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Chapter 1

Introduction.

1.1 Notation, Definitions & Basic notions.

We introduce here basic notations that we will be using throughout this part. Large parts are

taken from standard literature inspired by Matrix Computations by Golub and Van Loan (2013),

and Probability: Theory & Examples by Rick Durrett (2019).

1.1.1 Norms and Inner Product

Definition 1.1.1 (Euclidean Norm). Let 󰀂 · 󰀂E : Rd → [0,∞) denote the Euclidean norm defined

for all d ∈ N0 and x = {x1, x2, · · · , xd} ∈ Rd as:

󰀂x󰀂E =

󰀣
d󰁛

i=1

x2i

󰀤 1
2

(1.1.1)

For the special case that d = 1, d = 2, and where it is clear from context we will denote 󰀂 · 󰀂E as

| · |.

Definition 1.1.2 (Max Norm). Let 󰀂·󰀂∞ : Rd → [0,∞) denote the max norm define for all d ∈ N0

and x = {x1, x2, · · · , xd} ∈ Rd as:

󰀂x󰀂∞ = max
i∈{1,2,··· ,d}

{|xi|} (1.1.2)

Definition 1.1.3 (Frobenius Norm). Let 󰀂 ·󰀂F : Rm×n → [0,∞) denote the Frobenius norm defined
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for all m,n ∈ N, A ∈ Rm×n as:

󰀂A󰀂F =

󰀳

󰁃
m󰁛

i=1

n󰁛

j=1

[A]2i,j

󰀴

󰁄

1
2

(1.1.3)

Definition 1.1.4 (Euclidean Inner Product). Let 〈·, ·〉 : Rd × Rd → R denote the Euclidean inner

product defined for all d ∈ N, Rd ∋ x = {x1, x2, ..., xd}, and Rd ∋ y = {y1, y2, ..., yd} as:

〈x, y〉 =
d󰁛

i=1

(xiyi) (1.1.4)

1.1.2 Probability Space and Brownian Motion

Definition 1.1.5 (Probability Space). A probability space is a triple (Ω,F ,P) where:

(i) Ω is a set of outcomes called the sample space.

(ii) F is a set of events, called the event space, where each event is a set of outcomes from the

sample space. More specifically it is a σ-algebra on the set Ω.

(iii) A mapping: P : F → [0, 1] assigning each event in the event space a probability between 0

and 1. More specifically P is a measure on Ω with the caveat that the measure of the entire

space is 1, i.e. P(Ω) = 1.

Definition 1.1.6 (Random Variable). Given a probability space (Ω,F ,P) a random variable is a

measurable function X : Ω → Rd.

Definition 1.1.7 (Expectation). Given a probability space (Ω,F ,P), the expected value of a random

variable X, denoted E [X] is the Lebesgue integral given by:

󰁝

Ω
XdP (1.1.5)

Definition 1.1.8 (Stochastic Process). A stochastic process is a family of random variables over

a fixed probability space (Ω,F ,R).

Definition 1.1.9 (Stochastic Basis). A stochastic basis is a tuple (Ω,F ,P,F) where:

(i) (Ω,F ,P) is a probability space equipped with a filtration F where,
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(ii) F := (Fi)i∈I , is a collection of non-decreasing sets under inclusion where for every i ∈ I, I

being equipped in a total order, it is the case that Fi is a sub σ-algebra of F .

Definition 1.1.10 (Brownian Motion Over a Stochastic Basis). Given a stochastic basis (Ω,F ,P,F)

a standard (Ft)t∈[0,T ]-Brownian motion Wt is a mapping Wt : [0, T ]× Ω → Rd satisfying:

(i) Wt is Ft measurable for all t ∈ [0,∞)

(ii) W0 = 0 with P-a.s.

(iii) Wt −Ws is a normal random variable with µ = 0 and σ2 = t− s when s < t.

(iv) Wt −Ws is independent of Fs whenever s < t.

(v) The paths that Wt take are P-a.s. continuous.

Definition 1.1.11 ((Ft)t∈[0,T ]-adapted Stochastic Process). Let T ∈ (0,∞). Let (Ω,F ,P,F) be a

filtered probability space with the filtration indexed over [0, T ]. Let (S,Σ) be a measurable space.

Let X : [0, T ] × Ω → S be a stochastic process. We say that X is an (Ft)t∈[0,T ]-adapted stochastic

process if it is the case that Xt : Ω → S is (Ft,Σ) measurable for each t ∈ [0, T ].

Definition 1.1.12 ((Ft)t∈[0,T ]-adapted stopping time). Let T ∈ (0,∞), τ ∈ [0, T ]. Assume a

filtered probability space (Ω,F ,P,F). τ ∈ R is a stopping time if the stochastic process X =

(Xt)t∈[0,T ] define as:

Xt :=

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

1 if t < τ

0 if t 󰃍 τ

(1.1.6)

is adapted to the filtration F := (Fi)i∈[0,T ]

Definition 1.1.13 (Strong Solution of Stochastic Differential Equation). Let d,m ∈ N. Let µ :

Rd → Rd, σ : Rd → Rd×m be Borel-measurable. (Ω,F ,P, (Ft)t∈[0,T ]) be a stochastic basis, and let

W : [0, T ] × Ω → Rd be a standard (Ft)t∈[0,T ]-Brownian motion. For every t ∈ [0, T ], x ∈ Rd, let

X t,x = (X t,x
s )s∈[t,T ] × Ω → Rd be an (Fs)s∈[t,T ]-adapted schochastic process with continuous sample
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paths satisfying that for all t ∈ [0, T ] we have P-a.s. that:

X t,x = X0 +

󰁝 t

0
µ(r,X t,x

r )dr +

󰁝 t

0
σ(r,X t,x

r )dWr (1.1.7)

A strong solution to the stochastic differential equation (1.1.7) on probability space (Ω,F ,P, (Ft)t∈[0,T ]),

w.r.t Briwnian motion W, w.r.t to initial condition X0 = 0 is a stochastic process (Xt)t∈[0,∞) sat-

isfying that:

(i) Xt is adapted to the filtration (Ft)t∈[0,T ].

(ii) P(X0 = 0) = 1.

(iii) for all t ∈ [0, T ] it is the case that P
󰀓󰁕 t

0 󰀂µ(r,X
t,x
r )󰀂E + 󰀂σ(r,X t,x

r )󰀂FdWr < ∞
󰀔
= 1

(iv) it holds with P-a.s. that X satisfies the equation:

X t,x = X0 +

󰁝 t

0
µ(r,X t,x

r )dr +

󰁝 t

0
σ(r,X t,x

r )dWr (1.1.8)

Definition 1.1.14 (Strong Uniqueness Property for Solutions to Stochastic Differential Equations).

Assume that whenever we have two strong solutions X , 󰁨X , w.r.t. process W and initial condition

X0 = 0, as defined in Definition 1.1.13, it is the case that for all t ∈ [0, T ] we have P(Xt = 󰁨Xt) = 1,

we then say that the pair (µ,σ) exhibit a strong uniqueness property.

1.1.3 Lipschitz and Related Notions

Definition 1.1.15 (Globally Lipschitz Function). A function f : Rd → Rd is (globally) Lipschitz

if there exists an L ∈ (0,∞) such that:

sup
x,y∈Rd

x ∕=y

󰀐󰀐󰀐󰀐
f(x)− f(y)

x− y

󰀐󰀐󰀐󰀐
E

󰃑 L (1.1.9)

The set of globally Lipschitz functions over set X will be denoted LipG(X)

Corollary 1.1.15.1. A continuous function f ∈ C(Rd,Rd) over a compact set K ⊊ Rd is Lipschitz

over that set.
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Proof. By Hiene-Cantor f is uniformly continuous over set K. Fix an arbitrary 󰂃 and let δ be from

the definition of uniform continuity. By compactness we have a finite cover of K by balls of radius

δ, centered around xi ∈ K:

K ⊆
N󰁞

i=1

Bδ(xi) (1.1.10)

Note that within a given ball no point xj are such that |xi − xj | > δ. Thus by uniform continuity

we have that:

|f(xi)− f(xj)| < 󰂃 ∀i, j ∈ {1, 2, ..., N} (1.1.11)

and thus let L be defined as:

L = max
i,j∈{1,2,...,N}

i ∕=j

󰀏󰀏󰀏󰀏
f(xi)− f(xj)

xi − xj

󰀏󰀏󰀏󰀏 (1.1.12)

L satisfies the Lipschitz property. To see this let x1, x2 be two arbitrary points within K. Let

Bδ(xi) and Bδ(xj) be two points such that x1 ∈ Bδ(xi) and x2 ∈ Bδ(xj). The triangle inequality

then yields that:

|f(x1)− f(x2)| 󰃑 |f(x1)− f(xi)|+ |f(xi)− f(xj)|+ |f(xj)− f(x2)|

󰃑 |f(xi)− f(xj)|+ 2󰂃

󰃑 L · |xi − xj |+ 2󰂃

󰃑 L · |x1 − x2|+ 2󰂃

for all 󰂃 ∈ (0,∞).

Definition 1.1.16 (Locally Lipschitz Function). A function f : Rd → Rd is locally Lipschitz if for

every x0 ∈ Rd there exists a compact set K ⊆ Domain(f) containing x0, and constant L ∈ (0,∞)
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such that

sup
x,y∈K
x ∕=y

󰀐󰀐󰀐󰀐
f(x)− f(y)

x− y

󰀐󰀐󰀐󰀐
E

󰃑 L (1.1.13)

The set of locally Lipschitz functions over set X will be denoted LipL(X).

Corollary 1.1.16.1. A function f : Rd → Rd that is globally Lipschitz is also locally Lipschitz.

More concisely LipG(X) ⊊ LipL(X).

Proof. Assume not, that is to say there exists a point x ∈ Domain(f), a compact set K ⊆

Domain(f), and points x1, x2 ∈ K such that:

|f(x1)− f(x2)|
x1 − x2

󰃍 L (1.1.14)

This directly contradicts Definition 1.1.15.

1.1.4 Kolmogorov Equations

Definition 1.1.17 (Kolmogorov Equation). We take our definition from (Da Prato and Zabczyk,

2002, (7.0.1)) with, u ↶ u, G ↶ σ, F ↶ µ, and ϕ ↶ g, and for our purposes we set A :

Rd → 0. Given a separable Hilbert space H (in our case Rd), and letting µ : [0, T ] × Rd → Rd,

σ : [0, T ]×Rd → Rd×m, and g : Rd → R be atleast Lipschitz a Kolmogorov Equation is an equation

of the form:

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

󰀃
∂
∂tu

󰀄
(t, x) = 1

2 Trace (σ (t, x) [σ (t, x)]∗ (Hessx u) (t, x)) + 〈µ (t, x) , (∇xu) (t, x)〉

u(0, x) = g(x)

(1.1.15)

Definition 1.1.18 (Strict Solution to Kolmogorov Equation). A function u : [0, T ]×Rd → R is a

strict solution to (1.1.15) if:

(i) u ∈ C1,1
󰀃
[0, T ]× Rd

󰀄
and u(0, ·) = g

(ii) u(t, ·) ∈ UC1,2([0, T ]× Rd,R)

(iii) For any x ∈ Domain(A), u(·, x) is continuously differentiable on [0,∞) and satisfies (1.1.15).
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Definition 1.1.19 (Generalized Solution to Kolmogorov Equation). A generalized solution to

(1.1.15) is defined as:

u(t, x) = E
󰀅
g
󰀃
X t,x

󰀄󰀆
(1.1.16)

Where the stochastic process X t,x is the solution to the stochastic differential equation, for x ∈ Rd,

t ∈ [0, T ]:

X t,x =

󰁝 t

0
µ
󰀃
X t,x
r

󰀄
dr +

󰁝 t

0
σ
󰀃
X t,x
r

󰀄
dWr (1.1.17)

Definition 1.1.20 (Laplace Operator w.r.t. x). Given a function f ∈ C2(Rd,R), the Laplace

operator ∇2
x : C2(Rd,R) → R is defined as:

∆xf = ∇2
xf := ∇ ·∇f =

d󰁛

i=1

∂f

∂xi
(1.1.18)

1.1.5 Linear Algebra Notation and Definitions

Definition 1.1.21 (Identity, Zero Matrix, and the 1-matrix). We will define the identity matrix

in dimension d ∈ N0 as the matrix Id ∈ Rd×d where:

Id := [Id]i,j =

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

1 i = j

0 else

(1.1.19)

Note that I0 = 1.

For m,n ∈ N the zero matrix 0m,n ∈ Rm×n as:

0m,n := [0m,n]i,j = 0 ∀i, j (1.1.20)

Where we only have a column of zeros it is convenient to denote 0d where d is the height of the

column.
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The matrix of ones em,n ∈ Rm×n as:

em,n := [e]i,j = 1 ∀i, j (1.1.21)

Where we only have a column of ones it is convenient to denote ed where d is the height of the

column.

Definition 1.1.22 (Complex conjugate and transpose). Let m,n ∈ N, and A ∈ Cm×n. We denote

by A∗ ∈ Cn×m the matrix:

[A∗]i,j = [A]j,i ∀i, j (1.1.22)

Where it is clear that we are dealing with real matrices, i.e. A ∈ Rm×n, we will denote this as AT .

Definition 1.1.23 (Column, Row, and General Vector Notation). Let m,n ∈ N and let A ∈ Rm×n.

We denote the i-th row for 1 󰃑 i 󰃑 m as:

[A]i,∗ =

󰀗
ai,1 ai,2 · · · ai,n

󰀘
(1.1.23)

Similarly we done the j-th row for 1 󰃑 i 󰃑 n as:

[A]∗,j =

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

a1,j

a2,j
...

am,j

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

(1.1.24)

Definition 1.1.24 (Kronecker Product). Let m1, n1,m2, n2 ∈ N. Given matrix A ∈ Rm1,n1 and

B ∈ Rm2,n2 we define the Kronecker product A⊗K B ∈ Rm1m2×n1n2 as the block matrix given by:

A⊗K B := [A⊗K B]i,j = [A]i,j B (1.1.25)
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1.1.6 O-type notation and function growth

Definition 1.1.25 (O-type notation). Let g ∈ C(R,R). We say that f ∈ C(R,R) is in O(g(x)),

denoted f ∈ O(g(x)) if there exists c, x0 ∈ R such that:

0 󰃑 f(x) 󰃑 cg(x) for all x 󰃍 x0 (1.1.26)

We say that f ∈ Ω(g(x)) if there exists c, x0 ∈ R such that:

0 󰃑 cg(x) 󰃑 f(x) for all x 󰃍 x0 (1.1.27)

We say that f ∈ Θ(g(x)) if there exists c1, c2, x0 ∈ R such that:

0 󰃑 c1g(x) 󰃑 f 󰃑 c2g(x) for all x 󰃍 x0 (1.1.28)

Corollary 1.1.25.1 (Bounded functions and O-type notation). Let f(x) ∈ C(R,R), then:

(i) if f is bounded above it is in O(1) for some constant c ∈ R.

(ii) if f is bounded below it is in Ω(1) for some constant c ∈ R.

(iii) if f is bounded above and below it is in Θ(1) for some constant c ∈ R.

Proof. Assume f ∈ C(R,R), then:

(i) Assume for all x ∈ R it is the case that f(x) 󰃑 M for some M ∈ R, then there exists an

x0 ∈ R such that for all x 󰃍 x0 it is the case that 0 󰃑 f(x) 󰃑 M , whence f(x) ∈ O(1).

(ii) Assume for all x ∈ R it is the case that f(x) 󰃍 M for some M ∈ R, then there exists an

x0 ∈ R such that for all x 󰃍 x0 it is the case that f(x) 󰃍 M 󰃍 0, whence f(x) ∈ Ω(1).

(iii) This is a consequence of items (i) and (ii).

Corollary 1.1.25.2. Let f ∈ O(xn) for n ∈ N0. Then it is also the case that f ∈ O
󰀃
xn+1

󰀄
.
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Proof. Let f ∈ O(xn). Then there exists c, x0 ∈ R, such that:

f(x) 󰃑 cxn for all x 󰃍 x0 (1.1.29)

Note however that for all n ∈ N, there exists x1 ∈ R such that:

xn 󰃑 xn+1 for all x 󰃍 x1 (1.1.30)

Thus:

f(x) 󰃑 cxn 󰃑 cxn+1 for all x 󰃍 max{x0, x1} (1.1.31)
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Chapter 2

Brownian Motion Monte Carlo

2.1 Brownian Motion Preliminaries

Lemma 2.1.1 (Time reversal property of Brownian motions). Let T ∈ R, t ∈ [0, T ], and d ∈ N.

Let (Ω,F ,P) be a probability space. Let Wt : [0, T ]× Ω → Rd be a standard Brownian motion. Let

W = WT−t −Wt. Then Ws = {Ws : s ∈ [t, T ]} is also a standard Brownian motion on [0, T ].

Proof. W is a Gaussian process, since a finite, linear combination of variables from theis process

reduces to a finite, linear combination of variables from W . Next E[Wt] = E[WT−t]− E(WT ) = 0.

Next if s, t ∈ [0, T ] with s 󰃑 t then

Cov(Ws,Wt) = Cov(WT−s −WT ,WT−t −Wt)

= Cov(WT−s,WT−t)− Cov(WT−s,WT )− Cov(WT ,WT−t) + Cov(WT ,Wt)

= (T − t)− (T − s)− (T − t) + T = s (2.1.1)

Finally t 󰀁→ Wt is continuous of [0, T ] with probability 1, since t 󰀁→ Wt is continuous on [0, T ] with

probability 1.

Lemma 2.1.2 (Shift property of Brownian motions). Let T ∈ R, t ∈ [0, T ], and d ∈ N. Let

(Ω,F ,P) be a probability space. Let Wt : [0, T ] × Ω → Rd be a standard Brownian motion. Fix

s ∈ [0,∞). Let Wt = Ws+t−Ws. Then W = {Wt : t ∈ [0,∞)} is also a standard Brownian motion.

Proof. Since W has stationary, independent increments, the process W is equivalent in distribution
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to W . Clearly also, W is continuous as W is.

Lemma 2.1.3. The product of a constant with a Brownian motion is a Brownian motion

Lemma 2.1.4. The sum of Brownian motions is a Brownian motion.

Definition 2.1.5 (Of k). Let p ∈ [2,∞). We denote by kp ∈ R the real number given by k := inf{c ∈

R} where it holds that for every probability space (Ω,F ,P) and every random variable X : Ω → R

with E[|X |] < ∞ that (E [|X − E [X ])p])
1
p 󰃑 c (E [|X |p])

1
p .

Definition 2.1.6 (Primary Setting). Let d,m ∈ N, T,L, p ∈ [0,∞), p ∈ [2,∞) m = kp
√
p− 1,

Θ = Z, g ∈ C(Rd,R), assume for all t ∈ [0, T ], x ∈ Rd that:

max{|g(x)|} 󰃑 L
󰀃
1 + 󰀂x󰀂pE

󰀄
(2.1.2)

and let (Ω,F ,P) be a probability space. Let Wθ : [0, T ] × Ω → Rd, θ ∈ Θ be independent standard

Brownian motions, let u ∈ C([0, T ]×Rd,R) satisfy for all t ∈ [0, T ], x ∈ Rd, that E[|g(x+W0
T−t)|] <

∞ and:

u(t, x) = E
󰀅
g
󰀃
x+W0

T−t

󰀄󰀆
(2.1.3)

and let let U θ : [0, T ]× Rd × Ω → R, θ ∈ Θ satisfy, θ ∈ Θ, t ∈ [0, T ], x ∈ Rd, that:

U θ
m(t, x) =

1

m

󰀥
m󰁛

k=1

g
󰀓
x+W(θ,0,−k)

T−t

󰀔󰀦
(2.1.4)

Lemma 2.1.7. Assume Setting 2.1.6 then:

(i) it holds for all n ∈ N0, θ ∈ Θ that U θ : [0, T ]× Rd × Ω → R is a continuous random field.

(ii) it holds that for all θ ∈ Θ that σ
󰀃
U θ

󰀄
⊆ σ

󰀓󰀃
W(θ,V)󰀄

V∈Θ

󰀔
.

(iii) it holds that
󰀃
U θ

󰀄
θ∈Θ,

󰀃
Wθ

󰀄
θ∈Θ, are independent.

(iv) it holds for all n,m ∈, i, k, i, k ∈ Z, with (i, k) ∕= (i, k) that (U (θ,i,k))θ∈Θ and
󰀃
U (θ,i,k)

󰀄
θ∈Θ are

independent and,

(v) it holds that
󰀃
U θ

󰀄
θ∈Θ are identically distributed random variables.
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Proof. For (i) Consider that W(θ,0,−k)
T−t are continuous random fields and that g ∈ C(Rd,R), we have

that U θ(t, x) is the composition of continuous functions with m > 0 by hypothesis, ensuring no

singularities. Thus U θ : [0, T ]× Rd × Ω → R.

For (ii) observe that for all θ ∈ Θ it holds that Wθ is B
󰀃
[0, T ]⊗ σ

󰀃
W θ

󰀄󰀄
/B

󰀃
Rd

󰀄
-measurable, this,

and induction on prove item (ii).

Moreover observe that item (ii) and the fact that for all θ ∈ Θ it holds that
󰀓
W(θ,ϑ)

ϑ∈Θ

󰀔
, Wθ are

independent establish item (iii).

Furthermore, note that (ii) and the fact that for all i, k, i, k ∈ Z, θ ∈ Θ, with (i, k) ∕= (i, k) it holds

that
󰀃
W(θ,i,k,ϑ)

󰀄
ϑ∈Θ and

󰀃
W(θ,i,k,ϑ)

󰀄
ϑ∈Θ are independent establish item (iv).

Hutzenhaler (Hutzenthaler et al., 2020a, Corollary 2.5 ) establish item (v). This completes the

proof of Lemma 1.1.

