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On Convergence of Brownian Motion

Monte Carlo



Chapter 1
Introduction.

1.1 Notation, Definitions & Basic notions.

We introduce here basic notations that we will be using throughout this part. Large parts are
taken from standard literature inspired by Matriz Computations by Golub and Van Loan (2013),
and Probability: Theory & Examples by Rick Durrett (2019).

1.1.1 Norms and Inner Product

Definition 1.1.1 (Euclidean Norm). Let || - ||z : RY — [0,00) denote the Euclidean norm defined

for all d € Ny and x = {1,229, ,24} € R? as:

d 3
]z = (Zﬁ) (1.L1)
i=1
For the special case that d = 1, d = 2, and where it is clear from context we will denote || - || as
-]
Definition 1.1.2 (Max Norm). Let ||-||,, : R? — [0,00) denote the maz norm define for all d € Ny

and x = {x1,T9,- -+ , x4} € R as:

= ; 1.1.2
ol = _max | {lail} (112

Definition 1.1.3 (Frobenius Norm). Let ||-||p : R™*™ — [0, 00) denote the Frobenius norm defined



for allm,n e N, A € R™*™ gs:

S

JAle = [ S 147 (1.1.3)

i=1 j=1

Definition 1.1.4 (Euclidean Inner Product). Let (-,-) : R? x R — R denote the Euclidean inner

product defined for all d € N, R > & = {21, 22, ...,xq}, and R > y = {y1, 2, ...,yq} as:
d
(w,y) = (@) (1.1.4)
i=1
1.1.2 Probability Space and Brownian Motion
Definition 1.1.5 (Probability Space). A probability space is a triple (Q, F,P) where:

(i) Q2 is a set of outcomes called the sample space.

(i) F is a set of events, called the event space, where each event is a set of outcomes from the

sample space. More specifically it is a o-algebra on the set €.

(i1i) A mapping: P : F — [0, 1] assigning each event in the event space a probability between 0
and 1. More specifically P is a measure on ) with the caveat that the measure of the entire

space is 1, i.e. P(Q) = 1.

Definition 1.1.6 (Random Variable). Given a probability space (2, F,P) a random variable is a

measurable function X : Q — R%.

Definition 1.1.7 (Expectation). Given a probability space (0, F,P), the expected value of a random

variable X, denoted E[X] is the Lebesgue integral given by:

/ XdP (1.1.5)
Q

Definition 1.1.8 (Stochastic Process). A stochastic process is a family of random variables over
a fixed probability space (Q, F,R).

Definition 1.1.9 (Stochastic Basis). A stochastic basis is a tuple (2, F,P,F) where:

(i) (2, F,P) is a probability space equipped with a filtration F where,



(ii) F := (Fi)ier, is a collection of non-decreasing sets under inclusion where for every i € I, I

being equipped in a total order, it is the case that F; is a sub o-algebra of F.

Definition 1.1.10 (Brownian Motion Over a Stochastic Basis). Given a stochastic basis (0, F,P,F)

a standard (Ft).e(o,r)-Brownian motion Wy is a mapping W : [0,T] x Q — R? satisfying:
(i) Wy is Fy measurable for all t € [0,00)
(i) Wo = 0 with P-a.s.
(iii) Wy — Wy is a normal random variable with yu =0 and 0? =t — s when s < t.
(iv) Wy — Ws is independent of Fs whenever s < t.
(v) The paths that W take are P-a.s. continuous.

Definition 1.1.11 ((F¢),c(o r-adapted Stochastic Process). Let T' € (0,00). Let (2, F,P,F) be a
filtered probability space with the filtration indexed over [0,T]. Let (S,X) be a measurable space.
Let X : [0,T] x Q — S be a stochastic process. We say that X is an (Fy).ejo,r-adapted stochastic

process if it is the case that Xy : Q — S is (Ft, X) measurable for each t € [0,T].

Definition 1.1.12 ((Fy).cjo,r-adapted stopping time). Let T € (0,00), 7 € [0,T]. Assume a

filtered probability space (Q, F,P,F). 7 € R is a stopping time if the stochastic process X =

(Xt)te[O,T} define as:

lift<r
X, = (1.1.6)

0ift>r

is adapted to the filtration F := (F;)icpo,1)

Definition 1.1.13 (Strong Solution of Stochastic Differential Equation). Let d,m € N. Let u :
R? — RY, o : R? — R¥X™ be Borel-measurable. (Q,F,P, (Ft)iejo,r)) be a stochastic basis, and let
W [0,T] x Q — R? be a standard (F;),eqo 11-Brownian motion. For every t € [0,T], x € R?, let

bt = (Xst’m)se[t’T] x Q — R? be an (Fs)seje,r)-adapted schochastic process with continuous sample



paths satisfying that for all t € [0,T] we have P-a.s. that:

t t
Xt’x = XO + / M(ﬁ X:7I)dr + / O—(Ta X:J;)dWT (117)
0 0

A strong solution to the stochastic differential equation (1.1.7) on probability space (2, F, P, (Ft).e(0,77),
w.r.t Briwnian motion W, w.r.t to initial condition Xy = 0 is a stochastic process (Xt)te[[),oo) sat-

isfying that:
(i) X is adapted to the filtration (Ft).ejo,7)-
(i) P(Xy =0) = 1.
(iii) for allt € [0,T) it is the case that P <fg |p(r, X592 + Nl (r, X25) || pdW, < oo) =1

(iv) it holds with P-a.s. that X satisfies the equation:

t t
Xt’x = XO + / ,U,(T‘, Xf’x)d’f’ + / 0-(7'7 sz?yx)dWT (118)
0 0

Definition 1.1.14 (Strong Uniqueness Property for Solutions to Stochastic Differential Equations).
Assume that whenever we have two strong solutions X, 2?, w.r.t. process VW and initial condition
Xy =0, as defined in Definition 1.1.13, it is the case that for all t € [0,T] we have P(X; = X,) =1,

we then say that the pair (u, o) exhibit a strong uniqueness property.

1.1.3 Lipschitz and Related Notions

Definition 1.1.15 (Globally Lipschitz Function). A function f : R* — R? is (globally) Lipschitz

if there exists an L € (0,00) such that:

sup J@) = ) <L (1.1.9)
z,ycR4 =Y E
Ay

The set of globally Lipschitz functions over set X will be denoted Lipg(X)

Corollary 1.1.15.1. A continuous function f € C(R?,R?) over a compact set KK C R is Lipschitz

over that set.



Proof. By Hiene-Cantor f is uniformly continuous over set K. Fix an arbitrary ¢ and let 4 be from
the definition of uniform continuity. By compactness we have a finite cover of IC by balls of radius

4, centered around x; € K:
N
K c | Bs(x) (1.1.10)
i=1

Note that within a given ball no point z; are such that |z; — z;| > d. Thus by uniform continuity

we have that:

and thus let £ be defined as:
£=  max ‘M (1.1.12)
i,jE{l'ﬁ,;--,N} Ti—Tj
i#]

£ satisfies the Lipschitz property. To see this let x1,xo be two arbitrary points within . Let
Bs(x;) and Bs(x;) be two points such that z1 € Bs(x;) and z2 € Bs(x;). The triangle inequality

then yields that:

[f (1) = f(@2)| < |f (1) = fl@a)| + [ f (i) = fla)] + [ f(25) = F2)]
< fwi) = flag)] + 2€
< L |z — x| + 2

< L |xy — 29| + 2

for all € € (0, 00). O

Definition 1.1.16 (Locally Lipschitz Function). A function f : R? — R? is locally Lipschitz if for

every xo € R? there exists a compact set K C Domain(f) containing xo, and constant L € (0, 00)



such that

sup J@) = 1) <L (1.1.13)
e Y e

The set of locally Lipschitz functions over set X will be denoted Lipy (X).

Corollary 1.1.16.1. A function f : R® — R? that is globally Lipschitz is also locally Lipschitz.

More concisely Lipg(X) € Lipy (X).

Proof. Assume not, that is to say there exists a point z € Domain(f), a compact set K C

Domain(f), and points z1, z9 € K such that:

|f(x1) — f(x2)|

1 — T2

> £ (1.1.14)

This directly contradicts Definition 1.1.15. O

1.1.4 Kolmogorov Equations

Definition 1.1.17 (Kolmogorov Equation). We take our definition from (Da Prato and Zabczyk,
2002, (7.0.1)) with, u ~ u, G ~ o, F ~ p, and ¢ ~ g, and for our purposes we set A :
RY — 0. Given a separable Hilbert space H (in our case R?), and letting p : [0,T] x R? — R,
o:[0,T] x R? — R>*™ gnd g : R* — R be atleast Lipschitz a Kolmogorov Equation is an equation

of the form:

94 z) = L Trace (o (t,z) [0 (¢, z)]" (Hess, u) (t, x ,x), (Veu) (t,x
(5rw) (t,2) = 3 Trace (o (t,2) [o (t,2)]" (Hessg ) (t,2)) + (u(t,2), (Vou) (¢, 2)) 11.15)

u(0,z) = g(x)

Definition 1.1.18 (Strict Solution to Kolmogorov Equation). A function u: [0,T] x R = R is a

strict solution to (1.1.15) if:
(i) we CY1([0,T] x RY) and u(0,-) =g
(ii) u(t,-) € UCH2([0,T] x R, R)
(i1i) For any x € Domain(A), u(-,z) is continuously differentiable on [0,00) and satisfies (1.1.15).

10



Definition 1.1.19 (Generalized Solution to Kolmogorov Equation). A generalized solution to

(1.1.15) is defined as:
u(t,z) =E [g (X"")] (1.1.16)

Where the stochastic process X is the solution to the stochastic differential equation, for x € RY,

te[0,T]:

t t
xhr — / 1 (qu,x> dr + / o (Xf,w) dw, (1.1.17)
0 0

Definition 1.1.20 (Laplace Operator w.r.t. z). Given a function f € C*(R% R), the Laplace
operator V2 : C2(R%, R) — R is defined as:

of

o (1.1.18)

d
Af=Vif=V Vf=}
1=1

1.1.5 Linear Algebra Notation and Definitions

Definition 1.1.21 (Identity, Zero Matrix, and the 1-matrix). We will define the identity matriz

in dimension d € Ng as the matriz I; € R¥™? where:

1 1=
]Id = [Hd]i,j = (1119)
0 else
Note that I = 1.
For m,n € N the zero matriz Oy, , € R™*" as:
@m,n = [@m,n]aj =0 VZ,] (1120)

Where we only have a column of zeros it is convenient to denote 04 where d is the height of the

column.

11
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The matriz of ones ey, € as:

enn=[e],; =1 Vij (1.1.21)

Where we only have a column of ones it is convenient to denote eq where d is the height of the

column.

Definition 1.1.22 (Complex conjugate and transpose). Let m,n € N, and A € C™*". We denote

by A* € C™™™ the matriz:

[A%);; =[Al;; Vi,j (1.1.22)

Where it is clear that we are dealing with real matrices, i.e. A € R™ ™, we will denote this as AT

Definition 1.1.23 (Column, Row, and General Vector Notation). Let m,n € N and let A € R™*".

We denote the i-th row for 1 <i < m as:

[Aliw = lai1 ain -+ ain (1.1.23)

aij

-
ALy = |7 (1.1.24)

a/m 7j

Definition 1.1.24 (Kronecker Product). Let my,ni,me,ne € N. Given matriz A € R™"™ and

B € R™2"2 we define the Kronecker product A @ B € R™™M2X™Mn"2 g the block matriz given by:

Aok B=[A®k B),; = 4], B (1.1.25)

12



1.1.6 O-type notation and function growth

Definition 1.1.25 (O-type notation). Let g € C(R,R). We say that f € C(R,R) is in O(g(x)),
denoted f € O(g(x)) if there exists c,xo € R such that:

0< f(x) < cg(z) for all x > xg (1.1.26)

We say that f € Q(g(z)) if there exists ¢,xg € R such that:

0<cg(z) < f(x) for all x > xg (1.1.27)

We say that f € ©(g(x)) if there exists c1,c2, 9 € R such that:
0 < cg(z) < f < cag(x) for all x > xg (1.1.28)

Corollary 1.1.25.1 (Bounded functions and O-type notation). Let f(x) € C(R,R), then:
(i) if f is bounded above it is in O(1) for some constant ¢ € R.
(ii) if f is bounded below it is in Q(1) for some constant ¢ € R.

(i) if f is bounded above and below it is in ©(1) for some constant ¢ € R.

Proof. Assume f € C(R,R), then:

(i) Assume for all x € R it is the case that f(z) < M for some M € R, then there exists an

xo € R such that for all z > z it is the case that 0 < f(z) < M, whence f(z) € O(1).

(ii) Assume for all z € R it is the case that f(x) > M for some M € R, then there exists an

xo € R such that for all © > x¢ it is the case that f(z) > M > 0, whence f(z) € Q(1).

(iii) This is a consequence of items (i) and (ii).

Corollary 1.1.25.2. Let f € O(z"™) for n € Ng. Then it is also the case that f € O (m”“).

13



Proof. Let f € O(x™). Then there exists ¢, 2y € R, such that:

f(z) < ex for all x > xg

Note however that for all n € N, there exists x; € R such that:

2" < 2" for all z > 1y

Thus:

f(z) <ex" < cx™ ! for all z > max{zg, z1}

14

(1.1.29)

(1.1.30)

(1.1.31)



Chapter 2

Brownian Motion Monte Carlo

2.1 Brownian Motion Preliminaries

Lemma 2.1.1 (Time reversal property of Brownian motions). Let T € R, t € [0,7T], and d € N.
Let (Q, F,P) be a probability space. Let W, : [0,T] x Q — R be a standard Brownian motion. Let

W =Wr_y — W;. Then s = {25 : s € [t,T]} is also a standard Brownian motion on [0,T].

Proof. 25 is a Gaussian process, since a finite, linear combination of variables from theis process
reduces to a finite, linear combination of variables from W. Next E[20;] = E[Wr_;] — E(Wr) = 0.

Next if s,t € [0, 7] with s < ¢ then

COV(QUs,QnO = COV(WTfs — WT, WTft — Wt)
= COV(WTfs, WT~t) — COV(WT,S, WT) — COV(WT, WTft) + COV(WT, Wt)

=(T—-t)—-(T—-s)—(T—-t)+T=s (2.1.1)
Finally ¢ — 20; is continuous of [0, 7] with probability 1, since ¢ — W is continuous on [0, 7] with
probability 1. O

Lemma 2.1.2 (Shift property of Brownian motions). Let T € R, t € [0,T], and d € N. Let
(Q, F,P) be a probability space. Let Wy : [0,T] x Q@ — R? be a standard Brownian motion. Fix

s €[0,00). Let Wy = Wy —Ws. Then 20 = {2, : t € [0,00)} is also a standard Brownian motion.
Proof. Since W has stationary, independent increments, the process 2J is equivalent in distribution

15



to W. Clearly also, 20 is continuous as W is. O
Lemma 2.1.3. The product of a constant with a Brownian motion is a Brownian motion

Lemma 2.1.4. The sum of Brownian motions is a Brownian motion.

Definition 2.1.5 (Of ¢). Letp € [2,00). We denote by €, € R the real number given by € := inf{c €
R} where it holds that for every probability space (2, F,P) and every random variable X : Q@ — R
with E[|X]] < 0o that (E[|X — E[X])?])? < ¢ (E[|X[?))7

Definition 2.1.6 (Primary Setting). Let d,m € N, T, £,p € [0,00), p € [2,00) m = €,/p —1,
O =7, g € C(RLR), assume for all t € [0,T],z € R? that:

max{lg(x)]} < £ (1+ |«]3) (2.1.2)

and let (0, F,P) be a probability space. Let W? : [0,T] x Q — R?, § € © be independent standard
Brownian motions, let u € C([0,T]xRY, R) satisfy for allt € [0,T], x € R%, that E[|g(z+W2_,)|] <

oo and:
u(t,z) =E [g (z + W%_t)] (2.1.3)
and let let U? 1 [0,T] x R? x Q = R, § € © satisfy, 6 € ©, t € [0,T], x € R%, that:

(2.1.4)

Ug t,x) [Zg<x+WT92 k)>

Lemma 2.1.7. Assume Setting 2.1.6 then:
(i) it holds for all n € Ng, 6 € © that U? : [0,T] x R x Q — R is a continuous random field.

(ii) it holds that for all 0 € © that o (Ue) Co ((W(o’v))VGG)-

(iii) it holds that (Ue)eee,(WQ) are independent.

e’

(i) it holds for all n,m €, i,k,i,t € Z, with (i,k) # (i,€) that (U%"%)yce and (U(G,i,f)) are

0cO

independent and,
v) it holds that (U? are identically distributed random variables.
0eO

16



Proof. For (i) Consider that W:(Feiot’_k) are continuous random fields and that g € C(R%, R), we have

that U?(t,z) is the composition of continuous functions with m > 0 by hypothesis, ensuring no

singularities. Thus U? : [0,7] x R x Q — R.

For (ii) observe that for all 6 € © it holds that WY is B ([0,7] ® o (W?)) /B (R?)-measurable, this,

and induction on prove item (ii).

Moreover observe that item (ii) and the fact that for all & € © it holds that (Wgzﬁ)), WP are

independent establish item (iii).

Furthermore, note that (ii) and the fact that for all 7, k,i,¢ € Z, 0 € ©, with (i, k) # (i, ) it holds

that (Ww’i’k’ﬁ))ﬁe@ and (W(Q""E’ﬁ))%@ are independent establish item (iv).

Hutzenhaler (Hutzenthaler et al., 2020a, Corollary 2.5 ) establish item (v). This completes the

proof of Lemma 1.1. O

Lemma 2.1.8. Assume Setting 2.1.6. Then it holds for § € ©, s € [0,T], t € [s,T], € R? that:

] +/STE (|07 (v + WE,)

Proof. Note that (2.1.2), the fact that for all 7, a, b € [0, 00) it holds that (a+b)" < 2max{r=10} (g7 4+

E HU9 (t, T+ Wf_s)

5[l +mt)

} dr <oo  (2.1.5)

b"), and the fact that for all § € © it holds that E [|W4|] < oo, assure that for all s € [0,T],

t € [s,T], 6 € © it holds that:

E Hg(w + W)

} <E [2 (1 + e+ Wf_s\\%ﬂ

< g [14 210} (Jg)ff, + B [HW%HZD} < 0 (2.1.6)

We next claim that for all s € [0,T7], t € [s,T], 6 € © it holds that:

] +/ST]E [0 (rw+ )

To prove this claim observe the triangle inequality and (2.1.4), demonstrate that for all s € [0,77],

E HUG (t,x ~|—Wf_5>

] dr < oo (2.1.7)

17



€ [s,T], 0 € ©, it holds that:

m

| < % [ZE [lo (= +we, +W}@"”)H] (2.1.8)

i=1

E HU" (t,x+ Wf_s)

Now observe that (2.1.6) and the fact that (W?)gce are independent imply that for all s € [0, 77,
€ [s,T], 0 € ©, i € Z it holds that:

0

E Hg <x W+ WT_’[Li)) H =FE Hg (m + WZ_SH(T_t)) H =E Hg (x + qu_s> ] <oo (2.1.9)

Combining (2.1.8) and (2.1.9) demonstrate that for all s € [0,T], t € [s,T], 0 € © it holds that:

E HU‘g(t,aH— We_ )

] < (2.1.10)

Finally observe that for all s € [0,7] 6 € © it holds that:

/T]E HU9 (r,m+wf_s)

Combining (?77?), (2.1.10), and (2.1.11) completes the proof of Lemma 2.1.8.

} < (T - s)rzg%]ﬂz HU9 (T,x—i—WTG_S)

] < 0 (2.1.11)

O
Corollary 2.1.8.1. Assume Setting 2.1.6, then we have:
(i) it holds that t € [0,T],x € R? that:
E[U° )] +E [jg (v + W5 )| < (2.1.12)
(i) it holds that t € [0,T),x € R? that:
E[U°(t,z)] =E [g <:13 + W}O_’Ot"”)} (2.1.13)

18



Proof. (i) is a restatement of Lemma 2.1.8 in that for all ¢ € [0,T7:

E[|U° (¢t 2)|] +E Hg (x + Wéo’(i’_l)) H

<E HU9 (t,x + Wf_s)

| +E[lg (z+ L) | ar

] +/ST]E |07 (rye + WE)

< 00 (2.1.14)

Furthermore (ii) is a restatement of (4.0.7) with § = 0, m = 1, and k¥ = 1. This completes the
proof of Corollary 2.1.8.1. O

2.2 Monte Carlo Approximations

Lemma 2.2.1. Let p € (2,00),n € N, let (Q,F,P), be a probability space and let X; : Q@ — R,

i€{1,2,...,n} bei.i.d. random variables with E[|X1]] < co. Then it holds that:

<E

Proof. The hypothesis that for all i € {1,2,...,n} it holds that &; : 2 — R ensures that:

L )

This combined with the fact that for all i € {1,2,...,n} it is the case that &; : @ — R are i.i.d.

>p s {p_ 1] P E - EX)P) (2.2.1)

n

B - <§n: Xi>

n

> (B[] - )

i=1

] (2.2.2)

B[] - (zn: xz-)

- (Z (B[] - x»)

=1

random variables and e.g. (Rio, 2009, Theorem 2.1) (with p ~ p, (Si)icf0,1,....n} O (Zzzl(E[Xk] -
Xi)), (Xi)ieq1,2,...ny O (E[Xi] — Xi)ieq1,2,...,ny in the notation of (Rio, 2009, Theorem 2.1) ensures

that:
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This completes the proof of the lemma.

Corollary 2.2.1.1. Let p € [2,00), n € N, let (Q, F,P) be a probability space, and let X; : Q — R,

i €{1,2,...,n} be i.i.d random variables with E[|X1|] < co. Then it holds that:

<E

n

D < [p‘ 1]%@“»«1 —E[x)1"))r

E[X] - % (Z Xi)
i=1

(2.2.5)

Proof. Observe that e.g. (Grohs et al., 2018, Lemma 2.3) and Lemma 2.3.1 establish (2.2.5). O

Corollary 2.2.1.2. Letp € [2,00), n € N, let (2, F,P), be a probability space, and let X; : Q — R,

i€{1,2,...,n}, be i.i.d. random variables with E[|X}|] < oo, then:

(E

Proof. This a direct consequence of Definition 2.1.5 and Corollary 2.2.1.1.

),, <BVP L gy

n

() - - (Z 2@-)

N

2.3 Bounds and Covnvergence

Lemma 2.3.1. Assume Setting 4.0.1. Then it holds for all t € [0,T], x € R?

