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Preface to the Second Edition

In the second edition of this book many errors have been corrected. Furthermore,
the text has been extended carefully in many places. In particular, there are more
exercises and a lot more illustrations.

I would like to take the opportunity to thank all of those who helped improv-
ing the first edition of this book, in particular: Michael Diether, Maren Eckhoff,
Christopher Grant, Matthias Hammer, Heiko Hoffmann, Martin Hutzenthaler, Mar-
tin Kolb, Manuel Mergens, Thal Nowik, Felix Schneider, Wolfgang Schwarz and
Stephan Tolksdorf.

A constantly updated list of errors can be found at www.aklenke.de.

Mainz Achim Klenke
March 2013
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Preface to the First Edition

This book is based on two four-hour courses on advanced probability theory that I
have held in recent years at the universities of Cologne and Mainz. It is implicitly as-
sumed that the reader has a certain familiarity with the basic concepts of probability
theory, although the formal framework will be fully developed in this book.

The aim of this book is to present the central objects and concepts of proba-
bility theory: random variables, independence, laws of large numbers and central
limit theorems, martingales, exchangeability and infinite divisibility, Markov chains
and Markov processes, as well as their connection with discrete potential theory,
coupling, ergodic theory, Brownian motion and the It6 integral (including stochas-
tic differential equations), the Poisson point process, percolation and the theory of
large deviations.

Measure theory and integration are necessary prerequisites for a systematic prob-
ability theory. We develop it only to the point to which it is needed for our purposes:
construction of measures and integrals, the Radon—Nikodym theorem and regular
conditional distributions, convergence theorems for functions (Lebesgue) and mea-
sures (Prohorov) and construction of measures in product spaces. The chapters on
measure theory do not come as a block at the beginning (although they are written
such that this would be possible; that is, independent of the probabilistic chapters)
but are rather interlaced with probabilistic chapters that are designed to display the
power of the abstract concepts in the more intuitive world of probability theory. For
example, we study percolation theory at the point where we barely have measures,
random variables and independence; not even the integral is needed. As the only
exception, the systematic construction of independent random variables is deferred
to Chapter 14. Although it is rather a matter of taste, I hope that this setup helps to
motivate the reader throughout the measure-theoretical chapters.

Those readers with a solid measure-theoretical education can skip in particular
the first and fourth chapters and might wish only to look up this or that.

In the first eight chapters, we lay the foundations that will be needed in all subse-
quent chapters. After that, there are seven more or less independent parts, consisting
of Chaps. 9-12, 13, 14, 15-16, 17-19, 20 and 23. The chapter on Brownian motion

vii



viii Preface to the First Edition

(21) makes reference to Chaps. 9-15. Again, after that, the three blocks consisting
of Chaps. 22, 24 and 25-26 can be read independently.

I should like to thank all those who read the manuscript and the German original
version of this book and gave numerous hints for improvements: Roland Alkemper,
René Billing, Dirk Briiggemann, Anne Eisenbiirger, Patrick Jahn, Arnulf Jentzen,
Ortwin Lorenz, L. Mayer, Mario Oeler, Marcus Scholpen, my colleagues Ehrhard
Behrends, Wolfgang Biihler, Nina Gantert, Rudolf Griibel, Wolfgang Konig, Pe-
ter Morters and Ralph Neininger, and in particular my colleague from Munich
Hans-Otto Georgii. Dr John Preater did a great job language editing the English
manuscript and also pointing out numerous mathematical flaws.

I am especially indebted to my wife Katrin for proofreading the English
manuscript and for her patience and support.

I would be grateful for further suggestions, errors etc. to be sent by e-mail to
math@aklenke.de

Mainz Achim Klenke
October 2007
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Chapter 1
Basic Measure Theory

In this chapter, we introduce the classes of sets that allow for a systematic treatment
of events and random observations in the framework of probability theory. Further-
more, we construct measures, in particular probability measures, on such classes of
sets. Finally, we define random variables as measurable maps.

1.1 Classes of Sets

In the following, let £2 # #J be a nonempty set and let A C 2 (set of all subsets
of £2) be a class of subsets of £2. Later, £2 will be interpreted as the space of ele-
mentary events and .4 will be the system of observable events. In this section, we
introduce names for classes of subsets of £2 that are stable under certain set opera-
tions and we establish simple relations between such classes.

Definition 1.1 A class of sets A is called

e N-closed (closed under intersections) or a w-system if A N B € A whenever
A Be A,

e o-N-closed (closed under countable! intersections) if (2, A, € A for any
choice of countably many sets Ay, Az, ... € A,

e U-closed (closed under unions) if AU B € A whenever A, B € A,

e o-U-closed (closed under countable unions) if Uff’:] A, € A for any choice of
countably many sets A1, Aj, ... € A,

o \-closed (closed under differences) if A \ B € A whenever A, B € A, and

e closed under complements if A¢:= 2\ A € A for any set A € A.

By “countable” we always mean either finite or countably infinite.

A. Klenke, Probability Theory, Universitext, DOI 10.1007/978-1-4471-5361-0_1, 1
© Springer-Verlag London 2014


http://dx.doi.org/10.1007/978-1-4471-5361-0_1
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Definition 1.2 (c-algebra) A class of sets A C 2% is called a o-algebra if it ful-
fills the following three conditions:

(i) 2 A
(i1) A is closed under complements.
(iii) A is closed under countable unions.

Sometimes a o -algebra is also named a o-field. As we will see, we can define
probabilities on o -algebras in a consistent way. Hence these are the natural classes
of sets to be considered as events in probability theory.

Theorem 1.3 If A is closed under complements, then we have the equivalences

Ais N-closed <<= Ais U-closed,

Aiso-N-closed <<= Aiso-U-closed.

Proof The two statements are immediate consequences of de Morgan’s rule (re-
minder: ({_J A;)¢ =) AY). For example, let A be o-N-closed and let A, Ay, ... € A.
Hence

Thus A is o -U-closed. The other cases can be proved similarly. 0

Theorem 1.4 Assume that A is \-closed. Then the following statements hold.

(1) A is N-closed.
(ii) If in addition A is o -U-closed, then A is o -N-closed.
(iii) Any countable (respectively finite) union of sets in A can be expressed as a
countable (respectively finite) disjoint union of sets in A.

Proof (i) Assume that A, B € A. Hence also ANB=A\ (A\ B) € A.
(ii) Assume that Ay, As, ... € A. Hence

A =AinAy =A@\ A) =4\ JAi\4) e A

n=1 n=2 n=2 n=2

(iii) Assume that Ay, A, ... € A. Hence a representation of U,‘;Ozl A, as acount-
able disjoint union of sets in A is

A =418 A\ AD B ((A3\ AD\ A2) W (((Ag\ A1)\ A2) \ A3) ...

n=1

Remark 1.5 Sometimes the disjoint union of sets is denoted by the symbol (4. Note
that this is not a new operation but only stresses the fact that the sets involved are
mutually disjoint. O
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Definition 1.6 A class of sets A C 2% is called an algebra if the following three
conditions are fulfilled:

G e A
(i) Ais \-closed.
(iii) A is U-closed.

If A is an algebra, then obviously ¥ = §2 \ £2 is in .A. However, in general, this
property is weaker than (i) in Definition 1.6.

Theorem 1.7 A class of sets A C 2% is an algebra if and only if the following three
properties hold:

(i) 2e€A
(ii) A is closed under complements.
(iii) A is closed under intersections.

Proof This is left as an exercise. O

Definition 1.8 A class of sets A C 2 is called a ring if the following three condi-
tions hold:

(i) Ve A
(i) Ais \-closed.
(iii) A is U-closed.

A ring is called a o -ring if it is also o -U-closed.

Definition 1.9 A class of sets A C 2% is called a semiring if

(i) BeA,
(ii) for any two sets A, B € A the difference set B \ A is a finite union of mutually
disjoint sets in A,
(iii) A is N-closed.

Definition 1.10 A class of sets A C 2% is called a A-system (or Dynkin’s A-system)
if

() LeA,
(ii) for any two sets A, B € A with A C B, the difference set B \ A is in .4, and
(i) W,2; A, € A for any choice of countably many pairwise disjoint sets
Ay, Ay, ... A.

Example 1.11

(i) For any nonempty set £2, the classes A = {#), 2} and A = 2% are the trivial
examples of algebras, o -algebras and A-systems. On the other hand, A = {(J}
and A = 2% are the trivial examples of semirings, rings and o -rings.

(i) Let 2 =R. Then A ={A C R: A is countable} is a o -ring.
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(iii)) A={(a,b]:a,b eR, a < b} is asemiring on £2 =R (but is not a ring).
(iv) The class of finite unions of bounded intervals is a ring on £2 = R (but is not
an algebra).
(v) The class of finite unions of arbitrary (also unbounded) intervals is an algebra
on 2 = R (but is not a o -algebra).
(vi) Let E be a finite nonempty set and let £2 := EN be the set of all E-valued

sequences @ = (wy),eN- Forany wy, ..., o, € E, let
[w1,...,0p]:={0' € 2 :0]=w; foralli=1,...,n}
be the set of all sequences whose first n values are wy, ..., ,. Let Ay = {#}.

For n € N, define
Ay ={lor, ..., o] 01, ...,0, € E}. (L.1)

Hence A := ;2 A, is a semiring but is not a ring (if #E > 1).
(vii) Let £2 be an arbitrary nonempty set. Then

A:={ACQ:AorACis finite}

is an algebra. However, if #£2 = oo, then A4 is not a o -algebra.
(viii) Let £2 be an arbitrary nonempty set. Then

A= {A C2:Aor ACis countable}

is a o -algebra.

(ix) Every o-algebrais a A-system.

(x) Let £2 ={1,2,3,4} and A = {0, {1,2}, {1,4}, {2,3}, {3,4}, {1,2,3,4}}.
Hence A is a A-system but is not an algebra. O

Theorem 1.12 (Relations between classes of sets)
(i) Every o-algebra also is a ,-system, an algebra and a o -ring.
(ii) Every o-ring is a ring, and every ring is a semiring.
(iii) Every algebra is a ring. An algebra on a finite set §2 is a o -algebra.

Proof (i) This is obvious.

(ii) Let A be aring. By Theorem 1.4, A is closed under intersections and is hence
a semiring.

(iii) Let A be an algebra. Then ¥ = 2 \ 2 € A, and hence A is a ring. If in
addition £2 is finite, then A is finite. Hence any countable union of sets in A is a
finite union of sets. g

Definition 1.13 (liminf and limsup) Let Ay, A, ... be subsets of §2. The sets

oo o o0 o0
linlngn = U ﬂ A,, and ligs;p A, = ﬂ U A

n=1m=n n=1m=n

are called limes inferior and limes superior, respectively, of the sequence (A;,),eN.
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Remark 1.14

(i) liminf and lim sup can be rewritten as

liminfA, ={we 2 :#neN:w¢A,} < oo},

n—oo

limsupA, ={we 2 :#neN:we A,} =o0}.
n—oo
In other words, limes inferior is the event where eventually all of the A,, occur.
On the other hand, limes superior is the event where infinitely many of the A,
occur. In particular, A, :=liminf, , . A, C A* :=limsup,_, ,, Ay.
(i) We define the indicator function on the set A by

1, xe€A,
Ta(x):= {O, YA, (1.2)

‘With this notation,

14, =liminfl,, and 14+ =Ilimsuply,.
n—00 n—00

(iii) If A C 2% is a o-algebra and if A, € A for every n € N, then A, € A and
A*e A. O

Proof This is left as an exercise. U

Theorem 1.15 (Intersection of classes of sets) Let I be an arbitrary index set, and
assume that A; is a o -algebra for every i € I. Hence the intersection

A1:={ACQ:AEA,-f0reveryieI}=ﬂAi

iel

is a o-algebra. The analogous statement holds for rings, o-rings, algebras and
A-systems. However, it fails for semirings.

Proof We give the proof for o -algebras only. To this end, we check (i)—(iii) of Def-
inition 1.2.

(i) Clearly, 2 € A, forevery i € I, and hence £2 € A;.
(i1) Assume A € A;.Hence A € A; forany i € I. Thus also A€ € A; foranyi € I.
We conclude that A€ € A;.
(iii) Assume A, Ay, ... € A;. Hence A, € A; for every n € N and i € I. Thus
A:=J72 | Ay € A; forevery i € I. We conclude A € A;.

Counterexample for semirings: Let 2 = {1,2,3,4}, A = {0, £2, {1}, {2, 3}, {4}}
and Ay = {0, 2, {1}, {2}, {3,4}}. Then A; and A; are semirings but A; N Ay =
{9, £2, {1}} is not. O
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Theorem 1.16 (Generated o-algebra) Let £ C 2%, Then there exists a smallest
o-algebra o (E) with € C o (£):

o (€)= N A.

Ac2% is a o-algebra
ADE

o () is called the o -algebra generated by £. £ is called a generator of o (€). Simi-
larly, we define §(E) as the A-system generated by &.

Proof A =29 is a o-algebra with £ C A. Hence the intersection is nonempty.
By Theorem 1.15, o(€) is a o-algebra. Clearly, it is the smallest o-algebra that
contains £. For A-systems the proof is similar. O

Remark 1.17 The following three statements hold:

i) £Eca().
(ii) If & C &, then 0 (&1) C o (&).
(iii) A is a o-algebra if and only if o (A) = A.

The same statements hold for A-systems. Furthermore, §(£) C o (£). O

Theorem 1.18 (N-closed A-system) Let D C 2*° be a A-system. Then

Disamn-system <= Disaoc-algebra.

Proof “<=" This is obvious.
“=—=" We check (i)—(iii) of Definition 1.2.

(1) Clearly, £2 € D.

(i1) (Closedness under complements) Let A € D. Since §2 € D and by property (ii)
of the A-system, we get that A =2\ A € D.

(iii) (o-U-closedness) Let A, B € D. By assumption, A N B € D, and trivially
ANBCA.Thus A\ B=A\ (AN B) € D. This implies that D is \-closed.
Now let A1, Aa, ... € D. By Theorem 1.4(iii), there exist mutually disjoint sets
Bi, By, ...€ Dwith ;2 Ay =42, B, €D. O

Theorem 1.19 (Dynkin’s -A theorem) If € C 2 is a w-system, then

o(&)=46(&).

Proof “>” This follows from Remark 1.17.
“C” We have to show that §(£) is a o -algebra. By Theorem 1.18, it is enough to
show that §(£) is a w-system. For any B € §(€) define

Dp:={Acs(€):ANBes©)).
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| o-algebra |

A

o-U-stable NeA N-stable
algebra | | o-ring | | A-system
NeA o-U-stable
ring
A
U-stable

| semiring I

Fig. 1.1 Inclusions between classes of sets A C 2%

In order to show that §(€) is a w-system, it is enough to show that
3(&) cDp forany B €4(E). (1.3)

In order to show that Dg is a A-system for any E € §(&), we check (i)-(iii) of
Definition 1.10:

(i) Clearly, 2 N E = E € 8(E); hence §2 € Dg.
(i1) Forany A, B € Dg with A C B,wehave (B\ A)NE=(BNE)\(ANE)e
8(E).
(iii)) Assume that Ay, Ay, ... € D are mutually disjoint. Hence

(U An> NE =+, nE)es©).
n=1

n=1

By assumption, ANE € £if A, E € £; thus £ C Dg if E € £. By Remark 1.17(ii),
we conclude that §(£) C Dg for any E € £. Hence we get that BN E € §(E) for
any B € §(€) and E € £. This implies that E € Dg for any B € §(€). Thus £ C Dpg
for any B € §(£), and hence (1.3) follows. O

For an illustration of the inclusions between the classes of sets, see Fig. 1.1.

We are particularly interested in o -algebras that are generated by topologies. The
most prominent role is played by the Euclidean space R”; however, we will also con-
sider the (infinite-dimensional) space C ([0, 1]) of continuous functions [0, 1] — R.
On C([0, 1]) the norm || flloc = Sup,¢o,17 |/ (*)| induces a topology. For the con-
venience of the reader, we recall the definition of a topology.

Definition 1.20 (Topology) Let £2 @ be an arbitrary set. A class of sets T C 2
is called a topology on 2 if it has the following three properties:
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G) 9,2¢€r.
(i) ANBertforany A,Ber.
(iii) ((UgerA) et forany F C .

The pair (£2, ) is called a topological space. The sets A € t are called open, and
the sets A C §2 with A€ e 7 are called closed.

In contrast with o -algebras, topologies are closed under finite intersections only,
but they are also closed under arbitrary unions.

Let d be a metric on §2, and denote the open ball with radius » > 0O centered at
X € 2 by

B (x) = {y €2:dx,y) < r}.

Then the usual class of open sets is the topology

r= {UW)GF By (x): F C 2 x (0, oo)}.

Definition 1.21 (Borel o-algebra) Let (£2, t) be a topological space. The o -alge-
bra

B(2) :=B(£2,1) :=0(1)

that is generated by the open sets is called the Borel o -algebra on §2. The elements
A € B(82, 1) are called Borel sets or Borel measurable sets.

Remark 1.22 In many cases, we are interested in B(R"), where R” is equipped with
the Euclidean distance

dx,y)=llx —yll2=

D i =y
i=1

(i) There are subsets of R" that are not Borel sets. These sets are not easy to
construct like, for example, Vitali sets that can be found in calculus books (see
also [37, Theorem 3.4.4]). Here we do not want to stress this point but state
that, vaguely speaking, all sets that can be constructed explicitly are Borel sets.

(ii) If C C R" is a closed set, then C¢ € 7 is in B(IR") and hence C is a Borel set.
In particular, {x} € B(R") for every x € R".

(iii) B(R") is not a topology. To show this, let V C R” such that V ¢ B(R"). If
B(R™) were a topology, then it would be closed under arbitrary unions. As
{x} € B(R") for all x € R", we would get the contradiction V =,y {x} €
B(R™).

In most cases the class of open sets that generates the Borel ¢ -algebra is too big
to work with efficiently. Hence we aim at finding smaller (in particular, countable)
classes of sets that generate the Borel o-algebra and that are more amenable. In
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some of the examples, the elements of the generating class are simpler sets such as
rectangles or compact sets.

We introduce the following notation. We denote by Q the set of rational numbers
and by Q™ the set of strictly positive rational numbers. For a, b € R", we write

a<b ifa;<b; foralli=1,...,n. (1.4)
For a < b, we define the open rectangle as the Cartesian product
n
(a,b) == X (ai, bi) == (a1,b1) x (a2,b2) X ... X (an, by). (1.5)
i=1

Analogously, we define [a, b], (a, b] and [a, b). Furthermore, we define (—oo, b) :=
X?: 1 (=00, b;), and use an analogous definition for (—oo, b] and so on. We intro-
duce the following classes of sets:

& :={ACR": Aisopen}, & :={ACR": Aisclosed],
& :={ACR": Ais compact}, &= {B,(x):x €Q", reQ*},
& :={(a,b):a,beQ", a <b}, & :={[a,b):a,beQ", a <b},
& ={(a,b]:a,beQ", a <b}, & :={la.b]:a,beQ", a <b},
&9 :={(—00,b):beQ"}, 10 := {(—o0,b]: b € Q"},
&= {(a,00):aeQ"}, iz = {la, 0) :a € Q"}.

Theorem 1.23 The Borel o-algebra B(R") is generated by any of the classes of
sets E1, ..., &2, that is, BR") =0 (&) foranyi=1,...,12.

Proof We show only some of the identities.

(1) By definition, B(R") = o (&1).

(2)Let A € £1. Then A€ € &, and hence A = (A€)€ € 0 (&,). It follows that £; C
0 (&). By Remark 1.17, this implies o (£1) C 0(&2). Similarly, we obtain o (&;) C
o (£1) and hence equality.

(3) Any compact set is closed; hence o(£3) C 0(&2). Now let A € &. The
sets Ax := AN[—K,K]", K € N, are compact; hence the countable union A =
U%—; Ak is in o (&3). It follows that & C 0 (€3) and thus o (&2) = 0 (€3).

(4) Clearly, &4 C &1; hence 0 (E4) C o (€1). Now let A C R” be an open set. For
any x € A, define R(x) = min(1l, sup{r > 0: B.(x) C A}). Note that R(x) > 0,as A
is open. Let r(x) € (R(x)/2, R(x)) N Q. For any y € A and x € (Bg(y);3(y)) N Q",
we have R(x) > R(y) — ||lx — yll2 > %R(y), and hence r(x) > %R(y) and thus
Y € By(x)(x). It follows that A = UxeAan B (x)(x) is a countable union of sets
from & and is hence in o (€4). We have shown that £ C 0(£4). By Remark 1.17,
this implies 0 (£1) C o (&s).
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(5-12) Exhaustion arguments similar to that in (4) also work for rectangles. If in
(4) we take open rectangles instead of open balls B, (x), we get B(R") = o (). For
example, we have

n o0 p 1
lai, bi) = <i_—,bi)€ Es).
li(la krjll:)(l a T a(&s

The other inclusions & C o(£;) can be shown similarly. O

Remark 1.24 Any of the classes &1, £, E3,Es, ..., 12 (but not &) is a w-system.
Hence, the Borel o -algebra equals the generated A-system: B(R") = §(&;) fori =
1,2,3,5,...,12. In addition, the classes &4, ..., €12 are countable. This is a crucial
property that will be needed later. O

Definition 1.25 (Trace of a class of sets) Let A C 2% be an arbitrary class of subsets
of £2 and let A € 2%\ {@}. The class

Al ={AnB:BeAjc2* (1.6)
is called the trace of A on A or the restriction of A to A.

Theorem 1.26 Let A C 2 be a nonempty set and let A be a o -algebra on §2 or any
of the classes of Definitions 1.6—1.9. Then A’ A I8 a class of sets of the same type
as A; however, on A instead of 2. For A-systems this is not true in general.

Proof This is left as an exercise. 0

Exercise 1.1.1 Let A be a semiring. Show that any countable (respectively finite)
union of sets in .A can be written as a countable (respectively finite) disjoint union
of sets in A.

Exercise 1.1.2 Give a counterexample that shows that, in general, the union AU A’
of two o -algebras need not be a o -algebra.

Exercise 1.1.3 Let (£21,d;) and (22, d>) be metric spaces and let f : 21 — £2,
be an arbitrary map. Denote by Uy = {x € £2; : f is discontinuous at x} the set of
points of discontinuity of f. Show that Uy € B(£2}).

Hint: First show that for any ¢ > 0 and § > 0 the set

Uf;f =[x € 21 : there are y, z € B, (x) with d2(f (), f(2)) > 5}

is open (where B.(x) = {y € £ : di(x,y) < ¢}). Then construct Uy from
such U?’E.
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Exercise 1.1.4 Let £2 be an uncountably infinite set and A = o ({w} : w € §2). Show
that

A= {A C £2 : A is countable or A€ is countable}.

Exercise 1.1.5 Let A be a ring on the set £2. Show that A is an Abelian algebraic
ring with multiplication “N” and addition “A”.

1.2 Set Functions

Definition 1.27 Let A C 2% and let 11 : A — [0, oo] be a set function. We say that
W is
(1) monotone if u(A) < pu(B) for any two sets A, B € A with A C B,

(ii) additive if p(4!_, Ai) =Y, i(A;) for any choice of finitely many mutually
disjoint sets Ay, ..., A, € Awith [J]_, A; € A,

(iii) o-additive if (472, Ai) =Y oy u(A;) for any choice of countably many
mutually disjoint sets A, Ay, ... € Awith [ 72, A; € A,

(iv) subadditive if for any choice of finitely many sets A, Ay,..., A, € A with
AcC !, Ai, we have u(A) <Y ', u(A;), and

(v) o-subadditive if for any choice of countably many sets A, A1, Az, ... € A with
A C U2, Ai, we have n(A) < Y72, w(Ap).

Definition 1.28 Let A be a semiring and let 1 : A — [0, o0] be a set function with
w(@) =0. uiscalled a

content if p is additive,

premeasure if pu is o-additive,

measure if u is a premeasure and A is a o -algebra, and
probability measure if (¢ is a measure and ©(£2) = 1.

Definition 1.29 Let A be a semiring. A content  on A is called

(i) finite if L(A) < oo for every A € A and
(ii) o-finite if there exists a sequence of sets 21, §2,,... € A such that 2 =
(U2, £2,, and such that 1(§2,,) < oo for all n € N.

Example 1.30 (Contents, measures)

(1) Let w € £2 and §,(A) =1 4(w) (see (1.2)). Then §, is a probability measure
on any o -algebra A C 2. §,, is called the Dirac measure for the point w.
(i1) Let £2 be a finite nonempty set. By

=" race
= — for ,
H o
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we define a probability measure on A = 2%, This yu is called the uniform
distribution on 2. For this distribution, we introduce the symbol U, := w.
The resulting triple (£2, A, Ug) is called a Laplace space.

(iii) Let £2 be countably infinite and let

.A::{ACQ:#A<ooor#AC<oo}.

Then A is an algebra. The set function u on A defined by

0, A is finite,
A) =
wAa) {oo, A€ is finite,

is a content but is not a premeasure. Indeed, p(|J o {®}) = 1 (£2) = oo, but
Y en Hliw)) =0.

(iv) Let (un)nen be a sequence of measures (premeasures, contents) and let
(on)nen be a sequence of nonnegative numbers. Then also y := Z;’;l O fhn
is a measure (premeasure, content).

(v) Let £2 be an (at most) countable nonempty set and let 4 = 2% Further, let
(Pw)wes be nonnegative numbers. Then A — w(A) := ZwGA P defines a
o -finite measure on 2. We call p = (po)wecgo the weight function of ju. The
number p,, is called the weight of & at point w.

(vi) If in (v) the sum ), _o po equals one, then p is a probability measure. In
this case, we interpret p,, as the probability of the elementary event w. The
vector p = (pw)wes2 1s called a probability vector.

(vii) Ifin (v) p, = 1 for every w € 2, then u is called counting measure on 2. If
£2 is finite, then so is u.

(viii) Let A be the ring of finite unions of intervals (a, b] CR. Fora; < b <a <
by <...<b, and A =4;_,(a;, b;], define

w(A) =Y (b —aj).
i=1

Then w is a o -finite content on A (even a premeasure) since Uiil (—n,n]=
R and u((—n,n]) =2n < oo forall n € N.
(ix) Let f:R — [0, c0) be continuous. In a similar way to (viii), we define

n b;
Mf(A)ZZ/ f@x)dx.
=14

Then p s is a o-finite content on A (even a premeasure). The function f
is called the density of u and plays a role similar to the weight function p

in (V). O
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Lemma 1.31 (Properties of contents) Let A be a semiring and let y be a content
on A. Then the following statements hold.

(1) If Ais a ring, then u(A U B) + u(A N B) = u(A) + w(B) for any two sets
A,Be A
(ii) w is monotone. If A is a ring, then u(B) = u(A) + u(B \ A) for any two sets
A, B e Awith AC B.
(iii) w is subadditive. If 1 is o -additive, then i is also o -subadditive.
(iv) If Ais a ring, then Y o 1(An) < w(Usey An) for any choice of countably
many mutually disjoint sets Ay, Az, ... € Awith | J,2, Ay € A.

Proof (i) Note that AUB =AW (B\ A)and B=(ANB)W (B\ A). As u is
additive, we obtain

n(AUB) =u(A)+n(B\A) and u(B)=u(ANB)+ u(B\A).

This implies ().

(i) Let A C B. Since AN B = A, we obtain u(B) = (AW (B \ A)) = u(A) +
w(B \ A) if B\ A € A. In particular, this is true if A is a ring. If A is only a
semiring, then there exists an n € N and mutually disjoint sets Cy, ..., C, € A such
that B\ A = 4)/_, C;. Hence u(B) = n(A) + Y '_, u(Ci) > n(A) and thus pu is
monotone.

(iii) Letn e Nand A, Ay, ..., A, € Awith A C|J/_, A;. Define B; = A; and

k—1 k—1
Be=A\ [ JAi =) (A \ (AN Ap) fork=2,....n.

i=1 i=1

By the definition of a semiring, any Ax \ (Ax N A;) is a finite disjoint union of sets
in A. Hence there exists a cy € Nandsets Cy 1, ..., Ck ¢, € Asuch that U—Jl”:l Cri=
By C Ag. Similarly, there exist dy € Nand Dy 1, ..., Di g, € Asuchthat Ay \ By =

Lﬂldi | Dyi. Since p is additive, we have

[ di Ck
A=Y u(Ce)+ Y (D) =Y u(Cri).

i=1 i=1 i=1
Again due to additivity and monotonicity, we get

n

Ck n Ck
J(A) = u<L+J +(Cri N A)) =YY w(CrinA)

k=1i=1 k=1i=1

n o ck

<D m(Cri) < Y pu(Ap.
k=1

k=1 i=1

Hence u is subadditive. By a similar argument, o-subadditivity follows from o -
additivity.



14 1 Basic Measure Theory

(iv) Let A be a ring and let A =2, A, € A. Since u is additive (and thus
monotone), we have by (ii)

ZM(A,,) - “(H‘J An> <u(A) foranym eN.
n=1

n=1

It follows that Y oo | i(Ay) < u(A). O

Remark 1.32 The inequality in (iv) can be strict (see Example 1.30(iii)). In other
words, there are contents that are not premeasures. O

Theorem 1.33 (Inclusion—exclusion formula) Let A be a ring and let . be a con-
tenton A. Letn e Nand Ay, ..., A, € A such that u(Ay U ... U A,) < 0o. Then
the following inclusion and exclusion formulas hold:

n
w(Aj u...uAn)=Z(—1)k—1 Z w(Ai M. N A,
k=1 {i1,....ix}C{1,...,n}

n

,u(Alﬂ...ﬂA,,):Z(—l)k_l Z w(Ai, U...UA;).

k=1 {ityeess irtc{l,..., n}
Here summation is over all subsets of {1, ..., n} with k elements.
Proof This is left as an exercise. Hint: Use induction on n. O

The next goal is to characterize o -subadditivity by a certain continuity property
(Theorem 1.36). To this end, we agree on the following conventions.

Definition 1.34 Let A, A{, As, ... be sets. We write

e A, 1 A and say that (A,),eN increasesto A if Aj C A C...and Uzozl A, =A,
and

e A, | A and say that (A,),en decreases to A if Aj D Ap D A3 D ... and
Mo, Ay =A.

Definition 1.35 (Continuity of contents) Let u be a content on the ring .A.

(i) p is called lower semicontinuous if w(Ay) = u(A) for any A € A and any
sequence (A,)uen in A with A, 1 A.

(i1) w is called upper semicontinuous if u(Ay) = w(A) for any A € A and any
sequence (Aj)pen in A with w(A,) < oo for some (and then eventually all)
neNand A, | A.

(>iii) p is called B-continuous if (ii) holds for A = @.
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In the definition of upper semicontinuity, we needed the assumption w(A,) < 0o
since otherwise we would not even have @J-continuity for an example as simple as the
counting measure p on (N, 2Ny Indeed, A, := {n,n+1,...} J @but w(A,) =00
foralln € N.

Theorem 1.36 (Continuity and premeasure) Let u be a content on the ring A. Con-
sider the following five properties.

(1) w is o-additive (and hence a premeasure).
(1) w is o-subadditive.
(iii) p is lower semicontinuous.
(iv) w is B-continuous.
(V) W is upper semicontinuous.

Then the following implications hold:
(1) < (i) < (ii)=(iv) <= ).
If 1 is finite, then we also have (iv) = (iii).

Proof “(i) =>(il)” Let A, Ay, Az, ... € Awith A C | J;2, A;. Define B; = A; and
By =A, \U'Z A € Aforn=2,3,.... Then A = #°°,(A N By). Since u is
monotone and o -additive, we infer

(A=Y (ANB,) <Y (A,

n=1 n=1

Hence u is o -subadditive.

“(i1)) =(1)” This follows from Lemma 1.31(iv).

“(i) = (iii)” Let u be a premeasure and A € A. Let (A,),eN be a sequence in
A such that A, 1 A and let Ag = . Then

o0 n
H«(A):Z;M(Ai \A,»_1>=nlggoz;u<m \Aim) = lim p(Ap).
1= 1=

“(iii) =>(i)” Assume now that (iii) holds. Let By, By, ... € A be mutually dis-
joint, and assume that B = U-Jf;o:l B, € A.Define A, = U?:l B; for all n € N. Then
it follows from (iii) that

w(B)= lim p(An) =) u(By).

i=1

Hence u is o-additive and therefore a premeasure.
“(iv) = (v)” Let A, A}, As,... € A with A, | A and u(A;) < oco. Define
B, =A,\ A€ Aforall n eN. Then B, | #. This implies u(A,) — n(A) =

n—oo

w(Bp) — 0.
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“(v) =(iv)” This is evident.
“(iiil) =>(iv)” Let A1, Aa, ... € A with A, | #and u(A;) < 0o. Then A\ A, €
Aforanyn e Nand Ay \ A, 1 A;. Hence
w(A) = lim w(A;\ Ap) = pu(Ap) — lim w(Ap).
n—o00 n—oo

Since (A1) < 00, we have lim,,_, oo t(A,) = 0.
“(iv) == (iii)” (for finite p) Assume that ©(A) < oo for every A € A and that u
is #-continuous. Let A, Ay, Ay, ... € A with A, 1 A. Then we have A\ A, | ¥ and

(A) — w(Ay) = (A \ Ay) =5 0.
Hence (iii) follows. Il

Example 1.37 (Compare Example 1.30(iii)) Let £2 be a countable set, and define

A={AC 2 :#A < o0 or #A° < 00},

0, A 1s finite,
n(A) = .
00, A is infinite.
Then p is an J-continuous content but not a premeasure. O

Definition 1.38

() A pair (£2, A) consisting of a nonempty set £2 and a o-algebra A C 2% is
called a measurable space. The sets A € A are called measurable sets. If 2 is
at most countably infinite and if 4 = 2% then the measurable space (£2, 242 )
is called discrete.

(i1) A triple (£2, A, ) is called a measure space if (£2, A) is a measurable space
and if p is a measure on A.

(iii) If in addition @ (£2) = 1, then (£2, A, ) is called a probability space. In this
case, the sets A € A are called events.

(iv) The set of all finite measures on (2, A) is denoted by M ¢(£2) := M (82, A).
The subset of probability measures is denoted by M (£2) := M (£2, A). Fi-
nally, the set of o-finite measures on (§2, A) is denoted by M, (£2, A).

Exercise 1.2.1 Let A={(a,b]NQ:a,b e R, a < b}. Define u : A — [0, 00) by

w((a,b] NQ) = b — a. Show that A is a semiring and u is a content on A that is
lower and upper semicontinuous but is not o -additive.

1.3 The Measure Extension Theorem

In this section, we construct measures p on o -algebras. The starting point will be
to define the values of © on a smaller class of sets; that is, on a semiring. Under a
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mild consistency condition, the resulting set function can be extended to the whole
o -algebra.
Before we develop the complete theory, we begin with two examples.

Example 1.39 (Lebesgue measure) Let n € N and let
A= {(a,b] ca,beR", a <b}

be the semiring of half open rectangles (a, b] C R” (see (1.5)). The n-dimensional
volume of such a rectangle is

u((a. b)) =] [bi — ap).

i=1

Can we extend the set function p to a (uniquely determined) measure on the Borel
o-algebra B(R") = o (A)? We will see that this is indeed possible. The resulting
measure is called Lebesgue measure (or sometimes Lebesgue—Borel measure) A on
R", B(R™)). %

Example 1.40 (Product measure, Bernoulli measure) We construct a measure for an
infinitely often repeated random experiment with finitely many possible outcomes.
Let E be the set of possible outcomes. For e € E, let p, > 0 be the probability that e
occurs. Hence ) . p. = 1. For a fixed realization of the repeated experiment, let
w1, w2, ... € E be the observed outcomes. Hence the space of all possible outcomes
of the repeated experiment is £2 = EN. As in Example 1.11(vi), we define the set of
all sequences whose first n values are w1, ..., @y,:

[w1,...,0p]:={0' € 2:0]=w; foranyi=1,...,n}. (1.7)

Let Ag = {#0}. For n € N, define the class of cylinder sets that depend only on the
first n coordinates

Ay ={lor,...,on] 01, ..., 0, € E}, (1.8)

and let A:= o2, Ay

We interpret [w1, . .., w,] as the event where the outcome of the first experiment
is w1, the outcome of the second experiment is w; and finally the outcome of the
nth experiment is w,. The outcomes of the other experiments do not play a role for
the occurrence of this event. As the individual experiments ought to be independent,
we should have for any choice wi, ..., w, € E that the probability of the event
[w1, ..., w,] is the product of the probabilities of the individual events; that is,

n

/’L([wla .. ~70)n]) = pr,--

i=1

This formula defines a content & on the semiring A, and our aim is to extend w in a
unique way to a probability measure on the o -algebra o (A) that is generated by A.
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Before we do so, we make the following definition. Define the (ultra-)metric d
on §2 by

27inf{neN:w,,7réw;L}7 /.
d(w.o)=1 wFw (1.9)
, w=0wo.

Hence (£2, d) is a compact metric space. Clearly,
(w1, ..., 0] = By-n(w) = {a)’ e :d(a),w’) < 2_”}.

The complement of [w1, ..., w,] is an open set, as it is the union of (#E)" — 1 open
balls

[w17°"7wn]c= U [w/l,,a);l]

(@] s} A (@1 5., 0)

Since £2 is compact, the closed subset [w1, . .., w,] is compact. As in Theorem 1.23,
it can be shown that o (A) = B(£2, d).
Exercise: Prove the statements made above. O

The main result of this chapter is Carathéodory’s measure extension theorem.

Theorem 1.41 (Carathéodory) Let A C 2% be a ring and let |u be a o-finite
premeasure on A. There exists a unique measure [L on o (A) such that [i(A) =
w(A) for all A € A. Furthermore, 1 is o -finite.

We prepare for the proof of this theorem with a couple of lemmas. In fact, we
will show a slightly stronger statement in Theorem 1.53.

Lemma 1.42 (Uniqueness by an N-closed generator) Let (£2, A, u) be a o-finite
measure space and let £ C A be a m-system that generates A. Assume that there
exist sets §21, 827, ... € £ such that Uflozl 2, = 82 and u($2,) < oo for all n € N.
Then  is uniquely determined by the values w(E), E € £.

If w is a probability measure, the existence of the sequence (§2,)neN IS not
needed.

Proof Let v be a (possibly different) o -finite measure on (£2, .A) such that
Ww(E)=v(E) forevery E €.
Let E € £ with u(E) < oo. Consider the class of sets

De={AcA:p(ANE)=v(ANE)}.
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In order to show that D, is a A-system, we check the properties of Definition 1.10:

(i) Clearly, £2 € Dg.
(i1) Let A, B € Dg with A D B. Then

n((A\NB)NE)=u(ANE) — u(BNE)
=v(ANE)—v(BNE)=v((A\ B)NE).

Hence A\ B € Dg.
(iii) Let Ay, Ay, ... € D be mutually disjoint and A = U,ﬁl A,,. Then

o]

WANE)=Y u(AyNE)=Y v(AyNE)=v(ANE).

n=l1 n=1

Hence A € Dg.
Clearly, £ C Dg; hence §(£) C Dg. Since € is a w-system, Theorem 1.19 yields

ADDgD8E)=0()=A.

Hence Dg = A.

This implies u(ANE)=v(ANE) forany A € A and E € £ with u(E) < oo.
Now let £21, £2, ... € £ be a sequence such that Uzil 2, = 2 and u(£2,) < oo for
alln eN.Let E, :=J;_, 2i,n €N, and Eg = . Hence E, = |#J;_, (E{_, N £2;).
For any A € A and n € N, we thus get

n

WANE) =Y n((ANE_ )N ) => v((ANE{_|)N&)=v(ANEy).

i=1 i=1
Since E, 1 §2 and since u and v are lower semicontinuous, we infer

pn(A)= lim u(ANE,) = lim v(ANE,) =v(A).
n—o00 n—oQ

The additional statement is trivial as £ := EU{£2} isa 7-system that generates A,
and the value (£2) =1 is given. Hence one can choose the constant sequence
E, = £2, n € N. However, note that it is not enough to assume that u is finite. In
this case, in general, the total mass £ (£2) is not uniquely determined by the values
W(E), E € &; see Example 1.45(ii). O

Example 1.43 Let 2 =7 and £ = {E,, : n € Z} where E,, = (—o0,n] N Z. Then
£ is a w-system and o () = 2. Hence a finite measure  on (£2, 2%) is uniquely
determined by the values w(E,), n € Z.

However, a o -finite measure on Z is not uniquely determined by the values on &:
Let u be the counting measure on Z and let v = 2u. Hence u(E) = oo = v(E) for
all E € £. In order to distinguish 1 and v one needs a generator that contains sets
of finite measure (of ). Do the sets Fn =[—n,n]NZ,n € N do the trick? Indeed,
for any o -finite measure pt, we have ;/.(13,,) < oo for all n € N. However, the sets Fn
do not generate 2% (but which o -algebra?). We get things to work out better if we
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modify the definition: F,, = [—n/2, (n 4+ 1)/2]NZ. Now o ({F,, n € N}) =29 and
hence £ = {F},, n € N} is a w-system that generates 2% and such that u(F,) < oo
for all n € N. The conditions of the theorem are fulfilled as F;, 1 £2. O

Example 1.44 (Distribution function) A probability measure p on the space
(R", B(R™)) is uniquely determined by the values u((—o0, b]) (Where (—oo, b] =
X,r»lzl (=00, bi], b € R"). In fact, these sets form a w-system that generates B(IR")
(see Theorem 1.23). In particular, a probability measure © on R is uniquely deter-
mined by its distribution function F : R — [0, 1], x > p((—o00, x]). O

Example 1.45

(i) Let 2 ={1,2,3,4} and £ = {{1,2}, {2, 3}}. Clearly, o (£) = 2% but £ is not a
m-system. In fact, here a probability measure p is not uniquely determined by
the values, say u({1,2}) = n({2,3}) = 1 we give just two different possibili-
ties: u = 18, + %83 and ' =18, + %34.

(i) Let £2 = (1,2} and £ = {{1}}. Then £ is a w-system that generates 2*. Hence
a probability measure u is uniquely determined by the value w({1}). However,
a finite measure is not determined by its value on {1}, as 4 =0 and v = §; are
different finite measures that agree on €. O

Definition 1.46 (Outer measure) A set function u* : 22 — [0, oo] is called an outer
measure if

(i) u*(@) =0, and
(ii) w* is monotone,
(iii) w™ is o-subadditive.

Lemma 1.47 Let A C 2% be an arbitrary class of sets with ¥ € A and let i be a
nonnegative set function on A with n(9) = 0. For A C 2, define the set of countable
coverings F with sets F € A:

UA) = {fCA:]:isatmostcountable and A C U F}.
FeF

Define

w(A) = inf{ Z w(F): F eU(A) }

FeF

where inf = co. Then u* is an outer measure. If in addition w is o-subadditive,
then u*(A) = (A) for all A € A.

Proof We check properties (i)—(iii) of an outer measure.

(i) Since ¥ € A, we have {#} € U (¥); hence u*(¥) = 0.
(i) If A C B, then U(A) D U(B); hence u*(A) < u*(B).
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(iii) Let A, C §2 for any n € N and let A C UZOZI Ay,. We show that u*(A) <
Yoo w*(Ay). Without loss of generality, assume w*(A,) < oo and hence

U(Ay) # 0 for all n € N. Fix ¢ > 0. For every n € N, choose a covering
Fn €U(A,) such that

D w(F) < p*(An) + 627"
FeF,

Then F := ;2| Fn € U(A) and

PA S Y T F) <Y D wF) <Y puf(An) +e.
n=1

FeF n=1 FeF,

Let A € A. Since {A} e U(A), we have u*(A) < w(A). If u is o -subadditive, then
for any F € U(A), we have ) .7 i(F) > 1(A); hence p*(A) > n(A). O

Definition 1.48 (1*-measurable sets) Let 1* be an outer measure. A set A € 2% is
called u*-measurable if

P (ANE)+pu*(A°NE)=p*(E) forany E €29, (1.10)
We write M (u*) = {A € 2% : A is u*-measurable}.
Lemma 1.49 A € M(u*) if and only if

wWANE)+ yf‘(AC n E) <u*(E) forany E €29,
Proof As u* is subadditive, the other inequality is trivial. O
Lemma 1.50 M (un*) is an algebra.

Proof We check properties (i)—(iii) of an algebra from Theorem 1.7.

(1) £ e M(u*) is evident.
(i1) (Closedness under complements) By definition, A € M(u*) < A¢ ¢
M(u*).
(iii) (w-system) Let A, B € M(u*) and E € 2% . Then

wW*((ANB)NE)+u*((ANB)NE)
=u*(ANBNE)+ 1" ((A“NBNE)U(A“NB°NE)U(ANB°NE))
<u*(ANBNE)+u*(A°NBNE)
+ 1 (A“NB°NE)+u*(ANB°NE)
=u*(BNE)+ u*(B°NE)
= u*(E).
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Here we used A € M(u*) in the last but one equality and B € M (u™*) in the
last equality. O

Lemma 1.51 An outer measure * is o-additive on M(u*).

Proof Let A, B € M(u*) with AN B =(@. Then
w (AUB) = M*(A nAU B)) +IL*(AC Ny B)) = u*(A) + n*(B).

Inductively, we get (finite) additivity. By definition, u* is o -subadditive; hence we
conclude by Theorem 1.36 that p* is also o -additive. g

Lemma 1.52 If u* is an outer measure, then M(u*) is a o -algebra. In particular,
w* is a measure on M(u™*).

Proof By Lemma 1.50, M(u*) is an algebra and hence a m-system. By Theo-
rem 1.18, it is sufficient to show that M (u*) is a A-system.

Hence, let Aj, Ay, ... € M(u*) be mutually disjoint, and define A := L—ijlil A,.
We have to show A € M (u*); that is,

W (ANE)+p*(ANE) < p*(E) forany E €2, (1.11)
Let B, = J;_, A; for all n € N. For all n € N, we have

1 (E N Byt1) = W ((E N Byy1) N By) + 1 ((E N Bysr) N By)
=u* (ENBy) + u*(ENAps1).
Inductively, we get u*(E N B,) =Y ;_; w*(E N A;). The monotonicity of u* now
implies that
W (E) = p*(E N By) +p*(EN By)
> *(E N By) + 1 (E N A)
n
=Y WHENA) + p*(ENA).
i=1

Letting n — oo and using the o -subadditivity of p©*, we conclude
o
WHE) =Y (ENA) + p*(ENAS) = u*(ENA)+ p*(ENA°).
i=1

Hence (1.11) holds and the proof is complete. 0

We come to an extension theorem for measures that makes slightly weaker as-
sumptions than Carathéodory’s theorem (Theorem 1.41).
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Theorem 1.53 (Extension theorem for measures) Let A be a semiring and let
w:A—[0,00] be an additive, o-subadditive and o -finite set function with
w(@) =

Then there is a unique o -finite measure i : o (A) — [0, 0o] such that ji(A) =
w(A) forall A e A.

Proof As A is a w-system, uniqueness follows by Lemma 1.42.
In order to establish the existence of I, we define as in Lemma 1.47

w*(A) ::inf{ Z W(F) :]—'eZ/l(A)} forany A € 29,
FeF

By Lemma 1.47, p1* is an outer measure and p*(A) = u(A) for any A € A. We
have to show that M (u*) D o (A). Since M (u*) is a o -algebra (Lemma 1.52), it is
enough to show A C M (u*).

To this end, let A € A and E € 2% with u*(E) < oo. Fix & > 0. Then there is a
sequence Ey, E3, ... € A such that

oo oo
Ec|JE, and ) u(E)<u*(E)+e.

n=1

Define B, := E,; N A € A. Since A is a semiring, for every n € N there is an m, € N
and sets C,{, ...,C" e Asuchthat E, \A=E,\ B, = L-ljzzl C,]j. Hence

o0 oo mp my
EnAacl| B, Ena‘clJlJcr and E,=B,slHcCk
n=1 n=1k=1 k=1

By the definition of the outer measure and since p is assumed to be (finitely) addi-
tive, we get

oo mpy

(B)+ZZM ()

n=1 k=1

(M(Bn) + %u(dﬁ))

k=1

wENA)+u*(ENA) <

M2 i Mé%

n=1

M

W(Ep)

n

<u*(E)+e.

Hence u*(E N A) + u*(E N A°) < u*(E) and thus A € M(u*), which implies
A C M(u*). Now define 1 : o (A) — [0, 0], A > u*(A). By Lemma 1.51, it is a
measure and [1 is o -finite since u is o -finite. O
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Example 1.54 (Lebesgue measure, continuation of Example 1.39) We aim at ex-
tending the volume . ((a, b)) = [[/_,(bi — a;) that was defined on the class of
rectangles A = {(a,b] : a,b € R", a < b} to the Borel o-algebra B(R"). In or-
der to check the assumptions of Theorem 1.53, we only have to check that u is
o-subadditive. To this end, let (a, b], (a(1),b(1)], (a(2),b(2)], ... € A with

(@.b] c | J(atk). b(k)].

k=1
‘We show that

11((a, b1) Z“ a(k), b(k)]). (1.12)

k=1

For this purpose we use a compactness argument to reduce (1.12) to finite additivity.
Fix ¢ > 0. For any k € N, choose b, (k) > b(k) such that

n((ak), be(0)]) < n((ath), b(k)]) + 271

Further choose a, € (a, b) such that u((ae, b]) > u((a, b]) — % Now [ag, b] is
compact and

(@

(atk), b (k) > | (atk), b(0)] > (a, b] > la, b,
k k=1

whence there exists a Ky such that UQI (a(k), bs(k)) D (as, b]. As w is (finitely)
subadditive (see Lemma 1.31(iii)), we obtain

Ko
u(@.b)) = 5 +n(ae. 1) < 5+ Y n((ak), b))

k=1
_E Ko >
<5 Z (27 + u((at), b0)])) <6+ > u((atk), b(k)]).
k=1 k=1
Letting ¢ |, 0 yields (1.12); hence u is o -subadditive. O

Combining the last example with Theorem 1.53, we have shown the following
theorem.

Theorem 1.55 (Lebesgue measure) There exists a uniquely determined measure
A" on (R™, B(R™)) with the property that

(a b H(b —a;) foralla,beR" witha <b.

A" is called the Lebesgue measure on (R", B(R")) or Lebesgue—Borel measure.
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Example 1.56 (Lebesgue-Stieltjes measure) Let 2 = R and A = {(a,b] :
a,b e R, a <b}. Ais a semiring and o(A) = B(R), where B(R) is the Borel
o-algebra on R. Furthermore, let F : R — R be monotone increasing and right
continuous. We define a set function

np:A—1[0,00), (a,bl—~ F(®)— F(a).

Clearly, i (¥) =0 and i F is additive.

Let (a,b], (a(1),b(1)], (a(2),b(2)],... € A such that (a,b] C Uf;o:l(a(n),
b(n)]. Fix ¢ > 0 and choose a, € (a, b) such that F(a;) — F(a) < ¢/2. This is
possible, as F is right continuous. For any k € N, choose b, (k) > b(k) such that

F(bs(k)) — F(b(k)) < e27%1

As in Example 1.54, it can be shown that fir((a, b]) <&+ Z,fil r((alk),bk)]).
This implies that fir is o-subadditive. By Theorem 1.53, we can extend f[ip
uniquely to a o-finite measure g on B(R). O

Definition 1.57 (Lebesgue—Stieltjes measure) The measure pup on (R, B(R)) de-
fined by

wr((a,b]) = F(b) — F(a) foralla,beRwitha <b

is called the Lebesgue—Stieltjes measure with distribution function F.

Example 1.58 Important special cases for the Lebesgue—Stieltjes measure are the
following:

() If F(x) =x,then ur = 21 is the Lebesgue measure on R.

(i1) Let f: R — [0, 00) be continuous and let F(x) = f(f f(@)dt for all x € R.
Then p F is the extension of the premeasure with density f that was defined in
Example 1.30(ix).

(iii) Let xq,x2,... € R and o, > 0 for all n € N such that > o>, &, < co. Then
F =Y anl[x, ) is the distribution function of the finite measure pp =
Z;.Lozl Un 8xn :

(iv) Let x1, x2,... € R such that u = Zflil dy, 1s a o-finite measure. Then w is a
Lebesgue—Stieltjes measure if and only if the sequence (x,), <N does not have a
limit point. Indeed, if (x,), <N does not have a limit point, then by the Bolzano—
Weierstrall theorem, #{n € N: x,, € [—K, K]} < oo for every K > 0. If we let
Fx)=#neN:x, €[0,x]} forx >0and F(x) = —#{n e N:x, € [x,0)},
then u = wr. On the other hand, if u is a Lebesgue—Stieltjes measure, this is
= up for some F,then#{neN:x, € (—K,K]} = F(K) — F(—K) <>
for all K > 0; hence (x,),cn does not have a limit point.

(v) Iflimy 00 (F(x) — F(—x)) = 1, then up is a probability measure. O

We will now have a closer look at the case where wF is a probability measure.
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Definition 1.59 (Distribution function) A right continuous monotone increasing
function F : R — [0, 1] with F(—00) := limy__o F(x) = 0 and F(00) :=
lim,_, o F(x) = 1 is called a (proper) probability distribution function (p.d.f.). If we
only have F(00) < 1 instead of F(o0) = 1, then F is called a (possibly) defective
p.d.f. If u is a (sub-)probability measure on (R, B(R)), then F), : x = p((—o0, x])
is called the distribution function of p.

Clearly, F), is right continuous and F(—o0) = 0, since u is upper semicon-
tinuous and finite (Theorem 1.36). Since w is lower semicontinuous, we have
F(00) = n(R); hence F), is indeed a (possibly defective) distribution function if
W is a (sub-)probability measure.

The argument of Example 1.56 yields the following theorem.

Theorem 1.60 The map v F, is a bijection from the set of probability measures
on (R, B(R)) to the set of probability distribution functions, respectively from the
set of sub-probability measures to the set of defective distribution functions.

We have established that every finite measure on (R, B(R)) is a Lebesgue—
Stieltjes measure for some function F. For o-finite measures, the corresponding
statement does not hold in this generality as we saw in Example 1.58(iv).

We come now to a theorem that combines Theorem 1.55 with the idea of
Lebesgue—Stieltjes measures. Later we will see that the following theorem is valid
in greater generality. In particular, the assumption that the factors are of Lebesgue—
Stieltjes type can be dropped.

Theorem 1.61 (Finite products of measures) Letn € N and let 11, ..., 1, be fi-
nite measures or, more generally, Lebesgue—Stieltjes measures on (R, B(R)). Then
there exists a unique o -finite measure  on (R", B(R")) such that

n
,u((a, b]) = H,ui ((ai, bi]) foralla,beR" witha <b.

i=1

We call u =: ®?=1 Wi the product measure of the measures (i1, ..., ln.

Proof The proof is the same as for Theorem 1.55. One has to check that the inter-
vals (a, b.] and so on can be chosen such that u((a, b¢]) < u((a, b]) + €. Here we
employ the right continuity of the increasing function F; that belongs to w;. The
details are left as an exercise. g

Remark 1.62 Later we will see in Theorem 14.14 that the statement holds even
for arbitrary o -finite measures (1, ..., 4, on arbitrary (even different) measurable
spaces. One can even construct infinite products if all factors are probability spaces
(Theorem 14.36). O
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Example 1.63 (Infinite product measure, continuation of Example 1.40) Let E be a
finite set and let §2 = EN be the space of E-valued sequences. Further, let (p,)ccE
be a probability vector. Define a content 4 on A = {[wy,...,w,] : ®1,...,w, €
E, n e N} by

,u([cm, ...,wn]) =pr,..
i=1

We aim at extending p to a measure on o (A). In order to check the assumptions
of Theorem 1.53, we have to show that p is o-subadditive. As in the preceding
example, we use a compactness argument.

Let A, A1, As,...€¢ Aand A C U;‘;l A,,. We are done if we can show that there
exists an N € N such that

N
Acl A (1.13)
n=1

Indeed, due to the (finite) subadditivity of u (see Lemma 1.31(iii)), this implies
uw(A) < ZQ’ZI w(Ay) <302 i(Ap); hence p is o -subadditive.
We now give two different proofs for (1.13).

Ist Proof. The metric d from (1.9) induces the product topology on §2; hence, as
remarked in Example 1.40, (£2,d) is a compact metric space. Every A € A is
closed and thus compact. Since every A, is also open, A can be covered by finitely
many A,; hence (1.13) holds.

2nd Proof. We now show by elementary means the validity of (1.13). The procedure
imitates the proof that §2 is compact. Let B, := A \ |J!_; A;. We assume B, # §
for all n € N in order to get a contradiction. By Dirichlet’s pigeonhole principle
(recall that E is finite), we can choose w1 € E such that [w]N B, # @ for infinitely
many n € N. Since B] D By D ..., we obtain

[wi1]N B, #@ forallneN.
Successively choose wy, w3, ... € E in such a way that
[w1,...,0k N B, @ forall k,n € N.

B, is a disjoint union of certain sets Cy, 1, ..., Cy m, € A. Hence, for every n ¢ N
there is an i, € {1, ..., m,} such that [w], ..., wx] N Cy;, 7 ¥ for infinitely many
k € N. Since [w1] D [w1, w2] D ..., we obtain

[w1,...,0k]NCp i, #9 forallk,n e N.

For fixed n € N and large k, we have [wi,...,wr] C Cy,;,. Hence o =
o0

(w1, w2, ...) € Cyi, C By. This implies (),-; B, # @, contradicting the assump-
tion. O
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Combining the last example with Theorem 1.53, we have shown the following
theorem.

Theorem 1.64 (Product measure, Bernoulli measure) Let E be a finite nonempty
set and 2 = EN. Let (p.)eck be a probability vector. Then there exists a unique
probability measure u on o (A) = B($2) such that

n
;L([a)l,...,a)n])zl_[pwi forallwy,...,w, € E andn € N.

i=1

W is called the product measure or Bernoulli measure on $2 with weights (pe)ecE -
We write (3. ,cg PeSe)®" := w. The o-algebra (2F)®N := o (A) is called the
product o -algebra on 2.

We will study product measures in a systematic way in Chapter 14.

The measure extension theorem yields an abstract statement of existence and
uniqueness for measures on o (A) that were first defined on a semiring A only. The
following theorem, however, shows that the measure of a set from o (A4) can be well
approximated by finite and countable operations with sets from .A.

Denote by

AAB:=(A\B)U(B\A) forA,BC (1.14)

the symmetric difference of the two sets A and B.

Theorem 1.65 (Approximation theorem for measures) Let A C 2% be a semiring
and let ( be a measure on o (A) that is o -finite on A.

(i) Forany A € 0(A) and & > 0, there exist mutually disjoint sets A1, Ay, ... €
A suchthat A C | Jy2, Ap and pn(U= | An \ A) <eé.
(ii) For any A € o (A) with (A) < 0o and any € > 0, there exists an n € N and
mutually disjoint sets Ay, ..., A, € A such that u(A A Uzzl Ap) <e.
(iii) Forany A € M(u*), there are sets A_, Ay € o (A) with A_ C A C A and
n(A\A_) =0.

Remark 1.66 (iii) implies that (i) and (ii) also hold for A € M(u*) (with u* in-
stead of wu). If A is an algebra, then in (ii) for any A € 0(A), we even have
infge g (A AB)=0. O

Proof (ii) As u and the outer measure u* coincide on o (A) and since w(A) is finite,
by the very definition of u* (see Lemma 1.47) there exists a covering By, By, ... €
A of A such that

(A= (B — /2.

i=1
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Let n € N with Z;’in_H n(B;) < 5 (such an n exists since u(A) < oo). For any
three sets C, D, E, we have

CAD=(D\C)U(C\D)C(D\C)U(C\(DUE))UE C(CA(DUE))UE

Choosing C = A, D =J;_, B; and E = J;2,,,, Bi, this yields

(108) <1200 o 0 )

i=n+1
o g
§M<U13i>—M(A)+§§8.
=
As A is a semiring, there exista k € Nand Ay, ..., A; € A such that
n n i—1
UB _BluUﬂ(B \ Bj) =: UA
i=1 i=2 j=1

(i) Let Aeo(A) and E, t 2, E,, € 0(A) with u(E,) < oo for any n € N. For
every n € N, choose a covering (B, ;)men of AN E,, with

00
nw(ANE,) > Z M(Bn,/n) —2™"e.

m=1

(This is possible due to the definition of the outer measure p*, which coincides with
won A) Let Uy 1 Bom =#,—| A, for certain A, € A, n € N (Exercise 1.1.1).
Then

M(}@An\A) =M<G G Bn,m\A)

n=1m=1

M(QQ Bum \(ANE, )))
Sg((i nm)) —u(AﬂEn)) <e¢

IA

(iii) Let A € M(u*) and (E,),en as above. For any m,n € N, choose A, ,, €
o (A) such that A,y D AN E, and u*(Anm) < W*(ANE,) + 2.

Define Ay, :=Jr2| Ap.m € 0 (A). Then A, D A and p*(Ap, \A) < —. Define
Ay =\ Am. Then 6 (A) > Ay D A and p*(A4 \ A) =0. Sumlarly, choose
(A_) e o (A) with (A_) D A€ and u*((A-)°\ A°)=0.Then AL D AD A_ and
WAL \AD) = *(Ay \ AD) = ¥ (A1 \ A) + u*(A\ AL) =0, 0
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Remark 1.67 (Regularity of measures) (Compare with Theorem 13.6.) Let A" be
the Lebesgue measure on (R”, B(R")). Let A be the semiring of rectangles of the
form (a, b] C R"; hence B(R") = o(A) by Theorem 1.23. By the approximation
theorem, for any A € B(R") and ¢ > 0, there exist countably many A, Az,...€ A
with A C (J;2; A; and

x”(U A; \A) <e/2.

i=1

For any A;, there exists an open rectangle B; D A; with A*(B; \ A;) < g2l (upper
semicontinuity of A"). Hence U = | J;2, B; is an open set U D A with

AU\ A) <e.

This property of A" is called outer regularity.
If A"(A) is finite, then for any ¢ > 0O there exists a compact K C A such that

AMA\K) <e.

This property of A" is called inner regularity. Indeed, let N > 0 be such that A" (A) —
AM(AN[=N,NT") < /2. Choose an open set U D (A N [—N, N]*) such that
AMUNAN[=N,N") <¢g/2,andlet K :=[—-N,N]"\ U C A. O

Definition 1.68 (Null set) Let (£2, A, i) be a measure space.

(i) Aset A e Aiscalled a pu-null set, or briefly a null set, if £(A) =0. By NV, we
denote the class of all subsets of w-null sets.
(i1) Let E(w) be a property that a point w € §2 can have or not have. We say that E
holds w-almost everywhere (a.e.) or for almost all (a.a.) w if there exists a null
set N such that E(w) holds for every w € 2\ N.If A € A and if there exists a
null set N such that E(w) holds for every w € A \ N, then we say that £ holds
almost everywhere on A.
If © = P is a probability measure, then we say that E holds P-almost surely
(a.s.), respectively almost surely on A.
(iii) Let A, B € A be such that (A A B) =0. Then we write A = B (mod ).

Definition 1.69 A measure space (£2, A, ) is called complete if N}, C A.

Remark 1.70 (Completion of a measure space) Let (§2, A, i) be a o -finite measure
space. There exists a unique smallest o-algebra A* O A and an extension p* of u
to A* such that (£2, A*, u*) is complete. (2, A*, u*) is called the completion of
(£2, A, ). With the notation of Theorem 1.53, this completion is

(2, M) 17 g ry)-

Furthermore,

M(p*)=0(AUN,) ={AUN:Ae A N eN,}
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and u*(AUN) = pu(A) forany A€ Aand N e N,.
In the following, we will not need these statements. Hence, instead of giving a
proof, we refer to the textbooks on measure theory (e.g., [37]). O

Example 1.71 Let A be the Lebesgue measure (more accurately, the Lebesgue—
Borel measure) on (R”, B(R")). Then A can be extended uniquely to a measure
A* on

B*(R") = (B(R") UN),

where N is the class of subsets of Lebesgue—Borel null sets. B*(R") is called the o -
algebra of Lebesgue measurable sets. For the sake of distinction, we sometimes call
A the Lebesgue—Borel measure and A* the Lebesgue measure. However, in practice,
this distinction will not be needed in this book. O

Example 1.72 Let u = §, be the Dirac measure for the point w € £2 on some mea-
surable space (£2, A). If {w} € A, then the completion is A* =2, u* = §,,. In the
extreme case of a trivial o -algebra A = {(J, 2}, however, the empty set is the only
null set, N, = {#}; hence A* = {@, £2}, u* = 8, Note that, on the trivial o -algebra,
Dirac measures for different points w € §2 cannot be distinguished. O

Definition 1.73 Let (£2, A, t) be a measure space and 2’ € A. On the trace o-
algebra A| ,,, we define a measure by

(ol

1] o (A) == pu(A) forAe Awith AC Q.
This measure is called the restriction of u to 2.

Example 1.74 The restriction of the Lebesgue—Borel measure A on (R, B(R)) to
[0, 1] is a probability measure on ([0, 1], B(R) | (0. 1]). More generally, for a measur-
able A € B(R), we call the restriction A| 4 the Lebesgue measure on A. Often this
measure will be denoted by the same symbol A when there is no danger of ambigu-
ity.

Later we will see (Corollary 1.84) that B(R)| 4 = B(A), where B(A) is the Borel
o-algebra on A that is generated by the (relatively) open subsets of A. %

Example 1.75 (Uniform distribution) Let A € B(R") be a measurable set with 7n-
dimensional Lebesgue measure A" (A) € (0, co0). Then we can define a probability
measure on B(R") | 4 by

. )\’II(B)
w(B) = A A)

for B € B(R”) with B C A.

This measure w is called the wuniform distribution on A and will be denoted by
Up = 1. O
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Exercise 1.3.1 Show the following generalization of Example 1.58(iv): A measure
Y o2 | andy, is a Lebesgue—Stieltjes measure for a suitable function F if and only if
iy | <K On < OO forall K > 0.

Exercise 1.3.2 Let £2 be an uncountably infinite set and let wg € §2 be an arbitrary
element. Let A =0 ({w}: w € 2 \ {wp}).

(i) Give a characterization of A4 as in Exercise 1.1.4 (p. 11).
(ii) Show that (§2, A, 8,) is complete.

Exercise 1.3.3 Let (u,),eny be a sequence of finite measures on the measur-
able space (£2,.4). Assume that for any A € A there exists the limit ©(A) :=
limy,— 00 ttn (A).

Show that u is a measure on ($2, A).

Hint: In particular, one has to show that p is J-continuous.

1.4 Measurable Maps

A major task of mathematics is to study homomorphisms between objects; that is,
structure-preserving maps. For topological spaces, these are the continuous maps,
and for measurable spaces, these are the measurable maps.

In the rest of this chapter, we let (£2, A) and (£2’, A’) be measurable spaces.

Definition 1.76 (Measurable maps)
(i) A map X : 2 — 2’ is called A-A"-measurable (or, briefly, measurable) if
X TA):={X"1(A): A e A} C A; that s, if
X '(A)eA forany A’ e A’
If X is measurable, we write X : (£2, .4) — (2, A).

(ii) If 2’ =R and A’ = B(R) is the Borel o-algebra on R, then X : (2, 4) —
(R, B(R)) is called an .4-measurable real map.

Example 1.77

(i) The identity map id : 2 — 2 is A—A-measurable.
(i) If A=2% or A’ = (@), 2}, then any map X : 2 — ' is A—A’-measurable.
(ili) Let A C £2. The indicator function 14 : £2 — {0, 1} is .A-2{%_measurable if
and only if A € A. O

Theorem 1.78 (Generated o-algebra) Ler ($2', A") be a measurable space and let
2 be a nonempty set. Let X : 2 — 2’ be a map. The preimage

X NA)={x"1(A):A e} (1.15)
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is the smallest o-algebra with respect to which X is measurable. We say that
o(X) :=X"Y(A) is the o-algebra on $2 that is generated by X.

Proof This is left as an exercise. U

We now consider o -algebras that are generated by more than one map.

Definition 1.79 (Generated o-algebra) Let §2 be a nonempty set. Let / be an
arbitrary index set. For any i € I, let (£2;, 4;) be a measurable space and let
X; : 2 — £2; be an arbitrary map. Then

o(X;,iel):= 0<U0(X,-)> = a<U X,.‘(A,-))
iel iel

is called the o -algebra on 2 that is generated by (X;, i € I). This is the smallest
o -algebra with respect to which all X; are measurable.

As with continuous maps, the composition of measurable maps is again measur-
able.

Theorem 1.80 (Composition of maps) Ler (§2, A), ($2', A") and (2", A”) be mea-
surable spaces and let X : 2 — 2" and X' : 2' — Q2" be measurable maps. Then
themapY =X 0X:2 — 2", o> X' (X (w)) is A-A"-measurable.

Proof Obvious, since Y ~1(A”) = X~ 1(X)~1(A") c X~ 1(A) C A. O

In practice, it is often not possible to check if a map X is measurable by checking
if all preimages X' (A’), A’ € A’ are measurable. Most o -algebras A’ are simply
too large. Thus it comes in very handy that it is sufficient to check measurability on
a generator of A’ by the following theorem.

Theorem 1.81 (Measurability on a generator) Let £ C A’ be a class of A'-
measurable sets. Then o (X~ () = X" (0 (£)) and hence

X is Ao (E')-measurable < x! (E')e A forallE'e&'.
If in particular o (') = A, then

X is A-A'-measurable < X! (5') c A.

Proof Clearly, X"1(&) c X~ (0 (£")) = o (X~ (6(£"))). Hence also

o(Xx 1)) cx (o (£)).
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For the other inclusion, consider the class of sets
Ay={A eo(&):x1(A)ea(x7(&))}.
We first show that .A6 is a o-algebra by checking (i)—(iii) of Definition 1.2:
(i) Clearly, £2’ € Aj,.
(ii) (Stability under complements) If A’ € .Aé), then
XTH((a)) = (xTH(A) ea (X1 (E));

hence (A")¢ € Aj,.
(iii) (o-U-stability) Let A}, A}, ... € Aj. Then

X (G Az) - ) <ol )

hence ;| A, € Aj.

Now Aj = o (£') since &' C Aj,. Hence X' (A") e 0(X (&) forany A’ € 5(£)
and thus X " 1(0(£)) c o (X~1(E)). O

Corollary 1.82 (Measurability of composed maps) Let I be a nonempty index set
and let (2, A), (2, A') and (£2;, A;) be measurable spaces for any i € 1. Further,
let (X; :i € I) be a family of measurable maps X; : 2’ — 2; with A' = o (X; :
i € I). Then the following holds: A map Y : 2 — 2" is A-A'-measurable if and
only if X; oY is A-A;-measurable for alli € I.

Proof If Y is measurable, then by Theorem 1.80 every X; o Y is measurable. Now
assume that all of the composed maps X; oY are A—A;-measurable. By assumption,
the set £ := {Xfl(A”) :A” € A;, i € I} is a generator of A’. Since all X; oY are
measurable, we have Y ~!(A’) € A for any A’ € £. Hence Theorem 1.81 yields that
Y is measurable. O

Recall the definition of the trace of a class of sets from Definition 1.25.

Corollary 1.83 (Trace of a generated o-algebra) Let £ C 2% and assume that
A C 82 is nonempty. Then 0(8|A) = 0(5)|A.

Proof Let X : A< £2, w — o be the canonical inclusion; hence X' (B)= AN B
for all B C £2. By Theorem 1.81, we have

o€l )=0c({ENA:Ec&})
=o({X "E):Ec&})=0(X1(5)
=X""0(©)={ANB:Bea(©)}=0(),. a
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Recall that, for any subset A C 2 of a topological space (£2, t), the class T ‘ Rt
the topology of relatively open sets (in A). We denote by B(£2, t) = o (t) the Borel
o-algebraon (£2, 7).

Corollary 1.84 (Trace of the Borel o-algebra) Let (§2,t) be a topological space
and let A C §2 be a nonempty subset of §2. Then

B(2,7)|,=B(A, | ,).

Example 1.85

(i) Let £’ be countable. Then X : 2 — 2’ is A-2% -measurable if and only if
X~ 1({o'}) € Afor all o € £2'. If £ is uncountably infinite, this is wrong in
general. (For example, consider 2 = 2' =R, A= B(R), and X (w) = w for
all w € £2. Clearly, X '{w}) = {w} € B(R). If, on the other hand, A C R is
not in B(R), then A € 2F, but X~ (A) € B(R).)

(i1) For x € R, we agree on the following notation for rounding:

x| :=max{ke€Z:k<x} and [x]:=min{keZ:k > x}. (1.16)

The maps R — Z, x — |x] and x — [x] are B (R)—2%-measurable since for
all k € Z the preimages {x e R: x| =k} =[k,k+ 1) and {x e R: [x] =
k} = (k — 1, k] are in B(R). By the composition theorem (Theorem 1.80), for
any measurable map f : (£2, 4) — (R, B(R)) the maps | f| and [ f] are also
A-2%-measurable.

(iii) A map X : 2 — R? is A-B(R?)-measurable if and only if

X_l((—oo,a]) €A foranyae RY,

In fact o ((—00, a], a € RY) = B(RY) by Theorem 1.23. The analogous state-
ment holds for any of the classes &y, ..., £12 from Theorem 1.23. O

Example 1.86 Let d(x,y) = |lx — y||2 be the usual Euclidean distance on R” and
let B(R", d) = B(R") be the Borel o -algebra with respect to the topology generated
by d. For any subset A of R”, we have B(A, d) = B(R", d)!A. O

We want to extend the real line by the points —oo and +o0c. Thus we define
R:=R U {—o00, +00}.

From a topological point of view,_@ will be considered as the so-called two point
compactification by considering R as topologically isomorphic to [—1, 1] via the
map
tan(rx/2), xe(—1,1),
p:[-1,11-> R, x> {—o0, x=-1,
00, x =+1.
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In fact, d(x, y) = |g0_1(x) — (p‘l(y)l forx,ye R defines a metric on R such that 7]
and ¢! are continuous. Hence ¢ is a topological isomorphism. We denote by T the
corresponding topology induced on R and by t the usual topology on R.

Corollary 1.87 With the above notation, T |R =t and hence B(R) |R = B(R).
In particul_ar, if X : (2, A) — (R, B(R)) is measurable, then in a canonical way
X is also an R-valued measurable map.

Thus R is really an extension of the real line, and the inclusion R < R is mea-
surable.

Theorem 1.88 (Measurability of continuous maps) Let (§2, t) and ($2',t') be
topological spaces and let [ : 2 — §2' be a continuous map. Then f is B(§2)—
B(82")-measurable.

Proof As B(£2') = o(z’) and by Theorem 1.81, it is sufficient to show that
(A" € o(1) for all A’ € t/. However, since f is continuous, we even have
f Y A)erforall A et O

Forx,ye R, we agree on the following notation.

X V' y =max(x,y) (maximum),

X Ay =min(x, y) (minimum),
xT =max(x, 0) (positive part),
x~ =max(—x,0) (negative part),

|x] = max(x, —x) =x~ +xT  (modulus),

sign(x) = Lix=0} — Lix<0} (sign function).

Analogously, for measurable real maps we write, for example, X+ = max(X, 0).
The maps x — x™, x = x~ and x > |x| are continuous (and hence measurable
by the preceding theorem). Clearly, the map x +— sign(x) also is measurable. Using
Corollary 1.82, we thus get the following corollary.

Corollary 1.89 If X is a real or R-valued measurable map, then the maps X ~, X T,
| X| and sign(X) also are measurable.

Theorem 1.90 (Coordinate maps are measurable) Let (£2,.A) be a measurable
space and let f1,..., fn:$2 — R be maps. Define f := (f1,..., fn): 82 — R".
Then

fis A—B(R”)-measumble < each f; is A-B(R)-measurable.

The analogous statement holds for f; : 2 — R :=R U {£o0}.
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Proof For b € R", we have f~!((—o0, b)) = N, fi_l((—oo, b;)). If each f; is
measurable, then f ’1((—00, b)) € A. However, the rectangles (—o0, b), b € R",
generate B(R"), and hence f is measurable. Now assume that f is measurable.

Fori=1,...,n,let 7; : R" — R, x > x; be the projection on the ith coordinate.
Clearly, m; is continuous and thus B(R")-B(R)-measurable. Hence f; = m; o f is
measurable by Theorem 1.80. U

In the following theorem, we agree that g := 0 for all x € R.

Theorem 1.91 Let (£2, A) be a measurable space. Let h : (2, A) — (R, B(R))
and f, g : (22, A) —> (R", B(R")) be measurable maps. Then also the maps [ + g,
f—g, f-hand f/h are measurable.

Proof Themap  : R" xR — R”, (x, «) > «-x is continuous and thus measurable.
By Theorem 1.90, (f, h) : 2 — R" x R is measurable. Hence also the composed
map f-h = o (f,h) is measurable. Similarly, we obtain the measurability of f + g
and f — g.

In order to show measurability of f/h, we definethe map H : R — R, x = 1/x.
Note that by our convention H (0) = 0. Hence f/h = f - H o h. Thus it is enough to
show that H is measurable. Clearly, H |R\{0} is continuous. For any open set U C R,

U \ {0} is also open and hence H~Y(U\ {0}) € B(R). Furthermore, H ' ({0}) = {0}.
Concluding, we get H~'(U) = H~'(U \ {0}) U (U N {0}) € B(R). O

Theorem 1.92 Let X1, X», ... be measurable maps (2, A) — (R, B(R)). Then
the following maps are also measurable:

inf X,,, sup X, liminf X,,, limsup X,,.
neN

neN n—oo n—00

Proof For any a € R, we have
1 o0
(nuengn) ([—00,a)) = L_J [—o00,a)) € A

By Theorem 1.81, this implies that inf,cn X, is measurable. The proof for
Sup,,cn X», is similar.

For any n € N, we define Y, := inf;;>,, X,,. Note that Y, is measurable and hence
liminf,,_ o0 X, 1= sup, <y Y5 also is measurable. The proof for the limes superior is
similar. O

We come to an important example of measurable maps (£2, A) — (R, B(R)), the
so-called simple functions.
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Definition 1.93 (Simple function) Let (£2,.4) be a measurable space. A map

f:82 — R is called a simple function if there is an n € N and mutually disjoint
measurable sets Aq, ..., A, € A, as well as numbers a7y, ..., a, € R, such that

n
f= Zai]lAi'
i=1

Remark 1.94 A measurable map that assumes only finitely many values is a simple
function. (Exercise: Show this!) O
Definition 1.95 Assume that f, fi, f2, ... are maps 2 — R such that
filw) < foalw)<... and lim f,(w)= f(w) foranyw e $2.
n—oo

Then we write f;; 1 f and say that ( f;;),eN increases (pointwise) to f. Analogously,

we write f,, | fif (—f,) 1 (= f).

Theorem 1.96 Let (82, A) be a measurable space and let [ : 22 — [0, o0] be
measurable. Then the following statements hold.

(1) There exists a sequence (f,)neN of nonnegative simple functions such that

ot J.

(ii) There are measurable sets Ay, Ay, ... € A and numbers a1, a, ... > 0 such
that f =Y 02 apla,.

Proof (i) For n € Ny, define f;, = (27"|2" f]) An. Then f, is measurable (by The-
orem 1.92 and Example 1.85(ii)) and assumes at most n2" + 1 different values.
Hence it is a simple function. Clearly, f, 1 f.

(i1) Let f, be as above. Let B, ; :={w: fu(w) — fu—1(w) =i27"} and B,; =
i27"forneNandi=1,...,2". Hence f, — fu—1= leil Bn.ilp, ;- By changing
the numeration (n, i) — m, we get (¢ )meN and (A, )men such that

f=fo+) (= Fa-)=)_ anla,.

n=1 m=1

O

As a corollary to this statement on the structure of [0, oo]-valued measurable
maps, we show the following factorization lemma.

Corollary 1.97 (Factorization lemma) Ler ($2', A') be a measurable space and let
2 be a nonempty set. Let [ : 2 — 2’ be a map. Amap g : 2 — R is o (f)-B(R)-
measurable if and only if there is a measurable map ¢ : (2, A') — (R, B(R)) such
thatg=¢o f.

Proof “<=" If ¢ is measurable and g = ¢ o f, then g is measurable by Theo-
rem 1.80.
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“=—" Now assume that g is o (f )-B(R)-measurable. First consider the case
g > 0. Then there exist measurable sets Aj, Ay... € o(f) as well as numbers
oy, a2, ..., € [0,00) such that g = Y 7, a,1La,. By the definition of o (f), for
any n € N there is a set B, € A’ such that f‘l(B,,) = A,; that is, such that
14, =1p, o f.Define ¢ : 2’ — R by

o
¢ = Zan]lgn.
n=1

Clearly, ¢ is A'—B(R)-measurable and g = ¢ o f.

Now drop the assumption that g is nonnegative. Then there exist measurable
maps ¢~ and ¢ such that g~ =¢~ o f and g" =¢T o f. Hence ¢ := ¢ — ¢~
does the trick. 0

A measurable map transports a measure from one space to another.

Definition 1.98 (Image measure) Let (£2, .A) and (£2/, A’) be measurable spaces
and let u be a measure on (§2, A). Further, let X : (2, A) — (£2/, A’) be mea-
surable. The image measure of ;1 under the map X is the measure 1 o X! on
(£2', A') that is defined by

poX 1A —1[0,00, A+ p(Xx'(4)).

Example 1.99 Let yu be a measure on Z2 and let X : Z> — Z, (x, y) — x +y. Then

o X H({x)) =Y u({x—y.m}).

y€EZL O

Example 1.100 Let L : R" — R" be a linear bijection and let A be the Lebesgue
measure on (R*, B(R")). Then A o L~' = |det(L)|~'A. This is clear since for
any a, b € R" with a < b, the parallelepiped L~ Y((a, b]) has volume |det(L~1)| x
[Tz (i —ai). O

As a generalization of the last example, we state without proof the transforma-
tion formula for measures with continuous densities under differentiable maps. The
proof can be found in textbooks on calculus.

Theorem 1.101 (Transformation formula in R") Let u be a measure on R" that
has a continuous (or piecewise continuous) density f : R" — [0, 00). That is,

/L((—oo,x]):f 1 dtl...fxn dt, f(t1,...,ty) forallx e R".

—00 —00

X

Let A C R" be an open or a closed subset of R" with w(R" \ A) = 0. Further,
let B C R" be open or closed. Finally, assume that ¢ : A — B is a continuously
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differentiable bijection with derivative ¢'. Then the image measure j1 o ™~ has the
density

L)) ;
o) = | @G oy TEEB:
0, ifx eR"\ B.

Exercise 1.4.1 Let f : R — R, x > |x|. Show that a Borel measurable map g :
R — Ris o (f) = f~(B(R))-measurable if and only if g is even.

Exercise 1.4.2 Let (£2, A, 1) be a measure space and let f : 2 — R be measur-
able. Assume that g : £2 — R fulfills g = f pu-almost everywhere. Show that g
need not be measurable.

Exercise 1.4.3 Let f : R — R be differentiable with derivative f’. Show that f’ is
B(R)-B(R)-measurable.

Exercise 1.4.4 (Compare Examples 1.40 and 1.63.) Let £2 = {0, 1} and let A =
(210-11Y®N pe the o-algebra generated by the cylinder sets

{[wl,...,a)n]:nEN,wl,...,wn6{0,1}}.

Further, let u = (%80 + %51)®N be the Bernoulli measure on §2 with equal weights
on0and 1. Foralln e N, let X, : 2 — {0, 1}, w + w, be the nth coordinate map.
Finally, let

U(w) = Z X, (@)2™" forwe .

n=1

(i) Show that A =0 (X, :n €N).

(ii) Show that U is A-B([0, 1])-measurable.
(iii) Determine the image measure o U ™! on ([0, 11, B([0, 1])).
(iv) Determine an §2g € A such that U := U ] 2 is bijective.

(v) Show that U~! is B([0, 1])_A|Qo -measurable.

(vi) Give an interpretation of the map X,, o U~

Exercise 1.4.5 (Lusin’s theorem) Let f : R — R be a Borel measurable map. Show
that for any ¢ > 0, there exists a closed set C C R with A(R\ C) < ¢ such that the
restriction f |C of f to C is continuous. (Note: Clearly, this does not mean that f
would be continuous in every point x € C.)

Hint: Use the inner regularity of Lebesgue measure A (Remark 1.67) to show
the assertion first for indicator functions. Next construct a sequence of maps that
approximates f uniformly on a suitable set C.
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1.5 Random Variables

The fundamental idea of modern probability theory is to model one or more random
experiments as a probability space (§2, A, P). The sets A € A are called events. In
most cases, the events of £2 are not observed directly. Rather, the observations are
aspects of the single experiments that are coded as measurable maps from 2 to a
space of possible observations. In short, every random observation (the technical
term is random variable) is a measurable map. The probabilities of the possible ran-
dom observations will be described in terms of the distribution of the corresponding
random variable, which is the image measure of P under X. Hence we have to de-
velop a calculus to determine the distributions of, for example, sums of random
variables.

Definition 1.102 (Random variables) Let (£2’, A’) be a measurable space and let
X : 2 — 2’ be measurable.

(i) X is called a random variable with values in (£2’, A"). If (2, A) =
(R, B(R)), then X is called a real random variable or simply a random vari-
able.

(i) For A’ € A/, we denote {X € A’} :== X~!(A’) and P[X € A'] :=
P[X~!(A")]. In particular, we let {X > 0} := X~!([0,00)) and define
{X < b} similarly and so on.

Definition 1.103 (Distributions) Let X be a random variable.

(i) The probability measure Py :=P o X! is called the distribution of X.
(i1) For a real random variable X, the map Fy : x — P[X < x] is called the
distribution function of X (or, more accurately, of Pyx). We write X ~ p if
w = Px and say that X has distribution u.
(iii) A family (X;);es of random variables is called identically distributed if

Py, = PX_/. foralli, j € I. We write X 2 Y if Px = Py (D for distribution).

Theorem 1.104 For any distribution function F , there exists a real random variable
X with Fx = F.

Proof We explicitly construct a probability space (§2, A, P) and a random variable
X : 2 — Rsuchthat Fx = F.

The simplest choice would be (£2,.4) = (R, B(R)), X : R — R the identity
map and P the Lebesgue—Stieltjes measure with distribution function F (see Ex-
ample 1.56).

A more instructive approach is based on first constructing, independently of F,
a sort of standard probability space on which we define a random variable with
uniform distribution on (0, 1). In a second step, this random variable will be trans-
formed by applying the inverse map F~': Let £ := (0, 1), A := B(R) |Q and let P
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be the Lebesgue measure on (£2, A) (see Example 1.74). Define the left continuous
inverse of F':

F7'@):=inf{x eR: F(x) >t} forze(0,1).
Then

Fly<x < t<F().

In particular, {t : F~1(t) < x} = (0, F(x)] N (0,1); hence F~': (2,4 —
(R, B(R)) is measurable and

P[{t: F ') <x}] = F(x).
Concluding, X := F~! is the random variable that we wanted to construct. g

Example 1.105 We present some prominent distributions of real random vari-
ables X. These are some of the most important distributions in probability theory,
and we will come back to these examples in many places.

(i) Let p€[0,1] and P[X = 1] = p, P[X =0] =1 — p. Then Px =: Ber, is
called the Bernoulli distribution with parameter p; formally

Ber, = (1 — p)do + péi.

Its distribution function is

0, x <0,
FX(-X)Z 1_p7 xe[O,l),
1, x>1.

The distribution Py of Y :=2X — 1 is sometimes called the Rademacher
distribution with parameter p; formally Rad, = (1 — p)d_1 + pd41. In par-
ticular, Rady > is called the Rademacher distribution.

(ii) Let pe[0,1]andn € N, and let X : 2 — {0, ..., n} be such that

PX = k] = (Z) pha—py*.

Then Px =: b, is called the binomial distribution with parameters n and p;
formally

n

bup=, (Z)p"(l — )" k.

k=0
(iii) Let p € (0,1] and X : 2 — Ny with

P[X =n]=p( — p)* foranyn € Ny.
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Then y, := b p = Py is called the geometric distribution® with parameter p;
formally

(o)
vp=_ p(l=p)"s,.
n=0

Its distribution function is F(x) =1 — (1 — p)XT1V0 for x e R.

We can interpret X + 1 as the waiting time for the first success in a
series of independent random experiments, any of which yields a success
with probability p. Indeed, let 22 = {0, 1} and let P be the product mea-
sure ((1 — p)do + p81)®N (Theorem 1.64), as well as A =0 ([w1, ..., w,]:
w1, ...,o, € {0, 1}, n € N). Define

X(w):=inflneN:w, =1} -1,
where inf ) = co. Clearly, any map

—1 =1
X,: 2 >R, o b en=1
00, w, =0,

is A-B(R)-measurable. Thus also X = inf,cy X, is A-B(R)-measurable and
is hence a random variable. Let o := 0,0,...) € 2. Then P[X > n] =
P[[«?, ..., 0011 = (1 — p)". Hence

P[X=n]=P[X >n]-P[X=n+1]=(1-p)"—(1-p)" =pd—-p).

@iv) Letr > O (note that r need not be an integer) and let p € (0, 1]. We denote by

o0

br.p r=2(_kr)<—1>"p’<1 - ) (1.17)

k=0

the negative binomial distribution or Pascal distribution with parameters r
and p. (Here ()]z) = w for x € R and k € N is the generalized
binomial coefficient.) If » € N, then one can show as in the preceding example
that b, is the distribution of the waiting time for the rth success in a series
of random experiments. We come back to this in Example 3.4(iv).

(v) Let A € [0, 00) and let X : 2 — Ny be such that

n

A
P[X =n]= e_)\—‘ for any n € Np.
n!

Then Px =: Poi, is called the Poisson distribution with parameter A.

2Warning: For some authors, the geometric distribution is shifted by one to the right; that is, it is a
distribution on N.
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(vi) Consider an urn with B € N black balls and W € N white balls. Draw n € N
balls from the urn without replacement. A little bit of combinatorics shows
that the probability of drawing exactly b € {0, ..., n} black balls is given by
the hypergeometric distribution with parameters B, W, n € N:

() o)

HypB’W*”({b}):W forbe{O,,n} (1.18)

n

This generalizes easily to the situation of k colors and B; balls of color
i=1,...,k. As above, we get that the probability of drawing out of n
balls exactly b; balls of color i for each i = 1,...,k (with the restriction
by +...+br=n and b; < B; for all i) is given by the generalized hypergeo-
metric distribution
(5) - (o)
Hypg, .. g ({01, ... BO}) = (gl+__,+3kk) : (1.19)

n

(vii) Let u € R, 02 > 0 and let X be a real random variable with

_ L -’
P[Xfx]_mf_ooexp(— 792 dt forx e R.

o2 is called the Gaussian normal distribution with parameters

Then Py =: NV, P
u and 2. In particular, A | is called the standard normal distribution.

(viii) Let 6 > 0 and let X be a nonnegative random variable such that

X
P[X <x]=P[X €[0, x]] =/ 0e?dt forx>0.
0
Then Py is called the exponential distribution with parameter 6 (in short-
hand, expy).
(ix) Let u € R? and let X be a positive definite symmetric d x d matrix. Let X be
an R?-valued random variable such that

P[X <x]= det(ZJTE)_l/Z/

(—00,x]

exp(—%(r —u, 27— ,u)))kd(dt)

for x € R? (where (-, -) denotes the inner product in R?). Then Py =: \V, >
is the d-dimensional normal distribution with parameters p and X. O

Definition 1.106 If the distribution function F : R" — [0, 1] is of the form

X1 Xn
F(x):/ dtl.../ dt, f(t1,...,t,) forx=(xy,...,x,) €R",
o0 o0

for some integrable function f :R" — [0, 00), then f is called the density of the
distribution.
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Example 1.107
(1) Let8,r > 0 and let Iy , be the distribution on [0, co) with density
0"
I'(r)

X X lem0x,

(Here I" denotes the gamma function.) Then Iy , is called the Gamma distri-
bution with scale parameter 6 and shape parameter r.
(ii) Letr,s > 0 and let B, s be the distribution on [0, 1] with density

I'(r+s)

— 7xr—l(1 —X)S_l.
(1) (s)

Then B, ; is called the Beta distribution with parameters r and s.
(iii) Leta > 0 and let Cau, be the distribution on R with density

1 1
R ——
am 1+ (x/a)?

Then Cau, is called the Cauchy distribution with parameter a. O

Exercise 1.5.1 Use the identity (7") (=Dk = ("'H,:_l) to deduce (1.17) by combi-

natorial means from its interpretation as a waiting time.

Exercise 1.5.2 Give an example of two normally distributed random variables X
and Y such that (X, Y) is not (two-dimensional) normally distributed.

Exercise 1.5.3 Use the transformation formula (Theorem 1.101) to show the fol-
lowing statements.

(i) Let X ~ J\/W,z and leta e R\ {0} and b € R. Then (a X + b) ~ Naﬂﬂ,,azgz.
(ii) Let X ~ expy and a > 0. Then aX ~ expy .

Exercise 1.5.4 Show that F : RZ — [0, 1] is the distribution function of a (uniquely
determined) probability measure p on (R2, B(R?)) if and only if

(i) F is monotone increasing and right-continuous
(i1)) F(—x) > 0and F(x) > 1 as x — o0,
(i) F((y1,y2)) — F((y1,x2)) = F((x1, y2)) + F((x1, x2)) = 0 for all x; < y; and
X2 = y2.

Exercise 1.5.5

(i) Let F and G be distribution functions on R. Use Exercise 1.5.4 to show that
(x,y) — F(x) A G(y) is a distribution function on R2.
(ii) Give an example of two distribution functions F and G on R? such that
(x,y) — F(x) A G(y) is not a distribution function on R*.
Hint: First use the inclusion-exclusion formula (Theorem 1.33) to derive a
criterion similar to that in Exercise 1.5.4(iii).



Chapter 2
Independence

The measure theory from the preceding chapter is a linear theory that could not
describe the dependence structure of events or random variables. We enter the realm
of probability theory exactly at this point, where we define independence of events
and random variables. Independence is a pivotal notion of probability theory, and
the computation of dependencies is one of the theory’s major tasks.

In the following, (£2, .4, P) is a probability space and the sets A € A are the
events. As soon as constructing probability spaces has become routine, the concrete
probability space will lose its importance and it will be only the random variables
that will interest us. The bold font symbol P will then denote the universal object
of a probability measure, and the probabilities P[-] with respect to it will always be
written in square brackets.

2.1 Independence of Events

We consider two events A and B as (stochastically) independent if the occurrence
of A does not change the probability that B also occurs. Formally, we say that A
and B are independent if

P[AN B]=P[A]-P[B]. 2.1

Example 2.1 (Rolling a die twice) Consider the random experiment of rolling a die
twice. Hence 2 = {1, ..., 6}2 endowed with the o -algebra A = 2% and the uniform
distribution P = U, (see Example 1.30(ii)).

(i) Two events A and B should be independent, e.g., if A depends only on the
outcome of the first roll and B depends only on the outcome of the second roll.
Formally, we assume that there are sets A, B C {1, ..., 6} such that

A=Ax{l,...,6}) and B={l,...,6} x B.

A. Klenke, Probability Theory, Universitext, DOI 10.1007/978-1-4471-5361-0_2, 47
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Now we check~that A and B indeegl fulfill (2.1). To this end, we compute
P[A] = %4 = #4 and P[B] = 42 = %2 Furthermore,
#(AxB) #A #B

#B
P[ANB]= 36 % 6 =P[A]-P[B].

(i1) Stochastic independence can occur also in less obvious situations. For instance,
let A be the event where the sum of the two rolls is odd,

A={(w1,m) €2 w1+ €(3,5,7,9, 11},
and let B be the event where the first roll gives at most a three
B={(w;, )€ :w €{1,2,3}}.

Although it might seem that these two events are entangled in some way, they
are stochastically independent. Indeed, it is easy to check that P[A] =P[B] = %

and P[AN B] = 5. O

What is the condition for three events Ay, A», A3 to be independent? Of course,
any of the pairs (A1, Az), (A1, A3) and (A, A3z) has to be independent. However,
we have to make sure also that the simultaneous occurrence of A| and A, does not
change the probability that A3 occurs. Hence, it is not enough to consider pairs only.

Formally, we call three events A1, A> and A3 (stochastically) independent if

P[A; NA;]1=P[A;]-P[A;] foralli,je{l,2,3}, i, (22)

and
P[A1 N A2 N A3] =P[A1] - P[A2] - P[A3]. (2.3)

Note that (2.2) does not imply (2.3) (and (2.3) does not imply (2.2)).

Example 2.2 (Rolling a die three times) We roll a die three times. Hence 2 =
{1,..., 6}3 endowed with the discrete o-algebra A = 242 and the uniform distri-
bution P = U, (see Example 1.30(ii)).

(i) If we assume that for any i = 1, 2, 3 the event A; depends only on the outcome
of the ith roll, then the events Ay, @2 apd 43 are independent. Indeed, as in the
preceding example, there are sets A1, A2, A3 C {1, ..., 6} such that

A=A x({1,...,6}%,
Ar={1,....6} x Ay x {1,...,6),
Az ={1,...,6)> x As.
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The validity of (2.2) follows as in Example 2.1(i). In order to show (2.3), we
compute

- 3
#(Ay x Ay x A #A;
P[AlﬂAzﬂAg)]—M I = =[TPran.
L

i=1
(i1) Consider now the events

Al :={we 2w =wy},

Ay i={we 2wy =ws},

Az :={we 2 :w =ws}.
Then #A| = #A, = #A3 = 36; hence P[A|] = P[A,] = P[A3] = %. Further-
more, #(A; N A;) =6if i # j; hence P[A; N A;] = %. Hence (2.2) holds.
On the other hand, we have #(A| N Ay, N A3) =6, thus P[A; N Ay N A3] =

% #+ % . % - z. Thus (2.3) does not hold and so the events Ay, A2, A3 are not
1ndependent O

In order to define independence of larger families of events, we have to request
the validity of product formulas, such as (2.2) and (2.3), not only for pairs and triples
but for all finite subfamilies of events. We thus make the following definition.

Definition 2.3 (Independence of events) Let / be an arbitrary index set and let
(Aj)ics be an arbitrary family of events. The family (A;);c; is called independent
if for any finite subset J C I the product formula holds:

P[ﬂ A,} =[]Pra;1

jelJ jedJ

The most prominent example of an independent family of infinitely many events
is given by the perpetuated independent repetition of a random experiment.

Example 2.4 Let E be a finite set (the set of possible outcomes of the individ-
ual experiment) and let (p.).cr be a probability vector on E. Equip (as in Theo-
rem 1.64) the probability space 2 = EN with the o-algebra A =0 {[w],...,w,]:
o1, ...,0p € E,n € N}) and with the product measure (or Bernoulli measure)
P=>,cr pe(Se)@N; that is where P[[1, ..., 0,11 = [/ Pw;- Let A; C E for
any i € N, and let A; be the event where A,- occurs in the ith experiment; that is,

A,’:{a)EQZwiGAi} = H—J [cul,...,a),-].
(w1,... a),')GEi’IXA,'

Intuitively, the family (A;);en should be independent if the definition of indepen-
dence makes any sense at all. We check that this is indeed the case. Let J/ C N be
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finite and n := max J. Formally, we define B; = A; and I§’j = AJ- for j € J and
Bj = and B; = E for j €{l,...,n}\ J. Then

_P[ﬂ Bj} =p[jé3j}

w
—
D)
ib
[
|

jeJ jelJ
n n
=2 X e =TI(Z p) =TI(X )
e1€By e eB, J=1 J=1 "eeB; J€J e,

This is true in particular for #J = 1. Hence P[A;] = Ze A, Pe for all i € N, whence

P[ﬂ AJ} =] P14 (2.4)

jeld jeld

Since this holds for all finite J C N, the family (A;);cn is independent. O

If A and B are independent, then A° and B also are independent since
P[A°NB]=P[B]-P[ANB] =P[B]-P[A]P[B] = (1 -P[A])P[B] =P[A°]P[B].
We generalize this observation in the following theorem.

Theorem 2.5 Let I be an arbitrary index set and let (A;)icy be a family of events.
Define Bi0 = A; and Bi1 = A{ for i € I. Then the following three statements are
equivalent.

(i) The family (A;)ic is independent.
(ii) There is an a € {0, 1} such that the family (Bf”),-g is independent.
(iii) For any a € {0, 1M, the family (Bf"'),-e[ is independent.

Proof This is left as an exercise. O

Example 2.6 (Euler’s prime number formula) The Riemann zeta function is defined
by the Dirichlet series

t(s):=) n* forse(l,o0).
n=1

Euler’s prime number formula is a representation of the Riemann zeta function as
an infinite product

co)=Jl0a-»)" 2.5)
peP

where P :={p € N: p is prime}.
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We give a probabilistic proof for this formula. Let 2 = N, and for fixed s > 1
define P on 2 by

P[(n}]=¢(s)"'n™* forneN.

Let pN={pn:neN}and P, ={p € P: p <n}. We consider pN C £2 as an event.
Note that P[pN] = p~* and that (pN, p € P) is independent. Indeed, for k € N and
mutually distinct pq, ..., px € P, we have ﬂf-‘zl(p,'N) =(p1...pr)N. Thus

k 00
P[ﬂ(p,-m} = Plip1... pen}]
i=1 n=1

=) (pr...p) Y 0
n=1

k
=(p1...p) "~ =] [PLpiNI.
i=1
By Theorem 2.5, the family ((pN)¢, p € P) is also independent, whence

()7 =Pl{1}] = P[ N (pN)"]

peP
| o]
pEPy
= lim [ (PN =]](1-p7).
PEPn peP
This shows (2.5). O

If we roll a die infinitely often, what is the chance that the face shows a six
infinitely often? This probability should equal one. Otherwise there would be a last
point in time when we see a six and after which the face only shows a number one
to five. However, this is not very plausible.

Recall that we formalized the event where infinitely many of a series of events
occur by means of the limes superior (see Definition 1.13). The following theorem
confirms the conjecture mentioned above and also gives conditions under which we
cannot expect that infinitely many of the events occur.

Theorem 2.7 (Borel-Cantelli lemma) Let Ay, As, ... be events and define A* =
limsup,,_, o, Ay.

@) Ifzzil P[A,] < o0, then P[A*] = 0. (Here P could be an arbitrary measure

on (£2,A).)
(i1) If (Ap)nenN is independent and 230:1 P[A,] = o0, then P[A*] = 1.
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Proof (i) P is upper semicontinuous and o -subadditive; hence, by assumption,
o0 [ee]
*= 1 < li =
P[A*] nlggop[gn Am:| < nlr)n;omg;l P[An]=0
(i) De Morgan’s rule and the lower semicontinuity of P yield

Q] Q]

m=1n=m

However, for every m € N (since log(1 — x) < —x for x € [0, 1]), by upper continu-
ity of P

P|:ﬁ A;] =A/113100P[(N] A;:| = ]O_O[(r -

n=m

=exp<ilog(l—P[A ] ) <exp< ZP[A ])

n=m

Example 2.8 We throw a die again and again and ask for the probability of seeing
a six infinitely often. Hence 2 = {1, ..., 6}N, A= (2{1 """ 6H®N g the product o -
Furthermore, let A, = {’w e wy, = 6} be the event where the nth roll shows a
six. Then A* =limsup,,_, ., A, is the event where we see a six infinitely often (see
Remark 1.14). Furthermore (Ap)nen 1s an independent family with the property
Yoo PlAL=Y 02 6 = 00. Hence the Borel-Cantelli lemma yields P[A*] = 1.

Example 2.9 We roll a die only once and define A, for any n € N as the event

where in this one roll the face showed a six. Note that Ay = Ap = A3 =.... Then
ZneN P[A, ] = oo; however, P[A*] =P[A] = %. This shows that in Part (ii) of the
Borel-Cantelli lemma, the assumption of independence is indispensable. O

Example 2.10 Let A € (0,00) and 0 < A, < A forn € N. Let X,,, n € N, be Poisson
random variables with parameters A,. Then

P[X,, > n for infinitely many n] =
Indeed,

ZP[X =n]= ZZP Xn=m]= ZZP[anm]

n=1m=n m=1n=1

o0 m o0
_ )\'n‘l Am
=E E e)‘"—"fg m— = Ae? < c0.
m! m!
m=1

m=1n=1
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Note that in Theorem 2.7 in the case of independent events, only the probabilities
P[A*] = 0 and P[A*] = 1 could show up. Thus the Borel-Cantelli lemma belongs
to the class of so-called 0-1 laws. Later we will encounter more 0—1 laws (see, for
example, Theorem 2.37).

Now we extend the notion of independence from families of events to families
of classes of events.

Definition 2.11 (Independence of classes of events) Let / be an arbitrary index
set and let & C A for all i € I. The family (&;);¢; is called independent if, for any
finite subset J C I and any choice of E; € £;, j € J, we have

P[ﬂ Ej] =[[PLEL (2.6)

jeJ jeJ

Example 2.12 As in Example 2.4, let (£2, A, P) be the product space of infinitely
many repetitions of a random experiment whose possible outcomes e are the ele-
ments of the finite set £ and have probabilities p = (p.)cck. For i € N, define

E={loeR:wi€A}:ACE]}.

For any choice of sets A; € &, i € N, the family (A;);cn is independent; hence
(&i)ien is independent. O

Theorem 2.13
(1) Let I be finite, and for any i € I let & C A with 2 € &;. Then

(&)ier is independent <  (2.6) holds for J = 1.

(i) (&)ier is independent <= ((€}) jey is independent for all finite J C I).
(iii) If (& U {0}) is N-stable, then

(&ier is independent <— (U (Ei))i <l is independent.

(iv) Let K be an arbitrary set and let (Iy)rcx be mutually disjoint subsets of 1. If
(&)ier is independent, then (|, E)kek is also independent.

i€l

Proof (i) “==" This is trivial.
(i) “<="ForJ Clandjel\J,choose E; = $2.
(i1) This is trivial.
(iii) “«==" This is trivial.



54 2 Independence

(iii) “==" Let J C I be finite. We will show that for any two finite sets J and
J'withJcJ Cl,

P[ﬂ E,} =[] P&
ieJ' ieJ'
EiEU(gi), ield,
for any choice 2.7
E;i €&, icJ\J.

The case J' = J is exactly the claim we have to show.

We carry out the proof of (2.7) by induction on #J. For #J = 0, the statement
(2.7) holds by assumption of this theorem.

Now assume that (2.7) holds for every J with #J = n and for every finite J' D J.
Fix sucha J and let j € I \ J. Choose JoJ:=JU {7}. We show the validity of
(2.7) with J replaced by J. Since #J = n + 1, this verifies the induction step.

Let E; €0 (&) forany i € J, and let E; € & forany i € J'\ (J U{j}). Define
two measures p and v on (£2, A) by

M:Ej»—>P|:ﬂEi] and v:Ej|—>l_[P[E,-].

ieJ ieJ'

By the induction hypothesis (2.7), we have u(E;) = v(E;) for every E; € £; U
{9, £2}. Since &; U {@} is a w-system, Lemma 1.42 yields that u(E;) = v(E;) for
all E; € 0(€)). That is, (2.7) holds with J replaced by J U {j}.

(iv) This is trivial, as (2.6) has to be checked only for J C I with

#JNI) <1 foranykeK. U

2.2 Independent Random Variables

Now that we have studied independence of events, we want to study independence of
random variables. Here also the definition ends up with a product formula. Formally,
however, we can also define independence of random variables via independence of
the o -algebras they generate. This is the reason why we studied independence of
classes of events in the last section.

Independent random variables allow for a rich calculus. For example, we can
compute the distribution of a sum of two independent random variables by a simple
convolution formula. Since we do not have a general notion of an integral at hand
at this point, for the time being we restrict ourselves to presenting the convolution
formula for integer-valued random variables only.

Let  be an arbitrary index set. Foreach i € 1, let (£2;, .A;) be a measurable space
and let X; : (2, A) — (£2;, A;) be a random variable with generated o -algebra
o (Xi) = X; ' (A).
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Definition 2.14 (Independent random variables) The family (X;);c; of random
variables is called independent if the family (o (X;));e; of o-algebras is indepen-
dent.

As a shorthand, we say that a family (X;);¢; is “i.i.d.” (for “independent and
identically distributed”) if (X;);c; is independent and if Py, =Py i foralli,jel.

Remark 2.15

(1) Clearly, the family (X;);<; is independent if and only if, for any finite set J C
and any choice of Aj € A;, j € J, we have

P[ﬂ{xj eAj}} =] [Pix; e Al

jelJ jeJ

The next theorem will show that it is enough to request the validity of such a
product formula for A ; from an N-stable generator of .A; only.

(ii) If (A)ies is an independent family of o-algebras and if each X; is Ai — Aj-
measurable, then (X;);c; is independent. This is a direct consequence of the
fact that o (X;) C A;.

(iii) For each i € I, let (£2/, A}) be another measurable space and assume that

1

fi 1 (i, A) — (£2], A}) is a measurable map. If (X;);¢; is independent, then

1
(fi o X;)ier 1s independent. This statement is a special case of (ii) since f; o X;

is 0 (X;) — A/-measurable (see Theorem 1.80). O

Theorem 2.16 (Independent generators) Foranyi € 1, let & C A; be a w-system
that generates A;. If (X ! (&))ier is independent, then (X;);c; is independent.

Proof By Theorem 1.81, X; 1&) is a m-system that generates the o-algebra
X; ! (A;) = o (X;). Hence the statement follows from Theorem 2.13. O

Example 2.17 Let E be a countable set and let (X;);c; be random variables with
values in (E, 2F). In this case, (X;);e; is independent if and only if, for any finite
J C I and any choiceof x; € E, j € J,

P[X; =x; forall j e J]=][ [ P[X; =x;].
jeJ
This is obvious since {{x}:x € E} U {#} is a w-system that generates 2, thus

{lel ({xi}) : x; € E}U {@} is a w-system that generates o (X;) (Theorem 1.81). O

Example 2.18 Let E be a finite set and let p = (p.).ce be a probability vector.
Repeat a random experiment with possible outcomes e € E and probabilities p, for
e € E infinitely often (see Example 1.40 and Theorem 1.64). Let £2 = EV be the
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infinite product space and let .4 be the o -algebra generated by the cylinder sets (see
(1.8). Let P= (3, 2¢8.)®N be the Bernoulli measure. Further, for any n € N,
let

X,:2—E, (0n)neN> Wy,

be the projection on the nth coordinate. In other words: For any simple event w € 2,
X, (w) yields the result of the nth experiment. Then, by (2.4) (in Example 2.4), for
neNand x € E", we have

PX;=x;forall j=1,...,n]

=P[lx1, ..., x]] = [ﬂ {x,}}
=H )] =[]Px, =x0.
j=1 j=1

and P[Xj = x;] = py;. By virtue of Theorem 2.13(i), this implies that the family
(X1, ..., X,) is independent and hence, by Theorem 2.13(ii), (X,),eN is indepen-
dent as well. O

In particular, we have shown the following theorem.

Theorem 2.19 Let E be a finite set and let (p.)ecE be a probability vector on E.
Then there exists a probability space ($2, A, P) and an independent family (X,)nen
of E-valued random variables on (§2, A, P) such that P[X, = e] = p. for any
ec k.

Later we will see that the assumption that E is finite can be dropped. Also one
can allow for different distributions in the respective factors. For the time being,
however, this theorem gives us enough examples of interesting families of indepen-
dent random variables.

Our next goal is to deduce simple criteria in terms of distribution functions and
densities for checking whether a family of random variables is independent or not.

Definition 2.20 Forany i € /, let X; be a real random variable. For any finite subset
JCl,let

F; .= F(Xj)je./ ‘R —> [0, 1],
x> P[X; <x;forall jeJ]= [ﬂx ((—o0, x,])]
jedJ

Then Fj is called the joint distribution function of (X ;) ;ec;. The probability mea-
sure P(Xj)je] on R is called the joint distribution of (X ;) jey.
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Theorem 2.21 A family (X;)ic; of real random variables is independent if and
only if, for every finite J C I and every x = (x}) jey € RY,

Fix) =[] Fipep. (2.8)

jeJ

Proof The class of sets {(—o00,b],b € R} is an N-stable generator of the Borel
o-algebra B(R) (see Theorem 1.23). Equation (2.8) says that, for any choice of
real numbers (x;);ey, the events (X;” ! ((—o0, xi]))ier are independent. Hence The-
orem 2.16 yields the claim. O

Corollary 2.22 In addition to the assumptions of Theorem 2.21, we assume that
any Fj has a continuous density f; = f(Xj)jeJ (the joint density of (X ;) jey). That

is, there exists a continuous map fy : R’ — [0, 00) such that

Xj X jn
F](x)=/ ldn...f diy f7t1, . 1) forallx e R’

—0o0 —0oQ
(where J ={j1, ..., ju}). In this case, the family (X;)icj is independent if and only
if, for any finite J C 1
f10=[]fiGp forallxer’. 2.9)
jeJ

Corollary 2.23 Letn € Nandlet i1, ..., ity be probability measures on (R, B(R)).
Then there exists a probability space (2, A, P) and an independent family of ran-
dom variables (X;)i=1,..n on (82, A,P) with Px, = p; foreachi =1, ..., n.

,,,,,

Proof Let 2 =R" and A= B(R"). Let P = Q);_, i be the product measure of
the wu; (see Theorem 1.61). Further, let X; : R* — R, (x,...,x,) — x; be the
projection on the ith coordinate for eachi =1, ...,n. Then, foranyi =1,...,n,

Fiiy(x) =P[X; < x]=P[R'™ x (=00, x] x R"™']
= pi ((—o0, x1) - [ [ 1 (R) = i (=00, x1).
J#L
Hence indeed Py, = ;. Furthermore, for all xy, ..., x, € R,

Fii, oy (Gen, o)) =P|: X (—OO,xi]i| = HM((-OO,XI'])
i=1

i=1

n
ZHF{i}(xi)~
i=1

Hence Theorem 2.21 (and Theorem 2.13(i)) yields the independence of
(XDi=1,..n- O
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Example 2.24 Let X1,..., X, be independent exponentially distributed random
variables with parameters 0y, ..., 6, € (0, 00). Then

X
Fiiy(x) =/ Gie %dr=1—e"% forx>0
0

and hence

n

F{],.‘.,n}((XI, e ,xn)) = 1_[(1 _ e—@,‘x,‘)'

i=1
Consider now the random variable ¥ = max(X1, ..., X,). Then

Fy(x)=P[X; <xforalli=1,...,n]

n

=ry,., n}((x, ...,x)) = l_[(l _ 6—91-)().

i=1

The distribution function of the random variable Z := min(X7q, ..., X,) has a nice
closed form:

Fz(x)=1-P[Z > x]
=1-P[X; >xforalli=1,...,n]

n
=1—J]e % =1—exp(=61+...+6,)x).
i=1

In other words, Z is exponentially distributed with parameter 8; + ...+ 6,,. O

Example 2.25 Let u; € R and O'iz >0 fori eI.Let (X;);cs be real random vari-
ables with joint density functions (for finite J C I)

_ 2 2 _% (‘x] — 'u’])z fi RJ
fJ(x)—l_[( naj) exp —ZT orx e R”.
jeJ jeJ J
Then (X;)ies is independent and X; is normally distributed with parameters
(/“Li ’ 0[2)'

For any finite I = {i1,...,i,} (with mutually distinct iy,...,i,), the vector
Y = (X;,,..., X;,) has the n-dimensional normal distribution with p = /LI =
(Wiy» .-, Mi,) and with X' = 37 the diagonal matrix with entries aizl, e a,.i (see

Example 1.105(ix)).

Theorem 2.26 Let K be an arbitrary set and I, k € K, arbitrary mutually dis-
Jjoint index sets. Define I = | Jycg Ir-

If the family (X;)ies is independent, then the family of o-algebras (o (X, j €
I))kek is independent.
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Proof Fork € K, let

Zk:{ﬂAjZAJ'EG(Xj),#{jEIk;Aj7§Q}<OO}
JElk

be the semiring of finite-dimensional rectangular cylinder sets. Clearly, Zj is a 7-
system and o (Zy) = o (X}, j € I). Hence, by Theorem 2.13(iii), it is enough to
show that (Zy)rek is independent. By Theorem 2.13(ii), we can even assume that
K is finite.

For k € K, let By € Z and Jx C I be finite with By =)
Ajeo(Xj). Define J = Jycx Jik- Then

P 5| =) = TTrean =TT [T Pian =] isus

keK jeld jelJ keK jely keK

el A for certain

Example 2.27 If (X,)nen is an independent family of real random variables,
then also (Y;)nen = (X2, — Xon—1)nen is independent. Indeed, for any n € N,
the random variable Y, is o(X2,, X2,—1)-measurable by Theorem 1.91, and
(0 (X2n, X2n—1))neN is independent by Theorem 2.26. O

Example 2.28 Let (Xm,n)(n nyen2 be an independent family of Bernoulli random
variables with parameter p € (0, 1). Define the waiting time for the first “success”
in the mth row of the matrix (X, ) m.n by

Yp:=inflneN: X, ,=1}—1.

Then (Y;,)men are independent geometric random variables with parameter p (see
Example 1.105(iii)). Indeed,

k+1
o<k} =JXmi=1leoXpsl=1.....k+ 1) Co(Xp.l €N).
=1

Hence Y, is 0 (X,,,1, | € N)-measurable and thus (Y},;);;en is independent. Further-
more,

k+1
P[Y, >kl=P[X,;=0,l=1,....k+1]= HP[XmJ =0]=(1— p)**!.
=1

Concluding, we get P[Y,, = k] =P[Y,, >k — 1] - P[Y,,, > k] = p(1 — p)k. O
Definition 2.29 (Convolution) Let i and v be probability measures on (Z, ZZ). The

convolution [ v is defined as the probability measure on (Z, 2%) such that

eo]

(wsv)(in}) = Y u(im)v(in —m}).

m=—00
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We define the nth convolution power recursively by p*! = 1 and

*(n+1) — M*n *

% K-

Remark 2.30 The convolution is a symmetric operation: (v =1 % (. O

Theorem 2.31 If X and Y are independent Z-valued random variables, then
Px+y = PX * Py.

Proof Forany n € Z,

Pyiy({n}) =PIX +Y =n]

:P[E—J({sz}ﬂ{)’=”_m})]

mez
= ZP[{X:m}ﬂ{Y:n—m}]
mez
= Px[(m}]Py[{n —m}] = ®x xPy)[(n}]. .
meZ

Owing to the last theorem, it is natural to define the convolution of two probabil-
ity measures on R" (or more generally on an Abelian group) as the distribution of
the sum of two independent random variables with the corresponding distributions.
Later we will encounter a different (but equivalent) definition that will, however,
rely on the notion of an integral that is not yet available to us at this point (see
Definition 14.17).

Definition 2.32 (Convolution of measures) Let u and v be probability measures
on R” and let X and Y be independent random variables with Py = u and Py = v.
We define the convolution of w and v as uxv=Pyx,y.

Recursively, we define the convolution powers p** for all k € N and let £*0 = 8.

Example 2.33 Let X and Y be independent Poisson random variables with param-
eters  and A > 0. Then

n m n—m

A
P[X—}-Y:n]:efuef)L e~
= m! (n —m)!

n
v L ) (” ) L — gt (AR

n! m n!
m=0

Hence Poi,, * Poi; =Poi, ;. O



2.3 Kolmogorov’s 0-1 Law 61

Exercise 2.2.1 Let X and Y be independent random variables with X ~ exp, and
Y ~ exp,, for certain 6, p > 0. Show that

0
PX<Y]=—.
0+p

Exercise 2.2.2 (Box—Muller method) Let U and V be independent random vari-
ables that are uniformly distributed on [0, 1]. Define

X :=,/—2log(U)cos2nrV) and Y :=,/—2log(U)sin(2nV).

Show that X and Y are independent and N | -distributed.
Hint: First compute the distribution of \/—21og(U) and then use the transforma-
tion formula (Theorem 1.101) as well as polar coordinates.

Exercise 2.2.3 (Multinomial distribution) Letm € Nandlet p = (p1,..., pm) bea
probability vector on {1, ...,m}. Let Xy, ..., X,, be independent random variables
with valuesin 1, ..., m and distribution p. We define an Ng -valued random variable
Y=({1,...,Y,) by

Yi=#k=1,...,n: Xy =i} fori=1,...,m.

Show that for k = (ky, ..., ky) € N with ky + ...+ ky, = n, we have

P[Y = k] = Mul,,({k}) := <Z> Pk (2.10)

ny n . n!
k)7 \ki, oo k) Kl k!

is the multinomial coefficient and p* = pll‘1 ... p,lii”. The distribution Mul, , on Nj'

is called multinomial distribution with parameters n and p.

Here

2.3 Kolmogorov’s 0-1 Law

With the Borel-Cantelli lemma, we have seen a first 0—1 law for independent events.
We now come to another 0-1 law for independent events and for independent
o -algebras. To this end, we first introduce the notion of the tail o -algebra.
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Definition 2.34 (Tail o-algebra) Let I be a countably infinite index set and let
(Aj)ies be a family of o -algebras. Then

T ((Adier) == ﬂ U< U Aj)
Jcl  Njel\J
#J <00

is called the fail o-algebra of (A;)icr. If (A;)ies is a family of events, then we
define

T((ADier) = T(({2. Ai. A, 2});)-

If (Xj)ier is a family of random variables, then we define 7 ((X;)ics) :=
T (o (Xi)iel)-

The tail o-algebra contains those events A whose occurrence is independent of
any fixed finite subfamily of the X;. To put it differently, for any finite subfamily of
the X;, we can change the values of the X; arbitrarily without changing whether A
occurs or not.

Theorem 2.35 Let Ji, Ja, ... be finite sets with J, 1 1. Then

T((Aier) = ﬁ (U Am).

n=1 mel\J,
In the particular case 1 =N, this reads T ((Ap)nen) = (et 0 (Unen Am)-

The name “tail o -algebra” is due to the interpretation of / = N as a set of times.
As is made clear in the theorem, any event in 7~ does not depend on the first finitely
many time points.

Proof “C” This is clear.
“D”Let J, C I, n € N, be finite sets with J,, 1 I. Let J C I be finite. Then there
exists an N € N with J C Jy and

7 (Umel\J,, A’”) < ﬁ o (Umel\J,, A’")

n=1

= (UmeI\JN A’”) co <UmeI\J A’")'

The left-hand side does not depend on J. Hence we can form the intersection over
all finite J and obtain

DX

I
MR

n

Neo (U, oy, An) € T((Aier):

n=1
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Maybe at first glance it is not evident that there are any interesting events in the
tail o-algebra at all. It might not even be clear that we do not have 7 = {{J, £2}.
Hence we now present simple examples of tail events and tail o -algebra measurable
random variables. In Section 2.4, we will study a more complex example.

Example 2.36

(i) Let Ay, Ay, ... be events. Then the events A, := liminf,_,, A, and A* :=
limsup,_, ., A, are in T((Ap)nen). Indeed, if we define B, := (\_, Am
for n e N, then B, 1 A, and B, € 0 ((Am)m>n) for any n > N. Thus A, €
0 ((Am)m>n) forany N € N and hence A, € T ((A;)nen). The case A* is sim-
ilar.

(i) Let (X,),eN be a family of R-valued random variables. Then the maps X, :=
liminf, o0 X, and X* := limsup,_, , X, are T ((X,)nen)-measurable. In-
deed, if we define Y, :=sup,,~., X;», then for any N € N, the random variable
X* =inf,>1 Y, =infysy ¥y is Ty = o(X,,n > N)-measurable and hence
also measurable with respect t0 T ((X,)nen) = (oot Tn-

The case X, is similar.
(iii) Let (X,,),en be real random variables. Then the Cesaro limits

NS R . ¢
l}lrglcgf;.zl:X,- and l1msup—21:X,-
i —

n—oo N~
1=

are T ((X,,)nen)-measurable. In order to show this, choose N € N and note that

N NS
X*.=1kr2}>%f;2Xi=lzrg£f;2VXi
1= 1=

is 0 ((X,)n>n)-measurable. Since this holds for any N, X, is T ((X,)neN)-
measurable. The case of the limes superior is similar.

Theorem 2.37 (Kolmogorov’s 0—1 Law) Let I be a countably infinite index set
and let (A;)ic; be an independent family of o -algebras. Then the tail o-algebra
is P-trivial, that is,

P[A]€{0,1} forany Ae T ((A)ier)-

Proof 1Tt is enough to consider the case / = N. For n € N, let

n
Fy = ﬂAk:A16A1,...,AneA,, )
k=1

Then F := ;2 Fn is a semiring and o (F) = o (|J,,cy An)- Indeed, for any n € N
and A, € A,, we have A, € F; hence o (|, ey An) C 0 (F). On the other hand, we
have 7, C o (Uy—; An) C o (U, ey An) for any m € N; hence F C o ((,,cr An)-
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Let A € T((Ap)nen) and & > 0. By the approximation theorem for measures
(Theorem 1.65), there exists an N € N and mutually disjoint sets Fi,..., Fy €
F such that P[A A (F1 U ... U Fy)] < ¢. Clearly, there is an n € N such that
Fi,...,Fy € F, and thus F:= F{U...U Fy € 6(A; U... U A,). Obviously,
A €0 (Upm—,11An): hence A is independent of F. Thus

¢ >P[A\ F]=P[AN(2\ F)]=P[A](1 — P[F]) > P[A](1 — P[A] —¢).
Letting ¢ | 0 yields 0 = P[A](1 — P[A]). O
Corollary 2.38 Let (Ay)neN be a sequence of independent events. Then

P[limsup A,,] €{0,1} and P[lzrgioréfAn] {0, 1.

n— oo

Proof Essentially this is a simple conclusion of the Borel-Cantelli lemma. How-
ever, the statement can also be deduced from Kolmogorov’s 0—1 law as limes supe-
rior and limes inferior are in the tail o -algebra. 0

Corollary 2.39 Let (X,),en be an independent family of R-valued random vari-

ables. Then X :=liminf,,_, o X,, and X* :=limsup,,_, ., X, are almost surely con-

stant. That is, there exist X, x* € R such that P[X, = x,] = 1 and P[X* = x*] = 1.
If all X; are real-valued, then the Cesaro limits

n—oo N

1 n 1 n
liminf — X; and limsup— Xi
iminf - > X; P2 Xi
i=1 i=1
are also almost surely constant.

Proof Let X, :=liminf,_, 5, X,,. For any x € R, we have {X, <x} € T((X,)nen);
hence P[ X, < x] € {0, 1}. Define

Xy ::inf{x eR:P[X,<x]= 1} eR.
If x, = oo, then evidently
P[X, <oo]= lim P[X, <n]=0.
n—0o0
If x, € R, then
1
P[Xi <x4]= lim P|:X* < x4+ —] =1

n—o00 n

and

0.

1
PIX, < x4] =nli)n010P|:X* <Xy — ;i|
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If x, = —o0, then
P[Xy > —o0]= lim P[X, > —n]=0.
n—o0
The cases of the limes superior and the Cesaro limits are similar. g

Exercise 2.3.1 Let (X,),en be an independent family of Rad;/, random variables
G.e., P[X,=—1]1=P[X, =+1]= %) and let S, = X1+ ...+ X, forany n e N.
Show that limsup,,_, o, S, = oo almost surely.

2.4 Example: Percolation

Consider the d-dimensional integer lattice Z¢, where any point is connected to any
of its 2d nearest neighbors by an edge. If x, y € Z¢ are nearest neighbors (that is,
lx —yll2 = 1), then we denote by e = (x, y) = (y, x) the edge that connects x and y.
Formally, the set of edges is a subset of the set of subsets of Z¢ with two elements:

E:{{xyy}X,yEZd with ||X—y||2:1}

Somewhat more generally, an undirected graph G is a pair G = (V, E), where V
is a set (the set of “vertices” or nodes) and E C {{x, y} : x,y € V, x # y} is a subset
of the set of subsets of V of cardinality two (the set of edges or bonds).

Our intuitive understanding of an edge is a connection between two points x and
y and not an (unordered) pair {x, y}. To stress this notion of a connection, we use a
different symbol from the set brackets. That is, we denote the edge that connects x
and y by (x, y) = (v, x) instead of {x, y}.

Our graph (V, E) is the starting point for a stochastic model of a porous medium.
We interpret the edges as tubes along which water can flow. However, we want
the medium not to have a homogeneous structure, such as Z¢, but an amorphous
structure. In order to model this, we randomly destroy a certain fraction 1 — p of the
tubes (with p € [0, 1] a parameter) and keep the others. Water can flow only through
the remaining tubes. The destroyed tubes will be called “closed”, the others “open”.
The fundamental question is: For which values of p is there a connected infinite
system of tubes along which water can flow? The physical interpretation is that if
we throw a block of the considered material into a bathtub, then the block will soak
up water; that is, it will be wetted inside. If there is no infinite open component,
then the water may wet only a thin layer at the surface. See Fig. 2.1 for a computer
simulation of the percolation model.

‘We now come to a formal description of the model. Choose a parameter p € [0, 1]
and an independent family of identically distributed random variables (X%).cr with
XV ~ Berp; thatis, P[X) = 1] =1—P[X) = 0] = p for any e € E. We define the
set of open edges as

EP:=lecE: X! =1]. (2.11)
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Consequently, the edges in E \ E? are called closed. Hence we have constructed
a (random) subgraph (24, EP) of (Z4, E). We call (Z¢, EP) a percolation model
(more precisely, a model for bond percolation, in contrast to site percolation, where
vertices can be open or closed). An (open) path (of length ») in this subgraph is
a sequence m = (xg, X1, ..., X,) of points in 74 with (xi_1,x;) € EP for all i =
1,...,n. We say that two points x, y € Z¢ are connected by an open path if there is
an n € N and an open path (xo, x1, ..., x,) with xop = x and x,, = y. In this case, we
write x <—> , y. Note that “<— ,” is an equivalence relation; however, a random
one, as it depends on the values of the random variables (X),cx. For every x € 74,
we define the (random) open cluster of x; that is, the connected component of x in
the graph (Z¢, EP):

CP(x):={yeZ?:x <, y}. (2.12)

Lemma 2.40 Let x,y € 74 . Then Lixes,y} is a random variable. In particular,
#CP(x) is a random variable for any x € 7.%.

Proof We may assume x = 0. Let f, , = 1 if there exists an open path of length at
most n that connects 0 to y, and fy , = 0 otherwise. Clearly, fy» 1 1{0«—,y} for
n — o0; hence it suffices to show that each fy , is measurable. Let B, := {—n, —n+
l,....n—1,n}%and E,:={ec E:enNB,#¥}.Then Y, := (X! :e € E,): 2 —
{0, 1}E# is measurable (with respect to 2({0’1}5,,)) by Theorem 1.90. However, f) ,
is a function of Yy, say fy , = gy,n o ¥, for some map g, , : {0, 1}E» — {0, 1}. By
the composition theorem for maps (Theorem 1.80), f) , is measurable.

The additional statement holds since #CP(x) = Y yezd Ly ,y)- Il

Definition 2.41 We say that percolation occurs if there exists an infinitely large
open cluster. We call

¥ (p) := P[there exists an infinite open cluster]

=P[ U {#CP (x) =oo}]

xezd

the probability of percolation. We define
0(p) = P[#C”(O) = oo]
as the probability that the origin is in an infinite open cluster.
By the translation invariance of the lattice, we have
0(p) =P[#CP(y) =o00] foranyyeZ’. (2.13)

The fundamental question is: How large are 6(p) and v (p) depending on p?
We make the following simple observation.
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Fig. 2.1 Percolation on a 15 x 15 grid, p =0.42

Theorem 2.42 The map [0, 1] — [0, 1], p — 0(p) is monotone increasing.

Proof Although the statement is intuitively so clear that it might not need a proof,
we give a formal proof in order to introduce a technique called coupling. Let p, p’ €
[0, 1] with p < p’. Let (Y,).cg be an independent family of random variables with
P[Y, <ql=gqgforanye € E and q € {p, p’, 1}. At this point, we could, for example,
assume that Y, ~ Ujp,1] is uniformly distributed on [0, 1]. Since we have not yet
shown the existence of an independent family with this distribution, we content
ourselves with Y, that assume only three values {p, p’, 1}. Hence

12 @fq:p,
PY,=ql={p —p, ifqg=p,
1—p/, ifg=1

Such a family (Y,).cg exists by Theorem 2.19. For g € {p, p’} and e € E, we define

1, ifY., <
q .__ ) €_q7
Xe = {0, else.

Clearly, for any ¢ € {p,p’}, the family (X{).cg is independent (see
Remark 2.15(iii)) and X2 ~ Ber,. Furthermore, X! < x? for any e € E. The pro-
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cedure of defining two families of random variables that are related in a specific
way (here “<”") on one probability space is called a coupling.
Clearly, C?(x) C CP (x) for any x € Z%; hence 6(p) <6(p’). O

With the aid of Kolmogorov’s 0—1 law, we can infer the following theorem.

Theorem 2.43 For any p € [0, 1], we have

_J0, ife(p)=0,
‘/’(p)—{L ifo(p) > 0.

Proof If 6(p) =0, then by (2.13)

Y(p) < Y P[HCP(y)=o00]= ) 6(p)=0.

yezd yezd

Now let A = Uyezd {#CP(y) = o0}. Clearly, A remains unchanged if we change

the state of finitely many edges. That is, A € a((Xf)eeE\p) for every finite F C E.
Hence A is in the tail o-algebra T XD eeE) by Theorem 2.35. Kolmogorov’s 0—1
law (Theorem 2.37) implies that ¥ (p) = P[A] € {0, 1}. If 8(p) > O, then ¢ (p) >
6(p) implies ¥ (p) = 1. g

Due to the monotonicity, we can make the following definition.

Definition 2.44 The critical value p. for percolation is defined as

pe=inf{p €[0,1]:6(p) > 0} =sup{p €[0,1]:6(p) =0}
=inf{p € [0, 1]: ¥ (p) =1} =sup{p €[0,1]: ¥(p) =0}.

We come to the main theorem of this section.

Theorem 2.45 Ford =1, we have p. = 1. For d > 2, we have p.(d) € [2d+1’ %].

Proof First consider d =1 and p < 1. Let A™ := {Xg1 ntl) = 0 for some n < 0}
and AT = {Xgl ni1y =0 forsomen > 0}.Let A=A~ NA™. By the Borel-Cantelli

lemma, we get P[A~™] =P[A™] = 1. Hence 6(p) =P[A¢] =0.
Now assume d > 2.
Lower bound. First we show p. > Tl—l' Clearly, for any n € N,

P[#C?(0) = oo] < P[there is an x € C?(0) with ||x|lec =n].

We want to estimate the probability that there exists a point x € C?(0) with distance
n from the origin. Any such point is connected to the origin by a path without self-
intersections 7 that starts at O and has length m > n. Let Iy, be the set of such
paths. Clearly, #I1y ,, < 2d - (2d — 1)~ since there are 2d choices for the first step
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and at most 2d — 1 choices for any further step. For any = € Iy ,,, the probability
that r uses only open edges is

P[rx is open] = p™.
Hence, for p < 2111——1’

[e.e]

0(p) < Z Z P[r is open]

m=nmelly,;,

o0

2d .
2d—1 2_(@d=1p)

m=n

=<

= 2 2d —1)p)" =30
= Gd= D - ed—hp D) =0

We conclude that p. > ﬁ.

Upper bound. We can consider Z? as a subset of Z¢ x {0}  Z¢*!. Hence, if
percolation occurs for p in Z?, then it also occurs for p in Z4*!. Hence the corre-
sponding critical values are ordered p.(d + 1) < p.(d).

Thus, it is enough to consider the case d = 2. Here we show p, < % by using a
contour argument due to Peierls [127], originally designed for the Ising model of a
ferromagnet, see Example 18.16 and (18.9).

For N € N, we define (compare (2.12) with x = (i, 0))

N
Cy =[P (6. 0)
i=0
as the set of points that are connected (along open edges) to at least one of

the points in {0, ..., N} x {0}. Due to the subadditivity of probability (and since
P[#C?((i,0)) = oo] =6 (p) for any i € Z), we have

P[#Cy = o0].

. 1
0P =517 > P[#CP((i.0)) = 00] = N
i=0

Now consider those closed contours in the dual graph (Zz, E ) that surrounds Cy
if #Cy < oo. Here the dual graph is defined by

~ 11
72 _ — - Zz’

(2 2)+
E={{x,y}:x,yeZ |x -yl =1}.

An edge ¢ in the dual graph (Z2, E) crosses exactly one edge e in (Z2, E). We
call ¢ open if e is open and closed otherwise. A circle y is a self-intersection free
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Fig. 2.2 Contour of the cluster Cs

path in (72, E) that starts and ends at the same point. A contour of the set Cy is a
minimal circle that surrounds Cy. Minimal means that the enclosed area is minimal
(see Fig. 2.2). Forn > 2N, let

I, = {y .y is a circle of length n that surrounds {0, ..., N} x {O}}.

We want to deduce an upper bound for #I,. Let y € I, and fix one point of y.
For definiteness, choose the upper point (m + %, %) of the rightmost edge of y that

crosses the horizontal axis (in Fig. 2.2 this is the point (5 + %, %)). Clearly, m > N

and m < n since y surrounds the origin. Starting from (m + %, %), for any further
edge of y, there are at most three possibilities. Hence

#I, <n-3".

We say that y is closed if it uses only closed edges (in E). A contour of Cy is
automatically closed and has a length of at least 2N. Hence for p > %

o0
P[#Cy < 0] = Z P[there is a closed circle y € I},]
n=2N
< Z (31— p)" =20,
n=2N

We conclude p, % O
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In general, the value of p. is not known and is extremely hard to determine. In the
case of bond percolation on 72, however, the exact value of Pc can be determined
due to the self-duality of the planar graph (Z2, E). (If G = (V, E) is a planar graph;
that is, a graph that can be embedded into R2 without self-intersections, then the
vertex set of the dual graph is the set of faces of G. Two such vertices are connected
by exactly one edge; that is, by the edge in E that separates the two faces. Evidently,
the two-dimensional integer lattice is isomorphic to its dual graph. Note that the
contour in Fig. 2.2 can be considered as a closed path in the dual graph.) We cite a
theorem of Kesten [95].

Theorem 2.46 (Kesten 1980) For bond percolation in 72, the critical value is
pe=7% and 0(pc) =0.

Proof See, for example, the book of Grimmett [63, pp. 287ff]. 0

It is conjectured that 6 (p.) = 0 holds in any dimension d > 2. However, rigorous
proofs are known only for d =2 and d > 19 (see [67]).

Uniqueness of the Infinite Open Cluster*

Fix a p such that 6(p) > 0. We saw that with probability one there is at least one
infinite open cluster. Now we want to show that there is exactly one.
Denote by N € {0, 1, ..., oo} the (random) number of infinite open clusters.

Theorem 2.47 (Uniqueness of the infinite open cluster) For any p € [0, 1], we have
P,[N <1]=1.

Proof This theorem was first proved by Aizenman, Kesten and Newman [2, 3]. Here
we follow the proof of Burton and Keane [23] as described in [63, Section 8.2].
The cases p =1 and 6(p) = 0 (hence in particular the case p = 0) are trivial.
Hence we assume now that p € (0, 1) and 6(p) > 0.
Step 1. We first show that

P,[N=m]=1 forsomem=0,1,...,00. (2.14)

We need a 01 law similar to that of Kolmogorov. However, N is not measurable
with respect to the tail o -algebra. Hence we have to find a more subtle argument.
Let u; = (1,0, ...,0) be the first unit vector in Z¢. On the edge set E, define the
translation v : E — E by t({x, y)) = (x +u1,y +uyp). Let

Eo:={{(x1,....%2), (1, -....ya)) € E :x1 =0, y; = 0}

be the set of all edges in Z¢ that either connect two points from {0} x Z?~! or one
point of {0} x 741 with one point of {1} x 741, Clearly, the sets (7" (Eg),n € Z)
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are disjoint and £ = Lﬂnez " (Ey). Hence the random variables Y, := (an(e))eeEw

n € Z, are independent and identically distributed (with values in {0, 1}£0). Define
Y = (Yw)nez and T(¥) = (Yut1)nez. Define A, € {0, 1}* by

{YeAp}={N=m}

Clearly, the value of N does not change if we shift all edges simultaneously. That
is, {Y € A} = {v(Y) € A,,}. An event with this property is called invariant or
shift invariant. Using an argument similar to that in the proof of Kolmogorov’s 0-1
law, one can show that invariant events (defined by i.i.d. random variables) have
probability either O or 1 (see Example 20.26 for a proof).

Step 2. We will show that

P,[N=m]=0 foranym e N\ {1}. (2.15)

Accordingly, let m = 2,3,.... We assume that P[N = m] = 1 and show that this
leads to a contradiction.

For L € N, let By :={—L,...,L} and denote by E; = {e = (x,y) € E :
x,y € B} the set of those edges with both vertices lying in By. For i =0, 1, let
Di ={X/ =iforallec E;}.Let N i be the number of infinite open clusters if we
consider all edges ¢ in E; as open (independently of the value of X7). Similarly
define NE where we consider all edges in E; as closed. Since Pp[DZ] > 0, and
since N = m almost surely, we have N ’L = m almost surely for i =0, 1.

Let

Ap= | P ner(x?) =) n {#CP (x!) =#C)(x%) = oo}

x!,x2eBL\BL_

be the event where there exist two points on the boundary of By that lie in different
infinite open clusters. Clearly, A% N =2} for L — o0.

Define Ai,o in a similarly way to A2 ; however, we now consider all edges e € E,
as closed, irrespective of whether XP=1or X =0.1f A% occurs, then there are
two points x!, x% on the boundary of By such that for any i = 1,2, there is an
infinite self-intersection free open path 7 starting at x' that avoids x37%. Hence
Ai C A%,0~ Now choose L large enough for P[A%,o] > 0.

If A%,o occurs and if we open all edges in By, then at least two of the infinite
open clusters get connected by edges in By. Hence the total number of infinite open
clusters decreases by at least one. We infer P,[N} < N? — 1] > PP[A%,O] > 0,
which leads to a contradiction.

Step 3. In Step 2, we have shown already that N does not assume a finite value
larger than 1. Hence it remains to show that almost surely N does not assume the
value oo. Indeed, we show that

P,[N >3]=0. (2.16)

This part of the proof is the most difficult one. We assume that P,[N > 3] > 0 and
show that this leads to a contradiction.



2.4 Example: Percolation 73

We say that a point x € Z is a trifurcation point if

e x is in an infinite open cluster C? (x),

e there are exactly three open edges with endpoint x, and

e removing all of these three edges splits C? (x) into three mutually disjoint infinite
open clusters.

