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A First Course in the Numerical Analysis
of Differential Equations

Numerical analysis presents different faces to the world. For mathematicians it is a bona fide
mathematical theory with an applicable flavour. For scientists and engineers it is a practical,
applied subject, part of the standard repertoire of modelling techniques. For computer
scientists it is a theory on the interplay of computer architecture and algorithms for real-
number calculations.

The tension between these standpoints is the driving force of this book, which presents
a rigorous account of the fundamentals of numerical analysis both of ordinary and partial
differential equations. The point of departure is mathematical, but the exposition strives to
maintain a balance among theoretical, algorithmic and applied aspects of the subject.

This new edition has been extensively updated, and includes new chapters on developing
subject areas: geometric numerical integration, an emerging paradigm for numerical
computation that exhibits exact conservation of important geometric and structural features
of the underlying differential equation; spectral methods, which have come to be seen in
the last two decades as a serious competitor to finite differences and finite elements; and
conjugate gradients, one of the most powerful contemporary tools in the solution of sparse
linear algebraic systems.

Other topics covered include numerical solution of ordinary differential equations by
multistep and Runge—Kutta methods; finite difference and finite elements techniques for
the Poisson equation; a variety of algorithms to solve large, sparse algebraic systems;
methods for parabolic and hyperbolic differential equations and techniques for their
analysis. The book is accompanied by an appendix that presents brief back-up in a number
of mathematical topics.

Professor ISERLES concentrates on fundamentals: deriving methods from first principles,
analysing them with a variety of mathematical techniques and occasionally discussing
questions of implementation and applications. By doing so, he is able to lead the reader
to a theoretical understanding of the subject without neglecting its practical aspects. The
outcome is a textbook that is mathematically honest and rigorous and provides its target
audience with a wide range of skills in both ordinary and partial differential equations.
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Preface to the second edition

In an ideal world this second edition should have been written at least three years ago
but, needless to say, this is not an ideal world. Annoyingly, there are just 24 hours per
day, rather less annoyingly I have joyously surrendered myself to the excitements of
my own research and, being rather good at finding excuses, delayed the second edition
again and again.

Yet, once I braced myself, banished my writer’s block and started to compose in my
head the new chapters, I was taken over by the sheer pleasure of writing. Repeatedly
I have found myself, as I often do, thanking my good fortune for working in this
particular corner of the mathematical garden, the numerical analysis of differential
equations, and striving in a small way to communicate its oft-unappreciated beauty.

The last sentence is bound to startle anybody experienced enough in the fashions
and prejudices of the mathematical world. Numerical analysis is often considered
neither beautiful nor, indeed, profound. Pure mathematics is beautiful if your heart
goes after the joy of abstraction, applied mathematics is beautiful if you are excited by
mathematics as a means to explain the mystery of the world around us. But numerical
analysis? Surely, we compute only when everything else fails, when mathematical
theory cannot deliver an answer in a comprehensive, pristine form and thus we are
compelled to throw a problem onto a number-crunching computer and produce boring
numbers by boring calculations. This, I believe, is nonsense.

A mathematical problem does not cease being mathematical just because we have
discretized it. The purpose of discretization is to render mathematical problems, of-
ten approximately, in a form accessible to efficient calculation by computers. This,
in particular, means rephrasing and approximating analytic statements as a finite se-
quence of algebraic steps. Algorithms and numerical methods are, by their very design,
suitable for computation but it makes them neither simple nor easy as mathematical
constructs. Replacing derivatives by finite differences or an infinite-dimensional space
by a hierarchy of finite-dimensional spaces does not necessarily lead to a more fuzzy
form of reasoning. We can still ask proper mathematical questions with uncompromis-
ing rigour and seek answers with the full mathematical etiquette of precise definitions,
statements and proofs. The rules of the game do not change at all.

Actually, it is almost inevitable that a discretized mathematical problem is, as a
mathematical problem, more difficult and more demanding of our mathematical in-
genuity. To give just one example, it is usual to approximate a partial differential
equation of evolution, an infinite-dimensional animal, in a finite-dimensional space
(using, for example, finite differences, finite elements or a spectral method). This
finite-dimensional approximation makes the problem tractable on a computer, a ma-

ix



X Preface

chine that can execute a finite number of algebraic operations in finite time. However,
once we wish to answer the big mathematical question underlying our discourse, how
well does the finite-dimensional model approximate the original equation, we are com-
pelled to consider not one finite-dimensional system but an infinite progression of such
systems, of increasing (and unbounded) dimension. In effect, we are not just approxi-
mating a single equation but an entire infinite-dimensional function space. Of course,
if all you want is numbers, you can get away with hand-waving arguments or use the
expertise and experience of others. But once you wish to understand honestly the term
‘analysis’ in ‘numerical analysis’, prepare yourself for real mathematical experience.

I hope to have made the case that true numerical analysis operates according to
standard mathematical rules of engagement (while, needless to say, fully engaging with
the algorithmic and applied parts of its inner self). My stronger claim, illustrated in a
small way by the material of this book, is that numerical analysis is perhaps the most
eclectic and demanding client of the entire width and breadth of mathematics. Typ-
ically in mathematics, a discipline rests upon a fairly small number of neighbouring
disciplines: once you visit a mathematical library, you find yourself time and again
visiting a fairly modest number of shelves. Not so in the numerical analysis of differ-
ential equations. Once you want to understand the subject in its breadth, rather than
specializing in a narrow and strictly delineated subset, prepare yourself to navigate
across all library shelves! This volume, being a textbook, is purposefully steering well
clear of deep and difficult mathematics. However, even at the sort of elementary level
of mathematical sophistication suitable for advanced undergraduates, faithful to the
principle that every unusual bit of mathematics should be introduced and explained
I expect the reader to identify the many and varied mathematical sources of our dis-
course. This opportunity to revel and rejoice in the varied mathematical origins of
the subject, of pulling occasional rabbits from all kinds of mathematical hats, is what
makes me so happy to work in numerical analysis. I hope to have conveyed, in a small
and inevitably flawed manner, how different strands of mathematical thinking join
together to form this discipline.

Three chapters have been added to the first edition to reflect the changing face of
the subject. The first is on geometric numerical integration, the emerging science of
the numerical computation of differential equations in a way that renders exactly their
qualitative features. The second is on spectral methods, an important competitor to
the more established finite difference and finite element techniques for partial differen-
tial equations. The third new chapter reviews the method of conjugate gradients for
the solution of the large linear algebraic systems that occur once partial differential
equations are discretized.

Needless to say, the current contents cannot reflect all the many different ideas,
algorithms, methods and insights that, in their totality, make the subject of compu-
tational differential equations. Writing a textbook, the main challenge is not what to
include, but what to exclude! It would have been very easy to endure the publisher’s
unhappiness and expand this book to several volumes, reporting on numerous excit-
ing themes such domain decomposition, meshless methods, wavelet-based methods,
particle methods, homogenization — the list goes on and on. Easy, but perhaps not
very illuminating, because this is not a cookbook, a dictionary or a compendium: it
is a textbook that, ideally, should form the backdrop to a lecture course. It would



Preface xi

not have been very helpful to bury the essential didactic message under a mountain
of facts, exciting and useful as they might be. The main purpose of a lecture course
—and hence of a textbook — is to provide enough material, insight and motivation to
prepare students for further, often independent, study. My aim on these pages has
been to provide this sort of preparation.

The flowchart on p. xix displays the connectivity and logical progression of the
current 17 chapters. Although it is unlikely that the entire contents of the book
can be encompased in less than a year-long intensive lecture course, the flowchart is
suggestive of many different ways to pick and choose material while maintaining the
inner integrity and coherence of the exposition.

This is the moment to thank all those who helped me selflessly in crafting an edition
better than one I could have written singlehandedly. Firstly, all those users of the first
edition who have provided me with feedback, communicated errors and misprints,
queried the narrative, lavished praise or extended well-deserved criticism.! Secondly,
those of my colleagues who read parts of the draft, offered remarks (mostly encouraging
but sometimes critical: T appreciated both) and frequently saved me from embarrassing
blunders: Ben Adcock, Alfredo Deano, Euan Spence, Endre Siili and Antonella Zanna.
Thirdly, my friends at Cambridge University Press, in particular David Tranah, who
encouraged this second edition, pushed me when a push was needed, let me get along
without undue harassment otherwise and was always willing to share his immense
experience. Fourthly, my copy editor Susan Parkinson, as always pedantic in the best
sense of the word. Fifthly, the terrific intellectual environment in the Department
of Applied Mathematics and Theoretical Physics of the University of Cambridge, in
particular among my colleagues and students in the Numerical Analysis Group. We
have managed throughout the years to act not only as a testing bed, and sometimes a
foil, to each other’s ideas but also as a milieu where it is always delightful to abandon
mathematics for a break of (relatively decent) coffee and uplifting conversation on
just about anything. And last, but definitely not least, my wife and best friend,
Dganit, who has encouraged and helped me always, in more ways than I can count or
floating-number arithmetic can bear.

And so, over to you, the reader. I hope to have managed to convey to you, even if
in a small and imperfect manner, not just the raw facts that, in their totality, make
up the numerical analysis of differential equations, but the beauty and the excitement
of the subject.

Arieh Iserles
August 2008

T wish to thank less, though, those students who emailed me for solutions to the exercises before
their class assignment was due.






Preface to the first edition

Books — so we are often told — should be born out of a sense of mission, a wish to
share knowledge, experience and ideas, a penchant for beauty. This book has been
born out of a sense of frustration.

For the last decade or so I have been teaching the numerical analysis of differential
equations to mathematicians, in Cambridge and elsewhere. Examining this extensive
period of trial and (frequent) error, two main conclusions come to mind and both have
guided my choice of material and presentation in this volume.

Firstly, mathematicians are different from other varieties of homo sapiens. It may
be observed that people study numerical analysis for various reasons. Scientists
and engineers require it as a means to an end, a tool to investigate the subject
matter that really interests them. Entirely justifiably, they wish to spend neither
time nor intellectual effort on the finer points of mathematical analysis, typically
preferring a style that combines a cook-book presentation of numerical methods with
a leavening of intuitive and hand-waving explanations. Computer scientists adopt
a different, more algorithmic, attitude. Their heart goes after the clever algorithm
and its interaction with computer architecture. Differential equations and their likes
are abandoned as soon as decency allows (or sooner). They are replaced by discrete
models, which in turn are analysed by combinatorial techniques. Mathematicians,
though, follow a different mode of reasoning. Typically, mathematics students are
likely to participate in an advanced numerical analysis course in their final year of
undergraduate studies, or perhaps in the first postgraduate year. Their studies until
that point in time would have consisted, to a large extent, of a progression of formal
reasoning, the familiar sequence of axiom =- theorem = proof = corollary = ....
Numerical analysis does not fit easily into this straitjacket, and this goes a long way
toward explaining why many students of mathematics find it so unattractive.

Trying to teach numerical analysis to mathematicians, one is thus in a dilemma:
should the subject be presented purely as a mathematical theory, intellectually pleas-
ing but arid insofar as applications are concerned or, alternatively, should the audience
be administered an application-oriented culture shock that might well cause it to vote
with its feet?! The resolution is not very difficult, namely to present the material in
a bona fide mathematical manner, occasionally veering toward issues of applications
and algorithmics but never abandoning honesty and rigour. It is perfectly allowable
to omit an occasional proof (which might well require material outside the scope of
the presentation) and even to justify a numerical method on the grounds of plausi-
bility and a good track record in applications. But plausibility, a good track record,

xiii



xiv Preface

intuition and old-fashioned hand-waving do not constitute an honest mathematical
argument and should never be presented as such.

Secondly, students should be exposed in numerical analysis to both ordinary and
partial differential equations, as well as to means of dealing with large sparse algebraic
systems. The pressure of many mathematical subjects and sub-disciplines is such that
only a modest proportion of undergraduates are likely to take part in more than
a single advanced numerical analysis course. Many more will, in all likelihood, be
faced with the need to solve differential equations numerically in the future course of
their professional life. Therefore, the option of restricting the exposition to ordinary
differential equations, say, or to finite elements, while having the obvious merit of
cohesion and sharpness of focus is counterproductive in the long term.

To recapitulate, the ideal course in the numerical analysis of differential equations,
directed toward mathematics students, should be mathematically honest and rigorous
and provide its target audience with a wide range of skills in both ordinary and
partial differential equations. For the last decade I have been desperately trying to
find a textbook that can be used to my satisfaction in such a course — in vain. There
are many fine textbooks on particular aspects of the subject: numerical methods
for ordinary differential equations, finite elements, computation of sparse algebraic
systems. There are several books that span the whole subject but, unfortunately, at
a relatively low level of mathematical sophistication and rigour. But, to the best of
my knowledge, no text addresses itself to the right mathematical agenda at the right
level of maturity. Hence my frustration and hence the motivation behind this volume.

This is perhaps the place to review briefly the main features of this book.

* We cover a broad range of material: the numerical solution of ordinary differ-
ential equations by multistep and Runge-Kutta methods; finite difference and
finite element techniques for the Poisson equation; a variety of algorithms for
solving the large systems of sparse algebraic equations that occur in the course
of computing the solution of the Poisson equation; and, finally, methods for
parabolic and hyperbolic differential equations and techniques for their analysis.
There is probably enough material in this book for a one-year fast-paced course
and probably many lecturers will wish to cover only part of the material.

% This is a textbook for mathematics students. By implication, it is not a text-
book for computer scientists, engineers or natural scientists. As I have already
argued, each group of students has different concerns and thought modes. Each
assimilates knowledge differently. Hence, a textbook that attempts to be differ-
ent things to different audiences is likely to disappoint them all. Nevertheless,
non-mathematicians in need of numerical knowledge can benefit from this vol-
ume, but it is fair to observe that they should perhaps peruse it somewhat later
in their careers, when in possession of the appropriate degree of motivation and
background knowledge.

On an even more basic level of restriction, this is a textbook, not a monograph or
a collection of recipes. Emphatically, our mission is not to bring the exposition
to the state of the art or to highlight the most advanced developments. Likewise,
it is not our intention to provide techniques that cater for all possible problems
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and eventualities.

An annoying feature of many numerical analysis texts is that they display inor-
dinately long lists of methods and algorithms to solve any one problem. Thus,
not just one Runge-Kutta method but twenty! The hapless reader is left with an
arsenal of weapons but, all too often, without a clue which one to use and why.
In this volume we adopt an alternative approach: methods are derived from un-
derlying principles and these principles, rather than the algorithms themselves,
are at the centre of our argument. As soon as the underlying principles are
sorted out, algorithmic fireworks become the least challenging part of numerical
analysis — the real intellectual effort goes into the mathematical analysis.

This is not to say that issues of software are not important or that they are
somehow of a lesser scholarly pedigree. They receive our attention in Chap-
ter 6 and I hasten to emphasize that good software design is just as challenging
as theorem-proving. Indeed, the proper appreciation of difficulties in software
and applications is enhanced by the understanding of the analytic aspects of
numerical mathematics.

A truly exciting aspect of numerical analysis is the extensive use it makes of
different mathematical disciplines. If you believe that numerics are a mathe-
matical cop-out, a device for abandoning mathematics in favour of something
‘softer’, you are in for a shock. Numerical analysis is perhaps the most extensive
and varied user of a very wide range of mathematical theories, from basic lin-
ear algebra and calculus all the way to functional analysis, differential topology,
graph theory, analytic function theory, nonlinear dynamical systems, number
theory, convexity theory — and the list goes on and on. Hardly any theme in
modern mathematics fails to inspire and help numerical analysis. Hence, nu-
merical analysts must be open-minded and ready to borrow from a wide range
of mathematical skills — this is not a good bolt-hole for narrow specialists!

In this volume we emphasize the variety of mathematical themes that inspire
and inform numerical analysis. This is not as easy as it might sound, since it
is impossible to take for granted that students in different universities have a
similar knowledge of pure mathematics. In other words, it is often necessary
to devote a few pages to a topic which, in principle, has nothing to do with
numerical analysis per se but which, nonetheless, is required in our exposition.
I ask for the indulgence of those readers who are more knowledgeable in arcane
mathematical matters — all they need is simply to skip few pages. ..

There is a major difference between recalling and understanding a mathemati-
cal concept. Reading mathematical texts I often come across concepts that are
familiar and which I have certainly encountered in the past. Ask me, however,
to recite their precise definition and I will probably flunk the test. The proper
and virtuous course of action in such an instance is to pause, walk to the nearest
mathematical library and consult the right source. To be frank, although some-
times I pursue this course of action, more often than not I simply go on reading.
I have every reason to believe that I am not alone in this dubious practice.
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In this volume I have attempted a partial remedy to the aforementioned phe-
nomenon, by adding an appendix named ‘Bluffer’s guide to useful mathematics’.
This appendix lists in a perfunctory manner definitions and major theorems in
a range of topics — linear algebra, elementary functional analysis and approx-
imation theory — to which students should have been exposed previously but
which might have been forgotten. Its purpose is neither to substitute elemen-
tary mathematical courses nor to offer remedial teaching. If you flick too often
to the end of the book in search of a definition then, my friend, perhaps you
had better stop for a while and get to grips with the underlying subject, using
a proper textbook. Likewise, if you always pursue a virtuous course of action,
consulting a proper source in each and every case of doubt, please do not allow
me to tempt you off the straight and narrow.