Lemma 2.1.8. Assume Setting 2.1.6. Then it holds for θ ∈ Θ, s ∈ [0, T ], t ∈ [s, T ], x ∈ Rd that:

E
󰁫󰀏󰀏󰀏U θ

󰀓
t, x+Wθ

t−s

󰀔󰀏󰀏󰀏
󰁬
+ E

󰁫󰀏󰀏󰀏g
󰀓
x+Wθ

t−s

󰀔󰀏󰀏󰀏
󰁬
+

󰁝 T

s
E
󰁫󰀏󰀏󰀏U θ

󰀓
r, x+Wθ

r−s

󰀔󰀏󰀏󰀏
󰁬
dr < ∞ (2.1.5)

Proof. Note that (2.1.2), the fact that for all r, a, b ∈ [0,∞) it holds that (a+b)r 󰃑 2max{r−1,0}(ar+

br), and the fact that for all θ ∈ Θ it holds that E
󰀅
󰀂Wθ

T 󰀂
󰀆
< ∞, assure that for all s ∈ [0, T ],

t ∈ [s, T ], θ ∈ Θ it holds that:

E
󰁫󰀏󰀏󰀏g(x+Wθ

t−s)
󰀏󰀏󰀏
󰁬
󰃑 E

󰁫
L
󰀓
1 + 󰀂x+Wθ

t−s󰀂
p
E

󰀔󰁬

󰃑 L
󰁫
1 + 2max{p−1,0}

󰀓
󰀂x󰀂pE + E

󰁫󰀐󰀐󰀐Wθ
T

󰀐󰀐󰀐
p

E

󰁬󰀔󰁬
< ∞ (2.1.6)

We next claim that for all s ∈ [0, T ], t ∈ [s, T ], θ ∈ Θ it holds that:

E
󰁫󰀏󰀏󰀏U θ

󰀓
t, x+Wθ

t−s

󰀔󰀏󰀏󰀏
󰁬
+

󰁝 T

s
E
󰁫󰁫
U θ

󰀓
r, x+Wθ

r−s

󰀔󰀏󰀏󰀏
󰁬
dr < ∞ (2.1.7)

To prove this claim observe the triangle inequality and (2.1.4), demonstrate that for all s ∈ [0, T ],
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t ∈ [s, T ], θ ∈ Θ, it holds that:

E
󰁫󰀏󰀏󰀏U θ

󰀓
t, x+Wθ

t−s

󰀔󰀏󰀏󰀏
󰁬
󰃑 1

m

󰀥
m󰁛

i=1

E
󰁫󰀏󰀏󰀏g

󰀓
x+Wθ

t−s +W(θ,0,−i)
T−t

󰀔󰀏󰀏󰀏
󰁬󰀦

(2.1.8)

Now observe that (2.1.6) and the fact that (W θ)θ∈Θ are independent imply that for all s ∈ [0, T ],

t ∈ [s, T ], θ ∈ Θ, i ∈ Z it holds that:

E
󰁫󰀏󰀏󰀏g

󰀓
x+Wθ

t−s +W(θ,0,i)
T−t

󰀔󰀏󰀏󰀏
󰁬
= E

󰁫󰀏󰀏󰀏g
󰀓
x+Wθ

(t−s)+(T−t)

󰀔󰀏󰀏󰀏
󰁬
= E

󰁫󰀏󰀏󰀏g
󰀓
x+Wθ

T−s

󰀔󰀏󰀏󰀏
󰁬
< ∞ (2.1.9)

Combining (2.1.8) and (2.1.9) demonstrate that for all s ∈ [0, T ], t ∈ [s, T ], θ ∈ Θ it holds that:

E
󰁫󰀏󰀏󰀏U θ(t, x+Wθ

t−s)
󰀏󰀏󰀏
󰁬
< ∞ (2.1.10)

Finally observe that for all s ∈ [0, T ] θ ∈ Θ it holds that:

󰁝 T

s
E
󰁫󰀏󰀏󰀏U θ

󰀓
r, x+Wθ

r−s

󰀔󰀏󰀏󰀏
󰁬
󰃑 (T − s) sup

r∈[s,T ]
E
󰁫󰀏󰀏󰀏U θ

󰀓
r, x+Wθ

r−s

󰀔󰀏󰀏󰀏
󰁬
< ∞ (2.1.11)

Combining (??), (2.1.10), and (2.1.11) completes the proof of Lemma 2.1.8.

Corollary 2.1.8.1. Assume Setting 2.1.6, then we have:

(i) it holds that t ∈ [0, T ], x ∈ Rd that:

E
󰀅󰀏󰀏U0 (t, x)

󰀏󰀏󰀆+ E
󰁫󰀏󰀏󰀏g

󰀓
x+W(0,0,−1)

T−t

󰀔󰀏󰀏󰀏
󰁬
< ∞ (2.1.12)

(ii) it holds that t ∈ [0, T ], x ∈ Rd that:

E
󰀅
U0 (t, x)

󰀆
= E

󰁫
g
󰀓
x+W(0,0,−1)

T−t

󰀔󰁬
(2.1.13)

18



Proof. (i) is a restatement of Lemma 2.1.8 in that for all t ∈ [0, T ]:

E
󰀅󰀏󰀏U0 (t, x)

󰀏󰀏󰀆+ E
󰁫󰀏󰀏󰀏g

󰀓
x+W(0,0,−1)

T−t

󰀔󰀏󰀏󰀏
󰁬

< E
󰁫󰀏󰀏󰀏U θ

󰀓
t, x+Wθ

t−s

󰀔󰀏󰀏󰀏
󰁬
+ E

󰁫󰀏󰀏󰀏g
󰀓
x+Wθ

t−s

󰀔󰀏󰀏󰀏
󰁬
+

󰁝 T

s
E
󰁫󰀏󰀏󰀏U θ

󰀓
r, x+Wθ

r−s

󰀔󰀏󰀏󰀏
󰁬
dr

< ∞ (2.1.14)

Furthermore (ii) is a restatement of (4.0.7) with θ = 0, m = 1, and k = 1. This completes the

proof of Corollary 2.1.8.1.

2.2 Monte Carlo Approximations

Lemma 2.2.1. Let p ∈ (2,∞),n ∈ N, let (Ω,F ,P), be a probability space and let Xi : Ω → R,

i ∈ {1, 2, ..., n} be i.i.d. random variables with E[|X1|] < ∞. Then it holds that:

󰀣
E

󰀥󰀏󰀏󰀏󰀏󰀏E [X1]−
1

n

󰀣
n󰁛

i=1

Xi

󰀤󰀏󰀏󰀏󰀏󰀏

p󰀦󰀤 1
p

󰃑
󰀗
p− 1

n

󰀘 1
2

(E [|X1 − E [X1]|p)]
1
p (2.2.1)

Proof. The hypothesis that for all i ∈ {1, 2, ..., n} it holds that Xi : Ω → R ensures that:

E

󰀥󰀏󰀏󰀏󰀏󰀏E [X1]−
1

n

󰀣
n󰁛

i=1

Xi

󰀤󰀏󰀏󰀏󰀏󰀏

p󰀦
= E

󰀥󰀏󰀏󰀏󰀏󰀏
1

n

󰀣
n󰁛

i=1

(E [X1]− Xi)

󰀤󰀏󰀏󰀏󰀏󰀏

p󰀦
=

1

np
E

󰀥󰀏󰀏󰀏󰀏󰀏

n󰁛

i=1

(E [Xi]− Xi)

󰀏󰀏󰀏󰀏󰀏

p󰀦
(2.2.2)

This combined with the fact that for all i ∈ {1, 2, ..., n} it is the case that Xi : Ω → R are i.i.d.

random variables and e.g. (Rio, 2009, Theorem 2.1) (with p ↶ p, (Si)i∈{0,1,...,n} ↶ (
󰁓i

k=1(E[Xk]−

Xk)), (Xi)i∈{1,2,...,n} ↶ (E[Xi]−Xi)i∈{1,2,...,n} in the notation of (Rio, 2009, Theorem 2.1) ensures

that:
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󰀣
E

󰀥󰀏󰀏󰀏󰀏󰀏E [X1]−
1

n

󰀣
n󰁛

i=1

Xi

󰀤󰀏󰀏󰀏󰀏󰀏

p󰀦󰀤 2
p

=
1

n2

󰀣
E

󰀥󰀏󰀏󰀏󰀏󰀏

n󰁛

i=1

(E [Xi]− Xi)

󰀏󰀏󰀏󰀏󰀏

p󰀦󰀤 2
p

󰃑 p− 1

n2

󰀥
n󰁛

i=1

(E [|E [Xi]− Xi|p])
2
p

󰀦

=
p− 1

n2

󰁫
n (E [|E [X1]− X1|p])

2
p

󰁬
(2.2.3)

=
p− 1

n
(E [|E [X1]− X1|p])

2
p (2.2.4)

This completes the proof of the lemma.

Corollary 2.2.1.1. Let p ∈ [2,∞), n ∈ N, let (Ω,F ,P) be a probability space, and let Xi : Ω → R,

i ∈ {1, 2, ..., n} be i.i.d random variables with E [|X1|] < ∞. Then it holds that:

󰀣
E

󰀥󰀏󰀏󰀏󰀏󰀏E [X1]−
1

n

󰀣
n󰁛

i=1

Xi

󰀤󰀏󰀏󰀏󰀏󰀏

p󰀦󰀤 1
p

󰃑
󰀗
p− 1

n

󰀘 1
2

(E [|X1 − E [X1]|p])
1
p (2.2.5)

Proof. Observe that e.g. (Grohs et al., 2018, Lemma 2.3) and Lemma 2.3.1 establish (2.2.5).

Corollary 2.2.1.2. Let p ∈ [2,∞), n ∈ N, let (Ω,F ,P), be a probability space, and let Xi : Ω → R,

i ∈ {1, 2, ..., n}, be i.i.d. random variables with E[|X1|] < ∞, then:

󰀣
E

󰀥󰀏󰀏󰀏󰀏󰀏E [X1]−
1

n

󰀣
n󰁛

i=1

Xi

󰀤󰀏󰀏󰀏󰀏󰀏

p󰀦󰀤 1
p

󰃑 kp
√
p− 1

n
1
2

(E [|X1|p])
1
p (2.2.6)

Proof. This a direct consequence of Definition 2.1.5 and Corollary 2.2.1.1.

2.3 Bounds and Covnvergence

Lemma 2.3.1. Assume Setting 4.0.1. Then it holds for all t ∈ [0, T ], x ∈ Rd

󰀓
E
󰁫󰀏󰀏U0(t, x+W0

t )− E
󰀅
U0

󰀃
t, x+W0

t

󰀄󰀆󰀏󰀏p
󰁬󰀔 1

p

󰃑 m

m
1
2

󰀗󰀓
E
󰁫󰀏󰀏g

󰀃
x+W0

T

󰀄󰀏󰀏p
󰁬󰀔 1

p

󰀘
(2.3.1)
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Proof. For notational simplicity, let Gk : [0, T ]×Rd×Ω → R, k ∈ Z, satisfy for all k ∈ Z, t ∈ [0, T ],

x ∈ Rd that:

Gk(t, x) = g
󰀓
x+W(0,0,−k)

T−t

󰀔
(2.3.2)

Observe that the hypothesis that (Wθ)θ∈Θ are independent Brownian motions and the hypothesis

that g ∈ C(Rd,R) assure that for all t ∈ [0, T ],x ∈ Rd it holds that (Gk(t, x))k∈Z are i.i.d. random

variables. This and Corollary 2.2.1.2 (applied for every t ∈ [0, T ], x ∈ Rd with p ↶ p, n ↶ m,

(Xk)k∈{1,2,...,m} ↶ (Gk(t, x))k∈{1,2,...,m}), with the notation of Corollary 2.2.1.2 ensure that for all

t ∈ [0, T ], x ∈ Rd, it holds that:

󰀣
E

󰀥󰀏󰀏󰀏󰀏󰀏
1

m

󰀥
m󰁛

k=1

Gk(t, x)

󰀦
− E [G1(t, x)]

󰀏󰀏󰀏󰀏󰀏

p󰀦󰀤 1
p

󰃑 m

m
1
2

(E [|G1(t, x)|p])
1
p (2.3.3)

Combining this, with (1.16), (1.17), and item (ii) of Corollary 2.1.8.1 yields that:

󰀓
E
󰁫󰀏󰀏U0(t, x)− E

󰀅
U0(t, x)

󰀆󰀏󰀏p
󰁬󰀔 1

p

=

󰀣
E

󰀥󰀏󰀏󰀏󰀏󰀏
1

m

󰀥
m󰁛

k=1

Gk(t, x)

󰀦
− E [G1(t, x)]

󰀏󰀏󰀏󰀏󰀏

p󰀦󰀤 1
p

(2.3.4)

󰃑 m

m
1
2

󰀃
E
󰀅
|G1(t, x)|p

󰀆󰀄 1
p (2.3.5)

=
m

m
1
2

󰀗󰀓
E
󰁫󰀏󰀏g

󰀃
x+W1

T−t

󰀄󰀏󰀏p
󰁬󰀔 1

p

󰀘
(2.3.6)

This and the fact that W0 has independent increments ensure that for all n ∈, t ∈ [0, T ], x ∈ Rd it

holds that:

󰀓
E
󰁫󰀏󰀏U0

󰀃
t, x+W0

t

󰀄
− E

󰀅
U0

󰀃
t, x+W0

t

󰀄󰀆󰀏󰀏p
󰁬󰀔 1

p 󰃑 m

m
1
2

󰀗󰀓
E
󰁫󰀏󰀏g

󰀃
x+W0

T

󰀄󰀏󰀏p
󰁬󰀔 1

p

󰀘
(2.3.7)

This completes the proof of Lemma 2.3.1.
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Lemma 2.3.2. Assume Setting 2.1.6. Then it holds for all, t ∈ [0, T ], x ∈ Rd that:

󰀓
E
󰁫󰀏󰀏U0

󰀃
t, x+W0

t

󰀄
− u

󰀃
t, x+W0

t

󰀄󰀏󰀏p
󰁬󰀔 1

p 󰃑
󰀕

m

m
1
2

󰀖󰀓
E
󰁫󰀏󰀏g

󰀃
x+W0

T

󰀄󰀏󰀏p
󰁬󰀔 1

p
(2.3.8)

Proof. Observe that from Corollary 2.1.8.1 item (ii) we have:

E
󰀅
U0(t, x)

󰀆
= E

󰁫
g
󰀓
x+W(0,0,−1)

T−t

󰀔󰁬
(2.3.9)

This and (4.0.6) ensure that:

u(t, x)− E
󰀅
U0(t, x)

󰀆
= 0

E
󰀅
U0(t, x)

󰀆
− u (t, x) = 0 (2.3.10)

This, and the fact that W0 has independent increments, assure that for all, t ∈ [0, T ], x ∈ Rd, it

holds that:

󰀓
E
󰁫󰀏󰀏E

󰀅
U0

󰀃
t, x+W0

t

󰀄󰀆
− u

󰀃
t, x+W0

t

󰀄󰀏󰀏p
󰁬󰀔 1

p
= 0 󰃑

󰀓
E
󰁫󰀏󰀏u

󰀃
t, x+W0

t

󰀄󰀏󰀏p
󰁬󰀔

(2.3.11)

This along with (4.0.6) ensure that:

󰀓
E
󰁫󰀏󰀏E

󰀅
U0

󰀃
t, x+W0

t

󰀄󰀆
− u

󰀃
t, x+W0

t

󰀄󰀏󰀏p
󰁬󰀔 1

p
= 0 󰃑

󰀓
E
󰁫󰀏󰀏g

󰀃
x+W0

T

󰀄󰀏󰀏p
󰁬󰀔 1

p
(2.3.12)

Notice that the triangle inequality gives us:

󰀓
E
󰁫󰀏󰀏U0

󰀃
t, x+W0

t

󰀄
− u

󰀃
t, x+W0

t

󰀄󰀏󰀏p
󰁬󰀔 1

p 󰃑
󰀓
E
󰁫󰀏󰀏U0(t, x+W 0

t )− E
󰀅
U0(t, x+W0

t )
󰀆󰀏󰀏p

󰁬󰀔 1
p

+
󰀓
E
󰁫󰀏󰀏E

󰀅
U0

󰀃
t, x+W0

t

󰀄󰀆
− u

󰀃
t, x+W0

t

󰀄󰀏󰀏p
󰁬󰀔 1

p

(2.3.13)
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This, combined with (1.26), (1.21), the independence of Brownian motions, gives us:

󰀓
E
󰁫󰀏󰀏U0

󰀃
t, x+W0

t

󰀄
− u

󰀃
t, x+W0

t

󰀄󰀏󰀏p
󰁬󰀔 1

p 󰃑
󰀕

m

m
1
2

󰀖󰀓
E
󰁫󰀏󰀏g

󰀃
x+W0

T

󰀄󰀏󰀏p
󰁬󰀔 1

p

=

󰀕
m

m
1
2

󰀖󰀓
E
󰁫󰀏󰀏g

󰀃
x+W0

T

󰀄󰀏󰀏p
󰁬󰀔 1

p
(2.3.14)

This completes the proof of Lemma 2.3.2.

Lemma 2.3.3. Assume Setting 2.1.6. Then it holds for all t ∈ [0, T ], x ∈ Rd that:

󰀓
E
󰁫󰀏󰀏U0

󰀃
t, x+W0

t

󰀄
− u

󰀃
t, x+W0

t

󰀄󰀏󰀏p
󰁬󰀔 1

p 󰃑 L

󰀕
m

m
1
2

󰀖󰀣
sup

s∈[0,T ]
E
󰁫󰀃
1 +

󰀐󰀐x+W0
s

󰀐󰀐p
E

󰀄p󰁬
󰀤 1

p

(2.3.15)

Proof. Observe that Lemma 2.3.2 ensures that:

󰀓
E
󰁫󰀏󰀏U0

󰀃
t, x+W0

t

󰀄
− u

󰀃
t, x+W0

t

󰀄󰀏󰀏p
󰁬󰀔 1

p 󰃑
󰀕

m

m
1
2

󰀖󰀓
E
󰁫󰀏󰀏g

󰀃
x+W0

T

󰀄󰀏󰀏p
󰁬󰀔 1

p
(2.3.16)

Observe next that (4.0.6) ensures that:

󰀕
m

m
1
2

󰀖󰀓
E
󰁫󰀏󰀏g

󰀃
x+W0

T

󰀄󰀏󰀏p
󰁬󰀔 1

p 󰃑 L

󰀕
m

m
1
2

󰀖󰀓
E
󰁫󰀃
1 +

󰀐󰀐x+W0
T

󰀐󰀐p
E

󰀄p󰁬󰀔 1
p

(2.3.17)

Which in turn yields that:

L

󰀕
m

m
1
2

󰀖󰀓
E
󰁫󰀃
1 +

󰀐󰀐x+W0
T

󰀐󰀐p
E

󰀄p󰁬󰀔 1
p 󰃑 L

󰀕
m

m
1
2

󰀖󰀣
sup

s∈[0,T ]
E
󰁫󰀃
1 +

󰀐󰀐x+W0
s

󰀐󰀐p
E

󰀄p󰁬
󰀤 1

p

(2.3.18)

Combining 2.3.16, 2.3.17, and 2.3.18 yields that:

󰀓
E
󰁫󰀏󰀏U0

󰀃
t, x+W0

t

󰀄
− u

󰀃
t, x+W0

t

󰀄󰀏󰀏p
󰁬󰀔 1

p 󰃑
󰀕

m

m
1
2

󰀖󰀓
E
󰁫󰀏󰀏g

󰀃
x+W0

T

󰀄󰀏󰀏p
󰁬󰀔 1

p 󰃑

L

󰀕
m

m
1
2

󰀖󰀣
sup

s∈[0,T ]
E
󰁫󰀃
1 +

󰀐󰀐x+W0
s

󰀐󰀐p
E

󰀄p󰁬
󰀤 1

p

(2.3.19)

This completes the proof of Lemma 2.3.3.
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Corollary 2.3.3.1. Assume Setting 2.1.6. Then it holds for all t ∈ [0, T ], x ∈ Rd that:

󰀓
E
󰁫󰀏󰀏U0 (t, x)− u(t, x)

󰀏󰀏p
󰁬󰀔 1

p 󰃑 L

󰀕
m

m
1
2

󰀖󰀣
sup

s∈[0,T ]
E
󰁫
(1+󰀂x+W0

s

󰀐󰀐p
E

󰀄p󰁬
󰀤 1

p

(2.3.20)

Proof. Observe that for all t ∈ [0, T − t] and t ∈ [0, T ], and the fact that W 0 has independent

increments it is the case that:

u(t+ t, x) = E
󰁫
g
󰀓
x+W0

T−(t+t)

󰀔󰁬
= E

󰁫
g
󰀓
x+W0

(T−t)−t)

󰀔󰁬
(2.3.21)

And it is also the case that:

U θ(t+ t, x) =
1

m

󰀥
m󰁛

k=1

g
󰀓
x+W(θ,0,−k)

T−(t+t)

󰀔󰀦
=

1

m

󰀥
m󰁛

k=1

g
󰀓
x+W(θ,0,−k)

(T−t)−t

󰀔󰀦

Then, applying Lemma 2.3.3, applied for all t ∈ [0, T ], with L ↶ L, p ↶ p, p ↶ p, T ↶ (T − t) is

such that for all t ∈ [0, T ], t ∈ [0, T − t], x ∈ Rd we have:

󰀓
E
󰁫󰀏󰀏U0

󰀃
t+ t, x+W0

t

󰀄
− u

󰀃
t+ t, x+W0

t

󰀄󰀏󰀏p
󰁬󰀔 1

p

󰃑 L

󰀕
m

m
1
2

󰀖󰀣
sup

s∈[0,T−t]
E
󰁫󰀃
1 +

󰀐󰀐x+W0
s

󰀐󰀐p
E

󰀄p󰁬
󰀤 1

p

󰃑 L

󰀕
m

m
1
2

󰀖󰀣
sup

s∈[0,T ]
E
󰁫󰀃
1 +

󰀐󰀐x+W0
s

󰀐󰀐p
E

󰀄p󰁬
󰀤 1

p

(2.3.22)

Thus we get for all t ∈ [0, T ], x ∈ Rd, n ∈:

󰀓
E
󰁫󰀏󰀏U0 (t, x)− u (t, x)

󰀏󰀏p
󰁬󰀔 1

p
=

󰀓
E
󰁫󰀏󰀏U0

󰀃
t, x+W0

0

󰀄
− u

󰀃
t, x+W0

0

󰀄󰀏󰀏p
󰁬󰀔 1

p

󰃑 L

󰀕
m

m
1
2

󰀖󰀣
sup

s∈[0,T ]
E
󰁫󰀃
1 +

󰀐󰀐x+W0
s

󰀐󰀐p
E

󰀄p󰁬
󰀤 1

p

(2.3.23)

This completes the proof of Corollary 2.3.3.1.

Theorem 2.3.4. Let T, L, p, q, d ∈ [0,∞),m ∈ N, Θ =
󰁖

n∈N Zn, let gd ∈ C(Rd,R), and as-

sume that d ∈ N, t ∈ [0, T ], x = (x1, x2, ..., xd) ∈ Rd, v, w ∈ R and that max{|gd(x)|} 󰃑
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Ldp
󰀃
1 + Σd

k=1 |xk|
󰀄
, let (Ω,F ,P) be a probability space, let Wd,θ : [0, T ] × Ω → Rd, d ∈ N,

θ ∈ Θ, be independent standard Brownian motions, assume for every d ∈ N that
󰀃
Wd,θ

󰀄
θ∈Θ are

independent, let ud ∈ C([0, T ] × Rd,R), d ∈ N, satisfy for all d ∈ N, t ∈ [0, T ], x ∈ Rd that

E
󰁫
gx

󰀓
x+Wd,0

T−t

󰀔󰁬
< ∞ and:

ud (t, x) = E
󰁫
gd

󰀓
x+Wd,0

T−t

󰀔󰁬
(2.3.24)

Let Ud,θ
m : [0, T ] × Rd × Ω → R, d ∈ N, m ∈ Z, θ ∈ Θ, satisfy for all, d ∈ N, m ∈ Z, θ ∈ Θ,

t ∈ [0, T ], x ∈ Rd that:

Ud,θ
m (t, x) =

1

m

󰀥
m󰁛

k=1

gd

󰀓
x+Wd,(θ,0,−k)

T−t

󰀔󰀦
(2.3.25)

and for every d, n,m ∈ N let Cd,n,m ∈ Z be the number of function evaluations of ud(0, ·) and

the number of realizations of scalar random variables which are used to comput one realization of

Ud,0
m (T, 0) : Ω → R.