By T we denote the set of trifurcation points, and let 7y := T N Br. Let r :=
P,[0 € T]. Due to translation invariance, we have (#BL)_IE p#TL] =r for any L.
(Here E,[#T] denotes the expected value of #7;, which we define formally in
Chapter 5.) Let

i= U (Nierener-m)

x!,x2,x3eB\B_ i#]

(Ao ==

i=1

be the event where there are three points on the boundary of By, that lie in different
infinite open clusters. Clearly, A3 T {N = 3} for L — oo.

As for A2 1.0» We define A3L o as the event where there are three distinct points on
the boundary of By that lie in different infinite open clusters if we consider all edges

in E, as closed. As above, we have A C A

For three distinct points xlx2,x3 ¢ B \ BL_l, let Foi 243 be the event where

forany i =1, 2, 3, there exists an infinite self-intersection free open path 7 ,; starting
at x' that uses only edges in E” \ E and that avoids the points x/, j 7 i. Then

3
A7 o C U Fi1 2 3.
xlx? x3eB\BL_y
mutually distinct

Let L be large enough for P, [Ai’o] >P,[N > 3]/2 > 0. Choose three pairwise
distinct points xx2, X3¢ B \ Bp—1 with P[7[Fx],x2,x3] > 0.

If Fy1 2 3 occurs, then we can find a point y € By, that is the starting point of
three Inutually disjoint (not necessarily open) paths 71, 72 and 73 that end at x!, x2
and x3. Let G y.x1,x2, 3 be the event where in E exactly those edges are open that
belong to these three paths (that is, all other edges in E are closed). The events
Fyi 23 and Gy 1 2 3 are independent, and if both of them occur, then y is a

trifurcation point. Hence

#
r=P,ly e T1=P,[F,i 231 (p A (1—p)* >0

Now we show that r must equal 0, which contradicts the assumption
P,[N >3] > 0. Let K be the set of all edges which have at least one endpoint
in Br. We consider two edges in K; as equivalent if there exists a path in Br
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along open edges that does not hit any trifurcation point and which joins at least
one endpoint of each of the two edges. We denote the equivalence relation by R
and let U;, = K /R be the set of equivalence classes. (Note that the three neigh-
boring edges of a trifurcation point are in different equivalence classes.) We turn
the set Hy, := U U T into a graph by considering two points x € 77, and u € Uy,
as neighbors if there exists an edge k € u which is incident to x. Note that each
point x € 77 has exactly three neighbors which are in Ur. The points in Uy, can be
isolated (that is, without neighbors) or can be joined to arbitrarily many points in
Ty, but notin Uy

A circle is a self-avoiding (finite) path that ends at its starting point. Note
that the graph Hy has no circles. To show this assume there was a self-avoiding
path (ho, k1, ..., hy,) starting and ending in some point kg = h, = x € Tr. Then
hi,h,_1 € Uy are distinct but connected in K? even if we remove x. However,
by the definition of the trifurcation point x, this is impossible. On the other hand,
if there was a self-avoiding path (go, ..., g&x) starting and ending in some point
g0 =g8m =u € U, then (g1, 82,.-.,8m, &1) is a self-avoiding path starting and
ending in g1 € T1. However, we have just shown that such a path could not exist.

Write deg Hy, (h) for the degree of h € Hy; that is, the number of neighbors of &
in Hy. A point & with degy, (h) =1 is called a leaf of Hy. Obviously, only points
of U can be leaves. Let Z be a connected component of Hj, that contains at least
one point x € 7y . Since Z is a tree (that is, it is connected and contains no circles),
we have

1
#Z—1=2 > degy, (h).
heZ
Rearranging this formula yields an expression for the number of leaves:
#lueZ degy, )=1}=2+ (degy, () —2)"
heZ

>2+#{heZ:degy, (h) >3}
=24+ #(ZNTL).

Summing over the connected components Z of Hy with at least one point in 77, we
obtain

#{u € Hy :degy, (u) =1} > #T.

Observe that any leaf u € Hy, contains an edge that is incident to a point x € Tp..
Hence the edges of u lie in an infinite open cluster of K7 and there is at least one
edge k € u incident to a point at the boundary By, \ By of By . For distinct leaves
these are distinct points since the leaves belong to disjoint open clusters. Hence we
get the bound

#Tp <#(BL\ BL-1)
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and thus
#Tp, - #(BL \ BL-1) -
#B; — #By, -

dr—

i}

L

Now r = (#BL)*IEP[#TL] <d/L implies r = 0. (Note that in the argument we

used the notion of the expected value E ,[#17 ] that will be formally introduced only
in Chapter 5.) U



Chapter 3
Generating Functions

It is a fundamental principle of mathematics to map a class of objects that are of
interest into a class of objects where computations are easier. This map can be one to
one, as with linear maps and matrices, or it may map only some properties uniquely,
as with matrices and determinants.

In probability theory, in the second category fall quantities such as the median,
mean and variance of random variables. In the first category, we have characteris-
tic functions, Laplace transforms and probability generating functions. These are
useful mostly because addition of independent random variables leads to multipli-
cation of the transforms. Before we introduce characteristic functions (and Laplace
transforms) later in the book, we want to illustrate the basic idea with probability
generating functions that are designed for Ny-valued random variables.

In the first section, we give the basic definitions and derive simple properties.
The next two sections are devoted to two applications: The Poisson approximation
theorem and a simple investigation of Galton—Watson branching processes.

3.1 Definition and Examples

Definition 3.1 (Probability generating function) Let X be an Ny-valued random
variable. The (probability) generating function (p.g.f.) of Px (or, loosely speaking,
of X) is the map yp, = ¥x defined by (with the understanding that 00=1)

Yx :[0,11—1[0,1], z+> ) P[X=n]". 3.1)
n=0

Theorem 3.2

(1) Y¥x is continuous on [0, 1] and infinitely often continuously differentiable on
(0,1). For n € N, the nth derivative 1/[;;1) Sfulfills

A. Klenke, Probability Theory, Universitext, DOI 10.1007/978-1-4471-5361-0_3, 77
© Springer-Verlag London 2014
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lzi%rllw)(;‘)(z)=ZP[X=k]~k(k—1)...(k—n+1), 3.2)
' k=n

where both sides can equal oco.

(i1) The distribution Py of X is uniquely determined by V.

(iii) For any r € (0,1), ¥x is uniquely determined by countably many values
Yx(xi), xi €[0,r], i € N. If the series in (3.1) converges for some 7 > 1, then
the statement is also true for any r € (0, z) and we have

11%111 vV =y (1) <oo forneN.
X

In this case, ¥y is uniquely determined by the derivatives w)((") (1),neN.

Proof The statements follow from the elementary theory of power series. For the
first part of (iii), see, e.g. [148, Theorem 8.5]. Il

Theorem 3.3 (Multiplicativity of generating functions) If X1, ..., X, are inde-
pendent and No-valued random variables, then

n
VX o, =] [ ¥xi-

i=1

Proof Let z € [0, 1) and write ¥x, (z) ¥x,(z) as a Cauchy product

Vx, (D) ¥x, (1) = (Z P[X| = n]z”) (Z P[X, = n]z”)
n=0 n=0
" (Z P(X, =mIP[X;=n — m])

m=0

M

n=0

n
'Y PXi=m, Xo=n—m]
0 m=0

M

n

M

P(X |+ X2 =nlz" = ¥x,+x,(2).

Il
=}

n

Inductively, the claim follows for all n > 2. O

Example 3.4
(i) Let X be by, ,-distributed for some n € N and let p € [0, 1]. Then

n

Yx@ =) <:1>pm(1 —p)" " =(pz+ 1 -p)".  (33)

m=0
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(ii) If X, Y are independent, X ~ by, , and Y ~ b, p, then, by Theorem 3.3,

Yxty(@ = (pz+ A =p))"(pz+ 1 =p)' = (pz+ 1 - p)" ™"

Hence, by Theorem 3.2(ii), X + Y is by, 4, p-distributed and thus (by The-
orem 2.31)

bin,p *bp,p =bimgn,p.

(iii) Let X and Y be independent Poisson random variables with parameters A > 0
and p > 0, respectively. That is, P[X =n] =e~*A"/n! for n € Ny. Then

wpou(z)—z - O‘HZ) =M, (3.4)

n=0

Hence X + Y has probability generating function
Ypoi, (2) - Ypoi, (2) = 7DD = yp  (2).
Thus X + Y ~ Poi; 1. We conclude that
Poi;, * Poi, = Poi; 1. 3.5)

(iv) Let Xy,..., X, ~ yp, be independent geometrically distributed random vari-
ables with parameter p € (0, 1). Define ¥ = X; + ... 4+ X,,. Then, for any
z€[0, 1],

o0
p
Ux @ =) p(l-pfd=—rree. (3.6)
! ; 1= (= p)
By the generalized binomial theorem (see Lemma 3.5 with « = —n), Theo-
rem 3.3 and (3.6), we have
pl’l
Uy (@ =vx,@)" = ———
! . (1= (1= pa)
o
=7 ( )( DE(1 = p)fe

k=0
Z o ((k))z

Here, for r € (0, o0) and p € (0, 1],

bip=2 (;r)(—l)kp’(l - p)koy (3.7)
k=0
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is the negative binomial distribution with parameters r and p. By the unique-
ness theorem for probability generating functions, we get ¥ ~ b, .; hence (see

Definition 2.29 for the nth convolution power) b,; »= y;”. O

Lemma 3.5 (Generalized binomial theorem) For o € R and k € Ny, we define the
binomial coefficient

o ::a'(a—l)...(a—k—i—l). 3.8)
k k!
Then the generalized binomial theorem holds:
> (a
(l—i—x)a:Z( >xk for all x € C with |x| < 1. (3.9)
k
k=0
In particular, we have
1 . [(2n\ _ .
= Z 47" forall x € C with |x| < 1. (3.10)
1—x o\

Proof The map f : x — (1 + x)® is holomorphic up to possibly a singularity at
x = —1. Hence it can be developed in a power series about 0 with radius of conver-
gence at least 1:

o
PO
fo=> g forlx < 1.
k=0
For k € Ny, the kth derivative is f®(0) = a( — 1)... (¢ — k + 1). Hence (3.9)
holds.
The additional claim follows by the observation that (for « = —1/2) we have

) =Cev 0

Exercise 3.1.1 Show that b;p * b;p = br_ﬂ’p for r, s € (0,00) and p € (0, 1].

Exercise 3.1.2 Give an example for two different probability generating func-
tions that coincide at countably many points x; € (0, 1), i € N. (That is, in Theo-
rem 3.2(iii), the assumption ¥ (z) < oo for some z > 1 cannot be dropped.)

3.2 Poisson Approximation

Lemma 3.6 Let v and (i,)nen be probability measures on (No, 2N0) with gener-
ating functions V¥ and {,,, n € N. Then the following statements are equivalent.
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n—o0

() un({k}) — w(k}) forall k € Ny.
(i) pn(A) "= 1(A) forall A C No.
(iii) Yn(z2) = ¥(z) forall z € [0, 1].
(iv) Yu(z) =5 ¥ (2) forall z € [0, 1) for some n € (0, 1).

We write iy = w if any of the four conditions holds and say that (iun)neN con-
verges weakly to L.

Proof (1) = (ii) Fix ¢ > 0 and choose N € N such that
e
,u({N—I—l,N—}—Z,...}) < 7

For sufficiently large ng € N, we have

N
3 a(th)) — (k)| < 2 for all n > .
k=0

In particular, for any n > ng, we have w,{N + 1, N +2,...}) < % Hence, for

n = no,
[ (A) = (A < pa((N+1L,N+2, . ) +u(IN+1L,N+2,..})

D (k) = (k)]

keAN{0,...,N}

<Eé&.

(il) = (i) This is trivial.
(i) < (i) <= (iv) This follows from the elementary theory of power se-
ries. O

Let (pn k)n.ken be numbers with p, x € [0, 1] such that the limit

o0
A :=nlirgozpn,k € (0, 00) (3.11)
k=1

exists and such that lim,_, o Z,fil przl)k =0 (e.g., ponkx = A/n for k < n and
Pnk =0 for k > n). For each n € N, let (X, x)ren be an independent family of
random variables with X, x ~ Ber,, ,.
Define
o0 k
S = an,l and S} := ZX,” for k € N.
=1 =1

Theorem 3.7 (Poisson approximation) Under the above assumptions, the distri-
butions (Psn),eN converge weakly to the Poisson distribution Poi,,.
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Proof The p.gf. of the Poisson distribution is ¥ (z) = ¢*@~D (see (3.4)). On
the other hand, S" — S,’; and S,’j are independent for any k € N; hence {gn =
1//3;3 . wS"—S,’{“ Now, for any z € [0, 1],

0
=Yg @ =1-P[S" =S¢ >=1]=1— > puy k2o,
I=k+1

> Vs (2)
T Vg (@)

hence

e¢]

Y (@) = lim Y (@) = [ [(pnsz+ 1= pa)

=1

= eXp(Z log(1 + pni(z — 1))).

=1

Note that |log(1 +x) — x| < x2 for x| < % By assumption, max;ey pn,; — 0
for n — oo; hence, for sufficiently large n,

(Zlog(l + pua(z — 1))) ~ ((z - 1>Zp,,,l)
=1

=1

o o0
2 n— 00
SE Pni = E Pl | 03X pnp —> 0.
=1

=1

Together with (3.11), we infer

o0
lim ¥ (z) = lim exp((z D) an’l> — Ml
n—oo n—oo

=1

3.3 Branching Processes

Let T, X1, X2, ... be independent Ny-valued random variables. What is the distri-
bution of § := ZZ:I X, ? First of all, note that S is measurable since

(S=kt=JIr=nn{Xi+...+ X, =k)}.
n=0

Theorem 3.8 If the random variables X1, X2, ... are also identically distributed,
then the probability generating function of S is given by V¥s(z) = ¥r (Vx, (2)).
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Proof We compute

Ys(z) =Y PIS=k]z*

k=0

o0 o0
:ZZP[T:n]P[Xl +o 4 X, =k
k=0n=0

o
=Y PIT =nlyx, ()" =¥r(¥x, ().
n=0 O
Now assume that pq, p1, p2,... € [0,1] are such that Z,fio pr = 1. Let
(Xn,i)n,ieN, be an independent family of random variables with P[X,, ; = k] = px
for all i, k, n € Ny.
Let Zop=1 and

Zn—1
Z, = Z Xn—1,; forneN.
i=1
Z, can be interpreted as the number of individuals in the nth generation of a

randomly developing population. The ith individual in the nth generation has X, ;
offspring (in the (n + 1)th generation).

Definition 3.9 (Z,),cN, is called a Galton—Watson process or branching process
with offspring distribution (pi)ken,-

Probability generating functions are an important tool for the investigation of
branching processes. Hence, let

Y@ =) pt
k=0

be the p.g.f. of the offspring distribution and let v/ be its derivative. Recursively,
define the nth iterate of v by

Yi:=¢ and VY, =¥ oy, forn=2,3,....
Finally, let vz, be the p.g.f. of Z,,.

Lemma 3.10 v, =z, foralln e N.

Proof For n = 1, the statement is true by definition. For n € N, we conclude induc-
tively by Theorem 3.8 that ¥z,,, =¥ o ¥z, = ¥ o ¥y = Vut1. O
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Clearly, the probability g, :=P[Z, = 0] that Z is extinct by time n is monotone
increasing in n. We denote by
q = lim P[Z, =0]
n—oo
the extinction probability; that is, the probability that the population will eventually
die out.

Under what conditions do we have ¢ =0, ¢ =1, or g € (0, 1)? Clearly, g > py.
On the other hand, if pg = 0, then Z,, is monotone in n; hence ¢ = 0.

Theorem 3.11 (Extinction probability of the Galton—Watson process) Assume
p1 # 1. Then:

) F:={rel0,1]:¥()=r}={q,1}.
(ii) The following equivalences hold:

o
g<l = limy'@)>1 kak>l.
1M =

Proof (i) We have ¥ (1) = 1; hence 1 € F. Note that

gn =Yn(0) =¥ (gp—1) forallmeN

and ¢, 1 ¢. Since V' is continuous, we infer
V(@ =v(Jim g,) = lim ¥(g,) = lim g1 =q.
n— 00 n— oo n—oo

Thus g € F. If r € F is an arbitrary fixed point of i, then r > 0 = ¢g¢. Since V' is
monotone increasing, it follows that r = ¥ (r) > ¥ (go) = ¢1. Inductively, we get
r > q, for all n € Ny; that is, r > g. We conclude ¢ = min F.

(ii) For the first equivalence, we distinguish two cases.

Case I: lim;41 ¥'(z) < 1. Since ¥ is strictly convex, in this case, we have ¥ (7) > z
for all z € [0, 1); hence F = {1}. We conclude g = 1.

Case 2: lim;41 ¥'(z) > 1. As ¢ is strictly convex and since ¥ (0) > 0, there is a
unique r € [0, 1) such that ¢ (r) =r. Hence F ={r, 1} andg =min F =r.

The second equivalence in (ii) follows by (3.2). O

For further reading, we refer to [5].



Chapter 4
The Integral

Based on the notions of measure spaces and measurable maps, we introduce the
integral of a measurable map with respect to a general measure. This generalizes
the Lebesgue integral that can be found in textbooks on calculus. Furthermore, the
integral is a cornerstone in a systematic theory of probability that allows for the
definition and investigation of expected values and higher moments of random vari-
ables.

In this chapter, we define the integral by an approximation scheme with simple
functions. Then we deduce basic statements such as Fatou’s lemma. Other important
convergence theorems for integrals follow in Chapters 6 and 7.

4.1 Construction and Simple Properties

In the following, (£2, A, i) will always be a measure space. We denote by E the
vector space of simple functions (see Definition 1.93) on (£2, A) and by

Et:={fek: f>0)

the cone (why this name?) of nonnegative simple functions. If

m
f=) il @.1)
i=1
for some m € N and for «1,...,a, € (0,00), and for mutually disjoint sets
Ay, ..., Ay € A, then (4.1) is said to be a normal representation of f.

Lemmad.l If f =3"[" aila, and f =3"}_, Bjlp; are two normal representa-
tions of f € BT, then

> (A=) Bju(B)).
i=1 j=1
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Proof If u(A; N Bj) > 0 for some i and j, then A; N B; # ¥, and f(w) =o; =
Bj for any w € A; N B;. Furthermore, clearly A; C (J}_; B; if ; # 0, and B; C
/L, A; if Bj # 0. We conclude that

Za,u(A )= ZZ%M(A NB))

i=1 j=1

ZZﬁju(A N B; )—Zﬁ,u(B)
i=1j=1 j=1

O

This lemma allows us to make the following definition (since the value of 1 (f)
does not depend on the choice of the normal representation).

Definition 4.2 Define the map I : E* — [0, co] by

I(f)=)_aip(Ai)

i=1
if f has the normal representation f = /L o;1y,.

Lemma 4.3 The map I is positive linear and monotone increasing: Let f, g € ET
and a > 0. Then the following statements hold.

@ Iaf)=al(f).
(i) I(f+8)=1(f)+1(g).
(i) If f < g, then I(f) < 1(g).

Proof This is left as an exercise. g

Definition 4.4 (Integral) If f : £2 — [0, co] is measurable, then we define the inte-
gral of f with respect to u by

[ Fdwi=supl1e):g B g < 1.

Remark 4.5 By Lemma 4.3(iii), we have I (f) = [ f du forany f € E*. Hence the
integral is an extension of the map I from E* to the set of nonnegative measurable
functions. O

If f,g: 52 — R with f(w) < g(w) for any w € £2, then we write f < g. Anal-
ogously, we write f > 0 and so on. On the other hand, we write “f < g almost
everywhere” if the weaker condition holds that there exists a p-null set N such that
f(w) < g(w) for any w € N€.

Lemma 4.6 Let f, g, f1, f2, ... be measurable maps §2 — [0, oo]. Then:
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(i) (Monotonicity) If f < g, then [ fdu < [gdpu.
(ii) (Monotone convergence) If f, 1 f, then the integrals also converge: [ f,du 1

[ fdu.
(iii) (Linearity) If o, B € [0, 00], then

/(af+ﬁg)du=a/fdu+ﬂ/gdu,
where we use the convention oo - 0:=0.

Proof (1) This is immediate from the definition of the integral.
(i1) By (i), we have

tim [ fude=sop [ frauz [ fau.
n—oo

neN

Hence we only have to show [ fdu <sup,cy [ fndu.
Let g € ET with g < f. It is enough to show that

sup / fudu = / gdp. 42)

neN

Assume that the simple function g has the normal representation g = Z,N: 1oily,
for some o1, ..., oy € (0, 00) and mutually disjoint sets Aj, ..., Ay € A. For any
& > 0 and n € N, define the set

B:={f,>=—-e)g}

Since f, 1 f > g, we have B 1 §2 for any ¢ > 0. Hence, by (i), for any & > 0,

/fn d#zf((l —S)g]lgﬁ)du

N N
= Z(l —e)aju(A; N BE) =% Z(l —)aipn(A;)
i=1 i=1

:(1—8)/gdu.

Letting ¢ |, 0 implies (4.2) and hence the claim (ii).

(iii) By Theorem 1.96, any nonnegative measurable map is a monotone limit of
simple functions. Hence there are sequences ( f;)nen and (g,)nen in ET such that
fa? f and g, 1 g. Thus also (af, + Bgn) T af + Bg. By (ii) and Lemma 4.3, this
implies
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[ s +pordi = jim_ [ @h+ pendu
=a lim /fndy,—i—ﬂ lim /gndu=a/fdu+ﬂfgdu.
n—oQ n—oo
g
For any measurable map f : 2 — R, we have f+ <|f| and f~ <|f|, which
implies [ f¥du < [|f|du. In particular, if [|f|du < oo, then also [ f~du <

oo and f ftdu < oo. Thus we can make the following definition that is the final
definition for the integral of measurable functions.

Definition 4.7 (Integral of measurable functions) A measurable function
f 2 — Ris called p-integrable iff | fldu < oo. We write

Ll :=L£Y(2, A, p) = {f : 2 — R: f is measurable and / | fldu < oo}.

For f € £'(u), we define the integral of f with respect to i by
[r@uaor= [ raw= [ rran- [ ran @y

If we only have [ f~du < oo or [ fTdup < oo, then we also define | fdu by

(4.3). Here the values 400 and —oo, respectively, are possible.
For A € A, we define / fdu:= /(f]lA)dy,.
A

Theorem 4.8 Let f: 2 — [0, oo] be a measurable map.

(i) We have f =0 almost everywhere if and only if [ fdu =0.
(i) If [ fdu < oo, then f < oo almost everywhere.

Proof (1) “=" Assume f = 0 almost everywhere. Let N = {w : f(w) > 0}. Then
f<oo-1yandnly 1 oo-1y. From Lemma 4.6(i) and (ii), we infer

OSffdus/(oo-nmdu:ngrgo/nﬂwu:o.

“—="Let N, ={f > %}, n € N. Then N, 1 N and

0=/fdM2/lﬂN,,dM=M(N")'
n

n

Hence (N,) =0 for any n € N and thus u(N) =0.
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(i) Let A ={w: f(w) = oo}. For n € N, we have %f]l{fz,,} > 1yr>n). Hence
Lemma 4.6(i) implies

1 1 —
M(A):/ﬂAdME/ﬂ{on}dﬂf;/fﬂ{on}dMS;/fdun_o)oo. .

Theorem 4.9 (Properties of the integral) Let f, g € £' ().

(i) (Monotonicity) If f < g almost everywhere, then [ fdu < [ gdpu.
In particular, if = g almost everywhere, then [ fdu= [ gdu.
(ii) (Triangle inequality) | [ fdu| < [|fldp.
(iii) (Linearity) Ifa,pB R, then af + Bg € L' (n) and

/(af+ﬂg)duzaffdu+ﬂ/gdu-

This equation also holds if at most one of the integrals [ fdw and [ gdu is
infinite.

Proof (i) Clearly, f* < g% and f~ > g~ a.e. Hence, by Lemma 4.6(i),

/f+du§/g+du and ff_duzfg_du-
This implies

/fdu=/f+du—/f_dus/g+du—/g_du=fgdu~

(i) Since f* + f~ =|f|, Lemma 4.6(iii) yields

'/fdquf*du—/f—du §/f+du+/f‘du
= [(r7+ )du= [ 1714

(iii) Since |af + Bg| < la| - |f] + |B] - |g|, Lemma 4.6(i) and (iii) yield that
af + Bg € L' (). In order to show linearity, it is enough to check the following
three properties.

@ [(f+&du=[fdu+ [gdu.
) [afdu=af fdufora=>0.
© [(=fHdp=—[fdu.
(@) We have (f + )" = (f+ )~ =f+g=f"—f" +¢" — g ; hence
(f+e9 "+ f +g =(f+g + fT+g". By Lemma 4.6(iii), we infer

/(f+g)+du+/f_du+/g_du=/(f+g)_du+/f+du+/g+du~
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Hence

[ +oan=[roran- [u+oau
=/f+du—/f_du+/g+du—/g_du
Z/fdu+/gdu-

(b) For o > 0, we have

/ozfdu=/ocf"'d,u,—/af_d,uzoz/f+du—a/f_d,u=a/fd,u.

(c) We have

/ (—f)du = / (—f)* du— f (— ) du

= [ rau- [ rran=- [ ran

The supplementary statement is simple and is left as an exercise. U

Theorem 4.10 (Image measure) Let (§2, A) and (2', A') be measurable spaces, let
w be a measure on (§2, A) and let X : 2 — §2' be measurable. Let i/ = 1o X~ be
the image measure of i under the map X . Assume that f : §2' — R is ' -integrable.
Then f o X € L' (1) and

/(foX)d,u:/fd(MoX_l).

In particular, if X is a random variable on (82, A, P), then
/f(x)P[X edx]:= / fx)Px[dx] = / fdPx = f f(X(a)))P[da)].

Proof This is left as an exercise. O

Example 4.11 (Discrete measure space) Let (§2, .A) be a discrete measurable space
and let u = Zwe() a0, for certain numbers ¢, >0, w € 2. Amap f:2 — Ris
integrable if and only if )" o | f(w)|ae < 00. In this case,

[ ran=¥ s

weS2 <>

Definition 4.12 (Lebesgue integral) Let A be the Lebesgue measure on R"” and
let f: R" — R be measurable with respect to 5*(R")-B(R) (here B*(R") is the
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Lebesgue o -algebra; see Example 1.71) and A-integrable. Then we call

/fdx

the Lebesgue integral of f. If A € B(R") and f : R” — R is measurable (or
f:A— R is B*(R")|4—B(R)-measurable and hence f14 is B*(R")-B(R)-

measurable), then we write
/ fdx ::/flAdA.
A

Definition 4.13 Let u be a measure on (£2, .4) and let f : 2 — [0, c0) be a mea-
surable map. Define the measure v by

V(A) = /(ﬂAf)d/L for A € A.
We say that fu := v has density f with respect to .

Remark 4.14 We still have to show that v is a measure. To this end, we check the
conditions of Theorem 1.36. Clearly, v(@) = 0. Finite additivity follows from ad-
ditivity of the integral (Lemma 4.6(iii)). Lower semicontinuity follows from the
monotone convergence theorem (Theorem 4.20). O

Theorem 4.15 We have g € L(f ) if and only if (gf) € L' (). In this case,
[eatzi= [ @rdn

Proof First note that the statement holds for indicator functions. Then, with the
usual arguments, extend it step by step first to simple functions, then to nonnegative
measurable functions and finally to signed measurable functions. g

Definition 4.16 For measurable f : 2 — R, define

1/p
||f||p:=</|f|”du> . it pell,oo),

and

I flloo :=inf{K >=0:u({IfI > K})=0}.

Further, for any p € [1, oo], define the vector space

LP ()= {f : 2 — R is measurable and Ifllp, < oo}
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Theorem 4.17 The map || - ||| is a seminorm on L' (1v); that is, for all f, g € L' (1)
anda € R,

laeflln=lal-I1f1h,
If+gl <1 flh+ gl (4.4)
Ifl1 =0 forall f and |fl1=0 iff=0ae.

Proof The first and the third statements follow from Theorem 4.9(iii) and The-
orem 4.8(i). The second statement follows from Theorem 4.9(i) since | f + g| <
| f1+ [gl; hence

|If+g||1=/|f+g|d,u§flf|du+/lgldﬂ=I|f||1+I|gII1- 0

Remark 4.18 Infact, || +||, is a seminorm on £7 (u) for all p € [1, co]. Linearity and
positivity are obvious, and the triangle inequality is a consequence of Minkowski’s
inequality, which we will show in Theorem 7.17. O

Theorem 4.19 Let 1(2) <oo and 1 < p' < p < oo. Then LP () C Ep,(u) and
the canonical inclusion i : LP (u) — LP (u), f + f is continuous.

Proof Let f € L%(u) and p’ € [1, 00). Then |f|1’/ < ||f||g<,D almost everywhere;
hence

/|f|’”dus/||f||é’édu=||f||é’;-u(9><oo.

Thus || f — gl y < w(82)"/7'|| f — glloo for f, g € L2(11) and hence i is continuous.

Now let p, p’ €[1, 00) with p’ < p and let f € £LP(w). Then | f|” <1+ |f|?;
hence

[0 dw =+ [ 1517 dn < ox.
Finally, let f, g € £LP(w). For any ¢ > 0, we have
If —gl” =1f —glP L f—gi<e) +|f = &IP Lyp—g)5c) <P +cP 7P| f —gl”.
In particular, letting ¢ = || f — g||, we obtain

1f = glly < (c” () +c” P f — gl = (1 + 1)1 f = gl

Hence, also in this case, i is continuous. O

Exercise 4.1.1 (Sequence spaces) Now we do not assume w©(§2) < co. Assume
there exists an a > 0 such that for any A € A either u£(A) =0 or u(A) > a. Show
that the reverse inclusion to Theorem 4.19 holds,

LV () C LP(u) if1<p' <p<oo. (4.5)
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Exercise 4.1.2 Let | < p’ < p < 0o and let i be o-finite but not finite. Show that
LP () \ LP (1) # 9.

4.2 Monotone Convergence and Fatou’s Lemma

What are the conditions that allow the interchange of limit and integral? In this
section, we derive two simple criteria that prepare us for important applications such
as the law of large numbers (Chapter 5). More general criteria will be presented in
Chapter 6.

Theorem 4.20 (Monotoge convergence, Beppo Levi theorem) Let f1, f2,... €
L' () and let f : 2 — R be measurable. Assume f, 1 f a.e. for n — oo. Then

lim fnd,uszd/i,
n—00

where both sides can equal +00.

Proof Let N C £2 be anull set such that f;, (w) 1 f(w) forall w € N¢. The functions
fri=(fa — f1)lne and f':= (f — f1)1nec are nonnegative and fulfill f, 1 f'.

n—oo

By Lemma 4.6(ii), we have [ f,du — [ f'du. Since f, = f, + fi ae. and
f = f"+ f1 ae., Theorem 4.9(iii) implies

/fndu=/fldu+/f;dunj/ﬁdm/f/du:/fdu. -

Theorem 4.21 (Fatou’s lemma) Let f € L' (w) and let f1, f>, ... be measurable
with f, > f a.e. foralln € N. Then

/(liminffn> du < liminf/ jm
n—oo n—>oo

Proof By considering ( f, — f)neN, we may assume f,, > 0 a.e. for all n € N. Define

gn = inf f,.

m>n

Then g, 1 liminf,,, ~ fi» as n — 00, and hence by the monotone convergence
theorem (Lemma 4.6(ii)) and by monotonicity, g, < f, (thus [ g,du < [ f,dp),

/liminffnd,uz lim /g,,d,ugliminf/ fadu. 0
n— 00 n—o00 n—00

Example 4.22 (Petersburg game) By a concrete example, we show that in Fatou’s
lemma the assumption of an integrable minorant is essential. Consider a gamble
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in a casino where in each round the player’s bet either gets doubled or lost. For
example, roulette is such a game. If the player bets on “red”, she gets the stake back
doubled if the ball lands in a red pocket. Otherwise the bet is lost (for the player,
not for the casino). There are 37 pockets (in European roulettes), 18 of which are
red, 18 are black and one is green (the zero). Hence, by symmetry, the chance of
winning should be p = 18/37 < % Now assume the gamble is played again and
again. We can model this on a probability space (§2, A, P) where 2 = {—1, 1}N,
A= 2-L1H®N g the o-algebra generated by the cylinder sets [wy, ..., ,] and
P=((1—p)s_i + ps)® is the product measure. Denote by D, : 2 — {—1, 1},
 — o, the result of the nth game (for n € N). If in the ith game the player makes
a (random) stake of H; euros, then the cumulative profit after the nth game is

n
Sp=Y_ H;D;.
i=1

Now assume the gambler adopts the following doubling strategy. In the first round,
the stake is H; = 1. If she wins, then she does not bet any money in the subsequent
games; that is, H,, = 0 for all n > 2 if D1 = 1. On the other hand, if she loses, then
in the second game she doubles the stake; that is, H> =2 if D; = —1. If she wins
the second game, she leaves the casino and otherwise doubles the stake again and
so on. Hence we can describe the strategy by the formula

Ho— 0, ifthereisani € {1,...,n — 1} with D; =1,
T 2n L else.
Note that H,, depends on Dy, ..., D,_1 only. That is, it is measurable with respect
to o(Dy,..., Dy—1). Clearly, it is a crucial requirement for any strategy that the

decision for the next stake depend only on the information available at that time and
not depend on the future results of the gamble.

The probability of no win until the nth game is (1 — p)”; hence P[S,, =1—-2"] =
(1—p)*and P[S, =1]=1— (1 — p)". Hence we expect an average gain of

/S,,dP:(l—p)"(l—2")+(1—(1—p)”)=1—(2(1—p))n§0

since p < % (in the profitable casinos). We define

—o0, if —1=D1=Dr=...,
S =
1, else.

Then S, —> S a.s. but lim, o [ SpdP < [ SdP =1 since S =1 as. By Fa-
tou’s lemma, this is possible only if there is no integrable minorant for the sequence
(Sp)nen. If we define S :=inf{S,, : n € N}, then indeed

P[S=1-2""']=P[Di=...=D,_1=-1 and D,=1]=p(l—-p" "

Hence [SdP=)7" (1 -2""Yp(1l — p)"~! = —oco since p < 3. O
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Exercise 4.2.1 Let (£2, A, i) be a measure space and let f € £!(1). Show that for
any ¢ > 0, there is an A € A with u(A) <ocand | [, fdu— [ fdu| <e.

Exercise 4.2.2 Let f1, f>,... € Ll(u) be nonnegative and such that

lim, o [ fadp exists. Assume there exists a measurable f with f, gy f
p-almost everywhere. Show that f € £'(un) and

lim /Ifn—fldu= lim /fndu—/fdu-
n—oo n—oo

Exercise 4.2.3 Let f € £1([0, 00), 1) be a Lebesgue integrable function on [0, c0).
Show that for A-almost all ¢ € [0, c0) the series Z;j‘; 1 [ (nt) converges absolutely.

Exercise 4.2.4 Let X be the Lebesgue measure on R and let A be a Borel set with
A(A) < o0o. Show that for any & > 0, there is a compact set C C A, a closed set
D C R\ A and a continuous map ¢ : R — [0, 1] with 1¢ < ¢ < 1\ p and such that

[Ta — el <e.
Hint: Use the regularity of Lebesgue measure (Remark 1.67).

Exercise 4.2.5 Let L be the Lebesgue measure on R, p € [1,00) and let
f € LP(X). Show that for any ¢ > 0, there is a continuous function 4 : R — R
such that || f — k|, <e.

Hint: Use Exercise 4.2.4 to show the assertion first for indicator functions, then
for simple functions and finally for general f € L7 (}).

Exercise 4.2.6 Let A be the Lebesgue measure on R, p € [1, 00) and let f € LP(}).
A map h: R — R is called a step function if there exist n € N and numbers 7y <
f1<...<tpandai,...,ay suchthat h =) oxly .40
Show that for any ¢ > 0, there exists a step function & such that || f — A||, < &.
Hint: Use the approximation theorem for measures (Theorem 1.65) with the
semiring of left open intervals to show the assertion first for measurable indicator
functions. Then use the approximation arguments as in Exercise 4.2.5.

4.3 Lebesgue Integral Versus Riemann Integral

We show that for Riemann integrable functions the Lebesgue integral and the Rie-
mann integral coincide.

Let I =[a, b] C R be an interval and let A be the Lebesgue measure on /. Further,
consider sequences t = (t"),en of partitions ¢ = (#')j=0,...n of I (i.e., a =1 <
t} <... <t} =Db) that get finer and finer. That is,

,,,,,

|t"| :=max{ti” —1' = 1,...,n}”1°>°0.
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Assume that for any n € N, the partition "*! is a refinement of t"; that is,
1 1
(7S Nal (AN
For any function f I — R and any n € N, define the nth lower sum and upper

sum, respectively, by

Ly ()= Y (i =ty inf £ ([0 1)),
i=l1

Up(f) =) (i =) sup f ([ 1]))-

i=1

A function f : I — R is called Riemann integrable if there exists a ¢ such that
the limits of the lower sums and upper sums are finite and coincide. In this case, the
value of the limit does not depend on the choice of 7, and the Riemann integral of f
is defined as (see, e.g., [148])

b
[ s = tim L) = tim U 46)

Theorem 4.23 (Riemann integral and Lebesgue integral) Let f : I — R be Rie-
mann integrable on I = [a, b]. Then f is Lebesgue integrable on I with integral

b
/fdk:/ f(x)dx.
1 a

Proof Choose ¢ such that (4.6) holds. By assumption, there is an n € N with
[LL(f)] < oo and |UL(f)| < co. Hence f is bounded. We can thus replace f by
f 4 1 flloo and hence assume that f > 0. Define

gn = F ()L +Z inf £ ([0, 57) Tz s

i=1

hyp == f(b)]l + Z supf 1’ f; )))1[1" .

i=1

As t"*1 is a refinement of 1", we have g, < gn41 < hnt1 < h,. Hence there exist
g and h with g, 1 g and &, | h. By construction, we have g < h and

/gdk: lim g,,d)»: lim L. (f)
I n—oo n—o0

11m U! ()= hm /h dr= /hdk.
I
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Hence h = g A-a.e. By construction, g < f < h, and as limits of simple functions,
g and h are B(I)-B(R)-measurable. This implies that, for any o € R, the set

(fsat=(g=a)n{g=h) Y ({f =e}N{g#h})

is the union of a B([)-set with a subset of a null set and is hence in B(/)* (the
Lebesgue completion of B(7)). Hence f is B(I)*-measurable. By the monotone
convergence theorem (Theorem 4.20), we conclude

b
/fdk: lim /gndsz f(x)dx. O
1 n—oQ I a

Example 4.24 Let f :]0,1] - R, x > 1g. Then clearly f is not Riemann inte-
grable since L,(f) =0 and U,(f) =1 for all n € N. On the other hand, f is
Lebesgue integrable with integral f[o nf d) =0 because QN [0, 1] is a null set. ¢

Remark 4.25 An improperly Riemann integrable function f on a one-sided open
interval I = (a,b] or I = [0, 00) is not necessarily Lebesgue integrable. Indeed,
the improper integral [~ f (x) dx :=lim,— o fo f(x)dx is defined by a limit pro-
cedure that respects the geometry of R. The Lebesgue integral does not do that.
For example, the function f : [0, 0c0) = R, x > ﬁ sin(x) is improperly Riemann
integrable but is not Lebesgue integrable since f[o, 00) | fldA = oo. %

On the one hand, improperly Riemann integrable functions need not be Lebesgue
integrable. On the other hand, there are Lebesgue integrable functions that are not
Riemann integrable (such as 1g). The geometric interpretation is that the Riemann
integral respects the geometry of the integration domain by being defined via slim-
mer and slimmer vertical rectangles. On the other hand, the Lebesgue integral re-
spects the geometry of the range by being defined via slimmer and slimmer hori-
zontal strips. In particular, the Lebesgue integral does not make any assumption on
the geometry of the domain and is thus more universal than the Riemann integral.
In order to underline this, we present the following theorem that will also be useful
later.

Theorem 4.26 Let f : 2 — R be measurable and f > 0 almost everywhere.
Then

]

Soultszm) = [ =yl =m) @7
n=0

n=1

and

[ ran= [ uis = 48)
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Proof Define f'=|f] and f” =[f7. Then f' < f < f” and hence [ f'du <
[ fdu < [ f"du. Now the first inequality of (4.7) follows from

[ Fan=Y ulls' =kl) k=3 Y ulls =)
= iiﬂ({ff

n=1k=n

ziu({f/ i ({f =n}).

Similarly, we infer the second inequality in (4.7) from

[ ran= ZM (17" 2 = Eonlts =n =1,

If g(t) := n({f = t}) = oo for some ¢t > 0, then both sides in (4.8) equal oco.
Hence, in the following, assume g(¢) < oo for all ¢ > 0.
For ¢ > 0 and k € N, define g° := g A g(e), [ 1= fl{y>¢ and f = 2K fe as
well as
o0
af =27k Z,U,({fg > n2_k}).

n=1

<27y u({ff =) =27 T u({ff = n27) <af +27Fg(e)
n=0 n=0

Since 2 ¥ g(¢) 20, we get

/0 g‘g(t)dtz/.fgdu.

Since f¢ 1 f and g° 1 g for ¢ | 0, the monotone convergence theorem implies
(4.8). O

Exercise 4.3.1 Let f : [0, 1] — R be bounded. Show that f is (properly) Riemann
integrable if and only if f is A-a.e. continuous.
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Exercise 4.3.2 If f:[0, 1] — R is Riemann integrable, then f is Lebesgue mea-
surable. Give an example that shows that f need not be Borel measurable.

Hint: Without proof, use the existence of a subset of [0, 1] that is not Borel mea-
surable. Based on this, construct a set that is not Borel and whose closure is a null
set.

Exercise 4.3.3 Let f : [0,1] — (0,00) be Riemann integrable. Without using
the equivalence of the Lebesgue integral and the Riemann integral, show that

fol f(x)dx > 0.



Chapter 5
Moments and Laws of Large Numbers

The most important characteristic quantities of random variables are the median,
expectation and variance. For large n, the expectation describes the typical approxi-
mate value of the arithmetic mean (X +...+ X,)/n of i.i.d. random variables (law
of large numbers). In Chapter 15, we will see how the variance determines the size
of the typical deviations of the arithmetic mean from the expectation.

5.1 Moments
In the following, let (£2, A, P) be a probability space.

Definition 5.1 Let X be a real-valued random variable.

() If X € £L1(P), then X is called integrable and we call

E[X] ::/XdP

the expectation or mean of X. If E[X] = 0, then X is called centered. More
generally, we also write E[X]= [ X dP if only X~ or X is integrable.
(ii)) If n € N and X € £"(P), then the quantities

My ::E[Xk], My ::E[|X|k] foranyk=1,...,n,

are called the kth moments and kth absolute moments, respectively, of X.
(iii) If X € £L2(P), then X is called square integrable and

VarX]:=E[X?] - E[X]?

is the variance of X. The number o := +/Var[X] is called the standard devia-
tion of X. Formally, we sometimes write Var[X] = oo if E[X 2] = o0.
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(iv) If X, Y € £L2(P), then we define the covariance of X and Y by
Cov[X,Y]:=E[(X — E[X])(Y —E[Y])].
X and Y are called uncorrelated if Cov[X, Y] =0 and correlated otherwise.

Remark 5.2

(1) The definition in (ii) is sensible since, by virtue of Theorem 4.19, X € L"(P)
implies that My <ooforallk=1,...,n.

(i) If X,Y € £L2(P), then XY € L!(P) since | XY| < X? + Y2. Hence the definition
in (iv) makes sense and we have

Cov[X,Y]=E[XY] — E[X]E[Y].
In particular, Var[X] = Cov[X, X]. O

We collect the most important rules of expectations in a theorem. All of these
properties are direct consequences of the corresponding properties of the integral.

Theorem 5.3 (Rules for expectations) Let X, Y, X,, Z,, n € N, be real integrable
random variables on (2, A, P).

(i) If Px =Py, then E[X] =E[Y].

(ii) (Linearity) Let c € R. Then cX € L'(P) and X + Y € L1 (P) as well as

E[cX]=cE[X] and E[X +Y]=E[X]+E[Y].
@iii) If X > 0 almost surely, then
E[X]=0 <= X=0 almostsurely.
(iv) (Monotonicity) If X <Y almost surely, then E[X] < E[Y] with equality if
and only if X =Y almost surely.
(v) (Triangle inequality) |[E[X]| < E[|X]].

(vi) If Xn > 0 almost surely for all n € N, then E[> o> 1 X,1=Y o2 E[X,].
ii) If Z, 1 Z for some Z, then E[Z] =1lim,,—.~ E[Z,] € (—00, 00].

Again probability theory comes into play when independence enters the stage;
that is, when we exit the realm of linear integration theory.

Theorem 5.4 (Independent random variables are uncorrelated) Ler X, Y € L1 (P)
be independent. Then (XY) € LY(P) and E[XY] = E[X]E[Y]. In particular, in-
dependent random variables are uncorrelated.
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Proof Assume first that X and Y take only finitely many values. Then XY also takes
only finitely many values and thus XY € £!(P). It follows that

E[XY]= ) zP[XY=¢]
zeR\{0}
= Z Z xX— P[X_x Y =z/x]
zeR\{0} xeR\{0

= Y Z xyP[X = x]|P[Y = y]

YER\{0} xeR\{0}
Y IPIY = y])

= (Z *xP[X = x]) (
xeR yeR

=E[X]E[Y].

For N € N, the random variables Xy := Q7 V[2V|X|]) A N and Yy :=
Q@ N[2N|Y|]) A N take only finitely many values and are independent as well.
Furthermore, X 1 |X| and Yy 1 |Y|. By the monotone convergence theorem (The-
orem 4.20), we infer

E[|XY|]= NILIHOOE[XNYN] = IJEHOOE[XN]E[YN]
= (Nli_r)nooE[XN]> (NIi_r)nooE[YN]> =E[IX|]E[|7]] < 0.

Hence XY € £!(P). Furthermore, we have shown the claim in the case where X
and Y are nonnegative. Hence (and since each of the families {X T, Y *}, {X~, Y},
{XT,Y"}and {X~, Y~} is independent) we obtain

EXY]=E[(X*-Xx")(¥y*-Y7)]

XtYT]—E[X Y] -E[XTY | +E[X Y]

XT|E[Y "] -E[XT|E[YT] -E[XV]|E[Y |+ E[X |E[Y ]
Xt — X"|E[y* — Y| =E[X]E[Y]. O
Theorem 5.5 (Wald’s identity) Let T, X1, X2, ... be independent real random vari-

ables in L1(P). Let P[T € Nol = 1 and assume that X1, X2, ... are identically dis-
tributed. Define

T
ST = ZX,‘.
i=1

Then St € LY(P) and E[S7] = E[T1E[X1].
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Proof Define S, = Y ", X; for n € Ng. Then S7 = > o2 | Sy1l{7=p). By Re-
mark 2.15, the random variables S, and 1{7r—,) are independent for any n € N and
thus uncorrelated. This implies (using the triangle inequality; see Theorem 5.3(v))

o0

E[|Sy|Lir=n)] = D E[ISal]E[L(7=n)]

Mg

E[|S7]] =

n=1

Z |X1|]nPIT =n] =E[|X,[]E[T].

The same computation without absolute values yields the remaining part of the
claim. 0

We collect some basic properties of the variance.

Theorem 5.6 Let X € L2(P). Then:

(i) Var[X]=E[(X —E[X])?] > 0.
(i) Var[X]=0 <= X =E[X] almost surely.
(iii) The map f:R — R, x = E[(X — x)?] is minimal at xo = E[X] with
S (E[X]) = Var[X].

Proof (i) This is a direct consequence of Remark 5.2(ii).

(ii) By Theorem 5.3(iii), we have E[(X — E[X])?]=0 < (X —E[X])?>=0
a.s.

(iii) Clearly, f(x) = E[X?] — 2xE[X] + x? = Var[X] + (x — E[X]). O

Theorem 5.7 The map Cov : L2(P) x L*>(P) — R is a positive semidefinite sym-
metric bilinear form and Cov[X,Y] =0 if Y is almost surely constant. The de-
tailed version of this concise statement is: Let X1,..., Xm,Y1,..., Y, € £2(P)
anday,...,0y, B1,...,Pn € Raswellas d, e € R. Then

m n
COV|:d+ZOliX,‘,8+Z,BJ'Yj:| ZZaiﬂj COV[X,‘,YJ‘]. 5.1
i=l1 j=1 i,J
In particular, Var[a X] = a?Var[X] and the Bienaymé formula holds,
m m m
Var[z X,} =) Var[X;]+ »_ Cov[X;, X;]. (5.2)
i=1 i=1 ij=1
i#]j

For uncorrelated X1, ..., X;, we have Var[y /., X;1=Y ", Var[X;].
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Proof
Cov[d +) aiXi e+ Zﬁjyj}
i=1 j=1
= E[(Z o (X — E[Xi])> (Z Bi(Y; - E[Y./])ﬂ
i=1 J=1
=33 wipE[(Xi — E[X1)(Y; — E[Y;])]
i=1 j=1
= ZZO{,’ﬁjCOV[X,’, Yj]~
i=1 j=1 D

Theorem 5.8 (Cauchy—Schwarz inequality) If X, Y € £L>(P), then
(Cov[X, Y1)” < Var[X]Var[Y].

Equality holds if and only if there are a, b, c € R with |a| + |b| + |c| > 0 and such
thataX + bY +c=0a.s.

Proof The Cauchy—Schwarz inequality holds for any positive semidefinite bilinear
form and hence in particular for the covariance map. Using the notation of variance
and covariance, a simple proof looks like this:

Case 1: Var[Y] =0. Here the statement is trivial (choose a = 0, b = 1 and
c=—-E[Y]).

Case 2: Var[Y] > 0. Let 0 := — Cg;[r’[(y’]”. Then, by Theorem 5.6(i),

0 < Var[X +6Y]Var[Y]
= (Var[X]+20Cov[X, Y]+ 6*Var[Y])Var[Y]
= Var[X]Var[Y] — Cov[X, Y]?

with equality if and only if X 4 Y is a.s. constant. Now let a =1, b = 6 and
¢ =—E[X] - bE[Y].

d
Example 5.9
(i) Let p €[0, 1] and X ~ Ber,. Then
E[X*]=E[X]=P[X=1]=p

and thus Var[X] = p(1 — p).
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(ii) Letn e Nand p € [0, 1]. Let X be binomially distributed, X ~ b, ,. Then

n

E[X]=) kP[X =k]= Zk(Z) PR — pyk
k=0

k=0

n
Z n—1 _ D) —(k—
k=1

Furthermore,

E[X(X = D]=) k(k—DP[X =]
k=0

=) k(k— 1)(’;) pra—py*
k=0

n

n—1 _ (ke

=np-) ("‘“<k_1>”k (1= b=
k=1

n

n—2 _ OV (h—
=n(n—1)p2~Z<k_2)p" 21— p)rP-D
k=2

=n(n — l)pz.

Hence E[X?] =E[X (X — D]+E[X]=n?p? +np(l — p) and thus Var[X] =
np(l —p).

The statement can be derived more simply than by direct computation if we
make use of the fact that b, , = b’l"f’p (see Example 3.4(ii)). That is (see Theo-
rem 2.31), Px =Py, 4. 1y,, where Y1, ..., Y, are independent and ¥; ~ Ber),

foranyi =1,...,n. Hence
E[X]=nE[Y] =np,
Var[X]=nVar[Y{] =np(l — p).

(5.3)

(iii) Let u € Rand 02 > 0, and let X be normally distributed, X ~ N\ u,02- Then

E[X] = 1 ® e Gmw/e?) 4,
V2ro? J-oo

1 ee} ( + ) _XZ/(ZUZ) d
= — X+ e X
V2m6? J -0

1 o0 2202
:M+\/2—2/ xe ¥ gy = . (5.4)
TO —00
2

Similarly, we get Var[X] = E[X?] - ,u2 =...=0".
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(iv) Let 8 > 0 and let X be exponentially distributed, X ~ exp,. Then

© 1
E[X]:G/ xe Pdx =—,
0 0

o0 o0
Var[X]=—-6"%+ 9/ x2e % dx = 9—2<—1 +/ x2e™* dx> =672
0 0
O

Theorem 5.10 (Blackwell-Girshick) Let T, X1, X3, ... be independent real ran-
dom variables in EZ(P). Let P[T € Ng] =1 and let X1, X3, ... be identically dis-
tributed. Define

T
ST = Z X,’.
i=1
Then St € L*(P) and
Var[Sr] = E[X1]2Var[T] + E[T]Var[X].

Proof Define S, =Y _7_, X; for n € N. Then (as in the proof of Wald’s identity) S,
and 17—y, are independent; hence S? and 17—, are uncorrelated and thus

o0
E[S7] =D E[lir=n5;]
n=0

=Y E[lr—n]E[S;]

n=0

= Z P[T = n](Var[S,]+ E[S,1%)
n=0

= ZP[T =n](nVar[X]+ an[X1]2)
n=0

=E[T|Var[X,] + E[T*|E[X,]*.
By Wald’s identity (Theorem 5.5), we have E[S7] = E[T]E[X]; hence
Var[S7] = E[S}] — E[S7]* = E[T|Var[X,] + (E[T?] — E[T]*)E[X; %,
as claimed. 0

Exercise 5.1.1 Let X be an integrable real random variable whose distribution Py
has a density f (with respect to the Lebesgue measure A). Show (using Theo-
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rem 4.15) that

E[X]= f xf ()M (dx).

Exercise 5.1.2 Let X ~ B, ; be a Beta-distributed random variable with parameters
r, s > 0 (see Example 1.107(ii)). Show that

~1
Hr+s+k for any n e N.

Exercise 5.1.3 Let X1, X5, ... be i.i.d. nonnegative random variables. By virtue of
the Borel-Cantelli lemma, show that

1
limsup —X,, =

n—oo N

Oas., IifE[X|]<o0o,
oo a.s., IfE[X;]=00

Exercise 5.1.4 Let X1, X», ... be i.i.d. nonnegative random variables. By virtue of
the Borel-Cantelli lemma, show that for any ¢ € (0, 1)

i x, n | <ocas., ifE[X]< oo,
€ | =0as., if E[X{] =00

5.2 Weak Law of Large Numbers

Theorem 5.11 (Markov inequality, Chebyshev inequality) Let X be a real ran-
dom variable and let f : [0, 00) — [0, 0c0) be monotone increasing. Then for any
e > 0 with f(e) > 0, the Markov inequality holds,

E[f(XD]

In the special case f(x) = x2, we get P[|X| > ¢] < e2E[X2]. In particular, if
X € L2(P), the Chebyshev inequality holds:

P[|X —E[X]| > ¢] <& *Var[X].

Proof We have

E[F(1X)] = E[f(IX1)Liraxp=ren]
>E[f(&)L70x)> )]
> f(eP[1X] > ¢]. O
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Detivnition 5.12 Let (X,),en be a sequence of real random variables in £! (P) and
let S, =Y ' (X; —E[X;]).

(1) We say that (X,,),en fulfills the weak law of large numbers if

1~
-8,
n

lim P|:

n—oo

>8]=0 for any ¢ > 0.

(i) We say that (X;),en fulfills the strong law of large numbers if

:o]zl_

Remark 5.13 The strong law of large numbers implies the weak law. Indeed, if
Al = {|%Sn| > ¢} and A = {limsup,,_, o, |%Sn| > 0}, then clearly

1~
-5,
n

P |:1im sup

n—o0

A= U limsupA,ll/m;

n—00
meN

hence P[limsup,,_, ., A] = 0 for ¢ > 0. By Fatou’s lemma (Theorem 4.21), we
obtain

. €11 qiems .
lim supP[An] =1 IL";L‘;fEm(An) ]

n—oo

< 1= E[liminf1 sy | = E[limsup14; | =0. o
n— 00 n n

n—oo

Theorem 5.14 Let X1, X5, ... be uncorrelated random variables in EZ(P) with
V :=sup,n Var[X,] < oo. Then (X,)nen fulfills the weak law of large numbers.
More precisely, for any ¢ > 0, we have

1~
r[[13,

n

Vv
> £:| <—— forallneN. (5.5)
e2n

Proof Without loss of generality, assume E[X;] = 0 for all i € N and thus g,, =
X1+ ...+ X,. By Bienaymé’s formula (Theorem 5.7), we obtain

1~ " 1%
Var[—Sn} =n? ZVar[Xi] <.
n n
i=l1

By Chebyshev’s inequality (Theorem 5.11), for any € > 0,

~ V n— 00
P[lsn/n|28]5£ —> 0. 0
Example 5.15 (Weierstral}’s approximation theorem) Let f : [0, 1] — R be a con-
tinuous map. By Weierstral}’s approximation theorem, there exist polynomials f;, of
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degree at most n such that

n—oo

Ifan = flloo — 0,

where || flloo := sup{|f(x)| : x € [0, 1]} denotes the supremum norm of f €
C ([0, 1]) (the space of continuous functions [0, 1] — R).
We present a probabilistic proof of this theorem. For n € N, define the polynomial

Ju by
o - M\ koq  \n—k
fu(x) = ,;zof(k/n) (k)x (1—-x) for x € [0, 1].

fn 1s called the Bernstein polynomial of order n.
Fix ¢ > 0. As f is continuous on the compact interval [0, 1], f is uniformly
continuous. Hence there exists a § > 0 such that

|f(x)— f(»)| <e forallx,y € [0,1] with |x — y| <3.

Now fix p € [0,1] and let X1, X»,... be independent random variables with
X; ~Berp,i e N.Then S, := X| +...+ X, ~ by, and thus

E[f(Sa/m)] =) f(k/mPLS, =kl = fu(p).
k=0
We get
| F(Su/n) = F(P)| < &+ 20 fllooL{i(Su/m)—pl=3)

and thus (by Theorem 5.14 with V = p(1 — p) < 41_1)

| £a(p) — F(P)| <E[|f(Su/n) — F(P)|]

S,
58+2||f||ooP[ 7” —p 28}
I flloo
<
<e+ 282n

n—oo
O

for any p € [0, 1]. Hence || f;, — fllco — O.

Exercise 5.2.1 (Bernstein—Chernov bound) Letn € N and py, ..., p, € [0, 1]. Let
X1,..., X, be independent random variables with X; = Ber, forany i =1,...,n.
Define S, = X1 + ...+ X,, and m := E[S,]. Show that, for any é > 0, the following
two estimates hold:

8

= om] < (s
(1+68)1+9
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and

8%m
P[S, < (1 —8)m] <exp - )
Hint: For S,,, use Markov’s inequality with f(x) = e** for some A > 0 and then
find the A that optimizes the bound.

5.3 Strong Law of Large Numbers

We show Etemadi’s version [47] of the strong law of large numbers for identically
distributed, pairwise independent random variables. There is a zoo of strong laws of
large numbers, each of which varies in the exact assumptions it makes on the under-
lying sequence of random variables. For example, the assumption that the random
variables be identically distributed can be waived if other assumptions are intro-
duced such as bounded variances. We do not strive for completeness but show only
a few of the statements.

In order to illustrate the method of the proof of Etemadi’s theorem, we first
present (and prove) a strong law of large numbers under stronger assumptions.

Theorem 5.16 Let X, X»,... € £? (P) be pairwise independent (that is, X; and
X are independent for all i, j € N with i # j) and identically distributed. Then
(Xn)nen fulfills the strong law of large numbers.

Proof The random variables (X ,J[ Jnen and (X, )nen again form pairwise indepen-
dent families of square integrable random variables (compare Remark 2.15(ii)).
Hence, it is enough to consider (X;r )neN. Thus we henceforth assume X,, > 0 al-
most surely for all n € N.

Let S, = X1+ ...+ X, for n € N. Fix ¢ > 0. For any n € N, define k, =
L[(1+e)"| > %(1 + &)". Then, by Chebyshev’s inequality (Theorem 5.11),

—E[X/]

> (1+ e)"/“}
o0
<> (1 +&)"*Var[k, s, ]
n=1
o0
- Z(l + &)k 'Var[ X ]
n=1

< 2Var[X/] Z(l +e)? < 0. (5.6)

n=1
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Thus, by the Borel-Cantelli lemma, for P-a.a. w, there is an ng = ng(w) such that

S,
2k B[]

. < +8)* foralln> n,
n

whence

limsup|k, ' Sk, — E[X{]| =0 almost surely.
n—0o0
Note that k,,+1 < (1 4+ 2¢)k, for sufficiently large n € N. For [ € {k,, ..., k,+1}, we
get

1 - - _ -
1_|_—2£kn 1S n S kn-‘ilskn Sl ISZ S kn 1SknJrl S (1 +28)kn-&1 Skn+1‘

Now 1 — (1 4+2¢)~ 1 <2¢ implies

limsup|17151 —E[X1]| < limsupik,flSkn — E[X1]| +281imsupk;15kn
n—oo

[—o00 n— 00

<2¢E[X] almost surely.

Hence the strong law of large numbers is in force. g

The similarity of the variance estimates in the weak law of large numbers and in
(5.6) suggests that in the preceding theorem the condition that the random variables
X1, X2, ... be identically distributed could be replaced by the condition that the
variances be bounded (see Exercise 5.3.1).

We can weaken the condition in Theorem 5.16 in a different direction by requir-
ing integrability only instead of square integrability of the random variables.

Theorem 5.17 (Etemadi’s strong law of large numbers (1981)) Let X1, Xo, ...
€ LY(P) be pairwise independent and identically distributed. Then (X,)nen fulfills
the strong law of large numbers.

We follow the proof in [39, Section 2.4]. Define u =E[X]and S, = X1+ ...+
X,,. We start with some preparatory lemmas. (For the “a.s.” notation see Defini-
tion 1.68.)

Lemma 5.18 For n € N, define Y, := X, 1y x,|<n) and T, = Y1 + ... + Y,. The

sequence (X,),eN fulfills the strong law of large numbers if T, /n = uwa.s.

Proof By Theorem 4.26, we have Z;":] P[| X, | > n] <E[|X|] < co. Thus, by the
Borel-Cantelli lemma,

P[X, # Y, for infinitely many n] = 0.
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Hence there is an ng = ng(w) with X,, =Y, for all n > ng, whence for n > ng

Tn = 5n _ Tnp = Sng noge 0
n n

Lemma5.19 2x Y n~% <4 forall x > 0.

n>x

Proof For m € N, by comparison with the corresponding integral, we get
o 00 2
Zn_zfm_2+/ t_zdtzm_2+m_1§—.
n=m m m

2
Lemma 520 >°°° Bl g x, 1.

n=1 2 =

Proof By Theorem 4.26,

o0
E[¥2] = / P[Y? > 1] d.
0
Substituting x = /7, we obtain

oo n
E[Ynz]=/O 2xP[|Yn|>x]dx5/0 2xP[|X1] > x]dx.

By Lemma 5.19, for m — oo,

Sm(x) = (Zn_zﬂ{x<n}>2xl’[lxll > x|t f(x) <4P[|X1] > x].

n=1

Hence, by the monotone limit theorem, we can interchange the summation and the
integral and obtain

o0 2 o0 00
E[Y
[Y,1 < E n*Z/ Tr<ny2xP[|X 1| > x]dx
0
n=1

2
n
n=1

S—

o0 oo
<Zn_2]l{x<n})2xP[|X1| > x]dx

n=1

o
54/ P[1X|| > x]dx =4E[|X[]. 0
0

Proof of Theorem 5.17 As in the proof of Theorem 5.16, it is enough to consider
the case X,, > 0. Fix ¢ > 0 and let « = 1 + ¢. For n € N, define k, = |@" |. Note
that k,, > «" /2. Hence, for all m € N (with ng = [logm/loga]),

o0
YooY e =da(1 -0 ) <4(1-a) w2 (5

n:ky,>m n=nq
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The aim is to employ Lemma 5.20 to refine the estimate (5.6) for (¥;),en and
(T)nen- For 6 > 0, Chebyshev’s inequality yields (together with (5.7))

o
> P(|Tx, — EITy,]| > k]
n=1

ZVar[Tk
=5 ZZk 2ZVar[Y 1=6" 2X:Var[Y Yo ke’

m=1 n:ky,>m

oo

<4(1- Z *ZE Y2 ] <oo by Lemma 5.20.

(In the third step, we could change the order of summation since all summands are
nonnegative.) Letting § | 0, we infer by the Borel-Cantelli lemma
lim T — El7k,|
im —————

n—o0

=0 almost surely. (5.8)

n

By the monotone convergence theorem (Theorem 4.20), we have
E[Y,] = E[Xi1{x,<n] = E[Xi].

Hence E[T}, 1/ k, iy E[X]. By (5.8), we also have Ty, /k, e E[X ] as. As
in the proof of Theorem 5.16, we also get (since Y, > 0)

T
lim Tl =E[X1] almost surely.

[— o0

By Lemma 5.18, this implies the claim of Theorem 5.17. U

Example 5.21 (Monte Carlo integration) Let f : [0, 1] — R be a function and as-
sume we want to determine the value of its integral [ := fol f(x) dx numerically.
Assume that the computer generates numbers X1, Xo, ... that can be considered as
independent random numbers, uniformly distributed on [0, 1]. For n € N, define the
estimated value

1 n
=;;ﬂ&)

Assuming f € £1([0, 1]), the strong law of large numbers yields 7; "= I as.
Note that the last theorem made no statement on the speed of convergence. That
is, we do not have control on the quantity P[|1, — I| > ¢]. In order to get more
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precise estimates for the integral, we need additional information; for example, the
value V) := ffz(x) dx — I*if f € £3([0, 1]). (For bounded f, V| can easily be
bounded.) Indeed, in this case, Var[],] = V;/n; hence, by Chebyshev’s inequality,

P[|Z1 —1I| > 81’171/2] < V1/82.

Hence the error is at most of order n~!/2. The central limit theorem will show that
the error is indeed exactly of this order.

If f is smooth in some sense, then the usual numerical procedures yield better
orders of convergence. Hence Monte Carlo simulation should be applied only if all
other methods fail. This is the case in particular if [0, 1] is replaced by G c R? for
very large d. O

Definition 5.22 (Empirical distribution function) Let X1, X», ... be real random
variables. The map F, : R — [0, 1], x > % > L—oo.x](Xi) is called the empiri-
cal distribution function of X1, ..., X,.

Theorem 5.23 (Glivenko—Cantelli) Let X1, X3, ... be i.i.d. real random variables
with distribution function F, and let F,, n € N, be the empirical distribution func-
tions. Then

lim sup sup}Fn (x) — F(x)| =0 almost surely.
n—-o0 xeR

Proof Fixx e Randlet Y, (x) = 1(—0o x](X,) and Z, (x) = L(—c0,x)(X,) forn e N.
Additionally, define the left-sided limits F'(x—) = limy4, F(y) and similarly for F;,.
Then each of the families (Y, (x)),en and (Z,(x)),eN is independent. Furthermore,
E[Y,(x)]=P[X, <x]= F(x) and E[Z,(x)] =P[X,, < x] = F(x—). By the strong
law of large numbers, we thus have

1 n
F,(x)= - Z Yi(x) pd F(x) almost surely
i=1

and

| « N
F,(x—)=- ZZi (x) = F(x—) almost surely.
n

i=1

Formally, define F(—o0) =0 and F(co) = 1. Fix some N € N and define
xj:=inf{x eR: F(x) > j/N}, j=0,...,N,
and

R, = max (}Fn(xj) — F(xj)| + ’Fn(xj—) — F(xj—)’).
j=l,...,N—1
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As shown above, R, "% 0 almost surely. For x € (x;_1, x;), we have (by defini-
tion of x;)

1
Fn(x)an(xj_)fF(xj_)+RnSF(X)"‘Rn"‘N

and
1
Fp(x) > Fn(xjfl) > F(x];]) —R,>F(x)—R, — N

Hence

. 1 . 1

limsup sup|F, (x) — F(x)| < — +limsup R, = —

n—o00 xeR N n—00 N
Letting N — o0, the claim follows. 0

Example 5.24 (Shannon’s theorem) Consider a source of information that sends a
sequence of independent random symbols X1, X5, ... drawn from a finite alpha-
bet E (that is, from an arbitrary finite set E). Let p, be the probability of the
symbol e € E. Formally, the X1, X7, ... are i.i.d. E-valued random variables with
P[X;,=e¢e]=p.forecE.

For any w € £2 and n € N, let

n
(@) = [ [ Pxi(@)

i=1
be the probability that the observed sequence X(w),..., X, (w) occurs. Define
Y, (w) ;== —log(px,w))- Then (¥;),en isiid. and E[Y,] = H(p), where
H(p):=—Y _ pelog(pe)
ecE

is the entropy of the distribution p = (p.)ecr (compare Definition 5.25). By the
strong law of large numbers, we infer Shannon’s theorem:

1 Iy, no
——logm, = — Z y, =5 H(p) almost surely.
n ni

Entropy and Source Coding Theorem*

We briefly discuss the importance of m, and the entropy. How can we quantify
the information inherent in a message X1 (w), ..., X, (w)? This information can be
measured by the length of the shortest sequence of zeros and ones by which the
message can be encoded. Of course, you do not want to invent a new code for
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every message but rather use one code that allows for the shortest average coding
of the messages for the particular information source. To this end, associate with
each symbol e € E a sequence of zeros and ones that when concatenated yield the
message. The length /(e) of the sequence that codes for ¢ may depend on e. Hence,
for efficiency, those symbols that appear more often get a shorter code than the more
rare symbols. The Morse alphabet is constructed similarly (the letters “e” and “t”,
which are the most frequent letters in English, have the shortest codes (“dot” and
“dash”), and the rare letter “q” has the code “dash-dash-dot-dash”). However, the
Morse code also consists of gaps of different lengths that signal ends of letters and
words. As we want to use only zeros and ones (and no gap-like symbols), we have
to arrange the code in such a way that no code is the beginning of the code of a
different symbol. For example, we could not encode one symbol with 0110 and a
different one with 011011. A code that fulfills this condition is called a binary prefix
code. Denote by c(e) € {0, 1}/ the code of e, where I(e) is its length. We can
represent the codes of all letters in a tree.

Let us construct a code C = (c(e), e € E) that is efficient in the sense that it
minimizes the expected length of the code (of a random symbol)

Lp(C):=)_ pel(e).

ecE

We first define a specific code and then show that it is almost optimal. As a
first step, we enumerate E = {ey, ..., ey} such that p,, > pe, > ... > p,,. Define
£(e) € N for any e € E by

2t < < 2O
Let p =2"%© forany e € E and let x = Y ,_; pe, fork=1,..., N.

By construction, £(e;) < £(ey) for all [ < k; hence the binary representation of g
has at most £(ey) digits:

Cer) '
Gi=>_ci(e)2™.
i=1
Here the numbers ¢y (ex), . . ., ¢y, (ex) € {0, 1} are uniquely determined.

Clearly, §; > G + 274 for any [ > k; hence

(cl(ek), e Cg(ek)(ek)) #+ (cl(el), e ce(ek)(el)) forall [ > k.

Thus C = (c(e), e € E) is a prefix code.
For any b > 0 and x > 0, denote by log, (x) := {gigs the logarithm of x to base b.
By construction, —log,(p.) <I(e) <1 —log,(p.). Hence the expected length is

=3 " pelogy(pe) < Lp(C) <1 pelogy(pe).

eckE eckE
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The length of this code for the first n symbols of our random information source
is thus approximately — Y} _; 102, (px, ()) = — log, 7, (w). Here we have the con-
nection to Shannon’s theorem. That theorem thus makes a statement about the length
of a binary prefix code needed to transmit a long message.

Now, is the code constructed above optimal, or are there codes with smaller mean
length? The answer is given by the source coding theorem for which we prepare with
a definition and a lemma.

Definition 5.25 (Entropy) Let p = (p.)ece be a probability distribution on the
countable set E. For b > 0, define

Hy(p) :=—)_ pelogy(pe)

ecE

with the convention Olog,(0) := 0. We call H(p) := H.(p) (e =2.71... Euler’s
number) the entropy and H>(p) the binary entropy of p.

Note that, for infinite E, the entropy need not be finite.

Lemma 5.26 (Entropy inequality) Let b and p be as above. Further, let q be a
sub-probability distribution; that is, g > 0 for alle € E and ), ge < 1. Then

Hy(p) <= pelog,(qe) (5.9)

ecE

with equality if and only if Hp(p) = 0o or g = p.

Proof Without loss of generality, we can do the computation with b = e; that is,
with the natural logarithm. Note that log(1 4+ x) < x for x > —1 with equality if
and only if x = 0. If in (5.9) the left-hand side is finite, then we can subtract the
right-hand side from the left-hand side and obtain

H(p)+ Y pelog(ge)= ) pelog(qe/pe)

ecE e:pe>0
= Z pelog<l+u)
e:pe>0 Pe
de — P
= Zpee e:Z(C]e_Pe)SO-
e:pe>0 Pe ecE

If g # p, then there is an e € E with p, > 0 and g, # p.. If this is the case, then
strict inequality holds if H (p) < oo. g
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Theorem 5.27 (Source coding theorem) Let p = (pe)ecE be a probability distri-
bution on the finite alphabet E. For any binary prefix code C = (c(e), e € E),
we have L,(C) > Hy(p). Furthermore, there is a binary prefix code C with
Ly(C) < Ha(p) + 1.

Proof The second part of the theorem was shown in the above construction. Now
assume that a prefix code is given. Let L = max.cg[(e). Fore € E, let

Cr(e) = {c € {0, )Y : cx = cx(e) for k fl(e)}

the set of all dyadic sequences of length L that start like c(e). Since we have a
prefix code, the sets Cy (e), e € E, are pairwise disjoint and UeeE Cr(e) C {0, I}L.
Hence, if we define ¢, := 27/, then (note that #C (e) = 2L~4(9))

D ge=27F) #Cr(e) < 1.

ecE ecE

By Lemma 5.26, we have L,(C) =), pel(€) = =) g Pelogy(q.) = Ha(p).
O

Exercise 5.3.1 Show the following improvement of Theorem 5.16: If X, X, ...
€ L%(P) are pairwise independent with bounded variances, then (X},), <N fulfills the
strong law of large numbers.

Exercise 5.3.2 Let (X,),en be a sequence of independent identically distributed
random variables with %(X 1+...+Xn) "Z5° ¥ almost surely for some random

variable Y. Show that X| € £!(P) and Y = E[X] almost surely.
Hint: First show that

P[|Xn| > n for infinitely many n] =0 < X e EI(P).

Exercise 5.3.3 Let E be a finite set and let p be a probability vector on E. Show
that the entropy H (p) is minimal (in fact, zero) if p = §, for some e € E. It is
maximal (in fact, log(#E)) if p is the uniform distribution on E.

Exercise 5.3.4 (Subadditivity of Entropy) Fori=1,2,let E ! be a finite set and p’
a probability vector on E’. Let p be a probability vector on E' x E? with marginals
p!and p?. That is,

Z Pl o2y = pe}l and Z P(f1, 12 :p?z foralle! € E', f2 € E2.
e2cE? fleE!

Show that H(p) < H(p") + H(p?).

Exercise 5.3.5 Letb € {2, 3,4, ...}. A b-adic prefix code is defined in a similar way
as a binary prefix code; however, instead of 0 and 1, now all numbers 0, 1,...,b—1
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are admissible. Show that the statement of the source coding theorem holds for b-
adic prefix codes with H>(p) replaced by Hp(p).

Exercise 5.3.6 We want to check the efficiency of the Morse alphabet. To this end
we need a table of the Morse code as well as the frequencies of the letters in a typical
text. The following frequencies for letters in German texts are taken from [11, p. 10].
The frequencies for other languages can be found easily, e.g., at Wikipedia.

Letter Morse code Frequency Letter Morse code Frequency
A .- 0.0651 N -. 0.0978
B - 0.0189 O -—- 0.0251
C - 0.0306 P - 0.0079
D -.. 0.0508 Q -——.- 0.0002
E . 0.1740 R .- 0.07

F - 0.0166 S 0.0727
G -- 0.0301 T - 0.0615
H 0.0476 U .- 0.0435
I .. 0.0755 v ce- 0.0067
J L= 0.0027 A L= 0.0189
K - - 0.0121 X - .- 0.0003
L . 0.0344 Y - 0.0004
M -- 0.0253 Z -—.. 0.0113

Here ‘.’ denotes a short signal while ‘-’ denotes a long signal. Each letter is
finished by a pause sign. Thus the Morse code can be interpreted as a ternary prefix
code.

Determine the average code length of a letter and compare it with the entropy H3
in order to check the efficiency of the Morse code.

5.4 Speed of Convergence in the Strong LLN

In the weak law of large numbers, we had a statement on the speed of convergence
(Theorem 5.14). In the strong law of large numbers, however, we did not. As we
required only first moments, in general, we cannot expect to get any useful state-
ments. However, if we assume the existence of higher moments, we get reasonable
estimates on the rate of convergence.

The core of the weak law of large numbers is Chebyshev’s inequality. Here we
present a stronger inequality that claims the same bound but now for the maximum
over all partial sums until a fixed time.
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Theorem 5.28 (Kolmogorov’s inequality) Let n € N and let X1, X2, ..., X, be
independent random variables with E[X;] = 0 and Var[X;] <ocofori=1,...,n.
Further, let Sy =X+ ...+ Xy fork=1,...,n. Then, for any t > 0,

Var[S, ]
P Skik=1,...,n}>t| < 57—F—. 5.10
[max{Si n}>1] 77 Var(s,] (5.10)
Furthermore, Kolmogorov’s inequality holds:
P[max{|Sk|:k=1,...,n}zt]ft_zVar[Sn]. (5.11)

In Theorem 11.2 we will see Doob’s inequality, which is a generalization of
Kolmogorov’s inequality.

Proof We decompose the probability space according to the first time t at which
the partial sums exceed the value 7. Hence, let

t:=min{k € {1,...,n}: S > 1}

and Ay ={t =k} fork =1, ..., n. Further, let

n
A:L—lek:{max{Sk:k:L...,n}zt}.

k=1
Let ¢ > 0. The random variable (S + ¢)14, is o(Xj, ..., Xx)-measurable and
Sp — Sk 18 0 (Xk+1, ..., X;)-measurable. By Theorem 2.26, the two random vari-

ables are independent, and
E[(Sk + )14, (Sp — SO ] =E[(Sk + )14, JE[Sy — Sk] =0.

Clearly, the events Ay, ..., A, are pairwise disjoint; hence ZZ:] 1a,=14<1.We
thus obtain

Var(S,] + ¢ = E[(S, +¢)?]

> E[Z(Sn + C)ZJlAk:| =Y E[(Sy+¢)*1a,]

k=1 k=1

=Y E[((Sk+0)7 +2(Sk + ) (Sn — SO + (S — 50?14, ]

k=1
=Y E[(Sk+0)*La ]+ Y E[(S) — S)*1a,]
k=1 k=1
> > E[(Sk+0)*14,]- (5.12)

k=1
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Since ¢ > 0, we have (S + c)2]lAk > (t+ c)2]lAk. Hence we can continue (5.12) to
get

Var(S,]+¢? > Y E[(r +0)*14,] = (t + ¢)*P[A].
k=1

For ¢ = Var[S,]/t > 0, we obtain

Var[S,] + ¢2 _ct+c)  tc  Var[S,]

P[A] < = = — )
(A= (t+c)? (t+c)2 t2+tc 12+ Var[S,]

This shows (5.10). In order to show (5.11), choose

T:=min{k € {1,...,n}:[Sk| > 1}.
Let Ay = {T =k} and A = {T < n}. We cannot now continue (5.12) as above with
¢ > 0. However, if we choose ¢ = 0, then S,%Il i = 21 A The same calculation as

in (5.12) does then yield P[A] < ~2Var[S,,]. O

From Kolmogorov’s inequality, we derive the following sharpening of the strong
law of large numbers.

Theorem 5.29 Let X1, X3, ... be independent random variables with E[X,] =0
foranyn € Nand V :=sup{Var[X,] :n € N} < oco. Then, for any ¢ > 0,

. Snl
imsup

nsoo n1/2(log(n))(1/D+e =0 almost surely.

Proof Let k, = 2" and I(n) = n'/?(log(n))/?+¢ for n € N. Then we have
I(kns1)/1(kn) = +/2. Hence, for n € N sufficiently large and k € N with k,_; <
k < k,, we have |Si|/l(k) < 2|Sk|/l(k,). Hence, it is enough to show for every

§ > 0 that

limsup/(k,) ™' max{|Sk|:k <k,} <8 almost surely. (5.13)

n—0oo

For § > 0 and n € N, define Afl = {max{|Sk| : k < k,} > 8l(k,)}. Kolmogorov’s
inequality yields

o0 0 ) V o0
) -2 - _ —1-2¢
;P[An] < ;5 (1)) Vky = P log )= ;n < 0.

The Borel-Cantelli lemma then gives P[limsup,_, . AS] = 0 and hence (5.13). O
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In Chapter 22, we will see that for independent identically distributed, square in-
tegrable, centered random variables X1, X», ..., the following strengthening holds,

S,
lim sup [54] =1 almost surely.
n—co +/2nVar[X;]log(log(n))

Hence, in this case, the speed of convergence is known precisely. If the X1, X», ...
are not independent but only pairwise independent, then the rate of convergence
deteriorates, although not drastically. Here we cite without proof a theorem that was
found independently by Rademacher (1922) [141] and Menshov (1923) [113].

Theorem 5.30 (Rademacher-Menshov) Let X1, X», ... be uncorrelated, square in-
tegrable, centered random variables and let (a,),eN be an increasing sequence of
nonnegative numbers such that

o0

> "(ogn)*a; *Var(X,] < cc. (5.14)

n=1
Then

n
lim sup a;] Z Xi| =0 almost surely.
n—o0 k=1

Proof See, for example, [128]. O

Remark 5.31 Condition (5.14) is sharp in the sense that for any increasing sequence
(an)nen with ZZO: 10y 2(log n)2 = 00, there exists a sequence of pairwise indepen-
dent, square integrable, centered random variables X1, X», ... with Var[X,,] = 1 for

all n € N such that

lim sup
n—oo

=00 almost surely.

n
lln_l ZXk
k=1

See [22]. There an example of [163] (see also [164, 165]) for orthogonal series is
developed further. See also [117]. O

For random variables with infinite variance, the statements about the rate of con-
vergence naturally get weaker. For example (see [8]), see the following theorem.

Theorem 5.32 (Baum and Katz (1965)) Let y > 1 and let X1, X2, ... be i.i.d. De-
fine S, = X1 +...4+ X, forn e N. Then

o
Zn”sz[|Sn|/n >¢]<oo foranye>0

n=1

< E[IXi]"]<oo and E[X{]=0.
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Exercise 5.4.1 Let Xy, ..., X, be independent real random variables and let S; =
X1+...+ X, fork=1,...,n. Show that for t > 0 Etemadi’s inequality holds:

.....

5.5 The Poisson Process

We develop a model for the number of clicks of a Geiger counter in the (time)
interval I = (a, b]. The number of clicks should obey the following rules. It should

e be random and independent for disjoint intervals,

e be homogeneous in time in the sense that the number of clicks in I = (a, b] has
the same distribution as the number of clicksinc+ 1 = (a + ¢, b+ c],

e have finite expectation, and

e have no double points: At any point of time, the counter makes at most one click.

We formalize these requirements by introducing the following notation:

T:= {(a,b] :a,be[O,oo),aSb},

E((a, b]) =b—a (the length of the interval I = (a, b]).

For I € Z, let Nj be the number of clicks after time a but no later than b. In par-
ticular, we define N; := N(o,;] as the total number of clicks until time ¢. The above
requirements translate to: (N, I € 7) being a family of random variables with val-
ues in Ny and with the following properties:

(P1) Njuy=Nr+NyjifINJ=PandIUJ e

(P2) The distribution of N; depends only on the length of I: Py, =Py, for all
I, J eI with£(1)=£(J).

P HTcCIwithIinJ=@forall,JeJ withl#J,then (Ny,J € J)isan
independent family.

(P4) For any I € Z, we have E[N;] < oc.

(P5) limsup, o&~"P[N, > 2] =0.

The meaning of (P5) is explained by the following calculation. Define

A:=lim supeflP[Ng >2].
el0

For any n € N and ¢ > 0, we have
P[Ny» >2]> [27"/¢|P[N; > 2] — |27 /¢ |"PIN, > 212

Hence

V'P[Ny—n >2] > A — 2722 =57 .
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0 2 4 6 8 10

Fig. 5.1 Simulation of a Poisson process with rate @ = 0.5

Then (because (1 — ax/k)* k200 pmaif ag koo a)

P[there is a double click in (0, 1]]

2n—1
= nlingoP[kL_Jo {Nua—n (k+1)2-11 = 2}]

2" —1
=1-— lim P|: ﬂ {N(kZ_",(k+l)2_”] < 1}i|

n—00
k=0

2]
=1— lim l_[ P[Ngo—» (k+12-n =11

n— 00
k=0

=1 — lim (1—P[Ny0 = 2])"
n—0o0
=1—e"
Hence we have to postulate & = 0. This, however, is exactly (P5).
The following theorem shows that properties (P1)—(P5) characterize the random
variables (Ny, I € 7) uniquely and that they form a Poisson process.

Definition 5.33 (Poisson process) A family (N, t > 0) of Nyp-valued random vari-
ables is called a Poisson process with intensity « > 0 if Ny = 0 and if:

(i) For any n € N and any choice of n + 1 numbers 0 =y < t] < ... < t,, the
family (N, — N;,_,,i =1,...,n) is independent.

@ii) For r > s > 0, the difference N; — N; is Poisson-distributed with parameter
a(t —s); that is,

ati—y) @ = $)*

P[N; — Ny =k]=e i

for all k € Ny.

See Fig. 5.1 for a computer simulation of a Poisson process.
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The existence of the Poisson process has not yet been shown. We come back to
this point in Theorem 5.36.

Theorem 5.34 If (N;, 1 € L) has properties (P1)-(P5), then (N ,t > 0) is a
Poisson process with intensity o := E[N,11]. If, on the other hand, (N;,t > 0) is
a Poisson process, then (N; — Ng, (s, t] € T) has properties (P1)—(P5).

Proof First assume that (N, t > 0) is a Poisson process with intensity o > 0. Then,
for I = (a, b], clearly Py, = Poiy—q) = Poigg(s). Hence (P2) holds. By (i), we
have (P3). Clearly, E[N;] = «£(I) < oo; thus we have (P4). Finally, P[N, > 2] =
1 —e % —age ™ = f(0) — f(ae), where f(x):=e * 4+ xe *. The derivative is
f/(x) = —xe™, whence

lime ™ '"P[N, > 2] = —af'(0) = 0.
el0

This implies (P5).
Now assume that (Ny, I € Z) fulfills (P1)—(P5). Define «(¢) := E[N;]. Then (ow-
ing to (P2))

a(s +1)=E[Nq,;s) + N,s+1] =E[No,s]] + E[N@©,nl = als) +a@).

As t — «a(t) is monotone increasing, this implies linearity: «(t) = (1) for any
t > 0. Letting o := (1), we obtain E[N;] = a£([). It remains to show that Py, =
Poiy, . In order to apply the Poisson approximation theorem (Theorem 3.7), for fixed
n € N, we decompose the interval (0, 7] into 2" disjoint intervals of equal length,

I"(k):= ((k—D27"t,k27"t], k=1,...,2".
Now define X" (k) := Ny ) and

— 1, ifX"(k)>1
X"k):=1 " if X0 = 1,
0, else.
By properties (P2) and (P3), the random variables (X" (k),k =1,...,2") are in-
dependegt and identically distributed. Hence also (X" (k),k =1,...,2") are i.i.d.,
namely X" (k) ~ Ber),, where p, =P[N-», > 1].
Finally, let N/ := Y2 X" (k). Then N/' ~ by ,,. Clearly, N/*! — NI > 0.
Now, by (P5),

27!
P[N, #N/] < 3 P[X"(k) 2] =2" [Ny, 2 2] =50 (5.15)
k=1

Hence P[N; =lim,_, o N;'] = 1. By the monotone convergence theorem, we get

ar =E[N;]= lim E[N/']= lim p,2".
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Using the Poisson approximation theorem (Theorem 3.7), we infer that, for any
le N(),

P[N, =[] = ILHOIOP[N’n = l] :Poim({l}).

Hence Py, = Poiy,. O

At this point, we still have to show that there are Poisson processes at all. We
present a general two-step construction principle that will be used in a similar form
later in Chapter 24 in a more general setting. In the first step, we determine the
(random) number of jumps in (0, 1]. In the second step, we distribute these jumps
uniformly and independently on (0, 1]. Strictly speaking, this gives the Poisson pro-
cess only on the time interval (0, 1], but it is clear how to move on: We perform the
same procedure independently for each of the intervals (1, 2], (2, 3] and so on and
then collect the jumps (see also Exercise 5.5.1).

Let o > 0 and let L be a Poi, random variable. Further, let X;, X», ... be inde-
pendent random variables, that are uniformly distributed on (0, 1], i.e., Xx ~ U0 1]
for each k. We assume that {L, X1, X», ...} is an independent family of random
variables. We now define N = (N;)¢[0,1] by

L
N, = 21(0,,](;@) for t €0, 1]. (5.16)
=1

Theorem 5.35 The family N of random variables defined in (5.16) is a Poisson
process with intensity o (and time set [0, 1]).

Proof We have to show that the increments of N in finitely many pairwise disjoint
intervals are independent and Poisson distributed. Hence let m € N and 0 =1y <
1 <...<ty, = 1. We use the abbreviations p; :=t —ti_jand A; =« - (t; — t;_1)
and show that

(Ny, — Ny;_)i=1,..,m 1s independent 5.17)
and
Ny — Ni,_, ~Poiy, foralli=1,...,m. (5.18)
This is equivalent to showing that for each choice of ki, ..., k;,, € Ng, we have
ki
P[N, — N, , =k foranyi=1,....m]= H(e_)"' ﬁ) (5.19)
i=
Write

n
M, =#l<n:ti_1 <X <t}= Z]l(z,-,l,z,-](xll
=1
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By Exercise 2.2.3, the vector (M, 1, ..., M, ) is multinomially distributed with
parameters n and p = (py, ..., py). That is, if we assume n :=ky + ... + k,, then
P[Mml Zkl,...,Mn’m ka]z mpll oo P

In order to show (5.19), note that the event in (5.19) implies L = n and that L
and (M, 1, ..., M, ,,) are independent. Hence we have

P[N, — N, , =k; fori=1,...,m]
=P[{N, = N,,_, =k fori=1,...,m}N{L =n}]
=P[{M, 1 =ki,..., My m=kn}N{L=n}]
=P[M, 1 =ki,..., My, =ky]-P[L=n]

_ n! ki [
—ﬁpl Py € —'
k! n!

ki
= - <el"£).
i ki! O

We close this section by presenting a further, rather elementary and instructive
construction of the Poisson process based on specifying the waiting times between
the clicks of the Geiger counter, or, more formally, between the points of disconti-
nuity of the map # — N,(w). At time s, what is the probability that we have to wait
another ¢ time units (or longer) for the next click? Since we modeled the clicks as a
Poisson process with intensity «, this probability can easily be computed:

P[N(5 541 =01 =€ .

Hence the waiting time for the next click is exponentially distributed with param-
eter . Furthermore, the waiting times should be independent. We now take the
waiting times as the starting point and, based on them, construct the Poisson pro-
cess.

Let Wy, Wa, ... be an independent family of exponentially distributed random
variables with parameter @ > 0; hence P[W,, > x] = ¢™%*. We define

n
T, = Z Wy
k=1

and interpret W), as the waiting time between the (n — 1)th click and the nth click.
T, is the time of the nth click. Appealing to this intuition we define the number of
clicks until time ¢ by

Ny:=#neNy: T, <t}.
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Hence
{Nr =k} ={T, <t < Tgs1}.

In particular, N, is a random variable; that is, measurable.

‘ Theorem 5.36 The family (N;,t > 0) is a Poisson process with intensity .

Proof (We follow the proof in [59, Theorem 3.34].) We must show that for any
n € N and any sequence 0 =%y < t; < ... <1,, we have that (N, — N;,_,,i =
1,...,n) is independent and Ny, — N;,_, ~ Poig;—s_ ;). We are well aware that
it is not enough to show this for the case n = 2 only. However, the notational com-
plications become overwhelming for n > 3, and the idea for general n € N becomes
clear in the case n = 2. Hence we restrict ourselves to the case n = 2.

Hence we show for 0 < s <t and [, k € Ny that

k _ 1
PN, =k, N, — Ny =[] = <e—w %) (e—w—s) Wl_‘s))> (5.20)

This implies that Ny and (N; — N;) are independent. Furthermore, by summing over
k € Ny, this yields Ny — Ns ~ Poig(;—y).

By Corollary 2.22, the distribution Py, . y has the density

o Witi41
X > OlkJrlJrle*<>151<+1+1()6)7
where S, (x) := x| + ...+ x,. It is sufficient to consider / > 1 since we get the [ =0

term from the fact that the probability measure has total mass one. Hence, let / > 1.
We compute

P[N, =k, N; — N, =]

=P[T <5 <Ti1, Tt <t < Tiqr41]

o] o]
:/ [ dxl...dxk+l+1
0 0

k+l+1 —alS,
X o eSO D (g ) << S (01 LSkt ()1 <Stsi (0) -

Starting with xiy41, we integrate successively. In the first step, substitute z =
Sk+1+1(x) to obtain

ee]

o
—as, - —at
f dXp i1 e a k+1+l(X):ﬂ-{Sk+1+](x)>t} :f dzae ¥ = ¢
0 t



130 5 Moments and Laws of Large Numbers

Now keep x1, ..., xx fixed and substitute for the remaining variables by letting y; =
Sk+1(X) — 8, Y2 = Xk42, .., V| = X4 1O obtain

o 0
/ / AXjet 1 -+ A2t Ls <y (0 =Sk <1}
0 0

o0 o] !
(rt—vs)
Z/ [ dyy...dy ]l{y1+..,+yzit—s} = T .
0 0 .

(The last identity can be obtained, for example, by induction on /.) Now integrate
the remaining variables xi, ..., xj to get

e} 00 Sk
f / dx1~~~dxk]l{5k(X)5‘r}=F~
0 0 !

k [
7o:tak+ls_ (t—s) :
k'

hence (5.20) holds. O

In total, we have

P[Ny=k,N, — Ny=I]=¢e

Exercise 5.5.1 Let L,, X Z, k,n € N be independent random variables with L, ~
Poi, and XZ ~ U(n—1,n) (the uniform distribution on (n — 1,n]) for all k,n € N.
Define

N;:=#{(k,n) eN*:1k <L, and X} <t}.

Show that (N;);>¢ is a Poisson process with intensity c.

Exercise 5.5.2 Let T > 0 and let X, X5, ... be i.i.d. random variables that are
uniformly distributed on [0, 1]. Let

N:=max{neNp: X1 +...+ X, <T}

and compute E[N].



Chapter 6
Convergence Theorems

In the strong and the weak laws of large numbers, we implicitly introduced the
notions of almost sure convergence and convergence in probability of random
variables. We saw that almost sure convergence implies convergence in mea-
sure/probability. This chapter is devoted to a systematic treatment of almost sure
convergence, convergence in measure and convergence of integrals. The key role
for connecting convergence in measure and convergence of integrals is played by
the concept of uniform integrability.

6.1 Almost Sure and Measure Convergence

In the following, (£2,.A, 1) will be a o-finite measure space. We first define in
metric spaces almost sure convergence and convergence in measure and then com-
pare both concepts. To this end, we need two lemmas that ensure that the distance
function associated with two measurable maps is again measurable. In the follow-
ing, let (E, d) be a separable metric space with Borel o-algebra B(E). “Separable”
means that there exists a countable dense subset. For x € E and r > 0, denote by
B, (x) ={y € E :d(x,y) <r} the ball with radius r centered at x.

Lemma 6.1 Ler f, g : 2 — E be measurable with respect to A-B(E). Then the
map H : 2 — [0, 00), w — d(f(w), g(w)) is A-B([0, 00))-measurable.

Proof Let F C E be countable and dense. By the triangle inequality, d(x, z) +
d(z,y) >d(x,y) forall x,y € E and z € F. Let (z,)nen be a sequence in F with
n "= . Since d is continuous, we have d(x, z,) +d(z,, ¥) = d(x,y). Putting
things together, we infer inf,cr(d(x,z) + d(z,y)) = d(x,y). Since x — d(x,2)
is continuous and hence measurable, the maps f;, g; : 2 — [0, 0o) with f;(w) =
d(f(w),z) and g,(w) = d(g(w), z) are also measurable. Thus f, + g, and H =
inf.cr(f; + g;) are measurable.

(A somewhat more systematic proof is based on the fact that ( f, g) is A-B(E x
E)-measurable (this will follow from Theorem 14.8) and that d : E x E — [0, 00)
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is continuous and hence B(E x E)-B([0, co))-measurable. As a composition of
measurable maps, w — d(f(w), g(w)) is measurable.) O

Let f, f1, f2,...: 2 — E be measurable with respect to A-B(E).

Definition 6.2 We say that (f;,),cN converges to f

(i) in pu-measure (or, briefly, in measure), symbolically f;, = f,if

w({d(f, f) > e} na) =0
forall ¢ > 0 and all A € A with u(A) < oo, and
(ii) p-almost everywhere (a.e.), symbolically f, 25 f, if there exists a p-null
set N € A such that

n—oo

d(f(w), fa(@)) — 0 forany we 2\ N.
If w is a probability measure, then convergence in p-measure is also called

convergence in probability. If (f,)nen converges a.e., then we also say that

(fu)nen converges almost surely (a.s.) and write f, 25 f. Sometimes we
will drop the qualifications “almost everywhere” and “almost surely”.

Remark 6.3 Let Ay, Aa, ... € Awith A, 1 £2 and u(A,) < oo for any n € N. Then
a.e. convergence is equivalent to a.e. convergence on each A,. O

Remark 6.4 Almost everywhere convergence implies convergence in measure: For
& > 0, define
Dy(e) = {d(f, fm) > € for some m > n}
Then D(g) := ﬂflozl D, (e) C N, where N is the null set from the definition of
almost everywhere convergence. Upper semicontinuity of x implies
n—oo
/L(D,, en A) — /L(D(é‘) N A) =0
for any A € A with u(A) < oo. O

Remark 6.5 Almost everywhere convergence and convergence in measure deter-
mine the limit up to equality almost everywhere. Indeed, let f;, = f and f, = g.

Let Ay, Ap,... € A with A, 1 £2 and u(A,) < oo for any n € N. Then (since
d(f.g) <d(f, fu) +d(g, f»)),foranym e Nand & > 0,

w(Ann{d(f.8) > ¢})

Hence u({d(f, g) > 0}) =0. O
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Remark 6.6 In general, convergence in measure does not imply almost everywhere
convergence. Indeed, let (X,),en be an independent family of random variables

with X,, ~ Bery,. Then X, "Z0in probability but the Borel-Cantelli lemma
implies limsup,,_, o, X, = 1 almost surely. O

Theorem 6.7 Let A, A, ... € A with Ay 1 2 and n(Ay) < oo for all N € N.
For measurable f,g:$2 — E, let

o0
~ 2—N
a(f,g) = IAd(f(w), g(w)))u(dw). 6.1
ro=X s [ andte.se)
Then d is a metric that induces convergence in measure: If f, fi, fa, ... are mea-

surable, then

meas n—0o0

fh—f = d(ffn)—>0

Proof For N € N, define

dn(f. g) = f (1Ad(f(w), g()))n(dw).

AN

Thend(f, f,) —> 0 if and only if dy (f, fu) —> 0 forall N € N.
“=—" Assume f}, iy f. Then, for any ¢ € (0, 1),

dn(f, f) < i(An 0 {d(f, f) > e)) +en(An) =5 en(Ap).

Letting ¢ | 0 yields dy (f, f,) —> 0.
“e=" Assume d(f, f,) —> 0. Let B € A with u(B) < co. Fix § > 0 and
choose N € N large enough that (B \ Ay) < §. Then, for € € (0, 1),

w(BN{d(f, f) > e}) <8+ u(An N {d(f, f) > ¢})

n—o0

<8+eldn(f. f0) = 8.
Letting 8 4 0 yields u(B N {d(f, fu) > e}) = 0; hence f, == f. 0

Consider the most prominent case E = R equipped with the Euclidean metric.
Here the integral is the basis for another concept of convergence.

Definition 6.8 (Mean convergence) Let f, f1, fa,... € £'(1). We say that the
sequence (f;)neN converges in mean to f, symbolically

o s 7,

n—o0

if | fn = flh — 0.
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L! . . n—00
Remark 6.9 1f f, — f, then in particular [ f,du — [ fdu. O

1 1
Remark 6.10 1f f, L, f and f, L, g, then f = g almost everywhere. Indeed, by
n—od

the triangle inequality, || f — glli < | fu — fll1 + I fu — gl —> 0. O

Remark 6.11 Both L'-convergence and almost everywhere convergence imply con-
vergence in measure. All other implications are incorrect in general. O

Theorem 6.12 (Fast convergence) Let (E, d) be a separable metric space. In or-
der for the sequence (f,)neN of measurable maps §2 — E to converge almost
everywhere, it is sufficient that one of the following conditions holds.

(i) E =R and thereis a p € [1,00) with f, € LP () for all n € N and there is
an f € LP(w) with Y 0oy |l fa — fllp < 00.
(i1) There is a measurable f with Zflozl WAN{d(f, fu) > €}) <ocoforalle >0
and for all A € A with u(A) < oo.
In both cases, we have f, = f almost everywhere.
(iii) E is complete and there is a summable sequence (&,),eN such that

o]

Z,u(A N {d(fn, fot1) > 8,,}) <oo forall Ae Awith u(A) < oo.

n=1

Proof Clearly, condition (i) implies (ii) since Markov’s inequality yields that

w({If = fal > €}) <7l f = fullp-

By Remark 6.3, it is enough to consider the case pu(£2) < oo.

Assume (ii). Let B, (¢) = {d(f, fu) > €} and B(¢) =limsup,,_, , B, (¢). By the
Borel-Cantelli lemma, wu(B(e)) =0. Let N = U;’f’:l B(1/n). Then w(N) =0 and
fu(@) =5 f(w) forany w € 2\ N.

Assume (iii). Let B, = {d(fn, fu+1) > €} and B = limsup,,_, , B,. Then
w(B) =0and (f;(w)),en is a Cauchy sequence in E for any w € £2 \ B. Since E is
complete, the limit f(w) :=lim,_, « fn(w) exists. For w € B, define f(w)=0. O

Corollary 6.13 Let (E,d) be a separable metric space. Let f, f1, fa, ... be mea-
surable maps §2 — E. Then the following statements are equivalent.

. — 00 .
1) fa = f in measure.
(ii) For any subsequence of ( fn)neN, there exists a sub-subsequence that converges
to f almost everywhere.

Proof “(ii)=(i)” Assume that (i) does not hold. Let d be a metric that induces
convergence in measure (see Theorem 6.7). Then there exists an ¢ > 0 and a sub-
sequence (fy, )ken With d (fng» f) > € for all k € N. Clearly, no subsequence of
(fu)ken converges to f in measure; hence neither converges almost everywhere.
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“(i)==(ii)” Now assume (i). Let A1, Ay, ... € Awith Ay 1 2 and u(Ay) < 0

forany N € N. Since f,, — f for k — oo, we can choose a subsequence (fnkl )ieN

such that w(A; N (d(f, fnk[) > 1/1)) < 27! for any I € N. Hence, for each N € N,
we have

oo 1 oo
ZM(AN n (d(f, S > 7)) < Nuaw + Y 27 <oo.

=1 I=N+1

By Theorem 6.12(ii), ( fnk, )ieN converges to f almost everywhere on Ay. By Re-
mark 6.3, ( fnk, )ieN converges to f almost everywhere. Il

Corollary 6.14 Let (82, A, 1) be a measure space in which almost everywhere con-
vergence and convergence in measure do not coincide. Then there does not exist a
topology on the set of measurable maps 2 — E that induces almost everywhere
convergence.

Proof Assume that there does exist a topology that induces almost everywhere con-
vergence. Let f, f1, f2, ... be measurable maps with the property that f;, = f,but

not f, = f almost everywhere. Now let U be an open set that contains f, but
with f,, & U for infinitely many n € N. Hence, let (f;, )ken be a subsequence with

fu, €U forall k € N. Since f,, '~ f in measure, by Corollary 6.13, there exists

a further subsequence ( fnk,)leN of (fn,)ken With f,,kl llof f almost everywhere.
However, then f, nw €U for all but finitely many /, which yields a contradiction! [J

Corollary 6.15 Let (E, d) be a separable complete metric space. Let (fy)neN be a
Cauchy sequence in measure in E; that is, for any A € A with u(A) < oo and any
g > 0, we have

,u(A N {d(fm, fn) > s}) —> 0 form,n — oo.

Then ( fn)neN converges in measure.

Proof Without loss of generality, we may assume ©(§2) < co. Choose a subse-
quence ( fy; )ken such that

/’L({d(fn’ fnk) > 2_k}) < 2_k for all n > ng.

By Theorem 6.12(iii), there is an f with fj;, kjf f almost everywhere; hence, in
particular, u({d(fo, £) > £/2}) =3 0 for all & > 0. Now

u({d(fu. ) >e}) = u({d(fur. fu) > €/2}) + u({d(fu. £) > €/2}).

If k is large enough that 2=% < ¢/2 and if n > ny, then the first summand is smaller
than 27*. Hence we have u({d(fy. f) > £)) "= 0: thats, f, =5 f. O
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Exercise 6.1.1 Let §2 be countable. Show that convergence in probability implies
almost everywhere convergence.

Exercise 6.1.2 Give an example of a sequence that

(i) converges in L' but not almost everywhere,
(ii) converges almost everywhere but not in L!.

Exercise 6.1.3 (Egorov’s theorem (1911), [41]) Let (£2, A4, 1) be a finite measure
space and let fi, f,... be measurable functions that converge to some f almost
everywhere. Show that, for every ¢ > 0, there is a set A € A with u(£2 \ A) < ¢ and

SUp, e 4 | fu(@) — f(w)| =3 0.

Exercise 6.1.4 Let X, X», ... be independent, square integrable, centered random
variables with Zﬁl Var[X;] < co. Show that there exists a square integrable X
with X =1lim,, o0 > ;_; X; almost surely.

6.2 Uniform Integrability

From the preceding section, we can conclude that convergence in measure plus ex-
istence of L' limit points implies L'-convergence. Hence convergence in measure
plus relative sequential compactness in L' yields convergence in L. In this section,
we study a criterion for relative sequential compactness in L', the so-called uniform
integrability.

Definition 6.16 A family F C £'(u) is called uniformly integrable if

inf  sup /(|f| — g)+d/L =0. (6.2)
0<gell(w) feF

Theorem 6.17 The family F C L' (1) is uniformly integrable if and only if

inf  sup / |fldun=0. (6.3)
0<geLl(w) feF J{fI>3)

If n(82) < oo, then uniform integrability is equivalent to either of the following two
conditions:

(i) infaefo.00)sUprer [(IfI —a)"du=0,
(ii) infye[0,00) SUp re F f{|f‘>a} |fldu=0.

Proof Clearly, (| f1—g)t <|f]-1y f|>g}> hence (6.3) implies uniform integrability.
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Now assume (6.2). For ¢ > 0, choose g; € Ll (w) such that

sup/(lfl—gs)+du§s. (6.4)
feF

Define g; = 2g./>. Then, for f € F,
[ s [ (i) e [ spdn
{1 f1>8:} {1 f1>g:} {1 f1>8:}
By construction, f{‘f.|>g~g}(|f| —ge)Tdu<e/2and

+
g2l f1=g) < (1f1 = ge2) "Ly 1=

hence also
+ &
/ _ 8es2dp E/ _ (|f| _88/2) dp < 7
{1f1>ge} {If1>8e}
Summing up, we have
wp/‘ |fldu <e. 6.5)
feFHif1=g)

Clearly, (ii) implies (i). If (£2) < oo, then (i) implies uniform integrability of F
since the infimum is taken over the smaller set of constant functions. We still have
to show that uniform integrability implies (ii). Accordingly, assume F is uniformly
integrable (but not necessarily 1 (§2) < co). For any ¢ > 0 (and g, and g, as above),
choose a, such that f{§8/2>a5} ges2dp < 5. Then

[ |f|dl/~§/ ~ |f|du+/~ Zepdu <e. .
{lf1>ae} {1 f1>8e2} {8e/2>ac}

Theorem 6.18

() If F € L' (w) is a finite set, then F is uniformly integrable.
(i) If F, G C L'(u) are uniformly integrable, then (f +g: f € F,g€G), (f—g:
feF,geQ)and{|f]|: f € F} are also uniformly integrable.
(iii) If F is uniformly integrable and if, for any g € G, there exists an f € F with
lgl < |f], then G is also uniformly integrable.

Proof The proof is simple and is left as an exercise. O

The following theorem describes a very useful criterion for uniform integrability.
We will use it in many places.
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Theorem 6.19 For finite ., F C L'(w) is uniformly integrable if and only if there
is a function H : [0, 00) — [0, 00) with limy_, oo H(x)/x = 00 and

sup/H(|f|)dM<oo.
feF

H can be chosen to be monotone increasing and convex.

Proof “<=" Assume there is an H with the advertised properties. Then K, :=
infy>, Hx) 1 00 if a 1 0o. Hence, for a > 0,

X
1
sup |Fldp < — sup H(If1)du
feF J{If|=za} a feF J{|f|za}

<L up/H(|f|)dM“1’>°o.

“=—=" Assume F is uniformly integrable. As we have ©(£2) < oo, by Theo-
rem 6.17, there exists a sequence a, 1 oo with

sup /(|f| —ay) T du <27,
feF

Define

o
Hx) = Z(x —a,)T forany x >0.

n=1

As a sum of convex functions, H is convex. Further, for any » € N and x > 2a,,
H(x)/x > Y 3_;(1 —ax/x)" > n/2; hence we have H(x)/x 1 oo. Finally, by
monotone convergence, for any f € F,

[Hsr@huan =Y [(1-a) desy 2 =1,
n=1 n=1

Recall the notation || - ||, from Definition 4.16.

Definition 6.20 Let p € [1, oo]. A family F C LP(u) is called bounded in £ ()
if sup{[| fllp: f € F} < o0.

Corollary 6.21 Let u($2) < oo and p > 1. If F is bounded in LP (), then F is
uniformly integrable.

Proof Apply Theorem 6.19 with the convex map H (x) = x?. g
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Corollary 6.22 If (X;)ie is a family of random variables with
sup{|E[X,-]| RS I} <00 and sup{Var[Xi] RS I} < 00,

then (X;)iey is uniformly integrable.

Proof Since E[Xl.z] =E[X;]?+ Var[X;],i € I, is bounded, this follows from Corol-
lary 6.21 with p = 2. O

Lemma 6.23 There is a map h € L () with h > 0 almost everywhere.

Proof Let Ay, Ay, ..., e Awith A, + 2 and u(A,) < oo for all n € N. Define
> 1
h=Y"27"(1+4u(Ay) 1a,.
n=1

Then i > 0 almost everywhere and [hdpu =) oo 27" % <1 O

Theorem 6.24 A family F C L' () is uniformly integrable if and only if the fol-
lowing two conditions are fulfilled.

(i) C:=supper [|fldu < oo.
(ii) There is a function 0 < h € L' () such that for any € > 0, there is a §(¢) > 0
with

sup / |fldu <e forall Ae A such that / hdu < 8(¢).
feFJA A

If 1(82) < oo, then (ii) is equivalent to (iii):
(iii) Forall € > 0, there is a 6(¢) > 0 such that

sup/|f|du§£ forall A € Awith u(A) <3§(e).
feFJA

Proof “==" Let F be uniformly integrable. Let 1 € £!(1) with & > 0 a.e. Let

e > 0 and let g;/3 be an £/3-bound for F (as in (6.5)). Since {g./3 > ah} | ¥ for
o — oo, for sufficiently large o = a(¢), we have

~ &
/ 8ep3du < <.
(Ze/3=ah) 3

Letting §(¢) := %(8), we get for any A € A with [, hdp <8(¢) and any f € F,

/|f|dus/ il [ Fpdu
A {1f1>8¢/3} A

& ~
§—+afhdu+f ge3du <e.
3 A (7. /32ah)
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Hence we have shown (ii). In the above computation, let A = §2 to obtain

2
/|_f|dM§?8+a/hdu<oo.

Hence we have also shown (i).
“<=" Assume (i) and (ii). Let & > 0. Choose h and §(¢) > 0 as in (ii) and C as
in (i). Define h = %h Then

8 ~ 8
[ =22 [ Gap="2 [ i71dn <o
{1 f1=h) C Jus=n c

hence, by assumption, f{lf\>ﬁ} |fldu < e.

“(i1)==(iii)” Assume (ii). Let £ > 0 and choose § = §(¢) as in (ii). Choose K <
oo large enough that f{h>K} hdp < §/2. For all A € A with u(A) < 38/(2K), we
obtain B

f hdu < KM(A)+f hdu <s;
A {h>K}

hence [, |fldu <eforall f € F.
“(iii))==-(ii)” Assume (iii) and ©(£2) < co. Then i =1 serves the purpose. [

‘We come to the main theorem of this section.

Theorem 6.25 Let {f, :n € N} C L' (). The following statements are equiva-
lent.

() Thereisan f € L'(w) with f, —=> fin L.
(i) (fu)nen is an L'(w)-Cauchy sequence; that is, || fu — fulli —> O for
m,n — o0.

(ii1) (fu)nen is uniformly integrable and there is a measurable map f such that
meas

The limits in (1) and (iii) coincide.

Proof “(i)==(ii)” This is evident.

“(ii))==(iii)” For any ¢ > 0, there is an n, € N such that || f;, — fp.. 1 < ¢ for all
n > ng. Hence ||(| ful — | fn, DT ll1 < & foralln > n,. Thus ge = max{| fil, ..., | fa. |}
is an ¢-bound for (f;),en (as in (6.4)). For ¢ > 0, let

w({1fn = ful > €}) <e "N fn = fulll — O form,n — oco.

Thus (f;)nen is also a Cauchy sequence in measure; hence it converges in measure
by Corollary 6.15.

“(iili)==(1)” Let f be the limit in measure of the sequence (f;;),eN. Assume that
(fn)nen does not converge to f in L'. Then there is an ¢ > 0 and a subsequence
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(fn)ken with
lf — fulli >2¢ forallk e N. (6.6)
Here we define || f — fu,|l1 = oo if f & £ (1). By Corollary 6.13, there is a sub-

sequence ( fn’k)keN of (fn)ken Wwith f"i kio;) f almost everywhere. By Fatou’s
lemma (Theorem 4.21) with 0 as a minorant, we thus get

/|f|d,u§liminf/|fn’|du<oo.
k— 00 k

Hence f € £'(u). By Theorem 6.18(ii) (with G = { f}), we obtain that the family
f — fn;()kEN is uniformly integrable; hence there is a 0 < g € El(u) such that

JAf - Ju I = g)T du < e. Define

gk=|fy — fIAg forkeN.
k— 00 s
Then g — 0 almost everywhere and g — gx > 0. By Fatou’s lemma,

1imsup/gkd,u=/gdu—liminf/(g—gk)du
k— 00 k— 00
S/gdu—/(lim (g—gk)>du=0-
k— 00
Since | f — fur| = (1f — fu,| — &)" + gk, this implies that
timsup = fi 1 < limsup [ (1f = fiy1 — ¢) "y +timsup [ gudpe <
k—o00

k— o0 k— o0

contradicting (6.6). O

Corollary 6.26 (Lebesgue’s convergence theorem, dominated convergence) Let

f be measurable and let (f,)nen be a sequence in L' (1) with f,, e f in mea-

sure. Assume that there is an integrable dominating function 0 < g € L' () with
| | < g almost everywhere for all n € N. Then f € L'(u) and f, e finL';

n—o00

hence in particular f fndu — f fdu.

Proof This is a consequence of Theorem 6.25, as the dominating function ensures
uniform integrability of the sequence (f;),eN. U

Exercise 6.2.1 Let H € £! (n) with H > 0 p-a.e. (see Lemma 6.23) and let (E, d)
be a separable metric space. For measurable f, g : 2 — E, define

du(f,g) = /(1 Ad(f (@), g(@)))H(w)p(dw).
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(i) Show that dy is a metric that induces convergence in measure.
(i) Show that dy is complete if (E, d) is complete.

6.3 Exchanging Integral and Differentiation

We study how properties such as continuity and differentiability of functions of two
variables behave under integration with respect to one of the variables.

Theorem 6.27 (Continuity lemma) Let (E, d) be a metric space, xo € E and let
f 82 x E — R be a map with the following properties.

(i) Forany x € E, the map w — f(w,x) is in L! (w).
(i1) For almost all w € $2, the map x — f(w, x) is continuous at the point x.
(iii) Thereisamap h € ﬁl(u), h >0, such that | f(+,x)| <h p-a.e.forallx € E.

Then the map F : E — R, x — f f(w, x)u(dw) is continuous at x.

Proof Let (x,)neN be a sequence in E with lim,,_, », x,, = xg. Define f,, = f (-, x5,).
By assumption, | f,,| < h and f, = f (s, xo) almost everywhere. By the dominated
convergence theorem (Corollary 6.26), we get

F(x,) = f fodu =% f f (- x0)dp = F(xp).

Hence F is continuous at xg. O

Theorem 6.28 (Differentiation lemma) Let I C R be a nontrivial open interval
and let f : 2 x I — R be a map with the following properties.

(i) Forany x € E, the map w — f(w,x) is in L' ().
(ii) For almost all w € §2, the map I — R, x — f(w, x) is differentiable with
derivative f’.
(iii) Thereisamap h € L'(u), h >0, such that | f' (-, x)| < h p-a.e.forall x € I.

Then, forany x € I, f'(s,x) € Ll(u) and the function F : x — f f(w, x)u(dw)
is differentiable with derivative

F'(x) = / fl@, x)pdw).

Proof Let xg € I and let (x,,),eN be a sequence in I with x,, 7 xo for all n € N and
such that lim,_, oc X, = xo0. We show that, along the sequence (x,),enN, the differ-
ence quotients converge. Define

f(@,xn) = f(®,x0)

gn(w) = for all w € £2.
Xn — X0
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By assumption (ii), we have

&n = f'(-,x0) p-almost everywhere.

By the mean value theorem of calculus, for all » € N and for almost all w € §2,
there exists a y, (w) € I with g,(®) = f'(w, yn(w)). In particular, |g,| < h almost
everywhere for all n € N. By the dominated convergence theorem (Corollary 6.26),
the limiting function f’(-, xo) is in £'(x) and

hmfﬁiﬁyﬁzg%[&wmwwszwmwum. .

n—od x}’l —xo

Example 6.29 (Laplace transform) Let X be a nonnegative random variable on
(£2, A, P). Using the notation of Theorem 6.28, let I = [0, co) and f(x,A) = e M
for A € I. Then

F() =E[e ]

is infinitely often differentiable in (0, co). The first two derivatives of F are F'(1) =
—E[Xe *X] and F”(}) = E[(X?)e *X]. Successively, we get the nth derivative
F™ () =E[(—X)"e *X]. By monotone convergence, we get

E[X]=—-1limF'(}) (6.7)
)
and
E[X"]=(-1" %1 F™@) forallneN. (6.8)
Indeed, for ¢ > 0 and I = (&, 00), we have

d
d—)\f(x,)»)' = sup xe M= g le! < 00.

x>0,1el

sup
x>0,rel

Thus F fulfills the assumptions of Theorem 6.28. Inductively, we get the statement
for F™ since

<(n/e)'e™ <oo forx>0and A > ¢.

ar N
T )

Exercise 6.3.1 Let X be a random variable on (£2, A, P) and let
A(t) :=log(E[¢'*]) forallt eR.

Show that D :={t e R: A(t) < oo} is a nonempty interval and that A is infinitely
often differentiable in the interior of D.



Chapter 7
L?-Spaces and the Radon—-Nikodym Theorem

In this chapter, we study the spaces of functions whose pth power is integrable. In
Section 7.2, we first derive some of the important inequalities (Holder, Minkowski,
Jensen) and then in Section 7.3 investigate the case p = 2 in more detail. Apart from
the inequalities, the important results for probability theory are Lebesgue’s decom-
position theorem and the Radon—Nikodym theorem in Section 7.4. At first reading,
some readers might wish to skip some of the more analytic parts of this chapter.

7.1 Definitions

We always assume that (Q, A, 1) is a o-finite measure space. In Definition 4.16,
for measurable f : 2 — R, we defined

1/p
1flp = (/Iflpdpc) for p € [1, 00)

and
1 lloo = inf{K > 0: (1] > K) =0}.

Further, we defined the spaces of functions where these expressions are finite:
LP(R2, A, 1) =L (A, ) =L (n) ={f : 2 — R measurable and || f||, < co}.

We saw that || - ||; is a seminorm on £!(;1). Here our first goal is to change || - l
into a proper norm for all p € [1, oo]. Apart from the fact that we still have to show
the triangle inequality, to this end, we have to change the space a little bit since we
only have

lf—¢glp=0 <<= [f=g up-ae
For a proper norm (that is, not only a seminorm), the left-hand side has to imply

equality (not only a.e.) of f and g. Hence we now consider f and g as equivalent if
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f = g almost everywhere. Thus let
N = {f is measurable and f =0 p-a.e.}.

For any p € [1, 00], N\ is a subvector space of £?(u). Thus formally we can build
the factor space. This is the standard procedure in order to change a seminorm into
a proper norm.

Definition 7.1 (Factor space) For any p € [1, oo], define
LP(R2, A pn) =LY, AW/N=|{f=Ff+N:feLll(w}

For f € LP(1), define || fl|, = || fIl, forany f € f. Alsolet [ fdu= [ fdu if
this expression is defined for f.

Note that || f|| p and f fdu do not depend on the choice of the representative
f € f. Recall from Theorem 4.19 that [ f du is well-defined if f € £P(w) and if
w is finite but it need not be if w is infinite.

We first investigate convergence with respect to || - ||,. To this end, we extend
the corresponding theorem (Theorem 6.25) on convergence with respect to || - ||1.

Definition 7.2 Let p € [1,00] and f, fi, fa,... € L2 (w). If | fn — fll, —> O,

. . L?
then we say that (f,),en converges to f in L”(u) and we write f,, — f.

Theorem 7.3 Let p € [1,00] and f1, f2,... € LP (). Then the following state-
ments are equivalent:

(1) Thereis an f € LP(u) with f, i f.
(1) (fu)nen is a Cauchy sequence in LP ().
If p < o0, then, in addition, (i) and (ii) are equivalent to:

(i) (| fulP)nen is uniformly integrable and there exists a measurable f with
meas

The limits in (1) and (i1) coincide.

Proof For p = oo, the equivalence of (i) and (ii) is a simple consequence of the
triangle inequality.

Now let p € [1, 00). The proof is similar to the proof of Theorem 6.25.

“(i)= (ii)” Note that |x + y|? <2P(|x|? 4 |y|P) for all x, y € R. Hence

n—oo

I fm = Fallp <22 (1 fw = U+ 1 fu = FlIp) — O form,n — oo.
“(ii)= (iii)” This works as in the proof of Theorem 6.25.

“(iii)= (i)” Since | f,|? = | f1P in measure, by Theorem 6.25, we have
|f1P € £'(u) and hence f € LP(u). For n € N, define g, = |f, — f|?. Then
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gn "~ 0in measure, and (g,)neN is uniformly integrable since g, <27(| f,,|” +
n—o0

| £17). Hence we get (by Theorem 6.25) || f, — f||§ =lgnll1 — 0. O

Exercise 7.1.1 Let (X;);en be independent, square integrable random variables
with E[X;] =0 forall i € N.
(i) Show that Zfi] Var[X;] < oo implies that there exists a real random variable

X with 37, X; =5 X almost surely.
(ii) Does the converse implication hold in (i)?

Exercise 7.1.2 Let f : £2 — R be measurable. Show that the following hold.

() If [ | f1P dp < oo for some p € (0, 00), then [| £, == [ flloo-
(i) The integrability condition in (i) cannot be waived.

Exercise 7.1.3 Let p € (1,00), f € LP (L), where A is the Lebesgue measure on R.
Let T :R — R, x — x + 1. Show that

1 n—1
=Y foT* =0 inLP ().
n

k=0

7.2 Inequalities and the Fischer-Riesz Theorem

‘We present one of the most important inequalities of probability theory, Jensen’s in-
equality for convex functions, and indicate how to derive from it Holder’s inequality
and Minkowski’s inequality. They in turn yield the triangle inequality for || - ||, and
help in determining the dual space of L? (i). However, for the formal proofs of the
latter inequalities, we will follow a different route.

Before stating Jensen’s inequality, we give a primer on the basics of convexity of
sets and functions.

Definition 7.4 A subset G of a vector space (or of an affine linear space) is called
convex if, for any two points x, y € G and any A € [0, 1], wehave Ax+ (1 —A)y € G.
Example 7.5

(i) The convex subsets of R are the intervals.
(i) A linear subspace of a vector space is convex.
(iii) The set of all probability measures on a measurable space is a convex set. <

Definition 7.6 Let G be a convex set. A map ¢ : G — R is called convex if for any
two points x, y € G and any A € [0, 1], we have

p(Ax 4+ (1= 0)y) <rpx) + (1 —Ve(y).

@ is called concave if (—¢) is convex.
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Let 7 C R be an interval. Let ¢ : I — R be continuous and in the interior 7°
twice continuously differentiable with second derivative ¢”. Then ¢ is convex if
and only if ¢”(x) > 0 for all x € I°. To put it differently, the first derivative ¢’ of a
convex function is a monotone increasing function. In the next theorem, we will see
that this is still true even if ¢ is not twice continuously differentiable when we pass
to the right-sided derivative DT ¢ (or to the left-sided derivative), which we show
always exists.

Theorem 7.7 Let I C R be an interval with interior 1° and let ¢ : I — R be a
convex map. Then:

(i) @ is continuous on 1° and hence measurable with respect to B(I).
(i1) For x € I°, define the function of difference quotients

() — o)
gr() = 2 foryed\ ().
Then g, is monotone increasing and there exist the left-sided and right-sided
derivatives
D7p(x) :=limg.(y) = sup{g:(y) : ¥ < x}
and

DT o(x):= lim g () = inf{g.(y): y > x}.
(iii) For x € 1°, we have D™ ¢(x) < DV o(x) and

pxX)+(y—x0)t <@(y) foranyyel <= te[D px), D px)].

Hence D™ ¢(x) and DV ¢(x) are the minimal and maximal slopes of a tangent
at x.

(iv) The maps x — D~ @(x) and x — D%V @(x) are monotone increasing. x
D™ o(x) is left continuous and x — DT (x) is right continuous. We have
D~ (x) = DT o(x) at all points of continuity of D~ ¢ and D% ¢.

(v) ¢ is differentiable at x if and only if D™ @(x) = DV (x). In this case, the
derivative is ¢’ (x) = DT p(x).

(vi) ¢ is almost everywhere differentiable and ¢(b) — ¢(a) = fab DT o(x)dx for
a,bel”.

Proof (i) Let x € I°. Assume that liminf,_, o ¢(x — 1/n) < ¢(x) — ¢ for some
e > 0. Since ¢ is convex, we have

o(y) = o(x) +n(y —x)((p(x) —px — 1/n)) forall y > x and n € N.

Combining this with the assumption, we get ¢(y) = oo for all y > x. Hence the
assumption was false. A similar argument for the right-hand side yields continuity
of g at x.
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(i) Monotonicity is implied by convexity. The other claims are evident.

(iii) By monotonicity of g,, we have D~ ¢(x) < DT ¢(x). By construction,
o(x) + (y — x)t < @(y) for all y < x if and only if r > D™ ¢(x). The inequality
holds for all y > x if and only if t < DV (x).

(iv) For & > 0, by the convexity, the map x > g, (x + &) is monotone increas-
ing and is continuous by (i). Being an infimum of monotone increasing and con-
tinuous functions the map x — DV ¢(x) is monotone increasing and right contin-
uous. The statement for D™ ¢ follows similarly. As x — g,(y) is monotone, we
get DTo(x") > D™ ¢(x') > DT p(x) for x’ > x. If DV ¢ is continuous at x, then
D™¢(x) = D*op(x).

(v) This is obvious since D~¢ and D ¥ are the limits of the sequences of slopes
of the left-sided and right-sided secant lines, respectively.

(vi) For ¢ > 0, let A, = {x € [ : DY p(x) > & + limyy, DT (y)} be the set of
points of discontinuity of size at least ¢. For any two points a, b € I with a < b, we
have #(A; N (a,b)) < e~ (DT(b) — DT (a)); hence A, N (a,b) is a finite set.
Thus A, is countable. Hence also A = U,fozl Aqy is countable and thus a null set.
By (iv) and (v), ¢ is differentiable in /° \ A with derivative DT ¢. O

If I is an interval, then amap g : I — Ris called affine linear if there are numbers
a,beRsuchthat g(x) =ax+bforallx € I.If ¢ : I — R is a map, then we write

L(p) :={g: 1 — Ris affine linear and g < ¢}.

As a shorthand, we write sup L(¢) for the map x — sup{f(x): f € L(p)}.

Corollary 7.8 Let I C R be an open interval and let ¢ : I — R be a map. Then the
following are equivalent.

(i) ¢ is convex.
(i) For any xqo € I, there exists a g € L(¢) with g(xg) = ¢(xo).
(iii) L(gp) is nonempty and ¢ = sup L(gp).
(iv) There is a sequence (g,)neN in L(@p) with ¢ =1lim,_, oo max{gi, ..., gn}

Proof “(iil) = (iii) <= (iv)” This is obvious.

“(iii) = (i)” The supremum of convex functions is convex and any affine linear
map is convex. Hence sup L(¢) is convex if L(¢) # @.

“(i)== (i1)” By Theorem 7.7(iii), for any xo € I, the map

x = 9(x0) + (x — x0) Do (x0)

isin L(¢). O

Theorem 7.9 (Jensen’s inequality) Let I C R be an interval and let X be an I-
valued random variable with E[|X|] < oco. If ¢ is convex, then E[p(X)™] < oo
and

E[p(X)] = ¢(E[X]).
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Proof As L(¢) # @ by Corollary 7.8(iii), we can choose numbers a, b € R such that
ax +b <¢(x) forall x € I. Hence

E[p(X)"] <E[(aX +b)"] < |b| +al - E[|X]] < oo.

We distinguish the cases where E[X] is in the interior /° or at the boundary d/.

Case 1. T E[X] € I°, then let t+ := D+ o(E[X]) be the maximal slope of a tangent
of ¢ at E[X]. Then ¢(x) > tT - (x — E[X]) + ¢(E[X]) for all x € I; hence

E[¢(X)] = t"E[X — E[X]] + E[¢(E[X])] = ¢(E[X]).

Case 2. If E[X] € dI, then X = E[X] a.s.; hence E[p(X)] = E[p(E[X])] =
p(E[X]). U

Jensen’s inequality can be extended to R”. To this end, we need a representation
of convex functions of many variables as a supremum of affine linear functions.
Recall that a function g : R” — R is called affine linear if there is an a € R” and
a b € R such that g(x) = (a, x) + b for all x. Here (-, -) denotes the usual inner
product on R”.

Theorem 7.10 Let G C R" be open and convex and let ¢ : G — R be a map. Then
Corollary 1.8 holds with I replaced by G. If ¢ is convex, then ¢ is continuous and
hence measurable. If ¢ is twice continuously differentiable, then ¢ is convex if and
only if the Hessian matrix is positive semidefinite.

Proof As we need these statements only in the proof of the multidimensional Jensen
inequality, which will not play a central role in the following, we only give refer-
ences for the proofs. In Rockafellar’s book [145], continuity follows from Theo-
rem 10.1, and the statements of Corollary 7.8 follow from Theorem 12.1 and Theo-
rem 18.8. The claim about the Hessian matrix can be found in Theorem 4.5. g

Theorem 7.11 (Jensen’s inequality in R") Let G C R" be a convex set and let
X1,..., Xn be integrable real random variables with P[(X1, ..., X,) € G] = 1.
Further, let ¢ : G — R be convex. Then E[¢p (X1, ..., X,;)”] < 0o and

E[p(X1,....X»)] = o(E[X1].....E[X,]).

Proof First consider the case where G is open. Here, the argument is similar to the
proof of Theorem 7.9. Let g € L(¢) with

g(E[X1], ..., E[X,]) = ¢(E[X1], ..., E[X,]).

As g < ¢ is linear, we get

E[p(X1,.... X)) = E[g(X1,.... X»)] =g(E[X1]..... E[X,]).
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Integrability of ¢(X1,..., X;)” can be derived in a similar way to the one-
dimensional case.

Now consider the general case where G is not necessarily open. Here the prob-
lem that arises when (E[X1], ..., E[X,]) € G is a bit more tricky than in the one-
dimensional case since dG can have flat pieces that in turn, however, are convex.
Hence one cannot infer that (X1, ..., X,,) equals its expectation almost surely. We
only sketch the argument. First infer that (X, ..., X,) is almost surely in one of
those flat pieces. This piece is necessarily of dimension smaller than n. Now restrict
¢ to that flat piece and inductively reduce its dimension until reaching a point, the
case that has already been treated above. Details can be found, e.g., in [37, Theo-
rem 10.2.6]. Il

Example 7.12 Let X be a real random variable with E[X?] < oo, I = R and
@(x) = x2. By Jensen’s inequality, we get

Var[X]=E[x?] - (E[X])’ > 0. 0
Example 7.13 Let G = [0, 00) x [0, 00), @ € (0, 1) and ¢(x, y) = x*y! = Then ¢

is concave (exercise!); hence, for nonnegative random variables X and Y with finite
expectation (by Theorem 7.11),

E[x*y'~*] < (E[X1)*(E[v]) . 0

Example 7.14 Let G, X and Y be as in Example 7.13. Let p € (1,00). Then
¥ (x,y) = (x'/? 4 y!/P)P is concave. Hence (by Theorem 7.11)

(E[X1"/7 +E[¥]"/7)” = E[(X"/P +Y'/P)"]. o

Before we present Holder’s inequality and Minkowski’s inequality, we need a
preparatory lemma.

Lemma 7.15 (Young’s inequality) For p,q € (1, 00) with % + ql =landforx,ye
[0, 00),

Xy < —+—. (7.1)
p

Proof Fix y € [0,00) and define f(x) := % + Vq—q — xy for x € [0,00). f is

twice continuously differentiable in (0, co) with derivatives f’(x) =x?~! — y and
f"(x) = (p — DxP~2. In particular, f is strictly convex and hence assumes its
(unique) minimum at xo = y'/?=1_ By assumption, g = %; hence x('; = y? and
thus

11
fxo) = <;+;>y"—y”(”‘”y=0- O
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Theorem 7.16 (Holder’s inequality) Let p,q € [1, o0] with % + 5 =1 and
feLP(w),geLi(w). Then (fg) € L' (1) and

Ifglh < I1F1p-llglly-

Proof The cases p =1 and p = oo are trivial. Hence, let p € (1, 00). Let f € LP(u)
and g € £9(p) be nontrivial. By passing to f/|| fll, and g/lIgll;, we may assume
that || fIl, = llgll; = 1. By Lemma 7.15, we have

1 » 1 q
I fell= If|~|g|d,u§; L] le_c_] lgl"du

1 1
b —=1=1lp- gl
P q ' ! )

Theorem 7.17 (Minkowski’s inequality) For p € [1,00] and f, g € LP(u),

If+gllp < I1fllp+llglp- (1.2)

Proof The case p = oo is trivial. Hence, let p € [1, 0o0). The left-hand side in (7.2)
does not decrease if we replace f and g by |f| and |g|. Hence we may assume
f=0and g >0 and (to avoid trivialities) || f + g[l, > 0.

Now (f +8)? <2P(fP v gP) <2P(f? + gP); hence f + g € LP (). Apply
Holder’s inequality to f - (f + g)? ' andto g - (f 4+ )7~ ! to get

If +gll= /(f o) dp= / £+ )P du+/g(f +g)Pd
<Ifllp- |+ )77, +ligly - [ (F +P7 !,
=(IF1lp + Ngllp) - ILf +gllh™".

Note that in the last step, we used the fact that p — p/q = 1. Dividing both sides by
||f-|'g||§71 yields (7.2). 5

In Theorem 7.17, we verified the triangle inequality and hence that || - ||, is a
norm. Theorem 7.3 says that this norm is complete (i.e., every Cauchy sequence
converges). A complete normed vector space is called a Banach space. Summing
up, we have shown the following theorem.

Theorem 7.18 (Fischer—Riesz) (L”(w), |l « || ) is a Banach space for every p €
[1, co].

Exercise 7.2.1 Show Holder’s inequality by applying Jensen’s inequality to the
function of Example 7.13.
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Exercise 7.2.2 Show Minkowski’s inequality by applying Jensen’s inequality to the
function of Example 7.14.

Exercise 7.2.3 Let X be a real random variable and let p,q € (1,00) with
% + é = 1. Show that X is in £P(P) if and only if there exists a C < oo such

that [E[XY]| < C||Y ||, for any bounded random variable Y.

7.3 Hilbert Spaces

In this section, we study the case p =2 in more detail. The main goal is the repre-
sentation theorem for continuous linear functionals on Hilbert spaces due to Riesz
and Fréchet. This theorem is a cornerstone for a functional analytic proof of the
Radon—Nikodym theorem in Section 7.4.

Definition 7.19 Let V be a real vector space. A map (-, +): V x V — R is called
an inner product if:

(i) (Linearity) (x,ay +z) =a(x,y)+ (x,z) forall x,y,z€ V and @ € R.
(i1) (Symmetry) (x,y) = (y,x) forallx,y e V.
(iii) (Positive definiteness) (x, x) > 0 for all x € V' \ {0}.

If only (i) and (ii) hold and (x,x) > O for all x, then (-, ) is called a positive
semidefinite symmetric bilinear form, or a semi-inner product.

If (-, +) is an inner product, then (V, (-, +)) is called a (real) Hilbert space if
the norm defined by ||x|| := (x, x)'/? is complete; that is, if (V, || - |) is a Banach
space.

Definition 7.20 For f, g € Ez(u), define
(f. 8 :=/fgdu~

For f, g € L?(1), define (f, g) := (f, g), where f € f and g € 3.

Note that this definition is independent of the particular choices of the represen-
tatives of f and g.

Theorem 7.21 (-, -) is an inner product on L*>(j) and a semi-inner product on
L2(w). In addition, || fll2 = (£, f)'/*.

Proof This is left as an exercise. U

As a corollary to Theorem 7.18, we get the following.

Corollary 7.22 (L?(w), (-, -)) is a real Hilbert space.
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Lemma 7.23 If (-, ) is a semi-inner product on the real vector space V, then
(+, *): V xV — Ris continuous (with respect to the product topology of the topol-
ogy on V that is generated by the pseudo-metric d(x, y) = (x — y,x — y)1/?).

Proof This is obvious. O

Definition 7.24 (Orthogonal complement) Let V be a real vector space with inner
product (-, -). If W C V, then the orthogonal complement of W is the following
linear subspace of V:

wt .= {veV:(v,w):OforallweW}.

Theorem 7.25 (Orthogonal decomposition) Let (V, (-, +)) be a Hilbert space and
let W C V be a closed linear subspace. For any x € V, there is a unique represen-
tation x =y + z where y € W and z € W+,

Proof Letx € V and ¢ :=inf{||x —w|| : w € W}. Further, let (w,),eN be a sequence
in W with ||x — wy,|| "= ¢. The parallelogram law yields

2

1
1w — wall? = 20wy — x| + 2]lw, — x| —4HE(wm +wy) —x

As W is linear, we have (w,, + w;,)/2 € W; hence ||%(wm + wy,) — x|| > c¢. Thus
(wp)nen is a Cauchy sequence: |[w,, — w,|| — 0if m,n — oo.

Since V is complete and W is closed, W is also complete; hence thereisay e W
with wy, = y. Now let z :=x — y. Then ||z|| = lim,—  ||w, — x|| = ¢ by conti-
nuity of the norm (Lemma 7.23).

Consider an arbitrary w € W \ {0}. We define o := —(z, w)/||lw||* and get
y + ow € W; hence

2
A <lx = +ow| =1zl + o llwl? +20(z. w) = * — Q*[lw|*.

Concluding, we have (z, w) =0 for all w € W and thus z € w.
Uniqueness of the decomposition is easy: If x = y' 4+ 7z’ is an orthogonal decom-
position, then y — y’ € W and z — 7/ € W+ as well as y — y' 4+ z — z/ = 0; hence
2
0=|y—y+z—7|
12 2 12 2 ! /!
=[y=yI"+le=2["+2y -y 2-2)
2

’

=y =y +]z =<

whence y=y’ and z =7'. O
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Theorem 7.26 (Riesz—Fréchet representation theorem) Let (V, (-, -)) be a Hilbert
space and let F : V — R be a map. Then the following are equivalent.

(1) F is continuous and linear.
(i) Thereisan f € V with F(x) = (x, f) forallx € V.

The element f €V in (ii) is uniquely determined.

Proof “(ii)= (1)” For any f € V, by definition of the inner product, the map
X — (x, f) is linear. By Lemma 7.23, this map is also continuous.

“(i)== (i1)” If F =0, then choose f = 0. Now assume F is not identically
zero. As F is continuous, the kernel W := F~1({0}) is a closed (proper) linear
subspace of V. Letve V\ W andlet v=y+z for y € W and z € W' be the
orthogonal decomposition of v. Then z # 0 and F(z) = F(v) — F(y) = F(v) # 0.
Hence we can define u := z/F(z) € W. Clearly, F(u) =1 and for any x € V,
we have F(x — F(x)u) = F(x) — F(x)F(u) = 0; hence x — F(x)u € W and thus
(x — F(x)u, u) = 0. Consequently, F(x) = (x,u)/|lu||*>. Now define f :=u/|u>.
Then F(x) = (x, f) forallx e V.

“Uniqueness” Let (x, f) = (x, g) forall x € V. Letting x = f — g, we get 0 =

(f—& f—g)hence f=g. 0

In the following section, we will need the representation theorem for the space
£2(/,L), which, unlike LZ(M), is not a Hilbert space. However, with a little bit
of abstract nonsense, one can apply the preceding theorem to £2(11). Recall that
N ={feLl2w:(f f)=0}is the subspace of functions that equal zero almost
everywhere. Let L?(u) = £2(u)/N be the factor space. This is a special case of
the situation where (V, (-, +)) is a linear space with complete semi-inner product.
In this case, N :={v e V : (v,v) =0} and Vo= V/N :={f + N : f € V}. Denote
(v+ N, w+ N)g:= (v, w) to obtain a Hilbert space (Vy, (-, +)o).

Corollary 7.27 Let (V, (-, +)) be a linear vector space with complete semi-inner
product. The map F : V — R is continuous and linear if and only if there is an
feVwith F(x)=(x, f)forallx e V.