Part of the etiquette of writing mathematics is to attribute material and to refer
to primary sources. This is important not just to quench the vanity of one’s
colleagues but also to set the record straight, as well as allowing an interested
reader access to more advanced material. Having said this, I entertain serious
doubts with regard to the practice of sprinkling each and every paragraph in a
textbook with copious references. The scenario is presumably that, having read
the sentence ‘. .. suppose that © € U, where U is a foliated widget [37]’, the reader
will look up the references, identify ‘[37]’ with a paper of J. Bloggs in Proc. SDW,
recognize the latter as Proceedings of the Society of Differentiable Widgets, walk
to the library, locate the journal (which will be actually on the shelf, rather
than on loan, misplaced or stolen) ... All this might not be far-fetched as far as
advanced mathematics monographs are concerned but makes very little sense in
an undergraduate context. Therefore I have adopted a practice whereby there
are no references in the text proper. Instead, each chapter is followed by a section
of ‘Comments and bibliography’, where we survey briefly further literature that
might be beneficial to students (and lecturers).

Such sections serve a further important purpose. Some students — am I too
optimistic? — might be interested and inspired by the material of the chapter.
For their benefit I have given in each ‘Comments and bibliography’ section a
brief discussion of further developments, algorithms, methods of analysis and
connections with other mathematical disciplines.

Clarity of exposition often hinges on transparency of notation. Thus, throughout
this book we use the following convention:

e lower-case lightface sloping letters (a,b, ¢, a, 3,7, ...) represent scalars;

e lower-case boldface sloping letters (a, b, ¢, o, 3,7, . ..) represent vectors;

e upper-case lightface letters (A, B,C,0,®,...) represent matrices;

e letters in calligraphic font (A, B,C,...) represent operators;

shell capitals (A,B,C,...) represent sets.
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Mathematical constants like i = v/—1 and e, the base of natural logarithms, are
denoted by roman, rather than italic letters. This follows British typesetting
convention and helps to identify the different components of a mathematical
formula.

As with any principle, our notational convention has its exceptions. For ex-
ample, in Section 3.1 we refer to Legendre and Chebyshev polynomials by the
conventional notation, P, and T},: any other course of action would have caused
utter confusion. And, again as with any principle, grey areas and ambiguities
abound. I have tried to eliminate them by applying common sense but this,
needless to say, is a highly subjective criterion.

This book started out life as two sets of condensed lecture notes — one for students of
Part II (the last year of undergraduate mathematics in Cambridge) and the other for
students of Part III (the Cambridge advanced degree course in mathematics). The task
of expanding lecture notes to a full-scale book is, unfortunately, more complicated than
producing a cup of hot soup from concentrate by adding boiling water, stirring and
simmering for a short while. Ultimately, it has taken the better part of a year, shared
with the usual commitments of academic life. The main portion of the manuscript
was written in Autumn 1994, during a sabbatical leave at the California Institute of
Technology (Caltech). It is my pleasant duty to acknowledge the hospitality of my
many good friends there and the perfect working environment in Pasadena.

A familiar computer proverb states that, while the first 90% of a programming
job takes 90% of the time, the remaining 10% also takes 90% of the time ... Writing
a textbook follows similar rules and, back home in Cambridge, I have spent several
months reading and rereading the manuscript. This is the place to thank a long list of
friends and colleagues whose help has been truly crucial: Brad Baxter (Imperial Col-
lege, London), Martin Buhmann (Swiss Institute of Technology, Ziirich), Yu-Chung
Chang (Caltech), Stephen Cowley (Cambridge), George Goodsell (Cambridge), Mike
Holst (Caltech), Herb Keller (Caltech), Yorke Liu (Cambridge), Michelle Schatzman
(Lyon), Andrew Stuart (Stanford), Stefan Vandewalle (Louven) and Antonella Zanna
(Cambridge). Some have read the manuscript and offered their comments. Some
provided software well beyond my own meagre programming skills and helped with
the figures and with computational examples. Some have experimented with the
manuscript upon their students and listened to their complaints. Some contributed
insight and occasionally saved me from embarrassing blunders. All have been help-
ful, encouraging and patient to a fault with my foibles and idiosyncrasies. None is
responsible for blunders, errors, mistakes, misprints and infelicities that, in spite of
my sincerest efforts, are bound to persist in this volume.

This is perhaps the place to extend thanks to two ‘friends’ that have made the
process of writing this book considerably easier: the TEX typesetting system and the
MATLAB package. These days we take mathematical typesetting for granted but it is
often forgotten that just a decade ago a mathematical manuscript would have been
hand-written, then typed and retyped and, finally, typeset by publishers — each stage
requiring laborious proofreading. In turn, MATLAB allows us a unique opportunity to
turn our office into a computational-cum-graphic laboratory, to bounce ideas off the
computer screen and produce informative figures and graphic displays. Not since the
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discovery of coffee have any inanimate objects caused so much pleasure to so many
mathematicians!

The editorial staff of Cambridge University Press, in particular Alan Harvey, David
Tranah and Roger Astley, went well beyond the call of duty in being helpful, friendly
and cooperative. Susan Parkinson, the copy editor, has worked to the highest stan-
dards. Her professionalism, diligence and good taste have done wonders in sparing the
readers numerous blunders and the more questionable examples of my hopeless wit.
This is a pleasant opportunity to thank them all.

Last but never the least, my wife and best friend, Dganit. Her encouragement,
advice and support cannot be quantified in conventional mathematical terms. Thank
you!

I wish to dedicate this book to my parents, Gisella and Israel. They are not
mathematicians, yet I have learnt from them all the really important things that have
motivated me as a mathematician: love of scholarship and admiration for beauty and
art.

Arieh Iserles
August 1995
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Ordinary differential equations
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Fuler’s method and beyond

1.1 Ordinary differential equations and the Lips-
chitz condition

We commence our exposition of the computational aspects of differential equations by
examining closely numerical methods for ordinary differential equations (ODEs). This
is important because of the central role of ODEs in a multitude of applications. Not
less crucial is the critical part that numerical ODEs play in the design and analysis of
computational methods for partial differential equations (PDEs). Thus, even if your
main interest is in solving PDEs, ideally you should first master computational ODEs,
not just to familiarize yourself with concepts, terminology and ideas but also because
(as we will see in what follows) many discretization methods for PDEs reduce the
underlying problem to the computation of ODEs.
Our goal is to approximate the solution of the problem

y/ = f(tvy)7 t> tO; 'y(to) =Yo- (11)

Here f is a sufficiently well-behaved function that maps [tg, c0) X R? to R? and the
initial condition y, € R? is a given vector; R? denotes here — and elsewhere in this
book — the d-dimensional real Euclidean space.

The ‘niceness’ of f may span a whole range of desirable attributes. At the very
least, we insist on f obeying, in a given vector norm || - ||, the Lipschitz condition

|f(t, ) — f(t,y)| < Nz —y| forall = yeR t>t. (1.2)

Here A > 0 is a real constant that is independent of the choice of  and y — a
Lipschitz constant. Subject to (1.2), it is possible to prove that the ODE system (1.1)
possesses a unique solution.! Taking a stronger requirement, we may stipulate that
f is an analytic function — in other words, that the Taylor series of f about every
(t,yq) € [0,00) x R? has a positive radius of convergence. It is then possible to prove
that the solution y itself is analytic. Analyticity comes in handy, since much of our
investigation of numerical methods is based on Taylor expansions, but it is often an
excessive requirement and excludes many ODEs of practical importance.

In this volume we strive to steer a middle course between the complementary vices
of mathematical nitpicking and of hand-waving. We solemnly undertake to avoid any

1'We refer the reader to the Appendix for a brief refresher course on norms, existence and unique-
ness theorems for ODEs and other useful odds and ends of mathematics.
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needless mention of exotic function spaces that present the theory in its most general
form, whilst desisting from woolly and inexact statements. Thus, we always assume
that f is Lipschitz and, as necessary, may explicitly stipulate that it is analytic.
An intelligent reader could, if the need arose, easily weaken many of our ‘analytic’
statements so that they are applicable also to sufficiently-differentiable functions.

1.2 Euler’s method

Let us ponder briefly the meaning of the ODE (1.1). We possess two items of in-
formation: we know the value of y at a single point ¢ = t3 and, given any function
value y € R? and time ¢ > to, we can tell the slope from the differential equation.
The purpose of the exercise being to guess the value of y at a new point, the most
elementary approach is to use linear interpolation. In other words, we estimate y(t)
by making the approximation f(¢,y(t)) ~ f(to,y(to)) for t € [tg,to + h], where h > 0
is sufficiently small. Integrating (1.1),

y(t) = ylto) + / Fry(r) dr ~ o + (t — to) £ (to, yo)- (1.3)

Given a sequence tg, t1 = tg+ h, to = tg+ 2h, ..., where h > 0 is the time step, we
denote by y,, a numerical estimate of the exact solution y(¢,), n =0, 1, ... Motivated
by (1.3), we choose

Y1 = Yo + hf(to,yo)

This procedure can be continued to produce approximants at ts, t3 and so on. In
general, we obtain the recursive scheme

Ypi1 = Y + 0 (tnyn)s n=01,..., (1.4)

the celebrated Euler method.

Euler’s method is not only the most elementary computational scheme for ODEs
and, simplicity notwithstanding, of enduring practical importance. It is also the cor-
nerstone of the numerical analysis of differential equations of evolution. In a deep
and profound sense, all the fancy multistep and Runge-Kutta schemes that we shall
discuss are nothing but a generalization of the basic paradigm (1.4).

< Graphic interpretation  Euler’s method can be illustrated pictorially.
.3 . . . _ _ 1
Consider, for example, the scalar logistic equation y' = y(1 —y), y(0) = 5.
Fig. 1.1 displays the first few steps of Euler’s method, with a grotesquely large
step h = 1. For each step we show the exact solution with initial condition
y(tn) = yn in the vicinity of t,, = nh (dotted line) and the linear interpolation

via Euler’s method (1.4) (solid line).

The initial condition being, by definition, exact, so is the slope at to. However,
instead of following a curved trajectory the numerical solution is piecewise-
linear. Having reached ¢, say, we have moved to a wrong trajectory (i.e.,
corresponding to a different initial condition). The slope at ¢; is wrong — or,
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rather, it is the correct slope of the wrong solution! Advancing further, we
might well stray even more from the original trajectory.

A realistic goal of numerical solution is not, however, to avoid errors alto-
gether; after all, we approximate since we do not know the exact solution in
the first place! An error-generating mechanism exists in every algorithm for
numerical ODEs and our purpose is to understand it and to ensure that, in a
given implementation, errors do not accumulate beyond a specified tolerance.
Remarkably, even the excessive step h = 1 leads in Fig. 1.1 to a relatively
modest local error. o

09 -

0.8 -

04+ . i

03

0.2 -

0.1 _

1 1 1
0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
t

Figure 1.1 Euler’s method, as applied to the equation y’ = y(1 — y) with initial

value y(0) = 5.

Euler’s method can be easily extended to cater for variable steps. Thus, for a general
monotone sequence tg < t; < to < --- we approximate as follows:

y(tn+1) RYpy1 =Yp t+ hnf(tnayn)v

where h, = t,4+1 —tn, n = 0,1,... However, for the time being we restrict ourselves
to constant steps.

How good is Euler’s method in approximating (1.1)? Before we even attempt to
answer this question, we need to formulate it with considerably more rigour. Thus,
suppose that we wish to compute a numerical solution of (1.1) in the compact interval
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[to, to +t*] with some time-stepping numerical method, not necessarily Euler’s scheme.
In other words, we cover the interval by an equidistant grid and employ the time-
stepping procedure to produce a numerical solution. Each grid is associated with a
different numerical sequence and the critical question is whether, as A — 0 and the
grid is being refined, the numerical solution tends to the exact solution of (1.1). More
formally, we express the dependence of the numerical solution upon the step size by
the notation y,, = y,, ,, n =0,1,...,[t*/h]. A method is said to be convergent if, for
every ODE (1.1) with a Lipschitz function f and every t* > 0 it is true that
Jdim o max g =yt =0,

where |« € Z is the integer part of a € R. Hence, convergence means that, for
every Lipschitz function, the numerical solution tends to the true solution as the grid
becomes increasingly fine.?

In the next few chapters we will mention several desirable attributes of numerical
methods for ODEs. It is crucial to understand that convergence is not just another
‘desirable’ property but, rather, a sine qua non of any numerical scheme. Unless it
converges, a numerical method is useless!

Theorem 1.1 Euler’s method (1.4) is convergent.

Proof We prove this theorem subject to the extra assumption that the function
f (and therefore also y) is analytic (it is enough, in fact, to stipulate the weaker
condition of continuous differentiability).

Given h >0 and y,, =y, 5, n =0,1,...,[t"/h], we let e, = y,, , — y(t,) denote

the numerical error. Thus, we wish to prove that limy_,o4 max, ||en | = 0.
By Taylor’s theorem and the differential equation (1.1),
Y(tur1) = Y(ta) + hy'(t,) + O(h?) = y(tn) + hf(tn, y(ta)) + O(h*),  (L.5)

and, y being continuously differentiable, the (’)(h2) term can be bounded (in a given
norm) uniformly for all A > 0 and n < [t*/h] by a term of the form ch?, where ¢ > 0
is a constant. We subtract (1.5) from (1.4), giving

€n+1)h = en}h + h[f(tnay(tn> + en,h) - f(tn7 y( ))] + O(h2)

Thus, it follows by the triangle inequality from the Lipschitz condition and the afore-
mentioned bound on the O(h2) reminder term that

lensinll < llennll + hllf (tn, y(tn) + €nn) = F(tn, y ()| + ch®
< (14 h\)||lennl + ch?, n=0,1,...,|t"/h] — 1. (1.6)

We now claim that

lenn] < gh[(l—kh)\)”—l], n=01,... (1.7)

2We have just introduced a norm through the back door: cf. appendix subsection A.1.3.3 for
an exact definition. This, however, should cause no worry, since all norms are equivalent in finite-
dimensional spaces. In other words, if a method is convergent in one norm, it converges in all ...
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The proof is by induction on n. When n = 0 we need to prove that |leg | < 0 and
hence that ey, = 0. This is certainly true, since at ¢y the numerical solution matches
the initial condition and the error is zero.

For general n > 0 we assume that (1.7) is true up to n and use (1.6) to argue that

lensinll < (1+ hx)gh [(1+hN)" — 1]+ ch? = gh (14 hN)"H —1].

This advances the inductive argument from n to n+1 and proves that (1.7) is true. The
constant h\ is positive, therefore 1 + hA < e"* and we deduce that (1 + h\)™ < e,
The index n is allowed to range in {0,1,..., [t*/h]}, hence (1 + h\)™ < elt’/MPA <
et”A. Substituting into (1.7), we obtain the inequality

C * «
||en,h||§X(et)‘—1)h7 n=0,1,...,[t"/h].

Since c(e! » —1)/) is independent of h, it follows that

lim |e,n|| =0.
h—0
0<nh<t*

In other words, Euler’s method is convergent. [ |

<& Health warning At first sight, it might appear that there is more to the
last theorem than meets the eye — not just a proof of convergence but also
an upper bound on the error. In principle this is perfectly true: the error
of Euler’s method is indeed always bounded by hecet * /A. Moreover, with
very little effort it is possible to demonstrate, e.g. by using the Peano kernel
theorem (A.2.2.6), that a reasonable choice is ¢ = max;efs 1,4+ [|¥” (¢)]. The
problem with this bound is that, unfortunately, in an overwhelming majority
of practical cases it is too large by many orders of magnitude. It falls into the
broad category of statements like ‘the distance between London and New York
is less than 47 light years’ which, although manifestly true, fail to contribute
significantly to the sum total of human knowledge.

The problem is not with the proof per se but with the insensitivity of a
Lipschitz constant. A trivial example is the scalar linear equation y’ = —100y,
y(0) = 1. Therefore A = 100 and, since y(t) = e 719 ¢ = A2, We thus derive
the upper bound of 100h (e’ — 1). Letting t* = 1, say, we have

yn — y(nh)| < 2.69 x 10*A. (1.8)

It is easy, however, to show that y, = (1 — 100h)™, hence to derive the exact

expression
lyn — y(nh)| = |(1 — 100R)™ — e~ 100" |

which is smaller by many orders of magnitude than (1.8) (note that, unless
nh is very small, to all intents and purposes e~ 190" ~ ().

The moral of our discussion is simple. The bound from the proof of Theorem
1.1 must not be used in practical estimations of numerical error! <&
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Euler’s method can be rewritten in the form vy, ., — [y,, +hf(tn,y,)] = 0. Replacing
Yy, by the exact solution y(tx), k = n,n + 1, and expanding the first few terms of the
Taylor series about ¢ = ty + nh, we obtain

y(tn+1) - [y(tn) + hf(tna y(tn))]
= [y(tn) + hy (tn) + O(B)] = [y(tn) + hy' (tn)] = O(R?) .