T =

(& [lvota+w0) - B[ (a+ wD)]))

<™ [(E g (= +W9)[]) }

1
m2

o=
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Proof. For notational simplicity, let Gy, : [0, 7] xR? x Q — R, k € Z, satisfy for all k € Z, t € [0,T],

x € R? that:
Gi(t,z) = g (z+ W5 (2.3.2)

Observe that the hypothesis that (W6)6€® are independent Brownian motions and the hypothesis

that g € C(R?,R) assure that for all ¢ € [0,T],x € R it holds that (G(t,z))xez are i.i.d. random
variables. This and Corollary 2.2.1.2 (applied for every ¢t € [0,T], = € R? with p ~ p, n A m,

(Xk)kef1,2,...my O (Ge(t,T))kef1,2,..,m}), With the notation of Corollary 2.2.1.2 ensure that for all
t € 10,T], = € R?, it holds that:

<E )

Combining this, with (1.16), (1.17), and item (ii) of Corollary 2.1.8.1 yields that:

(E

m

> Gi(t,x)

k=1

1

—E[Gi(t, )] (B (|G1 (£, 2)F)) (2.3.3)

SNE

o =

U0t 2) - E[0°(,2)] ]

—

m P\ b
- <E 1 ZGk(t,w) —E[G1(t,2)] ]) (2.3.4)
k=1
< P (E[Gi(t2)P))? (2:35)
- (& flo e+ whol))'] 239

This and the fact that WY has independent increments ensure that for all n €, ¢t € [0,T], = € R? it

holds that:
1 1
(B[[0° (b +W0) —E[U° (1,2 + W))]])” < [(]E [lg z+w9)P]) ] (2.3.7)
m?2
This completes the proof of Lemma 2.3.1. O
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Lemma 2.3.2. Assume Setting 2.1.6. Then it holds for all, t € [0,T], x € RY that:

(B [|0° (to+W0) —u (to+ WO)P])* < (1) (& [ls e+ w)P))? (238)

m?2
Proof. Observe that from Corollary 2.1.8.1 item (ii) we have:
0,0,~1
E[U(t,2)] =E |g (z + W7V (2.3.9)

This and (4.0.6) ensure that:

u(t,z) —E [U%t,2)] =0

E [U%t,2)] —u(t,z) =0 (2.3.10)

This, and the fact that W° has independent increments, assure that for all, t € [0,T], = € R4, it

holds that:

(B[[E[0° (¢ +WP)] = u (t,2+ W) \*’])% =0< (E[|g (= +Wh) \P])% (2.3.12)

Notice that the triangle inequality gives us:

o =

(B [|0° (8,2 + W) —u (1, + W) |‘°D; < (B[JU°tz+ W) —E [U0,2 + W) ]

o=

+(E[E[U (tz+W0)] —u(te+ W]

(2.3.13)
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This, combined with (1.26), (1.21), the independence of Brownian motions, gives us:

(B [10° .00 00) — e WP < () (& lo b))

m3
1
- ( m1> (E[lg (@ +nh)[])" (2.3.14)
m?2
This completes the proof of Lemma 2.3.2. O

Lemma 2.3.3. Assume Setting 2.1.6. Then it holds for all t € [0,T], x € RY that:

(B [J0° (2 + W) —u(t,x—i—W?)‘pD% <e <£> ( sup E[(1+ \\x%—WSH’];)pDE (2.3.15)

m?2 s€[0,T7

Proof. Observe that Lemma 2.3.2 ensures that:

(B [0 (b2 +W0) —u(teo+ WO)P])* < (;) (& [ls @+ w)P])’ (2:3.16)
Observe next that (4.0.6) ensures that:
(%) (E [lg (= +Wh) \”])% < <n‘:1> B[+ ]+ wgug)*’})% (2.3.17)

Which in turn yields that:
1

Iy <11> (B[(1+ wa%“i’;)”])% < <11> ( sup E[(1+ waﬁ“@)"])g (2.3.18)

m2 m?2 s€[0,T]

Combining 2.3.16, 2.3.17, and 2.3.18 yields that:

(IE [\UO (t,x +W}) —u(t,x+W§)\p])% < ( m ) (]E [’9(33+W:9)\p]>% <

1
m?2
1
m TACIAN
e (S5 )| sup E[(1+ (o + 00|15 (2.3.19)
m?2 s€[0,T]
This completes the proof of Lemma 2.3.3. O
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Corollary 2.3.3.1. Assume Setting 2.1.6. Then it holds for all t € [0,T], x € R that:

(E [\UO (t, ) —u(t,x)‘pD% <g (%) ( sup E [(1+\|x+w2 Hf,;)"DF (2.3.20)

s€[0,7T

Proof. Observe that for all t € [0,7 — ] and t € [0,7], and the fact that W° has independent

increments it is the case that:

u(t +42) =E [g (2 +W0_ag) | =E|g (2 + Wiy )] (2.3.21)

And it is also the case that:

1
Ut +t,z) = [Zg(m—i—weoﬁlg)] m

f; (2 WE25H)

Then, applying Lemma 2.3.3, applied for all t € [0, 7], with £ L, pp,pp, T (T —1) is

such that for all t € [0,7], t € [0,T — 4], x € R? we have:
1
(B[ (t+ta+W)) —u(t+ta+W)[])"
1
P
<L ( m1> ( sup E [(1 + Hm—l—WSH%)ﬂ)
m?2 s€[0,T—t]

<£( “1) ( sup E[(1+ = +W0|[}) Dp (2.3.22)

s€[0,T7]

Thus we get for all t € [0,T], z € R%, n €:

o=
o=

(E[10° ) —ut)P])" = (|0 (L2 +08) —u (b +WE)[*])

1

»
< 2( m1> ( sup E[(1+ =+ W0|[}) D (2.3.23)
m2 s€[0,T]
This completes the proof of Corollary 2.3.3.1. O

Theorem 2.3.4. Let T,L,p,q,0 € [0,00),m € N, © = |, cnZ", let g4 € C(R% R), and as-

sume that d € N, t € [0,T], * = (v1,22,...,79) € R? v,w € R and that max{|gq(z)|} <
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Ldp (1+Eg:1|1‘k|), let (Q,F,P) be a probability space, let W : [0,T] x @ — R¢, d € N,

0 € O, be independent standard Brownian motions, assume for every d € N that (Wd"g) are

ISC]
independent, let uqg € C([0,T] x R%L,R), d € N, satisfy for all d € N, t € [0,T], € R? that

E [gz (:L‘ + W%’Et)} < 00 and:
wa (t,2) =B [ga (2 + W32, )| (2.3.24)

Let UX [0, T] xRIxQ - R, d€N, m € Z, 0 € O, satisfy for all, d € N, m € Z, § € O,
€[0,7], x € R? that:

UL (t, x) [Z ga (2 + Wi ’“))] (2.3.25)

and for every d,n,m € N let €4, , € Z be the number of function evaluations of uq(0,-) and
the number of realizations of scalar random variables which are used to comput one realization of
UEN(T,0) : Q — R.

There then ezists c € R, and M : N x (0,1] — N such that for all d € N, ¢ € (0, 1] it holds that:

1
P\ »
sup  sup (E ||uq(t,z) — UL . <e (2.3.26)
t€[0,7] z€[—L,L]? ( H M(dye) D
and:
Cam(d.e) () < cde” ) (2.3.27)

Proof. Throughout the proof let my = \/p — I, p € [2,00), let F{ C F, d € N, t € [0,T] satisfy for
all d € N, t € [0,T] that:

ﬂse[t,T]U (U (Wii’o ir € [0,5]) U{AeF:PA) = 0}) t<T

J(U(Wsd’ozse[O,T])U{AEF:P(A)zO}) t=T

Fé = (2.3.28)

Observe that (2.3.28) guarantees that F{ C F, d € N, t € [0, 7] satisfies that:

(I) it holds for all d € N that {A € F : P(A) = 0} C F
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(IT) it holds for all d € N, ¢ € [0,T], that F{ = (¢ (7 Fe-

se(

Combining item (I), item (II), (2.3.28) and (Hutzenthaler et al., 2020b, Lemma 2.17) assures us

that for all d € N it holds that W0 : [0, T] x Q — R? is a standard (Q, F. P, (Ff) })—Brownian

tel0,T
Brownian motion. In addition (58) ensures that it is the case that for all d € N, 2 € R? it holds

that [0,7] x Q 3 (t,w) — = + W (w) € R is an (F¢) ]/B (R?)-adapted stochastic process

tel0,T

with continuous sample paths.

This and the fact that for all d € N, t € [0, 7], z € R? it holds that aq(t,z) = 0, and the fact that
for all d € N, t € [0,T], z,v € R? it holds that bg(t,z)v = v yield that for all d € N, 2 € R? it holds

that [0,7] x 2 3 (t,w) — = + Wtd’o(w) € R? satisfies for all ¢ € [0, 7] it holds P-a.s. that:

t t t t
x+ I/th’0 =x+ / 0ds + / AW = 2 + / aq(s,x + W0)ds + / ba(s, z + WE0)dw a0
0 0 0 0

(2.3.29)

This and (Hutzenthaler et al., 2020b, Lemma 2.6) (applied for every d € N, x € R? with d
d,mmd,TmT,Clmd,CgmO,Fan,fnx,umad,ambd,Wanvo,Xn
<[O,T] x Q3 (tw)—z+ W (w) e Rd) in the notation of (Hutzenthaler et al., 2020b, Lemma

2.6) ensures that for all r € [0,00), d € N, z € R%, ¢ € [0, 7] it holds that

r+3)T

E [Hx n WtdeHT} < max{T, 1} <(1 + Hx||2>% +(r+ 1)d£> exp (T( a ) <00 (23.30)

This, the triangle inequality, and the fact that for all v,w € [0,00), » € (0,1], it holds that
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(v 4 w)" < V" +w" assure that for all p € [2,00), d € N, x € R? it holds that:

a0 lY]) <0 s (e w7

<1+ s (wastZ.0) (14 1al) o+ 0+ 007 ) e (M»

s€[0,T

ap
< (T3 (14 013) * + (o + 1 ) e (A2 2T
ap

<2 ((1 +lalli;) * + (g +1)d q2> P (M i %)

2 ((1 + ||a:|12E) H + (gp + 1)d%> exp (qu +3)+1] T) (2.3.31)

2

Given that for alld € N, z € [~ L, L]? it holds that ||z|| 5 < Ld? this demonstrates for all p € [2,00),
d € N, it holds that:

1
L(m_’i> ( sup  sup <E [(1—1—Hx+WL;i,OH‘1)P]>p>
m2 x€[—L,L]? s€[0,T] E
m e w +3)+ 1T
<(™) ( sup (U llell) -+ (ap-+ 0¥ ) exp (11BN )D
m?2 z€[—L,L]?

<L (m—’;> ((1+ L2d) % + (gp+1)d ) exp <[Q(qp +3) + 1] T> (2.3.32)

m?2 2

Combining this with Corollary 2.3.3.1 tells us that:

o=

(E Hud(t,x) _ U0, @H)

1
<o (™) (Lo, o (2[00 e we])]) )

<L ( m1> ((1+22) T + (g0 +1)a% ) exp <[Q(qp ha 2) 1 T) (2.3.33)

This and the fact that for all d € N and € € (0,00) and the fact that m, < 2, it holds that for fixed

L,q,p,d, T there exists an My, 4, 47 € R such that Ny = My, 4 971 forces:

N

L [ m;p ] <(1 + L2d)?p + (gp + 1)dq7> exp ([q(qp 3)+ 1] T) € (2.3.34)

N, 2
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This proves (2.3.26).

Note that €4 m, . ,m, . 1s the number of function evaluations of uq(0, -) and the number of realizations
of scalar random variables which are used to compute one realization of U‘.?Ii(T ,0) : Q@ — R.
Let ‘)Tt;; be the value of Ny, that causes equality in (2.3.34). In such a situation the number of
evaluations of u4(0, -) do not exceed ‘)@;. Each evaluation of u4(0, -) requires at most one realization

of scalar random variables. Thus we do not exceed 2‘)71?;. Thus note that:

Camy . My S 2 {me ((1 + L?d) L (qp + 1)d%) exp (qu + g) + 1] T)] e! (2.3.35)

Note that other than d and € everything on the right hand side is a constant.
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Chapter 3

That u is a viscosity solution

We can extend the work for the heat equation to generic parabolic partial differential equations.
We do this by first introducing viscosity solutions to Kolmogorov PDEs as given in Crandall &

Lions Crandall et al. (1992) and further extended, esp. in Beck et al. (2021a).

3.1 Some Preliminaries
We take work previously pioneered by Itd (1942a) and Itd (1942b), and then seek to re-apply
concepts first applied in Beck et al. (2021a) and Beck et al. (2021b).

Lemma 3.1.1. Let d,m € N, T € (0,00). Let p € CH2([0,T] x R4, RY) and o € CH2([0,T] x
RY, R™) satisfying that they have non-empty compact supports and let & = supp(u) Usupp(o) C
[0,T] x RY. Let (Q,F,P, (Ft)ieo,m) be a filtered probability space satisfying usual conditions. Let
W :[0,T] x Q — R™ be a standard (Fy)yeo1) -Brownian motion, and let X : [0,T] x Q@ — R% be an
(]Ft)te[oj]-adapted stochastic process with continuous sample paths satisfying for all t € [0, T] with

P-a.s. that:

t t
Xy = X+ / u(s, Xs)ds —1—/ o(s, Xs)dWs (3.1.1)
0 0

It then holds that:
(i) [(P(X €6)=1) = (P(Vte0,T]: X, = X)) =1)]
(ii)) [P(XeB)=1) = (P(Vte[0,T]: X € S)=1)]
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Proof. Assume that P(X) ¢ &) = 1, meaning that the particle almost surely starts outside &. It
is then the case that P(Vt € [0,T] : ||u(t, Xo)||g + ||o(t, Xb)||F = 0) = 1 as the p and o are outside

their supports, and we integrate over zero over time.

It is then the case that:
Y= ([O,T] x Q3 (tw) = Xo(w) € Rd) (3.1.2)

is an (F¢)iep,7] adapted stochastic process with continuous sample paths satisfying that for all

t € [0, 7] with P-almost surety that:

t t t t
Vi =X +/ 0d8+/ 0dWs = Xy +/ M(S,Xo)ds—l-/ O’(S,Xo)dWs
0 0 0 0
t

t
:X0+/ u(s,ys)ds—l—/ o(s,Vs)dWs (3.1.3)
0 0

Note that since p € C*2([0,T] x R4, RY) and o € CH2([0,T] x RY,R¥>™)  and since continuous
functions are locally Lipschitz, and since this is especially true in the space variable for p and o, the
fact that & is compact and continuous functions over compact sets are Lipschitz and bounded, and
(Karatzas and Shreve, 1991, Theorem 5.2.5) allows us to conclude that strong uniqueness holds,

that is to say:
PVt [0,T]: X, =A4p) =PVt [0,T]: X, =)) =1 (3.1.4)

establishing the case (i).

Assume now that P(Xy € &) = 1 that is to say that the particle almost surely starts inside &. We
define 7: Q — [0,7] as 7 = inf{t € [0,T] : X, & &}. 7 is an (Fy);e)o7)-adapted stopping time. On
top of 7 we can define Y : [0,T] x Q — R? for all t € [0,T], w € Q as Vy(w) = Xninft,r} (W), V
is thus an (Ft)te[oﬂ—adapted stochastic process with continuous sample paths. Note however that

for t > 7 it is the case ||u(t, V) + o(t,V4)||e = 0 as we are outside their supports. For ¢t < 7 it is
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also the case that )V, = X;. This yields with P-a.s. that:

min{t,7} min{t,7}
Ve = Xmin{t,T} =X+ / /J,(S, Xs)ds + / U(S, Xs)dWs
0 0
t t
=X+ / 1 {0<5<T}M(57 Xs)ds + / 1 {0<s<7}0(37 Xs)dWs
0 0
t

t
:X0+/ u(s,ys)ds—i—/ o(s,Vs)dWy (3.1.5)
0 0

Thus another application of (Karatzas and Shreve, 1991, Theorem 5.2.5) and the fact that within
our compact support &, the continuous functions y and ¢ are Lipschitz and hence locally Lipschitz,

and also bounded gives us:

Proving case (ii). O

Lemma 3.1.2. Let d,m € N, T € (0,00). Let g € C*(R4R). Let p € CH3([0,T] x R, R?) and
o € CH3([0,T] x RY, R¥>™) have non-empty compact supports and let & = supp(p) Usupp(o). Let
(Q, F,P, (Ft)iecpo,r)) be a stochaastic basis and let W : [0,T] x Q@ — R™ be a standard (Ft)iepo,7)-
Brownian motion. For every t € [0,T] , * € R%, let X% = (Xﬁ’m)se[t7T] D[ T) x Q — R be an
(Fs)seje,r)-adapted stochastic process with continuous sample paths satisfying for all s € [t,T| with

P-almost surety that:
X" =+ /ts p(r, X5%)dr + /ts o(r, XE")dW, (3.1.7)
also let u : RY — R satisfy for all t € [0,T], x € RY that:
u(t,z) = E [g(X;JI)] (3.1.8)

then it is the case that we have:

(i) u € C2([0,T] x RLR) and
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(ii) for allt € [0,T], v € R? that u(T,z) = g(x) and:

(%u) (t,x) + %Trace (o (t,z) o (t,z)]" (Hessy u) (t,2)) + (u(t,z), (Viu) (t,2)) =0

(3.1.9)

Proof. We break the proof down into two cases, inside the support & = supp(u) U supp(o) and
outside the support: [0,7] x (R?\ &).

For the case inside &. Note that we may deduce from Item (7) of Lemma 3.1.1 that for all ¢ € [0, 7],
z € R\ G it is the case that P(Vs € [t,T] : X&* = x) = 1. Thus for all t € [0,T], z € R?\ & we

have, deriving from (3.1.8):

u(t,z) =E [g (X;xﬂ = g(x) (3.1.10)

Note that g(x) only has a space parameter and so derivatives w.r.t. t is 0. Inhereting from
the regularity properties of g and (3.1.10), we may assume for all ¢ € [0,T], = € R? \ &, that
uljo, 1) (r\&) € C12([0,T] x (R?\ &)). Note that the hypotheses that u € C13([0, 7] x R?,R?) and
o € CH3([0,T] x R4, R¥™) allow us to apply Theorem 7.4.3, Theorem 7.4.5 and Theorem 7.5.1

from Da Prato and Zabczyk (2002) for t € [0,T], x € R?\ &, to give us:

(i) u e CY2([0,T] x R, R).

(%u) (t,x) + %Trace (o(t,z) [o(t, )] (Hessy u) (t,z)) + (u(t, ), (Viu) (¢, z))

(3.1.11)

Now consider the case within support &. Note that by hypothesis ¢+ and o must at-least be locally
Lipschitz. Thus (Karatzas and Shreve, 1991, Theorem 5.2.5) allows us to conclude that within &

the pair (u, o) for our our stochastic process X5 defined in (3.1.7) must exhibit a strong uniqueness

property.
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Further note that Item (i¢) from Lemma 3.1.1 tells us that:
P(Vt € [0,T]: X% € &) = 1. (3.1.12)

Note that again the hypotheses that u € C13(]0, 7] x R4, R?) and o € CH3([0, T] x R, R¥>*™) and
g € C?(RY) allow us to apply Theorem 7.4.3, Theorem 7.4.5 and Theorem 7.5.1 from Da Prato and

Zabczyk (2002) for t € [0,T], x € G, to give us:

(i) u e CL2([0,T] x R, R).
(ii)

<%u) (t,x) + % Trace (o(t,z) [o(t,x)]" (Hessy u) (¢, x)) + (u(t, z), (Vzu) (t,2)) =0

(3.1.13)

Note that (3.1.7) and (3.1.8) together prove that u(T,z) = g(x). This completes the proof. O

3.2 Viscosity Solutions

Definition 3.2.1 (Symmetric Matrices). Let d € N. The set of symmetric matrices is denoted Sg
given by Sg = {A € Sq: A* = A}.

Definition 3.2.2 (Upper semi-continuity). A function f: U — R is upper semi-continuous at xg

if for every € > 0, there exists 6 > 0 such that:
f(z) < f(xg) + ¢ for all x € B(x0,0)NU (3.2.1)

Definition 3.2.3 (Lower semi-continuity). A function f : U — R is lower semi-continuous at xg

if for every € > 0, there exists 6 > 0 such that:
f(x) > f(xg) — € for all x € B(xp,6)NU (3.2.2)

Corollary 3.2.3.1. Given two upper semi-continuous functions f,g: R? — R, their sum (f + g) :

R? — R is also upper semi-continuous.
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Proof. From definitions, at any given xo € R, for any ¢ € (0, 00) there exist neighborhoods U and

V around zg such that:

(Vz € U) (f(z) < f(zo) +¢) (3.2.3)
(Vz € V) (9(z) < g(zo) +¢) (3.2.4)
and hence:
Yz e UNV) (f(z) + g(x) < f(z0) + glwo) + 2¢) (3.2.5)
O

Corollary 3.2.3.2. Given an upper semi-continuous function f : R — R, it is the case that

(—f) : RT — R is lower semi-continuous.

Proof. Let f:R? — R be upper semi-continuous. At any given xo € R?, for any ¢ € (0,00) there

exists a neighborhood U around zg such that:

(Vo € U) (f(z) < f(zo) + ) (3.2.6)

This also means that:

(Ve € U) (—f(z) = —f(z0) — )
(3.2.7)
This completes the proof. O

Definition 3.2.4 (Degenerate Elliptic Functions). Let d € N, T' € (0,00), let O C R? be a non-
empty open set, and let (-,-) : R* x RY — R be the standard Euclidean inner product on R%. G is

degenerate elliptic on (0,T) x O x R x R? x Sy if and only if:
(i) G:(0,T) x O x R x R? x Sg — R is a function, and

(ii) for allt € (0,T), z € O, r € R, p € RY, A, B € Sy, with Vy € R?: (Ay,y) < (By,y) that
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G(t?m7rﬂp7A) < G(t7x7r7p7B)'

Remark 3.2.5. Lett € (0,7), x € R, r € R, p € RY, A € Sg. Let u € C%([0,7] x R, R),
and let 0 : R — R4 gnd pu : RT — R? be infinitely often differentiable. The function G :
(0,7) x R x R x R? x Sg — R given by:

G(t,z,r,p,A) = %Trace (o(z) [o(z)]" (Hessz u) (t,x)) + (u(t,z), Vou (t, x)) (3.2.8)

where (t,z,u(t,z), u(z), o(z) [o(z)]*) € (0,T) x RY x R x R? x Sy, is degenerate elliptic.

Lemma 3.2.6. Given a function G : (0,T) x O x R x R? x Sy — R that is degerate elliptic on
(0,T) x O x R x R? x Sy it is also the case that H : (0,T) x O x R x R x S; — R given by

H(t,x,r,p,A) = —G(t,z,—r, —p, —A) is degenerate elliptic on (0,T) x O x R x R? x Sy.

Proof. Note that H is a function. Assume for y € R? it is the case that (Ay,y) < (By,y) then
it is also the case by (??) that (—Ay,y) > (—By,y) for y € R%. However since G is monotoically
increasing over the subset of (0,7) x O x R x R? x Sy where (Ay,y) < (By,y) then it is also the
case that H(t,z,r,p, A) = —G(t,z,—r,—p,—A) > —G(t,z,—r,—p,—B) = H(t,z,r,p, B).

O

Definition 3.2.7 (Viscosity subsolutions). Letd € N, T € (0,00), let O C R? be a non-empty open
set, and let G : (0,T) x O x Rx R xSy — R be degenrate elliptic. Then we say that u is a viscosity
solution of (%u) (t,x) + G (t,z,u(t, ), (Vgu) (t,x), (Hessgy u) (t,x)) = 0 for (t,x,) € (0,T) x O if

and only if there exists a set A such that:
(i) we have that (0,T) x O C A.
(i) we have that u: A — R is an upper semi-continuous function from A to R, and

(i4i) we have that for all t € (0,T), x € O, ¢ € CH2((0,T) x O,R) with ¢(t,x) = u(t,x) and

¢ > u that:

<§tud> (t,z) + G (t,z,6(t,2), (Vo) (t,2) , (Hessy ¢) (t,z)) = 0 (3.2.9)
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Definition 3.2.8 (Viscosity supersolutions). Let d € N, T € (0,00), let O© C R? be a non-
empty open set, and let G : (0,T) x O x R x R? x S; — R be degenrate elliptic. Then we say
that w is a viscosity solution of (%u) (t,z) + G (t,z,u(t,z),(Vzu) (t,x), (Hessg u) (t,x)) < 0 for

(t,z,) € (0,T) x O if and only if there exists a set A such that:
(i) we have that (0,T) x O C A.
(ii) we have that u : A — R is an upper semi-continuous function from A to R, and

(iii) we have that for all t € (0,T), z € O, ¢ € CY2((0,T) x O,R) with ¢(t,z) = u(t,x) and

¢ < u that:
0
(aud> (t,x) + G (t,x,9(t,x), (Va0) (t,x), (Hessy @) (t,2)) <O (3.2.10)

Definition 3.2.9 (Viscosity solution). Let d € N, T € (0,00), O C R? be a non-empty open set
and let G : (0,T) x O x R xR x Sy — R be degenerate elliptic. Then we say that ug is a viscosity

solution to (%ud) (t,x) + G(t,z,u(t,z), Vy(z,t), (Hessy ug)(t, x)) if and only if:

(i) u is a viscosity subsolution of (%ud) (t,x) + G(t,z,u(t,z), Vi(x,t), (Hessy ug)(t,x)) = 0 for
(t,x) € (0,T7) x O

(ii) u is a viscosity supersolution of (%ud) (t,z)+G(t,x,u(t,x), Vy(z,t), (Hessy uq)(t,z)) = 0 for
(t,x) € (0,T) x O

Lemma 3.2.10. Let d € N, T € (0,00), t € (0,T), let O C R? be an open set, let v € O,
¢ € CH2((0,T) x O,R), let G : (0,T)x OxRxR¥ xSy — R be degenerate elliptic and let ug(0,T) x
O — R be a viscosity solution of (%ud) (t,z) + G (t,z,u(t,z), (Vgup) (t,z), (Hessz uq) (t,x)) = 0

for (t,z) € (0,T) x O, and assume that uw — ¢ has a local mazimum at (t,t) € (0,T) x O, then:

(%¢> (t,v) + G (tr,u(t, ), (Veo) (t, 1), (Hessz ¢) (t,v)) =0 (3.2.11)

Proof. That u is upper semi-continuous ensures that there exists as a neighborhood U around (¢, t)
and ¢ € C12((0,T) x O,R) where:
(i) for all (t,z) € (0,T) x O that u(t,t) —¥(t,v) > u(t,z) — (¢, x)
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(ii) for all (¢,x) € U that ¢(t,x) = ¢(t, ).

