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Preface to the Second Edition

In the second edition of this book many errors have been corrected. Furthermore,
the text has been extended carefully in many places. In particular, there are more
exercises and a lot more illustrations.

I would like to take the opportunity to thank all of those who helped improv-
ing the first edition of this book, in particular: Michael Diether, Maren Eckhoff,
Christopher Grant, Matthias Hammer, Heiko Hoffmann, Martin Hutzenthaler, Mar-
tin Kolb, Manuel Mergens, Thal Nowik, Felix Schneider, Wolfgang Schwarz and
Stephan Tolksdorf.

A constantly updated list of errors can be found at www.aklenke.de.

Achim KlenkeMainz
March 2013
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Preface to the First Edition

This book is based on two four-hour courses on advanced probability theory that I
have held in recent years at the universities of Cologne and Mainz. It is implicitly as-
sumed that the reader has a certain familiarity with the basic concepts of probability
theory, although the formal framework will be fully developed in this book.

The aim of this book is to present the central objects and concepts of proba-
bility theory: random variables, independence, laws of large numbers and central
limit theorems, martingales, exchangeability and infinite divisibility, Markov chains
and Markov processes, as well as their connection with discrete potential theory,
coupling, ergodic theory, Brownian motion and the Itô integral (including stochas-
tic differential equations), the Poisson point process, percolation and the theory of
large deviations.

Measure theory and integration are necessary prerequisites for a systematic prob-
ability theory. We develop it only to the point to which it is needed for our purposes:
construction of measures and integrals, the Radon–Nikodym theorem and regular
conditional distributions, convergence theorems for functions (Lebesgue) and mea-
sures (Prohorov) and construction of measures in product spaces. The chapters on
measure theory do not come as a block at the beginning (although they are written
such that this would be possible; that is, independent of the probabilistic chapters)
but are rather interlaced with probabilistic chapters that are designed to display the
power of the abstract concepts in the more intuitive world of probability theory. For
example, we study percolation theory at the point where we barely have measures,
random variables and independence; not even the integral is needed. As the only
exception, the systematic construction of independent random variables is deferred
to Chapter 14. Although it is rather a matter of taste, I hope that this setup helps to
motivate the reader throughout the measure-theoretical chapters.

Those readers with a solid measure-theoretical education can skip in particular
the first and fourth chapters and might wish only to look up this or that.

In the first eight chapters, we lay the foundations that will be needed in all subse-
quent chapters. After that, there are seven more or less independent parts, consisting
of Chaps. 9–12, 13, 14, 15–16, 17–19, 20 and 23. The chapter on Brownian motion

vii



viii Preface to the First Edition

(21) makes reference to Chaps. 9–15. Again, after that, the three blocks consisting
of Chaps. 22, 24 and 25–26 can be read independently.

I should like to thank all those who read the manuscript and the German original
version of this book and gave numerous hints for improvements: Roland Alkemper,
René Billing, Dirk Brüggemann, Anne Eisenbürger, Patrick Jahn, Arnulf Jentzen,
Ortwin Lorenz, L. Mayer, Mario Oeler, Marcus Schölpen, my colleagues Ehrhard
Behrends, Wolfgang Bühler, Nina Gantert, Rudolf Grübel, Wolfgang König, Pe-
ter Mörters and Ralph Neininger, and in particular my colleague from Munich
Hans-Otto Georgii. Dr John Preater did a great job language editing the English
manuscript and also pointing out numerous mathematical flaws.

I am especially indebted to my wife Katrin for proofreading the English
manuscript and for her patience and support.

I would be grateful for further suggestions, errors etc. to be sent by e-mail to
math@aklenke.de

Achim KlenkeMainz
October 2007

mailto:math@aklenke.de
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Chapter 1
Basic Measure Theory

In this chapter, we introduce the classes of sets that allow for a systematic treatment
of events and random observations in the framework of probability theory. Further-
more, we construct measures, in particular probability measures, on such classes of
sets. Finally, we define random variables as measurable maps.

1.1 Classes of Sets

In the following, let Ω �= ∅ be a nonempty set and let A ⊂ 2Ω (set of all subsets
of Ω) be a class of subsets of Ω . Later, Ω will be interpreted as the space of ele-
mentary events and A will be the system of observable events. In this section, we
introduce names for classes of subsets of Ω that are stable under certain set opera-
tions and we establish simple relations between such classes.

Definition 1.1 A class of sets A is called

• ∩-closed (closed under intersections) or a π -system if A ∩ B ∈ A whenever
A,B ∈A,

• σ -∩-closed (closed under countable1 intersections) if
⋂∞
n=1An ∈ A for any

choice of countably many sets A1,A2, . . . ∈A,
• ∪-closed (closed under unions) if A∪B ∈A whenever A,B ∈A,
• σ -∪-closed (closed under countable unions) if

⋃∞
n=1An ∈ A for any choice of

countably many sets A1,A2, . . . ∈A,
• \-closed (closed under differences) if A \B ∈A whenever A,B ∈A, and
• closed under complements if Ac :=Ω \A ∈A for any set A ∈A.

1By “countable” we always mean either finite or countably infinite.
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2 1 Basic Measure Theory

Definition 1.2 (σ -algebra) A class of sets A⊂ 2Ω is called a σ -algebra if it ful-
fills the following three conditions:

(i) Ω ∈A.
(ii) A is closed under complements.

(iii) A is closed under countable unions.

Sometimes a σ -algebra is also named a σ -field. As we will see, we can define
probabilities on σ -algebras in a consistent way. Hence these are the natural classes
of sets to be considered as events in probability theory.

Theorem 1.3 If A is closed under complements, then we have the equivalences

A is ∩ -closed ⇐⇒ A is ∪ -closed,

A is σ -∩ -closed ⇐⇒ A is σ -∪ -closed.

Proof The two statements are immediate consequences of de Morgan’s rule (re-
minder: (

⋃
Ai)

c =⋂Aci ). For example, let A be σ -∩-closed and letA1,A2, . . . ∈A.
Hence

∞⋃

n=1

An =
( ∞⋂

n=1

Acn

)c

∈A.

Thus A is σ -∪-closed. The other cases can be proved similarly. �

Theorem 1.4 Assume that A is \-closed. Then the following statements hold:

(i) A is ∩-closed.
(ii) If in addition A is σ -∪-closed, then A is σ -∩-closed.

(iii) Any countable (respectively finite) union of sets in A can be expressed as a
countable (respectively finite) disjoint union of sets in A.

Proof (i) Assume that A,B ∈A. Hence also A∩B =A \ (A \B) ∈A.
(ii) Assume that A1,A2, . . . ∈A. Hence

∞⋂

n=1

An =
∞⋂

n=2

(A1 ∩An)=
∞⋂

n=2

A1 \ (A1 \An)=A1 \
∞⋃

n=2

(A1 \An) ∈A.

(iii) Assume that A1,A2, . . . ∈A. Hence a representation of
⋃∞
n=1An as a count-

able disjoint union of sets in A is

∞⋃

n=1

An =A1 � (A2 \A1)�
(
(A3 \A1) \A2

)� (((A4 \A1) \A2
) \A3

)� . . . .
�

Remark 1.5 Sometimes the disjoint union of sets is denoted by the symbol
⊎

. Note
that this is not a new operation but only stresses the fact that the sets involved are
mutually disjoint. ♦



1.1 Classes of Sets 3

Definition 1.6 A class of sets A ⊂ 2Ω is called an algebra if the following three
conditions are fulfilled:

(i) Ω ∈A.
(ii) A is \-closed.

(iii) A is ∪-closed.

If A is an algebra, then obviously ∅ =Ω \Ω is in A. However, in general, this
property is weaker than (i) in Definition 1.6.

Theorem 1.7 A class of sets A⊂ 2Ω is an algebra if and only if the following three
properties hold:

(i) Ω ∈A.
(ii) A is closed under complements.

(iii) A is closed under intersections.

Proof This is left as an exercise. �

Definition 1.8 A class of sets A⊂ 2Ω is called a ring if the following three condi-
tions hold:

(i) ∅ ∈A.
(ii) A is \-closed.

(iii) A is ∪-closed.

A ring is called a σ -ring if it is also σ -∪-closed.

Definition 1.9 A class of sets A⊂ 2Ω is called a semiring if

(i) ∅ ∈A,
(ii) for any two sets A,B ∈A the difference set B \A is a finite union of mutually

disjoint sets in A,
(iii) A is ∩-closed.

Definition 1.10 A class of sets A⊂ 2Ω is called a λ-system (or Dynkin’s λ-system)
if

(i) Ω ∈A,
(ii) for any two sets A,B ∈A with A⊂ B , the difference set B \A is in A, and

(iii)
⊎∞
n=1An ∈ A for any choice of countably many pairwise disjoint sets

A1,A2, . . . ∈A.

Example 1.11

(i) For any nonempty set Ω , the classes A= {∅,Ω} and A= 2Ω are the trivial
examples of algebras, σ -algebras and λ-systems. On the other hand, A= {∅}
and A= 2Ω are the trivial examples of semirings, rings and σ -rings.

(ii) Let Ω =R. Then A= {A⊂R :A is countable} is a σ -ring.
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(iii) A= {(a, b] : a, b ∈R, a ≤ b} is a semiring on Ω =R (but is not a ring).
(iv) The class of finite unions of bounded intervals is a ring on Ω =R (but is not

an algebra).
(v) The class of finite unions of arbitrary (also unbounded) intervals is an algebra

on Ω =R (but is not a σ -algebra).
(vi) Let E be a finite nonempty set and let Ω := EN be the set of all E-valued

sequences ω= (ωn)n∈N. For any ω1, . . . ,ωn ∈E, let

[ω1, . . . ,ωn] :=
{
ω′ ∈Ω : ω′i = ωi for all i = 1, . . . , n

}

be the set of all sequences whose first n values are ω1, . . . ,ωn. Let A0 = {∅}.
For n ∈N, define

An :=
{[ω1, . . . ,ωn] : ω1, . . . ,ωn ∈E

}
. (1.1)

Hence A :=⋃∞
n=0 An is a semiring but is not a ring (if #E > 1).

(vii) Let Ω be an arbitrary nonempty set. Then

A := {A⊂Ω :A or Ac is finite
}

is an algebra. However, if #Ω =∞, then A is not a σ -algebra.
(viii) Let Ω be an arbitrary nonempty set. Then

A := {A⊂Ω :A or Ac is countable
}

is a σ -algebra.
(ix) Every σ -algebra is a λ-system.
(x) Let Ω = {1,2,3,4} and A = {∅, {1,2}, {1,4}, {2,3}, {3,4}, {1,2,3,4}}.

Hence A is a λ-system but is not an algebra. ♦

Theorem 1.12 (Relations between classes of sets)

(i) Every σ -algebra also is a λ-system, an algebra and a σ -ring.
(ii) Every σ -ring is a ring, and every ring is a semiring.

(iii) Every algebra is a ring. An algebra on a finite set Ω is a σ -algebra.

Proof (i) This is obvious.
(ii) Let A be a ring. By Theorem 1.4, A is closed under intersections and is hence

a semiring.
(iii) Let A be an algebra. Then ∅ = Ω \ Ω ∈ A, and hence A is a ring. If in

addition Ω is finite, then A is finite. Hence any countable union of sets in A is a
finite union of sets. �

Definition 1.13 (liminf and limsup) Let A1,A2, . . . be subsets of Ω . The sets

lim inf
n→∞ An :=

∞⋃

n=1

∞⋂

m=n
Am and lim sup

n→∞
An :=

∞⋂

n=1

∞⋃

m=n
Am

are called limes inferior and limes superior, respectively, of the sequence (An)n∈N.
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Remark 1.14

(i) lim inf and lim sup can be rewritten as

lim inf
n→∞ An =

{
ω ∈Ω : #{n ∈N : ω �∈An}<∞

}
,

lim sup
n→∞

An =
{
ω ∈Ω : #{n ∈N : ω ∈An} =∞

}
.

In other words, limes inferior is the event where eventually all of the An occur.
On the other hand, limes superior is the event where infinitely many of the An
occur. In particular, A∗ := lim infn→∞An ⊂A∗ := lim supn→∞An.

(ii) We define the indicator function on the set A by

1A(x) :=
{

1, x ∈A,
0, x �∈A. (1.2)

With this notation,

1A∗ = lim inf
n→∞ 1An and 1A∗ = lim sup

n→∞
1An.

(iii) If A ⊂ 2Ω is a σ -algebra and if An ∈ A for every n ∈ N, then A∗ ∈ A and
A∗ ∈A. ♦

Proof This is left as an exercise. �

Theorem 1.15 (Intersection of classes of sets) Let I be an arbitrary index set, and
assume that Ai is a σ -algebra for every i ∈ I . Hence the intersection

AI := {A⊂Ω :A ∈Ai for every i ∈ I } =
⋂

i∈I
Ai

is a σ -algebra. The analogous statement holds for rings, σ -rings, algebras and
λ-systems. However, it fails for semirings.

Proof We give the proof for σ -algebras only. To this end, we check (i)–(iii) of Def-
inition 1.2.

(i) Clearly, Ω ∈Ai for every i ∈ I , and hence Ω ∈AI .
(ii) Assume A ∈AI . Hence A ∈Ai for any i ∈ I . Thus also Ac ∈Ai for any i ∈ I .

We conclude that Ac ∈AI .
(iii) Assume A1,A2, . . . ∈ AI . Hence An ∈ Ai for every n ∈ N and i ∈ I . Thus

A :=⋃∞
n=1An ∈Ai for every i ∈ I . We conclude A ∈AI .

Counterexample for semirings: Let Ω = {1,2,3,4}, A1 = {∅,Ω, {1}, {2,3}, {4}}
and A2 = {∅,Ω, {1}, {2}, {3,4}}. Then A1 and A2 are semirings but A1 ∩ A2 =
{∅,Ω, {1}} is not. �
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Theorem 1.16 (Generated σ -algebra) Let E ⊂ 2Ω . Then there exists a smallest
σ -algebra σ(E) with E ⊂ σ(E):

σ(E) :=
⋂

A⊂2Ω is a σ-algebra
A⊃E

A.

σ (E) is called the σ -algebra generated by E . E is called a generator of σ(E). Simi-
larly, we define δ(E) as the λ-system generated by E .

Proof A = 2Ω is a σ -algebra with E ⊂ A. Hence the intersection is nonempty.
By Theorem 1.15, σ(E) is a σ -algebra. Clearly, it is the smallest σ -algebra that
contains E . For λ-systems the proof is similar. �

Remark 1.17 The following three statements hold:

(i) E ⊂ σ(E).
(ii) If E1 ⊂ E2, then σ(E1)⊂ σ(E2).

(iii) A is a σ -algebra if and only if σ(A)=A.

The same statements hold for λ-systems. Furthermore, δ(E)⊂ σ(E). ♦

Theorem 1.18 (∩-closed λ-system) Let D ⊂ 2Ω be a λ-system. Then

D is a π -system ⇐⇒ D is a σ -algebra.

Proof “⇐=” This is obvious.
“=⇒” We check (i)–(iii) of Definition 1.2.

(i) Clearly, Ω ∈D.
(ii) (Closedness under complements) Let A ∈D. SinceΩ ∈D and by property (ii)

of the λ-system, we get that Ac =Ω \A ∈D.
(iii) (σ -∪-closedness) Let A,B ∈ D. By assumption, A ∩ B ∈ D, and trivially

A ∩ B ⊂ A. Thus A \ B = A \ (A ∩ B) ∈D. This implies that D is \-closed.
Now let A1,A2, . . . ∈D. By Theorem 1.4(iii), there exist mutually disjoint sets
B1,B2, . . . ∈D with

⋃∞
n=1An =

⊎∞
n=1Bn ∈D. �

Theorem 1.19 (Dynkin’s π -λ theorem) If E ⊂ 2Ω is a π -system, then

σ(E)= δ(E).

Proof “⊃” This follows from Remark 1.17.
“⊂” We have to show that δ(E) is a σ -algebra. By Theorem 1.18, it is enough to

show that δ(E) is a π -system. For any B ∈ δ(E) define

DB :=
{
A ∈ δ(E) :A∩B ∈ δ(E)}.



1.1 Classes of Sets 7

Fig. 1.1 Inclusions between classes of sets A⊂ 2Ω

In order to show that δ(E) is a π -system, it is enough to show that

δ(E)⊂DB for any B ∈ δ(E). (1.3)

In order to show that DE is a λ-system for any E ∈ δ(E), we check (i)–(iii) of
Definition 1.10:

(i) Clearly, Ω ∩E =E ∈ δ(E); hence Ω ∈DE .
(ii) For any A,B ∈DE with A⊂ B , we have (B \A)∩E = (B ∩E) \ (A∩E) ∈

δ(E).
(iii) Assume that A1,A2, . . . ∈DE are mutually disjoint. Hence

( ∞⋃

n=1

An

)

∩E =
∞⊎

n=1

(An ∩E) ∈ δ(E).

By assumption, A∩E ∈ E if A,E ∈ E ; thus E ⊂DE if E ∈ E . By Remark 1.17(ii),
we conclude that δ(E) ⊂ DE for any E ∈ E . Hence we get that B ∩ E ∈ δ(E) for
any B ∈ δ(E) and E ∈ E . This implies that E ∈DB for any B ∈ δ(E). Thus E ⊂DB
for any B ∈ δ(E), and hence (1.3) follows. �

For an illustration of the inclusions between the classes of sets, see Fig. 1.1.
We are particularly interested in σ -algebras that are generated by topologies. The

most prominent role is played by the Euclidean space Rn; however, we will also con-
sider the (infinite-dimensional) space C([0,1]) of continuous functions [0,1]→R.
On C([0,1]) the norm ‖f ‖∞ = supx∈[0,1] |f (x)| induces a topology. For the con-
venience of the reader, we recall the definition of a topology.

Definition 1.20 (Topology) Let Ω �= ∅ be an arbitrary set. A class of sets τ ⊂ 2Ω

is called a topology on Ω if it has the following three properties:
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(i) ∅,Ω ∈ τ .
(ii) A∩B ∈ τ for any A,B ∈ τ .

(iii) (
⋃
A∈F A) ∈ τ for any F ⊂ τ .

The pair (Ω, τ) is called a topological space. The sets A ∈ τ are called open, and
the sets A⊂Ω with Ac ∈ τ are called closed.

In contrast with σ -algebras, topologies are closed under finite intersections only,
but they are also closed under arbitrary unions.

Let d be a metric on Ω , and denote the open ball with radius r > 0 centered at
x ∈Ω by

Br(x)=
{
y ∈Ω : d(x, y) < r}.

Then the usual class of open sets is the topology

τ =
{⋃

(x,r)∈F Br(x) : F ⊂Ω × (0,∞)
}
.

Definition 1.21 (Borel σ -algebra) Let (Ω, τ) be a topological space. The σ -alge-
bra

B(Ω) := B(Ω, τ) := σ(τ)
that is generated by the open sets is called the Borel σ -algebra onΩ . The elements
A ∈ B(Ω, τ) are called Borel sets or Borel measurable sets.

Remark 1.22 In many cases, we are interested in B(Rn), where Rn is equipped with
the Euclidean distance

d(x, y)= ‖x − y‖2 =
√
√
√
√

n∑

i=1

(xi − yi)2.

(i) There are subsets of R
n that are not Borel sets. These sets are not easy to

construct like, for example, Vitali sets that can be found in calculus books (see
also [37, Theorem 3.4.4]). Here we do not want to stress this point but state
that, vaguely speaking, all sets that can be constructed explicitly are Borel sets.

(ii) If C ⊂ R
n is a closed set, then Cc ∈ τ is in B(Rn) and hence C is a Borel set.

In particular, {x} ∈ B(Rn) for every x ∈R
n.

(iii) B(Rn) is not a topology. To show this, let V ⊂ R
n such that V �∈ B(Rn). If

B(Rn) were a topology, then it would be closed under arbitrary unions. As
{x} ∈ B(Rn) for all x ∈ R

n, we would get the contradiction V =⋃x∈V {x} ∈
B(Rn). ♦

In most cases the class of open sets that generates the Borel σ -algebra is too big
to work with efficiently. Hence we aim at finding smaller (in particular, countable)
classes of sets that generate the Borel σ -algebra and that are more amenable. In
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some of the examples, the elements of the generating class are simpler sets such as
rectangles or compact sets.

We introduce the following notation. We denote by Q the set of rational numbers
and by Q

+ the set of strictly positive rational numbers. For a, b ∈R
n, we write

a < b if ai < bi for all i = 1, . . . , n. (1.4)

For a < b, we define the open rectangle as the Cartesian product

(a, b) :=
n×
i=1

(ai, bi) := (a1, b1)× (a2, b2)× . . .× (an, bn). (1.5)

Analogously, we define [a, b], (a, b] and [a, b). Furthermore, we define (−∞, b) :=×n
i=1(−∞, bi), and use an analogous definition for (−∞, b] and so on. We intro-

duce the following classes of sets:

E1 :=
{
A⊂R

n :A is open
}
, E2 :=

{
A⊂R

n :A is closed
}
,

E3 :=
{
A⊂R

n :A is compact
}
, E4 :=

{
Br(x) : x ∈Q

n, r ∈Q
+},

E5 :=
{
(a, b) : a, b ∈Q

n, a < b
}
, E6 :=

{[
a, b) : a, b ∈Q

n, a < b
}
,

E7 :=
{
(a, b

] : a, b ∈Q
n, a < b

}
, E8 :=

{[a, b] : a, b ∈Q
n, a < b

}
,

E9 :=
{
(−∞, b) : b ∈Q

n
}
, E10 :=

{(−∞, b] : b ∈Q
n
}
,

E11 :=
{
(a,∞) : a ∈Q

n
}
, E12 :=

{[a,∞) : a ∈Q
n
}
.

Theorem 1.23 The Borel σ -algebra B(Rn) is generated by any of the classes of
sets E1, . . . ,E12, that is, B(Rn)= σ(Ei ) for any i = 1, . . . ,12.

Proof We show only some of the identities.
(1) By definition, B(Rn)= σ(E1).
(2) Let A ∈ E1. Then Ac ∈ E2, and hence A= (Ac)c ∈ σ(E2). It follows that E1 ⊂

σ(E2). By Remark 1.17, this implies σ(E1)⊂ σ(E2). Similarly, we obtain σ(E2)⊂
σ(E1) and hence equality.

(3) Any compact set is closed; hence σ(E3) ⊂ σ(E2). Now let A ∈ E2. The
sets AK := A ∩ [−K,K]n, K ∈ N, are compact; hence the countable union A =⋃∞
K=1AK is in σ(E3). It follows that E2 ⊂ σ(E3) and thus σ(E2)= σ(E3).
(4) Clearly, E4 ⊂ E1; hence σ(E4)⊂ σ(E1). Now let A⊂R

n be an open set. For
any x ∈A, define R(x)=min(1, sup{r > 0 : Br(x)⊂A}). Note that R(x) > 0, as A
is open. Let r(x) ∈ (R(x)/2,R(x)) ∩Q. For any y ∈A and x ∈ (BR(y)/3(y))∩Q

n,
we have R(x) ≥ R(y) − ‖x − y‖2 >

2
3R(y), and hence r(x) > 1

3R(y) and thus
y ∈ Br(x)(x). It follows that A =⋃x∈A∩Qn Br(x)(x) is a countable union of sets
from E4 and is hence in σ(E4). We have shown that E1 ⊂ σ(E4). By Remark 1.17,
this implies σ(E1)⊂ σ(E4).
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(5–12) Exhaustion arguments similar to that in (4) also work for rectangles. If in
(4) we take open rectangles instead of open balls Br(x), we get B(Rn)= σ(E5). For
example, we have

n×
i=1

[ai, bi)=
∞⋂

k=1

n×
i=1

(

ai − 1

k
, bi

)

∈ σ(E5).

The other inclusions Ei ⊂ σ(Ej ) can be shown similarly. �

Remark 1.24 Any of the classes E1,E2,E3,E5, . . . ,E12 (but not E4) is a π -system.
Hence, the Borel σ -algebra equals the generated λ-system: B(Rn)= δ(Ei ) for i =
1,2,3,5, . . . ,12. In addition, the classes E4, . . . ,E12 are countable. This is a crucial
property that will be needed later. ♦

Definition 1.25 (Trace of a class of sets) Let A⊂ 2Ω be an arbitrary class of subsets
of Ω and let A ∈ 2Ω \ {∅}. The class

A
∣
∣
A
:= {A∩B : B ∈A} ⊂ 2A (1.6)

is called the trace of A on A or the restriction of A to A.

Theorem 1.26 Let A⊂Ω be a nonempty set and let A be a σ -algebra onΩ or any
of the classes of Definitions 1.6–1.9. Then A

∣
∣
A

is a class of sets of the same type
as A; however, on A instead of Ω . For λ-systems this is not true in general.

Proof This is left as an exercise. �

Exercise 1.1.1 Let A be a semiring. Show that any countable (respectively finite)
union of sets in A can be written as a countable (respectively finite) disjoint union
of sets in A.

Exercise 1.1.2 Give a counterexample that shows that, in general, the union A∪A′
of two σ -algebras need not be a σ -algebra.

Exercise 1.1.3 Let (Ω1, d1) and (Ω2, d2) be metric spaces and let f : Ω1 → Ω2

be an arbitrary map. Denote by Uf = {x ∈Ω1 : f is discontinuous at x} the set of
points of discontinuity of f . Show that Uf ∈ B(Ω1).

Hint: First show that for any ε > 0 and δ > 0 the set

U
δ,ε
f := {x ∈Ω1 : there are y, z ∈ Bε(x) with d2

(
f (y), f (z)

)
> δ
}

is open (where Bε(x) = {y ∈ Ω1 : d1(x, y) < ε}). Then construct Uf from
such Uδ,εf .
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Exercise 1.1.4 LetΩ be an uncountably infinite set and A= σ({ω} : ω ∈Ω). Show
that

A= {A⊂Ω :A is countable or Ac is countable
}
.

Exercise 1.1.5 Let A be a ring on the set Ω . Show that A is an Abelian algebraic
ring with multiplication “∩” and addition “�”.

1.2 Set Functions

Definition 1.27 Let A⊂ 2Ω and let μ :A→ [0,∞] be a set function. We say that
μ is

(i) monotone if μ(A)≤ μ(B) for any two sets A,B ∈A with A⊂ B ,
(ii) additive ifμ(

⊎n
i=1Ai)=

∑n
i=1μ(Ai) for any choice of finitely many mutually

disjoint sets A1, . . . ,An ∈A with
⋃n
i=1Ai ∈A,

(iii) σ -additive if μ(
⊎∞
i=1Ai) =

∑∞
i=1μ(Ai) for any choice of countably many

mutually disjoint sets A1,A2, . . . ∈A with
⋃∞
i=1Ai ∈A,

(iv) subadditive if for any choice of finitely many sets A,A1, . . . ,An ∈ A with
A⊂⋃ni=1Ai , we have μ(A)≤∑n

i=1μ(Ai), and
(v) σ -subadditive if for any choice of countably many sets A,A1,A2, . . . ∈A with

A⊂⋃∞
i=1Ai , we have μ(A)≤∑∞

i=1μ(Ai).

Definition 1.28 Let A be a semiring and let μ :A→[0,∞] be a set function with
μ(∅)= 0. μ is called a

• content if μ is additive,
• premeasure if μ is σ -additive,
• measure if μ is a premeasure and A is a σ -algebra, and
• probability measure if μ is a measure and μ(Ω)= 1.

Definition 1.29 Let A be a semiring. A content μ on A is called

(i) finite if μ(A) <∞ for every A ∈A and
(ii) σ -finite if there exists a sequence of sets Ω1,Ω2, . . . ∈ A such that Ω =⋃∞

n=1Ωn and such that μ(Ωn) <∞ for all n ∈N.

Example 1.30 (Contents, measures)

(i) Let ω ∈Ω and δω(A)= 1A(ω) (see (1.2)). Then δω is a probability measure
on any σ -algebra A⊂ 2Ω . δω is called the Dirac measure for the point ω.

(ii) Let Ω be a finite nonempty set. By

μ(A) := #A

#Ω
for A⊂Ω,



12 1 Basic Measure Theory

we define a probability measure on A = 2Ω . This μ is called the uniform
distribution on Ω . For this distribution, we introduce the symbol UΩ := μ.
The resulting triple (Ω,A,UΩ) is called a Laplace space.

(iii) Let Ω be countably infinite and let

A := {A⊂Ω : #A<∞ or #Ac <∞}.

Then A is an algebra. The set function μ on A defined by

μ(A)=
{

0, A is finite,

∞, Ac is finite,

is a content but is not a premeasure. Indeed, μ(
⋃
ω∈Ω{ω})= μ(Ω)=∞, but∑

ω∈Ω μ({ω})= 0.
(iv) Let (μn)n∈N be a sequence of measures (premeasures, contents) and let

(αn)n∈N be a sequence of nonnegative numbers. Then also μ :=∑∞
n=1 αnμn

is a measure (premeasure, content).
(v) Let Ω be an (at most) countable nonempty set and let A = 2Ω . Further, let

(pω)ω∈Ω be nonnegative numbers. Then A �→ μ(A) :=∑ω∈A pω defines a
σ -finite measure on 2Ω . We call p = (pω)ω∈Ω the weight function of μ. The
number pω is called the weight of μ at point ω.

(vi) If in (v) the sum
∑
ω∈Ω pω equals one, then μ is a probability measure. In

this case, we interpret pω as the probability of the elementary event ω. The
vector p = (pω)ω∈Ω is called a probability vector.

(vii) If in (v) pω = 1 for every ω ∈Ω , then μ is called counting measure on Ω . If
Ω is finite, then so is μ.

(viii) Let A be the ring of finite unions of intervals (a, b] ⊂R. For a1 < b1 < a2 <

b2 < . . . < bn and A=⊎ni=1(ai, bi], define

μ(A)=
n∑

i=1

(bi − ai).

Then μ is a σ -finite content on A (even a premeasure) since
⋃∞
n=1(−n,n] =

R and μ((−n,n])= 2n <∞ for all n ∈N.
(ix) Let f :R→[0,∞) be continuous. In a similar way to (viii), we define

μf (A)=
n∑

i=1

∫ bi

ai

f (x) dx.

Then μf is a σ -finite content on A (even a premeasure). The function f
is called the density of μ and plays a role similar to the weight function p
in (v). ♦
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Lemma 1.31 (Properties of contents) Let A be a semiring and let μ be a content
on A. Then the following statements hold.

(i) If A is a ring, then μ(A ∪ B) + μ(A ∩ B) = μ(A) + μ(B) for any two sets
A,B ∈A.

(ii) μ is monotone. If A is a ring, then μ(B)= μ(A)+μ(B \A) for any two sets
A,B ∈A with A⊂ B .

(iii) μ is subadditive. If μ is σ -additive, then μ is also σ -subadditive.
(iv) If A is a ring, then

∑∞
n=1μ(An) ≤ μ(

⋃∞
n=1An) for any choice of countably

many mutually disjoint sets A1,A2, . . . ∈A with
⋃∞
n=1An ∈A.

Proof (i) Note that A ∪ B = A � (B \ A) and B = (A ∩ B) � (B \ A). As μ is
additive, we obtain

μ(A∪B)= μ(A)+μ(B \A) and μ(B)= μ(A∩B)+μ(B \A).
This implies (i).

(ii) Let A⊂ B . Since A∩B =A, we obtain μ(B)= μ(A� (B \A))= μ(A)+
μ(B \ A) if B \ A ∈ A. In particular, this is true if A is a ring. If A is only a
semiring, then there exists an n ∈N and mutually disjoint sets C1, . . . ,Cn ∈A such
that B \ A =⊎ni=1Ci . Hence μ(B) = μ(A)+∑n

i=1μ(Ci) ≥ μ(A) and thus μ is
monotone.

(iii) Let n ∈N and A,A1, . . . ,An ∈A with A⊂⋃ni=1Ai . Define B1 =A1 and

Bk =Ak \
k−1⋃

i=1

Ai =
k−1⋂

i=1

(
Ak \ (Ak ∩Ai)

)
for k = 2, . . . , n.

By the definition of a semiring, any Ak \ (Ak ∩Ai) is a finite disjoint union of sets
in A. Hence there exists a ck ∈N and setsCk,1, . . . ,Ck,ck ∈A such that

⊎ck
i=1Ck,i =

Bk ⊂Ak . Similarly, there exist dk ∈N and Dk,1, . . . ,Dk,dk ∈A such that Ak \Bk =⊎dk
i=1Dk,i . Since μ is additive, we have

μ(Ak)=
ck∑

i=1

μ(Ck,i)+
dk∑

i=1

μ(Dk,i)≥
ck∑

i=1

μ(Ck,i).

Again due to additivity and monotonicity, we get

μ(A)= μ
(
n⊎

k=1

ck⊎

i=1

(Ck,i ∩A)
)

=
n∑

k=1

ck∑

i=1

μ(Ck,i ∩A)

≤
n∑

k=1

ck∑

i=1

μ(Ck,i)≤
n∑

k=1

μ(Ak).

Hence μ is subadditive. By a similar argument, σ -subadditivity follows from σ -
additivity.
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(iv) Let A be a ring and let A =⋃∞
n=1An ∈ A. Since μ is additive (and thus

monotone), we have by (ii)

m∑

n=1

μ(An)= μ
(
m⊎

n=1

An

)

≤ μ(A) for any m ∈N.

It follows that
∑∞
n=1μ(An)≤ μ(A). �

Remark 1.32 The inequality in (iv) can be strict (see Example 1.30(iii)). In other
words, there are contents that are not premeasures. ♦

Theorem 1.33 (Inclusion–exclusion formula) Let A be a ring and let μ be a con-
tent on A. Let n ∈ N and A1, . . . ,An ∈A such that μ(A1 ∪ . . . ∪ An) <∞. Then
the following inclusion and exclusion formulas hold:

μ(A1 ∪ . . .∪An)=
n∑

k=1

(−1)k−1
∑

{i1,...,ik}⊂{1,...,n}
μ(Ai1 ∩ . . .∩Aik ),

μ(A1 ∩ . . .∩An)=
n∑

k=1

(−1)k−1
∑

{i1,...,ik}⊂{1,...,n}
μ(Ai1 ∪ . . .∪Aik ).

Here summation is over all subsets of {1, . . . , n} with k elements.

Proof This is left as an exercise. Hint: Use induction on n. �

The next goal is to characterize σ -subadditivity by a certain continuity property
(Theorem 1.36). To this end, we agree on the following conventions.

Definition 1.34 Let A,A1,A2, . . . be sets. We write

• An ↑A and say that (An)n∈N increases to A if A1 ⊂A2 ⊂ . . . and
⋃∞
n=1An =A,

and
• An ↓ A and say that (An)n∈N decreases to A if A1 ⊃ A2 ⊃ A3 ⊃ . . . and⋂∞

n=1An =A.

Definition 1.35 (Continuity of contents) Let μ be a content on the ring A.

(i) μ is called lower semicontinuous if μ(An)
n→∞−→ μ(A) for any A ∈A and any

sequence (An)n∈N in A with An ↑A.

(ii) μ is called upper semicontinuous if μ(An)
n→∞−→ μ(A) for any A ∈A and any

sequence (An)n∈N in A with μ(An) <∞ for some (and then eventually all)
n ∈N and An ↓A.

(iii) μ is called ∅-continuous if (ii) holds for A= ∅.
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In the definition of upper semicontinuity, we needed the assumption μ(An) <∞
since otherwise we would not even have ∅-continuity for an example as simple as the
counting measure μ on (N,2N). Indeed, An := {n,n+ 1, . . .} ↓ ∅ but μ(An)=∞
for all n ∈N.

Theorem 1.36 (Continuity and premeasure) Let μ be a content on the ring A. Con-
sider the following five properties.

(i) μ is σ -additive (and hence a premeasure).
(ii) μ is σ -subadditive.

(iii) μ is lower semicontinuous.
(iv) μ is ∅-continuous.
(v) μ is upper semicontinuous.

Then the following implications hold:

(i) ⇐⇒ (ii) ⇐⇒ (iii)=⇒(iv) ⇐⇒ (v).

If μ is finite, then we also have (iv) =⇒(iii).

Proof “(i) =⇒(ii)” Let A,A1,A2, . . . ∈A with A⊂⋃∞
i=1Ai . Define B1 =A1 and

Bn = An \⋃n−1
i=1 Ai ∈ A for n = 2,3, . . . . Then A =⊎∞

n=1(A ∩ Bn). Since μ is
monotone and σ -additive, we infer

μ(A)=
∞∑

n=1

μ(A∩Bn)≤
∞∑

n=1

μ(An).

Hence μ is σ -subadditive.
“(ii) =⇒(i)” This follows from Lemma 1.31(iv).
“(i) =⇒(iii)” Let μ be a premeasure and A ∈A. Let (An)n∈N be a sequence in

A such that An ↑A and let A0 = ∅. Then

μ(A)=
∞∑

i=1

μ(Ai \Ai−1)= lim
n→∞

n∑

i=1

μ(Ai \Ai−1)= lim
n→∞μ(An).

“(iii) =⇒(i)” Assume now that (iii) holds. Let B1,B2, . . . ∈A be mutually dis-
joint, and assume that B =⊎∞

n=1Bn ∈A. Define An =⋃ni=1Bi for all n ∈N. Then
it follows from (iii) that

μ(B)= lim
n→∞μ(An)=

∞∑

i=1

μ(Bi).

Hence μ is σ -additive and therefore a premeasure.
“(iv) =⇒(v)” Let A,A1,A2, . . . ∈ A with An ↓ A and μ(A1) < ∞. Define

Bn = An \ A ∈ A for all n ∈ N. Then Bn ↓ ∅. This implies μ(An) − μ(A) =
μ(Bn)

n→∞−→ 0.
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“(v) =⇒(iv)” This is evident.
“(iii)=⇒(iv)” Let A1,A2, . . . ∈A with An ↓ ∅ and μ(A1) <∞. Then A1 \An ∈

A for any n ∈N and A1 \An ↑A1. Hence

μ(A1)= lim
n→∞μ(A1 \An)= μ(A1)− lim

n→∞μ(An).

Since μ(A1) <∞, we have limn→∞μ(An)= 0.
“(iv) =⇒(iii)” (for finite μ) Assume that μ(A) <∞ for every A ∈A and that μ

is ∅-continuous. Let A,A1,A2, . . . ∈A with An ↑A. Then we have A \An ↓ ∅ and

μ(A)−μ(An)= μ(A \An) n→∞−→ 0.

Hence (iii) follows. �

Example 1.37 (Compare Example 1.30(iii)) Let Ω be a countable set, and define

A= {A⊂Ω : #A<∞ or #Ac <∞},

μ(A)=
{

0, A is finite,

∞, A is infinite.

Then μ is an ∅-continuous content but not a premeasure. ♦

Definition 1.38

(i) A pair (Ω,A) consisting of a nonempty set Ω and a σ -algebra A ⊂ 2Ω is
called a measurable space. The sets A ∈A are called measurable sets. If Ω is
at most countably infinite and if A= 2Ω , then the measurable space (Ω,2Ω)
is called discrete.

(ii) A triple (Ω,A,μ) is called a measure space if (Ω,A) is a measurable space
and if μ is a measure on A.

(iii) If in addition μ(Ω) = 1, then (Ω,A,μ) is called a probability space. In this
case, the sets A ∈A are called events.

(iv) The set of all finite measures on (Ω,A) is denoted by Mf (Ω) :=Mf (Ω,A).
The subset of probability measures is denoted by M1(Ω) :=M1(Ω,A). Fi-
nally, the set of σ -finite measures on (Ω,A) is denoted by Mσ (Ω,A).

Exercise 1.2.1 Let A = {(a, b] ∩Q : a, b ∈ R, a ≤ b}. Define μ :A→ [0,∞) by
μ((a, b] ∩Q) = b − a. Show that A is a semiring and μ is a content on A that is
lower and upper semicontinuous but is not σ -additive.

1.3 The Measure Extension Theorem

In this section, we construct measures μ on σ -algebras. The starting point will be
to define the values of μ on a smaller class of sets; that is, on a semiring. Under a
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mild consistency condition, the resulting set function can be extended to the whole
σ -algebra.

Before we develop the complete theory, we begin with two examples.

Example 1.39 (Lebesgue measure) Let n ∈N and let

A= {(a, b] : a, b ∈R
n, a < b

}

be the semiring of half open rectangles (a, b] ⊂ R
n (see (1.5)). The n-dimensional

volume of such a rectangle is

μ((a, b])=
n∏

i=1

(bi − ai).

Can we extend the set function μ to a (uniquely determined) measure on the Borel
σ -algebra B(Rn) = σ(A)? We will see that this is indeed possible. The resulting
measure is called Lebesgue measure (or sometimes Lebesgue–Borel measure) λ on
(Rn,B(Rn)). ♦

Example 1.40 (Product measure, Bernoulli measure) We construct a measure for an
infinitely often repeated random experiment with finitely many possible outcomes.
Let E be the set of possible outcomes. For e ∈E, let pe ≥ 0 be the probability that e
occurs. Hence

∑
e∈E pe = 1. For a fixed realization of the repeated experiment, let

ω1,ω2, . . . ∈E be the observed outcomes. Hence the space of all possible outcomes
of the repeated experiment isΩ =EN. As in Example 1.11(vi), we define the set of
all sequences whose first n values are ω1, . . . ,ωn:

[ω1, . . . ,ωn] :=
{
ω′ ∈Ω : ω′i = ωi for any i = 1, . . . , n

}
. (1.7)

Let A0 = {∅}. For n ∈N, define the class of cylinder sets that depend only on the
first n coordinates

An :=
{[ω1, . . . ,ωn] : ω1, . . . ,ωn ∈E

}
, (1.8)

and let A :=⋃∞
n=0 An.

We interpret [ω1, . . . ,ωn] as the event where the outcome of the first experiment
is ω1, the outcome of the second experiment is ω2 and finally the outcome of the
nth experiment is ωn. The outcomes of the other experiments do not play a role for
the occurrence of this event. As the individual experiments ought to be independent,
we should have for any choice ω1, . . . ,ωn ∈ E that the probability of the event
[ω1, . . . ,ωn] is the product of the probabilities of the individual events; that is,

μ
([ω1, . . . ,ωn]

)=
n∏

i=1

pωi .

This formula defines a content μ on the semiring A, and our aim is to extend μ in a
unique way to a probability measure on the σ -algebra σ(A) that is generated by A.
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Before we do so, we make the following definition. Define the (ultra-)metric d
on Ω by

d
(
ω,ω′

)=
{

2− inf{n∈N:ωn �=ω′n}, ω �= ω′,
0, ω= ω′. (1.9)

Hence (Ω,d) is a compact metric space. Clearly,

[ω1, . . . ,ωn] = B2−n(ω)=
{
ω′ ∈Ω : d(ω,ω′)< 2−n

}
.

The complement of [ω1, . . . ,ωn] is an open set, as it is the union of (#E)n− 1 open
balls

[ω1, . . . ,ωn]c =
⋃

(ω′1,...,ω′n)�=(ω1,...,ωn)

[
ω′1, . . . ,ω′n

]
.

SinceΩ is compact, the closed subset [ω1, . . . ,ωn] is compact. As in Theorem 1.23,
it can be shown that σ(A)= B(Ω,d).

Exercise: Prove the statements made above. ♦

The main result of this chapter is Carathéodory’s measure extension theorem.

Theorem 1.41 (Carathéodory) Let A ⊂ 2Ω be a ring and let μ be a σ -finite
premeasure on A. There exists a unique measure μ̃ on σ(A) such that μ̃(A) =
μ(A) for all A ∈A. Furthermore, μ̃ is σ -finite.

We prepare for the proof of this theorem with a couple of lemmas. In fact, we
will show a slightly stronger statement in Theorem 1.53.

Lemma 1.42 (Uniqueness by an ∩-closed generator) Let (Ω,A,μ) be a σ -finite
measure space and let E ⊂ A be a π -system that generates A. Assume that there
exist sets Ω1,Ω2, . . . ∈ E such that

⋃∞
n=1Ωn =Ω and μ(Ωn) <∞ for all n ∈ N.

Then μ is uniquely determined by the values μ(E), E ∈ E .
If μ is a probability measure, the existence of the sequence (Ωn)n∈N is not

needed.

Proof Let ν be a (possibly different) σ -finite measure on (Ω,A) such that

μ(E)= ν(E) for every E ∈ E .

Let E ∈ E with μ(E) <∞. Consider the class of sets

DE =
{
A ∈A : μ(A∩E)= ν(A∩E)}.
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In order to show that DE is a λ-system, we check the properties of Definition 1.10:

(i) Clearly, Ω ∈DE .
(ii) Let A,B ∈DE with A⊃ B . Then

μ
(
(A \B)∩E)= μ(A∩E)−μ(B ∩E)

= ν(A∩E)− ν(B ∩E)= ν((A \B)∩E).
Hence A \B ∈DE .

(iii) Let A1,A2, . . . ∈DE be mutually disjoint and A=⋃∞
n=1An. Then

μ(A∩E)=
∞∑

n=1

μ(An ∩E)=
∞∑

n=1

ν(An ∩E)= ν(A∩E).

Hence A ∈DE .

Clearly, E ⊂DE ; hence δ(E)⊂DE . Since E is a π -system, Theorem 1.19 yields

A⊃DE ⊃ δ(E)= σ(E)=A.

Hence DE =A.
This implies μ(A ∩E)= ν(A ∩E) for any A ∈A and E ∈ E with μ(E) <∞.

Now letΩ1,Ω2, . . . ∈ E be a sequence such that
⋃∞
n=1Ωn =Ω and μ(Ωn) <∞ for

all n ∈ N. Let En :=⋃ni=1Ωi , n ∈ N, and E0 = ∅. Hence En =⊎ni=1(E
c
i−1 ∩Ωi).

For any A ∈A and n ∈N, we thus get

μ(A∩En)=
n∑

i=1

μ
((
A∩Eci−1

)∩Ωi
)=

n∑

i=1

ν
((
A∩Eci−1

)∩Ωi
)= ν(A∩En).

Since En ↑Ω and since μ and ν are lower semicontinuous, we infer

μ(A)= lim
n→∞μ(A∩En)= lim

n→∞ν(A∩En)= ν(A).

The additional statement is trivial as Ẽ := E∪{Ω} is a π -system that generates A,
and the value μ(Ω) = 1 is given. Hence one can choose the constant sequence
En =Ω , n ∈ N. However, note that it is not enough to assume that μ is finite. In
this case, in general, the total mass μ(Ω) is not uniquely determined by the values
μ(E), E ∈ E ; see Example 1.45(ii). �

Example 1.43 Let Ω = Z and E = {En : n ∈ Z} where En = (−∞, n] ∩ Z. Then
E is a π -system and σ(E)= 2Ω . Hence a finite measure μ on (Ω,2Ω) is uniquely
determined by the values μ(En), n ∈ Z.

However, a σ -finite measure on Z is not uniquely determined by the values on E :
Let μ be the counting measure on Z and let ν = 2μ. Hence μ(E)=∞= ν(E) for
all E ∈ E . In order to distinguish μ and ν one needs a generator that contains sets
of finite measure (of μ). Do the sets F̃n = [−n,n] ∩ Z, n ∈ N do the trick? Indeed,
for any σ -finite measure μ, we have μ(F̃n) <∞ for all n ∈N. However, the sets F̃n
do not generate 2Ω (but which σ -algebra?). We get things to work out better if we
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modify the definition: Fn = [−n/2, (n+1)/2]∩Z. Now σ({Fn, n ∈N})= 2Ω , and
hence E = {Fn, n ∈ N} is a π -system that generates 2Ω and such that μ(Fn) <∞
for all n ∈N. The conditions of the theorem are fulfilled as Fn ↑Ω . ♦

Example 1.44 (Distribution function) A probability measure μ on the space
(Rn,B(Rn)) is uniquely determined by the values μ((−∞, b]) (where (−∞, b] =×n
i=1(−∞, bi], b ∈ R

n). In fact, these sets form a π -system that generates B(Rn)
(see Theorem 1.23). In particular, a probability measure μ on R is uniquely deter-
mined by its distribution function F :R→[0,1], x �→ μ((−∞, x]). ♦

Example 1.45

(i) Let Ω = {1,2,3,4} and E = {{1,2}, {2,3}}. Clearly, σ(E)= 2Ω but E is not a
π -system. In fact, here a probability measure μ is not uniquely determined by
the values, say μ({1,2})= μ({2,3})= 1

2 . We give just two different possibili-
ties: μ= 1

2δ1 + 1
2δ3 and μ′ = 1

2δ2 + 1
2δ4.

(ii) Let Ω = {1,2} and E = {{1}}. Then E is a π -system that generates 2Ω . Hence
a probability measure μ is uniquely determined by the value μ({1}). However,
a finite measure is not determined by its value on {1}, as μ= 0 and ν = δ2 are
different finite measures that agree on E . ♦

Definition 1.46 (Outer measure) A set functionμ∗ : 2Ω→[0,∞] is called an outer
measure if

(i) μ∗(∅)= 0, and
(ii) μ∗ is monotone,

(iii) μ∗ is σ -subadditive.

Lemma 1.47 Let A ⊂ 2Ω be an arbitrary class of sets with ∅ ∈A and let μ be a
nonnegative set function on A with μ(∅)= 0. ForA⊂Ω , define the set of countable
coverings F with sets F ∈A:

U(A)=
{

F ⊂A :F is at most countable and A⊂
⋃

F∈F
F

}

.

Define

μ∗(A) := inf

{∑

F∈F
μ(F) :F ∈ U(A)

}

,

where inf∅ =∞. Then μ∗ is an outer measure. If in addition μ is σ -subadditive,
then μ∗(A)= μ(A) for all A ∈A.

Proof We check properties (i)–(iii) of an outer measure.

(i) Since ∅ ∈A, we have {∅} ∈ U(∅); hence μ∗(∅)= 0.
(ii) If A⊂ B , then U(A)⊃ U(B); hence μ∗(A)≤ μ∗(B).



1.3 The Measure Extension Theorem 21

(iii) Let An ⊂ Ω for any n ∈ N and let A ⊂ ⋃∞
n=1An. We show that μ∗(A) ≤∑∞

n=1μ
∗(An). Without loss of generality, assume μ∗(An) <∞ and hence

U(An) �= ∅ for all n ∈ N. Fix ε > 0. For every n ∈ N, choose a covering
Fn ∈ U(An) such that

∑

F∈Fn
μ(F )≤ μ∗(An)+ ε2−n.

Then F :=⋃∞
n=1 Fn ∈ U(A) and

μ∗(A)≤
∑

F∈F
μ(F)≤

∞∑

n=1

∑

F∈Fn
μ(F )≤

∞∑

n=1

μ∗(An)+ ε.

Let A ∈A. Since {A} ∈ U(A), we have μ∗(A)≤ μ(A). If μ is σ -subadditive, then
for any F ∈ U(A), we have

∑
F∈F μ(F)≥ μ(A); hence μ∗(A)≥ μ(A). �

Definition 1.48 (μ∗-measurable sets) Let μ∗ be an outer measure. A set A ∈ 2Ω is
called μ∗-measurable if

μ∗(A∩E)+μ∗(Ac ∩E)= μ∗(E) for any E ∈ 2Ω. (1.10)

We write M(μ∗)= {A ∈ 2Ω :A is μ∗-measurable}.

Lemma 1.49 A ∈M(μ∗) if and only if

μ∗(A∩E)+μ∗(Ac ∩E)≤ μ∗(E) for any E ∈ 2Ω.

Proof As μ∗ is subadditive, the other inequality is trivial. �

Lemma 1.50 M(μ∗) is an algebra.

Proof We check properties (i)–(iii) of an algebra from Theorem 1.7.

(i) Ω ∈M(μ∗) is evident.
(ii) (Closedness under complements) By definition, A ∈ M(μ∗) ⇐⇒ Ac ∈

M(μ∗).
(iii) (π -system) Let A,B ∈M(μ∗) and E ∈ 2Ω . Then

μ∗
(
(A∩B)∩E)+μ∗((A∩B)c ∩E)

= μ∗(A∩B ∩E)+μ∗((Ac ∩B ∩E)∪ (Ac ∩Bc ∩E)∪ (A∩Bc ∩E))

≤ μ∗(A∩B ∩E)+μ∗(Ac ∩B ∩E)

+μ∗(Ac ∩Bc ∩E)+μ∗(A∩Bc ∩E)

= μ∗(B ∩E)+μ∗(Bc ∩E)

= μ∗(E).
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Here we used A ∈M(μ∗) in the last but one equality and B ∈M(μ∗) in the
last equality. �

Lemma 1.51 An outer measure μ∗ is σ -additive on M(μ∗).

Proof Let A,B ∈M(μ∗) with A∩B = ∅. Then

μ∗(A∪B)= μ∗(A∩ (A∪B))+μ∗(Ac ∩ (A∪B))= μ∗(A)+μ∗(B).
Inductively, we get (finite) additivity. By definition, μ∗ is σ -subadditive; hence we
conclude by Theorem 1.36 that μ∗ is also σ -additive. �

Lemma 1.52 If μ∗ is an outer measure, then M(μ∗) is a σ -algebra. In particular,
μ∗ is a measure on M(μ∗).

Proof By Lemma 1.50, M(μ∗) is an algebra and hence a π -system. By Theo-
rem 1.18, it is sufficient to show that M(μ∗) is a λ-system.

Hence, let A1,A2, . . . ∈M(μ∗) be mutually disjoint, and define A :=⊎∞
n=1An.

We have to show A ∈M(μ∗); that is,

μ∗(A∩E)+μ∗(Ac ∩E)≤ μ∗(E) for any E ∈ 2Ω. (1.11)

Let Bn =⋃ni=1Ai for all n ∈N. For all n ∈N, we have

μ∗(E ∩Bn+1)= μ∗
(
(E ∩Bn+1)∩Bn

)+μ∗((E ∩Bn+1)∩Bcn
)

= μ∗(E ∩Bn)+μ∗(E ∩An+1).

Inductively, we get μ∗(E ∩Bn)=∑n
i=1μ

∗(E ∩Ai). The monotonicity of μ∗ now
implies that

μ∗(E)= μ∗(E ∩Bn)+μ∗
(
E ∩Bcn

)

≥ μ∗(E ∩Bn)+μ∗
(
E ∩Ac)

=
n∑

i=1

μ∗(E ∩Ai)+μ∗
(
E ∩Ac).

Letting n→∞ and using the σ -subadditivity of μ∗, we conclude

μ∗(E)≥
∞∑

i=1

μ∗(E ∩Ai)+μ∗
(
E ∩Ac)≥ μ∗(E ∩A)+μ∗(E ∩Ac).

Hence (1.11) holds and the proof is complete. �

We come to an extension theorem for measures that makes slightly weaker as-
sumptions than Carathéodory’s theorem (Theorem 1.41).
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Theorem 1.53 (Extension theorem for measures) Let A be a semiring and let
μ :A→[0,∞] be an additive, σ -subadditive and σ -finite set function with
μ(∅)= 0.
Then there is a unique σ -finite measure μ̃ : σ(A)→ [0,∞] such that μ̃(A) =
μ(A) for all A ∈A.

Proof As A is a π -system, uniqueness follows by Lemma 1.42.
In order to establish the existence of μ̃, we define as in Lemma 1.47

μ∗(A) := inf

{∑

F∈F
μ(F) :F ∈ U(A)

}

for any A ∈ 2Ω.

By Lemma 1.47, μ∗ is an outer measure and μ∗(A) = μ(A) for any A ∈ A. We
have to show that M(μ∗)⊃ σ(A). Since M(μ∗) is a σ -algebra (Lemma 1.52), it is
enough to show A⊂M(μ∗).

To this end, let A ∈A and E ∈ 2Ω with μ∗(E) <∞. Fix ε > 0. Then there is a
sequence E1,E2, . . . ∈A such that

E ⊂
∞⋃

n=1

En and
∞∑

n=1

μ(En)≤ μ∗(E)+ ε.

Define Bn :=En∩A ∈A. Since A is a semiring, for every n ∈N there is anmn ∈N

and sets C1
n, . . . ,C

mn
n ∈A such that En \A=En \Bn =⊎mnk=1C

k
n . Hence

E ∩A⊂
∞⋃

n=1

Bn, E ∩Ac ⊂
∞⋃

n=1

mn⋃

k=1

Ckn and En = Bn �
mn⊎

k=1

Ckn.

By the definition of the outer measure and since μ is assumed to be (finitely) addi-
tive, we get

μ∗(E ∩A)+μ∗(E ∩Ac)≤
∞∑

n=1

μ(Bn)+
∞∑

n=1

mn∑

k=1

μ
(
Ckn
)

=
∞∑

n=1

(

μ(Bn)+
mn∑

k=1

μ
(
Ckn
)
)

=
∞∑

n=1

μ(En)

≤ μ∗(E)+ ε.
Hence μ∗(E ∩A)+μ∗(E ∩Ac)≤ μ∗(E) and thus A ∈M(μ∗), which implies

A⊂M(μ∗). Now define μ̃ : σ(A)→[0,∞], A �→ μ∗(A). By Lemma 1.51, μ̃ is a
measure and μ̃ is σ -finite since μ is σ -finite. �
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Example 1.54 (Lebesgue measure, continuation of Example 1.39) We aim at ex-
tending the volume μ((a, b]) = ∏ni=1(bi − ai) that was defined on the class of
rectangles A = {(a, b] : a, b ∈ R

n, a < b} to the Borel σ -algebra B(Rn). In or-
der to check the assumptions of Theorem 1.53, we only have to check that μ is
σ -subadditive. To this end, let (a, b], (a(1), b(1)], (a(2), b(2)], . . . ∈A with

(a, b] ⊂
∞⋃

k=1

(
a(k), b(k)

]
.

We show that

μ
(
(a, b])≤

∞∑

k=1

μ
((
a(k), b(k)

])
. (1.12)

For this purpose we use a compactness argument to reduce (1.12) to finite additivity.
Fix ε > 0. For any k ∈N, choose bε(k) > b(k) such that

μ
((
a(k), bε(k)

])≤ μ((a(k), b(k)])+ ε2−k−1.

Further choose aε ∈ (a, b) such that μ((aε, b]) ≥ μ((a, b])− ε
2 . Now [aε, b] is

compact and

∞⋃

k=1

(
a(k), bε(k)

)⊃
∞⋃

k=1

(
a(k), b(k)

]⊃ (a, b] ⊃ [aε, b],

whence there exists a K0 such that
⋃K0
k=1(a(k), bε(k)) ⊃ (aε, b]. As μ is (finitely)

subadditive (see Lemma 1.31(iii)), we obtain

μ
(
(a, b])≤ ε

2
+μ((aε, b]

)≤ ε
2
+
K0∑

k=1

μ
((
a(k), bε(k)

])

≤ ε
2
+
K0∑

k=1

(
ε2−k−1 +μ((a(k), b(k)]))≤ ε+

∞∑

k=1

μ
((
a(k), b(k)

])
.

Letting ε ↓ 0 yields (1.12); hence μ is σ -subadditive. ♦

Combining the last example with Theorem 1.53, we have shown the following
theorem.

Theorem 1.55 (Lebesgue measure) There exists a uniquely determined measure
λn on (Rn,B(Rn)) with the property that

λn
(
(a, b])=

n∏

i=1

(bi − ai) for all a, b ∈R
n with a < b.

λn is called the Lebesgue measure on (Rn,B(Rn)) or Lebesgue–Borel measure.
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Example 1.56 (Lebesgue–Stieltjes measure) Let Ω = R and A = {(a, b] :
a, b ∈ R, a ≤ b}. A is a semiring and σ(A) = B(R), where B(R) is the Borel
σ -algebra on R. Furthermore, let F : R→ R be monotone increasing and right
continuous. We define a set function

μ̃F :A→[0,∞), (a, b] �→ F(b)− F(a).
Clearly, μ̃F (∅)= 0 and μ̃F is additive.

Let (a, b], (a(1), b(1)], (a(2), b(2)], . . . ∈ A such that (a, b] ⊂ ⋃∞
n=1(a(n),

b(n)]. Fix ε > 0 and choose aε ∈ (a, b) such that F(aε) − F(a) < ε/2. This is
possible, as F is right continuous. For any k ∈N, choose bε(k) > b(k) such that

F
(
bε(k)

)− F (b(k))< ε2−k−1.

As in Example 1.54, it can be shown that μ̃F ((a, b])≤ ε+∑∞
k=1 μ̃F ((a(k), b(k)]).

This implies that μ̃F is σ -subadditive. By Theorem 1.53, we can extend μ̃F
uniquely to a σ -finite measure μF on B(R). ♦

Definition 1.57 (Lebesgue–Stieltjes measure) The measure μF on (R,B(R)) de-
fined by

μF
(
(a, b])= F(b)− F(a) for all a, b ∈R with a < b

is called the Lebesgue–Stieltjes measure with distribution function F .

Example 1.58 Important special cases for the Lebesgue–Stieltjes measure are the
following:

(i) If F(x)= x, then μF = λ1 is the Lebesgue measure on R.
(ii) Let f : R→ [0,∞) be continuous and let F(x) = ∫ x0 f (t) dt for all x ∈ R.

Then μF is the extension of the premeasure with density f that was defined in
Example 1.30(ix).

(iii) Let x1, x2, . . . ∈ R and αn ≥ 0 for all n ∈ N such that
∑∞
n=1 αn <∞. Then

F =∑∞
n=1 αn1[xn,∞) is the distribution function of the finite measure μF =∑∞

n=1 αnδxn .
(iv) Let x1, x2, . . . ∈ R such that μ=∑∞

n=1 δxn is a σ -finite measure. Then μ is a
Lebesgue–Stieltjes measure if and only if the sequence (xn)n∈N does not have a
limit point. Indeed, if (xn)n∈N does not have a limit point, then by the Bolzano–
Weierstraß theorem, #{n ∈ N : xn ∈ [−K,K]}<∞ for every K > 0. If we let
F(x) = #{n ∈ N : xn ∈ [0, x]} for x ≥ 0 and F(x) = −#{n ∈ N : xn ∈ [x,0)},
then μ= μF . On the other hand, if μ is a Lebesgue–Stieltjes measure, this is
μ = μF for some F , then #{n ∈ N : xn ∈ (−K,K]} = F(K)− F(−K) <∞
for all K > 0; hence (xn)n∈N does not have a limit point.

(v) If limx→∞(F (x)− F(−x))= 1, then μF is a probability measure. ♦

We will now have a closer look at the case where μF is a probability measure.
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Definition 1.59 (Distribution function) A right continuous monotone increasing
function F : R → [0,1] with F(−∞) := limx→−∞ F(x) = 0 and F(∞) :=
limx→∞ F(x)= 1 is called a (proper) probability distribution function (p.d.f.). If we
only have F(∞) ≤ 1 instead of F(∞)= 1, then F is called a (possibly) defective
p.d.f. If μ is a (sub-)probability measure on (R,B(R)), then Fμ : x �→ μ((−∞, x])
is called the distribution function of μ.

Clearly, Fμ is right continuous and F(−∞) = 0, since μ is upper semicon-
tinuous and finite (Theorem 1.36). Since μ is lower semicontinuous, we have
F(∞) = μ(R); hence Fμ is indeed a (possibly defective) distribution function if
μ is a (sub-)probability measure.

The argument of Example 1.56 yields the following theorem.

Theorem 1.60 The map μ �→ Fμ is a bijection from the set of probability measures
on (R,B(R)) to the set of probability distribution functions, respectively from the
set of sub-probability measures to the set of defective distribution functions.

We have established that every finite measure on (R,B(R)) is a Lebesgue–
Stieltjes measure for some function F . For σ -finite measures, the corresponding
statement does not hold in this generality as we saw in Example 1.58(iv).

We come now to a theorem that combines Theorem 1.55 with the idea of
Lebesgue–Stieltjes measures. Later we will see that the following theorem is valid
in greater generality. In particular, the assumption that the factors are of Lebesgue–
Stieltjes type can be dropped.

Theorem 1.61 (Finite products of measures) Let n ∈N and let μ1, . . . ,μn be fi-
nite measures or, more generally, Lebesgue–Stieltjes measures on (R,B(R)). Then
there exists a unique σ -finite measure μ on (Rn,B(Rn)) such that

μ
(
(a, b])=

n∏

i=1

μi
(
(ai, bi]

)
for all a, b ∈R

n with a < b.

We call μ=:⊗n
i=1μi the product measure of the measures μ1, . . . ,μn.

Proof The proof is the same as for Theorem 1.55. One has to check that the inter-
vals (a, bε] and so on can be chosen such that μ((a, bε]) < μ((a, b])+ ε. Here we
employ the right continuity of the increasing function Fi that belongs to μi . The
details are left as an exercise. �

Remark 1.62 Later we will see in Theorem 14.14 that the statement holds even
for arbitrary σ -finite measures μ1, . . . ,μn on arbitrary (even different) measurable
spaces. One can even construct infinite products if all factors are probability spaces
(Theorem 14.36). ♦
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Example 1.63 (Infinite product measure, continuation of Example 1.40) Let E be a
finite set and let Ω = EN be the space of E-valued sequences. Further, let (pe)e∈E
be a probability vector. Define a content μ on A = {[ω1, . . . ,ωn] : ω1, . . . ,ωn ∈
E, n ∈N} by

μ
([ω1, . . . ,ωn]

)=
n∏

i=1

pωi .

We aim at extending μ to a measure on σ(A). In order to check the assumptions
of Theorem 1.53, we have to show that μ is σ -subadditive. As in the preceding
example, we use a compactness argument.

Let A,A1,A2, . . . ∈A and A⊂⋃∞
n=1An. We are done if we can show that there

exists an N ∈N such that

A⊂
N⋃

n=1

An. (1.13)

Indeed, due to the (finite) subadditivity of μ (see Lemma 1.31(iii)), this implies
μ(A)≤∑N

n=1μ(An)≤
∑∞
n=1μ(An); hence μ is σ -subadditive.

We now give two different proofs for (1.13).

1st Proof. The metric d from (1.9) induces the product topology on Ω ; hence, as
remarked in Example 1.40, (Ω,d) is a compact metric space. Every A ∈ A is
closed and thus compact. Since every An is also open, A can be covered by finitely
many An; hence (1.13) holds.

2nd Proof. We now show by elementary means the validity of (1.13). The procedure
imitates the proof that Ω is compact. Let Bn := A \⋃ni=1Ai . We assume Bn �= ∅
for all n ∈ N in order to get a contradiction. By Dirichlet’s pigeonhole principle
(recall that E is finite), we can choose ω1 ∈E such that [ω1]∩Bn �= ∅ for infinitely
many n ∈N. Since B1 ⊃ B2 ⊃ . . . , we obtain

[ω1] ∩Bn �= ∅ for all n ∈N.

Successively choose ω2,ω3, . . . ∈E in such a way that

[ω1, . . . ,ωk] ∩Bn �= ∅ for all k,n ∈N.

Bn is a disjoint union of certain sets Cn,1, . . . ,Cn,mn ∈A. Hence, for every n ∈ N

there is an in ∈ {1, . . . ,mn} such that [ω1, . . . ,ωk] ∩Cn,in �= ∅ for infinitely many
k ∈N. Since [ω1] ⊃ [ω1,ω2] ⊃ . . . , we obtain

[ω1, . . . ,ωk] ∩Cn,in �= ∅ for all k,n ∈N.

For fixed n ∈ N and large k, we have [ω1, . . . ,ωk] ⊂ Cn,in . Hence ω =
(ω1,ω2, . . .) ∈ Cn,in ⊂ Bn. This implies

⋂∞
n=1Bn �= ∅, contradicting the assump-

tion. ♦
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Combining the last example with Theorem 1.53, we have shown the following
theorem.

Theorem 1.64 (Product measure, Bernoulli measure) Let E be a finite nonempty
set and Ω = EN. Let (pe)e∈E be a probability vector. Then there exists a unique
probability measure μ on σ(A)= B(Ω) such that

μ
([ω1, . . . ,ωn]

)=
n∏

i=1

pωi for all ω1, . . . ,ωn ∈E and n ∈N.

μ is called the product measure or Bernoulli measure onΩ with weights (pe)e∈E .
We write (

∑
e∈E peδe)⊗N := μ. The σ -algebra (2E)⊗N := σ(A) is called the

product σ -algebra on Ω .

We will study product measures in a systematic way in Chapter 14.
The measure extension theorem yields an abstract statement of existence and

uniqueness for measures on σ(A) that were first defined on a semiring A only. The
following theorem, however, shows that the measure of a set from σ(A) can be well
approximated by finite and countable operations with sets from A.

Denote by

A�B := (A \B)∪ (B \A) for A,B ⊂Ω (1.14)

the symmetric difference of the two sets A and B .

Theorem 1.65 (Approximation theorem for measures) Let A⊂ 2Ω be a semiring
and let μ be a measure on σ(A) that is σ -finite on A.

(i) For any A ∈ σ(A) and ε > 0, there exist mutually disjoint sets A1,A2, . . . ∈
A such that A⊂⋃∞

n=1An and μ(
⋃∞
n=1An \A) < ε.

(ii) For any A ∈ σ(A) with μ(A) <∞ and any ε > 0, there exists an n ∈N and
mutually disjoint sets A1, . . . ,An ∈A such that μ(A�⋃nk=1Ak) < ε.

(iii) For any A ∈M(μ∗), there are sets A−,A+ ∈ σ(A) with A− ⊂A⊂A+ and
μ(A+ \A−)= 0.

Remark 1.66 (iii) implies that (i) and (ii) also hold for A ∈M(μ∗) (with μ∗ in-
stead of μ). If A is an algebra, then in (ii) for any A ∈ σ(A), we even have
infB∈Aμ(A�B)= 0. ♦

Proof (ii) As μ and the outer measure μ∗ coincide on σ(A) and since μ(A) is finite,
by the very definition of μ∗ (see Lemma 1.47) there exists a covering B1,B2, . . . ∈
A of A such that

μ(A)≥
∞∑

i=1

μ(Bi)− ε/2.
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Let n ∈ N with
∑∞
i=n+1μ(Bi) <

ε
2 (such an n exists since μ(A) <∞). For any

three sets C,D,E, we have

C�D = (D \C)∪ (C \D)⊂ (D \C)∪ (C \ (D ∪E))∪E ⊂ (C�(D ∪E))∪E.

Choosing C =A, D =⋃ni=1Bi and E =⋃∞
i=n+1Bi , this yields

μ

(

A�
n⋃

i=1

Bi

)

≤ μ
(

A�
∞⋃

i=1

Bi

)

+μ
( ∞⋃

i=n+1

Bi

)

≤ μ
( ∞⋃

i=1

Bi

)

−μ(A)+ ε
2
≤ ε.

As A is a semiring, there exist a k ∈N and A1, . . . ,Ak ∈A such that

n⋃

i=1

Bi = B1 �
n⊎

i=2

i−1⋂

j=1

(Bi \Bj )=:
k⊎

i=1

Ai.

(i) Let A ∈ σ(A) and En ↑Ω , En ∈ σ(A) with μ(En) <∞ for any n ∈ N. For
every n ∈N, choose a covering (Bn,m)m∈N of A∩En with

μ(A∩En)≥
∞∑

m=1

μ(Bn,m)− 2−nε.

(This is possible due to the definition of the outer measure μ∗, which coincides with
μ on A.) Let

⋃∞
m,n=1Bn,m =

⊎∞
n=1An for certain An ∈A, n ∈ N (Exercise 1.1.1).

Then

μ

( ∞⊎

n=1

An \A
)

= μ
( ∞⋃

n=1

∞⋃

m=1

Bn,m \A
)

≤ μ
( ∞⋃

n=1

∞⋃

m=1

(
Bn,m \ (A∩En)

)
)

≤
∞∑

n=1

(( ∞∑

m=1

μ(Bn,m)

)

−μ(A∩En)
)

≤ ε.

(iii) Let A ∈M(μ∗) and (En)n∈N as above. For any m,n ∈ N, choose An,m ∈
σ(A) such that An,m ⊃A∩En and μ∗(An,m)≤ μ∗(A∩En)+ 2−n

m
.

Define Am :=⋃∞
n=1An,m ∈ σ(A). Then Am ⊃ A and μ∗(Am \A) ≤ 1

m
. Define

A+ :=⋂∞
m=1Am. Then σ(A) � A+ ⊃ A and μ∗(A+ \ A) = 0. Similarly, choose

(A−)c ∈ σ(A) with (A−)c ⊃Ac and μ∗((A−)c \Ac)= 0. Then A+ ⊃A⊃A− and
μ(A+ \A−)= μ∗(A+ \A−)= μ∗(A+ \A)+μ∗(A \A−)= 0. �
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Remark 1.67 (Regularity of measures) (Compare with Theorem 13.6.) Let λn be
the Lebesgue measure on (Rn,B(Rn)). Let A be the semiring of rectangles of the
form (a, b] ⊂ R

n; hence B(Rn) = σ(A) by Theorem 1.23. By the approximation
theorem, for any A ∈ B(Rn) and ε > 0, there exist countably many A1,A2, . . . ∈A
with A⊂⋃∞

i=1Ai and

λn

( ∞⋃

i=1

Ai \A
)

< ε/2.

For anyAi , there exists an open rectangleBi ⊃Ai with λn(Bi \Ai) < ε2−i−1 (upper
semicontinuity of λn). Hence U =⋃∞

i=1Bi is an open set U ⊃A with

λn(U \A) < ε.
This property of λn is called outer regularity.

If λn(A) is finite, then for any ε > 0 there exists a compact K ⊂A such that

λn(A \K) < ε.
This property of λn is called inner regularity. Indeed, letN > 0 be such that λn(A)−
λn(A ∩ [−N,N ]n) < ε/2. Choose an open set U ⊃ (A ∩ [−N,N ]n)c such that
λn(U \ (A∩ [−N,N ]n)c) < ε/2, and let K := [−N,N ]n \U ⊂A. ♦

Definition 1.68 (Null set) Let (Ω,A,μ) be a measure space.

(i) A set A ∈A is called a μ-null set, or briefly a null set, if μ(A)= 0. By Nμ we
denote the class of all subsets of μ-null sets.

(ii) Let E(ω) be a property that a point ω ∈Ω can have or not have. We say that E
holds μ-almost everywhere (a.e.) or for almost all (a.a.) ω if there exists a null
set N such that E(ω) holds for every ω ∈Ω \N . If A ∈A and if there exists a
null set N such that E(ω) holds for every ω ∈A \N , then we say that E holds
almost everywhere on A.

If μ= P is a probability measure, then we say that E holds P -almost surely
(a.s.), respectively almost surely on A.

(iii) Let A,B ∈A be such that μ(A�B)= 0. Then we write A= B (mod μ).

Definition 1.69 A measure space (Ω,A,μ) is called complete if Nμ ⊂A.

Remark 1.70 (Completion of a measure space) Let (Ω,A,μ) be a σ -finite measure
space. There exists a unique smallest σ -algebra A∗ ⊃A and an extension μ∗ of μ
to A∗ such that (Ω,A∗,μ∗) is complete. (Ω,A∗,μ∗) is called the completion of
(Ω,A,μ). With the notation of Theorem 1.53, this completion is

(
Ω,M

(
μ∗
)
,μ∗|M(μ∗)

)
.

Furthermore,

M
(
μ∗
)= σ(A∪Nμ)= {A∪N :A ∈A, N ∈Nμ}
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and μ∗(A∪N)= μ(A) for any A ∈A and N ∈Nμ.
In the following, we will not need these statements. Hence, instead of giving a

proof, we refer to the textbooks on measure theory (e.g., [37]). ♦

Example 1.71 Let λ be the Lebesgue measure (more accurately, the Lebesgue–
Borel measure) on (Rn,B(Rn)). Then λ can be extended uniquely to a measure
λ∗ on

B∗
(
R
n
)= σ (B(Rn)∪N

)
,

where N is the class of subsets of Lebesgue–Borel null sets. B∗(Rn) is called the σ -
algebra of Lebesgue measurable sets. For the sake of distinction, we sometimes call
λ the Lebesgue–Borel measure and λ∗ the Lebesgue measure. However, in practice,
this distinction will not be needed in this book. ♦

Example 1.72 Let μ= δω be the Dirac measure for the point ω ∈Ω on some mea-
surable space (Ω,A). If {ω} ∈A, then the completion is A∗ = 2Ω , μ∗ = δω. In the
extreme case of a trivial σ -algebra A= {∅,Ω}, however, the empty set is the only
null set, Nμ = {∅}; hence A∗ = {∅,Ω}, μ∗ = δω. Note that, on the trivial σ -algebra,
Dirac measures for different points ω ∈Ω cannot be distinguished. ♦

Definition 1.73 Let (Ω,A,μ) be a measure space and Ω ′ ∈ A. On the trace σ -
algebra A

∣
∣
Ω ′ , we define a measure by

μ
∣
∣
Ω ′(A) := μ(A) for A ∈A with A⊂Ω ′.

This measure is called the restriction of μ to Ω ′.

Example 1.74 The restriction of the Lebesgue–Borel measure λ on (R,B(R)) to
[0,1] is a probability measure on ([0,1],B(R)∣∣[0,1]). More generally, for a measur-

able A ∈ B(R), we call the restriction λ
∣
∣
A

the Lebesgue measure on A. Often this
measure will be denoted by the same symbol λ when there is no danger of ambigu-
ity.

Later we will see (Corollary 1.84) that B(R)
∣
∣
A
= B(A), where B(A) is the Borel

σ -algebra on A that is generated by the (relatively) open subsets of A. ♦

Example 1.75 (Uniform distribution) Let A ∈ B(Rn) be a measurable set with n-
dimensional Lebesgue measure λn(A) ∈ (0,∞). Then we can define a probability
measure on B(Rn)

∣
∣
A

by

μ(B) := λ
n(B)

λn(A)
for B ∈ B

(
R
n
)

with B ⊂A.

This measure μ is called the uniform distribution on A and will be denoted by
UA := μ. ♦
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Exercise 1.3.1 Show the following generalization of Example 1.58(iv): A measure∑∞
n=1 αnδxn is a Lebesgue–Stieltjes measure for a suitable function F if and only if∑
n:|xn|≤K αn <∞ for all K > 0.

Exercise 1.3.2 Let Ω be an uncountably infinite set and let ω0 ∈Ω be an arbitrary
element. Let A= σ({ω} : ω ∈Ω \ {ω0}).
(i) Give a characterization of A as in Exercise 1.1.4 (p. 11).

(ii) Show that (Ω,A, δω0) is complete.

Exercise 1.3.3 Let (μn)n∈N be a sequence of finite measures on the measur-
able space (Ω,A). Assume that for any A ∈ A there exists the limit μ(A) :=
limn→∞μn(A).

Show that μ is a measure on (Ω,A).
Hint: In particular, one has to show that μ is ∅-continuous.

1.4 Measurable Maps

A major task of mathematics is to study homomorphisms between objects; that is,
structure-preserving maps. For topological spaces, these are the continuous maps,
and for measurable spaces, these are the measurable maps.

In the rest of this chapter, we let (Ω,A) and (Ω ′,A′) be measurable spaces.

Definition 1.76 (Measurable maps)

(i) A map X : Ω → Ω ′ is called A–A′-measurable (or, briefly, measurable) if
X−1(A′) := {X−1(A′) :A′ ∈A′} ⊂A; that is, if

X−1(A′
) ∈A for any A′ ∈A′.

If X is measurable, we write X : (Ω,A)→ (Ω ′,A′).
(ii) If Ω ′ = R and A′ = B(R) is the Borel σ -algebra on R, then X : (Ω,A)→

(R,B(R)) is called an A-measurable real map.

Example 1.77

(i) The identity map id :Ω→Ω is A–A-measurable.
(ii) If A= 2Ω or A′ = {∅,Ω ′}, then any map X :Ω→Ω ′ is A–A′-measurable.

(iii) Let A⊂Ω . The indicator function 1A :Ω→ {0,1} is A–2{0,1}-measurable if
and only if A ∈A. ♦

Theorem 1.78 (Generated σ -algebra) Let (Ω ′,A′) be a measurable space and let
Ω be a nonempty set. Let X :Ω→Ω ′ be a map. The preimage

X−1(A′) := {X−1(A′
) :A′ ∈A′} (1.15)
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is the smallest σ -algebra with respect to which X is measurable. We say that
σ(X) :=X−1(A′) is the σ -algebra on Ω that is generated by X.

Proof This is left as an exercise. �

We now consider σ -algebras that are generated by more than one map.

Definition 1.79 (Generated σ -algebra) Let Ω be a nonempty set. Let I be an
arbitrary index set. For any i ∈ I , let (Ωi,Ai ) be a measurable space and let
Xi :Ω→Ωi be an arbitrary map. Then

σ(Xi, i ∈ I ) := σ
(⋃

i∈I
σ (Xi)

)

= σ
(⋃

i∈I
X−1
i (Ai )

)

is called the σ -algebra on Ω that is generated by (Xi, i ∈ I ). This is the smallest
σ -algebra with respect to which all Xi are measurable.

As with continuous maps, the composition of measurable maps is again measur-
able.

Theorem 1.80 (Composition of maps) Let (Ω,A), (Ω ′,A′) and (Ω ′′,A′′) be mea-
surable spaces and let X :Ω→Ω ′ and X′ :Ω ′ →Ω ′′ be measurable maps. Then
the map Y :=X′ ◦X :Ω→Ω ′′, ω �→X′(X(ω)) is A–A′′-measurable.

Proof Obvious, since Y−1(A′′)=X−1((X′)−1(A′′))⊂X−1(A′)⊂A. �

In practice, it is often not possible to check if a map X is measurable by checking
if all preimages X−1(A′), A′ ∈A′ are measurable. Most σ -algebras A′ are simply
too large. Thus it comes in very handy that it is sufficient to check measurability on
a generator of A′ by the following theorem.

Theorem 1.81 (Measurability on a generator) Let E ′ ⊂ A′ be a class of A′-
measurable sets. Then σ(X−1(E ′))=X−1(σ (E ′)) and hence

X is A–σ
(
E ′
)
-measurable ⇐⇒ X−1(E′

) ∈A for all E′ ∈ E ′.

If in particular σ(E ′)=A′, then

X is A–A′-measurable ⇐⇒ X−1(E ′
)⊂A.

Proof Clearly, X−1(E ′)⊂X−1(σ (E ′))= σ(X−1(σ (E ′))). Hence also

σ
(
X−1(E ′

))⊂X−1(σ
(
E ′
))
.
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For the other inclusion, consider the class of sets

A′
0 :=

{
A′ ∈ σ (E ′) :X−1(A′

) ∈ σ (X−1(E ′
))}
.

We first show that A′
0 is a σ -algebra by checking (i)–(iii) of Definition 1.2:

(i) Clearly, Ω ′ ∈A′
0.

(ii) (Stability under complements) If A′ ∈A′
0, then

X−1((A′
)c)= (X−1(A′

))c ∈ σ (X−1(E ′
));

hence (A′)c ∈A′
0.

(iii) (σ -∪-stability) Let A′1,A′2, . . . ∈A′
0. Then

X−1

( ∞⋃

n=1

A′n

)

=
∞⋃

n=1

X−1(A′n
) ∈ σ (X−1(E ′

));

hence
⋃∞
n=1A

′
n ∈A′

0.

Now A′
0 = σ(E ′) since E ′ ⊂A′

0. Hence X−1(A′) ∈ σ(X−1(E ′)) for any A′ ∈ σ(E ′)
and thus X−1(σ (E ′))⊂ σ(X−1(E ′)). �

Corollary 1.82 (Measurability of composed maps) Let I be a nonempty index set
and let (Ω,A), (Ω ′,A′) and (Ωi,Ai ) be measurable spaces for any i ∈ I . Further,
let (Xi : i ∈ I ) be a family of measurable maps Xi : Ω ′ → Ωi with A′ = σ(Xi :
i ∈ I ). Then the following holds: A map Y : Ω → Ω ′ is A–A′-measurable if and
only if Xi ◦ Y is A–Ai -measurable for all i ∈ I .

Proof If Y is measurable, then by Theorem 1.80 every Xi ◦ Y is measurable. Now
assume that all of the composed mapsXi ◦Y are A–Ai -measurable. By assumption,
the set E ′ := {X−1

i (A
′′) : A′′ ∈Ai , i ∈ I } is a generator of A′. Since all Xi ◦ Y are

measurable, we have Y−1(A′) ∈A for any A′ ∈ E ′. Hence Theorem 1.81 yields that
Y is measurable. �

Recall the definition of the trace of a class of sets from Definition 1.25.

Corollary 1.83 (Trace of a generated σ -algebra) Let E ⊂ 2Ω and assume that
A⊂Ω is nonempty. Then σ(E

∣
∣
A
)= σ(E)∣∣

A
.

Proof Let X :A ↪→Ω , ω �→ ω be the canonical inclusion; hence X−1(B)=A∩B
for all B ⊂Ω . By Theorem 1.81, we have

σ(E
∣
∣
A
)= σ ({E ∩A :E ∈ E})

= σ ({X−1(E) :E ∈ E
})= σ (X−1(E)

)

=X−1(σ(E)
)= {A∩B : B ∈ σ(E)}= σ(E)∣∣

A
. �
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Recall that, for any subset A⊂Ω of a topological space (Ω, τ), the class τ
∣
∣
A

is
the topology of relatively open sets (in A). We denote by B(Ω, τ)= σ(τ) the Borel
σ -algebra on (Ω, τ).

Corollary 1.84 (Trace of the Borel σ -algebra) Let (Ω, τ) be a topological space
and let A⊂Ω be a nonempty subset of Ω . Then

B(Ω, τ)
∣
∣
A
= B(A, τ

∣
∣
A
).

Example 1.85

(i) Let Ω ′ be countable. Then X : Ω → Ω ′ is A–2Ω
′
-measurable if and only if

X−1({ω′}) ∈A for all ω′ ∈Ω ′. If Ω ′ is uncountably infinite, this is wrong in
general. (For example, consider Ω =Ω ′ = R, A = B(R), and X(ω) = ω for
all ω ∈Ω . Clearly, X−1({ω}) = {ω} ∈ B(R). If, on the other hand, A ⊂ R is
not in B(R), then A ∈ 2R, but X−1(A) �∈ B(R).)

(ii) For x ∈R, we agree on the following notation for rounding:

�x� :=max{k ∈ Z : k ≤ x} and �x� :=min{k ∈ Z : k ≥ x}. (1.16)

The maps R→ Z, x �→ �x� and x �→ �x� are B(R)–2Z-measurable since for
all k ∈ Z the preimages {x ∈ R : �x� = k} = [k, k + 1) and {x ∈ R : �x� =
k} = (k − 1, k] are in B(R). By the composition theorem (Theorem 1.80), for
any measurable map f : (Ω,A)→ (R,B(R)) the maps �f � and �f � are also
A–2Z-measurable.

(iii) A map X :Ω→R
d is A–B(Rd)-measurable if and only if

X−1((−∞, a]) ∈A for any a ∈R
d .

In fact σ((−∞, a], a ∈ R
d)= B(Rd) by Theorem 1.23. The analogous state-

ment holds for any of the classes E1, . . . ,E12 from Theorem 1.23. ♦

Example 1.86 Let d(x, y) = ‖x − y‖2 be the usual Euclidean distance on R
n and

let B(Rn, d)= B(Rn) be the Borel σ -algebra with respect to the topology generated
by d . For any subset A of Rn, we have B(A,d)= B(Rn, d)

∣
∣
A

. ♦

We want to extend the real line by the points −∞ and +∞. Thus we define

R :=R∪ {−∞,+∞}.
From a topological point of view, R will be considered as the so-called two point
compactification by considering R as topologically isomorphic to [−1,1] via the
map

ϕ : [−1,1]→R, x �→

⎧
⎪⎨

⎪⎩

tan(πx/2), x ∈ (−1,1),

−∞, x =−1,

∞, x =+1.
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In fact, d̄(x, y)= |ϕ−1(x)− ϕ−1(y)| for x, y ∈R defines a metric on R such that ϕ
and ϕ−1 are continuous. Hence ϕ is a topological isomorphism. We denote by τ̄ the
corresponding topology induced on R and by τ the usual topology on R.

Corollary 1.87 With the above notation, τ̄
∣
∣
R
= τ and hence B(R)

∣
∣
R
= B(R).

In particular, if X : (Ω,A)→ (R,B(R)) is measurable, then in a canonical way
X is also an R-valued measurable map.

Thus R is really an extension of the real line, and the inclusion R ↪→ R is mea-
surable.

Theorem 1.88 (Measurability of continuous maps) Let (Ω, τ) and (Ω ′, τ ′) be
topological spaces and let f :Ω→Ω ′ be a continuous map. Then f is B(Ω)–
B(Ω ′)-measurable.

Proof As B(Ω ′) = σ(τ ′) and by Theorem 1.81, it is sufficient to show that
f−1(A′) ∈ σ(τ) for all A′ ∈ τ ′. However, since f is continuous, we even have
f−1(A′) ∈ τ for all A′ ∈ τ ′. �

For x, y ∈R, we agree on the following notation.

x ∨ y =max(x, y) (maximum),

x ∧ y =min(x, y) (minimum),

x+ =max(x,0) (positive part),

x− =max(−x,0) (negative part),

|x| =max(x,−x)= x− + x+ (modulus),

sign(x) = 1{x>0} − 1{x<0} (sign function).

Analogously, for measurable real maps we write, for example, X+ = max(X,0).
The maps x �→ x+, x �→ x− and x �→ |x| are continuous (and hence measurable
by the preceding theorem). Clearly, the map x �→ sign(x) also is measurable. Using
Corollary 1.82, we thus get the following corollary.

Corollary 1.89 IfX is a real or R-valued measurable map, then the mapsX−,X+,
|X| and sign(X) also are measurable.

Theorem 1.90 (Coordinate maps are measurable) Let (Ω,A) be a measurable
space and let f1, . . . , fn :Ω→ R be maps. Define f := (f1, . . . , fn) :Ω→ R

n.
Then

f is A–B
(
R
n
)
-measurable ⇐⇒ each fi is A–B(R)-measurable.

The analogous statement holds for fi :Ω→R :=R∪ {±∞}.
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Proof For b ∈ R
n, we have f−1((−∞, b)) =⋂ni=1 f

−1
i ((−∞, bi)). If each fi is

measurable, then f−1((−∞, b)) ∈ A. However, the rectangles (−∞, b), b ∈ R
n,

generate B(Rn), and hence f is measurable. Now assume that f is measurable.
For i = 1, . . . , n, let πi : Rn→ R, x �→ xi be the projection on the ith coordinate.
Clearly, πi is continuous and thus B(Rn)–B(R)-measurable. Hence fi = πi ◦ f is
measurable by Theorem 1.80. �

In the following theorem, we agree that x0 := 0 for all x ∈R.

Theorem 1.91 Let (Ω,A) be a measurable space. Let h : (Ω,A)→ (R,B(R))
and f,g : (Ω,A)→ (Rn,B(Rn)) be measurable maps. Then also the maps f +g,
f − g, f · h and f/h are measurable.

Proof The map π :Rn×R→R
n, (x,α) �→ α ·x is continuous and thus measurable.

By Theorem 1.90, (f,h) :Ω→ R
n × R is measurable. Hence also the composed

map f ·h= π ◦(f,h) is measurable. Similarly, we obtain the measurability of f +g
and f − g.

In order to show measurability of f/h, we define the map H :R→R, x �→ 1/x.
Note that by our convention H(0)= 0. Hence f/h= f ·H ◦h. Thus it is enough to
show thatH is measurable. Clearly,H

∣
∣
R\{0} is continuous. For any open set U ⊂R,

U \{0} is also open and henceH−1(U \{0}) ∈ B(R). Furthermore,H−1({0})= {0}.
Concluding, we get H−1(U)=H−1(U \ {0})∪ (U ∩ {0}) ∈ B(R). �

Theorem 1.92 Let X1,X2, . . . be measurable maps (Ω,A)→ (R,B(R)). Then
the following maps are also measurable:

inf
n∈NXn, sup

n∈N
Xn, lim inf

n→∞ Xn, lim sup
n→∞

Xn.

Proof For any a ∈R, we have

(
inf
n∈NXn

)−1([−∞, a))=
∞⋃

n=1

X−1
n

([−∞, a)) ∈A.

By Theorem 1.81, this implies that infn∈NXn is measurable. The proof for
supn∈NXn is similar.

For any n ∈N, we define Yn := infm≥n Xm. Note that Yn is measurable and hence
lim infn→∞Xn := supn∈N Yn also is measurable. The proof for the limes superior is
similar. �

We come to an important example of measurable maps (Ω,A)→ (R,B(R)), the
so-called simple functions.
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Definition 1.93 (Simple function) Let (Ω,A) be a measurable space. A map
f :Ω→R is called a simple function if there is an n ∈ N and mutually disjoint
measurable sets A1, . . . ,An ∈A, as well as numbers α1, . . . , αn ∈R, such that

f =
n∑

i=1

αi1Ai .

Remark 1.94 A measurable map that assumes only finitely many values is a simple
function. (Exercise: Show this!) ♦

Definition 1.95 Assume that f,f1, f2, . . . are maps Ω→R such that

f1(ω)≤ f2(ω)≤ . . . and lim
n→∞fn(ω)= f (ω) for any ω ∈Ω.

Then we write fn ↑ f and say that (fn)n∈N increases (pointwise) to f . Analogously,
we write fn ↓ f if (−fn) ↑ (−f ).

Theorem 1.96 Let (Ω,A) be a measurable space and let f : Ω → [0,∞] be
measurable. Then the following statements hold.

(i) There exists a sequence (fn)n∈N of nonnegative simple functions such that
fn ↑ f .

(ii) There are measurable sets A1,A2, . . . ∈A and numbers α1, α2, . . . ≥ 0 such
that f =∑∞

n=1 αn1An .

Proof (i) For n ∈N0, define fn = (2−n�2nf �)∧ n. Then fn is measurable (by The-
orem 1.92 and Example 1.85(ii)) and assumes at most n2n + 1 different values.
Hence it is a simple function. Clearly, fn ↑ f .

(ii) Let fn be as above. Let Bn,i := {ω : fn(ω) − fn−1(ω) = i2−n} and βn,i =
i2−n for n ∈N and i = 1, . . . ,2n. Hence fn − fn−1 =∑2n

i=1 βn,i1Bn,i . By changing
the numeration (n, i) �→m, we get (αm)m∈N and (Am)m∈N such that

f = f0 +
∞∑

n=1

(fn − fn−1)=
∞∑

m=1

αm1Am. �

As a corollary to this statement on the structure of [0,∞]-valued measurable
maps, we show the following factorization lemma.

Corollary 1.97 (Factorization lemma) Let (Ω ′,A′) be a measurable space and let
Ω be a nonempty set. Let f :Ω→Ω ′ be a map. A map g :Ω→R is σ(f )–B(R)-
measurable if and only if there is a measurable map ϕ : (Ω ′,A′)→ (R,B(R)) such
that g = ϕ ◦ f .

Proof “⇐=” If ϕ is measurable and g = ϕ ◦ f , then g is measurable by Theo-
rem 1.80.
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“=⇒” Now assume that g is σ(f )–B(R)-measurable. First consider the case
g ≥ 0. Then there exist measurable sets A1,A2 . . . ∈ σ(f ) as well as numbers
α1, α2, . . . ,∈ [0,∞) such that g =∑∞

n=1 αn1An . By the definition of σ(f ), for
any n ∈ N there is a set Bn ∈ A′ such that f−1(Bn) = An; that is, such that
1An = 1Bn ◦ f . Define ϕ :Ω ′ →R by

ϕ =
∞∑

n=1

αn1Bn.

Clearly, ϕ is A′–B(R)-measurable and g = ϕ ◦ f .
Now drop the assumption that g is nonnegative. Then there exist measurable

maps ϕ− and ϕ+ such that g− = ϕ− ◦ f and g+ = ϕ+ ◦ f . Hence ϕ := ϕ+ − ϕ−
does the trick. �

A measurable map transports a measure from one space to another.

Definition 1.98 (Image measure) Let (Ω,A) and (Ω ′,A′) be measurable spaces
and let μ be a measure on (Ω,A). Further, let X : (Ω,A)→ (Ω ′,A′) be mea-
surable. The image measure of μ under the map X is the measure μ ◦ X−1 on
(Ω ′,A′) that is defined by

μ ◦X−1 :A′ → [0,∞], A′ �→ μ
(
X−1(A′

))
.

Example 1.99 Let μ be a measure on Z
2 and let X : Z2 → Z, (x, y) �→ x+ y. Then

μ ◦X−1({x})=
∑

y∈Z
μ
({
(x − y, y)}).

♦

Example 1.100 Let L : Rn→ R
n be a linear bijection and let λ be the Lebesgue

measure on (Rn,B(Rn)). Then λ ◦ L−1 = |det(L)|−1λ. This is clear since for
any a, b ∈ R

n with a < b, the parallelepiped L−1((a, b]) has volume |det(L−1)| ×∏n
i=1(bi − ai). ♦

As a generalization of the last example, we state without proof the transforma-
tion formula for measures with continuous densities under differentiable maps. The
proof can be found in textbooks on calculus.

Theorem 1.101 (Transformation formula in R
n) Let μ be a measure on R

n that
has a continuous (or piecewise continuous) density f :Rn→[0,∞). That is,

μ
(
(−∞, x])=

∫ x1

−∞
dt1 . . .

∫ xn

−∞
dtn f (t1, . . . , tn) for all x ∈R

n.

Let A ⊂ R
n be an open or a closed subset of Rn with μ(Rn \ A) = 0. Further,

let B ⊂ R
n be open or closed. Finally, assume that ϕ : A→ B is a continuously
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differentiable bijection with derivative ϕ′. Then the image measure μ ◦ ϕ−1 has the
density

fϕ(x)=
{

f (ϕ−1(x))

|det(ϕ′(ϕ−1(x)))| , if x ∈ B,
0, if x ∈R

n \B.

Exercise 1.4.1 Let f : R→ R, x �→ |x|. Show that a Borel measurable map g :
R→R is σ(f )= f−1(B(R))-measurable if and only if g is even.

Exercise 1.4.2 Let (Ω,A,μ) be a measure space and let f : Ω→ R be measur-
able. Assume that g : Ω → R fulfills g = f μ-almost everywhere. Show that g
need not be measurable.

Exercise 1.4.3 Let f :R→R be differentiable with derivative f ′. Show that f ′ is
B(R)–B(R)-measurable.

Exercise 1.4.4 (Compare Examples 1.40 and 1.63.) Let Ω = {0,1}N and let A =
(2{0,1})⊗N be the σ -algebra generated by the cylinder sets

{[ω1, . . . ,ωn] : n ∈N,ω1, . . . ,ωn ∈ {0,1}
}
.

Further, let μ= ( 1
2δ0 + 1

2δ1)
⊗N be the Bernoulli measure on Ω with equal weights

on 0 and 1. For all n ∈ N, let Xn :Ω→{0,1}, ω �→ ωn be the nth coordinate map.
Finally, let

U(ω)=
∞∑

n=1

Xn(ω)2
−n for ω ∈Ω.

(i) Show that A= σ(Xn : n ∈N).
(ii) Show that U is A–B([0,1])-measurable.

(iii) Determine the image measure μ ◦U−1 on ([0,1],B([0,1])).
(iv) Determine an Ω0 ∈A such that Ũ :=U ∣∣

Ω0
is bijective.

(v) Show that Ũ−1 is B([0,1])–A∣∣
Ω0

-measurable.

(vi) Give an interpretation of the map Xn ◦ Ũ−1.

Exercise 1.4.5 (Lusin’s theorem) Let f :R→R be a Borel measurable map. Show
that for any ε > 0, there exists a closed set C ⊂ R with λ(R \ C) < ε such that the
restriction f

∣
∣
C

of f to C is continuous. (Note: Clearly, this does not mean that f
would be continuous in every point x ∈ C.)

Hint: Use the inner regularity of Lebesgue measure λ (Remark 1.67) to show
the assertion first for indicator functions. Next construct a sequence of maps that
approximates f uniformly on a suitable set C.
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1.5 Random Variables

The fundamental idea of modern probability theory is to model one or more random
experiments as a probability space (Ω,A,P). The sets A ∈A are called events. In
most cases, the events of Ω are not observed directly. Rather, the observations are
aspects of the single experiments that are coded as measurable maps from Ω to a
space of possible observations. In short, every random observation (the technical
term is random variable) is a measurable map. The probabilities of the possible ran-
dom observations will be described in terms of the distribution of the corresponding
random variable, which is the image measure of P under X. Hence we have to de-
velop a calculus to determine the distributions of, for example, sums of random
variables.

Definition 1.102 (Random variables) Let (Ω ′,A′) be a measurable space and let
X :Ω→Ω ′ be measurable.

(i) X is called a random variable with values in (Ω ′,A′). If (Ω ′,A′) =
(R,B(R)), then X is called a real random variable or simply a random vari-
able.

(ii) For A′ ∈ A′, we denote {X ∈ A′} := X−1(A′) and P[X ∈ A′] :=
P[X−1(A′)]. In particular, we let {X ≥ 0} := X−1([0,∞)) and define
{X ≤ b} similarly and so on.

Definition 1.103 (Distributions) Let X be a random variable.

(i) The probability measure PX := P ◦X−1 is called the distribution of X.
(ii) For a real random variable X, the map FX : x �→ P[X ≤ x] is called the

distribution function of X (or, more accurately, of PX). We write X ∼ μ if
μ= PX and say that X has distribution μ.

(iii) A family (Xi)i∈I of random variables is called identically distributed if

PXi = PXj for all i, j ∈ I . We write X
D= Y if PX = PY (D for distribution).

Theorem 1.104 For any distribution function F , there exists a real random variable
X with FX = F .

Proof We explicitly construct a probability space (Ω,A,P) and a random variable
X :Ω→R such that FX = F .

The simplest choice would be (Ω,A) = (R,B(R)), X : R → R the identity
map and P the Lebesgue–Stieltjes measure with distribution function F (see Ex-
ample 1.56).

A more instructive approach is based on first constructing, independently of F ,
a sort of standard probability space on which we define a random variable with
uniform distribution on (0,1). In a second step, this random variable will be trans-
formed by applying the inverse map F−1: Let Ω := (0,1), A := B(R)

∣
∣
Ω

and let P
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be the Lebesgue measure on (Ω,A) (see Example 1.74). Define the left continuous
inverse of F :

F−1(t) := inf
{
x ∈R : F(x)≥ t} for t ∈ (0,1).

Then

F−1(t)≤ x ⇐⇒ t ≤ F(x).
In particular, {t : F−1(t) ≤ x} = (0,F (x)] ∩ (0,1); hence F−1 : (Ω,A) →
(R,B(R)) is measurable and

P
[{
t : F−1(t)≤ x}]= F(x).

Concluding, X := F−1 is the random variable that we wanted to construct. �

Example 1.105 We present some prominent distributions of real random vari-
ables X. These are some of the most important distributions in probability theory,
and we will come back to these examples in many places.

(i) Let p ∈ [0,1] and P[X = 1] = p, P[X = 0] = 1 − p. Then PX =: Berp is
called the Bernoulli distribution with parameter p; formally

Berp = (1− p)δ0 + pδ1.
Its distribution function is

FX(x)=

⎧
⎪⎨

⎪⎩

0, x < 0,

1− p, x ∈ [0,1),
1, x ≥ 1.

The distribution PY of Y := 2X − 1 is sometimes called the Rademacher
distribution with parameter p; formally Radp = (1− p)δ−1 + pδ+1. In par-
ticular, Rad1/2 is called the Rademacher distribution.

(ii) Let p ∈ [0,1] and n ∈N, and let X :Ω→{0, . . . , n} be such that

P[X = k] =
(
n

k

)

pk(1− p)n−k.

Then PX =: bn,p is called the binomial distribution with parameters n and p;
formally

bn,p =
n∑

k=0

(
n

k

)

pk(1− p)n−kδk.

(iii) Let p ∈ (0,1] and X :Ω→N0 with

P[X = n] = p(1− p)n for any n ∈N0.
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Then γp := b−1,p := PX is called the geometric distribution2 with parameter p;
formally

γp =
∞∑

n=0

p(1− p)nδn.

Its distribution function is F(x)= 1− (1− p)�x+1�∨0 for x ∈R.
We can interpret X + 1 as the waiting time for the first success in a

series of independent random experiments, any of which yields a success
with probability p. Indeed, let Ω = {0,1}N and let P be the product mea-
sure ((1− p)δ0 + pδ1)⊗N (Theorem 1.64), as well as A = σ([ω1, . . . ,ωn] :
ω1, . . . ,ωn ∈ {0,1}, n ∈N). Define

X(ω) := inf{n ∈N : ωn = 1} − 1,

where inf∅ =∞. Clearly, any map

Xn :Ω→R, ω �→
{
n− 1, ωn = 1,

∞, ωn = 0,

is A–B(R)-measurable. Thus alsoX = infn∈NXn is A–B(R)-measurable and
is hence a random variable. Let ω0 := (0,0, . . .) ∈ Ω . Then P[X ≥ n] =
P[[ω0

1, . . . ,ω
0
n]] = (1− p)n. Hence

P[X = n] = P[X ≥ n]−P[X ≥ n+1] = (1−p)n− (1−p)n+1 = p(1−p)n.
(iv) Let r > 0 (note that r need not be an integer) and let p ∈ (0,1]. We denote by

b−r,p :=
∞∑

k=0

(−r
k

)

(−1)kpr(1− p)kδk (1.17)

the negative binomial distribution or Pascal distribution with parameters r
and p. (Here

(
x
k

) = x(x−1)...(x−k+1)
k! for x ∈ R and k ∈ N is the generalized

binomial coefficient.) If r ∈N, then one can show as in the preceding example
that b−r,p is the distribution of the waiting time for the r th success in a series
of random experiments. We come back to this in Example 3.4(iv).

(v) Let λ ∈ [0,∞) and let X :Ω→N0 be such that

P[X = n] = e−λ λ
n

n! for any n ∈N0.

Then PX =: Poiλ is called the Poisson distribution with parameter λ.

2Warning: For some authors, the geometric distribution is shifted by one to the right; that is, it is a
distribution on N.
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(vi) Consider an urn with B ∈ N black balls and W ∈ N white balls. Draw n ∈ N

balls from the urn without replacement. A little bit of combinatorics shows
that the probability of drawing exactly b ∈ {0, . . . , n} black balls is given by
the hypergeometric distribution with parameters B,W,n ∈N:

HypB,W ;n
({b})=

(
B
b

)(
W
n−b
)

(
B+W
n

) for b ∈ {0, . . . , n}. (1.18)

This generalizes easily to the situation of k colors and Bi balls of color
i = 1, . . . , k. As above, we get that the probability of drawing out of n
balls exactly bi balls of color i for each i = 1, . . . , k (with the restriction
b1 + . . .+ bk = n and bi ≤ Bi for all i) is given by the generalized hypergeo-
metric distribution

HypB1,...,Bk;n
({
(b1, . . . , bk)

})=
(
B1
b1

)
. . .
(
Bk
bk

)

(
B1+...+Bk

n

) . (1.19)

(vii) Let μ ∈R, σ 2 > 0 and let X be a real random variable with

P[X ≤ x] = 1√
2πσ 2

∫ x

−∞
exp

(

− (t −μ)
2

2σ 2

)

dt for x ∈R.

Then PX =:Nμ,σ 2 is called the Gaussian normal distribution with parameters
μ and σ 2. In particular, N0,1 is called the standard normal distribution.

(viii) Let θ > 0 and let X be a nonnegative random variable such that

P[X ≤ x] = P
[
X ∈ [0, x]]=

∫ x

0
θ e−θt dt for x ≥ 0.

Then PX is called the exponential distribution with parameter θ (in short-
hand, expθ ).

(ix) Let μ ∈R
d and letΣ be a positive definite symmetric d× d matrix. Let X be

an R
d -valued random variable such that

P[X ≤ x] = det(2πΣ)−1/2
∫

(−∞,x]
exp

(

−1

2

〈
t −μ,Σ−1(t −μ)〉

)

λd(dt)

for x ∈R
d (where 〈 ·, ·〉 denotes the inner product in R

d ). Then PX =:Nμ,Σ
is the d-dimensional normal distribution with parameters μ and Σ . ♦

Definition 1.106 If the distribution function F :Rn→[0,1] is of the form

F(x)=
∫ x1

−∞
dt1 . . .

∫ xn

−∞
dtn f (t1, . . . , tn) for x = (x1, . . . , xn) ∈R

n,

for some integrable function f : Rn→ [0,∞), then f is called the density of the
distribution.
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Example 1.107

(i) Let θ, r > 0 and let Γθ,r be the distribution on [0,∞) with density

x �→ θr

Γ (r)
xr−1e−θx .

(Here Γ denotes the gamma function.) Then Γθ,r is called the Gamma distri-
bution with scale parameter θ and shape parameter r .

(ii) Let r, s > 0 and let βr,s be the distribution on [0,1] with density

x �→ Γ (r + s)
Γ (r)Γ (s)

xr−1(1− x)s−1.

Then βr,s is called the Beta distribution with parameters r and s.
(iii) Let a > 0 and let Caua be the distribution on R with density

x �→ 1

aπ

1

1+ (x/a)2 .

Then Caua is called the Cauchy distribution with parameter a. ♦

Exercise 1.5.1 Use the identity
(−n
k

)
(−1)k = (n+k−1

k

)
to deduce (1.17) by combi-

natorial means from its interpretation as a waiting time.

Exercise 1.5.2 Give an example of two normally distributed random variables X
and Y such that (X,Y ) is not (two-dimensional) normally distributed.

Exercise 1.5.3 Use the transformation formula (Theorem 1.101) to show the fol-
lowing statements.

(i) Let X ∼Nμ,σ 2 and let a ∈R \ {0} and b ∈R. Then (aX+ b)∼Naμ+b,a2σ 2 .
(ii) Let X ∼ expθ and a > 0. Then aX ∼ expθ/a .

Exercise 1.5.4 Show that F :R2 →[0,1] is the distribution function of a (uniquely
determined) probability measure μ on (R2,B(R2)) if and only if

(i) F is monotone increasing and right-continuous
(ii) F(−x)→ 0 and F(x)→ 1 as x→∞,

(iii) F((y1, y2))− F((y1, x2))− F((x1, y2))+ F((x1, x2))≥ 0 for all x1 ≤ y1 and
x2 ≤ y2.

Exercise 1.5.5

(i) Let F and G be distribution functions on R. Use Exercise 1.5.4 to show that
(x, y) �→ F(x)∧G(y) is a distribution function on R

2.
(ii) Give an example of two distribution functions F and G on R

2 such that
(x, y) �→ F(x)∧G(y) is not a distribution function on R

4.
Hint: First use the inclusion-exclusion formula (Theorem 1.33) to derive a

criterion similar to that in Exercise 1.5.4(iii).



Chapter 2
Independence

The measure theory from the preceding chapter is a linear theory that could not
describe the dependence structure of events or random variables. We enter the realm
of probability theory exactly at this point, where we define independence of events
and random variables. Independence is a pivotal notion of probability theory, and
the computation of dependencies is one of the theory’s major tasks.

In the following, (Ω,A,P) is a probability space and the sets A ∈ A are the
events. As soon as constructing probability spaces has become routine, the concrete
probability space will lose its importance and it will be only the random variables
that will interest us. The bold font symbol P will then denote the universal object
of a probability measure, and the probabilities P[·] with respect to it will always be
written in square brackets.

2.1 Independence of Events

We consider two events A and B as (stochastically) independent if the occurrence
of A does not change the probability that B also occurs. Formally, we say that A
and B are independent if

P[A∩B] = P[A] · P[B]. (2.1)

Example 2.1 (Rolling a die twice) Consider the random experiment of rolling a die
twice. HenceΩ = {1, . . . ,6}2 endowed with the σ -algebra A= 2Ω and the uniform
distribution P= UΩ (see Example 1.30(ii)).

(i) Two events A and B should be independent, e.g., if A depends only on the
outcome of the first roll and B depends only on the outcome of the second roll.
Formally, we assume that there are sets Ã, B̃ ⊂ {1, . . . ,6} such that

A= Ã× {1, . . . ,6} and B = {1, . . . ,6} × B̃.
A. Klenke, Probability Theory, Universitext, DOI 10.1007/978-1-4471-5361-0_2,
© Springer-Verlag London 2014
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Now we check that A and B indeed fulfill (2.1). To this end, we compute

P[A] = #A
36 = #Ã

6 and P[B] = #B
36 = #B̃

6 . Furthermore,

P[A∩B] = #(Ã× B̃)
36

= #Ã

6
· #B̃

6
= P[A] · P[B].

(ii) Stochastic independence can occur also in less obvious situations. For instance,
let A be the event where the sum of the two rolls is odd,

A= {(ω1,ω2) ∈Ω : ω1 +ω2 ∈ {3,5,7,9,11}},

and let B be the event where the first roll gives at most a three

B = {(ω1,ω2) ∈Ω : ω1 ∈ {1,2,3}
}
.

Although it might seem that these two events are entangled in some way, they
are stochastically independent. Indeed, it is easy to check that P[A] = P[B] = 1

2
and P[A∩B] = 1

4 . ♦

What is the condition for three events A1,A2,A3 to be independent? Of course,
any of the pairs (A1,A2), (A1,A3) and (A2,A3) has to be independent. However,
we have to make sure also that the simultaneous occurrence of A1 and A2 does not
change the probability that A3 occurs. Hence, it is not enough to consider pairs only.

Formally, we call three events A1,A2 and A3 (stochastically) independent if

P[Ai ∩Aj ] = P[Ai] · P[Aj ] for all i, j ∈ {1,2,3}, i �= j, (2.2)

and

P[A1 ∩A2 ∩A3] = P[A1] · P[A2] · P[A3]. (2.3)

Note that (2.2) does not imply (2.3) (and (2.3) does not imply (2.2)).

Example 2.2 (Rolling a die three times) We roll a die three times. Hence Ω =
{1, . . . ,6}3 endowed with the discrete σ -algebra A = 2Ω and the uniform distri-
bution P= UΩ (see Example 1.30(ii)).

(i) If we assume that for any i = 1,2,3 the event Ai depends only on the outcome
of the ith roll, then the events A1, A2 and A3 are independent. Indeed, as in the
preceding example, there are sets Ã1, Ã2, Ã3 ⊂ {1, . . . ,6} such that

A1 = Ã1 × {1, . . . ,6}2,
A2 = {1, . . . ,6} × Ã2 × {1, . . . ,6},
A3 = {1, . . . ,6}2 × Ã3.
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The validity of (2.2) follows as in Example 2.1(i). In order to show (2.3), we
compute

P[A1 ∩A2 ∩A3] = #(Ã1 × Ã2 × Ã3)

216
=

3∏

i=1

#Ãi
6
=

3∏

i=1

P[Ai].

(ii) Consider now the events

A1 := {ω ∈Ω : ω1 = ω2},
A2 := {ω ∈Ω : ω2 = ω3},
A3 := {ω ∈Ω : ω1 = ω3}.

Then #A1 = #A2 = #A3 = 36; hence P[A1] = P[A2] = P[A3] = 1
6 . Further-

more, #(Ai ∩ Aj) = 6 if i �= j ; hence P[Ai ∩ Aj ] = 1
36 . Hence (2.2) holds.

On the other hand, we have #(A1 ∩ A2 ∩ A3) = 6, thus P[A1 ∩ A2 ∩ A3] =
1
36 �= 1

6 · 1
6 · 1

6 . Thus (2.3) does not hold and so the events A1,A2,A3 are not
independent. ♦

In order to define independence of larger families of events, we have to request
the validity of product formulas, such as (2.2) and (2.3), not only for pairs and triples
but for all finite subfamilies of events. We thus make the following definition.

Definition 2.3 (Independence of events) Let I be an arbitrary index set and let
(Ai)i∈I be an arbitrary family of events. The family (Ai)i∈I is called independent
if for any finite subset J ⊂ I the product formula holds:

P
[⋂

j∈J
Aj

]

=
∏

j∈J
P[Aj ].

The most prominent example of an independent family of infinitely many events
is given by the perpetuated independent repetition of a random experiment.

Example 2.4 Let E be a finite set (the set of possible outcomes of the individ-
ual experiment) and let (pe)e∈E be a probability vector on E. Equip (as in Theo-
rem 1.64) the probability space Ω = EN with the σ -algebra A= σ({[ω1, . . . ,ωn] :
ω1, . . . ,ωn ∈ E,n ∈ N}) and with the product measure (or Bernoulli measure)

P = (∑e∈E peδe
)⊗N; that is where P[[ω1, . . . ,ωn]] =∏ni=1 pωi . Let Ãi ⊂ E for

any i ∈N, and let Ai be the event where Ãi occurs in the ith experiment; that is,

Ai =
{
ω ∈Ω : ωi ∈ Ãi

} =
⊎

(ω1,...,ωi )∈Ei−1×Ãi
[ω1, . . . ,ωi].

Intuitively, the family (Ai)i∈N should be independent if the definition of indepen-
dence makes any sense at all. We check that this is indeed the case. Let J ⊂ N be
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finite and n := maxJ . Formally, we define Bj = Aj and B̃j = Ãj for j ∈ J and
Bj =Ω and B̃j =E for j ∈ {1, . . . , n} \ J . Then

P
[⋂

j∈J
Aj

]

= P
[⋂

j∈J
Bj

]

= P

[
n⋂

j=1

Bj

]

=
∑

e1∈B̃1

. . .
∑

en∈B̃n

n∏

j=1

pej =
n∏

j=1

(∑

e∈B̃j
pe

)

=
∏

j∈J

(∑

e∈Ãj
pe

)

.

This is true in particular for #J = 1. Hence P[Ai] =∑e∈Ãi pe for all i ∈N, whence

P
[⋂

j∈J
Aj

]

=
∏

j∈J
P[Aj ]. (2.4)

Since this holds for all finite J ⊂N, the family (Ai)i∈N is independent. ♦

If A and B are independent, then Ac and B also are independent since
P[Ac∩B] = P[B]−P[A∩B] = P[B]−P[A]P[B] = (1−P[A])P[B] = P[Ac]P[B].
We generalize this observation in the following theorem.

Theorem 2.5 Let I be an arbitrary index set and let (Ai)i∈I be a family of events.
Define B0

i = Ai and B1
i = Aci for i ∈ I . Then the following three statements are

equivalent.

(i) The family (Ai)i∈I is independent.
(ii) There is an α ∈ {0,1}I such that the family (Bαii )i∈I is independent.

(iii) For any α ∈ {0,1}I , the family (Bαii )i∈I is independent.

Proof This is left as an exercise. �

Example 2.6 (Euler’s prime number formula) The Riemann zeta function is defined
by the Dirichlet series

ζ(s) :=
∞∑

n=1

n−s for s ∈ (1,∞).

Euler’s prime number formula is a representation of the Riemann zeta function as
an infinite product

ζ(s)=
∏

p∈P

(
1− p−s)−1

, (2.5)

where P := {p ∈N : p is prime}.
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We give a probabilistic proof for this formula. Let Ω = N, and for fixed s > 1
define P on 2Ω by

P
[{n}]= ζ(s)−1n−s for n ∈N.

Let pN= {pn : n ∈N} and Pn = {p ∈P : p ≤ n}. We consider pN⊂Ω as an event.
Note that P[pN] = p−s and that (pN,p ∈ P) is independent. Indeed, for k ∈N and
mutually distinct p1, . . . , pk ∈ P , we have

⋂k
i=1(piN)= (p1 . . . pk)N. Thus

P

[
k⋂

i=1

(piN)

]

=
∞∑

n=1

P
[{p1 . . . pkn}

]

= ζ(s)−1(p1 . . . pk)
−s

∞∑

n=1

n−s

= (p1 . . . pk)
−s =

k∏

i=1

P[piN].

By Theorem 2.5, the family ((pN)c,p ∈P) is also independent, whence

ζ(s)−1 = P
[{1}]= P

[⋂

p∈P
(pN)c

]

= lim
n→∞P

[ ⋂

p∈Pn
(pN)c

]

= lim
n→∞

∏

p∈Pn

(
1− P[pN])=

∏

p∈P

(
1− p−s).

This shows (2.5). ♦

If we roll a die infinitely often, what is the chance that the face shows a six
infinitely often? This probability should equal one. Otherwise there would be a last
point in time when we see a six and after which the face only shows a number one
to five. However, this is not very plausible.

Recall that we formalized the event where infinitely many of a series of events
occur by means of the limes superior (see Definition 1.13). The following theorem
confirms the conjecture mentioned above and also gives conditions under which we
cannot expect that infinitely many of the events occur.

Theorem 2.7 (Borel–Cantelli lemma) Let A1,A2, . . . be events and define A∗ =
lim supn→∞An.

(i) If
∑∞
n=1 P[An]<∞, then P[A∗] = 0. (Here P could be an arbitrary measure

on (Ω,A).)
(ii) If (An)n∈N is independent and

∑∞
n=1 P[An] =∞, then P[A∗] = 1.
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Proof (i) P is upper semicontinuous and σ -subadditive; hence, by assumption,

P
[
A∗
]= lim

n→∞P

[ ∞⋃

m=n
Am

]

≤ lim
n→∞

∞∑

m=n
P[Am] = 0.

(ii) De Morgan’s rule and the lower semicontinuity of P yield

P
[(
A∗
)c]= P

[ ∞⋃

m=1

∞⋂

n=m
Acn

]

= lim
m→∞P

[ ∞⋂

n=m
Acn

]

.

However, for every m ∈N (since log(1− x)≤−x for x ∈ [0,1]), by upper continu-
ity of P

P

[ ∞⋂

n=m
Acn

]

= lim
N→∞P

[
N⋂

n=m
Acn

]

=
∞∏

n=m

(
1− P[An]

)

= exp

( ∞∑

n=m
log
(
1− P[An]

)
)

≤ exp

(

−
∞∑

n=m
P[An]

)

= 0.
�

Example 2.8 We throw a die again and again and ask for the probability of seeing
a six infinitely often. Hence Ω = {1, . . . ,6}N, A = (2{1,...,6})⊗N is the product σ -

algebra and P= (∑e∈{1,...,6} 1
6δe
)⊗N is the Bernoulli measure (see Theorem 1.64).

Furthermore, let An = {ω ∈ Ω : ωn = 6} be the event where the nth roll shows a
six. Then A∗ = lim supn→∞An is the event where we see a six infinitely often (see
Remark 1.14). Furthermore, (An)n∈N is an independent family with the property∑∞
n=1 P[An] =∑∞

n=1
1
6 =∞. Hence the Borel–Cantelli lemma yields P[A∗] = 1. ♦

Example 2.9 We roll a die only once and define An for any n ∈ N as the event
where in this one roll the face showed a six. Note that A1 = A2 = A3 = . . . . Then∑
n∈N P[An] =∞; however, P[A∗] = P[A1] = 1

6 . This shows that in Part (ii) of the
Borel–Cantelli lemma, the assumption of independence is indispensable. ♦

Example 2.10 LetΛ ∈ (0,∞) and 0≤ λn ≤Λ for n ∈N. LetXn, n ∈N, be Poisson
random variables with parameters λn. Then

P[Xn ≥ n for infinitely many n] = 0.

Indeed,

∞∑

n=1

P[Xn ≥ n] =
∞∑

n=1

∞∑

m=n
P[Xn =m] =

∞∑

m=1

m∑

n=1

P[Xn =m]

=
∞∑

m=1

m∑

n=1

e−λn λ
m
n

m! ≤
∞∑

m=1

m
Λm

m! =Λe
Λ <∞.

♦
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Note that in Theorem 2.7 in the case of independent events, only the probabilities
P[A∗] = 0 and P[A∗] = 1 could show up. Thus the Borel–Cantelli lemma belongs
to the class of so-called 0–1 laws. Later we will encounter more 0–1 laws (see, for
example, Theorem 2.37).

Now we extend the notion of independence from families of events to families
of classes of events.

Definition 2.11 (Independence of classes of events) Let I be an arbitrary index
set and let Ei ⊂A for all i ∈ I . The family (Ei )i∈I is called independent if, for any
finite subset J ⊂ I and any choice of Ej ∈ Ej , j ∈ J , we have

P
[⋂

j∈J
Ej

]

=
∏

j∈J
P[Ej ]. (2.6)

Example 2.12 As in Example 2.4, let (Ω,A,P) be the product space of infinitely
many repetitions of a random experiment whose possible outcomes e are the ele-
ments of the finite set E and have probabilities p = (pe)e∈E . For i ∈N, define

Ei =
{{ω ∈Ω : ωi ∈A} :A⊂E

}
.

For any choice of sets Ai ∈ Ei , i ∈ N, the family (Ai)i∈N is independent; hence
(Ei )i∈N is independent. ♦

Theorem 2.13

(i) Let I be finite, and for any i ∈ I let Ei ⊂A with Ω ∈ Ei . Then

(Ei )i∈I is independent ⇐⇒ (2.6) holds for J = I.
(ii) (Ei )i∈I is independent ⇐⇒ ((Ej )j∈J is independent for all finite J ⊂ I ).

(iii) If (Ei ∪ {∅}) is ∩-stable, then

(Ei )i∈I is independent ⇐⇒ (
σ(Ei )

)
i∈I is independent.

(iv) Let K be an arbitrary set and let (Ik)k∈K be mutually disjoint subsets of I . If
(Ei )i∈I is independent, then (

⋃
i∈Ik Ei )k∈K is also independent.

Proof (i) “=⇒” This is trivial.
(i) “⇐=” For J ⊂ I and j ∈ I \ J , choose Ej =Ω .
(ii) This is trivial.
(iii) “⇐=” This is trivial.
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(iii) “=⇒” Let J ⊂ I be finite. We will show that for any two finite sets J and
J ′ with J ⊂ J ′ ⊂ I ,

P
[⋂

i∈J ′
Ei

]

=
∏

i∈J ′
P[Ei]

for any choice

{
Ei ∈ σ(Ei ), i ∈ J,
Ei ∈ Ei , i ∈ J ′ \ J. (2.7)

The case J ′ = J is exactly the claim we have to show.
We carry out the proof of (2.7) by induction on #J . For #J = 0, the statement

(2.7) holds by assumption of this theorem.
Now assume that (2.7) holds for every J with #J = n and for every finite J ′ ⊃ J .

Fix such a J and let j ∈ I \ J . Choose J ′ ⊃ J̃ := J ∪ {j}. We show the validity of
(2.7) with J replaced by J̃ . Since #J̃ = n+ 1, this verifies the induction step.

Let Ei ∈ σ(Ei ) for any i ∈ J , and let Ei ∈ Ei for any i ∈ J ′ \ (J ∪ {j}). Define
two measures μ and ν on (Ω,A) by

μ :Ej �→ P
[⋂

i∈J ′
Ei

]

and ν :Ej �→
∏

i∈J ′
P[Ei].

By the induction hypothesis (2.7), we have μ(Ej ) = ν(Ej ) for every Ej ∈ Ej ∪
{∅,Ω}. Since Ej ∪ {∅} is a π -system, Lemma 1.42 yields that μ(Ej ) = ν(Ej ) for
all Ej ∈ σ(Ej ). That is, (2.7) holds with J replaced by J ∪ {j}.

(iv) This is trivial, as (2.6) has to be checked only for J ⊂ I with

#(J ∩ Ik)≤ 1 for any k ∈K. �

2.2 Independent Random Variables

Now that we have studied independence of events, we want to study independence of
random variables. Here also the definition ends up with a product formula. Formally,
however, we can also define independence of random variables via independence of
the σ -algebras they generate. This is the reason why we studied independence of
classes of events in the last section.

Independent random variables allow for a rich calculus. For example, we can
compute the distribution of a sum of two independent random variables by a simple
convolution formula. Since we do not have a general notion of an integral at hand
at this point, for the time being we restrict ourselves to presenting the convolution
formula for integer-valued random variables only.

Let I be an arbitrary index set. For each i ∈ I , let (Ωi,Ai ) be a measurable space
and let Xi : (Ω,A)→ (Ωi,Ai ) be a random variable with generated σ -algebra
σ(Xi)=X−1

i (Ai ).
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Definition 2.14 (Independent random variables) The family (Xi)i∈I of random
variables is called independent if the family (σ (Xi))i∈I of σ -algebras is indepen-
dent.

As a shorthand, we say that a family (Xi)i∈I is “i.i.d.” (for “independent and
identically distributed”) if (Xi)i∈I is independent and if PXi = PXj for all i, j ∈ I .

Remark 2.15

(i) Clearly, the family (Xi)i∈I is independent if and only if, for any finite set J ⊂ I
and any choice of Aj ∈Aj , j ∈ J , we have

P
[⋂

j∈J
{Xj ∈Aj }

]

=
∏

j∈J
P[Xj ∈Aj ].

The next theorem will show that it is enough to request the validity of such a
product formula for Aj from an ∩-stable generator of Aj only.

(ii) If (Ãi )i∈I is an independent family of σ -algebras and if each Xi is Ãi – Ai -
measurable, then (Xi)i∈I is independent. This is a direct consequence of the
fact that σ(Xi)⊂ Ãi .

(iii) For each i ∈ I , let (Ω ′
i ,A′

i ) be another measurable space and assume that
fi : (Ωi,Ai )→ (Ω ′

i ,A′
i ) is a measurable map. If (Xi)i∈I is independent, then

(fi ◦Xi)i∈I is independent. This statement is a special case of (ii) since fi ◦Xi
is σ(Xi) – A′

i -measurable (see Theorem 1.80). ♦

Theorem 2.16 (Independent generators) For any i ∈ I , let Ei ⊂Ai be a π -system
that generates Ai . If (X−1

i (Ei ))i∈I is independent, then (Xi)i∈I is independent.

Proof By Theorem 1.81, X−1
i (Ei ) is a π -system that generates the σ -algebra

X−1
i (Ai )= σ(Xi). Hence the statement follows from Theorem 2.13. �

Example 2.17 Let E be a countable set and let (Xi)i∈I be random variables with
values in (E,2E). In this case, (Xi)i∈I is independent if and only if, for any finite
J ⊂ I and any choice of xj ∈E, j ∈ J ,

P[Xj = xj for all j ∈ J ] =
∏

j∈J
P[Xj = xj ].

This is obvious since {{x} : x ∈ E} ∪ {∅} is a π -system that generates 2E , thus
{X−1
i ({xi}) : xi ∈E} ∪ {∅} is a π -system that generates σ(Xi) (Theorem 1.81). ♦

Example 2.18 Let E be a finite set and let p = (pe)e∈E be a probability vector.
Repeat a random experiment with possible outcomes e ∈E and probabilities pe for
e ∈ E infinitely often (see Example 1.40 and Theorem 1.64). Let Ω = EN be the
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infinite product space and let A be the σ -algebra generated by the cylinder sets (see
(1.8)). Let P = (∑e∈E peδe)⊗N be the Bernoulli measure. Further, for any n ∈ N,
let

Xn :Ω→E, (ωm)m∈N �→ ωn,

be the projection on the nth coordinate. In other words: For any simple event ω ∈Ω ,
Xn(ω) yields the result of the nth experiment. Then, by (2.4) (in Example 2.4), for
n ∈N and x ∈En, we have

P[Xj = xj for all j = 1, . . . , n]

= P
[[x1, . . . , xn]

]= P

[
n⋂

j=1

X−1
j

({xj }
)
]

=
n∏

j=1

P
[
X−1
j

({xj }
)]=

n∏

j=1

P[Xj = xj ],

and P[Xj = xj ] = pxj . By virtue of Theorem 2.13(i), this implies that the family
(X1, . . . ,Xn) is independent and hence, by Theorem 2.13(ii), (Xn)n∈N is indepen-
dent as well. ♦

In particular, we have shown the following theorem.

Theorem 2.19 Let E be a finite set and let (pe)e∈E be a probability vector on E.
Then there exists a probability space (Ω,A,P) and an independent family (Xn)n∈N
of E-valued random variables on (Ω,A,P) such that P[Xn = e] = pe for any
e ∈E.

Later we will see that the assumption that E is finite can be dropped. Also one
can allow for different distributions in the respective factors. For the time being,
however, this theorem gives us enough examples of interesting families of indepen-
dent random variables.

Our next goal is to deduce simple criteria in terms of distribution functions and
densities for checking whether a family of random variables is independent or not.

Definition 2.20 For any i ∈ I , letXi be a real random variable. For any finite subset
J ⊂ I , let

FJ := F(Xj )j∈J :RJ →[0,1],

x �→ P[Xj ≤ xj for all j ∈ J ] = P
[⋂

j∈J
X−1
j

(
(−∞, xj ]

)
]

.

Then FJ is called the joint distribution function of (Xj )j∈J . The probability mea-
sure P(Xj )j∈J on R

J is called the joint distribution of (Xj )j∈J .
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Theorem 2.21 A family (Xi)i∈I of real random variables is independent if and
only if, for every finite J ⊂ I and every x = (xj )j∈J ∈R

J ,

FJ (x)=
∏

j∈J
F{j}(xj ). (2.8)

Proof The class of sets {(−∞, b], b ∈ R} is an ∩-stable generator of the Borel
σ -algebra B(R) (see Theorem 1.23). Equation (2.8) says that, for any choice of
real numbers (xi)i∈I , the events (X−1

i ((−∞, xi]))i∈I are independent. Hence The-
orem 2.16 yields the claim. �

Corollary 2.22 In addition to the assumptions of Theorem 2.21, we assume that
any FJ has a continuous density fJ = f(Xj )j∈J (the joint density of (Xj )j∈J ). That
is, there exists a continuous map fJ :RJ →[0,∞) such that

FJ (x)=
∫ xj1

−∞
dt1 . . .

∫ xjn

−∞
dtn fJ (t1, . . . , tn) for all x ∈R

J

(where J = {j1, . . . , jn}). In this case, the family (Xi)i∈I is independent if and only
if, for any finite J ⊂ I

fJ (x)=
∏

j∈J
fj (xj ) for all x ∈R

J . (2.9)

Corollary 2.23 Let n ∈N and letμ1, . . . ,μn be probability measures on (R,B(R)).
Then there exists a probability space (Ω,A,P) and an independent family of ran-
dom variables (Xi)i=1,...,n on (Ω,A,P) with PXi = μi for each i = 1, . . . , n.

Proof Let Ω = R
n and A = B(Rn). Let P =⊗n

i=1μi be the product measure of
the μi (see Theorem 1.61). Further, let Xi : Rn → R, (x1, . . . , xn) �→ xi be the
projection on the ith coordinate for each i = 1, . . . , n. Then, for any i = 1, . . . , n,

F{i}(x)= P[Xi ≤ x] = P
[
R
i−1 × (−∞, x] ×R

n−i]

= μi
(
(−∞, x]) ·

∏

j �=i
μj (R)= μi

(
(−∞, x]).

Hence indeed PXi = μi . Furthermore, for all x1, . . . , xn ∈R,

F{1,...,n}
(
(x1, . . . , xn)

)= P

[
n×
i=1

(−∞, xi]
]

=
n∏

i=1

μi
(
(−∞, xi]

)

=
n∏

i=1

F{i}(xi).

Hence Theorem 2.21 (and Theorem 2.13(i)) yields the independence of
(Xi)i=1,...,n. �
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Example 2.24 Let X1, . . . ,Xn be independent exponentially distributed random
variables with parameters θ1, . . . , θn ∈ (0,∞). Then

F{i}(x)=
∫ x

0
θie

−θi t dt = 1− e−θix for x ≥ 0

and hence

F{1,...,n}
(
(x1, . . . , xn)

)=
n∏

i=1

(
1− e−θixi ).

Consider now the random variable Y =max(X1, . . . ,Xn). Then

FY (x)= P[Xi ≤ x for all i = 1, . . . , n]

= F{1,...,n}
(
(x, . . . , x)

)=
n∏

i=1

(
1− e−θix).

The distribution function of the random variable Z :=min(X1, . . . ,Xn) has a nice
closed form:

FZ(x)= 1− P[Z > x]
= 1− P[Xi > x for all i = 1, . . . , n]

= 1−
n∏

i=1

e−θix = 1− exp
(−(θ1 + . . .+ θn)x

)
.

In other words, Z is exponentially distributed with parameter θ1 + . . .+ θn. ♦

Example 2.25 Let μi ∈ R and σ 2
i > 0 for i ∈ I . Let (Xi)i∈I be real random vari-

ables with joint density functions (for finite J ⊂ I )

fJ (x)=
∏

j∈J

(
2πσ 2

j

)− 1
2 exp

(

−
∑

j∈J

(xj −μj )2
2σ 2
j

)

for x ∈R
J .

Then (Xi)i∈I is independent and Xi is normally distributed with parameters
(μi, σ

2
i ).

For any finite I = {i1, . . . , in} (with mutually distinct i1, . . . , in), the vector
Y = (Xi1, . . . ,Xin) has the n-dimensional normal distribution with μ = μI :=
(μi1, . . . ,μin) and with Σ =ΣI the diagonal matrix with entries σ 2

i1
, . . . , σ 2

in
(see

Example 1.105(ix)). ♦

Theorem 2.26 Let K be an arbitrary set and Ik , k ∈ K , arbitrary mutually dis-
joint index sets. Define I =⋃k∈K Ik .
If the family (Xi)i∈I is independent, then the family of σ -algebras (σ (Xj , j ∈
Ik))k∈K is independent.
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Proof For k ∈K , let

Zk =
{⋂

j∈Ik
Aj :Aj ∈ σ(Xj ),#{j ∈ Ik :Aj �=Ω}<∞

}

be the semiring of finite-dimensional rectangular cylinder sets. Clearly, Zk is a π -
system and σ(Zk) = σ(Xj , j ∈ Ik). Hence, by Theorem 2.13(iii), it is enough to
show that (Zk)k∈K is independent. By Theorem 2.13(ii), we can even assume that
K is finite.

For k ∈ K , let Bk ∈ Zk and Jk ⊂ Ik be finite with Bk =⋂j∈Jk Aj for certain
Aj ∈ σ(Xj ). Define J =⋃k∈K Jk . Then

P
[⋂

k∈K
Bk

]

= P
[⋂

j∈J
Aj

]

=
∏

j∈J
P[Aj ] =

∏

k∈K

∏

j∈Jk
P[Aj ] =

∏

k∈K
P[Bk].

�

Example 2.27 If (Xn)n∈N is an independent family of real random variables,
then also (Yn)n∈N = (X2n − X2n−1)n∈N is independent. Indeed, for any n ∈N,
the random variable Yn is σ(X2n,X2n−1)-measurable by Theorem 1.91, and
(σ (X2n,X2n−1))n∈N is independent by Theorem 2.26. ♦

Example 2.28 Let (Xm,n)(m,n)∈N2 be an independent family of Bernoulli random
variables with parameter p ∈ (0,1). Define the waiting time for the first “success”
in the mth row of the matrix (Xm,n)m,n by

Ym := inf{n ∈N :Xm,n = 1} − 1.

Then (Ym)m∈N are independent geometric random variables with parameter p (see
Example 1.105(iii)). Indeed,

{Ym ≤ k} =
k+1⋃

l=1

{Xm,l = 1} ∈ σ(Xm,l, l = 1, . . . , k+ 1)⊂ σ(Xm,l, l ∈N).

Hence Ym is σ(Xm,l, l ∈N)-measurable and thus (Ym)m∈N is independent. Further-
more,

P[Ym > k] = P[Xm,l = 0, l = 1, . . . , k + 1] =
k+1∏

l=1

P[Xm,l = 0] = (1− p)k+1.

Concluding, we get P[Ym = k] = P[Ym > k− 1] − P[Ym > k] = p(1− p)k . ♦

Definition 2.29 (Convolution) Let μ and ν be probability measures on (Z,2Z). The
convolution μ ∗ ν is defined as the probability measure on (Z,2Z) such that

(μ ∗ ν)({n})=
∞∑

m=−∞
μ
({m})ν({n−m}).
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We define the nth convolution power recursively by μ∗1 = μ and

μ∗(n+1) = μ∗n ∗μ.

Remark 2.30 The convolution is a symmetric operation: μ ∗ ν = ν ∗μ. ♦

Theorem 2.31 If X and Y are independent Z-valued random variables, then
PX+Y = PX ∗ PY .

Proof For any n ∈ Z,

PX+Y
({n})= P[X+ Y = n]

= P
[⊎

m∈Z

({X =m} ∩ {Y = n−m})
]

=
∑

m∈Z
P
[{X =m} ∩ {Y = n−m}]

=
∑

m∈Z
PX
[{m}]PY

[{n−m}]= (PX ∗ PY )
[{n}].

�

Owing to the last theorem, it is natural to define the convolution of two probabil-
ity measures on R

n (or more generally on an Abelian group) as the distribution of
the sum of two independent random variables with the corresponding distributions.
Later we will encounter a different (but equivalent) definition that will, however,
rely on the notion of an integral that is not yet available to us at this point (see
Definition 14.17).

Definition 2.32 (Convolution of measures) Let μ and ν be probability measures
on R

n and let X and Y be independent random variables with PX = μ and PY = ν.
We define the convolution of μ and ν as μ ∗ ν = PX+Y .

Recursively, we define the convolution powers μ∗k for all k ∈N and let μ∗0 = δ0.

Example 2.33 Let X and Y be independent Poisson random variables with param-
eters μ and λ≥ 0. Then

P[X+ Y = n] = e−μe−λ
n∑

m=0

μm

m!
λn−m

(n−m)!

= e−(μ+λ) 1

n!
n∑

m=0

(
n

m

)

μmλn−m = e−(μ+λ) (μ+ λ)
n

n! .

Hence Poiμ ∗ Poiλ = Poiμ+λ. ♦
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Exercise 2.2.1 Let X and Y be independent random variables with X ∼ expθ and
Y ∼ expρ for certain θ,ρ > 0. Show that

P[X < Y ] = θ

θ + ρ .

Exercise 2.2.2 (Box–Muller method) Let U and V be independent random vari-
ables that are uniformly distributed on [0,1]. Define

X :=√−2 log(U) cos(2πV ) and Y :=√−2 log(U) sin(2πV ).

Show that X and Y are independent and N0,1-distributed.
Hint: First compute the distribution of

√−2 log(U) and then use the transforma-
tion formula (Theorem 1.101) as well as polar coordinates.

Exercise 2.2.3 (Multinomial distribution) Let m ∈N and let p = (p1, . . . , pm) be a
probability vector on {1, . . . ,m}. Let X1, . . . ,Xn be independent random variables
with values in 1, . . . ,m and distribution p. We define an N

m
0 -valued random variable

Y = (Y1, . . . , Ym) by

Yi := #{k = 1, . . . , n :Xk = i} for i = 1, . . . ,m.

Show that for k = (k1, . . . , km) ∈N
m
0 with k1 + . . .+ km = n, we have

P[Y = k] =Muln,p
({k}) :=

(
n

k

)

pk. (2.10)

Here
(
n

k

)

=
(

n

k1, . . . , km

)

= n!
k1! . . . km!

is the multinomial coefficient and pk = pk1
1 . . . p

km
m . The distribution Muln,p on N

m
0

is called multinomial distribution with parameters n and p.

2.3 Kolmogorov’s 0–1 Law

With the Borel–Cantelli lemma, we have seen a first 0–1 law for independent events.
We now come to another 0–1 law for independent events and for independent
σ -algebras. To this end, we first introduce the notion of the tail σ -algebra.
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Definition 2.34 (Tail σ -algebra) Let I be a countably infinite index set and let
(Ai )i∈I be a family of σ -algebras. Then

T
(
(Ai )i∈I

) :=
⋂

J⊂I
#J<∞

σ

( ⋃

j∈I\J
Aj
)

is called the tail σ -algebra of (Ai )i∈I . If (Ai)i∈I is a family of events, then we
define

T
(
(Ai)i∈I

) := T
(({∅,Ai,Aci ,Ω

})
i∈I
)
.

If (Xi)i∈I is a family of random variables, then we define T ((Xi)i∈I ) :=
T ((σ (Xi))i∈I ).

The tail σ -algebra contains those events A whose occurrence is independent of
any fixed finite subfamily of the Xi . To put it differently, for any finite subfamily of
the Xi , we can change the values of the Xi arbitrarily without changing whether A
occurs or not.

Theorem 2.35 Let J1, J2, . . . be finite sets with Jn ↑ I . Then

T
(
(Ai )i∈I

)=
∞⋂

n=1

σ

( ⋃

m∈I\Jn
Am
)

.

In the particular case I =N, this reads T ((An)n∈N)=⋂∞
n=1 σ(

⋃∞
m=nAm).

The name “tail σ -algebra” is due to the interpretation of I =N as a set of times.
As is made clear in the theorem, any event in T does not depend on the first finitely
many time points.

Proof “⊂” This is clear.
“⊃” Let Jn ⊂ I , n ∈N, be finite sets with Jn ↑ I . Let J ⊂ I be finite. Then there

exists an N ∈N with J ⊂ JN and

∞⋂

n=1

σ
(⋃

m∈I\JnAm
)
⊂

N⋂

n=1

σ
(⋃

m∈I\JnAm
)

= σ
(⋃

m∈I\JN
Am
)
⊂ σ
(⋃

m∈I\J Am
)
.

The left-hand side does not depend on J . Hence we can form the intersection over
all finite J and obtain

∞⋂

n=1

σ
(⋃

m∈I\JnAm
)
⊂ T
(
(Ai )i∈I

)
.

�
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Maybe at first glance it is not evident that there are any interesting events in the
tail σ -algebra at all. It might not even be clear that we do not have T = {∅,Ω}.
Hence we now present simple examples of tail events and tail σ -algebra measurable
random variables. In Section 2.4, we will study a more complex example.

Example 2.36

(i) Let A1,A2, . . . be events. Then the events A∗ := lim infn→∞An and A∗ :=
lim supn→∞An are in T ((An)n∈N). Indeed, if we define Bn := ⋂∞

m=n Am
for n ∈ N, then Bn ↑ A∗ and Bn ∈ σ((Am)m≥N) for any n ≥ N . Thus A∗ ∈
σ((Am)m≥N) for any N ∈N and hence A∗ ∈ T ((An)n∈N). The case A∗ is sim-
ilar.

(ii) Let (Xn)n∈N be a family of R-valued random variables. Then the maps X∗ :=
lim infn→∞Xn and X∗ := lim supn→∞Xn are T ((Xn)n∈N)-measurable. In-
deed, if we define Yn := supm≥n Xm, then for any N ∈ N, the random variable
X∗ = infn≥1 Yn = infn≥N Yn is TN := σ(Xn,n ≥ N)-measurable and hence
also measurable with respect to T ((Xn)n∈N)=⋂∞

n=1 Tn.
The case X∗ is similar.

(iii) Let (Xn)n∈N be real random variables. Then the Cesàro limits

lim inf
n→∞

1

n

n∑

i=1

Xi and lim sup
n→∞

1

n

n∑

i=1

Xi

are T ((Xn)n∈N)-measurable. In order to show this, chooseN ∈N and note that

X∗ := lim inf
n→∞

1

n

n∑

i=1

Xi = lim inf
n→∞

1

n

n∑

i=N
Xi

is σ((Xn)n≥N)-measurable. Since this holds for any N , X∗ is T ((Xn)n∈N)-
measurable. The case of the limes superior is similar. ♦

Theorem 2.37 (Kolmogorov’s 0–1 Law) Let I be a countably infinite index set
and let (Ai )i∈I be an independent family of σ -algebras. Then the tail σ -algebra
is P-trivial, that is,

P[A] ∈ {0,1} for any A ∈ T
(
(Ai )i∈I

)
.

Proof It is enough to consider the case I =N. For n ∈N, let

Fn :=
{
n⋂

k=1

Ak :A1 ∈A1, . . . ,An ∈An

}

.

Then F :=⋃∞
n=1 Fn is a semiring and σ(F)= σ(⋃n∈NAn). Indeed, for any n ∈N

and An ∈An, we have An ∈F ; hence σ(
⋃
n∈NAn)⊂ σ(F). On the other hand, we

have Fm ⊂ σ(⋃mn=1 An)⊂ σ(
⋃
n∈NAn) for any m ∈N; hence F ⊂ σ(⋃n∈NAn).



64 2 Independence

Let A ∈ T ((An)n∈N) and ε > 0. By the approximation theorem for measures
(Theorem 1.65), there exists an N ∈ N and mutually disjoint sets F1, . . . ,FN ∈
F such that P[A � (F1 ∪ . . . ∪ FN)] < ε. Clearly, there is an n ∈ N such that
F1, . . . ,FN ∈ Fn and thus F := F1 ∪ . . . ∪ FN ∈ σ(A1 ∪ . . . ∪ An). Obviously,
A ∈ σ(⋃∞

m=n+1 Am); hence A is independent of F . Thus

ε > P[A \ F ] = P
[
A∩ (Ω \ F)]= P[A](1− P[F ])≥ P[A](1− P[A] − ε).

Letting ε ↓ 0 yields 0= P[A](1− P[A]). �

Corollary 2.38 Let (An)n∈N be a sequence of independent events. Then

P
[
lim sup
n→∞

An

]
∈ {0,1} and P

[
lim inf
n→∞ An

]
∈ {0,1}.

Proof Essentially this is a simple conclusion of the Borel–Cantelli lemma. How-
ever, the statement can also be deduced from Kolmogorov’s 0–1 law as limes supe-
rior and limes inferior are in the tail σ -algebra. �

Corollary 2.39 Let (Xn)n∈N be an independent family of R-valued random vari-
ables. ThenX∗ := lim infn→∞Xn andX∗ := lim supn→∞Xn are almost surely con-
stant. That is, there exist x∗, x∗ ∈R such that P[X∗ = x∗] = 1 and P[X∗ = x∗] = 1.

If all Xi are real-valued, then the Cesàro limits

lim inf
n→∞

1

n

n∑

i=1

Xi and lim sup
n→∞

1

n

n∑

i=1

Xi

are also almost surely constant.

Proof Let X∗ := lim infn→∞Xn. For any x ∈R, we have {X∗ ≤ x} ∈ T ((Xn)n∈N);
hence P[X∗ ≤ x] ∈ {0,1}. Define

x∗ := inf
{
x ∈R : P[X∗ ≤ x] = 1

} ∈R.

If x∗ =∞, then evidently

P[X∗ <∞]= lim
n→∞P[X∗ ≤ n] = 0.

If x∗ ∈R, then

P[X∗ ≤ x∗] = lim
n→∞P

[

X∗ ≤ x∗ + 1

n

]

= 1

and

P[X∗ < x∗] = lim
n→∞P

[

X∗ ≤ x∗ − 1

n

]

= 0.
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If x∗ = −∞, then

P[X∗ >−∞]= lim
n→∞P[X∗ >−n] = 0.

The cases of the limes superior and the Cesàro limits are similar. �

Exercise 2.3.1 Let (Xn)n∈N be an independent family of Rad1/2 random variables
(i.e., P[Xn =−1] = P[Xn =+1] = 1

2 ) and let Sn = X1 + . . .+Xn for any n ∈ N.
Show that lim supn→∞ Sn =∞ almost surely.

2.4 Example: Percolation

Consider the d-dimensional integer lattice Z
d , where any point is connected to any

of its 2d nearest neighbors by an edge. If x, y ∈ Z
d are nearest neighbors (that is,

‖x−y‖2 = 1), then we denote by e= 〈x, y〉 = 〈y, x〉 the edge that connects x and y.
Formally, the set of edges is a subset of the set of subsets of Zd with two elements:

E = {{x, y} : x, y ∈ Z
d with ‖x − y‖2 = 1

}
.

Somewhat more generally, an undirected graphG is a pairG= (V ,E), where V
is a set (the set of “vertices” or nodes) and E ⊂ {{x, y} : x, y ∈ V,x �= y} is a subset
of the set of subsets of V of cardinality two (the set of edges or bonds).

Our intuitive understanding of an edge is a connection between two points x and
y and not an (unordered) pair {x, y}. To stress this notion of a connection, we use a
different symbol from the set brackets. That is, we denote the edge that connects x
and y by 〈x, y〉 = 〈y, x〉 instead of {x, y}.

Our graph (V ,E) is the starting point for a stochastic model of a porous medium.
We interpret the edges as tubes along which water can flow. However, we want
the medium not to have a homogeneous structure, such as Z

d , but an amorphous
structure. In order to model this, we randomly destroy a certain fraction 1−p of the
tubes (with p ∈ [0,1] a parameter) and keep the others. Water can flow only through
the remaining tubes. The destroyed tubes will be called “closed”, the others “open”.
The fundamental question is: For which values of p is there a connected infinite
system of tubes along which water can flow? The physical interpretation is that if
we throw a block of the considered material into a bathtub, then the block will soak
up water; that is, it will be wetted inside. If there is no infinite open component,
then the water may wet only a thin layer at the surface. See Fig. 2.1 for a computer
simulation of the percolation model.

We now come to a formal description of the model. Choose a parameter p ∈ [0,1]
and an independent family of identically distributed random variables (Xpe )e∈E with
X
p
e ∼ Berp; that is, P[Xpe = 1] = 1− P[Xpe = 0] = p for any e ∈ E. We define the

set of open edges as

Ep := {e ∈E :Xpe = 1
}
. (2.11)
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Consequently, the edges in E \ Ep are called closed. Hence we have constructed
a (random) subgraph (Zd ,Ep) of (Zd ,E). We call (Zd ,Ep) a percolation model
(more precisely, a model for bond percolation, in contrast to site percolation, where
vertices can be open or closed). An (open) path (of length n) in this subgraph is
a sequence π = (x0, x1, . . . , xn) of points in Z

d with 〈xi−1, xi〉 ∈ Ep for all i =
1, . . . , n. We say that two points x, y ∈ Z

d are connected by an open path if there is
an n ∈N and an open path (x0, x1, . . . , xn) with x0 = x and xn = y. In this case, we
write x←→p y. Note that “←→p” is an equivalence relation; however, a random
one, as it depends on the values of the random variables (Xpe )e∈E . For every x ∈ Z

d ,
we define the (random) open cluster of x; that is, the connected component of x in
the graph (Zd ,Ep):

Cp(x) := {y ∈ Z
d : x←→p y

}
. (2.12)

Lemma 2.40 Let x, y ∈ Z
d . Then 1{x←→py} is a random variable. In particular,

#Cp(x) is a random variable for any x ∈ Z
d .

Proof We may assume x = 0. Let fy,n = 1 if there exists an open path of length at
most n that connects 0 to y, and fy,n = 0 otherwise. Clearly, fy,n ↑ 1{0←→py} for
n→∞; hence it suffices to show that each fy,n is measurable. LetBn := {−n,−n+
1, . . . , n− 1, n}d and En := {e ∈E : e ∩Bn �= ∅}. Then Yn := (Xpe : e ∈En) :Ω→
{0,1}En is measurable (with respect to 2({0,1}En)) by Theorem 1.90. However, fy,n
is a function of Yn, say fy,n = gy,n ◦ Yn for some map gy,n : {0,1}En → {0,1}. By
the composition theorem for maps (Theorem 1.80), fy,n is measurable.

The additional statement holds since #Cp(x)=∑y∈Zd 1{x←→py}. �

Definition 2.41 We say that percolation occurs if there exists an infinitely large
open cluster. We call

ψ(p) := P[there exists an infinite open cluster]

= P
[ ⋃

x∈Zd

{
#Cp(x)=∞}

]

the probability of percolation. We define

θ(p) := P
[
#Cp(0)=∞]

as the probability that the origin is in an infinite open cluster.

By the translation invariance of the lattice, we have

θ(p)= P
[
#Cp(y)=∞] for any y ∈ Z

d . (2.13)

The fundamental question is: How large are θ(p) and ψ(p) depending on p?
We make the following simple observation.
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Fig. 2.1 Percolation on a 15× 15 grid, p = 0.42

Theorem 2.42 The map [0,1]→ [0,1], p �→ θ(p) is monotone increasing.

Proof Although the statement is intuitively so clear that it might not need a proof,
we give a formal proof in order to introduce a technique called coupling. Let p,p′ ∈
[0,1] with p < p′. Let (Ye)e∈E be an independent family of random variables with
P[Ye ≤ q] = q for any e ∈E and q ∈ {p,p′,1}. At this point, we could, for example,
assume that Ye ∼ U[0,1] is uniformly distributed on [0,1]. Since we have not yet
shown the existence of an independent family with this distribution, we content
ourselves with Ye that assume only three values {p,p′,1}. Hence

P[Ye = q] =
⎧
⎨

⎩

p, if q = p,
p′ − p, if q = p′,
1− p′, if q = 1.

Such a family (Ye)e∈E exists by Theorem 2.19. For q ∈ {p,p′} and e ∈E, we define

X
q
e :=

{
1, if Ye ≤ q,
0, else.

Clearly, for any q ∈ {p,p′}, the family (X
q
e )e∈E is independent (see

Remark 2.15(iii)) and Xqe ∼ Berq . Furthermore, Xpe ≤Xp
′
e for any e ∈ E. The pro-
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cedure of defining two families of random variables that are related in a specific
way (here “≤”) on one probability space is called a coupling.

Clearly, Cp(x)⊂ Cp′(x) for any x ∈ Z
d ; hence θ(p)≤ θ(p′). �

With the aid of Kolmogorov’s 0–1 law, we can infer the following theorem.

Theorem 2.43 For any p ∈ [0,1], we have

ψ(p)=
{

0, if θ(p)= 0,
1, if θ(p) > 0.

Proof If θ(p)= 0, then by (2.13)

ψ(p)≤
∑

y∈Zd
P
[
#Cp(y)=∞]=

∑

y∈Zd
θ(p)= 0.

Now let A =⋃y∈Zd {#Cp(y) =∞}. Clearly, A remains unchanged if we change

the state of finitely many edges. That is, A ∈ σ((Xpe )e∈E\F ) for every finite F ⊂E.
Hence A is in the tail σ -algebra T ((Xpe )e∈E) by Theorem 2.35. Kolmogorov’s 0–1
law (Theorem 2.37) implies that ψ(p) = P[A] ∈ {0,1}. If θ(p) > 0, then ψ(p) ≥
θ(p) implies ψ(p)= 1. �

Due to the monotonicity, we can make the following definition.

Definition 2.44 The critical value pc for percolation is defined as

pc = inf
{
p ∈ [0,1] : θ(p) > 0

} = sup
{
p ∈ [0,1] : θ(p)= 0

}

= inf
{
p ∈ [0,1] :ψ(p)= 1

}= sup
{
p ∈ [0,1] :ψ(p)= 0

}
.

We come to the main theorem of this section.

Theorem 2.45 For d = 1, we have pc = 1. For d ≥ 2, we have pc(d) ∈ [ 1
2d−1 ,

2
3 ].

Proof First consider d = 1 and p < 1. Let A− := {Xp〈n,n+1〉 = 0 for some n < 0}
andA+ := {Xp〈n,n+1〉 = 0 for some n > 0}. LetA=A−∩A+. By the Borel–Cantelli
lemma, we get P[A−] = P[A+] = 1. Hence θ(p)= P[Ac] = 0.

Now assume d ≥ 2.
Lower bound. First we show pc ≥ 1

2d−1 . Clearly, for any n ∈N,

P
[
#Cp(0)=∞]≤ P

[
there is an x ∈ Cp(0) with ‖x‖∞ = n].

We want to estimate the probability that there exists a point x ∈Cp(0) with distance
n from the origin. Any such point is connected to the origin by a path without self-
intersections π that starts at 0 and has length m ≥ n. Let Π0,m be the set of such
paths. Clearly, #Π0,m ≤ 2d · (2d−1)m−1 since there are 2d choices for the first step
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and at most 2d − 1 choices for any further step. For any π ∈Π0,m, the probability
that π uses only open edges is

P[π is open] = pm.
Hence, for p < 1

2d−1 ,

θ(p)≤
∞∑

m=n

∑

π∈Π0,m

P[π is open]

≤ 2d

2d − 1

∞∑

m=n

(
(2d − 1)p

)m

= 2d

(2d − 1)(1− (2d − 1)p)

(
(2d − 1)p

)n n→∞−→ 0.

We conclude that pc ≥ 1
2d−1 .

Upper bound. We can consider Zd as a subset of Zd × {0} ⊂ Z
d+1. Hence, if

percolation occurs for p in Z
d , then it also occurs for p in Z

d+1. Hence the corre-
sponding critical values are ordered pc(d + 1)≤ pc(d).

Thus, it is enough to consider the case d = 2. Here we show pc ≤ 2
3 by using a

contour argument due to Peierls [127], originally designed for the Ising model of a
ferromagnet, see Example 18.16 and (18.9).

For N ∈N, we define (compare (2.12) with x = (i,0))

CN :=
N⋃

i=0

Cp
(
(i,0)

)

as the set of points that are connected (along open edges) to at least one of
the points in {0, . . . ,N} × {0}. Due to the subadditivity of probability (and since
P[#Cp((i,0))=∞]= θ(p) for any i ∈ Z), we have

θ(p)= 1

N + 1

N∑

i=0

P
[
#Cp
(
(i,0)

)=∞]≥ 1

N + 1
P[#CN =∞].

Now consider those closed contours in the dual graph (Z̃2, Ẽ) that surrounds CN
if #CN <∞. Here the dual graph is defined by

Z̃
2 =
(

1

2
,

1

2

)

+Z
2,

Ẽ = {{x, y} : x, y ∈ Z̃
2,‖x − y‖2 = 1

}
.

An edge ẽ in the dual graph (Z̃2, Ẽ) crosses exactly one edge e in (Z2,E). We
call ẽ open if e is open and closed otherwise. A circle γ is a self-intersection free
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Fig. 2.2 Contour of the cluster C5

path in (Z̃2, Ẽ) that starts and ends at the same point. A contour of the set CN is a
minimal circle that surrounds CN . Minimal means that the enclosed area is minimal
(see Fig. 2.2). For n≥ 2N , let

Γn =
{
γ : γ is a circle of length n that surrounds {0, . . . ,N} × {0}}.

We want to deduce an upper bound for #Γn. Let γ ∈ Γn and fix one point of γ .
For definiteness, choose the upper point (m+ 1

2 ,
1
2 ) of the rightmost edge of γ that

crosses the horizontal axis (in Fig. 2.2 this is the point (5+ 1
2 ,

1
2 )). Clearly, m≥N

and m ≤ n since γ surrounds the origin. Starting from (m+ 1
2 ,

1
2 ), for any further

edge of γ , there are at most three possibilities. Hence

#Γn ≤ n · 3n.
We say that γ is closed if it uses only closed edges (in Ẽ). A contour of CN is
automatically closed and has a length of at least 2N . Hence for p > 2

3

P[#CN <∞]=
∞∑

n=2N

P[there is a closed circle γ ∈ Γn]

≤
∞∑

n=2N

n · (3(1− p))n N→∞−→ 0.

We conclude pc ≤ 2
3 . �
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In general, the value of pc is not known and is extremely hard to determine. In the
case of bond percolation on Z

2, however, the exact value of pc can be determined
due to the self-duality of the planar graph (Z2,E). (IfG= (V ,E) is a planar graph;
that is, a graph that can be embedded into R

2 without self-intersections, then the
vertex set of the dual graph is the set of faces ofG. Two such vertices are connected
by exactly one edge; that is, by the edge in E that separates the two faces. Evidently,
the two-dimensional integer lattice is isomorphic to its dual graph. Note that the
contour in Fig. 2.2 can be considered as a closed path in the dual graph.) We cite a
theorem of Kesten [95].

Theorem 2.46 (Kesten 1980) For bond percolation in Z
2, the critical value is

pc = 1
2 and θ(pc)= 0.

Proof See, for example, the book of Grimmett [63, pp. 287ff]. �

It is conjectured that θ(pc)= 0 holds in any dimension d ≥ 2. However, rigorous
proofs are known only for d = 2 and d ≥ 19 (see [67]).

Uniqueness of the Infinite Open Cluster∗

Fix a p such that θ(p) > 0. We saw that with probability one there is at least one
infinite open cluster. Now we want to show that there is exactly one.

Denote by N ∈ {0,1, . . . ,∞} the (random) number of infinite open clusters.

Theorem 2.47 (Uniqueness of the infinite open cluster) For any p ∈ [0,1], we have
Pp[N ≤ 1] = 1.

Proof This theorem was first proved by Aizenman, Kesten and Newman [2, 3]. Here
we follow the proof of Burton and Keane [23] as described in [63, Section 8.2].

The cases p = 1 and θ(p) = 0 (hence in particular the case p = 0) are trivial.
Hence we assume now that p ∈ (0,1) and θ(p) > 0.

Step 1. We first show that

Pp[N =m] = 1 for some m= 0,1, . . . ,∞. (2.14)

We need a 0–1 law similar to that of Kolmogorov. However, N is not measurable
with respect to the tail σ -algebra. Hence we have to find a more subtle argument.
Let u1 = (1,0, . . . ,0) be the first unit vector in Z

d . On the edge set E, define the
translation τ :E→E by τ(〈x, y〉)= 〈x + u1, y + u1〉. Let

E0 :=
{〈
(x1, . . . , xd), (y1, . . . , yd)

〉 ∈E : x1 = 0, y1 ≥ 0
}

be the set of all edges in Z
d that either connect two points from {0} × Z

d−1 or one
point of {0} ×Z

d−1 with one point of {1} ×Z
d−1. Clearly, the sets (τn(E0), n ∈ Z)
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are disjoint and E =⊎n∈Z τn(E0). Hence the random variables Yn := (Xpτn(e))e∈E0 ,

n ∈ Z, are independent and identically distributed (with values in {0,1}E0 ). Define
Y = (Yn)n∈Z and τ(Y )= (Yn+1)n∈Z. Define Am ∈ {0,1}E by

{Y ∈Am} = {N =m}.
Clearly, the value of N does not change if we shift all edges simultaneously. That
is, {Y ∈ Am} = {τ(Y ) ∈ Am}. An event with this property is called invariant or
shift invariant. Using an argument similar to that in the proof of Kolmogorov’s 0–1
law, one can show that invariant events (defined by i.i.d. random variables) have
probability either 0 or 1 (see Example 20.26 for a proof).

Step 2. We will show that

Pp[N =m] = 0 for any m ∈N \ {1}. (2.15)

Accordingly, let m = 2,3, . . . . We assume that P[N = m] = 1 and show that this
leads to a contradiction.

For L ∈ N, let BL := {−L, . . . ,L}d and denote by EL = {e = 〈x, y〉 ∈ E :
x, y ∈ BL} the set of those edges with both vertices lying in BL. For i = 0,1, let
DiL := {Xpe = i for all e ∈EL}. Let N1

L be the number of infinite open clusters if we
consider all edges e in EL as open (independently of the value of Xpe ). Similarly
define N0

L where we consider all edges in EL as closed. Since Pp[DiL] > 0, and
since N =m almost surely, we have NiL =m almost surely for i = 0,1.

Let

A2
L :=

⋃

x1,x2∈BL\BL−1

{
Cp
(
x1)∩Cp(x2)= ∅}∩ {#Cp(x1)= #Cp

(
x2)=∞}

be the event where there exist two points on the boundary of BL that lie in different
infinite open clusters. Clearly, A2

L ↑ {N ≥ 2} for L→∞.
DefineA2

L,0 in a similarly way toA2
L; however, we now consider all edges e ∈EL

as closed, irrespective of whether Xpe = 1 or Xpe = 0. If A2
L occurs, then there are

two points x1, x2 on the boundary of BL such that for any i = 1,2, there is an
infinite self-intersection free open path πxi starting at xi that avoids x3−i . Hence
A2
L ⊂A2

L,0. Now choose L large enough for P[A2
L,0]> 0.

If A2
L,0 occurs and if we open all edges in BL, then at least two of the infinite

open clusters get connected by edges in BL. Hence the total number of infinite open
clusters decreases by at least one. We infer Pp[N1

L ≤ N0
L − 1] ≥ Pp[A2

L,0] > 0,
which leads to a contradiction.

Step 3. In Step 2, we have shown already that N does not assume a finite value
larger than 1. Hence it remains to show that almost surely N does not assume the
value ∞. Indeed, we show that

Pp[N ≥ 3] = 0. (2.16)

This part of the proof is the most difficult one. We assume that Pp[N ≥ 3]> 0 and
show that this leads to a contradiction.
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We say that a point x ∈ Z
d is a trifurcation point if

• x is in an infinite open cluster Cp(x),
• there are exactly three open edges with endpoint x, and
• removing all of these three edges splits Cp(x) into three mutually disjoint infinite

open clusters.

By T we denote the set of trifurcation points, and let TL := T ∩ BL. Let r :=
Pp[0 ∈ T ]. Due to translation invariance, we have (#BL)−1Ep[#TL] = r for any L.
(Here Ep[#TL] denotes the expected value of #TL, which we define formally in
Chapter 5.) Let

A3
L :=

⋃

x1,x2,x3∈BL\BL−1

(⋂

i �=j

{
Cp
(
xi
)∩Cp(xj )= ∅}

)

∩
(

3⋂

i=1

{
#Cp
(
xi
)=∞}

)

be the event where there are three points on the boundary of BL that lie in different
infinite open clusters. Clearly, A3

L ↑ {N ≥ 3} for L→∞.
As for A2

L,0, we define A3
L,0 as the event where there are three distinct points on

the boundary of BL that lie in different infinite open clusters if we consider all edges
in EL as closed. As above, we have A3

L ⊂A3
L,0.

For three distinct points x1, x2, x3 ∈ BL \BL−1, let Fx1,x2,x3 be the event where
for any i = 1,2,3, there exists an infinite self-intersection free open path πxi starting
at xi that uses only edges in Ep \EL and that avoids the points xj , j �= i. Then

A3
L,0 ⊂

⋃

x1,x2,x3∈BL\BL−1
mutually distinct

Fx1,x2,x3 .

Let L be large enough for Pp[A3
L,0] ≥ Pp[N ≥ 3]/2> 0. Choose three pairwise

distinct points x1, x2, x3 ∈ BL \BL−1 with Pp[Fx1,x2,x3 ]> 0.
If Fx1,x2,x3 occurs, then we can find a point y ∈ BL that is the starting point of

three mutually disjoint (not necessarily open) paths π1, π2 and π3 that end at x1, x2

and x3. Let Gy,x1,x2,x3 be the event where in EL exactly those edges are open that
belong to these three paths (that is, all other edges in EL are closed). The events
Fx1,x2,x3 and Gy,x1,x2,x3 are independent, and if both of them occur, then y is a
trifurcation point. Hence

r = Pp[y ∈ T ] ≥ Pp[Fx1,x2,x3 ] · (p ∧ (1− p))#EL > 0.

