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1 Introduction

Add an appropriate introduction. . .

2 Multilevel Picard approximations for the heat equa-

tion

Theorem 2.1. Let T, κ, δ ∈ (0,∞), Θ =
⋃

n∈NZn, let ud ∈ C1,2([0, T ] × Rd,R), d ∈ N,
satisfy for all d ∈ N, t ∈ [0, T ], x = (x1, x2, . . . , xd) ∈ Rd that

|ud(t, x)| ≤ κdκ
(
1 +

∑d
k=1|xk|

)κ
and ( ∂

∂t
ud)(t, x) = (∆xud)(t, x), (2.1)

let (Ω,F ,P) be a probability space, let W d,θ : [0, T ]× Ω → Rd, d ∈ N, θ ∈ Θ, be independent
standard Brownian motions, let Ud,θ

m : [0, T ]× Rd × Ω → R, d,m ∈ Z, θ ∈ Θ, satisfy for all
d,m ∈ N, θ ∈ Θ, t ∈ [0, T ], x ∈ Rd that

Ud,θ
m (t, x) =

1

m

[
m∑
k=1

ud

(
0, x+

√
2W

d,(θ,0,−k)
t

)]
,

and for every d, n,m ∈ N let Cd,n,m ∈ N be the number of function evaluations of ud(0, ·)
and the number of realizations of scalar random variables which are used to compute one
realization of Ud,0

m (T, 0) : Ω → R. Then there exist c ∈ R and 𝓃 : N × (0, 1] → N such that
for all d ∈ N, ε ∈ (0, 1] it holds that(

E
[
|ud(T, 0)− Ud,0

𝓃(d,ε)(T, 0)|2
])1/2

≤ ε and Cd,𝓃(d,ε),𝓃(d,ε) ≤ cdcε−(2+δ). (2.2)
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3 Stochastic solutions to parabolic partial differential

equations

Lemma 3.1. Let T ∈ (0,∞), let (Ω,F ,P) be a probability space, let ud ∈ C1,2([0, T ]×Rd,R),
d ∈ N, satisfy for all d ∈ N, t ∈ [0, T ], x ∈ Rd that

( ∂
∂t
ud)(t, x) + (∆xud)(t, x) = 0, (3.1)

let W d : [0, T ]×Ω → Rd, d ∈ N, be standard Brownian motions, and let X d,t,x : [t, T ]×Ω →
Rd, d ∈ N, t ∈ [0, T ], x ∈ Rd, be a stochastic process with continuous sample paths satisfying
that for all d ∈ N, t ∈ [0, T ], s ∈ [t, T ], x ∈ Rd we have P-a.s. that

X d,t,x
s = x+

∫ s

t

√
2 dW d

r = x+
√
2W d

t−s. (3.2)

Then for all d ∈ N, t ∈ [0, T ], x ∈ Rd it holds that

ud(t, x) = E
[
ud

(
T,X d,t,x

T

)]
. (3.3)

Proof of Lemma 3.1. The proof of Lemma 3.1 is thus complete.

Lemma 3.2. Let T ∈ (0,∞), let (Ω,F ,P) be a probability space, let σd : Rd → Rd×d, d ∈ N,
be infinitely often differentiable functions, let ud ∈ C1,2([0, T ]×Rd,R), d ∈ N, satisfy for all
d ∈ N, t ∈ [0, T ], x ∈ Rd that

( ∂
∂t
ud)(t, x) + Trace

(
σ(x)[σ(x)]∗(Hessx ud)(t, x)

)
= 0, (3.4)

let W d : [0, T ]×Ω → Rd, d ∈ N, be standard Brownian motions, and let X d,t,x : [t, T ]×Ω →
Rd, d ∈ N, t ∈ [0, T ], x ∈ Rd, be a stochastic process with continuous sample paths satisfying
that for all d ∈ N, t ∈ [0, T ], s ∈ [t, T ], x ∈ Rd we have P-a.s. that

X d,t,x
s = x+

∫ t

s

√
2σ(X d,t,x

r ) dW d
r . (3.5)

Then for all d ∈ N, t ∈ [0, T ], x ∈ Rd it holds that

ud(t, x) = E
[
ud

(
T,X d,t,x

T

)]
. (3.6)

Proof of Lemma 3.2. The proof of Lemma 3.2 is thus complete.

Lemma 3.3. Let T ∈ (0,∞), let (Ω,F ,P) be a probability space, let µd ∈ Rd → Rd, d ∈ N,
be infinitely often differentiable functions, let ud ∈ C1,2([0, T ]×Rd,R), d ∈ N, satisfy for all
d ∈ N, t ∈ [0, T ], x ∈ Rd that

( ∂
∂t
ud)(t, x) + (∆xud)(t, x) + [µd(x)]

∗(∇xud)(t, x) = 0, (3.7)

let W d : [0, T ]×Ω → Rd, d ∈ N, be standard Brownian motions, and let X d,t,x : [t, T ]×Ω →
Rd, d ∈ N, t ∈ [0, T ], x ∈ Rd, be a stochastic process with continuous sample paths satisfying
that for all d ∈ N, t ∈ [0, T ], s ∈ [t, T ], x ∈ Rd we have P-a.s. that

X d,t,x
s = x+

∫ t

s

µd(X d,t,x
r ) dr +

∫ t

s

√
2 dW d

r . (3.8)

2



Then for all d ∈ N, t ∈ [0, T ], x ∈ Rd it holds that

ud(t, x) = E
[
ud

(
T,X d,t,x

T

)]
. (3.9)

Proof of Lemma 3.3. The proof of Lemma 3.3 is thus complete.

Lemma 3.4. Let T ∈ (0,∞), let (Ω,F ,P) be a probability space, let αd ∈ Rd → R, d ∈ N,
be infinitely often differentiable functions, let ud ∈ C1,2([0, T ]×Rd,R), d ∈ N, satisfy for all
d ∈ N, t ∈ [0, T ], x ∈ Rd that

( ∂
∂t
ud)(t, x) + (∆xud)(t, x) + αd(x)ud(t, x) = 0, (3.10)

let W d : [0, T ]×Ω → Rd, d ∈ N, be standard Brownian motions, and let X d,t,x : [t, T ]×Ω →
Rd, d ∈ N, t ∈ [0, T ], x ∈ Rd, be a stochastic process with continuous sample paths satisfying
that for all d ∈ N, t ∈ [0, T ], s ∈ [t, T ], x ∈ Rd we have P-a.s. that

X d,t,x
s = x+

∫ t

s

√
2 dW d

r . (3.11)

Then for all d ∈ N, t ∈ [0, T ], x ∈ Rd it holds that

ud(t, x) = E
[
exp

(∫ T

t
αd(X d,t,x

r ) dr
)
ud

(
T,X d,t,x

T

)]
. (3.12)

Proof of Lemma 3.4. The proof of Lemma 3.4 is thus complete.
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