We say that the Euler’s method (1.4) is of order 1. In general, given an arbitrary
time-stepping method

yn+1:yn(.f7h7y0ay17"'ayn)7 n20717"'7

for the ODE (1.1), we say that it is of order p if

y( n+1> yn(f h y(tO) y(tl), SRR y(tn)> = O(hp+1>

for every analytic f and n = 0,1, ... Alternatively, a method is of order p if it recovers
ezxactly every polynomial solution of degree p or less.

The order of a numerical method provides us with information about its local
behaviour — advancing from t, to t,11, where h > 0 is sufficiently small, we are
incurring an error of O(AP™!). Our main interest, however, is in not the local but
the global behaviour of the method: how well is it doing in a fixed bounded interval
of integration as h — 07 Does it converge to the true solution? How fast? Since
the local error decays as O(hpﬂ), the number of steps increases as O(hil). The
naive expectation is that the global error decreases as O(hP), but — as we will see
in Chapter 2 — it cannot be taken for granted for each and every numerical method
without an additional condition. As far as Euler’s method is concerned, Theorem 1.1
demonstrates that all is well and that the error indeed decays as O(h).

1.3 The trapezoidal rule

Euler’s method approximates the derivative by a constant in [t,, t,41], namely by its
value at ¢, (again, we denote ty = tg + kh, k = 0,1,...). Clearly, the ‘cantilever-
ing’ approximation is not very good and it makes more sense to make the constant
approximation of the derivative equal to the average of its values at the endpoints.
Bearing in mind that derivatives are given by the differential equation, we thus obtain
an expression similar to (1.3):

y(t /ny
R y(tn) + 3t —ta)[f (tn y(tn)) + F(Ey(1))].

This is the motivation behind the trapezoidal rule

Ypt1 = 1h’[.f(tn7yn) + f(tn-i-l,ynJrl)]' (19)
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To obtain the order of (1.9), we substitute the exact solution,
y(tn—i-l) - {y(tn) + %h[f(tna y(tn)) + f(tn-‘rlv y(tn-‘rl))]}
= [y(tn) + hy/(tn) + 307y (8n) + O (h7)]
— (y(tn) + 32 {0/ (tn) + [¥/ (tn) + by (tn) + O (1*)]}) = O(h?) .

Therefore the trapezoidal rule is of order 2.

Being forewarned of the shortcomings of local analysis, we should not jump to
conclusions. Before we infer that the error decays globally as O(h2), we must first
prove that the method is convergent. Fortunately, this can be accomplished by a
straightforward generalization of the method of proof of Theorem 1.1.

Theorem 1.2  The trapezoidal rule (1.9) is convergent.

Proof Subtracting
Y(tnt1) = y(tn) + 57 [ (tn, y(ta)) + F(tar1, y(tar))] + O(R%)

from (1.9), we obtain

€nt1,h = €enph + %h{[f(tmyn) - f(tnv'y(t ))]
+ [f(tn+17yn+1) - f( n+17y tnt1 ]} + O(hs)

For analytic f we may bound the O(h®) term by ch® for some ¢ > 0, and this
upper bound is valid uniformly throughout [to, to + ¢*]. Therefore, it follows from the
Lipschitz condition (1.2) and the triangle inequality that

lentinll < llennll + 3hA {llennll + llensrnll} + ch®.

Since we are ultimately interested in letting h — 0 there is no harm in assuming that
hX < 2, and we can thus deduce that

1+ 1hA c
n <[ —2Z) |len — | 1.10
||€ J,-LhH_ <1—;h>\> ||e 7h|+<1_§h)\> ( )

Our next step closely parallels the derivation of inequality (1.7). We thus argue that
1+ 2ha\"

(Jr’f) —1| % (1.11)
1—5hA

This follows by induction on n from (1.10) and is left as an exercise to the reader.
Since 0 < hA < 2, it is true that

1+ 1hA =1 ¢ ( 2 >
= ]_ — = _— .
—1px ; I ( h>\> P T Iha

lensll <

w\»—l

Consequently, (1.11) yields

lewall < ch? (1+LnA\" ok nh\
n S —~— | T/ S —(— €X — ] -
M=\ = I A TP T I
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This bound is true for every nonnegative integer n such that nh < t*. Therefore
< ch? 2P
Loexp [ 2
DN G Y

lim |le,n| =0.
h—0

len,n
and we deduce that

0<nh<t*

In other words, the trapezoidal rule converges. [ |

The number ch? exp[t*A/(1 — $hA)]/X is, again, of absolutely no use in practical
error bounds. However, a significant difference from Theorem 1.1 is that for the
trapezoidal rule the error decays globally as O(h2). This is to be expected from a
second-order method if its convergence has been established.

Another difference between the trapezoidal rule and Euler’s method is of an entirely
different character. Whereas Euler’s method (1.4) can be executed explicitly — knowing
Y, we can produce ¥y, by computing a value of f and making a few arithmetic
operations — this is not the case with (1.9). The vector v =y,, + $hf(tn,y,,) can be
evaluated from known data, but that leaves us in each step with the task of finding
Y41 as the solution of the system of algebraic equations

yn+1 - %hf(tn—i—l,ynqu) =70

The trapezoidal rule is thus said to be implicit, to distinguish it from the explicit
Euler’s method and its ilk.

Solving nonlinear equations is hardly a mission impossible, but we cannot take it
for granted either. Only in texts on pure mathematics are we allowed to wave a magic
wand, exclaim ‘let y,,,; be a solution of ...” and assume that all our problems are
over. As soon as we come to deal with actual computation, we had better specify how
we plan (or our computer plans) to undertake the task of evaluating y,,, ;. This will
be a theme of Chapter 7, which deals with the implementation of ODE methods. It
suffices to state now that the cost of numerically solving nonlinear equations does not
rule out the trapezoidal rule (and other implicit methods) as viable computational
instruments. Implicitness is just one attribute of a numerical method and we must
weigh it alongside other features.

<& A ‘good’ example Figure 1.2 displays the (natural) logarithm of the error
in the numerical solution of the scalar linear equation vy’ = —y + 2e~* cos 2t,
y(0) = 0 for (in descending order) h = %, h = 15 and h = ;.
How well does the plot illustrate our main distinction between Euler’s method
and the trapezoidal rule, namely faster decay of the error for the latter? As
often in life, information is somewhat obscured by extraneous ‘noise’; in the
present case the error oscillates. This can be easily explained by the periodic
component of the exact solution y(#) = e~!sin 2¢. Another observation is that,
for both Euler’s method and the trapezoidal rule, the error, twists and turns
notwithstanding, does decay. This, on the face of it, can be explained by the
decay of the exact solution but is an important piece of news nonetheless.
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The Euler method

Figure 1.2 FEuler’s method and the trapezoidal rule, as applied to y =
—y+2e " cos 2t, y(0) = 0. The logarithm of the error, In |y, —y(t,)|, is displayed for
h = 3 (solid line), h = & (broken line) and h = 25 (broken-and-dotted line).

Our most pessimistic assumption is that errors might accumulate from step
to step but, as can be seen from this example, this prophecy of doom is often
misplaced. This is a highly nontrivial point, which will be debated at greater
length throughout Chapter 4.

Factoring out oscillations and decay, we observe that errors indeed decrease
with h. More careful examination verifies that they increase at roughly the
rate predicted by order considerations. Specifically, for a convergent method
of order p we have ||e|| =~ chP, hence In ||e|| ~ In c+pIn h. Denoting by e() and
e the errors corresponding to step sizes k(1) and h(?) respectively, it follows
that In ||e®|| ~ In ||e™|| — pIn(h® /A1), The ratio of consecutive step sizes
in Fig. 1.2 being five, we expect the error to decay by (at least) a constant
multiple of In5 = 1.6094 and 2In5 ~ 3.2189 for Euler and the trapezoidal

rule respectively. The actual error decays if anything slightly faster than this.

< A ‘bad’ example  Theorems 1.1 and 1.2 and, indeed, the whole numerical
ODE theory, rest upon the assumption that (1.1) satisfies the Lipschitz con-

11
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dition. We can expect numerical methods to underperform in the absence of
(1.2), and this is vindicated by experiment. In Figs. 1.3 and 1.4 we display
the numerical solution of the equation ' =In3 (y — |y] — 3), y(0) = 0. It is
easy to verify that the exact solution is

y(t) = —|t] + %(1 —3t—W), t>0,

where |z is the integer part of z € R.
However, the equation fails the Lipschitz condition. In order to demonstrate
this, we let m > 1 be an integer and set x = m+¢, 2 = m—e, wheree € (0, i)

Then 1_9
(@121 -3 - (= 1z) - }) | = o — ]

and, since € can be arbitrarily small, we see that inequality (1.2) cannot be
satisfied for a finite \.

Figures 1.3 and 1.4 display the error for h = ﬁ and h = Tlot)' We observe
that, although the error decreases with h, the rate of decay for both methods

is just O(h): for the trapezoidal rule this falls short of what can be expected

in a Lipschitz case. The source of the errors is clear: integer points, where
locally the function fails the Lipschitz condition. Note that both methods
perform equally badly — but when the ODE is not Lipschitz, all bets are off! <&
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Figure 1.3 The error using Euler’s method for ¢ = In3 (y - ly] - %), y(0) = 0.
The upper figure corresponds to h = Wlo and the lower to h = Tlo()'

Two assumptions have led us to the trapezoidal rule. Firstly, for sufficiently small A, it
is a good idea to approximate the derivative by a constant and, secondly, in choosing
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SN NN

1

o

—0.06 -

o

—0.002

—0.004

—0.006

—0.008

—0.010

Figure 1.4 The error using the trapezoidal rule for the same equation as in
Fig. 1.3. The upper figure corresponds to h = 145 and the lower to h = 1os5.

the constant we should not ‘discriminate’ between the endpoints — hence the average

y,(t) ~ %[f(tﬂnyn) + f(tn+17yn+l)]

is a sensible choice. Similar reasoning leads, however, to an alternative approximation,
")~ f (tn + 3h, 3(y, + ) t € [tn,tni1]
Y n 31 5\ Yy Ynt1))s nsy bn+1]s
and to the implicit midpoint rule

Tt is easy to prove that (1.12) is second order and that it converges. This is left to the

reader in Exercise 1.1.
The implicit midpoint rule is a special case of the Runge—Kutta method. We defer

the discussion of such methods to Chapter 3.

1.4 The theta method

Both Euler’s method and the trapezoidal rule fit the general pattern

yn—',—l :yn+h[0f(tnayn) + (1 _9)f(t7l+17yn+l)}7 n= Oala"'a (113)

with 6 =1 and 6 = % respectively. We may contemplate using (1.13) for any fixed

value of § € [0,1] and this, appropriately enough, is called a theta method. It is explicit
for 8 = 1, otherwise implicit.
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Although we can interpret (1.13) geometrically — the slope of the solution is as-
sumed to be piecewise constant and provided by a linear combination of derivatives
at the endpoints of each interval — we prefer the formal route of a Taylor expansion.
Thus, substituting the exact solution y(t),

Y(tnt1) —y(tn) = hOF(tn, y(tn)) + (1 = 0) f(tns1, Y(tnt1))]
= Y(tns1) = y(tn) — AOY () + (1 — O)Y (tnt1)]
= [y(tn) + hy'(tn) + $h*Y" (tn) + th°Y" (tn)] — y(tn)

—n{oy (1) + (1= 0) [y (ta) + by () + 30" (82)] } + O(h")
= (60— 2)R%Y"(tn) + (360 — 3) Py (t,) + O(hY). (1.14)

Therefore the method is of order 2 for § = 1 (the trapezoidal rule) and otherwise of
order one. Moreover, by expanding further than is strictly required by order consider-
ations, we can extract from (1.14) an extra morsel of information. Thus, subtracting
the last expression from

Ynt1 —Yn — h [ef(tnvyn) + (1 - e)f(tn-l-lvyn-&-l)] =0,

we obtain for sufficiently small h > 0

€nt1 = €y + eh[f(tnay(tn) + en) - f(tn7y(tn))]
+ (L= Oh[f(tnr1, Y(tns1) + €nt1) — Fltnr1, Y(tni1))]

*ﬁhgy”’(tn)+0(h4), 0 = %7
+ (60— 3)R%Y"(t,) + O(R3), 0 +# 3.

Considering e, 1 as an unknown, we apply the implicit function theorem — this is
allowed since f is analytic and, for sufficiently small A > 0, the matrix

6.f(tn+1 ) y(tn—i-l ))

I—(1-06)h
(1-0) o
is nonsingular. The conclusion is that
— L3y (t,) + O(hY), 0=13,

€nt1 = €y

+(0—3) W2y (tn) +O(R®),  0# 3.

The theta method is convergent for every 6 € [0, 1], as can be verified with ease by
generalizing the proofs of Theorems 1.1 and 1.2. This is is the subject of Exercise 1.1.

Why, a vigilant reader might ask, bother with the theta method except for the
special values # = 1 and 6 = %7 After all, the first is unique in conferring explicitness
and the second is the only second-order theta method. The reasons are threefold.
Firstly, the whole concept of order is based on the assumption that the numerical
error is concentrated mainly in the leading term of its Taylor expansion. This is
true as h — 0, except that the step length, when implemented on a real computer,
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never actually tends to zero ... Thus, in very special circumstances we might wish
to annihilate higher-order terms in the error expansion; for example, letting 6 = %

gets rid of the O(hB) term while retaining the O(hQ) component. Secondly, the theta
method is our first example of a more general approach to the design of numerical
algorithms, whereby simple geometric intuition is replaced by a more formal approach
based on a Taylor expansion and the implicit function theorem. Its study is a good
preparation for the material of Chapters 2 and 3. Finally, the choice § = 0 is of great
practical relevance. The first-order implicit method

Yni1 =Yn F AL (g1, Ypir) n=20,1,..., (1.15)

is called the backward Euler’s method and is a favourite algorithm for the solution of
stiff ODEs. We defer the discussion of stiff equations to Chapter 4, where the merits
of the backward Euler’s method and similar schemes will become clear.

Comments and bibliography

An implicit goal of this book is to demonstrate that the computation of differential equations
is not about discretizing everything in sight by the first available finite-difference approxima-
tion and throwing it on the nearest computer. It is all about designing clever and efficient
algorithms and understanding their mathematical features. The narrative of this chapter in-
troduces us to convergence and order, the essential building blocks in this quest to understand
discretization methods.

We assume very little knowledge of the analytic (as opposed to numerical) theory of ODEs
throughout this volume: just the concepts of existence, uniqueness, the Lipschitz condition
and (mainly in Chapter 4) explicit solution of linear initial value systems. In Chapter 5
we will be concerned with more specialized geometric features of ODEs but we take care
to explain there all nontrivial issues. A brief résumé of essential knowledge is reviewed in
Appendix section A.2.3, but a diligent reader will do well to refresh his or her memory with
a thorough look at a reputable textbook, for example Birkhoff & Rota (1978) or Boyce &
DiPrima (1986).

Euler’s method, the grandaddy of all numerical schemes for differential equations, is
introduced in just about every relevant textbook (e.g. Conte & de Boor, 1990; Hairer et al.,
1991; Isaacson & Keller, 1966; Lambert, 1991), as is the trapezoidal rule. More traditional
books have devoted considerable effort toward proving, with the Euler-Maclaurin formula
(Ralston, 1965), that the error of the trapezoidal rule can be expanded in odd powers of h (cf.
Exercise 1.8), but it seems that nowadays hardly anybody cares much about this observation,
except for its applications to Richardson’s extrapolation (Isaacson & Keller, 1966).

We have mentioned in Section 1.2 the Peano kernel theorem. Its knowledge is marginal
to the subject matter of this book. However, if you want to understand mathematics and
learn a simple, yet beautiful, result in approximation theory, we refer to A.2.2.6 and A.2.2.7
and references therein.

Birkhoff, G. and Rota, G.-C. (1978), Ordinary Differential Equations (3rd edn), Wiley, New
York.

Boyce, W.E. and DiPrima, R.C. (1986), Elementary Differential Equations and Boundary
Value Problems (4th edn), Wiley, New York.
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Conte, S.D. and de Boor, C. (1990), Elementary Numerical Analysis: An Algorithmic Ap-
proach (3rd edn), McGraw-Hill Kégakusha, Tokyo.

Hairer, E, Ngrsett, S.P. and Wanner, G. (1991), Solving Ordinary Differential Equations I:
Nonstiff Problems (2nd edn) Springer-Verlag, Berlin.

Isaacson, E. and Keller, H.B. (1966), Analysis of Numerical Methods, Wiley, New York.
Lambert, J.D. (1991), Numerical Methods for Ordinary Differential Systems, Wiley, London.

Ralston, A. (1965), A First Course in Numerical Analysis, McGraw-Hill Kogakusha, New

York.
Exercises
1.1 Apply the method of proof of Theorems 1.1 and 1.2 to prove the convergence
of the implicit midpoint rule (1.12) and of the theta method (1.13).
1.2 The linear system y’ = Ay, y(0) = y,, where A is a symmetric matrix, is

1.3

solved by Euler’s method.