Now we show that r must equal 0, which contradicts the assumption
Pp[N ≥ 3] > 0. Let KL be the set of all edges which have at least one endpoint
in BL. We consider two edges in KL as equivalent if there exists a path in BL
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along open edges that does not hit any trifurcation point and which joins at least
one endpoint of each of the two edges. We denote the equivalence relation by R
and let UL = KL/R be the set of equivalence classes. (Note that the three neigh-
boring edges of a trifurcation point are in different equivalence classes.) We turn
the set HL := UL ∪ TL into a graph by considering two points x ∈ TL and u ∈ UL
as neighbors if there exists an edge k ∈ u which is incident to x. Note that each
point x ∈ TL has exactly three neighbors which are in UL. The points in UL can be
isolated (that is, without neighbors) or can be joined to arbitrarily many points in
TL but not in UL.

A circle is a self-avoiding (finite) path that ends at its starting point. Note
that the graph HL has no circles. To show this assume there was a self-avoiding
path (h0, h1, . . . , hn) starting and ending in some point h0 = hn = x ∈ TL. Then
h1, hn−1 ∈ UL are distinct but connected in Kp even if we remove x. However,
by the definition of the trifurcation point x, this is impossible. On the other hand,
if there was a self-avoiding path (g0, . . . , gm) starting and ending in some point
g0 = gm = u ∈ UL, then (g1, g2, . . . , gm,g1) is a self-avoiding path starting and
ending in g1 ∈ TL. However, we have just shown that such a path could not exist.

Write degHL(h) for the degree of h ∈HL; that is, the number of neighbors of h
in HL. A point h with degHL(h)= 1 is called a leaf of HL. Obviously, only points
of UL can be leaves. Let Z be a connected component of HL that contains at least
one point x ∈ TL. Since Z is a tree (that is, it is connected and contains no circles),
we have

#Z− 1= 1

2

∑

h∈Z
degHL(h).

Rearranging this formula yields an expression for the number of leaves:

#
{
u ∈Z : degHL(u)= 1

}= 2+
∑

h∈Z

(
degHL(h)− 2

)+

≥ 2+ #
{
h ∈ Z : degHL(h)≥ 3

}

= 2+ #(Z ∩ TL).

Summing over the connected components Z of HL with at least one point in TL, we
obtain

#
{
u ∈HL : degHL(u)= 1

}≥ #TL.

Observe that any leaf u ∈ HL contains an edge that is incident to a point x ∈ TL.
Hence the edges of u lie in an infinite open cluster of Kp and there is at least one
edge k ∈ u incident to a point at the boundary BL \BL−1 of BL. For distinct leaves
these are distinct points since the leaves belong to disjoint open clusters. Hence we
get the bound

#TL ≤ #(BL \BL−1)
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and thus

#TL
#BL

≤ #(BL \BL−1)

#BL
≤ d
L

L→∞−→ 0.

Now r = (#BL)−1Ep[#TL] ≤ d/L implies r = 0. (Note that in the argument we
used the notion of the expected value Ep[#TL] that will be formally introduced only
in Chapter 5.) �



Chapter 3
Generating Functions

It is a fundamental principle of mathematics to map a class of objects that are of
interest into a class of objects where computations are easier. This map can be one to
one, as with linear maps and matrices, or it may map only some properties uniquely,
as with matrices and determinants.

In probability theory, in the second category fall quantities such as the median,
mean and variance of random variables. In the first category, we have characteris-
tic functions, Laplace transforms and probability generating functions. These are
useful mostly because addition of independent random variables leads to multipli-
cation of the transforms. Before we introduce characteristic functions (and Laplace
transforms) later in the book, we want to illustrate the basic idea with probability
generating functions that are designed for N0-valued random variables.

In the first section, we give the basic definitions and derive simple properties.
The next two sections are devoted to two applications: The Poisson approximation
theorem and a simple investigation of Galton–Watson branching processes.

3.1 Definition and Examples

Definition 3.1 (Probability generating function) Let X be an N0-valued random
variable. The (probability) generating function (p.g.f.) of PX (or, loosely speaking,
of X) is the map ψPX =ψX defined by (with the understanding that 00 = 1)

ψX : [0,1]→ [0,1], z �→
∞∑

n=0

P[X = n]zn. (3.1)

Theorem 3.2

(i) ψX is continuous on [0,1] and infinitely often continuously differentiable on
(0,1). For n ∈N, the nth derivative ψ(n)X fulfills
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lim
z↑1
ψ
(n)
X (z)=

∞∑

k=n
P[X = k] · k(k − 1) . . . (k − n+ 1), (3.2)

where both sides can equal ∞.
(ii) The distribution PX of X is uniquely determined by ψX .

(iii) For any r ∈ (0,1), ψX is uniquely determined by countably many values
ψX(xi), xi ∈ [0, r], i ∈ N. If the series in (3.1) converges for some z > 1, then
the statement is also true for any r ∈ (0, z) and we have

lim
x↑1
ψ
(n)
X (x)=ψ(n)X (1) <∞ for n ∈N.

In this case, ψX is uniquely determined by the derivatives ψ(n)X (1), n ∈N.

Proof The statements follow from the elementary theory of power series. For the
first part of (iii), see, e.g. [148, Theorem 8.5]. �

Theorem 3.3 (Multiplicativity of generating functions) If X1, . . . ,Xn are inde-
pendent and N0-valued random variables, then

ψX1+...+Xn =
n∏

i=1

ψXi .

Proof Let z ∈ [0,1) and write ψX1(z)ψX2(z) as a Cauchy product

ψX1(z)ψX2(z)=
( ∞∑

n=0

P[X1 = n]zn
)( ∞∑

n=0

P[X2 = n]zn
)

=
∞∑

n=0

zn

(
n∑

m=0

P[X1 =m]P[X2 = n−m]
)

=
∞∑

n=0

zn
n∑

m=0

P[X1 =m, X2 = n−m]

=
∞∑

n=0

P[X1 +X2 = n]zn =ψX1+X2(z).

Inductively, the claim follows for all n≥ 2. �

Example 3.4

(i) Let X be bn,p-distributed for some n ∈N and let p ∈ [0,1]. Then

ψX(z)=
n∑

m=0

(
n

m

)

pm(1− p)n−mzm = (pz+ (1− p))n. (3.3)
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(ii) If X,Y are independent, X ∼ bm,p and Y ∼ bn,p , then, by Theorem 3.3,

ψX+Y (z)=
(
pz+ (1− p))m(pz+ (1− p))n = (pz+ (1− p))m+n.

Hence, by Theorem 3.2(ii), X + Y is bm+n,p-distributed and thus (by The-
orem 2.31)

bm,p ∗ bn,p = bm+n,p.
(iii) Let X and Y be independent Poisson random variables with parameters λ≥ 0

and μ≥ 0, respectively. That is, P[X = n] = e−λλn/n! for n ∈N0. Then

ψPoiλ(z)=
∞∑

n=0

e−λ (λz)
n

n! = eλ(z−1). (3.4)

Hence X+ Y has probability generating function

ψPoiλ(z) ·ψPoiμ(z)= eλ(z−1)eμ(z−1) =ψPoiλ+μ(z).

Thus X+ Y ∼ Poiλ+μ. We conclude that

Poiλ ∗ Poiμ = Poiλ+μ. (3.5)

(iv) Let X1, . . . ,Xn ∼ γp be independent geometrically distributed random vari-
ables with parameter p ∈ (0,1). Define Y = X1 + . . . + Xn. Then, for any
z ∈ [0,1],

ψX1(z)=
∞∑

k=0

p(1− p)kzk = p

1− (1− p)z . (3.6)

By the generalized binomial theorem (see Lemma 3.5 with α =−n), Theo-
rem 3.3 and (3.6), we have

ψY (z)=ψX1(z)
n = pn

(1− (1− p)z)n

=
∞∑

k=0

pn
(−n
k

)

(−1)k(1− p)kzk

=
∞∑

k=0

b−n,p
({k})zk.

Here, for r ∈ (0,∞) and p ∈ (0,1],

b−r,p =
∞∑

k=0

(−r
k

)

(−1)kpr(1− p)kδk (3.7)
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is the negative binomial distribution with parameters r and p. By the unique-
ness theorem for probability generating functions, we get Y ∼ b−n,p; hence (see
Definition 2.29 for the nth convolution power) b−n,p = γ ∗np . ♦

Lemma 3.5 (Generalized binomial theorem) For α ∈ R and k ∈ N0, we define the
binomial coefficient

(
α

k

)

:= α · (α − 1) . . . (α − k+ 1)

k! . (3.8)

Then the generalized binomial theorem holds:

(1+ x)α =
∞∑

k=0

(
α

k

)

xk for all x ∈C with |x|< 1. (3.9)

In particular, we have

1√
1− x =

∞∑

n=0

(
2n

n

)

4−nxn for all x ∈C with |x|< 1. (3.10)

Proof The map f : x �→ (1 + x)α is holomorphic up to possibly a singularity at
x =−1. Hence it can be developed in a power series about 0 with radius of conver-
gence at least 1:

f (x)=
∞∑

k=0

f (k)(0)

k! xk for |x|< 1.

For k ∈ N0, the kth derivative is f (k)(0) = α(α − 1) . . . (α − k + 1). Hence (3.9)
holds.

The additional claim follows by the observation that (for α = −1/2) we have(−1/2
n

)= (2n
n

)
(−4)−n. �

Exercise 3.1.1 Show that b−r,p ∗ b−s,p = b−r+s,p for r, s ∈ (0,∞) and p ∈ (0,1].

Exercise 3.1.2 Give an example for two different probability generating func-
tions that coincide at countably many points xi ∈ (0,1), i ∈ N. (That is, in Theo-
rem 3.2(iii), the assumption ψ(z) <∞ for some z > 1 cannot be dropped.)

3.2 Poisson Approximation

Lemma 3.6 Let μ and (μn)n∈N be probability measures on (N0,2N0) with gener-
ating functions ψ and ψn,n ∈N. Then the following statements are equivalent.
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(i) μn({k}) n→∞−→ μ({k}) for all k ∈N0.
(ii) μn(A)

n→∞−→ μ(A) for all A⊂N0.
(iii) ψn(z)

n→∞−→ ψ(z) for all z ∈ [0,1].
(iv) ψn(z)

n→∞−→ ψ(z) for all z ∈ [0, η) for some η ∈ (0,1).
We write μn

n→∞−→ μ if any of the four conditions holds and say that (μn)n∈N con-
verges weakly to μ.

Proof (i) =⇒ (ii) Fix ε > 0 and choose N ∈N such that

μ
({N + 1,N + 2, . . .})< ε

4
.

For sufficiently large n0 ∈N, we have

N∑

k=0

∣
∣μn
({k})−μ({k})∣∣< ε

4
for all n≥ n0.

In particular, for any n ≥ n0, we have μn({N + 1,N + 2, . . .}) < ε
2 . Hence, for

n≥ n0,
∣
∣μn(A)−μ(A)

∣
∣≤ μn

({N + 1,N + 2, . . .})+μ({N + 1,N + 2, . . .})

+
∑

k∈A∩{0,...,N}

∣
∣μn
({k})−μ({k})∣∣

< ε.

(ii) =⇒ (i) This is trivial.
(i) ⇐⇒ (iii) ⇐⇒ (iv) This follows from the elementary theory of power se-

ries. �

Let (pn,k)n,k∈N be numbers with pn,k ∈ [0,1] such that the limit

λ := lim
n→∞

∞∑

k=1

pn,k ∈ (0,∞) (3.11)

exists and such that limn→∞
∑∞
k=1 p

2
n,k = 0 (e.g., pn,k = λ/n for k ≤ n and

pn,k = 0 for k > n). For each n ∈ N, let (Xn,k)k∈N be an independent family of
random variables with Xn,k ∼ Berpn,k .

Define

Sn :=
∞∑

l=1

Xn,l and Snk :=
k∑

l=1

Xn,l for k ∈N.

Theorem 3.7 (Poisson approximation) Under the above assumptions, the distri-
butions (PSn)n∈N converge weakly to the Poisson distribution Poiλ.
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Proof The p.g.f. of the Poisson distribution is ψ(z) = eλ(z−1) (see (3.4)). On
the other hand, Sn − Snk and Snk are independent for any k ∈ N; hence ψSn =
ψSnk

·ψSn−Snk . Now, for any z ∈ [0,1],

1≥ ψSn(z)
ψSnk
(z)

=ψSn−Snk (z)≥ 1− P
[
Sn − Snk ≥ 1

]≥ 1−
∞∑

l=k+1

pn,l
k→∞−→ 1,

hence

ψSn(z)= lim
k→∞ψS

n
k
(z)=

∞∏

l=1

(
pn,lz+ (1− pn,l)

)

= exp

( ∞∑

l=1

log
(
1+ pn,l(z− 1)

)
)

.

Note that | log(1+ x)− x| ≤ x2 for |x| < 1
2 . By assumption, maxl∈N pn,l → 0

for n→∞; hence, for sufficiently large n,

∣
∣
∣
∣
∣

( ∞∑

l=1

log
(
1+ pn,l(z− 1)

)
)

−
(

(z− 1)
∞∑

l=1

pn,l

)∣
∣
∣
∣
∣

≤
∞∑

l=1

p2
n,l ≤

( ∞∑

l=1

pn,l

)

max
l∈N

pn,l
n→∞−→ 0.

Together with (3.11), we infer

lim
n→∞ψSn(z)= lim

n→∞ exp

(

(z− 1)
∞∑

l=1

pn,l

)

= eλ(z−1).
�

3.3 Branching Processes

Let T ,X1,X2, . . . be independent N0-valued random variables. What is the distri-
bution of S :=∑T

n=1Xn? First of all, note that S is measurable since

{S = k} =
∞⋃

n=0

{T = n} ∩ {X1 + . . .+Xn = k}.

Theorem 3.8 If the random variables X1,X2, . . . are also identically distributed,
then the probability generating function of S is given by ψS(z)=ψT (ψX1(z)).
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Proof We compute

ψS(z)=
∞∑

k=0

P[S = k]zk

=
∞∑

k=0

∞∑

n=0

P[T = n]P[X1 + . . .+Xn = k]zk

=
∞∑

n=0

P[T = n]ψX1(z)
n =ψT

(
ψX1(z)

)
.

�

Now assume that p0,p1,p2, . . . ∈ [0,1] are such that
∑∞
k=0 pk = 1. Let

(Xn,i)n,i∈N0 be an independent family of random variables with P[Xn,i = k] = pk
for all i, k, n ∈N0.

Let Z0 = 1 and

Zn =
Zn−1∑

i=1

Xn−1,i for n ∈N.

Zn can be interpreted as the number of individuals in the nth generation of a
randomly developing population. The ith individual in the nth generation has Xn,i
offspring (in the (n+ 1)th generation).

Definition 3.9 (Zn)n∈N0 is called a Galton–Watson process or branching process
with offspring distribution (pk)k∈N0 .

Probability generating functions are an important tool for the investigation of
branching processes. Hence, let

ψ(z)=
∞∑

k=0

pkz
k

be the p.g.f. of the offspring distribution and let ψ ′ be its derivative. Recursively,
define the nth iterate of ψ by

ψ1 :=ψ and ψn :=ψ ◦ψn−1 for n= 2,3, . . . .

Finally, let ψZn be the p.g.f. of Zn.

Lemma 3.10 ψn =ψZn for all n ∈N.

Proof For n= 1, the statement is true by definition. For n ∈N, we conclude induc-
tively by Theorem 3.8 that ψZn+1 =ψ ◦ψZn =ψ ◦ψn =ψn+1. �
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Clearly, the probability qn := P[Zn = 0] that Z is extinct by time n is monotone
increasing in n. We denote by

q := lim
n→∞P[Zn = 0]

the extinction probability; that is, the probability that the population will eventually
die out.

Under what conditions do we have q = 0, q = 1, or q ∈ (0,1)? Clearly, q ≥ p0.
On the other hand, if p0 = 0, then Zn is monotone in n; hence q = 0.

Theorem 3.11 (Extinction probability of the Galton–Watson process) Assume
p1 �= 1. Then:

(i) F := {r ∈ [0,1] :ψ(r)= r} = {q,1}.
(ii) The following equivalences hold:

q < 1 ⇐⇒ lim
z↑1
ψ ′(z) > 1 ⇐⇒

∞∑

k=1

kpk > 1.

Proof (i) We have ψ(1)= 1; hence 1 ∈ F . Note that

qn =ψn(0)=ψ(qn−1) for all n ∈N

and qn ↑ q . Since ψ is continuous, we infer

ψ(q)=ψ
(

lim
n→∞qn

)
= lim
n→∞ψ(qn)= lim

n→∞qn+1 = q.

Thus q ∈ F . If r ∈ F is an arbitrary fixed point of ψ , then r ≥ 0 = q0. Since ψ is
monotone increasing, it follows that r = ψ(r) ≥ ψ(q0) = q1. Inductively, we get
r ≥ qn for all n ∈N0; that is, r ≥ q . We conclude q =minF .

(ii) For the first equivalence, we distinguish two cases.

Case 1: limz↑1ψ
′(z)≤ 1. Since ψ is strictly convex, in this case, we have ψ(z) > z

for all z ∈ [0,1); hence F = {1}. We conclude q = 1.
Case 2: limz↑1ψ

′(z) > 1. As ψ is strictly convex and since ψ(0) ≥ 0, there is a
unique r ∈ [0,1) such that ψ(r)= r . Hence F = {r,1} and q =minF = r .

The second equivalence in (ii) follows by (3.2). �

For further reading, we refer to [5].



Chapter 4
The Integral

Based on the notions of measure spaces and measurable maps, we introduce the
integral of a measurable map with respect to a general measure. This generalizes
the Lebesgue integral that can be found in textbooks on calculus. Furthermore, the
integral is a cornerstone in a systematic theory of probability that allows for the
definition and investigation of expected values and higher moments of random vari-
ables.

In this chapter, we define the integral by an approximation scheme with simple
functions. Then we deduce basic statements such as Fatou’s lemma. Other important
convergence theorems for integrals follow in Chapters 6 and 7.

4.1 Construction and Simple Properties

In the following, (Ω,A,μ) will always be a measure space. We denote by E the
vector space of simple functions (see Definition 1.93) on (Ω,A) and by

E
+ := {f ∈ E : f ≥ 0}

the cone (why this name?) of nonnegative simple functions. If

f =
m∑

i=1

αi1Ai (4.1)

for some m ∈ N and for α1, . . . , αm ∈ (0,∞), and for mutually disjoint sets
A1, . . . ,Am ∈A, then (4.1) is said to be a normal representation of f .

Lemma 4.1 If f =∑m
i=1 αi1Ai and f =∑n

j=1 βj1Bj are two normal representa-
tions of f ∈ E

+, then
m∑

i=1

αiμ(Ai)=
n∑

j=1

βjμ(Bj ).
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© Springer-Verlag London 2014

85

http://dx.doi.org/10.1007/978-1-4471-5361-0_4


86 4 The Integral

Proof If μ(Ai ∩ Bj ) > 0 for some i and j , then Ai ∩ Bj �= ∅, and f (ω) = αi =
βj for any ω ∈ Ai ∩ Bj . Furthermore, clearly Ai ⊂⋃nj=1Bj if αi �= 0, and Bj ⊂⋃m
i=1Ai if βj �= 0. We conclude that

m∑

i=1

αiμ(Ai)=
m∑

i=1

n∑

j=1

αiμ(Ai ∩Bj )

=
m∑

i=1

n∑

j=1

βjμ(Ai ∩Bj )=
n∑

j=1

βjμ(Bj ).
�

This lemma allows us to make the following definition (since the value of I (f )
does not depend on the choice of the normal representation).

Definition 4.2 Define the map I : E+ → [0,∞] by

I (f )=
m∑

i=1

αiμ(Ai)

if f has the normal representation f =∑m
i=1 αi1Ai .

Lemma 4.3 The map I is positive linear and monotone increasing: Let f,g ∈ E
+

and α ≥ 0. Then the following statements hold.

(i) I (αf )= αI (f ).
(ii) I (f + g)= I (f )+ I (g).

(iii) If f ≤ g, then I (f )≤ I (g).

Proof This is left as an exercise. �

Definition 4.4 (Integral) If f :Ω→[0,∞] is measurable, then we define the inte-
gral of f with respect to μ by

∫

f dμ := sup
{
I (g) : g ∈ E

+, g ≤ f }.

Remark 4.5 By Lemma 4.3(iii), we have I (f )= ∫ f dμ for any f ∈ E
+. Hence the

integral is an extension of the map I from E
+ to the set of nonnegative measurable

functions. ♦

If f,g :Ω→ R with f (ω) ≤ g(ω) for any ω ∈Ω , then we write f ≤ g. Anal-
ogously, we write f ≥ 0 and so on. On the other hand, we write “f ≤ g almost
everywhere” if the weaker condition holds that there exists a μ-null set N such that
f (ω)≤ g(ω) for any ω ∈Nc .

Lemma 4.6 Let f,g,f1, f2, . . . be measurable maps Ω→[0,∞]. Then:
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(i) (Monotonicity) If f ≤ g, then
∫
f dμ≤ ∫ g dμ.

(ii) (Monotone convergence) If fn ↑ f , then the integrals also converge:
∫
fn dμ ↑∫

f dμ.
(iii) (Linearity) If α,β ∈ [0,∞], then

∫

(αf + βg)dμ= α
∫

f dμ+ β
∫

g dμ,

where we use the convention ∞· 0 := 0.

Proof (i) This is immediate from the definition of the integral.
(ii) By (i), we have

lim
n→∞

∫

fn dμ= sup
n∈N

∫

fn dμ≤
∫

f dμ.

Hence we only have to show
∫
f dμ≤ supn∈N

∫
fn dμ.

Let g ∈ E
+ with g ≤ f . It is enough to show that

sup
n∈N

∫

fn dμ≥
∫

g dμ. (4.2)

Assume that the simple function g has the normal representation g =∑N
i=1 αi1Ai

for some α1, . . . , αN ∈ (0,∞) and mutually disjoint sets A1, . . . ,AN ∈A. For any
ε > 0 and n ∈N, define the set

Bεn =
{
fn ≥ (1− ε)g

}
.

Since fn ↑ f ≥ g, we have Bεn ↑Ω for any ε > 0. Hence, by (i), for any ε > 0,

∫

fn dμ≥
∫
(
(1− ε)g1Bεn

)
dμ

=
N∑

i=1

(1− ε)αiμ
(
Ai ∩Bεn

) n→∞−→
N∑

i=1

(1− ε)αiμ(Ai)

= (1− ε)
∫

g dμ.

Letting ε ↓ 0 implies (4.2) and hence the claim (ii).
(iii) By Theorem 1.96, any nonnegative measurable map is a monotone limit of

simple functions. Hence there are sequences (fn)n∈N and (gn)n∈N in E
+ such that

fn ↑ f and gn ↑ g. Thus also (αfn + βgn) ↑ αf + βg. By (ii) and Lemma 4.3, this
implies
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∫

(αf + βg)dμ= lim
n→∞

∫

(αfn + βgn)dμ

= α lim
n→∞

∫

fn dμ+ β lim
n→∞

∫

gn dμ= α
∫

f dμ+ β
∫

g dμ.

�

For any measurable map f :Ω→ R, we have f+ ≤ |f | and f− ≤ |f |, which
implies

∫
f± dμ ≤ ∫ |f |dμ. In particular, if

∫ |f |dμ <∞, then also
∫
f− dμ <

∞ and
∫
f+ dμ <∞. Thus we can make the following definition that is the final

definition for the integral of measurable functions.

Definition 4.7 (Integral of measurable functions) A measurable function
f :Ω→R is called μ-integrable if

∫ |f |dμ <∞. We write

L1(μ) := L1(Ω,A,μ) :=
{

f :Ω→R : f is measurable and
∫

|f |dμ <∞
}

.

For f ∈ L1(μ), we define the integral of f with respect to μ by
∫

f (ω)μ(dω) :=
∫

f dμ :=
∫

f+ dμ−
∫

f− dμ. (4.3)

If we only have
∫
f− dμ <∞ or

∫
f+ dμ <∞, then we also define

∫
f dμ by

(4.3). Here the values +∞ and −∞, respectively, are possible.

For A ∈A, we define
∫

A

f dμ :=
∫

(f 1A)dμ.

Theorem 4.8 Let f :Ω→[0,∞] be a measurable map.

(i) We have f = 0 almost everywhere if and only if
∫
f dμ= 0.

(ii) If
∫
f dμ <∞, then f <∞ almost everywhere.

Proof (i) “=⇒” Assume f = 0 almost everywhere. Let N = {ω : f (ω) > 0}. Then
f ≤∞ · 1N and n1N ↑∞ · 1N . From Lemma 4.6(i) and (ii), we infer

0≤
∫

f dμ≤
∫

(∞ · 1N)dμ= lim
n→∞

∫

n1N dμ= 0.

“⇐=” Let Nn = {f ≥ 1
n
}, n ∈N. Then Nn ↑N and

0=
∫

f dμ≥
∫

1

n
1Nn dμ=

μ(Nn)

n
.

Hence μ(Nn)= 0 for any n ∈N and thus μ(N)= 0.



4.1 Construction and Simple Properties 89

(ii) Let A = {ω : f (ω) =∞}. For n ∈ N, we have 1
n
f 1{f≥n} ≥ 1{f≥n}. Hence

Lemma 4.6(i) implies

μ(A)=
∫

1A dμ≤
∫

1{f≥n} dμ≤ 1

n

∫

f 1{f≥n} dμ≤ 1

n

∫

f dμ
n→∞−→ 0. �

Theorem 4.9 (Properties of the integral) Let f,g ∈ L1(μ).

(i) (Monotonicity) If f ≤ g almost everywhere, then
∫
f dμ≤ ∫ g dμ.

In particular, if f = g almost everywhere, then
∫
f dμ= ∫ g dμ.

(ii) (Triangle inequality) | ∫ f dμ| ≤ ∫ |f |dμ.
(iii) (Linearity) If α,β ∈R, then αf + βg ∈ L1(μ) and

∫

(αf + βg)dμ= α
∫

f dμ+ β
∫

g dμ.

This equation also holds if at most one of the integrals
∫
f dμ and

∫
g dμ is

infinite.

Proof (i) Clearly, f+ ≤ g+ and f− ≥ g− a.e. Hence, by Lemma 4.6(i),
∫

f+ dμ≤
∫

g+ dμ and
∫

f− dμ≥
∫

g− dμ.

This implies
∫

f dμ=
∫

f+ dμ−
∫

f− dμ≤
∫

g+ dμ−
∫

g− dμ=
∫

g dμ.

(ii) Since f+ + f− = |f |, Lemma 4.6(iii) yields
∣
∣
∣
∣

∫

f dμ

∣
∣
∣
∣=
∣
∣
∣
∣

∫

f+ dμ−
∫

f− dμ
∣
∣
∣
∣≤
∫

f+ dμ+
∫

f− dμ

=
∫
(
f+ + f−)dμ=

∫

|f |dμ.

(iii) Since |αf + βg| ≤ |α| · |f | + |β| · |g|, Lemma 4.6(i) and (iii) yield that
αf + βg ∈ L1(μ). In order to show linearity, it is enough to check the following
three properties.

(a)
∫
(f + g)dμ= ∫ f dμ+ ∫ g dμ.

(b)
∫
αf dμ= α ∫ f dμ for α ≥ 0.

(c)
∫
(−f )dμ=− ∫ f dμ.

(a) We have (f + g)+ − (f + g)− = f + g = f+ − f− + g+ − g−; hence
(f + g)+ + f− + g− = (f + g)− + f+ + g+. By Lemma 4.6(iii), we infer
∫

(f +g)+ dμ+
∫

f− dμ+
∫

g− dμ=
∫

(f +g)− dμ+
∫

f+ dμ+
∫

g+ dμ.
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Hence
∫

(f + g)dμ=
∫

(f + g)+ dμ−
∫

(f + g)− dμ

=
∫

f+ dμ−
∫

f− dμ+
∫

g+ dμ−
∫

g− dμ

=
∫

f dμ+
∫

g dμ.

(b) For α ≥ 0, we have
∫

αf dμ=
∫

αf+ dμ−
∫

αf− dμ= α
∫

f+ dμ− α
∫

f− dμ= α
∫

f dμ.

(c) We have
∫

(−f )dμ=
∫

(−f )+ dμ−
∫

(−f )− dμ

=
∫

f− dμ−
∫

f+ dμ=−
∫

f dμ.

The supplementary statement is simple and is left as an exercise. �

Theorem 4.10 (Image measure) Let (Ω,A) and (Ω ′,A′) be measurable spaces, let
μ be a measure on (Ω,A) and letX :Ω→Ω ′ be measurable. Let μ′ = μ◦X−1 be
the image measure of μ under the mapX. Assume that f :Ω ′ →R is μ′-integrable.
Then f ◦X ∈ L1(μ) and

∫

(f ◦X)dμ=
∫

f d
(
μ ◦X−1).

In particular, if X is a random variable on (Ω,A,P), then
∫

f (x)P[X ∈ dx] :=
∫

f (x)PX[dx] =
∫

f dPX =
∫

f
(
X(ω)

)
P[dω].

Proof This is left as an exercise. �

Example 4.11 (Discrete measure space) Let (Ω,A) be a discrete measurable space
and let μ=∑ω∈Ω αωδω for certain numbers αω ≥ 0, ω ∈Ω . A map f :Ω→R is
integrable if and only if

∑
ω∈Ω |f (ω)|αω <∞. In this case,
∫

f dμ=
∑

ω∈Ω
f (ω)αω.

♦

Definition 4.12 (Lebesgue integral) Let λ be the Lebesgue measure on R
n and

let f : Rn→ R be measurable with respect to B∗(Rn)–B(R) (here B∗(Rn) is the
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Lebesgue σ -algebra; see Example 1.71) and λ-integrable. Then we call

∫

f dλ

the Lebesgue integral of f . If A ∈ B(Rn) and f : Rn → R is measurable (or
f : A → R is B∗(Rn)|A–B(R)-measurable and hence f 1A is B∗(Rn)–B(R)-
measurable), then we write

∫

A

f dλ :=
∫

f 1A dλ.

Definition 4.13 Let μ be a measure on (Ω,A) and let f :Ω→ [0,∞) be a mea-
surable map. Define the measure ν by

ν(A) :=
∫

(1Af )dμ for A ∈A.

We say that fμ := ν has density f with respect to μ.

Remark 4.14 We still have to show that ν is a measure. To this end, we check the
conditions of Theorem 1.36. Clearly, ν(∅) = 0. Finite additivity follows from ad-
ditivity of the integral (Lemma 4.6(iii)). Lower semicontinuity follows from the
monotone convergence theorem (Theorem 4.20). ♦

Theorem 4.15 We have g ∈ L1(fμ) if and only if (gf ) ∈ L1(μ). In this case,

∫

g d(fμ)=
∫

(gf )dμ.

Proof First note that the statement holds for indicator functions. Then, with the
usual arguments, extend it step by step first to simple functions, then to nonnegative
measurable functions and finally to signed measurable functions. �

Definition 4.16 For measurable f :Ω→R, define

‖f ‖p :=
(∫

|f |p dμ
)1/p

, if p ∈ [1,∞),

and

‖f ‖∞ := inf
{
K ≥ 0 : μ({|f |>K})= 0

}
.

Further, for any p ∈ [1,∞], define the vector space

Lp(μ) := {f :Ω→R is measurable and ‖f ‖p <∞
}
.
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Theorem 4.17 The map ‖ ·‖1 is a seminorm on L1(μ); that is, for all f,g ∈ L1(μ)

and α ∈R,

‖αf ‖1 = |α| · ‖f ‖1,

‖f + g‖1 ≤ ‖f ‖1 + ‖g‖1,

‖f ‖1 ≥ 0 for all f and ‖f ‖1 = 0 if f = 0 a.e.

(4.4)

Proof The first and the third statements follow from Theorem 4.9(iii) and The-
orem 4.8(i). The second statement follows from Theorem 4.9(i) since |f + g| ≤
|f | + |g|; hence

‖f + g‖1 =
∫

|f + g|dμ≤
∫

|f |dμ+
∫

|g|dμ= ‖f ‖1 + ‖g‖1. �

Remark 4.18 In fact, ‖·‖p is a seminorm on Lp(μ) for all p ∈ [1,∞]. Linearity and
positivity are obvious, and the triangle inequality is a consequence of Minkowski’s
inequality, which we will show in Theorem 7.17. ♦

Theorem 4.19 Let μ(Ω) <∞ and 1 ≤ p′ ≤ p ≤∞. Then Lp(μ) ⊂ Lp′(μ) and
the canonical inclusion i : Lp(μ) ↪→ Lp′(μ), f �→ f is continuous.

Proof Let f ∈ L∞(μ) and p′ ∈ [1,∞). Then |f |p′ ≤ ‖f ‖p′∞ almost everywhere;
hence

∫

|f |p′ dμ≤
∫

‖f ‖p′∞ dμ= ‖f ‖p
′
∞ ·μ(Ω) <∞.

Thus ‖f −g‖p′ ≤ μ(Ω)1/p′ ‖f −g‖∞ for f,g ∈ L∞(μ) and hence i is continuous.
Now let p,p′ ∈ [1,∞) with p′ < p and let f ∈ Lp(μ). Then |f |p′ ≤ 1+ |f |p;

hence
∫

|f |p′ dμ≤ μ(Ω)+
∫

|f |p dμ <∞.
Finally, let f,g ∈ Lp(μ). For any c > 0, we have

|f − g|p′ = |f − g|p′1{|f−g|≤c} + |f − g|p′1{|f−g|>c} ≤ cp′ + cp′−p|f − g|p.
In particular, letting c= ‖f − g‖p we obtain

‖f − g‖p′ ≤
(
cp

′
μ(Ω)+ cp′−p‖f − g‖pp

)1/p′ = (1+μ(Ω))1/p′‖f − g‖p.
Hence, also in this case, i is continuous. �

Exercise 4.1.1 (Sequence spaces) Now we do not assume μ(Ω) <∞. Assume
there exists an a > 0 such that for any A ∈A either μ(A)= 0 or μ(A) ≥ a. Show
that the reverse inclusion to Theorem 4.19 holds,

Lp′(μ)⊂ Lp(μ) if 1≤ p′ ≤ p ≤∞. (4.5)
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Exercise 4.1.2 Let 1≤ p′ < p ≤∞ and let μ be σ -finite but not finite. Show that
Lp(μ) \Lp′(μ) �= ∅.

4.2 Monotone Convergence and Fatou’s Lemma

What are the conditions that allow the interchange of limit and integral? In this
section, we derive two simple criteria that prepare us for important applications such
as the law of large numbers (Chapter 5). More general criteria will be presented in
Chapter 6.

Theorem 4.20 (Monotone convergence, Beppo Levi theorem) Let f1, f2, . . . ∈
L1(μ) and let f :Ω→R be measurable. Assume fn ↑ f a.e. for n→∞. Then

lim
n→∞

∫

fn dμ=
∫

f dμ,

where both sides can equal +∞.

Proof LetN ⊂Ω be a null set such that fn(ω) ↑ f (ω) for all ω ∈Nc . The functions
f ′n := (fn − f1)1Nc and f ′ := (f − f1)1Nc are nonnegative and fulfill f ′n ↑ f ′.
By Lemma 4.6(ii), we have

∫
f ′n dμ

n→∞−→ ∫
f ′ dμ. Since fn = f ′n + f1 a.e. and

f = f ′ + f1 a.e., Theorem 4.9(iii) implies
∫

fn dμ=
∫

f1 dμ+
∫

f ′n dμ
n→∞−→

∫

f1 dμ+
∫

f ′ dμ=
∫

f dμ. �

Theorem 4.21 (Fatou’s lemma) Let f ∈ L1(μ) and let f1, f2, . . . be measurable
with fn ≥ f a.e. for all n ∈N. Then

∫ (
lim inf
n→∞ fn

)
dμ≤ lim inf

n→∞

∫

fn dμ.

Proof By considering (fn−f )n∈N, we may assume fn ≥ 0 a.e. for all n ∈N. Define

gn := inf
m≥nfm.

Then gn ↑ lim infm→∞ fm as n→∞, and hence by the monotone convergence
theorem (Lemma 4.6(ii)) and by monotonicity, gn ≤ fn (thus

∫
gn dμ≤

∫
fn dμ),

∫

lim inf
n→∞ fn dμ= lim

n→∞

∫

gn dμ≤ lim inf
n→∞

∫

fn dμ. �

Example 4.22 (Petersburg game) By a concrete example, we show that in Fatou’s
lemma the assumption of an integrable minorant is essential. Consider a gamble
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in a casino where in each round the player’s bet either gets doubled or lost. For
example, roulette is such a game. If the player bets on “red”, she gets the stake back
doubled if the ball lands in a red pocket. Otherwise the bet is lost (for the player,
not for the casino). There are 37 pockets (in European roulettes), 18 of which are
red, 18 are black and one is green (the zero). Hence, by symmetry, the chance of
winning should be p = 18/37 < 1

2 . Now assume the gamble is played again and
again. We can model this on a probability space (Ω,A,P) where Ω = {−1,1}N,
A = (2{−1,1})⊗N is the σ -algebra generated by the cylinder sets [ω1, . . . ,ωn] and
P= ((1− p)δ−1 + pδ1)⊗N is the product measure. Denote by Dn :Ω→ {−1,1},
ω �→ ωn the result of the nth game (for n ∈ N). If in the ith game the player makes
a (random) stake of Hi euros, then the cumulative profit after the nth game is

Sn =
n∑

i=1

HiDi.

Now assume the gambler adopts the following doubling strategy. In the first round,
the stake is H1 = 1. If she wins, then she does not bet any money in the subsequent
games; that is, Hn = 0 for all n≥ 2 if D1 = 1. On the other hand, if she loses, then
in the second game she doubles the stake; that is, H2 = 2 if D1 = −1. If she wins
the second game, she leaves the casino and otherwise doubles the stake again and
so on. Hence we can describe the strategy by the formula

Hn =
{

0, if there is an i ∈ {1, . . . , n− 1} with Di = 1,
2n−1, else.

Note that Hn depends on D1, . . . ,Dn−1 only. That is, it is measurable with respect
to σ(D1, . . . ,Dn−1). Clearly, it is a crucial requirement for any strategy that the
decision for the next stake depend only on the information available at that time and
not depend on the future results of the gamble.

The probability of no win until the nth game is (1−p)n; hence P[Sn = 1−2n] =
(1− p)n and P[Sn = 1] = 1− (1− p)n. Hence we expect an average gain of

∫

Sn dP= (1− p)n(1− 2n
)+ (1− (1− p)n)= 1− (2(1− p))n ≤ 0

since p ≤ 1
2 (in the profitable casinos). We define

S =
{−∞, if − 1=D1 =D2 = . . . ,

1, else.

Then Sn
n→∞−→ S a.s. but limn→∞

∫
Sn dP <

∫
S dP = 1 since S = 1 a.s. By Fa-

tou’s lemma, this is possible only if there is no integrable minorant for the sequence
(Sn)n∈N. If we define S̃ := inf{Sn : n ∈N}, then indeed

P
[
S̃ = 1− 2n−1]= P[D1 = . . .=Dn−1 =−1 and Dn = 1] = p(1− p)n−1.

Hence
∫
S̃ dP=∑∞

n=1(1− 2n−1)p(1− p)n−1 =−∞ since p ≤ 1
2 . ♦
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Exercise 4.2.1 Let (Ω,A,μ) be a measure space and let f ∈ L1(μ). Show that for
any ε > 0, there is an A ∈A with μ(A) <∞ and | ∫

A
f dμ− ∫ f dμ|< ε.

Exercise 4.2.2 Let f1, f2, . . . ∈ L1(μ) be nonnegative and such that

limn→∞
∫
fn dμ exists. Assume there exists a measurable f with fn

n→∞−→ f

μ-almost everywhere. Show that f ∈ L1(μ) and

lim
n→∞

∫

|fn − f |dμ= lim
n→∞

∫

fn dμ−
∫

f dμ.

Exercise 4.2.3 Let f ∈ L1([0,∞), λ) be a Lebesgue integrable function on [0,∞).
Show that for λ-almost all t ∈ [0,∞) the series

∑∞
n=1 f (nt) converges absolutely.

Exercise 4.2.4 Let λ be the Lebesgue measure on R and let A be a Borel set with
λ(A) <∞. Show that for any ε > 0, there is a compact set C ⊂ A, a closed set
D ⊂R \A and a continuous map ϕ :R→[0,1] with 1C ≤ ϕ ≤ 1R\D and such that
‖1A − ϕ‖1 < ε.

Hint: Use the regularity of Lebesgue measure (Remark 1.67).

Exercise 4.2.5 Let λ be the Lebesgue measure on R, p ∈ [1,∞) and let
f ∈ Lp(λ). Show that for any ε > 0, there is a continuous function h : R→ R

such that ‖f − h‖p < ε.
Hint: Use Exercise 4.2.4 to show the assertion first for indicator functions, then

for simple functions and finally for general f ∈ Lp(λ).

Exercise 4.2.6 Let λ be the Lebesgue measure on R, p ∈ [1,∞) and let f ∈ Lp(λ).
A map h : R→ R is called a step function if there exist n ∈ N and numbers t0 <
t1 < . . . < tn and α1, . . . , αn such that h=∑n

k=1 αk1(tk−1,tk].
Show that for any ε > 0, there exists a step function h such that ‖f − h‖p < ε.
Hint: Use the approximation theorem for measures (Theorem 1.65) with the

semiring of left open intervals to show the assertion first for measurable indicator
functions. Then use the approximation arguments as in Exercise 4.2.5.

4.3 Lebesgue Integral Versus Riemann Integral

We show that for Riemann integrable functions the Lebesgue integral and the Rie-
mann integral coincide.

Let I = [a, b] ⊂R be an interval and let λ be the Lebesgue measure on I . Further,
consider sequences t = (tn)n∈N of partitions tn = (tni )i=0,...,n of I (i.e., a = tn0 <
tn1 < . . . < t

n
n = b) that get finer and finer. That is,

∣
∣tn
∣
∣ :=max

{
tni − tni−1 : i = 1, . . . , n

} n→∞−→ 0.



96 4 The Integral

Assume that for any n ∈ N, the partition tn+1 is a refinement of tn; that is,
{tn0 , . . . , tnn } ⊂ {tn+1

0 , . . . , tn+1
n+1 }.

For any function f : I → R and any n ∈ N, define the nth lower sum and upper
sum, respectively, by

Ltn(f ) :=
n∑

i=1

(
tni − tni−1

)
inff

([
tni−1, t

n
i

))
,

U tn(f ) :=
n∑

i=1

(
tni − tni−1

)
supf

([
tni−1, t

n
i

))
.

A function f : I → R is called Riemann integrable if there exists a t such that
the limits of the lower sums and upper sums are finite and coincide. In this case, the
value of the limit does not depend on the choice of t , and the Riemann integral of f
is defined as (see, e.g., [148])

∫ b

a

f (x) dx := lim
n→∞L

t
n(f )= lim

n→∞U
t
n(f ). (4.6)

Theorem 4.23 (Riemann integral and Lebesgue integral) Let f : I → R be Rie-
mann integrable on I = [a, b]. Then f is Lebesgue integrable on I with integral

∫

I

f dλ=
∫ b

a

f (x) dx.

Proof Choose t such that (4.6) holds. By assumption, there is an n ∈ N with
|Ltn(f )| <∞ and |Utn(f )| <∞. Hence f is bounded. We can thus replace f by
f + ‖f ‖∞ and hence assume that f ≥ 0. Define

gn := f (b)1{b} +
n∑

i=1

(
inff

([
tni−1, t

n
i

)))
1[tni−1,t

n
i )
,

hn := f (b)1{b} +
n∑

i=1

(
supf

([
tni−1, t

n
i

)))
1[tni−1,t

n
i )
.

As tn+1 is a refinement of tn, we have gn ≤ gn+1 ≤ hn+1 ≤ hn. Hence there exist
g and h with gn ↑ g and hn ↓ h. By construction, we have g ≤ h and

∫

I

g dλ= lim
n→∞

∫

I

gn dλ= lim
n→∞L

t
n(f )

= lim
n→∞U

t
n(f )= lim

n→∞

∫

I

hn dλ=
∫

I

hdλ.
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Hence h= g λ-a.e. By construction, g ≤ f ≤ h, and as limits of simple functions,
g and h are B(I )–B(R)-measurable. This implies that, for any α ∈R, the set

{f ≤ α} = ({g ≤ α} ∩ {g = h})� ({f ≤ α} ∩ {g �= h})

is the union of a B(I )-set with a subset of a null set and is hence in B(I )∗ (the
Lebesgue completion of B(I )). Hence f is B(I )∗-measurable. By the monotone
convergence theorem (Theorem 4.20), we conclude

∫

I

f dλ= lim
n→∞

∫

I

gn dλ=
∫ b

a

f (x) dx. �

Example 4.24 Let f : [0,1] → R, x �→ 1Q. Then clearly f is not Riemann inte-
grable since Ln(f ) = 0 and Un(f ) = 1 for all n ∈ N. On the other hand, f is
Lebesgue integrable with integral

∫
[0,1] f dλ= 0 because Q∩ [0,1] is a null set. ♦

Remark 4.25 An improperly Riemann integrable function f on a one-sided open
interval I = (a, b] or I = [0,∞) is not necessarily Lebesgue integrable. Indeed,
the improper integral

∫∞
0 f (x)dx := limn→∞

∫ n
0 f (x)dx is defined by a limit pro-

cedure that respects the geometry of R. The Lebesgue integral does not do that.
For example, the function f : [0,∞)→R, x �→ 1

1+x sin(x) is improperly Riemann
integrable but is not Lebesgue integrable since

∫
[0,∞) |f |dλ=∞. ♦

On the one hand, improperly Riemann integrable functions need not be Lebesgue
integrable. On the other hand, there are Lebesgue integrable functions that are not
Riemann integrable (such as 1Q). The geometric interpretation is that the Riemann
integral respects the geometry of the integration domain by being defined via slim-
mer and slimmer vertical rectangles. On the other hand, the Lebesgue integral re-
spects the geometry of the range by being defined via slimmer and slimmer hori-
zontal strips. In particular, the Lebesgue integral does not make any assumption on
the geometry of the domain and is thus more universal than the Riemann integral.
In order to underline this, we present the following theorem that will also be useful
later.

Theorem 4.26 Let f : Ω → R be measurable and f ≥ 0 almost everywhere.
Then

∞∑

n=1

μ
({f ≥ n})≤

∫

f dμ≤
∞∑

n=0

μ
({f > n}) (4.7)

and
∫

f dμ=
∫ ∞

0
μ
({f ≥ t})dt. (4.8)
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Proof Define f ′ = �f � and f ′′ = �f �. Then f ′ ≤ f ≤ f ′′ and hence
∫
f ′ dμ ≤∫

f dμ≤ ∫ f ′′ dμ. Now the first inequality of (4.7) follows from

∫

f ′ dμ=
∞∑

k=1

μ
({
f ′ = k}) · k =

∞∑

k=1

k∑

n=1

μ
({
f ′ = k})

=
∞∑

n=1

∞∑

k=n
μ
({
f ′ = k})

=
∞∑

n=1

μ
({
f ′ ≥ n})=

∞∑

n=1

μ
({f ≥ n}).

Similarly, we infer the second inequality in (4.7) from

∫

f ′′ dμ=
∞∑

n=1

μ
({
f ′′ ≥ n})=

∞∑

n=1

μ
({f > n− 1}).

If g(t) := μ({f ≥ t}) =∞ for some t > 0, then both sides in (4.8) equal ∞.
Hence, in the following, assume g(t) <∞ for all t > 0.

For ε > 0 and k ∈ N, define gε := g ∧ g(ε), f ε := f 1{f≥ε} and f εk = 2kf ε as
well as

αεk := 2−k
∞∑

n=1

μ
({
f ε ≥ n2−k

})
.

Then αεk
k→∞−→ ∫∞

0 gε(t) dt . Furthermore, by (4.7) (with f replaced by f εk ), we have

αεk = 2−k
∞∑

n=1

μ
({
f εk ≥ n

})≤
∫

f ε dμ

≤ 2−k
∞∑

n=0

μ
({
f εk > n

})= 2−k
∞∑

n=0

μ
({
f ε > n2−k

})≤ αεk + 2−kg(ε).

Since 2−kg(ε) k→∞−→ 0, we get

∫ ∞

0
gε(t) dt =

∫

f ε dμ.

Since f ε ↑ f and gε ↑ g for ε ↓ 0, the monotone convergence theorem implies
(4.8). �

Exercise 4.3.1 Let f : [0,1]→R be bounded. Show that f is (properly) Riemann
integrable if and only if f is λ-a.e. continuous.
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Exercise 4.3.2 If f : [0,1] → R is Riemann integrable, then f is Lebesgue mea-
surable. Give an example that shows that f need not be Borel measurable.

Hint: Without proof, use the existence of a subset of [0,1] that is not Borel mea-
surable. Based on this, construct a set that is not Borel and whose closure is a null
set.

Exercise 4.3.3 Let f : [0,1] → (0,∞) be Riemann integrable. Without using
the equivalence of the Lebesgue integral and the Riemann integral, show that
∫ 1

0 f (x)dx > 0.



Chapter 5
Moments and Laws of Large Numbers

The most important characteristic quantities of random variables are the median,
expectation and variance. For large n, the expectation describes the typical approxi-
mate value of the arithmetic mean (X1+ . . .+Xn)/n of i.i.d. random variables (law
of large numbers). In Chapter 15, we will see how the variance determines the size
of the typical deviations of the arithmetic mean from the expectation.

5.1 Moments

In the following, let (Ω,A,P) be a probability space.

Definition 5.1 Let X be a real-valued random variable.

(i) If X ∈ L1(P), then X is called integrable and we call

E[X] :=
∫

XdP

the expectation or mean of X. If E[X] = 0, then X is called centered. More
generally, we also write E[X] = ∫ XdP if only X− or X+ is integrable.

(ii) If n ∈N and X ∈ Ln(P), then the quantities

mk := E
[
Xk
]
, Mk := E

[|X|k] for any k = 1, . . . , n,

are called the kth moments and kth absolute moments, respectively, of X.
(iii) If X ∈ L2(P), then X is called square integrable and

Var[X] := E
[
X2]−E[X]2

is the variance of X. The number σ := √Var[X] is called the standard devia-
tion of X. Formally, we sometimes write Var[X] =∞ if E[X2] =∞.
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(iv) If X,Y ∈ L2(P), then we define the covariance of X and Y by

Cov[X,Y ] := E
[(
X−E[X])(Y −E[Y ])].

X and Y are called uncorrelated if Cov[X,Y ] = 0 and correlated otherwise.

Remark 5.2

(i) The definition in (ii) is sensible since, by virtue of Theorem 4.19, X ∈ Ln(P)
implies thatMk <∞ for all k = 1, . . . , n.

(ii) If X,Y ∈ L2(P), then XY ∈ L1(P) since |XY | ≤X2+Y 2. Hence the definition
in (iv) makes sense and we have

Cov[X,Y ] = E[XY ] −E[X]E[Y ].

In particular, Var[X] =Cov[X,X]. ♦

We collect the most important rules of expectations in a theorem. All of these
properties are direct consequences of the corresponding properties of the integral.

Theorem 5.3 (Rules for expectations) Let X,Y,Xn,Zn, n ∈N, be real integrable
random variables on (Ω,A,P).

(i) If PX = PY , then E[X] = E[Y ].
(ii) (Linearity) Let c ∈R. Then cX ∈ L1(P) and X+ Y ∈ L1(P) as well as

E[cX] = cE[X] and E[X+ Y ] = E[X] +E[Y ].
(iii) If X ≥ 0 almost surely, then

E[X] = 0 ⇐⇒ X = 0 almost surely.

(iv) (Monotonicity) If X ≤ Y almost surely, then E[X] ≤ E[Y ] with equality if
and only if X = Y almost surely.

(v) (Triangle inequality) |E[X]| ≤ E[|X|].
(vi) If Xn ≥ 0 almost surely for all n ∈N, then E[∑∞

n=1Xn] =
∑∞
n=1 E[Xn].

(vii) If Zn ↑Z for some Z, then E[Z] = limn→∞E[Zn] ∈ (−∞,∞].

Again probability theory comes into play when independence enters the stage;
that is, when we exit the realm of linear integration theory.

Theorem 5.4 (Independent random variables are uncorrelated) Let X,Y ∈ L1(P)
be independent. Then (XY) ∈ L1(P) and E[XY ] = E[X]E[Y ]. In particular, in-
dependent random variables are uncorrelated.
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Proof Assume first thatX and Y take only finitely many values. ThenXY also takes
only finitely many values and thus XY ∈ L1(P). It follows that

E[XY ] =
∑

z∈R\{0}
zP[XY = z]

=
∑

z∈R\{0}

∑

x∈R\{0}
x
z

x
P[X = x,Y = z/x]

=
∑

y∈R\{0}

∑

x∈R\{0}
xyP[X = x]P[Y = y]

=
(∑

x∈R
xP[X = x]

)(∑

y∈R
yP[Y = y]

)

= E[X]E[Y ].

For N ∈ N, the random variables XN := (2−N�2N |X|�) ∧ N and YN :=
(2−N�2N |Y |�) ∧ N take only finitely many values and are independent as well.
Furthermore, XN ↑ |X| and YN ↑ |Y |. By the monotone convergence theorem (The-
orem 4.20), we infer

E
[|XY |]= lim

N→∞E[XNYN ] = lim
N→∞E[XN ]E[YN ]

=
(

lim
N→∞E[XN ]

)(
lim
N→∞E[YN ]

)
= E
[|X|]E[|Y |]<∞.

Hence XY ∈ L1(P). Furthermore, we have shown the claim in the case where X
and Y are nonnegative. Hence (and since each of the families {X+, Y+}, {X−, Y+},
{X+, Y−} and {X−, Y−} is independent) we obtain

E[XY ] = E
[(
X+ −X−)(Y+ − Y−)]

= E
[
X+Y+

]−E
[
X−Y+

]−E
[
X+Y−

]+E
[
X−Y−

]

= E
[
X+
]
E
[
Y+
]−E

[
X−
]
E
[
Y+
]−E

[
X+
]
E
[
Y−
]+E

[
X−
]
E
[
Y−
]

= E
[
X+ −X−]E[Y+ − Y−]= E[X]E[Y ]. �

Theorem 5.5 (Wald’s identity) Let T ,X1,X2, . . . be independent real random vari-
ables in L1(P). Let P[T ∈ N0] = 1 and assume that X1,X2, . . . are identically dis-
tributed. Define

ST :=
T∑

i=1

Xi.

Then ST ∈ L1(P) and E[ST ] = E[T ]E[X1].
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Proof Define Sn = ∑n
i=1Xi for n ∈ N0. Then ST = ∑∞

n=1 Sn1{T=n}. By Re-
mark 2.15, the random variables Sn and 1{T=n} are independent for any n ∈ N and
thus uncorrelated. This implies (using the triangle inequality; see Theorem 5.3(v))

E
[|ST |

]=
∞∑

n=1

E
[|Sn|1{T=n}

]=
∞∑

n=1

E
[|Sn|

]
E[1{T=n}]

≤
∞∑

n=1

E
[|X1|

]
nP[T = n] = E

[|X1|
]
E[T ].

The same computation without absolute values yields the remaining part of the
claim. �

We collect some basic properties of the variance.

Theorem 5.6 Let X ∈ L2(P). Then:

(i) Var[X] = E[(X−E[X])2] ≥ 0.
(ii) Var[X] = 0 ⇐⇒ X = E[X] almost surely.

(iii) The map f : R → R, x �→ E[(X − x)2] is minimal at x0 = E[X] with
f (E[X])=Var[X].

Proof (i) This is a direct consequence of Remark 5.2(ii).
(ii) By Theorem 5.3(iii), we have E[(X − E[X])2] = 0 ⇐⇒ (X − E[X])2 = 0

a.s.
(iii) Clearly, f (x)= E[X2] − 2xE[X] + x2 =Var[X] + (x −E[X])2. �

Theorem 5.7 The map Cov : L2(P)×L2(P)→R is a positive semidefinite sym-
metric bilinear form and Cov[X,Y ] = 0 if Y is almost surely constant. The de-
tailed version of this concise statement is: Let X1, . . . ,Xm,Y1, . . . , Yn ∈ L2(P)
and α1, . . . , αm, β1, . . . , βn ∈R as well as d, e ∈R. Then

Cov

[

d +
m∑

i=1

αiXi, e+
n∑

j=1

βjYj

]

=
∑

i,j

αiβj Cov[Xi,Yj ]. (5.1)

In particular, Var[αX] = α2Var[X] and the Bienaymé formula holds,

Var

[
m∑

i=1

Xi

]

=
m∑

i=1

Var[Xi] +
m∑

i,j=1
i �=j

Cov[Xi,Xj ]. (5.2)

For uncorrelated X1, . . . ,Xm, we have Var[∑m
i=1Xi] =

∑m
i=1 Var[Xi].



5.1 Moments 105

Proof

Cov

[

d +
m∑

i=1

αiXi, e+
n∑

j=1

βjYj

]

= E

[(
m∑

i=1

αi
(
Xi −E[Xi]

)
)(

n∑

j=1

βj
(
Yj −E[Yj ]

)
)]

=
m∑

i=1

n∑

j=1

αiβjE
[(
Xi −E[Xi]

)(
Yj −E[Yj ]

)]

=
m∑

i=1

n∑

j=1

αiβjCov[Xi,Yj ].
�

Theorem 5.8 (Cauchy–Schwarz inequality) If X,Y ∈ L2(P), then

(
Cov[X,Y ])2 ≤Var[X]Var[Y ].

Equality holds if and only if there are a, b, c ∈R with |a| + |b| + |c|> 0 and such
that aX+ bY + c= 0 a.s.

Proof The Cauchy–Schwarz inequality holds for any positive semidefinite bilinear
form and hence in particular for the covariance map. Using the notation of variance
and covariance, a simple proof looks like this:

Case 1: Var[Y ] = 0. Here the statement is trivial (choose a = 0, b = 1 and
c=−E[Y ]).

Case 2: Var[Y ]> 0. Let θ := −Cov[X,Y ]
Var[Y ] . Then, by Theorem 5.6(i),

0≤Var[X+ θY ]Var[Y ]
= (Var[X] + 2θCov[X,Y ] + θ2Var[Y ])Var[Y ]
=Var[X]Var[Y ] −Cov[X,Y ]2

with equality if and only if X + θY is a.s. constant. Now let a = 1, b = θ and
c=−E[X] − bE[Y ].

�

Example 5.9

(i) Let p ∈ [0,1] and X ∼ Berp . Then

E
[
X2]= E[X] = P[X = 1] = p

and thus Var[X] = p(1− p).
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(ii) Let n ∈N and p ∈ [0,1]. Let X be binomially distributed, X ∼ bn,p . Then

E[X] =
n∑

k=0

kP[X = k] =
n∑

k=0

k

(
n

k

)

pk(1− p)n−k

= np ·
n∑

k=1

(
n− 1

k − 1

)

pk−1(1− p)(n−1)−(k−1) = np.

Furthermore,

E
[
X(X− 1)

]=
n∑

k=0

k(k − 1)P[X = k]

=
n∑

k=0

k(k − 1)

(
n

k

)

pk(1− p)n−k

= np ·
n∑

k=1

(k − 1)

(
n− 1

k − 1

)

pk−1(1− p)(n−1)−(k−1)

= n(n− 1)p2 ·
n∑

k=2

(
n− 2

k− 2

)

pk−2(1− p)(n−2)−(k−2)

= n(n− 1)p2.

Hence E[X2] = E[X(X− 1)]+E[X] = n2p2+np(1−p) and thus Var[X] =
np(1− p).

The statement can be derived more simply than by direct computation if we
make use of the fact that bn,p = b∗n1,p (see Example 3.4(ii)). That is (see Theo-
rem 2.31), PX = PY1+...+Yn , where Y1, . . . , Yn are independent and Yi ∼ Berp
for any i = 1, . . . , n. Hence

E[X] = nE[Y1] = np,
Var[X] = nVar[Y1] = np(1− p).

(5.3)

(iii) Let μ ∈R and σ 2 > 0, and let X be normally distributed, X ∼Nμ,σ 2 . Then

E[X] = 1√
2πσ 2

∫ ∞

−∞
xe−(x−μ)2/(2σ 2) dx

= 1√
2πσ 2

∫ ∞

−∞
(x +μ)e−x2/(2σ 2) dx

= μ+ 1√
2πσ 2

∫ ∞

−∞
xe−x2/(2σ 2) dx = μ. (5.4)

Similarly, we get Var[X] = E[X2] −μ2 = . . .= σ 2.
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(iv) Let θ > 0 and let X be exponentially distributed, X ∼ expθ . Then

E[X] = θ
∫ ∞

0
xe−θx dx = 1

θ
,

Var[X] = −θ−2 + θ
∫ ∞

0
x2e−θx dx = θ−2

(

−1+
∫ ∞

0
x2e−x dx

)

= θ−2.

♦

Theorem 5.10 (Blackwell–Girshick) Let T ,X1,X2, . . . be independent real ran-
dom variables in L2(P). Let P[T ∈ N0] = 1 and let X1,X2, . . . be identically dis-
tributed. Define

ST :=
T∑

i=1

Xi.

Then ST ∈ L2(P) and

Var[ST ] = E[X1]2Var[T ] +E[T ]Var[X1].

Proof Define Sn =∑n
i=1Xi for n ∈N. Then (as in the proof of Wald’s identity) Sn

and 1{T=n} are independent; hence S2
n and 1{T=n} are uncorrelated and thus

E
[
S2
T

]=
∞∑

n=0

E
[
1{T=n}S2

n

]

=
∞∑

n=0

E[1{T=n}]E
[
S2
n

]

=
∞∑

n=0

P[T = n](Var[Sn] +E[Sn]2
)

=
∞∑

n=0

P[T = n](nVar[X1] + n2E[X1]2
)

= E[T ]Var[X1] +E
[
T 2]E[X1]2.

By Wald’s identity (Theorem 5.5), we have E[ST ] = E[T ]E[X1]; hence

Var[ST ] = E
[
S2
T

]−E[ST ]2 = E[T ]Var[X1] +
(
E
[
T 2]−E[T ]2)E[X1]2,

as claimed. �

Exercise 5.1.1 Let X be an integrable real random variable whose distribution PX
has a density f (with respect to the Lebesgue measure λ). Show (using Theo-
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rem 4.15) that

E[X] =
∫

R

xf (x)λ(dx).

Exercise 5.1.2 Let X ∼ βr,s be a Beta-distributed random variable with parameters
r, s > 0 (see Example 1.107(ii)). Show that

E
[
Xn
]=

n−1∏

k=0

r + k
r + s + k for any n ∈N.

Exercise 5.1.3 Let X1,X2, . . . be i.i.d. nonnegative random variables. By virtue of
the Borel–Cantelli lemma, show that

lim sup
n→∞

1

n
Xn =

{
0 a.s., if E[X1]<∞,
∞ a.s., if E[X1] =∞.

Exercise 5.1.4 Let X1,X2, . . . be i.i.d. nonnegative random variables. By virtue of
the Borel–Cantelli lemma, show that for any c ∈ (0,1)

∞∑

n=1

eXncn
{
<∞ a.s., if E[X1]<∞,
=∞ a.s., if E[X1] =∞.

5.2 Weak Law of Large Numbers

Theorem 5.11 (Markov inequality, Chebyshev inequality) Let X be a real ran-
dom variable and let f : [0,∞)→ [0,∞) be monotone increasing. Then for any
ε > 0 with f (ε) > 0, the Markov inequality holds,

P
[|X| ≥ ε]≤ E[f (|X|)]

f (ε)
.

In the special case f (x) = x2, we get P[|X| ≥ ε] ≤ ε−2E[X2]. In particular, if
X ∈ L2(P), the Chebyshev inequality holds:

P
[∣
∣X−E[X]∣∣≥ ε]≤ ε−2Var[X].

Proof We have

E
[
f
(|X|)]≥ E

[
f
(|X|)1{f (|X|)≥f (ε)}

]

≥ E
[
f (ε)1{f (|X|)≥f (ε)}

]

≥ f (ε)P[|X| ≥ ε]. �
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Definition 5.12 Let (Xn)n∈N be a sequence of real random variables in L1(P) and
let S̃n =∑n

i=1(Xi −E[Xi]).
(i) We say that (Xn)n∈N fulfills the weak law of large numbers if

lim
n→∞P

[∣
∣
∣
∣
1

n
S̃n

∣
∣
∣
∣> ε

]

= 0 for any ε > 0.

(ii) We say that (Xn)n∈N fulfills the strong law of large numbers if

P
[

lim sup
n→∞

∣
∣
∣
∣
1

n
S̃n

∣
∣
∣
∣= 0

]

= 1.

Remark 5.13 The strong law of large numbers implies the weak law. Indeed, if
Aεn := {| 1

n
S̃n|> ε} and A= {lim supn→∞ | 1

n
S̃n|> 0}, then clearly

A=
⋃

m∈N
lim sup
n→∞

A
1/m
n ;

hence P[lim supn→∞Aεn] = 0 for ε > 0. By Fatou’s lemma (Theorem 4.21), we
obtain

lim sup
n→∞

P
[
Aεn
]= 1− lim inf

n→∞ E[1(Aεn)c ]

≤ 1−E
[
lim inf
n→∞ 1(Aεn)c

]
= E
[
lim sup
n→∞

1Aεn

]
= 0. ♦

Theorem 5.14 Let X1,X2, . . . be uncorrelated random variables in L2(P) with
V := supn∈N Var[Xn]<∞. Then (Xn)n∈N fulfills the weak law of large numbers.
More precisely, for any ε > 0, we have

P
[∣
∣
∣
∣
1

n
S̃n

∣
∣
∣
∣≥ ε

]

≤ V

ε2n
for all n ∈N. (5.5)

Proof Without loss of generality, assume E[Xi] = 0 for all i ∈ N and thus S̃n =
X1 + . . .+Xn. By Bienaymé’s formula (Theorem 5.7), we obtain

Var
[

1

n
S̃n

]

= n−2
n∑

i=1

Var[Xi] ≤ V
n
.

By Chebyshev’s inequality (Theorem 5.11), for any ε > 0,

P
[|S̃n/n| ≥ ε

]≤ V

ε2n

n→∞−→ 0. �

Example 5.15 (Weierstraß’s approximation theorem) Let f : [0,1] → R be a con-
tinuous map. By Weierstraß’s approximation theorem, there exist polynomials fn of
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degree at most n such that

‖fn − f ‖∞ n→∞−→ 0,

where ‖f ‖∞ := sup{|f (x)| : x ∈ [0,1]} denotes the supremum norm of f ∈
C([0,1]) (the space of continuous functions [0,1]→R).

We present a probabilistic proof of this theorem. For n ∈N, define the polynomial
fn by

fn(x) :=
n∑

k=0

f (k/n)

(
n

k

)

xk(1− x)n−k for x ∈ [0,1].

fn is called the Bernstein polynomial of order n.
Fix ε > 0. As f is continuous on the compact interval [0,1], f is uniformly

continuous. Hence there exists a δ > 0 such that

∣
∣f (x)− f (y)∣∣< ε for all x, y ∈ [0,1] with |x − y|< δ.

Now fix p ∈ [0,1] and let X1,X2, . . . be independent random variables with
Xi ∼ Berp , i ∈N. Then Sn :=X1 + . . .+Xn ∼ bn,p and thus

E
[
f (Sn/n)

]=
n∑

k=0

f (k/n)P[Sn = k] = fn(p).

We get
∣
∣f (Sn/n)− f (p)

∣
∣≤ ε+ 2‖f ‖∞1{|(Sn/n)−p|≥δ}

and thus (by Theorem 5.14 with V = p(1− p)≤ 1
4 )

∣
∣fn(p)− f (p)

∣
∣≤ E

[∣
∣f (Sn/n)− f (p)

∣
∣
]

≤ ε+ 2‖f ‖∞P
[∣
∣
∣
∣
Sn

n
− p
∣
∣
∣
∣≥ δ

]

≤ ε+ ‖f ‖∞
2δ2n

for any p ∈ [0,1]. Hence ‖fn − f ‖∞ n→∞−→ 0. ♦

Exercise 5.2.1 (Bernstein–Chernov bound) Let n ∈ N and p1, . . . , pn ∈ [0,1]. Let
X1, . . . ,Xn be independent random variables with Xi = Berpi for any i = 1, . . . , n.
Define Sn =X1+ . . .+Xn and m := E[Sn]. Show that, for any δ > 0, the following
two estimates hold:

P
[
Sn ≥ (1+ δ)m

]≤
(

eδ

(1+ δ)1+δ
)m
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and

P
[
Sn ≤ (1− δ)m

]≤ exp

(

−δ
2m

2

)

.

Hint: For Sn, use Markov’s inequality with f (x)= eλx for some λ > 0 and then
find the λ that optimizes the bound.

5.3 Strong Law of Large Numbers

We show Etemadi’s version [47] of the strong law of large numbers for identically
distributed, pairwise independent random variables. There is a zoo of strong laws of
large numbers, each of which varies in the exact assumptions it makes on the under-
lying sequence of random variables. For example, the assumption that the random
variables be identically distributed can be waived if other assumptions are intro-
duced such as bounded variances. We do not strive for completeness but show only
a few of the statements.

In order to illustrate the method of the proof of Etemadi’s theorem, we first
present (and prove) a strong law of large numbers under stronger assumptions.

Theorem 5.16 Let X1,X2, . . . ∈ L2(P) be pairwise independent (that is, Xi and
Xj are independent for all i, j ∈ N with i �= j ) and identically distributed. Then
(Xn)n∈N fulfills the strong law of large numbers.

Proof The random variables (X+n )n∈N and (X−n )n∈N again form pairwise indepen-
dent families of square integrable random variables (compare Remark 2.15(ii)).
Hence, it is enough to consider (X+n )n∈N. Thus we henceforth assume Xn ≥ 0 al-
most surely for all n ∈N.

Let Sn = X1 + . . . + Xn for n ∈ N. Fix ε > 0. For any n ∈ N, define kn =
�(1+ ε)n� ≥ 1

2 (1+ ε)n. Then, by Chebyshev’s inequality (Theorem 5.11),

∞∑

n=1

P
[∣
∣
∣
∣
Skn

kn
−E[X1]

∣
∣
∣
∣≥ (1+ ε)−n/4

]

≤
∞∑

n=1

(1+ ε)n/2Var
[
k−1
n Skn

]

=
∞∑

n=1

(1+ ε)n/2k−1
n Var[X1]

≤ 2Var[X1]
∞∑

n=1

(1+ ε)−n/2 <∞. (5.6)
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Thus, by the Borel–Cantelli lemma, for P-a.a. ω, there is an n0 = n0(ω) such that

∣
∣
∣
∣
Skn

kn
−E[X1]

∣
∣
∣
∣< (1+ ε)−n/4 for all n≥ n0,

whence

lim sup
n→∞

∣
∣k−1
n Skn −E[X1]

∣
∣= 0 almost surely.

Note that kn+1 ≤ (1+ 2ε)kn for sufficiently large n ∈N. For l ∈ {kn, . . . , kn+1}, we
get

1

1+ 2ε
k−1
n Skn ≤ k−1

n+1Skn ≤ l−1Sl ≤ k−1
n Skn+1 ≤ (1+ 2ε)k−1

n+1Skn+1 .

Now 1− (1+ 2ε)−1 ≤ 2ε implies

lim sup
l→∞

∣
∣l−1Sl −E[X1]

∣
∣≤ lim sup

n→∞
∣
∣k−1
n Skn −E[X1]

∣
∣+ 2ε lim sup

n→∞
k−1
n Skn

≤ 2εE[X1] almost surely.

Hence the strong law of large numbers is in force. �

The similarity of the variance estimates in the weak law of large numbers and in
(5.6) suggests that in the preceding theorem the condition that the random variables
X1,X2, . . . be identically distributed could be replaced by the condition that the
variances be bounded (see Exercise 5.3.1).

We can weaken the condition in Theorem 5.16 in a different direction by requir-
ing integrability only instead of square integrability of the random variables.

Theorem 5.17 (Etemadi’s strong law of large numbers (1981)) Let X1,X2, . . .

∈ L1(P) be pairwise independent and identically distributed. Then (Xn)n∈N fulfills
the strong law of large numbers.

We follow the proof in [39, Section 2.4]. Define μ= E[X1] and Sn =X1+ . . .+
Xn. We start with some preparatory lemmas. (For the “a.s.” notation see Defini-
tion 1.68.)

Lemma 5.18 For n ∈ N, define Yn := Xn1{|Xn|≤n} and Tn = Y1 + . . . + Yn. The

sequence (Xn)n∈N fulfills the strong law of large numbers if Tn/n
n→∞−→ μ a.s.

Proof By Theorem 4.26, we have
∑∞
n=1 P[|Xn|> n] ≤ E[|X1|]<∞. Thus, by the

Borel–Cantelli lemma,

P[Xn �= Yn for infinitely many n] = 0.
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Hence there is an n0 = n0(ω) with Xn = Yn for all n≥ n0, whence for n≥ n0

Tn − Sn
n

= Tn0 − Sn0

n

n→∞−→ 0. �

Lemma 5.19 2x
∑
n>x n

−2 ≤ 4 for all x ≥ 0.

Proof For m ∈N, by comparison with the corresponding integral, we get

∞∑

n=m
n−2 ≤m−2 +

∫ ∞

m

t−2 dt =m−2 +m−1 ≤ 2

m
.

�

Lemma 5.20
∑∞
n=1

E[Y 2
n ]

n2 ≤ 4E[|X1|].
Proof By Theorem 4.26,

E
[
Y 2
n

]=
∫ ∞

0
P
[
Y 2
n > t

]
dt.

Substituting x =√t , we obtain

E
[
Y 2
n

]=
∫ ∞

0
2xP
[|Yn|> x

]
dx ≤

∫ n

0
2xP
[|X1|> x

]
dx.

By Lemma 5.19, for m→∞,

fm(x)=
(
m∑

n=1

n−21{x<n}

)

2xP
[|X1|> x

] ↑ f (x)≤ 4P
[|X1|> x

]
.

Hence, by the monotone limit theorem, we can interchange the summation and the
integral and obtain

∞∑

n=1

E[Y 2
n ]

n2
≤

∞∑

n=1

n−2
∫ ∞

0
1{x<n}2xP

[|X1|> x
]
dx

=
∫ ∞

0

( ∞∑

n=1

n−21{x<n}

)

2xP
[|X1|> x

]
dx

≤ 4
∫ ∞

0
P
[|X1|> x

]
dx = 4E

[|X1|
]
. �

Proof of Theorem 5.17 As in the proof of Theorem 5.16, it is enough to consider
the case Xn ≥ 0. Fix ε > 0 and let α = 1+ ε. For n ∈ N, define kn = �αn�. Note
that kn ≥ αn/2. Hence, for all m ∈N (with n0 = �logm/ logα�),

∑

n:kn≥m
k−2
n ≤ 4

∞∑

n=n0

α−2n = 4α−2n0
(
1− α−2)−1 ≤ 4

(
1− α−2)−1

m−2. (5.7)
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The aim is to employ Lemma 5.20 to refine the estimate (5.6) for (Yn)n∈N and
(Tn)n∈N. For δ > 0, Chebyshev’s inequality yields (together with (5.7))

∞∑

n=1

P
[∣
∣Tkn −E[Tkn ]

∣
∣> δkn

]

≤ δ−2
∞∑

n=1

Var[Tkn ]
k2
n

= δ−2
∞∑

n=1

k−2
n

kn∑

m=1

Var[Ym] = δ−2
∞∑

m=1

Var[Ym]
∑

n:kn≥m
k−2
n

≤ 4
(
1− α−2)−1

δ−2
∞∑

m=1

m−2E
[
Y 2
m

]
<∞ by Lemma 5.20.

(In the third step, we could change the order of summation since all summands are
nonnegative.) Letting δ ↓ 0, we infer by the Borel–Cantelli lemma

lim
n→∞

Tkn −E[Tkn ]
kn

= 0 almost surely. (5.8)

By the monotone convergence theorem (Theorem 4.20), we have

E[Yn] = E[X11{X1≤n}] n→∞−→ E[X1].

Hence E[Tkn ]/kn n→∞−→ E[X1]. By (5.8), we also have Tkn/kn
n→∞−→ E[X1] a.s. As

in the proof of Theorem 5.16, we also get (since Yn ≥ 0)

lim
l→∞

Tl

l
= E[X1] almost surely.

By Lemma 5.18, this implies the claim of Theorem 5.17. �

Example 5.21 (Monte Carlo integration) Let f : [0,1] → R be a function and as-
sume we want to determine the value of its integral I := ∫ 1

0 f (x)dx numerically.
Assume that the computer generates numbers X1,X2, . . . that can be considered as
independent random numbers, uniformly distributed on [0,1]. For n ∈N, define the
estimated value

În := 1

n

n∑

i=1

f (Xi).

Assuming f ∈ L1([0,1]), the strong law of large numbers yields În
n→∞−→ I a.s.

Note that the last theorem made no statement on the speed of convergence. That
is, we do not have control on the quantity P[|În − I | > ε]. In order to get more
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precise estimates for the integral, we need additional information; for example, the
value V1 :=

∫
f 2(x) dx − I 2 if f ∈ L2([0,1]). (For bounded f , V1 can easily be

bounded.) Indeed, in this case, Var[În] = V1/n; hence, by Chebyshev’s inequality,

P
[|În − I |> εn−1/2]≤ V1/ε

2.

Hence the error is at most of order n−1/2. The central limit theorem will show that
the error is indeed exactly of this order.

If f is smooth in some sense, then the usual numerical procedures yield better
orders of convergence. Hence Monte Carlo simulation should be applied only if all
other methods fail. This is the case in particular if [0,1] is replaced by G⊂ R

d for
very large d . ♦

Definition 5.22 (Empirical distribution function) Let X1,X2, . . . be real random
variables. The map Fn :R→[0,1], x �→ 1

n

∑n
i=1 1(−∞,x](Xi) is called the empiri-

cal distribution function of X1, . . . ,Xn.

Theorem 5.23 (Glivenko–Cantelli) Let X1,X2, . . . be i.i.d. real random variables
with distribution function F , and let Fn, n ∈ N, be the empirical distribution func-
tions. Then

lim sup
n→∞

sup
x∈R

∣
∣Fn(x)− F(x)

∣
∣= 0 almost surely.

Proof Fix x ∈R and let Yn(x)= 1(−∞,x](Xn) and Zn(x)= 1(−∞,x)(Xn) for n ∈N.
Additionally, define the left-sided limits F(x−)= limy↑x F (y) and similarly for Fn.
Then each of the families (Yn(x))n∈N and (Zn(x))n∈N is independent. Furthermore,
E[Yn(x)] = P[Xn ≤ x] = F(x) and E[Zn(x)] = P[Xn < x] = F(x−). By the strong
law of large numbers, we thus have

Fn(x)= 1

n

n∑

i=1

Yi(x)
n→∞−→ F(x) almost surely

and

Fn(x−)= 1

n

n∑

i=1

Zi(x)
n→∞−→ F(x−) almost surely.

Formally, define F(−∞)= 0 and F(∞)= 1. Fix some N ∈N and define

xj := inf
{
x ∈R : F(x)≥ j/N}, j = 0, . . . ,N,

and

Rn := max
j=1,...,N−1

(∣
∣Fn(xj )− F(xj )

∣
∣+ ∣∣Fn(xj−)− F(xj−)

∣
∣
)
.
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As shown above, Rn
n→∞−→ 0 almost surely. For x ∈ (xj−1, xj ), we have (by defini-

tion of xj )

Fn(x)≤ Fn(xj−)≤ F(xj−)+Rn ≤ F(x)+Rn + 1

N

and

Fn(x)≥ Fn(xj−1)≥ F(xj−1)−Rn ≥ F(x)−Rn − 1

N
.

Hence

lim sup
n→∞

sup
x∈R

∣
∣Fn(x)− F(x)

∣
∣≤ 1

N
+ lim sup

n→∞
Rn = 1

N
.

Letting N→∞, the claim follows. �

Example 5.24 (Shannon’s theorem) Consider a source of information that sends a
sequence of independent random symbols X1,X2, . . . drawn from a finite alpha-
bet E (that is, from an arbitrary finite set E). Let pe be the probability of the
symbol e ∈ E. Formally, the X1,X2, . . . are i.i.d. E-valued random variables with
P[Xi = e] = pe for e ∈E.

For any ω ∈Ω and n ∈N, let

πn(ω) :=
n∏

i=1

pXi(ω)

be the probability that the observed sequence X1(ω), . . . ,Xn(ω) occurs. Define
Yn(ω) := − log(pXn(ω)). Then (Yn)n∈N is i.i.d. and E[Yn] =H(p), where

H(p) := −
∑

e∈E
pe log(pe)

is the entropy of the distribution p = (pe)e∈E (compare Definition 5.25). By the
strong law of large numbers, we infer Shannon’s theorem:

−1

n
logπn = 1

n

n∑

i=1

Yi
n→∞−→ H(p) almost surely.

♦

Entropy and Source Coding Theorem∗

We briefly discuss the importance of πn and the entropy. How can we quantify
the information inherent in a message X1(ω), . . . ,Xn(ω)? This information can be
measured by the length of the shortest sequence of zeros and ones by which the
message can be encoded. Of course, you do not want to invent a new code for



5.3 Strong Law of Large Numbers 117

every message but rather use one code that allows for the shortest average coding
of the messages for the particular information source. To this end, associate with
each symbol e ∈ E a sequence of zeros and ones that when concatenated yield the
message. The length l(e) of the sequence that codes for e may depend on e. Hence,
for efficiency, those symbols that appear more often get a shorter code than the more
rare symbols. The Morse alphabet is constructed similarly (the letters “e” and “t”,
which are the most frequent letters in English, have the shortest codes (“dot” and
“dash”), and the rare letter “q” has the code “dash-dash-dot-dash”). However, the
Morse code also consists of gaps of different lengths that signal ends of letters and
words. As we want to use only zeros and ones (and no gap-like symbols), we have
to arrange the code in such a way that no code is the beginning of the code of a
different symbol. For example, we could not encode one symbol with 0110 and a
different one with 011011. A code that fulfills this condition is called a binary prefix
code. Denote by c(e) ∈ {0,1}l(e) the code of e, where l(e) is its length. We can
represent the codes of all letters in a tree.

Let us construct a code C = (c(e), e ∈ E) that is efficient in the sense that it
minimizes the expected length of the code (of a random symbol)

Lp(C) :=
∑

e∈E
pel(e).

We first define a specific code and then show that it is almost optimal. As a
first step, we enumerate E = {e1, . . . , eN } such that pe1 ≥ pe2 ≥ . . . ≥ peN . Define
�(e) ∈N for any e ∈E by

2−�(e) ≤ pe < 2−�(e)+1.

Let p̃e = 2−�(e) for any e ∈E and let q̃k =∑l<k p̃el for k = 1, . . . ,N .
By construction, �(el)≤ �(ek) for all l ≤ k; hence the binary representation of q̃k

has at most �(ek) digits:

q̃k =
�(ek)∑

i=1

ci(ek)2
−i .

Here the numbers c1(ek), . . . , c�(ek)(ek) ∈ {0,1} are uniquely determined.
Clearly, q̃l ≥ q̃k + 2−�(ek) for any l > k; hence

(
c1(ek), . . . , c�(ek)(ek)

) �= (c1(el), . . . , c�(ek)(el)
)

for all l > k.

Thus C = (c(e), e ∈E) is a prefix code.
For any b > 0 and x > 0, denote by logb(x) := log(x)

log(b) the logarithm of x to base b.
By construction, − log2(pe)≤ l(e)≤ 1− log2(pe). Hence the expected length is

−
∑

e∈E
pe log2(pe)≤ Lp(C)≤ 1−

∑

e∈E
pe log2(pe).
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The length of this code for the first n symbols of our random information source
is thus approximately −∑n

k=1 log2(pXk(ω))=− log2 πn(ω). Here we have the con-
nection to Shannon’s theorem. That theorem thus makes a statement about the length
of a binary prefix code needed to transmit a long message.

Now, is the code constructed above optimal, or are there codes with smaller mean
length? The answer is given by the source coding theorem for which we prepare with
a definition and a lemma.

Definition 5.25 (Entropy) Let p = (pe)e∈E be a probability distribution on the
countable set E. For b > 0, define

Hb(p) := −
∑

e∈E
pe logb(pe)

with the convention 0 logb(0) := 0. We call H(p) := He(p) (e = 2.71 . . . Euler’s
number) the entropy and H2(p) the binary entropy of p.

Note that, for infinite E, the entropy need not be finite.

Lemma 5.26 (Entropy inequality) Let b and p be as above. Further, let q be a
sub-probability distribution; that is, qe ≥ 0 for all e ∈E and

∑
e∈E qe ≤ 1. Then

Hb(p)≤−
∑

e∈E
pe logb(qe) (5.9)

with equality if and only if Hb(p)=∞ or q = p.

Proof Without loss of generality, we can do the computation with b = e; that is,
with the natural logarithm. Note that log(1 + x) ≤ x for x > −1 with equality if
and only if x = 0. If in (5.9) the left-hand side is finite, then we can subtract the
right-hand side from the left-hand side and obtain

H(p)+
∑

e∈E
pe log(qe)=

∑

e:pe>0

pe log(qe/pe)

=
∑

e:pe>0

pe log

(

1+ qe − pe
pe

)

≤
∑

e:pe>0

pe
qe − pe
pe

=
∑

e∈E
(qe − pe)≤ 0.

If q �= p, then there is an e ∈ E with pe > 0 and qe �= pe. If this is the case, then
strict inequality holds if H(p) <∞. �
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Theorem 5.27 (Source coding theorem) Let p = (pe)e∈E be a probability distri-
bution on the finite alphabet E. For any binary prefix code C = (c(e), e ∈ E),
we have Lp(C) ≥ H2(p). Furthermore, there is a binary prefix code C with
Lp(C)≤H2(p)+ 1.

Proof The second part of the theorem was shown in the above construction. Now
assume that a prefix code is given. Let L=maxe∈E l(e). For e ∈E, let

CL(e)=
{
c ∈ {0,1}L : ck = ck(e) for k ≤ l(e)}

the set of all dyadic sequences of length L that start like c(e). Since we have a
prefix code, the sets CL(e), e ∈E, are pairwise disjoint and

⋃
e∈E CL(e)⊂ {0,1}L.

Hence, if we define qe := 2−l(e), then (note that #CL(e)= 2L−l(e))
∑

e∈E
qe = 2−L

∑

e∈E
#CL(e)≤ 1.

By Lemma 5.26, we have Lp(C)=∑e∈E pel(e)=−
∑
e∈E pe log2(qe)≥H2(p).

�

Exercise 5.3.1 Show the following improvement of Theorem 5.16: If X1,X2, . . .

∈ L2(P) are pairwise independent with bounded variances, then (Xn)n∈N fulfills the
strong law of large numbers.

Exercise 5.3.2 Let (Xn)n∈N be a sequence of independent identically distributed

random variables with 1
n
(X1 + . . .+ Xn) n→∞−→ Y almost surely for some random

variable Y . Show that X1 ∈ L1(P) and Y = E[X1] almost surely.
Hint: First show that

P
[|Xn|> n for infinitely many n

]= 0 ⇐⇒ X1 ∈ L1(P).

Exercise 5.3.3 Let E be a finite set and let p be a probability vector on E. Show
that the entropy H(p) is minimal (in fact, zero) if p = δe for some e ∈ E. It is
maximal (in fact, log(#E)) if p is the uniform distribution on E.

Exercise 5.3.4 (Subadditivity of Entropy) For i = 1,2, let Ei be a finite set and pi

a probability vector on Ei . Let p be a probability vector on E1×E2 with marginals
p1 and p2. That is,
∑

e2∈E2

p(e1,e2) = p1
e1 and

∑

f 1∈E1

p(f 1,f 2) = p2
f 2 for all e1 ∈E1, f 2 ∈E2.

Show that H(p)≤H(p1)+H(p2).

Exercise 5.3.5 Let b ∈ {2,3,4, . . .}. A b-adic prefix code is defined in a similar way
as a binary prefix code; however, instead of 0 and 1, now all numbers 0,1, . . . , b−1
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are admissible. Show that the statement of the source coding theorem holds for b-
adic prefix codes with H2(p) replaced by Hb(p).

Exercise 5.3.6 We want to check the efficiency of the Morse alphabet. To this end
we need a table of the Morse code as well as the frequencies of the letters in a typical
text. The following frequencies for letters in German texts are taken from [11, p. 10].
The frequencies for other languages can be found easily, e.g., at Wikipedia.

Letter Morse code Frequency

A .- 0.0651
B -... 0.0189
C -.-. 0.0306
D -.. 0.0508
E . 0.1740
F ..-. 0.0166
G --. 0.0301
H .... 0.0476
I .. 0.0755
J .--- 0.0027
K -.- 0.0121
L .-.. 0.0344
M -- 0.0253

Letter Morse code Frequency

N -. 0.0978
O --- 0.0251
P .--. 0.0079
Q --.- 0.0002
R .-. 0.07
S ... 0.0727
T - 0.0615
U ..- 0.0435
V ...- 0.0067
W .-- 0.0189
X -..- 0.0003
Y -.-- 0.0004
Z --.. 0.0113

Here ‘.’ denotes a short signal while ‘-’ denotes a long signal. Each letter is
finished by a pause sign. Thus the Morse code can be interpreted as a ternary prefix
code.

Determine the average code length of a letter and compare it with the entropy H3

in order to check the efficiency of the Morse code.

5.4 Speed of Convergence in the Strong LLN

In the weak law of large numbers, we had a statement on the speed of convergence
(Theorem 5.14). In the strong law of large numbers, however, we did not. As we
required only first moments, in general, we cannot expect to get any useful state-
ments. However, if we assume the existence of higher moments, we get reasonable
estimates on the rate of convergence.

The core of the weak law of large numbers is Chebyshev’s inequality. Here we
present a stronger inequality that claims the same bound but now for the maximum
over all partial sums until a fixed time.
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Theorem 5.28 (Kolmogorov’s inequality) Let n ∈ N and let X1,X2, . . . ,Xn be
independent random variables with E[Xi] = 0 and Var[Xi]<∞ for i = 1, . . . , n.
Further, let Sk =X1 + . . .+Xk for k = 1, . . . , n. Then, for any t > 0,

P
[
max{Sk : k = 1, . . . , n} ≥ t]≤ Var[Sn]

t2 +Var[Sn] . (5.10)

Furthermore, Kolmogorov’s inequality holds:

P
[
max
{|Sk| : k = 1, . . . , n

}≥ t]≤ t−2Var[Sn]. (5.11)

In Theorem 11.2 we will see Doob’s inequality, which is a generalization of
Kolmogorov’s inequality.

Proof We decompose the probability space according to the first time τ at which
the partial sums exceed the value t . Hence, let

τ :=min
{
k ∈ {1, . . . , n} : Sk ≥ t

}

and Ak = {τ = k} for k = 1, . . . , n. Further, let

A=
n⊎

k=1

Ak =
{
max{Sk : k = 1, . . . , n} ≥ t}.

Let c ≥ 0. The random variable (Sk + c)1Ak is σ(X1, . . . ,Xk)-measurable and
Sn − Sk is σ(Xk+1, . . . ,Xn)-measurable. By Theorem 2.26, the two random vari-
ables are independent, and

E
[
(Sk + c)1Ak (Sn − Sk)

]= E
[
(Sk + c)1Ak

]
E[Sn − Sk] = 0.

Clearly, the events A1, . . . ,An are pairwise disjoint; hence
∑n
k=1 1Ak = 1A ≤ 1. We

thus obtain

Var[Sn] + c2 = E
[
(Sn + c)2

]

≥ E

[
n∑

k=1

(Sn + c)21Ak
]

=
n∑

k=1

E
[
(Sn + c)21Ak

]

=
n∑

k=1

E
[(
(Sk + c)2 + 2(Sk + c)(Sn − Sk)+ (Sn − Sk)2

)
1Ak
]

=
n∑

k=1

E
[
(Sk + c)21Ak

]+
n∑

k=1

E
[
(Sn − Sk)21Ak

]

≥
n∑

k=1

E
[
(Sk + c)21Ak

]
. (5.12)
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Since c ≥ 0, we have (Sk + c)21Ak ≥ (t + c)21Ak . Hence we can continue (5.12) to
get

Var[Sn] + c2 ≥
n∑

k=1

E
[
(t + c)21Ak

]= (t + c)2P[A].

For c=Var[Sn]/t ≥ 0, we obtain

P[A] ≤ Var[Sn] + c2

(t + c)2 = c(t + c)
(t + c)2 =

tc

t2 + tc =
Var[Sn]

t2 +Var[Sn] .

This shows (5.10). In order to show (5.11), choose

τ̄ :=min
{
k ∈ {1, . . . , n} : |Sk| ≥ t

}
.

Let Āk = {τ̄ = k} and Ā= {τ̄ ≤ n}. We cannot now continue (5.12) as above with
c > 0. However, if we choose c = 0, then S2

k1Āk ≥ t21Āk . The same calculation as

in (5.12) does then yield P[Ā] ≤ t−2Var[Sn]. �

From Kolmogorov’s inequality, we derive the following sharpening of the strong
law of large numbers.

Theorem 5.29 Let X1,X2, . . . be independent random variables with E[Xn] = 0
for any n ∈N and V := sup{Var[Xn] : n ∈N}<∞. Then, for any ε > 0,

lim sup
n→∞

|Sn|
n1/2(log(n))(1/2)+ε

= 0 almost surely.

Proof Let kn = 2n and l(n) = n1/2(log(n))(1/2)+ε for n ∈ N. Then we have

l(kn+1)/ l(kn)
n→∞−→ √

2. Hence, for n ∈N sufficiently large and k ∈N with kn−1 ≤
k ≤ kn, we have |Sk|/l(k) ≤ 2|Sk|/l(kn). Hence, it is enough to show for every
δ > 0 that

lim sup
n→∞

l(kn)
−1 max

{|Sk| : k ≤ kn
}≤ δ almost surely. (5.13)

For δ > 0 and n ∈ N, define Aδn := {max{|Sk| : k ≤ kn} > δl(kn)}. Kolmogorov’s
inequality yields

∞∑

n=1

P
[
Aδn
]≤

∞∑

n=1

δ−2(l(kn)
)−2
V kn = V

δ2(log 2)1+2ε

∞∑

n=1

n−1−2ε <∞.

The Borel–Cantelli lemma then gives P[lim supn→∞Aδn] = 0 and hence (5.13). �
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In Chapter 22, we will see that for independent identically distributed, square in-
tegrable, centered random variables X1,X2, . . . , the following strengthening holds,

lim sup
n→∞

|Sn|
√

2nVar[X1] log(log(n))
= 1 almost surely.

Hence, in this case, the speed of convergence is known precisely. If the X1,X2, . . .

are not independent but only pairwise independent, then the rate of convergence
deteriorates, although not drastically. Here we cite without proof a theorem that was
found independently by Rademacher (1922) [141] and Menshov (1923) [113].

Theorem 5.30 (Rademacher–Menshov) LetX1,X2, . . . be uncorrelated, square in-
tegrable, centered random variables and let (an)n∈N be an increasing sequence of
nonnegative numbers such that

∞∑

n=1

(logn)2a−2
n Var[Xn]<∞. (5.14)

Then

lim sup
n→∞

∣
∣
∣
∣
∣
a−1
n

n∑

k=1

Xk

∣
∣
∣
∣
∣
= 0 almost surely.

Proof See, for example, [128]. �

Remark 5.31 Condition (5.14) is sharp in the sense that for any increasing sequence
(an)n∈N with

∑∞
n=1 a

−2
n (logn)2 =∞, there exists a sequence of pairwise indepen-

dent, square integrable, centered random variablesX1,X2, . . . with Var[Xn] = 1 for
all n ∈N such that

lim sup
n→∞

∣
∣
∣
∣
∣
a−1
n

n∑

k=1

Xk

∣
∣
∣
∣
∣
=∞ almost surely.

See [22]. There an example of [163] (see also [164, 165]) for orthogonal series is
developed further. See also [117]. ♦

For random variables with infinite variance, the statements about the rate of con-
vergence naturally get weaker. For example (see [8]), see the following theorem.

Theorem 5.32 (Baum and Katz (1965)) Let γ > 1 and let X1,X2, . . . be i.i.d. De-
fine Sn =X1 + . . .+Xn for n ∈N. Then

∞∑

n=1

nγ−2P
[|Sn|/n > ε

]
<∞ for any ε > 0

⇐⇒ E
[|X1|γ

]
<∞ and E[X1] = 0.
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Exercise 5.4.1 Let X1, . . . ,Xn be independent real random variables and let Sk =
X1 + . . .+Xk for k = 1, . . . , n. Show that for t > 0 Etemadi’s inequality holds:

P
[

max
k=1,...,n

|Sk| ≥ t
]
≤ 3 max

k=1,...,n
P
[|Sk| ≥ t/3

]
.

5.5 The Poisson Process

We develop a model for the number of clicks of a Geiger counter in the (time)
interval I = (a, b]. The number of clicks should obey the following rules. It should

• be random and independent for disjoint intervals,
• be homogeneous in time in the sense that the number of clicks in I = (a, b] has

the same distribution as the number of clicks in c+ I = (a + c, b+ c],
• have finite expectation, and
• have no double points: At any point of time, the counter makes at most one click.

We formalize these requirements by introducing the following notation:

I := {(a, b] : a, b ∈ [0,∞), a ≤ b},

�
(
(a, b]) := b− a (

the length of the interval I = (a, b]).
For I ∈ I , let NI be the number of clicks after time a but no later than b. In par-
ticular, we define Nt :=N(0,t] as the total number of clicks until time t . The above
requirements translate to: (NI , I ∈ I) being a family of random variables with val-
ues in N0 and with the following properties:

(P1) NI∪J =NI +NJ if I ∩ J = ∅ and I ∪ J ∈ I .
(P2) The distribution of NI depends only on the length of I : PNI = PNJ for all

I, J ∈ I with �(I )= �(J ).
(P3) If J ⊂ I with I ∩ J = ∅ for all I, J ∈ J with I �= J , then (NJ , J ∈ J ) is an

independent family.
(P4) For any I ∈ I , we have E[NI ]<∞.
(P5) lim supε↓0 ε

−1P[Nε ≥ 2] = 0.

The meaning of (P5) is explained by the following calculation. Define

λ := lim sup
ε↓0

ε−1P[Nε ≥ 2].

For any n ∈N and ε > 0, we have

P[N2−n ≥ 2] ≥ ⌊2−n/ε⌋P[Nε ≥ 2] − ⌊2−n/ε⌋2P[Nε ≥ 2]2.
Hence

2nP[N2−n ≥ 2] ≥ λ− 2−nλ2 n→∞−→ λ.
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Fig. 5.1 Simulation of a Poisson process with rate α = 0.5

Then (because (1− ak/k)k k→∞−→ e−a if ak
k→∞−→ a)

P
[
there is a double click in (0,1]]

= lim
n→∞P

[
2n−1⋃

k=0

{N(k2−n,(k+1)2−n] ≥ 2}
]

= 1− lim
n→∞P

[
2n−1⋂

k=0

{N(k2−n,(k+1)2−n] ≤ 1}
]

= 1− lim
n→∞

2n−1∏

k=0

P[N(k2−n,(k+1)2−n] ≤ 1]

= 1− lim
n→∞

(
1− P[N2−n ≥ 2])2n

= 1− e−λ.
Hence we have to postulate λ= 0. This, however, is exactly (P5).

The following theorem shows that properties (P1)–(P5) characterize the random
variables (NI , I ∈ I) uniquely and that they form a Poisson process.

Definition 5.33 (Poisson process) A family (Nt , t ≥ 0) of N0-valued random vari-
ables is called a Poisson process with intensity α ≥ 0 if N0 = 0 and if:

(i) For any n ∈ N and any choice of n + 1 numbers 0 = t0 < t1 < . . . < tn, the
family (Nti −Nti−1 , i = 1, . . . , n) is independent.

(ii) For t > s ≥ 0, the difference Nt − Ns is Poisson-distributed with parameter
α(t − s); that is,

P[Nt −Ns = k] = e−α(t−s) (α(t − s))
k

k! for all k ∈N0.

See Fig. 5.1 for a computer simulation of a Poisson process.
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The existence of the Poisson process has not yet been shown. We come back to
this point in Theorem 5.36.

Theorem 5.34 If (NI , I ∈ I) has properties (P1)–(P5), then (N(0,t], t ≥ 0) is a
Poisson process with intensity α := E[N(0,1]]. If, on the other hand, (Nt , t ≥ 0) is
a Poisson process, then (Nt −Ns, (s, t] ∈ I) has properties (P1)–(P5).

Proof First assume that (Nt , t ≥ 0) is a Poisson process with intensity α ≥ 0. Then,
for I = (a, b], clearly PNI = Poiα(b−a) = Poiα�(I). Hence (P2) holds. By (i), we
have (P3). Clearly, E[NI ] = α�(I) <∞; thus we have (P4). Finally, P[Nε ≥ 2] =
1− e−αε − αεe−αε = f (0)− f (αε), where f (x) := e−x + xe−x . The derivative is
f ′(x)=−xe−x , whence

lim
ε↓0
ε−1P[Nε ≥ 2] = −αf ′(0)= 0.

This implies (P5).
Now assume that (NI , I ∈ I) fulfills (P1)–(P5). Define α(t) := E[Nt ]. Then (ow-

ing to (P2))

α(s + t)= E[N(0,s] +N(s,s+t]] = E[N(0,s]] +E[N(0,t]] = α(s)+ α(t).
As t �→ α(t) is monotone increasing, this implies linearity: α(t) = tα(1) for any
t ≥ 0. Letting α := α(1), we obtain E[NI ] = α�(I). It remains to show that PNt =
Poiαt . In order to apply the Poisson approximation theorem (Theorem 3.7), for fixed
n ∈N, we decompose the interval (0, t] into 2n disjoint intervals of equal length,

In(k) := ((k − 1)2−nt, k2−nt
]
, k = 1, . . . ,2n.

Now define Xn(k) :=NIn(k) and

Xn(k) :=
{

1, if Xn(k)≥ 1,

0, else.

By properties (P2) and (P3), the random variables (Xn(k), k = 1, . . . ,2n) are in-
dependent and identically distributed. Hence also (Xn(k), k = 1, . . . ,2n) are i.i.d.,
namely Xn(k)∼ Berpn , where pn = P[N2−nt ≥ 1].

Finally, let Nnt :=
∑2n
k=1X

n(k). Then Nnt ∼ b2n,pn . Clearly, Nn+1
t − Nnt ≥ 0.

Now, by (P5),

P
[
Nt �=Nnt

]≤
2n∑

k=1

P
[
Xn(k)≥ 2

]= 2n P[N2−nt ≥ 2] n→∞−→ 0. (5.15)

Hence P[Nt = limn→∞Nnt ] = 1. By the monotone convergence theorem, we get

αt = E[Nt ] = lim
n→∞E

[
Nnt
]= lim

n→∞pn2
n.
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Using the Poisson approximation theorem (Theorem 3.7), we infer that, for any
l ∈N0,

P[Nt = l] = lim
n→∞P

[
Nnt = l

]= Poiαt
({l}).

Hence PNt = Poiαt . �

At this point, we still have to show that there are Poisson processes at all. We
present a general two-step construction principle that will be used in a similar form
later in Chapter 24 in a more general setting. In the first step, we determine the
(random) number of jumps in (0,1]. In the second step, we distribute these jumps
uniformly and independently on (0,1]. Strictly speaking, this gives the Poisson pro-
cess only on the time interval (0,1], but it is clear how to move on: We perform the
same procedure independently for each of the intervals (1,2], (2,3] and so on and
then collect the jumps (see also Exercise 5.5.1).

Let α > 0 and let L be a Poiα random variable. Further, let X1,X2, . . . be inde-
pendent random variables, that are uniformly distributed on (0,1], i.e., Xk ∼ U(0,1]
for each k. We assume that {L,X1,X2, . . .} is an independent family of random
variables. We now define N = (Nt )t∈[0,1] by

Nt :=
L∑

l=1

1(0,t](Xl) for t ∈ [0,1]. (5.16)

Theorem 5.35 The family N of random variables defined in (5.16) is a Poisson
process with intensity α (and time set [0,1]).

Proof We have to show that the increments of N in finitely many pairwise disjoint
intervals are independent and Poisson distributed. Hence let m ∈ N and 0 = t0 <
t1 < . . . < tm = 1. We use the abbreviations pi := ti − ti−1 and λi = α · (ti − ti−1)

and show that

(Nti −Nti−1)i=1,...,m is independent (5.17)

and

Nti −Nti−1 ∼ Poiλi for all i = 1, . . . ,m. (5.18)

This is equivalent to showing that for each choice of k1, . . . , km ∈N0, we have

P[Nti −Nti−1 = ki for any i = 1, . . . ,m] =
m∏

i=1

(

e−λi
λ
ki
i

ki !
)

. (5.19)

Write

Mn,i := #{l ≤ n : ti−1 <Xl ≤ ti} =
n∑

l=1

1(ti−1,ti ](Xl).
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By Exercise 2.2.3, the vector (Mn,1, . . . ,Mn,m) is multinomially distributed with
parameters n and p = (p1, . . . , pm). That is, if we assume n := k1 + . . .+ km, then

P[Mn,1 = k1, . . . ,Mn,m = km] = n!
k1! . . . km!p

k1
1 . . . p

km
m .

In order to show (5.19), note that the event in (5.19) implies L = n and that L
and (Mn,1, . . . ,Mn,m) are independent. Hence we have

P[Nti −Nti−1 = ki for i = 1, . . . ,m]
= P
[{Nti −Nti−1 = ki for i = 1, . . . ,m} ∩ {L= n}]

= P
[{Mn,1 = k1, . . . ,Mn,m = km} ∩ {L= n}

]

= P[Mn,1 = k1, . . . ,Mn,m = km] · P[L= n]

= n!
k1! . . . km!p

k1
1 . . . p

km
m e

−α αn

n!

=
m∏

i=1

(

e−λi
λ
ki
i

ki !
)

.
�

We close this section by presenting a further, rather elementary and instructive
construction of the Poisson process based on specifying the waiting times between
the clicks of the Geiger counter, or, more formally, between the points of disconti-
nuity of the map t �→Nt(ω). At time s, what is the probability that we have to wait
another t time units (or longer) for the next click? Since we modeled the clicks as a
Poisson process with intensity α, this probability can easily be computed:

P[N(s,s+t] = 0] = e−αt .

Hence the waiting time for the next click is exponentially distributed with param-
eter α. Furthermore, the waiting times should be independent. We now take the
waiting times as the starting point and, based on them, construct the Poisson pro-
cess.

Let W1,W2, . . . be an independent family of exponentially distributed random
variables with parameter α > 0; hence P[Wn > x] = e−αx . We define

Tn :=
n∑

k=1

Wk

and interpret Wn as the waiting time between the (n− 1)th click and the nth click.
Tn is the time of the nth click. Appealing to this intuition we define the number of
clicks until time t by

Nt := #{n ∈N0 : Tn ≤ t}.
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Hence

{Nt = k} = {Tk ≤ t < Tk+1}.

In particular, Nt is a random variable; that is, measurable.

Theorem 5.36 The family (Nt , t ≥ 0) is a Poisson process with intensity α.

Proof (We follow the proof in [59, Theorem 3.34].) We must show that for any
n ∈ N and any sequence 0 = t0 < t1 < . . . < tn, we have that (Nti − Nti−1 , i =
1, . . . , n) is independent and Nti − Nti−1 ∼ Poiα(ti−ti−1). We are well aware that
it is not enough to show this for the case n= 2 only. However, the notational com-
plications become overwhelming for n≥ 3, and the idea for general n ∈N becomes
clear in the case n= 2. Hence we restrict ourselves to the case n= 2.

Hence we show for 0< s < t and l, k ∈N0 that

P[Ns = k,Nt −Ns = l] =
(

e−αs (αs)
k

k!
)(

e−α(t−s) (α(t − s))
l

l!
)

. (5.20)

This implies thatNs and (Nt −Ns) are independent. Furthermore, by summing over
k ∈N0, this yields Nt −Ns ∼ Poiα(t−s).

By Corollary 2.22, the distribution P(W1,...,Wk+l+1) has the density

x �→ αk+l+1e−αSk+l+1(x),

where Sn(x) := x1+ . . .+ xn. It is sufficient to consider l ≥ 1 since we get the l = 0
term from the fact that the probability measure has total mass one. Hence, let l ≥ 1.
We compute

P[Ns = k,Nt −Ns = l]
= P[Tk ≤ s < Tk+1, Tk+l ≤ t < Tk+l+1]

=
∫ ∞

0
. . .

∫ ∞

0
dx1 . . . dxk+l+1

× αk+l+1e−αSk+l+1(x)1{Sk(x)≤s<Sk+1(x)}1{Sk+l (x)≤t<Sk+l+1(x)}.

Starting with xk+l+1, we integrate successively. In the first step, substitute z =
Sk+l+1(x) to obtain

∫ ∞

0
dxk+l+1 αe

−αSk+l+1(x)1{Sk+l+1(x)>t} =
∫ ∞

t

dzαe−αz = e−αt .



130 5 Moments and Laws of Large Numbers

Now keep x1, . . . , xk fixed and substitute for the remaining variables by letting y1 =
Sk+1(x)− s, y2 = xk+2, . . . , yl = xk+l to obtain

∫ ∞

0
. . .

∫ ∞

0
dxk+1 . . . dxk+l 1{s<Sk+1(x)≤Sk+l≤t}

=
∫ ∞

0
. . .

∫ ∞

0
dy1 . . . dyl 1{y1+...+yl≤t−s} =

(t − s)l
l! .

(The last identity can be obtained, for example, by induction on l.) Now integrate
the remaining variables x1, . . . , xk to get

∫ ∞

0
. . .

∫ ∞

0
dx1 . . . dxk 1{Sk(x)≤s} =

sk

k! .

In total, we have

P[Ns = k,Nt −Ns = l] = e−αtαk+l s
k

k!
(t − s)l
l! ;

hence (5.20) holds. �

Exercise 5.5.1 Let Ln, Xnk , k,n ∈ N be independent random variables with Ln ∼
Poiα and Xnk ∼ U(n−1,n] (the uniform distribution on (n − 1, n]) for all k,n ∈ N.
Define

Nt := #
{
(k, n) ∈N

2 : k ≤ Ln and Xnk ≤ t
}
.

Show that (Nt )t≥0 is a Poisson process with intensity α.

Exercise 5.5.2 Let T > 0 and let X1,X2, . . . be i.i.d. random variables that are
uniformly distributed on [0,1]. Let

N :=max{n ∈N0 :X1 + . . .+Xn ≤ T }
and compute E[N ].



Chapter 6
Convergence Theorems

In the strong and the weak laws of large numbers, we implicitly introduced the
notions of almost sure convergence and convergence in probability of random
variables. We saw that almost sure convergence implies convergence in mea-
sure/probability. This chapter is devoted to a systematic treatment of almost sure
convergence, convergence in measure and convergence of integrals. The key role
for connecting convergence in measure and convergence of integrals is played by
the concept of uniform integrability.

6.1 Almost Sure and Measure Convergence

In the following, (Ω,A,μ) will be a σ -finite measure space. We first define in
metric spaces almost sure convergence and convergence in measure and then com-
pare both concepts. To this end, we need two lemmas that ensure that the distance
function associated with two measurable maps is again measurable. In the follow-
ing, let (E,d) be a separable metric space with Borel σ -algebra B(E). “Separable”
means that there exists a countable dense subset. For x ∈ E and r > 0, denote by
Br(x)= {y ∈E : d(x, y) < r} the ball with radius r centered at x.

Lemma 6.1 Let f,g : Ω → E be measurable with respect to A–B(E). Then the
map H :Ω→[0,∞), ω �→ d(f (ω), g(ω)) is A–B([0,∞))-measurable.

Proof Let F ⊂ E be countable and dense. By the triangle inequality, d(x, z) +
d(z, y) ≥ d(x, y) for all x, y ∈ E and z ∈ F . Let (zn)n∈N be a sequence in F with

zn
n→∞−→ x. Since d is continuous, we have d(x, zn)+ d(zn, y) n→∞−→ d(x, y). Putting

things together, we infer infz∈F (d(x, z) + d(z, y)) = d(x, y). Since x �→ d(x, z)

is continuous and hence measurable, the maps fz, gz :Ω→ [0,∞) with fz(ω) =
d(f (ω), z) and gz(ω) = d(g(ω), z) are also measurable. Thus fz + gz and H =
infz∈F (fz + gz) are measurable.

(A somewhat more systematic proof is based on the fact that (f, g) is A–B(E ×
E)-measurable (this will follow from Theorem 14.8) and that d : E ×E→ [0,∞)
A. Klenke, Probability Theory, Universitext, DOI 10.1007/978-1-4471-5361-0_6,
© Springer-Verlag London 2014
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is continuous and hence B(E × E)–B([0,∞))-measurable. As a composition of
measurable maps, ω �→ d(f (ω), g(ω)) is measurable.) �

Let f,f1, f2, . . . :Ω→E be measurable with respect to A–B(E).

Definition 6.2 We say that (fn)n∈N converges to f

(i) in μ-measure (or, briefly, in measure), symbolically fn
meas−→ f , if

μ
({
d(f,fn) > ε

}∩A) n→∞−→ 0

for all ε > 0 and all A ∈A with μ(A) <∞, and
(ii) μ-almost everywhere (a.e.), symbolically fn

a.e.−→ f , if there exists a μ-null
set N ∈A such that

d
(
f (ω),fn(ω)

) n→∞−→ 0 for any ω ∈Ω \N.
If μ is a probability measure, then convergence in μ-measure is also called
convergence in probability. If (fn)n∈N converges a.e., then we also say that
(fn)n∈N converges almost surely (a.s.) and write fn

a.s.−→ f . Sometimes we
will drop the qualifications “almost everywhere” and “almost surely”.

Remark 6.3 Let A1,A2, . . . ∈A with An ↑Ω and μ(An) <∞ for any n ∈N. Then
a.e. convergence is equivalent to a.e. convergence on each An. ♦

Remark 6.4 Almost everywhere convergence implies convergence in measure: For
ε > 0, define

Dn(ε)=
{
d(f,fm) > ε for some m≥ n}.

Then D(ε) := ⋂∞
n=1Dn(ε) ⊂ N , where N is the null set from the definition of

almost everywhere convergence. Upper semicontinuity of μ implies

μ
(
Dn(ε)∩A

) n→∞−→ μ
(
D(ε)∩A)= 0

for any A ∈A with μ(A) <∞. ♦

Remark 6.5 Almost everywhere convergence and convergence in measure deter-
mine the limit up to equality almost everywhere. Indeed, let fn

meas−→ f and fn
meas−→ g.

Let A1,A2, . . . ∈ A with An ↑ Ω and μ(An) <∞ for any n ∈ N. Then (since
d(f,g)≤ d(f,fn)+ d(g,fn)), for any m ∈N and ε > 0,

μ
(
Am ∩

{
d(f,g) > ε

})

≤ μ(Am ∩
{
d(f,fn) > ε/2

})+μ(Am ∩
{
d(g,fn) > ε/2

}) n→∞−→ 0.

Hence μ({d(f,g) > 0})= 0. ♦
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Remark 6.6 In general, convergence in measure does not imply almost everywhere
convergence. Indeed, let (Xn)n∈N be an independent family of random variables

with Xn ∼ Ber1/n. Then Xn
n→∞−→ 0 in probability but the Borel–Cantelli lemma

implies lim supn→∞Xn = 1 almost surely. ♦

Theorem 6.7 Let A1,A2, . . . ∈ A with AN ↑ Ω and μ(AN) <∞ for all N ∈ N.
For measurable f,g :Ω→E, let

d̃(f, g) :=
∞∑

N=1

2−N

1+μ(AN)
∫

AN

(
1∧ d(f (ω), g(ω)))μ(dω). (6.1)

Then d̃ is a metric that induces convergence in measure: If f,f1, f2, . . . are mea-
surable, then

fn
meas−→ f ⇐⇒ d̃(f, fn)

n→∞−→ 0.

Proof For N ∈N, define

d̃N (f, g) :=
∫

AN

(
1∧ d(f (ω), g(ω)))μ(dω).

Then d̃(f, fn)
n→∞−→ 0 if and only if d̃N (f,fn)

n→∞−→ 0 for all N ∈N.
“=⇒” Assume fn

meas−→ f . Then, for any ε ∈ (0,1),
d̃N (f,fn)≤ μ

(
AN ∩

{
d(f,fn) > ε

})+ εμ(AN) n→∞−→ εμ(AN).

Letting ε ↓ 0 yields d̃N (f,fn)
n→∞−→ 0.

“⇐=” Assume d̃(f, fn)
n→∞−→ 0. Let B ∈ A with μ(B) <∞. Fix δ > 0 and

choose N ∈N large enough that μ(B \AN) < δ. Then, for ε ∈ (0,1),
μ
(
B ∩ {d(f,fn) > ε

})≤ δ +μ(AN ∩
{
d(f,fn) > ε

})

≤ δ + ε−1d̃N (f,fn)
n→∞−→ δ.

Letting δ ↓ 0 yields μ(B ∩ {d(f,fn) > ε}) n→∞−→ 0; hence fn
meas−→ f . �

Consider the most prominent case E = R equipped with the Euclidean metric.
Here the integral is the basis for another concept of convergence.

Definition 6.8 (Mean convergence) Let f,f1, f2, . . . ∈ L1(μ). We say that the
sequence (fn)n∈N converges in mean to f , symbolically

fn
L1−→ f,

if ‖fn − f ‖1
n→∞−→ 0.
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Remark 6.9 If fn
L1−→ f , then in particular

∫
fn dμ

n→∞−→ ∫
f dμ. ♦

Remark 6.10 If fn
L1−→ f and fn

L1−→ g, then f = g almost everywhere. Indeed, by

the triangle inequality, ‖f − g‖1 ≤ ‖fn − f ‖1 + ‖fn − g‖1
n→∞−→ 0. ♦

Remark 6.11 Both L1-convergence and almost everywhere convergence imply con-
vergence in measure. All other implications are incorrect in general. ♦

Theorem 6.12 (Fast convergence) Let (E,d) be a separable metric space. In or-
der for the sequence (fn)n∈N of measurable maps Ω → E to converge almost
everywhere, it is sufficient that one of the following conditions holds.

(i) E = R and there is a p ∈ [1,∞) with fn ∈ Lp(μ) for all n ∈ N and there is
an f ∈ Lp(μ) with

∑∞
n=1 ‖fn − f ‖p <∞.

(ii) There is a measurable f with
∑∞
n=1μ(A∩{d(f,fn) > ε}) <∞ for all ε > 0

and for all A ∈A with μ(A) <∞.
In both cases, we have fn

n→∞−→ f almost everywhere.
(iii) E is complete and there is a summable sequence (εn)n∈N such that

∞∑

n=1

μ
(
A∩ {d(fn,fn+1) > εn

})
<∞ for all A ∈A with μ(A) <∞.

Proof Clearly, condition (i) implies (ii) since Markov’s inequality yields that

μ
({|f − fn|> ε

})≤ ε−p‖f − fn‖pp.
By Remark 6.3, it is enough to consider the case μ(Ω) <∞.
Assume (ii). Let Bn(ε)= {d(f,fn) > ε} and B(ε)= lim supn→∞Bn(ε). By the

Borel–Cantelli lemma, μ(B(ε)) = 0. Let N =⋃∞
n=1B(1/n). Then μ(N) = 0 and

fn(ω)
n→∞−→ f (ω) for any ω ∈Ω \N .

Assume (iii). Let Bn = {d(fn,fn+1) > εn} and B = lim supn→∞Bn. Then
μ(B)= 0 and (fn(ω))n∈N is a Cauchy sequence in E for any ω ∈Ω \B . Since E is
complete, the limit f (ω) := limn→∞ fn(ω) exists. For ω ∈ B , define f (ω)= 0. �

Corollary 6.13 Let (E,d) be a separable metric space. Let f,f1, f2, . . . be mea-
surable maps Ω→E. Then the following statements are equivalent.

(i) fn
n→∞−→ f in measure.

(ii) For any subsequence of (fn)n∈N, there exists a sub-subsequence that converges
to f almost everywhere.

Proof “(ii)=⇒(i)” Assume that (i) does not hold. Let d̃ be a metric that induces
convergence in measure (see Theorem 6.7). Then there exists an ε > 0 and a sub-
sequence (fnk )k∈N with d̃(fnk , f ) > ε for all k ∈ N. Clearly, no subsequence of
(fnk )k∈N converges to f in measure; hence neither converges almost everywhere.
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“(i)=⇒(ii)” Now assume (i). Let A1,A2, . . . ∈A with AN ↑Ω and μ(AN) <∞
for anyN ∈N. Since fnk

meas−→ f for k→∞, we can choose a subsequence (fnkl )l∈N
such that μ(Al ∩ (d(f,fnkl ) > 1/l)) < 2−l for any l ∈ N. Hence, for each N ∈ N,
we have

∞∑

l=1

μ

(

AN ∩
(

d(f,fnkl
) >

1

l

))

≤Nμ(AN)+
∞∑

l=N+1

2−l <∞.

By Theorem 6.12(ii), (fnkl )l∈N converges to f almost everywhere on AN . By Re-
mark 6.3, (fnkl )l∈N converges to f almost everywhere. �

Corollary 6.14 Let (Ω,A,μ) be a measure space in which almost everywhere con-
vergence and convergence in measure do not coincide. Then there does not exist a
topology on the set of measurable maps Ω → E that induces almost everywhere
convergence.

Proof Assume that there does exist a topology that induces almost everywhere con-
vergence. Let f,f1, f2, . . . be measurable maps with the property that fn

meas−→ f , but

not fn
n→∞−→ f almost everywhere. Now let U be an open set that contains f , but

with fn �∈ U for infinitely many n ∈ N. Hence, let (fnk )k∈N be a subsequence with

fnk �∈ U for all k ∈N. Since fnk
k→∞−→ f in measure, by Corollary 6.13, there exists

a further subsequence (fnkl )l∈N of (fnk )k∈N with fnkl
l→∞−→ f almost everywhere.

However, then fnkl ∈U for all but finitely many l, which yields a contradiction! �

Corollary 6.15 Let (E,d) be a separable complete metric space. Let (fn)n∈N be a
Cauchy sequence in measure in E; that is, for any A ∈A with μ(A) <∞ and any
ε > 0, we have

μ
(
A∩ {d(fm,fn) > ε

})−→ 0 for m,n→∞.
Then (fn)n∈N converges in measure.

Proof Without loss of generality, we may assume μ(Ω) <∞. Choose a subse-
quence (fnk )k∈N such that

μ
({
d(fn,fnk ) > 2−k

})
< 2−k for all n≥ nk.

By Theorem 6.12(iii), there is an f with fnk
k→∞−→ f almost everywhere; hence, in

particular, μ({d(fnk , f ) > ε/2}) k→∞−→ 0 for all ε > 0. Now

μ
({
d(fn,f ) > ε

})≤ μ({d(fnk , fn) > ε/2
})+μ({d(fnk , f ) > ε/2

})
.

If k is large enough that 2−k < ε/2 and if n≥ nk , then the first summand is smaller

than 2−k . Hence we have μ({d(fn,f ) > ε}) n→∞−→ 0; that is, fn
meas−→ f . �
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Exercise 6.1.1 Let Ω be countable. Show that convergence in probability implies
almost everywhere convergence.

Exercise 6.1.2 Give an example of a sequence that

(i) converges in L1 but not almost everywhere,
(ii) converges almost everywhere but not in L1.

Exercise 6.1.3 (Egorov’s theorem (1911), [41]) Let (Ω,A,μ) be a finite measure
space and let f1, f2, . . . be measurable functions that converge to some f almost
everywhere. Show that, for every ε > 0, there is a set A ∈A with μ(Ω \A) < ε and

supω∈A |fn(ω)− f (ω)| n→∞−→ 0.

Exercise 6.1.4 Let X1,X2, . . . be independent, square integrable, centered random
variables with

∑∞
i=1 Var[Xi] <∞. Show that there exists a square integrable X

with X = limn→∞
∑n
i=1Xi almost surely.

6.2 Uniform Integrability

From the preceding section, we can conclude that convergence in measure plus ex-
istence of L1 limit points implies L1-convergence. Hence convergence in measure
plus relative sequential compactness in L1 yields convergence in L1. In this section,
we study a criterion for relative sequential compactness in L1, the so-called uniform
integrability.

Definition 6.16 A family F ⊂ L1(μ) is called uniformly integrable if

inf
0≤g∈L1(μ)

sup
f∈F

∫
(|f | − g)+ dμ= 0. (6.2)

Theorem 6.17 The family F ⊂ L1(μ) is uniformly integrable if and only if

inf
0≤g̃∈L1(μ)

sup
f∈F

∫

{|f |>g̃}
|f |dμ= 0. (6.3)

If μ(Ω) <∞, then uniform integrability is equivalent to either of the following two
conditions:

(i) infa∈[0,∞) supf∈F
∫
(|f | − a)+ dμ= 0,

(ii) infa∈[0,∞) supf∈F
∫
{|f |>a} |f |dμ= 0.

Proof Clearly, (|f |−g)+ ≤ |f | ·1{|f |>g}; hence (6.3) implies uniform integrability.
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Now assume (6.2). For ε > 0, choose gε ∈ L1(μ) such that

sup
f∈F

∫
(|f | − gε

)+
dμ≤ ε. (6.4)

Define g̃ε = 2gε/2. Then, for f ∈F ,

∫

{|f |>g̃ε}
|f |dμ≤

∫

{|f |>g̃ε}
(|f | − gε/2

)+
dμ+

∫

{|f |>g̃ε}
gε/2 dμ.

By construction,
∫
{|f |>g̃ε}(|f | − gε/2)+ dμ≤ ε/2 and

gε/21{|f |>g̃ε} ≤
(|f | − gε/2

)+1{|f |>g̃ε};

hence also
∫

{|f |>g̃ε}
gε/2 dμ≤

∫

{|f |>g̃ε}
(|f | − gε/2

)+
dμ≤ ε

2
.

Summing up, we have

sup
f∈F

∫

{|f |>g̃ε}
|f |dμ≤ ε. (6.5)

Clearly, (ii) implies (i). If μ(Ω) <∞, then (i) implies uniform integrability of F
since the infimum is taken over the smaller set of constant functions. We still have
to show that uniform integrability implies (ii). Accordingly, assume F is uniformly
integrable (but not necessarily μ(Ω) <∞). For any ε > 0 (and gε and g̃ε as above),
choose aε such that

∫
{g̃ε/2>aε} g̃ε/2 dμ <

ε
2 . Then

∫

{|f |>aε}
|f |dμ≤

∫

{|f |>g̃ε/2}
|f |dμ+

∫

{g̃ε/2>aε}
g̃ε/2 dμ < ε. �

Theorem 6.18

(i) If F ⊂ L1(μ) is a finite set, then F is uniformly integrable.
(ii) If F,G ⊂ L1(μ) are uniformly integrable, then (f +g : f ∈F, g ∈ G), (f −g :

f ∈F, g ∈ G) and {|f | : f ∈F} are also uniformly integrable.
(iii) If F is uniformly integrable and if, for any g ∈ G, there exists an f ∈ F with

|g| ≤ |f |, then G is also uniformly integrable.

Proof The proof is simple and is left as an exercise. �

The following theorem describes a very useful criterion for uniform integrability.
We will use it in many places.
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Theorem 6.19 For finite μ, F ⊂ L1(μ) is uniformly integrable if and only if there
is a function H : [0,∞)→[0,∞) with limx→∞H(x)/x =∞ and

sup
f∈F

∫

H
(|f |)dμ <∞.

H can be chosen to be monotone increasing and convex.

Proof “⇐=” Assume there is an H with the advertised properties. Then Ka :=
infx≥a H(x)x ↑∞ if a ↑∞. Hence, for a > 0,

sup
f∈F

∫

{|f |≥a}
|f |dμ≤ 1

Ka
sup
f∈F

∫

{|f |≥a}
H
(|f |)dμ

≤ 1

Ka
sup
f∈F

∫

H
(|f |)dμ a→∞−→ 0.

“=⇒” Assume F is uniformly integrable. As we have μ(Ω) <∞, by Theo-
rem 6.17, there exists a sequence an ↑∞ with

sup
f∈F

∫
(|f | − an

)+
dμ < 2−n.

Define

H(x)=
∞∑

n=1

(x − an)+ for any x ≥ 0.

As a sum of convex functions, H is convex. Further, for any n ∈ N and x ≥ 2an,
H(x)/x ≥ ∑n

k=1(1 − ak/x)+ ≥ n/2; hence we have H(x)/x ↑ ∞. Finally, by
monotone convergence, for any f ∈F ,

∫

H
(|f (ω)|)μ(dω)=

∞∑

n=1

∫
(|f | − an

)+
dμ≤

∞∑

n=1

2−n = 1.
�

Recall the notation ‖ ·‖p from Definition 4.16.

Definition 6.20 Let p ∈ [1,∞]. A family F ⊂ Lp(μ) is called bounded in Lp(μ)
if sup{‖f ‖p : f ∈F}<∞.

Corollary 6.21 Let μ(Ω) <∞ and p > 1. If F is bounded in Lp(μ), then F is
uniformly integrable.

Proof Apply Theorem 6.19 with the convex map H(x)= xp . �
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Corollary 6.22 If (Xi)i∈I is a family of random variables with

sup
{∣
∣E[Xi]

∣
∣ : i ∈ I}<∞ and sup

{
Var[Xi] : i ∈ I

}
<∞,

then (Xi)i∈I is uniformly integrable.

Proof Since E[X2
i ] = E[Xi]2+Var[Xi], i ∈ I , is bounded, this follows from Corol-

lary 6.21 with p = 2. �

Lemma 6.23 There is a map h ∈ L1(μ) with h > 0 almost everywhere.

Proof Let A1,A2, . . . ,∈A with An ↑Ω and μ(An) <∞ for all n ∈N. Define

h=
∞∑

n=1

2−n
(
1+μ(An)

)−11An.

Then h > 0 almost everywhere and
∫
hdμ=∑∞

n=1 2−n μ(An)
1+μ(An) ≤ 1. �

Theorem 6.24 A family F ⊂ L1(μ) is uniformly integrable if and only if the fol-
lowing two conditions are fulfilled.

(i) C := supf∈F
∫ |f |dμ <∞.

(ii) There is a function 0≤ h ∈ L1(μ) such that for any ε > 0, there is a δ(ε) > 0
with

sup
f∈F

∫

A

|f |dμ≤ ε for all A ∈A such that
∫

A

hdμ < δ(ε).

If μ(Ω) <∞, then (ii) is equivalent to (iii):
(iii) For all ε > 0, there is a δ(ε) > 0 such that

sup
f∈F

∫

A

|f |dμ≤ ε for all A ∈A with μ(A) < δ(ε).

Proof “=⇒” Let F be uniformly integrable. Let h ∈ L1(μ) with h > 0 a.e. Let
ε > 0 and let g̃ε/3 be an ε/3-bound for F (as in (6.5)). Since {g̃ε/3 ≥ αh} ↓ ∅ for
α→∞, for sufficiently large α = α(ε), we have

∫

{g̃ε/3≥αh}
g̃ε/3 dμ <

ε

3
.

Letting δ(ε) := ε
3α(ε) , we get for any A ∈A with

∫
A
hdμ < δ(ε) and any f ∈F ,

∫

A

|f |dμ≤
∫

{|f |>g̃ε/3}
|f |dμ+

∫

A

g̃ε/3 dμ

≤ ε
3
+ α
∫

A

hdμ+
∫

{g̃ε/3≥αh}
g̃ε/3 dμ≤ ε.
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Hence we have shown (ii). In the above computation, let A=Ω to obtain
∫

|f |dμ≤ 2ε

3
+ α
∫

hdμ<∞.

Hence we have also shown (i).
“⇐=” Assume (i) and (ii). Let ε > 0. Choose h and δ(ε) > 0 as in (ii) and C as

in (i). Define h̃= C
δ(ε)
h. Then

∫

{|f |>h̃}
hdμ= δ(ε)

C

∫

{|f |>h̃}
h̃ dμ≤ δ(ε)

C

∫

|f |dμ≤ δ(ε);

hence, by assumption,
∫
{|f |>h̃} |f |dμ < ε.

“(ii)=⇒(iii)” Assume (ii). Let ε > 0 and choose δ = δ(ε) as in (ii). Choose K <
∞ large enough that

∫
{h≥K} hdμ < δ/2. For all A ∈ A with μ(A) < δ/(2K), we

obtain
∫

A

hdμ≤Kμ(A)+
∫

{h≥K}
hdμ< δ;

hence
∫
A
|f |dμ≤ ε for all f ∈F .

“(iii)=⇒(ii)” Assume (iii) and μ(Ω) <∞. Then h≡ 1 serves the purpose. �

We come to the main theorem of this section.

Theorem 6.25 Let {fn : n ∈ N} ⊂ L1(μ). The following statements are equiva-
lent.

(i) There is an f ∈ L1(μ) with fn
n→∞−→ f in L1.

(ii) (fn)n∈N is an L1(μ)-Cauchy sequence; that is, ‖fn − fm‖1 −→ 0 for
m,n→∞.

(iii) (fn)n∈N is uniformly integrable and there is a measurable map f such that
fn

meas−→ f .

The limits in (i) and (iii) coincide.

Proof “(i)=⇒(ii)” This is evident.
“(ii)=⇒(iii)” For any ε > 0, there is an nε ∈N such that ‖fn − fnε‖1 < ε for all

n≥ nε . Hence ‖(|fn|−|fnε |)+‖1 < ε for all n≥ nε . Thus gε =max{|f1|, . . . , |fnε |}
is an ε-bound for (fn)n∈N (as in (6.4)). For ε > 0, let

μ
({|fm − fn|> ε

})≤ ε−1‖fm − fn‖1 −→ 0 for m,n→∞.
Thus (fn)n∈N is also a Cauchy sequence in measure; hence it converges in measure
by Corollary 6.15.

“(iii)=⇒(i)” Let f be the limit in measure of the sequence (fn)n∈N. Assume that
(fn)n∈N does not converge to f in L1. Then there is an ε > 0 and a subsequence
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(fnk )k∈N with

‖f − fnk‖1 > 2ε for all k ∈N. (6.6)

Here we define ‖f − fnk‖1 =∞ if f �∈ L1(μ). By Corollary 6.13, there is a sub-

sequence (fn′k )k∈N of (fnk )k∈N with fn′k
k→∞−→ f almost everywhere. By Fatou’s

lemma (Theorem 4.21) with 0 as a minorant, we thus get
∫

|f |dμ≤ lim inf
k→∞

∫

|fn′k |dμ <∞.

Hence f ∈ L1(μ). By Theorem 6.18(ii) (with G = {f }), we obtain that the family
(f − fn′k )k∈N is uniformly integrable; hence there is a 0 ≤ g ∈ L1(μ) such that
∫
(|f − fn′k | − g)+ dμ < ε. Define

gk = |fn′k − f | ∧ g for k ∈N.

Then gk
k→∞−→ 0 almost everywhere and g− gk ≥ 0. By Fatou’s lemma,

lim sup
k→∞

∫

gk dμ=
∫

g dμ− lim inf
k→∞

∫

(g − gk) dμ

≤
∫

g dμ−
∫ (

lim
k→∞(g − gk)

)
dμ= 0.

Since |f − fn′k | = (|f − fn′k | − g)+ + gk , this implies that

lim sup
k→∞

‖f − fn′k‖1 ≤ lim sup
k→∞

∫
(|f − fn′k | − g

)+
dμ+ lim sup

k→∞

∫

gk dμ≤ ε,

contradicting (6.6). �

Corollary 6.26 (Lebesgue’s convergence theorem, dominated convergence) Let

f be measurable and let (fn)n∈N be a sequence in L1(μ) with fn
n→∞−→ f in mea-

sure. Assume that there is an integrable dominating function 0 ≤ g ∈ L1(μ) with

|fn| ≤ g almost everywhere for all n ∈ N. Then f ∈ L1(μ) and fn
n→∞−→ f in L1;

hence in particular
∫
fn dμ

n→∞−→ ∫
f dμ.

Proof This is a consequence of Theorem 6.25, as the dominating function ensures
uniform integrability of the sequence (fn)n∈N. �

Exercise 6.2.1 Let H ∈ L1(μ) with H > 0 μ-a.e. (see Lemma 6.23) and let (E,d)
be a separable metric space. For measurable f,g :Ω→E, define

dH (f,g) :=
∫
(
1∧ d(f (ω), g(ω)))H(ω)μ(dω).
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(i) Show that dH is a metric that induces convergence in measure.
(ii) Show that dH is complete if (E,d) is complete.

6.3 Exchanging Integral and Differentiation

We study how properties such as continuity and differentiability of functions of two
variables behave under integration with respect to one of the variables.

Theorem 6.27 (Continuity lemma) Let (E,d) be a metric space, x0 ∈ E and let
f :Ω ×E→R be a map with the following properties.

(i) For any x ∈E, the map ω �→ f (ω,x) is in L1(μ).
(ii) For almost all ω ∈Ω , the map x �→ f (ω,x) is continuous at the point x0.

(iii) There is a map h ∈ L1(μ), h≥ 0, such that |f (·, x)| ≤ h μ-a.e. for all x ∈E.

Then the map F :E→R, x �→ ∫ f (ω,x)μ(dω) is continuous at x0.

Proof Let (xn)n∈N be a sequence in E with limn→∞ xn = x0. Define fn = f (·, xn).
By assumption, |fn| ≤ h and fn

n→∞−→ f (·, x0) almost everywhere. By the dominated
convergence theorem (Corollary 6.26), we get

F(xn)=
∫

fn dμ
n→∞−→

∫

f (·, x0) dμ= F(x0).

Hence F is continuous at x0. �

Theorem 6.28 (Differentiation lemma) Let I ⊂ R be a nontrivial open interval
and let f :Ω × I→R be a map with the following properties.

(i) For any x ∈E, the map ω �→ f (ω,x) is in L1(μ).
(ii) For almost all ω ∈ Ω , the map I → R, x �→ f (ω,x) is differentiable with

derivative f ′.
(iii) There is a map h ∈ L1(μ), h≥ 0, such that |f ′(·, x)| ≤ h μ-a.e. for all x ∈ I .

Then, for any x ∈ I , f ′(·, x) ∈ L1(μ) and the function F : x �→ ∫ f (ω,x)μ(dω)
is differentiable with derivative

F ′(x)=
∫

f ′(ω, x)μ(dω).

Proof Let x0 ∈ I and let (xn)n∈N be a sequence in I with xn �= x0 for all n ∈N and
such that limn→∞ xn = x0. We show that, along the sequence (xn)n∈N, the differ-
ence quotients converge. Define

gn(ω)= f (ω,xn)− f (ω,x0)

xn − x0
for all ω ∈Ω.
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By assumption (ii), we have

gn
n→∞−→ f ′(·, x0) μ-almost everywhere.

By the mean value theorem of calculus, for all n ∈ N and for almost all ω ∈ Ω ,
there exists a yn(ω) ∈ I with gn(ω) = f ′(ω, yn(ω)). In particular, |gn| ≤ h almost
everywhere for all n ∈N. By the dominated convergence theorem (Corollary 6.26),
the limiting function f ′(·, x0) is in L1(μ) and

lim
n→∞

F(xn)− F(x0)

xn − x0
= lim
n→∞

∫

gn(ω)μ(dω)=
∫

f ′(ω, x0)μ(dω). �

Example 6.29 (Laplace transform) Let X be a nonnegative random variable on
(Ω,A,P). Using the notation of Theorem 6.28, let I = [0,∞) and f (x,λ)= e−λx
for λ ∈ I . Then

F(λ)= E
[
e−λX

]

is infinitely often differentiable in (0,∞). The first two derivatives of F are F ′(λ)=
−E[Xe−λX] and F ′′(λ) = E[(X2)e−λX]. Successively, we get the nth derivative
F (n)(λ)= E[(−X)ne−λX]. By monotone convergence, we get

E[X] = − lim
λ↓0
F ′(λ) (6.7)

and

E
[
Xn
]= (−1)n lim

λ↓0
F (n)(λ) for all n ∈N. (6.8)

Indeed, for ε > 0 and I = (ε,∞), we have

sup
x≥0,λ∈I

∣
∣
∣
∣
d

dλ
f (x,λ)

∣
∣
∣
∣= sup

x≥0,λ∈I
xe−λx = ε−1e−1 <∞.

Thus F fulfills the assumptions of Theorem 6.28. Inductively, we get the statement
for F (n) since

∣
∣
∣
∣
dn

dλn
f (x,λ)

∣
∣
∣
∣≤ (n/ε)ne−n <∞ for x ≥ 0 and λ≥ ε. ♦

Exercise 6.3.1 Let X be a random variable on (Ω,A,P) and let

Λ(t) := log
(
E
[
etX
])

for all t ∈R.

Show that D := {t ∈ R :Λ(t) <∞} is a nonempty interval and that Λ is infinitely
often differentiable in the interior of D.



Chapter 7
Lp-Spaces and the Radon–Nikodym Theorem

In this chapter, we study the spaces of functions whose pth power is integrable. In
Section 7.2, we first derive some of the important inequalities (Hölder, Minkowski,
Jensen) and then in Section 7.3 investigate the case p = 2 in more detail. Apart from
the inequalities, the important results for probability theory are Lebesgue’s decom-
position theorem and the Radon–Nikodym theorem in Section 7.4. At first reading,
some readers might wish to skip some of the more analytic parts of this chapter.

7.1 Definitions

We always assume that (Ω,A,μ) is a σ -finite measure space. In Definition 4.16,
for measurable f :Ω→R, we defined

‖f ‖p :=
(∫

|f |p dμ
)1/p

for p ∈ [1,∞)

and

‖f ‖∞ := inf
{
K ≥ 0 : μ(|f |>K)= 0

}
.

Further, we defined the spaces of functions where these expressions are finite:

Lp(Ω,A,μ)= Lp(A,μ)= Lp(μ)= {f :Ω→R measurable and ‖f ‖p <∞}.
We saw that ‖ · ‖1 is a seminorm on L1(μ). Here our first goal is to change ‖ · ‖p
into a proper norm for all p ∈ [1,∞]. Apart from the fact that we still have to show
the triangle inequality, to this end, we have to change the space a little bit since we
only have

‖f − g‖p = 0 ⇐⇒ f = g μ-a.e.

For a proper norm (that is, not only a seminorm), the left-hand side has to imply
equality (not only a.e.) of f and g. Hence we now consider f and g as equivalent if
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f = g almost everywhere. Thus let

N = {f is measurable and f = 0 μ-a.e.}.
For any p ∈ [1,∞], N is a subvector space of Lp(μ). Thus formally we can build
the factor space. This is the standard procedure in order to change a seminorm into
a proper norm.

Definition 7.1 (Factor space) For any p ∈ [1,∞], define

Lp(Ω,A,μ) := Lp(Ω,A,μ)/N = {f̄ := f +N : f ∈ Lp(μ)
}
.

For f̄ ∈ Lp(μ), define ‖f̄ ‖p = ‖f ‖p for any f ∈ f̄ . Also let
∫
f̄ dμ = ∫ f dμ if

this expression is defined for f .

Note that ‖f̄ ‖p and
∫
f̄ dμ do not depend on the choice of the representative

f ∈ f̄ . Recall from Theorem 4.19 that
∫
f̄ dμ is well-defined if f ∈ Lp(μ) and if

μ is finite but it need not be if μ is infinite.
We first investigate convergence with respect to ‖ · ‖p . To this end, we extend

the corresponding theorem (Theorem 6.25) on convergence with respect to ‖ · ‖1.

Definition 7.2 Let p ∈ [1,∞] and f,f1, f2, . . . ∈ Lp(μ). If ‖fn − f ‖p n→∞−→ 0,

then we say that (fn)n∈N converges to f in Lp(μ) and we write fn
Lp−→ f .

Theorem 7.3 Let p ∈ [1,∞] and f1, f2, . . . ∈ Lp(μ). Then the following state-
ments are equivalent:

(i) There is an f ∈ Lp(μ) with fn
Lp−→ f .

(ii) (fn)n∈N is a Cauchy sequence in Lp(μ).

If p <∞, then, in addition, (i) and (ii) are equivalent to:

(iii) (|fn|p)n∈N is uniformly integrable and there exists a measurable f with
fn

meas−→ f .

The limits in (i) and (ii) coincide.

Proof For p =∞, the equivalence of (i) and (ii) is a simple consequence of the
triangle inequality.

Now let p ∈ [1,∞). The proof is similar to the proof of Theorem 6.25.
“(i)=⇒ (ii)” Note that |x + y|p ≤ 2p(|x|p + |y|p) for all x, y ∈R. Hence

‖fm − fn‖pp ≤ 2p
(‖fm − f ‖pp + ‖fn − f ‖pp

) n→∞−→ 0 for m,n→∞.
“(ii)=⇒ (iii)” This works as in the proof of Theorem 6.25.

“(iii)=⇒ (i)” Since |fn|p n→∞−→ |f |p in measure, by Theorem 6.25, we have
|f |p ∈ L1(μ) and hence f ∈ Lp(μ). For n ∈ N, define gn = |fn − f |p . Then
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gn
n→∞−→ 0 in measure, and (gn)n∈N is uniformly integrable since gn ≤ 2p(|fn|p +

|f |p). Hence we get (by Theorem 6.25) ‖fn − f ‖pp = ‖gn‖1
n→∞−→ 0. �

Exercise 7.1.1 Let (Xi)i∈N be independent, square integrable random variables
with E[Xi] = 0 for all i ∈N.

(i) Show that
∑∞
i=1 Var[Xi]<∞ implies that there exists a real random variable

X with
∑n
i=1Xi

n→∞−→ X almost surely.
(ii) Does the converse implication hold in (i)?

Exercise 7.1.2 Let f :Ω→R be measurable. Show that the following hold.

(i) If
∫ |f |p dμ <∞ for some p ∈ (0,∞), then ‖f ‖p p→∞−→ ‖f ‖∞.

(ii) The integrability condition in (i) cannot be waived.

Exercise 7.1.3 Let p ∈ (1,∞), f ∈ Lp(λ), where λ is the Lebesgue measure on R.
Let T :R→R, x �→ x + 1. Show that

1

n

n−1∑

k=0

f ◦ T k n→∞−→ 0 in Lp(λ).

7.2 Inequalities and the Fischer–Riesz Theorem

We present one of the most important inequalities of probability theory, Jensen’s in-
equality for convex functions, and indicate how to derive from it Hölder’s inequality
and Minkowski’s inequality. They in turn yield the triangle inequality for ‖ · ‖p and
help in determining the dual space of Lp(μ). However, for the formal proofs of the
latter inequalities, we will follow a different route.

Before stating Jensen’s inequality, we give a primer on the basics of convexity of
sets and functions.

Definition 7.4 A subset G of a vector space (or of an affine linear space) is called
convex if, for any two points x, y ∈G and any λ ∈ [0,1], we have λx+(1−λ)y ∈G.

Example 7.5

(i) The convex subsets of R are the intervals.
(ii) A linear subspace of a vector space is convex.

(iii) The set of all probability measures on a measurable space is a convex set. ♦

Definition 7.6 Let G be a convex set. A map ϕ :G→R is called convex if for any
two points x, y ∈G and any λ ∈ [0,1], we have

ϕ
(
λx + (1− λ)y)≤ λϕ(x)+ (1− λ)ϕ(y).

ϕ is called concave if (−ϕ) is convex.
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Let I ⊂ R be an interval. Let ϕ : I → R be continuous and in the interior I ◦
twice continuously differentiable with second derivative ϕ′′. Then ϕ is convex if
and only if ϕ′′(x)≥ 0 for all x ∈ I ◦. To put it differently, the first derivative ϕ′ of a
convex function is a monotone increasing function. In the next theorem, we will see
that this is still true even if ϕ is not twice continuously differentiable when we pass
to the right-sided derivative D+ϕ (or to the left-sided derivative), which we show
always exists.

Theorem 7.7 Let I ⊂ R be an interval with interior I ◦ and let ϕ : I → R be a
convex map. Then:

(i) ϕ is continuous on I ◦ and hence measurable with respect to B(I ).
(ii) For x ∈ I ◦, define the function of difference quotients

gx(y) := ϕ(y)− ϕ(x)
y − x for y ∈ I \ {x}.

Then gx is monotone increasing and there exist the left-sided and right-sided
derivatives

D−ϕ(x) := lim
y↑x gx(y)= sup

{
gx(y) : y < x

}

and

D+ϕ(x) := lim
y↓x gx(y)= inf

{
gx(y) : y > x

}
.

(iii) For x ∈ I ◦, we have D−ϕ(x)≤D+ϕ(x) and

ϕ(x)+ (y − x)t ≤ ϕ(y) for any y ∈ I ⇐⇒ t ∈ [D−ϕ(x),D+ϕ(x)].
Hence D−ϕ(x) and D+ϕ(x) are the minimal and maximal slopes of a tangent
at x.

(iv) The maps x �→ D−ϕ(x) and x �→ D+ϕ(x) are monotone increasing. x �→
D−ϕ(x) is left continuous and x �→ D+ϕ(x) is right continuous. We have
D−ϕ(x)=D+ϕ(x) at all points of continuity of D−ϕ and D+ϕ.

(v) ϕ is differentiable at x if and only if D−ϕ(x) = D+ϕ(x). In this case, the
derivative is ϕ′(x)=D+ϕ(x).

(vi) ϕ is almost everywhere differentiable and ϕ(b) − ϕ(a) = ∫ b
a
D+ϕ(x)dx for

a, b ∈ I ◦.

Proof (i) Let x ∈ I ◦. Assume that lim infn→∞ ϕ(x − 1/n) ≤ ϕ(x) − ε for some
ε > 0. Since ϕ is convex, we have

ϕ(y)≥ ϕ(x)+ n(y − x)(ϕ(x)− ϕ(x − 1/n)
)

for all y > x and n ∈N.

Combining this with the assumption, we get ϕ(y) =∞ for all y > x. Hence the
assumption was false. A similar argument for the right-hand side yields continuity
of ϕ at x.
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(ii) Monotonicity is implied by convexity. The other claims are evident.
(iii) By monotonicity of gx , we have D−ϕ(x) ≤ D+ϕ(x). By construction,

ϕ(x) + (y − x)t ≤ ϕ(y) for all y < x if and only if t ≥ D−ϕ(x). The inequality
holds for all y > x if and only if t ≤D+ϕ(x).

(iv) For ε > 0, by the convexity, the map x �→ gx(x + ε) is monotone increas-
ing and is continuous by (i). Being an infimum of monotone increasing and con-
tinuous functions the map x �→ D+ϕ(x) is monotone increasing and right contin-
uous. The statement for D−ϕ follows similarly. As x �→ gx(y) is monotone, we
get D+ϕ(x′) ≥ D−ϕ(x′) ≥ D+ϕ(x) for x′ > x. If D+ϕ is continuous at x, then
D−ϕ(x)=D+ϕ(x).

(v) This is obvious sinceD−ϕ andD+ϕ are the limits of the sequences of slopes
of the left-sided and right-sided secant lines, respectively.

(vi) For ε > 0, let Aε = {x ∈ I : D+ϕ(x) ≥ ε + limy↑x D+ϕ(y)} be the set of
points of discontinuity of size at least ε. For any two points a, b ∈ I with a < b, we
have #(Aε ∩ (a, b)) ≤ ε−1(D+ϕ(b) − D+ϕ(a)); hence Aε ∩ (a, b) is a finite set.
Thus Aε is countable. Hence also A=⋃∞

n=1A1/n is countable and thus a null set.
By (iv) and (v), ϕ is differentiable in I ◦ \A with derivative D+ϕ. �

If I is an interval, then a map g : I→R is called affine linear if there are numbers
a, b ∈R such that g(x)= ax + b for all x ∈ I . If ϕ : I→R is a map, then we write

L(ϕ) := {g : I→R is affine linear and g ≤ ϕ}.
As a shorthand, we write supL(ϕ) for the map x �→ sup{f (x) : f ∈ L(ϕ)}.

Corollary 7.8 Let I ⊂R be an open interval and let ϕ : I→R be a map. Then the
following are equivalent.

(i) ϕ is convex.
(ii) For any x0 ∈ I , there exists a g ∈ L(ϕ) with g(x0)= ϕ(x0).

(iii) L(ϕ) is nonempty and ϕ = supL(ϕ).
(iv) There is a sequence (gn)n∈N in L(ϕ) with ϕ = limn→∞max{g1, . . . , gn}.

Proof “(ii)=⇒ (iii)⇐⇒ (iv)” This is obvious.
“(iii)=⇒ (i)” The supremum of convex functions is convex and any affine linear

map is convex. Hence supL(ϕ) is convex if L(ϕ) �= ∅.
“(i)=⇒ (ii)” By Theorem 7.7(iii), for any x0 ∈ I , the map

x �→ ϕ(x0)+ (x − x0)D
+ϕ(x0)

is in L(ϕ). �

Theorem 7.9 (Jensen’s inequality) Let I ⊂ R be an interval and let X be an I -
valued random variable with E[|X|] <∞. If ϕ is convex, then E[ϕ(X)−] <∞
and

E
[
ϕ(X)

]≥ ϕ(E[X]).
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Proof As L(ϕ) �= ∅ by Corollary 7.8(iii), we can choose numbers a, b ∈R such that
ax + b ≤ ϕ(x) for all x ∈ I . Hence

E
[
ϕ(X)−

]≤ E
[
(aX+ b)−]≤ |b| + |a| ·E[|X|]<∞.

We distinguish the cases where E[X] is in the interior I ◦ or at the boundary ∂I .

Case 1. If E[X] ∈ I ◦, then let t+ :=D+ϕ(E[X]) be the maximal slope of a tangent
of ϕ at E[X]. Then ϕ(x)≥ t+ · (x −E[X])+ ϕ(E[X]) for all x ∈ I ; hence

E
[
ϕ(X)

]≥ t+E
[
X−E[X]]+E

[
ϕ
(
E[X])]= ϕ(E[X]).

Case 2. If E[X] ∈ ∂I , then X = E[X] a.s.; hence E[ϕ(X)] = E[ϕ(E[X])] =
ϕ(E[X]). �

Jensen’s inequality can be extended to R
n. To this end, we need a representation

of convex functions of many variables as a supremum of affine linear functions.
Recall that a function g : Rn→ R is called affine linear if there is an a ∈ R

n and
a b ∈ R such that g(x) = 〈a, x〉 + b for all x. Here 〈 ·, ·〉 denotes the usual inner
product on R

n.

Theorem 7.10 Let G⊂R
n be open and convex and let ϕ :G→R be a map. Then

Corollary 7.8 holds with I replaced by G. If ϕ is convex, then ϕ is continuous and
hence measurable. If ϕ is twice continuously differentiable, then ϕ is convex if and
only if the Hessian matrix is positive semidefinite.

Proof As we need these statements only in the proof of the multidimensional Jensen
inequality, which will not play a central role in the following, we only give refer-
ences for the proofs. In Rockafellar’s book [145], continuity follows from Theo-
rem 10.1, and the statements of Corollary 7.8 follow from Theorem 12.1 and Theo-
rem 18.8. The claim about the Hessian matrix can be found in Theorem 4.5. �

Theorem 7.11 (Jensen’s inequality in R
n) Let G ⊂ R

n be a convex set and let
X1, . . . ,Xn be integrable real random variables with P[(X1, . . . ,Xn) ∈ G] = 1.
Further, let ϕ :G→R be convex. Then E[ϕ(X1, . . . ,Xn)

−]<∞ and

E
[
ϕ(X1, . . . ,Xn)

]≥ ϕ(E[X1], . . . ,E[Xn]
)
.

Proof First consider the case where G is open. Here, the argument is similar to the
proof of Theorem 7.9. Let g ∈ L(ϕ) with

g
(
E[X1], . . . ,E[Xn]

)= ϕ(E[X1], . . . ,E[Xn]
)
.

As g ≤ ϕ is linear, we get

E
[
ϕ(X1, . . . ,Xn)

]≥ E
[
g(X1, . . . ,Xn)

]= g(E[X1], . . . ,E[Xn]
)
.
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Integrability of ϕ(X1, . . . ,Xn)
− can be derived in a similar way to the one-

dimensional case.
Now consider the general case where G is not necessarily open. Here the prob-

lem that arises when (E[X1], . . . ,E[Xn]) ∈ ∂G is a bit more tricky than in the one-
dimensional case since ∂G can have flat pieces that in turn, however, are convex.
Hence one cannot infer that (X1, . . . ,Xn) equals its expectation almost surely. We
only sketch the argument. First infer that (X1, . . . ,Xn) is almost surely in one of
those flat pieces. This piece is necessarily of dimension smaller than n. Now restrict
ϕ to that flat piece and inductively reduce its dimension until reaching a point, the
case that has already been treated above. Details can be found, e.g., in [37, Theo-
rem 10.2.6]. �

Example 7.12 Let X be a real random variable with E[X2] < ∞, I = R and
ϕ(x)= x2. By Jensen’s inequality, we get

Var[X] = E
[
X2]− (E[X])2 ≥ 0. ♦

Example 7.13 Let G= [0,∞)× [0,∞), α ∈ (0,1) and ϕ(x, y)= xαy1−α . Then ϕ
is concave (exercise!); hence, for nonnegative random variables X and Y with finite
expectation (by Theorem 7.11),

E
[
XαY 1−α]≤ (E[X])α(E[Y ])1−α. ♦

Example 7.14 Let G, X and Y be as in Example 7.13. Let p ∈ (1,∞). Then
ψ(x, y)= (x1/p + y1/p)p is concave. Hence (by Theorem 7.11)

(
E[X]1/p +E[Y ]1/p)p ≥ E

[(
X1/p + Y 1/p)p]. ♦

Before we present Hölder’s inequality and Minkowski’s inequality, we need a
preparatory lemma.

Lemma 7.15 (Young’s inequality) For p,q ∈ (1,∞) with 1
p
+ 1
q
= 1 and for x, y ∈

[0,∞),

xy ≤ x
p

p
+ y

q

q
. (7.1)

Proof Fix y ∈ [0,∞) and define f (x) := xp

p
+ yq

q
− xy for x ∈ [0,∞). f is

twice continuously differentiable in (0,∞) with derivatives f ′(x)= xp−1 − y and
f ′′(x) = (p − 1)xp−2. In particular, f is strictly convex and hence assumes its
(unique) minimum at x0 = y1/(p−1). By assumption, q = p

p−1 ; hence xp0 = yq and
thus

f (x0)=
(

1

p
+ 1

q

)

yq − y1/(p−1)y = 0. �
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Theorem 7.16 (Hölder’s inequality) Let p,q ∈ [1,∞] with 1
p
+ 1

q
= 1 and

f ∈ Lp(μ), g ∈ Lq(μ). Then (fg) ∈ L1(μ) and

‖fg‖1 ≤ ‖f ‖p · ‖g‖q .

Proof The cases p = 1 and p =∞ are trivial. Hence, let p ∈ (1,∞). Let f ∈ Lp(μ)
and g ∈ Lq(μ) be nontrivial. By passing to f/‖f ‖p and g/‖g‖q , we may assume
that ‖f ‖p = ‖g‖q = 1. By Lemma 7.15, we have

‖fg‖1 =
∫

|f | · |g|dμ≤ 1

p

∫

|f |p dμ+ 1

q

∫

|g|q dμ

= 1

p
+ 1

q
= 1= ‖f ‖p · ‖g‖q . �

Theorem 7.17 (Minkowski’s inequality) For p ∈ [1,∞] and f,g ∈ Lp(μ),

‖f + g‖p ≤ ‖f ‖p + ‖g‖p. (7.2)

Proof The case p =∞ is trivial. Hence, let p ∈ [1,∞). The left-hand side in (7.2)
does not decrease if we replace f and g by |f | and |g|. Hence we may assume
f ≥ 0 and g ≥ 0 and (to avoid trivialities) ‖f + g‖p > 0.

Now (f + g)p ≤ 2p(f p ∨ gp) ≤ 2p(f p + gp); hence f + g ∈ Lp(μ). Apply
Hölder’s inequality to f · (f + g)p−1 and to g · (f + g)p−1 to get

‖f + g‖pp =
∫

(f + g)p dμ=
∫

f (f + g)p−1 dμ+
∫

g(f + g)p−1 dμ

≤ ‖f ‖p ·
∥
∥(f + g)p−1

∥
∥
q
+ ‖g‖p ·

∥
∥(f + g)p−1

∥
∥
q

= (‖f ‖p + ‖g‖p
) · ‖f + g‖p−1

p .

Note that in the last step, we used the fact that p−p/q = 1. Dividing both sides by
‖f + g‖p−1

p yields (7.2). �

In Theorem 7.17, we verified the triangle inequality and hence that ‖ · ‖p is a
norm. Theorem 7.3 says that this norm is complete (i.e., every Cauchy sequence
converges). A complete normed vector space is called a Banach space. Summing
up, we have shown the following theorem.

Theorem 7.18 (Fischer–Riesz) (Lp(μ),‖ · ‖p) is a Banach space for every p ∈
[1,∞].

Exercise 7.2.1 Show Hölder’s inequality by applying Jensen’s inequality to the
function of Example 7.13.
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Exercise 7.2.2 Show Minkowski’s inequality by applying Jensen’s inequality to the
function of Example 7.14.

Exercise 7.2.3 Let X be a real random variable and let p,q ∈ (1,∞) with
1
p
+ 1
q
= 1. Show that X is in Lp(P) if and only if there exists a C <∞ such

that |E[XY ]| ≤ C‖Y‖q for any bounded random variable Y .

7.3 Hilbert Spaces

In this section, we study the case p = 2 in more detail. The main goal is the repre-
sentation theorem for continuous linear functionals on Hilbert spaces due to Riesz
and Fréchet. This theorem is a cornerstone for a functional analytic proof of the
Radon–Nikodym theorem in Section 7.4.

Definition 7.19 Let V be a real vector space. A map 〈 ·, ·〉 : V × V → R is called
an inner product if:

(i) (Linearity) 〈x,αy + z〉 = α〈x, y〉 + 〈x, z〉 for all x, y, z ∈ V and α ∈R.
(ii) (Symmetry) 〈x, y〉 = 〈y, x〉 for all x, y ∈ V .

(iii) (Positive definiteness) 〈x, x〉> 0 for all x ∈ V \ {0}.
If only (i) and (ii) hold and 〈x, x〉 ≥ 0 for all x, then 〈 ·, ·〉 is called a positive
semidefinite symmetric bilinear form, or a semi-inner product.

If 〈 ·, ·〉 is an inner product, then (V , 〈 ·, ·〉) is called a (real) Hilbert space if
the norm defined by ‖x‖ := 〈x, x〉1/2 is complete; that is, if (V ,‖ · ‖) is a Banach
space.

Definition 7.20 For f,g ∈ L2(μ), define

〈f,g〉 :=
∫

fg dμ.

For f̄ , ḡ ∈ L2(μ), define 〈f̄ , ḡ〉 := 〈f,g〉, where f ∈ f̄ and g ∈ ḡ.

Note that this definition is independent of the particular choices of the represen-
tatives of f and g.

Theorem 7.21 〈 ·, ·〉 is an inner product on L2(μ) and a semi-inner product on
L2(μ). In addition, ‖f ‖2 = 〈f,f 〉1/2.

Proof This is left as an exercise. �

As a corollary to Theorem 7.18, we get the following.

Corollary 7.22 (L2(μ), 〈 ·, ·〉) is a real Hilbert space.
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Lemma 7.23 If 〈 ·, ·〉 is a semi-inner product on the real vector space V , then
〈 ·, ·〉 : V ×V →R is continuous (with respect to the product topology of the topol-
ogy on V that is generated by the pseudo-metric d(x, y)= 〈x − y, x − y〉1/2).

Proof This is obvious. �

Definition 7.24 (Orthogonal complement) Let V be a real vector space with inner
product 〈 ·, ·〉. If W ⊂ V , then the orthogonal complement of W is the following
linear subspace of V :

W⊥ := {v ∈ V : 〈v,w〉 = 0 for all w ∈W}.

Theorem 7.25 (Orthogonal decomposition) Let (V , 〈 ·, ·〉) be a Hilbert space and
let W ⊂ V be a closed linear subspace. For any x ∈ V , there is a unique represen-
tation x = y + z where y ∈W and z ∈W⊥.

Proof Let x ∈ V and c := inf{‖x−w‖ :w ∈W }. Further, let (wn)n∈N be a sequence

in W with ‖x −wn‖ n→∞−→ c. The parallelogram law yields

‖wm −wn‖2 = 2‖wm − x‖2 + 2‖wn − x‖2 − 4

∥
∥
∥
∥

1

2
(wm +wn)− x

∥
∥
∥
∥

2

.

As W is linear, we have (wm + wn)/2 ∈W ; hence ‖ 1
2 (wm + wn)− x‖ ≥ c. Thus

(wn)n∈N is a Cauchy sequence: ‖wm −wn‖ −→ 0 if m,n→∞.
Since V is complete andW is closed,W is also complete; hence there is a y ∈W

with wn
n→∞−→ y. Now let z := x − y. Then ‖z‖ = limn→∞‖wn − x‖ = c by conti-

nuity of the norm (Lemma 7.23).
Consider an arbitrary w ∈ W \ {0}. We define � := −〈z,w〉/‖w‖2 and get

y + �w ∈W ; hence

c2 ≤ ∥∥x − (y + �w)∥∥2 = ‖z‖2 + �2‖w‖2 + 2�〈z,w〉 = c2 − �2‖w‖2.

Concluding, we have 〈z,w〉 = 0 for all w ∈W and thus z ∈W⊥.
Uniqueness of the decomposition is easy: If x = y′ + z′ is an orthogonal decom-

position, then y − y′ ∈W and z− z′ ∈W⊥ as well as y − y′ + z− z′ = 0; hence

0 = ∥∥y − y′ + z− z′∥∥2

= ∥∥y − y′∥∥2 + ∥∥z− z′∥∥2 + 2
〈
y − y′, z− z′〉

= ∥∥y − y′∥∥2 + ∥∥z− z′∥∥2
,

whence y = y′ and z= z′. �
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Theorem 7.26 (Riesz–Fréchet representation theorem) Let (V , 〈 ·, ·〉) be a Hilbert
space and let F : V →R be a map. Then the following are equivalent.

(i) F is continuous and linear.
(ii) There is an f ∈ V with F(x)= 〈x,f 〉 for all x ∈ V .

The element f ∈ V in (ii) is uniquely determined.

Proof “(ii)=⇒ (i)” For any f ∈ V , by definition of the inner product, the map
x �→ 〈x,f 〉 is linear. By Lemma 7.23, this map is also continuous.

“(i)=⇒ (ii)” If F ≡ 0, then choose f = 0. Now assume F is not identically
zero. As F is continuous, the kernel W := F−1({0}) is a closed (proper) linear
subspace of V . Let v ∈ V \W and let v = y + z for y ∈ W and z ∈ W⊥ be the
orthogonal decomposition of v. Then z �= 0 and F(z)= F(v)− F(y)= F(v) �= 0.
Hence we can define u := z/F (z) ∈ W⊥. Clearly, F(u) = 1 and for any x ∈ V ,
we have F(x − F(x)u)= F(x)− F(x)F (u)= 0; hence x − F(x)u ∈W and thus
〈x − F(x)u,u〉 = 0. Consequently, F(x)= 〈x,u〉/‖u‖2. Now define f := u/‖u‖2.
Then F(x)= 〈x,f 〉 for all x ∈ V .

“Uniqueness” Let 〈x,f 〉 = 〈x,g〉 for all x ∈ V . Letting x = f − g, we get 0=
〈f − g,f − g〉; hence f = g. �

In the following section, we will need the representation theorem for the space
L2(μ), which, unlike L2(μ), is not a Hilbert space. However, with a little bit
of abstract nonsense, one can apply the preceding theorem to L2(μ). Recall that
N = {f ∈ L2(μ) : 〈f,f 〉 = 0} is the subspace of functions that equal zero almost
everywhere. Let L2(μ) = L2(μ)/N be the factor space. This is a special case of
the situation where (V , 〈 ·, ·〉) is a linear space with complete semi-inner product.
In this case, N := {v ∈ V : 〈v, v〉 = 0} and V0 = V/N := {f +N : f ∈ V }. Denote
〈v+N ,w+N 〉0 := 〈v,w〉 to obtain a Hilbert space (V0, 〈 ·, ·〉0).

Corollary 7.27 Let (V , 〈 ·, ·〉) be a linear vector space with complete semi-inner
product. The map F : V → R is continuous and linear if and only if there is an
f ∈ V with F(x)= 〈x,f 〉 for all x ∈ V .

Proof One implication is trivial. Hence, let F be continuous and linear. Then
F(0) = 0 since F is linear. Note that F(v) = F(0) = 0 for all v ∈ N since F is
continuous. Indeed, v lies in every open neighborhood of 0; hence F assumes at v
the same value as at 0. Thus F induces a continuous linear map F0 : V0 → R by
F0(x +N )= F(x). By Theorem 7.26, there is an f +N ∈ V0 with F0(x +N )=
〈x +N , f +N 〉0 for all x +N ∈ V0. However, F(x)= 〈x,f 〉 for all x ∈ V by the
definition of F0 and 〈 ·, ·〉0. �

Corollary 7.28 The map F : L2(μ)→ R is continuous and linear if and only if
there is an f ∈ L2(μ) with F(g)= ∫ gf dμ for all g ∈ L2(μ).

Proof The space L2(μ) fulfills the conditions of Corollary 7.27. �
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Exercise 7.3.1 (Fourier series) For n ∈ N0, define Sn,Cn : [0,1] → [0,1] by
Sn(x) =

√
2 sin(2πnx), Cn(x) =

√
2 cos(2πnx). For two square summable se-

quences (an)n∈N and (bn)n∈N0 , let ha,b := b0 +∑∞
n=1(anSn + bnCn). Further, let

W be the vector space of such ha,b .
Show the following:

(i) The functions C0, Sn,Cn, n ∈N form an orthogonal system in L2([0,1], λ).
(ii) The series defining ha,b converges in L2([0,1], λ).

(iii) W is a closed linear subspace of L2([0,1], λ).
(iv) W = L2([0,1], λ). More precisely, for any f ∈ L2([0,1], λ), there exist

uniquely defined square summable sequences (an)n∈N and (bn)n∈N0 such that
f = ha,b . Furthermore, ‖f ‖2

2 = b2
0 +
∑∞
n=1(a

2
n + b2

n).