We therefore obtain that:

(5:9) (25 + 6 (6,0 (70,9, (e ) 4.1)

= (%w) (1) + G (v, u(t, ), (V) (4. 1). (Hess; 1)(t, 1)) > 0 (3.2.12)

O

Lemma 3.2.11. Letd € N, T € (0,00), let O C R? be a non-empty open set, let uy, : (0,T) x O —
R, n € Ny be functions, let Gy, : (0,T) x O xR x R? xSy — R, n € N be degenerate elliptic, assume

that G is upper semi-continuous for all non-empty compact K C (0,T) x O x R x R? x Sy that:
lim sup sup  (Jun(t,x) —uo(t,z)| + |Gp(t, z, 7, p, A) — Go(t,z,m,p,A)])| =0  (3.2.13)
n_>oo (t7$77‘7p7A)€’C
and assume for all n € N that u, is a viscosity solution of:

<%un) (t,x) + Gp (t,x, un(t, z), (Vaun)(t, x), (Hessy up) (t,z)) = 0 (3.2.14)

then ug is a viscosity solution of:

<%u0> (t,z) + Gy (t, x,up(t, x), (Vzuo)(t, z), (Hessy ug)(t, ) =0 (3.2.15)

Proof. Let (to,x,) € (0,T) x O. Let ¢. € C2((0,T) x O,R) satisfy for all € € (0,00), s € (0,T),

y € O that ¢o(to, x0) = uo(to, z0), ¢o(to,xo) = uo(to, o), and:
P=(5,y) = bo(s,y) +e(|s —to| + |y — 2ol r) (3.2.16)

Let 6 € (0,00) be such that {(s,y) € R? x R : max (|s — to|?, ||y — z0[|%) < 0}. Note that this

and (3.2.27) then imply for all ¢ € (0,00) there exists an v. € N such that for all n > v., and
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max (|s — tol, ||y — xo||g) <, it is the case that:

)

Sup(’un(&y) - U()(S,y)’) < 5 (3217)

Note that this combined with (3.2.16) tells us that for all € € (0,00), n € NN [ve, ), s € (0,7T),

y € O, with |s —to| < 6, [y — xol|lg <6, |s — to] + ||y — zol|g > I that:

un(to, o) — ¢ (to, xo) = un(to, zo) — do(to, zo) (3.2.18)

= up(to, xo) — uo(to, zo)
—ed
2

WV

WV

un(s,y) — uo(s,y) — € (|s — to| + ||y — ol &)
= un(s,y) — ¢o(s,y) — e (|s —to| + |y — zollE)

= Un(sv y) - ¢€(Sa y) (3219)

Note that Corollary 3.2.3.1 implies that for all € € (0,00) and n € N that w,, — ¢. is upper semi-
continuous. There therefore exists for all € € (0,00) and n € N, a 77 € (tg — d,tp + 0) and a pf,

where ||pf — x| < J such that:

Un (T, P7) — Be(Trs ) = Uun(8,Y) — ¢e(s,y) (3.2.20)

By Lemma 3.2.10, it must be the case that for all € € (0,00) and n € NN [ve, 00):

0
<§¢e) (T P) + G (T Py un (735 07) 5 (Ve (73 7)  (Hesse @) (73, 05)) 2 0 (3.2.21)
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Note however that (3.2.20) along with (3.2.16) and (3.2.27) yields that for all e € (0, 00) that:

lim sup [un (7, p5,) — de(T, P5)]
n—o0

> limsup [un (75, o) = (Po(7s, pn) + € (17 = tol + [0}, — wol|£))]

n—oo

2 limsup [un (77, ) — wo(755 p7) = € (|7 = to| + [Pk, = wol| )]
n—oo

— limsup [~ (|75 — to] + 155, — oll)] < 0 (3.2.22)

n—oo

However note also that since G is upper semi-continuous, further the fact that, ¢g € ((0,7) x O,R),
and then (3.2.27), and (3.2.16), imply for all ¢ € (0, c0) we have that: limsup,,_, ‘(%qbg) (15, p5) — (%qbo) (to, :1:0)’

0 and:

Go (to, o, ¢o (to, z0) , (Vzdo) (to, z0) , (Hessz ¢o) (to, xo) + Idga)

= G (to, zo, uo (to, xo0) , (Vade) (to, zo) , (Hess, ¢c) (to, x0))

> Tim sup [Go (75, 75 tn (75, 05) , (Va2 (75, 65) , (Hessy 2) (5, p5) (3.2.23)
n—oo

> lim sup (G (75, 05t (75, 25) , (Vahe) (75, p5) , (Hess, 6.) (75, 55))] (3.2.24)
n—o0

This with (3.2.20) assures for all € € (0,00) that:

(%ébo) (to, z0) + Go (to, zo, ¢o (to, x0) , (Vo) (to, xo) , (Hessy ¢o) (to, xo) + €ldga) >0 (3.2.25)

That Gq is upper semi-continuous then yields that:

(%(ﬁo) (to, z0) + Go (to, zo, ¢o (to, x0) , (Vo) (to, xo) , (Hessy ¢o) (to, z0) + €ldga) > 0 (3.2.26)

This establishes (3.2.29) which establishes the lemma.
O

Corollary 3.2.11.1. Let d € N, T € (0,00), let O C R? be a non-empty open set, let u, : (0,T) x

O = R, n € Ny be functions, let G, : (0,T) x O x R xR x Sy — R, n € Ny be degenerate elliptic,
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assume that G is lower semi-continuous for all non-empty compact KK C (0,T) x O x R x R? x Sy

that:

lim sup [ sup  (Jun(t,x) —uo(t,z)| + |Gn(t, z,7,p, A) — Go(t,z,7,p, A)|)| =0 (3.2.27)
n—oo | (t,x,rp,A)EK

and assume for all n € N that u, is a viscosity solution of:

0

HrUn (t,z) + Gp (t, 2, un(t, ), (Viuy)(t, x), (Hessy up ) (t,x)) <0 (3.2.28)
then ug is a viscosity solution of:

0

5710 (t,z) + Gy (t, x,uo(t, x), (Vzuo)(t, z), (Hessy ug)(t,x)) <0 (3.2.29)

Proof. Let v, : (0,T) x O — R, n € Ng and H, : (0,7) x O x R x R? x §; — R satisfy for
alln € No, t € (0,7T), z € O, r € R, p € R} A € Sy that v,(t,x) = —u,(t,z) and that

H,(t,x) = =Gy, (t,z,—r,—p, —A).

Note that Corollary 3.2.3.2 gives us that Hy is upper semi-continuous. Note also that since it is the
case that for all n € Ny, G,, is degenenerate elliptic then it is also the case by Lemma 3.2.6 that
H,, is degenerate elliptic for all n € Ny. These together with (3.2.28) ensure that for all n € N, v,

is a viscosity solution of:
0
avn (tv l’) + Hn (tv T, Un (ta l‘) ’ (van) (ta l‘) ’ (HeSSI Un) (t7 35‘)) > 0 (3230)
This together with (3.2.27) establish that:
limsup | sup (lun(t,) — wo(t,@)| + | Halt 27,0, A) = Ho(twr.p, A | =0 (3.231)
n—oo | (t,z,r,p,A)EL

This (3.2.30) and the fact that Hp is upper semi-continuous then establish that:

<%vo) (t,z) + Ho (t,x,vo(t, z), (Vgvo)(t,z), (Hessz vo)(t,z)) = 0 (3.2.32)
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for (t,z) € (0,T) x O. And hence vy is a viscosity solution of:
0
510 (t,z)+ Ho (t,x,uo(t, z), (Vguo)(t, x), (Hessy up)(t,2)) <0 (3.2.33)

This completes the proof. O

Corollary 3.2.11.2. Letd € N, T € (0,00), let O C R be a non-empty set, let u,, : (0,T)xO — R,
n € Ny, be functions, let Gy, : (0,T) x O x R x R? x S5 — R, n € Ny be degenerate elliptic, assume
also that Gy : (0,T) x O x R x R? x Sy — R be consinuous and assume for all non-empty compact

K C(0,T) x OxRxRExSy it is the case that:
limsup sup (|Gn (t,x,r,p, A) —Go (tama’rap)AM + |un (t,ﬂf) —uo (t,I)D =0 (3234)
n—oo | (t,z,r,p,A)EX

and further assume for all n € N, that u, is a viscosity solution of:

<%un> (t,x) + Gy (t,x,uy (t,z), (Vauy) (¢, ), (Hessg uy) (t,2)) =0 (3.2.35)

for (t,x) € (0,T) x O, then we have that ug is a viscosity solution of:

(%uo> (t,x) + Go (t,z,up (t,z), (Vzuo) (t,z), (Hessy uo) (t,z)) =0 (3.2.36)

Proof. Note that Lemma 3.2.11 gives us that ug is a viscosity solution of:

(%uo) (t,z) + Gy (t,z,ug(t, z), (Vyug)(t,z), (Hess, ug)(t,z)) =0 (3.2.37)

for (t,z) € (0,T) x O. Also note that Corollary 3.2.11.1 ensures that ug is a viscosity solution of:

<%u0> (t,x) + Gy (t,z,uo(t,x), (Vyuo)(t, z), (Hessy up)(t,x)) <0 (3.2.38)

Taken together these prove the corollary. O

Lemma 3.2.12. For all a,b € R it is the case that (a + b)? < 2a® + 2b%.
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Proof. Since for all a,b € R it is the case that (a — b)2 > 0 we then have that:

(a+0)? < (a+b)?+ (a—b)?
< a? + 2ab+ b? + a® — 2ab + b?

= 2a% + 2b°
This completes the proof. O
Lemma 3.2.13. Let d,m € N, T € (0,00). Let O C R? be a non-empty compact set, and for all

n € No, pin € C([0,T] x O,R), 0, € C([0,T] x O,R¥>™) assume also:

lim sup [ sup_sup (|| pn(t ) — po(t,2) || + [lom(t, ) — 002, a:>HF>] =0 (3.2.39)
n—oo [¢e[0,T) z€O

Let (2, F,R) be a stochastic basis and let W : [0,T] x Q@ — R™ be a standard (Ft),c(o,m-Brownian
motion for everyt € [0,T], x € O, let X*"* = (Xﬁ’m)se[tj] DT x Q= RY be an (Fs)sepe,1) adapted

stochastic process with continuous sample paths, satisfying for all s € [t, T] we have P-a.s.
S S
AT = g 4 / pin (7, X5 ) dr / o (r, XH) AW, (3.2.40)
t t

then it is the case that:

limsup | sup sup sup (E [“ngtJ _ Xg,t,w
n—oo | t€[0,T] s€lt,T] €O

y;])] =0 (3.2.41)

for (t,z) € (0,T) x RY.

Proof. Since O is compact, let L € R be such that for all ¢ € [0,7], z,y € O it is the case that:
0 (t, ) = po(t, y)lle = lloo(t, #) + oo(t, y)llr < Lz —ylle (3.2.42)
Furthermore (Karatzas and Shreve, 1991, Theorem 5.2.9) tells us that:

sup E [||X22] 5] < oo (3.2.43)
s€ft,T)
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Note now that (3.2.40) tells us that:
2t = 200 = [ 200) ol AN+ [ (A7) = o, X)W, (3.244)
t t

Minkowski’s Inequality applied to (3.2.44) then tells us for all n € N, ¢t € [0,T], s € [t,T], and

z € O that:

1

< [ [lnlr 270%) = ot 2] )+

27\ 2
(E ] ) (3.2.45)
E

1t6’s isometry applied to the second summand yields:

D=

(B [Jf25 — 23] 5])

/ (o (r, X72) — g0 (1, XOL2Y) AT,
t

1 § 2
(E [[|amt — 2007 ])7 < /t (B [l 274) = pag(r, 224 |[7,] ) *

M=

(/;E [Hffn(ﬁ 5) — o (r, Xo’t@)m dr) (3.2.46)

Applying Lemma 3.2.12 followed by the Cauchy-Schwarz Inequality then gives us for all n € N,
te€[0,T], s€[t,T], and = € O that:

s 3 2
B (1t - apeip] <2 | [ (8 [luar i) - ot 220)3]) o]
+2 [ [[lon(r 27) - ou(r 42 1]
t
<oT /SE [Hun(r, XY — pao(r, Xf’t’I)HZ] dr
t

) / K [Han(r, XY — o (r, Xf’t’m)Hi] dr (3.2.47)
t

Applying Lemma 3.2.12 again to each summand then yields for all n € N, t € [0,T] s € [t,T], and
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z € O it is the case that:

E [||te — a0t
<2r / (2 [[[1n(r, ) = o, X0 ] + 2B [[lsso(r, 20) — o, 2240)|[] ) ar
t

2
+2 / (211«: [Han(r, XY oo, XP““)HH + 28 [||oo(r, X707) — oo (r, Xf’t’x)HFD dr (3.2.48)
t
However assumption (3.2.42) then gives us that for alln € N, ¢t € [0,T], s € [t,T], and z € O that:

B ([l — a0t ) <4rA(T +1) /tSE [[zte — 20t ] ar

+47(T+1) | sup_sup (Il y) = po(r )3+ lon(r ) = oo(r, )13

rel0,T] yeR4

Finally Gronwall’s Inequality with assumption (3.2.43) gives us for alln € N, ¢ € [0,77], s € [t,T],

z € O that:

E (||t - a0t

2
<AT(T +1) | sup_sup (lan(r,9) = po(r.9)l[3 + lon(r,v) — oy(rp)|F) | 27T (3.2.49)

re[0,T] yeRe

Applying lim sup,,_, ., to both sides and applying (3.2.39) gives us for alln € N, t € [0,7], s € [t,T],

z € O that:

limsup B [[| 2t — 204 ]

n—oo
. 2
<limsup [4T(T+1) | sup_sup (|lan(r,y) = o(r,y) I3 + llo(r, ) — o0, y)\\%)] et T<T“>]
n—00 rel0,T] yeRd
. 2
<AT(T +1) [limsup [ sup_sup ([lin(r,) = po(r. )3 + lon(r,y) = oo(r, y)\\%)” T
n—oo | rel0,T] yecR4
<0
This completes the proof. O

Lemma 3.2.14. Let dym € N, T € (0,00), let O C [0,T] x R?, let pu € C([0,T] x O,R?) and

o € O([0,T] x O,R¥™™) have compact supports such that supp(u) U supp(c) C [0,T] x O let
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g€ C(RYLR). Let (Q,]:,IP’, (Ft)te[O,T]) be a stochastic basis, let W : [0,T] x Q@ — R™ be a standard
(Ft)ieqo,r] Brownian motion, for every t € [0,T], x € R?, let X" = (X;*’””)Se[m [, T) x Q — R?
be an (Fs)see,r) adapted stochastic process with continuous sample paths satisfying for all s € [t, T

with F-a.s. that:
X =z + /t p (r, X5") dr + /t o (r,X5") dW, (3.2.50)
and further let u : [0,T] x RY — R satisfy for all t € [0,T], x € R? that:
u(t,z) = E [g (X;x)} (3.2.51)
Then u is a viscosity solution of:
0 1 «
<au> (t,z) + B Trace (o(t,x) [o(t, z)]" (Hessg u) (t,x)) + (u(t,x), (Vzyu) (t,x2)) =0  (3.2.52)

and where u(T,x) = g(z) for (t,z) € (0,T) x O.

Proof. Let & = supp(p) Usupp(o) C [0,7] x O be bounded in space by p € (0,00), as S C
[0,T] x (—p, p)d. This exists as the supports are compact and thus by Hiene-Borel are closed and
bounded. Let s, m,, € C*°([0, T} x R, R¥*") where J,,c [supp(s,) U supp(m,,)] € [0,T] x (—p, p)*
satisfy for n € N that:

limsup | sup sup (|, (t,2) — u(t.2)| g + Isn — o(t. )] ) | =0 (3.2.53)
n—oo | t€[0,T] z€R

We construct a set of degenerate elliptic functions, G™ : (0,T) x R x R x R% x Sy — R with n € N

such that:
GO(t,x,r,p, A) = %Trace (o(t,x)[o(t,x)]*A) + (u(t, z), p) (3.2.54)
and
G"(t,z,r,p, A) = %Trace (5n(t, ) [on (8, 2)]" A) + (u(t, 2), p) (3.2.55)
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Also let g, € C®(R%,R) for n € N satisfy for all n € N that:

limsup sup sup ([lgn(z) = g(z)[£) =0 (3.2.56)
n—oo  tel0,T] zeR?

Further let X6 = (%?’t"r)se[t,r[] :[t, T] x @ — R be an (Fy) e rj-adapted stochastic process with

continuous sample paths that satisfy:
S S
Xt = g 4 / my, (r, X5 dr + / 5 (r, X80 AW, (3.2.57)
t t
Finally let u” : [0,7] x R? — R for n € N be:

) [gn (35;”)} (3.2.58)

and:

W =E [gn (X;””)} (3.2.59)

Note that (Beck et al., 2021b, Lemma 2.2) with g ™ gg, i My, 0 A 5, X5T A X5 gives us
u” € C12([0, 7] x R, R), and u™ (¢, z) = gi(z) where:

0 1 %
(aun) (t,x) + 5 Trace (sp,(t, z) [sp(t, z)]" (Hessy u™) (t,x)) + (my,(t, z), (V,u") (t,2)) =0
(3.2.60)
And by Definitions 3.2.7, 3.2.8, and 3.2.9 we have that u” is a viscolity solution of

(gtun> (t,z) + % Trace (s, (t, ) [sn(t, )] (Hess, u™) (¢, 7)) + (ma(t, z), (Vo) (,2)) = 0

(3.2.61)

for (t,z) € (0,T) x R4

Since for all n € N, it is the case that S = (supp(m,,) U supp(s,) U supp(p) Usupp(o)) C [0,T] x
(—p, p)? and because of (3.2.50) of (3.2.57) we have that (Beck et al., 2021a, Lemma 3.2, Ttem (ii))
which yields that for all n € N, ¢t € [0,T], z € R?\ (—p, p)¢ that P(Vs € [t,T] : X0 = g = X;x) =
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1. This in turn shows that for all n € N, z € R%\ (—p, p)¢ that u(t,2) = u’(¢, z) which along with

(3.2.58) and (3.2.59) yields that:

sup sup Hu”(t,x) —uO(t,a:)H = sup sup [|u"(t,2) —uo(t,x)H
t€[0,T] zeR4 t€[0,T] xe(fp’p)d

o (e ()0 (17)

D (3.2.62)

Note that Lemma 3.2.13 allows us to conclude that:

lim sup [ sup  sup (E [H%;tw - XSt”CHD] =0 (3.2.63)

n—o0 | t€[0,T] z&(—p,p)?

But then we have that (3.2.62) which yields that:
n—0 te[0,T] R4

lim sup [ sup sup ([u”(t,z) — uo(t,x)‘)] =0 (3.2.64)

However now note that (3.2.55) and (3.2.61) thus yield that for n € Np, u” is a viscosity solution

to:
0
(Eu”) (t,z) + G" (t,z,u" (t,x), (Vu") (t,x), (Hessy u™) (t,z)) =0 (3.2.65)

But since we’ve established (3.2.53) we have that for a non-empty compact set C C (0,7) x O x

R x R? x S, that:

lim sup sup ‘G" (t,xz,r,p, A) — GO (t,z,7,p, A)}
nﬁw (t7aj7r7p7A)ec

<limsup[ sup Hu(t,w)—mn(t,w)l\EllpllE]
nﬁoo (t7$7r7p7A)€C

=0 (3.2.66)

+limsup[ sup  |lo(t, @) [o(t, 2)]" — sn(t, ) [0, 2)] (| | Al £
n—00 (t,z,r,p,A)eC

This, together with (3.2.64), (3.2.65) and Corollary 3.2.11.2 yields that u" is also a viscosity solution
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to:
d
(au[)) (t,x) + GO (t,2,u(t, 2), (V,u') (t,7), (Hess,) (t,2)) =0 (3.2.67)
Finally note that (3.2.53), (3.2.57), (3.2.59), and (3.2.67) yield that w is a viscosity solution of::

<%u> (t,z) + %Trace (o(t,z) [o(t,z)]" (Hessy u) (t,x)) + (u(t,x), (V) (t,2)) =0 (3.2.68)

for (t,x) € [0,T] x R%. Finally (3.2.50) and (3.2.51) allows us to conclude that for all z € RY it is

the case that u(7,x) = g(x). This concludes the proof. O

Lemma 3.2.15. Letd,m € N, T € (0,00), further let O C R? be a non, empty compact set. Let ev-

eryr € (0,00) satisfy the condition that O, C O, where O, = {z € O : (||lz||lp <r and {y e R?: |ly — z||p < 1} C ¢
let g € C(O,R), p € C([0,T] x O,R), Ve CY2([0,T] x O,(0,00)), assume that for all t € [0,T],

x € O that:

o ({1220 0l + Lo 62) o)l

”x_yHE :te[O7T]7x’y607‘7x7éy}U{O}><OO

(3.2.69)

(%V) (t,x) + %Trace (o(t,x) [o(t,z)]" (Hessy V) (t,z)) + (u(t, z), (ViV) (t,2)) <0 (3.2.70)

assume that sup,.¢(o,00) [infer\OT V(t,z)] = oo and nf,e(0,00) |SUPse[0,7] SUPze0\O, (%)] =0.
Let (Q, F, P, (F¢)iejor)) be a stochastic basis and let W : [0,T] x Q — R™ be a standard (Fy)iepo,1)-
Brownian motion, for every t € [0,T], z € O let XH* = (X£,$>Se[t7T] 6, T] x Q@ — O be an
(Fs)seje,r)-adapted stochastic process with continuous sample paths satisfying that for all s € [t,T],

we have P-a.s. that:

X;’x = $+/ ,U('ra X:J)dr—i_/ O‘(T’, Xr?x)dWT (3271)
t t
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also let u : [0, T] x RY — R satisfy for all t € [0,T], x € RY that:
u(t,z) = E [u(T, X}"”)} (3.2.72)
It is then the case that u is a viscosity solution to:

(gtu) (t,z) + %Trace (o(t,z) [o(t,x)]" (Hessy u) (t,z)) + (u(t,z), (V) (t,2)) =0 (3.2.73)
for (t,x) € (0,T) x O with uw(T,z) = g(x).

Proof. Let it be the case, that throughout the proof, for n € N, we have that g, € C’(Rd,R),

compactly supported and that [UneN supp(gm)] C [0,7] x O and further that:

lim sup [ sup sup (M>] =0 (3.2.74)

n—oo  [¢€[0,T] €O V(T,z)
Let is also be the case that for n € N, m,, € C([0, T] x R%, R?%) and s,, € C([0, T] x R%, R¥™) satisfy:

(i) for all n € N:

[mn(t,y) = mn(t, )|z + [1n(t, 2) = su(t )| 5

sup sup =0 (3.2.75)
t€[0,T] z,yeR z#y ||l‘ - yHE
(ii) for allalln e N, t € [0,T], x € O:
L veny (&) [[mn(t, 2) — u(t, 2)l| 2 + llsn(t, 2) — o(t, z)|[F] = 0 (3.2.76)
and
(iii) for alln € N, t € [0, 7], z € R\ {V < n + 1} that:
[ (t, )| e + llsn(t, 2)||lF = 0 (3.2.77)

Next for every n € N, t € [0,T] and & € R? let it be the case that X5"" = (%?’t’m)se[tﬂ [t ] x Q. —
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R? be a stochastic process with continuous sample paths satisfying:
S S
0 =t [Cmar X [ s 20w, (3:2.78)

t t
Let u” : [0,T] x R = R, k € N, n € Ny, satisfy for all n € N, ¢t € [0,T], z € R? that:

Wt z) = E [gk(%;’t’x)] (3.2.79)
and

WOkt 2) = E [gk (X;:”ﬂ (3.2.80)

and finally let, for every n € N, ¢t € [0,T], z € O, there be TR g QN [t,T] which satisfy
" = inf ({s e [t,T), max{V (s, X5"), V (s, X&)} > n} U {T}) We may apply Lemma 3.2.14 with

LA, 0N S,, g g to show that for all n, k € N we have that u™* is a viscosity solution to:

<%unk> (t,z) + %Trace <5n(t,m) (5, (8, 2)]* (Hessx u”’k> (t,a:)) + (my, (¢, z), (Vz(un’k) (t,x)) =0

(3.2.81)

for (t,z) € (0,T) x R, But note that items (i)-(iii) and 3.2.78 give us that, in line with (Beck

et al., 2021a, Lemma 3.5):
P (Vs € [LT]0 1 (o X007 =1 [y X07) = 1 (3.2.82)

Further this implies that for all n,k € N, ¢t € [0,T], z € O that:

)

E Hgk (ﬁ’t’x) - gk(X%’x)

| = B[t gy |0 ") — an(X0)

P(t)" < T)

<2 [sup gk (y)]
yeO

Note that this combined with (Beck et al., 2021a, Lemma 3.1) implies for all ¢ € [0,T], z € O,
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n € N we have that E [V (tflx, X;f)} < V(t, ), which then further proves that:

P(ty* <T)

W (@) — w0 (k)| < 2| supak(y)
yeO

P (V (tﬁ;“, Xt;ﬁ) > n)

t

<2 [sup lox(y)|
yeO

B[V (67 47)

n lyeO

2
<= [sup |0k (y)]

V(t,x,)

2
< — |sup |gr(y)]
n |yeO

Together these imply that for all £ € N and compact K C [0,7] x O:

=0 (3.2.83)

k—oo | (t,z)eEX

limsup[ sup (

But again note that since have that sup,¢(g ) [infte[QT]’xe]Rd\or V(t,x)} = oo and (3.2.76) tell us

that for all compact K C [0,7] x O we have that:

lim sup [ sup ([[mp(t,z) — p(t, z)|| g + ||sn(t, ) — U(t,m)HF)] =0 (3.2.84)
n—oo | (t,x)eK

Note that (3.2.81), (3.2.83) and Corollary 3.2.11.2 tell us that for all k¥ € N we have that u%" is a

viscosity solution to:

(%uo’k> (t,z) + %Trace (a(t,x) [o(t,z)]" (Hessx uo’k> (t,a:)) + (u(t, x), (quo’k) (t,x)) =0

(3.2.85)

for (t,z) € (0,7) x O. However note that (3.2.71),(3.2.74), (3.2.80) prove that for all compact
K C[0,T] x O we have:

limsup | sup ‘uo’k(t,x)—u(t,fv)‘ =0 (3.2.86)
k—oo | (t,z)EK

o1



This together with (3.2.85), (3.2.74), Corollary 3.2.11.2 shows that ug is a viscosity solution to:
0 1 x
g (t,x) + 3 Trace (o(t,x) [o(t,x)]" (Hessy u) (¢, x)) + (u(t, z), (Vzu)) =0 (3.2.87)

for (t,z) € (0,7) x O. By (3.2.73) we are ensured that for all 2 € R? we have that u(T,z) = g(x)

which together with proves the proposition.