Letting e,, = y,, — y(nh), n =0,1,..., prove that

eyll2 < max [(1 4+ h\)" — e
leala < ol ma |1+ n)" = ).
where o (A) is the set of eigenvalues of A and || - ||2 is the Euclidean matrix

norm (cf. A.1.3.3).
Demonstrate that for every —1 < £ <0 and n =0,1,... it is true that

e _ %n;CZe(n—l)x < (1 +x)n < e

(Hint: Prove first that 1 + © < &%, 14+ + %azQ >e® for all z <0, and
then argue that, provided |a — 1| and |b| are small, it is true that (a — b)™ >
a™ —na™"'b.)

Suppose that the maximal eigenvalue of A is Ay ax < 0. Prove that, as h — 0
and nh — t € [0,t*],

lenllz < 5N (lyollh < 58" Xsaucllyoll2h.

2 " max

Compare the order of magnitude of this bound with the upper bound from
Theorem 1.1 in the case

2 1 .
a=[ 7 5] eew

We solve the scalar linear system y' = ay, y(0) = 1.
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a Show that the ‘continuous output’ method

1 t —nh
+ a( n) nh<t<(n+1h, n=0,1,...,

) = TG =y ¥ =

is consistent with the values of y, and y,4; which are obtained by the
trapezoidal rule.

b Demonstrate that u obeys the perturbed ODE
ad(t —nh)?

5 Yns
a(t —nh)]

u'(t) = au(t) + i

T € [nh, (n + 1)),

[N

with initial condition u(nh) = y,. Thus, prove that

h —Ta 2d7’
1+l&/‘————— .
i) = Lar2|?

c Let e, =y, —y(nh),n=0,1,.... Show that

h _—71a,.2 h _—
e Teradr e Ttradr
1 + en + la3e(n+1)ha/ ]
/0 (1 lar)? Z o (1—ZLary2

u((n + 1)h) =

En+1 = e

In particular, deduce that a < 0 implies that the error propagates subject
to the inequality

h h
lenta] < e (1 + i|a|3/ e 2d7'> len| + 1 |a|se(n+1) / e T2 dr.
0 0

1.4  Given 0 € [0,1], find the order of the method

1.5 Provided that f is analytic, it is possible to obtain from y’" = f(¢,y) an
expression for the second derivative of y, namely y” = g(t,y), where

of(t,y) n of(t,y)

P oy F(t,y).

g(t,y) =
Find the orders of the methods
Y1 = Yn + hF (tnsy,) + 50%9(t0, 9,
and
Y1 = Yo+ 5t )+ F (g, Y )]+ 150°(9 (0 ¥0) — 9 (g1, Yri))-

1.6*  Assuming that g is Lipschitz, prove that both methods from Exercise 1.5
converge.
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1.7

1.8
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Repeated differentiation of the ODE (1.1), for analytic f, yields explicit
expressions for functions g,, such that

d™y(t)
dtm,

=9g,(ty()), m=0,1,...

Hence gy(t,y) = y and g,(t,y) = f(t,y); g, has been already defined in
Exercise 1.5 as g.

Assuming for simplicity that f = f(y) (i.e. that the ODE system (1.1) is
autonomous), derive gs.

Prove that the mth Taylor method
ynJrl:ZEh gk(truyn)’ TLZO,l,...,
k=0 "

is of order m for m =1,2,...

Let f(y) = Ay + b, where the matrix A and the vector b are independent of
t. Find the explicit form of g,,, for m = 0,1,... and thereby prove that the
mth Taylor method reduces to the recurrence

(N L ek Lok _
yn+1_<zk!hA>yn+<Zk!hA b, n=01,...
k=0 k=1

Let f be analytic. Prove that, for sufficiently small A > 0 and an analytic
function «, the function

x(t+h) —x(t—h) — hf (%(az(t— h) —i—a:(t—i—h)))

can be expanded into power series in odd powers of h. Deduce that the error
in the implicit midpoint rule (1.13), when applied to autonomous ODEs
y' = f(y) also admits an expansion in odd powers of h. (Hint: First try
to prove the statement for a scalar function f. Once you have solved this
problem, a generalization should present no difficulties.)
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Multistep methods

2.1 The Adams method

A typical numerical method for an initial value ODE system computes the solution
on a step-by-step basis. Thus, the Euler method advances the solution from ¢¢ to t;
using y, as an initial value. Next, to advance from t; to to, we discard y, and employ
Yy, as the new initial value.

Numerical analysts, however, are thrifty by nature. Why discard a potentially
valuable vector y,? Or, with greater generality, why not make the solution depend
on several past values, provided that these values are available?

There is one perfectly good reason why not — the exact solution of

y =fty), t>te,  ylto) =1y (2.1)

is uniquely determined (f being Lipschitz) by a single initial condition. Any attempt
to pin the solution down at more than one point is mathematically nonsensical or, at
best, redundant. This, however, is valid only with regard to the true solution of (2.1).
When it comes to computation, this redundancy becomes our friend and past values of
y can be put to a very good use — provided, however, that we are very careful indeed.

Thus let us suppose again that y,, is the numerical solution at ¢,, = ¢y +nh, where
h > 0 is the step size, and let us attempt to derive an algorithm that intelligently
exploits past values. To that end, we assume that

Y = Y(tm) + O(R¥T), m=0,1,...,n+s—1, (2.2)

where s > 1 is a given integer. Our wish being to advance the solution from t,_s41
to t,+s, we commence from the trivial identity

trnts

tnts
Ylts) =t + [ YO dr =yl + [ fry)dn (23)
tnts—1 tnts—1
Wishing to exploit (2.3) for computational ends, we note that the integral on the right
incorporates y not just at the grid points — where approximations are available — but
throughout the interval [t,4s—1,tnts]. The main idea of an Adams method is to use
past values of the solution to approximate g’ in the interval of integration. Thus,
let p be an interpolation polynomial (cf. A.2.2.1-A.2.2.5) that matches f(t,,,y,,) for
m=n,n+1,,...,n+s— 1. Explicitly,

p(t) = i Pm (t)f<tn+mv yn+m)7

m=0

19
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where the functions

s—1

t—t, e Lt
pm(t)zl_[t v _ (1) )!g( - —z), (2.4)

" lntm — tnte m'(s —1-m
L#m L#m

for every m = 0,1,...,s — 1, are Lagrange interpolation polynomials. It is an easy
exercise to verify that indeed p(t,,) = f(tm,y,,) foralm =n,n+1,...,n+s— 1.
Hence, (2.2) implies that p(t,,) = y'(tm) + O(h®) for this range of m. We now use
interpolation theory from A.2.2.2 to argue that, y being sufficiently smooth,

p(t) = y/(t) + O(hs) 9 te [tn+sflatn+s]'

We next substitute p in the integrand of (2.3), replace y(tn4+s—1) by ¥, ,_1 there
and, having integrated along an interval of length A, incur an error of (’)(h5+1). In
other words, the method

s—1
Ynis = Ynts—1 +h Z bm.f(tn—‘rma yn+m)a (25)
m=0
where
n+s
m = h" / T)dr =h~ /pm tnts—1 + 7)dT, m=0,1,...,s—1,
tnts—1

is of order p = s. Note from (2.4) that the coefficients by, b1, ..., bs_1 are independent
of n and of h; thus we can subsequently use them to advance the iteration from ¢,
to tp4s+1 and so on.

The scheme (2.5) is called the s-step Adams—Bashforth method.

Having derived explicit expressions, it is easy to state Adams—Bashforth methods
for moderate values of s. Thus, for s = 1 we encounter our old friend, the Euler
method, whereas s = 2 gives

Ynio = Ynia +h [%f(thrlvynJrl) - %f(tnv yn)] (26)

and s = 3 gives

yn+3 = yn+2 + h [%f(tn+27yn+2) - %f(t7t+1’yn+1) + %f(tnayn)] . (27)

Figure 2.1 displays the logarithm of the error in the solution of ¢’ = —y2, y(0) = 1, by
Euler’s method and the schemes (2.6) and (2.7). The important information can be
read off the y-scale: when h is halved, say, Euler’s error decreases linearly, the error
of (2.6) decays quadratically and (2.7) displays cubic decay. This is hardly surprising,
since the order of the s-step Adams—Bashforth method is, after all, s and the global
error decays as O(h®).

Adams-Bashforth methods are just one instance of multistep methods. In the
remainder of this chapter we will encounter several other families of such schemes.
Later in this book we will learn that different multistep methods are suitable in dif-
ferent situations. First, however, we need to study the general theory of order and
convergence.
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h=1/5 h =1/10

Figure 2.1 Plots of In |y, — y(¢»)| for the first three Adams—Bashforth methods,
as applied to the equation y' = —y?, y(0) = 1. Euler’s method, (2.6) and (2.7)
correspond to the solid, broken and broken-and-dotted lines respectively.

2.2 Order and convergence of multistep methods

We write a general s-step method in the form

S S
> amYpim =h Y bmFtntm Ypim), =01, (2.8)
m=0 m=0
where a,,, by, m = 0,1,...,s, are given constants, independent of h, n and the un-

derlying differential equation. It is conventional to normalize (2.8) by letting as = 1.
When by = 0 (as is the case with the Adams—Bashforth method) the method is said
to be explicit; otherwise it is implicit.

Since we are about to encounter several criteria that play an important role in
choosing the coefficients a,, and b,,, a central consideration is to obtain a reasonable
value of the order. Recasting the definition from Chapter 1, we note that the method
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(2.8) is of order p > 1 if and only if

P(t,y) = ZS: amy(t+mh) —h i by (t +mh) = O(RPT), h—0, (2.9)

m=0 m=0

for all sufficiently smooth functions y and there exists at least one such function for
which we cannot improve upon the decay rate O(hPH).
The method (2.8) can be characterized in terms of the polynomials

w) = Zg: Apw™ and o(w) := i bpw™
m=0 m=0

Theorem 2.1  The multistep method (2.8) is of order p > 1 if and only if there
exists ¢ # 0 such that

p(w) — o(w) Inw = c(w — )P + O(jw — 1[P*+?) w— 1. (2.10)

Proof We assume that y is analytic and that its radius of convergence exceeds
sh. Expanding in a Taylor series and changing the order of summation,

S oo

ity =D an D 1y thZk,yk“ it
m=0

m=0 k=0
S 1 S 7
= ( Oa )+ Z il (Z:Omkam —k Zomk 1bm> hFy ) (¢).
k=1 m= m=

Thus, to obtain order p it is neccesary and sufficient that

XS: am =0, i mFa,, =k i: mF1b,,, k=1,2,...,p.

m=0 . m=0 m=0 . (211)
Z mPa,, # (p+1) Z mPb,,
m=0 m=0

Let w = €7%; then w — 1 corresponds to z — 0. Expanding again in a Taylor series,

= Z am (Z k'mkzk> —z Z b (Z Hmkzk>
m=0 k=0 m=0 k=

Therefore
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for some ¢ # 0 if and only if (2.11) is true. The theorem follows by restoring w = €.
|

An alternative derivation of the order conditions (2.11) assists in our understanding
of them. The map y — (¢, y) is linear, consequently ¥ (¢, y) = (Q(hpﬂ)7 if and only
if ¥ (t, q) = 0 for every polynomial g of degree p. Because of linearity, this is equivalent
to

Tp(t?qk)zoa k:0717"'7pa

where {qo, ¢1, ..., qp} is a basis of the (p+1)-dimensional space of p-degree polynomials
(see A.2.1.2, A.2.1.3). Setting qp(t) = t* for k = 0,1,...,p, we immediately obtain
(2.11).

<& Adams—Bashforth revisited ... Theorem 2.1 obviates the need for
‘special tricks’ such as were used in our derivation of the Adams—Bashforth
methods in Section 2.1. Given any multistep scheme (2.8), we can verify its
order by a fairly painless expansion into series. It is convenient to express
everything in the currency £ := w — 1. For example, (2.6) results in

p(w) —o(w)nw = (£+&) - (1+3¢) (£ - 38+ 38+ ) = 8+ 0(¢Y);

thus order 2 is validated. Likewise, we can check that (2.7) is indeed of order
3 from the expansion

pw) = o(w)Inw = & +2¢* + &
—(1+3+BE) (-3 +38 -1 +)
=34 +0(6).
<&

Nothing, unfortunately, could be further from good numerical practice than to assess
a multistep method solely — or primarily — in terms of its order. Thus, let us consider
the two-step implicit scheme

yn+2 - 3yn+1 + 2yn =h [%f(tn+27 yn+2) - %f(tn+17yn+1) - %f(tnu yn)] . (212)

It is easy to ascertain that the order of (2.12) is 2. Encouraged by this — and not
being very ambitious — we will attempt to use this method to solve numerically the
exceedingly simple equation y' = 0, y(0) = 1. A single step reads yn+2 —3yn+1+2yn =
0, a recurrence relation whose general solution is y,, = ¢; + ¢22™, n =0,1,..., where
c1,¢c2 € R are arbitrary. Suppose that co # 0; we need both yy and y; to launch
time-stepping and it is trivial to verify that co # 0 is equivalent to y; # yo. It is easy
to prove that the method fails to converge. Thus, choose t > 0 and let h — 0 so that
nh — t. Obviously n — oo and this implies that |y,| — oo, which is far from the
exact value y(t) = 1.

The failure in convergence does not require, realistically, that co # 0 be induced
by y1. Any calculation on a real computer introduces a roundoff error which, sooner
or later, is bound to render ¢ # 0 and so bring about a geometric growth in the error
of the method.
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2.5

20 B

15 / 4

Figure 2.2 The breakdown in the numerical solution of y' = —y, y(0) = 1, by a
nonconvergent numerical scheme, showing how the situation worsens with decreasing

1 1

step size. The solid, broken and broken-and-dotted lines denote h = 75, 55

and ﬁ
respectively.

Needless to say, a method that cannot integrate the simplest possible ODE with
any measure of reliability should not be used for more substantial computational
ends. Nontrivial order is not sufficient to ensure convergence! The need thus arises
for a criterion that allows us to discard bad methods and narrow the field down to
convergent multistep schemes.

<& Failure to converge  Suppose that the linear equation y' = —y, y(0) = 1,
is solved by a two-step, second-order method with p(w) = w? — 2.01w +
1.01, o(w) = 0.995w — 1.005. As will be soon evident, this method also
fails the convergence criterion, although not by a wide margin! Figure 2.2
displays three solution trajectories, for progressively decreasing step sizes h =
%, 2—10, %. In all instances, in its early stages the solution perfectly resembles
the decaying exponential, but after a while small perturbations grow at an
increasing pace and render the computation meaningless. It is a characteristic
of nonconvergent methods that decreasing the step size actually makes matters
worse! <&

We say that a polynomial obeys the root condition if all its zeros reside in the closed
complex unit disc and all its zeros of unit modulus are simple.
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Theorem 2.2 (The Dahlquist equivalence theorem)  Suppose that the error

in the starting values y,,Ys,...,Ys_; tends to zero as h — 04. The multistep method
(2.8) is convergent if and only if it is of order p > 1 and the polynomial p obeys the
root condition. [ ]

It is important to make crystal clear that convergence is not simply another at-
tribute of a numerical method, to be weighed alongside its other features. If a method
is not convergent — and regardless of how attractive it may look — do not use it!

Theorem 2.2 allows us to discard method (2.12) without further ado, since p(w) =
(w — 1)(w — 2) violates the root condition. Of course, this method is contrived and,
even were it convergent, it is doubtful whether it would have been of much interest.
However, more ‘respectable’ methods fail the convergence test. For example, the
method

Ynts + %yn-‘ﬂ - %ynﬂ ~Yn
=h [%f(tn+37yn+3) + %f(tn+27yn+2) + %f(tn+17yn+1) + %f(tnvyn):l

is of order 6; it is the only three-step method that attains this order! Unfortunately,

plw) =(w—1) (w + 19+4v15 +é\/ﬁ> (w + 19— 4vI5 _ﬁ\/ﬁ>

and the root condition fails. However, note that Adams—Bashforth methods are safe
for all s > 1, since p(w) = w*~H(w — 1).

