisfy for all ¢t € [0,T], x,y € O,, that

lpa(t, ) = (8, 9) | + ot ) = ou (8 )| < Lz =yl (95)

Observe that for all n € N it holds that 7 and p,, are (F;)[o,r1-stopping times. Moreover, note
that for every K < O compact there exists n € N such that K < O,. This and the fact that X®
and X have continuous sample paths ensure that for all w € € there exists n € N such that for
all k € N with k& > n it holds that p,(w) = T. Next note that the assumption that X and X
have continuous sample paths and the fact that O,, n € N, are compact imply that for all n € N,
w € {p, > 0}, i € {1,2} it holds that X;i)(w (w) € O,. Combining this with the assumption that

)
Xél) = X(SQ) assures that for all n € N, ¢ € [0, T] it holds that

min{t,7,on} min{t,7,on} H =

HX(U (2) (96)

2D <o, (97)

This ensures for every n € N that

(2)
sup HXmm T. Xmin T.
1e[0.7] < [ {t,7.pn} {t.7.pn}
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Next note that the fact that for all s € (0,7] it holds that ]l{SST}[H,ul(s,XS(Q)) - ug(s,X§2))|\ +

\Hcrl(s,Xs(z)) - O'Q(S,Xéz))HH = 0, the assumption that Xél) = Xéz), and (@3) ensure that for all
neN, te[0,T] it holds P-a.s. that

PR e I YO (s XV 4
min{t,7,pn} min{t,7,pn} I:Ml(s’ s ) Mz(‘S? s )] S
0

min{t,7,pn}
+ J [01(s, XV) — 0a(s, X)) ] dWV
0

t
= f IL{0<s$min{7—,pn}} I:Ml(sa Xgl)) - :u2(57 XS(Q))] ds
0 (98)

t
+ f ]]-{0<8<min{7',pn}} [01<S7 Xs(l)) - 02(87 Xs(2)>] dWs
0

t
= J ]]-{0<s$min{7—,pn}} I:,ul(su X§1)) - Ml(sv Xs(2)>] ds
0

t
+ f IL{0<s$min{7—,pn}} [01(57 Xs(l)) — 01 (Sa X§2))] dWs
0

This implies that for all n € N, ¢ € [0, T] it holds P-a.s. that

1 _v®
min{t,7,on } min{¢,7,pn}
t
1 @)
= L ]1{0<s$min{7—,pn}} |:,u1 (87 Xmin{s,T,pn}) M (8 Xmln{s Tpn})] ds (99)

t
+ L ]]-{O<s$min{7-,pn}} |:01 (S’ Xr(nli)n{s,ﬂ-,pn}) — 01 (S Xr(an)n{s T,pn })] dWS

Minkowski’s inequality, 1t6’s isometry, and (95)—(97) hence yield for all n € N, ¢ € [0, T] that

2]1/2

t Y
< J E|:]l{0<8$min{7',ﬂn}} H,ul S Xr(nl)n{s T,pn }) M1<S Xr(m)n{STpn H ] ds
0

(1 (&)
|:‘Xm1n{t T,pn} Xmln{t T,pn}

2]1/2
2)
<J |:H:u1 S Xr(nm{STp }) Ml( Xr(nm{s T,Pn} ” ] <1OO)

t h
1
[ ot X8 = 6582 ] ]

0

¢ 27"/
<L, | E||x© - xP ds
X L o min{s,7,pn} min{s,7,pn}

1/2
@)
+ Ln [J‘ l“Xmln{S T,Pn } Xmln{s T,Pn }H ] dS] .

The fact that for all a,b € [0, 00) it holds that (a + b)? < 2a® + 2b* and Holder’s inequality hence
demonstrate for all n € N, ¢ € [0, T] that

2
] < 2L )A(T + 1) f lHXmm{sw} = X tor| ] ds.  (101)
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+ E[HJ L{o<s<minr.pn}} [01(8,X$i)n{smpn}) —o1(s, Xr(m)n{ﬁp })] dW,

x@
mln{t T.on} mln{t,T,pn}




Combining this with Gronwall’s inequality and (O7) implies for all n € N, ¢ € [0, T'] that

(1 (2)
l“Xmln{t T,on} Xmln{t T,on} H :| (102)

The fact that XM and X® have continuous sample paths hence ensures for all n € N that

]P’(Vt € [0,T]: Typcmingrpny | X — X2 = 0) ~ 1. (103)
Therefore we obtain that
P(Vn eNVEe[0,T]: Lpcmingrpp | X — X2 = 0) ~1. (104)
This implies that
P(¥ee[0,T]: Lper | XV = X7 = 0) = 1. (105)
This establishes (@4]). The proof of Lemma is thus completed. O

3.3 Continuity properties for solutions of SDEs

The well-known Lemma 3.6 below (cf. also Stroock [21, Theorem 1.2.2]) estimates the difference be-
tween two solutions to the same SDE that start at different times and different places. Lemma
is a crucial ingredient in the proof of Lemma [3.7, where it is used to show that the solution to an
auxiliary SDE evaluated at a certain time is stochastically continuous as a function of the initial
values.