There then exists c ∈ R, and N : N× (0, 1] → N such that for all d ∈ N, ε ∈ (0, 1] it holds that:

sup
t∈[0,T ]

sup
x∈[−L,L]d

󰀓
E
󰁫󰀏󰀏󰀏ud(t, x)− Ud,0

N(d,󰂃)

󰀏󰀏󰀏
p󰁬󰀔 1

p 󰃑 󰂃 (2.3.26)

and:

Cd,N(d,ε),N(d,ε) 󰃑 cdcε−(2+δ) (2.3.27)

Proof. Throughout the proof let mp =
√
p− 1, p ∈ [2,∞), let Fd

t ⊆ F , d ∈ N, t ∈ [0, T ] satisfy for

all d ∈ N, t ∈ [0, T ] that:

Fd
t =

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

󰁗
s∈[t,T ] σ

󰀓
σ
󰀓
W d,0

r : r ∈ [0, s]
󰀔
∪ {A ∈ F : P(A) = 0}

󰀔
: t < T

σ
󰀓
σ
󰀓
W d,0

s : s ∈ [0, T ]
󰀔
∪ {A ∈ F : P(A) = 0}

󰀔
: t = T

(2.3.28)

Observe that (2.3.28) guarantees that Fd
t ⊆ F , d ∈ N, t ∈ [0, T ] satisfies that:

(I) it holds for all d ∈ N that {A ∈ F : P(A) = 0} ⊆ Fd
0
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(II) it holds for all d ∈ N, t ∈ [0, T ], that Fd
t =

󰁗
s∈(t,T ] Fd

s .

Combining item (I), item (II), (2.3.28) and (Hutzenthaler et al., 2020b, Lemma 2.17) assures us

that for all d ∈ N it holds that W d,0 : [0, T ]×Ω → Rd is a standard
󰀓
Ω,F ,P,

󰀃
Fd
t

󰀄
t∈[0,T ]

󰀔
-Brownian

Brownian motion. In addition (58) ensures that it is the case that for all d ∈ N , x ∈ Rd it holds

that [0, T ] × Ω ∋ (t,ω) 󰀁→ x + W d,0
t (ω) ∈ Rd is an

󰀃
Fd
t

󰀄
t∈[0,T ]

/B
󰀃
Rd

󰀄
-adapted stochastic process

with continuous sample paths.

This and the fact that for all d ∈ N, t ∈ [0, T ], x ∈ Rd it holds that ad(t, x) = 0, and the fact that

for all d ∈ N, t ∈ [0, T ], x,v ∈ Rd it holds that bd(t, x)v = v yield that for all d ∈ N, x ∈ Rd it holds

that [0, T ]× Ω ∋ (t,ω) 󰀁→ x+W d,0
t (ω) ∈ Rd satisfies for all t ∈ [0, T ] it holds P-a.s. that:

x+W d,0
t = x+

󰁝 t

0
0ds+

󰁝 t

0
dW d,0

s = x+

󰁝 t

0
ad(s, x+W d,0

s )ds+

󰁝 t

0
bd(s, x+W d,0

s )dW d,0
s

(2.3.29)

This and (Hutzenthaler et al., 2020b, Lemma 2.6) (applied for every d ∈ N, x ∈ Rd with d ↶

d, m ↶ d, T ↶ T , C1 ↶ d, C2 ↶ 0, F ↶ Fd, ξ ↶ x, µ ↶ ad,σ ↶ bd,W ↶ W d,0, X ↶
󰀓
[0, T ]× Ω ∋ (t,ω) 󰀁→ x+W d,0

t (ω) ∈ Rd
󰀔

in the notation of (Hutzenthaler et al., 2020b, Lemma

2.6) ensures that for all r ∈ [0,∞), d ∈ N, x ∈ Rd, t ∈ [0, T ] it holds that

E
󰁫󰀐󰀐󰀐x+W d,0

t

󰀐󰀐󰀐
r󰁬

󰃑 max{T, 1}
󰀕󰀓

1 + 󰀂x󰀂2
󰀔 r

2
+ (r + 1)d

r
2

󰀖
exp

󰀕
r(r + 3)T

2

󰀖
< ∞ (2.3.30)

This, the triangle inequality, and the fact that for all v,w ∈ [0,∞), r ∈ (0, 1], it holds that
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(v + w)r 󰃑 vr + wr assure that for all p ∈ [2,∞), d ∈ N, x ∈ Rd it holds that:

sup
s∈[0,T ]

󰀕
E
󰀗󰀓

1 +
󰀐󰀐󰀐x+W d,0

s

󰀐󰀐󰀐
q

E

󰀔p
󰀘󰀖 1

p

󰃑 1 + sup
s∈[0,T ]

󰀓
E
󰁫󰀐󰀐󰀐x+W d,0

s

󰀐󰀐󰀐
qp

E

󰁬󰀔 1
p

󰃑 1 + sup
s∈[0,T ]

󰀕
max{T, 1}

󰀕󰀓
1 + 󰀂x󰀂2E

󰀔 qp
2
+ (qp+ 1)d

qp
2

󰀖
exp

󰀕
qp(qp+ 3)T

2

󰀖󰀖 1
p

󰃑 1 + max{T
1
p , 1}

󰀕󰀓
1 + 󰀂x󰀂2E

󰀔 qp
2
+ (qp+ 1)d

qp
2

󰀖
exp

󰀕
q(qp+ 3)T

2

󰀖

󰃑 2

󰀕󰀓
1 + 󰀂x󰀂2E

󰀔 qp
2
+ (qp+ 1)d

qp
2

󰀖
exp

󰀕
q(qp+ 3)T

2
+

T

p

󰀖

󰃑 2

󰀕󰀓
1 + 󰀂x󰀂2E

󰀔 qp
2
+ (qp+ 1)d

qp
2

󰀖
exp

󰀕
[q(qp+ 3) + 1]T

2

󰀖
(2.3.31)

Given that for all d ∈ N, x ∈ [−L,L]d it holds that 󰀂x󰀂E 󰃑 Ld
1
2 , this demonstrates for all p ∈ [2,∞),

d ∈ N, it holds that:

L

󰀕
mp

m
1
2

󰀖󰀣
sup

x∈[−L,L]d
sup

s∈[0,T ]

󰀕
E
󰀗󰀓

1 +
󰀐󰀐󰀐x+W d,0

s

󰀐󰀐󰀐
q

E

󰀔p
󰀘󰀖 1

p

󰀤

󰃑 L

󰀕
mp

m
1
2

󰀖󰀣
sup

x∈[−L,L]d

󰀗󰀕󰀓
1 + 󰀂x󰀂2E

󰀔 qp
2
+ (qp+ 1)d

qp
2

󰀖
exp

󰀕
[q(qp+ 3) + 1]T

2

󰀖󰀘󰀤

󰃑 L

󰀕
mp

m
1
2

󰀖󰀓󰀃
1 + L2d

󰀄 qp
2 + (qp+ 1)d

qp
2

󰀔
exp

󰀕
[q(qp+ 3) + 1]T

2

󰀖
(2.3.32)

Combining this with Corollary 2.3.3.1 tells us that:

󰀓
E
󰁫󰀏󰀏󰀏ud(t, x)− Ud,0

m (t, x)
󰀏󰀏󰀏
p󰁬󰀔 1

p

󰃑 L

󰀕
mp

m
1
2

󰀖󰀣
sup

x∈[−L,L]d
sup

s∈[0,T ]

󰀕
E
󰀗󰀓

1 +
󰀐󰀐󰀐x+W d,0

s

󰀐󰀐󰀐
q

E

󰀔p
󰀘󰀖 1

p

󰀤

󰃑 L

󰀕
mp

m
1
2

󰀖󰀓󰀃
1 + L2d

󰀄 qp
2 + (qp+ 1)d

qp
2

󰀔
exp

󰀕
[q(qp+ 3) + 1]T

2

󰀖
(2.3.33)

This and the fact that for all d ∈ N and 󰂃 ∈ (0,∞) and the fact that mp 󰃑 2, it holds that for fixed

L, q, p, d, T there exists an ML,q,p,d,T ∈ R such that Nd,󰂃 󰃍 ML,q,p,d,T forces:

L

󰀵

󰀷 mp

N
1
2
d,󰂃

󰀶

󰀸
󰀓󰀃

1 + L2d
󰀄 qp

2 + (qp+ 1)d
qp
2

󰀔
exp

󰀕
[q(qp+ 3) + 1]T

2

󰀖
󰃑 󰂃 (2.3.34)
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This proves (2.3.26).

Note that Cd,Nd,󰂃,Nd,󰂃
is the number of function evaluations of ud(0, ·) and the number of realizations

of scalar random variables which are used to compute one realization of Ud,0
Nd,󰂃

(T, 0) : Ω → R.

Let 󰁪Nd,ε be the value of Nd,ε that causes equality in (2.3.34). In such a situation the number of

evaluations of ud(0, ·) do not exceed 󰁪Nd,ε. Each evaluation of ud(0, ·) requires at most one realization

of scalar random variables. Thus we do not exceed 2󰁪Nd,󰂃. Thus note that:

Cd,Nd,ε,Nd,ε
󰃑 2

󰀗
Lmp

󰀓󰀃
1 + L2d

󰀄 qp
2 + (qp+ 1)d

qp
2

󰀔
exp

󰀕
[q(qp+ 3) + 1]T

2

󰀖󰀘
ε−1 (2.3.35)

Note that other than d and ε everything on the right hand side is a constant.
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Chapter 3

That u is a viscosity solution

We can extend the work for the heat equation to generic parabolic partial differential equations.

We do this by first introducing viscosity solutions to Kolmogorov PDEs as given in Crandall &

Lions Crandall et al. (1992) and further extended, esp. in Beck et al. (2021a).

3.1 Some Preliminaries

We take work previously pioneered by Itô (1942a) and Itô (1942b), and then seek to re-apply

concepts first applied in Beck et al. (2021a) and Beck et al. (2021b).

Lemma 3.1.1. Let d,m ∈ N, T ∈ (0,∞). Let µ ∈ C1,2([0, T ] × Rd,Rd) and σ ∈ C1,2([0, T ] ×

Rd,Rd×m) satisfying that they have non-empty compact supports and let S = supp(µ)∪ supp(σ) ⊆

[0, T ] × Rd. Let (Ω,F ,P, (Ft)t∈[0,T ]) be a filtered probability space satisfying usual conditions. Let

W : [0, T ]×Ω → Rm be a standard (Ft)t∈[0,T ] -Brownian motion, and let X : [0, T ]×Ω → Rd be an

(Ft)t∈[0,T ]-adapted stochastic process with continuous sample paths satisfying for all t ∈ [0, T ] with

P-a.s. that:

Xt = X0 +

󰁝 t

0
µ(s,Xs)ds+

󰁝 t

0
σ(s,Xs)dWs (3.1.1)

It then holds that:

(i) [(P (X0 ∕∈ S) = 1) =⇒ (P (∀t ∈ [0, T ] : Xt = X0) = 1)]

(ii) [(P (X0 ∈ S) = 1) =⇒ (P (∀t ∈ [0, T ] : Xt ∈ S) = 1)]
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Proof. Assume that P(X0 ∕∈ S) = 1, meaning that the particle almost surely starts outside S. It

is then the case that P(∀t ∈ [0, T ] : 󰀂µ(t,X0)󰀂E + 󰀂σ(t,X0)󰀂F = 0) = 1 as the µ and σ are outside

their supports, and we integrate over zero over time.

It is then the case that:

Y :=
󰀓
[0, T ]× Ω ∋ (t,ω) 󰀁→ X0(ω) ∈ Rd

󰀔
(3.1.2)

is an (Ft)t∈[0,T ] adapted stochastic process with continuous sample paths satisfying that for all

t ∈ [0, T ] with P-almost surety that:

Yt = X0 +

󰁝 t

0
0ds+

󰁝 t

0
0dWs = X0 +

󰁝 t

0
µ(s,X0)ds+

󰁝 t

0
σ(s,X0)dWs

= X0 +

󰁝 t

0
µ(s,Ys)ds+

󰁝 t

0
σ(s,Ys)dWs (3.1.3)

Note that since µ ∈ C1,2([0, T ] × Rd,Rd) and σ ∈ C1,2([0, T ] × Rd,Rd×m), and since continuous

functions are locally Lipschitz, and since this is especially true in the space variable for µ and σ, the

fact that S is compact and continuous functions over compact sets are Lipschitz and bounded, and

(Karatzas and Shreve, 1991, Theorem 5.2.5) allows us to conclude that strong uniqueness holds,

that is to say:

P (∀t ∈ [0, T ] : Xt = X0) = P (∀t ∈ [0, T ] : Xt = Yt) = 1 (3.1.4)

establishing the case (i).

Assume now that P(X0 ∈ S) = 1 that is to say that the particle almost surely starts inside S. We

define τ : Ω → [0, T ] as τ = inf{t ∈ [0, T ] : Xt ∕∈ S}. τ is an (Ft)t∈[0,T ]-adapted stopping time. On

top of τ we can define Y : [0, T ] × Ω → Rd, for all t ∈ [0, T ], ω ∈ Ω as Yt(ω) = Xmin{t,τ}(ω). Y

is thus an (Ft)t∈[0,T ]-adapted stochastic process with continuous sample paths. Note however that

for t > τ it is the case 󰀂µ(t,Yt) + σ(t,Yt)󰀂E = 0 as we are outside their supports. For t < τ it is
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also the case that Yt = Xt. This yields with P-a.s. that:

Yt = Xmin{t,τ} = X0 +

󰁝 min{t,τ}

0
µ(s,Xs)ds+

󰁝 min{t,τ}

0
σ(s,Xs)dWs

= X0 +

󰁝 t

0
{0<s󰃑τ}µ(s,Xs)ds+

󰁝 t

0
{0<s󰃑τ}σ(s,Xs)dWs

= X0 +

󰁝 t

0
µ(s,Ys)ds+

󰁝 t

0
σ(s,Ys)dWs (3.1.5)

Thus another application of (Karatzas and Shreve, 1991, Theorem 5.2.5) and the fact that within

our compact support S, the continuous functions µ and σ are Lipschitz and hence locally Lipschitz,

and also bounded gives us:

P(∀t ∈ [0, T ] : Xt = Yt) = 1 (3.1.6)

Proving case (ii).

Lemma 3.1.2. Let d,m ∈ N, T ∈ (0,∞). Let g ∈ C2(Rd,R). Let µ ∈ C1,3([0, T ] × Rd,Rd) and

σ ∈ C1,3([0, T ]×Rd,Rd×m) have non-empty compact supports and let S = supp(µ) ∪ supp(σ). Let

(Ω,F ,P, (Ft)t∈[0,T ]) be a stochaastic basis and let W : [0, T ] × Ω → Rm be a standard (Ft)t∈[0,T ]-

Brownian motion. For every t ∈ [0, T ] , x ∈ Rd, let X t,x = (X t,x
s )s∈[t,T ] : [t, T ] × Ω → Rd be an

(Fs)s∈[t,T ]-adapted stochastic process with continuous sample paths satisfying for all s ∈ [t, T ] with

P-almost surety that:

X t,x
s = x+

󰁝 s

t
µ(r,X t,x

r )dr +

󰁝 s

t
σ(r,X t,x

s )dWr (3.1.7)

also let u : Rd → R satisfy for all t ∈ [0, T ], x ∈ Rd that:

u(t, x) = E
󰁫
g(X t,x

T )
󰁬

(3.1.8)

then it is the case that we have:

(i) u ∈ C1,2([0, T ]× Rd,R) and
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(ii) for all t ∈ [0, T ], x ∈ Rd that u(T, x) = g(x) and:

󰀕
∂

∂t
u

󰀖
(t, x) +

1

2
Trace (σ (t, x) [σ (t, x)]∗ (Hessx u) (t, x)) + 〈µ (t, x) , (∇xu) (t, x)〉 = 0

(3.1.9)

Proof. We break the proof down into two cases, inside the support S = supp(µ) ∪ supp(σ) and

outside the support: [0, T ]× (Rd \S).

For the case inside S. Note that we may deduce from Item (i) of Lemma 3.1.1 that for all t ∈ [0, T ],

x ∈ Rd \S it is the case that P(∀s ∈ [t, T ] : X t,x
s = x) = 1. Thus for all t ∈ [0, T ], x ∈ Rd \S we

have, deriving from (3.1.8):

u(t, x) = E
󰁫
g
󰀓
X t,x
T

󰀔󰁬
= g(x) (3.1.10)

Note that g(x) only has a space parameter and so derivatives w.r.t. t is 0. Inhereting from

the regularity properties of g and (3.1.10), we may assume for all t ∈ [0, T ], x ∈ Rd \ S, that

u|[0,T ]×(Rd\S) ∈ C1,2([0, T ]× (Rd \S)). Note that the hypotheses that µ ∈ C1,3([0, T ]×Rd,Rd) and

σ ∈ C1,3([0, T ] × Rd,Rd×m) allow us to apply Theorem 7.4.3, Theorem 7.4.5 and Theorem 7.5.1

from Da Prato and Zabczyk (2002) for t ∈ [0, T ], x ∈ Rd \S, to give us:

(i) u ∈ C1,2([0, T ]× Rd,R).

(ii)

0 =

󰀕
∂

∂t
u

󰀖
(t, x)

=

󰀕
∂

∂t
u

󰀖
(t, x) +

1

2
Trace (σ(t, x) [σ(t, x)]∗ (Hessx u) (t, x)) + 〈µ(t, x), (∇xu) (t, x)〉

(3.1.11)

Now consider the case within support S. Note that by hypothesis µ and σ must at-least be locally

Lipschitz. Thus (Karatzas and Shreve, 1991, Theorem 5.2.5) allows us to conclude that within S

the pair (µ,σ) for our our stochastic process X t,x
s defined in (3.1.7) must exhibit a strong uniqueness

property.
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Further note that Item (ii) from Lemma 3.1.1 tells us that:

P(∀t ∈ [0, T ] : X t,x
s ∈ S) = 1. (3.1.12)

Note that again the hypotheses that µ ∈ C1,3([0, T ]×Rd,Rd) and σ ∈ C1,3([0, T ]×Rd,Rd×m), and

g ∈ C2(Rd) allow us to apply Theorem 7.4.3, Theorem 7.4.5 and Theorem 7.5.1 from Da Prato and

Zabczyk (2002) for t ∈ [0, T ], x ∈ S, to give us:

(i) u ∈ C1,2([0, T ]× Rd,R).

(ii)

󰀕
∂

∂t
u

󰀖
(t, x) +

1

2
Trace (σ(t, x) [σ(t, x)]∗ (Hessx u) (t, x)) + 〈µ(t, x), (∇xu) (t, x)〉 = 0

(3.1.13)

Note that (3.1.7) and (3.1.8) together prove that u(T, x) = g(x). This completes the proof.

3.2 Viscosity Solutions

Definition 3.2.1 (Symmetric Matrices). Let d ∈ N. The set of symmetric matrices is denoted Sd

given by Sd = {A ∈ Sd : A∗ = A}.

Definition 3.2.2 (Upper semi-continuity). A function f : U → R is upper semi-continuous at x0

if for every ε > 0, there exists δ > 0 such that:

f(x) < f(x0) + ε for all x ∈ B (x0, δ) ∩ U (3.2.1)

Definition 3.2.3 (Lower semi-continuity). A function f : U → R is lower semi-continuous at x0

if for every ε > 0, there exists δ > 0 such that:

f(x) > f(x0)− ε for all x ∈ B (x0, δ) ∩ U (3.2.2)

Corollary 3.2.3.1. Given two upper semi-continuous functions f, g : Rd → R, their sum (f + g) :

Rd → R is also upper semi-continuous.
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Proof. From definitions, at any given x0 ∈ Rd, for any ε ∈ (0,∞) there exist neighborhoods U and

V around x0 such that:

(∀x ∈ U) (f(x) 󰃑 f(x0) + ε) (3.2.3)

(∀x ∈ V ) (g(x) 󰃑 g(x0) + ε) (3.2.4)

and hence:

(∀x ∈ U ∩ V ) (f(x) + g(x) 󰃑 f(x0) + g(x0) + 2ε) (3.2.5)

Corollary 3.2.3.2. Given an upper semi-continuous function f : Rd → R, it is the case that

(−f) : Rd → R is lower semi-continuous.

Proof. Let f : Rd → R be upper semi-continuous. At any given x0 ∈ Rd, for any ε ∈ (0,∞) there

exists a neighborhood U around x0 such that:

(∀x ∈ U) (f(x) 󰃑 f(x0) + ε) (3.2.6)

This also means that:

(∀x ∈ U) (−f(x) 󰃍 −f(x0)− ε)

(3.2.7)

This completes the proof.

Definition 3.2.4 (Degenerate Elliptic Functions). Let d ∈ N, T ∈ (0,∞), let O ⊆ Rd be a non-

empty open set, and let 〈·, ·〉 : Rd × Rd → R be the standard Euclidean inner product on Rd. G is

degenerate elliptic on (0, T )×O × R× Rd × Sd if and only if:

(i) G : (0, T )×O × R× Rd × Sd → R is a function, and

(ii) for all t ∈ (0, T ), x ∈ O, r ∈ R, p ∈ Rd, A,B ∈ Sd, with ∀y ∈ Rd: 〈Ay, y〉 󰃑 〈By, y〉 that
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G(t, x, r, p, A) 󰃑 G(t, x, r, p, B).

Remark 3.2.5. Let t ∈ (0, T ), x ∈ Rd, r ∈ R, p ∈ Rd, A ∈ Sd. Let u ∈ C1,2([0, T ] × Rd,R),

and let σ : Rd → Rd×d and µ : Rd → Rd be infinitely often differentiable. The function G :

(0, T )× Rd × R× Rd × Sd → R given by:

G(t, x, r, p, A) =
1

2
Trace (σ(x) [σ(x)]∗ (Hessx u) (t, x)) + 〈µ(t, x),∇xu (t, x)〉 (3.2.8)

where (t, x, u(t, x), µ(x),σ(x) [σ(x)]∗) ∈ (0, T )× Rd × R× Rd × Sd, is degenerate elliptic.

Lemma 3.2.6. Given a function G : (0, T ) × O × R × Rd × Sd → R that is degerate elliptic on

(0, T ) × O × R × Rd × Sd it is also the case that H : (0, T ) × O × R × Rd × Sd → R given by

H(t, x, r, p, A) = −G(t, x,−r,−p,−A) is degenerate elliptic on (0, T )×O × R× Rd × Sd.

Proof. Note that H is a function. Assume for y ∈ Rd it is the case that 〈Ay, y〉 󰃑 〈By, y〉 then

it is also the case by (??) that 〈−Ay, y〉 󰃍 〈−By, y〉 for y ∈ Rd. However since G is monotoically

increasing over the subset of (0, T ) ×O × R × Rd × Sd where 〈Ay, y〉 󰃑 〈By, y〉 then it is also the

case that H(t, x, r, p, A) = −G(t, x,−r,−p,−A) 󰃍 −G(t, x,−r,−p,−B) = H(t, x, r, p, B).

Definition 3.2.7 (Viscosity subsolutions). Let d ∈ N, T ∈ (0,∞), let O ⊆ Rd be a non-empty open

set, and let G : (0, T )×O×R×Rd×Sd → R be degenrate elliptic. Then we say that u is a viscosity

solution of
󰀃
∂
∂tu

󰀄
(t, x) +G (t, x, u(t, x), (∇xu) (t, x) , (Hessx u) (t, x)) 󰃍 0 for (t, x, ) ∈ (0, T ) ×O if

and only if there exists a set A such that:

(i) we have that (0, T )×O ⊆ A.