3.3 Solutions, characterization, and computational bounds to the

Kolmogorov backward equations

Theorem 3.3.1 (Existence and characterization of ug). Let T € (0,00). Let (2, F,P) be a prob-
ability space. Let oq € C (Rd,RdXd) and pg € C (Rd,Rd) for d € N, let ug € C1? ([O,T] X Rd,R)

satisfy for alld € N, t € [0,T] , = € R? that:

<%ud> (t,z) + %Trace (04() [oq(x)]" (Hessy ug) (t, ) + (na(x), (Vaoug) (t,2)) =0 (3.3.1)

let W4 :[0,T] x Q — R%, d €N be a standard Brownian motions and let X4 : [t,T] x Q — R,
d € N, t € [0,T], be a stochastic process with continuous sample paths satisfying for all d € N,

t€[0,T), s €[t,T], € R, we have P-a.s. that:
t t
xte =z / 1 (Xﬂﬁtvx) dr + / o (ervtvx> aw? (3.3.2)
Then for alld € N, t € [0,T], x € R, it holds that:
wg(t,z) = E [ud (T, Xtdvtvx)] (3.3.3)

Furthermore ugq is a viscosity solution to (3.3.1).

Proof. This is a consequence of Lemma 3.1.2 and 3.2.14. O

02



Corollary 3.3.1.1. Let T € (0,00), let (Q, F,P) be a probability space, let ug € C1? ([O, T] x RY, R),
d € N satisfy for alld € N, t € [0,T], x € R? that:

(%ud) (t,z) + % (Vaua) (t,z) =0 (3.3.4)

Let W : [0,T] x Q — R?, d € N be standard Brownian motions, and let X% : [t, T] x Q — R,
deN, te[0,T], z € R?, be a stochastic process with continuous sample paths satisfying that for

alld € N, t€[0,T], s € [t,T], x € R? we have P-a.s. that:
Xt = g 4 /: AW =z + We | (3.3.5)
Then for alld € N, t € [0,T], x € R? it holds that:
ua(t,z) = E [ud (T, X;*T@)} (3.3.6)

Proof. This is a special case of Theorem 3.3.1. It is the case where o4(x) = I, the uniform identity
function where I; is the identity matrix in dimension d for d € N, and pq(x) = 041 where 0y is the

zero vector in dimension d for d € N. O

Lemma 3.3.2. Let T € (0,00), let (Q,F,P), be a probability space, let ag € Cf (]Rd,R), and
ae O (acz) for d € N, be infinitey often differentiable function, let ug € C1? ([O,T] X Rd,R),
d € N, satisfy for alld € N, t € [0,T], z € R?, that:

<%ud> (t,x) + % (V2uq) (t,2) + aq (z) ug (t,z) = 0 (3.3.7)

Let W [0,T] x Q — R? be standard Brownian motions, and let X¥** : [t, T] x Q — R?, d € N,
te[0,T], x € R? be a stochastic process with continuous sample paths satisfying that for all d € N,

t€0,T], s € (t,T], x € RY, we have P-a.s. that:

tq 1
S
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Then for alld € N, t € [0,T], x € R? it holds that:

ug (t,2) =E [exp ( /t " (er’t’x) dr) ud (T, X;f’t’w)] (3.3.9)

Proof. Let vg : R — R be continuous. Throughout the proof let ug (¢, z) = e~ t*(@)y,(t, x) for all
deN, te€[0,T], z € R% For notational simplicity we will drop the d, ¢,z wherever it is obvious.

Therefore the derivatives become:

ug = —ce” "y ey (3.3.10)

1 1
§V:2,:u =3 [e71V20 + 2(V,0, Ve 1) + 0V2e 9] (3.3.11)
This then renders (3.3.7) as:

1
—ae Y + ey + = [eTTVEV 4 2(V,0, Ve ) + 0V2e T + ae=t 0 = 0

2
1
ey, + 3 [e7'*V2y — 2te " (V,v, Vya) +0V2e ] =0
1
e My + 5 [e71V20 — 2te™'(V,0, Vo) — tve "*Via] =0

1

v + 5 [Viv — 2t(Vv, Vza) — thia] =0
1

vy + 3 [V%v — 2t(Vza, Vyv) — thia] =0

1 1
vy + §v§v + (—tV,a, Vau) — §wv§a =0 (3.3.12)

Let o(t,z) = Ig, i.e. the uniform identity function. Let u(t,z) = —tV,a for t € [0,T],z € R%, and

for fixed a.. Let f(t,z,v) = —3toV2a for t € [0,T], 2 € RY.

Claim 3.3.3. It is the case that for for all z € R? and t € [0,T] that (z,u(t,z)) < L(1+ ||z|r)

for some constant L € (0,00).

Proof. Since o has bounded first and second derivatives let:

B = max{ sup ||Vza| g, sup ‘Via‘} (3.3.13)
d

z€R4 z€R

54



Note that we then have by the Cauchy-Schwarz inequality:

(, 1(t,2)) < [, —tV20) | < [l 1|t Vaar]lx
< T (|l2/|B)
<T(B+d) ]

=L|z|lg <L+ |2|%) (3.3.14)

It also follows that |lo(t,z)||r = Vd < L < L(1 + ||z ). O

Claim 3.3.4. It is the case that for allz,y € R, and t € [0,T] that: ||u(t, z)—p(t,y)||g+||lo(t, x) —

o(t,y)lle < €zl + lylle) (Iz =yl ) for some constant € € (0,00).

Proof. The fact that for all z,y € R? and t € [0, T] it is the case that ||o(t,2) — o(t,9)|lr = 0, the

fact that for all 2,y € R? it is the case that (||z||z + |yl|£) (|7 — y||£) = 0 and (3.3.13) tells us that:

u(t,z) — p(t, )l + lo(t,x) —o(t,y)l|r = |ult,z) — pt,y)lle +0
= [[tVza(z) = tVea(y)l e
< T|IVea(z) = Vea(y)|le

< 278 (3.3.15)

Now consider a function f € C ([0, T] x R%, R?), where for all z,y € R? it is the case that f(z)—f(y) <
€ (||lz|lg + lvllg) (|lz + ylle). Note then that setting y = x + h gives us:

fz + h) — f(z)
h

flz +h) —f(x)
h

<C(|zlle + |z + hllE)

lim
h—0

< lim € (||lzlle + |z + 2l )
h—0

Vaf (2)] < 2€ |2l g = A ||| = (3.3.16)

This suggests that V,f € O (z) and in particular that § € O (xQ) However with § v~ p we first notice
that because p < 278 in (3.3.15) it must also be that case that p € O(1) by Corollary 1.1.25.1.

However since O(c) C O(z) C O (2%) by Corollary 1.1.25.2 it is also the case that u € O (z?), and
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hence there exists a € satisfying the claim. This proves the claim. O
Claim 3.3.5. It is the case that |f(t,x,v) — f(t,z,w)| < L|v — w]

Proof. Note that by the absolute homogeneity property of norms we have:

1 1
|f(t,x,v) — f(t,z,w)| = ‘gtvvga - Ethia

1
= ‘gtV?Ea v — w|

1
< iT ’Via‘ v — wl
1
< =TB v —w|
2
<T(B+d)|v—w|

= L|v—w| (3.3.17)

Note that we may rewrite (3.3.12) as:

0 1
(g0 () + 5 Trace (o (1) o (02" (Hss, o) (1) + o (1.2) (920) ()
+f (0 (t,x) =0
We realize that (3.3.12) is a case of (Beck et al., 2021c, Corollary 3.9) where it is the case that:
u(t,z) ~ v(t,z), where o4(z) = I for all z € RY, d € N, where pu(t,z) = —tV a for fixed o and
for all t € [0,7], z € RY, and where f (t,z,u(t,z)) = —3tuVZa for fixed o and for all t € [0, 7],
r € RY

We thus have that there exists a unique, at most polynomially growing viscosity solution v €

C ([0,T] x R%,R) given as:

T
o(t,z) = E [U (T, y;“) +/ (s, V5% v (s, 947)) ds (3.3.18)
t
Let V : [0,T] x € — R™ be a standard (F;);c(o 7y-Brownian motion. Note that this also implies
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that the ) in (3.3.18) is characterized as:

v = [l yyare [o (), 3:319)
t t

With substitution this is then:

Vot = x4 / —rVga (YOF) dr + / IdVy
t t

y;ﬂf =z — / rV o (yg’f) dr + Vs_¢
t

Note that our initial substitution tells us: v(t,z) = e'*®u(t,z). And so we have that:

u(t,z) =E

+ /Tf (s, X570 (s, X57)) ds] (3.3.20)
t

:exp [Ta <X;x) — ta(a:)] u <T, Xr}x”

1 T
. ) [W /t texp [ta (XL")] u (t, Xsm) Via (Xsm) ds]
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Chapter 4

Brownian motion Monte Carlo of the

non-linear case

We now seek to apply the techniques introduced in Chapter 2 on 77. To do so we need a variation

of Setting 4.0.1. To that end we define such a setting. Assume v, f, @ from Lemma 3.3.2.

Definition 4.0.1 (Subsequent Setting). Let g € C (R%,R) be the function defined by:
9(x) = o(T,z) (4.0.1)
Let F: C([0,T] x RLR) — C ([, T] x R%,R) be the functional defined as:
(F (v) (t,x) = [ (t, 2,0 (t, 7)) (4.0.2)
Note also that by Claim 3.8.5 it is the case that:
|f (t,z,w) — f(t,z,w)] < L|w— w| (4.0.3)

Note also that since f (t,x,0) = 0, and since by (Beck et al., 2021a, Corollary 3.9), v is growing

at most polynomially, it is then the case that:

max {|f (,,0)|, |g ()]} < L1+ [|z[]") (4.0.4)
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Substituting (4.0.1) and (4.0.2) into (3.3.20) renders (3.53.20) as:

- T
v(t,x) =K v (T, X" —i—/ f (s, X% v (s, X257)) ds}
L t T
[tz o]
t

E
T
4 / E [f (s, X, v (s, X)) ds]
t
T

v(t,x) =E :g X;ﬂmﬂ + E [(F (v)) (s, X2")] ds

v(t,z) =E v

(

(
v(t,x) =FE :v (T, X"

(

Letd,m € N, T,£,p € [0,00), p € [2,00) m =t/p— 1, © =, nZ", f € C([0,T] x R? x R),
g€ CRLR), let F: C([0,T] x RLR) — C ([0,T] x RL,R) assume for all t € [0,T],z € R? that:

|f (¢, 2, w) = f (£, 2,0)] < L|w — wl max {|f (t,2,0)|,[g(x)]} < £ (1 +|=[F) (4.0.5)

and let (Q,F,P) be a probability space, let w0 - [0,1], 6 € O be i.i.d. random variables,
and suume for all 0 € ©, r € (0,1) that P (v’ <r) = r, let U% : [0,7] x Q@ — [0,7], 0 € ©
satisty for all t € [0,T], 6 € © that U} =t + (T —t)ul, let W2 : [0,T] x Q2 — R¢, 0 € © be
independent standard Brownian motions, let u € C([0,T] x R%,R) satisfy for all t € [0,T], x € R?,

that E [|g (z + WE_,)|] + JPE[(F () (s, 2 +W0,)] < oo and:
T
u(t,z) =E[g(x+Wp_,)] + /t E[(F (u)) (s,z+W5_,)] ds (4.0.6)

and let let U9 [0,T) x R x Q » R, 6 € ©, n € Z satisfy for all§ € ©, t € [0,T], z € R?, n € Ny

that:
Ult,2) = LZ (o4 Wi20- k>)]
n—1
Z (£ (v)) <u("”“> x+W“ﬁZf2 )] (4.0.7)
k=

Tt
)

mn—
i=1
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Part 11

A Structural Description of Artificial

Neural Networks
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Chapter 5

Introduction and Basic Notions

We seek here to introduce a unified framework for artificial neural networks. This framework
borrows from the work presented in Grohs et al. (2018), and work done by Joshua Padgett, Benno
Kuckuk, and Arnulf Jentzen (unpublished). With this framework in place we wish to study ANNs
from a perspective of trying to see the number of parameters required to define a neural network to
solve certain PDEs. The curse of dimensionality here refers to the number of parameters required

to model PDEs and their growth (exponential or otherwise) as dimensions d increase.

5.1 The Basic Definition of ANNs

Definition 5.1.1 (Hadamard Product). Let m,n € N. Let A, B € R™*". We define the Hadamard

product @ : RM*" x RM*X" — RMXT gg:
AGB=[A®G B]i’j = [A]i’j x [B];; Vi, j (5.1.1)

Definition 5.1.2 (Rectifier Function). Let d € N and = € R?. We denote by tq : R — R? the

function given by:
tg(z) = (max{x1, 0}, max{zs,0}, ..., max{xy,0}) (5.1.2)

Definition 5.1.3 (Multidimensionalization function). Let d € N, and let f € C (R,R). We denote
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by Multjlc : R4 — R? the function which, for all x = (x1, %2, ...,xq) € R? is given by:

f(x1)

Mult?(z) = / (3:32) (5.1.3)

f(za)

Definition 5.1.4 (Artificial Neural Networks). Denote by NN the set given by:

L
=) (x {lexlk—l xRZkD (5.1.4)

LeNlp,ly,...,leN \k=1

An artificial neural network is a tuple (v, P,D,Z,O,H,L, W) where v € NN and is equipped with

the following functions satisfying for all v € (Xﬁzl [le”’ﬁl X leD:

(i) P : NN — N denoting the number of parameters of v, given by:

L

Pv)=> I(lx-1+1) (5.1.5)

k=1

(ii) D : NN — N denoting the number of layers of v other than the input layer given by:
D(v)=1L (5.1.6)
(iii) T : NN — N denoting the width of the input layer, given by:
Z(v) =l (5.1.7)
(iv) O : NN — N denoting the width of the output layer, given by:

OWw) =1y (5.1.8)

(v) H : NN — Ny denoting the number of hidden layers (i.e. layers other than the input and
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output), given by:

H()=L-1 (5.1.9)

(vi) £L:NN = ey NF denoting the width of layers as an (L + 1)-tuple, given by:
L(v) = (lo,l1,12,....1L) (5.1.10)

We will sometimes refer to this as the layer configuration or layer architecture of v.

(vii) W; : NN — Ny denoting the width of layer i, given by:

Wiw) =4 (5.1.11)

Note that this implies that that v = ((Wy,b1), (Wa, b), ...(Wr,br)) € (x’,;;l [RUXbe-1 x leD.
Note that we also denote by Weight.y, : (Weight,, ,)ne12,...0y * {1,2,..., L} — (Um,keN Rka>
and also Bias(), : (Biasnu)go gyt {1,2,.., L} = (Upmen R™) the functions that satisfy for all
n € {1,2,..., L} that Weight,; , = W; i.e. the weights matrix for neural network v at layer i and
Bias;, = b;, i.e. the bias vector for neural network v at layer ¢. We will often find it convenient
to denote the neural network as /0L where special emphasis needs to be paid to the size of the
input and output layer. Note that it is evident from (5.1.11) that Wy (I/i’j) =14 and Wy, (yi’j) =j
for a neural network of depth L and 7,5 € N.

Note that we will call [y the starting width and lj, the finishing width. Together they will be referred

to as end-widths.

Definition 5.1.5 (Activation Functions). We will denote by a € C(R? R?) the column matriz of
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functions given by:

al(xl)

a(z) = 02(:962) (5.1.12)

oda(za)

Where for each i, o; € C(R,R). Each row represents a specific (not necessarily unique) activation

function.

Definition 5.1.6 (Realizations of Artificial Neural Networks with Activation Functions). Let Act €
C (RL_l,RL_l), we denote by Ry : NN — (Uk,leN C (Rk, Rl)> the function satisfying for all L € N,
lo,l,...,lp € N, v = ((Wy,b1),(Wa,ba),...,(Wr,br)) € (Xﬁzl [RbeXTk-1 ]R{lkD, To € Rlo 2y €
R, xp_y € Re7D withVk € {1,2, ..., L} : @, = Mult’™  (Wjap_1 + bi) such that:

[alk,1

Rac (v) € C (Rlo,RlL) and (Race () (20) = Wirar_1 + b, (5.1.13)

We will often denote the realized neural network v/0!z taking Rl to RIZ as plole : Rlo — RIL or

simply as Rl s RY where lp and [}, are obvious.

A neural network v with £(v) = (4,5,4,2)

Lemma 5.1.7. Let v € NN, it is then the case that:
(i) L(v) € NPW+L gnq

(i) for all a € C (R,R), R, € C (RTW),ROW)
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Proof. By assumption:

veNN= | U <>L< {lexlkfl X le}) (5.1.14)

LEN (lo,lq,...,lp )eNL+1 \k=1

This ensures that there exist ly, 1, ...,11, L € N such that:

L
Ve <>< [Rli”ﬂ” x Rﬂ) (5.1.15)

j=1

This also ensures that £(v) = (lo, 11, ...,Ir) € NEHE = NPW+L and further that Z(v) = Iy, O(v) =

lr, and that D(v) = L. Together with (5.1.13) this proves the lemma. O

5.2 Composition and extensions of ANNs

The first operation we want to be able to do is to compose neural networks. This follows then

naturally to the idea of neural network extensions.

5.2.1 Composition

Definition 5.2.1 (Compositions of ANNs). We denote by (-) e (-) : {(v1,v2) € NN x NN : Z(vq) =
O(v1)} — NN the function satisfying for all L,M € N,lo,ly,....,lp,mg,m1,....my € N, v =
((W1,51) 5 (Wa,b2) ooy (Wi, b)) € (X [REXU-1 X RE]), andwn = (W],B,), (W3, B5) ... Wy, Vi) €
(X,]yzl [RMMEXMMk—1 3¢ Rmk]) with lg = Z(v1) = O(v2) = mpr and :

(

(W1,01), (W3, 05), .. (Wiy_ys Uy —y)s (WAW ), Wby, + b1), (W2, b2),
ey (W1, b1)) (L>1)A(M>1)
Vi@ vy = S (W W1, Wib, + by), (Was ba), (W, bs), ooy (W) (D> 1A (M=1)
(W1, 01), (W, b5), ooy (W g, Uy g) (W, by + 01)) (L=1)A(M>1)
(WAW?, Wb, + b)) (L =1)A(M=1)
(5.2.1)
i

7 %
Diagrammatically this is represented as R* = RI = RE.
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A neural network v with £(v) = (4,5,4,2)

Lemma 5.2.2. Let v, € NN be such that O(p) = Z(v). It is then the case that:
(1) D(vep)=D(v)+D(p) -1

(i) For alli € {1,2,....,D(v e u)} that:

(Weighti,(l/ou) ) Biasi,(vw))

,

(Weight, ,, Bias; ;) 11 < D(p)
= (Weightlw Weightp,) ., Weight, , Biasp(,) ., + BiasL,,) 21 =D(p)
(Weighti_D(M)H’V Biasi_D(M)H,,,) 21> D(p)

Proof. This is a consequence of (5.2.1) which imply both (i) and (ii). O

Lemma 5.2.3. Let v1,v2,v3 € NN satisfy that Z(v1) = O(v2) and Z(v2) = O(v3), it is then the
case

that:

(vi o) evs =110 (1y003) (5.2.2)

Proof. This is a consequence of (Grohs et al., 2023, Lemma 2.8) with &1 ~ vy, ®2 1o, and

®3 13, and the functions Z ~AZ, L A~ D and O ~ O. Il

Definition 5.2.4 (Powers of ANNs). We denote by (-)*" : {v e NN : Z(v) = O(v)} — NN, n € Ny,
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the function that satisfies for all n € Ny, v € NN, with Z(v) = O(v) that:

(Iog) 80.,1) € ROW*XOW) x ROW) =0
= (5.2.3)

Ve (1/‘(”_1)) :neN

V.TL

n—times

i i

Diagrammatically this can be represented as R SR L R where Z(v)=0O(v).

5.2.2 Extensions

Often we need to be able to extend one neural network to be the same depth as another, hence the

extension operation.

Definition 5.2.5 (Extensions of ANNs). Let L € N, u € NN satisfy that Z(u) = O(n). We denote
by €r, : {p € NN : (D(v) < L and O(v) = I(p))} — NN the function satisfying for all v € NN
with D(v) < L and O(v) = Z(n) that:

¢ (v) = (u'@—l’(w)) ov (5.2.4)
Lemma 5.2.6. Let p,v € NN with L € N. It is then the case that:
(i) D(€Lue) =P W) +[(L-D(v)) D)~ (L-D(v)-1)] -1
5.3 Parallelization of ANNs

Definition 5.3.1 (Parallelization of ANNs of same length). Let n € N, we then denote by:

B, {(v,vey.yvn) € NN :D(vy) = D(v2) = ... = D(vy)} — NN (5.3.1)

2
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the function satisfying for all L € N, vy, v, ...,v, € NN and L = D(v1) = D(v2) = ... = D(vy,) that:

Weight, ,, 0 0 e 0 Bias
0 Weight, ,, 0 e 0 Biasy ,,
Bivi = 0 0 Weight ,,, 0 . | Biasy | |
i 0 0 0 ... Weighty , | |Biasy,, |
Weight, ,,, 0 0 e 0 Biasg ,,
0 Weight, ,,, 0 e 0 Biasg .,
0 0 Weightg)’,@ e 0 ) BiaSQ7y3 9 ey
i 0 0 0 cee Weigth,l,n_ _Biasz’l,n_
Weight, 0 0 e 0 Biasy, ,,
0 Weighty, ,,, 0 e 0 Biasr, .,
0 0 Weighty, . - 0 » | Biasg, (5.3.2)
i 0 0 0 -+ Weighty , | |Biasg,, |

For the case where two neural networks v, vo are parallelized it is convenient to write v1 Hvs.

n EI;,'n: Vi n
Diagrammatically this can be represented as: R2-i=1Z(v) ST RELOW) . o alternatively as
n Uiy T(w), X271 O(vy) n
Rzz':l () — Rzz':1 O(vi) .
Remark 5.3.2. Given n,L € N, vy, v9,...,v, € NN such that L = D(v1) = D(12) = ... = D(vy,) it

is then the case, as seen from (5.3.2) that:

L n n n
B e | X [R(ijl Wi (@))% (s We-1(17)) o R(Z5=1 Wk(”j))} (5.3.3)
k=1
As a consequence:
n L n n n
PEL )= PWi)=>_ [D Wr)x Y Wia(v)+ > Wi (1)) (5.3.4)
i=1 k=1 |j=1 j=1 j=1
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Lemma 5.3.3. Given two neural networks vy, vy € NN. It is the case that Rq(11Bra) = Rq(12Bv1).

Proof. Note that this is a consequence of the commutativity of summation in the exponents of

(5.3.3). O

Lemma 5.3.4. Let a € C(R,R), n € N, and v = B} v; satisfy the condition that D(v) =
D(vs) = ... = D(vy). It is then the case that Ry (v) € C (RZ?:lz(”i),RZ?:l O(”i)>

Proof. Let L = D(vy), and let l0,0l;1...0L;,, € N satisfy for all ¢ € {1,2,...,n} that L(v;) =
(li,g, lz’,la ---,li,L)- Furthermore let ((Wi,h bi,l) s (W@Q, biyg) s ey (W@L, bi,L)) c (XJ['/=1 [Rli,j xli -1 X Rli,j])

satisfy for all ¢ € {1,2,...,n} that:
vi=(Wi1,bin), Wiz2,bi2),...,(Wir,bir)) (5.3.5)

Let a; € Nwith j € {0, 1, ..., L} satisfy that a; = > l; j and let ((A1,b1), (A2,b2),.... (AL, br)) €

<><f:1 [R5 *5-1 x ]RO‘J’]> satisfy that:

Bisvi = ((A1,61) , (A2,b2) , ..., (AL, bL)) (5.3.6)

See Remark 5.3.2. Let ;0,%4,1, ..., %i,1—1 € (Rliao x Rbit x ... x Rli,L—l) satisfy for alli € {1,2,...,n}

ke N (0,L) that:
zij = Multg” (Wijai -1+ biy) (5.3.7)

Note that (5.3.6) demonstrates that Z (B ,1;) = ap and O (B} ;v;) = «r. This and Item(ii) of
Lemma 5.1.7, and the fact that for all i € {1, 2, ..., n}it is the case that Z(v;) = l; o and O(v;) = l; 1,

ensures that:

R (Bfy) € C (R, R) = € (R=i= o, R ot )

- C (RZ?le(w)RE?:l ow)

This proves the lemma. O
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5.4 Affine Linear Transformations as ANNs

Definition 5.4.1. Let m,n € N, W € R™*" b € R™.We denote by Affyy, € (R™*" x R™) C NN

the neural network given by Affy, = (W, b).