<& Analysis and algebraic conditions  Theorem 2.2 demonstrates a state
of affairs that prevails throughout mathematical analysis. Thus, we desire
to investigate an analytic condition, e.g. whether a differential equation has
a solution, whether a continuous dynamical system is asymptotically stable,
whether a numerical method converges. By their very nature, analytic con-
cepts involve infinite processes and continua, hence one can expect analytic
conditions to be difficult to verify, to the point of unmanageability. For all we
know, the human brain (exactly like a digital computer) might be essentially
an algebraic machine. It is thus an important goal in mathematical analysis to
search for equivalent algebraic conditions. The Dahlquist equivalence theorem
is a remarkable example of this: everything essentially reduces to determin-
ing whether the zeros of a polynomial reside in a unit disc, and this can be
checked in a finite number of algebraic operations! In the course of this book
we will encounter numerous other examples of this state of affairs. Cast your
mind back to basic infinitesimal calculus and you are bound to recall further
instances where analytic problems are rendered in an algebraic language. <&

The multistep method (2.8) has 2s+ 1 parameters. Had order been the sole consider-
ation, we could have utilized all the available degrees of freedom to maximize it. The
outcome, an (implicit) s-step method of order 2s, is unfortunately not convergent for
s > 3 (we have already seen the case s = 3). In general, it is possible to prove that the
maximal order of a convergent s-step method (2.8) is at most 2| (s+2)/2] for implicit
schemes and just s for explicit ones; this is known as the Dahlquist first barrier.
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The usual practice is to employ orders s + 1 and s for s-step implicit and explicit
methods respectively. An easy procedure for constructing such schemes is as follows.
Choose an arbitrary s-degree polynomial p that obeys the root condition and such
that p(1) = 0 (according to (2.11), p(1) = > a,, = 0 is necessary for order p > 1).
Dividing the order condition (2.10) by Inw we obtain

_ p(w) »
o(w) = m—k(’)ﬂw—l\ ). (2.13)
(Note that division by Inw shaves off a power of |w — 1| and that the singularity
at w = 1 in the numerator and the denominator is removable.) Suppose first that
p = s+ 1 and no restrictions are placed on 0. We expand the fraction in (2.13) into
a Taylor series about w = 1 and let o be the sth-degree polynomial that matches
the series up to O(Jw — 1|**1). The outcome is a convergent, s-step method of order
s+1. Likewise, to obtain an explicit method of order s, we let o be an (s —1)th-degree
polynomial (to force b,, = 0) that matches the series up to O(Jw — 1/%).
Let us, for example, choose s = 2 and p(w) = w? —w. Letting, as before, £ = w—1,
we have

plw) £+¢ o 1+¢
w €= 38 +38+ 0" 1-58+38

=1+ (1+i-L)+0E) =1+3¢+ 32 +0(8%).

+0(&%)

Thus, for quadratic o and order 3 we truncate, obtaining
o(w) =1+ 3w =1)+ 5w =1)" = — 5 + Juw + Hu?,

whereas in the explicit case where ¢ is linear we have p = 2, and so recover, unsur-
prisingly, the Adams—Bashforth scheme (2.6).

The choice p(w) = w* }(w — 1) is associated with Adams methods. We have
already seen the explicit Adams—Bashforth schemes; their implicit counterparts are
Adams—Moulton methods. However, provided that we wish to maximize the order
subject to convergence, without placing any extra constraints on the multistep method,
Adams schemes are the most reasonable choice. After all, if — as implied in the
statement of Theorem 2.2 — large zeros of p are bad, it makes perfect sense to drive
as many zeros as we can to the origin!

2.3 Backward differentiation formulae

Classical texts in numerical analysis present several distinct families of multistep meth-
ods. For example, letting p(w) = w®~2?(w?—1) leads to s-order explicit Nystrom meth-
ods and and to implicit Milne methods of order s 4+ 1 (see Exercise 2.3). However,
in a well-defined yet important situation, certain multistep methods are significantly
better than other schemes of the type (2.8). These are the backward differentiation

formulae (BDFs), whose importance will become apparent in Chapter 4.
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An s-order s-step method is said to be a BDF if o(w) = fw? for some 8 € R\ {0}.

Lemma 2.3 For a BDF we have

p= (Z 1) and  p(w) =0 lws"”(w - 1™ (2.14)

m=1

Proof The order being p = s, (2.10) implies that
p(w) — pw’Inw = O(jw — 1]*T1), w — 1.

We substitute v = w™!, hence

v p(vh) = —BInv+O(jv — 1|°t1) v — 1.
Since ,
Inv = ln[l + (U _ 1)] — Zb: ﬂ(v _ 1)m + O(|U _ 1|s+1)
m=1 m ’
we deduce that
_ " (—1)™ m
oy =53 o1
m=1 m

Therefore

m=1

To complete the proof of (2.14), we need only to derive the explicit form of 5. Tt
follows at once by imposing the normalization condition as = 1 on the polynomial p.
|

The simplest BDF has been already encountered in Chapter 1: when s = 1 we
recover the backward Euler method (1.15). The next two BDFs are

5 =2, Ynt2 — %ynJrl + %yn = %hf(tn+27 yn+2)’ (215)
s = 37 yn—i—3 - %yn-&-Q + %yn—i-l - Tzlyn = %hf(tn-‘r?ﬂ yn+3)' (216)

Their derivation is trivial; for example, (2.16) follows by letting s = 3 in (2.14).

Therefore 1
_ _ 6
B 1+ % T % 11

pw) =& [w?(w—1) + Jww —1)>+ T(w— )? =w® — Bu? 4+ 20— 2.
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Since BDFs are derived by specifying o, we cannot be sure that the polynomial p
of (2.14) obeys the root condition. In fact, the root condition fails for all but a few
such methods.

Theorem 2.4  The polynomial (2.14) obeys the root condition and the underlying
BDF method is convergent if and only if 1 < s <6. [ |

Fortunately, the ‘good’ range of s is sufficient for all practical considerations.

Underscoring the importance of BDF's, we present a simple example that demon-
strates the limitations of Adams schemes; we hasten to emphasize that this is by way
of a trailer for our discussion of stiff ODEs in Chapter 4.

Let us consider the linear ODE system

—-20 10 o - 0

1
10 —20 : 1
Y= o . . . o |wv wO=|:]. (2.17)
: 20 10 }
0 - 0 10 -20

We will encounter in this book numerous instances of similar systems; (2.17) is a
handy paradigm for many linear ODEs that occur in the context of discretization of
the partial differential equations of evolution.

Figure 2.3 displays the Euclidean norm of the solution of (2.17) by the second-order
Adams-Bashforth method (2.6), with two (slightly) different step sizes, h = 0.027 (the
solid line) and h = 0.0275 (the broken line). The solid line is indistinguishable in the
figure from the norm of the true solution, which approaches zero as ¢t — co. Not so
the norm for h = 0.0275: initially, it shadows the correct value pretty well but, after
a while, it runs away. The whole qualitative picture is utterly false! And, by the way,
things rapidly get considerably worse when h is increased: for h = 0.028 the norm
reaches 2.5 x 10, while for A = 0.029 it shoots to 1.3 x 10!,

What is the mechanism that degrades the numerical solution and renders it so
sensitive to small changes in h7 At the moment it suffices to state that the quality
of local approximation (which we have quantified in the concept of ‘order’) is not to
blame; taking the third-order scheme (2.7) in place of the current method would have
only made matters worse. However, were we to attempt the solution of this ODE
with (2.15), say, and with any h > 0 then the norm would tend to zero in tandem
with the exact solution. In other words, methods such as BDFs are singled out by a
favourable property that makes them the methods of choice for important classes of
ODEs. Much more will be said about this in Chapter 4.

Comments and bibliography
There are several ways of introducing the theory of multistep methods. Traditional texts have

emphasized the derivation of schemes by various interpolation formulae. The approach of
Section 2.1 harks back to this approach, as does the name ‘backward differentiation formula’.
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6 7 8 9 10

Figure 2.3 The norm of the numerical solution of (2.17) by the Adams—Bashforth
method (2.6) for h = 0.027 (solid line) and h = 0.0275 (broken line).

Other books derive order conditions by sheer brute force, requiring that the multistep formula
(2.8) be exact for all polynomials of degree p, since this is equivalent to requiring order p.
Equation (2.8) can be expressed as a linear system of p+ 1 equations in the 2s + 1 unknowns
ao0,a1,...,05—1,b0,b1,...,bs. A solution of this system yields a multistep method of the
requisite order (of course, we must check it for convergence!), although this procedure does
not add much to our understanding of such methods.! Linking order with an approximation
of the logarithm, along the lines of Theorem 2.1, elucidates matters on a considerably more
profound level. This can be shown by the following hand-waving argument.

Given an analytic function g, say, and a number h > 0, we denote gSLM = g(k)(to + hn),
k,m=0,1,..., and define two operators that map such ‘grid functions’ into themselves, the
shift operator nglk) = gfﬁgl and the differential operator Dgy(f) = ggﬁ'l), k,n=0,1,... (see
Section 8.1). Expanding in a Taylor series about to + nh,

o0 o0
1 1
(k) _ 2L (ke = L (k) _
Egy’ = E E!gn h" = g g[(hD) an’, k,n=0,1,...
=0 £=0

Since this is true for every analytic g with a radius of convergence exceeding h, it follows
that, at least formally, £ = exp(hD). The exponential of the operator, exactly like the more
familiar matrix exponential, is defined by a Taylor series.

The above argument can be tightened at the price of some mathematical sophistication.
The main problem with naively defining £ as the exponential of hD is that, in the stan-
dard spaces beloved by mathematicians, D is not a bounded linear operator. To recover
boundedness we need to resort to a more exotic space.

IThough low on insight and beauty, brute force techniques are occasionally useful in mathematics
just as in more pedestrian walks of life.
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Let U C C be an open connected set and denote by A(U) the vector space of analytic
functions defined in U. The sequence {f,}52q, where f, € A(U), n = 0,1,..., is said to
converge to f locally uniformly in A(U) if f,, — f uniformly in every compact (i.e., closed and
bounded) subset of U. It is possible to prove that there exists a metric (a ‘distance function’)
on A(U) that is consistent with locally uniform convergence and to demonstrate, using the
Cauchy integral formula, that the operator D is a bounded linear operator on A(U). Hence
so is & = exp(hD), and we can justify a definition of the exponential via a Taylor series.

The correspondence between the shift operator and the differential operator is funda-
mental to the numerical solution of ODEs — after all, a differential equation provides us with
the action of D as well as with a function value at a single point, and the act of numerical
solution is concerned with (repeatedly) approximating the action of £. Equipped with our
new-found knowledge, we should realize that approximation of the exponential function plays
(often behind the scenes) a crucial role in designing numerical methods. Later, in Chapter 4,
approximations of exponentials, this time with a matrix argument, will be crucial to our
understanding of important stability issues, whereas the above-mentioned correspondence
forms the basis for our exposition of finite differences in Chapter 8.

Applying the operatorial approach to multistep methods, we note at once that

S S

> any(tnsm) —h Z bty (bugm) = | D am&™ — hD Z b E™ | y(tn)
m=0 m=0

m=0 m=0

= [p(&) = kDo (E)] y(tn).

Note that £ and D commute (since £ is given in terms of a power series in D), and this
justifies the above formula. Moreover, £ = exp(hD) means that hD = In&, where the
logarithm, again, is defined by means of a Taylor expansion (about the identity operator
7). This, in tandem with the observation that limy,_.o4+ & = Z, is the basis to an alternative
‘proof’ of Theorem 2.1 — a proof that can be made completely rigorous with little effort by
employing the implicit function theorem.

The proof of the equivalence theorem (Theorem 2.2) and the establishment of the first bar-
rier (see Section 2.2) by Germund Dahlquist, in 1956 and 1959 respectively, were important
milestones in the history of numerical analysis. Not only are these results of great intrin-
sic impact but they were also instrumental in establishing numerical analysis as a bona fide
mathematical discipline and imparting a much-needed rigour to numerical thinking. It goes
without saying that numerical analysis is not just mathematics. It is much more! Numerical
analysis is first and foremost about the computation of mathematical models originating in
science and engineering. It employs mathematics — and computer science — to an end. Quite
often we use a computational algorithm because, although it lacks formal mathematical jus-
tification, our experience and intuition tell us that it is efficient and (hopefully) provides the
correct answer. There is nothing wrong with this! However, as always in applied mathemat-
ics, we must bear in mind the important goal of casting our intuition and experience into a
rigorous mathematical framework. Intuition is fallible and experience attempts to infer from
incomplete data — mathematics is still the best tool of a computational scientist!

Modern texts in the numerical analysis of ODEs highlight the importance of a structured
mathematical approach. The classic monograph of Henrici (1962) is still a model of clear
and beautiful exposition and includes an easily digestible proof of the Dahlquist first barrier.
Hairer et al. (1991) and Lambert (1991) are also highly recommended. In general, books
on numerical ODEs fall into two categories: pre-Dahlquist and post-Dahlquist. The first
category is nowadays of mainly historical and antiquarian significance.

We will encounter multistep methods again in Chapter 4. As has been already seen
in Section 2.3, convergence and reasonable order are far from sufficient for the successful
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computation of ODEs. The solution of such stiff equations requires numerical methods with
superior stability properties.

Much of the discussion of multistep methods centres upon their implementation. The
present chapter avoids any talk of implementation issues — solution of the (mostly nonlinear)
algebraic equations associated with implicit methods, error and step-size control, the choice
of the starting values y,,¥s,...,¥y,_;. Our purpose has been an introduction to multistep
schemes and their main properties (convergence, order), as well as a brief survey of the
most distinguished members of the multistep methods menagerie. We defer the discussion of
implementation issues to Chapters 6 and 7.

Hairer, E., Ngrsett, S.P. and Wanner, G. (1991), Solving Ordinary Differential Equations I:
Nonstiff Problems (2nd edn), Springer-Verlag, Berlin.

Henrici, P. (1962), Discrete Variable Methods in Ordinary Differential Equations, Wiley, New
York.

Lambert, J.D. (1991), Numerical Methods for Ordinary Differential Systems, Wiley, London.

Exercises

2.1 Derive explicitly the three-step and four-step Adams—Moulton methods and
the three-step Adams—Bashforth method.

2.2 Let n(z,w) = p(w) — zo(w).
a Demonstrate that the multistep method (2.8) is of order p if and only if

n(z,e%) = ez’ + O(2P12), z—0

)

for some ¢ € R\ {0}.

b Prove that, subject to 9n(0,1)/0w # 0, there exists in a neighbourhood of
the origin an analytic function wq(z) such that n(z,wi(z)) = 0 and

-1
wy(z) =e* —c¢ (a"gj’l)> T4 0212 z— 0. (2.18)
w

¢ Show that (2.18) is true if the underlying method is convergent. (Hint:
Ezpress On(0,1)/0w in terms of the polynomial p.)

2.3  Instead of (2.3), consider the identity

Yltnss) = Ytmpes) + / " pn ) dr.

tnts—2

a Replace f(7,y(7)) by the interpolating polynomial p from Section 2.1 and
substitute y,, ;5 in place of y(t,4s_2). Prove that the resultant explicit
Nystrom method is of order p = s.
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Multistep methods

b Derive the two-step Nystrom method in a closed form by using the above

approach.

Find the coefficients of the two-step and three-step Nystrom methods by
noticing that p(w) = w*~?(w? — 1) and evaluating o from (2.13).

Derive the two-step third-order implicit Milne method, again letting p(w) =
w*2(w? — 1) but allowing o to be of degree s.

Determine the order of the three-step method
Ynt+3 = Yn = h [%f(tn+37yn+3) + %f(tn+27yn+2) + %f(tn+17 yn+1)
+ %f(truyn)] )
the three-eighths scheme. Is it convergent?

By solving a three-term recurrence relation, calculate analytically the se-
quence of values ys,ys, ... that is generated by the midpoint rule

yn+2 =Y, + 2hf(tn+17 yn+l)

when it is applied to the differential equation ¢y’ = —y. Starting from the
values yg = 1, y1 = 1—h, show that the sequence diverges as n — oo. Recall,
however, from Theorem 2.1 that the root condition, in tandem with order p >
1 and suitable starting conditions, imply convergence to the true solution in
a finite interval as h — 0+4. Prove that this implementation of the midpoint
rule is consistent with the above theorem. (Hint: Express the roots of the
characteristic polynomial of the recurrence relation as exp(+ sinh™* h).)

Show that the explicit multistep method

yn+3 + a2yn+2 + alyn-{-l + QY, = h[ﬁ?f(tﬂ-i-?) yn+2)
+ 01 f (b1, Ypgr) + Bof(tn, y,,)]

is fourth order only if ag + s = 8 and a; = —9. Hence deduce that this
method cannot be both fourth order and convergent.

Prove that the BDFs (2.15) and (2.16) are convergent.
Find the explicit form of the BDF for s = 4.

An s-step method with o(w) = w® ! (w + 1) and order s might be superior
to a BDF in certain situations.

a Find a general formula for p and 3, along the lines of (2.14).
b Derive explicitly such methods for s = 2 and s = 3.

¢ Are the last two methods convergent?
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Runge—Kutta methods

3.1 Gaussian quadrature

The exact solution of the trivial ordinary differential equation (ODE)
y/ :f(t)v t > to, y(to) = Yo,

whose right-hand side is independent of y, is yo + |, tto f(7)dr. Since a very rich theory
and powerful methods exist to compute integrals numerically, it is only natural to
wish to utilize them in the numerical solution of general ODEs

y/ = f(tvy)v t > to, y(tO) = Yo (31)

and this is the rationale behind Runge—Kutta methods. Before we debate such meth-
ods, it is thus fit and proper to devote some attention to the numerical calculation of
integrals, a subject of significant importance on its own merit.

It is usual to replace an integral with a finite sum, a procedure known as quadrature.
Specifically, let w be a nonnegative function acting in the interval (a, b), such that

/ab Tjw(T) dr

w is dubbed the weight function. We approximate as follows:

b
0</w(7)d7<oo, <oo, j=1,2,...;

b v
/ F(Dw(r)dr ~ Z b f(cj), (3.2)

where the numbers by, bs,...,b, and ¢y, ca, ..., ¢y, which are independent of the func-
tion f (but, in general, depend upon w, a and b), are called the quadrature weights
and nodes, respectively. Note that we do not require a and b in (3.2) to be bounded;
the choices ¢ = —oo0 or b = 400 are perfectly acceptable. Of course, we stipulate
a <b.