(ii) we have that u : A → R is an upper semi-continuous function from A to R, and

(iii) we have that for all t ∈ (0, T ), x ∈ O, φ ∈ C1,2 ((0, T )×O,R) with φ(t, x) = u(t, x) and

φ 󰃍 u that:

󰀕
∂

∂t
ud

󰀖
(t, x) +G (t, x,φ(t, x), (∇xφ) (t, x) , (Hessx φ) (t, x)) 󰃍 0 (3.2.9)
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Definition 3.2.8 (Viscosity supersolutions). Let d ∈ N, T ∈ (0,∞), let O ⊆ Rd be a non-

empty open set, and let G : (0, T ) × O × R × Rd × Sd → R be degenrate elliptic. Then we say

that u is a viscosity solution of
󰀃
∂
∂tu

󰀄
(t, x) + G (t, x, u(t, x), (∇xu) (t, x) , (Hessx u) (t, x)) 󰃑 0 for

(t, x, ) ∈ (0, T )×O if and only if there exists a set A such that:

(i) we have that (0, T )×O ⊆ A.

(ii) we have that u : A → R is an upper semi-continuous function from A to R, and

(iii) we have that for all t ∈ (0, T ), x ∈ O, φ ∈ C1,2 ((0, T )×O,R) with φ(t, x) = u(t, x) and

φ 󰃑 u that:

󰀕
∂

∂t
ud

󰀖
(t, x) +G (t, x,φ(t, x), (∇xφ) (t, x) , (Hessx φ) (t, x)) 󰃑 0 (3.2.10)

Definition 3.2.9 (Viscosity solution). Let d ∈ N, T ∈ (0,∞), O ⊆ Rd be a non-empty open set

and let G : (0, T )×O×R×Rd × Sd → R be degenerate elliptic. Then we say that ud is a viscosity

solution to
󰀃
∂
∂tud

󰀄
(t, x) +G(t, x, u(t, x),∇x(x, t), (Hessx ud)(t, x)) if and only if:

(i) u is a viscosity subsolution of
󰀃
∂
∂tud

󰀄
(t, x) + G(t, x, u(t, x),∇x(x, t), (Hessx ud)(t, x)) = 0 for

(t, x) ∈ (0, T )×O

(ii) u is a viscosity supersolution of
󰀃
∂
∂tud

󰀄
(t, x)+G(t, x, u(t, x),∇x(x, t), (Hessx ud)(t, x)) = 0 for

(t, x) ∈ (0, T )×O

Lemma 3.2.10. Let d ∈ N, T ∈ (0,∞), t ∈ (0, T ), let O ⊆ Rd be an open set, let r ∈ O,

φ ∈ C1,2 ((0, T )×O,R), let G : (0, T )×O×R×Rd×Sd → R be degenerate elliptic and let ud(0, T )×

O → R be a viscosity solution of
󰀃
∂
∂tud

󰀄
(t, x) + G (t, x, u(t, x), (∇xuD) (t, x) , (Hessx ud) (t, x)) 󰃍 0

for (t, x) ∈ (0, T )×O, and assume that u− φ has a local maximum at (t, r) ∈ (0, T )×O, then:

󰀕
∂

∂t
φ

󰀖
(t, r) +G (t, r, u(t, r), (∇xφ) (t, r) , (Hessx φ) (t, r)) 󰃍 0 (3.2.11)

Proof. That u is upper semi-continuous ensures that there exists as a neighborhood U around (t, r)

and ψ ∈ C1,2((0, T )×O,R) where:

(i) for all (t, x) ∈ (0, T )×O that u(t, r)− ψ(t, r) 󰃍 u(t, x)− ψ(t, x)
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(ii) for all (t, x) ∈ U that φ(t, x) = φ(t, x).

We therefore obtain that:

󰀕
∂

∂t
φ

󰀖
(t, r) +G (t, r, u(t, r), (∇x)(t, r), (Hessx φ)(t, r))

=

󰀕
∂

∂t
ψ

󰀖
(t, r) +G (t, r, u(t, r), (∇x)(t, r), (Hessx ψ)(t, r)) 󰃍 0 (3.2.12)

Lemma 3.2.11. Let d ∈ N, T ∈ (0,∞), let O ⊆ Rd be a non-empty open set, let un : (0, T )×O →

R, n ∈ N0 be functions, let Gn : (0, T )×O×R×Rd×Sd → R, n ∈ N be degenerate elliptic, assume

that G∞ is upper semi-continuous for all non-empty compact K ⊆ (0, T )×O × R× Rd × Sd that:

lim sup
n→∞

󰀥
sup

(t,x,r,p,A)∈K
(|un(t, x)− u0(t, x)|+ |Gn(t, x, r, p, A)−G0(t, x, r, p, A)|)

󰀦
= 0 (3.2.13)

and assume for all n ∈ N that un is a viscosity solution of:

󰀕
∂

∂t
un

󰀖
(t, x) +Gn (t, x, un(t, x), (∇xun)(t, x), (Hessx un)(t, x)) 󰃍 0 (3.2.14)

then u0 is a viscosity solution of:

󰀕
∂

∂t
u0

󰀖
(t, x) +Gn (t, x, u0(t, x), (∇xu0)(t, x), (Hessx u0)(t, x)) 󰃍 0 (3.2.15)

Proof. Let (to, xo) ∈ (0, T ) ×O. Let φ󰂃 ∈ C1,2((0, T ) ×O,R) satisfy for all 󰂃 ∈ (0,∞), s ∈ (0, T ),

y ∈ O that φ0(t0, x0) = u0(t0, x0), φ0(t0, x0) 󰃍 u0(t0, x0), and:

φε(s, y) = φo(s, y) + ε (|s− t0|+ 󰀂y − x0󰀂E) (3.2.16)

Let δ ∈ (0,∞) be such that {(s, y) ∈ Rd × R : max
󰀃
|s− t0|2, 󰀂y − x0󰀂2E

󰀄
󰃑 δ}. Note that this

and (3.2.27) then imply for all ε ∈ (0,∞) there exists an νε ∈ N such that for all n 󰃍 νε, and
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max (|s− t0|, 󰀂y − x0󰀂E) 󰃑 δ, it is the case that:

sup (|un(s, y)− u0(s, y)|) 󰃑
εδ

2
(3.2.17)

Note that this combined with (3.2.16) tells us that for all ε ∈ (0,∞), n ∈ N ∩ [ν󰂃,∞), s ∈ (0, T ),

y ∈ O, with |s− t0| < δ, 󰀂y − x0󰀂E 󰃑 δ, |s− t0|+ 󰀂y − x0󰀂E > δ that:

un(t0, x0)− φε(t0, x0) = un(t0, x0)− φ0(t0, x0) (3.2.18)

= un(t0, x0)− u0(t0, x0)

󰃍 −εδ

2

󰃍 un(s, y)− u0(s, y)− ε (|s− t0|+ 󰀂y − x0󰀂E)

󰃍 un(s, y)− φ0(s, y)− ε (|s− t0|+ 󰀂y − x0󰀂E)

= un(s, y)− φε(s, y) (3.2.19)

Note that Corollary 3.2.3.1 implies that for all 󰂃 ∈ (0,∞) and n ∈ N that un − φε is upper semi-

continuous. There therefore exists for all 󰂃 ∈ (0,∞) and n ∈ N, a τ εn ∈ (t0 − δ, t0 + δ) and a ρεn,

where 󰀂ρεn − x0󰀂 󰃑 δ such that:

un(τ
ε
n, ρ

ε
n)− φ󰂃(τ

ε
n, ρ

ε
n) 󰃍 un(s, y)− φε(s, y) (3.2.20)

By Lemma 3.2.10, it must be the case that for all ε ∈ (0,∞) and n ∈ N ∩ [νε,∞):

󰀕
∂

∂t
φε

󰀖
(τ εn, ρ

ε
n) +Gn (τ

ε
n, ρ

ε
n, un (τ

ε
n, ρ

ε
n) , (∇xφε) (τ

ε
n, ρ

ε
n) , (Hessx φε) (τ

ε
n, ρ

ε
n)) 󰃍 0 (3.2.21)
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Note however that (3.2.20) along with (3.2.16) and (3.2.27) yields that for all ε ∈ (0,∞) that:

lim sup
n→∞

[un(τ
ε
n, ρ

ε
n)− φ󰂃(τ

ε
n, ρ

ε
n)]

󰃍 lim sup
n→∞

[un(τ
ε
n, ρ

ε
n)− (φ0(τ

ε
n, ρ

ε
n) + ε (|τ εn − t0|+ 󰀂ρεn − x0󰀂E))]

󰃍 lim sup
n→∞

[un(τ
ε
n, ρ

ε
n)− u0(τ

ε
n, ρ

ε
n)− ε (|τ εn − t0|+ 󰀂ρεn − x0󰀂E)]

= lim sup
n→∞

[−ε (|τ εn − t0|+ 󰀂ρεn − x0󰀂E)] 󰃑 0 (3.2.22)

However note also that sinceG0 is upper semi-continuous, further the fact that, φ0 ∈ ((0, T )×O,R),

and then (3.2.27), and (3.2.16), imply for all ε ∈ (0,∞) we have that: lim supn→∞
󰀏󰀏󰀃 ∂

∂tφε

󰀄
(τ εn, ρ

ε
n)−

󰀃
∂
∂tφ0

󰀄
(t0, x0)

󰀏󰀏 =

0 and:

G0 (t0, x0,φ0 (t0, x0) , (∇xφ0) (t0, x0) , (Hessx φ0) (t0, x0) + IdRd)

= G0 (t0, x0, u0 (t0, x0) , (∇xφε) (t0, x0) , (Hessx φε) (t0, x0))

󰃍 lim sup
n→∞

[G0 (τ
ε
n, ρ

ε
n, un (τ

ε
n, ρ

ε
n) , (∇xφε) (τ

ε
n, ρ

ε
n) , (Hessx φε) (τ

ε
n, ρ

ε
n))] (3.2.23)

󰃍 lim sup
n→∞

[Gn (τ
ε
n, ρ

ε
n, un (τ

ε
n, ρ

ε
n) , (∇xφε) (τ

ε
n, ρ

ε
n) , (Hessx φε) (τ

ε
n, ρ

ε
n))] (3.2.24)

This with (3.2.20) assures for all 󰂃 ∈ (0,∞) that:

󰀕
∂

∂t
φ0

󰀖
(t0, x0) +G0 (t0, x0,φ0 (t0, x0) , (∇xφ0) (t0, x0) , (Hessx φ0) (t0, x0) + εIdRd) 󰃍 0 (3.2.25)

That G0 is upper semi-continuous then yields that:

󰀕
∂

∂t
φ0

󰀖
(t0, x0) +G0 (t0, x0,φ0 (t0, x0) , (∇xφ0) (t0, x0) , (Hessx φ0) (t0, x0) + εIdRd) 󰃍 0 (3.2.26)

This establishes (3.2.29) which establishes the lemma.

Corollary 3.2.11.1. Let d ∈ N, T ∈ (0,∞), let O ⊆ Rd be a non-empty open set, let un : (0, T )×

O → R, n ∈ N0 be functions, let Gn : (0, T )×O×R×Rd × Sd → R, n ∈ N0 be degenerate elliptic,
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assume that G0 is lower semi-continuous for all non-empty compact K ⊆ (0, T )×O×R×Rd × Sd

that:

lim sup
n→∞

󰀥
sup

(t,x,r,p,A)∈K
(|un(t, x)− u0(t, x)|+ |Gn(t, x, r, p, A)−G0(t, x, r, p, A)|)

󰀦
= 0 (3.2.27)

and assume for all n ∈ N that un is a viscosity solution of:

󰀕
∂

∂t
un

󰀖
(t, x) +Gn (t, x, un(t, x), (∇xun)(t, x), (Hessx un)(t, x)) 󰃑 0 (3.2.28)

then u0 is a viscosity solution of:

󰀕
∂

∂t
u0

󰀖
(t, x) +Gn (t, x, u0(t, x), (∇xu0)(t, x), (Hessx u0)(t, x)) 󰃑 0 (3.2.29)

Proof. Let vn : (0, T ) × O → R, n ∈ N0 and Hn : (0, T ) × O × R × Rd × Sd → R satisfy for

all n ∈ N0, t ∈ (0, T ), x ∈ O, r ∈ R, p ∈ Rd, A ∈ Sd that vn(t, x) = −un(t, x) and that

Hn(t, x) = −Gn(t, x,−r,−p,−A).

Note that Corollary 3.2.3.2 gives us that H0 is upper semi-continuous. Note also that since it is the

case that for all n ∈ N0, Gn is degenenerate elliptic then it is also the case by Lemma 3.2.6 that

Hn is degenerate elliptic for all n ∈ N0. These together with (3.2.28) ensure that for all n ∈ N, vn

is a viscosity solution of:

󰀕
∂

∂t
vn

󰀖
(t, x) +Hn (t, x, vn (t, x) , (∇xvn) (t, x) , (Hessx vn) (t, x)) 󰃍 0 (3.2.30)

This together with (3.2.27) establish that:

lim sup
n→∞

󰀥
sup

(t,x,r,p,A)∈K
(|un(t, x)− u0(t, x)|+ |Hn(t, x, r, p, A)−H0(t, x, r, p, A)|)

󰀦
= 0 (3.2.31)

This (3.2.30) and the fact that H0 is upper semi-continuous then establish that:

󰀕
∂

∂t
v0

󰀖
(t, x) +H0 (t, x, v0(t, x), (∇xv0)(t, x), (Hessx v0)(t, x)) 󰃍 0 (3.2.32)
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for (t, x) ∈ (0, T )×O. And hence v0 is a viscosity solution of:

󰀕
∂

∂t
u0

󰀖
(t, x) +H0 (t, x, u0(t, x), (∇xu0)(t, x), (Hessx u0)(t, x)) 󰃑 0 (3.2.33)

This completes the proof.

Corollary 3.2.11.2. Let d ∈ N, T ∈ (0,∞), let O ⊆ Rd be a non-empty set, let un : (0, T )×O → R,

n ∈ N0, be functions, let Gn : (0, T )×O×R×Rd × Sd → R, n ∈ N0 be degenerate elliptic, assume

also that G0 : (0, T )×O ×R×Rd × Sd → R be consinuous and assume for all non-empty compact

K ⊆ (0, T )×O × R× Rd × Sd it is the case that:

lim sup
n→∞

󰀥
sup

(t,x,r,p,A)∈K
(|Gn (t, x, r, p, A)−G0 (t, x, r, p, A)|+ |un (t, x)− u0 (t, x)|)

󰀦
= 0 (3.2.34)

and further assume for all n ∈ N, that un is a viscosity solution of:

󰀕
∂

∂t
un

󰀖
(t, x) +Gn (t, x, un (t, x) , (∇xun) (t, x) , (Hessx un) (t, x)) = 0 (3.2.35)

for (t, x) ∈ (0, T )×O, then we have that u0 is a viscosity solution of:

󰀕
∂

∂t
u0

󰀖
(t, x) +G0 (t, x, u0 (t, x) , (∇xu0) (t, x) , (Hessx u0) (t, x)) = 0 (3.2.36)

Proof. Note that Lemma 3.2.11 gives us that u0 is a viscosity solution of:

󰀕
∂

∂t
u0

󰀖
(t, x) +Gn (t, x, u0(t, x), (∇xu0)(t, x), (Hessx u0)(t, x)) 󰃍 0 (3.2.37)

for (t, x) ∈ (0, T )×O. Also note that Corollary 3.2.11.1 ensures that u0 is a viscosity solution of:

󰀕
∂

∂t
u0

󰀖
(t, x) +Gn (t, x, u0(t, x), (∇xu0)(t, x), (Hessx u0)(t, x)) 󰃑 0 (3.2.38)

Taken together these prove the corollary.

Lemma 3.2.12. For all a, b ∈ R it is the case that (a+ b)2 󰃑 2a2 + 2b2.
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Proof. Since for all a, b ∈ R it is the case that (a− b)2 󰃍 0 we then have that:

(a+ b)2 󰃑 (a+ b)2 + (a− b)2

󰃑 a2 + 2ab+ b2 + a2 − 2ab+ b2

= 2a2 + 2b2

This completes the proof.

Lemma 3.2.13. Let d,m ∈ N, T ∈ (0,∞). Let O ⊆ Rd be a non-empty compact set, and for all

n ∈ N0, µn ∈ C([0, T ]×O,R), σn ∈ C([0, T ]×O,Rd×m) assume also:

lim sup
n→∞

󰀥
sup

t∈[0,T ]
sup
x∈O

(󰀂µn(t, x)− µ0(t, x) 󰀂E + 󰀂σn(t, x)− σ0(t, x)󰀂F )
󰀦
= 0 (3.2.39)

Let (Ω,F ,R) be a stochastic basis and let W : [0, T ]× Ω → Rm be a standard (Ft)t∈[0,T ]-Brownian

motion for every t ∈ [0, T ], x ∈ O, let X t,x = (X t,x
s )s∈[t,T ] : [t, T ]×Ω → Rd be an (Fs)s∈[t,T ] adapted

stochastic process with continuous sample paths, satisfying for all s ∈ [t, T ] we have P-a.s.

X n,t,x
s = x+

󰁝 s

t
µn(r,X n,t,x

s )dr +

󰁝 s

t
σn(r,X n,t,x

r )dWr (3.2.40)

then it is the case that:

lim sup
n→∞

󰀥
sup

t∈[0,T ]
sup

s∈[t,T ]
sup
x∈O

󰀓
E
󰁫󰀐󰀐X n,t,x

s − X 0,t,x
s

󰀐󰀐2
E

󰁬󰀔󰀦
= 0 (3.2.41)

for (t, x) ∈ (0, T )× Rd.

Proof. Since O is compact, let L ∈ R be such that for all t ∈ [0, T ], x, y ∈ O it is the case that:

󰀂µ0(t, x)− µ0(t, y)󰀂E − 󰀂σ0(t, x) + σ0(t, y)󰀂F 󰃑 L󰀂x− y󰀂E (3.2.42)

Furthermore (Karatzas and Shreve, 1991, Theorem 5.2.9) tells us that:

sup
s∈[t,T ]

E
󰀅
󰀂X n,t,x

s 󰀂E
󰀆
< ∞ (3.2.43)

42



Note now that (3.2.40) tells us that:

X n,t,x
s − X 0,t,x

s =

󰁝 s

t
µn(r,X n,t,x

s )− µ0(r,X 0,t,x
s )dr +

󰁝 s

t
σn(r,X n,t,x

r )− σ0(r,X 0,t,x
r )dWr (3.2.44)

Minkowski’s Inequality applied to (3.2.44) then tells us for all n ∈ N, t ∈ [0, T ], s ∈ [t, T ], and

x ∈ O that:

󰀃
E
󰀅󰀐󰀐X n,t,x

s − X 0,t,x
s

󰀐󰀐
E

󰀆󰀄 1
2 󰃑

󰁝 s

t

󰀓
E
󰁫󰀐󰀐µn(r,X n,t,x

r )− µ0(r,X 0,t,x
r )

󰀐󰀐2
E

󰁬󰀔 1
2
dr+

󰀣
E

󰀥󰀐󰀐󰀐󰀐
󰁝 s

t
(σn(r,X n,t,x

r )− σ0(r,X 0,t,x
r ))dWr

󰀐󰀐󰀐󰀐
2

E

󰀦󰀤 1
2

(3.2.45)

Itô’s isometry applied to the second summand yields:

󰀃
E
󰀅󰀐󰀐X n,t,x

s − X 0,t,x
s

󰀐󰀐
E

󰀆󰀄 1
2 󰃑

󰁝 s

t

󰀓
E
󰁫󰀐󰀐µn(r,X n,t,x

r )− µ0(r,X 0,t,x
r )

󰀐󰀐2
E

󰁬󰀔 1
2
dr+

󰀕󰁝 s

t
E
󰁫󰀐󰀐σn(r,X n,t,x

r )− σ0(r,X 0,t,x)
󰀐󰀐2
F

󰁬
dr

󰀖 1
2

(3.2.46)

Applying Lemma 3.2.12 followed by the Cauchy-Schwarz Inequality then gives us for all n ∈ N,

t ∈ [0, T ], s ∈ [t, T ], and x ∈ O that:

E
󰀅
󰀂X n,t,x

s − X n,t,x
s 󰀂2E

󰀆
󰃑 2

󰀗󰁝 s

t

󰀓
E
󰁫󰀐󰀐µn(r,X n,t,x

r )− µ0(r,X 0,t,x
r )

󰀐󰀐2
E

󰁬󰀔 1
2
dr

󰀘2

+ 2

󰁝 s

t
E
󰁫󰀐󰀐σn(r,X nt,x

r )− σ0(r,X 0,t,x
r )

󰀐󰀐2
F

󰁬
dr

󰃑 2T

󰁝 s

t
E
󰁫󰀐󰀐µn(r,X n,t,x

r )− µ0(r,X 0,t,x
r )

󰀐󰀐2
E

󰁬
dr

+ 2

󰁝 s

t
E
󰁫󰀐󰀐σn(r,X n,t,x

r )− σ0(r,X 0,t,x
r )

󰀐󰀐2
F

󰁬
dr (3.2.47)

Applying Lemma 3.2.12 again to each summand then yields for all n ∈ N, t ∈ [0, T ] s ∈ [t, T ], and
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x ∈ O it is the case that:

E
󰁫󰀐󰀐X n,t,x

s − X 0,t,x
s

󰀐󰀐2
󰁬

󰃑 2T

󰁝 s

t

󰀓
2E

󰁫󰀐󰀐µn(r,X n,t,x
r )− µ0(r,X n,t,x

r )
󰀐󰀐2
E

󰁬
+ 2E

󰁫󰀐󰀐µ0(r,X n,t,x
r )− µ0(r,X 0,t,x

r )
󰀐󰀐2
E

󰁬󰀔
dr

+ 2

󰁝 2

t

󰀓
2E

󰁫󰀐󰀐σn(r,X n,t,x
r )− σ0(r,X n,t,x

r )
󰀐󰀐2
F

󰁬
+ 2E

󰀅󰀐󰀐σ0(r,X n,t,x
r )− σ0(r,X 0,t,x

r )
󰀐󰀐
F

󰀆󰀔
dr (3.2.48)

However assumption (3.2.42) then gives us that for all n ∈ N, t ∈ [0, T ], s ∈ [t, T ], and x ∈ O that:

E
󰁫󰀐󰀐X n,t,x

s − X 0,t,x
s

󰀐󰀐2
E

󰁬
󰃑 4L2(T + 1)

󰁝 s

t
E
󰁫󰀐󰀐X n,t,x

r − X 0,t,x
r

󰀐󰀐2
E

󰁬
dr

+ 4T (T + 1)

󰀥
sup

r∈[0,T ]
sup
y∈Rd

󰀓
󰀂µn(r, y)− µ0(r, y)󰀂2E + 󰀂σn(r, y)− σ0(r, y)󰀂2F

󰀔󰀦

Finally Gronwall’s Inequality with assumption (3.2.43) gives us for all n ∈ N, t ∈ [0, T ], s ∈ [t, T ],

x ∈ O that:

E
󰁫󰀐󰀐X n,t,x

s − X 0,t,x
s

󰀐󰀐2
E

󰁬

󰃑 4T (T + 1)

󰀥
sup

r∈[0,T ]
sup
y∈Rd

󰀃
󰀂µn(r, y)− µ0(r, y)󰀂2E + 󰀂σn(r, y)− σ)(r, y)󰀂2F

󰀄
󰀦
e4L

2T (T+1) (3.2.49)

Applying lim supn→∞ to both sides and applying (3.2.39) gives us for all n ∈ N, t ∈ [0, T ], s ∈ [t, T ],

x ∈ O that:

lim sup
n→∞

E
󰁫󰀐󰀐X n,t,x

s − X 0,t,x
s

󰀐󰀐2
E

󰁬

󰃑 lim sup
n→∞

󰀥
4T (T + 1)

󰀥
sup

r∈[0,T ]
sup
y∈Rd

󰀓
󰀂µn(r, y)− µ0(r, y)󰀂2E + 󰀂σn(r, y)− σ0(r, y)󰀂2F

󰀔󰀦
e4L

2T (T+1)

󰀦

󰃑 4T (T + 1)

󰀥
lim sup
n→∞

󰀥
sup

r∈[0,T ]
sup
y∈Rd

󰀓
󰀂µn(r, y)− µ0(r, y)󰀂2E + 󰀂σn(r, y)− σ0(r, y)󰀂2F

󰀔󰀦󰀦
e4L

2T (T+1)

󰃑 0

This completes the proof.