Lemma 5.4.2. Let m,n € N, W € R™*" b e R™. It is then the case that:
(i) L(Affwp) = (n,m) € N2
(it) for all a € C(R,R) it is the case that Rq(Affyp) € C(R™,R™)

(i17) for all a € C(R,R), x € R™ we have (Ra(Affyyp))(z) = Wa +b

Proof. Note that (i) is a consequence of Definition 5.1.4 and 5.4.1. Note next that Affy, = (W,b) €
(R™*™ x R™) C NN. Note that (5.1.13) then tells us that Rq(Affy,) = Wa + b which in turn

proves (i) and (7i7) O

Remark 5.4.3. Given W € R™*" and b € R™*! it is the case that according to Definition (5.1.5)

we have: P(Affyyp) =m xn+m
Lemma 5.4.4. Let v € NN. It is then the case that:

(i) For allm € N, W € R"™*OW)

L(Affy, g ov) = (Wo(v), W1 (v), ... Wp(py_1(v),m) € NP+ (5.4.1)

(ii) For all a € C(R,R), m € N, W € R™OW_ B ¢ R™, we have that Ry(Affyypev) €
C (RT™),R™).

(iii) For all a € C(R,R), m € N, W € R™<OW) B e R™, z € RZW) that:
(R (Affyyp o)) (2) = W (Rq (v)) () + b (5.4.2)
(iv) For alln € N, W € RTW)xn b ¢ RTW) that:
L(v o Affyp) = (n,W1(v), Wa(v), ..., Wp(, (v)) € NPWF1 (5.4.3)
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(v) Foralla € C(R,R), n € N, W € RIW)>Xn p ¢ RZW) that R, (v e Affyyp) € C (R?,RO™)) and,

(vi) For alla € C(R,R), n € N, W € RI™>" p ¢ R 2 € R™ that:

(Ra (v o Affwp)) () = (Ra (v)) (W +b) (5.4.4)

Proof. From Lemma 5.4.2 we see that R4 (Affy,) € C(R™,R™) given by Rq(Affyy) = Wa + 0.

This and (Grohs et al., 2023, Proposition 2.6) prove (i) — (vi). O

5.5 Sums of ANNs

Definition 5.5.1 (The Cpy Network). We define the neural network, Cpy,, € NN forn,k € N as

the neural network given by:

prmk = Aff[]lk I, - 1] 0 (551)

Lemma 5.5.2. Let n,k € N and let Cpy,, , € NN, it is then the case for all n,k € N that:
(i) D (Cpypp) = 1
(ii) P (Cpy,) = nk* 4+ nk

Proof. Note that (i) is a consequence of Definition 5.4.1 and (ii) follows from the structure of

Cpyn, k- O

Definition 5.5.3 (The Sm Network). We define the neural network Sumy, i for n,k € N as the

neural network given by:
Sumy, ;. = Affy, 1, ... 1,70, (5.5.2)

Lemma 5.5.4. Let n,k € N and Sum,, ;, € NN, it is then the case for all n,k € N that:
(i) D (Sum, ) =1

(ii) P (Cpy, ;) = nk*+k
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Proof. (i) is a consequence of Definition 5.4.1 and (ii) follows from the structure of Sum,, j. O

Definition 5.5.5 (Sum of ANNs of the same depth and same end widths). Let u,v € Z with
u < v. Let vy, vyt1, ...,y € NN satisfy for all i € NN [u,v] that D(v;) = D(vy), Z(vi) = Z(vy), and
O(vi) = O(vy). We then denote by @', v; or alternatively v, ® vy41 @ ... P v, the neural network

given by:

Di_ Vi = (Sumv_u+17o(yz) o[HY_ v]e pr(v—u+1),I(V1)> (5.5.3)

v @;):u’/i v
Or more concisely R2i=u L) =% Ry O(Wi)

5.5.1 Neural Network Sum Properties

Lemma 5.5.6. Let vy, v € NN satisfy that D(v1) = D(v2) = L, Z(v1) = Z(v2), and O(v1) = O(v2),

and L(v1) = (l1,1, 2, ...l1,) and L (v2) = (I2,1,12,2, ..., 12,1.) it is then the case that:

o [v1 By o Aff (5.5.4)

10(vg) 10(v9) |00 ()

PO1®m) =P (Aff[ LET0% Hzm)]Tv@z-z(ul))

< 2l§7L +lor(I+l—1+lp-1)+P 1)+ P(r)+ 2l%0 +ho2+ha+121)
Proof. Observe, that by Definition 5.3.1 and Remark 5.4.2 we get that:

P (1/1 B VQ) = 'P(Vl) + 7)(1/2)

(Wi (v1) + Wi (12)) Wi—1 (1) + Wit (12)) + Wi (V1) + Wi (12))] (5.5.5)

I
M=

i

1

Note also that by Remark 5.4.3 we have that:

& (Aﬂ:[ﬂo('/z) Ho(uz)]a@O(VQ)) =2 (O(V2))2 + O(v2) (5.5.6)

and:

P | Aff =2(Z(n))?* +27 5.5.7
< [Hz<u1>Hz(vn]Tﬂz»wn) (Z01))"+220) ( )

72



Finally note that (Grohs et al., 2023, Proposition 2.6, Item (iv)) tells us that given neural networks

vi,v2 € NN, with Z(v1) = O(1»), and L(vg) = (lk71,lk’2, e lkp(%)) it is then the case that:
P (Ul ] I/Q) <P (1/1) + P (1/2) + l17112,L_1 (5.5.8)
Combining (5.5.13),(??),(5.5.7), and (5.5.8) gives us that:

P | (r1 Bre) o Aff
(1 2) [Hz(mHz<u1>]T702<z<u1>>

73(1/1 H V2) + P (Aﬂ:[ + (11,1 + 12,1) . I(l/l)

Lz(vy) HI(un]Tv“z-I(m)
=P () +P(v2) + 250+ 200+ (g +1l21) lio

=P 1)+ Pvo) + 250+ 110 2+111 +12,1) (5.5.9)

And again that:

F <AfF[HO(u2) Io(uy) ] 00(wy) B rafe Afr[ﬂzwl) HI<»1>]T7@2-I<VI>>

<P (Aff[

To(ws) HO(ug)]:@O(VQ)) +P ((Vl Huy)e Aff[

Iz(y) HI(V1)]T’@2~I(V1)>
+lor - (-1 +12,0-1)

< Ql%L + o

+ P (v1) + P (o) + 21%0 +ho(+ha+121)

+lor - (li—1+1l20-1)

= QZ%’L +lo g (1+ li—1+ lzyL_1) +P (1) +P () + 2[%0 +lip (2+ lig+ l271)

This completes the lemma. O

Lemma 5.5.7. Let vy, vs € NN satisfy that D(v1) = D(v2) = L, Z(v1) = Z(v2), and O(v1) = O(v2),

and L(v1) = (11, l2,...0,0) and L (v2) = (l21,12,2, ..., l2,1,) it is then the case that:
D (1/1 = 1/2) =L (5510)

Proof. Note that D (Cpy, ;) = 1 = D (Sumyy) for all n,k € N. Note also that D (v; Brg) =
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D (v1) = D (v2) and that for v, u € NN it is the case that D (v e u) =D (v) + D () — 1. Thus:

® [1/1 H 1/2] o Aff

10(r3) 10 ()] 00(v)

Dunown)=wnor)=D <Aff[ iz Hz(u1>]T’®z.z(V1>>

=L

O

Lemma 5.5.8. Let vi,vs € NN, such that D(v1) = D(va) = L, Z(v1) = Z(v2) = lo, and O(v1) =
O(v2) =11, It is then the case that R(v1 ® v2) = R(ve B 1), i.e. the realized sum of ANNs of the

same depth and same end widths is commutative.

PTOOf. Let vy = ((Wl> bl)a (WQa b?)? ) (W[n bL)) and let vy = ((W{7 bll)’ (WQ/’ bl2)> ) (W£> blL)) Note
that Definition 5.3.1 then tells us that:

Wy 0 b1 Wy 0 ba
41 B Vg = ) ’ ) PR
o wi| |y o wil v,
Wr 0 br,
o wil| |y,

Note also that by Claims 7?7 and 7?7 and Definition 5.4.1 we know that:

Aﬂ: — ,@21’(1,2)’1 (5511)

T
[HI(Vz) HI(VQ)] 02 7(05),1
and:

Aff

[Tow) lowy)]0200)1 <[HO(V1) ]IO(zq) ’®2O(V1),1> (5.5.12)
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Applying Definition 5.2.1, specifically the second case, (5.5.3) and (??) yields that:

v B o] o Aff

T
[HI(Vz) HI(Vz)] 02 Z(ug),1

Wy 0 Iz b1 Wy 0 ba Wr 0 br,
0 Wil |z (v1) by 0 W by 0 Wi b/L

Wi b1 Wy 0 bo Wr 0 br,

wil | o wyl |, o wi| |w,

Applying Claim ?? and especially the third case of Definition 5.2.1 to to the above then gives us:

Ao, toe o s Bl e Aff T
Wi By Ws 0 ba Wy, 0 br,
= ) ’ EEXEY) Tow.) Lo » Lo Lo
-Wll- -Bi 0 Wé b/2 L ( 2) ( 2) 0 Wi ( 2) ( 2) blL
Wl bl WQ 0 bg [ ,
= ) ’ ) )y < WL W£:| abL +bL>> (5513)
wil (o o wy |b -
Now note that:
w0 | | Wi o0 | (b
V2 El = ? ’ ) ’ )
0 W b1 0 Wy ba
wi oo | o,
0 Wg br,
And thus:
Moy towp] 0 ® 2B P ¢ Al oy T
A wio0 | |
Wi b1 0 Wy ba
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Let 2 € RT(") note then that:

W1 b1 Wiz + by
T+ =
Wi vl Wizt

The full realization of (5.5.13) is then given by:

Wi—1(c..(Wao (Wia + b1) + b2) 4 ...) + br—
R h@vﬂ] pil (W2 (1 1)+ b)) L1+m+% (5.5.15)
Wiy (o (Wo (Wi 4 00) + b)) + ) + by

The full realization of (5.5.14) is then given by:

Wi (. (WS (W{z 4+ b)) + b)) +...)+ V)
R [Wi WL] L 2 ! 2 Ll IR A (5.5.16)
WL_l(...(WQ(Wlx—l—bl)+b2)—|—...)—|—bL_1

Since (5.5.25) and (5.5.16) are the same this proves that v; @ vy = 1o ® 1. O
Note that this is a special case of (Grohs et al., 2022, Lemma 3.28).

Lemma 5.5.9. Let ly,ly,...,l, € N. Let v € NN with L(v) = (lo,l1,...,11). There then exists a

neural network Zry, i, 1, € NN such that R(v & Zry, 1,1, ) = R(Zryy .0, V) = V.

Proof. Let v = ((Wl,bl),(Wg,bg),..., (WL,bL)), where W, € Rlleo, b € Rll, Wy € beh, by €
Ri2 .. W € Riexle-1 p; e RIL. Denote by Zry, 1,....1, the neural network which for all lo, 1, ..., 11, €

N is given by:

Lrig g0y, = ((@)llylov @l1> ) (@)lz,lu@b) 3 (@)ZL,IL_N@ZL)) (5-5-17)
Thus, by (5.5.25), we have that:

0
R(Zryy 1,0, BV) = [() WL} + b,
WL_l(...(WQ (Wlx + bl) + bg) + ) +br_1

= WL(WL_l(...WQ (Wl.%' + bl> + bg) + ) + bL—l) + by, (5.5.18)
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R(w & 71, 1) = [WL 0] Wr—1(..(Wo Wiz +b1) +b2) +...) + bp—1 b
0
=Wr(Wr_1(..Wo (Wi +b1) +b2) +...) + br—1) + bL, (5.5.19)
And finally:
R(v) =Wr(Wr_1(..Wo Wiz +b1) + b2) +...) + br—1) + b, (5.5.20)
This completes the proof. O

Lemma 5.5.10. Given neural networks vi,ve,vs € NN with fized depth L, fixed starting width of
lo and fized finishing width of Iy, it is then the case that R (11 ® v2) B v3) = R(v1 & (v2 G v3)),

i.e. the realization with a continuous activation function of @ is associative.

Proof. Let vy = ((W{,b1), (W3,03) ..., (WL, b1)), vra = (W2, 63), (WE,b3), ..., (WE,b3)), and
vy = ((Wf’, b‘%) , (WQS, b%) yeees (Wg, b%)) Then (5.5.25) tells us that:

Wiy (o (W3 (Wia +b7) +b3) +...) + b,

% N 9
(l/l @ VQ) [WL WL] W2 W2 W2 b2 b2 b2
71 (o (W (WEz +b3) +05) +...) +b7_,

And thus:

R((n ©re) ©v3)(7) =
[Wl 2] Wiy (o (Wy (Wia +b1) +b3) +...) + b, g
L L
R []1 Wg} PO WL (L (W (WRe 1 83) 1 83) ) 8 +b}
W3_y (o (W3 (Wi +b3) +03) +...) + b7 _,

(5.5.21)
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Similarly we have that:

Ra (1/1 b (1/2 D Vg)) (.7:) =
Wi_y (o (Wy (Wle+b1) +b3) +...) + by,
R b@} ﬂ [VVQ :ﬂ W2_y (o (WE (WEz +b3) +b3) +...) + b7 _,
L

i + b7 + b}
Wi_y (o (W3 (Wi +b3) +03) +...) +b3_,

(5.5.22)

Note that the associativity of matrix-vector multiplication, ensures that (5.5.21) and (5.5.22) are

the same. O

Definition 5.5.11 (Commutative Semi-group). A set X equipped with a binary operation * is

called a monoid if:
(1) for all x,y,z € X it is the case that (x xy) x z = x * (y *x z) and
(ii) for all xz,y € X it is the case that xxy =1y *x

Theorem 5.5.12. For fized depth, and layer widths the set of realized neural networks v € NN

form a commutative semi-group under the operation of @.
Proof. This is a consequence of Lemmas 5.5.8, 5.5.9, and 5.5.10. O

Lemma 5.5.13. Let v,u € NN, with same length and end-widths. It is then the case that

Ra (v ® ) = Rq (V) +Ra (1)

PT‘OOf. Let v = ((Wlabl)a(W27b2)a-“a (WLabL)) and w= ((Wllabll)v(W2/7b/2)7a (WiﬂblL)) Note

now that by (5.5.25) we have that:
Ra (l/) =Wy (WL_l(...(WQ (Wlx + bl) + bg) + ) + bL—l) + by, (5523)
and:

Ra (1) = W1, (Wr_y (..(Wy (Wi + b)) +by) +...) + b ) + b, (5.5.24)
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and in addition:

WL_]_(...(WQ (Wlx + bl) +b2) 4+ ...) + b1
Ra (VO p) = |:WL Wi] / . , / , +br, + b, (5.5.25)
Wiy (W Wiz 4+ 07) + b5) +...) + b7

This proves the lemma. O

Definition 5.5.14 (Sum of ANNs of different lengths but same end widths). Let u,v € N with
u < v. Let vy, Vyt1, ..., Vo, o be neural networks such that it is the case for all i € NN [u,v]

that Z(v;) = Z(vy,), O(vi) = Z(p) = O(p) and H(p) = 1. We then denote by BY_,  v;, denoted

1=U,

(Vo w By Vuy1 o By -+ o By vy the neural network given by:

Bﬂg:u,;ﬂ/i = |Bj—, emaxje{u,u-i»l v} D(V]-),p(yi) € NN (5.5.26)

AAAAA

5.6 Linear Combinations of ANNs

Definition 5.6.1 (Scalar left-multiplication with an ANN). Let A € R. We will denote by (-)®(-) :
R x NN — NN the function that satisfy for all A € R and v € NN that A® v = AfF/\Ho(V),O ov.

Diagrammatically this can be represented as:

Definition 5.6.2 (Scalar right-multiplication with an ANN). Let A € R. We will denote by

()®(:) : NN xR — NN the function satisfying for allv € NN and A € R that v® \ = veAffar;, 0-
Lemma 5.6.3. Let A € R and v € NN. it is then the case that:

(i) LA®v)=L(v)

(ii) For all a € C(R,R) that Raq(A®v) € C (RI(”),]RO(”))

(iii) For all a € C(R,R), and & € RT™) that:

Ra (A ® 1) = ARq(v) (5.6.1)

Proof. Let v € NN such that L(v) = (l1,1o,...,11) and D(v) = L where ly,1o,...,l;, L € N. Then

79



Item (i) of Lemma 5.4.2 tells us that:
c (Affﬂo(wo) — (O(v),0v)) (5.6.2)
This and Item (i) from Lemma 5.4.4 gives us that:
LO®v)=L (AfFAHO(V),O .,,) = (o, 11, oy lp 1, OW)) = L(v) (5.6.3)

Which proves (7). Item (i) — (ii) of Lemma 5.4.2 then prove that for all a € C(R,R), z € RZ"),

that Ry (A ®v) € C (RI(”)’O(”)) given by:

= Mo@) (Ra (v)) () = A((Ra (v)) () (5.6.4)

This then establishes Items (i) — (iii), completing the proof. O
Lemma 5.6.4. Let A € R and v € NN. It is then the case that:

(1) Llv® ) =L(v)

(ii) For alla € C (R,R) that Ra(v ® ) € C (RZW),ROW))

(iii) For all a € C (R,R), and x € RTW) that:

Rq (v ® A) = Rq(v) (Ax) (5.6.5)

Proof. Let v € NN such that £(v) = (I1,l,...,11) and D(v) = L where l1,l2,...,l1,, L € N. Then

Item (i) of Lemma 5.4.2 tells us that:
c <Afrﬂz(u),0> = (Z(v),Z(v)) (5.6.6)
This and Item (iv) of Lemma 5.4.4 tells us that:

L@\ =L (y . AfFA]II(V)) — (ZW), 11, 1o, ., 11) = L(v) (5.6.7)
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Which proves (7). Item (v) — (vi) of Lemma 5.4.4 then prove that for all a € C(R,R), z € RT®)
that R (v ® \) € C (RZ®):OM)) given by:

(Ba(v® X)) (@) = (R (v o Affaigy, ) ) (@)
= (% () (Affary,,, ) (@)

= (R (v)) (Az) (5.6.8)

This completes the proof. O

Lemma 5.6.5. Let v, u € NN with the same length and the same end-widths, and A € R. It is
then the case, for all a € C (R, R) that:

Re(A@(vap)(z) =R (A@v)® (A p)(z) (5.6.9)

= (AR (v)) () + (ARq (1)) () (5.6.10)

Proof. Tet v = (Wi, By),(Wa, Bs) . (Wi, By)) and g = (W, BY), (Wh, BY) ... (W}, B})).
From Lemma 5.6.3 and (5.5.25) we have that:

Ra(A® (v @ p) () = AR (v & pr) ()

WL_l(...(W2 (Wll‘ + bl) + bg) + ) +br_1 ,

=M |\w, W! +br, + b},
L L / / / / / /
Wiy (W (Wi 4+ b)) +b5) +...) + b7 4

Note that:

ARq (v)) () = A [WL (Wr_1(...(Wo (Wi +b1) + b)) +...) + bp—1) + bL] (5.6.11)
and that:

(AR, (1)) () = A [Wi (Wh_y (W5 (Wi £ ) +8) +..) + V1) + b’L] (5.6.12)
This combined with Lemma 5.5.13 completes the proof. O

81



Lemma 5.6.6. Let v, € NN with the same length and the same end-widths, and A € R. It is
then the case, for all a € C (R,R) that:

Ro(vop) @A) () =R (v@N) @ (L@ N)) (2) (5.6.13)

= (% (1)) (A2) + (R (1)) (Aa) (5.6.14)

P’I”OOf. Let v = ((Wla bl) ’ (W27 b2) PREX) (WLa bL)) and H= ((Wll7 bll) ) (WQ/’ bl2) LR (Wia blL)) Then
from Lemma 5.6.4 and (5.5.25) we have that:

Ra (v @ p) @A) (2) = (Ra (v & ) (Az)

WL—l(...(WQ (Wlx\l' + bl) + bg) + ) + b1 ,
NG +br + b,
Wit (o OV3 (W0 4 80) ) ) ¥

Note that:

(Ra (V) (A\x) =W Wr_1(...(Wo Wiz +b1) + b2) +...) + br—1) + bL (5.6.15)
and that:

(Ra (1) (Az) = Wi (Wi _1(..(W5 (WiAz + b)) + b5) +...) + b _y) + b], (5.6.16)
This together with Lemma 5.5.13 completes the proof. U

Lemma 5.6.7. Let u,v € Z with u < v andn = v —u+ 1. Let Ay, Ayt1,.-, Ay € R. Let
Vs Vit ls - Vo, b € NN, By, Byt1, ..., By € RZW) satisfy that L(vy) = L(vyt1) = ... = L(vy) and

further that:

§= [@;f:u (c,- ® (w . Affﬂml),Bim (5.6.17)

It then holds:
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(i) That:

[’(N) = <I<Vu)a Z Wi (Vu) )Z Wa (Vu) 3ty Z WD(Vu)—l (Vu) ) O(Vu)>

= (I(uu), nWi(v),n Wa(y), ..., nWD(,—1)s O(yu))

(ii) that for all a € C' (R,R), that Re(p) € C (RT) RO and

(iii) for all a € C (R,R) and x € R*) that:
(Ra (1)) (z) = Z ¢ (Ra (7)) (z + B;) (5.6.18)

Proof. Assume hypothesis that £(v,) = L(vy+1) = ... = L(v,). Note that Item (i) of Lemma 5.4.2

gives us that for all ¢ € {u,u+ 1,...,v} that:
L (Aff%i)?m) =L (Afful(yu)> = (T (), T () € N2 (5.6.19)

This together with (Grohs et al., 2023, Proposition 2.6, Item (i)) assures us that for all i € {u,u +

1,...,v} it is the case that:

c (w . Afrﬂz(yi)73i> — (Z(0), W1 () W2 (1) s s W) (V) (5.6.20)

This and (Grohs et al., 2022, Lemma 3.14, Item (i)) tells us that for all i € {u,u+1,...,v} it is the

case that:

(e (vioAfiy,, , ) =£(vioAffy, ) (5.6.21)
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This, (5.6.20), and (Grohs et al., 2022, Lemma 3.28, Item (ii)) then yield that:

Lp) =L (EBg:u (Ci ® (Vl * Affiz ) 5, )))
= < V), ZWl Vy) ZW2 V) ZWD (V) O(”U))

= (Z(vu), nW1(va), n Wa (W), -, n Wy —1 (), O(1)) (5.6.22)

This establishes item (i). Items (v) and (vi) from Lemma 5.4.4 tells us that for all ¢ € {u,u+1,...,v},
a e C(RR), z € RZ() | it is the case that fRq (Z/Z‘ ° AffHI(V,),Bi> eC (RZ(V“),RO(V“)) and further

that:

(R (v 0 Affr, ) ) (2) = (Ra () (2 + bi) (5.6.23)

This along with (Grohs et al., 2022, Lemma 3.14) ensures that for all i € {u,u + 1,...,v}, a €
C (R,R), z € RZ() it is the case that:

Ry <Ci ® (yl ° Aﬂ:]II(V ):B

B))€cC (RI<”u>,R0<”u)> (5.6.24)
and:

(m“ <Ci ® (”Z’ . Affﬂzw:’n))) () = i (Ra (1)) (x + by) (5.6.25)

Now observe that (Grohs et al., 2022, Lemma 3.28) and (5.6.21) ensure that for all a € C' (R, R),
x € RT it is the case that R, (u) € C (RT) RO()) and that:

(%% (1) () = (Ra (O1, (e @ (12 0 Affiyg, 0, ))) (@)
=i<ma (2 (2 0))

*Zcz ) (x4 b;)

This establishes items (ii)—(iii) and thus the proof is complete. O
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Lemma 5.6.8. Let u,v € Z with u < v. Let Ay, Aut1, -, A0 € R. Let vy, Uyt1yeeey Uy, b € NN,