Lemma 3.6. Let d,me N, L, T € (0,0), let || : R — [0,00) be the standard norm on RY, let
-] : RE*™ — [0, 00) be the Frobenius norm on R™>*™ et O < RY be a non-empty open set, let
pe C([0,T] x O,RY), o e C([0,T] x O,R¥™) be compactly supported functions which satisfy for
allt € [0,T], z,y € O that

[t ) = pt )| + llo(t ) — ot y)ll < Lz -yl (106)

let (Q, F, P, (Fy)iefor) be a filtered probability space which satisfies the usual conditions, let W : [0,T] x
Q — R™ be a standard (Fy)iefo,r)-Brownian motion, and for every t € [0,T], x € O let X" =
(X0 ey s [, T] x Q — O be an (Fy)sep r-adapted stochastic process with continuous sample
paths which satisfies that for all s € [t,T] it holds P-a.s. that

X0 =g+ J p(r, X5%) dr + J o(r, XH") dW,. (107)
t t
Then it holds for allt € [0,T], te [t,T], s€ [t,T], z,x € O that
E[xie - x|

(108)

TE

2
1 2
<9[e —xl + 1t —4%] ’1 +VT sup. [u(r. o)) + up. ler(r, Zf)’] exp(6L°T(T + 1)) .
I re[0,T

Proof of Lemma[38. Throughout this proof let m: [0,7] x R? — R? and s: [0,T] x R? — R¥*™
satisfy for all t € [0,T], z € R that

_Jutr) 20 N o) = o(t,z) x2z€QO
m(t,) = {O cx e RNO and - s(t, @) = {O 2 e RNO. (109)
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Observe that (I06) ensures that m: [0,7] x R — R? and s: [0, T] x R? — R¥™ are compactly
supported continuous functions which satisfy for all ¢ € [0, T], x,y € R? that

[m(t, z) —wm(t,y)| + lls(t, 2) —s(t, 9) || < L]z =yl (110)

Karatzas & Shreve [15, Theorem 5.2.9] hence guarantees for every t € [0,T], z € O that there
exists an (IFy)sep r1-adapted stochastic process X% = (X4%)sepry: [t T] % Q — R? with continuous
sample paths

(A) which satisfies that sup, 11 E[|X5*]?] < oo and

(B) which satisfies that for all s € [¢,T] it holds P-a.s. that

%?m =T+ J‘ m(n %f:x) dr + J‘ 5(T7 %1;,:13> dWT <111)
t

t

This, Karatzas & Shreve [15, Theorem 5.2.5], and (I07) ensure that for all ¢t € [0,T], z € O it
holds that
P(vse[t,T]: X)* =Xx5") = 1. (112)

Combining this with the fact that for all ¢ € [0,T], # € O it holds that sup 1 E[|X5"|*] <
implies that for all t € [0,T], x € O it holds that

sup B[ | X27[*] < oo (113)
s€t, T

Next note that (I07) ensures that for all ¢t € [0,T], t€ [t,T], s € [t,T], x,x € O it holds P-a.s. that

S

X§7x - X;“r = thm —r+t J‘ (M(Ta X;E,x) - ,lL(T’, X:*,;)) dr + f (0'(’[", Xﬁm) - O(Ta X:“r)) dWT (114)
t t

Minkowski’s inequality hence yields that for all ¢t € [0,T], t € [¢,T], s € [t,T], z,r € O it holds
that

1/2 1/2 s 1/2
B[ |xte - x| <[] |xem o)) + f B[ u(r, X07) = o, X)) e
¢
2
[t6’s isometry and (I06]) therefore ensure that for all ¢t € [0,T], t € [t,T], s € [t,T], z,r € O it
holds that

2 (115)
_|_

f (cr(r, X8 —o(r, X:’F)) dW,
¢

B[ Xt - xt| ” < [E||xt" -4 ]) +L IE[HXﬁ”” —X;v?\f”l/Q dr

o (116)

&[0t X2~ o )] ar

This and ([I06]) imply for all t € [0,T], te [¢,T], s € [t,T], z,r € O that

[ - x|

12 s ) 12 (117)

< |B[|xt" 4 ] +LJ B[ |t - x| dr+LU E|| X0 - xt*] ar
t
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The fact that for all a, b, ¢ € [0, 0) it holds that (a+b+c)* < 3(a®+b?+¢?) and Hélder’s inequality
therefore ensure that for all ¢t € [0,T], te [t,T], s€ [t,T], x,x € O it holds that

E[|xte - X |]
< 3E||X¢* — | + 37T ft B[ Xt - i | dr + 327 fE[\Xﬁ’l‘ - xXe e s
— 3| | X¢7 — | + 303 + 1) fE[HX,W - x4 a.
Gronwall’s inequality and (IT3) hence imply for all ¢ € [0,T], te [, T], s € [t,T], z,r € O that
B[ X0 - x| < 3B[[x07 — o] exp(3L2T(T + 1)) (119)