Lemma 3.2.14. Let d,m ∈ N, T ∈ (0,∞), let O ⊆ [0, T ] × Rd, let µ ∈ C([0, T ] × O,Rd) and

σ ∈ C([0, T ] × O,Rd×m) have compact supports such that supp(µ) ∪ supp(σ) ⊆ [0, T ] × O let
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g ∈ C(Rd,R). Let
󰀃
Ω,F ,P, (Ft)t∈[0,T ]

󰀄
be a stochastic basis, let W : [0, T ]×Ω → Rm be a standard

(Ft)t∈[0,T ] Brownian motion, for every t ∈ [0, T ], x ∈ Rd, let X t,x = (X t,x
s )s∈[t,T ] : [t, T ] × Ω → Rd

be an (Fs)s∈[t,T ] adapted stochastic process with continuous sample paths satisfying for all s ∈ [t, T ]

with F-a.s. that:

X t,x
s = x+

󰁝 s

t
µ
󰀃
r,X t,x

r

󰀄
dr +

󰁝 s

t
σ
󰀃
r,X t,x

r

󰀄
dWr (3.2.50)

and further let u : [0, T ]× Rd → R satisfy for all t ∈ [0, T ], x ∈ Rd that:

u(t, x) = E
󰁫
g
󰀓
X t,x
T

󰀔󰁬
(3.2.51)

Then u is a viscosity solution of:

󰀕
∂

∂t
u

󰀖
(t, x) +

1

2
Trace (σ(t, x) [σ(t, x)]∗ (Hessx u) (t, x)) + 〈µ(t, x), (∇xu) (t, x)〉 = 0 (3.2.52)

and where u(T, x) = g(x) for (t, x) ∈ (0, T )×O.

Proof. Let S = supp(µ) ∪ supp(σ) ⊆ [0, T ] × O be bounded in space by ρ ∈ (0,∞), as S ⊆

[0, T ] × (−ρ, ρ)d. This exists as the supports are compact and thus by Hiene-Börel are closed and

bounded. Let sn,mn ∈ C∞([0, T ]×Rd,Rd×n) where
󰁖

n∈N [supp(sn) ∪ supp(mn)] ⊆ [0, T ]× (−ρ, ρ)d

satisfy for n ∈ N that:

lim sup
n→∞

󰀥
sup

t∈[0,T ]
sup
x∈R

(󰀂mn(t, x)− µ(t, x)󰀂E + 󰀂sn − σ(t, x)󰀂F )
󰀦
= 0 (3.2.53)

We construct a set of degenerate elliptic functions, Gn : (0, T )×Rd×R×Rd×Sd → R with n ∈ N0

such that:

G0(t, x, r, p, A) =
1

2
Trace (σ(t, x)[σ(t, x)]∗A) + 〈µ(t, x), p〉 (3.2.54)

and

Gn(t, x, r, p, A) =
1

2
Trace (sn(t, x)[sn(t, x)]

∗A) + 〈µ(t, x), p〉 (3.2.55)
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Also let gn ∈ C∞(Rd,R) for n ∈ N satisfy for all n ∈ N that:

lim sup
n→∞

sup
t∈[0,T ]

sup
x∈Rd

(󰀂gn(x)− g(x)󰀂E) = 0 (3.2.56)

Further let Xn,t,x = (Xn,t,x
s )s∈[t,T ] : [t, T ]×Ω → Rd be an (Fs)s∈[t,T ]-adapted stochastic process with

continuous sample paths that satisfy:

X n,t,x
s = x+

󰁝 s

t
mn(r,X n,t,x

r )dr +

󰁝 s

t
sn(r,X n,t,x

r )dWr (3.2.57)

Finally let un : [0, T ]× Rd → R for n ∈ N be:

un = E
󰁫
gn

󰀓
Xn,t,x
T

󰀔󰁬
(3.2.58)

and:

u0 = E
󰁫
gn

󰀓
X t,x
T

󰀔󰁬
(3.2.59)

Note that (Beck et al., 2021b, Lemma 2.2) with g ↶ gk, µ ↶ mn, σ ↶ sn, X t,x ↶ X n,t,x gives us

un ∈ C1,2([0, T ]× Rd,R), and un(t, x) = gk(x) where:

󰀕
∂

∂t
un

󰀖
(t, x) +

1

2
Trace (sn(t, x) [sn(t, x)]

∗ (Hessx u
n) (t, x)) + 〈mn(t, x), (∇xu

n) (t, x)〉 = 0

(3.2.60)

And by Definitions 3.2.7, 3.2.8, and 3.2.9 we have that un is a viscolity solution of

󰀕
∂

∂t
un

󰀖
(t, x) +

1

2
Trace (sn(t, x) [sn(t, x)]

∗ (Hessx u
n) (t, x)) + 〈mn(t, x), (∇xu

n) (t, x)〉 = 0

(3.2.61)

for (t, x) ∈ (0, T )× Rd.

Since for all n ∈ N, it is the case that S = (supp(mn) ∪ supp(sn) ∪ supp(µ) ∪ supp(σ)) ⊆ [0, T ] ×

(−ρ, ρ)d and because of (3.2.50) of (3.2.57) we have that (Beck et al., 2021a, Lemma 3.2, Item (ii))

which yields that for all n ∈ N, t ∈ [0, T ], x ∈ Rd \ (−ρ, ρ)d that P(∀s ∈ [t, T ] : Xn,t,x
s = x = X t,x

s ) =
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1. This in turn shows that for all n ∈ N, x ∈ Rd \ (−ρ, ρ)d that un(t, x) = u0(t, x) which along with

(3.2.58) and (3.2.59) yields that:

sup
t∈[0,T ]

sup
x∈Rd

󰀅󰀏󰀏un(t, x)− u0(t, x)
󰀏󰀏󰀆 = sup

t∈[0,T ]
sup

x∈(−ρ,ρ)d

󰀅󰀏󰀏un(t, x)− u0(t, x)
󰀏󰀏󰀆

󰃑 sup
t∈[0,T ]

sup
x∈(−ρ,ρ)d

󰀓
E
󰁫󰀏󰀏󰀏gk

󰀓
Xn,t,x
T

󰀔
− g

󰀓
X t,x
T

󰀔󰀏󰀏󰀏
󰁬󰀔

(3.2.62)

Note that Lemma 3.2.13 allows us to conclude that:

lim sup
n→∞

󰀥
sup

t∈[0,T ]
sup

x∈(−ρ,ρ)d

󰀓
E
󰁫
󰀂Xn,t,x

T − X t,x
s 󰀂

󰁬󰀔󰀦
= 0 (3.2.63)

But then we have that (3.2.62) which yields that:

lim sup
n→0

󰀥
sup

t∈[0,T ]
sup
x∈Rd

󰀃󰀏󰀏un(t, x)− u0(t, x)
󰀏󰀏󰀄
󰀦
= 0 (3.2.64)

However now note that (3.2.55) and (3.2.61) thus yield that for n ∈ N0, u
n is a viscosity solution

to:

󰀕
∂

∂t
un

󰀖
(t, x) +Gn (t, x, un (t, x) , (∇xu

n) (t, x) , (Hessx u
n) (t, x)) = 0 (3.2.65)

But since we’ve established (3.2.53) we have that for a non-empty compact set C ⊆ (0, T ) × O ×

R× Rd × Sd that:

lim sup
n→∞

󰀥
sup

(t,x,r,p,A)∈C

󰀏󰀏Gn (t, x, r, p, A)−G0 (t, x, r, p, A)
󰀏󰀏
󰀦

󰃑 lim sup
n→∞

󰀥
sup

(t,x,r,p,A)∈C
󰀂µ(t, x)−mn(t, x)󰀂E󰀂 p󰀂E

󰀦

+ lim sup
n→∞

󰀥
sup

(t,x,r,p,A)∈C
󰀂σ(t, x) [σ(t, x)]∗ − sn(t, x) [sn(t, x)]

∗󰀂F 󰀂A󰀂F

󰀦
= 0 (3.2.66)

This, together with (3.2.64), (3.2.65) and Corollary 3.2.11.2 yields that u0 is also a viscosity solution

47



to:

󰀕
∂

∂t
u0
󰀖
(t, x) +G0

󰀃
t, x, u0(t, x),

󰀃
∇xu

0
󰀄
(t, x) , (Hessx) (t, x)

󰀄
= 0 (3.2.67)

Finally note that (3.2.53), (3.2.57), (3.2.59), and (3.2.67) yield that u is a viscosity solution of::

󰀕
∂

∂t
u

󰀖
(t, x) +

1

2
Trace (σ(t, x) [σ(t, x)]∗ (Hessx u) (t, x)) + 〈µ(t, x), (∇x) (t, x)〉 = 0 (3.2.68)

for (t, x) ∈ [0, T ]× Rd. Finally (3.2.50) and (3.2.51) allows us to conclude that for all x ∈ Rd it is

the case that u(T, x) = g(x). This concludes the proof.

Lemma 3.2.15. Let d,m ∈ N, T ∈ (0,∞), further let O ⊆ Rd be a non, empty compact set. Let ev-

ery r ∈ (0,∞) satisfy the condition that Or ⊆ O, where Or = {x ∈ O :
󰀃
󰀂x󰀂E 󰃑 r and {y ∈ Rd : 󰀂y − x󰀂E < 1

r} ⊆ O
󰀄
}

let g ∈ C(O,R), µ ∈ C([0, T ] × O,R), V ∈ C1,2([0, T ] × O, (0,∞)), assume that for all t ∈ [0, T ],

x ∈ O that:

sup

󰀕󰀝
󰀂µ(t, x)− µ(t, y)󰀂E + 󰀂σ(t, x)− σ(t, y)󰀂F

󰀂x− y󰀂E
: t ∈ [0, T ], x, y ∈ Or, x ∕= y

󰀞
∪ {0}

󰀖
< ∞

(3.2.69)

󰀕
∂

∂t
V

󰀖
(t, x) +

1

2
Trace (σ(t, x) [σ(t, x)]∗ (Hessx V ) (t, x)) + 〈µ(t, x), (∇xV ) (t, x)〉 󰃑 0 (3.2.70)

assume that supr∈(0,∞)

󰀅
infx∈O\Or

V (t, x)
󰀆
= ∞ and infr∈(0,∞)

󰁫
supt∈[0,T ] supx∈O\Or

󰀓
g(x)

V (T,x)

󰀔󰁬
= 0.

Let
󰀃
Ω,F ,P, (Ft)t∈[0,T ]

󰀄
be a stochastic basis and let W : [0, T ]×Ω → Rm be a standard (Ft)t∈[0,T ]-

Brownian motion, for every t ∈ [0, T ], x ∈ O let X t,x = (X t,x
s )s∈[t,T ] : [t, T ] × Ω → O be an

(Fs)s∈[t,T ]-adapted stochastic process with continuous sample paths satisfying that for all s ∈ [t, T ],

we have P-a.s. that:

X t,x
s = x+

󰁝 s

t
µ(r,X t,x

r )dr +

󰁝 s

t
σ(r,X t,x

n )dWr (3.2.71)
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also let u : [0, T ]× Rd → R satisfy for all t ∈ [0, T ], x ∈ Rd that:

u(t, x) = E
󰁫
u(T,X t,x

T )
󰁬

(3.2.72)

It is then the case that u is a viscosity solution to:

󰀕
∂

∂t
u

󰀖
(t, x) +

1

2
Trace (σ(t, x) [σ(t, x)]∗ (Hessx u) (t, x)) + 〈µ(t, x), (∇x) (t, x)〉 = 0 (3.2.73)

for (t, x) ∈ (0, T )×O with u(T, x) = g(x).

Proof. Let it be the case, that throughout the proof, for n ∈ N, we have that gn ∈ C(Rd,R),

compactly supported and that
󰀅󰁖

n∈N supp(gm)
󰀆
⊆ [0, T ]×O and further that:

lim sup
n→∞

󰀥
sup

t∈[0,T ]
sup
x∈O

󰀕
|gn(x)− g(x)|

V (T, x)

󰀖󰀦
= 0 (3.2.74)

Let is also be the case that for n ∈ N, mn ∈ C([0, T ]×Rd,Rd) and sn ∈ C([0, T ]×Rd,Rd×m) satisfy:

(i) for all n ∈ N:

sup
t∈[0,T ]

sup
x,y∈Rd,x ∕=y

󰀗
󰀂mn(t, y)−mn(t, y)󰀂E + 󰀂sn(t, x)− sn(t, y)󰀂E

󰀂x− y󰀂E

󰀘
= 0 (3.2.75)

(ii) for all all n ∈ N, t ∈ [0, T ], x ∈ O:

{V 󰃑n}(t, x) [󰀂mn(t, x)− µ(t, x)󰀂E + 󰀂sn(t, x)− σ(t, x)󰀂F ] = 0 (3.2.76)

and

(iii) for all n ∈ N, t ∈ [0, T ], x ∈ Rd \ {V 󰃑 n+ 1} that:

󰀂mn(t, x)󰀂E + 󰀂sn(t, x)󰀂F = 0 (3.2.77)

Next for every n ∈ N, t ∈ [0, T ] and x ∈ Rd let it be the case that Xn,t,x
s = (Xn,t,x

s )s∈[t,T ] : [t, t]×Ω. →
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Rd be a stochastic process with continuous sample paths satisfying:

Xn,t,x
s = x+

󰁝 s

t
mn(r,X

n,t,x
s )dr +

󰁝 s

t
sn(r,X

n,t,x
s )dWr (3.2.78)

Let un : [0, T ]× Rd → R, k ∈ N, n ∈ N0, satisfy for all n ∈ N, t ∈ [0, T ], x ∈ Rd that:

un,k(t, x) = E
󰁫
gk(X

n,t,x
T )

󰁬
(3.2.79)

and

u0,k(t, x) = E
󰁫
gk

󰀓
X t,x
T

󰀔󰁬
(3.2.80)

and finally let, for every n ∈ N, t ∈ [0, T ], x ∈ O, there be tt,xn : Ω → [t, T ] which satisfy

tt,xn = inf
󰀓
{s ∈ [t, T ],max{V (s,Xt,x

s ), V (s,X t,x
s )} 󰃍 n} ∪ {T}

󰀔
. We may apply Lemma 3.2.14 with

µ ↶ mn, σ ↶ sn, g ↶ gk to show that for all n, k ∈ N we have that un,k is a viscosity solution to:

󰀕
∂

∂t
un,k

󰀖
(t, x) +

1

2
Trace

󰀓
sn(t, x) [sn(t, x)]

∗
󰀓
Hessx u

n,k
󰀔
(t, x)

󰀔
+ 〈mn(t, x),

󰀓
∇x(u

n,k
󰀔
(t, x)〉 = 0

(3.2.81)

for (t, x) ∈ (0, T ) × Rd. But note that items (i)-(iii) and 3.2.78 give us that, in line with (Beck

et al., 2021a, Lemma 3.5):

P
󰀓
∀s ∈ [t, T ] : {s󰃑tt,xn }X

n,t,x
s = {s󰃑tt,xn }X

t,x
s

󰀔
= 1 (3.2.82)

Further this implies that for all n, k ∈ N, t ∈ [0, T ], x ∈ O that:

E
󰁫󰀏󰀏󰀏gk

󰀓
Xn,t,x
T )− gk(X t,x

T

󰀔󰀏󰀏󰀏
󰁬
= E

󰁫
{tt,xn <T}

󰀏󰀏󰀏gk(Xn,t,x
T )− gk(X t,x

T )
󰀏󰀏󰀏
󰁬

󰃑 2

󰀥
sup
y∈O

|gk(y)|
󰀦
P
󰀃
tt,xn < T

󰀄

Note that this combined with (Beck et al., 2021a, Lemma 3.1) implies for all t ∈ [0, T ], x ∈ O,
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n ∈ N we have that E
󰁫
V
󰀓
tt,xn ,X t,x

tt,xn

󰀔󰁬
󰃑 V (t, x), which then further proves that:

󰀏󰀏󰀏un,k(t, x)− u0,k(t, x)
󰀏󰀏󰀏 󰃑 2

󰀥
sup
y∈O

|gk(y)|
󰀦
P
󰀃
tt,xn < T

󰀄

󰃑 2

󰀥
sup
y∈O

|gk(y)|
󰀦
P
󰀓
V
󰀓
tt,xn ,X t,x

tt,xn

󰀔
󰃍 n

󰀔

󰃑 2

n

󰀥
sup
y∈O

|gk(y)|
󰀦
E
󰁫
V
󰀓
tt,xn ,X t,x

tt,xn

󰀔󰁬

󰃑 2

n

󰀥
sup
y∈O

|gk(y)|
󰀦
V (t, x, )

Together these imply that for all k ∈ N and compact K ⊆ [0, T ]×O:

lim sup
k→∞

󰀥
sup

(t,x)∈K

󰀓󰀏󰀏󰀏un,k(t, x)− u0,k(t, x)
󰀏󰀏󰀏
󰀔󰀦

= 0 (3.2.83)

But again note that since have that supr∈(0,∞)

󰁫
inft∈[0,T ],x∈Rd\Or

V (t, x)
󰁬
= ∞ and (3.2.76) tell us

that for all compact K ⊆ [0, T ]×O we have that:

lim sup
n→∞

󰀥
sup

(t,x)∈K
(󰀂mn(t, x)− µ(t, x)󰀂E + 󰀂sn(t, x)− σ(t, x)󰀂F )

󰀦
= 0 (3.2.84)

Note that (3.2.81), (3.2.83) and Corollary 3.2.11.2 tell us that for all k ∈ N we have that u0,k is a

viscosity solution to:

󰀕
∂

∂t
u0,k

󰀖
(t, x) +

1

2
Trace

󰀓
σ(t, x) [σ(t, x)]∗

󰀓
Hessx u

0,k
󰀔
(t, x)

󰀔
+ 〈µ(t, x),

󰀓
∇xu

0,k
󰀔
(t, x)〉 = 0

(3.2.85)

for (t, x) ∈ (0, T ) × O. However note that (3.2.71),(3.2.74), (3.2.80) prove that for all compact

K ⊆ [0, T ]×O we have:

lim sup
k→∞

󰀥
sup

(t,x)∈K

󰀏󰀏󰀏u0,k(t, x)− u(t, x)
󰀏󰀏󰀏

󰀦
= 0 (3.2.86)
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This together with (3.2.85), (3.2.74), Corollary 3.2.11.2 shows that u0 is a viscosity solution to:

󰀕
∂

∂t
u

󰀖
(t, x) +

1

2
Trace (σ(t, x) [σ(t, x)]∗ (Hessx u) (t, x)) + 〈µ(t, x), (∇xu)〉 = 0 (3.2.87)

for (t, x) ∈ (0, T )×O. By (3.2.73) we are ensured that for all x ∈ Rd we have that u(T, x) = g(x)

which together with proves the proposition.

3.3 Solutions, characterization, and computational bounds to the

Kolmogorov backward equations

Theorem 3.3.1 (Existence and characterization of ud). Let T ∈ (0,∞). Let (Ω,F ,P) be a prob-

ability space. Let σd ∈ C
󰀃
Rd,Rd×d

󰀄
and µd ∈ C

󰀃
Rd,Rd

󰀄
for d ∈ N, let ud ∈ C1,2

󰀃
[0, T ]× Rd,R

󰀄

satisfy for all d ∈ N, t ∈ [0, T ] , x ∈ Rd that:

󰀕
∂

∂t
ud

󰀖
(t, x) +

1

2
Trace (σd(x) [σd(x)]

∗ (Hessx ud) (t, x)) + 〈µd(x), (∇xud) (t, x)〉 = 0 (3.3.1)

let Wd : [0, T ] × Ω → Rd, d ∈ N be a standard Brownian motions and let X d,t,x : [t, T ] × Ω → Rd,

d ∈ N, t ∈ [0, T ], be a stochastic process with continuous sample paths satisfying for all d ∈ N,

t ∈ [0, T ], s ∈ [t, T ], x ∈ Rd, we have P-a.s. that:

X d,t,x = x+

󰁝 t

s
µd

󰀓
X d,t,x
r

󰀔
dr +

󰁝 t

s
σ
󰀓
X d,t,x
r

󰀔
dWd

r (3.3.2)

Then for all d ∈ N , t ∈ [0, T ], x ∈ R, it holds that:

ud(t, x) = E
󰁫
ud

󰀓
T,X d,t,x

t

󰀔󰁬
(3.3.3)

Furthermore ud is a viscosity solution to (3.3.1).

Proof. This is a consequence of Lemma 3.1.2 and 3.2.14.
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Corollary 3.3.1.1. Let T ∈ (0,∞), let (Ω,F ,P) be a probability space, let ud ∈ C1,2
󰀃
[0, T ]× Rd,R

󰀄
,

d ∈ N satisfy for all d ∈ N, t ∈ [0, T ], x ∈ Rd that:

󰀕
∂

∂t
ud

󰀖
(t, x) +

1

2

󰀃
∇2

xud
󰀄
(t, x) = 0 (3.3.4)

Let Wd : [0, T ] × Ω → Rd, d ∈ N be standard Brownian motions, and let X d,t,x : [t, T ] × Ω → Rd,

d ∈ N, t ∈ [0, T ], x ∈ Rd, be a stochastic process with continuous sample paths satisfying that for

all d ∈ N , t ∈ [0, T ], s ∈ [t, T ], x ∈ Rd we have P-a.s. that:

X d,t,x
s = x+

󰁝 s

t
dWd

r = x+Wd
t−s (3.3.5)

Then for all d ∈ N, t ∈ [0, T ], x ∈ Rd it holds that:

ud(t, x) = E
󰁫
ud

󰀓
T,X d,T,x

t

󰀔󰁬
(3.3.6)

Proof. This is a special case of Theorem 3.3.1. It is the case where σd(x) = Id, the uniform identity

function where Id is the identity matrix in dimension d for d ∈ N, and µd(x) = 0d,1 where 0d is the

zero vector in dimension d for d ∈ N.