How good is the approximation (3.2)? Suppose that the quadrature matches the
integral exactly whenever f is an arbitrary polynomial of degree p — 1. It is then easy
to prove, e.g. by using the Peano kernel theorem (see A.2.2.6), that, for every function
f with p smooth derivatives,

a<t<b

/bf(T)w(T) dr — zu:bjf(cj) ‘ < ¢ max ‘f@)(t)‘,
a =

33
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where the constant ¢ > 0 is independent of f. Such a quadrature formula is said to
be of order p.

We denote the set of all real polynomials of degree m by P,,. Thus, (3.2) is of
order p if it is exact for every f € P,_;.

Lemma 3.1  Given any distinct set of nodes cy,ca,...,c,, it is possible to find a
unique set of weights b1, ba, ..., b, such that the quadrature formula (3.2) is of order
D>V

Proof Since P,_; is a linear space, it is necessary and sufficient for order v that
(3.2) is exact for elements of an arbitrary basis of P,,_;. We choose the simplest such
basis, namely {1,¢,¢2,...,t*~!}, and the order conditions then read

b
Zb /T w(r)ydr, m=01,...,v—1. (3.3)

This is a system of v equations in the v unknowns by, bs,...,b,, whose matrix, the
nodes being distinct, is a nonsingular Vandermonde matrix (A.1.2.5). Thus, the sys-
tem possesses a unique solution and we recover a quadrature of order p > v. [ |

The weights b1, bs,...,b, can be derived explicitly with little extra effort and we
make use of this in (3.14) below. Let

v
t—cg )
pj(t):HC‘7C7 J:1727"'ay7
k=1 9k
[y

be Lagrange polynomials (A.2.2.3). Because

Z pi(t =g(t)

for every polynomial g of degree v — 1, it follows that

b

Z/ p; (T chm:/ ij et | w(T) dT:/ T"w(T)dT

a

for every m =0,1,...,v — 1. Therefore

b
b; :/ pi(T)w(7) dT, i=1,2,...,v,

is the solution of (3.3).

A natural inclination is to choose quadrature nodes that are equispaced in [a, b],
and this leads to the so-called Newton—Cotes methods. This procedure, however, falls
far short of optimal; by making an adroit choice of ¢y, co, . . ., ¢,,, we can, in fact, double
the order to 2v.
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Each weight function w determines an inner product (see A.1.3.1) in the interval
(a,b), namely

b
<ﬁm:/fmmmmmn

whose domain is the set of all functions f, g such that

b b
/Ummmwjmmmmw<m

We say that p,, € Py, pym Z 0, is an mth orthogonal polynomial (with respect to the
weight function w) if

(pm, Py =0, forevery pe€P,_1. (3.4)

Orthogonal polynomials are not unique, since we can always multiply p,, by a nonzero
constant without violating (3.4). However, it is easy to demonstrate that monic or-
thogonal polynomials are unique. (The coefficient of the highest power of ¢ in a monic
polynomial equals unity.) Suppose that both p,, and p,, are monic mth-degree or-
thogonal polynomials with respect to the same weight function. Then p,,, — Dy, € Ppi—1
and, by (3.4), (Dm,Dm — Pm) = (Pm,Pm — Pm) = 0. We thus deduce from the linearity
of the inner product that (p,, — Pm, Pm — Pm) = 0, and this is possible, according to
Appendix subsection A.1.3.1, only if p,,, = pp,.

Orthogonal polynomials occur in many areas of mathematics; a brief list includes
approximation theory, statistics, representation of groups, the theory of ordinary and
partial differential equations, functional analysis, quantum groups, coding theory, com-
binatorics, mathematical physics and, last but not least, numerical analysis.

& Classical orthogonal polynomials Three families of weights give rise to
classical orthogonal polynomials.
Let a = —1, b = 1 and w(t) = (1 — )%(1 + t)?, where o, > —1. The
underlying orthogonal polynomials are known as Jacobi polynomials Pﬁnaﬂ ).
We single out for special attention the Legendre polynomials P,,, which corre-
spond to a = 8 = 0, and the Chebyshev polynomials T}, , associated with the
choice & = 3 = —1. Note that for min{a, 3} < 0 the weight function has a
singularity at the endpoints +1. There is nothing wrong with that, provided
w is integrable in [0, 1]; but this is exactly the reason we require «, 5 > —1.
The other two ‘classics’ are the Laguerre and Hermite polynomials. The
Laguerre polynomials Lgff ) are orthogonal with respect to the weight function
w(t) =t*"* (a,b) = (0,00), a > —1, whereas the Hermite polynomials H,,
are orthogonal in (a,b) = R with respect to the weight function w(t) = et .
Why are classical orthogonal polynomials so named? Firstly, they have been
very extensively studied and occur in a very wide range of applications. Sec-
ondly, it is possible to prove that they are singled out by several properties
that, in a well-defined sense, render them the ‘simplest’ orthogonal polyno-
mials. For example — and do not try to prove this on your own! — P,(,LO"B ),

Lgﬁ ) and H,,, are the only orthogonal polynomials whose derivatives are also

orthogonal with some other weight function. &
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The theory of orthogonal polynomials is replete with beautiful results which, perhaps
regrettably, we do not require in this volume. However, one morsel of information, ger-
mane to the understanding of quadrature, is about the location of zeros of orthogonal
polynomials.

Lemma 3.2 Allm zeros of an orthogonal polynomial p,, reside in the interval (a,b)
and they are simple.

Proof Since
b
/'pm@vw@od7=<nm1>=o

and w > 0, it follows that p,, changes sign at least once in (a,b). Let us thus denote
by x1, 9, ...,z all the points in (a,b) where p,, changes sign. We already know that
k > 1. Let us assume that ¥k < m — 1 and set

k k
g(t) == [t —2;) = > ait”
j=1 i=0

Therefore p,, changes sign in (a,b) at exactly the same points as ¢ and the product
Pmq does not change sign there at all. The weight function being nonnegative and
Pmq Z 0, we deduce on the one hand that

b
/ P (T)q(T)w(T)dT # 0.

On the other hand, the orthogonality condition (3.4) and the linearity of the inner
product imply that

k

b
/MMWWWM=ZMMﬂFQ

=0

because £k < m — 1. This is a contradiction and we conclude that k& > m. Since
each sign-change of p,, is a zero of the polynomial and, according to the fundamental
theorem of algebra, each p € Py, \ Pp,—1 has exactly m zeros in C, we deduce that p,,
has exactly m simple zeros in (a,b). ]

Theorem 3.3 Letcy,co,...,c, be the zeros of p, and let by, bs, ..., b, be the solution
of the Vandermonde system (3.3). Then

(i)  The quadrature method (3.2) is of order 2v;

(ii)  No other quadrature can exceed this order.

Proof Let p € Py,_1. Applying the Euclidean algorithm to the pair {p,p,} we
deduce that there exist g, € P,_1 such that p = p,q + r. Therefore, according to
(3.4),

A%mwﬂw—mwwlﬂMMﬂw—LZWMﬂm
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we recall that degq < v — 1. Moreover,

Z bjp(cj) = Z bipy(cj)a(c;) + Z bjr(c;) = Z bjr(cs)

because p,(c;) =0, j =1,2,...,v. Finally, r € P,_; and Lemma 3.1 imply

b v
/ r(T)w(r)dr = Z br(c;).

We thus deduce that
b v
/ ﬁ(T)LU(T) dr = Z bjﬁ(cj)a ﬁ S P2V717
a =1

and that the quadrature formula is of order p > 2v.

To prove (ii) (and, incidentally, to affirm that p = 2v, thereby completing the proof
of (i)) we assume that, for some choice of weights by, bs, ...,b, and nodes ¢y, ca, ..., ¢y,
the quadrature formula (3.2) is of order p > 2v + 1. In particular, it would then
integrate exactly the polynomial

p(t) = H(t — )%, PEP.

This, however, is impossible, since

v

b b 2
/a A w(r)dr = / [H(T—ci)] w(r)dr >0,

i=1
while . .
ijp (¢j) ij H(Cj —¢)2=0.
j=1 i=1
The proof is complete. [ ]

The optimal methods of the last theorem are commonly known as Gaussian quadra-
ture formulae.

In what follows we will require a generalization of Theorem 3.3. Its proof is left as
an exercise to the reader.

Theorem 3.4  Let r € P, obey the orthogonality conditions
(r,p) =0 for every pe€Pp_1, (ryt™) # 0,

for some m € {0,1,...,v}. Welet c1,ca,...,c, be the zeros of the polynomial r and
choose by, b, ..., b, consistently with (3.3). The quadrature formula (3.2) has order
p=v-+m. |
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3.2 Explicit Runge—Kutta schemes

How do we extend a quadrature formula to the ODE (3.1)7? The obvious approach is
to integrate from t, to t,11 =t, + h:

thit 1
Ultns) =v(t) + [ Sy dr =yt +h [ flt+ by, + ),
tn 0
and to replace the second integral by a quadrature. The outcome might have been
the ‘method’

yn+1:yn+hzbjf(tn+cjha y(tn+cjh>>7 nzoalaa

j=1

except that we do not know the value of y at the nodes t,, + c1h,t, +co,...,t, +c,h.
We must resort to an approximation!

We denote our approximation of y(t,+c;h) by §;,j = 1,2,...,v. To start with, we
let ¢; = 0, since then the approximation is already provided by the former step of the
numerical method, §&; = y,,. The idea behind explicit Runge-Kutta (ERK) methods

is to express each §;, j = 2,3,...,v, by updating y,, with a linear combination of
f(tn7€1)7 .f(tn + hc2;£2)7 ceey f(tn + Cj—lhagj—l)' Speciﬁcally, we let
51 = yn7

£2 = yn + ha2’1f(tn,£1)7
&3 =y, +haz 1 f(tn, &) + hasof (tn + c2h, &),

(3.5)
v—1

£, =y, + hzau,i.f(tn +¢ih, &),

=1
Ypir =Yn T h Y _bif(tn +¢;hE).
j=1

The matrix A = (a;;)ji=1,2,...,,, Where missing elements are defined to be zero, is
called the RK matrix, while

by c1

bo C2
b= . and c=

b, Cy

are the RK weights and RK nodes respectively. We say that (3.5) has v stages.
Confusingly, sometimes the §; are called ‘RK stages’; elsewhere this name is reserved
for f(t,+cjh,§;),j=1,2,...,s. To avoid confusion, we henceforth desist from using
the phrase ‘RK stages’.

How should we choose the RK matrix? The most obvious way consists of expanding
everything in sight in Taylor series about (t,,y,,); but, in a naive rendition, this is
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of strictly limited utility. For example, let us consider the simplest nontrivial case,
v = 2. Assuming sufficient smoothness of the vector function f, we have

,f(tn + C2ha 52) = f(tn + C2h/a yn + a/2,1hf(tna yn))

= f(tmyn) +h {Czat + a2,1Tf(tn7yn) + O(hQ) ;
therefore the last equation in (3.5) becomes
Ynt1 = Yn + h(bl + bQ)f(tnvyn)

e 8f(tgt, Yn) + az,laf(gly’yn) f(tmyn)] + O(h3) :

(3.6)

+ h%by [

We need to compare (3.6) with the Taylor expansion of the exact solution about
the same point (¢,,vy,,). The first derivative is provided by the ODE, whereas we can
obtain y” by differentiating (3.1) with respect to ¢:

Y = afgﬁt,y) n 8fg;y)f(t’y)'

We denote the exact solution at ¢,,41, subject to the initial condition y,, at t,, by .
Therefore, by the Taylor theorem,

Of (tn,Y,,) n of (tn,y,,)
ot oy

Comparison with (3.6) gives us the condition for order p > 2:

Y(tns1) = Yp + hf(tn,y,) + 212 f(tn,y,) | +0O(R°).

b1 + bQ = 1, bQCQ = %, az1 = C2. (37)

It is easy to verify that the order cannot exceed 2, e.g. by applying the ERK method
to the scalar equation 3’ = y.

The conditions (3.7) do not define a two-stage ERK uniquely. Popular choices of
parameters are displayed in the RK tableaux

= O

and 1

O [Nl
N | =
—

1

which are of the following form:

A naive expansion can be carried out (with substantially greater effort) for v = 3,
whereby we can obtain third-order schemes. However, this is clearly not a serious
contender in the technique-of-the-month competition. Fortunately, there are substan-
tially more powerful and easier means of analysing the order of Runge-Kutta methods.
We commence by observing that the condition

j—1
E Qj5 = Cj, 322,3,...,%
i=1
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is necessary for order 1 — otherwise we cannot recover the solution of ¢y’ = y. The
simplest device, which unfortunately is valid only for p < 3, consists of verifying the
order for the scalar autonomous equation

Yy =fly), t>to,  y(to) =yo, (3.8)

rather than for (3.1). We do not intend here to justify the above assertion but merely to
demonstrate its efficacy in the case v = 3. We henceforth adopt the ‘local convention’
that, unless indicated otherwise, all the quantities are evaluated at t,, e.g. ¥ ~ yn,
f ~ f(yn) etc. Subscripts denote derivatives. In the notation of (3.5), we have

1=y
= f(&)=f;
& =y+heaf

= f(&) = fy+heaf)=f+heafyf+ %h2c§fyyf2 + O(h3) ;
& =y +h(cs —azp2)f(&) + hasaf(&2)
=y+(c3 —as2)f + hasaf(y + heaf) + O(h?)
=y + hesf + hPasacafy f + O(R%)
= f(&) = [y +hesf +hagaeaf, f) + O(h°)
— [+ hesfyf+ 0% (AR f? + agacaf2f) + O(h?).

Therefore

Ynt1 =Y+ hby f + hby (f + heafy f + %hgcgfyyfg)
+ hbs [f + hesfyf + 02 (363 fyyf? + asacafof)] + O(R)
= Y + h(by + by + bs) f + h*(caba + c3b3) fy f
+ h? [§(bac3 + b3c3) fyy 2 + bsasaca fo f] + O(R?) .

Since
gl:fv :’j”:fyfa gm:fyny"'nyf
the expansion of g reads
Gnt1 =y +hf + 502 fyf + §h° (fyu 2 + £71) + O(hY) .
Comparison of the powers of h leads to third-order conditions, namely
by + by + b3 =1, bacg + bzes = 3, bocs + bscs = T bsazzca = %.

Some instances of third-order three-stage ERK methods are important enough to
merit an individual name, for example the classical RK method

== O
| o

Wi | DN

o=
o=
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and the Nystrom scheme

Fourth order is not beyond the capabilities of a Taylor expansion, although a
great deal of persistence and care (or, alternatively, a good symbolic manipulator) are
required. The best-known fourth-order four-stage ERK method is

NN O

ol | O O N+
Wi | Ol

Wl | =

1
6

The derivation of higher-order ERK methods requires a substantially more ad-
vanced technique based upon graph theory. It is well beyond the scope of this volume
(but see the comments at the end of this chapter). The analysis is further complicated
by the fact that v-stage ERKs of order v exist only for v < 4. To obtain order 5 we
need six stages, and matters become considerably worse for higher orders.

3.3 Implicit Runge—Kutta schemes

The idea behind implicit Runge—Kutta (IRK) methods is to allow the vector functions
£,,€,,...,€, to depend upon each other in a more general manner than that of (3.5).
Thus, let us consider the scheme

& =y, +hd ajif(tateh &), =121,
=1
, (3.9)
Ypi1 = Yn +h D _bif(tn +cih &)

Jj=1

Here A = (a;;)ji=1,2,..,, is an arbitrary matrix, whereas in (3.5) it was strictly lower
triangular. We impose the convention

14
E aj7i=cj, jZl,Q,...,V,
=1

which is necessary for the method to be of nontrivial order. The ERK terminology —
RK nodes, RK weights etc. — stays in place.

For general RK matrix A, the algorithm (3.9) is a system of vd coupled algebraic
equations, where y € R Hence, its calculation faces us with a task of an altogether
different magnitude than the explicit method (3.5). However, IRK schemes possess
important advantages; in particular they may exhibit superior stability properties.
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Moreover, as will be apparent in Section 3.4, there exists for every v > 1 a unique
IRK method of order 2v, a natural extension of the Gaussian quadrature formulae of
Theorem 3.3.