In the next step we observe that (I07)) guarantees that for all t € [0,T], t € [¢,T], z,r € O it holds
P-a.s. that

¢ t
X —r=z—p+ J plr, Xp7) drr + J o(r, Xp") dW,. (120)
t t

Minkowski’s inequality hence demonstrates that for all ¢ € [0,T], te [t,T], z,xr € O it holds that

y ¢ y t 27 |2
e = o)) < o -l + | [l xem)P]| ar + E[ [ otroxeyaw, ] (121)
t t
[to’s isometry therefore implies that for all t € [0,T], te [¢t,T], z,xr € O it holds that
¢ o11Y2 t ) 12 ¢ ) /2
E[|xe — ]| <o —al + f B[ Jutr, x| + ‘ f B[ ot X0)|*] ar| . (122)
t t

This, Minkowski’s inequality, and (I06]) yield that for all t € [0,T], t € [¢, T], z,x € O it holds that

Y

tx 2 2 t t tx 2 1/2
i —of’]| " < o sl + [ Dol ar [ fe[lx )| ar
t t

Y2 t 1/2
n L‘ [ e[l =]
t

The fact that for all a,b, c € [0, 00) it holds that (a + b+ ¢)? < 3(a® 4+ b? + ¢*) hence implies for all
tel0,T],te[t,T], z,r € O that

B[ X0 —

(123)
+

t
f o)1 dr
t

(124)

t t 1272 t
<3[|93—ch+ f u(r.0)] dr + f lloCr, )| dr ] +3L3(T + 1) f E|| Xt |
t t t

This demonstrates for all t € [0,T], t€ [¢,T], z,xr € O that

2
T 2 1/3
E[HX? — 1| ] <3[|$—x|+|f—tl sup [|p(r,x)| + [t —¢"* sup Id(m)|]

re[0,T] re[0,T]

+3LA(T + 1) fE[HXﬁ’”C | ar. (125)
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Hence, we obtain for all t € [0,T], te [¢,T], x,r € O that

2
z 2 12
E[HX? — 1| ] <3[lw — x| + [t — 4" ’1 +/T sup |u(r,r)| + sup IIO(T,x)Il

re[0,T] re[0,T]
+3LA(T + 1) J E| Xt | ar. (126)
Gronwall’s inequality and (II3]) hence ensure that for all ¢t € [0, T], t € [t,T], z,r € O it holds that
B[ - o]

3[le—g| + [t — 4] ’1 +T . [p(r, o) + s llo(r, x)l] exp(3L*T(T + 1)) .

re[0,T

(127)

Combining this with (I19) demonstrates (I08)). The proof of Lemma 3.0 is thus completed. O

3.4 Existence and uniqueness properties for solutions of SFPEs associ-
ated with SDEs

In this section we provide the announced application of Theorem 2.9 (see Theorem [B.§ below).
The next essentially well-known result, Lemma B.7] below (cf., for example, Liu & Réckner [17,
Proposition 3.2.1]), ascertains that the stochastic continuity hypothesis of Theorem is satisfied
in the setting of Theorem [B3.8]

Lemma 3.7. Let d,me N, T € (0,0), let {-,-y: R x R? —» R be the standard scalar product on
Re, let |-|| : R? — [0,00) be the standard norm on R?, let ||-|| : R™*™ — [0,00) be the Frobenius
norm on R>™ let O < RY be a non-empty open set, for every r € (0,0) let O, < O satisfy
O, ={zeO:|z| <rand{y € R |ly—z| < Y} < O}, let p € C([0,T] x O,RY), ¢ €
C([0,T] x O,R¥™™) satisfy for all r € (0,0) that

ap (110 2) = uty)] + [loft,2) — o, y)|
(1

|z =yl

:te0,T],z,ye O,z # y} v {0}) < oo, (128)

let Ve CY2([0,T] x O, (0,0)) satisfy for all t € [0,T], x € O that
(a—v)(t z) + 5 Trace(o(t, z)[o(t, z)|*(Hess, V) (¢, z)) + {(u(t, z), (V. V)(t, ) <0, (129)

assume that sup,¢q o) [infiefo, ) infreoro, V(¢ )] = o, let (2, F, P, (Ft)icpo,r)) be a filtered proba-

bility space which satisfies the usual conditions, let W: [0,T] x & — R™ be a standard (Fy)swe[o,1)-

Brownian motion, and for every t € [0,T], v € O let X" = (X!)sepr: [6,T] x @ — O be

an (Fy)sep,r-adapted stochastic process with continuous sample paths which satisfies that for all
€ [t,T] it holds P-a.s. that