Lemma 3.3.2. Let T ∈ (0,∞), let (Ω,F ,P), be a probability space, let αd ∈ C2
b

󰀃
Rd,R

󰀄
, and

α ∈ O
󰀃
x2

󰀄
for d ∈ N , be infinitey often differentiable function, let ud ∈ C1,2

󰀃
[0, T ]× Rd,R

󰀄
,

d ∈ N, satisfy for all d ∈ N, t ∈ [0, T ], x ∈ Rd, that:

󰀕
∂

∂t
ud

󰀖
(t, x) +

1

2

󰀃
∇2

xud
󰀄
(t, x) + αd (x)ud (t, x) = 0 (3.3.7)

Let Wd : [0, T ] × Ω → Rd be standard Brownian motions, and let X d,t,x : [t, T ] × Ω → Rd, d ∈ N,

t ∈ [0, T ], x ∈ Rd be a stochastic process with continuous sample paths satisfying that for all d ∈ N,

t ∈ [0, T ], s ∈ (t, T ], x ∈ Rd, we have P-a.s. that:

X d,t,x
s = x+

󰁝 t

s

1

2
dWd

r =
1

2
Wd

t−r (3.3.8)
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Then for all d ∈ N, t ∈ [0, T ], x ∈ Rd it holds that:

ud (t, x) = E
󰀗
exp

󰀕󰁝 T

t
αd

󰀓
X d,t,x
r

󰀔
dr

󰀖
ud

󰀓
T,X d,t,x

T

󰀔󰀘
(3.3.9)

Proof. Let vd : Rd → R be continuous. Throughout the proof let ud (t, x) = e−tαd(x)vd(t, x) for all

d ∈ N, t ∈ [0, T ], x ∈ Rd. For notational simplicity we will drop the d, t, x wherever it is obvious.

Therefore the derivatives become:

ut = −αe−tαv + e−tαvt (3.3.10)

1

2
∇2

xu =
1

2

󰀅
e−tα∇2

xv + 2〈∇xv,∇xe
−tα〉+ v∇2

xe
−tα

󰀆
(3.3.11)

This then renders (3.3.7) as:

✘✘✘✘✘−αe−tαv + e−tαvt +
1

2

󰀅
e−tα∇2

xv + 2〈∇xv,∇xe
−tα〉+ v∇2

xe
−tα

󰀆
+✘✘✘✘αe−tαv = 0

e−tαvt +
1

2

󰀅
e−tα∇2

xv − 2te−tα〈∇xv,∇xα〉+ v∇2
xe

−tα
󰀆
= 0

e−tαvt +
1

2

󰀅
e−tα∇2

xv − 2te−tα〈∇xv,∇xα〉 − tve−tα∇2
xα

󰀆
= 0

vt +
1

2

󰀅
∇2

xv − 2t〈∇xv,∇xα〉 − tv∇2
xα

󰀆
= 0

vt +
1

2

󰀅
∇2

xv − 2t〈∇xα,∇xv〉 − tv∇2
xα

󰀆
= 0

vt +
1

2
∇2

xv + 〈−t∇xα,∇xv〉 −
1

2
tv∇2

xα = 0 (3.3.12)

Let σ(t, x) = Id, i.e. the uniform identity function. Let µ(t, x) = −t∇xα for t ∈ [0, T ], x ∈ Rd, and

for fixed α. Let f(t, x, v) = −1
2 tv∇

2
xα for t ∈ [0, T ], x ∈ Rd.

Claim 3.3.3. It is the case that for for all x ∈ Rd and t ∈ [0, T ] that 〈x, µ(t, x)〉 󰃑 L (1 + 󰀂x󰀂E)

for some constant L ∈ (0,∞).

Proof. Since α has bounded first and second derivatives let:

B = max

󰀫
sup
x∈Rd

󰀂∇xα󰀂E , sup
x∈Rd

󰀏󰀏∇2
xα

󰀏󰀏
󰀬

(3.3.13)
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Note that we then have by the Cauchy-Schwarz inequality:

〈x, µ(t, x)〉 󰃑 󰀂〈x,−t∇xα〉󰀂E 󰃑 󰀂x󰀂E󰀂t∇xα󰀂E

󰃑 T (󰀂x󰀂EB)

󰃑 T (B+ d) 󰀂x󰀂E

= L󰀂x󰀂E 󰃑 L
󰀃
1 + 󰀂x󰀂2E

󰀄
(3.3.14)

It also follows that 󰀂σ(t, x)󰀂F =
√
d 󰃑 L 󰃑 L(1 + 󰀂x󰀂E).

Claim 3.3.4. It is the case that for all x, y ∈ Rd, and t ∈ [0, T ] that: 󰀂µ(t, x)−µ(t, y)󰀂E+󰀂σ(t, x)−

σ(t, y)󰀂E 󰃑 C (󰀂x󰀂E + 󰀂y󰀂E) (󰀂x− y󰀂E) for some constant C ∈ (0,∞).

Proof. The fact that for all x, y ∈ Rd and t ∈ [0, T ] it is the case that 󰀂σ(t, x)− σ(t, y)󰀂F = 0, the

fact that for all x, y ∈ Rd it is the case that (󰀂x󰀂E +󰀂y󰀂E)(󰀂x−y󰀂E) 󰃍 0 and (3.3.13) tells us that:

󰀂µ(t, x)− µ(t, y)󰀂E + 󰀂σ(t, x)− σ(t, y)󰀂F = 󰀂µ(t, x)− µ(t, y)󰀂E + 0

= 󰀂t∇xα(x)− t∇xα(y)󰀂E

󰃑 T󰀂∇xα(x)−∇xα(y)󰀂E

󰃑 2TB (3.3.15)

Now consider a function f ∈ C
󰀃
[0, T ]× Rd,Rd

󰀄
, where for all x, y ∈ Rd it is the case that f(x)−f(y) 󰃑

C (󰀂x󰀂E + 󰀂y󰀂E) (󰀂x+ y󰀂e). Note then that setting y = x+ h gives us:

󰀏󰀏󰀏󰀏
f(x+ h)− f(x)

h

󰀏󰀏󰀏󰀏 󰃑 C (󰀂x󰀂E + 󰀂x+ h󰀂E)

lim
h→0

󰀏󰀏󰀏󰀏
f(x+ h)− f(x)

h

󰀏󰀏󰀏󰀏 󰃑 lim
h→0

C (󰀂x󰀂E + 󰀂x+ h󰀂E)

|∇xf (x)| 󰃑 2C 󰀂x󰀂E = K 󰀂x󰀂E (3.3.16)

This suggests that∇xf ∈ O (x) and in particular that f ∈ O
󰀃
x2

󰀄
. However with f ↶ µ we first notice

that because µ 󰃑 2TB in (3.3.15) it must also be that case that µ ∈ O(1) by Corollary 1.1.25.1.

However since O(c) ⊆ O(x) ⊆ O
󰀃
x2

󰀄
by Corollary 1.1.25.2 it is also the case that µ ∈ O

󰀃
x2

󰀄
, and
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hence there exists a C satisfying the claim. This proves the claim.

Claim 3.3.5. It is the case that |f(t, x, v)− f(t, x, w)| 󰃑 L |v − w|

Proof. Note that by the absolute homogeneity property of norms we have:

|f(t, x, v)− f(t, x, w)| =
󰀏󰀏󰀏󰀏
1

2
tv∇2

xα− 1

2
tw∇2

xα

󰀏󰀏󰀏󰀏

=

󰀏󰀏󰀏󰀏
1

2
t∇2

xα

󰀏󰀏󰀏󰀏 |v − w|

󰃑 1

2
T
󰀏󰀏∇2

xα
󰀏󰀏 |v − w|

󰃑 1

2
TB |v − w|

󰃑 T (B+ d) |v − w|

= L |v − w| (3.3.17)

Note that we may rewrite (3.3.12) as:

󰀕
∂

∂t
v

󰀖
(t, x) +

1

2
Trace (σ (t, x) [σ (t, x)]∗ (Hessx v) (t, x)) + 〈µ (t, x) , (∇xv) (t, x)〉

+f (t, x, v (t, x)) = 0

We realize that (3.3.12) is a case of (Beck et al., 2021c, Corollary 3.9) where it is the case that:

u(t, x) ↶ v(t, x), where σd(x) = Id for all x ∈ Rd, d ∈ N, where µ(t, x) = −t∇xα for fixed α and

for all t ∈ [0, T ], x ∈ Rd, and where f (t, x, u (t, x)) = −1
2 tu∇

2
xα for fixed α and for all t ∈ [0, T ],

x ∈ Rd.

We thus have that there exists a unique, at most polynomially growing viscosity solution v ∈

C
󰀃
[0, T ]× Rd,R

󰀄
given as:

v(t, x) = E
󰀗
v
󰀓
T,Yt,x

T

󰀔
+

󰁝 T

t
f
󰀃
s,Yt,x

s , v
󰀃
s,Yt,x

s

󰀄󰀄
ds

󰀘
(3.3.18)

Let V : [0, T ] × Ω → Rm be a standard (Ft)t∈[0,T ]-Brownian motion. Note that this also implies
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that the Y in (3.3.18) is characterized as:

Yt,x
s = x+

󰁝 s

t
µ
󰀃
r,Yt,x

r

󰀄
dr +

󰁝 s

t
σ
󰀃
s,X t,x

r

󰀄
dVr (3.3.19)

With substitution this is then:

Yt,x
s = x+

󰁝 s

t
−r∇xα

󰀃
Yt,x
r

󰀄
dr +

󰁝 s

t
IdVr

Yt,x
s = x−

󰁝 s

t
r∇xα

󰀃
Yt,x
s

󰀄
dr + Vs−t

Note that our initial substitution tells us: v(t, x) = etα(x)u(t, x). And so we have that:

v(t, x) = E
󰀗
v
󰀓
T,X t,x

T

󰀔
+

󰁝 T

t
f
󰀃
s,X t,x

s , v
󰀃
s,X t,x

s

󰀄󰀄
ds

󰀘
(3.3.20)

v(t, x) = E
󰀗
v
󰀓
T,X t,x

T

󰀔
− 1

2

󰁝 T

t
tv

󰀃
s,X t,x

s

󰀄
∇2

xα
󰀃
X t,x
s

󰀄
ds

󰀘

etα(x)u(t, x) = E
󰀗
exp

󰁫
Tα

󰀓
X t,x
T

󰀔󰁬
u
󰀓
T,X t,x

T

󰀔
− 1

2

󰁝 T

t
t exp

󰀅
tα

󰀃
X t,x
s

󰀄󰀆
u
󰀃
t,X t,x

s

󰀄
∇2

xα
󰀃
X t,x
s

󰀄
ds

󰀘

u(t, x) = E
󰁫
exp

󰁫
Tα

󰀓
X t,x
T

󰀔
− tα(x)

󰁬
u
󰀓
T,X t,x

T

󰀔󰁬

− E
󰀗

1

2etα(x)

󰁝 T

t
t exp

󰀅
tα

󰀃
X t,x
s

󰀄󰀆
u
󰀃
t,X t,x

s

󰀄
∇2

xα
󰀃
X t,x
s

󰀄
ds

󰀘
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Chapter 4

Brownian motion Monte Carlo of the

non-linear case

We now seek to apply the techniques introduced in Chapter 2 on ??. To do so we need a variation

of Setting 4.0.1. To that end we define such a setting. Assume v, f,α from Lemma 3.3.2.

Definition 4.0.1 (Subsequent Setting). Let g ∈ C
󰀃
Rd,R

󰀄
be the function defined by:

g(x) = v(T, x) (4.0.1)

Let F : C
󰀃
[0, T ]× Rd,R

󰀄
→ C

󰀃
[, T ]× Rd,R

󰀄
be the functional defined as:

(F (v)) (t, x) = f (t, x, v (t, x)) (4.0.2)

Note also that by Claim 3.3.5 it is the case that:

|f (t, x, w)− f (t, x,w)| 󰃑 L |w −w| (4.0.3)

Note also that since f (t, x, 0) = 0, and since by (Beck et al., 2021a, Corollary 3.9), v is growing

at most polynomially, it is then the case that:

max {|f (t, x, 0)| , |g (x)|} 󰃑 L (1 + 󰀂x󰀂p) (4.0.4)
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Substituting (4.0.1) and (4.0.2) into (3.3.20) renders (3.3.20) as:

v(t, x) = E
󰀗
v
󰀓
T,X t,x

T

󰀔
+

󰁝 T

t
f
󰀃
s,X t,x

s , v
󰀃
s,X t,x

s

󰀄󰀄
ds

󰀘

v(t, x) = E
󰁫
v
󰀓
T,X t,x

T

󰀔󰁬
+ E

󰀗󰁝 T

t
f
󰀃
s,X t,x

s , v
󰀃
s,X t,x

s

󰀄󰀄
ds

󰀘

v(t, x) = E
󰁫
v
󰀓
T,X t,x

T

󰀔󰁬
+

󰁝 T

t
E
󰀅
f
󰀃
s,X t,x

s , v
󰀃
s,X t,x

s

󰀄󰀄
ds
󰀆

v (t, x) = E
󰁫
g
󰀓
X t,x
T

󰀔󰁬
+

󰁝 T

t
E
󰀅
(F (v))

󰀃
s,X t,x

s

󰀄󰀆
ds

Let d,m ∈ N, T,L, p ∈ [0,∞), p ∈ [2,∞) m = kp
√
p− 1, Θ =

󰁖
n∈N Zn, f ∈ C

󰀃
[0, T ]× Rd × R

󰀄
,

g ∈ C(Rd,R), let F : C
󰀃
[0, T ]× Rd,R

󰀄
→ C

󰀃
[0, T ]× Rd,R

󰀄
assume for all t ∈ [0, T ], x ∈ Rd that:

|f (t, x, w)− f (t, x,w)| 󰃑 L |w −w| max {|f (t, x, 0)| , |g(x)|} 󰃑 L
󰀃
1 + 󰀂x󰀂pE

󰀄
(4.0.5)

and let (Ω,F ,P) be a probability space, let uθ : Ω → [0, 1], θ ∈ Θ be i.i.d. random variables,

and suume for all θ ∈ Θ, r ∈ (0, 1) that P
󰀃
uθ 󰃑 r

󰀄
= r, let Uθ : [0, T ] × Ω → [0, T ], θ ∈ Θ

satisty for all t ∈ [0, T ], θ ∈ Θ that Uθ
t = t + (T − t) uθ, let Wθ : [0, T ] × Ω → Rd, θ ∈ Θ be

independent standard Brownian motions, let u ∈ C([0, T ]×Rd,R) satisfy for all t ∈ [0, T ], x ∈ Rd,

that E
󰀅󰀏󰀏g

󰀃
x+W0

T−t

󰀄󰀏󰀏󰀆+
󰁕 T
t E

󰀅
(F (u))

󰀃
s, x+W0

s−t

󰀄󰀆
< ∞ and:

u(t, x) = E
󰀅
g
󰀃
x+W0

T−t

󰀄󰀆
+

󰁝 T

t
E
󰀅
(F (u))

󰀃
s, x+W0

s−t

󰀄󰀆
ds (4.0.6)

and let let U θ : [0, T ]× Rd × Ω → R, θ ∈ Θ, n ∈ Z satisfy for all θ ∈ Θ, t ∈ [0, T ], x ∈ Rd, n ∈ N0

that:

U θ
n(t, x) =

N (n)

mn

󰀥
mn󰁛

k=1

g
󰀓
x+W(θ,0,−k)

T−t

󰀔󰀦

+

n−1󰁛

i=1

T − t

mn−i

󰀵

󰀷
mn−i󰁛

k=1

󰀓
F
󰀓
U

(θ,i,k)
i

󰀔󰀔󰀕
U (θ,i,k), x+W(θ,i,k)

U(θ,i,k)
t

󰀖󰀶

󰀸 (4.0.7)
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Part II

A Structural Description of Artificial

Neural Networks
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Chapter 5

Introduction and Basic Notions

We seek here to introduce a unified framework for artificial neural networks. This framework

borrows from the work presented in Grohs et al. (2018), and work done by Joshua Padgett, Benno

Kuckuk, and Arnulf Jentzen (unpublished). With this framework in place we wish to study ANNs

from a perspective of trying to see the number of parameters required to define a neural network to

solve certain PDEs. The curse of dimensionality here refers to the number of parameters required

to model PDEs and their growth (exponential or otherwise) as dimensions d increase.

5.1 The Basic Definition of ANNs

Definition 5.1.1 (Hadamard Product). Let m,n ∈ N. Let A,B ∈ Rm×n. We define the Hadamard

product ⊙ : Rm×n × Rm×n → Rm×n as:

A⊙B := [A⊙B]i,j = [A]i,j × [B]i,j ∀i, j (5.1.1)

Definition 5.1.2 (Rectifier Function). Let d ∈ N and x ∈ Rd. We denote by rd : Rd → Rd the

function given by:

rd(x) = (max{x1, 0},max{x2, 0}, ...,max{xd, 0}) (5.1.2)

Definition 5.1.3 (Multidimensionalization function). Let d ∈ N, and let f ∈ C (R,R). We denote

61



by Multdf : Rd → Rd the function which, for all x = (x1, x2, ..., xd) ∈ Rd is given by:

Multdf (x) =

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

f(x1)

f(x2)

...

f(xd)

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

(5.1.3)

Definition 5.1.4 (Artificial Neural Networks). Denote by NN the set given by:

NN =
󰁞

L∈N

󰁞

l0,l1,...,lL∈N

󰀣
L×

k=1

󰁫
Rlk×lk−1 × Rlk

󰁬󰀤
(5.1.4)

An artificial neural network is a tuple (ν,P,D, I,O,H,L,W) where ν ∈ NN and is equipped with

the following functions satisfying for all ν ∈
󰀓
×L

k=1

󰀅
Rlk×lk−1 × Rlk

󰀆󰀔
:

(i) P : NN → N denoting the number of parameters of ν, given by:

P(ν) =

L󰁛

k=1

lk (lk−1 + 1) (5.1.5)

(ii) D : NN → N denoting the number of layers of ν other than the input layer given by:

D(ν) = L (5.1.6)

(iii) I : NN → N denoting the width of the input layer, given by:

I(ν) = l0 (5.1.7)

(iv) O : NN → N denoting the width of the output layer, given by:

O(ν) = lL (5.1.8)

(v) H : NN → N0 denoting the number of hidden layers (i.e. layers other than the input and
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output), given by:

H(ν) = L− 1 (5.1.9)

(vi) L : NN →
󰁖

L∈NNL denoting the width of layers as an (L+ 1)-tuple, given by:

L(ν) = (l0, l1, l2, ..., lL) (5.1.10)

We will sometimes refer to this as the layer configuration or layer architecture of ν.

(vii) W i : NN → N0 denoting the width of layer i, given by:

W i(ν) =

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

li i 󰃑 L

0 i > L

(5.1.11)

Note that this implies that that ν = ((W1, b1), (W2, b2), ...(WL, bL)) ∈
󰀓
×L

k=1

󰀅
Rlk×lk−1 × Rlk

󰀆󰀔
.

Note that we also denote by Weight(·),ν : (Weightn,ν)n∈{1,2,...,L} : {1, 2, ..., L} →
󰀓󰁖

m,k∈NRm×k
󰀔

and also Bias(·),ν : (Biasn,ν){1,2,...,L} : {1, 2, ..., L} →
󰀃󰁖

m∈NRm
󰀄
the functions that satisfy for all

n ∈ {1, 2, ..., L} that Weighti,ν = Wi i.e. the weights matrix for neural network ν at layer i and

Biasi,ν = bi, i.e. the bias vector for neural network ν at layer i. We will often find it convenient

to denote the neural network as νl0,lL , where special emphasis needs to be paid to the size of the

input and output layer. Note that it is evident from (5.1.11) that W0

󰀃
νi,j

󰀄
= i and WL

󰀃
νi,j

󰀄
= j

for a neural network of depth L and i, j ∈ N.

Note that we will call l0 the starting width and lL the finishing width. Together they will be referred

to as end-widths.

Definition 5.1.5 (Activation Functions). We will denote by a ∈ C(Rd,Rd) the column matrix of
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functions given by:

a(x) =

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

σ1(x1)

σ2(x2)

...

σd(xd)

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

(5.1.12)

Where for each i, σi ∈ C(R,R). Each row represents a specific (not necessarily unique) activation

function.

Definition 5.1.6 (Realizations of Artificial Neural Networks with Activation Functions). Let Act ∈

C
󰀃
RL−1,RL−1

󰀄
, we denote by Ra : NN →

󰀓󰁖
k,l∈NC

󰀃
Rk,Rl

󰀄󰀔
the function satisfying for all L ∈ N,

l0, l1, ..., lL ∈ N, ν = ((W1, b1) , (W2, b2) , ..., (WL, bL)) ∈
󰀓
×L

k=1

󰀅
Rlk×lk−1 × Rlk

󰀆󰀔
, x0 ∈ Rl0 , x1 ∈

Rl1 , ..., xL−1 ∈ RlL−1 with ∀k ∈ {1, 2, ..., L} : xk = Multlk[a]k,1 (Wkxk−1 + bk) such that:

RAct (ν) ∈ C
󰀓
Rl0 ,RlL

󰀔
and (RAct (ν)) (x0) = WLxL−1 + bL (5.1.13)

We will often denote the realized neural network νl0,lL taking Rl0 to RlL as νl0,lL : Rl0 ↣ RlL or

simply as Rl0
ν↣ RlL where l0 and lL are obvious.

x

x

x

x

h

h

h

h

h

h

h

h

h

x

x

A neural network ν with L(ν) = (4, 5, 4, 2)

Lemma 5.1.7. Let ν ∈ NN, it is then the case that:

(i) L(ν) ∈ ND(ν)+1, and

(ii) for all a ∈ C (R,R), Ra ∈ C
󰀃
RI(ν),RO(ν)

󰀄
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Proof. By assumption:

ν ∈ NN =
󰁞

L∈N

󰁞

(l0,l1,...,lL)∈NL+1

󰀣
L×

k=1

󰁫
Rlk×lk−1 × Rlk

󰁬󰀤
(5.1.14)

This ensures that there exist l0, l1, ..., lL, L ∈ N such that:

ν ∈
󰀣

L×
j=1

󰁫
Rlj×lj−1 × Rlj

󰁬󰀤
(5.1.15)

This also ensures that L(ν) = (l0, l1, ..., lL) ∈ NL+1 = ND(ν)+1 and further that I(ν) = l0, O(ν) =

lL, and that D(ν) = L. Together with (5.1.13) this proves the lemma.

5.2 Composition and extensions of ANNs

The first operation we want to be able to do is to compose neural networks. This follows then

naturally to the idea of neural network extensions.