Hint: Show (iv) first for step functions (see Exercise 4.2.6).

7.4 Lebesgue’s Decomposition Theorem

In this section, we employ the properties of Hilbert spaces that we derived in the
last section in order to decompose a measure into a singular part and a part that is
absolutely continuous, both with respect to a second given measure. Furthermore,
we show that the absolutely continuous part has a density. Let μ and ν be measures
on (Ω,A). By Definition 4.13, a measurable function f :Ω→ [0,∞) is called a
density of ν with respect to μ if

ν(A) :=
∫

f 1A dμ for all A ∈A. (7.3)

On the other hand, for any measurable f :Ω→[0,∞), Eq. (7.3) defines a mea-
sure ν on (Ω,A). In this case, we also write

ν = fμ and f = dν

dμ
. (7.4)

For example, the normal distribution ν =N0,1 has the density f (x) = 1√
2π
e−x2/2

with respect to the Lebesgue measure μ= λ on R.
If g :Ω→[0,∞] is measurable, then (by Theorem 4.15)

∫

g dν =
∫

gf dμ. (7.5)

Hence g ∈ L1(ν) if and only if gf ∈ L1(μ), and in this case (7.5) holds.
If ν = fμ, then ν(A) = 0 for all A ∈ A with μ(A) = 0. The situation is quite

the opposite for, e.g., the Poisson distribution μ = Poi� with parameter � > 0 and
ν =N0,1. Here N0 ⊂R is a ν-null set with μ(R \N0)= 0. We say that ν is singular
to μ.

The main goal of this chapter is to show that an arbitrary σ -finite measure ν
on a measurable space (Ω,A) can be decomposed into a part that is singular to
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the σ -finite measure μ and a part that has a density with respect to μ (Lebesgue’s
decomposition theorem, Theorem 7.33).

Theorem 7.29 (Uniqueness of the density) Let ν be σ -finite. If f1 and f2 are den-
sities of ν with respect to μ, then f1 = f2 μ-almost everywhere. In particular, the
density dν

dμ
is unique up to equality μ-almost everywhere.

Proof Let En ↑Ω with ν(En) <∞, n ∈ N. Let An = En ∩ {f1 > f2} for n ∈ N.
Then ν(An) <∞; hence

0= ν(An)− ν(An)=
∫

An

(f1 − f2) dμ.

By Theorem 4.8(i), f21An = f11An μ-a.e. As f1 > f2 on An, we infer μ(An)= 0
and

μ
({f1 > f2}

)= μ
(⋃

n∈N
An

)

= 0.

Similarly, we get μ({f1 < f2})= 0; hence f1 = f2 μ-a.e. �

Definition 7.30 Let μ and ν be two measures on (Ω,A).

(i) ν is called absolutely continuous with respect to μ (symbolically ν) μ) if

ν(A)= 0 for all A ∈A with μ(A)= 0. (7.6)

The measures μ and ν are called equivalent (symbolically μ ≈ ν) if ν ) μ

and μ) ν.
(ii) μ is called singular to ν (symbolically μ⊥ ν) if there exists an A ∈A such

that μ(A)= 0 and ν(Ω \A)= 0.

Remark 7.31 Clearly, μ⊥ ν ⇐⇒ ν ⊥ μ. ♦

Example 7.32

(i) Let μ be a measure on (R,B(R)) with density f with respect to the Lebesgue
measure λ. Then μ(A)= ∫

A
f dλ= 0 for every A ∈A with λ(A)= 0; hence

μ) λ. If λ-almost everywhere f > 0, then μ(A)= ∫
A
f dλ > 0 if λ(A) > 0;

hence μ≈ λ. If λ({f = 0}) > 0, then (since μ({f = 0})= 0) λ �) μ.
(ii) Consider the Bernoulli distributions Berp and Berq for p,q ∈ [0,1]. If p ∈

(0,1), then Berq ) Berp . If p ∈ {0,1}, then Berq ) Berp if and only if p = q ,
and Berq ⊥ Berp if and only if q = 1− p.

(iii) Consider the Poisson distributions Poiα and Poiβ for α,β ≥ 0. We have Poiα)
Poiβ if and only if β > 0 or α = 0.

(iv) Consider the infinite product measures (see Theorem 1.64) (Berp)⊗N and
(Berq)⊗N on Ω = {0,1}N. Then (Berp)⊗N ⊥ (Berq)⊗N if p �= q . Indeed, for
n ∈ N, let Xn((ω1,ω2, . . .)) = ωn be the projection of Ω to the nth coordi-
nate. Then under (Berr )⊗N the family (Xn)n∈N is independent and Bernoulli-
distributed with parameter r (see Example 2.18). By the strong law of large
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numbers, for any r ∈ {p,q}, there exists a measurable set Ar ⊂ Ω with
(Berr )⊗N(Ω \Ar)= 0 and

lim
n→∞

1

n

n∑

i=1

Xi(ω)= r for all ω ∈Ar.

In particular, Ap ∩Aq = ∅ if p �= q and thus (Berp)⊗N ⊥ (Berq)⊗N. ♦

Theorem 7.33 (Lebesgue’s decomposition theorem) Letμ and ν be σ -finite mea-
sures on (Ω,A). Then ν can be uniquely decomposed into an absolutely continu-
ous part νa and a singular part νs (with respect to μ):

ν = νa + νs, where νa) μ and νs ⊥ μ.

νa has a density with respect to μ, and dνa
dμ

is A-measurable and finite μ-a.e.

Corollary 7.34 (Radon–Nikodym theorem) Let μ and ν be σ -finite measures on
(Ω,A). Then

ν has a density w.r.t. μ ⇐⇒ ν) μ.

In this case, dν
dμ

is A-measurable and finite μ-a.e. dν
dμ

is called the Radon–
Nikodym derivative of ν with respect to μ.

Proof One direction is trivial. Hence, let ν ) μ. By Theorem 7.33, we get that
ν = νa has a density with respect to μ. �

Proof of Theorem 7.33 The idea goes back to von Neumann. We follow the exposi-
tion in [37].

By the usual exhaustion arguments, we can restrict ourselves to the case
where μ and ν are finite. By Theorem 4.19, the canonical inclusion i : L2(Ω,A,
μ+ ν) ↪→ L1(Ω,A,μ+ ν) is continuous. Since ν ≤ μ+ ν, the linear functional
L2(Ω,A,μ + ν)→ R, h �→ ∫ hdν is continuous. By the Riesz–Fréchet theorem
(here Corollary 7.28), there exists a g ∈ L2(Ω,A,μ+ ν) such that

∫

hdν =
∫

hg d(μ+ ν) for all h ∈ L2(Ω,A,μ+ ν) (7.7)

or equivalently
∫

f (1− g)d(μ+ ν)=
∫

f dμ for all f ∈ L2(Ω,A,μ+ ν). (7.8)

If in (7.7) we choose h= 1{g<0}, then we get that (μ+ν)-almost everywhere g ≥ 0.
Similarly, with f = 1{g>1} in (7.8), we obtain that (μ+ν)-almost everywhere g ≤ 1.
Hence 0≤ g ≤ 1.
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Now let f ≥ 0 be measurable and let (fn)n∈N be a sequence of nonnegative
functions in L2(Ω,A,μ+ ν) with fn ↑ f . By the monotone convergence theorem
(applied to the measure (1−g)(μ+ν); that is, the measure with density (1−g)with
respect to μ+ ν), we obtain that (7.8) holds for all measurable f ≥ 0. Similarly, we
get (7.7) for all measurable h≥ 0.

Let E := g−1({1}). If we let f = 1E in (7.8), then we get μ(E)= 0. Define the
measures νa and νs for A ∈A by

νa(A) := ν(A \E) and νs(A) := ν(A∩E).
Clearly, ν = νa + νs and νs(Ω \ E) = 0; hence νs ⊥ μ. If now A ∩ E = ∅ and
μ(A)= 0, then

∫
1A dμ= 0. Hence, by (7.8), also

∫
A
(1− g)d(μ+ ν)= 0. On the

other hand, we have 1 − g > 0 on A; hence μ(A) + ν(A) = 0 and thus νa(A) =
ν(A)= 0. If, more generally, B is measurable with μ(B)= 0, then μ(B \E)= 0;
hence, as shown above, νa(B) = νa(B \ E) = 0. Consequently, νa ) μ and ν =
νa + νs is the decomposition we wanted to construct.

In order to obtain the density of νa with respect to μ, we define f := g
1−g1Ω\E .

For any A ∈A, by (7.8) and (7.7) with h= 1A\E ,
∫

A

f dμ=
∫

A∩Ec
g d(μ+ ν)= ν(A \E)= νa(A).

Hence f = dνa
dμ

. �

Exercise 7.4.1 For every x ∈ (0,1], let x = (0, x1x2x3 . . .) := ∑∞
n=1 xn2

−n be
the dyadic expansion (with lim supn→∞ xn = 1 for definiteness). Define a map
F : (0,1]→ (0,1] by

F(x)= (0, x1x1x2x2x3x3 . . .)=
∞∑

n=1

3xn4
−n.

Let U be a random variable that is uniformly distributed on (0,1] and denote by
μ := PU◦F−1 the distribution of F(U).

Show that the probability measure μ has a continuous distribution function and
that μ is singular to the Lebesgue measure λ

∣
∣
(0,1].

Exercise 7.4.2 Let n ∈N and p,q ∈ [0,1]. For which values of p and q do we have
bn,p) bn,q? Compute the Radon–Nikodym derivative dbn,p

dbn,q
.

7.5 Supplement: Signed Measures

In this section, we show the decomposition theorems for signed measures (Hahn,
Jordan) and deliver an alternative proof for Lebesgue’s decomposition theorem. We
owe some of the proofs to [89].
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Definition 7.35 Let μ and ν be two measures on (Ω,A). ν is called totally con-
tinuous with respect to μ if, for any ε > 0, there exists a δ > 0 such that for all
A ∈A

μ(A) < δ implies ν(A) < ε. (7.9)

Remark 7.36 The definition of total continuity is similar to that of uniform inte-
grability (see Theorem 6.24(iii)), at least for finite μ. We will come back to this
connection in the framework of the martingale convergence theorem that will pro-
vide an alternative proof of the Radon–Nikodym theorem (Corollary 7.34). ♦

Theorem 7.37 Let μ and ν be measures on (Ω,A). If ν is totally continuous with
respect to μ, then ν) μ. If ν(Ω) <∞, then the converse also holds.

Proof “=⇒ ” Let ν be totally continuous with respect to μ. Let A ∈ A with
μ(A)= 0. For all ε > 0, by assumption, ν(A) < ε; hence ν(A)= 0 and thus ν) μ.

“⇐= ” Let ν be finite but not totally continuous with respect to μ. Then there
exist an ε > 0 and sets An ∈ A with μ(An) < 2−n but ν(An) ≥ ε for all n ∈ N.
Define

A := lim sup
n→∞

An =
∞⋂

n=1

∞⋃

k=n
Ak.

Then

μ(A)= lim
n→∞μ

( ∞⋃

k=n
Ak

)

≤ lim
n→∞

∞∑

k=n
μ(Ak)≤ lim

n→∞

∞∑

k=n
2−k = 0.

Since ν is finite and upper semicontinuous (Theorem 1.36), we have

ν(A)= lim
n→∞ν

( ∞⋃

k=n
Ak

)

≥ inf
n∈Nν(An)≥ ε > 0.

Thus ν �) μ. �

Example 7.38 In the converse implication of the theorem, the assumption of finite-
ness is essential. For example, let μ=N0,1 be the standard normal distribution on R

and let ν be the Lebesgue measure on R. Then ν has the density f (x)=√2πex
2/2

with respect to μ. In particular, we have ν) μ. On the other hand, μ([n,∞)) n→∞−→
0 and ν([n,∞))=∞ for any n ∈N. Hence ν is not totally continuous with respect
to μ. ♦

Example 7.39 Let (Ω,A) be a measurable space and let μ and ν be finite measures
on (Ω,A). Denote by Z the set of finite partitions of Ω into pairwise disjoint mea-
surable sets. That is, Z ∈Z is a finite subset of A such that the sets C ∈ Z are pair-
wise disjoint and

⋃
C∈Z C =Ω for all Z. For Z ∈Z , define a function fZ :Ω→R
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by

fZ(ω)=
∑

C∈Z:μ(C)>0

ν(C)

μ(C)
1C(ω).

We show that the following three statements are equivalent.

(i) The family (fZ :Z ∈Z) is uniformly integrable in L1(μ) and
∫
fZ dμ= ν(Ω)

for any Z ∈Z .
(ii) ν) μ.

(iii) ν is totally continuous with respect to μ.

The equivalence of (ii) and (iii) was established in the preceding theorem. If (ii)
holds, then, for all Z ∈Z ,

∫

fZ dμ=
∑

C∈Z:μ(C)>0

ν(C)= ν(Ω)

since ν(C)= 0 for those C that do not appear in the sum. Now fix ε > 0. Since (ii)
implies (iii), there is a δ′ > 0 such that ν(A) < ε/2 for all A ∈A with μ(A) ≤ δ′.
Let K := ν(Ω)/δ′ and δ < ε/(2K). Then

μ

( ⋃

C∈Z:Kμ(C)≤ν(C)
C

)

=
∑

C∈Z:Kμ(C)≤ν(C)
μ(C)≤ 1

K
ν(Ω)= δ′;

hence
∑

C∈Z:Kμ(C)≤ν(C)
ν(C)= ν

( ⋃

C∈Z:Kμ(C)≤ν(C)
C

)

<
ε

2
.

We conclude that for all A ∈A with μ(A) < δ,

∫

A

fZ dμ =
∑

C∈Z:μ(C)>0

μ(A∩C) ν(C)
μ(C)

=
∑

0<Kμ(C)≤ν(C)
μ(A∩C) ν(C)

μ(C)
+

∑

Kμ(C)>ν(C)

μ(A∩C) ν(C)
μ(C)

≤ ε
2
+

∑

Kμ(C)>ν(C)

Kμ(A∩C)≤ ε
2
+Kμ(A) < ε.

Hence (fZ,Z ∈Z) is uniformly integrable by Theorem 6.24(iii).
Now assume (i). If μ= 0, then

∫
f dμ= 0 for all f ; hence ν(Ω)= 0 and thus

ν ) μ. Hence, let μ �= 0. Let A ∈ A with μ(A) = 0. Then Z = {A,Ac} ∈ Z and
fZ = 1Acν(Ac)/μ(Ac). By assumption, ν(Ω)= ∫ fZ dμ= ν(Ac); hence ν(A)= 0
and thus ν) μ. ♦
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Definition 7.40 (Signed measure) A set function ϕ : A→ R is called a signed
measure on (Ω,A) if it is σ -additive; that is, if for any sequence of pairwise disjoint
sets A1,A2, . . . ∈A,

ϕ

( ∞⊎

n=1

An

)

=
∞∑

n=1

ϕ(An). (7.10)

The set of all signed measures will be denoted by M± =M±(Ω,A).

Remark 7.41

(i) If ϕ is a signed measure, then in (7.10) we automatically have absolute conver-
gence. Indeed, the value of the left-hand side does not change if we change the
order of the sets A1,A2, . . . . In order for this to hold for the right-hand side, by
Weierstraß’s theorem on rearrangements of series, the series has to converge
absolutely. In particular, for any sequence (An)n∈N of pairwise disjoint sets,
we have limn→∞

∑∞
k=n |ϕ(Ak)| = 0.

(ii) If ϕ ∈M±, then ϕ(∅)= 0 since R � ν(∅)=∑n∈N ν(∅).
(iii) In general, ϕ ∈M± is not σ -subadditive. ♦

Example 7.42 If μ+,μ− are finite measures, then ϕ := μ+ − μ− ∈M±. We will
see that every signed measure has such a representation. ♦

Theorem 7.43 (Hahn’s decomposition theorem) Let ϕ be a signed measure. Then
there is a set Ω+ ∈ A with ϕ(A) ≥ 0 for all A ∈ A, A ⊂Ω+ and ϕ(A) ≤ 0 for
all A ∈A, A⊂Ω− :=Ω \Ω+. Such a decompositionΩ =Ω− �Ω+ is called a
Hahn decomposition of Ω (with respect to ϕ).

Proof Let α := sup{ϕ(A) :A ∈A}. We have to show that ϕ attains the maximum α;
that is, there exists an Ω+ ∈A with ϕ(Ω+)= α. If this is the case, then α ∈R and
for A⊂Ω+, A ∈A, we would have

α ≥ ϕ(Ω+ \A)= ϕ(Ω+)− ϕ(A)= α − ϕ(A);
hence ϕ(A)≥ 0. For A⊂Ω−, A ∈A, we would have ϕ(A)≤ 0 since

α ≥ ϕ(Ω+ ∪A)= ϕ(Ω+)+ ϕ(A)= α+ ϕ(A).
We now construct Ω+ with ϕ(Ω+)= α. Let (An)n∈N be a sequence in A with

α = limn→∞ ϕ(An). Let A :=⋃∞
n=1An. As each An could still contain “portions

with negative mass”, we cannot simply chooseΩ+ =A. Rather, we have to peel off
the negative portions layer by layer.

Define A0
n :=An, A1

n :=A \An, and let

Pn :=
{
n⋂

i=1

A
s(i)
i : s ∈ {0,1}n

}
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be the partition of A that is generated by A1, . . . ,An. Clearly, for any B,C ∈ Pn,
either B = C or B ∩C = ∅ holds. In addition, we have

An =
⊎

B∈Pn
B⊂An

B.

Define

P−n :=
{
B ∈ Pn : ϕ(B) < 0

}
, P+n :=Pn \P−n

and

Cn :=
⋃

B∈P+
n

B.

Due to the finite additivity of ϕ, we have

ϕ(An)=
∑

B∈Pn
B⊂An

ϕ(B)≤
∑

B∈P+
n

B⊂An

ϕ(B)≤
∑

B∈P+
n

ϕ(B)= ϕ(Cn).

For m ≤ n, let Enm = Cm ∪ . . . ∪ Cn. Hence, for m< n, we have Enm \ En−1
m ⊂ Cn

and thus

Enm \En−1
m =

⊎

B∈P+
n

B⊂Enm\En−1
m

B.

In particular, this implies ϕ(Enm \ En−1
m ) ≥ 0. For Em :=⋃n≥mCn, we also have

Enm ↑Em (n→∞) and

ϕ(Am) ≤ ϕ(Cm)= ϕ
(
Emm
)≤ ϕ(Emm

)+
∞∑

n=m+1

ϕ
(
Enm \En−1

m

)

= ϕ
(

Emm ∪
∞⋃

n=m+1

(
Enm \En−1

m

)
)

= ϕ
( ∞⋃

n=m
Enm

)

= ϕ(Em).

Now define Ω+ =⋂∞
m=1Em; hence Em ↓Ω+. Then

ϕ(Em) = ϕ
(
Ω+ �

⊎

n≥m
(En \En+1)

)

= ϕ(Ω+)+
∞∑

n=m
ϕ(En \En+1)

m→∞−→ ϕ
(
Ω+).

In the last step, we used Remark 7.41(i). Summing up, we have

α = lim
m→∞ϕ(Am)≤ lim

m→∞ϕ(Em)= ϕ
(
Ω+).

However, by definition, α ≥ ϕ(Ω+); hence α = ϕ(Ω+). This finishes the proof. �
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Corollary 7.44 (Jordan’s decomposition theorem) Assume ϕ ∈M±(Ω,A) is a
signed measure. Then there exist uniquely determined finite measures ϕ+, ϕ− with
ϕ = ϕ+ − ϕ− and ϕ+ ⊥ ϕ−.

Proof Let Ω =Ω+ �Ω− be a Hahn decomposition. Define ϕ+(A) := ϕ(A∩Ω+)
and ϕ−(A) := −ϕ(A∩Ω−).

The uniqueness of the decomposition is trivial. �

Corollary 7.45 Let ϕ ∈M±(Ω,A) and let ϕ = ϕ+ − ϕ− be the Jordan decompo-
sition of ϕ. Let Ω =Ω+ �Ω− be a Hahn decomposition of Ω . Then

‖ϕ‖T V := sup
{
ϕ(A)− ϕ(Ω \A) :A ∈A

}

= ϕ(Ω+)− ϕ(Ω−)

= ϕ+(Ω)+ ϕ−(Ω)
defines a norm on M±(Ω,A), the so-called total variation norm.

Proof We only have to show the triangle inequality. Let ϕ1, ϕ2 ∈M±. Let Ω =
Ω+ � Ω− be a Hahn decomposition with respect to ϕ := ϕ1 + ϕ2 and let Ω =
Ω+
i �Ω−

i be a Hahn decomposition with respect to ϕi , i = 1,2. Then

‖ϕ1 + ϕ2‖T V = ϕ1
(
Ω+)− ϕ1

(
Ω−)+ ϕ2

(
Ω+)− ϕ2

(
Ω−)

≤ ϕ1
(
Ω+

1

)− ϕ1
(
Ω−

1

)+ ϕ2
(
Ω+

2

)− ϕ2
(
Ω−

2

)

= ‖ϕ1‖T V + ‖ϕ2‖T V . �

With a lemma, we prepare for an alternative proof of Lebesgue’s decomposition
theorem (Theorem 7.33).

Lemma 7.46 Let μ,ν be finite measures on (Ω,A) that are not mutually singular;
in short, μ �⊥ ν. Then there is an A ∈A with μ(A) > 0 and an ε > 0 with

εμ(E)≤ ν(E) for all E ∈A with E ⊂A.
Proof For n ∈N, letΩ =Ω+

n �Ω−
n be a Hahn decomposition for (ν− 1

n
μ) ∈M±.

Define M :=⋂n∈NΩ−
n . Clearly, (ν − 1

n
μ)(M) ≤ 0; hence ν(M) ≤ 1

n
μ(M) for all

n ∈ N and thus ν(M) = 0. Since μ �⊥ ν, we get μ(Ω \M) = μ(⋃n∈NΩ+
n ) > 0.

Thus μ(Ω+
n0
) > 0 for some n0 ∈ N. Define A :=Ω+

n0
and ε := 1

n0
. Then μ(A) > 0

and (ν − εμ)(E)≥ 0 for all E ⊂A, E ∈A. �

Alternative proof of Theorem 7.33 We show only the existence of a decomposition.
By choosing a suitable sequence Ωn ↑Ω , we can assume that ν is finite. Consider
the set of functions

G :=
{

g :Ω→[0,∞] : g is measurable and
∫

A

g dμ≤ ν(A) for all A ∈A
}

,
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and define

γ := sup

{∫

g dμ : g ∈ G
}

.

Our aim is to find a maximal element f in G (i.e., an f for which
∫
f dμ= γ ). This

f will be the density of νa .
Clearly, 0 ∈ G; hence G �= ∅. Furthermore,

f,g ∈ G implies f ∨ g ∈ G. (7.11)

Indeed, letting E := {f ≥ g}, for all A ∈A, we have

∫

A

(f ∨ g)dμ=
∫

A∩E
f dμ+

∫

A\E
g dμ≤ ν(A∩E)+ ν(A \E)= ν(A).

Choose a sequence (gn)n∈N in G such that
∫
gn dμ

n→∞−→ γ , and define the function
fn = g1 ∨ . . . ∨ gn. Now (7.11) implies fn ∈ G. Letting f := sup{fn : n ∈ N}, the
monotone convergence theorem yields

∫

A

f dμ= sup
n∈N

∫

A

fn dμ≤ ν(A) for all A ∈A

(that is, f ∈ G), and

∫

f dμ= sup
n∈N

∫

fn dμ≥ sup
n∈N

∫

gn dμ= γ.

Hence
∫
f dμ= γ ≤ ν(Ω). Now define, for any A ∈A,

νa(A) :=
∫

A

f dμ and νs(A) := ν(A)− νa(A).

By construction, νa) μ is a finite measure with density f with respect to μ. Since
f ∈ G, we have νs(A) = ν(A)−

∫
A
f dμ ≥ 0 for all A ∈ A, and thus also νs is a

finite measure. It remains to show νs ⊥ μ.
At this point we use Lemma 7.46. Assume that we had νs �⊥ μ. Then there would

be an ε > 0 and an A ∈A with μ(A) > 0 such that εμ(E)≤ νs(E) for all E ⊂ A,
E ∈A. Then, for B ∈A, we would have

∫

B

(f + ε1A)dμ=
∫

B

f dμ+ εμ(A∩B)

≤ νa(B)+ νs(A∩B)≤ νa(B)+ νs(B)= ν(B).

In other words, (f + ε1A) ∈ G and thus
∫
(f + ε1A)dμ= γ + εμ(A) > γ , contra-

dicting the definition of γ . Hence in fact νs ⊥ μ. �
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Exercise 7.5.1 Let μ be a σ -finite measure on (Ω,A) and let ϕ be a signed measure
on (Ω,A). Show that, analogously to the Radon–Nikodym theorem, the following
two statements are equivalent:

(i) ϕ(A)= 0 for all A ∈A with μ(A)= 0.
(ii) There is an f ∈ L1(μ) with ϕ = fμ; hence

∫
A
f dμ= ϕ(A) for all A ∈A.

Exercise 7.5.2 Let μ,ν,α be finite measures on (Ω,A) with ν) μ) α.

(i) Show the chain rule for the Radon–Nikodym derivative:

dν

dα
= dν

dμ

dμ

dα
α-a.e.

(ii) Show that f := dν
d(μ+ν) exists and that dν

dμ
= f

1−f holds μ-a.e.

7.6 Supplement: Dual Spaces

By the Riesz–Fréchet theorem (Theorem 7.26), every continuous linear functional
F : L2(μ)→ R has a representation F(g) = 〈f,g〉 for some f ∈ L2(μ). On the
other hand, for any f ∈ L2(μ), the map L2(μ)→ R, g �→ 〈f,g〉 is continuous
and linear. Hence L2(μ) is canonically isomorphic to its topological dual space
(L2(μ))′. This dual space is defined as follows.

Definition 7.47 (Dual space) Let (V ,‖ · ‖) be a Banach space. The dual space V ′
of V is defined by

V ′ := {F : V →R is continuous and linear}.
For F ∈ V ′, we define ‖F‖′ := sup{|F(f )| : ‖f ‖ = 1}.

Remark 7.48 As F is continuous, for any δ > 0, there exists an ε > 0 such that
|F(f )|< δ for all f ∈ V with ‖f ‖< ε. Hence ‖F‖′ ≤ δ/ε <∞. ♦

We are interested in the case V = Lp(μ) for p ∈ [1,∞] and write ‖F‖′p for

the norm of F ∈ V ′. In the particular case V = L2(μ), by the Cauchy–Schwarz
inequality, we have ‖F‖′2 = ‖f ‖2. This can be generalized:

Lemma 7.49 Let p,q ∈ [1,∞] with 1
p
+ 1
q
= 1. The canonical map

κ :Lq(μ)→ (Lp(μ))′

κ(f )(g)=
∫

fg dμ for f ∈ Lq(μ), g ∈Lp(μ)

is an isometry; that is, ‖κ(f )‖′p = ‖f ‖q .
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Proof We show equality by showing the two inequalities separately.
“≤” This follows from Hölder’s inequality.
“≥” For any admissible pair p,q and all f ∈ Lq(μ), g ∈ Lp(μ), by the def-

inition of the operator norm, ‖κ(f )‖′p‖g‖p ≥ | ∫ fg dμ|. Define the sign func-
tion sign(x)= 1(0,∞)(x)− 1(−∞,0)(x). Replacing g by g̃ := |g| sign(f ) (note that
‖g̃‖p = ‖g‖p), we obtain

∥
∥κ(f )

∥
∥′
p
‖g‖p ≥

∣
∣
∣
∣

∫

f g̃ dμ

∣
∣
∣
∣= ‖fg‖1. (7.12)

First consider the case q = 1 and f ∈ L1(μ). Applying (7.12) with g ≡ 1 ∈ L∞(μ)
yields ‖κ(f )‖′∞ ≥ ‖f ‖1.

Now let q ∈ (1,∞). Let g := |f |q−1. Since q−1
q
= 1
p

, we have

∥
∥κ(f )

∥
∥′
p
· ‖g‖p ≥ ‖fg‖1 =

∥
∥|f |q∥∥1 = ‖f ‖qq = ‖f ‖q · ‖f ‖q−1

q = ‖f ‖q · ‖g‖p.

Finally, let q = ∞. Without loss of generality, assume ‖f ‖∞ ∈ (0,∞). Let
ε > 0. Then there exists an Aε ∈A with 0<μ(Aε) <∞ such that

Aε ⊂
{|f |> (1− ε)‖f ‖∞

}
.

If we let g = 1
μ(Aε)

1Aε , then ‖g‖1 = 1 and ‖κ(f )‖′1 ≥ ‖fg‖1 ≥ (1− ε)‖f ‖∞. �

Theorem 7.50 Let p ∈ [1,∞) and assume 1
p
+ 1
q
= 1. Then Lq(μ) is isomorphic

to its dual space (Lp(μ))′ by virtue of the isometry κ .

Proof The proof makes use of the Radon–Nikodym theorem (Corollary 7.34). How-
ever, here we only sketch the proof since we do not want to go into the details of
signed measures and signed contents. A signed content ν is an additive set function
that is the difference ν = ν+ − ν− of two finite contents. This definition is parallel
to that of a signed measure that is the difference of two finite measures.

As κ is an isometry, κ in particular is injective. Hence we only have to show that
κ is surjective. Let F ∈ (Lp(μ))′. Then ν(A)= F(1A) is a signed content on A and
we have

∣
∣ν(A)

∣
∣≤ ‖F‖′p

(
μ(A)

)1/p
.

Since μ is ∅-continuous, ν is also ∅-continuous and is thus a signed measure on A.
We even have ν) μ. By the Radon–Nikodym theorem (Corollary 7.34) (applied to
the measures ν− and ν+; see Exercise 7.5.1), ν admits a density with respect to μ;
that is, a measurable function f with ν = fμ.

Let

Ef :=
{
g : g is a simple function with μ(g �= 0) <∞}
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and let

E
+
f := {g ∈ Ef : g ≥ 0}.

Then, for g ∈ Ef ,

F(g)=
∫

gf dμ. (7.13)

In order to show that (7.13) holds for all g ∈ Lp(μ), we first show f ∈ Lq(μ). To
this end, we distinguish two cases.

Case 1: p = 1 For every α > 0,

μ
({|f |> α}) ≤ 1

α
ν
({|f |> α})

= 1

α
F(1{|f |>α})≤ 1

α
‖F‖′1 · ‖1{|f |>α}‖1 = 1

α
‖F‖′1 ·μ

({|f |> α}).

This implies μ({|f |> α})= 0 if α > ‖F‖′1; hence ‖f ‖∞ ≤ ‖F‖′1 <∞.
Case 2: p ∈ (1,∞) By Theorem 1.96, there are g1, g2, . . . ∈ E

+
f such that gn ↑ |f |

μ-a.e. Define hn = sign(f )(gn)q−1 ∈ Ef ; hence

‖gn‖qq ≤
∫

hnf dμ= F(hn)

≤ ‖F‖′p · ‖hn‖p = ‖F‖′p ·
(‖gn‖q

)q−1
.

Thus we have ‖gn‖q ≤ ‖F‖′p . Monotone convergence (Theorem 4.20) now yields
‖f ‖q ≤ ‖F‖′p <∞; hence f ∈ Lq(μ).

Concluding, the map F̃ : g �→ ∫
gf dμ is in (Lp(μ))′, and F̃ (g) = F(g) for

every g ∈ Ef . Since F̃ is continuous and Ef ⊂ Lp(μ) is dense, we get F̃ = F . �

Remark 7.51 For p =∞, the statement of Theorem 7.50 is false in general. (For
finite A, the claim is trivially true even for p = ∞.) For example, let Ω = N,
A= 2Ω and let μ be the counting measure. Thus we consider sequence spaces �p =
Lp(N,2N,μ). For the subspace �K ⊂ �∞ of convergent sequences, F : �K → R,
(an)n∈N �→ limn→∞ an is a continuous linear functional. By the Hahn–Banach the-
orem of functional analysis (see, e.g., [87] or [173]), F can be extended to a contin-
uous linear functional on �∞. However, clearly there is no sequence (bn)n∈N ∈ �1

with F((an)n∈N)=∑∞
m=1 ambm. ♦

Exercise 7.6.1 Show that Ef ⊂ Lp(μ) is dense if p ∈ [1,∞).



Chapter 8
Conditional Expectations

If there is partial information on the outcome of a random experiment, the proba-
bilities for the possible events may change. The concept of conditional probabilities
and conditional expectations formalizes the corresponding calculus.

8.1 Elementary Conditional Probabilities

Example 8.1 We throw a die and consider the events

A := {the face shows an odd number},
B := {the face shows three or smaller}.

Clearly, P[A] = 1
2 and P[B] = 1

2 . However, what is the probability that A occurs if
we already know that B occurs?

We model the experiment on the probability space (Ω,A,P), where Ω =
{1, . . . ,6}, A= 2Ω and P is the uniform distribution on Ω . Then

A= {1,3,5} and B = {1,2,3}.
If we know that B has occurred, it is plausible to assume the uniform distribution
on the remaining possible outcomes; that is, on {1,2,3}. Thus we define a new
probability measure PB on (B,2B) by

PB [C] = #C

#B
for C ⊂ B.

By assigning the points in Ω \ B probability zero (since they are impossible if B
has occurred), we can extend PB to a measure on Ω :

P[C |B] := PB [C ∩B] = #(C ∩B)
#B

for C ⊂Ω.
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In this way, we get

P[A|B] = #{1,3}
#{1,2,3} =

2

3
. ♦

Motivated by this example, we make the following definition.

Definition 8.2 (Conditional probability) Let (Ω,A,P) be a probability space and
B ∈A. We define the conditional probability given B for any A ∈A by

P[A|B] =
{

P[A∩B]
P[B] , if P[B]> 0,

0, otherwise.
(8.1)

Remark 8.3 The specification in (8.1) for the case P[B] = 0 is arbitrary and is of no
importance. ♦

Theorem 8.4 If P[B]> 0, then P[ · |B] is a probability measure on (Ω,A).

Proof This is obvious. �

Theorem 8.5 Let A,B ∈A with P[A],P[B]> 0. Then

A,B are independent ⇐⇒ P[A|B] = P[A] ⇐⇒ P[B |A] = P[B].

Proof This is trivial! �

Theorem 8.6 (Summation formula) Let I be a countable set and let (Bi)i∈I be
pairwise disjoint sets with P[⊎i∈I Bi] = 1. Then, for any A ∈A,

P[A] =
∑

i∈I
P[A|Bi]P[Bi]. (8.2)

Proof Due to the σ -additivity of P, we have

P[A] = P
[⊎

i∈I
(A∩Bi)

]

=
∑

i∈I
P[A∩Bi] =

∑

i∈I
P[A|Bi]P[Bi].

�

Theorem 8.7 (Bayes’ formula) Let I be a countable set and let (Bi)i∈I be pair-
wise disjoint sets with P[⊎i∈I Bi] = 1. Then, for any A ∈ A with P[A] > 0 and
any k ∈ I ,

P[Bk |A] = P[A|Bk]P[Bk]
∑
i∈I P[A|Bi]P[Bi] . (8.3)
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Proof We have

P[Bk |A] = P[Bk ∩A]
P[A] = P[A|Bk]P[Bk]

P[A] .

Now use the expression in (8.2) for P[A]. �

Example 8.8 In the production of certain electronic devices, a fraction of 2 % of
the production is defective. A quick test detects a defective device with probability
95 %; however, with probability 10 % it gives a false alarm for an intact device.

If the test gives an alarm, what is the probability that the device just tested is
indeed defective?

We formalize the description given above. Let

A := {device is declared as defective},
B := {device is defective},

and

P[B] = 0.02, P
[
Bc
] = 0.98,

P[A|B] = 0.95, P
[
A
∣
∣ Bc
] = 0.1.

Bayes’ formula yields

P[B |A] = P[A|B]P[B]
P[A|B]P[B] + P[A|Bc]P[Bc]

= 0.95 · 0.02

0.95 · 0.02+ 0.1 · 0.98
= 19

117
≈ 0.162.

On the other hand, the probability that a device that was not classified as defective
is in fact defective is

P
[
B
∣
∣Ac
]= 0.05 · 0.02

0.05 · 0.02+ 0.9 · 0.98
= 1

883
≈ 0.00113. ♦

Now let X ∈ L1(P). If A ∈A, then clearly also 1AX ∈ L1(P). We define

E[X;A] := E[1AX]. (8.4)

If P[A] > 0, then P[ · |A] is a probability measure. Since 1AX ∈ L1(P), we have
X ∈ L1(P[ · |A]). Hence we can define the expectation ofX with respect to P[ · |A].

Definition 8.9 Let X ∈ L1(P) and A ∈A. Then we define

E[X |A] :=
∫

X(ω)P[dω |A] =
{

E[1AX]
P[A] , if P[A]> 0,

0, else.
(8.5)

Clearly, P[B |A] = E[1B |A] for all B ∈A.
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Consider now the situation that we studied with the summation formula for con-
ditional probabilities. Hence, let I be a countable set and let (Bi)i∈I be pairwise
disjoint events with

⊎
i∈I Bi =Ω . We define F := σ(Bi, i ∈ I ). For X ∈ L1(P), we

define a map E[X |F] :Ω→R by

E[X |F](ω)= E[X |Bi] ⇐⇒ Bi � ω. (8.6)

Lemma 8.10 The map E[X |F] has the following properties.

(i) E[X |F] is F -measurable.
(ii) E[X |F] ∈ L1(P), and for any A ∈F , we have

∫

A

E[X |F]dP=
∫

A

XdP.

Proof (i) Let f be the map f :Ω→ I with

f (ω)= i ⇐⇒ Bi � ω.
Further, let g : I → R, i �→ E[X |Bi]. Since I is discrete, g is measurable. Since f
is F -measurable, E[X |F] = g ◦ f is also F -measurable.

(ii) Let A ∈ F and J ⊂ I with A =⊎j∈J Bj . Let J ′ := {i ∈ J : P[Bi] > 0}.
Hence

∫

A

E[X |F]dP=
∑

i∈J ′
P[Bi]E[X |Bi] =

∑

i∈J ′
E[1BiX] =

∫

A

XdP.
�

Exercise 8.1.1 (Lack of memory of the exponential distribution) Let X > 0 be a
strictly positive random variable and let θ > 0. Show that X is exponentially dis-
tributed if and only if

P[X > t + s |X > s] = P[X > t] for all s, t ≥ 0.

In particular, X ∼ expθ if and only if P[X > t + s |X > s] = e−θt for all s, t ≥ 0.

Exercise 8.1.2 Consider a theater with n seats that is fully booked for this evening.
Each of the n people entering the theater (one by one) has a seat reservation. How-
ever, the first person is absent-minded and takes a seat at random. Any subsequent
person takes his or her reserved seat if it is free and otherwise picks a free seat at
random.

(i) What is the probability that the last person gets his or her reserved seat?
(ii) What is the probability that the kth person gets his or her reserved seat?

8.2 Conditional Expectations

LetX be a random variable that is uniformly distributed on [0,1]. Assume that if we
know the value X = x, the random variables Y1, . . . , Yn are independent and Berx -
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distributed. So far, with our machinery we can only deal with conditional probabil-
ities of the type P[ · |X ∈ [a, b]], a < b (since X ∈ [a, b] has positive probability).
How about P[Y1 = . . . = Yn = 1

∣
∣X = x]? Intuitively, this should be xn. We thus

need a notion of conditional probabilities that allows us to deal with conditioning
on events with probability zero and that is consistent with our intuition. In the next
section, we will see that in the current example this can be done using transition
kernels. First, however, we have to consider a more general situation.

In the following, F ⊂A will be a sub-σ -algebra and X ∈ L1(Ω,A,P). In anal-
ogy with Lemma 8.10, we make the following definition.

Definition 8.11 (Conditional expectation) A random variable Y is called a con-
ditional expectation of X given F , symbolically E[X |F] := Y , if:

(i) Y is F -measurable.
(ii) For any A ∈F , we have E[X1A] = E[Y1A].
For B ∈ A, P[B |F] := E[1B |F] is called a conditional probability of B given
the σ -algebra F .

Theorem 8.12 E[X |F] exists and is unique (up to equality almost surely).

Since conditional expectations are defined only up to equality a.s., all equalities
with conditional expectations are understood as equalities a.s., even if we do not say
so explicitly.

Proof Uniqueness. Let Y and Y ′ be random variables that fulfill (i) and (ii). Let
A= {Y > Y ′} ∈F . Then, by (ii),

0= E[Y1A] −E
[
Y ′1A

]= E
[(
Y − Y ′)1A

]
.

Since (Y − Y ′)1A ≥ 0, we have P[A] = 0; hence Y ≤ Y ′ almost surely. Similarly,
we get Y ≥ Y ′ almost surely.

Existence. Let X+ =X ∨ 0 and X− =X+ −X. By

Q±(A) := E
[
X±1A

]
for all A ∈F,

we define two finite measures on (Ω,F). Clearly, Q± ) P; hence the Radon–
Nikodym theorem (Corollary 7.34) yields the existence of F -measurable densities
Y± such that

Q±(A)=
∫

A

Y± dP= E
[
Y±1A

]
.

Now define Y = Y+ − Y−. �

Definition 8.13 If Y is a random variable andX ∈ L1(P), then we define E[X |Y ] :=
E[X |σ(Y )].
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Theorem 8.14 (Properties of the conditional expectation) Let (Ω,A,P) and let
X be as above. Let G ⊂F ⊂A be σ -algebras and let Y ∈ L1(Ω,A,P). Then:

(i) (Linearity) E[λX+ Y |F] = λE[X |F] +E[Y |F].
(ii) (Monotonicity) If X ≥ Y a.s., then E[X |F] ≥ E[Y |F].

(iii) If E[|XY |]<∞ and Y is measurable with respect to F , then

E[XY |F] = YE[X |F] and E[Y |F] = E[Y |Y ] = Y.
(iv) (Tower property) E[E[X |F]|G] = E[E[X |G]|F] = E[X |G].
(v) (Triangle inequality) E[|X| ∣∣F] ≥ |E[X |F]|.

(vi) (Independence) If σ(X) and F are independent, then E[X |F] = E[X].
(vii) If P[A] ∈ {0,1} for any A ∈F , then E[X |F] = E[X].
(viii) (Dominated convergence) Assume Y ∈ L1(P), Y ≥ 0 and (Xn)n∈N is a

sequence of random variables with |Xn| ≤ Y for n ∈ N and such that

Xn
n→∞−→ X a.s. Then

lim
n→∞E[Xn |F] = E[X |F] a.s. and in L1(P). (8.7)

Proof (i) The right-hand side is F -measurable; hence, for A ∈F ,

E
[
1A
(
λE[X |F] +E[Y |F])]= λE

[
1AE[X |F]]+E

[
1AE[Y |F]]

= λE[1AX] +E[1AY ]
= E
[
1A(λX+ Y)

]
.

(ii) Let A = {E[X |F] < E[Y |F]} ∈ F . Since we have X ≥ Y , we get
E[1A(X− Y)] ≥ 0 and thus P[A] = 0.

(iii) First assume X ≥ 0 and Y ≥ 0. For n ∈ N, define Yn = 2−n�2nY �. Then
Yn ↑ Y and YnE[X |F] ↑ YE[X |F] (since E[X |F] ≥ 0 by (ii)). By the monotone
convergence theorem (Lemma 4.6(ii)),

E
[
1AYnE[X |F]] n→∞−→ E

[
1AYE[X |F]].

On the other hand,

E
[
1AYnE[X |F]

]=
∞∑

k=1

E
[
1A1{Yn=k2−n}k2

−nE[X |F]]

=
∞∑

k=1

E
[
1A1{Yn=k2−n}k2

−nX
]

= E[1AYnX] n→∞−→ E[1AYX].
Hence E[1AYE[X |F]] = E[1AYX]. In the general case, write X =X+ −X− and
Y = Y+ − Y− and exploit the linearity of the conditional expectation.
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(iv) The second equality follows from (iii) with Y = E[X |G] and X = 1. Now let
A ∈ G. Then, in particular, A ∈F ; hence

E
[
1AE
[
E[X |F] ∣∣ G]]= E

[
1AE[X |F]]= E[1AX] = E

[
1AE[X |G]].

(v) This follows from (i) and (ii) with X =X+ −X−.
(vi) Trivially, E[X] is measurable with respect to F . Let A ∈F . Then X and 1A

are independent; hence E[E[X |F]1A] = E[X1A] = E[X]E[1A].
(vii) For any A ∈ F and B ∈ A, we have P[A ∩ B] = 0 if P[A] = 0, and

P[A ∩ B] = P[B] if P[A] = 1. Hence F and A are independent and thus F is
independent of any sub-σ -algebra of A. In particular, F and σ(X) are independent.
Hence the claim follows from (vi).

(viii) Let |Xn| ≤ Y for any n ∈ N and Xn
n→∞−→ X almost surely. Define Zn :=

supk≥n |Xk −X|. Then 0≤ Zn ≤ 2Y and Zn
a.s.−→ 0. By Corollary 6.26 (dominated

convergence), we have E[Zn] n→∞−→ 0; hence, by the triangle inequality,

E
[∣
∣E[Xn |F] −E[X |F] ∣∣]≤ E

[
E
[|Xn −X|

∣
∣F
]]= E

[|Xn −X|
]≤ E[Zn] n→∞−→ 0.

However, this is the L1(P)-convergence in (8.7). As (Zn)n∈N is decreasing, by (ii)
also (E[Zn

∣
∣F])n∈N decreases to some limit, say, Z. By Fatou’s lemma,

E[Z] ≤ lim
n→∞E

[
E[Zn |F]

]= lim
n→∞E[Zn] = 0.

Hence Z = 0 and thus E[Zn |F] n→∞−→ 0 almost surely. However, by (v),
∣
∣E[Xn |F] −E[X |F]∣∣≤ E[Zn |F]. �

Remark 8.15 Intuitively, E[X |F] is the best prediction we can make for the value
of X if we only have the information of the σ -algebra F . For example, if σ(X)⊂F
(that is, if we know X already), then E[X |F] = X, as shown in (iii). At the other
end of the spectrum is the case where X and F are independent; that is, where
knowledge of F does not give any information on X. Here the best prediction for X
is its mean; hence E[X] = E[X |F], as shown in (vi).

What exactly do we mean by “best prediction”? For square integrable random
variables X, by the best prediction for X we will understand the F -measurable
random variable that minimizes the L2-distance from X. The next corollary shows
that the conditional expectation is in fact this minimizer. ♦

Remark 8.16 Let X :Ω→ R be a random variable such that X− ∈ L1(P). We can
define the conditional expectation as the monotone limit

E[X |F] := lim
n→∞E[Xn |F],

where −X− ≤ X1 and Xn ↑ X. Due to the monotonicity of the conditional expec-
tation (Theorem 8.14(ii)) it is easy to show that the limit does not depend on the
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choice of the sequence (Xn) and that it fulfills the conditions of Definition 8.11.
Analogously, we can define the conditional expectation X+ ∈ L1(P). For this gen-
eralization of the conditional expectation, we still have E[X |F] ≤ E[Y |F] a.s. if
Y ≥X a.s. (see Exercise 8.2.1). ♦

Corollary 8.17 (Conditional expectation as projection) Let F ⊂A be a σ -algebra
and let X be a random variable with E[X2]<∞. Then E[X |F] is the orthogonal
projection of X on L2(Ω,F,P). That is, for any F -measurable Y with E[Y 2]<∞,

E
[
(X− Y)2]≥ E

[(
X−E[X |F])2]

with equality if and only if Y = E[X |F].

Proof First assume that E[E[X |F]2]<∞. (In Theorem 8.20, we will see that we
have E[E[X |F]2] ≤ E[X2], but here we want to keep the proof self-contained.)
Let Y be F -measurable and assume E[Y 2]<∞. Then, by the Cauchy–Schwarz in-
equality, we have E[|XY |]<∞. Thus, using the tower property, we infer E[XY ] =
E[E[X |F]Y ] and E[XE[X |F]] = E[E[XE[X |F] ∣∣F]] = E[E[X |F]2]. Summing
up, we have

E
[
(X− Y)2]−E

[(
X−E[X |F])2]

= E
[
X2 − 2XY + Y 2 −X2 + 2XE[X |F] −E[X |F]2]

= E
[
Y 2 − 2YE[X |F] +E[X |F]2]

= E
[(
Y −E[X |F])2]≥ 0.

For the case E[E[X |F]2] <∞, we are done. Hence, it suffices to show that this
condition follows from the assumption E[X2]<∞. ForN ∈N, define the truncated
random variables |X| ∧N . Clearly, we have E[E[|X| ∧N |F]2] ≤N2. By what we
have shown already (with X replaced by |X| ∧N and with Y = 0 ∈ L2(Ω,F,P)),
and using the elementary inequality a2 ≤ 2(a − b)2 + 2b2, a, b ∈R, we infer

E
[
E
[|X| ∧N ∣∣F]2]≤ 2E

[((|X| ∧N)−E
[|X| ∧N ∣∣F])2]+ 2E

[(|X| ∧N)2]

≤ 4E
[(|X| ∧N)2]≤ 4E

[
X2].

By Theorem 8.14(ii) and (viii), we get E[|X|∧N |F] ↑ E[|X| |F] for N→∞. By
the triangle inequality (Theorem 8.14(v)) and the monotone convergence theorem
(Theorem 4.20), we conclude

E
[
E[X |F]2]≤ E

[
E
[|X| ∣∣F]2]= lim

N→∞E
[
E
[|X| ∧N ∣∣F]2]≤ 4E

[
X2]<∞.

This completes the proof. �
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Example 8.18 Let X,Y ∈ L1(P) be independent. Then

E[X+ Y | Y ] = E[X | Y ] +E[Y | Y ] = E[X] + Y. ♦

Example 8.19 Let X1, . . . ,XN be independent with E[Xi] = 0, i = 1, . . . ,N . For
n = 1, . . . ,N , define Fn := σ(X1, . . . ,Xn) and Sn := X1 + . . . + Xn. Then, for
n≥m,

E[Sn
∣
∣Fm] = E[X1

∣
∣Fm] + . . .+E[Xn

∣
∣Fm]

=X1 + . . .+Xm +E[Xm+1] + . . .+E[Xn]
= Sm.

By Theorem 8.14(iv), since σ(Sm)⊂Fm, we have

E[Sn |Sm] = E
[
E[Sn |Fm]

∣
∣Sm
]= E[Sm |Sm] = Sm. ♦

Next we show Jensen’s inequality for conditional expectations.

Theorem 8.20 (Jensen’s inequality) Let I ⊂ R be an interval, let ϕ : I → R

be convex and let X be an I -valued random variable on (Ω,A,P). Further, let
E[|X|]<∞ and let F ⊂A be a σ -algebra. Then

∞≥ E
[
ϕ(X)

∣
∣F
]≥ ϕ(E[X |F]).

Proof For the existence of E[ϕ(X)|F] with values in (−∞,∞] note that ϕ(X)− ∈
L1(P) and see Remark 8.16. By Exercise 8.2.2, we have E[X |F] ∈ I a.s., hence
ϕ(E[X |F]) is well-defined.

(Recall from Definition 1.68 the jargon words “almost surely on A”.) Note that
X = E[X |F] on the event {E[X |F] is a boundary point of I }; hence here the claim
is trivial. Indeed, without loss of generality, assume 0 is the left boundary of I and
A := {E[X |F] = 0}. As X assumes values in I ⊂ [0,∞), we have 0 ≤ E[X1A] =
E[E[X |F]1A] = 0; hence X1A = 0. The case of a right boundary point is similar.

Hence4 now consider the event B := {E[X |F] is an interior point of I }. For ev-
ery interior point x ∈ I , letD+ϕ(x) be the maximal slope of a tangent of ϕ at x; i.e.,
the maximal number t with ϕ(y)≥ (y− x)t +ϕ(x) for all y ∈ I (see Theorem 7.7).

For each x ∈ I ◦, there exists a P-null set Nx such that, for every ω ∈ B \Nx , we
have

E
[
ϕ(X)

∣
∣F
]
(ω) ≥ ϕ(x)+E

[
D+ϕ(x)(X− x) ∣∣F](ω)

= ϕ(x)+D+ϕ(x)(E[X |F](ω)− x)=:ψω(x). (8.8)

Let V := Q ∩ I ◦. Then N :=⋃x∈V Nx is a P-null set and (8.8) holds for every
ω ∈ B \N and every x ∈ V .
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The map x �→ D+ϕ(x) is right continuous (by Theorem 7.7(iv)). Therefore
x �→ψω(x) is also right continuous. Hence, for every ω ∈ B \N , we have

ϕ
(
E[X |F](ω))=ψω

(
E[X |F](ω))

≤ sup
x∈I ◦

ψω(x)= sup
x∈V

ψω(x)≤ E
[
ϕ(X)

∣
∣F
]
(ω). �

Corollary 8.21 Let p ∈ [1,∞] and let F ⊂A be a sub-σ -algebra. Then the map

Lp(Ω,A,P)→ Lp(Ω,F,P), X �→ E[X |F],
is a contraction (that is, ‖E[X |F]‖p ≤ ‖X‖p) and thus continuous. Hence, for

X,X1,X2, . . . ∈ Lp(Ω,A,P) with ‖Xn −X‖p n→∞−→ 0,

∥
∥E[Xn |F] −E[X |F]∥∥

p

n→∞−→ 0.

Proof For p ∈ [1,∞), use Jensen’s inequality with ϕ(x)= |x|p . For p =∞, note
that |E[X |F]| ≤ E[|X||F] ≤ E[‖X‖∞ |F] = ‖X‖∞. �

Corollary 8.22 Let (Xi, i ∈ I ) be uniformly integrable and let (Fj , j ∈ J ) be a
family of sub-σ -algebras of A. Define Xi,j := E[Xi | Fj ]. Then (Xi,j , (i, j) ∈
I × J ) is uniformly integrable. In particular, for X ∈ L1(P), the family (E[X |Fj ],
j ∈ J ) is uniformly integrable.

Proof By Theorem 6.19, there exists a monotone increasing convex function f with
the property that f (x)/x→∞, x→∞ and L := supi∈I E[f (|Xi |)] <∞. Then
x �→ f (|x|) is convex; hence, by Jensen’s inequality,

E
[
f
(|Xi,j |

)]= E
[
f
(∣
∣E[Xi |Fj ]

∣
∣
)]≤L<∞.

Thus (Xi,j , (i, j) ∈ I × J ) is uniformly integrable by Theorem 6.19. �

Example 8.23 Let μ and ν be finite measures with ν) μ. Let f = dν/dμ be the
Radon–Nikodym derivative and let I = {F ⊂ A : F is a σ -algebra}. Consider the
measures μ

∣
∣
F

and ν
∣
∣
F

that are restricted to F . Then ν
∣
∣
F
) μ

∣
∣
F

(since in F there
are fewer μ-null sets); hence the Radon–Nikodym derivative fF := dν∣∣

F
/dμ
∣
∣
F

exists. Then (fF : F ∈ I ) is uniformly integrable (with respect to μ). (For finite
σ -algebras F , this was shown in Example 7.39.) Indeed, let P = μ/μ(Ω) and
Q= ν/μ(Ω). Then fF = dQ

∣
∣
F
/dP
∣
∣
F

. For any F ∈ F , we thus have E[fF1F ] =
∫
F
fF dP = Q(F ) = ∫

F
f dP = E[f 1F ]; hence fF = E[f |F]. By the preceding

corollary, (fF : F ∈ I ) is uniformly integrable with respect to P and thus also with
respect to μ. ♦

Exercise 8.2.1 Show the assertions of Remark 8.16.
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Exercise 8.2.2 Let I ⊂ R be an arbitrary interval and let X ∈ L1(Ω,A,P) be a
random variable such that X ∈ I a.s. For F ⊂ A, show that E[X |F] ∈ I a.s.
Is this statement still true if we require only X− ∈ L1(Ω,A,P) instead of X ∈
L1(Ω,A,P)?

Exercise 8.2.3 (Bayes’ formula) Let A ∈A and B ∈F ⊂A. Show that

P[B |A] =
∫
B

P[A|F]dP
∫

P[A|F]dP
.

If F is generated by pairwise disjoint sets B1,B2, . . . , then this is exactly Bayes’
formula of Theorem 8.7.

Exercise 8.2.4 Give an example for E[E[X |F]|G] �= E[E[X |G]|F].

Exercise 8.2.5 Show the conditional Markov inequality: For monotone increasing
f : [0,∞)→[0,∞) and ε > 0 with f (ε) > 0,

P
[|X| ≥ ε ∣∣F]≤ E[f (|X|) |F]

f (ε)
.

Exercise 8.2.6 Show the conditional Cauchy–Schwarz inequality: For square inte-
grable random variables X,Y ,

E[XY |F]2 ≤ E
[
X2
∣
∣F
]
E
[
Y 2
∣
∣F
]
.

Exercise 8.2.7 LetX1, . . . ,Xn be integrable i.i.d. random variables. Let Sn =X1+
. . .+Xn. Show that

E[Xi |Sn] = 1

n
Sn for every i = 1, . . . , n.

Exercise 8.2.8 Let X1 and X2 be independent and exponentially distributed with
parameter θ > 0. Compute E[X1 ∧X2 |X1].

Exercise 8.2.9 Let X and Y be real random variables with joint density f and let
h :R→R be measurable with E[|h(X)|]<∞. Denote by λ the Lebesgue measure
on R.

(i) Show that almost surely

E
[
h(X)

∣
∣ Y
]=
∫
h(x)f (x,Y )λ(dx)
∫
f (x,Y )λ(dx)

.

(ii) Let X and Y be independent and expθ -distributed for some θ > 0. Compute
E[X |X+ Y ] and P[X ≤ x |X+ Y ] for x ≥ 0.
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8.3 Regular Conditional Distribution

Let X be a random variable with values in a measurable space (E,E). With our ma-
chinery, so far we can define the conditional probability P[A|X] for fixed A ∈ A
only. However, we would like to define for every x ∈ E a probability measure
P[ · |X = x] such that for any A ∈A, we have P[A|X] = P[A|X = x] on {X = x}.
In this section, we show how to do this.

For example, we are interested in a two-stage random experiment. At the first
stage, we manipulate a coin at random such that the probability of a success (i.e.,
“head”) is X. At the second stage, we toss the coin n times independently with
outcomes Y1, . . . , Yn. Hence the “conditional distribution of (Y1, . . . , Yn) given
{X = x}” should be (Berx)⊗n.

Let X be as above and let Z be a σ(X)-measurable real random variable. By
the factorization lemma (Corollary 1.97 with f = X and g = Z), there is a map
ϕ :E→R such that

ϕ is E – B(R)-measurable and ϕ(X)=Z. (8.9)

If X is surjective, then ϕ is determined uniquely. In this case, we denote Z ◦X−1 :=
ϕ (even if the inverse map X−1 itself does not exist).

Definition 8.24 Let Y ∈ L1(P) and X : (Ω,A)→ (E,E). We define the condi-
tional expectation of Y given X = x by E[Y |X = x] := ϕ(x), where ϕ is the func-
tion from (8.9) with Z = E[Y |X].

Analogously, define P[A|X = x] = E[1A |X = x] for A ∈A.

For a fixed set B ∈ A with P[B] > 0, the conditional probability P[ · |B] is a
probability measure. Is this true also for P[ · |X = x]? The question is a bit tricky
since for every given A ∈A, the expression P[A|X = x] is defined for almost all x
only; that is, up to x in a null set that may, however, depend on A. Since there are
uncountably many A ∈A in general, we could not simply unite all the exceptional
sets for anyA. However, if the σ -algebra A can be approximated by countably many
A sufficiently well, then there is hope.

Our first task is to give precise definitions. Then we present the theorem that
justifies our hope.

Definition 8.25 (Transition kernel, Markov kernel) Let (Ω1,A1), (Ω2,A2) be
measurable spaces. A map κ :Ω1 ×A2 → [0,∞] is called a (σ -)finite transition
kernel (from Ω1 to Ω2) if:

(i) ω1 �→ κ(ω1,A2) is A1-measurable for any A2 ∈A2.
(ii) A2 �→ κ(ω1,A2) is a (σ -)finite measure on (Ω2,A2) for any ω1 ∈Ω1.

If in (ii) the measure is a probability measure for all ω1 ∈Ω1, then κ is called a
stochastic kernel or a Markov kernel. If in (ii) we also have κ(ω1,Ω2)≤ 1 for any
ω1 ∈Ω1, then κ is called sub-Markov or substochastic.
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Remark 8.26 It is sufficient to check property (i) in Definition 8.25 for sets A2 from
a π -system E that generates A2 and that either containsΩ2 or a sequence En ↑Ω2.
Indeed, in this case,

D := {A2 ∈A2 : ω1 �→ κ(ω1,A2) is A1-measurable
}

is a λ-system (exercise!). Since E ⊂D, by the π–λ theorem (Theorem 1.19), D =
σ(E)=A2. ♦

Example 8.27

(i) Let (Ω1,A1) and (Ω2,A2) be discrete measurable spaces and let (Kij ) i∈Ω1
j∈Ω2

be

a matrix with nonnegative entries and finite row sums

Ki :=
∑

j∈Ω2

Kij <∞ for i ∈Ω1.

Then we can define a finite transition kernel from Ω1 to Ω2 by κ(i,A) =∑
j∈AKij . κ is stochastic if Ki = 1 for all i ∈Ω1. It is substochastic if Ki ≤ 1

for all i ∈Ω1.
(ii) If μ2 is a finite measure onΩ2, then κ(ω1, ·)≡ μ2 is a finite transition kernel.

(iii) κ(x, ·)= Poix is a stochastic kernel from [0,∞) to N0 (note that x �→ Poix(A)
is continuous and hence measurable for all A⊂N0).

(iv) Let μ be a distribution on R
n and let X be a random variable with PX = μ.

Then κ(x, ·)= P[X + x ∈ ·] = δx ∗ μ defines a stochastic kernel from R
n to

R
n. Indeed, the sets (−∞, y], y ∈R

n form an ∩-stable generator of B(Rn) and
x �→ κ(x, (−∞, y]) = μ((−∞, y − x]) is left continuous and hence measur-
able. Hence, by Remark 8.26, x �→ κ(x,A) is measurable for all A ∈ B(Rn).♦

Definition 8.28 Let Y be a random variable with values in a measurable space
(E,E) and let F ⊂ A be a sub-σ -algebra. A stochastic kernel κY,F from (Ω,F)
to (E,E) is called a regular conditional distribution of Y given F if

κY,F (ω,B)= P
[{Y ∈ B} ∣∣F](ω)

for P-almost all ω ∈Ω and for all B ∈ E ; that is, if
∫

1B(Y )1A dP=
∫

κY,F ( ·,B)1A dP for all A ∈F,B ∈ E . (8.10)

Consider the special case where F = σ(X) for a random variable X (with values in
an arbitrary measurable space (E′,E ′)). Then the stochastic kernel

(x,A) �→ κY,X(x,A)= P
[{Y ∈A} ∣∣X = x]= κY,σ (X)

(
X−1(x),A

)

(the function from the factorization lemma with an arbitrary value for x �∈X(Ω)) is
called a regular conditional distribution of Y given X.
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Theorem 8.29 (Regular conditional distributions in R) Let Y : (Ω,A) →
(R,B(R)) be real-valued. Then there exists a regular conditional distribution κY,F
of Y given F .

Proof The strategy of the proof consists in constructing a measurable version of
the distribution function of the conditional distribution of Y by first defining it for
rational values (up to a null set) and then extending it to the real numbers.

For r ∈ Q, let F(r, ·) be a version of the conditional probability P[Y ∈
(−∞, r]|F]. For r ≤ s, clearly 1{Y∈(−∞,r]} ≤ 1{Y∈(−∞,s]}. Hence, by Theo-
rem 8.14(ii) (monotonicity of the conditional expectation), there is a null set
Ar,s ∈F with

F(r,ω)≤ F(s,ω) for all ω ∈Ω \Ar,s . (8.11)

By Theorem 8.14(viii) (dominated convergence), there are null sets (Br)r∈Q ∈ F
and C ∈F such that

lim
n→∞F

(

r + 1

n
,ω

)

= F(r,ω) for all ω ∈Ω \Br (8.12)

as well as

inf
n∈NF(−n,ω)= 0 and sup

n∈N
F(n,ω)= 1 for all ω ∈Ω \C. (8.13)

Let N := (⋃r,s∈QAr,s)∪ (
⋃
r∈QBr)∪C. For ω ∈Ω \N , define

F̃ (z,ω) := inf
{
F(r,ω) : r ∈Q, r > z

}
for all z ∈R.

By construction, F̃ ( ·,ω) is monotone increasing and right continuous. By (8.11)
and (8.12), we have

F̃ (z,ω)= F(z,ω) for all z ∈Q and ω ∈Ω \N. (8.14)

Therefore, by (8.13), F̃ ( ·,ω) is a distribution function for any ω ∈ Ω \ N . For
ω ∈N , define F̃ ( ·,ω)= F0, where F0 is an arbitrary but fixed distribution function.

For any ω ∈Ω , let κ(ω, ·) be the probability measure on (Ω,A) with distribu-
tion function F̃ ( ·,ω). Then, for r ∈Q and B = (−∞, r],

ω �→ κ(ω,B)= F(r,ω)1Nc(ω)+ F0(r)1N(ω) (8.15)

is F -measurable. Now {(−∞, r], r ∈ Q} is a π -system that generates B(R). By
Remark 8.26, measurability holds for all B ∈ B(R) and hence κ is identified as a
stochastic kernel.

We still have to show that κ is a version of the conditional distribution. For
A ∈F , r ∈Q and B = (−∞, r], by (8.15),

∫

A

κ(ω,B)P[dω] =
∫

A

P[Y ∈ B |F]dP= P
[
A∩ {Y ∈ B}].
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As functions of B , both sides are finite measures on B(R) that coincide on the ∩-
stable generator {(−∞, r], r ∈ Q}. By the uniqueness theorem (Lemma 1.42), we
thus have equality for all B ∈ B(R). Hence P-a.s. κ( ·,B)= P[Y ∈ B |F] and thus
κ = κY,F . �

Example 8.30 Let Z1,Z2 be independent Poisson random variables with parame-
ters λ1, λ2 ≥ 0. One can show (exercise!) that (with Y =Z1 and X =Z1 +Z2)

P[Z1 = k | Z1 +Z2 = n] = bn,p(k) for k = 0, . . . , n,

where p = λ1
λ1+λ2

. ♦

This example could still be treated by elementary means. The full strength of the
result is displayed in the following examples.

Example 8.31 Let X and Y be real random variables with joint density f (with
respect to Lebesgue measure λ2 on R

2). For x ∈R, define

fX(x)=
∫

R

f (x, y)λ(dy).

Clearly, fX(x) > 0 for PX-a.a. x ∈ R and f−1
X is the density of the absolutely con-

tinuous part of the Lebesgue measure λ with respect to PX . The regular conditional
distribution of Y given X has density

P[Y ∈ dy |X = x]
dy

= fY |X(x, y) := f (x, y)
fX(x)

for PX[dx]-a.a. x ∈R. (8.16)

Indeed, by Fubini’s theorem (Theorem 14.16), the map x �→ ∫
B
fY |X(x, y)λ(dy) is

measurable for all B ∈ B(R) and for A,B ∈ B(R), we have
∫

A

P[X ∈ dx]
∫

B

fY |X(x, y)λ(dy)

=
∫

A

P[X ∈ dx]fX(x)−1
∫

B

f (x, y)λ(dy)

=
∫

A

λ(dx)

∫

B

f (x, y)λ(dy)

=
∫

A×B
f dλ2 = P[X ∈A,Y ∈ B]. ♦

Example 8.32 Let μ1,μ2 ∈ R, σ1, σ2 > 0 and let Z1,Z2 be independent and
Nμi,σ 2

i
-distributed (i = 1,2). Then there exists a regular conditional distribution

P[Z1 ∈ · |Z1 +Z2 = x] for x ∈R.
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If we define X = Z1 + Z2 and Y = Z1, then (X,Y ) ∼Nμ,Σ is bivariate normally
distributed with covariance matrix

Σ :=
(
σ 2

1 + σ 2
2 σ 2

1

σ 2
1 σ 2

1

)

and with

μ :=
(
μ1 +μ2
μ1

)

.

Note that

Σ−1 = (σ 2
1 σ 2

2

)−1
(
σ 2

1 −σ 2
1−σ 2

1 σ 2
1 + σ 2

2

)

= (σ 2
1 σ 2

2

)−1
BT B,

where B = ( σ1 −σ1
0 σ2

)
. Hence (X,Y ) has the density (see Example 1.105(ix))

f (x, y)= det(2πΣ)−1/2 exp

(

− 1

2σ 2
1 σ

2
2

∥
∥
∥
∥B

(
x − (μ1 +μ2)

y −μ1

)∥
∥
∥
∥

2)

= (4π2σ 2
1 σ

2
2

)−1/2
exp

(

−σ
2
1 (y − (x −μ2))

2 + σ 2
2 (y −μ1)

2

2σ 2
1 σ

2
2

)

= Cx exp
(−(y −μx)2/2σ 2

x

)
.

Here Cx is a normalising constant and

μx = μ1 + σ 2
1

σ 2
1 + σ 2

2

(x −μ1 −μ2) and σ 2
x =

σ 2
1 σ

2
2

σ 2
1 + σ 2

2

.

By (8.16), P[Z1 ∈ · |Z1 +Z2 = x] has the density

y �→ fY |X(x, y)= Cx

fX(x)
exp

(

− (y −μx)
2

2σ 2
x

)

,

hence

P[Z1 ∈ · |Z1 +Z2 = x] =Nμx,σ 2
x

for almost all x ∈R. ♦

Example 8.33 If X and Y are independent real random variables, then for PX-
almost all x ∈R

P[X+ Y ∈ · |X = x] = δx ∗ PY . ♦

The situation is not completely satisfying as we have made the very restrictive
assumption that Y is real-valued. Originally we were also interested in the situation
where Y takes values in R

n or in even more general spaces. We now extend the
result to a larger class of ranges for Y .
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Definition 8.34 Two measurable spaces (E,E) and (E′,E ′) are called isomorphic
if there exists a bijective map ϕ : E→ E′ such that ϕ is E – E ′-measurable and
the inverse map ϕ−1 is E ′ – E -measurable. Then we say that ϕ is an isomorphism
of measurable spaces. If in addition μ and μ′ are measures on (E,E) and (E′,E ′)
and if μ′ = μ ◦ ϕ−1, then ϕ is an isomorphism of measure spaces, and the measure
spaces (E,E,μ) and (E′,E ′,μ′) are called isomorphic.

Definition 8.35 A measurable space (E,E) is called a Borel space if there exists a
Borel set B ∈ B(R) such that (E,E) and (B,B(B)) are isomorphic.

A separable topological space whose topology is induced by a complete metric is
called a Polish space. In particular, Rd , Zd , RN, (C([0,1]),‖ · ‖∞) and so forth are
Polish. Closed subsets of Polish spaces are again Polish. We come back to Polish
spaces in the context of convergence of measures in Chapter 13. Without proof, we
present the following topological result (see, e.g., [37, Theorem 13.1.1]).

Theorem 8.36 Let E be a Polish space with Borel σ -algebra E . Then (E,E) is a
Borel space.

Theorem 8.37 (Regular conditional distribution) Let F ⊂A be a sub-σ -algebra.
Let Y be a random variable with values in a Borel space (E,E) (hence, for exam-
ple, E Polish, E =R

d , E =R
∞, E = C([0,1]), etc.). Then there exists a regular

conditional distribution κY,F of Y given F .

Proof Let B ∈ B(R) and let ϕ : E→ B be an isomorphism of measurable spaces.
By Theorem 8.29, we obtain the regular conditional distribution κY ′,F of the real
random variable Y ′ = ϕ◦Y . Now define κY,F (ω,A)= κY ′,F (ω,ϕ(A)) forA ∈ E . �

To conclude, we pick up again the example with which we started. Now we can
drop the quotation marks from the statement and write it down formally. Hence,
let X be uniformly distributed on [0,1]. Given X = x, let (Y1, . . . , Yn) be inde-
pendent and Berx -distributed. Define Y = (Y1, . . . , Yn). By Theorem 8.37 (with
E = {0,1}n ⊂R

n), a regular conditional distribution exists:

κY,X(x, ·)= P[Y ∈ · |X = x] for x ∈ [0,1].
Indeed, for almost all x ∈ [0,1],

P[Y ∈ · |X = x] = (Berx)
⊗n.

Theorem 8.38 Let X be a random variable on (Ω,A,P) with values in a Borel
space (E,E). Let F ⊂A be a σ -algebra and let κX,F be a regular conditional dis-
tribution of X given F . Further, let f :E→R be measurable and E[|f (X)|]<∞.
Then

E
[
f (X)

∣
∣F
]
(ω)=

∫

f (x)κX,F (ω, dx) for P-almost all ω. (8.17)



186 8 Conditional Expectations

Proof We check that the right-hand side in (8.17) has the properties of the condi-
tional expectation.

It is enough to consider the case f ≥ 0. By approximating f by simple functions,
we see that the right-hand side in (8.17) is F -measurable (see Lemma 14.20 for a
formal argument). Hence, by Theorem 1.96, there exist sets A1,A2, . . . ∈ E and
numbers α1, α2, . . .≥ 0 such that

gn :=
n∑

i=1

αi1Ai
n→∞−→ f.

Now, for any n ∈N and B ∈F ,

E
[
gn(X)1B

]=
n∑

i=1

αiP
[{X ∈Ai} ∩B

]

=
n∑

i=1

αi

∫

B

P
[{X ∈Ai}

∣
∣F
]
P[dω]

=
n∑

i=1

αi

∫

B

κX,F (ω,Ai)P[dω]

=
∫

B

n∑

i=1

αiκX,F (ω,Ai)P[dω]

=
∫

B

(∫

gn(x)κX,F (ω, dx)
)

P[dω].

By the monotone convergence theorem, for almost all ω, the inner integral converges
to
∫
f (x)κX,F (ω, dx). Applying the monotone convergence theorem once more,

we get

E
[
f (X)1B

]= lim
n→∞E

[
gn(X)1B

]=
∫

B

∫

f (x)κX,F (ω, dx)P[dω]. �

Exercise 8.3.1 Let (E,E) be a Borel space and let μ be an atom-free measure (that
is, μ({x})= 0 for any x ∈ E). Show that for any A ∈ E and any n ∈ N, there exist
pairwise disjoint sets A1, . . . ,An ∈ E with

⊎n
k=1Ak =A and μ(Ak)= μ(A)/n for

any k = 1, . . . , n.

Exercise 8.3.2 Let p,q ∈ (1,∞) with 1
p
+ 1
q
= 1 and let X ∈ Lp(P) and Y ∈

Lq(μ). Let F ⊂ A be a σ -algebra. Use the preceding theorem to show the con-
ditional version of Hölder’s inequality:

E
[|XY | ∣∣F]≤ E

[|X|p ∣∣F]1/pE
[|Y |q ∣∣F]1/q almost surely.
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Exercise 8.3.3 Assume the random variable (X,Y ) is uniformly distributed on the
disc B := {(x, y) ∈R

2 : x2 + y2 ≤ 1} and on [−1,1]2, respectively.

(i) In both cases, determine the conditional distribution of Y given X = x.
(ii) Let R := √X2 + Y 2 and Θ = arctan(Y/X). In both cases, determine the con-

ditional distribution of Θ given R = r .

Exercise 8.3.4 Let A ⊂ R
n be a Borel measurable set of finite Lebesgue measure

λ(A) ∈ (0,∞) and let X be uniformly distributed on A (see Example 1.75). Let
B ⊂ A be measurable with λ(B) > 0. Show that the conditional distribution of X
given {X ∈ B} is the uniform distribution on B .

Exercise 8.3.5 (Borel’s paradox) Consider the Earth as a ball (as widely accepted
nowadays). Let X be a random point that is uniformly distributed on the surface.
Let Θ be the longitude and let Φ be the latitude of X. A little differently from the
usual convention, assume that Θ takes values in [0,π) and Φ in [−π,π). Hence,
for fixed Θ , a complete great circle is described when Φ runs through its domain.
Now, given Θ , is Φ uniformly distributed on [−π,π)? One could conjecture that
any point on the great circle is equally likely. However, this is not the case! If we
thicken the great circle slightly such that its longitudes range from Θ to Θ + ε (for
a small ε), on the equator it is thicker (measured in meters) than at the poles. If we
let ε→ 0, intuitively we should get the conditional probabilities as proportional to
the thickness (in meters).

(i) Show that P[{Φ ∈ ·}|Θ = θ ] for almost all θ has the density 1
4 | cos(φ)| for

φ ∈ [−π,π).
(ii) Show that P[{Θ ∈ ·}|Φ = φ] = U[0,π) for almost all φ.

Hint: Show that Θ and Φ are independent, and compute the distributions of Θ
and Φ .

Exercise 8.3.6 (Rejection sampling for generating random variables) Let E be a
countable set and let P and Q be probability measures on E. Assume there is a
c > 0 with

f (e) := Q({e})
P ({e}) ≤ c for all e ∈E with P

({e})> 0.

LetX1,X2, . . . be independent random variables with distribution P . LetU1,U2, . . .

be i.i.d. random variables that are independent of X1,X2, . . . and that are uniformly
distributed on [0,1]. LetN be the smallest (random) nonnegative integer n such that
Un ≤ f (Xn)/c and define Y :=XN .

Show that Y has distribution Q.
Remark. This method for generating random variables with a given distribution

Q is called rejection sampling, as it can also be described as follows. The random
variable X1 is a proposal for the value of Y . This proposal is accepted with proba-
bility f (X1)/c and is rejected otherwise. If the first proposal is rejected, the game
starts afresh with proposal X2 and so on.
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Exercise 8.3.7 Let E be a Polish space and let P,Q ∈M1(R). Let c > 0 with
f := dQ

dP
≤ c P -almost surely. Show the statement analogous to Exercise 8.3.6.

Exercise 8.3.8 Show that (R,B(R)) and (Rn,B(Rn)) are isomorphic. Conclude
that every Borel set B ∈ B(Rn) is a Borel space.



Chapter 9
Martingales

One of the most important concepts of modern probability theory is the martin-
gale, which formalizes the notion of a fair game. In this chapter, we first lay the
foundations for the treatment of general stochastic processes. We then introduce
martingales and the discrete stochastic integral. We close with an application to a
model from mathematical finance.

9.1 Processes, Filtrations, Stopping Times

We introduce the fundamental technical terms for the investigation of stochastic
processes (including martingales). In order to be able to recycle the terms later in a
more general context, we go for greater generality than is necessary for the treatment
of martingales only.

In the following, let (E, τ) be a Polish space with Borel σ -algebra E . Further, let
(Ω,F,P) be a probability space and let I ⊂R be arbitrary. We are mostly interested
in the cases I =N0, I = Z, I = [0,∞) and I an interval.

Definition 9.1 (Stochastic process) Let I ⊂R. A family of random variablesX =
(Xt , t ∈ I ) (on (Ω,F,P)) with values in (E,E) is called a stochastic process with
index set (or time set) I and range E.

Remark 9.2 Sometimes families of random variables with more general index sets
are called stochastic processes. We come back to this with the Poisson point process
in Chapter 24. ♦

Remark 9.3 Following a certain tradition, we will often denote a stochastic process
by X = (Xt )t∈I if we want to emphasize the “time evolution” aspect rather than the
formal notion of a family of random variables. Formally, both objects are of course
the same. ♦
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Example 9.4 Let I = N0 and let (Yn,n ∈ N) be a family of i.i.d. Rad1/2-random
variables on a probability space (Ω,F,P); that is, random variables with

P[Yn = 1] = P[Yn =−1] = 1

2
.

Let E = Z (with the discrete topology) and let

Xt =
t∑

n=1

Yn for all t ∈N0.

(Xt , t ∈N0) is called a symmetric simple random walk on Z. ♦

Example 9.5 The Poisson process X = (Xt )t≥0 with intensity α > 0 (see Sec-
tion 5.5) is a stochastic process with range N0. ♦

We introduce some further terms.

Definition 9.6 If X is a random variable (or a stochastic process), we write L[X] =
PX for the distribution of X. If G ⊂F is a σ -algebra, then we write L[X | G] for the
regular conditional distribution of X given G.

Definition 9.7 An E-valued stochastic process X = (Xt )t∈I is called

(i) real-valued if E =R,
(ii) a process with independent increments if X is real-valued and for all n ∈N and

all t0, . . . , tn ∈ I with t0 < t1 < . . . < tn, we have that

(Xti −Xti−1)i=1,...,n is independent,

(iii) a Gaussian process if X is real-valued and for all n ∈N and t1, . . . , tn ∈ I ,

(Xt1, . . . ,Xtn) is n-dimensional normally distributed, and

(iv) integrable (respectively square integrable) ifX is real-valued and E[|Xt |]<∞
(respectively E[(Xt )2]<∞) for all t ∈ I .
Now assume that I ⊂R is closed under addition. Then X is called

(v) stationary if L[(Xs+t )t∈I ] = L[(Xt )t∈I ] for all s ∈ I , and
(vi) a process with stationary increments if X is real-valued and

L[Xs+t+r −Xt+r ] = L[Xs+r −Xr ] for all r, s, t ∈ I.
(If 0 ∈ I , then it is enough to consider r = 0.)

Example 9.8

(i) The Poisson process with intensity θ and the random walk on Z are processes
with stationary independent increments.
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(ii) If Xt , t ∈ I , are i.i.d. random variables, then (Xt )t∈I is stationary.
(iii) Let (Xn)n∈Z be real-valued and stationary and let k ∈ N and c0, . . . , ck ∈ R.

Define

Yn :=
k∑

i=0

ciXn−i .

Then Y = (Yn)n∈Z is a stationary process. If c0, . . . , ck ≥ 0 and c0 +
. . . + ck = 1, then Y is called the moving average of X (with weights
c0, . . . , ck). ♦

The following two definitions make sense also for more general index sets I that
are partially ordered. However, we restrict ourselves to the case I ⊂R.

Definition 9.9 (Filtration) Let F = (Ft , t ∈ I ) be a family of σ -algebras with
Ft ⊂F for all t ∈ I . F is called a filtration if Fs ⊂Ft for all s, t ∈ I with s ≤ t .

Definition 9.10 A stochastic process X = (Xt , t ∈ I ) is called adapted to the fil-
tration F if Xt is Ft -measurable for all t ∈ I . If Ft = σ(Xs, s ≤ t) for all t ∈ I ,
then we denote by F= σ(X) the filtration that is generated by X.

Remark 9.11 Clearly, a stochastic process is always adapted to the filtration it gen-
erates. Hence the generated filtration is the smallest filtration to which the process
is adapted. ♦

Definition 9.12 (Predictable) A stochastic process X = (Xn,n ∈ N0) is called
predictable (or previsible) with respect to the filtration F = (Fn, n ∈ N0) if X0
is constant and if, for every n ∈N

Xn is Fn−1-measurable.

Example 9.13 Let I = N0 and let Y1, Y2, . . . be real random variables. For n ∈ N0,
define Xn :=∑n

m=1 Ym. Let

F0 = {∅,Ω} and Fn = σ(Y1, . . . , Yn) for n ∈N.

Then F= (Fn, n ∈N0)= σ(Y ) is the filtration generated by Y = (Yn)n∈N and X is
adapted to F; hence σ(X)⊂ F. Clearly, (Y1, . . . , Yn) is measurable with respect to
σ(X1, . . . ,Xn); hence σ(Y )⊂ σ(X), and thus also F= σ(X).

Now let X̃n :=∑n
m=1 1[0,∞)(Ym). Then X̃ is also adapted to F; however, in gen-

eral, F� σ(X̃). ♦

Example 9.14 Let I = N0 and let D1,D2, . . . be i.i.d. Rad1/2-distributed random
variables (that is, P[Di = −1] = P[Di = 1] = 1

2 for all i ∈ N). Let D = (Di)i∈N
and F = σ(D). We interpret Di as the result of a bet that gives a gain or loss of
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one euro for every euro we put at stake. Just before each gamble we decide how
much money we bet. Let Hn be the number of euros to bet in the nth gamble.
Clearly, Hn may only depend on the results of the gambles that happened ear-
lier, but not on Dm for any m ≥ n. To put it differently, there must be a function
Fn : {−1,1}n−1 → N such that Hn = Fn(D1, . . . ,Dn−1). (For example, for the Pe-
tersburg game (Example 4.22) we had Fn(x1, . . . , xn−1)= 2n−11{x1=x2=...=xn−1=0}.)
Hence H is predictable. On the other hand, any predictable H has the form
Hn = Fn(D1, . . . ,Dn−1), n ∈N, for certain functions Fn : {−1,1}n−1 →N. Hence
any predictable H is an admissible gambling strategy. ♦

Definition 9.15 (Stopping time) A random variable τ with values in I ∪ {∞} is
called a stopping time (with respect to F) if for any t ∈ I

{τ ≤ t} ∈Ft .

The idea is that Ft reflects the knowledge of an observer at time t . Whether or
not {τ ≤ t} is true can thus be determined on the basis of the information available
at time t .

Theorem 9.16 Let I be countable. τ is a stopping time if and only if {τ = t} ∈ Ft
for all t ∈ I .

Proof This is left as an exercise! �

Example 9.17 Let I =N0 (or, more generally, let I ⊂ [0,∞) be right-discrete; that
is, t < inf I ∩ (t,∞) for all t ≥ 0, and hence I in particular is countable) and let
K ⊂R be measurable. LetX be an adapted real-valued stochastic process. Consider
the first time that X is in K :

τK := inf{t ∈ I :Xt ∈K}.

It is intuitively clear that τK should be a stopping time since we can determine
by observation up to time t whether {τK ≤ t} occurs. Formally, we argue that
{Xs ∈ K} ∈ Fs ⊂ Ft for all s ≤ t . Hence also the countable union of these sets
is in Ft :

{τK ≤ t} =
⋃

s∈I∩[0,t]
{Xs ∈K} ∈Ft .

Consider now the random time τ̃ := sup{t ∈ I : Xt ∈ K} of the last visit of X
to K . For a fixed time t , on the basis of previous observations, we cannot determine
whether X is already in K for the last time. For this we would have to rely on
prophecy. Hence, in general, τ̃ is not a stopping time. ♦
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Lemma 9.18 Let I ⊂ [0,∞) be closed under addition and let σ and τ be stopping
times. Then:

(i) σ ∨ τ and σ ∧ τ are stopping times.
(ii) If σ, τ ≥ 0, then σ + τ is also a stopping time.

(iii) If s ≥ 0, then τ + s is a stopping time. However, in general, τ − s is not.

Before we present the (simple) formal proof, we state that in particular (i)
and (iii) are properties we would expect of stopping times. With (i), the interpre-
tation is clear. For (iii), note that τ − s peeks into the future by s time units (in
fact, {τ − s ≤ t} ∈Ft+s ), while τ + s looks back s time units. For stopping times,
however, only retrospection is allowed.

Proof (i) For t ∈ I , we have {σ ∨ τ ≤ t} = {σ ≤ t}∩ {τ ≤ t} ∈Ft and {σ ∧ τ ≤ t} =
{σ ≤ t} ∪ {τ ≤ t} ∈Ft .

(ii) Let t ∈ I . By (i), τ ∧ t and σ ∧ t are stopping times for any t ∈ I . In particular,
{τ ∧ t ≤ s} ∈Fs ⊂Ft for any s ≤ t . On the other hand, we have τ ∧ t ≤ s for s > t .
Hence τ ′ := (τ ∧ t) + 1{τ>t} and σ ′ := (σ ∧ t) + 1{σ>t} (and thus τ ′ + σ ′) are
Ft -measurable. We conclude {τ + σ ≤ t} = {τ ′ + σ ′ ≤ t} ∈Ft .

(iii) For τ + s, this is a consequence of (ii) (with the stopping time σ ≡ s). For
τ−s, since τ is a stopping time, we have {τ−s ≤ t} = {τ ≤ t+s} ∈Ft+s . However,
in general, Ft+s is a strict superset of Ft ; hence τ − s is not a stopping time. �

Definition 9.19 Let τ be a stopping time. Then

Fτ :=
{
A ∈F :A∩ {τ ≤ t} ∈Ft for any t ∈ I}

is called the σ -algebra of τ -past.

Example 9.20 Let I = N0 (or let I ⊂ [0,∞) be right-discrete; compare Exam-
ple 9.17) and let X be an adapted real-valued stochastic process. Let K ∈ R and
let τ = inf{t : Xt ≥ K} be the stopping time of first entrance in [K,∞). Consider
the events A= {sup{Xt : t ∈ I }>K − 5} and B = {sup{Xt : t ∈ I }>K + 5}.

Clearly, {τ ≤ t} ⊂ A for all t ∈ I ; hence A ∩ {τ ≤ t} = {τ ≤ t} ∈ Ft . Thus
A ∈Fτ . However, in general, B /∈Fτ since up to time τ , we cannot decide whether
X will ever exceed K + 5. ♦

Lemma 9.21 If σ and τ are stopping times with σ ≤ τ , then Fσ ⊂Fτ .

Proof Let A ∈Fσ and t ∈ I . Then A∩ {σ ≤ t} ∈Ft . Now {τ ≤ t} ∈Ft since τ is a
stopping time. Since σ ≤ τ , we thus get

A∩ {τ ≤ t} = (A∩ {σ ≤ t})∩ {τ ≤ t} ∈Ft . �

Definition 9.22 If τ <∞ is a stopping time, then we define Xτ (ω) :=Xτ(ω)(ω).
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Lemma 9.23 Let I be countable, let X be adapted and let τ <∞ be a stopping
time. Then Xτ is measurable with respect to Fτ .

Proof Let A be measurable and t ∈ I . Hence {τ = s} ∩X−1
s (A) ∈ Fs ⊂ Ft for all

s ≤ t . Thus

X−1
τ (A)∩ {τ ≤ t} =

⋃

s∈I
s≤t

({τ = s} ∩X−1
s (A)

) ∈Ft .

�

For uncountable I and for fixed ω, in general, the map I → E, t �→ Xt(ω) is
not measurable; hence neither is the composition Xτ always measurable. Here one
needs assumptions on the regularity of the paths t �→ Xt(ω); for example, right
continuity. We come back to this point in Chapter 21 and leave this as a warning for
the time being.

9.2 Martingales

Everyone who does not own a casino would agree without hesitation that the suc-
cessive payment of gains Y1, Y2, . . . , such that Y1, Y2, . . . are i.i.d. with E[Y1] = 0,
could be considered a fair game consisting of consecutive rounds. In this case, the
process X of partial sums Xn = Y1+ . . .+Yn is integrable and E[Xn |Fm] =Xm if
m< n (where F= σ(X)). We want to use this equation for the conditional expec-
tations as the defining equation for a fair game that in the following will be called
a martingale. Note that, in particular, this definition does not require that the indi-
vidual payments be independent or identically distributed. This makes the notion
quite a bit more flexible. The momentousness of the following concept will become
manifest only gradually.

Definition 9.24 Let (Ω,F,P) be a probability space, I ⊂ R, and let F be a
filtration. Let X = (Xt )t∈I be a real-valued, adapted stochastic process with
E[|Xt |]<∞ for all t ∈ I . X is called (with respect to F) a

martingale if E[Xt |Fs] =Xs for all s, t ∈ I with t > s,
submartingale if E[Xt |Fs] ≥Xs for all s, t ∈ I with t > s,
supermartingale if E[Xt |Fs] ≤Xs for all s, t ∈ I with t > s.

Remark 9.25 Clearly, for a martingale, the map t �→ E[Xt ] is constant, for sub-
martingales it is monotone increasing and for supermartingales it is monotone de-
creasing. ♦

Remark 9.26 The etymology of the term martingale has not been resolved com-
pletely. The French la martingale (originally Provençal martegalo, named after the
town Martiques) in equitation means “a piece of rein used in jumping and cross
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country riding”. Sometimes the ramified shape, in particular of the running martin-
gale (French la martingale à anneaux), is considered as emblematic for the doubling
strategy in the Petersburg game.

This doubling strategy itself is the second meaning of la martingale. Starting
here, a shift in the meaning towards the mathematical notion seems plausible. A dif-
ferent derivation, in contrast to the appearance, is based on the function of the rein,
which is to “check the upward movement of the horse’s head”. Thus the notion of a
martingale might first have been used for general gambling strategies (checking the
movements of chance) and later for the doubling strategy in particular. ♦

Remark 9.27 If I = N, I = N0 or I = Z, then it is enough to consider at each
instant s only t = s+1. In fact, by the tower property of the conditional expectation
(Theorem 8.14(iv)), we get

E[Xs+2 |Fs] = E
[
E[Xs+2 |Fs+1]

∣
∣Fs
]
.

Thus, if the defining equality (or inequality) holds for any time step of size one, by
induction it holds for all times. ♦

Remark 9.28 If we do not explicitly mention the filtration F, we tacitly assume that
F is generated by X; that is, Ft = σ(Xs, s ≤ t). ♦

Remark 9.29 Let F and F
′ be filtrations with Ft ⊂ F ′

t for all t , and let X be an
F
′-(sub-, super-) martingale that is adapted to F. Then X is also a (sub-, super-)

martingale with respect to the smaller filtration F. Indeed, for s < t and for the case
of a submartingale,

E[Xt |Fs] = E
[
E
[
Xt
∣
∣F ′

s

] ∣
∣Fs
]≥ E[Xs |Fs] =Xs.

In particular, an F-(sub-, super-) martingale X is always a (sub-, super-) martingale
with respect to its own filtration σ(X). ♦

Example 9.30 Let Y1, . . . , YN be independent random variables with E[Yt ] = 0 for
all t = 1, . . . ,N . Let Ft := σ(Y1, . . . , Yt ) and Xt :=∑t

s=1 Ys . Then X is adapted
and integrable, and E[Yr |Fs] = 0 for r > s. Hence, for t > s,

E[Xt |Fs] = E[Xs |Fs] +E[Xt −Xs |Fs] =Xs +
t∑

r=s+1

E[Yr |Fs] =Xs.

Thus, X is an F-martingale.
Similarly, X is a submartingale if E[Yt ] ≥ 0 for all t , and a supermartingale if

E[Yt ] ≤ 0 for all t . ♦

Example 9.31 Consider the situation of the preceding example; however, now with
E[Yt ] = 1 and Xt =∏ts=1 Ys for t ∈ N0. By Theorem 5.4, Y1 · Y2 is integrable.
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Inductively, we get E[|Xt |]<∞ for all t ∈N0. Evidently, X is adapted to F and for
all s ∈N0, we have

E[Xs+1 |Fs] = E[XsYs+1 |Fs] =XsE[Ys+1 |Fs] =Xs.
Hence X is an F-martingale. ♦

Theorem 9.32

(i) X is a supermartingale if and only if (−X) is a submartingale.
(ii) Let X and Y be martingales and let a, b ∈ R. Then (aX + bY ) is a martin-

gale.
(iii) Let X and Y be supermartingales and a, b ≥ 0. Then (aX+ bY ) is a super-

martingale.
(iv) Let X and Y be supermartingales. Then Z :=X ∧ Y = (min(Xt , Yt ))t∈I is a

supermartingale.
(v) If (Xt )t∈N0 is a supermartingale and E[XT ] ≥ E[X0] for some T ∈ N0,

then (Xt )t∈{0,...,T } is a martingale. If there exists a sequence TN →∞ with
E[XTN ] ≥ E[X0], then X is a martingale.

Proof (i), (ii) and (iii) These are evident.
(iv) Since |Zt | ≤ |Xt | + |Yt |, we have E[|Zt |] <∞ for all t ∈ I . Due to mono-

tonicity of the conditional expectation (Theorem 8.14(ii)), for t > s, we have
E[Zt |Fs] ≤ E[Yt |Fs] ≤ Ys and E[Zt |Fs] ≤ E[Xt |Fs] ≤Xs ; hence

E[Zt |Fs] ≤Xs ∧ Ys =Zs.
(v) For t ≤ T , let Yt := E[XT |Ft ]. Then Y is a martingale and Yt ≤Xt . Hence

E[X0] ≤ E[XT ] = E[YT ] = E[Yt ] ≤ E[Xt ] ≤ E[X0].
(The first inequality holds by assumption.) We infer that Yt =Xt almost surely for
all t and thus (Xt )t∈{0,...,T } is a martingale.

Let TN →∞ with E[XTN ] ≥ E[X0] for all N ∈N. Then, for any t > s ≥ 0, there
is an N ∈N with TN > t . Hence, E[Xt |Fs] = E[Xs] and X is a martingale. �

Remark 9.33 Many statements about supermartingales hold mutatis mutandis for
submartingales. For example, in the preceding theorem, claim (i) holds with the
words “submartingale” and “supermartingale” interchanged, claim (iv) holds for
submartingales if the minimum is replaced by a maximum, and so on. We often do
not give the statements both for submartingales and for supermartingales. Instead,
we choose representatively one case. Note, however, that those statements that we
make explicitly about martingales usually cannot be adapted easily to sub- or super-
martingales (such as (ii) in the preceding theorem). ♦

Corollary 9.34 Let X be a submartingale and a ∈ R. Then (X − a)+ is a sub-
martingale.
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Proof Clearly, 0 and Y =X − a are submartingales. By (iv), (X − a)+ = Y ∨ 0 is
also a submartingale. �

Theorem 9.35 Let X be a martingale and let ϕ :R→R be a convex function.

(i) If

E
[
ϕ(Xt)

+]<∞ for all t ∈ I, (9.1)

then (ϕ(Xt ))t∈I is a submartingale.
(ii) If t∗ := sup(I ) ∈ I , then E[ϕ(Xt∗)+]<∞ implies (9.1).

(iii) In particular, if p ≥ 1 and E[|Xt |p] <∞ for all t ∈ I , then (|Xt |p)t∈I is a
submartingale.

Proof (i) We always have E[ϕ(Xt )−] <∞ (Theorem 7.9); hence, by assumption,
E[|ϕ(Xt )|] <∞ for all t ∈ I . Jensen’s inequality (Theorem 8.20) then yields, for
t > s,

E
[
ϕ(Xt)

∣
∣Fs
]≥ ϕ(E[Xt |Fs]

)= ϕ(Xs).
(ii) Since ϕ is convex, so is x �→ ϕ(x)+. Furthermore, by assumption, we have

E[ϕ(Xt∗)+]<∞; hence Jensen’s inequality implies that, for all t ∈ I ,

E
[
ϕ(Xt )

+] = E
[
ϕ
(
E[Xt∗ |Ft ]

)+]≤ E
[
E
[
ϕ(Xt∗)

+ ∣∣Ft
]]

= E
[
ϕ(Xt∗)

+]<∞.
(iii) This is evident since x �→ |x|p is convex. �

Example 9.36 (See Example 9.4.) Symmetric simple random walk X on Z is a
square integrable martingale. Hence (X2

n)n∈N0 is a submartingale. ♦

Exercise 9.2.1 Let Y be a random variable with E[|Y |]<∞ and let F be a filtration
as well as

Xt := E[Y |Ft ] for all t ∈ I.
Show that X is an F-martingale.

Exercise 9.2.2 Let (Xn)n∈N0 be a predictable F-martingale. Show that Xn = X0
almost surely for all n ∈N0.

Exercise 9.2.3 Show that the claim of Theorem 9.35 continues to hold if X is only
a submartingale but if ϕ is in addition assumed to be monotone increasing. Give
an example that shows that the monotonicity of ϕ is essential. (Compare Corol-
lary 9.34.)

Exercise 9.2.4 (Azuma’s inequality) Show the following.
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(i) If X is a random variable with |X| ≤ 1 a.s., then there is a random variable Y
with values in {−1,+1} and with E[Y |X] =X.

(ii) For X as in (i) with E[X] = 0, infer that (using Jensen’s inequality)

E
[
eλX
]≤ cosh(λ)≤ eλ2/2 for all λ ∈R.

(iii) If (Mn)n∈N0 is a martingale with M0 = 0 and if there is a sequence (ck)k∈N of
nonnegative numbers with |Mn −Mn−1| ≤ cn a.s. for all n ∈N, then

E
[
eλMn

]≤ exp

(
1

2
λ2

n∑

k=1

c2
k

)

.

(iv) Under the assumptions of (iii), Azuma’s inequality holds:

P
[|Mn| ≥ λ

]≤ 2 exp

(

− λ2

2
∑n
k=1 c

2
k

)

for all λ≥ 0.

Hint: Use Markov’s inequality for f (x)= eγ x and choose the optimal γ .

9.3 Discrete Stochastic Integral

So far we have encountered a martingale as the process of partial sums of gains of a
fair game. This game can also be the price of a stock that is traded at discrete times
on a stock exchange. With this interpretation, it is particularly evident that it is nat-
ural to construct new stochastic processes by considering investment strategies for
the stock. The value of the portfolio, which is the new stochastic process, changes
as the stock price changes. It is the price multiplied by the number of stocks in the
portfolio. In order to describe such processes formally, we introduce the following
notion.

Definition 9.37 (Discrete stochastic integral) Let (Xn)n∈N0 be an F-adapted real
process and let (Hn)n∈N be a real-valued and F-predictable process. The discrete
stochastic integral of H with respect to X is the stochastic process H ·X defined by

(H ·X)n :=
n∑

m=1

Hm(Xm −Xm−1) for n ∈N0. (9.2)

If X is a martingale, then H ·X is also called the martingale transform of X.

Remark 9.38 Clearly, H ·X is adapted to F. ♦

Let X be a (possibly unfair) game where Xn −Xn−1 is the gain per euro in the
nth round. We interpret Hn as the number of euros we bet in the nth game. H is
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then a gambling strategy. Clearly, the value of Hn has to be decided at time n− 1;
that is, before the result of Xn is known. In other words, H must be predictable.

Now assume thatX is a fair game (that is, a martingale) andH is locally bounded
(that is, each Hn is bounded). Then (since E[Xn+1 −Xn |Fn] = 0)

E
[
(H ·X)n+1

∣
∣Fn
]= E

[
(H ·X)n +Hn+1(Xn+1 −Xn)

∣
∣Fn
]

= (H ·X)n +Hn+1E[Xn+1 −Xn |Fn]
= (H ·X)n.

Thus H ·X is a martingale. The following theorem says that the converse also holds;
that is, X is a martingale if, for sufficiently many predictable processes, the stochas-
tic integral is a martingale.

Theorem 9.39 (Stability theorem) Let (Xn)n∈N0 be an adapted, real-valued
stochastic process with E[|X0|]<∞.

(i) X is a martingale if and only if, for any locally bounded predictable process
H , the stochastic integral H ·X is a martingale.

(ii) X is a submartingale (supermartingale) if and only ifH ·X is a submartingale
(supermartingale) for any locally bounded predictable H ≥ 0.

Proof (i) “=⇒” This has been shown in the discussion above.
“⇐=” Fix an n0 ∈N, and let Hn = 1{n=n0}. Then (H ·X)n0−1 = 0; hence

0= E
[
(H ·X)n0

∣
∣Fn0−1

]= E[Xn0 |Fn0−1] −Xn0−1.

(ii) This is similar to (i). �

The preceding theorem says, in particular, that we cannot find any locally
bounded gambling strategy that transforms a martingale (or, if we are bound to
nonnegative gambling strategies, as we are in real life, a supermartingale) into a
submartingale. Quite the contrary is suggested by the many invitations to play all
kinds of “sure winning systems” in lotteries.

Example 9.40 (Petersburg game) We continue Example 9.14 (see also Exam-
ple 4.22). Define Xn := D1 + . . . + Dn for n ∈ N0. Then X is a martingale. The
gambling strategy Hn := 2n−11{D1=D2=...=Dn−1=−1} for n ∈ N and H0 = 1 is pre-
dictable and locally bounded. Let Sn =∑n

i=1HiDi = (H ·X)n be the gain after n
rounds. Then S is a martingale by the preceding theorem. In particular, we get (as
shown already in Example 4.22) that E[Sn] = 0 for all n ∈ N. We will come back

later to the point that this superficially contrasts with Sn
n→∞−→ 1 a.s. (see Exam-

ple 11.6).
For the moment, note that the martingale S′ = (1− Sn)n∈N0 , just like the one in

Example 9.31, has the structure of a product of independent random variables with
expectation 1. In fact, S′n =

∏n
i=1(1−Di). ♦
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9.4 Discrete Martingale Representation Theorem and the CRR
Model

By virtue of the stochastic integral, we have transformed a martingale X via a gam-
bling strategy H into a new martingale H ·X. Let us change the perspective and
ask: For fixed X, which are the martingales Y (with Y0 = 0) that can be obtained
as discrete stochastic integrals of X with a suitable gambling strategy H =H(Y)?
Possibly all martingales Y ? This is not the case, in general, as the example be-
low indicates. However, we will see that all martingales can be represented as
stochastic integrals if the increments Xn+1 − Xn can take only two values (given
X1, . . . ,Xn). In this case, we give a representation theorem and use it to discuss
the fair price for a European call option in the stock market model of Cox–Ross–
Rubinstein. This model is rather simple and describes an idealized market (no trans-
action costs, fractional numbers of stocks tradeable and so on). For extensive lit-
erature on stochastic aspects of mathematical finance, we refer to the textbooks
[9, 42, 48, 57, 86, 102, 121] or [159].

Example 9.41 Consider the very simple martingale X = (Xn)n=0,1 with only
two time points. Let X0 = 0 almost surely and P[X1 = −1] = P[X1 = 0] =
P[X1 = 1] = 1

3 . Let Y0 = 0. Further, let Y1 = 2 if X1 = 1 and Y1 = −1 otherwise.
Then Y is manifestly a σ(X)-martingale. However, there is no number H1 such that
H1X1 = Y1. ♦

Let T ∈ N be a fixed time. If (Yn)n=0,1,...,T is an F-martingale, then Yn =
E[YT | Fn] for all n ≤ T . An F-martingale Y is thus determined uniquely by the
terminal values YT (and vice versa). Let X be a martingale. As (H ·X) is a mar-
tingale, the representation problem for martingales is thus reduced to the problem
of representing an integrable random variable V := YT as v0 + (H ·X)T , where
v0 = E[YT ].

We saw that, in general, this is not possible if the differences Xn+1 − Xn take
three (or more) different values. Hence we now consider the case where only two
values are possible. Here, at each time step, a system of two linear equations with
two unknowns has to be solved. In the case where Xn+1 − Xn takes three values,
the system has three equations and is thus overdetermined.

Definition 9.42 (Binary model) A stochastic process X0, . . . ,XT is called binary
splitting or a binary model if there exist random variables D1, . . . ,DT with values
in {−1,+1} and functions fn : Rn−1 × {−1,+1}→ R for n= 1, . . . , T , as well as
x0 ∈R such that X0 = x0 and

Xn = fn(X1, . . . ,Xn−1,Dn) for any n= 1, . . . , T .

By F= σ(X), we denote the filtration generated by X.

Note that Xn depends only on X1, . . . ,Xn−1 and Dn but not on the full informa-
tion inherent in the valuesD1, . . . ,Dn. If the latter were the case, a ramification into
more than two values in one time step would be possible.
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Theorem 9.43 (Representation theorem) Let X be a binary model and let VT be an
FT -measurable random variable. Then there exists a bounded predictable process
H and a v0 ∈R with VT = v0 + (H ·X)T .

Note that F is the filtration generated by X, not the, possibly larger, filtration
generated by D1, . . . ,DT . For the latter case, the claim of the theorem would be
incorrect since, loosely speaking, with H we can bet on X but not on the Di .

Proof We show that there exist FT−1-measurable random variables VT−1 and HT
such that VT = VT−1 +HT (XT −XT−1). By a backward induction, this yields the
claim.

Since VT is FT -measurable, by the factorization lemma (Corollary 1.97) there
exists a function gT :RT →R with VT = gT (X1, . . . ,XT ). Define

X±T = fT (X1, . . . ,XT−1,±1) and V ±T = gT
(
X1, . . . ,XT−1,X

±
T

)
.

Each of these four random variables is manifestly FT−1-measurable. Hence we are
looking for solutions VT−1 and HT of the following system of linear equations:

VT−1 +HT
(
X−T −XT−1

)= V −T ,
VT−1 +HT

(
X+T −XT−1

)= V +T .
(9.3)

By construction, X+T −X−T �= 0 if V +T − V −T �= 0. Hence we can solve (9.3) and get

HT :=
{
V+T −V−T
X+T −X−T

, if X+T �=X−T ,
0, else,

and VT−1 = V +T −HT (X+T −XT−1)= V −T −HT (X−T −XT−1). �

We now want to interpret X as the market price of a stock and VT as the pay-
ment of a financial derivative on X, a so-called contingent claim or, briefly, claim.
For example, VT could be a (European) call option with maturity T and strike price
K ≥ 0. In this case, we have VT = (XT −K)+. Economically speaking, the Euro-
pean call gives the buyer the right (but not the obligation) to buy one stock at time T
at price K (from the issuer of the option). As typically the option is exercised only
if the market price at time T is larger than K (and then gives a profit of XT −K as
the stock could be sold at price XT on the market), the value of the option is indeed
VT = (XT −K)+.

At the stock exchanges, not only are stocks traded but also derivatives on stocks.
Hence, what is the fair price π(VT ) for which a trader would offer (and buy) the
contingent claim VT ? If there exists a strategy H and a v0 such that VT = v0 +
(H ·X)T , then the trader can sell the claim for v0 (at time 0) and replicate the claim
by building a portfolio that follows the trading strategy H . In this case, the claim
VT is called replicable and the strategy H is called a hedging strategy, or briefly a
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hedge. A market in which every claim can be replicated is called complete. In this
sense, the binary model is a complete market.

If there was a second strategy H ′ and a second v′0 with v′0 + (H ′·X)T = VT ,
then, in particular, v0 − v′0 = ((H ′ − H)·X)T . If we had v0 > v

′
0, then the trader

could follow the strategy H ′ − H (which gives a final payment of VT − VT = 0)
and make a sure profit of v0− v′0. In the opposite case, v0 < v

′
0, the strategy H −H ′

ensures a risk-free profit. Such a risk-free profit (or free lunch in economic jargon)
is called an arbitrage. It is reasonable to assume that a market gives no opportunity
for an arbitrage. Hence the fair price π(VT ) is determined uniquely once there is
one trading strategy H and a v0 such that VT = v0 + (H ·X)T .

Until now, we have not assumed thatX is a martingale. However, ifX is a martin-
gale, then (H ·X) is a martingale with (H ·X)0 = 0; hence clearly E[(H ·X)T ] = 0.
Thus

π(VT )= v0 = E[VT ]. (9.4)

Since, in this case, v0 does not depend on the trading strategy and is hence unique,
the market is automatically arbitrage-free. A finite market is thus arbitrage-free if
and only if there exists an equivalent martingale (to be defined below). In this case,
uniqueness of this martingale is equivalent to completeness of the market (“the fun-
damental theorem of asset pricing” by Harrison–Pliska [68]). In larger markets,
equivalence holds only with a somewhat more flexible notion of arbitrage (see [30]).

Now if X is not a martingale, then in some cases, we can replace X by a differ-
ent process X′ that is a martingale and such that the distributions PX and PX′ are
equivalent; that is, have the same null sets. Such a process is called an equivalent
martingale, and PX′ is called an equivalent martingale measure. A trading strategy
that replicates VT with respect to X also replicates VT with respect to X′. In partic-
ular, the fair price does not change if we pass to the equivalent martingale X′. Thus
we can compute π(VT ) by applying (9.4) to the equivalent martingale.

While here this is only of interest in that it simplifies the computation of fair
prices, it has an economic interpretation as a measure for the market prices that
we would see if all traders were risk-neutral; that is, for traders who price a future
payment by its mean value. Typically, however, traders are risk-averse and thus real
market prices include a discount due to the inherent risk.

Now we consider one model in greater detail.

Definition 9.44 Let T ∈ N, a ∈ (−1,0) and b > 0 as well as p ∈ (0,1). Fur-
ther, let D1, . . . ,DT be i.i.d. Radp random variables (that is, P[D1 = 1] = 1 −
P[D1 =−1] = p). We let X0 = x0 > 0 and for n= 1, . . . , T , define

Xn =
{
(1+ b)Xn−1, if Dn =+1,
(1+ a)Xn−1, if Dn =−1.

X is called the multi-period binomial model or the Cox–Ross–Rubinstein model
(without interest returns).
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As we have shown already, the CRR model is complete. Further, with the choice
p = p∗ := a

a−b , we can change X into a martingale. Hence the model is also arbi-
trage-free (for all p ∈ (0,1)). Now we want to compute the price of a European call
option VT := (XT − K)+ explicitly. To this end, we can assume p = p∗. Letting
A :=min{i ∈N0 : (1+ b)i(1+ a)T−ix0 >K}, we get

π(VT )= Ep∗ [VT ] =
T∑

i=0

bT,p∗
({i})[(1+ b)i(1+ a)T−ix0 −K

]+

= x0

T∑

i=A

(
T

i

)
(
p∗
)i(1− p∗)T−i[(1+ b)i(1+ a)T−i]

−K
T∑

i=A
bT,p∗

({i}).

If we define p′ = (1+ b)p∗, then p′ ∈ (0,1) and 1−p′ = (1−p∗)(1+ a). We thus
obtain the Cox–Ross–Rubinstein formula

π(VT )= x0bT,p′
({A, . . . , T })−KbT,p∗

({A, . . . , T }). (9.5)

This is the discrete analogue of the celebrated Black–Scholes formula for option
pricing in certain time-continuous markets.



Chapter 10
Optional Sampling Theorems

In Chapter 9 we saw that martingales are transformed into martingales if we ap-
ply certain admissible gambling strategies. In this chapter, we establish a similar
stability property for martingales that are stopped at a random time. In order also
to obtain these results for submartingales and supermartingales, in the first section,
we start with a decomposition theorem for adapted processes. We show the optional
sampling and optional stopping theorems in the second section. The chapter finishes
with the investigation of random stopping times with an infinite time horizon.

10.1 Doob Decomposition and Square Variation

Let X = (Xn)n∈N0 be an adapted process with E[|Xn|]<∞ for all n ∈N0. We will
decompose X into a sum consisting of a martingale and a predictable process. To
this end, for n ∈N0, define

Mn :=X0 +
n∑

k=1

(
Xk −E[Xk |Fk−1]

)
(10.1)

and

An :=
n∑

k=1

(
E[Xk |Fk−1] −Xk−1

)
.

Evidently, Xn =Mn+An. By construction, A is predictable with A0 = 0, andM is
a martingale since

E[Mn −Mn−1 |Fn−1] = E
[
Xn −E[Xn |Fn−1]

∣
∣Fn−1

]= 0.
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Theorem 10.1 (Doob decomposition) Let X = (Xn)n∈N0 be an adapted inte-
grable process. Then there exists a unique decomposition X = M + A, where
A is predictable with A0 = 0 and M is a martingale. This representation of X is
called the Doob decomposition. X is a submartingale if and only if A is monotone
increasing.

Proof We only have to show uniqueness of the decomposition. Hence, letX =M+
A=M ′ +A′ be two such decompositions. ThenM −M ′ =A′ −A is a predictable
martingale; hence (see Exercise 9.2.2)Mn −M ′

n =M0 −M ′
0 = 0 for all n ∈N0. �

Example 10.2 Let I = N0 or I = {0, . . . ,N}. Let (Xn)n∈I be a square integrable
F-martingale (that is, E[X2

n]<∞ for all n ∈ I ). By Theorem 9.35, Y := (X2
n)n∈I is

a submartingale. Let Y =M + A be the Doob decomposition of Y . Then (X2
n −

An)n∈I is a martingale. Furthermore, E[Xi−1Xi | Fi−1] = Xi−1E[Xi | Fi−1] =
X2
i−1; hence (as in (10.1))

An =
n∑

i=1

(
E
[
X2
i

∣
∣Fi−1

]−X2
i−1

)

=
n∑

i=1

(
E
[
(Xi −Xi−1)

2
∣
∣Fi−1

]− 2X2
i−1 + 2E[Xi−1Xi |Fi−1]

)

=
n∑

i=1

E
[
(Xi −Xi−1)

2
∣
∣Fi−1

]
.

♦

Definition 10.3 Let (Xn)n∈I be a square integrable F-martingale. The unique
predictable process A for which (X2

n−An)n∈I becomes a martingale is called the
square variation process of X and is denoted by

(〈X〉n
)
n∈I :=A.

By the preceding example, we conclude the following theorem.

Theorem 10.4 Let X be as in Definition 10.3. Then, for n ∈N0,

〈X〉n =
n∑

i=1

E
[
(Xi −Xi−1)

2
∣
∣Fi−1

]
(10.2)

and

E
[〈X〉n

]=Var[Xn −X0]. (10.3)

Remark 10.5 If Y and A are as in Example 10.2, then A is monotone increasing
since (X2

n)n∈I is a submartingale (see Theorem 10.1). Therefore, A is sometimes
called the increasing process of Y . ♦



10.1 Doob Decomposition and Square Variation 207

Example 10.6 Let Y1, Y2, . . . be independent, square integrable, centered random
variables. Then Xn := Y1 + . . . + Yn defines a square integrable martingale with
〈X〉n =∑n

i=1 E[Y 2
i ]. In fact, An =∑n

i=1 E[Y 2
i | Y1, . . . , Yi−1] =∑n

i=1 E[Y 2
i ] (as in

Example 10.2).
Note that in order for 〈X〉 to have the simple form as in Example 10.6, it is not

enough for the random variables Y1, Y2, . . . to be uncorrelated. ♦

Example 10.7 Let Y1, Y2, . . . be independent, square integrable random variables
with E[Yn] = 1 for all n ∈N. Let Xn :=∏ni=1 Yi for n ∈N0. Then X = (Xn)n∈N0 is
a square integrable martingale with respect to F= σ(X) (why?) and

E
[
(Xn −Xn−1)

2
∣
∣Fn−1

]= E
[
(Yn − 1)2X2

n−1

∣
∣Fn−1

]=Var[Yn]X2
n−1.

Hence 〈X〉n =∑n
i=1 Var[Yi]X2

i−1. We see that the square variation process can
indeed be a truly random process. ♦

Example 10.8 Let (Xn)n∈N0 be the one-dimensional symmetric simple random
walk

Xn =
n∑

i=1

Ri for all n ∈N0,

where R1,R2,R3, . . . are i.i.d. and ∼ Rad1/2; that is,

P[Ri = 1] = 1− P[Ri =−1] = 1

2
.

Clearly, X is a martingale and hence |X| is a submartingale. Let |X| =M + A
be Doob’s decomposition of |X|. Then

An =
n∑

i=1

(
E
[|Xi |

∣
∣Fi−1

]− |Xi−1|
)
.

Now

|Xi | =

⎧
⎪⎪⎨

⎪⎪⎩

|Xi−1| +Ri, if Xi−1 > 0,

|Xi−1| −Ri, if Xi−1 < 0,

1, if Xi−1 = 0.

Therefore,

E
[|Xi |

∣
∣Fi−1

]=
{ |Xi−1|, if |Xi−1| �= 0,

1, if |Xi−1| = 0.

The process

An = #{i ≤ n− 1 : |Xi | = 0}
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is the so-called local time of X at 0. We conclude that (since P[X2j = 0] = (2j
j

)
4−j

and P[X2j+1 = 0] = 0)

E
[|Xn|

]= E
[
#{i ≤ n− 1 :Xi = 0}]

=
n−1∑

i=0

P[Xi = 0] =
�(n−1)/2�∑

j=0

(
2j

j

)

4−j .
♦

Example 10.9 We want to generalize the preceding example further. Evidently, we
did not use (except in the last formula) the fact that X is a random walk. Rather,
we just used the fact that the differences ( X)n :=Xn −Xn−1 take only the values
−1 and +1. Hence, now let X be a martingale with |Xn −Xn−1| = 1 almost surely
for all n ∈ N and with X0 = x0 ∈ Z almost surely. Let f : Z→ R be an arbitrary
map. Then Y := (f (Xn))n∈N0 is an integrable adapted process (since |f (Xn)| ≤
maxx∈{x0−n,...,x0+n} |f (x)|). In order to compute Doob’s decomposition of Y , define
the first and second discrete derivatives of f :

f ′(x) := f (x + 1)− f (x − 1)

2

and

f ′′(x) := f (x − 1)+ f (x + 1)− 2f (x).

Further, let F ′n := f ′(Xn−1) and F ′′n := f ′′(Xn−1). By computing the cases Xn =
Xn−1 − 1 and Xn =Xn−1 + 1 separately, we see that for all n ∈N

f (Xn)− f (Xn−1)= f (Xn−1 + 1)− f (Xn−1 − 1)

2
(Xn −Xn−1)

+ 1

2
f (Xn−1 − 1)+ 1

2
f (Xn−1 + 1)− f (Xn−1)

= f ′(Xn−1)(Xn −Xn−1)+ 1

2
f ′′(Xn−1)

= F ′n · (Xn −Xn−1)+ 1

2
F ′′n .

Summing up, we get the discrete Itô formula:

f (Xn)= f (x0)+
n∑

i=1

f ′(Xi−1)(Xi −Xi−1)+
n∑

i=1

1

2
f ′′(Xi−1)

= f (x0)+
(
F ′·X)

n
+

n∑

i=1

1

2
F ′′i . (10.4)

Here F ′·X is the discrete stochastic integral (see Definition 9.37). Now M :=
f (x0) + F ′·X is a martingale by Theorem 9.39 since F ′ is predictable (and
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since |F ′n| ≤maxx∈{x0−n,...,x0+n} |F ′(x)|), andA := (∑n
i=1

1
2F

′′
i )n∈N0 is predictable.

Hence f (X) := (f (Xn))n∈N0 =M+A is the Doob decomposition of f (X). In par-
ticular, f (X) is a submartingale if f ′′(x) ≥ 0 for all x ∈ Z; that is, if f is convex.
We knew this already from Theorem 9.35; however, here we could also quantify
how much f (X) differs from a martingale.

In the special cases f (x)= x2 and f (x)= |x|, the second derivative is f ′′(x)= 2
and f ′′(x)= 2 · 1{0}(x), respectively. Thus, from (10.4), we recover the statements
of Theorem 10.4 and Example 10.8.

Later we will derive a formula similar to (10.4) for stochastic processes in con-
tinuous time (see Section 25.3). ♦

10.2 Optional Sampling and Optional Stopping

Lemma 10.10 Let I ⊂ R be countable, let (Xt )t∈I be a martingale, let T ∈ I and
let τ be a stopping time with τ ≤ T . Then Xτ = E[XT | Fτ ] and, in particular,
E[Xτ ] = E[X0].

Proof It is enough to show that E[XT 1A] = E[Xτ1A] for all A ∈ Fτ . By the defi-
nition of Fτ , we have {τ = t} ∩A ∈Ft for all t ∈ I . Hence

E[Xτ1A] =
∑

t≤T
E[Xt1{τ=t}∩A] =

∑

t≤T
E
[
E[XT |Ft ]1{τ=t}∩A

]

=
∑

t≤T
E[XT 1A1{τ=t}] = E[XT 1A].

�

Theorem 10.11 (Optional sampling theorem) Let X = (Xn)n∈N0 be a super-
martingale and let σ ≤ τ be stopping times.

(i) Assume there exists a T ∈N with τ ≤ T . Then

Xσ ≥ E[Xτ |Fσ ],
and, in particular, E[Xσ ] ≥ E[Xτ ]. If X is a martingale, then equality holds
in each case.

(ii) If X is nonnegative and if τ <∞ a.s., then we have E[Xτ ] ≤ E[X0] <∞,
E[Xσ ] ≤ E[X0]<∞ and Xσ ≥ E[Xτ |Fσ ].

(iii) Assume that, more generally, X is only adapted and integrable. Then X is a
martingale if and only if E[Xτ ] = E[X0] for any bounded stopping time τ .

Proof (i) Let X =M + A be Doob’s decomposition of X. Hence A is predictable
and monotone decreasing, A0 = 0, and M is a martingale. Applying Lemma 10.10
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toM yields

Xσ =Aσ +Mσ = E[Aσ +MT |Fσ ]
≥ E[Aτ +MT |Fσ ] = E

[
Aτ +E[MT |Fτ ]

∣
∣Fσ
]

= E[Aτ +Mτ |Fσ ] = E[Xτ |Fσ ].
Here we used Fτ ⊃Fσ , the tower property and the monotonicity of the conditional
expectation (see Theorem 8.14).

(ii) We have Xτ∧n
n→∞−→ Xτ almost surely. By (i), we get E[Xτ∧n] ≤ E[X0] for

any n ∈N. Using Fatou’s lemma, we infer

E[Xτ ] ≤ lim inf
n→∞ E[Xτ∧n] ≤ E[X0]<∞.

Similarly, we can show that E[Xσ ] ≤ E[X0].
Now, let m,n ∈ N with m ≥ n. Part (i) applied to the bounded stopping times

τ ∧m≥ σ ∧ n yields

Xσ∧n ≥ E[Xτ∧m |Fσ∧n].
Now {σ < n} ∩A ∈Fσ∧n for A ∈Fσ . Hence

E[Xσ1{σ<n}∩A] = E[Xσ∧n1{σ<n}∩A] ≥ E[Xτ∧m1{σ<n}∩A].
Using Fatou’s lemma, we get

E[Xτ1{σ<n}∩A] ≤ lim inf
m→∞ E[Xτ∧m1{σ<n}∩A] ≤ E[Xσ1{σ<n}∩A].

Monotone convergence (for n→∞) thus yields E[Xτ1A] ≤ E[Xσ1A].
(iii) IfX is a martingale, then the claim follows from Lemma 10.10. Now assume

that E[Xτ ] = E[X0] for any bounded stopping time τ . Let t > s and A ∈ Fs . It is
enough to show that E[Xt1A] = E[Xs1A]. Define τ = s1A + t1Ac . Then τ is a
bounded stopping time. However, by assumption,

E[Xt1A] = E[Xt ] −E[Xt1Ac ] = E[X0] −E[Xτ ] +E[Xs1A] = E[Xs1A]. �

Corollary 10.12 Let X be a martingale (respectively a submartingale), and as-
sume (τN)N∈N is a monotone increasing sequence of bounded stopping times (hence
τN ≤ TN , N ∈N for some TN ∈N). Then (XτN )N∈N is a martingale (respectively a
submartingale) with respect to the filtration (FτN )N∈N.

Definition 10.13 (Stopped process) Let I ⊂R be countable, let (Xt )t∈I be adapted
and let τ be a stopping time. We define the stopped process Xτ by

Xτt =Xτ∧t for any t ∈ I.
Further, let Fτ be the filtration F

τ = (F τt )t∈I = (Fτ∧t )t∈I .



10.2 Optional Sampling and Optional Stopping 211

Remark 10.14 Xτ is adapted both to F and to F
τ . ♦

Theorem 10.15 (Optional stopping) Let (Xn)n∈N0 be a (sub-, super-) martingale
with respect to F and let τ be a stopping time. Then Xτ is a (sub-, super-) martin-
gale both with respect to F and with respect to F

τ .

Proof We give the proof only for the case where X is a submartingale. The other
cases are similar since there (−X) is a submartingale.

For each n ∈N0, we have

E
[∣
∣Xτn
∣
∣
]≤ E

[
max
{|Xm| :m≤ n

}]

≤ E
[|X0|

]+ . . .+E
[|Xn|

]
<∞.

Hence Xτ is integrable.
Let X be a submartingale. Since {τ > n− 1} ∈Fn−1, we have

E
[
Xτn −Xτn−1

∣
∣Fn−1

]= E[Xτ∧n −Xτ∧(n−1) |Fn−1]
= E
[
(Xn −Xn−1)1{τ>n−1}

∣
∣Fn−1

]

= 1{τ>n−1}E[Xn −Xn−1 |Fn−1]
≥ 0, since X is an F-submartingale.

Therefore, Xτ is an F-submartingale. As Xτ is adapted to F
τ and since F

τ is the
smaller filtration, Xτ is also an F

τ -submartingale (see Remark 9.29). �

Example 10.16 Let X be a symmetric simple random walk on Z (see Exam-
ple 10.8). Let a, b ∈ Z with a < 0, b > 0 and let

τa = inf{t ≥ 0 :Xt = a}, τb = inf{t ≥ 0 :Xt = b} and

τa,b = τa ∧ τb.
τa,b is a stopping time by Lemma 9.18. Let A = {τa,b = τa} be the event where
X hits a before hitting b. We want to compute P[A]. By Exercise 2.3.1, almost
surely lim supn→∞Xn =∞ and lim infn→∞Xn = −∞. Therefore, almost surely
τa <∞ and τb <∞. By the optional stopping theorem, Xτa,b is a martingale. Since

τa,b ∧ n n→∞−→ τa,b almost surely, we get X
τa,b
n

n→∞−→ Xτa,b almost surely. As |Xτa,bn |
is bounded by b− a, we can infer that X

τa,b
n

n→∞−→ Xτa,b also in L1. Thus

0= lim
n→∞E

[
X
τa,b
n

]= E[Xτa,b ] = a · P[τa,b = τa] + b · P[τa,b = τb]
= b+ (a − b)P[τa,b = τa].

We conclude that P[τa,b = τa] = b
b−a . ♦



212 10 Optional Sampling Theorems

Example 10.17 Finally, we use our machinery in order to compute E[τa,b] and
E[τa]. The square variation process 〈X〉 (compare Definition 10.3) is given by

〈X〉n =
n∑

i=1

E
[
(Xi −Xi−1)

2
∣
∣Fi−1

]= n;

hence (X2
n − n)n∈N0 is a martingale. By the optional stopping theorem,

0= E
[
X2
τa,b∧n − (τa,b ∧ n)

]
for all n ∈N0.

Monotone convergence yields

E[τa,b] = E
[
X2
τa,b

]= a2P[τa,b = τa] + b2P[τa,b = τb] = |a| · b.
In order to compute E[τa], note that τa,b ↑ τa almost surely if b→∞. The mono-
tone convergence theorem thus yields E[τa] = limb→∞E[τa,b] =∞. ♦

Remark 10.18 Evidently, Xτb = b > 0. Hence X0 < E[Xτb | F0] = b. The claim
of the optional sampling theorem may thus fail, in general, if the stopping time is
unbounded. ♦

Example 10.19 (Gambler’s ruin problem) Consider a game of two persons, A
and B . In each round, a coin is tossed. Depending on the outcome, either A gets
a euro from B or vice versa. The game endures until one of the players is ruined.
For simplicity, we assume that in the beginning A has kA ∈ N euros while B has
kB =N − kA euros, where N ∈N, N ≥ kA. We want to know the probability of B’s
ruin. In Example 10.16 we saw that for a fair coin this probability is kA/N . Now we
allow the coin to be unfair.

Hence, let Y1, Y2, . . . be i.i.d. and ∼Radp (that is, P[Yi = 1] = 1 − P[Yi =
−1] = p) for some p ∈ (0,1) \ { 1

2 }. Denote by Xn := kB +∑n
i=1 Yi the running

total for B after n rounds, where formally we assume that the game continues even
after one player is ruined. We define as above τ0, τN and τ0,N as the times of first
entrance of X into {0}, {N} and {0,N}, respectively. The ruin probability of B thus
is pNB := P[τ0,N = τ0]. Since X is not a martingale (except for the case p = 1

2 that
was excluded), we use a trick to construct a martingale. Define a new process Z
by Zn := rXn = rkB ∏ni=1 r

Yi , where r > 0 has to be chosen so that Z becomes a
martingale. By Example 9.31, this is the case if and only if

E
[
rY1
]= pr + (1− p)r−1 = 1;

hence, if r = 1 or r = 1−p
p

. Evidently, the choice r = 1 is useless (as Z does not

yield any information on X); hence we assume r = 1−p
p

. We thus get

τ0 = inf{n ∈N0 : Zn = 1} and τN = inf
{
n ∈N0 : Zn = rN

}
.
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(Note that here we cannot argue as above in order to show that τ0 <∞ and
τN < ∞ almost surely. In fact, for p �= 1

2 , only one of the statements holds.
However, using, for example, the strong law of large numbers, we obtain that
lim infn→∞Xn =∞ (and thus τN <∞) almost surely if p > 1

2 . Similarly, τ0 <∞
almost surely if p < 1

2 .) As in Example 10.16, the optional stopping theorem yields
rkB =Z0 = E[Zτ0,N ] = pNB + (1− pNB )rN . Therefore, the probability of B’s ruin is

pNB =
rkB − rN
1− rN . (10.5)

If the game is advantageous for B (that is, p > 1
2 ), then r < 1. In this case, in the

limit N→∞ (with constant kB ),

p∞B := lim
N→∞p

N
B = rkB . (10.6)

♦

Exercise 10.2.1 Let X be a square integrable martingale with square variation pro-
cess 〈X〉. Let τ be a finite stopping time. Show the following:

(i) If E[〈X〉τ ]<∞, then

E
[
(Xτ −X0)

2]= E
[〈X〉τ

]
and E[Xτ ] = E[X0]. (10.7)

(ii) If E[〈X〉τ ] =∞, then both equalities in (10.7) may fail.

Exercise 10.2.2 We consider a situation that is more general than the one in the
preceding example by assuming only that Y1, Y2, . . . are i.i.d. integrable random
variables that are not almost surely constant (and Xn = Y1 + . . .+ Yn). We further
assume that there is a δ > 0 such that E[exp(θY1)]<∞ for all θ ∈ (−δ, δ). Define
a map ψ : (−δ, δ)→ R by θ �→ log(E[exp(θY1)]) and the process Zθ by Zθn :=
exp(θXn − nψ(θ)) for n ∈N0. Show the following:

(i) Zθ is a martingale for all θ ∈ (−δ, δ).
(ii) ψ is strictly convex.

(iii) E[√Zθn] n→∞−→ 0 for θ �= 0.

(iv) Zθn
n→∞−→ 0 almost surely.

We may interpret Yn as the difference between the premiums and the payments of
an insurance company at time n. If the initial capital of the company is k0 > 0, then
k0 +Xn is the account balance at time n. We are interested in the ruin probability

p(k0)= P
[
inf{Xn + k0 : n ∈N0}< 0

]

depending on the initial capital.
It can be assumed that the premiums are calculated such that E[Y1] > 0. Show

that if the equation ψ(θ)= 0 has a solution θ∗ �= 0, then θ∗ < 0. Show further that
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in this case, the Cramér–Lundberg inequality holds:

p(k0)≤ exp
(
θ∗k0

)
. (10.8)

Equality holds if k0 ∈ N and if Yi assumes only the values −1 and 1. In this case,
we get (10.6) with r = exp(θ∗).

10.3 Uniform Integrability and Optional Sampling

We extend the optional sampling theorem to unbounded stopping times. We will see
that this is possible if the underlying martingale is uniformly integrable (compare
Definition 6.16).

Lemma 10.20 Let (Xn)n∈N0 be a uniformly integrable martingale. Then the family
(Xτ : τ is a finite stopping time) is uniformly integrable.

Proof By Theorem 6.19, there exists a monotone increasing, convex function
f : [0,∞)→[0,∞) with

lim inf
x→∞ f (x)/x =∞ and L := sup

n∈N0

E
[
f
(|Xn|

)]
<∞.

If τ < ∞ is a finite stopping time, then by the optional sampling theorem for
bounded stopping times (Theorem 10.11 with τ = n and σ = τ ∧ n), E[Xn |
Fτ∧n] =Xτ∧n. Since {τ ≤ n} ∈Fτ∧n, Jensen’s inequality yields

E
[
f
(|Xτ |

)
1{τ≤n}

]= E
[
f
(|Xτ∧n|

)
1{τ≤n}

]

≤ E
[
E
[
f
(|Xn|

) ∣
∣Fτ∧n

]
1{τ≤n}

]

= E
[
f
(|Xn|

)
1{τ≤n}

]≤ L.
Hence E[f (|Xτ |)] ≤ L. By Theorem 6.19, the family

{Xτ , τ is a finite stopping time}
is uniformly integrable. �

Theorem 10.21 (Optional sampling and uniform integrability) Let (Xn,n ∈ N0)

be a uniformly integrable martingale (respectively supermartingale) and let σ ≤ τ
be finite stopping times. Then E[|Xτ |] <∞ and Xσ = E[Xτ | Fσ ] (respectively
Xσ ≥ E[Xτ |Fσ ]).

Proof First let X be a martingale. We have {σ ≤ n} ∩ F ∈ Fσ∧n for all F ∈ Fσ .
Hence, by the optional sampling theorem (Theorem 10.11),

E[Xτ∧n1{σ≤n}∩F ] = E[Xσ∧n1{σ≤n}∩F ].
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By Lemma 10.20, (Xσ∧n, n ∈N0) and thus (Xσ∧n1{σ≤n}∩F ,n ∈N0) are uniformly
integrable. Similarly, this holds for Xτ . Therefore, by Theorem 6.25,

E[Xτ1F ] = lim
n→∞E[Xτ∧n1{σ≤n}∩F ] = lim

n→∞E[Xσ∧n1{σ≤n}∩F ]
= E[Xσ1F ].

We conclude that E[Xτ |Fσ ] =Xσ .
Now let X be a supermartingale and let X =M +A be its Doob decomposition;

that is,M is a martingale and A≤ 0 is predictable and decreasing. Since

E
[|An|

]= E[−An] ≤ E
[|Xn −X0|

]≤ E
[|X0|

]+ sup
m∈N0

E
[|Xm|

]
<∞,

we have An ↓ A∞ for some A∞ ≤ 0 with E[−A∞] <∞ (by the monotone con-
vergence theorem). Hence A and thus M =X−A are uniformly integrable (Theo-
rem 6.18(ii)). Therefore,

E
[|Xτ |

]≤ E[−Aτ ] +E
[|Mτ |

]≤ E[−A∞]+E
[|Mτ |

]
<∞.

Furthermore,

E[Xτ |Fσ ] = E[Mτ |Fσ ] +E[Aτ |Fσ ]
=Mσ +Aσ +E

[
(Aτ −Aσ )

∣
∣Fσ
]

≤Mσ +Aσ =Xσ . �

Corollary 10.22 Let X be a uniformly integrable martingale (respectively super-
martingale) and let τ1 ≤ τ2 ≤ . . . be finite stopping times. Then (Xτn)n∈N is a mar-
tingale (respectively supermartingale).



Chapter 11
Martingale Convergence Theorems
and Their Applications

We became familiar with martingales X = (Xn)n∈N0 as fair games and found that
under certain transformations (optional stopping, discrete stochastic integral) mar-
tingales turn into martingales. In this chapter, we will see that under weak condi-
tions (non-negativity or uniform integrability) martingales converge almost surely.
Furthermore, the martingale structure implies Lp-convergence under assumptions
that are (formally) weaker than those of Chapter 7. The basic ideas of this chapter
are Doob’s inequality (Theorem 11.2) and the upcrossing inequality (Lemma 11.3).

11.1 Doob’s Inequality

With Kolmogorov’s inequality (Theorem 5.28), we became acquainted with an in-
equality that bounds the probability of large values of the maximum of a square
integrable process with independent centered increments. Here we want to improve
this inequality in two directions. On the one hand, we replace the independent in-
crements by the assumption that the process of partial sums is a martingale. On the
other hand, we can manage with less than second moments; alternatively, we can
get better bounds if we have higher moments.

Let I ⊂N0 and let X = (Xn)n∈I be a stochastic process. For n ∈N, we denote

X∗n = sup{Xk : k ≤ n} and |X|∗n = sup
{|Xk| : k ≤ n

}
.

Lemma 11.1 If X is a submartingale, then, for all λ > 0,

λP
[
X∗n ≥ λ

]≤ E[Xn1{X∗n≥λ}] ≤ E
[|Xn|1{X∗n≥λ}

]
.

Proof The second inequality is trivial. For the first one, let

τ := inf{k ∈ I :Xk ≥ λ} ∧ n.
A. Klenke, Probability Theory, Universitext, DOI 10.1007/978-1-4471-5361-0_11,
© Springer-Verlag London 2014
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By Theorem 10.11 (optional sampling theorem),

E[Xn] ≥ E[Xτ ] = E[Xτ1{X∗n≥λ}] +E[Xτ1{X∗n<λ}]
≥ λP

[
X∗n ≥ λ

]+E[Xn1{X∗n<λ}].

(Note that τ = n if X∗n < λ.) Now subtract E[Xn1{X∗n<λ}]. �

Theorem 11.2 (Doob’s Lp-inequality) Let X be a martingale or a positive sub-
martingale.

(i) For any p ≥ 1 and λ > 0,

λpP
[|X|∗n ≥ λ

]≤ E
[|Xn|p

]
.

(ii) For any p > 1,

E
[|Xn|p

]≤ E
[(|X|∗n

)p]≤
(

p

p− 1

)p
E
[|Xn|p

]
.

Proof We follow the proof in [144].
(i) By Theorem 9.35, (|Xn|p)n∈I is a submartingale, and the claim follows by

Lemma 11.1.
(ii) The first inequality is trivial. For the second inequality, we may assume that

E[|Xn|p]<∞. Note that, by Lemma 11.1,

λP
[|X|∗n ≥ λ

]≤ E
[|Xn|1{|X|∗n≥λ}

]
.

Hence, for any K > 0,

E
[(|X|∗n ∧K

)p]= E
[∫ |X|∗n∧K

0
pλp−1 dλ

]

= E
[∫ K

0
pλp−11{|X|∗n≥λ} dλ

]

=
∫ K

0
pλp−1P

[|X|∗n ≥ λ
]
dλ

≤
∫ K

0
pλp−2E

[|Xn|1{|X|∗n≥λ}
]
dλ

= pE
[

|Xn|
∫ |X|∗n∧K

0
λp−2 dλ

]

= p

p− 1
E
[|Xn| ·

(|X|∗n ∧K
)p−1]

.
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Hölder’s inequality then yields

E
[(|X|∗n ∧K

)p]≤ p

p− 1
E
[(|X|∗n ∧K

)p](p−1)/p ·E[|Xn|p
]1/p

.

We raise both sides to the pth power and divide by E[(|X|∗n ∧ K)p]p−1 (here we
need the truncation at K to make sure we divide by a finite number) to obtain

E
[(|X|∗n ∧K

)p]≤
(

p

p− 1

)p
E
[|Xn|p

]
.

Finally, let K→∞. �

Exercise 11.1.1 Let (Xn)n∈N0 be a submartingale or a supermartingale. Use Theo-
rem 11.2 and Doob’s decomposition to show that, for all n ∈N and λ > 0,

λP
[|X|∗n ≥ λ

]≤ 12E
[|X0|

]+ 9E
[|Xn|

]
.

11.2 Martingale Convergence Theorems

In this section, we present the usual martingale convergence theorems and give a
few small examples. We start with the core of the martingale convergence theorems,
the so-called upcrossing inequality.

Let F= (Fn)n∈N0 be a filtration and F∞ = σ(⋃n∈N0
Fn). Let (Xn)n∈N0 be real-

valued and adapted to F. Let a, b ∈R with a < b. If we think ofX as a stock price, it
would be a sensible trading strategy to buy the stock when its price has fallen below
a and to sell it when it exceeds b at least if we knew for sure that the price would
always rise above the level b again. Each time the price makes such an upcrossing
from a to b, we make a profit of at least b − a. If we get a bound on the maximal
profit we can make, dividing it by b − a gives a bound on the maximal number of
such upcrossings. If this number is finite for all a < b, then the price has to converge
as n→∞.

Let us get into the details. Define stopping times σ0 ≡ 0 and

τk := inf{n≥ σk−1 :Xn ≤ a} for k ∈N,

σk := inf{n≥ τk :Xn ≥ b} for k ∈N.

Note that τk =∞ if σk−1 =∞, and σk =∞ if τk =∞. We say that X has its kth
upcrossing over [a, b] between τk and σk if σk <∞. For n ∈N, define

Ua,bn := sup{k ∈N0 : σk ≤ n}
as the number of upcrossings over [a, b] until time n.
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Lemma 11.3 (Upcrossing inequality) Let (Xn)n∈N0 be a submartingale. Then

E
[
Ua,bn

]≤ E[(Xn − a)+] −E[(X0 − a)+]
b− a .

Proof Recall the discrete stochastic integral H ·X from Definition 9.37. Formally,
the intimated trading strategy H is described for m ∈N0 by

Hm :=
{

1, if m ∈ {τk + 1, . . . , σk} for some k ∈N,

0, else.

H is nonnegative and predictable since, for all m ∈N,

{Hm = 1} =
∞⋃

k=1

({τk ≤m− 1} ∩ {σk >m− 1}),

and each of the events is in Fm−1. Define Y = max(X,a). If k ∈ N and σk <∞,
then clearly Yσi − Yτi = Yσi − a ≥ b− a for all i ≤ k; hence

(H ·Y)σk =
k∑

i=1

σi∑

j=τi+1

(Yj − Yj−1)=
k∑

i=1

(Yσi − Yτi )≥ k(b− a).

For j ∈ {σk, . . . , τk+1}, we have (H ·Y)j = (H ·Y)σk . On the other hand, for j ∈
{τk + 1, . . . , σk}, we have (H ·Y)j ≥ (H ·Y)τk = (H ·Y)σk−1 . Hence (H ·Y)n ≥
(b− a)Ua,bn for all n ∈N.

By Corollary 9.34, Y is a submartingale, and (by Theorem 9.39) so are H ·Y and
(1−H)·Y . Now Yn − Y0 = (1·Y)n = (H ·Y)n + ((1−H)·Y)n; hence

E[Yn − Y0] ≥ E
[
(H ·Y)n

]≥ (b− a)E[Ua,bn
]
. �

Theorem 11.4 (Martingale convergence theorem) Let (Xn)n∈N0 be a submartin-
gale with sup{E[X+n ] : n≥ 0}<∞. Then there exists an F∞-measurable random

variable X∞ with E[|X∞|]<∞ and Xn
n→∞−→ X∞ almost surely.

Proof Let a < b. Since E[(Xn − a)+] ≤ |a| +E[X+n ], by Lemma 11.3,

E
[
Ua,bn

]≤ |a| +E[X+n ]
b− a .

Manifestly, the monotone limit Ua,b := limn→∞Ua,bn exists. By assumption, we
have E[Ua,b] = limn→∞E[Ua,bn ]<∞. In particular, P[Ua,b <∞]= 1. Define the
F∞-measurable events

Ca,b =
{

lim inf
n→∞ Xn < a

}
∩
{

lim sup
n→∞

Xn > b
}
⊂ {Ua,b =∞}



11.2 Martingale Convergence Theorems 221

and

C =
⋃

a,b∈Q
a<b

Ca,b.

Then P[Ca,b] = 0 and thus also P[C] = 0. However, by construction, (Xn)n∈N is
convergent on Cc . Hence there exists the almost sure limitX∞ = limn→∞Xn. Each
Xn is F∞-measurable; hence X∞ also is F∞-measurable.

By Fatou’s lemma,

E
[
X+∞
]≤ sup

{
E
[
X+n
] : n≥ 0

}
<∞.

On the other hand (since X is a submartingale), again by Fatou’s lemma,

E
[
X−∞
]≤ lim inf

n→∞ E
[
X−n
]= lim inf

n→∞
(
E
[
X+n
]−E[Xn]

)

≤ sup
{
E
[
X+n
] : n ∈N0

}−E[X0]<∞. �

Corollary 11.5 If X is a nonnegative supermartingale, then there is an F∞-mea-

surable random variable X∞ ≥ 0 with E[X∞] ≤ E[X0] and Xn
n→∞−→ X∞ a.s.

Proof The preceding theorem with (−X) establishes X∞ as the almost sure limit.
Fatou’s lemma yields

E[X∞] ≤ lim inf
n→∞ E[Xn] ≤ E[X0]. �

Example 11.6 Let Sn be the account balance in the Petersburg game after the nth
round (see Example 9.40). Then S is a martingale and Sn ≤ 1 almost surely for
any n. Hence the assumptions of Theorem 11.4 are fulfilled and (Sn)n∈N0 converges
to a finite random variable almost surely for n→∞. Since the account changes as
long as stakes are put up (that is, as long as Sn < 1), we get limn→∞ Sn = 1 almost
surely.

Since E[Sn] = 0 for all n ∈ N0, this convergence cannot hold in L1. This obser-
vation tallies with the fact that S is not uniformly integrable. ♦

For uniformly integrable martingales, a stronger convergence theorem holds.

Theorem 11.7 (Convergence theorem for uniformly integrable martingales) Let
(Xn)n∈N0 be a uniformly integrable F- (sub-, super-) martingale. Then there exists

an F∞-measurable integrable random variable X∞ with Xn
n→∞−→ X∞ a.s. and

in L1. Furthermore:

• Xn = E[X∞ |Fn] for all n ∈N if X is a martingale.
• Xn ≤ E[X∞ |Fn] for all n ∈N if X is a submartingale.
• Xn ≥ E[X∞ |Fn] for all n ∈N if X is a supermartingale.
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Remark 11.8 The statement of Theorem 11.7 can be reformulated as: The process
(Xn)n∈N0∪{∞} is a (sub-, super-) martingale with respect to (Fn)n∈N0∪{∞}. ♦

Proof We give the proof for the case where X is a submartingale. Uniform integra-
bility implies sup{E[X+n ] : n≥ 0}<∞. By Theorem 11.4, the almost sure limitX∞
exists. Hence E[|Xn −X∞|] n→∞−→ 0 by Theorem 6.25. By Corollary 8.21, the L1-
convergence of (Xn) implies the L1-convergence of the conditional expectations:

E[|E[Xn |Fm] −E[X∞ |Fm]|] n→∞−→ 0. Thus, by the triangle inequality,

∣
∣E
[(

E[X∞ |Fm] −Xm
)−]−E

[(
E[Xn |Fm] −Xm

)−]∣∣

≤ E
[∣
∣E[X∞ |Fm] −E[Xn |Fm]

∣
∣
] n→∞−→ 0.

As X is a submartingale, we have (E[Xn | Fm] −Xm)− = 0 for n≥m. Therefore,
E[(E[X∞ |Fm] −Xm)−] = 0 and thus E[X∞ |Fm] −Xm ≥ 0 almost surely. �

Corollary 11.9 Let X ≥ 0 be a martingale and let X∞ = limn→∞Xn. Then
E[X∞] = E[X0] if and only if X is uniformly integrable.

Proof This is a direct consequence of Theorem 6.25. �

Let p ∈ [1,∞). A real-valued stochastic process (Xi)i∈I is called Lp-bounded
if supi∈I E[|Xi |p]<∞ (Definition 6.20). In general, for (|Xi |p)i∈I to be uniformly
integrable it is not enough that (Xi)i∈I be Lp-bounded. However, if X is a martin-
gale and if p > 1, then Doob’s inequality implies that the statements are equivalent.
In particular, in this case, almost sure convergence implies convergence in Lp .

Theorem 11.10 (Lp-convergence theorem for martingales) Let p > 1 and let
(Xn)n∈N0 be an Lp-bounded martingale. Then there exists an F∞-measurable

random variable X∞ with E[|X∞|p] <∞ and Xn
n→∞−→ X∞ almost surely and

in Lp . In particular, (|Xn|p)n∈N0 is uniformly integrable.

Proof By Corollary 6.21, X is uniformly integrable. Hence the almost sure limit
X∞ exists. By Doob’s inequality (Theorem 11.2), for all n ∈N,

E
[
sup
{|Xk|p : k ≤ n

}]≤
(

p

p− 1

)p
E
[|Xn|p

]
.

Therefore,

E
[
sup
{|Xk|p : k ∈N0

}]≤
(

p

p− 1

)p
sup
{
E
[|Xn|p

] : n ∈N0
}
<∞.

Hence, in particular, (|Xn|p)n∈N0 is uniformly integrable.
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Since |Xn −X∞|p ≤ 2p sup{|Xn|p : n ∈N0}, dominated convergence yields

E
[|X∞|p

]
<∞ and E

[|Xn −X∞|p
] n→∞−→ 0. �

For the case of square integrable martingales, there is a convenient criterion for
L2-boundedness that we record as a corollary (see Definition 10.3).

Corollary 11.11 Let X be a square integrable martingale with square variation
process 〈X〉. Then the following four statements are equivalent:

(i) supn∈N E[X2
n]<∞.

(ii) limn→∞E[〈X〉n]<∞.
(iii) X converges in L2.
(iv) X converges almost surely and in L2.

Proof “(i) ⇐⇒ (ii)” Since Var[Xn − X0] = E[〈X〉n] (see Theorem 10.4), X is
bounded in L2 if and only if (ii) holds.

“(iv) =⇒ (iii) =⇒ (i)” This is trivial.
“(i) =⇒ (iv)” This is the statement of Theorem 11.10. �

Remark 11.12 In general, the statement of Theorem 11.10 fails for p = 1. See Ex-
ercise 11.2.1. ♦

Lemma 11.13 Let X be a square integrable martingale with square variation pro-
cess 〈X〉, and let τ be a stopping time. Then the stopped process Xτ has square
variation process 〈Xτ 〉 = 〈X〉τ := (〈X〉τ∧n)n∈N0 .

Proof This is left as an exercise. �

If in Corollary 11.11 we do not assume that the expectations of the square vari-
ation are bounded but only that the square variation is almost surely bounded, then
we still get that X converges almost surely (albeit not in L2).

Theorem 11.14 If X is a square integrable martingale with supn∈N〈X〉n <∞ al-
most surely, then X converges almost surely.

Proof Without loss of generality, we can assume that X0 = 0, otherwise consider
the martingale (Xn − X0)n∈N0 , which has the same square variation process. For
K > 0, let

τK := inf
{
n ∈N : 〈X〉n+1 ≥K

}
.

This is a stopping time since 〈X〉 is predictable. Evidently, supn∈N〈X〉τK∧n ≤K
almost surely. By Corollary 11.11, the stopped process XτK converges almost
surely (and in L2) to a random variable that we denote by XτK∞ . By assumption,
P[τK =∞]→ 1 for K→∞; hence X converges almost surely. �
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Example 11.15 Let X be a symmetric simple random walk on Z. That is, Xn =∑n
k=1Rk , where R1,R2, . . . are i.i.d. and ∼Rad1/2:

P[R1 = 1] = P[R1 =−1] = 1

2
.

Then X is a martingale; however, lim supn→∞Xn =∞ and lim infn→∞Xn =−∞.
Therefore, X does not even converge improperly. By the martingale convergence
theorem, this is consonant with the fact that X is not uniformly integrable. ♦

Example 11.16 (Voter model, due to [28, 75]) Consider a simple model that de-
scribes the behavior of opportunistic voters who are capable of only one out of two
opinions, say 0 and 1. Let Λ ⊂ Z

d be a set that we interpret as the sites at each
of which there is one voter. For simplicity, assume that Λ = {0, . . . ,L − 1}d for
some L ∈ N. Let x(i) ∈ {0,1} be the opinion of the voter at site i ∈Λ and denote
by x ∈ {0,1}Λ a generic state of the whole population. We now assume that the in-
dividual opinions may change at discrete time steps. At any time n ∈ N0, one site
In out of Λ is chosen at random and the individual at that site reconsiders his or
her opinion. To this end, the voter chooses a neighbor In +Nn ∈Λ (with periodic
boundary conditions; that is, with addition modulo L in each coordinate) at random
and adopts his or her opinion. We thus get a random sequence (Xn)n∈N0 of states
in {0,1}Λ that represents the random evolution of the opinions of the whole colony.
See Fig. 11.1 for a computer simulation of the voter model.

For a formal description of this model, let (In)n∈N and (Nn)n∈N be independent
random variables. For any n ∈ N, In is uniformly distributed on Λ and Nn is uni-
formly distributed on the set N := {i ∈ Z

d : ‖i‖2 = 1} of the 2d nearest neighbors
of the origin. Furthermore, x = X0 ∈ {0,1}Λ is the initial state. The states at later
times are defined inductively by

Xn(i)=
{
Xn−1(i), if In �= i,
Xn−1(In +Nn), if In = i.

Of course, the behavior over small periods of time is determined by the perils of
randomness. However, in the long run, we might see certain patterns. To be more
specific, the question is: In the long run, will there be a consensus of all individuals
or will competing opinions persist?

LetMn :=∑i∈ΛXn(i) be the total number of individuals of opinion 1 at time n.
Let F be the filtration F= (Fn)n∈N0 , where Fn = σ(Ik,Nk : k ≤ n) for all n ∈ N0.
ThenM is adapted to F and

E[Mn |Fn−1] =Mn−1 −E
[
Xn−1(In) |Fn−1

]+E
[
Xn−1(In +Nn) |Fn−1

]

=Mn−1 −
∑

i∈Λ
P[In = i]Xn−1(i)+

∑

i∈Λ
P[In +Nn = i]Xn−1(i)

=Mn−1

since P[In = i] = P[In + Nn = i] = L−d for all i ∈ Λ. Hence M is a bounded F-
martingale and thus converges almost surely and in L1 to a random variable M∞.
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Fig. 11.1 Snapshot of a voter model on an 800× 800 torus. The black dots are the Ones

Since M takes only integer values, there is a (random) n0 such that Mn =Mn0 for
all n≥ n0. However, then also Xn =Xn0 for all n≥ n0. Manifestly, no state x with
x �≡ 0 and x �≡ 1 is stable. In fact, if x is not constant and if i, j ∈Λ are neighbors
with x(i) �= x(j), then

P[Xn �=Xn−1 |Xn−1 = x] ≥ P[In−1 = i,Nn−1 = j − i] = L−d(2d)−1.

This impliesM∞ ∈ {0,Ld}. Now E[M∞] =M0; hence we have

P
[
M∞ = Ld]= M0

Ld
and P[M∞ = 0] = 1− M0

Ld
.

Thus, eventually there will be a consensus of all individuals, and the probability that
the surviving opinion is e ∈ {0,1} is the initial frequency of opinion e.

We could argue more formally to show that only the constant states are stable:
Let 〈M〉 be the square variation process ofM . Then

〈M〉n =
n∑

k=1

E[1{Mk �=Mk−1} |Fk−1]

=
n∑

k=1

P
[
Xk−1(Ik) �=Xk−1(Ik +Nk)

∣
∣Fk−1

]
.
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Hence

L2d ≥Var[Mn] = E
[〈M〉n

]

=
n∑

k=1

P
[
Xk−1(Ik) �=Xk−1(Ik +Nk)

]

≥ (2d)−1L−d
n∑

k=1

P
[
Mk−1 �∈

{
0,Ld

}]
.

Therefore,
∑∞
k=1 P[Mk−1 �∈ {0,Ld}] ≤ 2dL3d <∞, and so, by the Borel–Cantelli

lemma,M∞ ∈ {0,Ld}. ♦

Example 11.17 (Radon–Nikodym theorem) With the aid of the martingale conver-
gence theorem, we give an alternative proof of the Radon–Nikodym theorem (Corol-
lary 7.34).

Let (Ω,F,P) be a probability space and let Q be another probability measure
on (Ω,A). We assume that F is countably generated; that is, there exist countably
many sets A1,A2, . . . ∈ F such that F = σ({A1,A2, . . .}). For example, this is the
case if F is the Borel σ -algebra on a Polish space. For the case Ω =R

d , one could
take the open balls with rational radii, centered at points with rational coordinates
(compare Remark 1.24).

We construct a filtration F = (Fn)n∈N by letting Fn := σ({A1, . . . ,An}). Evi-
dently, #Fn <∞ for all n ∈ N. More precisely, there exists a unique finite subset
Zn ⊂Fn \ {∅} such that B =⊎C∈Zn

C⊂B
C for any B ∈Fn. Zn decomposes Fn into its

“atoms”. Finally, define a stochastic process (Xn)n∈N by

Xn :=
∑

C∈Zn:P[C]>0

Q(C)

P[C] 1C.

Clearly,X is adapted to F. Let B ∈Fn andm≥ n. For any C ∈Zm, eitherC∩B = ∅
or C ⊂ B . Hence

E[Xm1B ] =
∑

C∈Zm:P[C]>0

Q(C)

P[C] P[C ∩B] =
∑

C∈Zm:C⊂B
Q(C)=Q(B). (11.1)

In particular, X is an F-martingale.
Now assume thatQ is absolutely continuous with respect to P . By Example 7.39,

this implies that X is uniformly integrable. By the martingale convergence theorem,
X converges P-almost surely and in L1(P) to a random variable X∞. By (11.1), we
have E[X∞1B ] =Q(B) for all B ∈⋃n∈NFn and thus also for all B ∈ F . There-
fore, X∞ is the Radon–Nikodym density of Q with respect to P.

Note that for this proof we did not presume the existence of conditional expec-
tations (rather we constructed them explicitly for finite σ -algebras); that is, we did
not resort to the Radon–Nikodym theorem in a hidden way.
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It could be objected that this argument works only for probability measures.
However, this flaw can easily be remedied. Let μ and ν be arbitrary (but nonzero)
σ -finite measures. Then there exist measurable functions g,h : Ω → (0,∞) with∫
g dμ= 1 and

∫
hdν = 1. Define P= gμ and Q= hν. Clearly, Q) P if ν) μ.

In this case, g
h
X∞ is a version of the Radon–Nikodym derivative dν

dμ
.

The restriction that F is countably generated can also be dropped. Using the
approximation theorems for measures, it can be shown that there is always a count-
ably generated σ -algebra G ⊂ F such that for any A ∈ F , there is a B ∈ G with
P[A�B] = 0. This can be employed to prove the general case. We do not give the
details but refer to [169, Chapter 14.13]. ♦

Exercise 11.2.1 For p = 1, the statement of Theorem 11.10 may fail. Give an ex-
ample of a nonnegative martingale X with E[Xn] = 1 for all n ∈ N but such that

Xn
n→∞−→ 0 almost surely.

Exercise 11.2.2 LetX1,X2, . . . be independent, square integrable random variables
with

∑∞
n=1

1
n2 Var[Xn]<∞. Use the martingale convergence theorem to show the

strong law of large numbers for (Xn)n∈N.

Exercise 11.2.3 Give an example of a square integrable martingale that converges
almost surely but not in L2.

Exercise 11.2.4 Show that in Theorem 11.14 the converse implication may fail.
That is, there exists a square integrable martingale X that converges almost surely
but without limn→∞〈X〉n <∞ almost surely.

Exercise 11.2.5 Show the following converse of Theorem 11.14. Let L> 0 and let
(Xn)n∈N be a martingale with the property

|Xn+1 −Xn| ≤L a.s. (11.2)

Define the events

C := {(Xn)n∈N converges as n→∞},
A+ :=

{
lim sup
n→∞

Xn <∞
}
,

A− :=
{

lim inf
n→∞ Xn >−∞

}
,

F :=
{

sup
n∈N

〈X〉n <∞
}
.

Show that

C =A+ =A− = F (mod P).
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Here equality of events (mod P) means that the events differ at most by a P-null set
(see Definition 1.68(iii)).

Hint: Use the stopping times σK = inf{n ∈ N : |Xn| ≥ K}; σ±K = inf{n ∈ N :
±Xn ≥K} and τK as in the proof of Theorem 11.14.

Exercise 11.2.6 Let the notation be as in Exercise 11.2.5. However, instead of
(11.2) we make the weaker assumption

E
[
sup
n∈N

|Xn+1 −Xn|
]
<∞. (11.3)

Show that

C =A+ =A− (mod P).

Hint: Use suitable stopping times �K and apply the martingale convergence the-
orem (Theorem 11.4) to the stopped process X�K .

Exercise 11.2.7 (Conditional Borel–Cantelli lemma) Let (Fn)n∈N0 be a filtra-
tion and let (An)n∈N be events with An ∈ Fn for all n ∈ N. Define A∞ =
{∑∞

n=1 P[An |Fn−1] =∞} and A∗ = lim supn→∞An. Show the conditional Borel–
Cantelli lemma: P[A∞�A∗] = 0.

Hint: Apply Exercise 11.2.5 to Xn =∑∞
n=1(1An − P[An |Fn−1]).

Exercise 11.2.8 Let p ∈ [0,1] and let X = (Xn)n∈N0 be a stochastic process with
values in [0,1]. Assume that for all n ∈N0, given X0, . . . ,Xn, we have

Xn+1 =
{

1− p+ pXn with probability Xn,

pXn with probability 1−Xn.
Show that X is a martingale that converges almost surely. Compute the distribution
of the almost sure limit limn→∞Xn.

Exercise 11.2.9 Let f ∈ L1(λ), where λ is the restriction of the Lebesgue measure
to [0,1]. Let In,k = [k2−n, (k + 1)2−n) for n ∈ N and k = 0, . . . ,2n − 1. Define
fn : [0,1]→R by

fn(x)= 2n
∫

Ik,n

f dλ, if k is chosen such that x ∈ Ik,n.

Show that fn(x)
n→∞−→ f (x) for λ-almost all x ∈ [0,1].

Exercise 11.2.10 Assume that F= (Fn)n∈N is a filtration on the probability space
(Ω,A,P). Let F∞ := σ(Fn : n ∈ N), and let M be the vector space of uniformly
integrable F-martingales. Show that the map Φ : L1(F∞)→M, X∞ �→ (E[X∞ |
Fn])n∈N is an isomorphism of vector spaces.
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11.3 Example: Branching Process

Let p = (pk)k∈N0 be a probability vector on N0 and let (Zn)n∈N0 be the Galton–
Watson process with one ancestor and offspring distribution p (see Definition 3.9).
For convenience, we recall the construction of Z. Let (Xn,i)n∈N0,i∈N be i.i.d. ran-
dom variables with P[X1,1 = k] = pk for k ∈N0. Let Z0 = 1 and inductively define

Zn+1 =
Zn∑

i=1

Xn,i for n ∈N0.

We interpret Zn as the size of a population at time n and Xn,i as the number of
offspring of the ith individual of the nth generation.

Let m := E[X1,1] <∞ be the expected number of offspring of an individual
and let σ 2 := Var[X1,1] ∈ (0,∞) be its variance. Let Fn := σ(Xk,i : k < n, i ∈ N).
Then Z is adapted to F. Define Wn =m−nZn.

Lemma 11.18 W is a martingale. In particular, E[Zn] =mn for all n ∈N.

Proof We compute the conditional expectation for n ∈N0:

E[Wn+1 |Fn] =m−(n+1)E[Zn+1 |Fn]

=m−(n+1)E

[
Zn∑

i=1

Xn,i

∣
∣
∣Fn

]

=m−(n+1)
∞∑

k=1

E[1{Zn=k}k ·Xn,i |Fn]

=m−n
∞∑

k=1

E[k · 1{Zn=k} |Fn]

=m−nZn =Wn. �

Theorem 11.19 Let Var[X1,1] ∈ (0,∞). The a.s. limit W∞ = limn→∞Wn exists
and

m> 1 ⇐⇒ E[W∞] = 1 ⇐⇒ E[W∞]> 0.

Proof W∞ exists since W ≥ 0 is a martingale. If m ≤ 1, then (Zn)n∈N converges
a.s. to some random variable Z∞. Note that Z∞ is the only choice since σ 2 > 0.

Now let m > 1. Since E[Zn−1] = mn−1 (Lemma 11.18), by the Blackwell–
Girshick formula (Theorem 5.10),

Var[Wn] =m−2n(σ 2E[Zn−1] +m2Var[Zn−1]
)

= σ 2m−(n+1) +Var[Wn−1].
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Inductively, we get Var[Wn] = σ 2∑n+1
k=2m

−k ≤ σ 2m
m−1 <∞. Hence W is bounded

in L2 and Theorem 11.10 yields Wn→ W∞ in L2 and thus in L1. In particular,
E[W∞] = E[W0] = 1. �

The proof of Theorem 11.19 was simple due to the assumption of finite variance
of the offspring distribution. However, there is a much stronger statement that here
we can only quote (see [96], and see [110] for a modern proof).

Theorem 11.20 (Kesten-Stigum (1966)) Let m> 1. Then

E[W∞] = 1 ⇐⇒ E[W∞]> 0 ⇐⇒ E
[
X1,1 log(X1,1)

+]<∞.



Chapter 12
Backwards Martingales and Exchangeability

With many data acquisitions, such as telephone surveys, the order in which the data
come does not matter. Mathematically, we say that a family of random variables is
exchangeable if the joint distribution does not change under finite permutations. De
Finetti’s structural theorem says that an infinite family of E-valued exchangeable
random variables can be described by a two-stage experiment. At the first stage,
a probability distribution Ξ on E is drawn at random. At the second stage, i.i.d.
random variables with distribution Ξ are implemented.

We first define the notion of exchangeability. Then we consider backwards mar-
tingales and prove the convergence theorem for them. This is the cornerstone for the
proof of de Finetti’s theorem.

12.1 Exchangeable Families of Random Variables

Definition 12.1 Let I be an arbitrary index set and let E be a Polish space. A family
(Xi)i∈I of random variables with values in E is called exchangeable if

L
[
(X�(i))i∈I

]= L
[
(Xi)i∈I

]

for any finite permutation � : I→ I .

Recall that a finite permutation is a bijection � : I→ I that leaves all but finitely
many points unchanged.

Remark 12.2 Clearly, the following are equivalent.

(i) (Xi)i∈I is exchangeable.
(ii) Let n ∈N and assume i1, . . . , in ∈ I are pairwise distinct and j1, . . . , jn ∈ I are

pairwise distinct. Then we have L[(Xi1, . . . ,Xin)] = L[(Xj1 , . . . ,Xjn)].
In particular (n= 1), exchangeable random variables are identically distributed. ♦

A. Klenke, Probability Theory, Universitext, DOI 10.1007/978-1-4471-5361-0_12,
© Springer-Verlag London 2014
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Example 12.3

(i) If (Xi)i∈I is i.i.d., then (Xi)i∈I is exchangeable.
(ii) Consider an urn withN balls,M of which are black. Successively draw without

replacement all of the balls and define

Xn :=
{

1, if the nth ball is black,

0, else.

Then (Xn)n=1,...,N is exchangeable. Indeed, this follows by elementary combi-
natorics since for any choice x1, . . . , xN ∈ {0,1} with x1 + . . .+ xN =M , we
have

P[X1 = x1, . . . ,XN = xN ] = 1
(
N
M

) .

This formula can be derived formally via a small computation with conditional
probabilities. As we will need a similar computation for Pólya’s urn model in
Example 12.29, we give the details here. Let sk = x1+ . . .+xk for k = 0, . . . ,N
and let

gk(x)=
{
M − sk, if x = 1,
N −M + sk − k, if x = 0.

Then P[X1 = x1] = g0(x1)/N and

P[Xk+1 = xk+1 |X1 = x1, . . . ,Xk = xk] = gk(xk+1)

N − k for k = 1, . . . ,N − 1.