Proof One implication is trivial. Hence, let F be continuous and linear. Then
F(0) =0 since F is linear. Note that F(v) = F(0) =0 for all v € N since F is
continuous. Indeed, v lies in every open neighborhood of 0; hence F assumes at v
the same value as at 0. Thus F induces a continuous linear map Fy: Vo — R by
Fo(x + N) = F(x). By Theorem 7.26, there is an f + N € Vy with Fo(x + N) =
(x + N, f+N)o for all x + N € V. However, F(x) = (x, f) for all x € V by the
definition of Fp and (-, +)o. U

Corollary 7.28 The map F : L*(n) — R is continuous and linear if and only if
there is an f € L>(w) with F(g) = [gfdu forall g € L2(1).

Proof The space L2 (w) fulfills the conditions of Corollary 7.27. O
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Exercise 7.3.1 (Fourier series) For n € Ny, define S,,C, : [0, 1] — [0, 1] by
Sp(x) = ﬁsin(2nnx), C,(x) = ﬁcos(2nnx). For two square summable se-
quences (ay)neN and (by)neN,, let hqp :=bo + Z,fozl (an S, + b, C,). Further, let
W be the vector space of such A, .

Show the following:

(i) The functions Cy, S, Cy;, n € N form an orthogonal system in L2([0, 11, ).
(i1) The series defining A, ;, converges in L2([0, 11, 1).
(iii) W is a closed linear subspace of L2([0, 11, A).
iv) W = L2([0, 1], ). More precisely, for any f € £2([0, 1], A), there exist
uniquely defined square summable sequences (a,),en and (by),en, such that
f = ha,p. Furthermore, || f1|3 = b3 + Y0 | (a2 + b?).

Hint: Show (iv) first for step functions (see Exercise 4.2.6).

7.4 Lebesgue’s Decomposition Theorem

In this section, we employ the properties of Hilbert spaces that we derived in the
last section in order to decompose a measure into a singular part and a part that is
absolutely continuous, both with respect to a second given measure. Furthermore,
we show that the absolutely continuous part has a density. Let i« and v be measures
on (£2, A). By Definition 4.13, a measurable function f : £ — [0, c0) is called a
density of v with respect to p if

v(A) ::/f]lAd,u for all A € A. (7.3)

On the other hand, for any measurable f : £2 — [0, 00), Eq. (7.3) defines a mea-
sure v on (£2, A). In this case, we also write

v=fu and f:j—;: (7.4)

For example, the normal distribution v = Ap | has the density f(x) = ﬁe"‘z/ 2

with respect to the Lebesgue measure ;£ = A on R.
If g : 2 — [0, oo] is measurable, then (by Theorem 4.15)

/gdv:/gfdu. (7.5)

Hence g € £ (v) if and only if gf € £ (1), and in this case (7.5) holds.

If v= fu, then v(A) =0 for all A € A with u(A) =0. The situation is quite
the opposite for, e.g., the Poisson distribution u = Poi, with parameter ¢ > 0 and
v =Np,1. Here Ny C R is a v-null set with (R \ Ng) = 0. We say that v is singular
to u.

The main goal of this chapter is to show that an arbitrary o-finite measure v
on a measurable space (£2,.4) can be decomposed into a part that is singular to
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the o-finite measure w and a part that has a density with respect to u (Lebesgue’s
decomposition theorem, Theorem 7.33).

Theorem 7.29 (Uniqueness of the density) Let v be o-finite. If f| and f, are den-
sities of v with respect to |, then f1 = fo p-almost everywhere. In particular, the
density j—; is unique up to equality p-almost everywhere.

Proof Let E,, 1 2 with v(E,) <oo,n e N. Let A, =E, N{f1 > fo} forn e N.
Then v(A;) < o0; hence

0=v(An) —v(An) =fA (f1 = f)du.

By Theorem 4.8(i), f214, = f1la, p-a.e. As fi > f> on A,, we infer w(A,) =0

and
u({f > f2)) = u(U An) =0.

neN
Similarly, we get u({ f1 < f2}) =0; hence f1 = f> n-ae. O

Definition 7.30 Let 4 and v be two measures on (£2, A).

(1) v is called absolutely continuous with respect to u (symbolically v <« u) if
v(A)=0 forall Ae Awith u(A)=0. (7.6)

The measures w and v are called equivalent (symbolically u ~v) if v K
and pu K v.

(ii) p is called singular to v (symbolically u L v) if there exists an A € A such
that u(A) =0 and v(£2 \ A) =0.

Remark 7.31 Clearly, u Lv <— v 1 u. O

Example 7.32

(i) Let u be a measure on (R, B(R)) with density f with respect to the Lebesgue
measure A. Then w(A) = fA fdxr =0 for every A € A with A(A) = 0; hence
u K A. If A-almost everywhere f > 0, then w(A) = fA fdxr>0if A(A) > 0;
hence u ~ A. If A({f =0}) > 0, then (since u({f =0}) =0) L L u.

(ii) Consider the Bernoulli distributions Ber, and Ber, for p,q € [0,1]. If p €
(0, 1), then Ber, < Ber,,. If p € {0, 1}, then Ber, « Ber), if and only if p =g,
and Ber;, 1 Ber, ifandonly if g =1 — p.

(iii) Consider the Poisson distributions Poi, and Poig for a, 8 > 0. We have Poi, <
Poig if and only if 8 > 0 or o = 0.

(iv) Consider the infinite product measures (see Theorem 1.64) (Berp)®N and
(Ber,)®Y on 2 = {0, 1}, Then (Ber,)®N L (Ber,)®N if p # g. Indeed, for
neN, let X,,((w1, w2, ...)) = w, be the projection of §2 to the nth coordi-
nate. Then under (Ber,)®N the family (X,)nen is independent and Bernoulli-
distributed with parameter r (see Example 2.18). By the strong law of large
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numbers, for any r € {p, g}, there exists a measurable set A, C £2 with
(Ber,)®N(£2\ A,) =0 and

) 1 n
nll)rr;o;ZXi(w) =r forallweA,.

i=1

In particular, A, N A, =@ if p # g and thus (Berp)‘g’N 1 (Berq)®N. O

Theorem 7.33 (Lebesgue’s decomposition theorem) Let i and v be o -finite mea-
sures on (82, A). Then v can be uniquely decomposed into an absolutely continu-
ous part v, and a singular part vy (with respect to [L):

v=v, +vs, wherev, << andvg 1 u.

Vg has a density with respect to |1, and ‘fi‘;f

is A-measurable and finite p-a.e.

Corollary 7.34 (Radon—Nikodym theorem) Let p and v be o -finite measures on
(82, A). Then

V has a density w.rt. 1 < v <K U.

In this case, g—” is A-measurable and finite p-a.e. j—; is called the Radon—
Nikodym derivative of v with respect to L.

Proof One direction is trivial. Hence, let v < u. By Theorem 7.33, we get that
v = v, has a density with respect to u. O

Proof of Theorem 7.33 The idea goes back to von Neumann. We follow the exposi-
tion in [37].

By the usual exhaustion arguments, we can restrict ourselves to the case
where p and v are finite. By Theorem 4.19, the canonical inclusion i : /32(.(2, A,
w+v) — L2, A, W+ v) is continuous. Since v < u + v, the linear functional
L322, A, uw+v) >R, h— / hdv is continuous. By the Riesz—Fréchet theorem
(here Corollary 7.28), there exists a g € £L2(£2, A, 1 + v) such that

/hdv:/hgd(u—i-v) forall h € £L2(2, A, n +v) (1.7)
or equivalently
/f(l —g)d(u—i—v):/fdu forall f e £L2(2, A, u+v). (7.8)

If in (7.7) we choose h = 1, -0}, then we get that (u + v)-almost everywhere g > 0.
Similarly, with f = 141} in (7.8), we obtain that (x + v)-almost everywhere g < 1.
Hence 0 <g <.
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Now let f > 0 be measurable and let (f;)nen be a sequence of nonnegative
functions in £%(£2, A, i + v) with f, 1 f. By the monotone convergence theorem
(applied to the measure (1 — g)( 4+ v); that is, the measure with density (1 — g) with
respect to 0 + v), we obtain that (7.8) holds for all measurable f > 0. Similarly, we
get (7.7) for all measurable 4 > 0.

Let E =g~ '({1}). If we let f = 1f in (7.8), then we get u(E) = 0. Define the
measures v, and vy for A € A by

Va(A):=v(A\E) and vs(A):=v(ANE).

Clearly, v = v, + vy and v5(§2 \ E) =0; hence vy L u. If now AN E =¢ and
n(A) =0, then [14du =0.Hence, by (7.8), also [,(1 — g)d(u+v) =0. On the
other hand, we have 1 — g > 0 on A; hence w(A) + v(A) =0 and thus v,(A) =
v(A) = 0. If, more generally, B is measurable with ©(B) =0, then u(B \ E) =0;
hence, as shown above, v,(B) = v,(B \ E) = 0. Consequently, v, < n and v =
v, + vg is the decomposition we wanted to construct.

In order to obtain the density of v, with respect to i, we define f := %]l Q\E-
For any A € A, by (7.8) and (7.7) with h = 14\ g,

/fdu=/ gd(n+v)=v(A\ E) =v4(A).
A ANE®

dvg
Hence f = ﬁ. O
Exercise 7.4.1 For every x € (0,1], let x = (0, x1x2x3...) := Zzozlxﬂ_” be
the dyadic expansion (with limsup,_, ., x, = 1 for definiteness). Define a map
F:(0,1] - (0,1] by

0
F(x) = (0, x1x1x2x2%3%3...) = Z 3x,47".

n=1

Let U be a random variable that is uniformly distributed on (0, 1] and denote by
=Py, p-1 the distribution of F(U).

Show that the probability measure p has a continuous distribution function and
that p is singular to the Lebesgue measure A‘(o 7

Exercise 7.4.2 Letn € N and p, g € [0, 1]. For which values of p and g do we have

n

by, p K by, 4?7 Compute the Radon-Nikodym derivative ZZ

P
n.q ’

7.5 Supplement: Signed Measures

In this section, we show the decomposition theorems for signed measures (Hahn,
Jordan) and deliver an alternative proof for Lebesgue’s decomposition theorem. We
owe some of the proofs to [89].
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Definition 7.35 Let © and v be two measures on (£2, .A). v is called totally con-
tinuous with respect to u if, for any e > 0, there exists a § > 0 such that for all
Ae A

w(A) <é implies v(A) <e. (7.9)

Remark 7.36 The definition of total continuity is similar to that of uniform inte-
grability (see Theorem 6.24(iii)), at least for finite . We will come back to this
connection in the framework of the martingale convergence theorem that will pro-
vide an alternative proof of the Radon—Nikodym theorem (Corollary 7.34). O

Theorem 7.37 Let  and v be measures on (§2, A). If v is totally continuous with
respect to |, then v K . If v(§2) < oo, then the converse also holds.

Proof “=—> ” Let v be totally continuous with respect to u. Let A € A with
w(A) =0. For all ¢ > 0, by assumption, v(A) < ¢; hence v(A) =0 and thus v < u.

“<=" Let v be finite but not totally continuous with respect to p. Then there
exist an ¢ > 0 and sets A, € A with u(A,) <27 but v(A,) > ¢ for all n € N.
Define

oo X
A:=limsupA, = ﬂ U Ag.

n—00 n=1k=n

Then
* - - k
= li < I < I —*=0.
=t () < i Y < i 327 =0
Since v is finite and upper semicontinuous (Theorem 1.36), we have

o0

v(A) = lim v( | JAx | = inf v(4,) =& >0.

n— 00 P neN
=n

Thus v & . O

Example 7.38 In the converse implication of the theorem, the assumption of finite-
ness is essential. For example, let © = N | be the standard normal distribution on R

and let v be the Lebesgue measure on R. Then v has the density f(x) = +/ 2meX/?

with respect to w. In particular, we have v << . On the other hand, u([n, 00)) =
0 and v([n, 0c0)) = oo for any n € N. Hence v is not totally continuous with respect

to u. O

Example 7.39 Let (£2, A) be a measurable space and let ; and v be finite measures
on (£2, A). Denote by Z the set of finite partitions of £2 into pairwise disjoint mea-
surable sets. That is, Z € Z is a finite subset of A such that the sets C € Z are pair-
wise disjoint and | J., C = £2 for all Z. For Z € Z, define a function f7 : 2 — R
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by

v(C)
fz(w)= E 1c(w).
CeZ:u(C)>0 M(C)

We show that the following three statements are equivalent.

(i) The family (fz : Z € Z) is uniformly integrable in El(u) and f fzdu=v(82)
forany Z € Z.
(1) v u.
(iii) v is totally continuous with respect to w.

The equivalence of (ii) and (iii) was established in the preceding theorem. If (ii)
holds, then, for all Z € Z,

/fzdu = > w(O=v®)
CeZ:u(C)>0

since v(C) = 0 for those C that do not appear in the sum. Now fix ¢ > 0. Since (ii)
implies (iii), there is a 8’ > 0 such that v(A) < ¢/2 for all A € A with u(A) <§'.
Let K :=v(£2)/8 and § < &/(2K). Then

1
M( U ) > n(C) = 2v(82) =53
CeZ:Ku(C)<v(C) CeZ:Ku(C)<v(C)

hence

> wo-( U )<k

CeZ:Ku(C)<v(C) CeZ:Ku(C)<v(C)

We conclude that for all A € A with u(A) <3,

v(C)
du = ANC)——
fAfz w Y. wANn©)

CeZ:u(C)>0 M(C)
c C
= Y uAno ”(C) + Y u(AﬂC)v(C)
0<Ku(C)<u(C) O 2o wo
<2+ Y KpAnO =i4kp@<e
=3 )

Ku(C)>v(C)

Hence (fz, Z € Z) is uniformly integrable by Theorem 6.24(iii).

Now assume (i). If © =0, then f fdpu =0 forall f;hence v(£2) =0 and thus
v < u. Hence, let u #0. Let A € A with u(A) =0. Then Z = {A, A°} € Z and
fz =1 4cv(A°)/u(A). By assumption, v(§2) = f fzdu=v(A%);hence v(A) =0
and thus v < K. O
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Definition 7.40 (Signed measure) A set function ¢ : A — R is called a signed
measure on (£2, A) if it is o -additive; that is, if for any sequence of pairwise disjoint
sets Ay, Ao, ...€ A,

w(Lﬂ An> =D oA (7.10)
n=1 n=1

The set of all signed measures will be denoted by M* = M* (2, A).

Remark 7.41

(1) If ¢ is a signed measure, then in (7.10) we automatically have absolute conver-
gence. Indeed, the value of the left-hand side does not change if we change the
order of the sets A1, Ay, .... Inorder for this to hold for the right-hand side, by
Weierstrall’s theorem on rearrangements of series, the series has to converge
absolutely. In particular, for any sequence (A,),ecn of pairwise disjoint sets,
we have limy, 00 Y pe.,, [9(Ax)| =0.

(ii) If ¢ € M*, then p(¥) =0 since R 3 v(¥) = Y onen V(D).
(iii) In general, ¢ € M is not o -subadditive. %

Example 7.42 1f u*, u~ are finite measures, then ¢ := u™ — u~ € M*. We will
see that every signed measure has such a representation. O

Theorem 7.43 (Hahn’s decomposition theorem) Let ¢ be a signed measure. Then
there is a set 2% € A with p(A) >0 forall Ac A, AC 2% and p(A) <0 for
all Ac A, AC 2 :=2\ 2%, Such a decomposition 2 = 2~ W Q% is called a
Hahn decomposition of §2 (with respect to ¢).

Proof Leta :=sup{p(A) : A € A}. We have to show that ¢ attains the maximum o;
that is, there exists an 27 € A with ¢(£27) = «. If this is the case, then o € R and
for AC 21, A € A, we would have

@z p(27\A)=¢(27F) —p(A) =a —p(A);
hence ¢(A) > 0.For A C 22—, A € A, we would have ¢(A) < 0 since
a>p(RTUA)=9(2F)+0(A) =a+¢(A).

We now construct 27 with ¢(£27) = a. Let (A,),en be a sequence in A with
o =lim,— 00 @(Ay). Let A := U,‘;O:I A,. As each A, could still contain “portions
with negative mass”, we cannot simply choose 2% = A. Rather, we have to peel off
the negative portions layer by layer.

Define AY := A,, Al := A\ A,, and let

P 1= {ﬂAf(") 15 € {0, 1}"}

i=1



7.5 Supplement: Signed Measures 163

be the partition of A that is generated by Ay, ..., A,. Clearly, for any B, C € P,
either B = C or B N C = @ holds. In addition, we have

A, = Erj B.

BePy,
BCA,
Define
Py ={BePuioB) <0},  Pl=P\P,
and

Cp, = U B.

BeP;t
Due to the finite additivity of ¢, we have

(A=Y @B < Y @B < Y ¢(B)=¢(Cy).

BePy, BeP; BeP,

BCA, BCA,
Form <n,let E}}, =C, U...UC,. Hence, for m < n, we have E), \ E,’ﬁ,‘l cCy
and thus

EAEy = W B
BeP;t
BCEn\EL

In particular, this implies ¢(E”", \ E%~!) > 0. For E,, := Upsm Cn» we also have
E 4 E, (n— 00) and

9(Am) <@(Cn)=0(Ep) <o(Ep)+ Y o(Ep\ER")
n=m+1
=¢<E!Z v U (& \EZH)) =¢<U Em) = @(En).
n=m+1 n=m

Now define 27 =(\""_, En; hence E,, | 2. Then

0(En) =027 ¥ [+ (En\ Eat))

n>m

= (@) + Y 0B\ Eny) "= p(27).

n=m

In the last step, we used Remark 7.41(i). Summing up, we have
a= lim ¢(A,) < lim ¢(E,)=¢(R7").
m— o0 m—00

However, by definition, & > ¢(£27); hence o = ¢(£21). This finishes the proof. [
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Corollary 7.44 (Jordan’s decomposition theorem) Assume ¢ € M* (2, A) is a
signed measure. Then there exist uniquely determined finite measures ¢+, ¢~ with
p=9 " —¢p  and ot L.

Proof Let 2 = 27 & 2~ be a Hahn decomposition. Define ¢ (A) :=p(A N Q2T)
and 97 (A) ;= —p(AN27).
The uniqueness of the decomposition is trivial. U

Corollary 7.45 Let ¢ € M*(£2, A) and let p = ¢ — ¢~ be the Jordan decompo-
sition of ¢. Let 2 = Q2% W Q27 be a Hahn decomposition of 2. Then

lellry :=sup{p(A) —p(2\ A): A € A}
= (27) —p(27)
=9 () +¢ ()
defines a norm on Mi(.Q, A), the so-called total variation norm.
Proof We only have to show the triangle inequality. Let ¢, ¢ € M*. Let 2 =

2% W 27 be a Hahn decomposition with respect to ¢ := @1 + ¢, and let 2 =
Qi+ W £2;” be a Hahn decomposition with respect to ¢;, i = 1, 2. Then

ot + @2llry =91 (27) — 01 (27) + 92 (27F) — g2 (27)
<01(2]) —01(27) + 92(2)) — 92(27)
=lletllrv + lle2llTv. O

With a lemma, we prepare for an alternative proof of Lebesgue’s decomposition
theorem (Theorem 7.33).

Lemma 7.46 Let (1, v be finite measures on (§2, A) that are not mutually singular,
in short, u Y v. Then there is an A € A with u(A) > 0 and an & > 0 with

eu(E) <v(E) forall E€ Awith E C A.

Proof Forn € N, let 2 = 2,7 ¥ 2, be a Hahn decomposition for (v — %u) e M*,
Define M := (), $2; - Clearly, (v — 1 1)(M) < 0; hence v(M) < 1, (M) for all
n € N and thus v(M) = 0. Since u Y v, we get u(2 \ M) = w(U, en 2, >0.
Thus 1(£2,5) > 0 for some ng € N. Define A := 22,f and ¢ := % Then u(A) >0
and (v —ep)(E)>0forall EC A, E € A. d

Alternative proof of Theorem 7.33 We show only the existence of a decomposition.

By choosing a suitable sequence £2,, 1 §2, we can assume that v is finite. Consider
the set of functions

g = {g : 2 — [0, oo] : g is measurable and / gdu <v(A)forall A e A},
A
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y::sup{/gd,u:geg}.

Our aim is to find a maximal element f in G (i.e., an f for which [ f du = y). This
f will be the density of v,.
Clearly, 0 € G; hence G # ). Furthermore,

and define

f,g€eqg implies fvgeg. (7.11)

Indeed, letting E := {f > g}, for all A € A, we have

/(fvgw:/ fdu+/ gdp < v(ANE)+v(A\ E) = v(A),
A ANE A\E

Choose a sequence (g;,)neN in G such that f gndi = y, and define the function
fa=g1 V...V g, Now (7.11) implies f, € G. Letting f :=sup{f, : n € N}, the
monotone convergence theorem yields

/fdu:sup/fndufv(A) forallAe A

A neNJA

(that is, f € G), and
/fdu=supffndu>SUP/gndu=V.

neN

Hence [ fdu =y <v(£2). Now define, for any A € A,

Ve (A) :=/ fdp and vg(A):=v(A) —v,(A).
A

By construction, v, < p is a finite measure with density f with respect to w. Since
f €g, we have vs(A) = v(A) — fA fdu >0 forall Ae A, and thus also vy is a
finite measure. It remains to show vy 1 .

At this point we use Lemma 7.46. Assume that we had vy £ . Then there would
be an ¢ > 0 and an A € A with w(A) > 0 such that eu(E) < v,(E) forall E C A,
E € A. Then, for B € A, we would have

/(f+8]lA)dlL=/ fdu+eu(ANB)
B B
<va(B) +vs(AN B) <vs(B) +vs(B) =v(B).

In other words, (f + e14) € G and thus f(f +elg)du =y +¢eu(A) >y, contra-
dicting the definition of y. Hence in fact vy L u. g
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Exercise 7.5.1 Let u be a o -finite measure on (£2, A) and let ¢ be a signed measure
on (§2, A). Show that, analogously to the Radon—-Nikodym theorem, the following
two statements are equivalent:

(1) ¢(A) =0 forall A € A with u(A) =0.
(ii) Thereisan f € £'(u) with ¢ = fu; hence fA fdu=¢(A)forall A e A.

Exercise 7.5.2 Let i, v, o be finite measures on (£2, A) with v < u < «.

(i) Show the chain rule for the Radon—Nikodym derivative:

dv dvdp
—=——«a-ae.
da dpda

(i) Show that f := d(;(i—:—v) exists and that j—; = % holds u-a.e.

7.6 Supplement: Dual Spaces

By the Riesz—Fréchet theorem (Theorem 7.26), every continuous linear functional
F: Lz(,u,) — R has a representation F(g) = (f, g) for some f € Lz(u). On the
other hand, for any f € L?(w), the map L*(n) — R, g — (f, g) is continuous
and linear. Hence L?(u) is canonically isomorphic to its topological dual space
(L?(w))’. This dual space is defined as follows.

Definition 7.47 (Dual space) Let (V, | - ||) be a Banach space. The dual space V'
of V is defined by

V' :={F :V — Ris continuous and linear}.

For F € V', we define || F||" :=sup{|F(f)|: || fIl = 1}.

Remark 7.48 As F is continuous, for any § > 0, there exists an ¢ > 0 such that
|F(f)| <6 forall f eV with || f| <e.Hence |F|' <8/¢ < o00. O

We are interested in the case V = L?(u) for p € [1, oo] and write ||F||/P for
the norm of F € V'. In the particular case V = L?(u), by the Cauchy—Schwarz
inequality, we have || F ||/2 = || f|l2- This can be generalized:

Lemma 7.49 Let p,q €[1, oo] with % + % = 1. The canonical map
kL) — (L7 (W)’

(f)(g) = / fedu for fe L), g € LP ()

is an isometry; that is, |lk (f)Il), = Il fllg-
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Proof We show equality by showing the two inequalities separately.

“<” This follows from Holder’s inequality.

“>” For any admissible pair p,q and all f € £L9(n), g € LP(u), by the def-
inition of the operator norm, ||/<(f)||’p||g||p > Iffg du|. Define the sign func-
tion sign(x) = 1(0,00)(*) — L(—0,0)(x). Replacing g by g :=|g|sign(f) (note that
121l = ligll»). we obtain

lc(HI gl =

/fédu‘= I fell- (7.12)

First consider the case ¢ = 1 and f € £!(1). Applying (7.12) with g =1 € L (n)
yields [l ()5 = [1.f 11

Now let g € (1,00). Let g := | f|?~!. Since =1 =1, we have

l<CHI, - gl = N fell = 1A, = 1F1G = 1F g - 11~ = 1Fllg - gl

Finally, let ¢ = co. Without loss of generality, assume | f|lco € (0, 00). Let
& > 0. Then there exists an A, € A with 0 < u(A,) < 0o such that

Ae C{If1> (0 =8l flio}-

If we let g = 1, then [lglly = L and [k (Nl} = [ gl = (0 = )l| flloe. O

Theorem 7.50 Let p € [1, 00) and assume % + é = 1. Then L1 () is isomorphic

to its dual space (LP (w))’ by virtue of the isometry k.

Proof The proof makes use of the Radon—Nikodym theorem (Corollary 7.34). How-
ever, here we only sketch the proof since we do not want to go into the details of
signed measures and signed contents. A signed content v is an additive set function
that is the difference v = v — v~ of two finite contents. This definition is parallel
to that of a signed measure that is the difference of two finite measures.

As k is an isometry, k in particular is injective. Hence we only have to show that
K is surjective. Let F € (L?(w))’. Then v(A) = F(1,4) is a signed content on .4 and
we have

)| < 111, () 7.

Since p is -continuous, v is also f-continuous and is thus a signed measure on .A.
We even have v <« . By the Radon—-Nikodym theorem (Corollary 7.34) (applied to
the measures v~ and v'; see Exercise 7.5.1), v admits a density with respect to u;
that is, a measurable function f with v = fpu.

Let

Ef:= {g : g is a simple function with (g #0) < oo}
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and let
E}' ={geEs:g>0}.
Then, for g e E,
Fo) = [ efdn. @.13)

In order to show that (7.13) holds for all g € £L”(u), we first show f € L9(u). To
this end, we distinguish two cases.

Case 1: p =1 For every o > 0,

w({I11>a}) = —v({I71> a})

=—-Fa )<l||FI|/~||Il [ =l||F||/'M({|f|>Ol})
o If1>e}) = 0 1 {f1>edlll =~ 1 :

This implies u({| f| > a}) =0if a > || F||}; hence || flloo < | F||} < 00.

Case 2: p € (1,00) By Theorem 1.96, there are g1, g2,... € E? such that g, 1 | f|

p-a.e. Define h,, = sign(f)(gn)9~" € E ¢; hence

lgalld < /hnfdu — F(h)

-1
<IFN, - Ihall, = 1F1, - (lgallg)* ™"

Thus we have [|g,lly < IIF ||},. Monotone convergence (Theorem 4.20) now yields
Ifllg < I FI’, < oo; hence f e L9(w).

Concluding, the map F:g [efdu is in (LP(w)), and F(g) = F(g) for
every g € E¢. Since F is continuous and E ¢ C L?(u) is dense, we get F = F. [

Remark 7.51 For p = oo, the statement of Theorem 7.50 is false in general. (For
finite A, the claim is trivially true even for p = 0o.) For example, let 2 = N,
A = 2% and let 11 be the counting measure. Thus we consider sequence spaces £7 =
LP(N, N w). For the subspace 0K ¢ of convergent sequences, F : K S R,
(an)nen > limy, 0 a, is a continuous linear functional. By the Hahn—Banach the-
orem of functional analysis (see, e.g., [87] or [173]), F can be extended to a contin-
uous linear functional on £>°. However, clearly there is no sequence (by)nen € £!
with F((an)neN) = Z;f:] ambpm. O

Exercise 7.6.1 Show that £y C L” () is dense if p € [1, 00).



Chapter 8
Conditional Expectations

If there is partial information on the outcome of a random experiment, the proba-
bilities for the possible events may change. The concept of conditional probabilities
and conditional expectations formalizes the corresponding calculus.

8.1 Elementary Conditional Probabilities

Example 8.1 We throw a die and consider the events

A := {the face shows an odd number},

B := {the face shows three or smaller}.
Clearly, P[A] = % and P[B] = % However, what is the probability that A occurs if
we already know that B occurs?

We model the experiment on the probability space (§2, A4, P), where 2 =
{1,...,6}, A=2% and P is the uniform distribution on 2. Then

A=1{1,3,5) and B={1,2,3}.

If we know that B has occurred, it is plausible to assume the uniform distribution
on the remaining possible outcomes; that is, on {1, 2, 3}. Thus we define a new
probability measure P on (B, 25) by

#C
Pp[C]=— forC C B.
#B

By assigning the points in £2 \ B probability zero (since they are impossible if B
has occurred), we can extend Pg to a measure on £2:

#(C N B)
PIC|B]:=P5[CNBl=——— forCCQ.
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In this way, we get

P[A 31—7#{1’3} _2
| T#1,2,3) 3 0

Motivated by this example, we make the following definition.

Definition 8.2 (Conditional probability) Let (£2, .A, P) be a probability space and
B € A. We define the conditional probability given B for any A € A by

PIAOB] it P[B] > 0,
P[A|B]={ P& 5] (8.1)
0, otherwise.

Remark 8.3 The specification in (8.1) for the case P[B] = 0 is arbitrary and is of no
importance. O

Theorem 8.4 [fP[B] > 0, then P[ - | B] is a probability measure on (§2, A).
Proof This is obvious. O
Theorem 8.5 Let A, B € A with P[A], P[B] > 0. Then

A, B are independent <— P[A|B]=P[A] <<= P[B|A]=P[B].

Proof This is trivial! O

Theorem 8.6 (Summation formula) Let I be a countable set and let (B;);cy be
pairwise disjoint sets with P[|4); ., Bi1 = 1. Then, for any A € A,

iel

P[A]=) P[A|B/IP[B;]. (8.2)

iel

Proof Due to the o -additivity of P, we have

P[A] =P[L+J(A N B,-)i| =Y P[ANB;]=> P[A|B;IP[B;].

iel iel iel

Theorem 8.7 (Bayes’ formula) Let I be a countable set and let (B;)ic1 be pair-
wise disjoint sets with P[\4),_; Bi1 = 1. Then, for any A € A with P[A] > 0 and
anykel,

iel

P[A| Bi]P[By]
> i1 PIA|B/IP[B;]

P[Bi|A] = (8.3)
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Proof We have
P[B. N A]  P[A|B]P[B]
P[A] P[A]
Now use the expression in (8.2) for P[A]. O

P[Bi|A] =

Example 8.8 In the production of certain electronic devices, a fraction of 2 % of
the production is defective. A quick test detects a defective device with probability
95 %; however, with probability 10 % it gives a false alarm for an intact device.

If the test gives an alarm, what is the probability that the device just tested is
indeed defective?

We formalize the description given above. Let

A :={device is declared as defective},
B :={device is defective},
and
P[B] =0.02, P[B¢] =0.98,
P[A|B]=0.95  P[A|B‘]=0.1.

Bayes’ formula yields

P[B|A] = P[A|B]P[B]
A= P[A|BIP[B] + P[A| B]P[B‘]

_ 0.95-0.02 _ 19 ~0.160.
0.95-0.02+0.1-098 117

On the other hand, the probability that a device that was not classified as defective
is in fact defective is

0.05-0.02 1
P[B| A‘]= = — ~0.00113. O
0.05-0.024+0.9-0.98 883

Now let X € LI (P). If A € A, then clearly also 14X € £!(P). We define

E[X; A]:= E[14X]. (8.4)

If P[A] > O, then P[.|A] is a probability measure. Since 14X € EI(P), we have
X e L!(P[ -] A)). Hence we can define the expectation of X with respect to P[ - | A].

Definition 8.9 Let X € £1(P) and A € A. Then we define

ElLiX] © ifp[A] > 0,
E[X|A] ::/X(a))P[dw|A]={ pra; - ITPLAL> (8.5)

0, else.

Clearly, P[B|A] = E[1p]|A] for all B € A.
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Consider now the situation that we studied with the summation formula for con-
ditional probabilities. Hence, let I be a countable set and let (B;);c; be pairwise
disjoint events with |4),_; B; = £2. We define F := o (B;,i € I). For X € L!(P), we
define amap E[X | F]: £2 — R by

E[X|Fl(w) =E[X|B;]] <<= Bi>w. (8.6)

Lemma 8.10 The map E[X | F] has the following properties.

(1) E[X|F]is F-measurable.
(i) E[X|F] e L'(P), and for any A € F, we have

/E[X|]-']dP=fXdP.
A A

Proof (i) Let f be the map f : £2 — I with
flw)=i <+ Bi>w.

Further, let g : I — R, i — E[X | B;]. Since I is discrete, g is measurable. Since f
is F-measurable, E[X | F] = g o f is also F-measurable.

(ii)) Let Ae Fand J C I with A=14,.;B;. Let J' :=={i € J : P[B;] > 0}.
Hence

jel

/E[X|]-"]dP=ZP[B,-]E[X|B,-]=ZE[]lBiX]=/XdP.
A

el el A O

Exercise 8.1.1 (Lack of memory of the exponential distribution) Let X > 0 be a
strictly positive random variable and let 6 > 0. Show that X is exponentially dis-
tributed if and only if

PX>t+s5|X>s]=P[X>t] foralls,t>0.

In particular, X ~ exp, if and only if P[X > ¢ 45| X > 5] = e 9 foralls,t>0.

Exercise 8.1.2 Consider a theater with n seats that is fully booked for this evening.
Each of the n people entering the theater (one by one) has a seat reservation. How-
ever, the first person is absent-minded and takes a seat at random. Any subsequent
person takes his or her reserved seat if it is free and otherwise picks a free seat at
random.

(1) What is the probability that the last person gets his or her reserved seat?
(i) What is the probability that the kth person gets his or her reserved seat?

8.2 Conditional Expectations

Let X be a random variable that is uniformly distributed on [0, 1]. Assume that if we
know the value X = x, the random variables Y1, ..., Y, are independent and Ber,-
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distributed. So far, with our machinery we can only deal with conditional probabil-
ities of the type P[ | X € [a, b]], a < b (since X € [a, b] has positive probability).
How about P[Y; =...=Y, =1 |X = x]? Intuitively, this should be x". We thus
need a notion of conditional probabilities that allows us to deal with conditioning
on events with probability zero and that is consistent with our intuition. In the next
section, we will see that in the current example this can be done using transition
kernels. First, however, we have to consider a more general situation.

In the following, F C A will be a sub-o-algebra and X € £!(£2, A, P). In anal-
ogy with Lemma 8.10, we make the following definition.

Definition 8.11 (Conditional expectation) A random variable Y is called a con-
ditional expectation of X given F, symbolically E[X | F]:=7, if:

(i) Y is F-measurable.
(ii) Forany A € F, we have E[X14] =E[Y14].

For B € A, P[B|F] :=E[1p|F] is called a conditional probability of B given
the o -algebra F.

Theorem 8.12 E[X | F] exists and is unique (up to equality almost surely). ‘

Since conditional expectations are defined only up to equality a.s., all equalities
with conditional expectations are understood as equalities a.s., even if we do not say
so explicitly.

Proof Uniqueness. LetY and Y’ be random variables that fulfill (i) and (ii). Let
A ={Y > Y'} € F. Then, by (ii),

0=E[Y14] —E[Y'14] =E[(Y — Y)14].
Since (Y — Y")14 > 0, we have P[A] = 0; hence Y < Y’ almost surely. Similarly,
we get Y > Y’ almost surely.
Existence. Let Xt =Xv0and X~ =X* — X.By
+ — +
0~ (A) = E[X ]lA] forall A € F,

we define two finite measures on (§2, F). Clearly, Qi < P; hence the Radon—
Nikodym theorem (Corollary 7.34) yields the existence of F-measurable densities
Y+ such that

0%(4) = / Y*dP=E[Y*1,].
A
Now defineY =Y+t — Y. O

Definition 8.13 If Y is arandom variable and X € £'(P), then we define E[X | Y] :=
E[X|o(Y)].
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Theorem 8.14 (Properties of the conditional expectation) Let (§2, A, P) and let
X be as above. Let G C F C A be o-algebras and let Y € L1(2, A, P). Then:

(1) (Linearity) E[AX 4+ Y |F]=AE[X|F]+E[Y|F].
(i) (Monotonicity) IfX >Y a.s., then E[X|F] > E[Y |F].
(i) IfE[|XY|] < oo and Y is measurable with respect to F, then

E[XY|F]=YE[X|F] and E[Y|F]=E[Y|Y]=Y.

(iv) (Tower property) E[E[X|F]|G]=E[E[X|G]|F]=E[X|F].
(v) (Triangle inequality) E[|X]| |]-'] > |E[X | F]|.
(vi) (Independence) Ifo(X) and F are independent, then E[X | F] = E[X].
(vii) IfP[A] € {0, 1} for any A € F, then E[X | F]=E[X].
(viii) (Dominated convergence) Assume Y € LYP), Y > 0 and (X)neN is a
sequence of random variables with |X,| <Y for n € N and such that
Xn "Z%° X a.s. Then

lim E[X,|F]=E[X|F] as.andin L'(P). 8.7)

n—o0

Proof (i) The right-hand side is F-measurable; hence, for A € F,
E[14(AE[X|F]+E[Y|F])] = AE[1AE[X | F]] + E[14E[Y | F]]
=AE[14X]+E[147]
=E[14(AX +Y)].

(i) Let A = {E[X|F] < E[Y|F]} € F. Since we have X > Y, we get
E[14(X —Y)] > 0 and thus P[A] =0.

(iii) First assume X > 0 and Y > 0. For n € N, define Y,, =27"|2"Y|. Then
Y, 1Y and Y, E[X|F] 1 YE[X|F] (since E[X | F] > 0 by (ii)). By the monotone
convergence theorem (Lemma 4.6(ii)),

n—oQo

E[14Y,E[X|F]] — E[14YE[X|F]].

On the other hand,

k

=Y E[1aLyy,—p-nk2 " X]

o0

E[14Y,E[X | F]] =) E[1aLy,—42-nk2 "E[X | F]]

=1

o0

E[
k=1

n—oo

=E[14Y,X] — E[1.YX].

Hence E[14YE[X | F]] = E[14Y X]. In the general case, write X = X™ — X~ and
Y =Yt — Y~ and exploit the linearity of the conditional expectation.
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(iv) The second equality follows from (iii) with ¥ = E[X |G] and X = 1. Now let
A € G. Then, in particular, A € F; hence

E[14E[E[X | F]|G]] =E[14E[X | F]] =E[14X] =E[14E[X|G]].

(v) This follows from (i) and (i) with X = X+ — X .

(vi) Trivially, E[ X] is measurable with respect to F. Let A € F. Then X and 14
are independent; hence E[E[X | F]14] =E[X14] =E[X]E[14].

(vii) For any A € F and B € A, we have P[A N B] =0 if P[A] =0, and
P[A N B] = P[B] if P[A] = 1. Hence F and A are independent and thus F is
independent of any sub-o-algebra of A. In particular, F and o (X) are independent.
Hence the claim follows from (vi).

(viii) Let | X,,| <Y for any n € N and X, "Z5° X almost surely. Define Z,, :=
Sup;s, | Xx — X|. Then 0 < Z, <2Y and Z, 250. By Corollary 6.26 (dominated

convergence), we have E[Z,,] = 0; hence, by the triangle inequality,

n—oo

E[|E[X,|F]-E[X|F]|]<E[E[IX, — X|| F]] =E[IX, — X|] <E[Z,] — 0.

However, this is the Ll(P)-convergence in (8.7). As (Z,)nen is decreasing, by (ii)
also (E[Z, |]—' Dnen decreases to some limit, say, Z. By Fatou’s lemma,

E[Z] < lim E[E[Z,|F]]= lim E[Z,]=0.
n—>oo n—>oo

Hence Z =0 and thus E[Z,, | F] "% 0 almost surely. However, by (v),
|E[X, | F1-E[X | F]| <E[Z,| F]. O

Remark 8.15 Intuitively, E[ X | F] is the best prediction we can make for the value
of X if we only have the information of the o -algebra F. For example, if o0 (X) C F
(that is, if we know X already), then E[X | F] = X, as shown in (iii). At the other
end of the spectrum is the case where X and F are independent; that is, where
knowledge of F does not give any information on X. Here the best prediction for X
is its mean; hence E[X] = E[X | F], as shown in (vi).

What exactly do we mean by “best prediction”? For square integrable random
variables X, by the best prediction for X we will understand the F-measurable
random variable that minimizes the L2-distance from X. The next corollary shows
that the conditional expectation is in fact this minimizer. O

Remark 8.16 Let X : §2 — R be a random variable such that X~ € £!(P). We can
define the conditional expectation as the monotone limit

E[X |F]:= gngoE[anf],

where — X~ < X and X,, 1 X. Due to the monotonicity of the conditional expec-
tation (Theorem 8.14(ii)) it is easy to show that the limit does not depend on the
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choice of the sequence (X,) and that it fulfills the conditions of Definition 8.11.
Analogously, we can define the conditional expectation X+ € £!(P). For this gen-
eralization of the conditional expectation, we still have E[X | F] < E[Y | F] a.s. if
Y > X a.s. (see Exercise 8.2.1). O

Corollary 8.17 (Conditional expectation as projection) Let F C A be a o-algebra
and let X be a random variable with E[X?] < co. Then E[X | F] is the orthogonal
projection of X on L*(82, F,P). That is, for any F-measurable Y with E[Y?] < 00,

E[(X — V)?] = E[(X — E[X|F])’]
with equality if and only if Y = E[X | F].

Proof First assume that E[E[X | F 121 < oo. (In Theorem 8.20, we will see that we
have E[E[X | F 1*1 < E[X?], but here we want to keep the proof self-contained.)
Let Y be F-measurable and assume E[Y?] < co. Then, by the Cauchy—Schwarz in-
equality, we have E[| XY|] < oo. Thus, using the tower property, we infer E[XY] =
E[E[X |F]Y] and E[XE[X | F]] = E[E[XE[X | F] |]—']] = E[E[X | F]?]. Summing
up, we have

E[(X — ¥)*] —E[(X —E[X|F])’]
=E[X? - 2XY +Y? — X? + 2XE[X | F] - E[X | F]*]
=E[Y? - 2YE[X|F] +E[X |F]*]

—E[(Y —E[X|F])’] = 0.

For the case E[E[X | F]?] < oo, we are done. Hence, it suffices to show that this
condition follows from the assumption E[ X 2] < 00. For N € N, define the truncated
random variables | X| A N. Clearly, we have E[E[|X| A N | F1?1 < N2. By what we
have shown already (with X replaced by |X| A N and with Y =0 € £2(£2, F,P)),
and using the elementary inequality a® < 2(a — b)> 4 2b%, a, b € R, we infer

E[E[IX| AN | FI'] < 2E[((IX| A N) —E[IX| A N | F])*] + 2E[(1X| A N)’]
<4E[(1X] A N)’] < 4E[X?].
By Theorem 8.14(ii) and (viii), we get E[| X| AN | F]1 1 E[|X]| | F] for N — c0. By

the triangle inequality (Theorem 8.14(v)) and the monotone convergence theorem
(Theorem 4.20), we conclude

E[ELX | FP] <E[E[IX|| F]'] = lim E[E[IX|AN | F]] <4E[X’] <oo.

This completes the proof. g
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Example 8.18 Let X, Y e L' (P) be independent. Then
E[X+Y|Y]=E[X|Y]+E[Y|Y]=E[X]+Y. O

Example 8.19 Let X1, ..., Xy be independent with E[X;]=0,i=1,..., N. For
n=1,...,N, define F,, . =0(Xy,...,X,) and S, := X1 + ... + X,,. Then, for
n>m,

=X +...4+ X +E[Xpi1]+... +E[X,]
=Sm.

By Theorem 8.14(iv), since o (S,;) C F;,;, we have
E[Sn|Sm]ZE[E[Sn|-Fm]|Sm] =E[Sy|Snl= Sn. O

Next we show Jensen’s inequality for conditional expectations.

Theorem 8.20 (Jensen’s inequality) Let I C R be an interval, let ¢ : I — R
be convex and let X be an I-valued random variable on (82, A, P). Further, let
E[|X|] < oo and let F C A be a o-algebra. Then

0o > E[p(X) | F| = ¢(E[X | F]).

Proof For the existence of E[¢(X) |F] with values in (—o00, oo] note that (X))~ €
L£'(P) and see Remark 8.16. By Exercise 8.2.2, we have E[X | F] € I a.s., hence
o (E[X | F]) is well-defined.

(Recall from Definition 1.68 the jargon words “almost surely on A”.) Note that
X =E[X | F] on the event {E[ X | F] is a boundary point of I}; hence here the claim
is trivial. Indeed, without loss of generality, assume O is the left boundary of I and
A = {E[X|F]=0}. As X assumes values in I C [0, 00), we have 0 < E[X14] =
E[E[X |F]14] =0; hence X1 4 = 0. The case of a right boundary point is similar.

Hence4 now consider the event B := {E[X | F] is an interior point of /}. For ev-
ery interior point x € I, let D" ¢(x) be the maximal slope of a tangent of ¢ at x; i.e.,
the maximal number ¢ with ¢(y) > (y — x)t + ¢(x) for all y € I (see Theorem 7.7).

For each x € I°, there exists a P-null set N such that, for every w € B \ N, we
have

E[¢p(X) | F](®) = ¢(x) + E[DT(x)(X — x) | F]()
= ¢(x) + DTo(x) (E[X| Fl(@) — x) = ¥(x).  (8.8)

Let V:=QnNI° Then N :=|J,.y Ny is a P-null set and (8.8) holds for every
weB\Nandeveryx e V.
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The map x — DVe(x) is right continuous (by Theorem 7.7(iv)). Therefore
X > ¥, (x) is also right continuous. Hence, for every w € B\ N, we have

¢(E[X| F](@)) = Vo (E[X | F(@))
< sup i, (x) = sup ¥, (x) < E[p(X) | F](w). O
xeV

xel°
Corollary 8.21 Let p € [1, oo] and let F C A be a sub-o-algebra. Then the map
LP(2,AP)— LP(2,F,P), X E[X|F],

is a contraction (that is, ||[E[X|F]ll, < I X|lp) and thus continuous. Hence, for
n—>oo

X, X1,X2,...€ LP(2, A, P) with | X, — X||, — O,

n—o00

|E[X, | F]—E[X|F] ||p =0.

Proof For p €[1, 00), use Jensen’s inequality with ¢(x) = |x|?. For p = oo, note
that [E[X | F]| < E[|X|| F] < E[| Xloo | F1= [ Xlcc- O

Corollary 8.22 Let (X;,i € I) be uniformly integrable and let (F;,j € J) be a
family of sub-o-algebras of A. Define X; ; = E[X; | F;]. Then (X, j,(,j) €
I x J) is uniformly integrable. In particular, for X € L'(P), the family (E[X [ Fl,
j € J) is uniformly integrable.

Proof By Theorem 6.19, there exists a monotone increasing convex function f with
the property that f(x)/x — 00, x — oo and L := sup;.; E[ f(|X;])] < oc. Then
x = f(|x]) is convex; hence, by Jensen’s inequality,

E[f(|Xi,j|)] =E[f(|E[Xi |fj]|)] <L <oo.

Thus (X; j, (i, j) € I x J) is uniformly integrable by Theorem 6.19. 0

Example 8.23 Let p and v be finite measures with v < . Let f = dv/du be the
Radon-Nikodym derivative and let / = {F C A: F is a o-algebra}. Consider the
measures /,L|]__ and v ’}_ that are restricted to . Then v ‘}_ LU ’}_ (since in F there
are fewer p-null sets); hence the Radon—Nikodym derivative fr :=d v|]__ /d ,ui]__
exists. Then (fr : F € I) is uniformly integrable (with respect to ). (For finite
o-algebras F, this was shown in Example 7.39.) Indeed, let P = o/ (£2) and
Q=v/u(82). Then fr= dQ|]__/dP|]__. For any F € F, we thus have E[ frlfr] =

[r fFdP=Q(F) = [, fdP=E[f1F]; hence fr =E[f|F]. By the preceding
corollary, (fr : F € I) is uniformly integrable with respect to P and thus also with
respect to L. O

Exercise 8.2.1 Show the assertions of Remark 8.16.
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Exercise 8.2.2 Let / C R be an arbitrary interval and let X € £'(£2, A,P) be a
random variable such that X € I a.s. For F C A, show that E[X|F] € I a.s.
Is this statement still true if we require only X~ € L£($2, A, P) instead of X €
L£1(£2,A,P)?

Exercise 8.2.3 (Bayes’ formula) Let A € A and B € F C A. Show that

P[A|F]dP
P[B|A]= M.
fP[A | F1dP
If F is generated by pairwise disjoint sets By, Ba, ..., then this is exactly Bayes’

formula of Theorem 8.7.
Exercise 8.2.4 Give an example for E[E[X | F]|G] # E[E[X |G]| F].

Exercise 8.2.5 Show the conditional Markov inequality: For monotone increasing
f:10,00) — [0, 00) and ¢ > 0 with f(¢g) >0,

E[f(XD]F]

P[|X|>¢| F] < 1)

Exercise 8.2.6 Show the conditional Cauchy—Schwarz inequality: For square inte-
grable random variables X, Y,

E[XY|F|* <E[X*| F|E[Y? | F].

Exercise 8.2.7 Let X1, ..., X,, be integrable i.i.d. random variables. Let S, = X +
...+ X,. Show that

1
E[X;|S,]=-S, foreveryi=1,...,n.
n

Exercise 8.2.8 Let X| and X, be independent and exponentially distributed with
parameter 6 > 0. Compute E[X| A X2| X1].

Exercise 8.2.9 Let X and Y be real random variables with joint density f and let
h : R — R be measurable with E[|#(X)|] < co. Denote by X the Lebesgue measure
on R.

(i) Show that almost surely

_ [h() f(x, Y)A(dx)
Epeo Y] == an

(i) Let X and Y be independent and expy-distributed for some 6 > 0. Compute
E[X|X+Y]and P[X <x|X 4+ Y] for x > 0.
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8.3 Regular Conditional Distribution

Let X be a random variable with values in a measurable space (E, £). With our ma-
chinery, so far we can define the conditional probability P[A | X] for fixed A € A
only. However, we would like to define for every x € E a probability measure
P[.| X = x] such that for any A € A, we have P[A|X]=P[A|X =x] on {X = x}.
In this section, we show how to do this.

For example, we are interested in a two-stage random experiment. At the first
stage, we manipulate a coin at random such that the probability of a success (i.e.,
“head”) is X. At the second stage, we toss the coin n times independently with
outcomes Yi,...,Y,. Hence the “conditional distribution of (Y1,...,Y,) given
{X = x)” should be (Ber,)®".

Let X be as above and let Z be a o (X)-measurable real random variable. By
the factorization lemma (Corollary 1.97 with f = X and g = Z), there is a map
¢ : E — R such that

¢ is £ — B(R)-measurable and ¢(X)=Z. (8.9)

If X is surjective, then ¢ is determined uniquely. In this case, we denote Z o X ! :=
¢ (even if the inverse map X ! itself does not exist).

Definition 8.24 Let Y € £1(P) and X : (2, A) — (E, E). We define the condi-
tional expectation of Y given X = x by E[Y | X = x] := ¢(x), where ¢ is the func-
tion from (8.9) with Z = E[Y | X].

Analogously, define P[A|X =x] =E[14 | X = x] for A € A.

For a fixed set B € A with P[B] > 0, the conditional probability P[-|B] is a
probability measure. Is this true also for P[-|X = x]? The question is a bit tricky
since for every given A € A, the expression P[A | X = x] is defined for almost all x
only; that is, up to x in a null set that may, however, depend on A. Since there are
uncountably many A € A in general, we could not simply unite all the exceptional
sets for any A. However, if the o -algebra A can be approximated by countably many
A sufficiently well, then there is hope.

Our first task is to give precise definitions. Then we present the theorem that
justifies our hope.

Definition 8.25 (Transition kernel, Markov kernel) Let (£21, 41), (£22, A>) be
measurable spaces. A map « : 21 x Ay — [0, oo] is called a (o -)finite transition
kernel (from £21 to £27) if:

(1) w1 k(wy, Ap) is Aj-measurable for any A, € A;.
(i1) Az~ « (w1, Ap) is a (o-)finite measure on (§27, Ay) for any w; € £2;.

If in (ii) the measure is a probability measure for all w; € §21, then « is called a
stochastic kernel or a Markov kernel. If in (ii) we also have k (w1, £22) < 1 for any
w1 € §21, then « is called sub-Markov or substochastic.
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Remark 8.26 1t is sufficient to check property (i) in Definition 8.25 for sets A from
a w-system & that generates .4, and that either contains £2, or a sequence E, 1 §2;.
Indeed, in this case,

D:= {AZ e Ay w1 k(w1, Ap) is A1-measurable}

is a A-system (exercise!). Since £ C D, by the w—A theorem (Theorem 1.19), D =
o (&) =A,. O

Example 8.27
(i) Let (£21, A1) and (£22, A>) be discrete measurable spaces and let (K;;) ice; be

jes2
a matrix with nonnegative entries and finite row sums

K; = Z Kij <oo forie 2.
JES2
Then we can define a finite transition kernel from £2; to £2; by «(i, A) =
ZjeA Kij. « is stochastic if K; =1 for all i € £21. Itis substochastic if K; <1
forall i € £24.
(ii) If u, is a finite measure on £2;, then « (wy, +) = w7 is a finite transition kernel.
(iii) «(x, +) = Poi, is a stochastic kernel from [0, 0c0) to Ny (note that x — Poi, (A)
is continuous and hence measurable for all A C Np).
(iv) Let u be a distribution on R” and let X be a random variable with Py = u.
Then k(x, -) =P[X + x € -] = §, * u defines a stochastic kernel from R” to
R”". Indeed, the sets (—oo, y], y € R” form an N-stable generator of B(R") and
x = k(x, (—o0, y]) = u((—oo, y — x]) is left continuous and hence measur-
able. Hence, by Remark 8.26, x > « (x, A) is measurable for all A € B(R").0

Definition 8.28 Let Y be a random variable with values in a measurable space
(E, &) and let F C A be a sub-o-algebra. A stochastic kernel ky r from (£2, F)
to (E, &) is called a regular conditional distribution of Y given F if

ky F(w, B)=P[{Y € B} | F(w)

for P-almost all w € 2 and for all B € &; that is, if
f]lB(Y)]lAsz /Ky)]:(', B)1,dP forallAe F,Bef. (8.10)

Consider the special case where F = o (X) for a random variable X (with values in
an arbitrary measurable space (E’, £')). Then the stochastic kernel

(x, A) > ky x (x, A) =P[{Y € A} | X =x] = ky.o00) (X (x), A)

(the function from the factorization lemma with an arbitrary value for x & X (£2)) is
called a regular conditional distribution of ¥ given X.
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Theorem 8.29 (Regular conditional distributions in R) Let Y : (2, 4) —
(R, B(R)) be real-valued. Then there exists a regular conditional distribution ky r
of Y given F.

Proof The strategy of the proof consists in constructing a measurable version of
the distribution function of the conditional distribution of Y by first defining it for
rational values (up to a null set) and then extending it to the real numbers.

For r € Q, let F(r, -) be a version of the conditional probability P[Y €
(—oo, r]|F]. For r <s, clearly L{ye(—oco,r)} < L{re(—co,s}j. Hence, by Theo-
rem 8.14(ii)) (monotonicity of the conditional expectation), there is a null set
A, € F with

F(row)<F(s,w) forallwe 2\ A, ;. (8.11)

By Theorem 8.14(viii) (dominated convergence), there are null sets (B,),cq € F
and C € F such that

1
lim F(r—l——,a)):F(r,a)) forallw € 2\ B, (8.12)
n— 00 n
as well as
ingF(—n, w)=0 and supF(n,w)=1 forallwe 2\C. (8.13)
ne

neN

Let N := (UMEQ Ars)U (UreQ B,)UC.Forw e 2\ N, define
F(z,w) ::inf{F(r,a)) reQ,r> z} for all z € R.

By construction, F (-, w) is monotone increasing and right continuous. By (8.11)
and (8.12), we have

F(z,w)=F(z,w) forallzeQandwe 2\N. (8.14)

Therefore, by (8.13), F(-,®) is a distribution function for any w € 2 \ N. For
w € N, define F (-, w) = Fy, where Fj is an arbitrary but fixed distribution function.

For any w € £2, let k (w, -) be the probability measure on (§2, .A) with distribu-
tion function I:"( -, ). Then, for r € Q and B = (—o0, r],

wr> k(w, B) =F(r,w)lyc(w) + Fo(r)ly(w) (8.15)

is F-measurable. Now {(—oo,r],r € Q} is a w-system that generates B(R). By
Remark 8.26, measurability holds for all B € B(R) and hence « is identified as a
stochastic kernel.

We still have to show that « is a version of the conditional distribution. For
AeF,reQand B=(—o0,r], by (8.15),

/K(u),B)P[dco]:/P[YeB|]-']dP=P[Aﬂ{YeB}].
A A
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As functions of B, both sides are finite measures on B(R) that coincide on the N-
stable generator {(—oo, r], r € Q}. By the uniqueness theorem (Lemma 1.42), we
thus have equality for all B € B(R). Hence P-a.s. (-, B) = P[Y € B|.F] and thus
K =Ky F. O

Example 8.30 Let Z1, Z> be independent Poisson random variables with parame-
ters A1, A2 > 0. One can show (exercise!) that (with Y = Z| and X = Z| + Z»)

PlZ\=k|Z+Zy=n]=by pk) fork=0,...,n,

where p = M{\F]?»z' O
This example could still be treated by elementary means. The full strength of the
result is displayed in the following examples.

Example 8.31 Let X and Y be real random variables with joint density f (with
respect to Lebesgue measure A% on R?). For x € R, define

fX(X)=/Rf(x,y)l(dy)-

Clearly, fx(x) > 0 for Px-a.a. x € R and fy Uis the density of the absolutely con-
tinuous part of the Lebesgue measure A with respect to Px. The regular conditional
distribution of ¥ given X has density

P[Yedy|X:x]:f x y)':f(xyy)
dy )

Indeed, by Fubini’s theorem (Theorem 14.16), the map x +— f g Jrix(x, y)A(dy) is
measurable for all B € B(R) and for A, B € B(R), we have

for Px[dx]-a.a. x e R. (8.16)

/ PIX € dx] / Frix (. AY)
A B
- /A PIX € dx]fx(x)"" /B £ yAdy)
=/ x(dx)/ £ y)Ady)
A B

= fdi*=P[X €A,Y € B].
AxB <>

Example 8.32 Let w1, u2 € R, 01,020 > 0 and let Z;, Z, be independent and

N i ,2-distributed (i = 1, 2). Then there exists a regular conditional distribution

PlZie-|Z1+Zy=x] forxeRR.
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If we define X =Z1+ Z> and Y = Zy, then (X, Y) ~ ./\fﬂ,g is bivariate normally

distributed with covariance matrix

and with

Note that

2
-1 _ (.2 n—1 [ 0] —0q _ (2 n—1,T
T =(of o3) (_012 012_,_022)—(01 o3) BB,

where B = ~“1). Hence (X, as the density (see Example 1. iX
here B= (% ~°'). H (X, Y) has the density (see Example 1.105(ix))

0 oy

B (x —(u1 + M2)) H2>
y— ii

1
f(x,y)=det@r x)"/? exp<—T
20{0;

_ (4n%0202) P exp (_ oy = (x —p2))* + 03 (y — p)?

20'120’22
= Cy exp(_(y - Mx)2/203)~

Here C, is a normalising constant and

of 2 ojo3
ux=p1+—F——@—pnr—pn2) and oy =——->.
oy +o; oy +o;

By (8.16), P[Z; € - | Z1 + Z, = x] has the density

_ Cx (y_ﬂx)z
y'—>fY|X(x,y)—fX(x)eXP<— 207 )

hence

P(Zi € - |Z1+ Zy =x] =./\/MX’UX2 for almost all x € R.

)

O

Example 8.33 If X and Y are independent real random variables, then for Pyx-

almost all x e R

PIX+Y € -|X =x] =8, *Py.

O

The situation is not completely satisfying as we have made the very restrictive
assumption that Y is real-valued. Originally we were also interested in the situation
where Y takes values in R” or in even more general spaces. We now extend the

result to a larger class of ranges for Y.
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Definition 8.34 Two measurable spaces (E, £) and (E’, £’) are called isomorphic
if there exists a bijective map ¢ : E — E’ such that ¢ is £ — £ -measurable and
the inverse map ¢! is £ — £-measurable. Then we say that ¢ is an isomorphism
of measurable spaces. If in addition u and u’ are measures on (E, &) and (E’, £’)
and if ' = j1 0 ¢!, then ¢ is an isomorphism of measure spaces, and the measure
spaces (E, &€, ) and (E’, £, u') are called isomorphic.

Definition 8.35 A measurable space (E, &) is called a Borel space if there exists a
Borel set B € B(R) such that (E, £) and (B, B(B)) are isomorphic.

A separable topological space whose topology is induced by a complete metric is
called a Polish space. In particular, R4, 74 RN, (C{0, 1D, 1l * lloo) and so forth are
Polish. Closed subsets of Polish spaces are again Polish. We come back to Polish
spaces in the context of convergence of measures in Chapter 13. Without proof, we
present the following topological result (see, e.g., [37, Theorem 13.1.1]).

Theorem 8.36 Let E be a Polish space with Borel o-algebra €. Then (E, &) is a
Borel space.

Theorem 8.37 (Regular conditional distribution) Let F C A be a sub-o -algebra.
Let Y be a random variable with values in a Borel space (E, £) (hence, for exam-
ple, E Polish, E = RY, E=R>®, E = C([0, 1]), etc.). Then there exists a regular
conditional distribution ky r of Y given F.

Proof Let B € B(R) and let ¢ : E — B be an isomorphism of measurable spaces.
By Theorem 8.29, we obtain the regular conditional distribution «y’ 7 of the real
random variable Y/ = ¢ o Y. Now define ky r(w, A) = ky' r(w, p(A)) for A e £.00

To conclude, we pick up again the example with which we started. Now we can
drop the quotation marks from the statement and write it down formally. Hence,
let X be uniformly distributed on [0, 1]. Given X = x, let (¥1,...,Y;) be inde-
pendent and Ber,-distributed. Define ¥ = (Y1,...,Y,). By Theorem 8.37 (with
E ={0, 1}" c R"), a regular conditional distribution exists:

kyx(x,)=P[Y e -|X=x] forxel0,1].
Indeed, for almost all x € [0, 1],
P[Y € - | X = x] = (Ber,)®".

Theorem 8.38 Let X be a random variable on (52, A, P) with values in a Borel
space (E,E). Let F C A be a o-algebra and let kx r be a regular conditional dis-
tribution of X given F. Further, let f : E — R be measurable and E[| f (X)|] < oo.
Then

E[f(X) | .7:] (w) = [ fkx Flw,dx) for P-almost all w. (8.17)
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Proof We check that the right-hand side in (8.17) has the properties of the condi-
tional expectation.

It is enough to consider the case f > 0. By approximating f by simple functions,
we see that the right-hand side in (8.17) is F-measurable (see Lemma 14.20 for a
formal argument). Hence, by Theorem 1.96, there exist sets Ay, As, ... € £ and
numbers o1, o, ... > 0 such that

n
—>00
&n :=Za,~1Ai =7
i=1
Now, for any n € Nand B € F,

E[g,(X)15] =) o;P[{X € A;} N B]

i=1

=Y [ P[{X € A;} | F]Pldw]
i=1 VB

=>"a [ wxr(@. ADPidol
i=1 VB

= [ Y wiwrr@. A0Pidol

i=1

= fB ( / gn(x)xx,f<w,dx)>P[dw1.

By the monotone convergence theorem, for almost all w, the inner integral converges
to [ f(x)kx F(w,dx). Applying the monotone convergence theorem once more,
we get

BLACO15] = lim Blg,(015] = [ [ fex (o, doPidol.

Exercise 8.3.1 Let (E, £) be a Borel space and let i« be an atom-free measure (that
is, u({x}) =0 for any x € E). Show that for any A € £ and any n € N, there exist
pairwise disjoint sets Aq, ..., A, € £ with L*.’JZ=1 Ar = A and u(Ag) = u(A)/n for
anyk=1,...,n.

Exercise 8.3.2 Let p,q € (1, 00) with % + ; =1andlet X € LP(P) and Y €
L4(w). Let F C A be a o-algebra. Use the preceding theorem to show the con-
ditional version of Holder’s inequality:

E[|xY||F] <E[Ix|” | F]"PE[)Y|? | F]"? almost surely.
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Exercise 8.3.3 Assume the random variable (X, Y) is uniformly distributed on the
disc B:={(x,y) € R?:x2 + y2 <1}andon [—1, 1]2, respectively.

(i) In both cases, determine the conditional distribution of ¥ given X = x.
(ii) Let R :=+/X2+ Y2 and © = arctan(Y/X). In both cases, determine the con-
ditional distribution of ® given R =r.

Exercise 8.3.4 Let A C R" be a Borel measurable set of finite Lebesgue measure
A(A) € (0,00) and let X be uniformly distributed on A (see Example 1.75). Let
B C A be measurable with A(B) > 0. Show that the conditional distribution of X
given {X € B} is the uniform distribution on B.

Exercise 8.3.5 (Borel’s paradox) Consider the Earth as a ball (as widely accepted
nowadays). Let X be a random point that is uniformly distributed on the surface.
Let ® be the longitude and let @ be the latitude of X. A little differently from the
usual convention, assume that ® takes values in [0, 7) and @ in [—, 7). Hence,
for fixed ©®, a complete great circle is described when @ runs through its domain.
Now, given ®, is @ uniformly distributed on [—m, 7)? One could conjecture that
any point on the great circle is equally likely. However, this is not the case! If we
thicken the great circle slightly such that its longitudes range from & to ® + ¢ (for
a small ¢), on the equator it is thicker (measured in meters) than at the poles. If we
let ¢ — 0, intuitively we should get the conditional probabilities as proportional to
the thickness (in meters).

(i) Show that P[{® € -}|©® = 0] for almost all 6 has the density JT' cos(¢)| for
¢ el—m, ).
(ii) Show that P[{® € -}|® = ¢] =U|p, ) for almost all ¢.
Hint: Show that ® and @ are independent, and compute the distributions of ®
and @.

Exercise 8.3.6 (Rejection sampling for generating random variables) Let E be a
countable set and let P and Q be probability measures on E. Assume there is a
¢ > 0 with

for all e € E with P({e}) > 0.

Let X1, X5, ... be independent random variables with distribution P.Let Uy, Ua, ...
be i.i.d. random variables that are independent of X1, X5, ... and that are uniformly
distributed on [0, 1]. Let N be the smallest (random) nonnegative integer n such that
U, < f(Xyn)/c and define Y := X y.

Show that Y has distribution Q.

Remark. This method for generating random variables with a given distribution
Q is called rejection sampling, as it can also be described as follows. The random
variable X is a proposal for the value of Y. This proposal is accepted with proba-
bility f(X1)/c and is rejected otherwise. If the first proposal is rejected, the game
starts afresh with proposal X, and so on.
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Exercise 8.3.7 Let E be a Polish space and let P, Q € M{(R). Let ¢ > 0 with

f= % < ¢ P-almost surely. Show the statement analogous to Exercise 8.3.6.

Exercise 8.3.8 Show that (R, B(R)) and (R", B(R")) are isomorphic. Conclude
that every Borel set B € B(R") is a Borel space.



Chapter 9
Martingales

One of the most important concepts of modern probability theory is the martin-
gale, which formalizes the notion of a fair game. In this chapter, we first lay the
foundations for the treatment of general stochastic processes. We then introduce
martingales and the discrete stochastic integral. We close with an application to a
model from mathematical finance.

9.1 Processes, Filtrations, Stopping Times

We introduce the fundamental technical terms for the investigation of stochastic
processes (including martingales). In order to be able to recycle the terms later in a
more general context, we go for greater generality than is necessary for the treatment
of martingales only.

In the following, let (E, ) be a Polish space with Borel o -algebra £. Further, let
(£2, F, P) be a probability space and let I C R be arbitrary. We are mostly interested
in the cases I =Ny, I =7, I =[0, 00) and [ an interval.

Definition 9.1 (Stochastic process) Let I C R. A family of random variables X =
(X;,t €1) (on ($2, F,P)) with values in (E, &) is called a stochastic process with
index set (or time set) / and range E.

Remark 9.2 Sometimes families of random variables with more general index sets
are called stochastic processes. We come back to this with the Poisson point process
in Chapter 24. O

Remark 9.3 Following a certain tradition, we will often denote a stochastic process
by X = (X;):es if we want to emphasize the “time evolution” aspect rather than the
formal notion of a family of random variables. Formally, both objects are of course
the same. O
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Example 9.4 Let I = Np and let (Y,,n € N) be a family of i.i.d. Rad;/;-random
variables on a probability space (§2, F, P); that is, random variables with

P[Y,=1]1=P[Y,=—1]= %

Let E = Z (with the discrete topology) and let

t
X; :ZYn for all t € Ny.

n=1
(X;,t € Np) is called a symmetric simple random walk on Z. O

Example 9.5 The Poisson process X = (X;);>o with intensity o > 0 (see Sec-
tion 5.5) is a stochastic process with range Ny. O

We introduce some further terms.

Definition 9.6 If X is a random variable (or a stochastic process), we write L[ X] =
Py for the distribution of X. If G C F is a o -algebra, then we write L[X | G] for the
regular conditional distribution of X given G.

Definition 9.7 An E-valued stochastic process X = (X;),e7 is called

(i) real-valued if E =R,
(i1) a process with independent increments if X is real-valued and for all n € N and

all tg,...,t, € I withtg <t] < ... < t,, we have that
(X1, — X4_,)i=1,...,n 1s independent,
(iii) a Gaussian process if X is real-valued and foralln e Nand 1, ...,t, € I,
(X#,-..,Xy,) isn-dimensional normally distributed, and

(iv) integrable (respectively square integrable) if X is real-valued and E[| X;|] < 0o
(respectively E[(X,)?] <oo)forallr e l.
Now assume that / C R is closed under addition. Then X is called

(v) stationary if L[(Xs41)rer] = LI(Xt)rer] forall s € I, and

(vi) aprocess with stationary increments if X is real-valued and

‘C[XS-H‘-H’ _XI-H‘] ZE[X‘;_HA —X,] forallrs,tel.
(If 0 € I, then it is enough to consider r = 0.)

Example 9.8

(i) The Poisson process with intensity 6 and the random walk on Z are processes
with stationary independent increments.



9.1 Processes, Filtrations, Stopping Times 191
(1) If X;, t € I, are i.i.d. random variables, then (X;);¢; is stationary.

(iii) Let (X;),ez be real-valued and stationary and let k € N and co, ..., cr € R.
Define

k
Y, = ZCl’X”ﬂ"
i=0

Then Y = (Y,)nez is a stationary process. If cg,...,ck = 0 and co +
...+ cx =1, then Y is called the moving average of X (with weights
€Oy .-y Ck)- O

The following two definitions make sense also for more general index sets / that
are partially ordered. However, we restrict ourselves to the case I C R.

Definition 9.9 (Filtration) Let F = (F;,t € I) be a family of o-algebras with
F: C Fforallt € I.F is called a filtration if F; C F; forall s,t € I withs <¢.

Definition 9.10 A stochastic process X = (X;, t € I) is called adapted to the fil-
tration IF if X; is F;-measurable forallr e I. If /; = o (X;,s <t) foralltr eI,
then we denote by F = o (X) the filtration that is generated by X.

Remark 9.11 Clearly, a stochastic process is always adapted to the filtration it gen-
erates. Hence the generated filtration is the smallest filtration to which the process
is adapted. O

Definition 9.12 (Predictable) A stochastic process X = (X,,n € Np) is called
predictable (or previsible) with respect to the filtration F = (F,,, n € Np) if Xo
is constant and if, for every n € N

X, is F,,_1-measurable.

Example 9.13 Let I = Ny and let Y1, Y», ... be real random variables. For n € Ny,
define X,, ;=) _, Y. Let

Fo=1{0,2} and F,=o0(1,...,Y,) forneN.

Then F = (F,,n € Ng) = o (Y) is the filtration generated by ¥ = (¥;),en and X is
adapted to F; hence o (X) C F. Clearly, (Y1, ..., Y,) is measurable with respect to
o(X1,...,Xn); hence 0(Y) C o(X), and thus also F = o (X).

Now let %n = Zzz=1 110,00)(Ym). Then X is also adapted to [F; however, in gen-
eral,Fga()?). O

Example 9.14 Let I = Ng and let Dy, D, ... be i.i.d. Rad;>-distributed random
variables (that is, P[D; = —1] =P[D; = 1] = % for all i € N). Let D = (D;);eN
and F = o (D). We interpret D; as the result of a bet that gives a gain or loss of
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one euro for every euro we put at stake. Just before each gamble we decide how
much money we bet. Let H, be the number of euros to bet in the nth gamble.
Clearly, H, may only depend on the results of the gambles that happened ear-
lier, but not on D,, for any m > n. To put it differently, there must be a function
F,:{—1,1}""! - N such that H, = F,(Dy, ..., Dy_1). (For example, for the Pe-
tersburg game (Example 4.22) we had F, (xq, ..., x,—1) = gn—1 L =xy=...=x,_,=0}-)
Hence H is predictable. On the other hand, any predictable H has the form
H, = F,(Dy,...,Dy_1), n €N, for certain functions F, : {—1, 1}*~! — N. Hence
any predictable H is an admissible gambling strategy. O

Definition 9.15 (Stopping time) A random variable t with values in / U {oo} is
called a stopping time (with respect to IF) if for any ¢ € 1

(t<t}eF.

The idea is that F; reflects the knowledge of an observer at time ¢. Whether or
not {t <t} is true can thus be determined on the basis of the information available
at time 7.

Theorem 9.16 Let I be countable. T is a stopping time if and only if {t =t} € F;
foralltel.

Proof This is left as an exercise! O

Example 9.17 Let I = Ny (or, more generally, let I C [0, co) be right-discrete; that
is, t < infl N (¢, 00) for all + > 0, and hence [ in particular is countable) and let
K C R be measurable. Let X be an adapted real-valued stochastic process. Consider
the first time that X is in K:

tx :=inf{r € I : X; € K}.

It is intuitively clear that 7k should be a stopping time since we can determine
by observation up to time ¢ whether {tx <t} occurs. Formally, we argue that
{X; € K} e Fy C F; for all s <t. Hence also the countable union of these sets
isin F;:

fw<ty= |J (X,ek)jeFr.
seln[0,1]

Consider now the random time 7 :=supf{t € I : X, € K} of the last visit of X
to K. For a fixed time ¢, on the basis of previous observations, we cannot determine
whether X is already in K for the last time. For this we would have to rely on
prophecy. Hence, in general, T is not a stopping time. O
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Lemma 9.18 Let I C [0, 00) be closed under addition and let o and t be stopping
times. Then:

(i) o Vv T and o A T are stopping times.
(ii) Ifo,t >0, then o + t is also a stopping time.
(iii) If s =0, then t + s is a stopping time. However, in general, T — s is not.

Before we present the (simple) formal proof, we state that in particular (i)
and (iii) are properties we would expect of stopping times. With (i), the interpre-
tation is clear. For (iii), note that T — s peeks into the future by s time units (in
fact, {t — s <t} € F;1s), while 7 + s looks back s time units. For stopping times,
however, only retrospection is allowed.

Proof (i) Fort e I,wehave{o vt <t}={o <t}N{r <tle Frand{oc AT <t}=
{o <t}U{r <t}eF.

(i) Letr € I. By (i), T At and o At are stopping times for any ¢ € /. In particular,
{t At <s} e Fy CF; forany s <t.On the other hand, we have T At <s fors > t.
Hence t/:= (vt At) + Ljz=p and o’ := (0 A1) + L{s>;) (and thus T/ 4 o) are
F:-measurable. We conclude {t + 0 <t} ={t'+0' <t} € F.

(iii) For 7 + s, this is a consequence of (ii) (with the stopping time o = s). For
T — s, since 7 is a stopping time, we have {t —s <t} = {t <r+s} € F;+,. However,
in general, F; 4 is a strict superset of F;; hence T — s is not a stopping time. U

Definition 9.19 Let 7 be a stopping time. Then
Fr={AeF:An{r <t}eF foranyt eI}

is called the o -algebra of T-past.

Example 9.20 Let I = Ny (or let I C [0, 00) be right-discrete; compare Exam-
ple 9.17) and let X be an adapted real-valued stochastic process. Let K € R and
let T = inf{t : X; > K} be the stopping time of first entrance in [K, co). Consider
the events A = {sup{X;:1€l}> K —5}and B = {sup{X;:t €1} > K + 5}.
Clearly, {r <t} C A for all rt € I; hence A N{r <t} = {r <t} € F;. Thus
A € F;. However, in general, B ¢ F; since up to time t, we cannot decide whether
X will ever exceed K + 5. O

Lemma 9.21 If o and t are stopping times with o < t, then F; C F7.

Proof Let Ae F,andt e l.Then AN{o <t} e F;.Now {t <t} e F;since tis a
stopping time. Since o < t, we thus get

Anf{t<t}=(An{o <t})N{r <t} e F. O

Definition 9.22 If T < oo is a stopping time, then we define X (w) := X () (®).
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Lemma 9.23 Let I be countable, let X be adapted and let T < 0o be a stopping
time. Then X is measurable with respect to F.

Proof Let A be measurable and ¢ € I. Hence {t = s} N XS_I(A) e F; C F; for all
s <t. Thus

X 'Anfr<n)= U ({fr=s1nX;'(4) e .

sel

s<t O

For uncountable / and for fixed w, in general, the map I — E, t — X;(w) is
not measurable; hence neither is the composition X, always measurable. Here one
needs assumptions on the regularity of the paths t — X;(w); for example, right
continuity. We come back to this point in Chapter 21 and leave this as a warning for
the time being.

9.2 Martingales

Everyone who does not own a casino would agree without hesitation that the suc-
cessive payment of gains Yq, Y, ..., such that Yy, Y», ... are i.i.d. with E[Y{] =0,
could be considered a fair game consisting of consecutive rounds. In this case, the
process X of partial sums X, = Y| + ...+ Y, is integrable and E[ X, | F,,] = X, if
m < n (where F = o (X)). We want to use this equation for the conditional expec-
tations as the defining equation for a fair game that in the following will be called
a martingale. Note that, in particular, this definition does not require that the indi-
vidual payments be independent or identically distributed. This makes the notion
quite a bit more flexible. The momentousness of the following concept will become
manifest only gradually.

Definition 9.24 Let (£2, F,P) be a probability space, I C R, and let F be a
filtration. Let X = (X;);es be a real-valued, adapted stochastic process with
E[|X;|]] < oo forallt € I. X is called (with respect to ) a

martingale if E[X; | F] = X forall s, € [ witht > s,
submartingale if E[ X, | Fs] > X forall s,r € [ witht > s,
supermartingale if E[X; | F5] < X forall s, € I witht > s.

Remark 9.25 Clearly, for a martingale, the map ¢ — E[X,] is constant, for sub-
martingales it is monotone increasing and for supermartingales it is monotone de-
creasing. O

Remark 9.26 The etymology of the term martingale has not been resolved com-
pletely. The French la martingale (originally Provencal martegalo, named after the
town Martiques) in equitation means “a piece of rein used in jumping and cross
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country riding”. Sometimes the ramified shape, in particular of the running martin-
gale (French la martingale a anneaux), is considered as emblematic for the doubling
strategy in the Petersburg game.

This doubling strategy itself is the second meaning of la martingale. Starting
here, a shift in the meaning towards the mathematical notion seems plausible. A dif-
ferent derivation, in contrast to the appearance, is based on the function of the rein,
which is to “check the upward movement of the horse’s head”. Thus the notion of a
martingale might first have been used for general gambling strategies (checking the
movements of chance) and later for the doubling strategy in particular. O

Remark 9.27 If I =N, I = Ny or I = Z, then it is enough to consider at each
instant s only t = s + 1. In fact, by the tower property of the conditional expectation
(Theorem 8.14(iv)), we get

E[Xs42 | Fsl= E[E[Xs+2 | Fs+1l | -/—"s]

Thus, if the defining equality (or inequality) holds for any time step of size one, by
induction it holds for all times. O

Remark 9.28 If we do not explicitly mention the filtration [F, we tacitly assume that
[F is generated by X; that is, F; = o (X, s <1). O

Remark 9.29 Let F and F’ be filtrations with F; C F; for all 7, and let X be an
IF’-(sub-, super-) martingale that is adapted to F. Then X is also a (sub-, super-)
martingale with respect to the smaller filtration [F. Indeed, for s < ¢ and for the case
of a submartingale,

E[X, | F1=E[E[X, | 7] | 7] = EIX, | ;1= X,.

In particular, an F-(sub-, super-) martingale X is always a (sub-, super-) martingale
with respect to its own filtration o (X). O

Example 9.30 Let Y1, ..., Yy be independent random variables with E[Y;] = 0 for
allt=1,...,N.Let F; ;== o (Yy,...,Y;) and X, := Y . _, ¥;. Then X is adapted
and integrable, and E[Y, | F5] =0 for r > s. Hence, for t > s,

t
E[X, | Fi]=E[X, | F1+E[X, - X, | il =X+ Y_ ElY,|F]=X,.
r=s+1

Thus, X is an F-martingale.
Similarly, X is a submartingale if E[Y;] > O for all 7, and a supermartingale if
E[Y;] <O forall . O

Example 9.31 Consider the situation of the preceding example; however, now with
E[Y;] =1 and X, =[]._, Y, for t € Ng. By Theorem 5.4, Y; - ¥, is integrable.
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Inductively, we get E[| X;|] < oo for all # € Ny. Evidently, X is adapted to [F and for
all s € Ny, we have

E[Xs—i-l | -Fv] = E[Xs Ys—i—l | ]:v] = XSE[YS-Q—I | ]:v] = Xs-

Hence X is an F-martingale. O

Theorem 9.32

(i) X is a supermartingale if and only if (—X) is a submartingale.
(i1) Let X and Y be martingales and let a,b € R. Then (aX + bY) is a martin-

gale.

(iii) Let X and Y be supermartingales and a,b > 0. Then (aX + bY) is a super-
martingale.

(iv) Let X and Y be supermartingales. Then Z :== X ANY = (min(Xy, Y;))rey is a
supermartingale.

V) If (X¢)ienN, is a supermartingale and E[X1] > E[X(] for some T € Ny,
then (X;)eqo,..., 1) is a martingale. If there exists a sequence Ty — 00 with
E[X7,] > E[X0], then X is a martingale.

Proof (i), (ii) and (iii) These are evident.

(iv) Since |Z;| < | X¢| + |Y:|, we have E[|Z,|] < oo for all ¢ € I. Due to mono-
tonicity of the conditional expectation (Theorem 8.14(ii)), for ¢ > s, we have
E[Z, | 5] <E[Y; | 5] < Yy and E[Z, | F5] < E[X; | 5] < Xj; hence

E[Zt |fs]§Xs/\Ys=Zs-
(v)Fort <T,letY; :=E[Xr | F;]. Then Y is a martingale and ¥; < X;. Hence
E[Xo] <E[X7]=E[Y7]=E[Y;] <E[X;] <E[Xo].

(The first inequality holds by assumption.) We infer that ¥; = X, almost surely for
all ¢ and thus (X;)se(o,..., 7 1S a martingale.

Let Ty — oo with E[X 7, ] > E[X(] for all N € N. Then, for any ¢ > s > 0, there
isan N € N with Ty > ¢. Hence, E[X; | ;] = E[X;] and X is a martingale. O

Remark 9.33 Many statements about supermartingales hold mutatis mutandis for
submartingales. For example, in the preceding theorem, claim (i) holds with the
words “submartingale” and “supermartingale” interchanged, claim (iv) holds for
submartingales if the minimum is replaced by a maximum, and so on. We often do
not give the statements both for submartingales and for supermartingales. Instead,
we choose representatively one case. Note, however, that those statements that we
make explicitly about martingales usually cannot be adapted easily to sub- or super-
martingales (such as (ii) in the preceding theorem). O

Corollary 9.34 Let X be a submartingale and a € R. Then (X — a)™ is a sub-
martingale.
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Proof Clearly, 0 and Y = X — a are submartingales. By (iv), (X —a)T =Y v 0 is
also a submartingale. O

Theorem 9.35 Let X be a martingale and let ¢ : R — R be a convex function.
W 1f
E[p(X)"] <00 foralltel, 9.1)

then (¢(X))ter is a submartingale.

(i) Ift* :=sup(l) € I, then E[p(X+)*] < oo implies (9.1).

(iii) In particular, if p > 1 and E[|X;|P] < oo for all t € I, then (|X;|P);ecr is a
submartingale.

Proof (i) We always have E[¢(X;)”] < oo (Theorem 7.9); hence, by assumption,
E[l¢(Xs)|] < oo for all ¢ € I. Jensen’s inequality (Theorem 8.20) then yields, for
t>s,

E[p(X)) | Fs] = ¢(ELX, | Fi]) = p(X,).

(i) Since ¢ is convex, so is x > @(x)T. Furthermore, by assumption, we have
E[¢(X;+)™] < 0o; hence Jensen’s inequality implies that, for all # € I,

E[p(X)*] = E[¢(E[X,- | F,1)"] <E[E[p(X,;) " | F]]
= E[go(X,*)Jr] < 0.

(iii) This is evident since x > |x|? is convex. O

Example 9.36 (See Example 9.4.) Symmetric simple random walk X on Z is a
square integrable martingale. Hence (X ,ZL)HGNO is a submartingale. O

Exercise 9.2.1 Let Y be arandom variable with E[|Y|] < oo and let F be a filtration
as well as

X; =E[Y | F] foralltel.
Show that X is an F-martingale.

Exercise 9.2.2 Let (X,),en, be a predictable F-martingale. Show that X, = X
almost surely for all n € Np.

Exercise 9.2.3 Show that the claim of Theorem 9.35 continues to hold if X is only
a submartingale but if ¢ is in addition assumed to be monotone increasing. Give
an example that shows that the monotonicity of ¢ is essential. (Compare Corol-
lary 9.34.)

Exercise 9.2.4 (Azuma’s inequality) Show the following.
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(i) If X is a random variable with |X| <1 a.s., then there is a random variable Y
with values in {—1, +1} and with E[Y | X] = X.
(i1) For X as in (i) with E[X] = 0, infer that (using Jensen’s inequality)
E[¢*¥] < cosh(r) <¢**/> forall » € R.

(iii) If (My)nen, is a martingale with Mo = 0 and if there is a sequence (cg)ken Of
nonnegative numbers with |M,, — M,,_1| <c, a.s. for all n € N, then

1 n
E[eAM"] <exp <5A2 ]; c,%) .
(iv) Under the assumptions of (iii), Azuma’s inequality holds:
22
23k

Hint: Use Markov’s inequality for f(x) = e¢?* and choose the optimal y .

P[anI > )»] < 26xp<— ) for all A > 0.

9.3 Discrete Stochastic Integral

So far we have encountered a martingale as the process of partial sums of gains of a
fair game. This game can also be the price of a stock that is traded at discrete times
on a stock exchange. With this interpretation, it is particularly evident that it is nat-
ural to construct new stochastic processes by considering investment strategies for
the stock. The value of the portfolio, which is the new stochastic process, changes
as the stock price changes. It is the price multiplied by the number of stocks in the
portfolio. In order to describe such processes formally, we introduce the following
notion.

Definition 9.37 (Discrete stochastic integral) Let (X,)qen, be an F-adapted real
process and let (H,),en be a real-valued and F-predictable process. The discrete
stochastic integral of H with respect to X is the stochastic process H-X defined by

n
(H-X)n:=Y  Hp(Xym — Xn_1) forneNo. 9.2)

m=1

If X is a martingale, then H-X is also called the martingale transform of X.
Remark 9.38 Clearly, H-X is adapted to FF. O

Let X be a (possibly unfair) game where X,, — X, _; is the gain per euro in the
nth round. We interpret H, as the number of euros we bet in the nth game. H is
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then a gambling strategy. Clearly, the value of H, has to be decided at time n — 1;
that is, before the result of X, is known. In other words, H must be predictable.

Now assume that X is a fair game (that is, a martingale) and H is locally bounded
(that is, each Hj, is bounded). Then (since E[X,,+1 — X, | 7] =0)

E[(H-X)us1 | Fu] = E[(H-X)p + Hyp1(Xng1 — Xp) | Fa]
= (H-X)n + Hi1E[Xpt1 — X | Fal
=(H-X),.
Thus H-X is a martingale. The following theorem says that the converse also holds;

that is, X is a martingale if, for sufficiently many predictable processes, the stochas-
tic integral is a martingale.

Theorem 9.39 (Stability theorem) Let (X,),en, be an adapted, real-valued
stochastic process with E[| Xo|] < oo.

(1) X is a martingale if and only if, for any locally bounded predictable process
H, the stochastic integral H-X is a martingale.

(i) X is a submartingale (supermartingale) if and only if H-X is a submartingale
(supermartingale) for any locally bounded predictable H > 0.

Proof (1) “==" This has been shown in the discussion above.
“="Fix an ng € N, and let H,, = 1{,,—p). Then (H-X),,—1 = 0; hence

0=E[(H-X)ng | Fro—1] =E[Xny | Frg—11— Xpg—1.
(ii) This is similar to (i). Il

The preceding theorem says, in particular, that we cannot find any locally
bounded gambling strategy that transforms a martingale (or, if we are bound to
nonnegative gambling strategies, as we are in real life, a supermartingale) into a
submartingale. Quite the contrary is suggested by the many invitations to play all
kinds of “sure winning systems” in lotteries.

Example 9.40 (Petersburg game) We continue Example 9.14 (see also Exam-
ple 4.22). Define X,, := D1 + ...+ D, for n € Ng. Then X is a martingale. The
gambling strategy H, :=2""'1(p,—p,—_—p, ,=—1) for n € N and Hy = 1 is pre-
dictable and locally bounded. Let S, = 27: 1 HiD; = (H-X), be the gain after n
rounds. Then § is a martingale by the preceding theorem. In particular, we get (as
shown already in Example 4.22) that E[S,] = 0 for all n € N. We will come back
later to the point that this superficially contrasts with S, =1 as. (see Exam-
ple 11.6).

For the moment, note that the martingale S’ = (1 — Sy)sen,. just like the one in
Example 9.31, has the structure of a product of independent random variables with
expectation 1. In fact, S, =[]/, (1 — D;). O
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9.4 Discrete Martingale Representation Theorem and the CRR
Model

By virtue of the stochastic integral, we have transformed a martingale X via a gam-
bling strategy H into a new martingale H-X. Let us change the perspective and
ask: For fixed X, which are the martingales Y (with Yy = 0) that can be obtained
as discrete stochastic integrals of X with a suitable gambling strategy H = H(Y)?
Possibly all martingales Y ? This is not the case, in general, as the example be-
low indicates. However, we will see that all martingales can be represented as
stochastic integrals if the increments X, .1 — X, can take only two values (given
X1, ..., Xp). In this case, we give a representation theorem and use it to discuss
the fair price for a European call option in the stock market model of Cox—Ross—
Rubinstein. This model is rather simple and describes an idealized market (no trans-
action costs, fractional numbers of stocks tradeable and so on). For extensive lit-
erature on stochastic aspects of mathematical finance, we refer to the textbooks
[9, 42, 48, 57, 86, 102, 121] or [159].

Example 9.41 Consider the very simple martingale X = (X,),=0,1 with only
two time points. Let Xo = 0 almost surely and P[X; = —1] = P[X; = 0] =
PXi=1]= % Let Yy = 0. Further, let Y; =2 if X; =1 and Y| = —1 otherwise.
Then Y is manifestly a o (X)-martingale. However, there is no number H; such that
HiX|=Y. O

Let T € N be a fixed time. If (¥;)y=0,1,...,7 is an [F-martingale, then Y, =
E[Yr | F,] for all n < T. An F-martingale Y is thus determined uniquely by the
terminal values Y7 (and vice versa). Let X be a martingale. As (H-X) is a mar-
tingale, the representation problem for martingales is thus reduced to the problem
of representing an integrable random variable V := Y7 as vg + (H-X)r, where
vo = E[Y7].

We saw that, in general, this is not possible if the differences X, — X,, take
three (or more) different values. Hence we now consider the case where only two
values are possible. Here, at each time step, a system of two linear equations with
two unknowns has to be solved. In the case where X, 1| — X, takes three values,
the system has three equations and is thus overdetermined.

Definition 9.42 (Binary model) A stochastic process Xo, ..., X7 is called binary
splitting or a binary model if there exist random variables Dy, ..., Dr with values
in {—1, +1} and functions f, : R* ™' x {—1,4+1} > Rforn=1,..., T, as well as
xo € R such that Xg = x¢ and

Xn=fuX1,...,Xp-1,Dy) foranyn=1,...,T.

By F =0 (X), we denote the filtration generated by X.

Note that X, depends only on X1, ..., X;,—1 and D, but not on the full informa-
tion inherent in the values Dy, ..., D,. If the latter were the case, a ramification into
more than two values in one time step would be possible.
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Theorem 9.43 (Representation theorem) Let X be a binary model and let Vr be an
Fr-measurable random variable. Then there exists a bounded predictable process
H and a vg e R with Vi = v+ (H-X)T.

Note that F is the filtration generated by X, not the, possibly larger, filtration
generated by Dy, ..., Dr. For the latter case, the claim of the theorem would be
incorrect since, loosely speaking, with H we can bet on X but not on the D;.

Proof We show that there exist Fr_j-measurable random variables Vr_; and Hr
such that V7 = Vr_1 + Hr (X1 — X7_1). By a backward induction, this yields the
claim.

Since Vr is Fr-measurable, by the factorization lemma (Corollary 1.97) there
exists a function g7 : R? - R with Vy = gr(Xq,..., X7). Define

ij"::fT(Xl’---’XT_l,il) and VTfE :gT(Xl,...,XT_l,Xﬁ).

Each of these four random variables is manifestly Fr_-measurable. Hence we are
looking for solutions Vr_; and Hr of the following system of linear equations:

Vr_i+ Hr(X7 — Xr—1)=Vy

(9.3)
V1 + HT(X—; — XT_1) = V;.

By construction, X; — X #0if VT+ — V; # 0. Hence we can solve (9.3) and get

Vi-vo o4 -
Hr =1 Xi-X;° leT#X ’
0, else,
and Vr_1 = V,;f — Hr(Xf — Xr—1) =V; — Hr (X7 — X7-1). O

We now want to interpret X as the market price of a stock and Vr as the pay-
ment of a financial derivative on X, a so-called contingent claim or, briefly, claim.
For example, V7 could be a (European) call option with maturity T and strike price
K > 0. In this case, we have Vy = (X7 — K)™. Economically speaking, the Euro-
pean call gives the buyer the right (but not the obligation) to buy one stock at time 7
at price K (from the issuer of the option). As typically the option is exercised only
if the market price at time 7 is larger than K (and then gives a profit of X7 — K as
the stock could be sold at price X7 on the market), the value of the option is indeed
Vr=Xr—-K)T.

At the stock exchanges, not only are stocks traded but also derivatives on stocks.
Hence, what is the fair price 7 (Vr) for which a trader would offer (and buy) the
contingent claim V7 ? If there exists a strategy H and a vy such that Vr = vy +
(H-X)r, then the trader can sell the claim for vy (at time 0) and replicate the claim
by building a portfolio that follows the trading strategy H. In this case, the claim
Vr is called replicable and the strategy H is called a hedging strategy, or briefly a
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hedge. A market in which every claim can be replicated is called complete. In this
sense, the binary model is a complete market.

If there was a second strategy H' and a second v;, with vy 4+ (H'-X)r = Vr,
then, in particular, vo — vy = ((H' — H)-X)7. If we had v > vy, then the trader
could follow the strategy H' — H (which gives a final payment of Vy — Vy = 0)
and make a sure profit of vg — v;. In the opposite case, vy < vy, the strategy H — H'
ensures a risk-free profit. Such a risk-free profit (or free lunch in economic jargon)
is called an arbitrage. It is reasonable to assume that a market gives no opportunity
for an arbitrage. Hence the fair price 7 (V7) is determined uniquely once there is
one trading strategy H and a vg such that Vr =vg + (H-X)r.

Until now, we have not assumed that X is a martingale. However, if X is a martin-
gale, then (H-X) is a martingale with (H-X)g = 0; hence clearly E[(H-X)7] =0.
Thus

7 (Vr) =vo=E[Vr]. 94

Since, in this case, vy does not depend on the trading strategy and is hence unique,
the market is automatically arbitrage-free. A finite market is thus arbitrage-free if
and only if there exists an equivalent martingale (to be defined below). In this case,
uniqueness of this martingale is equivalent to completeness of the market (“the fun-
damental theorem of asset pricing” by Harrison—Pliska [68]). In larger markets,
equivalence holds only with a somewhat more flexible notion of arbitrage (see [30]).

Now if X is not a martingale, then in some cases, we can replace X by a differ-
ent process X’ that is a martingale and such that the distributions Px and Py are
equivalent; that is, have the same null sets. Such a process is called an equivalent
martingale, and Py is called an equivalent martingale measure. A trading strategy
that replicates V7 with respect to X also replicates Vy with respect to X’. In partic-
ular, the fair price does not change if we pass to the equivalent martingale X’. Thus
we can compute 7 (V7) by applying (9.4) to the equivalent martingale.

While here this is only of interest in that it simplifies the computation of fair
prices, it has an economic interpretation as a measure for the market prices that
we would see if all traders were risk-neutral; that is, for traders who price a future
payment by its mean value. Typically, however, traders are risk-averse and thus real
market prices include a discount due to the inherent risk.

Now we consider one model in greater detail.

Definition 9.44 Let T € N, a € (—1,0) and b > 0 as well as p € (0, 1). Fur-
ther, let Dy, ..., D7 be ii.d. Rad, random variables (that is, P[D; =1] =1 —
P[D;=—1]=p). Welet Xo=xp >0andforn=1,..., T, define
o [A+nXy, i D=1,
"1 +a)X,—, ifD,=-1.

X is called the multi-period binomial model or the Cox—Ross—Rubinstein model
(without interest returns).



9.4 Discrete Martingale Representation Theorem and the CRR Model 203

As we have shown already, the CRR model is complete. Further, with the choice
p = p* = 7%, we can change X into a martingale. Hence the model is also arbi-
trage-free (for all p € (0, 1)). Now we want to compute the price of a European call
option V7 := (X7 — K)™ explicitly. To this end, we can assume p = p*. Letting
A:=min{i e Ng: (1 +b) (1 +a)"xg> K}, we get

T

A (V) =Ep Vel =Y by ()1 +5) (1 + ) 7xg — K"
i=0

T T i —i . .
:xOZ(i>(p*) (1 —p*)T [1+b) (1 +a)" ]
i=A

T
— Ky brp(1i}).
i=A
If we define p’ = (1+b)p*, then p’ € (0, 1) and 1 — p' = (1 — p*)(1 +a). We thus
obtain the Cox—Ross—Rubinstein formula
7 (Vr) =x0bT,pr({A, ey T}) — Kbr p+ ({A, . T}). 9.5)

This is the discrete analogue of the celebrated Black—Scholes formula for option
pricing in certain time-continuous markets.



Chapter 10
Optional Sampling Theorems

In Chapter 9 we saw that martingales are transformed into martingales if we ap-
ply certain admissible gambling strategies. In this chapter, we establish a similar
stability property for martingales that are stopped at a random time. In order also
to obtain these results for submartingales and supermartingales, in the first section,
we start with a decomposition theorem for adapted processes. We show the optional
sampling and optional stopping theorems in the second section. The chapter finishes
with the investigation of random stopping times with an infinite time horizon.

10.1 Doob Decomposition and Square Variation

Let X = (X)nen, be an adapted process with E[|X,|] < oo for all n € Ng. We will
decompose X into a sum consisting of a martingale and a predictable process. To
this end, for n € N, define

M, :=Xo+ ) _(Xk — E[Xx | Fi1]) (10.1)
k=1

and
Z E[X) | Fim1] = Xi—1)-

Evidently, X,, = M,, + A,,. By construction, A is predictable with A9 =0, and M is
a martingale since

E[M, — Mp—1 | Fn-1] ZE[Xn —E[X, | Fn-1] ‘ -Fn—l] =0.
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Theorem 10.1 (Doob decomposition) Let X = (X,)nen, be an adapted inte-
grable process. Then there exists a unique decomposition X = M + A, where
A is predictable with Ay = 0 and M is a martingale. This representation of X is
called the Doob decomposition. X is a submartingale if and only if A is monotone
increasing.

Proof We only have to show uniqueness of the decomposition. Hence, let X = M +
A = M’ + A’ be two such decompositions. Then M — M’ = A’ — A is a predictable
martingale; hence (see Exercise 9.2.2) M,, — M, = Mo — M =0 for all n € Ny. O

Example 10.2 Let I =Ng or I ={0,..., N}. Let (X,),es be a square integrable
F-martingale (that is, E[X,zl] < oo forall n € I'). By Theorem 9.35, Y := (X,%),,E[ is
a submartingale. Let Y = M + A be the Doob decomposition of Y. Then (X% -
Ap)ner is a martingale. Furthermore, E[X;_1X; | Fi—1] = X;—1E[X; | Fi—1] =
X2 |; hence (as in (10.1))

=

An= Z(E[Xzz | ]‘-i—l] - Xizfl)
=Y (B[(Xi = Xi—0)* | Fic] = 2X7 + 2E[X; 1 X; | Fi-1])
i=1

= ZE[(Xi — X;_1)? | Fic1]-
i=1 O

Definition 10.3 Let (X,),c; be a square integrable F-martingale. The unique
predictable process A for which (X ,zl — Aj;)ner becomes a martingale is called the
square variation process of X and is denoted by (<X>”)nel = A.

By the preceding example, we conclude the following theorem.

Theorem 10.4 Let X be as in Definition 10.3. Then, for n € Ny,

(X)n =Y E[(Xi = Xi-)* | Fi1] (10.2)
i=1

and
E[(X)n] = Var[X, — Xo]. (10.3)
Remark 10.5 If Y and A are as in Example 10.2, then A is monotone increasing

since (Xﬁ)ne ; is a submartingale (see Theorem 10.1). Therefore, A is sometimes
called the increasing process of Y. O
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Example 10.6 Let Y1, Y2, ... be independent, square integrable, centered random
variables. Then X,, :=Y; 4 ... + Y, defines a square integrable martingale with
(X)n =" E[Y].Infact, A, =Y | E[Y? | Y1,....Y;,.11= Y7 E[Y?] (asin
Example 10.2).

Note that in order for (X) to have the simple form as in Example 10.6, it is not
enough for the random variables Y1, Y3, ... to be uncorrelated. O

Example 10.7 Let Y1, Y,, ... be independent, square integrable random variables
with E[Y,] =1 forall n € N. Let X,, :=[[;_, ¥; for n € Ng. Then X = (Xp)nen, is
a square integrable martingale with respect to F = ¢ (X) (why?) and

E[(Xy — Xu—)? | Fact | = E[(Ya — D*X5_, | Fuz1] = Var[Y,]X;

n—1-

Hence (X), = Z?:l Var[Y,-]Xl.z_ - We see that the square variation process can
indeed be a truly random process. O

Example 10.8 Let (X,),en, be the one-dimensional symmetric simple random
walk

n
X, = ZRi for all n € Ny,
i=1

where Ry, Rz, R3, ... are i.i.d. and ~ Rad 2; that is,

P[R;=1]=1—-P[R; =—1]= %

Clearly, X is a martingale and hence | X| is a submartingale. Let | X| =M + A
be Doob’s decomposition of | X|. Then

n

An=Y_(B[IXil | Fica] = 1Xi11).

i=1

Now
[Xi—1l+R;, if X;—1 >0,
|Xi|=1 |Xiz1|— R;i, if X;—1 <O,
I, if X;_1 =0.
Therefore,

| Xi—1l, i [X;—1| #0,
E[|X;|| Fio1] = ,
1, if | X;—1]=0.
The process

Ap=#i<n-—-1:1X;|=0}
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is the so-called local time of X at 0. We conclude that (since P[X>; = 0] = (2/ )4_j
and P[X,;4+1 =0]=0)

E[|X,|]=E[#i<n—1:X;,=0}]

n—1 L(n—1)/2] 2 ‘
=) PX;=0]= ) ( ,)4—1.

i=0 =0~/ %
Example 10.9 We want to generalize the preceding example further. Evidently, we
did not use (except in the last formula) the fact that X is a random walk. Rather,
we just used the fact that the differences (AX), := X, — X,,—1 take only the values
—1 and +1. Hence, now let X be a martingale with | X,, — X,,—1| = 1 almost surely
for all n € N and with Xo = x¢ € Z almost surely. Let f : Z — R be an arbitrary
map. Then Y := (f(X;))nen, is an integrable adapted process (since |f(X,)| <
maXye{xg—n,....xo+n} | f (x)]). In order to compute Doob’s decomposition of Y, define
the first and second discrete derivatives of f:

1) — -1
f/(x)::f(x+)2f(x )

and

ff=fa-D+fx+1)—2f(x).
Further, let F), := f/(X,—1) and F := f”(X,—1). By computing the cases X, =
X,—1— land X, = X,,—1 + 1 separately, we see that for all n € N

X, 14+ 1)— F(Xy i —1
FX) = fXy) = L 1+)2f( D X, — X

1 1
+ Ef(anl -+ Ef(anl +1)— f(Xn-1)
1
= f/(Xn—l)(Xn - Xn—l) + Ef//(Xn—l)
=F - (Xy— Xp—1) + %F,;/.

Summing up, we get the discrete It0 formula:

n n l
FO) =G0+ Y f Xie)(Xi = X + ) o (Xim)

i=1 i=l1
n l
= fGo) + (FX), +Y EF,.”. (10.4)
i=1

Here F’-X is the discrete stochastic integral (see Definition 9.37). Now M :=
f(x0) + F’-X is a martingale by Theorem 9.39 since F’ is predictable (and
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,,,,,

Hence f(X) := (f(Xn))nen, = M + A is the Doob decomposition of f(X). In par-
ticular, f(X) is a submartingale if f”(x) > 0 for all x € Z; that is, if f is convex.
We knew this already from Theorem 9.35; however, here we could also quantify
how much f(X) differs from a martingale.

In the special cases f(x) = x% and f(x) = |x|, the second derivative is f”(x) =2
and f”(x) =2 - 1 (x), respectively. Thus, from (10.4), we recover the statements
of Theorem 10.4 and Example 10.8.

Later we will derive a formula similar to (10.4) for stochastic processes in con-
tinuous time (see Section 25.3). O

10.2 Optional Sampling and Optional Stopping

Lemma 10.10 Let I C R be countable, let (X;)ie; be a martingale, let T € I and
let T be a stopping time with T < T. Then X, = E[Xr | F;] and, in particular,
E[X:]=E[Xo].

Proof 1t is enough to show that E[X714] = E[X;14] for all A € F;. By the defi-
nition of F;, we have {t =t} N A € F; forall t € I. Hence

E[X:141=) E[X/Lir=gnal = Y _E[E[X7 | Fi]1{r=ina]

t<T t<T
=Y E[X7rLali—]=E[X714].
t<T U

Theorem 10.11 (Optional sampling theorem) Let X = (X,)neN, be a super-
martingale and let o < T be stopping times.

(i) Assume there existsa T € Nwitht <T. Then
Xo > E[X: | F51,

and, in particular, E[X ;] > E[X.]. If X is a martingale, then equality holds
in each case.

(i1) If X is nonnegative and if T < 00 a.s., then we have E[X.] < E[X¢] < oo,
E[X;] <E[Xo] <ooand X; > E[X; | F5].

(iii) Assume that, more generally, X is only adapted and integrable. Then X is a
martingale if and only if E[ X ;] = E[X¢] for any bounded stopping time .

Proof (i) Let X = M + A be Doob’s decomposition of X. Hence A is predictable
and monotone decreasing, Ao =0, and M is a martingale. Applying Lemma 10.10
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to M yields
Xo=As + M, =E[A; + M7 | F5]
>E[A; + My | Fo1=E[A; + E[M7 | ]| Fo ]
ZE[A‘[ +M'[ |Fa]=E[Xr |fo]~

Here we used F; D Fy, the tower property and the monotonicity of the conditional
expectation (see Theorem 8.14).

(i1) We have XAy = X, almost surely. By (i), we get E[X;,,] < E[X(] for
any n € N. Using Fatou’s lemma, we infer

E[X.] <liminfE[X.1,] <E[X0] < 00.
n—o0

Similarly, we can show that E[ X, ] < E[X¢].
Now, let m,n € N with m > n. Part (i) applied to the bounded stopping times
T Am >0 Anyields

Xoan = E[ X am | Fornl
Now {o <n}N A € F, A, for A € F,. Hence

E[Xa ]]-{cr<n}ﬂA] = E[XJ/\n:ﬂ-{a<n}ﬂA] = E[XtAm ]]-{o'<n}(‘\A]-

Using Fatou’s lemma, we get
E[erl{o<n}ﬂA] = lni{giélofE[XrAmﬂ{o<n}ﬂA] = E[Xajl{o<n}ﬂA]~

Monotone convergence (for n — o0) thus yields E[X;14] <E[Xs14].

(iii) If X is a martingale, then the claim follows from Lemma 10.10. Now assume
that E[X;] = E[X(] for any bounded stopping time 7. Let r > s and A € F;. It is
enough to show that E[X;14] = E[X14]. Define v = sl4 + tlsc. Then 7 is a
bounded stopping time. However, by assumption,

E[X;14]1=E[X;] - E[X;1sc] = E[Xo] - E[X] + E[X,14] = E[X;14]. U

Corollary 10.12 Let X be a martingale (respectively a submartingale), and as-
sume (Ty) NeN is a monotone increasing sequence of bounded stopping times (hence
iy <Tn, N € N for some Ty € N). Then (X1, )neN is a martingale (respectively a
submartingale) with respect to the filtration (Fry ) NeN.

Definition 10.13 (Stopped process) Let I C R be countable, let (X;);c; be adapted
and let T be a stopping time. We define the stopped process X* by

X; =X, foranyrel.

Further, let F* be the filtration F* = (F]);er = (Frar)rel-
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Remark 10.14 X7 is adapted both to F and to F*. O

Theorem 10.15 (Optional stopping) Let (X;)neN, be a (sub-, super-) martingale
with respect to F and let T be a stopping time. Then X is a (sub-, super-) martin-
gale both with respect to F and with respect to FT.

Proof We give the proof only for the case where X is a submartingale. The other
cases are similar since there (—X) is a submartingale.
For each n € Ny, we have

E[|X}|] < E[max{|X,;|:m <n}]
<E[|Xol]+... +E[|X,]] < oc.

Hence X7 is integrable.
Let X be a submartingale. Since {t > n — 1} € F,_|, we have

E[X; — X5y | Fac1] =ElXcan — Xeag—) | Fail
=E[(Xn — Xn—D1Lir=n—1y | Fu-1]
= Lron—1 E[Xn — Xp—1 | F—1]
>0, since X is an F-submartingale.

Therefore, X© is an F-submartingale. As X7 is adapted to F* and since FT is the
smaller filtration, X7 is also an F-submartingale (see Remark 9.29). O

Example 10.16 Let X be a symmetric simple random walk on Z (see Exam-
ple 10.8). Let a, b € Z with a < 0, b > 0 and let

7, =inf{t > 0: X; = a}, 7, =inf{t >0: X; =b} and

Ta,b = Ta N\ Tp-

T4,p 18 a stopping time by Lemma 9.18. Let A = {7,,, = 74} be the event where
X hits a before hitting b. We want to compute P[A]. By Exercise 2.3.1, almost
surely limsup,,_, . X,, = 00 and liminf,,_, o X,, = —o0. Therefore, almost surely

7, < 00 and 1, < 00. By the optional stopping theorem, X% is a martingale. Since

n—o0 T, n—oo T,
Tab AN —> T4 almost surely, we get Xt = X1, , almost surely. As |Xn""’|

is bounded by b — a, we can infer that X;“"’ = X<, , alsoin L. Thus

0= lim E[X,""] =E[Xq,,]=a -Pltap =14 +b-Plra) = 1]
n—0oo ’

=b+ (a — b)Ptap = T4l

We conclude that P[7, , = 7,] = %. V%
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Example 10.17 Finally, we use our machinery in order to compute E[z, ;] and
E[z,]. The square variation process (X) (compare Definition 10.3) is given by

(X)n = ZE[(Xi - Xi—l)2 | -7:i—1] =n;

i=1
hence (X% — 1),eN, 1s a martingale. By the optional stopping theorem,

0=E[XZ ., — (tapAn)] forallneNo.

Ta,pb/\I

Monotone convergence yields
Elt, 5] =E[X} ,]=a’Plta s = 1] + b*Plta s = 1] = la| - b.

In order to compute E[7,], note that 7, 5 1 7, almost surely if b — oo. The mono-
tone convergence theorem thus yields E[t,] = limp_, oo E[74,5] = 00. O

Remark 10.18 Evidently, X;, = b > 0. Hence Xg < E[Xq, | o] = b. The claim
of the optional sampling theorem may thus fail, in general, if the stopping time is
unbounded. O

Example 10.19 (Gambler’s ruin problem) Consider a game of two persons, A
and B. In each round, a coin is tossed. Depending on the outcome, either A gets
a euro from B or vice versa. The game endures until one of the players is ruined.
For simplicity, we assume that in the beginning A has k4 € N euros while B has
kp = N — k4 euros, where N € N, N > k4. We want to know the probability of B’s
ruin. In Example 10.16 we saw that for a fair coin this probability is k4 /N. Now we
allow the coin to be unfair.

Hence, let Y1, Y2,... be ii.d. and ~Rad, (that is, P[Y; =1] =1 - P[Y; =
—1] = p) for some p € (0, 1) \ {%}. Denote by X, :=kp + ZL] Y; the running
total for B after n rounds, where formally we assume that the game continues even
after one player is ruined. We define as above 1, Ty and 7oy as the times of first
entrance of X into {0}, {N} and {0, N}, respectively. The ruin probability of B thus
is pg :=P[to,y = 10]. Since X is not a martingale (except for the case p = % that
was excluded), we use a trick to construct a martingale. Define a new process Z
by Z, := rXn — pk ]_[:7:l rYi, where r > 0 has to be chosen so that Z becomes a
martingale. By Example 9.31, this is the case if and only if

E[ryl] =pr+(—pr =1,

hence, if r =1 or r = 177”. Evidently, the choice r = 1 is useless (as Z does not

yield any information on X); hence we assume r = I_Tp. We thus get

to=inflneNo:Z, =1} and ty=inf{neNy:Z,=r"}.
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(Note that here we cannot argue as above in order to show that tp < oo and
Ty < oo almost surely. In fact, for p # %, only one of the statements holds.
However, using, for example, the strong law of large numbers, we obtain that
liminf,_, o, X,, = 0o (and thus 7y < 00) almost surely if p > % Similarly, tp < co
almost surely if p < %.) As in Example 10.16, the optional stopping theorem yields
r*t = Zo =E[Zy, 1= p} + (1 — p})r". Therefore, the probability of B’s ruin is

kp _ N

(10.5)

N T
Pp =

1—#N

If the game is advantageous for B (that is, p > %), then r < 1. In this case, in the
limit N — oo (with constant kg),

Py = lim p¥ =rks. (10.6)
N—>o0 <>

Exercise 10.2.1 Let X be a square integrable martingale with square variation pro-
cess (X). Let T be a finite stopping time. Show the following:

(i) IfE[{X):] < 0o, then
E[(Xr — X0)2] =E[(X)T] and E[X:]=E[Xj]. (10.7)
(i) If E[{X):] = oo, then both equalities in (10.7) may fail.

Exercise 10.2.2 We consider a situation that is more general than the one in the
preceding example by assuming only that Y1, Y», ... are i.i.d. integrable random
variables that are not almost surely constant (and X,, = Y| + ...+ Y;,). We further
assume that there is a § > 0 such that E[exp(6Y])] < oo for all 6 € (-4, §). Define
amap ¥ : (—6,8) > R by 6 — log(E[exp(6Y71)]) and the process z? by ZZ =
exp(0 X, —nyr(0)) for n € Np. Show the following:

(i) ZY is a martingale for all 6 € (-8, 8).

(i1) W is strictly convex.
(iii) E[/Z9]" =30 for 6 #0.
(iv) z¢ "=5° 0 almost surely.
We may interpret Y, as the difference between the premiums and the payments of

an insurance company at time #n. If the initial capital of the company is ko > 0, then
ko + X, is the account balance at time n. We are interested in the ruin probability

p(ko) =P[inf{X, + ko :n € No} < 0]

depending on the initial capital.
It can be assumed that the premiums are calculated such that E[Y]] > 0. Show
that if the equation ¥ (0) = 0 has a solution 6* # 0, then 6* < 0. Show further that
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in this case, the Cramér—Lundberg inequality holds:
p(ko) < exp(6*ko). (10.8)

Equality holds if kg € N and if ¥; assumes only the values —1 and 1. In this case,
we get (10.6) with r = exp(6™).

10.3 Uniform Integrability and Optional Sampling

We extend the optional sampling theorem to unbounded stopping times. We will see
that this is possible if the underlying martingale is uniformly integrable (compare
Definition 6.16).

Lemma 10.20 Let (X,,)qcN, be a uniformly integrable martingale. Then the family
(X7 : T is a finite stopping time) is uniformly integrable.

Proof By Theorem 6.19, there exists a monotone increasing, convex function
f:10, 00) = [0, c0) with

liminf f(x)/x =00 and L := sup E[f(|X,,|)] < 00.
X—00 neNy

If T < 0o is a finite stopping time, then by the optional sampling theorem for
bounded stopping times (Theorem 10.11 with T =n and o = 7 A n), E[X,, |
Franl = Xean. Since {t < n} € F; A, Jensen’s inequality yields

E[f(1Xc)Lir<n)] =E[f(IXeanl)Liz<n)]
<E[E[f(IXul) | Fern]Liz=n]
:E[f(|Xn|)]1{r§n}] <L.
Hence E[ /(| X+])] < L. By Theorem 6.19, the family
{X, 7 is a finite stopping time}

is uniformly integrable. g

Theorem 10.21 (Optional sampling and uniform integrability) Let (X,,n € Np)
be a uniformly integrable martingale (respectively supermartingale) and let o < T
be finite stopping times. Then E[|X;|] < 0o and X, = E[X | F;] (respectively
Xo = E[X: | Fo D).

Proof First let X be a martingale. We have {o <n} N F € Fs,, for all F € F,.
Hence, by the optional sampling theorem (Theorem 10.11),

E[XrAnjl{USn}ﬂF] = E[Xa/\njl{JSn}ﬂFl
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By Lemma 10.20, (X5 an, 7 € Np) and thus (Xoanlio<ninF, 7 € No) are uniformly
integrable. Similarly, this holds for X, . Therefore, by Theorem 6.25,

E[X.1F] ZnIi)rgoE[Xr/\njl{(rSn}ﬁF] ani)ngoE[Xa/\nﬂ{agn}ﬂF]
=E[X,1F].

We conclude that E[X; | F»] = X,.
Now let X be a supermartingale and let X = M + A be its Doob decomposition;
that is, M is a martingale and A < 0 is predictable and decreasing. Since

E[|A,] =E[-A,] <E[|X, — Xol] <E[|Xo|] + sup E[|X,|] < oo,

mENo

we have A, | Ax for some Ay < 0 with E[—As] < oo (by the monotone con-
vergence theorem). Hence A and thus M = X — A are uniformly integrable (Theo-
rem 6.18(ii)). Therefore,

E[|X:|] <E[-A:]1+E[|M;|] <E[-Ac] +E[|M:]] < 0.
Furthermore,
E[X: | Fo]l=E[M: | F-]1+E[A; | 5]
= M, + Ay +E[(A; — A,) | ]

<M;+A; =Xs. 0

Corollary 10.22 Let X be a uniformly integrable martingale (respectively super-
martingale) and let T < 1 < ... be finite stopping times. Then (X, )neN is a mar-
tingale (respectively supermartingale).



Chapter 11
Martingale Convergence Theorems
and Their Applications

We became familiar with martingales X = (X,,),en, as fair games and found that
under certain transformations (optional stopping, discrete stochastic integral) mar-
tingales turn into martingales. In this chapter, we will see that under weak condi-
tions (non-negativity or uniform integrability) martingales converge almost surely.
Furthermore, the martingale structure implies L”-convergence under assumptions
that are (formally) weaker than those of Chapter 7. The basic ideas of this chapter
are Doob’s inequality (Theorem 11.2) and the upcrossing inequality (Lemma 11.3).

11.1 Doob’s Inequality

With Kolmogorov’s inequality (Theorem 5.28), we became acquainted with an in-
equality that bounds the probability of large values of the maximum of a square
integrable process with independent centered increments. Here we want to improve
this inequality in two directions. On the one hand, we replace the independent in-
crements by the assumption that the process of partial sums is a martingale. On the
other hand, we can manage with less than second moments; alternatively, we can
get better bounds if we have higher moments.
Let I C Ng and let X = (X,,),es be a stochastic process. For n € N, we denote

X, =sup{Xy:k<n} and |X[}= sup{|Xk| k §n}.
Lemma 11.1 If X is a submartingale, then, for all A > 0,
WP[X) > 1] <ElXpLx;=n] < E[1Xallpg=a]-
Proof The second inequality is trivial. For the first one, let

t:=inflkel: Xy > A} An.

A. Klenke, Probability Theory, Universitext, DOI 10.1007/978-1-4471-5361-0_11, 217
© Springer-Verlag London 2014
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By Theorem 10.11 (optional sampling theorem),

E[X,] > E[X;] =E[X;1(x:>1] + E[X:1{x; <]
> )LP[X;,k > /\] +E[X, Lixz<n]-

(Note that T =n if X} < A.) Now subtract E[ X, 1xx<y}]. O

Theorem 11.2 (Doob’s LP-inequality) Let X be a martingale or a positive sub-
martingale.

(1) Forany p>1and A > 0,
APP[IX (% = A] <E[1X,17].

(i) Forany p > 1,

1

B[x,17) < [0 = (52 ) ED%

Proof We follow the proof in [144].
(i) By Theorem 9.35, (|X,,|?)nes is a submartingale, and the claim follows by
Lemma 11.1.
(ii) The first inequality is trivial. For the second inequality, we may assume that
E[|X,|”] < co. Note that, by Lemma 11.1,
IP[IX 1 2 2] < B[I1XalLgxi;20]-

Hence, for any K > 0,
IX[3AK
E[(IX; AK)"]=E [ pxl’—ldx}
0

K
/ PAP T M x oy d/\}
0

K
:/ pAPTIP[|X [} > A]da
0

>

<[ P PTEE[IXal1(x 2] dA
0

X[ AK
=pE|:|Xn|/ )\P—Zd,\}
0

p -1
=SBl (X5 A K]
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Holder’s inequality then yields

E[(|X|z A K)P] < %E[(IXIZ A K)p](p—l)/p .E[|Xn|p]l/p‘

We raise both sides to the pth power and divide by E[(| X[} A K)P 17~ (here we
need the truncation at K to make sure we divide by a finite number) to obtain

B[(x1; 7 6)"] = (525 ) Bl 7]

Finally, let K — oo. O

Exercise 11.1.1 Let (X,),en, be a submartingale or a supermartingale. Use Theo-
rem 11.2 and Doob’s decomposition to show that, for all n € N and A > 0,

AP[IX [} > 1] < 12E[|Xol] + 9E[| X, 1].

11.2 Martingale Convergence Theorems

In this section, we present the usual martingale convergence theorems and give a
few small examples. We start with the core of the martingale convergence theorems,
the so-called upcrossing inequality.

Let F = (F)nen, be afiltration and Fo = ‘T(UneNo Fu). Let (X;)nen, be real-
valued and adapted to IF. Let a, b € R with a < b. If we think of X as a stock price, it
would be a sensible trading strategy to buy the stock when its price has fallen below
a and to sell it when it exceeds b at least if we knew for sure that the price would
always rise above the level b again. Each time the price makes such an upcrossing
from a to b, we make a profit of at least b — a. If we get a bound on the maximal
profit we can make, dividing it by b — a gives a bound on the maximal number of
such upcrossings. If this number is finite for all a < b, then the price has to converge
as n — oo.

Let us get into the details. Define stopping times op = 0 and

=inf{n > o041 : X, <a} forkeN,
oy :=inf{ln> 1, : X, >b} forkeN.

Note that 1t = 00 if ox—1 = 00, and o} = 00 if 7 = co. We say that X has its kth
upcrossing over [a, b] between t; and oy if o < 0o. For n € N, define

Una’b :=sup{k € Ng : oy <n}

as the number of upcrossings over [a, b] until time .
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Lemma 11.3 (Upcrossing inequality) Let (X,)nen, be a submartingale. Then

E[(X, —a)"]1—E[(Xo—a)7]
b—a '

E[U;"] <

Proof Recall the discrete stochastic integral H - X from Definition 9.37. Formally,
the intimated trading strategy H is described for m € Ny by

1, ifme{t+1,...,0r} forsomek eN,
H, =
0, else.

H is nonnegative and predictable since, for all m € N,
o
Hy =11 =J((m <m =1} N {ox >m—1}),
k=1

and each of the events is in F;,_1. Define ¥ = max(X, a). If k € N and o} < 00,
then clearly Y,, — Y, =Y, —a>b —a forall i <k;hence

k i k
(HY)g =Y > (¥Yj=Yj )= (Yo —Yg) = k(b—a).

i=1 j=1;+1 i=1

For j € {oy, ..., Tk+1}, we have (H-Y); = (H +Y)4,. On the other hand, for j €
{tx +1,...,0k}, we have (H-Y); > (H-Y)y = (H+Y)4,_,. Hence (H-Y), >
(b —a)U"" forall n € N.

By Corollary 9.34, Y is a submartingale, and (by Theorem 9.39) so are H-Y and
1—-H):Y.NowY,-Yo=(1:Y),=(H-Y), +((1 — H)-Y),; hence

E[Y, — Yol > E[(H-Y),] > (b — 0)E[U*"]. 0

Theorem 11.4 (Martingale convergence theorem) Let (X,)neN, be a submartin-
gale with sup{E[X ,‘1" ]1:n >0} < 00. Then there exists an Foo-measurable random

variable X 5o with E[| X »|] < 00 and X, e X oo almost surely.

Proof Leta < b. Since E[(X,, —a)™] < |a| + E[X,], by Lemma 11.3,

 lal+ B

B[ug’) < L

Manifestly, the monotone limit U ab .= lim,_, o U? b exists. By assumption, we
have E[U%?] = lim,_, o0 E[U%""] < co. In particular, P[U%? < 0o] = 1. Define the
Foo-measurable events

cot = {iiminf X, <a} 0 flimsup X, > b} < {U** = o0)

n—0o0 n—00
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and

c=J ¢’
a,beQ
a<b
Then P[C%?] = 0 and thus also P[C] = 0. However, by construction, (X;),eN 18
convergent on C¢. Hence there exists the almost sure limit X, = lim,,—, » X,. Each
X, is Fo-measurable; hence X also is Foo-measurable.
By Fatou’s lemma,

B[X5] < sp{E[] 12 0] <o
On the other hand (since X is a submartingale), again by Fatou’s lemma,
E[X5] <liminfE[X; ] = liminf(E[X;"] - E[X,)
<sup{E[X;']:n e No} — E[X0] < 0. O

Corollary 11.5 If X is a nonnegative supermartingale, then there is an Fx.-mea-
surable random variable X oo > 0 with E[X 5] < E[Xp] and X, e X a.s.

Proof The preceding theorem with (—X) establishes X, as the almost sure limit.
Fatou’s lemma yields

E[X ] <liminfE[X,] <E[X0]. O
n—oo

Example 11.6 Let S, be the account balance in the Petersburg game after the nth
round (see Example 9.40). Then § is a martingale and S, < 1 almost surely for
any n. Hence the assumptions of Theorem 11.4 are fulfilled and (S, ),en, converges
to a finite random variable almost surely for n — oo. Since the account changes as
long as stakes are put up (that is, as long as S, < 1), we get lim;,_, 0 S;, = 1 almost
surely.

Since E[S,,] = 0 for all n € Ny, this convergence cannot hold in L'. This obser-
vation tallies with the fact that S is not uniformly integrable. O

For uniformly integrable martingales, a stronger convergence theorem holds.

Theorem 11.7 (Convergence theorem for uniformly integrable martingales) Let
(Xn)nen, be a uniformly integrable F- (sub-, super-) martingale. Then there exists

an Foo-measurable integrable random variable X ~o with X, —3 X a.s. and
in L'. Furthermore:

e X, =E[X | Fulforalln e Nif X is a martingale.
o X, <E[X | Fnlforalln e Nif X is a submartingale.
o X, >E[Xw | Fulforalln e Nif X is a supermartingale.
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Remark 11.8 The statement of Theorem 11.7 can be reformulated as: The process
(Xn)neNyU{oo} 18 a (sub-, super-) martingale with respect to (F;)neNyU{oo} - O

Proof We give the proof for the case where X is a submartingale. Uniform integra-
bility implies sup{E[X, ] : n > 0} < co. By Theorem 11.4, the almost sure limit X oo

n—oo

exists. Hence E[| X,, — X|] —> 0 by Theorem 6.25. By Corollary 8.21, the L'-
convergence of (X,) implies the L'-convergence of the conditional expectations:

E[[E[X, | Fin] — E[Xoo | Finll] =3 0. Thus, by the triangle inequality,

|E[(ElXce | Finl = Xin) | = E[(EXa | Fn] = X) ]|

n—oo

<E[|E[Xo | Ful — E[X, | Ful]] =5 0.

As X is a submartingale, we have (E[X}, | F;;] — X;n)~ =0 for n > m. Therefore,
E[(E[Xx | Fn]l — X;m)~1=0and thus E[ X | F;u] — X, > 0 almost surely. O

Corollary 11.9 Let X > 0 be a martingale and let Xoo = lim,_ o0 X,,. Then
E[Xo] =E[Xo] if and only if X is uniformly integrable.

Proof This is a direct consequence of Theorem 6.25. 0

Let p € [1, 00). A real-valued stochastic process (X;);es is called L?-bounded
if sup; .7 E[|X;|”] < oo (Definition 6.20). In general, for (| X;|”);c; to be uniformly
integrable it is not enough that (X;);<; be LP-bounded. However, if X is a martin-
gale and if p > 1, then Doob’s inequality implies that the statements are equivalent.
In particular, in this case, almost sure convergence implies convergence in L?.

Theorem 11.10 (L?-convergence theorem for martingales) Let p > 1 and let
(Xn)nen, be an LP-bounded martingale. Then there exists an Foo-measurable

random variable X o with E[|Xo|?] < 00 and X, = X oo almost surely and
in L?. In particular, (|X,|P)neN, is uniformly integrable.

Proof By Corollary 6.21, X is uniformly integrable. Hence the almost sure limit
X~ exists. By Doob’s inequality (Theorem 11.2), for all n € N,

E[sup{|Xk|” 1k <n}] < <%)FE[|X,,|P].

Therefore,

E[sup{|Xk|1’ ke NO}] < (%)psup{EUXnV’] ‘ne No} < 0.

Hence, in particular, (|X,|”),cN, is uniformly integrable.
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Since | X, — Xoo|? <27 sup{| X,|? : n € Ny}, dominated convergence yields

n—o0

E[|Xoo|p]<oo and E[|X,,—Xoo|1’] —— 0. O

For the case of square integrable martingales, there is a convenient criterion for
L2-boundedness that we record as a corollary (see Definition 10.3).

Corollary 11.11 Let X be a square integrable martingale with square variation
process (X). Then the following four statements are equivalent:

() sup,cyE[X2] < oo.
(iii)) X converges in L?.
(iv) X converges almost surely and in L.

Proof “(i) <= (ii)” Since Var[X, — Xo] = E[(X),] (see Theorem 10.4), X is
bounded in L? if and only if (ii) holds.

“(iv) = (iii) = (i)” This is trivial.

“(i) = (iv)” This is the statement of Theorem 11.10. O

Remark 11.12 In general, the statement of Theorem 11.10 fails for p = 1. See Ex-
ercise 11.2.1. O

Lemma 11.13 Let X be a square integrable martingale with square variation pro-
cess {X), and let T be a stopping time. Then the stopped process X' has square
variation process (X*) = (X)" := ((X)zan)nen,-

Proof This is left as an exercise. g

If in Corollary 11.11 we do not assume that the expectations of the square vari-
ation are bounded but only that the square variation is almost surely bounded, then
we still get that X converges almost surely (albeit not in L?).

Theorem 11.14 If X is a square integrable martingale with sup, .n(X), < 00 al-
most surely, then X converges almost surely.

Proof Without loss of generality, we can assume that Xo = 0, otherwise consider
the martingale (X, — Xo)reN,, Which has the same square variation process. For
K >0, let

K ::inf{n eN:(X)pt1 > K}

This is a stopping time since (X) is predictable. Evidently, sup,.n(X)rean < K
almost surely. By Corollary 11.11, the stopped process X™® converges almost
surely (and in L?) to a random variable that we denote by X2X. By assumption,
P[tx = co] — 1 for K — oo; hence X converges almost surely. O
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Example 11.15 Let X be a symmetric simple random walk on Z. That is, X, =
Y i— Rk, where Ry, Ry, ... are i.i.d. and ~Rad /:

P[R; =1]=P[R;=—-1]= %

Then X is a martingale; however, limsup,,_, ., X, = oo and liminf,,_, o, X;, = —00.
Therefore, X does not even converge improperly. By the martingale convergence
theorem, this is consonant with the fact that X is not uniformly integrable. O

Example 11.16 (Voter model, due to [28, 75]) Consider a simple model that de-
scribes the behavior of opportunistic voters who are capable of only one out of two
opinions, say 0 and 1. Let A C Z¢ be a set that we interpret as the sites at each
of which there is one voter. For simplicity, assume that A = {0, ..., L — 1}d for
some L € N. Let x(i) € {0, 1} be the opinion of the voter at site i € A and denote
by x € {0, 1}/ a generic state of the whole population. We now assume that the in-
dividual opinions may change at discrete time steps. At any time n € Ny, one site
I, out of A is chosen at random and the individual at that site reconsiders his or
her opinion. To this end, the voter chooses a neighbor I,, + N, € A (with periodic
boundary conditions; that is, with addition modulo L in each coordinate) at random
and adopts his or her opinion. We thus get a random sequence (X,)en, of states
in {0, 1}/ that represents the random evolution of the opinions of the whole colony.
See Fig. 11.1 for a computer simulation of the voter model.

For a formal description of this model, let (,,),en and (N,),en be independent
random variables. For any n € N, [, is uniformly distributed on A and N, is uni-
formly distributed on the set N := {i € Z¢ : ||i||» = 1} of the 2d nearest neighbors
of the origin. Furthermore, x = X € {0, 1}A is the initial state. The states at later
times are defined inductively by

X = |1 @ if 1y 1,
Xn_1I, + Ny, ifl,=1i.
Of course, the behavior over small periods of time is determined by the perils of
randomness. However, in the long run, we might see certain patterns. To be more
specific, the question is: In the long run, will there be a consensus of all individuals
or will competing opinions persist?
Let M, .= Zi e Xn (i) be the total number of individuals of opinion 1 at time 7.
Let IF be the filtration F = (F;;)pen,, Where F, = o (I, Ni : k < n) for all n € Ny.
Then M is adapted to F and

E[M, | Fo_1]l=My—y — E[anl(ln) | -anl] “I‘E[anl(ln + Nu) | ]:nfl]
=Myt = D Py =i1Xu—1 (D) + )Pl + No = i1Xu-10)

ieA icA
= Mp—1
since P[I, =i]=P[l, + N, =i] = L9 for all i € A. Hence M is a bounded F-
martingale and thus converges almost surely and in L' to a random variable M.
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N

Fig. 11.1 Snapshot of a voter model on an 800 x 800 torus. The black dots are the Ones

Since M takes only integer values, there is a (random) ng such that M,, = M,,, for
all n > ng. However, then also X,, = X,,, for all n > ng. Manifestly, no state x with
x #0 and x # 1 is stable. In fact, if x is not constant and if i, j € A are neighbors
with x (i) # x(j), then

PX, # Xy 1 | Xp 1 =x]1 =Pl =i, Ny = j—il=L"9Qd)"".
This implies My € {0, L¢}. Now E[Ms,] = Mp; hence we have

My Moy
P[Ms=L"]= T and P[My=0]=1— Ta
Thus, eventually there will be a consensus of all individuals, and the probability that
the surviving opinion is e € {0, 1} is the initial frequency of opinion e.
We could argue more formally to show that only the constant states are stable:
Let (M) be the square variation process of M. Then

n

(M), = ZE[]I{MkyéMk_l} | Fr—1]
k=1
n

= ZP[Xk—l(Ik) # Xi_1Uk + N | Faer]-
k=1
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Hence
L** > Var[M,] = E[(M),]
n
=Y P[Xio1(I) # Xe1 (i + Ny
k=1
n
> Qd)"'L™ Y "P[M— ¢ {0, L7}].
k=1

Therefore, Z,fil P[Mj_1 € {0, Ld}] < 2dL3 < 00, and so, by the Borel-Cantelli
lemma, M, € {0, Ld}. O

Example 11.17 (Radon—-Nikodym theorem) With the aid of the martingale conver-
gence theorem, we give an alternative proof of the Radon—Nikodym theorem (Corol-
lary 7.34).

Let (£2, F, P) be a probability space and let Q be another probability measure
on (£2, A). We assume that F is countably generated; that is, there exist countably
many sets Aq, A, ... € F such that F = o ({A1, A2, ...}). For example, this is the
case if F is the Borel o -algebra on a Polish space. For the case £2 = R?, one could
take the open balls with rational radii, centered at points with rational coordinates
(compare Remark 1.24).

We construct a filtration F = (F,),en by letting Fy, := o ({A1, ..., Ay}). Bvi-
dently, #F, < oo for all n € N. More precisely, there exists a unique finite subset
Zn C Fu \ {#} such that B = |4/ cez, C for any B € F,. Z, decomposes F, into its

CcB
“atoms”. Finally, define a stochastic process (X, ),eN by
0(C)
X, = Z 1c.

CeZ,P[C]>0 P[C]

Clearly, X is adaptedto F. Let B € F,, andm > n.Forany C € Z,,, either CNB =)
or C C B. Hence
E[X,lz]l= Y %P[C NBl= Y  QO)=0®B). (LD
CeZ,:P[C]>0 CeZ,:CCB
In particular, X is an F-martingale.

Now assume that Q is absolutely continuous with respect to P. By Example 7.39,
this implies that X is uniformly integrable. By the martingale convergence theorem,
X converges P-almost surely and in L(P) to a random variable X o. By (11.1), we
have E[X15] = Q(B) for all B € |J, oy F» and thus also for all B € F. There-
fore, X is the Radon—-Nikodym density of Q with respect to P.

Note that for this proof we did not presume the existence of conditional expec-
tations (rather we constructed them explicitly for finite o -algebras); that is, we did
not resort to the Radon—-Nikodym theorem in a hidden way.
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It could be objected that this argument works only for probability measures.
However, this flaw can easily be remedied. Let ©« and v be arbitrary (but nonzero)
o -finite measures. Then there exist measurable functions g,/ : £2 — (0, oo0) with
[gdu=1and [hdv =1.Define P=gu and Q = hv. Clearly, Q < P if v < p.
In this case, %X o 18 a version of the Radon—Nikodym derivative 5—;.

The restriction that F is countably generated can also be dropped. Using the
approximation theorems for measures, it can be shown that there is always a count-
ably generated o-algebra G C F such that for any A € F, there is a B € G with
P[A A B] =0. This can be employed to prove the general case. We do not give the

details but refer to [169, Chapter 14.13]. O

Exercise 11.2.1 For p = 1, the statement of Theorem 11.10 may fail. Give an ex-
ample of a nonnegative martingale X with E[X,] =1 for all n € N but such that

X, 5% 0 almost surely.

Exercise 11.2.2 Let X1, X5, ... be independent, square integrable random variables
with Z,fil nl—zVar[X n] < 0o. Use the martingale convergence theorem to show the
strong law of large numbers for (X,,),eN.

Exercise 11.2.3 Give an example of a square integrable martingale that converges
almost surely but not in L2.

Exercise 11.2.4 Show that in Theorem 11.14 the converse implication may fail.
That is, there exists a square integrable martingale X that converges almost surely
but without lim,,—, o (X), < oo almost surely.

Exercise 11.2.5 Show the following converse of Theorem 11.14. Let L > 0 and let
(Xn)nen be a martingale with the property

| Xnt1 — Xu| <L as. (11.2)
Define the events
C := {(Xn)nen converges as n — oo},

AT :=1limsup X,, < oo},
n—o00
n—oo

{
{

AT = {limiann > —oo},
{

Show that

C=AT"=A"=F (modP).
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Here equality of events (mod P) means that the events differ at most by a P-null set
(see Definition 1.68(iii)).

Hint: Use the stopping times ox = inf{n € N : | X,| > K}; o*lj(E =inf{n € N :
+X, > K} and 7k as in the proof of Theorem 11.14.

Exercise 11.2.6 Let the notation be as in Exercise 11.2.5. However, instead of
(11.2) we make the weaker assumption

E[sup Xps1 — X,,|] < o0 (11.3)
neN

Show that
C=A"=A" (modP).

Hint: Use suitable stopping times ox and apply the martingale convergence the-
orem (Theorem 11.4) to the stopped process XX .

Exercise 11.2.7 (Conditional Borel-Cantelli lemma) Let (F;)necN, be a filtra-
tion and let (A,),eny be events with A, € F, for all n € N. Define Ay =
{Z;’lozl P[A, | F—1] =00} and A* =limsup,_, o, A,. Show the conditional Borel—
Cantelli lemma: P[A,, A A*]=0.

Hint: Apply Exercise 11.2.5to X, = Z;’lozl (L4, —PlA, | F1 D).

Exercise 11.2.8 Let p € [0, 1] and let X = (X;,),en, be a stochastic process with
values in [0, 1]. Assume that for all n € Ny, given Xo, ..., X,;, we have

X _ 1—p+ pX, withprobability X,
= pXn with probability 1 — X,.

Show that X is a martingale that converges almost surely. Compute the distribution
of the almost sure limit lim,, s o0 X;,.

Exercise 11.2.9 Let f € L] (A), where X is the restriction of the Lebesgue measure
to [0,1]. Let [, x = [k27",(k+ 1)27") forn e Nand k =0, ...,2" — 1. Define
fn 110,11 — R by

fu(x)=2" fdx, ifkischosen such that x € I ,.
Ik.n

Show that f;,(x) = f(x) for A-almost all x € [0, 1].