By, But1, ..., By € RTW satisfy that L(v,) = L(Vyt1) = ... = L(v,) and further that:

y= [@";:u ((Affﬂz(yl),bi .,,) ® c)} (5.6.26)

It then holds:

(i) That:

L(p) = (Z(Vu)a Z Wi (vu) 72 Wa (V) 5 s Z Wp(v,)-1 (vu) s O(Vu)>

= (Z(vu), n W1 (), n Wa (1), ..., n Wi, —1), O()) (5.6.27)

(ii) that for all a € C' (R,R), that Re(p) € C (RTW) RO and

(iii) for all a € C' (R,R) and x € RT) that:

v

(Ra (1) () = (Ra (1)) (ciz + i) (5.6.28)

i=u

Proof. Assume hypothesis that L(v,) = L(vy+1) = ... = L(v,). Note that Item (i) of Lemma 5.4.2

gives us that for all i € {u,u+ 1,...,v} that:
c (Affﬂj_(yi)’Bi) =L (Affﬂz(uu)> = (T(v),T () € N? (5.6.29)

Note then that (Grohs et al., 2023, Proposition 2.6, Item (ii)) tells us that for all ¢ € {u,u+1,...,v}

it is the case that:
c (Affﬂw,Bi .,,) = (Z(v), W1 () s Wa (1) s s Wiy () (5.6.30)

This and Item (i) of Lemma 5.6.4 tells us that for all i € {u,u+ 1,...,v} it is the case that:

£ ((Affry,,, o) @) = £ (Affry, ), o) (5.6.31)
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This, (5.6.30), and (Grohs et al., 2022, Lemma 3.28, Item (ii)) tell us that:

112 (o (10 )50
:< V), ZWl Vy) ZW2 Vu) ZWD (V) O(”U))

= (Z(vu), nW1(va), n Wa (W), -, n Wy —1 (), O(1)) (5.6.32)

This establishes Item (i). Items (i) and (ii) from Lemma 5.4.4 tells us that for all ¢ € {u,u+1,...,v},
a e C(RR), z € RZ() | it is the case that fRq (Z/Z‘ ° AffHI(V,),Bi> eC (RZ(V“),RO(V“)) and further

that:

(mu (Affﬂl(ui),bi oui)) (2) = (Ra (1)) () + bs (5.6.33)

This along with Lemma 5.6.4 ensures that for all i € {u,u + 1,...,v}, a € C (R,R), z € R it

is the case that:
R ((Affiy,, 0 o) @ i) € C (RT, RO (5.6.34)
and:

(mu <<AfFHI(Vi)7bZ. .y,») ® c)) () = (Ra (1)) (ciz + bi) (5.6.35)

Now observe that (Grohs et al., 2022, Lemma 3.28) and (5.5.8) ensure that for all a € C' (R, R),
x € RT it is the case that R, (u) € C (RT) RO()) and that:

(Ra (1)) () = (‘ﬁa( . (AanZ(V b oul)) ® Cz‘) (x) (5.6.36)
= Z (mu ((AffHZ(Vi),bi °Vi) ® c)) (z) (5.6.37)

—Z ) (ciz + b;)

This establishes items (ii)—(iii) and thus the proof is complete. O
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Lemma 5.6.9. Let L € N, u,v € Z with u < v. Let ¢y, Cyq1, s Cp € Ro Uy, Uyt 1y evey Uy, i, J € NN,
Bu,Bui1,...., B, € RZ)  q € C(R,R), satisfy for all j € NN [u,v] that L = maX;enn[u,s] P(Vi),
Z(vj) = Z(vu), O(vj) =Z(3) = O(T), H(I) =1, Ra(J) = Ir, and that:

=, (ci ® (,,1. . AffHI(V_)”bi)) (5.6.38)

We then have:

(i) it holds that:

L) = (I(Vu)azwl (€L (), Y W €Lz (), Y W1 (€15 (w),0 (%)))

(5.6.39)
(ii) it holds that Re(p) € C (RT) RO and that,
(iii) it holds for all x € RT) that:
(Ra (1) (2) =Y i (Ra () (2 + bs) (5.6.40)

i=u

Proof. Note that Item(i) from Lemma 5.6.7 establish Item(i) and (5.5.26), in addition, items (v)
and (vi) from Lemma 5.4.4 tell us that for all for all i € NN [u,v], z € RZ™ it holds that

Ra <VZ' ° Aﬂ:]II(V.),BZ. eC (RI(”“),RO(”“))) and further that:

(ma <ui . AffHIW,BZ.)) (z) = (Ra (1)) ( + by) (5.6.41)

This, Lemma 5.6.3 and (Grohs et al., 2023, Lemma 2.14, Item (ii)) show that for all i € NN [u, v],

z € RZ(™) it holds that:

Ro (€ (ci® (v o Ay 0))) = B (e ® (o Aff, 1)) € C (RZD,ROMD) - (5.6.4)
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and:

(9% (@LJ (ci ® (I/i ° AfFI[I(Vi)’bi)))> (x) = (ERG (ci ® (Vi ° Affﬂz(ui),bi))> (2)

= C; (%a (Vz)) ({L‘ + bz) (5643)

This combined with (Grohs et al., 2022, Lemma 3.28) and (5.6.21) demonstrate that for all = €
RZ() it holds that R, () € C (RTW) RO)) and that:

(R0 () (2) = (Ra (B (e ® (v 0 Aff,,)))) ) (@)

= (%a <€Bf:u (53 3 (Ci ® (VZ ° Aﬂ:ﬂz(u ):bi )))) (Jj)

= Z ¢ ( (z + b;) (5.6.44)

This establishes Items(ii)—(iii) thus proving the lemma. O

Lemma 5.6.10. Let L € N, u,v € Z withu < v. Let ¢y, Cyt1y vy Co € Ro Uy V1 wvvy Unyy 4, J € NN,
Bu,Bust, ..., B, € RT) q € C(R,R), satisfy for all j € NN [u,v] that L = maX;enn[u,s] P(Vi),
Z(v;) = Z(vu), O(v;) =Z(3) = O(J), H(J) =1, Ra(J) = Ig, and that:

=, ((Affﬂz(w),bi .yi) @c,) (5.6.45)

We then have:

(i) it holds that:

ﬁ(,u,)=< Vu ZWl @Lj l/z ZWQ QLj(Vz ZWL 1 QLB(Vz) O(Vu))>

(5.6.46)
(ii) it holds that Re(p) € C (RT¥) RO and that,
(iii) it holds for all x € RT«) that:
(Ra (1) () = _ (Ra (1)) (ciw + by) (5.6.47)



Proof. Note that Item(i) from Lemma 5.6.8 establish Item(i) and (5.5.26), in addition, items (ii)
and (iii) from Lemma 5.4.4 tell us that for all for all i € NN [u,v], + € RZ™ it holds that

o (Affiy,, 5, ovi € C (RE), RO0)) ) and further that:

(mu (Affﬂz(ui),Bi .Vi)) (2) = (Ra (1)) () + by (5.6.48)

This, Lemma 5.6.4 and (Grohs et al., 2023, Lemma 2.14, Item (ii)) show that for all i € NN [u, v],

z € RT) | it holds that:

R (€1 ((Affry m00m) @ i) = Ra ((Aff, b o) @ i) € C (RZDROM) - (5.6.49)

and:

(mu (c»:L,g ((Affﬂz(ul_)vbi oui) ® c))) (z) = (mu (ci ® (,,l. . AfFHI(VI_)J,i))) ()

= (Ra (1)) (ciz + by) (5.6.50)

This and (Grohs et al., 2022, Lemma 3.28) and (5.6.31) demonstrate that for all z € RZ(+) it holds
that R, (1) € C (RT0) RO0)) and that:

(o (1)) (@) = (Ba (Bl ((Affize, o01) ® 1)) (@)
_ (%a (@;f:u Lo ((Afrﬂz(m,bi oyl-> ® Cl.) )) ()
= ZU: (Ra (1)) (ciw + b;) (5.6.51)

i=u

This completes the proof. O
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Chapter 6

ANN Product Approximations

6.1 Approximation for simple products

Lemma 6.1.1. Let (cx)peny C R, (Ai) ey € R, B € R, (Cy) ey satisfy for all k € N that:

2 -4 2 0 0
2 -4 2 0 -3
2 -4 2 0 -1
—cp 2¢c —cp 1 0
and that:
o = 2172k (6.1.2)

It is then the case that

(i) There ezists unique & € NN, k € N which satisfies for all k € [2,00) NN that & =
(Affc, o 0is) @ Affe, p. Note that for all d € N, ig = ((I4,04), (Iz,04)) (explained in detail

in Definition 9.1.1), and that:

fk = (Affck’() 0i4) [ ] (AfFAk_l,B 014) ®:---0 (AffAl,B 014) L4 Affe47B (613)

(ii) for all k € N we have R, € C (R,R)
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(iii) for all k € N we have L (&) = (1,4,4,...,4,1) € Nk+2

(iv) for all k € N, z € R\ [0,1] that (R (&) () = v (x)

(v) for allk € N, z € [0,1], we have |2? — (R (&) (z)| < 27272, and
(vi) for al k € N, we have that P (&) = 20k — 7

Proof. Let g : R — [0,1], k£ € N be the functions defined as such, satisfying for all k € N, x € R

that:
2x tx € [0, %)
g(@)=92-2z :ae[i1] (6.1.4)
0 cx € R\ [0,1]

Ik+1 = 91(9k)

and let f;, : [0,1] — [0,1], k € Ny be the functions satisfying for all k € Ng, n € {0,1,...,2%F — 1},

T € [Qﬁk, "2—'*;1) that f(1) =1 and:

n n2 n
frle) = {22—:1} - 2% (6.1.5)

and let r = (rg.1,7k2, k3, Tka) : R — R% k € N be the functions which which satisfy for all z € R,

k € N that:
r1,1(z) x
1
ro1(x T — =
)= | | (6.16)
r3.1(x) z—1
| r4,1(2) | B

Tht1 = Apr17r(x)

Note that since it is the case that for all x € R that v(x) = max{z,0}, (6.1.4) and (6.1.6) shows
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that it holds for all € R that:

1
2r1(x) —4roq(x) + 2r31(z) = 2¢v(x) — 4t (x — 5) +2t(x—1)
1
= 2max{z,0} — 4 max {x — 5,0} + 2max{x — 1,0}

= gi1(z) (6.1.7)

Note also that combined with (6.1.5), the fact that for all x € [0,1] it holds that fy(z) = = =

max{xz,0} tells us that for all z € R:

T rx e (0,1
() = ma(z.0} = 4 " =01 (6.1.8)

max{z,0} :z€R\]J0,1]

We next claim that for all £ € N it is the case that:
(Vo € R : 2rq () — 4o () + 2r35(x) = g(x)) (6.1.9)
and that:

Ve e R:ryp(x) = fi1l2) ol (6.1.10)

max{z,0} :z€R\]J0,1]

We prove (6.1.9) and (6.1.10) by induction. The base base of k = 1 is proved by (6.1.7) and (6.1.8).
For the induction step N  k — k + 1 assume there does exist a k € N such that for all x € R it is

the case that:

2ryk(x) — drop(x) + 2rs k(x) = gr(x) (6.1.11)
and:

ran(z) = fimale) - rr el (6.1.12)

max{z,0} :xe€R\]J0,1]
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Note that then (6.1.4),(6.1.6), and (6.1.7) then tells us that for all z € R it is the case that:

ge+1 (%) = g1(g9k(2)) = 1 (2r1k(z) + 4ro g (x) + 273 1(2))

=2t (2?"17143(.2?)) +dro + 27"3,I<:(x))

1
— 4 <2r17k () —dryp + 2r3 () — 5)

+2v(2r k() — drog(x) 4+ 2r3 k() — 1)

= 2r1 k1(z) — dro g () + 2r3 g () (6.1.13)
In addition note that (6.1.5), (6.1.6), and (6.1.8) tells us that for all z € R:

T4 k+1 =t 3 2(k+1 (LU) + 24_2(k+1)7“2,k (lU) =+ (—2)3_2(k+1) 3k (l‘) + Tk (w))

e (=2 i (@) + 22 s () + (-2)F 14 (2) + ras (2)

I
L3

t {2 2k] 2r1 g (x) — drop (@) 4+ 213 (2)] + rag (:c))

[2 21:] (2) + ra (z )) (6.1.14)

T

(=2
(=2
(2 2k [—2r1 (@) + 2%rg 1 (z) — 2731 ()] + rak (96’))
(-
(-

This and the fact that for all x € R it is the case that v (z) = max{z, 0}, that for all z € [0,1] it is

the case that fi (z) > 0, (6.1.12), shows that for all x € [0, 1] it holds that:

k—1

Tage1 (T) =1 <—2 [272’“94 + fr-1 (a:)> =t| -2 (2,% ) +r— Z

7=1
k
¢ ( - {Z 22y, <x>] ) (e (@) = fi @) (6.1.15)
j=1
Note next that (6.1.12) and (6.1.14) then tells us that for all z € R\ [0, 1]:
T4 k+1 () = max {— (2*2’“% (:1:)) +rag (a:)} = max{max{z,0},0} = max{z,0} (6.1.16)

Combining (6.1.13) and (6.1.15) proves (6.1.9) and (6.1.10). Note that then (6.1.1) and (6.1.9)
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assure that for all £ € N, x € R it holds that R, ({) € C (R,R) and that:

(Re (&) (2)
= (9‘%t ((Affck70 oi ) e (AffAk_l,B oi4) o -0 (Affy, peis)e Aff®473)) (z)

= (=2)" g (@) + 22 g (2) + (—2) P s (2) + rag (2)

= (o (|l O @) s 0

_ 922k ({Tl,k (ff)j';&k (az)] + ok (x)) + 14 ()

= 272K 4y, (x) — 21 () — 273, () + 7o ()

2] 2rik (2) = 4o (@) + 2k (@) + 7ap (@) = = [27%] ge (@) 4 rap (@) (6117)

This and (6.1.10) tell us that:

k=1

(9 (6)) (@) = = (2790 (@) + fo1 (@) = = (270 (@) + 2~ | 3279, (@)
j=1
k .
— D _27¥g; ()| = fi (2)
j=1

Which then implies for all £ € N, z € [0, 1] that it holds that:

2% — (R (&) (2)]] < 272F2 (6.1.18)

This in turn establish Item (i).

Finally observe that (6.1.17) then tells us that for all £ € N, z € R\ [0, 1] it holds that:
(R (&) (x) = =27 gy () + rap () = 74 () = max{z,0} = t(z) (6.1.19)

This establishes Item(iv). Note next that Item(iii) ensures for all k£ € N that D () = k + 1, and:

P (&) =4(1+1) +

k
>4 4+1] (441)=8+20(k—1)+5=20k—7 (6.1.20)
Jj=2
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This in turn proves Item(vi). The proof of the lemma is thus complete. O

Lemma 6.1.2. Let §,¢ € (0,00), a € (0,00), ¢ € (2,00), ® € NN satisfy that § = 20%225(1%2,
a= (%)‘ITIQ, ® € C(R,R), D(®) < max {logy(671) + 1,2}, P(®) < max {10log, (671) — 7,13},
supger\ 0,1 | (Re (@) — t(z)| = 0, and sup,ep ) [2° — (Re () (z) | < 3, then:

(i) there exists a unique ¥ € NN, satisfying: U = (Affa_270 oD Affa,o) @ (Affa_270 oD Aff_avo)
(ii) it holds that R, (¥) € C (R, R).

(i) it holds that (R, (¥)) (0) =0

(iv) it holds for all x € R that 0 < (R, (¥)) (x) < & + |z|?
(v) it holds for all x € R that |2? — (R (¥)) (z) | < emax{1, |z|?}

(vi) it holds that D(¥) < max{l + q_% + m logy (¢71) ,2}, and

(vid) it holds that P (¥) < max { [ 229 1og, (=) + 2 — 28,52}

Proof. Note that for all z € R it is the case that:

(Re (V) () = (Re ((Affa_z oD o Aff, 9) ® (Affa_270 oD o Aff_a,o))) ()

= (%t (Affafgo eDe Affa,o)) (z) + (i)fi,C (Affa7270 Do AfF_a70)) (x)

= 5 (R (@) (0) + o (% (#)) (~az)

1

- )1%2 [(mt (@) <(§>_2x> + (% (D)) <— (%)_233>] (6.1.21)

This and the assumption that ® € C (R, R) along with the assumption that supep (0,17 | (R (P)) (2)—

oM

t(z)| = 0 tells us that for all z € R it holds that:

(6.1.22)
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This in turn establishes Item (iii). Observe next that from the assumption that R, (®) € C (R,R)
and the assumption that sup,cpjo,1) | (Re (P)) (z) — v(x)| = 0 ensure that for all z € R\ [-1,1] it

holds that:

R (®)] (z) + [Re () (—2)] =t (x) + v(—2x) = max{x,0} + max{—=z,0}

= || (6.1.23)

The assumption that for all sup,epy 0,17 | (Re (®)) (2)—t (z) | = 0 and the assumption that sup,cpo 1] |2 —
(R (P)) (x) | < I show that:

s |27 = ([ ()] (2) + [Re (®) (2)))]

= max{ sup ’1132 — (t(z) + [R: (P)] (—:E))‘ , sup |ZL‘2 — (R (®)] (2) + ¢ (—1‘))‘}

z€[—1,0] z€[0,1]

, sup [a? — (R (‘P))(JC)I}

x€[—1,0] z€[0,1]

= max{ sup ‘(—Ji)z — (R (?)) (—2)

— il[lopu |22 — (R (@) (2)] <6 (6.1.24)

—1 —1

Next observe that (6.1.21) and (6.1.23) show that for all x € R\ [— (5)2,(5) ‘I*Q} it holds that:

0< PR (@) @) = (5)7 (et ((5)7 ) + e (- (5)77 )

. <_)ﬁ'm| < Ja? (6.1.25)

—1

-1
The triangle inequality then tells us that for all z € R\ [— ()2, (5) ‘1—_2} it holds that:

o= @_ ‘ff\‘ < (!w2 + (g)_ m)

= (’w\q |~ 4 <§)"—‘_12 || |$!_(q_1)>
a=2 -1 a—1

< (i ()7 + () (5)7)

= (5 +5) lal? = elal? < emax {1, 2]} (6.1.26)

2% = (% () ()] =
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— —1 -1
Note that (6.1.24), (6.1.21) and the fact that § = 97=2¢7%2 then tell for all € [— (5)=2,( )ﬁ}

it holds that:

, (6.1.27)
g\ =2
<(3)" [ sup_[y? — [Re(®)] (3) + [Re(@)] ()|
yG[—l,l]
—2
€\ ¢—2 E\g—2 =2 _a_
< — = — q— - = < q
< (2> ) (2) 29-2¢a—2 = ¢ < emax{l, |z|?}
Now note that this and (6.1.26) tells us that for all x € R it is the case that:
|22 — (Re (V) ()| < emax{1,|z|?} (6.1.28)

This establishes Item (v). Note that, (6.1.27) tells that for all x € [— (5)72,(5) ‘IT?] it is the case

that:
(R (1) (2)] < [2° = (R (V) (@)] + |2 < e + |2 (6.1.29)
This and (6.1.26) tells us that for all z € R:
[(Re) ()] < &+ |z (6.1.30)

This establishes Item (iv). Notice next that

O

Remark 6.1.3. Note that from here onward we will refer to the neural network network ¥ defined

in Lemma 9.1.3 Item(i) as the Sqr neural network.

Lemma 6.1.4. Let 6,e € (0,00), ¢ € (2,00), A1, Ay, A3 € RY*2, & € N satisfy for all x € R
that § = (2971 —i—l)_l, Ay =1 1], A, =1 0], A3 =[0 1], R, € C(R,R), (R:(P))(0) =
0, 0 < (Re(®)(2) <6+ |2 [2° = (R (@) ()| < dmax{L,[z[9}, D(P) < max{l + L5 +
ﬁ log, (5_1) ,2}, and P (®) < max { {%} logs (5‘1) + (18_—02 — 28, 52}, then:
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(i) there exists a unique I' € NN satisfying:

r= (% ® (Do AfFA170)> a <<—%> ® (Do AffA2,O)) &y <<—§> ® (Do AfFA3,0)>

(i1) it holds that R, (I') € C (R?,R)

(#ii) it holds for all x € R that (R, (T')) (z,0) = (R (I")) (0,y) =0

o]

(v) it holds that P(T') < 2% [log, (e71) + ¢ + 1] — 252, and

(iv) it holds for any x,y € R that < emax{l, |z|?, |y[?}

[}

(vi) it holds that D (T') < ;L5 [logy (¢71) +¢]

)%

Proof. Note that:

(% (1) ( {
Yy

<% ® (Do AffAl’O)) an) <<_%> ® (Do AfFA%O)) D (6.1.32)

7N\

L (6.1.33)
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Note that this, and the assumption that (R, (®)) (z) € C (R,R) and that (R, (®)) (0) = 0 ensures:

)| | =5 O @) 0 = O (0 ()~ 5 (R (2) 0
=0
1 1 1
= 2O () (0+9) — 5 (% (2)) (0) — 3 (R () ()
= (R () 0 (6.1.34)
Yy

Next, observe that since by assumption it is the case for all z,y € R that |22 — (R, (®)) (2)| <

dmax{1, |z|7}, zy = 3|z + y|* — L|z|? — 1|y[?, triangle Inequality and from (6.1.33) we have that:

[(Re (1) (2, 9)) — 2y
E )+ 9) = o+ yl] - 5 [0 (@) @) = Jof?] = 5 [ (@) (@)~ 1ol
<[5 [ @) @)~ o o] + 5 [ @) @)~ o] + 5 [ @) 0) = o]
< 3 fma {1, [+ 917 + maae {1, a7} + max {1, s/}

Note also that since for all a, 3 € R and p € [1,00) we have that |a + 8|7 < 2P~ (Ja/P + |B[P) we

have that:

[(Re (@) (2) — 2yl

)

<3 [max {1,297 2|7 + 2971 |y|?} + max {1, [z|} + max {1, |y|?}]
1)

< 2 [max {1, 2q*1|x|q} + 2971 |y|? 4+ max {1, |z|?} + max {1, |y\q}]
)
§[Qq+2] max {1, [z[?, [y|?} = e max {1, [z|?,[2|?}

This proves Item(iv). Note that P (Aff4,) = 2 for i = {1,2,3}. This, combined with (Grohs et al.,
2023, Lemma 2.6, Item(iv)), and the fact that P (®) < max { [;_L%} logy (071) + q8_—02 — 28, 52}, and
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Lemma 5.4.2 Item (i) tells us that for i =1,2,3:

1
7) (5 @ ((I) [ ] AffAi’0)>

< O(D)2 4+ P(®) + P (Affa,0) + Wi (D) - Wy (Aff 4, )
=124 P@)+(1-2+1)+ (Ig1-1)

=6+ P (D)

80

40q -1

Notice now that by Lemma 5.5.6 we have that

P ((% ® (Do AfFA170)> D ((—%) ® (Do AfFAz,O)))

40q 80

40q - 80
+ max { |:q_—2:| 10g2 (6 1) —+ q_—2 — 28,52}

O

Remark 6.1.5. We shall refer to this neural network for a given q and given € from now on as
Prd?=.
6.2 Higher Approximations

We take inspiration from the Sum neural network to create the Prd neural network, however we
first need to define a special neural network called tunneling neural network so that we are able to

effectively parallelize two neural networks not of the same length.
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6.2.1 The Tun Neural Network

Definition 6.2.1 (The Tunneling Neural Network). We define the tunneling neural network, de-

noted as Tun,, forn € N by:

Aﬂ:l,o n=1

Tun, = 4 1d; ‘=92 (6.2.1)

" 2ld; neNN[3,00)

Where Idy is as in Definition 9.2.1.

Lemma 6.2.2. Letn € N, x € R and Tun,, € NN. For alln € N and x € R, it is then the case

that:
(i) R (Tun,) € C (R, R)
(i) D (Tun,) =n
(117) (Re (Tuny,)) (z) =z
2 n=1
(iv) P (Tuny,) =
74+6(n—2) neNN[2,00)

(’U) ,C(Tunn) = (lo,ll, ---,lL—lalL) = (1,2, ...,2, 1)

Proof. Note that by Lemma 5.4.2 it is the case that D (Aff;9) = 1 and by Lemma 9.2.1 it is the
case that D (Id;) = 2. Assume now that for all n < N that D (Tun,,) = n, then for the inductive

step, by Lemma 5.2.2 we have that:

D (Tunps+1) =D (¢" ' 1dy)
=D ((o”_Z |d1) ° |d1)

—n+2-1=n+1 (6.2.2)

This completes the induction and hence Item (i) and Item (iii). Note next that by (5.1.13) we have
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that:
(Re (Affr)) (2) = 2 (6.2.3)
Lemma 9.2.2, Ttem (iii) also tells us that:
(Re (Id1)) (2) =v(z) —v(—2) == (6.2.4)

Assume now that for all n < N that Tun,, (x) = x. For the inductive step, by Lemma 9.2.2, Item

(iii), and we then have that:

(Re (Tuny41)) R ("~ ! Id1)) (z) (2)

= (
= (R (("21dy) @ 1dy))
(
(

(M (0" 21d1)) 0 (R (Id1))) ()
(Re (Tuny)) © (R (Id1))) (z)

=z (6.2.5)

This proves Item (ii). Next note that P (Aff; ) = 2. Note also that:

(] ) -110)

P(ld) =P

s ([} B @ L) (2] )0 1)

=13
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Now for the inductive step assume that for alln < N € N, it is the case that P (Tun,,) = 7+6(n—2).