Clearly, gk(0)=N −M − l, where l = #{i ≤ k : xi = 0}. Therefore,

P[X1 = x1, . . . ,XN = xN ]

= P[X1 = x1]
N−1∏

k=1

P[Xk+1 = xk+1 |X1 = x1, . . . ,Xk = xk]

= 1

N !
N−1∏

k=0

gk(xk+1)= 1

N !
∏

k:xk=1

gk(1)
∏

k:xk=0

gk(0)

= 1

N !
M−1∏

l=0

(M − l)
N−1∏

l=0

(N −M − l)= M!(N −M)!
N ! .

(iii) Let Y be a random variable with values in [0,1]. Assume that, given Y , the
random variables (Xi)i∈I are independent and BerY -distributed. That is, for
any finite J ⊂ I ,

P[Xj = 1 for all j ∈ J | Y ] = Y #J .

Then (Xi)i∈I is exchangeable. ♦
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Let X = (Xn)n∈N be a stochastic process with values in a Polish space E.
Let S(n) be the set of permutations � : {1, . . . , n} → {1, . . . , n}. We consider �
also as a map N → N by defining �(k) = k for k > n. For � ∈ S(n) and x =
(x1, . . . , xn) ∈ En, denote x� = (x�(1), . . . , x�(n)). Similarly, for x ∈ EN, denote
x� = (x�(1), x�(2), . . .) ∈EN. Let E′ be another Polish space. For measurable maps
f : En→ E′ and F : EN → E′, define the maps f � and F� by f �(x) = f (x�)
and F�(x) = F(x�). Further, we write f (x) = f (x1, . . . , xn) for x ∈ En and for
x ∈EN.

Definition 12.4

(i) A map f :En→E′ is called symmetric if f � = f for all � ∈ S(n).
(ii) A map F : EN → E′ is called n-symmetric if F� = F for all � ∈ S(n). F is

called symmetric if F is n-symmetric for all n ∈N.

Example 12.5

(i) For x ∈R
N, define the nth arithmetic mean by an(x)= 1

n

∑n
i=1 xi . Clearly, an

is an n-symmetric map (but not m-symmetric for any m > n). Furthermore,
ā(x) := lim supn→∞ an(x) defines a symmetric map R

N→R∪ {−∞,+∞}.
(ii) The map s :RN→[0,∞], x �→∑∞

i=1 |xi | is symmetric. Unlike ā, the value of
s depends on every coordinate if it is finite.

(iii) For x ∈EN, define the nth empirical distribution by ξn(x)= 1
n

∑n
i=1 δxi (recall

that δxi is the Dirac measure at the point xi ). Clearly, ξn is an n-symmetric
map.

(iv) Let k ∈N and let ϕ :Ek→R be a map. The nth symmetrized average

An(ϕ) :EN→R, x �→ 1

n!
∑

�∈S(n)
ϕ
(
x�
)

(12.1)

is an n-symmetric map. ♦

Definition 12.6 Let X = (Xn)n∈N be a stochastic process with values in E. For
n ∈N, define

E ′n := σ
(
F : F :EN→R is measurable and n-symmetric

)

and let En :=X−1(E ′n) be the σ -algebra of events that are invariant under all permu-
tations � ∈ S(n). Further, let

E ′ :=
∞⋂

n=1

E ′n = σ
(
F : F :EN→R is measurable and symmetric

)

and let En :=⋂∞
n=1 En = X−1(E ′) be the σ -algebra of exchangeable events for X,

or briefly the exchangeable σ -algebra.
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Remark 12.7 If A ∈ σ(Xn,n ∈ N) is an event, then there is a measurable B ⊂ EN

with A = {X ∈ B}. If we denote A� = {X� ∈ B} for � ∈ S(n), then En = {A :
A� =A for all � ∈ S(n)}. This justifies the name “exchangeable event”. ♦

Remark 12.8 If we writeΞn(ω) := ξn(X(ω))= 1
n

∑n
i=1 δXi(ω) for the nth empirical

distribution, then, by Exercise 12.1.1, En = σ(Ξn). ♦

Remark 12.9 Denote by T = ⋂n∈N σ(Xn+1,Xn+2, . . .) the tail σ -algebra. Then
T ⊂ E , and strict inclusion is possible.

Indeed, evidently σ(Xn+1,Xn+2, . . .) ⊂ En for n ∈ N; hence T ⊂ E . Now let
E = {0,1} and let X1,X2, . . . be independent random variables with P[Xn = 1] ∈
(0,1) for all n ∈N. The random variable S :=∑∞

n=1Xn is measurable with respect
to E but not with respect to T . ♦

Theorem 12.10 Let X = (Xn)n∈N be exchangeable. If ϕ : EN → R is measurable
and if E[|ϕ(X)|]<∞, then for all n ∈N and all � ∈ S(n),

E
[
ϕ(X)

∣
∣ En
]= E

[
ϕ
(
X�
) ∣
∣ En
]
. (12.2)

In particular,

E
[
ϕ(X)

∣
∣ En
]=An(ϕ) := 1

n!
∑

�∈S(n)
ϕ
(
X�
)
. (12.3)

Proof Let A ∈ En. Then there exists a B ∈ E ′n such that A=X−1(B). Let F = 1B .
Then F ◦ X = 1A. By the definition of En, the map F : EN → R is measurable,
n-symmetric and bounded. Therefore,

E
[
ϕ(X)F(X)

]= E
[
ϕ
(
X�
)
F
(
X�
)]= E

[
ϕ
(
X�
)
F(X)

]
.

Here we used the exchangeability of X in the first equality and the symmetry of F
in the second equality. From this (12.2) follows. However, An(ϕ) is En-measurable
and hence

E
[
ϕ(X)

∣
∣ En
]= E

[
1

n!
∑

�∈S(n)
ϕ
(
X�
) ∣∣
∣ En
]

= 1

n!
∑

�∈S(n)
ϕ
(
X�
)
.

�

Heuristic for the Structure of Exchangeable Families

Consider a finite exchangeable family X1, . . . ,XN of E-valued random variables.
For n≤N , what is the conditional distribution of (X1, . . . ,Xn) given ΞN ? For any
measurable A ⊂ E, {Xi ∈ A} occurs for exactly NΞN(A) of the i ∈ {1, . . . ,N},
where the order does not change the probability. Hence we are in the situation of
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drawing colored balls without replacement. More precisely, let the pairwise distinct
points e1, . . . , ek ∈ E be the atoms of ΞN and let N1, . . . ,Nk be the corresponding
absolute frequencies. Hence ΞN =∑k

i=1(Ni/N)δei . We thus deal with balls of k
different colors and with Ni balls of the ith color. We draw n of these balls without
replacement but respecting the order. Up to the order, the resulting distribution is
thus the generalized hypergeometric distribution (see (1.19) on page 44). Hence, for
pairwise disjoint, measurable sets A1, . . . ,Ak with

⊎k
l=1Al = E, for i1, . . . , in ∈

{1, . . . , k}, pairwise distinct j1, . . . , jn ∈ {1, . . . ,N} and with the convention ml :=
#{r ∈ {1, . . . , n} : ir = l} for l ∈ {1, . . . , k}, we have

P[Xjr ∈Air for all r = 1, . . . , n |ΞN ] = 1

(N)n

k∏

l=1

(
NΞN(Al)

)ml . (12.4)

Here we defined (n)l := n(n− 1) . . . (n− l + 1).
What happens if we let N→∞? For simplicity, assume that for all l = 1, . . . , k,

the limit Ξ∞(Al) = limN→∞ΞN(Al) exists in a suitable sense. Then (12.4) for-
mally becomes

P[Xjr ∈Air for all r = 1, . . . , n |Ξ∞] =
k∏

l=1

Ξ∞(Al)ml . (12.5)

Drawing without replacements thus asymptotically turns into drawing with replace-
ments. Hence the random variables X1,X2, . . . are independent with distribution
Ξ∞ given Ξ∞.

For a formal proof along the lines of this heuristic, see Section 13.4.
In order to formulate (and prove) this statement (de Finetti’s theorem) rigorously

in Section 12.3, we need some more technical tools (e.g., the notion of conditional
independence). A further tool will be the convergence theorem for backwards mar-
tingales that will be formulated in Section 12.2. For further reading on exchangeable
random variables, we refer to [4, 33, 98, 105].

Exercise 12.1.1 Let n ∈N. Show that every symmetric function f :En→R can be
written in the form f (x)= g( 1

n

∑n
i=1 δxi ), where g has to be chosen appropriately

(depending on f ).

Exercise 12.1.2 Derive equation (12.4) formally.

Exercise 12.1.3 Let X1, . . . ,Xn be exchangeable, square integrable random vari-
ables. Show that

Cov[X1,X2] ≥ − 1

n− 1
Var[X1]. (12.6)

For n≥ 2, give a nontrivial example for equality in (12.6).

Exercise 12.1.4 Let X1,X2,X3 . . . be exchangeable, square integrable random
variables. Show that Cov[X1,X2] ≥ 0.
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Exercise 12.1.5 Show that for all n ∈ N \ {1}, there is an exchangeable family of
random variables X1, . . . ,Xn that cannot be extended to an infinite exchangeable
family X1,X2, . . . .

12.2 Backwards Martingales

The concepts of filtration and martingale do not require the index set I (interpreted
as time) to be a subset of [0,∞). Hence we can consider the case I =−N0.

Definition 12.11 (Backwards martingale) Let F = (Fn)n∈−N0 be a filtration and
let X = (Xn)n∈−N0 be an F-martingale. Then X = (X−n)n∈N0 is called a back-
wards martingale.

Remark 12.12 A backwards martingale is always uniformly integrable. This fol-
lows from Corollary 8.22 and the fact that X−n = E[X0 |F−n] for any n ∈N0. ♦

Example 12.13 Let X1,X2, . . . be exchangeable real random variables. For n ∈ N,
let F−n = En and

Y−n = 1

n

n∑

i=1

Xi.

We show that (Y−n)n∈N is an F-backwards martingale. Clearly, Y is adapted. Fur-
thermore, by Theorem 12.10 (with k = n and ϕ(X1, . . . ,Xn) = 1

n−1 (X1 + . . . +
Xn−1)),

E[Y−n+1 |F−n] = 1

n!
∑

�∈S(n)

1

n− 1
(X�(1) + . . .+X�(n−1))= Y−n.

Now replace F by the smaller filtration G = (Gn)n∈−N that is defined by G−n =
σ(Y−n,Xn+1,Xn+2, . . .)= σ(Y−n,Y−n−1, Y−n−2, . . .) for n ∈ N. This is the filtra-
tion generated by Y ; thus Y is also a G-backwards martingale (see Remark 9.29). ♦

Let a < b and n ∈N. Let Ua,b−n be the number of upcrossings of X over [a, b] be-

tween times−n and 0. Further, letUa,b = limn→∞Ua,b−n . By the upcrossing inequal-

ity (Lemma 11.3), we have E[Ua,b−n ] ≤ 1
b−aE[(X0 − a)+]; hence P[Ua,b <∞]= 1.

As in the proof of the martingale convergence theorem (Theorem 11.4), we infer the
following.

Theorem 12.14 (Convergence theorem for backwards martingales) Let
(Xn)n∈−N0 be a martingale with respect to F = (Fn)n∈−N0 . Then there exists
X−∞ = limn→∞X−n almost surely and in L1. Furthermore, X−∞ = E[X0 |
F−∞], where F−∞ =⋂∞

n=1 F−n.
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Example 12.15 Let X1,X2, . . . be exchangeable, integrable random variables. Fur-
ther, let T =⋂∞

n=1 σ(Xm,m ≥ n) be the tail σ -algebra of X1,X2, . . . and let E be
the exchangeable σ -algebra. Then E[X1 | T ] = E[X1 | E] a.s. and

1

n

n∑

i=1

Xi
n→∞−→ E[X1 | E] a.s. and in L1.

Indeed, if we let Y−n := 1
n

∑n
i=1Xi , then (by Example 12.13) (Y−n)n∈N is a back-

wards martingale with respect to (Fn)n∈−N = (E−n)n∈−N and thus

Y−n
n→∞−→ Y−∞ = E[X1 | E] a.s. and in L1.

Now, by Example 2.36(ii), Y−∞ is T -measurable; hence (since T ⊂ E and by virtue
of the tower property of conditional expectation) Y−∞ = E[X1 | T ]. ♦

Example 12.16 (Strong law of large numbers) If Z1,Z2, . . . are real and i.i.d. with
E[|Z1|]<∞, then

1

n

n∑

i=1

Zi
n→∞−→ E[Z1] almost surely.

By Kolmogorov’s 0–1 law (Theorem 2.37), the tail σ -algebra T is trivial; hence we
have

E[Z1 | T ] = E[Z1] almost surely.

In Corollary 12.19, we will see that in the case of independent random variables,
E is also P-trivial. This implies E[Z1 | E] = E[Z1]. ♦

We close this section with a generalization of Example 12.15 to mean values
of functions of k ∈ N variables. This conclusion from the convergence theorem for
backwards martingales will be used in an essential way in the next section.

Theorem 12.17 Let X = (Xn)n∈N be an exchangeable family of random vari-
ables with values in E. Assume that k ∈ N and let ϕ : Ek → R be measurable
with E[|ϕ(X1, . . . ,Xk)|] <∞. Denote ϕ(X) = ϕ(X1, . . . ,Xk) and let An(ϕ) :=
1
n!
∑
�∈S(n) ϕ(X�). Then

E
[
ϕ(X)

∣
∣ E
]= E

[
ϕ(X)

∣
∣ T
]= lim

n→∞An(ϕ) a.s. and in L1. (12.7)

Proof By Theorem 12.10, An(ϕ) = E[ϕ(X) | En]. Hence (A−n(ϕ))n≥k is a back-
wards martingale with respect to (E−n)n∈−N. Hence, by Theorem 12.14,

An(ϕ)
n→∞−→ E

[
ϕ(X)

∣
∣ E
]

a.s. and in L1. (12.8)
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As for the arithmetic mean (Example 12.16), we can argue that limn→∞An(ϕ) is
T -measurable. Indeed,

lim sup
n→∞

#{� ∈ S(n) : �−1(i)≤ l for some i ∈ {1, . . . , k}}
n! = 0 for all l ∈N.

Thus, for large n, the dependence of An(ϕ) on the first l coordinates is negligible.
Together with (12.8), we get (12.7). �

Corollary 12.18 Let X = (Xn)n∈N be exchangeable. Then, for any A ∈ E there
exists a B ∈ T with P[A�B] = 0.

Note that T ⊂ E ; hence the statement is trivially true if the roles of E and T are
interchanged.

Proof Since E ⊂ σ(X1,X2, . . .), by the approximation theorem for measures, there
exists a sequence of measurable sets (Ak)k∈N with Ak ∈ σ(X1, . . . ,Xk) and such

that P[A�Ak] k→∞−→ 0. Let Ck ∈Ek be measurable with

Ak =
{
(X1, . . . ,Xk) ∈ Ck

}

for all k ∈N. Letting ϕk := 1Ck , Theorem 12.17 implies that

1A = E[1A | E] = E
[

lim
k→∞ϕk(X)

∣
∣ E
]
= lim
k→∞E

[
ϕk(X)

∣
∣ E
]

= lim
k→∞E

[
ϕk(X)

∣
∣ T
]=:ψ almost surely.

Hence there is a T -measurable function ψ with ψ = 1A almost surely. We can
assume that ψ = 1B for some B ∈ T . �

As a further application, we get the 0–1 law of Hewitt and Savage [72].

Corollary 12.19 (0–1 law of Hewitt–Savage) Let X1,X2, . . . be i.i.d. random vari-
ables. Then the exchangeable σ -algebra is P-trivial; that is, P[A] ∈ {0,1} for all
A ∈ E .

Proof By Kolmogorov’s 0–1 law (Theorem 2.37), T is trivial. Hence the claim
follows immediately from Corollary 12.18. �

12.3 De Finetti’s Theorem

In this section, we show the structural theorem for countably infinite exchangeable
families that was heuristically motivated at the end of Section 12.1. Hence we shall
show that a countably infinite exchangeable family of random variables is an i.i.d.
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family given the exchangeable σ -algebra E . Furthermore, we compute the condi-
tional distribution of the individual random variables. As a first step, we define con-
ditional independence formally (see [25, Chapter 7.3]).

Definition 12.20 (Conditional independence) Let (Ω,F,P) be a probability
space, let A ⊂ F be a sub-σ -algebra and let (Ai )i∈I be an arbitrary family of
sub-σ -algebras of F . Assume that for any finite J ⊂ I , any choice of Aj ∈Aj and
for all j ∈ J ,

P
[⋂

j∈J
Aj

∣
∣
∣A
]

=
∏

j∈J
P[Aj |A] almost surely. (12.9)

Then the family (Ai )i∈I is called independent given A.
A family (Xi)i∈I of random variables on (Ω,F,P) is called independent (and

identically distributed) given A if the generated σ -algebras (σ (Xi))i∈I are indepen-
dent given A (and the conditional distributions P[Xi ∈ · |A] are equal).

Example 12.21 Any family (Ai )i∈I of sub-σ -algebras of F is independent given F .
Indeed, letting A=⋂j∈J Aj ,

P[A |F] = 1A =
∏

j∈J
1Aj =

∏

j∈J
P[Aj |F] almost surely.

♦

Example 12.22 If (Ai )i∈I is an independent family of σ -algebras and if A is trivial,
then (Ai )i∈I is independent given A. ♦

Example 12.23 There is no “monotonicity” for conditional independence in the fol-
lowing sense: If F1, F2 and F3 are σ -algebras with F1 ⊂ F2 ⊂ F3 and such that
(Ai )i∈I is independent given F1 as well as given F3, then this does not imply inde-
pendence given F2.

In order to illustrate this, assume that X and Y are nontrivial independent real
random variables. Let F1 = {∅,Ω}, F2 = σ(X+Y) and F3 = σ(X,Y ). Then σ(X)
and σ(Y ) are independent given F1 as well as given F3 but not given F2. ♦

Let X = (Xn)n∈N be a stochastic process on a probability space (Ω,F,P) with
values in a Polish space E. Let E be the exchangeable σ -algebra and let T be the
tail σ -algebra.

Theorem 12.24 (de Finetti) The family X = (Xn)n∈N is exchangeable if and only
if there exists a σ -algebra A⊂F such that (Xn)n∈N is i.i.d. given A. In this case,
A can be chosen to equal the exchangeable σ -algebra E or the tail-σ -algebra T .
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Proof “=⇒ ” Let X be exchangeable and let A= E or A= T . For any n ∈ N, let
fn :E→R be a bounded measurable map. Let

ϕk(x1, . . . , xk)=
k∏

i=1

fi(xi) for any k ∈N.

Let An(ϕ) be the symmetrized average from Theorem 12.17. Then

An(ϕk−1)An(fk)= 1

n!
∑

�∈S(n)
ϕk−1

(
X�
)1

n

n∑

i=1

fk(Xi)

= 1

n!
∑

�∈S(n)
ϕk
(
X�
)+Rn,k =An(ϕk)+Rn,k,

where

|Rn,k| ≤ 2‖ϕk−1‖∞ · ‖fk‖∞ · 1

n!
1

n

∑

�∈S(n)

n∑

i=1

1{i∈{�(1),...,�(k−1)}}

= 2‖ϕk−1‖∞ · ‖fk‖∞ · k − 1

n

n→∞−→ 0.

Together with Theorem 12.17, we conclude that

An(ϕk−1)An(fk)
n→∞−→ E

[
ϕk(X1, . . . ,Xk)

∣
∣A
]

a.s. and in L1.

On the other hand, again by Theorem 12.17,

An(ϕk−1)
n→∞−→ E

[
ϕk−1(X1, . . . ,Xk−1)

∣
∣A
]

and

An(fk)
n→∞−→ E

[
fk(X1)

∣
∣A
]
.

Hence

E
[
ϕk(X1, . . . ,Xk)

∣
∣A
]= E

[
ϕk−1(X1, . . . ,Xk−1)

∣
∣A
]
E
[
fk(X1)

∣
∣A
]
.

Thus we get inductively

E

[
k∏

i=1

fi(Xi)

∣
∣
∣A
]

=
k∏

i=1

E
[
fi(X1)

∣
∣A
]
.

Therefore, X is i.i.d. given A.
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“⇐= ” Now let X be i.i.d. given A for a suitable σ -algebra A ⊂ F . For any
bounded measurable function ϕ :En→R and for any � ∈ S(n), we have E[ϕ(X) |
A] = E[ϕ(X�) |A]. Hence

E
[
ϕ(X)

]= E
[
E
[
ϕ(X)

∣
∣A
]]= E

[
E
[
ϕ
(
X�
) ∣
∣A
]]= E

[
ϕ
(
X�
)]
,

whence X is exchangeable. �

Denote by M1(E) the set of probability measures on E equipped with the
topology of weak convergence (see Definition 13.12 and Remark 13.14). That
is, a sequence (μn)n∈N in M1(E) converges weakly to a μ ∈ M1(E) if and

only if
∫
f dμn

n→∞−→ ∫
f dμ for any bounded continuous function f : E → R.

We will study weak convergence in Chapter 13 in greater detail. At this point,
we use the topology only to make M1(E) a measurable space, namely with the
Borel σ -algebra B(M1(E)). Now we can study random variables with values in
M1(E), so-called random measures (compare also Section 24.1). For x ∈ EN, let
ξn(x)= 1

n

∑n
i=1 δxi ∈M1(E).

Definition 12.25 The random measure

Ξn := ξn(X) := 1

n

n∑

i=1

δXi

is called the empirical distribution of X1, . . . ,Xn.

Assume the conditions of Theorem 12.24 are in force.

Theorem 12.26 (de Finetti representation theorem) The family X = (Xn)n∈N is
exchangeable if and only if there is a σ -algebra A ⊂ F and an A-measurable
random variable Ξ∞ :Ω→M1(E) with the property that given Ξ∞, (Xn)n∈N is
i.i.d. with L[X1 |Ξ∞] =Ξ∞. In this case, we can choose A= E or A= T .

Proof “⇐= ” This follows as in the proof of Theorem 12.24.
“=⇒ ” LetX be exchangeable. Then, by Theorem 12.24, there exists a σ -algebra

A ⊂ F such that (Xn)n∈N is i.i.d. given A. As E is Polish, there exists a regu-
lar conditional distribution (see Theorem 8.37) Ξ∞ := L[X1 |A]. For measurable
A1, . . . ,An ⊂E, we have P[Xi ∈Ai |A] =Ξ∞(Ai) for all i = 1, . . . , n; hence

P

[
n⋂

i=1

{Xi ∈Ai}
∣
∣
∣Ξ∞

]

= E

[

P

[
n⋂

i=1

{Xi ∈Ai}
∣
∣
∣A
]
∣
∣
∣Ξ∞

]

= E

[
n∏

i=1

Ξ∞(Ai)
∣
∣
∣Ξ∞

]

=
n∏

i=1

Ξ∞(Ai).

Therefore, L[X |Ξ∞] =Ξ⊗N∞ . �



242 12 Backwards Martingales and Exchangeability

Remark 12.27

(i) In the case considered in the previous theorem, by the strong law of large num-
bers, for any bounded continuous function f :E→R,

∫

f dΞn
n→∞−→

∫

f dΞ∞ almost surely.

If in addition E is locally compact (e.g., E =R
d ), then one can even show that

Ξn
n→∞−→ Ξ∞ almost surely.

(ii) For finite families of random variables there is no perfect analog of de Finetti’s
theorem. See [33] for a detailed treatment of finite exchangeable families. ♦

Example 12.28 Let (Xn)n∈N be exchangeable and assume Xn ∈ {0,1}. Then there
exists a random variable Y :Ω→[0,1] such that, for all finite J ⊂N,

P[Xj = 1 for all j ∈ J | Y ] = Y #J .

In other words, (Xn)n∈N is independent given Y and BerY -distributed. Compare
Example 12.3(iii). ♦

Example 12.29 (Pólya’s urn model) (See Example 14.38, compare also [17, 58,
135].) Consider an urn with a total of N balls among whichM are black andM−N
are white. At each step, a ball is drawn and is returned to the urn together with an
additional ball of the same color. Let

Xn :=
{

1, if the nth ball is black,

0, else,

and let Sn =∑n
i=1Xi . Then

P[Xn = 1 |X1,X2, . . . ,Xn−1] = Sn−1 +M
N + n− 1

.

Inductively, for x1, . . . , xn ∈ {0,1} and sk =∑k
i=1 xi , we get

P[Xi = xi for any i = 1, . . . , n]

=
∏

i≤n:xi=1

M + si−1

N + i − 1

∏

i≤n:xi=0

N + i − 1−M − si−1

N + i − 1

= (N − 1)!
(N − 1+ n)! ·

(M + sn − 1)!
(M − 1)!

(N −M − 1+ (n− sn))!
(N −M − 1)! .
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The right-hand side depends on sn only and not on the order of the x1, . . . , xn. Hence
(Xn)n∈N is exchangeable. Let

Z = lim
n→∞

1

n
Sn.

Then (Xn)n∈N is i.i.d. BerZ-distributed given Z. Hence (see Example 12.28)

E
[
Zn
]= E

[
P[X1 = . . .=Xn = 1 |Z]]

= P[Sn = n]

= (N − 1)!
(M − 1)!

(M + n− 1)!
(N + n− 1)! for all n ∈N.

By Exercise 5.1.2, these are the moments of the Beta distribution βM,N−M on [0,1]
with parameters (M,N −M) (see Example 1.107(ii)). A distribution on [0,1] is
uniquely characterized by its moments (see Theorem 15.4). Hence Z ∼ βM,N−M . ♦



Chapter 13
Convergence of Measures

One focus of probability theory is distributions that are the result of an interplay of
a large number of random impacts. Often a useful approximation can be obtained
by taking a limit of such distributions, for example, a limit where the number of
impacts goes to infinity. With the Poisson distribution, we have encountered such
a limit distribution that occurs as the number of very rare events when the number
of possibilities goes to infinity (see Theorem 3.7). In many cases, it is necessary
to rescale the original distributions in order to capture the behavior of the essential
fluctuations, e.g., in the central limit theorem. While these theorems work with real
random variables, we will also see limit theorems where the random variables take
values in more general spaces such as the space of continuous functions when we
model the path of the random motion of a particle.

In this chapter, we provide the abstract framework for the investigation of con-
vergence of measures. We introduce the notion of weak convergence of probability
measures on general (mostly Polish) spaces and derive the fundamental properties.
The reader will profit from a solid knowledge of point set topology. Thus we start
with a short overview of some topological definitions and theorems.

We do not strive for the greatest generality but rather content ourselves with the
key theorems for probability theory. For further reading, we recommend [14, 82].

At first reading, the reader might wish to skip this rather analytically flavored
chapter. In this case, for the time being it suffices to get acquainted with the defini-
tions of weak convergence and tightness (Definitions 13.12 and 13.26), as well as
with the statements of the Portemanteau theorem (Theorem 13.16) and Prohorov’s
theorem (Theorem 13.29).

13.1 A Topology Primer

Excursively, we present some definitions and facts from point set topology. For de-
tails, see, e.g., [90].

In the following, let (E, τ) be a topological space with the Borel σ -algebra E =
B(E) (compare Definitions 1.20 and 1.21). We will also assume that (E, τ) is a
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© Springer-Verlag London 2014
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Hausdorff space; that is, for any two points x, y ∈E with x �= y, there exist disjoint
open sets U,V such that x ∈U and y ∈ V .

For A⊂ E, we denote by A the closure of A, by A◦ the interior and by ∂A the
boundary of A. A set A⊂E is called dense if A=E.
(E, τ) is called metrizable if there exists a metric d onE such that τ is induced by

the open balls Bε(x) := {y ∈E : d(x, y) < ε}. A metric d on E is called complete if
any Cauchy sequence with respect to d converges in E. (E, τ) is called completely
metrizable if there exists a complete metric on E that induces τ . If (E,d) is a
metric space and A,B ⊂ E, then we write d(A,B) = inf{d(x, y) : x ∈ A,y ∈ B}
and d(x,B) := d({x},B) for x ∈E.

A metrizable space (E, τ) is called separable if there exists a countable dense
subset of E. Separability in metrizable spaces is equivalent to the existence of
a countable base of the topology; that is, a countable set U ⊂ τ with A =⋃
U∈U :U⊂AU for all A ∈ τ . (For example, choose the ε-balls centered at the points

of a countable subset and let ε run through the positive rational numbers.) A com-
pact metric space is always separable (simply choose for each n ∈ N a finite cover
Un ⊂ τ comprising balls of radius 1

n
and then take U :=⋃n∈N Un).

A set A ⊂ E is called compact if each open cover U ⊂ τ of A (that is, A ⊂⋃
U∈U U ) has a finite subcover; that is, a finite U ′ ⊂ U withA⊂⋃U∈U ′ U . Compact

sets are closed. By the Heine–Borel theorem, a subset of Rd is compact if and only
if it is bounded and closed. A⊂E is called relatively compact if A is compact. On
the other hand,A is called sequentially compact (respectively relatively sequentially
compact) if any sequence (xn)n∈N with values in A has a subsequence (xnk )k∈N that
converges to some x ∈ A (respectively x ∈ A). In metrizable spaces, the notions
compact and sequentially compact coincide. A set A ⊂ E is called σ -compact if
A is a countable union of compact sets. E is called locally compact if any point
x ∈ E has an open neighborhood whose closure is compact. A locally compact,
separable metric space is manifestly σ -compact. If E is a locally compact metric
space and if U ⊂ E is open and K ⊂ U is compact, then there exists a compact set
L with K ⊂ L◦ ⊂ L ⊂ U . (For example, for any x ∈ K , take an open ball Bεx (x)
of radius εx > 0 that is contained in U and that is relatively compact. By making
εx smaller (if necessary), one can assume that the closure of this ball is contained
in U . As K is compact, there are finitely many points x1, . . . , xn ∈ K with K ⊂
V :=⋃ni=1Bεxi (xi). By construction, L= V ⊂U is compact.)

We present one type of topological space that is of particular importance in prob-
ability theory in a separate definition.

Definition 13.1 A topological space (E, τ) is called a Polish space if it is separable
and if there exists a complete metric that induces the topology τ .

Examples of Polish spaces are countable discrete spaces (however, not Q with
the usual topology), the Euclidean spaces Rn, and the space C([0,1]) of continuous
functions [0,1] → R, equipped with the supremum norm ‖ · ‖∞. In practice, all
spaces that are of importance in probability theory are Polish spaces.
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Let (E,d) be a metric space. A set A ⊂ E is called totally bounded if, for any
ε > 0, there exist finitely many points x1, . . . , xn ∈ A such that A ⊂⋃ni=1Bε(xi).
Evidently, compact sets are totally bounded. In Polish spaces, a partial converse is
true.

Lemma 13.2 Let (E, τ) be a Polish space with complete metric d . A subset A⊂E
is totally bounded with respect to d if and only if A is relatively compact.

Proof This is left as an exercise. �

In the following, let (E, τ) be a topological space with Borel σ -algebra E =
B(E) := σ(τ) and with complete metric d . For measures on (E,E), we introduce
the following notions of regularity.

Definition 13.3 A σ -finite measure μ on (E,E) is called

(i) locally finite or a Borel measure if, for any point x ∈ E, there exists an open
neighborhood U � x such that μ(U) <∞,

(ii) inner regular if

μ(A)= sup
{
μ(K) :K ⊂A is compact

}
for all A ∈ E, (13.1)

(iii) outer regular if

μ(A)= inf
{
μ(U) :U ⊃A is open

}
for all A ∈ E, (13.2)

(iv) regular if μ is inner and outer regular, and
(v) a Radon measure if μ is an inner regular Borel measure.

Definition 13.4 We introduce the following spaces of measures on E:

M(E) := {Radon measures on (E,E)
}
,

Mf (E) :=
{
finite measures on (E,E)

}
,

M1(E) :=
{
μ ∈Mf (E) : μ(E)= 1

}
,

M≤1(E) :=
{
μ ∈Mf (E) : μ(E)≤ 1

}
.

The elements of M≤1(E) are called sub-probability measures on E.
Further, we agree on the following notation for spaces of continuous functions:

C(E) := {f :E→R is continuous},
Cb(E) :=

{
f ∈C(E) is bounded

}
,

Cc(E) :=
{
f ∈C(E) has compact support

}⊂ Cb(E).

Recall that the support of a real function f is f−1(R \ {0}).
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Unless otherwise stated, the vector spaces C(E), Cb(E) and Cc(E) are equipped
with the supremum norm.

Lemma 13.5 If E is Polish and μ ∈Mf (E), then for any ε > 0, there is a compact
set K ⊂E with μ(E \K) < ε.

Proof Let ε > 0. For each n ∈ N, there exists a sequence xn1 , x
n
2 , . . . ∈ E with E =

⋃∞
i=1B1/n(x

n
i ). Fix Nn ∈N such that μ(E \⋃Nni=1B1/n(x

n
i )) <

ε
2n . Define

A :=
∞⋂

n=1

Nn⋃

i=1

B1/n
(
xni
)
.

By construction,A is totally bounded. SinceE is Polish,A is compact. Furthermore,
it follows that μ(E \A)≤ μ(E \A) <∑∞

n=1 ε2
−n = ε. �

Theorem 13.6 If E is Polish and if μ ∈Mf (E), then μ is regular. In particular,
in this case, Mf (E)⊂M(E).

Proof (Outer regularity) Step 1. Let B ⊂ E be closed and let ε > 0. Let d be a
complete metric on E. For δ > 0, let

Bδ :=
{
x ∈E : d(x,B) < δ}

be the open δ-neighborhood of B . As B is closed, we have
⋂
δ>0Bδ = B . Since μ is

upper semicontinuous (Theorem 1.36), there is a δ > 0 such that μ(Bδ)≤ μ(B)+ε.
Step 2. Let B ∈ E and ε > 0. Consider the class of sets

A := {V ∩C : V ⊂E open, C ⊂E closed}.
Clearly, we have E = σ(A). It is easy to check that A is a semiring. Hence by the
approximation theorem for measures (Theorem 1.65), there are mutually disjoint
sets An = Vn ∩ Cn ∈A, n ∈ N, such that B ⊂ A :=⋃∞

n=1An and μ(A) ≤ μ(B)+
ε/2. As shown in the first step, for any n ∈ N, there is an open set Wn ⊃ Cn such
that μ(Wn)≤ μ(Cn)+ ε2−n−1. Hence also Un := Vn ∩Wn is open. Let B ⊂ U :=⋃∞
n=1Un. We conclude that μ(U)≤ μ(A)+∑∞

n=1 ε2
−n−1 ≤ μ(B)+ ε.

(Inner regularity) Replacing B by Bc , the outer regularity yields the existence
of a closed set D ⊂ B with μ(B \D) < ε/2. By Lemma 13.5, there exists a com-
pact set K with μ(Kc) < ε/2. Define C = D ∩ K . Then C ⊂ B is compact and
μ(B \C) < ε. Hence μ is also inner regular. �

Corollary 13.7 The Lebesgue measure λ on R
d is a regular Radon measure. How-

ever, not all σ -finite measures on R
d are regular.

Proof Clearly, Rd is Polish and λ is locally finite. Let A ∈ B(Rd) and ε > 0. There
is an increasing sequence (Kn)n∈N of compact sets with Kn ↑ R

d . Since any Kn is



13.1 A Topology Primer 249

bounded, we have λ(Kn) <∞. Hence, by the preceding theorem, for any n ∈ N,
there exists an open set Un ⊃ A ∩Kn with λ(Un \ A) < ε/2n. Thus λ(U \ A) < ε
for the open set U :=⋃n∈NUn.

If λ(A) <∞, then there exists an n ∈ N with λ(A \Kn) < ε/2. By the preced-
ing theorem, there exists a compact set C ⊂ A ∩Kn with λ((A ∩Kn) \ C) < ε/2.
Therefore, λ(A \C) < ε.

If, on the other hand, λ(A)=∞, then for any L> 0, we have to find a compact

setC ⊂Awith λ(C) > L. However, λ(A∩Kn) n→∞−→ ∞; hence there exists an n ∈N

with λ(A ∩Kn) > L+ 1. By what we have shown already, there exists a compact
set C ⊂A∩Kn with λ((A∩Kn) \C) < 1; hence λ(C) > L.

Finally, consider the measure μ =∑q∈Q δq . Clearly, this measure is σ -finite;
however, it is neither locally finite nor outer regular. �

Definition 13.8 Let (E,dE) and (F, dF ) be metric spaces. A function f : E→
F is called Lipschitz continuous if there exists a constant K <∞, the so-called
Lipschitz constant, with dF (f (x), f (y))≤K · dE(x, y) for all x, y ∈E. Denote by
LipK(E;F) the space of Lipschitz continuous functions with constant K and by
Lip(E;F)=⋃K>0 LipK(E;F) the space of Lipschitz continuous functions on E.

We abbreviate LipK(E) := LipK(E;R) and Lip(E) := Lip(E;R).

Definition 13.9 Let F ⊂M(E) be a family of Radon measures. A family C of
measurable mapsE→R is called a separating family for F if, for any two measures
μ,ν ∈F , the following holds:

(∫

f dμ=
∫

f dν for all f ∈ C ∩L1(μ)∩L1(ν)

)

=⇒ μ= ν.

Lemma 13.10 Let (E,d) be a metric space. For any closed set A ⊂ E and any
ε > 0, there is a Lipschitz continuous map ρA,ε :E→[0,1] with

ρA,ε(x)=
{

1, if x ∈A,
0, if d(x,A)≥ ε.

Proof Let ϕ : R → [0,1], t �→ (t ∨ 0) ∧ 1. For x ∈ E, define ρA,ε(x) = 1 −
ϕ(ε−1d(x,A)). �

Theorem 13.11 Let (E,d) be a metric space.

(i) Lip1(E; [0,1]) is separating for M(E).
(ii) If, in addition, E is locally compact, then Cc(E)∩Lip1(E; [0,1]) is separating

for M(E).

Proof (i) Assume μ1,μ2 ∈M(E) are measures with
∫
f dμ1 =

∫
f dμ2 for all

f ∈ Lip1(E; [0,1]). If A ∈ E , then μi(A)= sup{μi(K) :K ⊂ A is compact} since
the Radon measure μi is inner regular (i = 1,2). Hence, it is enough to show that
μ1(K)= μ2(K) for any compact set K .
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Now let K ⊂E be compact. Since μ1 and μ2 are locally finite, for every x ∈K ,
there exists an open set Ux � x with μ1(Ux) <∞ and μ2(Ux) <∞. Since K is
compact, we can find finitely many points x1, . . . , xn ∈ K such that K ⊂ U :=⋃n
j=1Uxj . By construction, μi(U) <∞; hence 1U ∈ L1(μi) for i = 1,2. Since

Uc is closed and since Uc ∩ K = ∅, we get δ := d(Uc,K) > 0. Let ρK,ε be the
map from Lemma 13.10. Hence 1K ≤ ρK,ε ≤ 1U ∈ L1(μi) if ε ∈ (0, δ). Since

ρK,ε
ε→0−→ 1K , we get by dominated convergence (Corollary 6.26) that μi(K) =

limε→0
∫
ρK,ε dμi . However, ερK,ε ∈ Lip1(E; [0,1]) for all ε > 0; hence, by as-

sumption,
∫

ρK,ε dμ1 = ε−1
∫

(ερK,ε) dμ1 = ε−1
∫

(ερK,ε) dμ2 =
∫

ρK,ε dμ2.

This implies μ1(K)= μ2(K); hence μ1 = μ2.
(ii) If E is locally compact, then in (i) we can choose the neighborhoods Ux to be

relatively compact. Hence U is relatively compact; thus ρK,ε has compact support
and is thus in Cc(E) for all ε ∈ (0, δ). �

Exercise 13.1.1

(i) Show that C([0,1]) has a separable dense subset.
(ii) Show that the space (Cb([0,∞)),‖ · ‖∞) of bounded continuous functions,

equipped with the supremum norm, is not separable.
(iii) Show that the space Cc([0,∞)) of continuous functions with compact support,

equipped with the supremum norm, is separable.

Exercise 13.1.2 Let μ be a locally finite measure. Show that μ(K) <∞ for any
compact set K .

Exercise 13.1.3 (Lusin’s theorem) Let Ω be a Polish space, let μ be a σ -finite
measure on (Ω,B(Ω)) and let f :Ω→ R be a map. Show that the following two
statements are equivalent:

(i) There is a Borel measurable map g :Ω→R with f = g μ-almost everywhere.
(ii) For any ε > 0, there is a compact set Kε with μ(Ω \ Kε) < ε such that the

restricted function f |Kε is continuous.

Exercise 13.1.4 Let U be a family of intervals in R such that W :=⋃U∈U U has
finite Lebesgue measure λ(W). Show that for any ε > 0, there exist finitely many
pairwise disjoint sets U1, . . . ,Un ∈ U with

n∑

i=1

λ(Ui) >
1− ε

3
λ(W).

Hint: Choose a finite family U ′ ⊂ U such that
⋃
U∈U ′ U has Lebesgue measure at

least (1− ε)λ(W). Choose a maximal sequence U ′′ (sorted by decreasing lengths)
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of disjoint intervals and show that each U ∈ U ′ is in (x − 3a, x + 3a) for some
(x − a, x + a) ∈ U ′′.

Exercise 13.1.5 Let C ⊂ R
d be an open, bounded and convex set and assume that

U ⊂ {x + rC : x ∈R
d, r > 0} is such that W :=⋃U∈U U has finite Lebesgue mea-

sure λd(W). Show that for any ε > 0, there exist finitely many pairwise disjoint sets
U1, . . . ,Un ∈ U such that

n∑

i=1

λd(Ui) >
1− ε

3d
λ(W).

Show by a counterexample that the condition of similarity of the open sets in U is
essential.

Exercise 13.1.6 Let μ be a Radon measure on R
d and let A ∈ B(Rd) be a μ-null

set. Let C ⊂ R
d be bounded, convex and open with 0 ∈ C. Use Exercise 13.1.5 to

show that

lim
r↓0

μ(x + rC)
rd

= 0 for λd -almost all x ∈A.

Conclude that if F is the distribution function of a Stieltjes measure μ on R and if
A ∈ B(R) is a μ-null set, then d

dx
F (x)= 0 for λ-almost all x ∈A.

Exercise 13.1.7 (Fundamental theorem of calculus) (Compare [37].) Let f ∈
L1(Rd), μ= f λd and let C ⊂ R

d be open, convex and bounded with 0 ∈ C. Show
that

lim
r↓0

μ(x + rC)
rdλd(C)

= f (x) for λd -almost all x ∈R
d .

For the case d = 1, conclude the fundamental theorem of calculus:

d

dx

∫

[0,x]
f dλ= f (x) for λ-almost all x ∈R.

Hint: Use Exercise 13.1.6 with

μq(dx)= (f (x)− q)+λd(dx) for q ∈Q,

as well as the inequality

μ(x + rC)
rdλd(C)

≤ q + μq(x + rC)
rdλd(C)

.

Exercise 13.1.8 Similarly as in Corollary 13.7, show the following: Let E be a σ -
compact polish space and let μ be a measure on E. Then μ is a Radon measure if
and only if μ(K) <∞ for any compact K ⊂E.
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13.2 Weak and Vague Convergence

In Theorem 13.11, we saw that integrals of bounded continuous functions f de-
termine a Radon measure on a metric space (E,d). If E is locally compact, it is
enough to consider f with compact support. This suggests that we can use Cb(E)
and Cc(E) as classes of test functions in order to define the convergence of mea-
sures.

Definition 13.12 (Weak and vague convergence) Let E be a metric space.

(i) Let μ,μ1,μ2, . . . ∈Mf (E). We say that (μn)n∈N converges weakly to μ,

formally μn
n→∞−→ μ (weakly) or μ=w-limn→∞μn, if
∫

f dμn
n→∞−→

∫

f dμ for all f ∈ Cb(E).

(ii) Let μ,μ1,μ2, . . . ∈M(E). We say that (μn)n∈N converges vaguely to μ,

formally μn
n→∞−→ μ (vaguely) or μ= v-limn→∞μn, if
∫

f dμn
n→∞−→

∫

f dμ for any f ∈Cc(E).

Remark 13.13 If E is Polish, then by Theorems 13.6 and 13.11, the weak limit is
unique. The same holds for the vague limit if E is locally compact. ♦

Remark 13.14

(i) In functional analysis the notion of weak convergence is somewhat different.
Starting from a normed vector space X (here the space of finite signed mea-
sures with the total variation norm), consider the space X′ of continuous linear
functionals X→ R. The sequence (μn) in X converges weakly to μ ∈ X, if

Φ(μn)
n→∞−→ Φ(μ) for every Φ ∈X′. In the case of finite signed measures this

is equivalent to: (μn) is bounded and μn(A)
n→∞−→ μ(A) for any measurable

A (see [38, Theorem IV.9.5]). Comparing this to Theorem 13.16(vi), we see
that the functional analysis notion of weak convergence is stronger than ours
in Definition 13.12.

(ii) Weak convergence (as introduced in Definition 13.12) induces on Mf (E) the
weak topology τw . This is the coarsest topology such that for all f ∈ Cb(E), the
map Mf (E)→R, μ �→ ∫ f dμ is continuous. In functional analysis, τw cor-
responds to the so-called weak∗-topology. Starting from a normed vector space
X (here X = Cb(E) with the norm ‖ · ‖∞), we define the weak∗-topology

on the dual space X′ by writing μn
n→∞−→ μ if and only if μn(x)

n→∞−→ μ(x)

for all x ∈ X. Clearly, each μ defines a continuous linear form on Cb(E) by
f �→ μ(f ) := ∫ f dμ. Hence Mf (E) ⊂ Cb(E)′. This implies that τw is the
trace of the weak∗-topology on Mf (E).
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(iii) If E is separable, then it can be shown that (Mf (E), τw) is metrizable; for
example, by virtue of the so-called Prohorov metric. This is defined by

dP (μ, ν) :=max
{
d ′P (μ, ν), d ′P (ν,μ)

}
, (13.3)

where

d ′P (μ, ν) := inf
{
ε > 0 : μ(B)≤ ν(Bε)+ ε for any B ∈ B(E)

}
, (13.4)

and where Bε = {x : d(x,B) < ε}; see, e.g., [14, Appendix III, Theorem 5].
(It can be shown that d ′P (μ, ν) = d ′P (ν,μ) if μ,ν ∈M1(E).) If E is locally
compact and Polish, then (Mf (E), τw) is again Polish (see [136, p. 167]).

(iv) Similarly, the vague topology τv on M(E) is the coarsest topology such that
for all f ∈ Cc(E), the map M(E)→ R, μ �→ ∫ f dμ is continuous. If E is
locally compact, then (M(E), τv) is a Hausdorff space. If, in addition, E is
Polish, then (M(E), τv) is again Polish (see, e.g., [82, Section 15.7]). ♦

While weak convergence implies convergence of the total masses (since 1 ∈
Cb(E)), with vague convergence a mass defect (but not a mass gain) can be ex-
perienced in the limit.

Lemma 13.15 Let E be a locally compact Polish space and let μ,μ1,μ2, . . . ∈
M(E) be measures such that μn

n→∞−→ μ vaguely. Then

μ(E)≤ lim inf
n→∞ μn(E).

Proof Let (fN)N∈N be a sequence in Cc(E; [0,1]) with fN ↑ 1. Then

μ(E)= sup
N∈N

∫

fN dμ

= sup
N∈N

lim
n→∞

∫

fN dμn

≤ lim inf
n→∞ sup

N∈N

∫

fN dμn

= lim inf
n→∞ μn(E). �

Clearly, the sequence (δ1/n)n∈N of probability measures on R converges weakly
to δ0; however, not in total variation norm. Indeed, for the closed set (−∞,0],
we have limn→∞ δ1/n((−∞,0])= 0< 1= δ0((−∞,0]). Loosely speaking, at the
boundaries of closed sets, mass can immigrate but not emigrate. The opposite is true
for open sets: limn→∞ δ1/n((0,∞))= 1> 0= δ0((0,∞)). Here mass can emigrate
but not immigrate. In fact, weak convergence can be characterized by this property.
In the following theorem, a whole bunch of such statements will be hung on a coat
hanger (French: portemanteau).
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For measurable g : Ω → R, let Ug be the set of points of discontinuity of g.
Recall from Exercise 1.1.3 that Ug is Borel measurable.

Theorem 13.16 (Portemanteau) Let E be a metric space and let μ,μ1,μ2, . . . ∈
M≤1(E). The following are equivalent.

(i) μ=w-limn→∞μn.
(ii)
∫
f dμn

n→∞−→ ∫
f dμ for all bounded Lipschitz continuous f .

(iii)
∫
f dμn

n→∞−→ ∫
f dμ for all bounded measurable f with μ(Uf )= 0.

(iv) lim infn→∞μn(E) ≥ μ(E) and lim supn→∞μn(F ) ≤ μ(F) for all closed
F ⊂E.

(v) lim supn→∞μn(E) ≤ μ(E) and lim infn→∞μn(G) ≥ μ(G) for all open
G⊂E.

(vi) limn→∞μn(A)= μ(A) for all measurable A with μ(∂A)= 0.

If E is locally compact and Polish, then in addition each of the following is equiv-
alent to the previous statements.

(vii) μ= v-limn→∞μn and μ(E)= limn→∞μn(E).
(viii) μ= v-limn→∞μn and μ(E)≥ lim supn→∞μn(E).

Proof “(iv)⇐⇒ (v)=⇒(vi)” This is trivial.
“(iii) =⇒(i)=⇒(ii)” This is trivial.
“(ii) =⇒(iv)” Convergence of the total masses follows by using the test function

1 ∈ Lip(E; [0,1]). Let F be closed and let ρF,ε be as in Lemma 13.10. Then

lim sup
n→∞

μn(F )≤ inf
ε>0

lim
n→∞

∫

ρF,ε dμn = inf
ε>0

∫

ρF,ε dμ= μ(F)

since ρF,ε(x)
ε→0−→ 1F (x) for all x ∈E.

“(viii) =⇒(vii)” This is obvious by Lemma 13.15.
“(i) =⇒(vii)” This is clear since Cc(E)⊂ Cb(E) and 1 ∈ Cb(E).
“(vii)=⇒(v)” LetG be open and ε > 0. Since μ is inner regular (Theorem 13.6),

there is a compact setK ⊂Gwith μ(G)−μ(K) < ε. AsE is locally compact, there
is a compact set L with K ⊂ L◦ ⊂ L⊂G. Let δ := d(K,Lc) > 0 and let ρK,δ be as
in Lemma 13.10. Then 1K ≤ ρK,δ ≤ 1L; hence ρK,δ ∈Cc(E) and thus

lim inf
n→∞ μn(G)≥ lim inf

n→∞

∫

ρK,δ dμn =
∫

ρK,δ dμ≥ μ(K)≥ μ(G)− ε.

Letting ε→ 0, we get (v).
“(vi) =⇒(iii)” Let f :E→R be bounded and measurable with μ(Uf )= 0. We

make the elementary observation that for all D ⊂R,

∂f−1(D)⊂ f−1(∂D)∪Uf . (13.5)

Indeed, if f is continuous at x ∈ E, then for any δ > 0, there is an ε(δ) > 0 with
f (Bε(δ)(x)) ⊂ Bδ(f (x)). If x ∈ ∂f−1(D), then there are y ∈ f−1(D) ∩ Bε(δ)(x)
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and z ∈ f−1(Dc) ∩ Bε(δ)(x). Therefore, f (y) ∈ Bδ(f (x)) ∩ D �= ∅ and f (z) ∈
Bδ(f (x))∩Dc �= ∅; hence f (x) ∈ ∂D.

Let ε > 0. Evidently, the set A := {y ∈ R : μ(f−1({y})) > 0} of atoms of the
finite measure μ ◦ f−1 is at most countable. Hence, there exist N ∈ N and y0 ≤
−‖f ‖∞ < y1 < . . . < yN−1 < ‖f ‖∞ < yN such that

yi ∈R \A and |yi+1 − yi |< ε for all i.

Let Ei = f−1([yi−1, yi)) for i = 1, . . . ,N . Then E =⊎Ni=1Ei and by (13.5),

μ(∂Ei)≤ μ
(
f−1({yi−1}

))+μ(f−1({yi}
))+μ(Uf )= 0.

Therefore,

lim sup
n→∞

∫

f dμn ≤ lim sup
n→∞

N∑

i=1

μn(Ei) · yi =
N∑

i=1

μ(Ei) · yi

≤ ε+
∫

f dμ.

We let ε→ 0 and obtain lim supn→∞
∫
f dμn ≤

∫
f dμ. Finally, consider (−f ) to

obtain the reverse inequality lim infn→∞
∫
f dμn ≥

∫
f dμ. �

Definition 13.17 Let X,X1,X2, . . . be random variables with values in E. We say

that (Xn)n∈N converges in distribution to X, formally Xn
D−→ X or Xn

n→∞=⇒ X,
if the distributions converge weakly and hence if PX =w-limn→∞ PXn . Sometimes

we write Xn
D−→ PX or Xn

n→∞=⇒ PX if we want to specify only the distribution PX
but not the random variable X.

Theorem 13.18 (Slutzky’s theorem) Let X,X1,X2, . . . and Y1, Y2, . . . be random

variables with values in E. Assume Xn
D−→X and d(Xn,Yn)

n→∞−→ 0 in probability.

Then Yn
D−→X.

Proof Let f :E→R be bounded and Lipschitz continuous with constant K . Then

∣
∣f (x)− f (y)∣∣≤Kd(x, y)∧ 2‖f ‖∞ for all x, y ∈E.

Dominated convergence yields lim supn→∞E[|f (Xn) − f (Yn)|] = 0. Hence we
have

lim sup
n→∞

∣
∣E
[
f (Yn)

]−E
[
f (X)

]∣
∣

≤ lim sup
n→∞

∣
∣E
[
f (X)

]−E
[
f (Xn)

]∣
∣+ lim sup

n→∞
∣
∣E
[
f (Xn)− f (Yn)

]∣
∣= 0. �
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Corollary 13.19 If Xn
n→∞−→ X in probability, then Xn

D−→ X, n→∞. The con-
verse is false in general.

Example 13.20 If X,X1,X2, . . . are i.i.d. (with nontrivial distribution), then triv-

ially Xn
D−→X but not Xn

n→∞−→ X in probability.
Recall the definition of a distribution function of a probability measure from

Definition 1.59. ♦

Definition 13.21 Let F,F1,F2, . . . be distribution functions of probability mea-
sures on R. We say that (Fn)n∈N converges weakly to F , formally Fn

n→∞=⇒ F ,

Fn
D−→ F or F =w-limn→∞Fn, if

F(x)= lim
n→∞Fn(x) for all points of continuity x of F. (13.6)

If F,F1,F2, . . . are distribution functions of sub-probability measures, then we de-
fine F(∞) := limx→∞ F(x) and for weak convergence require in addition F(∞)≥
lim supn→∞Fn(∞).

Note that (13.6) implies F(∞) ≤ lim infn→∞Fn(∞). Hence, if Fn
D−→ F , then

F(∞)= limn→∞Fn(∞).

Example 13.22 If F is the distribution function of a probability measure on R and
Fn(x) := F(x+n) for x ∈R, then (Fn)n∈N converges pointwise to 1. However, this
is not a distribution function, as 1 does not converge to 0 for x→−∞. On the other
hand, if Gn(x)= F(x − n), then (Gn)n∈N converges pointwise to G≡ 0. However,
G(∞) = 0 < lim supn→∞Gn(∞) = 1; hence we do not have weak convergence
here either. Indeed, in each case, there is a mass defect in the limit (in the case of
the Fn on the left and in the case of the Gn on the right). However, the definition
of weak convergence of distribution functions is constructed so that no mass defect
occurs in the limit. ♦

Theorem 13.23 Let μ,μ1,μ2, . . . ∈ M≤1(R) with corresponding distribution
functions F,F1,F2, . . . . The following are equivalent.

(i) μ=w-limn→∞μn.

(ii) Fn
D−→ F .

Proof “(i)=⇒(ii)” Let F be continuous at x. Then μ(∂(−∞, x])= μ({x})= 0. By

Theorem 13.16, Fn(x)= μn((−∞, x]) n→∞−→ μ((−∞, x])= F(x).
“(ii)=⇒(i)” Let f ∈ Lip1(R; [0,1]). By Theorem 13.16, it is enough to show that

∫

f dμn
n→∞−→

∫

f dμ. (13.7)
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Let ε > 0. Fix N ∈N and choose N + 1 points of continuity y0 < y1 < . . . < yN of
F such that F(y0) < ε, F(yN) > F(∞)− ε and yi − yi−1 < ε for all i. Then

∫

f dμn ≤
(
Fn(y0)+ Fn(∞)− Fn(yN)

)

+
N∑

i=1

(
f (yi)+ ε

)(
Fn(yi)− Fn(yi−1)

)
.

By assumption, limn→∞Fn(∞) = F(∞) and Fn(yi)
n→∞−→ F(yi) for every i =

0, . . . ,N ; hence

lim sup
n→∞

∫

f dμn ≤ 3ε+
N∑

i=1

f (yi)
(
F(yi)− F(yi−1)

)≤ 4ε+
∫

f dμ.

Therefore,

lim sup
n→∞

∫

f dμn ≤
∫

f dμ.

Replacing f by (1− f ), we get (13.7). �

Corollary 13.24 Let X,X1,X2, . . . be real random variables with distribution
functions F,F1,F2, . . . . Then the following are equivalent.

(i) Xn
D−→X.

(ii) E[f (Xn)] n→∞−→ E[f (X)] for all f ∈ Cb(R).
(iii) Fn

D−→ F .

How stable is weak convergence if we pass to image measures under some
map ϕ? Clearly, we need a certain continuity of ϕ at least at those points where
the limit measure puts mass. The following theorem formalizes this idea and will
come in handy in many applications.

Theorem 13.25 (Continuous mapping theorem) Let (E1, d1) and (E2, d2) be met-
ric spaces and let ϕ : E1 → E2 be measurable. Denote by Uϕ the set of points of
discontinuity of ϕ.

(i) If μ,μ1,μ2, . . . ∈M≤1(E1) with μ(Uϕ) = 0 and μn
n→∞−→ μ weakly, then

μn ◦ ϕ−1 n→∞−→ μ ◦ ϕ−1 weakly.
(ii) If X,X1,X2, . . . are E1-valued random variables with P[X ∈ Uϕ] = 0 and

Xn
D−→X, then ϕ(Xn)

D−→ ϕ(X).

Proof First note that Uϕ ⊂ E1 is Borel measurable by Exercise 1.1.3. Hence the
conditions make sense.
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(i) Let f ∈ Cb(E2). Then f ◦ ϕ is bounded and measurable and Uf ◦ϕ ⊂ Uϕ ;
hence μ(Uf ◦ϕ)= 0. By Theorem 13.16,

lim
n→∞

∫

f d
(
μn ◦ ϕ−1)= lim

n→∞

∫

(f ◦ ϕ)dμn

=
∫

(f ◦ ϕ)dμ=
∫

f d
(
μ ◦ ϕ−1).

(ii) This is obvious since Pϕ(X) = PX ◦ ϕ−1. �

Exercise 13.2.1 Recall d ′P from (13.4). Show that dP (μ, ν)= d ′P (μ, ν)= d ′P (ν,μ)
for all μ,ν ∈M1(E).

Exercise 13.2.2 Show that the topology of weak convergence on Mf (E) is coarser
than the topology induced on Mf (E) by the total variation norm (see Corol-

lary 7.45). That is, ‖μn −μ‖TV
n→∞−→ 0 implies μn

n→∞−→ μ weakly.

Exercise 13.2.3 LetE =R and μn = 1
n

∑n
k=0 δk/n. Let μ= λ|[0,1] be the Lebesgue

measure restricted to [0,1]. Show that μ=w-limn→∞μn.

Exercise 13.2.4 Let E = R and λ be the Lebesgue measure on R. For n ∈ N, let
μn = λ|[−n,n]. Show that λ = v-limn→∞μn but that (μn)n∈N does not converge
weakly.

Exercise 13.2.5 Let E = R and μn = δn for n ∈ N. Show that v-limn→∞μn = 0
but that (μn)n∈N does not converge weakly.

Exercise 13.2.6 (Lévy metric) For two probability distribution functions F and G
on R, define the Lévy distance by

d(F,G)= inf
{
ε ≥ 0 :G(x − ε)− ε ≤ F(x)≤G(x + ε)+ ε for all x ∈R

}
.

Show the following:

(i) d is a metric on the set of distribution functions.
(ii) Fn

n→∞=⇒ F if and only if d(Fn,F )
n→∞−→ 0.

(iii) For every P ∈M1(R), there is a sequence (Pn)n∈N in M1(R) such that each
Pn has finite support and such that Pn

n→∞=⇒ P .

Exercise 13.2.7 We can extend the notions of weak convergence and vague conver-
gence to signed measures; that is, to differences ϕ := μ+ − μ− of measures from
Mf (E) and M(E), respectively, by repeating the words of Definition 13.12 for
these classes. Show that the topology of weak convergence is not metrizable in gen-
eral.

Hint: Consider E = [0,1].
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(i) For n ∈ N, define ϕn = δ1/n − δ2/n. Show that, for any C > 0, (Cϕn)n∈N con-
verges weakly to the zero measure.

(ii) Assume there is a metric that induces weak convergence. Show that then there
would be a sequence (Cn)n∈N with Cn ↑∞ and 0=w-limn→∞(Cnϕn).

(iii) Choose an f ∈C([0,1]) with f (2−n)= (−1)nC−1/2
n for any n ∈N, and show

that (
∫
f d(Cnϕn))n∈N does not converge to zero.

(iv) Use this construction to contradict the assumption of metrizability.

Exercise 13.2.8 Show that (13.3) defines a metric on M1(E) and that this metric
induces the topology of weak convergence.

Exercise 13.2.9 Show the implication “(vi)=⇒(iv)” of Theorem 13.16 directly.

Exercise 13.2.10 Let X,X1,X2, . . . and Y1, Y2, . . . be real random variables. As-

sume PYn =N0,1/n for all n ∈N. Show thatXn
D−→X if and only ifXn+Yn D−→X.

Exercise 13.2.11 For each n ∈ N, let Xn be a geometrically distributed random
variable with parameter pn ∈ (0,1). How must we choose the sequence (pn)n∈N in
order that PXn/n converges weakly to the exponential distribution with parameter
α > 0?

Exercise 13.2.12 Let X,X1,X2, . . . be real random variables with Xn
n→∞=⇒ X.

Show the following.

(i) E[|X|] ≤ lim infn→∞E[|Xn|].
(ii) Let r > p > 0. If supn∈N E[|Xn|r ]<∞, then E[|X|p] = limn→∞E[|Xn|p].

Exercise 13.2.13 Let F,F1,F2, . . . be probability distribution functions on R, and
assume Fn

n→∞=⇒ F . Let F−1(u) = inf{x ∈ R : F(x) ≥ u}, u ∈ (0,1), be the left
continuous inverse of F (see the proof of Theorem 1.104). Show that

F−1
n (u)

n→∞−→ F−1(u) at every point of continuity u of F−1.

Conclude that F−1(u)
n→∞−→ F−1(u) for Lebesgue almost all u ∈ (0,1).

Exercise 13.2.14 Let μ,μ1,μ2, . . . ∈M1(R) with μn
n→∞−→ μ weakly. Show that

there exists a probability space (Ω,A,P) and real random variables X,X1,X2, . . .

on (Ω,A,P) with distributions PX = μ and PXn = μn, n ∈N, such that

Xn
n→∞−→ X P-a.s.

Hint: Use Exercise 13.2.13.
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Exercise 13.2.15 Let (E,d) be a metric space and let μ,μ1,μ2, . . . be probability
measures on E. A measurable map f : E→ R is called uniformly integrable with
respect to (μn)n∈N, if

inf
a>0

sup
n∈N

∫

{|f |>a}
|f |dμn = 0.

Let f be continuous and uniformly integrable with respect to (μn)n∈N and assume

that μn
n→∞−→ μ weakly. Show that

∫ |f |dμ <∞ and that
∫

f dμn
n→∞−→

∫

f dμ.

Hint: Apply Exercise 13.2.14 to the image measures μn ◦ f−1.

13.3 Prohorov’s Theorem

In the following, let E be a Polish space with Borel σ -algebra E . A fundamental
question is: When does a sequence (μn)n∈N of measures on (E,E) converge weakly
or does at least have a weak limit point? Evidently, a necessary condition is that
(μn(E))n∈N is bounded. Hence, without loss of generality, we will consider only
sequences in M≤1(E). However, this condition is not sufficient for the existence of
weak limit points, as for example the sequence (δn)n∈N of probability measures on R

does not have a weak limit point (although it converges vaguely to the zero measure).
This example suggests that we also have to make sure that no mass “vanishes at
infinity”. The idea will be made precise by the notion of tightness.

We start this section by presenting as the main result Prohorov’s theorem [136].
We give the proof first for the special case E = R and then come to a couple of
applications. The full proof of the general case is deferred to the end of the section.

Definition 13.26 (Tightness) A family F ⊂Mf (E) is called tight if, for any
ε > 0, there exists a compact set K ⊂E such that

sup
{
μ(E \K) : μ ∈F

}
< ε.

Remark 13.27 If E is Polish, then by Lemma 13.5, every singleton {μ} ⊂Mf (E)

is tight and thus so is every finite family. ♦

Example 13.28

(i) If E is compact, then M1(E) and M≤1(E) are tight.
(ii) If (Xi)i∈I is an arbitrary family of random variables with

C := sup
{
E
[|Xi |

] : i ∈ I}<∞,
then {PXi : i ∈ I } is tight. Indeed, for ε > 0 and K = [−C/ε,C/ε], by
Markov’s inequality, PXi (R \K)= P[|Xi |>C/ε] ≤ ε.
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(iii) The family (δn)n∈N of probability measures on R is not tight.
(iv) The family (U[−n,n])n∈N of uniform distributions on the intervals [−n,n], re-

garded as measures on R, is not tight. ♦

Recall that a family F of measures is called weakly relatively sequentially com-
pact if every sequence in F has a weak limit point (in the closure of F ).

Theorem 13.29 (Prohorov’s theorem (1956)) Let (E,d) be a metric space and
F ⊂M≤1(E). Then:

(i) F is tight =⇒ F is weakly relatively sequentially compact.
(ii) If E is Polish, then also the converse holds:

F is tight ⇐= F is weakly relatively sequentially compact.

Corollary 13.30 Let E be a compact metric space. Then the sets M≤1(E) and
M1(E) are weakly sequentially compact.

Corollary 13.31 If E is a locally compact separable metric space, then M≤1(E)

is vaguely sequentially compact.

Proof Let x1, x2, . . . be dense in E. As E is locally compact, for each n ∈ N, there
exists an open neighborhood Un � xn whose closure Un is compact. Hence, also
Vn :=⋃ni=1 Vi is relatively compact for each n ∈ N. This implies that N(K) :=
min{m : K ⊂ Vm} is finite for any compact K ⊂ E. Inductively define W1 := V1
and Wn+1 :=WN(V n), n ∈ N. Then Wn is open, Wn is compact, and Wn ⊂Wn+1
for all n ∈N. Furthermore, we have Wn ↑E.

Applying Prohorov’s theorem (i.e., Corollary 13.30) to the measures
(μk1Wn)k∈N, for each n ∈ N, we can choose a sequence (knl )l∈N and a measure

μ̃n := w-liml→∞μknl 1Wn whose support lies in Wn. We may assume that the se-

quences (knl )l∈N were chosen successively such that (kn+1
l ) is a subsequence of (knl ).

Note that we have μ̃n(Wn)≤ μ̃n+1(Wn), but equality does not hold in general.
For f ∈ Cc(E), there exists an n0 ∈N such that the support of f is contained in

Wn0 . Hence, for m≥ n≥ n0, we have
∫

f dμ̃n = lim
l→∞

∫

f 1Wn dμknl

= lim
l→∞

∫

f 1Wn dμkml

= lim
l→∞

∫

f 1Wm dμkml =
∫

f dμ̃m

and thus
∫

f dμ̃n = lim
m→∞

∫

f dμkmm .
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This implies that for any measurable relatively compact set A⊂E, we have

μ̃m(A)= μ̃N(A) for any m≥N(A).
For any measurable set A⊂E, define

μ(A) := sup
n∈N

sup
m>n

μ̃m(A∩Wn)= sup
n∈N
μ̃n+1(A∩Wn).

It is easy to check that μ is a lower semicontinuous content and is hence a measure
(see Theorem 1.36). By construction, for any f ∈ Cc(E), we infer

∫

f dμ= lim
n→∞

∫

f dμknn .

Concluding, we have μ= v-limn→∞μknn . �

Remark 13.32 The implication (ii) in Theorem 13.29 is less useful but a lot simpler
to prove. Here we need that E is Polish since clearly every singleton is weakly
compact but is tight only under additional assumptions; for example, if E is Polish
(see Lemma 13.5). ♦

Proof of Theorem 13.29(ii) We start as in the proof of Lemma 13.5. Let
{x1, x2, . . .} ⊂E be dense. For n ∈N, define An,N :=⋃Ni=1B1/n(xi). Then An,N ↑
E for N→∞ for all n ∈N. Let

δ := sup
n∈N

inf
N∈N sup

μ∈F
μ
(
Acn,N

)
.

Then there is an n ∈N such that for anyN ∈N, there is a μN ∈F with μN(Acn,N )≥
δ/2. As F is weakly relatively sequentially compact, (μN)N∈N has a weakly con-
vergent subsequence (μNk )k∈N whose weak limit will be denoted by μ ∈M≤1(E).
By the Portemanteau theorem (Theorem 13.16(iv)), for any N ∈N,

μ
(
Acn,N

)≥ lim inf
k→∞ μNk

(
Acn,N

)≥ lim inf
k→∞ μNk

(
Acn,Nk

)≥ δ/2.

On the other hand, Acn,N ↓ ∅ for N→∞; hence μ(Acn,N )
N→∞−→ 0. Thus δ = 0.

Now fix ε > 0. By the above, for any n ∈N, we can choose an N ′n ∈N such that
μ(Ac

n,N ′n
) < ε/2n for all μ ∈F . By construction, the set A :=⋂∞

n=1An,N ′n is totally
bounded and hence relatively compact. Further, for every μ ∈F ,

μ
(
(A)c
)≤ μ(Ac)≤

∞∑

n=1

μ
(
Acn,N ′n

)≤ ε.

Hence F is tight. �

The other implication in Prohorov’s theorem is more difficult to prove, especially
in the case of a general metric space. For this reason, we first give a proof only for
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the case E =R and come to applications before proving the difficult implication in
the general situation.

The problem consists in finding a candidate for a weak limit point. For distribu-
tions on R, the problem is equivalent to finding a weak limit point for a sequence
of distribution functions. Here Helly’s theorem is the tool. It is based on a diagonal
sequence argument that will be recycled later in the proof of Prohorov’s theorem in
the general case.

Let

V = {F :R→R is right continuous, monotone increasing and bounded}
be the set of distribution functions of finite measures on R.

Theorem 13.33 (Helly’s theorem) Let (Fn)n∈N be a uniformly bounded sequence
in V . Then there exists an F ∈ V and a subsequence (Fnk )k∈N with

Fnk (x)
k→∞−→ F(x) at all points of continuity of F.

Proof We use a diagonal sequence argument. Choose an enumeration of the rational
numbers Q = {q1, q2, q3, . . .}. By the Bolzano–Weierstraß theorem, the sequence
(Fn(q1))n∈N has a convergent subsequence (Fn1

k
(q1))k∈N. Analogously, we find a

subsequence (n2
k)k∈N of (n1

k)k∈N such that (Fn2
k
(q2))k∈N converges. Inductively, we

obtain subsequences (n1
k)⊃ (n2

k)⊃ (n3
k)⊃ . . . such that (Fnlk

(ql))k∈N converges for

all l ∈ N. Now define nk := nkk . Then (Fnk (q))k∈N converges for all q ∈Q. Define
F̃ (q)= limk→∞Fnk (q) and

F(x)= inf
{
F̃ (q) : q ∈Q with q > x

}
.

As F̃ is monotone increasing, F is right continuous and monotone increasing.
If F is continuous at x, then for every ε > 0, there exist numbers q−, q+ ∈ Q,

q− < x < q+ with F̃ (q−)≥ F(x)− ε and F̃ (q+)≤ F(x)+ ε. By construction,

lim sup
k→∞

Fnk (x)≤ lim
k→∞Fnk

(
q+
)= F̃ (q+)≤ F(x)+ ε.

Hence lim supk→∞Fnk (x) ≤ F(x). A similar argument for q− yields
lim infk→∞Fnk (x)≥ F(x). �

Proof of Theorem 13.29(i) for the case E = R Assume F is tight and (μn)n∈N is
a sequence in F with distribution functions Fn : x �→ μN((−∞, x]). By Helly’s
theorem, there is a monotone right continuous function F : R→ [0,1] and a sub-

sequence (Fnk )k∈N of (Fn)n∈N with Fnk (x)
k→∞−→ F(x) at all points of continuity x

of F . By Theorem 13.23, it is enough to show that F(∞)≥ lim supk→∞Fnk (∞).
As F is tight, for every ε > 0, there is a K < ∞ with Fn(∞) − Fn(x) <

ε for all n ∈ N and x > K . If x > K is a point of continuity of F , then
lim supk→∞Fnk (∞)≤ lim supk→∞Fnk (x)+ ε = F(x)+ ε ≤ F(∞)+ ε. �
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We come to a first application of Prohorov’s theorem. The full strength of that
theorem will become manifest when suitable separating classes of functions are at
our disposal. We come back to this point in more detail in Chapter 15.

Theorem 13.34 Let E be Polish and let μ,μ1,μ2, . . . ∈M≤1(E). Then the fol-
lowing are equivalent.

(i) μ=w-limn→∞μn.
(ii) (μn)n∈N is tight, and there is a separating family C ⊂ Cb(E) such that

∫

f dμ= lim
n→∞

∫

f dμn for all f ∈ C. (13.8)

Proof “(i)=⇒(ii)” By the simple implication in Prohorov’s theorem (Theo-
rem 13.29(ii)), weak convergence implies tightness.

“(ii)=⇒(i)” Let (μn)n∈N be tight and let C ⊂ Cb(E) be a separating class with
(13.8). Assume that (μn)n∈N does not converge weakly to μ. Then there are ε > 0,
f ∈Cb(E) and (nk)k∈N with nk ↑∞ and such that

∣
∣
∣
∣

∫

f dμnk −
∫

f dμ

∣
∣
∣
∣> ε for all k ∈N. (13.9)

By Prohorov’s theorem, there exists a ν ∈M≤1(E) and a subsequence (n′k)k∈N of
(nk)k∈N withμn′k → ν weakly. Due to (13.9), we have | ∫ f dμ−∫ f dν| ≥ ε; hence
μ �= ν. On the other hand,

∫

hdμ= lim
k→∞

∫

hdμn′k =
∫

hdν for all h ∈ C;

hence μ= ν. This contradicts the assumption and thus (i) holds. �

We want to shed some more light on the connection between weak and vague
convergence.

Theorem 13.35 Let E be a locally compact Polish space and let μ,μ1,μ2, . . .

∈Mf (E). Then the following are equivalent.

(i) μ=w-limn→∞μn.
(ii) μ= v-limn→∞μn and μ(E)= limn→∞μn(E).

(iii) μ= v-limn→∞μn and μ(E)≥ lim supn→∞μn(E).
(iv) μ= v-limn→∞μn and {μn,n ∈N} is tight.

Proof “(i) ⇐⇒ (ii) ⇐⇒ (iii)” This follows by the Portemanteau theorem.
“(ii) =⇒(iv)” It is enough to show that for any ε > 0, there is a compact set

K ⊂ E with lim supn→∞μn(E \K) ≤ ε. As μ is regular (Theorem 13.6), there is
a compact set L ⊂ E with μ(E \ L) < ε. Since E is locally compact, there exists
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a compact set K ⊂ E with K◦ ⊃ L and a ρL,K ∈ Cc(E) with 1L ≤ ρL,K(x)≤ 1K .
Therefore,

lim sup
n→∞

μn(E \K)≤ lim sup
n→∞

(

μn(E)−
∫

ρL,K dμn

)

= μ(E)−
∫

ρL,K dμ≤ μ(E \L) < ε.

“(iv) =⇒(i)” Let L ⊂ E be compact with μn(E \ L) ≤ 1 for all n ∈ N. Let
ρ ∈ Cc(E) with ρ ≥ 1L. Since

∫
ρ dμn converges by assumption, we thus have

sup
n∈N
μn(E)≤ 1+ sup

n∈N
μn(L)≤ 1+ sup

n∈N

∫

ρ dμn <∞.

Hence also

C :=max
(
μ(E), sup

{
μn(E) : n ∈N

})
<∞,

and we can pass to μ/C and μn/C. Thus, without loss of generality assume that
all measures are in M≤1(E). As Cc(E) is a separating class for M≤1(E) (see
Theorem 13.11), (i) follows by Theorem 13.34. �

Proof of Prohorov’s Theorem, Part (i), General Case There are two main routes
for proving Prohorov’s theorem in the general situation. One possibility is to show
the claim first for measures on R

d . (We have done this already for d = 1, see
Exercise 13.3.4 for d ≥ 2.) In a second step, the statement is lifted to sequence
spaces RN. Finally, in the third step, an embedding of E into R

N is constructed. For
a detailed description, see [12] or [83].

Here we follow the alternative route as described in [13] (and later [14]) or [44].
The main point of this proof consists in finding a candidate for a weak limit point
for the family F . This candidate will be constructed first as a content on a count-
able class of sets. From this an outer measure will be derived. Finally, we show
that closed sets are measurable with respect to this outer measure. As you see, the
argument follows a pattern similar to the proof of Carathéodory’s theorem.

Let (E,d) be a metric space and let F ⊂M≤1(E) be tight. Then there exists an
increasing sequenceK1 ⊂K2 ⊂K3 ⊂ . . . of compact sets inE such that μ(Kcn) <

1
n

for all μ ∈F and all n ∈N. Define E′ :=⋃∞
n=1Kn. Then E′ is a σ -compact metric

space and therefore in particular, separable. By construction, μ(E \E′)= 0 for all
μ ∈F . Thus, any μ can be regarded as a measure on E′. Without loss of generality,
we may hence assume that E is σ -compact and thus separable. Hence there exists a
countable base U of the topology τ |E on E; that is, a countable set U of open sets
such that A=⋃U∈U ,U⊂A U for any open A⊂E. Define

C′ := {U ∩Kn :U ∈ U , n ∈N}
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and

C :=
{
N⋃

n=1

Cn :N ∈N and C1, . . . ,CN ∈ C′
}

.

Clearly, C is a countable set of compact sets in E, and C is stable under formation
of unions. Any Kn possesses a finite covering with sets from U ; hence Kn ∈ C.

Now let (μn)n∈N be a sequence in F . By virtue of the diagonal sequence argu-
ment (see the proof of Helly’s theorem, Theorem 13.33), we can find a subsequence
(μnk )k∈N such that for all C ∈ C, there exists the limit

α(C) := lim
k→∞μnk (C). (13.10)

Assume that we can show that there is a measure μ on the Borel σ -algebra E of E
such that

μ(A)= sup
{
α(C) : C ∈ C with C ⊂A} for all A⊂E open. (13.11)

Then

μ(E)≥ sup
n∈N
α(Kn)= sup

n∈N
lim
k→∞μnk (Kn)

≥ sup
n∈N

lim sup
k→∞

(

μnk (E)−
1

n

)

= lim sup
k→∞

μnk (E).

Furthermore, for open A and for C ∈ C with C ⊂A,

α(C)= lim
k→∞μnk (C)≤ lim inf

k→∞ μnk (A),

hence μ(A)≤ lim infk→∞μnk (A). By the Portemanteau theorem (Theorem 13.16),
μ= w-limk→∞μnk ; hence F is recognized as weakly relatively sequentially com-
pact. It remains to show that there exists a measure μ on (E,E) that satisfies (13.11).

Clearly, the set function α on C is monotone, additive and subadditive:

α(C1)≤ α(C2), if C1 ⊂ C2,

α(C1 ∪C2)= α(C1)+ α(C2), if C1 ∩C2 = ∅,
α(C1 ∪C2)≤ α(C1)+ α(C2).

(13.12)

We define

β(A) := sup
{
α(C) :C ∈ C with C ⊂A} for A⊂E open

and

μ∗(G) := inf
{
β(A) :A⊃G is open

}
for G ∈ 2E.
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Manifestly, β(A)= μ∗(A) for any open A. It is enough to show (Steps 1–3 below)
that μ∗ is an outer measure (see Definition 1.46) and that (Step 4) the σ -algebra
of μ∗-measurable sets (see Definition 1.48 and Lemma 1.52) contains the closed
sets and thus E . Indeed, Lemma 1.52 would then imply that μ∗ is a measure on
the σ -algebra of μ∗-measurable sets and the restricted measure μ := μ∗|E fulfills
μ(A)= μ∗(A)= β(A) for all open A. Hence Eq. (13.11) holds.

Evidently, μ∗(∅) = 0 and μ∗ is monotone. In order to show that μ∗ is an outer
measure, it only remains to check that μ∗ is σ -subadditive.

Step 1 (Finite subadditivity of β) Let A1,A2 ⊂ E be open and let C ∈ C with
C ⊂A1 ∪A2. Let n ∈N with C ⊂Kn. Define two sets

B1 :=
{
x ∈ C : d(x,Ac1

)≥ d(x,Ac2
)}
,

B2 :=
{
x ∈ C : d(x,Ac1

)≤ d(x,Ac2
)}
.

Evidently, B1 ⊂A1 and B2 ⊂A2. As x �→ d(x,Aci ) is continuous for i = 1,2, the
closed subsets B1 and B2 of C are compact. Hence d(B1,A

c
1) > 0. Thus there ex-

ists an open set D1 with B1 ⊂D1 ⊂D1 ⊂A1. (One could choose D1 as the union
of the sets of a finite covering of B1 with balls of radius d(B1,A

c
1)/2. These balls,

as well as their closures, are subsets of A1.) Let UD1 := {U ∈ U : U ⊂D1}. Then
B1 ⊂D1 =⋃U∈UD1

U . Now choose a finite subcovering {U1, . . . ,UN } ⊂ UD1 of

B1 and define C1 :=⋃Ni=1Ui ∩Kn. Then B1 ⊂ C1 ⊂ A1 and C1 ∈ C. Similarly,
choose C2 ∈ C with B2 ⊂ C2 ⊂A2. Thus

α(C)≤ α(C1 ∪C2)≤ α(C1)+ α(C2)≤ β(A1)+ β(A2).

Hence also

β(A1 ∪A2)= sup
{
α(C) : C ∈ C with C ⊂A1 ∪A2

}

≤ β(A1)+ β(A2).

Step 2 (σ -subadditivity of β) Let A1,A2, . . . be open sets and let C ∈ C with C ⊂⋃∞
i=1Ai . As C is compact, there exists an n ∈ N with C ⊂⋃ni=1Ai . As shown

above, β is subadditive; thus

α(C)≤ β
(
n⋃

i=1

Ai

)

≤
∞∑

i=1

β(Ai).

Taking the supremum over such C yields

β

( ∞⋃

i=1

Ai

)

= sup

{

α(C) : C ∈ C with C ⊂
∞⋃

i=1

Ai

}

≤
∞∑

i=1

β(Ai).
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Step 3 (σ -subadditivity of μ∗) Let G1,G2, . . . ∈ 2E . Let ε > 0. For any n ∈ N

choose an open setAn ⊃Gn with β(An) < μ∗(Gn)+ε/2n. By the σ -subadditivity
of β ,

μ∗
( ∞⋃

n=1

Gn

)

≤ β
( ∞⋃

n=1

An

)

≤
∞∑

n=1

β(An)≤ ε+
∞∑

n=1

μ∗(Gn).

Letting ε ↓ 0 yields μ∗(
⋃∞
n=1Gn) ≤

∑∞
n=1μ

∗(Gn). Hence μ∗ is an outer mea-
sure.

Step 4 (Closed sets are μ∗-measurable) By Lemma 1.49, a set B ⊂ E is μ∗-
measurable if and only if

μ∗(B ∩G)+μ∗(Bc ∩G)≤ μ∗(G) for all G ∈ 2E.

Taking the infimum over all open sets A⊃G, it is enough to show that for every
open B and every open A⊂E,

μ∗(B ∩A)+μ∗(Bc ∩A)≤ β(A). (13.13)

Let ε > 0. Choose C1 ∈ C with C1 ⊂A∩Bc and α(C1) > β(A∩Bc)− ε. Further,
let C2 ∈ C with C2 ⊂A∩Cc1 and α(C2) > β(A∩Cc1)− ε. Since C1 ∩C2 = ∅ and
C1 ∪C2 ⊂A, we get

β(A)≥ α(C1 ∪C2)

= α(C1)+ α(C2)≥ β
(
A∩Bc)+ β(A∩Cc1

)− 2ε

≥ μ∗(A∩Bc)+μ∗(A∩B)− 2ε.

Letting ε→ 0, we get (13.13). This completes the proof of Prohorov’s theorem.
�

Exercise 13.3.1 Show that a family F ⊂Mf (R) is tight if and only if there ex-
ists a measurable map f : R→ [0,∞) such that f (x)→∞ for |x| → ∞ and
supμ∈F

∫
f dμ<∞.

Exercise 13.3.2 Let L⊂R× (0,∞) and let F = {Nμ,σ 2 : (μ,σ 2) ∈L} be a family
of normal distributions with parameters in L. Show that F is tight if and only if L
is bounded.

Exercise 13.3.3 If P is a probability measure on [0,∞) with mP :=
∫
xP (dx) ∈

(0,∞), then we define the size-biased distribution P̂ on [0,∞) by

P̂ (A)=m−1
P

∫

A

xP (dx). (13.14)

Now let (Xi)i∈I be a family of random variables on [0,∞) with E[Xi] = 1. Show
that (P̂Xi )i∈I is tight if and only if (Xi)i∈I is uniformly integrable.
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Exercise 13.3.4 (Helly’s theorem in R
d ) Let x = (x1, . . . , xd) ∈ R

d and y =
(y1, . . . , yd) ∈ R

d . Recall the notation x ≤ y if xi ≤ yi for all i = 1, . . . , d . A map
F : Rd → R is called monotone increasing if F(x) ≤ F(y) whenever x ≤ y. F is
called right continuous if F(x)= limn→∞ F(xn) for all x ∈R

d and every sequence
(xn)n∈N in R

d with x1 ≥ x2 ≥ x3 ≥ . . . and x = limn→∞ xn. By Vd denote the set of
monotone increasing, bounded right continuous functions on R

d .

(i) Show the validity of Helly’s theorem with V replaced by Vd .
(ii) Conclude that Prohorov’s theorem holds for E =R

d .

13.4 Application: A Fresh Look at de Finetti’s Theorem

(After an idea of Götz Kersting.) Let E be a Polish space and let X1,X2, . . . be an
exchangeable sequence of random variables with values in E. As an alternative to
the backwards martingale argument of Section 12.3, here we give a different proof
of de Finetti’s theorem (Theorem 12.26). Recall that de Finetti’s theorem states that
there exists a random probability measure Ξ on E such that, given Ξ , the random
variablesX1,X2, . . . are independent andΞ -distributed. For x = (x1, x2, . . .) ∈EN,
let ξn(x) := 1

n

∑n
l=1 δxl be the empirical distribution of x1, . . . , xn. Let

μn,k(x) := ξn(x)⊗k = n−k
n∑

i1,...,ik=1

δ(xi1 ,...,xik )

be the distribution on Ek that describes k-fold independent sampling with replace-
ment (respecting the order) from (x1, . . . , xn). Let

νn,k(x) := (n− k)!
n!

n∑

i1,...,ik=1
#{i1,...,ik }=k

δ(xi1 ,...,xik )

be the distribution on Ek that describes k-fold independent sampling without re-
placement (respecting the order) from (x1, . . . , xn). For all x ∈EN,

∥
∥μn,k(x)− νn,k(x)

∥
∥

TV ≤Rn,k :=
k(k − 1)

n
.

Indeed, the probability pn,k that we do not see any ball twice when drawing k balls
(with replacement) from n different balls is

pn,k =
k−1∏

l=1

(1− l/n)

and thus Rn,k ≥ 2(1− pn,k). We therefore obtain the rather intuitive statement that
as n→∞ the distributions of k-samples with replacement and without replacement,
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respectively, become the same:

lim
n→∞ sup

x∈EN

∥
∥μn,k(x)− νn,k(x)

∥
∥

TV = 0.

Now let f1, . . . , fk ∈ Cb(E) and F(x1, . . . , xk) := f1(x1) . . . fk(xk). As the se-
quence X1,X2, . . . is exchangeable, for any choice of pairwise distinct numbers
1≤ i1, . . . , ik ≤ n,

E
[
F(X1, . . . ,Xk)

]= E
[
F(Xi1, . . . ,Xik )

]
.

Averaging over all choices i1, . . . , ik , we get

E
[
f1(X1) . . . fk(Xk)

]= E
[
F(X1, . . . ,Xk)

]= E
[∫

F dνn,k(X)

]

.

Hence
∣
∣
∣
∣E
[
f1(X1) . . . fk(Xk)

]−E
[∫

f1 dξn(X) . . .

∫

fk dξn(X)

]∣
∣
∣
∣

=
∣
∣
∣
∣E
[∫

F dνn,k(X)

]

−E
[∫

F dμn,k(X)

]∣
∣
∣
∣

≤ ‖F‖∞Rn,k n→∞−→ 0.

We will exploit the following criterion for tightness of subsets of M1(M1(E)).

Exercise 13.4.1 Show that a subset K ⊂M1(M1(E)) is tight if and only if, for
any ε > 0, there exists a compact set K ⊂E with the property

μ̃
({
μ ∈M1(E) : μ

(
Kc
)
> ε
})
< ε for all μ̃ ∈K.

Since E is Polish, PX1 is tight. Hence, for any ε > 0, there exists a compact set
K ⊂E with P[X1 ∈Kc]< ε2. Therefore,

P
[
ξn(X)

(
Kc
)
> ε
]≤ ε−1E

[
ξn(X)

(
Kc
)]= ε−1P

[
X1 ∈Kc

]≤ ε.
Hence the family (Pξn(X))n∈N is tight. Let Ξ∞ be a random variable (with values
in M1(E)) such that PΞ∞ = w-liml→∞ Pξnl (X) for a suitable subsequence (nl)l∈N.
The map ξ �→ ∫

F dξ = ∫ f1 dξ . . .
∫
fk dξ is bounded and (as a product of con-

tinuous maps) is continuous with respect to the topology of weak convergence on
M1(E); hence it is in Cb(M1(E)). Thus

E
[∫

F dΞ⊗k∞
]

= lim
l→∞E

[∫

f1 dξnl (X) . . .

∫

fk dξnl (X)

]

= E
[
f1(X1) . . . fk(Xk)

]
.
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Note that the limit does not depend on the choice of the subsequence and is thus
unique. Summarising, we have

E
[
f1(X1) . . . fk(Xk)

]= E
[∫

f1 dΞ∞ . . .
∫

fk dΞ∞
]

.

Since the distribution of (X1, . . . ,Xk) is uniquely determined by integrals of the

above type, we conclude that P(X1,...,Xk) = P
Ξ⊗k∞ . In other words, (X1, . . . ,Xk)

D=
(Y1, . . . , Yk), where, given Ξ∞, the random variables Y1, . . . , Yk are independent
with distribution Ξ∞.

Exercise 13.4.2 Show that a family (Xn)n∈N of random variables is exchangeable
if and only if, for every choice of natural numbers 1≤ n1 < n2 < n3 < . . . , we have

(X1,X2, . . .)
D= (Xn1 ,Xn2, . . .).

Warning: One of the implications is rather difficult to show.



Chapter 14
Probability Measures on Product Spaces

As a motivation, consider the following example. Let X be a random variable that is
uniformly distributed on [0,1]. As soon as we know the value of X, we toss n times
a coin that has probability X for a success. Denote the results by Y1, . . . , Yn.

How can we construct a probability space on which all these random variables
are defined? One possibility is to construct n + 1 independent random variables
Z0, . . . ,Zn that are uniformly distributed on [0,1] (see, e.g., Corollary 2.23 for the
construction). Then define X =Z0 and

Yk =
{

1, if Zk <X,

0, if Zk ≥X.
Intuitively, this fits well with our idea that the Y1, . . . , Yn are independent as soon as
we know X and record a success with probability X.

In the above description, we have constructed by hand a two-stage experiment.
At the first stage, we determine the value of X. At the second stage, depending on
the value of X, the values of Y = (Y1, . . . , Yn) are determined. Clearly, this con-
struction makes use of the specific structure of the problem. However, we now want
to develop a systematic framework for the description and construction of multi-
stage experiments. In contrast to Chapter 2, here the random variables need not be
independent. In addition, we also want to construct systematically infinite families
of random variables with given (joint) distributions.

In the first section, we start with products of measurable spaces. Then we come
to finite products of measure spaces and product measures with transition kernels.
Finally, we consider infinite products of probability spaces. The main result is Kol-
mogorov’s extension theorem.

14.1 Product Spaces

Definition 14.1 (Product space) Let (Ωi, i ∈ I ) be an arbitrary family of sets. De-
note by Ω =×i∈I Ωi the set of maps ω : I →⋃

i∈I Ωi such that ω(i) ∈ Ωi for
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all i ∈ I . Ω is called the product of the spaces (Ωi, i ∈ I ), or briefly the prod-
uct space. If, in particular, all the Ωi are equal, say Ωi = Ω0, then we write
Ω =×i∈I Ωi =ΩI0 .

Example 14.2

(i) If Ω1 = {1, . . . ,6} and Ω2 = {1,2,3}, then

Ω1 ×Ω2 =
{
ω= (ω1,ω2) : ω1 ∈ {1, . . . ,6},ω2 ∈ {1,2,3}

}
.

(ii) If Ω0 =R and I = {1,2,3}, then R
{1,2,3} is isomorphic to the customary R

3.
(iii) If Ω0 =R and I =N, then R

N is the space of sequences (ω(n),n ∈N) in R.
(iv) If I =R and Ω0 =R, then R

R is the set of maps R→R. ♦

Definition 14.3 (Coordinate maps) If i ∈ I , then Xi :Ω→Ωi , ω �→ ω(i) denotes
the ith coordinate map. More generally, for J ⊂ J ′ ⊂ I , the restricted map

XJ
′
J :×

j∈J ′
Ωj −→×

j∈J
Ωj , ω′ �→ ω′

∣
∣
J

(14.1)

is called the canonical projection. In particular, we write XJ :=XIJ .

Definition 14.4 (Product-σ -algebra) Let (Ωi,Ai ), i ∈ I , be measurable spaces.
The product-σ -algebra

A=
⊗

i∈I
Ai

is the smallest σ -algebra on Ω such that for every i ∈ I , the coordinate map Xi is
measurable with respect to A−Ai ; that is,

A= σ(Xi, i ∈ I ) := σ
(
X−1
i (Ai ), i ∈ I

)
.

If (Ωi,Ai )= (Ω0,A0) for all i ∈ I , then we also write A=A⊗I
0 .

For J ⊂ I , let ΩJ :=×j∈J Ωj and AJ =⊗j∈J Aj .

Remark 14.5 The concept of the product-σ -algebra is similar to that of the product
topology: If ((Ωi, τi), i ∈ I ) are topological spaces, then the product topology τ on
Ω =×i∈I Ωi is the coarsest topology with respect to which all coordinate maps
Xi :Ω −→Ωi are continuous. ♦

Definition 14.6 Let I �= ∅ be an arbitrary index set, let (E,E) be a measurable
space, let (Ω,A)= (EI ,E⊗I ) and let Xt :Ω→E be the coordinate map for every
t ∈ I . Then the family (Xt )t∈I is called the canonical process on (Ω,A).

Lemma 14.7 Let ∅ �= J ⊂ I . Then XIJ is measurable with respect to AI −AJ .
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Proof For any j ∈ J , Xj =XJj ◦XIJ is measurable with respect to A−Aj . Thus,

by Corollary 1.82, XIJ is measurable. �

Theorem 14.8 Let I be countable, and for every i ∈ I , let (Ωi, τi) be Polish with
Borel σ -algebra Bi = σ(τi). Let τ be the product topology on Ω =×i∈I Ωi and
B = σ(τ).

Then (Ω, τ) is Polish and B =⊗i∈I Bi . In particular, B(Rd) = B(R)⊗d for
d ∈N.

Proof Without loss of generality, assume I = N. For i ∈ N, let di be a complete
metric that induces τi . It is easy to check that

d
(
ω,ω′

) :=
∞∑

i=1

2−i di(ω(i),ω
′(i))

1+ di(ω(i),ω′(i)) (14.2)

is a complete metric on Ω that induces τ .
Now for any i ∈ N, let Di ⊂Ωi be a countable dense subset and let yi ∈Di be

an arbitrary point. It is easy to see that the set

D =
{

x ∈×
i∈N
Di : xi �= yi only finitely often

}

is a countable dense subset of Ω . Hence Ω is separable and thus Polish.
Now, for any i ∈ I , let βi = {Bε(xi) : xi ∈Di, ε ∈Q

+} be a countable base of the
topology of Ωi consisting of ε-balls. Define

β :=
∞⋃

N=1

{
N⋂

i=1

X−1
i (Bi) : B1 ∈ β1, . . . ,BN ∈ βN

}

.

Then β is a countable base of the topology τ ; hence any open set A⊂Ω is a (count-
able) union of sets in β ⊂⊗i∈NBi . Hence τ ⊂⊗i∈NBi and thus B ⊂⊗i∈NBi .

On the other hand, each Xi is continuous and thus measurable with respect to
B−Bi . Therefore, B ⊃⊗i∈NBi . �

Definition 14.9 (Cylinder sets) For any i ∈ I , let Ei ⊂Ai be a subclass of the class
of measurable sets.

For any A ∈ AJ , X−1
J (A) ⊂ Ω is called a cylinder set with base J . The set

of such cylinder sets is denoted by ZJ . In particular, if A =×j∈J Aj for certain
Aj ∈Aj , then X−1

J (A) is called a rectangular cylinder with base J . The set of such
rectangular cylinders will be denoted by ZRJ . The set of such rectangular cylinders

for which in addition Aj ∈ Ej for all j ∈ J holds will be denoted by ZE,R
J .

Write

Z =
⋃

J⊂I finite

ZJ , (14.3)
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and similarly define ZR and ZE,R . Further, define

ZR∗ =
∞⋃

N=1

{
N⋃

n=1

An :A1, . . . ,AN ∈ZR
}

and similarly ZE,R∗ .

Remark 14.10 Every ZJ is a σ -algebra, and Z and ZR∗ are algebras. Furthermore,⊗
i∈I Ai = σ(Z). ♦

Lemma 14.11 If every Ei is a π -system, then ZE,R is a π -system.

Proof This is left as an exercise. �

Theorem 14.12 For any i ∈ I , let Ei ⊂Ai be a generator of Ai .

(i)
⊗
j∈J Aj = σ(×j∈J Ej :Ej ∈ Ej ) for every finite J ⊂ I .

(ii)
⊗
i∈I Ai = σ(ZR)= σ(ZE,R).

(iii) Let μ be a σ -finite measure on A, and assume every Ei is also a π -system.
Furthermore, assume there is a sequence (En)n∈N in ZE,R with En ↑Ω and
μ(En) <∞ for all n ∈ N (this condition is satisfied, for example, if μ is finite
and Ωi ∈ Ei for all i ∈ I ). Then μ is uniquely determined by the values μ(A)
for all A ∈ZE,R .

Proof (i) Let A′
J = σ(×j∈J Ej :Ej ∈ Ej for every j ∈ J ). Note that

×
j∈J

Ej =
⋂

j∈J

(
XJj
)−1
(Ej ) ∈AJ ,

hence A′
J ⊂AJ . On the other hand, (XJj )

−1(Ej ) ∈A′
J for all j ∈ J and Ej ∈ Ej .

Since Ei is a generator of Ai , we have (XJj )
−1(Aj ) ∈A′

J for allAj ∈Aj , and hence
AJ ⊂A′

J .
(ii) Evidently, ZE,R ⊂ ZR ⊂A; hence also σ(ZE,R) ⊂ σ(ZR) ⊂A. By Theo-

rem 1.81, we have σ(ZE,R
{i} )= σ(Xi) for all i ∈ I ; hence σ(Xi)⊂ σ(ZE,R). There-

fore, AI ⊂ σ(ZE,R).
(iii) By (ii) and Lemma 14.11, ZE,R is a π -system that generates A. Hence, the

claim follows by Lemma 1.42. �

Exercise 14.1.1 Show that
⊗

i∈I
Ai =

⋃

J⊂I countable

ZJ . (14.4)

Hint: Show that the right-hand side is a σ -algebra.
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14.2 Finite Products and Transition Kernels

Consider now the situation of finitely many σ -finite measure spaces (Ωi,Ai ,μi),
i = 1, . . . , n, where n ∈N.

Lemma 14.13 Let A ∈ A1 ⊗ A2 and let f : Ω1 × Ω2 → R be an A1 ⊗ A2-
measurable map. Then, for all ω̃1 ∈Ω1 and ω̃2 ∈Ω2,

Aω̃1 :=
{
ω2 ∈Ω2 : (ω̃1,ω2) ∈A

} ∈A2,

Aω̃2 :=
{
ω1 ∈Ω1 : (ω1, ω̃2) ∈A

} ∈A1,

fω̃1 :Ω2 →R, ω2 �→ f (ω̃1,ω2) is A2-measurable,

fω̃2 :Ω1 →R, ω1 �→ f (ω1, ω̃2) is A1-measurable.

Proof For ω̃1, define the embedding map i :Ω2 →Ω1 ×Ω2 by i(ω2)= (ω̃1,ω2).
Note thatX1 ◦ i is constantly ω̃1 (and hence A1-measurable), andX2 ◦ i = idΩ2 (and
hence A2-measurable). Thus, by Corollary 1.82, the map i is measurable with re-
spect to A2− (A1⊗A2). Hence Aω̃1 = i−1(A) ∈A2 and fω̃1 = f ◦ i is measurable
with respect to A2. �

The following theorem generalizes Theorem 1.61.

Theorem 14.14 (Finite product measures) There exists a unique σ -finite measure
μ on A :=⊗n

i=1 Ai such that

μ(A1 × . . .×An)=
n∏

i=1

μi(Ai) for Ai ∈Ai , i = 1, . . . , n. (14.5)

⊗n
i=1μi := μ1 ⊗ · · · ⊗μn := μ is called the product measure of the μi .

If all spaces involved equal (Ω0,A0,μ0), then we write μ⊗n0 :=⊗n
i=1μ0.

Proof Let μ̃ be the restriction of μ to ZR . Evidently, μ̃(∅)= 0, and it is simple to
check that μ̃ is σ -finite. Let A1,A2, . . . ∈ ZR be pairwise disjoint and let A ∈ ZR
with A⊂⋃∞

k=1A
k . Then, by the monotone convergence theorem,

μ̃(A)=
∫

μ1(dω1) . . .

∫

μn(dωn)1A
(
(ω1, . . . ,ωn)

)

≤
∫

μ1(dω1) . . .

∫

μn(dωn)

∞∑

k=1

1Ak
(
(ω1, . . . ,ωn)

)=
∞∑

k=1

μ̃
(
Ak
)
.

In particular, if A=A1⊎A2, one similarly gets μ̃(A)= μ̃(A1)+ μ̃(A2). Hence μ̃
is a σ -finite, additive, σ -subadditive set function on the semiring ZR with μ̃(∅)= 0.
By the measure extension theorem (Theorem 1.53), μ̃ can be uniquely extended to
a σ -finite measure on A= σ(ZR). �
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Example 14.15 For i = 1, . . . , n, let (Ωi,Ai ,Pi ) be a probability space. On the
space (Ω,A,P) := (×n

i=1Ωi,
⊗n
i=1 Ai ,

⊗n
i=1 Pi ), the coordinate maps Xi :Ω→

Ωi are independent with distribution PXi = Pi . ♦

Theorem 14.16 (Fubini) Let (Ωi,Ai ,μi) be σ -finite measure spaces, i = 1,2.
Let f :Ω1 ×Ω2 → R be measurable with respect to A1 ⊗A2. If f ≥ 0 or f ∈
L1(μ1 ⊗μ2), then

ω1 �→
∫

f (ω1,ω2)μ2(dω2) is A1-measurable,

ω2 �→
∫

f (ω1,ω2)μ1(dω1) is A2-measurable,

(14.6)

and
∫

Ω1×Ω2

f d(μ1 ⊗μ2)=
∫

Ω1

(∫

Ω2

f (ω1,ω2)μ2(dω2)

)

μ1(dω1)

=
∫

Ω2

(∫

Ω1

f (ω1,ω2)μ1(dω1)

)

μ2(dω2). (14.7)

Proof The proof follows the usual procedure of stepwise approximations, starting
with an indicator function.

First let f = 1A for A= A1 ×A2 with A1 ∈A1 and A2 ∈A2. Then (14.6) and
(14.7) hold trivially. Building finite sums, this is also true for A ∈ ZR∗ (the algebra
of finite unions of rectangles).

Now let A ∈A1 ⊗A2. By the approximation theorem (Theorem 1.65), there is a
sequence of sets (An)n∈N in ZR∗ that approximate A in μ1 ⊗μ2-measure. As limits
of measurable functions are again measurable, and since by construction the inte-
grals converge, (14.6) and (14.7) hold also for f = 1A and A ∈A1 ⊗A2. Building
finite sums, (14.6) and (14.7) also hold if f is a simple function.

Consider now f ≥ 0. Then, by Theorem 1.96, there exists a sequence of sim-
ple functions (fn)n∈N with fn ↑ f . By the monotone convergence theorem (Theo-
rem 4.20), (14.6) and (14.7) also hold for this f .

Now let f ∈ L1(μ1⊗μ2). Then f = f+−f− with f+, f− ≥ 0 being integrable
functions. Since (14.6) and (14.7) hold for f− and f+, they also hold for f . �

In Definition 2.32, we defined the convolution of two real probability measures
μ and ν as the distribution of the sum of two independent random variables with
distributions μ and ν, respectively. As a simple application of Fubini’s theorem, we
can give a new definition for the convolution of, more generally, finite measures
on R

n. Of course, for real probability measures, it coincides with the old definition.
If the measures have Lebesgue densities, then we obtain an explicit formula for the
density of the convolution.

Let X and Y be R
n-valued random variables with densities fX and fY . That is,

fX,fY :Rn→[0,∞] are measurable and integrable with respect to n-dimensional



14.2 Finite Products and Transition Kernels 279

Lebesgue measure λn and, for all x ∈R
n,

P[X ≤ x] =
∫

(−∞,x]
fX(t)λ

n(dt) and P[Y ≤ x] =
∫

(−∞,x]
fY (t)λ

n(dt).

Here (−∞, x] = {y ∈R
n : yi ≤ xi for i = 1, . . . , n} (compare (1.5)).

Definition 14.17 Let n ∈ N. For two Lebesgue integrable maps f,g : Rn →
[0,∞], define the convolution f ∗ g :Rn→[0,∞] by

(f ∗ g)(x)=
∫

Rn

f (y)g(x − y)λn(dy).

For two finite measures μ,ν ∈Mf (R
n), define the convolution μ ∗ ν ∈Mf (R

n)

by

(μ ∗ ν)((−∞, x])=
∫ ∫

1Ax (u, v)μ(du)ν(dv),

where Ax := {(u, v) ∈R
n ×R

n : u+ v ≤ x}.

Lemma 14.18 The map f ∗ g is measurable and we have f ∗ g = g ∗ f and
∫

Rn

(f ∗ g)dλn =
(∫

Rn

f dλn
)(∫

Rn

g dλn
)

.

Furthermore, μ ∗ ν = ν ∗μ and (μ ∗ ν)(Rn)= μ(Rn)ν(Rn).

Proof The claims follow immediately from Fubini’s theorem. �

Theorem 14.19 (Convolution of n-dimensional measures)

(i) If X and Y are independent Rn-valued random variables with densities fX
and fY , then X+ Y has density fX ∗ fY .

(ii) If μ= f λn and ν = gλn are finite measures with Lebesgue densities f and g,
then μ ∗ ν = (f ∗ g)λn.

Proof (i) Let x ∈R
n and A := {(u, v) ∈R

n×R
n : u+v ≤ x}. Repeated application

of Fubini’s theorem and the translation invariance of λn yields

P[X+ Y ≤ x] = P
[
(X,Y ) ∈A]

=
∫

Rn×Rn
1A(u, v)fX(u)fY (v)

(
λn
)⊗2(

d(u, v)
)

=
∫

Rn

(∫

Rn

1A(u, v)fX(u)λ
n(du)

)

fY (v)λ
n(dv)

=
∫

Rn

(∫

(−∞,x−v]
fX(u)λ

n(du)

)

fY (v)λ
n(dv)
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=
∫

Rn

(∫

(−∞,x]
fX(u− v)λn(du)

)

fY (v)λ
n(dv)

=
∫

(−∞,x]

(∫

Rn

fX(u− v)fY (v)λn(dv)
)

λn(du)

=
∫

(−∞,x]
(fX ∗ fY )dλn.

(ii) In (i), replace μ by PX and ν by PY . The claim is immediate. �

We come next to a concept that generalizes the notion of product measures and
points in the direction of the example from the introduction to this chapter.

Recall the definition of a transition kernel from Definition 8.25.

Lemma 14.20 Let κ be a finite transition kernel from (Ω1,A1) to (Ω2,A2) and let
f :Ω1 ×Ω2 →[0,∞] be measurable with respect to A1 ⊗A2 − B([0,∞]). Then
the map

If :Ω1 →[0,∞],

ω1 �→
∫

f (ω1,ω2)κ(ω1, dω2)

is well-defined and A1-measurable.

Proof By Lemma 14.13, for every ω1 ∈Ω1, the map fω1 is measurable with respect
to A2; hence If (ω1) =

∫
fω1(ω2)κ(ω1, dω2) is well-defined. Hence, it remains to

show measurability of If .
If g = 1A1×A2 for some A1 ∈ A1 and A2 ∈ A2, then clearly Ig(ω1) =

1A1(ω1)κ(ω1,A2) is measurable. Now let

D = {A ∈A1 ⊗A2 : I1A is A1-measurable}.
We show that D is a λ-system:

(i) Evidently, Ω1 ×Ω2 ∈D.
(ii) If A,B ∈D with A⊂ B , then I1B\A = I1B − I1A is measurable, where we used

the fact that κ is finite; hence B \A ∈D.
(iii) If A1,A2, . . . ∈ D are pairwise disjoint and A := ⋃∞

n=1An, then I1A =∑∞
n=1 I1An is measurable; hence A ∈D.

Summarising, D is a λ-system that contains a π -system that generates A1 ⊗ A2

(namely, the rectangles). Hence, by the π–λ theorem (Theorem 1.19), D =A1⊗A2.
Hence I1A is measurable for all A ∈ A1 ⊗A2. We infer that Ig is measurable for
any simple function g. Now let (fn)n∈N be a sequence of simple functions with
fn ↑ f . For any fixed ω1 ∈Ω1, by the monotone convergence theorem, If (ω1) =
limn→∞ Ifn(ω1). As a limit of measurable functions, If is measurable. �
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Remark 14.21 In the following, we often write
∫
κ(ω1, dω2)f (ω1,ω2) instead of∫

f (ω1,ω2)κ(ω1, dω2) since for multiple integrals this notation allows us to write
the integrator closer to the corresponding integral sign. ♦

Theorem 14.22 Let (Ωi,Ai ), i = 0,1,2, be measurable spaces. Let κ1 be a finite
transition kernel from (Ω0,A0) to (Ω1,A1) and let κ2 be a finite transition kernel
from (Ω0 ×Ω1,A0 ⊗A1) to (Ω2,A2). Then the map

κ1 ⊗ κ2 :Ω0 × (A1 ⊗A2)→[0,∞),

(ω0,A) �→
∫

Ω1

κ1(ω0, dω1)

∫

Ω2

κ2
(
(ω0,ω1), dω2

)
1A
(
(ω1,ω2)

)

is well-defined and is a σ -finite (but not necessarily a finite) transition kernel from
(Ω0,A0) to (Ω1 ×Ω2,A1 ⊗A2). If κ1 and κ2 are (sub)stochastic, then κ1 ⊗ κ2 is
(sub)stochastic. We call κ1 ⊗ κ2 the product of κ1 and κ2.

If κ2 is a kernel from (Ω1,A1) to (Ω2,A2), then we define the product κ1 ⊗ κ2
similarly by formally understanding κ2 as a kernel from (Ω0 ×Ω1,A0 ⊗ A1) to
(Ω2,A2) that does not depend on the Ω0-coordinate.

Proof Let A ∈A1 ⊗A2. By Lemma 14.20, the map

gA : (ω0,ω1) �→
∫

κ2
(
(ω0,ω1), dω2

)
1A(ω1,ω2)

is well-defined and A0 ⊗A1-measurable. Thus, again by Lemma 14.20, the map

ω0 �→ κ1 ⊗ κ2(ω0,A)=
∫

κ1(ω0, dω1)gA(ω0,ω1)

is well-defined and A0-measurable. For fixed ω0, by the monotone convergence
theorem, the map A �→ κ1 ⊗ κ2(ω0,A) is σ -additive and thus a measure.

For ω0 ∈ Ω0 and n ∈ N, let Aω0,n := {ω1 ∈ Ω1 : κ2((ω0,ω1),Ω2) < n}. Since
κ2 is finite, we have

⋃
n≥1Aω0,n =Ω1 for all ω0 ∈Ω0. Furthermore, κ1 ⊗ κ2(ω0,

An × Ω2) ≤ n · κ1(ω0,An) <∞. Hence κ1 ⊗ κ2(ω0, ·) is σ -finite and is thus a
transition kernel.

The supplement is trivial. �

Corollary 14.23 (Products via kernels) Let (Ω1,A1,μ) be a finite measure space,
let (Ω2,A2) be a measurable space and let κ be a finite transition kernel fromΩ1
toΩ2. Then there exists a unique σ -finite measure μ⊗ κ on (Ω1×Ω2,A1⊗A2)

with

μ⊗ κ(A1 ×A2)=
∫

A1

κ(ω1,A2)μ(dω1) for all A1 ∈A1,A2 ∈A2.

If κ is stochastic and if μ is a probability measure, then μ ⊗ κ is a probability
measure.
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Proof Apply Theorem 14.22 with κ2 = κ and κ1(ω0, ·)= μ. �

Corollary 14.24 Let n ∈ N and let (Ωi,Ai ), i = 0, . . . , n, be measurable spaces.
For i = 1, . . . , n, let κi be a substochastic kernel from (×i−1

k=0Ωk,
⊗i−1
k=0 Ak) to

(Ωi,Ai ) or from (Ωi−1,Ai−1) to (Ωi,Ai ). Then the recursion κ1 ⊗ . . . ⊗ κi :=
(κ1⊗ . . .⊗κi−1)⊗κi for any i = 1, . . . , n defines a substochastic kernel

⊗i
k=1 κk :=

κ1 ⊗ . . .⊗ κi from (Ω0,A0) to (×i
k=1Ωk,

⊗i
k=1 Ak). If all κk are stochastic, then

all
⊗i
k=1 κk are stochastic.

If μ is a finite measure on (Ω0,A0), then μi := μ⊗⊗i
k=1 κk is a finite measure

on (×i
k=0Ωk,

⊗i
k=0 Ak). If μ is a probability measure and if every κi is stochastic,

then μi is a probability measure.

Proof The claims follow inductively by Theorem 14.22. �

Definition 14.25 (Composition of kernels) Let (Ωi,Ai ) be measurable spaces, i =
0,1,2, and let κi be a substochastic kernel from (Ωi−1,Ai−1) to (Ωi,Ai ), i = 1,2.
Define the composition of κ1 and κ2 by

κ1 · κ2 :Ω0 ×A2 →[0,∞),

(ω0,A2) �→
∫

Ω1

κ1(ω0, dω1)κ2(ω1,A2).

Theorem 14.26 If we denote by π2 :Ω1 ×Ω2 →Ω2 the projection to the second
coordinate, then

(κ1 · κ2)(ω0,A2)= (κ1 ⊗ κ2)
(
ω0,π

−1
2 (A2)

)
for all A2 ∈A2.

In particular, the composition κ1 · κ2 is a (sub)stochastic kernel from (Ω0,A0) to
(Ω2,A2).

Proof This is obvious. �

Lemma 14.27 (Kernels and convolution) Let μ and ν be probability measures on
R
d and define the kernels κi : (Rd ,B(Rd))→ (Rd ,B(Rd)), i = 1,2, by κ1(x, dy)=
μ(dy) and κ2(y, dz)= (δy ∗ ν)(dz). Then κ1 · κ2 = μ ∗ ν.

Proof This is trivial. �

Theorem 14.28 (Kernels and convolution) Assume X1,X2, . . . are independent
R
d -valued random variables with distributions μi := PXi , i = 1, . . . , n. Let Sk :=
X1 + . . . + Xk for k = 1, . . . , n, and define stochastic kernels from R

d to R
d by

κk(x, ·)= δx ∗μk for k = 1, . . . , n. Then
(

n⊗

k=1

κk

)

(0, ·)= P(S1,...,Sn). (14.8)
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Proof For k = 1, . . . , n, define the measurable bijection ϕk : (Rd)k→ (Rd)k by

ϕk(x1, . . . , xk)= (x1, x1 + x2, . . . , x1 + . . .+ xk).
Evidently, B((Rd)n) = σ(ϕn(A1 × . . . × An) : A1, . . . ,An ∈ B(Rd)). Hence, it is
enough to show (14.8) for sets of this type. That is, it is enough to show that

(
n⊗

k=1

κk

)
(
0, ϕn(A1 × . . .×An)

)= P(S1,...,Sn)

(
ϕn(A1 × . . .×An)

)=
n∏

k=1

μk(Ak).

For n= 1, this is clear. By definition, κn(yn−1, yn−1 +An)= μn(An). Inductively,
we get

(
n⊗

k=1

κk

)
(
0, ϕn(A1 × . . .×An)

)

=
∫

ϕn−1(A1×...×An−1)

(
n−1⊗

k=1

κk

)
(
0, d(y1, . . . , yn−1)

)
κn(yn−1, yn−1 +An)

=
(
n−1∏

k=1

μk(Ak)

)

μn(An).
�

Theorem 14.29 (Fubini for transition kernels) Let (Ωi,Ai ) be measurable
spaces, i = 1,2. Let μ be a finite measure on (Ω1,A1) and let κ be a finite tran-
sition kernel from Ω1 to Ω2. Assume that f :Ω1 ×Ω2 → R is measurable with
respect to A1 ⊗A2. If f ≥ 0 or f ∈ L1(μ⊗ κ), then

∫

Ω1×Ω2

f d(μ⊗ κ)=
∫

Ω1

(∫

Ω2

f (ω1,ω2)κ(ω1, dω2)

)

μ(dω1). (14.9)

Proof For f = 1A1×A2 with A1 ∈A1 and A2 ∈A2, the statement is true by defini-
tion. For general f , apply the usual approximation argument as in Theorem 14.16. �

Example 14.30 We come back to the example from the beginning of this chapter.
Let n ∈ N and let (Ω2,A2)= ({0,1}n, (2{0,1})⊗n) be the space of n-fold coin toss-
ing. For any p ∈ [0,1], define

Pp = (Berp)
⊗n = ((1− p)δ0 + pδ1

)⊗n
.

Pp is that probability measure on (Ω2,A2) under which the coordinate maps Yi are
independent Bernoulli random variables with success probability p.

Further, let Ω1 = [0,1], let A1 = B([0,1]) be the Borel σ -algebra on Ω1 and let
μ = U[0,1] be the uniform distribution on [0,1]. Then the identity map X :Ω1 →
[0,1] is a random variable on (Ω1,A1,μ) that is uniformly distributed on [0,1].
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Finally, consider the stochastic kernel κ from Ω1 to Ω2, defined by

κ(ω1,A2)= Pω1(A2).

If we let Ω = Ω1 × Ω2, A = A1 ⊗ A2 and P = μ ⊗ κ , then X and Y1, . . . , Yn
describe precisely the random variables on (Ω,A,P) from the beginning of this
chapter. ♦

Remark 14.31 The procedure can be extended to n-stage experiments. Let (Ωi,Ai )
be the measurable space of the ith experiment, i = 0, . . . , n− 1. Let P0 be a prob-
ability measure on (Ω0,A0). Assume that for i = 1, . . . , n− 1, the distribution on
(Ωi,Ai ) depends on (ω1, . . . ,ωi−1) and is given by a stochastic kernel κi from
Ω0 × . . . × Ωi−1 to Ωi . The whole n-stage experiment is then described by the
coordinate maps on the probability space

(
n−1×
i=0

Ωi,

n−1⊗

i=0

Ai ,P0 ⊗
n−1⊗

i=1

κi

)

.

♦

Exercise 14.2.1 Show the following convolution formulas.

(i) Normal distribution: Nμ1,σ
2
1
∗Nμ2,σ

2
2
=Nμ1+μ2,σ

2
1+σ 2

2
for all μ1,μ2 ∈ R and

σ 2
1 , σ

2
2 > 0.

(ii) Gamma distribution: Γθ,r ∗ Γθ,s = Γθ,r+s for all θ, r, s > 0.
(iii) Cauchy distribution: Caur ∗Caus = Caur+s for all r, s > 0.

Exercise 14.2.2 (Hilbert–Schmidt operator) Let (Ωi,Ai ,μi), i = 1,2, be σ -finite
measure spaces and let a :Ω1 ×Ω2 →R be measurable with

∫

μ1(dt1)

∫

μ2(dt2)a(t1, t2)
2 <∞.

For f ∈ L2(μ1), define

(Af )(t2)=
∫

a(t1, t2)f (t1)μ1(dt1).

Show that A is a continuous linear operator from L2(μ1) to L2(μ2).

Exercise 14.2.3 (Partial integration) Let Fμ and Fν be the distribution functions of
locally finite measures μ and ν on R. For x ∈R, define the left-sided limit F(x−)=
supy<x F (y) and the jump height  F(x)= F(x)− F(x−). Show that, for a < b,
∫

(a,b]
Fμ dν = Fμ(b)Fν(b)− Fμ(a)Fν(a)−

∫

(a,b]
Fν(x−)μ(dx)

= Fμ(b)Fν(b)− Fμ(a)Fν(a)−
∫

(a,b]
Fν dμ+

∑

a<x≤b
 Fμ(x) Fν(x).
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14.3 Kolmogorov’s Extension Theorem

In the previous section, we saw how we can implement n-stage experiments on
a probability space. In this section, we first show how to implement countably
many successive experiments on one probability space (Ionescu–Tulcea’s theorem).
Thereafter we also construct probability measures on products of uncountably many
spaces (Kolmogorov’s extension theorem).

Let (Ωi,Ai ), i ∈ N0, be measurable spaces and let P0 be a probability measure
on (Ω0,A0). Let Ωi :=×i

k=0Ωk and Ai =⊗i
k=0 Ak and

Ω :=
∞×
k=0

Ωk and A=
∞⊗

k=0

Ak.

For every i ∈ N, let κi be a stochastic kernel from (Ωi−1,Ai−1) to (Ωi,Ai ). In
Corollary 14.24, we defined inductively probability measures Pi = P0 ⊗⊗i

k=1 κk
on (Ωi,Ai ). By construction, for i, j ≥ k and A ∈Ak , we had

Pi(A×Ωk+1 × . . .×Ωi)= Pj (A×Ωk+1 × . . .×Ωj). (14.10)

Now we want to define a probability measure P on (Ω,A) such that for k ∈N0 and
A ∈Ak

P

(

A×
∞×

i=k+1

Ωi

)

= Pk(A). (14.11)

Theorem 14.32 (Ionescu–Tulcea) There is a uniquely determined probability mea-
sure on (Ω,A) such that (14.11) holds.

Proof Uniqueness is clear since the finite-dimensional rectangular cylinders form a
π -system that generates A. It remains to show the existence of that measure.

We use (14.11) to define a set function P on cylinder sets. Clearly, P is additive
and is hence a content. If we can show that P is ∅-continuous, then P is a premea-
sure (by Theorem 1.36) and thus by Carathéodory’s theorem (Theorem 1.41) can be
extended uniquely to a measure on A.

Hence, letA0 ⊃A1 ⊃A2 ⊃ . . . be a sequence in Z with α := infn∈N0 P(An) > 0.
It is enough to show that

⋂∞
n=0An �= ∅. Without loss of generality, we can assume

that An =A′n ××∞
k=n+1Ωk for certain A′n ∈An. For n≥m, define

hm,n(ω0, . . . ,ωm) :=
(

δ(ω0,...,ωm) ⊗
n⊗

k=m+1

κk

)
(
A′n
)

and hm := infn≥m hm,n. Inductively, we show that for every i ∈ N0, there exists a
�i ∈Ωi such that

hm(�0, . . . , �m)≥ α. (14.12)
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Since A′n+1 ⊂A′n ×Ωn+1, we have

hm,n+1(ω0, . . . ,ωm)=
(

δ(ω0,...,ωm) ⊗
n+1⊗

k=m+1

κk

)
(
A′n+1

)

≤
(

δ(ω0,...,ωm) ⊗
n+1⊗

k=m+1

κk

)
(
A′n ×Ωn+1

)

=
(

δ(ω0,...,ωm) ⊗
n⊗

k=m+1

κk

)
(
A′n
)= hm,n(ω0, . . . ,ωm).

Hence hm,n ↓ hm for n→∞ and by the monotone convergence theorem,
∫

hm dPm = inf
n≥m

∫

hm,n dPm = inf
n∈N0

Pn
(
A′n
)= α,

whence we have (14.12) for m = 0. Now assume that (14.12) holds for m ∈ N0.
Then

∫

hm+1(�0, . . . , �m,ωm+1)κm+1
(
(�0, . . . , �m), dωm+1

)

= inf
n≥m+1

∫

hm+1,n(�0, . . . , �m,ωm+1)κm+1
(
(�0, . . . , �m), dωm+1

)

= hm(�0, . . . , �m)≥ α.
Hence (14.12) holds for m+ 1.

Let � := (�0, �1, . . .) ∈Ω . By construction,

α ≤ hm,m(�0, . . . , �m)= 1A′m(�0, . . . , �m),

hence � ∈Am for all m ∈N0 and thus
⋂∞
i=0Ai �= ∅. �

Corollary 14.33 (Product measure) For every n ∈N0, let Pn be a probability mea-
sure on (Ωn,An). Then there exists a uniquely determined probability measure P
on (Ω,A) with

P

(

A0 × . . .×An ×
∞×

i=n+1

Ωi

)

=
n∏

k=0

Pk(Ak)

for Ai ∈Ai , i = 0, . . . , n and n ∈N0.⊗∞
i=0 Pi := P is called the product of the measures P0,P1, . . . . Under P , the

coordinate maps (Xi)i∈N0 are independent.

Proof This follows by Ionescu–Tulcea’s theorem with

κi
(
(ω0, . . . ,ωi−1), ·

)= Pi. �
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We want to make a statement similar to that of Ionescu–Tulcea’s theorem; how-
ever, without the assumption that the measures Pk are defined a priori by kernels.
Before we formulate the theorem, we generalize the consistency condition (14.10).
Recall that for L⊂ J ⊂ I , XJL :ΩJ −→ΩL denotes the canonical projection.

Definition 14.34 A family (PJ , J ⊂ I finite) of probability measures on the
space (ΩJ ,AJ ) is called consistent if

PL = PJ ◦
(
XJL
)−1

for all L⊂ J ⊂ I finite.

Recall that Ω =×i∈I Ωi and A=⊗i∈I Ai . Let P be a probability measure on
(Ω,A). Since XL =XJL ◦XJ , the family (PJ := P ◦X−1

J , J ⊂ I finite) is consis-
tent. Thus, consistency is a necessary condition for the existence of a measure P
on the product space with PJ := P ◦ X−1

J . If all the measurable spaces are Borel
spaces (recall Definition 8.35), for example R

d , Zd , C([0,1]) or more general Pol-
ish spaces, then this condition is also sufficient. We formulate this statement first for
a countable index set.

Theorem 14.35 Let I be countable and let (Ωi,Ai ) be Borel spaces for all i ∈ I .
Let (PJ , J ⊂ I finite) be a consistent family of probability measure. Then there
exists a unique probability measure P on (Ω,A) with PJ = P ◦X−1

J for all finite
J ⊂ I .

Proof Without loss of generality, assume I = N0. Let Pn := P{0,...,n}, Ωn :=
Ω{0,...,n} and An :=A{0,...,n}. It is easy to check that finite products of Borel spaces
are again Borel spaces; hence (Ωn,An) is Borel for all n ∈N0.

Let F := {A × Ωn+1 : A ∈ An}, Y : Ωn+1 → Ωn+1, (ω0, . . . ,ωn+1) �→ ωn+1

andZ :Ωn+1 →Ωn, (ω0, . . . ,ωn+1) �→ (ω0, . . . ,ωn). By Theorem 8.37 (withΩ =
Ωn+1, A=An+1 and E =Ωn+1), there is a stochastic kernel κ ′n+1 from (Ωn+1,F)
to (Ωn+1,An+1) such that κ ′n+1 is a regular conditional distribution of Y given F
(under the probability measure Pn+1). Hence, for A ∈An and B ∈An+1, we have
(compare (8.10))

Pn+1(A×B)=
∫

1B(Y )1A×Ωn+1 dPn+1 =
∫

κ ′n+1( ·,B)1A×Ωn+1 dPn+1.

Since κ ′n+1( ·,B) is F -measurable, there is a stochastic kernel κn+1 from (Ωn,An)
to (Ωn+1,An+1) such that

κn+1
(
(ω0, . . . ,ωn), ·

)= κ ′n+1

(
(ω0, . . . ,ωn+1), ·

)
for all ω0, . . . ,ωn+1.

Hence

κ ′n+1( ·,B)= κn+1
(
Z( ·),B) and 1A×Ωn+1 = 1A(Z).
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We infer that

Pn+1(A×B)=
∫

κn+1(Z,B)1A(Z)dPn+1

=
∫

κn+1( ·,B)1A d
(
Pn+1 ◦Z−1)

=
∫

A

κn+1( ·,B)dPn.

Note that in the last equality we used the fact that (Pn)n∈N0 is a projective family.
By Corollary14.23, we get Pn+1 = Pn ⊗ κn+1. Recursively, we obtain Pn = P0 ⊗⊗n
k=1 κk for all n ∈N. Using Theorem 14.32, this yields the claim. �

The last step in our construction is to replace the countable index set I by an
arbitrary index set.

Theorem 14.36 (Kolmogorov’s extension theorem) Let I be an arbitrary index
set and let (Ωi,Ai ) be Borel spaces, i ∈ I . Let (PJ , J ⊂ I finite) be a consistent
family of probability measures. Then there exists a unique probability measure P
on (Ω,A) with PJ = P ◦ X−1

J for every finite J ⊂ I . P is called the projective
limit and will be denoted by P =: lim←−J↑I PJ .

Proof For countable J ⊂ I , by Theorem 14.35, there is a unique probability
measure PJ on (ΩJ ,AJ ) with PJ ◦ (XJK)−1 = PK for finite K ⊂ J . By defin-
ing P̃J (X

−1
J (AJ )) := PJ (AJ ) for AJ ∈ AJ , we get a probability measure P̃J on

(Ω,σ (XJ )).
Let J,J ′ ⊂ I be countable and let A ∈ σ(XJ ) ∩ σ(XJ ′) ∩ Z be a σ(XJ ) ∩

σ(XJ ′)-measurable cylinder with a finite base. Then there exists a finiteK ⊂ J ∩J ′
and AK ∈AK with A=X−1

K (AK). Hence P̃J (A)= PK(AK)= P̃J ′(A). Moreover,
by Theorem 14.12, P̃J (A)= PK(AK)= P̃J ′(A) for all A ∈ σ(XJ )∩ σ(XJ ′). Now,
by Exercise 14.1.1, for any A ∈ A, there is a countable J ⊂ I with A ∈ σ(XJ ).
Hence, independently of the choice of J , we can uniquely define a set function P
on A by P(A) = P̃J (A). It remains to show that P is a probability measure. Evi-
dently, P(Ω)= 1. If A1,A2, . . . ∈A are pairwise disjoint and A :=⋃∞

n=1An, then
for any n ∈N, there is a countable Jn ⊂ I with An ∈ σ(XJn). Define J =⋃n∈N Jn.
Then each An is in σ(XJ ); thus A ∈ σ(XJ ). Therefore,

P(A)= P̃J (A)=
∞∑

n=1

P̃J (An)=
∞∑

n=1

P(An).

This shows that P is a probability measure. �

Example 14.37 Let ((Ωi, τi), i ∈ I ) be an arbitrary family of Polish spaces (recall
from Theorem 8.36 that Polish spaces are also Borel spaces). Let Ai = σ(τi) and let
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Pi be an arbitrary probability measure on (Ωi,Ai ) for every i ∈ I . For finite J ⊂ I ,
let PJ :=⊗j∈J Pj be the product measure of the Pj , j ∈ J . Evidently, the family
(PJ ,J ⊂ I finite) is consistent. We call

P =
⊗

i∈I
Pi := lim←−

J↑I
PJ

the product measure on (Ω,A). Under P , all coordinate maps Xj are indepen-
dent. ♦

Example 14.38 (Pólya’s urn model) (Compare Example 12.29.) In an urn there are
initially k red and n− k blue balls. At each step, one ball is drawn at random and is
returned to the urn with an additional ball of the same color. Hence, at time i ∈ N0
there are n+ i balls in the urn. The random number of red balls is denoted by Xi .

For a more formal description, let n ∈ N and k ∈ {0, . . . , n}. Let I = N0,Ωi =
{0, . . . , n+ i}, i ∈ N. Let P0[{k}] = 1, and define the stochastic kernels κi from Ωi
to Ωi+1 by

κi
(
xi, {xi+1}

)=

⎧
⎪⎪⎨

⎪⎪⎩

xi
n+i , if xi+1 = xi + 1,

1− xi
n+i , if xi+1 = xi,

0, else.

Now let Pi+1 = Pi ⊗ κi . Under the measure P = lim←−i→∞Pi , the projections (Xi,
i ∈N0) describe Pólya’s urn model. ♦

14.4 Markov Semigroups

Definition 14.39 Let E be a Polish space. Let I ⊂ R be a nonempty index set and
let (κs,t : s, t ∈ I, s < t) be a family of stochastic kernels from E to E. We say that
the family is consistent if κr,s · κs,t = κr,t for any choice of r, s, t ∈ I with r < s < t .

Definition 14.40 Let E be a Polish space. Let I ⊂ [0,∞) be an additive semigroup
(for example, I = N0 or I = [0,∞)). A family (κt : t ∈ I ) of stochastic kernels is
called a semigroup of stochastic kernels, or a Markov semigroup, if

κ0(ω, ·)= δω for all ω ∈Ω (14.13)

and if it satisfies the Chapman–Kolmogorov equation:

κs · κt = κs+t for all s, t ∈ I. (14.14)

Indeed, ({κt : t ∈ I }, ·) is a semigroup in the algebraic sense and the map t→ κt
is a homomorphism of semigroups. In particular, the kernels commute in the sense
that κs · κt = κt · κs for all s, t ∈ I .
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Lemma 14.41 If (κt : t ∈ I ) is a Markov semigroup, then the family of kernels,
defined by κ̃s,t := κt−s for t > s, is consistent.

Proof This is trivial. �

Theorem 14.42 (Kernel via a consistent family of kernels) Let I ⊂ [0,∞) with
0 ∈ I and let (κs,t : s, t ∈ I, s < t) be a consistent family of stochastic kernels on
the Polish space E. Then there exists a kernel κ from (E,B(E)) to (EI ,B(E)⊗I )
such that, for all x ∈E and for any choice of finitely many numbers 0= j0 < j1 <
j2 < . . . < jn from I , and with the notation J := {j0, . . . , jn}, we have

κ(x, ·) ◦X−1
J =

(

δx ⊗
n−1⊗

k=0

κjk,jk+1

)

. (14.15)

Proof First we show that, for fixed x ∈ E, (14.15) defines a probability measure
κ(x, ·). Define the family (PJ : J ⊂ I finite,0 ∈ J ) by PJ := δx ⊗⊗n−1

k=0 κjk,jk+1 .
By Kolmogorov’s extension theorem, it is enough to show that this family is con-
sistent. In fact, if for 0 /∈ J ⊂ I finite, we define PJ as the projection of PJ∪{0}
to EJ , then the family (PJ : J ⊂ I finite) is projective. Hence, let 0 ∈ L ⊂ J ⊂ I
with J ⊂ I finite. We have to show that PJ ◦ (XJL)−1 = PL. We may assume that
L= J \ {jl} for some l = 1, . . . , n. The general case can be inferred inductively.

First consider l = n. Let Aj0, . . . ,Ajn−1 ∈ B(E) and A :=×j∈L Aj . Then

PJ ◦
(
XJL
)−1
(A)= PJ (A×E)= PL ⊗ κjn−1,jn(A×E)

=
∫

A

PL
(
d(ω0, . . . ,ωn−1)

)
κjn−1,jn(ωn−1,E)= PL(A).

Now let l ∈ {1, . . . , n − 1}. For all j ∈ L, let Aj ∈ B(E) and Ajl := E. Define

A := ×j∈LAj , and abbreviate A′ = ×l−1
k=0Ajk and P ′ = δx ⊗⊗l−2

k=0 κjk,jk+1 . For
i = 0, . . . , n− 1, let

fi(ωi)=
(
n−1⊗

k=i
κjk,jk+1

)

(ωi,Aji+1 × . . .×Ajn).

By assumption and using Fubini’s theorem, we get

fl−1(ωl−1)=
∫

E

κjl−1,jl (ωl−1, dωl)

∫

Ajl+1

κjl,jl+1(ωl, dωl+1)fl+1(ωl+1)

=
∫

Ajl+1

κjl−1,jl+1(ωl−1, dωl+1)fl+1(ωl+1).
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This implies

PJ ◦
(
XJL
)−1
(A)

=
∫

A′
P ′
(
d(ω0, . . . ,ωl−1)

)
fl−1(ωl−1)

=
∫

A′
P ′
(
d(ω0, . . . ,ωl−1)

)
∫

Ajl+1

(κjl−1,jl+1)(ωl−1, dωl+1)fl+1(ωl+1)

= PL(A).
It remains to show that κ is a stochastic kernel. That is, we have to show that x �→

κ(x,A) is measurable with respect to B(E)−B(E)⊗I . By Remark 8.26, it suffices
to check this for rectangular cylinders with a finite base A ∈ ZR since ZR is a π -
system that generates B(E)⊗I . Hence, let 0= t0 < t1 < . . . < tn and B0, . . . ,Bn ∈
B(E) as well as A =⋂ni=0X

−1
ti
(Bi). However, by Corollary 14.24, the following

map is measurable,

x �→ Px[A] =
(

δx ⊗
n−1⊗

i=0

κti ,ti+1

)(
n×
i=0

Bi

)

.
�

Corollary 14.43 (Measures by consistent families of kernels) Under the assump-
tions of Theorem 14.42, for every probability measure μ on E, there exists a unique
probability measure Pμ on (EI ,B(E)⊗I ) with the following property: For any
choice of finitely many numbers 0 = j0 < j1 < j2 < . . . < jn from I , and letting
J := {j0, . . . , jn}, we have Pμ ◦X−1

J = μ⊗⊗n−1
k=0 κjk,jk+1 .

Proof Take Pμ =
∫
μ(dx)κ(x, ·). �

As a simple conclusion of Lemma 14.41 and Theorem 14.42, we get the follow-
ing statement that we formulate separately because it will play a central role later.

Corollary 14.44 (Measures via Markov semigroups) Let (κt : t ∈ I ) be a Markov
semigroup on the Polish space E. Then there exists a unique stochastic kernel κ
from (E,B(E)) to (EI ,B(E)⊗I ) with the property: For all x ∈ E and for any
choice of finitely many numbers 0 = t0 < t1 < t2 < . . . < tn from I , and letting
J := {t0, . . . , tn}, we have

κ(x, ·) ◦X−1
J =

(

δx ⊗
n−1⊗

k=0

κtk+1−tk

)

. (14.16)

For any probability measure μ on E, there exists a unique probability measure
Pμ on (EI ,B(E)⊗I ) with the property: For any choice of finitely many num-
bers 0= t0 < t1 < t2 < . . . < tn from I , and letting J := {t0, . . . , tn}, we have
Pμ ◦X−1

J = μ⊗⊗n−1
k=0 κtk+1−tk . We denote Px = Pδx = κ(x, ·) for x ∈E.
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Example 14.45 (Independent normally distributed increments) Let I = [0,∞) and
Ωi =R, i ∈ [0,∞), equipped with the Borel σ -algebra B = B(R). Further, letΩ =
R
[0,∞), A= B⊗[0,∞) and let Xt be the coordinate map for t ∈ [0,∞). In the sense

of Definition 14.6, X = (Xt )t≥0 is thus the canonical process on (Ω,A).
We construct a probability measure P on (Ω,A) such that the stochastic pro-

cess X has independent, stationary, normally distributed increments (recall Defini-
tion 9.7). That is, it should hold that

(Xti −Xti−1)i=1,...,n is independent for all 0=: t0 < t1 < . . . < tn, (14.17)

PXt−Xs =N0,t−s for all t > s. (14.18)

To this end, define stochastic kernels κt (x, dy) := δx ∗N0,t (dy) for t ∈ [0,∞)
where N0,0 = δ0. By Lemma 14.27, the Chapman–Kolmogorov equation holds
since (compare Exercise 14.2.1(i))

κs · κt (x, dy)= δx ∗ (N0,s ∗N0,t )(dy)= δx ∗N0,s+t (dy)= κs+t (x, dy).
Let P0 = δ0 and let P be the unique probability measure on Ω corresponding to P0
and (κt : t ≥ 0) according to Corollary 14.44. By Theorem 14.28, Eqs. (14.17) and
(14.18) hold.

With (Xt )t≥0, we have almost constructed the so-called Brownian motion. In
addition to the properties we required here, Brownian motion has continuous paths;
that is, the maps t �→ Xt are almost surely continuous. Note that at this point it is
not even clear that the paths are measurable maps. We will have some work to do to
establish continuity of the paths, and we will come back to this in Chapter 21. ♦

The construction in the preceding example does not depend on the details of the
normal distribution but only on the validity of the convolution equation

N0,s+t =N0,s ∗N0,t .

Hence, in (14.18) we can replace the normal distribution by any parameterized fam-
ily of distributions (νt , t ≥ 0) with the property νt+s = νt ∗ νs . Examples include
the Gamma distribution νt = Γθ,t (for fixed parameter θ > 0), the Poisson distri-
bution νt = Poit , the negative binomial distribution νt = b−t,p (for fixed p ∈ (0,1]),
the Cauchy distribution νt = Caut and others (compare Theorem 15.12 and Corol-
lary 15.13). We establish the result in a theorem.

Definition 14.46 (Convolution semigroup) Let I ⊂ [0,∞) be a semigroup. A fam-
ily ν = (νt : t ∈ I ) of probability distributions on R

d is called a convolution semi-
group if νs+t = νs ∗ νt holds for all s, t ∈ I .

If I = [0,∞) and if in addition νt
t→0−→ δ0, then the convolution semigroup is

called continuous (in the sense of weak convergence).
If d = 1 and νt ((−∞,0))= 0 for all t ∈ I , then ν is called a nonnegative convo-

lution semigroup.
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For the following theorem, compare Definition 9.7.

Theorem 14.47 For any convolution semigroup (νt : t ∈ I ) and any x ∈ R
d , there

exists a probability measure Px on the product space (Ω,A)= ((Rd)I ,B(Rd)⊗I )
such that the canonical process (Xt )t∈I is a stochastic process with Px[X0 = x] = 1,
with stationary independent increments and with Px ◦ (Xt −Xs)−1 = νt−s for t > s.
On the other hand, every stochastic process (Xt )t∈I (on an arbitrary probabil-
ity space (Ω,A,P)) with stationary independent increments defines a convolution
semigroup by νt = P ◦ (Xt −X0)

−1 for all t ∈ I .

Exercise 14.4.1 Assume that (νt : t ≥ 0) is a continuous convolution semigroup.
Show that νt = lims→t νs for all t > 0.

Exercise 14.4.2 Assume that (νt : t ≥ 0) is a convolution semigroup. Show that

νt/n
n→∞−→ δ0.

Exercise 14.4.3 Show that a nonnegative convolution semigroup is continuous.

Exercise 14.4.4 Show that a continuous real convolution semigroup (νt : t ≥ 0)
with νt ((−∞,0))= 0 for some t > 0 is nonnegative.



Chapter 15
Characteristic Functions and the Central Limit
Theorem

The main goal of this chapter is the central limit theorem (CLT) for sums of inde-
pendent random variables (Theorem 15.37) and for independent arrays of random
variables (Lindeberg–Feller theorem, Theorem 15.43). For the latter, we prove only
that one of the two implications (Lindeberg’s theorem) that is of interest in the ap-
plications.

The ideal tools for the treatment of central limit theorems are so-called charac-
teristic functions; that is, Fourier transforms of probability measures. We start with
a more general treatment of classes of test functions that are suitable to charac-
terize weak convergence and then study Fourier transforms in greater detail. The
subsequent section proves the CLT for real-valued random variables by means of
characteristic functions. In the fifth section, we prove a multidimensional version of
the CLT.

15.1 Separating Classes of Functions

Let (E,d) be a metric space with Borel σ -algebra E = B(E).
Denote by C= {u+ iv : u,v ∈R} the field of complex numbers. Let

Re(u+ iv)= u and Im(u+ iv)= v

denote the real part and the imaginary part, respectively, of z= u+ iv ∈C. Let z=
u− iv be the complex conjugate of z and |z| = √u2 + v2 its modulus. A prominent
role will be played by the complex exponential function exp :C→C, which can be
defined either by Euler’s formula exp(z)= exp(u)(cos(v)+i sin(v)) or by the power
series exp(z)=∑∞

n=0 z
n/n!. It is well-known that exp(z1+ z2)= exp(z1) · exp(z2).

Note that Re(z)= (z+ z)/2 and Im(z)= (z− z)/2i imply

cos(x)= e
ix + e−ix

2
and sin(x)= e

ix − e−ix
2i

for all x ∈R.
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A map f :E→C is measurable if and only if Re(f ) and Im(f ) are measurable
(see Theorem 1.90 with C∼= R

2). In particular, any continuous function E→ C is
measurable. If μ ∈M(E), then we define

∫

f dμ :=
∫

Re(f ) dμ+ i
∫

Im(f ) dμ

if both integrals exist and are finite. Let Cb(E;C) denote the Banach space of con-
tinuous, bounded, complex-valued functions on E equipped with the supremum
norm ‖f ‖∞ = sup{|f (x)| : x ∈ E}. We call C ⊂ Cb(E;C) a separating class for
Mf (E) if for any two measures μ,ν ∈Mf (E) with μ �= ν, there is an f ∈ C such
that
∫
f dμ �= ∫ f dν. The analogue of Theorem 13.34 holds for C ⊂ Cb(E;C).

Definition 15.1 Let K=R or K= C. A subset C ⊂ Cb(E;K) is called an algebra
if

(i) 1 ∈ C,
(ii) if f,g ∈ C, then f · g and f + g are in C, and

(iii) if f ∈ C and α ∈K, then (αf ) is in C.

We say that C separates points if for any two points x, y ∈E with x �= y, there is an
f ∈ C with f (x) �= f (y).

Theorem 15.2 (Stone–Weierstraß) Let E be a compact Hausdorff space. Let
K=R or K=C. Let C ⊂ Cb(E;K) be an algebra that separates points. If K=C,
then in addition assume that C is closed under complex conjugation (that is, if
f ∈ C, then the complex conjugate function f is also in C).
Then C is dense in Cb(E;K) with respect to the supremum norm.

Proof We follow the exposition in Dieudonné [34, Chapter VII.3]. First consider
the case K=R. We proceed in several steps.

Step 1. By Weierstraß’s approximation theorem (Example 5.15), there is a se-
quence (pn)n∈N of polynomials that approach the map [0,1]→ [0,1], t �→√

t uni-
formly. If f ∈ C, then also

|f | = ‖f ‖∞ lim
n→∞pn

(
f 2/‖f ‖2∞

)

is in the closure C of C in Cb(E;R).
Step 2. Applying Step 1 to the algebra C yields that, for all f,g ∈ C,

f ∨ g = 1

2

(
f + g + |f − g|) and f ∧ g = 1

2

(
f + g− |f − g|)

are also in C.
Step 3. For any f ∈ Cb(E;R), any x ∈ E and any ε > 0, there exists a gx ∈ C

with gx(x)= f (x) and gx(y) ≤ f (y)+ ε for all y ∈ E. As C separates points, for
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any z ∈ E \ {x}, there exists an Hz ∈ C with Hz(z) �=H(x)= 0. For such z, define
hz ∈ C by

hz(y)= f (x)+ f (z)− f (x)
Hz(z)

Hz(y) for all y ∈E.
In addition, define hx := f . Then hz(x) = f (x) and hz(z) = f (z) for all z ∈E.
Since f and hz are continuous, for any z ∈ E, there exists an open neigh-
borhood Uz � z with h(y) ≤ f (y) + ε for all y ∈ Uz. We construct a finite
covering Uz1, . . . ,Uzn of E consisting of such neighborhoods and define gx =
min(hz1 , . . . , hzn). By Step 2, we have gx ∈ C.

Step 4. Let f ∈ Cb(E;R), ε > 0 and, for any x ∈ E, let gx be as in Step 3. As
f and gx are continuous, for any x ∈ E, there exists an open neighborhood Vx � x
with gx(y)≥ f (y)− ε for any y ∈ Vx . We construct a finite covering Vx1 , . . . , Vxn
of E and define g :=max(gx1 , . . . , gxn). Then g ∈ C by Step 2 and ‖g − f ‖∞ < ε
by construction. Letting ε ↓ 0, we get C = Cb(E;R).

Step 5. Now consider K= C. If f ∈ C, then by assumption Re(f )= (f + f̄ )/2
and Im(f )= (f − f̄ )/2i are in C. In particular, C0 := {Re(f ) : f ∈ C} ⊂ C is a real
algebra that, by assumption, separates points and contains the constant functions.
Hence C0 is dense in Cb(E;R). Since C = C0 + iC0, C is dense in Cb(E;C). �

Corollary 15.3 Let E be a compact metric space. Let K = R or K = C. Let C ⊂
Cb(E;K) be a family that separates points; that is, stable under multiplication and
that contains 1. If K = C, then in addition assume that C is closed under complex
conjugation.

Then C is a separating family for Mf (E).

Proof Let μ1,μ2 ∈Mf (E) with
∫
g dμ1 =

∫
g dμ2 for all g ∈ C. Let C′ be the

algebra of finite linear combinations of elements of C. By linearity of the integral,∫
g dμ1 =

∫
g dμ2 for all g ∈ C′.

For any f ∈ Cb(E,R) and any ε > 0, by the Stone–Weierstraß theorem, there
exists a g ∈ C′ with ‖f − g‖∞ < ε. By the triangle inequality,

∣
∣
∣
∣

∫

f dμ1 −
∫

f dμ2

∣
∣
∣
∣≤
∣
∣
∣
∣

∫

f dμ1 −
∫

g dμ1

∣
∣
∣
∣+
∣
∣
∣
∣

∫

g dμ1 −
∫

g dμ2

∣
∣
∣
∣

+
∣
∣
∣
∣

∫

g dμ2 −
∫

f dμ2

∣
∣
∣
∣

≤ ε(μ1(E)+μ2(E)
)
.

Letting ε ↓ 0, we get equality of the integrals and hence μ1 = μ2 (by Theo-
rem 13.11). �

The following theorems are simple consequences of Corollary 15.3.

Theorem 15.4 The distribution of a bounded real random variable X is character-
ized by its moments.
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Proof Without loss of generality, we can assume that X takes values in E := [0,1].
For n ∈ N, define the map fn : [0,1] → [0,1] by fn : x �→ xn. Further, let f0 ≡ 1.
The family C = {fn,n ∈ N0} separates points and is closed under multiplication;
hence it is a separating class for Mf (E). Thus PX is uniquely determined by its
moments E[Xn] = ∫ xnPX(dx), n ∈N. �

Example 15.5 (due to [73]) In the preceding theorem, we cannot simply drop
the assumption that X is bounded without making other assumptions (see Corol-
lary 15.32). Even if all moments exist, the distribution of X is, in general, not
uniquely determined by its moments. As an example consider X := exp(Y ), where
Y ∼ N0,1. The distribution of X is called the log-normal distribution. For every
n ∈N, nY is distributed as the sum of n2 independent, standard normally distributed

random variables nY
D= Y1 + . . .+ Yn2 . Hence, for n ∈N,

E
[
Xn
]= E

[
enY
]= E

[
eY1+...+Yn2

]=
n2
∏

i=1

E
[
eYi
]= E

[
eY
]n2

=
(∫ ∞

−∞
(2π)−1/2eye−y2/2 dy

)n2

= en2/2.

(15.1)

We construct a whole family of distributions with the same moments as X. By the
transformation formula for densities (Theorem 1.101), the distribution of X has the
density

f (x)= 1√
2π
x−1 exp

(

−1

2
log(x)2

)

for x > 0.

For α ∈ [−1,1], define probability densities fα on (0,∞) by

fα(x)= f (x)
(
1+ α sin

(
2π log(x)

))
.

In order to show that fα is a density and has the same moments as f , it is enough to
show that, for all n ∈N0,

m(n) :=
∫ ∞

0
xnf (x) sin

(
2π log(x)

)
dx = 0.

With the substitution y = log(x)− n, we get (note that sin(2π(y + n))= sin(2πy))

m(n)=
∫ ∞

−∞
eyn+n2

(2π)−1/2e−(y+n)2/2 sin
(
2π(y + n))dy

= (2π)−1/2en
2/2
∫ ∞

−∞
e−y2/2 sin(2πy)dy = 0,

where the last equality holds since the integrand is an odd function. ♦
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Theorem 15.6 (Laplace transform) A finite measure μ on [0,∞) is characterized
by its Laplace transform

Lμ(λ) :=
∫

e−λxμ(dx) for λ≥ 0.

Proof We face the problem that the space [0,∞) is not compact by passing to the
one-point compactification E = [0,∞]. For λ ≥ 0, define the continuous function
fλ : [0,∞]→ [0,1] by fλ(x)= e−λx if x <∞ and fλ(∞)= limx→∞ e−λx . Then
C = {fλ,λ ≥ 0} separates points, f0 = 1 ∈ C and fμ · fλ = fμ+λ ∈ C. By Corol-
lary 15.3, C is a separating class for Mf ([0,∞]) and thus also for Mf ([0,∞)). �

Definition 15.7 For μ ∈Mf (R
d), define the map ϕμ :Rd→C by

ϕμ(t) :=
∫

ei〈t,x〉μ(dx).

ϕμ is called the characteristic function of μ.

Theorem 15.8 (Characteristic function) A finite measure μ ∈Mf (R
d) is char-

acterized by its characteristic function.

Proof Let μ1,μ2 ∈ Mf (R
d) with ϕμ1(t) = ϕμ2(t) for all t ∈ R

d . By Theo-
rem 13.11(ii), Cc(Rd) is a separating class for Mf (R

d). Hence, it is enough to
show that

∫
f dμ1 =

∫
f dμ2 for all f ∈Cc(Rd).

Let f :Rd→R be continuous with compact support and let ε > 0. Assume that
K > 0 is large enough such that f (x) = 0 for x �∈ (−K/2,K/2)d and such that
μi(R

d \ (−K,K)d) < ε, i = 1,2. Consider the torus E := R
d/(2KZ

d) and define
f̃ :E→R by

f̃
(
x + 2KZ

d
)= f (x) for x ∈ [−K,K)d .

Since the support of f is contained in (−K,K)d , f̃ is continuous.
For m ∈ Z

d define

gm :Rd→C, x �→ exp
(
i〈πm/K,x〉).

Let C be the algebra of finite linear combinations of the gm. For g ∈ C, we have
g(x)= g(x + 2Kn) for all x ∈R

d and n ∈ Z
d . Hence, the map

g̃ :E→C, g̃
(
x + 2KZ

d
)= g(x)

is well-defined, continuous and bounded. Furthermore, C̃ := {g̃ : g ∈ C} ⊂ Cb(E;C)
is an algebra that separates points and is closed under complex conjugation. As E is
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compact, by the Stone–Weierstraß theorem, there is a g ∈ C such that ‖g̃− f̃ ‖∞ < ε.
We infer

∥
∥(f − g)1[−K,K]d

∥
∥∞ < ε

and

∥
∥(f − g)1Rd\[−K,K]d

∥
∥∞ ≤ ‖g‖∞ = ‖g̃‖∞ ≤ ‖f̃ ‖∞ + ε = ‖f ‖∞ + ε.

By assumption of the theorem,
∫
g dμ1 =

∫
g dμ2. Hence, using the triangle in-

equality, we conclude

∣
∣
∣
∣

∫

f dμ1 −
∫

f dμ2

∣
∣
∣
∣≤
∫

|f − g|dμ1 +
∫

|f − g|dμ2

≤ ε(2‖f ‖∞ + 2ε+μ1
(
R
d
)+μ2

(
R
d
))
.

As ε > 0 was arbitrary, the integrals coincide. �

Corollary 15.9 A finite measure μ on Z
d is uniquely determined by the values

ϕμ(t)=
∫

ei〈t,x〉μ(dx), t ∈ [−π,π)d .

Proof This is obvious since ϕμ(t + 2πk)= ϕμ(t) for all k ∈ Z
d . �

While the preceding corollary only yields an abstract uniqueness statement, we
will profit also from an explicit inversion formula for Fourier transforms.

Theorem 15.10 (Discrete Fourier inversion formula) Let μ ∈Mf (Z
d) with char-

acteristic function ϕμ. Then, for every x ∈ Z
d ,

μ
({x})= (2π)−d

∫

[−π,π)d
e−i〈t,x〉ϕμ(t) dt.

Proof By the dominated convergence theorem,

∫

[−π,π)d
e−i〈t,x〉ϕμ(t) dt =

∫

[−π,π)d
e−i〈t,x〉

(

lim
n→∞

∑

|y|≤n
ei〈t,y〉μ

({y})
)

dt

= lim
n→∞

∫

[−π,π)d
e−i〈t,x〉

∑

|y|≤n
ei〈t,y〉μ

({y})dt

=
∑

y∈Zd
μ
({y})

∫

[−π,π)d
ei〈t,y−x〉 dt.
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The claim follows since, for y ∈ Z
d ,

∫

[−π,π)d
ei〈t,y−x〉 dt =

{
(2π)d, if x = y,
0, else. �

Similar inversion formulas hold for measures μ on R
d . Particularly simple is the

case where μ possesses an integrable density f := dμ
dλ

with respect to d-dimensional
Lebesgue measure λ. In this case, we have the Fourier inversion formula,

f (x)= (2π)−d
∫

Rd

e−i〈t,x〉ϕμ(t)λ(dt). (15.2)

Furthermore, by Plancherel’s theorem, f ∈ L2(λ) if and only if ϕμ ∈ L2(λ). In this
case, ‖f ‖2 = ‖ϕ‖2.

Since we will not need these statements in the following, we only refer to
the standard literature (e.g., [173, Chapter VI.2] or [54, Theorem XV.3.3 and
Eq. (XV.3.8)]).

Exercise 15.1.1 Show that, in the Stone–Weierstraß theorem, compactness of E is
essential. Hint: Let E =R and use the fact that Cb(R)= Cb(R;R) is not separable.
Construct a countable algebra C ⊂ Cb(R) that separates points.

Exercise 15.1.2 Let d ∈N and let μ be a finite measure on [0,∞)d . Show that μ is
characterized by its Laplace transform Lμ(λ)=

∫
e−〈λ,x〉μ(dx), λ ∈ [0,∞)d .

Exercise 15.1.3 Show that, under the assumptions of Theorem 15.10, Plancherel’s
equation holds:

∑

x∈Zd
μ
({x})2 = (2π)−d

∫

[−π,π)d
∣
∣ϕμ(t)

∣
∣2 dt.

Exercise 15.1.4 (Mellin transform) Let X be a nonnegative real random variable.
For s ≥ 0, define the Mellin transform of PX by

mX(s)= E
[
Xs
]

(with values in [0,∞]).
Assume there is an ε0 > 0 with mX(ε0) <∞ (respectively mX(−ε0) <∞).

Show that, for any ε > 0, the distribution PX is characterized by the values mX(s)
(respectively mX(−s)), s ∈ [0, ε].

Hint: For continuous f : [0,∞)→[0,∞), let

φf (z)=
∫ ∞

0
tz−1f (t) dt

for those z ∈ C for which the integral is well-defined. By a standard result
of complex analysis if φf (s) < ∞ for an s > 1, then φf is holomorphic in
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{z ∈C : Re(z) ∈ (1, s)} (and is thus uniquely determined by the values φf (r), r ∈
(1,1+ ε) for any ε > 0). Furthermore, for all r ∈ (1, s),

f (t)= 1

2πi

∫ ∞

−∞
t−(r+iρ)φf (r + iρ) dρ.

(i) Conclude the statement for X with a continuous density.
(ii) For δ > 0, let Yδ ∼ U[1−δ,1] be independent of X. Show that XYδ has a contin-

uous density.
(iii) Compute mXYδ , and show that mXYδ →mX for δ ↓ 0.
(iv) Show that XYδ =⇒X for δ ↓ 0.

Exercise 15.1.5 Let X,Y,Z be independent nonnegative random variables such
that P[Z > 0] > 0 and such that the Mellin transform mXZ(s) is finite for some
s > 0.

Show that if XZ
D= YZ holds, then X

D= Y .

Exercise 15.1.6 Let μ be a probability measure on R with integrable characteristic
function ϕμ and hence ϕμ ∈ L1(λ), where λ is the Lebesgue measure on R. Show
that μ is absolutely continuous with bounded continuous density f = dμ

dλ
given by

f (x)= 1

2π

∫ ∞

−∞
e−itxϕμ(t) dt for all x ∈R.

Hint: Show this first for the normal distribution N0,ε , ε > 0. Then show that
μ ∗N0,ε is absolutely continuous with density fε , which converges pointwise to f
(as ε→ 0).

Exercise 15.1.7 Let (Ω, τ) be a separable topological space that satisfies the T3 1
2

separation axiom: For any closed set A⊂Ω and any point x ∈Ω \A, there exists
a continuous function f : Ω → [0,1] with f (x) = 0 and f (y) = 1 for all y ∈ A.
(Note in particular that every metric space is a T3 1

2
-space.)

Show that σ(Cb(Ω)) = B(Ω); that is, the Borel σ -algebra is generated by the
bounded continuous functions Ω→R.

15.2 Characteristic Functions: Examples

Recall that Re(z) is the real part of z ∈ C. We collect some simple properties of
characteristic functions.
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Lemma 15.11 Let X be a random variable with values in R
d and characteristic

function ϕX(t)= E[ei〈t,X〉]. Then:

(i) |ϕX(t)| ≤ 1 for all t ∈R
d and ϕX(0)= 1.

(ii) ϕaX+b(t)= ϕX(at)ei〈b,t〉 for all a ∈R and b ∈R
d .

(iii) PX = P−X if and only if ϕ is real-valued.
(iv) If X and Y are independent, then ϕX+Y = ϕX · ϕY .
(v) 0≤ 1−Re(ϕX(2t))≤ 4(1−Re(ϕX(t))) for all t ∈R

d .

Proof (i) and (ii) are trivial.
(iii) ϕX(t)= ϕX(−t)= ϕ−X(t).
(iv) As ei〈t,X〉 and ei〈t,Y 〉 are independent random variables, we have

ϕX+Y (t)= E
[
ei〈t,X〉 · ei〈t,Y 〉]= E

[
ei〈t,X〉

]
E
[
ei〈t,Y 〉

]= ϕX(t)ϕY (t).
(v) By the addition theorem for trigonometric functions,

1− cos
(〈2t,X〉)= 2

(
1− (cos

(〈t,X〉))2)≤ 4
(
1− cos

(〈t,X〉)).
Now take the expectations of both sides. �

In the next theorem, we collect the characteristic functions for some of the most
important distributions.

Theorem 15.12 (Characteristic functions of some distributions) For some distri-
butions P with density x �→ f (x) on R or weights P({k}), k ∈N0, the characteristic
function ϕ(t) is given explicitly in Table 15.1.

Proof (i) (Normal distribution) By Lemma 15.11, it is enough to consider the case
μ= 0 and σ 2 = 1. By virtue of the differentiation lemma (Theorem 6.28) and using
partial integration, we get

d

dt
ϕ(t)=

∫ ∞

−∞
eitxixe−x2/2 dx =−tϕ(t).

This linear differential equation with initial value ϕ(0)= 1 has the unique solution
ϕ(t)= e−t2/2.

(ii) (Uniform distribution) This is immediate.
(iii) (Triangle distribution) Note that Tria = U[−a/2,a/2] ∗ U[−a/2,a/2]; hence

ϕTria (t)= ϕU[−a/2,a/2](t)2 = 4
sin(at/2)2

a2t2
= 2

1− cos(at)

a2t2
.

Here we used the fact that by the addition theorem for trigonometric functions

1− cos(x)= sin(x/2)2 + cos(x/2)2 − cos(x)= 2 sin(x/2)2.
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Table 15.1 Characteristic functions of some distributions

Distribution Char. fct.

Name
Symbol

Parameter on Density / Weights ϕ(t)

Normal
Nμ,σ 2

μ ∈R

σ 2 > 0
R

1√
2πσ 2

exp
(− (x−μ)2

2σ 2

)
eiμt · e−σ 2t2/2

Uniform
U[0,a]

a > 0 [0, a] 1/a eiat−1
iat

Uniform
U[−a,a]

a > 0 [−a, a] 1/2a sin(at)
at

Triangle
Tria

a > 0 [−a, a] 1
a
(1− |x|/a)+ 2 1−cos(at)

a2t2

N.N. a > 0 R
1
π

1−cos(ax)
ax2 (1− |t |/a)+

Gamma
Γθ,r

θ > 0
r > 0

[0,∞) θr

Γ (r)
xr−1e−θx (1− it/θ)−r

Exponential
expθ

θ > 0 [0,∞) θe−θx θ
θ−it

Two-sided
exponential
exp2

θ

θ > 0 R
θ
2 e
−θ |x| 1

1+(t/a)2

Cauchy
Caua

a > 0 R
1
aπ

1
1+(x/a)2 e−a|t |

Binomial
bn,p

n ∈N

p ∈ [0,1]
{0, . . . , n}

(
n

k

)

pk(1− p)n−k ((1− p)+
peit )n

Negative
binomial
b−r,p

r > 0
p ∈ (0,1]

N0

(−r
k

)

(−1)kpr (1− p)k ( p

1−(1−p)eit
)r

Poisson
Poiλ

λ > 0 N0 e−λ λk
k! exp(λ(eit−1))

(iv) (N.N.) This can either be computed directly or can be deduced from (iii) by
using the Fourier inversion formula (Eq. (15.2)).

(v) (Gamma distribution) Again it suffices to consider the case θ = 1. For 0 ≤
b < c ≤∞ and t ∈ R, let γb,c,t be the linear path in C from b − ibt to c− ict , let
δb,t be the linear path from b to b− ibt and let εc,t be the linear path from c− ict
to c. Substituting z= (1− it)x, we get

ϕ(t)= 1

Γ (r)

∫ ∞

0
xr−1e−xeitx dx = (1− it)

−r

Γ (r)

∫

γ0,∞,t
zr−1e−z dz.

Hence, it suffices to show that
∫
γ0,∞,t z

r−1 exp(−z) dz= Γ (r).
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The function z �→ zr−1 exp(−z) is holomorphic in the right complex plane.
Hence, by the residue theorem for 0< b < c <∞,

∫ c

b

xr−1 exp(−x)dx =
∫

γb,c,t

zr−1 exp(−z) dz

+
∫

δb,t

zr−1 exp(−z) dz+
∫

εc,t

zr−1 exp(−z) dz.

Recall that
∫∞

0 xr−1 exp(−x)dx =: Γ (r). Hence, it is enough to show that the inte-
grals along δb,t and εc,t vanish if b→ 0 and c→∞.

However, |zr−1 exp(−z)| ≤ (1+ t2)(r−1)/2br−1 exp(−b) for z ∈ δb,t . As the path
δb,t has length b|t |, we get the estimate

∣
∣
∣
∣

∫

δb,t

zr−1e−z dz
∣
∣
∣
∣≤ bre−b

(
1+ t2)r/2 −→ 0 for b→ 0.

Similarly,
∣
∣
∣
∣

∫

εc,t

zr−1e−z dz
∣
∣
∣
∣≤ cre−c

(
1+ t2)r/2 −→ 0 for c→∞.

(vi) (Exponential distribution) This follows from (v) since expθ = Γθ,1.
(vii) (Two-sided exponential distribution) If X and Y are independent expθ -

distributed random variables, then it is easy to check that X− Y ∼ exp2
θ . Hence

ϕexp2
θ
(t)= ϕexpθ (t)ϕexpθ (−t)=

1

1− it/θ
1

1+ it/θ =
1

1+ (t/θ)2 .

(viii) (Cauchy distribution) This can either be computed directly using residue
calculus or can be inferred from the statement for the two-sided exponential distri-
bution by the Fourier inversion formula (Eq. (15.2)).

(ix) (Binomial distribution) By the binomial theorem,

ϕ(t)=
n∑

k=0

(
n

k

)

(1− p)n−k(peit)k = (1− p+ peit)n.

(x) (Negative binomial distribution) By the generalized binomial theorem (Lem-
ma 3.5), for all x ∈C with |x|< 1,

(1− x)−r =
∞∑

k=0

(−r
k

)

(−x)k.

Using this formula with x = (1− p)eit gives the claim.
(xi) (Poisson distribution) Clearly,

ϕPoiλ(t)=
∞∑

n=0

e−λ (λe
it )n

n! = eλ(eit−1).
�
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Corollary 15.13 The following convolution formulas hold.

(i) Nμ1,σ
2
1
∗Nμ2,σ

2
2
=Nμ1+μ2,σ

2
1+σ 2

2
for μ1,μ2 ∈R and σ 2

1 , σ
2
2 > 0.