Exercise 11.2.10 Assume that F = (F},),cn is a filtration on the probability space
(22, A,P). Let Foo :=0 (Fy, : n € N), and let M be the vector space of uniformly
integrable F-martingales. Show that the map @ : ya (Foo) > M, Xoo > (E[X o |
Fulnen is an isomorphism of vector spaces.
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11.3 Example: Branching Process

Let p = (pr)ken, be a probability vector on Ny and let (Z,),cn, be the Galton—
Watson process with one ancestor and offspring distribution p (see Definition 3.9).
For convenience, we recall the construction of Z. Let (X, i )neN,ieN be i.i.d. ran-
dom variables with P[ X | = k] = pi for k € Ny. Let Zp = 1 and inductively define

271
Zn+1 = an,i for n € Ny.

i=1

We interpret Z, as the size of a population at time n and X, ; as the number of
offspring of the ith individual of the nth generation.

Let m := E[X1,1] < oo be the expected number of offspring of an individual
and let 02 := Var[X 1] € (0, 00) be its variance. Let F;, ;=0 (Xy; : k <n,i € N).
Then Z is adapted to IF. Define W, =m™"Z,,.

Lemma 11.18 W is a martingale. In particular, E[Z,] = m" for all n € N.

Proof We compute the conditional expectation for n € Ny:

E[Wyi1 | Ful =m~ " TVE[Z, 4 | Ful

Zn
=m_("+1)E|:Z Xn.i f,,]
i=1

o
=m~ D ZE[]l{zn:k}k < Xp,i | Faul
k=1

o0
=m™" Y Elk- 1z, | Ful
k=1

=m"Z,=W,. O
Theorem 11.19 Let Var[X 1] € (0,00). The a.s. limit Woo = lim,—, o0 Wy, exists
and
m>1 <<= E[Wgx]=1 <+= E[Wy]>0.

Proof W exists since W > 0 is a martingale. If m < 1, then (Z,),en converges
a.s. to some random variable Z.,. Note that Z; is the only choice since o2 >0.

Now let m > 1. Since E[Z,_;] = m" ! (Lemma 11.18), by the Blackwell—-
Girshick formula (Theorem 5.10),

Var{W,] =m™*"(6°E[Z,_] +m*Var[Z,_,])

=o’m~ "D 4 var[W,_;].
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Inductively, we get Var[W,] = o2 ZZ;’% m~* < % < 0o. Hence W is bounded

in L? and Theorem 11.10 yields W, — Wa, in L? and thus in L'. In particular,
E(Ws] =E[Wy] = 1. 0

The proof of Theorem 11.19 was simple due to the assumption of finite variance
of the offspring distribution. However, there is a much stronger statement that here
we can only quote (see [96], and see [110] for a modern proof).

Theorem 11.20 (Kesten-Stigum (1966)) Let m > 1. Then

EWxl=1 <<= E[Wxl>0 <<= E[X;log(X;"]<o0.




Chapter 12
Backwards Martingales and Exchangeability

With many data acquisitions, such as telephone surveys, the order in which the data
come does not matter. Mathematically, we say that a family of random variables is
exchangeable if the joint distribution does not change under finite permutations. De
Finetti’s structural theorem says that an infinite family of E-valued exchangeable
random variables can be described by a two-stage experiment. At the first stage,
a probability distribution & on E is drawn at random. At the second stage, i.i.d.
random variables with distribution & are implemented.

We first define the notion of exchangeability. Then we consider backwards mar-
tingales and prove the convergence theorem for them. This is the cornerstone for the
proof of de Finetti’s theorem.

12.1 Exchangeable Families of Random Variables

Definition 12.1 Let / be an arbitrary index set and let E be a Polish space. A family
(Xi)ier of random variables with values in E is called exchangeable if

L[(Xoa))ier] = L[(Xiier ]
for any finite permutation ¢ : I — 1.

Recall that a finite permutation is a bijection o : I — I that leaves all but finitely
many points unchanged.
Remark 12.2 Clearly, the following are equivalent.

(i) (X;)ies is exchangeable.
(i) Letn € N and assume i1, ..., i, € I are pairwise distinct and ji, ..., j, € [ are
pairwise distinct. Then we have L[(X;,, ..., X; )] = L[(X};,..., X;,)].

In particular (n = 1), exchangeable random variables are identically distributed. ¢

A. Klenke, Probability Theory, Universitext, DOI 10.1007/978-1-4471-5361-0_12, 231
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Example 12.3

(1) If (Xi)ies isii.d., then (X;);es is exchangeable.
(i1) Consider an urn with N balls, M of which are black. Successively draw without
replacement all of the balls and define

1, if the nth ball is black,

X, =
" 0, else.
Then (X,,),=1,....n is exchangeable. Indeed, this follows by elementary combi-
natorics since for any choice x1,...,xy € {0, 1} with x; +... +xy = M, we
have

1
YNy
()
This formula can be derived formally via a small computation with conditional
probabilities. As we will need a similar computation for Pélya’s urn model in

Example 12.29, we give the details here. Let sy = x1+...+x; fork=0,..., N
and let

PXi=x1,....Xn=xpn]=

(x) = M — s, ifx=1,
SV =AN M 45, —k, ifx=0.

Then P[ X1 =x1] = go(x1)/N and

P[ X1 = xk41 | X1 ZX],...,Xkak]Z% fork=1,...,N — 1.

Clearly, gx(0) = N — M — [, where | = #{i <k : x; =0}. Therefore,

P[X|=xy,..., Xy =xpn]

N—1
=P[X; =x1] l_[ P Xip1 =xp11 | X1 =x1, ..., X = xi]
k=1
1 M 1
=7 [Taw =5 TT & [T @0
k=0 kixp=1 k:xp=0
M-—1 N-—1
1 M!(N — M)!
= H)(M—l)ﬂ)(N—M—l):T.

(iii) Let Y be a random variable with values in [0, 1]. Assume that, given Y, the
random variables (X;);c; are independent and Bery-distributed. That is, for
any finite J C I,

P[X;=1forall jeJ|Y]=Y".
Then (X;);e; is exchangeable. O
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Let X = (X,)nen be a stochastic process with values in a Polish space E.
Let S(n) be the set of permutations ¢ : {1,...,n} — {1,...,n}. We consider o
also as a map N — N by defining o(k) = k for k > n. For o € S(n) and x =
(x1,...,%,) € E", denote x° = (x,(1), ..., Xo(n)). Similarly, for x € EN, denote
x€ = (Xo(1) Xo(2), - - -) € EN. Let E’ be another Polish space. For measurable maps
f:E"— E'and F : EN — E’, define the maps f¢ and F@ by fo(x) = f(x?)
and F?(x) = F(x?). Further, we write f(x) = f(xy,...,x,) for x € E" and for
x e EN.

Definition 12.4

(i) Amap f: E" — E’is called symmetric if f¢ = f forall o € S(n).
(ii) A map F: EN — E’is called n-symmetric if F¢ = F for all o € S(n). F is
called symmetric if F is n-symmetric for all n € N.

Example 12.5

(i) For x € RY, define the nth arithmetic mean by a,(x) = % Y i xi. Clearly, a,
is an n-symmetric map (but not m-symmetric for any m > n). Furthermore,
a(x) :=limsup,_, ., a,(x) defines a symmetric map RN — R U {—o00, +00}.

(ii) The map s : RN — [0, oo], x > Zﬁl |x;| is symmetric. Unlike a, the value of
s depends on every coordinate if it is finite.

(iii) For x € EN, define the nth empirical distribution by &, (x) = % >or 1 8y, (recall
that éx; is the Dirac measure at the point x;). Clearly, &, is an n-symmetric
map.

(iv) Let k € Nand let ¢ : EX¥ — R be a map. The nth symmetrized average

1

. N

An(@)tET >R, x> > 0(x?) (12.1)
o0eS(n)

is an n-symmetric map. O

Definition 12.6 Let X = (X,,),cn be a stochastic process with values in E. For
n € N, define

& =0 (F : F: EN — R is measurable and n-symmetric)

and let &, := X~ 1(E)) be the o-algebra of events that are invariant under all permu-
tations o € S(n). Further, let

o
&= m &, =0 (F:F:EY — Ris measurable and symmetric)
n=1

and let &, := ﬂ:oz] E, = X~ 1(&’) be the o-algebra of exchangeable events for X,
or briefly the exchangeable o -algebra.
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Remark 12.7 If A € 0(X,,n € N) is an event, then there is a measurable B C EN
with A = {X € B}. If we denote A® = {X? € B} for o € S(n), then &, = {A :
A® = A for all p € S(n)}. This justifies the name “exchangeable event”. O
Remark 12.8 1f we write 2, (w) := &, (X (w)) = 1 Y1 8x, (w) for the nth empirical

n

distribution, then, by Exercise 12.1.1, &, = o (&},). O

Remark 12.9 Denote by 7 = (), 0 (Xn+1, Xn42,...) the tail o-algebra. Then
T C &, and strict inclusion is possible.

Indeed, evidently o (X, 11, X;42,...) C &, for n € N; hence 7 C £. Now let
E = {0, 1} and let X1, X5, ... be independent random variables with P[X,, = 1] €
(0, 1) for all n € N. The random variable S := 2311 X, is measurable with respect
to & but not with respect to 7. O

Theorem 12.10 Let X = (X,)nen be exchangeable. If ¢ : EN — R is measurable
and if E[|p(X)|] < oo, then for alln € N and all o € S(n),

E[o(X) | &:] =E[p(X9) | &4]- (12.2)
In particular,
1
E[p(X) | &]=An(p) := —~ > (x0). (12.3)
" 0eS(m)

Proof Let A € &,. Then there exists a B € £, such that A = X~ '(B). Let F = 13.
Then F o X = 14. By the definition of &,, the map F : EN — R is measurable,
n-symmetric and bounded. Therefore,

E[p(X)F(X)]| =E[p(X?)F(X°)]=E[p(X?)F(X)].

Here we used the exchangeability of X in the first equality and the symmetry of F
in the second equality. From this (12.2) follows. However, A, (¢) is £,-measurable
and hence

E[p(X) | &:] = E[% > (x0)

" 0eS(n)

gn}:% T p(x2).

" 0eS(n) O

Heuristic for the Structure of Exchangeable Families

Consider a finite exchangeable family X1, ..., Xy of E-valued random variables.
For n < N, what is the conditional distribution of (X1, ..., X,,) given =y ? For any
measurable A C E, {X; € A} occurs for exactly NEy(A) of the i € {1,..., N},
where the order does not change the probability. Hence we are in the situation of
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drawing colored balls without replacement. More precisely, let the pairwise distinct
points eq, ..., ex € E be the atoms of &y and let Ny, ..., Ny be the corresponding
absolute frequencies. Hence Zy = Zi‘: {(N;/N)é,;. We thus deal with balls of &
different colors and with N; balls of the ith color. We draw n of these balls without
replacement but respecting the order. Up to the order, the resulting distribution is
thus the generalized hypergeometric distribution (see (1.19) on page 44). Hence, for
pairwise disjoint, measurable sets Ay, ..., Ay with Lﬂle Ay =E, foriy,...,i, €
{1, ..., k}, pairwise distinct ji, ..., j, € {l,..., N} and with the convention m; :=
#{re {1,...,n}.1r [} forl €{l,...,k}, we have

P[X; € A; forallr=1,...,n| &y

k
= (N) ]—[ NEy(AD)" (12.4)
" i=1

Here we defined (n); :=n(n —1)...(n — 1+ 1).

What happens if we let N — oco? For simplicity, assume that forall/ =1, ..., k,
the limit &y (A;) = limy_. oo En(A;) exists in a suitable sense. Then (12.4) for-
mally becomes

k
PX; €A forallr =1,....n| el = [ | EcclAD™. (12.5)
=1

Drawing without replacements thus asymptotically turns into drawing with replace-
ments. Hence the random variables X1, X5, ... are independent with distribution
Exo given Eo.

For a formal proof along the lines of this heuristic, see Section 13.4.

In order to formulate (and prove) this statement (de Finetti’s theorem) rigorously
in Section 12.3, we need some more technical tools (e.g., the notion of conditional
independence). A further tool will be the convergence theorem for backwards mar-
tingales that will be formulated in Section 12.2. For further reading on exchangeable
random variables, we refer to [4, 33, 98, 105].

Exercise 12.1.1 Let n € N. Show that every symmetric function f : E" — R can be
written in the form f(x) = g(% Y1 8x,), where g has to be chosen appropriately
(depending on f).

Exercise 12.1.2 Derive equation (12.4) formally.

Exercise 12.1.3 Let X1, ..., X,, be exchangeable, square integrable random vari-
ables. Show that

1
Cov[X, X2] > — 1Var[Xl]. (12.6)
n—
For n > 2, give a nontrivial example for equality in (12.6).

Exercise 12.1.4 Let X, X, X3... be exchangeable, square integrable random
variables. Show that Cov[X |, X»2] > 0.



236 12 Backwards Martingales and Exchangeability
Exercise 12.1.5 Show that for all n € N\ {1}, there is an exchangeable family of

random variables X1, ..., X, that cannot be extended to an infinite exchangeable
family X1, Xo,....

12.2 Backwards Martingales

The concepts of filtration and martingale do not require the index set / (interpreted
as time) to be a subset of [0, c0). Hence we can consider the case I = —Nj.

Definition 12.11 (Backwards martingale) Let IF = (F,),c—n, be a filtration and
let X = (X;,)ne—n, be an F-martingale. Then X = (X_,)neN, is called a back-
wards martingale.

Remark 12.12 A backwards martingale is always uniformly integrable. This fol-
lows from Corollary 8.22 and the fact that X_, = E[Xo | F_,] foranyn e Ng. ¢

Example 12.13 Let X1, X3, ... be exchangeable real random variables. For n € N,
let 7_, =&, and

1 n
Yo, = ;XEX,-.
1=

We show that (Y_,),en is an F-backwards martingale. Clearly, Y is adapted. Fur-
thermore, by Theorem 12.10 (with k = n and ¢(X1,..., X;) = 5 (X1 + ... +
Xn—l))’

1 1
E[Y_nt1 |f—n]:_' Z m(Xg(l)—i-...—f-XQ(n_l)):Y_,,.

" 0eS(n)

Now replace F by the smaller filtration G = (G,),c—nN that is defined by G_, =
o(Y_p, Xut1, Xny2,..)=0¥_p,Y_,_1,Y_,—2,...) for n € N. This is the filtra-
tion generated by Y'; thus Y is also a G-backwards martingale (see Remark 9.29). ¢

Leta < b and n € N. Let U“? be the number of upcrossings of X over [a, b] be-

—n
tween times —n and 0. Further, let U%? = lim,,_, oo U f’nb. By the upcrossing inequal-
ity (Lemma 11.3), we have E[Uf’,f’] < ﬁE[(XO —a)t]; hence P[U%? < 00] = 1.
As in the proof of the martingale convergence theorem (Theorem 11.4), we infer the
following.

Theorem 12.14 (Convergence theorem for backwards martingales) Let
(Xn)ne—nN, be a martingale with respect to F = (Fp)ne—N,. Then there exists
X _ oo = limy 0 X, almost surely and in LY. Furthermore, X_o = E[X0 |
F_ool, where F_og = (oo Fn.
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Example 12.15 Let X1, X3, ... be exchangeable, integrable random variables. Fur-
ther, let 7 = ﬂ;’;l o (X, m > n) be the tail o-algebra of X1, X»,... and let £ be
the exchangeable o -algebra. Then E[X| | T]=E[X | £] a.s. and

1 & N
_in e E[X;|&] as.andin L'
n

i=1

Indeed, if we let Y_,, := % Z:’:l X, then (by Example 12.13) (Y_,),en is a back-
wards martingale with respect to (F,,),e—N = (6—;)ne—N and thus

n—o00

Y., — Y_o=E[X||E] as.andinL'.

Now, by Example 2.36(ii), Y_ is T -measurable; hence (since 7 C £ and by virtue
of the tower property of conditional expectation) Y_o = E[X{ | T]. O

Example 12.16 (Strong law of large numbers) If Z;, Z,, ... are real and i.i.d. with
E[|Z1]|] < oo, then

1 & =
— ZZi e E[Z;] almost surely.
n

i=1

By Kolmogorov’s 0-1 law (Theorem 2.37), the tail o-algebra 7T is trivial; hence we
have

E(Z, | T]1=E[Z;] almost surely.
In Corollary 12.19, we will see that in the case of independent random variables,

£ is also P-trivial. This implies E[Z | £] = E[Z]. O

We close this section with a generalization of Example 12.15 to mean values
of functions of k € N variables. This conclusion from the convergence theorem for
backwards martingales will be used in an essential way in the next section.

Theorem 12.17 Let X = (X;)nen be an exchangeable family of random vari-
ables with values in E. Assume that k € N and let ¢ : EF — R be measurable
with E[|lo(X1, ..., Xr)|] < 0o. Denote ¢(X) = ¢(X1,..., Xr) and let A,(p) :=
4 Y oes(mn 9(X©). Then

E[lp(X) | E]=E[p(X) | T] = lim A,(¢p) a.s. and in L. (12.7)

Proof By Theorem 12.10, A, (¢) = E[o(X) | £,]. Hence (A_, (¢)),>k is a back-
wards martingale with respect to (€_,),e—N. Hence, by Theorem 12.14,

An(p) = E[p(X) | €] as.andin L' (12.8)
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As for the arithmetic mean (Example 12.16), we can argue that lim,_, o A, (@) is
T -measurable. Indeed,

, #oeSn):0 (i) <l forsomeic{l,..., k}}
lim sup

n— 00 n!

=0 foralll eN.

Thus, for large n, the dependence of A, (¢) on the first [ coordinates is negligible.
Together with (12.8), we get (12.7). O

Corollary 12.18 Let X = (X,),eN be exchangeable. Then, for any A € & there
existsa B € T with P[A A B] =0.

Note that 7" C &; hence the statement is trivially true if the roles of £ and T are
interchanged.

Proof Since £ C 0(X1, X3, ...), by the approximation theorem for measures, there
exists a sequence of measurable sets (Ag)ren With Ax € (X1, ..., Xx) and such

that P[A A Ag] kiio 0. Let Cy € EX be measurable with
A ={(X1,..., X) € Ci}
for all k € N. Letting ¢ := 1¢,, Theorem 12.17 implies that
14 =E[1, | €] :E[ lim g (X) | 5] = lim E[pc(X) | €]
k— 00 k— 00
= lim E[(pk (X) | T] =:v¢ almost surely.
k—o00

Hence there is a 7 -measurable function y with ¢ = 14 almost surely. We can
assume that ¢ = 1 g for some B € T. O

As a further application, we get the 0—1 law of Hewitt and Savage [72].
Corollary 12.19 (0-1 law of Hewitt—Savage) Let X1, X», ... be i.i.d. random vari-
ables. Then the exchangeable o-algebra is P-trivial; that is, P[A] € {0, 1} for all
Aeé.

Proof By Kolmogorov’s 0-1 law (Theorem 2.37), T is trivial. Hence the claim
follows immediately from Corollary 12.18. O

12.3 De Finetti’s Theorem

In this section, we show the structural theorem for countably infinite exchangeable
families that was heuristically motivated at the end of Section 12.1. Hence we shall
show that a countably infinite exchangeable family of random variables is an i.i.d.
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family given the exchangeable o -algebra £. Furthermore, we compute the condi-
tional distribution of the individual random variables. As a first step, we define con-
ditional independence formally (see [25, Chapter 7.3]).

Definition 12.20 (Conditional independence) Let (§2,F,P) be a probability
space, let A C F be a sub-o-algebra and let (A;);c; be an arbitrary family of
sub-o -algebras of F. Assume that for any finite J C I, any choice of A; € A; and
forall j € J,

P[ﬂ Y ‘ A} =] Pia; 1Al almost surely. (12.9)

jedJ jeJ

Then the family (A;);¢; is called independent given A.

A family (X;);e; of random variables on (§2, F, P) is called independent (and
identically distributed) given A if the generated o -algebras (o (X;));<s are indepen-
dent given A (and the conditional distributions P[X; € - | A] are equal).

Example 12.21 Any family (.Al-)ie 1 of sub-o -algebras of F is independent given F.

Indeed, letting A =), A

PA| Fl=14= HJIA —HP | F] almost surely.
jeJ jeJ <>

Example 12.22 1f (A;);<; is an independent family of o -algebras and if A is trivial,
then (A;);cs is independent given A. O

Example 12.23 There is no “monotonicity” for conditional independence in the fol-
lowing sense: If F, 5, and F3 are o-algebras with | C F, C F3 and such that
(Aj)ier is independent given F as well as given F3, then this does not imply inde-
pendence given J>.

In order to illustrate this, assume that X and Y are nontrivial independent real
random variables. Let 1 = {#, 2}, Fo =0 (X +Y) and F3 =0 (X, Y). Then o (X)
and o (Y) are independent given F; as well as given J3 but not given J,. O

Let X = (X;)nen be a stochastic process on a probability space (§2, F, P) with
values in a Polish space E. Let £ be the exchangeable o-algebra and let T be the
tail o-algebra.

Theorem 12.24 (de Finetti) The family X = (X,,)neN is exchangeable if and only
if there exists a o -algebra A C F such that (X,)nen is i.i.d. given A. In this case,
A can be chosen to equal the exchangeable o -algebra & or the tail-o -algebra T .
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Proof “=" Let X be exchangeable and let A =& or A= 7. For any n € N, let
fn : E — R be a bounded measurable map. Let
k
QX150 X)) = Hf,-(x,-) for any k € N.
i=1

Let A, (¢) be the symmetrized average from Theorem 12.17. Then

An«ak_l)An(fk)— Y e (X0) - kaom

QES(’I)

=- Z ok (X®) + Rk = An(@r) + Ruks

QES(ﬂ)
where
[Rn il = 2l @n—tlloo - I filloo - -5 Z Zﬂ{ze{g(l) ,,,,, ok—1)})}
! QES(n)z 1
-1 o0

= 2llor=tlloo - I flloo - —— —

Together with Theorem 12.17, we conclude that

n—oo

An(@—DAR(f) — E[gx(X1,....Xx) | A] as.andinL'.

On the other hand, again by Theorem 12.17,

An(pr—1) "= Elgr—1(X1, ... Xkm1) | A]

and

An(f) "= E[fri(X1) | A].
Hence

E[oc(X1, ..., X0 | A =E[ge—1 (X1, ..., Xe—) | AJE[ fe(X1) | A]-

Thus we get inductively

k k

E|:Hﬁ(Xi) ‘A] :HE[ﬁ(Xl) | A

Therefore, X is i.i.d. given A.
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“«<=" Now let X be i.i.d. given A for a suitable o-algebra A C F. For any
bounded measurable function ¢ : E" — R and for any o € S(n), we have E[¢(X) |
Al =E[p(X?) | A]. Hence

E[¢(X)] =E[E[p(X) | A]] = E[E[¢(x°) | A]] = E[¢(X?)],

whence X is exchangeable. O

Denote by M (E) the set of probability measures on E equipped with the
topology of weak convergence (see Definition 13.12 and Remark 13.14). That
is, a sequence (Un)neN in M(E) converges weakly to a u € M (E) if and
only if [ fdun e [ fdu for any bounded continuous function f : E — R.
We will study weak convergence in Chapter 13 in greater detail. At this point,
we use the topology only to make M (E) a measurable space, namely with the
Borel o-algebra B(M(E)). Now we can study random variables with values in
M (E), so-called random measures (compare also Section 24.1). For x € E N Jet

Ef0) =131 5, e My(E).

Definition 12.25 The random measure
1 n
&, =&,(X):=— Sx.
n é:n( ) n ; Xi

is called the empirical distribution of X1, ..., X,.

Assume the conditions of Theorem 12.24 are in force.

Theorem 12.26 (de Finetti representation theorem) The family X = (X,),eN is
exchangeable if and only if there is a o-algebra A C F and an A-measurable
random variable B : 2 — M (E) with the property that given Eso, (X;)neN is
iid with L[X| | Beol = Exo. In this case, we can choose A=E or A=T.

Proof ““<=" This follows as in the proof of Theorem 12.24.

“=" Let X be exchangeable. Then, by Theorem 12.24, there exists a o -algebra
A C F such that (X,),en is i.i.d. given A. As E is Polish, there exists a regu-
lar conditional distribution (see Theorem 8.37) & := L[X | A]. For measurable
Ai,...,A, CE,wehave P[X; € A; | Al = Ex(A;) foralli =1, ..., n; hence

P|:ﬂ{X,~ e )| Eooi| —E P|:ﬂ{X,~ e | A:| Em}
i=1 L Li=1

[ n n
Eoo] =[] Ex(An.
i=1

=E|[ [ Ze(Ai)
Therefore, L[X | Ex] = E8N. O

Li=1
%)
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Remark 12.27

(i) In the case considered in the previous theorem, by the strong law of large num-
bers, for any bounded continuous function f : E — R,

n—o0

/ fdE, — / fdEs almost surely.

If in addition E is locally compact (e.g., E = R%), then one can even show that

n—oo
n —> Es almost surely.

(1)

(ii) For finite families of random variables there is no perfect analog of de Finetti’s
theorem. See [33] for a detailed treatment of finite exchangeable families. ¢

Example 12.28 Let (X,),en be exchangeable and assume X, € {0, 1}. Then there
exists a random variable Y : 2 — [0, 1] such that, for all finite J C N,

P[X;=1forall jeJ|Y]=Y".

In other words, (X,),eN is independent given Y and Bery-distributed. Compare
Example 12.3(iii). O

Example 12.29 (P6lya’s urn model) (See Example 14.38, compare also [17, 58,
135].) Consider an urn with a total of N balls among which M are black and M — N
are white. At each step, a ball is drawn and is returned to the urn together with an
additional ball of the same color. Let

1, if the nth ball is black,
X, =

0, else,

andlet S, =) 7, X;. Then

Snfl‘l‘M
PIX,=1|X,Xy,.... X {]=——.
[ n | 1 2 n 1] N+n—1
Inductively, for xy, ..., x, € {0, 1} and sk:Zf-;lx,-,we get

P[X; =x; foranyi=1,...,n]

1—[ M+Si_1 1—[ N+i_l_M_S,'_1
N+i—-1 N+i—-1

i<n:xj=I i<n:x;=0

N =D! (M4, — DUN =M — 1+ (n—s,))!
T (N—=1+n! M-1)! (N—M—1)!
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The right-hand side depends on s,, only and not on the order of the x, ..., x;,. Hence
(Xn)nen 1s exchangeable. Let

1
Z = lim -§,.

n—oon
Then (X,)nen is 1.i.d. Berz-distributed given Z. Hence (see Example 12.28)
E[Z"|=E[P[X,=...=X,=1|Z]]
=P[S, =n]

_(N=D!(M+n—1)!

=MD Ntn D) for all n € N.

By Exercise 5.1.2, these are the moments of the Beta distribution 87 y— on [0, 1]
with parameters (M, N — M) (see Example 1.107(ii)). A distribution on [0, 1] is
uniquely characterized by its moments (see Theorem 15.4). Hence Z ~ By n—m- O



Chapter 13
Convergence of Measures

One focus of probability theory is distributions that are the result of an interplay of
a large number of random impacts. Often a useful approximation can be obtained
by taking a limit of such distributions, for example, a limit where the number of
impacts goes to infinity. With the Poisson distribution, we have encountered such
a limit distribution that occurs as the number of very rare events when the number
of possibilities goes to infinity (see Theorem 3.7). In many cases, it is necessary
to rescale the original distributions in order to capture the behavior of the essential
fluctuations, e.g., in the central limit theorem. While these theorems work with real
random variables, we will also see limit theorems where the random variables take
values in more general spaces such as the space of continuous functions when we
model the path of the random motion of a particle.

In this chapter, we provide the abstract framework for the investigation of con-
vergence of measures. We introduce the notion of weak convergence of probability
measures on general (mostly Polish) spaces and derive the fundamental properties.
The reader will profit from a solid knowledge of point set topology. Thus we start
with a short overview of some topological definitions and theorems.

We do not strive for the greatest generality but rather content ourselves with the
key theorems for probability theory. For further reading, we recommend [14, 82].

At first reading, the reader might wish to skip this rather analytically flavored
chapter. In this case, for the time being it suffices to get acquainted with the defini-
tions of weak convergence and tightness (Definitions 13.12 and 13.26), as well as
with the statements of the Portemanteau theorem (Theorem 13.16) and Prohorov’s
theorem (Theorem 13.29).

13.1 A Topology Primer

Excursively, we present some definitions and facts from point set topology. For de-
tails, see, e.g., [90].

In the following, let (E, t) be a topological space with the Borel o-algebra £ =
B(E) (compare Definitions 1.20 and 1.21). We will also assume that (E, 7) is a

A. Klenke, Probability Theory, Universitext, DOI 10.1007/978-1-4471-5361-0_13, 245
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Hausdorff space; that is, for any two points x, y € E with x # y, there exist disjoint
opensets U, V suchthat x e U and y € V.

For A C E, we denote by A the closure of A, by A° the interior and by dA the
boundary of A. A set A C E is called dense if A=E.

(E, 1) is called metrizable if there exists a metric d on E such that 7 is induced by
the open balls B.(x) :={y € E : d(x, y) < €}. A metric d on E is called complete if
any Cauchy sequence with respect to d converges in E. (E, ) is called completely
metrizable if there exists a complete metric on E that induces 7. If (E,d) is a
metric space and A, B C E, then we write d(A, B) =inf{d(x,y):x € A,y € B}
and d(x, B) :=d({x}, B) forx € E.

A metrizable space (E, t) is called separable if there exists a countable dense
subset of E. Separability in metrizable spaces is equivalent to the existence of
a countable base of the topology; that is, a countable set &/ C t with A =
Uvey-vca U forall A e 7. (For example, choose the e-balls centered at the points
of a countable subset and let ¢ run through the positive rational numbers.) A com-
pact metric space is always separable (simply choose for each n € N a finite cover
U, C t comprising balls of radius % and then take I/ := J,, enUn).

A set A C E is called compact if each open cover Y C v of A (thatis, A C
Uy ey U) has a finite subcover; that is, a finite 4’ C U with A C (J ¢ U. Compact
sets are closed. By the Heine—Borel theorem, a subset of R? is compact if and only
if it is bounded and closed. A C E is called relatively compact if A is compact. On
the other hand, A is called sequentially compact (respectively relatively sequentially
compact) if any sequence (x,),eN With values in A has a subsequence (x,, )ken that
converges to some x € A (respectively x € A). In metrizable spaces, the notions
compact and sequentially compact coincide. A set A C E is called o-compact if
A is a countable union of compact sets. E is called locally compact if any point
x € E has an open neighborhood whose closure is compact. A locally compact,
separable metric space is manifestly o-compact. If E is a locally compact metric
space and if U C E is open and K C U is compact, then there exists a compact set
L with K C L° C L C U. (For example, for any x € K, take an open ball B, _(x)
of radius &, > 0 that is contained in U and that is relatively compact. By making
& smaller (if necessary), one can assume that the closure of this ball is contained
in U. As K is compact, there are finitely many points x1,...,x, € K with K C
V.= U?:l B;_ (x;). By construction, L = VcUis compact.)

We present one type of topological space that is of particular importance in prob-
ability theory in a separate definition.

Definition 13.1 A topological space (E, 7) is called a Polish space if it is separable
and if there exists a complete metric that induces the topology .

Examples of Polish spaces are countable discrete spaces (however, not QQ with
the usual topology), the Euclidean spaces R”, and the space C ([0, 1]) of continuous
functions [0, 1] — R, equipped with the supremum norm || - ||. In practice, all
spaces that are of importance in probability theory are Polish spaces.
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Let (E, d) be a metric space. A set A C E is called fotally bounded if, for any
€ > 0, there exist finitely many points x1, ..., x, € A such that A C U?:l B (x;).
Evidently, compact sets are totally bounded. In Polish spaces, a partial converse is
true.

Lemma 13.2 Let (E, t) be a Polish space with complete metric d. A subset A C E
is totally bounded with respect to d if and only if A is relatively compact.

Proof This is left as an exercise. g

In the following, let (E, t) be a topological space with Borel o-algebra £ =
B(E) := o(t) and with complete metric d. For measures on (E, £), we introduce
the following notions of regularity.

Definition 13.3 A o -finite measure u on (E, £) is called

(1) locally finite or a Borel measure if, for any point x € E, there exists an open
neighborhood U 3 x such that u(U) < oo,
(i1) inner regular if

n(A) =sup{u(K): K C Aiscompact} forall A€€, (13.1)
(iii) outer regular if
w(A) =inf{u(U):U D Aisopen} forall A€, (13.2)

(iv) regular if w is inner and outer regular, and
(v) a Radon measure if  is an inner regular Borel measure.

Definition 13.4 We introduce the following spaces of measures on E:
M(E) := {Radon measures on (E, 5)},
My(E) = {ﬁnite measures on (E, 5)},
M(E) = (e My(E): p(E) =1},
Mzi(E) = {p e My(E): p(E) < 1}.

The elements of M < (E) are called sub-probability measures on E.
Further, we agree on the following notation for spaces of continuous functions:

C(E):={f: E — Ris continuous},
Cy(E) :={f € C(E) is bounded},
C.(E):= {f € C(E) has compact support} C Cp(E).

Recall that the support of a real function f is f~1(R\ {0}).
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Unless otherwise stated, the vector spaces C(E), Cp(E) and C.(E) are equipped
with the supremum norm.

Lemma 13.5 If E is Polish and u € M y(E), then for any & > 0, there is a compact
set K C E with w(E\ K) <e.

Proof Let & > 0. For each n € N, there exists a sequence x, x5, ... € E with £ =
U2 Bijn(x™). Fix N, € N such that u(E \ Uf‘gl Bi/n(x]")) < 7. Define

oo Ny

A= m UBI/”(X?)'

n=li=1

By construction, A is totally bounded. Since E is Polish, A is compact. Furthermore,
it follows that w(E\ A) < pu(E\ A) <y 2, 27" =e¢. O

Theorem 13.6 If E is Polish and if n € M ¢ (E), then p is regular. In particular,
in this case, M y(E) C M(E).

Proof (Outer regularity) Step 1. Let B C E be closed and let ¢ > 0. Let d be a
complete metric on E. For § > 0, let

Bs:={x € E:d(x, B) <3}

be the open §-neighborhood of B. As B is closed, we have (5. Bs = B. Since u is
upper semicontinuous (Theorem 1.36), there is a § > 0 such that u(Bs) < u(B) +¢.
Step 2. Let B € £ and ¢ > 0. Consider the class of sets

A:={VNC:V CEopen, C CE closed}.

Clearly, we have £ = o (A). It is easy to check that A is a semiring. Hence by the
approximation theorem for measures (Theorem 1.65), there are mutually disjoint
sets A, =V, NCyr € A, neN,suchthat BC A:=J,2, A, and u(A) < u(B) +
&/2. As shown in the first step, for any n € N, there is an open set W,, O C,, such
that w(W,)) < u(C,) + €27"~1 Hence also U, := V, N W, is open. Let BC U :=
U2, Uy. We conclude that u(U) < u(A) + 302 e27"71 < u(B) +e.

(Inner regularity) Replacing B by B¢, the outer regularity yields the existence
of a closed set D C B with u(B \ D) < ¢/2. By Lemma 13.5, there exists a com-
pact set K with u(K¢) < ¢/2. Define C = D N K. Then C C B is compact and
w(B\ C) < . Hence u is also inner regular. O

Corollary 13.7 The Lebesgue measure A on R? is a regular Radon measure. How-
ever, not all o -finite measures on R? are regular.

Proof Clearly, R? is Polish and  is locally finite. Let A € B(R) and & > 0. There
is an increasing sequence (K, ),cN of compact sets with K, 1 R4 Since any K, is
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bounded, we have A(K,) < oco. Hence, by the preceding theorem, for any n € N,
there exists an open set U, D A N K,, with A(U, \ A) < &/2". Thus AM(U \ A) < ¢
for the open set U := |,y Un-

If L(A) < oo, then there exists an n € N with A(A \ K,;) < &/2. By the preced-
ing theorem, there exists a compact set C C AN K,, with A((AN K,) \ C) < ¢/2.
Therefore, L(A\ C) < e.

If, on the other hand, A(A) = oo, then for any L > 0, we have to find a compact
set C C A with A(C) > L. However, A(ANK,) = 00; hence there exists ann € N
with A(A N K;;) > L + 1. By what we have shown already, there exists a compact
set C C ANK, with A((AN K,)\ C) < 1; hence AL(C) > L.

Finally, consider the measure p = Y 7€Q dy. Clearly, this measure is o -finite;
however, it is neither locally finite nor outer regular. O

Definition 13.8 Let (E,dg) and (F, df) be metric spaces. A function f : E —

F is called Lipschitz continuous if there exists a constant K < oo, the so-called

Lipschitz constant, with dr (f (x), f(¥)) < K -dg(x, y) for all x, y € E. Denote by

Lipg (E; F) the space of Lipschitz continuous functions with constant K and by

Lip(E; F) = Ug-oLipg (E; F) the space of Lipschitz continuous functions on E.
We abbreviate Lipg (E) := Lipg (E; R) and Lip(E) := Lip(E; R).

Definition 13.9 Let 7 C M(E) be a family of Radon measures. A family C of
measurable maps E — R is called a separating family for F if, for any two measures
u, v € F, the following holds:

(/fdu:/fdvforallfeCﬂEl(u)ﬂﬁl(v)) = u=v.

Lemma 13.10 Ler (E,d) be a metric space. For any closed set A C E and any
¢ > 0, there is a Lipschitz continuous map pa ¢ : E — [0, 1] with

) I, ifxeA,

X) =

P 0, ifd(x,A)>e.

Proof Let ¢ : R — [0,1],t — (t V0) A 1. For x € E, define pg . (x) =1 —
o ld(x, A)). O

Theorem 13.11 Let (E, d) be a metric space.

(i) Lip(E; [0, 1]) is separating for M(E).
(1) If, in addition, E is locally compact, then C.(E) NLip,(E; [0, 1]) is separating
for M(E).

Proof (i) Assume 1, up € M(E) are measures with ffd/u = ffduz for all
f eLip;(E;[0,1]). If A € &, then pu;(A) = sup{u;(K) : K C A is compact} since
the Radon measure w; is inner regular (i = 1, 2). Hence, it is enough to show that
w1 (K) = puy(K) for any compact set K.
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Now let K C E be compact. Since w1 and p are locally finite, for every x € K,
there exists an open set U, > x with u;(Uy) < 0o and uy(U,) < oo. Since K is
compact, we can find finitely many points xi,...,x, € K such that K C U :=
U’}zl Uy, . By construction, p;(U) < oo; hence 1y € LY (u;) for i =1,2. Since
U°€ is closed and since U° N K =@, we get § :=d(U¢, K) > 0. Let pg . be the
map from Lemma 13.10. Hence 1x < pg <1y € Ll(ui) if € € (0,6). Since

PK.e e 1k, we get by dominated convergence (Corollary 6.26) that u;(K) =
limsqopr,s du;. However, epk . € Lip;(E; [0, 1]) for all € > 0; hence, by as-
sumption,

/pK,s duy :871/(501(,8)(1/1«1 :871/(8PK,s)dM2:/pK,de2-

This implies @1 (K) = pu2(K); hence py = pa.

(ii) If E is locally compact, then in (i) we can choose the neighborhoods U, to be
relatively compact. Hence U is relatively compact; thus px . has compact support
and is thus in C.(E) for all ¢ € (0, §). Il

Exercise 13.1.1

(i) Show that C([0, 1]) has a separable dense subset.
(i) Show that the space (Cj([0, 00)), || + |lcoc) of bounded continuous functions,
equipped with the supremum norm, is not separable.
(iii)) Show that the space C.([0, 00)) of continuous functions with compact support,
equipped with the supremum norm, is separable.

Exercise 13.1.2 Let u be a locally finite measure. Show that ©(K) < oo for any
compact set K.

Exercise 13.1.3 (Lusin’s theorem) Let £2 be a Polish space, let i be a o-finite
measure on (£2, B(§2)) and let f : £2 — R be a map. Show that the following two
statements are equivalent:

(i) There is a Borel measurable map g : 2 — R with f = g p-almost everywhere.
(ii) For any ¢ > 0, there is a compact set K, with u(£2 \ K;) < ¢ such that the
restricted function f |k, is continuous.

Exercise 13.1.4 Let U/ be a family of intervals in R such that W :=J;;, U has
finite Lebesgue measure A(W). Show that for any ¢ > 0, there exist finitely many
pairwise disjoint sets Uy, ..., U, € U with

" 1—¢
ZA(UI-) > TA(W).
i=1

Hint: Choose a finite family /" C U such that | ;. U has Lebesgue measure at
least (1 — &)A(W). Choose a maximal sequence U” (sorted by decreasing lengths)
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of disjoint intervals and show that each U € U’ is in (x — 3a, x + 3a) for some
x—a,x+a)el”.

Exercise 13.1.5 Let C C R? be an open, bounded and convex set and assume that
UC{x+rC:xeR? r>0}issuch that W := Uyey U has finite Lebesgue mea-
sure A4 (W). Show that for any & > 0, there exist finitely many pairwise disjoint sets
Ui, ..., U, €4 such that

n d 1—8

Z,\ U;) > ——1(W).
3d

i=1

Show by a counterexample that the condition of similarity of the open sets in U/ is
essential.

Exercise 13.1.6 Let 1 be a Radon measure on R? and let A € B(R?) be a p-null
set. Let C C R? be bounded, convex and open with 0 € C. Use Exercise 13.1.5 to
show that

. mwx+r0)
lim ————~

m = =0 for A%-almostall x € A.
r r

Conclude that if F is the distribution function of a Stieltjes measure © on R and if
A € B(R) is a p-null set, then %F(x) =0 for A-almost all x € A.

Exercise 13.1.7 (Fundamental theorem of calculus) (Compare [37].) Let f €
L'RY), u= f14 and let C € R? be open, convex and bounded with 0 € C. Show
that
pix +r0)
im————
ri0 rdad(C)

For the case d = 1, conclude the fundamental theorem of calculus:

= f(x) for A%-almost all x € R?.

d

— fdxr= f(x) forA-almostall x € R.
dx [0,x]

Hint: Use Exercise 13.1.6 with
1g(dx) = (f(x) —g)"2%(dx) forgeQ,
as well as the inequality

ux+rC) - mg(x +71C)
rd(C) — 1T T rd(C)

Exercise 13.1.8 Similarly as in Corollary 13.7, show the following: Let E be a o -
compact polish space and let u be a measure on E. Then u is a Radon measure if
and only if u(K) < oo for any compact K C E.
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13.2 Weak and Vague Convergence

In Theorem 13.11, we saw that integrals of bounded continuous functions f de-
termine a Radon measure on a metric space (E,d). If E is locally compact, it is
enough to consider f with compact support. This suggests that we can use Cp,(E)
and C.(E) as classes of test functions in order to define the convergence of mea-
sures.

Definition 13.12 (Weak and vague convergence) Let E be a metric space.

(i) Let w,p1, u2,... € My(E). We say that (i,)nen converges weakly to i,
n—o0 . .
formally u, — u (weakly) or u = w-lim,,_, oo iy, if

/fdun "i;o/fd,u for all f € Cp(E).

(ii) Let w, uy, u2,... € M(E). We say that (u,),eN converges vaguely to u,
formally 1, —> 11 (vaguely) or = v-limy_ o0 iy, if

/fdunni%o/fdu for any f € C.(E).

Remark 13.13 If E is Polish, then by Theorems 13.6 and 13.11, the weak limit is
unique. The same holds for the vague limit if E is locally compact. O

Remark 13.14

(i) In functional analysis the notion of weak convergence is somewhat different.
Starting from a normed vector space X (here the space of finite signed mea-
sures with the total variation norm), consider the space X’ of continuous linear
functionals X — R. The sequence (u,) in X converges weakly to u € X, if
D(1n) = @ (1) for every @ € X'. In the case of finite signed measures this
is equivalent to: (u,) is bounded and p,(A) = 1 (A) for any measurable
A (see [38, Theorem 1V.9.5]). Comparing this to Theorem 13.16(vi), we see
that the functional analysis notion of weak convergence is stronger than ours
in Definition 13.12.

(ii) Weak convergence (as introduced in Definition 13.12) induces on M r(E) the
weak topology t,,. This is the coarsest topology such that for all f € Cp,(E), the
map M¢(E) - R, u— f f du is continuous. In functional analysis, t,, cor-
responds to the so-called weak*-topology. Starting from a normed vector space
X (here X = Cp(E) with the norm || - ||o), we define the weak™*-topology
on the dual space X’ by writing w, = w if and only if w,(x) = w(x)
for all x € X. Clearly, each u defines a continuous linear form on C;(E) by
frulf) = ffdu. Hence M (E) C Cp(E)’. This implies that 7, is the
trace of the weak*-topology on M ¢ (E).
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If E is separable, then it can be shown that (M ¢(E), 7y,) is metrizable; for
example, by virtue of the so-called Prohorov metric. This is defined by

dp(w,v) :=max{dp(u,v),dp v, 1)}, (13.3)
where
d})(,u, V) = inf{s >0:u(B) < v(B‘S) + ¢ forany B € B(E)}, (13.4)

and where B® = {x : d(x, B) < ¢&}; see, e.g., [14, Appendix III, Theorem 5].
(It can be shown that d, (i, v) = dp (v, u) if u, v e M(E).) If E is locally
compact and Polish, then (M 7 (E), 7y,) is again Polish (see [136, p. 167]).

Similarly, the vague topology t, on M(E) is the coarsest topology such that
for all f € C.(E), the map M(E) — R, pu+> ffd,u is continuous. If E is
locally compact, then (M(E), ) is a Hausdorff space. If, in addition, E is
Polish, then (M(E), t,) is again Polish (see, e.g., [82, Section 15.7]). O

While weak convergence implies convergence of the total masses (since 1 €
Cy(E)), with vague convergence a mass defect (but not a mass gain) can be ex-
perienced in the limit.

Lemma 13.15 Let E be a locally compact Polish space and let ., (i1, u2,... €

M(E) be measures such that ., e w vaguely. Then

w(E) <liminf ju, (E).
n—0oo

Proof Let (fn)nen be a sequence in C.(E; [0, 1]) with fy 1 1. Then

W(E) = sup / fydu

< liminf sup/deu,,

n— oo NeN

21},H_I>I£fﬂ"(E)' ]

Clearly, the sequence (81, )nen of probability measures on R converges weakly
to 8g; however, not in total variation norm. Indeed, for the closed set (—o0, 0],
we have lim,,_, o0 81/, ((—00,0]) =0 < 1 = §p((—0o0, 0]). Loosely speaking, at the
boundaries of closed sets, mass can immigrate but not emigrate. The opposite is true
for open sets: lim;, o0 61/, ((0, 00)) =1 > 0= 5p((0, 00)). Here mass can emigrate
but not immigrate. In fact, weak convergence can be characterized by this property.
In the following theorem, a whole bunch of such statements will be hung on a coat
hanger (French: portemanteau).
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For measurable g : 2 — R, let U, be the set of points of discontinuity of g.
Recall from Exercise 1.1.3 that U, is Borel measurable.

Theorem 13.16 (Portemanteau) Let E be a metric space and let i, (1, 2, ... €
M<1(E). The following are equivalent.

(i) p=w-limy, 0 fp.
() [ fdun = [ fdu for all bounded Lipschitz continuous f .

n—o0

(i) [ fdun — [ fdu for all bounded measurable f with u(Uys) =0.

(iv) liminf, 0o n(E) > w(E) and limsup,,_, o un (F) < n(F) for all closed
FCE.

(v) limsup,_, o s (E) < u(E) and liminf,_, o u,(G) > w(G) for all open
GCE.

(vi) limy— 00 4 (A) = (A) for all measurable A with u(9A) =0.

If E is locally compact and Polish, then in addition each of the following is equiv-
alent to the previous statements.

(vil) = v-limy— oo iy and pu(E) = limy— o0 ptn (E).
(vill) p = v-lim,_ 0 ity and pw(E) > limsup,,_, o, tn(E).

Proof “(iv) <= (v)==(vi)” This is trivial.

“(iii) = (1)==(ii)” This is trivial.

“(i1)) = (iv)” Convergence of the total masses follows by using the test function
1 € Lip(E; [0, 1]). Let F be closed and let pr  be as in Lemma 13.10. Then

limsup u, (F) < inf lim /pp,adunzinf/,op,aduzu(F)
e>0n—00 e>0

n—o00

since pr ¢ (x) 8—_)9 I1p(x)forallx e E.

“(viil) ==(vii)” This is obvious by Lemma 13.15.

“(i) = (vii)” This is clear since C.(E) C Cp(E) and 1 € Cp(E).

“(vil) =>(v)” Let G be open and ¢ > 0. Since u is inner regular (Theorem 13.6),
there is a compact set K C G with u(G) — u(K) < €. As E is locally compact, there
is a compact set L with K C L° C L C G.Let§ :=d(K, L) > 0 and let pg 5 be as
in Lemma 13.10. Then 1x < px s < 1r; hence pkx s € C.(E) and thus

limint0,(G) = iminf [ s dun = [ s du = w(K) = (G) .
n—oo n—0o0

Letting ¢ — 0, we get (V).
“(vi) == (iii)” Let f : E — R be bounded and measurable with (U ) = 0. We
make the elementary observation that for all D C R,

af (D) c 1 @D)V Uy (13.5)

Indeed, if f is continuous at x € E, then for any § > 0, there is an £(§) > 0 with
f(Bgsy(x)) C Bs(f(x)). If x Bf_l(D), then there are y € f‘l(D) N Bgs)(x)
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and z € f~1 (D) N Bg(sy(x). Therefore, f(y) € Bs(f(x)) N D # ¥ and f(z) €
Bs(f(x)) N D¢ #@; hence f(x) € dD.

Let ¢ > 0. Evidently, the set A :={y € R: u(f~'({y})) > 0} of atoms of the
finite measure j o f~! is at most countable. Hence, there exist N € N and yg <
N fllo <¥y1 <... <yn-1 <l flloo < yn such that

vieR\A and |yj4y1 —yi|<e foralli.

Let E; = f’l([yi_l, yi))fori=1,...,N.Then E = L*_'J,N=1 E; and by (13.5),

n@E) < w(fF~ (i) + (£ (i) + W) =0.

Therefore,

N N
1imsup/ fdpn < limsupZMn(Ei) i = ZM(Ei) “ i
o0 o i=1

n—oo
§£+/fdu.

We let ¢ — 0 and obtain limsup,,_, o, [ f du, < [ f du. Finally, consider (— f) to
obtain the reverse inequality liminf, o [ fdu, > [ fdpu. O

Definition 13.17 Let X, X{, X», ... be random variables with values in E. We say

n—oo

D
that (X,),en converges in distribution to X, formally X,, — X or X,, =— X,
if the distributions converge weakly and hence if Px = w-lim,,_, o Px,. Sometimes

. D . . .. .
we write X,, — Px or X, = Py if we want to specify only the distribution Py
but not the random variable X.

Theorem 13.18 (Slutzky’s theorem) Let X, X1, X3,... and Y1, Y2, ... be random
variables with values in E. Assume X, 2) X and d(X,,Y,) "Z20in probability.

Then Y, —2> X.

Proof Let f: E — R be bounded and Lipschitz continuous with constant K. Then

|f(x) = f)| <Kd(x, ) A2| fllw forallx,yeE.

Dominated convergence yields limsup,_, . E[| f(X,) — f(¥,)|] = 0. Hence we
have

limsup|E[ £ (Y,)] — E[£(X)]|

n—oo

<limsup|E[f(X)] — E[ f (X,) ]| + limsup[E[ £ (X,) — f(¥)]| =0.

n—oo n—o00
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Corollary 13.19 If X, "= X in probability, then X, g X, n — oo. The con-
verse is false in general.

Example 13.20 If X, X1, X», ... are i.i.d. (with nontrivial distribution), then triv-

ially X,, g X but not X, "ZF X in probability.
Recall the definition of a distribution function of a probability measure from
Definition 1.59. O

Definition 13.21 Let F, F1, F>, ... be distribution functions of probability mea-
sures on R. We say that (F,),en converges weakly to F, formally F), "= F,

F, 2) F or F =w-lim,_, oo F,, if

F(x)= nl_i)ngo F,(x) for all points of continuity x of F. (13.6)

If F, Fy, F», ... are distribution functions of sub-probability measures, then we de-
fine F(00) :=lim,_, o F(x) and for weak convergence require in addition F(oc0) >
limsup,,_, o, F(00).

Note that (13.6) implies F(00) < liminf,_, o Fy(00). Hence, if F, —> F, then

Example 13.22 If F is the distribution function of a probability measure on R and
F,(x):= F(x+n) for x € R, then (F,),cn converges pointwise to 1. However, this
is not a distribution function, as 1 does not converge to 0 for x — —oc. On the other
hand, if G,,(x) = F (x — n), then (G, ), <N converges pointwise to G = 0. However,
G(o0) =0 < limsup,,_, ., Gn(00) = 1; hence we do not have weak convergence
here either. Indeed, in each case, there is a mass defect in the limit (in the case of
the F,, on the left and in the case of the G, on the right). However, the definition
of weak convergence of distribution functions is constructed so that no mass defect
occurs in the limit. O

Theorem 13.23 Let , 1, 12, ... € M<1(R) with corresponding distribution
functions F, F1, F», . ... The following are equivalent.
(i) p=wlimy— o0 .
(i) F, -2 F.
Proof “(i)==(ii)” Let F be continuous at x. Then u(d(—o00, x]) = u({x}) =0. By

Theorem 13.16, F,(x) = pn ((—00, x]) = u((—00, x]) = F(x).
“(ii))==(@1)" Let f € Lip;(R; [0, 1]). By Theorem 13.16, it is enough to show that

/fd/tn "j/fdu. (13.7)
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Let e > 0. Fix N € N and choose N + 1 points of continuity yp < y; <... < yy of
F such that F(yg) <e¢, F(yny) > F(00) —e and y; — y;_1 < ¢ for all i. Then

ffdﬂn = (Fn(y0) + Fu(o0) — Fn()’N))
N
Z FON+)(Fa(i) = Fa(iz1)).

By assumption, lim,—, o F;,(00) = F(00) and F,(y;) — e F(y;) for every i =
0,..., N; hence

hmsup/fdun<38+2f(y, F(yi) — F(yi— 1) <48+/fd,u

i=1

Therefore,
limsup/fdun S/fdu.
n—0o0
Replacing f by (1 — f), we get (13.7). g
Corollary 13.24 Let X, X1, X2, ... be real random variables with distribution
functions F, F1, F», .... Then the following are equivalent.
() X, -2 X.
(i) ELf(X,)] 1"="ELf (X)] forall f € C(R),
(i) Fy —> F.

How stable is weak convergence if we pass to image measures under some
map ¢? Clearly, we need a certain continuity of ¢ at least at those points where
the limit measure puts mass. The following theorem formalizes this idea and will
come in handy in many applications.

Theorem 13.25 (Continuous mapping theorem) Let (E1, dy) and (E», d2) be met-
ric spaces and let ¢ : E1 — E» be measurable. Denote by U,, the set of points of
discontinuity of ¢.

@) If w, pr, (2, ... € M<(Ey) with w(Uy) =0 and i, = u weakly, then
—1 1> -1

Upo@ ' —> po@ ' weakly.
(i) If X, X1, X2, ... are Ej-valued random variables with P[X € U,] = 0 and

X, D, X, then ¢(X},) 2, p(X).

Proof First note that U, C E is Borel measurable by Exercise 1.1.3. Hence the
conditions make sense.
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(i) Let f € Cp(E2). Then f o ¢ is bounded and measurable and Uyo, C Uy;
hence (U fop) = 0. By Theorem 13.16,

Jim [ rauog™)= im [(fopan,
=/(fo<p)du=/fd(u0<ﬂ_l)~

(ii) This is obvious since Py(x) =Px o <p_1. Il

Exercise 13.2.1 Recall d), from (13.4). Show that dp (i, v) = dp (i, v) = dp (v, i)
for all u,v e M (E).

Exercise 13.2.2 Show that the topology of weak convergence on M ¢ (E) is coarser
than the topology induced on M ;(E) by the total variation norm (see Corol-

lary 7.45). That is, ||y — ll7v "—> 0 implies 1, —> 1 weakly.

Exercise 13.2.3 Let E =R and u, = % Y k—o8k/n- Let w = A|j0,17 be the Lebesgue
measure restricted to [0, 1]. Show that u = w-lim,, o ;.

Exercise 13.2.4 Let £ =R and A be the Lebesgue measure on R. For n € N, let
Mn = Al[=n,n]. Show that A = v-lim;,_, o u,, but that (u,),en does not converge
weakly.

Exercise 13.2.5 Let £E =R and u, = §, for n € N. Show that v-lim,,_, oy, =0
but that (i, ),en does not converge weakly.

Exercise 13.2.6 (Lévy metric) For two probability distribution functions ' and G
on R, define the Lévy distance by

d(F,G):inf{azO:G(x—8)—8§F(x)§G(x+8)+8f0rallxGR}.

Show the following:

(i) d is a metric on the set of distribution functions.
(i) F,"==%° F if and only if d(F,, F) = 0.
(iii) For every P € M{(R), there is a sequence (Py),en in M (R) such that each

n—oo

P, has finite support and such that P, =— P.

Exercise 13.2.7 We can extend the notions of weak convergence and vague conver-
gence to signed measures; that is, to differences ¢ := u* — u~ of measures from
My (E) and M(E), respectively, by repeating the words of Definition 13.12 for
these classes. Show that the topology of weak convergence is not metrizable in gen-
eral.

Hint: Consider E = [0, 1].
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(i) For n € N, define ¢, = 81/, — 82/,. Show that, for any C > 0, (C@,)en con-
verges weakly to the zero measure.
(i) Assume there is a metric that induces weak convergence. Show that then there
would be a sequence (Cp,),en With Cp, 1 00 and 0 = w-limy,— 50 (Cr 0p) .
(iii) Choose an f € C([0, 1]) with £(2~") = (=1)"C, "/ for any n € N, and show
that (f fd(Cpen))nen does not converge to zero.
(iv) Use this construction to contradict the assumption of metrizability.

Exercise 13.2.8 Show that (13.3) defines a metric on M (E) and that this metric
induces the topology of weak convergence.

Exercise 13.2.9 Show the implication “(vi)==(iv)” of Theorem 13.16 directly.

Exercise 13.2.10 Let X, X, X5, ... and Yq, Y, ... be real random variables. As-
sume Py, = Ny 1/, foralln € N. Show that X, Pox ifand only if X, +7, A X.

Exercise 13.2.11 For each n € N, let X,, be a geometrically distributed random
variable with parameter p, € (0, 1). How must we choose the sequence (p;)en in
order that Py, /, converges weakly to the exponential distribution with parameter
a>0?

n—oo

Exercise 13.2.12 Let X, X, X5, ... be real random variables with X, X.

Show the following.
(1) E[1X]] <liminf,_, o E[|Xn|].
(i) Letr > p > 0.If sup, c E[|Xx|"] < 00, then E[|X|?] = lim,,—, o0 E[| X, |7].

Exercise 13.2.13 Let F, F1, F>, ... be probability distribution functions on R, and
assume F, "= F. Let F’l(u) =inf{x e R: F(x) > u}, u € (0,1), be the left
continuous inverse of F' (see the proof of Theorem 1.104). Show that

Fn_1 (u) ey ) (u) at every point of continuity u of F -1
Conclude that F~1(x) R (u) for Lebesgue almost all u € (0, 1).

Exercise 13.2.14 Let w, @1, uz, ... € Mi(R) with w, = n weakly. Show that
there exists a probability space (£2, A, P) and real random variables X, X1, X, ...
on (£2, A, P) with distributions Py = p and Py, = u,,, n € N, such that

n—oo

X, — X P-as.

Hint: Use Exercise 13.2.13.
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Exercise 13.2.15 Let (E, d) be a metric space and let u, i1, 12, . .. be probability
measures on E. A measurable map f : E — R is called uniformly integrable with
respect to (i, )neN, if

infsupf | fldu, =0.
{1 f1>a}

a>0,eN

Let f be continuous and uniformly integrable with respect to (i,),eN and assume
that u,, = © weakly. Show that f | fldu < oo and that

/fdunniioffdu-

Hint: Apply Exercise 13.2.14 to the image measures i, o f .

13.3 Prohorov’s Theorem

In the following, let E be a Polish space with Borel o-algebra £. A fundamental
question is: When does a sequence (,,)neN of measures on (E, £) converge weakly
or does at least have a weak limit point? Evidently, a necessary condition is that
(1n(E))pen is bounded. Hence, without loss of generality, we will consider only
sequences in M < (E). However, this condition is not sufficient for the existence of
weak limit points, as for example the sequence (8, ), en of probability measures on R
does not have a weak limit point (although it converges vaguely to the zero measure).
This example suggests that we also have to make sure that no mass “vanishes at
infinity”. The idea will be made precise by the notion of tightness.

We start this section by presenting as the main result Prohorov’s theorem [136].
We give the proof first for the special case £ = R and then come to a couple of
applications. The full proof of the general case is deferred to the end of the section.

Definition 13.26 (Tightness) A family F C M (E) is called tight if, for any
& > 0, there exists a compact set K C E such that

sup{(E\K):pneF} <e.

Remark 13.27 If E is Polish, then by Lemma 13.5, every singleton {uu} C M7 (E)
is tight and thus so is every finite family. O
Example 13.28

(i) If E is compact, then M (E) and M<(E) are tight.
(i) If (X;)ies is an arbitrary family of random variables with

C :=sup{E[|X;|]:i e} <o,

then {Py, : i € I} is tight. Indeed, for ¢ > 0 and K = [-C/¢, C/e], by
Markov’s inequality, Px, (R \ K) =P[|X;| > C/e] < e.
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(iii) The family (8,),en of probability measures on R is not tight.
(iv) The family (U[—; n])nen of uniform distributions on the intervals [—n, n], re-
garded as measures on R, is not tight. O

Recall that a family F of measures is called weakly relatively sequentially com-
pact if every sequence in JF has a weak limit point (in the closure of JF).

Theorem 13.29 (Prohorov’s theorem (1956)) Let (E,d) be a metric space and
F CM<i1(E). Then:

(1) Fistight = F is weakly relatively sequentially compact.
(ii) If E is Polish, then also the converse holds:

Fistight <= F is weakly relatively sequentially compact.

Corollary 13.30 Let E be a compact metric space. Then the sets M<1(E) and
M (E) are weakly sequentially compact.

Corollary 13.31 If E is a locally compact separable metric space, then M<1(E)
is vaguely sequentially compact.

Proof Let x1,x3,...bedense in E. As E is locally compact, for each n € N, there
exists an open neighborhood U,, > x,, whose closure U, is compact. Hence, also
V, =’ Vi is relatively compact for each n € N. This implies that N(K) :=
min{m : K C V,,} is finite for any compact K C E. Inductively define W; := V;
and W, 4 = WN(V,,)’ n € N. Then W, is open, W, is compact, and W, C Wht1
for all n € N. Furthermore, we have W, 1 E.

Applying Prohorov’s theorem (i.e., Corollary 13.30) to the measures

(p,k]an)keN, for each n € N, we can choose a sequence (k}');eny and a measure
= W-limy_ o0 Pt ]lW” whose support lies in W,,. We may assume that the se-
quences (k;');en were chosen successively such that (k;H'l) is a subsequence of (k}').

Note that we have j1,(W,) < nt1 (W), but equality does not hold in general.
For f € C.(E), there exists an ng € N such that the support of f is contained in
W,,. Hence, for m > n > ng, we have

= hm /f]l— de'"

= tim [ fig, duge = [ £ diin

ffd/zn = lim ffduk;g.
m—0oQ

and thus
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This implies that for any measurable relatively compact set A C E, we have
m(A) = ﬁN(Z) for any m > N(A).
For any measurable set A C E, define

u(A) ;= sup sup jiy (AN Wy) = sup iy 41(A N Wy).

neNm>n neN

It is easy to check that u is a lower semicontinuous content and is hence a measure
(see Theorem 1.36). By construction, for any f € C.(E), we infer

/fdu: lim /fdukn.
n—oo n
Concluding, we have u = v-lim,— M. O

Remark 13.32 The implication (ii) in Theorem 13.29 is less useful but a lot simpler
to prove. Here we need that E is Polish since clearly every singleton is weakly
compact but is tight only under additional assumptions; for example, if E is Polish
(see Lemma 13.5). O

Proof of Theorem 13.29(ii) We start as in the proof of Lemma 13.5. Let
{x1,x2,...} C E be dense. For n € N, define A, y := U1N=1 Bi/n(x;). Then A, n 1
E for N — oo for all n € N. Let

8 :=sup inf sup (A y).
neNNeN e F ( n,N)

Then there is an n € N such that forany N € N, thereisa uy € F with uy (Afl‘N) >
8/2. As F is weakly relatively sequentially compact, (n)nven has a weakly con-
vergent subsequence (un, )keN Whose weak limit will be denoted by u € M<{(E).
By the Portemanteau theorem (Theorem 13.16(iv)), for any N € N,

(G, ) = Timinf g (A5 ) 2 liminf v, (A5 ) 2 8/2.

On the other hand, A | # for N — oo; hence /L(AE)N) M= 0. Thus § = 0.

Now fix ¢ > 0. By the above, for any n € N, we can choose an N}, € N such that
M(A,";,N/) < /2" for all u € F. By construction, the set A := ﬂf’il An’N’; is totally
bounded and hence relatively compact. Further, for every u € F,

e @]

p()) 2 p(4) = (g ) =6

n=1

Hence F is tight. g

The other implication in Prohorov’s theorem is more difficult to prove, especially
in the case of a general metric space. For this reason, we first give a proof only for
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the case E = R and come to applications before proving the difficult implication in
the general situation.

The problem consists in finding a candidate for a weak limit point. For distribu-
tions on R, the problem is equivalent to finding a weak limit point for a sequence
of distribution functions. Here Helly’s theorem is the tool. It is based on a diagonal
sequence argument that will be recycled later in the proof of Prohorov’s theorem in
the general case.

Let

V ={F : R — R is right continuous, monotone increasing and bounded}

be the set of distribution functions of finite measures on RR.

Theorem 13.33 (Helly’s theorem) Let (Fy,),eN be a uniformly bounded sequence
in V. Then there exists an F € V and a subsequence (Fy,)ren with

Fy (x) k> F (x) at all points of continuity of F.

Proof We use a diagonal sequence argument. Choose an enumeration of the rational
numbers Q = {g1, g2, ¢3, .. .}. By the Bolzano—Weierstrall theorem, the sequence
(F,(q1))nen has a convergent subsequence (F”Ii (91))ken- Analogously, we find a

subsequence (n,%)keN of (ni)keN such that (Fn% (92))ken converges. Inductively, we
obtain subsequences (n,]() D (n,%) D (n,%) D ... such that (F"i (q1))keN converges for

all / € N. Now define nj := n’,ﬁ Then (Fy, (q))ren converges for all g € Q. Define
F(q) = limy— o0 Fy, (q) and

F(x) =inf{f(q) :q € Q with g > x}.

As F is monotone increasing, F' is right continuous and monotone increasing.
If F is continuous at x, then for every € > 0, there exist numbers g, q+ e Q,
g~ <x <qgt with F(g7) > F(x) — ¢ and F(g") < F(x) + £. By construction,

limsup Fy (x) < lim Fy, (gN)=F(g") < Fx) +e.
—> 00

k—o00

Hence limsup;_, ., Fy, (x) < F(x). A similar argument for ¢~ yields
liminfy_, o Fy, (x) > F(x). O

Proof of Theorem 13.29(i) for the case E =R Assume F is tight and (u,),eN 1S
a sequence in F with distribution functions F,, : x — uy((—o0, x]). By Helly’s
theorem, there is a monotone right continuous function F : R — [0, 1] and a sub-

sequence (Fy, )ren of (Fy)nen with Fy, (x) ki)f F(x) at all points of continuity x
of F. By Theorem 13.23, it is enough to show that F'(c0) > limsup;_, ,, Fy, (00).
As F is tight, for every ¢ > 0, there is a K < oo with F,(00) — F,(x) <
¢ for all n e N and x > K. If x > K is a point of continuity of F, then
limsupy,_, o Fy, (00) <limsupy_, o Fy, (x) +&=F(x)+¢& < F(o0) +¢. O
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We come to a first application of Prohorov’s theorem. The full strength of that
theorem will become manifest when suitable separating classes of functions are at
our disposal. We come back to this point in more detail in Chapter 15.

Theorem 13.34 Let E be Polish and let i, u1, (L2, ... € M<1(E). Then the fol-
lowing are equivalent.

(i) p=wlimy, 0 fp.
(1) (wn)neN is tight, and there is a separating family C C Cp(E) such that

v/fdu:ﬂli)n;}/fd;m forall f eC. (13.8)

Proof “(i)==(ii)” By the simple implication in Prohorov’s theorem (Theo-
rem 13.29(ii)), weak convergence implies tightness.

“(i))==()” Let (un)nen be tight and let C C Cp(E) be a separating class with
(13.8). Assume that (i, )nen does not converge weakly to w. Then there are € > 0,
f € Cp(E) and (ng)ren With ng 1 oo and such that

‘/fdunk—/fdu

By Prohorov’s theorem, there exists a v € M < (E) and a subsequence (n;()keN of
(ni)ken with 1, — v weakly. Due to (13.9), we have | J fdu—[ fdv|>e;hence
i # v. On the other hand,

/hdu: lim fhdun/ =/hdv forall h € C;
k—o00 k

hence p = v. This contradicts the assumption and thus (i) holds. [l

>¢ forallkeN. (13.9)

We want to shed some more light on the connection between weak and vague
convergence.

Theorem 13.35 Let E be a locally compact Polish space and let |, jL1, 42, ...
€ M ¢ (E). Then the following are equivalent.

(1) pw=w-limy_ o0 fn.

(i) p=v-lim, oo pn and p(E) =1limy_ o0 pn (E).
(iii) p = v-limy— oo wy and p(E) > limsup,,_, o, n(E).
(iv) u=v-lim,_ u, and {,,n € N} is tight.

Proof “(1) <= (ii) <= (iii)” This follows by the Portemanteau theorem.

“@i1) =(v)” It is enough to show that for any ¢ > 0, there is a compact set
K C E with limsup,,_, ., un(E \ K) <e. As p is regular (Theorem 13.6), there is
a compact set L C E with u(E \ L) < ¢. Since E is locally compact, there exists
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acompact set K C E with K° D L anda pp x € C.(E) with1; < py g(x) <1g.
Therefore,

limsup p, (E '\ K) Slimsup<un(E) _/PL,K dw)

n—00 n— 00

= 1(E) —/pL,Kdu <w(E\L) <e.

“(iv) =(1)” Let L C E be compact with w,(E \ L) <1 for all n € N. Let
p € C.(E) with p > 1. Since f o du, converges by assumption, we thus have

sup up(E) <1+ supu,(L) <1+ SUP/pdun < o0.
neN neN neN

Hence also
C .= max(u(E), sup{,un(E) ‘n e N}) < 00,

and we can pass to u/C and p,/C. Thus, without loss of generality assume that
all measures are in M<j(E). As C.(E) is a separating class for M<;(E) (see
Theorem 13.11), (i) follows by Theorem 13.34. U

Proof of Prohorov’s Theorem, Part (i), General Case There are two main routes
for proving Prohorov’s theorem in the general situation. One possibility is to show
the claim first for measures on R?. (We have done this already for d = 1, see
Exercise 13.3.4 for d > 2.) In a second step, the statement is lifted to sequence
spaces RY. Finally, in the third step, an embedding of E into RY is constructed. For
a detailed description, see [12] or [83].

Here we follow the alternative route as described in [13] (and later [14]) or [44].
The main point of this proof consists in finding a candidate for a weak limit point
for the family F. This candidate will be constructed first as a content on a count-
able class of sets. From this an outer measure will be derived. Finally, we show
that closed sets are measurable with respect to this outer measure. As you see, the
argument follows a pattern similar to the proof of Carathéodory’s theorem.

Let (E, d) be a metric space and let 7 C M<(E) be tight. Then there exists an
increasing sequence K1 C K> C K3 C ... of compact sets in E such that u(K) < %
forall u € F and all n € N. Define E” := | ;2| K,,. Then E’ is a o -compact metric
space and therefore in particular, separable. By construction, w(E \ E’) = 0 for all
w € F. Thus, any p can be regarded as a measure on E’. Without loss of generality,
we may hence assume that E is o -compact and thus separable. Hence there exists a
countable base U/ of the topology 7|g on E; that is, a countable set U/ of open sets
such that A = UUeM,UcA U for any open A C E. Define

C':={UNK,:Uel,neN}
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and
N
C:= UC,,:NGNandCl,...,CNEC’ .

n=1

Clearly, C is a countable set of compact sets in E, and C is stable under formation
of unions. Any K, possesses a finite covering with sets from ¢/; hence K, € C.

Now let (in)nen be a sequence in F. By virtue of the diagonal sequence argu-
ment (see the proof of Helly’s theorem, Theorem 13.33), we can find a subsequence
(ny )ken such that for all C € C, there exists the limit

@(C) 1= lim 11 (C). (13.10)

Assume that we can show that there is a measure p on the Borel o -algebra £ of E
such that

w(A) = sup{oz(C) :CelCwithC C A} for all A C E open. (13.11)

Then

w(E) = supa(K,) =sup lim w,, (Ky,)
neN neNk—00

1
> suplimsup(unk(E) — —)
n

neN k—oo

=limsup py, (E).

k—o00

Furthermore, for open A and for C € C with C C A,
a(C) = lim puy,, (C) <liminfu,, (A),
k—o00 k—o00

hence ((A) <liminfy_, oo iy, (A). By the Portemanteau theorem (Theorem 13.16),

= w-limg_, oo ttn, ; hence F is recognized as weakly relatively sequentially com-

pact. It remains to show that there exists a measure x on (E, £) that satisfies (13.11).
Clearly, the set function « on C is monotone, additive and subadditive:

a(Cy) <a(C), if C; C (2,
a(C1UCy) =a(Cy) +a(Cy), ifCiNCy=0, (13.12)
a(CrUC) <a(Cr) +a(C).

We define
B(A) :=sup{a(C):C €C with C C A} for A C E open

and

1*(G) :=inf{B(A): AD G isopen} for G e2”.
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Manifestly, B(A) = u*(A) for any open A. It is enough to show (Steps 1-3 below)
that ™ is an outer measure (see Definition 1.46) and that (Step 4) the o -algebra
of p*-measurable sets (see Definition 1.48 and Lemma 1.52) contains the closed
sets and thus £. Indeed, Lemma 1.52 would then imply that u* is a measure on
the o-algebra of p*-measurable sets and the restricted measure pu := u*|¢ fulfills
w(A) = u*(A) = B(A) for all open A. Hence Eq. (13.11) holds.

Evidently, u*(#) =0 and w* is monotone. In order to show that u* is an outer
measure, it only remains to check that u* is o -subadditive.

Step 1 (Finite subadditivity of B) Let A, Ay C E be open and let C € C with
C C A1 UA,. Letn € N with C C K,,. Define two sets

A
By :={xeC:d(x, AS) > d(x, AS)},
B = {x eC :d(x,Af) fd(x,AE)}.

N
C

Evidently, B; C Ay and By C Az. As x > d(x, AY) is continuous for i =1, 2, the
closed subsets By and B; of C are compact. Hence d(Bj, Aj‘) > 0. Thus there ex-
ists an open set D1 with By C D1 C ‘D; C Aj. (One could choose D as the union
of the sets of a finite covering of B; with balls of radius d(Bj, Ai') /2. These balls,
as well as their closures, are subsets of Aj.) Let Up, :={U €U : U C D1}. Then
B C D= UUEMD1 U. Now choose a finite subcovering {U1, ..., Uy} C Up, of

B and define C; := U,N:1Ui N K. Then By C C; C Ay and Cy € C. Similarly,
choose C» € C with B, C Cp C Aj. Thus

a(C) <a(C1UC) <a(Cr) +a(Cr) < B(A1) + B(A2).
Hence also
B(A1 U Az) =supla(C): C eCwithC C Aj U Ay}
< B(A1) + B(A2).

Step 2 (o -subadditivity of B) Let Ay, Aa, ... be open sets and let C € C with C C
U2, A;. As C is compact, there exists an n € N with C C |J?_; A;. As shown
above, § is subadditive; thus

n

@(C) < ﬂ(U A,~> < BA.
i=1

i=1
Taking the supremum over such C yields

o0

ﬂ(U A,-) = Sup{a(C) :CeCwithC C UA,»} <> B(AD.
i=1

i=1 i=1
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Step 3 (o -subadditivity of u*) Let Gy, Gy, ... € 2F. Let ¢ > 0. For any n € N
choose an open set A, D G, with B(A,) < u*(G,)+¢&/2". By the o -subadditivity
of B,

u*(U Gn> < ﬁ(U An) <Y BA) e+ Y 1t (G
n=1 n=1 n=1 n=1

Letting ¢ | 0 yields u*((Us2; Gn) < > ooy u*(Gy). Hence pu* is an outer mea-
sure.

Step 4 (Closed sets are pw*-measurable) By Lemma 149, a set B C E is p*-
measurable if and only if

pw*(BNG) +p*(B°NG) < u*(G) forall G e 2F.

Taking the infimum over all open sets A D G, it is enough to show that for every
open B and every open A C E,

p (BN A)+p*(B°NA) <B(A). (13.13)

Let ¢ > 0. Choose C; € C with C; C AN B¢ and «(C1) > B(A N B€) — ¢. Further,
let C; € C with C; C ANCY and a(C2) > B(ANCY) —e. Since C; N C, =¥ and
CilUCy C A, we get

B(A) > a(CrUC)
=a(C1)+a(Cr) = B(ANB) +B(ANCY) —2¢
> u*(ANB) +u*(ANB) — 2.

Letting ¢ — 0, we get (13.13). This completes the proof of Prohorov’s theorem.
O

Exercise 13.3.1 Show that a family 7 C M ¢(R) is tight if and only if there ex-
ists a measurable map f : R — [0, oo0) such that f(x) — oo for [x| — co and

sup,er [ fdp < oo.
Exercise 13.3.2 Let L C R x (0, 00) and let F = {J\/W,z ‘(n,0%) eL)bea family
of normal distributions with parameters in L. Show that F is tight if and only if L

is bounded.

Exercise 13.3.3 If P is a probability measure on [0, 00) with mp = f xP(dx) €
(0, 00), then we define the size-biased distribution P on [0, co) by

ﬁ(A)zm;lfoP(dx). (13.14)

Now let (X;)ies be a family of random variables on [0, co) with E[X;] = 1. Show
that (Py,);c; is tight if and only if (X;);<; is uniformly integrable.
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Exercise 13.3.4 (Helly’s theorem in R?) Let x = (x!,...,x%) € R? and y =
(yl, . ..,yd) € R?. Recall the notation x < y if xi < yi foralli=1,...,d. A map
F :RY — R is called monotone increasing if F(x) < F(y) whenever x <y. F is
called right continuous if F(x) =lim,_ s F(x,) forall x € R? and every sequence
(Xn)neN 1In RY with x; > x3 > x3 > ... and x = limy,_ oo Xy By V; denote the set of
monotone increasing, bounded right continuous functions on R?.

(i) Show the validity of Helly’s theorem with V replaced by V.
(i) Conclude that Prohorov’s theorem holds for E =R,

13.4 Application: A Fresh Look at de Finetti’s Theorem

(After an idea of Gotz Kersting.) Let E be a Polish space and let X1, X», ... be an
exchangeable sequence of random variables with values in E. As an alternative to
the backwards martingale argument of Section 12.3, here we give a different proof
of de Finetti’s theorem (Theorem 12.26). Recall that de Finetti’s theorem states that
there exists a random probability measure = on E such that, given &, the random
variables X, X», ... are independent and & -distributed. For x = (x1, x3,...) € EN,
let &,(x) := % Z?:l 3y, be the empirical distribution of x1, ..., x,. Let

n
k() =80 =n7F 3" 8

i1yenig=1
be the distribution on E* that describes k-fold independent sampling with replace-
ment (respecting the order) from (x1, ..., x,). Let
n

(n—k)!
Vn k() 1= Z S(xiy veoniy)

n!

be the distribution on EX that describes k-fold independent sampling without re-
placement (respecting the order) from (x1,...,x,). Forallx € E N

k(k—1)

”Mn,k(x) — Vn k(%) HTV S Ryki= "

Indeed, the probability p, x that we do not see any ball twice when drawing k balls
(with replacement) from n different balls is

k—1
pok =[] —=1/m)
=1

and thus R, x > 2(1 — py.k). We therefore obtain the rather intuitive statement that
as n — oo the distributions of k-samples with replacement and without replacement,
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respectively, become the same:

im0 [ 46) 0560y =0,

Now let fi,..., fr € Cp(E) and F(x1,...,xx) ;= f1(x1)... fr(xx). As the se-

quence X1, X», ... is exchangeable, for any choice of pairwise distinct numbers
1 <iy,...,ix <n,

E[F(Xi,....X0 ]| =E[F(Xi,..... X;)].
Averaging over all choices iy, ..., iy, we get

E[fiX)... i(Xp)] =E[F(X1,....Xp)] = E[/ qu,,,k(X)}.

Hence

'E[mxo...fk(xk)] —E[f fi dsn<X>.../fkdsn(X)]’

_ 'E[ f den,koo} _ E[ / qun,koo“

n—00
S I FllooRpx —> 0.

We will exploit the following criterion for tightness of subsets of M (M (E)).

Exercise 13.4.1 Show that a subset L C M{(M(E)) is tight if and only if, for
any ¢ > 0, there exists a compact set K C E with the property

m({ne MI(E):u(K)>e})<e foralliek.

Since E is Polish, Py, is tight. Hence, for any ¢ > 0, there exists a compact set
K C E with P[X; € K¢] < 2. Therefore,

P[£,(X)(K¢) > e] < e 'E[£,(X)(K)] = 'P[X; e K] <.

Hence the family (Pg,(x))nen is tight. Let & be a random variable (with values
in M1(E)) such that Pz = w-lim;_, Pén, (x) for a suitable subsequence (n;);eN.

The map & — [ Fd§ = [ fid&... [ frdé is bounded and (as a product of con-
tinuous maps) is continuous with respect to the topology of weak convergence on
M (E); hence itis in Cp(M(E)). Thus

E[/FdEgk} ZE&EU fi dsn,(X).../fkdén,(X)}

=E[fi(XD)... fiXp)]-
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Note that the limit does not depend on the choice of the subsequence and is thus
unique. Summarising, we have

E[fl(Xl)u-fk(Xk)]:E[/ fldsoo.../fkdsoo}.

Since the distribution of (X1, ..., Xi) is uniquely determined by integrals of the

.....

(Y1, ..., Yr), where, given &, the random variables Y7, ..., Y are independent
with distribution Z .

above type, we conclude that Px, . x,) = P5®k. In other words, (X1, ..., X¢) D

Exercise 13.4.2 Show that a family (X,,),en of random variables is exchangeable
if and only if, for every choice of natural numbers 1 <nj; <ny <nz <..., we have

D
(X1, X2,..) 2 (KXo Xy - )

Warning: One of the implications is rather difficult to show.



Chapter 14
Probability Measures on Product Spaces

As a motivation, consider the following example. Let X be a random variable that is
uniformly distributed on [0, 1]. As soon as we know the value of X, we toss n times
a coin that has probability X for a success. Denote the results by Y7, ..., ;.

How can we construct a probability space on which all these random variables
are defined? One possibility is to construct n + 1 independent random variables
Zo, ..., Zy, that are uniformly distributed on [0, 1] (see, e.g., Corollary 2.23 for the
construction). Then define X = Z and

1, ifZy <X,
Y= ;
0, ifZ,>X.
Intuitively, this fits well with our idea that the Y7, ..., ¥}, are independent as soon as

we know X and record a success with probability X.

In the above description, we have constructed by hand a two-stage experiment.
At the first stage, we determine the value of X. At the second stage, depending on
the value of X, the values of ¥ = (Y1, ..., Y,) are determined. Clearly, this con-
struction makes use of the specific structure of the problem. However, we now want
to develop a systematic framework for the description and construction of multi-
stage experiments. In contrast to Chapter 2, here the random variables need not be
independent. In addition, we also want to construct systematically infinite families
of random variables with given (joint) distributions.

In the first section, we start with products of measurable spaces. Then we come
to finite products of measure spaces and product measures with transition kernels.
Finally, we consider infinite products of probability spaces. The main result is Kol-
mogorov’s extension theorem.

14.1 Product Spaces

Definition 14.1 (Product space) Let (§2;,i € I) be an arbitrary family of sets. De-
note by 2 = X;¢; £2; the set of maps w : I — Uie[ £2; such that w (i) € §2; for

A. Klenke, Probability Theory, Universitext, DOI 10.1007/978-1-4471-5361-0_14, 273
© Springer-Verlag London 2014
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all i € 1. £2 is called the product of the spaces (£2;,i € I), or briefly the prod-
uct space. If, in particular, all the §2; are equal, say £2; = £29, then we write
2= Xy 82; =.Qé.
Example 14.2
G) If 21 ={1,...,6}and £, = {1, 2, 3}, then
21 X .Qz:{a)z(a)l,a)z) cwre{l,...,6},w € {1,2,3}}.
(ii) If 20 =R and I = {1,2, 3}, then R{"-23! is isomorphic to the customary R3.

(iii) If 20 =R and I =N, then RY is the space of sequences (w(n),n € N) in R.
(iv) If I =R and 29 = R, then R~ is the set of maps R — R. O

Definition 14.3 (Coordinate maps) If i € I, then X; : 2 — £2;, o — w(i) denotes
the ith coordinate map. More generally, for J C J' C I, the restricted map

J . . ) ’ /
X; : X R2j— X 2, oo
jel’ jeJ

, (14.1)

is called the canonical projection. In particular, we write X j := X §

Definition 14.4 (Product-o-algebra) Let (£2;,.4;), i € I, be measurable spaces.
The product-o -algebra
A=®4

iel
is the smallest o -algebra on §2 such that for every i € I, the coordinate map X; is
measurable with respect to A — A;; that is,

A=oXiiel):=0(X;'(4A),iel).

If (£2;, A;) = (829, Ag) for all i € I, then we also write A = .A(Q?I.
For J CI,let 2;:= X ey 2; andA]:(X)jeJAj.

Remark 14.5 The concept of the product-o -algebra is similar to that of the product
topology: If ((§2;, t;),i € I) are topological spaces, then the product topology 7 on
2 = Xy §2; is the coarsest topology with respect to which all coordinate maps
X; : £2 —> £2; are continuous. O

Definition 14.6 Let I ## ¢ be an arbitrary index set, let (E, ) be a measurable
space, let (2, A) = (ET,£%") and let X, : 2 — E be the coordinate map for every
t € I. Then the family (X;);¢; is called the canonical process on (£2, A).

Lemma 14.7 Let @ # J C 1. Then X§ is measurable with respectto A; — Aj.
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Proof Forany jeJ, X; = XJJ o X! is measurable with respect to A — A;. Thus,
by Corollary 1.82, X§ is measurable. O

Theorem 14.8 Let I be countable, and for every i € I, let ($2;, ;) be Polish with
Borel o-algebra B; = o (t;). Let T be the product topology on 2 = Xy §2; and
B=o(1).

Then (£2, 1) is Polish and B = @
deN.

Bi. In particular, BR?Y) = B(R)®? for

iel

Proof Without loss of generality, assume / = N. For i € N, let d; be a complete
metric that induces 7;. It is easy to check that

o0

N di@().0 D)
) = L 0,0 ) (142

is a complete metric on £2 that induces .
Now for any i € N, let D; C £2; be a countable dense subset and let y; € D; be
an arbitrary point. It is easy to see that the set

D= {x € X D, :x; # y; only finitely often}
ieN
is a countable dense subset of §2. Hence §2 is separable and thus Polish.

Now, forany i € I, let 8; = {B:(x;) : x; € D;, ¢ € Q"} be a countable base of the
topology of £2; consisting of e-balls. Define

00 N
B = U{ﬂXiI(Bi):Ble,Bl,...,BN e,BN].

N=1\li=1

Then g is a countable base of the topology t; hence any open set A C £2 is a (count-

able) union of sets in B C Q); . Bi. Hence 1 C @),y B;i and thus B C @), Bi-
On the other hand, each X; is continuous and thus measurable with respect to

B — B;. Therefore, B D ),y Bi- O

Definition 14.9 (Cylinder sets) Forany i € I, let & C A; be a subclass of the class
of measurable sets.

For any A € Ay, X;l(A) C $2 is called a cylinder set with base J. The set
of such cylinder sets is denoted by Z;. In particular, if A = X jc; A; for certain

AjeAj, then X ;1 (A) is called a rectangular cylinder with base J. The set of such
rectangular cylinders will be denoted by Z f. The set of such rectangular cylinders

for which in addition A; € £; for all j € J holds will be denoted by Zf’R.
Write

z— U Z, (14.3)
J I finite
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and similarly define Z® and ZE-R_Further, define

00 N
zk = U{UAn:Al,...,ANeZR}

N=1\n=1
and similarly Zf R

Remark 14.10 Every Zj is a o-algebra, and Z and Zf are algebras. Furthermore,
®ies Ai =0 (2). 0

Lemma 14.11 [f every &; is a mw-system, then ZER 5 q T -system.
Proof This is left as an exercise. O

Theorem 14.12 Foranyi € I, let & C A; be a generator of A;.

1) ®j€J'Aj =0(XjejEj:Ej€€&)) forevery finite J C I.

(i) ®;es Ai =0 (2F)=0(25F).

(iii) Let u be a o-finite measure on A, and assume every &; is also a w-system.
Furthermore, assume there is a sequence (E,),eN in ZER \ith E, 1t 2 and
W(E,) < oo for all n € N (this condition is satisfied, for example, if | is finite
and §2; € &; for all i € I). Then u is uniquely determined by the values (A)
forall A e ZE-R,

Proof (i) Let A, =0 (X jes Ej: Ej € &; forevery j € J). Note that

-1

X Ej=[(X]) (EpeA,

JjeJ jeJ
hence A’, C Aj;. On the other hand, (XJJ)_I(Ej) €A, forall jeJand E; €&;.
Since &; is a generator of A;, we have (X]J.)_1 (Aj)e A forall A; € A;, and hence
Ay C .A/J

(ii) Evidently, Z&-® ¢ ZR ¢ A; hence also o (Z5-R) c o (ZR) c A. By Theo-

rem 1.81, we have O‘(Z{%R) =o(X;) foralli € I;hence o(X;) C O’(ZS’R). There-

fore, A; C o (Z5°R).
(iii) By (ii) and Lemma 14.11, ZER i5a m-system that generates 4. Hence, the
claim follows by Lemma 1.42. g

Exercise 14.1.1 Show that

4= U z. (14.4)

iel JCI countable

Hint: Show that the right-hand side is a o -algebra.
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14.2 Finite Products and Transition Kernels

Consider now the situation of finitely many o -finite measure spaces (£2;, A;, i),
i=1,...,n, where n € N.

Lemma 14.13 Let A € A] @ A and let [ : 21 x 23 — R be an A] @ As-
measurable map. Then, for all @ € §21 and @) € §27,

Ag, = {a)z €82 (), wn) € A} e A,
Ap, ={w1 € 21 : (w1,an) € A} € Ay,
fo, 1822~ R, wy> f(&1,w2) is Ar-measurable,

fo, 1821 — R, wir f(w1,@) is Ai-measurable.

Proof For @1, define the embedding map i : 2, — £2] X §£2; by i(w) = (®1, w2).
Note that X oi is constantly @ (and hence .4;-measurable), and X, oi =idg, (and
hence .A-measurable). Thus, by Corollary 1.82, the map i is measurable with re-
spect to Ay — (41 ® A). Hence A;, = i~1(A) € Ay and fa, = foi is measurable
with respect to Aj. O

The following theorem generalizes Theorem 1.61.

Theorem 14.14 (Finite product measures) There exists a unique o -finite measure
won A:=Q'!_| A; such that

n
wW(Al X ... x An):]_[m(A,») for Aje Aii=1,...,n. (14.5)
i=1

Q' i =1 @+ ® py 1= w is called the product measure of the ;.
If all spaces involved equal (£2¢, Ao, 110), then we write ug’" =& Ho-

Proof Let fi be the restriction of 1 to ZR. Evidently, 1(#) = 0, and it is simple to
check that [ is o -finite. Let Al A2 e ZR be pairwise disjoint and let A € ZR
with A C |J;2; A¥. Then, by the monotone convergence theorem,

ﬂ(A)=fm(dwl).../un(dwnm((wl,...,wn))

s/m(dwl)...funwwn)ZﬂAk((wl,.. con) =) A(AY).
k=1 k=1

In particular, if A = Al l+ A2, one similarly gets fi(A) = A(AY) + [L(A?%). Hence i
is a o' -finite, additive, o -subadditive set function on the semiring Z¥ with () =

By the measure extension theorem (Theorem 1.53), it can be uniquely extended to
a o -finite measure on A = o (Z%). O
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Example 14.15 For i = 1,...,n, let (£2;, A;,P;) be a probability space. On the
space (2, A, P) := (X|_, 2;, Q_, Ai, ®!_, P;), the coordinate maps X; : 2 —
£2; are independent with distribution Py, =P;. O

Theorem 14.16 (Fubgli) Let (£2;, A;, ;) be o-finite measure spaces, i =1, 2.
Let f: §21 x 29 — R be measurable with respect to A1 @ Ay. If f =0 or f €
LY (1 ® wa), then

w] = /f(a)l, w2 (dwr) is Aj-measurable,
(14.6)
w2 > / f(w1,w)u1(dwy) is Ar-measurable,

and

/ fd(u ®M2)=/ < f(wlywz)uz(dw2)>m(dw1)
21 %822 21 2o

=/ ( f(a)l,wz),ul(da)l)>u2(dwz). (14.7)
25 21

Proof The proof follows the usual procedure of stepwise approximations, starting
with an indicator function.

First let f =14 for A= A x Ay with A|; € A and A, € A,. Then (14.6) and
(14.7) hold trivially. Building finite sums, this is also true for A € ZR (the algebra
of finite unions of rectangles).

Now let A € A1 ® A,. By the approximation theorem (Theorem 1.65), there is a
sequence of sets (A"),enN in Zf that approximate A in | ® puz-measure. As limits
of measurable functions are again measurable, and since by construction the inte-
grals converge, (14.6) and (14.7) hold also for f =14 and A € A; ® A>. Building
finite sums, (14.6) and (14.7) also hold if f is a simple function.

Consider now f > 0. Then, by Theorem 1.96, there exists a sequence of sim-
ple functions (f,),en With f, 1 f. By the monotone convergence theorem (Theo-
rem 4.20), (14.6) and (14.7) also hold for this f.

Now let f € L' (11 ® u2). Then f = f+ — £~ with £+, f~ > 0 being integrable
functions. Since (14.6) and (14.7) hold for f~ and f™, they also hold for f. [l

In Definition 2.32, we defined the convolution of two real probability measures
w and v as the distribution of the sum of two independent random variables with
distributions x and v, respectively. As a simple application of Fubini’s theorem, we
can give a new definition for the convolution of, more generally, finite measures
on R”. Of course, for real probability measures, it coincides with the old definition.
If the measures have Lebesgue densities, then we obtain an explicit formula for the
density of the convolution.

Let X and Y be R"-valued random variables with densities fx and fy. That is,
fx, fr : R" — [0, oo] are measurable and integrable with respect to n-dimensional
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Lebesgue measure A" and, for all x € R",

P[Xfx]:f fx(©OA"(dr) and P[fo]:f
(—00,x] (

—00,X

| fr(OA"(dr).

Here (—oo,x]={yeR":y; <x; fori =1,...,n} (compare (1.5)).

Definition 14.17 Let n € N. For two Lebesgue integrable maps f,g : R" —
[0, oo], define the convolution f * g : R" — [0, oo] by

(f+*9)x)= A;{n fegx —y)A"(dy).

For two finite measures u, v € M ¢(IR"), define the convolution u * v € M r(R")
by

(1 v)((—00,x1) = / / L, (0, V) (du)v(dv),
where Ay ;= {(u,v) e R" x R" :u + v < x}.

Lemma 14.18 The map f * g is measurable and we have f x g = g * f and

Rn(f>|<g)d)\"= </Ilfdkn)(/ngdkn).

Furthermore, v =v % u and (u * v)(R") = u(R*)v(R").

Proof The claims follow immediately from Fubini’s theorem. U

Theorem 14.19 (Convolution of n-dimensional measures)

() If X and Y are independent R"-valued random variables with densities fx
and fy, then X +Y has density fx * fy.

(i) If u = fA" and v = gA" are finite measures with Lebesgue densities f and g,
then p*v = (f % g)A".

Proof (i) Letx e R" and A := {(u, v) € R" x R" : u + v < x}. Repeated application
of Fubini’s theorem and the translation invariance of A" yields

PIX +Y <x]=P[(X,Y) € 4]

Z/R” . ]lA(”aU)fX(M)fY(v)()»n)@Z(d(u,v))

= /Rn <An Ta(u,v)fx@)r" (du)>fy(v)/\n (dv)

= / </( ] fx(u)?»"(du)) Jr A" (dv)



280 14 Probability Measures on Product Spaces

= / </( ]fx(u - v)?»"(du)> Jr )2 (dv)

:/ ( Sx(u— v)fY(v)/\"(dv))k”(du)
(—00,x] R2

:/ (fx * fr)d\".
(—00,x]
(@ii) In (1), replace i by Py and v by Py. The claim is immediate. U

We come next to a concept that generalizes the notion of product measures and
points in the direction of the example from the introduction to this chapter.
Recall the definition of a transition kernel from Definition 8.25.

Lemma 14.20 Let « be a finite transition kernel from (£21, A}) to (£22, Az) and let
f 821 x §29 — [0, 00] be measurable with respect to A1 @ Ay — B([0, 00]). Then
the map

I : 21— [0, 00],

w1 = /f(wl,wz)lf(whdwz)

is well-defined and A\-measurable.

Proof By Lemma 14.13, for every w; € §21, the map f,,, is measurable with respect
to Az; hence I¢(wy) = f Jfo, (@2)k (w1, dw) is well-defined. Hence, it remains to
show measurability of .

If g = 14,x4, for some A; € A; and A; € Ay, then clearly I,(w1) =
14, (w1)k (w1, A2) is measurable. Now let

D={Ac A ® Ay: 11, is Aj-measurable}.

We show that D is a A-system:

(i) Evidently, £21 x §2, € D.
(i) If A, B € D with A C B, then IJlB\A = Iy, — I1, is measurable, where we used
the fact that « is finite; hence B\ A € D.
(iii) If Ay, A, ... € D are pairwise disjoint and A := (J,2 A,, then Iy, =
ZZOZI I A is measurable; hence A € D.

Summarising, D is a A-system that contains a w-system that generates A; ® A
(namely, the rectangles). Hence, by the 7—A theorem (Theorem 1.19), D = A ® A;.
Hence Iy, is measurable for all A € Ay ® A;. We infer that I, is measurable for
any simple function g. Now let (f;;)nen be a sequence of simple functions with
fu t f. For any fixed w1 € £21, by the monotone convergence theorem, /¢ (w;) =
lim;, . I, (w1). As a limit of measurable functions, /¢ is measurable. O
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Remark 14.21 In the following, we often write f k(w1,dw?) f (w1, wy) instead of
f f(w1, w2)k (w1, dwy) since for multiple integrals this notation allows us to write
the integrator closer to the corresponding integral sign. O

Theorem 14.22 Let (£2;, A;), i =0, 1, 2, be measurable spaces. Let k| be a finite
transition kernel from (20, Ag) to (821, A1) and let ko be a finite transition kernel
from (29 x 21, Ao ® A1) to (§22, A2). Then the map

K1 ® k2 : 820 X (A1 ® Az) — [0, 00),

(w0, A) = | Kki(wo,dwy) | Kka((wo, ®1), dw)1a((@1, @2))
1 2

is well-defined and is a o -finite (but not necessarily a finite) transition kernel from
(820, Ag) 1o (21 x §22, A1 ® A2). If k1 and Ky are (sub)stochastic, then k| & k3 is
(sub)stochastic. We call k| ® k> the product of k1 and k3.

If k3 is a kernel from (£21, A1) to (22, Ay), then we define the product k1 ® k3
similarly by formally understanding «; as a kernel from (29 x 21, Ao ® A}) to
(£22, Ap) that does not depend on the §2y-coordinate.

Proof Let A € A; ® Ay. By Lemma 14.20, the map

g4 (wo, w1) = _/Kz((wo,wl),dwz)]lA(wl,wz)

is well-defined and A ® A;-measurable. Thus, again by Lemma 14.20, the map

wo > K1 @ Kk2(wo, A) = / Kk1(wo, dw1)ga(wo, w1)

is well-defined and .Ap-measurable. For fixed wg, by the monotone convergence
theorem, the map A — x| ® k2 (wp, A) is o-additive and thus a measure.

For wg € 29 and n € N, let A, , := {w1 € £21 : k2((wp, w1), §22) < n}. Since
K7 1s finite, we have Un>1 Agg,n = §21 for all wy € £29. Furthermore, k1 ® k2 (wo,
A, X §22) < n - k1(wo, Ay) < 00. Hence k1 ® ko (wp, +) is o-finite and is thus a
transition Kernel.

The supplement is trivial. g

Corollary 14.23 (Products via kernels) Let (21, A1, i) be a finite measure space,
let (822, Ap) be a measurable space and let k be a finite transition kernel from §2|
to §2,. Then there exists a unique o -finite measure @ k on (21 x §22, A1 ® Az)
with

URKk(A] X Ap) :/ k(wy, A))u(dwy) forall Ay € Ay, Ay € As.
Aj

If k is stochastic and if u is a probability measure, then u @ k is a probability
measure.
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Proof Apply Theorem 14.22 with k» = « and «1(wp, *) = K. Il

Corollary 14.24 Let n € N and let (£2;, A;), i =0, ..., n, be measurable spaces.
Fori=1,...,n, let k; be a substochastic kernel from (X;;lo 2k, ®;;%) Ap) to
(82;, A;) or from (2;_1, Ai—1) to (2;, A;). Then the recursion k1 ® ... ® k;
*1®...Qki—1)Q«k; foranyi =1, ..., n defines a substochastic kernel ®;{:1 Ki 1=
K1 Q...Q® k; from (820, Ag) to (X;;:] 2k, ®};=1 Ay). If all ki, are stochastic, then
all ®i:1 Kk are stochastic.

If w is a finite measure on (§2¢, Ao), then ;=1 ® ®f<=1 Kk 1S a finite measure
on (X 2:0 2k, Qo Ak)- If 1 is a probability measure and if every k; is stochastic,
then p; is a probability measure.

Proof The claims follow inductively by Theorem 14.22. g

Definition 14.25 (Composition of kernels) Let (£2;, .A;) be measurable spaces, i =
0, 1, 2, and let «; be a substochastic kernel from (£2;_1, A;_1) to (£2;, A;),i =1, 2.
Define the composition of k1 and k2 by

IC]-IQZ.QQX.AZ*[O,OO),

(wo, A2) — Kk1(wo, dwy)k2 (w1, A2).
21

Theorem 14.26 If we denote by ) : §21 x §2y — §25 the projection to the second
coordinate, then

(k1 - k2) (@0, A2) = (k1 ® k2) (w0, 05 ' (A2))  forall Ay € As.
In particular, the composition k| - ky is a (sub)stochastic kernel from (829, Ag) to
(822, A2).
Proof This is obvious. O

Lemma 14.27 (Kernels and convolution) Let i and v be probability measures on
R? and define the kernels «; : (R, B(RY)) — (R4, B(RY)),i = 1,2, by« (x,dy) =
w(dy) and kz(y, dz) = (8, % v)(dz). Then k1 - kp = [L * V.

Proof This is trivial. O
Theorem 14.28 (Kernels and convolution) Assume X1, X»,... are independent
RY valued random variables with distributions wi=Px,,i=1,...,n. Let S§ :=

X1+ ...+ Xy for k=1, ...,n, and define stochastic kernels from R? to R? by
krp(x, ) =68y xux fork=1,...,n. Then

(@ Kk) ©, ) =Ps,...5)- (14.8)

k=1
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Proof For k =1,...,n, define the measurable bijection ¢y : (Rd )k — (Rd)k by
Or(xy, o xx) = (o, x +x2, ., x LX),

Evidently, B(RY)") = o (¢, (A1 X ... x A,) : A1, ..., A, € B(RY)). Hence, it is
enough to show (14.8) for sets of this type. That is, it is enough to show that

<®Kk> (0, 0u (A1 X ... x Ap)) =P(s,...50) (0n (A1 X ... X Ap)) = HMk(Ak)-
k=1

k=1

For n = 1, this is clear. By definition, «, (y,—1, Yn—1 + An) = un(Ay). Inductively,
we get

(®Kk>(0, @n(A1 X ... X Ap))

k=1

n—1
:f ®Kk (O’d(yl’""yn_l))Kn(yn—layn—l+An)
On—1(A1X...xAy_1)

k=1

n—1
= (1'[ uk(Aw)un(An).

k=1 O

Theorem 14.29 (Fubini for transition kernels) Let (£2;, A;) be measurable
spaces, i = 1,2. Let u be a finite measure on (21, A1) and let x be a finite tran-
sition kernel from $21 to §2>. Assume that [ : §21 X §2 — R is measurable with
respectto A1 ® Ay If f >0 or f € L' (u ® k), then

/ Fdp®i) = / (/ f(wl,wz)K(wl,dw2)>M(dw1)- (14.9)
21%x82» 21 2,

Proof For f =14,xa, With A] € A; and A, € A, the statement is true by defini-
tion. For general f, apply the usual approximation argument as in Theorem 14.16. []

Example 14.30 We come back to the example from the beginning of this chapter.
Let n € N and let (£2;, A») = ({0, 1}", (2{0.1H®ny pe the space of n-fold coin toss-
ing. For any p € [0, 1], define

P, = (Ber,)®" = ((1 — p)so + p&1)~".

Py, is that probability measure on (£27, Ay) under which the coordinate maps Y; are
independent Bernoulli random variables with success probability p.

Further, let £2; = [0, 1], let A; = B([0, 1]) be the Borel o -algebra on §2; and let
1 = Ujo,1 be the uniform distribution on [0, 1]. Then the identity map X : £2; —
[0, 1] is a random variable on (£21, A;, 1) that is uniformly distributed on [0, 1].
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Finally, consider the stochastic kernel « from §2; to §2,, defined by
Kk (w1, A2) = Py, (A2).

Ifwelet 2 =02, x 2, A=A ® A) and P=u ® «, then X and Yy,...,Y,
describe precisely the random variables on (§2, .4, P) from the beginning of this
chapter. O

Remark 14.31 The procedure can be extended to n-stage experiments. Let (£2;, A;)
be the measurable space of the ith experiment, i =0, ...,n — 1. Let Py be a prob-
ability measure on (£2, Ag). Assume that for i = 1,...,n — 1, the distribution on
(£2;, A;) depends on (w1, ...,w;—1) and is given by a stochastic kernel «; from
£20 X ... x £2;_1 to §2;. The whole n-stage experiment is then described by the
coordinate maps on the probability space

n—1 n—1 n—1
(X Qi7®Ai7PO®®Ki)'
i=0 =0 i=1

O

Exercise 14.2.1 Show the following convolution formulas.

(i) Normal distribution: N°. > %N > =N » for all puy, up € R and

©1,07 w2,07 2.0 +07
012, 022 > 0.
(i1) Gamma distribution: Iy , % I s = [y 45 forall 8,r,s > 0.
(iii) Cauchy distribution: Cau, * Caug = Cau, 4, for all r, s > 0.

Exercise 14.2.2 (Hilbert—-Schmidt operator) Let (£2;, A;, 1), i = 1,2, be o-finite
measure spaces and let a : £2; x 2o — R be measurable with

/Ml (dt1) / pa(dt)at, 1)* < oo.
For f € £?(u), define
(A9 = [ atn. ) feman),
Show that A is a continuous linear operator from £2(jt1) to £2(112).
Exercise 14.2.3 (Partial integration) Let F,, and F), be the distribution functions of

locally finite measures @ and v on R. For x € R, define the left-sided limit F'(x—) =
SUp, ¢ F(y) and the jump height AF (x) = F(x) — F(x—). Show that, fora < b,

/( N Fudv=Fy,(b)F,(b) — F.(a)F,(a) —/ Fy(x—)p(dx)

(a,b]

= F,(b)F,(b) — F,.(a)Fy(a) —/

Fydu+ Z AF,(x) AF,(x).
(@.b]

a<x<b
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14.3 Kolmogorov’s Extension Theorem

In the previous section, we saw how we can implement n-stage experiments on
a probability space. In this section, we first show how to implement countably
many successive experiments on one probability space (Ionescu—Tulcea’s theorem).
Thereafter we also construct probability measures on products of uncountably many
spaces (Kolmogorov’s extension theorem).

Let (£2;, A;), i € Ny, be measurable spaces and let Py be a probability measure
on (20, Ao). Let 27 := X} _o 2 and A" = ®),_, Ax and

00 00
£2:= X 2 and A=®Ak.
k=0 k=0

For every i € N, let &; be a stochastic kernel from (£2'~!, A=) to (£2;, 4;). In
Corollary 14.24, we defined inductively probability measures P; = Py ® R—1 Kk
on (£2, A'). By construction, for i, j > k and A € A¥, we had

Pi(AX Q21 x...x82))=Pj(AX 21 x...x82)). (14.10)

Now we want to define a probability measure P on (§2, A) such that for k € Ny and
A e AX

P<A x X .Q,-) = Pi(A). (14.11)

i=k+1

Theorem 14.32 (Ionescu-Tulcea) There is a uniquely determined probability mea-
sure on (82, A) such that (14.11) holds.

Proof Uniqueness is clear since the finite-dimensional rectangular cylinders form a
7-system that generates A. It remains to show the existence of that measure.

We use (14.11) to define a set function P on cylinder sets. Clearly, P is additive
and is hence a content. If we can show that P is #J-continuous, then P is a premea-
sure (by Theorem 1.36) and thus by Carathéodory’s theorem (Theorem 1.41) can be
extended uniquely to a measure on A.

Hence, let A9 D A} D Ay D ... beasequence in Z with o :=inf;, e, P(A,) > 0.
It is enough to show that (72 A, # ¥. Without loss of generality, we can assume
that A, = A}, x X =, §2 for certain A, € A". For n > m, define

n
B (@0, - . ., ) 1= (5(%,,_,%)@ (04) /ck>(A;)

k=m+1

and h, := inf,>,, Ay ,. Inductively, we show that for every i € Ny, there exists a
Qi € £2; such that

hm(QOv---va)Za- (1412)
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Since A;H C A, X §2,4+1, we have

n+l1

hm,n—H(U)O» e W) = <5(w0 ..... wom) @ ® Kk) (A11+1)

k=m+1

n+1
< <3(w0 ..... om) ® ® Kk) (A}, X 2,41)

k=m+1
n
= (5((4)0 ..... wom) @ ® Kk) (A;) = hm,n(wo, cee, Op).

Hence h,y, , | hy for n — oo and by the monotone convergence theorem,

/hmde =ni£rfn/hm,,,dpm = inf P,(A)) =,

I’LEN()
whence we have (14.12) for m = 0. Now assume that (14.12) holds for m € Np.
Then

/hm+l(90» <o Oms wm+l)Km+l((Q07 oo Om)> dwm—i—l)

= inf fhm+l,n(Q0a-~-,Qmawm+1)Km+l((QOa---an)adCUm-H)

n>m+1

Hence (14.12) holds for m + 1.
Let 0 := (00, 01, - - .) € £2. By construction,

(04 E hmJTl(QOv ceey Qm) = ﬂA;n (QO7 ceey Qm),
hence ¢ € A,, for all m € Ny and thus (72, A; # . O
Corollary 14.33 (Product measure) For every n € Ny, let P, be a probability mea-

sure on (82, Ap). Then there exists a uniquely determined probability measure P
on (2, A) with

00 n
P(on...xA,,x X Qi)=l_[Pk(Ak)
i=n+1 k=0

for A; € A;,i =0,...,nandn € Ny.
X P; := P is called the product of the measures Py, Py, .... Under P, the
®z—0 p
coordinate maps (X;);ecN, are independent.

Proof This follows by Ionescu—Tulcea’s theorem with

K,'((a)(),...,a),'_l), -)=P,'. O
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We want to make a statement similar to that of Ionescu—Tulcea’s theorem; how-
ever, without the assumption that the measures Py are defined a priori by kernels.
Before we formulate the theorem, we generalize the consistency condition (14.10).
Recallthatfor LCJ CI, X Z : 27 —> $§21, denotes the canonical projection.

Definition 14.34 A family (P;, J C [ finite) of probability measures on the
space (27, Ay) is called consistent if

PL="Pyo(x])”" forall L CJCI finite.

Recall that 2 = X;¢; £2; and A = ), .; A;. Let P be a probability measure on
(£2, A). Since X = X]{ o Xy, the family (P;:= P o X;l, J C I finite) is consis-
tent. Thus, consistency is a necessary condition for the existence of a measure P
on the product space with P; := P o X ;1. If all the measurable spaces are Borel
spaces (recall Definition 8.35), for example R4, 74, C([0, 1]) or more general Pol-
ish spaces, then this condition is also sufficient. We formulate this statement first for
a countable index set.

Theorem 14.35 Let I be countable and let (§2;, A;) be Borel spaces for all i € I.
Let (Py, J C I finite) be a consistent family of probability measure. Then there
exists a unique probability measure P on (£2, A) with Pj = P o X;l for all finite
JcCl.

Proof Without loss of generality, assume I = Ny. Let P, := Py .. ), 2" =
£210,....ny and A" := Ajo, .. ny- It is easy to check that finite products of Borel spaces
are again Borel spaces; hence (£2", A") is Borel for all n € Nj.

Let Fi={A X Q2,p1:Ac A, Y : Q2" 5 2,1, (w0, ..., 0n41) = Wpil
and Z : 2"t = Q" (wo, ..., wn1) — (@0, ..., w,). By Theorem 8.37 (with 2 =
1 A= A" and E = §2,,41), there is a stochastic kernel K, from ("L F)
to (2,41, An41) such that «, 41 1s a regular conditional distribution of ¥ given F
(under the probability measure P, 1). Hence, for A € A" and B € A,+1, we have
(compare (8.10))

Ppi1(A X B)=/JIB(Y)1AX.Q,,+1 dPyy =/K,;+1(',B)]1A><Q,,+1 dPyy.

Since «;, 4+1(+, B) is F-measurable, there is a stochastic kernel «,+1 from (£2", A")

to (2,41, An+1) such that

knt1((@0, ..., 0n), +) =k (@0, ..., 0ng1), +) Forallwo, ..., w41

Hence

K;+1("B)=Kn+1(z(')7B) and ]]-AXQ”+1 Z:U-A(Z)
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We infer that

Pay1(A x B) = / kns1(Z, BYLA(Z)d Pos
=/Kn+1(', B)14d(Put 0271)

:/ Knt1(+, B)dPy.
A

Note that in the last equality we used the fact that (P;),en, is a projective family.
By Corollary14.23, we get P,+1 = P, ® kn+1. Recursively, we obtain P, = Py ®
- k& for all n € N. Using Theorem 14.32, this yields the claim. O

The last step in our construction is to replace the countable index set / by an
arbitrary index set.

Theorem 14.36 (Kolmogorov’s extension theorem) Let I be an arbitrary index
set and let (82;, A;) be Borel spaces, i € I. Let (Py, J C I finite) be a consistent
family of probability measures. Then there exists a unique probability measure P
on (2, A) with Py = P o X;l for every finite J C 1. P is called the projective
limit and will be denoted by P =: l(iI_nJ“ Py.

Proof For countable J C I, by Theorem 14.35, there is a unique probability
measure P; on (22, Ay) with P; o (X},)~! = Pk for finite K C J. By defin-
ing ﬁ](X;l(AJ)) := Pj(Ay) for A; € Ay, we get a probability measure 15] on
(£2,0(X7)).

Let J,J' C I be countable and let A € o(X;) No(Xp) N Z be ao(Xy)N
o (X j/)-measurable cylinder with a finite base. Then there exists a finite K C J N J’
and Ax € Ag with A = X' (Ag). Hence P;(A) = Px(Ak) = Pj/(A). Moreover,
by Theorem 14.12, P;(A) = Pg(Akx) = P;/(A) forall A € (X ;) No (X ). Now,
by Exercise 14.1.1, for any A € A, there is a countable J C I with A € o(X}).
Hence, independently of the choice of J, we can uniquely define a set function P
on Aby P(A) = P;(A). It remains to show that P is a probability measure. Evi-
dently, P(2) =1.1f Ay, Az, ... € A are pairwise disjoint and A := ;2 A,, then
for any n € N, there is a countable J,, C I with A, € 0(X,). Define J = UneN Jn.
Then each A, isin o(Xy); thus A € o (X ). Therefore,

P(A)=Pj(A)=)_ Pi(A))=)_ P(Ay).

n=1 n=1

This shows that P is a probability measure. g

Example 14.37 Let ((§2;,7t;),i € I) be an arbitrary family of Polish spaces (recall
from Theorem 8.36 that Polish spaces are also Borel spaces). Let A; = o (7;) and let
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P; be an arbitrary probability measure on (£2;, A;) for every i € I. For finite J C I,
let Py := ®j <7 Pj be the product measure of the P;, j € J. Evidently, the family
(Py, J C I finite) is consistent. We call

P=Q) P :=limP,
iel 11

the product measure on (§2, A). Under P, all coordinate maps X ; are indepen-
dent. O

Example 14.38 (P6lya’s urn model) (Compare Example 12.29.) In an urn there are
initially k£ red and n — k blue balls. At each step, one ball is drawn at random and is
returned to the urn with an additional ball of the same color. Hence, at time i € Ny
there are n + i balls in the urn. The random number of red balls is denoted by X;.
For a more formal description, let n € N and k € {0, ...,n}. Let I =Np, £2; =
{0,...,n+1i},i € N. Let Pyp[{k}] = 1, and define the stochastic kernels «; from £2;
to £2i41 by
Xi
n+i’
Xi

wi (xi, fxip}) =11 - e ifxip =xi,

0, else.

ifxjp1=x +1,

Now let P;11 = P; ® k;. Under the measure P = l(iLnl,_)C>o P;, the projections (X;,
i € Np) describe Pdlya’s urn model. O

14.4 Markov Semigroups

Definition 14.39 Let E be a Polish space. Let / C R be a nonempty index set and
let (k5 :5,t € 1,5 <t) be afamily of stochastic kernels from E to E. We say that
the family is consistent if k, 5 - ks = Ky for any choice of r,s,t € I withr <s <1.

Definition 14.40 Let E be a Polish space. Let I C [0, 0o) be an additive semigroup
(for example, I = Np or I = [0, 00)). A family («; : ¢ € I) of stochastic kernels is
called a semigroup of stochastic kernels, or a Markov semigroup, if

ko(w, <) =38, forallwe 2 (14.13)
and if it satisfies the Chapman—Kolmogorov equation:

Ks-kr =kgyy foralls,tel. (14.14)

Indeed, ({x; :t € I}, -) is a semigroup in the algebraic sense and the map t — «;
is a homomorphism of semigroups. In particular, the kernels commute in the sense
that ks - k; =k - kg forall s, r € 1.
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Lemma 14.41 If («; : ¢t € I) is a Markov semigroup, then the family of kernels,
defined by kg ; := ks for t > s, is consistent.

Proof This is trivial. O

Theorem 14.42 (Kernel via a consistent family of kernels) Ler I C [0, o0) with
0el andlet (ks :5,t € 1,5 <t) be a consistent family of stochastic kernels on
the Polish space E. Then there exists a kernel k from (E, B(E)) to (E', B(E)®!)
such that, for all x € E and for any choice of finitely many numbers 0 = jo < j; <

J2 < ...< jufrom I, and with the notation J := {jo, ..., ju}, we have
n—1
K(x, Yo Xy = (ax ® ®K,~k,jk+l>. (14.15)
k=0

Proof First we show that, for fixed x € E, (14.15) defines a probability measure
k(x, +). Define the family (P; : J C I finite,0 € J) by Pj :=6, ® ®Z;$ K, et *
By Kolmogorov’s extension theorem, it is enough to show that this family is con-
sistent. In fact, if for 0 ¢ J C I finite, we define P; as the projection of Py
to E’, then the family (Py : J C I finite) is projective. Hence, let 0 e L C J C I
with J C I finite. We have to show that P; o (X i)_l = Pr. We may assume that
L=J\{j;}forsomel=1,...,n. The general case can be inferred inductively.
First consider / =n. Let Ajy, ..., Aj,_, € B(E) and A := X jc;, A;. Then

-1
Pjo(X{) (A =P;(AxE)=P.L®«kj,, (AxE)

= /A PL(d(a)(), ey wn_l))an—lajn (a)n_l, E) = PL(A).

Now let [ € {l,...,n — 1}. For all j € L, let A; € B(E) and Aj, := E. Define
A:= X jcr Aj, and abbreviate A’ = Xi_:% Aj, and P'=6,® ®§€_=20Kjk,jk+,. For
i=0,....,n—1,1let

n—1
fi(wi) = (®Kjk,jk+1>(wivAji+1 X ... X Ajn)'
k=i

By assumption and using Fubini’s theorem, we get

fl—l(wl—l):/EK‘/[_I,./I(CUI—I’CZU)I)/A Ky, (@1 dopg) fie1 (@r41)

Ji+1

2/ Ky jir (@1=1, dwiy1) fie1(@141)-

Ji41
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This implies
-1
Pyo (X)) (A

:// P'(d@o, .., @1-1)) fi1 @1-1)

=//P/(d(w07---70)l—1))/ (g i) @i=1, dwpt1) fiv1(@i41)

Ajigr

= PL(A).

It remains to show that « is a stochastic kernel. That is, we have to show that x —
Kk (x, A) is measurable with respect to B(E) — B(E)®!. By Remark 8.26, it suffices
to check this for rectangular cylinders with a finite base A € ZR since Z¥ is a 7-
system that generates B(E)®! . Hence,let 0=ty <t; <...<t, and By, ..., By €
B(E) as well as A =[)/_o X 6 ! (B;). However, by Corollary 14.24, the following
map is measurable,

n—1 n
x> Py[A]l = (6)5 ® ®Ktiﬁti+l> ( X Bi)'
i=0 i=0

Corollary 14.43 (Measures by consistent families of kernels) Under the assump-
tions of Theorem 14.42, for every probability measure | on E, there exists a unique
probability measure P, on (E', B(E)®!) with the following property: For any
choice of finitely many numbers 0 = jo < j1 < jo < ... < jn from I, and letting
Ji={jo s ju)r wehave Py o X7 = 1 ® @20 Kt jess -

O

Proof Take P, = [ pu(dx)k(x, +). O

As a simple conclusion of Lemma 14.41 and Theorem 14.42, we get the follow-
ing statement that we formulate separately because it will play a central role later.

Corollary 14.44 (Measures via Markov semigroups) Let (k; : t € I) be a Markov
semigroup on the Polish space E. Then there exists a unique stochastic kernel k
from (E,B(E)) to (E', B(E)®!) with the property: For all x € E and for any
choice of finitely many numbers 0 =ty <t] <tr) <... <1, from I, and letting
J :={to, ..., t,}, we have

n—1
k(x, o X7 = (8x®®/clk+l_,k). (14.16)
k=0

For any probability measure u on E, there exists a unique probability measure
P, on (E', B(E)®!) with the property: For any choice of finitely many num-
bers O=ty<ti <t <...<t, from I, and letting J := {tg,...,t,}, we have
P,o X;l =u® ®Z;(1)K;k+l_lk. We denote Py =Ps =« (x, ) forx € E.
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Example 14.45 (Independent normally distributed increments) Let I = [0, co) and
£2; =R, i €0, 00), equipped with the Borel o -algebra B = B(R). Further, let 2 =
RI0:29) " A = B®10:29) and let X, be the coordinate map for ¢ € [0, 00). In the sense
of Definition 14.6, X = (X;);>0 is thus the canonical process on (£2, .4).

We construct a probability measure P on (§2, .A) such that the stochastic pro-
cess X has independent, stationary, normally distributed increments (recall Defini-
tion 9.7). That is, it should hold that

(X4, — X4_1)i=1,..,nisindependent forall0=:1y <] <... <1y, (14.17)
Px,_x, =No—s foralltz>s. (14.18)

To this end, define stochastic kernels ; (x, dy) := 8 * Ny, (dy) for t € [0, 00)
where Ny = 8p. By Lemma 14.27, the Chapman-Kolmogorov equation holds
since (compare Exercise 14.2.1(1))

K - K (X, dY) =0, * (NO,S *N(),l)(dy) =y *NO,S+t(dy) = K541 (X, dy)

Let Py = §p and let P be the unique probability measure on £2 corresponding to Py
and (k; : t > 0) according to Corollary 14.44. By Theorem 14.28, Eqs. (14.17) and
(14.18) hold.

With (X;);>0, we have almost constructed the so-called Brownian motion. In
addition to the properties we required here, Brownian motion has continuous paths;
that is, the maps ¢ — X, are almost surely continuous. Note that at this point it is
not even clear that the paths are measurable maps. We will have some work to do to
establish continuity of the paths, and we will come back to this in Chapter 21.

The construction in the preceding example does not depend on the details of the
normal distribution but only on the validity of the convolution equation

No,s+1 =No,s * No,;.

Hence, in (14.18) we can replace the normal distribution by any parameterized fam-
ily of distributions (v;,t > 0) with the property v, s = v, * v;. Examples include
the Gamma distribution v; = Iy ; (for fixed parameter 6 > 0), the Poisson distri-
bution v; = Poi;, the negative binomial distribution v; = b, » (for fixed p € (0, 1]),
the Cauchy distribution v; = Cau, and others (compare Theorem 15.12 and Corol-
lary 15.13). We establish the result in a theorem.

Definition 14.46 (Convolution semigroup) Let / C [0, oo) be a semigroup. A fam-
ily v = (v; : t € I) of probability distributions on R? is called a convolution semi-
group if vy, = vs x v, holds for all s, € 1.

If 1 = [0, co) and if in addition v, ﬂ 80, then the convolution semigroup is
called continuous (in the sense of weak convergence).

Ifd =1 and v;((—00,0)) =0 for all € I, then v is called a nonnegative convo-
Iution semigroup.
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For the following theorem, compare Definition 9.7.

Theorem 14.47 For any convolution semigroup (v; :t € I) and any x € R, there
exists a probability measure Py on the product space (82, A) = (R, B(R4)®)
such that the canonical process (X;):ej is a stochastic process with Py [ Xg =x] =1,
with stationary independent increments and with Py o (X; — X))~ = v, fort > s.
On the other hand, every stochastic process (X;);c; (on an arbitrary probabil-
ity space ($2, A, P)) with stationary independent increments defines a convolution
semigroup by v, =P o (X, — Xo)~! forallt € 1.

Exercise 14.4.1 Assume that (v, : t > 0) is a continuous convolution semigroup.
Show that v, = lim_,; vs for all # > 0.

Exercise 14.4.2 Assume that (v, : # > 0) is a convolution semigroup. Show that
v,/,, ni;o 50.

Exercise 14.4.3 Show that a nonnegative convolution semigroup is continuous.

Exercise 14.4.4 Show that a continuous real convolution semigroup (v; : ¢ > 0)
with v; ((—o0, 0)) =0 for some ¢ > 0 is nonnegative.



Chapter 15
Characteristic Functions and the Central Limit
Theorem

The main goal of this chapter is the central limit theorem (CLT) for sums of inde-
pendent random variables (Theorem 15.37) and for independent arrays of random
variables (Lindeberg—Feller theorem, Theorem 15.43). For the latter, we prove only
that one of the two implications (Lindeberg’s theorem) that is of interest in the ap-
plications.

The ideal tools for the treatment of central limit theorems are so-called charac-
teristic functions; that is, Fourier transforms of probability measures. We start with
a more general treatment of classes of test functions that are suitable to charac-
terize weak convergence and then study Fourier transforms in greater detail. The
subsequent section proves the CLT for real-valued random variables by means of
characteristic functions. In the fifth section, we prove a multidimensional version of
the CLT.

15.1 Separating Classes of Functions

Let (E, d) be a metric space with Borel o-algebra &€ = B(E).
Denote by C = {u +iv : u, v € R} the field of complex numbers. Let

Re(u +iv)=u and Im(u+iv)=v

denote the real part and the imaginary part, respectively, of z=u +iv € C. Letz =
u — iv be the complex conjugate of z and |z| = ~/u2 + v2 its modulus. A prominent
role will be played by the complex exponential function exp : C — C, which can be
defined either by Euler’s formula exp(z) = exp(u)(cos(v) +i sin(v)) or by the power
series exp(z) = Y oo 2" /n!. Itis well-known that exp(z] + z2) = exp(z1) - exp(z2).
Note that Re(z) = (z +7)/2 and Im(z) = (z — 7)/2i imply

eix + efix ) eix _ efix
cos(x)=——— and sin(x)=——— forallx e R.
2 2i
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A map f: E — Cis measurable if and only if Re(f) and Im(f) are measurable
(see Theorem 1.90 with C = R2). In particular, any continuous function £ — C is
measurable. If u € M(E), then we define

/ fdp = f Re(f)dp+i / Im(f)dp

if both integrals exist and are finite. Let C,(E; C) denote the Banach space of con-
tinuous, bounded, complex-valued functions on E equipped with the supremum
norm || f|lec = supf{| f(x)| : x € E}. We call C C Cp(E; C) a separating class for
My (E) if for any two measures u, v € M ¢(E) with u # v, there is an f € C such
that [ fdu # [ f dv. The analogue of Theorem 13.34 holds for C C C»(E; C).

Definition 15.1 Let K=R or K= C. A subset C C Cp(E; K) is called an algebra
if

(i 1eC,
(i) if f,g€C, then f-gand f + g are in C, and
(iii) if f € C and o € K, then («f) isin C.

We say that C separates points if for any two points x, y € E with x # y, there is an

feCwith f(x)# f(y).

Theorem 15.2 (Stone—WeierstraB3) Let E be a compact Hausdorff space. Let
K=RorK=C.LetC C Cp(E; K) be an algebra that separates points. I[f K = C,
then in addition assume that C is closed under complex conjugation (that is, if
f €C, then the complex conjugate function f is also in C).

Then C is dense in Cp(E; K) with respect to the supremum norm.

Proof We follow the exposition in Dieudonné [34, Chapter VIL.3]. First consider
the case K = R. We proceed in several steps.

Step 1. By Weierstral}’s approximation theorem (Example 5.15), there is a se-
quence (p,)nen of polynomials that approach the map [0, 1] — [0, 1], # — /1t uni-
formly. If f € C, then also

[F1= 11 lloo Jim pu(£2/1£13)

is in the closure C of C in Cp(E; R). _ B
Step 2. Applying Step 1 to the algebra C yields that, for all f, g € C,

1 1
fvg=§(f+g+|f—gl) and ng=§(f+g—|f—gl)

are also in C. _
Step 3. For any f € Cp(E; R), any x € E and any ¢ > 0, there exists a g, € C
with g, (x) = f(x) and gx(y) < f(y) + ¢ forall y € E. As C separates points, for
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any z € E \ {x}, there exists an H, € C with H,(z) # H (x) = 0. For such z, define
h, €C by
= f@+ L2 Ty ) poraty e £,
H:(2)

In addition, define i, := f. Then h (x) = f(x) and h,(z) = f(z) for all z € E.
Since f and h, are continuous, for any z € E, there exists an open neigh-
borhood U, > z with h(y) < f(y) 4+ ¢ for all y € U,. We construct a finite
covering Uy, ..., U, of E consisting of such neighborhoods and define g, =
min(hy,, ..., h;,). By Step 2, we have g, € C.

Step 4. Let f € Cp(E; R), ¢ > 0 and, for any x € E, let g, be as in Step 3. As
f and g, are continuous, for any x € E, there exists an open neighborhood Vy > x
with g, (y) > f(y) — ¢ for any y € V. We construct a finite covering Vy,, ..., Vy,
of E and define g := max(gy,, ..., &x,). Then g € CbyStep2and ||g — flloo <€
by construction. Letting & |, 0, we get C = C(E; R).

Step 5. Now consider K = C. If f € C, then by assumption Re(f) = (f + f)/2
and Im(f) = (f — f)/2i are in C. In particular, Cy := {Re(f) : f € C} C C is a real
algebra that, by assumption, separates points and contains the constant functions.
Hence Cy is dense in Cp(E; R). Since C = Cy + iCyp, C is dense in Cp(E; C). O

Corollary 15.3 Let E be a compact metric space. Let K=R or K=C. Let C C
Cp(E; K) be a family that separates points; that is, stable under multiplication and
that contains 1. If K = C, then in addition assume that C is closed under complex
conjugation.

Then C is a separating family for M ¢ (E).

Proof Let pi, u2 € My(E) with [gduy = [gdu, for all g € C. Let C’ be the
algebra of finite linear combinations of elements of C. By linearity of the integral,

[gdui = [gdusforal geC'.
For any f € Cp(E,R) and any ¢ > 0, by the Stone—Weierstral} theorem, there
exists a g € C' with || f — glloo < €. By the triangle inequality,

Vfdm—/fduz /fdm—[gderngm—/gduz
+’/gduz—/fdm

<e(u1(E) + pua(E)).

=<

Letting ¢ | 0, we get equality of the integrals and hence p; = wo (by Theo-
rem 13.11). Il

The following theorems are simple consequences of Corollary 15.3.

Theorem 15.4 The distribution of a bounded real random variable X is character-
ized by its moments.
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Proof Without loss of generality, we can assume that X takes values in E := [0, 1].
For n € N, define the map f;, : [0, 1] — [0, 1] by f;, : x + x". Further, let fo = 1.
The family C = { f,,, n € Np} separates points and is closed under multiplication;
hence it is a separating class for M ¢(E). Thus Py is uniquely determined by its
moments E[X"] = [ x"Px(dx),n € N. O

Example 15.5 (due to [73]) In the preceding theorem, we cannot simply drop
the assumption that X is bounded without making other assumptions (see Corol-
lary 15.32). Even if all moments exist, the distribution of X is, in general, not
uniquely determined by its moments. As an example consider X := exp(Y), where
Y ~ No,1. The distribution of X is called the log-normal distribution. For every
n € N, nY is distributed as the sum of n? independent, standard normally distributed

random variables n¥ 2 Yi+...+7Y,2. Hence, forn e N,

E[X"] — E[e”Y] — E[eY1+"‘+Yn2] — HE[eYi] — E[eY]n
i=1 (15.1)

2

o n
:(/ (Zn)_l/zeye_yz/zdy> — "2,

—00

We construct a whole family of distributions with the same moments as X. By the
transformation formula for densities (Theorem 1.101), the distribution of X has the
density

fx)= x ! exp(—% 10g(x)2> for x > 0.

1
V2
For o € [—1, 1], define probability densities f, on (0, co) by

fa(¥) = f(x)(1 4 asin(27 log(x))).

In order to show that f, is a density and has the same moments as f, it is enough to
show that, for all n € Ny,

o0
m(n) = / x"f(x) sin(2n log(x)) dx =0.
0
With the substitution y = log(x) — n, we get (note that sin(2z (y 4+ n)) = sin(2wy))

o0
mn) = f ™ Q) 2=t 2 gin (2 (y + m)) dy

—00

o
= Qn)" 12 f e’ 2 sin@ry)dy =0,

—00

where the last equality holds since the integrand is an odd function. O
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Theorem 15.6 (Laplace transform) A finite measure . on [0, 00) is characterized
by its Laplace transform

L, (L) ::/ef)‘xu(dx) for A > 0.

Proof We face the problem that the space [0, 0co) is not compact by passing to the
one-point compactification E = [0, oo]. For A > 0, define the continuous function
£ 1[0, 00] = [0, 1] by fi(x) =e ¥ if x < 00 and f; (00) = lim,_, o, e . Then
C = {f», A = 0} separates points, fo =1¢€C and f, - fo = fu+s € C. By Corol-
lary 15.3, C is a separating class for M ¢ ([0, oo]) and thus also for M ¢ ([0, 00)). [

Definition 15.7 For e My (R9), define the map O R? — C by

Qut) == / e u(dx).

@, is called the characteristic function of .

Theorem 15.8 (Characteristic function) A finite measure u € M f(Rd ) is char-
acterized by its characteristic function.

Proof Let i, 2 € Ms(RY) with g, () = ¢, (t) for all t € RY. By Theo-
rem 13.11(ii), CC(Rd) is a separating class for Mf(Rd). Hence, it is enough to
show that [ fdu; = [ fdus forall f e C.(RY).

Let f:RY — R be continuous with compact support and let & > 0. Assume that
K > 0 is large enough such that f(x) =0 for x & (—K /2, K/2)? and such that
wi(RY\ (=K, K)¥) <€, i=1,2. Consider the rorus E :=R?/(2KZ?) and define
f:E—Rby

f(x+2KZ% = f(x) forxe[-K,K)".

Since the support of f is contained in (—K, K )‘1, f is continuous.
For m € Z¢ define

gn:R'>C, xm— exp(i(nm/K,x)).

Let C be the algebra of finite linear combinations of the g,,. For g € C, we have
g(x)=g(x+2Kn) forall x € R4 and n € Z4. Hence, the map

§:E—C, gx+2K2%) =gx)

is well-defined, continuous and bounded. Furthermore, C := {g:6€CCCHp(E;C)
is an algebra that separates points and is closed under complex conjugation. As E is
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compact, by the Stone—Weierstral theorem, thereis a g € C such that ||g — f loo < €.
We infer

I(f =&)L _k.kye [ o <

™

and

1(f = @) gay—x k10 | oo < 18lloo = 181l < | fllco + &= fllo + &

By assumption of the theorem, [gdu; = [ gdus. Hence, using the triangle in-
equality, we conclude

‘/fdm—ffduz Sflf—glder/If—glduz

< (20 flloo + 26 + 1 (RY) + 2 (RY)).

As ¢ > 0 was arbitrary, the integrals coincide. 0

Corollary 15.9 A finite measure ju on Z¢ is uniquely determined by the values
— it,x) d
@u(t) _fe uldx), tel—m,m)".

Proof This is obvious since ¢, (t +2wk) = ¢, (t) forall k € Vi g

While the preceding corollary only yields an abstract uniqueness statement, we
will profit also from an explicit inversion formula for Fourier transforms.

Theorem 15.10 (Discrete Fourier inversion formula) Let u € M f(Zd) with char-
acteristic function ¢,,. Then, for every x € 74,

u(ix)) = @m)~? [ e g, (1 dt.

[—7,m)d

Proof By the dominated convergence theorem,

/[ L= /[ )de—"<”x>(ngr;.10 Ze”””u({y}))dt
-7, -7, 7T

lyl=n
= lim ir.x) PAURY n({y})d
n—oo [—j'[,?'[)d }|Z<n
=S uon [
[—m,7)d

yeZd
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The claim follows since, for y € Zd,

ei(l,y—x) dt = (zﬂ)d, ifx = v,
[—7m,m)d 0, else. O

Similar inversion formulas hold for measures 1 on R?. Particularly simple is the
case where p possesses an integrable density f := Z—’)f with respect to d-dimensional
Lebesgue measure A. In this case, we have the Fourier inversion formula,

Ffx)=Qn)™¢ fRd e g (1)A(dr). (15.2)

Furthermore, by Plancherel’s theorem, f € £2(3) if and only if ¢, € £2(1). In this
case, || fll2 = llell2.

Since we will not need these statements in the following, we only refer to
the standard literature (e.g., [173, Chapter VI.2] or [54, Theorem XV.3.3 and
Eq. (XV.3.8)]).

Exercise 15.1.1 Show that, in the Stone—Weierstral} theorem, compactness of E is
essential. Hint: Let E = R and use the fact that C;(R) = Cp(R; R) is not separable.
Construct a countable algebra C C Cp(RR) that separates points.

Exercise 15.1.2 Let d € N and let 1 be a finite measure on [0, c0)?. Show that y is
characterized by its Laplace transform £, (1) = f e~ M%) (dx), » € [0, 00)4.

Exercise 15.1.3 Show that, under the assumptions of Theorem 15.10, Plancherel’s
equation holds:

Yot} =en [ ol

xezd

Exercise 15.1.4 (Mellin transform) Let X be a nonnegative real random variable.
For s > 0, define the Mellin transform of Py by

mx(s) =E[X*]

(with values in [0, o0]).

Assume there is an g9 > 0 with my(gp) < oo (respectively my (—egp) < 00).
Show that, for any ¢ > 0, the distribution Py is characterized by the values m x (s)
(respectively mx (—s)), s € [0, €].

Hint: For continuous f : [0, c0) — [0, 00), let

dr(2) = /0 7 f (0 dt

for those z € C for which the integral is well-defined. By a standard result
of complex analysis if ¢f(s) < oo for an s > 1, then ¢ is holomorphic in
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{ze€C:Re(z) € (1,5)} (and is thus uniquely determined by the values ¢ (r), r €
(1, 1 + &) for any ¢ > 0). Furthermore, for all r € (1, s),

1 © .
f@)= %/ 10 G o (r +ip)dp.

—00

(i) Conclude the statement for X with a continuous density.
(ii) For § > 0, let Y5 ~ Uj1—s,1) be independent of X. Show that X Y5 has a contin-
uous density.
(iii) Compute m xy;, and show that mxy, — myx for § | 0.
(iv) Show that XYs — X for § | 0.

Exercise 15.1.5 Let X, Y, Z be independent nonnegative random variables such
that P[Z > 0] > 0 and such that the Mellin transform myxz(s) is finite for some
s > 0.
. D D
Show thatif XZ =Y Z holds, then X =Y.

Exercise 15.1.6 Let u be a probability measure on R with integrable characteristic
function ¢,, and hence ¢,, € L'(1), where A is the Lebesgue measure on R. Show
that p is absolutely continuous with bounded continuous density f = ‘jl—’)f given by

I [ _.
fx)= —/ e, (t)dt forall x € R.
27 J_oo

Hint: Show this first for the normal distribution Ny, ¢ > 0. Then show that
u * Ny ¢ is absolutely continuous with density f;, which converges pointwise to f
(as e — 0).

Exercise 15.1.7 Let (£2, 7) be a separable topological space that satisfies the T, 1
separation axiom: For any closed set A C £2 and any point x € §2 \ A, there exists
a continuous function f : £ — [0, 1] with f(x) =0 and f(y) =1 for all y € A.
(Note in particular that every metric space is a T 1 -space.)

Show that o (Cp(£2)) = B(£2); that is, the Borel o-algebra is generated by the
bounded continuous functions 2 — R.