For the inductive step we then have:

P (Tuny41) =P (Tuny, eldy)

1 0 1 -1 0 I
=P ) ) ) 77<|:1 —1:|7 0:|> .Idl
-1 0 -1 1 0 L

1 0 1 -1 0 1 -1 0
=P ) ) 3 P ) 7<|:1 —1:|7|:0:|)
-1 0 -1 1 0 -1 1 0

—746(n—2)+6=T7T+6(n+1)—2) (6.2.6)

This proves Item (iv).
Note finally that Item (v) is a consequence of Lemma 9.2.2, Item (i) and (Grohs et al., 2023,

Proposition 2.6) O

6.2.2 The Pwr and Tay Neural Networks

Definition 6.2.3 (The Power Neural Network). Let n € N. Let 0, € (0,00), ¢ € (2,00), satisfy

that § = (2071 +1) 7", We define the power neural networks Pwrl® € NN, denoted for n € Ny as:
n

Aﬂ:o’l n=>0

GE —
Pwrl® =

Prd?< e | Tunpp,,ac ) B Pwr%il} *Cpy;; N1, 00)

Lemma 6.2.4. Let d,e € (0,00), ¢ € (2,00), and § = ¢ (2‘1*1 + 1)71. Let n € Ny, and Pwr,, € NN.
It is then the case for alln € Ny, and x € R that:
(1) (Re (Pwri®)) (z) € C(R,R)
n=20

(i) D(Pwry®) <
qiL2 [logQ (8_1) + Q] +D (Tun'D(Pwri‘fl)> -1 n>1
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(i) P(Pwri®) < ::’16_—03 logy (7)) + g+ 1] +4 (D (Pwrl=,)) + P (Pwrle,)

+ W1 (Pwrle ) + QWD(Pwerl)—z (Pwrl€ ) — 235 n>1

0 n=20,1
() |a"™ — (Re (Pwri®)) ()] <

€ max {1, ||, ‘iﬁt (Pwrfl’il) (x)‘q} n =2
Proof. Note that Lemma 9.2.2 ensures that R, (Pwrg) € C (R,R). Note next that by (Grohs et al.,

2023, Proposition 2.6), with ®1 v vy, P2 N v9,a A t, we have that:

(Re (1 012)) (2) = ((Re (1)) 0 (Re (12))) () (6.2.7)

This, with the fact that, the composition of continuous functions is continuous, the fact the par-
allelization of continuous realized neural networks is continuous tells us that (R, Pwr,) € C (R,R)
for n € NN [2,00).

Note next that by Lemma 9.2.2 it is the case that D (Id;) = 1. By Lemmas 5.5.2 and 5.2.2 it is also
the case that: D <Prd‘775 . [TunD(PWr | BPwis ] . cpy) —D (Prd%f . [TunD(PWr [ BPwrte D
Note also that by parallelization properties we have that D (Tu D (Pwr< ) H Pwrn’_1> =D (Pwrn’_l).
This with (Grohs et al., 2023, Proposition 2.6) and the fact that e is associative then yields that

for n > 2 that:

D (Pwrl*®)

Prd e [TunD(PWr ) HPwrl® } o CPY2,1>

Prd e [Tunpp,ee ) BPwrl, )

(
(
Prd) + D <TunD(PWr )> -1

[logQ (e7!) + q| +D (TunD(PWr )) -1

D
D
D

(
a

//\

q-
(6.2.8)

Next note that by Lemma 5.4.2 we have that:

P (Pwrd®) =P (Affgq) = 2 (6.2.9)
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Next note that by (Grohs et al., 2023, Proposition 2.6) we then have that for n > 2:

P
=P ([Tunp(pyene ) BPWEE, | ) + W1 (Pwris)) +6
P <TunD(PwrZ§1)) + P (Pwrle ) + Wi (Pwr?2,) +6

=4 (D (PwrZ’fl)) +P (Pwrgfl) + W1 (Pwrg’il) +13 (6.2.10)
and that:

P (Prd o [TunD(Pwrﬁl) = Pwrg’fl} ¢ prZl)

q,€
Pwrn—l n—1

=P (Prd) + P ([Tunp(punc, ) BPWrE, | 0 Coya,y ) + Wi (Prd) - [Wip(pyene ) (Pwrdy) +2]
< P (Prd) +4 (D (Pwrl€ ) + P (Pwr,) + W (Pwrl€ ) + 13

+ Wi (Prd) - [WD(Pwrii'ilH (Pwr?* ) + 2]

< j% [logy (¢7") + g+ 1] =252 +4 (D (Pwri,)) + P (Pwris,) + Wi (PwrfS,) + 13
+ Wi (Prd) - [WD(PwrZ’fl)f2 (PwriZy) + 2]
3(?(]2 [logy (e7') + ¢+ 1] — 252+ 4 (D (Pwr?2))) + P (Pwrls,) + Wy (Pwrle ) + 13

—|—2W (Pwrn 1)_ (PWI’n 1)+4
= "0 [togy (=) + g+ 1] +4(D (Pwrl))) + P (Pwrls,) + Wi (Purl)

+2Wp (bt )2 (Pwrl€ ) — 235

Next note that PR, (Pwrg 1) and R, (Pwry) are exactly 1 and = respectively. Note also that the
realizations of Tun, and Cpy,; are exact. Thus it is the case that for all n € N, we have that

R(Pwrl)(z) = R, (Prd?® (R (Pwrl®,) (z),z)) Note then that Lemma 6.1.4 then gives us that for
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all n € N it is the case that:

2" — Re (Pwrl)| = [2" ! - 2 — R, (Prd? (R, (Pwrle)) (z),2))]

<emax {1, |z]%, |R: (Pwrl? ) (z)|} (6.2.11)

This completes the lemma. |

Remark 6.2.5. Note we may now define what we will call neural network polynomials as objects

of the form:

C NN (6.2.12)

) 0
U [@ (CZ ® Qfmaxie{o,l ,,,,, n}{D(Pwrg’e)}—’D(Pwrg*E)Jdl [Pwri ])

neNg Li=0
Where ¢; € R, for alli € {0,1,...,n}.

Definition 6.2.6 (Taylor Approximations for e* around = = 0). Let d,¢ € (0,00), q € (2,00) and

0=c¢ (2‘5’71 + 1)71. We define, for all n € Ny, the family of neural networks Tay, ¥ _ as:

n7q76

n

. 1

TayoP =P L' B € i oy {D(Pur ) }—D (Pt gy PWI ] (6.2.13)
=0

Lemma 6.2.7. Let v1,1v5 € NN, f,g € C(R,R), and e1,e2 € (0,00) such that for all x € R it

holds that |f(x) — R (11)] < &1 and |g(x) — R, (12)| < 2. It is then the case for all x € R that:
I[f + 9] () — R ([h ® o)) (2)] < e1 +e2 (6.2.14)
Proof. Note that the triangle inequality then tells us:

[f + 9] (z) =R 1 @ 2] (2)] = [f (2) + g (2) = R (1) (2) = R (12) ()]
< (@) = Re (1) (@) + g (1) = Re (v2) (2)]

<erte
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Lemma 6.2.8. Letn € N. Let vy, v, ...,v, € NN, 1,89, ...,&, € (0,00) and f1, fa, ..., fn € C (R,R)
such that for all i € {1,2,...,n}, and for all x € R, it is the case that, |f; (x) — Re (vi) (x)] < & It
1s then the case for all x € R, that:

n n n
d fi@) - PR () (@) <D e (6.2.15)
i=1 i=1 i=1
Proof. This is a consequence of a finite number of applications of (6.2.14). O

Lemma 6.2.9. Let §,¢ € (0,00), ¢ € (2,00) and § = ¢ (2‘7_1 + 1)_1. It is then the case for all
n € Ng and z € R that:

(i) R (Tayype) € C (R, R)

2 n=20
(i) D (Tayfbxga) <

q_LQ [logQ( ) +Q] +D (TunD(Pwr )) -1 n 2 1

\

,

2 n=>0

(iii) P (Tayse.) < 360‘1 3 [logy (671) + g+ 1] +4 (D (Pwrle ) + P (Pwrl=,)

+ W1 (Pwrg’fl) + 2WD(PwrZ’i1)—2 (Pwrg’il) — 235 n>1

(iv) ‘Zz 0 |:'L':| Re (Taynge)

<Yilad max{l |lz|?, ’ (Pwrgi) (w)‘q}

Proof. Note that by Lemma 5.6.3, Lemma 6.2.4, and (Grohs et al., 2023, Proposition 2.6) for all

n € Ny it is the case that:

ex a 1 y
Re (Taynge) = Re [ {5 ® (’Emaxie{o,1 ,,,,, w3 {D(Pwr?®) } =D (Pwr?<),Id; [Pwr] E]H
=0

1
Z_' [ max;eo,1,...,n} { D(Pwrd®) }—D(Pwr?®),Id; [Pwrg’e]]
Z Pwr
e !
(6.2.16)

Since (R, (Pwrd®)) () € C (R,R), for all n € Ny and since the finite sum of continuous functions

is continuous, this proves Item (i).

107



Note that Tay; . is only as deep as the deepest of the Pwr?® networks, which from definition is

Pwrl¢ which in turn has the largest bound. Therefore, by Lemma 5.5.7 and Lemma 5.4.4 we have

that:

D (Tay;P.) = D (Pwrd®)

n7q?€

2 n=2~0
<

q% [logg (5*1) + q] +D <T“nD(Pwr‘j;il)) -1 n>1

Note that P (Id;) = 7 and further Definition 5.2.1 and (Grohs et al., 2023, Proposition 2.6) tells us

that for v = ((Wy,b1), (Wa,b2), ..., (Wr,br)) € NN it is the case that:
P(diev) <7T+P(v)+2-Wr_1(v) (6.2.17)
Which then in turn implies that for L € N and v € NN, it is the case that:

P(€Lu, (v) =P ('dI(L_D(V)) ‘V)
<P (Id;(L_D(V))> +P W) +2 Wop 1 (v)
=7+6(L-Dw)-1)+P(¥)+2 Wpu)-1(v)

:6L—6D(I/)+1+P(V)+2-WD(V)_1 (V)

Note that each neural network summand in Tayfl’fg . consists of a combination of Tunj and Pwry

for some k € N. Each Pwry has at-least as many parameters as a tunneling neural network of that
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depth, i.e. Tung. This, finally, with Lemma 6.2.4 then implies that:

ex L )
P (Tayn,gﬁ) =P [@ |:5 ® emaxie{o’l 77777 n}{D(Pwrg’s)}—D(Pwrg’e),ldl [PWI";] E]:|]
=0
1
<n'P<—®Pwrn>
n!
<n-P(Pwr,) +2

2 n=>0

N

a3 [logz (£71) +q+1] + 4 (D (Pwri%y)) + P (Pwri,)

+ Wy (Pwrle ) + 2Wp (purt=, )2 (Pwrl€,) — 235 n>1
\ n—

Finally, note that for all ¢ € N, Lemma 6.2.4, and by absolute homogenity of norms, the fact that

% > 0 for all i € N, and (Grohs et al., 2023, Proposition 2.6) then tells us that it is the case that:

|:L‘i — (R (Pwry)) (:B)} < emax{l,|z|?, |R: (Pwr;_1) (z)|?}

Zl! |2t — (% (Pwry)) (2)] < = max {1, [a[7, %R (Pwr;_1) ()[7}

il
(3o

< S max {1, |z]9, 9% (Pwr;_1) (z)]9} (6.2.18)
This, Lemma 6.2.9, and the fact that realization of the tunneling neural network leads to the

i!

identity function (Lemma 6.2.2 and (Grohs et al., 2023, Proposition 2.6)) then tells us that:

- T
2 H - R (Taype)
1=0

x 1 0,
[ i ] o [@ [—. D Conasic o1,y {D(Pwrl )} -D(Pur ) gy [P ]” ‘

=0 i=0
n

<3 max {1 a3 (Purf) (2)])
i=1

O

Lemma 6.2.10. Let §,e € (0,00), ¢ € (2,00) and § = ¢ (297 + 1)_1. It is then the case for all
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n € Ng and z € [a,b] C Ry that:

n

e — 9% (Tayss) ()] < 30 5
i=1

b bn+1

R, (Pwr ) ‘ }

(6.2.19)

n+1

Proof. Note that Taylor’s theorem states that for = € [a,b] C Ry it is the case that:

+1

_Z[ ] % (6.2.20)

Where £ € [0, z] in the Lagrange form of the remainder. Note then, for all n € Ny, € [a,b] C R

and £ € [0, z] it is the case that the second summand is bounded by:

66 X l,n—&-l 6b . bn+1

CES IS (6.221)
This, and the triangle inequality then indicates that for all « € [a,b] C R
o= (Tt ) 0 = |3 5]+ G - (i) )
< ; 2] o (o )] + [ 2
gzn:%max{l,|m|q,}9‘it (Pwr ) ‘ } I;_inlﬂ
i=1
O
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Chapter 7

A modified Multi-Level Picard and

assoclated neural network

We now look at neural networks in the context of multi-level Picard iterations.

Lemma 7.0.1. Let a, 3, M € [0,00), Uy, € [0,00), for n € Ny satisfy for alln € N that:

n—1
Un < aM™ + Z Mn_i (max {/87 Ul} +1n (Z) max {187 Umax{i—l,O}}) (701)
=0

It is then also the case that for all n € N that U, < (2M + 1)" max {«, 8}.

Proof. Let:
nil . . .
Sp=M"+ 3 M [(2M +1) 1y () (2M + 1)‘“3"{“’0}} (7.0.2)

1=0

We prove this by induction. The base case of n = 0 already implies that Uy < a < max{«, 5}.

Next assume that U, < (2M + 1)" max {«, 8} holds for all integers upto and including n, it is then
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the case that:

Un+1 < aMn+1 + Z Mn-l-l—i (maX {By UZ} +1n (Z) max {Ba Umax{i—l,O}})
=0

n
<aM™ 4+ Z Mt [max {B, (2M + 1)k max {«, 5}}
=0

+1 (i) max {,6’, (2M + 1)k =10 pax {a, [3}}]
< aMn—H + max {a’ 6} Z Mn-I—l—i [(2M + 1)i +1y (Z) (2M + 1)max{i—1,0}]
i=0

< max {a, 8} Spt1 (7.0.3)
Then (7.0.2) and the assumption that M € [0, 00) tells us that:
Sn—|—1 = ptl + ZMn-i-l—i [(QM + 1)i Ty (7,) (2M + 1)max{i—1,0}}

1=0

n n
= M"Y M M 4 1) 4y M eM 4+ 1)

=0 i=1
oM +1)"t — ptl (2M +1)" — M"™

~ oy | M

+ M1 * M1
_ ey MM+ "t @eM 1) ML 4 M
N M+1 M +1 M+1

1 1
< M M@eM+D)" @M+ et [T
h M +1 M+1 M+T
= (2M +1)"*! (7.0.4)
This completes the induction step proving (7.0.1). O

Lemma 7.0.2. Let © — (U”GN Z”), d,M €N, T e (0,00), f € C(R,R), g,€ C(RLR), F,G ¢
NN satisfy that R, (F) = f and R, (G) = g, let u? € [0,1], § € ©, and U : [0,T] — [0,T], 6 € O,
satisfy for all t € [0,T], theta € © that U =t + (T —t)u?, let WP : [0,T] — R%, 6 € ©, for every
0 €0,tel0,T],s¢eltT], let Y, € R satisfy Y, = WI =W/ and let Uf : [0,T] x R? — R,
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n € No, 0 € O, satisfy for all @ € ©, n € Ng, t € [0,T], x € R? that:

0 Iy (n) [ (0,0,—k)
Uf (t) = =22 1> g (24 250 7)

k=1

g (M 0,i 0 0,i 0
4 IV |: ((f o Uz( mk)) 1y () <f o Uélax{zzk)l 0})) <ut( ,l,k) y(zj(,ekz . )]
i=0 k=1

(7.0.5)

it 1s then the case that:

(i) there exists unique U° nt € NN, t € [0,7], n € No, 0 € ©, which satisfy for all 01,0, € O,

n € No, btz € [0,7] that £ (U3, ) = £ (Uf2, ).
(ii) for all9 € ©, t € [0,T] that U§, = [0 0 --- 0],[0]) € R™*4 x R!

(iii) for all® € ©, n € N, t € [0,T] that:

M"
1
0 _
s [@ <—Mn : <G ) A”Hd’yff;f’-k))]

n— T—t Mn—i 0,i,k 0,i,k
e (529 (5 (o)
(t — T)]l N Mn—i (07_1'7];;)
( =i ® | Bi=rp | | Fo Umax{z’—l,O},Z/[t(g’i’k) * AfFHd,yt(Z’i{;)i,m
Uy

(7.0.6)

1
Br (B o1

(iv) that for all @ € ©, n € Ny, t € [0,T], that D (Ufm) =n-H(F)+max{l,1y(n)D(G)}
(v) that for all® € ©,n € Ny, t € [0,T], that ||£ (U ,) Hmax < (2M + 1)" max {2, ||£ (F)||,pax + 1€ (G) || o}
(vi) it holds for all & € ©, n € Ny, t € [0,T], x € R that Uf (t,x) = (R (VS ,)) (x), and

(vii) it holds for all € ©, n € Ny, t € [0,T] that:

P (Uf,) <207 (F) + max {1, 1y (0) D (6)} [(2M + 1)" max {2, | £ (F)l e 1€ (6)ll e}
(7.0.7)
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Chapter 8

Some categorical ideas about neural

networks
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Chapter 9

ANN first approximations

9.1 Activation Function as Neural Networks

Definition 9.1.1 (Activation ANN). Letn € N. We denote by i, € (R™*" x R") x (R™™" x R")) C

NN the neural network given by i, = ((I,,,0y), (In,0,))
Lemma 9.1.2. Let n € N, it then holds that:

(i) L(ip) = (n,n,n) € N3.

(i1) For all a € C (R,R) that R, (i) € C (R™,R™) and,
(i1i) For all a € C (R,R) that R, (i) = Mult]

Proof. The fact that i, € ((R™*" x R") x (R™*" x R")) C NN tells us that L(i,) = (n,n,n) € N.
This establishes Item (i). Note next that 5.1.13 establishes that for all a € C'(R,R), x € R" it

holds that R4 (in) € C (R™,R™) and that:

(Ra (in)) (x) = Ly (Mult” (Lyz + 0,1)) + On1 = Mult” (z) (9.1.1)

Lemma 9.1.3. Let v € NN. Then:
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(i) It holds that:
L (iow) o v) = (Z(v), W1 (v), Wa(V), ... Wp() 1, O(v), O(v)) € NPW)+2 (9.1.2)

(i) It holds that for all a € C (R,R) that Rq (in(,) e v) € C (R, ROW))
(iii) It holds that for all a € C' (R,R), z € RTM) that (R, (inw) @ v)) (x) = Mult] ((Ra (v)) (2))

(iv) It holds that:
L(veizy)) = (Zw),Z(v), Wi(v), Wa(v), ... Wp)—1 (v),0(v)) € NPT (9.1.3)

(v) It holds that for all a € C (R,R) that Rq (v eiz(,y) € C (RTW), ROW), and
(vi) It holds for all a € C (R,R) that (Rq (v eiz,))) (x) = (Ra (v)) (Multf(y) (:E))

Proof. Note that Lemma 9.1.3 implies that for all n € N, a € C'(R,R), x € R", it holds that
R, (in) € C (R, R™) and:

(Ra (in)) () = Multg (2) (9-1.4)

This and (Grohs et al., 2023, Proposition 2.6) establishes Items (i)—(vi). This completes the proof
of the lemma. O
9.2 ANN Representations for One-Dimensional Identity

Definition 9.2.1 (Identity Neural Network). We will denote by |dg € NN the neural network

satisfying for all d € N that:

()
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(ii)
ldg = BL, Id; (9.2.2)

Ford>1.
Lemma 9.2.2. Let d € N, it is then the case that:
(i) £(dg) = (d,2d,d) € N3.
(ii) R (1dq) € C (R4, RY).

(i4i) For all x € R? that:
(R (Ida)) () = @

Proof. Note that (9.2.1) ensure that £(Idg) = (1,2,1). Furthermore, (9.2.2) and Remark 5.3.6
prove that £(Idy) = (d,2d,d) which in turn proves Item (i). Note now that Remark 5.3.6 tells us

that:

ldg = B2, (Id,) <Z>_L<1 [Rdlixdlifl X Rdli]> - ((dex‘l X R2d) X <RdX2d X Rd>> (9.2.3)

Note that 9.2.1 ensures that for all x € R it is the case that:
(R (Id1)) (x) = t(z) — v(—x) = max{x,0} — max{—=z,0} =z (9.2.4)

And Lemma 5.3.4 shows us that for all = (x1,29,...,24) € R? it is the case that R, (Idg) €

C (Rd,Rd) and that:

(Fa (1da)) () = (Ra (BLy (1) ) ) (21,2, 20)

= (R (1d1)) (21) ; Ra (Id1)) (21) ;.. (Ra (Id1)) (2a))

= (21,%2,...,Tq) = (9.2.5)

This proves Item (ii)—(iii), thus establishing the lemma. O
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Note here the difference between Definition 9.1.1 and Definition 9.2.1.

Lemma 9.2.3. Let v € NN with end-widths d. It is then the case that R, (Idgev) () = R, (v e ldy) =
R (v), i.e. Idg acts as a compositional identity.
Proof. From (5.2.1) and Definition 9.2.1 we have eight cases.
Case 1 where d = 1 and subcases:
(1.i) ldgev where D(v) =1
(L.ii) Idgev where D(v) > 1
(L.iii) v eldg where D(v) =1
(L.iv) v eld; where D(v) > 1
Case 2 where d > 1 and subcases:
(2.1) ldger where D(v) =1
(2.ii) Idg ev where D(v) > 1
(2.iii) v eld; where D(v) =1
(2.iv) v eld; where D(v) > 1
Case 1.i: Let v = ((W1,b1)). Deriving from Definitions 9.2.1 and 5.2.1 we have that:
1 1 0
Id; ev = Wi, by + , ([1 — 1,} , [0]) (9.2.6)
-1 -1 0
Wi by
RHEARER(AEY) 02
- —b

Let x € R. Upon realization with ¢t and d = 1 we have:

(%t (ldl OI/)) (l’) = 'C(WlfL‘ + bl) — 'C(—Wll‘ — bl)

= max{Wix + b1,0} — max{—Wiz — b1,0}
= Wiz + b

= ﬂf{t(y)
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Case 1.ii: Let v = ((Wy,b1),(Wa,b2),...,(Wr,br)). Deriving from Definition 9.2.1 and 5.2.1 we

have that:

Idy e = | (W1,b1), (W2,b2) ;... (WE—1,b0-1) Wi, br, + : ([1 - 1] ; [OD

b)) W) e Wb | || ([1 _1],[0])

Let z € R. Note that upon realization with v the last two layers are:

t(Wrx +bp) —v(—=Wrx —bg,0)
= max{Wrx + br,0} — max{—Wrz —bg,0}

=Wrx +bp, (9.2.8)

This, along with Case 1.1 implies that the unrealized last layer is equivalent to (Wp,by) whence
Id| ev = v.

Case 1.7: Let v = ((W1,b1)). Deriving from Definition 9.2.1 and 5.2.1 we have:
1 0
veld, = ; ,<W1 [1 —1},W1 |:O:|+b1>
-1 0

1 0
= ) ) <|:W1 — W1:| 7b1>
-1 0

Let € R. Upon realization with ¢ we have that:

o) @ =|w w0
=Wh t(.%') — Wi t(—ac) + b
=W (¢(z) —t(—x)) + by

=W, + b = R (v) (9.2.9)
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Case 1.1w: Let v = ((Wy,b1), (Wa,b2),...,(Wr,br)). Deriving from Definitions 9.2.1 and 5.2.1 we

have that:

1 0
V0|d1 = s s <|:W1 _W1:| ,b1> ,(WQ,bQ),...,(WL,bL) (9.2.10)
-1 0

Let € R. Upon realization with v we have that the first two layers are:

[Wl — W1:| T v + b
=Wit(x) — Wie(—z) + by
=W (v(x) —v(—x)) + by

= Wiz + b1 =R, (U) (9.2.11)

This along with Case 1.iii implies that the unrealized first layer is equivalent (W7,b;) whence we

have that v eld; = v.