5.2.1 Composition

Definition 5.2.1 (Compositions of ANNs). We denote by (·) • (·) : {(ν1, ν2) ∈ NN×NN : I(ν1) =

O(ν1)} → NN the function satisfying for all L,M ∈ N, l0, l1, ..., lL,m0,m1, ...,mM ∈ N, ν1 =

((W1, b1) , (W2, b2) , ..., (WL, bL)) ∈
󰀓
×L

k=1

󰀅
Rlk×lk−1 × Rlk

󰀆󰀔
, and ν2 = ((W ′

1, b
′
1) , (W

′
2, b

′
2) , ... (W

′
M , b′M )) ∈

󰀓
×M

k=1 [R
mk×mk−1 × Rmk ]

󰀔
with l0 = I(ν1) = O(ν2) = mM and :

ν1 • ν2 =

󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀽

((W ′
1, b

′
1), (W

′
2, b

′
2), ...(W

′
M−1, b

′
M−1), (W1W

′
M ,W1b

′
M + b1), (W2, b2),

..., (WL, bL)) : (L > 1) ∧ (M > 1)

((W1W
′
1,W1b

′
1 + b1), (W2, b2), (W3, b3), ..., (WLbL)) : (L > 1) ∧ (M = 1)

((W ′
1, b

′
1), (W

′
2, b

′
2), ..., (W

′
M−1, b

′
M−1)(W1, b

′
M + b1)) : (L = 1) ∧ (M > 1)

((W1W
′
1,W1b

′
1 + b1)) : (L = 1) ∧ (M = 1)

(5.2.1)

Diagrammatically this is represented as Ri
νi,j2↣ Rj

νj,k1↣ Rk.
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A neural network ν with L(ν) = (4, 5, 4, 2)

Lemma 5.2.2. Let ν, µ ∈ NN be such that O(µ) = I(ν). It is then the case that:

(i) D(ν • µ) = D(ν) +D(µ)− 1

(ii) For all i ∈ {1, 2, ...,D(ν • µ)} that:

󰀓
Weighti,(ν•µ),Biasi,(ν•µ)

󰀔

=

󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰀽

󰀃
Weighti,µ,Biasi,µ

󰀄
: i < D(µ)

󰀓
Weight1,ν WeightD(µ),µ,Weight1,ν BiasD(µ),µ+Bias1,ν

󰀔
: i = D(µ)

󰀓
Weighti−D(µ)+1,ν Biasi−D(µ)+1,ν

󰀔
: i > D(µ)

Proof. This is a consequence of (5.2.1) which imply both (i) and (ii).

Lemma 5.2.3. Let ν1, ν2, ν3 ∈ NN satisfy that I(ν1) = O(ν2) and I(ν2) = O(ν3), it is then the

case

that:

(ν1 • ν2) • ν3 = ν1 • (ν2 • ν3) (5.2.2)

Proof. This is a consequence of (Grohs et al., 2023, Lemma 2.8) with Φ1 ↶ ν1, Φ2 ↶ ν2, and

Φ3 ↶ ν3, and the functions I ↶ I, L ↶ D and O ↶ O.

Definition 5.2.4 (Powers of ANNs). We denote by (·)•n : {ν ∈ NN : I(ν) = O(ν)} → NN, n ∈ N0,
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the function that satisfies for all n ∈ N0, ν ∈ NN, with I(ν) = O(ν) that:

ν•n =

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

󰀃
IO(ν), 0O ν,1

󰀄
∈ RO(ν)×O(ν) × RO(ν) : n = 0

ν •
󰀃
ν•(n−1)

󰀄
: n ∈ N

(5.2.3)

Diagrammatically this can be represented as

n−times󰁽 󰂀󰁿 󰁾

Ri νi,i↣ Ri νi,i↣ ...
νi,i↣ Ri where I(ν) = O(ν).

5.2.2 Extensions

Often we need to be able to extend one neural network to be the same depth as another, hence the

extension operation.

Definition 5.2.5 (Extensions of ANNs). Let L ∈ N, µ ∈ NN satisfy that I(µ) = O(µ). We denote

by EL,µ : {µ ∈ NN : (D(ν) 󰃑 L and O(ν) = I(µ))} → NN the function satisfying for all ν ∈ NN

with D(ν) 󰃑 L and O(ν) = I(µ) that:

EL,µ(ν) =
󰀓
µ•(L−D(ν))

󰀔
• ν (5.2.4)

Lemma 5.2.6. Let µ, ν ∈ NN with L ∈ N. It is then the case that:

(i) D
󰀃
EL,µ(ν)

󰀄
= D (ν) + [(L−D (ν)) · D (µ)− (L−D (ν)− 1)]− 1

5.3 Parallelization of ANNs

Definition 5.3.1 (Parallelization of ANNs of same length). Let n ∈ N, we then denote by:

⊟n
i=1 : {(ν1, ν2, ..., νn) ∈ NNn : D(ν1) = D(ν2) = ... = D(νn)} → NN (5.3.1)
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the function satisfying for all L ∈ N, ν1, ν2, ..., νn ∈ NN and L = D(ν1) = D(ν2) = ... = D(νn) that:

⊟n
i=1νi =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

Weight1,ν1 0 0 · · · 0

0 Weight1,ν2 0 · · · 0

0 0 Weight1,ν3 0

...
...

...
. . .

...

0 0 0 . . . Weight1,νn

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

,

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

Bias1,ν1

Bias1,ν2

Bias1,ν3
...

Bias1,νn

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

,

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

Weight2,ν1 0 0 · · · 0

0 Weight2,ν2 0 · · · 0

0 0 Weight3,ν2 · · · 0

...
...

...
. . .

...

0 0 0 · · · Weight2,νn

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

,

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

Bias2,ν1

Bias2,ν2

Bias2,ν3
...

Bias2,νn

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

, ...,

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

WeightL,ν1 0 0 · · · 0

0 WeightL,ν2 0 · · · 0

0 0 WeightL,ν3 · · · 0

...
...

...
. . .

...

0 0 0 · · · WeightL,νn

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

,

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

BiasL,ν1

BiasL,ν2

BiasL,ν3
...

BiasL,νn

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

(5.3.2)

For the case where two neural networks ν1, ν2 are parallelized it is convenient to write ν1 ⊟ ν2.

Diagrammatically this can be represented as: R
󰁓n

i=1 I(νi)
⊟n

i=1νi↣ R
󰁓n

i=1 O(νi). Or alternatively as

R
󰁓n

i=1 I(νi)
ν
󰁓n

i=1 I(νi),
󰁓n

i=1 O(νi)

↣ R
󰁓n

i=1 O(νi).

Remark 5.3.2. Given n,L ∈ N, ν1, ν2, ..., νn ∈ NN such that L = D(ν1) = D(ν2) = ... = D(νn) it

is then the case, as seen from (5.3.2) that:

⊟n
i=1νi ∈

󰀣
L×

k=1

󰁫
R(

󰁓n
j=1 Wk(νj))×(

󰁓n
j=1 Wk−1(νj)) × R(

󰁓n
j=1 Wk(νj))

󰁬󰀤
(5.3.3)

As a consequence:

P(⊟n
i=1νi) =

n󰁛

i=1

P (νi) =

L󰁛

k=1

󰀵

󰀷
n󰁛

j=1

Wk (νj)×
n󰁛

j=1

Wk−1 (νj) +

n󰁛

j=1

Wk (νj)

󰀶

󰀸 (5.3.4)
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Lemma 5.3.3. Given two neural networks ν1, ν2 ∈ NN. It is the case that Ra(ν1⊟ν2) = Ra(ν2⊟ν1).

Proof. Note that this is a consequence of the commutativity of summation in the exponents of

(5.3.3).

Lemma 5.3.4. Let a ∈ C (R,R), n ∈ N, and ν = ⊟n
i=1νi satisfy the condition that D(ν1) =

D(ν2) = ... = D(νn). It is then the case that Ra (ν) ∈ C
󰀓
R
󰁓n

i=1 I(νi),R
󰁓n

i=1 O(νi)
󰀔

Proof. Let L = D(ν1), and let li,0, li,1...li,L ∈ N satisfy for all i ∈ {1, 2, ..., n} that L(νi) =

(li,0, li,1, ..., li,L). Furthermore let ((Wi,1, bi,1) , (Wi,2, bi,2) , ..., (Wi,L, bi,L)) ∈
󰀓
×L

j=1

󰀅
Rli,j×li,j−1 × Rli,j

󰀆󰀔

satisfy for all i ∈ {1, 2, ..., n} that:

νi = ((Wi,1, bi,1) , (Wi,2, bi,2) , ..., (Wi,L, bi,L)) (5.3.5)

Let αj ∈ N with j ∈ {0, 1, ..., L} satisfy that αj =
󰁓n

i=1 li,j and let ((A1, b1) , (A2, b2) , ..., (AL, bL)) ∈
󰀓
×L

j=1 [R
αj×αj−1 × Rαj ]

󰀔
satisfy that:

⊟n
i=1νi = ((A1, b1) , (A2, b2) , ..., (AL, bL)) (5.3.6)

See Remark 5.3.2. Let xi,0, xi,1, ..., xi,L−1 ∈
󰀃
Rli,0 × Rli,1 × · · ·× Rli,L−1

󰀄
satisfy for all i ∈ {1, 2, ..., n}

k ∈ N ∩ (0, L) that:

xi,j = Mult
li,j
a (Wi,jxi,j−1 + bi,j) (5.3.7)

Note that (5.3.6) demonstrates that I (⊟n
i=1νi) = α0 and O (⊟n

i=1νi) = αL. This and Item(ii) of

Lemma 5.1.7, and the fact that for all i ∈ {1, 2, ..., n}it is the case that I(νi) = li,0 and O(νi) = li,L

ensures that:

Ra (⊟n
i=1) ∈ C (Rα0 ,RαL) = C

󰀓
R
󰁓n

i=1 li,0 ,R
󰁓n

i=1 li,L
󰀔

= C
󰀓
R
󰁓n

i=1 I(νi),R
󰁓n

i=1 O(νi)
󰀔

This proves the lemma.
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5.4 Affine Linear Transformations as ANNs

Definition 5.4.1. Let m,n ∈ N, W ∈ Rm×n, b ∈ Rm.We denote by AffW,b ∈ (Rm×n × Rm) ⊆ NN

the neural network given by AffW,b = (W, b).

Lemma 5.4.2. Let m,n ∈ N, W ∈ Rm×n, b ∈ Rm. It is then the case that:

(i) L(AffW,b) = (n,m) ∈ N2.

(ii) for all a ∈ C(R,R) it is the case that Ra(AffW,b) ∈ C(Rm,Rm)

(iii) for all a ∈ C(R,R), x ∈ Rn we have (Ra(AffW,b))(x) = Wx+ b

Proof. Note that (i) is a consequence of Definition 5.1.4 and 5.4.1. Note next that AffW,b = (W, b) ∈

(Rm×n × Rm) ⊆ NN. Note that (5.1.13) then tells us that Ra(AffW,b) = Wx + b which in turn

proves (ii) and (iii)

Remark 5.4.3. Given W ∈ Rm×n, and b ∈ Rm×1, it is the case that according to Definition (5.1.5)

we have: P(AffW,b) = m× n+m

Lemma 5.4.4. Let ν ∈ NN. It is then the case that:

(i) For all m ∈ N, W ∈ Rm×O(ν)

L(AffW,B •ν) =
󰀃
W0(ν),W1(ν), ...,WD(ν)−1(ν),m

󰀄
∈ ND(ν)+1 (5.4.1)

(ii) For all a ∈ C(R,R), m ∈ N, W ∈ Rm×O(ν), B ∈ Rm, we have that Ra(AffW,B •ν) ∈

C
󰀃
RI(ν),Rm

󰀄
.

(iii) For all a ∈ C(R,R), m ∈ N, W ∈ Rm×O(ν), B ∈ Rm, x ∈ RI(ν) that:

(R (AffW,b •ν)) (x) = W (Ra (ν)) (x) + b (5.4.2)

(iv) For all n ∈ N, W ∈ RI(ν)×n, b ∈ RI(ν) that:

L(ν • AffW,b) =
󰀃
n,W1(ν),W2(ν), ...,WD(ν)(ν)

󰀄
∈ ND(ν)+1 (5.4.3)
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(v) For all a ∈ C(R,R), n ∈ N, W ∈ RI(ν)×n, b ∈ RI(ν) that Ra (ν • AffW,b) ∈ C
󰀃
Rn,RO(ν)

󰀄
and,

(vi) For all a ∈ C(R,R), n ∈ N, W ∈ RI(ν)×n, b ∈ RI(ν), x ∈ Rn that:

(Ra (ν • AffW,b)) (x) = (Ra (ν)) (Wx+ b) (5.4.4)

Proof. From Lemma 5.4.2 we see that Ra(AffW,b) ∈ C(Rn,Rm) given by Ra(AffW,b) = Wx + b.

This and (Grohs et al., 2023, Proposition 2.6) prove (i)− (vi).

5.5 Sums of ANNs

Definition 5.5.1 (The Cpy Network). We define the neural network, Cpyn,k ∈ NN for n, k ∈ N as

the neural network given by:

Cpyn,k = Aff [Ik Ik ··· Ik]T ,0nk
(5.5.1)

Lemma 5.5.2. Let n, k ∈ N and let Cpyn,k ∈ NN, it is then the case for all n, k ∈ N that:

(i) D
󰀃
Cpyn,k

󰀄
= 1

(ii) P
󰀃
Cpyn,k

󰀄
= nk2 + nk

Proof. Note that (i) is a consequence of Definition 5.4.1 and (ii) follows from the structure of

Cpyn,k.

Definition 5.5.3 (The Sm Network). We define the neural network Sumn,k for n, k ∈ N as the

neural network given by:

Sumn,k = Aff [Ik Ik ··· Ik],0k (5.5.2)

Lemma 5.5.4. Let n, k ∈ N and Sumn,k ∈ NN, it is then the case for all n, k ∈ N that:

(i) D (Sumn,k) = 1

(ii) P
󰀃
Cpyn,k

󰀄
= nk2 + k
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Proof. (i) is a consequence of Definition 5.4.1 and (ii) follows from the structure of Sumn,k.

Definition 5.5.5 (Sum of ANNs of the same depth and same end widths). Let u, v ∈ Z with

u 󰃑 v. Let νu, νu+1, ..., νv ∈ NN satisfy for all i ∈ N∩ [u, v] that D(νi) = D(νu), I(νi) = I(νu), and

O(νi) = O(νu). We then denote by ⊕n
i=uνi or alternatively νu ⊕ νu+1 ⊕ . . .⊕ νv the neural network

given by:

⊕v
i=uνi :=

󰀓
Sumv−u+1,O(ν2) • [⊟v

i=uνi] • Cpy(v−u+1),I(ν1)

󰀔
(5.5.3)

Or more concisely R
󰁓v

i=u I(νi)
⊕v

i=uνi↣ R
󰁓v

i=u O(νi)

5.5.1 Neural Network Sum Properties

Lemma 5.5.6. Let ν1, ν2 ∈ NN satisfy that D(ν1) = D(ν2) = L, I(ν1) = I(ν2), and O(ν1) = O(ν2),

and L(ν1) = (l1,1, l1,2, ...l1,L) and L (ν2) = (l2,1, l2,2, ..., l2,L) it is then the case that:

P (ν1 ⊕ ν2) = P
󰀕
Aff[IO(ν2)

IO(ν2)],0O(ν2)
• [ν1 ⊟ ν2] • Aff[II(ν1)

II(ν1)]
T
,02·I(ν1)

󰀖
(5.5.4)

󰃑 2l22,L + l2,L (1 + l1,L−1 + l2,L−1) + P (ν1) + P (ν2) + 2l21,0 + l1,0 (2 + l1,1 + l2,1)

Proof. Observe, that by Definition 5.3.1 and Remark 5.4.2 we get that:

P (ν1 ⊟ ν2) = P(ν1) + P(ν2)

=

L󰁛

k=1

[(Wk (ν1) +Wk (ν2)) (Wk−1 (ν1) +Wk−1 (ν2)) + (Wk (ν1) +Wk (ν2))] (5.5.5)

Note also that by Remark 5.4.3 we have that:

P
󰀓
Aff[IO(ν2)

IO(ν2)],0O(ν2)

󰀔
= 2 (O(ν2))

2 +O(ν2) (5.5.6)

and:

P
󰀕
Aff

[II(ν1)
II(ν1)]

T
,02·I(ν1)

󰀖
= 2 (I(ν1))2 + 2 I(ν1) (5.5.7)
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Finally note that (Grohs et al., 2023, Proposition 2.6, Item (iv)) tells us that given neural networks

ν1, ν2 ∈ NN, with I(ν1) = O(ν2), and L(νk) =
󰀃
lk,1, lk,2, ..., lk,D(φk)

󰀄
it is then the case that:

P (ν1 • ν2) 󰃑 P (ν1) + P (ν2) + l1,1l2,L−1 (5.5.8)

Combining (5.5.13),(??),(5.5.7), and (5.5.8) gives us that:

P
󰀕
(ν1 ⊟ ν2) • Aff[II(ν1)

II(ν1)]
T
,02·I(ν1)

󰀖

󰃑 P(ν1 ⊟ ν2) + P
󰀕
Aff

[II(ν1)
II(ν1)]

T
,02·I(ν1)

󰀖
+ (l1,1 + l2,1) · I(ν1)

= P (ν1) + P (ν2) + 2l21,0 + 2l1,0 + (l1,1 + l2,1) l1,0

= P (ν1) + P (ν2) + 2l21,0 + l1,0 (2 + l1,1 + l2,1) (5.5.9)

And again that:

P
󰀕
Aff[IO(ν2)

IO(ν2)],0O(ν2)
• [ν1 ⊟ ν2] • Aff[II(ν1)

II(ν1)]
T
,02·I(ν1)

󰀖

󰃑 P
󰀓
Aff[IO(ν2)

IO(ν2)],0O(ν2)

󰀔
+ P

󰀕
(ν1 ⊟ ν2) • Aff[II(ν1)

II(ν1)]
T
,02·I(ν1)

󰀖

+ l2,L · (l1,L−1 + l2,L−1)

󰃑 2l22,L + l2,L

+ P (ν1) + P (ν2) + 2l21,0 + l1,0 (2 + l1,1 + l2,1)

+ l2,L · (l1,L−1 + l2,L−1)

= 2l22,L + l2,L (1 + l1,L−1 + l2,L−1) + P (ν1) + P (ν2) + 2l21,0 + l1,0 (2 + l1,1 + l2,1)

This completes the lemma.

Lemma 5.5.7. Let ν1, ν2 ∈ NN satisfy that D(ν1) = D(ν2) = L, I(ν1) = I(ν2), and O(ν1) = O(ν2),

and L(ν1) = (l1,1, l1,2, ...l1,L) and L (ν2) = (l2,1, l2,2, ..., l2,L) it is then the case that:

D (ν1 ⊟ ν2) = L (5.5.10)

Proof. Note that D
󰀃
Cpyn,k

󰀄
= 1 = D (Sumn,k) for all n, k ∈ N. Note also that D (ν1 ⊟ ν2) =
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D (ν1) = D (ν2) and that for ν, µ ∈ NN it is the case that D (ν • µ) = D (ν) +D (µ)− 1. Thus:

D (ν1 ⊕ ν1) = (ν1 ⊕ ν2) = D
󰀕
Aff[IO(ν2)

IO(ν2)],0O(ν2)
• [ν1 ⊟ ν2] • Aff[II(ν1)

II(ν1)]
T
,02·I(ν1)

󰀖

= L

Lemma 5.5.8. Let ν1, ν2 ∈ NN, such that D(ν1) = D(ν2) = L, I(ν1) = I(ν2) = l0, and O(ν1) =

O(ν2) = lL. It is then the case that R(ν1 ⊕ ν2) = R(ν2 ⊕ ν1), i.e. the realized sum of ANNs of the

same depth and same end widths is commutative.

Proof. Let ν1 = ((W1, b1), (W2, b2), ..., (WL, bL)) and let ν2 = ((W ′
1, b

′
1), (W

′
2, b

′
2), ..., (W

′
L, b

′
L)). Note

that Definition 5.3.1 then tells us that:

ν1 ⊟ ν2 =

󰀳

󰁅󰁃

󰀳

󰁅󰁃

󰀵

󰀹󰀷
W1 0

0 W ′
1

󰀶

󰀺󰀸 ,

󰀵

󰀹󰀷
b1

b′1

󰀶

󰀺󰀸

󰀴

󰁆󰁄 ,

󰀳

󰁅󰁃

󰀵

󰀹󰀷
W2 0

0 W ′
2

󰀶

󰀺󰀸 ,

󰀵

󰀹󰀷
b2

b′2

󰀶

󰀺󰀸

󰀴

󰁆󰁄 , ...,

󰀳

󰁅󰁃

󰀵

󰀹󰀷
WL 0

0 W ′
L

󰀶

󰀺󰀸 ,

󰀵

󰀹󰀷
bL

b′L

󰀶

󰀺󰀸

󰀴

󰁆󰁄

󰀴

󰁆󰁄

Note also that by Claims ?? and ?? and Definition 5.4.1 we know that:

Aff
[II(ν2)

II(ν2)]
T
,02 I(ν2),1

=

󰀳

󰁅󰁃

󰀵

󰀹󰀷
II(ν2)

II(ν2)

󰀶

󰀺󰀸 , 02 I(ν2),1

󰀴

󰁆󰁄 (5.5.11)

and:

Aff[IO(ν1)
IO(ν1)],02O(ν1),1

=

󰀕󰀗
IO(ν1) IO(ν1)

󰀘
, 02O(ν1),1

󰀖
(5.5.12)
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Applying Definition 5.2.1, specifically the second case, (5.5.3) and (??) yields that:

[ν1 ⊟ ν2] • Aff[II(ν2)
II(ν2)]

T
,02 I(ν2),1

=

󰀳

󰁅󰁃

󰀳

󰁅󰁃

󰀵

󰀹󰀷
W1 0

0 W ′
1

󰀶

󰀺󰀸

󰀵

󰀹󰀷
II(ν1)

II(ν1)

󰀶

󰀺󰀸 ,

󰀵

󰀹󰀷
b1

b′1

󰀶

󰀺󰀸

󰀴

󰁆󰁄 ,

󰀳

󰁅󰁃

󰀵

󰀹󰀷
W2 0

0 W ′
2

󰀶

󰀺󰀸 ,

󰀵

󰀹󰀷
b2

b′2

󰀶

󰀺󰀸

󰀴

󰁆󰁄 , ...,

󰀳

󰁅󰁃

󰀵

󰀹󰀷
WL 0

0 W ′
L

󰀶

󰀺󰀸 ,

󰀵

󰀹󰀷
bL

b′L

󰀶

󰀺󰀸

󰀴

󰁆󰁄

󰀴

󰁆󰁄

=

󰀳

󰁅󰁃

󰀳

󰁅󰁃

󰀵

󰀹󰀷
W1

W ′
1

󰀶

󰀺󰀸 ,

󰀵

󰀹󰀷
b1

b′1

󰀶

󰀺󰀸

󰀴

󰁆󰁄 ,

󰀳

󰁅󰁃

󰀵

󰀹󰀷
W2 0

0 W ′
2

󰀶

󰀺󰀸 ,

󰀵

󰀹󰀷
b2

b′2

󰀶

󰀺󰀸

󰀴

󰁆󰁄 , ...,

󰀳

󰁅󰁃

󰀵

󰀹󰀷
WL 0

0 W ′
L

󰀶

󰀺󰀸 ,

󰀵

󰀹󰀷
bL

b′L

󰀶

󰀺󰀸

󰀴

󰁆󰁄

󰀴

󰁆󰁄

Applying Claim ?? and especially the third case of Definition 5.2.1 to to the above then gives us:

Aff[IO(ν1)
IO(ν1)],0

• [ν1 ⊟ ν2] • Aff[II(ν2)
II(ν2)]