15.2 Characteristic Functions: Examples

Recall that Re(z) is the real part of z € C. We collect some simple properties of
characteristic functions.
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Lemma 15.11 Let X be a random variable with values in R? and characteristic
function x (1) = E[e!"X)]. Then:

() lpx(t)| <1 forallt e R? and px(0) = 1.

(i) @axip(t) =ox(at)e'®) forall a € R and b € RY.
(iii)) Px =P_x if and only if ¢ is real-valued.
(iv) If X and Y are independent, then ¢x+y = ¢x - ¢y.

(v) 0<1—Re(px(2t)) <4(1 —Re(px (1)) forall t € RY.

Proof (1) and (ii) are trivial.

(i) @x (1) = @x (—1) = p_x (1).
(iv) As €/t:X) and ¢¢-Y) are independent random variables, we have

ox+y (1) =E[e! 1) O E[e OV TE[ 1] = x (Dpy ().
(v) By the addition theorem for trigonometric functions,
1 —cos((2t, X)) =2(1 — (cos((z, X)))?) <4(1 — cos({t, X))).
Now take the expectations of both sides. m

In the next theorem, we collect the characteristic functions for some of the most
important distributions.

Theorem 15.12 (Characteristic functions of some distributions) For some distri-
butions P with density x — f(x) on R or weights P ({k}), k € Ny, the characteristic
function ¢(t) is given explicitly in Table 15.1.

Proof (1) (Normal distribution) By Lemma 15.11, it is enough to consider the case
w=0ando?=1. By virtue of the differentiation lemma (Theorem 6.28) and using
partial integration, we get

d Oo itx:. —x2/2
—o(t) = e'ixe dx = —tp(1).
dt o0
This linear differential equation with initial value ¢ (0) = 1 has the unique solution
o) = e 12,

(i) (Uniform distribution) This is immediate.

(iii) (Triangle distribution) Note that Triy =U[_a/2,4/2] * U[—a/2,a/2]; hence

sin(at /2)? 1 — cos(at)
a2z a’t?

2
(pTria (t) = (pZ/{[,u/zyu/z] (t) = 4
Here we used the fact that by the addition theorem for trigonometric functions

1 — cos(x) = sin(x/2)? + cos(x/2)% — cos(x) = 2sin(x/2)>.
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Table 15.1 Characteristic functions of some distributions

Distribution Char. fct.
Name Parameter on Density / Weights o(t)
Symbol

a2 . 2.2
Normal nweR R 1 . exp(_(xz_#z)) ol L g0 122
Ny o2 62>0 e ’
Uniform a>0 [0, a] 1/a ei‘;;;l
Ujo.a)
Uniform a>0 [—a,a] 1/2a Si'g—;”)
U—a,a]
Triangle a>0 [—a,a] %(1 —|x|/a)* 2%
Tri,
N.N. a>0 R 1 Locos(an) A=t /a)*
Gamma 0>0 [0, 00) X e (1—it/9)~"
Iy r r>0

: —0 0
Exponential 6>0 [0, c0) Qe * P
€XPg
Two-sided 6=>0 R %e*m"“ m
exponential
expg
Cauchy a>0 R # m e—all
Cau, ’
Binomial neN {0,...,n} (Z) pr(1 = pyrk (1-p)+
by, p pelo0,1] pe')"
. —r

Negative r>0 No ( « >(—1)kpr(1 -pf (ﬁ)r
binomial pe(0,1]
brp . 4
Poisson A>0 Ny e % exp(h(elf —1))
POiA

(iv) (N.N.) This can either be computed directly or can be deduced from (iii) by
using the Fourier inversion formula (Eq. (15.2)).

(v) (Gamma distribution) Again it suffices to consider the case 6 = 1. For 0 <
b<c<ooandt€R,lety,, be the linear path in C from b —ibt to ¢ —ict, let
dp,: be the linear path from b to b — ibt and let €., be the linear path from ¢ — ict
to c. Substituting z = (1 — it)x, we get

1 © : 1—in™"
() = —f X Tle e dx = g/ 7 le %4z
ra) Jo Iy Jyses

Hence, it suffices to show that fyo . 7! exp(—z)dz =T (r).
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The function z — z'~!exp(—z) is holomorphic in the right complex plane.
Hence, by the residue theorem for 0 < b < ¢ < 00,

C
/ x’_lexp(—x)dxzf z’_lexp(—z)dz
b Vb,c,t

—i—/ 7! exp(—z)dz—i—/ 7 “lexp(—2)dz.
‘Sb‘r

5(:,t

Recall that fooo X1 exp(—x)dx =: I'(r). Hence, it is enough to show that the inte-
grals along 8, ; and €. ; vanish if b — 0 and ¢ — oo.

However, |z Lexp(—z)| < (1 +2)=D/2pr=Lexp(—b) for z € 8p,;. As the path
8p, has length b|t|, we get the estimate

f 7 letdz
bt
/ r—1 -z
7T etdz
€c,t

(vi) (Exponential distribution) This follows from (v) since expy = I3, 1.
(vii) (Two-sided exponential distribution) If X and Y are independent expy-
distributed random variables, then it is easy to check that X — Y ~ expé. Hence

r/2

§b’e_b(1 +t2) — 0 forb—0.

Similarly,

"2 _50 fore— oo.

< cref"(l + tz)

1 1 1
1—it/01+it/0 14 (t/0)?

(viii) (Cauchy distribution) This can either be computed directly using residue
calculus or can be inferred from the statement for the two-sided exponential distri-
bution by the Fourier inversion formula (Eq. (15.2)).

(ix) (Binomial distribution) By the binomial theorem,

wexpg @)= Pexpy (f)(/’expg (=)=

n

o)=Y (Z)(l —p)" K (pe") = (1= p+ pe'")".

k=0

(X) (Negative binomial distribution) By the generalized binomial theorem (Lem-
ma 3.5), for all x € C with |x| <1,

]

(=07 =3 (7)ot

k=0

Using this formula with x = (1 — p)e’ gives the claim.
(xi) (Poisson distribution) Clearly,

00 .
A .
(pPoi;L(l) = Zeiku — e)»(e ’—1).
n! -
n=0
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Corollary 15.13 The following convolution formulas hold.

@) NMIJ? *Nﬂzﬁzz ZNMI+M2,012+022f0r w1, w2 € R and 012,022 > 0.
(1)) Tp,*Tps=1Tprysfor6,r,s>0.

(iii) Cau, * Caup = Caugyp fora, b > 0.

(iv) b, p *bp,p =bpyyn,p form,neNand p € [0,1].

) b;p *b;p =br_+w,f0r r,s >0and p € (0, 1].

(vi) Poiy, * Poiy =Poiy 1, for A, u > 0.

Proof This follows by Theorem 15.12 and by ¢4, = ¢, ¢, (Lemma 15.11). 0

The following theorem gives two simple procedures for calculating the charac-
teristic functions of compound distributions.

Theorem 15.14

(i) Let p1, p2,... € My (RY) and let py, pa, ... be nonnegative numbers with
3% | Puttn(RY) < 00. Then the measure i :=Y 02| puin € Ms(R?) has
characteristic function

o0
Gu=) PnPu,- (15.3)
n=1

(i1) Let N, X1, X2, ... be independent random variables. Assume X1, X2, ... are
identically distributed on R¢ with characteristic function ¢x . Assume N takes
values in No and has the probability generating function fyn. Then Y :=
Zf:/:l X, has the characteristic function y (t) = fn(px(1)).

(i) In particular, if we let N ~ Poi,_in (ii), then @y (t) = exp(A(px (t) — 1)).

Proof (i) Define v, = Zzzl DPikik. By the linearity of the integral, ¢,, =
Zzzl Pk ®Pu, - By assumption, i = w-lim,,_, o0 v, hence also ¢, (1) = limy, . o0 @y, (1).
(ii) Clearly,

o
goY(t) — ZP[N — n]E[el'<l,X1+‘..+X,,)]
n=0

= ZP[N =nlox®)" = fn(e@®)).

n=0
(iii) In this special case, fy (z) = @D for z € C with |z] < I. O
Example 15.15 Let n € N, and assume that the points 0 =aqp <aj < ... <a, and

1=yp>y1>...>y, =0 are given. Let ¢ : R — [0, 00) have the properties
that

e p(ay) = yi for all k =0,...,n and ¢ is linearly interpolated between the
points a,
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~+

—ay —as —a2 —ai a1 az as aq

Fig. 15.1 The characteristic function ¢ from Example 15.15 with n =4

e ¢(x)=0 for |x| > a,, and
e ¢ iseven (thatis, p(x) = @(—x)).

Assume in addition that the y; are chosen such that ¢ is convex on [0, 0o0). This is
equivalent to the condition that m| < mj < ... <m, <0, where my := % i
the slope on the kth interval. We want to show that ¢ is the characteristic function
of a probability measure p € M (R).

Define py = ax(mg41 —my) fork=1,...,n.

Let ux € M (R) be the distribution on R with density 1 1=5%@T) By Theo-

T agx? :
rem 15.12, ju; has the characteristic function ¢, (1) = (1 — %)4' The characteristic

function ¢, of p:= }_, pxux is then

ou® =" pe(1—1rl/ar)".

k=1

This is a continuous, symmetric, real function with ¢, (0) = 1. It is linear on each
of the intervals [ax—1, ax]. See Fig. 15.1 for an example with n = 4. By partial
summation, forall k =1, ..., n (since m,4+; =0),

n + n
pular) =Y ar(ms1 — mk)(l - Z—i) =Y (ax — a) (mes1 — my)
k=l

k=1

=[(an — apmuy1 = (@ — apm;] = Y (ax — ax—1)mi
k=Il+1

=— > k—w-1) =y =0@).

k=I+1

Hence ¢, = ¢. O
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Example 15.16 Define the function ¢ : R — [0, 1] for ¢t € [—m, ) by ¢(t) =
1 — 2|t|/m, and assume ¢ is periodic (with period 2m). By the discrete Fourier
inversion formula (Theorem 15.10), ¢ is the characteristic function of the probabil-
ity measure u € M (Z) with u({x}) = 27)~! ffn cos(tx)¢(t)dt. In fact, in order
that i be a measure (not only a signed measure), we still have to show that all of
the masses w({x}) are nonnegative. Clearly, u({0}) = 0. For x € Z \ {0}, use partial
integration to compute the integral,

/ﬂ cos(tx)p(t)dt = 2/‘7r cos(tx)(1 —2t/m)dt
0

—TT
4 2\ . 4 . 4 (T .
=—(1—-—)sin(Tx) — —sin(0) + —/ sin(zx) dt
T X X Jo

X
4
= m(l — COS(JT)C)).

Summing up, we have

#, if x is odd,

M({X}) - [O else.

Since u(Z) = ¢(0) = 1, u is indeed a probability measure. O

Example 15.17 Define the function ¥ : R — [0, 1] for r € [-7/2,7/2) by ¥ (¢) =
1 —2]t|/m. Assume  is periodic with period 7. If ¢ is the characteristic function of
the measure u from the previous example, then clearly ¥ (¢) = |¢(¢)|. On the other
hand, ¥ (1) = § + J¢(2t). By Theorem 15.14 and Lemma 15.11(ii), we infer that y
is the characteristic function of the measure v with v(A) = %SO(A) + %M(A /2) for
A C R. Hence,

5, ifx=0,
v({(x}) =1 2=, if§€Zisodd,
0, else. %

Example 15.18 Let ¢(t) = (1 — 2|t|/m)™ be the characteristic function of the dis-
tribution “N.N.” from Theorem 15.12 (with a = 7/2) and let v be the characteris-
tic function from the preceding example. Note that ¢(t) = v (¢) for |¢| < /2 and
@(t) = 0 for |t| > 7/2; hence ¢*> = ¢ - . Now let X,Y, Z be independent real
random variables with characteristic functions ¢y = ¢y = ¢ and ¢z = ¥. Then

OxQy = ¢x@z; hence X +Y D X + Z. However, the distributions of Y and Z do
not coincide. O

Exercise 15.2.1 Let ¢ be the characteristic function of the d-dimensional random
variable X. Assume that ¢(¢) = 1 for some ¢ # 0. Show that P[X € H;] = 1, where
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H, = {x eR?: (x,t) € ZﬂZ}
={y+z-Q2nt/lItl3) :z € Z, y e R with (y,1) = 0}.
Infer that ¢(t +5) = ¢(s) forall s € R9.

Exercise 15.2.2 Show that there are real random variables X, X’ and Y, Y’ with the
properties (i) X DX andy 2 Y’, (ii) X’ and Y’ are independent, (iii) X + Y 2
X’ +Y’,and (iv) X and Y are not independent.

Exercise 15.2.3 Let X be a real random variable with characteristic function ¢.
X is called lattice distributed if there are a,d € R such that P[X € a +dZ] = 1.
Show that X is lattice distributed if and only if there exists a u % 0 such that

lp@)| =1.

Exercise 15.2.4 Let X be a real random variable with characteristic function ¢.
Assume that there is a sequence (f,),en of real numbers such that |#,| | 0 and
lo(t,)| = 1 for any n. Show that there exists a b € R such that X = b almost surely.
If in addition, ¢(z,) = 1 for all n, then X = 0 almost surely.

15.3 Lévy’s Continuity Theorem

The main statement of this section is Lévy’s continuity theorem (Theorem 15.23).
Roughly speaking, it says that a sequence of characteristic functions converges
pointwise to a continuous function if and only if the limiting function is a charac-
teristic function and the corresponding probability measures converge weakly. We
prepare for the proof of this theorem by assembling some analytic tools.

Lemma 15.19 Let u € M (RY) with characteristic function ¢. Then
lo(t) — p(s)|* <2(1 —=Re(p(t —s))) foralls,t R

Proof By the Cauchy—Schwarz inequality,

2
o) —p)|* = ‘ fR e — !0 u(d)

2

/d(ei([—s,x) _ 1)€i<s’x>ﬂ(dx)
R

< |ei<t—s,x) _ 1|2;,L(dx) / |ei(s,x>|2'u(dx)
Rd R4

— \/Rd(ei(t—s,x) _ 1)(e—i(t—s,x) _ l)u(dx)

=2(1 —Re(p(t —9))). O
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Definition 15.20 Let (E, d) be a metric space. A family (f;,i € I) of maps E — R
is called uniformly equicontinuous if, for every ¢ > 0, there exists a § > 0 such that
|fi(t) — fi(s)|<eforalli el andall s,t € E with d(s,t) <34.

Theorem 15.21 If F ¢ M (RY) is a tight family, then {ou : n € F} is uniformly
equicontinuous. In particular, every characteristic function is uniformly continuous.

Proof We have to show that, for every ¢ > 0, there exists a § > 0 such that, for all
reR? all s € R with |t — s| < & and all i € F, we have

lou () —pu(s)| <e.
As F is tight, there exists an N € N with u([—N, N1%) > 1 —¢?/6 forall u € F.

Furthermore, there exists a 8§ > 0 such that, for x € [-N, N]¢ and u € R? with
lu| <8, we have |1 — &' ¥ < 82/6. Hence we get for all u € F

1 —Re(pu(u)) 5/ 11— ei<”’x>|u(dx)
R4

IA

&2 ;
——i—/ 1 — ") | p(dx)
[=N.NJ

IA
o
1o

& n e &2
376 2
Thus, for [t —s| < 6 by Lemma 15.19, |¢, (t) — ¢ (s)| <e&. O

Lemma 15.22 Let (E, d) be a metric space and let f, f1, f2,... be maps E — R
with f, gy f pointwise. If (fu)neN is uniformly equicontinuous, then f is uni-
formly continuous and (f;)nen converges to f uniformly on compact sets; that is,
for every compact set K C E, we have

n—oo

sup| f(s) — f(s)| — 0.
seK

Proof Fix ¢ > 0, and choose § > 0 such that | f;,(#) — f,(s)| < ¢ for all n € N and
all s,t € E with d(s, t) < §. For these s, ¢, we thus have

[f @) = fO] = lim | fu(s) = fu(t)] <.

Hence, f is uniformly continuous.

Now let K C E be compact. As compact sets are totally bounded, there exists
an N € N and points t,...,ty € K with K C va=1 B;(t;). Choose ng € N large
enough that | f,,(#;) — f(#;))| <eforalli=1,..., N and n > ny.

Now let s € K and n > ng. Choose a t; with d(s, t;) < §. Then
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| fa($) = £ < | fa($) = fuD| + [ fu @) = FD| + | f 1) = f(9)] < 3.

As ¢ > 0 was arbitrary, we infer that f; = f uniformly on K. O

A map f: RY — R is called partially continuous at x = (x1,...,xq) if, for
any i = 1,...,d, the map y; — f(x1,...,Xi—1, Vi, Xi+1,--.,Xq) 1S continuous at
Yi =Xi.

Theorem 15.23 (Lévy’s continuity theorem) Let P, P(, P>, ... € M, (RYY with
characteristic functions ¢, @1, @2, . ...

1) If P =w-limy,_, o Py, then ¢, = @ uniformly on compact sets.

@Gi) If ¢n = f pointwise for some f :R? — C that is partially continuous
at 0, then there exists a probability measure Q such that og = f and Q =
w-limy,—s 00 Py.

Proof (i) By the definition of weak convergence, we have ¢, = @ pointwise. As
the family (P,),en is tight, by Theorem 15.21, (¢, )nen is uniformly equicontinu-
ous. By Lemma 15.22, this implies uniform convergence on compact sets.

(i) By Theorem 13.34, it is enough to show that the sequence (P),eN is
tight. For this purpose, it suffices to show that, for every k = 1,...,n, the se-
quence (P,f),,eN of kth marginal distributions is tight. (Here P,’f = Pyom, 1, where
7 : R? — R is the projection on the kth coordinate.) Let ¢; be the kth unit vector
in R?. Then Ppk (t) = @ (teg) is the characteristic function of P,]f. By assumption,

Qpk = fx pointwise for some function f that is continuous at 0. We have thus
reduced the problem to the one-dimensional situation and will henceforth assume
d=1.

As ¢,(0) = 1forall n € N, we have f(0) = 1. Define the map / : R — [0, co) by
h(x) = 1—sin(x)/x for x # 0 and #(0) = 0. Clearly, 4 is continuously differentiable
on R. Itis easy to see that o := inf{i(x) : |[x| > 1} =1 —sin(1) > 0. Now, for K > 0,
compute (using Markov’s inequality and Fubini’s theorem)

Po(l—K. KT) <o / h(x/K) Py(dx)
[-K.K]¢

<a”! / h(x/K)P,(dx)
R

1
:a_]/(/ (1 —cos(tx/K))dt)Pn(dx)
R 0
1
:a’I/ </ (l—cos(tx/K))Pn(dx)) dt
0 R

1
=a—1/ (1 —Re(pa(t/K)))dt.
0
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Using dominated convergence, we conclude that

1
limsup P, ([—K, K1°) <o 'lim sup/ (1 —Re(pn(t/K)))dt
0

1
=o' / ( lim (1 — Re(gx (t/K)))) dt
0 n—0oo

1
=a_1/ (1 —Re(f(t/K)))dt.
0

As f is continuous and f(0) = 1, the last integral converges to 0 for K — ooc.
Hence (P,),en is tight. O

Applying Lévy’s continuity theorem to Example 15.15, we get a theorem of
Pdlya.

Theorem 15.24 (Pdlya) Let f : R — [0, 1] be continuous and even with
f(0) = 1. Assume that f is convex on [0, 00). Then f is the characteristic function
of a probability measure.

Proof Define f;, by f,(k/n) := f(k/n)fork =0, ..., n%, and assume f,, is linearly
interpolated between these points. Furthermore, let f,, be constant to the right of n
and for x <0, define f;,(x) = f,,(—x). This is an approximation of f on [0, co) by
convex and piecewise linear functions. By Example 15.15, every f; is a character-
istic function of a probability measure wu,. Clearly, f, = f pointwise; hence f
is the characteristic function of a probability measure y = w-lim, 5o t, on R. [J

Corollary 15.25 For everya € (0, 1] andr > 0, ¢y r(t) = e~ 111" is the character-
istic function of a symmetric probability measure |1, , on R.

Remark 15.26 In fact, ¢y, is a characteristic function for every o € (0, 2] (o =2
corresponds to the normal distribution), see Section 16.2. The distributions (i, are
the so-called a-stable distributions (see Definition 16.20): If X, X5, ..., X, are
independent and pq -distributed, then ¢x, 1+ +x, () = ox ()" = ¢x (n'/*r); hence

D
X +...+X,=n"2X,. O

The Stone—Weierstrall theorem implies that a characteristic function determines
a probability distribution uniquely. P6lya’s theorem gives a sufficient condition for
a symmetric real function to be a characteristic function. Clearly, that condition is
not necessary, as, for example, the normal distribution does not fulfill it. For general
education we present Bochner’s theorem that formulates a necessary and sufficient
condition for a function ¢ : R — C to be the characteristic function of a probability
measure.
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Definition 15.27 A function f : R¢ — C is called positive semidefinite if, for all
neN,als,... 1, eRY and all yq, ..., y, € C, we have

n
Z Yy f (e — 1) = 0,

k=1

in other words, if the matrix (f (tx — #;))k,1=1,....n 1S positive semidefinite.

Lemma 15.28 If © € M f(Rd) has characteristic function @, then ¢ is positive
semidefinite.

Proof We have

n n
> wdietc—tn) =Y Wi [ ¥ 1 (dx)

k=1 k,l=1

n
:f > e yei i p(dx)

k=1

n 2
Z ykeixtk
In the case d = 1, the following theorem goes back to Bochner (1932) [19].

u(dx) = 0.

k=1

Theorem 15.29 (Bochner) A continuous function ¢ : R — C is the characteris-
tic function of a probability distribution on R? if and only if ¢ is positive semidef-
inite and (0) = 1.

The statement still holds if R? is replaced by a locally compact Abelian group.

Proof For the case d = 1 see [19, Section 20, Theorem 23] or [54, Chapter XIX.2,
p. 622]. For the general case, see, e.g., [71, p. 293, Theorem 33.3]. O

Exercise 15.3.1 (Compare [50] and [4]) Show that there exist two exchangeable

sequences X = (X;)nen and Y = (¥)nen of real random variables with Py # Py
but such that

n n
Y xe2Y v forallneN. (15.4)
k=1 k=1
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Hint:

1

m and

(i) Define the characteristic functions (see Theorem 15.12) ¢ (¢) =
@2(t) = (1 —t/2)™. Use Pélya’s theorem to show that

e1(1), ifr] <1,
Y1) = .
@a(t), ifft]>1,

and
(@), ifft <1,

var= {<p1 0. il > 1,

are characteristic functions of probability distributions on R.

(ii) Define independent random variables X, ;, ¥, ;,n €N,i =1,2,and ©,,n € N
such that X, ; has characteristic function ¢;, Y, ; has characteristic function ;
and P[®, =1]=P[O, =—-1]= % Define X, = X9, and ¥,, =Y, o, . Show
that (15.4) holds.

(iii) Determine E[e!1X1112X2] and E[e!1Y1Hi02Y2] for £ = % and #, = 2. Conclude

that (X1, X») 2 (Y1, Y2) and thus Py # Py.

Exercise 15.3.2 Show that for any § > 0 and ¢ > 0, there is a C < oo such that for
any u € M1 (R) with characteristic function ¢, we have

n([-8.81°)<C /05(1 —Re(p(1))dt.

For €6 < 3 one can choose C = 12/8283.
Hint: Proceed as in the proof of Lévy’s continuity theorem.

Exercise 15.3.3 Let (11,,),en be a sequence of probability measures on R and de-
note by (¢n)neN the corresponding characteristic functions. Assume that

©n(t) "1 fort in a neighborhood of 0. Use Exercise 15.3.2 to show that

n—oo
Un —> 60-

15.4 Characteristic Functions and Moments

We want to study the connection between the moments of a real random variable X
and the derivatives of its characteristic function ¢y . We start with a simple lemma.

Lemma 15.30 Fort € R andn € N, we have

: s oyn—1 n
N it T
1! n—D! "~ n
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Proof As the nth derivative of ¢!’ has modulus 1, this follows by Taylor’s for-
mula. 0

Theorem 15.31 (Moments and differentiability) Let X be a real random variable
with characteristic function .

(1) IfE[|X|"] < oo, then ¢ is n-times continuously differentiable with derivatives
(p(k)(t) = E[(iX)kei’X] fork=0,....n

(i) In particular, ifE[Xz] < 00, then

@(t) =1+itE[X] — 5t PE[X?] + e(n)r?

with e(t) — 0 for t — 0.
(iii) Let h € R. Iflim;,— o Wiw =0, then, for every t € R,

[ N
o+ =) %E[e”XXk].

k=0

In particular, this holds if E[e/"X1] < co.

Proof (i) Fort e R,he R\ {0} and k € {1,...,n}, define

k—1
Yi(t,h,x)=k\h™ —k ltx( ih (lhx)l>

=0

Then

k—1 I
E[Ye(t. h, )] = kth ™ (W +h) — @) - ZE[ei’X(iX)l]%).

=1

If the limit @i () := lim,—. o E[Yx (¢, h, X)] exists, then ¢ is k-times differentiable at
t with o® (1) = @i (1).

However (by Lemma 15.30 with n = k + 1), Yi(¢, h, x) e (ix)ke'™ for all
x € R and (by Lemma 15.30 with n = k) |Yx(, h, x)| < |x|*. As E[|X|*] < oo by
assumption, the dominated convergence theorem implies

E[Yi(t, h, X)] —)E[(lX)k i1X] = ® ().

Applying the continuity lemma (Theorem 6.27) yields that ¢® is continuous.
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(i1) This is a direct consequence of (i).
(iii) By assumption,

n—1 .. k n
h ; h
ot +h)— k§ 0 %E[e”XXk] = E|E[Yn(t, h, X)||

n n
< EIXP e
n:

Corollary 15.32 (Method of moments) Let X be a real random variable with

1
a = limsup —E[|X|”]l/” <00
n—oo N
Then the characteristic function ¢ of X is analytic and the distribution of X is
uniquely determined by the moments E[X"], n € N. In particular, this holds if
E[¢'X1] < 00 for some t > 0.

Proof By Stirling’s formula,

1 _
lim —n"e ™ "V2nrn=1.
n—oo p!

Thus, for || < 1/(Ba),

limsupE[[X"] - [k" /n! = limsup~/2rn (E[|X|"]"""

n—oo n—o0

-|hl-e/n)"

<limsup~2mn(e/3)" =0.

n—o0

Hence the characteristic function can be expanded about any point ¢ € R in a power
series with radius of convergence at least 1/(3«). In particular, it is analytic and is
hence determined by the coefficients of its power series about r = 0; that is, by the
moments of X. 0

Example 15.33
(i) Let X ~ NW,z. Then, for every ¢ € R,

Be¥] = (2no?) " [ et g

—0Q
o0
=eut+t202/2(27[02)_1/2/ e—(x—ﬂ—t02)2/202 dx
—0oQ0

2.2
:euﬂrt /2 < 00.
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Hence the distribution of X is characterized by its moments. The character-
istic function ¢(t) = /M e=7°/2 that we get by the above calculation with ¢
replaced by iz is indeed analytic.

(i) Let X be exponentially distributed with parameter 6 > 0. Then, for ¢ € (0, 9),

© 0
E[e'x] = 0/ eFe % dx = T < 00.
0 _

Hence the distribution of X is characterized by its moments. The above calcula-
tion with ¢ replaced by it yields ¢(t) = 6/(6 — it), and this function is indeed
analytic. The fact that in the complex plane ¢ has a singularity at t = —if
implies that the power series of ¢ about 0 has radius of convergence 6. In par-
ticular, this implies that not all exponential moments are finite. This is reflected
by the above calculation that shows that, for > 6, the exponential moments
are infinite.

(iii) Let X be log-normally distributed (see Example 15.5). Then E[X"] = ¢/, In
particular, here o = oo. In fact, in Example 15.5, we saw that here the moments
do not determine the distribution of X.

(iv) If X takes values in No and if B := limsup,_, . E[X"]'/" < 1, then by
Hadamard’s criterion ¥y (z) := Y g P[X = k]zF < 0o for |z| < 1/B. In par-
ticular, the probability generating function X is characterized by its derivatives
w(") (1), n € N, and thus by the moments of X. Compare Theorem 3.2(iii). ¢

Theorem 15.34 Let X be a real random variable and let ¢ be its characteristic
function. Let n € N, and assume that ¢ is 2n-times differentiable at 0 with derivative
9@ (0). Then E[X*"] = (= 1)) (0) < c0.

Proof We carry out the proof by induction on n € Ny. For n = 0, the claim is triv-
ially true. Now, let n € N, and assume ¢ is 2n-times (not necessarily continuously)
differentiable at 0. Define u(¢#) = Re(¢(¢)). Then u is also 2n-times differentiable at
0and u®*~D(0)=0fork=1,...,n since u is even. Since ¢*" (0) exists, ¢>*~1
is continuous at 0 and ¢®*~V(¢) exists for all 7 € (—¢, ¢) for some & > 0. Further-
more, (p(k) exists in (—e¢, €) and is continuous on (—¢, ¢) forany k =0, ..., 2n — 2.
By Taylor’s formula, for every ¢ € (—¢, ¢),

| |2n71

u(t) — Zu(zk)(O) sup [u@ D (@r)|. (15.5)

(2k)" ~ (@n—=D!oeon
Define a continuous function f;,, : R — [0, 00) by f,,(0) =1 and

n—1 2k
Ju(x) = (=D"@2n)lx~2" |:005(x) — Z(_ )k 50

k=0

:| for x £ 0.
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By the induction hypothesis, E[X?] = u®(0) for all k =1,...,n — 1. Using
(15.5), we infer

2
E[£X)X*] <= sup [ D@0)] < galt)
1] o011
lu@=D (61)]
:=2n Su _—
0e(0,1] 0t]
Now Fatou’s lemma implies

E[ X% =E[ £,(0)X?"] < liminfE[ £, (t X)X *"
[X*"] =E[f(0)X™] < imin [t X)X*]

< liminf g, (1) = 2n]u®(0)| < oo.
t—

By Theorem 15.31, this implies E[X?"] = (—1)"u®" (0) = (—1)"¢? (0). O

Remark 15.35 For odd moments, the statement of the theorem may fail (see, e.g.,
Exercise 15.4.4 for the first moment). Indeed, ¢ is differentiable at 0 with derivative
im for some m € R if and only if xP[|X| > x] —> 0 and E[X1{x|<y}] —> m.
(See [54, Chapter XVII.2a, p. 565].) O

Exercise 15.4.1 Let X and Y be nonnegative random variables with

limsuplE[|X|”]]/” < 00, lim sup lE[|Y|”]1/" < 00,

n—oo N n—oo N
and
E[X"Y"]| =E[X"]E[Y"] forallm,n e Ny.

Show that X and Y are independent.
Hint: Consider the random variable Y with respect to the probability measure
X"P[-]/E[X™], and use Corollary 15.32 to show that

E[X"14(Y)]/E[X"] =P[Y € A] forall A € B(R) and m € Ny.

Now apply Corollary 15.32 to the random variable X with respect to the probability
measure P[- | Y € A].

Exercise 15.4.2 Let r,s > 0 and let Z ~ I'| 45 and B ~ B, be independent (see
Example 1.107). Use Exercise 15.4.1 to show that the random variables X := BZ
and Y := (1 — B)Z are independent with X ~ [ , and ¥ ~ I 5.

Exercise 15.4.3 Show that, for « > 2, the function ¢, (1) = e~ 1" is not a charac-
teristic function.

Hint: Assume the contrary and show that the corresponding random variable
would have variance zero.
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Exercise 15.4.4 Let X, X», ... be i.i.d. real random variables with characteristic
function ¢. Show the following.

(1) If ¢ is differentiable at 0, then ¢’(0) = im for some m € R.

(ii) ¢ is differentiable at O with ¢’(0) = im if and only if (X1 +...+X,)/n S m
in probability.

(i) Assume that ¢ is differentiable at 0 and that X| > O almost surely. Then
E(X{]=—-i¢'(0) < co.
Hint: Use (ii) and the law of large numbers.

(iv) The distribution of X| can be chosen such that ¢ is differentiable at 0 but
E[|X1]]=oco.

Exercise 15.4.5 Let X, X», ... be real random variables. For r > 0 let M, (X)) =
E[|X,|"] be the rth absolute moment. For k € N let m;(X,) = E[X,’j] be the kth
moment if My (X,) < oo.

(i) Assume that X is a real random variable and that (X,,);cn is a subsequence
such that

PXn, lﬁf Px weakly.

Assume further that there is an r > 0 such that sup, .y M, (X,) < 0co. Show
that for any k € NN (0, r) and s € (0, r) we have M (X) < oo as well as

My (X)) 23 My(X) and  my(Xp) =S me(X).
(i) Assume that for any k € N the limit
my = lim mg(X,)
n—0oo

exists and is finite (note that finitely many of the my (X,) may be undefined for
any k). Show that there exists a real random variable X with my = m(X) for
all k € N and a subsequence (X, );cN such that

PXn, lﬁf Px weakly.

(iii) Show the theorem of Fréchet—Shohat: If in (ii) the distribution of X is deter-
mined by its moments my (X), k € N (see Corollary 15.32), then

PX,, ni;o PX weakly.

Exercise 15.4.6 Let X, X5, ... bei.i.d. real random variables with E[X;] =0 and
E[|X|¥] < oo forall k € N.

(i) Show that there exist finite numbers (di)ren (depending on the distribution
Py, ) such that for any k, n € N we have

[E[(X1+...+ X)* ]| < dyin*™!
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and

!
E[(X)+...+ X)*] - (zzk—];)!'E[xf]"nk < dyen* 1.

Hint: Expand the bracket expression, sort the terms by the different mixed
moments and compute by combinatorial means the number of each type of
summand. The number of summands of the type E[X 121 X Izk] (for different
l1, ..., lx) is of particular importance.

(i) Let Y ~ MNp,1. Use Theorem 15.31(i) to show that for any k € N we have

_ (2k)!
T kg

(iii) Let S = (X1 + ...+ X,)/+/nVar[X]. Use Exercise 15.4.5 to infer the state-
ment of the central limit theorem (compare Theorem 15.37)

E[r*71]=0 and E[r¥]

n—o0

Pg: —> No.1  weakly.

15.5 The Central Limit Theorem

In the strong law of large numbers, we saw that, for large », the order of magnitude
of the sum S, = X1 + ...+ X,, of i.i.d. integrable random variables is n - E[X]. Of
course, for any n, the actual value of §,, will sometimes be smaller than n - E[ X ]
and sometimes larger. In the central limit theorem (CLT), we study the size and
shape of the typical fluctuations around n - E[X1] in the case where the X; have a

finite variance.
We prepare for the proof of the CLT with a lemma.

Lemma 15.36 Ler X1, X5, ... be i.i.d. real random variables with E[X1] = u and
Var[X;] =02 € (0, 00). Let

1 n
Spi= = > (Xe—n)
Vno?
be the normalized nth partial sum. Then
lim @g+(t) = e_l2/2 forallt e R.
n—oo "
Proof Let ¢ = ¢x,_,,. Then, by Theorem 15.31(ii),
2
o) =1— %tz + e,

where the error term £(¢) goes to 0 if #+ — 0. By Lemma 15.11(iv) and (ii),

t n
¢Sn() w( l’l0'2>
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<l 12 t
nll— — — -

2 n—o00 2
Now (1 — )" — ™' /2 and

1 l2 n t n
2n ¢ nol

() =0
n—s:le| — .
~ no?| \Vno?
(Note that |u" — v"*| < |u — v| - n - max(|u|, |v|)"~! for all u, v € C.) O

Theorem 15.37 (Central limit theorem (CLT)) Let X, X», ... be i.i.d. real ran-
dom variables with u := E[X] € R and o%:=Var[X;] e (0, 00). For n € N, let
Ski= A" (X; — ). Then

o2n

n—oo

Ps: — No,1  weakly.

For —00 < a < b < +00, we have lim,_,» P[S} € [a, b]] = \/Lz_n fab =12 dx.

Proof By Lemma 15.36 and Lévy’s continuity theorem (Theorem 15.23), (Ps:)

converges to the distribution with characteristic function ¢(t) = e 12, By Theo-
rem 15.12(i), this is Mo i. The additional claim follows by the Portemanteau theo-
rem (Theorem 13.16) since Ny | has a density; hence Ny 1(9[a, b]) = 0. O

Remark 15.38 If we prefer to avoid the continuity theorem, we could argue as fol-
lows: For every K > 0 and n € N, we have P[|S}| > K] < Var[S;z"]/K2 =1/K?
hence the sequence (Pgx) is tight. As characteristic functions determine distribu-
tions, the claim follows by Theorem 13.34. O

We want to weaken the assumption in Theorem 15.37 that the random variables
are identically distributed. In fact, we can even take a different set of summands
for every n. The essential assumptions are that the summands are independent, each
summand contributes only a little to the sum and the sum is centered and has vari-
ance 1.

Definition 15.39 Foreveryn e N,letk, € Nandlet X, 1, ..., X, , be real random
variables. We say that (X, ;) = (X,;,[ =1,...,k,,n € N) is an array of random
variables. Its row sum is denoted by S, = X, 1 + ...+ X, . The array is called

e independent if, for every n € N, the family (X, ;);=1,... x, is independent,
e centered if X, | € Ll (P) and E[X,, ;] =0 for all n and [, and
o normed if X, ; € L2(P) and Y} Var[X,, ;] = 1 forall n € N.

A centered array is called a null array if its individual components are asymptoti-
cally negligible in the sense that, for all ¢ > 0,

lim max P[|X,;|>¢]=0.

n—>00 1<i<ky,
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Definition 15.40 A centered array of random variables (X, ;) with X, ; € L2(P)

foreveryn e Nand!/ =1, ..., k, is said to satisfy the Lindeberg condition if, for all
>0,
1 &
Ly(e) = Var(S] » E[Xn’lﬂ{x’a]»zvﬂ[sn]}] —0. (15.6)

=1
The array fulfills the Lyapunov condition if there exists a § > 0 such that

k

: - 2487 _
i S e L H ) =0 157

Lemma 15.41 The Lyapunov condition implies the Lindeberg condition.

Proof For x € R, we have x?Ljy~¢) < (6") 0 |x [P0y )mery < ()70 |x >, Let-

ting &’ := e/ Var[S, ], we get
k

1 n
L < - - El1Xx 246 )
n(€) <e Var[Sn]1+(5/2) ; [| nil ] B

Example 15.42 Let (Y,),en be ii.d. with E[Y,] =0 and Var[Y,] = 1. Let k, =n

and X,; = % Then (X,;) is independent, centered and normed. Clearly,

P[|X, | > el =P[|Y1| > en] = 0; hence (X,,) is a null array. Furthermore,

L,(e)= E[lejl{lyl ‘>€ﬁ}] = 0; hence (X, ;) satisfies the Lindeberg condition.
If Y; € £23(P) for some § > 0, then

n
S E[1X, P = n Ry 2] 0,
=1

In this case, (X, ) also satisfies the Lyapunov condition. O

The following theorem is due to Lindeberg (1922, see [108]) for the implication
(i)==(ii) and is attributed to Feller (1935 and 1937, see [51, 52]) for the converse
implication (ii)==>(i). As most applications only need (i)==>(ii), we only prove that
implication. For a proof of (ii))==(i) see, e.g., [154, Theorem II1.4.3].

Theorem 15.43 (Central limit theorem of Lindeberg—Feller) Let (X, ;) be an in-
dependent centered and normed array of real random variables. For every n € N,
let Sy = Xn1 + ...+ Xnk,. Then the following are equivalent.

(i) The Lindeberg condition holds.

(i) (Xn,) is a null array and Pg, "2 Mot

We prepare for the proof of Lindeberg’s theorem with a couple of lemmas.
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Lemma 15.44 [f (i) of Theorem 15.43 holds, then (X, 1) is a null array.

Proof For ¢ > 0, by Chebyshev’s inequality,

kn kn
D PlIXuil > el <e72 Y E[X] 1x, o61] = La(e) =3 0.

=1 =1 O]

In the following, ¢, ; and ¢, will always denote the characteristic functions of
X, and S,.

Lemma 15.45 Foreveryn e Nandt € R, we have

kn 2

Yt =gnin)] = %

=1

Proof For every x € R, we have |e/* — 1 —itx| < % Since E[X,, ;] =0,

kn

n
S loni ) = 1] = 3 [E[e¥r — 1]

=1 =1
kil
<> E[|e" ¥ —itX, = 1|]+ |Elit X, 1]
=1
kil

t2 5 12
<> SEX]=7
=1
Lemma 15.46 If (i) of Theorem 15.43 holds, then

lim
n—0o0

kn
log ¢ (1) — ZE[e”X"J — 1]’ =0.
=1

Proof Let m, :=max;=1,._k, |¢n,1(t) — 1|. Note that, for all ¢ > 0,

,,,,,

2,2
itx_1|§ 2x° /e, ?f|x|>8,
&t, if |x| <e.

This implies

|@na(t) — 1] <E[|e"Xn — 1|1y x, 1<) ] + E[| ¥ — 1]Ly1x, 1561 ]

<et +2e2E[X; Lqix, e} ]-
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Hence, for all ¢ > 0,

limsupm, <limsup(et +2e %Ly (e)) = et,
n—oo n—oo
and thus lim,,_, oo m,, = 0. Now |log(1 +x)—x| < x2 for all x € C with x| < 5. 1f
n is sufficiently large that m, < 5, then

ko
loggn (1) = Y E[e"*n —1]| = — B[l 1]

=1

kn

Z%z(t)—l

kn

<mu Y | o) = 1|

=1

=

mut>  (by Lemma 15.45)

N =

— 0 forn— oo. O

The fundamental trick of the proof, which is worth remembering, consists in the
introduction of the function

14+x2 (ei[x — 1= itx ) if x 0
fi =1 % E (15.8)
—%, ifx=0,

and the measures p,, v, € Ms(R),n €N,
kn 2

kn
v, (dx) := szPXn’l(dx) and w,(dx):= Z

=1 =1

1 Tx 2P)(”l(d)c)

Lemma 1547 Foreveryt € R, we have f; € Cp(R).

Proof For all |x| > 1, we have 1;‘2 < 2: hence

1+x2> <4420

| fio)] < 2<|e”xy
We have to show that f; is continuous at 0. By Taylor’s formula (Lemma 15.30), we
get

o . 252
=1+itx — - + R(tx),
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where the error term is bounded by |R(x)| < %ltx |>. Hence, for fixed 1,

lim £ = fim (i1 — a2 + R(tx) i
1m X) = m —=\1Ix —_ _— X = ——.
0x—0"" 0#£x—0 x2 2

1+x 2

Lemma 15.48 If (i) of Theorem 15.43 holds, then v, '—> 8¢ weakly.

Proof For every n € N, we have v, € M| (R) since

ko o
vy (R) = foszm, (dx) = ZVar[xn,l] =1.
=1 =1

. n— oo n—>0oo
However, for ¢ > 0, we have v, ((—¢, £)°) = L,,(¢) — 0; hence v, — J.

Lemma 15.49 If (i) of Theorem 15.43 holds, then

n—oo 1

1 2
/ft(x)ﬂn(dX)—i-it/—,un(dx) =%
X 2

Proof Since (x — f;(x)/(1 +x2)) € Cp(R), by Lemma 15.48,

2

/ Fr (O (dx) = / fiD T 2vn<czx)”ii°ft(0) ’2

Now (x > x/(1 + x2)) € Cp(R) and E[X,, ;] =0 for all n and [/; hence

[z = ZE[HnXl ] ZE[HnXl _X"’l]

=1 =1

__ZE[X 1+X }

X
:—/H—xzvn(dx) 0.
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O

Proof of Theorem 15.43 “(i)==(ii)” We have to show that lim,,_, o, log ¢, () = —%

for every t € R. By Lemma 15.46, this is equivalent to

kn ¢ 2

Jim > (om0 = 1) ==

=1

ilx_l_ ztx

Now fl Tix2

=14 . Hence
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kn kn X2 i[)C
E((pn’l(t) ~1)= ;/(ft(x)—l e ti o +x2)PXn,l(d)C)
. 1
:[ﬁdﬂn+ll/;lln(dx)
N
— - (by Lemma 15.49). O

As an application of the Lindeberg—Feller theorem, we give the so-called three-
series theorem, which is due to Kolmogorov.

Theorem 15.50 (Kolmogorov’s three-series theorem) Let X1, X2, ... be indepen-
dent real random variables. Let K > 0 and Y,, := X, 1(x, <k} for all n e N.
The series Y oo X, converges almost surely if and only if each of the following
three conditions holds:

@ 352, PlIXy| > K] < 0.

(i) Y02 E[Yy,] converges.
(iii) Y 02, Var[Y,] < co.

Proof “<=" Assume that (i), (ii) and (iii) hold. By Exercise 7.1.1, since (iii) holds,
the series Z;’lozl(Yn — E[Y,]) converges a.s. As (ii) holds, Zzozl Y, converges al-
most surely. By the Borel-Cantelli lemma, there exists an N = N(w) such that
|X,| < K;hence X, =Y, foralln > N.Hence Y oo | X, = Zfl\:]l Xn+ Yoy Ya
converges a.s.

“=—=" Assume that Z;jo:] X, converges a.s. Clearly, this implies (i) (otherwise,
by the Borel-Cantelli lemma, | X,| > K infinitely often, contradicting the assump-
tion).

We assume that (iii) does not hold and produce a contradiction. To this end, let
o} = Y i—; Var[Y;] and define an array (X, ;;[=1,...,n,n e N) by X,,; = (¥; —
E[Y;])/oy. This array is centered and normed. Since o,% = oo, for every ¢ > 0 and
for sufficiently large n € N, we have 2K < g0,,; thus | X, ;| <eforalll=1,...,n.
This implies L, (¢) e 0, where L,(g) = Z?:l E[szl 1LiX,12¢}] is the quantity
of the Lindeberg condition (see (15.6)). By the Lindebe}g—Feller theorem, we then
get Sy =Xy1+ ...+ Xun = No.1. As shown in the first part of this proof,
almost sure convergence of Y - | X,, and (i) imply that

o0
Z Y, converges almost surely. (15.9)
n=1

In particular, 7, := (Y1 + ...+ Yy)/on "=20. Thus, by Slutzky’s theorem, we also

n—oo

have (S, — T,,) = MNj.1. On the other hand, for all n € N, the difference S,, — T,
is deterministic, contradicting the assumption that (iii) does not hold.
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Now that we have established (iii), by Exercise 7.1.1, we see that Z;’;l Y, —
E[Y,]) converges almost surely. Together with (15.9), we conclude (ii). O

As a supplement, we cite a statement about the speed of convergence in the cen-
tral limit theorem (see, e.g., [ 154, Chapter III, Section 11] for a proof). With different
bounds (instead of 0.8), the statement was found independently by Berry [10] and
Esseen [46].

Theorem 15.51 (Berry—Esseen) Let X1, X2, ... be independent and identically
distributed with E[X,] = 0, E[X?] = 02 € (0, 00) and y = E[|X]}] < oo. Let

Sx= ﬁ(Xl +...+X,) and let @ : x —~ \/% ffoo e~"12dt be the distribution
function of the standard normal distribution. Then, for alln € N,
0.8y
P[Si<x|—o < :
uplPls =] -0l = 55

Example 15.52 Let o € (0, 1). Consider the distribution i, on R with density

|
fa0) = 5—Ix] O 1y

o
Let X1, X3, ..., be i.i.d. random variables with distribution py. Then E[X{] =0
and 62 := Var[X ] = 1/(1 — 2a) < 00 if @ < 1/2. Let F,, denote the distribution
function of S} and Fg the distribution function of the standard normal distribution.

The closer F;,, and Fg are, the closer lie the points (F(;l(t), Fn_1 (1)) on the di-
agonal {(x,x) : x € R}. A graphical representation of the points (Fg ! ), an1 1),
t € R is called Q-Q-plot or quantile-quantile-plot.

As o« approaches 1/2, the distribution py has less and less moments. Hence we
expect the convergence in the central limit theorem to be slower. For fixed n, we
expect the deviation of F,, from Fg to be larger for larger . The graphs in Fig. 15.2
illustrate this. O

Exercise 15.5.1 The argument of Remark 15.38 is more direct than the argument
with Lévy’s continuity theorem but is less robust: Give a sequence X1, X», ... of
independent real random variables with E[| X},|] = oo for all n € N but such that

X1+...+Xn n—oo
- - EEEEN
N

Exercise 15.5.2 Let Yy, Y,,... be iid. with E[Y;] = 0 and E[Yl.z] = 1. Let
Z1,7Z3, ... be independent random variables (and independent of Y1, Y3, ...) with

NO,l-

1

. L1 1
P[Z; =i]=P[Z;=—i]= 5(1 —P[Z;=0])= 37

Fori,ne N, define X; :=Y; +Z;and S, = X1 + ...+ X,,.
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44 Fip(t) 44 Fip(t)
2 24
0 0
-2 o]
-4 -4
F;l(t) Fyl(t)
4 2 0 2 4 4 2 0 2 4
a=04 o =048

Fig. 15.2 Q-Q-plots for STOO from Example 15.52 with o = 0.4 (left) and o = 0.48 (right). The
abscissa shows the quantiles of the standard normal distribution. For convenience, also the diago-
nal is drawn

n—oo

Show that n~1/2s, == MNo.1 but that (X;);en does not satisfy the Lindeberg
condition.
Hint: Do not try a direct computation!

Exercise 15.5.3 Let X, X», ... be i.i.d. random variables with density

1
fx)= WJIR\[—I,I](X)-

Then E[Xlz] = 00 but there are numbers A, As, ..., such that

Xi1+...+ Xy nooo
. TR —

Noi.
A, 0,1

Determine one such sequence (A, ),en explicitly.

15.6 Multidimensional Central Limit Theorem

We come to a multidimensional version of the CLT.

Definition 15.53 Let C be a (strictly) positive definite symmetric real d x d matrix
and let € R?. A random vector X = (X1,..., X7 is called d-dimensional nor-
mally distributed with expectation u and covariance matrix C if X has the density

1
Su.clx) = ~fx—p,C7Nx - u))) (15.10)

1
J@m)ddet(C) CXP(_ 2

for x € RY. In this case, we write X ~ Nuc.
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Theorem 15.54 Let ;1 € R? and let C be a real positive definite symmetric d x d
matrix. If X ~ N, c, then the following statements hold.

() E[Xil=w; foralli=1,...,d.
(ii) COV[Xi,Xj] =Ci,jf0rall i,j= 1, ...,d.
(i) (A, X) ~ N, 0.0 for every r e RY.
(iv) ¢(t) :=E[{X)] = eift) g=3(1.C1) for everyt e RY.

Moreover, X ~ N, ¢ <= (iil)) <= (iv).

Proof (1) and (ii) follow by simple computations. The same is true for (iii) and (iv).
The implication (iii)==>(iv) is straightforward. The family

{fiixr A eRd}

is a separating class for M (R?) by the Stone—WeierstraB theorem. Hence ¢ deter-
mines the distribution of X uniquely. 0

Remark 15.55 For one-dimensional normal distributions, it is natural to define the
degenerate normal distribution by N, o := §,,. For the multidimensional situation,
there are various possibilities for degeneracy depending on the size of the kernel
of C.If C is only positive semidefinite (and symmetric, of course) We define NV, ¢

as that distribution on R” with characteristic function ¢(r) = ¢/ e™2 3 (,Ct ), O

Theorem 15.56 (Cramér—Wold device) Let X, = (Xp.1,..., Xna)T € R%, neN,
be random vectors. Then, the following are equivalent:

n—oo

(i) There is a random vector X such that X,, — X.
(ii) Forany A € R?, there is a random variable X* such that (), X,,)

n—oo

X*.

If () and (ii) hold, then X)‘ (A, X) forall » e RY,

Proof Assume (i). Let » € R? and s € R. The map R? — C, x > ¢***} is con-
tinuous and bounded; hence we have E[e!s(*+Xn)] e E[¢!$*X)]. Thus (ii) holds
with X* := (&, X).

Now assume (ii). Then (P, ,)nen is tight foreveryl =1, ..., d. Hence (Px, )neN
is tight and thus relatively sequentially compact (Prohorov’s theorem). For any weak
limit point Q for (Px,),en and for any A € R4, we have

/Q(dx)e =E[X].

Hence the limit point Q is unique and thus (Px,),en converges weakly to Q. That
is, (i) holds.
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If (ii) holds, then the distributions of the limiting random variables X* are
uniquely determined and by what we have shown already, X* = (A, X) is one pos-

sible choice. Thus X* 2 (x, X). O

Theorem 15.57 (Central limit theorem in RY) Let (X)neN be iid. random
vectors with E[X,, ;1 =0 and E[X,;X, ;1= Cj, i,j=1,...,d. Let S; :=

Xi+..4+X,
o Then

Pg: e No.c  weakly.

Proof Let » € R?. Define X* = (A, X,), S} = (A, S}) and Sx ~ No.c. Then
E[X ,kl] =0 and Var[X ,)1‘] = (A, CA). By the one-dimensional central limit theorem,

we have PS’,} = M, o,cny =P s,y By Theorem 15.56, this yields the claim. [J

Exercise 15.6.1 Let x € R, let C be a symmetric positive semidefinite real d x d
matrix and let X ~ N, u,c (in the sense of Remark 15.55). Show that AX ~
NAM'ACAT for every m € N and every real m x d matrix A.

Exercise 15.6.2 (Cholesky factorization) Let C be a positive definite symmetric
real d x d matrix. Then there exists a real d x d matrix A = (ay;) with A- AT = C.
The matrix A can be chosen to be lower triangular. Let W := (W1, ..., W), where
Wi, ..., Wy are independent and Ny | -distributed. Define X := AW + u. Show that
X ~N, w,C-



Chapter 16
Infinitely Divisible Distributions

For every n, the normal distribution /\/'l 1.2 18 the nth convolution power of a prob-
ability measure (namely, of /\/u /n,a2/n)- This property is called infinite divisibility
and is shared by other probability distributions such as the Poisson distribution and
the Gamma distribution. In the first section, we study which probability measures
on R are infinitely divisible and give an exhaustive description of this class of dis-
tributions by means of the Lévy—Khinchin formula.

Unlike the Poisson distribution, the normal distribution is the limit of rescaled
sums of i.i.d. random variables (central limit theorem). In the second section, we
investigate briefly which subclass of the infinitely divisible measures on R shares
this property.

16.1 Lévy-Khinchin Formula

For the sake of brevity, in this section, we use the shorthand “CFP” for “character-
istic function of a probability measure on R”.

Definition 16.1 A measure u € M| (R) is called infinitely divisible if, for every
n €N, there is a u, € M;(R) such that ©*" = u. Analogously, a CFP ¢ is called

infinitely divisible if, for every n € N, there is a CFP ¢, such that ¢ = ¢]}. A real
random variable X is called infinitely divisible if, for every n € N, there exist i.i.d.

random variables X, 1, ..., X, , such that X 2 Xp1+...+Xnn-

Manifestly, all three notions of infinite divisibility are equivalent, and we will use
them synonymously. Note that the uniqueness of w, and ¢,, respectively, is by no
means evident. Indeed, n-fold divisibility alone does not imply uniqueness of the
nth convolution root ;*1/" := 1, or of ¢,, respectively. As an example for even 7,
choose a real-valued CFP ¢ for which |¢| # ¢ is also a CFP (see Examples 15.16
and 15.17). Then ¢" = |p|" is n-fold divisible; however, the factors are not unique.

By virtue of Lévy’s continuity theorem, one can show that (see Exercise 16.1.1)
@(t) #0 for all ¢t € R if ¢ is infinitely divisible. The probabilistic meaning of this
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fact is that as a continuous function log(¢(#)) is uniquely defined and thus there
exists only one continuous function ¢!/ = exp(log(¢)/n). The nth convolution
roots are thus unique if the distribution is infinitely divisible.

Example 16.2

(1) §y is infinitely divisible with 8;‘7}1 =4, forevery n € N.

(ii) The normal distribution is infinitely divisible with A/, jo = N*" .

> m/n,c%/n

(iii) The Cauchy distribution Cau, with density x > (am)™! (1 + (x /51)2)_1 is in-
finitely divisible with Cau, = Cau’, . Indeed, Cau, has CFP @,(t) = e—altl,
hence wZ/n =@,.

(iv) Every symmetric stable distribution with index o € (0, 2] and scale param-
eter y > 0 (that is, the distribution with CFP g, , () = ¢~17I") is infinitely
divisible. Indeed, (pzy J1/a = Pa,y- (To be precise, we have shown only for
a € (0, 1] (in Corollary 15.25) and for o = 2 (normal distribution) that ¢y,
is in fact a CFP. In Section 16.2, we will show that this is true for all « € (0, 2].
For a > 2, ¢4, is not a CFP, see Exercise 15.4.3.)

(v) The Gamma distribution Iy, with CFP ¢y ,(t) = exp(ri/g(t)), where
Yo (t) =log(l —it/6), is infinitely divisible with Iy , = Fé’j’;/n.

(vi) The Poisson distribution is infinitely divisible with Poi, = Poi;t? -

(vii) The negative binomial distribution b;p({k}) = (_kr)(—l)kp’(l — p)¥, k e Ny,
with parameters r > 0 and p € (0, 1), is infinitely divisible with b;p =
(b;/n’p)*". Indeed, ¢, , (1) = e"Vr D where

¥p(6) =log(p) — log(1 — (1 — p)e™).

(viii) Let X and Y be independent with X NNO,UZ andY ~ Iy ,, where 02,0,r>0.
It can be shown that the random variable Z := X/+/Y is infinitely divisi-
ble (see [65] or [131]). In particular, Student’s z-distribution with £ € N de-
grees of freedom is infinitely divisible (this is the case where o = 1 and
0=r=k/2).

(ix) The binomial distribution b, , with parameters n € N and p € (0, 1) is not
infinitely divisible (why?).

(x) Somewhat more generally, there is no nontrivial infinitely divisible distribu-
tion that is concentrated on a bounded interval. O

A main goal of this section is to show that every infinitely divisible distribution can
be composed of three generic ones:

e the Dirac measures 5, with x € R,
o the normal distributions \V,, ;> with u € R and 6 > 0, and
o (limits of) convolutions of Poisson distributions.

As convolutions of Poisson distributions play a special role, we will consider them
separately.



16.1 Lévy—Khinchin Formula 333

If v e M{(R) with CFP ¢, and if X > 0, then one can easily check that ¢(t) =
exp(A(gpy(t) — 1)) is the CFP of u) = Z}:io e ;‘(, v**. Hence, formally we can
write iy, = e**(V=%) Indeed, u;, is infinitely divisible with ) = yj?n We want to
combine the two parameters A and v into one parameter Av. For v € M ¢(R), we can
define v*" = v(R)" (v/v(R))*" (and v*" = 0 if v = 0). In both cases, let v*0 := 5.
Hence we make the following definition.

Definition 16.3 The compound Poisson distribution with intensity measure v €
M (R) is the following probability measure on R:

(w=v(R)So) ® NV

: w ,k(v—r 0) «— —V

CPoi, :=¢ =e E -
n=0

The CFP of CPoi, is given by

ou(t) = exp(/(ei'x - l)v(dx)). (16.1)

In particular, CPoi, = CPoi, * CPoi,; hence CPoi, is infinitely divisible.
Example 16.4 For every measurable set A C R\ {0} and every r > 0,

0 k—1,,%k
A
F1CPoi, (4) = e B y(4) 4 E® ki() 40

k=2

25 v(A).

We use this in order to show that b; = CPoi,, for some v € M ¢(N). To this end,
for k € N, we compute

_ Y
rr+1).,.0r +k l)pr(l—p)"r—w>(l P)_

b (1) = il k

If we had b;p = CPoi,, for some v € M ¢(N), then we would have v({k}) =
(1 — p)*/ k. We compute the CFP of CPoi,.,, for this v,

00 1 — itk_ 1— k -
gow(r):exp(rz(( pet) ~d-p) ):p’(l—a—p)e")

k=1 k

However, this is the CFP of br_ 5 hence indeed brf »= CPoi, . O

Not every infinitely divisible distribution is of the type CPoi,, however we have
the following theorem.

Theorem 16.5 A probability measure o on R is infinitely divisible if and only if
there is a sequence (Vp)neN in M r(R\ {0}) such that CPoi,, e u.
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Since every CPoi,,, is infinitely divisible, on the one hand we have to show that
this property is preserved under weak limits. On the other hand, we show that, for
infinitely divisible 1, the sequence v, = nu*!/” does the trick. We prepare for the
proof of Theorem 16.5 with a further theorem.

Theorem 16.6 Let (¢,)qen be a sequence of CFPs. Then the following are equiva-
lent.

(i) Foreveryt € R, the limit ¢(t) =lim,_, @) (t) exists and ¢ is continuous at 0.
(ii) For everyt € R, the limit W (t) = lim,— oo n(@, (t) — 1) exists and  is contin-
uous at 0.

If (1) and (ii) hold, then ¢ = eV isa CFP.

Proof The proof is based on a Taylor expansion of the logarithm,
1 5 . 1
|10g(z)—(z—1)|§§|z—1| forze(Cw1th|z—1|<§_

In particular, for (z;,),en in C,

limsupn|z, — 1| <o < limsup|nlog(zn)| < 00, (16.2)
n—od n— 00

and lim;,, 0o n(z,, — 1) = lim,,_, 5, nl0g(z,,) if one of the limits exists.

Applying this to z,, = ¢, (¢), we see that (ii) implies (i). On the other hand, (i) im-
plies (ii) if liminf,,_, oo nlog(|, (t)|) > —oco and hence if ¢(¢) 7 0 for all r € R.

Since ¢ is continuous at 0 and since ¢(0) = 1, there is an ¢ > 0 with |¢(?)| > %
for all ¢ € [—¢, €]. Since ¢ and ¢, are CFPs, |¢|> and |¢,|? are also CFPs. Thus,
since |@, (1)|*" converges to lp(t)? pointwise, Lévy’s continuity theorem implies
uniform convergence on compact sets. Now apply (16.2) with z,, = |, (¢)|*. Thus
(n(1 = |@n()]*))nen is bounded for r € [—¢, ]. Hence, by Lemma 15.11(v), n(1 —
lon (20)]?) < 4n(1 — |@,(1)|?) also is bounded; thus

2. 2 2\4

[p@0]” = timinfexp(4n(|en ()] = 1)) = (le])"
Inductively, we get |p(?)| > 2-G for || < 2¥e. Hence there is a y > 0 such that

1
()] > Ee—y'z forall r € R. (16.3)
If (i) and (ii) hold, then
loge(t) = lim nlog(wn (t)) = lim n(gan(t) — 1) =y ().
n— oo n— oo

By Lévy’s continuity theorem, as a continuous limit of CFPs, ¢ is a CFP. U

Corollary 16.7 If the conditions of Theorem 16.6 hold, then ¢" is a CFP for every
r > 0. In particular, ¢ = (¢'/™)" is infinitely divisible.
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Proof 1f @, is the CFP of p, € M;(R), then @~ is the CFP of CPoi,,,,,.
Being a limit of CFPs that is continuous at 0, by Lévy’s continuity theorem,
¢ =€V =lim,_ e ¥~V is a CFP. Letting r = L we get that ¢ = (p!/")"

n

is infinitely divisible. g

Corollary 16.8 Let ¢ : R — C be continuous at 0. ¢ is an infinitely divisible CFP
if and only if there is a sequence (¢,)nen of CFPs such that ¢} (t) — ¢(t) for all
teR.

Proof One implication has been shown already in Corollary 16.7. Hence, let ¢ be
an infinitely divisible CFP. Then ¢, = ¢!/" serves the purpose. 0

Corollary 16.9 If (i,)nenN is a (weakly) convergent sequence of infinitely divisible
probability measures on R, then p = lim,,_, 5, W, is infinitely divisible.

Proof Apply Theorem 16.6, where @, is the CFP of /", O

Corollary 16.10 If u € M (R) is infinitely divisible, then there exists a continuous
convolution semigroup (ii;)r>0 with (1 = and a stochastic process (X;)i>o with
independent, stationary increments X; — X5 ~ [i—s fort > s.

Proof Let ¢ be the CFP of u. The existence of the convolution semigroup follows
by Corollaries 16.8 and 16.7 if we define u, by ¢”. Since ¢" (¢) #0 for all r € R,
we have ¢” — 1 for r — 0 and thus the semigroup is continuous. Finally, Theo-
rem 14.47 implies the existence of the process X. U

Corollary 16.11 If ¢ is an infinitely divisible CFP, then there exists a y > 0 with
lo()| > %e"”z for all t € R. In particular, for o > 2, t — ¢~ "* is not a CFP.

Proof This is a direct consequence of (16.3). 0

Proof of Theorem 16.5 As every CPoi,, is infinitely divisible, by Corollary 16.9,
the weak limit is also infinitely divisible.
Now let p be infinitely divisible with CFP ¢. Fix probability measures u, with

CFP ¢, as in Corollary 16.8. By Theorem 16.6, ¢"@n—D "5 ¢ hence we have

. n—oo
CPoi,;,, — v. O

Without proof, we quote the following strengthening of Corollary 16.8 that relies
on a finer analysis using the arguments from the proof of Theorem 16.6.

Theorem 16.12 Let (¢, 151 =1, ..., ks, n € N) be an array of CFPs with the prop-
erty

sup limsup sup sup |<pn,1(t) — 1‘ =0. (16.4)
L>0 n—>00 re[—L,L]I=1,...k,
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Assume that, for every t € R, the limit ¢(t) ;= lim,_, o ]_[;11 ©n.1(t) exists and that
@ is continuous at 0. Then ¢ is an infinitely divisible CFP.

Proof See, e.g., [54, Chapter XV.7]. O

In the special case where for every n, the individual ¢, ; are equal and where

kn =5 00, Eq. (16.4) holds automatically if the product converges to a continuous

function. Thus, the theorem is in fact an improvement of Corollary 16.8.

The benefit of this theorem will become clear through the following observation.
Let (X, ;;/=1,...,k,,n € N) be an array of real random variables with CFPs ¢, ;.
This array is a null array if and only if (16.4) holds. In fact, if P[|X,, ;| > ¢] < 8,
then we have |, ;(t) — 1| <2e+é forallt € [—1/¢, 1/¢]. Hence (16.4) holds if the

array (X, ;) is a null array. On the other hand, (16.4) implies ¢, , "% 1 for every

sequence (I,,) with [, <k,. Hence X, ;, "ZF0in probability.
From these considerations and from Theorem 16.12, we conclude the following
theorem.

Theorem 16.13 Let (X, ;1 =1, ..., ky,n € N) be an independent null array of
real random variables. If there exists a random variable S with

n—oo

Xp1+ ...+ Xk, S,

then S is infinitely divisible.

As a direct application of Theorem 16.5, we give a complete description of the
class of infinitely divisible probability measures on [0, co) in terms of their Laplace
transforms. The following theorem is of independent interest. Here, however, it is
primarily used to provide familiarity with the techniques that will be needed for the
more challenging classification of the infinitely divisible probability measures on R.

Theorem 16.14 (Lévy—Khinchin formula on [0, 00)) Let u € M ([0, 00)) and
letu :[0,00) = [0,00), t —~ — logfe’”‘u(dx) be the log-Laplace transform 1.
W is infinitely divisible if and only if there exists an o« > 0 and a o -finite measure
v e M((0, 00)) with

/(1 A x)(dx) < 00 (16.5)
and such that
u(t):ozt+/(l —e ™)vdx) fort>0. (16.6)

In this case, the pair («, v) is unique. v is called the canonical measure or Lévy
measure of |, and o is called the deterministic part.
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Proof “=" First assume p is infinitely divisible. The case u = § is trivial. Now
let i # 8¢; hence u(1) > 0.
By Theorem 16.5, there exist v, v, ... € M (R \ {0}) with CPoi,, "= . Ev-

idently, we can assume v, ((—oo, 0)) = 0. If we define u, (¢) := f(l — e ™,(dx),
n—oo

then (as in (16.1)) u,(t) — u(¢) for all ¢+ > 0. In particular, u, (1) > 0 for suffi-
ciently large n. Define v, € M ([0, 0c0)) by v, (dx) := %vn (dx). Hence, for all
t >0,

/e—tx‘-}n(dx) _ un(t +1) —un (1) n—o u(t+1) —u(z)
up (1) u(l)

Therefore, the weak limit v := w-lim v, in M ([0, 00)) exists and is uniquely de-
termined by u. Let o := V({0})u(1) and define v € M ((0, 00)) by

v(dx) =u(1) (1= ™) " 1(0,00) (X)(dx).
Since 1 Ax <2(1 —e™) for all x > 0, clearly
/(1 Ax)v(dx) < 2/(1 - efx)v(dx) <2u(l) < co.
For all ¢ > 0, the function (compare (15.8))

l_e__’;, if x >0,
fi:[0,00) = [0,00), x+>{ 1-¢
t, ifx=0,

is continuous and bounded (by ¢ A 1). Hence we have
u(t) = lim u,(t) = lim u,(1) / frdvy
n— oo n— oo
=u(l) / fidb=at + /(l —e ) (dx).

“«<—=" Now assume that « and v are given. Define the intervals Io = [1, c0)
and Iy =[1/(k + 1),1/k) for k € N. Let X¢, X1, ... be independent random vari-
ables with Py, = CPOi(v|1 yfork=0,1,...,and let X :=a + Z/fio Xy For ev-

k
ery k € N, we have E[X;] = flk xv(dx); hence Y ;2 E[X;] = f(o 1y Xv(dx) < oo,

n—oo

Thus X < 0o almost surely and o + )y _( Xy = X. Therefore,
oo
—logE[e ¥ =at = ) "logE[e" ] =at + /(1 — e ) (dx).
k=0

Example 16.15 For an infinitely divisible distribution p on [0, 00), we can compute
the Lévy measure v by the vague limit

v = v-limnp*/" (16.7)

n—o00 (O,oo).
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Often « is also easy to obtain (e.g., via the representation from Exercise 16.1.3). For
example, for the Gamma distribution, we get @ = 0 and

el/n 3 L
nrg’l/”(A):W/ (]/Vl) 1 exd n—>OO Ax ]e Gde’

hence v(dx) = x " le % dx. O

For infinitely divisible distributions on R, we would like to obtain a description
similar to that in the preceding theorem. However, an infinitely divisible real ran-
dom variable X is not simply the difference of two infinitely divisible nonnegative
random variables, as the normal distribution shows. In addition, we have more free-
dom if, as in the last proof, we want to express X as a sum of independent random
variables Xy.

Hence we define the real random variable X as the sum of independent random
variables,

oo
X=b+X"+Xo+ Y (Xi — ). (16.8)
k=1
where b e R, XV = N(),oz for some o2 > 0 and Py, = CPoi,, with intensity mea-
sure v that is concentrated on I := (—1/k, —1/(k+ D]JU[1/(k + 1), 1/k) (with
the convention 1/0 = 00), k € Ny. Furthermore, oy = E[X}] = fka(dx) fork > 1.
In order for the series to converge almost surely, it is sufficient (and also necessary,
as a simple application of Kolmogorov’s three-series theorem shows) that

Z Var[X;] < co. (16.9)

(In contrast to the situation in Theorem 16.14, here it is not necessary to have
Z,fo 1 E[1Xx — ai|] < oo. This allows for greater freedom in the choice of v than
in the case of nonnegative random variables.) Now Var[X;] = f x“vr(dx). Hence,
if we let v = Zk:o Vi, then (16.9) is equivalent to f(fl’])x v(dx) < 00. As vg is

always finite, this in turn is equivalent to f (x2 A D(dx) < oo.

Definition 16.16 A o -finite measure v on R is called a canonical measure if
v({0}) =0 and

/(x2 A1)v(dx) < co. (16.10)
If 62 > 0 and b € R, then (02, b, v) is called a canonical triple.

To every canonical triple, by (16.8) there corresponds an infinitely divisible ran-
dom variable. Define

wo(t)zlogE[e”XO]:/ (" = 1)v(dx).

Iy
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For k e N, let

wk(t)=1ogE[e”<Xk—“k>]=/ (e — 1 —itx)v(dx).
I

Hence
o? >
o itX1__ 2 .2 .
¥ (1) :=logE[e"¥] = S 17+ ibi+ > )
k=0
satisfies the Lévy—Khinchin formula

2
(t) = —%tz +ibt + /(e”x — 1 — itxTjy <1y ) v(dx). (16.11)

Theorem 16.17 (Lévy—Khinchin formula) Let u € M{(R) and
V() = log/ " u(dx).

w is infinitely divisible if and only if there exists a canonical triple (62, b, v) such
that (16.11) holds. By (16.11), this triple is uniquely determined.

Again, v is called the Lévy measure of u, o2 is called the Gaussian coefficient
and b is called the centering constant.

Proof We have shown already that via (16.11) every canonical triple (62, b, v) cor-
responds to an infinitely divisible distribution p. It remains to show:

(i) A canonical triple is uniquely determined by (16.11).
(ii) For every infinitely divisible distribution, there exists a canonical triple such
that (16.11) holds.

(i) Uniqueness. Define g;(x) = /' — 1 — itx1yjx|<1). For every x # 0, we have

& (x)
12(1 A x2)

t—00

Since (16.10) holds, by the dominated convergence theorem,

oy b [ s )
fim T =—g thm sl [ (i ) (A vEn

o
=——. (16.12)
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This implies the uniqueness of o>. Thus we can and will assume o> = 0 in the
following. Define

o 1 t+1
W(t)zw(t)—if Vs (16.13)
t7

Then

1
E(z):/ e"”‘<1 —%f ei”ds>v(dx)=/e”xh(x)v(dx), (16.14)
R —

1

where h(x) = 1 — ¥ for x 2 0 and /(0) = 0. Define /i(x) = h(x)/(1 A x?) for
x #0and fz(O) =1/6. Clearly, & and h are bounded and continuous and

A 3
0<1—sin(l) <h(x) < 3 for all x € R.
¥ is the characteristic function of ¥ € M £(R), where V(dx) = h(x)v(dx). Hence v
is uniquely determined by v. Since v(dx) = (L{xz0}/ h(x))V(dx), v is also uniquely

determined by ¥. Now the number b is the difference of the remaining terms.
(i) Existence of a canonical triple. Let u be infinitely divisible and let

0 =10g/e”xu(dx).

Clearly, Im (/) is odd and Re(v/ (1)) < O for all # € R. Hence ¥ (0) > 0 (with ¥ from
(16.13)) and ¥ (0) = 0 if Re y (f) = forall f € [—1, ]. By Exercise 15.2.4, this is the
case if and only if u = §p for some b € R. In this case, (0, b, 0) is the corresponding
canonical triple.

Now assume v (0) > 0. By Theorem 16.5, there exists a sequence (V,)nen in

M (R) with CPoi,, e w and v, ({0}) = 0 for any n € N. Define
b, =/xﬂ{|x|<1}vn(dx).
Then, by (16.1) and with g; from (i),
Y (1) := log/ ¢!"*CPoi,, (dx) = f(e”x — 1), (dx) = / g dvy, + ib,t.
Asin (16.14), we have

_ 1 t+1 )
v, () = %(0—5/ 1 lﬁn(S)dS=/e”xh(X)vn(dX)-
t_

As ¥, e Y converges uniformly on compact sets (Theorem 15.23(i)), and since
¥ is continuous and thus locally bounded, we have v/, iy 4 pointwise. There-
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fore,
/e”Xh(x)vn(dx) V0. (16.15)

In particular, v/,(0) > 0 for large n. If we let U,(dx) = (h(x)/¥,(0)v,(dx) €
M (R), then [ ¢, (dx) "= 3 (1)/¥(0) and the right-hand side is continuous.
Hence, by Lévy’s continuity theorem, there is a v € M (R) with v, "5 and

T =70 / ¢ (dx).

Leto?:= —6v(0)5({0}) and define a canonical measure v by
¥ (0) -
v(dx) = mﬂ_{x;é()}\}(dx).

The map (compare (15.8))

& (x) :
fiiR>C, x>{"®’ fx#0,
—32, ifx=0,

is bounded and continuous. By construction, we have

2
/gtdun=$n(0)ff,dan ”i‘i"J(O)ff,da:_%zM/g,dv.

Hence also the limit

n—oo

2
ith:= lim ith, = lim (1//,,(t) —/g,dvn> =y@)+ G—fz —/g,dv
n—oo 2
exists, and we have

o2 5 .
w(t)=—7t +lbt+/g,dv. O

Remark 16.18 There are many versions of the Lévy—Khinchin formula

o? :
v(t) = —7t2 +ibt + /(e”x —1—itf(x))v(dx)

that differ in the function izf(x) that is subtracted for the centering in the in-
tegral. We chose f(x) = x1x<1; since this fits best to the construction with
the random variables X;. However, for a given canonical measure v, any func-
tion f for which [|f — f |dv < oo holds is possible; that is, every f for which
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| £ (x) — f(x)]/(1 A x2) is bounded. One common function is, e.g., f(x) = sin(x).
The Lévy measure and the Gaussian coefficient o2 do not change but the b differs:

E—b:/(f—f)dv.

If v is a measure that is concentrated on (0, c0) and such that f (1 Ax)v(dx) < o0
holds, then this f is integrable with respect to v and can thus be replaced by f =0.
Hence we recover Theorem 16.14 as a special case. However, condition (16.10) is
weaker than f (1 Ax)v(dx) < oo and thus describes a larger class of measures than
is considered in Theorem 16.14. This implies that to a canonical triple (b, 0, v) with
v((—00,0)) =0 and f (1 A x)v(dx) = oo, there corresponds an infinitely divisible
probability distribution p that is not concentrated on [0, 00), no matter how b is
chosen. O

For a given infinitely divisible distribution p, we can compute the canonical mea-
sure v as the vague limit

v = v-limnp*1/" (16.16)

n—o00 |(O,oo)'
Example 16.19 For the Cauchy distribution Cau, with ¥ (t) = —a|t|, by symmetry,

we get b = 0 and, by (16.12), 62 = —21lim;_, o, ¥ (t)/1> = 0. Finally, if A C R with
(—e,e) N A =0 for some ¢ > 0, then

1 n2 n—o00 1 ]
nCaul/n(A)z—/ ——dx — — [ —dx.
7 Ja 1+ (nx)? 7 Jax2

Hence Cau; has the canonical triple (0, 0, (rx3)~ldx). O

Exercise 16.1.1 Use a variance argument to show that an infinitely divisible distri-
bution that is concentrated on a bounded interval is a Dirac measure.

Exercise 16.1.2 Let ¢ be infinitely divisible, and for every n € N, let ¢, be a CFP
. 2, . . n—oo .

with ¢ = ¢. Use Lévy’s continuity theorem to show that ¢, — 1 uniformly on

compact sets ¢, "5 1. Conclude that o(t) #O0forall r e R.

Exercise 16.1.3 Under the conditions of Theorem 16.14, show that

a =sup{x >0: ([0, x)) =0}.

16.2 Stable Distributions

A distribution p© on the real numbers is called stable if for any n € N, the n-fold
convolution p** equals u up to an affine linear transformation. Hence stability can
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be interpreted as self-similarity. We first show that the class of stable distributions
is rather simple and can easily be parameterized. Then we quote results which say
that stable distributions are exactly those distributions that occur as limits of sums
of i.i.d. random variables.

Symmetric Stable Distributions

For a € (0, 2), let

2 (—a)cos(an/2), ifa#l,

T, ifa=1.

O :=/(1—cos(x))|x|*°’*‘dx=
R

(Note that the integral diverges for « € R\ (0,2).) Then vy (dx) = 6, '|x|~*~!dx
18 a canonical measure since

/(1 AP v (dx) =20, (@' + 2 —a)7!) < oo

Let v, be the logarithm of the characteristic function that corresponds to the in-
finitely divisible measure o with canonical triple (0, 0, vy). By the Lévy—Khinchin
formula, we have

o
Iﬁa(t)z'/ (e — 1 —itxLye)<1y)0y x| ™ dx
—0oQ

o0
=—9;‘/ (1 —cos(tx)) x|~ " dx

—0oQ
= —|t]%.
Hence ¢, (1) := e~ "" is the characteristic function of the infinitely divisible mea-
sure (4, which is called the symmetric stable distribution with index «. The name

is due to the fact that, for i.i.d. random variables X, X, ... that are u,-distributed,
we have

Xi+...4+ X, 2nlex, forallneN. (16.17)

General Stable Distributions

Motivated by equation (16.17), we present a somewhat more general notion of sta-
bility of a distribution.
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Definition 16.20 (Stable distribution) Let 1 € M (R) be a probability distribution
on the real numbers that is not concentrated in one point. Assume that X1, X», ...
are i.i.d. random variables with distribution . The distribution w is said to be stable
in the broad sense if there exist nonnegative numbers aj, az, ... and real numbers
dy, d>, ... such that

Xi+...+X,2a,X,+d, forallneN. (16.18)

u is called stable (in the strict sense), if (16.18) holds withdy =d, =... =0.

w is called stable in the broad sense with index « € (0, 2], if (16.18) holds with
a, =n/® n e N. It is called stable (in the strict sense) with index « € (0, 2], if in
addition, we can choose di =dp = ... =0.

Remark 16.21 If p is stable in the broad sense, then it is infinitely divisible. O

Theorem 16.22 Let | be stable in the broad sense.

(i) Thereis an a € (0, 2] such that j is stable in the broad sense with index .
(i) If o =2, then w is a normal distribution.
(iii) If a € (0, 2), then the Lévy measure v of |1 has the density

v(dx) c (=)™ ifx <0,
dx | ctx—o !, ifx >0,

(16.19)

for some ¢~ ¢ct>0,c +ct>0.

(iv) If a # 1, then there exists a b € R such that u % 8_p, is stable with index «.

) Ifa=1,thend, = (c™ —c )nlog(n), n e N. If c™ =™, then p is a Cauchy
distribution.

Remark 16.23 If p is infinitely divisible with Lévy measure v given by (16.19),
then ¥ () := log [ €'"* u(dx) is given by
"o { [t I (—a)[(ct +c)cos(BE) +i(cT —cT)sin(5)], a#l,

—tl(cT 4+ e)[5 +isign@)(ct — ™) log(|t])], a=1. ¢
(16.20)

Lemma 16.24 Let p be infinitely divisible with canonical triple (02, b, v); that is,
with log-characteristic function ¥ (t) := log(f e'"™ u(dx)) given by

2
v(t) = —%tz +ibt + /(enx —-1- itx]l{|x|<1})v(dx).

Further, leta >0,d e R,n e Nand let X, Xy, ..., X, be i.id. random variables
with distribution .

(1) The canonical triple of X1+ ...+ X is (no?, nb, nv).
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(ii) The canonical triple of aX + d is (a%02,b,v o m(;l), where m, : R — R,
X > ax is the multiplication by a and

b:=ab+d +a/.(1{\x|<1/a} — Lyxj<1p)xv(dx). (16.21)

Proof (i) The log-characteristic function of X1 + ...+ X,, is nir.
(ii) The log-characteristic function of a X + d is

Yax+d(t) = ¥(at) +idt

a’o?

__ 2" 2+i(ab+d)t+/(ei“’x — | —iatxTjg<n)v(dx)

a’c?

=— > 1? +ibt +/(6iatx —-1- iatx]l{‘x|<1/a})v(dx)

a’o? - ,
= —th +ibt +/(e”x — 1 —itx1yy<1y)v o my  (dx). O

Lemma 16.25 (Scaling of the canonical triple) Under the assumptions of Theo-
rem 16.22, let (62, b, v) be the canonical triple of .
(i) We have
(a,% — n)c72 =0 forallneN (16.22)

and (with mg, as in Lemma 16.24)
nv=vom,' forallneN. (16.23)
(i) Ifv=0, then a, =n'/? for alln € N and
dy =b(n—n'?). (16.24)

(ili) Assume that « € (0,2), a, =n'/*, and that v is given by (16.19). Then we have

ct—c™ Vey
dn=<b+ p— )(n—n ) ifa#1, (16.25)
and
d, = (c+ — c_)n log(n) ifa=1. (16.26)

Proof (i) Let (aﬁaz, bp,v o ma_nl) be the canonical triple of @, X + d, as deter-
mined in the preceding lemma and let (no'2, nb, nv) be the canonical triple of X| +
...+ X,. By (16.18) and due to the uniqueness of the canonical triple (Theo-

rem 16.17), we infer ago2 =no?, by =nbandvo m;”l =nv.
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(ii) If v =0, then o > 0, since by assumption, y is not concentrated in one
point. Hence, by (16.22), we get a, = n'/?. By virtue of Lemma 16.24(ii), we have
nb = b, = bn'/? + d, and thus (16.24) holds.

(i) Using (16.21), we compute b, more explicitly:

nb=b, =bn'* +d, —n'/* / Lip-1/a < <)XV (dX)

1
:bnl/“+dn—n1/°‘(c+—cf)/ x%dx

n—1/a

nlog(n), ifa=1.
Rearranging terms yields (16.25) and (16.26). O
Proof of Theorem 16.22 We distinguish the cases liminf,_, o azn~Y? < 0o and

4‘: w?’
Case 1. Assume that liminf,_, o a,n~1/2 < 00. Let C € [1, 00) and let (1y)renN

be a subsequence such that ankn,;l/2 < C for any k € N. Then for any x € R \ {0},
we have

-1 2 .2
n, (1 Ana; x°)
k I Ax

Using (16.23) and (16.10), the dominated convergence theorem yields
-1 2.2
o0 ®n, (1Aasx N
/ (1 Ax?)v(dx) =/ M@ A ) udx) =20,
oo oo 1 Ax2

That is, we have v = 0. By Lemma 16.25(ii), we see that u * §_p is stable with
index 2. This shows (ii).
Case 2. Assume that
ann 1?25 0. (16.27)

By (16.22), we have 2 =0 and hence v # 0. We define the function
v([x, 00)), if x > 0,
Fx)=
v((—o0,x]), ifx <O.

Since we have v # 0, there is an xg € R\ {0} such that F(xg) > 0. By symmetry, we
may assume that xo > 0. Using (16.23), we infer

nF(x)=F(x/a,) foranyxeR\{0},neN,

k k
F((‘Z"—H) xo) =( " ) F(xo) foranykeZ.
a, n—+1

and thus
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We can rephrase this as
F(x) = (x/x0) * F(xo) foranyux e {(a,,+1/a,,)kxo keZ},

where o, :=log((n + 1)/n)/log(an+1/a,). Since F is monotone decreasing and
since F(x) e 0, we have «;, > 0 for all n € N, and

—y F 1 —Qp
_m o~ < ) < nt X forx >0, m,neN.
m+1 X0 F (x0) n X0

Letting x — 0o, we obtain «,, > «,. By symmetry, we also get o, < «;,. Hence,
we define o := o1 > 0 and get a, = n'/% for all n € N (note that (16.18) implies
a; = 1). By the assumption (16.27), we have o« < 2. This shows (i).

We have F (1) = x{ F(xo) > 0 and F(x) =x~%F(1) for all x > 0. Similarly, we
get F(x) = (—x)"“F(—1) for x < 0 (with the same « € (0, 2) since it is determined

by the sequence (a,),en). Defining ¢ = av([1, 00)) and ¢~ := av((—o0, —1]), we
get (16.19) and thus (iii) and (i).
The statements (iv) and (v) are immediate consequences of Lemma 16.25. O

Convergence to Stable Distributions

To complete the picture, we cite theorems from [54, Chapter XVII.5] (see also [62]
and [128]) that state that only stable distributions occur as limiting distributions of
rescaled sums of i.i.d. random variables X1, X», ....

In the following, let X, X1, X», ... be i.i.d. random variables and for n € N, let
S =X1+...+X,.

Definition 16.26 (Domain of attraction) Let u € M (R) be nontrivial. The domain
of attraction Dom(u) C M (R) is the set of all distributions Py with the property
that there exist sequences of numbers (a,),en and (d,),en With

Sn - dn n;;o L.
dn

If u is stable (in the broader sense) with index o € (0, 2], then Py is said to be in
the domain of normal attraction if we can choose a, = n'/?.

Theorem 16.27 Let i € M (R) be nontrivial. Then Dom(u) # @ if and only if n
is stable (in the broader sense). In this case, i € Dom(t).

In the following, an important role is played by the function

Ux) :=E[X*1(x=q]. (16.28)
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A function H : (0, 0c0) — (0, 00) is called slowly varying at oo if

im 2Oox)
m =
x—o0o H(x)

1 forally >0.

In the following, we assume that there exists an « € (0, 2] such that
U(x)x"‘_2 is slowly varying at oo. (16.29)

Theorem 16.28

(1) If Py is in the domain of attraction of some distribution, then there exists an
o € (0, 2] such that (16.29) holds.
(ii) In the case a = 2, we have: If Px is not concentrated at one point, then (16.29)
implies that Py is in the domain of attraction of some distribution.
(iii) In the case o € (0,2), we have: Px is in the domain of attraction of some
distribution if and only if (16.29) holds and the limit

P[X > x]

= lim —————  exists. (16.30)
x—o0 P[|X] = x]

p:
Theorem 16.29 Let Px be in the domain of attraction of an a-stable distribution
(that is, assume that condition (ii) or (iii) of Theorem 16.28 holds), and assume that
(an)neN is such that
U
C:= lim nU (@)

n—o0 grzl

€ (0, 00)

exists. Further, let v be the stable distribution with index o whose characteristic
function is given by (16.20) with ¢ = Cp and ¢~ = C(1 — p).

(i) In the case @ € (0, 1), let b, = 0.
(ii) In the case o =2 and Var[X] < oo, let E[X] = 0.
(iii) In the case a € (1, 2], let d, = nE[X] for all n € N.
@iv) In the case a =1, let d, = na,E[sin(X/a,)] for all n € N.

Then

Sﬂ - dl’l n—>oo
dn

Corollary 16.30 If Py is in the domain of attraction of a stable distribution with

index a, then E[|X|P] < oo forall B € (0, ) and E[|X|P1= 00 if B > a and a < 2.

Exercise 16.2.1 Let © be an «-stable distribution and let ¢ be its characteristic
function.

(i) Show by a direct computation using only the definition of stability that
() — 1] < C|t]|* for t close to O (for some C < o0).
(i1) Use Exercise 15.3.2 to infer that u = &g if o > 2.
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(iii)) Modify the argument in order to show that for « > 2, the «-stable distributions
in the broad sense are also necessarily trivial.

Exercise 16.2.2 Show that the distribution on R with density

— cos(x)

1
f@)=—23

X
is not infinitely divisible.

Exercise 16.2.3 Let @ be the distribution function of the standard normal distribu-
tion Np 1 and let F : R — [0, 1] be defined by

21— d(x~ Y2y, ifx >0,
F(x)=
0, else.

Show the following.

(i) F is the distribution function of a %-stable distribution.
1

@i1) If X{, X», ... are i.i.d. with distribution function F, then . ZZ:O Xy diverges
almost surely for n — oo.

Hint: Compute the density of F, and show that the Laplace transform is given by
A e V2,

Exercise 16.2.4 Which of the following distributions is in the domain of attraction
of a stable distribution and for which parameter?

(1) The distribution on R with density

QHLOJXW, ifx <—1,
fx)= (I—Q)ﬁxﬂ, ifx>1,
0, else.

Here o, 8 < —1 and g € [0, 1].

(i1) The exponential distribution exp, for 6 > 0.

(iii) The distribution on N with weights cn® if n is even and cn® if n is odd. Here
o, B < —1and ¢ = 2% (—a) + (1 —28)c(—p))~! (¢ is the Riemann zeta
function) is the normalization constant.



Chapter 17
Markov Chains

In spite of their simplicity, Markov processes with countable state space (and dis-
crete time) are interesting mathematical objects with which a variety of real-world
phenomena can be modeled. We give an introduction to the basic concepts and then
study certain examples in more detail. The connection with discrete potential the-
ory will be investigated later, in Chapter 19. Some readers might prefer to skip the
somewhat technical construction of general Markov processes in Section 17.1.

There is a vast literature on Markov chains. For further reading, see, e.g., [21, 27,
64, 66, 91, 116, 123, 124, 143, 152].

17.1 Definitions and Construction

In the following, E is always a Polish space with Borel o -algebra B(E), I C R and
(X¢)teq 1s an E-valued stochastic process. We assume that (F;);e; = F =0 (X) is
the filtration generated by X.

Definition 17.1 We say that X has the Markov property (MP) if, for every A €
B(E)andall s,t € I withs <t,

P(X, € A|F]=P[X; € A| X,].

Remark 17.2 If E is a countable space, then X has the Markov property if
and only if, for all n € N, all s1 < ... <s, <t and all iy,...,i,,i € E with
P[X,, =i1,..., X,, =i,] > 0, we have

PX;=i| X =i1,...., Xy, =in] =P[X; =i | X, = 0] 17.1)
In fact, (17.1) clearly implies the Markov property. On the other hand, if X has
the Markov property, then (see (8.6)) P[X; =i | X;, 1(0) =P[X; =i | X;, = is]

for almost all w € {X;, =i,}. Hence, for A :={X;, =iy,..., X, =i,} (using the
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Markov property in the second equation),

P[Xt =1, XS] = i], ey XS” = ln]
:E[E[]I{X,:i} | ]:Sn]ILA] = E[E[ﬂ{xt:i} | XS,,]]lA]
=E[P[X, =i | X;, =iulla] =PIX; =i | X;, = ix]P[A]

Dividing both sides by P[A] yields (17.1). O

Definition 17.3 Let I C [0, 00) be closed under addition and assume O € I.
A stochastic process X = (X;);es is called a time-homogeneous Markov process
with distributions (P, )cg on the space (£2, A) if:

(i) Forevery x € E, X is a stochastic process on the probability space (§2, A, P;)
with P, [Xo=x]=1.
(ii) The map « : E x B(E)®! — [0, 1], (x, B) — P[X € B] s a stochastic kernel.
(iii) X has the time-homogeneous Markov property (MP): For every A € B(E),
every x € E and all s, ¢ € I, we have

Pi[Xis € Al Fsl=w (X5, A) Py-as.

Here, for every ¢ € I, the transition kernel k; : E x B(E) — [0, 1] is the
stochastic kernel defined for x € E and A € B(E) by

Kki(x,A):=x(x,{ye El:y@) e A}) =P.[X, € Al

The family (k;(x, A),t € I, x € E, A € B(E)) is also called the family of tran-
sition probabilities of X.

We write E, for expectation with respect to Py, £,[X] =P, and L,[X | F] =
P.[X € - | F] (for a regular conditional distribution of X given F).

If E is countable, then X is called a discrete Markov process.

In the special case I = Ny, X is called a Markov chain. In this case, k, is called
the family of n-step transition probabilities.

Remark 17.4 We will see that the existence of the transition kernels («;) implies the
existence of the kernel «. Thus, a time-homogeneous Markov process is simply a
stochastic process with the Markov property and for which the transition probabili-
ties are time-homogeneous. Although it is sometimes convenient to allow also time-
inhomogeneous Markov processes, for a wide range of applications it is sufficient to
consider time-homogeneous Markov processes. We will not go into the details but
will henceforth assume that all Markov processes are time-homogeneous. O

In the following, we will use the somewhat sloppy notation Py [X € -] :=
k(Xg, +). That is, we understand X as the initial value of a second Markov pro-
cess with the same distributions (Py)ycfg.
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Example 17.5 Let Y1, Y, ... beiid. R¥-valued random variables and let

n
S,’f:x+ZYl~ for x € R? and n € Ny.

i=1

Define probability measures P, on (RHNo | (B(R?))®Noy by P, =P o (§* )~ 1,
Then the canonical process X, : (RHNo — R4 is a Markov chain with distri-
butions (Py),.ge. The process X is called a random walk on R? with initial
value x. O

Example 17.6 In the previous example, it is simple to pass to continuous time; that
is, I = [0, co0). To this end, let (v;);>0 be a convolution semigroup on R? and let
ki (x,dy) = 8x % vi(dy). In Theorem 14.47, for every x € R?, we constructed a
measure P, on ((R)[0:%) B(R?)®10.29)) with

n—1

P, o (Xo, Xyo oo Xi,) ™' =8, @ @)k
i=0

for any choice of finitely many points 0 =#y <] < ... < t,. It is easy to check that
the map « : RY x B(R?)®[0:2) " (x A) > P,[A] is a stochastic kernel. The time-
homogeneous Markov property is immediate from the fact that the increments are
independent and stationary. O

Example 17.7 (See Example 9.5 and Theorem 5.36.) Let 6 > 0 and vf({k}) =
e_(”%, k € Ny, the convolution semigroup of the Poisson distribution. The
Markov process X on Ny with this semigroup is called a Poisson process with

(jump) rate 6. O

As in Example 17.6, we will construct a Markov process for a more general
Markov semigroup of stochastic kernels.

Theorem 17.8 Let I C [0,00) be closed under addition and let (k;)ie; be a
Markov semigroup of stochastic kernels from E to E. Then there is a measurable
space (2, A) and a Markov process (X;)ier, (Px)xeg) on (£2, A) with transition
probabilities

P.[X, € Al=k:(x,A) forallxcE, AcB(E), tel. (17.2)

Conversely, for every Markov process X, Eq. (17.2) defines a semigroup of
stochastic kernels. By (17.2), the finite-dimensional distributions of X are uniquely
determined.

Proof “==" We construct X as a canonical process. Let £2 = E[%°) and A =
B(E )®l0.20) ' Further, let X, be the projection on the tth coordinate. For x € E,
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define (see Corollary 14.43) on (2, A) the probability measure P, such that, for
finitely many time points 0 =1y < #; < ... < t,, we have

n—1

Px e} (XtO’ ey th)_l == Sx ® ®Kti+1—ti'
i=0
Then
PX[XI() (S AO, ceey th (S An]

=/ Px[Xto EAO: '”9th,2 EAI’L*Z’XZ,,,l denfl]
An—-1

X Kty —t,_1 (X1, An);
hence Pi[X;, € A, | Fi, |1 = kt—1, (X4, ,» An). Thus X is recognized as a
Markov process. Furthermore, we have P, [X, € A] = (6x - k1) (A) = k¢ (x, A).

“«<=" Now let (X, (P,).cE) be a Markov process. Then a stochastic kernel «; is
defined by

ki(x,A):=P[X; € A] forallxe E,AecB(E),tel.
By the Markov property, we have

kiys(x, A) =Px[X;45s € Al =E; [PXS [X; € A]]

=/PX[X5 edylPy[X; € A]

= [ ki) = ) 3. ).
Hence (k;):c; is a Markov semigroup. Il

Theorem 17.9 A stochastic process X = (X;):e1 is a Markov process if and only
if there exists a stochastic kernel k : E X B(E)®! = [0, 1] such that, for every
bounded B(E)®! — B(R)-measurable function f : E' — R and for every s > 0 and
x € E, we have

E [ f(Xiwsier) | Fs] =Ex,[f(X)] = /El K (Xs,dy) f(y). (17.3)

Proof “<=" The time-homogeneous Markov property follows by (17.3) with the
function f(y) =14(y(¢)) since Px [X; € Al =Py[Xsy5 € A| Fs]l =1 (X5, A).

“=—>"" By the usual approximation arguments, it is enough to consider functions
f that depend only on finitely many coordinates 0 <t} <f, <... <t,. We perform
the proof by induction on 7.

For n =1 and f an indicator function, this is the (time-homogeneous) Markov
property. For general measurable f, the statement follows by the usual approxima-
tion arguments.
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Now assume the claim is proved for n € N. Again it suffices to assume that
f is an indicator function of the type f(x) = 1B x..xB,s ! (Xs, ..., X1,,,) (With
Bi, ..., By+1 € B(E)). Using the Markov property (third and fifth equalities in the
following equation) and the induction hypothesis (fourth equality), we get

E[f((Xiroiz0) | 7]
=E[E[ £ ((Xi15)r20) | Frots ] | Fs]
=E[Exllix, , seBn) | Frors1Le (Xiyts) « - 1B, (Xp, 1) | F ]
=E.[Px, ., [Xi,, 1, € Bur1118, (X1, 45) .. 18, (X, 1) | Fs ]
=Ex,[Px, [X1,,,—i, € Buy1]1p,(X;) ... 1p,(X,,)]
=Ex, [Px,[X;,., € Bus1 | Fi,115,(Xy,) ... 15,(X,,)]
=Ex, [Px,[X:, € Bi..... X4,1 € Buy1 | Fi,1]
=Ex,[f(X)]. O
Corollary 17.10 A stochastic process (Xp)nenN, is a Markov chain if and only if
Lo[(Xnidneny | Fi] = Lx, [(XnInen,]  for every k € No. (17.4)

Proof If the conditional distributions exist, then, by Theorem 17.9, the equation
(17.4) is equivalent to X being a Markov chain. Hence we only have to show that
the conditional distributions exist.

Since E is Polish, EMN0 is also Polish and we have B(EN0) = B(E)®No (see The-
orem 14.8). Hence, by Theorem 8.37, there exists a regular conditional distribution
of (Xn+k)nen, given Fy. O

Theorem 17.11 Let I = Ny. If (X,)neN, is a stochastic process with distributions
(Py, x € E), then the Markov property in Definition 17.3(iii) is implied by the exis-
tence of a stochastic kernel k1 : E x B(E) — [0, 1] with the property that for every
A eB(E), every x € E and every s € I, we have

P.[X;41 € A| Fs]l=K1(Xs, A). (17.5)

In this case, the n-step transition kernels «,, can be computed inductively by
Kn = Kn—1 K1 =/ kn—1(+, dx)ki(x, -).
E

In particular, the family (ky)neN is a Markov semigroup and the distribution X is
uniquely determined by k1.

Proof In Theorem 17.9, let t; =i for every i € Ny. For the proof of that theorem,
only (17.5) was needed. O
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The (time-homogeneous) Markov property of a process means that, for fixed
time ¢, the future (after #) depends on the past (before ¢) only via the present (that
is, via the value X;). We can generalize this concept by allowing random times 7
instead of fixed times ¢.

Definition 17.12 Let I C [0, 00) be closed under addition. A Markov process
(X¢)ter with distributions (P, x € E) has the strong Markov property if, for ev-
ery a.s. finite stopping time 7, every bounded B(E)®/ — B(R) measurable function
f: ET - R and every x € E, we have

E[f((Xeso)rer) | Fe] =Ex, [f(X)] := /E KX d)) f () (17.6)

Remark 17.13 If I is countable, then the strong Markov property holds if and only
if, for every almost surely finite stopping time t, we have

Lo[(Xegdreny | Fe] = Lx. [(XDreny | ==k Xz, ). (17.7)

This follows just as in Corollary 17.10. O

Most Markov processes one encounters have the strong Markov property. In par-
ticular, for countable time sets, the strong Markov property follows from the Markov
property. For continuous time, however, in general, some work has to be done to es-
tablish the strong Markov property.

Theorem 17.14 If I C [0, 0c0) is countable and closed under addition, then ev-
ery Markov process (X,)neq with distributions (Pyx)xcg has the strong Markov

property.

Proof Let f : El — R be measurable and bounded. Then, for every s € I, the ran-
dom variable 1{;—}Ex[ f ((Xs4¢)ter) | Fz]1s measurable with respect to ;. Using
the tower property of the conditional expectation and Theorem 17.9 in the third
equality, we thus get

E[f((Xerdier) | Fe] =Y e[ f (Xssoier) | Fe]

sel

_ZE ((Xv+t)tel)|]:]|]:]

sel

=D E[LiemgEx, [/ (Xier)] | 7]

sel

=Ex, [f((X)rer)]- O

As a simple application of the strong Markov property, we show the reflection
principle for random walks.
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Theorem 17.15 (Reflection principle) Let Y1, Ya, ... be i.i.d. real random vari-
ables with symmetric distribution L[Y] = L[—Y1]. Define Xo =0 and X, :=
Yi+...4Y, forn e N. Then, for every n € Ny and a > 0,

P[sup X, > a] <2P[X, >a] - P[X, =al. (17.8)

m=<n

Ifwe have P[Y| € {—1,0, 1}] = 1, then for a € N equality holds in (17.8).

Proof Leta > 0 and n € N. Define the time of first excess of a (truncated at (n+ 1)),
t:=inflm>0:X,, =a}A(n+1).
Then 7 is a bounded stopping time and

sup X, >a <= T <n.

m=<n

Let f(m’ X) = :ﬂ'{mSn}(:ﬂ‘{anm>a} + %l{xnfm:a})' Then

1
f(r, (Xr+m)meNo) = L{z<n) (]]-{Xn>a} + Eﬂ{Xﬁa})-

The strong Markov property of X yields

E()[f(l’, (Xr—i-m)sz) | -Fr] = (1, X7),

where @(m, x) = E[ f(m, X)]. (Recall that E, denotes the expectation for X if
Xo=x.)
Due to the symmetry of Y;, we have

_%, ifm<nandx >a,
p@m, x) :%, ifm<nandx =a,
=0, m>n.

Hence
{t<nf={r=<n}n{X;>a}C {w(t,Xf)Z%}ﬂ{tsn}

={p(r,X:) > 0} N{r <n}.
Now (17.8) is implied by

1
P[X, > a]+ SPIXy =al =E[f (7. (Xetm)n=0)]

1
=Eo[o(t, X)ljr<n)] > EPO[T <n]. (17.9)
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Now assume P[Y; € {—1,0,1}] =1 and a € N. Then X; =a if t <n. Hence

1
{go(t, X)) > 0} N{t <n}= {(/)(‘L’, X)) = 5} N{r <n}.
Thus, in the last step of (17.9), equality holds and hence also in (17.8). O

Exercise 17.1.1 Let / C R and let X = (X;);c; be a stochastic process. For ¢ € I,
define the o-algebras that code the past before ¢ and the future beginning with ¢ by

Fa=0Xs:s5€l,s<t) and Fs;:=0(Xs:s5€l,5s>1t).

Show that X has the Markov property if and only if, for every ¢ € I, the o -algebras
F<: and F>, are independent given o (X;) (compare Definition 12.20).

In other words, a process has the (possibly time-inhomogeneous) Markov prop-
erty if and only if past and future are independent given the present.

17.2 Discrete Markov Chains: Examples

Let E be countable and / = Ny. By Definition 17.3, a Markov process X =
(Xn)nen, on E is a discrete Markov chain (or Markov chain with discrete state
space).

If X is a discrete Markov chain, then (Py)ycg is determined by the transition
matrix

P=(pP0. ), yep = PulX1=01), | p-
The n-step transition probabilities
P (x, y) = Px[Xy = ]

can be computed as the n-fold matrix product

p(n)(x’ }’) =pn(x’ y)’
where

Phoy) = p" T x Dp, )

zeE

and where p° = I is the unit matrix.
By induction, we get the Chapman—Kolmogorov equation (see (14.14)) for all
m,ne€Ngpand x,y € E,

P =) p " p™ ). (17.10)

zeE
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Definition 17.16 A matrix (p(x, y))x,yee With nonnegative entries and with

Zp(x,y):l forallx € E

yeE

is called a stochastic matrix on E.

A stochastic matrix is essentially a stochastic kernel from E to E. In Theo-
rem 17.8 we saw that, for the semigroup of kernels (p"),en, there exists a unique
discrete Markov chain whose transition probabilities are given by p. The arguments
we gave there were rather abstract. Here we give a construction for X that could
actually be used to implement a computer simulation of X.

Let (Ry)nen, be an independent family of random variables with values in £ E
and with the property

P[R,(x)=y|=p(x,y) forallx,y€E. (17.11)

For example, choose (R, (x),x € E,n € N) as an independent family of random
variables with values in E and distributions

P[R,(x)=y]=p(x,y) forallx,y€ E andn € No.

Note, however, that in (17.11) we have required neither independence of the random
variables (R, (x), x € E) nor that all R, had the same distribution. Only the one-
dimensional marginal distributions are determined. In fact, in many applications it
is useful to have subtle dependence structures in order to couple Markov chains with
different initial chains. We pick up this thread again in Section 18.2.

For x € E, define

Xj=x and X, =R,(X;_,) forneN.

Finally, let P, := L[ X*] be the distribution of X*. Recall that this is a probability
measure on the space of sequences (E No B (E )®N0).

Theorem 17.17

(1) With respect to the distribution (Py)xcg, the canonical process X on
(ENo, B(E)®No) is a Markov chain with transition matrix p.

(ii) In particular, to any stochastic matrix p, there corresponds a unique discrete
Markov chain X with transition probabilities p.

Proof “(ii)” This follows from (i) since Theorem 17.11 yields uniqueness of X.
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“(1)” For n € Ng and x, y, z € E, by construction,

PolXp1 =2 Fu, Xp =31 =P[X; 1 =2 [0 (Rn,m <), X; =]
=P[Rut1(X;) =z |0 (Ru,m <n), X;; = y]
=P[Ri11(») =2]
=p(y,2).

Hence, by Theorem 17.11, X is a Markov chain with transition matrix p. O

Example 17.18 (Random walk on Z) Let E = Z, and assume
px,y)=p0,y —x) forallx,yeZ.

In this case, we say that p is translation invariant. A discrete Markov chain X with

transition matrix p is a random walk on Z. Indeed, X, 24 Xo+Z1+...+Z,, where
(Zn)nen are iid. with P[Z, = x] = p(0, x).

The R, that we introduced in the explicit construction are given by R, (x) :=
x+Z,. O

Example 17.19 (Computer simulation) Consider the situation where the state space
E ={1,...,k}is finite. The aim is to simulate a Markov chain X with transition ma-
trix p on a computer. Assume that the computer provides a random number genera-
tor that generates an i.i.d. sequence (Uy),en of random variables that are uniformly
distributed on [0, 1]. (Of course, this is wishful thinking. But modern random num-
ber generators produce sequences that for many purposes are close enough to really
random sequences.)

Define r(i,0) =0, r(i, j) = p@i, 1) +...+ p(i, j) for i, j € E, and define Y,, by

Ri(i)=j <<= Uye[rG, j—D,rG,))).
Then, by construction, P[R, (i) = jl1=r(, j) —r(i, j — 1) = p(, j). O

Example 17.20 (Branching process as a Markov chain) We want to understand
the Galton—Watson branching process (see Definition 3.9) as a Markov chain on
E =Ny.

To this end, let (gx)ken, be a probability vector, the offspring distribution of one
individual. Define ¢ 0= 140} (k) and

k
Q"= Zq:(_”f])q, forneN
=0

as the n-fold convolutions of g. Hence, for n individuals, ¢;" is the probability to
have exactly k offspring. Finally, define the matrix p by p(x, y) = q;‘x forx, y € Ny.
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Now let (Y, i, n € Ny, i € Ng) be i.i.d. with P[Y;, ; = k] = gk. For x € Ny, define

the branching process X with x ancestors and offspring distribution g by Xo = x
X)l

and X, ;=) "' Y,—1,i. In order to show that X is a Markov chain, we compute
PIX,=x,| Xo=x,X1=x1,..., Xp—1 =xp-1]
=PYp-11+ ...+ Va1, =Xnl
=P} () = g5 = Pt xw).
Hence X is a Markov chain on Ny with transition matrix p. O

Example 17.21 (Wright’s evolution model) In population genetics, Wright’s evolu-
tion model [171] describes the hereditary transmission of a genetic trait with two
possible specifications (say A and B); for example, resistance/no resistance to a
specific antibiotic. It is assumed that the population has a constant size of N € N
individuals and the generations change at discrete times and do not overlap. Fur-
thermore, for simplicity, the individuals are assumed to be haploid; that is, cells
bear only one copy of each chromosome (like certain protozoans do) and not two
copies (as in mammals).

Here we consider the case where none of the traits is favored by selection. Hence,
it is assumed that each individual of the new generation chooses independently and
uniformly at random one individual of the preceding generation as ancestor and
becomes a perfect clone of that. Thus, if the number of individuals of type A in the
current generation is k € {0, ..., N}, then in the new generation it will be random
and binomially distributed with parameters N and k/N.

The gene frequencies k/N in this model can be described by a Markov chain X
on E={0,1/N,...,(N —1)/N, 1} with transition matrix p(x,y) = by x({Ny}).
Note that X is a (bounded) martingale. Hence, by the martingale convergence theo-
rem (Theorem 11.7), X converges P, -almost surely to a random variable X, with
E,[Xo] =E\[Xo] = x. As with the voter model (see Example 11.16) that is closely
related to Wright’s model, we can argue that the limit X, can take only the stable
values 0 and 1. That is, Py [lim, o0 X, = 1] =x =1 — Py [lim, o X,, =0]. O

Example 17.22 (Discrete Moran model) In contrast to Wright’s model, the Moran
model also allows overlapping generations. The situation is similar to that of
Wright’s model; however, now in each time step, only (exactly) one individual gets
replaced by a new one, whose type is chosen at random from the whole population.

As the new and the old types of the replaced individual are independent, as a
model for the gene frequencies, we obtain a Markov chain X on E = {0, % R
with transition matrix

x(1—x), if y=x+1/N,

x24+(1—=x)? ify=x,
plx,y)= .

x(1 —x), ify=x—1/N,

0, else.
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Here also, X is a bounded martingale and we can compute the square variation
process,

n_ZE(X Xi—D)? | Xii] ZX(]—X) (17.12)
i=1 <>

Exercise 17.2.1 (Discrete martingale problem) Let E C R be countable and let X
be a Markov chain on E with transition matrix p and with the property that, for
any x, there are at most three choices for the next step; that is, there exists a set
Ay C E of cardinality 3 with p(x,y) =0forally € E\ A,.Letd(x) := ZyeE(y -
x)p(x,y) forx € E.

(i) Show that M, := X, Zk —od(Xy) defines a martingale M with square vari-

ation process (M), = Z” ! f(X;) for a unique function f : E — [0, 00).

(i1) Show that the transition matrlx p is uniquely determined by f and d.

(iii)) For the Moran model (Example 17.22), use the explicit form (17.12) of the
square variation process to compute the transition matrix.

17.3 Discrete Markov Processes in Continuous Time

Let E be countable and let (X;);e[0,00) be @ Markov process on E with transition
probabilities p;(x, y) = Py[X; = y] (for x, y € E). (Some authors call such a pro-
cess a Markov chain in continuous time.)

Let x, y € E with x # y. We say that X jumps with rate q(x, y) from x to y if
the following limit exists:

1
,y) :=1lim -P,[X, = y].
q(x,y) tlﬁ)lt [ X =yl

Henceforth we assume that the limit g (x, y) exists for all y # x and that

D q(x.y)<oo forallxeE. (17.13)
A
Then we define
qx,x) == q(x, ). (17.14)
yFX

Finally we assume that (which is equivalent to exchangeability of the limit and the
sum over y # x in the display preceding (17.13))
1

li&)l?(Px[Xt =y]— ]l{xzy}) =q(x,y) forallx,yeE. (17.15)
t

Definition 17.23 If (17.13), (17.14) and (17.15) hold, then ¢ is called the Q-matrix
of X. Sometimes ¢ is also called the generator of the semigroup (p;):>0.
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Example 17.24 (Poisson process) The Poisson process with rate o > 0 (compare
Section 5.5) has the Q-matrix g(x, y) = a(L{y=x+1} — L{y=x})- O

Theorem 17.25 Let g be an E x E matrix such that q(x,y) >0 forall x,y € E
with x # y. Assume that (17.13) and (17.14) hold and that

A= sup|q(x, x)| < oo. (17.16)

xeE

Then q is the Q-matrix of a unique Markov process X .

Intuitively, (17.15) suggests that we define p; = €9 in a suitable sense. Then,
formally, g = % Dt ] ,—o- The following proof shows that this formal argument can
be made rigorous.

Proof Let I be the unit matrix on E. Define

1
p(x,y)= xq(x,y) +1(x,y) forx,yekE,

if A > 0 and p = I otherwise. Then p is a stochastic matrix and g = A(p — I).
Let ((Yn)neny> (P;/) xeg) be a discrete Markov chain with transition matrix p and
let ((T})s>0, (PZ)neNO) be a Poisson process with rate A. Let X; := Y7, and P, =
P}: ® Pg. Then X := ((X)>0, (Px)xecE) is a Markov process and

o
pi(x, y) :=P[X; =yl= ) P{IT, =n]P{[Y, =y]
n=0
oo
A"
— M MY oon
=My ),
n=0
This power series (in ) converges everywhere (note that as a linear operator, p has
finite norm || p||> < 1) to the matrix exponential function e*’? (x, y). Furthermore,

pr(x,y) = e MeMP (x,y) = M P (x, y) = €' (x, y).

Differentigting the power series termwise yields % pe(x,y) | o =9q(x,y). Hence X
is the required Markov process.

Now assume that (P1):>0 are the transition probabilities of another Markov pro-
cess X with the same generator g; that is, with

o1
EiBIE(pS(x’ y) —1(x, ) =q(x, ).

It is easy to check that

1
13&1;(Pz+s(x’ ¥) = pi(x, ) = (q - p)(x,y).
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That is, we have (d/dt)p:(x,y) = gp;(x,y). Similarly, we get (d/dt)p; =
q p:(x, y). Hence also,

t
pt(x,y)—ﬁz(x,y)=/0 (a(ps — Do) (x, y) ds.

If we let rg = pg — ps, then ||rg|l2 <2 and ||g||2 < 2A; hence
N S
sup [|7s]l2 < Sup/ lgrull2du < liql2 Sup/ l7ull2 du < 22t sup ||7s||2.
s<t s<t JO s<t JO s<t

For ¢ < 1/2A, this implies r; = 0; hence p; = p;. For general ¢ > 0, choose n € N
such that z/n < 1/2 to obtain p; = (Pr/n)" = (pi/n)" = ps- O

Remark 17.26 The condition (17.16) cannot be dropped easily, as the following ex-
ample shows. Let £ = N and

X2, ify=x+1,
gx,y)={-x2, ify=n,
0, else.

We construct explicitly a candidate X for a Markov process with Q-matrix q. Let
Ty, T, ... be independent, exponentially distributed random variables with P7, =
exp,2. Define S, =T1 4 ... + T,—1 and X; = sup{n € Ny : S, <t}. Then, at any
time, X makes at most one step to the right. Furthermore, due to the lack of memory
of the exponential distribution (see Exercise 8.1.1),

PX;ys>n+1]|X;=n]
=P[Spt1 <t +5|S <1, Sut1 > 1]
=P[T, <s+t—=8, |8 =<t,T, >t —8,]=P[T, <s]

=1- exp(—nzs).
Therefore,
lims '"P[X;ss=n+1| X, =n]l=n>
s40
and
lims ' (P[X/4s =n| X, =n]— 1) =—n%
540
hence

liF(}s*l (P[Xi4s=m | X; =n]—I(m,n)) =q(m,n) forallm,neN.
N

Let

" =inf{t>0:X;,=n}=S5, forneN.
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Then Eq[t"] = ZZ;} kl—z By monotone convergence, E[sup, oy 7"'] < co. That is,
in finite time, X exceeds all levels. We say that X explodes. O

Example 17.27 (A variant of Pélya’s urn model) Consider a variant of Pélya’s urn
model with black and red balls (compare Example 12.29). In contrast to the original
model, we do not simply add one ball of the same color as the ball that we return.
Rather, the number of balls that we add varies from time to time. More precisely,
the kth ball of a given color will be returned together with r; more balls of the same
color. The numbers ry, 72, ... € N are parameters of the model. In particular, the
case | =r; =rp =...is the classical Pélya’s urn model. Let

1, if the nth ball is black,

Xn 1= 0, else.

For the classical model, we saw (Example 12.29) that the fraction of black balls
in the urn converges a.s. to a Beta-distributed random variable Z. Furthermore,
given Z, the sequence X1, X», ... is independent and Berz-distributed. A similar
statement holds for the case where r =r; =rp, = ... for some r € N. Indeed, here
only the parameters of the Beta distribution change. In particular (as the Beta distri-
bution is continuous and, in particular, does not have atoms at O or 1), almost surely
we draw infinitely many balls of each color. Formally, P[B] = 0 where B is the
event where there is one color of which only finitely many balls are drawn.

The situation changes when the numbers ry grow quickly as k — o0o. Assume
that in the beginning there is one black and one red ball in the urn. Denote by
w, =1+ Y ;_, rx the total number of balls of a given color after n balls of that
color have been drawn already (n € Ny).

For illustration, first consider the extreme situation where w,, grows very quickly;
for example, w, = 2" for every n € N. Denote by

Sp=2X1+...+X,)—n

the number of black balls drawn in the first n steps minus the number of red balls
drawn in these steps. Then, for every n € Np,

Sn 2- Sn

PXpr1=1181= m and P[X,+1=0]|S,]= m

We conclude that (Z;),en, := (ISzneN, 1s a Markov chain on Ny with transition
matrix

28 /(142%), if7/=z+4+1>1,
1, if7 =z4+1=1,
1/(14+2%), ifz/=z-1,

0, else.

p(z.7) =



366 17 Markov Chains

The event B from above can be written as
B ={Z,11 < Z, only finitely often}.

Let A ={Z,+1 > Z, for all n € Ny} denote the event where Z flees directly to oo
and let 7, = inf{n € Ny : Z,, > z}. Evidently,

o0 o0

1 -
PLAl=[]p(@.d+ )23 =1 -2

7=z 7=z

It is easy to check that Py[r, < co] =1 for all z € Ny. Using the strong Markov
property, we get that, for all z € Ny,

Po[B] > Po[Zni1 > Z, foralln > 7,1 =P,[A] > 1 — 2! 77,

and thus Po[B] = 1. In prose, almost surely eventually only balls of one color will
be drawn.

This example was a bit extreme. In order to find a necessary and sufficient con-
dition on the growth of (w,,), we need more subtle methods that appeal to the above
example of the explosion of a Markov process.

We will show that P[B] = 1 if and only if ZEOZO w%‘ < 00. To this end, consider
independent random variables T, 1/, TZS Ty, ... with Prr =Prs = eXpy, - Let
TL,=> 02 Tr and TS, =Y o2 | T3, Clearly, E[TL] =) 2, 1/w, < oco; hence,
in particular, P[T < oo] = 1. The corresponding statement holds for 75 . Note that
T}, and T}, are independent and have densities (since 7] and 7} have densities);
hence we have P[T], =T ]1=0.

Now let

Ri=sup{neN:T{ +...+ T, <t}

n—1 =
and
Sp:=sup{neN:T{ +...+T;_ <t}.

Let R:={T{ +...+T,;,neN}andlet S :=(T] +... + T, n € N} be the jump
times of (R;) and (S;). Define U := RUS ={uy,up,...}, where u; <ur < ....Let

1, ifu,es,
X, =
0, else.
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Let L, =x1+ ...+ x,. Then
PX,r1=1X1=x1,..., X, =x,]
=P[un+1 eS|(ukeS — xk=1)foreveryk§n]
=PI +... +T)  <T{+...+T_; ]
.. . +T, >T +...+T, ]

w

n

wL, + Wn—L,

Hence (X,),en, is our generalized urn model with weights (wy),en,. Consider
now the event B¢ where infinitely many balls of each color are drawn. Evi-
dently, {X;, = | infinitely often} = {sup S = sup U} and {X,, = 0 infinitely often} =
{supR = supU}. Since supS = T3, and supR = TZ,, we thus have P[B‘] =
P[T, =T;]1=0. O

Exercise 17.3.1 Letr, s, R, S € N. Consider the generalized version of Pdlya’s urn
model (X,,),en, With ry =7 and s; = s for all k € N. Assume that in the beginning
there are R red balls and S black balls in the urn. Show that the fraction of black
balls converges almost surely to a random variable Z with a Beta distribution and
determine the parameters. Show that (X,),en, is i.i.d. given Z and X; ~ Berz for
all i € Np.

Exercise 17.3.2 Show that, almost surely, infinitely many balls of each color are
drawn if

17.4 Discrete Markov Chains: Recurrence and Transience

In the following, let X = (X,)nen, be a Markov chain on the countable space E
with transition matrix p.

Definition 17.28 Forany x € E, let 7, := rxl :=inf{n >0: X, =x} and
o =infln>7"': X, =x} forkeNk>2.
r)f is the kth entrance time of X for x. For x, y € E, let
F(x,y):=P; [ryl < 00| =Py[there is an n > 1 with X,, = y]

be the probability of ever going from x to y. In particular, F(x, x) is the return
probability (after the first jump) from x to x.

Note that 7! > 0 even if we start the chain at Xo = x.
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1/4
3/4
D, /@
&
Fig. 17.1 Markov chain with eight states. The numbers are the transition probabilities for the

corresponding arrows. State 2 is absorbing, the states 1, 3, 4 and 5 are transient and the states 6, 7
and 8 are (positive) recurrent

Theorem 17.29 Forall x,y € E and k € N, we have
P [t} <oo|=F(x,)F(y. "

Proof We carry out the proof by induction on k. For k = 1, the claim is true by defi-
nition. Now let k > 2. Using the strong Markov property of X (see Theorem 17.14),
we get

Px[t}’f < 00| =E,[Px [r§C <0 | ‘Fr;f_]]:ﬂ‘{r)’f_]<oo}]
=E; [F(y’ y) ’ jl{r'{f*l<oo}]

=F(,y) - F(x,)FO, )2 =Fx,)FQ,y O

Definition 17.30 A state x € E is called

o recurrent if F(x,x) =1,

e positive recurrent if Ex[rxl] < 00,

e null recurrent if x is recurrent but not positive recurrent,
o transient if F(x,x) <1, and

e absorbing if p(x,x) = 1.

The Markov chain X is called (positive/null) recurrent if every state x € E is
(positive/null) recurrent and is called transient if every recurrent state is absorbing.

Remark 17.31 Clearly, we have:
“absorbing” =  “positive recurrent” =—> “recurrent’. 0

Example 17.32

(1) In Fig. 17.1, the state 2 is absorbing. If it does not get trapped in 2, the chain
will eventually jump from 5 to 6 and will not return after that. Hence 1, 3, 4 and
5 are transient. The states 6, 7 and 8 are positive recurrent. One can show (see
Exercise 17.6.1) that Eg[t6] = 14—7, E/[t7] = 15—7 and Eg[1g] = %



17.4 Discrete Markov Chains: Recurrence and Transience 369

1 r r r
@, W, @, B, °
Kﬁ‘»».
1-r 1-r 1-r 1-r

Fig. 17.2 Markov chain on Ny with parameter r € (0, 1). The chain is positive recurrent if
r € (0, 1/2), null recurrent if »r = 1/2 and transient if r € (1/2, 1)

(ii) The chain in Fig. 17.2 has a drift to the right if » > 5. Hence, in this case, every

state is transient. On the other hand, if r € (0, Z)’ then the chain has a drift to
the left (except at the point 0) and hence visits every state again and again. Thus
the chain is recurrent. With a little thought, one can show (see Exercise 17.6.4)
that in this case, the chain is actually positive recurrent and in the remaining
case r = % it is null recurrent. O

Definition 17.33 Denote by N(y) = Y 7 1{x,=y} the total number of visits of X
to y and by

G(x,y) =E[N(y)] Zp (x,y)

the Green function of X.

Theorem 17.34
(1) For all x,y € E, we have (with the convention 1/0 := 00, 0/0:=0 and O -

00 :=0)
F(x,y) ;
—Fooy Ux#Yy
G(m)zi‘ Foym = =7 }=F(x,y)G<y,y)+1{x:y}. (17.17)
l—F(y,y)7 lf“x_y

(ii) A non-absorbing state x € E is recurrent if and only if G(x, x) = 00

Proof (ii) follows by (i). Hence, it remains to show (17.17). By Theorem 17.29, we
have

G(x,y) =E[N»] =) P.[N(y) > K]
k=1

oo o0
= Loy + ) Pe[r) <00] =Tpmyy + ) FO, NF(y, )

k=1 k=1
F(x,y) :
—FGy X FEY
1 .
m, if x =Y.

The second equality in (17.17) is an immediate consequence. g
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Theorem 17.35 If x is recurrent and F(x,y) > 0, then y is also recurrent, and
Fx,y)=F(y,x)=1.

Proof Let x,y € E, x # y, be such that F(x,y) > 0. Then there is a k € N and
states x1,...,x;y € E with xy =y and x; # x foralli =1, ..., k and such that

P.[X;=x;foralli=1,...,k] > 0.
In particular, p*(x, y) > 0. By the Markov property, we have
1— F(x,x) =P[1] =00] > Py[ X1 =x1,..., Xy = xt, T, = 0]
=P [X1=x1,..., X = x¢]- Py[1) = o0]
=P X1 =x1,..., Xk =xk](1 — F(y,x)).

If now F(x,x) =1, then also F(y,x) = 1. Since F(y, x) > 0, there exists an
| € N with pl(y, x) > 0. Hence, for n € Ny,

PG,y = p () p (e, ) pF(xL ).
If x is recurrent, then we conclude that
o0
Gy, =Y Py = pl (0P (x, )G (x, x) =00
n=0

and hence also that y is recurrent. Changing the roles of x and y in the above argu-
ment, we get F(x,y)=1. O

Definition 17.36 A discrete Markov chain is called

e irreducible if F(x,y) > 0forall x,y € E, or equivalently G(x, y) > 0, and
o weakly irreducible if F(x,y)+ F(y,x)>0forallx,y € E.

Theorem 17.37 An irreducible discrete Markov chain is either recurrent or tran-
sient. If |E| > 2, then there is no absorbing state.

Proof This follows directly from Theorem 17.35. g
Theorem 17.38 If E is finite and X is irreducible, then X is recurrent.

Proof Evidently, for all x € E,
oo (09)
Y G=) > play=) l1=oc.
yeE n=0yecE n=0

As E is finite, there is a y € E with G(x, y) = oo. Since F(y, x) > 0, there exists a
k € N with p*(y, x) > 0. Therefore, since p"**(x, x) > p*(x, y) p*(y, x), we have
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Gx,x) =Y p"(x, Yy, x) = p! (3, )Gx, y) = 0. .
n=0

Exercise 17.4.1 Let x be positive recurrent and let F'(x, y) > 0. Show that y is also
positive recurrent.

17.5 Application: Recurrence and Transience of Random Walks

In this section, we study recurrence and transience of random walks on the D-
dimensional integer lattice 7ZP D =1,2,.... A more exhaustive investigation can
be found in Spitzer’s book [158].

Consider first the simplest situation of symmetric simple random walk X on Z”.
That is, at each step, X jumps to any of its 2D neighbors with the same probability
1/2D. Hence, in terms of the Markov chain notation, we have E = 7P and

l .
55, Ifjlx—yl=1
2D 9 9
plx,y)=
0, else.
Is this random walk recurrent or transient?
The central limit theorem suggests that

p"(0,0)~ Cpn~P? asn— oo

for some constant Cp that depends on the dimension D. However, first we have
to exclude the case where n is odd since here clearly p"(0,0) = 0. Thus let
Y1, Ya, ... be independent 7P -valued random variables with P[Y; = x] = p2(0, x).

Then Xo, 2 S, := Y| + ... + ¥, for n € No; hence G(0,0) = Y2, P[S, = 0].
Clearly, Y1 = (Y}, ..., YID) has covariance matrix C; j := E[Yf . Ylj] = %Jl{,-:j}.
By the local central limit theorem (see, e.g., [20, pp. 224ff] for a one-dimensional
version of that theorem or Exercise 17.5.1 for an analytic derivation), we have

nP/2p2(0,0) = nP/?P[S, = 0] =3 2(47/D)~P/2. (17.18)

Now > n™% < oo if and only if @ > 1. Hence G(0,0) < oo if and only if
D > 2. We have thus shown the following theorem of Pélya [134].

Theorem 17.39 (Pélya (1921) [134]) Symmetric simple random walk on ZP is re-
current if and only if D < 2.

The procedure we used here to derive Polya’s theorem has the disadvantage that
it relies on the local central limit theorem, which we have not proved (and will not).
Hence we will consider different methods of proof that yield further insight into the
problem.

Consider first the one-dimensional simple random walk that with probability p
jumps one step to the right and with probability 1 — p jumps one step to the left.
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Then

G(0,0) = i <2n"> (p(1—p))' = i (_:1/2> (—4p(1 - p))".

n=0 n=0

Using the generalized binomial theorem (see Lemma 3.5), we get (since we have
(1=4p(—p)'?=12p 1)

1 : 1
2p—1p° lfp#j

P (17.19)

G(0,0) = {
00, if p=

Thus, simple random walk on Z is recurrent if and only if it is symmetric; that is, if
1
p=3-

Of course, transience in the case p # é could also be deduced directly from the
strong law of large numbers since hm,Hoo X, =Eo[X1] =2p — 1 almost surely.
In fact, this argument is even more robust smce it uses only that the single steps of
X have an expectation that is not zero.

Consider now the situation where X does not necessarily jump to one of its near-
est neighbors but where we still have Eg[|X1|] < co and Eg[X 1] = 0. The strong
law of large numbers does not yield recurrence immediately and we have to do
some work:

By the Markov property, for every N € N and every y # x,

N N N—k
Gn(x.y) =Y PlXp=yl=) P[] =k] > Py[X;=y] <Gn(. ).
k=0 k=0 =0

This implies forall L e N

1
0,0 0,
Gn(0.0) = 37— > Gy, y)
[yI=L

2L+IZZP(0 »)

k=0]y|<L

> 3 Z Y. oy

k 1y:|y/k|<L/N

By the weak law of large numbers, we have liminf;_, o Zly\ <k pk 0, y) =1 for
every ¢ > 0. Hence, letting L = ¢N, we get

1
liminf G (0,0) > — for every ¢ > 0.
N—o00 2¢e

Thus G (0, 0) = oo, which shows that X is recurrent.
We summarize the discussion in a theorem.



17.5 Application: Recurrence and Transience of Random Walks 373

Theorem 17.40 A random walk on Z with Y o2 |x|p(0, x) < 00 is recurrent if
and only ifo;O:_oo xp(0,x)=0.

Now what about symmetric simple random walk in dimension D = 2 or in higher
dimensions? In order that the random walk be at the origin after 2n steps, it must
perform k; steps in the ith direction and k; steps in the opposite direction for some
numbers k1, ..., kp € Ng with k1 4 ... + kp = n. We thus get

2n _ —2n 2n
p”"(0,0) = (2D) > <k1’ b, ) (17.20)

.. kp,k
ki+...+kp=n D> %D

N

where ( I

/ ) = % is the multinomial coefficient. In particular, for D =2,

n

2n _1—2n (Zn)‘
prO.0=4 ,;(k!ﬂ((n—k)!)z

n 2
=26 -6 0))
nje= k) \n—k n
Note that in the last step, we used a simple combinatorial identity that follows,

e.g., by the convolution formula (b, * by, p)({n}) = b2y, ({n}). Now, by Stirling’s
formula,

) _on (21 1
nlingo \/22 ( n ) - ﬁ ’
hence lim,,_monpz” 0,0) = % In particular, we have Zf’il p2” (0,0) = oco. That
is, two-dimensional symmetric simple random walk is recurrent.

For D > 3, the sum over the multinomial coefficients cannot be computed in
a satisfactory way. However, it is not too hard to give an estimate that shows
that there exists a ¢ = c¢p such that p>(0, 0) < cn~P/?, which implies G(0, 0) <
CZZo:] n~P/2 < 5o (see, e.g., [53, p. 361] or [59, Example 6.31]). Here, however,
we follow a different route.

Things would be easy if the individual coordinates of the chain were independent
one-dimensional random walks. In this case, the probability that at time 2n all coor-
dinates are zero would be the Dth power of the probability that the first coordinate
is zero. For one coordinate, however, which moves only with probability 1/D and
thus has variance 1/D, the probability of being back at the origin at time 2n is ap-
proximately (n7r/D)~'/2. Up to a factor, we would thus get (17.18) without using
the multidimensional local central limit theorem.

An elegant way to decouple the coordinates is to pass from discrete time to con-
tinuous time in such a way that the individual coordinates become independent but
such that the Green function remains unchanged.

We give the details. Let (Tti) >0, i =1, ..., D be independent Poisson processes
with rate 1/D. Let Z L ...ZP be independent (and independent of the Poisson
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processes) symmetric simple random walks on Z. Define T := T '+ ...+ TP,
Y} = ZlTi fori=1,...,D and let Y; = (Ytl, e Y,D). Then Y is a Markov chain
t

in continuous time with Q-matrix g(x, y) = p(x,y) — L{x=y}. As T is a Poisson
process with rate 1, (X7;,);>0 is also a Markov process with Q-matrix ¢q. It follows

that (X7,)1>0 2 (Y1)r>0. We now compute

00 oo X
Gy :=/ PolY, =0]dt=/ > Po[Xp, =0, T, =2n]dt
0 0 n=0

o0 00 £2n
= E P> (0, 0)/ e’ dt =G(0,0).
~ o (Qn)

The two processes (X;),en, and (¥;)se[0,00) thus have the same Green function. As
the coordinates of Y are independent, we have

*© D
Gy:/ Po[Y! =0]" dr.
0

Hence we only have to compute the asymptotics of PO[YZ1 = 0] for large r. We
can argue as follows. By the law of large numbers, we have Tt1 ~t/D for large t.
Furthermore, PO[Y,1 is even] ~ % Hence we have, with n; = [¢t/2D] for t — o0
(compare Exercise 17.5.2),

1 1/2
Po[Y,) =0] ~ EP[zgnt =0]= 5(2’)4—“ ~Qr/D) V212 (17.21)

Since floot"" dt < oo if and only if @ > 1, we also have Gy < oo if and only if
D > 2. However, this is the statement of P6lya’s theorem.

Finally, we present a third method of studying recurrence and transience of ran-
dom walks that does not rely on the Euclidean properties of the integer lattice but
rather on the Fourier inversion formula.

First consider a general (discrete time) irreducible random walk with transition
matrix p on ZP. By ¢ (1) =Y, .0 ¢'"¥ p(0, x) denote the characteristic function
of a single transition. The convolution of the transition probabilities translates into
powers of the characteristic function; hence

P ()= &"Ip"(0,x).
xeZP
By the Fourier inversion formula (Theorem 15.10), we recover the n-step transition

probabilities from ¢” by

"0, x) = (Zn)_D/ e X M (1) dt.

[~m,7)P
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In particular, for A € (0, 1),

o0
Ry = _2"p"(0,0)
n=0

=@mn)? Z/[ A" (1) d1
n=0

—JT,H)D

) 1
= (2m) / —dt.
[—zmP 1 — A (1)

= (2N)*D/ Re<;> dr.
[—7,7)P 1 —2p(@)

Now G (0, 0) =lim, 41 R), and hence

1
X isrecurrent <= lim Re(—) dt = o0. (17.22)
ML S m)D 1 =21 (1)

If we had ¢(¢) = 1 for some ¢ € (-2, 27)P \ {0}, then we would have ¢"(¢t) =1
for every n € N and hence, by Exercise 15.2.1, Po[(X,,,t/(2m)) € Z] = 1. Thus X
would not be irreducible contradicting the assumption. Due to the continuity of ¢
for all £ > 0, we thus have

inf{l¢(1) — 1] : 1 € [, 1)\ (—e, &)P} > 0.
We summarize the discussion in a theorem due to Chung and Fuchs [26].

Theorem 17.41 (Chung—Fuchs (1951) [26]) An irreducible random walk on 7P
with characteristic function ¢ is recurrent if and only if, for every ¢ > 0,

1
lim Re(i) dt = 0. (17.23)
M1 J (—g,e)D 1 —2x¢(1)

Now consider symmetric simple random walk. Here ¢ (1) = % Zi’;l cos(t;). Ex-
panding the cosine function in a Taylor series, we get cos(f;) = 1 — %tl-z + 0(tl.4);
hence 1 — ¢ (1) = 5511113 + O(ll£]13). We infer that X is recurrent if and only if
f” tla<e el 2dt = c0. We compute this integral in polar coordinates (with Cp the

surface of the unit sphere in RP):

£
/ ||z||;2dz=cD/rD—1r—2dr=oo — D<2.
lltlla<e 0

Hence, X is recurrent if and only if D < 2.

In Section 19.3, we will encounter a further method of proving Pélya’s theorem
that has a completely different structure and that is based on the connection between
Markov chains and electrical networks.
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In fact, the Chung—Fuchs theorem can be used to compute the numerical values
of the Green function Gp(0,0) of symmetric simple random walk on Z” if we
compute numerically the so-called Watson integral

D

_ -D
Gp(0.0) =@2m) /[ xmyP D — (cos(xy) + ... +cos(xp)) dx. (17.24)

For this purpose, we follow [80] (where there are further refinements of the method)
to transform the D-fold integral into a double integral. Denote by

1 e
Io(t) == — / '@ dp
T Jo

the so-called modified Bessel function of the first kind. Using the identity % =
f0°° e~* dt for the integrand and applying Fubini’s theorem, we get

GD(O, 0) — D /ooe—Dt / et(cos(x1)+‘..+cos(xu)) dx ) dt
@2m)P Jo [—7,7)P

and thus
o
Gp(0, O):D/ e P Io(n)P dr. (17.25)
0

The right-hand side of (17.25) can quickly be computed numerically with great
accuracy (see Table 17.1).
For the case D = 3, Watson [168] found the expression

G5(0,0) = 18 12ﬁ—210¢§— 7*/61(((2 — VA3 -V2)),

T

where K (m) = fol (1 =3 (1 —mt?)~ Y2 dr is the complete elliptic integral of the
first kind with modulus m € (—1, 1). This in turn can be expressed as a (quickly

convergent) series
_7(, en!\? ,
K (m) = 2( +Z<4n(m)2) )

Glasser and Zucker [61] found an expression as a product of four Gamma functions,

63(0,0)=£r I\ (2 (L) r (L) = 1.5163860591519780181 ...
373 \24) \24)" \24)" \24

Exercise 17.5.1 For n € No, let p" be the matrix of n-step transition probabilities
of simple symmetric random walk on ZP . For n € N, derive the formula (see Theo-
rem 15.10)

p2(0,0) = (Zn)_D/ D~ (cos(tl) +...+ cos(tD))zn dt
[-m.m)P
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Table 17.1 Green function G p (0, 0) and return probability Fp (0, 0) of simple symmetric random

walk on ZP. The numerical computations are based on (17.25)

D Gp(0,0) Fp(0,0)
2 [e9) 1
3 1.51638605915 0.34053732955
4 1.23946712185 0.19320167322
5 1.15630812484 0.13517860982
6 1.11696337322 0.10471549562
7 1.09390631559 0.08584493411
8 1.07864701202 0.07291264996
9 1.06774608638 0.06344774965
10 1.05954374789 0.05619753597
11 1.05313615291 0.05045515982
12 1.04798637482 0.04578912090
13 1.04375406289 0.04191989708
14 1.04021240323 0.03865787709
15 1.03720412092 0.03586962312
16 1.03461657857 0.03345836447
17 1.03236691238 0.03135214040
18 1.03039276285 0.02949628913
19 1.02864627888 0.02784852234
20 1.02709011674 0.02637559869

n—oo

By a suitable bound for the integral, conclude the convergence n?/?p?"(0,0) —
2(47 /D)~ P/? (see (17.18)).

Exercise 17.5.2 Show (17.21) formally.