& A two-stage IRK method Let us consider the method
51 =Y, + %h [.f(truél) - f(tn + %h7€2)] y
€y =Y, + 150 [3F(tn. &1) +5F (tn + 3, 65)] (3.10)

In tableau notation it reads

1
1
1
1
1
1

To investigate the order of (3.10), we again assume that the underlying ODE
is scalar and autonomous — a procedure that is justified since we do not intend
to exceed third order. As before, the convention is that each quantity, unless
explicitly stated to the contrary, is evaluated at y,. Let ki := f(&) and
ko := f(&). Expanding about y,,,

ky=f+ %hfy(kl - k2) + %hzfyy(kl - k2)2 + O(hg) )
ky = f + $5hfy(3k1 + 5ka) + 5agh® fyy (3k1 4 bka)® + O(h?)
therefore ki,ks = f 4+ O(h). Substituting this on the right-hand side of the
above equations yields ky = f+(9(h2), ko = f+ %hfyf+(9(h2). Substituting
again these enhanced estimates, we finally obtain
kv = f—§h*ff+0(n°),
ko= f+ 3hfyf + 12 () f + § 1 f?) + O(R) .
Consequently, on the one hand we have
Ynt1 = Yn + h(biks + baks)
=y+hf+3h2ff+ (2 f + £+ O(RY).  (3.11)
On the other hand, y' = f, v = f,f, v = f2f* + fyyf? and the exact
expansion is
gnJrl =Y + hf + %h2fyf + %hg(fsz + fyyf2) + O(h4) )

and this matches (3.11). We thus deduce that the method (3.10) is of order
at least 3. It is, actually, of order exactly 3, and this can be demonstrated by
applying (3.10) to the linear equation y' = y. &

It is perfectly possible to derive IRK methods of higher order by employing the graph-
theoretic technique mentioned at the end of Section 3.2. However, an important
subset of implicit Runge-Kutta schemes can be investigated very easily and without
any cumbersome expansions by an entirely different approach. This will be the theme
of the next section.
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3.4 Collocation and IRK methods

Let us abandon Runge-Kutta methods for a little while and consider instead an al-
ternative approach to the numerical solution of the ODE (3.1). As before, we assume
that the integration has been already carried out up to (¢,,v,,) and we seek a recipe
to advance it to (tp41,Y,41), where t,41 = t,, + h. To this end we choose v distinct
collocation parameters cy,ca, ..., ¢, (preferably in [0, 1], although this is not essential
to our argument) and seek a vth-degree polynomial u (with vector coefficients) such
that

u(tn) = Y,,

. (3.12)
' (t, + cjh) = f(tn +cjh,u(t, + c;h)), i=12,...,v

In other words, u obeys the initial condition and satisfies the differential equation
(3.1) exactly at v distinct points. A collocation method consists of finding such a u
and setting

yn+1 = u(tn+1)'

The collocation method sounds eminently plausible. Yet, you will search for it
in vain in most expositions of ODE methods. The reason is that we have not been
entirely sincere at the beginning of this section: collocation is nothing other than a
Runge-Kutta method in disguise.

Lemma 3.5 Set

14 q t
q(t) = H(t - Cj)a %(t) = t_(()jev = 172a )
j=1
and let
9 qi(T) .
aj; = dr, Jyi=12... v, 3.13
! /o Qi(ci) ( )
1 .
b; ::/ (1) 4, J=1,2,...,v. (3.14)
o qj(cs)

The collocation method (3.12) is identical to the IRK method

c| A
bT

Proof  According to appendix subsection A.2.2.3, the Lagrange interpolation poly-

nomial

qe(ce)

T(t) — i ql((t — tn)/h) wy
=1

satisfies r(t, + ceh) = wy, £ = 1,2,...,v. Let us choose wy = u/(t, + ceh), { =
1,2,...,v. The two (v — 1)th-degree polynomials » and u’ coincide at v points and
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we thus conclude that r = w'. Therefore, invoking (3.12),
- t—t,
=Y qf((q G ))/ n + coh) = Z ae(( )f(tn + coh, u(t, + coh)).
= e(ce

We will integrate the last expression. Since u(t,) = y,,, the outcome is

qe((T —tn)/h)
Tt / = neehy ultn + cch) qe(ce) ar
- h§ h oy [ @) 3.15
=y, + gzlftn—i—ce s u(tn + ¢ ))/0 2e(c0) T. (3.15)

We set &; := u(t, +cjh), j =1,2,...,v. Letting t =t,, + c;h in (3.15), the definition
(3.13) implies that

§ =y, +hd ajifltn+ch€), =12,
i=1
whereas t = t,41 and (3.14) yield
Y1 = U‘(t’ﬂJrl) =Y, + ijf(tn + th7£j)~
j=1

Thus, we recover the definition (3.9) and conclude that the collocation method (3.12)
is an IRK method. ]

& Not every Runge—Kutta method originates in collocation Letv =2,
ci =0and ¢y = % Therefore

q(t)=t(t—2), at)=t—2, q@(t) =t

and (3.13), (3.14) yield the IRK method with tableau

Given that every choice of collocation points corresponds to a unique collo-
cation method, we deduce that the IRK method (3.10) (again, with v = 2,
c1 =0and ¢g = %) has no collocation counterpart. There is nothing wrong
in this, except that we cannot use the remainder of this section to elucidate
the order of (3.10). &

Not only are collocation methods a special case of IRK but, as far as actual computa-
tion is concerned, to all intents and purposes the IRK formulation (3.9) is preferable.
The one advantage of (3.12) is that it lends itself very conveniently to analysis and
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obviates the need for cumbersome expansions. In a sense, collocation methods are the
true inheritors of the quadrature formulae.

Before we can reap the benefits of the formulation (3.12), we need first to present
(without proof) an important result on the estimation of error in a numerical solution.
It is frequently the case that we possess a smoothly differentiable ‘candidate solution’
v, say, to the ODE (3.1). Typically, such a solution can be produced by any of a myriad
of approximation or perturbation techniques, by extending (e.g. by interpolation) a
numerical solution from a grid to the whole interval of interest or by formulating
‘continuous’ numerical methods — the collocation (3.12) is a case in point.

Given such a function v, we can calculate the defect

d(t) :=v'(t) — f(t,v(t)).

Clearly, there is a connection between the magnitude of the defect and the error

v(t) — y(t): since d(t) = 0 when v = y, the exact solution, we can expect a small

value of ||d(t)]| to imply that the error is small. Such a connection is important, since,

unlike the error, we can evaluate the defect without knowing the exact solution y.
Matters are simple for linear equations. Thus, suppose that

Y =Ay,  ylto) =y, (3.16)
We have d(t) = v'(t) — Av(t) and therefore the linear inhomogeneous ODE
v =Av+d(t), t>t, v(ty) given.

The exact solution is provided by the familiar variation-of-constants formula,

t
v(t) = ey, +/ = d(7) dr, t > to,

to

while the solution of (3.16) is, of course,
y(t) = el "yt >t
We deduce that

t
v(t) —y(t) = e(t_tO)A('UO —Yo) + / e(t_T)Ad(T) dr, t > to;
to

thus the error can be expressed completely in terms of the ‘observables’ vy — y,
and d.

It is perhaps not very surprising that we can establish a connection between the
error and the defect for the linear equation (3.16) since, after all, its exact solution is
known. Remarkably, the variation-of-constants formula can be rendered, albeit in a
somewhat weaker form, in a nonlinear setting.

Theorem 3.6 (The Alekseev—Griébner lemma) Let v be a smoothly differen-
tiable function that obeys the initial condition v(tg) = yo. Then

w(t) — y(t) :/ B(t — vt — T)d(r)dr, > to, (3.17)

to
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where @ is the matriz of partial derivatives of the solution of the ODE w' = f(t,w),
w(7) = v(T), with respect to v(T). [ |

The matrix & is, in general, unknown. It can be estimated quite efficiently, a
practice which is useful in error control, but this ranges well beyond the scope of this
book. Fortunately, we do not need to know ® for the application that we have in
mind!

Theorem 3.7 Suppose that

1
/ q(r)ridr=0, j=0,1,....,m—1, (3.18)
0

for some m € {0,1,...,v}. (The polynomial q(t) = [[,_,(t — c¢) has been defined
already in the proof of Lemma 3.5.) Then the collocation method (3.12) is of order
v4+m.t

Proof We express the error of the collocation method by using the Alekseev—
Grobner formula (3.17) (with o replaced by t,, and, of course, the collocation solution
u playing the role of v; we recall that u(t,) = y,, and hence the conditions of Theo-
rem 3.6 are satisfied). Thus

tnt1

B —8tet) = [ @t~ multns —7)d(r)dr
t'll

(We recall that y denotes the exact solution of the ODE for the initial condition

Y(tn) = vy,,.) We next replace the integral by the quadrature formula with respect to

the weight function w(t) = 1, t,, < t < t,41, with the quadrature nodes t,, + c1h, t,

+ csh, ..., t, + ¢, h. Therefore

Ypir = Utnt1) = D 0;(tni1,tn + ¢ih,ultn + c;h))d(t, + cjh)
j=1
+ the error of the quadrature. (3.19)

However, according to the definition (3.12) of collocation,
d(t, + cjh) = u'(t, + cjh) — f(t, + cjh,u(t, + ¢;h)) =0, j=1,2,...,v.

According to Theorem 3.4, the order of quadrature with the weight function w(t) =1,
0 <t <1, with nodes ¢1,co,...,c,, is m + v. Therefore, translating linearly from
[0,1] to [tn,tn+1] and paying heed to the length of the latter interval, t,1 — t, = h,
it follows that the error of the quadrature in (3.19) is O(h**™*1). We thus deduce
that ¥,y — Y(tns1) = O(R*T™T1) and prove the theorem.? [

LIf m = 0 this means that (3.18) does not hold for any value of j and the theorem claims that the
underlying collocation method is then of order v.

2Strictly speaking, we have only proved that the error is at least of order v + m. However, if m
is the largest integer such that (3.18) holds, then it is trivial to prove that the order cannot exceed
v + m; for example, apply the collocation to the equation 3’ = (v +m + 1)t*+t™, y(0) = 0.
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Corollary  Let ¢1,¢a,...,c, be the zeros of the polynomials P, € P, that are or-
thogonal with respect to the weight function w(t) =1, 0 <t < 1. Then the underlying
collocation method (3.12) is of order 2v.

Proof The corollary is a straightforward consequence of the last theorem, since
the definition of orthogonality (3.4) implies in the present context that (3.18) is sat-
isfied by m = v. [ |

¢ Gauss—Legendre methods The v-stage order-2v methods from the last
corollary are called Gauss—Legendre (Runge-Kutta) methods. Note that, ac-
cording to Lemma 3.2, the nodes ¢1,¢a,...,¢, € (0,1) are, as necessary for
collocation, distinct. The polynomials P, can be obtained explicitly, e.g. by
linearly transforming the more familiar Legendre polynomials P,, which are
orthogonal with respect to the weight function w(t) =1, —1 <t < 1. The
(monic) outcome is

0= (1)

For v =1 we obtain 151(16) =1— %, hence ¢; = % The method, which can be

written in a tableau form as L
212
1 )

is the familiar implicit midpoint rule (1.12). In the case v = 2 we have
Py(t) =t> —t + %, therefore ¢; = § — %, =1+ %. The formulae (3.13),
(3.14) lead to the two-stage fourth-order IRK method

1_ V3 1 1_ V3

2 6 4 4 6

1 V3|1 V3 1

2t% it 1
1 1
2 2

The computation of nonlinear algebraic systems that originate in IRK meth-
ods with large v is expensive but this is compensated by the increase in order.
It is impossible to lay down firm rules, and the exact point whereby the law
of diminishing returns compels us to choose a lower-order method changes
from equation to equation. It is fair to remark, however, that the three-stage
Gauss—Legendre is probably the largest that is consistent with reasonable
implementation costs:

1 _ V15 5 2 _ v15 5 _ v15
2 10 36 9 15 36 30
1 5 4 V15 2 5 _ V15
2 36 24 9 36 24
1, V15 | 5 B 2, Vib 5
5T 0 |36 T3 0§11 36
5 4 5
18 9 18
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Comments and bibliography

A standard text on numerical integration is Davis & Rabinowitz (1967), while highly readable
accounts of orthogonal polynomials can be found in Chihara (1978) and Rainville (1967). We
emphasize that although the theory of orthogonal polynomials is of tangential importance to
the subject matter of this volume, it is well worth studying for its intrinsic beauty as well as
its numerous applications.

Runge—Kutta methods have been known for a long time; Runge himself produced the main
idea in 1895.3 Their theoretical understanding, however, is much more recent and associated
mainly with the work of John Butcher. As is often the case with progress in computational
science, an improved theory has spawned new and better algorithms, these in turn have led to
further theoretical comprehension and so on. Lambert’s textbook (1991) presents a readable
account of Runge-Kutta methods and requires a relatively modest theoretical base. More
advanced accounts can be found in Butcher (1987, 2003) and Hairer et al. (1991).

Let us present in a nutshell the main idea behind the graph-theoretical approach of
Butcher to the derivation of the order of Runge-Kutta methods. The few examples of ex-
pansion in Sections 3.2 and 3.3 already demonstrate that the main difficulty rests in the need
to differentiate composite functions repeatedly. For expositional reasons only, we henceforth
restrict our attention to scalar, autonomous equations.* Thus,

y = f(y)
= y' = fuW)f(y)
= Y = L@+ @)
=y = Lo + 4L W) s W) + [y ()] f ()

and so on. Although it cannot yet be seen from the above, the number of terms increases
exponentially. This should not deter us from exploring high-order methods, since there is a
great deal of redundancy in the order conditions (recall from the corollary to Theorem 2.7
that it is possible to attain order 2v with a v-stage method!), but we need an intelligent
mechanism to express the increasingly more complicated derivatives in a compact form.

Such a mechanism is provided by graph theory. Briefly, a graph is a collection of wvertices
and edges: it is usual to render the vertices pictorially as solid circles, while the edges are
the lines joining them.® For example, two simple five-vertex graphs are

and

The order of a graph is the number of vertices therein: both graphs above are of order 5. We
say that a graph is a tree if each two vertices are joined by a single path of edges. Thus the
second graph is a tree, whereas the first is not. Finally, in a tree we single out one vertex and
call it the root. This imposes a partial ordering on a rooted tree: the root is the lowest, its

3The monograph of Collatz (1966), and in particular its copious footnotes, is an excellent source
on the life of many past heroes of numerical analysis.

4This restriction leads to loss of generality. A comprehensive order analysis should be done for
systems of equations.

5You will have an opportunity to learn much more about graphs and their role in numerical
calculations in Chapter 11.
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children (i.e., all vertices that are joined to the root by a single edge) are next in line, then
its children’s children and so on. We adopt in our pictures the (obvious) convention that
the root is always at the bottom. (Strangely, computer scientists often follow an opposite
convention and place the root at the top.) Two rooted trees of the same order are said to be
equivalent if each exhibits the same pattern of paths from its ‘top’ to its root — the following
picture of three equivalent rooted trees should clarify this concept: the graphs

SN N

are all equivalent. We keep just one representative of each equivalence class and, hopefully
without much confusion, refer to members of this reduced set as ‘rooted trees’. We denote
by v(f) the product of the order of the tree £ and the orders of all possible trees that occur
upon consecutive removal of the roots of . For example, for the above tree we have

NZEEEEN BN

(an open circle denotes a vertex that has been removed) and y(f) =5 x (2 x 1 x 1) x 1 = 10.

As we have seen above, the derivatives of y can be expressed as linear combinations of
products of derivatives of f. The latter are called elementary differentials and they can
be assigned to rooted trees according to the following rule: to each vertex of a rooted tree
corresponds a derivative fyy...y, where the suffix occurs the same number of times as the
number of children of the vertex, and the elementary differential corresponding to the whole
tree is a product of these terms. For example,

\/

Ty f
AN \ /
= fy‘yy = fyyyfyyf5f4~
Ty
Ty

To every rooted tree there corresponds an order condition, which we can express in terms
of the RK matrix A and the RK weights b. This is best demonstrated by an example. We
assign an index to every vertex of a tree f, e.g. the tree

(@
@ W

hot
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corresponds to the condition

Z beazd‘az,kaj,i = lA = %
£,5,5,k=1 7(t)

The general rule is clear — we multiply b, by all components aq,r, where g and r are the
indices of a parent and a child respectively, sum up for all indices ranging in {1,2,...,v}
and equate to the reciprocal of 'y(f). The main result linking rooted trees and Runge-Kutta
methods is that the scheme (3.9) (or, for that matter, (3.5)) is of order p if and only if the
above order conditions are satisfied for all rooted trees of order less than or equal to p.

The graph-theoretical technique, often formalized as the theory of B-series, is the stan-
dard tool in the construction of Runge-Kutta schemes and in the investigation of their
properties. It is, in particular, of great importance in the investigation of the behaviour of
structure-preserving Runge—Kutta methods that we will encounter in Chapter 5.

By one of these quirks of fate that make the study of mathematics so entrancing, the
graph-theoretical interpretation of Runge-Kutta methods has recently acquired an unex-
pected application at an altogether different corner of the mathematical universe. It turns
out that the abstract structure underlying this interpretation is a Hopf algebra of a special
kind, which can be applied in mathematical physics to gain valuable insight into certain
questions in quantum mechanics.

The alternative approach of collocation is less well known, although it is presented in
more recent texts, e.g. Hairer et al. (1991). Of course, only a subset of all Runge-Kutta
methods are equivalent to collocation and the technique is of little value for ERK schemes.
It is, however, possible to generalize the concept of collocation to cater for all Runge-Kutta
methods.
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ley, Chichester.
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Exercises

3.1 Find the order of the following quadrature formulae:

1
a / f(r)dr = %f(()) 4 %f(%) + %f(l) (the Simpson rule);
0
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1
/ f(r)dr=4fO)+2f(3)+27(3)+ (the three-eighths rule);
0

/0 frydr = 27(3) = 1(3) + 2(2);

Let us define

T, (cos ) := cosnd, n=20,1,2,...;, —w<0<m.