Observe that Definitions 5.3.1 and 9.2.1 tells us that:

d—many d—many

Weightkil,l Weight|d172
Elzdzl Idl: 7®2d ) 7@d

Weightmhl Weight|d1,2

Case 2.1 Let d € NN [l,00). Let v € NN be v = (Wy,b;) with end-widths d. Deriving from
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Definitions 5.2.1 and 9.2.1 we have:

Weightyg, | Weightg, 4
Idger = Wi, bi |,
Weightyy, | Weightg, ;
Weight|d1’2
7@d
Weight|d172
(W11 [b1]1
Wil | =1l Weightyg, o
= ) ’ 7@d
(Wi]a« [b1]a I Weightyg, » |
| —Wilas] [—[b1]a]

Let z € R%. Upon realization with v we have that:

(R (Idgev)) (x)

= t((Wiliw - @+ [ba)1) = e(=[W]1e -z = [ba]1) + - -
+ o (Wilas - @ + [ba]a) — e(=[Wilas - @ = [b1]a)

= Wiz +bili -+ [Wias - 2+ [bi]a

= Wiz + by = R (v)

Case 2.ii: Let v = ((Wy,b1), (Wa,b2),...,(Wr,br)). Deriving from Definition 9.2.1 and 5.2.1 we

have that:
[ Wil | [ B |
—Wihi«| |-[bh
Idgev = | (Wi,b1), (Wa,b2), ..., (Wr—1,br-1), : N : ([1 —1} ; [0])
(WLldx brla
| ~Wilax| [—IbLla]
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Note that upon realization with t the last two layers become:

(Wil -+ [br]1) —o(=[Wiliw @ = [br]1) + -+
+t((Welas - @+ [brla) — v(=[WLlax - @ — [br]a)
=[Wrhys-x+[beli 4+ + Wilas -z + [brla

= Wyx+ by, (9.2.12)

This, along with Case 2.i implies that the unrealized last layer is equivalent to (Wp,br) whence
Idjer = v.

Case 2.i1i: Let v = ((W1,b1)). Deriving from Definition 9.2.1 and 5.2.1 we have:

veldy

Weight|d1 1 Weight,dl 2
= I ) ®2d 9 Wl . ) bl

Weightyg, , Weightyg, o

Upon realization with v we have that:

(R (v)) (x) (9.2.13)
T
—[zh
= |Wilix —Wiliq -+ Wilwa — [Wilia| ® 5 + b1
[2]a
| —[2]a]

= Wil e(z]) — Wil e(=[z]) + - + Wil av([z]a) — [Wileav(=[z]a) + b1
= [W1]*,1 x4+ [W1]*,d - [x]q

=Wiz+b = %t(v) (9214)

Case 2.iv: Let v = ((Wy,b1),(Wa,b2),...,(Wg,br)). Deriving from Definitions 9.2.1 and 5.2.1 we
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have:

ve |dd
Weight,dl,l

= ;024 |, <|:[W1]*,1 - [Wl]*,l T [WI]*,d - [Wl]*,d:| ’b1> yetr
Weightmhl

(Wa,b2) ..., (Wr,br))

Upon realization with t we have that the first two layers are:

(R (1)) (2) (9.2.15)
IR
—[z]
= |Wilia = Wilka -+ [Wilea — [Wilia|® : + b1
[%]a
| —[]a

= Wil e(fz]) — Wil e(=[z]) + -+ Wil av([z]a) — [Wileav(=[z]a) + b1
= [Wilwa - [z + -+ [Wilea - [x]d

— Wiz + by (9.2.16)

This, along with Case 2.iii implies that the unrealized first layer is equivalent to (Wp,br) whence
Idjev = v.

This completes the proof. O

Definition 9.2.4 (Monoid). Given a set X with binary operation *, we say that X is a monoid

under the operation * if:
(i) For all x,y € X it is the case that x xy € X
(ii) For all x,y,z € X it is the case that (xxy)*z = x * (y * 2)

(iii) The ezists a unique element e € X such thatexx =x*e =x
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Theorem 9.2.5. Let d € N. For a fixed d, the set of all neural networks v € NN with realizations

in v and end-widths d form a monoid under the operation of e.
Proof. This is a consequence of Lemma 9.2.3 and Lemma 5.2.3. O

Remark 9.2.6. By analogy with matrices we may find it helpful to refer to neural networks of

end-widths d as “square neural networks of size d”.

9.3 Modulus of Continuity

Definition 9.3.1. Let A C R and let f : A — R. We denote the modulus of continuity w; :

[0, 00] — [0, 00] as the function given for all h € [0, 00] as:

wy (h) = sup ({|f(z) — f(y)l € [0,00) : (z,y € A, |z —y[ <h)} U{0}) (9-3.1)
Lemma 9.3.2. Let o € [—00,00], b € [a,00], and let f : [a,b) "R — R be a function. It is then
the case that for all all z,y € [a,b] "R that |f(x) — f(y)| < wy (|z —yl).
Proof. Note that (9.3.1) implies the lemma. O

Lemma 9.3.3. Let A C R, L € [0,00), and let f : A — R satisfy for all z,y € A that
|f(x) — f(y)| < L|z —yl|. It is then the case that for all h € [0,00) that w¢(h) < Lh.

Proof. Since it holds for all z,y € R that |f(z) — f(y)| < L |x — y|, it then, with (9.3.1) imply for
all h € [0,00) that:

wy (h) = sup ({|f(z) — f(y)| € [0,00) : (z,y € A, [ —y[ < h)} U{0})
<sup ({L ]z —y[ €[0,00) : (x,y € A, |z —y[ < h)} U{0})

< sup ({Lh,0}) = Lh (9.3.2)

This completes the proof of the lemma. O
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9.4 Linear Interpolation

Note that in order to approximate more complex function we need to have a framework for ap-
proximating genertic 1-dimensional continuous functions. We introduce the linear interpolation
operator, and later on see how neural networks can approximate 1-dimensional conitinuous func-

tions to arbitrary precision.

9.4.1 The Linear Interpolation Operator

Definition 9.4.1 (Linear Interpolation Operator). Let n € N, zg,z1, ..., Tn, Y0, Y1, .-, Yn € R. Let
it also be the case that rog < v1 < --- < . We denote by Lin¥0¥1--% - R — R, the function that

T0,T1y+3%n *

satisfies for i € {1,2,...,n}, and for all w € (—o0,xg), © € [Ti—1,T;), z € [Ty, 00) that:

(i) LinY0:Y1,--Yn (w) =1

Z0;Z15-5Tn

(i) Lin¥oyievn (g) =y, 4 V=8l (p g )

Z0,L15---5Tn Ti—Ti—1

(iit) Lingosr o5 (2) = yn

Lemma 9.4.2. Letn € N, zg,Z1,..., T, Y0, Y1, -, Yn € R with xg < 1 < -+ < Ty, it is then the

case that:

(i) for alli e {0,1,...,n} that:

(Lin¥o¥-vn ) (1) = y; (9.4.1)

Z0;L15-,Tn

(ii) for alli € {0,1,....,n} and z € [x;—1,x;] that:

Ti — Ti—1 Ti — Ti—1

. X; — X r— T
(Linfoh% ) (x) = (7) Yi1+ <—1> yi (9.4.2)

Proof. Note that (9.4.1) is a direct consequence of Definition 9.4.1. Item (i) then implies for all

ie{l,2,...,n} x € [r;—1, ;] that:

. Ty — Tj—1 r — Tij—1 r — Tj—-1
(Lintgtn) () = | (S ) = (S o+ (ot ) w
e T; — Ti—1 Ti — Ti—1 T — Ti—1
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O

Lemma 9.4.3. Let N € N, L,z9,z1,....,xny € R satisfy g < x1 < --- < xn, and set let f :

[0, xn] — R satisfy for all x,y € [xo,xN] that |f(z) — f(y)| < L|z —y|, it is then the case that:

(i) for all z,y € R that:

(LinfGo2 /G0 ) (@) = (Linf{gl 1500 ()| < Lo — o] (9.4.3)
, and
(ii) that:
1 f(wo)yf(ml)77f(xN) — < P .
o [(Ln ) @) )] < (o o —ail) @49

Proof. The assumption that for all z,y € [zg, x| it is the case that |f(x) — f(y)| < L|z —y| and

Lemma 9.3.3 prove Item (i) and Item (ii). O

9.4.2 Neural Networks to approximate the Lin operator

Lemma 9.4.4. Let a,8,h € R. Denote by ReLU € NN the neural network given by ReLU =

h® (i ® Aff, g). It is then the case that:
(i) ReLU = ((, 8), (h,0))
(i) L(ReLU) = (1,1,1) € N3.
(iii) R (ReLU) € C (R, R)
(iv) for all x € R that (R (ReLU)) (z) = hmax{az + 3,0}

Proof. Note that by Definition 5.4.1 we know that Aff, 3 = ((«, 3)), this with Definition 9.1.1, and
Definition 5.2.1 together tell us that i; @ Aff, 3 = (o, ). A further application of Definition 5.2.1,
and an application of Definition 5.6.1 yields that h ® (i; e Aff, g) = ((cv, 8), (h,0)). This proves
Item (i).

Note that L(Aff,g) = (1,1), L(i1) = (1,1,1), and L(h) = 1. Item (i) of Lemma 9.1.3 therefore
tells us that £(ReLU) = £ (h ® (i1 ® Aff, g)). This proves Item (ii).
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Note that Lemmas 9.1.2 and 9.1.3 tell us that:

Ve € R: (R (i1 @ Aff, 5)) (z) = v (Re) (2) = max{ax + S} (9.4.5)

This and Lemma 5.6.1 ensures that R, (ReLU) € C (R, R) and further that:

(Re (ReLU)) () = h (R (i1 @ Aff, g)) (x)) = hmax{azx + 3,0} (9.4.6)
This proves Item (iii)-(iv). This completes the proof of the lemma. O
Lemma 9.4.5. Let N € N, zg,x1,..., TN, %0, Y1, .-, YN € R and further that xg < o < -+ < TN.
Let ® € NN satisfy that:
al Ymin{i —Yi Yi— Y i
d— AfFl,yO o @ [( min{i+1,N} i _ i max{i—1,0} ) ® (11 . Aﬂ:l,—xi):|
i—0 Tmin{i+1,N} — Tmin{i, N1} Lmax{i,1} — Lmax{i—1,0}
(9.4.7)
It is then the case that:
(i) L(®) = (1,N +1,1) e N3
(ii) R (P) € C (R,R)
fiii) (R (@) (2) = Lino -9 ()
(iv) P(®)=3N +4
Proof. For notational convenience, let it be the case that for all i € {0,1,2,..., N}:
by = Ymin{i+1,N} — Yi B Yi — Ymax{i—1,0} (9.4.8)

Lmin{i+1,N} — Tmin{i,N—-1} Tmax{i,1} — Lmax{i—1,0}

Note that £ (i; @ Affy _5,) = (1,1,1), and further that for all ¢ € {0,1,2,..., N}, h; € R. Lemma

9.4.4 then tells us that forall ¢ € {0,1,2,..., N}, £ (h; ® (i @ Aff; _5,)) = (1,1,1), Re (hy ® (i1 @ Affy ;) €
C (R,R), and that (R4 (h; ® (i1 ® Affy _4,))) () = hjmax{z — z4,0}. This, (9.4.7), Lemma 5.4.4,

and (Grohs et al., 2022, Lemma 3.28) ensure that £(®) = (1, N +1,1) € N? and that R, (®) €

C (R, R) establishing Items (i)—(ii).
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In addition, note that Item (i) and (5.1.11), tell us that:

Wi Wa
P@)=(N+1)+(N+1)+(N+1)+_1 =3N+4 (9.4.9)
b
b1 2

Which proves Item (iv). For all i € {0,1,2,..., N}, let ¢; be ¢; = h; ® (i @ Aff; _,). Next note that

9.4.8, Lemma 5.4.4, and (Grohs et al., 2022, Lemma 3.28) then tell us that:

n

(Re (@) () =90+ Y (Ra($i)) (&) =yo + > himax{z — z;,0} (9.4.10)

i=1 i=1
Since xo < x; for all ¢ € {1,2,...,n}, it then is the case for all x € (oo, z¢] that:

(R (D)) (z) =yo +0=1yo (9.4.11)

Claim 9.4.6. For alli € {1,2,...,N} it is the case that :

i—1
Zhj _ YY1 (9.4.12)
=0 Ty — Ti—1

We prove this claim by induction. For the base case of i = 1 we have:

0
Zh():ho:yl_yo—yo_yozyl_yo (9.4.13)

- Tr1—Typ T1—To T1 — o
j=0

This proves the base base for (9.4.12). Assume next that this holds for &, for the (k+1)-th induction

step we have:

k41 k e —y
k— Yk—1
Zhj = Zhj +hgt1 = —— + hit
— — Tk — Th—1
7=0 7=0
_ Yk~ Yk—1 + Y42 —Yk—1  Yk4+1 — Yk
Tl —Tk—-1  Tg42 — Tk+1  Th+1 — Tk
_ Yk+1 — Yk (9.4.14)
Th+1 — Tk

This proves (9.4.12). In addition, note that (9.4.10), (9.4.12), and the fact that for all¢ € {1,2,...,n}
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it is the case that x;_1 < ; tells us that for all i € {1,2,...,n} and = € [z;_1, ;] it is the case that:

(Re (@) (2) = (Ra (D)) (wi1) = Z hj (max{z — 2,0} — max{z;1 —z;,0})

7=0
— S ¢jl(x —xj) — (wim1 — )] = iiicj (@ —wi1) = <W) (o) a1
2 = Ty — Tj—1

Claim 9.4.7. For alli € {1,2,..., N}, x € [x;_1,x;] it is the case that:

Tj — Tij—1

(R () () = i1 + (ﬁ) (2 — i) (9.4.16)

We will prove this claim by induction. For the base case of i = 1, (9.4.15) and (9.4.12) tell us that:

(R (2)) (2) = (Re (D)) (2) = (Re (D)) (wi-1) + (Re (D)) (i-1)

= yo + <M> (x — zi_1) (9.4.17)

Ti — Tj—1

For the induction step notice that (9.4.15) implies that for all ¢ € {2,3,..., N}, x € [x;_1,z;], with

Li—1—Ti—2

the realization that Vo € [x;_2,zi—1] : (R (®)) (z) = yi—a + (M) (x — z_2), it is then the

case that:

(R (D)) (2) = (R (D)) (zi-1) + (Re (D)) (2) — (Re (D)) (wi-1)
=Yi—2 + <M> (Tim1 +Ti—2) + <M> (x —xi-1)

Tio1 — Ti—2 T — Ti—1
Yi —¥Yi-1
= Yi— —_ — X 9.4.18
o (222 oy (9.418)

Thus induction proves (9.4.16). Furthermore note that (9.4.12) and (9.4.8) tell us that:

N N-1
Zhi:CN+Zhi:_yN YN-1 | YN TIN-L (9.4.19)
i—0 i—0 TN —ITN-1 TN —TN-1
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The fact that Vi € {0,1,..., N} : z; < xy, together with (9.4.10) imply for all x € [z, 00) that:

N
(R (P)) () — (R (P)) (zn) = [Z hi (max{z — z;,0} — max{zy — z;,0})

v .
:Zhi[(x_wi) — (N — 1)) :th’(x—xzv) =
i=0 =

This and (9.4.16) tells us that for all x € [z, 00) we have:

(Re (@) () = (Re (D)) (xn) = yn—1 + (%) (5 — TN_1) = TN (9.4.20)

Together with (9.4.11), (9.4.16), and Definition 9.4.1 establishes Item (iii) thus proving the lemma.

O

9.5 Neural network approximation of 1-dimensional functions.

Lemma 9.5.1. Let N € N, L.a.zg,z1,....,zy € R, b € (a,00), satisfy for all i € {0,1,..., N} that
x; =a+ @. Let f : [a,b] — R satisfy for all x,y € [a,b] that |f(x) — f(y)| < L|z —y| and let
F € NN satisfy:

(2

F = Aﬂ:lvf(mo) b [ T ((N (f (‘Tmin{i+1,N}) B 2f (SCZ) + f (wmax{i—l,o}))
=0

b—a ) ® (|d10AfF17_xk)>]
(9.5.1)
It is then the case that:
(i) L(F)=(1,N+1,1)
(ii) R (F) € C (R,R)
() 5 (F) = Lind T

(iv) it holds that for all x,y € R that |(R. (F)) (z) — (R (F)) (y)| < Lz — y|

(v) it holds that SUDPpe[a,b] (R (F)) (x) — f(x)]

N

(vi) P (F) = 3N + 4.
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Proof. Note that since it is the case that for all 7« € {0,1,..., N} : Tmin{i+1,N} — Tmin{i,N—1} =

_ b—a .
xmax{i,l} — xmax{i—l,(}} =N we have that:

J (@mingiv1,ny) — f (20) B F@i) = f (@maxgio10)) N (f @mingiriny) — 27 (@) + f (Tmaxfi-1,01))

Tmin{i+1,N} — Tmin{i,N—-1} Lmax{i,1} — Lmax{i—1,0} b—a

(9.5.2)

Thus Items (i)-(iv) of Lemma 9.4.5 prove Items (i)-(iii), and (vi) of this lemma. Item (iii) combined
with the assumption that for all z,y € [a,b] : |f(x) — f(y)| < |z — y| and Item (i) in Lemma 9.4.3
establish Item (iv). Furthermore, note that Item (iii), the assumption that for all z,y € [a,b] :

|f(z) — f(y)| < L]z —yl, Item (ii) in Lemma 9.4.3 and the fact that for all ¢ € {1,2,...,N} :
Ti— Xi_1 = b_T“ demonstrate for all x € [a, b] it holds that:

|(Re (F) () — f(2)| < L (ie{{nﬁ?i]v} |z — wi—l!) = W (9.5.3)

O

Lemma 9.5.2. Let L,a € R, b € [a,00), £ € [a,b], let f:[a,b] — R satisfy for all z,y € [a,b] that
|f(z) = f(y)| < Lz —yl, and let F € NN satisfy F = Affy pc) o (0® (i1 ® Affy _¢)), it is then the

case that:
(1) £L(F)=(1,1,1)

(i) R (F) € C (R, R)

(iii) for all x € R, we have (Re (F)) (z) = £ (€)

(1) sup,eiap) [(Re (F)) (2) — f(2)] < Lmax{{ —a,b— ¢}
(v) P(F)=4

Proof. Note that Item (i) is a consequence of the fact that Aff; _¢ is a neural network with a real
number as weight and a real number as a bias, and the fact that £ (i;) = (1,1,1). Note also that

Item (iii) of Lemma 9.4.4 prove Item (iii).
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Note that from the construction of Aff we have that:

(R (F)) () = (Re (0@ (i1 @ Affy_¢))) () + f (£)

= 0((%Re (in # Aff1_¢)) () + £ (€) = £ () (9.5.4)

Which establishes Item (iii). Note that (9.5.4), the fact that & € [a,b] and the fact that for all

x,y € la,b] it is the case that |f(z) — f(y)| < |x — y| give us that for all = € [a, b] it holds that:
(R (F) (2) = f (@) = 1F (&) = f (@) < Lle = £ < Lmax{{ —a,b— &} (9.5.5)
This establishes Item (iv). Note a simple parameter count yields that:
PF)=11+1)+11+1)=4 (9.5.6)

Establishing Item (v) and hence the lemma. O

9.6 p-norm Approximations

Definition 9.6.1 (p-norm). Let d € N, and p € NN [1,00]. We denote by || - ||, : R — [0,00) the

1

p-norm given for all x = (x1,%2,...,2q) € R by ||z||, = [Z?:l ml} “and by || - floo : R? — [0,00)

the max norm, given for all x = (x1, 2, ...,24) € R? by ||2]|e = maX;e(12,..dy |Til-

Lemma 9.6.2. Let ¢ € (0,00), L € [0,00), a,b € R with a < b. and let f : [a,b] — R satisfy for
all z,y € [a,b] that |f(x) — f(y)| < L|lz — y|. It is then the case that there exists a neural network
¢ € NN such that:

(i) Re(¢) € C (R, R)

(ii) H(¢) =1

(iii) W1(¢) < L(b—a)e™! +2

(iv) for all z,y € R, [(R () () — (R (¢)) ()] < Lz — y]
(v) it holds that sup,e(qy) [(Ra (¢)) () — f(2)| <€
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(vi) it holds that P (¢) =3 (W1 (¢)) +1<3L(b—a)e 1+ 7, and
(IUZ'Z') HT(¢) Hoo < max{lv |CL|, |b|a 2La ‘f(ﬂ?)’}

Proof. Note
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Part 111

A deep-learning solution for u and

Brownian motions
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Chapter 10

ANN representations of Brownian

Motion Monte Carlo

This is tentative without any reference to f.

Lemma 10.0.1. Letd, M € N, T € (0,00) , a € C(R,R), T € NN, satisfy that R4 (G) € C (R%,R),

for every 0 € ©, let U® : [0,T] — [0,T] and WY : [0,T] — R? be functions , for every 6 € O, let

U?:10,T] — R? = R satisfy satisfy for all t € [0,T), x € R? that:

M
Ut ) = - [E (R (1)) (2 + wwvoa—k))]

k=1

Let UY € NN , 0 € © satisfy for all 0 € ©, t € [0,T) that:

M
1
U? — [@ (M ® (G ° AfFHd,W(TG’O[_k)>>]

k=1
It is then the case that:
(i) for all 61,02 € ©, t1,t2 € [0,T)] that L (uf;) _yy <Uf§>.
(ii) for all 6 € ©, t € [0,T), that D (U?) < D(G)

(iii) for all @ € ©, t € [0,T] that:

[ (U)o <1 (@) e (1-¥2) a1
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(iv) for all® € ©, t € [0,T], x € R? that U(t,2) = (Rq (UY)) (2) and

(v) for all @ € ©, t € [0,T] that:
P (0f) <20(6)[(1+v2) M |y£(c)||m}2 (10.0.4)

Proof. Throughout the proof let P/ € NN, 6 € ©, t € [0, 7] satisfy for all § € ©, ¢ € [0, 7] that:

M

1

0

s [H @ (Ge Affﬂdﬁwg,o,t_k)} (10.0.5)
k=1

Note the hypothesis that for all € ©, ¢t € [0,7] it holds that Wf € R? and Lemma 5.6.7 applied
for every 0 € © t € [0,T] with v ~ M, Cicfuust,..o} O (37)

W(evoyik)> ,
( T—t ke{1,2,...M}
Lemma 5.6.7 tells us that for all § € ©, ¢t € [0,T], and = € R? it holds that:

€{u,u+l,...,v}’ (Bi)ie{u,u+1,...,v} A

(Vi)ie{u7u+17“_7v} A (G)ie{u,u-i-l,...,v}’ p -~ @Y and with the notation of

c (Pf) — (d, MW (G), M W5 (G), ..., MWpe)_1 (G),1) = £ (P}) € NP(©)+1 (10.0.6)

and that:

M

o (#1)) 0= 5 |

= U (t,z) (10.0.7)

(R (6) (x+ Wﬁﬂ”“))]
k=

—_

This proves Item (i).
Note that (10.0.6), and (10.0.7) also implies that:

(vf) =2 ()
- (d, Wi (P?) Ws (Pf) e Wnie) (P?) ,t)

= £ (U]) e NP©OH (10.0.8)
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This indicates that for all # € ©, ¢ € [0, 7] it is the case that:

le ()] = e Wyl

_ 0
 ke{120D(G) (Wi (Po))

This, (10.0.6), and (Grohs et al., 2023, Proposition 2.6) ensure that for all # € O, ¢t € [0,7] it is

the case that:

le (U] = el < 12 @], < MI£©)

SM|L(G)]lo+M[||£ (U] (10.0.9)

Then (Hutzenthaler et al., 2021, Corollary 4.3), with v ~ 0, 8~ M, k ~ 1, ap » ||L(G)

||oo7

a; A~ 0, (xi>'i€{0,1,...,k} a\ (HL’ (Ug)Hoo)iE{Ol...n} in the notation of (Hutzenthaler et al., 2021,
Corollary 4.3) yields for all § € ©, t € [0, 7] that:

e (u1)] < 20 @1 (1+v3) v
<(I£(G)) (1+v2) M

Note that (Grohs et al., 2023, Proposition 2.6, Item (ii)) proves that for all 6 € ©, ¢t € [0,T] it is

the case that:
D (Uf) =D (UJ) = D(G) (10.0.10)

This proves Items (ii)—(iii) and (10.0.7) proves Item (iv).

137



Items (ii)—(iii) together shows that for all 6 € ©, ¢t € [0,T] it is the case that:

This proves Item (v) and hence the whole lemma.
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import numpy as np
import matplotlib.pyplot as plt

# Set the number of steps and the step size
5000
0.1

num_steps
step_size

# Generate the random steps
steps = np.random.normal(0, 1, (2, num_steps)) * step_size **x 0.5

# Calculate the Browntian motion
brownian_motion = np.cumsum(steps, axis=1)

# Plot the Browntan motion
plt.plot(brownian_motion[0], brownian_motion[1])
plt.title(’Brownian Motion’)

plt.xlabel (’X’)

plt.ylabel(’Y’)

plt.show ()

Listing 1: Python
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