Exercise 17.5.3 Use Theorem 17.41 to show that a random walk on ZZ? with
> cez2 xp(0,x) =0 is recurrent if Y, ;2 lx[|5p(0, x) < oo.

Exercise 17.5.4 Use Theorem 17.41 to show that, for D > 3 every irreducible ran-
dom walk on ZP is transient.

Exercise 17.5.5 Show (17.25) for G p (0, 0) directly with the pZ” (0, 0) from (17.20)
and using the representation of Io(¢) as the series Io(t) = Z,fio(k!)_z(t /2)".

17.6 Invariant Distributions

In the following, let p be a stochastic matrix on the discrete space E and let
(Xn)nen, be a corresponding Markov chain.

This section is devoted to the question: Which distributions are preserved under
the dynamics of the Markov chain? Of course, often the chain will not stay put in a
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specific state but the distribution of the random state of the chain might nevertheless
be the same for all times. If such an invariant distribution exists, we will see in
Chapter 18 that under rather weak conditions, the distribution of a Markov chain
(started in an arbitrary state) converges in the large time limit to such an invariant
distribution.

Definition 17.42 If 1 is a measure on E and f : E — R is a map, then we write

up(xh) =3 cp n{yPDp(y,x) and pf (x) =3 g p(x, ) f(¥) if the sums con-
verge.

Definition 17.43

(i) A o-finite measure w on E is called an invariant measure if
WP = i4.

A probability measure that is an invariant measure is called an invariant distri-
bution. Denote by Z the set of invariant distributions.

(i) A function f : E — R is called subharmonic if pf exists and if f < pf.
f is called superharmonic if f > pf and harmonic if f = pf.

Remark 17.44 In the terminology of linear algebra, an invariant measure is a left
eigenvector of p corresponding to the eigenvalue 1. A harmonic function is a right
eigenvector corresponding to the eigenvalue 1. O

Lemma 17.45 If f is bounded and (sub-, super-) harmonic, then (f(X,))nen, is a
(sub-, super-) martingale with respect to the filtration ¥ = o (X) generated by X .

Proof Let f be bounded and subharmonic. Then

E[f(X0) | Foct] =Ex, ,[F(XD] =D pXne1, ) F ()

yeE

=pfXn-1) = f(Xn-1). O

Theorem 17.46 If any point is transient, then an invariant distribution does not
exist.

Proof By assumption, G(x,y) = > o2, p"(x,y) < oo for all x,y € E; hence
pr(x,y) "% 0. For every probability measure w on E, we thus have that

up"({x}) 0.1 @ was invariant, however, then we would have up”({x}) =
u({x}) foralln e N. O

Theorem 17.47 Let x be a recurrent state and let ‘L')g =inf{n > 1: X, = x}. Then
one invariant measure [Ly is defined by
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() = [Z Lix,= >}}=ZPx Xy =y, >n].
n=0

Proof First we have to show that u,({y}) < oo for all y € E. For y = x, clearly
Ux({x}) =1.For y # x and F(x,y) =0, we have i, ({y}) =0. Now let y # x and
F(x,y) > 0. As x is recurrent, we have F(x,y) = F(y,x) =1 and y is recurrent
(Theorem 17.35). Let

F(x,y) =P [z > tyl]

Then F (x, ¥) > 0 (otherwise y would not be visited). Changing the roles of x and y,
we also get F(y,x) > 0.
By the strong Markov property (Theorem 17.14), we have

[Zﬂ{xn y}}-HE [Z Lix,=y)} Ty >T}

n=t]

7, —1
=1+ (1-F(y,x)E [Zﬂ{xn y}}

Hence,

1

-1
EY|:Z 1{Xn:y}:| == '
=0 F(y,x)

Therefore,

>

T, —1 T, —1 ~
F ’
{y} |:Z 1ix,= y}j| |:Z Lix,=y): r >T :| FE)yC,ic); < 0.

1
n T)

Define p,,(x,y) =Pi[Xp =y; 7T ! > n]. Then, for every z€ E,
wep (1) =D e () p(y, z)—Zan(x nry,2).
yeE n=0yeE

Case I: x # z. In this case,

an(x Np(y,z)= ZP [Xo =y, 1) >n X1 =2]

yeE yeE

=P, [‘L’ >n+1; Xpp1 =2] =Py (1, 2).
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Hence (since py(x,z) =0)

wep({E}) =D Pur1 (6, =D Pu(r, ) =D Pux, 2) = i ({2}).
n=0 n=1 n=0

Case 2: x = z. In this case, we have

D PP x) = Po[Xy=yit) >0 Xy =x] =P [t =n+1].
yeE yeE

Thus (since P, [t} =0]=0)

o
pep(ix)) =Y Pufry =n+ 1] = 1= ({x}).
n=0 O
Corollary 17.48 If X is positive recurrent, then w 1= E“[’; T is an invariant distri-

bution for any x € E.
Theorem 17.49 If X is irreducible, then X has at most one invariant distribution.

Remark 17.50

(i) One could in fact show that if X is irreducible and recurrent, then an invariant
measure of X is unique up to a multiplicative factor. However, the proof is a
little more involved. Since we will not need the statement here, we leave its
proof as an exercise (compare Exercise 17.6.6; see also [39, Section 6.5]).

(ii) For transient X, there can be more than one invariant measure. For example,
consider the asymmetric random walk on 7Z that jumps one step to the right
with probability r and one step to the left with probability 1 — r (for some
r € (0, 1)). The invariant measures are the nonnegative linear combinations of
the measures w1 and wy given by ui({x}) =1 and po({x}) = (r/(1 —r))*,
x € Z. X is transient if and only if r # 1/2, in which case we have ©| # u2. ¢

Proof Let m and v be invariant distributions. Choose an arbitrary probability vec-
tor (gn)nen with g, > 0 for all n € N. Define the stochastic matrix p(x, y) =
> o 1 gnP"(x,y). Then p(x,y) > Oforallx,y € Eandwp=m aswellas vp = v.

Consider now the signed measure u = 7 — v. We have up = u. If we had
u # 0, then there would exist (since w(E) = 0) points x1, xo € E with u({x1}) >0
and u({xz}) < 0. Clearly, for every y € E, this would imply |u({x:})p(x1,y) +
pn({x2Hpez, VI < lp(xHplxr, I+ 1e({x2}) p(x2, ¥)1; hence

lepllry =YY n({x) pix, )

yeE'xeE
< 3 Dl [P, vy = Do ()| = el
yeE xeE xeE

Since this is a contradiction, we conclude that p = 0. O
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Recall that Z is the set of invariant distributions of X.

Theorem 17.51 Let X be irreducible. X is positive recurrent if and only if T # (.
In this case, T = {mr} with

7 ((x)) =

>0 forallx € E.

x[ E.[t]]

Proof If X is positive recurrent, then Z # ¢J by Corollary 17.48. Now let Z # ¢}
and m € Z. As X is irreducible, we have w({x}) > O for all x € E. Let P, =
> ver T{xPPy. Fix an x € E and for n € N, let

o) =sup{m <n: X, =x}€NyU {—o0}

be the time of last entrance in x before time n. (Note that this is not a stopping time.)
By the Markov property, for all kK < n,

P 0! =k]=P[Xp =x, X1 £x,..., X, #x]
=Py [Xir1#x, ..., Xy # x| Xp = x]Pr [ Xz = x]
=7 ((x})Pel X1, -\ Xng # ]
:71({x})Px[rxl >n—k+1].

Hence, for every n € Ny (since Py[r; <oo]=1forall y € E),

1= P[0} =k]+Pz[o] = —o0]

k=0

7 ({x) ZP [l =n—k+1]+Ps [t} =n+1]

P (1) SOP[e! = K] = (1) B[]

Therefore, E, [‘Cxl] < 00, and thus X is positive recurrent. O

n({x})

Example 17.52 Let (pyx)xen, be numbers in (0, 1] and let X be an irreducible
Markov chain on Ng with transition matrix

Dx» ify=x+1,
px,y)=1{1—py, ify=0,
0, else.
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If u is an invariant measure, then the equations for up = u read

n({n}) = pa—1pu(fn —13) forn €N,

=Y un(tm})(d = pa).
n=0

Hence we get

w({n}) = ({0} Hpk

and (note that the sum is a telescope sum)

1 ({0}) = n({0) Z(l—Pn)HPk_ (10} (1—1"[pn)

Hence there exists a nontrivial invariant measure p (that is, ©({0}) can be chosen
strictly positive) if and only if [] 2, p, = 0. This, however, is true if and only if
Z:io(l — pn) = 00. Using a Borel-Cantelli argument, it is not hard to show that
this is exactly the condition for recurrence of X.

If u # 0, then u is a finite measure if and only if

oo n—1

M::ank<oo.

n=0k=0

Hence X is positive recurrent if and only if M < oo. In fact, it is not hard to show
that M is the expected time to return to 0; hence the criterion for positive recurrence
could also be deduced by Theorem 17.51.

A necessary condition for M < oo is of course that the series Z —o(1 — pn)
diverge; that is, that X is recurrent. One sufficient condition for M < oo is

00 n—1
Zexp(— > a- m)) <
n=0 k=0

O

Exercise 17.6.1 Consider the Markov chain from Fig. 17.1 (p. 368). Determine the
set of all invariant distributions. Show that the states 6, 7 and 8 are positive recurrent
and compute the expected first entrance times

17 17 17
Eg[t6] = R E7[t7] = 5 and Eg[tg] = 3

Exercise 17.6.2 Let X = (X;);>0 be a Markov chain on E in continuous time with
Q-matrix g. Show that a probability measure 7 on E is an invariant distribution for
X if and only if erE 7({x}g(x,y)=0forall y € E.
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Exercise 17.6.3 Let G be a countable Abelian group and let p be the transition
matrix of an irreducible random walk X on G. Thatis, we have p(hg, hf) = p(g, f)
for all &, g, f € G. (This generalizes the notion of a random walk on Z”.) Use
Theorem 17.51 to show that X is positive recurrent if and only if G is finite.

Exercise 17.6.4 Let r € [0, 1] and let X be the Markov chain on Ny with transition
matrix (see Fig. 17.2 on p. 369)

1, ifx=0and y=1,

r, ify=x+1>2,
px,y)= .

1—r, ify=x-1,

0, else.

Compute the invariant measure and show the following using Theorem 17.51:

1) Ifr € (0, %), then X is positive recurrent.
@) Ifr = %, then X is null recurrent.
(i) If r e {0} U (%, 1], then X is transient.

Exercise 17.6.5

(i) Use a direct argument to show that the Markov chain in Example 17.52 is
recurrent if and only if Y o> ((1 — py) = c0.
(i) Show that the expected time to return to 0 is M and infer that the chain is
positive recurrent if and only if M < oo.
(iii) Give examples of sequences (py)reN, such that the chain is (a) transient,
(b) null recurrent, (c) positive recurrent, and (d) positive recurrent but

00 n—1
Zexp(— Z(l — pk)) = 00.
k=0

n=0

Exercise 17.6.6 Let X be irreducible and recurrent. Show that, as claimed in Re-
mark 17.50, the invariant measure is unique up to constant multiples.
Hint: Let m # 0 be an invariant measure for X and abbreviate

P, = Z n({x})Px

xeE

(note that, in general, this need not be a finite measure). Let x, y € E with x # y
and deduce by induction that

n

7((v)) =Px[r} = n Xo#x, X, =y]+ Y _Pr[t) =k Xo=x, X; =y].
k=1
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Infer that

m({y) =) Prlr) =k Xo=x, X = y] =7 ({x}) e ()
k=1

where py is the invariant measure defined in Theorem 17.47. Now use the fact
that wp" = w and u,p" = wu, for all n € N to conclude that even w({y}) =

7 ({xPux({y}) holds.

17.7 Stochastic Ordering and Coupling

In many situations, for the comparison of two distributions, it is helpful to construct
a product space such that the two distributions are the marginal distributions but
are not necessarily independent. We first introduce the abstract principle of such
couplings and then give some examples.

There are many concepts to order probability measures on R or R such that the
“larger” one has a greater preference for large values than the “smaller” one. As
one of the most prominent orders we present here the so-called stochastic order and
illustrate its connection with couplings. As an excuse for presenting this section in
a chapter on Markov chains, we fill finally use a simple Markov chain in order to
prove a theorem on the stochastic order of binomial distributions.

Definition 17.53 Let (Eq, &1, n1) and (E», &, 1) be probability spaces. A proba-
bility measure @ on (E1 X E3, &1 ® &) with (- x Er) = py and u(Ey X +) = ua
is called a coupling of 1 and p5.

Clearly, the product measure 1 = 1 ® (2 is a coupling, but in many situations
there are more interesting ones.

Example 17.54 Let X be a real random variable and let f, g : R — R be monotone
increasing functions with E[f(X)?] < 0o and E[g(X)?] < co. We want to show that
the random variables f(X) and g(X) are nonnegatively correlated.

To this end, let Y be an independent copy of X; that is, a random variable with
Py = Py that is independent of X. Note that E[ f(X)] = E[f(Y)] and E[g(X)] =
E[g(Y)]. For all numbers x, y € R, we have (f(x)— f(¥))(g(x) —g(y)) = 0. Hence

0<E[(f(X)— f(N)(g(X)—g()))]
=E[f(X)g(X)] —E[fXO]E[sM]+E[f(V)g(¥)] —E[fF(V)]E[g(X)]
=2Cov[ f(X), g(X)]. 0

Example 17.55 Let (E, o) be a Polish space. For two probability measures P and
Q on (E, B(E)), denote by K (P, Q) C M|(E x E) the set of all couplings of P
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and Q. The so-called Wasserstein metric on M| (E) is defined by

dw (P, Q) :=inf{/g(x, e(dx, y):pe K (P, Q)}. (17.26)

It can be shown that (this is the Kantorovich—-Rubinstein theorem [84]; see also [37,
pp. 420f£t])

dw(P, Q)= sup{/ fd(P—Q):fe Lipl(E;R)}. (17.27)

Compare this representation of the Wasserstein metric with that of the total variation
norm,

P — Q”TV:SUP{/fd(P — Q) f € LX(E) with || flleo < 1}- (17.28)

In fact, we can also give a definition for the total variation in terms of a coupling:
Let D :={(x, x) : x € E'} be the diagonal in £ x E. Then

|P — Qllry =inf{p((E x E)\ D): ¢ € K(P, Q)}. (17.29)
See [60] for a comparison of different metrics on M (E). O

As an example of a more involved coupling, we quote the following theorem that
is due to Skorohod.

Theorem 17.56 (Skorohod coupling) Let w, 1, (42, . .. be probability measures on

a Polish space E with uy gty w. Then there exists a probability space ($2, A, P)
with random variables X, X1, X2, ... with Px = w and Px, = u, for every n € N

such that X, "Z5° X almost surely.
Proof See, e.g., [83, p. 79]. O
We now come to the concept of stochastic order.

Definition 17.57 Let 1, o € M (RY). We write 11 <g u3 if

[ram= [ sau

for every monotone increasing bounded function f : R? — R. In this case, we say
that w, is stochastically larger than 1.

Evidently, < is a partial order on M (R9). The stochastic order belongs to
the class of so-called integral orders that are defined by the requirement that the
integrals with respect to a certain class of functions (here: monotone increasing



386 17 Markov Chains

and bounded) are ordered. Other classes of functions that are often considered are
convex functions or indicator functions on lower or upper orthants.

Let F} and F; be the distribution functions of w1 and uj. Clearly, p©i <g U2
implies Fi(x) > Fp(x) forall x € R?.If d = 1, then both statements are equivalent.
However, for d > 2, the condition F] > F, is weaker than u; <g u. For example,
consider d =2 and

n1= %3(0,0) + %5(1,1) and  wp = %5(1,0) + %5(0,1)-
The partial order defined by the comparison of the distribution functions is called
(lower) orthant order.
For a survey on different orders of probability measures, see, e.g., [120].
The following theorem was shown by Strassen [160] in larger generality for in-
tegral orders.

Theorem 17.58 (Strassen’s theorem) Let
L:={(x1,x) eR! xR : x| <x,}.
Then (11 <g W2 if and only if there is a coupling ¢ of 1 and o with (L) = 1.

Proof Let ¢ be such a coupling. For monotone increasing bounded f : R? — R, we
have f(x1) — f(x2) <0 for every x = (x1,x2) € L; hence [ fdui — [ fdus =
J;(f(x1) — f(x2))e(dx) <0 and thus ;1 <g p2.

Now assume @1 <g p2. We only consider the case d = 1 (see [120, Theo-
rem 3.3.5] for d > 2). Here F((x1,x2)) := min(F;(xy), F2(x2)) defines a distri-
bution function on R x R (see Exercise 1.5.5) that corresponds to a coupling ¢ with
o(L) = 1. A somewhat more explicit representation can be obtained using random
variables. Let U be a random variable that is uniformly distributed on (0, 1). Then

X;=F ' (U):=inf{x eR: Fi(x) > U}

is a real random variable with distribution p; (see proof of Theorem 1.104). Clearly,
we have X| < X, almost surely; that is, P[(X1, X») € L] = 1. Evidently, the distri-
bution function of (X1, X») is F. O

While Strassen’s theorem yields the existence of an abstract coupling, in many
examples a natural coupling can be established and used as a tool for proving, e.g.,
stochastic orders.

Example 17.59 Let n e N and 0 < p; < pp < 1. Let Y1, ..., Y, be independent
random variables that are uniformly distributed on [0, 1]. Define X; = #{k <n :
Yy < pi}, i =1,2. Then X; ~ by p; and X; < X, almost surely. This coupling
shows that b, p; <t bn,p,-

An even simpler coupling can be used to show that by, ,, <g by, for m <n and
p €10, 1]. O
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Theorem 17.60 Letni,ny € Nand py, ps € (0, 1). We have by, p; <st bu,, p, if and
only if

(1—=p)"=1—-p)™ (17.30)
and

ny <no. (17.31)

Proof (The proof follows the exposition in [100, Section 3].)

Since by, p; ({0}) = (1 — p;)™, conditions (17.30) and (17.31) are clearly nec-
essary for by, p, <st bn,,p,. Hence we only have to show sufficiency of the two
conditions.

Assume that (17.30) and (17.31) hold. By Example 17.59, it is enough to consider
the smallest p; that fulfills (17.30). Hence we assume (1 — py)™ = (1 — pp)"2.
Define A := —njlog(l — p1) = —nslog(l — p2). We will construct a binomially
distributed random variable by throwing a Poi, -distributed number 7 of balls in »;
boxes and count the number of nonempty boxes. More precisely, let T ~ Poi; and
let X1, X», ... be independent and uniformly distributed on [0, 1] and independent
of T.ForneN,teNpand/=1,...,n, define

Mug=#{s<t:X;e(U—=1)/n,1/n]}

and the number of nonempty boxes after ¢ balls are thrown:

n
Ny = Zﬂwn,,.»m-
=1

By Theorem 5.35, the random variables M, 1.1, ..., M, T, are independent and
Poi;, /, -distributed. In particular, we have

P[Mn,-,T,I >0]=1- e_)“/"i =p;

and thus Ny, 7 ~ by, p;» 1 = 1,2. Hence it suffices to show that N, 7 <g Ny, 7.
For this in turn it is enough to show

Nyyt <st Nupr forall t € Np. (17.32)
In fact, let f: {0, ..., n} — R be monotone increasing. Then
o0
E[f (N, 1))=Y E[f(Ny )]PIT =1]
=0
o0
<> E[f(Nu,.)|PIT = t]1=E[f (N, 7)]-

Il
o

t

We use an induction argument to show (17.32). For ¢t = 0, the claim holds triv-
ially. Now assume that (17.32) holds for some given ¢ € Ny. We are now at the point
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to use a Markov chain. Note that (for fixed 1), (N, );=o0.1,... is a Markov chain with

yene

state space {0, ..., n} and transition matrix
k/n, ifl =k,
puk,)=31—k/n, ifl=k+1,
0, otherwise.

We define for k,[ =0, ...,n

n 0, ifk<Il—1,
hna(k) =" pak, jy=41—k/n, ifk=1-1,
j=l 1, ifk>1—1.

Then P[N, ;+1 > 1] =E[h, (N ;)] and h, ;(k) is monotone increasing both in
k and in n. Hence by the induction hypothesis, we have

P[an,t—i-l = l] = E[hnl,l(an,t)] < E[hnl,l(an,t)]
=< E[hnz,l(an,t)] = P[an,t-‘rl = l]

We conclude that Ny, ;41 <st Ny, ++1 Which completes the induction and the proof

of the theorem. O

Exercise 17.7.1 Use an elementary direct coupling argument to show the claim of
Theorem 17.60 for the case ny/n; € N.

Exercise 17.7.2 For the Poisson distribution, show that
Poiy, <qPoi, <<= A1 <A
Exercise 17.7.3 Letn e N, p € (0, 1) and A > 0. Show that

byp<¢Poiy = (1—p)"=>e™



Chapter 18
Convergence of Markov Chains

We consider a Markov chain X with invariant distribution 7 and investigate condi-
tions under which the distribution of X,, converges to = for n — co. Essentially it
is necessary and sufficient that the state space of the chain cannot be decomposed
into subspaces

o that the chain does not leave
e or that are visited by the chain periodically; e.g., only for odd n or only for even n.

In the first case, the chain would be called reducible, and in the second case, it would
be periodic.

We study periodicity of Markov chains in the first section. In the second section,
we prove the convergence theorem. The third section is devoted to applications of
the convergence theorem to computer simulations with the so-called Monte Carlo
method. In the last section, we describe the speed of convergence to the equilibrium
by means of the spectrum of the transition matrix.

18.1 Periodicity of Markov Chains

We study the conditions under which a positive recurrent Markov chain X on
the countable space E (and with transition matrix p), started in an arbitrary u €

M (E), converges in distribution to an invariant distribution 7 ; that is, up” ity
Clearly, it is necessary that 7w be the unique invariant distribution; that is, up to a
factor 7 it is the unique left eigenvector of p for the eigenvalue 1. As shown in
Theorem 17.49, for this uniqueness it is sufficient that the chain be irreducible.

In order for up" "% 7 to hold for every i € Mj(E), a certain contraction
property of p is necessary. Manifestly, 1 is the largest (absolute value of an) eigen-
value of p. However, p is sufficiently contractive only if the multiplicity of the
eigenvalue 1 is exactly 1 and if there are no further (possibly complex-valued) eigen-
values of modulus 1.

For the latter property, it is not sufficient that the chain be irreducible. For ex-
ample, consider on E = {0,..., N — 1} the Markov chain with transition matrix

A. Klenke, Probability Theory, Universitext, DOI 10.1007/978-1-4471-5361-0_18, 389
© Springer-Verlag London 2014
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Fig. 18.1 The left Markov chain is periodic with period 2, and the right Markov chain is aperiodic

p(x,y) =1{y=x+1 (mod N)}- The eigenvalue 1 has the multiplicity 1. However, all
complex Nth roots of unity e2™*/N k =0,...,N — 1, are eigenvalues of mod-
ulus 1. Clearly, the uniform distribution on E is invariant but lim,_, o 8, p" does
not exist for any x € E. In fact, every point is visited periodically after N steps. In
order to obtain criteria for the convergence of Markov chains, we thus have to un-
derstand periodicity first. Thereafter, for irreducible aperiodic chains, we state the
convergence theorem.

If m,n € N, then write m|n if m is a divisor of n; that is, if % eN.If M CN,
then denote by gcd(M) the greatest common divisor of all n € M. In the following,
let X be a Markov chain on the countable space E with transition matrix p.

Definition 18.1
(i) For x,y € E, define
N(x,y):= {n eNg:p'(x,y) > 0}.

For any x € E, d, := gcd(N (x, x)) is called the period of the state x.
(ii) If dy =d, forall x, y € E, then d :=d is called the period of X.
(iii) If dy =1 for all x € E, then X is called aperiodic.

See Figs. 18.1 and 18.2 for illustrations of aperiodic and periodic Markov chains.

Lemma 18.2 For any x € E, there exists an ny € N with
P (x,x) >0 foralln> ny. (18.1)

Proof Let ki,...,k € N(x,x) with gcd({ki,...,k}) = dy. Then, for all
mi,...,m, € Ng, we also have Z?:l kim; € N(x,x). Basic number theory then
yields that, foreveryn > n, :=r- H?Zl(ki /dy), there are numbers m1, ..., m, € Ny
with nd, =) ";_, kim;. Hence (18.1) holds. O

The problem of finding the smallest number N such that any nd,, n > N can
be written as a nonnegative integer linear combination of ki, ...,k is called the
Frobenius problem. The general solution is unknown; however, for the case r = 2,
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Fig. 18.2 Here N(8,8) = {6, 10,12, 14,16, ...}; hence dg := ged({6,10,12,...}) = 2 and
ng = 5. The chain thus has period 2. However, n| =2 and ny =4

1

Sylvester [162] showed that N = (k;/dx — 1)(k2/d; — 1) is minimal. In the gen-
eral case, for N, the upper bound 2max{k; :i =1,..., r}z/(rdf) is known; see,
e.g., [45].

Lemma 18.3 Let X be irreducible. Then the following statements hold.

(i) d:=dy=dy forallx,y € E.
(ii) Forall x,y € E, there existny y € Nand Ly y € {0, ...,d — 1} such that

nd+Lyy€N(x,y) foralln>ny,. (18.2)
Ly y is uniquely determined, and we have
Lyy+Ly.+L;x=0(modd) forallx,y,z€E. (18.3)
Proof (i) Let m,n € Ny with p™(x, y) > 0 and p"(y, z) > 0. Then
P 2) = p" e )P (9, 2) > 0.
Hence we have
N@x,y)+N(y,2):={m+n:meNx,y),neN(y,2)} CN(x,2). (184
If, in particular, m € N(x,y), n € N(y,x) and k > ny, then kd, € N(y, y); hence
m+kdy, € N(x,y) and m + n + kdy € N(x, x). Therefore, dy|(m + n + kdy) for

every k > ny; hence dy|dy. Similarly, we get dy|d,; hence dy =d,.
(ii) Let m € N(x,y). Then m + kd € N(x, y) for every k > n,. Hence (18.2)

holds with
m m
Nyy:i=ny+ LEJ and Ly ,:=m— d{ﬁJ

Owing to (18.4), we have

(nx,y +ny)d~+Lyy+Ly,€N(x,2).
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Fig. 18.3 State space decomposition of a Markov chain with period d =3

Together with z = x, it follows that d|(Ly y + Ly ). Hence the value of Ly y is
unique in {0, ...,d — 1} and Ly y = —L, , (mod d). For general z, we infer that
d|(Ly,y+ Ly + L x); hence (18.3). Il

Theorem 18.4 Let X be irreducible with period d. Then there exists a disjoint de-
composition of the state space

d—1
E=|4E (18.5)
(=0

with the property
p(x,¥y)>0 and xe€E; = ye€Ei{1(@modd)- (18.6)

This decomposition is unique up to cyclic permutations.

See Fig. 18.3 for an illustration of the state space decomposition of a periodic
Markov chain.

Property (18.6) says that X visits the E; one after the other (see Fig. 18.3 or
Fig. 18.2, where d =2, Eg = {1,3,5,7} and E| = {2, 4, 6, 8}). Somewhat more
formally, we could write: If x € E; for some i, then Px[X,, € E; 1 (mod )] = 1.

Proof Existence. Fix an arbitrary xo € E and let
Ei:={y€eE:Ly,y=i} fori=0,...,d—1.

Clearly, (18.5) holds. Leti €{0,...,d — 1} and x € E;. If y € E with p(x,y) >0,
then L, y =1 and hence Ly, y = Ly x + Lxy =i+ 1 (mod d).

Uniqueness. Let (E;, i =0,...,d — 1) be another decog}position that satisfies
(18.5) and (18.6). Without loss of generality, assume Eo N Eo # ) (otherwise per-
mute the E; cyclically until this holds). Fix an arbitrary xo € Eg N Ep. By assump-
tion, p(xo, y) > 0 now implies y € Ej and y € E1; hence y € E; N E;. Inductively,
we get that p"d+i(x, y) > 0implies y € E;NE; (foralln e Nandi =0, ...,d—1).
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However, since the chain is irreducible, for every y € E, there exist numbers
n(y) and i(y) such that p”(y)d‘“(” (x0,y) > 0; hence y € E;) N E,(}) Therefore,
we have E; = E; foreveryi =0,...,d — 1. 0

18.2 Coupling and Convergence Theorem

Our goal is to use a coupling of two discrete Markov chains that are started in
different distributions p and v in order to show the convergence theorem for Markov
chains.

In the following, let E be a countable space and let p be a stochastic matrix
on E. Recall the definition of a general coupling of two probability measures from
Definition 17.53.

Definition 18.5 A bivariate process ((X,, ¥,))nen, With values in E x E is called
a coupling if (X,),en, and (¥,),eN, are Markov chains, each with transition ma-
trix p.

A coupling is called successful if P(X,)’)[Umzn{xm #* Y}l — "Z5°0 for all
x,ye k.

Of course, two independent chains form a coupling, though maybe not the most
interesting one.

Example 18.6 (Independent coalescence) The most important coupling is Markov
chains that run independently until they coalesce: Let X and Y be independent
chains with transition matrix p until they first meet. After that, the chains run to-
gether. We call this coupling the independent coalescent. The transition matrix is

p(x1,x2) - p(y1, y2), ifxy #y1,
p((x1, 1), (32, y2)) =4 px1, x2), if xp = y1,x2 = y2,
0, if x; = y1, x2 # y2.
Denote by 7 :=inf{n € Ny : X,, = Y,,} the time of coalescence. We can construct the

coupling using two independent chains X and Y by defining X := X, 7 :=inf{n €
No: X, =Y,}and

Y,, ifn<7%,
Y, = . -
X,, ifn>rt.

Instead of checking by a direct computation that this process (X, Y) is indeed a
coupling with transition matrix p, consider the construction of Markov chains from
Theorem 17.17: Let (R, (x) : n € No, x € E) be independent random variables with
distribution P[R, (x1) = x2] = p(x1, x2), and let R, ((x1, y1)) = (Rn(x1), Rn(y1)).
Then (R,),en, is independent and we have

P[R,((x1.y1) = (x2, y2)] = p((x1, y1), (x2, ¥2)).
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As we saw in Theorem 17.17, by X,4+1 := R,(X,) and Y,41 := R, (Yy), two
Markov chains X and Y are defined with transition matrix p. On the other hand,
we have (X,,4+1, Yn41) = I?,, ((Xy, Y)). Hence the bivariate process is indeed a cou-
pling with transition matrix p. O

Example 18.7 Let E =Z and p(x,y) = 1/3if |x — y| < 1 and O otherwise. Clearly,
p is the transition matrix of an aperiodic recurrent random walk on Z. We will show
that we can obtain a successful coupling by coalescing independent chains.

Accordingly, let X and ¥ be independent random walks with transition matrix p.
Then the difference chain (Z;),en, := ()~( n— ?n)neNo is a symmetric random walk
with finite expectation and hence recurrent. Furthermore, Z is irreducible. For any
two points x, y € Z, we thus have

P [T <o0]=P,_,[Z, =0 for some n € Ng| = 1.
Therefore, X and Y coalesce almost surely. O

Recurrence, irreducibility and aperiodicity alone are not sufficient for the inde-
pendent coalescence coupling to be successful. In Exercise 18.2.4, an example is
studied that shows that spacial homogeneity cannot easily be dropped if we want to
have a successful coupling. Dropping the assumption of recurrence is easier, as the
following theorem shows.

Theorem 18.8 Let X be an arbitrary aperiodic and irreducible random walk on 74
with transition matrix p. Then there exists a successful coupling (X, Y).

Proof Step 1. First, consider the case where p(0,x) =3¢ forall x € {—1,0, 1}¢.
The individual coordinates XV, ..., X@ of X are independent random walks
on Z with transition probabilities Po[X\" = x;] = 1/3 for x; = —1,0,1. By
Example 18.7, we can construct independent successful couplings (X @, y®),
i =1,...,d, with merging times 7). Define ¥ = (YD, ..., Y@) and 7 =
max{tV, ..., 7@} < co. Then (X, Y) is a successful coupling and X, = ¥,, for
n>r.
Step 2. Now, consider the case where

A:=3"min{p(0,x):x € {~1,0,1}*} > 0

If A = 1, then the condition of Step 1 is fulfilled and we are done. Hence, we assume
that A € (0, 1). We define the transition matrix p on Z¢ by p(x, y) =3 9 fory—x €
{—1,0, 1}%. Note that also p := (p — Ap)/(1 — 1) is the transition matrix of a ran-
dom walk on Z¢ and that

Let X and X be independent random walks with transition matrices p and p, re-
spectively. Assume that Xo = Xp and Xo = 0. Furthermore, let Z, Z;, ... be i.i.d.
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Bernoulli random variables with parameter A that are independent of X and X. De-
fine S, . =Z+...+ Z, forn e Nand

X, = )A(Sn + }V(n,Sn.

That is, in each time step, a coin flip decides whether X makes a jump according to
the matrix p or p. Hence X is a random walk with transition matrix p.

By Step 1, there exists a successful coupling (X, Y) such that ¥ is independent
of X and Z 1, Z2, . ... Consequently,

Y, = ?Sn + )V(n_sn, neN,

is also a random walk with transition matrix p. Since we have §,, — oo almost
surely, the coupling (X, Y) is successful.

Step 3. Finally, we consider the general situation. Since X is irreducible and
aperiodic, by Lemma 18.3(ii), there exists an N € N, such that the N-step transition
matrix fulfills

pN(0,x)>0 forallx e {—1,0,1}4.
Hence, the random walk X' = (X))nen := (Xun)nen fulfills the condition from
Step 2. Let (X', Y') be the coupling that was constructed in Step 2 and let

t:=inf{n €Ny : X, =Y,, forallm > n}.

Then Y’ is a random walk with transition matrix pN . For n € Ny, define Y,y :=7Y,,.
It remains to close the gaps between the points {0, N, 2N, ...} in such a way that ¥
is arandom walk and (X, Y) is a successful coupling.

Let (UY" :x,y € Z% n € Np) be an independent family of (Z%)¥~!-valued
random variables U*>""" = (Uf’y’n, e, U;f,’f’ln) such that

P[(X1,....Xny-1) € - | Xo=x,Xy =y] =Py

for all x, y € Z¢ with pV (x, y) > 0 and for all n € Ng. We further assume that the
U*Y" are independent of X and Y'.Fork € {(nN + 1, ..., (n + 1)N — 1}, define

Yo Y no.
V.- kan;\',“ , ifn<r,
k=
Xk, else.

It is easy to check that Y is indeed a random walk with transition matrix p. By
construction, the coupling (X, Y) is successful. 0

Theorem 18.9 Let X be a Markov chain on E with transition matrix p. If there
exists a successful coupling, then every bounded harmonic function is constant.

Proof Let f: E — R be bounded and harmonic; hence pf = f. Let x,y € E,
and let (X,Y) be a successful coupling. By Lemma 17.45, (f(X;))nen, and
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(f (Yn))nen, are martingales; hence we have

n—oo

| f ) = FOD)| =B [f(Xn) = FXD]| <20 fllocPeyy [Xn # Yol — 0. O

Corollary 18.10 If X is an irreducible random walk on 72, then every bounded
harmonic function is constant.

This statement holds more generally if we replace Z? by a locally compact
Abelian group. In that form, the theorem goes back to Choquet and Deny [24],
see also [143].

Proof Let p be the transition matrix of X. Let X be a Markov chain with transition
matrix p(x,y) = %p(x, y) + %Jl{x}(y). Clearly, X and X have the same harmonic
functions. Now X is an aperiodic irreducible random walk; hence, by Theorem 18.8,
there is a successful coupling for all initial states. g

Theorem 18.11 Let p be the transition matrix of an irreducible, positive recurrent,
aperiodic Markov chain on E. Then the independent coalescent chain is a successful
coupling.

Proof Let X and Y be two independent Markov chains on E, each with transition
matrix p. Then the bivariate Markov chain Z := ((X;;, ¥))sen, has the transition
matrix p defined by

P((x1. yD)s (x2,¥2)) = p(x1, x2) - p(y1, y2).

We first show that the matrix p is irreducible. Only here do we need aperiodicity
of p. Accordingly, fix (x1, y1), (x2, y2) € E x E. Then, by Lemma 18.2, there exists
an mq € N such that

pt(x1,x2) >0 and p"(y1,y2) >0 forall n > my.

For n > mg, we thus have p" ((x1, y1), (x2, y2)) > 0. Hence p is irreducible.

Now define the stopping time t of the first entrance of (X,Y) into the diagonal
D:={(x,x):xeE}byt:=inf{n e Ny : f(n = )7,1}. Let 7 be the invariant distri-
bution of X. Then, clearly, the product measure 7 ® 7 € M(E x E) is an (and
then the) invariant distribution of (f( , Y ). Thus (f( , )?) is positive recurrent (hence,
in particular, recurrent) by Theorem 17.51. Therefore, P(, [t < oc] =1 for all
initial points (x,y) € E x E of Z. 0

Theorem 18.12 Let X be a Markov chain with transition matrix p such that there

exists a successful coupling. Then ||(u — v) p"|l1v = Oforall w,ve M(E).
If X is aperiodic and positive recurrent with invariant distribution w, then we

have | L,[X,] — 71||Tvni>>o 0 forall uw e M(E).
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Proof It is enough to consider the case u = 6,, v =4, for some x, y € E. Summa-
tion over x and y yields the general case. Let (X, Y;)nen, be a successful coupling.
Then

n—0oo O

1Gx = 80" || 1y < 2Pry) [ X # Ya] — 0.
\%4

We summarize the connection between aperiodicity and convergence of distribu-
tions of X in the following theorem.

Theorem 18.13 (Convergence of Markov chains) Let X be an irreducible, posi-
tive recurrent Markov chain on E with invariant distribution 1. Then the following
are equivalent:

(i) X is aperiodic.
(ii) Forevery x € E, we have

n—oo

|£c[Xn] - =0. (18.7)

7y

(iii) Equation (18.7) holds for some x € E.
(iv) For every u € M(E), we have ||up" — 7||1v 0.

Proof The implications (iv) <= (ii) = (iii) are evident. The implication (i) =
(i1) was shown in Theorem 18.12. Hence we only show (iii) = (i).

“(iiil) = (i)” Assume that (i) does not hold. If X has period d > 2, and if n € N
is not a multiple of d, then, by Theorem 17.51,

80" = 2l py = |9 e.6) = (1)) | = (1) >

Thus, for every x € E, we have limsup,,_, o, |16x p" — 7ll7v > 0. Therefore, (iii)
does not hold. O

Exercise 18.2.1 Let dp be the Prohorov metric (see (13.3) and Exercise 13.2.1).
Show that dp (P, Q) < +/dw (P, Q) forall P, Q € M|(E). If E has a finite diame-
ter diam(E), then dw (P, Q) < (diam(E) + 1)dp (P, Q) forall P, Q € M| (E).

Exercise 18.2.2 Consider the bivariate process (X, Y) that was constructed from X
and Y in Example 18.6. Show that (X, Y) is a coupling with transition matrix p.

Exercise 18.2.3 Let X be an arbitrary aperiodic irreducible recurrent random walk
on Z®. Show that, for any two starting points, the independent coalescent coupling
is successful.

Hint: Show that the difference of two independent recurrent random walks is a
recurrent random walk.
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Exercise 18.2.4 Let X be a Markov chain on Z?2 with transition matrix

ifx;=0,lly—xl2=1,

ifx;#0and y; =x; £ 1,x =y,

(x1,x2), 1, y2)) =
p( Iy ) if x; #0and y; = x1, x3 = y2,

O D= A= A=

else.

Intuitively, this is the symmetric simple random walk whose vertical transitions are
all blocked away from the vertical axis. Show that X is null recurrent, irreducible
and aperiodic and that independent coalescence does not give a successful coupling.

18.3 Markov Chain Monte Carlo Method

Let E be a finite set and let 7 € M (E) with 7 (x) :=w({x}) > 0 for every x € E.
We consider the problem of sampling a random variable Y with distribution r on a
computer. For example, this is a relevant problem if E is a very large set and if sums
of the type ). f(x)7(x) have to be approximated numerically by the estimator
n=13"_, f(Yi) (see Example 5.21).

Assume that our computer has a random number generator that provides realiza-
tions of i.i.d. random variables Uy, Uy, ... that are uniformly distributed on [0, 1].
In order for the problem to be interesting, assume also that the distribution 7 cannot
be constructed directly too easily.

Metropolis Algorithm

We have seen already in Example 17.19 how to simulate a Markov chain on a com-
puter. Now the idea is to construct a Markov chain X whose distribution converges
to w in the long run. If we simulate such a chain and let it run long enough this
should give a sample that is distributed approximately like 7. The chain should be
designed so that at each step, only a small number of transitions are possible in
order to ensure that the procedure described in Example 17.19 works efficiently.
(Of course, the chain with transition matrix p(x, y) = (y) converges to i, but this
does not help a lot.) This method of producing (approximately) r -distributed sam-
ples and using them to estimate expected values of functions of interest is called the
Markov chain Monte Carlo method or, briefly, MCMC (see [15, 112, 119]).

Let g be the transition matrix of an arbitrary irreducible Markov chain on E
(with g(x, y) =0 for most y € E). We use this to construct the Metropolis matrix
(see [70, 114)).
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Definition 18.14 Define a stochastic matrix p on E by

: 7()q(y,x) :
q (e, y)ymin(L, ZEes),  ifx £y, q(x,y) >0,

px,y)=10, ifx#y,qx,y)=0,
1= 2 p(x,2), ifx=1y.

p is called the Metropolis matrix of g and 7.
Note that p is reversible (see Section 19.2); that is, for all x, y € E, we have

T(x)px,y)=nm(y)p(y,x). (18.8)

In particular, 7 is invariant (check this!). We thus obtain the following theorem.

Theorem 18.15 Assume that q is irreducible and that for any x,y € E, we have
q(x,y) > 0 ifand only if q(y, x) > 0. Then the Metropolis matrix p of q and 7 is
irreducible with unique invariant distribution . If, in addition, q is aperiodic, or q
is not reversible with respect to 7, then p is aperiodic.

In order to simulate a chain X that converges to &, we take a reference chain with
transition matrix g and use the Metropolis algorithm: If the chain with transition
matrix g proposes a transition from the present state x to state y, then we accept
this proposal with probability

T (y)q(y,x) A1
T (x)q(x,y)

Otherwise the chain X stays at x.

In the definition of p, the distribution & appears only in terms of the quotients
m(y)/m(x). In many cases of interest, these quotients are easy to compute even
though 7 (x) and 7 (y) are not. We illustrate this with an example.

Example 18.16 (Ising model) The Ising model (pronounced like the English word
“easing”) is a thermodynamical (and quantum mechanical) model for ferromag-
netism in crystals. It makes the following assumptions:

e Atoms are placed at the sites of a lattice A (for example, A ={0,..., N — 1}2).

e Each atom i € A has a magnetic spin x(i) € {—1, 1} that either points upwards
(x(i) = +1) or downwards (x(i) = —1).

e Neighboring atoms interact.

e Due to thermic fluctuations, the state of the system is random and distributed
according to the so-called Boltzmann distribution m on the state space E :=
{—1, I}A. A parameter of this distribution is the inverse temperature § = % >0
(with T the absolute temperature).
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Define the local energy that describes the energy level of a single atom ati € A asa
function H' of the state x of the whole system,

. 1
H'(x)= 5 Y TG
jedi~j

Here i ~ j indicates that i and j are neighbors in A (that is, coordinate-wise mod N,
we also speak of periodic boundary conditions). The total energy (or Hamilton func-
tion) of the system in state x is the sum of the individual energies,

Hx)=Y H' @)=Y L))
ieA i~

The Boltzmann distribution 7w on E := {—1, 1} for the inverse temperature 8 > 0
is defined by

m(x) =Z5" exp(—BH(x)),

where the partition sum Zg = ., exp(—pB H (x)) is the normalising constant such
that 7 is a probability measure.

Macroscopically, the individual spins cannot be observed but the average mag-
netization can; that is, the modulus of the average of all spins,

ﬁZx(i)

ieA

ma(B) =y m(x)

xeE

If we consider a very large system, then we are close to the so-called thermody-
namic limit

m(B) := lim m4(B).
Az

Using a contour argument, as for percolation (see [127]), one can show that (for
d > 2) there exists a critical value 8. = B.(d) € (0, co) such that

>Oa lfﬂ>ﬂL7

m(ﬁ){zo’ o (18.9)

See Fig. 18.4 for a computer simulation of the curve 8 +— m(f8).

For a similar model, the Weiss ferromagnet, we will prove in Example 23.20 the
existence of such a phase transition. In the physical literature, 7, := 1/, is called
the Curie temperature for spontaneous magnetization. This is a material-dependent
constant (chromium bromide (CrBr) 37 Kelvin, nickel 645 K, iron 1017 K, cobalt
1404 K). Below the Curie temperature, these materials are magnetic, and above
it they are not. Below the critical temperature, the magnetization increases with
decreasing temperature. We will see in a computer simulation that the Ising model
displays this critical temperature effect.
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Fig. 18.4 Computer simulation of the magnetization curve of the Ising model on a 1000 x 1000
grid. The dashed vertical line indicates the critical inverse temperature

If x € E, then denote by x"? the state in which at site i the spin is changed to
o € {—1,+1}; that s,

xi’”(j)z o, if j =1,
x(j), if j#i.

Furthermore, define the state x? in which the spin at i is reversed, x’ := x> ~*®_Ag
reference chain, we choose a chain with transition probabilities

1 . l .
A0 if y=x' forsomei € A,
X =
q(x.) {0, else.

In words, we choose a random site i € A (uniformly on A) and invert the spin at
that site. Clearly, ¢ is irreducible.

The Metropolis algorithm for this chain accepts the proposal of the reference
chain with probability 1 if 77 (x’) > 7 (x). Otherwise the proposal is accepted only
with probability 7 (xt) /7 (x). However, now

Hx) = H@) = ) Ap(ig—ri) — 2, Ha(hei)
Jij~i Jij~i

1
=-2) (Mx(j);éx(i)} - 5)

jij~i
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Fig. 18.5 Equilibrium states of the Ising model on an 800 x 800 grid (black dot = spin +1). Left
side: below the critical temperature (8 > B.); Right side: above the critical temperature

Fig. 18.6 Ising model (150 x 150 grid) below the critical temperature. Even after a long time, the
computer simulation does not produce the equilibrium state but rather so-called metastable states,
in which the Weiss domains are clearly visible

Hence n(xi)/n(x) =exp(—28 ij,'(]l{x(j)=x(i) — %)), and this expression is easy
to compute as it depends only on the 2d neighboring spins and, in particular, does
not require knowledge of the value of Zg. We thus obtain the Metropolis transition
matrix

ga(LAexp[28 3 1 (L — 3)]).  if y =" forsome i € A,

— Yieap(x.x7), ifx =y,

px,y)=11
0, else.
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For a practical simulation use the computer’s random number generator to produce
independent random variables Iy, I, ... and Uy, Us, ... with I,, ~U, and U, ~
Ujo,17- Then define

xhn, if Uy <exp[28F i (TG — 3) 5
X, else,

Fn(x)z{

and define the Markov chain (X,,),en by X, = F,,(X,,—1) for n € N. See Figs. 18.5
and 18.6 for computer simulations of equilibrium states and metastable states of the
Ising model. O

Gibbs Sampler

We consider a situation where, as in the above example, a state consists of many
components x = (x;);ea € E and where A is a finite set. As an alternative to the
Metropolis chain, we consider a different procedure to establish a Markov chain
with a given invariant distribution. For the so-called Gibbs sampler or heat bath
algorithm, the idea is to adapt the state locally to the stationary distribution. If x is
a state and i € A, then define

xii={y € E:y(j) =x(j) for j #i}.

Definition 18.17 (Gibbs sampler) Let g € M(A) with g(i) > 0 for every i € A.
The transition matrix p on E with

()
Lr(x—y)”

, else,

if y =x%° for somei € A,
p(x,y) =

is called a Gibbs sampler for the invariant distribution 7.

Verbally, each step of the chain with transition matrix p can be described by the
following instructions.

(1) Choose a random coordinate I according to some distribution (g;);c4-
(2) With probability 7 (x!-%) /7 (x_;), replace x by x!-7.

If I =i, then the new state has the distribution £(X|X_; = x_;), where X is
a random variable with distribution 7. Note that, for the Gibbs sampler also it is
enough to know the values of the distribution 7 only up to the normalising constant.
(In a more general framework, the Gibbs sampler and the Metropolis algorithm can
be understood as special cases of one and the same method.) For states x and y that
differ only in the ith coordinate, we have (since x_; = y_;)

n(y)
T(x_p)

7w (y)qi )

. =n(y)py,x).

T(xX)p(x,y) =m(x)g;
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Thus the Gibbs sampler is a reversible Markov chain with invariant measure 7.
Irreducibility of the Gibbs sampler, however, has to be checked for each case.

Example 18.18 (Ising model) In the Ising model described above, we have x_; =
{xi~1 xt*+1} Hence, fori € A and o € {—1, +1},
. T(x9)
BRI
e_ﬂH(xi.J)

e—BHGT) | g—BH(xI+1)

(1+exp[(H (") = H("~))]) ™"

= (1 +eXP[2ﬂ > <ﬂ{x(j)¢ff} - %)Dl

Ju~i

rr(xi’a |x_l~)

The Gibbs sampler for the Ising model is thus the Markov chain (X, ).en, With
values in E = {—1, 1}/ and with transition matrix

(L exp[28 Y s (L gy — 1)) 7
plx,y) = if y=x' for somei € A,

0, otherwise. O

Perfect Sampling

The MCMC method as described above is based on hope: We let the chain run for a
long time and hope that its distribution is close to the invariant distribution. Even if
we can compute the speed of convergence (and in many cases, this is not trivial, we
come back to this point in Section 18.4), the distribution will never be exactly the
invariant distribution.

Although this flaw might seem inevitable in the MCMC method, it is in fact, at
least theoretically, possible to use a very similar method that allows perfect sampling
according to the invariant distribution , even if we do not know anything about the
speed of convergence. The idea is simple. Assume that Fi, F>, ... are i.i.d. random
maps £ — E with P[F(x) = y] = p(x, y) for all x,y € E. We have seen how to
construct the Markov chain X with initial value Xo = x by defining X,, = F;, o
Fo_10...0F1(x).

Note that F'(x) := Fio...0 F(x) 2 F,o...0 Fi(x). Hence we have
P[FI(x)=y]" =5 7(y) forevery y.

Howeyver, if F 1” turns out to be a constant map (e.g., F' f = x™* for some random
x*), then we will also have Fl’" = x* for all m > n. If by some clever choice
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of the distribution of F, one can ensure that the stopping time 7 :=inf{n € N :
F' is constant} is almost surely finite (and this is always possible), then we will have
P[FIT (x) =yl=mn(y) for all x,y € E. A simple algorithm for this method is the
following.

(1) Let F < idg and n < 0.

(2) Letn <—n + 1. Generate F,, and let F < F o F,.
(3) If F is not a constant map, then go to (2).

(4) Output F(x).

This method is called coupling from the past and goes back to Propp and Wilson
[138] (see also [55, 56, 92, 137, 139, 170]). David Wilson has nice simulations and
a survey of the current research on his web site http://www.dbwilson.com/. A nice
survey on MCMC methods including coupling from the past is [66].

For a practical implementation, there are two main problems: (1) The full map F},
has to be generated and has to be composed with F. The computer time needed for
this is at least of the order of the size of the space E. (2) Checking if F is constant
needs computer time of the same order of magnitude. Consequently, the method can
be efficiently implemented only if there is more structure. For example, assume that
E is partially ordered with a smallest element O and a largest element 1 (like the
Ising model). Further, assume that the maps F; can be chosen to be almost surely
monotone increasing. In this case, it is enough to compute at each step F(0) and
F (1) since F is constant if the values coincide.

18.4 Speed of Convergence

So far we have ignored the question of the speed of convergence of the distribution
Px, to m. For practical purposes, however, this is often the most interesting ques-
tion. We do not intend to go into the details and we only briefly touch upon the topic.
Without loss of generality, assume E = {1,..., N}. If p is reversible (Eq. (18.8)),
then f + pf defines a symmetric linear operator on L?(E, ) (exercise!). All
eigenvalues Ap, ..., Ay (listed according to the corresponding multiplicity) are real
and have modulus at most 1 since p is stochastic. Thus we can arrange the eigenval-
ues by decreasing modulus A =1 > |A3| > ... > |Ay]|. If p is irreducible and ape-
riodic, then [Ao2| < 1. Let w1 =m, ua, ..., uy be an orthonormal basis of left eigen-
vectors for the eigenvalues A1, ..., Ay. Then, for every u = oy + ... + anun,
we have up" = ZIN=1 Al and hence

|up" = || 7y < Claal” (18.10)

for a constant C (that does not depend on ). A similar formula holds if p is not re-
versible; however, with a correction term of order at most nV ~!. Here, V is the size
of the largest Jordan block square matrix for the eigenvalue A, in the Jordan canon-
ical form of p. In particular, V is no larger than the multiplicity of the eigenvalue
with second largest modulus.


http://www.dbwilson.com/
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The speed of convergence is thus exponential with a rate that is determined by
the spectral gap 1 — |A;| of the second largest eigenvalue of p. In practice, for a
large space E, computing the spectral gap is often extremely difficult.

Example 18.19 Letr € (0,1) and N € N, N > 2. Further, let E ={0,..., N — 1}.
‘We consider the transition matrix

r, if j=i+1 (mod N),
pG,j)=31—-r, ifj=i—1(modN),
0, else.

p is the transition matrix of simple (asymmetric) random walk on the discrete torus
Z/(N), which with probability » makes a jump to the right and with probability
1 — r makes a jump to the left. Clearly, p is irreducible, and p is aperiodic if and
only if N is odd. Furthermore, the uniform distribution Ug is the unique invariant
distribution.

Case 1: N odd. Let 6y = ™ */N k =0,...,N — 1, be the Nth roots of unity
and let the corresponding (right) eigenvectors be

=008, ....00 ).
It is easy to check that p has the eigenvalues
— 2k 2k
Ak =10 1 —r)fr = — 2r — Disin{ — |,
k=10 + (1 —r)bg cos(N)—i—(r )zsm(N)
k=0,...,N—1.

The moduli of the eigenvalues are given by |Ax| = f (2w k/N), where

f@) = \/1 —4r(1 —r)sin(®)? for € R.

Since N is odd, |Ag| is maximal (except for k = 0) for k = NT_I and for k = NT“

For these &, |Ar| equals y := \/1 —4r(1 — r)sin(zr/N)?2. Since all eigenvalues are
different, every eigenvalue has multiplicity 1. Hence there is a constant C < oo such
that

|up" —Ug|;, <Cy" forallneN, ue M(E).

Case 2: N even. In this case, p is not aperiodic. Nevertheless, the eigenvalues
and eigenvectors are of the same form as in Case 1. In order to get an aperiodic
chain, for ¢ > 0, define the transition matrix

pei=1—¢)p+el,

where [ is the unit matrix on E. p. describes the random walk on E that with
probability ¢ does not move and with probability 1 — ¢ makes a jump according
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to p. Clearly, p; is irreducible and aperiodic. The eigenvalues are
A =0—-8Ar+e, k=0,....,N—-1,

and the corresponding eigenvectors are the x* from above. Evidently, 1. o = 1, and
if & > 0 is very small, then A, /> = 2¢ — 1 is the eigenvalue with the second largest
modulus. For larger values of ¢, we have |A; 1| > |A¢ n/2|. More precisely, if we let

B (1—(2r — )?)sin(2w/N)?
0= (1 —@r —1)?2)sin(2n/N)2 +2cos2m/N)’

then the eigenvalue with the second largest modulus has modulus
Ve =lhe N2l =1—2¢, ife<egp,
or

Ve = |Ag 1l

=/(a 2 s(a—oer—nso( )Y, ifes
= (( —E)COS<W>+E) +<( —&)2r — )mn(W)), if € > ¢p.

It is easy to check that & — |A¢ /2| is monotone decreasing and that & = |4 1] is
monotone increasing. Hence y; is minimal for & = ¢&.
Hence there is a C < oo with

”/Lpg _UE”TV <Cy}! forallneN,ue M(E),

and the best speed of convergence (in this class of transition matrices) can be ob-
tained by choosing & = &. O

Example 18.20 (Gambler’s ruin) We consider the gambler’s ruin problem from
Example 10.19 with the probability of a gain r € (0, 1). Here the state space is

E ={0, ..., N}, and the transition matrix is of the form
7, ifj=i+1€{2,...,N},
. l—r, ifj=i—1€{0,...,N =2},
p, j)= .
1, if j=i€{0, N},
0, else.

This transition matrix is not irreducible; rather it has two absorbing states 0 and N.
In Example 10.19 (Eq. (10.5)) for the case r # %, and Example 10.16 for the case

r= %, it was shown that, for every u € M (E),

up" "= (1= m()do + m (). (18.11)
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Here m(u) = f PN (x)p(dx), where the probability py (x) that the chain, if started
at x, hits N is given by

1—(=0y . 1

ey Tr#

i — 1
1fr_2.

pn(x) =
X
N
How quick is the convergence in (18.11)? Here also the convergence has exponential
speed and the rate is determined by the second largest eigenvalue of p.
Hence we have to compute the spectrum of p. Clearly, x* = (1,0, ...,0) and
xN =1(0,...,0,1) are left eigenvectors for the eigenvalue 1. In order for x =

(x0,---,xnN) to be a left eigenvector for the eigenvalue X, the following equations
have to hold:

Mg =rxp—1+ A —r)xp41 fork=2,....,N -2, (18.12)

and
AXN_] =TXN_2. (18.13)
If (18.12) and (18.13) hold for xy, ..., xy_1, then we define xq := }\_Tll’xl and xy =
%xN_l and get that in fact xp = Ax. We make the ansatz
A=(1-rp@+6) and xp=0" (0" -0") fork=1,....N—1,
where
p=+r/(1—=r) and 0e€C\{-1,+1} with|9|=1.

Thus we have 66 = 1 and (1 - r),ok+l = r,ok_l. Therefore, for every k =2,...,
N —1,

A = (1 —r)p*H (08 — %) (0 +0)
—(1- r)pk+1[(9k+1 _ §k+1) _’_95(91{71 _ gkfl)]
erk—l(gk—l _gk—l) +a- r)pk+l(9k+l _§k+1)
=rxg—1+ (1 —=r)xeq1.

That is, (18.12) holds. The same computation with k = N — 1 shows that (18.13)
holds if and only if 8N — 6N = 0; that is, if 92V = 1. In all, then, for 6, we get N — 1
different values (note that the complex conjugates of the values considered here lead
to the same values 1),

Oy = ™M forn=1,...,N—1.

The corresponding eigenvalues are

niw
/\,,:UCOS(—) forn=1,...,N — 1.
N
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Here the variance of the individual random walk step is
o :=4r(1 —r). (18.14)

As all eigenvalues are real, the corresponding eigenvectors are given by

i r \"*  [nn
Xy =2 =, sin ~ ) k=1,...,N—1.

The second largest modulus of an eigenvalue is |1,| = o cos(%) ifn=1o0rn=
N — 1. Thus there exists a C > 0 such that, for every u € M| (E), we have

n
wp"({1,...,N—1}) < C<o cos(%)) for every n € N.

In other words, the probability that the game has not finished up to the nth round is
at most C (o cos(mr/N))".

An alternative approach to the eigenvalues can be made via the roots of the char-
acteristic polynomial

xy@x)=det(p —xI), xeR

Clearly, x1(x) = (1 — )c)2 and y2(x) = —x(1 — x)z. Using Laplace’s expansion
formula for the determinant (elimination of rows and columns), we get the recur-
sion

XN(X) = —=xxN-1(x) —r(l —r)xn—2(x). (18.15)
The solution is (check this!)

av @) = =DV o2V - x)2Un_1 (x/0), (18.16)
where
lm/2] . m—k o
Up(x) := ;;(_1)< L )(2x)

denotes the so-called mth Chebyshev polynomial of the second kind.
Using de Moivre’s formula, one can show that, for x € (—o, o),

5 sin(N arccos(x /o))

V1= (x/0)?
:(1—x)2N]__[l<acos<”—k> —x). (18.17)
k=1 N

Apart from the double zero at 1, we get the zeros

v @) = (=D o)1 - x)

ocos(tk/N), k=1,...,N—1. O
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Exercise 18.4.1 Show (18.16).
Exercise 18.4.2 Show (18.17).

Exercise 18.4.3 Let v(dx) = %\/1 —lell,l,l](x) dx. Show that the Chebyshev
polynomials of the second kind are orthonormal with respect to v; that is,

/ UnUpdv =1yp—p).

Exercise 18.4.4 Let

12 1/3 1/6
E={1,2,3} and p=|1/3 1/3 1/3
0 3/4 1/4

Compute the invariant distribution and the exponential rate of convergence.

Exercise 184.5 Let E=1{0,...,N—1},r € (0,1) and

r if j=i+1 (mod N),
p,j)=41—r, if j=i (mod N),
0, else.

Show that p is the transition matrix of an irreducible, aperiodic random walk and
compute the invariant distribution and the exponential rate of convergence.

Exercise 18.4.6 Let N € N and let E = {0, 1}V denote the N-dimensional hyper-
cube. That is, two points x, y € E are connected by an edge if they differ in exactly
one coordinate. Let p be the transition matrix of the random walk on E that stays put
with probability ¢ > 0 and that with probability 1 — ¢ makes a jump to a randomly
(uniformly) chosen neighboring site.

Describe p formally and show that p is aperiodic and irreducible. Compute the
invariant distribution and the exponential rate of convergence.



Chapter 19
Markov Chains and Electrical Networks

We consider symmetric simple random walk on Z2. By Pélya’s theorem (Theo-
rem 17.39), this random walk is recurrent. However, is this still true if we remove a
single edge from the lattice > of Z2? Intuitively, such a small local change should
not make a difference for a global phenomenon such as recurrence. However, the
computations used in Section 17.5 to prove recurrence are not very robust and would
need a substantial improvement in order to cope with even a small change. The situ-
ation becomes even more puzzling if we restrict the random walk to, e.g., the upper
half plane {(x, y) : x € Z, y € Ng} of 72.1Is this random walk recurrent? Or consider
bond percolation on Z*. Fix a parameter p € [0, 1] and independently declare any
edge of I open with probability p and closed with probability 1 — p. At a second
stage, start a random walk on the random subgraph of open edges. At each step, the
walker chooses one of the adjacent open edges at random (with equal probability)
and traverses it. For p > % there exists a unique infinite connected component of
open edges (Theorem 2.47). The question that we answer at the end of this chapter
is: Is a random walk on the infinite open cluster recurrent or transient?

The aim of this chapter is to establish a connection between certain Markov
chains and electrical networks. This connection

e in some cases allows us to distinguish between recurrence and transience by
means of easily computable quantities, and

e in other cases provides a comparison criterion that says that if a random walk
on a graph is recurrent, then a random walk on any connected subgraph is recur-
rent. Any of the questions raised above can be answered using this comparison
technique.

Some of the material of this chapter is taken from [36, 111].

19.1 Harmonic Functions

In this chapter, E is always a countable set and X is a discrete Markov chain on E
with transition matrix p and Green function G. Recall that F (x, y) is the probability

A. Klenke, Probability Theory, Universitext, DOI 10.1007/978-1-4471-5361-0_19, 411
© Springer-Verlag London 2014
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of hitting y at least once when starting at x. Compare Section 17.4, in particular,
Definitions 17.28 and 17.33.

Definition 19.1 Let A C E. A function f : E — R is called harmonic on E \ A if
pf(x) = ZyeE p(x,y) f(y)exists and if pf(x) = f(x) forallx € E\ A.

Theorem 19.2 (Superposition principle) Assume f and g are harmonic on E \ A
and let o, B € R. Then o.f + Bg is also harmonic on E \ A.

Proof This is trivial. O

Example 19.3 Let X be transient and let a € E be a transient state (that is, a is not
absorbing). Then f(x) := G(x, a) is harmonic on E \ {a}: For x # a, we have

pf)=pY p'x,a)=Y p"(x,a) =G(x,a) = lig(x) = G(x, a).

n=0 n=l1
Example 19.4 Forx € E,let 7, :=inf{n >0: X,, =x}. For AC E, let

T:=714 := Inf 7,
X€eA

be the stopping time of the first entrance to A. Assume that A is chosen so that
P.[t4 <oo]=1forevery x € E. Let g: A — R be a bounded function. Define

fx) = {g(x)’ xea, (19.1)

E,[g(X;)], ifxeE\A.
Then f is harmonic on E \ A. We give two proofs for this statement.
Ist Proof By the Markov property, forx ¢ Aand y € E,
_1_lsk, ifyeA _
Hence, forx € E\ A,
f)=E[g(X0)] =) E[e(X); X1 =y]

yeE
=Y P ME[e(X) [ X1 =y]=)_ px,y) f() = pfx).
YEE yeE

2nd Proof We change the Markov chain by adjoining a cemetery state A. That is,
the new state space is E = E U {A} and the transition matrix is

px,y), ifxeE\A,y#A,

plx,y)=10, ifxe E\NA,y=A, (19.2)
1, ifxe AU{A},y=A.
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The corresponding Markov chain X is transient, and A is the only absorbing state.
Furthermore, we have pf = f on E\ A if and only if pf = f on E \ A. Since
G(y,y)=1forall y € A, we have (compare Theorem 17.34)

P.[X, =y]=P,[f, <0l = F(x,y) =G(x,y) forallxe E\A, yecA.

Now x > G (x, y) is harmonic on E \ A. Hence, by the superposition principle,

f@) =) Gx. () (19.3)

yeA

is harmonic on E \ A. Due to the analogy of (19.3) to Green’s formula in con-
tinuous space potential theory, the function G is called the Green function for the
equation (p —I)f =0on E \ A. O

Definition 19.5 The system of equations

(p—Dfkx)=0, forx e E\ A,

(19.4)
f(x)=gkx), forxeA,

is called the Dirichlet problem on E \ A with respect to p — I and with boundary
value g on A.

We have shown the existence of solutions of the Dirichlet problem in Exam-
ple 19.4. In order to show uniqueness (under certain conditions) we first derive the
maximum principle for harmonic functions.

If p = I then any function f that coincides with g on A is a solution of the
Dirichlet problem. However, even in less extreme situations the solution of (19.4)
may be ambiguous. This is the case if E \ A decomposes into domains between
which the chain that is stopped in A cannot change.

In order to describe formally the irreducibility condition that we have to impose,
we introduce the transition matrix p 4 of the chain stopped upon reaching A by

plx,y), ifx¢A,
Lix=y), ifxeA.

palx,y) = {
Further, define F4 for p4 similarly as F was defined for p. Finally, for x € E let
Six)={y€E:(pa)"(x,y) >0}, forneNy

and

Satx)=|J S4(x)={y € E: Falx,y) > 0}.
n=0
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Theorem 19.6 (Maximum principle) Let f be a harmonic function on E \ A.

(1) If there exists an xo € E \ A such that
f(x0) = sup f(Sa(xo)), (19.5)

then f(y) = f(xo) for any y € Sa(xo).
(i) In particular, if Fo(x,y) >0 forallx,y € E\ A, and if there isan xo € E\ A

such that f(xg) =sup f(E), then f(xo) = f(y) foranyy € E\ A.

Proof (i) Let m :=sup f(Sa(x0)). As f is harmonic on E \ A, we have psf = f
on E. Hence, for any n € N,

fa0)=(pa)" flxo)= Y Palxo.»)f(y)<m

yE€S} (x0)

with equality if and only if f(y) =m forall y € §% (xo). Since (19.5) implies equal-
ity, we infer f(xo) = f(y) forall y € S4(xp).
(i) This is a direct consequence of (i) since Sq(x) D E\ Aforanyx € E\ A. U

Theorem 19.7 (Uniqueness of harmonic functions) Assume that F(x,y) > 0 for
all x,y € E. Let A C E be such that A # () and E \ A is finite. Assume that f)
and f> are harmonic on E\ A.If fi1 = fo on A, then f| = f>.

In other words, the Dirichlet problem (19.4) has a unique solution given by (19.3)
(or equivalently by (19.1)).

Proof By the superposition principle, f := f; — f> is harmonic on E \ A with
fla=0.

We will show f < 0. Then, by symmetry, also f > 0 and hence f = 0. To this
end, we assume that there exists an x € E such that f(x) > 0 and deduce a contra-
diction.

Since f|4 =0 and since E \ A is finite, there is an xg € E \ A such that f(xg) =
max f(E) > f(x)>0.

Since F(x,y) > 0 for all x, y € E, we have

no :=min{n € Np: p"(xg, y) > 0 for some y € A} < 00.

Clearly, we have p"(xp, y) = (pa)™(xg,y) for all y € A. Hence, there exists a
y € A such that (p4)"°(xg, y) > 0, i.e., y € Sa(xp). By Theorem 19.6, this implies
f(x0) = f(y) =0 contradicting the assumption. O

Exercise 19.1.1 Let p be the substochastic £ x E matrix that is given by p(x, y) =
p(x,y), x,y € E (with p as in (19.2)). Hence p(x,y) = p(x, y)1xer\a. Let I be
the unit matrix on E.

(i) Show that I — p is invertible.
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(i) Define G := (I —p)~". Show that G (x, y) = G(x,y) forall x,y € E\ A and
that G(x, y) = 1{x—y) if x € A. In particular,

G(x,y)=P;[X;, =y] forxc E\AandyecA.

19.2 Reversible Markov Chains

Definition 19.8 The Markov chain X is called reversible with respect to the mea-
sure 7 if

ﬂ({x})p(x, y) = n({y})p(y,x) forallx,y e E. (19.6)

Equation (19.6) is sometimes called the equation of detailed balance. X is called
reversible if there is a w with respect to which X is reversible.

Remark 19.9 1f X is reversible with respect to 7, then 7 is an invariant measure for
X since

ap(lx)) =Y w (V) pG.x) =Y m((x}) plx. y) =7 ({x}).

yeE yeE

If X is irreducible and recurrent, then, by Remark 17.50, & is thus unique up to
constant multiples. O

Example 19.10 Let (E, K) be a graph with vertex set (or set of nodes) E and
with edge set K (see p. 65). By (x,y) = (y,x) € K, denote an (undirected) edge
that connects x with y. Let C := (C(x, y),x,y € E) be a family of weights with
Cx,y)=C(y,x)>0forall x,y € E and

Cx):= ZC(x,y) <oo forallx eE.
yeE

Cx,y)
C(x)

If we define p(x,y) :=
7 ({x}) = C(x). In fact,

for all x, y € E, then X is reversible with respect to

C ’
7 (fe}) p(x, y) = C(x) C()Exi ) ey
B o
=C(y,x) =C(y) co) =7({y})p(y.x). o

Definition 19.11 Let (E, K), C and X be as in Example 19.10. Then X is called a
random walk on E with weights C. In particular, if C(x, y) = 1{(x,y)ek), then X is
called a simple random walk on (E, K).

Thus the random walk with weights C is reversible. However, the converse is
also true.
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Theorem 19.12 If X is a reversible Markov chain and if 7 is an invariant mea-
sure, then X is a random walk on E with weights C(x,y) = p(x, y)m({x}). If X is
irreducible and recurrent, then w and hence C are unique up to a factor.

Proof This is obvious. O

Exercise 19.2.1 Show that p is reversible with respect to 7 if and only if the linear
map L%(n) — L*(w), f + pf is self-adjoint.

Exercise 19.2.2 Let 8 > 0, K € Nand Wy,..., Wk € R. Define
. 1 .
p@, Jj) :=§exp(—,BWj) foralli,j=1,..., K,

where Z := Zle exp(—pBW;) is the normalising constant.

Assume thatin K (enumerated) urns there are a total of N indistinguishable balls.
At each step, choose one of the N balls uniformly at random. If i is the number of
the urn from which the ball is drawn, then with probability p(i, j) move the ball to
the urn with number j.

(i) Give a formal description of this process as a Markov chain.
(ii) Determine the invariant distribution 7z and show that the chain is reversible with
respect to 7.

19.3 Finite Electrical Networks

An electrical network (E, C) consists of a set E of sites (the electrical contacts) and
wires between pairs of sites. The conductance of the wire that connects the points
x € Eand y € E\ {x}isdenoted by C(x, y) € [0, 00). If C(x, y) =0, then we could
just as well assume that there is no wire connecting x and y. By symmetry, we have
C(x,y)=C(y,x) for all x and y. Denote by

R(x,y) = € (0, o0]

Cx,y)

the resistance of the connection (x, y). A particular case is that of a graph (E, K)
where all edges have the same conductance, say 1; thatis, C(x, y) = 1{(x,y)ek}- The
corresponding network (E, C) will be called the unit network on (E, K).
In the remainder of this section, assume that (E, C) is a finite electrical network.
Now let A C E. At the points xg € A, we apply the voltages u(xo) (e.g., using
batteries). What is the voltage u(x) atx € E \ A?
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Definition 19.13 Amap / : E x E — R is called a flow on E \ A if it is antisym-
metric (that is, 7 (x, y) = —I(y, x)) and if it obeys Kirchhoff’s rule:

I(x)=0, forxeE\A,
1(A) =

(19.7)

Here we denoted

I(x):=) I(x.y) and I(A):=)» I().

yeE xeA

Definition 19.14 A flow [ : E x E — R on E \ A is called a current flow if there
exists a function u : E — R with respect to which Ohm’s rule is fulfilled:

I(x,y)= M forallx,ye E,x # y.

R(x,y)

In this case, I(x, y) is called the flow from x to y and u(x) is called the electrical
potential (or voltage) at x.

Theorem 19.15 An electrical potential u in (E, C) is a harmonic function on E\ A:

u(x) = Z mC(x Yu(y) forallx e E\A.

yeE

In particular, if the network is irreducible, an electrical potential is uniquely deter-
mined by the values on A.

Proof By Ohm’s rule and Kirchhoff’s rule,

Clx, Cx,
u@ -y C()Exf)umzz éf;xf)(u(x)—u(y) o )Zl(x y) =

yeE yeE yeE

Hence u is harmonic for the stochastic matrix p(x, y) = C(x, y)/C(x). The claim
follows by the uniqueness theorem for harmonic functions (Theorem 19.7). g

Corollary 19.16 Let X be a Markov chain on E with edge weights C. Then u(x) =
E, [M(XrA )]

Assume A = {xq, x1} where xg # x1, and u(xg) =0, u(x1) = 1. Then I(x;) is
the total flow into the network and —17(x¢) is the total flow out of the network.
Kirchhoff’s rule says that the flow is divergence-free and that the flows into and out
of the network are equal. In other words, the net flow is I (xg) + I (x1) =0.

Recall that, by Ohm’s rule, the resistance of a wire is the quotient of the potential
difference and the current flow. Hence we define the effective resistance between x
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and x| as
u(xy) —u(xo) 1 1
I(x1) T o)

Correspondingly, the effective conductance is Cegr(xo <> X1) = Reff(x0 <> X1 )~L As
I and u are uniquely determined by x¢, x; and C, the quantities Cef(xog <> x1) and
Reir(xo <> x1) are well-defined and can be computed from C.

Consider now two sets Ag, A] C E with Ag N Ay =0, Ag, A1 # @. Define
u(x) =0 for every x € Ag and u(x) =1 for every x € Aj. Let I be the correspond-
ing current flow. In a manner similar to the above, we make the following definition.

Retr(xp <> x1) =

Definition 19.17 We call Ce(Ag <> A1) := I (A1) the effective conductance be-
tween Ag and A and Re(Ag <> Ayp) 1= T i‘ S5 the effective resistance between Ag
and Aj.
Example 19.18
(i) Let £E =1{0, 1,2} with C(0,2) =0, and Ay = {xo} = {0}, A = {x1} = {2}.
Define #(0) =0 and u(2) = 1. Then (with p(x, y) = C(x, y)/C(x)),

u(l)y=1-p1,2)+0-p(,0)

B C(1,2) B R(1,0)
T C(1,2)+C(1,0)  R(1,0)+ R(1,2)
Refi(1 <> 0)

Regt(1 <> 0) + Regr(1 < 2)°

The total current flow is

I({Z})zu(l)c(o’l)zR(0,1)+R(1,2): T

Hence we have Rqg(0 <> 2) = {— = R(0,1) 4+ R(1,2) and Ceg(0 < 2) =

coO,nH'+ca,2~hHn

(ii) (Series connection) Let n € N, n > 2 and E = {0, ..., n} with conductances
C(k—1,k) >0and C(k,l) =0 if |k — | > 1. By Kirchhoff’s rule, we have
I(l,l4+1)=—I(xy) forany [ =0,...,n — 1. By Ohm’s rule, we get u(1) =
u()+ I(x1)RO, 1), u(2) =u(1) + I (x1)R(1,2) and so on, yielding

k—1

u(k) — u(0) =1I(x;) Z R(,1+1).

=0

Hence

Reir(0 < k) = ”(k;( IL;(O) ZR(Z [+1).
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.7)0:1 ZE|:6

Fig. 19.1 Series connection of six resistors. The effective resistance is Re(0 <> 6) =
R(0,1) 4+ ...+ R(5,6)

By symmetry, we also have

n—1

Reiik <> n) =) R(.1+1)
I=k

and thus Refr(0 <> 1) = Refr(0 <> k) + Regr(k <> n).
Finally, for k € {1,...,n — 1}, we get

Refr(0 < k)
Reft(0 <> k) + Regr(k <> n) ’

u(k) =

Note that this yields the ruin probability of the corresponding Markov chain X
on {0, ..., n},

Regr(0 <> k) k—1 n—1
Pulty <l =u(k) = = 0= 0= SR+ 1)/ZR(1,1+ 1). (19.8)
¢ 1=0 1=0

(iii) (Parallel connection) Let E = {0, 1}. We extend the model a little by allowing
for more than one wire to connect 0 and 1. Denote the conductances of these
wires by C1, ..., Cy. Then, by Ohm’s rule, the current flow along the ith wire
is I; = %f‘(o) = R%. Hence the total current is 1 =) ;_, RL,- and thus we

have

n 1 -
Ceff(O(—)l):ZCi and Reﬁ(o‘*l):<z%) ' O

i=1

i=1

Fig. 19.2 Parallel connection of six resistors. The effective resistance is Ref(0 < 1) =
R+ +RH!
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In each of the three preceding examples, the effective resistance is a monotone
function of the individual resistances. This is more than just coincidence.

Theorem 19.19 (Rayleigh’s monotonicity principle) Let (E, C) and (E,C’) be
electrical networks with C(x,y) > C'(x, y) forall x,y € E.
Then, for Ag, A1 C E with Ag, A1 # 0 and AgN A1 =10,

Cei(Ag <> A1) > Clg(Ag < Ay).

The remainder of this section is devoted to the proof of this theorem. We will
need a theorem on conservation of energy and Thomson’s principle (also called
Dirichlet’s principle) on the minimization of the energy dissipation.

Theorem 19.20 (Conservation of energy) Let A = Ao U Ay, and let I be a flow on
E \ A (but not necessarily a current flow; that is, Kirchhoff’s rule holds but Ohm’s
rule need not). Further, let w : E — R be a function that is constant both on Ay and
on Ap: wla, =:wo and wla, =: wy. Then

1
w1 —wo) (A1) =5 Y (wk) —wm)I . ).

x,yeE

Note that this is a discrete version of Gauf}’s integral theorem for (w/). In fact,
Kirchhoff’s rule says that / is divergence-free on E \ A.

Proof We compute

D (we) —wm)I(x, y)

x,yeE
= Z(w(x) > oI, y)) - Z(w(y) > oI, y))
xek yeE yeE xek
= Z(w(x) D oI, y)) - Z(w(y) > I, y))
x€eA yeE yeA xeE
= wol (Ao) + w11 (A1) — wo(—1(Ag)) — wi(—1(A)))
=2(w; —wo)I(Ay). O

Definition 19.21 Let I be a flow on E \ A. Denote by

1
LI = L? = E Z [(X,Y)zR(st)

x,yeE

the energy dissipation of I in the network (E, C).
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Theorem 19.22 (Thomson’s (or Dirichlet’s) principle of minimization of energy
dissipation) Let I and J be unit flows from Ay to Ag (that is, I (A1) = J(A1) = 1).
Assume in addition that I is a current flow (that is, it satisfies Ohm’s rule with some
potential u that is constant both on Ay and on Ay). Then

Ly<Ly

with equality if and only if I = J. In particular, the unit current flow is uniquely
determined.

Proof Let D = J — I # 0 be the difference of the flows. Then clearly D(Ag) =
D(A1) =0. We infer

DT )R, y)

x,yeE
=Y (IG.y) + D, ») R, y)
x,yeE
=Y (1@ )+ D@, )R, y)+2 Y I(x.y)D(x. »)R(x.y)
x,yeE x,yeE
=Y (I, )+ D, )RE, ) +2 Y (ux) —u())D(x, ).
x,yeE x,yeE

By the principle of conservation of energy, the last term equals

2 (u(x) —u() D(x, y) = 4D(A)(u1 —up) =0.
x,yeE

Therefore (since D £ 0),

1
Ly=L;+ - § D(x,y)’R(x,y) > L.
2 0
x,yeE

Proof (Rayleigh’s monotonicity principle, Theorem 19.19) Let I and I’ be the unit
current flows from A to Ag with respect to C and C’, respectively. By Thomson’s
principle, the principle of conservation of energy and the assumption R(x,y) <
R'(x, y) forall x, y € E, we have

u(l) —u(0)

Refi(Ap <> A1) = Ay u(l) —u(0)
1
=5 > 1. y)R(x. y)
x,yeE
1 1
<5 2 T RE ) =5 Y0 IR @ y)
x,yeE x,yeE

=u'(1) — 1/ (0) = Rl(Ag <> A)). O
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19.4 Recurrence and Transience

We consider the situation where E is countable and A; = {x1} for some x| € E. Let
X be a random walk on E with weights C = (C(x, y),x,y € E) and hence with
transition probabilities p(x, y) = C(x, y)/C(x) (compare Definition 19.11).

The main goal of this section is to express the probability 1 — F(x1, x1) that
the random walk never returns to x; in terms of effective resistances in the net-
work. In order to apply the results on finite electrical networks from the last section,
we henceforth assume that A9 C E is such that E \ Aq is finite. We will obtain
1 — F(x1, x1) as the limit of the probability that a random walk started at x; hits Ag
before returning to xj as Ag | ¥.

Let u = uy, 4, be the unique potential function on E with u(x1) =1 and
u(x) =0 for any x € Ag. By Theorem 19.7, u is harmonic and can be written as

Uxi,Ap (x) = Ex []l{XfAOU(xl):xl}]
=Py[ty, <74,] foreveryxeE\ (AgU {xi}).

Hence the current flow I with respect to u satisfies

—I(Ag) =1(x1) =Y I(x1,x) =Y (u(x1) —u(x))C(x1,x)

xeE xeE
=C(x) Y (1 —u)plx1,x)
xeE
= cm)( > perX)Peltay <Tol+ Y p(xl,x)>
x¢AoU{x} X€Ag

= C(xl)le [TAO < Ty ]
Therefore,

PF(xl s AO) = le [TA() < Txl]
_ Cett(x1 < Ao) _ 1 1
C(x1) C(x1) Rett(x1 < Ag)

(19.9)

Definition 19.23 We denote the escape probability
pr(x1) =Py [ty =00l =1 — F(x1, x1).
We denote the effective conductance from xj to co by

Cefi(x] <> 00) := C(x1)inf{ pp(x1, Ap) : Ag C E with |[E \ Ag| < 00, Ag ¢ x1}.

Lemma 19.24 For any decreasing sequence Ap | 9 such that |E \ Ajj| < co and
x1 ¢ Ag foralln € N, we have

Cefr(x) <> 00) = nlglgo Cefi(x1 < Af).
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Proof This is obvious since
Ceft(x1 <> 00) = C(xl)inf{pp(xl, Ap)  |E\ Ag| <00, A ¢ xl} (19.10)

and since pr(x1, Ag) is monotone decreasing in Ag. O

Theorem 19.25 We have

1
PF(XI)ZmCeff(xl <> 00). (19.11)

In particular,

x1 is recurrent <=  Cef(x] < 00) =0 <=  Rer(x] < 00) = 00.

Proof Let Aj | ¥ be a decreasing sequence such that |E \ Aj| < 0o and x1 ¢ A()
for all n € N. Define F,, := {ng < Ty, }. For every M € N, we have

n—0o0

M
P ltan < MI1< ) Py [Xik € Af] = 0.
k=0

Hence Al 1 oo almost surely, and thus F, | {zy, = oo} (up to a null set). We con-
clude

1 .
——Ceff(x1 <> 00) = lim le[Fn]:le[Txl =o00] = pr(x1). 0
n—00

C(x1)

Example 19.26 Symmetric simple random walk on E = Z is recurrent. Here
C(x,y) = Lx—y=1). The effective resistance from 0 to oo can be computed by
the formulas for parallel and sequence connections,

1 o0
Reff(()(—)oo)=§§R(i,i+l)=oo.

Example 19.27 Asymmetric simple random walk on E = 7Z with p(x,x + 1) =
pE (%, 1), p(x,x — 1) =1 — p is transient. Here one choice (and thus up to multi-
ples the unique choice) for the conductances is

X
Clx.x+1)= <L> for x € Z,
l—p

and C(x,y) =0 if [x — y| > 1. By the monotonicity principle, the effective resis-
tance from O to oo can be bounded by

Reff(0 <> 00) = n@g{) Reii(0 <> {—n, n})
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< lim Regr(0 <> n)
n—oQ

£ -
= _2 _1<OO.
n=0 P P <>

Example 19.28 Symmetric simple random walk on E = Z? is recurrent. Here again
C(x,y) =1yx—y=1). Let B, ={—n, ...,n}2 and 0B, = B, \ B,—1. We construct a
network C’ with greater conductances by adding ring-shaped superconductors along
dB. (See Figs. 19.3 and 19.4 for illustrations.) That is, we replace C(x, y) by

c’ _]oo, if x, y € 3B, for some n € N,

(x,y)=
C(x,y), else.

5

4

3

2

1

o 0

Fig. 19.3 Electrical network on Z?. The bold lines are superconductors. The nth and the (n + 1)th
superconductors are connected by 4(2n + 1) edges

4edges 12 edges 4(2n 4 1) edges

Fig. 19.4 Effective network after adding superconductors to Z2. The ring-shaped superconductors
have melted down to single points
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Then Réff(B,, <~ Bf) = 4(273—+I) (note that there are 4(2n + 1) edges that connect
B, with By), and thus

o0

R0 < 00) =

n=0

1
—_— 0
402n+ 1)

By the monotonicity principle, we thus have Ref(0 <> 00) > RéH(O < o0)=00. O

Example 19.29 Let (E, K) be an arbitrary connected subgraph of the square lattice
(Z2,1.2). Then simple random walk on (E, K) (see Definition 19.11) is recurrent.
Indeed, by the monotonicity principle, we have

E.K 72 1.2
REF (0o 00) = RE (0« 00) = 0. 0

We formulate the method used in the foregoing examples as a theorem.

Theorem 19.30 Let C and C’ be edge weights on E with C'(x,y) < C(x, y) for
all x,y € E. If the Markov chain X with weights C is recurrent, then the Markov
chain X' with weights C' is also recurrent.

In particular, consider a graph (E, K) and a subgraph (E', K'). If simple random
walk on (E, K) is recurrent, then so is simple random walk on (E', K').

Proof This follows from Theorem 19.25 and Rayleigh’s monotonicity principle
(Theorem 19.19). O

Example 19.31 Symmetric simple random walk on Z3 is transient. In order to prove
this, we construct a subgraph for which we can compute R (0 <> 00) < 0o.

Sketch. We consider the set of all infinite paths starting at O and that

e begin by taking one step in the x-direction, the y-direction or the z-direction,

e continue by choosing a possibly different direction x, y or z and make two steps
in that direction, and

e at the nth stage choose a direction x, y or z and take 2"*! steps in that direction.

For example, by xyyxxxxzzzzzzzz ... we denote the path that starts with one
step in direction x, then chooses y, then x, then z and so on. Note that after two
paths follow different directions for the first time, they will not have any common
edge again, though some of the nodes can be visited by both paths.

Consider the electrical network with unit resistors. Apply a voltage of 1 at the
origin and 0 at the endpoints of the paths at the nth stage. By symmetry, the potential
at a given node depends only on the distance (length of the shortest path) from the
origin. We thus obtain an equivalent network if we replace multiply used nodes
by multiple nodes (see Fig. 19.5). Thus we obtain a tree-shaped network: For any
n € Ny, after 2" steps each path splits into three (see Fig. 19.6). The 3" paths leading
from the nodes of the nth generation to those of the (n + 1)th generation are disjoint
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XXX

Fig. 19.5 Scheme of the first three steps (two stages) of the graph from Example 19.31. The
left figure shows the actual edges where, e.g., xyy indicates that the first step is in direction x,
the second step is in direction y and then the third step is necessarily also in direction y. In the
right figure, the nodes at the ends of xz/zx, xy/yx and yz/zy are split into two nodes and then
connected by a superconductor (bold line). If we remove the superconductors from the network, we
end up with the network of Fig. 19.6 whose effective resistance R’ (0 <> 00) is not smaller than
that of Z3. (If at the root we apply a voltage of 1 and at the points to the right the voltage 0, then by
symmetry no current flows through the superconductors. Thus, in fact, the network is equivalent
to that in Fig. 19.6)

paths, each of length 2"~ . If B(n) denotes the set of points up to the nth generation,
then

n—1 n—1
Ri(0 < Bin+ 1)) =Y Rig(B(k) < B(k)) = _2"37%,
k=0 k=0

Therefore, Réff(O <~ 00) = %Z,fio(%)k =1 < 00. On this tree, random walk is
transient. Hence, by Theorem 19.30, random walk on 73 is also transient. O

Exercise 19.4.1 Consider the electrical network on Z? with unit resistors between
neighboring points. Let X be a symmetric simple random walk on Z?. Finally, fix
two arbitrary neighboring points xo, x; € Z¢. Show the following:

(i) The effective conductance between xg and x| is Cegr(xg <> x1) =d.
(i) If d <2, then Py [1y, < T4y] = 3.
(iii) If d > 3, then Py [y, < Ty, | Toy A Ty, < 00] = 3.
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0 1 2 3

| S N N T

1\

:R(O, 1):1/3: R(1,2) =2/9 | R(2,3) = 4/27

T Re(0452) =5/9 T

Fig. 19.6 A tree as a subgraph of Z> on which random walk is still transient

19.5 Network Reduction

Example 19.32 Consider a random walk on the graph in Fig. 19.7 that starts at x
and at each step jumps to one of its neighbors at random with equal probability.
What is the probability P that this Markov chain visits 1 before it visits 0?

We can regard the graph as an electrical network with unit resistors at each edge,
voltage O at 0 and voltage 1 at 1. Then P equals the voltage at point x:

P=u(x).

In order to compute u(x), we replace the network step by step by simpler networks
such that the effective resistances between 0, 1, and x remain unchanged. Hence in
each step the voltage u(x) at point x does not change. O
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Fig. 19.7 Initial situation

R (z,1)
T 1
/
R (07 :I/l) R/(O7 1)
0

Fig. 19.8 Reduced network with three nodes

Reduced Network

Assume that we have already reduced the network to a network with the three points
0, 1 and x and with resistors between these points R’(0, 1), R’(0, x) and R'(1, x).
See Fig. 19.8.

Clearly, we have

R'(0, x)
R'(0,x)+ R'(1,x)
If we knew the effective resistances Reg(0 <> x), Refr(1 <> x) and Reg (0 <> 1),
we could avoid the hassle of reducing the network and we could compute u(x)
directly. In order to derive the formula for u(x), we make the following observations.

In the reduced network, the effective resistances are easy to compute: If {a, b, c} =
{0, 1, x}, then

P=u(x)= (19.12)

1 1 !
R b) = . 19.13
eff(@ <> b) (R’(a, D R@o+RG c)> (19.13)

Solving these three equations for R’(0, 1), R'(0,x) and R’(1, x) and plugging
the values into (19.12) yields

Rett(0 <> 1) + Reft (0 <> x) — Regr(x < 1)

P=ux)= 2Rer(0 < 1)

(19.14)



19.5 Network Reduction 429

In particular, in the case R'(0,1) = oo (or equivalently Reg(0 <> 1) =
Reir(0 < x) + Refr(x < 1)), we have Resr(0 <> x) = R’(0, x) and Regr(1 < x) =
R’(1, x), hence

Refr (0 <> x)

)= 0o + Renr o 1) (1915

Since we always have u(x) € [0, 1], rearranging the terms yields (again in the
general situation)

Refi(1 <> x) < Reff(0 <> 1) + Rer(0 <> x). (19.16)

This is the triangle inequality for the effective resistances and it shows that the ef-
fective resistance is a metric in any electrical network.

Step-by-Step Reduction of the Network

Having seen how to compute u (x) from the effective resistances, we now turn to the
systematic computation of these effective resistances. Later we will come back to
the introductory example and make the computations explicit.

There are four elementary transformations for the reduction of an electrical net-
work:

1. Deletion of loops. The three points on the very right of the graph form a loop that
can be deleted from the network without changing any of the remaining voltages.
In particular, any edge that directly connects O to 1 can be deleted.

2. Joining serial edges. If two (or more) edges are in a row such that the nodes
along them do not have any further adjacent edges, this sequence of edges can be
substituted by a single edge whose resistance is the sum of the resistances of the
single edges (see Fig. 19.1).

3. Joining parallel edges. Two (or more) edges with resistances Ry, ..., R, that
connect the same two nodes can by replaced by a single edge with resistance R =
(R7"+ ...+ R~ (see Fig. 19.2).

4. Star-triangle transformation. (See Exercise 19.5.1.) The star-shaped part of
a network (left in Fig. 19.9) is equivalent to the triangle-shaped part (right in
Fig. 19.9) if the resistances Rj, R>, R3, R1, R2, R3 satisfy the condition

RiR; =68 foranyi=1,2,3, (19.17)
where
RiRyR;

S=RIRR;(RT"+ R+ RN = — 2 .
(&, 2 ) R+ Ry + R
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’ ’
x3 3

R Ry
R ~
,,,,,,, 1 [ Ry
X1 V4 Rz X1
Rg

T2 X2
\ \
\ \

Fig. 19.9 Star—triangle transformation

Application to Example 19.32

With the four transformations at hand, we solve the problem of Example 19.32.
Assume that initially all edges have resistance 1. In the figures we label each edge
with its resistance if it differs (in the course of the reduction) from 1.

Step 1. Delete the loop at the right-hand side (left in Fig. 19.10).

Step 2. Replace the series on top, bottom and right by edges with resistance 2 (right
in Fig. 19.10).

Step 3. Use the star-triangle transformation to remove the lower left node (left in
Fig. 19.11). Here Ry =1, R, =2, R3=1,8 =5, Ry =38/R, =5, Ry =6§/R, =
5/2 and R3 =8/R3 =5.

Step 4. Replace the parallel edges with resistances R =5 and R, = 1 by one edge
with R = (1 + )" = 2 (right in Fig. 19.11).

Step 5. Use the star-triangle transformation to remove the lower right node (left in
Fig. 19.12). Here Ry =5, Ry =2, Ry = 2, 8 = 95/6, Ri = 8/R, = 19/6, R, =
8/Ry=95/12 and R3 = 8/R3 = 19.

X 2 .1

NS}

Fig. 19.10 Steps 1 and 2
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Fig. 19.13 Steps 7 and 8

Step 6. Replace the parallel edges by edges with resistances ( 2) I = 13 and

(19 Hl= 25, respectively (right in Fig. 19.12).

Step 7. Use the star-trlangle transformatlon to remove the lower right node (left
in Fig. 19.13). Here Ry = 10, Ry = 2. Rs= 1,8 =2 R =§/R =32, R, =
8/Ry=% and Ry =6/R3 = 313,

Step 8. Replace the three pairs of parallel edges by single edges with resistances

Iy 125
(27 Hl= 32, ( +5)" = 26 ! and (19 3 l= respectlvely

In the reduced network, we have the resistances

R’(o,x)zZ and R'(x, 1)_27
32 26

Using (19.12), the probability that the random walk visits 1 before O is

27
p__2__13
29°

%t %
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Using the values of R’(0, x), R’(1, x) and R’(0, 1) and Eq. (19.13), we compute the
effective resistances in the reduced network (and hence in the original network):

32 1 -7
Refr(0 < x) = E-ﬁ*m =ﬁ’
8 26

3

8 1o\ 29
Reif(0 < 1) = E‘i‘m =51
6 32

Regr(1 ) (26 + 1 T
MoV =\wT7_27) ¢
27 s+ 4 6

Using (19.14) we can use the values to compute u(x):

29 17 5

eyt 13
P=u@x)="—=—=5;.

2.2 29

24

Clearly, the latter computation is more complicated than using the resistances
R’ from the reduced network directly. However, it has the advantage that it can be
performed without going through all the network reduction steps if, for some reason,
we know the effective resistances already. For example, we could buy resistors in an
electronic market, solder the network and measure the resistances with a multimeter.

Alternative Solution

A different approach to solving the problem of Example 19.32 is to use linear
algebra instead of network reduction. It is a matter of taste as to which solu-
tion is preferable. First generate the transition matrix p of the Markov chain.
To this end, enumerate the nodes of the graph from 1 to 12 as in Fig. 19.14.

Fig. 19.14 Graph with enumerated nodes
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The chain starts at 2, and we want to compute the probability that it visits 3 be-

fore 5.

Generate the matrix 7 of the chain that is killed at 3 and at 5 and compute G =
(I —p)~!. By Exercise 19.1.1 (with A = (3,5}, x =2 and y = 3), the probability

of visiting 3 before 5 is P = G(2,3) = %.

1 1
03 30
1000
0000
0000
0000

1 1
0 51 10

D= 11

1

000 3

0000

0000

0000

0000
G=U-p!

143 81 2l

116 116 29

o8B

58 58 29

0 0 1

3 9 24

8 % B

0 0 0

1 5718

116 116 29

=12 2 2z

58 58 29

3 9 A

58 58 29

5 15 11

S

309 1

29 29 29

3 9

58 58 29

L33 1S

116 116 29

Exercise 19.5.1 Show the validity of the star-triangle transformation.

Exercise 19.5.2 Consider a random walk on the honeycomb graph shown below.
Show that if the walk starts at x, then the probability of visiting 1 before O is %

using
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(i) the method of network reduction, and
(i) the method of matrix inversion.

Exercise 19.5.3 Consider the graph of Fig. 19.15.

(i) For the effective conductance between a and z, show that Cefr(a <—> 7) = /3.
(ii) For arandom walk started at a, show that the probability P, [, < 7,] of visiting
z before returning to a is P,[7;, < 7,] = 1/\/§.
a

Fig. 19.15 Simple ladder graph

Exercise 19.5.4 For the graph of Fig. 19.16, determine Ceg(a <— z) and
P,[7; < 7,]. (This is simpler than in Exercise 19.5.3!)
a

Fig. 19.16 Crossed ladder graph

Exercise 19.5.5 For a random walk on the graph of Fig. 19.17, determine the prob-
ability P,[7, < 7,].

a

Fig. 19.17 Random walk on a hypercube
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19.6 Random Walk in a Random Environment

(Compare [174], [142] and [76, 77], [93].) Consider a Markov chain X on Z that
at each step makes a jump either to the left (with probability w; ) or to the right
(with probability w") if X is at i € Z. Hence, let w; € (0,1) and w;" := 1 — w;
for i € Z. Then X is the Markov chain with transition matrix
w,, ifj=i-1,
pwli, )=qw, ifj=i+1,
0, else.

We consider (w; );jez as an environment in which X walks and later choose the
environment at random.

In order to describe X in terms of conductances of an electrical network, we
define g; := wl._/wi+ fori e Z.Let Cy (i, j) :=0if |i — j| # 1 and

i .
' ' o _g0; , ifi >0,
Culi+ 1,1 = Cylii 1= { L0 @i 1T
[Tiz; ok, if i <O.

With this definition,
Cy,i+1) 1 + Cy(,i—1) Qi -
=w; and - = =w; .
Cu(i)  o0i+1 ! Cy (@) 0i +1 !

Hence the transition probabilities p,, are indeed described by the C,,. Let

ZR @, z+1)—ZC 8 l+1) ank

i=0 k=0

and

[e.e]

Note that R;} and R;, are the effective resistances from 0 to +o00 and from 0 to —oo,
respectively. Hence

Ry eff(0 <> 00) = T 1

Ro ' Ry
is finite if and only if R, < oo or R;‘)‘ < 00. Therefore, by Theorem 19.25,
X is transient <= R, <ooor R} <oo. (19.18)

If X is transient, in which direction does it get lost?
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Theorem 19.33

() If R, < o0 or R} < oo, then (agreeing on % =1)

- RS nes R
Po[X, =5 —oo]=—"— and Po[X, —> +oo]=—"—.
Ry + Ry Ry + Ry
(ii) If R, = oo and R}, = oo, then liminf,_, o, X, = —00 and limsup,,_, ., X, =

o0 almost surely.

Proof (i) Let Ty :=inf{n € No : X;, € {—N, N}}. As X is transient, we have
Po[ty < o0o] =1 and (as in (19.8))
Ry eft(0 <> N) Ry eft(0 <> N)

Po[X.y, =—N]= — = — .
Rw,eff( N < N) Rw,eff(o «~ —N)+ Rw,eff(o < N)

Again, since X is transient, we infer
Po[ X, = —o0] = P[sup{Xn :neNp} < oo]
= lim P[sup{X, :n €Ny} < N]
N—o0

<limsupP[X., = —N]

N—o0
_ R
Ry AR
By symmetry (and since X is transient), we get
R, Ry

PolX, =3 —oo]l=1—-Py[X, = co]>1— = .

(i) If R, = R;, = oo, then X is recurrent and hence every point is visited in-
finitely often. That is, limsup,,_, ., X,, = oo and liminf,,, o X, = —00 a.s. [l

We now consider the situation where the sequence w = (w; );ez is also random.
That is, we consider a two-stage experiment: At the first stage we choose a real-
ization of i.i.d. random variables W = (W, );cz on (0, 1) and let WL.Jr =1-W .
At the second stage, given W, we construct a Markov chain X on Z with transition
matrix

wo, ifj=i—1,
pw(, =Wt ifj=i+]1,
0, else.
Note that X is a Markov chain only given W that is, under the probability measure

P[X € - | W]. However, it is not a Markov chain with respect to the so-called an-
nealed measure P[X € -]. In fact, if W is unknown, observing X gives an increasing
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amount of information on the true realization of W. This is precisely what memory
is and is thus in contrast with the Markov property of X.

Definition 19.34 The process X is called a random walk in the random environ-
ment W.

We are now in the position to prove a theorem of Solomon [157]. Let g; :=
W/ Wl-+ fori € Z and Ry, and R;’V be defined as above.

Theorem 19.35 (Solomon (1975)) Assume that E[|log(oo)|] < o0.

(i) IfE[log(0o)] <O, then X, "= o0 a.s.
(i) IfE[log(op)] > 0, then X, —> —o0 a.s.
(iii) If E[log(oo)] = 0, then liminf,_, o X, = —00 and limsup,_, ., X,, = 00
a.s.

Proof (i) and (ii) By symmetry, it is enough to show (ii). Hence, let ¢ :=
E[log(go)] > 0. By the strong law of large numbers, there is an ny = n;, (w) with

1 1
H Qk_l = exp(— Z IOg(Q,')> <e 2 foralln > ng -

k=—n k=—n

Therefore,

1 ny —1
Rv_vziHQk_li()X: l_[Q Z —en/2 < as.

n=1k=—n n=1 k=—n

Similarly, there is an nar = nar(a)) with

n
l_[Qk > /2 foralanna'.

k=0
‘We conclude
o0 n +
:ZHQk>ZHQk+Zecn/2_OO a.s.
n=0 k=0 n=0 k=0 n=n

Now, by Theorem 19.33, we get X, "% o0 almost surely.

(iii) In order to show Ry, = R}, = oo almost surely, it is enough to show
limsup,_, o > o log(ox) > —oo and limsup,,_, Z}(:_n log(Qk_l) > —00 almost
surely if E[log(op)] = 0. If log(oo) has a finite variance, this follows by the central
limit theorem. In the general case, it follows by Theorem 20.21. g
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Exercise 19.6.1 Consider the situation of Theorem 19.35 but with the random walk
restricted to Ny. To this end, change the walk so that whenever it attempts to make
a step from O to —1, it simply stays in 0. Show that this random walk in a random
environment is

e a.s. transient if E[log(gg)] < oo,
e a.s. null recurrent if E[log(og)] = 0o, and
e a.s. positive recurrent if E[log(og)] > co.



Chapter 20
Ergodic Theory

Laws of large numbers, e.g., for i.i.d. random variables X1, X», ..., state that the se-

quence of averages converges a.s. to the expected value, n ™! Yo Xi ZPE[X].

Hence averaging over one realization of many random variables is equivalent to av-
eraging over all possible realizations of one random variable. In the terminology of
statistical physics this means that the time average, or path (Greek: odos) average,
equals the space average. The “space” in “space average” is the probability space
in mathematical terminology, and in physics it is considered the space of admissi-
ble states with a certain energy (Greek: ergon). Combining the Greek words gives
rise to the name ergodic theory, which studies laws of large numbers for possibly
dependent, but stationary, random variables.
For further reading, see, for example [103] or [88].

20.1 Definitions

Definition 20.1 Let / C R be a set that is closed under addition (for us the impor-
tant examples are /| =Ng, I =N, I =7, [ =R, [ =[0,00), [ = 74 and so on).
A stochastic process X = (X;);¢y is called stationary if

‘C[(Xl‘JrS)l‘E]] ZL[(XZ)IEI] foralls € I. (201)
Remark 20.2 1f I =Ny, I =N or I =Z, then (20.1) is equivalent to
L[(Xnt1ner] = L[(Xnner]- 0

Example 20.3

(1) If X = (X;)ses isiid., then X is stationary. If only Py, = Py, holds for every
t € I (without the independence), then in general X is not stationary. For ex-

ample, consider / =Np and X| = X, = X3 =... but X9 # X. Then X is not
stationary.
A. Klenke, Probability Theory, Universitext, DOI 10.1007/978-1-4471-5361-0_20, 439
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(ii) Let X be a Markov chain with invariant distribution 7. If £L[X(] = 7, then X
is stationary.
(iii) Let (Y;)nez be i.i.d. real random variables and let ¢y, ..., ¢y € R. Then

k
X, = chYn,I, nez,
=1

defines a stationary process X that is called the moving average with weights
(c1y...,cx). Infact, X is stationary if only Y is stationary. O

Lemma 20.4 If (X,)nen, is stationary, then X can be extended to a stationary
process (X;)nez-

Proof Let X be the canonical process on £2 = EZ. For n € N, define a probability
measure P{=7 74 1Ld e My (B4 Ly py
ﬁ{7”’7”+1’m}[§—n € A—ns )?—n+l € A—l’l-‘rlv .. ]
=P[XoeA_,, X1 €A _41,...]-

Then {—n,—n + 1,...} + Z and (ﬁ{_"’_”“““},n € N) is a consistent fam-
ily. By the Ionescu-Tulcea theorem (Theorem 14.32), the projective limit P :=

~

l(iLnnﬁoo Pl=7—n+1) exists. By construction, X is stationary with respect to P
and
5 T -1 -1 O
Po ((Xn)neNo) =Po ((Xn)neN()) .

In the following, assume that (§2, A, P) is a probability space and 7 : 2 — £2 is
a measurable map.

Definition 20.5 An event A € A is called invariant if 77'(A) = A and quasi-
invariant if 1,14y = 14 P-a.s. Denote the o -algebra of invariant events by

I={AcA:t (A=A}

Recall that a o-algebra 7 is called P-trivial if P[A] € {0, 1} for every A € T.

Definition 20.6
(1) t is called measure-preserving if
P[z7'(4)] =P[A] forall Ac A

In this case, (£2, A, P, 1) is called a measure-preserving dynamical system.
(ii) If  is measure-preserving and Z is P-trivial, then (£2, A, P, 7) is called er-
godic.
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Lemma 20.7

(1) A measurable map f : (2, A) — (R, B(R)) is Z-measurable if and only if

for=f.
(i) (2, A, P, 1) is ergodic if and only if any T-measurable f : (2,I) —
(R, B(R)) is P-almost surely constant.

Proof (i) The statement is obvious if f = 14 is an indicator function. The general
case, can be inferred by the usual approximation arguments (see Theorem 1.96(i)).

(il) “=" Assume that (£2, A, P, 7) is ergodic. Then, for any ¢ € R, we have
£~ ((c, 00)) € T and thus P[f ~!((c, o0))] € {0, 1}. We conclude that

f=inf{lceR:P[f'((c,0))] =0} P-as.

“«<=" Assume any Z-measurable map is P-a.s. constant. If A € Z, then 14 is
7-measurable and hence P-a.s. equals either O or 1. Thus P[A] € {0, 1}. O

Example 20.8 Letn e N\ {1}, let 2 = Z/(n), let A =2% and let P be the uniform
distribution on 2. Letr € {1, ...,n} and

T:2—> 2, x> x+r (modn).
Then t is measure-preserving. If d = ged(n, r) and
A =1i, @), 720, ..., " D) =i+ (r) fori=0,....,d -1,

then Ag, ..., Ag—1 are the disjoint coset classes of the normal subgroup (r) < £2.
Hence we have A; € Z fori =0,...,d — 1, and each A € 7 is a union of certain
A;’s. Hence we have

(£2,A,P, 1) isergodic <= gcd(r,n)=1. O

Example 20.9 (Rotation) Let £2 = [0, 1), let A = B(£2) and let P = A be the
Lebesgue measure. Let r € (0, 1) and 7,(x) = x +r (mod 1). Clearly, (£2, A, P, 7,)
is a measure-preserving dynamical system. We will show

(£2,A,P,t,) isergodic <= risirrational.

Let f:[0,1) — R be an Z-measurable function. Without loss of generality, we
assume that f is bounded and thus square integrable. Hence f can be expanded in
a Fourier series

o0
f)= Z c, e for P-a.a. x.
n=—0oo

This series converges in L2, and the sequence of square summable coefficients
(cn)nez is unique (compare Exercise 7.3.1 with ¢, = (—i/2)a, + (1/2)b,, and
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c—y = (i/2)a, + (1/2)b, for n € N as well as co = bp). Now we compute

o]

(f 07)(x) = Z (CneZJrinr)eZHinx ae.

n=—oo
By Lemma 20.7, f is Z-measurable if and only if f = f o 7,; that is, if and only
if

ey = cne™™  foralln e Z.

If r is irrational, this implies ¢, = 0 for n # 0, and thus f is almost surely constant.
Therefore, (£2, A, P, 7,) is ergodic.

On the other hand, if r is rational, then there exists some n € Z\ {0} with e2minr —
e~ 2minr — 1 Hence x +> ¢2TiM% 4 ¢~ 27inX — 2 cog(2nx) is Z-measurable but not
a.s. constant. Thus, in this case (£2, A, P, t,) is not ergodic. O

Example 20.10 Let X = (X,)neN, be a stochastic process with values in a Polish
space E. Without loss of generality, we may assume that X is the canonical process
on the probability space (£2, A4, P) = (E No_ B(E )®N0, P). Define the shift operator

T:02 — 2, (Wn)neNy = (@nt1)neNy-

Then X, (w) = Xo(t"(w)). Hence X is stationary if and only if (£2, 4,P,7) is a
measure-preserving dynamical system. O

Definition 20.11 The stochastic process X (from Example 20.10) is called ergodic
if (2, A, P, ) is ergodic.

Example 20.12 Let (X,)nen, be i.i.d. and let X, (w) = Xo(t" (w)). If A € Z, then,
for every n € N,

A=1t"(A) ={w:1"(w) € A} €0 (Xn, Xnt1,...).

Hence, if we let T be the tail o -algebra of (X,),en (see Definition 2.34), then

o0
ICT=()oXn Xnt1...).

n=1

By Kolmogorov’s 0-1 law (Theorem 2.37), T is P-trivial. Hence Z is also P-trivial
and therefore (X,),en, is ergodic. O

Exercise 20.1.1 Let G be a finite group of measure-preserving measurable maps on
(2, A,P)andlet Ay:={A e A:g(A)=A forall g€ G}.
Show that, for every X € o (P), we have

1
E[Xl.Ao]:EZXog.
geG
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20.2 Ergodic Theorems

In this section, (£2, A4, P, t) always denotes a measure-preserving dynamical sys-
tem. Further, let f : £2 — R be measurable and

Xy(w)= fot"(w) foralln e Ny.

Hence X = (X;)neN, 18 a stationary real-valued stochastic process. Let

n—1
Sy = Zxk
k=0

denote the nth partial sum. Ergodic theorems are laws of large numbers for (Sy,),enN.
We start with a preliminary lemma.

Lemma 20.13 (Hopf’s maximal-ergodic lemma) Let Xo € L' (P). Define M, =
max{0, S1,...,S,},n € N. Then

E[Xo1(pm,>011 =0 foreveryn eN.
Proof For k <n, we have M,,(t(w)) > Sx(t(w)). Hence
Xo+Myot>Xog+ Skot = Sk+1-

Thus Xo > Sg+1 — M, ot for k =1,...,n. Manifestly, S| = Xg and M,, o7 >0
and hence also (for k =0) Xo > S; — M,, o 7. Therefore,

Xo > max{S;,..., Sy} —M,or. (20.2)
Furthermore, we have
M, >0Cc{M,=0}N{M,ot>0}C{M, — M,ot <0}. (20.3)
By (20.2) and (20.3), and since t is measure-preserving, we conclude that

E[Xo1{m,>0] = E[(max{S\,.... Sy} — My, 0 T)Lip,>0}]
E[(M,, — My, 0 T)1{p,~0)]
EM, — M, ot]=E[M,]—E[M,]=0. O

v
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Theorem 20.14 (Individual ergodic theorem, Birkhoff (1931), [16]) Let f =
Xo € LY(P). Then

n—1 n—1

! Z Zfork e E[Xo|Z] P-as.

In particular, if T is ergodic, then

nl

- Z Xy =5’ E[Xy] P-as.

Proof If t is ergodic, then E[ X | Z] = E[X(] and the supplement is a consequence
of the first statement.

Consider now the general case. By Lemma 20.7, we have E[Xo | Z] o 7 =
E[X( | Z] P-a.s. Hence, by passing to }N(n := X,, — E[X0¢ | Z], without loss of gener-
ality, we can assume E[X( | Z] = 0. Define

1
Z :=limsup —S,.
n—oo N

Let ¢ > 0 and F :={Z > ¢}. We have to show that P[F] = 0. From this we
infer P[Z > 0] = 0 and similarly (with —X instead of X) also liminf,,_, %Sn >0

almost surely. Hence %Sn "ZF0as.
Evidently, Z o T = Z; hence F € Z. Define

X = (X, —e)lF. Sp=Xo+.. + X,
M :=max{0, 57,..., S:}. F,:={M;, > 0}.
Then Fiy C F, C...and

1
UF —{sup Sk>0} {sup—Sk>s}ﬂF=F,
keN K keN k

n=1

n—oo

hence F, 1 F. Dominated convergence yields E[X| olp,] — E[X ].
By the maximal-ergodic lemma (applied to X¢), we have E[X‘?]lp 1> 0; hence

0 <E[X{] =E[(Xo—&)1F]
=E[E[Xo | Z]1r] — eP[F] = —¢P[F].

We conclude that P[F] = 0. O

As a consequence, we obtain the statistical ergodic theorem, or L?-ergodic the-
orem, that was found by von Neumann in 1931 right before Birkhoff proved his
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ergodic theorem, but was published only later in [122]. Before we formulate it, we
state one more lemma.

Lemma 20.15 Let p > 1 and let X, X1, ... be identically distributed, real random
variables with E[| X¢|?] < 00. Define Y,, := % Zz;é X|P forn € N. Then (Yy)nen
is uniformly integrable.

Proof Evidently, the singleton {|Xg|”} is uniformly integrable. Hence, by Theo-
rem 6.19, there exists a monotone increasing convex map f : [0, oo) — [0, co) with
f(x) — oo for x — oo and C := E[f(]Xo|”)] < co. Again, by Theorem 6.19, it
is enough to show that E[ f (¥;,)] < C for every n € N. By Jensen’s inequality (for
x = |x|?), we have

1
| Xkl”.
0

n

Y, <

S| =

k

Again, by Jensen’s inequality (now applied to f), we get that
1 n—1 1 n—1
Y,)<fr|- Xl < - (1x
I n>_f<n§| il ) ”§>f | Xel”)

Hence E[f (Y,)] < + S {0 ELf (1Xx|P)] = C. m

Theorem 20.16 (L7-ergodic theorem, von Neumann (1931)) Let (£2, A, P, t) be
a measure-preserving dynamical system, p > 1, Xo € LP(P) and X, = Xg o 7".
Then

-
— Y Xk "ZE[Xo | Z] in LP(P).
n

n—o0

In particular, if T is ergodic, then % Z Xk — E[Xg] in L?(P).

Proof Define

n—1 p

Zxk—E[xmz]
k 0

Y, = for every n e N.

By Lemma 20.15, (Y,)nen is uniformly integrable, and by Birkhoff’s ergodic
theorem, we have ¥, —> 0 almost surely. By Theorem 6.25, we thus have

lim, . E[Y,]=0.
If 7 is ergodic, then E[ X | Z] = E[X0]. O
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20.3 Examples

Example 20.17 Let (X, (Py)xcE) be a positive recurrent, irreducible Markov chain
on the countable space E. Let m be the invariant distribution of X. Then 7 ({x}) > 0
forevery x € E. Define Py =) w({x})P,. Then X is stationary on (§2, A, Py).
Denote the shift by t; that is, X,, = X¢ o t".

Now let A € Z be invariant. Then A € T = ﬂ;’lozla(Xn,X,,H,...). By the
strong Markov property, for every finite stopping time o (recall that F, is the o-
algebra of the o -past),

P, [X e A|F;1=Px [X € A]. (20.4)
Indeed, we have {X € A} ={X € t7"(A)} = {(Xy, Xn+1,...) € A}. For B € Fy,

using the Markov property (in the third line), we get

o
Ex[lixeplixeal=» Y Pz[X€B,o=nX,=x X €Al

n=0xeE

o0
=ZZPH[XEB,U=n,X,,=x,XoT"EA]
n=0xeFE

o0
=ZZPH[XGB,o:n,anx]Px[XeA]

n=0xeE

=E:[LixenPx, [X € A]].

In particular, if x € E and o, = inf{n € Ny : X,, = x}, then o, < oo since X is
recurrent and irreducible. By (20.4), we conclude that, for every x € E,

P;[X € Al =E;[P([X € A]] =P;[X € Al.
Hence Py, [X € A] =P,[X € A] almost surely and thus (with o = n in (20.4))
P, [XeA|Xo,...,X,]=Px,[X € A] =P;[X € A].

Now AeZ Co(Xq, Xa2,...); hence

n—oo

P:[X €A| X, ..., Xyl — Pr[X € Alo(Xo, X1,...)] =1{xea).

This implies P, [X € A] € {0, 1}. Hence X is ergodic.
Birkhoff’s ergodic theorem now implies that, for every x € E,

1 n—1
n—00
;Z]l{xk=x} — n({x}) P;-as.
k=0

In this sense, mw({x}) is the average time X spends in x in the long run. O
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Example 20.18 Let P and Q be probability measures on the measurable space
(22, A), and let (£2, 4, P,7) and (£2, A, Q, t) be ergodic. Then either P = Q
or P 1L Q. Indeed, if P # Q, then there exists an f with | f| <1 and ffdP #*
f f d Q. However, by Birkhoff’s ergodic theorem,

lnz_if Tk"‘i’)o{ffdp P-as.,
n—= [fdQ Q-as.

If we define A := {1370 f o tF "= [ fdP}, then P(A) =1 and Q(A) = 0.
Thus P L Q. O

Exercise 20.3.1 Let (§2, .A) be a measurable space and let 7 : 2 — 2 be a mea-
surable map.

(i) Show that the set M := {u € M(2) : p o t~! = pu} of r-invariant measures
is convex.

(ii) An element pu of M is called extremal if © = App + (1 — M)y for some
w1, w2 € Mand A € (0, 1) implies & = | = 2. Show that u € M is extremal
if and only if 7 is ergodic with respect to .

Exercise 20.3.2 Let p =2,3,5,6,7, 10, ... be square-free (that is, there is no num-
berr =2,3,4,..., whose square is a divisor of p) andletqg € {2,3, ..., p— 1}. For
every n € N, let a,, be the leading digit of the p-adic expansion of ¢”.

Show the following version of Benford’s law: For every d € {1, ..., p — 1},

1 —o0 log(d + 1) —log(d
—#{iﬁn:aizd}n—(;o og(d + 1) — log( ).
n log(p)

20.4 Application: Recurrence of Random Walks

Let (X,),eN be a stationary process with values in R?. Define S, := Y iy X for
n € Ny. Further, let
Rn Z#{Sla cer Sn}

denote the range of S; that is, the number of distinct points visited by S up to time n.
Finally, let A := {S,, # O for every n € N} be the event of an “escape” from 0.

Theorem 20.19 We have lim,,_, oo %Rn =P[A | Z] almost surely.

Proof Let X be the canonical process on (2, A, P) = (RHN, B(R?)®N, P) and let
T : £2 — £2 be the shift; that is, X,, = Xgo t".
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Evidently,

R,,:#{kin:SlyéSkforallle{k—i-1,...,n}}
>#{k <n:S8; # S foralll > k}

n
= Z 1yg0 ok,
k=1
Birkhoff’s ergodic theorem yields

1
liminf—R, > P[A |Z] as. (20.5)
n—-oo n

For the converse inequality, consider A,, = {S; #0 for/ =1, ..., m}. Then, for
every n > m,

Sn—m:SlyéSkforalll€{k+1,...,n}}
§m+#{ §n—m:SlqéSkforallle{k+1,...,k+m}}

n—m
=m + Z ﬂAm [¢] Tk.
k=1

Again, by the ergodic theorem,

1
limsup — R, <P[A,, |Z] a.s. (20.6)

n—oo N
Since A, | A and P[A,, | Z] =5 P[A | Z] almost surely (by Theorem
8.14(viii)), the claim follows from (20.5) and (20.6). O

Theorem 20.20 Let X = (X,)neN be an integer-valued, integrable, stationary
process with the property E[X1 | Z]1 =0 a.s. Let S, = X1+ ...+ X, n € N.
Then

P[S, = 0 for infinitely many n e N] = 1.

In particular, a random walk on 7. with centered increments is recurrent (Chung—
Fuchs theorem, compare Theorem 17.40).

Proof Define A = {S,, # 0 for all n € N}.

Step 1. We show P[A] = 0. (If X is i.i.d., then S is a Markov chain, and this
implies immediately that O is recurrent. Only for the more general case of sta-
tionary X do we need an additional argument.) By the ergodic theorem, we have
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n—oo

%Sn —> E[X1 | Z] =0 a.s. Thus, for every m € N,

1 1
limsup(;k rrllax |Sk|> = limsup(;k max |Sk|>
=1,....,n m

n—o00 = n—o00 =m,..., n
|Sk| m— 00
<max — —>
k>m

Therefore,

1 1
lim <— max Sk> = lim (— min Sk) =0.
n—-oo\ n k=l1,...,n n—oo\ n k=I1,....n

Now R, <1+ (maxg=1,...n Sx) — (Ming=1
orem 20.19, this implies P[A] = 0.

Step 2. Define o, ;= inf{m e N: S+, = S,}, B, := {0, < oo} for n € Ny and
B =" Bn.

Since {op = 0o} = A, we have P[oy < oo] = 1. By stationarity, P[o,, < oo] =1
for every n € Ny; hence P[B] = 1.

Let 7o = 0 and inductively define 1,41 = 1, + 07, for n € Ny. Then 1, is the time
of the nth return of S to 0. On B we have t,, < oo for every n € Ny and hence

.....

P[S, = 0 infinitely often] = P[t, < oo foralln € N] > P[B] = 1. O

If in Theorem 20.20 the random variables X,, are not integer-valued, then there
is no hope that S, = 0 for any n € N with positive probability. On the other hand,
in this case, there is also some kind of recurrence property, namely S, /n 0
almost surely by the ergodic theorem. Note, however, that this does not exclude the
possibility that S, "% 0 with positive probability; for instance, if S,, grows like
/1. The next theorem shows that if the X, are integrable, then the process of partial
sums can go to infinity only with a linear speed.

Theorem 20.21 Let (X,)neN be an integrable ergodic process and define S, =
X1+ ...+ X, for n € Ng. Then the following statements are equivalent.

a1 S, "5 0o almost surely.
(i) P[S, =3 00] > 0.
(i) limy,— oo ‘%” = E[X ] > 0 almost surely.

If the random variables X1, X», ... are i.i.d. with E[X1] =0 and P[X1 =0] < 1,
then liminf, _, o, S, = —o0 and limsup,,_, ., S, = 00 almost surely.

Proof “(i) <= (ii)” Clearly, {S, = oo} is an invariant event and thus has proba-
bility either O or 1.

“(iii)==(1)” This is trivial.

“(i)==(iii)” The equality follows by the individual ergodic theorem. Hence, it is
enough to show that liminf,_, o, S, /n > 0 almost surely.
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Forn € Ng and € > 0, let
AL :={Sy > Sy +eforallm >n+1}.

Let S7 :=inf{S, : n € Ng}. By assumption (i), we have S~ > —oo almost surely
and t :=sup{n € Ny : S, = S} is finite almost surely. Hence there is an N € N
with P[t < N] > % Therefore,

N—1 1
P All=P N]> =.
Uat|=rre <o

Since A, 1 AS for e | 0, there is an & > 0 with p :=P[A{] > ﬁ > 0. As (Xn)neN
is ergodic, (14s)neN, is also ergodic. By the individual ergodic theorem, we con-
clude that % Z;:ol La: e p almost surely. Hence there exists an ng = ng(w) such
that Z:'l:_ol 14: > 52 for all n > ng. This implies S, > ane for n > ng and hence
liminf,_, o0 Sy /n > 55 > 0.

The additional statement follows since liminfsS, and limsupS, cannot as-

sume any finite value and are thus measurable with respect to the tail o -algebra,
which implies that they are constantly —oo or +o00. By what we have shown, we

can exclude S, = 00; hence we have liminf,_, o, S;, = —oo. Similarly, we get
limsup,,_, o, Sy = o0. g

Remark 20.22 1t can be shown that Theorem 20.21 holds also without the assump-
tion that the X, are integrable. See [94]. O

20.5 Mixing

Ergodicity provides a weak notion of “independence” or “mixing”. At the other end
of the scale, the strongest notion is “i.i.d.”. Here we are concerned with notions of
mixing that lie between these two.

In the following, we always assume that (2, A, P, t) is a measure-preserving
dynamical system and that X,, := X¢ o t”. We start with a simple observation.

Theorem 20.23 ($2, A, P, ) is ergodic if and only if, for all A, B € A,

n—1
lim ZP[A Nt *(B)] =P[AIP[B]. (20.7)

Proof “=" Let (£2, A, P, 7) be ergodic. Define

lnfl 1rzfl
. E § k
Yn ZZ ]]_.[—k(B)ZZ ]J_BO'L' .
k=0 k=0
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By Birkhoff’s ergodic theorem, we have Y, = P[B] almost surely. Hence
Y, 14 gty | AP[B] almost surely. Dominated convergence yields
1 n—1
=Y P[AnT*(B)] = E[Y,14] =3 E[14P[B]] = P[AIP[B].
n
k=0

“<=" Now assume that (20.7) holds. Let A € Z (recall that Z is the invariant
o-algebra) and B = A. Evidently, A N 7%(A) = A for every k € Ny. Hence, by
(20.7),

n—1

1
P[A]=-> P[AnT¥(4)] " PlA]A.
n
k=0
Thus P[A] € {0, 1}; hence Z is trivial and therefore t is ergodic. O

We consider a strengthening of (20.7).

Definition 20.24 A measure-preserving dynamical system (£2, .4, P, 7) is called
mixing if

lim P[AN7™"(B)]=P[AIP[B] forall A,B €A (20.8)

Remark 20.25 Sometimes the mixing property of (20.8) is called strongly mixing,
in contrast with a weakly mixing system (£2, A, P, 7), for which we require only

. 1 n—1 y
lim - §|P[A Nt~ (B)] —P[AIP[B]| =0 forall A, B € A.

“Strongly mixing” implies “weakly mixing” (see Exercise 20.5.1). On the other
hand, there exist weakly mixing systems that are not strongly mixing (see [81]). ¢

Example 20.26 Let I = Ng or I =7, and let (X;),e; be an i.i.d. sequence with
values in the measurable space (E, £). Hence t is the shift on the product space
Q2 =ElP=Py,)® . Let A, B € E®!. For every ¢ > 0, there exist events A®
and B¢ that depend on only finitely many coordinates and such that P[AAA?] < ¢
and P[BAB?] < ¢. Clearly, P[t7"(AAA?)] < ¢ and P[t7"(BAB?)] < ¢ for ev-
ery n € Z. For sufficiently large |n|, the sets A® and t7"(B®) depend on different
coordinates and are thus independent. This implies

limsup|P[A N 7~"(B)] — P[AIP[B]|
|n]—o00

<limsup|P[A® Nt~"(B?)] — P[A®]P[B®]| + 4¢ = 4e.

[n|]—o00
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Hence 7 is mixing. Letting A = B € Z, we obtain the 0—1 law for invariant events:
P[A] € {0, 1}. O

Remark 20.27 Clearly, (20.8) implies (20.7) and hence “mixing” implies “ergodic”.
The converse implication is false. O

Example 20.28 Let 2 =[0,1), A= B([0, 1)) and let P = A be the Lebesgue mea-
sure on ([0, 1), B([0, 1))). For r € [0, 1), define 7, : 2 — £2 by

,(x)=x+r—|x+r]=x4r (mod1).

If r is irrational, then 7, is ergodic (Example 20.9). However, 7, is not mixing:
Since r is irrational, there exists a sequence k, 1 co such that

13
th (0) e (Z’ Z) forn € N.
Hence, for A =[O0, %], we have AN r,_k” (A) = . Therefore,

1,i1rgiong[A Nt "(A)]=04# 11—6 =P[A]>. 0

Theorem 20.29 Let X be an irreducible, positive recurrent Markov chain on the
countable space E and let 7t be its invariant distribution. Let Pr =" . _p 7w (x)Py.
Then:

(1) X is ergodic (on (£2, A, Py)).
(i1) X is mixing if and only if X is aperiodic.

Proof (i) This has been shown already in Example 20.17.
(i1) As X is irreducible, by Theorem 17.51, we have w({x}) > O for every x € E.
“=—=" Let X be periodic with period d > 2. If n € N is not a multiple of d, then
p"(x,x)=0. Hence, for A= B ={Xo=x},

liminfP;[Xo = x, X, = x] = liminfr ({x}) p" (x, x)
n—>oo

n—o00

=0#7({x})" =PL[Xo =x]*

Thus X is not mixing.

“«<=" Let X be aperiodic. In order to simplify the notation, we may assume
that X is the canonical process on EN0. Let A, B C £2 = EN0 be measurable. For
every € > 0, there exists an N € N and a A¢ € E0-N} guch that, letting A® =
A? x EINFLN+2..} e have P[AAA?] < ¢. By the Markov property, for every
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n>=N,

P.[A* Nt "(B)] =P;[(Xo. ..., Xn) € A®, (Xu, Xp41,...) € B]

Z Ex[1ae Lixy=v)1x, =y} (Xn, Xnt1,...) € B]
x,yeE

> Exllasdixy=n1p" " (x, y)Py[BI.
x,yeE

By Theorem 18.13, we have p" N (x, y) = w({y}) for all x, y € E. (For peri-
odic X, this is false.) Dominated convergence thus yields

nh%n;oP [Asﬂ‘f_n(B) Z Err[]lA‘g]l{XN—x}]ﬂ({y}) y[B

x,yeE
=P, [A°]P,[B].
Since |P,[A°NT7"(B)] —P[AN T "(B)]| < ¢, the statement follows by letting
e— 0. O

Exercise 20.5.1 Show that “strongly mixing” implies “weakly mixing”, which in
turn implies “ergodic”. Give an example of a measure-preserving dynamical system
that is ergodic but not weakly mixing.

20.6 Entropy

The entropy H (P) of a probability distribution P (see Definition 5.25) measures the
amount of randomness in this distribution. In fact, the entropy of a delta distribution
is zero and for a distribution on n points, the maximal entropy is achieved by the
uniform distribution and equals log(n) (see Exercise 5.3.3). It is natural to use the
entropy in order to quantify also the randomness of a dynamical system.

First we consider the situation of a simple shift: Let 2 = ENo_ where E is a finite
set equipped with the product o -algebra A = (2£)®Yo_ Let 7 be the shift on £2 and
let P be an invariant probability measure. For n € N, denote by P, the projection of
Pon E" = E0-n—1}: that is,

Pu({(eo, ... en-1)}) =P[feo} x ... x {en_1} x EmH1-1].
Denote by #,, the entropy of P,. By Exercise 5.3.4, the entropy is subadditive:
hpmin <hm+h, form,neN.

Hence the following limit exists (see Exercise 20.6.2)

1
h:=hP,7):= 11m h,,_mf hn

neNn
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Definition 20.30 (Entropy of the simple shift) & (P, t) is called the entropy of the
dynamical system (£2, A, P, 7).

Example 20.31 Assume that P is a product measure with marginals 7 on E. Then

h=H(r)=— Zn({e}) log(n ({e})).

eckE <>

Example 20.32 (Markov chain) Let (X,),en, be a Markov chain on E with transi-
tion matrix P and stationary distribution 7. Let (£2, A, P, t) be the corresponding
dynamical system. For x = (xq,...,x,—1) and 0 <k <n — 1, let

p(k, x) =7 ({xx}) P (ks Xkt1) - - P(Xn—2, Xn—1).

Then the entropy of P, is (using stationarity of 7 in the third line)

H(P)=— Y p0,x)log(p(,x)

X seees Xp—1€E

n—2
=— Z P(O,X)[log(ﬂ({m}))+Zlog(P(Xk,Xk+1))}

XQ0seesXp—1EE k=0
n—2
=H@m - Y pkx)log(Px, xk+1)
k=0 Xk, s Xp—1
=H(m)—(n—1) Y m(lxo}) P(xo.x1)log(P(xo.x1)).

x0,X1€E
We infer that the entropy of the dynamical system is

hP,t)=— Z n({x})P(x, y) log(P(x, y)). (20.9)

x,yeE <>

Example 20.33 (Integer rotation) Consider the rotation of Example 20.8. Let n €
N\ {1}, E =Z/(n) and let P be the uniform distribution on £2. Let r € {1,...,n}
and

T:2—> 2, xt>x-+r (modn).
Clearly, 7™ i the identity map, hence h,, = hy, = ... and thus h(P, t) = 0. O
We now come to the situation of the general dynamical system. Let P be a finite
measurable partition of £2; that is, P = {Ay, ..., Ak} for certain pairwise disjoint

non-empty sets A, ..., Ay € A w1th 2 =A1U...UAg. Denote by P, the partition
that is generated by the sets ﬂl -0 r_l(Ai,), i1,...,ip €{l,..., k}. We define

ha(P,T;P)=— Z P[A]log(P[A]).
AeP,
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Similarly as in the simple shift case, we obtain the subadditivity of (%,) and thus
the existence of

1 1
hP,t;P):= lim —h,P, t;P)=inf —h, P, 7;P).
n—oon neNn

Definition 20.34 (Kolmogorov—Sinai entropy) The entropy of a (general) measure-
preserving dynamical system (£2, A, P, 7) is

h(P,7) =suph(P, 1;P),
P

where the supremum is taken over all finite measurable partitions of £2.

Theorem 20.35 (Kolmogorov—Sinai) Let P be a generator of A; that is A =
U(UneNO Tt "(P)). Then

h®P, ) =h(@P, 1;P).

Proof See, e.g., [88, Theorem 3.2.18], [167, Theorem 4.17] or [155]. O

The Kolmogorov—Sinai theorem shows that the entropy that was introduced in
Definition 20.30 for simple shifts coincides with the entropy of Definition 20.34;
simply take P = {{e} x EN,e € E} which generates the product o-algebra on
2 =EN,

Example 20.36 (Rotation) We come back to the rotation of Example 20.9. Let
2 =10,1), A= B(2), P =) the Lebesgue measure, r € (0,1) and t,(x) =
x +r (mod 1).

First assume that r is rational. Let P be an arbitrary finite measurable parti-
tion of 2. Choose n € N such that rn € Ng. As in Example 20.33 we obtain
h, (P, t; P) = hgy (P, 7,5 P) for all k € N, hence h(P, t,, P) = 0. Concluding, we
get h(P,7,) =0.

Now assume that r is irrational. Choose the partition P = {[0, 1/2), [1/2, 1)}.
As r is irrational, it is easy to see that A is generated by UneNo 7,7 (P). Hence
h®P, 1) = h(P, 1., P). In order to compute the latter quantity, we first determine
the cardinality #P,. To this end, consider the map

#n 0, 1) — {0, 1}"
x> (T, n @), Iy, (@), ... 1[1/2,1)(1;1_1()6)))-

Clearly, we have #¢,([0,1)) = #P,. As x € [0,1) increases, each coordinate
1[1/2,1)(@/‘()6)), k=1,...,n — 1, changes its value exactly twice. Only 1;,2 1)(x)
changes the value exactly once. Summing up, we get #¢,, ([0, 1)) < 2n. The maximal
entropy of a probability measure on N points is achieved by the uniform distribution
and is log(N). Consequently, &, (P, t,; P) <log(2n). We conclude that

h(P,1,)=hP,1;P)=0. O
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Exercise 20.6.1 Let £2 =[0,1) and 7 : x — 2x (mod 1). Let P be the Lebesgue
measure on §2. Determine (P, 7).

Exercise 20.6.2 Let (a,),eN be a sequence on nonnegative numbers. The sequence
is called subadditive, if a4+, < a,, + a, for all m,n € N. Show that the limit
lim,;,_, 5, a;, /1 exists and that

1 1

lim —a, = inf —a,.
n—o00 n neN n



Chapter 21
Brownian Motion

In Example 14.45, we constructed a (canonical) process (X;):c[0,00) With indepen-
dent stationary normally distributed increments. For example, such a process can
be used to describe the motion of a particle immersed in water or the change of
prices in the stock market. We are now interested in properties of this process X
that cannot be described in terms of finite-dimensional distributions but reflect the
whole path t — X;. For example, we want to compute the distribution of the func-
tional F(X) := sup,po ) X:. The first problem that has to be resolved is to show
that F(X) is a random variable.

In this chapter, we investigate continuity properties of paths of stochastic pro-
cesses and show how they ensure measurability of some path functionals. Then we
construct a version of X that has continuous paths, the so-called Wiener process or
Brownian motion. Without exaggeration, it can be stated that Brownian motion is
the central object of probability theory.

For further reading, we recommend, e.g., [86, 118, 144, 151].

21.1 Continuous Versions

A priori the paths of a canonical process are of course not continuous since every
map [0, co) — R is possible. Hence, it will be important to find out which paths are
P-almost surely negligible.

Definition 21.1 Let X and Y be stochastic processes on (£2, A, P) with time set /
and state space E. X and Y are called

(i) modifications or versions of each other if, for any ¢ € I, we have
X;=Y; P-almost surely,

(i) indistinguishable if there exists an N € A with P[N] = 0 such that
{(X: #Y;}C N foralltel.

A. Klenke, Probability Theory, Universitext, DOI 10.1007/978-1-4471-5361-0_21, 457
© Springer-Verlag London 2014
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Clearly, indistinguishable processes are modifications of each other. Under cer-
tain assumptions on the continuity of the paths, however, the two notions coincide.

Definition 21.2 Let (E,d) and (E’,d’) be metric spaces and y € (0, 1]. A map
¢ : E — E'is called Holder-continuous of order y (briefly, Holder-y -continuous)
at the point » € E if there exist € > 0 and C < oo such that, for any s € E with
d(s,r) < e, we have

d'(p(r), p(s)) < Cd(r,s)". 21.1)

¢ is called locally Holder-continuous of order y if, for every ¢ € E, there exist ¢ > 0
and C = C(t, ¢) > 0 such that, for all s, € E with d(s,t) < e and d(r,t) < ¢, the
inequality (21.1) holds. Finally, ¢ is called Holder-continuous of order y if there
exists a C such that (21.1) holds for all s, 7 € E.

In the case y = 1, Holder continuity is Lipschitz continuity (see Definition 13.8).
Furthermore, for E =R and y > 1, every locally Holder-y-continuous function is
constant. Evidently, a locally Holder-y -continuous map is Holder-y -continuous at
every point. On the other hand, for a function ¢ that is Holder-y -continuous at a
given point ¢, there need not exist an open neighborhood in which ¢ is continuous.
In particular, ¢ need not be locally Holder-y -continuous.

We collect some simple properties of Holder-continuous functions.

Lemma 21.3 Let I C R and let f : I — R be locally Holder-continuous of order
y € (0, 1]. Then the following statements hold.

(1) f is locally Holder-continuous of order y' for every y' € (0, y).
(1) If I is compact, then f is Holder-continuous.
(iii) Let I be a bounded interval of length T > 0. Assume that there exists an € > (
and an C(g) < oo such that, for all s,t € I with |t — s| < e, we have

|f() = f()| =C@)t—s]”.
Then f is Holder-continuous of order y with constant C := C(g)[T /] 77 .
Proof (i) This is obvious since |t — s|¥ < |t — s|V/ forall s, € I with |t —s| < 1.

(@i)Fortelande > 0,letUc(t) :={s el :|s—t| <e}. Forevery t € I, choose
g(t) > 0 and C(t) < oo such that

|f(r) = f&)|=C@)-Ir—s¥ forallr,s €U :=Usq(t).

There exists a finite subcovering ' = {Uy,, ..., U, } of the covering i := {U;, t € I}
of I. Let ¢ > 0 be a Lebesgue number of the covering $I'; that is, ¢ > 0 is such that,
for every t € I, there exists a U € il such that U,(¢) C U. Define

C:=max{C(t1),...,C(ta). 2]l flloc0 ™7 }.
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Fors,t € I with |t —s| < g, thereisani € {1,...,n} with s, € U;,. By assumption,

we have | £ (1) — f(s)| < C(t)|t —s|V <C|t —s|”.Now lets, t € I with |s —t| > o.
Then

—_o\’ _
|f(t)_f(s)|§2”f”oo<|tTS|> <Clt —sl|".