Show that each T,, is a polynomial of degree n and that the T,, satisfy the
three—term recurrence relation

Tn+1(t> :2tTn(t) —Tn,1<t), n = 172,...
Prove that T,, is an nth orthogonal polynomial with respect to the weight
function w(t) = (1—t)~/2, -1 <t < 1.

Find the explicit values of the zeros of T;,, thereby verifying the statement
of Lemma 3.2, namely that all the zeros of an orthogonal polynomial reside
in the open support of the weight function.

Find by, b2, ¢1, co such that the order of the quadrature

' dr
/_1 ,7”(7)\/17_7T2 ~ by f(cr) + baf(cz)

is four.

(The Ty s are known as Chebyshev polynomials and they have many appli-
cations in mathematical analysis. We will encounter them again in Chap-
ter 10.)

Construct the Gaussian quadrature formulae for the weight function w(t) =
1, 0 <t <1, of orders two, four and six.

Restricting your attention to scalar autonomous equations y’ = f(y), prove
that the ERK method with tableau

— =N O

o= | O O N
Wi | O =
Wl | =

=

is of order 4.
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3.5

3.6

3.7

3.8

3.9

Runge—Kutta methods

Suppose that a v-stage ERK method of order v is applied to the linear scalar
equation 3’ = \y. Prove that

v 1 , n
Yn = [Z M(hA)k] Yo, n= 0717' e

k=0
Determine all choices of b, ¢ and A such that the two-stage IRK method
c|l A
bT
is of order p > 3.

Write the theta method, (1.13), as a Runge-Kutta method.

Derive the three-stage Runge-Kutta method that corresponds to the collo-
cation points ¢; = %, Cco = %, c3 = % and determine its order.

Let k € R\{0} be a given constant. We choose collocation nodes ¢1, ¢a, . .., ¢,
as zeros of the polynomial P, + kP, _;. (Pm is the mth-degree Legendre poly-
nomial, shifted to the interval (0,1). In other words, the P, are orthogonal
there with respect to the weight function w(t) =1.)

a Prove that the collocation method (3.12) is of order 2v — 1.

b Let kK = —1 and find explicitly the corresponding IRK method for v = 2.
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Stiff equations

4.1 What are stiff ODEs?

Let us try to solve the seemingly innocent linear ODE
y=Ay,  y0) =y,  whee A= [ 1001 } RNRY

by Euler’s method (1.4). We obtain
Y1 =yo +hAyo = (I +hA)yo, gy =y +hhy, = (I +hA)y, = (I +hA)y,

(where T is the identity matrix) and, in general, it is easy to prove by elementary
induction that
vy, = (I +hA)"y,, n=0,1,2,... (4.2)

Since the spectral factorization (A.1.5.4) of A is
A=VDV where V= [ L 959 ] and D= [ —100 01 } ,
0 55 0 -1

we deduce that the exact solution of (4.1) is

(t) = =VePyt t>0 h o [T 0
Yy =e =Ve Yo, = U, where (S = 0 eft/lo .

In other words, there exist two vectors, &1 and x2, say, dependent on y, but not on
t, such that

y(t) =e 10 4o t/10g, >0, (4.3)
The function g(t) = e™'%* decays exceedingly fast: g (75) &~ 4.54 x 107 and g(1) ~
3.72 x 10~**, while the decay of e */10 is a thousandfold more sedate. Thus, even for

small ¢ > 0 the contribution of &; is nil to all intents and purposes and y(t) = e t/10g,.
What about the Euler solution {y,,}5, though? It follows from (4.2) that

y,, = V(I +hD)"V 1y, n=0,1,...

and, since
1 — 100h)™ 0
(I +hD)" = ( n |
0 (1—15h)

53
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Figure 4.1 The logarithm of the Euclidean norm ||y, | of the Euler steps, as

applied to the equation (4.1) with h = 1—10 and an initial condition identical to the
second (i.e., the ‘stable’) eigenvector. The divergence is thus entirely due to roundoff
error!

it follows that
Y, = (1—=100n)"x1 + (1 — 35h) "2,  n=0,1,... (4.4)

(it is left to the reader to prove in Exercise 4.1 that the constant vectors x; and s
are the same in (4.3) and (4.4)). Suppose that h > 2. Then [1—100h| > 1 and it is a
consequence of (4.4) that, for sufficiently large n, the Euler iterates grow geometrically
in magnitude, in contrast with the asymptotic behaviour of the true solution.

Suppose that we choose an initial condition identical to an eigenvector correspond-
ing to the eigenvalue —0.1, for example

%
Yo =1 999 |-
10
Then, in exact arithmetic, £y = 0, 2 = y, and y,, = (1 — Tl()h)nyo, n=20,1,...;
the latter converges to 0 as n — oo for all reasonable values of h > 0 (specifically,
for h < 20). Hence, we might hope that all will be well with the Euler method. Not
so! Real computers produce roundoff errors and, unless h < 51—0, sooner or later these
are bound to attribute a nonzero contribution to an eigenvector corresponding to the
eigenvalue —100. As soon as this occurs, the unstable component grows geometrically,
as (1 —100h)™, and rapidly overwhelms the true solution.

Figure 4.1 displays In ||y,,||, » = 0,1,...,25, with the above initial condition and

the time step h = %0. The calculation was performed on a computer equipped with
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the ubiquitous IEEE arithmetic,! which is correct (in a single algebraic operation) to
about 15 decimal digits. The norm of the first 17 steps decreases at the right pace,
dictated by (1 — %h)n = (lg—o%)n. However, everything then breaks down and, after
just two steps, the norm increases geometrically, as |1 — 100h|™ = 9™. The reader is
welcome to check that the slope of the curve in Fig. 4.1 is indeed In % ~ —0.0101
initially but becomes In9 = 2.1972 in the second, unstable, regime.

The choice of y, as a ‘stable’ eigenvector is not contrived. Faced with an equation
like (4.1) (with an arbitrary initial condition) we are likely to employ a small step size
in the initial transient regime, in which the contribution of the ‘unstable’ eigenvector
is still significant. However, as soon as this has disappeared and the solution is com-
pletely described by the ‘stable’ eigenvector, it is tempting to increase h. This must be
resisted: like a malign version of the Cheshire cat, the rogue eigenvector might seem
to have disappeared, but its hideous grin stays and is bound to thwart our endeavours.

It is important to understand that this behaviour has nothing to do with the local
error of the numerical method; the step size is depressed not by accuracy considerations
(to which we should be always willing to pay heed) but by instability.

Not every numerical method displays a similar breakdown in stability. Thus, solv-
ing (4.1) with the trapezoidal rule (1.9), we obtain

Y (1+;hA)y y (I+;hA)y (H;hA)Qy
1=\ 711 ) Yo 2=\ T 1A Y T\ T 1 0
—1pA —1nA —1pA

noting that since (I — %h/\)_1 and (I + %hA) commute the order of multiplication
does not matter, and, in general,

I+ 1A\
y”:<—zh1\) Yo, n=0,1,... (4.5)

Substituting for A from (4.1) and factorizing, we deduce, in the same way as for (4.4),
that )
1—50h\" 1—Lh\"
— 20 =0,1,...
Yn <1+50h) w1+(1+210h T2, n 5 Ly

1 —50h — 55h
1+50h|" |1+ &h

Thus, since

<

for every h > 0, we deduce that lim,,_, y,, = 0. This recovers the correct asymptotic
behaviour of the ODE (4.1) (cf. (4.3)) regardless of the size of h.

In other words, the trapezoidal rule does not require any restriction in the step
size to avoid instability. We hasten to say that this does not mean, of course, that
any h is suitable. It is necessary to choose h > 0 small enough to ensure that the
local error is within reasonable bounds and the exact solution is adequately approxi-
mated. However, there is no need to decrease h to a minuscule size to prevent rogue
components of the solution growing out of control.

1The current standard of computer arithmetic on workstations and personal computers.
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The equation (4.1) is an example of a stiff ODE. Several attempts at a rigorous
definition of stiffness appear in the literature, but it is perhaps more informative to
adopt an operative (and slightly vague) designation. Thus, we say that an ODE system

y/ = f(tvy)a t > to, y(to) = Yo» (46)

is stiff if its numerical solution by some methods requires (perhaps in a portion of the
solution interval) a significant depression of the step size to avoid instability. Needless
to say this is not a proper mathematical definition, but then we are not aiming to
prove theorems of the sort ‘if a system is stiff then ...’. The main importance of
the above concept is in helping us to choose and implement numerical methods — a
procedure that, anyway, is far from an exact science!

We have already seen the most important mechanism generating stiffness, namely,
that modes with vastly different scales and ‘lifetimes’ are present in the solution. It
is sometimes the practice to designate the quotient of the largest and the smallest
(in modulus) eigenvalues of a linear system (and, for a general system (4.6), the
eigenvalues of the Jacobian matrix) as the stiffness ratio. The stiffness ratio of (4.1)
is 103. This concept is helpful in elucidating the behaviour of many ODE systems
and, in general, it is a safe bet that if (4.6) has a large stiffness ratio then it is stiff.
Having said this, it is also valuable to stress the shortcomings of linear analysis and
emphasize that the stiffness ratio might fail to elucidate the behaviour of a nonlinear
ODE system.

A large proportion of the ODEs that occur in practice are stiff. Whenever equa-
tions model several processes with vastly different rates of evolution, stiffness is not far
away. For example, the differential equations of chemical kinetics describe reactions
that often proceed on very different time scales (think of the difference in time scales
of corrosion and explosion); a stiffness ratio of 10'7 is quite typical. Other popular
sources of stiffness are control theory, reactor kinetics, weather prediction, mathemat-
ical biology and electronics: they all abound with phenomena that display variation
at significantly different time scales. The world record, to the author’s knowledge,
is held, unsurprisingly perhaps, by the equations that describe the cosmological Big
Bang: the stiffness ratio is 103!,

One of the main sources of stiff equations is numerical analysis itself. As we will
see in Chapter 16, parabolic partial differential equations are often approximated by
large systems of stiff ODEs.

4.2 The linear stability domain and A-stability

Let us suppose that a given numerical method is applied with a constant step size
h > 0 to the scalar linear equation

y =Xy, t>0, y(0)=1, (4.7)

where A € C. The exact solution of (4.7) is, of course, y(t) = e, hence lim; . y(t) =
0 if and only if Re A < 0. We say that the linear stability domain D of the underlying
numerical method is the set of all numbers hAA € C such that lim,, ., y, = 0. In other
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words, D is the set of all hA for which the correct asymptotic behaviour of (4.7) is
recovered, provided that the latter equation is stable.?

Let us commence with Euler’s method (1.4). We obtain the solution sequence
identically to the derivation of (4.2),

Yn=(1+RN)",  n=0,1,... (4.8)

Therefore {yn}n=01,.. is a geometric sequence and lim, . y, = 0 if and only if
|1+ hA| < 1. We thus conclude that

DEuler:{ZEC : |1+Z|<1}

is the interior of a complex disc of unit radius, centred at z = —1 (see Fig. 4.2).

Before we proceed any further, let us ponder briefly the rationale behind this
sudden interest in a humble scalar linear equation. After all, we do not need numerical
analysis to solve (4.7)! However, for Euler’s method and for all other methods that
have been the theme of Chapters 1-3 we can extrapolate from scalar linear equations to
linear ODE systems. Thus, suppose that we solve (4.1) with an arbitrary d x d matriz
A. The solution sequence is given by (4.2). Suppose that A has a full set of eigenvectors
and hence the spectral factorization A = VDV !, where V is a nonsingular matrix of
eigenvectors and D = diag (A1, A2,...,\q) contains the eigenvalues of A. Exactly as
in (4.4), we can prove that there exist vectors @1, @, ..., &4 € C?, dependent only on
Yg, not on n, such that

IS8

yn:Z(1+hAk)"wk, n=0,1,... (4.9)
k=1

Let us suppose that the exact solution of the linear system is asymptotically stable.
This happens if and only if Re Ay < 0 for all k =1,2,...,d. To mimic this behaviour
with Euler’s method, we deduce from (4.9) that the step size h > 0 must be such that
[14+hX\e| <1,k =1,2,...,d: all the products hA1, h)a, ..., hAg must lie in Dgyler-
This means in practice that the step size is determined by the stiffest component of
the system!

The restriction to systems with a full set of eigenvectors is made for ease of ex-
position only. In general, we may use a Jordan factorization (A.1.5.6) in place of a
spectral factorization; see Exercise 4.2 for a simple example. Moreover, the analysis
can be extended easily to inhomogeneous systems y’ = Ay + a, and this is illustrated
by Exercise 4.3.

The importance of D ranges well beyond linear systems. Given a nonlinear ODE
system

y' =f(ty), t>to,  y(to) =yo,

where f is differentiable with respect to y, it is usual to require that in the nth step

han1, hAn2, ..., hApq € D,

20ur interest in (4.7) with Re A > 0 is limited, since the exact solution rapidly becomes very large.
However, for nonlinear equations there is an intense interest, which we will not pursue in this volume,
in those equations for which a counterpart of A\, namely the Liapunov exponent, is positive.
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where the complex numbers A, 1, Ap2, ..., Apq are the eigenvalues of the Jacobian
matriz Jp, := 0f (tn,y,,)/0y. This is based on the assumption that the local behaviour
of the ODE is modelled well by the variational equation ¥’ = y,, + J.(y — vy,,). We
hasten to emphasize that this practice is far from exact. Naive translation of any
linear theory to a nonlinear setting can be dangerous and the correct approach is to
embrace a nonlinear framework from the outset. Although in its full generality this
ranges well beyond the material of this book, we provide a few pointers to modern
nonlinear stability theory in Chapter 5.

Let us continue our investigation of linear stability domains. Replacing A by A
from (4.7) in (4.5) and bearing in mind that yo = 1, we obtain

B
n=\—"F— y =0,1,... :
y <1—§h/\> n ()
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Again, {yn}tn=0,1,... is a geometric sequence. Therefore, we obtain for the linear sta-
bility domain in the case of the trapezoidal rule,
< 1} |

It is trivial to verify that the inequality within the braces is identical to Rez < 0.
In other words, the trapezoidal rule mimics the asymptotic stability of linear ODE
systems without any need to decrease the step size, a property that we have already
noticed in a special example in Section 4.1.

The latter feature is of sufficient importance to deserve a name of its own. We say
that a method is A-stable if

1+%z
1—%2

'DTR:{ZE(CI‘

C :={z€C:Rez< 0} CD.

In other words, whenever a method is A-stable, we can choose the step size h (at least,
for linear systems) on accuracy considerations only, without paying heed to stability
constraints.

The trapezoidal rule is A-stable, whilst Euler’s method is not. As is evident from
Fig. 4.2, the graph labelled 7 /5(2) — but not the one labelled 73/9(z) — corresponds to
an A-stable method. It is left to the reader to ascertain in Exercise 4.4 that the theta
method (1.13) is A-stable if and only if 0 < § < 1.

4.3 A-stability of Runge—Kutta methods

Applying the Runge-Kutta method (3.9) to the linear equation (4.7), we obtain

fj:yn‘Fh/\Zaj,ifi, j=12,...,v.
=1

Denote
&1 1
&2 1
£ = B 1:=| . € R";
& 1

then € = 1y,, + hAAE and the exact solution of this linear algebraic system is
€= (I—-h)\A)"1y,.

Therefore, assuming that I — hAA is nonsingular,

Yot = Yn + XD bigy = [1 + AL (I — hAA)—lq Uny  m=0,1,... (4.11)

j=1

We denote by P, /s the set of all rational functions p/q, where p € P, and ¢ € Ps.
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Lemma 4.1  For every Runge-Kutta method (3.9) there exists v € P, ;,, such that
Yn = [P(RA)]", n=0,1,... (4.12)

Moreover, if the Runge—Kutta method is explicit then r € P,,.
Proof Tt follows at once from (4.11) that (4.12) is valid with

r(z):=1+2b" (I —zA)™'1, z€C, (4.13)

and it remains to verify that r is indeed a rational function (a polynomial for an
explicit scheme) of the stipulated type.
We represent the inverse of I — zA using a familiar formula from linear algebra,

_y _adj(I —zA4)
(I—24)"" = det(I — zA)’

where adj C is the adjugate of the v x v matrix C: the (4, j)th entry of the adjugate
(also known as the ‘adjunct’ and abbreviated in the same way) is the determinant of
the (j,4)th principal minor, multiplied by (—1)**7. Since each entry of I — zA is linear
in z, we deduce that each element of adj(I — zA), being (up to a sign) a determinant
ofa (v —1) x (v — 1) matrix, is in P,_;. We thus conclude that

bladj(I —2zA)1eP, 4,

therefore det(I — zA) € P, implies r € P, /,,.

Finally, if the method is explicit then A is strictly lower triangular and I — zA is,
regardless of z € C, a lower triangular matrix with ones along the diagonal. Therefore
det(I —zA) =1 and r is a polynomial. ]

Lemma 4.2  Suppose that an application of a numerical method to the linear equa-
tion (4.7) produces a geometric solution sequence, y, = [r(hA)]™, n =0,1,..., where
r is an arbitrary function. Then

D={z€C:|r(z)| <1} (4.14)

Proof This follows at once from the definition of the set D. ]

Corollary  No ezplicit Runge-Kutta (ERK) method (3.5) 