X =+ J pu(r, X0) dr + f o (r, X17) dW,. (130)
t t

Then it holds for alle € (0,), s € [0,T] and all (t,,x,) € [0,T]xO, n € Ny, with limsup,,_,,[|t,.—
to| + |zn — x0|]] = O that

lim sup [ <HXt" o xow = 8)] = 0. (131)

max{s,tn} max{s,to}
n—00
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Proof of Lemma[371. Throughout this prooflet (t,,r,) € [0, T]xO, n € Ny, satisfy limsup,,_, . [|t,—
to| + |rn — xo|] = 0. Note that for the proof of Lemma B.7]it is sufficient to demonstrate that for
all € € (0,0), s € [0,77] it holds that

timsup | B(| X5,y — Xt =€) | = 0. (132)
Next note that the assumption that it holds that SUD, ¢ (0,00) infe0,7) infzeo\0, V(t,x) = o ensures
that for every n € N there exists r € (0, 0) such that inficpo 7} inf,eo0, V (¢, ) > n. This yields that
for every n € N there exists r € (0, o0) such that {V < n} < [0,T] x O,. Hence, we obtain for every
n € N that {V < n} is a bounded set. Combining this with the fact that V': [0,7] x O — (0, o0)
is continuous demonstrates that for every n € N it holds that {V < n} is a compact set. Lang [16)
Theorem I1.3.7] therefore ensures that there exist ¢, € C([0,T] x O,R), n € N, which satisfy for
allne N, te[0,T], z € O that

Liven(t, ) < ot 7) < Ly <niny(t, @) (133)
Next let m,: [0,T] x R - R% n e N, and s,: [0,7] x R — R¥>™ n e N, satisfy for all n € N,
te [0,T], v € R that
n(t, t, : @) n(t, t, : (@)
m,(t,x) = enltw)ult,z) e J and  s,(t,x) = enltw)o(t,z) :we 4 (134)
0 :x € RNO 0 : e RNO.

This, (I28), and (I33)) assure that m,: [0,T] x R — R% n e N, and s,: [0,7] x R? — R&™

n € N, are compactly supported continuous functions which satisfy that

(A) for all n € N it holds that

t - t t — S5, (2
T L ELGATRA RS BT 35)
te[0,T] z,yeR? HZL‘ - yH
TH#Y

(B) forallne N, t e [0,T], z € O it holds that

[mn(t, @) = u(t, )| + lsn(t, ) = o(t, 2) [ Liy<ny (8, 2) = 0, (136)
and

(C) forallne N, t e [0,T], x € O it holds that

[mn (8 2) |+ llsn ()11 Ly oniny (8 2) = 0. (137)

Note that Karatzas & Shreve [15, Theorem 5.2.9] (cf. also Gyongy & Krylov [8, Corollary 2.6]
and Liu & Rockner [I7, Theorem 3.1.1]) and Item (Al yield that for every n € N, ¢ € [0,T],

x € O there exists an (F,) e, r-adapted stochastic process with continuous sample paths XhT —
(X287) ey [¢, T x @ — R? which satisfies that for all s € [¢,7] it holds P-a.s. that

Xmh = g + J

t

S S

m, (r, X0 dr + f s, (r, XIP0T) AW, (138)

t

Moreover, note that Item (Cl) ensures for all n € N that supp(m,,) U supp(s,) < {V < n+1}. The
fact that for every n € N there exists r € (0, 00) such that {V < n} < [0, T] x O, hence implies that
for every n € N there exists r € (0, 00) such that supp(m,,) U supp(s,) < [0,T] x O,. Furthermore,
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observe that Item (i) of Lemma B4 ensures that for alln € N, r € (0,0), m € Nn(r,00), t € [0,T],
reO\{yeO: (3z€O,: |y—z| < Ym)} with supp(m,,) U supp(s,) < [0,T] x O, it holds that
P(Vs € [t,T]: X25* = z) = 1. Combining this with the fact that for all r € (0,00) it holds
that O, = Nmennra){y € R 3z € O,: |z —y| < Ym)} implies that for all n e N, r € (0,0),
t€[0,7T], x € O\O, with supp(m,,) U supp(s,) < [0,7] x O, it holds that

P(Vse[t,T]: XM =z) = 1. (139)

Next we observe that Item (i) of Lemma [3.4] ensures that for all n € N, r € (0,90), m € Nn (r, c0),
tel0,T],ze{yeO: 3z€0,: |y—z| <Ym)} with supp(m,) U supp(s,) < [0,7] x O, it holds
that P(Vs € [t,T]: Gy € O,: |X20* —y|| < Ym)) = 1. This yields that for all n € N, r € (0, ),
t € [0,T], x € O, with supp(m,) U supp(s,) < [0,7] x O, it holds that

P(Vse [t, T]: X2 € O,) = 1. (140)

The fact that for every n € N there exists r € (0, 00) such that supp(m,,) U supp(s,) < [0,T] x O,
and (I39) hence demonstrate that for every n € N there exists r € (0, 00) such that

(I) it holds for all t € [0,T], x € O, that P(Vs € [¢t,T]: X2»* € O,) = 1 and
(IT) it holds for all ¢ € [0,T], z € O\O, that P(Vs € [t,T]: X0 = z) = 1.