(ii) Γθ,r ∗ Γθ,s = Γθ,r+s for θ, r, s > 0.
(iii) Caua ∗Caub = Caua+b for a, b > 0.
(iv) bm,p ∗ bn,p = bm+n,p for m,n ∈N and p ∈ [0,1].
(v) b−r,p ∗ b−s,p = b−r+s,p for r, s > 0 and p ∈ (0,1].

(vi) Poiλ ∗ Poiμ = Poiλ+μ for λ,μ≥ 0.

Proof This follows by Theorem 15.12 and by ϕμ∗ν = ϕμϕν (Lemma 15.11). �

The following theorem gives two simple procedures for calculating the charac-
teristic functions of compound distributions.

Theorem 15.14

(i) Let μ1,μ2, . . . ∈Mf (R
d) and let p1,p2, . . . be nonnegative numbers with∑∞

n=1 pnμn(R
d) <∞. Then the measure μ :=∑∞

n=1 pnμn ∈Mf (R
d) has

characteristic function

ϕμ =
∞∑

n=1

pnϕμn. (15.3)

(ii) Let N,X1,X2, . . . be independent random variables. Assume X1,X2, . . . are
identically distributed on R

d with characteristic function ϕX . Assume N takes
values in N0 and has the probability generating function fN . Then Y :=∑N
n=1Xn has the characteristic function ϕY (t)= fN(ϕX(t)).

(iii) In particular, if we let N ∼ Poiλ in (ii), then ϕY (t)= exp(λ(ϕX(t)− 1)).

Proof (i) Define νn = ∑n
k=1 pkμk . By the linearity of the integral, ϕνn =∑n

k=1 pkϕμk . By assumption,μ=w-limn→∞ νn; hence also ϕμ(t)= limn→∞ ϕνn(t).
(ii) Clearly,

ϕY (t)=
∞∑

n=0

P[N = n]E[ei〈t,X1+...+Xn〉]

=
∞∑

n=0

P[N = n]ϕX(t)n = fN
(
ϕ(t)
)
.

(iii) In this special case, fN(z)= eλ(z−1) for z ∈C with |z| ≤ 1. �

Example 15.15 Let n ∈ N, and assume that the points 0= a0 < a1 < . . . < an and
1 = y0 > y1 > . . . > yn = 0 are given. Let ϕ : R→ [0,∞) have the properties
that

• ϕ(ak) = yk for all k = 0, . . . , n and ϕ is linearly interpolated between the
points ak ,
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Fig. 15.1 The characteristic function ϕ from Example 15.15 with n= 4

• ϕ(x)= 0 for |x|> an, and
• ϕ is even (that is, ϕ(x)= ϕ(−x)).
Assume in addition that the yk are chosen such that ϕ is convex on [0,∞). This is
equivalent to the condition that m1 ≤ m2 ≤ . . . ≤ mn ≤ 0, where mk := yk−yk−1

ak−ak−1
is

the slope on the kth interval. We want to show that ϕ is the characteristic function
of a probability measure μ ∈M1(R).

Define pk = ak(mk+1 −mk) for k = 1, . . . , n.
Let μk ∈M1(R) be the distribution on R with density 1

π
1−cos(akπ)
akx

2 . By Theo-

rem 15.12, μk has the characteristic function ϕμk (t)=
(
1− |t |

ak

)+. The characteristic
function ϕμ of μ :=∑n

k=1 pkμk is then

ϕμ(t)=
n∑

k=1

pk
(
1− |t |/ak

)+
.

This is a continuous, symmetric, real function with ϕμ(0) = 1. It is linear on each
of the intervals [ak−1, ak]. See Fig. 15.1 for an example with n = 4. By partial
summation, for all k = 1, . . . , n (since mn+1 = 0),

ϕμ(al)=
n∑

k=1

ak(mk+1 −mk)
(

1− al
ak

)+
=

n∑

k=l
(ak − al)(mk+1 −mk)

= [(an − al)mn+1 − (al − al)ml
]−

n∑

k=l+1

(ak − ak−1)mk

=−
n∑

k=l+1

(yk − yk−1)= yl = ϕ(al).

Hence ϕμ = ϕ. ♦
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Example 15.16 Define the function ϕ : R → [0,1] for t ∈ [−π,π) by ϕ(t) =
1 − 2|t |/π , and assume ϕ is periodic (with period 2π ). By the discrete Fourier
inversion formula (Theorem 15.10), ϕ is the characteristic function of the probabil-
ity measure μ ∈M1(Z) with μ({x})= (2π)−1

∫ π
−π cos(tx)ϕ(t) dt . In fact, in order

that μ be a measure (not only a signed measure), we still have to show that all of
the masses μ({x}) are nonnegative. Clearly, μ({0})= 0. For x ∈ Z \ {0}, use partial
integration to compute the integral,

∫ π

−π
cos(tx)ϕ(t) dt = 2

∫ π

0
cos(tx)(1− 2t/π)dt

= 4

x

(

1− 2

π

)

sin(πx)− 4

x
sin(0)+ 4

πx

∫ π

0
sin(tx) dt

= 4

πx2

(
1− cos(πx)

)
.

Summing up, we have

μ
({x})=

{
4

π2x2 , if x is odd,

0, else.

Since μ(Z)= ϕ(0)= 1, μ is indeed a probability measure. ♦

Example 15.17 Define the function ψ : R→ [0,1] for t ∈ [−π/2,π/2) by ψ(t)=
1−2|t |/π . Assume ψ is periodic with period π . If ϕ is the characteristic function of
the measure μ from the previous example, then clearly ψ(t)= |ϕ(t)|. On the other
hand, ψ(t)= 1

2 + 1
2ϕ(2t). By Theorem 15.14 and Lemma 15.11(ii), we infer that ψ

is the characteristic function of the measure ν with ν(A)= 1
2δ0(A)+ 1

2μ(A/2) for
A⊂R. Hence,

ν
({x})=

⎧
⎪⎪⎨

⎪⎪⎩

1
2 , if x = 0,

8
π2x2 , if x2 ∈ Z is odd,

0, else. ♦

Example 15.18 Let ϕ(t)= (1− 2|t |/π)+ be the characteristic function of the dis-
tribution “N.N.” from Theorem 15.12 (with a = π/2) and let ψ be the characteris-
tic function from the preceding example. Note that ϕ(t) = ψ(t) for |t | ≤ π/2 and
ϕ(t) = 0 for |t | > π/2; hence ϕ2 = ϕ · ψ . Now let X,Y,Z be independent real
random variables with characteristic functions ϕX = ϕY = ϕ and ϕZ = ψ . Then

ϕXϕY = ϕXϕZ ; hence X + Y D= X + Z. However, the distributions of Y and Z do
not coincide. ♦

Exercise 15.2.1 Let ϕ be the characteristic function of the d-dimensional random
variable X. Assume that ϕ(t)= 1 for some t �= 0. Show that P[X ∈Ht ] = 1, where
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Ht =
{
x ∈R

d : 〈x, t〉 ∈ 2πZ
}

= {y + z · (2πt/‖t‖2
2

) : z ∈ Z, y ∈R
d with 〈y, t〉 = 0

}
.

Infer that ϕ(t + s)= ϕ(s) for all s ∈R
d .

Exercise 15.2.2 Show that there are real random variables X,X′ and Y,Y ′ with the

properties (i) X
D= X′ and Y

D= Y ′, (ii) X′ and Y ′ are independent, (iii) X + Y D=
X′ + Y ′, and (iv) X and Y are not independent.

Exercise 15.2.3 Let X be a real random variable with characteristic function ϕ.
X is called lattice distributed if there are a, d ∈ R such that P[X ∈ a + dZ] = 1.
Show that X is lattice distributed if and only if there exists a u �= 0 such that
|ϕ(u)| = 1.

Exercise 15.2.4 Let X be a real random variable with characteristic function ϕ.
Assume that there is a sequence (tn)n∈N of real numbers such that |tn| ↓ 0 and
|ϕ(tn)| = 1 for any n. Show that there exists a b ∈R such that X = b almost surely.
If in addition, ϕ(tn)= 1 for all n, then X = 0 almost surely.

15.3 Lévy’s Continuity Theorem

The main statement of this section is Lévy’s continuity theorem (Theorem 15.23).
Roughly speaking, it says that a sequence of characteristic functions converges
pointwise to a continuous function if and only if the limiting function is a charac-
teristic function and the corresponding probability measures converge weakly. We
prepare for the proof of this theorem by assembling some analytic tools.

Lemma 15.19 Let μ ∈M1(R
d) with characteristic function ϕ. Then

∣
∣ϕ(t)− ϕ(s)∣∣2 ≤ 2

(
1−Re

(
ϕ(t − s))) for all s, t ∈R

d .

Proof By the Cauchy–Schwarz inequality,

∣
∣ϕ(t)− ϕ(s)∣∣2 =

∣
∣
∣
∣

∫

Rd

ei〈t,x〉 − ei〈s,x〉μ(dx)
∣
∣
∣
∣

2

=
∣
∣
∣
∣

∫

Rd

(
ei〈t−s,x〉 − 1

)
ei〈s,x〉μ(dx)

∣
∣
∣
∣

2

≤
∫

Rd

∣
∣ei〈t−s,x〉 − 1

∣
∣2μ(dx) ·

∫

Rd

∣
∣ei〈s,x〉

∣
∣2μ(dx)

=
∫

Rd

(
ei〈t−s,x〉 − 1

)(
e−i〈t−s,x〉 − 1

)
μ(dx)

= 2
(
1−Re

(
ϕ(t − s))). �
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Definition 15.20 Let (E,d) be a metric space. A family (fi, i ∈ I ) of maps E→R

is called uniformly equicontinuous if, for every ε > 0, there exists a δ > 0 such that
|fi(t)− fi(s)|< ε for all i ∈ I and all s, t ∈E with d(s, t) < δ.

Theorem 15.21 If F ⊂M1(R
d) is a tight family, then {ϕμ : μ ∈ F} is uniformly

equicontinuous. In particular, every characteristic function is uniformly continuous.

Proof We have to show that, for every ε > 0, there exists a δ > 0 such that, for all
t ∈R

d , all s ∈R
d with |t − s|< δ and all μ ∈F , we have

∣
∣ϕμ(t)− ϕμ(s)

∣
∣< ε.

As F is tight, there exists an N ∈N with μ([−N,N ]d) > 1−ε2/6 for all μ ∈F .
Furthermore, there exists a δ > 0 such that, for x ∈ [−N,N ]d and u ∈ R

d with
|u|< δ, we have |1− ei〈u,x〉|< ε2/6. Hence we get for all μ ∈F

1−Re
(
ϕμ(u)

)≤
∫

Rd

∣
∣1− ei〈u,x〉∣∣μ(dx)

≤ ε
2

3
+
∫

[−N,N ]d
∣
∣1− ei〈u,x〉∣∣μ(dx)

≤ ε
2

3
+ ε

2

6
= ε

2

2
.

Thus, for |t − s|< δ by Lemma 15.19, |ϕμ(t)− ϕμ(s)| ≤ ε. �

Lemma 15.22 Let (E,d) be a metric space and let f,f1, f2, . . . be maps E→ R

with fn
n→∞−→ f pointwise. If (fn)n∈N is uniformly equicontinuous, then f is uni-

formly continuous and (fn)n∈N converges to f uniformly on compact sets; that is,
for every compact set K ⊂E, we have

sup
s∈K
∣
∣fn(s)− f (s)

∣
∣ n→∞−→ 0.

Proof Fix ε > 0, and choose δ > 0 such that |fn(t)− fn(s)|< ε for all n ∈ N and
all s, t ∈E with d(s, t) < δ. For these s, t , we thus have

∣
∣f (s)− f (t)∣∣= lim

n→∞
∣
∣fn(s)− fn(t)

∣
∣≤ ε.

Hence, f is uniformly continuous.
Now let K ⊂ E be compact. As compact sets are totally bounded, there exists

an N ∈ N and points t1, . . . , tN ∈ K with K ⊂⋃Ni=1Bδ(ti). Choose n0 ∈ N large
enough that |fn(ti)− f (ti)| ≤ ε for all i = 1, . . . ,N and n≥ n0.

Now let s ∈K and n≥ n0. Choose a ti with d(s, ti) < δ. Then
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∣
∣fn(s)− f (s)

∣
∣≤ ∣∣fn(s)− fn(ti)

∣
∣+ ∣∣fn(ti)− f (ti)

∣
∣+ ∣∣f (ti)− f (s)

∣
∣≤ 3ε.

As ε > 0 was arbitrary, we infer that fn
n→∞−→ f uniformly on K . �

A map f : Rd → R is called partially continuous at x = (x1, . . . , xd) if, for
any i = 1, . . . , d , the map yi �→ f (x1, . . . , xi−1, yi, xi+1, . . . , xd) is continuous at
yi = xi .

Theorem 15.23 (Lévy’s continuity theorem) Let P,P1,P2, . . . ∈M1(R
d) with

characteristic functions ϕ,ϕ1, ϕ2, . . . .

(i) If P =w-limn→∞ Pn, then ϕn
n→∞−→ ϕ uniformly on compact sets.

(ii) If ϕn
n→∞−→ f pointwise for some f : Rd → C that is partially continuous

at 0, then there exists a probability measure Q such that ϕQ = f and Q =
w-limn→∞ Pn.

Proof (i) By the definition of weak convergence, we have ϕn
n→∞−→ ϕ pointwise. As

the family (Pn)n∈N is tight, by Theorem 15.21, (ϕn)n∈N is uniformly equicontinu-
ous. By Lemma 15.22, this implies uniform convergence on compact sets.

(ii) By Theorem 13.34, it is enough to show that the sequence (Pn)n∈N is
tight. For this purpose, it suffices to show that, for every k = 1, . . . , n, the se-
quence (P kn )n∈N of kth marginal distributions is tight. (Here P kn := Pn ◦π−1

k , where
πk : Rd → R is the projection on the kth coordinate.) Let ek be the kth unit vector
in R

d . Then ϕPkn (t)= ϕn(tek) is the characteristic function of P kn . By assumption,

ϕPkn
n→∞−→ fk pointwise for some function fk that is continuous at 0. We have thus

reduced the problem to the one-dimensional situation and will henceforth assume
d = 1.

As ϕn(0)= 1 for all n ∈N, we have f (0)= 1. Define the map h :R→[0,∞) by
h(x)= 1−sin(x)/x for x �= 0 and h(0)= 0. Clearly, h is continuously differentiable
on R. It is easy to see that α := inf{h(x) : |x| ≥ 1} = 1−sin(1) > 0. Now, forK > 0,
compute (using Markov’s inequality and Fubini’s theorem)

Pn
([−K,K]c)≤ α−1

∫

[−K,K]c
h(x/K)Pn(dx)

≤ α−1
∫

R

h(x/K)Pn(dx)

= α−1
∫

R

(∫ 1

0

(
1− cos(tx/K)

)
dt

)

Pn(dx)

= α−1
∫ 1

0

(∫

R

(
1− cos(tx/K)

)
Pn(dx)

)

dt

= α−1
∫ 1

0

(
1−Re

(
ϕn(t/K)

))
dt.
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Using dominated convergence, we conclude that

lim sup
n→∞

Pn
([−K,K]c)≤ α−1 lim sup

n→∞

∫ 1

0

(
1−Re

(
ϕn(t/K)

))
dt

= α−1
∫ 1

0

(
lim
n→∞

(
1−Re

(
ϕn(t/K)

)))
dt

= α−1
∫ 1

0

(
1−Re

(
f (t/K)

))
dt.

As f is continuous and f (0) = 1, the last integral converges to 0 for K →∞.
Hence (Pn)n∈N is tight. �

Applying Lévy’s continuity theorem to Example 15.15, we get a theorem of
Pólya.

Theorem 15.24 (Pólya) Let f : R → [0,1] be continuous and even with
f (0)= 1. Assume that f is convex on [0,∞). Then f is the characteristic function
of a probability measure.

Proof Define fn by fn(k/n) := f (k/n) for k = 0, . . . , n2, and assume fn is linearly
interpolated between these points. Furthermore, let fn be constant to the right of n
and for x < 0, define fn(x)= fn(−x). This is an approximation of f on [0,∞) by
convex and piecewise linear functions. By Example 15.15, every fn is a character-

istic function of a probability measure μn. Clearly, fn
n→∞−→ f pointwise; hence f

is the characteristic function of a probability measure μ=w-limn→∞μn on R. �

Corollary 15.25 For every α ∈ (0,1] and r > 0, ϕα,r (t)= e−|rt |α is the character-
istic function of a symmetric probability measure μα,r on R.

Remark 15.26 In fact, ϕα,r is a characteristic function for every α ∈ (0,2] (α = 2
corresponds to the normal distribution), see Section 16.2. The distributions μα,r are
the so-called α-stable distributions (see Definition 16.20): If X1,X2, . . . ,Xn are
independent and μα,a-distributed, then ϕX1+...+Xn(t)= ϕX(t)n = ϕX(n1/αt); hence

X1 + . . .+Xn D= n1/αX1. ♦

The Stone–Weierstraß theorem implies that a characteristic function determines
a probability distribution uniquely. Pólya’s theorem gives a sufficient condition for
a symmetric real function to be a characteristic function. Clearly, that condition is
not necessary, as, for example, the normal distribution does not fulfill it. For general
education we present Bochner’s theorem that formulates a necessary and sufficient
condition for a function ϕ :Rd→C to be the characteristic function of a probability
measure.
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Definition 15.27 A function f : Rd → C is called positive semidefinite if, for all
n ∈N, all t1, . . . , tn ∈R

d and all y1, . . . , yn ∈C, we have

n∑

k,l=1

ykȳlf (tk − tl)≥ 0,

in other words, if the matrix (f (tk − tl))k,l=1,...,n is positive semidefinite.

Lemma 15.28 If μ ∈Mf (R
d) has characteristic function ϕ, then ϕ is positive

semidefinite.

Proof We have

n∑

k,l=1

ykȳlϕ(tk − tl)=
n∑

k,l=1

ykȳl

∫

eix(tk−tl )μ(dx)

=
∫ n∑

k,l=1

yke
ixtk yleixtlμ(dx)

=
∫ ∣∣
∣
∣
∣

n∑

k=1

yke
ixtk

∣
∣
∣
∣
∣

2

μ(dx)≥ 0.
�

In the case d = 1, the following theorem goes back to Bochner (1932) [19].

Theorem 15.29 (Bochner) A continuous function ϕ :Rd→C is the characteris-
tic function of a probability distribution on R

d if and only if ϕ is positive semidef-
inite and ϕ(0)= 1.
The statement still holds if Rd is replaced by a locally compact Abelian group.

Proof For the case d = 1 see [19, Section 20, Theorem 23] or [54, Chapter XIX.2,
p. 622]. For the general case, see, e.g., [71, p. 293, Theorem 33.3]. �

Exercise 15.3.1 (Compare [50] and [4]) Show that there exist two exchangeable
sequences X = (Xn)n∈N and Y = (Yn)n∈N of real random variables with PX �= PY
but such that

n∑

k=1

Xk
D=

n∑

k=1

Yk for all n ∈N. (15.4)
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Hint:

(i) Define the characteristic functions (see Theorem 15.12) ϕ1(t) = 1
1+t2 and

ϕ2(t)= (1− t/2)+. Use Pólya’s theorem to show that

ψ1(t) :=
{
ϕ1(t), if |t | ≤ 1,

ϕ2(t), if |t |> 1,

and

ψ2(t) :=
{
ϕ2(t), if |t | ≤ 1,

ϕ1(t), if |t |> 1,

are characteristic functions of probability distributions on R.
(ii) Define independent random variablesXn,i , Yn,i , n ∈N, i = 1,2, andΘn, n ∈N

such thatXn,i has characteristic function ϕi , Yn,i has characteristic function ψi
and P[Θn = 1] = P[Θn =−1] = 1

2 . Define Xn =Xn,Θn and Yn = Yn,Θn . Show
that (15.4) holds.

(iii) Determine E[eit1X1+it2X2] and E[eit1Y1+it2Y2 ] for t1 = 1
2 and t2 = 2. Conclude

that (X1,X2) �D= (Y1, Y2) and thus PX �= PY .

Exercise 15.3.2 Show that for any δ > 0 and ε > 0, there is a C <∞ such that for
any μ ∈M1(R) with characteristic function ϕ, we have

μ
([−δ, δ]c)≤C

∫ ε

0

(
1−Re

(
ϕ(t)
))
dt.

For εδ ≤ 3 one can choose C = 12/δ2ε3.
Hint: Proceed as in the proof of Lévy’s continuity theorem.

Exercise 15.3.3 Let (μn)n∈N be a sequence of probability measures on R and de-
note by (ϕn)n∈N the corresponding characteristic functions. Assume that

ϕn(t)
n→∞−→ 1 for t in a neighborhood of 0. Use Exercise 15.3.2 to show that

μn
n→∞−→ δ0.

15.4 Characteristic Functions and Moments

We want to study the connection between the moments of a real random variable X
and the derivatives of its characteristic function ϕX . We start with a simple lemma.

Lemma 15.30 For t ∈R and n ∈N, we have
∣
∣
∣
∣e
it − 1− it

1! − . . .−
(it)n−1

(n− 1)!
∣
∣
∣
∣≤

|t |n
n! .
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Proof As the nth derivative of eit has modulus 1, this follows by Taylor’s for-
mula. �

Theorem 15.31 (Moments and differentiability) Let X be a real random variable
with characteristic function ϕ.

(i) If E[|X|n]<∞, then ϕ is n-times continuously differentiable with derivatives

ϕ(k)(t)= E
[
(iX)keitX

]
for k = 0, . . . , n.

(ii) In particular, if E[X2]<∞, then

ϕ(t)= 1+ itE[X] − 1

2
t2E
[
X2]+ ε(t)t2

with ε(t)→ 0 for t→ 0.
(iii) Let h ∈R. If limn→∞ |h|nE[|X|n]

n! = 0, then, for every t ∈R,

ϕ(t + h)=
∞∑

k=0

(ih)k

k! E
[
eitXXk

]
.

In particular, this holds if E[e|hX|]<∞.

Proof (i) For t ∈R, h ∈R \ {0} and k ∈ {1, . . . , n}, define

Yk(t, h, x)= k!h−keitx
(

eihx −
k−1∑

l=0

(ihx)l

l!

)

.

Then

E
[
Yk(t, h,X)

]= k!h−k
(

ϕ(t + h)− ϕ(t)−
k−1∑

l=1

E
[
eitX(iX)l

]hl

l!

)

.

If the limit ϕk(t) := limh→0 E[Yk(t, h,X)] exists, then ϕ is k-times differentiable at
t with ϕ(k)(t)= ϕk(t).

However (by Lemma 15.30 with n = k + 1), Yk(t, h, x)
h→0−→ (ix)keitx for all

x ∈ R and (by Lemma 15.30 with n = k) |Yk(t, h, x)| ≤ |x|k . As E[|X|k] <∞ by
assumption, the dominated convergence theorem implies

E
[
Yk(t, h,X)

] h→0−→ E
[
(iX)keitX

]= ϕ(k)(t).

Applying the continuity lemma (Theorem 6.27) yields that ϕ(k) is continuous.
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(ii) This is a direct consequence of (i).
(iii) By assumption,

∣
∣
∣
∣
∣
ϕ(t + h)−

n−1∑

k=0

(ih)k

k! E
[
eitXXk

]
∣
∣
∣
∣
∣
= h

n

n!
∣
∣E
[
Yn(t, h,X)

]∣
∣

≤ h
nE[|X|n]
n!

n→∞−→ 0. �

Corollary 15.32 (Method of moments) Let X be a real random variable with

α := lim sup
n→∞

1

n
E
[|X|n]1/n <∞.

Then the characteristic function ϕ of X is analytic and the distribution of X is
uniquely determined by the moments E[Xn], n ∈ N. In particular, this holds if
E[et |X|]<∞ for some t > 0.

Proof By Stirling’s formula,

lim
n→∞

1

n!n
ne−n

√
2πn= 1.

Thus, for |h|< 1/(3α),

lim sup
n→∞

E
[|X|n] · |h|n/n! = lim sup

n→∞
√

2πn
(
E
[|X|n]1/n · |h| · e/n)n

≤ lim sup
n→∞

√
2πn(e/3)n = 0.

Hence the characteristic function can be expanded about any point t ∈R in a power
series with radius of convergence at least 1/(3α). In particular, it is analytic and is
hence determined by the coefficients of its power series about t = 0; that is, by the
moments of X. �

Example 15.33

(i) Let X ∼Nμ,σ 2 . Then, for every t ∈R,

E
[
etX
]= (2πσ 2)−1/2

∫ ∞

−∞
etxe−(x−μ)2/2σ 2

dx

= eμt+t2σ 2/2(2πσ 2)−1/2
∫ ∞

−∞
e−(x−μ−tσ 2)2/2σ 2

dx

= eμt+t2σ 2/2 <∞.
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Hence the distribution of X is characterized by its moments. The character-
istic function ϕ(t) = eiμt e−σ 2t2/2 that we get by the above calculation with t
replaced by it is indeed analytic.

(ii) Let X be exponentially distributed with parameter θ > 0. Then, for t ∈ (0, θ),

E
[
etX
]= θ

∫ ∞

0
etxe−θx dx = θ

θ − t <∞.

Hence the distribution ofX is characterized by its moments. The above calcula-
tion with t replaced by it yields ϕ(t)= θ/(θ − it), and this function is indeed
analytic. The fact that in the complex plane ϕ has a singularity at t = −iθ
implies that the power series of ϕ about 0 has radius of convergence θ . In par-
ticular, this implies that not all exponential moments are finite. This is reflected
by the above calculation that shows that, for t ≥ θ , the exponential moments
are infinite.

(iii) Let X be log-normally distributed (see Example 15.5). Then E[Xn] = en2/2. In
particular, here α =∞. In fact, in Example 15.5, we saw that here the moments
do not determine the distribution of X.

(iv) If X takes values in N0 and if β := lim supn→∞E[Xn]1/n < 1, then by
Hadamard’s criterion ψX(z) :=∑∞

k=1 P[X = k]zk <∞ for |z|< 1/β . In par-
ticular, the probability generating function X is characterized by its derivatives
ψ
(n)
X (1), n ∈N, and thus by the moments of X. Compare Theorem 3.2(iii). ♦

Theorem 15.34 Let X be a real random variable and let ϕ be its characteristic
function. Let n ∈N, and assume that ϕ is 2n-times differentiable at 0 with derivative
ϕ(2n)(0). Then E[X2n] = (−1)nϕ(2n)(0) <∞.

Proof We carry out the proof by induction on n ∈ N0. For n= 0, the claim is triv-
ially true. Now, let n ∈ N, and assume ϕ is 2n-times (not necessarily continuously)
differentiable at 0. Define u(t)= Re(ϕ(t)). Then u is also 2n-times differentiable at
0 and u(2k−1)(0)= 0 for k = 1, . . . , n since u is even. Since ϕ(2n)(0) exists, ϕ(2n−1)

is continuous at 0 and ϕ(2n−1)(t) exists for all t ∈ (−ε, ε) for some ε > 0. Further-
more, ϕ(k) exists in (−ε, ε) and is continuous on (−ε, ε) for any k = 0, . . . ,2n− 2.
By Taylor’s formula, for every t ∈ (−ε, ε),

∣
∣
∣
∣
∣
u(t)−

n−1∑

k=0

u(2k)(0)
t2k

(2k)!

∣
∣
∣
∣
∣
≤ |t |2n−1

(2n− 1)! sup
θ∈(0,1]

∣
∣u(2n−1)(θ t)

∣
∣. (15.5)

Define a continuous function fn :R→[0,∞) by fn(0)= 1 and

fn(x)= (−1)n(2n)!x−2n

[

cos(x)−
n−1∑

k=0

(−1)k
x2k

(2k)!

]

for x �= 0.
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By the induction hypothesis, E[X2k] = u(2k)(0) for all k = 1, . . . , n − 1. Using
(15.5), we infer

E
[
fn(tX)X

2n]≤ 2n

|t | sup
θ∈(0,1]

∣
∣u(2n−1)(θ t)

∣
∣≤ gn(t)

:= 2n sup
θ∈(0,1]

|u(2n−1)(θ t)|
θ |t | .

Now Fatou’s lemma implies

E
[
X2n]= E

[
fn(0)X

2n]≤ lim inf
t→0

E
[
fn(tX)X

2n]

≤ lim inf
t→0

gn(t)= 2n
∣
∣u(2n)(0)

∣
∣<∞.

By Theorem 15.31, this implies E[X2n] = (−1)nu(2n)(0)= (−1)nϕ(2n)(0). �

Remark 15.35 For odd moments, the statement of the theorem may fail (see, e.g.,
Exercise 15.4.4 for the first moment). Indeed, ϕ is differentiable at 0 with derivative
im for some m ∈ R if and only if xP[|X| > x] x→∞−→ 0 and E[X1{|X|≤x}] x→∞−→ m.
(See [54, Chapter XVII.2a, p. 565].) ♦

Exercise 15.4.1 Let X and Y be nonnegative random variables with

lim sup
n→∞

1

n
E
[|X|n]1/n <∞, lim sup

n→∞
1

n
E
[|Y |n]1/n <∞,

and

E
[
XmYn

]= E
[
Xm
]
E
[
Yn
]

for all m,n ∈N0.

Show that X and Y are independent.
Hint: Consider the random variable Y with respect to the probability measure

XmP[ ·]/E[Xm], and use Corollary 15.32 to show that

E
[
Xm1A(Y )

]
/E
[
Xm
]= P[Y ∈A] for all A ∈ B(R) and m ∈N0.

Now apply Corollary 15.32 to the random variable X with respect to the probability
measure P[ · | Y ∈A].

Exercise 15.4.2 Let r, s > 0 and let Z ∼ Γ1,r+s and B ∼ βr,s be independent (see
Example 1.107). Use Exercise 15.4.1 to show that the random variables X := BZ
and Y := (1−B)Z are independent with X ∼ Γ1,r and Y ∼ Γ1,s .

Exercise 15.4.3 Show that, for α > 2, the function φα(t) = e−|t |α is not a charac-
teristic function.

Hint: Assume the contrary and show that the corresponding random variable
would have variance zero.
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Exercise 15.4.4 Let X1,X2, . . . be i.i.d. real random variables with characteristic
function ϕ. Show the following.

(i) If ϕ is differentiable at 0, then ϕ′(0)= im for some m ∈R.
(ii) ϕ is differentiable at 0 with ϕ′(0)= im if and only if (X1+ . . .+Xn)/n n→∞−→ m

in probability.
(iii) Assume that ϕ is differentiable at 0 and that X1 ≥ 0 almost surely. Then

E[X1] = −iϕ′(0) <∞.
Hint: Use (ii) and the law of large numbers.

(iv) The distribution of X1 can be chosen such that ϕ is differentiable at 0 but
E[|X1|] =∞.

Exercise 15.4.5 Let X1,X2, . . . be real random variables. For r > 0 let Mr(Xn)=
E[|Xn|r ] be the r th absolute moment. For k ∈ N let mk(Xn) = E[Xkn] be the kth
moment ifMk(Xn) <∞.

(i) Assume that X is a real random variable and that (Xnl )l∈N is a subsequence
such that

PXnl
l→∞−→ PX weakly.

Assume further that there is an r > 0 such that supn∈NMr(Xn) <∞. Show
that for any k ∈N∩ (0, r) and s ∈ (0, r) we haveMs(X) <∞ as well as

Ms(Xnl )
l→∞−→ Ms(X) and mk(Xnl )

l→∞−→ mk(X).

(ii) Assume that for any k ∈N the limit

mk := lim
n→∞mk(Xn)

exists and is finite (note that finitely many of the mk(Xn) may be undefined for
any k). Show that there exists a real random variable X with mk =mk(X) for
all k ∈N and a subsequence (Xnl )l∈N such that

PXnl
l→∞−→ PX weakly.

(iii) Show the theorem of Fréchet–Shohat: If in (ii) the distribution of X is deter-
mined by its moments mk(X), k ∈N (see Corollary 15.32), then

PXn
n→∞−→ PX weakly.

Exercise 15.4.6 Let X1,X2, . . . be i.i.d. real random variables with E[X1] = 0 and
E[|X1|k]<∞ for all k ∈N.

(i) Show that there exist finite numbers (dk)k∈N (depending on the distribution
PX1 ) such that for any k,n ∈N we have

∣
∣E
[
(X1 + . . .+Xn)2k−1]∣∣≤ d2k−1n

k−1
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and
∣
∣
∣
∣E
[
(X1 + . . .+Xn)2k

]− (2k)!
2kk! E

[
X2

1

]k
nk
∣
∣
∣
∣≤ d2kn

k−1.

Hint: Expand the bracket expression, sort the terms by the different mixed
moments and compute by combinatorial means the number of each type of
summand. The number of summands of the type E[X2

l1
. . .X2

lk
] (for different

l1, . . . , lk) is of particular importance.
(ii) Let Y ∼N0,1. Use Theorem 15.31(i) to show that for any k ∈N we have

E
[
Y 2k−1]= 0 and E

[
Y 2k]= (2k)!

2kk! .

(iii) Let S∗n = (X1 + . . .+Xn)/√nVar[X1]. Use Exercise 15.4.5 to infer the state-
ment of the central limit theorem (compare Theorem 15.37)

PS∗n
n→∞−→ N0,1 weakly.

15.5 The Central Limit Theorem

In the strong law of large numbers, we saw that, for large n, the order of magnitude
of the sum Sn =X1 + . . .+Xn of i.i.d. integrable random variables is n ·E[X1]. Of
course, for any n, the actual value of Sn will sometimes be smaller than n · E[X1]
and sometimes larger. In the central limit theorem (CLT), we study the size and
shape of the typical fluctuations around n · E[X1] in the case where the Xi have a
finite variance.

We prepare for the proof of the CLT with a lemma.

Lemma 15.36 Let X1,X2, . . . be i.i.d. real random variables with E[X1] = μ and
Var[X1] = σ 2 ∈ (0,∞). Let

S∗n :=
1√
nσ 2

n∑

k=1

(Xk −μ)

be the normalized nth partial sum. Then

lim
n→∞ϕS∗n (t)= e

−t2/2 for all t ∈R.

Proof Let ϕ = ϕXk−μ. Then, by Theorem 15.31(ii),

ϕ(t)= 1− σ
2

2
t2 + ε(t)t2,

where the error term ε(t) goes to 0 if t→ 0. By Lemma 15.11(iv) and (ii),

ϕS∗n (t)= ϕ
(

t√
nσ 2

)n
.
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Now (1− t2

2n )
n n→∞−→ e−t2/2 and

∣
∣
∣
∣

(

1− t2

2n

)n
− ϕ
(

t√
nσ 2

)n∣∣
∣
∣≤ n

∣
∣
∣
∣1−

t2

2n
− ϕ
(

t√
nσ 2

)∣
∣
∣
∣

≤ n t
2

nσ 2

∣
∣
∣
∣ε

(
t√
nσ 2

)∣
∣
∣
∣
n→∞−→ 0.

(Note that |un − vn| ≤ |u− v| · n ·max(|u|, |v|)n−1 for all u,v ∈C.) �

Theorem 15.37 (Central limit theorem (CLT)) Let X1,X2, . . . be i.i.d. real ran-
dom variables with μ := E[X1] ∈ R and σ 2 := Var[X1] ∈ (0,∞). For n ∈ N, let
S∗n := 1√

σ 2n

∑n
i=1(Xi −μ). Then

PS∗n
n→∞−→ N0,1 weakly.

For −∞≤ a < b ≤+∞, we have limn→∞ P[S∗n ∈ [a, b]] = 1√
2π

∫ b
a
e−x2/2 dx.

Proof By Lemma 15.36 and Lévy’s continuity theorem (Theorem 15.23), (PS∗n )

converges to the distribution with characteristic function ϕ(t) = e−t2/2. By Theo-
rem 15.12(i), this is N0,1. The additional claim follows by the Portemanteau theo-
rem (Theorem 13.16) since N0,1 has a density; hence N0,1(∂[a, b])= 0. �

Remark 15.38 If we prefer to avoid the continuity theorem, we could argue as fol-
lows: For every K > 0 and n ∈ N, we have P[|S∗n | > K] ≤ Var[S∗n]/K2 = 1/K2;
hence the sequence (PS∗n ) is tight. As characteristic functions determine distribu-
tions, the claim follows by Theorem 13.34. ♦

We want to weaken the assumption in Theorem 15.37 that the random variables
are identically distributed. In fact, we can even take a different set of summands
for every n. The essential assumptions are that the summands are independent, each
summand contributes only a little to the sum and the sum is centered and has vari-
ance 1.

Definition 15.39 For every n ∈N, let kn ∈N and letXn,1, . . . ,Xn,kn be real random
variables. We say that (Xn,l) = (Xn,l, l = 1, . . . , kn, n ∈ N) is an array of random
variables. Its row sum is denoted by Sn =Xn,1 + . . .+Xn,kn . The array is called

• independent if, for every n ∈N, the family (Xn,l)l=1,...,kn is independent,
• centered if Xn,l ∈ L1(P) and E[Xn,l] = 0 for all n and l, and
• normed if Xn,l ∈ L2(P) and

∑kn
l=1 Var[Xn,l] = 1 for all n ∈N.

A centered array is called a null array if its individual components are asymptoti-
cally negligible in the sense that, for all ε > 0,

lim
n→∞ max

1≤l≤kn
P
[|Xn,l |> ε

]= 0.
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Definition 15.40 A centered array of random variables (Xn,l) with Xn,l ∈ L2(P)
for every n ∈N and l = 1, . . . , kn is said to satisfy the Lindeberg condition if, for all
ε > 0,

Ln(ε) := 1

Var[Sn]
kn∑

l=1

E
[
X2
n,l1{X2

n,l>ε
2Var[Sn]}

] n→∞−→ 0. (15.6)

The array fulfills the Lyapunov condition if there exists a δ > 0 such that

lim
n→∞

1

Var[Sn]1+(δ/2)
kn∑

l=1

E
[|Xn,l |2+δ

]= 0. (15.7)

Lemma 15.41 The Lyapunov condition implies the Lindeberg condition.

Proof For x ∈ R, we have x21{|x|>ε′} ≤ (ε′)−δ|x|2+δ1{|x|>ε′} ≤ (ε′)−δ|x|2+δ . Let-
ting ε′ := ε√Var[Sn], we get

Ln(ε)≤ ε−δ 1

Var[Sn]1+(δ/2)
kn∑

l=1

E
[|Xn,l |2+δ

]
.

�

Example 15.42 Let (Yn)n∈N be i.i.d. with E[Yn] = 0 and Var[Yn] = 1. Let kn = n
and Xn,l = Yl√

n
. Then (Xn,l) is independent, centered and normed. Clearly,

P[|Xn,l | > ε] = P[|Y1| > √εn] n→∞−→ 0; hence (Xn,l) is a null array. Furthermore,

Ln(ε)= E[Y 2
1 1{|Y1|>ε√n}]

n→∞−→ 0; hence (Xn,l) satisfies the Lindeberg condition.

If Y1 ∈ L2+δ(P) for some δ > 0, then

n∑

l=1

E
[|Xn,l |2+δ

]= n−(δ/2)E[|Y1|2+δ
] n→∞−→ 0.

In this case, (Xn,l) also satisfies the Lyapunov condition. ♦

The following theorem is due to Lindeberg (1922, see [108]) for the implication
(i)=⇒(ii) and is attributed to Feller (1935 and 1937, see [51, 52]) for the converse
implication (ii)=⇒(i). As most applications only need (i)=⇒(ii), we only prove that
implication. For a proof of (ii)=⇒(i) see, e.g., [154, Theorem III.4.3].

Theorem 15.43 (Central limit theorem of Lindeberg–Feller) Let (Xn,l) be an in-
dependent centered and normed array of real random variables. For every n ∈N,
let Sn =Xn,1 + . . .+Xn,kn . Then the following are equivalent.

(i) The Lindeberg condition holds.
(ii) (Xn,l) is a null array and PSn

n→∞−→ N0,1.

We prepare for the proof of Lindeberg’s theorem with a couple of lemmas.
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Lemma 15.44 If (i) of Theorem 15.43 holds, then (Xn,l) is a null array.

Proof For ε > 0, by Chebyshev’s inequality,

kn∑

l=1

P[|Xn,l |> ε] ≤ ε−2
kn∑

l=1

E
[
X2
n,l1{|Xn,l |>ε}

]= Ln(ε) n→∞−→ 0.
�

In the following, ϕn,l and ϕn will always denote the characteristic functions of
Xn,l and Sn.

Lemma 15.45 For every n ∈N and t ∈R, we have

kn∑

l=1

∣
∣1− ϕn,l(t)

∣
∣≤ t

2

2
.

Proof For every x ∈R, we have |eitx − 1− itx| ≤ t2x2

2 . Since E[Xn,l] = 0,

kn∑

l=1

∣
∣ϕn,l(t)− 1

∣
∣=

kn∑

l=1

∣
∣E
[
eitXn,l − 1

]∣
∣

≤
kn∑

l=1

E
[∣
∣eitXn,l − itXn,l − 1

∣
∣
]+ ∣∣E[itXn,l]

∣
∣

≤
kn∑

l=1

t2

2
E
[
X2
n,l

]= t
2

2
.

�

Lemma 15.46 If (i) of Theorem 15.43 holds, then

lim
n→∞

∣
∣
∣
∣
∣
logϕn(t)−

kn∑

l=1

E
[
eitXn,l − 1

]
∣
∣
∣
∣= 0.

Proof Let mn :=maxl=1,...,kn |ϕn,l(t)− 1|. Note that, for all ε > 0,

∣
∣eitx − 1

∣
∣≤
{

2x2/ε2, if |x|> ε,
εt, if |x| ≤ ε.

This implies

∣
∣ϕn,l(t)− 1

∣
∣≤ E

[∣
∣eitXn,l − 1

∣
∣1{|Xn,l |≤ε}

]+E
[∣
∣eitXn,l − 1

∣
∣1{|Xn,l |>ε}

]

≤ εt + 2ε−2E
[
X2
n,l1{|Xn,l |>ε}

]
.
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Hence, for all ε > 0,

lim sup
n→∞

mn ≤ lim sup
n→∞

(
εt + 2ε−2Ln(ε)

)= εt,

and thus limn→∞mn = 0. Now | log(1+ x)− x| ≤ x2 for all x ∈C with |x| ≤ 1
2 . If

n is sufficiently large that mn < 1
2 , then

∣
∣
∣
∣
∣
logϕn(t)−

kn∑

l=1

E
[
eitXn,l − 1

]
∣
∣
∣
∣
∣
=
∣
∣
∣
∣
∣

kn∑

l=1

log
(
ϕn,l(t)

)−E
[
eitXn,l − 1

]
∣
∣
∣
∣
∣

≤
kn∑

l=1

(
ϕn,l(t)− 1

)2

≤mn
kn∑

l=1

∣
∣ϕn,l(t)− 1

∣
∣

≤ 1

2
mnt

2 (by Lemma 15.45)

−→ 0 for n→∞. �

The fundamental trick of the proof, which is worth remembering, consists in the
introduction of the function

ft (x) :=
⎧
⎨

⎩

1+x2

x2 (e
itx − 1− itx

1+x2 ), if x �= 0,

− t22 , if x = 0,
(15.8)

and the measures μn, νn ∈Mf (R), n ∈N,

νn(dx) :=
kn∑

l=1

x2PXn,l (dx) and μn(dx) :=
kn∑

l=1

x2

1+ x2
PXn,l (dx).

Lemma 15.47 For every t ∈R, we have ft ∈Cb(R).

Proof For all |x| ≥ 1, we have 1+x2

x2 ≤ 2; hence

∣
∣ft (x)

∣
∣≤ 2

(
∣
∣eitx
∣
∣+ 1+ tx

1+ x2

)

≤ 4+ 2|t |.

We have to show that ft is continuous at 0. By Taylor’s formula (Lemma 15.30), we
get

eitx = 1+ itx − t
2x2

2
+R(tx),
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where the error term is bounded by |R(tx)| ≤ 1
6 |tx|3. Hence, for fixed t ,

lim
0�=x→0

ft (x)= lim
0�=x→0

1

x2

(

itx

(

1− 1

1+ x2

)

− t
2x2

2
+R(tx)

)

=− t
2

2
. �

Lemma 15.48 If (i) of Theorem 15.43 holds, then νn
n→∞−→ δ0 weakly.

Proof For every n ∈N, we have νn ∈M1(R) since

νn(R)=
kn∑

l=1

∫

x2PXn,l (dx)=
kn∑

l=1

Var[Xn,l] = 1.

However, for ε > 0, we have νn((−ε, ε)c)= Ln(ε) n→∞−→ 0; hence νn
n→∞−→ δ0. �

Lemma 15.49 If (i) of Theorem 15.43 holds, then

∫

ft (x)μn(dx)+ it
∫

1

x
μn(dx)

n→∞−→ − t
2

2
.

Proof Since (x �→ ft (x)/(1+ x2)) ∈Cb(R), by Lemma 15.48,

∫

ft (x)μn(dx)=
∫

ft (x)
1

1+ x2
νn(dx)

n→∞−→ ft (0)=− t
2

2
.

Now (x �→ x/(1+ x2)) ∈ Cb(R) and E[Xn,l] = 0 for all n and l; hence

∫
1

x
μn(dx)=

kn∑

l=1

E
[
Xn,l

1+X2
n,l

]

=
kn∑

l=1

E
[
Xn,l

1+X2
n,l

−Xn,l
]

=−
kn∑

l=1

E
[

X2
n,l ·

Xn,l

1+X2
n,l

]

=−
∫

x

1+ x2
νn(dx)

n→∞−→ 0. �

Proof of Theorem 15.43 “(i)=⇒(ii)” We have to show that limn→∞ logϕn(t)=− t22
for every t ∈R. By Lemma 15.46, this is equivalent to

lim
n→∞

kn∑

l=1

(
ϕn,l(t)− 1

)=− t
2

2
.

Now ft (x) x2

1+x2 = eitx − 1− itx

1+x2 . Hence
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kn∑

l=1

(
ϕn,l(t)− 1

)=
kn∑

l=1

∫ (

ft (x)
x2

1+ x2
+ itx

1+ x2

)

PXn,l (dx)

=
∫

ft dμn + it
∫

1

x
μn(dx)

n→∞−→ − t
2

2
(by Lemma 15.49). �

As an application of the Lindeberg–Feller theorem, we give the so-called three-
series theorem, which is due to Kolmogorov.

Theorem 15.50 (Kolmogorov’s three-series theorem) LetX1,X2, . . . be indepen-
dent real random variables. Let K > 0 and Yn :=Xn1{|Xn|≤K} for all n ∈N.
The series

∑∞
n=1Xn converges almost surely if and only if each of the following

three conditions holds:

(i)
∑∞
n=1 P[|Xn|>K]<∞.

(ii)
∑∞
n=1 E[Yn] converges.

(iii)
∑∞
n=1 Var[Yn]<∞.

Proof “⇐=” Assume that (i), (ii) and (iii) hold. By Exercise 7.1.1, since (iii) holds,
the series

∑∞
n=1(Yn − E[Yn]) converges a.s. As (ii) holds,

∑∞
n=1 Yn converges al-

most surely. By the Borel–Cantelli lemma, there exists an N = N(ω) such that
|Xn|<K ; hence Xn = Yn for all n≥N . Hence

∑∞
n=1Xn =

∑N−1
n=1 Xn+

∑∞
n=N Yn

converges a.s.
“=⇒” Assume that

∑∞
n=1Xn converges a.s. Clearly, this implies (i) (otherwise,

by the Borel–Cantelli lemma, |Xn|>K infinitely often, contradicting the assump-
tion).

We assume that (iii) does not hold and produce a contradiction. To this end, let
σ 2
n =
∑n
k=1 Var[Yk] and define an array (Xn,l; l = 1, . . . , n, n ∈N) by Xn,l = (Yl −

E[Yl])/σn. This array is centered and normed. Since σ 2
n

n→∞−→ ∞, for every ε > 0 and
for sufficiently large n ∈N, we have 2K < εσn; thus |Xn,l | ≤ ε for all l = 1, . . . , n.

This implies Ln(ε)
n→∞−→ 0, where Ln(ε) =∑n

l=1 E[X2
n,l1{|Xn,l |≥ε}] is the quantity

of the Lindeberg condition (see (15.6)). By the Lindeberg–Feller theorem, we then
get Sn := Xn,1 + . . . + Xn,n n→∞=⇒ N0,1. As shown in the first part of this proof,
almost sure convergence of

∑∞
n=1Xn and (i) imply that

∞∑

n=1

Yn converges almost surely. (15.9)

In particular, Tn := (Y1 + . . .+ Yn)/σn n→∞=⇒ 0. Thus, by Slutzky’s theorem, we also
have (Sn − Tn) n→∞=⇒ N0,1. On the other hand, for all n ∈ N, the difference Sn − Tn
is deterministic, contradicting the assumption that (iii) does not hold.
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Now that we have established (iii), by Exercise 7.1.1, we see that
∑∞
n=1(Yn −

E[Yn]) converges almost surely. Together with (15.9), we conclude (ii). �

As a supplement, we cite a statement about the speed of convergence in the cen-
tral limit theorem (see, e.g., [154, Chapter III, Section 11] for a proof). With different
bounds (instead of 0.8), the statement was found independently by Berry [10] and
Esseen [46].

Theorem 15.51 (Berry–Esseen) Let X1,X2, . . . be independent and identically
distributed with E[X1] = 0, E[X2

1] = σ 2 ∈ (0,∞) and γ := E[|X1|3] <∞. Let

S∗n := 1√
nσ 2
(X1+ . . .+Xn) and letΦ : x �→ 1√

2π

∫ x
−∞ e

−t2/2dt be the distribution

function of the standard normal distribution. Then, for all n ∈N,

sup
x∈R

∣
∣P
[
S∗n ≤ x

]−Φ(x)∣∣≤ 0.8γ

σ 3
√
n
.

Example 15.52 Let α ∈ (0,1). Consider the distribution μα on R with density

fα(x)= 1

2α
|x|−1−1/α1{|x|≥1}.

Let X1,X2, . . . , be i.i.d. random variables with distribution μα . Then E[X1] = 0
and σ 2 := Var[X1] = 1/(1− 2α) <∞ if α < 1/2. Let Fn denote the distribution
function of S∗n and FΦ the distribution function of the standard normal distribution.

The closer Fn and FΦ are, the closer lie the points (F−1
Φ (t),F−1

n (t)) on the di-
agonal {(x, x) : x ∈ R}. A graphical representation of the points (F−1

Φ (t),F−1
n (t)),

t ∈R is called Q-Q-plot or quantile-quantile-plot.
As α approaches 1/2, the distribution μα has less and less moments. Hence we

expect the convergence in the central limit theorem to be slower. For fixed n, we
expect the deviation of Fn from FΦ to be larger for larger α. The graphs in Fig. 15.2
illustrate this. ♦

Exercise 15.5.1 The argument of Remark 15.38 is more direct than the argument
with Lévy’s continuity theorem but is less robust: Give a sequence X1,X2, . . . of
independent real random variables with E[|Xn|] =∞ for all n ∈N but such that

X1 + . . .+Xn√
n

n→∞=⇒ N0,1.

Exercise 15.5.2 Let Y1, Y2, . . . be i.i.d. with E[Yi] = 0 and E[Y 2
i ] = 1. Let

Z1,Z2, . . . be independent random variables (and independent of Y1, Y2, . . .) with

P[Zi = i] = P[Zi =−i] = 1

2

(
1− P[Zi = 0])= 1

2

1

i2
.

For i, n ∈N, define Xi := Yi +Zi and Sn =X1 + . . .+Xn.
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Fig. 15.2 Q-Q-plots for S∗100 from Example 15.52 with α = 0.4 (left) and α = 0.48 (right). The
abscissa shows the quantiles of the standard normal distribution. For convenience, also the diago-
nal is drawn

Show that n−1/2Sn
n→∞=⇒ N0,1 but that (Xi)i∈N does not satisfy the Lindeberg

condition.
Hint: Do not try a direct computation!

Exercise 15.5.3 Let X1,X2, . . . be i.i.d. random variables with density

f (x)= 1

|x|3 1R\[−1,1](x).

Then E[X2
1] =∞ but there are numbers A1,A2, . . ., such that

X1 + . . .+Xn
An

n→∞=⇒ N0,1.

Determine one such sequence (An)n∈N explicitly.

15.6 Multidimensional Central Limit Theorem

We come to a multidimensional version of the CLT.

Definition 15.53 Let C be a (strictly) positive definite symmetric real d × d matrix
and let μ ∈ R

d . A random vector X = (X1, . . . ,Xd)
T is called d-dimensional nor-

mally distributed with expectation μ and covariance matrix C if X has the density

fμ,C(x)= 1
√
(2π)ddet(C)

exp

(

−1

2

〈
x −μ,C−1(x −μ)〉

)

(15.10)

for x ∈R
d . In this case, we write X ∼Nμ,C .
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Theorem 15.54 Let μ ∈R
d and let C be a real positive definite symmetric d × d

matrix. If X ∼Nμ,C , then the following statements hold.

(i) E[Xi] = μi for all i = 1, . . . , d .
(ii) Cov[Xi,Xj ] = Ci,j for all i, j = 1, . . . , d .

(iii) 〈λ,X〉 ∼N〈λ,μ〉,〈λ,Cλ〉 for every λ ∈R
d .

(iv) ϕ(t) := E[ei〈t,X〉] = ei〈t,μ〉e− 1
2 〈t,Ct〉 for every t ∈R

d .

Moreover, X ∼Nμ,C ⇐⇒ (iii) ⇐⇒ (iv).

Proof (i) and (ii) follow by simple computations. The same is true for (iii) and (iv).
The implication (iii)=⇒(iv) is straightforward. The family

{
ft : x �→ ei〈t,x〉, t ∈R

d
}

is a separating class for M1(R
d) by the Stone–Weierstraß theorem. Hence ϕ deter-

mines the distribution of X uniquely. �

Remark 15.55 For one-dimensional normal distributions, it is natural to define the
degenerate normal distribution by Nμ,0 := δμ. For the multidimensional situation,
there are various possibilities for degeneracy depending on the size of the kernel
of C. If C is only positive semidefinite (and symmetric, of course), we define Nμ,C
as that distribution on R

n with characteristic function ϕ(t)= ei〈t,μ〉e− 1
2 〈t,Ct〉. ♦

Theorem 15.56 (Cramér–Wold device) LetXn = (Xn,1, . . . ,Xn,d)T ∈R
d , n ∈N,

be random vectors. Then, the following are equivalent:

(i) There is a random vector X such that Xn
n→∞=⇒ X.

(ii) For any λ ∈R
d , there is a random variable Xλ such that 〈λ,Xn〉 n→∞=⇒ Xλ.

If (i) and (ii) hold, then Xλ
D= 〈λ,X〉 for all λ ∈R

d .

Proof Assume (i). Let λ ∈ R
d and s ∈ R. The map R

d → C, x �→ eis〈λ,x〉 is con-

tinuous and bounded; hence we have E[eis〈λ,Xn〉] n→∞−→ E[eis〈λ,X∞〉]. Thus (ii) holds
with Xλ := 〈λ,X〉.

Now assume (ii). Then (PXn,l )n∈N is tight for every l = 1, . . . , d . Hence (PXn)n∈N
is tight and thus relatively sequentially compact (Prohorov’s theorem). For any weak
limit point Q for (PXn)n∈N and for any λ ∈R

d , we have

∫

Q(dx)ei〈λ,x〉 = E
[
eiX

λ]
.

Hence the limit point Q is unique and thus (PXn)n∈N converges weakly to Q. That
is, (i) holds.
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If (ii) holds, then the distributions of the limiting random variables Xλ are
uniquely determined and by what we have shown already, Xλ = 〈λ,X〉 is one pos-

sible choice. Thus Xλ
D= 〈λ,X〉. �

Theorem 15.57 (Central limit theorem in R
d ) Let (Xn)n∈N be i.i.d. random

vectors with E[Xn,i] = 0 and E[Xn,iXn,j ] = Cij , i, j = 1, . . . , d . Let S∗n :=
X1+...+Xn√

n
. Then

PS∗n
n→∞−→ N0,C weakly.

Proof Let λ ∈ R
d . Define Xλn = 〈λ,Xn〉, Sλn = 〈λ,S∗n〉 and S∞ ∼ N0,C . Then

E[Xλn] = 0 and Var[Xλn] = 〈λ,Cλ〉. By the one-dimensional central limit theorem,

we have PSλn
n→∞−→ N0,〈λ,Cλ〉 = P〈λ,S∞〉. By Theorem 15.56, this yields the claim. �

Exercise 15.6.1 Let μ ∈ R
d , let C be a symmetric positive semidefinite real d × d

matrix and let X ∼ Nμ,C (in the sense of Remark 15.55). Show that AX ∼
NAμ,ACAT for every m ∈N and every real m× d matrix A.

Exercise 15.6.2 (Cholesky factorization) Let C be a positive definite symmetric
real d × d matrix. Then there exists a real d × d matrix A= (akl) with A ·AT = C.
The matrix A can be chosen to be lower triangular. LetW := (W1, . . . ,Wd)

T , where
W1, . . . ,Wd are independent and N0,1-distributed. DefineX :=AW +μ. Show that
X ∼Nμ,C .



Chapter 16
Infinitely Divisible Distributions

For every n, the normal distribution Nμ,σ 2 is the nth convolution power of a prob-
ability measure (namely, of Nμ/n,σ 2/n). This property is called infinite divisibility
and is shared by other probability distributions such as the Poisson distribution and
the Gamma distribution. In the first section, we study which probability measures
on R are infinitely divisible and give an exhaustive description of this class of dis-
tributions by means of the Lévy–Khinchin formula.

Unlike the Poisson distribution, the normal distribution is the limit of rescaled
sums of i.i.d. random variables (central limit theorem). In the second section, we
investigate briefly which subclass of the infinitely divisible measures on R shares
this property.

16.1 Lévy–Khinchin Formula

For the sake of brevity, in this section, we use the shorthand “CFP” for “character-
istic function of a probability measure on R”.

Definition 16.1 A measure μ ∈M1(R) is called infinitely divisible if, for every
n ∈ N, there is a μn ∈M1(R) such that μ∗nn = μ. Analogously, a CFP ϕ is called
infinitely divisible if, for every n ∈ N, there is a CFP ϕn such that ϕ = ϕnn . A real
random variable X is called infinitely divisible if, for every n ∈ N, there exist i.i.d.

random variables Xn,1, . . . ,Xn,n such that X
D=Xn,1 + . . .+Xn,n.

Manifestly, all three notions of infinite divisibility are equivalent, and we will use
them synonymously. Note that the uniqueness of μn and ϕn, respectively, is by no
means evident. Indeed, n-fold divisibility alone does not imply uniqueness of the
nth convolution root μ∗1/n := μn or of ϕn, respectively. As an example for even n,
choose a real-valued CFP ϕ for which |ϕ| �= ϕ is also a CFP (see Examples 15.16
and 15.17). Then ϕn = |ϕ|n is n-fold divisible; however, the factors are not unique.

By virtue of Lévy’s continuity theorem, one can show that (see Exercise 16.1.1)
ϕ(t) �= 0 for all t ∈ R if ϕ is infinitely divisible. The probabilistic meaning of this
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fact is that as a continuous function log(ϕ(t)) is uniquely defined and thus there
exists only one continuous function ϕ1/n = exp(log(ϕ)/n). The nth convolution
roots are thus unique if the distribution is infinitely divisible.

Example 16.2

(i) δx is infinitely divisible with δ∗nx/n = δx for every n ∈N.
(ii) The normal distribution is infinitely divisible with Nm,σ 2 =N ∗n

m/n,σ 2/n
.

(iii) The Cauchy distribution Caua with density x �→ (aπ)−1
(
1+ (x/a)2)−1 is in-

finitely divisible with Caua = Cau∗na/n. Indeed, Caua has CFP ϕa(t)= e−a|t |;
hence ϕna/n = ϕa .

(iv) Every symmetric stable distribution with index α ∈ (0,2] and scale param-
eter γ > 0 (that is, the distribution with CFP ϕα,γ (t) = e−|γ t |α ) is infinitely
divisible. Indeed, ϕn

α,γ /n1/α = ϕα,γ . (To be precise, we have shown only for
α ∈ (0,1] (in Corollary 15.25) and for α = 2 (normal distribution) that ϕα,γ
is in fact a CFP. In Section 16.2, we will show that this is true for all α ∈ (0,2].
For α > 2, ϕα,γ is not a CFP, see Exercise 15.4.3.)

(v) The Gamma distribution Γθ,r with CFP ϕθ,r (t) = exp(rψθ (t)), where
ψθ(t)= log(1− it/θ), is infinitely divisible with Γθ,r = Γ ∗nθ,r/n.

(vi) The Poisson distribution is infinitely divisible with Poiλ = Poi∗nλ/n.

(vii) The negative binomial distribution b−r,p({k})=
(−r
k

)
(−1)kpr(1−p)k , k ∈N0,

with parameters r > 0 and p ∈ (0,1), is infinitely divisible with b−r,p =
(b−r/n,p)∗n. Indeed, ϕr,p(t)= erψp(t), where

ψp(t)= log(p)− log
(
1− (1− p)eit).

(viii) LetX and Y be independent withX ∼N0,σ 2 and Y ∼ Γθ,r , where σ 2, θ, r > 0.

It can be shown that the random variable Z := X/√Y is infinitely divisi-
ble (see [65] or [131]). In particular, Student’s t -distribution with k ∈ N de-
grees of freedom is infinitely divisible (this is the case where σ 2 = 1 and
θ = r = k/2).

(ix) The binomial distribution bn,p with parameters n ∈ N and p ∈ (0,1) is not
infinitely divisible (why?).

(x) Somewhat more generally, there is no nontrivial infinitely divisible distribu-
tion that is concentrated on a bounded interval. ♦

A main goal of this section is to show that every infinitely divisible distribution can
be composed of three generic ones:

• the Dirac measures δx with x ∈R,
• the normal distributions Nμ,σ 2 with μ ∈R and σ 2 > 0, and
• (limits of) convolutions of Poisson distributions.

As convolutions of Poisson distributions play a special role, we will consider them
separately.
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If ν ∈M1(R) with CFP ϕν and if λ > 0, then one can easily check that ϕ(t)=
exp(λ(ϕν(t) − 1)) is the CFP of μλ =∑∞

k=0 e
−λ λk

k! ν
∗k . Hence, formally we can

write μλ = e∗λ(ν−δ0). Indeed, μλ is infinitely divisible with μλ = μ∗nλ/n. We want to
combine the two parameters λ and ν into one parameter λν. For ν ∈Mf (R), we can
define ν∗n = ν(R)n(ν/ν(R))∗n (and ν∗n = 0 if ν = 0). In both cases, let ν∗0 := δ0.
Hence we make the following definition.

Definition 16.3 The compound Poisson distribution with intensity measure ν ∈
Mf (R) is the following probability measure on R:

CPoiν := e∗(ν−ν(R)δ0) := e−ν(R)
∞∑

n=0

ν∗n

n! .

The CFP of CPoiν is given by

ϕν(t)= exp

(∫
(
eitx − 1

)
ν(dx)

)

. (16.1)

In particular, CPoiμ+ν = CPoiμ ∗CPoiν ; hence CPoiν is infinitely divisible.

Example 16.4 For every measurable set A⊂R \ {0} and every r > 0,

r−1CPoirν(A)= e−rν(R)ν(A)+ e−rν(R)
∞∑

k=2

rk−1ν∗k(A)
k!

r↓0−→ ν(A).

We use this in order to show that b−r,p = CPoirν for some ν ∈Mf (N). To this end,
for k ∈N, we compute

r−1b−r,p
({k})= r(r + 1). . .¸ (r + k − 1)

rk! pr(1− p)k r↓0−→ (1− p)k
k

.

If we had b−r,p = CPoirν for some ν ∈ Mf (N), then we would have ν({k}) =
(1− p)k/k. We compute the CFP of CPoirν for this ν,

ϕrν(t)= exp

(

r

∞∑

k=1

(
(1− p)eit)k − (1− p)k

k

)

= pr(1− (1− p)eit)−r .

However, this is the CFP of b−r,p; hence indeed b−r,p = CPoirν . ♦

Not every infinitely divisible distribution is of the type CPoiν , however we have
the following theorem.

Theorem 16.5 A probability measure μ on R is infinitely divisible if and only if

there is a sequence (νn)n∈N in Mf (R \ {0}) such that CPoiνn
n→∞−→ μ.
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Since every CPoiνn is infinitely divisible, on the one hand we have to show that
this property is preserved under weak limits. On the other hand, we show that, for
infinitely divisible μ, the sequence νn = nμ∗1/n does the trick. We prepare for the
proof of Theorem 16.5 with a further theorem.

Theorem 16.6 Let (ϕn)n∈N be a sequence of CFPs. Then the following are equiva-
lent.

(i) For every t ∈R, the limit ϕ(t)= limn→∞ ϕnn(t) exists and ϕ is continuous at 0.
(ii) For every t ∈ R, the limit ψ(t)= limn→∞ n(ϕn(t)− 1) exists and ψ is contin-

uous at 0.

If (i) and (ii) hold, then ϕ = eψ is a CFP.

Proof The proof is based on a Taylor expansion of the logarithm,

∣
∣log(z)− (z− 1)

∣
∣≤ 1

2
|z− 1|2 for z ∈C with |z− 1|< 1

2
.

In particular, for (zn)n∈N in C,

lim sup
n→∞

n|zn − 1|<∞ ⇐⇒ lim sup
n→∞

∣
∣n log(zn)

∣
∣<∞, (16.2)

and limn→∞ n(zn − 1)= limn→∞ n log(zn) if one of the limits exists.
Applying this to zn = ϕn(t), we see that (ii) implies (i). On the other hand, (i) im-

plies (ii) if lim infn→∞ n log(|ϕn(t)|) >−∞ and hence if ϕ(t) �= 0 for all t ∈R.
Since ϕ is continuous at 0 and since ϕ(0)= 1, there is an ε > 0 with |ϕ(t)|> 1

2
for all t ∈ [−ε, ε]. Since ϕ and ϕn are CFPs, |ϕ|2 and |ϕn|2 are also CFPs. Thus,
since |ϕn(t)|2n converges to |ϕ(t)|2 pointwise, Lévy’s continuity theorem implies
uniform convergence on compact sets. Now apply (16.2) with zn = |ϕn(t)|2. Thus
(n(1− |ϕn(t)|2))n∈N is bounded for t ∈ [−ε, ε]. Hence, by Lemma 15.11(v), n(1−
|ϕn(2t)|2)≤ 4n(1− |ϕn(t)|2) also is bounded; thus

∣
∣ϕ(2t)

∣
∣2 ≥ lim inf

n→∞ exp
(
4n
(∣
∣ϕn(t)

∣
∣2 − 1

))= (∣∣ϕ(t)∣∣2)4.

Inductively, we get |ϕ(t)| ≥ 2−(4k) for |t | ≤ 2kε. Hence there is a γ > 0 such that

∣
∣ϕ(t)

∣
∣>

1

2
e−γ t2 for all t ∈R. (16.3)

If (i) and (ii) hold, then

logϕ(t)= lim
n→∞n log

(
ϕn(t)

)= lim
n→∞n

(
ϕn(t)− 1

)=ψ(t).

By Lévy’s continuity theorem, as a continuous limit of CFPs, ϕ is a CFP. �

Corollary 16.7 If the conditions of Theorem 16.6 hold, then ϕr is a CFP for every
r > 0. In particular, ϕ = (ϕ1/n)n is infinitely divisible.
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Proof If ϕn is the CFP of μn ∈M1(R), then ern(ϕn−1) is the CFP of CPoirnμn .
Being a limit of CFPs that is continuous at 0, by Lévy’s continuity theorem,
ϕr = erψ = limn→∞ ern(ϕn−1) is a CFP. Letting r = 1

n
, we get that ϕ = (ϕ1/n)n

is infinitely divisible. �

Corollary 16.8 Let ϕ : R→ C be continuous at 0. ϕ is an infinitely divisible CFP
if and only if there is a sequence (ϕn)n∈N of CFPs such that ϕnn(t)→ ϕ(t) for all
t ∈R.

Proof One implication has been shown already in Corollary 16.7. Hence, let ϕ be
an infinitely divisible CFP. Then ϕn = ϕ1/n serves the purpose. �

Corollary 16.9 If (μn)n∈N is a (weakly) convergent sequence of infinitely divisible
probability measures on R, then μ= limn→∞μn is infinitely divisible.

Proof Apply Theorem 16.6, where ϕn is the CFP of μ∗1/n
n . �

Corollary 16.10 If μ ∈M1(R) is infinitely divisible, then there exists a continuous
convolution semigroup (μt )t≥0 with μ1 = μ and a stochastic process (Xt )t≥0 with
independent, stationary increments Xt −Xs ∼ μt−s for t > s.

Proof Let ϕ be the CFP of μ. The existence of the convolution semigroup follows
by Corollaries 16.8 and 16.7 if we define μr by ϕr . Since ϕr(t) �= 0 for all t ∈ R,
we have ϕr → 1 for r → 0 and thus the semigroup is continuous. Finally, Theo-
rem 14.47 implies the existence of the process X. �

Corollary 16.11 If ϕ is an infinitely divisible CFP, then there exists a γ > 0 with
|ϕ(t)| ≥ 1

2e
−γ t2 for all t ∈R. In particular, for α > 2, t �→ e−|t |α is not a CFP.

Proof This is a direct consequence of (16.3). �

Proof of Theorem 16.5 As every CPoiνn is infinitely divisible, by Corollary 16.9,
the weak limit is also infinitely divisible.

Now let μ be infinitely divisible with CFP ϕ. Fix probability measures μn with

CFP ϕn as in Corollary 16.8. By Theorem 16.6, en(ϕn−1) n→∞−→ ϕ; hence we have

CPoinμn
n→∞−→ ν. �

Without proof, we quote the following strengthening of Corollary 16.8 that relies
on a finer analysis using the arguments from the proof of Theorem 16.6.

Theorem 16.12 Let (ϕn,l; l = 1, . . . , kn, n ∈N) be an array of CFPs with the prop-
erty

sup
L>0

lim sup
n→∞

sup
t∈[−L,L]

sup
l=1,...,kn

∣
∣ϕn,l(t)− 1

∣
∣= 0. (16.4)
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Assume that, for every t ∈R, the limit ϕ(t) := limn→∞
∏kn
l=1 ϕn,l(t) exists and that

ϕ is continuous at 0. Then ϕ is an infinitely divisible CFP.

Proof See, e.g., [54, Chapter XV.7]. �

In the special case where for every n, the individual ϕn,l are equal and where

kn
n→∞−→ ∞, Eq. (16.4) holds automatically if the product converges to a continuous

function. Thus, the theorem is in fact an improvement of Corollary 16.8.
The benefit of this theorem will become clear through the following observation.

Let (Xn,l; l = 1, . . . , kn, n ∈N) be an array of real random variables with CFPs ϕn,l .
This array is a null array if and only if (16.4) holds. In fact, if P[|Xn,l | > ε] < δ,
then we have |ϕn,l(t)−1| ≤ 2ε+ δ for all t ∈ [−1/ε,1/ε]. Hence (16.4) holds if the

array (Xn,l) is a null array. On the other hand, (16.4) implies ϕn,ln
n→∞−→ 1 for every

sequence (ln) with ln ≤ kn. Hence Xn,ln
n→∞−→ 0 in probability.

From these considerations and from Theorem 16.12, we conclude the following
theorem.

Theorem 16.13 Let (Xn,l; l = 1, . . . , kn, n ∈ N) be an independent null array of
real random variables. If there exists a random variable S with

Xn,1 + . . .+Xn,kn n→∞=⇒ S,

then S is infinitely divisible.

As a direct application of Theorem 16.5, we give a complete description of the
class of infinitely divisible probability measures on [0,∞) in terms of their Laplace
transforms. The following theorem is of independent interest. Here, however, it is
primarily used to provide familiarity with the techniques that will be needed for the
more challenging classification of the infinitely divisible probability measures on R.

Theorem 16.14 (Lévy–Khinchin formula on [0,∞)) Let μ ∈M1([0,∞)) and
let u : [0,∞)→[0,∞), t �→ − log

∫
e−txμ(dx) be the log-Laplace transform μ.

μ is infinitely divisible if and only if there exists an α ≥ 0 and a σ -finite measure
ν ∈M((0,∞)) with

∫

(1∧ x)ν(dx) <∞ (16.5)

and such that

u(t)= αt +
∫
(
1− e−tx)ν(dx) for t ≥ 0. (16.6)

In this case, the pair (α, ν) is unique. ν is called the canonical measure or Lévy
measure of μ, and α is called the deterministic part.
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Proof “=⇒” First assume μ is infinitely divisible. The case μ= δ0 is trivial. Now
let μ �= δ0; hence u(1) > 0.

By Theorem 16.5, there exist ν1, ν2, . . . ∈Mf (R \ {0}) with CPoiνn
n→∞−→ μ. Ev-

idently, we can assume νn((−∞,0))= 0. If we define un(t) :=
∫
(1− e−tx)νn(dx),

then (as in (16.1)) un(t)
n→∞−→ u(t) for all t ≥ 0. In particular, un(1) > 0 for suffi-

ciently large n. Define ν̃n ∈M1([0,∞)) by ν̃n(dx) := 1−e−x
un(1)

νn(dx). Hence, for all
t ≥ 0,

∫

e−tx ν̃n(dx)= un(t + 1)− un(t)
un(1)

n→∞−→ u(t + 1)− u(t)
u(1)

.

Therefore, the weak limit ν̃ := w-lim ν̃n in M1([0,∞)) exists and is uniquely de-
termined by u. Let α := ν̃({0})u(1) and define ν ∈M((0,∞)) by

ν(dx)= u(1)(1− e−x)−11(0,∞)(x)ν̃(dx).

Since 1∧ x ≤ 2(1− e−x) for all x ≥ 0, clearly
∫

(1∧ x)ν(dx)≤ 2
∫
(
1− e−x)ν(dx)≤ 2u(1) <∞.

For all t ≥ 0, the function (compare (15.8))

ft : [0,∞)→[0,∞), x �→
{

1−e−tx
1−e−x , if x > 0,

t, if x = 0,

is continuous and bounded (by t ∧ 1). Hence we have

u(t)= lim
n→∞un(t)= lim

n→∞un(1)
∫

ft dν̃n

= u(1)
∫

ft dν̃ = αt +
∫
(
1− e−tx)ν(dx).

“⇐=” Now assume that α and ν are given. Define the intervals I0 = [1,∞)
and Ik = [1/(k + 1),1/k) for k ∈ N. Let X0,X1, . . . be independent random vari-
ables with PXk = CPoi(ν|Ik ) for k = 0,1, . . . , and let X := α +∑∞

k=0Xk . For ev-

ery k ∈N, we have E[Xk] =
∫
Ik
xν(dx); hence

∑∞
k=1 E[Xk] =

∫
(0,1) xν(dx) <∞.

Thus X <∞ almost surely and α +∑n
k=0Xk

n→∞=⇒ X. Therefore,

− log E
[
e−tX

]= αt −
∞∑

k=0

log E
[
e−tXk

]= αt +
∫
(
1− e−tx)ν(dx).

�

Example 16.15 For an infinitely divisible distribution μ on [0,∞), we can compute
the Lévy measure ν by the vague limit

ν = v-lim
n→∞ nμ

∗1/n∣∣
(0,∞). (16.7)
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Often α is also easy to obtain (e.g., via the representation from Exercise 16.1.3). For
example, for the Gamma distribution, we get α = 0 and

nΓθ,1/n(A)= θ1/n

Γ (1/n)/n

∫

A

x(1/n)−1e−θx dx n→∞−→
∫

A

x−1e−θx dx,

hence ν(dx)= x−1e−θx dx. ♦

For infinitely divisible distributions on R, we would like to obtain a description
similar to that in the preceding theorem. However, an infinitely divisible real ran-
dom variable X is not simply the difference of two infinitely divisible nonnegative
random variables, as the normal distribution shows. In addition, we have more free-
dom if, as in the last proof, we want to express X as a sum of independent random
variables Xk .

Hence we define the real random variable X as the sum of independent random
variables,

X = b+XN +X0 +
∞∑

k=1

(Xk − αk), (16.8)

where b ∈ R, XN =N0,σ 2 for some σ 2 ≥ 0 and PXk = CPoiνk with intensity mea-
sure νk that is concentrated on Ik := (−1/k,−1/(k + 1)] ∪ [1/(k + 1),1/k) (with
the convention 1/0=∞), k ∈N0. Furthermore, αk = E[Xk] =

∫
xνk(dx) for k ≥ 1.

In order for the series to converge almost surely, it is sufficient (and also necessary,
as a simple application of Kolmogorov’s three-series theorem shows) that

∞∑

k=1

Var[Xk]<∞. (16.9)

(In contrast to the situation in Theorem 16.14, here it is not necessary to have∑∞
k=1 E[|Xk − αk|] <∞. This allows for greater freedom in the choice of ν than

in the case of nonnegative random variables.) Now Var[Xk] =
∫
x2νk(dx). Hence,

if we let ν =∑∞
k=0 νk , then (16.9) is equivalent to

∫
(−1,1) x

2ν(dx) <∞. As ν0 is

always finite, this in turn is equivalent to
∫
(x2 ∧ 1)ν(dx) <∞.

Definition 16.16 A σ -finite measure ν on R is called a canonical measure if
ν({0})= 0 and

∫
(
x2 ∧ 1

)
ν(dx) <∞. (16.10)

If σ 2 ≥ 0 and b ∈R, then (σ 2, b, ν) is called a canonical triple.

To every canonical triple, by (16.8) there corresponds an infinitely divisible ran-
dom variable. Define

ψ0(t)= log E
[
eitX0

]=
∫

I0

(
eitx − 1

)
ν(dx).
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For k ∈N, let

ψk(t)= log E
[
eit (Xk−αk)

]=
∫

Ik

(
eitx − 1− itx)ν(dx).

Hence

ψ(t) := log E
[
eitX
]=−σ

2

2
t2 + ibt +

∞∑

k=0

ψk(t)

satisfies the Lévy–Khinchin formula

ψ(t)=−σ
2

2
t2 + ibt +

∫
(
eitx − 1− itx1{|x|<1}

)
ν(dx). (16.11)

Theorem 16.17 (Lévy–Khinchin formula) Let μ ∈M1(R) and

ψ(t) := log
∫

eitxμ(dx).

μ is infinitely divisible if and only if there exists a canonical triple (σ 2, b, ν) such
that (16.11) holds. By (16.11), this triple is uniquely determined.

Again, ν is called the Lévy measure of μ, σ 2 is called the Gaussian coefficient
and b is called the centering constant.

Proof We have shown already that via (16.11) every canonical triple (σ 2, b, ν) cor-
responds to an infinitely divisible distribution μ. It remains to show:

(i) A canonical triple is uniquely determined by (16.11).
(ii) For every infinitely divisible distribution, there exists a canonical triple such

that (16.11) holds.

(i) Uniqueness. Define gt (x)= eitx − 1− itx1{|x|<1}. For every x �= 0, we have

2≥
∣
∣
∣
∣
gt (x)

t2(1∧ x2)

∣
∣
∣
∣
t→∞−→ 0.

Since (16.10) holds, by the dominated convergence theorem,

lim
t→∞

ψ(t)

t2
=−σ

2

2
+ lim
t→∞

ib

t
+ lim
t→∞

∫ ∞

−∞

(
gt (x)

t2(1∧ x2)

)
(
1∧ x2)ν(dx)

=−σ
2

2
. (16.12)
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This implies the uniqueness of σ 2. Thus we can and will assume σ 2 = 0 in the
following. Define

ψ(t)=ψ(t)− 1

2

∫ t+1

t−1
ψ(s) ds. (16.13)

Then

ψ(t)=
∫

R

eitx
(

1− 1

2

∫ 1

−1
eisx ds

)

ν(dx)=
∫

eitxh(x)ν(dx), (16.14)

where h(x) = 1− sin(x)
x

for x �= 0 and h(0) = 0. Define ĥ(x) = h(x)/(1 ∧ x2) for

x �= 0 and ĥ(0)= 1/6. Clearly, h and ĥ are bounded and continuous and

0< 1− sin(1)≤ ĥ(x)≤ 3

2
for all x ∈R.

ψ is the characteristic function of ν̃ ∈Mf (R), where ν̃(dx)= h(x)ν(dx). Hence ν̃
is uniquely determined byψ . Since ν(dx)= (1{x �=0}/h(x))ν̃(dx), ν is also uniquely
determined by ψ . Now the number b is the difference of the remaining terms.

(ii) Existence of a canonical triple. Let μ be infinitely divisible and let

ψ(t)= log
∫

eitxμ(dx).

Clearly, Im(ψ) is odd and Re(ψ(t))≤ 0 for all t ∈R. Hence ψ(0)≥ 0 (with ψ from
(16.13)) and ψ(0)= 0 if Reψ(t)= for all t ∈ [−1, t]. By Exercise 15.2.4, this is the
case if and only if μ= δb for some b ∈R. In this case, (0, b,0) is the corresponding
canonical triple.

Now assume ψ(0) > 0. By Theorem 16.5, there exists a sequence (νn)n∈N in

Mf (R) with CPoiνn
n→∞−→ μ and νn({0})= 0 for any n ∈N. Define

bn =
∫

x1{|x|<1}νn(dx).

Then, by (16.1) and with gt from (i),

ψn(t) := log
∫

eitxCPoiνn(dx)=
∫
(
eitx − 1

)
νn(dx)=

∫

gt dνn + ibnt.

As in (16.14), we have

ψn(t) :=ψn(t)−
1

2

∫ t+1

t−1
ψn(s) ds =

∫

eitxh(x)νn(dx).

As ψn
n→∞−→ ψ converges uniformly on compact sets (Theorem 15.23(i)), and since

ψ is continuous and thus locally bounded, we have ψn
n→∞−→ ψ pointwise. There-
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fore,
∫

eitxh(x)νn(dx)
n→∞−→ ψ(t). (16.15)

In particular, ψn(0) > 0 for large n. If we let ν̃n(dx) = (h(x)/ψn(0))νn(dx) ∈
M1(R), then

∫
eitx ν̃n(dx)

n→∞−→ ψ(t)/ψ(0) and the right-hand side is continuous.

Hence, by Lévy’s continuity theorem, there is a ν̃ ∈M1(R) with ν̃n
n→∞−→ ν̃ and

ψ(t)=ψ(0)
∫

eitx ν̃(dx).

Let σ 2 := −6ψ(0)ν̃({0}) and define a canonical measure ν by

ν(dx)= ψ(0)
h(x)

1{x �=0}ν̃(dx).

The map (compare (15.8))

ft :R→C, x �→
{
gt (x)
h(x)

, if x �= 0,

−3t2, if x = 0,

is bounded and continuous. By construction, we have

∫

gt dνn =ψn(0)
∫

ft dν̃n
n→∞−→ ψ(0)

∫

ft dν̃ =−σ
2

2
t2 +

∫

gt dν.

Hence also the limit

itb := lim
n→∞ itbn = lim

n→∞

(

ψn(t)−
∫

gt dνn

)

=ψ(t)+ σ
2

2
t2 −

∫

gt dν

exists, and we have

ψ(t)=−σ
2

2
t2 + ibt +

∫

gt dν. �

Remark 16.18 There are many versions of the Lévy–Khinchin formula

ψ(t)=−σ
2

2
t2 + ibt +

∫
(
eitx − 1− itf (x))ν(dx)

that differ in the function itf (x) that is subtracted for the centering in the in-
tegral. We chose f (x) = x1{|x|<1} since this fits best to the construction with
the random variables Xk . However, for a given canonical measure ν, any func-
tion f̃ for which

∫ |f − f̃ |dν <∞ holds is possible; that is, every f̃ for which
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|f (x)− f̃ (x)|/(1∧ x2) is bounded. One common function is, e.g., f̃ (x)= sin(x).
The Lévy measure and the Gaussian coefficient σ 2 do not change but the b differs:

b̃− b=
∫

(f − f̃ ) dν.

If ν is a measure that is concentrated on (0,∞) and such that
∫
(1∧ x)ν(dx) <∞

holds, then this f is integrable with respect to ν and can thus be replaced by f̃ = 0.
Hence we recover Theorem 16.14 as a special case. However, condition (16.10) is
weaker than

∫
(1∧ x) ν(dx) <∞ and thus describes a larger class of measures than

is considered in Theorem 16.14. This implies that to a canonical triple (b,0, ν) with
ν((−∞,0))= 0 and

∫
(1∧ x) ν(dx)=∞, there corresponds an infinitely divisible

probability distribution μ that is not concentrated on [0,∞), no matter how b is
chosen. ♦

For a given infinitely divisible distribution μ, we can compute the canonical mea-
sure ν as the vague limit

ν = v-lim
n→∞ nμ

∗1/n∣∣
(0,∞). (16.16)

Example 16.19 For the Cauchy distribution Caua with ψ(t)=−a|t |, by symmetry,
we get b= 0 and, by (16.12), σ 2 =−2 limt→∞ψ(t)/t2 = 0. Finally, if A⊂R with
(−ε, ε)∩A= ∅ for some ε > 0, then

nCau1/n(A)= 1

π

∫

A

n2

1+ (nx)2 dx
n→∞−→ 1

π

∫

A

1

x2
dx.

Hence Cau1 has the canonical triple (0,0, (πx2)−1dx). ♦

Exercise 16.1.1 Use a variance argument to show that an infinitely divisible distri-
bution that is concentrated on a bounded interval is a Dirac measure.

Exercise 16.1.2 Let ϕ be infinitely divisible, and for every n ∈ N, let ϕn be a CFP

with ϕnn = ϕ. Use Lévy’s continuity theorem to show that ϕn
n→∞−→ 1 uniformly on

compact sets ϕn
n→∞−→ 1. Conclude that ϕ(t) �= 0 for all t ∈R.

Exercise 16.1.3 Under the conditions of Theorem 16.14, show that

α = sup
{
x ≥ 0 : μ([0, x))= 0

}
.

16.2 Stable Distributions

A distribution μ on the real numbers is called stable if for any n ∈ N, the n-fold
convolution μ∗n equals μ up to an affine linear transformation. Hence stability can
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be interpreted as self-similarity. We first show that the class of stable distributions
is rather simple and can easily be parameterized. Then we quote results which say
that stable distributions are exactly those distributions that occur as limits of sums
of i.i.d. random variables.

Symmetric Stable Distributions

For α ∈ (0,2), let

θα :=
∫

R

(
1− cos(x)

)|x|−α−1 dx =
{
−2Γ (−α) cos(απ/2), if α �= 1,

π, if α = 1.

(Note that the integral diverges for α ∈ R \ (0,2).) Then να(dx)= θ−1
α |x|−α−1 dx

is a canonical measure since
∫
(
1∧ x2)να(dx)= 2θ−1

α

(
α−1 + (2− α)−1)<∞.

Let ψα be the logarithm of the characteristic function that corresponds to the in-
finitely divisible measure μα with canonical triple (0,0, να). By the Lévy–Khinchin
formula, we have

ψα(t)=
∫ ∞

−∞
(
eitx − 1− itx1{|x|<1}

)
θ−1
α |x|−α−1 dx

=−θ−1
α

∫ ∞

−∞
(
1− cos(tx)

)|x|−α−1 dx

=−|t |α.

Hence ϕα(t) := e−|t |α is the characteristic function of the infinitely divisible mea-
sure μα , which is called the symmetric stable distribution with index α. The name
is due to the fact that, for i.i.d. random variables X1,X2, . . . that are μα-distributed,
we have

X1 + . . .+Xn D= n1/αXn for all n ∈N. (16.17)

General Stable Distributions

Motivated by equation (16.17), we present a somewhat more general notion of sta-
bility of a distribution.
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Definition 16.20 (Stable distribution) Let μ ∈M1(R) be a probability distribution
on the real numbers that is not concentrated in one point. Assume that X1,X2, . . .

are i.i.d. random variables with distribution μ. The distribution μ is said to be stable
in the broad sense if there exist nonnegative numbers a1, a2, . . . and real numbers
d1, d2, . . . such that

X1 + . . .+Xn D= anX1 + dn for all n ∈N. (16.18)

μ is called stable (in the strict sense), if (16.18) holds with d1 = d2 = . . .= 0.
μ is called stable in the broad sense with index α ∈ (0,2], if (16.18) holds with

an = n1/α , n ∈ N. It is called stable (in the strict sense) with index α ∈ (0,2], if in
addition, we can choose d1 = d2 = . . .= 0.

Remark 16.21 If μ is stable in the broad sense, then it is infinitely divisible. ♦

Theorem 16.22 Let μ be stable in the broad sense.

(i) There is an α ∈ (0,2] such that μ is stable in the broad sense with index α.
(ii) If α = 2, then μ is a normal distribution.

(iii) If α ∈ (0,2), then the Lévy measure ν of μ has the density

ν(dx)

dx
=
{
c−(−x)−α−1, if x < 0,

c+x−α−1, if x > 0,
(16.19)

for some c−, c+ ≥ 0, c− + c+ > 0.
(iv) If α �= 1, then there exists a b ∈R such that μ ∗ δ−b is stable with index α.
(v) If α = 1, then dn = (c+ − c−)n log(n), n ∈ N. If c− = c+, then μ is a Cauchy

distribution.

Remark 16.23 If μ is infinitely divisible with Lévy measure ν given by (16.19),
then ψ(t) := log

∫
eitxμ(dx) is given by

ψ(t)=
{ |t |αΓ (−α)[(c+ + c−) cos

(
πα
2

)+ i(c+ − c−) sin
(
πα
2

)]
, α �= 1,

−|t |(c+ + c−)[π2 + i sign(t)(c+ − c−) log(|t |)], α = 1.
(16.20)

♦

Lemma 16.24 Let μ be infinitely divisible with canonical triple (σ 2, b, ν); that is,
with log-characteristic function ψ(t) := log(

∫
eitxμ(dx)) given by

ψ(t)=−σ
2

2
t2 + ibt +

∫
(
eitx − 1− itx1{|x|<1}

)
ν(dx).

Further, let a > 0, d ∈ R, n ∈ N and let X,X1, . . . ,Xn be i.i.d. random variables
with distribution μ.

(i) The canonical triple of X1 + . . .+Xn is (nσ 2, nb,nν).
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(ii) The canonical triple of aX + d is (a2σ 2, b̃, ν ◦ m−1
a ), where ma : R → R,

x �→ ax is the multiplication by a and

b̃ := ab+ d + a
∫

(1{|x|<1/a} − 1{|x|<1})xν(dx). (16.21)

Proof (i) The log-characteristic function of X1 + . . .+Xn is nψ .
(ii) The log-characteristic function of aX+ d is

ψaX+d(t)=ψ(at)+ idt

=−a
2σ 2

2
t2 + i(ab+ d)t +

∫
(
eiatx − 1− iatx1{|x|<1}

)
ν(dx)

=−a
2σ 2

2
t2 + ib̃t +

∫
(
eiatx − 1− iatx1{|x|<1/a}

)
ν(dx)

=−a
2σ 2

2
t2 + ib̃t +

∫
(
eitx − 1− itx1{|x|<1}

)
ν ◦m−1

a (dx). �

Lemma 16.25 (Scaling of the canonical triple) Under the assumptions of Theo-
rem 16.22, let (σ 2, b, ν) be the canonical triple of μ.

(i) We have
(
a2
n − n

)
σ 2 = 0 for all n ∈N (16.22)

and (with man as in Lemma 16.24)

nν = ν ◦m−1
an

for all n ∈N. (16.23)

(ii) If ν = 0, then an = n1/2 for all n ∈N and

dn = b
(
n− n1/2). (16.24)

(iii) Assume that α ∈ (0,2), an = n1/α , and that ν is given by (16.19). Then we have

dn =
(

b+ c
+ − c−
α − 1

)
(
n− n1/α) if α �= 1, (16.25)

and

dn =
(
c+ − c−)n log(n) if α = 1. (16.26)

Proof (i) Let (a2
nσ

2, b̃n, ν ◦ m−1
an
) be the canonical triple of anX + dn as deter-

mined in the preceding lemma and let (nσ 2, nb,nν) be the canonical triple of X1+
. . . + Xn. By (16.18) and due to the uniqueness of the canonical triple (Theo-
rem 16.17), we infer a2

nσ
2 = nσ 2, b̃n = nb and ν ◦m−1

an
= nν.
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(ii) If ν = 0, then σ 2 > 0, since by assumption, μ is not concentrated in one
point. Hence, by (16.22), we get an = n1/2. By virtue of Lemma 16.24(ii), we have
nb= b̃n = bn1/2 + dn and thus (16.24) holds.

(iii) Using (16.21), we compute b̃n more explicitly:

nb= b̃n = bn1/α + dn − n1/α
∫

1{n−1/α≤|x|<1}xν(dx)

= bn1/α + dn − n1/α(c+ − c−)
∫ 1

n−1/α
x−α dx

= bn1/α + dn −
(
c+ − c−)

{
(1− α)−1(n1/α − n), if α �= 1,

n log(n), if α = 1.

Rearranging terms yields (16.25) and (16.26). �

Proof of Theorem 16.22 We distinguish the cases lim infn→∞ ann−1/2 <∞ and
“=∞”.

Case 1. Assume that lim infn→∞ ann−1/2 <∞. Let C ∈ [1,∞) and let (nk)k∈N
be a subsequence such that ankn

−1/2
k ≤ C for any k ∈ N. Then for any x ∈ R \ {0},

we have

C2 ≥ n−1
k

(
1∨ a2

nk

)≥ n
−1
k (1∧ a2

nk
x2)

1∧ x2
k→∞−→ 0.

Using (16.23) and (16.10), the dominated convergence theorem yields

∫ ∞

−∞
(
1∧ x2)ν(dx)=

∫ ∞

−∞
n−1
k (1∧ a2

nk
x2)

1∧ x2

(
1∧ x2)ν(dx)

k→∞−→ 0.

That is, we have ν = 0. By Lemma 16.25(ii), we see that μ ∗ δ−b is stable with
index 2. This shows (ii).

Case 2. Assume that

ann
−1/2 n→∞−→ ∞. (16.27)

By (16.22), we have σ 2 = 0 and hence ν �= 0. We define the function

F(x)=
{
ν([x,∞)), if x > 0,

ν((−∞, x]), if x < 0.

Since we have ν �= 0, there is an x0 ∈R \ {0} such that F(x0) > 0. By symmetry, we
may assume that x0 > 0. Using (16.23), we infer

nF(x)= F(x/an) for any x ∈R \ {0}, n ∈N,

and thus

F

((
an+1

an

)k
x0

)

=
(

n

n+ 1

)k
F (x0) for any k ∈ Z.
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We can rephrase this as

F(x)= (x/x0)
−αnF (x0) for any x ∈ {(an+1/an)

kx0 : k ∈ Z
}
,

where αn := log((n + 1)/n)/ log(an+1/an). Since F is monotone decreasing and

since F(x)
x→∞−→ 0, we have αn > 0 for all n ∈N, and

(
m

m+ 1

)(
x

x0

)−αm
≤ F(x)

F (x0)
≤
(
n+ 1

n

)(
x

x0

)−αn
for x > 0, m,n ∈N.

Letting x→∞, we obtain αm ≥ αn. By symmetry, we also get αm ≤ αn. Hence,
we define α := α1 > 0 and get an = n1/α for all n ∈ N (note that (16.18) implies
a1 = 1). By the assumption (16.27), we have α < 2. This shows (i).

We have F(1)= xα0 F(x0) > 0 and F(x)= x−αF (1) for all x > 0. Similarly, we
get F(x)= (−x)−αF (−1) for x < 0 (with the same α ∈ (0,2) since it is determined
by the sequence (an)n∈N). Defining c+ = αν([1,∞)) and c− := αν((−∞,−1]), we
get (16.19) and thus (iii) and (i).

The statements (iv) and (v) are immediate consequences of Lemma 16.25. �

Convergence to Stable Distributions

To complete the picture, we cite theorems from [54, Chapter XVII.5] (see also [62]
and [128]) that state that only stable distributions occur as limiting distributions of
rescaled sums of i.i.d. random variables X1,X2, . . . .

In the following, let X,X1,X2, . . . be i.i.d. random variables and for n ∈ N, let
Sn =X1 + . . .+Xn.

Definition 16.26 (Domain of attraction) Let μ ∈M1(R) be nontrivial. The domain
of attraction Dom(μ)⊂M1(R) is the set of all distributions PX with the property
that there exist sequences of numbers (an)n∈N and (dn)n∈N with

Sn − dn
an

n→∞=⇒ μ.

If μ is stable (in the broader sense) with index α ∈ (0,2], then PX is said to be in
the domain of normal attraction if we can choose an = n1/α .

Theorem 16.27 Let μ ∈M1(R) be nontrivial. Then Dom(μ) �= ∅ if and only if μ
is stable (in the broader sense). In this case, μ ∈Dom(μ).

In the following, an important role is played by the function

U(x) := E
[
X21{|X|≤x}

]
. (16.28)
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A function H : (0,∞)→ (0,∞) is called slowly varying at ∞ if

lim
x→∞

H(γ x)

H(x)
= 1 for all γ > 0.

In the following, we assume that there exists an α ∈ (0,2] such that

U(x)xα−2 is slowly varying at ∞. (16.29)

Theorem 16.28

(i) If PX is in the domain of attraction of some distribution, then there exists an
α ∈ (0,2] such that (16.29) holds.

(ii) In the case α = 2, we have: If PX is not concentrated at one point, then (16.29)
implies that PX is in the domain of attraction of some distribution.

(iii) In the case α ∈ (0,2), we have: PX is in the domain of attraction of some
distribution if and only if (16.29) holds and the limit

p := lim
x→∞

P[X ≥ x]
P[|X| ≥ x] exists. (16.30)

Theorem 16.29 Let PX be in the domain of attraction of an α-stable distribution
(that is, assume that condition (ii) or (iii) of Theorem 16.28 holds), and assume that
(an)n∈N is such that

C := lim
n→∞

nU(an)

a2
n

∈ (0,∞)

exists. Further, let μ be the stable distribution with index α whose characteristic
function is given by (16.20) with c+ = Cp and c− = C(1− p).

(i) In the case α ∈ (0,1), let bn ≡ 0.
(ii) In the case α = 2 and Var[X]<∞, let E[X] = 0.

(iii) In the case α ∈ (1,2], let dn = nE[X] for all n ∈N.
(iv) In the case α = 1, let dn = nanE[sin(X/an)] for all n ∈N.

Then

Sn − dn
an

n→∞=⇒ μ.

Corollary 16.30 If PX is in the domain of attraction of a stable distribution with
index α, then E[|X|β ]<∞ for all β ∈ (0, α) and E[|X|β ] =∞ if β > α and α < 2.

Exercise 16.2.1 Let μ be an α-stable distribution and let ϕ be its characteristic
function.

(i) Show by a direct computation using only the definition of stability that
|ϕ(t)− 1| ≤ C|t |α for t close to 0 (for some C <∞).

(ii) Use Exercise 15.3.2 to infer that μ= δ0 if α > 2.
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(iii) Modify the argument in order to show that for α > 2, the α-stable distributions
in the broad sense are also necessarily trivial.

Exercise 16.2.2 Show that the distribution on R with density

f (x)= 1− cos(x)

πx2

is not infinitely divisible.

Exercise 16.2.3 Let Φ be the distribution function of the standard normal distribu-
tion N0,1 and let F :R→[0,1] be defined by

F(x)=
{

2(1−Φ(x−1/2)), if x > 0,

0, else.

Show the following.

(i) F is the distribution function of a 1
2 -stable distribution.

(ii) If X1,X2, . . . are i.i.d. with distribution function F , then 1
n

∑n
k=0Xk diverges

almost surely for n→∞.

Hint: Compute the density of F , and show that the Laplace transform is given by
λ �→ e−

√
2λ.

Exercise 16.2.4 Which of the following distributions is in the domain of attraction
of a stable distribution and for which parameter?

(i) The distribution on R with density

f (x)=

⎧
⎪⎪⎨

⎪⎪⎩

� 1
1+α |x|α, if x <−1,

(1− �) 1
1+β x

β, if x > 1,

0, else.

Here α,β <−1 and � ∈ [0,1].
(ii) The exponential distribution expθ for θ > 0.

(iii) The distribution on N with weights cnα if n is even and cnβ if n is odd. Here
α,β < −1 and c = (2αζ(−α) + (1 − 2β)ζ(−β))−1 (ζ is the Riemann zeta
function) is the normalization constant.



Chapter 17
Markov Chains

In spite of their simplicity, Markov processes with countable state space (and dis-
crete time) are interesting mathematical objects with which a variety of real-world
phenomena can be modeled. We give an introduction to the basic concepts and then
study certain examples in more detail. The connection with discrete potential the-
ory will be investigated later, in Chapter 19. Some readers might prefer to skip the
somewhat technical construction of general Markov processes in Section 17.1.

There is a vast literature on Markov chains. For further reading, see, e.g., [21, 27,
64, 66, 91, 116, 123, 124, 143, 152].

17.1 Definitions and Construction

In the following, E is always a Polish space with Borel σ -algebra B(E), I ⊂R and
(Xt )t∈I is an E-valued stochastic process. We assume that (Ft )t∈I = F= σ(X) is
the filtration generated by X.

Definition 17.1 We say that X has the Markov property (MP) if, for every A ∈
B(E) and all s, t ∈ I with s ≤ t ,

P[Xt ∈A |Fs] = P[Xt ∈A |Xs].

Remark 17.2 If E is a countable space, then X has the Markov property if
and only if, for all n ∈ N, all s1 < . . . < sn < t and all i1, . . . , in, i ∈ E with
P[Xs1 = i1, . . . ,Xsn = in]> 0, we have

P[Xt = i |Xs1 = i1, . . . ,Xsn = in] = P[Xt = i |Xsn = in]. (17.1)

In fact, (17.1) clearly implies the Markov property. On the other hand, if X has
the Markov property, then (see (8.6)) P[Xt = i | Xsn](ω) = P[Xt = i | Xsn = in]
for almost all ω ∈ {Xsn = in}. Hence, for A := {Xs1 = i1, . . . ,Xsn = in} (using the

A. Klenke, Probability Theory, Universitext, DOI 10.1007/978-1-4471-5361-0_17,
© Springer-Verlag London 2014
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Markov property in the second equation),

P[Xt = i,Xs1 = i1, . . . ,Xsn = in]
= E
[
E[1{Xt=i} |Fsn]1A

]= E
[
E[1{Xt=i} |Xsn]1A

]

= E
[
P[Xt = i |Xsn = in]1A

]= P[Xt = i |Xsn = in]P[A].
Dividing both sides by P[A] yields (17.1). ♦

Definition 17.3 Let I ⊂ [0,∞) be closed under addition and assume 0 ∈ I .
A stochastic process X = (Xt )t∈I is called a time-homogeneous Markov process
with distributions (Px)x∈E on the space (Ω,A) if:

(i) For every x ∈E, X is a stochastic process on the probability space (Ω,A,Px)
with Px[X0 = x] = 1.

(ii) The map κ :E×B(E)⊗I →[0,1], (x,B) �→ Px[X ∈ B] is a stochastic kernel.
(iii) X has the time-homogeneous Markov property (MP): For every A ∈ B(E),

every x ∈E and all s, t ∈ I , we have

Px[Xt+s ∈A |Fs] = κt (Xs,A) Px-a.s.

Here, for every t ∈ I , the transition kernel κt : E × B(E)→ [0,1] is the
stochastic kernel defined for x ∈E and A ∈ B(E) by

κt (x,A) := κ
(
x,
{
y ∈EI : y(t) ∈A})= Px[Xt ∈A].

The family (κt (x,A), t ∈ I, x ∈E,A ∈ B(E)) is also called the family of tran-
sition probabilities of X.

We write Ex for expectation with respect to Px , Lx[X] = Px and Lx[X | F] =
Px[X ∈ · |F] (for a regular conditional distribution of X given F ).

If E is countable, then X is called a discrete Markov process.
In the special case I =N0, X is called a Markov chain. In this case, κn is called

the family of n-step transition probabilities.

Remark 17.4 We will see that the existence of the transition kernels (κt ) implies the
existence of the kernel κ . Thus, a time-homogeneous Markov process is simply a
stochastic process with the Markov property and for which the transition probabili-
ties are time-homogeneous. Although it is sometimes convenient to allow also time-
inhomogeneous Markov processes, for a wide range of applications it is sufficient to
consider time-homogeneous Markov processes. We will not go into the details but
will henceforth assume that all Markov processes are time-homogeneous. ♦

In the following, we will use the somewhat sloppy notation PXs [X ∈ ·] :=
κ(Xs, ·). That is, we understand Xs as the initial value of a second Markov pro-
cess with the same distributions (Px)x∈E .
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Example 17.5 Let Y1, Y2, . . . be i.i.d. Rd -valued random variables and let

Sxn = x +
n∑

i=1

Yi for x ∈R
d and n ∈N0.

Define probability measures Px on ((Rd)N0 , (B(Rd))⊗N0) by Px = P ◦ (Sx)−1.
Then the canonical process Xn : (Rd)N0 → R

d is a Markov chain with distri-
butions (Px)x∈Rd . The process X is called a random walk on R

d with initial
value x. ♦

Example 17.6 In the previous example, it is simple to pass to continuous time; that
is, I = [0,∞). To this end, let (νt )t≥0 be a convolution semigroup on R

d and let
κt (x, dy) = δx ∗ νt (dy). In Theorem 14.47, for every x ∈ R

d , we constructed a
measure Px on ((Rd)[0,∞),B(Rd)⊗[0,∞)) with

Px ◦ (X0,Xt1, . . . ,Xtn)
−1 = δx ⊗

n−1⊗

i=0

κtn+1−tn

for any choice of finitely many points 0= t0 < t1 < . . . < tn. It is easy to check that
the map κ : Rd × B(Rd)⊗[0,∞), (x,A) �→ Px[A] is a stochastic kernel. The time-
homogeneous Markov property is immediate from the fact that the increments are
independent and stationary. ♦

Example 17.7 (See Example 9.5 and Theorem 5.36.) Let θ > 0 and νθt ({k}) =
e−θt tkθk

k! , k ∈ N0, the convolution semigroup of the Poisson distribution. The
Markov process X on N0 with this semigroup is called a Poisson process with
(jump) rate θ . ♦

As in Example 17.6, we will construct a Markov process for a more general
Markov semigroup of stochastic kernels.

Theorem 17.8 Let I ⊂ [0,∞) be closed under addition and let (κt )t∈I be a
Markov semigroup of stochastic kernels from E to E. Then there is a measurable
space (Ω,A) and a Markov process ((Xt )t∈I , (Px)x∈E) on (Ω,A) with transition
probabilities

Px[Xt ∈A] = κt (x,A) for all x ∈E, A ∈ B(E), t ∈ I. (17.2)

Conversely, for every Markov process X, Eq. (17.2) defines a semigroup of
stochastic kernels. By (17.2), the finite-dimensional distributions ofX are uniquely
determined.

Proof “=⇒” We construct X as a canonical process. Let Ω = E[0,∞) and A =
B(E)⊗[0,∞). Further, let Xt be the projection on the t th coordinate. For x ∈ E,
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define (see Corollary 14.43) on (Ω,A) the probability measure Px such that, for
finitely many time points 0= t0 < t1 < . . . < tn, we have

Px ◦ (Xt0, . . . ,Xtn)−1 = δx ⊗
n−1⊗

i=0

κti+1−ti .

Then

Px[Xt0 ∈A0, . . . ,Xtn ∈An]

=
∫

An−1

Px[Xt0 ∈A0, . . . ,Xtn−2 ∈An−2,Xtn−1 ∈ dxn−1]

× κtn−tn−1(xn−1,An);
hence Px[Xtn ∈ An | Ftn−1] = κtn−tn−1(Xtn−1 ,An). Thus X is recognized as a
Markov process. Furthermore, we have Px[Xt ∈A] = (δx · κt )(A)= κt (x,A).

“⇐=” Now let (X, (Px)x∈E) be a Markov process. Then a stochastic kernel κt is
defined by

κt (x,A) := Px[Xt ∈A] for all x ∈E,A ∈ B(E), t ∈ I.
By the Markov property, we have

κt+s(x,A)= Px[Xt+s ∈A] = Ex
[
PXs [Xt ∈A]

]

=
∫

Px[Xs ∈ dy]Py[Xt ∈A]

=
∫

κs(x, dy)κt (y,A)= (κs · κt )(x,A).

Hence (κt )t∈I is a Markov semigroup. �

Theorem 17.9 A stochastic process X = (Xt )t∈I is a Markov process if and only
if there exists a stochastic kernel κ : E × B(E)⊗I → [0,1] such that, for every
bounded B(E)⊗I −B(R)-measurable function f :EI →R and for every s ≥ 0 and
x ∈E, we have

Ex
[
f
(
(Xt+s)t∈I

) ∣
∣Fs
]= EXs

[
f (X)

] :=
∫

EI
κ(Xs, dy)f (y). (17.3)

Proof “⇐=” The time-homogeneous Markov property follows by (17.3) with the
function f (y)= 1A(y(t)) since PXs [Xt ∈A] = Px[Xt+s ∈A |Fs] = κt (Xs,A).

“=⇒” By the usual approximation arguments, it is enough to consider functions
f that depend only on finitely many coordinates 0≤ t1 ≤ t2 ≤ . . .≤ tn. We perform
the proof by induction on n.

For n = 1 and f an indicator function, this is the (time-homogeneous) Markov
property. For general measurable f , the statement follows by the usual approxima-
tion arguments.
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Now assume the claim is proved for n ∈ N. Again it suffices to assume that
f is an indicator function of the type f (x) = 1B1×...×Bn+1 l(xt1, . . . , xtn+1) (with
B1, . . . ,Bn+1 ∈ B(E)). Using the Markov property (third and fifth equalities in the
following equation) and the induction hypothesis (fourth equality), we get

Ex
[
f
(
(Xt+s)t≥0

) ∣
∣Fs
]

= Ex
[
Ex
[
f
(
(Xt+s)t≥0

) ∣
∣Ftn+s

] ∣
∣Fs
]

= Ex
[
Ex[1{Xtn+1+s∈Bn+1} |Ftn+s]1B1(Xt1+s) . . .1Bn(Xtn+s)

∣
∣Fs
]

= Ex
[
PXtn+s [Xtn+1−tn ∈ Bn+1]1B1(Xt1+s) . . .1Bn(Xtn+s)

∣
∣Fs
]

= EXs
[
PXtn [Xtn+1−tn ∈ Bn+1]1B1(Xt1) . . .1Bn(Xtn)

]

= EXs
[
PX0[Xtn+1 ∈ Bn+1 |Ftn]1B1(Xt1) . . .1Bn(Xtn)

]

= EXs
[
PX0[Xt1 ∈ B1, . . . ,Xtn+1 ∈ Bn+1 |Ftn ]

]

= EXs
[
f (X)

]
. �

Corollary 17.10 A stochastic process (Xn)n∈N0 is a Markov chain if and only if

Lx
[
(Xn+k)n∈N0

∣
∣Fk
]= LXk

[
(Xn)n∈N0

]
for every k ∈N0. (17.4)

Proof If the conditional distributions exist, then, by Theorem 17.9, the equation
(17.4) is equivalent to X being a Markov chain. Hence we only have to show that
the conditional distributions exist.

Since E is Polish, EN0 is also Polish and we have B(EN0)= B(E)⊗N0 (see The-
orem 14.8). Hence, by Theorem 8.37, there exists a regular conditional distribution
of (Xn+k)n∈N0 given Fk . �

Theorem 17.11 Let I = N0. If (Xn)n∈N0 is a stochastic process with distributions
(Px, x ∈ E), then the Markov property in Definition 17.3(iii) is implied by the exis-
tence of a stochastic kernel κ1 :E ×B(E)→[0,1] with the property that for every
A ∈ B(E), every x ∈E and every s ∈ I , we have

Px[Xs+1 ∈A |Fs] = κ1(Xs,A). (17.5)

In this case, the n-step transition kernels κn can be computed inductively by

κn = κn−1 · κ1 =
∫

E

κn−1( ·, dx)κ1(x, ·).

In particular, the family (κn)n∈N is a Markov semigroup and the distribution X is
uniquely determined by κ1.

Proof In Theorem 17.9, let ti = i for every i ∈ N0. For the proof of that theorem,
only (17.5) was needed. �



356 17 Markov Chains

The (time-homogeneous) Markov property of a process means that, for fixed
time t , the future (after t ) depends on the past (before t ) only via the present (that
is, via the value Xt ). We can generalize this concept by allowing random times τ
instead of fixed times t .

Definition 17.12 Let I ⊂ [0,∞) be closed under addition. A Markov process
(Xt )t∈I with distributions (Px, x ∈ E) has the strong Markov property if, for ev-
ery a.s. finite stopping time τ , every bounded B(E)⊗I −B(R)measurable function
f :EI →R and every x ∈E, we have

Ex
[
f
(
(Xτ+t )t∈I

) ∣
∣Fτ
]= EXτ

[
f (X)

] :=
∫

EI
κ(Xτ , dy)f (y). (17.6)

Remark 17.13 If I is countable, then the strong Markov property holds if and only
if, for every almost surely finite stopping time τ , we have

Lx
[
(Xτ+t )t∈N0

∣
∣Fτ
]= LXτ

[
(Xt )t∈N0

] := κ(Xτ , ·). (17.7)

This follows just as in Corollary 17.10. ♦

Most Markov processes one encounters have the strong Markov property. In par-
ticular, for countable time sets, the strong Markov property follows from the Markov
property. For continuous time, however, in general, some work has to be done to es-
tablish the strong Markov property.

Theorem 17.14 If I ⊂ [0,∞) is countable and closed under addition, then ev-
ery Markov process (Xn)n∈I with distributions (Px)x∈E has the strong Markov
property.

Proof Let f :EI →R be measurable and bounded. Then, for every s ∈ I , the ran-
dom variable 1{τ=s}Ex[f ((Xs+t )t∈I ) |Fτ ] is measurable with respect to Fs . Using
the tower property of the conditional expectation and Theorem 17.9 in the third
equality, we thus get

Ex
[
f
(
(Xτ+t )t∈I

) ∣
∣Fτ
]=
∑

s∈I
1{τ=s}Ex

[
f
(
(Xs+t )t∈I

) ∣
∣Fτ
]

=
∑

s∈I
Ex
[
1{τ=s}Ex

[
f
(
(Xs+t )t∈I

) ∣
∣Fs
] ∣
∣Fτ
]

=
∑

s∈I
Ex
[
1{τ=s}EXs

[
f
(
(Xt )t∈I

)] ∣
∣Fτ
]

= EXτ
[
f
(
(Xt )t∈I

)]
. �

As a simple application of the strong Markov property, we show the reflection
principle for random walks.
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Theorem 17.15 (Reflection principle) Let Y1, Y2, . . . be i.i.d. real random vari-
ables with symmetric distribution L[Y1] = L[−Y1]. Define X0 = 0 and Xn :=
Y1 + . . .+ Yn for n ∈N. Then, for every n ∈N0 and a > 0,

P
[

sup
m≤n

Xm ≥ a
]
≤ 2P[Xn ≥ a] − P[Xn = a]. (17.8)

If we have P[Y1 ∈ {−1,0,1}] = 1, then for a ∈N equality holds in (17.8).

Proof Let a > 0 and n ∈N. Define the time of first excess of a (truncated at (n+1)),

τ := inf{m≥ 0 :Xm ≥ a} ∧ (n+ 1).

Then τ is a bounded stopping time and

sup
m≤n

Xm ≥ a ⇐⇒ τ ≤ n.

Let f (m,X)= 1{m≤n}(1{Xn−m>a} + 1
21{Xn−m=a}). Then

f
(
τ, (Xτ+m)m∈N0

)= 1{τ≤n}
(

1{Xn>a} +
1

2
1{Xn=a}

)

.

The strong Markov property of X yields

E0
[
f
(
τ, (Xτ+m)m≥0

) ∣
∣Fτ
]= ϕ(τ,Xτ ),

where ϕ(m,x) = Ex[f (m,X)]. (Recall that Ex denotes the expectation for X if
X0 = x.)

Due to the symmetry of Yi , we have

ϕ(m,x)

⎧
⎪⎨

⎪⎩

≥ 1
2 , if m≤ n and x ≥ a,

= 1
2 , if m≤ n and x = a,

= 0, m > n.

Hence

{τ ≤ n} = {τ ≤ n} ∩ {Xτ ≥ a} ⊂
{

ϕ(τ,Xτ )≥ 1

2

}

∩ {τ ≤ n}

= {ϕ(τ,Xτ ) > 0
}∩ {τ ≤ n}.

Now (17.8) is implied by

P[Xn > a] + 1

2
P[Xn = a] = E

[
f
(
τ, (Xτ+m)m≥0

)]

= E0
[
ϕ(τ,Xτ )1{τ≤n}

]≥ 1

2
P0[τ ≤ n]. (17.9)
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Now assume P[Y1 ∈ {−1,0,1}] = 1 and a ∈N. Then Xτ = a if τ ≤ n. Hence

{
ϕ(τ,Xτ ) > 0

}∩ {τ ≤ n} =
{

ϕ(τ,Xτ )= 1

2

}

∩ {τ ≤ n}.

Thus, in the last step of (17.9), equality holds and hence also in (17.8). �

Exercise 17.1.1 Let I ⊂ R and let X = (Xt )t∈I be a stochastic process. For t ∈ I ,
define the σ -algebras that code the past before t and the future beginning with t by

F≤t := σ(Xs : s ∈ I, s ≤ t) and F≥t := σ(Xs : s ∈ I, s ≥ t).
Show that X has the Markov property if and only if, for every t ∈ I , the σ -algebras
F≤t and F≥t are independent given σ(Xt ) (compare Definition 12.20).

In other words, a process has the (possibly time-inhomogeneous) Markov prop-
erty if and only if past and future are independent given the present.

17.2 Discrete Markov Chains: Examples

Let E be countable and I = N0. By Definition 17.3, a Markov process X =
(Xn)n∈N0 on E is a discrete Markov chain (or Markov chain with discrete state
space).

If X is a discrete Markov chain, then (Px)x∈E is determined by the transition
matrix

p = (p(x, y))
x,y∈E :=

(
Px[X1 = y]

)
x,y∈E.

The n-step transition probabilities

p(n)(x, y) := Px[Xn = y]
can be computed as the n-fold matrix product

p(n)(x, y)= pn(x, y),
where

pn(x, y)=
∑

z∈E
pn−1(x, z)p(z, y)

and where p0 = I is the unit matrix.
By induction, we get the Chapman–Kolmogorov equation (see (14.14)) for all

m,n ∈N0 and x, y ∈E,

p(m+n)(x, y)=
∑

z∈E
p(m)(x, z)p(n)(z, y). (17.10)
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Definition 17.16 A matrix (p(x, y))x,y∈E with nonnegative entries and with

∑

y∈E
p(x, y)= 1 for all x ∈E

is called a stochastic matrix on E.

A stochastic matrix is essentially a stochastic kernel from E to E. In Theo-
rem 17.8 we saw that, for the semigroup of kernels (pn)n∈N, there exists a unique
discrete Markov chain whose transition probabilities are given by p. The arguments
we gave there were rather abstract. Here we give a construction for X that could
actually be used to implement a computer simulation of X.

Let (Rn)n∈N0 be an independent family of random variables with values in EE

and with the property

P
[
Rn(x)= y

]= p(x, y) for all x, y ∈E. (17.11)

For example, choose (Rn(x), x ∈ E,n ∈ N) as an independent family of random
variables with values in E and distributions

P
[
Rn(x)= y

]= p(x, y) for all x, y ∈E and n ∈N0.

Note, however, that in (17.11) we have required neither independence of the random
variables (Rn(x), x ∈ E) nor that all Rn had the same distribution. Only the one-
dimensional marginal distributions are determined. In fact, in many applications it
is useful to have subtle dependence structures in order to couple Markov chains with
different initial chains. We pick up this thread again in Section 18.2.

For x ∈E, define

Xx0 = x and Xxn =Rn
(
Xxn−1

)
for n ∈N.

Finally, let Px := L[Xx] be the distribution of Xx . Recall that this is a probability
measure on the space of sequences (EN0,B(E)⊗N0).

Theorem 17.17

(i) With respect to the distribution (Px)x∈E , the canonical process X on
(EN0,B(E)⊗N0) is a Markov chain with transition matrix p.

(ii) In particular, to any stochastic matrix p, there corresponds a unique discrete
Markov chain X with transition probabilities p.

Proof “(ii)” This follows from (i) since Theorem 17.11 yields uniqueness of X.
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“(i)” For n ∈N0 and x, y, z ∈E, by construction,

Px[Xn+1 = z |Fn,Xn = y] = P
[
Xxn+1 = z

∣
∣ σ(Rm,m≤ n),Xxn = y

]

= P
[
Rn+1

(
Xxn
)= z ∣∣ σ(Rm,m≤ n),Xxn = y

]

= P
[
Rn+1(y)= z

]

= p(y, z).
Hence, by Theorem 17.11, X is a Markov chain with transition matrix p. �

Example 17.18 (Random walk on Z) Let E = Z, and assume

p(x, y)= p(0, y − x) for all x, y ∈ Z.

In this case, we say that p is translation invariant. A discrete Markov chain X with

transition matrix p is a random walk on Z. Indeed,Xn
D=X0+Z1+ . . .+Zn, where

(Zn)n∈N are i.i.d. with P[Zn = x] = p(0, x).
The Rn that we introduced in the explicit construction are given by Rn(x) :=

x +Zn. ♦

Example 17.19 (Computer simulation) Consider the situation where the state space
E = {1, . . . , k} is finite. The aim is to simulate a Markov chainX with transition ma-
trix p on a computer. Assume that the computer provides a random number genera-
tor that generates an i.i.d. sequence (Un)n∈N of random variables that are uniformly
distributed on [0,1]. (Of course, this is wishful thinking. But modern random num-
ber generators produce sequences that for many purposes are close enough to really
random sequences.)

Define r(i,0)= 0, r(i, j)= p(i,1)+ . . .+p(i, j) for i, j ∈E, and define Yn by

Rn(i)= j ⇐⇒ Un ∈
[
r(i, j − 1), r(i, j)

)
.

Then, by construction, P[Rn(i)= j ] = r(i, j)− r(i, j − 1)= p(i, j). ♦

Example 17.20 (Branching process as a Markov chain) We want to understand
the Galton–Watson branching process (see Definition 3.9) as a Markov chain on
E =N0.

To this end, let (qk)k∈N0 be a probability vector, the offspring distribution of one
individual. Define q∗0

k = 1{0}(k) and

q∗nk =
k∑

l=0

q
∗(n−1)
k−l ql for n ∈N

as the n-fold convolutions of q . Hence, for n individuals, q∗nk is the probability to
have exactly k offspring. Finally, define the matrix p by p(x, y)= q∗xy for x, y ∈N0.
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Now let (Yn,i , n ∈N0, i ∈N0) be i.i.d. with P[Yn,i = k] = qk . For x ∈N0, define
the branching process X with x ancestors and offspring distribution q by X0 = x
and Xn :=∑Xn−1

i=1 Yn−1,i . In order to show that X is a Markov chain, we compute

P[Xn = xn |X0 = x,X1 = x1, . . . ,Xn−1 = xn−1]
= P[Yn−1,1 + . . .+ Yn−1,xn−1 = xn]
= P∗xn−1

Y1,1

({xn}
)= q∗xn−1

xn = p(xn−1, xn).

Hence X is a Markov chain on N0 with transition matrix p. ♦

Example 17.21 (Wright’s evolution model) In population genetics, Wright’s evolu-
tion model [171] describes the hereditary transmission of a genetic trait with two
possible specifications (say A and B); for example, resistance/no resistance to a
specific antibiotic. It is assumed that the population has a constant size of N ∈ N

individuals and the generations change at discrete times and do not overlap. Fur-
thermore, for simplicity, the individuals are assumed to be haploid; that is, cells
bear only one copy of each chromosome (like certain protozoans do) and not two
copies (as in mammals).

Here we consider the case where none of the traits is favored by selection. Hence,
it is assumed that each individual of the new generation chooses independently and
uniformly at random one individual of the preceding generation as ancestor and
becomes a perfect clone of that. Thus, if the number of individuals of type A in the
current generation is k ∈ {0, . . . ,N}, then in the new generation it will be random
and binomially distributed with parameters N and k/N .

The gene frequencies k/N in this model can be described by a Markov chain X
on E = {0,1/N, . . . , (N − 1)/N,1} with transition matrix p(x, y) = bN,x({Ny}).
Note that X is a (bounded) martingale. Hence, by the martingale convergence theo-
rem (Theorem 11.7), X converges Px -almost surely to a random variable X∞ with
Ex[X∞] = Ex[X0] = x. As with the voter model (see Example 11.16) that is closely
related to Wright’s model, we can argue that the limit X∞ can take only the stable
values 0 and 1. That is, Px[limn→∞Xn = 1] = x = 1− Px[limn→∞Xn = 0]. ♦

Example 17.22 (Discrete Moran model) In contrast to Wright’s model, the Moran
model also allows overlapping generations. The situation is similar to that of
Wright’s model; however, now in each time step, only (exactly) one individual gets
replaced by a new one, whose type is chosen at random from the whole population.

As the new and the old types of the replaced individual are independent, as a
model for the gene frequencies, we obtain a Markov chain X on E = {0, 1

N
, . . . ,1}

with transition matrix

p(x, y)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x(1− x), if y = x + 1/N,

x2 + (1− x)2, if y = x,
x(1− x), if y = x − 1/N,

0, else.
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Here also, X is a bounded martingale and we can compute the square variation
process,

〈X〉n =
n∑

i=1

E
[
(Xi −Xi−1)

2
∣
∣Xi−1

]= 2

N2

n−1∑

i=0

Xi(1−Xi). (17.12)

♦

Exercise 17.2.1 (Discrete martingale problem) Let E ⊂ R be countable and let X
be a Markov chain on E with transition matrix p and with the property that, for
any x, there are at most three choices for the next step; that is, there exists a set
Ax ⊂E of cardinality 3 with p(x, y)= 0 for all y ∈E \Ax . Let d(x) :=∑y∈E(y−
x)p(x, y) for x ∈E.

(i) Show that Mn :=Xn −∑n−1
k=0 d(Xk) defines a martingale M with square vari-

ation process 〈M〉n =∑n−1
i=0 f (Xi) for a unique function f :E→[0,∞).

(ii) Show that the transition matrix p is uniquely determined by f and d .
(iii) For the Moran model (Example 17.22), use the explicit form (17.12) of the

square variation process to compute the transition matrix.

17.3 Discrete Markov Processes in Continuous Time

Let E be countable and let (Xt )t∈[0,∞) be a Markov process on E with transition
probabilities pt (x, y)= Px[Xt = y] (for x, y ∈ E). (Some authors call such a pro-
cess a Markov chain in continuous time.)

Let x, y ∈ E with x �= y. We say that X jumps with rate q(x, y) from x to y if
the following limit exists:

q(x, y) := lim
t↓0

1

t
Px[Xt = y].

Henceforth we assume that the limit q(x, y) exists for all y �= x and that
∑

y �=x
q(x, y) <∞ for all x ∈E. (17.13)

Then we define

q(x, x)=−
∑

y �=x
q(x, y). (17.14)

Finally we assume that (which is equivalent to exchangeability of the limit and the
sum over y �= x in the display preceding (17.13))

lim
t↓0

1

t

(
Px[Xt = y] − 1{x=y}

)= q(x, y) for all x, y ∈E. (17.15)

Definition 17.23 If (17.13), (17.14) and (17.15) hold, then q is called theQ-matrix
of X. Sometimes q is also called the generator of the semigroup (pt )t≥0.



17.3 Discrete Markov Processes in Continuous Time 363

Example 17.24 (Poisson process) The Poisson process with rate α > 0 (compare
Section 5.5) has the Q-matrix q(x, y)= α(1{y=x+1} − 1{y=x}). ♦

Theorem 17.25 Let q be an E ×E matrix such that q(x, y)≥ 0 for all x, y ∈ E
with x �= y. Assume that (17.13) and (17.14) hold and that

λ := sup
x∈E
∣
∣q(x, x)

∣
∣<∞. (17.16)

Then q is the Q-matrix of a unique Markov process X.

Intuitively, (17.15) suggests that we define pt = etq in a suitable sense. Then,
formally, q = d

dt
pt
∣
∣
t=0. The following proof shows that this formal argument can

be made rigorous.

Proof Let I be the unit matrix on E. Define

p(x, y)= 1

λ
q(x, y)+ I (x, y) for x, y ∈E,

if λ > 0 and p = I otherwise. Then p is a stochastic matrix and q = λ(p − I ).
Let ((Yn)n∈N0 , (P

Y
x )x∈E) be a discrete Markov chain with transition matrix p and

let ((Tt )t≥0, (PTn )n∈N0) be a Poisson process with rate λ. Let Xt := YTt and Px =
PYx ⊗ PT0 . Then X := ((Xt )t≥0, (Px)x∈E) is a Markov process and

pt(x, y) := Px[Xt = y] =
∞∑

n=0

PT0 [Tt = n]PYx [Yn = y]

= e−λt
∞∑

n=0

λntn

n! p
n(x, y).

This power series (in t ) converges everywhere (note that as a linear operator, p has
finite norm ‖p‖2 ≤ 1) to the matrix exponential function eλtp(x, y). Furthermore,

pt (x, y)= e−λt eλtp(x, y)= eλt(p−I )(x, y)= etq(x, y).
Differentiating the power series termwise yields d

dt
pt (x, y)

∣
∣
t=0 = q(x, y). Hence X

is the required Markov process.
Now assume that (p̃t )t≥0 are the transition probabilities of another Markov pro-

cess X̃ with the same generator q; that is, with

lim
s↓0

1

s

(
p̃s(x, y)− I (x, y)

)= q(x, y).

It is easy to check that

lim
s↓0

1

s

(
pt+s(x, y)− pt(x, y)

)= (q · pt )(x, y).
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That is, we have (d/dt)pt (x, y) = qpt (x, y). Similarly, we get (d/dt)p̃t =
qp̃t (x, y). Hence also,

pt (x, y)− p̃t (x, y)=
∫ t

0

(
q(ps − p̃s)

)
(x, y) ds.

If we let rs = ps − p̃s , then ‖rs‖2 ≤ 2 and ‖q‖2 ≤ 2λ; hence

sup
s≤t

‖rs‖2 ≤ sup
s≤t

∫ s

0
‖qru‖2 du≤ ‖q‖2 sup

s≤t

∫ s

0
‖ru‖2 du≤ 2λt sup

s≤t
‖rs‖2.

For t < 1/2λ, this implies rt = 0; hence p̃t = pt . For general t > 0, choose n ∈ N

such that t/n < 1/2λ to obtain p̃t = (p̃t/n)n = (pt/n)n = pt . �

Remark 17.26 The condition (17.16) cannot be dropped easily, as the following ex-
ample shows. Let E =N and

q(x, y)=

⎧
⎪⎨

⎪⎩

x2, if y = x + 1,

−x2, if y = x,
0, else.

We construct explicitly a candidate X for a Markov process with Q-matrix q . Let
T1, T2, . . . be independent, exponentially distributed random variables with PTn =
expn2 . Define Sn = T1 + . . . + Tn−1 and Xt = sup{n ∈ N0 : Sn ≤ t}. Then, at any
time, X makes at most one step to the right. Furthermore, due to the lack of memory
of the exponential distribution (see Exercise 8.1.1),

P[Xt+s ≥ n+ 1 |Xt = n]
= P[Sn+1 ≤ t + s | Sn ≤ t, Sn+1 > t]
= P[Tn ≤ s + t − Sn | Sn ≤ t, Tn > t − Sn] = P[Tn ≤ s]
= 1− exp

(−n2s
)
.

Therefore,

lim
s↓0
s−1P[Xt+s = n+ 1 |Xt = n] = n2

and

lim
s↓0
s−1(P[Xt+s = n |Xt = n] − 1

)=−n2;

hence

lim
s↓0
s−1(P[Xt+s =m |Xt = n] − I (m,n)

)= q(m,n) for all m,n ∈N.

Let

τn = inf{t ≥ 0 :Xt = n} = Sn for n ∈N.
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Then E1[τn] =∑n−1
k=1

1
k2 . By monotone convergence, E1[supn∈N τn]<∞. That is,

in finite time, X exceeds all levels. We say that X explodes. ♦

Example 17.27 (A variant of Pólya’s urn model) Consider a variant of Pólya’s urn
model with black and red balls (compare Example 12.29). In contrast to the original
model, we do not simply add one ball of the same color as the ball that we return.
Rather, the number of balls that we add varies from time to time. More precisely,
the kth ball of a given color will be returned together with rk more balls of the same
color. The numbers r1, r2, . . . ∈ N are parameters of the model. In particular, the
case 1= r1 = r2 = . . . is the classical Pólya’s urn model. Let

Xn :=
{

1, if the nth ball is black,

0, else.

For the classical model, we saw (Example 12.29) that the fraction of black balls
in the urn converges a.s. to a Beta-distributed random variable Z. Furthermore,
given Z, the sequence X1,X2, . . . is independent and BerZ-distributed. A similar
statement holds for the case where r = r1 = r2 = . . . for some r ∈ N. Indeed, here
only the parameters of the Beta distribution change. In particular (as the Beta distri-
bution is continuous and, in particular, does not have atoms at 0 or 1), almost surely
we draw infinitely many balls of each color. Formally, P[B] = 0 where B is the
event where there is one color of which only finitely many balls are drawn.

The situation changes when the numbers rk grow quickly as k→∞. Assume
that in the beginning there is one black and one red ball in the urn. Denote by
wn = 1 +∑n

k=1 rk the total number of balls of a given color after n balls of that
color have been drawn already (n ∈N0).

For illustration, first consider the extreme situation wherewn grows very quickly;
for example, wn = 2n for every n ∈N. Denote by

Sn = 2(X1 + . . .+Xn)− n

the number of black balls drawn in the first n steps minus the number of red balls
drawn in these steps. Then, for every n ∈N0,

P[Xn+1 = 1 | Sn] = 2Sn

1+ 2Sn
and P[Xn+1 = 0 | Sn] = 2−Sn

1+ 2−Sn
.

We conclude that (Zn)n∈N0 := (|Sn|)n∈N0 is a Markov chain on N0 with transition
matrix

p
(
z, z′
)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2z/(1+ 2z), if z′ = z+ 1> 1,

1, if z′ = z+ 1= 1,

1/(1+ 2z), if z′ = z− 1,

0, else.
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The event B from above can be written as

B = {Zn+1 <Zn only finitely often}.

Let A = {Zn+1 > Zn for all n ∈ N0} denote the event where Z flees directly to ∞
and let τz = inf{n ∈N0 :Zn ≥ z}. Evidently,

Pz[A] =
∞∏

z′=z
p
(
z′, z′ + 1

)≥ 1−
∞∑

z′=z

1

1+ 2z′
≥ 1− 21−z.

It is easy to check that P0[τz <∞] = 1 for all z ∈ N0. Using the strong Markov
property, we get that, for all z ∈N0,

P0[B] ≥ P0[Zn+1 >Zn for all n≥ τz] = Pz[A] ≥ 1− 21−z,

and thus P0[B] = 1. In prose, almost surely eventually only balls of one color will
be drawn.

This example was a bit extreme. In order to find a necessary and sufficient con-
dition on the growth of (wn), we need more subtle methods that appeal to the above
example of the explosion of a Markov process.

We will show that P[B] = 1 if and only if
∑∞
n=0

1
wn
<∞. To this end, consider

independent random variables T s1 , T
r
1 , T

s
2 , T

r
2 , . . . with PT rn = PT sn = expwn−1

. Let
T r∞ =∑∞

n=1 T
r
n and T s∞ =∑∞

n=1 T
s
n . Clearly, E[T r∞] =

∑∞
n=0 1/wn <∞; hence,

in particular, P[T r∞ <∞]= 1. The corresponding statement holds for T s∞. Note that
T r∞ and T s∞ are independent and have densities (since T r1 and T s1 have densities);
hence we have P[T r∞ = T s∞] = 0.

Now let

Rt := sup
{
n ∈N : T r1 + . . .+ T rn−1 ≤ t

}

and

St := sup
{
n ∈N : T s1 + . . .+ T sn−1 ≤ t

}
.

Let R := {T r1 + . . .+ T rn , n ∈ N} and let S := {T s1 + . . .+ T sn , n ∈ N} be the jump
times of (Rt ) and (St ). Define U :=R ∪ S = {u1, u2, . . .}, where u1 < u2 < . . .. Let

Xn =
{

1, if un ∈ S,
0, else.
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Let Ln = x1 + . . .+ xn. Then

P[Xn+1 = 1 |X1 = x1, . . . ,Xn = xn]
= P
[
un+1 ∈ S

∣
∣ (uk ∈ S ⇐⇒ xk = 1) for every k ≤ n]

= P
[
T s1 + . . .+ T sLn+1 < T

r
1 + . . .+ T rn−Ln+1

∣
∣

T s1 + . . .+ T sLn+1 > T
r
1 + . . .+ T rn−Ln

]

= P
[
T sLn+1 < T

r
n−Ln+1

]= wLn

wLn +wn−Ln
.

Hence (Xn)n∈N0 is our generalized urn model with weights (wn)n∈N0 . Consider
now the event Bc where infinitely many balls of each color are drawn. Evi-
dently, {Xn = 1 infinitely often} = {supS = supU} and {Xn = 0 infinitely often} =
{supR = supU}. Since supS = T s∞ and supR = T r∞, we thus have P[Bc] =
P[T r∞ = T s∞] = 0. ♦

Exercise 17.3.1 Let r, s,R,S ∈N. Consider the generalized version of Pólya’s urn
model (Xn)n∈N0 with rk = r and sk = s for all k ∈N. Assume that in the beginning
there are R red balls and S black balls in the urn. Show that the fraction of black
balls converges almost surely to a random variable Z with a Beta distribution and
determine the parameters. Show that (Xn)n∈N0 is i.i.d. given Z and Xi ∼ BerZ for
all i ∈N0.

Exercise 17.3.2 Show that, almost surely, infinitely many balls of each color are
drawn if

∞∑

n=0

1

wn
=∞.

17.4 Discrete Markov Chains: Recurrence and Transience

In the following, let X = (Xn)n∈N0 be a Markov chain on the countable space E
with transition matrix p.

Definition 17.28 For any x ∈E, let τx := τ 1
x := inf{n > 0 :Xn = x} and

τ kx = inf
{
n > τk−1

x :Xn = x
}

for k ∈N, k ≥ 2.

τ kx is the kth entrance time of X for x. For x, y ∈E, let

F(x, y) := Px
[
τ 1
y <∞

]= Px[there is an n≥ 1 with Xn = y]
be the probability of ever going from x to y. In particular, F(x, x) is the return
probability (after the first jump) from x to x.

Note that τ 1
x > 0 even if we start the chain at X0 = x.
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Fig. 17.1 Markov chain with eight states. The numbers are the transition probabilities for the
corresponding arrows. State 2 is absorbing, the states 1, 3, 4 and 5 are transient and the states 6, 7
and 8 are (positive) recurrent

Theorem 17.29 For all x, y ∈E and k ∈N, we have

Px
[
τ ky <∞

]= F(x, y)F (y, y)k−1.

Proof We carry out the proof by induction on k. For k = 1, the claim is true by defi-
nition. Now let k ≥ 2. Using the strong Markov property of X (see Theorem 17.14),
we get

Px
[
τ ky <∞

]= Ex
[
Px
[
τ ky <∞

∣
∣F

τk−1
y

]
1{τk−1

y <∞}
]

= Ex
[
F(y, y) · 1{τk−1

y <∞}
]

= F(y, y) · F(x, y)F (y, y)k−2 = F(x, y)F (y, y)k−1. �

Definition 17.30 A state x ∈E is called

• recurrent if F(x, x)= 1,
• positive recurrent if Ex[τ 1

x ]<∞,
• null recurrent if x is recurrent but not positive recurrent,
• transient if F(x, x) < 1, and
• absorbing if p(x, x)= 1.

The Markov chain X is called (positive/null) recurrent if every state x ∈ E is
(positive/null) recurrent and is called transient if every recurrent state is absorbing.

Remark 17.31 Clearly, we have:

“absorbing” =⇒ “positive recurrent” =⇒ “recurrent”. ♦

Example 17.32

(i) In Fig. 17.1, the state 2 is absorbing. If it does not get trapped in 2, the chain
will eventually jump from 5 to 6 and will not return after that. Hence 1, 3, 4 and
5 are transient. The states 6, 7 and 8 are positive recurrent. One can show (see
Exercise 17.6.1) that E6[τ6] = 17

4 , E7[τ7] = 17
5 and E8[τ8] = 17

8 .
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Fig. 17.2 Markov chain on N0 with parameter r ∈ (0,1). The chain is positive recurrent if
r ∈ (0,1/2), null recurrent if r = 1/2 and transient if r ∈ (1/2,1)

(ii) The chain in Fig. 17.2 has a drift to the right if r > 1
2 . Hence, in this case, every

state is transient. On the other hand, if r ∈ (0, 1
2 ), then the chain has a drift to

the left (except at the point 0) and hence visits every state again and again. Thus
the chain is recurrent. With a little thought, one can show (see Exercise 17.6.4)
that in this case, the chain is actually positive recurrent and in the remaining
case r = 1

2 it is null recurrent. ♦

Definition 17.33 Denote by N(y)=∑∞
n=0 1{Xn=y} the total number of visits of X

to y and by

G(x,y)= Ex
[
N(y)

]=
∞∑

n=0

pn(x, y)

the Green function of X.

Theorem 17.34

(i) For all x, y ∈ E, we have (with the convention 1/0 := ∞, 0/0 := 0 and 0 ·
∞ := 0)

G(x,y)=
{

F(x,y)
1−F(y,y) , if x �= y

1
1−F(y,y) , if x = y

}

= F(x, y)G(y, y)+ 1{x=y}. (17.17)

(ii) A non-absorbing state x ∈E is recurrent if and only if G(x,x)=∞.

Proof (ii) follows by (i). Hence, it remains to show (17.17). By Theorem 17.29, we
have

G(x,y)= Ex
[
N(y)

]=
∞∑

k=1

Px
[
N(y)≥ k]

= 1{x=y} +
∞∑

k=1

Px
[
τ ky <∞

]= 1{x=y} +
∞∑

k=1

F(x, y)F (y, y)k−1

=
{

F(x,y)
1−F(y,y) , if x �= y,

1
1−F(x,x) , if x = y.

The second equality in (17.17) is an immediate consequence. �
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Theorem 17.35 If x is recurrent and F(x, y) > 0, then y is also recurrent, and
F(x, y)= F(y, x)= 1.

Proof Let x, y ∈ E, x �= y, be such that F(x, y) > 0. Then there is a k ∈ N and
states x1, . . . , xk ∈E with xk = y and xi �= x for all i = 1, . . . , k and such that

Px[Xi = xi for all i = 1, . . . , k]> 0.

In particular, pk(x, y) > 0. By the Markov property, we have

1− F(x, x)= Px
[
τ 1
x =∞

]≥ Px
[
X1 = x1, . . . ,Xk = xk, τ 1

x =∞
]

= Px[X1 = x1, . . . ,Xk = xk] · Py
[
τ 1
x =∞

]

= Px[X1 = x1, . . . ,Xk = xk]
(
1− F(y, x)).

If now F(x, x) = 1, then also F(y, x) = 1. Since F(y, x) > 0, there exists an
l ∈N with pl(y, x) > 0. Hence, for n ∈N0,

pl+n+k(y, y)≥ pl(y, x)pn(x, x)pk(x, y).
If x is recurrent, then we conclude that

G(y,y)≥
∞∑

n=0

pl+n+k(y, y)≥ pl(y, x)pk(x, y)G(x, x)=∞

and hence also that y is recurrent. Changing the roles of x and y in the above argu-
ment, we get F(x, y)= 1. �

Definition 17.36 A discrete Markov chain is called

• irreducible if F(x, y) > 0 for all x, y ∈E, or equivalently G(x,y) > 0, and
• weakly irreducible if F(x, y)+ F(y, x) > 0 for all x, y ∈E.

Theorem 17.37 An irreducible discrete Markov chain is either recurrent or tran-
sient. If |E| ≥ 2, then there is no absorbing state.

Proof This follows directly from Theorem 17.35. �

Theorem 17.38 If E is finite and X is irreducible, then X is recurrent.

Proof Evidently, for all x ∈E,

∑

y∈E
G(x, y)=

∞∑

n=0

∑

y∈E
pn(x, y)=

∞∑

n=0

1=∞.

As E is finite, there is a y ∈E with G(x,y)=∞. Since F(y, x) > 0, there exists a
k ∈N with pk(y, x) > 0. Therefore, since pn+k(x, x)≥ pn(x, y)pk(y, x), we have
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G(x,x)≥
∞∑

n=0

pn(x, y)pk(y, x)= pk(y, x)G(x, y)=∞.
�

Exercise 17.4.1 Let x be positive recurrent and let F(x, y) > 0. Show that y is also
positive recurrent.

17.5 Application: Recurrence and Transience of Random Walks

In this section, we study recurrence and transience of random walks on the D-
dimensional integer lattice Z

D , D = 1,2, . . . . A more exhaustive investigation can
be found in Spitzer’s book [158].

Consider first the simplest situation of symmetric simple random walk X on Z
D .

That is, at each step, X jumps to any of its 2D neighbors with the same probability
1/2D. Hence, in terms of the Markov chain notation, we have E = Z

D and

p(x, y)=
{

1
2D , if |x − y| = 1,

0, else.

Is this random walk recurrent or transient?
The central limit theorem suggests that

pn(0,0)≈ CDn−D/2 as n→∞
for some constant CD that depends on the dimension D. However, first we have
to exclude the case where n is odd since here clearly pn(0,0) = 0. Thus let
Y1, Y2, . . . be independent ZD-valued random variables with P[Yi = x] = p2(0, x).

Then X2n
D= Sn := Y1 + . . . + Yn for n ∈ N0; hence G(0,0) =∑∞

n=0 P[Sn = 0].
Clearly, Y1 = (Y 1

1 , . . . , Y
D
1 ) has covariance matrix Ci,j := E[Y i1 · Y j1 ] = 2

D
1{i=j}.

By the local central limit theorem (see, e.g., [20, pp. 224ff] for a one-dimensional
version of that theorem or Exercise 17.5.1 for an analytic derivation), we have

nD/2p2n(0,0)= nD/2P[Sn = 0] n→∞−→ 2(4π/D)−D/2. (17.18)

Now
∑∞
n=1 n

−α <∞ if and only if α > 1. Hence G(0,0) <∞ if and only if
D > 2. We have thus shown the following theorem of Pólya [134].

Theorem 17.39 (Pólya (1921) [134]) Symmetric simple random walk on Z
D is re-

current if and only if D ≤ 2.

The procedure we used here to derive Pólya’s theorem has the disadvantage that
it relies on the local central limit theorem, which we have not proved (and will not).
Hence we will consider different methods of proof that yield further insight into the
problem.

Consider first the one-dimensional simple random walk that with probability p
jumps one step to the right and with probability 1− p jumps one step to the left.
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Then

G(0,0)=
∞∑

n=0

(
2n

n

)
(
p(1− p))n =

∞∑

n=0

(−1/2

n

)
(−4p(1− p))n.

Using the generalized binomial theorem (see Lemma 3.5), we get (since we have
(1− 4p(1− p))1/2 = |2p− 1|)

G(0,0)=
{

1
|2p−1| , if p �= 1

2 ,

∞, if p = 1
2 .

(17.19)

Thus, simple random walk on Z is recurrent if and only if it is symmetric; that is, if
p = 1

2 .
Of course, transience in the case p �= 1

2 could also be deduced directly from the
strong law of large numbers since limn→∞ 1

n
Xn = E0[X1] = 2p− 1 almost surely.

In fact, this argument is even more robust since it uses only that the single steps of
X have an expectation that is not zero.

Consider now the situation where X does not necessarily jump to one of its near-
est neighbors but where we still have E0[|X1|] <∞ and E0[X1] = 0. The strong
law of large numbers does not yield recurrence immediately and we have to do
some work:

By the Markov property, for every N ∈N and every y �= x,

GN(x, y) :=
N∑

k=0

Px[Xk = y] =
N∑

k=0

Px
[
τ 1
y = k

]N−k∑

l=0

Py[Xl = y] ≤GN(y, y).

This implies for all L ∈N

GN(0,0)≥ 1

2L+ 1

∑

|y|≤L
GN(0, y)

= 1

2L+ 1

N∑

k=0

∑

|y|≤L
pk(0, y)

≥ 1

2L+ 1

N∑

k=1

∑

y:|y/k|≤L/N
pk(0, y).

By the weak law of large numbers, we have lim infk→∞
∑
|y|≤εk pk(0, y) = 1 for

every ε > 0. Hence, letting L= εN , we get

lim inf
N→∞ GN(0,0)≥

1

2ε
for every ε > 0.

Thus G(0,0)=∞, which shows that X is recurrent.
We summarize the discussion in a theorem.
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Theorem 17.40 A random walk on Z with
∑∞
x=−∞ |x|p(0, x) <∞ is recurrent if

and only if
∑∞
x=−∞ xp(0, x)= 0.

Now what about symmetric simple random walk in dimensionD = 2 or in higher
dimensions? In order that the random walk be at the origin after 2n steps, it must
perform ki steps in the ith direction and ki steps in the opposite direction for some
numbers k1, . . . , kD ∈N0 with k1 + . . .+ kD = n. We thus get

p2n(0,0)= (2D)−2n
∑

k1+...+kD=n

(
2n

k1, k1, . . . , kD, kD

)

, (17.20)

where
(
N

l1,...,lr

)= N !
l1!...lr ! is the multinomial coefficient. In particular, for D = 2,

p2n(0,0)= 4−2n
n∑

k=0

(2n)!
(k!)2((n− k)!)2

= 4−2n
(

2n

n

) n∑

k=0

(
n

k

)(
n

n− k
)

=
(

2−2n
(

2n

n

))2

.

Note that in the last step, we used a simple combinatorial identity that follows,
e.g., by the convolution formula (bn,p ∗ bn,p)({n})= b2n,p({n}). Now, by Stirling’s
formula,

lim
n→∞

√
n2−2n

(
2n

n

)

= 1√
π
,

hence limn→∞ np2n(0,0) = 1
π

. In particular, we have
∑∞
n=1 p

2n(0,0) =∞. That
is, two-dimensional symmetric simple random walk is recurrent.

For D ≥ 3, the sum over the multinomial coefficients cannot be computed in
a satisfactory way. However, it is not too hard to give an estimate that shows
that there exists a c = cD such that p2n(0,0) ≤ cn−D/2, which implies G(0,0) ≤
c
∑∞
n=1 n

−D/2 <∞ (see, e.g., [53, p. 361] or [59, Example 6.31]). Here, however,
we follow a different route.

Things would be easy if the individual coordinates of the chain were independent
one-dimensional random walks. In this case, the probability that at time 2n all coor-
dinates are zero would be the Dth power of the probability that the first coordinate
is zero. For one coordinate, however, which moves only with probability 1/D and
thus has variance 1/D, the probability of being back at the origin at time 2n is ap-
proximately (nπ/D)−1/2. Up to a factor, we would thus get (17.18) without using
the multidimensional local central limit theorem.

An elegant way to decouple the coordinates is to pass from discrete time to con-
tinuous time in such a way that the individual coordinates become independent but
such that the Green function remains unchanged.

We give the details. Let (T it )t≥0, i = 1, . . . ,D be independent Poisson processes
with rate 1/D. Let Z1, . . . ,ZD be independent (and independent of the Poisson
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processes) symmetric simple random walks on Z. Define T := T 1 + . . . + T D ,
Y it := ZiT it for i = 1, . . . ,D and let Yt = (Y 1

t , . . . , Y
D
t ). Then Y is a Markov chain

in continuous time with Q-matrix q(x, y) = p(x, y) − 1{x=y}. As T is a Poisson
process with rate 1, (XTt )t≥0 is also a Markov process with Q-matrix q . It follows

that (XTt )t≥0
D= (Yt )t≥0. We now compute

GY :=
∫ ∞

0
P0[Yt = 0]dt =

∫ ∞

0

∞∑

n=0

P0[X2n = 0, Tt = 2n]dt

=
∞∑

n=0

p2n(0,0)
∫ ∞

0
e−t t

2n

(2n)! dt =G(0,0).

The two processes (Xn)n∈N0 and (Yt )t∈[0,∞) thus have the same Green function. As
the coordinates of Y are independent, we have

GY =
∫ ∞

0
P0
[
Y 1
t = 0

]D
dt.

Hence we only have to compute the asymptotics of P0[Y 1
t = 0] for large t . We

can argue as follows. By the law of large numbers, we have T 1
t ≈ t/D for large t .

Furthermore, P0[Y 1
t is even] ≈ 1

2 . Hence we have, with nt = �t/2D� for t →∞
(compare Exercise 17.5.2),

P0
[
Y 1
t = 0

]∼ 1

2
P
[
Z1

2nt = 0
]= 1

2

(
2nt
nt

)

4−nt ∼ (2π/D)−1/2t−1/2. (17.21)

Since
∫∞

1 t−α dt <∞ if and only if α > 1, we also have GY <∞ if and only if
D > 2. However, this is the statement of Pólya’s theorem.

Finally, we present a third method of studying recurrence and transience of ran-
dom walks that does not rely on the Euclidean properties of the integer lattice but
rather on the Fourier inversion formula.

First consider a general (discrete time) irreducible random walk with transition
matrix p on Z

D . By φ(t)=∑x∈ZD ei〈t,x〉p(0, x) denote the characteristic function
of a single transition. The convolution of the transition probabilities translates into
powers of the characteristic function; hence

φn(t)=
∑

x∈ZD
ei〈t,x〉pn(0, x).

By the Fourier inversion formula (Theorem 15.10), we recover the n-step transition
probabilities from φn by

pn(0, x)= (2π)−D
∫

[−π,π)D
e−i〈t,x〉φn(t) dt.
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In particular, for λ ∈ (0,1),

Rλ :=
∞∑

n=0

λnpn(0,0)

= (2π)−D
∞∑

n=0

∫

[−π,π)D
λnφn(t) dt

= (2π)−D
∫

[−π,π)D
1

1− λφ(t) dt.

= (2π)−D
∫

[−π,π)D
Re

(
1

1− λφ(t)
)

dt.

Now G(0,0)= limλ↑1Rλ and hence

X is recurrent ⇐⇒ lim
λ↑1

∫

[−π,π)D
Re

(
1

1− λφ(t)
)

dt =∞. (17.22)

If we had φ(t)= 1 for some t ∈ (−2π,2π)D \ {0}, then we would have φn(t)= 1
for every n ∈ N and hence, by Exercise 15.2.1, P0[〈Xn, t/(2π)〉 ∈ Z] = 1. Thus X
would not be irreducible contradicting the assumption. Due to the continuity of φ
for all ε > 0, we thus have

inf
{|φ(t)− 1| : t ∈ [−π,π)D∖(−ε, ε)D}> 0.

We summarize the discussion in a theorem due to Chung and Fuchs [26].

Theorem 17.41 (Chung–Fuchs (1951) [26]) An irreducible random walk on Z
D

with characteristic function φ is recurrent if and only if, for every ε > 0,

lim
λ↑1

∫

(−ε,ε)D
Re

(
1

1− λφ(t)
)

dt =∞. (17.23)

Now consider symmetric simple random walk. Here φ(t)= 1
D

∑D
i=1 cos(ti). Ex-

panding the cosine function in a Taylor series, we get cos(ti) = 1− 1
2 t

2
i +O(t4i );

hence 1 − φ(t) = 1
2D ‖t‖2

2 + O(‖t‖4
2). We infer that X is recurrent if and only if

∫
‖t‖2<ε

‖t‖−2
2 dt =∞. We compute this integral in polar coordinates (with CD the

surface of the unit sphere in R
D):

∫

‖t‖2<ε

‖t‖−2
2 dt = CD

∫ ε

0
rD−1r−2 dr =∞ ⇐⇒ D ≤ 2.

Hence, X is recurrent if and only if D ≤ 2.
In Section 19.3, we will encounter a further method of proving Pólya’s theorem

that has a completely different structure and that is based on the connection between
Markov chains and electrical networks.
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In fact, the Chung–Fuchs theorem can be used to compute the numerical values
of the Green function GD(0,0) of symmetric simple random walk on Z

D if we
compute numerically the so-called Watson integral

GD(0,0)= (2π)−D
∫

[−π,π)D
D

D − (cos(x1)+ . . .+ cos(xD))
dx. (17.24)

For this purpose, we follow [80] (where there are further refinements of the method)
to transform the D-fold integral into a double integral. Denote by

I0(t) := 1

π

∫ π

0
et cos(θ) dθ

the so-called modified Bessel function of the first kind. Using the identity 1
λ
=

∫∞
0 e−λt dt for the integrand and applying Fubini’s theorem, we get

GD(0,0)= D

(2π)D

∫ ∞

0
e−Dt

(∫

[−π,π)D
et(cos(x1)+...+cos(xD)) dx

)

dt

and thus

GD(0,0)=D
∫ ∞

0
e−DtI0(t)D dt. (17.25)

The right-hand side of (17.25) can quickly be computed numerically with great
accuracy (see Table 17.1).

For the case D = 3, Watson [168] found the expression

G3(0,0)= 12
18+ 12

√
2− 10

√
3− 7

√
6

π2
K
(
(2−√3)(

√
3−√2)

)2
,

where K(m)= ∫ 1
0 ((1− t2)(1−mt2))−1/2 dt is the complete elliptic integral of the

first kind with modulus m ∈ (−1,1). This in turn can be expressed as a (quickly
convergent) series

K(m)= π
2

(

1+
∞∑

n=1

(
(2n)!

4n(n!)2
)2

m2

)

.

Glasser and Zucker [61] found an expression as a product of four Gamma functions,

G3(0,0)=
√

6

32π3
Γ

(
1

24

)

Γ

(
5

24

)

Γ

(
7

24

)

Γ

(
11

24

)

= 1.5163860591519780181 . . .

Exercise 17.5.1 For n ∈ N0, let pn be the matrix of n-step transition probabilities
of simple symmetric random walk on Z

D . For n ∈N, derive the formula (see Theo-
rem 15.10)

p2n(0,0)= (2π)−D
∫

[−π,π)D
D−2n(cos(t1)+ . . .+ cos(tD)

)2n
dt.
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Table 17.1 Green functionGD(0,0) and return probability FD(0,0) of simple symmetric random
walk on Z

D . The numerical computations are based on (17.25)

D GD(0,0) FD(0,0)

2 ∞ 1

3 1.51638605915 0.34053732955

4 1.23946712185 0.19320167322

5 1.15630812484 0.13517860982

6 1.11696337322 0.10471549562

7 1.09390631559 0.08584493411

8 1.07864701202 0.07291264996

9 1.06774608638 0.06344774965

10 1.05954374789 0.05619753597

11 1.05313615291 0.05045515982

12 1.04798637482 0.04578912090

13 1.04375406289 0.04191989708

14 1.04021240323 0.03865787709

15 1.03720412092 0.03586962312

16 1.03461657857 0.03345836447

17 1.03236691238 0.03135214040

18 1.03039276285 0.02949628913

19 1.02864627888 0.02784852234

20 1.02709011674 0.02637559869

By a suitable bound for the integral, conclude the convergence nD/2p2n(0,0)
n→∞−→

2(4π/D)−D/2 (see (17.18)).

Exercise 17.5.2 Show (17.21) formally.

Exercise 17.5.3 Use Theorem 17.41 to show that a random walk on Z
2 with∑

x∈Z2 xp(0, x)= 0 is recurrent if
∑
x∈Z2 ‖x‖2

2p(0, x) <∞.

Exercise 17.5.4 Use Theorem 17.41 to show that, for D ≥ 3 every irreducible ran-
dom walk on Z

D is transient.

Exercise 17.5.5 Show (17.25) forGD(0,0) directly with the p2n(0,0) from (17.20)
and using the representation of I0(t) as the series I0(t)=∑∞

k=0(k!)−2(t/2)k .

17.6 Invariant Distributions

In the following, let p be a stochastic matrix on the discrete space E and let
(Xn)n∈N0 be a corresponding Markov chain.

This section is devoted to the question: Which distributions are preserved under
the dynamics of the Markov chain? Of course, often the chain will not stay put in a
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specific state but the distribution of the random state of the chain might nevertheless
be the same for all times. If such an invariant distribution exists, we will see in
Chapter 18 that under rather weak conditions, the distribution of a Markov chain
(started in an arbitrary state) converges in the large time limit to such an invariant
distribution.

Definition 17.42 If μ is a measure on E and f : E→ R is a map, then we write
μp({x})=∑y∈E μ({y})p(y, x) and pf (x)=∑y∈E p(x, y)f (y) if the sums con-
verge.

Definition 17.43

(i) A σ -finite measure μ on E is called an invariant measure if

μp = μ.

A probability measure that is an invariant measure is called an invariant distri-
bution. Denote by I the set of invariant distributions.

(ii) A function f : E → R is called subharmonic if pf exists and if f ≤ pf .
f is called superharmonic if f ≥ pf and harmonic if f = pf .

Remark 17.44 In the terminology of linear algebra, an invariant measure is a left
eigenvector of p corresponding to the eigenvalue 1. A harmonic function is a right
eigenvector corresponding to the eigenvalue 1. ♦

Lemma 17.45 If f is bounded and (sub-, super-) harmonic, then (f (Xn))n∈N0 is a
(sub-, super-) martingale with respect to the filtration F= σ(X) generated by X.

Proof Let f be bounded and subharmonic. Then

Ex
[
f (Xn)

∣
∣Fn−1

]= EXn−1

[
f (X1)

]=
∑

y∈E
p(Xn−1, y)f (y)

= pf (Xn−1)≥ f (Xn−1). �

Theorem 17.46 If any point is transient, then an invariant distribution does not
exist.

Proof By assumption, G(x,y) = ∑∞
n=0 p

n(x, y) < ∞ for all x, y ∈ E; hence

pn(x, y)
n→∞−→ 0. For every probability measure μ on E, we thus have that

μpn({x}) n→∞−→ 0. If μ was invariant, however, then we would have μpn({x}) =
μ({x}) for all n ∈N. �

Theorem 17.47 Let x be a recurrent state and let τ 1
x = inf{n ≥ 1 : Xn = x}. Then

one invariant measure μx is defined by
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μx
({y})= Ex

[τ 1
x−1∑

n=0

1{Xn=y}

]

=
∞∑

n=0

Px
[
Xn = y, τ 1

x > n
]
.

Proof First we have to show that μx({y}) <∞ for all y ∈ E. For y = x, clearly
μx({x})= 1. For y �= x and F(x, y)= 0, we have μx({y})= 0. Now let y �= x and
F(x, y) > 0. As x is recurrent, we have F(x, y) = F(y, x) = 1 and y is recurrent
(Theorem 17.35). Let

F̂ (x, y)= Px
[
τ 1
x > τ

1
y

]
.

Then F̂ (x, y) > 0 (otherwise y would not be visited). Changing the roles of x and y,
we also get F̂ (y, x) > 0.

By the strong Markov property (Theorem 17.14), we have

Ey

[τ 1
x−1∑

n=0

1{Xn=y}

]

= 1+Ey

[τ 1
x−1∑

n=τ 1
y

1{Xn=y}; τ 1
x > τ

1
y

]

= 1+ (1− F̂ (y, x))Ey
[τ 1
x−1∑

n=0

1{Xn=y}

]

.

Hence,

Ey

[τ 1
x−1∑

n=0

1{Xn=y}

]

= 1

F̂ (y, x)
.

Therefore,

μx
({y})= Ex

[τ 1
x−1∑

n=0

1{Xn=y}

]

= Ex

[τ 1
x−1∑

n=τ 1
y

1{Xn=y}; τ 1
x > τ

1
y

]

= F̂ (x, y)
F̂ (y, x)

<∞.

Define pn(x, y)= Px[Xn = y; τ 1
x > n]. Then, for every z ∈E,

μxp
({z})=

∑

y∈E
μx
({y})p(y, z)=

∞∑

n=0

∑

y∈E
pn(x, y)p(y, z).

Case 1: x �= z. In this case,

∑

y∈E
pn(x, y)p(y, z)=

∑

y∈E
Px
[
Xn = y, τ 1

x > n,Xn+1 = z
]

= Px
[
τ 1
x > n+ 1;Xn+1 = z

]= pn+1(x, z).
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Hence (since p0(x, z)= 0)

μxp
({z})=

∞∑

n=0

pn+1(x, z)=
∞∑

n=1

pn(x, z)=
∞∑

n=0

pn(x, z)= μx
({z}).

Case 2: x = z. In this case, we have
∑

y∈E
pn(x, y)p(y, x)=

∑

y∈E
Px
[
Xn = y; τ 1

x > n;Xn+1 = x
]= Px

[
τ 1
x = n+ 1

]
.

Thus (since Px[τ 1
x = 0] = 0)

μxp
({x})=

∞∑

n=0

Px
[
τ 1
x = n+ 1

]= 1= μx
({x}).

�

Corollary 17.48 If X is positive recurrent, then π := μx
Ex [τ1

x ] is an invariant distri-

bution for any x ∈E.

Theorem 17.49 If X is irreducible, then X has at most one invariant distribution.

Remark 17.50

(i) One could in fact show that if X is irreducible and recurrent, then an invariant
measure of X is unique up to a multiplicative factor. However, the proof is a
little more involved. Since we will not need the statement here, we leave its
proof as an exercise (compare Exercise 17.6.6; see also [39, Section 6.5]).

(ii) For transient X, there can be more than one invariant measure. For example,
consider the asymmetric random walk on Z that jumps one step to the right
with probability r and one step to the left with probability 1 − r (for some
r ∈ (0,1)). The invariant measures are the nonnegative linear combinations of
the measures μ1 and μ2 given by μ1({x}) ≡ 1 and μ2({x}) = (r/(1 − r))x ,
x ∈ Z. X is transient if and only if r �= 1/2, in which case we have μ1 �= μ2. ♦

Proof Let π and ν be invariant distributions. Choose an arbitrary probability vec-
tor (gn)n∈N with gn > 0 for all n ∈ N. Define the stochastic matrix p̃(x, y) =∑∞
n=1 gnp

n(x, y). Then p̃(x, y) > 0 for all x, y ∈E and πp̃ = π as well as νp̃ = ν.
Consider now the signed measure μ = π − ν. We have μp̃ = μ. If we had

μ �= 0, then there would exist (since μ(E)= 0) points x1, x2 ∈ E with μ({x1}) > 0
and μ({x2}) < 0. Clearly, for every y ∈ E, this would imply |μ({x1})p̃(x1, y) +
μ({x2})p̃(x2, y)|< |μ({x1})p̃(x1, y)| + |μ({x2})p̃(x2, y)|; hence

‖μp̃‖TV =
∑

y∈E

∣
∣
∣
∣

∑

x∈E
μ
({x})p̃(x, y)

∣
∣
∣
∣

<
∑

y∈E

∑

x∈E

∣
∣μ
({x})∣∣p̃(x, y)=

∑

x∈E

∣
∣μ
({x})∣∣= ‖μ‖TV .

Since this is a contradiction, we conclude that μ= 0. �
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Recall that I is the set of invariant distributions of X.

Theorem 17.51 Let X be irreducible. X is positive recurrent if and only if I �= ∅.
In this case, I = {π} with

π
({x})= 1

Ex[τ 1
x ]
> 0 for all x ∈E.

Proof If X is positive recurrent, then I �= ∅ by Corollary 17.48. Now let I �= ∅
and π ∈ I . As X is irreducible, we have π({x}) > 0 for all x ∈ E. Let Pπ =∑
x∈E π({x})Px . Fix an x ∈E and for n ∈N0, let

σnx = sup{m≤ n :Xm = x} ∈N0 ∪ {−∞}

be the time of last entrance in x before time n. (Note that this is not a stopping time.)
By the Markov property, for all k ≤ n,

Pπ
[
σnx = k

]= Pπ [Xk = x,Xk+1 �= x, . . . ,Xn �= x]
= Pπ [Xk+1 �= x, . . . ,Xn �= x |Xk = x]Pπ [Xk = x]
= π({x})Px[X1, . . . ,Xn−k �= x]
= π({x})Px

[
τ 1
x ≥ n− k + 1

]
.

Hence, for every n ∈N0 (since Py[τ 1
x <∞]= 1 for all y ∈E),

1=
n∑

k=0

Pπ
[
σnx = k

]+ Pπ
[
σnx =−∞

]

= π({x})
n∑

k=0

Px
[
τ 1
x ≥ n− k+ 1

]+ Pπ
[
τ 1
x ≥ n+ 1

]

n→∞−→ π
({x})

∞∑

k=1

Px
[
τ 1
x ≥ k

]= π({x})Ex
[
τ 1
x

]
.

Therefore, Ex[τ 1
x ] = 1

π({x}) <∞, and thus X is positive recurrent. �

Example 17.52 Let (px)x∈N0 be numbers in (0,1] and let X be an irreducible
Markov chain on N0 with transition matrix

p(x, y)=

⎧
⎪⎨

⎪⎩

px, if y = x + 1,

1− px, if y = 0,

0, else.
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If μ is an invariant measure, then the equations for μp = μ read

μ
({n})= pn−1μ

({n− 1}) for n ∈N,

μ
({0})=

∞∑

n=0

μ
({n})(1− pn).

Hence we get

μ
({n})= μ({0})

n−1∏

k=0

pk

and (note that the sum is a telescope sum)

μ
({0})= μ({0})

∞∑

n=0

(1− pn)
n−1∏

k=0

pk = μ
({0})

(

1−
∞∏

n=0

pn

)

.

Hence there exists a nontrivial invariant measure μ (that is, μ({0}) can be chosen
strictly positive) if and only if

∏∞
n=0 pn = 0. This, however, is true if and only if∑∞

n=0(1− pn) =∞. Using a Borel–Cantelli argument, it is not hard to show that
this is exactly the condition for recurrence of X.

If μ �= 0, then μ is a finite measure if and only if

M :=
∞∑

n=0

n−1∏

k=0

pk <∞.

Hence X is positive recurrent if and only if M <∞. In fact, it is not hard to show
thatM is the expected time to return to 0; hence the criterion for positive recurrence
could also be deduced by Theorem 17.51.