Hence f is Holder-continuous of order y with constant C.
T . |t—
(iii) Let n = [+-1. For s, t € I, by assumption,
FGERIGIEDS

nsl < ¢ and thus
f<&+0—ﬁk>—f<&+0—®k_lﬂ
— n n

<CEn't—sY =Clt —s|. O

n

Definition 21.4 (Path properties) Let / C R and let X = (X;,t € I) be a stochastic
process on some probability space (§2, A, P) with values in a metric space (E, d).
Let y € (0, 1]. For every w € 2, we say that the map I — E, t — X,(w) is a path
of X.

We say that X has almost surely continuous paths, or briefly that X is a.s. con-
tinuous, if for almost all w € §2, the path ¢ — X;(w) is continuous. Similarly, we
define locally Holder-y -continuous paths and so on.

Lemma 21.5 Let X and Y be modifications of each other. Assume that one of the
following conditions holds.

(1) I is countable.
(i) I C R is a (possibly unbounded) interval and X and Y are almost surely right
continuous.

Then X and Y are indistinguishable.

Proof Define N; := {X; # Y;} for t € I and N = U,e, N;. By assumption,
P[N;] =0 for every ¢ € 1. We have to show that there exists an N € A with NCN
and P[N]=0.
(i) If I is countable, then N := N is measurable and P[N] < Z,el P[N:]=0.
(i) Now let I C R be an interval and let X and Y be almost surely right continu-
ous. Define

R := {X and Yare right continuous}

and choose an R € A with R C R and P[R] = 1. Define

~ Qni, if I is open to the right,
(@QNI)Umax!, ifl isclosed to the right,
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and N := UreINNr- By (i), we have P[ﬁ] = 0. Furthermore, for every f € I,

NnRc | ) W.nRCN.

th,rET
Hence
NcRU[JN, CRUN=:N,
tel
and thus P[N] < P[R¢] + P[N]=0. O

We come to the main theorem of this section.

Theorem 21.6 (Kolmogorov—Chentsov) Let X = (X;,t € [0,00)) be a real-
valued process. Assume for every T > 0, there are numbers o, B, C > 0 such that

E[|X; — X,|*] = Clt —s|'"*F  foralls,t €[0,T]. (21.2)

Then the following statements hold.

(1) There is a modification X = (g,,t € [0, 00)) of X whose paths are locally
Holder-continuous of every order y € (0, g)

(i) Let y € (O, g) For every ¢ > 0 and T < oo, there exists a number K < 00

that depends only on ¢, T, a, B, C, vy such that

P[IX; — X;| < K|t —s|”,5,t€[0,T]] > 1 —e. (21.3)

Proof (i) It is enough to show that, for any 7' > 0, the process X on [0, T'] has a
modification X7 that is locally Holder-continuous of any order y € (0, 8/c). For
S, T > 0, by Lemma 21.5, two such modifications X Sand X7 are indistinguishable
on [0, S A T]; hence

$25,7 = {there isat € [0, S A T] with X[ # X} }

is a null set and thus also 2 := (g 7cy $2s.7 is a null set. Therefore, defin-
ing X (w) = XHw), t >0, for w € 2\ 2, we get that Xisa locally Holder-
continuous modification of X on [0, c0).

Without loss of generality, assume 7 = 1. We show that X has a continuous
modification on [0, 1]. By Chebyshev’s inequality, for every ¢ > 0,

P[IX, — Xs| > ¢] < Ce™|t —s|'*P. (21.4)
Hence
X, 223 X, in probability. (21.5)

The idea is first to construct X on the dyadic rational numbers and then to extend
it continuously to [0, 1]. To this end, we will need (21.5). In particular, for y > 0,
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neNandke{l,...,2"}, we have
P[|Xp2n — Xopypn| = 277" < c27HFmer),
Define

Ap = Ap(y) = {max{| X — Xg_1ypnl. ke {l,...,2"}} = 277"}

and
o o
B, = U Ay, and N :=limsupA, = ﬂ B,.
m=n =00 n=1
It follows that, for every n € N,
271
P[A,] < ZP[|X,<27” — X120 = 277" < c27"Fmev),
k=1
Now fix y € (0, B/a) to obtain
o0
2—B—aym
P(B,]< ) PlAn] < CT—rp =50, (21.6)

m=n

hence P[N] = 0. Now fix w € 2 \ N and choose ny = ng(w) such that o ¢
o2 A,. Hence

n=ng
| Xp2-n (@) — Xg—1yp-n(@)| <277 forke{l,...,2"}, n=>ny. (21.7)

Define the sets of finite dyadic rationals D,, = {k27",k=0,...,2"},and let D =
Umery Dm- Any t € Dy, has a unique dyadic expansion

m
t=> bi(t)27" forsomeb;(t) €{0,1},i=0,....m.
i=0

Letm>n>ngands,t € D,,,s <t with |s —t| <27". Let u := max(D,, N[0, s]).
Then

u<s<u+2" and u<t<u+2'""
and hence b;(t —u) = b;(s —u) =0 for i < n. Define

I
t1:u+2bi(t—u)2_i forl=n—-1,...,m.

i=n
Then, we have t,,_; = u and t,, = t. Furthermore, ¢; € D; forl =n, ..., m and

4 —ti—1 <27 forl=n,...,m.
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Hence, by (21.7),

m

m 2-yn
X1 (@) — Xu(@)| <D | Xy (@) — X, (@) <Y 277 < =

I=n I=n
Analogously, we obtain | X (w) — X, (w)| <277*(1 —277)~!, and thus

—yn
1—-2-7v"

| X (@) — X (w)| <2 (21.8)
Define Co =27 (1 —277)~! < 00. Let s, € D with |s — t| < 27"0. By choos-
ing the minimal n > ng such that |t — 5| > 27", we obtain by (21.8),

| X1 () — X ()| < Colt —s|”. (21.9)
As in the proof of Lemma 21.3(iii), we infer (with K := COZ(I_V)”O)
| Xi(0) — Xs(@)| < K|t —s|” foralls,t€D. (21.10)

In other words, for dyadic rationals D, X () is (globally) Holder-y -continuous. In
particular, X is uniformly continuous on D; hence it can be extended to [0, 1]. For
t € D, define X; := X;. For t € [0, 1]\ D and {s,,n € N} C D with s, —> 1, the
sequence (X, (w))nenN is a Cauchy sequence. Hence the limit

X, (w) = lim X, () (21.11)

exists. Furthermore, the statement analogous to (21.10) holds not only for s, f € D:
| X/ (@) — X(@)| < K|t —s|” foralls,z€[0,1]. (21.12)

Hence )?Nis locally Holder-continuous of orNder y. By (21.5) and (21.11), we have
P[X,; # X;] =0 for every ¢ € [0, 1]. Hence X is a modification of X.
(ii) Let ¢ > 0 and choose n € N large enough that (see (21.6))

2—(B—ay)n

For w ¢ B, we conclude that (21.10) holds. However, this is exactly (21.3) with
T = 1. For general T, the claim follows by linear scaling. g

Remark 21.7 The statement of Theorem 21.6 remains true if X assumes values in
some Polish space (E, ¢) since in the proof we did not make use of the assumption
that the range was in R. However, if we change the time set, then the assumptions
have to be strengthened: If (X;),cga is a process with values in E, and if, for certain
o,B>0,al T > 0and some C < oo, we have
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E[o(X,, X,)*] <Cllt —sI5F foralls,r e [-T, TV, (21.13)
then for every y € (0, 8/«), there is a locally Holder-y -continuous version of X. ¢
Exercise 21.1.1 Show the claim of Remark 21.7.

Exercise 21.1.2 Let X = (X;);>0 be a real-valued process with continuous paths.
Show that, for all 0 <a < b, the map @ f ab X;(w) dt is measurable.

Exercise 21.1.3 (Optional sampling/stopping) Let F be a filtration and let (X;);>0
be an F-supermartingale with right continuous paths. Let o and t be bounded stop-
ping times with o < 7. Define ¢” :=27"[2"¢] and t" :=27"[2"].

n—oo

(i) Show that E[X,m | F,n] —> E[X.m | F,] almost surely and in L' as well as
X, =3 X, almost surely and in L'

(i1) Infer the optional sampling theorem for right continuous supermartingales by
using the analogous statement for discrete time (Theorem 10.11); thatis, X, >
E[X: | 751].

(iii) Show that if Y is adapted, integrable and right continuous, then Y is a martin-
gale if and only if E[Y;] = E[Y)] for every bounded stopping time .

(iv) Assume that X is uniformly integrable and that o < t are finite (not necessarily
bounded) stopping times. Show that X, > E[X | F,].

(v) Now let T be an arbitrary stopping time. Deduce the optional stopping theorem
for right continuous supermartingales: (X;a;);>0 1S a right continuous super-
martingale.

Exercise 21.1.4 Let X = (X,);>0 be a stochastic process on (§2, F, P) with values
in the Polish space E and with right continuous paths. Show the following.

(i) The map (w, t) — X,(w) is measurable with respect to F Q@ B([0, c0)) — B(E).
(ii) If in addition X is adapted to the filtration F, then for any ¢ > 0, the map
2 x[0,t] > E, (w,s) — Xs(w) is F; ® B([0, t]) — B(E) measurable.
(iii) If t is an F-stopping time and X is adapted, then X, is an JFr-measurable
random variable.

21.2 Construction and Path Properties

Definition 21.8 A real-valued stochastic process B = (B;,t € [0, 00)) is called a
Brownian motion if

(i) By=0,

(i1) B has independent, stationary increments (compare Definition 9.7),
(iii) B, ~ Np, forall ¢ > 0, and
(iv) t+— B, is P-almost surely continuous.
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Fig. 21.1 Computer simulation of a Brownian motion

See Fig. 21.1 for a computer simulation of a Brownian motion.

Theorem 21.9 There exists a probability space (2, A, P) and a Brownian motion
B on (82, A, P). The paths of B are a.s. locally Holder-y -continuous for every
1

Proof As in Example 14.45 or Corollary 16.10 there exists a stochastic process
X that fulfills (i), (ii) and (iii). Evidently, X; — X 2 Vit —5X1 ~ No—s for all
t > s > 0. Thus, for every n € N, writing C,, := E[X%”] = !

2"n!

E[(X; — X)*"| =E[(Vt —sXD)™] = Cult —s/".

< 00, we have

Now let n > 2 and y € (0, %). Theorem 21.6 yields the existence of a version B
of X that has Holder-y -continuous paths. Since all continuous versions of a process
are equivalent, B is locally Holder-y -continuous for every y € (0, %) and every

n > 2 and hence for every y € (0, %). O

Recall that a stochastic process (X; )¢y is called a Gaussian process if, for every
neNandforallt,...,t, €, we have that
(X#y,...,Xy,) is n-dimensional normally distributed.
X is called centered if E[X;] = O for every t € I. The map
I'(s,t):=Cov[Xy, X;] fors,tel

is called the covariance function of X.



21.2  Construction and Path Properties 465

Remark 21.10 The covariance function determines the finite-dimensional distribu-
tions of a centered Gaussian process since a multidimensional normal distribution
is determined by the vector of expectations and by the covariance matrix. O

Theorem 21.11 Let X = (X;):e[0,00) be a stochastic process. Then the following
are equivalent:

(i) X is a Brownian motion.
(i) X is a continuous centered Gaussian process with Cov[ X, X;] = s At for all
s, t>0.

Proof By Remark 21.10, X is characterized by (ii). Hence, it is enough to show
that, for Brownian motion X, we have Cov[X;, X;] = min(s, ¢). This is indeed true
since for t > s, the random variables X and X, — X are independent; hence

Cov[X,, X;]=Cov[X,, X; — X;] + Cov[ X, X;] = Var[X ] =s. O

Corollary 21.12 (Scaling property of Brownian motion) If B is a Brownian motion
and if K # 0, then (K ' Bg2,)1>0 is also a Brownian motion.

Example 21.13 Another example of a continuous Gaussian process is the so-
called Brownian bridge X = (X;):¢[0,1] that is defined by the covariance function
I'(s,t) =s At — st. We construct the Brownian bridge as follows.

Let B = (B;,t €0, 1]) be a Brownian motion and let

X; = Bl —IB]

Clearly, X is a centered Gaussian process with continuous paths. We compute the
covariance function I" of X,

I'(s,t) =Cov[X;, X;]=Cov[B; — sBi1, B; — tBi]
= Cov|[By, B;] — sCov[By, B;] — tCov|[ By, B1] + stCov[B;, Bi]
=min(s, t) — st — st + st = min(s, t) — st. O

Theorem 21.14 Let (B;):>0 be a Brownian motion and

tByy, ift>0,

Xt = .
0, ift =0.
Then X is a Brownian motion.

Proof Clearly, X is a Gaussian process. For s, ¢ > 0, we have

Cov[Xy, X;1=ts - Cov[By s, Bi;:] =tsmin(s~', ¢~ ') = min(s, 1).
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Clearly, t — X; is continuous at every point ¢ > 0. To show continuity at ¢t = 0,
consider

1
limsup X; = limsup — B,
t0 —>0o0

1 1
<limsup — B, + limsup — sup{B, — By, 1 € [n,n + 1]}.

n—oo N n—oo N

By the strong law of large numbers, we have lim,,_, o %B,, =0 a.s. Using a gener-
alization of the reflection principle (Theorem 17.15; see also Theorem 21.19), for
x > 0, we have (using the abbreviation B, ) := {B; : t € [a, b]})

P[sup B[, n+1] — By > x]1 =P[sup Bjp,1] > x] =2P[B; > x]

—u?/2 du < le—x2/2.

2 o
= — e
2 /x X
In particular, Z?f:l P[sup Bin,n+1] — Bn > n°] < oo for every € > 0. By the Borel-

Cantelli lemma (Theorem 2.7), we infer

1
limsup — sup{B; — By,t € [n,n+1]} =0 almost surely.

n—oo N

Hence X is also continuous at 0. O

Theorem 21.15 (Blumenthal’s 0-1 law, see [18]) Let B be a Brownian motion
and let F = (F;);>0 = 0 (B) be the filtration generated by B. Further, let .7-'8' =
(=0 Fi- Then .7:6“ is a P-trivial o -algebra.

Proof Define Y" = (By-n1; — By-n)se0,2-7]> » € N. Then (¥Y"),en is an indepen-
dent family of random variables (with values in C([0,27"])). By Kolmogorov’s 0—1
law (Theorem 2.37), the tail o -algebra T = ﬂneN o (Y™, m > n) is P-trivial. On the
other hand, o (Y, m > n) = F,-a+1; hence

Fo=F=()Frw=T

>0 neN

is P-trivial. g
Example 21.16 Let B be a Brownian motion. For every K > 0, we have

P[inf{t > 0: B, > K</1} =0] = 1. (21.14)
To check this, define A, := {inf{r > 0: B, > K/t} <s} and

A:={inf(t >0: B, > K/1} =0} =) A, e Fy.

s>0
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Then P[A] € {0, 1}. By the scaling property of Brownian motion,

P[A] = in;f)P[As] >P[B1>K]>0
5>
and thus P[A] = 1. O

The preceding example shows that, for every ¢ > 0, almost surely B is not
Hélder—%—continuous at t. Note that the order of quantifiers is subtle. We have not
shown that almost surely B was not Hélder—%—continuous atany ¢ > 0 (however, see
Remark 22.4). However, it is not too hard to show the following theorem, which for
the case y = 1 is due to Paley, Wiener and Zygmund [126]. The proof presented
here goes back to an idea of Dvoretzky, Erdos and Kakutani (see [40]).

Theorem 21.17 (Paley—Wiener—Zygmund (1933)) For every y > %, almost surely
the paths of Brownian motion (B;);>o are not Holder-continuous of order y at any
point. In particular, the paths are almost surely nowhere differentiable.

Proof Lety > % It suffices to consider B = (B;)¢[0,1]- Denote by H,, ; the set of
maps [0, 1] — R that are Holder-y -continuous at ¢ and define H,, := U,E[O,l] Hy, ;.
The aim is to show that almost surely B ¢ H,, .

If t €[0,1) and w € Hy,;, then for every § > 0 there exists a ¢ = ¢(§, w) with
the property |wy — w;| < c|s — t|¥ for every s € [0, 1] with |s — 7] < §. Choose a
k € Nwith k > 2)/2—_1 Then, forn €e Nwithn >ng:=[(k+1)/8],i = [tn]+ 1 and
1e€{0,...,k—1}, we get

[W(i+i+1)/n — Wi+hy/nl S N WEti+1)/m — Wil + W1 /n — Wy

<2ck+1D¥n77Y.
Hence, for N > 2c(k + 1)7, we have w € Ay i, where

k-1
AN = m{w W(iti41)/n — Withyml < Nn77}
=0

Define Ay, =Jj_; An,ni, Ay =liminf, oo Ay, and A = J3_; An. Clearly,
H, C A. Owing to the independence of increments and since the density of the
standard normal distribution is bounded by 1, we get

P[B € Ay i1 =P[|Bijul < Nn 7] =P[|Bi| < Nn 7 +1/2]

< Nkpk(=r+1/2),
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By the choice of k and since the increments of B are stationary, we have

P[B € Ay]= lim P[ﬂ AN,,,} <limsupP[Ay ] <11msupZP[AN,”]

n—00 n—oo0 ST

I+k(=y+1/2) _ ().

m>=n

<limsupnP[B € Ay 5.1] < NK limsupn
n—oo n—oo

Thus P[B € A] = 0. Therefore, we almost surely have B ¢ H,, . O

Exercise 21.2.1 Let B be a Brownian motion and let A be the Lebesgue measure
on [0, 00).

(i) Compute the expectation and variance of fol Bg ds. (For the measurability of
the integral see Exercise 21.1.2.)
(i1) Show that almost surely A({z : B =0}) =0.
(iii) Compute the expectation and variance of

1 1 2
/ (BI — f BS ds) dt.
0 0

Exercise 21.2.2 Let B be a Brownian motion. Show that (Bl2 — t)s>0 1S a martin-
gale.

Exercise 21.2.3 Let B be a Brownian motion and o > 0. Show that the process
(exp(o By — %zt))tzo is a martingale.

Exercise 21.2.4 Let B be a Brownian motion, a < 0 < b. Define the stopping time
1, p =inf{t > 0: B; € {a, b}}.

Show that almost surely 7, < 0o and that P[B,, = b] = —b“Ta. Furthermore,
show (using Exercise 21.2.2) that E[7, ;] = —ab.

Exercise 21.2.5 Let B be a Brownian motion, » > 0 and 7, = inf{t > 0: B, = b}.
Show the following.

(i) E[e™*™]= eV for i > 0.
Hint: Use Exercise 21.2.3 and the optional sampling theorem.
(ii) p hasa 5 -stable distribution with Lévy measure

v(dx) = (b/(V2m))x 73 Lx= gy dax.

(iii) The distribution of 7, has density fp(x) = \/LTT e=b?/(2x) x=3/2,

Exercise 21.2.6 Let B be a Brownian motion, a € R, » > 0 and 7 = inf{t > 0 :
B; = at + b}. For A > 0, show that
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E[e "] = exp(—ba — bv/a? + 24).

Conclude that P[t < ool =1 A e 2ba,

21.3 Strong Markov Property

Denote by P, the probability measure such that B = (B;);>0 is a Brownian motion
started at x € R. To put it differently, under Py, the process (B; — x);>0 is a standard
Brownian motion. While the (simple) Markov property of (B, (P,),er) is evident,
it takes some work to check the strong Markov property.

Theorem 21.18 (Strong Markov property) Brownian motion B with distributions
(Py)xer has the strong Markov property.

Proof Let F = o(B) be the filtration generated by B and let t < oo be an F-
stopping time. We have to show that, for every bounded measurable F : R[%-%) —
R, we have:

E([F((Bi+)i=0) | F:] =Eg,[F(B)]. (21.15)

It is enough to consider continuous bounded functions F that depend on only
finitely many coordinates ?1,...,¢y since these functions determine the distri-
bution of (B;+¢):>0. Hence, let f : RY — R be continuous and bounded and
F(B) = f(By, ..., B:y). Manifestly, the map x = E,[F(B)] =Eo[f(B;, +x, ...,
By, 4 x)] is continuous and bounded. Now let 7" :=27"|2"7t 4 1] for n € N. Then

" is a stopping time and t” | t; hence By» "Z%° B, almost surely. Now every

T
Markov process with countable time set (here all positive rational linear combina-
tions of 1,¢1,...,ty) is a strong Markov process (by Theorem 17.14); hence we
have

Ex[F((Br"th)IZO) | ]:t”] =E, [f(Bf"+zl PRRE) Br"+tN) | ]:1:”]
= EBrn [f(Btls B BIN)]

n—oo

— Eg [f(By...., B,N)] =Ep [F(B)]. (21.16)

As B is right continuous, we have F((Bfn+,),>o) F((B,+,),>o) almost
surely and in L' and thus

E[|E[F((Ber11)i=0) | Fen | — Ex[F((Br)i=0) | Fer ]

]

< E[|F((Beri)iz0) = F((Bris)i=0)|] =3 0. 21.17)
Furthermore,
Fon § Fey = N Fo D Fr.

o0 >7 is a stopping time
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By (21.16) and (21.17), using the convergence theorem for backwards martingales
(Theorem 12.14), we get that in the sense of L!-limits

Ep [F(B)] = lim Ec[F((Berii)iz0) | Fer]

= nlggo E, [F((Bt-i-t)tzO) | ]:t”] = Ex[F((Bt-H)tzO) | -7:'[+]~

The left-hand side is F;-measurable. The tower property of conditional expectation
thus yields (21.15). O

Using the strong Markov property, we show the reflection principle for Brownian
motion.

Theorem 21.19 (Reflection principle for Brownian motion) For every a > 0 and
T >0,

P[sup{B,:1€[0,T1} > a] =2P[Br > a] < %é /2T

Proof By the scaling property of Brownian motion (Corollary 21.12), without loss
of generality, we may assume 7 = 1. Let t :=inf{t > 0: B; > a} A 1. By symmetry,
we have P, [Bi_; > a] = % if T < 1; hence

P[B; >a]l=P[By>a |17 <1]P[t < 1]

1
=P,[Bi_: >alP[t < 1] = EP[‘L’ < 1].
For the inequality compute

P[B| > a] = \/_/ e 12 dx
11

2 2
<—- xe X Pdx = ———¢79/2,
_\/ZJTa-/a V2ma O

As an application of the reflection principle we derive Paul Lévy’s arcsine law
[107, p. 216] for the last time a Brownian motion visits zero.

Theorem 21.20 (Lévy’s arcsine law) Let T > 0 and {7 :=sup{t < T : B, = 0}.
Then, fort €0, T],

Pi¢r <t]= %arcsin(\/t/T).
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Proof Without loss of generality, assume 7 =1 and ¢ = ¢;. Let B be a further,
independent Brownian motion. By the reflection principle,

P[{ <1]=P[By#0foralls €[z, 1]]

o
=/ P[Bs #0foralls e[r, 1] ’ B; =a]P[Bt eda]

—00

o
= / Pyi[B; > O forall s € [0, 1 — ¢]]P[B; € da]

/ |Bl l|<|a|] [B: € da]
=P[|Bi_| < |B].

If X and Y are independent and N ;-distributed, then

(B:, Bi—y) 2 (V1X,J/1—=1Y).

Hence
P[¢ <t]1=P[V1—1|Y| <= V1|X]]

=P[r> <t(X*+7?)]
1

)
o dxf dye™™ w2 L2 iz y2))-

Passing to polar coordinates, we obtain

1 [ 2y [ 2 .
Pl; <t]= E/o rdre™""/ /0 Ao LGy < = ;arcsm(\/E). O

Exercise 21.3.1 (Hard problem!) Let P, be the distribution of Brownian motion
started at x € R. Let a > 0 and 7 = inf{r > 0 : B; € {0, a}}. Use the reflection prin-
ciple to show that, for every x € (0, a),

P.r>T]= Y (=1)'P.[Br € [na, (n+ 1)a]]. (21.18)

n=—oo

If f is the density of a probability distribution on R with characteristic function ¢
and sup, g x2 f(x) < o0, then the Poisson summation formula holds,

oo oo

Z f(s+n)= Z e(k)e¥™s  foralls € R. (21.19)

n=—00 k=—00
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Use (21.18) and (21.19) (compare also (21.37)) to conclude that
=1

4
Pt >T]=— —exp(

2
T = 2k +1 2a a

2.2
_(2k+1) b4 T)Sin((Zk—i-l)nx). (21.20)

21.4 Supplement: Feller Processes

In many situations, a continuous version of a process would be too much to expect,
for instance, the Poisson process is generically discontinuous. However, often there
is a version with right continuous paths that have left-sided limits. At this point,
we only briefly make plausible the existence theorem for such regular versions of
processes in the case of so-called Feller semigroups.

Definition 21.21 Let E be a Polish space. A map f : [0, c0) — E is called RCLL
(right continuous with left limits) or cadlag (continue a droit, limites a gauche) if
f(@) = f@t+) :=limg, f(s) for every t > 0 and if, for every ¢ > 0, the left-sided
limit f(¢z—) :=limy4, f(s) exists and is finite.

Definition 21.22 A filtration F = (F;);>0 is called right continuous if F = F+,
where F;" =, , Fs. We say that a filtration F satisfies the usual conditions (from
the French conditions habituelles) if F is right continuous and if Fg is P-complete.

Remark 21.23 If F is an arbitrary filtration and ;™" is the completion of F;", then
F+* satisfies the usual conditions. O

Theorem 21.24 (Doob’s regularization) Let IF be a filtration that satisfies the usual
conditions and let X = (X;);>0 be an IF-supermaLtingale such that t — E[X,] is
right continuous. Then there exists a modification X of X with RCLL paths.

Proof Fora,be Q%,a <band I C [0, c0), let U?’b be the number of upcrossings
of (X¢):es over [a, b]. By the upcrossing inequality (Lemma 11.3), for every N > 0

and every finite set I C [0, N], we have E[U?’b] < (E[|Xn|]+ la])/(b — a). Define
ULt = U&’fﬂ o.n)- Then E[US"] < (E[IXy ) + lal)/(b — a). By Exercise 11.1.1,
for A > 0, we have

AP[sup{[X/|:t € QT N[0, N]} > A]
= Asup{P[sup{|X;|:t € I} > 1]: 1 Q" N[0, N] finite}
< 12E[|Xo|] + 9E[|X v |].
Consider the event

A:=m< m {Ul‘f,’b<oo}ﬂ{sup{|Xt|:te(@+ﬂ[0,N]}<oo}>.

NeN © apeQt
0<a<b<N
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We have P[A] = 1; hence A € F; for every t > 0 since [ satisfies the usual condi-
tions. For w € A, for every ¢ > 0, the limit

X(w) = lim X,(w)

Qtoslt,s>t

exists and is RCLL. For w € A€, we define )?, (w) = 0. As F satisfies the usual
conditions, X is F-adapted. As X is a supermartingale, for every N, the family
(Xs)s<n is uniformly integrable. Hence, by assumption,

E[X,]= lim E[X;]=E[X,].

Qtaslt,s>t

However, since X is a supermartingale, for every s > ¢, we have

+ ~ ~
X, =EX, | F1Y 2 RIR, | F1=8, inLl.
Therefore, X; = X ¢ almost surely and hence X is a modification of X. O

Corollary 21.25 Let (v;);>0 be a continuous convolution semigroup and assume
that f |x|v1(dx) < 00. Then there exists a Markov process X with RCLL paths and
with independent stationary increments Px, _x = v;_g forall t > s.

Let E be a locally compact Polish space and let Co(E) be the set of (bounded)
continuous functions that vanish at infinity. If « is a stochastic kernel from E to E
and if f is measurable and bounded, then we define kf (x) = [k (x, dy) f(y).

Definition 21.26 A Markov semigroup (k;);>0 on E is called a Feller semigroup if

fx)= lir%/clf(x) forallx € E, f € Co(E)
t—
and «; f € Co(E) for every f € Co(E).

Let X be a Markov process with transition kernels (k;);>0 and with respect to a
filtration IF that satisfies the usual conditions.
Let g € Co(E), g > 0. Let h = [~ e 'k, g dt. Then

o0 o0
e Sksh = e_S/ e kg g dt = / e 'k;gdt <h.
0 s

Hence X8 := (e 'h(X,)),>0 is an F-supermartingale.

The Feller property and Theorem 21.24 ensure the existence of an RCLL ver-
sion X¢ of X8. It takes a little more work to show that there exists a countable set
G C Cyp(E) and a process X that is uniquely determined by Xs, g € G, and is an
RCLL version of X. See, e.g., [146, Chapter IIL.7ff].
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Let us take a moment’s thought and look back at how we derived the strong
Markov property of Brownian motion in Section 21.3. Indeed, there we needed only
right continuity of the paths and a certain continuity of the distribution as a func-
tion of the starting point, which is exactly the Feller property. With a little more
work, one can show the following theorem (see, e.g., [ 146, Chapter II1.8ff] or [144,
Chapter III, Theorem 2.7]).

Theorem 21.27 Let (k;);>0 be a Feller semigroup on the locally compact Polish
space E. Then there exists a strong Markov process (X;):>0 with RCLL paths and
transition kernels (k;)s>0.

Such a process X is called a Feller process.

Exercise 21.4.1 (Doob’s inequality) Let X = (X;);>( be a martingale or a nonneg-
ative submartingale with RCLL paths. For T > 0, let | X|7 = sup, ¢ 771 X:|. Show
Doob’s inequalities:

(i) Forany p > 1 and A > 0, we have )J’P[|X|’; > A <E[|X7|"].
(i) Forany p > 1, we have E[|X7|”] <E[(IX|})"] < (%)”E[IXTIPI

Construct a counterexample that shows that right continuity of the paths of X is
essential.

Exercise 21.4.2 (Martingale convergence theorems) Let X be a stochastic pro-
cess with RCLL paths. Use Doob’s inequality (Exercise 21.4.1) to show that the
martingale convergence theorems (a.s. convergence (Theorem 11.4), a.s. and L'-
convergence for uniformly integrable martingales (Theorem 11.7) and the LP?-
martingale convergence theorem (Theorem 11.10)) hold for X.

Exercise 21.4.3 Let p > 1 and let X 1 x2 x3, ... be LP-integrable martingales.

Assume that, for every ¢ > 0, there exists an X ¢+ € LP(P) such that X7} X ¢
in LP.

(i) Show that ()~( ¢)r>0 1S a martingale.

(i) Use Doob’s inequality to show the following. If p > 1 and if X! X2, ... areas.
continuous, then there is a continuous martingale X with the following proper-
ties: X is a modification of X and X7 e X, in L? for every t > 0.

Exercise 21.4.4 Let X be a stochastic process with values in a Polish space E and
with RCLL paths. Let F = ¢ (X) be the filtration generated by X and define F+ :=
(]-",J“),Zo by Fr= ﬂDt Fs.Let U C E be open and let C C E be closed. For every
set A C E, define 74 :=inf{t > 0: X, € A}. Show the following.
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(i) tc is an F-stopping time (and an FT-stopping time).
(ii) Ty is an F*-stopping time but in general (even for continuous X) is not an
F-stopping time.

Exercise 21.4.5 Show the statement of Remark 21.23. Conclude that if [ is a fil-
tration and if B is a Brownian motion that is an F-martingale, then B is also an
F**-martingale.

21.5 Construction via L2-Approximation

We give an alternative construction of Brownian motion by functional analytic
means as an L2-approximation. For simplicity, as the time interval we take [0, 1]
instead of [0, c0).

Let H = L?([0, 1]) be the Hilbert space of square integrable (with respect to
Lebesgue measure 1) functions [0, 1] — R with inner product

(fog) = / F)g (M)
[0,1]

and with norm || f|| = +/(f, f) (compare Section 7.3). Two functions f, g € H are
considered equal if f = g A-a.e. Let (b,),enN be an orthonormal basis (ONB) of H;
that is, (b, by) = Lm=n) and

n

£ =Y (. bumdbm

m=1

lim
n—oo

=0 forall feH.

In particular, for every f € H, Parseval’s equation

L2 =) (fobm)? (21.21)
m=1
holds and for f,g € H
(f,8)=) (fsbm)(g: bm)- (21.22)

m=1

Now consider an i.i.d. sequence (&,),en of No,-random variables on some proba-
bility space (£2, A, P). Forn € N and ¢ € [0, 1], define

X; = [ 1[0,,](3)(2 smbm<s)>x(ds) = &n(Lj0.). bm).
m=1 m=1
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Clearly, for n > m,

E[(X?—X?)2]=E[< Zn: i (L0.11. bi) )( Y & b) )}

k=m+1 I=m+1
n o
= Z (Lj0,11, br)* < Z (Lj0.11, br)*.
k=m+1 k=m+1

Since Y22 (Lj0.¢1, bk)? = [ 1[0.|I> =t < 00, we have X" € L*(P) and

lim sup E[(X}" — X?)z]:O.

m— 00 n>m

Hence (X7}'),en is a Cauchy sequence in L2(P) and thus (since L2(P) is complete,
see Theorem 7.3) has an L2-limit X;. Thus, for NeNand 0 <17,...,ty <1,

N
. n_ 2|
lim E[X;(Xti Xy,) } =0.
1=
In particular, (X ;’1, .. ) = (X5 ..., Xsy) in P-probability.
Manifestly, (X7, fo- X" ) is normally distributed and centered. For s, t € [0, 1],
we have

Cov[ X}, X]] |:(Z‘§k (110,51, bk )(Z&(ﬂ[o,t]’bﬁ)}
=1

= > El&&1 (1.0, bi) (L., br)

k=1

n
=Y (10,51 be) (Lj0.1- bx)
k=1

n—>oo

—> (10,51, Ljo,r1) = min(s, 7).
Hence (X;)se[0,1] is a centered Gaussian process with

Cov[X;, X,] = min(s, 7). (21.23)

Lévy Construction of Brownian Motion

Up to continuity of paths, X is thus a Brownian motion. A continuous version of X
can be obtained via the Kolmogorov—Chentsov theorem (Theorem 21.6). However,
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-0.51 \
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~1.01 v

-1.5-

Fig. 21.2 The processes X", n =0, 1,2, 3, 10 of the Lévy construction of Brownian motion

by a clever choice of the ONB (b,,),,eN, We can construct X directly as a continuous
process. The Haar functions b, j are one such choice: Let by, =1 and for n € N
andk=1,...,2" ! let

2(n—1)/2’ if 2k2;2 <t< 21{2;] ,
by () =3 —20=D72if 22l <p < 2K
0, else.

Then (b, k) is an orthonormal system: (b, k, by.1) = L{on,k)=(n,1)}- It is easy to check
that (b, k) is a basis (exercise!). Define the Schauder functions by

Bus (1) = /O b ($)2(ds) = (L1017, bu)-
[0,7]

Let &0,1, (51.4)pen.k=1.... -1 be independent and Np, i -distributed. Let

.....

n om—1

X" = 50,130,1 + Z Z %m,kBm,ka

m=1 k=1

and define )~(, as the L?(P)-limit )~(, =L% —lim,_ o X['. See Fig. 21.2 for a com-
puter simulation of X", n =0, 1,2, 3, 10.
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Theorem 21.28 (Brownian motion, L>-approximation) There is a continuous ver-
sion X of X. X is a Brownian motion and we have

lim HX” - X ||oo =0 P-almost surely. (21.24)

n—o00

Proof By (21.24), we have X, = X, a.s. for all r € [0, 1]. As uniform limits of
continuous functions are continuous, (21.24) implies that X is continuous. Hence,
by (21.23) (and Theorem 21.11), X is a Brownian motion. Therefore, it is enough
to prove the existence of an X such that (21.24) holds.

Since (C ([0, 1]), ]| « loo) is complete, it suffices to show that P-almost surely
(X™) is a Cauchy sequence in (C ([0, 1]), || - [|oo)- Note that || B x|loo <2~ *+D/2 if
neNand B, B, =0if k #1[. Hence

| X — x| <27 P max{ (g, k), k=1,...,2" 7).

Therefore,
2n71
P[“X" _ Xﬂ—l HOO - 2—n/4] < ZP[|§n,k| > 2(7[-‘1—2)/4]
k=1
2 o0 2
__~n—1 —X /2d
N2 2<n+z)/4e *

<2 exp(—2"/2).

Evidently, > 02 | P[[| X" — X"~ !|oo > 27/4] < 00; hence, by the Borel-Cantelli
lemma,

P[IX" — X" !oc >27"/* only finitely often] = 1.

We conclude that lim,,— oo Sup,,,>, | X" — X" || c = 0 P-almost surely. O

Brownian Motion and White Noise

The construction of Brownian motion via Haar functions has the advantage that
continuity of the paths is straightforward. For some applications, however, a de-
composition in trigonometric functions is preferable. Here as the orthonormal basis
of Lz([O, 1]) we use bgp =1 and

b, (x) = \/zcos(nnx) forn € N.

Fort € [0, 1] and n € Ny, define

t
B, (1) = / by (s)A(ds);
0
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1.0

0.5

0.0t
0

Fig. 21.3 The processes X", n =0, 1,4, 64,8192 from the Fourier Construction of Brownian
motion

that is, Bo(t) =t and

2
B,(t) = :z/_n_ sin(nzt) forn eN.

Let &,, n € Ny, be independent standard normally distributed random variables.
Define Ag = &g and

2
An:—f

=—¢&, forneN.
n

Finally, let

n
X":=Y &By;
k=0
that is,

X"(t) =&t + Y _ Agsin(krt).
k=1

See Fig. 21.3 for a computer simulation of X", n =0, 1,4, 64, 8192.
As shown above, the sequence (X") converges in Lz([O, 1]) towards a process X,
which (up to continuity of paths) has all properties of Brownian motion:

X, =&t + Z n—fén sin(nrwt).

n=1
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This representation of the Brownian motions goes back to Paley and Wiener who
also show that along a suitable subsequence the series converges uniformly almost
surely and hence the limit X is indeed continuous, see [125, Theorem XLIII, p. 148].
The representation is also sometimes called Karhunen-Loeve expansion. More pre-
cisely, up to the first summand, it is the Karhunen-Loeve expansion of the Brownian
bridge (X; — tX1):¢[0,1] (see, e.g., [1, Chapter 3.3]).

Taking the formal derivative

) d >
X, = EXI =&+ «/EZE,, cos(nrmt)

n=1

we get independent identically distributed Fourier coefficients for all frequencies.
Hence, the formal object X is often referred to as white noise as opposed to colored
noise where the coefficients for the different frequencies have different distributions.

The Fourier basis is not too well suited to showing continuity of paths. For ex-
ample, the sufficient criterion of absolute summability of coefficients (A,) fails (see
Exercise 21.5.5).

Example 21.29 (Stochastic integral a la Paley—Wiener) Assume that (§,),eN is an
i.i.d. sequence of N -distributed random variables. Let (b,),en be an orthonor-
mal basis of Lz([O, 1]) such that W, :=1lim,,_, o ZZ:] & (Ljo,r, br), t €10,1],1s a
Brownian motion. For f € L2([0, 1]), define

oo
I(f) =) Eulfrbn).
n=1
By Parseval’s equation and the Bienaymé formula, we have

]

LF1I3 =D _(f. bu)? = Var[I1()] =E[I()*].
n=1
Hence
1:L%([0,1]) — L*(P), f+ I(f) isanisometry. (21.25)
We call

t
/o f&)dW:=1(flp.). t€[0,1], feL*([0.1]),

the stochastic integral of f with respect to W. In the special case of the Fourier
basis bo(x) = 1 and b, (x) = v/2cos(nmx), n € N, this construction goes back to
Paley and Wiener [125, Theorem XLV, p. 154].
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The process X; := fé f(s)dWs, t € [0, 1], is centered Gaussian with covariance
function

SNt
Cov[X,, X,]= / £ ) du.
0

In fact, it is obvious that X is centered and Gaussian (since it is a limit of the Gaus-
sian processes of partial sums) and has the given covariance function. Furthermore,
the existence of a continuous version can be obtained as for Brownian motion by em-
ploying the fourth moments of the increments, which for normal random variables
can be computed from the variances (compare Theorem 21.9). In the following we
will assume for the stochastic integral that such a continuous version is chosen.

In the special case, f = ZLI a1y, for some n € N and 0 =1 <
HH<...<tpband ap,...,a, € R, we obtain

1 n
f F&)AWs =Y ai(Wy, — W_,).
0 i=1 0

Exercise 21.5.1 Use the representation of Brownian motion (W;);¢[0,1] as a ran-
dom linear combination of the Schauder functions (B, ) to show that the Brownian
bridge Y = (Y1):ef0.1] = (Wr — tW1)seqo,1] 18 a continuous, Gaussian process with
covariance function Cov[Y;, Yi] = (s A t) — st. Further, show that

Py =1imP|W e .| W; € (—¢,8)]|.
Yelf(}[ | W1 € (—¢,8)]

Exercise 21.5.2 (Compare Example 8.32) Fix T € (0, 1). Use an orthonormal ba-
sis bo,1, (Cn k), (dn ) of suitably modified Haar functions (such that the ¢, ; have
support [0, T'] and the d,  have support [T, 1]) to show that a regular conditional
distribution of W7 given W is defined by

P(Wre-|Wi=x]=Nrx 1.

Exercise 21.5.3 Define Y := (¥;)¢[0,1] by Y1 =0 and
t
Y,=(1-— t)/ 1—s)"'dw, forrel0,1).
0

Show that Y is a Brownian bridge.
Hint: Show that Y is a continuous Gaussian process with the correct covariance
function. In particular, it has to be shown that lim;41 ¥; = 0 almost surely.

Exercise 21.5.4 Let d € N. Use a suitable orthonormal basis on [0, 1]¢ to show:

(i) There is a Gaussian process (W;),¢[o, ¢ With covariance function

d
Cov[We, Wsl = [ [ nsi).

i=1
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(i) There is a modification of W such that # — W; is almost surely continuous (see
Remark 21.7).

A process W with properties (i) and (ii) is called a Brownian sheet.

Exercise 21.5.5 Consider the coefficients (A, ),cn, of the Fourier basis of the con-
struction of Brownian motion. Show the following statements:

(i) Y, A2 < 0o almost surely.

(i) Y po|An| = oo almost surely.

(iii) Y"y_ Ak, n € N converges almost surely.

Hint: Kolmogorov’s three-series theorem (Theorem 15.50).

Exercise 21.5.6 Letz € (0, 1) and fy(x) :=1t as well as

2 si t
fa(x) = M cos(nwx) forneN, x €[0,1].
nmw

Show that Y00y f,(x) = Lo, (x) for x € (0, 1) \ {z}.

21.6 The Space C([0, o0))

Are functionals that depend on the whole path of a Brownian motion measurable?
For example, is sup{X;, ¢ € [0, 1]} measurable? For general stochastic processes,
this is false since the supremum depends on more than countably many coordinates.
However, for processes with continuous paths, this is true, as we will show in this
section in a somewhat more general framework.

We may consider Brownian motion as the canonical process on the space §2 :=
C ([0, 00)) of continuous paths.

We start by collecting some properties of the space 22 = C ([0, o0)) C RI?:%),
Define the evaluation map

X2 >R, o o), (21.26)

that is, the restriction of the canonical projection RI%* — R to £2.
For f, g € C([0,00)) and n € N, let d,(f, g) := I(f =8| gyl M1 and
,n

d(f,8) = _27"du(f. ). (21.27)

n=1

Theorem 21.30 d is a complete metric on $2 := C([0, 00)) that induces the topol-
ogy of uniform convergence on compact sets. The space (§2,d) is separable and
hence Polish.
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Proof Clearly, every d,, is a complete metric on (C ([0, n]), || « ||co). Thus, for ev-
ery Cauchy sequence (fx) in (§2,d) and every n € N, there exists a g, € §2 with

dn(fn, &n) N:go 0. Evidently, g, (x) = g (x) for every x < m A n; hence there ex-
ists a g € £2 with g(x) = g,(x) for every x < n for every n € N. Hence, clearly,

d(fn,g) Njo 0, and thus d is complete.
The set of polynomials with rational coefficients is countable and by the Weier-
straf3 theorem, it is dense in any (C ([0, n]), || - ||lco); hence it is dense in (£2,d). U

Theorem 21.31 With respect to the Borel o-algebra B(S2,d), the canonical pro-
Jjections X;, t € [0,00) are measurable. On the other hand, the X; generate
B(82,d). Hence

(B®)®™ | =0 (X, €[0,00)) = B(&2,d).

Proof The first equation holds by definition. For the second one, we must show the
mutual inclusions.

“C” Clearly, every X, : 2 — R is continuous and hence (B(£2,d) — B(R))-
measurable. Thus o (X, t € [0, 00)) C B(£2,d).

“>” We have to show that open subsets of (£2,d) are in A := (B(R))®0:>),
Since (£2, d) is separable (Theorem 21.30), every open set is a countable union of
e-balls. Hence it suffices to show that for fixed wg € §2, the map w +— d(wp, ®)
is A-measurable. To this end it is enough to show that for any n € N, the map
o> Yy () :=d,(wy, w) (see (21.27)) is A-measurable. However, the map

> Zi(0) = | Xi(@) — X(wo)| A
is A-measurable. Since each w is continuous, Y, is a countable supremum

Y= sup Z;
te[0,n]NQ

and is hence A-measurable. O
In the following, let A := 0o (X;,t € [0, 00)).

Corollary 21.32 The map F; : 2 — [0,00), w > sup{w(t) : t € [0, 1]} is A-
measurable.

Proof F is continuous with respect to d and hence B($2, d)-measurable. U

If B is a Brownian motion (on some probability space (.Q A P)) then there
exists an QecA with P[.Q] =1 and B(w) € C([0,c0)) for every w € £2. Let
A=A |Q and P=P |A' Then B : 2 —> C([0, c0)) is measurable with respect
to (A, A). With respect to the image measure P = Po B~ on £2 = C([0, >0)), the
canonical process X = (X;, t € [0, 00)) on C([0, 00)) is a Brownian motion.
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Definition 21.33 Let P be the probability measure on 2 = C([0, co)) with re-
spect to which the canonical process X is a Brownian motion. Then P is called the
Wiener measure. The triple (§2, A, P) is called the Wiener space, and X is called
the canonical Brownian motion or the Wiener process.

Remark 21.34 Sometimes we want a Brownian motion to start not at Xg = ONbut
at an arbitrary point x. Denote by P that measure on C([0, 00)) for which X =
(X; —x,t €[0,00)) is a Brownian motion (with X¢o = 0). O
Exercise 21.6.1 Show that the map

Foo: 2 —[0,00], w>suplw():te[0,00)},

is A-measurable.

21.7 Convergence of Probability Measures on C ([0, c0))

Let X and (X"),,en be random variables with values in C ([0, c0)) (i.e., continuous
stochastic processes) with distributions Py and (Px»)enN.

Definition 21.35 We say that the finite-dimensional distributions of (X") converge
to those of X if, forevery k e Nand 7y, ..., #; € [0, 00), we have

n—-oo

(XZXZ) Xiys-oos Xn)-
In this case, we write

X=X or Pxn =5Py.

fdd fdd
Lemma 21.36 P,"—3" P and P,"=3" Q imply P = Q.
fdd fdd

Proof By Theorem 14.12(iii), the finite-dimensional distributions determine P uni-
quely. 0

Theorem 21.37 Weak convergence in M (82, d) implies fdd-convergence:

n—0o0 n—oo

P, — P =— P, — P.
fdd

Proof LetkeNand1t,...,t €[0,00). The map

9:C([0,00) > R, o (o), ..., 00))
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is continuous. By the continuous mapping theorem (Theorem 13.25 on p. 257), we

have P, 09! "=5° P oo~ hence P,"=3° P. O
fdd

The converse statement in the preceding theorem does not hold. However, we
still have the following.

Theorem 21.38 Let (P,),eN and P be probability measures on C([0, 00)). Then
the following are equivalent:
(i) P,"=3°P and (Py)nen is tight.
fdd
(i) P, e p weakly.

Proof “(ii) = (1)” This is a direct consequence of Prohorov’s theorem (Theo-
rem 13.29 with E = C ([0, 00))).

“(i) = (ii)” By Prohorov’s theorem, (P,),¢N is relatively sequentially compact.

Let Q be a limit point for (P, )xen along some subsequence (nx). Then Py, E 0,

k — oo. By Lemma 21.36, we have P = Q. 0

Next we derive a useful criterion for tightness of sets {P,} C M1(C([0, 00))).
We start by recalling the Arzela—Ascoli characterization of relatively compact sets
in C([0, 00)) (see, e.g., [37, Theorem 2.4.7] or [173, Theorem II1.3]).

For N,§ > 0 and w € C([0, 00)), let

VV(®,8) :=sup{|o(®) —w(s)|: |t —s| <8, s, <N}.

Theorem 21.39 (Arzela—Ascoli) A set A C C([0, 00)) is relatively compact if and
only if the following two conditions hold.

(1) {w(0),w € A} C R is bounded.

(ii) For every N, we have limg o Sup,,c 4 V¥ (w,8) =0.

Theorem 21.40 A family (P;,i € I) of probability measures on C ([0, 00)) is
weakly relatively compact if and only if the following two conditions hold.

(1) (P;o XO_I, i € 1) is tight; that is, for every € > 0, there is a K > 0 such that
Pi({w:|w©)|>K})<e foralliel. (21.28)
(i) Foralln,e >0and N € N, there is a 5 > 0 such that
Pi({o:VN(@,8) >n}) <e foralliel. (21.29)

Proof “=" By Prohorov’s theorem (Theorem 13.29), weak relative compactness
of (P;,i € I) implies tightness of this family. Thus, for every ¢ > 0, there exists a
compact set A C C([0, 00)) with P;(A) > 1 — ¢ for every i € I. Using the Arzela—
Ascoli characterization of the compactness of A, we infer (i) and (ii).



486 21 Brownian Motion

“«=" Now assume that (i) and (ii) hold. Then, for ¢ > 0 and k, N € N, choose
numbers K, and 8y x . such that

sup P ({w: |0 (0)| > K.}) <
iel

N ™

and

1
supP,({a): VN(a),SN,k,S) > —}) < 2~ N—k=lg
iel k
Define
1
CNe= {a): ’w(O)} < K., VN(a), N k) < T forall k € N}.

By the Arzela—Ascoli theorem, Cy := () ~ven Cn e is relatively compactin C([0, 00))
and we have

P; (Cg) <

| ™

oo
+ Z Pi({w: VN(w,8nxe) > 1/k}) <& foralliel.
k,N=1

Hence the claim follows. U
Corollary 21.41 Let (X;,i € I) and (Y;,i € I) be families of random variables in
C([0, 00)). Assume that (Px,,i € I) and (Py,,i € I) are tight. Then (Px, yy,,i € I)
is tight.

Proof Apply the triangle inequality in order to check (i) and (ii) in the preceding
theorem. O

The following is an important tool to check weak relative compactness.

Theorem 21.42 (Kolmogorov’s criterion for weak relative compactness) Let
(X',i € I) be a sequence of continuous stochastic processes. Assume that the
following conditions are satisfied.

(1) The family (P[Xf) € -l,i € I) of initial distributions is tight.
(i) For any N > 0 there are numbers C, o, B > 0 such that, for all s,t € [0, N]
and every i € I, we have

E[|xi - Xxi{|*] < C|s —t/FH!.

Then the family (Pyi,i € I) = (L[X1),i € 1) of distributions of X" is weakly rel-
atively compact in M1 (C([0, 00))).

Proof We check the conditions of Theorem 21.40. The first condition of Theo-
rem 21.40 is exactly (i).
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Let N > 0. By the Kolmogorov—Chentsov theorem (Theorem 21.6(ii)), for ¢ > 0
and y € (0, B/a), there exists a K such that, for every i € I, we have

P[|X! — X!| < K|t —s| foralls,t € [0, N]] > 1 —e.

This clearly implies (21.29) with § = (n/K)'/7. O

21.8 Donsker’s Theorem

Let Yy, Y,, ... be i.i.d. random VaLiables with E[Y;] = 0 and Var[Y;] = o2 > 0.
For t > 0, let S = Z.L'”J Y; and S" = Jl_ . By the central limit theorem, for

n—0o0

t>s >0, we have L[S — S”] — Nos—s-
Let B = (B;,t > 0) be a Brownian motion. Then

L[S -3

]Vl‘)OO

L[B; — Bg] foranyt > s >0.

For NeNand 0 =1 <t < ... <ty, the random variables §" — St" 0=
1,..., N, are independent, and hence, we have

c[(Sp-5p,..

e S = S0 )T LBy — By By~ By )]
We infer that

L[S, ..., S")] "= L[(Byys -, Biy))- (21.30)
We now define 5" as S” but linearly interpolated:

|nt] I_th

n __
S \/Tn Z 1+ n YI_ntJ+1

(21.31)

Then, for ¢ > 0,

P[5 - 57| > e] < e 2E[(S7 - §1)°]
1 1 1 15
=2, OZE[YI] -

By Slutzky’s theorem (Theorem 13.18), we thus have convergence of the finite-
dimensional distributions to the Wiener measure Py :

P;, =3 Py. (21.32)

The aim of this section is to strengthen this convergence statement to weak con-
vergence of probability measures on C ([0, 00)). The main theorem of this section
is the functional central limit theorem, which goes back to Donsker [35]. Theorems
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of this type are also called invariance principles since the limiting distribution is the
same for all distributions ¥; with expectation 0 and the same variance.

Theorem 21.43 (Donsker’s invariance principle) In the sense of weak conver-
gence on C([0, 00)), the distributions of S" converge to the Wiener measure,

n—oo

L[5"]" = Py. (21.33)

Proof Owing to (21.32) and Theorem 21.38, it is enough to show that (L[8™1,
n € N) is tight. To this end, we want to apply Kolmogorov’s moment criterion.
However, as in the proof of existence of Brownian motion, second moments are not
enough; rather we need fourth moments in order that we can choose > 0. Hence
the strategy is to truncate the ¥; to obtain fourth moments.

For K > 0, define

Y® =Yy, <k/2 — ElYilyy, <k /2] and
zf=v,—vK forieN

Then E[YX]=E[ZX] =0 and Var[ZK] “=5°0 as well as Var[¥X] < o2, i €N,
Clearly, |Yl.K | < K for every i. Define

n n
K .= ZYiK and UK := ZZ,K forn e N.

i=1 i=1
Let 75" and UX" be the linearly interpolated versions of

~ 1 ~ 1
75" = ET{’;J and US" = EU{EIJ fort > 0.
Evidently, §" = TX» 4+ X", By Corollary 21.41, it is enough to show that,
for a sequence (K,),en (chosen later), the families (LUK n e N) and
(L[TX»"], n € N) are tight.
We consider first the remainder term. As UX is a martingale, Doob’s inequality
(Theorem 11.2) yields

.....

Now, if K, 1 00, n — 00, then for every N > 0, we have

- N
P[ sup |05 > 8] < ﬁVar[ZlK"
1e[0,N] £°0

hence UX»" "=3°0 in C([0, 00)). In particular, (LUK n eN) is tight.
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Next, for N > 0 and s, ¢ € [0, N], we compute the fourth moments of the differ-
ences Tlﬁ'g’n — 7.5 for the main term. In the following, let K,, = n'/*. Fix n € N.
We distinguish two cases:

Case 1:t <n~ Y. Letk := [(t + s)n]. If sn > k, then

tn YK"

/no_z k+1°

= Kp.n ~Knp,n __
Tt+’s _Tsn -

If sn < k, then

_ _ 1
7" — TKnn = ﬁ(((t +9n — k)Y + (k= smy ).

In either case, we have

T =1 < S

+|Yklir"1

),

hence

) _ 2t4
E[(I}{i(:,y,n _ TsKnyn)4] < nO.—4(2Kn)2E[(|Y]Kn + |Y2Kn

2
)]
16n%/%t* 16
< TVar[YIK”] < ﬁﬁ/z. (21.34)

Case2:t>n"1L, Using the binomial theorem, we get (note that the mixed terms
with odd moments vanish since E[YlK "1=0)

E[(7,)"] = nE[({") ] + 3n(n — DE[(v)]

<nK2c%+3n(n—1)o*. (21.35)

Note that, for independent real random variables X, Y with E[X] =E[Y] =0
and E[X*], E[Y*] < oo and for a € [—1, 1], we have

E[(aX +Y)']| =a’E[X*] + 6a°E[X*|E[Y?] + E[¥?]
<E[X']+6E[X*|E[Y?] +E[V*] =E[(X + 1)*].

We apply this twice (with a = [(¢ 4+ s)n] — (t + s)n and @ = sn — |sn]) and obtain
(using the estimate [(t + s)n| — |sn| <tn + 2 < 3tn) from (21.35) (since t < N)
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T Kp, K, 4 — n\4
E[(T5" = 7)) ] <n 20 E[(T}; [(t+s)n] TLIs{nJ) ]

2 _ n 4
=n 20 4E[(Tl((t+s)n]—tsnj) ]

3rnK? 3
< Z 24182 = 21812
n<o o
3 3
< SP2 4187 < <—2 + 18«/N>t3/2. (21.36)
o (o2

By (21.34) and (21.36), for every N > 0, there existsa C = C(N, 02) such that, for
every n € Nand all s, t € [0, N], we have

B[(TAy" 75 < Con

Hence, by Kolmogorov’s moment criterion (Theorem 21.42 with o« = 4 and
B =1/2), (LITX»"], n e N) is tight in M1 (C ([0, 00))). O

Exercise 21.8.1 Let X, X», ... be i.i.d. random variables with continuous distri-
bution function F. Let G, : [0,1] = R, t > n=1/23""_ (L0.,)(F(X;)) — t) and
M, = |Gyl - Further, let M = sup, o 17 |B:|, where B is a Brownian bridge.

(i) Show that E[G, ()] =0 and Cov[G,(s), G,(t)]=s At — st for s, t € [0, 1].
(ii) Show that E[(G,(t) — Gn(s))*] < C((t — 5) + |t — s|/n) for some C > 0.
(iii) Conclude that a suitable continuous version of G, converges weakly to B. For
example, choose

Hay()) =n""2Y " (ha(F(Xi) — 1) — ga (1)),

i=1

where h, is a suitable smoothed version of 1(_« 0], for example hy(s) =
1 —(s/en vV 0) A1 for some sequence ¢, |, 0, and g, (?) := fo h,(t —u)du.

n—-oo

(iv) Finally, show that M,, — M.

Remark: The distribution of M can be expressed by the Kolmogorov—Smirnov for-
mula ([101] and [156]; see, e.g., [133])

P[M > x] 22( 1yr=le=2n%x? (21.37)

Compare (21.20). Using the statistic M},, one can test if random variables of a known
distribution are independent. Let X1, X5, ... and X 1 X 2, ... be independent random
variables with unknown continuous distribution functions F and F and with empir-
ical distribution functions F;, and 15,,. Further, let

D, = sup‘Fn(t) — Fn(t)].
teR
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Under the assumption that F = F holds, +/n /2D, converges in distribution to M.
This fact is the basis for nonparametric tests on the equality of distributions.

21.9 Pathwise Convergence of Branching Processes*

In this section, we investigate the convergence of rescaled Galton—Watson processes
(branching processes). As for sums of independent random variables, we first show
convergence for a fixed time point to the distribution of a certain limiting process.
The next step is to show convergence of finite-dimensional distributions. Finally,
using Kolmogorov’s moment criterion for tightness, we show convergence in the
path space C([0, 00)).

Consider a Galton—Watson process (Z,),eN, With geometric offspring distribu-
tion

p(k)=2"%"1" fork e Ny.

That is, let X, ;, n, i € Ng be i.i.d. random variables on Ng with P[X,, ; = k] = p(k),
k € Np, and based on the initial state Z( define inductively

Zn
Zny1 = Z Xn,i-
i=1

Thus Z is a Markov chain with transition probabilities p(i, j) = p*/(j), where p*!

is the ith convolution power of p. In other words, if Z, Z Loz are independent
copies of our Galton—Watson process, with Zp =i and Zé =...=Z,=1,then
z27' 4. 4+ 7. (21.38)

We consider now the probability generating function of X1, ¥ (s) := ¢ (s) :=
E[sX1.1], s € [0, 1]. Denote by w(”) = w("_l) o ¢ its nth iterate for n € N. Then,
by Lemma 3.10,

E[s%]=Ei[s%] = (¥ ™).
For the geometric offspring distribution, ¥ can be computed explicitly.
Lemma 21.44 For the branching process with critical geometric offspring distri-
bution, the nth iterate of the probability generating function is

) _n—(n—l)s
V) = n+1—ns

Proof Compute

o 1
s) = pk=lgk — .
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In order to compute the iterated function, first consider general linear rational func-
tions of the form f(x) = Z)’fis For such f, define the matrix My = ( ) For two
linear rational functions f and g, we have Mo, = My - M. The powers of M are

easy to compute:

_(0 1 2 _ (-1 2 3 (-2 3
w=(fa) (20 m=(50)

and inductively

—(n—1) n
M = .
4 ( —n n—+1 .
If we let s = ¢, then we get the Laplace transform of Z,,,
Ei [ef)LZ,l] — w(n) (ef)\)l"

By Example 6.29, we can compute the moments of Z,, by differentiating the Laplace
transform. That is, we obtain the following lemma.

Lemma 21.45 The moments of Z,, are

E[Z]=(- Dkd)\k W™ (™)), (21.39)

In particular, the first six moments are

Ei[Z,]=1,

E;[2}] =2in +i%,

E:[Z]=6in* +6i’n +i’,

Ei[Z}] =24in> + 36i’*n (12;‘3 +2i)n + i, (21.40)
E:[Z]] = 120in* + 240i*n (1201'3 +30i)n* + (20i* + 10i*)n +i°,

E;[ 28] = 720in’ + 1800i*n* + (1200i° + 360i)n’

+ (300i* +240i%)n* + (30i° + 30i° + 2i)n + i°.
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Hence, Z is a martingale, and the first six centered moments are

(21.41)
= 720in° + 1080i%n* + (120i° + 360i)n*
+ 60i%n® + 2in.

Proof The exact formulas for the first six moments are obtained by tenaciously
computing the right-hand side of (21.39). 0

Now consider the following rescaling: Fix x > 0, start with Zo = |nx] individu-
als and consider Zt” = % for t > 0. We abbreviate

Lo[Z"] = Liai[(" Zina)) 1) (21.42)
Evidently, Ex[Zf] = L"n—” < x for every n; hence (EX[Z;’], n € N) is tight. By con-
sidering Laplace transforms, we obtain that, for every A > 0, the sequence of distri-

butions converges:

lim E.[e"*%] = lim
n—oo n—o0

— (nt — e */M\"™*
nﬁoo nt+1—nte=*/n
1 —eH/n e
= lim(1-—
n—00 n(l —e *myr 41

_ lim xn(l —e M)
R = T Ry vy

g i) (=r/m) )

=eXP( A+1/t( /)> =¥ (V)" (21.43)

However, the function v} is the Laplace transform of the compound Poisson distri-
bution CPoi(x/t)expl/t (see Definition 16.3).

Consider the stochastic kernel «; (x, dy) := CP0i(x /1) exp, p (dy). This is the kernel
on [0, o) whose Laplace transform is given by

/ ooKt(xv dy)e™ =y, ()" (21.44)
0
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Lemma 21.46 (x;);>0 is a Markov semigroup and there exists a Markov process
(Y1):>0 with transition kernels Py [Y; € dy] = k;(x, dy).

Proof 1t suffices to check that the Chapman—Kolmogorov equation k; - kg = Ks4¢
holds. We compute the Laplace transform for these kernels. For A > 0, applying
(21.44) twice yields

A
/ / (e dy)is (v, dz)e ™ = f Kt(x’dy)exp(‘ﬁ>

. AX
= X _—
P\l +9 +1

= / Kips(x, dz)e . 0

Next we show that Y has a continuous version. To this end, we compute some of
its moments and then use the Kolmogorov—Chentsov theorem (Theorem 21.6).

Lemma 21.47 The first k moments of Y; can be computed by differentiating the
Laplace transform,

k
E[14] = (k2

Tk (v)¥)

[x=0"

where

A
I/ft()\)ZQXP(_M_i_ 1)~

In particular, we have

E.[Yi]=x,
EX[YZZ] =2xt+ xz,
Ex[Yt3] =6xt% + 6x°t + x3,
(21.45)
E.[Y] =24xt? +36x% + 12271 + 1%,
E.[Y]] = 120xt* + 240x21% 4 120x°1% 4+ 20x*r + x°,
E.[Y?] = 720xt” + 1800x%* + 1200x#* + 300x*1* + 30x7¢ + x°.
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Hence Y is a martingale, and the first centered moments are

E [(Y; —x)7] =2xt,

E.[(Y; —x)*] = 6x¢?,

E.[(Y; —x)*] = 24x> + 122712, (21.46)
E.[(Y; — x)°] = 120xr* 4 120x%73,

E.[(Y; —x)°] = 720x#> 4 1080x*t* + 120x7¢

Theorem 21.48 There is a continuous version of the Markov process Y with tran-
sition kernels (k;);>0 given by (21.44). This version is called Feller’s (continuous)
branching diffusion.

See Fig. 26.4 for a computer simulation of Feller’s branching diffusion.
Proof For fixed N >0 and s, 7 € [0, N], we have

Ec[(Yigs — Y] = B [Ey, [(V: — Y0)!]]
=E,[24Y,1} + 12Y71?]
=24xt> + 12(2sx +x2)t2
< (48Nx + 12x7)1%,
Thus Y satisfies the condition of Theorem 21.6 (Kolmogorov—Chentsov) with « = 4
and g =1. O
Remark 21.49

(1) By using higher moments, it can be shown that the paths of Y are Holder-
continuous of any order y € (0, %).

(i1) It can be shown that Y is the (unique strong) solution of the stochastic (Itd-)
differential equation (see Examples 26.11 and 26.31)

dY[Z\/ 2Y[th, (2147)

where W is a Brownian motion. O

n—o0

Theorem 21.50 We have L.[Z"]"=S" L. [Y].
fdd
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Proof Asin (21.43) for 0 <11 <t2, A1, A2 >0 and x > 0, we get

. — (M ZP A 20
lim E,[e”"1%12%)]
n—oo

= lim El[B[e72%Z;]e %]

)\. ~ _ on
= lim E,|exp ——ZZI” e M4
n—00 ha(—t)+11

A
_exp<— (Gom=msr TAx )
- A

=E.[exp(—(h1 Yy +22Yy))].

Hence, we obtain
Li[MZ] 40028 "=5 Li[n Yy, + A2V,

Using the Cramér—Wold device (Theorem 15.56), this implies

n—o0

[’x[(Z?l’ Ztnz)] - L:X[(Yll > le)]-

Iterating the argument, for every k e Nand 0 <t; <, <... <1, we get

n—oo

E’x[(ZZ)i:I,...,k] — L[ (Yi)i=1....k]-

Howeyver, this was the claim. O

The final step is to show convergence in path space. To this end, we have to mod-
ify the rescaled processes so that they become continuous. Assume that (Z}');en,»
n € N is a sequence of Galton—Watson processes with Zj = |nx]. Define the lin-
early interpolated processes

i} B 1
Z? = (t —n 1Lth)(Zrthnj+l - ZrthnJ) + ;thnj'

Theorem 21.51 (Lindvall (1972), see [109]) Asn — o0, in the sense o_f weak con-
vergence in M (C([0, 00))), the rescaled Galton—Watson processes Z" converge
to Feller’s diffusion Y :

n—o00

Li[Z"] = LyIY).

Proof We have shown already the convergence of the finite-dimensional distribu-
tions. By Theorem 21.38, it is thus enough to show tightness of (£:[Z"],n € N)
in M(C([0, 00))). To this end, we apply Kolmogorov’s moment criterion (Theo-
rem 21.42 with « =4 and 8 = 1). Hence, for fixed N > 0, we compute the fourth
moments Ex[(Z;er - Z;’)“] for s,t € [0, N]. We distinguish two cases:
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Case I: t < % Let k = [(t 4 s)n]. First assume that |sn| = k. Then (by
Lemma 21.45)

B.[(Zfys = 20) ] =0~ any B [(Z011 - 20)']
= (*Ejue [2420 +12(20)* + 22}
=t*(26nx] + 24| nx |k + |nx]?)
<26x1> 4 24xs1? 4 x*1?
< (50Nx +x?)*
In the case |sn] =k — 1, we get a similar estimate. Therefore, there is a constant

C = C(N, x) such that

_ 1
E[(Z', - Z")* ] <ci® foralls, 1 e[0, N]withs < — (21.48)

Case 2: t > % Define k := [(t + s)n] — [sn] < tn + 1 < 2tn. Then (by

Lemma 21.45)

E.[(Z8, - 21)"]
ELMJ [( L(t+s)n] — rLlsnj)4]
EL”XJ [EZLMJ [(ZZ - 28)4]]

=n"*Eu [242]

Lsn

B+ 12(Z0,,) K2 4220, ]

n4 (24)cn(2tn)3 + (24xnsn + 12x2n2) (2tn) + 4xtn2)

< 192x¢3 + (96xs + 48)(2)1‘2 +4xn~ 12

< (292Nx + 48x7)1%. (21.49)

Combining the estimates (21.48) and (21.49), the assumptions of Kolmogorov’s
moment criterion for tightness (Theorem 21.42) are fulfilled with « =4 and 8 = 1.
Hence the sequence (L [Z"], n € N) is tight. O

21.10 Square Variation and Local Martingales

By the Paley—Wiener-Zygmund theorem (Theorem 21.17), the paths ¢ = W; of
Brownian motion are almost surely nowhere differentiable and hence have locally
infinite variation. In particular, the stochastic integral fol f(s)dW; that we intro-
duced in Example 21.29 cannot be understood as a Lebesgue—Stieltjes integral.
However, as a preparation for the construction of integrals of this type for larger
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classes of integrands and integrators (in Chapter 25), here we investigate the path
properties of Brownian motion and, somewhat more generally, of continuous local
martingales in more detail.

Definition 21.52 Let G : [0, c0) — R be a continuous function. For any ¢ > 0, de-
fine the variation up to t by

n—1
viG) ::sup{Z|GtiH —Gy:0=t<t1<...<t,=t,neN}.
i=0

We say that G has locally finite variation if th (G) < oo forall r > 0. We write Cy for
the vector space of continuous functions G with continuous variation ¢ th (G).

Remark 21.53 Clearly, VI(F + G) < VI(F) + V!(G) and V!(aG) = |«|V(G)
for all continuous F, G : [0, o0) — R and for all « € R. Hence C, is indeed a vector
space. O

Remark 21.54

(i) If G is of the form G; = fot f(s)ds for some locally integrable function f,

then we have G € Cy with V/(G) = ;| f(s)| ds.
(i) If G = GT — G~ is the difference of two continuous monotone increasing
functions G and G, then

VIG) - VNG = (G — G+ (G —Gy) forallt>s,  (21.50)

hence we have G € Cy. In (21.50), equality holds if G~ and G “do not grow
on the same sets”; that is, more formally, if G~ and G7 are the distribution
functions of mutually singular measures 1~ and ™. The measures = and pu*
are then the Jordan decomposition of the signed measure p = ™ — = whose
distribution function is G. Then the Lebesgue—Stieltjes integral is defined by

t
/ F(s)dGy :=/ Fd,u+—/ Fdu~. (21.51)
0 [0,7] [0,7]

(iii) If G € Cy, then clearly

1 1
G = E(VZI(G) +G;) and G; := E(th(G) - Gy)

is a decomposition of G as in (ii). O
The fact that the paths of Brownian motion are nowhere differentiable can be used

to infer that the paths have infinite variation. However, there is also a simple direct
argument.
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Theorem 21.55 Let W be a Brownian motion. Then th (W) = oo almost surely for
everyt > (.

Proof 1t is enough to consider t = 1 and to show
277
Yo=Y Wi — Wi_po-n| =5 00 as. (21.52)
i=1

We have E[Y,] = 2"/?E[|W;|] = 2"/>/2/x and Var[Y,] = | — 2/n. By Cheby-
shev’s inequality,

2)1

iP Y, < L2 f3/m <i2n_4:2n—4<oo
n=1 "_2 - .

n=1

Using the Borel-Cantelli lemma, this implies (21.52). g

Evidently, the variation is too crude a measure to quantify essential path properties
of Brownian motion. Hence, instead of the increments (in the definition of the vari-
ation), we will sum up the (smaller) squared increments. For the definition of this
square variation, more care is needed than in Definition 21.52 for the variation.

Definition 21.56 A sequence P = (P"),cn of countable subsets of [0, 00),
P"={t9,11,12,...} withO=t9<r<tr<...,

is called an admissible partition sequence if

i PlcP’c...,
(i1)) supP"* = oo forevery n € N, and
(iii) the mesh size

|77”| :=sup min |s—¢]
tepn SEP" s#t

tends to 0 as n — o0.

If 0 < S < T, then define
Psr=P'NI[S,T) and Pr:=P"N[0,T).
Ift =1, € P}, thenlett' :=1;41 AT =min{s € P} U{T}:s5 > t}.

Example 21.57 P"={k27":k=0,1,2,...}. O
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Definition 21.58 For continuous F, G : [0,00) — R and for p > 1, define the
p-variation of G (along P) by

VEG) =V P(G) = lim Y 1Gy =GP for T =0
n

n
tePr

if the limit exists. In particular, (G) := V2(G) is called the square variation of G.
If7T+— VTz(G) is continuous, then we write G € Cqy := Cg.
If, for every T > 0, the limit

Vi H(F,G) = lim " (Fy = F)(Gy = Gy)

n
tePr

exists, then we call (F, G) := V2(F, G) .= VP’2(F, G) the quadratic covariation
of F and G (along P).

Remark 21.59 1f p' > p and VI (G) < oo, then V{’/(G) = 0. In particular, we have
(G) =0 if G has locally finite variation. O

Remark 21.60 By the triangle inequality, we have

> Gy =Gil= Y |Gy —Gy| forallneN, T >0.

n
repit! 1Py

Hence in the case p = 1, the limit always exists and coincides with V1(G) from
Definition 21.52 (and is hence independent of the particular choice of P). A similar
inequality does not hold for V2 and thus the limit need not exist or may depend
on the choice of P. In the following, we will, however, show that, for a large class
of continuous stochastic processes, V2 exists almost surely along a suitable subse-
quence of partitions and is almost surely unique. O

Remark 21.61

(1) If (F 4+ G)r and (F — G)r exist, then the covariation (F, G)r exists and the
polarization formula holds:

1
(F.G)r = Z(<F +G)r — (F = G)r).

@) If (F)7, (G)r and (F, G)r exist, then by the Cauchy—Schwarz inequality, we
have for the approximating sums

Vr((F,G)) < V(F)r(G)r. 0
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Remark 21.62 If f € C'(R) and G € Cqv, then (exercise!) in the sense of the
Lebesgue—Stieltjes integral

T
(F@) = fo (f(Gy)*d(G)s. o

Corollary 21.63 If F has locally finite square variation and if (G) =0 (hence, in
particular, if G has locally finite variation), then (F, G) =0 and (F 4+ G) = (F).

Theorem 21.64 For Brownian motion W and for every admissible sequence of par-
titions, we have

(Wyr=T forallT >0 a.s.

Proof We prove this only for the case where
(0.¢]
Y|P < oo (21.53)
n=1

For the general case, we only sketch the argument.

Accordingly, assume (21.53). If (W) exists, then T + (W)7 is monotone in-
creasing. Hence, it is enough to show that (W)y exists for every T € Qt =
QN [0, c0) and that almost surely (W)r = T. Since (Wt)tzo = (T_l/ZWIT)tZ() is
a Brownian motion, and since ( W)l =T"YW)r, itis enough to consider the case
T=1.

Define

Yyi= Y (Wy—W)? forallneN.
1eP}

Then E[Y,] = ZtePf (' —1t)=1and

VarlY,1= Y Var[(W, — Wp)?] =2 (/' —1)* <2/P".
tePy tePy
By assumption (21.53), we thus have Y oo, Var[¥,] <2> °° |P"| < co; hence
Y, 571 almost surely.
If we drop the assumption (21.53), then we still have Var[Y,] = 0; hence
Y, " 1in probability. However, it is not too hard to show that (Y},),cn is a back-

wards martingale (see, e.g., [140, Theorem 1.28]) and thus converges almost surely
to 1. Il

Corollary 21.65 If W and W are independent Brownian motions, then we have
(W, W)r =0.
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Proof The continuous processes (W + VT/) / ﬁ) and (W — VT/) / ﬂ) have inde-
pendent normally distributed increments. Hence they are Brownian motions. By
Remark 21.61(i), we have

HW, W)r = (W + W)r — (W — W)
=2((W + W)/V2), —2((W = W)/V2),
=27 =27 =0. O

Clearly, (W; W,) ¢>0 18 a continuous martingale. Now, by Exercise 21.4.2, the pro-
cess (sz — t);>0 is also a continuous martingale. Thus, as shown above, the pro-
cesses W2 — (W) and WW — (W, W) are martingales. We will see (Theorem 21.70)
that the square variation (M (w)) of a square integrable continuous martingale M al-
ways exists (for almost all w) and that the process (M) is uniquely determined by
the property that M2 — (M) is a martingale.

In order to obtain a similar statement for continuous martingales that are not
square integrable, we make the following definition.

Definition 21.66 (Local martingale) Let F be a filtration on (£2, F,P) and let t
be an F-stopping time. An adapted real-valued stochastic process M = (M;);>o is
called a local martingale up to time t if there exists a sequence (7,),eN of stopping
times such that t, 1 v almost surely and such that, for every n € N, the stopped
process M = (M, n)r=0 is a uniformly integrable martingale. Such a sequence
(Tw)nen 1s called a localising sequence for M. M is called a local martingale if M
is a local martingale up to time v = oo. Denote by Mg . the space of continuous
local martingales.

Remark 21.67 Let M be a continuous adapted process and let T be a stopping time.
Then the following are equivalent:

(i) M is alocal martingale up to time .
(i1) There is a sequence (7,),eN Of stopping times with 7, 1 T almost surely and
such that every M™ is a martingale.
(iii) There is a sequence (7,),eN Of stopping times with 7, 1 T almost surely and
such that every M™ is a bounded martingale.

Indeed, (iii)==(i)==(ii) is trivial. Hence assume that (ii) holds, and define t;, by
t,:=inf{t >0:|M,| > n} forallneN.

Since M is continuous, we have 7, 1 co. Hence (0)neN := (Ty A T,,)nen is a local-
ising sequence for M such that every M°" is a bounded martingale. O

Remark 21.68 A bounded local martingale M is a martingale. Indeed, assume that
|M;| < C < oo almost surely for all # > 0 and that (7,),cN is a localising sequence
for M.Lett >s>0and A € F;. Then AN {1, <s} € F;, s and hence

E[Mr,,AlﬂAﬂ{rngs}] = E[Mt,,AsﬂAﬂ{r,, gs}]~
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Since 7, 1 0o, the dominated convergence theorem (Corollary 6.26) yields
E[M;14]1=E[M;14].
Hence E[M; | F;] = M, and thus M is a martingale. O

Example 21.69

(i) Every martingale is a local martingale.

(i) In Remark 21.68, we saw that bounded local martingales are martingales. On
the other hand, even a uniformly integrable local martingale need not be a
martingale: Let W = (W!, W2, W3) be a three-dimensional Brownian motion
(that is, wl, w2 and W3 are independent Brownian motions) that starts at
Wo=x € R3\ {0}. Let

u(y)=lyll”" foryeR>\{0}.

It is easy to check that u is harmonic; that is, Au(y) = 0 for all y # 0. We
will see later (Corollary 25.34) that this implies that M := (u(W;));>¢ is a local
martingale. Define a localising sequence for M by

T, =inf{t > 0: M; >n}=inf{r > 0: |W;|| <1/n}, neN.

An explicit computation with the three-dimensional normal distribution shows
t . . . . .
E[M;] < :~'/2"Z50; hence M is integrable but is not a martingale. Since

M, "Z20in L', M is uniformly integrable. O

Theorem 21.70 Let M be a continuous local martingale.

(i) There exists a unique continuous, monotone increasing, adapted process
(M) = ((M);)s>0 with (M)o = 0 such that

(Mt2 — (M )t) is a continuous local martingale.

t>0

(i) If M is a continuous square integrable martingale, then M* — (M) is a mar-
tingale.
(iii) For every admissible sequence of partitions P = (P"),eN, we have

Uy = Z (My — M,)? e (M)t in probability for all T > 0.

tePr

The process (M) is called the square variation process of M.

Remark 21.71 By possibly passing in (iii) to a subsequence P’ (that might depend

on T), we may assume that Uz gty (M)r almost surely. Using the diagonal se-
quence argument, we obtain (as in the proof of Helly’s theorem) a sequence of par-

titions such that U7, e (M)7 almost surely for all T € Q*. Since both T+ U}
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and T + (M) are monotone and continuous, we get Uy = (M)t forall T >0

almost surely. Hence, for this sequence of partitions, the pathwise square variation
almost surely equals the square variation process:

(M(@)= V(M () = (M) (). ¢

Proof of Theorem 21.70 Step 1. First let |M,| < C almost surely for all + > 0 for
some C < oo. Then, in particular, M is a martingale (by Remark 21.68). Write
Ur = M% — Mg — N7, where

Np=2) MMy —My), T=z0,

us
tePy

is a continuous martingale. Assume that we can show that, for every T > 0, (U %) neN
is a Cauchy sequence in L2(P). Then also (N;),LGN is a Cauchy sequence, and we
can define Ny as the L2-limit of (N7)nen- By Exercise 21.4.3, N has a continuous

modification N, and we have N? = Nt in L? for all T > 0. Thus there exists a
continuous process (M) with

n =00

U= (Myr inL? forall T >0, (21.54)

and N = M? — Mg — (M) is a continuous martingale.
It remains to show that, for all 7 > 0,

(U?)HEN is a Cauchy sequence in L2 (21.55)
For m e N, let

Ly = max{(M, — MS)2 csePf te st,,n zm}.

Since M is almost surely uniformly continuous on [0, T'], we have Z,, "0 al-
most surely. As Z,, <4C 2 we infer

E[z2] ™= 0. (21.56)
For n € N and numbers ay, . .., a,, we have
n—1 n—1
(an —ao)® =Y (a1 —ax)* =2y (ax — ao)(@rs1 — ax).
k=0 k=0

In the following computation, we apply this to each summand in the outer sum to
obtain form e Nand n > m
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U7m - U;‘ = Z ((Ms’ - Ms)2 - Z (M, — M[)Z)

sePp teP;"S,
=23 > (M;— M)(My — M)). (21.57)
sePp teP:”S,

Since M is a martingale, for 51,52 € Py and t| € 73:‘1 g€ 73;’2 o with 1] < 1, we
21 2

have
E[(M,, — My )My — My, ) (M, — My, ) (M — My,)]

=E[(My, — My,))(My — My)(My, — My,)E[M;;, — My, | F,,]] =0.

If we use (21.57) to compute the expectation of (U3’ — U ;5)2, then the mixed terms
vanish and we get (using the Cauchy—Schwarz inequality in the third line)

E[(U - Up)*] = 4E[ o> (M- M) (M, — Mt)z}

m n
sePy tePH,

< 4E[zm > My — Mt)z]

n
tePy

291/2
54E[z,2,,]“2E[(Z(M,,_Mt)2> ] . (21.58)

tePy.

For the second factor,

o{(Zon-m7)]

tePy
= E[ >y - M,>4]
tePy
+ 2E[ My — M)t Y (My - Mt)z]. (21.59)
sePr tePy

The first summand in (21.59) is bounded by

4C2E|: >y - M,)z] = 4C?E[(Mr — Mp)*] < 16C*.

tePy
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The second summand in (21.59) equals

2E[ DMy — Ms)2E[ D My —M)?| fﬂ

n n
sePr ’EP;/,T

= 2E[ Y (My — Mo)’E[(Mr — My)? | f«]}
sePy

< 8CE[(Mr — Mp)*] < 32C*.

Together with (21.58) and (21.56), we obtain

2 m—00

sup E[(U} — U')*] < 16v/3C?E[22]'/* =5 0.

n>m
This shows (21.55).
Step 2. Now let M € M and let (ti)yen be a localising sequence such that
every M™ is a bounded martingale (see Remark 21.67). By Step 1, for T > 0 and
N € N, we have

N.n . 2 n—>oo 2
Up™ = (MY — M) "= (M™), in L%,
tePy
Since UN M= UNJrl "if T < 1y, there is a continuous process U with UN n 28
Ur in probablhty ifT <ty.Thus (M™)r = (M)r :=Urif T < 1tpn. Slnce v 1 oo
almost surely, for all 7 > 0,
U= (M)r in probability.
As ((M;"’)2 — (M™)7)r>0 is a continuous martingale and since (M™) = (M)™,
we have M2 — (M) € Mioc.c-

Step 3. It remains to show (ii). Let M be a continuous square integrable martin-
gale and let (t,),en be a localising sequence for the local martingale M? — (M).
Let T > 0 and let T < T be a stopping time. Then MT ar < E[M | Fz,Az] since
M? is a nonnegative submartingale. Hence (Mrn Az )neN is uniformly integrable and
thus (using the monotone convergence theorem in the last step)

E[M]]= lim E[M; , ]= lim E[(M)r:]+E[M]
=E[(M).] +E[M{].

Thus, by the optional sampling theorem, M? — (M) is a martingale.

Step 4 (Uniqueness). Let A and A’ be continuous, monotone increasing, adapted
processes with Ag = A{, such that M? — A and M? — A’ are local martingales. Then
also N = A — A’ is a local martingale, and for almost all w, the path N(w) has
locally finite variation. Thus (N) = 0 and hence N 2 _ (N) = N? is a continuous
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local martingale with No = 0. Let (7,),en be a localising sequence for N 2. Then

E[N%mt] =0 for any n € N and ¢ > 0; hence ernm = 0 almost surely and thus
N? =1lim,— Nfzn/\, = 0 almost surely. We conclude A = A’ O

Corollary 21.72 Let M be a continuous local martingale with (M) = 0. Then
M; = My for all t > 0 almost surely. In particular, this holds if the paths of M
have locally finite variation.

Corollary 21.73 Let M,N € Miocc. Then there exists a unique continuous
adapted process (M, N) with almost surely locally finite variation and (M, N)o =0
such that

MN — (M, N) is a continuous local martingale.

(M, N) is called the quadratic covariation process of M and N . For every admissible
sequence of partitions P and for every T > 0, we have

(M,N)r = lim Z (My — My)(Ny — Ny)  in probability. (21.60)
n—oo

n
tePr

Proof Existence. Manifestly, M + N, M — N € Mo .. Define
1
(M, N) =2 ((M+N) = (M= N)).

As the difference of two monotone increasing functions, (M, N) has locally finite
variation. Using Theorem 21.70(iii), we get (21.60). Furthermore,

1 2 1 2
MN = (M.N) = 2 (M +N)* = (M +N)) = 2((M = N)* = (M~ N))

is a local martingale.

Uniqueness. Let A and A" with A9 = A{; = 0 be continuous, adapted and with
locally finite variation such that MN — A and MN — A’ are in My .. Then
A — A’ € Mjoc . have locally finite variation; hence A — A’ =0. U

Corollary 21.74 If M € Mioc and A are continuous and adapted with (A) =0,
then (M + A) = (M).

If M is a continuous local martingale up to the stopping time 7, then M* € Mo ¢,
and we write (M), := (M"), fort < t.

Theorem 21.75 Let t be a stopping time, M be a continuous local martingale up
to T and Ty < T a stopping time with E[(M),] < co. Then E[M] = E[My], and
M is an L?-bounded martingale ifE[Mg] < 00.
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Proof Let 1, 1 T be a localising sequence of stopping times for M such that ev-
ery M™ is even a bounded martingale (see Remark 21.67). Then M™"™ is also a
bounded martingale, and for every ¢ > 0, we have

E[MZ . ]| =E[M}] +E[(M)qrene] <E[MJ]+E[(M)] <oo. (21.61)

70

Hence ((Mynz,ar), 1 € N, t > 0) is bounded in L? and is thus uniformly integrable.
Therefore, by the optional sampling theorem for uniformly integrable martingales,

E[My] = lim E[May,]=E[Mol,
and, for ¢t > s,

E[M" | 7] =E[ lim M?""

n—00

)

= lim E[M/*"™ | F]

n—oo

= lim M = MO,
n—o0

Hence M™ is a martingale. O

Corollary 21.76 If M € Mo, with E[Mg] < 00 and E[{M);] < oo for every
t >0, then M is a square integrable martingale.

Exercise 21.10.1 Show that the random variables (Y,),cN from the proof of Theo-
rem 21.64 form a backwards martingale.

Exercise 21.10.2 Let f : [0, 00) — R be continuous and let X € CZ; for the admis-
sible sequence of partitions P. Show that

T
/ f(s)d(X)s = lim Z F(O(Xy —X)? forall T >0.
0 n—oo

7
tePr

Exercise 21.10.3 Show by a counterexample that if M is a continuous local mar-
tingale with My = 0 and if 7 is a stopping time with E[(M).] = oo, then this does
not necessarily imply E[M?] = oo.



Chapter 22
Law of the Iterated Logarithm

For sums of independent random variables we already know two limit theorems:
the law of large numbers and the central limit theorem. The law of large numbers
describes for large n € N, the typical behavior, or average value behavior, of sums
of n random variables. On the other hand, the central limit theorem quantifies the
typical fluctuations about this average value.

In Chapter 23, we will study atypically large deviations from the average value
in greater detail. The aim of this chapter is to quantify the typical fluctuations of the
whole process as n — 00. The main message is: While for fixed time the partial sum
S, deviates by approximately /n from its expected value (central limit theorem),
the maximal fluctuation up to time n is of order 1/nloglogn (Hartman—Wintner
theorem, Theorem 22.11).

We start with the simpler task of computing the fluctuations for Brownian mo-
tion (Theorem 22.1). After that, we will see how sums of independent centered
random variables (with finite variance) can be embedded in a Brownian motion
(Skorohod’s theorem, Theorem 22.5). This embedding will be used to prove the
Hartman—Wintner theorem.

In this chapter, we follow essentially the exposition of [39, Section 8.8].

22.1 Iterated Logarithm for the Brownian Motion

Let (B;);>0 be a Brownian motion. In Example 21.16, as an application of Blumen-
thal’s 0-1 law, we saw that lim sup; o B:/+/t = 00 a.s. Since by Theorem 21.14,
(tB1/1)1>0 also is a Brownian motion, we get

. B;
limsup —

t—00 \/;

The aim of this section is to replace /7 by a function such that the limes superior is
finite and nontrivial.

=00 a.s.
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Theorem 22.1 (Law of the iterated logarithm for Brownian motion)

B
limsup——— =1 a.s. (22.1)

t—oo /2tloglog(t)

Before proving the theorem, we state an elementary lemma.

Lemma 22.2 Ler X ~ Ny, be standard normally distributed. Then, for any x > 0,

1 1 1 1
v T
X

Proof Let p(t) = J%_ne” */2 be the density of the standard normal distribution. Par-
tial integration yields the second inequality in (22.2),

1 1 oo 1 1
PIXzxl= [ —(rp)di=—-¢0| — [ Se0dr=—g().
x ! t X x X
Similarly, we get
1 1 [ 1 1
PIX=x]z—-9p0)— = | ¢@dt=—pk)—- ZP[X=x].
x x2 J, x x2
This implies the first inequality in (22.2). g

Proof of Theorem 22.1 Step 1. “<” Let o > 1, and define ¢, = «" for n € N. Later,
we let « | 1. Define f(r) = 2> loglogt. Then by the reflection principle (Theo-
rem 21.19) and using the abbreviation By, 5] := {B; : t € [a, b]}, we obtain

P[sup Bity 1111 In f(tn)]
< P11 sup Bio.1,11 > vV )/
= P[sup Bjo,1 > v f (tn) /]

< |[-% o r/2a
f ()

= (logar)™

—

o
n

f(tn)

<n~ % forlarge enough n. (22.3)

In the next to last step, we used

A

" (log(n loga)) =o«logn + aloglogo.
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Since o > 1, the right-hand side of (22.3) is summable in n:

o0

ZP[SupB [tn:tn+1] \/tnan)] <0

n=1

The Borel-Cantelli lemma (Theorem 2.7) then yields (note that t — +/tf(¢) is
monotone increasing)

limsup ——= <1
t—00 lf(l‘
Now let « | 1 to obtain

B,

limsup ———<1 a.s. 22.4
t—>oop 2tloglogt — @24

Step 2. “>" Here we show the other inequality in (22.1). To this end, we let

o

a —>o00. Let B:=-%5 > 1and g(t) = loglogt Choose ng large enough that
Bg(ty) =1 for all n > no Then by Browman scaling (note that t, — #,—1 = Et”)
and (22.2) (since (x + L >4 forx—(ﬁg(t N2> 1),

P[B,, — B;,_, > 1x8(ty)| =P [31 > /Bg(tn)]

1

11 B8/
v 2./Bg(tn)
11 1
=———(loga) /P ——n~ /A,
2w 2 LY, IBg(tn)

Ife € (0, 1 —1/B), then, for sufficiently large n € N, the right-hand side of the above
equation is > n~en~ Y8 >pn—1 Hence

o]

ZP[BM - Bln—l > \/m] = 00.

n=2
The events are independent and hence the Borel-Cantelli lemma yields
P[Btn — B, , > /1,8(t,) for infinitely many n] =1. (22.5)
t, loglogt, n—oo

Since sl T % (22.4) and symmetry of Brownian motion imply that,
fore > 0,

B, ,>—-(1+ 8)0571/2,/2@, loglogs, foralmostalln e N as. (22.6)
From (22.5) and (22.6), it follows that

B 1 -1
lim sup In ——(0+9oa —12 %70 1+ 8)0[_1/2 a.s.
o

n—oo «/2t,loglogt, ﬂ
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Now, letting @ — oo gives limsup,_, ., ﬁ > 1 a.s. Together with (22.4), this

implies the claim of the theorem. d

Corollary 22.3 For every s > 0, a.s. we have

. Bs+t - Bs
lim su

p————=1.
110 /2tloglog(1/t)

Proof Without loss of generality, assume s = 0. Apply Theorem 22.1 to the Brow-
nian motion (¢ By,;) (see Theorem 21.14). O

Remark 22.4 The statement of Corollary 22.3 is about the typical points s of Brow-
nian motion B. However, there might be points in which Brownian motion moves
faster than ,/2floglog(1/t). The precise statement is due to Paul Lévy [106]: De-

note by h(8) := /28 log(1/8) Lévy’s modulus of continuity. Then

P[lim sup |B,—BS|/h(8)=1]=1. (22.7)
340 s.1e0,1]

0<t—s<6

(See, e.g., [144, Theorem 1.2.5] for a proof.) This implies in particular that almost
surely B is not locally Hélder—%-continuous. O

22.2 Skorohod’s Embedding Theorem

In order to carry over the result of the previous section to sums of square integrable
centered random variables, we use an embedding of such random variables in a
Brownian motion that is due to Skorohod. This technique also provides an alterna-
tive proof of Donsker’s invariance principle (Theorem 21.43).

Theorem 22.5 (Skorohod’s embedding theorem) Let X be a real random variable
with E[X] = 0 and Var[X] < oo. Then on a suitable probability space we can
construct a random variable E, a Brownian motion B that is independent of &
and an F-stopping time t© such that

B,2X and E[r]=Var[X].

Here the filtration F is given by F; = 0 (&, (Bs)s<t)-

Remark 22.6 In the above theorem we can de without the additional random vari-
able; that is, we can choose F = o (B). The proof is rather involved, though (see
p. 515). O
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Corollary 22.7 Let X1, X3, ... be i.i.d. real random variables with E[X1] =0 and
Var[X] < oo. Further, let S;, = X1 + ...+ Xy, n € N. Then on a suitable proba-
bility space there exists a filtration F, a Brownian motion B and F-stopping times
O=1 <1 <1 <...85uch that (1, — Ty—1)nen is i.i.d., E[t1] = Var[X ] and

D
(Brn )neN = (Sn)neN-

Proof of Corollary 22.7 We only sketch the proof. The details are left to the reader.
Choose independent triples (B™, 2™ ™) n e N, as in Theorem 22.5. Let

T, = W4 4+ 7™ Forr <1t let B; .= Bt(l), and define recursively

n+1 .
B; =B, + Bz(—rn ), ift, <t <ty41.

Using repeatedly the strong Markov property of Brownian motion, we see that B is
a Brownian motion. Now let F; = o ((&y)nenN, (Bs)s<t)- O

We prepare for the proof of Theorem 22.5 with a lemma. In order to allow mea-
sures as integrands, we use the following notation: If © € M(E) is a measure and
f € £L'(w) is nonnegative, then define [ u(dx) f(x)8x := fu, where fp is the
measure with density f with respect to u. This is consistent since for measurable
A C E, we then have

(/M(dX)f(X)5x>(A)=/M(dX)f(X)8x(A)=/M(dX)f(X)11A(X)=fM(A)-

Lemma 22.8 Let 1 € M;(R) with [xpu(dx) =0 and 02 := [x*u(dx) < oo.
Then there exists a probability measure 0 € M1 ((—00,0) x [0, 00)) with

,u:/@(d(u,v))(#csu—i- - 5U>. (22.8)

vV—Uu

Furthermore, 0% = — [uv6(d(u, v)).

Proof Define m := f[o,oo) vu(dv) = — f(—oo,O) up(du). If m =0, then 6 = §(_1.0)
is a possible choice. Assume now m > 0 and define 6 by

Q(d(u, v)) = mil(v —u)u(du)u(dv) foru <0andv > 0.
Then

f@(d(u, v)=m"" / w(du) w(dv)(v —u)
(—00,0) [0,00)

=m_1/(- O),u(du)[m—u,u([O, 00))]

=m~ ! (mp((—o00, 0)) +mu([0, 00))) = 1.
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Hence, 6 is in fact a probability measure. Furthermore,

[ o, v))<—5 4 us,,)

=m"! / (du) 1(dv) (v8, — udy)
(—00,0) [0,00)

= f 1(du)s, + / 1(dv)sy = p
(—00,0) [0,00)

By (22.8), we infer

_ 2 _ v o2 —u o2\ _
_[u(dx)x —/O(d(u,v))<v_uu +v_uv)— /Q(d(u,v))uv. 0

Proof Theorem 22.5 First assume that X takes only the two values u < 0 and v > O:
P[X =u]= ;% =1-P[X =v]. Let

Tuw =inf{t >0:B; €{u, v}}.

By Exercise 21.2.4, we have E[Bq, ,] = 0; hence B, , 2 X and E[7, ] = —uv
Now let X be arbitrary with E[X] =0 and 02 := E[X?] < 0o. Define u =Py
and 6 = 6,, as in Lemma 22.8. Further, let & = (&, &,) be a random variable with
values in (—o0, 0) x [0, co) and with distribution 6.
Let F = (F;)i>0 where F; := o0 (&, By : s €[0,t]). Define 7 := 75, z,. By con-
tinuity of B, we get

fr<ty= ) ({& € (=00.u]l x [v,00)} N {ruy <1}) € Fi.
u,veQ

u<0<v

Hence 7 is an F-stopping time (but not a o (B)-stopping time). For x < 0,
v
P[X <x] =/ 0(d(u, v))—
(—00,x]x[0,00) v—

:/ (d(u v))P[BfuL =u]
(—00,x]x[0,00)

=P[B; <x].

For x > 0, we similarly get P[X > x] = P[B; > x]. Summing up, we have B; 2 X.
Furthermore,

E[T]=—E[EMEU]=—/9(d(u,v))uv=02. O
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Supplement: Proof of Remark 22.6

Here we prove that in Skorohod’s embedding theorem we can really do without
randomized stopping times; that is, we can choose a stopping time with respect to
the filtration generated by the Brownian motion B. In other words, the stopping time
can be chosen without using additional random variables, such as the = in the proof
given above.

An elegant proof that is based on stochastic analysis methods can be found in
Azéma and Yor; see [6, 7]. See also [118] for a more elementary version of that
proof. Here, however, we follow an elementary route whose basic idea goes back to
Dubins.

Foru <0 <w, let 7, = inf{t > 0: B; € {u, v}}. Hence, if X is a centered ran-
dom variable that takes only the values u# and v, then, as shown in the proof of
Theorem 22.5, By, , 2 X and E[z, ,] = E[X2].

In a first step, we generalize this statement to binary splitting martingales. (Recall
from Definition 9.42 that a binary splitting process at each time step has a choice of
just two different values, which may however depend on the history of the process.)
In a second step, we show that square integrable centered random variables can be
expressed as limits of such martingales.

Theorem 22.9 Let (X,),en, be a binary splitting martingale with Xo = 0. Let B
be a Brownian motion and let ' = o (B) be its canonical filtration. Then there exist
F-stopping times 0 = 19 < 11 < ... such that

D
(Xn)neNo = (BT,Z)HENQ

and such that E[t,,] = E[Xg] holds for all n € Ny.
If (Xn)nen, is bounded in L? and thus converges almost surely and in L* to
some square integrable X o, then T 1= sup, .y Ty < o0 a.s., E[t] = Var[X ] and

Xo 2 B,.

Proof Forn e N, let f, : R"~! x {—1,+1} — R and let D, be a {—1, +1}-valued
random variable such that X, = f,(X1,..., X,—1, D;) holds (compare Defini-
tion 9.42). Without loss of generality, we may assume that f; is monotone increas-
ing in D,. Let 1o := 0 and inductively define

Ty =inf{t > 1,1 : By € { fu(Bry, ..., B\, =), fu(Byy, ..., By, +D}}.

Let )N(,, := By, and

s 1,  ifX,>X,_1,
D, = n n—1
—1, else.
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By Exercise 21.2.4 and using the strong Markov property (at t,,—1), we get

P[D,=1|X1,..., Xp_1]

Xn—l _fn(jzla--wjzn—l’_l)

B fn(ila'-'ain—lv_i_l)_fn(}}l"'~’Xn—la_1)

and E[t, — 1,,—1] = E[(f(n — )2,1_1)2]. On the other hand, since (X},),eN, is a mar-
tingale, we have

Xn—l ZE[XH | XOv MR} Xn—]]

= > PIDy=ilXo o, Xuo1l (X1 Xut, ).
i=—1,+1
Therefore,
P[DYL:l |X1""5Xn*l]

_ Xn—l_fn(Xl,-naXn—l’_l)
fn(Xl, ""anlv +1) _fn(le"an*lv_l).

.. . D & .
This implies (X;)neny = (Xn)nen,- Since E[t, — 1,_1] = E[(X,, — X,,_l)z], and
since the martingale differences (X; — X;—1), i € N, are uncorrelated, we get
E[z,] = E[X2].

Finally, if (X,) is bounded in L2, then by the martingale convergence theorem

there is a square integrable centered random variable X, such that X, X 00
almost surely and in L% In particular, we have E[X%] = E[Xgo]. Clearly,
(Tw)neN is monotone increasing and thus converges to some stopping time 7. By
the monotone convergence theorem, E[tr] = lim,_, o, E[7,] = lim,,_on[X,%] =

E[X go] < 00. Hence T < 0o a.s. As Brownian motion is continuous, we conclude

Br = lim By = lim X, 2 Xo. O

n—oo n—oo

We have shown the statement of Remark 22.6 in the case where the random
variable X is the limit of a binary splitting martingale. The general case is now
implied by the following theorem.

Theorem 22.10 Let X be a square integrable centered random variable. Then there

exists a binary splitting martingale (X,)nen, with Xo = 0 and such that X,, —x
almost surely and in L*.

Proof We follow the idea of the proof in [118]. Let X¢ := E[X] = 0. Inductively,
for n € N, define

I, ifX>X, 1,
D, = .
-1, ifX<X,_1,
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Fni=0(Dy,...,Dy)

and

X, =E[X | F.].
Hence there exists a map gy, : {—1,+1}" — R such that g,(D1,..., D,) = X,,.
Clearly, 1p,—1 = 1x,>x,_, almost surely for all k € N. Hence the Dy, ..., Dy
can be computed from the Xi,..., X;. Thus there exists a map f, : R %

{—1,4+1} - R such that f,,(Xy,..., Xn—1, D) = X,,. Therefore, (X,,) is binary
splitting.

Manifestly, (X,),en, is a martingale. By Jensen’s inequality, we have E[X ,%] <
E[X?] < oo for all n € N. Hence (X1)nen, is bounded in L? and thus converges
almost surely and in L? to some square integrable X.o. It remains to show that
X~ = X holds almost surely. To this end, we first show

Jlim D,y (@) (X (@) — Xp(@) = X (@) — Xoo(@)|  foralmostallw.  (22.9)

If X(w) = Xoo(w), then (22.9) holds trivially. If X (w) > Xeo(w), then X(w) >
X, (w) and thus D, (w) = 1 for all sufficiently large n; hence (22.9) holds. Similarly,
we get (22.9) if X (w) < X oo ().

Evidently, we have

E[D,(X — X,)] =E[D,E[X — X,, | F,]] =0.

As (D, (X — X,))nen is bounded in L? (and is thus uniformly integrable), we get
E[|X — Xool|] =1lim, o E[D,, (X — X,,)] =0; hence X = X, a.s. O

22.3 Hartman—Wintner Theorem

The goal of this section is to prove the law of the iterated logarithm for i.i.d. cen-
tered square integrable random variables X,,, n € N, that goes back to Hartman and
Wintner (1941) (see [69]). For the special case of Rademacher random variables,
the upper bound was found earlier by Khinchin in 1923 (see [97]).

Theorem 22.11 (Hartman—Wintner, law of the iterated logarithm) Let X1, Xo, ...
be i.i.d. real random variables with E[X1] =0 and Var[X{]=1. Let S, = X| +
...+ X,,neN. Then

: Sn
lim sup

———=1 as. 22.10
n—oo +/2nloglogn ( )
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The strategy of the proof is to embed the partial sums S,, of the random variables
in a Brownian motion and then use the law of the iterated logarithm for Brownian
motion. The Skorohod embedding theorem ensures that this works. We follow the
exposition in [39, Section 8.8].

Proof By Corollary 22.7, on a suitable probability space there exists a filtration [,
a Brownian motion B that is an [F-martingale, and stopping times 71 < 7 <... such
that (Sy,),eN 2 (Bz,)nen. Furthermore, the (1, — t,—1)nen are i.i.d. with E[7, —
T,—1]=Var[X ] =1.

By the law of the iterated logarithm for Brownian motion (see Theorem 22.1),
we have

B,
limsup ———==1 a.s.
;_mop /2tloglogt
Hence, it is enough to show that
B, — B
lim sup 1Bt = Baul _ 0 as.

1—oo /2tToglogr

By the strong law of large numbers (Theorem 5.17), we have %rn "% 1as., solet
& > 0 and let 7y = to(w) be large enough that

1 Tz)
<—=<1+¢ forallt>zg.
I+e !
Define
M, = sup |Bs — Bl

se[t/(14¢),t(1+¢)]

It is enough to show that

M,
limsup ———==0.
t%oop /2t loglogt

Consider the sequence t, = (1 + ¢)", n € N, and define

M) := sup |By— By, I

n
SE[tn—1,tn+2]
Then (by the triangle inequality), for ¢ € [f,, t,+11,
M, <2M,.

Lets:=(1+ 8)3 — 1. Then t,,42 —t,—1 = §t,—1. Brownian scaling and the reflection
principle (Theorem 21.19) now yield
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P[M,'l > /38,1 loglog t,,_l]

:P[ sup |Bs| > \/310glogtn_1]

s€[0,1]

< ZP[ sup Bg > w/310glogtn_1]

s€(0,1]

=4P[B; > /3loglogt,_1]
2

< -

~ J/3loglogt,—1

-3/2

3
exp <— 3 loglog tn_1> (Lemma 22.2)
<n

for n sufficiently large.

The probabilities can be summed over n; hence the Borel-Cantelli lemma yields

i M 2M,

imsup ——— < limsu

[_>oop J/tloglogt — n_)oop th—1loglogt,_1
<2+/34.

Letting ¢ — 0, we get § = (1 + &)> — 1 — 0, and hence the proof is complete. [



Chapter 23
Large Deviations

Except for the law of the iterated logarithm, so far we have encountered two types of
limit theorems for partial sums S, = X1 +...+ X,, n € N, of identically distributed,
real random variables (X;);cn with distribution function F':

(1) (Weak) laws of large numbers state that (under suitable assumptions on the fam-
ily (X;)ien), for every x > 0,

n—oo

P[|S, — nE[X ]| = xn] — 0. (23.1)
From this we get immediately that the empirical distribution functions
1 n
Fn X = ; 21(_00’)6](}(1')
1=

converge in probability; that is, | F, — Flco 227 0. In other words, for any
distribution function G # F and any ¢ > 0 with ¢ < || F — G|, We have

n—oo

P[IF, — Gl <&] — 0. (23.2)

(2) Central limit theorems state that (under different assumptions on the family
(Xi)ien) forevery x e R

N by
P[S, —nE[X{]> x/n "—°>°1—qb<7). 23.3
LS 112 xv] Var[X,] (23-3)
Here @ : t — Ny, 1 ((—00, t]) is the distribution function of the standard normal

distribution.

In each case, the rypical value of S, is nE[X1]. Equation (23.3) makes a precise
statement about the average size of the deviations (which are of order /n) from
the typical value. A simple consequence is of course that the probability of large
deviations (of order n) from the typical value goes to 0; that is, (23.1) holds.
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522 23 Large Deviations
In this chapter, we compute the speed of convergence in (23.1) (Cramér’s theo-

rem) and in (23.2) (Sanov’s theorem).
We follow in part the expositions in [31, 74].

23.1 Cramér’s Theorem

Let X1, X2, ... be i.i.d. with Px, = A ;. Then, for every x > 0,

P[S, > xn] =P[X| > xv/nl=1—®(x/n) = (1 + en>x jz%e"xz/z,

where &, 0 (by Lemma 22.2). Taking logarithms, we get

1 2
lim —logP[S, > xn]= _r for every x > 0. (23.4)
n—o00 n 2

It might be tempting to believe that a central limit theorem could be used to show
(23.4) for all centered i.i.d. sequences (X;) with finite variance. However, in gen-
eral, the limit might be infinite or might be a different function of x, as we will show
below. The moral is that large deviations depend more subtly on the tails of the dis-
tribution of X; than the average-sized fluctuations do (which are determined by the
variance only). The following theorem shows this for Bernoulli random variables.

Theorem 23.1 Let X1, X5, ... be iid withP[X;=—-1]1=P[X1=1]= % Then,
for every x > 0,

1
lim —logP[S, > xn]=—1(x), (23.5)
n—-oon
where the rate function [ is given by

Hilog(l +2) + 52 log(1 —2), ifzel-1,1],
I)=1 ? 2 (23.6)
0, iflz| > 1.

Remark 23.2 Here we agree that 0log0 = 0. This makes the restriction of / to
[—1, 1] a continuous function with I(—1) = I (1) = log?2. Note that [ is strictly
convex on [—1, 1] with 7/(0) =0 and / is monotone increasing on [0, 1] and is
monotone decreasing on [—1, 0]. O

Proof of Theorem 23.1 For x =0 and x > 1, the claim is trivial. For x = 1, we
have P[S, > n] = 27", and thus again (23.5) holds trivially. Hence, it is enough to
consider x € (0, 1). Since S"2+ o~ by /2 is binomially distributed, we have

(S, =xn]=2" Y (Z)

k>(14+x)n/2
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12)

Fig. 23.1 Rate function /(z) from (23.6)

Define a, (x) = [n(1 + x) /27 for n € N. Since k (Z) is monotone decreasing for

k> 7, we get
Qn(x):zmax{(n>:an(x)kan}=< " ) (23.7)
k ap(x)

We make the estimate
27" 0n(x) <P[S, = xn] < (n+ 127" 0, (x). (23.3)
By Stirling’s formula
1
lim —n"e "V2an=1,
n—oon!
we obtain
|
lim —log O, (x)
n—oon
n!

1
= lim —log
n—00 n a,(x)! - (n—a,(x))!

. 1 n"
= lim —log
n—>oon Ay (X)) (1 = a, (x))r— &)

an(x) n —ap(x)
n

log(an (x)) —

= nl;n;o |:10g(n) — 1% <log(l$) + log(n)>
1—x 1—-
-3 <log< 2 ) + 10g(n)>i|

1 1
- ;xlog( erx> ( . ):—I(x)+10g2.

Together with (23.8), this implies (23.5). O

= nll)n;o |:log(n) — log(n —ay (x))]
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Under certain assumptions on the distribution of X, Cramér’s theorem [29] pro-
vides a general principle to compute the rate function /.

Theorem 23.3 (Cramér (1938)) Let X1, X, ... be i.i.d. real random variables
with finite logarithmic moment generating function

A(t) :=1logE[e'*'] <co forallt eR. (23.9)
Let

A*(x) :=sup(tx — A(t)) forx €R,
teR

the Legendre transform of A. Then, for every x > E[X1],

lim llogP[Sn >xn]l=—1(x):=—-A%x). (23.10)

n—oon

Proof By passing to X; — x if necessary, we may assume E[X;] < 0 and x = 0.

(In fact, if X; := X; — x, and A and A* are defined as A and A* above but for X;

instead of X;, then A(f) = A(t) —t - x and thus A*(0) = sup, g (—A(1)) = A*(x).)
Define ¢(t) := ¢4® and

0= e MO = inf ¢(1).
teR

By (23.9) and the differentiation lemma (Theorem 6.28), ¢ is differentiable in-
finitely often and the first two derivatives are

¢ () =E[X1e'M] and ¢"(t) =E[X7e'M].

Hence g is strictly convex and ¢’ (0) = E[X{] < 0.
First consider the case P[X| < 0] = 1. Then ¢'(t) <0 for every r € R and ¢ =
lim;— 5 ¢ (¢) = P[X| = 0]. Therefore,

P[S, > 0] =P[X; =...=Xn=O]:Qn

and thus the claim follows.

Now let P[X; < 0] > 0 and P[X; > 0] > 0. Then lim;_, o ¢(t) = 00 =
lim;_, o @(t). As ¢ is strictly convex, there is a unique 7 € R at which ¢ assumes
its minimum; hence

p(t)=¢ and ¢'(r)=0.

Since ¢’(0) < 0, we have T > 0. Using Markov’s inequality (Theorem 5.11), we
estimate

P[S, > 0] =P[e™ > 1] <E[e™ ] =p(r)" = 0"
Thus we get the upper bound

1
limsup — log P[S,, > 0] <logo = —A*(0).

n—oo N
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The remaining part of the proof is dedicated to verifying the reverse inequality:
1
liminf — log P[S, > 0] > logo. (23.11)
n—oo n
‘We use the method of an exponential size-biasing of the distribution p := Py, of X1,

which turns the atypical values that are of interest here into typical values. That is,
we define the Cramér transform 1 € M (R) of u by

f(dx) =0 'e" u(dx) forx eR.
Let X 1 X 2, ... be independent and identically distributed with P = (. Then

1 1
¢(1) :=E[1] = —/ Tet u(dx) = —o(t + 7).
e Jr Q
Hence
A . 1
E[X|]=¢'(0) = 5<p/(f) =0,
v N 1 "
Var[X]=¢"(0) = Ew (7) € (0, 00).
Defining 3‘,1 = )A(l +...+ )A(n, we get

P[S, = 0] = / w(dxr) ... (don)
{x1+...4+x,>0}

= f (Qe_”‘),&(dxl) . (Qe_””)/l(dxn)
{x1+...4+x,>0}

—Q”E[ —rS,,]]_{S >0}]

Thus, in order to show (23.11), it is enough to show

1
liminf — log E[e 75111{§n>0}] > 0. (23.12)

n—oo n

However, by the central limit theorem (Theorem 15.37), for every ¢ > 0,

1 —18, !
;logE[ Ly, >0}] ;logE[ {0<S,z<cf}]
1 S
> —log( e TV'P| 2L €0,
= og(e [ﬁe[ C]D
. —tc/n
"% lim + lim —log(/\/'o’Var[}gl]([O, c1))

n—00 n n—oon
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Example 23.4 If Py, = No.1, then

1 o0 2 2
A(t) = lOg(E[etXl]) = log<—/ e /zdx> = 7

V2 J—o
Furthermore,
t2 22
a7 =suplez ) =sup(1z -5 ) =5
teR teR 2 2
Hence the rate function coincides with that of (23.4). o

Example 23.5 If Px, = s 1+ %81, then A(f) =logcosh(z). The maximizer t* =
t*(z) of the variational problem for A* solves the equation z = A’(¢*) = tanh(r*).
Hence

A*(z) =zt — A(t*) = zarctanh(z) — log(cosh(arctanh(z))).

Now arc tanh(z) = 1 log {%ﬁ forz € (—1,1) and

1 1
cosh(arctanh(z)) = NN (R

Therefore,

z Z 1 1
A*(z) = > log(1 +2z) — > log(1 —z) + Elog(l -2+ Elog(l +2)

1+

z 1—-z2
3 log(1+2z) +

2

log(1 — z).
However, this is the rate function from Theorem 23.1. O

Exercise 23.1.1 Let X be a real random variable with density

ol

_ —1
f(x)_c l—{—|x|3’

oo e Ixl
where ¢ = [° T

is continuous and sketch the graph of A.

dx. Check if the logarithmic moment generating function A

23.2 Large Deviations Principle

The basic idea of Cramér’s theorem is to quantify the probabilities of rare events
by an exponential rate and a rate function. In this section, we develop a formal



23.2 Large Deviations Principle 527

framework for the quantification of probabilities of rare events in which the com-
plete theory of large deviations can be developed. For further reading, consult, e.g.,
[31, 32] or [74].

Let E be a Polish space with complete metric d. Recall that

B:.(x) = {y eE:dx,y) <£}

denotes the open ball of radius ¢ > 0 that is centered at x € E.

Amap f: E — R =[—00,00] is called lower semicontinuous if, for every
a € R, the level set f -1 ([—00, a]) C E is closed. (In particular, continuous maps are
lower semicontinuous. On the other hand, 1(g,1) : R — R is lower semicontinuous
but not continuous.) An equivalent condition for lower semicontinuity is that

liminf £ (Be(x) = f(x) forall x € E.

(Recall that inf f(A) = inf{f(x) : x € A}.) If K C E is compact and nonempty,
then f assumes its infimum on K. Indeed, for the case where f(x) = oo for all
x € K, the statement is trivial. Now assume inf f(K) < oo. If a, | inf f(K) is
strictly monotone decreasing, then K N f~!([—00, a,]) # ¥ is compact for every
n € N and hence the infinite intersection also is nonempty:

f N inf f(K)) =K N[ £ (100, an]) # 0.
n=1

Definition 23.6 (Rate function) A lower semicontinuous function / : E — [0, o0]
is called a rate function. If all level sets I_l([—oo, al), a € [0, 00), are compact,
then 1 is called a good rate function.

Definition 23.7 (Large deviations principle) Let / be a rate function and (¢)s~0
be a family of probability measures on E. We say that (i,)e~0 satisfies a large
deviations principle (LDP) with rate function [ if

(LDP 1) liminf;_,¢elog(us(U)) = —inf I (U) for every open U C E,
(LDP 2) limsup,_, elog(us(C)) < —infI(C) for every closed C C E.

We say that a family (P,),en of probability measures on E satisfies an LDP with
rate r, 1 oo and rate function 7 if (LDP 1) and (LDP 2) hold with ¢, = 1/r,, and

MK1/r, = P,.

Often (LDP 1) and (LDP 2) are referred to as lower bound and upper bound. In
many cases, the lower bound is a lot easier to show than the upper bound.

Before we show that Cramér’s theorem is essentially an LDP, we make two tech-
nical statements.

Theorem 23.8 The rate function in an LDP is unique.
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Proof Assume that (u¢)s~0 satisfies an LDP with rate functions I and J. Then, for
every x € E and § > 0,

I(x) > infI(Bs(x))

> —liminf ¢ log(is (B (1))
e—

> —limsup e log (e (Bs(x)))

e—0

> inf J (Bs(0)) =3 J (x).

Hence I (x) > J(x). Similarly, we get J(x) > I (x). O
Lemma 23.9 Let N € N and let aé, i=1,...,N, e >0, be nonnegative numbers.
Then
N . .
limsup ¢ log Z a, = max limsup e log(ay).
e—0 =1, e—0

i=1

Proof The sum and maximum differ at most by a factor N:

N
Estlog(aé) < 810g2a£ < elog(N) + maxNelog(aé).

=l
i=1

i=
The maximum and limit (superior) can be interchanged and hence

~max_limsupelog(a;) =lim supslog(. max afg)
i=1,.., N <50 £—0 i=1,..,N

N
<limsupelog (Z aé)

e—0 i=1

< limsupelog(N) + max limsup e log(a’)

e—0 =L..., e—=0

= max limsupelog(al).
i=L.N .0

O

Example 23.10 Let X1, X», ... bei.i.d. real random variables that satisfy the condi-
tion of Cramér’s theorem (Theorem 23.3); i.e., A(t) = log(E[¢'*1]) < oo for every
t € R. Furthermore, let S,, = X1 +...+ X, for every n. We will show that Cramér’s
theorem implies that P, := Pg, /,, satisfies an LDP with rate n and with good rate
function I (x) = A*(x) := sup,cr(tx — A(t)). Without loss of generality, we can
assume that E[X 1] = 0. The function [ is lower semicontinuous, strictly convex (in
the interval where it is finite) and has its unique minimum at / (0) = 0. By convexity,
we have I (y) > I(x) whenever y >x >0ory <x <0.
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Cramér’s theorem says that lim,,—, o rll log(P,([x,00))) = —1(x) for x > 0 and
(by symmetry) lim,_, o0 £ - 1og(Py ((—00, x])) = —1 (x) for x < 0. Clearly, for x > 0,

1
—I(x) > liminf — log P, ((x, oo))
n—oo n

1
> supllmmf log Py ([y, 00)) = _yh;];](y)'

y>x N—>00

Similarly, liminf,_ o0 £ - log Py ((—00, x)) > —infy, I (y) for x < 0. Furthermore,
by the law of large numbers for any x > 0, we have

lim llog Pn((—x,oo)) = lim llog P,,([—x,oo))
n—-oon n—-oon

= lim llogP (( 00, x))_ hm llogP (( 00, x])

n—-oon

—0=—1(0).

The main work has been done by showing that the family (P,),cN satisfies condi-
tions (LDP 1) and (LDP 2) at least for unbounded intervals. It remains to show by
some standard arguments (LDP 1) and (LDP 2) for arbitrary open and closed sets,
respectively.

First assume that C C R is closed. Define x4 := inf(C N[0, 00)) as well as x_ :=
sup(C N(—o0, 0]). By monotonicity of 7, on (—oo, 0] and [0, c0), we getinf I (C) =
I(x_) A I(x4) (with the convention I (—o00) = I(c0) =00). If x_ =0 or x4y =0,
then inf(/ (C)) =0, and (LDP 2) holds trivially. Now let x_ < 0 < x.

Using Lemma 23.9, we get

1
lim sup log P,(C)

n—oo

1
<11msup—log( 2 ((—00, x_1) + Py ([x4, 00)))

n— 00
. 1 ) 1
= max{hm sup — log P, ((—oo, x_]), limsup — log P, ([x+, oo)) }
n—oo N n—oo N
=max{—1(x_), =1 (x4)} = —inf I (C).
This shows (LDP 2).

Now let U C R be open. Let x € U N[0, oo) with [ (x) < oo (if such an x exists).
Then there exists an ¢ > 0 with (x — e, x +¢) C U. Now

1
liminf — log P,,((x —e&, oo)) >—I(x)>—-I(x+¢)

n—oo

. 1
= lim —log P,([x + &, 00)).

n—oon
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Therefore,
o1 L1
liminf —log P, (U) > liminf — log P, ((x —&,x+ 8))
n—-oo n n—>oo n
|
= lb“igéf; log(Py((x — &,00)) — Py ([x + &, 00)))
1
= liminf — log(P,, ((x —&, oo))) > —1(x).

n—oo n
Similarly, this also holds for x € U N (—o00, 0) with I (x) < oo; hence
o1 .
liminf —log P,(U) > —inf I (U).
n—-oo n
This shows the lower bound (LDP 1). O
In fact, the condition A(#) < oo for all € R can be dropped. Since A(0) =0,
we have A*(x) > 0 for every x € R. The map A* is a convex rate function but is, in

general, not a good rate function. We quote the following strengthening of Cramér’s
Theorem (see [31, Theorem 2.2.3]).

Theorem 23.11 (Cramér) If X1, X»,... are i.i.d. real random variables, then
(Ps,/n)neN satisfies an LDP with rate function A*.

Exercise 23.2.1 Let E = R. Show that u, := N . satisfies an LDP with good rate
function I (x) = x2/2. Further, show that strict inequality can hold in the upper
bound (LDP 2).

Exercise 23.2.2 Let E = R. Show that 1, := N .2 satisfies an LDP with good rate
function /(x) = 00 - 1gr\{0}(x). Further, show that strict inequality can hold in the
lower bound (LDP 1).

Exercise 23.2.3 Let £ = R. Show that u, := %J\/_l,g + %N 1. satisfies an LDP
with good rate function 7 (x) = %min((x + D2, (x — D?).

Exercise 23.2.4 Compute A and A* in the case X| ~ expy for 6 > 0. Interpret the
statement of Theorem 23.11 in this case. Check that A* has its unique zero at E[X].
(Result: A*(x) =0x —log(fx) — 1 if x > 0 and = oo otherwise.)

Exercise 23.2.5 Compute A and A* for the case where X is Cauchy distributed
and interpret the statement of Theorem 23.11.

Exercise 23.2.6 Let X, ~ Poi,, for every A > 0. Show that p, :=Pex, Je satisfies
an LDP with good rate function 7 (x) = xlog(x/A) + » — x for x > 0 (and = oo
otherwise).
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Exercise 23.2.7 Let (X;):>0 be a random walk on Z in continuous time that makes
a jump to the right with rate % and a jump to the left also with rate % Show that

(Pex, ), )e>0 satisfies an LDP with convex good rate function

I(x) =1+ xarcsinh(x) —+/1 + x2.

23.3 Sanov’s Theorem

This section is close to the exposition in [31].

We present a large deviations principle that, unlike Cramér’s theorem, is not
based on a linear space. Rather, we consider empirical distributions of independent
random variables with values in a finite set ', which often is called an alphabet.

Let 1 be a probability measure on X with w({x}) > O for any x € X'. Further,
let X1, X5, ... be ii.d. random variables with values in ¥ and with distribution
Py, = . We will derive a large deviations principle for the empirical measures

600 =3 ox,

i=1

Note that by the law of large numbers, P-almost surely &,(X) = . Hence, as
the state space we get E = M;(X), equipped with the metric of total variation
d(u,v) =l —vl|rv. (As X is finite, in E vague convergence, weak convergence
and convergence in total variation coincide.) Further, let

E, = {/L e Mi(X) :nu({x}) € Ny for every x € Z‘}

be the range of the random variables &, (X).
Recall that the entropy of u is defined by

H(u) =~ f log(1a({x1)) u(dx).

If v e M (X), then we define the relative entropy (or Kullback—Leibler informa-
tion, see [104]) of v given u by

Hyv|p):= /log(m)v(dx). (23.13)
p({x})

Since pw({x}) > O for all x € X, the integrand v-a.s. is finite and hence the inte-
gral also is finite. A simple application of Jensen’s inequality yields H (x) > 0 and
H(v | ) >0 (see Lemma 5.26 and Exercise 5.3.3). Furthermore, H(v | u) =0 if
and only if v = p. In addition, clearly,

Hyv|pw)+HWw) = —/log(,u({x}))v(dx). (23.14)

Since the map v +— 1, (v) := H(v | u) is continuous, /1, is a rate function.
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Lemma 23.12 For everyn € Nand v € E,, we have

(n+ 1) *F e HUIW < Pg,(X) =v] < e AW, (23.15)

Proof We consider the set of possible values for the n-tuple (X1, ..., X,;) such that
& (X)=v:

1 n
An(v) = [k:(kl,...,k,,) ext =Y 5, =v}.
n
i=l1

For every k € A,,(v), we have (compare (23.14))
P[E,,(X) = v] =#A,VPX|1 =ki,..., X, =k,]
=#4,0) [T ()™ ™

xeX

=#A,(v) exp(nfv(dx)logu({x}))
=#A,(v) exp(—n [H(v) + H(®v | ,u)]).

Now let Y1, Y», ... be i.i.d. random variables with values in X' and with distribution
Py, =v. As in the calculation for X, we obtain (since H(v | v) =0)

1> P[&,(Y) =v] =#A,(n)e"HO);

hence #A,(v) < ¢ () This implies the second inequality in (23.15).

The random variable n§,(Y) has the multinomial distribution with parameters
(mv({x})xex. Hence the map E, — [0, 1], v/ > P[£,(Y) = V'] is maximal at
v/ = v. Therefore,

enH(v)

#E,

#A,(v) = e”H(”)P[En(Y) = v] > ) H#ESHO),

> (n+
This implies the first inequality in (23.15). g

We come to the main theorem of this section, Sanov’s theorem (see [149, 150]).

Theorem 23.13 (Sanov (1957)) Let X1, X2, ... be i.i.d. random variables with
values in the finite set X and with distribution . Then the family (Pg, (x))neN of
distributions of empirical measures satisfies an LDP with rate n and rate function

I, := H(-|p).
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Proof By Lemma 23.12, for every A C E,

Ple,(X)eA]= ) PE(X)=1]

veEANE,

< Z e HHOIW

vEANE,
<#(ANE,)exp(—ninfl, (ANE,))
< (n+ D** exp(—ninf1,(4)).
Therefore,
lig s;p % logP[£,(X) € A] < —infI,(A).

Hence the upper bound in the LDP holds (even for arbitrary A).
Similarly, we can use the first inequality in Lemma 23.12 to get

P[&,(X) € A] = (n+ 1)"** exp(—ninf I, (AN E,))

and thus

1
liminf — logP[&,(X) € A] = —limsupinf I, (A N E,). (23.16)
n—oo n n—00
Note that, in this inequality, in the infimum we cannot simply replace A N E,
by A. However, we show that, for open A this can be done at least asymptotically.
Hence, let A C E be open. For v € A, there is an ¢ > 0 with B,(v) C A. For n >

(2#X) /e, we have E, N B.(v) # ¥ and hence there exists a sequence v, "% with
v, € E,; N A for large n € N. As I, is continuous, we have

limsupinf I, (AN E,) < lim I,(v,) =1,(v).
n— oo

n—oo

Since v € A is arbitrary, we get limsup,,_, ,inf I, (AN E,) =inf 1, (A). U

Example 23.14 Let ¥ = {—1,1} and let u = 38_1 + 18; be the uniform distri-
bution on X. Define m = m(v) := v({1}) — v({—1}). Then the relative entropy of
veM(X)is

+m 1—m

1
HWv|p = log(1 +m) +

log(1 — m).

Note that this is the rate function from Theorem 23.1.

Next we describe formally the connection between the LDPs of Sanov and
Cramér that was indicated in the previous example. To this end, we use Sanov’s
theorem to derive a version of Cramér’s theorem for R?-valued random variables
taking only finitely many different values. O
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Example 23.15 Let ¥ C RY be finite and let u be a probability measure on X.
Further, let X, X5, ... be i.i.d. random variables with values in X and distribution
Px, = . Define S, = X1 + ...+ X,, forevery n € N. Let A(t) = logE[e"X")] for
t € R? (which is finite since X is finite) and A*(x) = sup;cga ({t, x) — A(t)) for
x e R4,

We show that (Pg, /n)nen satisfies an LDP with rate # and rate function A*.

Let &,(X) be the empirical measure of X1, ..., X,,. Let E := M (X). Define the
map

m:E— R4, vn—)/xv(dx):va({x}).

xeX

That is, m maps v to its first moment. Clearly, %Sn = m(&,(X)). For x € R? and
A C RY, define

Ec:=m ' ({x})={ve E:m@) =x]
and
Ex=m'(A)={ve E:m@) e A}.
The map v — m(v) is continuous; hence E 4 is open (respectively closed) if A is
open (respectively closed). Let I (x) :=inf I, (E,) (where I,,(v) = H(v | u) is the
relative entropy). Then, by Sanov’s theorem for open U C R?,
o1 . _1
liminf —logPg, /, (U) = liminf — log P, (x) (m (U))
n—-oo n n—-oo n

> —inf 1, (m~'(U)) = —inf (V).

Similarly, for closed C c R?, we have

1 -
limsup — log Py, /,(C) < —infI(C).
n

n—oo

In other words, (Ps, /z)sen satisfies an LDP with rate n and rate function I. Hence,
it only remains to show that I = A*.

Note that r — A(z) is differentiable (with derivative A”) and is strictly convex.
Hence the variational problem for A*(x) admits a unique maximizer ¢*(x). More
precisely,

A*(x) = (1" (x), x) — A(t*(x)),
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A*(x) > (t,x) — A(¢t) for all 1 # t*(x), and A’(+*(x)) = x. By Jensen’s inequality,
for every v e M (X),

A(t) =log / e u(dy)

—1 <;,y>ﬂ({y})> d
"g/<e wop )V

1 (;,y)l/v({y})) d
Z/Og(e von )V

= {t.m@) = Hv | )

—A(D)

with equality if and only if v = v;, where v, ({y}) = u({y})e®?) . Hence,

(t,x) —A@) < inbf H(v|p)

with equality if v; € E,. However, we now know that m(v;) = A’(¢); hence we have
Vpr(x) € Ey and thus

A*(x) = (" (x), x) — A(t*(0)) = vienbfx HW | =1(). o

The method of the proof that we applied in the last example to derive the LDP
with rate function [ is called a contraction principle. We formulate this principle as
a theorem.

Theorem 23.16 (Contraction principle) Assume the family (ig)e~0 of probability
measures on E satisfies an LDP with rate function 1. If F is a topological space
and m : E — F is continuous, then the image measures (jLg o mDeo satisfy an
LDP with rate function i(x) =inf I (m~! {x}).

23.4 Varadhan’s Lemma and Free Energy

Assume that (ug)e~0 is a family of probability measures that satisfies an LDP with
rate function /. In particular, we know that, for small ¢ > 0, the mass of w, is
concentrated around the zeros of /. In statistical physics, one is often interested in
integrating with respect to w, (where 1/¢ is interpreted as “size of the system”) func-
tions that attain their maximal values away from the zeros of /. In addition, these
functions are exponentially scaled with 1/¢. Hence the aim is to study the asymp-
totics of Zf = f e? /e (dx) as ¢ — 0. Under some mild conditions on the con-
tinuity of ¢, the main contribution to the integral comes from those points x that are
not too unlikely (for u.) and for which at the same time ¢ (x) is large. That is, those
x for which ¢ (x) — I(x) is close to its maximum. These contributions are quan-
tified in terms of the tilted probability measures uf (dx) = (Z&)~1e® ™/ 11, (dx),
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¢ > 0, for which we derive an LDP. As an application, we get the statistical physics
principle of minimising the free energy. As an example, we analyze the Weiss fer-
romagnet.

We start with a lemma that is due to Varadhan [166].

Theorem 23.17 (Varadhan’s Lemma (1966)) Let I be a good rate function and
let (ue)e=0 be a family of probability measures on E that satisfies an LDP with
rate function I. Further, let ¢ : E — R be continuous and assume that

inf limsup e log / e? Ve )=y e (dx) = —00. (23.17)
e—0
Then
lim 810g/ Dy (dx) = sup(p(x) — 1 (x)). (23.18)
e—0 xeE

Remark 23.18 (Moment condition) The tail condition (23.17) holds if there exists
an o > 1 such that

limsupelogfe"“i’/gcl,w€ < 00. (23.19)

e—0

Indeed, for every M € R, we have
810g/e‘f’(x)/sll{(p(x)zM}us(dx) =M +slog/e(‘f’(x)_M)/g]l{q;(x)zM}ue(dx)
<M —I—slog/e"‘@(x)*M)/eug(dx)

=—(u— 1M +£10g/ PO/ (dx).
Together with (23.19), this implies (23.17). O

Proof We use different arguments to show that the right-hand side of (23.18) is a
lower and an upper bound for the left-hand side.
Lower bound. For any x € E and r > 0, we have

liminfe log / e?/? dy, > liminfe log / e dp,
0 ¢0 B.(x)

> inf (B (1) —1(x) =5 ¢ (x) — 1 (x).

Upper bound. For M > 0 and ¢ > 0, define

Fy, :=f e?™/e (dx) and Gy :=/ /e (dx).
{p=M} {p<M}
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Define

Fy :=limsupelog Fy; and Gy :=limsupelogGj,.

e—0 e—0

By Lemma 23.9, for any M > 0,

limsupslog/e¢(x)/€ug(dx) =FyVvGy.

e—0

As by assumption infy;~.o Fpr = —00, it is enough to show that
sup G < sup(¢(x) — I (x)). (23.20)
M=>0 xeE

Let § > 0. For any x € E there is an r(x) > 0 with
ian(Bzr(x) (x)) >I(x)—46 and Sup(]ﬁ(Bzr(x) (x)) <¢(x)+34.

Let a > 0. Since [ is a good rate function, the level set K := I~1([0,a]) is
compact. Thus we can find finitely many xi,...,xy € 1 ’1([0, a]) such that
UlNzl B, (x;)(xi) D K. Therefore,

G%, 5/ Wy, (dx)+Z/ e?/E 1 (dx)
{p<M)NK¢ {@p<M}NBy(x;) (xi)

N

<M (KO)+ ) e @My (B (x1))
i=1

N
— (Melog(ur (Ko 5 (@ G)AM--8-+elog (e (Brip (D)

i=1
Using Lemma 23.9 and the LDP, we infer

Gy <M —a)Vv max (¢(x,-) — 1 (x;) +29)

i=l1,...,

< (M —a) Vsup(p(x) — I (x)) +28.

xeE

By letting first § | 0 and then a 1 oo, we obtain (23.20). g
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Theorem 23.19 (Tilted LDP) Assume that (i¢)e~0 satisfies an LDP with good
rate function I. Further, let ¢ : E — R be a continuous function that satisfies
condition (23.17). Define Z? = fe¢/€ dug and /L? € M(E) by

-1
pe(dx) = (22) " e? " e (d).
Further, define 1?: E — [0, 00] by

I2(x) =sup(¢(2) — 1 (2)) — (p(x) — I (x)). (23.21)

zeE

Then (M?)5>0 satisfies an LDP with rate function I .

Proof This is left as an exercise. (Compare [32, Exercise 2.1.24], see also [43, Sec-
tion I1.7].) O

Varadhan’s lemma has various applications in statistical physics. Consider a Pol-
ish space X that is interpreted as the space of possible states of a particle. Further,
let & € M (X)) be a distribution that is understood as the a priori distribution of this
particle if the influence of energy could be neglected. If X is finite or is a bounded
subset of an R?, then by symmetry, typically A is the uniform distribution on X.
If we place n indistinguishable particles independently according to A on the ran-
dom positions z1, ..., z, € X, then the state of this ensemble can be described by
X = %Z;’:l d;,. Denote by ;LS € M (M (X)) the corresponding a priori distri-
bution of x; that is, of the n-particle system.

Now we introduce the hypothesis that the energy U, (x) of a state has the form
U,(x) =nU (x), where U (x) is the average energy of one particle of the ensemble
in state x.

Let T > 0 be the temperature of the system and let 8 := 1/T be the so-called
inverse temperature. In statistical physics, a key quantity is the so-called partition

function

Zf ::/e_ﬂU"d,uS.

A postulate of statistical physics is that the distribution of the state x is the Bolz-
mann distribution:

b (dx) = (28) e U™ 10 (dx). (23.22)

Varadhan’s lemma (more precisely, the tilted LDP) and Sanov’s theorem are the
keys to building a connection to the variational principle for the free energy. For
simplicity, assume that X' is a finite set and A = Uy is the uniform distribution
on X. By Sanov’s theorem, (ug)neN satisfies an LDP with rate n and rate function
I(x) = H(x|A), where H(x|)) is the relative entropy of x with respect to A. By
(23.14), we have H (x|A) =log(#X') — H (x), where H (x) is the entropy of x.
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Fig. 23.2 The shifted free energy F#(m) — F#(0) of the Weiss ferromagnet without exterior field
(h=0)

Define the free energy (or Helmholtz potential) per particle as
FP(x):=Ux) — B 'Hx).

The theorem on the tilted LDP yields that the sequence of Boltzmann distributions
(Mﬁ )neN satisfies an LDP with rate n and rate function

Px)=Ff(x)— inf FB(y).
yeMis) .

Thus, for large n, the Boltzmann distribution is concentrated on those x that min-
imize the free energy. For different temperatures (that is, for different values of B)
these can be very different states. This is the reason for phase transitions at critical
temperatures (e.g., melting ice).

Example 23.20 We consider the Weiss ferromagnet. This is a microscopic model
for a magnet that assumes that each of n indistinguishable magnetic particles has
one of two possible orientations o; € ¥ = {—1,+1}. The mean magnetization
m = %Z?:l o; describes the state of the system completely (as the particles are
indistinguishable). Macroscopically, this is the quantity that can be measured. The
basic idea is that it is energetically favorable for particles to be oriented in the same
direction. We ignore the spatial structure and assume that any particle interacts with
any other particle in the same way. This is often called the mean field assumption.
In addition, we assume that there is an exterior magnetic field of strength /. Thus
up to constants the average energy of a particle is

U(m) = —lm2 —hm
=—3 .
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beta=0.9
beta=1.0
beta=1.1 —0.1
beta=1.5

Fig. 23.3 Shifted free energy FP(m) — F#(0) of the Weiss ferromagnet with exterior field
h=0.04

The entropy of the state m is

14+m l+m l—m 1—m
H(m)=— 5 log< 5 )— 5 log< )

Hence the average free energy of a particle is

1 1 1 1— 1-
Fﬁ(m):—imz—hm—i-ﬂ_][ —;mlog< ;m)—i- 2mlog< 2m>:|

In order to obtain the minima of F#, we compute the derivative

0= -LFP(m)=—m — h+ B~ arctanh(m).
Hence, m solves the equation
m= tanh(,B(m + h)). (23.23)

In the case & =0, m = 0 is a solution of (23.23) for any 8. If 8 < 1, then this is the
only solution and F7# attains its global minimum at m = 0. If 8 > 1, then (23.23)
has two other solutions, m’i‘o € (—1,0) and mf_’o = —mﬁ‘o

be computed numerically.

, whose values can only

In this case, F# has a local maximum at O and has global minima m?°. For
large n, only those values of m for which F# is close to its minimal value can be

attained and thus the distribution is concentrated around O if 8 < 1 and around mﬁ -0

if 8 > 1. In the latter case, the absolute value of the mean magnetization is |mi’0| =

mﬁ’o > 0. Hence, there is a phase transition between the high temperature phase

(B < 1) without magnetization and the low temperature phase (8 > 1) where so-
called spontaneous magnetization occurs (that is, magnetization without an exterior
field).
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Fig. 23.4 Weiss ferromagnet: magnetization m?” as a function of 8

If h # 0, then F# does not have a minimum at m = 0. Rather, F# is asymmetric
and has a global minimum m?” with the same sign as A. Furthermore, for large f,
there is another minimum with the opposite sign. Again, the exact values can only
be computed numerically. However, for high temperatures (small 8), we can ap-
proximate mbh using the approximation tanh(8(m + h)) =~ B(m + h). Hence we
get

hay M _
Bl—1 T-T.

where the Curie temperature T, = 1 is the critical temperature for spontaneous mag-

netization. The relation (23.24) is called the Curie—Weiss law. O

mb for T — o0, (23.24)




Chapter 24
The Poisson Point Process

Poisson point processes can be used as a cornerstone in the construction of very
different stochastic objects such as, for example, infinitely divisible distributions,
Markov processes with complex dynamics, objects of stochastic geometry and so
forth.