Therefore, we obtain that for every n € N, ¢t € [0,T], x € O there exists an (Fs) seft, r1-adapted
stochastic process with continuous sample paths X™"* = (X05%)pr: [t,T] x Q@ — O which
satisfies that for all s € [t,T] it holds P-a.s. that

X g g f m, (r, X207) dr + j su(r, X107) W (141)
t t

In the next step let 7%%%: Q — [¢,T], n € N, t € [0,T], z € O, satisty for every n € N, ¢t € [0,T],
x € O, we Q that 7" (w) = inf({s € [¢t,T]: max{V (s, X»""(w)), V (s, X:*(w))} > n} u {T}).
Note that for every n € N, ¢t € [0,7], z € O it holds that 7"*: Q — [t, T] is an (IF,)seps, r)-stopping
time. Next observe that the fact that for every n € N it holds that {V < n} is a compact set,
Item (B)), and Lemma B3l (with 7' = T — ¢, C = {(s,y) € [0,T —t] x O: V(t + s,y) < n},
= ([0,T—t] x O3 (s,9) — ult+s,y) e RY), uy = ([0, T —t] x O 3 (s,y) — m,(t +s,y) € R?),
o1 = ([0, T—t]xO 3 (s,y) — o(t+s,y) € R>™) 0y = ([0, T—t]|x O 3 (5,9) — 5, (t+s,y) € R>™),
F = (Frrs)scpor—a: W = ([0, T =] x 2 3 (s,w) = Wips(w) = Wi(w) e R™), XU = ([0,T—t] x Q3
(5,w) — X" (w) e 0), X® = ([0,T —t] x Q3 (s,w) — X5 (w) € O), 7 = 74 —t for n e N,
t € [0,T], z € O in the notation of Lemma [B.5)) ensure for all n € N, ¢t € [0,T], z € O that

]P)(V S € [t, T] . IL{SSTn,t,x}

Xt — X0 =0) = 1. (142)

This, Markov’s inequality, and Lemma B (with 7' = T — ¢, p = ([0, — t] x O 3 (s,y) —
pt+s,y)eRY), o= ([0,T—t] x O3 (s,y)— o(t+s,y) e R"™) V = ([0,T —t] x O > (s,y) —
V(t+s,y)€[0,0)), F = (Frys)seor-1, W = ([0, T = t] x Q 3 (s,w) — Wis(w) — Wi(w) € R™),
X =(0,T—1] x Q>3 (s,w) = Xp'(w) e O), 7 =71 —tfor ke N, te[0,T], €O in the
notation of Lemma [B.1]) imply for all € € (0,0), ke N, t € [0,T], z € O, s € [t,T] that

(|20t - X7 =€)

(143)

<P(r"h" <) <P(V(r"7, X5E,) = k) < —E[V(7P, X5, )] < =V (¢, 2).

| =
| =
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Furthermore, observe that Lemma ensures that there exist real numbers ¢, € [0,0), k € N,
which satisfy that for every k,n € N, s € [ty, T'] it holds that

max{s,tn} max{s,tn}

2
E[”%k,tn,xn _ xhtoxo } < ¢ [|tn . t0| n H?n . ?0“2]' (144)

Moreover, observe that (I4I]) ensures that for all k,n € N, s € [to, T'] it holds P-a.s. that

k,to,x0 k,to,ro _ ~kitoro E,to,x
}:max{s,tn} - xmax{s,to} - xmax{s,tn} - }:8 00
max{s,tn} max{s,ty} (145)
= J my (7,’ %fﬁo,xo) dr + J 5k(7'7 %f,to,xo) dWr.
s s

Minkowski’s inequality, the fact that my: [0, 7] x R — R? ke N, and s5: [0,7] x R — R&>™
k € N, are compactly supported continuous functions, and It6’s isometry hence imply that for all
k,neN, s € [ty, T] it holds that

)

max{s,tn} 1
< J (E[”mk(r, :{fvtmm)”Q]) . dr + (J

S S

< [max{0, t, — s}|"* [ﬁ ( sup sup (¢, x>\> " <sup sup Hsk@,xﬂ)]-

te[0,T] zeO te[0,T] zeO

(E[”%kﬂtmm )= %k,to,m

max{s,tn max{s,to}

max{s,t,

1/2
E[\Hsk(r, xptow) }HZ] dr) (146)

This, the fact that for all a,b € R it holds that (a + b)? < 2a® + 2b*, and (I44)) ensure that there
exist real numbers ¢, € [0,00), k € N, which satisfy for every k,n € N, s € [ty, T'] that

El”xh%#n )~ xkio,}”o

max{s,tn max{s,to}

max{s,t,} ~ “~max{s,t,} max{s,tp} S

S T
(147)

< o [t — to] + 20 — 20 + max{0, t, — s}].
In addition, observe that (I41]) ensures that for all k,n € N, s € [0, %] it holds P-a.s. that

ktn,tn . k,to,xo _ kytn,tn o
xmax{s,tn} }:max{s,to} - }:max{s,tn} Yo

max{s,tn} max{s,tn} (148)
=¥ — o+ J my(r, XPE) dr + J s (r, Xty g,
tn tn

Minkowski’s inequality, the fact that my: [0, 7] x R — R? ke N, and s5: [0,7] x R — R&>™
k € N, are compactly supported continuous functions, and It6’s isometry hence imply that for all
k,neN, se|0,t] it holds that