A necessary condition for M <∞ is of course that the series
∑∞
n=0(1 − pn)

diverge; that is, that X is recurrent. One sufficient condition forM <∞ is

∞∑

n=0

exp

(

−
n−1∑

k=0

(1− pk)
)

<∞.
♦

Exercise 17.6.1 Consider the Markov chain from Fig. 17.1 (p. 368). Determine the
set of all invariant distributions. Show that the states 6, 7 and 8 are positive recurrent
and compute the expected first entrance times

E6[τ6] = 17

4
, E7[τ7] = 17

5
and E8[τ8] = 17

8
.

Exercise 17.6.2 Let X = (Xt )t≥0 be a Markov chain on E in continuous time with
Q-matrix q . Show that a probability measure π on E is an invariant distribution for
X if and only if

∑
x∈E π({x})q(x, y)= 0 for all y ∈E.
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Exercise 17.6.3 Let G be a countable Abelian group and let p be the transition
matrix of an irreducible random walkX onG. That is, we have p(hg,hf )= p(g,f )
for all h,g,f ∈ G. (This generalizes the notion of a random walk on Z

D .) Use
Theorem 17.51 to show that X is positive recurrent if and only if G is finite.

Exercise 17.6.4 Let r ∈ [0,1] and let X be the Markov chain on N0 with transition
matrix (see Fig. 17.2 on p. 369)

p(x, y)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, if x = 0 and y = 1,

r, if y = x + 1≥ 2,

1− r, if y = x − 1,

0, else.

Compute the invariant measure and show the following using Theorem 17.51:

(i) If r ∈ (0, 1
2 ), then X is positive recurrent.

(ii) If r = 1
2 , then X is null recurrent.

(iii) If r ∈ {0} ∪ ( 1
2 ,1], then X is transient.

Exercise 17.6.5

(i) Use a direct argument to show that the Markov chain in Example 17.52 is
recurrent if and only if

∑∞
n=0(1− pn)=∞.

(ii) Show that the expected time to return to 0 is M and infer that the chain is
positive recurrent if and only ifM <∞.

(iii) Give examples of sequences (px)x∈N0 such that the chain is (a) transient,
(b) null recurrent, (c) positive recurrent, and (d) positive recurrent but

∞∑

n=0

exp

(

−
n−1∑

k=0

(1− pk)
)

=∞.

Exercise 17.6.6 Let X be irreducible and recurrent. Show that, as claimed in Re-
mark 17.50, the invariant measure is unique up to constant multiples.

Hint: Let π �= 0 be an invariant measure for X and abbreviate

Pπ =
∑

x∈E
π
({x})Px

(note that, in general, this need not be a finite measure). Let x, y ∈ E with x �= y
and deduce by induction that

π
({y})= Pπ

[
τ 1
x ≥ n,X0 �= x,Xn = y

]+
n∑

k=1

Pπ
[
τ 1
x ≥ k,X0 = x,Xk = y

]
.
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Infer that

π
({y})≥

∞∑

k=1

Pπ
[
τ 1
x ≥ k,X0 = x,Xk = y

]= π({x})μx
({y}),

where μx is the invariant measure defined in Theorem 17.47. Now use the fact
that πpn = π and μxpn = μx for all n ∈ N to conclude that even π({y}) =
π({x})μx({y}) holds.

17.7 Stochastic Ordering and Coupling

In many situations, for the comparison of two distributions, it is helpful to construct
a product space such that the two distributions are the marginal distributions but
are not necessarily independent. We first introduce the abstract principle of such
couplings and then give some examples.

There are many concepts to order probability measures on R or Rd such that the
“larger” one has a greater preference for large values than the “smaller” one. As
one of the most prominent orders we present here the so-called stochastic order and
illustrate its connection with couplings. As an excuse for presenting this section in
a chapter on Markov chains, we fill finally use a simple Markov chain in order to
prove a theorem on the stochastic order of binomial distributions.

Definition 17.53 Let (E1,E1,μ1) and (E2,E2,μ2) be probability spaces. A proba-
bility measure μ on (E1 ×E2,E1 ⊗ E2) with μ( · ×E2)= μ1 and μ(E1 × ·)= μ2
is called a coupling of μ1 and μ2.

Clearly, the product measure μ= μ1 ⊗ μ2 is a coupling, but in many situations
there are more interesting ones.

Example 17.54 Let X be a real random variable and let f,g :R→R be monotone
increasing functions with E[f (X)2]<∞ and E[g(X)2]<∞. We want to show that
the random variables f (X) and g(X) are nonnegatively correlated.

To this end, let Y be an independent copy of X; that is, a random variable with
PY = PX that is independent of X. Note that E[f (X)] = E[f (Y )] and E[g(X)] =
E[g(Y )]. For all numbers x, y ∈R, we have (f (x)−f (y))(g(x)−g(y))≥ 0. Hence

0≤ E
[(
f (X)− f (Y ))(g(X)− g(Y ))]

= E
[
f (X)g(X)

]−E
[
f (X)

]
E
[
g(Y )

]+E
[
f (Y )g(Y )

]−E
[
f (Y )

]
E
[
g(X)

]

= 2Cov
[
f (X),g(X)

]
. ♦

Example 17.55 Let (E,�) be a Polish space. For two probability measures P and
Q on (E,B(E)), denote by K(P,Q) ⊂M1(E × E) the set of all couplings of P
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and Q. The so-called Wasserstein metric on M1(E) is defined by

dW (P,Q) := inf

{∫

�(x, y)ϕ
(
d(x, y)

) : ϕ ∈K(P,Q)
}

. (17.26)

It can be shown that (this is the Kantorovich–Rubinstein theorem [84]; see also [37,
pp. 420ff])

dW (P,Q)= sup

{∫

f d(P −Q) : f ∈ Lip1(E;R)
}

. (17.27)

Compare this representation of the Wasserstein metric with that of the total variation
norm,

‖P −Q‖TV = sup

{∫

f d(P −Q) : f ∈ L∞(E) with ‖f ‖∞ ≤ 1

}

. (17.28)

In fact, we can also give a definition for the total variation in terms of a coupling:
Let D := {(x, x) : x ∈E} be the diagonal in E ×E. Then

‖P −Q‖TV = inf
{
ϕ
(
(E ×E) \D) : ϕ ∈K(P,Q)}. (17.29)

See [60] for a comparison of different metrics on M1(E). ♦

As an example of a more involved coupling, we quote the following theorem that
is due to Skorohod.

Theorem 17.56 (Skorohod coupling) Let μ,μ1,μ2, . . . be probability measures on

a Polish space E with μn
n→∞−→ μ. Then there exists a probability space (Ω,A,P)

with random variables X,X1,X2, . . . with PX = μ and PXn = μn for every n ∈ N

such that Xn
n→∞−→ X almost surely.

Proof See, e.g., [83, p. 79]. �

We now come to the concept of stochastic order.

Definition 17.57 Let μ1,μ2 ∈M1(R
d). We write μ1 ≤st μ2 if

∫

f dμ1 ≤
∫

f dμ2

for every monotone increasing bounded function f : Rd → R. In this case, we say
that μ2 is stochastically larger than μ1.

Evidently, ≤st is a partial order on M1(R
d). The stochastic order belongs to

the class of so-called integral orders that are defined by the requirement that the
integrals with respect to a certain class of functions (here: monotone increasing
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and bounded) are ordered. Other classes of functions that are often considered are
convex functions or indicator functions on lower or upper orthants.

Let F1 and F2 be the distribution functions of μ1 and μ2. Clearly, μ1 ≤st μ2
implies F1(x)≥ F2(x) for all x ∈R

d . If d = 1, then both statements are equivalent.
However, for d ≥ 2, the condition F1 ≥ F2 is weaker than μ1 ≤st μ2. For example,
consider d = 2 and

μ1 = 1

2
δ(0,0) + 1

2
δ(1,1) and μ2 = 1

2
δ(1,0) + 1

2
δ(0,1).

The partial order defined by the comparison of the distribution functions is called
(lower) orthant order.

For a survey on different orders of probability measures, see, e.g., [120].
The following theorem was shown by Strassen [160] in larger generality for in-

tegral orders.

Theorem 17.58 (Strassen’s theorem) Let

L := {(x1, x2) ∈R
d ×R

d : x1 ≤ x2
}
.

Then μ1 ≤st μ2 if and only if there is a coupling ϕ of μ1 and μ2 with ϕ(L)= 1.

Proof Let ϕ be such a coupling. For monotone increasing bounded f :Rd→R, we
have f (x1) − f (x2) ≤ 0 for every x = (x1, x2) ∈ L; hence

∫
f dμ1 −

∫
f dμ2 =∫

L
(f (x1)− f (x2))ϕ(dx)≤ 0 and thus μ1 ≤st μ2.
Now assume μ1 ≤st μ2. We only consider the case d = 1 (see [120, Theo-

rem 3.3.5] for d ≥ 2). Here F((x1, x2)) := min(F1(x1),F2(x2)) defines a distri-
bution function on R×R (see Exercise 1.5.5) that corresponds to a coupling ϕ with
ϕ(L)= 1. A somewhat more explicit representation can be obtained using random
variables. Let U be a random variable that is uniformly distributed on (0,1). Then

Xi := F−1
i (U) := inf

{
x ∈R : Fi(x)≥U

}

is a real random variable with distribution μi (see proof of Theorem 1.104). Clearly,
we have X1 ≤X2 almost surely; that is, P[(X1,X2) ∈ L] = 1. Evidently, the distri-
bution function of (X1,X2) is F . �

While Strassen’s theorem yields the existence of an abstract coupling, in many
examples a natural coupling can be established and used as a tool for proving, e.g.,
stochastic orders.

Example 17.59 Let n ∈ N and 0 ≤ p1 ≤ p2 ≤ 1. Let Y1, . . . , Yn be independent
random variables that are uniformly distributed on [0,1]. Define Xi = #{k ≤ n :
Yk ≤ pi}, i = 1,2. Then Xi ∼ bn,pi and X1 ≤ X2 almost surely. This coupling
shows that bn,p1 ≤st bn,p2 .

An even simpler coupling can be used to show that bm,p ≤st bn,p for m≤ n and
p ∈ [0,1]. ♦
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Theorem 17.60 Let n1, n2 ∈N and p1,p2 ∈ (0,1). We have bn1,p1 ≤st bn2,p2 if and
only if

(1− p1)
n1 ≥ (1− p2)

n2 (17.30)

and

n1 ≤ n2. (17.31)

Proof (The proof follows the exposition in [100, Section 3].)
Since bni ,pi ({0}) = (1 − pi)ni , conditions (17.30) and (17.31) are clearly nec-

essary for bn1,p1 ≤st bn2,p2 . Hence we only have to show sufficiency of the two
conditions.

Assume that (17.30) and (17.31) hold. By Example 17.59, it is enough to consider
the smallest p2 that fulfills (17.30). Hence we assume (1 − p1)

n1 = (1 − p2)
n2 .

Define λ := −n1 log(1 − p1) = −n2 log(1 − p2). We will construct a binomially
distributed random variable by throwing a Poiλ-distributed number T of balls in ni
boxes and count the number of nonempty boxes. More precisely, let T ∼ Poiλ and
let X1,X2, . . . be independent and uniformly distributed on [0,1] and independent
of T . For n ∈N, t ∈N0 and l = 1, . . . , n, define

Mn,t,l = #
{
s ≤ t :Xs ∈

(
(l − 1)/n, l/n

]}

and the number of nonempty boxes after t balls are thrown:

Nn,t :=
n∑

l=1

1{Mn,t,l>0}.

By Theorem 5.35, the random variables Mn,T ,1, . . . ,Mn,T ,n are independent and
Poiλ/n-distributed. In particular, we have

P[Mni,T ,l > 0] = 1− e−λ/ni = pi
and thus Nni,T ∼ bni ,pi , i = 1,2. Hence it suffices to show that Nn1,T ≤st Nn2,T .
For this in turn it is enough to show

Nn1,t ≤st Nn2,t for all t ∈N0. (17.32)

In fact, let f : {0, . . . , n}→R be monotone increasing. Then

E
[
f (Nn1,T )

]=
∞∑

t=0

E
[
f (Nn1,t )

]
P[T = t]

≤
∞∑

t=0

E
[
f (Nn2,t )

]
P[T = t] = E

[
f (Nn2,T )

]
.

We use an induction argument to show (17.32). For t = 0, the claim holds triv-
ially. Now assume that (17.32) holds for some given t ∈N0. We are now at the point
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to use a Markov chain. Note that (for fixed n), (Nn,t )t=0,1,... is a Markov chain with
state space {0, . . . , n} and transition matrix

pn(k, l)=

⎧
⎪⎨

⎪⎩

k/n, if l = k,
1− k/n, if l = k + 1,

0, otherwise.

We define for k, l = 0, . . . , n

hn,l(k)=
n∑

j=l
pn(k, j)=

⎧
⎪⎨

⎪⎩

0, if k < l − 1,

1− k/n, if k = l − 1,

1, if k > l − 1.

Then P[Nn,t+1 ≥ l] = E[hn,l(Nn,t )] and hn,l(k) is monotone increasing both in
k and in n. Hence by the induction hypothesis, we have

P[Nn1,t+1 ≥ l] = E
[
hn1,l(Nn1,t )

]≤ E
[
hn1,l(Nn2,t )

]

≤ E
[
hn2,l(Nn2,t )

]= P[Nn2,t+1 ≥ l].
We conclude that Nn1,t+1 ≤st Nn2,t+1 which completes the induction and the proof
of the theorem. �

Exercise 17.7.1 Use an elementary direct coupling argument to show the claim of
Theorem 17.60 for the case n2/n1 ∈N.

Exercise 17.7.2 For the Poisson distribution, show that

Poiλ1 ≤st Poiλ2 ⇐⇒ λ1 ≤ λ2.

Exercise 17.7.3 Let n ∈N, p ∈ (0,1) and λ > 0. Show that

bn,p ≤st Poiλ ⇐⇒ (1− p)n ≥ e−λ.



Chapter 18
Convergence of Markov Chains

We consider a Markov chain X with invariant distribution π and investigate condi-
tions under which the distribution of Xn converges to π for n→∞. Essentially it
is necessary and sufficient that the state space of the chain cannot be decomposed
into subspaces

• that the chain does not leave
• or that are visited by the chain periodically; e.g., only for odd n or only for even n.

In the first case, the chain would be called reducible, and in the second case, it would
be periodic.

We study periodicity of Markov chains in the first section. In the second section,
we prove the convergence theorem. The third section is devoted to applications of
the convergence theorem to computer simulations with the so-called Monte Carlo
method. In the last section, we describe the speed of convergence to the equilibrium
by means of the spectrum of the transition matrix.

18.1 Periodicity of Markov Chains

We study the conditions under which a positive recurrent Markov chain X on
the countable space E (and with transition matrix p), started in an arbitrary μ ∈
M1(E), converges in distribution to an invariant distribution π ; that is, μpn

n→∞−→ π .
Clearly, it is necessary that π be the unique invariant distribution; that is, up to a
factor π it is the unique left eigenvector of p for the eigenvalue 1. As shown in
Theorem 17.49, for this uniqueness it is sufficient that the chain be irreducible.

In order for μpn
n→∞−→ π to hold for every μ ∈M1(E), a certain contraction

property of p is necessary. Manifestly, 1 is the largest (absolute value of an) eigen-
value of p. However, p is sufficiently contractive only if the multiplicity of the
eigenvalue 1 is exactly 1 and if there are no further (possibly complex-valued) eigen-
values of modulus 1.

For the latter property, it is not sufficient that the chain be irreducible. For ex-
ample, consider on E = {0, . . . ,N − 1} the Markov chain with transition matrix
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Fig. 18.1 The left Markov chain is periodic with period 2, and the right Markov chain is aperiodic

p(x, y) = 1{y=x+1 (mod N)}. The eigenvalue 1 has the multiplicity 1. However, all
complex N th roots of unity e2πik/N , k = 0, . . . ,N − 1, are eigenvalues of mod-
ulus 1. Clearly, the uniform distribution on E is invariant but limn→∞ δxpn does
not exist for any x ∈ E. In fact, every point is visited periodically after N steps. In
order to obtain criteria for the convergence of Markov chains, we thus have to un-
derstand periodicity first. Thereafter, for irreducible aperiodic chains, we state the
convergence theorem.

If m,n ∈ N, then write m|n if m is a divisor of n; that is, if n
m
∈ N. If M ⊂ N,

then denote by gcd(M) the greatest common divisor of all n ∈M . In the following,
let X be a Markov chain on the countable space E with transition matrix p.

Definition 18.1

(i) For x, y ∈E, define

N(x,y) := {n ∈N0 : pn(x, y) > 0
}
.

For any x ∈E, dx := gcd(N(x, x)) is called the period of the state x.
(ii) If dx = dy for all x, y ∈E, then d := dx is called the period of X.

(iii) If dx = 1 for all x ∈E, then X is called aperiodic.

See Figs. 18.1 and 18.2 for illustrations of aperiodic and periodic Markov chains.

Lemma 18.2 For any x ∈E, there exists an nx ∈N with

pndx (x, x) > 0 for all n≥ nx. (18.1)

Proof Let k1, . . . , kr ∈ N(x,x) with gcd({k1, . . . , kr}) = dx . Then, for all
m1, . . . ,mr ∈ N0, we also have

∑r
i=1 kimi ∈ N(x,x). Basic number theory then

yields that, for every n≥ nx := r ·∏ri=1(ki/dx), there are numbersm1, . . . ,mr ∈N0
with ndx =∑r

i=1 kimi . Hence (18.1) holds. �

The problem of finding the smallest number N such that any ndx , n ≥ N can
be written as a nonnegative integer linear combination of k1, . . . , kr is called the
Frobenius problem. The general solution is unknown; however, for the case r = 2,
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Fig. 18.2 Here N(8,8) = {6,10,12,14,16, . . .}; hence d8 := gcd({6,10,12, . . .}) = 2 and
n8 = 5. The chain thus has period 2. However, n1 = 2 and n4 = 4

Sylvester [162] showed that N = (k1/dx − 1)(k2/dx − 1) is minimal. In the gen-
eral case, for N , the upper bound 2 max{ki : i = 1, . . . , r}2/(rd2

x ) is known; see,
e.g., [45].

Lemma 18.3 Let X be irreducible. Then the following statements hold.

(i) d := dx = dy for all x, y ∈E.
(ii) For all x, y ∈E, there exist nx,y ∈N and Lx,y ∈ {0, . . . , d − 1} such that

nd +Lx,y ∈N(x,y) for all n≥ nx,y. (18.2)

Lx,y is uniquely determined, and we have

Lx,y +Ly,z +Lz,x = 0 (mod d) for all x, y, z ∈E. (18.3)

Proof (i) Let m,n ∈N0 with pm(x, y) > 0 and pn(y, z) > 0. Then

pm+n(x, z)≥ pm(x, y)pn(y, z) > 0.

Hence we have

N(x,y)+N(y, z) := {m+ n :m ∈N(x,y), n ∈N(y, z)}⊂N(x, z). (18.4)

If, in particular, m ∈ N(x,y), n ∈ N(y,x) and k ≥ ny , then kdy ∈ N(y,y); hence
m+ kdy ∈ N(x,y) and m+ n+ kdy ∈ N(x,x). Therefore, dx |(m+ n+ kdy) for
every k ≥ ny ; hence dx |dy . Similarly, we get dy |dx ; hence dx = dy .

(ii) Let m ∈ N(x,y). Then m + kd ∈ N(x,y) for every k ≥ nx . Hence (18.2)
holds with

nx,y := nx +
⌊
m

d

⌋

and Lx,y :=m− d
⌊
m

d

⌋

.

Owing to (18.4), we have

(nx,y + ny,z)d +Lx,y +Ly,z ∈N(x, z).
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Fig. 18.3 State space decomposition of a Markov chain with period d = 3

Together with z = x, it follows that d|(Lx,y + Ly,x). Hence the value of Lx,y is
unique in {0, . . . , d − 1} and Lx,y = −Ly,x (mod d). For general z, we infer that
d|(Lx,y +Ly,z +Lz,x); hence (18.3). �

Theorem 18.4 Let X be irreducible with period d . Then there exists a disjoint de-
composition of the state space

E =
d−1⊎

i=0

Ei (18.5)

with the property

p(x, y) > 0 and x ∈Ei =⇒ y ∈Ei+1 (mod d). (18.6)

This decomposition is unique up to cyclic permutations.

See Fig. 18.3 for an illustration of the state space decomposition of a periodic
Markov chain.

Property (18.6) says that X visits the Ei one after the other (see Fig. 18.3 or
Fig. 18.2, where d = 2, E0 = {1,3,5,7} and E1 = {2,4,6,8}). Somewhat more
formally, we could write: If x ∈Ei for some i, then Px[Xn ∈Ei+n (mod d)] = 1.

Proof Existence. Fix an arbitrary x0 ∈E and let

Ei := {y ∈E :Lx0,y = i} for i = 0, . . . , d − 1.

Clearly, (18.5) holds. Let i ∈ {0, . . . , d − 1} and x ∈ Ei . If y ∈ E with p(x, y) > 0,
then Lx,y = 1 and hence Lx0,y = Lx0,x +Lx,y = i + 1 (mod d).

Uniqueness. Let (Ẽi , i = 0, . . . , d̃ − 1) be another decomposition that satisfies
(18.5) and (18.6). Without loss of generality, assume E0 ∩ Ẽ0 �= ∅ (otherwise per-
mute the Ẽi cyclically until this holds). Fix an arbitrary x0 ∈ E0 ∩ Ẽ0. By assump-
tion, p(x0, y) > 0 now implies y ∈E1 and y ∈ Ẽ1; hence y ∈E1 ∩ Ẽ1. Inductively,
we get that pnd+i (x, y) > 0 implies y ∈Ei ∩ Ẽi (for all n ∈N and i = 0, . . . , d−1).
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However, since the chain is irreducible, for every y ∈ E, there exist numbers
n(y) and i(y) such that pn(y)d+i(y)(x0, y) > 0; hence y ∈ Ei(y) ∩ Ẽi(y). Therefore,
we have Ei = Ẽi for every i = 0, . . . , d − 1. �

18.2 Coupling and Convergence Theorem

Our goal is to use a coupling of two discrete Markov chains that are started in
different distributions μ and ν in order to show the convergence theorem for Markov
chains.

In the following, let E be a countable space and let p be a stochastic matrix
on E. Recall the definition of a general coupling of two probability measures from
Definition 17.53.

Definition 18.5 A bivariate process ((Xn,Yn))n∈N0 with values in E ×E is called
a coupling if (Xn)n∈N0 and (Yn)n∈N0 are Markov chains, each with transition ma-
trix p.

A coupling is called successful if P(x,y)[⋃m≥n{Xm �= Ym}] n→∞−→ 0 for all
x, y ∈E.

Of course, two independent chains form a coupling, though maybe not the most
interesting one.

Example 18.6 (Independent coalescence) The most important coupling is Markov
chains that run independently until they coalesce: Let X and Y be independent
chains with transition matrix p until they first meet. After that, the chains run to-
gether. We call this coupling the independent coalescent. The transition matrix is

p̄
(
(x1, y1), (x2, y2)

)=

⎧
⎪⎨

⎪⎩

p(x1, x2) · p(y1, y2), if x1 �= y1,

p(x1, x2), if x1 = y1, x2 = y2,

0, if x1 = y1, x2 �= y2.

Denote by τ := inf{n ∈N0 :Xn = Yn} the time of coalescence. We can construct the
coupling using two independent chains X̃ and Ỹ by defining X := X̃, τ̃ := inf{n ∈
N0 : X̃n = Ỹn} and

Yn :=
{
Ỹn, if n < τ̃ ,

Xn, if n≥ τ̃ .
Instead of checking by a direct computation that this process (X,Y ) is indeed a
coupling with transition matrix p̄, consider the construction of Markov chains from
Theorem 17.17: Let (Rn(x) : n ∈N0, x ∈E) be independent random variables with
distribution P[Rn(x1) = x2] = p(x1, x2), and let R̃n((x1, y1)) = (Rn(x1),Rn(y1)).
Then (R̃n)n∈N0 is independent and we have

P
[
R̃n
(
(x1, y1)

)= (x2, y2)
]= p̄((x1, y1), (x2, y2)

)
.
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As we saw in Theorem 17.17, by Xn+1 := Rn(Xn) and Yn+1 := Rn(Yn), two
Markov chains X and Y are defined with transition matrix p. On the other hand,
we have (Xn+1, Yn+1)= R̃n((Xn,Yn)). Hence the bivariate process is indeed a cou-
pling with transition matrix p̄. ♦

Example 18.7 Let E = Z and p(x, y)= 1/3 if |x−y| ≤ 1 and 0 otherwise. Clearly,
p is the transition matrix of an aperiodic recurrent random walk on Z. We will show
that we can obtain a successful coupling by coalescing independent chains.

Accordingly, let X̃ and Ỹ be independent random walks with transition matrix p.
Then the difference chain (Zn)n∈N0 := (X̃n − Ỹn)n∈N0 is a symmetric random walk
with finite expectation and hence recurrent. Furthermore, Z is irreducible. For any
two points x, y ∈ Z, we thus have

P(x,y)[τ̃ <∞]= Px−y[Zn = 0 for some n ∈N0] = 1.

Therefore, X and Y coalesce almost surely. ♦

Recurrence, irreducibility and aperiodicity alone are not sufficient for the inde-
pendent coalescence coupling to be successful. In Exercise 18.2.4, an example is
studied that shows that spacial homogeneity cannot easily be dropped if we want to
have a successful coupling. Dropping the assumption of recurrence is easier, as the
following theorem shows.

Theorem 18.8 LetX be an arbitrary aperiodic and irreducible random walk on Z
d

with transition matrix p. Then there exists a successful coupling (X,Y ).

Proof Step 1. First, consider the case where p(0, x)= 3−d for all x ∈ {−1,0,1}d .
The individual coordinates X(1), . . . ,X(d) of X are independent random walks
on Z with transition probabilities P0[X(i)1 = xi] = 1/3 for xi = −1,0,1. By
Example 18.7, we can construct independent successful couplings (X(i), Y (i)),
i = 1, . . . , d , with merging times τ (i). Define Y = (Y (1), . . . , Y (d)) and τ =
max{τ (1), . . . , τ (d)} <∞. Then (X,Y ) is a successful coupling and Xn = Yn for
n≥ τ .

Step 2. Now, consider the case where

λ := 3d min
{
p(0, x) : x ∈ {−1,0,1}d}> 0.

If λ= 1, then the condition of Step 1 is fulfilled and we are done. Hence, we assume
that λ ∈ (0,1). We define the transition matrix p̂ on Z

d by p̂(x, y)= 3−d for y−x ∈
{−1,0,1}d . Note that also p̌ := (p − λp̂)/(1− λ) is the transition matrix of a ran-
dom walk on Z

d and that

p = λp̂+ (1− λ)p̌.
Let X̂ and X̌ be independent random walks with transition matrices p̂ and p̌, re-
spectively. Assume that X̂0 =X0 and X̌0 = 0. Furthermore, let Z1,Z2, . . . be i.i.d.
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Bernoulli random variables with parameter λ that are independent of X̂ and X̌. De-
fine Sn := Z1 + . . .+Zn for n ∈N and

Xn := X̂Sn + X̌n−Sn .
That is, in each time step, a coin flip decides whether X makes a jump according to
the matrix p̂ or p̌. Hence X is a random walk with transition matrix p.

By Step 1, there exists a successful coupling (X̂, Ŷ ) such that Ŷ is independent
of X̌ and Z1,Z2, . . . . Consequently,

Yn := ŶSn + X̌n−Sn, n ∈N,

is also a random walk with transition matrix p. Since we have Sn →∞ almost
surely, the coupling (X,Y ) is successful.

Step 3. Finally, we consider the general situation. Since X is irreducible and
aperiodic, by Lemma 18.3(ii), there exists an N ∈N, such that the N -step transition
matrix fulfills

pN(0, x) > 0 for all x ∈ {−1,0,1}d .
Hence, the random walk X′ = (X′n)n∈N := (XnN)n∈N fulfills the condition from
Step 2. Let (X′, Y ′) be the coupling that was constructed in Step 2 and let

τ := inf
{
n ∈N0 :X′m = Y ′m for all m≥ n}.

Then Y ′ is a random walk with transition matrix pN . For n ∈N0, define YnN := Y ′n.
It remains to close the gaps between the points {0,N,2N, . . .} in such a way that Y
is a random walk and (X,Y ) is a successful coupling.

Let (Ux,y,n : x, y ∈ Z
d , n ∈ N0) be an independent family of (Zd)N−1-valued

random variables Ux,y,n = (Ux,y,n1 , . . . ,U
x,y,n

N−1 ) such that

P
[
(X1, . . . ,XN−1) ∈ · |X0 = x,XN = y

]= PUx,y,n

for all x, y ∈ Z
d with pN(x, y) > 0 and for all n ∈ N0. We further assume that the

Ux,y,n are independent of X and Y ′. For k ∈ {nN + 1, . . . , (n+ 1)N − 1}, define

Yk :=
{
U
Y ′n,Y ′n+1,n

k−nN , if n < τ,

Xk, else.

It is easy to check that Y is indeed a random walk with transition matrix p. By
construction, the coupling (X,Y ) is successful. �

Theorem 18.9 Let X be a Markov chain on E with transition matrix p. If there
exists a successful coupling, then every bounded harmonic function is constant.

Proof Let f : E → R be bounded and harmonic; hence pf = f . Let x, y ∈ E,
and let (X,Y ) be a successful coupling. By Lemma 17.45, (f (Xn))n∈N0 and
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(f (Yn))n∈N0 are martingales; hence we have

∣
∣f (x)− f (y)∣∣= ∣∣E(x,y)

[
f (Xn)− f (Yn)

]∣
∣≤ 2‖f ‖∞P(x,y)[Xn �= Yn] n→∞−→ 0. �

Corollary 18.10 If X is an irreducible random walk on Z
d , then every bounded

harmonic function is constant.

This statement holds more generally if we replace Z
d by a locally compact

Abelian group. In that form, the theorem goes back to Choquet and Deny [24],
see also [143].

Proof Let p be the transition matrix of X. Let X̄ be a Markov chain with transition
matrix p̄(x, y) = 1

2p(x, y)+ 1
21{x}(y). Clearly, X and X̄ have the same harmonic

functions. Now X̄ is an aperiodic irreducible random walk; hence, by Theorem 18.8,
there is a successful coupling for all initial states. �

Theorem 18.11 Let p be the transition matrix of an irreducible, positive recurrent,
aperiodic Markov chain onE. Then the independent coalescent chain is a successful
coupling.

Proof Let X̃ and Ỹ be two independent Markov chains on E, each with transition
matrix p. Then the bivariate Markov chain Z := ((X̃n, Ỹn))n∈N0 has the transition
matrix p̃ defined by

p̃
(
(x1, y1), (x2, y2)

)= p(x1, x2) · p(y1, y2).

We first show that the matrix p̃ is irreducible. Only here do we need aperiodicity
of p. Accordingly, fix (x1, y1), (x2, y2) ∈E×E. Then, by Lemma 18.2, there exists
an m0 ∈N such that

pn(x1, x2) > 0 and pn(y1, y2) > 0 for all n≥m0.

For n≥m0, we thus have p̃n((x1, y1), (x2, y2)) > 0. Hence p̃ is irreducible.
Now define the stopping time τ of the first entrance of (X̃, Ỹ ) into the diagonal

D := {(x, x) : x ∈ E} by τ := inf{n ∈ N0 : X̃n = Ỹn}. Let π be the invariant distri-
bution of X̃. Then, clearly, the product measure π ⊗ π ∈M1(E × E) is an (and
then the) invariant distribution of (X̃, Ỹ ). Thus (X̃, Ỹ ) is positive recurrent (hence,
in particular, recurrent) by Theorem 17.51. Therefore, P(x,y)[τ <∞] = 1 for all
initial points (x, y) ∈E ×E of Z. �

Theorem 18.12 Let X be a Markov chain with transition matrix p such that there

exists a successful coupling. Then ‖(μ− ν)pn‖TV
n→∞−→ 0 for all μ,ν ∈M1(E).

If X is aperiodic and positive recurrent with invariant distribution π , then we

have ‖Lμ[Xn] − π‖TV
n→∞−→ 0 for all μ ∈M1(E).
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Proof It is enough to consider the case μ= δx , ν = δy for some x, y ∈E. Summa-
tion over x and y yields the general case. Let (Xn,Yn)n∈N0 be a successful coupling.
Then

∥
∥(δx − δy)pn

∥
∥

TV ≤ 2P(x,y)[Xn �= Yn] n→∞−→ 0. �

We summarize the connection between aperiodicity and convergence of distribu-
tions of X in the following theorem.

Theorem 18.13 (Convergence of Markov chains) Let X be an irreducible, posi-
tive recurrent Markov chain on E with invariant distribution π . Then the following
are equivalent:

(i) X is aperiodic.
(ii) For every x ∈E, we have

∥
∥Lx[Xn] − π

∥
∥

TV
n→∞−→ 0. (18.7)

(iii) Equation (18.7) holds for some x ∈E.
(iv) For every μ ∈M1(E), we have ‖μpn − π‖TV

n→∞−→ 0.

Proof The implications (iv) ⇐⇒ (ii) =⇒ (iii) are evident. The implication (i) =⇒
(ii) was shown in Theorem 18.12. Hence we only show (iii) =⇒ (i).

“(iii) =⇒ (i)” Assume that (i) does not hold. If X has period d ≥ 2, and if n ∈N

is not a multiple of d , then, by Theorem 17.51,

∥
∥δxp

n − π∥∥TV ≥
∣
∣pn(x, x)− π({x})∣∣= π({x})> 0.

Thus, for every x ∈ E, we have lim supn→∞‖δxpn − π‖TV > 0. Therefore, (iii)
does not hold. �

Exercise 18.2.1 Let dP be the Prohorov metric (see (13.3) and Exercise 13.2.1).
Show that dP (P,Q)≤√dW (P,Q) for all P,Q ∈M1(E). If E has a finite diame-
ter diam(E), then dW (P,Q)≤ (diam(E)+ 1)dP (P,Q) for all P,Q ∈M1(E).

Exercise 18.2.2 Consider the bivariate process (X,Y ) that was constructed from X̃
and Ỹ in Example 18.6. Show that (X,Y ) is a coupling with transition matrix p̄.

Exercise 18.2.3 Let X be an arbitrary aperiodic irreducible recurrent random walk
on Z

d . Show that, for any two starting points, the independent coalescent coupling
is successful.

Hint: Show that the difference of two independent recurrent random walks is a
recurrent random walk.
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Exercise 18.2.4 Let X be a Markov chain on Z
2 with transition matrix

p
(
(x1, x2), (y1, y2)

)=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
4 , if x1 = 0,‖y − x‖2 = 1,
1
4 , if x1 �= 0 and y1 = x1 ± 1, x2 = y2,

1
2 , if x1 �= 0 and y1 = x1, x2 = y2,

0, else.

Intuitively, this is the symmetric simple random walk whose vertical transitions are
all blocked away from the vertical axis. Show that X is null recurrent, irreducible
and aperiodic and that independent coalescence does not give a successful coupling.

18.3 Markov Chain Monte Carlo Method

Let E be a finite set and let π ∈M1(E) with π(x) := π({x}) > 0 for every x ∈ E.
We consider the problem of sampling a random variable Y with distribution π on a
computer. For example, this is a relevant problem if E is a very large set and if sums
of the type

∑
x∈E f (x)π(x) have to be approximated numerically by the estimator

n−1∑n
i=1 f (Yi) (see Example 5.21).

Assume that our computer has a random number generator that provides realiza-
tions of i.i.d. random variables U1,U2, . . . that are uniformly distributed on [0,1].
In order for the problem to be interesting, assume also that the distribution π cannot
be constructed directly too easily.

Metropolis Algorithm

We have seen already in Example 17.19 how to simulate a Markov chain on a com-
puter. Now the idea is to construct a Markov chain X whose distribution converges
to π in the long run. If we simulate such a chain and let it run long enough this
should give a sample that is distributed approximately like π . The chain should be
designed so that at each step, only a small number of transitions are possible in
order to ensure that the procedure described in Example 17.19 works efficiently.
(Of course, the chain with transition matrix p(x, y)= π(y) converges to π , but this
does not help a lot.) This method of producing (approximately) π -distributed sam-
ples and using them to estimate expected values of functions of interest is called the
Markov chain Monte Carlo method or, briefly, MCMC (see [15, 112, 119]).

Let q be the transition matrix of an arbitrary irreducible Markov chain on E
(with q(x, y) = 0 for most y ∈ E). We use this to construct the Metropolis matrix
(see [70, 114]).
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Definition 18.14 Define a stochastic matrix p on E by

p(x, y)=

⎧
⎪⎨

⎪⎩

q(x, y)min
(
1, π(y)q(y,x)
π(x)q(x,y)

)
, if x �= y, q(x, y) > 0,

0, if x �= y, q(x, y)= 0,

1−∑z �=x p(x, z), if x = y.

p is called the Metropolis matrix of q and π .

Note that p is reversible (see Section 19.2); that is, for all x, y ∈E, we have

π(x)p(x, y)= π(y)p(y, x). (18.8)

In particular, π is invariant (check this!). We thus obtain the following theorem.

Theorem 18.15 Assume that q is irreducible and that for any x, y ∈ E, we have
q(x, y) > 0 if and only if q(y, x) > 0. Then the Metropolis matrix p of q and π is
irreducible with unique invariant distribution π . If, in addition, q is aperiodic, or q
is not reversible with respect to π , then p is aperiodic.

In order to simulate a chainX that converges to π , we take a reference chain with
transition matrix q and use the Metropolis algorithm: If the chain with transition
matrix q proposes a transition from the present state x to state y, then we accept
this proposal with probability

π(y)q(y, x)

π(x)q(x, y)
∧ 1.

Otherwise the chain X stays at x.
In the definition of p, the distribution π appears only in terms of the quotients

π(y)/π(x). In many cases of interest, these quotients are easy to compute even
though π(x) and π(y) are not. We illustrate this with an example.

Example 18.16 (Ising model) The Ising model (pronounced like the English word
“easing”) is a thermodynamical (and quantum mechanical) model for ferromag-
netism in crystals. It makes the following assumptions:

• Atoms are placed at the sites of a lattice Λ (for example, Λ= {0, . . . ,N − 1}2).
• Each atom i ∈ Λ has a magnetic spin x(i) ∈ {−1,1} that either points upwards

(x(i)=+1) or downwards (x(i)=−1).
• Neighboring atoms interact.
• Due to thermic fluctuations, the state of the system is random and distributed

according to the so-called Boltzmann distribution π on the state space E :=
{−1,1}Λ. A parameter of this distribution is the inverse temperature β = 1

T
≥ 0

(with T the absolute temperature).
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Define the local energy that describes the energy level of a single atom at i ∈Λ as a
function Hi of the state x of the whole system,

Hi(x)= 1

2

∑

j∈Λ:i∼j
1{x(i)�=x(j)}.

Here i ∼ j indicates that i and j are neighbors inΛ (that is, coordinate-wise modN ,
we also speak of periodic boundary conditions). The total energy (or Hamilton func-
tion) of the system in state x is the sum of the individual energies,

H(x)=
∑

i∈Λ
Hi(x)=

∑

i∼j
1{x(i)�=x(j)}.

The Boltzmann distribution π on E := {−1,1}Λ for the inverse temperature β ≥ 0
is defined by

π(x)=Z−1
β exp

(−βH(x)),
where the partition sumZβ =∑x∈E exp(−βH(x)) is the normalising constant such
that π is a probability measure.

Macroscopically, the individual spins cannot be observed but the average mag-
netization can; that is, the modulus of the average of all spins,

mΛ(β)=
∑

x∈E
π(x)

∣
∣
∣
∣

1

#Λ

∑

i∈Λ
x(i)

∣
∣
∣
∣.

If we consider a very large system, then we are close to the so-called thermody-
namic limit

m(β) := lim
Λ↑Zd

mΛ(β).

Using a contour argument, as for percolation (see [127]), one can show that (for
d ≥ 2) there exists a critical value βc = βc(d) ∈ (0,∞) such that

m(β)

{
> 0, if β > βc,

= 0, if β < βc.
(18.9)

See Fig. 18.4 for a computer simulation of the curve β �→m(β).
For a similar model, the Weiss ferromagnet, we will prove in Example 23.20 the

existence of such a phase transition. In the physical literature, Tc := 1/βc is called
the Curie temperature for spontaneous magnetization. This is a material-dependent
constant (chromium bromide (CrBr) 37 Kelvin, nickel 645 K, iron 1017 K, cobalt
1404 K). Below the Curie temperature, these materials are magnetic, and above
it they are not. Below the critical temperature, the magnetization increases with
decreasing temperature. We will see in a computer simulation that the Ising model
displays this critical temperature effect.
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Fig. 18.4 Computer simulation of the magnetization curve of the Ising model on a 1000× 1000
grid. The dashed vertical line indicates the critical inverse temperature

If x ∈ E, then denote by xi,σ the state in which at site i the spin is changed to
σ ∈ {−1,+1}; that is,

xi,σ (j)=
{
σ, if j = i,
x(j), if j �= i.

Furthermore, define the state xi in which the spin at i is reversed, xi := xi,−x(i). As
reference chain, we choose a chain with transition probabilities

q(x, y)=
{

1
#Λ, if y = xi for some i ∈Λ,
0, else.

In words, we choose a random site i ∈ Λ (uniformly on Λ) and invert the spin at
that site. Clearly, q is irreducible.

The Metropolis algorithm for this chain accepts the proposal of the reference
chain with probability 1 if π(xi) ≥ π(x). Otherwise the proposal is accepted only
with probability π(xi)/π(x). However, now

H
(
xi
)−H(x)=

∑

j :j∼i
1{x(j) �=−x(i)} −

∑

j :j∼i
1{x(j) �=x(i)}

= −2
∑

j :j∼i

(

1{x(j) �=x(i)} − 1

2

)

.
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Fig. 18.5 Equilibrium states of the Ising model on an 800× 800 grid (black dot = spin +1). Left
side: below the critical temperature (β > βc); Right side: above the critical temperature

Fig. 18.6 Ising model (150× 150 grid) below the critical temperature. Even after a long time, the
computer simulation does not produce the equilibrium state but rather so-called metastable states,
in which the Weiss domains are clearly visible

Hence π(xi)/π(x)= exp(−2β
∑
j∼i (1{x(j)=x(i)} − 1

2 )), and this expression is easy
to compute as it depends only on the 2d neighboring spins and, in particular, does
not require knowledge of the value of Zβ . We thus obtain the Metropolis transition
matrix

p(x, y)=

⎧
⎪⎨

⎪⎩

1
#Λ

(
1∧ exp

[
2β
∑
j :j∼i

(
1{x(j) �=x(i)} − 1

2

)])
, if y = xi for some i ∈Λ,

1−∑i∈Λ p
(
x, xi

)
, if x = y,

0, else.
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For a practical simulation use the computer’s random number generator to produce
independent random variables I1, I2, . . . and U1,U2, . . . with In ∼ UΛ and Un ∼
U[0,1]. Then define

Fn(x)=
{
xIn, if Un ≤ exp

[
2β
∑
j :j∼i

(
1{x(j) �=x(i)} − 1

2

)]
,

x, else,

and define the Markov chain (Xn)n∈N by Xn = Fn(Xn−1) for n ∈N. See Figs. 18.5
and 18.6 for computer simulations of equilibrium states and metastable states of the
Ising model. ♦

Gibbs Sampler

We consider a situation where, as in the above example, a state consists of many
components x = (xi)i∈Λ ∈ E and where Λ is a finite set. As an alternative to the
Metropolis chain, we consider a different procedure to establish a Markov chain
with a given invariant distribution. For the so-called Gibbs sampler or heat bath
algorithm, the idea is to adapt the state locally to the stationary distribution. If x is
a state and i ∈Λ, then define

x−i :=
{
y ∈E : y(j)= x(j) for j �= i}.

Definition 18.17 (Gibbs sampler) Let q ∈M1(Λ) with q(i) > 0 for every i ∈ Λ.
The transition matrix p on E with

p(x, y)=
{
qi
π(xi,σ )
π(x−i ) , if y = xi,σ for some i ∈Λ,

0, else,

is called a Gibbs sampler for the invariant distribution π .

Verbally, each step of the chain with transition matrix p can be described by the
following instructions.

(1) Choose a random coordinate I according to some distribution (qi)i∈Λ.
(2) With probability π(xI,σ )/π(x−I ), replace x by xI,σ .

If I = i, then the new state has the distribution L(X|X−i = x−i ), where X is
a random variable with distribution π . Note that, for the Gibbs sampler also it is
enough to know the values of the distribution π only up to the normalising constant.
(In a more general framework, the Gibbs sampler and the Metropolis algorithm can
be understood as special cases of one and the same method.) For states x and y that
differ only in the ith coordinate, we have (since x−i = y−i )

π(x)p(x, y)= π(x)qi π(y)
π(x−i )

= π(y)qi π(x)
π(y−i )

= π(y)p(y, x).



404 18 Convergence of Markov Chains

Thus the Gibbs sampler is a reversible Markov chain with invariant measure π .
Irreducibility of the Gibbs sampler, however, has to be checked for each case.

Example 18.18 (Ising model) In the Ising model described above, we have x−i =
{xi,−1, xi,+1}. Hence, for i ∈Λ and σ ∈ {−1,+1},

π
(
xi,σ |x−i

)= π(xi,σ )

π({xi,−1, xi,+1})

= e−βH(xi,σ )

e−βH(xi,−1) + e−βH(xi,+1)

= (1+ exp
[
β
(
H
(
xi,σ
)−H (xi,−σ ))])−1

=
(

1+ exp

[

2β
∑

j :j∼i

(

1{x(j) �=σ } − 1

2

)])−1

.

The Gibbs sampler for the Ising model is thus the Markov chain (Xn)n∈N0 with
values in E = {−1,1}Λ and with transition matrix

p(x, y)=

⎧
⎪⎨

⎪⎩

1
#Λ

(
1+ exp

[
2β
∑
j :j∼i

(
1{x(j) �=x(i)} − 1

2

)])−1
,

if y = xi for some i ∈Λ,
0, otherwise. ♦

Perfect Sampling

The MCMC method as described above is based on hope: We let the chain run for a
long time and hope that its distribution is close to the invariant distribution. Even if
we can compute the speed of convergence (and in many cases, this is not trivial, we
come back to this point in Section 18.4), the distribution will never be exactly the
invariant distribution.

Although this flaw might seem inevitable in the MCMC method, it is in fact, at
least theoretically, possible to use a very similar method that allows perfect sampling
according to the invariant distribution π , even if we do not know anything about the
speed of convergence. The idea is simple. Assume that F1,F2, . . . are i.i.d. random
maps E→ E with P[F(x) = y] = p(x, y) for all x, y ∈ E. We have seen how to
construct the Markov chain X with initial value X0 = x by defining Xn = Fn ◦
Fn−1 ◦ . . . ◦ F1(x).

Note that Fn1 (x) := F1 ◦ . . . ◦ Fn(x) D= Fn ◦ . . . ◦ F1(x). Hence we have

P
[
Fn1 (x)= y

] n→∞−→ π(y) for every y.

However, if Fn1 turns out to be a constant map (e.g., Fn1 ≡ x∗ for some random
x∗), then we will also have Fm1 ≡ x∗ for all m ≥ n. If by some clever choice
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of the distribution of Fn one can ensure that the stopping time T := inf{n ∈ N :
Fn1 is constant} is almost surely finite (and this is always possible), then we will have
P[FT1 (x) = y] = π(y) for all x, y ∈ E. A simple algorithm for this method is the
following.

(1) Let F ← idE and n← 0.
(2) Let n← n+ 1. Generate Fn and let F ← F ◦ Fn.
(3) If F is not a constant map, then go to (2).
(4) Output F(∗).

This method is called coupling from the past and goes back to Propp and Wilson
[138] (see also [55, 56, 92, 137, 139, 170]). David Wilson has nice simulations and
a survey of the current research on his web site http://www.dbwilson.com/. A nice
survey on MCMC methods including coupling from the past is [66].

For a practical implementation, there are two main problems: (1) The full map Fn
has to be generated and has to be composed with F . The computer time needed for
this is at least of the order of the size of the space E. (2) Checking if F is constant
needs computer time of the same order of magnitude. Consequently, the method can
be efficiently implemented only if there is more structure. For example, assume that
E is partially ordered with a smallest element 0 and a largest element 1 (like the
Ising model). Further, assume that the maps Fn can be chosen to be almost surely
monotone increasing. In this case, it is enough to compute at each step F(0) and
F(1) since F is constant if the values coincide.

18.4 Speed of Convergence

So far we have ignored the question of the speed of convergence of the distribution
PXn to π . For practical purposes, however, this is often the most interesting ques-
tion. We do not intend to go into the details and we only briefly touch upon the topic.
Without loss of generality, assume E = {1, . . . ,N}. If p is reversible (Eq. (18.8)),
then f �→ pf defines a symmetric linear operator on L2(E,π) (exercise!). All
eigenvalues λ1, . . . , λN (listed according to the corresponding multiplicity) are real
and have modulus at most 1 since p is stochastic. Thus we can arrange the eigenval-
ues by decreasing modulus λ1 = 1≥ |λ2| ≥ . . .≥ |λN |. If p is irreducible and ape-
riodic, then |λ2|< 1. Let μ1 = π,μ2, . . . ,μN be an orthonormal basis of left eigen-
vectors for the eigenvalues λ1, . . . , λN . Then, for every μ = α1μ1 + . . .+ αNμN ,
we have μpn =∑N

i=1 λ
n
i αiμi and hence

∥
∥μpn − π∥∥TV ≤ C|λ2|n (18.10)

for a constant C (that does not depend on μ). A similar formula holds if p is not re-
versible; however, with a correction term of order at most nV−1. Here, V is the size
of the largest Jordan block square matrix for the eigenvalue λ2 in the Jordan canon-
ical form of p. In particular, V is no larger than the multiplicity of the eigenvalue
with second largest modulus.

http://www.dbwilson.com/
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The speed of convergence is thus exponential with a rate that is determined by
the spectral gap 1 − |λ2| of the second largest eigenvalue of p. In practice, for a
large space E, computing the spectral gap is often extremely difficult.

Example 18.19 Let r ∈ (0,1) and N ∈ N, N ≥ 2. Further, let E = {0, . . . ,N − 1}.
We consider the transition matrix

p(i, j)=

⎧
⎪⎨

⎪⎩

r, if j = i + 1 (mod N),

1− r, if j = i − 1 (mod N),

0, else.

p is the transition matrix of simple (asymmetric) random walk on the discrete torus
Z/(N), which with probability r makes a jump to the right and with probability
1− r makes a jump to the left. Clearly, p is irreducible, and p is aperiodic if and
only if N is odd. Furthermore, the uniform distribution UE is the unique invariant
distribution.

Case 1: N odd. Let θk = e2πik/N , k = 0, . . . ,N − 1, be the N th roots of unity
and let the corresponding (right) eigenvectors be

xk := (θ0
k , θ

1
k , . . . , θ

N−1
k

)
.

It is easy to check that p has the eigenvalues

λk := rθk + (1− r)θk = cos

(
2πk

N

)

+ (2r − 1)i sin

(
2πk

N

)

,

k = 0, . . . ,N − 1.

The moduli of the eigenvalues are given by |λk| = f (2πk/N), where

f (ϑ)=
√

1− 4r(1− r) sin(ϑ)2 for ϑ ∈R.

Since N is odd, |λk| is maximal (except for k = 0) for k = N−1
2 and for k = N+1

2 .

For these k, |λk| equals γ :=√1− 4r(1− r) sin(π/N)2. Since all eigenvalues are
different, every eigenvalue has multiplicity 1. Hence there is a constant C <∞ such
that

∥
∥μpn − UE

∥
∥

TV ≤ Cγ n for all n ∈N,μ ∈M1(E).

Case 2: N even. In this case, p is not aperiodic. Nevertheless, the eigenvalues
and eigenvectors are of the same form as in Case 1. In order to get an aperiodic
chain, for ε > 0, define the transition matrix

pε := (1− ε)p+ εI,
where I is the unit matrix on E. pε describes the random walk on E that with
probability ε does not move and with probability 1 − ε makes a jump according
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to p. Clearly, pε is irreducible and aperiodic. The eigenvalues are

λε,k = (1− ε)λk + ε, k = 0, . . . ,N − 1,

and the corresponding eigenvectors are the xk from above. Evidently, λε,0 = 1, and
if ε > 0 is very small, then λε,N/2 = 2ε− 1 is the eigenvalue with the second largest
modulus. For larger values of ε, we have |λε,1|> |λε,N/2|. More precisely, if we let

ε0 := (1− (2r − 1)2) sin(2π/N)2

(1− (2r − 1)2) sin(2π/N)2 + 2 cos(2π/N)
,

then the eigenvalue with the second largest modulus has modulus

γε = |λε,N/2| = 1− 2ε, if ε ≤ ε0,

or

γε = |λε,1|

=
√
(

(1− ε) cos

(
2π

N

)

+ ε
)2

+
(

(1− ε)(2r − 1) sin

(
2π

N

))2

, if ε ≥ ε0.

It is easy to check that ε �→ |λε,N/2| is monotone decreasing and that ε �→ |λε,1| is
monotone increasing. Hence γε is minimal for ε = ε0.

Hence there is a C <∞ with

∥
∥μpnε − UE

∥
∥

TV ≤ Cγ nε for all n ∈N,μ ∈M1(E),

and the best speed of convergence (in this class of transition matrices) can be ob-
tained by choosing ε = ε0. ♦

Example 18.20 (Gambler’s ruin) We consider the gambler’s ruin problem from
Example 10.19 with the probability of a gain r ∈ (0,1). Here the state space is
E = {0, . . . ,N}, and the transition matrix is of the form

p(i, j)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

r, if j = i + 1 ∈ {2, . . . ,N},
1− r, if j = i − 1 ∈ {0, . . . ,N − 2},
1, if j = i ∈ {0,N},
0, else.

This transition matrix is not irreducible; rather it has two absorbing states 0 and N .
In Example 10.19 (Eq. (10.5)) for the case r �= 1

2 , and Example 10.16 for the case
r = 1

2 , it was shown that, for every μ ∈M1(E),

μpn
n→∞−→ (

1−m(μ))δ0 +m(μ)δN . (18.11)
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Here m(μ)= ∫ pN(x)μ(dx), where the probability pN(x) that the chain, if started
at x, hits N is given by

pN(x)=
⎧
⎨

⎩

1−( 1−r
r
)x

1−( 1−r
r
)N
, if r �= 1

2 ,

x
N
, if r = 1

2 .

How quick is the convergence in (18.11)? Here also the convergence has exponential
speed and the rate is determined by the second largest eigenvalue of p.

Hence we have to compute the spectrum of p. Clearly, x0 = (1,0, . . . ,0) and
xN = (0, . . . ,0,1) are left eigenvectors for the eigenvalue 1. In order for x =
(x0, . . . , xN) to be a left eigenvector for the eigenvalue λ, the following equations
have to hold:

λxk = rxk−1 + (1− r)xk+1 for k = 2, . . . ,N − 2, (18.12)

and

λxN−1 = rxN−2. (18.13)

If (18.12) and (18.13) hold for x1, . . . , xN−1, then we define x0 := 1−p
λ−1 x1 and xN :=

p
λ−1xN−1 and get that in fact xp = λx. We make the ansatz

λ= (1− r)ρ(θ + θ) and xk = �k
(
θk − θk) for k = 1, . . . ,N − 1,

where

ρ =√r/(1− r) and θ ∈C \ {−1,+1} with |θ | = 1.

Thus we have θθ = 1 and (1 − r)ρk+1 = rρk−1. Therefore, for every k = 2, . . . ,
N − 1,

λxk = (1− r)ρk+1(θk − θk)(θ + θ)
= (1− r)ρk+1[(θk+1 − θk+1)+ θθ(θk−1 − θk−1)]

= rρk−1(θk−1 − θk−1)+ (1− r)ρk+1(θk+1 − θk+1)

= rxk−1 + (1− r)xk+1.

That is, (18.12) holds. The same computation with k = N − 1 shows that (18.13)
holds if and only if θN − θN = 0; that is, if θ2N = 1. In all, then, for θ , we get N −1
different values (note that the complex conjugates of the values considered here lead
to the same values λn),

θn = e(n/N)πi for n= 1, . . . ,N − 1.

The corresponding eigenvalues are

λn = σ cos

(
nπ

N

)

for n= 1, . . . ,N − 1.
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Here the variance of the individual random walk step is

σ 2 := 4r(1− r). (18.14)

As all eigenvalues are real, the corresponding eigenvectors are given by

xnk = 2

(
r

1− r
)n/2

sin

(
nπ

N

)

, k = 1, . . . ,N − 1.

The second largest modulus of an eigenvalue is |λn| = σ cos( π
N
) if n = 1 or n =

N − 1. Thus there exists a C > 0 such that, for every μ ∈M1(E), we have

μpn
({1, . . . ,N − 1})≤ C

(

σ cos

(
π

N

))n
for every n ∈N.

In other words, the probability that the game has not finished up to the nth round is
at most C(σ cos(π/N))n.

An alternative approach to the eigenvalues can be made via the roots of the char-
acteristic polynomial

χN(x)= det(p− xI), x ∈R.

Clearly, χ1(x) = (1 − x)2 and χ2(x) = −x(1 − x)2. Using Laplace’s expansion
formula for the determinant (elimination of rows and columns), we get the recur-
sion

χN(x)=−xχN−1(x)− r(1− r)χN−2(x). (18.15)

The solution is (check this!)

χN(x)= (−1)N−1(σ/2)N−1(1− x)2UN−1(x/σ ), (18.16)

where

Um(x) :=
�m/2�∑

k=0

(−1)k
(
m− k
k

)

(2x)m−2k

denotes the so-called mth Chebyshev polynomial of the second kind.
Using de Moivre’s formula, one can show that, for x ∈ (−σ,σ ),

χN(x)= (−1)N−1(σ/2)N−1(1− x)2 sin(N arccos(x/σ ))
√

1− (x/σ )2

= (1− x)2
N−1∏

k=1

(

σ cos

(
πk

N

)

− x
)

. (18.17)

Apart from the double zero at 1, we get the zeros

σ cos(πk/N), k = 1, . . . ,N − 1. ♦



410 18 Convergence of Markov Chains

Exercise 18.4.1 Show (18.16).

Exercise 18.4.2 Show (18.17).

Exercise 18.4.3 Let ν(dx) = 2
π

√
1− x21[−1,1](x) dx. Show that the Chebyshev

polynomials of the second kind are orthonormal with respect to ν; that is,
∫

UmUn dν = 1{m=n}.

Exercise 18.4.4 Let

E = {1,2,3} and p =
⎛

⎝
1/2 1/3 1/6
1/3 1/3 1/3
0 3/4 1/4

⎞

⎠ .

Compute the invariant distribution and the exponential rate of convergence.

Exercise 18.4.5 Let E = {0, . . . ,N − 1}, r ∈ (0,1) and

p(i, j)=

⎧
⎪⎨

⎪⎩

r, if j = i + 1 (mod N),

1− r, if j = i (mod N),

0, else.

Show that p is the transition matrix of an irreducible, aperiodic random walk and
compute the invariant distribution and the exponential rate of convergence.

Exercise 18.4.6 Let N ∈ N and let E = {0,1}N denote the N -dimensional hyper-
cube. That is, two points x, y ∈E are connected by an edge if they differ in exactly
one coordinate. Let p be the transition matrix of the random walk onE that stays put
with probability ε > 0 and that with probability 1− ε makes a jump to a randomly
(uniformly) chosen neighboring site.

Describe p formally and show that p is aperiodic and irreducible. Compute the
invariant distribution and the exponential rate of convergence.



Chapter 19
Markov Chains and Electrical Networks

We consider symmetric simple random walk on Z
2. By Pólya’s theorem (Theo-

rem 17.39), this random walk is recurrent. However, is this still true if we remove a
single edge from the lattice L

2 of Z2? Intuitively, such a small local change should
not make a difference for a global phenomenon such as recurrence. However, the
computations used in Section 17.5 to prove recurrence are not very robust and would
need a substantial improvement in order to cope with even a small change. The situ-
ation becomes even more puzzling if we restrict the random walk to, e.g., the upper
half plane {(x, y) : x ∈ Z, y ∈N0} of Z2. Is this random walk recurrent? Or consider
bond percolation on Z

2. Fix a parameter p ∈ [0,1] and independently declare any
edge of L2 open with probability p and closed with probability 1− p. At a second
stage, start a random walk on the random subgraph of open edges. At each step, the
walker chooses one of the adjacent open edges at random (with equal probability)
and traverses it. For p > 1

2 , there exists a unique infinite connected component of
open edges (Theorem 2.47). The question that we answer at the end of this chapter
is: Is a random walk on the infinite open cluster recurrent or transient?

The aim of this chapter is to establish a connection between certain Markov
chains and electrical networks. This connection

• in some cases allows us to distinguish between recurrence and transience by
means of easily computable quantities, and

• in other cases provides a comparison criterion that says that if a random walk
on a graph is recurrent, then a random walk on any connected subgraph is recur-
rent. Any of the questions raised above can be answered using this comparison
technique.

Some of the material of this chapter is taken from [36, 111].

19.1 Harmonic Functions

In this chapter, E is always a countable set and X is a discrete Markov chain on E
with transition matrix p and Green functionG. Recall that F(x, y) is the probability
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© Springer-Verlag London 2014
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of hitting y at least once when starting at x. Compare Section 17.4, in particular,
Definitions 17.28 and 17.33.

Definition 19.1 Let A⊂ E. A function f : E→ R is called harmonic on E \A if
pf (x)=∑y∈E p(x, y)f (y) exists and if pf (x)= f (x) for all x ∈E \A.

Theorem 19.2 (Superposition principle) Assume f and g are harmonic on E \ A
and let α,β ∈R. Then αf + βg is also harmonic on E \A.

Proof This is trivial. �

Example 19.3 Let X be transient and let a ∈ E be a transient state (that is, a is not
absorbing). Then f (x) :=G(x,a) is harmonic on E \ {a}: For x �= a, we have

pf (x)= p
∞∑

n=0

pn(x, a)=
∞∑

n=1

pn(x, a)=G(x,a)− 1{a}(x)=G(x,a).
♦

Example 19.4 For x ∈E, let τx := inf{n > 0 :Xn = x}. For A⊂E, let

τ := τA := inf
x∈Aτx

be the stopping time of the first entrance to A. Assume that A is chosen so that
Px[τA <∞]= 1 for every x ∈E. Let g :A→R be a bounded function. Define

f (x) :=
{
g(x), if x ∈A,
Ex[g(Xτ )], if x ∈E \A. (19.1)

Then f is harmonic on E \A. We give two proofs for this statement.

1st Proof By the Markov property, for x /∈A and y ∈E,

Ex
[
g(Xτ )

∣
∣X1 = y

]=
{
g(y), if y ∈A
Ey[g(Xτ )], if y ∈E \A

}

= f (y).

Hence, for x ∈E \A,

f (x)= Ex
[
g(Xτ )

]=
∑

y∈E
Ex
[
g(Xτ );X1 = y

]

=
∑

y∈E
p(x, y)Ex

[
g(Xτ )

∣
∣X1 = y

]=
∑

y∈E
p(x, y)f (y)= pf (x).

2nd Proof We change the Markov chain by adjoining a cemetery state Δ. That is,
the new state space is Ẽ =E ∪ {Δ} and the transition matrix is

p̃(x, y)=

⎧
⎪⎨

⎪⎩

p(x, y), if x ∈E \A,y �=Δ,
0, if x ∈E \A,y =Δ,
1, if x ∈A∪ {Δ}, y =Δ.

(19.2)
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The corresponding Markov chain X̃ is transient, and Δ is the only absorbing state.
Furthermore, we have pf = f on E \ A if and only if p̃f = f on E \ A. Since
G̃(y, y)= 1 for all y ∈A, we have (compare Theorem 17.34)

Px[Xτ = y] = Px[τ̃y <∞]= F̃ (x, y)= G̃(x, y) for all x ∈E \A, y ∈A.

Now x �→ G̃(x, y) is harmonic on E \A. Hence, by the superposition principle,

f (x)=
∑

y∈A
G̃(x, y)g(y) (19.3)

is harmonic on E \ A. Due to the analogy of (19.3) to Green’s formula in con-
tinuous space potential theory, the function G̃ is called the Green function for the
equation (p− I )f = 0 on E \A. ♦

Definition 19.5 The system of equations

(p− I )f (x) = 0, for x ∈E \A,
f (x) = g(x), for x ∈A, (19.4)

is called the Dirichlet problem on E \A with respect to p − I and with boundary
value g on A.

We have shown the existence of solutions of the Dirichlet problem in Exam-
ple 19.4. In order to show uniqueness (under certain conditions) we first derive the
maximum principle for harmonic functions.

If p = I then any function f that coincides with g on A is a solution of the
Dirichlet problem. However, even in less extreme situations the solution of (19.4)
may be ambiguous. This is the case if E \ A decomposes into domains between
which the chain that is stopped in A cannot change.

In order to describe formally the irreducibility condition that we have to impose,
we introduce the transition matrix pA of the chain stopped upon reaching A by

pA(x, y) :=
{
p(x, y), if x /∈A,
1{x=y}, if x ∈A.

Further, define FA for pA similarly as F was defined for p. Finally, for x ∈E let

SnA(x)=
{
y ∈E : (pA)n(x, y) > 0

}
, for n ∈N0

and

SA(x)=
∞⋃

n=0

SnA(x)=
{
y ∈E : FA(x, y) > 0

}
.
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Theorem 19.6 (Maximum principle) Let f be a harmonic function on E \A.

(i) If there exists an x0 ∈E \A such that

f (x0)= supf
(
SA(x0)

)
, (19.5)

then f (y)= f (x0) for any y ∈ SA(x0).
(ii) In particular, if FA(x, y) > 0 for all x, y ∈E \A, and if there is an x0 ∈E \A

such that f (x0)= supf (E), then f (x0)= f (y) for any y ∈E \A.

Proof (i) Let m := supf (SA(x0)). As f is harmonic on E \A, we have pAf = f
on E. Hence, for any n ∈N,

f (x0)= (pA)nf (x0)=
∑

y∈SnA(x0)

pnA(x0, y)f (y)≤m

with equality if and only if f (y)=m for all y ∈ SnA(x0). Since (19.5) implies equal-
ity, we infer f (x0)= f (y) for all y ∈ SA(x0).

(ii) This is a direct consequence of (i) since SA(x)⊃E \A for any x ∈E \A. �

Theorem 19.7 (Uniqueness of harmonic functions) Assume that F(x, y) > 0 for
all x, y ∈ E. Let A ⊂ E be such that A �= ∅ and E \ A is finite. Assume that f1
and f2 are harmonic on E \A. If f1 = f2 on A, then f1 = f2.
In other words, the Dirichlet problem (19.4) has a unique solution given by (19.3)
(or equivalently by (19.1)).

Proof By the superposition principle, f := f1 − f2 is harmonic on E \ A with
f |A ≡ 0.

We will show f ≤ 0. Then, by symmetry, also f ≥ 0 and hence f ≡ 0. To this
end, we assume that there exists an x ∈ E such that f (x) > 0 and deduce a contra-
diction.

Since f |A ≡ 0 and since E \A is finite, there is an x0 ∈E \A such that f (x0)=
maxf (E)≥ f (x) > 0.

Since F(x, y) > 0 for all x, y ∈E, we have

n0 :=min
{
n ∈N0 : pn(x0, y) > 0 for some y ∈A}<∞.

Clearly, we have pn0(x0, y) = (pA)n0(x0, y) for all y ∈ A. Hence, there exists a
y ∈ A such that (pA)n0(x0, y) > 0, i.e., y ∈ SA(x0). By Theorem 19.6, this implies
f (x0)= f (y)= 0 contradicting the assumption. �

Exercise 19.1.1 Let p be the substochastic E×E matrix that is given by p(x, y)=
p̃(x, y), x, y ∈ E (with p̃ as in (19.2)). Hence p(x, y) = p(x, y)1x∈E\A. Let I be
the unit matrix on E.

(i) Show that I − p is invertible.
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(ii) Define G := (I − p)−1. Show that G(x,y)= G̃(x, y) for all x, y ∈ E \A and
that G(x,y)= 1{x=y} if x ∈A. In particular,

G(x,y)= Px[XτA = y] for x ∈E \A and y ∈A.

19.2 Reversible Markov Chains

Definition 19.8 The Markov chain X is called reversible with respect to the mea-
sure π if

π
({x})p(x, y)= π({y})p(y, x) for all x, y ∈E. (19.6)

Equation (19.6) is sometimes called the equation of detailed balance. X is called
reversible if there is a π with respect to which X is reversible.

Remark 19.9 If X is reversible with respect to π , then π is an invariant measure for
X since

πp
({x})=

∑

y∈E
π
({y})p(y, x)=

∑

y∈E
π
({x})p(x, y)= π({x}).

If X is irreducible and recurrent, then, by Remark 17.50, π is thus unique up to
constant multiples. ♦

Example 19.10 Let (E,K) be a graph with vertex set (or set of nodes) E and
with edge set K (see p. 65). By 〈x, y〉 = 〈y, x〉 ∈ K , denote an (undirected) edge
that connects x with y. Let C := (C(x, y), x, y ∈ E) be a family of weights with
C(x, y)= C(y, x)≥ 0 for all x, y ∈E and

C(x) :=
∑

y∈E
C(x, y) <∞ for all x ∈E.

If we define p(x, y) := C(x,y)
C(x)

for all x, y ∈ E, then X is reversible with respect to
π({x})= C(x). In fact,

π
({x})p(x, y)= C(x)C(x, y)

C(x)
= C(x, y)

= C(y, x)= C(y)C(y, x)
C(y)

= π({y})p(y, x). ♦

Definition 19.11 Let (E,K), C and X be as in Example 19.10. Then X is called a
random walk on E with weights C. In particular, if C(x, y)= 1{〈x,y〉∈K}, then X is
called a simple random walk on (E,K).

Thus the random walk with weights C is reversible. However, the converse is
also true.
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Theorem 19.12 If X is a reversible Markov chain and if π is an invariant mea-
sure, then X is a random walk on E with weights C(x, y)= p(x, y)π({x}). If X is
irreducible and recurrent, then π and hence C are unique up to a factor.

Proof This is obvious. �

Exercise 19.2.1 Show that p is reversible with respect to π if and only if the linear
map L2(π)→ L2(π), f �→ pf is self-adjoint.

Exercise 19.2.2 Let β > 0, K ∈N and W1, . . . ,WK ∈R. Define

p(i, j) := 1

Z
exp(−βWj) for all i, j = 1, . . . ,K,

where Z :=∑K
j=1 exp(−βWj) is the normalising constant.

Assume that inK (enumerated) urns there are a total ofN indistinguishable balls.
At each step, choose one of the N balls uniformly at random. If i is the number of
the urn from which the ball is drawn, then with probability p(i, j) move the ball to
the urn with number j .

(i) Give a formal description of this process as a Markov chain.
(ii) Determine the invariant distribution π and show that the chain is reversible with

respect to π .

19.3 Finite Electrical Networks

An electrical network (E,C) consists of a set E of sites (the electrical contacts) and
wires between pairs of sites. The conductance of the wire that connects the points
x ∈E and y ∈E \{x} is denoted by C(x, y) ∈ [0,∞). If C(x, y)= 0, then we could
just as well assume that there is no wire connecting x and y. By symmetry, we have
C(x, y)= C(y, x) for all x and y. Denote by

R(x, y)= 1

C(x, y)
∈ (0,∞]

the resistance of the connection 〈x, y〉. A particular case is that of a graph (E,K)
where all edges have the same conductance, say 1; that is, C(x, y)= 1{〈x,y〉∈K}. The
corresponding network (E,C) will be called the unit network on (E,K).

In the remainder of this section, assume that (E,C) is a finite electrical network.
Now let A ⊂ E. At the points x0 ∈ A, we apply the voltages u(x0) (e.g., using

batteries). What is the voltage u(x) at x ∈E \A?



19.3 Finite Electrical Networks 417

Definition 19.13 A map I : E ×E→ R is called a flow on E \A if it is antisym-
metric (that is, I (x, y)=−I (y, x)) and if it obeys Kirchhoff’s rule:

I (x)= 0, for x ∈E \A,
I (A)= 0.

(19.7)

Here we denoted

I (x) :=
∑

y∈E
I (x, y) and I (A) :=

∑

x∈A
I (x).

Definition 19.14 A flow I : E ×E→ R on E \A is called a current flow if there
exists a function u :E→R with respect to which Ohm’s rule is fulfilled:

I (x, y)= u(x)− u(y)
R(x, y)

for all x, y ∈E,x �= y.

In this case, I (x, y) is called the flow from x to y and u(x) is called the electrical
potential (or voltage) at x.

Theorem 19.15 An electrical potential u in (E,C) is a harmonic function onE\A:

u(x)=
∑

y∈E

1

C(x)
C(x, y)u(y) for all x ∈E \A.

In particular, if the network is irreducible, an electrical potential is uniquely deter-
mined by the values on A.

Proof By Ohm’s rule and Kirchhoff’s rule,

u(x)−
∑

y∈E

C(x, y)

C(x)
u(y)=

∑

y∈E

C(x, y)

C(x)

(
u(x)− u(y))= 1

C(x)

∑

y∈E
I (x, y)= 0.

Hence u is harmonic for the stochastic matrix p(x, y)= C(x, y)/C(x). The claim
follows by the uniqueness theorem for harmonic functions (Theorem 19.7). �

Corollary 19.16 Let X be a Markov chain on E with edge weights C. Then u(x)=
Ex[u(XτA)].

Assume A = {x0, x1} where x0 �= x1, and u(x0) = 0, u(x1) = 1. Then I (x1) is
the total flow into the network and −I (x0) is the total flow out of the network.
Kirchhoff’s rule says that the flow is divergence-free and that the flows into and out
of the network are equal. In other words, the net flow is I (x0)+ I (x1)= 0.

Recall that, by Ohm’s rule, the resistance of a wire is the quotient of the potential
difference and the current flow. Hence we define the effective resistance between x0
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and x1 as

Reff(x0 ↔ x1)= u(x1)− u(x0)

I (x1)
= 1

I (x1)
=− 1

I (x0)
.

Correspondingly, the effective conductance is Ceff(x0 ↔ x1)=Reff(x0 ↔ x1)
−1. As

I and u are uniquely determined by x0, x1 and C, the quantities Ceff(x0 ↔ x1) and
Reff(x0 ↔ x1) are well-defined and can be computed from C.

Consider now two sets A0,A1 ⊂ E with A0 ∩ A1 = ∅, A0,A1 �= ∅. Define
u(x)= 0 for every x ∈A0 and u(x)= 1 for every x ∈A1. Let I be the correspond-
ing current flow. In a manner similar to the above, we make the following definition.

Definition 19.17 We call Ceff(A0 ↔ A1) := I (A1) the effective conductance be-
tween A0 and A1 and Reff(A0 ↔ A1) := 1

I (A1)
the effective resistance between A0

and A1.

Example 19.18

(i) Let E = {0,1,2} with C(0,2) = 0, and A0 = {x0} = {0}, A1 = {x1} = {2}.
Define u(0)= 0 and u(2)= 1. Then (with p(x, y)= C(x, y)/C(x)),

u(1)= 1 · p(1,2)+ 0 · p(1,0)

= C(1,2)

C(1,2)+C(1,0) =
R(1,0)

R(1,0)+R(1,2)
= Reff(1↔ 0)

Reff(1↔ 0)+Reff(1↔ 2)
.

The total current flow is

I
({2})= u(1)C(0,1)= 1

R(0,1)+R(1,2) =
1

1
C(0,1) + 1

C(1,2)

.

Hence we have Reff(0 ↔ 2) = 1
I ({2}) = R(0,1) + R(1,2) and Ceff(0 ↔ 2) =

(C(0,1)−1 +C(1,2)−1)−1.
(ii) (Series connection) Let n ∈ N, n ≥ 2 and E = {0, . . . , n} with conductances

C(k − 1, k) > 0 and C(k, l) = 0 if |k − l| > 1. By Kirchhoff’s rule, we have
I (l, l + 1)=−I (x1) for any l = 0, . . . , n− 1. By Ohm’s rule, we get u(1)=
u(0)+ I (x1)R(0,1), u(2)= u(1)+ I (x1)R(1,2) and so on, yielding

u(k)− u(0)= I (x1)

k−1∑

l=0

R(l, l + 1).

Hence

Reff(0↔ k)= u(k)− u(0)
I (x1)

=
k−1∑

l=0

R(l, l + 1).
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Fig. 19.1 Series connection of six resistors. The effective resistance is Reff(0 ↔ 6) =
R(0,1)+ . . .+R(5,6)

By symmetry, we also have

Reff(k↔ n)=
n−1∑

l=k
R(l, l + 1)

and thus Reff(0↔ n)=Reff(0↔ k)+Reff(k↔ n).
Finally, for k ∈ {1, . . . , n− 1}, we get

u(k)= Reff(0↔ k)

Reff(0↔ k)+Reff(k↔ n)
.

Note that this yields the ruin probability of the corresponding Markov chain X
on {0, . . . , n},

Pk[τn < τ0] = u(k)= Reff(0↔ k)

Reff(0↔ n)
=
k−1∑

l=0

R(l, l+1)
/ n−1∑

l=0

R(l, l+1). (19.8)

(iii) (Parallel connection) Let E = {0,1}. We extend the model a little by allowing
for more than one wire to connect 0 and 1. Denote the conductances of these
wires by C1, . . . ,Cn. Then, by Ohm’s rule, the current flow along the ith wire
is Ii = u(1)−u(0)

Ri
= 1
Ri

. Hence the total current is I =∑n
i=1

1
Ri

and thus we
have

Ceff(0↔ 1)=
n∑

i=1

Ci and Reff(0↔ 1)=
(
n∑

i=1

1

Ri

)−1

. ♦

Fig. 19.2 Parallel connection of six resistors. The effective resistance is Reff(0 ↔ 1) =
(R−1

1 + . . .+R−1
6 )−1
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In each of the three preceding examples, the effective resistance is a monotone
function of the individual resistances. This is more than just coincidence.

Theorem 19.19 (Rayleigh’s monotonicity principle) Let (E,C) and (E,C′) be
electrical networks with C(x, y)≥ C′(x, y) for all x, y ∈E.
Then, for A0,A1 ⊂E with A0,A1 �= ∅ and A0 ∩A1 = ∅,

Ceff(A0 ↔A1)≥ C′eff(A0 ↔A1).

The remainder of this section is devoted to the proof of this theorem. We will
need a theorem on conservation of energy and Thomson’s principle (also called
Dirichlet’s principle) on the minimization of the energy dissipation.

Theorem 19.20 (Conservation of energy) Let A=A0 ∪A1, and let I be a flow on
E \A (but not necessarily a current flow; that is, Kirchhoff’s rule holds but Ohm’s
rule need not). Further, let w :E→R be a function that is constant both on A0 and
on A1: w|A0 ≡:w0 and w|A1 ≡:w1. Then

(w1 −w0)I (A1)= 1

2

∑

x,y∈E

(
w(x)−w(y))I (x, y).

Note that this is a discrete version of Gauß’s integral theorem for (wI). In fact,
Kirchhoff’s rule says that I is divergence-free on E \A.

Proof We compute

∑

x,y∈E

(
w(x)−w(y))I (x, y)

=
∑

x∈E

(

w(x)
∑

y∈E
I (x, y)

)

−
∑

y∈E

(

w(y)
∑

x∈E
I (x, y)

)

=
∑

x∈A

(

w(x)
∑

y∈E
I (x, y)

)

−
∑

y∈A

(

w(y)
∑

x∈E
I (x, y)

)

=w0I (A0)+w1I (A1)−w0
(−I (A0)

)−w1
(−I (A1)

)

= 2(w1 −w0)I (A1). �

Definition 19.21 Let I be a flow on E \A. Denote by

LI := LCI :=
1

2

∑

x,y∈E
I (x, y)2R(x, y)

the energy dissipation of I in the network (E,C).
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Theorem 19.22 (Thomson’s (or Dirichlet’s) principle of minimization of energy
dissipation) Let I and J be unit flows from A1 to A0 (that is, I (A1)= J (A1)= 1).
Assume in addition that I is a current flow (that is, it satisfies Ohm’s rule with some
potential u that is constant both on A0 and on A1). Then

LI ≤ LJ
with equality if and only if I = J . In particular, the unit current flow is uniquely
determined.

Proof Let D = J − I �≡ 0 be the difference of the flows. Then clearly D(A0) =
D(A1)= 0. We infer

∑

x,y∈E
J (x, y)2R(x, y)

=
∑

x,y∈E

(
I (x, y)+D(x,y))2R(x, y)

=
∑

x,y∈E

(
I (x, y)2 +D(x,y)2)R(x, y)+ 2

∑

x,y∈E
I (x, y)D(x, y)R(x, y)

=
∑

x,y∈E

(
I (x, y)2 +D(x,y)2)R(x, y)+ 2

∑

x,y∈E

(
u(x)− u(y))D(x,y).

By the principle of conservation of energy, the last term equals

2
∑

x,y∈E

(
u(x)− u(y))D(x,y)= 4D(A1)(u1 − u0)= 0.

Therefore (since D �≡ 0),

LJ = LI + 1

2

∑

x,y∈E
D(x, y)2R(x, y) > LI .

�

Proof (Rayleigh’s monotonicity principle, Theorem 19.19) Let I and I ′ be the unit
current flows from A1 to A0 with respect to C and C′, respectively. By Thomson’s
principle, the principle of conservation of energy and the assumption R(x, y) ≤
R′(x, y) for all x, y ∈E, we have

Reff(A0 ↔A1)= u(1)− u(0)
I (A1)

= u(1)− u(0)

= 1

2

∑

x,y∈E
I (x, y)2R(x, y)

≤ 1

2

∑

x,y∈E
I ′(x, y)2R(x, y)≤ 1

2

∑

x,y∈E
I ′(x, y)2R′(x, y)

= u′(1)− u′(0)=R′eff(A0 ↔A1). �
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19.4 Recurrence and Transience

We consider the situation where E is countable and A1 = {x1} for some x1 ∈E. Let
X be a random walk on E with weights C = (C(x, y), x, y ∈ E) and hence with
transition probabilities p(x, y)= C(x, y)/C(x) (compare Definition 19.11).

The main goal of this section is to express the probability 1 − F(x1, x1) that
the random walk never returns to x1 in terms of effective resistances in the net-
work. In order to apply the results on finite electrical networks from the last section,
we henceforth assume that A0 ⊂ E is such that E \ A0 is finite. We will obtain
1− F(x1, x1) as the limit of the probability that a random walk started at x1 hits A0
before returning to x1 as A0 ↓ ∅.

Let u = ux1,A0 be the unique potential function on E with u(x1) = 1 and
u(x)= 0 for any x ∈A0. By Theorem 19.7, u is harmonic and can be written as

ux1,A0(x)= Ex[1{XτA0∪{x1}=x1}]
= Px[τx1 < τA0] for every x ∈E \ (A0 ∪ {x1}

)
.

Hence the current flow I with respect to u satisfies

−I (A0)= I (x1)=
∑

x∈E
I (x1, x)=

∑

x∈E

(
u(x1)− u(x)

)
C(x1, x)

= C(x1)
∑

x∈E

(
1− u(x))p(x1, x)

= C(x1)

( ∑

x /∈A0∪{x1}
p(x1, x)Px[τA0 < τx1 ] +

∑

x∈A0

p(x1, x)

)

= C(x1)Px1 [τA0 < τx1].
Therefore,

pF (x1,A0) := Px1 [τA0 < τx1]

= Ceff(x1 ↔A0)

C(x1)
= 1

C(x1)

1

Reff(x1 ↔A0)
. (19.9)

Definition 19.23 We denote the escape probability

pF (x1)= Px1 [τx1 =∞]= 1− F(x1, x1).

We denote the effective conductance from x1 to ∞ by

Ceff(x1 ↔∞) := C(x1) inf
{
pF (x1,A0) :A0 ⊂E with |E \A0|<∞,A0 /∈ x1

}
.

Lemma 19.24 For any decreasing sequence An0 ↓ ∅ such that |E \ An0| <∞ and
x1 /∈An0 for all n ∈N, we have

Ceff(x1 ↔∞)= lim
n→∞Ceff

(
x1 ↔An0

)
.
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Proof This is obvious since

Ceff(x1 ↔∞)= C(x1) inf
{
pF (x1,A0) : |E \A0|<∞,A0 /∈ x1

}
(19.10)

and since pF (x1,A0) is monotone decreasing in A0. �

Theorem 19.25 We have

pF (x1)= 1

C(x1)
Ceff(x1 ↔∞). (19.11)

In particular,

x1 is recurrent ⇐⇒ Ceff(x1 ↔∞)= 0 ⇐⇒ Reff(x1 ↔∞)=∞.

Proof Let An0 ↓ ∅ be a decreasing sequence such that |E \ An0| <∞ and x1 /∈ An0
for all n ∈N. Define Fn := {τAn0 < τx1}. For everyM ∈N, we have

Px1 [τAn0 ≤M] ≤
M∑

k=0

Px1

[
Xk ∈An0

] n→∞−→ 0.

Hence τAn0 ↑∞ almost surely, and thus Fn ↓ {τx1 =∞} (up to a null set). We con-
clude

1

C(x1)
Ceff(x1 ↔∞)= lim

n→∞Px1 [Fn] = Px1 [τx1 =∞]= pF (x1). �

Example 19.26 Symmetric simple random walk on E = Z is recurrent. Here
C(x, y) = 1{|x−y|=1}. The effective resistance from 0 to ∞ can be computed by
the formulas for parallel and sequence connections,

Reff(0↔∞)= 1

2

∞∑

i=0

R(i, i + 1)=∞.
♦

Example 19.27 Asymmetric simple random walk on E = Z with p(x, x + 1) =
p ∈ ( 1

2 ,1), p(x, x − 1)= 1− p is transient. Here one choice (and thus up to multi-
ples the unique choice) for the conductances is

C(x, x + 1)=
(

p

1− p
)x

for x ∈ Z,

and C(x, y) = 0 if |x − y| > 1. By the monotonicity principle, the effective resis-
tance from 0 to ∞ can be bounded by

Reff(0↔∞)= lim
n→∞Reff

(
0↔{−n,n})
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≤ lim
n→∞Reff(0↔ n)

=
∞∑

n=0

(
1− p
p

)n
= p

2p− 1
<∞.

♦

Example 19.28 Symmetric simple random walk on E = Z
2 is recurrent. Here again

C(x, y)= 1{|x−y|=1}. Let Bn = {−n, . . . , n}2 and ∂Bn = Bn \Bn−1. We construct a
network C′ with greater conductances by adding ring-shaped superconductors along
∂B . (See Figs. 19.3 and 19.4 for illustrations.) That is, we replace C(x, y) by

C′(x, y)=
{
∞, if x, y ∈ ∂Bn for some n ∈N,

C(x, y), else.

Fig. 19.3 Electrical network on Z
2. The bold lines are superconductors. The nth and the (n+1)th

superconductors are connected by 4(2n+ 1) edges

Fig. 19.4 Effective network after adding superconductors to Z
2. The ring-shaped superconductors

have melted down to single points
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Then R′eff(Bn↔ Bcn)= 1
4(2n+1) (note that there are 4(2n+ 1) edges that connect

Bn with Bcn), and thus

R′eff(0↔∞)=
∞∑

n=0

1

4(2n+ 1)
=∞.

By the monotonicity principle, we thus have Reff(0↔∞)≥R′eff(0↔∞)=∞. ♦

Example 19.29 Let (E,K) be an arbitrary connected subgraph of the square lattice
(Z2,L2). Then simple random walk on (E,K) (see Definition 19.11) is recurrent.
Indeed, by the monotonicity principle, we have

R
(E,K)
eff (0↔∞)≥R(Z2,L2)

eff (0↔∞)=∞. ♦

We formulate the method used in the foregoing examples as a theorem.

Theorem 19.30 Let C and C′ be edge weights on E with C′(x, y)≤ C(x, y) for
all x, y ∈ E. If the Markov chain X with weights C is recurrent, then the Markov
chain X′ with weights C′ is also recurrent.
In particular, consider a graph (E,K) and a subgraph (E′,K ′). If simple random
walk on (E,K) is recurrent, then so is simple random walk on (E′,K ′).

Proof This follows from Theorem 19.25 and Rayleigh’s monotonicity principle
(Theorem 19.19). �

Example 19.31 Symmetric simple random walk on Z
3 is transient. In order to prove

this, we construct a subgraph for which we can compute R′eff(0↔∞) <∞.

Sketch. We consider the set of all infinite paths starting at 0 and that

• begin by taking one step in the x-direction, the y-direction or the z-direction,
• continue by choosing a possibly different direction x, y or z and make two steps

in that direction, and
• at the nth stage choose a direction x, y or z and take 2n+1 steps in that direction.

For example, by xyyxxxxzzzzzzzz . . . we denote the path that starts with one
step in direction x, then chooses y, then x, then z and so on. Note that after two
paths follow different directions for the first time, they will not have any common
edge again, though some of the nodes can be visited by both paths.

Consider the electrical network with unit resistors. Apply a voltage of 1 at the
origin and 0 at the endpoints of the paths at the nth stage. By symmetry, the potential
at a given node depends only on the distance (length of the shortest path) from the
origin. We thus obtain an equivalent network if we replace multiply used nodes
by multiple nodes (see Fig. 19.5). Thus we obtain a tree-shaped network: For any
n ∈N0, after 2n steps each path splits into three (see Fig. 19.6). The 3n paths leading
from the nodes of the nth generation to those of the (n+1)th generation are disjoint
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Fig. 19.5 Scheme of the first three steps (two stages) of the graph from Example 19.31. The
left figure shows the actual edges where, e.g., xyy indicates that the first step is in direction x,
the second step is in direction y and then the third step is necessarily also in direction y. In the
right figure, the nodes at the ends of xz/zx, xy/yx and yz/zy are split into two nodes and then
connected by a superconductor (bold line). If we remove the superconductors from the network, we
end up with the network of Fig. 19.6 whose effective resistance R′eff(0↔∞) is not smaller than
that of Z3. (If at the root we apply a voltage of 1 and at the points to the right the voltage 0, then by
symmetry no current flows through the superconductors. Thus, in fact, the network is equivalent
to that in Fig. 19.6)

paths, each of length 2n−1. If B(n) denotes the set of points up to the nth generation,
then

R′eff

(
0↔ B(n+ 1)c

)=
n−1∑

k=0

R′eff

(
B(k)↔ B(k)c

)=
n−1∑

k=0

2k3−k.

Therefore, R′eff(0 ↔∞) = 1
3

∑∞
k=0(

2
3 )
k = 1 <∞. On this tree, random walk is

transient. Hence, by Theorem 19.30, random walk on Z
3 is also transient. ♦

Exercise 19.4.1 Consider the electrical network on Z
d with unit resistors between

neighboring points. Let X be a symmetric simple random walk on Z
d . Finally, fix

two arbitrary neighboring points x0, x1 ∈ Z
d . Show the following:

(i) The effective conductance between x0 and x1 is Ceff(x0 ↔ x1)= d .
(ii) If d ≤ 2, then Px0 [τx1 < τx0 ] = 1

2 .
(iii) If d ≥ 3, then Px0 [τx1 < τx0 | τx0 ∧ τx1 <∞]= 1

2 .
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Fig. 19.6 A tree as a subgraph of Z3 on which random walk is still transient

19.5 Network Reduction

Example 19.32 Consider a random walk on the graph in Fig. 19.7 that starts at x
and at each step jumps to one of its neighbors at random with equal probability.
What is the probability P that this Markov chain visits 1 before it visits 0?

We can regard the graph as an electrical network with unit resistors at each edge,
voltage 0 at 0 and voltage 1 at 1. Then P equals the voltage at point x:

P = u(x).
In order to compute u(x), we replace the network step by step by simpler networks
such that the effective resistances between 0, 1, and x remain unchanged. Hence in
each step the voltage u(x) at point x does not change. ♦
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Fig. 19.7 Initial situation

Fig. 19.8 Reduced network with three nodes

Reduced Network

Assume that we have already reduced the network to a network with the three points
0, 1 and x and with resistors between these points R′(0,1), R′(0, x) and R′(1, x).
See Fig. 19.8.

Clearly, we have

P = u(x)= R′(0, x)
R′(0, x)+R′(1, x) . (19.12)

If we knew the effective resistances Reff(0↔ x), Reff(1↔ x) and Reff(0↔ 1),
we could avoid the hassle of reducing the network and we could compute u(x)
directly. In order to derive the formula for u(x), we make the following observations.
In the reduced network, the effective resistances are easy to compute: If {a, b, c} =
{0,1, x}, then

Reff(a↔ b)=
(

1

R′(a, b)
+ 1

R′(a, c)+R′(b, c)
)−1

. (19.13)

Solving these three equations for R′(0,1), R′(0, x) and R′(1, x) and plugging
the values into (19.12) yields

P = u(x)= Reff(0↔ 1)+Reff(0↔ x)−Reff(x↔ 1)

2Reff(0↔ 1)
. (19.14)
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In particular, in the case R′(0,1) = ∞ (or equivalently Reff(0 ↔ 1) =
Reff(0 ↔ x) + Reff(x↔ 1)), we have Reff(0 ↔ x) = R′(0, x) and Reff(1 ↔ x) =
R′(1, x), hence

u(x)= Reff(0↔ x)

Reff(0↔ x)+Reff(x↔ 1)
. (19.15)

Since we always have u(x) ∈ [0,1], rearranging the terms yields (again in the
general situation)

Reff(1↔ x)≤Reff(0↔ 1)+Reff(0↔ x). (19.16)

This is the triangle inequality for the effective resistances and it shows that the ef-
fective resistance is a metric in any electrical network.

Step-by-Step Reduction of the Network

Having seen how to compute u(x) from the effective resistances, we now turn to the
systematic computation of these effective resistances. Later we will come back to
the introductory example and make the computations explicit.

There are four elementary transformations for the reduction of an electrical net-
work:

1. Deletion of loops. The three points on the very right of the graph form a loop that
can be deleted from the network without changing any of the remaining voltages.
In particular, any edge that directly connects 0 to 1 can be deleted.

2. Joining serial edges. If two (or more) edges are in a row such that the nodes
along them do not have any further adjacent edges, this sequence of edges can be
substituted by a single edge whose resistance is the sum of the resistances of the
single edges (see Fig. 19.1).

3. Joining parallel edges. Two (or more) edges with resistances R1, . . . ,Rn that
connect the same two nodes can by replaced by a single edge with resistance R =
(R−1

1 + . . .+R−1
n )

−1 (see Fig. 19.2).
4. Star–triangle transformation. (See Exercise 19.5.1.) The star-shaped part of

a network (left in Fig. 19.9) is equivalent to the triangle-shaped part (right in
Fig. 19.9) if the resistances R1,R2,R3, R̃1, R̃2, R̃3 satisfy the condition

RiR̃i = δ for any i = 1,2,3, (19.17)

where

δ =R1R2R3
(
R−1

1 +R−1
2 +R−1

3

)= R̃1R̃2R̃3

R̃1 + R̃2 + R̃3
.
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Fig. 19.9 Star–triangle transformation

Application to Example 19.32

With the four transformations at hand, we solve the problem of Example 19.32.
Assume that initially all edges have resistance 1. In the figures we label each edge
with its resistance if it differs (in the course of the reduction) from 1.

Step 1. Delete the loop at the right-hand side (left in Fig. 19.10).
Step 2. Replace the series on top, bottom and right by edges with resistance 2 (right

in Fig. 19.10).
Step 3. Use the star-triangle transformation to remove the lower left node (left in

Fig. 19.11). Here R1 = 1, R2 = 2, R3 = 1, δ = 5, R̃1 = δ/R1 = 5, R̃2 = δ/R2 =
5/2 and R̃3 = δ/R3 = 5.

Step 4. Replace the parallel edges with resistances R1 = 5 and R2 = 1 by one edge
with R = ( 1

5 + 1)−1 = 5
6 (right in Fig. 19.11).

Step 5. Use the star-triangle transformation to remove the lower right node (left in
Fig. 19.12). Here R1 = 5, R2 = 2, R3 = 5

6 , δ = 95/6, R̃1 = δ/R1 = 19/6, R̃2 =
δ/R2 = 95/12 and R̃3 = δ/R3 = 19.

Fig. 19.10 Steps 1 and 2
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Fig. 19.11 Steps 3 and 4

Fig. 19.12 Steps 5 and 6

Fig. 19.13 Steps 7 and 8

Step 6. Replace the parallel edges by edges with resistances ( 12
95 + 2

5 )
−1 = 19

10 and
( 6

19 + 1)−1 = 19
25 , respectively (right in Fig. 19.12).

Step 7. Use the star-triangle transformation to remove the lower right node (left
in Fig. 19.13). Here R1 = 19

10 , R2 = 19
25 , R3 = 1, δ = 513

125 , R̃1 = δ/R1 = 54
25 , R̃2 =

δ/R2 = 27
5 and R̃3 = δ/R3 = 513

125 .
Step 8. Replace the three pairs of parallel edges by single edges with resistances
( 5

27 + 1)−1 = 27
32 , ( 25

54 + 1
2 )
−1 = 27

26 and ( 1
19 + 125

513 )
−1 = 27

8 , respectively.

In the reduced network, we have the resistances

R′(0, x)= 27

32
and R′(x,1)= 27

26
.

Using (19.12), the probability that the random walk visits 1 before 0 is

P =
27
32

27
32 + 27

26

= 13

29
.
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Using the values of R′(0, x), R′(1, x) and R′(0,1) and Eq. (19.13), we compute the
effective resistances in the reduced network (and hence in the original network):

Reff(0↔ x)=
(

32

27
+ 1

27
8 + 27

26

)−1

= 17

24
,

Reff(1↔ x)=
(

26

27
+ 1

27
32 + 27

8

)−1

= 5

6
,

Reff(0↔ 1)=
(

8

27
+ 1

27
26 + 27

32

)−1

= 29

24
.

Using (19.14) we can use the values to compute u(x):

P = u(x)=
29
24 + 17

24 − 5
6

2 · 29
24

= 13

29
.

Clearly, the latter computation is more complicated than using the resistances
R′ from the reduced network directly. However, it has the advantage that it can be
performed without going through all the network reduction steps if, for some reason,
we know the effective resistances already. For example, we could buy resistors in an
electronic market, solder the network and measure the resistances with a multimeter.

Alternative Solution

A different approach to solving the problem of Example 19.32 is to use linear
algebra instead of network reduction. It is a matter of taste as to which solu-
tion is preferable. First generate the transition matrix p of the Markov chain.
To this end, enumerate the nodes of the graph from 1 to 12 as in Fig. 19.14.

Fig. 19.14 Graph with enumerated nodes
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The chain starts at 2, and we want to compute the probability that it visits 3 be-
fore 5.

Generate the matrix p of the chain that is killed at 3 and at 5 and compute G=
(I − p)−1. By Exercise 19.1.1 (with A= {3,5}, x = 2 and y = 3), the probability
of visiting 3 before 5 is P =G(2,3)= 13

29 .

p :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1
2

1
2 0 0 0 0 0 0 0 0 0

1
3 0 0 0 1

3
1
3 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1

2
1
2 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0
0 1

4
1
4 0 0 0 0 0 1

4
1
4 0 0

0 0 1
4

1
4 0 0 0 0 0 1

4
1
4 0

0 0 0 1
2 0 0 0 0 0 0 1

2 0

0 0 0 0 1
3

1
3 0 0 0 0 0 1

3

0 0 0 0 0 1
3

1
3 0 0 0 0 1

3

0 0 0 0 0 0 1
2

1
2 0 0 0 0

0 0 0 0 0 0 0 0 1
2

1
2 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

G := (I − p)−1

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

143
116

81
116

21
29

3
58

8
29

19
58

3
29

3
58

15
116

9
58

3
58

11
116

27
58

81
58

13
29

3
29

16
29

19
29

6
29

3
29

15
58

9
29

3
29

11
58

0 0 1 0 0 0 0 0 0 0 0 0
3
58

9
58

24
29

165
58

5
29

15
29

78
29

68
29

21
58

30
29

107
58

27
58

0 0 0 0 1 0 0 0 0 0 0 0
19

116
57
116

18
29

15
58

11
29

95
58

15
29

15
58

75
116

45
58

15
58

55
116

3
58

9
58

24
29

39
29

5
29

15
29

78
29

39
29

21
58

30
29

39
29

27
58

3
58

9
58

24
29

68
29

5
29

15
29

78
29

97
29

21
58

30
29

68
29

27
58

5
58

15
58

11
29

7
29

18
29

25
29

14
29

7
29

93
58

21
29

7
29

45
58

3
29

9
29

19
29

20
29

10
29

30
29

40
29

20
29

21
29

60
29

20
29

27
29

3
58

9
58

24
29

107
58

5
29

15
29

78
29

68
29

21
58

30
29

165
58

27
58

11
116

33
116

15
29

27
58

14
29

55
58

27
29

27
58

135
116

81
58

27
58

215
116

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Exercise 19.5.1 Show the validity of the star-triangle transformation.

Exercise 19.5.2 Consider a random walk on the honeycomb graph shown below.
Show that if the walk starts at x, then the probability of visiting 1 before 0 is 8

17
using
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(i) the method of network reduction, and
(ii) the method of matrix inversion.

Exercise 19.5.3 Consider the graph of Fig. 19.15.

(i) For the effective conductance between a and z, show that Ceff(a←→ z)=√3.
(ii) For a random walk started at a, show that the probability Pa[τz < τa] of visiting

z before returning to a is Pa[τz < τa] = 1/
√

3.

Fig. 19.15 Simple ladder graph

Exercise 19.5.4 For the graph of Fig. 19.16, determine Ceff(a ←→ z) and
Pa[τz < τa]. (This is simpler than in Exercise 19.5.3!)

Fig. 19.16 Crossed ladder graph

Exercise 19.5.5 For a random walk on the graph of Fig. 19.17, determine the prob-
ability Pa[τz < τa].

Fig. 19.17 Random walk on a hypercube
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19.6 Random Walk in a Random Environment

(Compare [174], [142] and [76, 77], [93].) Consider a Markov chain X on Z that
at each step makes a jump either to the left (with probability w−i ) or to the right
(with probability w+i ) if X is at i ∈ Z. Hence, let w−i ∈ (0,1) and w+i := 1− w−i
for i ∈ Z. Then X is the Markov chain with transition matrix

pw(i, j)=

⎧
⎪⎨

⎪⎩

w−i , if j = i − 1,

w+i , if j = i + 1,

0, else.

We consider (w−i )i∈Z as an environment in which X walks and later choose the
environment at random.

In order to describe X in terms of conductances of an electrical network, we
define �i :=w−i /w+i for i ∈ Z. Let Cw(i, j) := 0 if |i − j | �= 1 and

Cw(i + 1, i) := Cw(i, i + 1) :=
{∏i

k=0 �
−1
k , if i ≥ 0,

∏−1
k=i �k, if i < 0.

With this definition,

Cw(i, i + 1)

Cw(i)
= 1

�i + 1
=w+i and

Cw(i, i − 1)

Cw(i)
= �i

�i + 1
=w−i .

Hence the transition probabilities pw are indeed described by the Cw . Let

R+w :=
∞∑

i=0

Rw(i, i + 1)=
∞∑

i=0

1

Cw(i, i + 1)
=

∞∑

i=0

i∏

k=0

�k

and

R−w :=
∞∑

i=0

Rw(−i,−i − 1)=
∞∑

i=0

1

Cw(−i,−i − 1)
=

∞∑

i=1

1∏

k=−i
�−1
k .

Note that R+w and R−w are the effective resistances from 0 to+∞ and from 0 to−∞,
respectively. Hence

Rw,eff(0↔∞)= 1
1
R−ω
+ 1
R+ω

is finite if and only if R−w <∞ or R+w <∞. Therefore, by Theorem 19.25,

X is transient ⇐⇒ R−w <∞ or R+w <∞. (19.18)

If X is transient, in which direction does it get lost?
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Theorem 19.33

(i) If R−w <∞ or R+w <∞, then (agreeing on ∞
∞ = 1)

P0[Xn n→∞−→ −∞]= R+w
R−w +R+w

and P0[Xn n→∞−→ +∞]= R−w
R−w +R+w

.

(ii) If R−w =∞ and R+w =∞, then lim infn→∞Xn = −∞ and lim supn→∞Xn =
∞ almost surely.

Proof (i) Let τN := inf{n ∈ N0 : Xn ∈ {−N,N}}. As X is transient, we have
P0[τN <∞]= 1 and (as in (19.8))

P0[XτN =−N ] =
Rw,eff(0↔N)

Rw,eff(−N↔N)
= Rw,eff(0↔N)

Rw,eff(0↔−N)+Rw,eff(0↔N)
.

Again, since X is transient, we infer

P0[Xn n→∞−→ −∞]= P
[
sup{Xn : n ∈N0}<∞

]

= lim
N→∞P

[
sup{Xn : n ∈N0}<N

]

≤ lim sup
N→∞

P[XτN =−N ]

= R+w
R−w +R+w

.

By symmetry (and since X is transient), we get

P0[Xn n→∞−→ −∞]= 1− P0[Xn n→∞−→ ∞]≥ 1− R−w
R−w +R+w

= R+w
R−w +R+w

.

(ii) If R−w = R+w =∞, then X is recurrent and hence every point is visited in-
finitely often. That is, lim supn→∞Xn =∞ and lim infn→∞Xn =−∞ a.s. �

We now consider the situation where the sequence w = (w−i )i∈Z is also random.
That is, we consider a two-stage experiment: At the first stage we choose a real-
ization of i.i.d. random variables W = (W−

i )i∈Z on (0,1) and let W+
i := 1−W−

i .
At the second stage, given W , we construct a Markov chain X on Z with transition
matrix

pW(i, j)=

⎧
⎪⎨

⎪⎩

W−
i , if j = i − 1,

W+
i , if j = i + 1,

0, else.

Note that X is a Markov chain only givenW ; that is, under the probability measure
P[X ∈ · |W ]. However, it is not a Markov chain with respect to the so-called an-
nealed measure P[X ∈ ·]. In fact, ifW is unknown, observingX gives an increasing
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amount of information on the true realization of W . This is precisely what memory
is and is thus in contrast with the Markov property of X.

Definition 19.34 The process X is called a random walk in the random environ-
ment W .

We are now in the position to prove a theorem of Solomon [157]. Let �i :=
W−
i /W

+
i for i ∈ Z and R−W and R+W be defined as above.

Theorem 19.35 (Solomon (1975)) Assume that E[| log(�0)|]<∞.

(i) If E[log(�0)]< 0, then Xn
n→∞−→ ∞ a.s.

(ii) If E[log(�0)]> 0, then Xn
n→∞−→ −∞ a.s.

(iii) If E[log(�0)] = 0, then lim infn→∞Xn = −∞ and lim supn→∞Xn = ∞
a.s.

Proof (i) and (ii) By symmetry, it is enough to show (ii). Hence, let c :=
E[log(�0)]> 0. By the strong law of large numbers, there is an n−0 = n−0 (ω) with

1∏

k=−n
�−1
k = exp

(

−
1∑

k=−n
log(�i)

)

< e−cn/2 for all n≥ n−0 .

Therefore,

R−W =
∞∑

n=1

1∏

k=−n
�−1
k ≤

n−0 −1∑

n=1

1∏

k=−n
�−1
k +

∞∑

n=n−0
e−cn/2 <∞ a.s.

Similarly, there is an n+0 = n+0 (ω) with

n∏

k=0

�k > e
cn/2 for all n≥ n+0 .

We conclude

R+W =
∞∑

n=0

n∏

k=0

�k ≥
n+0 −1∑

n=0

n∏

k=0

�k +
∞∑

n=n+0
ecn/2 =∞ a.s.

Now, by Theorem 19.33, we get Xn
n→∞−→ −∞ almost surely.

(iii) In order to show R−W = R+W = ∞ almost surely, it is enough to show

lim supn→∞
∑n
k=0 log(�k) >−∞ and lim supn→∞

∑1
k=−n log(�−1

k ) >−∞ almost
surely if E[log(�0)] = 0. If log(�0) has a finite variance, this follows by the central
limit theorem. In the general case, it follows by Theorem 20.21. �
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Exercise 19.6.1 Consider the situation of Theorem 19.35 but with the random walk
restricted to N0. To this end, change the walk so that whenever it attempts to make
a step from 0 to −1, it simply stays in 0. Show that this random walk in a random
environment is

• a.s. transient if E[log(�0)]<∞,
• a.s. null recurrent if E[log(�0)] =∞, and
• a.s. positive recurrent if E[log(�0)]>∞.



Chapter 20
Ergodic Theory

Laws of large numbers, e.g., for i.i.d. random variablesX1,X2, . . . , state that the se-

quence of averages converges a.s. to the expected value, n−1∑n
i=1Xi

n→∞−→ E[X1].
Hence averaging over one realization of many random variables is equivalent to av-
eraging over all possible realizations of one random variable. In the terminology of
statistical physics this means that the time average, or path (Greek: odos) average,
equals the space average. The “space” in “space average” is the probability space
in mathematical terminology, and in physics it is considered the space of admissi-
ble states with a certain energy (Greek: ergon). Combining the Greek words gives
rise to the name ergodic theory, which studies laws of large numbers for possibly
dependent, but stationary, random variables.

For further reading, see, for example [103] or [88].

20.1 Definitions

Definition 20.1 Let I ⊂ R be a set that is closed under addition (for us the impor-
tant examples are I = N0, I = N, I = Z, I = R, I = [0,∞), I = Z

d and so on).
A stochastic process X = (Xt )t∈I is called stationary if

L
[
(Xt+s)t∈I

]= L
[
(Xt )t∈I

]
for all s ∈ I. (20.1)

Remark 20.2 If I =N0, I =N or I = Z, then (20.1) is equivalent to

L
[
(Xn+1)n∈I

]= L
[
(Xn)n∈I

]
. ♦

Example 20.3

(i) If X = (Xt )t∈I is i.i.d., then X is stationary. If only PXt = PX0 holds for every
t ∈ I (without the independence), then in general X is not stationary. For ex-
ample, consider I =N0 and X1 =X2 =X3 = . . . but X0 �=X1. Then X is not
stationary.

A. Klenke, Probability Theory, Universitext, DOI 10.1007/978-1-4471-5361-0_20,
© Springer-Verlag London 2014
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(ii) Let X be a Markov chain with invariant distribution π . If L[X0] = π , then X
is stationary.

(iii) Let (Yn)n∈Z be i.i.d. real random variables and let c1, . . . , ck ∈R. Then

Xn :=
k∑

l=1

clYn−l , n ∈ Z,

defines a stationary process X that is called the moving average with weights
(c1, . . . , ck). In fact, X is stationary if only Y is stationary. ♦

Lemma 20.4 If (Xn)n∈N0 is stationary, then X can be extended to a stationary
process (X̃n)n∈Z.

Proof Let X̃ be the canonical process on Ω = EZ. For n ∈ N, define a probability
measure P̃{−n,−n+1,...} ∈M1(E

{−n,−n+1,...}) by

P̃{−n,−n+1,...}[X̃−n ∈A−n, X̃−n+1 ∈A−n+1, . . .]
= P[X0 ∈A−n,X1 ∈A−n+1, . . .].

Then {−n,−n + 1, . . .} ↑ Z and (̃P{−n,−n+1,...}, n ∈ N) is a consistent fam-
ily. By the Ionescu-Tulcea theorem (Theorem 14.32), the projective limit P̃ :=
lim←−n→∞ P̃{−n,−n+1,...} exists. By construction, X̃ is stationary with respect to P̃
and

P̃ ◦ ((X̃n)n∈N0

)−1 = P ◦ ((Xn)n∈N0

)−1
. �

In the following, assume that (Ω,A,P) is a probability space and τ :Ω→Ω is
a measurable map.

Definition 20.5 An event A ∈ A is called invariant if τ−1(A) = A and quasi-
invariant if 1τ−1(A) = 1A P-a.s. Denote the σ -algebra of invariant events by

I = {A ∈A : τ−1(A)=A}.

Recall that a σ -algebra I is called P-trivial if P[A] ∈ {0,1} for every A ∈ I .

Definition 20.6

(i) τ is called measure-preserving if

P
[
τ−1(A)

]= P[A] for all A ∈A.

In this case, (Ω,A,P, τ ) is called a measure-preserving dynamical system.
(ii) If τ is measure-preserving and I is P-trivial, then (Ω,A,P, τ ) is called er-

godic.
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Lemma 20.7

(i) A measurable map f : (Ω,A)→ (R,B(R)) is I-measurable if and only if
f ◦ τ = f .

(ii) (Ω,A,P, τ ) is ergodic if and only if any I-measurable f : (Ω,I) →
(R,B(R)) is P-almost surely constant.

Proof (i) The statement is obvious if f = 1A is an indicator function. The general
case, can be inferred by the usual approximation arguments (see Theorem 1.96(i)).

(ii) “=⇒” Assume that (Ω,A,P, τ ) is ergodic. Then, for any c ∈ R, we have
f−1((c,∞)) ∈ I and thus P[f−1((c,∞))] ∈ {0,1}. We conclude that

f = inf
{
c ∈R : P[f−1((c,∞))]= 0

}
P-a.s.

“⇐=” Assume any I-measurable map is P-a.s. constant. If A ∈ I , then 1A is
I-measurable and hence P-a.s. equals either 0 or 1. Thus P[A] ∈ {0,1}. �

Example 20.8 Let n ∈N \ {1}, let Ω = Z/(n), let A= 2Ω and let P be the uniform
distribution on Ω . Let r ∈ {1, . . . , n} and

τ :Ω→Ω, x �→ x + r (mod n).

Then τ is measure-preserving. If d = gcd(n, r) and

Ai =
{
i, τ (i), τ 2(i), . . . , τ n−1(i)

}= i + 〈r〉 for i = 0, . . . , d − 1,

then A0, . . . ,Ad−1 are the disjoint coset classes of the normal subgroup 〈r〉 �Ω .
Hence we have Ai ∈ I for i = 0, . . . , d − 1, and each A ∈ I is a union of certain
Ai ’s. Hence we have

(Ω,A,P, τ ) is ergodic ⇐⇒ gcd(r, n)= 1. ♦

Example 20.9 (Rotation) Let Ω = [0,1), let A = B(Ω) and let P = λ be the
Lebesgue measure. Let r ∈ (0,1) and τr (x)= x+ r (mod 1). Clearly, (Ω,A,P, τr )
is a measure-preserving dynamical system. We will show

(Ω,A,P, τr ) is ergodic ⇐⇒ r is irrational.

Let f : [0,1)→ R be an I-measurable function. Without loss of generality, we
assume that f is bounded and thus square integrable. Hence f can be expanded in
a Fourier series

f (x)=
∞∑

n=−∞
cne

2πinx for P-a.a. x.

This series converges in L2, and the sequence of square summable coefficients
(cn)n∈Z is unique (compare Exercise 7.3.1 with cn = (−i/2)an + (1/2)bn and
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c−n = (i/2)an + (1/2)bn for n ∈N as well as c0 = b0). Now we compute

(f ◦ τr )(x)=
∞∑

n=−∞

(
cne

2πinr)e2πinx a.e.

By Lemma 20.7, f is I-measurable if and only if f = f ◦ τr ; that is, if and only
if

cn = cne2πinr for all n ∈ Z.

If r is irrational, this implies cn = 0 for n �= 0, and thus f is almost surely constant.
Therefore, (Ω,A,P, τr ) is ergodic.

On the other hand, if r is rational, then there exists some n ∈ Z\{0}with e2πinr =
e−2πinr = 1. Hence x �→ e2πinx + e−2πinx = 2 cos(2πnx) is I-measurable but not
a.s. constant. Thus, in this case (Ω,A,P, τr ) is not ergodic. ♦

Example 20.10 Let X = (Xn)n∈N0 be a stochastic process with values in a Polish
space E. Without loss of generality, we may assume that X is the canonical process
on the probability space (Ω,A,P)= (EN0,B(E)⊗N0,P). Define the shift operator

τ :Ω→Ω, (ωn)n∈N0 �→ (ωn+1)n∈N0 .

Then Xn(ω) = X0(τ
n(ω)). Hence X is stationary if and only if (Ω,A,P, τ ) is a

measure-preserving dynamical system. ♦

Definition 20.11 The stochastic process X (from Example 20.10) is called ergodic
if (Ω,A,P, τ ) is ergodic.

Example 20.12 Let (Xn)n∈N0 be i.i.d. and let Xn(ω)=X0(τ
n(ω)). If A ∈ I , then,

for every n ∈N,

A= τ−n(A)= {ω : τn(ω) ∈A} ∈ σ(Xn,Xn+1, . . .).

Hence, if we let T be the tail σ -algebra of (Xn)n∈N (see Definition 2.34), then

I ⊂ T =
∞⋂

n=1

σ(Xn,Xn+1, . . .).

By Kolmogorov’s 0–1 law (Theorem 2.37), T is P-trivial. Hence I is also P-trivial
and therefore (Xn)n∈N0 is ergodic. ♦

Exercise 20.1.1 LetG be a finite group of measure-preserving measurable maps on
(Ω,A,P) and let A0 := {A ∈A : g(A)=A for all g ∈G}.

Show that, for every X ∈ L1(P), we have

E[X |A0] = 1

#G

∑

g∈G
X ◦ g.
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20.2 Ergodic Theorems

In this section, (Ω,A,P, τ ) always denotes a measure-preserving dynamical sys-
tem. Further, let f :Ω→R be measurable and

Xn(ω)= f ◦ τn(ω) for all n ∈N0.

Hence X = (Xn)n∈N0 is a stationary real-valued stochastic process. Let

Sn =
n−1∑

k=0

Xk

denote the nth partial sum. Ergodic theorems are laws of large numbers for (Sn)n∈N.
We start with a preliminary lemma.

Lemma 20.13 (Hopf’s maximal-ergodic lemma) Let X0 ∈ L1(P). Define Mn =
max{0, S1, . . . , Sn}, n ∈N. Then

E[X01{Mn>0}] ≥ 0 for every n ∈N.

Proof For k ≤ n, we haveMn(τ(ω))≥ Sk(τ (ω)). Hence

X0 +Mn ◦ τ ≥X0 + Sk ◦ τ = Sk+1.

Thus X0 ≥ Sk+1 −Mn ◦ τ for k = 1, . . . , n. Manifestly, S1 = X0 and Mn ◦ τ ≥ 0
and hence also (for k = 0) X0 ≥ S1 −Mn ◦ τ . Therefore,

X0 ≥max{S1, . . . , Sn} −Mn ◦ τ. (20.2)

Furthermore, we have

{Mn > 0}c ⊂ {Mn = 0} ∩ {Mn ◦ τ ≥ 0} ⊂ {Mn −Mn ◦ τ ≤ 0}. (20.3)

By (20.2) and (20.3), and since τ is measure-preserving, we conclude that

E[X01{Mn>0}] ≥ E
[(

max{S1, . . . , Sn} −Mn ◦ τ
)
1{Mn>0}

]

= E
[
(Mn −Mn ◦ τ)1{Mn>0}

]

≥ E[Mn −Mn ◦ τ ] = E[Mn] −E[Mn] = 0. �
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Theorem 20.14 (Individual ergodic theorem, Birkhoff (1931), [16]) Let f =
X0 ∈ L1(P). Then

1

n

n−1∑

k=0

Xk = 1

n

n−1∑

k=0

f ◦ τ k n→∞−→ E[X0 | I] P-a.s.

In particular, if τ is ergodic, then

1

n

n−1∑

k=0

Xk
n→∞−→ E[X0] P-a.s.

Proof If τ is ergodic, then E[X0 | I] = E[X0] and the supplement is a consequence
of the first statement.

Consider now the general case. By Lemma 20.7, we have E[X0 | I] ◦ τ =
E[X0 | I] P-a.s. Hence, by passing to X̃n :=Xn−E[X0 | I], without loss of gener-
ality, we can assume E[X0 | I] = 0. Define

Z := lim sup
n→∞

1

n
Sn.

Let ε > 0 and F := {Z > ε}. We have to show that P[F ] = 0. From this we
infer P[Z > 0] = 0 and similarly (with −X instead of X) also lim infn→∞ 1

n
Sn ≥ 0

almost surely. Hence 1
n
Sn
n→∞−→ 0 a.s.

Evidently, Z ◦ τ =Z; hence F ∈ I . Define

Xεn := (Xn − ε)1F , Sεn :=Xε0 + . . .+Xεn−1,

Mε
n :=max

{
0, Sε1, . . . , S

ε
n

}
, Fn :=

{
Mε
n > 0

}
.

Then F1 ⊂ F2 ⊂ . . . and

∞⋃

n=1

Fn =
{

sup
k∈N

1

k
Sεk > 0

}

=
{

sup
k∈N

1

k
Sk > ε

}

∩ F = F,

hence Fn ↑ F . Dominated convergence yields E[Xε01Fn ]
n→∞−→ E[Xε0].

By the maximal-ergodic lemma (applied to Xε), we have E[Xε01Fn ] ≥ 0; hence

0≤ E
[
Xε0
]= E

[
(X0 − ε)1F

]

= E
[
E[X0 | I]1F

]− εP[F ] = −εP[F ].
We conclude that P[F ] = 0. �

As a consequence, we obtain the statistical ergodic theorem, or Lp-ergodic the-
orem, that was found by von Neumann in 1931 right before Birkhoff proved his
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ergodic theorem, but was published only later in [122]. Before we formulate it, we
state one more lemma.

Lemma 20.15 Let p ≥ 1 and let X0,X1, . . . be identically distributed, real random
variables with E[|X0|p]<∞. Define Yn := | 1

n

∑n−1
k=0Xk|p for n ∈N. Then (Yn)n∈N

is uniformly integrable.

Proof Evidently, the singleton {|X0|p} is uniformly integrable. Hence, by Theo-
rem 6.19, there exists a monotone increasing convex map f : [0,∞)→[0,∞) with
f (x)
x
→∞ for x→∞ and C := E[f (|X0|p)] <∞. Again, by Theorem 6.19, it

is enough to show that E[f (Yn)] ≤ C for every n ∈ N. By Jensen’s inequality (for
x �→ |x|p), we have

Yn ≤ 1

n

n−1∑

k=0

|Xk|p.

Again, by Jensen’s inequality (now applied to f ), we get that

f (Yn)≤ f
(

1

n

n−1∑

k=0

|Xk|p
)

≤ 1

n

n−1∑

k=0

f
(|Xk|p

)
.

Hence E[f (Yn)] ≤ 1
n

∑n−1
k=0 E[f (|Xk|p)] = C. �

Theorem 20.16 (Lp-ergodic theorem, von Neumann (1931)) Let (Ω,A,P, τ ) be
a measure-preserving dynamical system, p ≥ 1, X0 ∈ Lp(P) and Xn = X0 ◦ τn.
Then

1

n

n−1∑

k=0

Xk
n→∞−→ E[X0 | I] in Lp(P).

In particular, if τ is ergodic, then 1
n

∑n−1
k=0Xk

n→∞−→ E[X0] in Lp(P).

Proof Define

Yn :=
∣
∣
∣
∣
∣

1

n

n−1∑

k=0

Xk −E[X0 | I]
∣
∣
∣
∣
∣

p

for every n ∈N.

By Lemma 20.15, (Yn)n∈N is uniformly integrable, and by Birkhoff’s ergodic

theorem, we have Yn
n→∞−→ 0 almost surely. By Theorem 6.25, we thus have

limn→∞E[Yn] = 0.
If τ is ergodic, then E[X0 | I] = E[X0]. �
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20.3 Examples

Example 20.17 Let (X, (Px)x∈E) be a positive recurrent, irreducible Markov chain
on the countable space E. Let π be the invariant distribution of X. Then π({x}) > 0
for every x ∈E. Define Pπ =∑x∈E π({x})Px . ThenX is stationary on (Ω,A,Pπ ).
Denote the shift by τ ; that is, Xn =X0 ◦ τn.

Now let A ∈ I be invariant. Then A ∈ T = ⋂∞
n=1 σ(Xn,Xn+1, . . .). By the

strong Markov property, for every finite stopping time σ (recall that Fσ is the σ -
algebra of the σ -past),

Pπ [X ∈A |Fσ ] = PXσ [X ∈A]. (20.4)

Indeed, we have {X ∈ A} = {X ∈ τ−n(A)} = {(Xn,Xn+1, . . .) ∈ A}. For B ∈ Fσ ,
using the Markov property (in the third line), we get

Eπ [1{X∈B}1{X∈A}] =
∞∑

n=0

∑

x∈E
Pπ [X ∈ B,σ = n,Xn = x,X ∈A]

=
∞∑

n=0

∑

x∈E
Pπ
[
X ∈ B,σ = n,Xn = x,X ◦ τn ∈A

]

=
∞∑

n=0

∑

x∈E
Pπ [X ∈ B,σ = n,Xn = x]Px[X ∈A]

= Eπ
[
1{X∈B}PXσ [X ∈A]

]
.

In particular, if x ∈ E and σx = inf{n ∈ N0 : Xn = x}, then σx <∞ since X is
recurrent and irreducible. By (20.4), we conclude that, for every x ∈E,

Pπ [X ∈A] = Eπ
[
Px[X ∈A]

]= Px[X ∈A].
Hence PXn[X ∈A] = Pπ [X ∈A] almost surely and thus (with σ = n in (20.4))

Pπ [X ∈A |X0, . . . ,Xn] = PXn[X ∈A] = Pπ [X ∈A].
Now A ∈ I ⊂ σ(X1,X2, . . .); hence

Pπ [X ∈A |X0, . . . ,Xn] n→∞−→ Pπ
[
X ∈A|σ(X0,X1, . . .)

]= 1{X∈A}.

This implies Pπ [X ∈A] ∈ {0,1}. Hence X is ergodic.
Birkhoff’s ergodic theorem now implies that, for every x ∈E,

1

n

n−1∑

k=0

1{Xk=x}
n→∞−→ π

({x}) Pπ -a.s.

In this sense, π({x}) is the average time X spends in x in the long run. ♦
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Example 20.18 Let P and Q be probability measures on the measurable space
(Ω,A), and let (Ω,A,P , τ ) and (Ω,A,Q, τ) be ergodic. Then either P = Q
or P ⊥ Q. Indeed, if P �= Q, then there exists an f with |f | ≤ 1 and

∫
f dP �=∫

f dQ. However, by Birkhoff’s ergodic theorem,

1

n

n−1∑

k=0

f ◦ τ k n→∞−→
{∫
f dP P -a.s.,
∫
f dQ Q-a.s.

If we define A := { 1
n

∑n−1
k=0 f ◦ τ k n→∞−→ ∫

f dP }, then P(A) = 1 and Q(A) = 0.
Thus P ⊥Q. ♦

Exercise 20.3.1 Let (Ω,A) be a measurable space and let τ :Ω→Ω be a mea-
surable map.

(i) Show that the set M := {μ ∈M1(Ω) : μ ◦ τ−1 = μ} of τ -invariant measures
is convex.

(ii) An element μ of M is called extremal if μ = λμ1 + (1 − λ)μ2 for some
μ1,μ2 ∈M and λ ∈ (0,1) implies μ= μ1 = μ2. Show that μ ∈M is extremal
if and only if τ is ergodic with respect to μ.

Exercise 20.3.2 Let p = 2,3,5,6,7,10, . . . be square-free (that is, there is no num-
ber r = 2,3,4, . . . , whose square is a divisor of p) and let q ∈ {2,3, . . . , p− 1}. For
every n ∈N, let an be the leading digit of the p-adic expansion of qn.

Show the following version of Benford’s law: For every d ∈ {1, . . . , p− 1},
1

n
#{i ≤ n : ai = d} n→∞−→ log(d + 1)− log(d)

log(p)
.

20.4 Application: Recurrence of Random Walks

Let (Xn)n∈N be a stationary process with values in R
d . Define Sn :=∑n

k=1Xk for
n ∈N0. Further, let

Rn = #{S1, . . . , Sn}
denote the range of S; that is, the number of distinct points visited by S up to time n.
Finally, let A := {Sn �= 0 for every n ∈N} be the event of an “escape” from 0.

Theorem 20.19 We have limn→∞ 1
n
Rn = P[A | I] almost surely.

Proof Let X be the canonical process on (Ω,A,P)= ((Rd)N,B(Rd)⊗N,P) and let
τ :Ω→Ω be the shift; that is, Xn =X0 ◦ τn.
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Evidently,

Rn = #
{
k ≤ n : Sl �= Sk for all l ∈ {k + 1, . . . , n}}

≥ #{k ≤ n : Sl �= Sk for all l > k}

=
n∑

k=1

1A ◦ τ k.

Birkhoff’s ergodic theorem yields

lim inf
n→∞

1

n
Rn ≥ P[A | I] a.s. (20.5)

For the converse inequality, consider Am = {Sl �= 0 for l = 1, . . . ,m}. Then, for
every n≥m,

Rn ≤m+ #
{
k ≤ n−m : Sl �= Sk for all l ∈ {k + 1, . . . , n}}

≤m+ #
{
k ≤ n−m : Sl �= Sk for all l ∈ {k + 1, . . . , k +m}}

=m+
n−m∑

k=1

1Am ◦ τ k.

Again, by the ergodic theorem,

lim sup
n→∞

1

n
Rn ≤ P[Am | I] a.s. (20.6)

Since Am ↓ A and P[Am | I] n→∞−→ P[A | I] almost surely (by Theorem
8.14(viii)), the claim follows from (20.5) and (20.6). �

Theorem 20.20 Let X = (Xn)n∈N be an integer-valued, integrable, stationary
process with the property E[X1 | I] = 0 a.s. Let Sn = X1 + . . . + Xn, n ∈ N.
Then

P[Sn = 0 for infinitely many n ∈N] = 1.

In particular, a random walk on Z with centered increments is recurrent (Chung–
Fuchs theorem, compare Theorem 17.40).

Proof Define A= {Sn �= 0 for all n ∈N}.
Step 1. We show P[A] = 0. (If X is i.i.d., then S is a Markov chain, and this

implies immediately that 0 is recurrent. Only for the more general case of sta-
tionary X do we need an additional argument.) By the ergodic theorem, we have
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1
n
Sn
n→∞−→ E[X1 | I] = 0 a.s. Thus, for every m ∈N,

lim sup
n→∞

(
1

n
max
k=1,...,n

|Sk|
)

= lim sup
n→∞

(
1

n
max

k=m,...,n |Sk|
)

≤max
k≥m

|Sk|
k

m→∞−→ 0.

Therefore,

lim
n→∞

(
1

n
max
k=1,...,n

Sk

)

= lim
n→∞

(
1

n
min

k=1,...,n
Sk

)

= 0.

Now Rn ≤ 1+ (maxk=1,...,n Sk)− (mink=1,...,n Sk); hence 1
n
Rn

n→∞−→ 0. By The-
orem 20.19, this implies P[A] = 0.

Step 2. Define σn := inf{m ∈ N : Sm+n = Sn}, Bn := {σn <∞} for n ∈ N0 and
B :=⋂∞

n=0Bn.
Since {σ0 =∞} = A, we have P[σ0 <∞] = 1. By stationarity, P[σn <∞] = 1

for every n ∈N0; hence P[B] = 1.
Let τ0 = 0 and inductively define τn+1 = τn+στn for n ∈N0. Then τn is the time

of the nth return of S to 0. On B we have τn <∞ for every n ∈N0 and hence

P[Sn = 0 infinitely often] = P[τn <∞ for all n ∈N] ≥ P[B] = 1. �

If in Theorem 20.20 the random variables Xn are not integer-valued, then there
is no hope that Sn = 0 for any n ∈ N with positive probability. On the other hand,

in this case, there is also some kind of recurrence property, namely Sn/n
n→∞−→ 0

almost surely by the ergodic theorem. Note, however, that this does not exclude the

possibility that Sn
n→∞−→ ∞ with positive probability; for instance, if Sn grows like√

n. The next theorem shows that if theXn are integrable, then the process of partial
sums can go to infinity only with a linear speed.

Theorem 20.21 Let (Xn)n∈N be an integrable ergodic process and define Sn =
X1 + . . .+Xn for n ∈N0. Then the following statements are equivalent.

(i) Sn
n→∞−→ ∞ almost surely.

(ii) P[Sn n→∞−→ ∞]> 0.
(iii) limn→∞ Sn

n
= E[X1]> 0 almost surely.

If the random variables X1,X2, . . . are i.i.d. with E[X1] = 0 and P[X1 = 0] < 1,
then lim infn→∞ Sn =−∞ and lim supn→∞ Sn =∞ almost surely.

Proof “(i)⇐⇒ (ii)” Clearly, {Sn n→∞−→ ∞} is an invariant event and thus has proba-
bility either 0 or 1.

“(iii)=⇒(i)” This is trivial.
“(i)=⇒(iii)” The equality follows by the individual ergodic theorem. Hence, it is

enough to show that lim infn→∞ Sn/n > 0 almost surely.
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For n ∈N0 and ε > 0, let

Aεn := {Sm > Sn + ε for all m≥ n+ 1}.
Let S− := inf{Sn : n ∈ N0}. By assumption (i), we have S− > −∞ almost surely
and τ := sup{n ∈ N0 : Sn = S−} is finite almost surely. Hence there is an N ∈ N

with P[τ < N ] ≥ 1
2 . Therefore,

P

[
N−1⋃

n=0

A0
n

]

= P[τ < N] ≥ 1

2
.

Since Aεn ↑A0
n for ε ↓ 0, there is an ε > 0 with p := P[Aε0] ≥ 1

4N > 0. As (Xn)n∈N
is ergodic, (1Aεn)n∈N0 is also ergodic. By the individual ergodic theorem, we con-

clude that 1
n

∑n−1
i=0 1Aεn

n→∞−→ p almost surely. Hence there exists an n0 = n0(ω) such

that
∑n−1
i=0 1Aεn ≥ pn

2 for all n ≥ n0. This implies Sn ≥ pnε
2 for n ≥ n0 and hence

lim infn→∞ Sn/n≥ pnε
2 > 0.

The additional statement follows since lim infSn and lim supSn cannot as-
sume any finite value and are thus measurable with respect to the tail σ -algebra,
which implies that they are constantly −∞ or +∞. By what we have shown, we

can exclude Sn
n→∞−→ ∞; hence we have lim infn→∞ Sn = −∞. Similarly, we get

lim supn→∞ Sn =∞. �

Remark 20.22 It can be shown that Theorem 20.21 holds also without the assump-
tion that the Xn are integrable. See [94]. ♦

20.5 Mixing

Ergodicity provides a weak notion of “independence” or “mixing”. At the other end
of the scale, the strongest notion is “i.i.d.”. Here we are concerned with notions of
mixing that lie between these two.

In the following, we always assume that (Ω,A,P, τ ) is a measure-preserving
dynamical system and that Xn :=X0 ◦ τn. We start with a simple observation.

Theorem 20.23 (Ω,A,P, τ ) is ergodic if and only if, for all A,B ∈A,

lim
n→∞

1

n

n−1∑

k=0

P
[
A∩ τ−k(B)]= P[A]P[B]. (20.7)

Proof “=⇒” Let (Ω,A,P, τ ) be ergodic. Define

Yn := 1

n

n−1∑

k=0

1τ−k(B) =
1

n

n−1∑

k=0

1B ◦ τ k.
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By Birkhoff’s ergodic theorem, we have Yn
n→∞−→ P[B] almost surely. Hence

Yn1A
n→∞−→ 1AP[B] almost surely. Dominated convergence yields

1

n

n−1∑

k=0

P
[
A∩ τ−k(B)]= E[Yn1A] n→∞−→ E

[
1AP[B]]= P[A]P[B].

“⇐=” Now assume that (20.7) holds. Let A ∈ I (recall that I is the invariant
σ -algebra) and B = A. Evidently, A ∩ τ−k(A) = A for every k ∈ N0. Hence, by
(20.7),

P[A] = 1

n

n−1∑

k=0

P
[
A∩ τ−k(A)] n→∞−→ P[A]2.

Thus P[A] ∈ {0,1}; hence I is trivial and therefore τ is ergodic. �

We consider a strengthening of (20.7).

Definition 20.24 A measure-preserving dynamical system (Ω,A,P, τ ) is called
mixing if

lim
n→∞P

[
A∩ τ−n(B)]= P[A]P[B] for all A,B ∈A. (20.8)

Remark 20.25 Sometimes the mixing property of (20.8) is called strongly mixing,
in contrast with a weakly mixing system (Ω,A,P, τ ), for which we require only

lim
n→∞

1

n

n−1∑

i=0

∣
∣P
[
A∩ τ−i (B)]− P[A]P[B]∣∣= 0 for all A,B ∈A.

“Strongly mixing” implies “weakly mixing” (see Exercise 20.5.1). On the other
hand, there exist weakly mixing systems that are not strongly mixing (see [81]). ♦

Example 20.26 Let I = N0 or I = Z, and let (Xn)n∈I be an i.i.d. sequence with
values in the measurable space (E,E). Hence τ is the shift on the product space
Ω = EI ,P = (PX0)

⊗I . Let A,B ∈ E⊗I . For every ε > 0, there exist events Aε

and Bε that depend on only finitely many coordinates and such that P[A�Aε]< ε
and P[B�Bε] < ε. Clearly, P[τ−n(A�Aε)] < ε and P[τ−n(B�Bε)] < ε for ev-
ery n ∈ Z. For sufficiently large |n|, the sets Aε and τ−n(Bε) depend on different
coordinates and are thus independent. This implies

lim sup
|n|→∞

∣
∣P
[
A∩ τ−n(B)]− P[A]P[B]∣∣

≤ lim sup
|n|→∞

∣
∣P
[
Aε ∩ τ−n(Bε)]− P

[
Aε
]
P
[
Bε
]∣
∣+ 4ε = 4ε.
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Hence τ is mixing. Letting A= B ∈ I , we obtain the 0–1 law for invariant events:
P[A] ∈ {0,1}. ♦

Remark 20.27 Clearly, (20.8) implies (20.7) and hence “mixing” implies “ergodic”.
The converse implication is false. ♦

Example 20.28 Let Ω = [0,1),A= B([0,1)) and let P= λ be the Lebesgue mea-
sure on ([0,1),B([0,1))). For r ∈ [0,1), define τr :Ω→Ω by

τr (x)= x + r − �x + r� = x + r (mod 1).

If r is irrational, then τr is ergodic (Example 20.9). However, τr is not mixing:
Since r is irrational, there exists a sequence kn ↑∞ such that

τ knr (0) ∈
(

1

4
,

3

4

)

for n ∈N.

Hence, for A= [0, 1
4 ], we have A∩ τ−knr (A)= ∅. Therefore,

lim inf
n→∞ P

[
A∩ τ−nr (A)

]= 0 �= 1

16
= P[A]2. ♦

Theorem 20.29 Let X be an irreducible, positive recurrent Markov chain on the
countable spaceE and let π be its invariant distribution. Let Pπ =∑x∈E π(x)Px .
Then:

(i) X is ergodic (on (Ω,A,Pπ )).
(ii) X is mixing if and only if X is aperiodic.

Proof (i) This has been shown already in Example 20.17.
(ii) As X is irreducible, by Theorem 17.51, we have π({x}) > 0 for every x ∈E.
“=⇒” Let X be periodic with period d ≥ 2. If n ∈N is not a multiple of d , then

pn(x, x)= 0. Hence, for A= B = {X0 = x},

lim inf
n→∞ Pπ [X0 = x,Xn = x] = lim inf

n→∞ π
({x})pn(x, x)

= 0 �= π({x})2 = Pπ [X0 = x]2.

Thus X is not mixing.
“⇐=” Let X be aperiodic. In order to simplify the notation, we may assume

that X is the canonical process on EN0 . Let A,B ⊂Ω = EN0 be measurable. For
every ε > 0, there exists an N ∈ N and a Ãε ∈ E{0,...,N} such that, letting Aε =
Ãε × E{N+1,N+2,...}, we have P[A�Aε] < ε. By the Markov property, for every
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n≥N ,

Pπ
[
Aε ∩ τ−n(B)]= Pπ

[
(X0, . . . ,XN) ∈ Ãε, (Xn,Xn+1, . . .) ∈ B

]

=
∑

x,y∈E
Eπ
[
1Aε1{XN=x}1{Xn=y}(Xn,Xn+1, . . .) ∈ B

]

=
∑

x,y∈E
Eπ [1Aε1{XN=x}]pn−N(x, y)Py[B].

By Theorem 18.13, we have pn−N(x, y) n→∞−→ π({y}) for all x, y ∈E. (For peri-
odic X, this is false.) Dominated convergence thus yields

lim
n→∞Pπ

[
Aε ∩ τ−n(B)]=

∑

x,y∈E
Eπ [1Aε1{XN=x}]π

({y})Py[B]

= Pπ
[
Aε
]
Pπ [B].

Since |Pπ [Aε ∩ τ−n(B)] −P[A∩ τ−n(B)]|< ε, the statement follows by letting
ε→ 0. �

Exercise 20.5.1 Show that “strongly mixing” implies “weakly mixing”, which in
turn implies “ergodic”. Give an example of a measure-preserving dynamical system
that is ergodic but not weakly mixing.

20.6 Entropy

The entropy H(P) of a probability distribution P (see Definition 5.25) measures the
amount of randomness in this distribution. In fact, the entropy of a delta distribution
is zero and for a distribution on n points, the maximal entropy is achieved by the
uniform distribution and equals log(n) (see Exercise 5.3.3). It is natural to use the
entropy in order to quantify also the randomness of a dynamical system.

First we consider the situation of a simple shift: LetΩ =EN0 , where E is a finite
set equipped with the product σ -algebra A= (2E)⊗N0 . Let τ be the shift on Ω and
let P be an invariant probability measure. For n ∈N, denote by Pn the projection of
P on En =E{0,...,n−1}; that is,

Pn
({
(e0, . . . , en−1)

})= P
[{e0} × . . .× {en−1} ×E{n,n+1,...}].

Denote by hn the entropy of Pn. By Exercise 5.3.4, the entropy is subadditive:

hm+n ≤ hm + hn for m,n ∈N.

Hence the following limit exists (see Exercise 20.6.2)

h := h(P, τ ) := lim
n→∞

1

n
hn = inf

n∈N
1

n
hn.
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Definition 20.30 (Entropy of the simple shift) h(P, τ ) is called the entropy of the
dynamical system (Ω,A,P, τ ).

Example 20.31 Assume that P is a product measure with marginals π on E. Then

h=H(π)=−
∑

e∈E
π
({e}) log

(
π
({e})).

♦

Example 20.32 (Markov chain) Let (Xn)n∈N0 be a Markov chain on E with transi-
tion matrix P and stationary distribution π . Let (Ω,A,P, τ ) be the corresponding
dynamical system. For x = (x0, . . . , xn−1) and 0≤ k < n− 1, let

p(k, x)= π({xk}
)
P(xk, xk+1) . . . P (xn−2, xn−1).

Then the entropy of Pn is (using stationarity of π in the third line)

H(Pn)=−
∑

x0,...,xn−1∈E
p(0, x) log

(
p(0, x)

)

=−
∑

x0,...,xn−1∈E
p(0, x)

[

log
(
π
({x0}

))+
n−2∑

k=0

log
(
P(xk, xk+1)

)
]

=H(π)−
n−2∑

k=0

∑

xk,...,xn−1

p(k, x) log
(
P(xk, xk+1)

)

=H(π)− (n− 1)
∑

x0,x1∈E
π
({x0}

)
P(x0, x1) log

(
P(x0, x1)

)
.

We infer that the entropy of the dynamical system is

h(P, τ )=−
∑

x,y∈E
π
({x})P(x, y) log

(
P(x, y)

)
. (20.9)

♦

Example 20.33 (Integer rotation) Consider the rotation of Example 20.8. Let n ∈
N \ {1}, E = Z/(n) and let P be the uniform distribution on Ω . Let r ∈ {1, . . . , n}
and

τ :Ω→Ω, x �→ x + r (mod n).

Clearly, τ (n) is the identity map, hence hn = h2n = . . . and thus h(P, τ )= 0. ♦

We now come to the situation of the general dynamical system. Let P be a finite
measurable partition of Ω ; that is, P = {A1, . . . ,Ak} for certain pairwise disjoint
non-empty sets A1, . . . ,Ak ∈A withΩ =A1∪ . . .∪Ak . Denote by Pn the partition
that is generated by the sets

⋂n−1
l=0 τ

−l (Ail ), i1, . . . , in ∈ {1, . . . , k}. We define

hn(P, τ ;P)=−
∑

A∈Pn
P[A] log

(
P[A]).
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Similarly as in the simple shift case, we obtain the subadditivity of (hn) and thus
the existence of

h(P, τ ;P) := lim
n→∞

1

n
hn(P, τ ;P)= inf

n∈N
1

n
hn(P, τ ;P).

Definition 20.34 (Kolmogorov–Sinai entropy) The entropy of a (general) measure-
preserving dynamical system (Ω,A,P, τ ) is

h(P, τ )= sup
P
h(P, τ ;P),

where the supremum is taken over all finite measurable partitions of Ω .

Theorem 20.35 (Kolmogorov–Sinai) Let P be a generator of A; that is A =
σ(
⋃
n∈N0

τ−n(P)). Then

h(P, τ )= h(P, τ ;P).

Proof See, e.g., [88, Theorem 3.2.18], [167, Theorem 4.17] or [155]. �

The Kolmogorov–Sinai theorem shows that the entropy that was introduced in
Definition 20.30 for simple shifts coincides with the entropy of Definition 20.34;
simply take P = {{e} × EN, e ∈ E} which generates the product σ -algebra on
Ω =EN0 .

Example 20.36 (Rotation) We come back to the rotation of Example 20.9. Let
Ω = [0,1), A = B(Ω), P = λ the Lebesgue measure, r ∈ (0,1) and τr (x) =
x + r (mod 1).

First assume that r is rational. Let P be an arbitrary finite measurable parti-
tion of Ω . Choose n ∈ N such that rn ∈ N0. As in Example 20.33 we obtain
hn(P, τr ;P)= hkn(P, τr ;P) for all k ∈ N, hence h(P, τr ,P)= 0. Concluding, we
get h(P, τr )= 0.

Now assume that r is irrational. Choose the partition P = {[0,1/2), [1/2,1)}.
As r is irrational, it is easy to see that A is generated by

⋃
n∈N0

τ−nr (P). Hence
h(P, τr ) = h(P, τr ,P). In order to compute the latter quantity, we first determine
the cardinality #Pn. To this end, consider the map

φn : [0,1)→{0,1}n

x �→ (1[1/2,1)(x),1[1/2,1)
(
τr(x)

)
, . . . ,1[1/2,1)

(
τn−1
r (x)

))
.

Clearly, we have #φn([0,1)) = #Pn. As x ∈ [0,1) increases, each coordinate
1[1/2,1)(τ kr (x)), k = 1, . . . , n− 1, changes its value exactly twice. Only 1[1/2,1)(x)
changes the value exactly once. Summing up, we get #φn([0,1))≤ 2n. The maximal
entropy of a probability measure onN points is achieved by the uniform distribution
and is log(N). Consequently, hn(P, τr ;P)≤ log(2n). We conclude that

h(P, τr )= h(P, τr ;P)= 0. ♦
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Exercise 20.6.1 Let Ω = [0,1) and τ : x �→ 2x (mod 1). Let P be the Lebesgue
measure on Ω . Determine h(P, τ ).

Exercise 20.6.2 Let (an)n∈N be a sequence on nonnegative numbers. The sequence
is called subadditive, if am+n ≤ am + an for all m,n ∈ N. Show that the limit
limn→∞ an/n exists and that

lim
n→∞

1

n
an = inf

n∈N
1

n
an.



Chapter 21
Brownian Motion

In Example 14.45, we constructed a (canonical) process (Xt )t∈[0,∞) with indepen-
dent stationary normally distributed increments. For example, such a process can
be used to describe the motion of a particle immersed in water or the change of
prices in the stock market. We are now interested in properties of this process X
that cannot be described in terms of finite-dimensional distributions but reflect the
whole path t �→Xt . For example, we want to compute the distribution of the func-
tional F(X) := supt∈[0,1]Xt . The first problem that has to be resolved is to show
that F(X) is a random variable.

In this chapter, we investigate continuity properties of paths of stochastic pro-
cesses and show how they ensure measurability of some path functionals. Then we
construct a version of X that has continuous paths, the so-called Wiener process or
Brownian motion. Without exaggeration, it can be stated that Brownian motion is
the central object of probability theory.

For further reading, we recommend, e.g., [86, 118, 144, 151].

21.1 Continuous Versions

A priori the paths of a canonical process are of course not continuous since every
map [0,∞)→R is possible. Hence, it will be important to find out which paths are
P-almost surely negligible.

Definition 21.1 Let X and Y be stochastic processes on (Ω,A,P) with time set I
and state space E. X and Y are called

(i) modifications or versions of each other if, for any t ∈ I , we have

Xt = Yt P-almost surely,

(ii) indistinguishable if there exists an N ∈A with P[N ] = 0 such that

{Xt �= Yt } ⊂N for all t ∈ I.
A. Klenke, Probability Theory, Universitext, DOI 10.1007/978-1-4471-5361-0_21,
© Springer-Verlag London 2014
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Clearly, indistinguishable processes are modifications of each other. Under cer-
tain assumptions on the continuity of the paths, however, the two notions coincide.

Definition 21.2 Let (E,d) and (E′, d ′) be metric spaces and γ ∈ (0,1]. A map
ϕ : E→ E′ is called Hölder-continuous of order γ (briefly, Hölder-γ -continuous)
at the point r ∈ E if there exist ε > 0 and C <∞ such that, for any s ∈ E with
d(s, r) < ε, we have

d ′
(
ϕ(r),ϕ(s)

)≤ Cd(r, s)γ . (21.1)

ϕ is called locally Hölder-continuous of order γ if, for every t ∈E, there exist ε > 0
and C = C(t, ε) > 0 such that, for all s, r ∈ E with d(s, t) < ε and d(r, t) < ε, the
inequality (21.1) holds. Finally, ϕ is called Hölder-continuous of order γ if there
exists a C such that (21.1) holds for all s, r ∈E.

In the case γ = 1, Hölder continuity is Lipschitz continuity (see Definition 13.8).
Furthermore, for E = R and γ > 1, every locally Hölder-γ -continuous function is
constant. Evidently, a locally Hölder-γ -continuous map is Hölder-γ -continuous at
every point. On the other hand, for a function ϕ that is Hölder-γ -continuous at a
given point t , there need not exist an open neighborhood in which ϕ is continuous.
In particular, ϕ need not be locally Hölder-γ -continuous.

We collect some simple properties of Hölder-continuous functions.

Lemma 21.3 Let I ⊂ R and let f : I → R be locally Hölder-continuous of order
γ ∈ (0,1]. Then the following statements hold.

(i) f is locally Hölder-continuous of order γ ′ for every γ ′ ∈ (0, γ ).
(ii) If I is compact, then f is Hölder-continuous.

(iii) Let I be a bounded interval of length T > 0. Assume that there exists an ε > 0
and an C(ε) <∞ such that, for all s, t ∈ I with |t − s| ≤ ε, we have

∣
∣f (t)− f (s)∣∣≤ C(ε)|t − s|γ .

Then f is Hölder-continuous of order γ with constant C := C(ε)�T/ε�1−γ .

Proof (i) This is obvious since |t − s|γ ≤ |t − s|γ ′ for all s, t ∈ I with |t − s| ≤ 1.

(ii) For t ∈ I and ε > 0, let Uε(t) := {s ∈ I : |s − t |< ε}. For every t ∈ I , choose
ε(t) > 0 and C(t) <∞ such that

∣
∣f (r)− f (s)∣∣≤ C(t) · |r − s|γ for all r, s ∈Ut :=Uε(t)(t).

There exists a finite subcovering U′ = {Ut1, . . . ,Utn} of the covering U := {Ut , t ∈ I }
of I . Let � > 0 be a Lebesgue number of the covering U′; that is, � > 0 is such that,
for every t ∈ I , there exists a U ∈ U such that U�(t)⊂U . Define

C :=max
{
C(t1), . . . ,C(tn),2‖f ‖∞�−γ

}
.
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For s, t ∈ I with |t−s|< �, there is an i ∈ {1, . . . , n}with s, t ∈Uti . By assumption,
we have |f (t)−f (s)| ≤ C(ti)|t− s|γ ≤ C|t− s|γ . Now let s, t ∈ I with |s− t | ≥ �.
Then

∣
∣f (t)− f (s)∣∣≤ 2‖f ‖∞

( |t − s|
�

)γ
≤ C|t − s|γ .

Hence f is Hölder-continuous of order γ with constant C.
(iii) Let n= �T

ε
�. For s, t ∈ I , by assumption, |t−s|

n
≤ ε and thus

∣
∣f (t)− f (s)∣∣≤

n∑

k=1

∣
∣
∣
∣f

(

s + (t − s) k
n

)

− f
(

s + (t − s)k − 1

n

)∣
∣
∣
∣

≤ C(ε)n1−γ |t − s|γ = C|t − s|γ . �

Definition 21.4 (Path properties) Let I ⊂R and let X = (Xt , t ∈ I ) be a stochastic
process on some probability space (Ω,A,P) with values in a metric space (E,d).
Let γ ∈ (0,1]. For every ω ∈Ω , we say that the map I → E, t �→Xt(ω) is a path
of X.

We say that X has almost surely continuous paths, or briefly that X is a.s. con-
tinuous, if for almost all ω ∈Ω , the path t �→ Xt(ω) is continuous. Similarly, we
define locally Hölder-γ -continuous paths and so on.

Lemma 21.5 Let X and Y be modifications of each other. Assume that one of the
following conditions holds.

(i) I is countable.
(ii) I ⊂ R is a (possibly unbounded) interval and X and Y are almost surely right

continuous.

Then X and Y are indistinguishable.

Proof Define Nt := {Xt �= Yt } for t ∈ I and N̄ = ⋃t∈I Nt . By assumption,
P[Nt ] = 0 for every t ∈ I . We have to show that there exists an N ∈A with N̄ ⊂N
and P[N ] = 0.

(i) If I is countable, then N := N̄ is measurable and P[N ] ≤∑t∈I P[Nt ] = 0.
(ii) Now let I ⊂R be an interval and let X and Y be almost surely right continu-

ous. Define

R̄ := {X and Y are right continuous}
and choose an R ∈A with R ⊂ R̄ and P[R] = 1. Define

Ĩ :=
{
Q∩ I, if I is open to the right,

(Q∩ I )∪max I, if I is closed to the right,
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and Ñ :=⋃r∈Ĩ Nr . By (i), we have P[Ñ ] = 0. Furthermore, for every t ∈ I ,

Nt ∩R ⊂
⋃

r≥t,r∈Ĩ
(Nr ∩R)⊂ Ñ .

Hence

N̄ ⊂Rc ∪
⋃

t∈I
Nt ⊂Rc ∪ Ñ =:N,

and thus P[N ] ≤ P[Rc] + P[Ñ ] = 0. �

We come to the main theorem of this section.

Theorem 21.6 (Kolmogorov–Chentsov) Let X = (Xt , t ∈ [0,∞)) be a real-
valued process. Assume for every T > 0, there are numbers α,β,C > 0 such that

E
[|Xt −Xs |α

]≤C|t − s|1+β for all s, t ∈ [0, T ]. (21.2)

Then the following statements hold.

(i) There is a modification X̃ = (X̃t , t ∈ [0,∞)) of X whose paths are locally
Hölder-continuous of every order γ ∈ (0, β

α

)
.

(ii) Let γ ∈ (0, β
α

)
. For every ε > 0 and T <∞, there exists a number K <∞

that depends only on ε,T ,α,β,C,γ such that

P
[|X̃t − X̃s | ≤K|t − s|γ , s, t ∈ [0, T ]

]≥ 1− ε. (21.3)

Proof (i) It is enough to show that, for any T > 0, the process X on [0, T ] has a
modification XT that is locally Hölder-continuous of any order γ ∈ (0, β/α). For
S,T > 0, by Lemma 21.5, two such modifications XS and XT are indistinguishable
on [0, S ∧ T ]; hence

ΩS,T :=
{
there is a t ∈ [0, S ∧ T ] with XTt �=XSt

}

is a null set and thus also Ω∞ := ⋃S,T ∈NΩS,T is a null set. Therefore, defin-

ing X̃t (ω) := Xtt (ω), t ≥ 0, for ω ∈ Ω \ Ω∞, we get that X̃ is a locally Hölder-
continuous modification of X on [0,∞).

Without loss of generality, assume T = 1. We show that X has a continuous
modification on [0,1]. By Chebyshev’s inequality, for every ε > 0,

P
[|Xt −Xs | ≥ ε

]≤ Cε−α|t − s|1+β. (21.4)

Hence

Xs
s→t−→Xt in probability. (21.5)

The idea is first to construct X̃ on the dyadic rational numbers and then to extend
it continuously to [0,1]. To this end, we will need (21.5). In particular, for γ > 0,
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n ∈N and k ∈ {1, . . . ,2n}, we have

P
[|Xk2−n −X(k−1)2−n | ≥ 2−γ n

]≤ C2−n(1+β−αγ ).

Define

An =An(γ ) :=
{
max
{|Xk2−n −X(k−1)2−n |, k ∈

{
1, . . . ,2n

}}≥ 2−γ n
}

and

Bn :=
∞⋃

m=n
Am and N := lim sup

n→∞
An =

∞⋂

n=1

Bn.

It follows that, for every n ∈N,

P[An] ≤
2n∑

k=1

P
[|Xk2−n −X(k−1)2−n | ≥ 2−γ n

]≤ C2−n(β−αγ ).

Now fix γ ∈ (0, β/α) to obtain

P[Bn] ≤
∞∑

m=n
P[Am] ≤C 2−(β−αγ )n

1− 2αγ−β
n→∞−→ 0, (21.6)

hence P[N ] = 0. Now fix ω ∈ Ω \ N and choose n0 = n0(ω) such that ω �∈⋃∞
n=n0

An. Hence

∣
∣Xk2−n(ω)−X(k−1)2−n(ω)

∣
∣< 2−γ n for k ∈ {1, . . . ,2n}, n≥ n0. (21.7)

Define the sets of finite dyadic rationals Dm = {k2−m,k = 0, . . . ,2m}, and let D =⋃
m∈NDm. Any t ∈Dm has a unique dyadic expansion

t =
m∑

i=0

bi(t)2
−i for some bi(t) ∈ {0,1}, i = 0, . . . ,m.

Let m≥ n≥ n0 and s, t ∈Dm, s ≤ t with |s − t | ≤ 2−n. Let u :=max(Dn ∩ [0, s]).
Then

u≤ s < u+ 2−n and u≤ t < u+ 21−n

and hence bi(t − u)= bi(s − u)= 0 for i < n. Define

tl = u+
l∑

i=n
bi(t − u)2−i for l = n− 1, . . . ,m.

Then, we have tn−1 = u and tm = t . Furthermore, tl ∈Dl for l = n, . . . ,m and

tl − tl−1 ≤ 2−l for l = n, . . . ,m.
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Hence, by (21.7),

∣
∣Xt(ω)−Xu(ω)

∣
∣≤

m∑

l=n

∣
∣Xtl (ω)−Xtl−1(ω)

∣
∣≤

m∑

l=n
2−γ l ≤ 2−γ n

1− 2−γ
.

Analogously, we obtain |Xs(ω)−Xu(ω)| ≤ 2−γ n(1− 2−γ )−1, and thus

∣
∣Xt(ω)−Xs(ω)

∣
∣≤ 2

2−γ n

1− 2−γ
. (21.8)

Define C0 = 21+γ (1− 2−γ )−1 <∞. Let s, t ∈D with |s− t | ≤ 2−n0 . By choos-
ing the minimal n≥ n0 such that |t − s| ≥ 2−n, we obtain by (21.8),

∣
∣Xt(ω)−Xs(ω)

∣
∣≤C0|t − s|γ . (21.9)

As in the proof of Lemma 21.3(iii), we infer (with K := C02(1−γ )n0 )

∣
∣Xt(ω)−Xs(ω)

∣
∣≤K|t − s|γ for all s, t ∈D. (21.10)

In other words, for dyadic rationals D, X(ω) is (globally) Hölder-γ -continuous. In
particular, X is uniformly continuous on D; hence it can be extended to [0,1]. For
t ∈ D, define X̃t := Xt . For t ∈ [0,1] \D and {sn, n ∈ N} ⊂ D with sn −→ t , the
sequence (Xsn(ω))n∈N is a Cauchy sequence. Hence the limit

X̃t (ω) := lim
D�s→t Xs(ω) (21.11)

exists. Furthermore, the statement analogous to (21.10) holds not only for s, t ∈D:

∣
∣X̃t (ω)− X̃s(ω)

∣
∣≤K|t − s|γ for all s, t ∈ [0,1]. (21.12)

Hence X̃ is locally Hölder-continuous of order γ . By (21.5) and (21.11), we have
P[Xt �= X̃t ] = 0 for every t ∈ [0,1]. Hence X̃ is a modification of X.

(ii) Let ε > 0 and choose n ∈N large enough that (see (21.6))

P[Bn] ≤ C 2−(β−αγ )n

1− 2αγ−β
< ε.

For ω �∈ Bn, we conclude that (21.10) holds. However, this is exactly (21.3) with
T = 1. For general T , the claim follows by linear scaling. �

Remark 21.7 The statement of Theorem 21.6 remains true if X assumes values in
some Polish space (E,�) since in the proof we did not make use of the assumption
that the range was in R. However, if we change the time set, then the assumptions
have to be strengthened: If (Xt )t∈Rd is a process with values in E, and if, for certain
α,β > 0, all T > 0 and some C <∞, we have
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E
[
�(Xt ,Xs)

α
]≤ C‖t − s‖d+β2 for all s, t ∈ [−T ,T ]d, (21.13)

then for every γ ∈ (0, β/α), there is a locally Hölder-γ -continuous version of X. ♦

Exercise 21.1.1 Show the claim of Remark 21.7.

Exercise 21.1.2 Let X = (Xt )t≥0 be a real-valued process with continuous paths.
Show that, for all 0≤ a < b, the map ω �→ ∫ b

a
Xt (ω)dt is measurable.

Exercise 21.1.3 (Optional sampling/stopping) Let F be a filtration and let (Xt )t≥0
be an F-supermartingale with right continuous paths. Let σ and τ be bounded stop-
ping times with σ ≤ τ . Define σn := 2−n�2nσ� and τn := 2−n�2nτ�.

(i) Show that E[Xτm | Fσn] n→∞−→ E[Xτm | Fσ ] almost surely and in L1 as well as

Xσn
n→∞−→ Xσ almost surely and in L1.

(ii) Infer the optional sampling theorem for right continuous supermartingales by
using the analogous statement for discrete time (Theorem 10.11); that is, Xσ ≥
E[Xτ |Fσ ].

(iii) Show that if Y is adapted, integrable and right continuous, then Y is a martin-
gale if and only if E[Yτ ] = E[Y0] for every bounded stopping time τ .

(iv) Assume thatX is uniformly integrable and that σ ≤ τ are finite (not necessarily
bounded) stopping times. Show that Xσ ≥ E[Xτ |Fσ ].

(v) Now let τ be an arbitrary stopping time. Deduce the optional stopping theorem
for right continuous supermartingales: (Xτ∧t )t≥0 is a right continuous super-
martingale.

Exercise 21.1.4 Let X = (Xt )t≥0 be a stochastic process on (Ω,F,P) with values
in the Polish space E and with right continuous paths. Show the following.

(i) The map (ω, t) �→Xt(ω) is measurable with respect to F⊗B([0,∞)) – B(E).
(ii) If in addition X is adapted to the filtration F, then for any t ≥ 0, the map

Ω × [0, t]→E, (ω, s) �→Xs(ω) is Ft ⊗B([0, t]) – B(E) measurable.
(iii) If τ is an F-stopping time and X is adapted, then Xτ is an Fτ -measurable

random variable.

21.2 Construction and Path Properties

Definition 21.8 A real-valued stochastic process B = (Bt , t ∈ [0,∞)) is called a
Brownian motion if

(i) B0 = 0,
(ii) B has independent, stationary increments (compare Definition 9.7),

(iii) Bt ∼N0,t for all t > 0, and
(iv) t �→ Bt is P-almost surely continuous.
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Fig. 21.1 Computer simulation of a Brownian motion

See Fig. 21.1 for a computer simulation of a Brownian motion.

Theorem 21.9 There exists a probability space (Ω,A,P) and a Brownian motion
B on (Ω,A,P). The paths of B are a.s. locally Hölder-γ -continuous for every
γ < 1

2 .

Proof As in Example 14.45 or Corollary 16.10 there exists a stochastic process

X that fulfills (i), (ii) and (iii). Evidently, Xt − Xs D= √t − sX1 ∼ N0,t−s for all
t > s ≥ 0. Thus, for every n ∈N, writing Cn := E[X2n

1 ] = (2n)!
2nn! <∞, we have

E
[
(Xt −Xs)2n

]= E
[
(
√
t − sX1)

2n]= Cn|t − s|n.
Now let n≥ 2 and γ ∈ (0, n−1

2n ). Theorem 21.6 yields the existence of a version B
of X that has Hölder-γ -continuous paths. Since all continuous versions of a process
are equivalent, B is locally Hölder-γ -continuous for every γ ∈ (0, n−1

2n ) and every
n≥ 2 and hence for every γ ∈ (0, 1

2 ). �

Recall that a stochastic process (Xt )t∈I is called a Gaussian process if, for every
n ∈N and for all t1, . . . , tn ∈ I , we have that

(Xt1 , . . . ,Xtn) is n-dimensional normally distributed.

X is called centered if E[Xt ] = 0 for every t ∈ I . The map

Γ (s, t) :=Cov[Xs,Xt ] for s, t ∈ I
is called the covariance function of X.
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Remark 21.10 The covariance function determines the finite-dimensional distribu-
tions of a centered Gaussian process since a multidimensional normal distribution
is determined by the vector of expectations and by the covariance matrix. ♦

Theorem 21.11 Let X = (Xt )t∈[0,∞) be a stochastic process. Then the following
are equivalent:

(i) X is a Brownian motion.
(ii) X is a continuous centered Gaussian process with Cov[Xs,Xt ] = s ∧ t for all

s, t ≥ 0.

Proof By Remark 21.10, X is characterized by (ii). Hence, it is enough to show
that, for Brownian motion X, we have Cov[Xs,Xt ] =min(s, t). This is indeed true
since for t > s, the random variables Xs and Xt −Xs are independent; hence

Cov[Xs,Xt ] =Cov[Xs,Xt −Xs] +Cov[Xs,Xs] =Var[Xs] = s. �

Corollary 21.12 (Scaling property of Brownian motion) If B is a Brownian motion
and if K �= 0, then (K−1BK2t )t≥0 is also a Brownian motion.

Example 21.13 Another example of a continuous Gaussian process is the so-
called Brownian bridge X = (Xt )t∈[0,1] that is defined by the covariance function
Γ (s, t)= s ∧ t − st . We construct the Brownian bridge as follows.

Let B = (Bt , t ∈ [0,1]) be a Brownian motion and let

Xt := Bt − tB1.

Clearly, X is a centered Gaussian process with continuous paths. We compute the
covariance function Γ of X,

Γ (s, t)=Cov[Xs,Xt ] =Cov[Bs − sB1,Bt − tB1]
=Cov[Bs,Bt ] − sCov[B1,Bt ] − tCov[Bs,B1] + stCov[B1,B1]
=min(s, t)− st − st + st =min(s, t)− st. ♦

Theorem 21.14 Let (Bt )t≥0 be a Brownian motion and

Xt =
{
tB1/t , if t > 0,

0, if t = 0.

Then X is a Brownian motion.

Proof Clearly, X is a Gaussian process. For s, t > 0, we have

Cov[Xs,Xt ] = ts ·Cov[B1/s,B1/t ] = tsmin
(
s−1, t−1)=min(s, t).
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Clearly, t �→ Xt is continuous at every point t > 0. To show continuity at t = 0,
consider

lim sup
t↓0

Xt = lim sup
t→∞

1

t
Bt

≤ lim sup
n→∞

1

n
Bn + lim sup

n→∞
1

n
sup
{
Bt −Bn, t ∈ [n,n+ 1]}.

By the strong law of large numbers, we have limn→∞ 1
n
Bn = 0 a.s. Using a gener-

alization of the reflection principle (Theorem 17.15; see also Theorem 21.19), for
x > 0, we have (using the abbreviation B[a,b] := {Bt : t ∈ [a, b]})

P[supB[n,n+1] −Bn > x] = P[supB[0,1] > x] = 2P[B1 > x]

= 2√
2π

∫ ∞

x

e−u2/2 du≤ 1

x
e−x2/2.

In particular,
∑∞
n=1 P[supB[n,n+1] −Bn > nε]<∞ for every ε > 0. By the Borel–

Cantelli lemma (Theorem 2.7), we infer

lim sup
n→∞

1

n
sup
{
Bt −Bn, t ∈ [n,n+ 1]}= 0 almost surely.

Hence X is also continuous at 0. �

Theorem 21.15 (Blumenthal’s 0–1 law, see [18]) Let B be a Brownian motion
and let F = (Ft )t≥0 = σ(B) be the filtration generated by B . Further, let F+

0 =
⋂
t>0 Ft . Then F+

0 is a P-trivial σ -algebra.

Proof Define Yn = (B2−n+t − B2−n)t∈[0,2−n], n ∈ N. Then (Y n)n∈N is an indepen-
dent family of random variables (with values in C([0,2−n])). By Kolmogorov’s 0–1
law (Theorem 2.37), the tail σ -algebra T =⋂n∈N σ(Ym,m≥ n) is P-trivial. On the
other hand, σ(Ym,m≥ n)=F2−n+1 ; hence

F+
0 =

⋂

t>0

Ft =
⋂

n∈N
F2−n+1 = T

is P-trivial. �

Example 21.16 Let B be a Brownian motion. For every K > 0, we have

P
[
inf{t > 0 : Bt ≥K

√
t} = 0

]= 1. (21.14)

To check this, define As := {inf{t > 0 : Bt ≥K√t} ≤ s} and

A := {inf{t > 0 : Bt ≥K
√
t} = 0

}=
⋂

s>0

As ∈F+
0 .
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Then P[A] ∈ {0,1}. By the scaling property of Brownian motion,

P[A] = inf
s>0

P[As] ≥ P[B1 ≥K]> 0

and thus P[A] = 1. ♦

The preceding example shows that, for every t ≥ 0, almost surely B is not
Hölder- 1

2 -continuous at t . Note that the order of quantifiers is subtle. We have not
shown that almost surely B was not Hölder- 1

2 -continuous at any t ≥ 0 (however, see
Remark 22.4). However, it is not too hard to show the following theorem, which for
the case γ = 1 is due to Paley, Wiener and Zygmund [126]. The proof presented
here goes back to an idea of Dvoretzky, Erdös and Kakutani (see [40]).