In this chapter, we briefly develop the general framework of random measures
and construct the Poisson point process and characterize it in terms of its Laplace
transform. As an application we construct a certain subordinator and show that the
Poisson point process is the invariant measure of systems of independent random
walks. Via the connection with subordinators, in the third section, we construct two
distributions that play prominent roles in population genetics: the Poisson—Dirichlet
distribution and the GEM distribution.

For a nice exposition including many examples, see also [99].

24.1 Random Measures

In the following, let E be a locally compact Polish space (for example, E = R? or
E =74) with Borel o -algebra B(E). Let

By(E) = {B € B(E) : B is relatively compact}

be the system of bounded Borel sets and M (E) the space of Radon measures on E
(see Definition 13.3).

Definition 24.1 Denote by M = o (I4 : A € By(E)) the smallest o-algebra on
M(E) with respect to which all maps

Ia > p(A),  AeBy(E),

are measurable.
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Denote by B (E) the set of measurable maps E — [0, oo] and by B}?(E ) the set
of bounded measurable maps E — R with compact support. For every f € BY(E),
the integral I7(u) := ffd,u is well-defined and for every f € Bﬁlf(E), Ir(p) is
well-defined and finite.

Theorem 24.2 Let 1, be the vague topology on M(E). Then
M=B(t)=0c(lf: feC(E))=0c(lf: feCIE)).
Proof This is left as an exercise. (See [82, Lemma 4.1].) O

Let M (E) be the space of all measures on E endowed with the o -algebra
M=o0(I4: A€ By(E)).

Choose a countable dense set /' C E, and for any x € F' choose a compact neigh-
borhood K. Then we get (compare Exercise 13.1.8)

M(E) = ({r e M(E) : u(K,) < oo}

xeF

Hence M(E) € M. Clearly, M = M|M(E) is the trace o -algebra of M on M(E).
Here we need the slightly larger space in order to define random measures in such a
way that all almost surely well-defined operations on random measures again yield
random measures.

Definition 24.3 A random measure on E is a random variable X on some proba-
bility space (£2, A, P) with values in (M(E), M) and with P[X € M(E)] = 1.

Theorem 24.4 Let X be a random measure on E. Then the set function
E[X]:B(E) — [0,00], A E[X (A)] is a measure. We call E[X] the intensity
measure of X. We say that X is integrable if E[X] € M(E).

Proof Clearly, E[X] is finitely additive. Let A, Aj, Ay, ... € B(E) with A, 1 A.
Consider the random variables Y, := X(A,) and Y = X(A). Then Y, 1 Y and

n—oo

hence, by monotone convergence, E[X](A,) = E[Y,] — E[Y] = E[X](A).
Hence E[X] is lower semicontinuous and is thus a measure (by Theorem 1.36). [J

Theorem 24.5 Let Py be the distribution of a random measure X. Then Py is
uniquely determined by the distributions of either of the families

(Upsoo o Ig)neN; fi,..., fa€ CH(E)) (24.1)
or

((IAl, oo dp)neN; Ay, Ay € Bp(E) pairwise disjoint). (24.2)
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Proof The class of sets

I={Uyp.....I;) (A :neN; fi,.... fu e CHE), A e B([0,00)")}
is a w-system and by Theorem 24.2 it generates M. Hence the measure Py is char-

acterized by its values on Z.
Similarly, the claim follows for

((IAI,...,IA”):neN;Al,...,AneBb(E)).
If Ay,..., A, € By(E) are arbitrary, then there exist 2" — 1 pairwise disjoint sets
Bi,...,By_1 with A; = Uk:BkcAi By for all i = 1,...,n. The distribution of
({a,,-..,1a,) can be computed from that of (I, ..., Ipu_,). O

In the following, let i = +/—1 be the imaginary unit.

Definition 24.6 Let X be a random measure on E. Denote by

ﬁx(f)=E[eXp<—/de)} feB(E),

the Laplace transform of X and by

ox(f) = E[exp(i f de)}, € By(E),
the characteristic function of X.

Theorem 24.7 The distribution Py of a random measure X is characterized by its
Laplace transform Lx(f), f € CI(E), as well as by its characteristic function

@x(f), f € Ce(E).

Proof This is a consequence of Theorem 24.5 and the uniqueness theorem for char-
acteristic functions (Theorem 15.8) and for Laplace transforms (Exercise 15.1.2) of
random variables on [0, 00)”. O

Definition 24.8 We say that a random measure X on E has independent increments
if, for any choice of finitely many pairwise disjoint measurable sets Ay, ..., A,, the

random variables X (A1), ..., X (A,) are independent.

Corollary 24.9 The distribution of a random measure X on E with independent
increments is uniquely determined by the family (Px 4y, A € Bp(E)).

Proof This is an immediate consequence of Theorem 24.5. g
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Fig. 24.1 Poisson point process on the unit square with intensity measure 50A

Definition 24.10 Let © € M(E). A random measure X with independent incre-
ments is called a Poisson point process (PPP) with intensity measure p if, for
any A € By(E), we have Px(4) = Poi,(4). In this case, we write PPP, :=Px €
M{(M(E)) and say that X is a PPP,,.

See Fig. 24.1 for a simulation of a Poisson point process on the unit square.

Remark 24.11 The definition of the PPP (and its construction in the following the-
orem) still works if (E, £, ) is only assumed to be a o-finite measure space. How-
ever, the characterization in terms of Laplace transforms is a bit simpler in the case
of locally compact Polish spaces considered here. O

Theorem 24.12 For every n € M(E), there exists a Poisson point process X with
intensity measure [L.

Proof u is o-finite since u € M(E). Hence there exist E,, 1 E with u(E,) < 0o
for every n € N. Define uy = u(E; N -) and w, = w((E, \ Ey—1) N ») for n > 2.
If X1, X2, ... are independent Poisson point processes with intensity measures
w1, 42, ..., then X = 2311 X, has intensity measure E[X] = u and hence X is
a random measure (see Exercise 24.1.1). Furthermore, it is easy to see that X has
independent increments and that

Pxa) =Px,a) *Px,(a) * ... =Poiy, (a) * Poiy,(a) * ... =Poiya).

Hence we have X ~ PPP,,.
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Therefore, it is enough to consider the case w(E) € (0, 0o). Define

_ n(-)

——— c M(E).
(g S MIE)

Let N, Yy, Y2, ... be independent random variables with N ~ Poi, gy and Py, = v
for all i € N. Define

N
X(A) = ZILA(Y") for A € B(E).

n=1

The random variables 14(Y7),14(Y2),... are independent and Ber,(4)-distrib-
uted; hence we have X (A) ~ Poiy4) (see Theorem 15.14(ii)). Let n € N and let
Ay, ..., A, € B(E) be pairwise disjoint. Then

() :=E[exp<i an,(m)] =1+ (e —1), reR”,
=1 =1

is the characteristic function of (14,(Y1),...,14,(Y1)). Further, let ¢ be the char-
acteristic function of (X (A1), ..., X(A,)) and let ¢; be the characteristic function
of X(A;) forl=1,...,n. Hence

oi(t1) = exp(u(Ap (e — 1)).

By Theorem 15.14(iii), we have

o) = E[exp(i Zth(Al)):|
=1

=exp(u(E) (¥ () — 1))
= exp(Z,u,(Al)(em — 1)) = l_lﬂl’l(fl)-
=1 =1

Thus X (A1), ..., X(A,) are independent. This implies X ~ PPP,,. O

Exercise 24.1.1 Let X, X», ... be random measures and Ay, Ay, ... € [0, 00). De-
fine X := Y 2 | A, X,. Show that X is a random measure if and only if we have
P[X(B) < o] = 1 for all B € By(E). Infer that if X is a random variable with
values in (M(E) M(E)) and E[X] € M(E), then X is a random measure.

Exercise 24.1.2 Let 7, be the topology of weak convergence on M (E) and let

o (ty) be the Borel o -algebra on M (E). Show that M MyE) = o(Ty).
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24.2 Properties of the Poisson Point Process

Theorem 24.13 Let u € M(E) be atom-free; that is, u({x}) = 0 for every x € E.
Let X be a random measure on E with P[X(A) € No U {oo}] = 1 for every A €
B(E). Then the following are equivalent:

(i) X ~PPP,.

(i) X almost surely has no double points; that is,

P[X({x}) >2 forsomex € E] =0,

and

P[X(A)=0]=e""Y  forall A € By(E). (24.3)

Proof (i) ==(ii) This is obvious.
(i) =(@0) If Ay, ..., A, € By(E) are pairwise disjoint, then

P[X(A))=0,...,X(A,)=0]=P[X(AU...UA,) =0]

— o H(AIU.UA,)

=[[e " =]]P[x@n=0].
=1 =1

Hence the random variables X (A) := X (A) A 1 are independent for disjoint sets A.
The rest of the proof is similar to that of Theorem 5.34. Let A € Bj,(E). Choose
an Ag C A with u(Ag) = w(A)/2 (this is possible by Exercise 8.3.1 since u is
atom-free) and define A1 = A \ Ap. Similarly, choose A; o, A; 1 C A; fori =0, 1
and inductively define disjoint sets A; o, A;;1 C A; for i € {0, 1)1 with p(4;) =
27" (A) for every i € {0, 1}". Define

Na(A) = ) X(A)).

ie{0, 1}

As X does not have double points, we have N, (A) 1 X (A) almost surely. On the
other hand, by assumption, N, (A) ~ bon | _exp(—2-n.(a)) for n € N; hence the char-
acteristic functions converge:

oN ) (1) = (14 (1 — e 2 "D (i — 1))

"‘_)_C;O exp(u(A)(ei’ - 1)) = PPoi,a) ).

Therefore, we have Py, (4) = Poi 4y and thus X (A) ~ Poiya).

If Ay, ..., Ar € Bp(E) are pairwise disjoint, then the sets N, (A1), ..., N,(Ag)
(constructed in a way similar to that above) are independent. Hence also the limits
X (Ay) =1lim,_ 00 Ny(A7), I =1, ...,k are independent. O
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Theorem 24.14 Let n € M(E) and let X be a Poisson point process with intensity
measure |. Then X has Laplace transform

Lx(f)= exp( f p(dx)(e 7™ — 1)>, feBY(E),

and characteristic function
ox(f) = exp( / p(dx) (e’ — 1)), f €BJ(E).

Proof It is enough to show the claim for simple functions f =) }_, oy1,, with
complex numbers «j, ..., a, and with pairwise disjoint sets Ay, ..., A, € Bp(E).
(For general f, the claim follows by the usual approximation arguments.) For
such f, however,

n

Elexp(—17(X))] = E|:l_[ e—azX(Az)] _ HE[e—qu(AI)]
=1

=1

= ﬁexp(,u(Al)(e_o” - 1))

=1

= exp <2": /L(Al)(e_“” — 1))

=1

:exp(/ M(dx)(eff(x) — 1)) 0

Corollary 24.15 (Moments of the PPP) Let u € M(E) and X ~ PPP,,.

() If f € L' (w), then E[[ fdX]= [ fdpu.
(i) If f € L2(w) N L' (), then Var[ [ fdX)= [ f*dpu.

Recall that only for finite s, we have the inclusion £2(x) C £!(w).

Proof If f = f+ — f~ e L'(u), then for the characteristic function, integral
and differentiation interchange, %(px tfH =ipyx (tf+)ff(x)ei’f+(x)u(dx) and
hence (by Exercise 15.4.4(iii))

1d
B[l (0] = 1 ox (i), = [ £ d
Arguing similarly with f~ and adding up, we get (i).

If f e L£'() N L>(), then the argument can be iterated (using Theorem 15.34)

2

d . . 2
X = —ox(tf) [ / F200) ¢ () + ( / Faye ‘”mdx)) }

hence we have E[7;(X)*] = — L oy (1/)|,_y = 12 () + Iy (). 0
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Theorem 24.16 (Mapping theorem) Let E and F be locally compact Polish spaces
and let ¢ : E — F be a measurable map. Let ;1 € M(E) with wo ¢~ € M(F) and
let X be a PPP on E with intensity measure jv. Then X o ¢~ is a PPP on F with
intensity measure jLo ¢~

Proof For f € BT (F),

Lyop-1(f)=Lx(fod)= exp( / (e /@D — I)M(dX))

- exp(/ (e /P —1)(no ¢_1)(dy)>.
Now, Theorem 24.14 and Theorem 24.7 yield the claim. O

Theorem 24.17 Let v € M((0, 00)) and let X ~ PPP,, on (0, 00). Further, define
Y := [ xX(dx). Then the following are equivalent.

(i) P[Y <o00] > 0.
(i) P[Y < oo] = 1.
(i) [ v(dx)(1 Ax) < o0.

If (1)-(iii) hold, then Y is an infinitely divisible nonnegative random variable with
Lévy measure v.

Proof Let Yoo = f[l 00y XX (dx) and Y, := f(t 1y X (dx) for ¢ € [0, 1). Evidently,
Y =Yy + Y. Furthermore, it is clear that

PYo <0]>0 <<= PlYx<ool=1 <<= ([l,00)<oc0. (24.4)

If (ii1) holds, then E[Yy] = fo 1 xv(dx) < 00; hence Yy < oo a.s. (and thus ¥ < o0
a.s. by (24.4)). On the other hand, if (iii) does not hold, then Y5, = o0 a.s. or
E[Yy] = co. While Y, can have infinite expectation even if Y, < 0o a.s., for ¥
this is impossible since, in contrast with Y, Yo is composed not of a few large
contributions but many small ones so that a law of large numbers is in force. More
precisely, by Corollary 24.15, we have

Var|[Y;] =/ xzv(dx) 5/ xv(dx) =E[Y;] <oo forallte (0,1).
(.1 (.1

Hence, by Chebyshev’s inequality,

ELY,]] _ 4VarlYi] -
2 |7 EmpP

P[Yt <

Thus Yy = sup;c(o.1) ¥t = E[Yo]/2 =00 almost surely.
Now assume that (i)—(iii) hold. By Theorem 24.14, Y has the Laplace transform

E[e]= exp(/ v(dx)(e™ — 1)).
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By the Lévy—Khinchin formula (Theorem 16.14), Y is infinitely divisible with Lévy
measure v. O

Corollary 24.18 Let u; € M(([0,00)), i = 1,2, be infinitely divisible distribu-
tions with canonical measures v; € M((0,00)) and deterministic parts a; > 0
(compare Theorem 16.14). If we have

a1 <ar and v ([x, oo)) < vz([x, oo)) forall x >0, (24.5)
then (1 is stochastically smaller than (17} i.e., (1 <gt (2.

Proof (The proof follows [100, Proof of Lemma 6.1].) The idea is to use a coupling
argument where based on one Poisson point process we construct the two random
variables Y1, Y> with ¥; ~ pu;, i = 1,2, such that Y; <Y, almost surely. By Theo-
rem 17.58, this yields the claim.

Let G;(x) :=v;([x,00)),i =1,2, x >0, and

$i(y):=G; ' (y) =inf{x >0: G;(x) <y} fory>0.

If v; is finite, then ¢; (y) = 0 for y > v;((0, 00)). Let A denote the Lebesgue measure
on [0, 00). By construction, for the image measure restricted to the positive reals,
we have

(ot N goey =vi» i=12.

Now assume that X is a PPP on (0, co) with intensity measure A. By Theorem 24.16,
the random measures

Xi:= (/ ¢i(x)X(dx))

are PPPs with intensity measures v;, i = 1, 2. By Theorem 24.17, we thus have

=Xog !
(0,00)

Y; ::ot,-—l—/qbi(x)X(dx)Nu,- fori =1,2.

However, by assumption, we have G| > G» which implies ¢1 < ¢, and thus Y1 <Y»
a.s. Il

Example 24.19 By Corollary 16.10, for every nonnegative infinitely divisible dis-
tribution v with Lévy measure v, there exists a stochastic process (Y;);>0 with in-
dependent stationary increments and Y; ~ u*' (hence with Lévy measure tv). Here
we give a direct construction of this process. Let X be a PPP on (0, co) x [0, c0)
with intensity measure v ® A (here A is the Lebesgue measure). Define Yy = 0 and

Y; ::/ xX(d(x,s)).
(0,00) x(0,¢]
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By the mapping theorem, we have X (- x (s, t]) ~ PPP(_j),; hence Y; — Y is in-
finitely divisible with Lévy measure (¢ — s)v. The independence of the increments
is evident. Note that ¢ — Y; is right continuous and monotone increasing.

The process Y that we have just constructed is called a subordinator with Lévy

measure v. O

The procedure in the previous example can be generalized by allowing time sets
more general than [0, 00).

Definition 24.20 A random measure Y is called infinitely divisible if, forany n € N,
there exist i.i.d. random measures Y, ..., Y, withY =Y, + ...+ Y,.

Theorem 24.21 Let v € M((0, 00) x E) with
/1“&0Axﬁ@ﬂnﬂ)<m>ﬁwaﬂAeBﬂEL

and let o € M(E). Let X be a PPP, and
me=mm+/}m@mwu¢»ijeBwy

Then Y is an infinitely divisible random measure with independent increments. For
A € B(E), Y(A) has the Lévy measure v(- X A).

We call v the canonical measure and « the deterministic part of Y.
Proof This is a direct consequence of Theorem 24.16 and Theorem 24.17. U
Remark 24.22 We can write Y as ¥ =« + fx8,X(d(x, 1)), where §; is the Dirac

measure at ¢ € E. If instead of x §;, we allow more general measures y € M(E),
then we get a representation

Y=a+ / xX(dx),
M(E)
where X ~ PPP, on M(E) and v € M(M(E)) with
/ v(d)()(x(A) A 1) <00
for any A € Bp(E). It can be shown that this is the most general form of an infinitely
divisible measure on E. We call v the canonical measure of ¥ and « the determinis-

tic part. Y is characterized by its Laplace transform which obeys the Lévy—Khinchin
formula:

Ey(f)=9XP(—/deé+fV(dx)(e_fde — 1)) o
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Theorem 24.23 (Coloring theorem) Let F be a further locally compact Polish
space, let u € M(E) be atom-free and let (Yy)xcg be i.i.d. random variables, inde-
pendent of X, with values in F and distribution v € M (F). Then

Z(A) ::/]lA(x, Y )X(dx), AeB(ExF),
isaPPP,g, on E x F.

Proof This is left as an exercise. g

There is an obvious generalization of the coloring theorem: The assumption that
W is atom-free was needed in order that X have no double points. That is, for every
unit mass that X produces, there is a different random variable Y,. However, this
can also be achieved by different means and in somewhat greater generality.

Accordingly, let E, F be locally compact Polish spaces, let u € M(E) and let
k be a stochastic kernel from E to F with uk := f/L(dx)/c(x, -) € M(F). Let
(Yx,1)xeE tef0,1] be independent random variables with distributions Py, , =« (x, -)
forx e Eandt € [0, 1].

For X ~ PPP,,, define the lifting X as that PPP on E x [0, 1] with intensity mea-

sure (4 ® )»|[0’1], where A is the Lebesgue measure. Clearly, X 2 )~(( « x [0, 1]). The

random measure X can be understood as a realization of X in which the different
points of X are assigned arbitrary [0, 1]-valued labels to distinguish them. Now let

X“(A) :=/5((d(x,z))]1A(Yx,t) for A € B(F).

Theorem 24.24 X* is a random measure with Py« = PPP .

Proof Clearly, almost surely X* is a measure. For A € B, (F), we have by assump-
tion

E[X“(A)] = EU X(d(x, )k (x, A)} = (uk)(A) < o0o.

Hence X*(A) < oo almost surely, and thus X* is a random measure. We compute
the Laplace transform of X*. Let g(x) := —log E[e—/ )], Then (since X has no
double points)

Lx<(f)=E eXp(—/f((d(x,t))f(Yx,t))}

—E 1—[ e—fm,,)}
T X({(xnh=1

=E 1‘[ E[e—f(Yx.t)]]

S X (e nh=1
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=E [1 e_g(x)} =Lx(9)
(.0 X({(x.0)h=1

= exp</u(dx)(E[e—f<Yx-t>] - 1))

= exp(/ ,u(dx)//c(x, dy)(e_f(»") — l))

= exp(/ ,u,/c(dy)(eff(}') - 1)) 0

Example 24.25 (PPP as invariant distribution) As an application of the previous
theorem, consider a stochastic process on E = 74 or E = R that consists of a
system of independent random walks. Hence assume that we are given i.i.d. random
variables Z,"l, i, n € N with distribution v € M (E). Further, assume that, at time 7,
the position of the i th particle of our system of random walks is Sfl = Sé +>7..Z f,
where Sé is an arbitrary, possibly random, starting point. Assume that the particles

are indistinguishable. Hence we simply add the particles at each site:

o0
Xu(A):=) 14(S;) forACE.
i=1

Each X, is a measure on E and, if at the beginning the particles are not too concen-
trated locally, it is a locally finite measure and hence a random measure. Assume
that Xo ~ PPP, for some u € M(E). Define «(x, -) =8, * v, and write " for the

n-fold application of «; that is, " (x, +) = &, * V*". We thus get X{ 2 X . Indeed,
independence of the motions of the individual particles in the definition of X is
exactly independence of the random walks. As X is also a PPP, we get inductively

Xx 2 Xy+1 and thus X, ~ PPPn = PPP 4= . In particular, Xo 2 X, if and only
if % v = . Clearly, this is true if we have E = Z? and p the counting measure
or if E =R? and p is the Lebesgue measure. For example, if E = Z¢, then under
rather mild assumptions on v one can show that the counting measure @ = A is the
unique (up to multiples) solution of x * v = . In this case, every invariant measure
is a convex combination of PPPs with different intensity measures 6. O

Exercise 24.2.1 Use an approximation with simple functions in order to show the
claim of Corollary 24.15 without using characteristic functions.

Exercise 24.2.2 Prove the coloring theorem (Theorem 24.23).

Exercise 24.2.3 Let p1, p» € (0, 1] and r1,r, > 0. Show the following statement
about the stochastic order of negative binomial distributions: br_l, o1 Sst br_z, ” if and
only if

1

pi1=py and pi'>py.
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24.3 The Poisson-Dirichlet Distribution®

The goal of this section is to solve the following problem. Take a stick of length 1.
Choose a point of the stick uniformly at random and break the stick at this point.
Put the left part of the stick (with length, say, W) aside. With the remaining part of
the stick proceed just as with the original stick. Break it in two and put the left part
(of length W,) aside. Successively, we thus collect fractions of the stick of lengths
Wi, Wa, W3, .... What is the joint distribution of (W, W», ...)? Furthermore, if we
order the numbers Wy, W, ... in decreasing order W(;) > W(2) > ..., what is the
distribution of (W(1y, W(2),...)? And finally, why do we ask these questions in a
chapter on Poisson point processes?

Answering these questions requires some preparation. We saw that the Beta dis-
tribution occurs naturally in Pélya’s urn model as the limiting distribution of the
fraction of balls of a given color. Clearly, P6lya’s urn model can be considered for
any number n > 2 of colors. The limiting distribution is then the n-dimensional
generalization of the Beta distribution, namely the so-called Dirichlet distribution.

Define the (n — 1)-dimensional simplex

Ap :={(x1,...,xn)€[0, 1]":x1+...+xn=1}.

Definition 24.26 Let n € {2,3,...} and 6y, ..., 6, > 0. The Dirichlet distribution
Dirg, ... ¢, is the distribution on A, that is defined for measurable A C A, by

Dirg, ..., an(A)=/JlA(X1,--.,xn)fel,...,en(m,...,xn)dX1 codxp_q.

Here
rér+...+6,) 4 _ _
Jor. 0, (X1, xp) = —nxfl ! ...x,f" L
re,)...re,
If the parameters 01, ..., 6, are integer-valued, they correspond to the numbers

of balls of the different colors that are originally in the urn. Assume that the colors
n — 1 and n are light green and green and that in the dim light we cannot distin-
guish them. Then we should still end up with a Dirichlet distribution in the limit
but with » — 1 instead of n and with 6,_; + 6, instead of 6,,_; and 6,; that is,
Dirg, ... 0,_2.6,_1+6,- Let (M;);>0 be the Moran Gamma subordinator, the stochastic
process with right continuous, monotone increasing paths ¢ — M, and independent,
stationary, Gamma-distributed increments: M; — Mg ~ I, for t > s > 0. An
important connection between M and the Dirichlet distribution is revealed by the

corollaries of the following theorem and by Theorem 24.32.

Theorem 24.27 Let n € N, 61,...,0, >0 and ® :=6; + ... +0,. Let X ~
Dirg, .9, and let Z ~ I'| o be independent random variables. Then the random
variables S; :=Z - X;,i =1, ...,n are independent and S; ~ I g, .
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Proof In the following, always let x,, := 1 — Z;’;ll xpands=3"_;s;. Let

n—1
A= {(xl,...,xn_1) € (0, 1)"—1:in < 1}.

i=1
For x € A, and z > 0, the distribution of (X1, ..., X,—1, Z) has the density
2 6i—1
fOn e =[] /T0)) e
j=1
Consider the map
F: A}, x(0,00) > (0,00)",  (x1,...,%—1,2) > (2X1, ..., 2%,).

This map is invertible with inverse map

F~l. (S15 vy Sp) > (S1/S, .0y Sn—1/5,5).
The Jacobian determinant of F is det(F’(x1, ..., Xy—1,2)) = 2"~ L. By the transfor-
mation formula for densities (Theorem 1.101), (S, ..., S,) has density
f(F_l(Slv ‘°'7sn))
g(slr"°7sn)= / —1
|det(F (F (Sl’ ~--7sn)))|
S@)—l e n 01
=——[[(Gi""/rep)
j=1
L 6—1
=[] e/r®p).
j=1
However, this is the density for independent Gamma distributions. O

Corollary 24.28 [ft; .= Ziizl 0; fori =0, ..., n, then the random variables X =

((My, — M,,_)/M,, ,i=1,...,n) and S := M,, are independent with distributions
,,,,, 6, and S~ 17 ,.

Corollary 24.29 Let (Xi,...,X,) ~ Dirg,, ¢,. Then X; ~ ,30]’2’(;2 0, and

(X2/(1 = X1),...,X,/(1 = X1)) ~Dirg,, . g, are independent.

.....

Proof Let M be as in Corollary 24.28. Then X| = M, /M;, ~ B, 1,—6, - Since X =
(% + l)_l, we see that X depend only on M;, and M, — M;,. On the other
n

hand,
X2 X}‘l _ Mlz - Mfl Mtn - M[,17]
1-Xx"""1-x1) \M,—-M," M, —M,




24.3  The Poisson-Dirichlet Distribution* 557

is independent of M;,. By Corollary 24.28, it is also independent of M, — M;, and
is Diry, .. g, -distributed. O
Corollary 24.30 Let Vy, ..., V,,_1 be independent, V; ~ By, ¢, +...+6, and V;, = 1.
Then

n—1
(Vlv AI=VPW,d-=VNA =V2)V3,..., <1—[(1 - Vi)) Vn) ~ Dirg, .6, -
i=1

Proof This follows by iterating the claim of Corollary 24.29. U

It is natural to ask what happens if we distinguish more and more colors (instead
of pooling them). For simplicity, consider a symmetric situation where we have
01 =...=6, =0/n for some 6 > 0. Hence we consider

Dirg., :==Dirg ¢ for6 > 0.

If X" =(XY,..., X)) ~ Dirg/p;,, then, by symmetry, we have E[X'] = 1/n for ev-
eryneNandi=1,...,n. Hence, clearly (X7, ..., X}) "=2 0 for any k € N. In
order to obtain a nontrivial limit, one possibility is to reorder the values by decreas-
ing size: X?l) > X?z) > ...

Definition 24.31 Let 6 > 0 and let (M;);c[0,9] be a Moran Gamma subordinator.
Let m; > my > ... > 0 be the jump sizes of M in decreasing order and let m; =
mi/Mp,i =1,2,.... The distribution of the random variables (1, m3,...)on S :=
{(x1 =x2>...20):x1+x2+... =1} is called the Poisson—Dirichlet distribution
PDy with parameter 6 > 0.

To be honest, we still have to show that Zloil m; = 1. To this end, let Y be
a PPP on (0, 00) x (0, 8] with intensity measure v ® A, where A is the Lebesgue
measure and v(dx) = e *x~! dx is the Lévy measure of the It 1 distribution. We
can define M by M; := 3, o).y ((x.s})=1.s< X- Now we have m; = sup{x € (0, 00) :
Y ({x} x (0, 0]) = 1}. Inductively, we get m,, = sup{x <m,_1: Y ({x} x (0,0]) =1}
for n > 2. Interchanging the order of summations, we obtain My = 2311 my,.

n—o00

Theorem 24.32 If X" ~ Dirg ., for n € N, then P(X?]),X ) — PDg.

)
Proof The idea is to express the random variables X", n € N, in terms of the in-
crements of the Moran Gamma subordinator (M;);c[0,¢] in such a way that conver-
gence of distributions implies almost sure convergence. Hence, let X" = (Mg;/, —
My —1y/n)/Mg. By Corollary 24.28, we have X" ~ Dirg,.,. Let t1, 2, ... € (0, 6]
be the positions of the jumps m| > my > .... Evidently, Xf’l) > m for every n.
If n is large enough that |t{ — 2| > 0/n, then X’é) > nmy. Inductively, we get
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liminf, ., 5 X’(’) > m; almost surely. Using the convention X”) =0 fori > n, we
have ) 72, X ) =1 for every n € N. By Fatou’s lemma, we thus get

o0

0
Z 1m1an() < hmlanX(l) =
i=1 i=1

|P”18

Therefore, lim,,_ o0 X ?i) = m; almost surely. O

Instead of ordering the values of X" by their sizes, there is a different way of
arranging the terms so that the distributions converge. Think of a biological popula-
tion in which a certain phenotypical property can be measured with different levels
of precision. If we distinguish n different values of this property, then we write X'
for the proportion of the population that has type i € {1, ..., n}.

Now successively choose individuals from the population at random. Let /] be
the type of the first individual. Denote by I} the type of the first individual that is
not of type /'. That is, I} is the second type that we see. Now inductively define 1/
as the kth type that we see; that is, the type of the first individual that has none of
the types I7', ..., I;'_,. Consider the vector Xn= (X", ..., )A(;,’), where )A(,’{‘ = XZ:,
Since the probability of the event {/}' = i} is proportional to the size of the subpop-
ulation of type i, we say that X" is the successively size-biased vector.

The distribution of X" does not change if we change the order of the X7, ..., XI.
For example, instead of X7, ..., X/, we can use the order statistics (X ?1), X E’n))

and again end up with X" as the successively size-biased vector. Hence we can
define the successively size-biased vector X for the infinite vector X ~ PDy. If X" ~
Dirg/p;, then by Theorem 24.32, we have X" "=%° X. Hence we can compute the
distribution of X.

Theorem 24.33 Let 0 > 0 and X" ~ Ditg,,.n, h € N. Let X ~ PDg. Further, let
Vi, Va, ... bei.i.d. random variables on [0, 1] with density x — 6(1 —x)e_l. Define
Zi = Vi and Zy = ([1'2] (1 = Vi) Vi for k > 2. Then:

Q) X" ”2’5 X.
(i) X 2 Z.

The distribution of Z is called the GEMy distribution (Griffiths—Engen—McCloskey).

Proof Statement (i) was shown in the discussion preceding the theorem. In order
to show (ii), we compute the distribution of X" and show that it converges to the
distribution of Z.

Let X™! be the vector X! = = (X, Xoy oo X X

only the first coordinate is sampled size- blasedly. We show that

X)), in which

X"~ Dirg/my+1.0/n....0/n - (24.6)
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Let f(x) = (I'®)/T©O/m)") - [Tiz, """ be the density of Dirg,.,. We com-
pute the density /! of X™! by decomposing according to the value i of / I

SO0 = ) X f X, X XL X1 Xa) =0 f (X)

i=1

nl’0) Lo/ ©/m-1
T @/ " H

_ re+1 (O li[x(e/n)—l
- I(@/n)+ 1)L ©/n)"-! ‘ '

However, this is the density of Dir/,)+1,0/n,....0/n- By Corollary 24.29, we have

X2 (ve (1 =V, (= V) Yl),
where

VIt~ Bo/m+1,6m—1)n and Y =(Y1,...,Y,_1) ~Dirg/p.n—1

are independent. Applying this to Y, we get inductively

£ 2z (24.7)

where
k—1
Z" =V and Z,’j:(]‘[(l-\g”))V,? fork > 2
i=1

and where V', ..., V!

", are independent and VI~ B@/ny+1,0(n—i)/n- Now itis easy

to check that B n)+1,0(—i)/n = P10 for every i € N. Recall that ,31 9 has the
density x > 6(1 — x)?~!. Hence V' "= V; for every i and thus Z" "= Z and
n

xn =X 7. Together with (i), this proves claim (ii). g

At the beginning of this chapter, we raised the question of how the sizes
Wi, W, ... of the stick lengths are distributed if at each step, we break the re-
maining part of the stick at a point chosen uniformly at random. The preceding
theorem gives the answer: The vector (W(yy, W(2), ...) has distribution PDy, and
(Wq, Wa, ...) has distribution GEM;.

The Chinese Restaurant Process

We will study a further situation in which the Poisson—Dirichlet distribution arises
naturally. As the technical details get a bit tricky, we content ourselves with the
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description of the problem and with stating (but not proving) two fundamental the-
orems. An excellent reference for this type of problem is [130].

Consider a Chinese restaurant with countably many enumerated round tables. At
each table, there is enough space for arbitrarily many guests. Initially, the restaurant
is empty. One by one an infinite number of guests arrive. The first guest sits down at
table number one. If there are already n guests sitting at k tables, then the (n + 1)th
guest can choose between sitting down at any of the k occupied tables or at the free
table with the smallest number (that is, k + 1). Assume that the guest makes his
choice at random (and independently of the previous choices of the other guests).
For I < k, denote by Nl" the number of guests at the /th table and assume that the
probability of choosing the Ith table is (N;' — a)/(n + 6). Then the probability
of choosing the first free table is (6 + ka)/(n + 6). Here o € [0, 1] and 0 > —«
are parameters. We say that (N"),en = (N, Ny, .. )nen is the Chinese restaurant
process with parameters (o, 9).

In the special case a = 0, there is a nice interpretation: Assume that the new
guest can also choose his seating position at the table (that is, his neighbor to the
right). Then, for any of the present guests, the probability of being chosen as a right
neighbor is 1/(n 4 6). The probability of starting a new table is 6 /(n + 9).

In order to study the large n behavior of N /n = (N} /n, Ny /n, ...), we extend
the Poisson—Dirichlet distribution and the GEM distribution by a further parameter.

Definition 24.34 Let o € [0,1) and 8 > —«. Let Vi, V,, ... be independent and
Vi ~ Bl—a.6+ia- Define Z =(Z1,Z,,...) by Z; = V; and

k—1
zkzvk]—[(l—w) for k > 2.
i=1

Then GEM, ¢ := Pz is called the GEM distribution with parameters (o, 6). The
distribution of the size-biased vector (Z(1), Z(2), .. .) is called the Poisson—Dirichlet
distribution with parameters (c, 0), or briefly PD,, ¢.

Explicit formulas for the densities of the finite-dimensional marginals of PDy ¢
can be found in [132]. Note that, for « = 0, we recover the classical distributions
GEM@ = GEMQ,Q and PD(; = PDO’(;.

Theorem 24.35 Let o € [0, 1), 0 > —« and let (N""),eN be the Chinese restaurant
process with parameters (o, 0). Then Pyn e PDy.¢.

Proof See [129] or [130, Theorem 25]. O

As for the one-parameter Poisson—Dirichlet distribution, there is a representation
of PDy ¢ in terms of the size-ordered jumps of a certain subordinator. In the follow-
ing, let o € (0, 1) and let (M;)s¢[0,1] be an a-stable subordinator; that is, a subordi-
nator with Lévy measure v(dx) = x~ %1 dx. Further, let mip >mo>...>0 bethe
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jumps of M, m; =m; /M, fori e N,and m = (m, ma, ...). We quote the following
theorem from [130, Section 4.2].

Theorem 24.36 Let o € (0, 1).

(i) m ~PDy .
(i) If60 > —a, then PDy 9 < PDy o =P[m € -] and the density is

Mo
1 ~
PDy g(dx) = 3 Plm € dx].
E[M”]

Exercise 24.3.1 Let (X, 1—X) ~ Dirg, 9,. Show that X ~ B, ¢, is Beta-distributed.

Exercise 24.3.2 Let X = (X}, ..., X,) ~ Dirg,, .. 9,. Show the following.

(i) For any permutation ¢ on {1, ..., n}, we have

(Xo(1)s s Xom) ~ Dirg,y).....00 -

() (X1,...,Xn—2, Xp—1+ Xy) ~Dirg,,..0, 5.6, 146,

Exercise 24.3.3 Let (N"),cn be the Chinese restaurant process with parameters
(0,0).

(i) Let0 = 1.

(a) Show that P[N{ =k]=1/nforanyk=1,...,n,
(b) Show that, fork;=1,....,n— (ki +... +ki_1),

1
n—(ki+...+k_1)

PN} =k | N} = k1o NPy = ki ] =

(¢) Infer the claim of Theorem 24.35 in the case « =0 and 6 = 1.
(ii) Let6 > 0.

(a) Show that nP[N7 = [nx|] =5 6(1 —x)?~! for x € (0, 1).
(b) Show that
nP[N' = [nx;| | N} = |nxi], ..., Ny = [nx—1]]

n—oo

=@/ —x /)

forxy,...,x; €O, D withy, =1— (1 +...+x-1) > x;.
(c) Asin (i), infer the claim of Theorem 24.35 for « = 0 and 6 > 0.



Chapter 25
The It6 Integral

The It6 integral allows us to integrate stochastic processes with respect to the in-
crements of a Brownian motion or a somewhat more general stochastic process. We
develop the Itd integral first for Brownian motion and then for generalized diffusion
processes (so called Itd processes). In the third section, we derive the celebrated 1t6
formula. This is the chain rule for the It integral that enables us to do explicit cal-
culations with the It6 integral. In the fourth section, we use the 1t6 formula to obtain
a stochastic solution of the classical Dirichlet problem. This in turn is used in the
fifth section in order to show that like symmetric simple random walk, Brownian
motion is recurrent in low dimensions and transient in high dimensions.

25.1 Ito Integral with Respect to Brownian Motion

Let W = (W;);>0 be a Brownian motion on the space (£2, F, P) with respect to the
filtration IF that satisfies the usual conditions (see Definition 21.22). That is, W is
a Brownian motion and an F-martingale. The aim of this section is to construct an
integral

t
1V (H) =/O H; dW;

for a large class of integrands H : 2 x [0, 00) — R, (w, t) = H;(®) in such a way
that (ItW (H))t>0 is a continuous F-martingale. Since almost all paths s > W (w)
of Brownian motion are of locally infinite variation, W (w) is not the distribution
function of a signed Lebesgue—Stieltjes measure on [0, co). Hence ItW (H) cannot
be defined in the framework of classical integration theory. The basic new idea is
to establish the integral as an L2-limit. We start with an elementary example to
illustrate this.

Example 25.1 Assume that X1, X5, ... are i.i.d. Rad;/ random variables; that is,
PX,=1]=P[X,, =—-1] = 1 Let (hn)nen be a sequence of real numbers. Under
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which assumptions on (4,),eN is the series

R:=Y"h,X, (25.1)

neN

well-defined? If )", .y |h,| < 00, then the series converges absolutely for every w.
In this case, there is no problem. Now assume that only the weaker condition
D neN hﬁ < 0o holds. In this case, the series (25.1) does not necessarily con-
verge any more for every w. However, we have E[h, X, ] = 0 for each n € N and
Y% Var[h, X,1=> 2 h2 < co. Hence Ry := Z,I(vzl hi X converges in L? (for
N — 00). We can thus define the series R in (25.1) as the L2-limit of the partial
sums Ry. Note that (at least formally) for the approximating sums the order of
summation matters. In a sense, we have constructed Y .7, instead of ), .

An equivalent formulation that gives a flavor of what is to come is the follow-
ing. Denote by ¢2 the Hilbert space of square summable sequences of real num-
bers with inner product (h, g) = Z?f:l hagn and norm | gl = (g, g)'/?. Let ¢/
be the subspace of those sequences with only finitely many nonzero entries. Then
R(h) = ZneN hu X, for h € €7 is well-defined (since it is a finite sum). Since

E[R(h)*] = Var[R(h)] = ZVath th A%,

neN neN

the map R : ¢/ — L£2(P) is an isometry. As ¢/ C £2 is dense, there is a unique
continuous extension of R to £2. Hence, if h € €2 and (W) yen is a sequence in
¢ with |hN — R NZ2°0, then R(WV) = N2go —" R(h) in the L? sense. In particular,
h,]y ‘= hplip<ny, n €N, N €N, is an approximating sequence for 4, and we have
RN = Ziv: 1 hn Xy Thus the approximation of R with the partial sums Ry that
we described above is a special case of this construction. O

The programme for the construction of the 1td integral 1,V (H) is the following.
First consider simple functions as integrands H; that is, the map ¢t — H;(w) is a
step function. For these H, the integral can easily be defined as a finite sum. The
next step is to extend the integral, as in Example 25.1, to integrands that can be
approximated in a certain L?-space by simple integrands.

Definition 25.2 Denote by £ the vector space of maps H : §2 x [0, c0) — R of the
form

n
Hi(@) =Y hi 1(@)1_,.0),
i=1

wheren e N, 0=1y <t <...<t, and h;_; is bounded and F;,_,-measurable for
everyi =1,...,n. & is called the vector space of predictable simple processes.
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We equip £ with a (pseudo) norm || - ||¢ by defining

||H||€_ZEh Jti —ti-1)=E [/ szs}

Definition 25.3 For H € £ and ¢ > 0, define
n
1Y (H) =" hi i (Wi = Wi_ia0)
i=1

and

n
I (HY =Y " hi (W, = Wy_,).
i=1

Clearly, for every bounded stopping time T,

E[1)V(H)] = ZE i1 (W —wr )]

_ZE hi E[W. =W | F._]]=0

since, by the optional stopping theorem (OST), the stopped Brownian motion W7 is
an F-martingale. Hence (again by the OST) (/, tW (H))t>0 is an F-martingale. In par-

ticular, we have E[(Z, (H) — 1Y (H))(1,), (H) — 1, (H))] = 0 for i # j. There-
fore, '

E[1Y(H)*] = D E[(1Y (H) — 1Y (D)’

i=1

= ZE[hiz—l(Wti - Wti—l)z]

= ZE[hiz—l](ti —ti_) = H|Z. (25.2)

i=1

From these considerations, the following statement is immediate.

Theorem 25.4

(i) The map Iovg & — L2(2, F,P) is an isometric linear map (with respect to

I -llg and |l - 2).
(ii) The process (ItW(H ))i>0 is an L2-bounded continuous F-martingale.
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Proof Only the linearity remains to be shown. However, this is trivial. g

The idea is to extend the map /¥ continuously from & to a suitable closure £
of £. Now as a subspace of what space should we close £? A minimal requirement
is that (w, 1) — H;(w) be measurable (with respect to F ® B([0, c0))) and that H
be adapted.

Definition 25.5 A stochastic process X = (X;);>0 with values in a Polish space E
is called

(i) product measurable if (w,t) — X;(w) is measurable with respect to F ®
B([0, 00)) - B(E),

(ii) progressively measurable if, for every t > 0, the map £2 x [0,¢] — E, (v, s) >
X (w) is measurable with respect to F; ® B([0, t]) — B(E),

(iii) predictable (or previsible) if (w,t) — X;(w) is measurable with respect to the
predictable o -algebra P on £2 x [0, 00):

P :=o0(X : X is a left continuous adapted process).

Remark 25.6 Any H € & is predictable. This property ensures that /™ (H) is a mar-
tingale for every (even discontinuous) martingale M. The notion of predictability is
important only for integration with respect to discontinuous martingales. As we will
not develop that calculus in this book, predictability will not be central forus. ¢

Remark 25.7 If H is progressively measurable, then H is evidently also product
measurable and adapted. With a little work, the converse can also be shown: If H is
adapted and product measurable, then there is a progressively measurable modifica-
tion of H (see, e.g., [115, pp. 68ff]). O
Theorem 25.8 If H is adapted and right continuous or left continuous, then H is
progressively measurable. If H is adapted and a.s. right continuous or left continu-
ous, then there exists a version of H that is progressively measurable.
In particular, every predictable process is progressively measurable.

Proof See Exercise 21.1.4. O

We consider &£ as a subspace of
o0
& = {H : product measurable, adapted and ||H||2 = E[/ th dt:| < oo}.
0

Let £ denote the closure of & in &.

Theorem 25.9 If H is progressively measurable (for instance, left continuous or
right continuous and adapted) and E[fooo Ht2 dt] < oo, then H € £.
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Proof Let H be progressively measurable and E[ fooo th dt] < oo. It is enough to
show that, for any T > 0, there exists a sequence (H"),cn in £ such that

T
E[/ (H, — HS")2ds} "0, (25.3)
0

Step 1. First assume that H is continuous and bounded. Define Hy =0 and
H! =Hpp—ny ifi27™"T <t <@+ 1)27"T forsomei=0,...,2" — 1

and H' =0 fort > T. Then H" € £, and we have H/" (w) = H;(w) forallt >0
and w € §2. By the dominated convergence theorem, we get (25.3).

Step 2. Now let H be progressively measurable and bounded. It is enough to
show that there exist continuous adapted processes H", n € N, for which (25.3)
holds. Let

tAT
H,"::n/ Hgds fort>0,neN.
(t—1/n)v0

Then H" is continuous, adapted and bounded by || H || . By the fundamental theo-
rem of calculus (see Exercise 13.1.7), we have

H(w) =5 H,(w) for A-almost all 7 € [0, T] and for all w € £2. (25.4)
By Fubini’s theorem and the dominated convergence theorem, we thus conclude that

n—oo

T
EU (H, — Hs’l)zds} = / (Hy(@) — H' (@)’ (P ® 1) (d(w, 5)) =3 0.
0
£2x[0,T]

Step 3. Now let H be progressively measurable, and assume E[ fooo H,zdt] < 00.
It is enough to show that there exists a sequence (H"),cN of bounded, progres-
sively measurable processes such that (25.3) holds. Manifestly, we can choose
H' = Hi 1y m,|<ny- B

Definition 25.10 (Itd integral) For H € £, define the It6 integral
o0
/ HydW, = 1Y (H)
0

as the continuous extension of the map Iovg : €& — L2(P) to the closure € of £. In

other words, if (H"),cN is a sequence in £ with |H — H"|| = 0, then we define

I3 (H) by
T 72
I (H) = lim I(H") in L%
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If 7 is a stopping time, then in the following we use the abbreviation

H'" = H1y<; fors>0.
(Note that this is not the stopped process H = Hrx;.)

Theorem 25.11
(i) The map Io‘g € — L2(82, F,P) is linear and

E[1Y(H)?]= U szs]

(ii) For every H € E, the process iW(H) defined by ftW(H) = IO‘g(H(’)) is an
L?-bounded F-martingale that has a continuous modification 1"V (H).

Definition 25.12 (Itd integral as a process) Let /" (H) be the continuous version
of the martingale (1% (H"));>¢ (see Theorem 25.11(ii)). Denote by

t
f H, dW, =1V (H) - IY(H) for0<s<t<oo
s

the Itd integral of H with respect to Brownian motion W on the interval [s, ¢].

Proof of Theorem 25.11 (i) This is a direct consequence of the deﬁnition of 1) W(H).
(i) Let (H"),eny be a sequence in & with ||H" — H || =o. By Theo-
rem 25.4(ii), we have

(D)= 1Y (H") =E[1¥ (H") | F;] forallt>0,neN.
Since |(H")® — HO| < ||[H" — H|| =50, this implies (using Corollary 8.21)
1V ()= lim 17 (H") = lim E[IJ(H") | F]=E[IJ(H) | F].

n—oo

Hence 7" (H) is an L2-bounded martingale and 1, (H") == IV (H) in L? for
every t > 0. By Theorem 25.4(ii), 1" (H") is continuous for every n € N. Thus, by
Exercise 21.4.3, there exists a continuous modification IV (H) of IV (H). O

The last step in the construction of the Itd integral is to weaken the strong inte-
grability condition E[ fooo Hs2 ds] < oo. We start with a simple observation.
Let t be a stopping time and recall that fot H; dW; denotes the random variable

that for any w assumes the value ( fo T(@) H;dW;)(w).

Lemma 25.13 Let T be a stopping time and let H € £.
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(i) We have

T o o
/ HdeS=/ H® dw; :=f Hlg<r dW, as.
0 0 0

(1) In particular, for any t > 0, on the event {t >t} we have

t t
/ Hv dWs :f Hv(r)dWy a.s.
0 0

(iii) Let G € & be such that Hy = G for all s < t. Then

T T
/ Hdes=/ GydWg  a.s.
0 0

Proof (i) Assume first that t takes values in {k/2" : k € No} U {00} for some n € N.
Then L jon <z Lire(k—1)/27 k27 € € for all k € N. If, in addition, H € &, then also
H® ¢ £ and the claim follows directly from the definition of the Itd integral (Def-
inition 25.3). Now let H € € and let (H*)ien be a sequence in & such that | H* —
Hllg =3 0. Writing B ® := H*1, -, we get that || HF® — HO| ¢ =30, By
choosing a suitable sequence k;,, 1 0o, we obtain

T T
/ HydWs = lim [ Hbaw,
0

m—00 0

x o
= lim Hbn @ gw, = / H®dw, as.
0

m—00 0

Finally, assume that 7 is an arbitrary stopping time and define 7, :=27"[2"¢] for
n € N. Then (t,) is a sequence of stopping times with 7, | . Recall that 1" (H)

is continuous and note that |H™ — H®|| < 257 0. Hence by taking a suitable
sequence n(m) 1 oo, we get

T Tn(m)
/ HgdWs = lim HgdWg
0

m—0oQ 0

o0 (‘L’ ) o0
= lim H;™™ dWs=/ HYdw, as.
0

m—0oQ 0

(i), (iii) These statements are direct consequences of (i). O

Definition 25.14 Let &, be the space of progressively measurable stochastic pro-
cesses H with

T
/ H2ds <oo as. forall T > 0.
0
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Lemma 25.15 For every H € o, there exists a sequence (T,),eN of stopping
times with t, © oo almost surely and E[[OT” HS2 ds] < o0 and hence such that

H™) € & for every n € N.

t
T :=inf{t20:/ Hfds zn}.
0

By the definition of &}, we have 1, 1 oo almost surely. By construction, we have
||H(Tn)||2 E[ffn szs <n. 0

Proof Define

Definition 25.16 Let H € o and let (1,,),en be as in Lemma 25.15. For ¢ > 0,
define the Itd integral as the almost sure limit

H dW; = lim HS(T")dWS. (25.5)

n—oo

Theorem 25.17 Let H € Ejoc.

(1) The limit in (25.5) is well-defined and continuous at t. Up to a.s. equality, it is
independent of the choice of the sequence (T,)neN.

(i1) If T is a stopping time with E[fOT Hs2 ds] < oo, then the stopped Ito integral
(fmr H; dWy)=0 is an L?-bounded, continuous martingale.

(iii) IfE[fOT HS2 ds] < ooforall T >0, then (f(; H; dWy):>0 is a square integrable
continuous martingale.

Proof (i) By Lemma 25.13(ii), on the event {7, > ¢}, we have

t t
stdWFf H™ dW.
0 0

Hence the limit exists, is continuous and is independent of the choice of the sequence

(Tn)n€N~
(ii) This is immediate by Theorem 25.11.
(iii) As we can choose 1,, = n, this follows from (ii). O

Theorem 25.18 Let H be progressively measurable and E[ fOT Hs2 ds] < oo for all
T >0.Then

t
M[ :Z/ Hdex, t20,
0

defines a square integrable continuous martingale, and

t
(Nt)e=0 = (M,2 —/ Hszds)
0 t>0

is a continuous martingale with No = 0.
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Proof 1t is enough to show that N is a martingale. Clearly, N is adapted. Let 7 be a
bounded stopping time. Then

E[N,]:E[Mf—/ Hszds}
0

- E[(fooo H® dWS)2:| - 1«:[/000(115”)2 ds:| =0.

Thus, by the optional stopping theorem (see Exercise 21.1.3(iii)), N is a martin-
gale. g

Recall the notions of local martingales and square variation from Section 21.10.

Corollary 25.19 If H € Eoc, then the It6 integral M; = fé H, dW; is a continuous
local martingale with square variation process (M); = fol HS2 ds.

Example 25.20

G W, = fot 1dW; is a square integrable martingale, and (W,2 — 1);>0 1S a contin-
uous martingale.

(ii) Since E[fOT W2ds] = %2 <ooforall T >0, M; := fot Wy dWj is a contin-
uous, square integrable martingale, and (Mt2 — fot WS2 ds);>o is a continuous
martingale.

(iii)) Assume that H is progressively measurable and bounded, and let M; :=
fé H;dW;. Then M is progressively measurable (since it is continuous and
adapted) and

T T s 2 2 2
T<|H

E[/ M?ds]:/ <f E[Hf]dr) dsfﬁ.
o o \Jo 2

Hence 1\71, = f(; M, dW; is a square integrable, continuous martingale and
(Mt2 — fé Mf dWy)s>0 is a continuous martingale.

O

25.2 1t6 Integral with Respect to Diffusions
It

n
H= Zhi_ln(tifl,,,.] €&, (25.6)
i=1
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then the elementary integral

n
IM(H) =" hi oy (Myne = Miy,_y 1)
i=1

is a martingale (respectively local martingale) if M is a martingale (respectively
local martingale). Furthermore,

E[(1 (1))?) ZE (Mg = M, ,)°]
= ZE[hiz_l((M)t,- - <M)ti—1)]
i=1

=E - ’d
[/0 H; <M>t]

if the expression on the right-hand side is finite. Roughly speaking, the procedure
in Section 25.1 by which we defined the It6 integral for Brownian motion and inte-
grands H € £ can be repeated to construct a stochastic integral with respect to M
for a large class of integrands H. Essentially, in the definition of the norm on £ we
have to replace dt (that is, the square variation of Brownian motion) by the square

variation d(M); of M:
o
1HI3, :=E[/0 H,2d<M>,].

Extending the integral to the closure £ works just as for Brownian motion. The
tricky point is to check whether a given integrand is in £. For example, for dis-
continuous martingales M the integrands have to be predictable in order for the
stochastic integral to be a martingale (not to mention the difficulty of establishing
for such M, the existence of the square variation process). For the case of discrete
time processes, we saw this in Section 9.3. Now if M is a continuous martingale with
continuous square variation (M), then the following problem occurs. In the proof of
Theorem 25.9 in Step 2, in order to show that progressively measurable processes
H are in E, we used the fact that H!'(w) = H,(w) for Lebesgue-almost all # and
all w. Now if d(M), is not absolutely continuous with respect to the Lebesgue mea-
sure, then this is not sufficient to infer convergence of the integrals with respect to
d(M),. In the case of absolutely continuous square variation, however, that proof
works without change. As in Section 25.1, we obtain the following theorem.

Theorem 25.21 Let M be a continuous local martingale with absolutely continu-
ous square variation (M) and let H be a progressively measurable process with
fOT H2d(M)s; < 0o a.s. for all T > 0. Then the It6 integral N; := f(; HydM; is

S
well-defined and is a continuous local martingale with square variation (N); =
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fé Hs2d(M)s. For any sequence (T,)nen With T, 1 00 and ||H ™|y, < 0o, and for
any family (H™™ n,m € N) C £ with ||[H™™ — H™)||y "8°0, we have

t
HydM;= lim lim IM(H'" ”) in probability for all t > 0.

0 n—0o00 m— 00
The following theorem formulates a certain generalization.

Theorem 25.22 Let M' and M? be continuous local martingales with absolutely
continuous square variation. Let H' be progressively measurable processes with

S (HD2d(M)s < 0o fori=1,2and T < co. Let N} = [3 H! dM! fori = 1,2.
Then N' and N? are continuous local martingales with quadratic covariation
(NP, N7y, :fé H;Hsjd(Mi, M, fori, j € {1,2}. If M" and M? are independent,
then (N', N?) =0.

Proof First assume H L H2eE .AThen there are numbers 0 =1y <t <... <1, and
Fi,-measurable bounded maps A, i =1,2,k=0,...,n — 1 such that

Hti (w) = Zh;c—l(w)ﬂ(fk—l-fk](t)'

k=1

Therefore,

J J J
Z hk lhl 1 tk/\t tk 1/\[)(Mll/\l _Mtl,mt)-
k=1

Those summands with k # [ are local martingales. For any of the summands with
k=1,

(h;;—lh/{fl((MflkAt Mtlx |At)(MtJ%At_Mt]1;71Ar)

- (<Mi’M.>z At (Ml Mj)tk,l/\t)))zzo

is a local martingale. Since

t . ) )
Zh h] Ml M .)tk/\t B <Mi’ Mj) ) Z/ HS’HS]d(M[’ Ml)r’
0 K

fr—1 Nt

(Nti Nt] — fé H; H] d(Mi, Mj)s),zo is a continuous local martingale.

The case of general progressively measurable H!, H? that satisfy an integrability
condition follows by the usual L?-approximation arguments.

If M' and M? are independent, then (M ', M?) = 0. O

In the following, we consider processes that can be expressed as Ito integrals
with respect to a Brownian motion. For these processes, we give a different and
more detailed proof of Theorem 25.21.
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Definition 25.23 Let W be a Brownian motion and let ¢ and b be progressively
measurable stochastic processes with fot 052 + |bs|ds < oo almost surely for all
t > 0. Then we say that the process X defined by

t t
X,:/oxdWS—l—/bsds fort >0
0 0

is a generalized diffusion process (or, briefly, generalized diffusion) with diffusion
coefficient o and drift b. Often X is called an It process.

In particular, if o and b are of the form o3 = 6 (X;) and by = b(X,) for certain
maps & : R — [0,00) and b : R — R, then X is called a diffusion (in the proper
sense).

In contrast with generalized diffusions, we will see that under certain regularity
assumptions on the coefficients, diffusions in the proper sense are Markov processes
(compare Theorems 26.8, 26.10 and 26.26).

A diffusion X can always be decomposed as X = M + A, where M; = fot o, dW;

is a continuous local martingale with square variation (M); = fé O’SZ ds (by Corol-

lary 25.19) and A; = fé bg ds is a continuous process of locally finite variation.
Clearly, for the H in (25.6), we have

t n
[REZT SIS VA
0

i=1

n tint t
= § hi—l/ o5 dWj Z/ (Hsoy) dWs.
i=1 ! 0

i—1 N

For progressively measurable H with fOT Hszd (M) = fOT (Hsas)2 ds < oo for all
T > 0, we thus define the It6 integral as

t t
f H, dM, :=/ (Hyo,) dW.
0 0

Without further work, in particular, without relying on Theorem 25.21, we get the
following theorem.

Theorem 25.24 Let X = M + A be a generalized diffusion with o and let b be as
in Definition 25.23. Let H be progressively measurable with

T
f H2o2ds <oco as. forallT >0 (25.7)
0

and

T
/ |Hybs|ds <oo a.s. forall T >0. (25.8)
0
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Then the process Y defined by

t t t t t
Y, :Z/ H,dX, :=f Hdex+/ HydA, :=/ Hsodes—{-/ Hyby ds
0 0 0 0 0

is a generalized diffusion with diffusion coefficient (Hso)s>0 and drift (Hgbg)s>0.
In particular, N; := fot H; dM; is a continuous local martingale with square varia-
tion process (N), = fot H2d(M)s = fé H2olds.

Exercise 25.2.1 Let M be a continuous local martingale with absolutely continu-
ous square variation (M) (e.g., a generalized diffusion), and let H be progressively
measurable and continuous with fOT HSZd(M }s < oo for all T > 0. Further, assume
that P = (P™),,c is an admissible sequence of partitions (see Definition 21.56).

(i) Show that for all T > 0, in the sense of stochastic convergence, we have

T
/ HydMy = lim > H,(My — M,). (25.9)
0 n—oo

tePy

(i1) Show that there exists a subsequence of P such that almost surely, we have
(25.9)forall T > 0.

25.3 The It6 Formula

This and the following two sections are based on lecture notes of Hans Follmer.
If t = X, is a differentiable map with derivative X’ and F € C'(R) with deriva-
tive F’, then we have the classical substitution rule

t t
F(X,)—F(X0)=/ F/(XS)dszf F'(X5)X.ds. (25.10)
0 0

This remains true even if X is continuous and has locally finite variation (see
Section 21.10); that is, if X is the distribution function of an absolutely continuous
signed measure on [0, co). In this case, the derivative X’ exists as a Radon—Nikodym
derivative almost everywhere, and it is easy to show that (25.10) also holds in this
case.

The paths of Brownian motion W are nowhere differentiable (Theorem 21.17 due
to Paley, Wiener and Zygmund) and thus have everywhere locally infinite variation.
Hence a substitution rule as simple as (25.10) cannot be expected. Indeed, it is easy
to see that such a rule must be false: Choose F(x) = x2. Then the right-hand side
in (25.10) (with X replaced by W) is fot 2Wsd Wy and is hence a martingale. The
left-hand side, however, equals W,Q, which is a submartingale that only becomes a
martingale by subtracting ¢. Indeed, this ¢ is the additional term that shows up in
the substitution rule for Itd integrals, the so-called It6 formula. A somewhat bold
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heuristic puts us on the right track: For small ¢, W, is of order /7. If we formally
write dW; = +/dt and carry out a Taylor expansion of F € C>(R) up to second
order, then we obtain

1 1
dF(W;) = F (W) dW,; + EFN(Wt)(th)2 =F' (W) dW, + EF”(W,)dt.

Rewriting this as an integral yields
t t 1
F(Wz)—F(W0)=[ F/(Wv)dWY+/ EF”(Ws)d& (25.11)
0 0

(For certain discrete martingales, we derived a similar formula in Example 10.9.)
The main goal of this section is to show that this so-called It6 formula is indeed
correct.

The subsequent discussion in this section does not explicitly rely on the assump-
tion that we integrate with respect to Brownian motion. All that is needed is that
the function with respect to which we integrate have continuous square variation
(along a suitable admissible sequence of partitions P = (P"),en)). In particular,
for Brownian motion, (W), =1t.

In the following, let P = (P"), N be an admissible sequence of partitions (recall
the definition of Cqy = Cg, P7, Pg”T, t’ and so on from Definitions 21.56 and
21.58). Let X € C([0, c0)) with continuous square variation (along P)

T (X)r =Vi(X) = lim " (Xv — X",

tePr

For Brownian motion, we have W € CZ;, almost surely for any admissible sequence
of partitions (Theorem 21.64) and (W) = T. For continuous local martingales M
passing to a suitable subsequence P’ of P ensures that M € Cgf,/ almost surely (The-
orem 21.70).

Now fix P and let X € Cqy be a (deterministic) function.

Theorem 25.25 (Pathwise It6 formula) Let X € Cqy and F € C 2(R). Then, for all
T > 0, there exists the limit

T
/ F'(X,)dX,:= lim Z F'(X)(X; — Xy). (25.12)
0 n—>0o0

n
tePy

Furthermore, the It6 formula holds:

T T
F(X7) — F(X0) =/ F'(Xs)dXs + %/ F"(X;)d(X)s. (25.13)
0 0

Here the right integral in (25.13) is understood as a classical (Lebesgue—Stieltjes)
integral.
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Remark 25.26 If M is a continuous local martingale, then, by Exercise 25.2.1, the
It6 integral fOT F’(M,) d M is the stochastic limit of Ztem F'(M;)(M, — M;) as
n — oo. Thus, in fact, for X = M (w), the pathwise integral in (25.12) coincides

with the Itd integral (a.s.). In particular, for the Itd integral of Brownian motion, the
1t6 formula (25.11) holds. O

Proof of Theorem 25.25 We have to show that the limit in (25.12) exists and that
(25.13) holds.
For n € N and t € PJ. (with successor ¢’ € PJ.), the Taylor formula yields

1
F(Xy)— F(X;)=F (X)(Xy — X)) + EF”(XI) Xy —X)?+R!, (25.14)
where the remainder
1
Rl = (F"(€) = F"(X0) - 5 (Xy = X)?

(for a suitable & between X; and X,/) can be bounded as follows. As X is continuous,
C:=({X,:t€[0,T]}is compact and F” |C is uniformly continuous. Thus, for every

& > 0, there exists a § > 0 with
|F"(X,) — F"(X;)| <& forallr,s€[0, T]with |X, — X,| <38.

Since X is uniformly continuous on [0, 7] and since the mesh size |P"| of the
partition goes to 0 as n — oo, for every § > 0, there exists an N; such that

sup sup | Xy — X;| <.
n=NstePy

Hence, for n > Ns and t € P7,
n 1 2
IR} | < ES(X” — X))
Summing over ¢ € PJ. in (25.14) yields
D (F(Xy) = F(X)) = F(X)) = F(Xo)
tePy.

and
DR e Y Xy — X)) "5 (X)), < oo
tePr tePr
n— 00

As ¢ > 0 was arbitrary, we get ) _, Py |R}| —> 0. We have (see Exercise 21.10.2)

2n—>ool

T
> ZFN(XI)(Xz’_Xt) 5/ F"(Xy)d(X)s.

tePy 0
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Hence, in (25.14) the sum of the remaining terms also has to converge. That is, the
limit in (25.12) exists. O

As a direct consequence, we obtain the Itd formula for the It6 integral with re-
spect to diffusions.

Theorem 25.27 (Itd formula for diffusions) Let Y = M + A be a (generalized)
diffusion (see Definition 25.23), where M; = f(; osdWg and A; = fot bgds. Let
F € C%(R). Then we have the 1t6 formula

t

t t
F(Y,) — F(Yo) = / F/(Yy) dM, + / F’(Ys>dAs+% / F'(Yy)d(M),
0 0 0
t t 1
_ f F(Yy)os dWs + / (F/(Ys)bs+§F”<maf)ds-
0 0

(25.15)
In particular, for Brownian motion,

t t
F(W,) — F(Wo) = f F’(WS)dWs—l—% / F (W) ds. (25.16)
0 0

As an application of the Itd formula, we characterize Brownian motion as a con-
tinuous local martingale with a certain square variation process.

Theorem 25.28 (Lévy’s characterization of Brownian motion) Let X € Mjoc . with
Xo = 0. Then the following are equivalent.

@) (X,2 — 1)>0 is a local martingale.
(i) (X); =t forallt > 0.
(iii) X is a Brownian motion.

Proof (iii) = (i) This is obvious.

(i) <= (ii) This is clear since the square variation process is unique.

(ii) = (iii) It is enough to show that X, — X; ~ N ,_s given F; fort > s > 0.
Employing the uniqueness theorem for characteristic functions, it is enough to show
that (with i = +/—1) for A € F; and A € R, we have

a1 (1) == E[e"Xi=X01,] = P[A]e ¥ (=92,

Applying Itd’s formula separately to the real and the imaginary parts, we obtain

. . o 11t ..
MK i Xs :/ ireXrdx, — Ef A2eMXr gy,
N

N
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Therefore,

E[ei/\(Xr—Xs)

F]-1

L 1 '
=E[/ irel M KXo gx );S] _ EAZE[/ o X=X g ‘ ]:s:|~
N .

s

Now M, :=Re [ ire*Xr=X)dX, and N, :=Im [/ ire?Xr=X) dX,, t > 5 are
continuous local martingales with

t
(M), = f Wsin(M(X, — X)) dr <22 —5)

and
1
(N): =/ A2 cos(h(X, — X)) 2dr < 23(t —s).

Thus, by Corollary 21.76, M and N are martingales. Hence we have
t .
EU P2 X=X g x, ‘ ]-"S] —0.
N

Since A € Fj, Fubini’s theorem yields

041 (1) = pax(s) = E[e" X X1, ] - P[A]
1 ro. 1 t
—__ 2/ E[elA(Xr—Xs)]lA]d,. — __)LZ/ oA (r)dr.
2 Js 27 ),

That is, ¢4 is the solution of the linear differential equation

d 1
@as(s) =P[A] and EgoA,A(t):—EA%oA,A(r).

The unique solution is @4 (f) = P[A]e =)/, 0

As a consequence of this theorem, we get that any continuous local martingale
whose square variation process is absolutely continuous (as a function of time) can
be expressed as an Itd integral with respect to some Brownian motion.

Theorem 25.29 (Itd’s martingale representation theorem) Let M be a continu-
ous local martingale with Mo = 0 and absolutely continuous square variation
t +— (M);. Then, on a suitable extension of the underlying probability space, there
exists a Brownian motion W with

tldM
M,:/ ( >%JWS forallt > 0.
0 ds
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Proof Assume that the probability space is rich enough to carry a Brownian motion
W that is independent of M. Let

fr = lim n((M)t — (M),_l/n) fort > 0.

n—oo

Then f is a progressively measurable version of the Radon—Nikodym derivative
%. Clearly, fOT 1if>0) f,_1 d{(M); <T < oo forall T > 0. Hence the following
integrals are well-defined, and furthermore, as a sum of continuous martingales,

t t

~1/2 ~

W, 2=/ 101 fs / dMs+f Lif,=0ydWs
0 0

is a continuous local martingale. By Theorem 25.22, we have
t ! 1
(W = / Lif>0)fy  d(M)s+ / Lif,=0yds
0 0

4 t
:/ jl{.)"s>0}fs_1fs ds +/ Lif,=0yds =t.
0 0

Hence, by Theorem 25.28, W is a Brownian motion. On the other hand, we have
! 1/2 ! 1/2 =12 ! 12,55
f fs T dWs =/ Tigs0fs '~ fs dMs+/ =0y fs '~ dWs
0 0 0

t
= / Lif,>0ydMs.
0
However,

t t
M; —/ Lf>0y dM; =/ Ly f,=0y d M;
0 0

is a continuous local martingale with square variation f(; 1if,=0yd(M)s =0 and

hence it almost surely equals zero. Therefore, we have M; = f(; Sl/ deS, as
claimed. O

We come next to a multidimensional version of the pathwise 1t6 formula. To
this end, let Cgv be the space of continuous maps X : [0, c0) — RY, t X; =
(X Lo, X,d) such that, for k,/ =1, ...,d, the quadratic covariation (see Defini-
tion 21.58) (X*, X!} exists and is continuous. Further, let C>(R?) be the space of
twice continuously differentiable functions F on R with partial derivatives 8y F
and %9, F, k,I =1,...,d. Denote by V the gradient and by A = (37 + ...+ 93)
the Laplace operator.
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Theorem 25.30 (Multidimensional pathwise Itd6 formula) Letr X € Cgv and F €
C2(RY). Then

T 1 d T
F(XT)—F(X0)=/ VFdXs+§ Z / 3ka[F(XS)d(Xk’Xl>s’
0 k=179

where

T d
/O VF(Xs)dX,:= lim Z ZakF(xt)(xf/ — X5).

tePy k=1

Proof This works just as in the one-dimensional case. We leave the details as an
exercise. 0

Remark 25.31 1If each of the integrals fOT o F(Xy) de exists, then

T d T
/ VF(X,)dX, = Z/ WF(X)dXxk,
0 k=1 0

Note that existence of the individual integrals does not follow from the existence of
the integral fOT VF(X)dX;. O

Corollary 25.32 (Productrule) If X, Y, X —Y, X +Y € Cqy, then

T T
XTYT=X0Y0+/ stxmf X,dYs + (X, Y)p forall T >0
0 0

if both integrals exist. In particular, the product rule holds if X and Y are continuous
local martingales.

Proof By assumption (and using the polarization formula), the covariation (X, Y)
exists. Applying Theorem 25.30 with F'(x, y) = xy, the claim follows.

For continuous local martingales, by Exercise 25.2.1, there exists a suitable se-
quence of partitions P such that the integrals exist (pathwise). O

Now let Y = M + A be a d-dimensional generalized diffusion. Hence
d t t
M,":Z/ oklaw!  and Af:/ bkds fort>0, k=1,...,d.
0 0
I=1

Here W = (W!,..., W%) is a d-dimensional Brownian motion and %! (respec-
tively b¥) are progressively measurable, locally square integrable (respectively lo-
cally integrable) stochastic processes for every k.l =1, ...,d. Since (WK, W'y, =
t - Lig=ry, we have (Y, Y1), = (M*, M), = fot akl ds, where

d
kil ._ ki il
a,” .= ZUS Oy
i=1
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is the covariance matrix of the diffusion M. In particular, we have M Cgv al-
most surely. Note that (by Exercise 25.2.1), there exists a partition sequence P such
that the integrals fé af”ak FYy)d W£ in (25.17) exist in the pathwise sense. As a
corollary of the multidimensional pathwise Itd6 formula (Theorem 25.30 and Re-
mark 25.31), we thus get the following theorem.

Theorem 25.33 (Multidimensional 1t6 formula) Let Y be as above and let F €
C%(RY). Then

T 1 d T
F(Yr) — F(Yo) =/ VE(Y)dY; + 5 3 / 0k, F (Yy) d(M¥, M),
0 k=170

d . d .
- Z/ USk‘IBkF(YS)dWSI—i-Z/ brop F(Yy)ds
0 k=1 0

k=1

d
1 ' k.l
+§k§l_1/0 a3 F (Yy) ds. (25.17)

In particular, for Brownian motion, we have

d . '
F(Wt)—F(W0)=Z/ akF(Ws)dWSk—i—%/ AF(Wy)ds.  (25.18)
k=170 0

Corollary 25.34 The process (F(W;)):>o is a continuous local martingale if and
only if F is harmonic (that is, AF =0).

Proof If F is harmonic, then as a sum of It6 integrals, F(W;) = F(Wy) +
Zle f(; 3 F(Wy) dW¥ is a continuous local martingale.

On the other hand, if F is a continuous local martingale, then as a difference of
continuous local martingales, fot AF(W;)ds is also a continuous local martingale.

Ast— fé AF (W) ds has finite variation, we have fot AF(Wo)ds=0forallt >0

almost surely (by Corollary 21.72). Hence AF =0. 0

Corollary 25.35 (Time-dependent It6 formula) If F € C>!(R? x R), then
F(Wr,T) — F(Wy,0)

d T T
1
:E / 8kF(WS,s)dWSk+/ <ad+1 +§(812+...+85))F(W;,s)ds.
k=1"0 0

Proof Apply Theorem 25.33to ¥ = (W, ..., W, 1)>0. O
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Exercise 25.3.1 (Fubini’s theorem for Itd integrals) Let X € Cqy and assume that
g : [0, 00)? — R is continuous and (in the interior) twice continuously differentiable
in the second coordinate with derivative d>g. Use the product rule (Corollary 25.32)

to show that
s t t s
/(/ g(u,v)du)dXU=/ </ g(u,v)dXv)du
0 0 0 0
fs (fvgw,v)du) dx, =/S</Sg(u,v)dxv) du.
0 0 0 u

Exercise 25.3.2 (Stratonovich integral) Let P be an admissible sequence of parti-
tions, X € Cgi and F € C%(R) with derivative f = F’. Show that, for every ¢ > 0,
the Stratonovich integral

T Xy + X
fo f(Xp)odX, = lim Zf(gyxﬂ—xt)

2
tePr

and

is well-defined, and that the classical substitution rule
T
F(X7)— F(Xo) = / F'(X;)odX,
0

holds. Show that, in contrast with the It6 integral, the Stratonovich integral with
respect to a continuous local martingale is, in general, not a local martingale.

25.4 Dirichlet Problem and Brownian Motion

As for discrete Markov chains (compare Section 19.1), the solutions of the Dirichlet
problem in a domain G C R? can be expressed in terms of a d-dimensional Brown-
ian motion that is stopped upon hitting the boundary G.

In the following, let G C R be a bounded open set.

Definition 25.36 (Dirichlet problem) Let f : G — R be continuous. A function
u: G — R is called a solution of the Dirichlet problem on G with boundary value
f if u is continuous, twice differentiable in G and

Au(x)=0 for x € G,
(25.19)
u(x)=f(x) forxeaG.

For sufficiently smooth domains, there always exists a solution of the Dirichlet prob-
lem (see, e.g., [79, Section 4.4]). If there is a solution, then as a consequence of
Theorem 25.38, it is unique.
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In the following, let W = wl, ..., Wd) be a d-dimensional Brownian motion
with respect to a filtration [F that satisfies the usual conditions. We write P, and E,
for probabilities and expectations if W is started at Wy = x = (xl, R xd) ceRY.If
A C R? is open, then

Tac :=inf{t > 0: W; € A}

is an F-stopping time (see Exercise 21.4.4). Since G is bounded, we have G C
(—a,a) x R4~ for some a > 0. Thus 7gc < T((—a,a)xRd-1)c- By Exercise 21.2.4
(applied to W), for x € G,

E.[16¢] < Ex[t(_g.axri-1ye] = (@ —x")(a +x') < o0. (25.20)

In particular, g < 0o Py-almost surely. Hence W, is a Py-almost surely well-
defined random variable with values in 0G.

Definition 25.37 For x € G, denote by

mx,c =Pyo w_!

TGe

the harmonic measure on 0G.

Theorem 25.38 If u is a solution of the Dirichlet problem on G with boundary
value f, then

u(x) =Ex[f(Weg) ] = ./ac FWixcdy) forxeG. (25.21)

In particular, the solution of the Dirichlet problem is always unique.

Proof Let G{ C G, C ... be a sequence of open sets with x € G1, G, 1 G and
G, C G for every n € N. Hence, in particular, every G, is compact and thus Vu is
bounded on G,,. We abbreviate T := tge and 7, 1= TGe.

As u is harmonic (that is, Au = 0), by the 1t6 formula, for ¢t < 7,

' d
u(W,):u(Wo)+/ Vu(Ws)dwszu(Wo)+Z/ Bku(Ws)dWXk. (25.22)
0 k=1 0

In particular, M := (u(W;)):¢[0,7) is a local martingale up to v (however, in general,
it is not a martingale). For # < t,;, we have

(Bu(Wy)? < Cy = sup | Vu()|; <oo forallk=1,....d.

y€Gn

Hence, by (25.20),

EU (aku(Ws))st] < CuEy[1,] < C,E[1] < 00,
0
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Thus, by Theorem 25.17(ii), for every n € N, the stopped process M™ is a martin-
gale. Therefore,

E. [u(Wy,)] = E<[My,] = E[Mo] = u(x). (25.23)

. . n—>oo . . .
As W is continuous and 7, 1 7, we have W, — W, € G. Since u is continuous,
we get

u(Wy) =5 u(Wy) = f(Wy). (25.24)

Again, since u is continuous and G is compact, u is bounded. By the dominated
convergence theorem, (25.24) implies convergence of the expectations; that is (also
using (25.23)),

u(x) = lim Ec[u(Wr,)]=E[f(Wo)]. O

Exercise 25.4.1 Let G =R x (0, 00) be the open upper half plane of R and x =
(x1,x2) € G. Show that TG < oo almost surely and that the harmonic measure iy g
on R = 9G is the Cauchy distribution with scale parameter x; that is shifted by x;:
Hx,G =0y, * Cauy,.

Exercise 25.4.2 Letd >3 and let G = R9~1 x (0, 0o0) be an open half space of R4,

Let x = (x1,...,x4) € G. Show that Tgc < oo almost surely and that the harmonic
measure /i, on RY~! = 3G has the density
mxG(dy)  I'(d/2) Xd

a2 :
dy i \/(xl_YI)2+--~+(xa’—1_Ya’—l)z‘l‘xdz

Exercise 25.4.3 Let » > 0 and let B, (0) C R? be the open ball with radius r cen-
tered at the origin. For x € B, (0), determine the harmonic measure [y, g, (0).

25.5 Recurrence and Transience of Brownian Motion

By Pdlya’s theorem (Theorem 17.39), symmetric simple random walk (X,,),eN On
74 is recurrent (that is, it visits every point infinitely often) if and only if d < 2. If
d > 2, then the random walk is transient and eventually leaves every bounded set
A C Z¢. To give a slightly different (though equivalent) formulation of this,

liminf|| X,|=0 as. <<= d<2
n—oo

and
lim || X,]| =00 as. — d>2.
n—oo

The main result of this section is that a similar dichotomy also holds for Brownian
motion.
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Theorem 25.39 Ler W = (WL, ..., Wd) be a d-dimensional Brownian motion.

(1) Ifd <2, then W is recurrent in the sense that

liminf || W; —y|| =0 a.s. foreveryye RY.
11— 00

In particular, almost surely the path {W; : t > 0} is dense in RY.
(ii) Ifd > 2, then W is transient in the sense that

lim |W;| =00 a.s.,
—00

and for any y € R4 \ {0}, we have inf{||W; — y|| : t > 0} > 0 almost surely.

The basic idea of the proof is to use a suitable Dirichlet problem (and the result
of Section 25.4) to compute the probabilities for W to hit certain balls,

Br(x):={yeR?:|x -yl < R}.
Let 0 <r < R < oo and let G, g be the annulus
Grg=Br(O)\ B, (0)={xeR’:r <|x|| <R}.

Recall that, for closed A C RY, we write T4 = inf{r > 0: W, € A} for the stopping
time of first entrance into A. We further write

ts:=inf{t>0:||Wt||=s} and 1, g=inf{t > 0: W, € G, g}.

If we start W at Wy € G, g, then clearly 7, g = 7 A Tg. On the boundary of G, g,
define the function f by

L, iflxl|=r
fx)= (25.25)
0, if x| =R.
Define u, g : G, g — R by
oy < VXD = V(R
rk Vi) —V(R)

where V : (0, 00) — R is Newton’s potential function
s, ifd=1,
V(s) =Vy(s) =4 log(s), ifd=2, (25.26)
—s274 ifd > 2.

It is easy to check that ¢ : R?\ {0} — R, x = Vz(||x|)) is harmonic (that is, Ag = 0).
Hence u, g is the solution of the Dirichlet problem on G, g with boundary value f.
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By Theorem 25.38, for x € G, g,

Ptk =] =Pu[IWe o | = 1] = Ex[f(Wy, )] =ty r (). (25.27)
Theorem 25.40 Forr > 0 and x,y € R? with | x — y|| > r, we have

17 l‘fd S 2’
P[W; € B, (y) for some t > 0] = (B ird > 2
r ’ ’

Proof Without loss of generality, assume y = 0. Then

P,[7, <oo]l= lim Py[7, g =7,]= lim w
R— o0 ’ R—oo V(r)—V(R)

{l, ifd =2,

I 1D

{",d—(f), ifd > 2,

since limg_ o Vyj(R) =00 ifd <2 and =0if d > 2. O

Proof of Theorem 25.39 Using the strong Markov property of Brownian motion, we
getforr >0

Px[hggfuw,u < s] =Px|: U () {IWll <r forsome s > rR}}
s€(0,r) R>||x||

= sup _inf P.[[|W;| <s for some 7 > tg]
se(0,r) R>Ix|l

= su inf Py|Pw, [ty <o0]|.
SE(OI,)r)R>HXH X[ RS ]

However, by Theorem 25.40 (since || Wy, | = R for R > ||x||), we have

1, ifd <2,

Py, [7s <00l =
K { (s/R)¥2, ifd>2.

Therefore,
1, ifd<2,

P[liminf|| AP r] _
=00 0, ifd>2.

This implies the claim. g
Definition 25.41 (Polar set) A set A C R is called polar if

P.[W, & Aforalls>0]=1 forallxeR?,
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Theorem 25.42 [fd = 1, then only the empty set is polar. If d > 2, then {y} is polar
forevery y e R4,

Proof For d = 1, the statement is obvious since

limsupW; =00 and liminfW,=—-o00 as.
t—>00 =00

Hence, due to the continuity of W, every point y € R will be hit (infinitely often).
Now let d > 2. Without loss of generality, assume y = 0. If x # 0, then

P, [ti0) < ool = lim Py[7)g) < TR]
R—o0

= lim infPy[t.g =1,
R—o0r>0

= lim infu, g(x)=0 (25.28)
R—o0r>0

since Vy(r) =9 —o0ifd > 2.
On the other hand, if x = 0, then the strong Markov property of Brownian motion
(and the fact that Po[W; = 0] = O for all # > 0) implies

Po[7j0; < 00] = supPo[W, =0 for some s > 7]
t>0

=sup Py [PW[ [t0) < oo]] =0.

t>0

Note that in the last step, we used (25.28). O



Chapter 26
Stochastic Differential Equations

Stochastic differential equations describe the time evolution of certain continuous
Markov processes with values in R”. In contrast with classical differential equa-
tions, in addition to the derivative of the function, there is a term that describes the
random fluctuations that are coded as an Itd integral with respect to a Brownian
motion. Depending on how seriously we take the concrete Brownian motion as the
driving force of the noise, we speak of strong and weak solutions. In the first section,
we develop the theory of strong solutions under Lipschitz conditions for the coef-
ficients. In the second section, we develop the so-called (local) martingale problem
as a method of establishing weak solutions. In the third section, we present some
examples in which the method of duality can be used to prove weak uniqueness.

As stochastic differential equations are a very broad subject, and since things
quickly become very technical, we only excursively touch some of the most impor-
tant results, partly without proofs, and illustrate them with examples.

26.1 Strong Solutions

Consider a stochastic differential equation (SDE) of the type

Xo=§,
(26.1)
dXt :o’(t,X,)th +b(t, Xt)dt
Here W = (W! ..., W™) is an m-dimensional Brownian motion, & is an R”-
valued random variable with distribution w that is independent of W, o (t,x) =
, 18 an n-

.....

(0ij(t,x)) i=1...n. is a real n x m matrix and b(t,x) = (b; (t, x))i=1
. =

,,,,, m

dimensional vector. Assume the maps (¢, x) > 0;; (¢, x) and (¢, x) — b;(t, x) are
measurable.
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By a solution of (26.1) we understand a continuous adapted stochastic process X
with values in R" that satisfies the integral equation

t

t
Xt=§+f o(s,xs)dw_ﬁ/ b(s, Xs)ds P-as.forallt>0.  (26.2)
0 0

Weritten in full, this is
) !t ) t
X§=§’+Z/ Uij(s,XS)dWsj—l—/ bi(s. Xy)ds foralli=1,....n.
; 0 0
j=1

Now the following problem arises: To which filtration F do we wish X to be
adapted? Should it be the filtration that is generated by £ and W, or do we allow F
to be larger? Already for ordinary differential equations, depending on the equation,
uniqueness of the solution may fail (although existence is usually not a problem);
for example, for £’ =|f|'/3. If F is larger than the filtration generated by W, then
we can define further random variables that select one out of a variety of possible
solutions. We thus have more possibilities for solutions than if F = o (W). Indeed, it
will turn out that in some situations for the existence of a solution, it is necessary to
allow a larger filtration. Roughly speaking, X is a strong solution of (26.1) if (26.2)
holds and if X is adapted to F = o (W). On the other hand, X is a weak solution if
X is adapted to a larger filtration F with respect to which W is still a martingale.
Weak solutions will be dealt with in Section 26.2.

Definition 26.1 (Strong solution) We say that the stochastic differential equa-
tion (SDE) (26.1) has a strong solution X if there exists a map F : R" x
C([0, 00); R™) — C([0, 00); R") with the following properties:

(i) For every ¢t > 0, the map (x,w) — F(x,w) is measurable with respect to
B[R") ® G" — G}', where (for k =m or k =n) th =0 (ms:5€[0,¢])isthe o-
algebra generated by the coordinate maps 7 : C ([0, 00); RY > R, w > w(s).

(ii) The process X = F (&, W) satisfies (26.2).

Condition (i) says that the path (X;)s¢[0,/] depends only on & and (W;)s¢[o,,] but
not on further information. In particular, X is adapted to F; = o (&, W : s € [0, ¢])
and is progressively measurable; hence the Itd integral in (26.2) is well-defined if o
and b do not grow too quickly for large x.

Remark 26.2 Clearly, a strong solution of an SDE is a generalized n-dimensional
diffusion. If the coefficients o and b are independent of ¢, then the solution is an
n-dimensional diffusion. O

Remark 26.3 Let X be a strong solution and let F be as in Definition 26.1. If W’ is
an m-dimensional Brownian motion on a space (£2', 7', P’) with filtration ', and
if £ is independent of W’ and is F{-measurable, then X' = F(§’, W’) satisfies the
integral equation (26.2). Hence, it is a strong solution of (26.1) with W replaced
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by W’. Thus the existence of a strong solution does not depend on the actual real-
ization of the Brownian motion or on the filtration FF. O

Definition 26.4 We say that the SDE (26.1) has a unique strong solution if there
exists an F as in Definition 26.1 such that:

(i) If W is an m-dimensional Brownian motion on some probability space
(£2, F, P) with filtration [F and if & is an Fp-measurable random variable that is
independent of W and such that P o g~ =y, then X := F(&, W) is a solution
of (26.2).

(i) For every solution (X, W) of (26.2), we have X = F(§, W).

Example 26.5 Letm =n =1, b € R and o > 0. The Ornstein—Uhlenbeck process

t
X, :=e"¢ —i—a/ I aw,, >0, (26.3)
0

is a strong solution of the SDE Xy = £ and
dX[ =GdW[ +ledl

In the language of Definition 26.1, we have (in the sense of the pathwise Itd integral
with respect to w)

t
F(x,w)= (tr—>ebtx+/ e(ts)bdw(s)>
0

for all w € Cqy (that is, with continuous square variation). Since P[W € Cqy] =1,
we can define F(x, w) =0 for w € C([0, 00); R) \ Cgy.
Indeed, by Fubini’s theorem for It6 integrals, we have (Exercise 25.3.1)

' !
S—}—/ adWs+/ bXds
0 0

t t s
:.§+UW,+/ be’“gds+/ ab(/ eb(s_’)dWr>ds
0 0 0

‘ ‘
:§+JW,+(eb’—l)§+/ J(/ beb(s_r)ds>dW,
r

0
13
_ ey / (o + (P~ 1)o)dW,
0
== Xt .
It can be shown (see Theorem 26.8) that the solution is also (strongly) unique. ¢

Example 26.6 Let «, B € R. The one-dimensional SDE Xy = £ and

dX;=aX,dW; + BX;dt (26.4)
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2
=$exp<otWt + (,3 - %)t).

In the language of Definition 26.1, we have o (¢, x) = ax, b(t, x) = fx and

o2
Fx,w)= (t = xexp(aw(r) + (ﬂ — 7)1‘))

for all w € C([0, 00); R) and x € R. Indeed, by the time-dependent Itd formula
(Corollary 25.35),

t t aZ 1
=s+/ aXSdWS—i—/ ((ﬁ——)—i——az)Xsds.
0 0 2 2

Also in this case, we have strong uniqueness of the solution (see Theorem 26.8).
The process X is called a geometric Brownian motion and, for example, serves in
the so-called Black—Scholes model as the process of stock prices. O

has the strong solution

We give a simple criterion for existence and uniqueness of strong solutions. For
an n X m matrix A, define the Hilbert—Schmidt norm

[All = /trace(AAT) = (26.5)

For b € R", we use the Euclidean norm ||b||. Since all norms on finite-dimensional
vector spaces are equivalent, it is not important exactly which norm we use. How-
ever, the Hilbert—Schmidt norm simplifies the computations, as the following lemma
shows.

Lemma 26.7 Let t — H(t) = (H;j(t))i=1,..., =1,...m be progressively measur-
able and E[fo Hl%. (t)dt] < oo foralli, j. Then

2 T 5
E[ }:E[/ [H®| dt], (26.6)
0

where ||H || is the Hilbert—Schmidt norm from (26.5).

T
/ H(t)dW,
0

Proof Fori =1,...,n, the process [;(¢) := Z]m:l fot Hi; (s)dWSj is a continuous

martingale with square variation process (/;); = fol Z';':l Hl% (s)ds. Hence

E[(L(T)) [/ Z H} (s)ds:|.
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The left-hand side in (26.6) equals
n 5 T n m
S E[(1(T))*] = E|: / Yy H;,mds}.
: 0 —'“ '
i=1 i=1j=1

Hence the claim follows by the definition of || H (s)||%. 0

Theorem 26.8 Let b and o be Lipschitz continuous in the first coordinate. That
is, we assume that there exists a K > 0 such that, for all x,x' € R" and t > 0,

loGe, 0y —o(x' 0)| + b, ) = b(x",1)|| < K|x —x']. (26.7)
Further, assume the growth condition
lo@, 0>+ b, )|> < K2(1+1Ix?) forallx eR",t>0.  (26.8)

Then, for every initial point Xo = x € R", there exists a unique strong solution X
of the SDE (26.1). This solution is a Markov process and in the case where o and
b do not depend on t, it is a strong Markov process.

As the main tool, we need the following lemma.

Lemma 26.9 (Gronwall) Let f, g :[0,T] — R be integrable and let C > 0 such
that

fO=<gt)+C /0.[ fGs)ds forallte[0,T]. (26.9)
Then
f<gt)+ C/(;t eC9g(s)ds forallt €0, T].
In particular, if g(t) = G is constant, then f(t) < GeS! forall t € [0, T].
Proof Let F(t) = fé f(s)ds and h(t) = F(t)e~C'. Then, by (26.9),
d —Ct —Ct —Ct
Eh(t) =fMe " —=CF(t)e " <g(t)e ~'.
Integration yields

t
F(t) =e“"h(r) 5/ el g(s)ds.
0

Substituting this into (26.9) gives

t
ft)<gt)+CF(r) <g(t)+ c/ g(5)e€) ds. O
0
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Proof of Theorem 26.8 1t is enough to show that, for every T < oo, there exists a
unique strong solution up to time 7.

Uniqueness. We first show uniqueness of the solution. Let X and X’ be two
solutions of (26.2). Then

' '
X,—X;:/ (b(s,XS)—b(s,X;))ds—i—/ (o(s,XS)—a(s,X;))dWs.
0 0
Hence

2
X - x;|* <2

‘ i (b5, Xo) — b(s. X)) ds
0

2

+ 2‘ (26.10)

'
/ (o(s, X;) — a(s, X;))dWs
0

For the first summand in (26.10), use the Cauchy—Schwarz inequality, and for the
second one use Lemma 26.7 to obtain

t
B =X T =20 [ B[l X0 = (s, X)) P as

I

1
+2/ E[[o (5. X,) — o (s. X)) "] ds.
0

Write f(t) = E[||X; — X]|I?] and C := 2(T + 1)K?2. Then f(t) < C [ f(s)ds.
Hence Gronwall’s lemma (with g =0) yields f =0.

Existence. We use a version of the Picard iteration scheme. For N € Ny, recur-
sively define processes XV by X9 = x and

t t
xN ::x—f-/ b(s,x;V—l)der/ o(s. XN 1) dw, forNeN. (26.11)
0 0

Using the growth condition (26.8), it can be shown inductively that

T T
i E[||xy|yz]dt§z<r+1>z<2<r+ i E[||X,N1||2]dt>
0 0
<T@+ DK)Y(1+[x)?) <00, NeN.

Hence, at each step, the It6 integral is well-defined.
Consider now the differences

XN _xN =1+,
where

I = /Ol(a(s, XNy —o(s, X¥71)) aw,
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and
t
J; ::/ (b(s, XAN) —b(s, Xﬁv_l))ds.
0

By applying Doob’s L?-inequality to the nonnegative submartingale (|| ;]|?);0, us-
ing Lemma 26.7 and (26.7), we obtain

E[sup I11°] < 4E[17,17]

o
_ 4E|:/:H0(s, XM —o s, xgv—l)u%s]
< 4K2/OIE[HX§V — x| ds. (26.12)
For J;, by the Cauchy-Schwarz inequality, we get
< [ oo, ) =l X2 s
Hence

t
E[sup /511 er[/ ||b(s7XsN)—b(s,X§“)H2ds}

s<t 0

t
5r1<2/ E[| xY - xN1|*]ds. (26.13)
0
Defining
AN (1) :=E[sup”X§V — xN-1 ||2],

s<t

and C :=2K%*(4+T) v 2(T + DK?*(1 + ||x||?), we obtain (using the growth con-
dition (26.8))

t
ANTL(@) SC/ AN (s)ds for N >1
0
and

1 t
Al(t)§2t/ ||b(s,x)||2ds+2/ o (s, )| ds
0 0

<2T+DK*(1+ Ix|%) -t < Ct.
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Inductively, we get AN (1) < (CN;),N Thus, by Markov’s inequality,

o0 o0
> P[sup|x) - xYP>27V] < D2V aVo)
N=1 %! N=1
ad (2Ct)N cr
<y < 00.

N=1

N~>
2 0 a.s. Hence

Using the Borel-Cantelli lemma, we infer sup, ., || X gv -X gv -1
as. (XM)yenisa Cauchy sequence in the Banach space (C ([0, T]), || - |lco)- There-
fore, XV converges a.s. uniformly to some X. As uniform convergence implies con-
vergence of the integrals, X is a strong solution of (26.2).

Markov property. The strong Markov property follows from the strong Markov

property of the Brownian motion that drives the SDE. 0

We have already seen some important examples of this theorem. Many interesting
problems, however, lead to stochastic differential equations with coefficients that are
not Lipschitz continuous. In the one-dimensional case, using special comparison
methods, one can show that it is sufficient that o is Holder-continuous of order % in
the space variable.

Theorem 26.10 (Yamada—Watanabe) Consider the one-dimensional situation
where m = n = 1. Assume that there exist K < oo and o € [%, 1] such that, for
allt > 0and x,x" € R, we have

|b(t,x)—b(t,x’)|§K|x—x’| and |0(t,x)—o(t,x/)|§|x—x/|a.

Then, for every Xo € R, the SDE (26.1) has a unique strong solution X and X is a
strong Markov process.

Proof See [172] or [85, Proposition 5.2.13] and [49, Theorem 5.3.11] for existence
and uniqueness. The strong Markov property follows from Theorem 26.26. g

Example 26.11 Consider the one-dimensional SDE

dX;=\/yX;"dW; +a(b— X;")dt (26.14)

with initial point Xy = x > 0, where y > 0 and a, b > 0 are parameters. The condi-
tions of Theorem 26.10 are fulfilled with o = % and K = ,/y + a. Obviously, the
unique strong solution X remains nonnegative if Xo > 0. (In fact, it can be shown
that X, > O for all + > 0 if 2ab/y > 1, and that X, hits zero arbitrarily often with
probability 1 if 2ab/y < 1. See, e.g., [78, Example IV.8.2, p. 237]. Compare Exam-
ple 26.16. See Figs. 26.1 and 26.2 for computer simulations.)
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1.5
1
0.5
| 1 WA ; ; hi Tl \
0 5 10 15 20 25 30

Fig. 26.1 Cox-Ingersoll-Ross diffusion with parameters y =1, b =1 and a = 0.3. The path hits
zero again and again since 2ab/y =0.6 < 1

259

1.59

0.5

0 5 10 15 20 25 30

Fig. 26.2 Cox-Ingersoll-Ross diffusion with parameters y =1, b =1 and a = 2. The path never
hits zero since 2ab/y =4 > 1

Depending on the context, this process is sometimes called Feller’s branching
diffusion with immigration or the Cox—Ingersoll-Ross model for the time evolution
of interest rates.

For the case a = b = 0, use the It6 formula to compute that

)»2 t t
e MKt _gmhx )/? / e s X ds = A/ e s Sy Xy dW
0 0
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is a martingale. Take expectations for the Laplace transform ¢ (¢, A, x) = E, [e=*X1]

to get the differential equation

d A2 ya2 d
— ot M, x) =y —E[X,e "= - —o(r, A, x).
P =y [Xie %] P TRARRY)

With initial value ¢ (0, A, x) = e~ the unique solution is
(t, X, x) ( A >
A, x)=exp| ——x ).
¢ PTG +1

However (for y = 2), this is exactly the Laplace transform of the transition probabil-
ities of the Markov process that we defined in Theorem 21.48 and that in Lindvall’s
theorem (Theorem 21.51) we encountered as the limit of rescaled Galton—Watson
branching processes. O

Exercise 26.1.1 Let a, b € R. Show that the stochastic differential equation

Xy
dXt: ‘ dt+dW[

with initial value X¢ = @ has a unique strong solution for ¢ € [0, 1) and that X :=
lim;41 X1 = b almost surely. Furthermore, show that the process ¥ = (X; —a —
t(b — a)):e0,1] can be described by the Itd integral

t
Y,:(l—t)/ 1—s)"'dw,, re]0,1),
0

and is hence a Brownian bridge (compare Exercise 21.5.3).

26.2 Weak Solutions and the Martingale Problem

In the last section, we studied strong solutions of the stochastic differential equation
dX;=o(t,X;)dW; + b(¢t, X;) dt. (26.15)

A strong solution is a solution where any path of the Brownian motion W gets
mapped onto a path of the solution X. In this section, we will study the notion of
a weak solution where additional information (or additional noise) can be used to
construct the solution.

Definition 26.12 (Weak solution of an SDE) A weak solution of (26.15) with initial
distribution pu € M (R") is a triple

L=((X,W),(22,F,P),F),

where
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(£2, F,P) is a probability space,

F = (F;)s>0 1s a filtration on (§2, F, P) that satisfies the usual conditions,
W is a Brownian motion on (£2, F, P) and is a martingale with respect to I,
X is continuous and adapted (hence progressively measurable),

Po (Xo)~ ! =pu, and

(X, W) satisfies

t t
thXo—i—/ o(s,XS)dWS—i—/ b(s, Xs)ds P-as. (26.16)
0 0

A weak solution L is called (weakly) unique if, for any further solution L” with
initial distribution u, we have P’ o (X')™' =Po X!,

Remark 26.13 Clearly, a weak solution of an SDE is a generalized n-dimensional

diffusion. If the coefficients o and b do not depend on ¢, then the solution is an
n-dimensional diffusion. O

Remark 26.14 Clearly, every strong solution of (26.15) is a weak solution. The con-
verse is false, as the following example shows. O

Example 26.15 Consider the SDE (with initial value X = 0)
dX; =sign(X;)dW;, (26.17)

where sign = 1(0,00) — 1(—c0,0) is the sign function. Then
t
X,:Xo—l-f sign(Xs)dW, forallt>0 (26.18)
0
if and only if
t t
W; =/ dW, =/ sign(X;)dX, forallz > 0. (26.19)
0 0

A weak solution of (26.17) is obtained as follows. Let X be a Brownian motion on
a probability space (£2, F,P) and F = o (X). If we define W by (26.19), then W is
a continuous [F-martingale with square variation

1
(W), =/ (sign(XS))zds =1.
0

Thus, by Lévy’s characterization (Theorem 25.28), W is a Brownian motion. Hence
(X, W), (82, F,P),F) is a weak solution of (26.17).

In order to show that a strong solution does not exist, take any weak solution and
show that X is not adapted to o (W). Since, by (26.18), X is a continuous martingale
with square variation (X); = ¢, X is a Brownian motion.
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Let F,, € C%(R) be a convex even function with derivatives F, and F, such that
sup|F,,(x) — |x|| = 0,
xeR
|F(x)| <1forall x € R and F,(x) =sign(x) for |x| > % In particular, we have
fo t(F,;(XS) —sign(X,)) ds =3°0 as.
and thus
/O t F/(Xg)dX; =% Ot sign(X,)dX, in L2 (26.20)
By passing to a subsequence, if necessary, we may assume that almost sure conver-

gence holds in (26.20).
Since F is even, we have

t t
W, = / sien(X,)dX; = lim / Fl(X,)dX,
0 n—00 Jq
. L[ i
= lim ( Fu(X,) — Fo(0) — = | E/(Xy)ds
n—00 2 0

Y
=|x,|—ngr&§f() F)(1Xsl)ds.

As the right-hand side depends only on |X;|, s € [0, ], W is adapted to G :=
(o(|Xs| : s €10,¢])). Hence (W) C G g o(X), and thus X is not adapted to
a(W). O

Example 26.16 Let B = (B',..., B") be an n-dimensional Brownian motion
started at y € R". Let x := || y[|>, X; := || B;||> = (B))? +... + (B")? and

n t
1 , .
W; = E BldB!.
t i:l/() /_Xs s s

Then W is a continuous local martingale with (W); =t for every ¢ > 0 and

t
X,=x+nt+/ vV X dWs.
0

That is, (X, W) is a weak solution of the SDE d X; = /2X,;dW; +ndt. X is called
an n-dimensional Bessel process. By Theorem 25.42, B (and thus X) hits the origin
for some ¢ > 0 if and only if n = 1. Clearly, we can define X also for noninteger n >
0. One can show that X hits zero if and only if n < 1. Compare Example 26.11. ¢

For the connection between existence and uniqueness of weak solutions and
strong solutions, we only quote here the theorem of Yamada and Watanabe.
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Definition 26.17 (Pathwise uniqueness) A solution of the SDE (26.15) with initial
distribution  is said to be pathwise unique if, for every u € M|(R") and for any
two weak solutions (X, W) and (X', W) on the same space (£2, F, P) with the same
filtration F, we have P[X, = X/ for all t > 0] = 1.

Theorem 26.18 (Yamada and Watanabe) The following are equivalent.

(i) The SDE (26.15) has a unique strong solution.
(ii) For any u € M{(R"), (26.15) has a weak solution, and pathwise uniqueness
holds.

If (1) and (ii) hold, then the solution is weakly unique.

Proof See [172], [147, pp. 151ff] or [78, pp. 163ff]. O
Example 26.19 Let X be a weak solution of (26.17). Then —X is also a weak solu-
tion; that is, pathwise uniqueness does not hold (although it can be shown that the

solution is weakly unique; see Theorem 26.25). O

Consider the one-dimensional case m =n = 1. If X is a solution (strong or weak)
of (26.15), then

1
Mt ::Xl_/ b(S,XS)dS
0
is a continuous local martingale with square variation
13
), = [ %5 X0 ds.
0
We will see that this characterizes a weak solution of (26.15) (under some mild
growth conditions on o and b).
Now assume that, for all + > 0 and x € R", the n x n matrix a(t, x) is symmetric
and nonnegative definite, and let (¢, x) — a(z, x) be measurable.
Definition 26.20 An n-dimensional continuous process X is called a solution of the

local martingale problem for a and b with initial condition u € M (R") (briefly,
LMP(a, b, p)) if Po X, ' = j and if, forevery i = 1,...,n,

t
M; =X, —/ bi(s, Xy)ds, >0,
0
is a continuous local martingale with quadratic covariation
(M',m7), =/ aij(s,Xy)ds forallt>0,i,j=1,...,n.
0

We say that the solution of LMP(a, b, i) is unique if, for any two solutions X
and X/, wehave Po X1 =Po (X))~ 1.
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Denote by o the transposed matrix of o. Clearly, a = 0o’

semidefinite symmetric n X n matrix.

is a nonnegative

Theorem 26.21 X is a solution of LMP(co ™, b, i) if and only if (on a suitable
extension of the probability space) there exists a Brownian motion W such that
(X, W) is a weak solution of (26.15).

In particular, there exists a unique weak solution of the SDE (26.15) with initial
distribution 11 if LMP(co ™, b, ) is uniquely solvable.

Proof We show the statement only for the case m = n = 1. The general case needs
some consideration on the roots of nonnegative semidefinite symmetric matrices,
which, however, do not yield any further insight into the stochastics of the problem.
For this we refer to [85, Proposition 5.4.6].

“«—=" If (X, W) is a weak solution, then, by Corollary 25.19, X solves the
local martingale problem.

“— ” Let X be a solution of LMP(c2, b, ). By Theorem 25.29, on an
extension of the probability space there exists a Brownian motion W such that
M, = fot lo (s, X5)| dWs. If we define

t
W, ;:/ sign(a(s,Xs))de,
0

then M, = fot o (s, Xs)dWy and hence (X, W) is a weak solution of (26.15). O

In some sense, a local martingale problem is a very natural way of writing a
stochastic differential equation; that is:

X locally has derivative (drift) b and additionally has random normally distributed
fluctuations of size o.

Here, a concrete Brownian motion does not appear. In fact, in most problems its
occurrence is rather artificial. Just as Markov chains are described by their transi-
tion probabilities and not by a concrete realization of the random transitions (as in
Theorem 17.17), many continuous (space and time) processes are most naturally de-
scribed by the drift and the size of the fluctuations but not by the concrete realization
of the random fluctuations.

From a technical point of view, the formulation of a stochastic differential equa-
tion as a local martingale problem is very convenient since it makes SDEs accessible
to techniques such as martingale inequalities and approximation theorems that can
be used to establish existence and uniqueness of solutions. Here we simply quote
two important results.

Theorem 26.22 (Existence of solutions) Let (t,x) — b(t,x) and (t,x) — a(t, x)
be continuous and bounded. Then, for every u € M (R"), there exists a solution X
of the LMP(a, b, 1b).

Proof See [147, Theorem V.23.5]. O
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Definition 26.23 The LMP(a, b) is said to be well-posed if, for every x € R", there
exists a unique solution X of LMP(a, b, éy).

Remark 26.24 1f o and b satisfy the Lipschitz conditions of Theorem 26.8, then the
LMP(O'O‘T, b) is well-posed. This follows by Theorem 26.8, Theorem 26.18 and
Theorem 26.21. O

In the following, we assume
(t,x)— o(t, x) resp. (t,x) — a(t, x) is bounded on compact sets. (26.21)

This condition ensures the equivalence of the local martingale problems to the some-
what more common martingale problem (see [85, Proposition 5.4.11]).

Theorem 26.25 (Uniqueness in the martingale problem) Assume (26.21) and that,
for any x € R", there exists a solution X* of LMP(a, b, §x). The distribution of X*
will be denoted by P, :=P o (X%~

Assume that, for any two solutions X* and Y* of LMP(a, b, §x), we have

Po(X3) ' =Po(¥y)™' foranyT >0. (26.22)

Then LMP(a, b) is well-posed, and the canonical process X is a strong Markov
process with respect to (P, x e R"). Ifa = oo, then under Py, the process X is
the unique weak solution of the SDE (26.15).

Proof See [49, Theorem 4.4.2 and Problem 49] and [85, Proposition 5.4.11]. Il

A fundamental strength of this theorem is that we do not need to check the
uniqueness of the whole process but only have to check in (26.22) the one-
dimensional marginal distributions. We will use this in Section 26.3 in some ex-
amples.

The existence of solutions of a stochastic differential equation (or equivalently of
a local martingale problem) is often easier to show than the uniqueness of solutions.
We know already that Lipschitz conditions for the coefficients b and o (not oo ')
ensure uniqueness (Theorem 26.8 and Theorem 26.18), as here strong uniqueness
of the solution holds.

At first glance, it might seem confusing that random fluctuations have a stabil-
ising effect on the solution. That is, there are deterministic differential equations
whose solution is unique only after adding random noise terms. For example, con-
sider the following equation:

dX; =sign(X,)|X;|'?dt + o dW,, Xo=0. (26.23)

If o =0, then the deterministic differential equation has a continuum of solutions
that can be parameterized by v € {—1,+1} and T > 0, namely X, = v2«/§(t —
T)3?1~1. If o > 0, then the noise eliminates the instability of (26.23) at x = 0.
We quote the following theorem for the time-independent case from [147, Theo-
rem V.24.1] (see also [161, Chapter 10]).
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Theorem 26.26 (Stroock—Varadhan) Let a;; : R" — R be continuous and let
b; : R" — R be measurable fori, j =1, ..., n. Assume

(i) a(x) = (aij(x)) is symmetric and strictly positive definite for every x € R",
(ii) there exists a C < oo such that, for all x e R" and i, j =1, ..., n, we have

;)| < C(1+[x1?) and |bj(x)| < C(1+IIx])).

Then the LMP(a, b) is well-posed and the SDE (26.15) has a unique strong solu-
tion that is a strong Markov process. The solution X has the Feller property: For
every t > 0 and every bounded measurable f :R" — R, the map x — E,[ f(X;)]
is continuous.

We will present explicit examples in Section 26.3. Here we just remark that we
have developed a particular method in order to construct Markov processes, namely
as the solution of a stochastic differential equation or of a local martingale prob-
lem. In the framework of models in discrete time, in Section 17.2 and especially in
Exercise 17.2.1, we characterized certain Markov chains as solutions of martingale
problems. In order for drift and square variation to be sufficient for uniqueness of
the Markov chain described by the martingale problem, it was essential that, for any
step of the chain, we only allowed three possibilities. Here, however, the decisive
restriction is the continuity of the processes.

Exercise 26.2.1 Consider the time-homogeneous one-dimensional case (m =
n =1). Let o and b be such that, for every X € R, there exists a unique weak
solution of

that is a strong Markov process. Further, assume that there exists an xp € R with
R | *2b
C :=/ 5 eXp</ z(r) dr) dr < o0.
o0 02(x) Uy, 02()

(i) Show that the measure 7 € M (R) with density

X
m(dx) _ ! 1 exp(/ 2b(r) dr)
dx o2(x) %0 o2(r)
is an invariant distribution for X.

(i1) For which values of b does the Ornstein—Uhlenbeck process d X; = o dW; +
bX; dt have an invariant distribution? Determine this distribution and compare
the result with what could be expected by an explicit computation using the
representation in (26.3).

(iii) Compute the invariant distribution of the Cox—Ingersoll-Ross SDE (26.14)
(i.e., Feller’s branching diffusion).
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(iv) Let y,c > 0and 0 € (0, 1). Show that the invariant distribution of the solution
X of the SDE on [0, 1],

dX, =y X,(1— X,)dW, +c(6 — X,)dt

is the Beta distribution B¢y /6,2¢y /(1-0)-

Exercise 26.2.2 Let y > 0. Let X' and X2 be solutions of dX! = \/y XidW/,

where W! and W? are two independent Brownian motions with initial values
X(l) = xé > 0 and X(z) = xg > 0. Show that Z := X! + X? is a weak solution of
Z() =0and dZt =4/ )/thW[

26.3 Weak Uniqueness via Duality

The Stroock—Varadhan theorem provides a strong criterion for existence and unique-
ness of solutions of stochastic differential equations. However, in many cases, the
condition of locally uniform ellipticity of a (Condition (i) in Theorem 26.26) is not
fulfilled. This is the case, in particular, if the solutions are defined only on subsets
of R".

Here we will study a powerful tool that in many special cases can yield weak
uniqueness of solutions.

Definition 26.27 (Duality) Let X = (X*,x € E) and Y = (Y?, y € E’) be families
of stochastic processes with values in the spaces E and E’, respectively, and such
that X = x a.s. and Yg =yas. forall x € E and y € E’. We say that X and Y are
dual to each other with duality function H : E x E' — Cif, forall x ¢ E, y € E’
and ¢ > 0, the expectations E[H (X7, y)] and E[H (x, Y,y)] exist and are equal:

E[H (X7, y)] =E[H (x. ¥])].

In the following, we assume that o;; : R” — R and b; : R" — R are bounded
on compact sets foralli =1,...,n, j =1,..., m. Consider the time-homogeneous
stochastic differential equation

dX; =0(X;)dW; +b(X;)dt. (26.24)

Theorem 26.28 (Uniqueness via duality) Assume that, for every x € R", there ex-
ists a solution of the local martingale problem for (co’,b,8y). Further, assume
that there exists a family (Y”,y € E') of Markov processes with values in the mea-
surable space (E', £") and a measurable map H : R" x E' — C such that, for every
y€eE', x eR"and t > 0, the expectation E[H (x, Y,y)] exists and is finite. Further,
let (H(-,y),y € E') be a separating class of functions for M{(R") (see Defini-
tion 13.9).
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For every x € R" and every solution X* of LMP(UO’T, b, 8y), assume that the
duality equation holds:

E[H(X;,y)|=E[H(x.Y)] forallyeE t>0. (26.25)

Then the local martingale problem of (65T, b) is well-posed and hence (26.24) has
a unique weak solution that is a strong Markov process.

Proof By Theorem 26.25, it is enough to check that, for every x € R”, every so-
lution X* of LMP(co”,b,8,) and every ¢ > 0, the distribution P o (X7)~! is
unique. Since (H (-, y), y € E’) is a separating class of functions, this follows from
(26.16). 0

Example 26.29 (Wright-Fisher diffusion) Consider the Wright—Fisher SDE

dX, = 10,1 (X)Vy X (1 — X)) dW,, (26.26)

where y > 0 is a parameter. See Fig. 26.3 for a computer simulation. By Theo-
rem 26.22, for every x € R, there exists a weak solution (X, W) of (26.26). X is a
continuous local martingale with square variation

t
(X>t=‘/(‘) VXs(l _Xs)ﬂlo,ll(xs)ds-

Let 7 :=inf{r > 0: X, [0, 1]} and let X := X7 be the process stopped at 7. Then
X is a continuous bounded martingale with

t
(X)s :/o yXs(1— X)L, n(Xs)ds.

Hence, (X, W) is a solution of (26.26). By construction, X; € [0, 1] for all ¢ > 0 if
Xo = Xo €0, 1].

Let t/:=inf{r > 0: X, € [0, 1]}. If X &[0, 1], then ’ > 0 since X is continu-
ous. Since X' is a continuous local martingale with (f(f/) = 0, we have X}l = Xo
for all + > 0. However, this implies X, =X forall t < 7. Again, by continuity
of X, we get T/ = oo and X; = X forall t > 0.

Hence, it is enough to show uniqueness of the solution for )~(0 =x€]0,1]. To
this end, let Y = (Y;);>0 be the Markov process on N with Q-matrix

y(’g), ifn=m—1,
q(m,n) = —y(’g), ifn=m,
0, else.

We show duality of X and Y with respect to H (x, n) = x":

E.[X!] =E,[x™] forallz>0,x€[0,1],n €N. (26.27)
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Fig. 26.3 Simulation of a Wright—Fisher diffusion with parameter y = 1
Define m*"(t) = E;[X?] and g*" (1) = E,[x"']. By the It6 formula,

t t
X;’—x"—/ y(">xg—1(1 —Xst:/ nX" "y X, (1 — Xg) dWy
0 0

2

is a martingale.
Taking expectations, we obtain the following recursive equations for the mo-
ments of X:

m* (1) =x,

n (26.28)

m*t () =x"+ y<2

t
)/ (mx’"fl(s) —mx’"(s)) ds forn>2.
0

Clearly, this system of linear differential equations can be uniquely solved recur-
sively in n.
Due to the Markov property of Y, for 4 > 0 and ¢ > 0, we have

gt +h)=E, [XY’”'] =E, [EYh [XYI]]

= > Pu[Y; =mlE,[x"]

m=1

n
=Y Pu[Y,=mlg""(1).
m=1
This implies

d —
28O =Hmh™ [+ ) — g (1]

n
—1i h_l P.[Y, = x’mt _ x,nt
lim mX_jln[h ml(g*" (1) — g~ (1))
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= qn,mg"" 1)

m=1

=V (Z) (¢ 1) = g" ). (26.29)

Evidently, gx’l(t) =x for all x € [0, 1] and ¢ > 0 and g*"(0) = x". That is, g*"
solves (26.28), and thus (26.27) holds.

By Theorem 15.4, the family (H(-,n),n € N) C C([0, 1]) is separating for
M ([0, 1]); hence the conditions of Theorem 26.28 are fulfilled. Therefore, X is
the unique weak solution of (26.26) and is a strong Markov process. O

Remark 26.30 The martingale problem for the Wright—Fisher diffusion is almost
identical to the martingale problem for the Moran model (see Example 17.22)
MN = (M,I,V )neN, With population size N: M N is a martingale with values in the set
{0,1/N,...,(N —1)/N, 1} and with square variation process

o) n—1
(M"), = szzﬁv(l - my).
k=0

At each step, MY can either stay put or increase or decrease by 1/N. In Exer-
cise 17.2.1, we saw that this determines the process MY uniquely. Similarly as
in Theorem 21.51 for branching processes, it can be shown that the time-rescaled
Moran processes A;I,N =M ﬁ\ﬂz | converge to the Wright-Fisher diffusion with
y = 2. The Wright-Fisher diffusion thus occurs as the limiting model of a genealog-
ical model and describes the gene frequency (that is, the fraction) of a certain allele

in a population that fluctuates randomly due to resampling. O

Example 26.31 (Feller’s branching diffusion) Let (Z,IIV JneN, be a Galton—Watson
branching process with critical geometric offspring distribution py =271, k € Ny
and Zév = N for any N € N. Then Z" is a discrete martingale and we have

o0
N N \2| >N N 2 N
E[(Zn - Zn—l) ’ Zn—l] = Zn—l (Z Pik” — 1) = 2Zn—l'
k=0
Hence Z" has square variation
n—1
<ZN>n = Zzzllfv
k=0
Define the linearly interpolated version

_ 1
ZN=(1—N ‘Ltz\q)(zf{,\“+l —Zin)+ ;Z{YNJ
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34
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Fig. 26.4 Simulation of Feller’s branching diffusion with parameter y = 1

of N*IZC’NJ. By Lindvall’s theorem (Theorem 21.51), there is a continuous

N e .
Markov process Z such that ZV —2° 7 in distribution. See Fig. 26.4 for a com-
puter simulation of Z. Since it can be shown that the moments also converge, we
have that Z is a continuous martingale with square variation

t
(Z), =/ 27, ds.
0

In fact, in Example 26.11, we have already shown that Z is the unique solution of
the SDE

dZ[ Y 2Z[ dWl (2630)
with initial value Zo = 1. There we also showed that Z is dual to ¥, = (%V + %)_1
with H(x,y) = e™™. This implies uniqueness of the solution of (26.30) and the
strong Markov property of Z. O

It could be objected that in Examples 26.29 and 26.31, we considered only one-
dimensional problems for which the Yamada—Watanabe theorem (Theorem 26.10)
yields uniqueness (indeed of a strong solution) anyway. The full strength of the
method of duality is displayed only in higher-dimensional problems. As an example,
we consider an extension of Example 26.29.

Example 26.32 (Interacting Wright—Fisher diffusions) The Wright-Fisher diffu-
sion from Example 26.29 describes the fluctuations of the gene frequency of an
allele in one large population. Now we consider more populations, which live at the
points i € S := {1, ..., N} and interact with each other by a migration that is quanti-
fied by migration rates r (i, j) > 0. As a model for the gene frequencies X, (i) at site
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i at time ¢t we use the following N-dimensional SDE for X = (X (1), ..., X(N)):

N

dX(i) = \/yX,(i)(l = X)W + > (i, )H(Xi(j) — X, () dt.  (26.31)
j=1
Here W = (W', ..., W¥) is an N-dimensional Brownian motion. By Theo-

rem 26.22, this SDE has weak solutions; however, none of our general criteria for
weak uniqueness apply. We will thus show weak uniqueness by virtue of duality.
As in Example 26.29, it is not hard to show that solutions of (26.31), started at
Xo=x € E :=[0, 115, remain in [0, 1]5. The diagonal terms (i, i) do not appear in
(26.31). We use our freedom and define these terms as r(i,i) = — Z#i r(i, j). Let
Y = (Y;);>0 be the Markov process on E’ := (NO)S with the following Q-matrix:

p@)r, j), if n=¢ — 1 + Ly for
some i, j€S,i#],
q(@, 1) = y(*9), if n =¢ — 1y for some i € S,
Yies@@ra. i) —y(*Y). ifn=og.
0, else.

Here ¢ € E' denotes a generic state with ¢ (i) particles at site i € S, and 1y;) € E’
denotes the state with exactly one particle at site i. The process Y describes a system
of particles that independently with rate r (i, j) jump from site i to site j. If there is
more than one particle at the same site i, then any of the (‘”g)) pairs of particles coa-
lesce with the same rate y to one particle. The common genealogical interpretation
of this process is that (in reversed time) it describes the lines of descent of sam-
ples of Yo (i) individuals at each site i € S. By migration, the lines change sites. If
two individuals have the same common ancestor, then their lines coalesce. Clearly,
for two particles to have the same ancestor at a given time, it is necessary but not
sufficient for them to be at the same site.

For x € R" and ¢ € E’, we denote x¥ := ]_[iesx(i)‘/’(i). We show that X and Y
are dual to each other with the duality function H (x, ¢) = x%:

E.[X{]=E,[x"] forallpes™ xe[0,11% >0. (26.32)

Let m*9(t) := Ex[X{] and g"¥(t) := Ey[x""]. Clearly, H has the derivatives
0iH (+, ) (x) = p(i)x? =10 and 9;0; H (-, ) (x) = 2(¥5)x# =210,
By the It6 formula,

t .
X{ =X - /0 3 0@ )Xo () — X)X ds

i,jes

- Z/ot : (wg)) (s (1= X, @) x5 ds

ieS
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is a martingale. Taking expectations, we get a system of linear integral equations

m<0t) =1,

m* (1) = x¥ + cho(z)r(z N(mHeTHITH () — m ™9 (5)) ds
i,jesS (26.33)

/ Z(")()) 00 (5) — ¢ (s)) ds

ieS

This system of equations can be solved uniquely by induction on n =, .; ¢(i).
However, we do not intend to compute this solution explicitly. We show only that it
coincides with g*?(r) by showing that g solves an equivalent system of differential
equations.

For g as in (26.29), we obtain

T80 =3 e, mg™®

neE’

= D (g ertnTiom — g0 )

i,jesS

n Z (QD( )) X, wfﬂqi)(t) _ gxﬁ(ﬂ(t)). (26.34)

ieS

Together with the initial values g¥%(r) = 1 and g*?(0) = x¥, the system (26.34)
of differential equations is equivalent to (26.33). Hence the duality (26.32) holds,
and thus the SDE (26.31) has a unique weak solution. (In fact, it can be shown that
there exists a unique strong solution, even if S is countably infinite, as long as r then
satisfies certain regularity conditions such as if it is the Q-matrix of a random walk
on S =74 see [153]) O

Exercise 26.3.1 (Extinction probability of Feller’s branching diffusion) Let y > 0
and let Z be the solution of dZ; := \/y Z; dW, with initial value Zy = z > 0. Use
the duality to show

2z
P.[Z; =0] = exp(——). (26.35)
vt

Use Lemma 21.44 to compute the probability that a Galton—Watson branching pro-
cess X with critical geometric offspring distribution and with X¢o = N € N is extinct
by time n € N. Compare the result with (26.35).
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1a

29

#A

AC
ANB
AUB
AWB
ACB
A\ B
AAB
AXxXB
A
Al
A A
B(E)
Ber,
Br.s
bu,p
by

Indicator function of the set A

Set of all subsets of £2

Cardinality of the set A

Complement §2 \ A of the set A C £2
Intersection of the sets A and B

Union of the sets A and B

Disjoint union of A and B

A is a (not necessarily strict) subset of B
Difference set

Symmetric difference of A and B, 28
Cartesian product of A and B

Subset of 2%, usually a o-algebra

Trace of the class A on B, 10

Product of the o -algebras A and A’, 274
Borel o-algebra on E, 8

Bernoulli distribution, 42

Beta distribution with parameters r and s, 45
Binomial distribution, 42, 303

Negative binomial distribution, 43, 303

C(E),Cyp(E),C.(E) Space of continuous (bounded) functions, and with compact

support, respectively, 247

Cqv Functions with continuous square variation, 499

C Set of complex numbers

Cau, Cauchy distribution, 303

Cov[X,Y] Covariance of the random variables X and Y, 102
CPoi, Compound Poisson distribution, 333

Sy Dirac distribution, 11

E[X] Expectation (or mean) of the random variable X, 101
E[X; A] =E[X14], 171

E[X|F] Conditional expectation, 173

expy Exponential distribution, 44, 303
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F = (F;):e; Filtration, 191

a.s., a.e. Almost surely and almost everywhere, 30

G(x,y) Greeen function of a Markov chain, 369

Iy, Gamma distribution with scale parameter 6 > 0 and shape parameter
r> 0,45, 303

Yp =0 » Geometric distribution with parameter p, 42

ged(M) Greatest common divisor of all m € M C N, 390

H-X Discrete stochastic integral of H with respect to X, 198

7T Set of invariant distributions of a Markov chain, 378

iff If and only if

ii.d. Independent and identically distributed, 55

Im(z) Imaginary part of z € C, 295

A A" Lebesgue measure, n-dimensional, 24

Lip(E) Space of Lipschitz continuous functions on E, 249

LP LP Lebesgue spaces of integrable functions, 91, 145, 146

L(X) Distribution of the random variable X

M(E), Mf(E), M<1, Mi(E) Set of measures on E, finite measures on E,
(sub-)probability measures on E, respectively, 16, 247

Mioc.c Space of continuous local martingales, 502

U Product of the measures i and v, 26, 277

JUERY, Convolution of the measures  and v, 60, 279
uen nth power of a measure u, 277

w nth convolution power of a measure u, 60

n<Ly W is absolutely continuous with respect to v, 157
wlv @ and v are mutually singular, 157

JTRY) u and v are equivalent, 157

n=<sV 1 is stochastically smaller than (or equal to) v, 385
N, Ny N={1,2,3,...}, No=NU {0}

Nyo2 Normal distribution, 44, 303

du / dv Radon-Nikodym derivative, 158

2 Space of elementary events on which P is defined
P Generic probability measure

P[A|B], P[A|F] Conditional probabilities, 170, 173

Py =PoX ~1 Distribution of the random variable X, 41

Poi,, Poisson distribution with parameter A > 0, 43, 303

p"(x,y) = p"™(x,y) n-step transition probability of a Markov chain, 358
Ps.rs Pr See page 499

ox Characteristic function of the random variable X, 303
Ux Generating function of the random variable X, 77

Q Set of rational numbers

R Set of real numbers

R =R U {—00, 400} Two point compactification of the real numbers
Rad, = pd1 + (1 — p)é_1 Rademacher distribution, 42
Re(z) Real part of z € C, 295

sign(x) =1(0,00)(*) — L(—00,0)(x), sign of x € R, 36
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o(-) o -algebra or filtration generated by -, 6, 33, 191

rff Time of the kth visit of a Markov chain at x, 367

TG Tail o -algebra, 62

Uy Uniform distribution on A, 12, 31, 303

V1(G), V3(G) Variation and square variation of G, 498, 499

Var[X] Variance of the random variable X, 101

v-lim Vague limit, 252

w-lim Weak limit, 252

X* Stopped process, 210

(X) Square variation process of X, 206, 499, 503, 507

ft)~gt),t —a & lim, f(1)/gt) =1

X~nu The random variable X has distribution w, 41

XV y,x Ay, xT,x~ Maximum, minimum, positive part, negative part of real num-
bers, 36

[x], [x] Floor and ceiling of x, 35

z Complex conjugate of z € C, 295

Z Set of integers

D Equal in distribution, 41

n%o , = Convergence of distributions, 255

n—-oo n—

, —>  Convergence of finite-dimensional distributions, 484
fdd fdd
meas a.s. a.e. .
, —, —> Convergence in measure, almost surely, and almost everywhere,
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Lower semicontinuous, 527
L?-bounded, 138
LP-convergence, 146

Lusin, 250

Lusin’s theorem, 40

LY, 162

Lyapunov condition, 322

M
Markov chain, 352
aperiodic, 390
convergence theorem, 397
coupling, 393
discrete, 358
independent coalescence, 393
invariant distribution, 378
invariant measure, 378
irreducible, 370
Monte Carlo method, 398
null recurrent, 368
period of a state, 390
positive recurrent, 368
recurrent, 368
reversible, 415
speed of convergence, 405
transient, 368
weakly irreducible, 370
Markov inequality, 108
conditional, 179
Markov kernel, 180
Markov process, 352
Markov property, 351, 352
strong, 356
Markov semigroup, 289
Martingale, 194
backwards, 236
convergence theorem (a.s.), 220
convergence theorem (backwards), 236
convergence theorem (L), 221
convergence theorem (L7), 222
convergence theorems (RCLL), 474
local, 502
square variation, 206
Martingale problem, 601
discrete, 362
well-posed, 603
Martingale representation theorem, 579
Martingale transform, 198
Maximal-ergodic lemma, 443
MCMC, see Markov chain Monte Carlo
method
Mean, 101
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Mean field, 539
Measurable
Borel, 8
Lebesgue, 31
-, 21
map, 32
set, 16
Measurable space, 16
isomorphy, 185
Measure, 11
atom-free, 186
Bernoulli, 28
Borel, 247
harmonic, 584
inner regular, 30
invariant, 378
Lebesgue, 24
locally finite, 247
outer, 20
outer regular, 30
product, 28, 289
Radon, 247
regular, 247
restriction, 31
o -finite, 11
signed, 162
stationary, 378
Measure extension theorem, 18
Measure-preserving map, 440
Measure space, 16
Mellin transform, 301
Mesh size, 499
Method of moments, 316
Metric
complete, 246
convergence in measure, 133
Lévy, 258
on C ([0, 00)), 482
Prohorov, 253
Wasserstein, 385
Metrizable, 246
Metropolis algorithm, 399
Minkowski’s inequality, 152
Mixing, 451
Modification, 457
Modulus of continuity, Lévy’s, 512
Moments, 101
absolute, 101
Monotone, 11
Monotonicity principle of Rayleigh, 420
Monte Carlo simulation, 115
Moran Gamma subordinator, 555
Moran model, 361
De Morgan’s rule, 2
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Morse code, 120

Moving average, 191, 440
Multi-period binomial model, 202
Multinomial coefficient, 61
Multinomial distribution, 61

N

Negative binomial distribution, 43, 80
stochastic order, 554

Normal distribution, 44
multidimensional, 44, 328

Null array, 321

Null recurrent, 368

Null set, 30

(0]

Ohm’s rule, 417

Open, 8

Optional sampling theorem, 209, 214
continuous time, 463

Optional stopping theorem, 211
continuous time, 463

Ornstein—Uhlenbeck process, 591

Orthogonal complement, 154

Orthogonal polynomials, 410

Outer measure, 20

Outer regularity, 30, 247

P

-\ theorem, 6

p-d.f., see probability distribution function
p-g.f., see probability generating function

Paley Wiener expansion of Brownian motion,

480

Parseval’s equation, 475
Partially continuous, 311
Partition function, 538
Partition sequence, admissible, 499
Partition sum, 400
Pascal distribution, 43
Path, 459
Pathwise unique, 601
Percolation, 65, 411
Perfect sampling, 404
Period, 390
Petersburg game, 93, 191, 199
Phase transition, 400, 540
m-system, see N-closed
Plancherel’s equation, 301
Points of discontinuity, 10
Poisson approximation, 81
Poisson—Dirichlet distribution, 557, 560
Poisson distribution, 43

compound, 333
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Poisson point process, 546

Poisson process, 125, 353

Poisson summation formula, 471

Polar set, 587

Polarization formula, 500

Polish space, 185, 246

Pélya’s theorem, 312

Pélya’s theorem on random walks, 371

Pdlya’s urn model, 242, 289, 555
generalized, 365, 367

Portemanteau theorem, 254

Positive recurrent, 368

Positive semidefinite, 313

Potential, 417

PPP, see Poisson point process

Predictable, 191, 566

Prefix code, 117

Premeasure, 11

Previsible, 191, 566

Probability distribution function, 26

Probability generating function, 77

Probability measure, 11

Probability space, 16

Probability vector, 12

Product measurable, 566

Product measure, 26, 28, 277, 286, 289

Product-o -algebra, 274

Product space, 274

Product topology, 274

Progressively measurable, 566

Prohorov metric, 253, 397

Prohorov’s theorem, 261

Projective limit, 288

Propp—Wilson algorithm, 404

Q

Q-Q-plot, 327

Q-matrix, 362

Quadratic covariation process, 507

R
Rademacher distribution, 42
Radon measure, 247
Radon—Nikodym derivative, 158
Random measure, 544
Random variable, 41
Random walk, 353
Chung—Fuchs theorem, 448
Green function (table), 377
on a graph, 415
Pélya’s theorem, 371
random environment, 437
range, 447
recurrence, 371

symmetric simple, 190
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Random walk in a random environment, 437

Rate function, 522, 527

Rayleigh’s monotonicity principle, 420

RCLL, 472

Rectangle, 9

Rectangular cylinder, 275

Recurrent, 368

Reflection principle, 357
Brownian motion, 470

Regular conditional distribution, 181

Regularity of measures, 30, 247

Rejection sampling, 187

Relatively compact, 246

Replicable, 201

Resistance, 416

Resistance metric, 429

Restriction, 10

Reversible, 399, 415

Riemann integral, 95

Riemann zeta function, 50

Ring, 3

Risk-neutral, 202

S
Schauder functions, 477
SDE, see stochastic differential equation
Semi-inner product, 153
Semiring, 3
Separable, 246
Separating family, 249
Separating points, 296
Shannon’s theorem, 116
Shift, 442
o -additive, 11
o-algebra, 1

exchangeable, 233

invariant, 440

of r-past, 193

product, 274

tail, 61, 234
o -compact, 246
o-field, see o-algebra
o-ring, 3
o -subadditive, 11
Signed measure, 162
Simple function, 38
Simple random walk, 415
Singular, 157
Site percolation, 66
Size-biased distribution, 268
Skorohod coupling, 385
Skorohod’s embedding theorem, 512
Slowly varying, 348
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Slutzky’s theorem, 255

Source coding theorem, 119

Spectral gap, 406

Spin, 399

Square integrable, 101

Square variation, 500

Square variation process, 206, 503

Stable distribution, 312, 343, 344

Standard deviation, 101

Stationary, 439

Step function, 95

Stirling’s formula, 316, 523

Stochastic differential equation, 589
pathwise uniqueness, 601
strong solution, 590

strong solution under Lipschitz conditions,

593
weak solution, 598
Stochastic integral, 480
discrete, 198
Stochastic kernel, 180
composition, 282
consistent family, 289
product, 281
semigroup, 289
Stochastic matrix, 359
Stochastic order, 385
infinitely divisible distribution, 551
negative binomial distribution, 554
Stochastic process, 189
adapted, 191
binary splitting, 200
duality, 605
explosion, 365
Galton—Watson, 83, 229
Gaussian, 190, 464
independent increments, 190
indistinguishable, 457
integrable, 190
Markov property, 351
modification, 457
path, 459
Poisson, 353
predictable, 191, 566
previsible, see predictable
product measurable, 566
progressively measurable, 566
stationary, 190
stationary increments, 190
stopped, 210
strong Markov property, 356
version, 457
Stochastically larger, 385
Stone—Weierstral} theorem, 296
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Stopped process, 210
Stopping time, 192
Strassen’s theorem, 386
Stratonovich integral, 583
Strong Markov property, 356
Strong solution, 590
Student’s ¢-distribution, 332
Sub-probability measures, 247
Subadditive, 11

sequence, 456
Subharmonic, 378
Submartingale, 194
Subordinator, 552
Supermartingale, 194
Symmetric difference, 28
Symmetric simple random walk, 190

T
Tail o -algebra, 61, 234
t-distribution, 332
Dynkin p 1@Dynkin’s 7-1, 6
Theorem
approximation of measures, 28
Arzela—Ascoli, 485
Bayes’ formula, 170
Beppo Levi, 93
Berry—Esseen, 327
Bochner, 313
Borel-Cantelli lemma, 51
conditional version, 228
Carathéodory, 18, 22
central limit theorem, 321
Choquet-Deny, 396
Chung—Fuchs, 375, 448
continuous mapping, 257
Cramér, 524, 530
dominated convergence, 141
Donsker, 488
Egorov, 136
ergodic
Birkhofft, 444
von Neumann, 445
Etemadi, 112
extension to measures, 22
factorization lemma, 38
Fatou’s lemma, 93
de Finetti, 239, 269
Fischer—Riesz, 152
Fréchet—Shohat, 319
Fubini, 278
Fubini for It6 integrals, 583
Fubini for transition kernels, 283
fundamental theorem of calculus, 251
Glivenko—Cantelli, 115
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Theorem (cont.)

Hahn decomposition, 162

Hartman—Wintner, 517

Helly, 263

Hewitt—Savage, 238

Tonescu—Tulcea, 285

iterated logarithm, 510, 517

Jordan decomposition, 164

Kantorovich-Rubinstein, 385

Kesten-Stigum, 230

Kolmogorov—Chentsov, 460

Kolmogorov’s criterion for weak relative
compactness, 486

Kolmogorov’s extension, 288

Kolmogorov’s inequality, 121

Kolmogorov—Sinai, 455

Kolmogorov’s three-series theorem, 326

large deviations, 524

Lebesgue decomposition, 158

Lévy’s continuity theorem, 311

Lévy—Khinchin, 336, 339

Lindeberg—Feller, 322

Lindvall, 496

Lusin, 40, 250

Markov chain convergence, 397

martingale representation theorem, 579

measure extension, 18

method of moments, 316

monotone convergence, 93

optional sampling, 209, 214

optional sampling, continuous time, 463

optional stopping, 211

optional stopping, continuous time, 463

T-A, 6

Paley—Wiener—Zygmund, 467

Poisson approximation, 81

Pélya, 312

Pélya’s for random walks, 371

Portemanteau, 254

Prohorov, 261

Rademacher—Menshov, 123

Radon—Nikodym, 158, 226

Rayleigh’s monotonicity principle, 420

regular conditional distribution, 182, 185

Sanov, 532

Shannon, 116

Skorohod coupling, 385

Skorohod embedding, 512

Slutzky, 255

Solomon, 437

source coding, 119

Stone—Weierstral}, 296

Strassen, 386

Stroock—Varadhan, 604
Thomson’s principle, 421
three-series, 326
Varadhan’s lemma, 536
Yamada—Watanabe, 596
Thomson’s principle, 421
Three-series theorem, 326
Tight, 260
Topological space, 8
Topology, 7
vague, 253
weak, 252
Total variation norm, 164
Totally bounded, 247
Totally continuous, 160
Tower property, 174
Trace, 10
Transformation formula, 39
Transient, 368
Transition kernel, 180, 352
Transition matrix, 358
Transition probabilities, 352
Translation invariant, 360
Trap, 412
Two-stage experiment, 273

U
Uncorrelated, 102
Uniform distribution, 12, 31

Uniformly equicontinuous, 310

Uniformly integrable, 136
Unit flow, 421

Unit network, 416
Upcrossing, 219

Usual conditions, 472

\'%
Vague convergence, 252
Vague topology, 253
Varadhan’s lemma, 536
Variance, 101
Variation, 498

p -, 500

square, 500
Version, 457
Vitali set, 8
Voter model, 224

w

Wald’s identity, 103
‘Wasserstein metric, 385
Watson integral, 376
Weak convergence, 252
‘Weak solution, 598
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Weak topology, 252

Weierstraf3’s approximation theorem, 109
Weight function, 12

Weiss ferromagnet, 539

White noise, 480

Wiener process, 484
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Wright—Fisher diffusion, 606
interacting, 609
Wright’s evolution model, 361

Y
Young’s inequality, 151
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