27\ /2
]) < ltn — 20|

1/2
max{s,tn} 9T\ V2 max{s,tn} 2
+ f (E[me(r, 25 ]) " ar + ( J E| [Jsw(r, x5 ]m«) (149)
tn tn

< |lzn — o] + |max{0,s — tn}|1/2 '\/T ( sup sup |mk(t,x)|> + ( sup sup |5k(t,x)||> ]

te[0,T] z€O te[0,T] z€O

(E |:”xk7fn72in o xk,tmio

max{s,tn} max{s,to}
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This and (I47) ensure that there exist real numbers ¢; € [0,00), k € N, which satisfy for every
k,neN, se[0,T] that

E l”xk,tmxn _ }:k to,ro

max{s,tn} max{s,to}

] (150)
< ¢ [|tn —to| + tn — zcoH + Ljo,60)(s) max{0, s — t,} + Ly, r(s) max{0, t, — s}]

Combining this with Markov’s inequality and (I43]) demonstrates that for all € € (0, 0), s € [0, 7]
it holds that

timsup [B(|X55,,) — X 2 <)
n—00

< ot (w10, - 285012 )

9
R(138f - hl > £) + (1R - X8 > )

. . _V(tnuxn> 9 Kyt tn koge 12| . V(to,x0)

< Ilcrellg (11?_?01011) T + 6—2E meax{s,tn} :{ma(l({(; to} + T (151)
e [ V(t,ra)  9c

< inf | limsup Q =k (|tn to] + |lx, — FOH
keN n—oo k

This demonstrates (I32). The proof of Lemma B.7]is thus completed. O

The next result, Theorem [B.8 below, is the main result of this article. It is an application of
Theorem Lemmas [3.1] and 3.7 above ensure that the crucial hypotheses of Theorem are
satisfied in the setting of Theorem [3.8]

Theorem 3.8. Let d,m € N, LT € (0,00), let {(-,->: R x R — R be the standard scalar
product on R?, let || : RY — [0,00) be the standard norm on R?, let ||-|| : R>*™ — [0, 0) be the
Frobenius norm on R>™ let O < R? be a non-empty open set, for every r € (0,0) let O, < O
satisfy O, = {x € O: ||z| < r and {y € R*: |ly—z|| < Yr} = O}, let p e C([0,T] x O,RY),

o€ C([0,T] x O,R>™) satisfy for all v € (0,0) that

aup ({180 2) = uty)] + [loft,z) — ot y)l|
(4

|z =yl

cte0,T], yeOr,xaéy}u{O}) < oo, (152)

let feC(0,T] x O xR,R), ge C(O,R), Ve CY]0,T] x O,(0,0)), assume for all t € [0,T],
re O, v,weR that |f(t,x,v) — f(t,z,w)| < Llv —w| and

(%—‘;)(t, x) + %Trace(a(t, x)[o(t,x)]*(Hess, V)(t,z)) + {u(t, x), (V.V)(t,x)) <0, (153)
assume that sup,. [infte[o 7 infeo0, V(¢ x)] = 0 and inf,c(g o) [SUpte[o T) SqueO\OrUf\Et(f m(;)‘ +

‘Lg((;ﬂ))] 0, let (0, F,P, (Fy)epo,r)) be a filtered probability space which satisfies the usual condi-
tions, let W: [0, T] x Q — R™ be a standard (Fy)e[o,r)-Brownian motion, and for every t € [0,T],
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z e O let X4 = (X seum: [6,T] x Q — O be an (Fy) e ri-adapted stochastic process with
continuous sample paths which satisfies that for all s € [t,T] it holds P-a.s. that

X =t [ X0 dr kot X)W, (154)
t t

Then there exists a unique u € C([0,T] x O,R) such that

(i) it holds that

limsup | sup sup (|u(t, x)|> =0 (155)
r—00 te[0,T] zeO\O- V(t7 l‘)
and

(1) it holds for all t € [0,T], x € O that
T
ult) = B[ + [ (s, X0 (s, x27) s (156)
¢

Proof of Theorem[3.8. First, note that Lemma Bl (with T =T —¢, p = ([0,T —t] x O 3 (s,y) —
pt+s,y)eRY), o= ([0,T—t] x O3 (s,y)— o(t+s,y) e R»™) V = ([0,T —t] x O > (s,y) —
Vio+59) £ 10.). F = (oo, W = (0.7 1] x 03 (5.0) = Wieofeo) = Wile) € RY)
X =([0,T—t] x Q253 (s,w) — X, (w) € O) for t € [0,T], z € O in the notation of Lemma B.1))
ensures that for all t € [0,T], s € [¢,T], x € O it holds that

E[V (s, X:%)] < V(t, ). (157)