Theorem 21.17 (Paley–Wiener–Zygmund (1933)) For every γ > 1
2 , almost surely

the paths of Brownian motion (Bt )t≥0 are not Hölder-continuous of order γ at any
point. In particular, the paths are almost surely nowhere differentiable.

Proof Let γ > 1
2 . It suffices to consider B = (Bt )t∈[0,1]. Denote by Hγ,t the set of

maps [0,1]→R that are Hölder-γ -continuous at t and define Hγ :=⋃t∈[0,1]Hγ,t .
The aim is to show that almost surely B �∈Hγ .

If t ∈ [0,1) and w ∈ Hγ,t , then for every δ > 0 there exists a c = c(δ,w) with
the property |ws − wt | ≤ c|s − t |γ for every s ∈ [0,1] with |s − t | < δ. Choose a
k ∈N with k > 2

2γ−1 . Then, for n ∈N with n≥ n0 := �(k+ 1)/δ�, i = �tn�+ 1 and
l ∈ {0, . . . , k − 1}, we get

|w(i+l+1)/n −w(i+l)/n| ≤ |w(i+l+1)/n −wt | + |w(i+l)/n −wt |
≤ 2c(k+ 1)γ n−γ .

Hence, for N ≥ 2c(k + 1)γ , we have w ∈AN,n,i , where

AN,n,i :=
k−1⋂

l=0

{
w : |w(i+l+1)/n −w(i+l)/n| ≤Nn−γ

}
.

Define AN,n =⋃ni=1AN,n,i , AN = lim infn→∞AN,n and A=⋃∞
N=1AN . Clearly,

Hγ ⊂ A. Owing to the independence of increments and since the density of the
standard normal distribution is bounded by 1, we get

P[B ∈AN,n,i] = P
[|B1/n| ≤Nn−γ

]k = P
[|B1| ≤Nn−γ+1/2]k

≤Nknk(−γ+1/2).
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By the choice of k and since the increments of B are stationary, we have

P[B ∈AN ] = lim
n→∞P

[⋂

m≥n
AN,m

]

≤ lim sup
n→∞

P[AN,n] ≤ lim sup
n→∞

n∑

i=1

P[AN,n,i]

≤ lim sup
n→∞

nP[B ∈AN,n,1] ≤Nk lim sup
n→∞

n1+k(−γ+1/2) = 0.

Thus P[B ∈A] = 0. Therefore, we almost surely have B �∈Hγ . �

Exercise 21.2.1 Let B be a Brownian motion and let λ be the Lebesgue measure
on [0,∞).

(i) Compute the expectation and variance of
∫ 1

0 Bs ds. (For the measurability of
the integral see Exercise 21.1.2.)

(ii) Show that almost surely λ({t : Bt = 0})= 0.
(iii) Compute the expectation and variance of

∫ 1

0

(

Bt −
∫ 1

0
Bs ds

)2

dt.

Exercise 21.2.2 Let B be a Brownian motion. Show that (B2
t − t)t≥0 is a martin-

gale.

Exercise 21.2.3 Let B be a Brownian motion and σ > 0. Show that the process

(exp(σBt − σ 2

2 t))t≥0 is a martingale.

Exercise 21.2.4 Let B be a Brownian motion, a < 0< b. Define the stopping time
τa,b = inf{t ≥ 0 : Bt ∈ {a, b}}.

Show that almost surely τa,b <∞ and that P[Bτa,b = b] = − a
b−a . Furthermore,

show (using Exercise 21.2.2) that E[τa,b] = −ab.

Exercise 21.2.5 Let B be a Brownian motion, b > 0 and τb = inf{t ≥ 0 : Bt = b}.
Show the following.

(i) E[e−λτb ] = e−b
√

2λ for λ≥ 0.
Hint: Use Exercise 21.2.3 and the optional sampling theorem.

(ii) τb has a 1
2 -stable distribution with Lévy measure

ν(dx)= (b/(√2π)
)
x−3/21{x>0} dx.

(iii) The distribution of τb has density fb(x)= b√
2π
e−b2/(2x)x−3/2.

Exercise 21.2.6 Let B be a Brownian motion, a ∈ R, b > 0 and τ = inf{t ≥ 0 :
Bt = at + b}. For λ≥ 0, show that
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E
[
e−λτ

]= exp
(−ba − b

√
a2 + 2λ

)
.

Conclude that P[τ <∞]= 1∧ e−2ba .

21.3 Strong Markov Property

Denote by Px the probability measure such that B = (Bt )t≥0 is a Brownian motion
started at x ∈R. To put it differently, under Px , the process (Bt −x)t≥0 is a standard
Brownian motion. While the (simple) Markov property of (B, (Px)x∈R) is evident,
it takes some work to check the strong Markov property.

Theorem 21.18 (Strong Markov property) Brownian motion B with distributions
(Px)x∈R has the strong Markov property.

Proof Let F = σ(B) be the filtration generated by B and let τ <∞ be an F-
stopping time. We have to show that, for every bounded measurable F : R[0,∞)→
R, we have:

Ex
[
F
(
(Bt+τ )t≥0

) ∣
∣Fτ
]= EBτ

[
F(B)

]
. (21.15)

It is enough to consider continuous bounded functions F that depend on only
finitely many coordinates t1, . . . , tN since these functions determine the distri-
bution of (Bt+τ )t≥0. Hence, let f : RN → R be continuous and bounded and
F(B)= f (Bt1 , . . . ,BtN ). Manifestly, the map x �→ Ex[F(B)] = E0[f (Bt1 +x, . . . ,
BtN + x)] is continuous and bounded. Now let τn := 2−n�2nτ + 1� for n ∈N. Then

τn is a stopping time and τn ↓ τ ; hence Bτn
n→∞−→ Bτ almost surely. Now every

Markov process with countable time set (here all positive rational linear combina-
tions of 1, t1, . . . , tN ) is a strong Markov process (by Theorem 17.14); hence we
have

Ex
[
F
(
(Bτn+t )t≥0

) ∣
∣Fτn

]= Ex
[
f (Bτn+t1, . . . ,Bτn+tN )

∣
∣Fτn

]

= EBτn
[
f (Bt1 , . . . ,BtN )

]

n→∞−→ EBτ
[
f (Bt1 , . . . ,BtN )

]= EBτ
[
F(B)

]
. (21.16)

As B is right continuous, we have F((Bτn+t )t≥0)
n→∞−→ F((Bτ+t )t≥0) almost

surely and in L1 and thus

E
[∣
∣Ex
[
F
(
(Bτn+t )t≥0

)∣
∣Fτn

]−Ex
[
F
(
(Bτ+t )t≥0

)∣
∣Fτn

]∣
∣
]

≤ Ex
[∣
∣F
(
(Bτn+t )t≥0

)− F ((Bτ+t )t≥0
)∣
∣
] n→∞−→ 0. (21.17)

Furthermore,

Fτn ↓Fτ+ :=
⋂

σ>τ is a stopping time

Fσ ⊃Fτ .
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By (21.16) and (21.17), using the convergence theorem for backwards martingales
(Theorem 12.14), we get that in the sense of L1-limits

EBτ
[
F(B)

]= lim
n→∞Ex

[
F
(
(Bτn+t )t≥0

) ∣
∣Fτn

]

= lim
n→∞Ex

[
F
(
(Bτ+t )t≥0

) ∣
∣Fτn

]= Ex
[
F
(
(Bτ+t )t≥0

) ∣
∣Fτ+

]
.

The left-hand side is Fτ -measurable. The tower property of conditional expectation
thus yields (21.15). �

Using the strong Markov property, we show the reflection principle for Brownian
motion.

Theorem 21.19 (Reflection principle for Brownian motion) For every a > 0 and
T > 0,

P
[
sup
{
Bt : t ∈ [0, T ]

}
> a
]= 2P[BT > a] ≤ 2

√
T√

2π

1

a
e−a2/2T .

Proof By the scaling property of Brownian motion (Corollary 21.12), without loss
of generality, we may assume T = 1. Let τ := inf{t ≥ 0 : Bt ≥ a}∧1. By symmetry,
we have Pa[B1−τ > a] = 1

2 if τ < 1; hence

P[B1 > a] = P[B1 > a | τ < 1]P[τ < 1]

= Pa[B1−τ > a]P[τ < 1] = 1

2
P[τ < 1].

For the inequality compute

P[B1 > a] = 1√
2π

∫ ∞

a

e−x2/2 dx

≤ 1√
2π

1

a

∫ ∞

a

xe−x2/2 dx = 1√
2π

1

a
e−a2/2. �

As an application of the reflection principle we derive Paul Lévy’s arcsine law
[107, p. 216] for the last time a Brownian motion visits zero.

Theorem 21.20 (Lévy’s arcsine law) Let T > 0 and ζT := sup{t ≤ T : Bt = 0}.
Then, for t ∈ [0, T ],

P[ζT ≤ t] = 2

π
arcsin(

√
t/T ).
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Proof Without loss of generality, assume T = 1 and ζ = ζ1. Let B̃ be a further,
independent Brownian motion. By the reflection principle,

P[ζ ≤ t] = P
[
Bs �= 0 for all s ∈ [t,1]]

=
∫ ∞

−∞
P
[
Bs �= 0 for all s ∈ [t,1] ∣∣ Bt = a

]
P[Bt ∈ da]

=
∫ ∞

−∞
P|a|
[
B̃s > 0 for all s ∈ [0,1− t]]P[Bt ∈ da]

=
∫ ∞

−∞
P0
[|B̃1−t | ≤ |a|

]
P[Bt ∈ da]

= P
[|B̃1−t | ≤ |Bt |

]
.

If X and Y are independent and N0,1-distributed, then

(Bt , B̃1−t )
D= (√tX,√1− tY ).

Hence

P[ζ ≤ t] = P
[√

1− t |Y | ≤ √t |X|]

= P
[
Y 2 ≤ t(X2 + Y 2)]

= 1

2π

∫ ∞

−∞
dx

∫ ∞

−∞
dy e−(x2+y2)/21{y2≤t (x2+y2)}.

Passing to polar coordinates, we obtain

P[ζ ≤ t] = 1

2π

∫ ∞

0
r dr e−r2/2

∫ 2π

0
dϕ 1{sin(ϕ)2≤t} =

2

π
arcsin(

√
t). �

Exercise 21.3.1 (Hard problem!) Let Px be the distribution of Brownian motion
started at x ∈ R. Let a > 0 and τ = inf{t ≥ 0 : Bt ∈ {0, a}}. Use the reflection prin-
ciple to show that, for every x ∈ (0, a),

Px[τ > T ] =
∞∑

n=−∞
(−1)nPx

[
BT ∈

[
na, (n+ 1)a

]]
. (21.18)

If f is the density of a probability distribution on R with characteristic function ϕ
and supx∈R x2f (x) <∞, then the Poisson summation formula holds,

∞∑

n=−∞
f (s + n)=

∞∑

k=−∞
ϕ(k)e2πis for all s ∈R. (21.19)
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Use (21.18) and (21.19) (compare also (21.37)) to conclude that

Px[τ > T ] = 4

π

∞∑

k=0

1

2k+ 1
exp

(

− (2k + 1)2π2T

2a2

)

sin

(
(2k+ 1)πx

a

)

. (21.20)

21.4 Supplement: Feller Processes

In many situations, a continuous version of a process would be too much to expect,
for instance, the Poisson process is generically discontinuous. However, often there
is a version with right continuous paths that have left-sided limits. At this point,
we only briefly make plausible the existence theorem for such regular versions of
processes in the case of so-called Feller semigroups.

Definition 21.21 Let E be a Polish space. A map f : [0,∞)→ E is called RCLL
(right continuous with left limits) or càdlàg (continue à droit, limites à gauche) if
f (t) = f (t+) := lims↓t f (s) for every t ≥ 0 and if, for every t > 0, the left-sided
limit f (t−) := lims↑t f (s) exists and is finite.

Definition 21.22 A filtration F = (Ft )t≥0 is called right continuous if F = F
+,

where F+
t =

⋂
s>t Fs . We say that a filtration F satisfies the usual conditions (from

the French conditions habituelles) if F is right continuous and if F0 is P-complete.

Remark 21.23 If F is an arbitrary filtration and F+,∗
t is the completion of F+

t , then
F
+,∗ satisfies the usual conditions. ♦

Theorem 21.24 (Doob’s regularization) Let F be a filtration that satisfies the usual
conditions and let X = (Xt )t≥0 be an F-supermartingale such that t �→ E[Xt ] is
right continuous. Then there exists a modification X̃ of X with RCLL paths.

Proof For a, b ∈Q
+, a < b and I ⊂ [0,∞), let Ua,bI be the number of upcrossings

of (Xt )t∈I over [a, b]. By the upcrossing inequality (Lemma 11.3), for every N > 0
and every finite set I ⊂ [0,N ], we have E[Ua,bI ] ≤ (E[|XN |] + |a|)/(b− a). Define

U
a,b
N = Ua,b

Q+∩[0,N]. Then E[Ua,bN ] ≤ (E[|XN |] + |a|)/(b − a). By Exercise 11.1.1,
for λ > 0, we have

λP
[
sup
{|Xt | : t ∈Q

+ ∩ [0,N ]}> λ]

= λ sup
{
P
[
sup
{|Xt | : t ∈ I

}
> λ
] : I ⊂Q

+ ∩ [0,N ] finite
}

≤ 12E
[|X0|

]+ 9E
[|XN |

]
.

Consider the event

A :=
⋂

N∈N

( ⋂

a,b∈Q+
0≤a<b≤N

{
U
a,b
N <∞}∩ {sup

{|Xt | : t ∈Q
+ ∩ [0,N ]}<∞}

)

.
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We have P[A] = 1; hence A ∈ Ft for every t ≥ 0 since F satisfies the usual condi-
tions. For ω ∈A, for every t ≥ 0, the limit

X̃t (ω) := lim
Q+�s↓t,s>t

Xs(ω)

exists and is RCLL. For ω ∈ Ac, we define X̃t (ω) = 0. As F satisfies the usual
conditions, X̃ is F-adapted. As X is a supermartingale, for every N , the family
(Xs)s≤N is uniformly integrable. Hence, by assumption,

E[X̃t ] = lim
Q+�s↓t,s>t

E[Xs] = E[Xt ].

However, since X is a supermartingale, for every s > t , we have

Xt ≥ E[Xs |Ft ] Q
+�s↓t,s>t−→ E[X̃t |Ft ] = X̃t in L1.

Therefore, Xt = X̃t almost surely and hence X̃ is a modification of X. �

Corollary 21.25 Let (νt )t≥0 be a continuous convolution semigroup and assume
that
∫ |x|ν1(dx) <∞. Then there exists a Markov process X with RCLL paths and

with independent stationary increments PXt−Xs = νt−s for all t > s.

Let E be a locally compact Polish space and let C0(E) be the set of (bounded)
continuous functions that vanish at infinity. If κ is a stochastic kernel from E to E
and if f is measurable and bounded, then we define κf (x)= ∫ κ(x, dy)f (y).

Definition 21.26 A Markov semigroup (κt )t≥0 on E is called a Feller semigroup if

f (x)= lim
t→0

κtf (x) for all x ∈E, f ∈C0(E)

and κtf ∈ C0(E) for every f ∈C0(E).

Let X be a Markov process with transition kernels (κt )t≥0 and with respect to a
filtration F that satisfies the usual conditions.

Let g ∈ C0(E), g ≥ 0. Let h= ∫∞0 e−t κtg dt . Then

e−sκsh= e−s
∫ ∞

0
e−t κsκtg dt =

∫ ∞

s

e−t κtg dt ≤ h.

Hence Xg := (e−t h(Xt ))t≥0 is an F-supermartingale.
The Feller property and Theorem 21.24 ensure the existence of an RCLL ver-

sion X̃g of Xg . It takes a little more work to show that there exists a countable set
G⊂ C0(E) and a process X̃ that is uniquely determined by X̃g , g ∈ G, and is an
RCLL version of X. See, e.g., [146, Chapter III.7ff].



474 21 Brownian Motion

Let us take a moment’s thought and look back at how we derived the strong
Markov property of Brownian motion in Section 21.3. Indeed, there we needed only
right continuity of the paths and a certain continuity of the distribution as a func-
tion of the starting point, which is exactly the Feller property. With a little more
work, one can show the following theorem (see, e.g., [146, Chapter III.8ff] or [144,
Chapter III, Theorem 2.7]).

Theorem 21.27 Let (κt )t≥0 be a Feller semigroup on the locally compact Polish
space E. Then there exists a strong Markov process (Xt )t≥0 with RCLL paths and
transition kernels (κt )t≥0.

Such a process X is called a Feller process.

Exercise 21.4.1 (Doob’s inequality) Let X = (Xt )t≥0 be a martingale or a nonneg-
ative submartingale with RCLL paths. For T ≥ 0, let |X|∗T = supt∈[0,T ] |Xt |. Show
Doob’s inequalities:

(i) For any p ≥ 1 and λ > 0, we have λpP[|X|∗T ≥ λ] ≤ E[|XT |p].
(ii) For any p > 1, we have E[|XT |p] ≤ E[(|X|∗T )p] ≤ ( p

p−1 )
pE[|XT |p].

Construct a counterexample that shows that right continuity of the paths of X is
essential.

Exercise 21.4.2 (Martingale convergence theorems) Let X be a stochastic pro-
cess with RCLL paths. Use Doob’s inequality (Exercise 21.4.1) to show that the
martingale convergence theorems (a.s. convergence (Theorem 11.4), a.s. and L1-
convergence for uniformly integrable martingales (Theorem 11.7) and the Lp-
martingale convergence theorem (Theorem 11.10)) hold for X.

Exercise 21.4.3 Let p ≥ 1 and let X1,X2,X3, . . . be Lp-integrable martingales.

Assume that, for every t ≥ 0, there exists an X̃t ∈ Lp(P) such that Xnt
n→∞−→ X̃t

in Lp .

(i) Show that (X̃t )t≥0 is a martingale.
(ii) Use Doob’s inequality to show the following. If p > 1 and ifX1,X2, . . . are a.s.

continuous, then there is a continuous martingale X with the following proper-

ties: X is a modification of X̃ and Xnt
n→∞−→ Xt in Lp for every t ≥ 0.

Exercise 21.4.4 Let X be a stochastic process with values in a Polish space E and
with RCLL paths. Let F= σ(X) be the filtration generated by X and define F

+ :=
(F+
t )t≥0 by F+

t =
⋂
s>t Fs . Let U ⊂E be open and let C ⊂E be closed. For every

set A⊂E, define τA := inf{t > 0 :Xt ∈A}. Show the following.
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(i) τC is an F-stopping time (and an F
+-stopping time).

(ii) τU is an F
+-stopping time but in general (even for continuous X) is not an

F-stopping time.

Exercise 21.4.5 Show the statement of Remark 21.23. Conclude that if F is a fil-
tration and if B is a Brownian motion that is an F-martingale, then B is also an
F
+,∗-martingale.

21.5 Construction via L2-Approximation

We give an alternative construction of Brownian motion by functional analytic
means as an L2-approximation. For simplicity, as the time interval we take [0,1]
instead of [0,∞).

Let H = L2([0,1]) be the Hilbert space of square integrable (with respect to
Lebesgue measure λ) functions [0,1]→R with inner product

〈f,g〉 =
∫

[0,1]
f (x)g(x)λ(dx)

and with norm ‖f ‖ = √〈f,f 〉 (compare Section 7.3). Two functions f,g ∈H are
considered equal if f = g λ-a.e. Let (bn)n∈N be an orthonormal basis (ONB) of H ;
that is, 〈bm,bn〉 = 1{m=n} and

lim
n→∞

∥
∥
∥
∥
∥
f −

n∑

m=1

〈f,bm〉bm
∥
∥
∥
∥
∥
= 0 for all f ∈H.

In particular, for every f ∈H , Parseval’s equation

‖f ‖2 =
∞∑

m=1

〈f,bm〉2 (21.21)

holds and for f,g ∈H

〈f,g〉 =
∞∑

m=1

〈f,bm〉〈g, bm〉. (21.22)

Now consider an i.i.d. sequence (ξn)n∈N of N0,1-random variables on some proba-
bility space (Ω,A,P). For n ∈N and t ∈ [0,1], define

Xnt =
∫

1[0,t](s)
(

n∑

m=1

ξmbm(s)

)

λ(ds)=
n∑

m=1

ξm〈1[0,t], bm〉.
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Clearly, for n≥m,

E
[(
Xmt −Xnt

)2]= E

[(
n∑

k=m+1

ξk〈1[0,t], bk〉
)(

n∑

l=m+1

ξl〈1[0,t], bl〉
)]

=
n∑

k=m+1

〈1[0,t], bk〉2 ≤
∞∑

k=m+1

〈1[0,t], bk〉2.

Since
∑∞
k=1〈1[0,t], bk〉2 = ‖1[0,t]‖2 = t <∞, we have Xnt ∈ L2(P) and

lim
m→∞ sup

n≥m
E
[(
Xmt −Xnt

)2]= 0.

Hence (Xnt )n∈N is a Cauchy sequence in L2(P) and thus (since L2(P) is complete,
see Theorem 7.3) has an L2-limit Xt . Thus, for N ∈N and 0≤ t1, . . . , tN ≤ 1,

lim
n→∞E

[
N∑

i=1

(
Xnti −Xti

)2
]

= 0.

In particular, (Xnt1 , . . . ,X
n
tN
)
n→∞−→ (Xt1, . . . ,XtN ) in P-probability.

Manifestly, (Xnt1, . . . ,X
n
tN
) is normally distributed and centered. For s, t ∈ [0,1],

we have

Cov
[
Xns ,X

n
t

]= E

[(
n∑

k=1

ξk〈1[0,s], bk〉
)(

n∑

l=1

ξl〈1[0,t], bl〉
)]

=
n∑

k,l=1

E[ξkξl]〈1[0,s], bk〉〈1[0,t], bl〉

=
n∑

k=1

〈1[0,s], bk〉〈1[0,t], bk〉

n→∞−→ 〈1[0,s],1[0,t]〉 =min(s, t).

Hence (Xt )t∈[0,1] is a centered Gaussian process with

Cov[Xs,Xt ] =min(s, t). (21.23)

Lévy Construction of Brownian Motion

Up to continuity of paths, X is thus a Brownian motion. A continuous version of X
can be obtained via the Kolmogorov–Chentsov theorem (Theorem 21.6). However,



21.5 Construction via L2-Approximation 477

Fig. 21.2 The processes Xn, n= 0,1,2,3,10 of the Lévy construction of Brownian motion

by a clever choice of the ONB (bn)n∈N, we can construct X directly as a continuous
process. The Haar functions bn,k are one such choice: Let b0,1 ≡ 1 and for n ∈ N

and k = 1, . . . ,2n−1, let

bn,k(t)=

⎧
⎪⎪⎨

⎪⎪⎩

2(n−1)/2, if 2k−2
2n ≤ t < 2k−1

2n ,

−2(n−1)/2, if 2k−1
2n ≤ t < 2k

2n ,

0, else.

Then (bn,k) is an orthonormal system: 〈bm,k, bn,l〉 = 1{(m,k)=(n,l)}. It is easy to check
that (bn,k) is a basis (exercise!). Define the Schauder functions by

Bn,k(t)=
∫

[0,t]
bn,k(s)λ(ds)= 〈1[0,t], bn,k〉.

Let ξ0,1, (ξn,k)n∈N,k=1,...,2n−1 be independent and N0,1-distributed. Let

Xn := ξ0,1B0,1 +
n∑

m=1

2m−1
∑

k=1

ξm,kBm,k,

and define X̃t as the L2(P)-limit X̃t = L2 − limn→∞Xnt . See Fig. 21.2 for a com-
puter simulation of Xn, n= 0,1,2,3,10.
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Theorem 21.28 (Brownian motion,L2-approximation) There is a continuous ver-
sion X of X̃. X is a Brownian motion and we have

lim
n→∞

∥
∥Xn −X∥∥∞ = 0 P-almost surely. (21.24)

Proof By (21.24), we have Xt = X̃t a.s. for all t ∈ [0,1]. As uniform limits of
continuous functions are continuous, (21.24) implies that X is continuous. Hence,
by (21.23) (and Theorem 21.11), X is a Brownian motion. Therefore, it is enough
to prove the existence of an X such that (21.24) holds.

Since (C([0,1]),‖ · ‖∞) is complete, it suffices to show that P-almost surely
(Xn) is a Cauchy sequence in (C([0,1]),‖ ·‖∞). Note that ‖Bn,k‖∞ ≤ 2−(n+1)/2 if
n ∈N and Bn,kBn,l = 0 if k �= l. Hence

∥
∥Xn −Xn−1

∥
∥∞ ≤ 2−(n+1)/2 max

{|ξn,k|, k = 1, . . . ,2n−1}.

Therefore,

P
[∥
∥Xn −Xn−1

∥
∥∞ > 2−n/4

]≤
2n−1
∑

k=1

P
[|ξn,k|> 2(n+2)/4]

= 2n−1 2√
2π

∫ ∞

2(n+2)/4
e−x2/2 dx

≤ 2n exp
(−2n/2

)
.

Evidently,
∑∞
n=1 P[‖Xn − Xn−1‖∞ > 2−n/4] <∞; hence, by the Borel–Cantelli

lemma,

P
[‖Xn −Xn−1‖∞ > 2−n/4 only finitely often

]= 1.

We conclude that limn→∞ supm≥n ‖Xm −Xn‖∞ = 0 P-almost surely. �

Brownian Motion and White Noise

The construction of Brownian motion via Haar functions has the advantage that
continuity of the paths is straightforward. For some applications, however, a de-
composition in trigonometric functions is preferable. Here as the orthonormal basis
of L2([0,1]) we use b0 = 1 and

bn(x)=
√

2 cos(nπx) for n ∈N.

For t ∈ [0,1] and n ∈N0, define

Bn(t)=
∫ t

0
bn(s)λ(ds);
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Fig. 21.3 The processes Xn, n = 0,1,4,64,8192 from the Fourier Construction of Brownian
motion

that is, B0(t)= t and

Bn(t)=
√

2

nπ
sin(nπt) for n ∈N.

Let ξn, n ∈ N0, be independent standard normally distributed random variables.
Define A0 = ξ0 and

An :=
√

2

πn
ξn for n ∈N.

Finally, let

Xn :=
n∑

k=0

ξkBk;

that is,

Xn(t)= ξ0t +
n∑

k=1

Ak sin(kπt).

See Fig. 21.3 for a computer simulation of Xn, n= 0,1,4,64,8192.
As shown above, the sequence (Xn) converges in L2([0,1]) towards a processX,

which (up to continuity of paths) has all properties of Brownian motion:

Xt = ξ0t +
∞∑

n=1

√
2

nπ
ξn sin(nπt).
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This representation of the Brownian motions goes back to Paley and Wiener who
also show that along a suitable subsequence the series converges uniformly almost
surely and hence the limitX is indeed continuous, see [125, Theorem XLIII, p. 148].
The representation is also sometimes called Karhunen–Loève expansion. More pre-
cisely, up to the first summand, it is the Karhunen–Loève expansion of the Brownian
bridge (Xt − tX1)t∈[0,1] (see, e.g., [1, Chapter 3.3]).

Taking the formal derivative

Ẋt := d

dt
Xt = ξ0 +

√
2
∞∑

n=1

ξn cos(nπt)

we get independent identically distributed Fourier coefficients for all frequencies.
Hence, the formal object Ẋ is often referred to as white noise as opposed to colored
noise where the coefficients for the different frequencies have different distributions.

The Fourier basis is not too well suited to showing continuity of paths. For ex-
ample, the sufficient criterion of absolute summability of coefficients (An) fails (see
Exercise 21.5.5).

Example 21.29 (Stochastic integral à la Paley–Wiener) Assume that (ξn)n∈N is an
i.i.d. sequence of N0,1-distributed random variables. Let (bn)n∈N be an orthonor-
mal basis of L2([0,1]) such that Wt := limn→∞

∑n
k=1 ξk〈1[0,t], bk〉, t ∈ [0,1], is a

Brownian motion. For f ∈L2([0,1]), define

I (f ) :=
∞∑

n=1

ξn〈f,bn〉.

By Parseval’s equation and the Bienaymé formula, we have

‖f ‖2
2 =

∞∑

n=1

〈f,bn〉2 =Var
[
I (f )

]= E
[
I (f )2

]
.

Hence

I :L2([0,1])→L2(P), f �→ I (f ) is an isometry. (21.25)

We call
∫ t

0
f (s) dWs := I (f 1[0,t]), t ∈ [0,1], f ∈L2([0,1]),

the stochastic integral of f with respect to W . In the special case of the Fourier
basis b0(x) = 1 and bn(x) =

√
2 cos(nπx), n ∈ N, this construction goes back to

Paley and Wiener [125, Theorem XLV, p. 154].
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The process Xt :=
∫ t

0 f (s) dWs , t ∈ [0,1], is centered Gaussian with covariance
function

Cov[Xs,Xt ] =
∫ s∧t

0
f 2(u) du.

In fact, it is obvious that X is centered and Gaussian (since it is a limit of the Gaus-
sian processes of partial sums) and has the given covariance function. Furthermore,
the existence of a continuous version can be obtained as for Brownian motion by em-
ploying the fourth moments of the increments, which for normal random variables
can be computed from the variances (compare Theorem 21.9). In the following we
will assume for the stochastic integral that such a continuous version is chosen.

In the special case, f = ∑n
i=1 αi1(ti−1,ti ] for some n ∈ N and 0 = t0 <

t1 < . . . < tn and α1, . . . , αn ∈R, we obtain

∫ 1

0
f (s) dWs =

n∑

i=1

αi(Wti −Wti−1). ♦

Exercise 21.5.1 Use the representation of Brownian motion (Wt)t∈[0,1] as a ran-
dom linear combination of the Schauder functions (Bn,k) to show that the Brownian
bridge Y = (Yt )t∈[0,1] = (Wt − tW1)t∈[0,1] is a continuous, Gaussian process with
covariance function Cov[Yt , Ys] = (s ∧ t)− st . Further, show that

PY = lim
ε↓0

P
[
W ∈ · |W1 ∈ (−ε, ε)

]
.

Exercise 21.5.2 (Compare Example 8.32) Fix T ∈ (0,1). Use an orthonormal ba-
sis b0,1, (cn,k), (dn,k) of suitably modified Haar functions (such that the cn,k have
support [0, T ] and the dn,k have support [T ,1]) to show that a regular conditional
distribution of WT givenW1 is defined by

P[WT ∈ · |W1 = x] =NT x,T .

Exercise 21.5.3 Define Y := (Yt )t∈[0,1] by Y1 = 0 and

Yt = (1− t)
∫ t

0
(1− s)−1 dWs for t ∈ [0,1).

Show that Y is a Brownian bridge.
Hint: Show that Y is a continuous Gaussian process with the correct covariance

function. In particular, it has to be shown that limt↑1 Yt = 0 almost surely.

Exercise 21.5.4 Let d ∈N. Use a suitable orthonormal basis on [0,1]d to show:

(i) There is a Gaussian process (Wt)t∈[0,1]d with covariance function

Cov[Wt,Ws] =
d∏

i=1

(ti ∧ si).
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(ii) There is a modification ofW such that t �→Wt is almost surely continuous (see
Remark 21.7).

A process W with properties (i) and (ii) is called a Brownian sheet.

Exercise 21.5.5 Consider the coefficients (An)n∈N0 of the Fourier basis of the con-
struction of Brownian motion. Show the following statements:

(i)
∑∞
n=0A

2
n <∞ almost surely.

(ii)
∑∞
n=0 |An| =∞ almost surely.

(iii)
∑n
k=0Ak , n ∈N converges almost surely.

Hint: Kolmogorov’s three-series theorem (Theorem 15.50).

Exercise 21.5.6 Let t ∈ (0,1) and f0(x) := t as well as

fn(x) := 2 sin(nπt)

nπ
cos(nπx) for n ∈N, x ∈ [0,1].

Show that
∑∞
n=0 fn(x)= 1[0,t](x) for x ∈ (0,1) \ {t}.

21.6 The Space C([0,∞))

Are functionals that depend on the whole path of a Brownian motion measurable?
For example, is sup{Xt, t ∈ [0,1]} measurable? For general stochastic processes,
this is false since the supremum depends on more than countably many coordinates.
However, for processes with continuous paths, this is true, as we will show in this
section in a somewhat more general framework.

We may consider Brownian motion as the canonical process on the space Ω :=
C([0,∞)) of continuous paths.

We start by collecting some properties of the space Ω = C([0,∞)) ⊂ R
[0,∞).

Define the evaluation map

Xt :Ω→R, ω �→ ω(t), (21.26)

that is, the restriction of the canonical projection R
[0,∞)→R to Ω .

For f,g ∈ C([0,∞)) and n ∈N, let dn(f, g) := ‖(f − g)∣∣[0,n]‖∞ ∧ 1 and

d(f,g)=
∞∑

n=1

2−ndn(f, g). (21.27)

Theorem 21.30 d is a complete metric on Ω := C([0,∞)) that induces the topol-
ogy of uniform convergence on compact sets. The space (Ω,d) is separable and
hence Polish.
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Proof Clearly, every dn is a complete metric on (C([0, n]),‖ · ‖∞). Thus, for ev-
ery Cauchy sequence (fN) in (Ω,d) and every n ∈ N, there exists a gn ∈Ω with

dn(fN,gn)
N→∞−→ 0. Evidently, gn(x)= gm(x) for every x ≤m∧ n; hence there ex-

ists a g ∈ Ω with g(x) = gn(x) for every x ≤ n for every n ∈ N. Hence, clearly,

d(fN,g)
N→∞−→ 0, and thus d is complete.

The set of polynomials with rational coefficients is countable and by the Weier-
straß theorem, it is dense in any (C([0, n]),‖ ·‖∞); hence it is dense in (Ω,d). �

Theorem 21.31 With respect to the Borel σ -algebra B(Ω,d), the canonical pro-
jections Xt , t ∈ [0,∞) are measurable. On the other hand, the Xt generate
B(Ω,d). Hence

(
B(R)

)⊗[0,∞) ∣∣
Ω
= σ (Xt, t ∈ [0,∞)

)= B(Ω,d).

Proof The first equation holds by definition. For the second one, we must show the
mutual inclusions.

“⊂” Clearly, every Xt : Ω −→ R is continuous and hence (B(Ω,d) – B(R))-
measurable. Thus σ(Xt , t ∈ [0,∞))⊂ B(Ω,d).

“⊃” We have to show that open subsets of (Ω,d) are in A := (B(R))⊗[0,∞).
Since (Ω,d) is separable (Theorem 21.30), every open set is a countable union of
ε-balls. Hence it suffices to show that for fixed ω0 ∈ Ω , the map ω �→ d(ω0,ω)

is A-measurable. To this end it is enough to show that for any n ∈ N, the map
ω �→ Yn(ω) := dn(ω0,ω) (see (21.27)) is A-measurable. However, the map

ω �→ Zt(ω) :=
∣
∣Xt(ω)−Xt(ω0)

∣
∣∧ 1

is A-measurable. Since each ω is continuous, Yn is a countable supremum

Yn = sup
t∈[0,n]∩Q

Zt

and is hence A-measurable. �

In the following, let A := σ(Xt , t ∈ [0,∞)).

Corollary 21.32 The map F1 : Ω → [0,∞), ω �→ sup{ω(t) : t ∈ [0,1]} is A-
measurable.

Proof F1 is continuous with respect to d and hence B(Ω,d)-measurable. �

If B is a Brownian motion (on some probability space (Ω̃, Ã, P̃)), then there
exists an Ω ∈ Ã with P̃[Ω] = 1 and B(ω) ∈ C([0,∞)) for every ω ∈ Ω . Let
A = Ã

∣
∣
Ω

and P = P̃
∣
∣
A. Then B : Ω −→ C([0,∞)) is measurable with respect

to (A,A). With respect to the image measure P= P ◦ B−1 on Ω = C([0,∞)), the
canonical process X = (Xt , t ∈ [0,∞)) on C([0,∞)) is a Brownian motion.
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Definition 21.33 Let P be the probability measure on Ω = C([0,∞)) with re-
spect to which the canonical process X is a Brownian motion. Then P is called the
Wiener measure. The triple (Ω,A,P) is called the Wiener space, and X is called
the canonical Brownian motion or the Wiener process.

Remark 21.34 Sometimes we want a Brownian motion to start not at X0 = 0 but
at an arbitrary point x. Denote by Px that measure on C([0,∞)) for which X̃ =
(Xt − x, t ∈ [0,∞)) is a Brownian motion (with X̃0 = 0). ♦

Exercise 21.6.1 Show that the map

F∞ :Ω→[0,∞], ω �→ sup
{
ω(t) : t ∈ [0,∞)},

is A-measurable.

21.7 Convergence of Probability Measures on C([0,∞))

Let X and (Xn)n∈N be random variables with values in C([0,∞)) (i.e., continuous
stochastic processes) with distributions PX and (PXn)n∈N.

Definition 21.35 We say that the finite-dimensional distributions of (Xn) converge
to those of X if, for every k ∈N and t1, . . . , tk ∈ [0,∞), we have

(
Xnt1, . . . ,X

n
tk

) n→∞=⇒ (Xt1 , . . . ,Xtk ).

In this case, we write

Xn
n→∞=⇒

fdd
X or PXn

n→∞−→
fdd

PX.

Lemma 21.36 Pn
n→∞−→

fdd
P and Pn

n→∞−→
fdd

Q imply P =Q.

Proof By Theorem 14.12(iii), the finite-dimensional distributions determine P uni-
quely. �

Theorem 21.37 Weak convergence in M1(Ω,d) implies fdd-convergence:

Pn
n→∞−→ P =⇒ Pn

n→∞−→
fdd

P.

Proof Let k ∈N and t1, . . . , tk ∈ [0,∞). The map

ϕ :C([0,∞))→R
k, ω �→ (ω(t1), . . . ,ω(tk)

)
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is continuous. By the continuous mapping theorem (Theorem 13.25 on p. 257), we

have Pn ◦ ϕ−1 n→∞−→ P ◦ ϕ−1; hence Pn
n→∞−→

fdd
P . �

The converse statement in the preceding theorem does not hold. However, we
still have the following.

Theorem 21.38 Let (Pn)n∈N and P be probability measures on C([0,∞)). Then
the following are equivalent:

(i) Pn
n→∞−→

fdd
P and (Pn)n∈N is tight.

(ii) Pn
n→∞−→ P weakly.

Proof “(ii) =⇒ (i)” This is a direct consequence of Prohorov’s theorem (Theo-
rem 13.29 with E = C([0,∞))).

“(i)=⇒ (ii)” By Prohorov’s theorem, (Pn)n∈N is relatively sequentially compact.

LetQ be a limit point for (Pnk )k∈N along some subsequence (nk). Then Pnk
fdd−→Q,

k→∞. By Lemma 21.36, we have P =Q. �

Next we derive a useful criterion for tightness of sets {Pn} ⊂M1(C([0,∞))).
We start by recalling the Arzelà–Ascoli characterization of relatively compact sets
in C([0,∞)) (see, e.g., [37, Theorem 2.4.7] or [173, Theorem III.3]).

For N,δ > 0 and ω ∈ C([0,∞)), let

V N(ω, δ) := sup
{∣
∣ω(t)−ω(s)∣∣ : |t − s| ≤ δ, s, t ≤N}.

Theorem 21.39 (Arzelà–Ascoli) A set A⊂ C([0,∞)) is relatively compact if and
only if the following two conditions hold.

(i) {ω(0),ω ∈A} ⊂R is bounded.
(ii) For every N , we have limδ↓0 supω∈A V N(ω, δ)= 0.

Theorem 21.40 A family (Pi, i ∈ I ) of probability measures on C([0,∞)) is
weakly relatively compact if and only if the following two conditions hold.

(i) (Pi ◦X−1
0 , i ∈ I ) is tight; that is, for every ε > 0, there is a K > 0 such that

Pi
({
ω : ∣∣ω(0)∣∣>K})≤ ε for all i ∈ I. (21.28)

(ii) For all η, ε > 0 and N ∈N, there is a δ > 0 such that

Pi
({
ω : V N(ω, δ) > η})≤ ε for all i ∈ I. (21.29)

Proof “=⇒” By Prohorov’s theorem (Theorem 13.29), weak relative compactness
of (Pi, i ∈ I ) implies tightness of this family. Thus, for every ε > 0, there exists a
compact set A⊂ C([0,∞)) with Pi(A) > 1− ε for every i ∈ I . Using the Arzelà–
Ascoli characterization of the compactness of A, we infer (i) and (ii).
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“⇐=” Now assume that (i) and (ii) hold. Then, for ε > 0 and k,N ∈ N, choose
numbers Kε and δN,k,ε such that

sup
i∈I
Pi
({
ω : ∣∣ω(0)∣∣>Kε

})≤ ε
2

and

sup
i∈I
Pi

({

ω : V N(ω, δN,k,ε) > 1

k

})

≤ 2−N−k−1ε.

Define

CN,ε =
{

ω : ∣∣ω(0)∣∣≤Kε,V N(ω, δN,k,ε)≤ 1

k
for all k ∈N

}

.

By the Arzelà–Ascoli theorem,Cε :=⋂N∈NCN,ε is relatively compact inC([0,∞))
and we have

Pi
(
Ccε
)≤ ε

2
+

∞∑

k,N=1

Pi
({
ω : V N(ω, δN,k,ε) > 1/k

})≤ ε for all i ∈ I.

Hence the claim follows. �

Corollary 21.41 Let (Xi, i ∈ I ) and (Yi, i ∈ I ) be families of random variables in
C([0,∞)). Assume that (PXi , i ∈ I ) and (PYi , i ∈ I ) are tight. Then (PXi+Yi , i ∈ I )
is tight.

Proof Apply the triangle inequality in order to check (i) and (ii) in the preceding
theorem. �

The following is an important tool to check weak relative compactness.

Theorem 21.42 (Kolmogorov’s criterion for weak relative compactness) Let
(Xi, i ∈ I ) be a sequence of continuous stochastic processes. Assume that the
following conditions are satisfied.

(i) The family (P[Xi0 ∈ ·], i ∈ I ) of initial distributions is tight.
(ii) For any N > 0 there are numbers C,α,β > 0 such that, for all s, t ∈ [0,N ]

and every i ∈ I , we have

E
[∣
∣Xis −Xit

∣
∣α
]≤ C|s − t |β+1.

Then the family (PXi , i ∈ I )= (L[Xi], i ∈ I ) of distributions of Xi is weakly rel-
atively compact in M1(C([0,∞))).

Proof We check the conditions of Theorem 21.40. The first condition of Theo-
rem 21.40 is exactly (i).
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Let N > 0. By the Kolmogorov–Chentsov theorem (Theorem 21.6(ii)), for ε > 0
and γ ∈ (0, β/α), there exists a K such that, for every i ∈ I , we have

P
[∣
∣Xit −Xis

∣
∣≤K|t − s|γ for all s, t ∈ [0,N ]]≥ 1− ε.

This clearly implies (21.29) with δ = (η/K)1/γ . �

21.8 Donsker’s Theorem

Let Y1, Y2, . . . be i.i.d. random variables with E[Y1] = 0 and Var[Y1] = σ 2 > 0.
For t > 0, let Snt =

∑�nt�
i=1 Yi and S̃nt = 1√

σ 2n
Snt . By the central limit theorem, for

t > s ≥ 0, we have L[S̃nt − S̃ns ] n→∞−→ N0,t−s .
Let B = (Bt , t ≥ 0) be a Brownian motion. Then

L
[
S̃nt − S̃ns

] n→∞−→ L[Bt −Bs] for any t > s ≥ 0.

For N ∈ N and 0 = t0 < t1 < . . . < tN , the random variables S̃nti − S̃nti−1
, i =

1, . . . ,N , are independent, and hence, we have

L
[(
S̃nt1 − S̃nt0, . . . , S̃ntN − S̃ntN−1

)] n→∞−→ L
[
(Bt1 −Bt0 , . . . ,BtN −BtN−1)

]
.

We infer that

L
[(
S̃nt1, . . . , S̃

n
tN

)] n→∞−→ L
[
(Bt1 , . . . ,BtN )

]
. (21.30)

We now define S̄n as S̃n but linearly interpolated:

S̄nt =
1√
σ 2n

�nt�∑

i=1

Yi + tn− �tn�√
σ 2n

Y�nt�+1. (21.31)

Then, for ε > 0,

P
[∣
∣S̃nt − S̄nt

∣
∣> ε

]≤ ε−2E
[(
S̃nt − S̄nt

)2]

≤ 1

ε2n

1

σ 2
E
[
Y 2

1

]= 1

ε2n

n→∞−→ 0.

By Slutzky’s theorem (Theorem 13.18), we thus have convergence of the finite-
dimensional distributions to the Wiener measure PW :

PS̄n
n→∞=⇒

fdd
PW . (21.32)

The aim of this section is to strengthen this convergence statement to weak con-
vergence of probability measures on C([0,∞)). The main theorem of this section
is the functional central limit theorem, which goes back to Donsker [35]. Theorems
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of this type are also called invariance principles since the limiting distribution is the
same for all distributions Yi with expectation 0 and the same variance.

Theorem 21.43 (Donsker’s invariance principle) In the sense of weak conver-
gence on C([0,∞)), the distributions of S̄n converge to the Wiener measure,

L
[
S̄n
] n→∞−→ PW . (21.33)

Proof Owing to (21.32) and Theorem 21.38, it is enough to show that (L[S̄n],
n ∈ N) is tight. To this end, we want to apply Kolmogorov’s moment criterion.
However, as in the proof of existence of Brownian motion, second moments are not
enough; rather we need fourth moments in order that we can choose β > 0. Hence
the strategy is to truncate the Yi to obtain fourth moments.

For K > 0, define

YKi := Yi1{|Yi |≤K/2} −E[Yi1{|Yi |≤K/2}] and

ZKi := Yi − YKi for i ∈N.

Then E[YKi ] = E[ZKi ] = 0 and Var[ZKi ]
K→∞−→ 0 as well as Var[YKi ] ≤ σ 2, i ∈ N.

Clearly, |YKi | ≤K for every i. Define

T Kn :=
n∑

i=1

YKi and UKn :=
n∑

i=1

ZKi for n ∈N.

Let T̄ K,nt and ŪK,nt be the linearly interpolated versions of

T̃
K,n
t := 1√

σ 2n
T K�nt� and Ũ

K,n
t := 1√

σ 2n
UK�nt� for t ≥ 0.

Evidently, S̄n = T̄ K,n + ŪK,n. By Corollary 21.41, it is enough to show that,
for a sequence (Kn)n∈N (chosen later), the families (L[ŪKn,n], n ∈ N) and
(L[T̄ Kn,n], n ∈N) are tight.

We consider first the remainder term. As UK is a martingale, Doob’s inequality
(Theorem 11.2) yields

P
[

sup
l=1,...,n

∣
∣UKl
∣
∣> ε

√
n
]
≤ ε−2Var

[
ZK1
]

for every ε > 0.

Now, if Kn ↑∞, n→∞, then for every N > 0, we have

P
[

sup
t∈[0,N]

∣
∣ŪKn,nt

∣
∣> ε

]
≤ N

ε2σ 2
Var
[
Z
Kn
1

] n→∞−→ 0,

hence ŪKn,n
n→∞=⇒ 0 in C([0,∞)). In particular, (L[ŪKn,n], n ∈N) is tight.
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Next, for N > 0 and s, t ∈ [0,N ], we compute the fourth moments of the differ-
ences T̄ Kn,nt+s − T̄ Kn,ns for the main term. In the following, let Kn = n1/4. Fix n ∈N.
We distinguish two cases:

Case 1: t < n−1. Let k := �(t + s)n�. If sn≥ k, then

T̄
Kn,n
t+s − T̄ Kn,ns = tn√

nσ 2
Y
Kn
k+1.

If sn < k, then

T̄
Kn,n
t+s − T̄ Kn,ns = 1√

nσ 2

((
(t + s)n− k)YKnk+1 + (k − sn)YKnk

)
.

In either case, we have

∣
∣T̄ Kn,nt+s − T̄ Kn,ns

∣
∣≤ t

√
n

σ

(∣
∣YKnk

∣
∣+ ∣∣YKnk+1

∣
∣
)
,

hence

E
[(
T̄
Kn,n
t+s − T̄ Kn,ns

)4]≤ n
2t4

σ 4
(2Kn)

2E
[(∣
∣YKn1

∣
∣+ ∣∣YKn2

∣
∣
)2]

≤ 16n5/2t4

σ 4
Var
[
Y
Kn
1

]≤ 16

σ 2
t3/2. (21.34)

Case 2: t ≥ n−1. Using the binomial theorem, we get (note that the mixed terms
with odd moments vanish since E[YKn1 ] = 0)

E
[(
T Knn
)4]= nE

[(
Y
Kn
1

)4]+ 3n(n− 1)E
[(
Y
Kn
1

)2]2

≤ nK2
nσ

2 + 3n(n− 1)σ 4. (21.35)

Note that, for independent real random variables X,Y with E[X] = E[Y ] = 0
and E[X4],E[Y 4]<∞ and for a ∈ [−1,1], we have

E
[
(aX+ Y)4]= a4E

[
X4]+ 6a2E

[
X2]E

[
Y 2]+E

[
Y 4]

≤ E
[
X4]+ 6E

[
X2]E

[
Y 2]+E

[
Y 4]= E

[
(X+ Y)4].

We apply this twice (with a = �(t + s)n� − (t + s)n and a = sn− �sn�) and obtain
(using the estimate �(t + s)n� − �sn� ≤ tn+ 2≤ 3tn) from (21.35) (since t ≤N )
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E
[(
T̄
Kn,n
t+s − T̄ Kn,ns

)4]≤ n−2σ−4E
[(
T
Kn
�(t+s)n� − T Kn�sn�

)4]

= n−2σ−4E
[(
T
Kn
�(t+s)n�−�sn�

)4]

≤ 3tnK2
n

n2σ 2
+ 18t2 = 3

σ 2
tn−1/2 + 18t2

≤ 3

σ 2
t3/2 + 18t2 ≤

(
3

σ 2
+ 18

√
N

)

t3/2. (21.36)

By (21.34) and (21.36), for every N > 0, there exists a C = C(N,σ 2) such that, for
every n ∈N and all s, t ∈ [0,N ], we have

E
[(
T̄
Kn,n
t+s − T̄ Kn,ns

)4]≤ Ct3/2.
Hence, by Kolmogorov’s moment criterion (Theorem 21.42 with α = 4 and
β = 1/2), (L[T̄ Kn,n], n ∈N) is tight in M1(C([0,∞))). �

Exercise 21.8.1 Let X1,X2, . . . be i.i.d. random variables with continuous distri-
bution function F . Let Gn : [0,1] → R, t �→ n−1/2∑n

i=1(1[0,t](F (Xi)) − t) and
Mn := ‖Gn‖∞. Further, letM = supt∈[0,1] |Bt |, where B is a Brownian bridge.

(i) Show that E[Gn(t)] = 0 and Cov[Gn(s),Gn(t)] = s ∧ t − st for s, t ∈ [0,1].
(ii) Show that E[(Gn(t)−Gn(s))4] ≤ C((t − s)2 + |t − s|/n) for some C > 0.

(iii) Conclude that a suitable continuous version of Gn converges weakly to B . For
example, choose

Hn(t)= n−1/2
n∑

i=1

(
hn
(
F(Xi)− t

)− gn(t)
)
,

where hn is a suitable smoothed version of 1(−∞,0], for example, hn(s) =
1− (s/εn ∨ 0)∧ 1 for some sequence εn ↓ 0, and gn(t) :=

∫ 1
0 hn(t − u)du.

(iv) Finally, show thatMn
n→∞=⇒ M .

Remark: The distribution of M can be expressed by the Kolmogorov–Smirnov for-
mula ([101] and [156]; see, e.g., [133])

P[M > x] = 2
∞∑

n=1

(−1)n−1e−2n2x2
. (21.37)

Compare (21.20). Using the statisticMn, one can test if random variables of a known
distribution are independent. LetX1,X2, . . . and X̃1, X̃2, . . . be independent random
variables with unknown continuous distribution functions F and F̃ and with empir-
ical distribution functions Fn and F̃n. Further, let

Dn := sup
t∈R

∣
∣Fn(t)− F̃n(t)

∣
∣.
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Under the assumption that F = F̃ holds,
√
n/2Dn converges in distribution to M .

This fact is the basis for nonparametric tests on the equality of distributions.

21.9 Pathwise Convergence of Branching Processes∗

In this section, we investigate the convergence of rescaled Galton–Watson processes
(branching processes). As for sums of independent random variables, we first show
convergence for a fixed time point to the distribution of a certain limiting process.
The next step is to show convergence of finite-dimensional distributions. Finally,
using Kolmogorov’s moment criterion for tightness, we show convergence in the
path space C([0,∞)).

Consider a Galton–Watson process (Zn)n∈N0 with geometric offspring distribu-
tion

p(k)= 2−k−1 for k ∈N0.

That is, letXn,i , n, i ∈N0 be i.i.d. random variables on N0 with P[Xn,i = k] = p(k),
k ∈N0, and based on the initial state Z0 define inductively

Zn+1 =
Zn∑

i=1

Xn,i .

Thus Z is a Markov chain with transition probabilities p(i, j)= p∗i (j), where p∗i
is the ith convolution power of p. In other words, if Z,Z1, . . . ,Zi are independent
copies of our Galton–Watson process, with Z0 = i and Z1

0 = . . .=Zi0 = 1, then

Z
D=Z1 + . . .+Zi. (21.38)

We consider now the probability generating function of X1,1, ψ(1)(s) := ψ(s) :=
E[sX1,1 ], s ∈ [0,1]. Denote by ψ(n) := ψ(n−1) ◦ ψ its nth iterate for n ∈ N. Then,
by Lemma 3.10,

Ei
[
sZn
]= E1

[
sZn
]i = (ψ(n)(s))i .

For the geometric offspring distribution, ψ(n) can be computed explicitly.

Lemma 21.44 For the branching process with critical geometric offspring distri-
bution, the nth iterate of the probability generating function is

ψ(n)(s)= n− (n− 1)s

n+ 1− ns .

Proof Compute

ψ(s)=
∞∑

k=0

2−k−1sk = 1

−s + 2
.
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In order to compute the iterated function, first consider general linear rational func-
tions of the form f (x)= ax+b

cx+d . For such f , define the matrix Mf =
(
a b
c d

)
. For two

linear rational functions f and g, we have Mf ◦g =Mf ·Mg . The powers of M are
easy to compute:

Mψ =
(

0 1
−1 2

)

, M2
ψ =
(−1 2
−2 3

)

, M3
ψ =
(−2 3
−3 4

)

,

and inductively

Mn
ψ =
(−(n− 1) n

−n n+ 1

)

. �

If we let s = e−λ, then we get the Laplace transform of Zn,

Ei
[
e−λZn

]=ψ(n)(e−λ)i .

By Example 6.29, we can compute the moments of Zn by differentiating the Laplace
transform. That is, we obtain the following lemma.

Lemma 21.45 The moments of Zn are

Ei
[
Zkn
]= (−1)k

dk

dλk

(
ψ(n)
(
e−λ
)i)

|λ=0
. (21.39)

In particular, the first six moments are

Ei[Zn] = i,
Ei
[
Z2
n

]= 2in+ i2,
Ei
[
Z3
n

]= 6in2 + 6i2n+ i3,
Ei
[
Z4
n

]= 24in3 + 36i2n2 + (12i3 + 2i
)
n+ i4,

Ei
[
Z5
n

]= 120in4 + 240i2n3 + (120i3 + 30i
)
n2 + (20i4 + 10i2

)
n+ i5,

Ei
[
Z6
n

]= 720in5 + 1800i2n4 + (1200i3 + 360i
)
n3,

+ (300i4 + 240i2
)
n2 + (30i5 + 30i3 + 2i

)
n+ i6.

(21.40)
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Hence, Z is a martingale, and the first six centered moments are

Ei
[
(Zn − i)2

]= 2in,

Ei
[
(Zn − i)3

]= 6in2,

Ei
[
(Zn − i)4

]= 24in3 + 12i2n2 + 2in,

Ei
[
(Zn − i)5

]= 120in4 + 120i2n3 + 30in2,

Ei
[
(Zn − i)6

]= 720in5 + 1080i2n4 + (120i3 + 360i
)
n3

+ 60i2n2 + 2in.

(21.41)

Proof The exact formulas for the first six moments are obtained by tenaciously
computing the right-hand side of (21.39). �

Now consider the following rescaling: Fix x ≥ 0, start with Z0 = �nx� individu-
als and consider Z̃nt := Z�tn�

n
for t ≥ 0. We abbreviate

Lx
[
Z̃n
] := L�nx�

[(
n−1Z�nt�

)
t≥0

]
. (21.42)

Evidently, Ex[Z̃nt ] = �nx�
n
≤ x for every n; hence (Lx[Z̃nt ], n ∈ N) is tight. By con-

sidering Laplace transforms, we obtain that, for every λ≥ 0, the sequence of distri-
butions converges:

lim
n→∞Ex

[
e−λZ̃nt

]= lim
n→∞

(
ψ(�tn�)

(
e−λ/n

))nx

= lim
n→∞

(
nt − (nt − 1)e−λ/n

nt + 1− nte−λ/n
)nx

= lim
n→∞

(

1− 1− e−λ/n
n(1− e−λ/n)t + 1

)nx

= exp

(

− lim
n→∞

xn(1− e−λ/n)
n(1− e−λ/n)t + 1

)

= exp

(

− λ

λ+ 1/t
(x/t)

)

:=ψt(λ)x. (21.43)

However, the function ψxt is the Laplace transform of the compound Poisson distri-
bution CPoi(x/t) exp1/t

(see Definition 16.3).
Consider the stochastic kernel κt (x, dy) := CPoi(x/t) exp1/t

(dy). This is the kernel
on [0,∞) whose Laplace transform is given by

∫ ∞

0
κt (x, dy)e

−λy =ψt(λ)x. (21.44)
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Lemma 21.46 (κt )t≥0 is a Markov semigroup and there exists a Markov process
(Yt )t≥0 with transition kernels Px[Yt ∈ dy] = κt (x, dy).

Proof It suffices to check that the Chapman–Kolmogorov equation κt · κs = κs+t
holds. We compute the Laplace transform for these kernels. For λ ≥ 0, applying
(21.44) twice yields

∫ ∫

κt (x, dy)κs(y, dz)e
−λz =

∫

κt (x, dy) exp

(

− λy

λs + 1

)

= exp

(

−
λ

λs+1
λ

λs+1 t + 1
x

)

= exp

(

− λx

λ(t + s)+ 1

)

=
∫

κt+s(x, dz)e−λz. �

Next we show that Y has a continuous version. To this end, we compute some of
its moments and then use the Kolmogorov–Chentsov theorem (Theorem 21.6).

Lemma 21.47 The first k moments of Yt can be computed by differentiating the
Laplace transform,

Ex
[
Y kt
]= (−1)k

dk

dλk

(
ψ(λ)x

)
|λ=0
,

where

ψt(λ)= exp

(

− λ

λt + 1

)

.

In particular, we have

Ex[Yt ] = x,
Ex
[
Y 2
t

]= 2xt + x2,

Ex
[
Y 3
t

]= 6xt2 + 6x2t + x3,

Ex
[
Y 4
t

]= 24xt3 + 36x2t2 + 12x3t + x4,

Ex
[
Y 5
t

]= 120xt4 + 240x2t3 + 120x3t2 + 20x4t + x5,

Ex
[
Y 6
t

]= 720xt5 + 1800x2t4 + 1200x3t3 + 300x4t2 + 30x5t + x6.

(21.45)
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Hence Y is a martingale, and the first centered moments are

Ex
[
(Yt − x)2

]= 2xt,

Ex
[
(Yt − x)3

]= 6xt2,

Ex
[
(Yt − x)4

]= 24xt3 + 12x2t2,

Ex
[
(Yt − x)5

]= 120xt4 + 120x2t3,

Ex
[
(Yt − x)6

]= 720xt5 + 1080x2t4 + 120x3t3.

(21.46)

Theorem 21.48 There is a continuous version of the Markov process Y with tran-
sition kernels (κt )t≥0 given by (21.44). This version is called Feller’s (continuous)
branching diffusion.

See Fig. 26.4 for a computer simulation of Feller’s branching diffusion.

Proof For fixed N > 0 and s, t ∈ [0,N ], we have

Ex
[
(Yt+s − Ys)4

]= Ex
[
EYs
[
(Yt − Y0)

4]]

= Ex
[
24Yst

3 + 12Y 2
s t

2]

= 24xt3 + 12
(
2sx + x2)t2

≤ (48Nx + 12x2)t2.

Thus Y satisfies the condition of Theorem 21.6 (Kolmogorov–Chentsov) with α = 4
and β = 1. �

Remark 21.49

(i) By using higher moments, it can be shown that the paths of Y are Hölder-
continuous of any order γ ∈ (0, 1

2 ).
(ii) It can be shown that Y is the (unique strong) solution of the stochastic (Itô-)

differential equation (see Examples 26.11 and 26.31)

dYt =
√

2Yt dWt , (21.47)

where W is a Brownian motion. ♦

Theorem 21.50 We have Lx[Z̃n] n→∞−→
fdd

Lx[Y ].
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Proof As in (21.43) for 0≤ t1 ≤ t2, λ1, λ2 ≥ 0 and x ≥ 0, we get

lim
n→∞Ex

[
e
−(λ1Z̃

n
t1
+λ2Z̃

n
t2
)]

= lim
n→∞Ex

[
Ex
[
e
−λ2Z̃

n
t2 |Z̃nt1

]
e
−λ1Z̃

n
t1
]

= lim
n→∞Ex

[

exp

(

− λ2

λ2(t2 − t1)+ 1
Z̃nt1

)

e
−λ1Z̃

n
t1

]

= exp

(

− ( λ2
λ2(t2−t1)+1 + λ1)x

( λ2
λ2(t2−t1)+1 + λ1)t1 + 1

)

= Ex
[
exp
(−(λ1Yt1 + λ2Yt2)

)]
.

Hence, we obtain

Lx
[
λ1Z̃

n
t1
+ λ2Z̃

n
t2

] n→∞−→ Lx[λ1Yt1 + λ2Yt2 ].
Using the Cramér–Wold device (Theorem 15.56), this implies

Lx
[(
Z̃nt1, Z̃

n
t2

)] n→∞−→ Lx
[
(Yt1 , Yt2)

]
.

Iterating the argument, for every k ∈N and 0≤ t1 ≤ t2 ≤ . . .≤ tk , we get

Lx
[(
Z̃nti

)
i=1,...,k

] n→∞−→ Lx
[
(Yti )i=1,...,k

]
.

However, this was the claim. �

The final step is to show convergence in path space. To this end, we have to mod-
ify the rescaled processes so that they become continuous. Assume that (Zni )i∈N0 ,
n ∈ N is a sequence of Galton–Watson processes with Zn0 = �nx�. Define the lin-
early interpolated processes

Z̄nt :=
(
t − n−1�tn�)(Zn�tn�+1 −Zn�tn�

)+ 1

n
Zn�tn�.

Theorem 21.51 (Lindvall (1972), see [109]) As n→∞, in the sense of weak con-
vergence in M1(C([0,∞))), the rescaled Galton–Watson processes Z̄n converge
to Feller’s diffusion Y :

Lx
[
Z̄n
] n→∞−→ Lx[Y ].

Proof We have shown already the convergence of the finite-dimensional distribu-
tions. By Theorem 21.38, it is thus enough to show tightness of (Lx[Z̄n], n ∈ N)

in M1(C([0,∞))). To this end, we apply Kolmogorov’s moment criterion (Theo-
rem 21.42 with α = 4 and β = 1). Hence, for fixed N > 0, we compute the fourth
moments Ex[(Z̄nt+s − Z̄ns )4] for s, t ∈ [0,N ]. We distinguish two cases:



21.10 Square Variation and Local Martingales 497

Case 1: t < 1
n

. Let k = �(t + s)n�. First assume that �sn� = k. Then (by
Lemma 21.45)

Ex
[(
Z̄nt+s − Z̄ns

)4]= n−4(tn)4E�nx�
[(
Znk+1 −Znk

)4]

= t4E�nx�
[
24Znk + 12

(
Znk
)2 + 2Znk

]

= t4(26�nx� + 24�nx�k+ �nx�2)

≤ 26xt3 + 24xst2 + x2t2

≤ (50Nx + x2)t2.

In the case �sn� = k − 1, we get a similar estimate. Therefore, there is a constant
C = C(N,x) such that

Ex
[(
Z̄ns+t − Z̄ns

)4]≤ Ct2 for all s, t ∈ [0,N ] with t <
1

n
. (21.48)

Case 2: t ≥ 1
n

. Define k := �(t + s)n� − �sn� ≤ tn + 1 ≤ 2tn. Then (by
Lemma 21.45)

Ex
[(
Z̄nt+s − Z̄ns

)4]

≤ n−4E�nx�
[(
Zn�(t+s)n� −Zn�sn�

)4]

= n−4E�nx�
[
EZn�sn�

[(
Znk −Zn0

)4]]

= n−4E�nx�
[
24Zn�sn�k3 + 12

(
Zn�sn�

)2
k2 + 2Zn�sn�k

]

≤ n−4(24xn(2tn)3 + (24xnsn+ 12x2n2)(2tn)2 + 4xtn2)

≤ 192xt3 + (96xs + 48x2)t2 + 4xn−1t2

≤ (292Nx + 48x2)t2. (21.49)

Combining the estimates (21.48) and (21.49), the assumptions of Kolmogorov’s
moment criterion for tightness (Theorem 21.42) are fulfilled with α = 4 and β = 1.
Hence the sequence (Lx[Z̄n], n ∈N) is tight. �

21.10 Square Variation and Local Martingales

By the Paley–Wiener-Zygmund theorem (Theorem 21.17), the paths t �→ Wt of
Brownian motion are almost surely nowhere differentiable and hence have locally
infinite variation. In particular, the stochastic integral

∫ 1
0 f (s) dWs that we intro-

duced in Example 21.29 cannot be understood as a Lebesgue–Stieltjes integral.
However, as a preparation for the construction of integrals of this type for larger
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classes of integrands and integrators (in Chapter 25), here we investigate the path
properties of Brownian motion and, somewhat more generally, of continuous local
martingales in more detail.

Definition 21.52 Let G : [0,∞)→ R be a continuous function. For any t ≥ 0, de-
fine the variation up to t by

V 1
t (G) := sup

{
n−1∑

i=0

|Gti+1 −Gti | : 0= t0 ≤ t1 ≤ . . .≤ tn = t, n ∈N

}

.

We say thatG has locally finite variation if V 1
t (G) <∞ for all t ≥ 0. We write Cv for

the vector space of continuous functions G with continuous variation t �→ V 1
t (G).

Remark 21.53 Clearly, V 1(F + G) ≤ V 1(F ) + V 1(G) and V 1(αG) = |α|V 1(G)

for all continuous F,G : [0,∞)→R and for all α ∈R. Hence Cv is indeed a vector
space. ♦

Remark 21.54

(i) If G is of the form Gt =
∫ t

0 f (s) ds for some locally integrable function f ,
then we have G ∈ Cv with V 1

t (G)=
∫ t

0 |f (s)|ds.
(ii) If G = G+ − G− is the difference of two continuous monotone increasing

functions G+ and G−, then

V 1
t (G)− V 1

s (G)≤
(
G+t −G+s

)+ (G−t −G−s
)

for all t > s, (21.50)

hence we have G ∈ Cv. In (21.50), equality holds if G− and G+ “do not grow
on the same sets”; that is, more formally, if G− and G+ are the distribution
functions of mutually singular measures μ− and μ+. The measures μ− and μ+
are then the Jordan decomposition of the signed measure μ= μ+ −μ− whose
distribution function is G. Then the Lebesgue–Stieltjes integral is defined by

∫ t

0
F(s) dGs :=

∫

[0,t]
F dμ+ −

∫

[0,t]
F dμ−. (21.51)

(iii) If G ∈ Cv, then clearly

G+t :=
1

2

(
V 1
t (G)+Gt

)
and G−t :=

1

2

(
V 1
t (G)−Gt

)

is a decomposition of G as in (ii). ♦

The fact that the paths of Brownian motion are nowhere differentiable can be used
to infer that the paths have infinite variation. However, there is also a simple direct
argument.
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Theorem 21.55 LetW be a Brownian motion. Then V 1
t (W)=∞ almost surely for

every t > 0.

Proof It is enough to consider t = 1 and to show

Yn :=
2n∑

i=1

|Wi2−n −W(i−1)2−n | n→∞−→ ∞ a.s. (21.52)

We have E[Yn] = 2n/2E[|W1|] = 2n/2
√

2/π and Var[Yn] = 1 − 2/π . By Cheby-
shev’s inequality,

∞∑

n=1

P
[

Yn ≤ 1

2
2n/2
√

2/π

]

≤
∞∑

n=1

2π − 4

2n
= 2π − 4<∞.

Using the Borel–Cantelli lemma, this implies (21.52). �

Evidently, the variation is too crude a measure to quantify essential path properties
of Brownian motion. Hence, instead of the increments (in the definition of the vari-
ation), we will sum up the (smaller) squared increments. For the definition of this
square variation, more care is needed than in Definition 21.52 for the variation.

Definition 21.56 A sequence P = (Pn)n∈N of countable subsets of [0,∞),

Pn := {t0, t1, t2, . . .} with 0= t0 < t1 < t2 < . . . ,

is called an admissible partition sequence if

(i) P1 ⊂P2 ⊂ . . .,
(ii) supPn =∞ for every n ∈N, and

(iii) the mesh size
∣
∣Pn
∣
∣ := sup

t∈Pn
min

s∈Pn,s �=t
|s − t |

tends to 0 as n→∞.

If 0≤ S < T , then define

PnS,T := Pn ∩ [S,T ) and PnT :=Pn ∩ [0, T ).

If t = tk ∈ PnT , then let t ′ := tk+1 ∧ T =min{s ∈PnT ∪ {T } : s > t}.

Example 21.57 Pn = {k2−n : k = 0,1,2, . . .}. ♦
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Definition 21.58 For continuous F,G : [0,∞)→ R and for p ≥ 1, define the
p-variation of G (along P) by

V
p
T (G) := V P,p

T (G) := lim
n→∞

∑

t∈PnT
|Gt ′ −Gt |p for T ≥ 0

if the limit exists. In particular, 〈G〉 := V 2(G) is called the square variation of G.
If T �→ V 2

T (G) is continuous, then we write G ∈ Cqv := CPqv.
If, for every T ≥ 0, the limit

V
P,2
T (F,G) := lim

n→∞
∑

t∈PnT
(Ft ′ − Ft )(Gt ′ −Gt)

exists, then we call 〈F,G〉 := V 2(F,G) := V P,2(F,G) the quadratic covariation
of F and G (along P).

Remark 21.59 If p′ >p and V pT (G) <∞, then V p
′

T (G)= 0. In particular, we have
〈G〉 ≡ 0 if G has locally finite variation. ♦

Remark 21.60 By the triangle inequality, we have

∑

t∈Pn+1
T

|Gt ′ −Gt | ≥
∑

t∈PnT
|Gt ′ −Gt | for all n ∈N, T ≥ 0.

Hence in the case p = 1, the limit always exists and coincides with V 1(G) from
Definition 21.52 (and is hence independent of the particular choice of P). A similar
inequality does not hold for V 2 and thus the limit need not exist or may depend
on the choice of P . In the following, we will, however, show that, for a large class
of continuous stochastic processes, V 2 exists almost surely along a suitable subse-
quence of partitions and is almost surely unique. ♦

Remark 21.61

(i) If 〈F +G〉T and 〈F −G〉T exist, then the covariation 〈F,G〉T exists and the
polarization formula holds:

〈F,G〉T = 1

4

(〈F +G〉T − 〈F −G〉T
)
.

(ii) If 〈F 〉T , 〈G〉T and 〈F,G〉T exist, then by the Cauchy–Schwarz inequality, we
have for the approximating sums

V 1
T

(〈F,G〉)≤√〈F 〉T 〈G〉T . ♦
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Remark 21.62 If f ∈ C1(R) and G ∈ Cqv, then (exercise!) in the sense of the
Lebesgue–Stieltjes integral

〈
f (G)

〉
T
=
∫ T

0

(
f ′(Gs)

)2
d〈G〉s . ♦

Corollary 21.63 If F has locally finite square variation and if 〈G〉 ≡ 0 (hence, in
particular, if G has locally finite variation), then 〈F,G〉 ≡ 0 and 〈F +G〉 = 〈F 〉.

Theorem 21.64 For Brownian motionW and for every admissible sequence of par-
titions, we have

〈W 〉T = T for all T ≥ 0 a.s.

Proof We prove this only for the case where

∞∑

n=1

∣
∣Pn
∣
∣<∞. (21.53)

For the general case, we only sketch the argument.
Accordingly, assume (21.53). If 〈W 〉 exists, then T �→ 〈W 〉T is monotone in-

creasing. Hence, it is enough to show that 〈W 〉T exists for every T ∈ Q
+ =

Q ∩ [0,∞) and that almost surely 〈W 〉T = T . Since (W̃t )t≥0 = (T −1/2WtT )t≥0 is
a Brownian motion, and since 〈W̃ 〉1 = T −1〈W 〉T , it is enough to consider the case
T = 1.

Define

Yn :=
∑

t∈Pn1
(Wt ′ −Wt)2 for all n ∈N.

Then E[Yn] =∑t∈Pn1 (t
′ − t)= 1 and

Var[Yn] =
∑

t∈Pn1
Var
[
(Wt ′ −Wt)2

]= 2
∑

t∈Pn1

(
t ′ − t)2 ≤ 2|Pn|.

By assumption (21.53), we thus have
∑∞
n=1 Var[Yn] ≤ 2

∑∞
n=1 |Pn| <∞; hence

Yn
n→∞−→ 1 almost surely.

If we drop the assumption (21.53), then we still have Var[Yn] n→∞−→ 0; hence

Yn
n→∞−→ 1 in probability. However, it is not too hard to show that (Yn)n∈N is a back-

wards martingale (see, e.g., [140, Theorem I.28]) and thus converges almost surely
to 1. �

Corollary 21.65 If W and W̃ are independent Brownian motions, then we have
〈W,W̃ 〉T = 0.
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Proof The continuous processes ((W + W̃ )/√2) and (W − W̃ )/√2) have inde-
pendent normally distributed increments. Hence they are Brownian motions. By
Remark 21.61(i), we have

4〈W,W̃ 〉T = 〈W + W̃ 〉T − 〈W − W̃ 〉T
= 2
〈
(W + W̃ )/√2

〉
T
− 2
〈
(W − W̃ )/√2

〉
T

= 2T − 2T = 0. �

Clearly, (WtW̃t )t≥0 is a continuous martingale. Now, by Exercise 21.4.2, the pro-
cess (W 2

t − t)t≥0 is also a continuous martingale. Thus, as shown above, the pro-
cessesW 2−〈W 〉 andWW̃ −〈W,W̃ 〉 are martingales. We will see (Theorem 21.70)
that the square variation 〈M(ω)〉 of a square integrable continuous martingaleM al-
ways exists (for almost all ω) and that the process 〈M〉 is uniquely determined by
the property thatM2 − 〈M〉 is a martingale.

In order to obtain a similar statement for continuous martingales that are not
square integrable, we make the following definition.

Definition 21.66 (Local martingale) Let F be a filtration on (Ω,F,P) and let τ
be an F-stopping time. An adapted real-valued stochastic process M = (Mt)t≥0 is
called a local martingale up to time τ if there exists a sequence (τn)n∈N of stopping
times such that τn ↑ τ almost surely and such that, for every n ∈ N, the stopped
process Mτn = (Mτn∧t )t≥0 is a uniformly integrable martingale. Such a sequence
(τn)n∈N is called a localising sequence for M . M is called a local martingale if M
is a local martingale up to time τ ≡∞. Denote by Mloc,c the space of continuous
local martingales.

Remark 21.67 LetM be a continuous adapted process and let τ be a stopping time.
Then the following are equivalent:

(i) M is a local martingale up to time τ .
(ii) There is a sequence (τn)n∈N of stopping times with τn ↑ τ almost surely and

such that everyMτn is a martingale.
(iii) There is a sequence (τn)n∈N of stopping times with τn ↑ τ almost surely and

such that everyMτn is a bounded martingale.

Indeed, (iii)=⇒(i)=⇒(ii) is trivial. Hence assume that (ii) holds, and define τ ′n by

τ ′n := inf
{
t ≥ 0 : |Mt | ≥ n

}
for all n ∈N.

SinceM is continuous, we have τ ′n ↑∞. Hence (σn)n∈N := (τn ∧ τ ′n)n∈N is a local-
ising sequence forM such that everyMσn is a bounded martingale. ♦

Remark 21.68 A bounded local martingale M is a martingale. Indeed, assume that
|Mt | ≤ C <∞ almost surely for all t ≥ 0 and that (τn)n∈N is a localising sequence
forM . Let t > s ≥ 0 and A ∈Fs . Then A∩ {τn ≤ s} ∈Fτn∧s and hence

E[Mτn∧t1A∩{τn≤s}] = E[Mτn∧s1A∩{τn≤s}].
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Since τn ↑∞, the dominated convergence theorem (Corollary 6.26) yields

E[Mt1A] = E[Ms1A].
Hence E[Mt |Fs] =Ms and thusM is a martingale. ♦

Example 21.69

(i) Every martingale is a local martingale.
(ii) In Remark 21.68, we saw that bounded local martingales are martingales. On

the other hand, even a uniformly integrable local martingale need not be a
martingale: Let W = (W 1,W 2,W 3) be a three-dimensional Brownian motion
(that is, W 1, W 2 and W 3 are independent Brownian motions) that starts at
W0 = x ∈R

3 \ {0}. Let

u(y)= ‖y‖−1 for y ∈R
3 \ {0}.

It is easy to check that u is harmonic; that is,  u(y) = 0 for all y �= 0. We
will see later (Corollary 25.34) that this implies thatM := (u(Wt))t≥0 is a local
martingale. Define a localising sequence forM by

τn := inf{t > 0 :Mt ≥ n} = inf
{
t > 0 : ‖Wt‖ ≤ 1/n

}
, n ∈N.

An explicit computation with the three-dimensional normal distribution shows

E[Mt ] ≤ t−1/2 t→∞−→ 0; hence M is integrable but is not a martingale. Since

Mt
t→∞−→ 0 in L1,M is uniformly integrable. ♦

Theorem 21.70 LetM be a continuous local martingale.

(i) There exists a unique continuous, monotone increasing, adapted process
〈M〉 = (〈M〉t )t≥0 with 〈M〉0 = 0 such that

(
M2
t − 〈M〉t

)
t≥0 is a continuous local martingale.

(ii) IfM is a continuous square integrable martingale, thenM2 − 〈M〉 is a mar-
tingale.

(iii) For every admissible sequence of partitions P = (Pn)n∈N, we have

UnT :=
∑

t∈PnT
(Mt ′ −Mt)2 n→∞−→ 〈M〉T in probability for all T ≥ 0.

The process 〈M〉 is called the square variation process ofM .

Remark 21.71 By possibly passing in (iii) to a subsequence P ′ (that might depend

on T ), we may assume that UnT
n→∞−→ 〈M〉T almost surely. Using the diagonal se-

quence argument, we obtain (as in the proof of Helly’s theorem) a sequence of par-

titions such that UnT
n→∞−→ 〈M〉T almost surely for all T ∈Q

+. Since both T �→ UnT
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and T �→ 〈M〉T are monotone and continuous, we get UnT
n→∞−→ 〈M〉T for all T ≥ 0

almost surely. Hence, for this sequence of partitions, the pathwise square variation
almost surely equals the square variation process:

〈
M(ω)

〉= V 2(M(ω)
)= 〈M〉(ω). ♦

Proof of Theorem 21.70 Step 1. First let |Mt | ≤ C almost surely for all t ≥ 0 for
some C <∞. Then, in particular, M is a martingale (by Remark 21.68). Write
UnT =M2

T −M2
0 −NnT , where

NnT = 2
∑

t∈PnT
Mt(Mt ′ −Mt), T ≥ 0,

is a continuous martingale. Assume that we can show that, for every T ≥ 0, (UnT )n∈N
is a Cauchy sequence in L2(P). Then also (NnT )n∈N is a Cauchy sequence, and we
can define ÑT as the L2-limit of (NnT )n∈N. By Exercise 21.4.3, Ñ has a continuous

modification N , and we have NnT
n→∞−→ NT in L2 for all T ≥ 0. Thus there exists a

continuous process 〈M〉 with

UnT
n→∞−→ 〈M〉T in L2 for all T ≥ 0, (21.54)

and N =M2 −M2
0 − 〈M〉 is a continuous martingale.

It remains to show that, for all T ≥ 0,

(
UnT
)
n∈N is a Cauchy sequence in L2. (21.55)

For m ∈N, let

Zm :=max
{
(Mt −Ms)2 : s ∈ PmT , t ∈Pns,s′ , n≥m

}
.

Since M is almost surely uniformly continuous on [0, T ], we have Zm
m→∞−→ 0 al-

most surely. As Zm ≤ 4C2, we infer

E
[
Z2
m

] m→∞−→ 0. (21.56)

For n ∈N and numbers a0, . . . , an, we have

(an − a0)
2 −

n−1∑

k=0

(ak+1 − ak)2 = 2
n−1∑

k=0

(ak − a0)(ak+1 − ak).

In the following computation, we apply this to each summand in the outer sum to
obtain for m ∈N and n≥m
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UmT −UnT =
∑

s∈PmT

(

(Ms′ −Ms)2 −
∑

t∈Pn
s,s′

(Mt ′ −Mt)2
)

= 2
∑

s∈PmT

∑

t∈Pn
s,s′

(Mt −Ms)(Mt ′ −Mt). (21.57)

SinceM is a martingale, for s1, s2 ∈ PmT and t1 ∈ Pn
s1,s

′
1
, t2 ∈Pn

s2,s
′
2

with t1 < t2, we

have

E
[
(Mt1 −Ms1)(Mt ′1 −Mt1)(Mt2 −Ms2)(Mt ′2 −Mt2)

]

= E
[
(Mt1 −Ms1)(Mt ′1 −Mt1)(Mt2 −Ms2)E[Mt ′2 −Mt2 |Ft2 ]

]= 0.

If we use (21.57) to compute the expectation of (UmT −UnT )2, then the mixed terms
vanish and we get (using the Cauchy–Schwarz inequality in the third line)

E
[(
UnT −UmT

)2]= 4E
[∑

s∈PmT

∑

t∈Pn
s,s′

(Mt −Ms)2(Mt ′ −Mt)2
]

≤ 4E
[

Zm
∑

t∈PnT
(Mt ′ −Mt)2

]

≤ 4E
[
Z2
m

]1/2E
[(∑

t∈PnT
(Mt ′ −Mt)2

)2]1/2

. (21.58)

For the second factor,

E
[(∑

t∈PnT
(Mt ′ −Mt)2

)2]

= E
[∑

t∈PnT
(Mt ′ −Mt)4

]

+ 2E
[∑

s∈PnT
(Ms′ −Ms)2

∑

t∈Pn
s′,T

(Mt ′ −Mt)2
]

. (21.59)

The first summand in (21.59) is bounded by

4C2E
[∑

t∈PnT
(Mt ′ −Mt)2

]

= 4C2E
[
(MT −M0)

2]≤ 16C4.
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The second summand in (21.59) equals

2E
[∑

s∈PnT
(Ms′ −Ms)2E

[ ∑

t∈Pn
s′,T

(Mt ′ −Mt)2 |Fs′
]]

= 2E
[∑

s∈PnT
(Ms′ −Ms)2E

[
(MT −Ms′)2 |Fs′

]
]

≤ 8C2E
[
(MT −M0)

2]≤ 32C4.

Together with (21.58) and (21.56), we obtain

sup
n≥m

E
[(
UnT −UmT

)2]≤ 16
√

3C2E
[
Z2
m

]1/2 m→∞−→ 0.

This shows (21.55).
Step 2. Now let M ∈Mloc,c and let (τN)N∈N be a localising sequence such that

every MτN is a bounded martingale (see Remark 21.67). By Step 1, for T ≥ 0 and
N ∈N, we have

U
N,n
T :=

∑

t∈PnT

(
M
τN
t ′ −MτN

t

)2 n→∞−→ 〈
MτN

〉
T

in L2.

Since UN,nT = UN+1,n
T if T ≤ τN , there is a continuous process U with UN,nT

n→∞−→
UT in probability if T ≤ τN . Thus 〈MτN 〉T = 〈M〉T :=UT if T ≤ τN . Since τN ↑∞
almost surely, for all T ≥ 0,

UnT
n→∞−→ 〈M〉T in probability.

As ((MτN
T )

2 − 〈MτN 〉T )T≥0 is a continuous martingale and since 〈MτN 〉 = 〈M〉τN ,
we haveM2 − 〈M〉 ∈Mloc,c .

Step 3. It remains to show (ii). Let M be a continuous square integrable martin-
gale and let (τn)n∈N be a localising sequence for the local martingale M2 − 〈M〉.
Let T > 0 and let τ ≤ T be a stopping time. Then M2

τn∧τ ≤ E[M2
T | Fτn∧τ ] since

M2 is a nonnegative submartingale. Hence (M2
τn∧τ )n∈N is uniformly integrable and

thus (using the monotone convergence theorem in the last step)

E
[
M2
τ

]= lim
n→∞E

[
M2
τn∧τ
]= lim

n→∞E
[〈M〉τn∧τ

]+E
[
M2

0

]

= E
[〈M〉τ

]+E
[
M2

0

]
.

Thus, by the optional sampling theorem,M2 − 〈M〉 is a martingale.
Step 4 (Uniqueness). Let A and A′ be continuous, monotone increasing, adapted

processes with A0 =A′0 such thatM2−A andM2−A′ are local martingales. Then
also N = A − A′ is a local martingale, and for almost all ω, the path N(ω) has
locally finite variation. Thus 〈N〉 ≡ 0 and hence N2 − 〈N〉 = N2 is a continuous
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local martingale with N0 = 0. Let (τn)n∈N be a localising sequence for N2. Then
E[N2

τn∧t ] = 0 for any n ∈ N and t ≥ 0; hence N2
τn∧t = 0 almost surely and thus

N2
t = limn→∞N2

τn∧t = 0 almost surely. We conclude A=A′. �

Corollary 21.72 Let M be a continuous local martingale with 〈M〉 ≡ 0. Then
Mt =M0 for all t ≥ 0 almost surely. In particular, this holds if the paths of M
have locally finite variation.

Corollary 21.73 Let M,N ∈ Mloc,c . Then there exists a unique continuous
adapted process 〈M,N〉 with almost surely locally finite variation and 〈M,N〉0 = 0
such that

MN − 〈M,N〉 is a continuous local martingale.

〈M,N〉 is called the quadratic covariation process ofM andN . For every admissible
sequence of partitions P and for every T ≥ 0, we have

〈M,N〉T = lim
n→∞

∑

t∈PnT
(Mt ′ −Mt)(Nt ′ −Nt) in probability. (21.60)

Proof Existence. Manifestly,M +N,M −N ∈Mloc,c . Define

〈M,N〉 := 1

4

(〈M +N〉 − 〈M −N〉).

As the difference of two monotone increasing functions, 〈M,N〉 has locally finite
variation. Using Theorem 21.70(iii), we get (21.60). Furthermore,

MN − 〈M,N〉 = 1

4

(
(M +N)2 − 〈M +N〉)− 1

4

(
(M −N)2 − 〈M −N〉)

is a local martingale.
Uniqueness. Let A and A′ with A0 = A′0 = 0 be continuous, adapted and with

locally finite variation such that MN − A and MN − A′ are in Mloc,c. Then
A−A′ ∈Mloc,c have locally finite variation; hence A−A′ = 0. �

Corollary 21.74 If M ∈Mloc,c and A are continuous and adapted with 〈A〉 ≡ 0,
then 〈M +A〉 = 〈M〉.

IfM is a continuous local martingale up to the stopping time τ , thenMτ ∈Mloc,c,
and we write 〈M〉t := 〈Mτ 〉t for t < τ .

Theorem 21.75 Let τ be a stopping time, M be a continuous local martingale up
to τ and τ0 < τ a stopping time with E[〈M〉τ0 ] <∞. Then E[Mτ0 ] = E[M0], and
Mτ0 is an L2-bounded martingale if E[M2

0 ]<∞.
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Proof Let τn ↑ τ be a localising sequence of stopping times for M such that ev-
ery Mτn is even a bounded martingale (see Remark 21.67). Then Mτ0∧τn is also a
bounded martingale, and for every t ≥ 0, we have

E
[
M2
τ0∧τn∧t

]= E
[
M2

0

]+E
[〈M〉τ0∧τn∧t

]≤ E
[
M2

0

]+E
[〈M〉τ0

]
<∞. (21.61)

Hence ((Mτ0∧τn∧t ), n ∈N, t ≥ 0) is bounded in L2 and is thus uniformly integrable.
Therefore, by the optional sampling theorem for uniformly integrable martingales,

E[Mτ0 ] = lim
n→∞E[Mτ0∧τn ] = E[M0],

and, for t > s,

E
[
M
τ0
t

∣
∣Fs
]= E

[
lim
n→∞M

τ0∧τn
t

∣
∣Fs
]

= lim
n→∞E

[
M
τ0∧τn
t

∣
∣Fs
]

= lim
n→∞M

τ0∧τn
s =Mτ0

s .

HenceMτ0 is a martingale. �

Corollary 21.76 If M ∈ Mloc,c with E[M2
0 ] <∞ and E[〈M〉t ] <∞ for every

t ≥ 0, thenM is a square integrable martingale.

Exercise 21.10.1 Show that the random variables (Yn)n∈N from the proof of Theo-
rem 21.64 form a backwards martingale.

Exercise 21.10.2 Let f : [0,∞)→R be continuous and let X ∈ CPqv for the admis-
sible sequence of partitions P . Show that

∫ T

0
f (s) d〈X〉s = lim

n→∞
∑

t∈PnT
f (t)(Xt ′ −Xt)2 for all T ≥ 0.

Exercise 21.10.3 Show by a counterexample that if M is a continuous local mar-
tingale with M0 = 0 and if τ is a stopping time with E[〈M〉τ ] =∞, then this does
not necessarily imply E[M2

τ ] =∞.



Chapter 22
Law of the Iterated Logarithm

For sums of independent random variables we already know two limit theorems:
the law of large numbers and the central limit theorem. The law of large numbers
describes for large n ∈ N, the typical behavior, or average value behavior, of sums
of n random variables. On the other hand, the central limit theorem quantifies the
typical fluctuations about this average value.

In Chapter 23, we will study atypically large deviations from the average value
in greater detail. The aim of this chapter is to quantify the typical fluctuations of the
whole process as n→∞. The main message is: While for fixed time the partial sum
Sn deviates by approximately

√
n from its expected value (central limit theorem),

the maximal fluctuation up to time n is of order
√
n log logn (Hartman–Wintner

theorem, Theorem 22.11).
We start with the simpler task of computing the fluctuations for Brownian mo-

tion (Theorem 22.1). After that, we will see how sums of independent centered
random variables (with finite variance) can be embedded in a Brownian motion
(Skorohod’s theorem, Theorem 22.5). This embedding will be used to prove the
Hartman–Wintner theorem.

In this chapter, we follow essentially the exposition of [39, Section 8.8].

22.1 Iterated Logarithm for the Brownian Motion

Let (Bt )t≥0 be a Brownian motion. In Example 21.16, as an application of Blumen-
thal’s 0–1 law, we saw that lim supt↓0Bt/

√
t =∞ a.s. Since by Theorem 21.14,

(tB1/t )t≥0 also is a Brownian motion, we get

lim sup
t→∞

Bt√
t
=∞ a.s.

The aim of this section is to replace
√
t by a function such that the limes superior is

finite and nontrivial.
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Theorem 22.1 (Law of the iterated logarithm for Brownian motion)

lim sup
t→∞

Bt
√

2t log log(t)
= 1 a.s. (22.1)

Before proving the theorem, we state an elementary lemma.

Lemma 22.2 Let X ∼N0,1 be standard normally distributed. Then, for any x > 0,

1√
2π

1

x + 1
x

e−x2/2 ≤ P[X ≥ x] ≤ 1√
2π

1

x
e−x2/2. (22.2)

Proof Let ϕ(t)= 1√
2π
e−t2/2 be the density of the standard normal distribution. Par-

tial integration yields the second inequality in (22.2),

P[X ≥ x] =
∫ ∞

x

1

t

(
tϕ(t)

)
dt =−1

t
ϕ(t)

∣
∣
∣
∞
x
−
∫ ∞

x

1

t2
ϕ(t) dt ≤ 1

x
ϕ(x).

Similarly, we get

P[X ≥ x] ≥ 1

x
ϕ(x)− 1

x2

∫ ∞

x

ϕ(t) dt = 1

x
ϕ(x)− 1

x2
P[X ≥ x].

This implies the first inequality in (22.2). �

Proof of Theorem 22.1 Step 1. “≤” Let α > 1, and define tn = αn for n ∈N. Later,
we let α ↓ 1. Define f (t) = 2α2 log log t . Then by the reflection principle (Theo-
rem 21.19) and using the abbreviation B[a,b] := {Bt : t ∈ [a, b]}, we obtain

P
[
supB[tn,tn+1] >

√
tnf (tn)

]

≤ P
[
t
−1/2
n+1 supB[0,tn+1] >

√
f (tn)/α

]

= P
[
supB[0,1] >

√
f (tn)/α

]

≤
√

α

f (tn)
e−f (tn)/2α

= (logα)−α
√

α

f (tn)
n−α

≤ n−α for large enough n. (22.3)

In the next to last step, we used

f (tn)

2α
= α(log(n logα)

)= α logn+ α log logα.
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Since α > 1, the right-hand side of (22.3) is summable in n:

∞∑

n=1

P
[
supB[tn,tn+1] >

√
tnf (tn)

]
<∞.

The Borel–Cantelli lemma (Theorem 2.7) then yields (note that t �→ √
tf (t) is

monotone increasing)

lim sup
t→∞

Bt√
tf (t)

≤ 1 a.s.

Now let α ↓ 1 to obtain

lim sup
t→∞

Bt√
2t log log t

≤ 1 a.s. (22.4)

Step 2. “≥” Here we show the other inequality in (22.1). To this end, we let
α→∞. Let β := α

α−1 > 1 and g(t) = 2
β2 log log t . Choose n0 large enough that

βg(tn) ≥ 1 for all n ≥ n0. Then, by Brownian scaling (note that tn − tn−1 = 1
β
tn)

and (22.2) (since (x + 1
x
)−1 ≥ 1

2
1
x

for x = (βg(tn))1/2 ≥ 1),

P
[
Btn −Btn−1 >

√
tng(tn)

]= P
[
B1 >

√
βg(tn)

]

≥ 1√
2π

1

2

1√
βg(tn)

e−βg(tn)/2

= 1√
2π

1

2
(logα)−1/β 1√

βg(tn)
n−1/β .

If ε ∈ (0,1−1/β), then, for sufficiently large n ∈N, the right-hand side of the above
equation is ≥ n−εn−1/β ≥ n−1. Hence

∞∑

n=2

P
[
Btn −Btn−1 >

√
tng(tn)

]=∞.

The events are independent and hence the Borel–Cantelli lemma yields

P
[
Btn −Btn−1 >

√
tng(tn) for infinitely many n

]= 1. (22.5)

Since tn log log tn
tn−1 log log tn−1

n→∞−→ α, (22.4) and symmetry of Brownian motion imply that,
for ε > 0,

Btn−1 >−(1+ ε)α−1/2
√

2tn log log tn for almost all n ∈N a.s. (22.6)

From (22.5) and (22.6), it follows that

lim sup
n→∞

Btn√
2tn log log tn

≥ 1

β
− (1+ ε)α−1/2 = α− 1

α
− (1+ ε)α−1/2 a.s.
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Now, letting α→∞ gives lim supt→∞ Bt√
2t log log t

≥ 1 a.s. Together with (22.4), this
implies the claim of the theorem. �

Corollary 22.3 For every s ≥ 0, a.s. we have

lim sup
t↓0

Bs+t −Bs
√

2t log log(1/t)
= 1.

Proof Without loss of generality, assume s = 0. Apply Theorem 22.1 to the Brow-
nian motion (tB1/t ) (see Theorem 21.14). �

Remark 22.4 The statement of Corollary 22.3 is about the typical points s of Brow-
nian motion B . However, there might be points in which Brownian motion moves
faster than

√
2t log log(1/t). The precise statement is due to Paul Lévy [106]: De-

note by h(δ) :=√2δ log(1/δ) Lévy’s modulus of continuity. Then

P
[
lim
δ↓0

sup
s,t∈[0,1]
0≤t−s≤δ

|Bt −Bs |/h(δ)= 1
]
= 1. (22.7)

(See, e.g., [144, Theorem I.2.5] for a proof.) This implies in particular that almost
surely B is not locally Hölder- 1

2 -continuous. ♦

22.2 Skorohod’s Embedding Theorem

In order to carry over the result of the previous section to sums of square integrable
centered random variables, we use an embedding of such random variables in a
Brownian motion that is due to Skorohod. This technique also provides an alterna-
tive proof of Donsker’s invariance principle (Theorem 21.43).

Theorem 22.5 (Skorohod’s embedding theorem) LetX be a real random variable
with E[X] = 0 and Var[X] <∞. Then on a suitable probability space we can
construct a random variable Ξ , a Brownian motion B that is independent of Ξ
and an F-stopping time τ such that

Bτ
D=X and E[τ ] =Var[X].

Here the filtration F is given by Ft = σ(Ξ, (Bs)s≤t ).

Remark 22.6 In the above theorem we can de without the additional random vari-
able; that is, we can choose F = σ(B). The proof is rather involved, though (see
p. 515). ♦
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Corollary 22.7 Let X1,X2, . . . be i.i.d. real random variables with E[X1] = 0 and
Var[X1]<∞. Further, let Sn = X1 + . . .+Xn, n ∈ N. Then on a suitable proba-
bility space there exists a filtration F, a Brownian motion B and F-stopping times
0 = τ0 ≤ τ1 ≤ τ2 ≤ . . . such that (τn − τn−1)n∈N is i.i.d., E[τ1] = Var[X1] and

(Bτn)n∈N
D= (Sn)n∈N.

Proof of Corollary 22.7 We only sketch the proof. The details are left to the reader.
Choose independent triples (B(n),Ξ(n), τ (n)), n ∈ N, as in Theorem 22.5. Let

τn = τ (1) + . . .+ τ (n). For t ≤ τ1 let Bt := B(1)t , and define recursively

Bt = Bτn +B(n+1)
t−τn , if τn < t ≤ τn+1.

Using repeatedly the strong Markov property of Brownian motion, we see that B is
a Brownian motion. Now let Ft = σ((Ξn)n∈N, (Bs)s≤t ). �

We prepare for the proof of Theorem 22.5 with a lemma. In order to allow mea-
sures as integrands, we use the following notation: If μ ∈M(E) is a measure and
f ∈ L1(μ) is nonnegative, then define

∫
μ(dx)f (x)δx := fμ, where fμ is the

measure with density f with respect to μ. This is consistent since for measurable
A⊂E, we then have
(∫

μ(dx)f (x)δx

)

(A)=
∫

μ(dx)f (x)δx(A)=
∫

μ(dx)f (x)1A(x)= fμ(A).

Lemma 22.8 Let μ ∈ M1(R) with
∫
xμ(dx) = 0 and σ 2 := ∫ x2μ(dx) < ∞.

Then there exists a probability measure θ ∈M1((−∞,0)× [0,∞)) with

μ=
∫

θ
(
d(u, v)

)
(

v

v− uδu +
−u
v − uδv

)

. (22.8)

Furthermore, σ 2 =− ∫ uvθ(d(u, v)).

Proof Define m := ∫[0,∞) vμ(dv)= −
∫
(−∞,0) uμ(du). If m = 0, then θ = δ(−1,0)

is a possible choice. Assume now m> 0 and define θ by

θ
(
d(u, v)

) :=m−1(v − u)μ(du)μ(dv) for u < 0 and v ≥ 0.

Then
∫

θ
(
d(u, v)

)=m−1
∫

(−∞,0)
μ(du)

∫

[0,∞)
μ(dv)(v− u)

=m−1
∫

(−∞,0)
μ(du)

[
m− uμ([0,∞))]

=m−1(mμ
(
(−∞,0))+mμ([0,∞)))= 1.
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Hence, θ is in fact a probability measure. Furthermore,

∫

θ
(
d(u, v)

)
(

v

v− uδu +
−u
v− uδv

)

=m−1
∫

(−∞,0)
μ(du)

∫

[0,∞)
μ(dv)(vδu − uδv)

=
∫

(−∞,0)
μ(du)δu +

∫

[0,∞)
μ(dv)δv = μ.

By (22.8), we infer

σ 2 =
∫

μ(dx)x2 =
∫

θ
(
d(u, v)

)
(

v

v − uu
2 + −u

v− uv
2
)

=−
∫

θ
(
d(u, v)

)
uv. �

Proof Theorem 22.5 First assume that X takes only the two values u < 0 and v ≥ 0:
P[X = u] = v

v−u = 1− P[X = v]. Let

τu,v = inf
{
t > 0 : Bt ∈ {u,v}

}
.

By Exercise 21.2.4, we have E[Bτu,v ] = 0; hence Bτu,v
D=X and E[τu,v] = −uv.

Now let X be arbitrary with E[X] = 0 and σ 2 := E[X2] <∞. Define μ = PX
and θ = θμ as in Lemma 22.8. Further, let Ξ = (Ξu,Ξv) be a random variable with
values in (−∞,0)× [0,∞) and with distribution θ .

Let F= (Ft )t≥0 where Ft := σ(Ξ,Bs : s ∈ [0, t]). Define τ := τΞu,Ξv . By con-
tinuity of B , we get

{τ ≤ t} =
⋂

u,v∈Q
u<0≤v

({
Ξ ∈ (−∞, u] × [v,∞)}∩ {τu,v ≤ t}

) ∈Ft .

Hence τ is an F-stopping time (but not a σ(B)-stopping time). For x < 0,

P[X ≤ x] =
∫

(−∞,x]×[0,∞)
θ
(
d(u, v)

) v

v − u

=
∫

(−∞,x]×[0,∞)
θ
(
d(u, v)

)
P[Bτu,v = u]

= P[Bτ ≤ x].

For x ≥ 0, we similarly get P[X > x] = P[Bτ > x]. Summing up, we have Bτ
D=X.

Furthermore,

E[τ ] = −E[ΞuΞv] = −
∫

θ
(
d(u, v)

)
uv = σ 2. �
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Supplement: Proof of Remark 22.6

Here we prove that in Skorohod’s embedding theorem we can really do without
randomized stopping times; that is, we can choose a stopping time with respect to
the filtration generated by the Brownian motion B . In other words, the stopping time
can be chosen without using additional random variables, such as the Ξ in the proof
given above.

An elegant proof that is based on stochastic analysis methods can be found in
Azéma and Yor; see [6, 7]. See also [118] for a more elementary version of that
proof. Here, however, we follow an elementary route whose basic idea goes back to
Dubins.

For u < 0< v, let τu,v = inf{t > 0 : Bt ∈ {u,v}}. Hence, if X is a centered ran-
dom variable that takes only the values u and v, then, as shown in the proof of

Theorem 22.5, Bτu,v
D=X and E[τu,v] = E[X2].

In a first step, we generalize this statement to binary splitting martingales. (Recall
from Definition 9.42 that a binary splitting process at each time step has a choice of
just two different values, which may however depend on the history of the process.)
In a second step, we show that square integrable centered random variables can be
expressed as limits of such martingales.

Theorem 22.9 Let (Xn)n∈N0 be a binary splitting martingale with X0 = 0. Let B
be a Brownian motion and let F= σ(B) be its canonical filtration. Then there exist
F-stopping times 0= τ0 ≤ τ1 ≤ . . . such that

(Xn)n∈N0

D= (Bτn)n∈N0

and such that E[τn] = E[X2
n] holds for all n ∈N0.

If (Xn)n∈N0 is bounded in L2 and thus converges almost surely and in L2 to
some square integrable X∞, then τ := supn∈N τn <∞ a.s., E[τ ] = Var[X∞] and

X∞
D= Bτ .

Proof For n ∈ N, let fn : Rn−1 × {−1,+1} → R and let Dn be a {−1,+1}-valued
random variable such that Xn = fn(X1, . . . ,Xn−1,Dn) holds (compare Defini-
tion 9.42). Without loss of generality, we may assume that fn is monotone increas-
ing in Dn. Let τ0 := 0 and inductively define

τn := inf
{
t > τn−1 : Bt ∈

{
fn(Bτ1 , . . . ,Bτn−1 ,−1), fn(Bτ1 , . . . ,Bτn−1 ,+1)

}}
.

Let X̃n := Bτn and

D̃n :=
{

1, if X̃n ≥ X̃n−1,

−1, else.
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By Exercise 21.2.4 and using the strong Markov property (at τn−1), we get

P[D̃n = 1 | X̃1, . . . , X̃n−1]

= X̃n−1 − fn(X̃1, . . . , X̃n−1,−1)

fn(X̃1, . . . , X̃n−1,+1)− fn(X̃1, . . . , X̃n−1,−1)

and E[τn − τn−1] = E[(X̃n − X̃n−1)
2]. On the other hand, since (Xn)n∈N0 is a mar-

tingale, we have

Xn−1 = E[Xn |X0, . . . ,Xn−1]
=
∑

i=−1,+1

P[Dn = i |X0, . . . ,Xn−1]fn(X1, . . . ,Xn−1, i).

Therefore,

P[Dn = 1 |X1, . . . ,Xn−1]

= Xn−1 − fn(X1, . . . ,Xn−1,−1)

fn(X1, . . . ,Xn−1,+1)− fn(X1, . . . ,Xn−1,−1)
.

This implies (Xn)n∈N0

D= (X̃n)n∈N0 . Since E[τn − τn−1] = E[(Xn − Xn−1)
2], and

since the martingale differences (Xi − Xi−1), i ∈ N, are uncorrelated, we get
E[τn] = E[X2

n].
Finally, if (Xn) is bounded in L2, then by the martingale convergence theorem

there is a square integrable centered random variable X∞ such that Xn
n→∞−→ X∞

almost surely and in L2. In particular, we have E[X2
n] n→∞−→ E[X2∞]. Clearly,

(τn)n∈N is monotone increasing and thus converges to some stopping time τ . By
the monotone convergence theorem, E[τ ] = limn→∞E[τn] = limn→∞E[X2

n] =
E[X2∞]<∞. Hence τ <∞ a.s. As Brownian motion is continuous, we conclude

Bτ = lim
n→∞Bτn = lim

n→∞ X̃n
D=X∞. �

We have shown the statement of Remark 22.6 in the case where the random
variable X is the limit of a binary splitting martingale. The general case is now
implied by the following theorem.

Theorem 22.10 LetX be a square integrable centered random variable. Then there

exists a binary splitting martingale (Xn)n∈N0 withX0 = 0 and such thatXn
n→∞−→ X

almost surely and in L2.

Proof We follow the idea of the proof in [118]. Let X0 := E[X] = 0. Inductively,
for n ∈N, define

Dn :=
{

1, if X ≥Xn−1,

−1, if X <Xn−1,
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Fn := σ(D1, . . . ,Dn)

and

Xn := E[X |Fn].
Hence there exists a map gn : {−1,+1}n → R such that gn(D1, . . . ,Dn) = Xn.
Clearly, 1Dk=1 = 1Xk≥Xk−1 almost surely for all k ∈ N. Hence the D1, . . . ,Dk

can be computed from the X1, . . . ,Xk . Thus there exists a map fn : Rn−1 ×
{−1,+1} → R such that fn(X1, . . . ,Xn−1,Dn) = Xn. Therefore, (Xn) is binary
splitting.

Manifestly, (Xn)n∈N0 is a martingale. By Jensen’s inequality, we have E[X2
n] ≤

E[X2] <∞ for all n ∈ N. Hence (Xn)n∈N0 is bounded in L2 and thus converges
almost surely and in L2 to some square integrable X∞. It remains to show that
X∞ =X holds almost surely. To this end, we first show

lim
n→∞Dn(ω)

(
X(ω)−Xn(ω)

)= ∣∣X(ω)−X∞(ω)
∣
∣ for almost all ω. (22.9)

If X(ω) = X∞(ω), then (22.9) holds trivially. If X(ω) > X∞(ω), then X(ω) >
Xn(ω) and thusDn(ω)= 1 for all sufficiently large n; hence (22.9) holds. Similarly,
we get (22.9) if X(ω) <X∞(ω).

Evidently, we have

E
[
Dn(X−Xn)

]= E
[
DnE[X−Xn |Fn]

]= 0.

As (Dn(X −Xn))n∈N is bounded in L2 (and is thus uniformly integrable), we get
E[|X−X∞|] = limn→∞E[Dn(X−Xn)] = 0; hence X =X∞ a.s. �

22.3 Hartman–Wintner Theorem

The goal of this section is to prove the law of the iterated logarithm for i.i.d. cen-
tered square integrable random variables Xn, n ∈N, that goes back to Hartman and
Wintner (1941) (see [69]). For the special case of Rademacher random variables,
the upper bound was found earlier by Khinchin in 1923 (see [97]).

Theorem 22.11 (Hartman–Wintner, law of the iterated logarithm) Let X1,X2, . . .

be i.i.d. real random variables with E[X1] = 0 and Var[X1] = 1. Let Sn = X1 +
. . .+Xn, n ∈N. Then

lim sup
n→∞

Sn√
2n log logn

= 1 a.s. (22.10)



518 22 Law of the Iterated Logarithm

The strategy of the proof is to embed the partial sums Sn of the random variables
in a Brownian motion and then use the law of the iterated logarithm for Brownian
motion. The Skorohod embedding theorem ensures that this works. We follow the
exposition in [39, Section 8.8].

Proof By Corollary 22.7, on a suitable probability space there exists a filtration F,
a Brownian motion B that is an F-martingale, and stopping times τ1 ≤ τ2 ≤ . . . such

that (Sn)n∈N
D= (Bτn)n∈N. Furthermore, the (τn − τn−1)n∈N are i.i.d. with E[τn −

τn−1] =Var[X1] = 1.
By the law of the iterated logarithm for Brownian motion (see Theorem 22.1),

we have

lim sup
t→∞

Bt√
2t log log t

= 1 a.s.

Hence, it is enough to show that

lim sup
t→∞

|Bt −Bτ�t� |√
2t log log t

= 0 a.s.

By the strong law of large numbers (Theorem 5.17), we have 1
n
τn

n→∞−→ 1 a.s., so let
ε > 0 and let t0 = t0(ω) be large enough that

1

1+ ε ≤
τ�t�
t
≤ 1+ ε for all t ≥ t0.

Define

Mt := sup
s∈[t/(1+ε),t (1+ε)]

|Bs −Bt |.

It is enough to show that

lim sup
t→∞

Mt√
2t log log t

= 0.

Consider the sequence tn = (1+ ε)n, n ∈N, and define

M ′
n := sup

s∈[tn−1,tn+2]
|Bs −Btn−1 |.

Then (by the triangle inequality), for t ∈ [tn, tn+1],

Mt ≤ 2M ′
n.

Let δ := (1+ε)3−1. Then tn+2− tn−1 = δtn−1. Brownian scaling and the reflection
principle (Theorem 21.19) now yield
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P
[
M ′
n >
√

3δtn−1 log log tn−1
]

= P
[

sup
s∈[0,1]

|Bs |>
√

3 log log tn−1

]

≤ 2P
[

sup
s∈[0,1]

Bs >
√

3 log log tn−1

]

= 4P[B1 >
√

3 log log tn−1]

≤ 2√
3 log log tn−1

exp

(

−3

2
log log tn−1

)

(Lemma 22.2)

≤ n−3/2 for n sufficiently large.

The probabilities can be summed over n; hence the Borel–Cantelli lemma yields

lim sup
t→∞

Mt√
t log log t

≤ lim sup
n→∞

2M ′
n√

tn−1 log log tn−1

≤ 2
√

3δ.

Letting ε→ 0, we get δ = (1+ ε)3 − 1→ 0, and hence the proof is complete. �



Chapter 23
Large Deviations

Except for the law of the iterated logarithm, so far we have encountered two types of
limit theorems for partial sums Sn =X1+ . . .+Xn, n ∈N, of identically distributed,
real random variables (Xi)i∈N with distribution function F :

(1) (Weak) laws of large numbers state that (under suitable assumptions on the fam-
ily (Xi)i∈N), for every x > 0,

P
[∣
∣Sn − nE[X1]

∣
∣≥ xn] n→∞−→ 0. (23.1)

From this we get immediately that the empirical distribution functions

Fn : x �→ 1

n

n∑

i=1

1(−∞,x](Xi)

converge in probability; that is, ‖Fn − F‖∞ n→∞−→ 0. In other words, for any
distribution function G �= F and any ε > 0 with ε < ‖F −G‖∞, we have

P
[‖Fn −G‖∞ < ε

] n→∞−→ 0. (23.2)

(2) Central limit theorems state that (under different assumptions on the family
(Xi)i∈N) for every x ∈R

P
[
Sn − nE[X1] ≥ x√n

] n→∞−→ 1−Φ
(

x√
Var[X1]

)

. (23.3)

Here Φ : t �→N0,1((−∞, t]) is the distribution function of the standard normal
distribution.

In each case, the typical value of Sn is nE[X1]. Equation (23.3) makes a precise
statement about the average size of the deviations (which are of order

√
n) from

the typical value. A simple consequence is of course that the probability of large
deviations (of order n) from the typical value goes to 0; that is, (23.1) holds.
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In this chapter, we compute the speed of convergence in (23.1) (Cramér’s theo-
rem) and in (23.2) (Sanov’s theorem).

We follow in part the expositions in [31, 74].

23.1 Cramér’s Theorem

Let X1,X2, . . . be i.i.d. with PXi =N0,1. Then, for every x > 0,

P[Sn ≥ xn] = P[X1 ≥ x√n] = 1−Φ(x√n)= (1+ εn) 1

x
√

2πn
e−nx2/2,

where εn
n→∞−→ 0 (by Lemma 22.2). Taking logarithms, we get

lim
n→∞

1

n
log P[Sn ≥ xn] = −x

2

2
for every x > 0. (23.4)

It might be tempting to believe that a central limit theorem could be used to show
(23.4) for all centered i.i.d. sequences (Xi) with finite variance. However, in gen-
eral, the limit might be infinite or might be a different function of x, as we will show
below. The moral is that large deviations depend more subtly on the tails of the dis-
tribution of Xi than the average-sized fluctuations do (which are determined by the
variance only). The following theorem shows this for Bernoulli random variables.

Theorem 23.1 Let X1,X2, . . . be i.i.d. with P[X1 = −1] = P[X1 = 1] = 1
2 . Then,

for every x ≥ 0,

lim
n→∞

1

n
log P[Sn ≥ xn] = −I (x), (23.5)

where the rate function I is given by

I (z)=
{

1+z
2 log(1+ z)+ 1−z

2 log(1− z), if z ∈ [−1,1],
∞, if |z|> 1.

(23.6)

Remark 23.2 Here we agree that 0 log 0 = 0. This makes the restriction of I to
[−1,1] a continuous function with I (−1) = I (1) = log 2. Note that I is strictly
convex on [−1,1] with I (0) = 0 and I is monotone increasing on [0,1] and is
monotone decreasing on [−1,0]. ♦

Proof of Theorem 23.1 For x = 0 and x > 1, the claim is trivial. For x = 1, we
have P[Sn ≥ n] = 2−n, and thus again (23.5) holds trivially. Hence, it is enough to
consider x ∈ (0,1). Since Sn+n2 ∼ bn,1/2 is binomially distributed, we have

P[Sn ≥ xn] = 2−n
∑

k≥(1+x)n/2

(
n

k

)

.
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Fig. 23.1 Rate function I (z) from (23.6)

Define an(x)= �n(1+ x)/2� for n ∈N. Since k �→ (n
k

)
is monotone decreasing for

k ≥ n
2 , we get

Qn(x) :=max

{(
n

k

)

: an(x)≤ k ≤ n
}

=
(
n

an(x)

)

. (23.7)

We make the estimate

2−nQn(x)≤ P[Sn ≥ xn] ≤ (n+ 1)2−nQn(x). (23.8)

By Stirling’s formula

lim
n→∞

1

n!n
ne−n

√
2πn= 1,

we obtain

lim
n→∞

1

n
logQn(x)

= lim
n→∞

1

n
log

n!
an(x)! · (n− an(x))!

= lim
n→∞

1

n
log

nn

an(x)an(x) · (n− an(x))n−an(x)

= lim
n→∞

[

log(n)− an(x)
n

log
(
an(x)

)− n− an(x)
n

log
(
n− an(x)

)
]

= lim
n→∞

[

log(n)− 1+ x
2

(

log

(
1+ x

2

)

+ log(n)

)

− 1− x
2

(

log

(
1− x

2

)

+ log(n)

)]

=−1+ x
2

log

(
1+ x

2

)

− 1− x
2

log

(
1− x

2

)

=−I (x)+ log 2.

Together with (23.8), this implies (23.5). �
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Under certain assumptions on the distribution of X1, Cramér’s theorem [29] pro-
vides a general principle to compute the rate function I .

Theorem 23.3 (Cramér (1938)) Let X1,X2, . . . be i.i.d. real random variables
with finite logarithmic moment generating function

Λ(t) := log E
[
etX1
]
<∞ for all t ∈R. (23.9)

Let

Λ∗(x) := sup
t∈R
(
tx −Λ(t)) for x ∈R,

the Legendre transform of Λ. Then, for every x > E[X1],

lim
n→∞

1

n
log P[Sn ≥ xn] = −I (x) := −Λ∗(x). (23.10)

Proof By passing to Xi − x if necessary, we may assume E[Xi] < 0 and x = 0.
(In fact, if X̃i :=Xi − x, and Λ̃ and Λ̃∗ are defined as Λ and Λ∗ above but for X̃i
instead of Xi , then Λ̃(t)=Λ(t)− t · x and thus Λ̃∗(0)= supt∈R(−Λ̃(t))=Λ∗(x).)

Define ϕ(t) := eΛ(t) and

� := e−Λ∗(0) = inf
t∈Rϕ(t).

By (23.9) and the differentiation lemma (Theorem 6.28), ϕ is differentiable in-
finitely often and the first two derivatives are

ϕ′(t)= E
[
X1e

tX1
]

and ϕ′′(t)= E
[
X2

1e
tX1
]
.

Hence ϕ is strictly convex and ϕ′(0)= E[X1]< 0.
First consider the case P[X1 ≤ 0] = 1. Then ϕ′(t) < 0 for every t ∈ R and � =

limt→∞ ϕ(t)= P[X1 = 0]. Therefore,

P[Sn ≥ 0] = P[X1 = . . .=Xn = 0] = �n

and thus the claim follows.
Now let P[X1 < 0] > 0 and P[X1 > 0] > 0. Then limt→∞ ϕ(t) = ∞ =

limt→−∞ ϕ(t). As ϕ is strictly convex, there is a unique τ ∈ R at which ϕ assumes
its minimum; hence

ϕ(τ)= � and ϕ′(τ )= 0.

Since ϕ′(0) < 0, we have τ > 0. Using Markov’s inequality (Theorem 5.11), we
estimate

P[Sn ≥ 0] = P
[
eτSn ≥ 1

]≤ E
[
eτSn
]= ϕ(τ)n = �n.

Thus we get the upper bound

lim sup
n→∞

1

n
log P[Sn ≥ 0] ≤ log�=−Λ∗(0).
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The remaining part of the proof is dedicated to verifying the reverse inequality:

lim inf
n→∞

1

n
log P[Sn ≥ 0] ≥ log�. (23.11)

We use the method of an exponential size-biasing of the distributionμ := PX1 ofX1,
which turns the atypical values that are of interest here into typical values. That is,
we define the Cramér transform μ̂ ∈M1(R) of μ by

μ̂(dx)= �−1eτxμ(dx) for x ∈R.

Let X̂1, X̂2, . . . be independent and identically distributed with P
X̂i
= μ̂. Then

ϕ̂(t) := E
[
etX̂1
]= 1

�

∫

R

etxeτxμ(dx)= 1

�
ϕ(t + τ).

Hence

E[X̂1] = ϕ̂′(0)= 1

�
ϕ′(τ )= 0,

Var[X̂1] = ϕ̂′′(0)= 1

�
ϕ′′(τ ) ∈ (0,∞).

Defining Ŝn = X̂1 + . . .+ X̂n, we get

P[Sn ≥ 0] =
∫

{x1+...+xn≥0}
μ(dx1) . . .μ(dxn)

=
∫

{x1+...+xn≥0}
(
�e−τx1

)
μ̂(dx1) . . .

(
�e−τxn

)
μ̂(dxn)

= �nE[e−τ Ŝn1{Ŝn≥0}
]
.

Thus, in order to show (23.11), it is enough to show

lim inf
n→∞

1

n
log E

[
e−τ Ŝn1{Ŝn≥0}

]≥ 0. (23.12)

However, by the central limit theorem (Theorem 15.37), for every c > 0,

1

n
log E

[
e−τ Ŝn1{Ŝn≥0}

]≥ 1

n
log E

[
e−τ Ŝn1{0≤Ŝn≤c√n}

]

≥ 1

n
log

(

e−τc
√
nP
[
Ŝn√
n
∈ [0, c]

])

n→∞−→ lim
n→∞

−τc√n
n

+ lim
n→∞

1

n
log
(
N0,Var[X̂1]

([0, c]))

= 0. �
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Example 23.4 If PX1 =N0,1, then

Λ(t)= log
(
E
[
etX1
])= log

(
1√
2π

∫ ∞

−∞
etxe−x2/2 dx

)

= t
2

2
.

Furthermore,

Λ∗(z)= sup
t∈R
(
tz−Λ(t))= sup

t∈R

(

tz− t
2

2

)

= z
2

2
.

Hence the rate function coincides with that of (23.4). ♦

Example 23.5 If PX1 = 1
2δ−1 + 1

2δ1, then Λ(t)= log cosh(t). The maximizer t∗ =
t∗(z) of the variational problem for Λ∗ solves the equation z =Λ′(t∗)= tanh(t∗).
Hence

Λ∗(z)= zt∗ −Λ(t∗)= z arc tanh(z)− log
(
cosh
(
arc tanh(z)

))
.

Now arc tanh(z)= 1
2 log 1+z

1−z for z ∈ (−1,1) and

cosh
(
arc tanh(z)

)= 1√
1− z2

= 1√
(1− z)(1+ z) .

Therefore,

Λ∗(z)= z
2

log(1+ z)− z
2

log(1− z)+ 1

2
log(1− z)+ 1

2
log(1+ z)

= 1+ z
2

log(1+ z)+ 1− z
2

log(1− z).

However, this is the rate function from Theorem 23.1. ♦

Exercise 23.1.1 Let X be a real random variable with density

f (x)= c−1 e−|x|

1+ |x|3 ,

where c = ∫∞−∞ e−|x|
1+|x|3 dx. Check if the logarithmic moment generating function Λ

is continuous and sketch the graph of Λ.

23.2 Large Deviations Principle

The basic idea of Cramér’s theorem is to quantify the probabilities of rare events
by an exponential rate and a rate function. In this section, we develop a formal
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framework for the quantification of probabilities of rare events in which the com-
plete theory of large deviations can be developed. For further reading, consult, e.g.,
[31, 32] or [74].

Let E be a Polish space with complete metric d . Recall that

Bε(x)=
{
y ∈E : d(x, y) < ε}

denotes the open ball of radius ε > 0 that is centered at x ∈E.
A map f : E → R = [−∞,∞] is called lower semicontinuous if, for every

a ∈R, the level set f−1([−∞, a])⊂E is closed. (In particular, continuous maps are
lower semicontinuous. On the other hand, 1(0,1) : R→ R is lower semicontinuous
but not continuous.) An equivalent condition for lower semicontinuity is that

lim
ε↓0

inff
(
Bε(x)

)= f (x) for all x ∈E.

(Recall that inff (A) = inf{f (x) : x ∈ A}.) If K ⊂ E is compact and nonempty,
then f assumes its infimum on K . Indeed, for the case where f (x) =∞ for all
x ∈ K , the statement is trivial. Now assume inff (K) <∞. If an ↓ inff (K) is
strictly monotone decreasing, then K ∩ f−1([−∞, an]) �= ∅ is compact for every
n ∈N and hence the infinite intersection also is nonempty:

f−1(inff (K)
)=K ∩

∞⋂

n=1

f−1([−∞, an]
) �= ∅.

Definition 23.6 (Rate function) A lower semicontinuous function I : E→ [0,∞]
is called a rate function. If all level sets I−1([−∞, a]), a ∈ [0,∞), are compact,
then I is called a good rate function.

Definition 23.7 (Large deviations principle) Let I be a rate function and (με)ε>0
be a family of probability measures on E. We say that (με)ε>0 satisfies a large
deviations principle (LDP) with rate function I if

(LDP 1) lim infε→0 ε log(με(U))≥− inf I (U) for every open U ⊂E,
(LDP 2) lim supε→0 ε log(με(C))≤− inf I (C) for every closed C ⊂E.

We say that a family (Pn)n∈N of probability measures on E satisfies an LDP with
rate rn ↑∞ and rate function I if (LDP 1) and (LDP 2) hold with εn = 1/rn and
μ1/rn = Pn.

Often (LDP 1) and (LDP 2) are referred to as lower bound and upper bound. In
many cases, the lower bound is a lot easier to show than the upper bound.

Before we show that Cramér’s theorem is essentially an LDP, we make two tech-
nical statements.

Theorem 23.8 The rate function in an LDP is unique.
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Proof Assume that (με)ε>0 satisfies an LDP with rate functions I and J . Then, for
every x ∈E and δ > 0,

I (x)≥ inf I
(
Bδ(x)

)

≥− lim inf
ε→0

ε log
(
με
(
Bδ(x)

))

≥− lim sup
ε→0

ε log
(
με
(
Bδ(x)

))

≥ infJ
(
Bδ(x)

) δ→0−→ J (x).

Hence I (x)≥ J (x). Similarly, we get J (x)≥ I (x). �

Lemma 23.9 Let N ∈ N and let aiε , i = 1, . . . ,N , ε > 0, be nonnegative numbers.
Then

lim sup
ε→0

ε log
N∑

i=1

aiε = max
i=1,...,N

lim sup
ε→0

ε log
(
aiε
)
.

Proof The sum and maximum differ at most by a factor N :

max
i=1,...,N

ε log
(
aiε
)≤ ε log

N∑

i=1

aiε ≤ ε log(N)+ max
i=1,...,N

ε log
(
aiε
)
.

The maximum and limit (superior) can be interchanged and hence

max
i=1,...,N

lim sup
ε→0

ε log
(
aiε
)= lim sup

ε→0
ε log

(
max

i=1,...,N
aiε

)

≤ lim sup
ε→0

ε log

(
N∑

i=1

aiε

)

≤ lim sup
ε→0

ε log(N)+ max
i=1,...,N

lim sup
ε→0

ε log
(
aiε
)

= max
i=1,...,N

lim sup
ε→0

ε log
(
aiε
)
. �

Example 23.10 Let X1,X2, . . . be i.i.d. real random variables that satisfy the condi-
tion of Cramér’s theorem (Theorem 23.3); i.e., Λ(t)= log(E[etX1]) <∞ for every
t ∈R. Furthermore, let Sn =X1+ . . .+Xn for every n. We will show that Cramér’s
theorem implies that Pn := PSn/n satisfies an LDP with rate n and with good rate
function I (x) = Λ∗(x) := supt∈R(tx − Λ(t)). Without loss of generality, we can
assume that E[X1] = 0. The function I is lower semicontinuous, strictly convex (in
the interval where it is finite) and has its unique minimum at I (0)= 0. By convexity,
we have I (y) > I (x) whenever y > x ≥ 0 or y < x ≤ 0.
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Cramér’s theorem says that limn→∞ 1
n

log(Pn([x,∞))) = −I (x) for x > 0 and
(by symmetry) limn→∞ 1

n
log(Pn((−∞, x]))=−I (x) for x < 0. Clearly, for x > 0,

−I (x)≥ lim inf
n→∞

1

n
logPn

(
(x,∞))

≥ sup
y>x

lim inf
n→∞

1

n
logPn

([y,∞))=− inf
y>x
I (y).

Similarly, lim infn→∞ 1
n

logPn((−∞, x)) ≥ − infy<x I (y) for x < 0. Furthermore,
by the law of large numbers, for any x > 0, we have

lim
n→∞

1

n
logPn

(
(−x,∞)) = lim

n→∞
1

n
logPn

([−x,∞))

= lim
n→∞

1

n
logPn

(
(−∞, x))= lim

n→∞
1

n
logPn

(
(−∞, x])

= 0=−I (0).
The main work has been done by showing that the family (Pn)n∈N satisfies condi-
tions (LDP 1) and (LDP 2) at least for unbounded intervals. It remains to show by
some standard arguments (LDP 1) and (LDP 2) for arbitrary open and closed sets,
respectively.

First assume that C ⊂R is closed. Define x+ := inf(C∩[0,∞)) as well as x− :=
sup(C∩(−∞,0]). By monotonicity of I , on (−∞,0] and [0,∞), we get inf I (C)=
I (x−) ∧ I (x+) (with the convention I (−∞)= I (∞) =∞). If x− = 0 or x+ = 0,
then inf(I (C))= 0, and (LDP 2) holds trivially. Now let x− < 0< x+.

Using Lemma 23.9, we get

lim sup
n→∞

1

n
logPn(C)

≤ lim sup
n→∞

1

n
log
(
Pn
(
(−∞, x−]

)+ Pn
([x+,∞)

))

=max

{

lim sup
n→∞

1

n
logPn

(
(−∞, x−]

)
, lim sup
n→∞

1

n
logPn

([x+,∞)
)
}

=max
{−I (x−),−I (x+)

}=− inf I (C).

This shows (LDP 2).
Now let U ⊂R be open. Let x ∈U ∩[0,∞) with I (x) <∞ (if such an x exists).

Then there exists an ε > 0 with (x − ε, x + ε)⊂U . Now

lim inf
n→∞

1

n
logPn

(
(x − ε,∞))≥−I (x) >−I (x + ε)

= lim
n→∞

1

n
logPn

([x + ε,∞)).
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Therefore,

lim inf
n→∞

1

n
logPn(U)≥ lim inf

n→∞
1

n
logPn

(
(x − ε, x + ε))

= lim inf
n→∞

1

n
log
(
Pn
(
(x − ε,∞))− Pn

([x + ε,∞)))

= lim inf
n→∞

1

n
log
(
Pn
(
(x − ε,∞)))≥−I (x).

Similarly, this also holds for x ∈U ∩ (−∞,0) with I (x) <∞; hence

lim inf
n→∞

1

n
logPn(U)≥− inf I (U).

This shows the lower bound (LDP 1). ♦

In fact, the condition Λ(t) <∞ for all t ∈ R can be dropped. Since Λ(0) = 0,
we have Λ∗(x)≥ 0 for every x ∈R. The map Λ∗ is a convex rate function but is, in
general, not a good rate function. We quote the following strengthening of Cramér’s
Theorem (see [31, Theorem 2.2.3]).

Theorem 23.11 (Cramér) If X1,X2, . . . are i.i.d. real random variables, then
(PSn/n)n∈N satisfies an LDP with rate function Λ∗.

Exercise 23.2.1 Let E = R. Show that με :=N0,ε satisfies an LDP with good rate
function I (x) = x2/2. Further, show that strict inequality can hold in the upper
bound (LDP 2).

Exercise 23.2.2 Let E =R. Show that με :=N0,ε2 satisfies an LDP with good rate
function I (x) =∞ · 1R\{0}(x). Further, show that strict inequality can hold in the
lower bound (LDP 1).

Exercise 23.2.3 Let E = R. Show that με := 1
2N−1,ε + 1

2N1,ε satisfies an LDP
with good rate function I (x)= 1

2 min((x + 1)2, (x − 1)2).

Exercise 23.2.4 Compute Λ and Λ∗ in the case X1 ∼ expθ for θ > 0. Interpret the
statement of Theorem 23.11 in this case. Check thatΛ∗ has its unique zero at E[X1].
(Result: Λ∗(x)= θx − log(θx)− 1 if x > 0 and =∞ otherwise.)

Exercise 23.2.5 Compute Λ and Λ∗ for the case where X1 is Cauchy distributed
and interpret the statement of Theorem 23.11.

Exercise 23.2.6 Let Xλ ∼ Poiλ for every λ > 0. Show that με := PεXλ/ε satisfies
an LDP with good rate function I (x) = x log(x/λ) + λ − x for x ≥ 0 (and =∞
otherwise).
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Exercise 23.2.7 Let (Xt )t≥0 be a random walk on Z in continuous time that makes
a jump to the right with rate 1

2 and a jump to the left also with rate 1
2 . Show that

(PεX1/ε )ε>0 satisfies an LDP with convex good rate function

I (x)= 1+ x arc sinh(x)−
√

1+ x2.

23.3 Sanov’s Theorem

This section is close to the exposition in [31].
We present a large deviations principle that, unlike Cramér’s theorem, is not

based on a linear space. Rather, we consider empirical distributions of independent
random variables with values in a finite set Σ , which often is called an alphabet.

Let μ be a probability measure on Σ with μ({x}) > 0 for any x ∈ Σ . Further,
let X1,X2, . . . be i.i.d. random variables with values in Σ and with distribution
PX1 = μ. We will derive a large deviations principle for the empirical measures

ξn(X) := 1

n

n∑

i=1

δXi .

Note that by the law of large numbers, P-almost surely ξn(X)
n→∞−→ μ. Hence, as

the state space we get E =M1(Σ), equipped with the metric of total variation
d(μ, ν)= ‖μ− ν‖T V . (As Σ is finite, in E vague convergence, weak convergence
and convergence in total variation coincide.) Further, let

En :=
{
μ ∈M1(Σ) : nμ

({x}) ∈N0 for every x ∈Σ}

be the range of the random variables ξn(X).
Recall that the entropy of μ is defined by

H(μ) := −
∫

log
(
μ
({x}))μ(dx).

If ν ∈M1(Σ), then we define the relative entropy (or Kullback–Leibler informa-
tion, see [104]) of ν given μ by

H(ν | μ) :=
∫

log

(
ν({x})
μ({x})

)

ν(dx). (23.13)

Since μ({x}) > 0 for all x ∈ Σ , the integrand ν-a.s. is finite and hence the inte-
gral also is finite. A simple application of Jensen’s inequality yields H(μ)≥ 0 and
H(ν | μ)≥ 0 (see Lemma 5.26 and Exercise 5.3.3). Furthermore, H(ν | μ) = 0 if
and only if ν = μ. In addition, clearly,

H(ν | μ)+H(ν)=−
∫

log
(
μ
({x}))ν(dx). (23.14)

Since the map ν �→ Iμ(ν) :=H(ν | μ) is continuous, Iμ is a rate function.
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Lemma 23.12 For every n ∈N and ν ∈En, we have

(n+ 1)−#Σe−nH(ν|μ) ≤ P
[
ξn(X)= ν

]≤ e−nH(ν|μ). (23.15)

Proof We consider the set of possible values for the n-tuple (X1, . . . ,Xn) such that
ξn(X)= ν:

An(ν) :=
{

k = (k1, . . . , kn) ∈Σn : 1

n

n∑

i=1

δki = ν
}

.

For every k ∈An(ν), we have (compare (23.14))

P
[
ξn(X)= ν

]= #An(ν)P[X1 = k1, . . . ,Xn = kn]
= #An(ν)

∏

x∈Σ
μ
({x})nν({x})

= #An(ν) exp

(

n

∫

ν(dx) logμ
({x})

)

= #An(ν) exp
(−n[H(ν)+H(ν | μ)]).

Now let Y1, Y2, . . . be i.i.d. random variables with values in Σ and with distribution
PY1 = ν. As in the calculation for X, we obtain (since H(ν | ν)= 0)

1≥ P
[
ξn(Y )= ν

]= #An(ν)e
−nH(ν);

hence #An(ν)≤ enH(ν). This implies the second inequality in (23.15).
The random variable nξn(Y ) has the multinomial distribution with parameters

(nν({x}))x∈Σ . Hence the map En → [0,1], ν′ �→ P[ξn(Y ) = ν′] is maximal at
ν′ = ν. Therefore,

#An(ν)= enH(ν)P
[
ξn(Y )= ν

]≥ e
nH(ν)

#En
≥ (n+ 1)−#ΣenH(ν).

This implies the first inequality in (23.15). �

We come to the main theorem of this section, Sanov’s theorem (see [149, 150]).

Theorem 23.13 (Sanov (1957)) Let X1,X2, . . . be i.i.d. random variables with
values in the finite set Σ and with distribution μ. Then the family (Pξn(X))n∈N of
distributions of empirical measures satisfies an LDP with rate n and rate function
Iμ :=H(·|μ).
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Proof By Lemma 23.12, for every A⊂E,

P
[
ξn(X) ∈A

]=
∑

ν∈A∩En
P
[
ξn(X)= ν

]

≤
∑

ν∈A∩En
e−nH(ν|μ)

≤ #(A∩En) exp
(−n inf Iμ(A∩En)

)

≤ (n+ 1)#Σ exp
(−n inf Iμ(A)

)
.

Therefore,

lim sup
n→∞

1

n
log P

[
ξn(X) ∈A

]≤− inf Iμ(A).

Hence the upper bound in the LDP holds (even for arbitrary A).
Similarly, we can use the first inequality in Lemma 23.12 to get

P
[
ξn(X) ∈A

]≥ (n+ 1)−#Σ exp
(−n inf Iμ(A∩En)

)

and thus

lim inf
n→∞

1

n
log P

[
ξn(X) ∈A

]≥− lim sup
n→∞

inf Iμ(A∩En). (23.16)

Note that, in this inequality, in the infimum we cannot simply replace A ∩ En
by A. However, we show that, for open A this can be done at least asymptotically.
Hence, let A ⊂ E be open. For ν ∈ A, there is an ε > 0 with Bε(ν) ⊂ A. For n ≥
(2#Σ)/ε, we have En∩Bε(ν) �= ∅ and hence there exists a sequence νn

n→∞−→ ν with
νn ∈En ∩A for large n ∈N. As Iμ is continuous, we have

lim sup
n→∞

inf Iμ(A∩En)≤ lim
n→∞ Iμ(νn)= Iμ(ν).

Since ν ∈A is arbitrary, we get lim supn→∞ inf Iμ(A∩En)= inf Iμ(A). �

Example 23.14 Let Σ = {−1,1} and let μ = 1
2δ−1 + 1

2δ1 be the uniform distri-
bution on Σ . Define m = m(ν) := ν({1}) − ν({−1}). Then the relative entropy of
ν ∈M1(Σ) is

H(ν | μ)= 1+m
2

log(1+m)+ 1−m
2

log(1−m).

Note that this is the rate function from Theorem 23.1.
Next we describe formally the connection between the LDPs of Sanov and

Cramér that was indicated in the previous example. To this end, we use Sanov’s
theorem to derive a version of Cramér’s theorem for Rd -valued random variables
taking only finitely many different values. ♦
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Example 23.15 Let Σ ⊂ R
d be finite and let μ be a probability measure on Σ .

Further, let X1,X2, . . . be i.i.d. random variables with values in Σ and distribution
PX1 = μ. Define Sn =X1 + . . .+Xn for every n ∈N. Let Λ(t)= log E[e〈t,X1〉] for
t ∈ R

d (which is finite since Σ is finite) and Λ∗(x) = supt∈Rd (〈t, x〉 − Λ(t)) for
x ∈R

d .
We show that (PSn/n)n∈N satisfies an LDP with rate n and rate function Λ∗.
Let ξn(X) be the empirical measure ofX1, . . . ,Xn. Let E :=M1(Σ). Define the

map

m :E→R
d, ν �→

∫

xν(dx)=
∑

x∈Σ
xν
({x}).

That is, m maps ν to its first moment. Clearly, 1
n
Sn = m(ξn(X)). For x ∈ R

d and
A⊂R

d , define

Ex :=m−1({x})= {ν ∈E :m(ν)= x}

and

EA =m−1(A)= {ν ∈E :m(ν) ∈A}.

The map ν �→ m(ν) is continuous; hence EA is open (respectively closed) if A is
open (respectively closed). Let Ĩ (x) := inf Iμ(Ex) (where Iμ(ν) = H(ν | μ) is the
relative entropy). Then, by Sanov’s theorem for open U ⊂R

d ,

lim inf
n→∞

1

n
log PSn/n(U)= lim inf

n→∞
1

n
log Pξn(X)

(
m−1(U)

)

≥− inf Iμ
(
m−1(U)

)=− inf Ĩ (U).

Similarly, for closed C ⊂R
d , we have

lim sup
n→∞

1

n
log PSn/n(C)≤− inf Ĩ (C).

In other words, (PSn/n)n∈N satisfies an LDP with rate n and rate function Ĩ . Hence,
it only remains to show that Ĩ =Λ∗.

Note that t �→ Λ(t) is differentiable (with derivative Λ′) and is strictly convex.
Hence the variational problem for Λ∗(x) admits a unique maximizer t∗(x). More
precisely,

Λ∗(x)= 〈t∗(x), x〉−Λ(t∗(x)),
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Λ∗(x) > 〈t, x〉 −Λ(t) for all t �= t∗(x), and Λ′(t∗(x))= x. By Jensen’s inequality,
for every ν ∈M1(Σ),

Λ(t)= log
∫

e〈t,y〉μ(dy)

= log
∫ (

e〈t,y〉μ({y})
ν({y})

)

ν(dy)

≥
∫

log

(

e〈t,y〉μ({y})
ν({y})

)

ν(dy)

= 〈t,m(ν)〉−H(ν | μ)
with equality if and only if ν = νt , where νt ({y})= μ({y})e〈t,y〉−Λ(t). Hence,

〈t, x〉 −Λ(t)≤ inf
ν∈Ex

H(ν | μ)

with equality if νt ∈Ex . However, we now know thatm(νt )=Λ′(t); hence we have
νt∗(x) ∈Ex and thus

Λ∗(x)= 〈t∗(x), x〉−Λ(t∗(x))= inf
ν∈Ex

H(ν | μ)= Ĩ (x). ♦

The method of the proof that we applied in the last example to derive the LDP
with rate function Ĩ is called a contraction principle. We formulate this principle as
a theorem.

Theorem 23.16 (Contraction principle) Assume the family (με)ε>0 of probability
measures on E satisfies an LDP with rate function I . If F is a topological space
and m : E→ F is continuous, then the image measures (με ◦m−1)ε>0 satisfy an
LDP with rate function Ĩ (x)= inf I (m−1({x})).

23.4 Varadhan’s Lemma and Free Energy

Assume that (με)ε>0 is a family of probability measures that satisfies an LDP with
rate function I . In particular, we know that, for small ε > 0, the mass of με is
concentrated around the zeros of I . In statistical physics, one is often interested in
integrating with respect toμε (where 1/ε is interpreted as “size of the system”) func-
tions that attain their maximal values away from the zeros of I . In addition, these
functions are exponentially scaled with 1/ε. Hence the aim is to study the asymp-
totics of Zφε :=

∫
eφ(x)/εμε(dx) as ε→ 0. Under some mild conditions on the con-

tinuity of φ, the main contribution to the integral comes from those points x that are
not too unlikely (for με) and for which at the same time φ(x) is large. That is, those
x for which φ(x) − I (x) is close to its maximum. These contributions are quan-
tified in terms of the tilted probability measures μφε (dx) = (Zφε )−1eφ(x)/εμε(dx),
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ε > 0, for which we derive an LDP. As an application, we get the statistical physics
principle of minimising the free energy. As an example, we analyze the Weiss fer-
romagnet.

We start with a lemma that is due to Varadhan [166].

Theorem 23.17 (Varadhan’s Lemma (1966)) Let I be a good rate function and
let (με)ε>0 be a family of probability measures on E that satisfies an LDP with
rate function I . Further, let φ :E→R be continuous and assume that

inf
M>0

lim sup
ε→0

ε log
∫

eφ(x)/ε1{φ(x)≥M}με(dx)=−∞. (23.17)

Then

lim
ε→0

ε log
∫

eφ(x)/εμε(dx)= sup
x∈E
(
φ(x)− I (x)). (23.18)

Remark 23.18 (Moment condition) The tail condition (23.17) holds if there exists
an α > 1 such that

lim sup
ε→0

ε log
∫

eαφ/εdμε <∞. (23.19)

Indeed, for everyM ∈R, we have

ε log
∫

eφ(x)/ε1{φ(x)≥M}με(dx)=M + ε log
∫

e(φ(x)−M)/ε1{φ(x)≥M}με(dx)

≤M + ε log
∫

eα(φ(x)−M)/εμε(dx)

=−(α − 1)M + ε log
∫

eαφ(x)/εμε(dx).

Together with (23.19), this implies (23.17). ♦

Proof We use different arguments to show that the right-hand side of (23.18) is a
lower and an upper bound for the left-hand side.

Lower bound. For any x ∈E and r > 0, we have

lim inf
ε→0

ε log
∫

eφ/ε dμε ≥ lim inf
ε→0

ε log
∫

Br (x)

eφ/ε dμε

≥ infφ
(
Br(x)

)− I (x) r→0−→ φ(x)− I (x).
Upper bound. ForM > 0 and ε > 0, define

FεM :=
∫

{φ≥M}
eφ(x)/εμε(dx) and GεM :=

∫

{φ<M}
eφ(x)/εμε(dx).
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Define

FM := lim sup
ε→0

ε logFεM and GM := lim sup
ε→0

ε logGεM.

By Lemma 23.9, for anyM > 0,

lim sup
ε→0

ε log
∫

eφ(x)/εμε(dx)= FM ∨GM.

As by assumption infM>0FM =−∞, it is enough to show that

sup
M>0

GM ≤ sup
x∈E
(
φ(x)− I (x)). (23.20)

Let δ > 0. For any x ∈E there is an r(x) > 0 with

inf I
(
B2r(x)(x)

)≥ I (x)− δ and supφ
(
B2r(x)(x)

)≤ φ(x)+ δ.

Let a ≥ 0. Since I is a good rate function, the level set K := I−1([0, a]) is
compact. Thus we can find finitely many x1, . . . , xN ∈ I−1([0, a]) such that
⋃N
i=1Br(xi )(xi)⊃K . Therefore,

GεM ≤
∫

{φ<M}∩Kc
eφ(x)/εμε(dx)+

N∑

i=1

∫

{φ<M}∩Br(xi )(xi )
eφ(x)/εμε(dx)

≤ eM/εμε
(
Kc
)+

N∑

i=1

e(φ(xi )∧M+δ)/εμε
(
Br(xi )(xi)

)

= e(M+ε log(με(Kc)))/ε +
N∑

i=1

e(φ(xi )∧M+δ+ε log(με(Br(xi )(xi ))))/ε.

Using Lemma 23.9 and the LDP, we infer

GM ≤ (M − a)∨ max
i=1,...,N

(
φ(xi)− I (xi)+ 2δ

)

≤ (M − a)∨ sup
x∈E
(
φ(x)− I (x))+ 2δ.

By letting first δ ↓ 0 and then a ↑∞, we obtain (23.20). �
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Theorem 23.19 (Tilted LDP) Assume that (με)ε>0 satisfies an LDP with good
rate function I . Further, let φ : E → R be a continuous function that satisfies
condition (23.17). Define Zφε :=

∫
eφ/ε dμε and μφε ∈M1(E) by

μφε (dx)=
(
Zφε
)−1
eφ(x)/εμε(dx).

Further, define Iφ :E→[0,∞] by

Iφ(x)= sup
z∈E
(
φ(z)− I (z))− (φ(x)− I (x)). (23.21)

Then (μφε )ε>0 satisfies an LDP with rate function Iφ .

Proof This is left as an exercise. (Compare [32, Exercise 2.1.24], see also [43, Sec-
tion II.7].) �

Varadhan’s lemma has various applications in statistical physics. Consider a Pol-
ish space Σ that is interpreted as the space of possible states of a particle. Further,
let λ ∈M1(Σ) be a distribution that is understood as the a priori distribution of this
particle if the influence of energy could be neglected. If Σ is finite or is a bounded
subset of an R

d , then by symmetry, typically λ is the uniform distribution on Σ .
If we place n indistinguishable particles independently according to λ on the ran-
dom positions z1, . . . , zn ∈Σ , then the state of this ensemble can be described by
x := 1

n

∑n
i=1 δzi . Denote by μ0

n ∈M1(M1(Σ)) the corresponding a priori distri-
bution of x; that is, of the n-particle system.

Now we introduce the hypothesis that the energy Un(x) of a state has the form
Un(x)= nU(x), where U(x) is the average energy of one particle of the ensemble
in state x.

Let T > 0 be the temperature of the system and let β := 1/T be the so-called
inverse temperature. In statistical physics, a key quantity is the so-called partition
function

Zβn :=
∫

e−βUndμ0
n.

A postulate of statistical physics is that the distribution of the state x is the Boltz-
mann distribution:

μβn(dx)=
(
Zβn
)−1
e−βUn(x)μ0

n(dx). (23.22)

Varadhan’s lemma (more precisely, the tilted LDP) and Sanov’s theorem are the
keys to building a connection to the variational principle for the free energy. For
simplicity, assume that Σ is a finite set and λ = UΣ is the uniform distribution
on Σ . By Sanov’s theorem, (μ0

n)n∈N satisfies an LDP with rate n and rate function
I (x) = H(x|λ), where H(x|λ) is the relative entropy of x with respect to λ. By
(23.14), we have H(x|λ)= log(#Σ)−H(x), where H(x) is the entropy of x.
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Fig. 23.2 The shifted free energy Fβ(m)−Fβ(0) of the Weiss ferromagnet without exterior field
(h= 0)

Define the free energy (or Helmholtz potential) per particle as

Fβ(x) :=U(x)− β−1H(x).

The theorem on the tilted LDP yields that the sequence of Boltzmann distributions
(μ
β
n)n∈N satisfies an LDP with rate n and rate function

Iβ(x)= Fβ(x)− inf
y∈M1(Σ)

F β(y).

Thus, for large n, the Boltzmann distribution is concentrated on those x that min-
imize the free energy. For different temperatures (that is, for different values of β)
these can be very different states. This is the reason for phase transitions at critical
temperatures (e.g., melting ice).

Example 23.20 We consider the Weiss ferromagnet. This is a microscopic model
for a magnet that assumes that each of n indistinguishable magnetic particles has
one of two possible orientations σi ∈ Σ = {−1,+1}. The mean magnetization
m = 1

n

∑n
i=1 σi describes the state of the system completely (as the particles are

indistinguishable). Macroscopically, this is the quantity that can be measured. The
basic idea is that it is energetically favorable for particles to be oriented in the same
direction. We ignore the spatial structure and assume that any particle interacts with
any other particle in the same way. This is often called the mean field assumption.
In addition, we assume that there is an exterior magnetic field of strength h. Thus
up to constants the average energy of a particle is

U(m)=−1

2
m2 − hm.
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Fig. 23.3 Shifted free energy Fβ(m) − Fβ(0) of the Weiss ferromagnet with exterior field
h= 0.04

The entropy of the state m is

H(m)=−1+m
2

log

(
1+m

2

)

− 1−m
2

log

(
1−m

2

)

.

Hence the average free energy of a particle is

Fβ(m)=−1

2
m2 − hm+ β−1

[
1+m

2
log

(
1+m

2

)

+ 1−m
2

log

(
1−m

2

)]

.

In order to obtain the minima of Fβ , we compute the derivative

0
!= d
dm
Fβ(m)=−m− h+ β−1 arc tanh(m).

Hence, m solves the equation

m= tanh
(
β(m+ h)). (23.23)

In the case h= 0, m= 0 is a solution of (23.23) for any β . If β ≤ 1, then this is the
only solution and Fβ attains its global minimum at m = 0. If β > 1, then (23.23)
has two other solutions, mβ,0− ∈ (−1,0) and mβ,0+ = −mβ,0− , whose values can only
be computed numerically.

In this case, Fβ has a local maximum at 0 and has global minima mβ,0± . For
large n, only those values of m for which Fβ is close to its minimal value can be
attained and thus the distribution is concentrated around 0 if β ≤ 1 and around mβ,0±
if β > 1. In the latter case, the absolute value of the mean magnetization is |mβ,0± | =
m
β,0
+ > 0. Hence, there is a phase transition between the high temperature phase

(β ≤ 1) without magnetization and the low temperature phase (β > 1) where so-
called spontaneous magnetization occurs (that is, magnetization without an exterior
field).
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Fig. 23.4 Weiss ferromagnet: magnetization mβ,h as a function of β

If h �= 0, then Fβ does not have a minimum at m= 0. Rather, Fβ is asymmetric
and has a global minimum mβ,h with the same sign as h. Furthermore, for large β ,
there is another minimum with the opposite sign. Again, the exact values can only
be computed numerically. However, for high temperatures (small β), we can ap-
proximate mβ,h using the approximation tanh(β(m + h)) ≈ β(m + h). Hence we
get

mβ,h ≈ h

β−1 − 1
= h

T − Tc for T →∞, (23.24)

where the Curie temperature Tc = 1 is the critical temperature for spontaneous mag-
netization. The relation (23.24) is called the Curie–Weiss law. ♦



Chapter 24
The Poisson Point Process

Poisson point processes can be used as a cornerstone in the construction of very
different stochastic objects such as, for example, infinitely divisible distributions,
Markov processes with complex dynamics, objects of stochastic geometry and so
forth.

In this chapter, we briefly develop the general framework of random measures
and construct the Poisson point process and characterize it in terms of its Laplace
transform. As an application we construct a certain subordinator and show that the
Poisson point process is the invariant measure of systems of independent random
walks. Via the connection with subordinators, in the third section, we construct two
distributions that play prominent roles in population genetics: the Poisson–Dirichlet
distribution and the GEM distribution.

For a nice exposition including many examples, see also [99].

24.1 Random Measures

In the following, let E be a locally compact Polish space (for example, E = R
d or

E = Z
d ) with Borel σ -algebra B(E). Let

Bb(E)=
{
B ∈ B(E) : B is relatively compact

}

be the system of bounded Borel sets and M(E) the space of Radon measures on E
(see Definition 13.3).

Definition 24.1 Denote by M = σ(IA : A ∈ Bb(E)) the smallest σ -algebra on
M(E) with respect to which all maps

IA : μ �→ μ(A), A ∈ Bb(E),

are measurable.
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Denote by B+(E) the set of measurable maps E→[0,∞] and by BR

b (E) the set
of bounded measurable maps E→R with compact support. For every f ∈ B+(E),
the integral If (μ) :=

∫
f dμ is well-defined and for every f ∈ BR

b (E), If (μ) is
well-defined and finite.

Theorem 24.2 Let τv be the vague topology on M(E). Then

M= B(τv)= σ
(
If : f ∈Cc(E)

)= σ (If : f ∈C+c (E)
)
.

Proof This is left as an exercise. (See [82, Lemma 4.1].) �

Let M̃(E) be the space of all measures on E endowed with the σ -algebra

M̃= σ (IA :A ∈ Bb(E)
)
.

Choose a countable dense set F ⊂ E, and for any x ∈ F choose a compact neigh-
borhood Kx . Then we get (compare Exercise 13.1.8)

M(E)=
⋂

x∈F

{
μ ∈ M̃(E) : μ(Kx) <∞

}
.

Hence M(E) ∈ M̃. Clearly, M = M̃
∣
∣
M(E)

is the trace σ -algebra of M̃ on M(E).
Here we need the slightly larger space in order to define random measures in such a
way that all almost surely well-defined operations on random measures again yield
random measures.

Definition 24.3 A random measure on E is a random variable X on some proba-
bility space (Ω,A,P) with values in (M̃(E),M̃) and with P[X ∈M(E)] = 1.

Theorem 24.4 Let X be a random measure on E. Then the set function
E[X] : B(E)→[0,∞], A �→ E[X(A)] is a measure. We call E[X] the intensity
measure of X. We say that X is integrable if E[X] ∈M(E).

Proof Clearly, E[X] is finitely additive. Let A,A1,A2, . . . ∈ B(E) with An ↑ A.
Consider the random variables Yn := X(An) and Y = X(A). Then Yn ↑ Y and
hence, by monotone convergence, E[X](An) = E[Yn] n→∞−→ E[Y ] = E[X](A).
Hence E[X] is lower semicontinuous and is thus a measure (by Theorem 1.36). �

Theorem 24.5 Let PX be the distribution of a random measure X. Then PX is
uniquely determined by the distributions of either of the families

(
(If1 , . . . , Ifn) : n ∈N;f1, . . . , fn ∈C+c (E)

)
(24.1)

or

(
(IA1 , . . . , IAn) : n ∈N;A1, . . . ,An ∈ Bb(E) pairwise disjoint

)
. (24.2)
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Proof The class of sets

I = {(If1 , . . . , Ifn)
−1(A) : n ∈N;f1, . . . , fn ∈ C+c (E),A ∈ B

([0,∞)n)}

is a π -system and by Theorem 24.2 it generates M. Hence the measure PX is char-
acterized by its values on I .

Similarly, the claim follows for

(
(IA1, . . . , IAn) : n ∈N;A1, . . . ,An ∈ Bb(E)

)
.

If A1, . . . ,An ∈ Bb(E) are arbitrary, then there exist 2n − 1 pairwise disjoint sets
B1, . . . ,B2n−1 with Ai = ⋃k:Bk⊂Ai Bk for all i = 1, . . . , n. The distribution of
(IA1, . . . , IAn) can be computed from that of (IB1, . . . , IB2n−1). �

In the following, let i =√−1 be the imaginary unit.

Definition 24.6 Let X be a random measure on E. Denote by

LX(f )= E
[

exp

(

−
∫

f dX

)]

, f ∈ B+(E),

the Laplace transform of X and by

ϕX(f )= E
[

exp

(

i

∫

f dX

)]

, f ∈ BR

b (E),

the characteristic function of X.

Theorem 24.7 The distribution PX of a random measure X is characterized by its
Laplace transform LX(f ), f ∈ C+c (E), as well as by its characteristic function
ϕX(f ), f ∈ Cc(E).

Proof This is a consequence of Theorem 24.5 and the uniqueness theorem for char-
acteristic functions (Theorem 15.8) and for Laplace transforms (Exercise 15.1.2) of
random variables on [0,∞)n. �

Definition 24.8 We say that a random measure X on E has independent increments
if, for any choice of finitely many pairwise disjoint measurable sets A1, . . . ,An, the
random variables X(A1), . . . ,X(An) are independent.

Corollary 24.9 The distribution of a random measure X on E with independent
increments is uniquely determined by the family (PX(A),A ∈ Bb(E)).

Proof This is an immediate consequence of Theorem 24.5. �
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Fig. 24.1 Poisson point process on the unit square with intensity measure 50λ

Definition 24.10 Let μ ∈M(E). A random measure X with independent incre-
ments is called a Poisson point process (PPP) with intensity measure μ if, for
any A ∈ Bb(E), we have PX(A) = Poiμ(A). In this case, we write PPPμ := PX ∈
M1(M(E)) and say that X is a PPPμ.

See Fig. 24.1 for a simulation of a Poisson point process on the unit square.

Remark 24.11 The definition of the PPP (and its construction in the following the-
orem) still works if (E,E,μ) is only assumed to be a σ -finite measure space. How-
ever, the characterization in terms of Laplace transforms is a bit simpler in the case
of locally compact Polish spaces considered here. ♦

Theorem 24.12 For every μ ∈M(E), there exists a Poisson point process X with
intensity measure μ.

Proof μ is σ -finite since μ ∈M(E). Hence there exist En ↑ E with μ(En) <∞
for every n ∈ N. Define μ1 = μ(E1 ∩ ·) and μn = μ((En \ En−1) ∩ ·) for n≥ 2.
If X1,X2, . . . are independent Poisson point processes with intensity measures
μ1,μ2, . . . , then X =∑∞

n=1Xn has intensity measure E[X] = μ and hence X is
a random measure (see Exercise 24.1.1). Furthermore, it is easy to see that X has
independent increments and that

PX(A) = PX1(A) ∗ PX2(A) ∗ . . .= Poiμ1(A) ∗ Poiμ2(A) ∗ . . .= Poiμ(A).

Hence we have X ∼ PPPμ.
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Therefore, it is enough to consider the case μ(E) ∈ (0,∞). Define

ν = μ( ·)
μ(E)

∈M1(E).

Let N,Y1, Y2, . . . be independent random variables with N ∼ Poiμ(E) and PYi = ν
for all i ∈N. Define

X(A)=
N∑

n=1

1A(Yn) for A ∈ B(E).

The random variables 1A(Y1),1A(Y2), . . . are independent and Berν(A)-distrib-
uted; hence we have X(A) ∼ Poiμ(A) (see Theorem 15.14(iii)). Let n ∈ N and let
A1, . . . ,An ∈ B(E) be pairwise disjoint. Then

ψ(t) := E

[

exp

(

i

n∑

l=1

tl1Al (Y1)

)]

= 1+
n∑

l=1

ν(Al)
(
eitl − 1

)
, t ∈R

n,

is the characteristic function of (1A1(Y1), . . . ,1An(Y1)). Further, let ϕ be the char-
acteristic function of (X(A1), . . . ,X(An)) and let ϕl be the characteristic function
of X(Al) for l = 1, . . . , n. Hence

ϕl(tl)= exp
(
μ(Al)

(
eitl − 1

))
.

By Theorem 15.14(iii), we have

ϕ(t)= E

[

exp

(

i

n∑

l=1

tlX(Al)

)]

= exp
(
μ(E)

(
ψ(t)− 1

))

= exp

(
n∑

l=1

μ(Al)
(
eitl − 1

)
)

=
n∏

l=1

ϕl(tl).

Thus X(A1), . . . ,X(An) are independent. This implies X ∼ PPPμ. �

Exercise 24.1.1 Let X1,X2, . . . be random measures and λ1, λ2, . . . ∈ [0,∞). De-
fine X :=∑∞

n=1 λnXn. Show that X is a random measure if and only if we have
P[X(B) <∞] = 1 for all B ∈ Bb(E). Infer that if X is a random variable with
values in (M̃(E),M̃(E)) and E[X] ∈M(E), then X is a random measure.

Exercise 24.1.2 Let τw be the topology of weak convergence on M1(E) and let
σ(τw) be the Borel σ -algebra on M1(E). Show that M

∣
∣
M1(E)

= σ(τw).
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24.2 Properties of the Poisson Point Process

Theorem 24.13 Let μ ∈M(E) be atom-free; that is, μ({x})= 0 for every x ∈ E.
Let X be a random measure on E with P[X(A) ∈ N0 ∪ {∞}] = 1 for every A ∈
B(E). Then the following are equivalent:

(i) X ∼ PPPμ.
(ii) X almost surely has no double points; that is,

P
[
X
({x})≥ 2 for some x ∈E]= 0,

and

P
[
X(A)= 0

]= e−μ(A) for all A ∈ Bb(E). (24.3)

Proof (i) =⇒(ii) This is obvious.
(ii) =⇒(i) If A1, . . . ,An ∈ Bb(E) are pairwise disjoint, then

P
[
X(A1)= 0, . . . ,X(An)= 0

]= P
[
X(A1 ∪ . . .∪An)= 0

]

= e−μ(A1∪...∪An)

=
n∏

l=1

e−μ(Al) =
n∏

l=1

P
[
X(Al)= 0

]
.

Hence the random variables X̃(A) :=X(A)∧ 1 are independent for disjoint sets A.
The rest of the proof is similar to that of Theorem 5.34. Let A ∈ Bb(E). Choose
an A0 ⊂ A with μ(A0) = μ(A)/2 (this is possible by Exercise 8.3.1 since μ is
atom-free) and define A1 = A \ A0. Similarly, choose Ai,0,Ai,1 ⊂ Ai for i = 0,1
and inductively define disjoint sets Ai,0,Ai,1 ⊂ Ai for i ∈ {0,1}n−1 with μ(Ai) =
2−nμ(A) for every i ∈ {0,1}n. Define

Nn(A) :=
∑

i∈{0,1}n
X̃(Ai).

As X does not have double points, we have Nn(A) ↑ X(A) almost surely. On the
other hand, by assumption, Nn(A)∼ b2n,1−exp(−2−nμ(A)) for n ∈N; hence the char-
acteristic functions converge:

ϕNn(A)(t)=
(
1+ (1− e−2−nμ(A))(eit − 1

))2n

n→∞−→ exp
(
μ(A)

(
eit − 1

))= ϕPoiμ(A)(t).

Therefore, we have PNn(A)
n→∞−→ Poiμ(A) and thus X(A)∼ Poiμ(A).

If A1, . . . ,Ak ∈ Bb(E) are pairwise disjoint, then the sets Nn(A1), . . . ,Nn(Ak)

(constructed in a way similar to that above) are independent. Hence also the limits
X(Al)= limn→∞Nn(Al), l = 1, . . . , k are independent. �
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Theorem 24.14 Let μ ∈M(E) and let X be a Poisson point process with intensity
measure μ. Then X has Laplace transform

LX(f )= exp

(∫

μ(dx)
(
e−f (x) − 1

)
)

, f ∈ B+(E),

and characteristic function

ϕX(f )= exp

(∫

μ(dx)
(
eif (x) − 1

)
)

, f ∈ BR

b (E).

Proof It is enough to show the claim for simple functions f =∑n
l=1 αl1Al with

complex numbers α1, . . . , αn and with pairwise disjoint sets A1, . . . ,An ∈ Bb(E).
(For general f , the claim follows by the usual approximation arguments.) For
such f , however,

E
[
exp
(−If (X)

)]= E

[
n∏

l=1

e−αlX(Al)
]

=
n∏

l=1

E
[
e−αlX(Al)

]

=
n∏

l=1

exp
(
μ(Al)

(
e−αl − 1

))

= exp

(
n∑

l=1

μ(Al)
(
e−αl − 1

)
)

= exp

(∫

μ(dx)
(
e−f (x) − 1

)
)

. �

Corollary 24.15 (Moments of the PPP) Let μ ∈M(E) and X ∼ PPPμ.

(i) If f ∈ L1(μ), then E[∫ f dX] = ∫ f dμ.
(ii) If f ∈ L2(μ)∩L1(μ), then Var[∫ f dX] = ∫ f 2 dμ.

Recall that only for finite μ, we have the inclusion L2(μ)⊂ L1(μ).

Proof If f = f+ − f− ∈ L1(μ), then for the characteristic function, integral
and differentiation interchange, d

dt
ϕX(tf

+) = iϕX(tf+)
∫
f (x)eitf

+(x)μ(dx) and
hence (by Exercise 15.4.4(iii))

E
[
If+(X)

]= 1

i

d

dt
ϕX
(
tf+
)∣
∣
t=0 =

∫

f+ dμ.

Arguing similarly with f− and adding up, we get (i).
If f ∈ L1(μ)∩L2(μ), then the argument can be iterated (using Theorem 15.34)

d2

dt2
ϕX(tf )=−ϕX(tf )

[∫

f 2(x) eitf (x)μ(dx)+
(∫

f (x) eitf (x)μ(dx)

)2]

,

hence we have E[If (X)2] = − d2

dt2
ϕX(tf )

∣
∣
t=0 = If 2(μ)+ If (μ)2. �
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Theorem 24.16 (Mapping theorem) Let E and F be locally compact Polish spaces
and let φ :E→ F be a measurable map. Let μ ∈M(E) with μ◦φ−1 ∈M(F ) and
let X be a PPP on E with intensity measure μ. Then X ◦ φ−1 is a PPP on F with
intensity measure μ ◦ φ−1.

Proof For f ∈ B+(F ),

LX◦φ−1(f )= LX(f ◦ φ)= exp

(∫
(
e−f (φ(x)) − 1

)
μ(dx)

)

= exp

(∫
(
e−f (y) − 1

)(
μ ◦ φ−1)(dy)

)

.

Now, Theorem 24.14 and Theorem 24.7 yield the claim. �

Theorem 24.17 Let ν ∈M((0,∞)) and let X ∼ PPPν on (0,∞). Further, define
Y := ∫ xX(dx). Then the following are equivalent.

(i) P[Y <∞]> 0.
(ii) P[Y <∞]= 1.

(iii)
∫
ν(dx)(1∧ x) <∞.

If (i)–(iii) hold, then Y is an infinitely divisible nonnegative random variable with
Lévy measure ν.

Proof Let Y∞ = ∫[1,∞) xX(dx) and Yt :=
∫
(t,1) xX(dx) for t ∈ [0,1). Evidently,

Y = Y0 + Y∞. Furthermore, it is clear that

P[Y∞ <∞]> 0 ⇐⇒ P[Y∞ <∞]= 1 ⇐⇒ ν
([1,∞))<∞. (24.4)

If (iii) holds, then E[Y0] =
∫
(0,1) xν(dx) <∞; hence Y0 <∞ a.s. (and thus Y <∞

a.s. by (24.4)). On the other hand, if (iii) does not hold, then Y∞ = ∞ a.s. or
E[Y0] = ∞. While Y∞ can have infinite expectation even if Y∞ <∞ a.s., for Y0
this is impossible since, in contrast with Y∞, Y0 is composed not of a few large
contributions but many small ones so that a law of large numbers is in force. More
precisely, by Corollary 24.15, we have

Var[Yt ] =
∫

(t,1)
x2ν(dx)≤

∫

(t,1)
xν(dx)= E[Yt ]<∞ for all t ∈ (0,1).

Hence, by Chebyshev’s inequality,

P
[

Yt <
E[Yt ]

2

]

≤ 4Var[Yt ]
E[Yt ]2

t→0−→ 0.