Next observe that Lemma 3.7 ensures that for all € € (0,00), s € [0,7] and all (t,,z,) € [0,T] x O,
n € Ng, with limsup, . [|t, — to| + |n —20|] = 0 it holds that limsup, . [P(]| X"

max{s,tn}
fgai?s wil = €)] = 0. Combining this with (I57) and Theorem demonstrates that there

exists a unique u € C([0,7] x O,R) which satisfies that for all ¢t € [0,7], x € O it holds that

lim sup,._, 0 [SUpeo. 77 supyeo\or(|‘1j((2’z))‘)] = 0 and

utta) = BJg0x3) + [ 4o X0 09) | (158)

This establishes Items (i) and (). The proof of Theorem B.8 is thus completed. O

Lemma implies the following corollary of Theorem [B.§ in the situation in which the drift
and diffusion coefficients i [0,T] x O — R? and o: [0,T] x O — R¥™ depend only on the spatial
variable x € O and are independent of the time variable ¢ € [0,T]. For the sake of simplicity we
take the spatial domain O to be R? in Corollary below.

Corollary 3.9. Let dym € N, L,T € (0,0), p € R, let {-,-): R x R — R be the standard
scalar product on R?, let || : RY — [0,0) be the standard norm on RY, let u: R* — R and
o: RY — RY™ be locally Lipschitz continuous, let f € C([0,T] x RY x R,R), g € C(R% R),
V e C?(R%, (0,0)), assume for allt € [0,T], z € R¢, v, w € R that | f(t,z,v)— f(t,z,w)| < Llv—w|
and

3 Trace(o (z)[o(2)]* (Hess V) ()) + {u(x), (VV)(2)) < pV (2), (159)

assume that Sup,.c (o o) [fzera o=, V(2)] = 00 and inf,c(o o) [supepo 11 SupxeRd,Hx\br(W)] =

0, let (2, F, P, (Fi)wefor) be a filtered probability space which satisfies the usual conditions, let
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W:[0,T] x Q@ — R™ be a standard (Fy)efo,r)-Brownian motion, and for every t € [0,T], z € R?
let X0% = (X5) seppry: [, T] x Q@ — RY be an (Fy)sefe,r1-adapted stochastic process with continuous
sample paths which satisfies that for all s € [t,T] it holds P-a.s. that

X ot [ drs [ o(x i (160)
t t

Then there exists a unique u € C([0,T] x R%, R) such that
(i) it holds that

. u(t, z)]
limsup | sup sup < =0 161
r—00 te[0,T] ”zeHRd V($’) ( )
x|>r

and

(ii) for allt € [0,T], x € R it holds that
T
ult) = B[ + [ (s, X0 (s, X0 s | (162)
¢

Proof of Corollary[39. Throughout this proof let V: [0, T] x R? — (0, c0) satisfy for all ¢ € [0, 7],
r € RY that V(¢t,2) = e ”V(x). Observe that Lemma (with O = R?, = ([0,T] x R? 3
(t,z) — p(x) e RY), o = ([0,T] x R? 5 (t,z) — o(x) € R¥”™) in the notation of Lemma [3.2)
ensures that for all ¢ € [0, T], x € R? it holds that Ve C*2([0,T] x R<, (0, 0)) and

(%—Y)(t,x) + %Trace(a(x)[a(x)]*(Hessw V) (t,x)) + {u(x), (V. V)(t,z)) <O0. (163)

Next, observe that the hypothesis that sup,¢(g o) [infzerd joj=r V ()] = 00 implies that

sup [ inf  inf V(t,x)] — . (164)

re(0,00) |t€[0,T] zeRe, ] >r

Furthermore, observe that the hypothesis that inf,c(o o) [SUpsepo SUPxeR%Hwa(W)] =0

demonstrates that
: |f(t,z,0)]  lg(=)] )
inf sup  sup ( +
re(0,00) L[O,T] veRd [z|>r \ V(¢ T) V(T, )

— 0. (165)

Theorem B8 (with O = R, = ([0,T] x R? 5 (t,2) — pu(z) e RY), o = ([0,T] x R 5 (t,2) —
o(x) e R>™) V =V in the notation of Theorem B.8) and (I64) hence ensure that there exists a
unique u € C([0,T] x R?, R) which satisfies that

(I) it holds that

: Ju(t, )|
limsup | sup sup ( =0 166
r—00 te[0,T] zeR?, V(ta l‘) ( )
|z >r

and

(IT) it holds for all t € [0,7T], z € R that

T

u(t,z) = Elg(xgm) +£
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f(s, X5 (s, Xﬁ”‘“)) ds]. (167)



Next note that Item () implies that

. Ju(t, =)
limsup | sup sup < =0. 168
r—00 te[0,T] ”erRd V($’) ( )
x|>r

This establishes Item (). Moreover, note that Item (II) establishes Item (). The proof of
Corollary 8.9 is thus completed. O