Thus Y0 = supt∈(0,1) Yt ≥ E[Y0]/2=∞ almost surely.
Now assume that (i)–(iii) hold. By Theorem 24.14, Y has the Laplace transform

E
[
e−tY

]= exp

(∫

ν(dx)
(
e−tx − 1

)
)

.
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By the Lévy–Khinchin formula (Theorem 16.14), Y is infinitely divisible with Lévy
measure ν. �

Corollary 24.18 Let μi ∈M1([0,∞)), i = 1,2, be infinitely divisible distribu-
tions with canonical measures νi ∈ M((0,∞)) and deterministic parts αi ≥ 0
(compare Theorem 16.14). If we have

α1 ≤ α2 and ν1
([x,∞))≤ ν2

([x,∞)) for all x > 0, (24.5)

then μ1 is stochastically smaller than μ2; i.e., μ1 ≤st μ2.

Proof (The proof follows [100, Proof of Lemma 6.1].) The idea is to use a coupling
argument where based on one Poisson point process we construct the two random
variables Y1, Y2 with Yi ∼ μi , i = 1,2, such that Y1 ≤ Y2 almost surely. By Theo-
rem 17.58, this yields the claim.

Let Gi(x) := νi([x,∞)), i = 1,2, x > 0, and

φi(y) :=G−1
i (y)= inf

{
x ≥ 0 :Gi(x)≤ y

}
for y > 0.

If νi is finite, then φi(y)= 0 for y ≥ νi((0,∞)). Let λ denote the Lebesgue measure
on [0,∞). By construction, for the image measure restricted to the positive reals,
we have

(
λ ◦ φ−1

i

)∣
∣
(0,∞) = νi, i = 1,2.

Now assume thatX is a PPP on (0,∞)with intensity measure λ. By Theorem 24.16,
the random measures

Xi :=
(∫

φi(x)X(dx)

)∣
∣
∣
∣
(0,∞)

=X ◦ φ−1
i

are PPPs with intensity measures νi , i = 1,2. By Theorem 24.17, we thus have

Yi := αi +
∫

φi(x)X(dx)∼ μi for i = 1,2.

However, by assumption, we haveG1 ≥G2 which implies φ1 ≤ φ2 and thus Y1 ≤ Y2
a.s. �

Example 24.19 By Corollary 16.10, for every nonnegative infinitely divisible dis-
tribution μ with Lévy measure ν, there exists a stochastic process (Yt )t≥0 with in-
dependent stationary increments and Yt ∼ μ∗t (hence with Lévy measure tν). Here
we give a direct construction of this process. Let X be a PPP on (0,∞)× [0,∞)
with intensity measure ν ⊗ λ (here λ is the Lebesgue measure). Define Y0 = 0 and

Yt :=
∫

(0,∞)×(0,t]
xX
(
d(x, s)

)
.
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By the mapping theorem, we have X( · × (s, t])∼ PPP(t−s)ν ; hence Yt − Ys is in-
finitely divisible with Lévy measure (t − s)ν. The independence of the increments
is evident. Note that t �→ Yt is right continuous and monotone increasing.

The process Y that we have just constructed is called a subordinator with Lévy
measure ν. ♦

The procedure in the previous example can be generalized by allowing time sets
more general than [0,∞).

Definition 24.20 A random measure Y is called infinitely divisible if, for any n ∈N,
there exist i.i.d. random measures Y1, . . . , Yn with Y = Y1 + . . .+ Yn.

Theorem 24.21 Let ν ∈M((0,∞)×E) with
∫

1A(t)(1∧ x)ν
(
d(x, t)

)
<∞ for all A ∈ Bb(E),

and let α ∈M(E). Let X be a PPPν and

Y(A) := α(A)+
∫

x1A(t)X
(
d(x, t)

)
for A ∈ B(E).

Then Y is an infinitely divisible random measure with independent increments. For
A ∈ B(E), Y(A) has the Lévy measure ν( · ×A).

We call ν the canonical measure and α the deterministic part of Y .

Proof This is a direct consequence of Theorem 24.16 and Theorem 24.17. �

Remark 24.22 We can write Y as Y = α + ∫ xδtX(d(x, t)), where δt is the Dirac
measure at t ∈ E. If instead of x δt , we allow more general measures χ ∈M(E),
then we get a representation

Y = α +
∫

M(E)

χX(dχ),

where X ∼ PPPν on M(E) and ν ∈M(M(E)) with
∫

ν(dχ)
(
χ(A)∧ 1

)
<∞

for any A ∈ Bb(E). It can be shown that this is the most general form of an infinitely
divisible measure on E. We call ν the canonical measure of Y and α the determinis-
tic part. Y is characterized by its Laplace transform which obeys the Lévy–Khinchin
formula:

LY (f )= exp

(

−
∫

f dα+
∫

ν(dχ)
(
e−
∫
f dχ − 1

)
)

. ♦
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Theorem 24.23 (Coloring theorem) Let F be a further locally compact Polish
space, let μ ∈M(E) be atom-free and let (Yx)x∈E be i.i.d. random variables, inde-
pendent of X, with values in F and distribution ν ∈M1(F ). Then

Z(A) :=
∫

1A(x,Yx)X(dx), A ∈ B(E × F),

is a PPPμ⊗ν on E × F .

Proof This is left as an exercise. �

There is an obvious generalization of the coloring theorem: The assumption that
μ is atom-free was needed in order that X have no double points. That is, for every
unit mass that X produces, there is a different random variable Yx . However, this
can also be achieved by different means and in somewhat greater generality.

Accordingly, let E,F be locally compact Polish spaces, let μ ∈M(E) and let
κ be a stochastic kernel from E to F with μκ := ∫ μ(dx)κ(x, ·) ∈M(F ). Let
(Yx,t )x∈E,t∈[0,1] be independent random variables with distributions PYx,t = κ(x, ·)
for x ∈E and t ∈ [0,1].

For X ∼ PPPμ, define the lifting X̃ as that PPP on E×[0,1] with intensity mea-

sure μ⊗ λ∣∣[0,1], where λ is the Lebesgue measure. Clearly, X
D= X̃( · × [0,1]). The

random measure X̃ can be understood as a realization of X in which the different
points of X are assigned arbitrary [0,1]-valued labels to distinguish them. Now let

Xκ(A) :=
∫

X̃
(
d(x, t)

)
1A(Yx,t ) for A ∈ B(F ).

Theorem 24.24 Xκ is a random measure with PXκ = PPPμκ .

Proof Clearly, almost surely Xκ is a measure. For A ∈ Bb(F ), we have by assump-
tion

E
[
Xκ(A)

]= E
[∫

X̃
(
d(x, t)

)
κ(x,A)

]

= (μκ)(A) <∞.

Hence Xκ(A) <∞ almost surely, and thus Xκ is a random measure. We compute
the Laplace transform of Xκ . Let g(x) := − log E[e−f (Yx,t )]. Then (since X̃ has no
double points)

LXκ (f )= E
[

exp

(

−
∫

X̃
(
d(x, t)

)
f (Yx,t )

)]

= E
[ ∏

(x,t):X̃({(x,t)})=1

e−f (Yx,t )
]

= E
[ ∏

(x,t):X̃({(x,t)})=1

E
[
e−f (Yx,t )

]
]
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= E
[ ∏

(x,t):X̃({(x,t)})=1

e−g(x)
]

= LX(g)

= exp

(∫

μ(dx)
(
E
[
e−f (Yx,t )

]− 1
)
)

= exp

(∫

μ(dx)

∫

κ(x, dy)
(
e−f (y) − 1

)
)

= exp

(∫

μκ(dy)
(
e−f (y) − 1

)
)

. �

Example 24.25 (PPP as invariant distribution) As an application of the previous
theorem, consider a stochastic process on E = Z

d or E = R
d that consists of a

system of independent random walks. Hence assume that we are given i.i.d. random
variables Zin, i, n ∈N with distribution ν ∈M1(E). Further, assume that, at time n,
the position of the ith particle of our system of random walks is Sin := Si0+

∑n
l=1Z

i
l ,

where Si0 is an arbitrary, possibly random, starting point. Assume that the particles
are indistinguishable. Hence we simply add the particles at each site:

Xn(A) :=
∞∑

i=1

1A
(
Sin
)

for A⊂E.

Each Xn is a measure on E and, if at the beginning the particles are not too concen-
trated locally, it is a locally finite measure and hence a random measure. Assume
that X0 ∼ PPPμ for some μ ∈M(E). Define κ(x, ·)= δx ∗ ν, and write κn for the

n-fold application of κ ; that is, κn(x, ·)= δx ∗ ν∗n. We thus get Xκ0
D=X1. Indeed,

independence of the motions of the individual particles in the definition of Xκ0 is
exactly independence of the random walks. As X1 is also a PPP, we get inductively

Xκn
D=Xn+1 and thus Xn ∼ PPPμκn = PPPμ∗ν∗n . In particular, X0

D=Xn if and only
if μ ∗ ν = μ. Clearly, this is true if we have E = Z

d and μ the counting measure
or if E = R

d and μ is the Lebesgue measure. For example, if E = Z
d , then under

rather mild assumptions on ν one can show that the counting measure μ= λ is the
unique (up to multiples) solution of μ ∗ ν = μ. In this case, every invariant measure
is a convex combination of PPPs with different intensity measures θλ. ♦

Exercise 24.2.1 Use an approximation with simple functions in order to show the
claim of Corollary 24.15 without using characteristic functions.

Exercise 24.2.2 Prove the coloring theorem (Theorem 24.23).

Exercise 24.2.3 Let p1,p2 ∈ (0,1] and r1, r2 > 0. Show the following statement
about the stochastic order of negative binomial distributions: b−r1,p1

≤st b
−
r2,p2

if and
only if

p1 ≥ p2 and p
r1
1 ≥ pr22 .
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24.3 The Poisson–Dirichlet Distribution∗

The goal of this section is to solve the following problem. Take a stick of length 1.
Choose a point of the stick uniformly at random and break the stick at this point.
Put the left part of the stick (with length, say,W1) aside. With the remaining part of
the stick proceed just as with the original stick. Break it in two and put the left part
(of length W2) aside. Successively, we thus collect fractions of the stick of lengths
W1,W2,W3, . . . . What is the joint distribution of (W1,W2, . . .)? Furthermore, if we
order the numbers W1,W2, . . . in decreasing order W(1) ≥W(2) ≥ . . ., what is the
distribution of (W(1),W(2), . . .)? And finally, why do we ask these questions in a
chapter on Poisson point processes?

Answering these questions requires some preparation. We saw that the Beta dis-
tribution occurs naturally in Pólya’s urn model as the limiting distribution of the
fraction of balls of a given color. Clearly, Pólya’s urn model can be considered for
any number n ≥ 2 of colors. The limiting distribution is then the n-dimensional
generalization of the Beta distribution, namely the so-called Dirichlet distribution.

Define the (n− 1)-dimensional simplex

Δn :=
{
(x1, . . . , xn) ∈ [0,1]n : x1 + . . .+ xn = 1

}
.

Definition 24.26 Let n ∈ {2,3, . . .} and θ1, . . . , θn > 0. The Dirichlet distribution
Dirθ1,...,θn is the distribution on Δn that is defined for measurable A⊂Δn by

Dirθ1,...,θn(A)=
∫

1A(x1, . . . , xn)fθ1,...,θn(x1, . . . , xn) dx1 . . . dxn−1.

Here

fθ1,...,θn(x1, . . . , xn)= Γ (θ1 + . . .+ θn)
Γ (θ1) . . . Γ (θn)

x
θ1−1
1 . . . xθn−1

n .

If the parameters θ1, . . . , θn are integer-valued, they correspond to the numbers
of balls of the different colors that are originally in the urn. Assume that the colors
n − 1 and n are light green and green and that in the dim light we cannot distin-
guish them. Then we should still end up with a Dirichlet distribution in the limit
but with n − 1 instead of n and with θn−1 + θn instead of θn−1 and θn; that is,
Dirθ1,...,θn−2,θn−1+θn . Let (Mt)t≥0 be the Moran Gamma subordinator, the stochastic
process with right continuous, monotone increasing paths t �→Mt and independent,
stationary, Gamma-distributed increments: Mt − Ms ∼ Γ1,t−s for t > s ≥ 0. An
important connection between M and the Dirichlet distribution is revealed by the
corollaries of the following theorem and by Theorem 24.32.

Theorem 24.27 Let n ∈ N, θ1, . . . , θn > 0 and Θ := θ1 + . . . + θn. Let X ∼
Dirθ1,...,θn and let Z ∼ Γ1,Θ be independent random variables. Then the random
variables Si := Z ·Xi , i = 1, . . . , n are independent and Si ∼ Γ1,θi .
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Proof In the following, always let xn := 1−∑n−1
i=1 xi and s =∑n

j=1 sj . Let

Δ′n :=
{

(x1, . . . , xn−1) ∈ (0,1)n−1 :
n−1∑

i=1

xi < 1

}

.

For x ∈Δ′n and z≥ 0, the distribution of (X1, . . . ,Xn−1,Z) has the density

f (x1, . . . , xn−1, z)=
n∏

j=1

(
x
θj−1
j /Γ (θj )

)
zΘ−1 e−z.

Consider the map

F :Δ′n × (0,∞)→ (0,∞)n, (x1, . . . , xn−1, z) �→ (zx1, . . . , zxn).

This map is invertible with inverse map

F−1 : (s1, . . . , sn) �→ (s1/s, . . . , sn−1/s, s).

The Jacobian determinant of F is det(F ′(x1, . . . , xn−1, z))= zn−1. By the transfor-
mation formula for densities (Theorem 1.101), (S1, . . . , Sn) has density

g(s1, . . . , sn)= f (F−1(s1, . . . , sn))

|det(F ′(F−1(s1, . . . , sn)))|

= s
Θ−1 e−s

sn−1

n∏

j=1

(
(sj /s)

θj−1/Γ (θj )
)

=
n∏

j=1

(
s
θj−1
j e−sj /Γ (θj )

)
.

However, this is the density for independent Gamma distributions. �

Corollary 24.28 If ti :=∑i
j=1 θj for i = 0, . . . , n, then the random variables X =

((Mti −Mti−1)/Mtn, i = 1, . . . , n) and S :=Mtn are independent with distributions
X ∼Dirθ1,...,θn and S ∼ Γ1,tn .

Corollary 24.29 Let (X1, . . . ,Xn) ∼ Dirθ1,...,θn . Then X1 ∼ βθ1,
∑n
i=2 θi

and
(X2/(1−X1), . . . ,Xn/(1−X1))∼Dirθ2,...,θn are independent.

Proof LetM be as in Corollary 24.28. ThenX1 =Mt1/Mtn ∼ βθ1,tn−θ1 . SinceX1 =
(
Mtn−Mt1
Mt1

+ 1)−1, we see that X1 depend only on Mt1 and Mtn −Mt1 . On the other

hand,
(

X2

1−X1
, . . . ,

Xn

1−X1

)

=
(
Mt2 −Mt1
Mtn −Mt1

, . . . ,
Mtn −Mtn−1

Mtn −Mt1

)
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is independent of Mt1 . By Corollary 24.28, it is also independent of Mtn −Mt1 and
is Dirθ2,...,θn -distributed. �

Corollary 24.30 Let V1, . . . , Vn−1 be independent, Vi ∼ βθi ,θi+1+...+θn and Vn = 1.
Then

(

V1, (1− V1)V2, (1− V1)(1− V2)V3, . . . ,

(
n−1∏

i=1

(1− Vi)
)

Vn

)

∼Dirθ1,...,θn .

Proof This follows by iterating the claim of Corollary 24.29. �

It is natural to ask what happens if we distinguish more and more colors (instead
of pooling them). For simplicity, consider a symmetric situation where we have
θ1 = . . .= θn = θ/n for some θ > 0. Hence we consider

Dirθ;n :=Dirθ,...,θ for θ > 0.

If Xn = (Xn1 , . . . ,Xnn)∼Dirθ/n;n, then, by symmetry, we have E[Xni ] = 1/n for ev-

ery n ∈ N and i = 1, . . . , n. Hence, clearly (Xn1 , . . . ,X
n
k )

n→∞=⇒ 0 for any k ∈N. In
order to obtain a nontrivial limit, one possibility is to reorder the values by decreas-
ing size: Xn(1) ≥Xn(2) ≥ . . ..

Definition 24.31 Let θ > 0 and let (Mt)t∈[0,θ] be a Moran Gamma subordinator.
Let m1 ≥ m2 ≥ . . . ≥ 0 be the jump sizes of M in decreasing order and let m̃i =
mi/Mθ , i = 1,2, . . . . The distribution of the random variables (m̃1, m̃2, . . .) on S :=
{(x1 ≥ x2 ≥ . . .≥ 0) : x1+x2+ . . .= 1} is called the Poisson–Dirichlet distribution
PDθ with parameter θ > 0.

To be honest, we still have to show that
∑∞
i=1 m̃i = 1. To this end, let Y be

a PPP on (0,∞) × (0, θ ] with intensity measure ν ⊗ λ, where λ is the Lebesgue
measure and ν(dx) = e−xx−1 dx is the Lévy measure of the Γ1,1 distribution. We
can defineM byMt :=∑(x,s):Y({x,s})=1,s≤t x. Now we have m1 = sup{x ∈ (0,∞) :
Y({x}× (0, θ ])= 1}. Inductively, we getmn = sup{x <mn−1 : Y({x}× (0, θ ])= 1}
for n≥ 2. Interchanging the order of summations, we obtainMθ =∑∞

n=1mn.

Theorem 24.32 If Xn ∼Dirθ/n;n for n ∈N, then P(Xn
(1),X

n
(2),...)

n→∞−→ PDθ .

Proof The idea is to express the random variables Xn, n ∈ N, in terms of the in-
crements of the Moran Gamma subordinator (Mt)t∈[0,θ] in such a way that conver-
gence of distributions implies almost sure convergence. Hence, let Xni = (Mθi/n −
Mθ(i−1)/n)/Mθ . By Corollary 24.28, we have Xn ∼ Dirθ/n;n. Let t1, t2, . . . ∈ (0, θ ]
be the positions of the jumps m1 ≥ m2 ≥ . . .. Evidently, Xn(1) ≥ m̃1 for every n.
If n is large enough that |t1 − t2| > θ/n, then Xn(2) ≥ m̃2. Inductively, we get
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lim infn→∞Xn(i) ≥ m̃i almost surely. Using the convention Xn(i) = 0 for i > n, we
have

∑∞
i=1X

n
(i) = 1 for every n ∈N. By Fatou’s lemma, we thus get

1=
∞∑

i=1

m̃i ≤
∞∑

i=1

lim inf
n→∞ Xn(i) ≤ lim inf

n→∞

∞∑

i=1

Xn(i) = 1.

Therefore, limn→∞Xn(i) = m̃i almost surely. �

Instead of ordering the values of Xn by their sizes, there is a different way of
arranging the terms so that the distributions converge. Think of a biological popula-
tion in which a certain phenotypical property can be measured with different levels
of precision. If we distinguish n different values of this property, then we write Xni
for the proportion of the population that has type i ∈ {1, . . . , n}.

Now successively choose individuals from the population at random. Let In1 be
the type of the first individual. Denote by In2 the type of the first individual that is
not of type In1 . That is, In2 is the second type that we see. Now inductively define Ink
as the kth type that we see; that is, the type of the first individual that has none of
the types In1 , . . . , I

n
k−1. Consider the vector X̂n = (X̂n1 , . . . , X̂nn), where X̂nk =XnInk .

Since the probability of the event {In1 = i} is proportional to the size of the subpop-
ulation of type i, we say that X̂n is the successively size-biased vector.

The distribution of X̂n does not change if we change the order of theXn1 , . . . ,X
n
n .

For example, instead of Xn1 , . . . ,X
n
n , we can use the order statistics (Xn(1), . . . ,X

n
(n))

and again end up with X̂n as the successively size-biased vector. Hence we can
define the successively size-biased vector X̂ for the infinite vectorX ∼ PDθ . IfXn ∼
Dirθ/n;n, then by Theorem 24.32, we have X̂n

n→∞=⇒ X̂. Hence we can compute the
distribution of X̂.

Theorem 24.33 Let θ > 0 and Xn ∼ Dirθ/n;n, n ∈ N. Let X ∼ PDθ . Further, let
V1,V2, . . . be i.i.d. random variables on [0,1] with density x �→ θ(1−x)θ−1. Define
Z1 = V1 and Zk = (∏k−1

i=1 (1− Vi))Vk for k ≥ 2. Then:

(i) X̂n
n→∞=⇒ X̂.

(ii) X̂
D=Z.

The distribution of Z is called the GEMθ distribution (Griffiths–Engen–McCloskey).

Proof Statement (i) was shown in the discussion preceding the theorem. In order
to show (ii), we compute the distribution of X̂n and show that it converges to the
distribution of Z.

Let X̂n,1 be the vector Xn,1 = (Xn
In1
,X2, . . . ,X

n
In1−1,X

n
In1+1, . . . ,X

n
n), in which

only the first coordinate is sampled size-biasedly. We show that

X̂n,1 ∼Dir(θ/n)+1,θ/n,...,θ/n . (24.6)
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Let f (x)= (Γ (θ)/Γ (θ/n)n) ·∏nk=1 x
(θ/n)−1
k be the density of Dirθ/n;n. We com-

pute the density f n,1 of Xn,1 by decomposing according to the value i of In1 :

f n,1(x)=
n∑

i=1

x1f (x2, . . . , xi, x1, xi+1, . . . , xn)= nx1f (x)

= nΓ (θ)

Γ (θ/n)n
x
θ/n

1

n∏

i=2

x
(θ/n)−1
i

= Γ (θ + 1)

Γ ((θ/n)+ 1)Γ (θ/n)n−1
x
θ/n

1

n∏

i=2

x
(θ/n)−1
i .

However, this is the density of Dir(θ/n)+1,θ/n,...,θ/n. By Corollary 24.29, we have

X̂n,1
D= (V n1 ,

(
1− V n1

)
Y1, . . . ,

(
1− V n1

)
Yn−1

)
,

where

V n1 ∼ β(θ/n)+1,θ(n−1)/n and Y = (Y1, . . . , Yn−1)∼Dirθ/n;n−1

are independent. Applying this to Y , we get inductively

X̂n
D=Zn, (24.7)

where

Zn1 = V n1 and Znk =
(
k−1∏

i=1

(
1− V ni

)
)

V nk for k ≥ 2

and where V n1 , . . . , V
n
n−1 are independent and V ni ∼ β(θ/n)+1,θ(n−i)/n. Now it is easy

to check that β(θ/n)+1,θ(n−i)/n
n→∞−→ β1,θ for every i ∈ N. Recall that β1,θ has the

density x �→ θ(1− x)θ−1. Hence V ni
n→∞=⇒ Vi for every i and thus Zn

n→∞=⇒ Z and

X̂n
n→∞=⇒ Z. Together with (i), this proves claim (ii). �

At the beginning of this chapter, we raised the question of how the sizes
W1,W2, . . . of the stick lengths are distributed if at each step, we break the re-
maining part of the stick at a point chosen uniformly at random. The preceding
theorem gives the answer: The vector (W(1),W(2), . . .) has distribution PD1, and
(W1,W2, . . .) has distribution GEM1.

The Chinese Restaurant Process

We will study a further situation in which the Poisson–Dirichlet distribution arises
naturally. As the technical details get a bit tricky, we content ourselves with the
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description of the problem and with stating (but not proving) two fundamental the-
orems. An excellent reference for this type of problem is [130].

Consider a Chinese restaurant with countably many enumerated round tables. At
each table, there is enough space for arbitrarily many guests. Initially, the restaurant
is empty. One by one an infinite number of guests arrive. The first guest sits down at
table number one. If there are already n guests sitting at k tables, then the (n+ 1)th
guest can choose between sitting down at any of the k occupied tables or at the free
table with the smallest number (that is, k + 1). Assume that the guest makes his
choice at random (and independently of the previous choices of the other guests).
For l ≤ k, denote by Nnl the number of guests at the lth table and assume that the
probability of choosing the lth table is (Nnl − α)/(n + θ). Then the probability
of choosing the first free table is (θ + kα)/(n + θ). Here α ∈ [0,1] and θ > −α
are parameters. We say that (Nn)n∈N = (Nn1 ,Nn2 , . . .)n∈N is the Chinese restaurant
process with parameters (α, θ).

In the special case α = 0, there is a nice interpretation: Assume that the new
guest can also choose his seating position at the table (that is, his neighbor to the
right). Then, for any of the present guests, the probability of being chosen as a right
neighbor is 1/(n+ θ). The probability of starting a new table is θ/(n+ θ).

In order to study the large n behavior of Nn/n= (Nn1 /n,Nn2 /n, . . .), we extend
the Poisson–Dirichlet distribution and the GEM distribution by a further parameter.

Definition 24.34 Let α ∈ [0,1) and θ > −α. Let V1,V2, . . . be independent and
Vi ∼ β1−α,θ+iα . Define Z = (Z1,Z2, . . .) by Z1 = V1 and

Zk = Vk
k−1∏

i=1

(1− Vi) for k ≥ 2.

Then GEMα,θ := PZ is called the GEM distribution with parameters (α, θ). The
distribution of the size-biased vector (Z(1),Z(2), . . .) is called the Poisson–Dirichlet
distribution with parameters (α, θ), or briefly PDα,θ .

Explicit formulas for the densities of the finite-dimensional marginals of PDα,θ
can be found in [132]. Note that, for α = 0, we recover the classical distributions
GEMθ =GEM0,θ and PDθ = PD0,θ .

Theorem 24.35 Let α ∈ [0,1), θ >−α and let (Nn)n∈N be the Chinese restaurant
process with parameters (α, θ). Then PNn/n

n→∞−→ PDα,θ .

Proof See [129] or [130, Theorem 25]. �

As for the one-parameter Poisson–Dirichlet distribution, there is a representation
of PDα,θ in terms of the size-ordered jumps of a certain subordinator. In the follow-
ing, let α ∈ (0,1) and let (Mt)t∈[0,1] be an α-stable subordinator; that is, a subordi-
nator with Lévy measure ν(dx)= x−α−1 dx. Further, let m1 ≥m2 ≥ . . .≥ 0 be the
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jumps ofM , m̃i =mi/M1 for i ∈N, and m̃= (m̃1, m̃2, . . .). We quote the following
theorem from [130, Section 4.2].

Theorem 24.36 Let α ∈ (0,1).
(i) m̃∼ PDα,0.

(ii) If θ >−α, then PDα,θ ) PDα,0 = P[m̃ ∈ ·] and the density is

PDα,θ (dx)= M−θ
1

E[M−θ
1 ]P[m̃ ∈ dx].

Exercise 24.3.1 Let (X,1−X)∼Dirθ1,θ2 . Show thatX ∼ βθ1,θ2 is Beta-distributed.

Exercise 24.3.2 Let X = (X1, . . . ,Xn)∼Dirθ1,...,θn . Show the following.

(i) For any permutation σ on {1, . . . , n}, we have

(Xσ(1), . . . ,Xσ(n))∼Dirθσ(1),...,θσ(n) .

(ii) (X1, . . . ,Xn−2,Xn−1 +Xn)∼Dirθ1,...,θn−2,θn−1+θn .

Exercise 24.3.3 Let (Nn)n∈N be the Chinese restaurant process with parameters
(0, θ).

(i) Let θ = 1.

(a) Show that P[Nn1 = k] = 1/n for any k = 1, . . . , n,
(b) Show that, for kl = 1, . . . , n− (k1 + . . .+ kl−1),

P
[
Nnl = kl

∣
∣Nn1 = k1, . . . ,N

n
l−1 = kl−1

]= 1

n− (k1 + . . .+ kl−1)
.

(c) Infer the claim of Theorem 24.35 in the case α = 0 and θ = 1.

(ii) Let θ > 0.

(a) Show that nP[Nn1 = �nx�]
n→∞−→ θ(1− x)θ−1 for x ∈ (0,1).

(b) Show that

nP
[
Nnl = �nxl�

∣
∣Nn1 = �nx1�, . . . ,Nnl−1 = �nxl−1�

]

n→∞−→ (θ/yl)(1− xl/yl)θ−1

for x1, . . . , xl ∈ (0,1) with yl = 1− (x1 + . . .+ xl−1) > xl .
(c) As in (i), infer the claim of Theorem 24.35 for α = 0 and θ > 0.



Chapter 25
The Itô Integral

The Itô integral allows us to integrate stochastic processes with respect to the in-
crements of a Brownian motion or a somewhat more general stochastic process. We
develop the Itô integral first for Brownian motion and then for generalized diffusion
processes (so called Itô processes). In the third section, we derive the celebrated Itô
formula. This is the chain rule for the Itô integral that enables us to do explicit cal-
culations with the Itô integral. In the fourth section, we use the Itô formula to obtain
a stochastic solution of the classical Dirichlet problem. This in turn is used in the
fifth section in order to show that like symmetric simple random walk, Brownian
motion is recurrent in low dimensions and transient in high dimensions.

25.1 Itô Integral with Respect to Brownian Motion

Let W = (Wt)t≥0 be a Brownian motion on the space (Ω,F,P) with respect to the
filtration F that satisfies the usual conditions (see Definition 21.22). That is, W is
a Brownian motion and an F-martingale. The aim of this section is to construct an
integral

IWt (H)=
∫ t

0
Hs dWs

for a large class of integrands H :Ω × [0,∞)→R, (ω, t) �→Ht(ω) in such a way
that (IWt (H))t≥0 is a continuous F-martingale. Since almost all paths s �→Ws(ω)

of Brownian motion are of locally infinite variation, W(ω) is not the distribution
function of a signed Lebesgue–Stieltjes measure on [0,∞). Hence IWt (H) cannot
be defined in the framework of classical integration theory. The basic new idea is
to establish the integral as an L2-limit. We start with an elementary example to
illustrate this.

Example 25.1 Assume that X1,X2, . . . are i.i.d. Rad1/2 random variables; that is,
P[Xn = 1] = P[Xn =−1] = 1

2 . Let (hn)n∈N be a sequence of real numbers. Under

A. Klenke, Probability Theory, Universitext, DOI 10.1007/978-1-4471-5361-0_25,
© Springer-Verlag London 2014
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which assumptions on (hn)n∈N is the series

R :=
∑

n∈N
hnXn (25.1)

well-defined? If
∑
n∈N |hn|<∞, then the series converges absolutely for every ω.

In this case, there is no problem. Now assume that only the weaker condition∑
n∈N h2

n < ∞ holds. In this case, the series (25.1) does not necessarily con-
verge any more for every ω. However, we have E[hnXn] = 0 for each n ∈ N and∑∞
n=1 Var[hnXn] =∑∞

n=1 h
2
n <∞. Hence RN :=∑N

k=1 hkXk converges in L2 (for
N →∞). We can thus define the series R in (25.1) as the L2-limit of the partial
sums RN . Note that (at least formally) for the approximating sums the order of
summation matters. In a sense, we have constructed

∑∞
n=1 instead of

∑
n∈N.

An equivalent formulation that gives a flavor of what is to come is the follow-
ing. Denote by �2 the Hilbert space of square summable sequences of real num-
bers with inner product 〈h,g〉 =∑∞

n=1 hngn and norm ‖g‖ = 〈g,g〉1/2. Let �f

be the subspace of those sequences with only finitely many nonzero entries. Then
R(h)=∑n∈N hnXn for h ∈ �f is well-defined (since it is a finite sum). Since

E
[
R(h)2

]=Var
[
R(h)

]=
∑

n∈N
Var[hnXn] =

∑

n∈N
h2
n = ‖h‖2,

the map R : �f → L2(P) is an isometry. As �f ⊂ �2 is dense, there is a unique
continuous extension of R to �2. Hence, if h ∈ �2 and (hN)N∈N is a sequence in

�f with ‖hN − h‖ N→∞−→ 0, then R(hN)
N→∞−→ R(h) in the L2 sense. In particular,

hNn := hn1{n≤N}, n ∈ N, N ∈ N, is an approximating sequence for h, and we have
R(hN)=∑N

n=1 hnXn. Thus the approximation of R with the partial sums RN that
we described above is a special case of this construction. ♦

The programme for the construction of the Itô integral IWt (H) is the following.
First consider simple functions as integrands H ; that is, the map t �→ Ht(ω) is a
step function. For these H , the integral can easily be defined as a finite sum. The
next step is to extend the integral, as in Example 25.1, to integrands that can be
approximated in a certain L2-space by simple integrands.

Definition 25.2 Denote by E the vector space of maps H :Ω × [0,∞)→R of the
form

Ht(ω)=
n∑

i=1

hi−1(ω)1(ti−1,ti ],

where n ∈ N, 0= t0 < t1 < . . . < tn and hi−1 is bounded and Fti−1 -measurable for
every i = 1, . . . , n. E is called the vector space of predictable simple processes.
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We equip E with a (pseudo) norm ‖ ·‖E by defining

‖H‖2
E =

n∑

i=1

E
[
h2
i−1

]
(ti − ti−1)= E

[∫ ∞

0
H 2
s ds

]

.

Definition 25.3 For H ∈ E and t ≥ 0, define

IWt (H)=
n∑

i=1

hi−1(Wti∧t −Wti−1∧t )

and

IW∞ (H)=
n∑

i=1

hi−1(Wti −Wti−1).

Clearly, for every bounded stopping time τ ,

E
[
IWτ (H)

]=
n∑

i=1

E
[
hi−1
(
Wτ
ti
−Wτ

ti−1

)]

=
n∑

i=1

E
[
hi−1E

[
Wτ
ti
−Wτ

ti−1

∣
∣Fti−1

]]= 0

since, by the optional stopping theorem (OST), the stopped Brownian motionWτ is
an F-martingale. Hence (again by the OST) (IWt (H))t≥0 is an F-martingale. In par-

ticular, we have E[(IWti+1
(H)− IWti (H))(IWtj+1

(H)− IWtj (H))] = 0 for i �= j . There-
fore,

E
[
IW∞ (H)2

] =
n∑

i=1

E
[(
IWti (H)− IWti−1

(H)
)2]

=
n∑

i=1

E
[
h2
i−1(Wti −Wti−1)

2]

=
n∑

i=1

E
[
h2
i−1

]
(ti − ti−1)= ‖H‖2

E . (25.2)

From these considerations, the following statement is immediate.

Theorem 25.4

(i) The map IW∞ : E → L2(Ω,F,P) is an isometric linear map (with respect to
‖ ·‖E and ‖ ·‖2).

(ii) The process (IWt (H))t≥0 is an L2-bounded continuous F-martingale.
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Proof Only the linearity remains to be shown. However, this is trivial. �

The idea is to extend the map IW∞ continuously from E to a suitable closure E
of E . Now as a subspace of what space should we close E? A minimal requirement
is that (ω, t) �→Ht(ω) be measurable (with respect to F ⊗ B([0,∞))) and that H
be adapted.

Definition 25.5 A stochastic process X = (Xt )t≥0 with values in a Polish space E
is called

(i) product measurable if (ω, t) �→ Xt(ω) is measurable with respect to F ⊗
B([0,∞)) – B(E),

(ii) progressively measurable if, for every t ≥ 0, the mapΩ×[0, t]→E, (ω, s) �→
Xs(ω) is measurable with respect to Ft ⊗B([0, t]) – B(E),

(iii) predictable (or previsible) if (ω, t) �→Xt(ω) is measurable with respect to the
predictable σ -algebra P on Ω × [0,∞):

P := σ(X :X is a left continuous adapted process).

Remark 25.6 AnyH ∈ E is predictable. This property ensures that IM(H) is a mar-
tingale for every (even discontinuous) martingaleM . The notion of predictability is
important only for integration with respect to discontinuous martingales. As we will
not develop that calculus in this book, predictability will not be central for us. ♦

Remark 25.7 If H is progressively measurable, then H is evidently also product
measurable and adapted. With a little work, the converse can also be shown: If H is
adapted and product measurable, then there is a progressively measurable modifica-
tion of H (see, e.g., [115, pp. 68ff]). ♦

Theorem 25.8 If H is adapted and right continuous or left continuous, then H is
progressively measurable. If H is adapted and a.s. right continuous or left continu-
ous, then there exists a version of H that is progressively measurable.

In particular, every predictable process is progressively measurable.

Proof See Exercise 21.1.4. �

We consider E as a subspace of

E0 :=
{

H : product measurable, adapted and ‖H‖2 := E
[∫ ∞

0
H 2
t dt

]

<∞
}

.

Let E denote the closure of E in E0.

Theorem 25.9 If H is progressively measurable (for instance, left continuous or
right continuous and adapted) and E[∫∞0 H 2

t dt]<∞, then H ∈ E .
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Proof Let H be progressively measurable and E[∫∞0 H 2
t dt] <∞. It is enough to

show that, for any T > 0, there exists a sequence (Hn)n∈N in E such that

E
[∫ T

0

(
Hs −Hns

)2
ds

]
n→∞−→ 0. (25.3)

Step 1. First assume that H is continuous and bounded. Define Hn0 = 0 and

Hnt =Hi2−nT if i2−nT < t ≤ (i + 1)2−nT for some i = 0, . . . ,2n − 1

and Hnt = 0 for t > T . Then Hn ∈ E , and we have Hnt (ω)
n→∞−→ Ht(ω) for all t > 0

and ω ∈Ω . By the dominated convergence theorem, we get (25.3).
Step 2. Now let H be progressively measurable and bounded. It is enough to

show that there exist continuous adapted processes Hn, n ∈ N, for which (25.3)
holds. Let

Hnt := n
∫ t∧T

(t−1/n)∨0
Hs ds for t ≥ 0, n ∈N.

Then Hn is continuous, adapted and bounded by ‖H‖∞. By the fundamental theo-
rem of calculus (see Exercise 13.1.7), we have

Hnt (ω)
n→∞−→ Ht(ω) for λ-almost all t ∈ [0, T ] and for all ω ∈Ω . (25.4)

By Fubini’s theorem and the dominated convergence theorem, we thus conclude that

E
[∫ T

0

(
Hs −Hns

)2
ds

]

=
∫

Ω×[0,T ]

(
Hs(ω)−Hns (ω)

)2
(P⊗ λ)(d(ω, s)) n→∞−→ 0.

Step 3. Now let H be progressively measurable, and assume E[∫∞0 H 2
t dt]<∞.

It is enough to show that there exists a sequence (Hn)n∈N of bounded, progres-
sively measurable processes such that (25.3) holds. Manifestly, we can choose
Hnt =Ht1{|Ht |<n}. �

Definition 25.10 (Itô integral) For H ∈ E , define the Itô integral

∫ ∞

0
Hs dWs := IW∞ (H)

as the continuous extension of the map IW∞ : E → L2(P) to the closure E of E . In

other words, if (Hn)n∈N is a sequence in E with ‖H −Hn‖ n→∞−→ 0, then we define
IW∞ (H) by

IW∞ (H) := lim
n→∞ I

W∞
(
Hn
)

in L2.
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If τ is a stopping time, then in the following we use the abbreviation

H
(τ)
t :=Ht1{t≤τ } for t ≥ 0.

(Note that this is not the stopped process Hτt =Hτ∧t .)

Theorem 25.11

(i) The map IW∞ : E→ L2(Ω,F,P) is linear and

E
[
IW∞ (H)2

]= E
[∫ ∞

0
H 2
s ds

]

.

(ii) For every H ∈ E , the process ĨW (H) defined by ĨWt (H) := IW∞ (H (t)) is an

L2-bounded F-martingale that has a continuous modification IW (H).

Definition 25.12 (Itô integral as a process) Let IW (H) be the continuous version
of the martingale (IW∞ (H (t)))t≥0 (see Theorem 25.11(ii)). Denote by

∫ t

s

Hr dWr := IWt (H)− IWs (H) for 0≤ s ≤ t ≤∞

the Itô integral of H with respect to Brownian motionW on the interval [s, t].

Proof of Theorem 25.11 (i) This is a direct consequence of the definition of IW∞ (H).
(ii) Let (Hn)n∈N be a sequence in E with ‖Hn − H‖ n→∞−→ 0. By Theo-

rem 25.4(ii), we have

IW∞
((
Hn
)(t))= IWt

(
Hn
)= E

[
IW∞
(
Hn
) ∣
∣Ft
]

for all t ≥ 0, n ∈N.

Since ‖(Hn)(t) −H(t)‖ ≤ ‖Hn −H‖ n→∞−→ 0, this implies (using Corollary 8.21)

ĨWt (H)= lim
n→∞ I

W
t

(
Hn
)= lim

n→∞E
[
IW∞
(
Hn
) ∣
∣Ft
]= E

[
IW∞ (H)

∣
∣Ft
]
.

Hence ĨW (H) is an L2-bounded martingale and IWt (H
n)
n→∞−→ ĨWt (H) in L2 for

every t ≥ 0. By Theorem 25.4(ii), IW (Hn) is continuous for every n ∈N. Thus, by
Exercise 21.4.3, there exists a continuous modification IW (H) of ĨW (H). �

The last step in the construction of the Itô integral is to weaken the strong inte-
grability condition E[∫∞0 H 2

s ds]<∞. We start with a simple observation.
Let τ be a stopping time and recall that

∫ τ
0 Hs dWs denotes the random variable

that for any ω assumes the value (
∫ τ(ω)

0 Hs dWs)(ω).

Lemma 25.13 Let τ be a stopping time and let H ∈ E .
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(i) We have

∫ τ

0
Hs dWs =

∫ ∞

0
H(τ)s dWs :=

∫ ∞

0
Hs1{s≤τ } dWs a.s.

(ii) In particular, for any t ≥ 0, on the event {τ ≥ t} we have

∫ t

0
Hs dWs =

∫ t

0
H(τ)s dWs a.s.

(iii) Let G ∈ E be such that Hs =Gs for all s ≤ τ . Then

∫ τ

0
Hs dWs =

∫ τ

0
Gs dWs a.s.

Proof (i) Assume first that τ takes values in {k/2n : k ∈N0} ∪ {∞} for some n ∈N.
Then 1{k/2n≤τ }1{t∈((k−1)/2n,k/2n]} ∈ E for all k ∈N. If, in addition, H ∈ E , then also
H(τ) ∈ E and the claim follows directly from the definition of the Itô integral (Def-
inition 25.3). Now let H ∈ E and let (Hk)k∈N be a sequence in E such that ‖Hk −
H‖E k→∞−→ 0. Writing Hk,(τ)t :=Hkt 1{t≤τ } we get that ‖Hk,(τ) −H(τ)‖E k→∞−→ 0. By
choosing a suitable sequence km ↑∞, we obtain

∫ τ

0
Hs dWs = lim

m→∞

∫ τ

0
Hkms dWs

= lim
m→∞

∫ ∞

0
Hkm,(τ)s dWs =

∫ ∞

0
H(τ)s dWs a.s.

Finally, assume that τ is an arbitrary stopping time and define τn := 2−n�2nτ� for
n ∈ N. Then (τn) is a sequence of stopping times with τn ↓ τ . Recall that IW (H)

is continuous and note that ‖H(τn) − H(τ)‖E n→∞−→ 0. Hence by taking a suitable
sequence n(m) ↑∞, we get

∫ τ

0
Hs dWs = lim

m→∞

∫ τn(m)

0
Hs dWs

= lim
m→∞

∫ ∞

0
H
(τn(m))
s dWs =

∫ ∞

0
H(τ)s dWs a.s.

(ii), (iii) These statements are direct consequences of (i). �

Definition 25.14 Let Eloc be the space of progressively measurable stochastic pro-
cesses H with

∫ T

0
H 2
s ds <∞ a.s. for all T > 0.
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Lemma 25.15 For every H ∈ Eloc, there exists a sequence (τn)n∈N of stopping
times with τn ↑ ∞ almost surely and E[∫ τn0 H 2

s ds] < ∞ and hence such that
H(τn) ∈ E for every n ∈N.

Proof Define

τn := inf

{

t ≥ 0 :
∫ t

0
H 2
s ds ≥ n

}

.

By the definition of Eloc, we have τn ↑∞ almost surely. By construction, we have
‖H(τn)‖2 = E[∫ τn0 H 2

s ds] ≤ n. �

Definition 25.16 Let H ∈ Eloc and let (τn)n∈N be as in Lemma 25.15. For t ≥ 0,
define the Itô integral as the almost sure limit

∫ t

0
Hs dWs := lim

n→∞

∫ t

0
H(τn)s dWs. (25.5)

Theorem 25.17 Let H ∈ Eloc.

(i) The limit in (25.5) is well-defined and continuous at t . Up to a.s. equality, it is
independent of the choice of the sequence (τn)n∈N.

(ii) If τ is a stopping time with E[∫ τ0 H 2
s ds] <∞, then the stopped Itô integral

(
∫ τ∧t

0 Hs dWs)t≥0 is an L2-bounded, continuous martingale.

(iii) If E[∫ T0 H 2
s ds]<∞ for all T > 0, then (

∫ t
0 Hs dWs)t≥0 is a square integrable

continuous martingale.

Proof (i) By Lemma 25.13(ii), on the event {τn ≥ t}, we have
∫ t

0
Hs dWs =

∫ t

0
H(τn)s dWs.

Hence the limit exists, is continuous and is independent of the choice of the sequence
(τn)n∈N.

(ii) This is immediate by Theorem 25.11.
(iii) As we can choose τn = n, this follows from (ii). �

Theorem 25.18 Let H be progressively measurable and E[∫ T0 H 2
s ds]<∞ for all

T > 0. Then

Mt :=
∫ t

0
Hs dWs, t ≥ 0,

defines a square integrable continuous martingale, and

(Nt )t≥0 :=
(

M2
t −
∫ t

0
H 2
s ds

)

t≥0

is a continuous martingale with N0 = 0.
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Proof It is enough to show that N is a martingale. Clearly, N is adapted. Let τ be a
bounded stopping time. Then

E[Nτ ] = E
[

M2
τ −
∫ τ

0
H 2
s ds

]

= E
[(∫ ∞

0
H(τ)s dWs

)2]

−E
[∫ ∞

0

(
H(τ)s

)2
ds

]

= 0.

Thus, by the optional stopping theorem (see Exercise 21.1.3(iii)), N is a martin-
gale. �

Recall the notions of local martingales and square variation from Section 21.10.

Corollary 25.19 If H ∈ Eloc, then the Itô integral Mt =
∫ t

0 Hs dWs is a continuous

local martingale with square variation process 〈M〉t =
∫ t

0 H
2
s ds.

Example 25.20

(i) Wt =
∫ t

0 1dWs is a square integrable martingale, and (W 2
t − t)t≥0 is a contin-

uous martingale.

(ii) Since E[∫ T0 W 2
s ds] = T 2

2 <∞ for all T ≥ 0, Mt :=
∫ t

0 Ws dWs is a contin-
uous, square integrable martingale, and (M2

t −
∫ t

0 W
2
s ds)t≥0 is a continuous

martingale.
(iii) Assume that H is progressively measurable and bounded, and let Mt :=∫ t

0 Hs dWs . Then M is progressively measurable (since it is continuous and
adapted) and

E
[∫ T

0
M2
s ds

]

=
∫ T

0

(∫ s

0
E
[
H 2
r

]
dr

)2

ds ≤ T
2‖H‖2∞

2
.

Hence M̃t :=
∫ t

0 Ms dWs is a square integrable, continuous martingale and
(M̃2

t −
∫ t

0 M
2
s dWs)t≥0 is a continuous martingale.

♦

25.2 Itô Integral with Respect to Diffusions

If

H =
n∑

i=1

hi−11(ti−1,ti ] ∈ E, (25.6)
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then the elementary integral

IMt (H)=
n∑

i=1

hi−1(Mti∧t −Mti−1∧t )

is a martingale (respectively local martingale) if M is a martingale (respectively
local martingale). Furthermore,

E
[(
IM∞ (H)

)2]=
n∑

i=1

E
[
h2
i−1(Mti −Mti−1)

2]

=
n∑

i=1

E
[
h2
i−1

(〈M〉ti − 〈M〉ti−1

)]

= E
[∫ ∞

0
H 2
t d〈M〉t

]

if the expression on the right-hand side is finite. Roughly speaking, the procedure
in Section 25.1 by which we defined the Itô integral for Brownian motion and inte-
grands H ∈ E can be repeated to construct a stochastic integral with respect to M
for a large class of integrands H . Essentially, in the definition of the norm on E we
have to replace dt (that is, the square variation of Brownian motion) by the square
variation d〈M〉t ofM :

‖H‖2
M := E

[∫ ∞

0
H 2
t d〈M〉t

]

.

Extending the integral to the closure E works just as for Brownian motion. The
tricky point is to check whether a given integrand is in E . For example, for dis-
continuous martingales M the integrands have to be predictable in order for the
stochastic integral to be a martingale (not to mention the difficulty of establishing
for such M , the existence of the square variation process). For the case of discrete
time processes, we saw this in Section 9.3. Now ifM is a continuous martingale with
continuous square variation 〈M〉, then the following problem occurs. In the proof of
Theorem 25.9 in Step 2, in order to show that progressively measurable processes

H are in E, we used the fact that Hnt (ω)
n→∞−→ Ht(ω) for Lebesgue-almost all t and

all ω. Now if d〈M〉t is not absolutely continuous with respect to the Lebesgue mea-
sure, then this is not sufficient to infer convergence of the integrals with respect to
d〈M〉t . In the case of absolutely continuous square variation, however, that proof
works without change. As in Section 25.1, we obtain the following theorem.

Theorem 25.21 Let M be a continuous local martingale with absolutely continu-
ous square variation 〈M〉 and let H be a progressively measurable process with
∫ T

0 H
2
s d〈M〉s <∞ a.s. for all T ≥ 0. Then the Itô integral Nt :=

∫ t
0 Hs dMs is

well-defined and is a continuous local martingale with square variation 〈N〉t =
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∫ t
0 H

2
s d〈M〉s . For any sequence (τn)n∈N with τn ↑∞ and ‖H(τn)‖M <∞, and for

any family (Hn,m,n,m ∈N)⊂ E with ‖Hn,m −H(τn)‖M m→∞−→ 0, we have
∫ t

0
Hs dMs = lim

n→∞ lim
m→∞ I

M
t

(
Hm,n

)
in probability for all t ≥ 0.

The following theorem formulates a certain generalization.

Theorem 25.22 Let M1 and M2 be continuous local martingales with absolutely
continuous square variation. Let Hi be progressively measurable processes with
∫ T

0 (H
i
s )

2 d〈Mi〉s <∞ for i = 1,2 and T <∞. Let Nit :=
∫ t

0 H
i
s dM

i
s for i = 1,2.

Then N1 and N2 are continuous local martingales with quadratic covariation
〈Ni,Nj 〉t =

∫ t
0 H

i
sH

j
s d〈Mi,Mj 〉s for i, j ∈ {1,2}. IfM1 andM2 are independent,

then 〈N1,N2〉 ≡ 0.

Proof First assume H 1,H 2 ∈ E . Then there are numbers 0= t0 < t1 < . . . < tn and
Ftk -measurable bounded maps hik , i = 1,2, k = 0, . . . , n− 1 such that

Hit (ω)=
n∑

k=1

hik−1(ω)1(tk−1,tk](t).

Therefore,

Nit N
j
t =

n∑

k,l=1

hik−1h
j

l−1

(
Mi
tk∧t −Mi

tk−1∧t
)(
M
j
tl∧t −Mj

tl−1∧t
)
.

Those summands with k �= l are local martingales. For any of the summands with
k = l,

(
hik−1h

j

k−1

((
Mi
tk∧t −Mi

tk−1∧t
)(
M
j
tk∧t −Mj

tk−1∧t
)

− (〈Mi,Mj
〉
tk∧t −

〈
Mi,Mj

〉
tk−1∧t

)))
t≥0

is a local martingale. Since

n∑

k=1

hik−1h
j

k−1

(〈
Mi,Mj

〉
tk∧t −

〈
Mi,Mj

〉
tk−1∧t

)=
∫ t

0
HisH

j
s d
〈
Mi,Mj

〉
s
,

(Nit N
j
t −
∫ t

0 H
i
sH

j
s d〈Mi,Mj 〉s)t≥0 is a continuous local martingale.

The case of general progressively measurableH 1,H 2 that satisfy an integrability
condition follows by the usual L2-approximation arguments.

IfM1 andM2 are independent, then 〈M1,M2〉 ≡ 0. �

In the following, we consider processes that can be expressed as Itô integrals
with respect to a Brownian motion. For these processes, we give a different and
more detailed proof of Theorem 25.21.
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Definition 25.23 Let W be a Brownian motion and let σ and b be progressively
measurable stochastic processes with

∫ t
0 σ

2
s + |bs |ds <∞ almost surely for all

t ≥ 0. Then we say that the process X defined by

Xt =
∫ t

0
σs dWs +

∫ t

0
bs ds for t ≥ 0

is a generalized diffusion process (or, briefly, generalized diffusion) with diffusion
coefficient σ and drift b. Often X is called an Itô process.

In particular, if σ and b are of the form σs = σ̃ (Xs) and bs = b̃(Xs) for certain
maps σ̃ : R→ [0,∞) and b̃ : R→ R, then X is called a diffusion (in the proper
sense).

In contrast with generalized diffusions, we will see that under certain regularity
assumptions on the coefficients, diffusions in the proper sense are Markov processes
(compare Theorems 26.8, 26.10 and 26.26).

A diffusionX can always be decomposed asX =M+A, whereMt =
∫ t

0 σs dWs

is a continuous local martingale with square variation 〈M〉t =
∫ t

0 σ
2
s ds (by Corol-

lary 25.19) and At =
∫ t

0 bs ds is a continuous process of locally finite variation.
Clearly, for the H in (25.6), we have

∫ t

0
Hs dMs =

n∑

i=1

hi−1(Mti∧t −Mti−1∧t )

=
n∑

i=1

hi−1

∫ ti∧t

ti−1∧t
σs dWs =

∫ t

0
(Hsσs) dWs.

For progressively measurable H with
∫ T

0 H
2
s d〈M〉s =

∫ T
0 (Hsσs)

2 ds <∞ for all
T ≥ 0, we thus define the Itô integral as

∫ t

0
Hs dMs :=

∫ t

0
(Hsσs) dWs.

Without further work, in particular, without relying on Theorem 25.21, we get the
following theorem.

Theorem 25.24 Let X =M +A be a generalized diffusion with σ and let b be as
in Definition 25.23. Let H be progressively measurable with

∫ T

0
H 2
s σ

2
s ds <∞ a.s. for all T ≥ 0 (25.7)

and
∫ T

0
|Hsbs |ds <∞ a.s. for all T ≥ 0. (25.8)
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Then the process Y defined by

Yt :=
∫ t

0
Hs dXs :=

∫ t

0
Hs dMs +

∫ t

0
Hs dAs :=

∫ t

0
Hsσs dWs +

∫ t

0
Hsbs ds

is a generalized diffusion with diffusion coefficient (Hsσs)s≥0 and drift (Hsbs)s≥0.
In particular, Nt :=

∫ t
0 Hs dMs is a continuous local martingale with square varia-

tion process 〈N〉t =
∫ t

0 H
2
s d〈M〉s =

∫ t
0 H

2
s σ

2
s ds.

Exercise 25.2.1 Let M be a continuous local martingale with absolutely continu-
ous square variation 〈M〉 (e.g., a generalized diffusion), and let H be progressively
measurable and continuous with

∫ T
0 H

2
s d〈M〉s <∞ for all T ≥ 0. Further, assume

that P = (P(n))n∈N is an admissible sequence of partitions (see Definition 21.56).

(i) Show that for all T ≥ 0, in the sense of stochastic convergence, we have

∫ T

0
Hs dMs = lim

n→∞
∑

t∈PnT
Ht (Mt ′ −Mt). (25.9)

(ii) Show that there exists a subsequence of P such that almost surely, we have
(25.9) for all T ≥ 0.

25.3 The Itô Formula

This and the following two sections are based on lecture notes of Hans Föllmer.
If t �→Xt is a differentiable map with derivative X′ and F ∈ C1(R) with deriva-

tive F ′, then we have the classical substitution rule

F(Xt )− F(X0)=
∫ t

0
F ′(Xs) dXs =

∫ t

0
F ′(Xs)X′s ds. (25.10)

This remains true even if X is continuous and has locally finite variation (see
Section 21.10); that is, if X is the distribution function of an absolutely continuous
signed measure on [0,∞). In this case, the derivativeX′ exists as a Radon–Nikodym
derivative almost everywhere, and it is easy to show that (25.10) also holds in this
case.

The paths of Brownian motionW are nowhere differentiable (Theorem 21.17 due
to Paley, Wiener and Zygmund) and thus have everywhere locally infinite variation.
Hence a substitution rule as simple as (25.10) cannot be expected. Indeed, it is easy
to see that such a rule must be false: Choose F(x) = x2. Then the right-hand side
in (25.10) (with X replaced by W ) is

∫ t
0 2Ws dWs and is hence a martingale. The

left-hand side, however, equals W 2
t , which is a submartingale that only becomes a

martingale by subtracting t . Indeed, this t is the additional term that shows up in
the substitution rule for Itô integrals, the so-called Itô formula. A somewhat bold



576 25 The Itô Integral

heuristic puts us on the right track: For small t , Wt is of order
√
t . If we formally

write dWt =
√
dt and carry out a Taylor expansion of F ∈ C2(R) up to second

order, then we obtain

dF(Wt)= F ′(Wt) dWt + 1

2
F ′′(Wt )(dWt)2 = F ′(Wt ) dWt + 1

2
F ′′(Wt) dt.

Rewriting this as an integral yields

F(Wt)− F(W0)=
∫ t

0
F ′(Ws) dWs +

∫ t

0

1

2
F ′′(Ws) ds. (25.11)

(For certain discrete martingales, we derived a similar formula in Example 10.9.)
The main goal of this section is to show that this so-called Itô formula is indeed
correct.

The subsequent discussion in this section does not explicitly rely on the assump-
tion that we integrate with respect to Brownian motion. All that is needed is that
the function with respect to which we integrate have continuous square variation
(along a suitable admissible sequence of partitions P = (Pn)n∈N)). In particular,
for Brownian motion, 〈W 〉t = t .

In the following, let P = (Pn)n∈N be an admissible sequence of partitions (recall
the definition of Cqv = CPqv, PnT , PnS,T , t ′ and so on from Definitions 21.56 and
21.58). Let X ∈ C([0,∞)) with continuous square variation (along P)

T �→ 〈X〉T = V 2
T (X)= lim

n→∞
∑

t∈PT
(Xt ′ −Xt)2.

For Brownian motion, we have W ∈ CPqv almost surely for any admissible sequence
of partitions (Theorem 21.64) and 〈W 〉T = T . For continuous local martingales M
passing to a suitable subsequence P ′ of P ensures thatM ∈ CP ′

qv almost surely (The-
orem 21.70).

Now fix P and let X ∈ Cqv be a (deterministic) function.

Theorem 25.25 (Pathwise Itô formula) Let X ∈ Cqv and F ∈ C2(R). Then, for all
T ≥ 0, there exists the limit

∫ T

0
F ′(Xs) dXs := lim

n→∞
∑

t∈PnT
F ′(Xt )(Xt ′ −Xt). (25.12)

Furthermore, the Itô formula holds:

F(XT )− F(X0)=
∫ T

0
F ′(Xs) dXs + 1

2

∫ T

0
F ′′(Xs) d〈X〉s . (25.13)

Here the right integral in (25.13) is understood as a classical (Lebesgue–Stieltjes)
integral.
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Remark 25.26 If M is a continuous local martingale, then, by Exercise 25.2.1, the
Itô integral

∫ T
0 F

′(Ms) dMs is the stochastic limit of
∑
t∈PnT F

′(Mt)(Mt ′ −Mt) as
n→∞. Thus, in fact, for X =M(ω), the pathwise integral in (25.12) coincides
with the Itô integral (a.s.). In particular, for the Itô integral of Brownian motion, the
Itô formula (25.11) holds. ♦

Proof of Theorem 25.25 We have to show that the limit in (25.12) exists and that
(25.13) holds.

For n ∈N and t ∈PnT (with successor t ′ ∈ PnT ), the Taylor formula yields

F(Xt ′)− F(Xt )= F ′(Xt )(Xt ′ −Xt)+ 1

2
F ′′(Xt ) · (Xt ′ −Xt)2 +Rnt , (25.14)

where the remainder

Rnt =
(
F ′′(ξ)− F ′′(Xt )

) · 1

2
(Xt ′ −Xt)2

(for a suitable ξ betweenXt andXt ′ ) can be bounded as follows. AsX is continuous,
C := {Xt : t ∈ [0, T ]} is compact and F ′′∣∣

C
is uniformly continuous. Thus, for every

ε > 0, there exists a δ > 0 with
∣
∣F ′′(Xr)− F ′′(Xs)

∣
∣< ε for all r, s ∈ [0, T ] with |Xr −Xs |< δ.

Since X is uniformly continuous on [0, T ] and since the mesh size |Pn| of the
partition goes to 0 as n→∞, for every δ > 0, there exists an Nδ such that

sup
n≥Nδ

sup
t∈PnT

|Xt ′ −Xt |< δ.

Hence, for n≥Nδ and t ∈PnT ,

∣
∣Rnt
∣
∣≤ 1

2
ε(Xt ′ −Xt)2.

Summing over t ∈PnT in (25.14) yields
∑

t∈PnT

(
F(Xt ′)− F(Xt )

)= F(Xt )− F(X0)

and
∑

t∈PnT

∣
∣Rnt
∣
∣≤ ε

∑

t∈PnT
(Xt ′ −Xt)2 n→∞−→ ε〈X〉t <∞.

As ε > 0 was arbitrary, we get
∑
t∈PnT |Rnt |

n→∞−→ 0. We have (see Exercise 21.10.2)

∑

t∈PnT

1

2
F ′′(Xt )(Xt ′ −Xt)2 n→∞−→ 1

2

∫ T

0
F ′′(Xs) d〈X〉s .
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Hence, in (25.14) the sum of the remaining terms also has to converge. That is, the
limit in (25.12) exists. �

As a direct consequence, we obtain the Itô formula for the Itô integral with re-
spect to diffusions.

Theorem 25.27 (Itô formula for diffusions) Let Y =M + A be a (generalized)
diffusion (see Definition 25.23), where Mt =

∫ t
0 σs dWs and At =

∫ t
0 bs ds. Let

F ∈ C2(R). Then we have the Itô formula

F(Yt )− F(Y0)=
∫ t

0
F ′(Ys) dMs +

∫ t

0
F ′(Ys) dAs + 1

2

∫ t

0
F ′′(Ys) d〈M〉s

=
∫ t

0
F ′(Ys)σs dWs +

∫ t

0

(

F ′(Ys)bs + 1

2
F ′′(Ys)σ 2

s

)

ds.

(25.15)
In particular, for Brownian motion,

F(Wt)− F(W0)=
∫ t

0
F ′(Ws) dWs + 1

2

∫ t

0
F ′′(Ws) ds. (25.16)

As an application of the Itô formula, we characterize Brownian motion as a con-
tinuous local martingale with a certain square variation process.

Theorem 25.28 (Lévy’s characterization of Brownian motion) LetX ∈Mloc,c with
X0 = 0. Then the following are equivalent.

(i) (X2
t − t)t≥0 is a local martingale.

(ii) 〈X〉t = t for all t ≥ 0.
(iii) X is a Brownian motion.

Proof (iii) =⇒ (i) This is obvious.
(i) ⇐⇒ (ii) This is clear since the square variation process is unique.
(ii) =⇒ (iii) It is enough to show that Xt −Xs ∼N0,t−s given Fs for t > s ≥ 0.

Employing the uniqueness theorem for characteristic functions, it is enough to show
that (with i =√−1) for A ∈Fs and λ ∈R, we have

ϕA,λ(t) := E
[
eiλ(Xt−Xs)1A

]= P[A]e−λ2(t−s)/2.

Applying Itô’s formula separately to the real and the imaginary parts, we obtain

eiλXt − eiλXs =
∫ t

s

iλeiλXr dXr − 1

2

∫ t

s

λ2eiλXr dr.
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Therefore,

E
[
eiλ(Xt−Xs)

∣
∣Fs
]− 1

= E
[∫ t

s

iλeiλ(Xr−Xs) dXr
∣
∣
∣Fs
]

− 1

2
λ2E
[∫ t

s

eiλ(Xr−Xs) dr
∣
∣
∣Fs
]

.

Now Mt := Re
∫ t
s
iλeiλ(Xr−Xs) dXr and Nt := Im

∫ t
s
iλeiλ(Xr−Xs) dXr , t ≥ s are

continuous local martingales with

〈M〉t =
∫ t

s

λ2 sin
(
λ(Xr −Xs)

)2
dr ≤ λ2(t − s)

and

〈N〉t =
∫ t

s

λ2 cos
(
λ(Xr −Xs)

)2
dr ≤ λ2(t − s).

Thus, by Corollary 21.76,M and N are martingales. Hence we have

E
[∫ t

s

iλeiλ(Xr−Xs) dXr
∣
∣
∣Fs
]

= 0.

Since A ∈Fs , Fubini’s theorem yields

ϕA,λ(t)− ϕA,λ(s)= E
[
eiλ(Xt−Xs)1A

]− P[A]

= −1

2
λ2
∫ t

s

E
[
eiλ(Xr−Xs)1A

]
dr =−1

2
λ2
∫ t

s

ϕA,λ(r) dr.

That is, ϕA,λ is the solution of the linear differential equation

ϕA,λ(s)= P[A] and
d

dt
ϕA,λ(t)=−1

2
λ2ϕA,λ(t).

The unique solution is ϕA,λ(t)= P[A]e−λ2(t−s)/2. �

As a consequence of this theorem, we get that any continuous local martingale
whose square variation process is absolutely continuous (as a function of time) can
be expressed as an Itô integral with respect to some Brownian motion.

Theorem 25.29 (Itô’s martingale representation theorem) Let M be a continu-
ous local martingale with M0 = 0 and absolutely continuous square variation
t �→ 〈M〉t . Then, on a suitable extension of the underlying probability space, there
exists a Brownian motion W with

Mt =
∫ t

0

√
d〈M〉s
ds

dWs for all t ≥ 0.



580 25 The Itô Integral

Proof Assume that the probability space is rich enough to carry a Brownian motion
W̃ that is independent ofM . Let

ft := lim
n→∞n

(〈M〉t − 〈M〉t−1/n
)

for t > 0.

Then f is a progressively measurable version of the Radon–Nikodym derivative
d〈M〉t
dt

. Clearly,
∫ T

0 1{ft>0}f−1
t d〈M〉t ≤ T <∞ for all T > 0. Hence the following

integrals are well-defined, and furthermore, as a sum of continuous martingales,

Wt :=
∫ t

0
1{fs>0}f−1/2

s dMs +
∫ t

0
1{fs=0} dW̃s

is a continuous local martingale. By Theorem 25.22, we have

〈W 〉t =
∫ t

0
1{fs>0}f−1

s d〈M〉s +
∫ t

0
1{fs=0} ds

=
∫ t

0
1{fs>0}f−1

s fs ds +
∫ t

0
1{fs=0} ds = t.

Hence, by Theorem 25.28, W is a Brownian motion. On the other hand, we have

∫ t

0
f

1/2
s dWs =

∫ t

0
1{fs>0}f 1/2

s f
−1/2
s dMs +

∫ t

0
1{fs=0}f 1/2

s dW̃s

=
∫ t

0
1{fs>0} dMs.

However,

Mt −
∫ t

0
1{fs>0} dMs =

∫ t

0
1{fs=0} dMs

is a continuous local martingale with square variation
∫ t

0 1{fs=0} d〈M〉s = 0 and

hence it almost surely equals zero. Therefore, we have Mt =
∫ t

0 f
1/2
s dWs , as

claimed. �

We come next to a multidimensional version of the pathwise Itô formula. To
this end, let Cdqv be the space of continuous maps X : [0,∞)→ R

d , t �→ Xt =
(X1
t , . . . ,X

d
t ) such that, for k, l = 1, . . . , d , the quadratic covariation (see Defini-

tion 21.58) 〈Xk,Xl〉 exists and is continuous. Further, let C2(Rd) be the space of
twice continuously differentiable functions F on R

d with partial derivatives ∂kF
and ∂k∂lF , k, l = 1, . . . , d . Denote by ∇ the gradient and by  = (∂2

1 + . . .+ ∂2
d )

the Laplace operator.
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Theorem 25.30 (Multidimensional pathwise Itô formula) Let X ∈ Cdqv and F ∈
C2(Rd). Then

F(XT )− F(X0)=
∫ T

0
∇F dXs + 1

2

d∑

k,l=1

∫ T

0
∂k∂lF (Xs) d

〈
Xk,Xl

〉
s
,

where
∫ T

0
∇F(Xs) dXs := lim

n→∞
∑

t∈PnT

d∑

k=1

∂kF (Xt )
(
Xkt ′ −Xkt

)
.

Proof This works just as in the one-dimensional case. We leave the details as an
exercise. �

Remark 25.31 If each of the integrals
∫ T

0 ∂kF (Xs) dX
k
s exists, then

∫ T

0
∇F(Xs) dXs =

d∑

k=1

∫ T

0
∂kF (Xs) dX

k
s .

Note that existence of the individual integrals does not follow from the existence of
the integral

∫ T
0 ∇F(Xs) dXs . ♦

Corollary 25.32 (Product rule) If X,Y,X− Y,X+ Y ∈ Cqv, then

XT YT =X0Y0 +
∫ T

0
Ys dXs +

∫ T

0
Xs dYs + 〈X,Y 〉T for all T ≥ 0

if both integrals exist. In particular, the product rule holds ifX and Y are continuous
local martingales.

Proof By assumption (and using the polarization formula), the covariation 〈X,Y 〉
exists. Applying Theorem 25.30 with F(x, y)= xy, the claim follows.

For continuous local martingales, by Exercise 25.2.1, there exists a suitable se-
quence of partitions P such that the integrals exist (pathwise). �

Now let Y =M +A be a d-dimensional generalized diffusion. Hence

Mk
t =

d∑

l=1

∫ t

0
σk,ls dWl

s and Akt =
∫ t

0
bks ds for t ≥ 0, k = 1, . . . , d.

Here W = (W 1, . . . ,Wd) is a d-dimensional Brownian motion and σk,l (respec-
tively bk) are progressively measurable, locally square integrable (respectively lo-
cally integrable) stochastic processes for every k, l = 1, . . . , d . Since 〈Wk,Wl〉t =
t · 1{k=l}, we have 〈Y k,Y l〉t = 〈Mk,Ml〉t =

∫ t
0 a
k,l
s ds, where

ak,ls :=
d∑

i=1

σk,is σ
i,l
s
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is the covariance matrix of the diffusion M . In particular, we have M ∈ Cdqv al-
most surely. Note that (by Exercise 25.2.1), there exists a partition sequence P such
that the integrals

∫ t
0 σ

k,l
s ∂kF (Ys) dW

l
s in (25.17) exist in the pathwise sense. As a

corollary of the multidimensional pathwise Itô formula (Theorem 25.30 and Re-
mark 25.31), we thus get the following theorem.

Theorem 25.33 (Multidimensional Itô formula) Let Y be as above and let F ∈
C2(Rd). Then

F(YT )− F(Y0) =
∫ T

0
∇F(Ys) dYs + 1

2

d∑

k,l=1

∫ T

0
∂k∂lF (Ys) d

〈
Mk,Ml

〉
s

=
d∑

k,l=1

∫ t

0
σk,ls ∂kF (Ys) dW

l
s +

d∑

k=1

∫ t

0
bks ∂kF (Ys) ds

+ 1

2

d∑

k,l=1

∫ t

0
ak,ls ∂k∂lF (Ys) ds. (25.17)

In particular, for Brownian motion, we have

F(Wt)− F(W0)=
d∑

k=1

∫ t

0
∂kF (Ws)dW

k
s +

1

2

∫ t

0
 F(Ws)ds. (25.18)

Corollary 25.34 The process (F (Wt))t≥0 is a continuous local martingale if and
only if F is harmonic (that is,  F ≡ 0).

Proof If F is harmonic, then as a sum of Itô integrals, F(Wt) = F(W0) +∑d
k=1

∫ t
0 ∂kF (Ws)dW

k
s is a continuous local martingale.

On the other hand, if F is a continuous local martingale, then as a difference of
continuous local martingales,

∫ t
0  F(Ws)ds is also a continuous local martingale.

As t �→ ∫ t0  F(Ws)ds has finite variation, we have
∫ t

0  F(Ws)ds = 0 for all t ≥ 0
almost surely (by Corollary 21.72). Hence  F ≡ 0. �

Corollary 25.35 (Time-dependent Itô formula) If F ∈C2,1(Rd ×R), then

F(WT ,T )− F(W0,0)

=
d∑

k=1

∫ T

0
∂kF (Ws, s) dW

k
s +
∫ T

0

(

∂d+1 + 1

2

(
∂2

1 + . . .+ ∂2
d

)
)

F(Ws, s) ds.

Proof Apply Theorem 25.33 to Y = (W 1
t , . . . ,W

d
t , t)t≥0. �
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Exercise 25.3.1 (Fubini’s theorem for Itô integrals) Let X ∈ Cqv and assume that
g : [0,∞)2 →R is continuous and (in the interior) twice continuously differentiable
in the second coordinate with derivative ∂2g. Use the product rule (Corollary 25.32)
to show that

∫ s

0

(∫ t

0
g(u, v) du

)

dXv =
∫ t

0

(∫ s

0
g(u, v) dXv

)

du

and
∫ s

0

(∫ v

0
g(u, v)du

)

dXv =
∫ s

0

(∫ s

u

g(u, v) dXv

)

du.

Exercise 25.3.2 (Stratonovich integral) Let P be an admissible sequence of parti-
tions, X ∈ CPqv and F ∈ C2(R) with derivative f = F ′. Show that, for every t ≥ 0,
the Stratonovich integral

∫ T

0
f (Xt ) ◦ dXt := lim

n→∞
∑

t∈PnT
f

(
Xt ′ +Xt

2

)

(Xt ′ −Xt)

is well-defined, and that the classical substitution rule

F(XT )− F(X0)=
∫ T

0
F ′(Xt ) ◦ dXt

holds. Show that, in contrast with the Itô integral, the Stratonovich integral with
respect to a continuous local martingale is, in general, not a local martingale.

25.4 Dirichlet Problem and Brownian Motion

As for discrete Markov chains (compare Section 19.1), the solutions of the Dirichlet
problem in a domain G⊂R

d can be expressed in terms of a d-dimensional Brown-
ian motion that is stopped upon hitting the boundary G.

In the following, let G⊂R
d be a bounded open set.

Definition 25.36 (Dirichlet problem) Let f : ∂G→ R be continuous. A function
u :G→ R is called a solution of the Dirichlet problem on G with boundary value
f if u is continuous, twice differentiable in G and

 u(x)= 0 for x ∈G,
u(x)= f (x) for x ∈ ∂G.

(25.19)

For sufficiently smooth domains, there always exists a solution of the Dirichlet prob-
lem (see, e.g., [79, Section 4.4]). If there is a solution, then as a consequence of
Theorem 25.38, it is unique.
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In the following, let W = (W 1, . . . ,Wd) be a d-dimensional Brownian motion
with respect to a filtration F that satisfies the usual conditions. We write Px and Ex
for probabilities and expectations if W is started at W0 = x = (x1, . . . , xd) ∈R

d . If
A⊂R

d is open, then

τAc := inf
{
t > 0 :Wt ∈Ac

}

is an F-stopping time (see Exercise 21.4.4). Since G is bounded, we have G ⊂
(−a, a) × R

d−1 for some a > 0. Thus τGc ≤ τ((−a,a)×Rd−1)c . By Exercise 21.2.4
(applied toW 1), for x ∈G,

Ex[τGc ] ≤ Ex[τ((−a,a)×Rd−1)c ] =
(
a − x1)(a + x1)<∞. (25.20)

In particular, τGc <∞ Px -almost surely. Hence WτGc is a Px -almost surely well-
defined random variable with values in ∂G.

Definition 25.37 For x ∈G, denote by

μx,G = Px ◦W−1
τGc

the harmonic measure on ∂G.

Theorem 25.38 If u is a solution of the Dirichlet problem on G with boundary
value f , then

u(x)= Ex
[
f (WτGc )

]=
∫

∂G

f (y)μx,G(dy) for x ∈G. (25.21)

In particular, the solution of the Dirichlet problem is always unique.

Proof Let G1 ⊂ G2 ⊂ . . . be a sequence of open sets with x ∈ G1, Gn ↑ G and
Gn ⊂G for every n ∈ N. Hence, in particular, every Gn is compact and thus ∇u is
bounded on Gn. We abbreviate τ := τGc and τn := τGcn .

As u is harmonic (that is,  u= 0), by the Itô formula, for t < τ ,

u(Wt)= u(W0)+
∫ t

0
∇u(Ws)dWs = u(W0)+

d∑

k=1

∫ t

0
∂ku(Ws) dW

k
s . (25.22)

In particular,M := (u(Wt))t∈[0,τ ) is a local martingale up to τ (however, in general,
it is not a martingale). For t < τn, we have

(
∂ku(Ws)

)2 ≤ Cn := sup
y∈Gn

∥
∥∇u(y)∥∥2

2 <∞ for all k = 1, . . . , d.

Hence, by (25.20),

E
[∫ τn

0

(
∂ku(Ws)

)2
ds

]

≤ CnEx[τn] ≤CnE[τ ]<∞.
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Thus, by Theorem 25.17(ii), for every n ∈ N, the stopped process Mτn is a martin-
gale. Therefore,

Ex
[
u(Wτn)

]= Ex[Mτn ] = Ex[M0] = u(x). (25.23)

AsW is continuous and τn ↑ τ , we haveWτn
n→∞−→ Wτ ∈ ∂G. Since u is continuous,

we get

u(Wτn)
n→∞−→ u(Wτ )= f (Wτ ). (25.24)

Again, since u is continuous and G is compact, u is bounded. By the dominated
convergence theorem, (25.24) implies convergence of the expectations; that is (also
using (25.23)),

u(x)= lim
n→∞Ex

[
u(Wτn)

]= Ex
[
f (Wτ )

]
. �

Exercise 25.4.1 Let G= R× (0,∞) be the open upper half plane of R2 and x =
(x1, x2) ∈G. Show that τGc <∞ almost surely and that the harmonic measure μx,G
on R∼= ∂G is the Cauchy distribution with scale parameter x2 that is shifted by x1:
μx,G = δx1 ∗Caux2 .

Exercise 25.4.2 Let d ≥ 3 and letG=R
d−1× (0,∞) be an open half space of Rd .

Let x = (x1, . . . , xd) ∈G. Show that τGc <∞ almost surely and that the harmonic
measure μx,G on R

d−1 ∼= ∂G has the density

μx,G(dy)

dy
= Γ (d/2)

πd/2

xd
√
(x1 − y1)2 + . . .+ (xd−1 − yd−1)2 + x2

d

.

Exercise 25.4.3 Let r > 0 and let Br(0) ⊂ R
d be the open ball with radius r cen-

tered at the origin. For x ∈ Br(0), determine the harmonic measure μx,Br (0).

25.5 Recurrence and Transience of Brownian Motion

By Pólya’s theorem (Theorem 17.39), symmetric simple random walk (Xn)n∈N on
Z
d is recurrent (that is, it visits every point infinitely often) if and only if d ≤ 2. If
d > 2, then the random walk is transient and eventually leaves every bounded set
A⊂ Z

d . To give a slightly different (though equivalent) formulation of this,

lim inf
n→∞ ‖Xn‖ = 0 a.s. ⇐⇒ d ≤ 2

and

lim
n→∞‖Xn‖ =∞ a.s. ⇐⇒ d > 2.

The main result of this section is that a similar dichotomy also holds for Brownian
motion.
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Theorem 25.39 Let W = (W 1, . . . ,Wd) be a d-dimensional Brownian motion.

(i) If d ≤ 2, then W is recurrent in the sense that

lim inf
t→∞ ‖Wt − y‖ = 0 a.s. for every y ∈R

d .

In particular, almost surely the path {Wt : t ≥ 0} is dense in R
d .

(ii) If d > 2, then W is transient in the sense that

lim
t→∞‖Wt‖ =∞ a.s.,

and for any y ∈R
d \ {0}, we have inf{‖Wt − y‖ : t ≥ 0}> 0 almost surely.

The basic idea of the proof is to use a suitable Dirichlet problem (and the result
of Section 25.4) to compute the probabilities for W to hit certain balls,

BR(x) :=
{
y ∈R

d : ‖x − y‖<R}.
Let 0< r < R <∞ and let Gr,R be the annulus

Gr,R := BR(0) \Br(0)=
{
x ∈R

d : r < ‖x‖<R}.
Recall that, for closed A⊂ R

d , we write τA = inf{t > 0 :Wt ∈ A} for the stopping
time of first entrance into A. We further write

τs := inf
{
t > 0 : ‖Wt‖ = s

}
and τr,R = inf{t > 0 :Wt �∈Gr,R}.

If we start W at W0 ∈Gr,R , then clearly τr,R = τr ∧ τR . On the boundary of Gr,R ,
define the function f by

f (x)=
{

1, if ‖x‖ = r,
0, if ‖x‖ =R. (25.25)

Define ur,R :Gr,R→R by

ur,R(x)= V (‖x‖)− V (R)
V (r)− V (R) ,

where V : (0,∞)→R is Newton’s potential function

V (s)= Vd(s)=

⎧
⎪⎪⎨

⎪⎪⎩

s, if d = 1,

log(s), if d = 2,

−s2−d , if d > 2.

(25.26)

It is easy to check that ϕ :Rd \{0}→R, x �→ Vd(‖x‖) is harmonic (that is, ϕ ≡ 0).
Hence ur,R is the solution of the Dirichlet problem on Gr,R with boundary value f .
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By Theorem 25.38, for x ∈Gr,R ,

Px[τr,R = τr ] = Px
[‖Wτr,R‖ = r

]= Ex
[
f (Wτr,R )

]= ur,R(x). (25.27)

Theorem 25.40 For r > 0 and x, y ∈R
d with ‖x − y‖> r , we have

Px
[
Wt ∈ Br(y) for some t > 0

]=
{

1, if d ≤ 2,
( ‖x−y‖

r

)2−d
, if d > 2.

Proof Without loss of generality, assume y = 0. Then

Px[τr <∞]= lim
R→∞Px[τr,R = τr ] = lim

R→∞
V (‖x‖)− V (R)
V (r)− V (R)

=
{

1, if d = 2,

Vd (‖x‖)
Vd (r)

, if d > 2,

since limR→∞ Vd(R)=∞ if d ≤ 2 and = 0 if d > 2. �

Proof of Theorem 25.39 Using the strong Markov property of Brownian motion, we
get for r > 0

Px
[
lim inf
t→∞ ‖Wt‖< s

]
= Px

[ ⋃

s∈(0,r)

⋂

R>‖x‖

{‖Wt‖< r for some t > τR
}
]

= sup
s∈(0,r)

inf
R>‖x‖Px

[‖Wt‖ ≤ s for some t > τR
]

= sup
s∈(0,r)

inf
R>‖x‖Px

[
PWτR [τs <∞]

]
.

However, by Theorem 25.40 (since ‖WτR‖ =R for R > ‖x‖), we have

PWτR [τs <∞]=
{

1, if d ≤ 2,

(s/R)d−2, if d > 2.

Therefore,

P
[
lim inf
t→∞ ‖Wt‖< r

]
=
{

1, if d ≤ 2,

0, if d > 2.

This implies the claim. �

Definition 25.41 (Polar set) A set A⊂R
d is called polar if

Px[Wt �∈A for all t > 0] = 1 for all x ∈R
d .
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Theorem 25.42 If d = 1, then only the empty set is polar. If d ≥ 2, then {y} is polar
for every y ∈R

d .

Proof For d = 1, the statement is obvious since

lim sup
t→∞

Wt =∞ and lim inf
t→∞ Wt =−∞ a.s.

Hence, due to the continuity of W , every point y ∈R will be hit (infinitely often).
Now let d ≥ 2. Without loss of generality, assume y = 0. If x �= 0, then

Px[τ{0} <∞] = lim
R→∞Px[τ{0} < τR]

= lim
R→∞ inf

r>0
Px[τr,R = τr ]

= lim
R→∞ inf

r>0
ur,R(x)= 0 (25.28)

since Vd(r)
r→0−→−∞ if d ≥ 2.

On the other hand, if x = 0, then the strong Markov property of Brownian motion
(and the fact that P0[Wt = 0] = 0 for all t > 0) implies

P0[τ{0} <∞]= sup
t>0

P0[Ws = 0 for some s ≥ t]

= sup
t>0

P0
[
PWt [τ{0} <∞]

]= 0.

Note that in the last step, we used (25.28). �



Chapter 26
Stochastic Differential Equations

Stochastic differential equations describe the time evolution of certain continuous
Markov processes with values in R

n. In contrast with classical differential equa-
tions, in addition to the derivative of the function, there is a term that describes the
random fluctuations that are coded as an Itô integral with respect to a Brownian
motion. Depending on how seriously we take the concrete Brownian motion as the
driving force of the noise, we speak of strong and weak solutions. In the first section,
we develop the theory of strong solutions under Lipschitz conditions for the coef-
ficients. In the second section, we develop the so-called (local) martingale problem
as a method of establishing weak solutions. In the third section, we present some
examples in which the method of duality can be used to prove weak uniqueness.

As stochastic differential equations are a very broad subject, and since things
quickly become very technical, we only excursively touch some of the most impor-
tant results, partly without proofs, and illustrate them with examples.

26.1 Strong Solutions

Consider a stochastic differential equation (SDE) of the type

X0 = ξ,
dXt = σ(t,Xt ) dWt + b(t,Xt ) dt.

(26.1)

Here W = (W 1, . . . ,Wm) is an m-dimensional Brownian motion, ξ is an R
n-

valued random variable with distribution μ that is independent of W , σ(t, x) =
(σij (t, x)) i=1,...,n

j=1,...,m
is a real n × m matrix and b(t, x) = (bi(t, x))i=1,...,n is an n-

dimensional vector. Assume the maps (t, x) �→ σij (t, x) and (t, x) �→ bi(t, x) are
measurable.
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By a solution of (26.1) we understand a continuous adapted stochastic process X
with values in R

n that satisfies the integral equation

Xt = ξ +
∫ t

0
σ(s,Xs) dWs +

∫ t

0
b(s,Xs) ds P-a.s. for all t ≥ 0. (26.2)

Written in full, this is

Xit = ξ i +
m∑

j=1

∫ t

0
σij (s,Xs) dW

j
s +
∫ t

0
bi(s,Xs) ds for all i = 1, . . . , n.

Now the following problem arises: To which filtration F do we wish X to be
adapted? Should it be the filtration that is generated by ξ and W , or do we allow F

to be larger? Already for ordinary differential equations, depending on the equation,
uniqueness of the solution may fail (although existence is usually not a problem);
for example, for f ′ = |f |1/3. If F is larger than the filtration generated by W , then
we can define further random variables that select one out of a variety of possible
solutions. We thus have more possibilities for solutions than if F= σ(W). Indeed, it
will turn out that in some situations for the existence of a solution, it is necessary to
allow a larger filtration. Roughly speaking, X is a strong solution of (26.1) if (26.2)
holds and if X is adapted to F= σ(W). On the other hand, X is a weak solution if
X is adapted to a larger filtration F with respect to which W is still a martingale.
Weak solutions will be dealt with in Section 26.2.

Definition 26.1 (Strong solution) We say that the stochastic differential equa-
tion (SDE) (26.1) has a strong solution X if there exists a map F : Rn ×
C([0,∞);Rm)→ C([0,∞);Rn) with the following properties:

(i) For every t ≥ 0, the map (x,w) �→ F(x,w) is measurable with respect to
B(Rn)⊗Gmt – Gnt , where (for k =m or k = n) Gkt := σ(πs : s ∈ [0, t]) is the σ -
algebra generated by the coordinate maps πs : C([0,∞);Rk)→R, w �→w(s).

(ii) The process X = F(ξ,W) satisfies (26.2).

Condition (i) says that the path (Xs)s∈[0,t] depends only on ξ and (Ws)s∈[0,t] but
not on further information. In particular, X is adapted to Ft = σ(ξ,Ws : s ∈ [0, t])
and is progressively measurable; hence the Itô integral in (26.2) is well-defined if σ
and b do not grow too quickly for large x.

Remark 26.2 Clearly, a strong solution of an SDE is a generalized n-dimensional
diffusion. If the coefficients σ and b are independent of t , then the solution is an
n-dimensional diffusion. ♦

Remark 26.3 Let X be a strong solution and let F be as in Definition 26.1. If W ′ is
an m-dimensional Brownian motion on a space (Ω ′,F ′,P ′) with filtration F

′, and
if ξ ′ is independent of W ′ and is F ′

0-measurable, then X′ = F(ξ ′,W ′) satisfies the
integral equation (26.2). Hence, it is a strong solution of (26.1) with W replaced
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by W ′. Thus the existence of a strong solution does not depend on the actual real-
ization of the Brownian motion or on the filtration F. ♦

Definition 26.4 We say that the SDE (26.1) has a unique strong solution if there
exists an F as in Definition 26.1 such that:

(i) If W is an m-dimensional Brownian motion on some probability space
(Ω,F,P) with filtration F and if ξ is an F0-measurable random variable that is
independent of W and such that P ◦ ξ−1 = μ, then X := F(ξ,W) is a solution
of (26.2).

(ii) For every solution (X,W) of (26.2), we have X = F(ξ,W).

Example 26.5 Let m= n= 1, b ∈R and σ > 0. The Ornstein–Uhlenbeck process

Xt := ebt ξ + σ
∫ t

0
e(t−s)b dWs, t ≥ 0, (26.3)

is a strong solution of the SDE X0 = ξ and

dXt = σ dWt + bXt dt.
In the language of Definition 26.1, we have (in the sense of the pathwise Itô integral
with respect to w)

F(x,w)=
(

t �→ ebtx +
∫ t

0
e(t−s)b dw(s)

)

for all w ∈ Cqv (that is, with continuous square variation). Since P[W ∈ Cqv] = 1,
we can define F(x,w)= 0 for w ∈ C([0,∞);R) \ Cqv.

Indeed, by Fubini’s theorem for Itô integrals, we have (Exercise 25.3.1)

ξ +
∫ t

0
σ dWs +

∫ t

0
bXs ds

= ξ + σWt +
∫ t

0
bebsξ ds +

∫ t

0
σb

(∫ s

0
eb(s−r) dWr

)

ds

= ξ + σWt +
(
ebt − 1

)
ξ +
∫ t

0
σ

(∫ t

r

beb(s−r) ds
)

dWr

= ebt ξ +
∫ t

0

(
σ + (eb(t−r) − 1

)
σ
)
dWr

=Xt .
It can be shown (see Theorem 26.8) that the solution is also (strongly) unique. ♦

Example 26.6 Let α,β ∈R. The one-dimensional SDE X0 = ξ and

dXt = αXt dWt + βXt dt (26.4)
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has the strong solution

Xt = ξ exp

(

αWt +
(

β − α
2

2

)

t

)

.

In the language of Definition 26.1, we have σ(t, x)= αx, b(t, x)= βx and

F(x,w)=
(

t �→ x exp

(

αw(t)+
(

β − α
2

2

)

t

))

for all w ∈ C([0,∞);R) and x ∈ R. Indeed, by the time-dependent Itô formula
(Corollary 25.35),

Xt = ξ +
∫ t

0
αXs dWs +

∫ t

0

((

β − α
2

2

)

+ 1

2
α2
)

Xs ds.

Also in this case, we have strong uniqueness of the solution (see Theorem 26.8).
The process X is called a geometric Brownian motion and, for example, serves in
the so-called Black–Scholes model as the process of stock prices. ♦

We give a simple criterion for existence and uniqueness of strong solutions. For
an n×m matrix A, define the Hilbert–Schmidt norm

‖A‖ =
√

trace
(
AAT

)=
√
√
√
√

n∑

i=1

m∑

j=1

A2
i,j . (26.5)

For b ∈ R
n, we use the Euclidean norm ‖b‖. Since all norms on finite-dimensional

vector spaces are equivalent, it is not important exactly which norm we use. How-
ever, the Hilbert–Schmidt norm simplifies the computations, as the following lemma
shows.

Lemma 26.7 Let t �→ H(t) = (Hij (t))i=1,...,n,j=1,...,m be progressively measur-

able and E[∫ T0 H 2
ij (t) dt]<∞ for all i, j . Then

E
[∥
∥
∥
∥

∫ T

0
H(t) dWt

∥
∥
∥
∥

2]

= E
[∫ T

0

∥
∥H(t)

∥
∥2
dt

]

, (26.6)

where ‖H‖ is the Hilbert–Schmidt norm from (26.5).

Proof For i = 1, . . . , n, the process Ii(t) :=∑m
j=1

∫ t
0 Hij (s) dW

j
s is a continuous

martingale with square variation process 〈Ii〉t =
∫ t

0

∑m
j=1H

2
ij (s) ds. Hence

E
[(
Ii(T )

)2]= E

[∫ T

0

m∑

j=1

H 2
ij (s) ds

]

.
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The left-hand side in (26.6) equals

n∑

i=1

E
[(
Ii(T )

)2]= E

[∫ T

0

n∑

i=1

m∑

j=1

H 2
ij (s) ds

]

.

Hence the claim follows by the definition of ‖H(s)‖2. �

Theorem 26.8 Let b and σ be Lipschitz continuous in the first coordinate. That
is, we assume that there exists a K > 0 such that, for all x, x′ ∈R

n and t ≥ 0,
∥
∥σ(x, t)− σ (x′, t)∥∥+ ∥∥b(x, t)− b(x′, t)∥∥≤K∥∥x − x′∥∥. (26.7)

Further, assume the growth condition

∥
∥σ(t, x)

∥
∥2 + ∥∥b(t, x)∥∥2 ≤K2(1+ ‖x‖2) for all x ∈R

n, t ≥ 0. (26.8)

Then, for every initial point X0 = x ∈R
n, there exists a unique strong solution X

of the SDE (26.1). This solution is a Markov process and in the case where σ and
b do not depend on t , it is a strong Markov process.

As the main tool, we need the following lemma.

Lemma 26.9 (Gronwall) Let f,g : [0, T ] → R be integrable and let C > 0 such
that

f (t)≤ g(t)+C
∫ t

0
f (s) ds for all t ∈ [0, T ]. (26.9)

Then

f (t)≤ g(t)+C
∫ t

0
eC(t−s)g(s) ds for all t ∈ [0, T ].

In particular, if g(t)≡G is constant, then f (t)≤GeCt for all t ∈ [0, T ].

Proof Let F(t)= ∫ t0 f (s) ds and h(t)= F(t)e−Ct . Then, by (26.9),

d

dt
h(t)= f (t)e−Ct −CF(t)e−Ct ≤ g(t)e−Ct .

Integration yields

F(t)= eCth(t)≤
∫ t

0
eC(t−s)g(s) ds.

Substituting this into (26.9) gives

f (t)≤ g(t)+CF(t)≤ g(t)+C
∫ t

0
g(s)eC(t−s) ds. �
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Proof of Theorem 26.8 It is enough to show that, for every T <∞, there exists a
unique strong solution up to time T .

Uniqueness. We first show uniqueness of the solution. Let X and X′ be two
solutions of (26.2). Then

Xt −X′t =
∫ t

0

(
b(s,Xs)− b

(
s,X′s

))
ds +

∫ t

0

(
σ(s,Xs)− σ

(
s,X′s

))
dWs.

Hence

∥
∥Xt −X′t

∥
∥2 ≤ 2

∥
∥
∥
∥

∫ t

0

(
b(s,Xs)− b

(
s,X′s

))
ds

∥
∥
∥
∥

2

+ 2

∥
∥
∥
∥

∫ t

0

(
σ(s,Xs)− σ

(
s,X′s

))
dWs

∥
∥
∥
∥

2

. (26.10)

For the first summand in (26.10), use the Cauchy–Schwarz inequality, and for the
second one use Lemma 26.7 to obtain

E
[∥
∥Xt −X′t

∥
∥2] ≤ 2t

∫ t

0
E
[∥
∥b(s,Xs)− b

(
s,X′s

)∥
∥2]
ds

+ 2
∫ t

0
E
[∥
∥σ(s,Xs)− σ

(
s,X′s

)∥
∥2]
ds.

Write f (t) = E[‖Xt − X′t‖2] and C := 2(T + 1)K2. Then f (t) ≤ C ∫ t0 f (s) ds.
Hence Gronwall’s lemma (with g ≡ 0) yields f ≡ 0.

Existence. We use a version of the Picard iteration scheme. For N ∈ N0, recur-
sively define processes XN by X0

t ≡ x and

XNt := x +
∫ t

0
b
(
s,XN−1

s

)
ds +

∫ t

0
σ
(
s,XN−1

s

)
dWs for N ∈N. (26.11)

Using the growth condition (26.8), it can be shown inductively that

∫ T

0
E
[∥
∥XNt

∥
∥2]
dt ≤ 2(T + 1)K2

(

T +
∫ T

0
E
[∥
∥XN−1

t

∥
∥2]
dt

)

≤ (2T (T + 1)K2)N (1+ ‖x‖2)<∞, N ∈N.

Hence, at each step, the Itô integral is well-defined.
Consider now the differences

XN+1
t −XNt = It + Jt ,

where

It :=
∫ t

0

(
σ
(
s,XNs

)− σ (s,XN−1
s

))
dWs
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and

Jt :=
∫ t

0

(
b
(
s,XNs

)− b(s,XN−1
s

))
ds.

By applying Doob’s L2-inequality to the nonnegative submartingale (‖It‖2)t≥0, us-
ing Lemma 26.7 and (26.7), we obtain

E
[
sup
s≤t

‖Is‖2
]
≤ 4E

[‖It‖2]

= 4E
[∫ t

0

∥
∥σ
(
s,XNs

)− σ (s,XN−1
s

)∥
∥2
ds

]

≤ 4K2
∫ t

0
E
[∥
∥XNs −XN−1

s

∥
∥2]
ds. (26.12)

For Jt , by the Cauchy–Schwarz inequality, we get

‖Jt‖2 ≤ t
∫ t

0

∥
∥b
(
s,XNs

)− b(s,XN−1
s

)∥
∥2
ds.

Hence

E
[
sup
s≤t

‖Js‖2
]
≤ tE

[∫ t

0

∥
∥b
(
s,XNs

)− b(s,XN−1
s

)∥
∥2
ds

]

≤ tK2
∫ t

0
E
[∥
∥XNs −XN−1

s

∥
∥2]
ds. (26.13)

Defining

ΔN(t) := E
[
sup
s≤t
∥
∥XNs −XN−1

s

∥
∥2
]
,

and C := 2K2(4+ T )∨ 2(T + 1)K2(1+ ‖x‖2), we obtain (using the growth con-
dition (26.8))

ΔN+1(t)≤ C
∫ t

0
ΔN(s) ds for N ≥ 1

and

Δ1(t)≤ 2t
∫ t

0

∥
∥b(s, x)

∥
∥2
ds + 2

∫ t

0

∥
∥σ(s, x)

∥
∥2
ds

≤ 2(T + 1)K2(1+ ‖x‖2) · t ≤Ct.
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Inductively, we get ΔN(t)≤ (Ct)N

N ! . Thus, by Markov’s inequality,

∞∑

N=1

P
[
sup
s≤t
∥
∥XNs −XN−1

s

∥
∥2
> 2−N

]
≤

∞∑

N=1

2NΔN(t)

≤
∞∑

N=1

(2Ct)N

N ! ≤ e2Ct <∞.

Using the Borel–Cantelli lemma, we infer sups≤t ‖XNs −XN−1
s ‖2 N→∞−→ 0 a.s. Hence

a.s. (XN)N∈N is a Cauchy sequence in the Banach space (C([0, T ]),‖ · ‖∞). There-
fore, XN converges a.s. uniformly to some X. As uniform convergence implies con-
vergence of the integrals, X is a strong solution of (26.2).

Markov property. The strong Markov property follows from the strong Markov
property of the Brownian motion that drives the SDE. �

We have already seen some important examples of this theorem. Many interesting
problems, however, lead to stochastic differential equations with coefficients that are
not Lipschitz continuous. In the one-dimensional case, using special comparison
methods, one can show that it is sufficient that σ is Hölder-continuous of order 1

2 in
the space variable.

Theorem 26.10 (Yamada–Watanabe) Consider the one-dimensional situation
where m = n = 1. Assume that there exist K <∞ and α ∈ [ 1

2 ,1] such that, for
all t ≥ 0 and x, x′ ∈R, we have

∣
∣b(t, x)− b(t, x′)∣∣≤K∣∣x − x′∣∣ and

∣
∣σ(t, x)− σ (t, x′)∣∣≤ ∣∣x − x′∣∣α.

Then, for every X0 ∈ R, the SDE (26.1) has a unique strong solution X and X is a
strong Markov process.

Proof See [172] or [85, Proposition 5.2.13] and [49, Theorem 5.3.11] for existence
and uniqueness. The strong Markov property follows from Theorem 26.26. �

Example 26.11 Consider the one-dimensional SDE

dXt =
√

γX+t dWt + a
(
b−X+t

)
dt (26.14)

with initial point X0 = x ≥ 0, where γ > 0 and a, b ≥ 0 are parameters. The condi-
tions of Theorem 26.10 are fulfilled with α = 1

2 and K =√γ + a. Obviously, the
unique strong solution X remains nonnegative if X0 ≥ 0. (In fact, it can be shown
that Xt > 0 for all t > 0 if 2ab/γ ≥ 1, and that Xt hits zero arbitrarily often with
probability 1 if 2ab/γ < 1. See, e.g., [78, Example IV.8.2, p. 237]. Compare Exam-
ple 26.16. See Figs. 26.1 and 26.2 for computer simulations.)
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Fig. 26.1 Cox–Ingersoll–Ross diffusion with parameters γ = 1, b= 1 and a = 0.3. The path hits
zero again and again since 2ab/γ = 0.6< 1

Fig. 26.2 Cox–Ingersoll–Ross diffusion with parameters γ = 1, b= 1 and a = 2. The path never
hits zero since 2ab/γ = 4≥ 1

Depending on the context, this process is sometimes called Feller’s branching
diffusion with immigration or the Cox–Ingersoll–Ross model for the time evolution
of interest rates.

For the case a = b= 0, use the Itô formula to compute that

e−λXt − e−λx − γ λ
2

2

∫ t

0
e−λXsXs ds = λ

∫ t

0
e−λXs

√
γXs dWs
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is a martingale. Take expectations for the Laplace transform ϕ(t, λ, x)= Ex[e−λXt ]
to get the differential equation

d

dt
ϕ(t, λ, x)= γ λ

2

2
E
[
Xte

−λXt ]=−γ λ
2

2

d

dλ
ϕ(t, λ, x).

With initial value ϕ(0, λ, x)= e−λx , the unique solution is

ϕ(t, λ, x)= exp

(

− λ

(γ /2)λt + 1
x

)

.

However (for γ = 2), this is exactly the Laplace transform of the transition probabil-
ities of the Markov process that we defined in Theorem 21.48 and that in Lindvall’s
theorem (Theorem 21.51) we encountered as the limit of rescaled Galton–Watson
branching processes. ♦

Exercise 26.1.1 Let a, b ∈R. Show that the stochastic differential equation

dXt = b−Xt
1− t dt + dWt

with initial value X0 = a has a unique strong solution for t ∈ [0,1) and that X1 :=
limt↑1X1 = b almost surely. Furthermore, show that the process Y = (Xt − a −
t (b− a))t∈[0,1] can be described by the Itô integral

Yt = (1− t)
∫ t

0
(1− s)−1 dWs, t ∈ [0,1),

and is hence a Brownian bridge (compare Exercise 21.5.3).

26.2 Weak Solutions and the Martingale Problem

In the last section, we studied strong solutions of the stochastic differential equation

dXt = σ(t,Xt ) dWt + b(t,Xt ) dt. (26.15)

A strong solution is a solution where any path of the Brownian motion W gets
mapped onto a path of the solution X. In this section, we will study the notion of
a weak solution where additional information (or additional noise) can be used to
construct the solution.

Definition 26.12 (Weak solution of an SDE) A weak solution of (26.15) with initial
distribution μ ∈M1(R

n) is a triple

L= ((X,W), (Ω,F,P),F),
where
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• (Ω,F,P) is a probability space,
• F= (Ft )t≥0 is a filtration on (Ω,F,P) that satisfies the usual conditions,
• W is a Brownian motion on (Ω,F,P) and is a martingale with respect to F,
• X is continuous and adapted (hence progressively measurable),
• P ◦ (X0)

−1 = μ, and
• (X,W) satisfies

Xt =X0 +
∫ t

0
σ(s,Xs) dWs +

∫ t

0
b(s,Xs) ds P-a.s. (26.16)

A weak solution L is called (weakly) unique if, for any further solution L′ with
initial distribution μ, we have P′ ◦ (X′)−1 = P ◦X−1.

Remark 26.13 Clearly, a weak solution of an SDE is a generalized n-dimensional
diffusion. If the coefficients σ and b do not depend on t , then the solution is an
n-dimensional diffusion. ♦

Remark 26.14 Clearly, every strong solution of (26.15) is a weak solution. The con-
verse is false, as the following example shows. ♦

Example 26.15 Consider the SDE (with initial value X0 = 0)

dXt = sign(Xt ) dWt , (26.17)

where sign= 1(0,∞) − 1(−∞,0) is the sign function. Then

Xt =X0 +
∫ t

0
sign(Xs) dWs for all t ≥ 0 (26.18)

if and only if

Wt =
∫ t

0
dWs =

∫ t

0
sign(Xs) dXs for all t ≥ 0. (26.19)

A weak solution of (26.17) is obtained as follows. Let X be a Brownian motion on
a probability space (Ω,F,P) and F= σ(X). If we define W by (26.19), then W is
a continuous F-martingale with square variation

〈W 〉t =
∫ 1

0

(
sign(Xs)

)2
ds = t.

Thus, by Lévy’s characterization (Theorem 25.28),W is a Brownian motion. Hence
((X,W), (Ω,F,P),F) is a weak solution of (26.17).

In order to show that a strong solution does not exist, take any weak solution and
show thatX is not adapted to σ(W). Since, by (26.18),X is a continuous martingale
with square variation 〈X〉t = t , X is a Brownian motion.
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Let Fn ∈ C2(R) be a convex even function with derivatives F ′n and F ′′n such that

sup
x∈R

∣
∣Fn(x)− |x|

∣
∣ n→∞−→ 0,

|F ′n(x)| ≤ 1 for all x ∈R and F ′n(x)= sign(x) for |x|> 1
n

. In particular, we have
∫ t

0

(
F ′n(Xs)− sign(Xs)

)2
ds

n→∞−→ 0 a.s.

and thus
∫ t

0
F ′n(Xs) dXs

n→∞−→
∫ t

0
sign(Xs) dXs in L2. (26.20)

By passing to a subsequence, if necessary, we may assume that almost sure conver-
gence holds in (26.20).

Since F ′′n is even, we have

Wt =
∫ t

0
sign(Xs) dXs = lim

n→∞

∫ t

0
F ′n(Xs) dXs

= lim
n→∞

(

Fn(Xt )− Fn(0)− 1

2

∫ t

0
F ′′n (Xs) ds

)

= |Xt | − lim
n→∞

1

2

∫ t

0
F ′′n
(|Xs |

)
ds.

As the right-hand side depends only on |Xs |, s ∈ [0, t], W is adapted to G :=
(σ (|Xs | : s ∈ [0, t])). Hence σ(W) ⊂ G � σ(X), and thus X is not adapted to
σ(W). ♦

Example 26.16 Let B = (B1, . . . ,Bn) be an n-dimensional Brownian motion
started at y ∈R

n. Let x := ‖y‖2, Xt := ‖Bt‖2 = (B1
t )

2 + . . .+ (Bnt )2 and

Wt :=
n∑

i=1

∫ t

0

1√
Xs
Bis dB

i
s .

ThenW is a continuous local martingale with 〈W 〉t = t for every t ≥ 0 and

Xt = x + nt +
∫ t

0

√
Xs dWs.

That is, (X,W) is a weak solution of the SDE dXt =√2Xt dWt + ndt . X is called
an n-dimensional Bessel process. By Theorem 25.42, B (and thus X) hits the origin
for some t > 0 if and only if n= 1. Clearly, we can defineX also for noninteger n≥
0. One can show that X hits zero if and only if n≤ 1. Compare Example 26.11. ♦

For the connection between existence and uniqueness of weak solutions and
strong solutions, we only quote here the theorem of Yamada and Watanabe.
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Definition 26.17 (Pathwise uniqueness) A solution of the SDE (26.15) with initial
distribution μ is said to be pathwise unique if, for every μ ∈M1(R

n) and for any
two weak solutions (X,W) and (X′,W) on the same space (Ω,F,P) with the same
filtration F, we have P[Xt =X′t for all t ≥ 0] = 1.

Theorem 26.18 (Yamada and Watanabe) The following are equivalent.

(i) The SDE (26.15) has a unique strong solution.
(ii) For any μ ∈M1(R

n), (26.15) has a weak solution, and pathwise uniqueness
holds.

If (i) and (ii) hold, then the solution is weakly unique.

Proof See [172], [147, pp. 151ff] or [78, pp. 163ff]. �

Example 26.19 Let X be a weak solution of (26.17). Then −X is also a weak solu-
tion; that is, pathwise uniqueness does not hold (although it can be shown that the
solution is weakly unique; see Theorem 26.25). ♦

Consider the one-dimensional casem= n= 1. IfX is a solution (strong or weak)
of (26.15), then

Mt :=Xt −
∫ t

0
b(s,Xs) ds

is a continuous local martingale with square variation

〈M〉t =
∫ t

0
σ 2(s,Xs) ds.

We will see that this characterizes a weak solution of (26.15) (under some mild
growth conditions on σ and b).

Now assume that, for all t ≥ 0 and x ∈R
n, the n× n matrix a(t, x) is symmetric

and nonnegative definite, and let (t, x) �→ a(t, x) be measurable.

Definition 26.20 An n-dimensional continuous processX is called a solution of the
local martingale problem for a and b with initial condition μ ∈M1(R

n) (briefly,
LMP(a, b,μ)) if P ◦X−1

0 = μ and if, for every i = 1, . . . , n,

Mi
t :=Xit −

∫ t

0
bi(s,Xs) ds, t ≥ 0,

is a continuous local martingale with quadratic covariation

〈
Mi,Mj

〉
t
=
∫ t

0
aij (s,Xs) ds for all t ≥ 0, i, j = 1, . . . , n.

We say that the solution of LMP(a, b,μ) is unique if, for any two solutions X
and X′, we have P ◦X−1 = P ◦ (X′)−1.
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Denote by σT the transposed matrix of σ . Clearly, a = σσT is a nonnegative
semidefinite symmetric n× n matrix.

Theorem 26.21 X is a solution of LMP(σσT , b,μ) if and only if (on a suitable
extension of the probability space) there exists a Brownian motion W such that
(X,W) is a weak solution of (26.15).

In particular, there exists a unique weak solution of the SDE (26.15) with initial
distribution μ if LMP(σσT , b,μ) is uniquely solvable.

Proof We show the statement only for the case m= n= 1. The general case needs
some consideration on the roots of nonnegative semidefinite symmetric matrices,
which, however, do not yield any further insight into the stochastics of the problem.
For this we refer to [85, Proposition 5.4.6].

“⇐= ” If (X,W) is a weak solution, then, by Corollary 25.19, X solves the
local martingale problem.

“=⇒ ” Let X be a solution of LMP(σ 2, b,μ). By Theorem 25.29, on an
extension of the probability space there exists a Brownian motion W̃ such that
Mt =

∫ t
0 |σ(s,Xs)|dW̃s . If we define

Wt :=
∫ t

0
sign
(
σ(s,Xs)

)
dW̃s,

thenMt =
∫ t

0 σ(s,Xs) dWs and hence (X,W) is a weak solution of (26.15). �

In some sense, a local martingale problem is a very natural way of writing a
stochastic differential equation; that is:

X locally has derivative (drift) b and additionally has random normally distributed
fluctuations of size σ .

Here, a concrete Brownian motion does not appear. In fact, in most problems its
occurrence is rather artificial. Just as Markov chains are described by their transi-
tion probabilities and not by a concrete realization of the random transitions (as in
Theorem 17.17), many continuous (space and time) processes are most naturally de-
scribed by the drift and the size of the fluctuations but not by the concrete realization
of the random fluctuations.

From a technical point of view, the formulation of a stochastic differential equa-
tion as a local martingale problem is very convenient since it makes SDEs accessible
to techniques such as martingale inequalities and approximation theorems that can
be used to establish existence and uniqueness of solutions. Here we simply quote
two important results.

Theorem 26.22 (Existence of solutions) Let (t, x) �→ b(t, x) and (t, x) �→ a(t, x)

be continuous and bounded. Then, for every μ ∈M1(R
n), there exists a solution X

of the LMP(a, b,μ).

Proof See [147, Theorem V.23.5]. �
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Definition 26.23 The LMP(a, b) is said to be well-posed if, for every x ∈R
n, there

exists a unique solution X of LMP(a, b, δx).

Remark 26.24 If σ and b satisfy the Lipschitz conditions of Theorem 26.8, then the
LMP(σσT , b) is well-posed. This follows by Theorem 26.8, Theorem 26.18 and
Theorem 26.21. ♦

In the following, we assume

(t, x) �→ σ(t, x) resp. (t, x) �→ a(t, x) is bounded on compact sets. (26.21)

This condition ensures the equivalence of the local martingale problems to the some-
what more common martingale problem (see [85, Proposition 5.4.11]).

Theorem 26.25 (Uniqueness in the martingale problem) Assume (26.21) and that,
for any x ∈ R

n, there exists a solution Xx of LMP(a, b, δx). The distribution of Xx

will be denoted by Px := P ◦ (Xx)−1.
Assume that, for any two solutions Xx and Yx of LMP(a, b, δx), we have

P ◦ (XxT
)−1 = P ◦ (YxT

)−1
for any T ≥ 0. (26.22)

Then LMP(a, b) is well-posed, and the canonical process X is a strong Markov
process with respect to (Px, x ∈ R

n). If a = σσT , then under Px , the process X is
the unique weak solution of the SDE (26.15).

Proof See [49, Theorem 4.4.2 and Problem 49] and [85, Proposition 5.4.11]. �

A fundamental strength of this theorem is that we do not need to check the
uniqueness of the whole process but only have to check in (26.22) the one-
dimensional marginal distributions. We will use this in Section 26.3 in some ex-
amples.

The existence of solutions of a stochastic differential equation (or equivalently of
a local martingale problem) is often easier to show than the uniqueness of solutions.
We know already that Lipschitz conditions for the coefficients b and σ (not σσT !)
ensure uniqueness (Theorem 26.8 and Theorem 26.18), as here strong uniqueness
of the solution holds.

At first glance, it might seem confusing that random fluctuations have a stabil-
ising effect on the solution. That is, there are deterministic differential equations
whose solution is unique only after adding random noise terms. For example, con-
sider the following equation:

dXt = sign(Xt )|Xt |1/3 dt + σ dWt , X0 = 0. (26.23)

If σ = 0, then the deterministic differential equation has a continuum of solutions
that can be parameterized by v ∈ {−1,+1} and T ≥ 0, namely Xt = v2

√
2(t −

T )3/21{t>T }. If σ > 0, then the noise eliminates the instability of (26.23) at x = 0.
We quote the following theorem for the time-independent case from [147, Theo-
rem V.24.1] (see also [161, Chapter 10]).
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Theorem 26.26 (Stroock–Varadhan) Let aij : Rn → R be continuous and let
bi :Rn→R be measurable for i, j = 1, . . . , n. Assume

(i) a(x)= (aij (x)) is symmetric and strictly positive definite for every x ∈R
n,

(ii) there exists a C <∞ such that, for all x ∈R
n and i, j = 1, . . . , n, we have

∣
∣aij (x)

∣
∣≤ C(1+ ‖x‖2) and

∣
∣bi(x)

∣
∣≤ C(1+ ‖x‖).

Then the LMP(a, b) is well-posed and the SDE (26.15) has a unique strong solu-
tion that is a strong Markov process. The solution X has the Feller property: For
every t > 0 and every bounded measurable f : Rn→ R, the map x �→ Ex[f (Xt )]
is continuous.

We will present explicit examples in Section 26.3. Here we just remark that we
have developed a particular method in order to construct Markov processes, namely
as the solution of a stochastic differential equation or of a local martingale prob-
lem. In the framework of models in discrete time, in Section 17.2 and especially in
Exercise 17.2.1, we characterized certain Markov chains as solutions of martingale
problems. In order for drift and square variation to be sufficient for uniqueness of
the Markov chain described by the martingale problem, it was essential that, for any
step of the chain, we only allowed three possibilities. Here, however, the decisive
restriction is the continuity of the processes.

Exercise 26.2.1 Consider the time-homogeneous one-dimensional case (m =
n = 1). Let σ and b be such that, for every X0 ∈ R, there exists a unique weak
solution of

dXt = σ(Xt ) dWt + b(Xt ) dt
that is a strong Markov process. Further, assume that there exists an x0 ∈R with

C :=
∫ ∞

−∞
1

σ 2(x)
exp

(∫ x

x0

2b(r)

σ 2(r)
dr

)

dr <∞.

(i) Show that the measure π ∈M1(R) with density

π(dx)

dx
= C−1 1

σ 2(x)
exp

(∫ x

x0

2b(r)

σ 2(r)
dr

)

is an invariant distribution for X.
(ii) For which values of b does the Ornstein–Uhlenbeck process dXt = σ dWt +

bXt dt have an invariant distribution? Determine this distribution and compare
the result with what could be expected by an explicit computation using the
representation in (26.3).

(iii) Compute the invariant distribution of the Cox–Ingersoll–Ross SDE (26.14)
(i.e., Feller’s branching diffusion).
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(iv) Let γ, c > 0 and θ ∈ (0,1). Show that the invariant distribution of the solution
X of the SDE on [0,1],

dXt =
√
γXt(1−Xt)dWt + c(θ −Xt)dt

is the Beta distribution β2cγ /θ,2cγ /(1−θ).

Exercise 26.2.2 Let γ > 0. Let X1 and X2 be solutions of dXit =
√
γXit dW

i
t ,

where W 1 and W 2 are two independent Brownian motions with initial values
X1

0 = x1
0 > 0 and X2

0 = x2
0 > 0. Show that Z := X1 + X2 is a weak solution of

Z0 = 0 and dZt =√γZtdWt .

26.3 Weak Uniqueness via Duality

The Stroock–Varadhan theorem provides a strong criterion for existence and unique-
ness of solutions of stochastic differential equations. However, in many cases, the
condition of locally uniform ellipticity of a (Condition (i) in Theorem 26.26) is not
fulfilled. This is the case, in particular, if the solutions are defined only on subsets
of Rn.

Here we will study a powerful tool that in many special cases can yield weak
uniqueness of solutions.

Definition 26.27 (Duality) Let X = (Xx, x ∈ E) and Y = (Y y, y ∈ E′) be families
of stochastic processes with values in the spaces E and E′, respectively, and such
that Xx0 = x a.s. and Yy0 = y a.s. for all x ∈E and y ∈E′. We say that X and Y are
dual to each other with duality function H : E × E′ → C if, for all x ∈ E, y ∈ E′
and t ≥ 0, the expectations E[H(Xxt , y)] and E[H(x,Y yt )] exist and are equal:

E
[
H
(
Xxt , y

)]= E
[
H
(
x,Y

y
t

)]
.

In the following, we assume that σij : Rn→ R and bi : Rn→ R are bounded
on compact sets for all i = 1, . . . , n, j = 1, . . . ,m. Consider the time-homogeneous
stochastic differential equation

dXt = σ(Xt ) dWt + b(Xt ) dt. (26.24)

Theorem 26.28 (Uniqueness via duality) Assume that, for every x ∈ R
n, there ex-

ists a solution of the local martingale problem for (σσT , b, δx). Further, assume
that there exists a family (Y y, y ∈ E′) of Markov processes with values in the mea-
surable space (E′,E ′) and a measurable mapH :Rn×E′ →C such that, for every
y ∈E′, x ∈R

n and t ≥ 0, the expectation E[H(x,Y yt )] exists and is finite. Further,
let (H(·, y), y ∈ E′) be a separating class of functions for M1(R

n) (see Defini-
tion 13.9).
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For every x ∈ R
n and every solution Xx of LMP(σσT , b, δx), assume that the

duality equation holds:

E
[
H
(
Xxt , y

)]= E
[
H
(
x,Y

y
t

)]
for all y ∈ E′, t ≥ 0. (26.25)

Then the local martingale problem of (σσT , b) is well-posed and hence (26.24) has
a unique weak solution that is a strong Markov process.

Proof By Theorem 26.25, it is enough to check that, for every x ∈ R
n, every so-

lution Xx of LMP(σσT , b, δx) and every t ≥ 0, the distribution P ◦ (Xxt )−1 is
unique. Since (H(·, y), y ∈ E′) is a separating class of functions, this follows from
(26.16). �

Example 26.29 (Wright–Fisher diffusion) Consider the Wright–Fisher SDE

dXt = 1[0,1](Xt )
√
γXt(1−Xt)dWt , (26.26)

where γ > 0 is a parameter. See Fig. 26.3 for a computer simulation. By Theo-
rem 26.22, for every x ∈ R, there exists a weak solution (X̃,W) of (26.26). X̃ is a
continuous local martingale with square variation

〈X̃〉t =
∫ t

0
γ X̃s(1− X̃s)1[0,1](X̃s) ds.

Let τ := inf{t > 0 : X̃t �∈ [0,1]} and let X := X̃τ be the process stopped at τ . Then
X is a continuous bounded martingale with

〈X〉t =
∫ t

0
γXs(1−Xs)1[0,1](Xs) ds.

Hence, (X,W) is a solution of (26.26). By construction, Xt ∈ [0,1] for all t ≥ 0 if
X0 = X̃0 ∈ [0,1].

Let τ ′ := inf{t > 0 : X̃t ∈ [0,1]}. If X̃0 �∈ [0,1], then τ ′ > 0 since X̃ is continu-
ous. Since X̃τ

′
is a continuous local martingale with 〈X̃τ ′ 〉 ≡ 0, we have X̃τ

′
t = X̃0

for all t ≥ 0. However, this implies X̃t = X̃0 for all t < τ ′. Again, by continuity
of X̃, we get τ ′ =∞ and X̃t = X̃0 for all t ≥ 0.

Hence, it is enough to show uniqueness of the solution for X̃0 = x ∈ [0,1]. To
this end, let Y = (Yt )t≥0 be the Markov process on N with Q-matrix

q(m,n)=

⎧
⎪⎨

⎪⎩

γ
(
m
2

)
, if n=m− 1,

−γ (m2
)
, if n=m,

0, else.

We show duality of X and Y with respect to H(x,n)= xn:

Ex
[
Xnt
]= En

[
xNt
]

for all t ≥ 0, x ∈ [0,1], n ∈N. (26.27)
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Fig. 26.3 Simulation of a Wright–Fisher diffusion with parameter γ = 1

Define mx,n(t)= Ex[Xnt ] and gx,n(t)= En[xNt ]. By the Itô formula,

Xnt − xn −
∫ t

0
γ

(
n

2

)

Xn−1
s (1−Xs)ds =

∫ t

0
nXn−1

s

√
γXs(1−Xs)dWs

is a martingale.
Taking expectations, we obtain the following recursive equations for the mo-

ments of X:

mx,1(t)= x,

mx,n(t)= xn + γ
(
n

2

)∫ t

0

(
mx,n−1(s)−mx,n(s))ds for n≥ 2.

(26.28)

Clearly, this system of linear differential equations can be uniquely solved recur-
sively in n.

Due to the Markov property of Y , for h > 0 and t ≥ 0, we have

gx,n(t + h)= En
[
xYt+h

]= En
[
EYh
[
xYt
]]

=
n∑

m=1

Pn[Yh =m]Em
[
xYt
]

=
n∑

m=1

Pn[Yh =m]gx,m(t).

This implies

d

dt
gx,n(t) = lim

h↓0
h−1[gx,n(t + h)− gx,n(t)]

= lim
h↓0
h−1

n∑

m=1

Pn[Yh =m]
(
gx,m(t)− gx,n(t))
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=
n∑

m=1

q(n,m)gx,m(t)

= γ
(
n

2

)
(
gx,n−1(t)− gx,n(t)). (26.29)

Evidently, gx,1(t) = x for all x ∈ [0,1] and t ≥ 0 and gx,n(0) = xn. That is, gx,n

solves (26.28), and thus (26.27) holds.
By Theorem 15.4, the family (H(·, n), n ∈ N) ⊂ C([0,1]) is separating for

M1([0,1]); hence the conditions of Theorem 26.28 are fulfilled. Therefore, X is
the unique weak solution of (26.26) and is a strong Markov process. ♦

Remark 26.30 The martingale problem for the Wright–Fisher diffusion is almost
identical to the martingale problem for the Moran model (see Example 17.22)
MN = (MN

n )n∈N0 with population size N :MN is a martingale with values in the set
{0,1/N, . . . , (N − 1)/N,1} and with square variation process

〈
MN
〉
n
= 2

N2

n−1∑

k=0

MN
k

(
1−MN

k

)
.

At each step, MN can either stay put or increase or decrease by 1/N . In Exer-
cise 17.2.1, we saw that this determines the process MN uniquely. Similarly as
in Theorem 21.51 for branching processes, it can be shown that the time-rescaled
Moran processes M̃N

t = MN
�N2t� converge to the Wright–Fisher diffusion with

γ = 2. The Wright–Fisher diffusion thus occurs as the limiting model of a genealog-
ical model and describes the gene frequency (that is, the fraction) of a certain allele
in a population that fluctuates randomly due to resampling. ♦

Example 26.31 (Feller’s branching diffusion) Let (ZNn )n∈N0 be a Galton–Watson
branching process with critical geometric offspring distribution pk = 2−k−1, k ∈N0
and ZN0 =N for any N ∈N. Then ZN is a discrete martingale and we have

E
[(
ZNn −ZNn−1

)2 ∣∣ZNn−1

]=ZNn−1

( ∞∑

k=0

pkk
2 − 1

)

= 2ZNn−1.

Hence ZN has square variation

〈
ZN
〉
n
=
n−1∑

k=0

2ZNk .

Define the linearly interpolated version

ZNt :=
(
t −N−1�tN�)(ZN�tN�+1 −ZN�tN�

)+ 1

n
ZN�tN�
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Fig. 26.4 Simulation of Feller’s branching diffusion with parameter γ = 1

of N−1ZN�tN�. By Lindvall’s theorem (Theorem 21.51), there is a continuous

Markov process Z such that ZN
N→∞−→ Z in distribution. See Fig. 26.4 for a com-

puter simulation of Z. Since it can be shown that the moments also converge, we
have that Z is a continuous martingale with square variation

〈Z〉t =
∫ t

0
2Zs ds.

In fact, in Example 26.11, we have already shown that Z is the unique solution of
the SDE

dZt =
√

2Zt dWt (26.30)

with initial value Z0 = 1. There we also showed that Z is dual to Yyt =
( tγ

2 + 1
y

)−1

with H(x,y) = e−xy . This implies uniqueness of the solution of (26.30) and the
strong Markov property of Z. ♦

It could be objected that in Examples 26.29 and 26.31, we considered only one-
dimensional problems for which the Yamada–Watanabe theorem (Theorem 26.10)
yields uniqueness (indeed of a strong solution) anyway. The full strength of the
method of duality is displayed only in higher-dimensional problems. As an example,
we consider an extension of Example 26.29.

Example 26.32 (Interacting Wright–Fisher diffusions) The Wright–Fisher diffu-
sion from Example 26.29 describes the fluctuations of the gene frequency of an
allele in one large population. Now we consider more populations, which live at the
points i ∈ S := {1, . . . ,N} and interact with each other by a migration that is quanti-
fied by migration rates r(i, j)≥ 0. As a model for the gene frequencies Xt(i) at site
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i at time t we use the following N -dimensional SDE for X = (X(1), . . . ,X(N)):

dXt(i)=
√
γXt(i)

(
1−Xt(i)

)
dWi

t +
N∑

j=1

r(i, j)
(
Xt(j)−Xt(i)

)
dt. (26.31)

Here W = (W 1, . . . ,WN) is an N -dimensional Brownian motion. By Theo-
rem 26.22, this SDE has weak solutions; however, none of our general criteria for
weak uniqueness apply. We will thus show weak uniqueness by virtue of duality.

As in Example 26.29, it is not hard to show that solutions of (26.31), started at
X0 = x ∈E := [0,1]S , remain in [0,1]S . The diagonal terms r(i, i) do not appear in
(26.31). We use our freedom and define these terms as r(i, i)=−∑j �=i r(i, j). Let

Y = (Yt )t≥0 be the Markov process on E′ := (N0)
S with the following Q-matrix:

q(ϕ,η)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ϕ(i)r(i, j), if η= ϕ − 1{i} + 1{j} for
some i, j ∈ S, i �= j,

γ
(
ϕ(i)

2

)
, if η= ϕ − 1{i} for some i ∈ S,

∑
i∈S(ϕ(i)r(i, i)− γ

(
ϕ(i)

2

)
), if η= ϕ,

0, else.

Here ϕ ∈E′ denotes a generic state with ϕ(i) particles at site i ∈ S, and 1{i} ∈E′
denotes the state with exactly one particle at site i. The process Y describes a system
of particles that independently with rate r(i, j) jump from site i to site j . If there is
more than one particle at the same site i, then any of the

(
ϕ(i)

2

)
pairs of particles coa-

lesce with the same rate γ to one particle. The common genealogical interpretation
of this process is that (in reversed time) it describes the lines of descent of sam-
ples of Y0(i) individuals at each site i ∈ S. By migration, the lines change sites. If
two individuals have the same common ancestor, then their lines coalesce. Clearly,
for two particles to have the same ancestor at a given time, it is necessary but not
sufficient for them to be at the same site.

For x ∈ R
n and ϕ ∈ E′, we denote xϕ :=∏i∈S x(i)ϕ(i). We show that X and Y

are dual to each other with the duality function H(x,ϕ)= xϕ :

Ex
[
X
ϕ
t

]= Eϕ
[
xYt
]

for all ϕ ∈ SN0, x ∈ [0,1]S, t ≥ 0. (26.32)

Let mx,ϕ(t) := Ex[Xϕt ] and gx,ϕ(t) := Eϕ[xYt ]. Clearly, H has the derivatives
∂iH(·, ϕ)(x)= ϕ(i)xϕ−1{i} and ∂i∂iH(·, ϕ)(x)= 2

(
ϕ(i)

2

)
xϕ−21{i} .

By the Itô formula,

X
ϕ
t −Xϕ0 −

∫ t

0

∑

i,j∈S
ϕ(i)r(i, j)

(
Xs(j)−Xs(i)

)
X
ϕ−1{i}
t ds

−
∑

i∈S

∫ t

0
γ

(
ϕ(i)

2

)
(
Xs(i)

(
1−Xs(i)

))
X
ϕ−21{i}
s ds
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is a martingale. Taking expectations, we get a system of linear integral equations

mx,0(t)= 1,

mx,ϕ(t)= xϕ +
∫ t

0

∑

i,j∈S
ϕ(i)r(i, j)

(
mx,ϕ+1{j }−1{i}(s)−mx,ϕ(s))ds

+
∫ t

0
γ
∑

i∈S

(
ϕ(i)

2

)
(
mx,ϕ−1{i}(s)−mx,ϕ(s))ds.

(26.33)

This system of equations can be solved uniquely by induction on n =∑i∈I ϕ(i).
However, we do not intend to compute this solution explicitly. We show only that it
coincides with gx,ϕ(t) by showing that g solves an equivalent system of differential
equations.

For g as in (26.29), we obtain

d

dt
gx,ϕ(t) =

∑

η∈E′
q(ϕ,η)gx,ϕ(t)

=
∑

i,j∈S
r(i, j)

(
gx,ϕ+1{j }−1{i}(t)− gx,ϕ(t))

+
∑

i∈S
γ

(
ϕ(i)

2

)
(
gx,ϕ−1{i}(t)− gx,ϕ(t)). (26.34)

Together with the initial values gx,0(t) = 1 and gx,ϕ(0) = xϕ , the system (26.34)
of differential equations is equivalent to (26.33). Hence the duality (26.32) holds,
and thus the SDE (26.31) has a unique weak solution. (In fact, it can be shown that
there exists a unique strong solution, even if S is countably infinite, as long as r then
satisfies certain regularity conditions such as if it is the Q-matrix of a random walk
on S = Z

d ; see [153].) ♦

Exercise 26.3.1 (Extinction probability of Feller’s branching diffusion) Let γ > 0
and let Z be the solution of dZt := √γZt dWt with initial value Z0 = z > 0. Use
the duality to show

Pz[Zt = 0] = exp

(

− 2z

γ t

)

. (26.35)

Use Lemma 21.44 to compute the probability that a Galton–Watson branching pro-
cessX with critical geometric offspring distribution and with X0 =N ∈N is extinct
by time n ∈N. Compare the result with (26.35).
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1A Indicator function of the set A
2Ω Set of all subsets of Ω
#A Cardinality of the set A
Ac Complement Ω \A of the set A⊂Ω
A∩B Intersection of the sets A and B
A∪B Union of the sets A and B
A�B Disjoint union of A and B
A⊂ B A is a (not necessarily strict) subset of B
A \B Difference set
A�B Symmetric difference of A and B , 28
A×B Cartesian product of A and B
A Subset of 2Ω , usually a σ -algebra
A
∣
∣
B

Trace of the class A on B , 10
A⊗A′ Product of the σ -algebras A and A′, 274
B(E) Borel σ -algebra on E, 8
Berp Bernoulli distribution, 42
βr,s Beta distribution with parameters r and s, 45
bn,p Binomial distribution, 42, 303
b−r,p Negative binomial distribution, 43, 303
C(E),Cb(E),Cc(E) Space of continuous (bounded) functions, and with compact

support, respectively, 247
Cqv Functions with continuous square variation, 499
C Set of complex numbers
Caua Cauchy distribution, 303
Cov[X,Y ] Covariance of the random variables X and Y , 102
CPoiν Compound Poisson distribution, 333
δx Dirac distribution, 11
E[X] Expectation (or mean) of the random variable X, 101
E[X;A] = E[X1A], 171
E[X|F] Conditional expectation, 173
expθ Exponential distribution, 44, 303
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F= (Ft )t∈I Filtration, 191
a.s., a.e. Almost surely and almost everywhere, 30
G(x,y) Greeen function of a Markov chain, 369
Γθ,r Gamma distribution with scale parameter θ > 0 and shape parameter

r > 0, 45, 303
γp = b−1,p Geometric distribution with parameter p, 42
gcd(M) Greatest common divisor of all m ∈M ⊂N, 390
H ·X Discrete stochastic integral of H with respect to X, 198
I Set of invariant distributions of a Markov chain, 378
iff If and only if
i.i.d. Independent and identically distributed, 55
Im(z) Imaginary part of z ∈C, 295
λ,λn Lebesgue measure, n-dimensional, 24
Lip(E) Space of Lipschitz continuous functions on E, 249
Lp,Lp Lebesgue spaces of integrable functions, 91, 145, 146
L(X) Distribution of the random variable X
M(E),Mf (E),M≤1,M1(E) Set of measures on E, finite measures on E,

(sub-)probability measures on E, respectively, 16, 247
Mloc,c Space of continuous local martingales, 502
μ⊗ ν Product of the measures μ and ν, 26, 277
μ ∗ ν Convolution of the measures μ and ν, 60, 279
μ⊗n nth power of a measure μ, 277
μ∗n nth convolution power of a measure μ, 60
μ) ν μ is absolutely continuous with respect to ν, 157
μ⊥ ν μ and ν are mutually singular, 157
μ≈ ν μ and ν are equivalent, 157
μ≤st ν μ is stochastically smaller than (or equal to) ν, 385
N,N0 N= {1,2,3, . . .}, N0 =N∪ {0}
Nμ,σ 2 Normal distribution, 44, 303
dμ
/
dν Radon–Nikodym derivative, 158

Ω Space of elementary events on which P is defined
P Generic probability measure
P[A|B],P[A|F] Conditional probabilities, 170, 173
PX = P ◦X−1 Distribution of the random variable X, 41
Poiλ Poisson distribution with parameter λ≥ 0, 43, 303
pn(x, y)= p(n)(x, y) n-step transition probability of a Markov chain, 358
PnS,T ,PnT See page 499
ϕX Characteristic function of the random variable X, 303
ψX Generating function of the random variable X, 77
Q Set of rational numbers
R Set of real numbers
R=R∪ {−∞,+∞} Two point compactification of the real numbers
Radp = pδ1 + (1− p)δ−1 Rademacher distribution, 42
Re(z) Real part of z ∈C, 295
sign(x) = 1(0,∞)(x)− 1(−∞,0)(x), sign of x ∈R, 36
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σ(·) σ -algebra or filtration generated by ·, 6, 33, 191
τ kx Time of the kth visit of a Markov chain at x, 367
T (·) Tail σ -algebra, 62
UA Uniform distribution on A, 12, 31, 303
V 1(G),V 2(G) Variation and square variation of G, 498, 499
Var[X] Variance of the random variable X, 101
v-lim Vague limit, 252
w-lim Weak limit, 252
Xτ Stopped process, 210
〈X〉 Square variation process of X, 206, 499, 503, 507
f (t)∼ g(t), t→ a : ⇐⇒ limt→a f (t)/g(t)= 1
X ∼ μ The random variable X has distribution μ, 41
x ∨ y, x ∧ y, x+, x− Maximum, minimum, positive part, negative part of real num-

bers, 36
�x�, �x� Floor and ceiling of x, 35
z Complex conjugate of z ∈C, 295
Z Set of integers
D= Equal in distribution, 41
D−→

n→∞,
n→∞1⇒ Convergence of distributions, 255

n→∞1⇒
fdd
,
n→∞−→

fdd
Convergence of finite-dimensional distributions, 484

meas−→, a.s.−→, a.e.−→ Convergence in measure, almost surely, and almost everywhere,
132
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(Okatavo, Russia) – 1894 (Saint
Petersburg), 108

Cramér, Harald, 1893 (Stockholm) – 1985
(Stockholm), 329

Curie, Pierre, 1859 (Paris) – 1906 (Paris), 541

D
Dieudonné, Jean Alexandre 1906 (Lille,

France) – 1992 (Paris), 296
Dirac, Paul Adrien Maurice, 1902 (Bristol,

England) – 1984 (Tallahassee, Florida),
11

Dirichlet, Lejeune, 1805 (Düren, Germany) –
1859 (Göttingen, Germany), 413

Doob, Joseph Leo, 1910 (Cincinnati, Ohio) –
2004 (Urbana, Illinois), 205

Dynkin, Eugene, 1924 (Petrograd, now Saint
Petersburg), 3

E
Egorov, Dmitrij Fedorovich (Egorov,

Dmitri� Fëdoroviq), 1869
(Moscow) – 1931 (Kazan, Russia), 136

Esseen, Carl-Gustav, 1918 (Linköping,
Sweden) – 2001 (Uppsala, Sweden ?),
327

Euler, Leonard, 1707 (Basel, Switzerland) –
1783 (Saint Petersburg), 50

F
Fatou, Pierre, 1878 (Lorient, France) – 1929

(Pornichet, France), 93
Feller, William, 1906 (Zagreb, Croatia) – 1970

(New York, New York), 322
Fischer, Ernst, 1875 (Vienna, Austria) – 1954

(Cologne, Germany), 152
Fourier, Jean Baptiste Joseph, 1768 (Auxerre,

France) – 1830 (Paris), 301
Fréchet, Maurice René, 1878 (Maligny,

France) – 1973 (Paris), 153
Fubini, Guido, 1879 (Venice, Italy)–1943

(New York, New York), 278
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G
Galton, Francis, 1822 (near Birmingham,

England) – 1911 (Grayshott House,
England), 83

Gauß, Carl-Friedrich, 1777 (Braunschweig,
Germany) – 1855 (Göttingen,
Germany), 44

Gibbs, Josiah Willard, 1839 (New Haven,
Connecticut) – 1903 (New Haven,
Connecticut), 403

Green, George, 1793 (Nottingham, England) –
1841 (Nottingham), 369

H
Hahn, Hans, 1879 (Vienna, Austria) – 1934

(Vienna), 162
Helly, Eduard, 1884 (Vienna, Austria) – 1943

(Chicago, Illinois), 263
Hesse, Ludwig Otto, 1814 (Königsberg, now

Kaliningrad, Russia) – 1874 (Munich,
Germany), 150

Hewitt, Edwin, 1920 (Everett, Washington),
238

Hilbert, David, 1862 (Königsberg, now
Kaliningrad, Russia) – 1943
(Göttingen, Germany), 153

Hölder, Otto Ludwig, 1859 (Stuttgart,
Germany) – 1937 (Leipzig, Germany),
151

Hopf, Eberhard, 1902 (Salzburg, Austria) –
1983, 443

I
Ionescu–Tulcea, Cassius, 1923, 285
Ising, Ernst, 1900 (Cologne, Germany) – 1988

(Peoria, Illinois), 399
Itô, Kiyosi, 1915 (Hokusei-cho, Japan), 480

J
Jensen, Johan Ludwig, 1859 (Nakskov,

Denmark) – 1925 (Copenhagen), 149
Jordan, Camille, 1838 (near Lyon, France) –

1922 (Paris), 164

K
Kesten, Harry, 1931, 71
Khinchin, Aleksandr Jakovlevich (Hinqin,

Aleksandr �kovleviq) 1894
(Kondrovo, Russia) – 1959 (Moscow),
336

Kirchhoff, Gustav Robert, 1824 (Königsberg,
now Kaliningrad, Russia) – 1887
(Berlin), 417

Kolmogorov, Andrej Nikolaevich
(Kolmogorov, Andrei
Nikolaeviq), 1903 (Tambow,
Russia) – 1987 (Moscow), 63

L
Laplace, Pierre-Simon, 1749

(Beaumont-en-Auge, France) – 1827
(Paris), 143

Lebesgue, Henri Léon, 1875 (Beauvais, Oise,
France) – 1941 (Paris), 17

Legendre, Adrien-Marie, 1752 (Paris) – 1833
(Paris), 524

Levi, Beppo, 1875 (Turin, Italy) – 1961
(Rosario, Santa Fe, Argentina), 93

Lévy, Paul Pierre, 1886 (Paris) – 1971 (Paris),
311, 512

Lindeberg, Jarl Waldemar, 1876 – 1932, 322
Lipschitz, Rudolph, 1832 (Königsberg, now

Kaliningrad, Russia) – 1903 (Bonn,
Germany), 249

Lusin, Nikolai Nikolaevich (Lusin,
Nikola� Nikolaeviq), 1883
(Irkutsk, Russia) – 1950 (Moscow), 250

Lyapunov, Aleksandr Mikhajlovich
(L�punov Aleksandr
Miha�loviq), 1857 (Jaroslavl,
Russia) – 1918 (Odessa, Ukraine), 322

M
Markov, Andrej Andreevich (Markov,

Andre� Andreeviq), 1856 (Ryazan,
Russia) – 1922 (Petrograd, now Saint
Petersburg), 108

Menshov, Dmitrij Evgen’evich (Menxov,
Dmitri� Evgen�eviq), 1892
(Moscow) – 1988 (Moscow), 123

Minkowski, Hermann, 1864 (Alexotas, now
Kaunas, Lithuania) – 1909 (Göttingen,
Germany), 152

N
Neumann, John von, 1903 (Budapest) – 1957

(Washington, D.C.), 158
Nikodym, Otton Marcin, 1889 (Zablotow,

Galicia, Ukraine) – 1974 (Utica, New
York), 158

O
Ohm, Georg Simon, 1789 (Erlangen,

Germany) – 1854 (Munich, Germany),
417

Ornstein, Leonard Salomon, 1880 (Nijmegen,
Netherlands) – 1941 (Utrecht,
Netherlands), 591
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P
Paley, Raymond E. A. C., 1907 (Bournemouth,

England) – 1933 (Banff, Alberta,
Canada), 467

Parseval, Marc-Antoine, 1755
(Rosières-aux-Salines, France) – 1836
(Paris), 475

Pascal, Blaise, 1623 (Clermont-Ferrand,
France) – 1662 (Paris), 43

Plancherel, Michel, 1885 (Bussy (Fribourg),
Switzerland) – 1967 (Zurich), 301

Poisson, Siméon Denis, 1781 (Pithiviers,
France) – 1840 (near Paris), 43

Pólya, George, 1887 (Budapest) – 1985 (Palo
Alto, CA), 312

Prohorov, Yurij Vasil’evich (Prohorov,
�ri� Vasil�eviq), 1929, 261

R
Rademacher, Hans, 1892 (Hamburg, Germany)

– 1969 (Haverford, Pennsylvania), 123
Radon, Johann, 1887 (Tetschen, Bohemia) –

1956 (Vienna, Austria), 158
Riemann, Georg Friedrich Bernhard, 1826

(Breselenz, Germany) – 1866 (Selasca,
Italy), 50

Riesz, Frigyes, 1880 (Györ, Hungary) – 1956
(Budapest, Hungary), 152

S
Saks, Stanislav (Saks, Stanislav), 1897

(Kalish, Russia (now Poland))–1942
(Warsaw, murdered by the Gestapo),
230

Savage, Jimmie Leonard, 1917 (Detroit,
Michigan) – 1971 (New Haven,
Connecticut), 238

Schwarz, Hermann Amandus, 1843
(Hermsdorf, Silesia) – 1921 (Berlin),
105

Skorohod, Anatolii Volodymyrovych
(Skorohod, Anatol��
Volodimiroviq), 1930 (Nikopo,
Ukraine) – 2011 (Lansing, Michigan),
385

Slutzky, Evgenij Evgen’evich (Slucki�,
Evgeni� Evgen�eviq), 1880
(Novoe, Gouvernement Jaroslavl,
Russia) – 1948 (Moscow), 255

Stieltjes, Thomas Jan, 1856 (Zwolle,
Overijssel, Netherlands) – 1894
(Toulouse, France), 25

Stone, Marshall Harvey, 1903 (New York) –
1989 (Madras, India), 296

T
Thomson, William (Lord Kelvin), 1824

(Belfast, Northern Ireland) – 1907
(Largs, Ayrshire, Scotland), 421

U
Uhlenbeck, George Eugene, 1900 (Batavia

(now Jakarta), Indonesia) – 1988
(Boulder, Colorado), 591

V
Varadhan, S.R. Srinivasa, 1945 (Madras,

India), 536

W
Watson, George Neville, 1886 (Westward Ho,

England) – 1965 (Leamington Spa,
England), 376

Watson, Henry William, 1827 (near London) –
1903 (near Coventry, England), 83

Weierstraß, Karl, 1815 (Ostenfelde,
Westphalia, Germany) – 1897 (Berlin),
296

Weiss, Pierre-Ernest, 1865 (Mulhouse, France)
– 1940 (Lyon, France), 539

Wiener, Norbert, 1894 (Columbia, Missouri) –
1964 (Stockholm), 484

Wintner, Aurel Friedrich, 1903 (Budapest) –
1958 (Baltimore, Maryland), 517

Wright, Sewall, 1889 (Melrose,
Massachusetts) – 1988 (Madison,
Wisconsin), 361

Z
Zygmund, Antoni, 1900 (Warsaw) – 1992

(Chicago, Illinois), 467
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Symbols

0–1 laws
Blumenthal, 466
for invariant events, 452
Hewitt–Savage, 238
Kolmogorov, 63

∅-continuous, 14

A
a.a., see almost all
Absolutely continuous, 157
Absorbing, 368
Adapted, 191
Additive, 11
a.e., see almost everywhere
Algebra, 3, 296
Almost all, 30
Almost everywhere, 30
Almost surely, 30
Aperiodic, 390
Approximation theorem for measures, 28
Arbitrage, 202
Arcsine law, 470
Array of random variables, 321
Arzelà–Ascoli theorem, 485
a.s., see almost surely
Azuma’s inequality, 197

B
Backwards martingale, 236
Banach space, 152
Bayes’ formula, 170, 179
Benford’s law, 447
Bernoulli distribution, 42
Bernoulli measure, 28
Bernstein–Chernov bound, 110

Bernstein polynomial, 110
Berry–Esseen theorem, 327
Bessel process, 600
Beta distribution, 45, 243, 318, 555

moments, 108
Bienaymé formula, 104
Binary model, 200
Binary splitting stochastic process, 200
Binomial distribution, 42
Black–Scholes formula, 203
Black–Scholes model, 592
Blackwell–Girshick formula, 107
Blumenthal’s 0–1 law, 466
Bochner’s theorem, 313
Boltzmann distribution, 399, 538
Bond, 65
Bond percolation, 66, 411
Borel–Cantelli lemma, 51

conditional version, 228
Borel measure, 247
Borel space, 185
Borel’s paradox, 187
Borel σ -algebra, 8
Boundary of a set, 246
Bounded in Lp , 138
Box–Muller method, 61
Branching process, 83, 229
Brownian bridge, 465, 481, 490, 598
Brownian motion, 292, 463

canonical, 484
existence theorem, 464
Karhunen–Loève expansion, 480
Lévy characterization, 578
Paley–Wiener expansion, 480
scaling property, 465

Brownian sheet, 482
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C
Càdlàg, 472
Call option, 201
Canonical Brownian motion, 484
Canonical measure, 336, 338, 552
Canonical process, 274
Carathéodory’s theorem, 18
Cauchy distribution, 45, 303, 585
Cauchy–Schwarz inequality, 105

conditional, 179
Centered random variable, 101
Central limit theorem, 321

Berry–Esseen, 327
Lindeberg–Feller, 322
multidimensional, 330

Cesàro limit, 63
CFP, 331
Chapman–Kolmogorov equation, 289, 358
Characteristic function, 299, 545

inversion formula, 301
Chebyshev inequality, 108
Chebyshev polynomial, 409
Chernov bound, see Bernstein–Chernov bound
Chinese restaurant process, 560
Cholesky factorization, 330
Chung–Fuchs theorem, 375, 448
Claim, contingent, 201
Closed, 8
Closed under complements, 1
∩-closed, 1
∪-closed, 1
\-closed, 1
Closure of a set, 246
CLT, see central limit theorem
Coloring theorem, 553
Complete measure space, 30
Complete metric, 246
Completion of a measure space, 30
Composition of kernels, 282
Compound Poisson distribution, 333
Concave function, 147
Conditional

distribution, 181
expectation, 173
independence, 239
probability, 170, 173

summation formula, 170
Conductance, 416
Consistent, 287
Content, 11
Contingent claim, 201
Continuity lemma, 142
Continuity lower/upper, 14
Continuity theorem, Lévy’s, 311

Continuous mapping theorem, 257
Contraction principle, 535
Convergence

almost everywhere, 132
almost sure, 132
dominated, 141
fast, 134
in distribution, 255
in measure, 132
in probability, 132
Lp-, 146
mean, 133
of distribution functions, 256
vague, 252
weak, 81, 252

Convex function, 147
Convex set, 147
Convolution

densities, 279
discrete distributions, 59
measures on R

n, 60, 279
Convolution semigroup, 292
Coordinate map, 274
Correlated, 102
Countable, 1
Counting measure, 12
Coupling, 67, 68, 384
Coupling from the past, 405
Covariance, 102
Covariance function, 464
Cox–Ingersoll–Ross model, 597
Cox–Ross–Rubinstein model, 202
Cramér–Lundberg inequality, 214
Cramér transform, 525
Cramér–Wold device, 329
Curie temperature, 400, 541
Curie–Weiss law, 541
Current flow, 417
Cylinder set, 17, 275

D
Dense set, 246
Density, 12, 25, 44, 57, 91, 156
Detailed balance, 415
Diagonal sequence argument, 263
Differentiation lemma, 142
Diffusion process, 574
Dirac measure, 11
Dirichlet distribution, 555
Dirichlet problem, 583

discrete, 413
Dirichlet’s principle, 421
Distribution, 41

Bernoulli, 42
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Distribution (cont.)
Beta, 45, 243, 318, 555
binomial, 42
Boltzmann, 399
Cauchy, 45, 303, 585
compound Poisson, 333
domain of attraction, 347
exponential, 44
Gamma, 45, 318

Lévy measure, 337
GEM, 558, 560
geometric, 43
hypergeometric, 44
multinomial, 61
negative binomial, 43, 80
normal, 44
Pascal, 43, 80
Poisson, 43
Poisson–Dirichlet, 555, 557, 560
Rademacher, 42
stable, 343, 344
t -, 332
two-sided exponential, 303
uniform, 11, 31

Distribution function, 20
empirical, 115
of a random variable, 41

Domain of attraction, 347
Donsker’s theorem, 487
Doob decomposition, 206
Doob’s inequality, 218
Doob’s regularization, 472
Drift, 574
Dual space, 166
Duality, 605
Dynamical system, 440
Dynkin’s π -λ theorem, 6
Dynkin’s λ-system, see λ-system

E
Edge, 65
Empirical distribution, 241
Empirical distribution function, 115
Energy dissipation, 420
Entrance time, 367
Entropy, 116, 118, 531

dynamical system, 454, 455
Kolmogorov–Sinai, 455
relative, 531

Equivalent martingale measure, 202
Equivalent measures, 157
Ergodic, 440
Ergodic theorem

individual (Birkhoff), 444

Lp (von Neumann), 445
Escape probability, 422
Etemadi

inequality of, 124
Euler’s prime number formula, 50
Evaluation map, 482
Event, 16, 41

invariant, 72
Exchangeable, 231
Exchangeable σ -algebra, 233
Expectation, 101
Explosion, 365
Exponential distribution, 44
Extension theorem for measures, 23

F
Factorization lemma, 38
Fatou’s lemma, 93
Feller’s branching diffusion, 495, 597, 608
Feller process, 474
Feller property, 473

strong, 604
Feller semigroup, 473
Filtration, 191

right continuous, 472
usual conditions, 472

De Finetti’s theorem, 239, 269
Fischer–Riesz theorem, 152
Flow, 417
Fourier inversion formula, 301
Fourier series, 156
Fréchet–Shohat, theorem of, 319
Free energy, 539
Free lunch, 202
Frobenius problem, 390
Fubini’s theorem, 278

for Itô integrals, 583
for transition kernels, 283

Functional central limit theorem, 487
Fundamental theorem of calculus, 251

G
Galton–Watson process, 83

rescaling, 491
Gambler’s ruin, 212, 407
Gambling strategy, 199
Gamma distribution, 45

Lévy measure, 337
subordinator, 555

GEM distribution, 558, 560
Generated σ -algebra, 6, 33
Generating function, 77
Generator, 6, 362
Geometric Brownian motion, 592
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Geometric distribution, 43
Gibbs sampler, 403
Graph, 65
Green function, 369, 413

table, 377
Gronwall’s lemma, 593

H
Haar functions, 477
Hahn’s decomposition theorem, 162
Haploid, 361
Harmonic function, 378, 412
Harmonic measure, 584
Hartman–Wintner theorem, 517
Heat bath algorithm, 403
Hedging strategy, 201
Helly’s theorem, 263
Helmholtz potential, 539
Hilbert–Schmidt norm, 592
Hilbert–Schmidt operator, 284
Hilbert space, 153
Hölder-continuous, 458
Hölder’s inequality, 151
Hopf’s lemma, 443
Hypergeometric distribution, 44

I
Identically distributed, 41
i.i.d., 55
Image measure, 39
Inclusion–exclusion formula, 14
Increasing process, 206
Independence

classes of events, 53
conditional, 239
of events, 49
random variables, 55

Independent copy, 384
Independent increments, 545
Indicator function, 5
Indistinguishable, 457
Inequality

Azuma, 197
Bernstein–Chernov, 110
Cauchy–Schwarz, 105
Chebyshev, 108
Chernov, see Bernstein–Chernov
Doob, 218
Etemadi, 124
Hölder, 151
Jensen, 149
Kolmogorov, 121
Markov, see Chebyshev
Minkowski, 152

Young, 151
Infinitely divisible, 331

random measure, 552
Infinitely divisible distribution

stochastic order, 551
Inner product, 153
Inner regularity, 30, 247
Integrable, 88, 101

square, 101
stochastic process, 190

Integral, 85, 86, 88, 89
Itô, 567
Lebesgue, 91, 95
Riemann, 95
stochastic, 480
Stratonovich, 583

Intensity measure, 544
Interior of a set, 246
Invariance principle, 488
Invariant event, 440
Inverse temperature, 538
Inversion formula, 301
Ionescu–Tulcea’s theorem, 285
Ising model, 399, 404
Isomorphic, 185
Iterated logarithm

Brownian motion, 509
Hartman–Wintner, 517

Itô formula, 576
discrete, 208
multidimensional, 582
pathwise, 576

Itô integral, 567
Fubini’s theorem, 583
product rule, 581

Itô process, 574

J
Jensen’s inequality, 149, 177
Joint density, 57
Joint distribution, 56
Jordan, decomposition theorem, 164

K
Karhunen–Loève expansion of Brownian

motion, 480
Kelvin, see Thomson
Kesten-Stigum theorem, 230
Khinchin’s law of the iterated logarithm, 517
Kirchhoff’s rule, 417
Kolmogorov’s 0–1 law, 63
Kolmogorov–Chentsov theorem, 460
Kolmogorov’s criterion for weak relative

compactness, 486
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Kolmogorov’s extension theorem, 288
Kolmogorov’s inequality, 121
Kolmogorov–Sinai entropy, 455
Kolmogorov–Sinai theorem, 455
Kolmogorov–Smirnov test, 490
Kolmogorov’s three-series theorem, 326
Kullback–Leibler information, 531

L
Lack of memory of the exponential

distribution, 172
λ-system, 3
Laplace operator, 580
Laplace space, 12
Laplace transform, 143, 299, 492, 545
Large deviations, 524, 527
Large deviations principle, 527
Lattice distributed, 309
Law of large numbers

speed of convergence, 120
strong, 109, 112, 237
weak, 109

LDP, see large deviations principle
Lebesgue–Borel measure, see Lebesgue

measure
Lebesgue’s convergence theorem, 141
Lebesgue’s decomposition theorem, 158
Lebesgue integral, 91
Lebesgue measure, 24, 31
Lebesgue–Stieltjes integral, 498
Lebesgue–Stieltjes measure, 25
Legendre transform, 524
Level set, 527
Lévy Construction of Brownian motion, 476
Lévy’s continuity theorem, 311
Lévy–Khinchin formula, 336, 339

for random measures, 552
Lévy measure, 336, 339

Cauchy distribution, 342
Gamma distribution, 337
general stable distribution, 344
symmetric stable distribution, 343

Lévy metric, 258
Lévy’s modulus of continuity, 512
Limes inferior, 4
Lindeberg condition, 322
Lindvall’s theorem, 496
Lipschitz continuous, 249
Local martingale, 502
Local time, 208
Localising sequence, 502
Locally bounded, 199
Locally compact, 246
Locally finite, 247

Logarithmic moment generating function, 524
Log-normal distribution, 298
Lower semicontinuous, 527
Lp-bounded, 138
Lp-convergence, 146
Lusin, 250
Lusin’s theorem, 40
LV , 162
Lyapunov condition, 322

M
Markov chain, 352

aperiodic, 390
convergence theorem, 397
coupling, 393
discrete, 358
independent coalescence, 393
invariant distribution, 378
invariant measure, 378
irreducible, 370
Monte Carlo method, 398
null recurrent, 368
period of a state, 390
positive recurrent, 368
recurrent, 368
reversible, 415
speed of convergence, 405
transient, 368
weakly irreducible, 370

Markov inequality, 108
conditional, 179

Markov kernel, 180
Markov process, 352
Markov property, 351, 352

strong, 356
Markov semigroup, 289
Martingale, 194

backwards, 236
convergence theorem (a.s.), 220
convergence theorem (backwards), 236
convergence theorem (L1), 221
convergence theorem (Lp), 222
convergence theorems (RCLL), 474
local, 502
square variation, 206

Martingale problem, 601
discrete, 362
well-posed, 603

Martingale representation theorem, 579
Martingale transform, 198
Maximal-ergodic lemma, 443
MCMC, see Markov chain Monte Carlo

method
Mean, 101
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Mean field, 539
Measurable

Borel, 8
Lebesgue, 31
μ-, 21
map, 32
set, 16

Measurable space, 16
isomorphy, 185

Measure, 11
atom-free, 186
Bernoulli, 28
Borel, 247
harmonic, 584
inner regular, 30
invariant, 378
Lebesgue, 24
locally finite, 247
outer, 20
outer regular, 30
product, 28, 289
Radon, 247
regular, 247
restriction, 31
σ -finite, 11
signed, 162
stationary, 378

Measure extension theorem, 18
Measure-preserving map, 440
Measure space, 16
Mellin transform, 301
Mesh size, 499
Method of moments, 316
Metric

complete, 246
convergence in measure, 133
Lévy, 258
on C([0,∞)), 482
Prohorov, 253
Wasserstein, 385

Metrizable, 246
Metropolis algorithm, 399
Minkowski’s inequality, 152
Mixing, 451
Modification, 457
Modulus of continuity, Lévy’s, 512
Moments, 101

absolute, 101
Monotone, 11
Monotonicity principle of Rayleigh, 420
Monte Carlo simulation, 115
Moran Gamma subordinator, 555
Moran model, 361
De Morgan’s rule, 2

Morse code, 120
Moving average, 191, 440
Multi-period binomial model, 202
Multinomial coefficient, 61
Multinomial distribution, 61

N
Negative binomial distribution, 43, 80

stochastic order, 554
Normal distribution, 44

multidimensional, 44, 328
Null array, 321
Null recurrent, 368
Null set, 30

O
Ohm’s rule, 417
Open, 8
Optional sampling theorem, 209, 214

continuous time, 463
Optional stopping theorem, 211

continuous time, 463
Ornstein–Uhlenbeck process, 591
Orthogonal complement, 154
Orthogonal polynomials, 410
Outer measure, 20
Outer regularity, 30, 247

P
π -λ theorem, 6
p.d.f., see probability distribution function
p.g.f., see probability generating function
Paley Wiener expansion of Brownian motion,

480
Parseval’s equation, 475
Partially continuous, 311
Partition function, 538
Partition sequence, admissible, 499
Partition sum, 400
Pascal distribution, 43
Path, 459
Pathwise unique, 601
Percolation, 65, 411
Perfect sampling, 404
Period, 390
Petersburg game, 93, 191, 199
Phase transition, 400, 540
π -system, see ∩-closed
Plancherel’s equation, 301
Points of discontinuity, 10
Poisson approximation, 81
Poisson–Dirichlet distribution, 557, 560
Poisson distribution, 43

compound, 333
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Poisson point process, 546
Poisson process, 125, 353
Poisson summation formula, 471
Polar set, 587
Polarization formula, 500
Polish space, 185, 246
Pólya’s theorem, 312
Pólya’s theorem on random walks, 371
Pólya’s urn model, 242, 289, 555

generalized, 365, 367
Portemanteau theorem, 254
Positive recurrent, 368
Positive semidefinite, 313
Potential, 417
PPP, see Poisson point process
Predictable, 191, 566
Prefix code, 117
Premeasure, 11
Previsible, 191, 566
Probability distribution function, 26
Probability generating function, 77
Probability measure, 11
Probability space, 16
Probability vector, 12
Product measurable, 566
Product measure, 26, 28, 277, 286, 289
Product-σ -algebra, 274
Product space, 274
Product topology, 274
Progressively measurable, 566
Prohorov metric, 253, 397
Prohorov’s theorem, 261
Projective limit, 288
Propp–Wilson algorithm, 404

Q
Q-Q-plot, 327
Q-matrix, 362
Quadratic covariation process, 507

R
Rademacher distribution, 42
Radon measure, 247
Radon–Nikodym derivative, 158
Random measure, 544
Random variable, 41
Random walk, 353

Chung–Fuchs theorem, 448
Green function (table), 377
on a graph, 415
Pólya’s theorem, 371
random environment, 437
range, 447
recurrence, 371

symmetric simple, 190
Random walk in a random environment, 437
Rate function, 522, 527
Rayleigh’s monotonicity principle, 420
RCLL, 472
Rectangle, 9
Rectangular cylinder, 275
Recurrent, 368
Reflection principle, 357

Brownian motion, 470
Regular conditional distribution, 181
Regularity of measures, 30, 247
Rejection sampling, 187
Relatively compact, 246
Replicable, 201
Resistance, 416
Resistance metric, 429
Restriction, 10
Reversible, 399, 415
Riemann integral, 95
Riemann zeta function, 50
Ring, 3
Risk-neutral, 202

S
Schauder functions, 477
SDE, see stochastic differential equation
Semi-inner product, 153
Semiring, 3
Separable, 246
Separating family, 249
Separating points, 296
Shannon’s theorem, 116
Shift, 442
σ -additive, 11
σ -algebra, 1

exchangeable, 233
invariant, 440
of τ -past, 193
product, 274
tail, 61, 234

σ -compact, 246
σ -field, see σ -algebra
σ -ring, 3
σ -subadditive, 11
Signed measure, 162
Simple function, 38
Simple random walk, 415
Singular, 157
Site percolation, 66
Size-biased distribution, 268
Skorohod coupling, 385
Skorohod’s embedding theorem, 512
Slowly varying, 348
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Slutzky’s theorem, 255
Source coding theorem, 119
Spectral gap, 406
Spin, 399
Square integrable, 101
Square variation, 500
Square variation process, 206, 503
Stable distribution, 312, 343, 344
Standard deviation, 101
Stationary, 439
Step function, 95
Stirling’s formula, 316, 523
Stochastic differential equation, 589

pathwise uniqueness, 601
strong solution, 590
strong solution under Lipschitz conditions,

593
weak solution, 598

Stochastic integral, 480
discrete, 198

Stochastic kernel, 180
composition, 282
consistent family, 289
product, 281
semigroup, 289

Stochastic matrix, 359
Stochastic order, 385

infinitely divisible distribution, 551
negative binomial distribution, 554

Stochastic process, 189
adapted, 191
binary splitting, 200
duality, 605
explosion, 365
Galton–Watson, 83, 229
Gaussian, 190, 464
independent increments, 190
indistinguishable, 457
integrable, 190
Markov property, 351
modification, 457
path, 459
Poisson, 353
predictable, 191, 566
previsible, see predictable
product measurable, 566
progressively measurable, 566
stationary, 190
stationary increments, 190
stopped, 210
strong Markov property, 356
version, 457

Stochastically larger, 385
Stone–Weierstraß theorem, 296

Stopped process, 210
Stopping time, 192
Strassen’s theorem, 386
Stratonovich integral, 583
Strong Markov property, 356
Strong solution, 590
Student’s t -distribution, 332
Sub-probability measures, 247
Subadditive, 11

sequence, 456
Subharmonic, 378
Submartingale, 194
Subordinator, 552
Supermartingale, 194
Symmetric difference, 28
Symmetric simple random walk, 190

T
Tail σ -algebra, 61, 234
t -distribution, 332
Dynkin p l@Dynkin’s π -λ, 6
Theorem

approximation of measures, 28
Arzelà–Ascoli, 485
Bayes’ formula, 170
Beppo Levi, 93
Berry–Esseen, 327
Bochner, 313
Borel–Cantelli lemma, 51

conditional version, 228
Carathéodory, 18, 22
central limit theorem, 321
Choquet–Deny, 396
Chung–Fuchs, 375, 448
continuous mapping, 257
Cramér, 524, 530
dominated convergence, 141
Donsker, 488
Egorov, 136
ergodic

Birkhoff, 444
von Neumann, 445

Etemadi, 112
extension to measures, 22
factorization lemma, 38
Fatou’s lemma, 93
de Finetti, 239, 269
Fischer–Riesz, 152
Fréchet–Shohat, 319
Fubini, 278
Fubini for Itô integrals, 583
Fubini for transition kernels, 283
fundamental theorem of calculus, 251
Glivenko–Cantelli, 115



Subject Index 637

Theorem (cont.)
Hahn decomposition, 162
Hartman–Wintner, 517
Helly, 263
Hewitt–Savage, 238
Ionescu–Tulcea, 285
iterated logarithm, 510, 517
Jordan decomposition, 164
Kantorovich–Rubinstein, 385
Kesten-Stigum, 230
Kolmogorov–Chentsov, 460
Kolmogorov’s criterion for weak relative

compactness, 486
Kolmogorov’s extension, 288
Kolmogorov’s inequality, 121
Kolmogorov–Sinai, 455
Kolmogorov’s three-series theorem, 326
large deviations, 524
Lebesgue decomposition, 158
Lévy’s continuity theorem, 311
Lévy–Khinchin, 336, 339
Lindeberg–Feller, 322
Lindvall, 496
Lusin, 40, 250
Markov chain convergence, 397
martingale representation theorem, 579
measure extension, 18
method of moments, 316
monotone convergence, 93
optional sampling, 209, 214
optional sampling, continuous time, 463
optional stopping, 211
optional stopping, continuous time, 463
π -λ, 6
Paley–Wiener–Zygmund, 467
Poisson approximation, 81
Pólya, 312
Pólya’s for random walks, 371
Portemanteau, 254
Prohorov, 261
Rademacher–Menshov, 123
Radon–Nikodym, 158, 226
Rayleigh’s monotonicity principle, 420
regular conditional distribution, 182, 185
Sanov, 532
Shannon, 116
Skorohod coupling, 385
Skorohod embedding, 512
Slutzky, 255
Solomon, 437
source coding, 119
Stone–Weierstraß, 296
Strassen, 386

Stroock–Varadhan, 604
Thomson’s principle, 421
three-series, 326
Varadhan’s lemma, 536
Yamada–Watanabe, 596

Thomson’s principle, 421
Three-series theorem, 326
Tight, 260
Topological space, 8
Topology, 7

vague, 253
weak, 252

Total variation norm, 164
Totally bounded, 247
Totally continuous, 160
Tower property, 174
Trace, 10
Transformation formula, 39
Transient, 368
Transition kernel, 180, 352
Transition matrix, 358
Transition probabilities, 352
Translation invariant, 360
Trap, 412
Two-stage experiment, 273

U
Uncorrelated, 102
Uniform distribution, 12, 31
Uniformly equicontinuous, 310
Uniformly integrable, 136
Unit flow, 421
Unit network, 416
Upcrossing, 219
Usual conditions, 472

V
Vague convergence, 252
Vague topology, 253
Varadhan’s lemma, 536
Variance, 101
Variation, 498
p -, 500
square, 500

Version, 457
Vitali set, 8
Voter model, 224

W
Wald’s identity, 103
Wasserstein metric, 385
Watson integral, 376
Weak convergence, 252
Weak solution, 598
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Weak topology, 252
Weierstraß’s approximation theorem, 109
Weight function, 12
Weiss ferromagnet, 539
White noise, 480
Wiener process, 484

Wright–Fisher diffusion, 606
interacting, 609

Wright’s evolution model, 361

Y
Young’s inequality, 151
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