Finally, in Corollary below, we specialize in the setting of Corollary to the situation
in which the drift and diffusion coefficients p: R? — R? and o: R? — R¥™ satisfy a coercivity
condition and the nonlinearity f: [0,7] x R?x R — R as well as the terminal condition g: R — R
are at most polynomially growing with respect to the spatial variable = € R%. Suitable choices for
the Lyapunov-type function V' are provided by Lemma B.3]

Corollary 3.10 (Existence and uniqueness of at most polynomially growing solutions of SFPEs).
Let dym € N, L,T € (0,0), let {-,->: R x R — R be the standard scalar product on R,
let || : RT — [0,00) be the standard norm on R?, let ||-|| : R>*™ — [0,00) be the Frobenius
norm on R¥™>™ let u: R4 — R? and o: R — R™™ be locally Lipschitz continuous, let f
C([0,T] x R x R,R), g € C(R%R) be at most polynomially growing, assume for all t € [0,T],
z e R vw e R that max{(x, u(zx)), [lo(@)||?} < L1 + |z and |f(t,z,v) — f(t,z,w)] <
Liv—w|, let (2, F,P, (Fy)wefor)) be a filtered probability space which satisfies the usual conditions,
let W: [0,T] x Q — R™ be a standard (Fy)efo,r1-Brownian motion, and for everyt € [0,T], x € R
let X'* = (X5 ey [t T] x Q — R be an (IFs) s, 71-adapted stochastic process with continuous
sample paths which satisfies that for all s € [t,T] it holds P-a.s. that

Xﬁ’xszrJ
t

Then there exists a unique u € C([0,T] x R%, R) such that

S S

w( X5 dr + J o (X57) dW,. (169)

t

(i) it holds that u is at most polynomially growing and
(ii) it holds for all t € [0,T], x € R? that

T
u(t,z) = Elg(Xth) + ft f(s, Xﬁ’x,u(s,Xﬁm)) ds|. (170)

Proof of Corollary[310. Throughout this proof let p, € (0,0), ¢ € (0,00), satisty for every ¢ €

(0,0) that p, = & max{q + 1,3}, let p € (0, ) satisfy that SUD;e(0,7] supyeRd[W] < 0,

and let V,: R - R, ¢ € (0,0), satisfy for all ¢ € (0,0), z € R? that V,(z) = [1 + |z|*]?>. Note

that the fact that supcp 7 supxeRd[W] < oo implies that for all g € (p, 00) it holds that

limsup | sup sup
r—00 | te[0,T] zeR,
|z >r

Jimsup | sup sup (llf(t,x,o)l + Ig($)|] l1+ lepD (171)

<|f(t7x,‘2)(|;)r Ig(x)|)

row | 1e[0,T] zeRd, L+ [ Vy(z)
[[z]>r
t,z,0)| + : L+ ]
< | sup sup (|f( z,0)| p|g(:p)|> limsup | sup sup <ﬂ> = 0.
te[0,T] zeRd 1+ |z T—00 te[0,T] zeR?, Vq(x)
]| >r
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Moreover, observe that for all ¢ € (p, o) it holds that

sup | inf V(x)| = oo. (172)
re(0,00) ﬁﬁeﬁRd,
x|>Tr

Next note that Lemma ensures for all ¢ € (0,00), z € R? that
3 Trace(o(z)[o(2)]* (Hess Vo) (z)) + (u(z), (VVg)(2)) < pgVi(2). (173)

Combining this with (I71), (I72), and Corollary (with V' = V%, in the notation of Corol-
lary B.9) yields that there exists a unique u € C([0,7] x R% R) which satisfies for all ¢t €

[OvT]a x € R? that limSUer@[SUPse[QT] SupyERd,HyH>r(%)] = 0 and U(t,l‘) = E[g(X;lx) +

StT f(s, X5, u(s, X57)) ds]. In particular, this ensures that u: [0,7] x RY — R is at most polyno-
mially growing. This establishes that u € C([0,T] x R R) satisfies Items ({l) and (f). It remains
to prove that u: [0,7] x R? — R is the only continuous function which satisfies Items () and
(). For this, let v € C([0,T] x R%R) be an at most polynomially growing function which sat-
isfies for all t € [0,T], = € R? that v(t,z) = E[g(X%") + S;[ f(s, X0 v(s, Xb%)) ds]. The fact
that v: [0,7] x RY — R is at most polynomially growing ensures that there exists ¢ € (0, 0)

which satisfies that supcp 7y supxeRd[‘fjfm‘)q'] < oo. This implies that u,v € C([0,T] x R4 R) sat-

isfy for all ¢ € [0,T], z € R? that limsup, _,,[Sup (o supyeRdvny”M(%)] =0, u(t,z) =
E[g(X;") +§, f(s, X" uls, X)) ds], and

v(t, ) = E[g(X;“’) + f f(s, X" 0(s, X07)) ds]. (174)

Corollary (with V' = Viax{2q,2py in the notation of Corollary B.9) hence ensures that u = v.
This establishes that u: [0, T] x R? — R is the unique continuous function which satisfies Items (f)
and (). The proof of Corollary B.I0is thus completed. O
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