T
,0

=

󰀳

󰁅󰁃

󰀳

󰁅󰁃

󰀵

󰀹󰀷
W1

W ′
1

󰀶

󰀺󰀸 ,

󰀵

󰀹󰀷
B1

B′
1

󰀶

󰀺󰀸

󰀴

󰁆󰁄 ,

󰀳

󰁅󰁃

󰀵

󰀹󰀷
W2 0

0 W ′
2

󰀶

󰀺󰀸

󰀵

󰀹󰀷
b2

b′2

󰀶

󰀺󰀸

󰀴

󰁆󰁄 , ...,

󰀳

󰁅󰁃
󰀗
IO(ν2) IO(ν2)

󰀘
󰀵

󰀹󰀷
WL 0

0 W ′
L

󰀶

󰀺󰀸 ,

󰀗
IO(ν2) IO(ν2)

󰀘
󰀵

󰀹󰀷
bL

b′L

󰀶

󰀺󰀸

󰀴

󰁆󰁄

󰀴

󰁆󰁄

=

󰀳

󰁅󰁃

󰀳

󰁅󰁃

󰀵

󰀹󰀷
W1

W ′
1

󰀶

󰀺󰀸 ,

󰀵

󰀹󰀷
b1

b′1

󰀶

󰀺󰀸

󰀴

󰁆󰁄 ,

󰀳

󰁅󰁃

󰀵

󰀹󰀷
W2 0

0 W ′
2

󰀶

󰀺󰀸 ,

󰀵

󰀹󰀷
b2

b′2

󰀶

󰀺󰀸

󰀴

󰁆󰁄 , ...,

󰀕󰀗
WL W ′

L

󰀘
, bL + b′L

󰀖󰀖
(5.5.13)

Now note that:

ν2 ⊟ ν1 =

󰀳

󰁅󰁃

󰀳

󰁅󰁃

󰀵

󰀹󰀷
W ′

1 0

0 W1

󰀶

󰀺󰀸 ,

󰀵

󰀹󰀷
b′1

b1

󰀶

󰀺󰀸

󰀴

󰁆󰁄 ,

󰀳

󰁅󰁃

󰀵

󰀹󰀷
W ′

2 0

0 W2

󰀶

󰀺󰀸 ,

󰀵

󰀹󰀷
b′2

b2

󰀶

󰀺󰀸

󰀴

󰁆󰁄 , ...,

󰀳

󰁅󰁃

󰀵

󰀹󰀷
W ′

L 0

0 WL

󰀶

󰀺󰀸 ,

󰀵

󰀹󰀷
b′L

bL

󰀶

󰀺󰀸

󰀴

󰁆󰁄

󰀴

󰁆󰁄

And thus:

Aff[IO(ν2)
IO(ν2)],0

• [ν2 ⊟ ν1] • Aff[II(ν1)
II(ν1)]

T
,0

=

󰀳

󰁅󰁃

󰀳

󰁅󰁃

󰀵

󰀹󰀷
W ′

1

W1

󰀶

󰀺󰀸 ,

󰀵

󰀹󰀷
b′1

b1

󰀶

󰀺󰀸

󰀴

󰁆󰁄 ,

󰀳

󰁅󰁃

󰀵

󰀹󰀷
W ′

2 0

0 W2

󰀶

󰀺󰀸 ,

󰀵

󰀹󰀷
b′2

b2

󰀶

󰀺󰀸

󰀴

󰁆󰁄 , ...,

󰀕󰀗
W ′

L WL

󰀘
,

󰀗
b′L + bL

󰀘󰀖󰀖
(5.5.14)
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Let x ∈ RI(ν1), note then that:

󰀵

󰀹󰀷
W1

W ′
1

󰀶

󰀺󰀸x+

󰀵

󰀹󰀷
b1

b′1

󰀶

󰀺󰀸 =

󰀵

󰀹󰀷
W1x+ b1

W ′
1x+ b′1

󰀶

󰀺󰀸

The full realization of (5.5.13) is then given by:

R

󰀳

󰁅󰁃
󰀗
WL W ′

L

󰀘
󰀵

󰀹󰀷
WL−1(...(W2 (W1x+ b1) + b2) + ...) + bL−1

W ′
L−1(...(W

′
2 (W

′
1x+ b′1) + b′2) + ...) + b′L−1

󰀶

󰀺󰀸+ bL + b′L

󰀴

󰁆󰁄 (5.5.15)

The full realization of (5.5.14) is then given by:

R

󰀳

󰁅󰁃
󰀗
W ′

L WL

󰀘
󰀵

󰀹󰀷
W ′

L−1(...(W
′
2 (W

′
1x+ b′1) + b′2) + ...) + b′L−1

WL−1(...(W2 (W1x+ b1) + b2) + ...) + bL−1

󰀶

󰀺󰀸+ bL + b′L

󰀴

󰁆󰁄 (5.5.16)

Since (5.5.25) and (5.5.16) are the same this proves that ν1 ⊕ ν2 = ν2 ⊕ ν1.

Note that this is a special case of (Grohs et al., 2022, Lemma 3.28).

Lemma 5.5.9. Let l0, l1, ..., lL ∈ N. Let ν ∈ NN with L(ν) = (l0, l1, ..., lL). There then exists a

neural network Zrl0,l1,...,lL ∈ NN such that R(ν ⊕ Zrl0,l1,...,lL) = R(Zrl0,l1,...,lL ⊕ν) = ν.

Proof. Let ν = ((W1, b1) , (W2, b2) , ..., (WL, bL)), where W1 ∈ Rl1×l0 , b1 ∈ Rl1 , W2 ∈ Rl2×l1 , b2 ∈

Rl2 , ...,WL ∈ RlL×lL−1 , bL ∈ RlL . Denote by Zrl0,l1,...,lL the neural network which for all l0, l1, ..., lL ∈

N is given by:

Zrl0,l1,...,lL =
󰀃
(0l1,l0 , 0l1) , (0l2,l1 , 0l2) , ...,

󰀃
0lL,lL−1

, 0lL
󰀄󰀄

(5.5.17)

Thus, by (5.5.25), we have that:

R(Zrl0,l1,...,lL ⊕ν) =

󰀗
0 WL

󰀘
󰀵

󰀹󰀷
0

WL−1(...(W2 (W1x+ b1) + b2) + ...) + bL−1

󰀶

󰀺󰀸+ bL

= WL(WL−1(...W2 (W1x+ b1) + b2) + ...) + bL−1) + bL (5.5.18)
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R(ν ⊕ Zrl0,l1,...,lL) =

󰀗
WL 0

󰀘
󰀵

󰀹󰀷
WL−1(...(W2 (W1x+ b1) + b2) + ...) + bL−1

0

󰀶

󰀺󰀸+ bL

= WL(WL−1(...W2 (W1x+ b1) + b2) + ...) + bL−1) + bL (5.5.19)

And finally:

R(ν) = WL(WL−1(...W2 (W1x+ b1) + b2) + ...) + bL−1) + bL (5.5.20)

This completes the proof.

Lemma 5.5.10. Given neural networks ν1, ν2, ν3 ∈ NN with fixed depth L, fixed starting width of

l0 and fixed finishing width of lL, it is then the case that R ((ν1 ⊕ ν2)⊕ ν3) = R (ν1 ⊕ (ν2 ⊕ ν3)),

i.e. the realization with a continuous activation function of ⊕ is associative.

Proof. Let ν1 =
󰀃󰀃
W 1

1 , b
1
1

󰀄
,
󰀃
W 1

2 , b
1
2

󰀄
, ...,

󰀃
W 1

L, b
1
L

󰀄󰀄
, ν2 =

󰀃󰀃
W 2

1 , b
2
1

󰀄
,
󰀃
W 2

2 , b
2
2

󰀄
, ...,

󰀃
W 2

L, b
2
L

󰀄󰀄
, and

ν3 =
󰀃󰀃
W 3

1 , b
3
1

󰀄
,
󰀃
W 3

2 , b
3
2

󰀄
, ...,

󰀃
W 3

L, b
3
L

󰀄󰀄
. Then (5.5.25) tells us that:

R(ν1 ⊕ ν2) =

󰀗
W 1

L W 2
L

󰀘
󰀵

󰀹󰀷
W 1

L−1

󰀃
...

󰀃
W 1

2

󰀃
W 1

1 x+ b11
󰀄
+ b12

󰀄
+ ...

󰀄
+ b1L−1

W 2
L−1

󰀃
...

󰀃
W 2

2

󰀃
W 2

1 x+ b21
󰀄
+ b22

󰀄
+ ...

󰀄
+ b2L−1

󰀶

󰀺󰀸+ b1L + b2L

And thus:

R ((ν1 ⊕ ν2)⊕ ν3) (x) =

R

󰀳

󰁅󰁅󰁅󰁅󰁃

󰀗
I W 3

L

󰀘

󰀵

󰀹󰀹󰀹󰀹󰀷

󰀗
W 1

L W 2
L

󰀘
󰀵

󰀹󰀷
W 1

L−1

󰀃
...
󰀃
W 1

2

󰀃
W 1

1 x+ b11
󰀄
+ b12

󰀄
+ ...

󰀄
+ b1L−1

W 2
L−1

󰀃
...
󰀃
W 2

2

󰀃
W 2

1 x+ b21
󰀄
+ b22

󰀄
+ ...

󰀄
+ b2L−1

󰀶

󰀺󰀸+ b1L + b2L

W 3
L−1

󰀃
...

󰀃
W 3

2

󰀃
W 3

1 x+ b31
󰀄
+ b32

󰀄
+ ...

󰀄
+ b3L−1

󰀶

󰀺󰀺󰀺󰀺󰀸
+ b3L

󰀴

󰁆󰁆󰁆󰁆󰁄

(5.5.21)
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Similarly we have that:

Ra (ν1 ⊕ (ν2 ⊕ ν3)) (x) =

R

󰀳

󰁅󰁅󰁅󰁅󰁃

󰀗
W 1

L I
󰀘

󰀵

󰀹󰀹󰀹󰀹󰀷

W 1
L−1

󰀃
...

󰀃
W 1

2

󰀃
W 1

1 x+ b11
󰀄
+ b12

󰀄
+ ...

󰀄
+ b1L−1

󰀗
W 2

L W 3
L

󰀘
󰀵

󰀹󰀷
W 2

L−1

󰀃
...

󰀃
W 2

2

󰀃
W 2

1 x+ b21
󰀄
+ b22

󰀄
+ ...

󰀄
+ b2L−1

W 3
L−1

󰀃
...

󰀃
W 3

2

󰀃
W 3

1 x+ b31
󰀄
+ b32

󰀄
+ ...

󰀄
+ b3L−1

󰀶

󰀺󰀸+ b2L + b3L

󰀶

󰀺󰀺󰀺󰀺󰀸
+ b1L

󰀴

󰁆󰁆󰁆󰁆󰁄

(5.5.22)

Note that the associativity of matrix-vector multiplication, ensures that (5.5.21) and (5.5.22) are

the same.

Definition 5.5.11 (Commutative Semi-group). A set X equipped with a binary operation ∗ is

called a monoid if:

(i) for all x, y, z ∈ X it is the case that (x ∗ y) ∗ z = x ∗ (y ∗ z) and

(ii) for all x, y ∈ X it is the case that x ∗ y = y ∗ x

Theorem 5.5.12. For fixed depth, and layer widths the set of realized neural networks ν ∈ NN

form a commutative semi-group under the operation of ⊕.

Proof. This is a consequence of Lemmas 5.5.8, 5.5.9, and 5.5.10.

Lemma 5.5.13. Let ν, µ ∈ NN, with same length and end-widths. It is then the case that

Ra (ν ⊕ µ) = Ra (ν) +Ra (µ).

Proof. Let ν = ((W1, b1) , (W2, b2) , ..., (WL, bL)) and µ = ((W ′
1, b

′
1) , (W

′
2, b

′
2) , ..., (W

′
L, b

′
L)). Note

now that by (5.5.25) we have that:

Ra (ν) = WL (WL−1(...(W2 (W1x+ b1) + b2) + ...) + bL−1) + bL (5.5.23)

and:

Ra (µ) = W ′
L

󰀃
W ′

L−1(...(W
′
2

󰀃
W ′

1x+ b′1
󰀄
+ b′2) + ...) + b′L−1

󰀄
+ b′L (5.5.24)
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and in addition:

Ra (ν ⊕ µ) =

󰀗
WL W ′

L

󰀘
󰀵

󰀹󰀷
WL−1(...(W2 (W1x+ b1) + b2) + ...) + bL−1

W ′
L−1(...(W

′
2 (W

′
1x+ b′1) + b′2) + ...) + b′L−1

󰀶

󰀺󰀸+ bL + b′L (5.5.25)

This proves the lemma.

Definition 5.5.14 (Sum of ANNs of different lengths but same end widths). Let u, v ∈ N with

u 󰃑 v. Let νu, νu+1, ..., νv, µ be neural networks such that it is the case for all i ∈ N ∩ [u, v]

that I(νi) = I(νu), O(νi) = I(µ) = O(µ) and H(µ) = 1. We then denote by ⊞v
i=u,µνi, denoted

(νu u ⊞µ νu+1 u ⊞µ · · · u ⊞µ νv the neural network given by:

⊞v
i=u,µνi =

󰁫
⊕v

i=u Emaxj∈{u,u+1,...,v} D(νj),µ(νi)
󰁬
∈ NN (5.5.26)

5.6 Linear Combinations of ANNs

Definition 5.6.1 (Scalar left-multiplication with an ANN). Let λ ∈ R. We will denote by (·)⊛(·) :

R × NN → NN the function that satisfy for all λ ∈ R and ν ∈ NN that λ ⊛ ν = AffλIO(ν),0 •ν.

Diagrammatically this can be represented as:

Definition 5.6.2 (Scalar right-multiplication with an ANN). Let λ ∈ R. We will denote by

(·)⊛ (·) : NN×R → NN the function satisfying for all ν ∈ NN and λ ∈ R that ν⊛λ = ν •AffλII(ν),0.

Lemma 5.6.3. Let λ ∈ R and ν ∈ NN. it is then the case that:

(i) L(λ⊛ ν) = L(ν)

(ii) For all a ∈ C(R,R) that Ra(λ⊛ ν) ∈ C
󰀃
RI(ν),RO(ν)

󰀄

(iii) For all a ∈ C(R,R), and x ∈ RI(ν) that:

Ra (λ⊛ ν) = λRa(ν) (5.6.1)

Proof. Let ν ∈ NN such that L(ν) = (l1, l2, ..., lL) and D(ν) = L where l1, l2, ..., lL, L ∈ N. Then
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Item (i) of Lemma 5.4.2 tells us that:

L
󰀓
AffIO(ν),0

󰀔
= (O(ν),O(ν)) (5.6.2)

This and Item (i) from Lemma 5.4.4 gives us that:

L (λ⊛ ν) = L
󰀓
AffλIO(ν),0 •ν

󰀔
= (l0, l1, ..., lL−1,O(ν)) = L(ν) (5.6.3)

Which proves (i). Item (ii)− (iii) of Lemma 5.4.2 then prove that for all a ∈ C(R,R), x ∈ RI(ν),

that Ra (λ⊛ ν) ∈ C
󰀃
RI(ν),O(ν)

󰀄
given by:

(Ra (λ⊛ ν)) (x) =
󰀓
Ra

󰀓
AffλIO(ν),0

•ν
󰀔󰀔

(x)

= λIO(ν) ((Ra (ν)) (x)) = λ ((Ra (ν)) (x)) (5.6.4)

This then establishes Items (ii)− (iii), completing the proof.

Lemma 5.6.4. Let λ ∈ R and ν ∈ NN. It is then the case that:

(i) L(ν ⊛ λ) = L(ν)

(ii) For all a ∈ C (R,R) that Ra(ν ⊛ λ) ∈ C
󰀃
RI(ν),RO(ν)

󰀄

(iii) For all a ∈ C (R,R), and x ∈ RI(ν) that:

Ra (ν ⊛ λ) = Ra(ν) (λx) (5.6.5)

Proof. Let ν ∈ NN such that L(ν) = (l1, l2, ..., lL) and D(ν) = L where l1, l2, ..., lL, L ∈ N. Then

Item (i) of Lemma 5.4.2 tells us that:

L
󰀓
AffII(ν),0

󰀔
= (I(ν), I(ν)) (5.6.6)

This and Item (iv) of Lemma 5.4.4 tells us that:

L(ν ⊛ λ) = L
󰀓
ν • AffλII(ν)

󰀔
= (I(ν), l1, l2, ..., lL) = L(ν) (5.6.7)
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Which proves (i). Item (v) − (vi) of Lemma 5.4.4 then prove that for all a ∈ C(R,R), x ∈ RI(ν)

that Ra (ν ⊛ λ) ∈ C
󰀃
RI(ν),O(ν)

󰀄
given by:

(Ra (ν ⊛ λ)) (x) =
󰀓
Ra

󰀓
ν • AffλII(ν),0

󰀔󰀔
(x)

= (Ra (ν))
󰀓
AffλII(ν)

󰀔
(x)

= (Ra (ν)) (λx) (5.6.8)

This completes the proof.

Lemma 5.6.5. Let ν, µ ∈ NN with the same length and the same end-widths, and λ ∈ R. It is

then the case, for all a ∈ C (R,R) that:

Ra (λ⊛ (ν ⊕ µ)) (x) = Ra ((λ⊛ ν)⊕ (λ⊛ µ)) (x) (5.6.9)

= (λRa (ν)) (x) + (λRa (µ)) (x) (5.6.10)

Proof. Let ν = ((W1, B1) , (W2, B2) , ..., (WL, BL)) and µ = ((W ′
1, B

′
1) , (W

′
2, B

′
2) , ..., (W

′
L, B

′
L)).

From Lemma 5.6.3 and (5.5.25) we have that:

Ra (λ⊛ (ν ⊕ µ)) (x) = λRa (ν ⊕ µ) (x)

= λ

󰀳

󰁅󰁃
󰀗
WL W ′

L

󰀘
󰀵

󰀹󰀷
WL−1(...(W2 (W1x+ b1) + b2) + ...) + bL−1

W ′
L−1(...(W

′
2 (W

′
1x+ b′1) + b′2) + ...) + b′L−1

󰀶

󰀺󰀸+ bL + b′L

󰀴

󰁆󰁄

Note that:

(λRa (ν)) (x) = λ

󰀗
WL (WL−1(...(W2 (W1x+ b1) + b2) + ...) + bL−1) + bL

󰀘
(5.6.11)

and that:

(λRa (µ)) (x) = λ

󰀗
W ′

L

󰀃
W ′

L−1(...(W
′
2

󰀃
W ′

1x+ b′1
󰀄
+ b′2) + ...) + b′L−1

󰀄
+ b′L

󰀘
(5.6.12)

This combined with Lemma 5.5.13 completes the proof.
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Lemma 5.6.6. Let ν, µ ∈ NN with the same length and the same end-widths, and λ ∈ R. It is

then the case, for all a ∈ C (R,R) that:

Ra ((ν ⊕ µ)⊛ λ) (x) = Ra ((ν ⊛ λ)⊕ (µ⊛ λ)) (x) (5.6.13)

= (Ra (ν)) (λx) + (Ra (µ)) (λx) (5.6.14)

Proof. Let ν = ((W1, b1) , (W2, b2) , ..., (WL, bL)) and µ = ((W ′
1, b

′
1) , (W

′
2, b

′
2) , ..., (W

′
L, b

′
L)). Then

from Lemma 5.6.4 and (5.5.25) we have that:

(Ra (ν ⊕ µ)⊛ λ) (x) = (Ra (ν ⊕ µ)) (λx)

=

󰀗
WL W ′

L

󰀘
󰀵

󰀹󰀷
WL−1(...(W2 (W1λx+ b1) + b2) + ...) + bL−1

W ′
L−1(...(W

′
2 (W

′
1λx+ b′1) + b′2) + ...) + b′L−1

󰀶

󰀺󰀸+ bL + b′L

Note that:

(Ra (ν)) (λx) = WL (WL−1(...(W2 (W1λx+ b1) + b2) + ...) + bL−1) + bL (5.6.15)

and that:

(Ra (µ)) (λx) = W ′
L

󰀃
W ′

L−1(...(W
′
2

󰀃
W ′

1λx+ b′1
󰀄
+ b′2) + ...) + b′L−1

󰀄
+ b′L (5.6.16)

This together with Lemma 5.5.13 completes the proof.

Lemma 5.6.7. Let u, v ∈ Z with u 󰃑 v and n = v − u + 1. Let λu,λu+1, ...,λv ∈ R. Let

νu, νu+1, ..., νv, µ ∈ NN, Bu, Bu+1, ..., Bv ∈ RI(µ) satisfy that L(νu) = L(νu+1) = ... = L(νv) and

further that:

µ =
󰁫
⊕v

i=u

󰀓
ci ⊛

󰀓
νi • AffII(ν1)

,Bi

󰀔󰀔󰁬
(5.6.17)

It then holds:
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(i) That:

L(µ) =
󰀣
I(νu),

v󰁛

i=u

W1 (νu) ,

v󰁛

i=u

W2 (νu) , ...,

v󰁛

i=u

WD(νu)−1 (νu) ,O(νu)

󰀤

=
󰀃
I(νu), nW1(νu), nW2(νu), ..., nWD(νu−1),O(νu)

󰀄

(ii) that for all a ∈ C (R,R), that Ra(µ) ∈ C
󰀃
RI(νu),RO(νu)

󰀄
, and

(iii) for all a ∈ C (R,R) and x ∈ RI(νu) that:

(Ra (µ)) (x) =

v󰁛

i=u

ci (Ra (νi)) (x+Bi) (5.6.18)

Proof. Assume hypothesis that L(νu) = L(νu+1) = ... = L(νv). Note that Item (i) of Lemma 5.4.2

gives us that for all i ∈ {u, u+ 1, ..., v} that:

L
󰀓
AffII(νi),Bi

󰀔
= L

󰀓
AffII(νu)

󰀔
= (I (νu) , I (νu)) ∈ N2 (5.6.19)

This together with (Grohs et al., 2023, Proposition 2.6, Item (i)) assures us that for all i ∈ {u, u+

1, ..., v} it is the case that:

L
󰀓
νi • AffII(νi)

,Bi

󰀔
=

󰀃
I(νu),W1 (νu) ,W2 (νu) , ...,WD(νu) (νu)

󰀄
(5.6.20)

This and (Grohs et al., 2022, Lemma 3.14, Item (i)) tells us that for all i ∈ {u, u+1, ..., v} it is the

case that:

L
󰀓
ci ⊛

󰀓
νi • AffII(νi),Bi

󰀔󰀔
= L

󰀓
νi • AffII(νi),Bi

󰀔
(5.6.21)
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This, (5.6.20), and (Grohs et al., 2022, Lemma 3.28, Item (ii)) then yield that:

L(µ) = L
󰀓
⊕v

i=u

󰀓
ci ⊛

󰀓
νi • AffII(νi),Bi

󰀔󰀔󰀔

=

󰀣
I(νu),

v󰁛

i=u

W1 (νu) ,

v󰁛

i=u

W2 (νu) , ...,

v󰁛

i=u

WD(νu)−1 (νu) ,O (νu)

󰀤

=
󰀃
I(νu), nW1(νu), nW2(νu), ..., nWD(νu)−1(νu),O(νu)

󰀄
(5.6.22)

This establishes item (i). Items (v) and (vi) from Lemma 5.4.4 tells us that for all i ∈ {u, u+1, ..., v},

a ∈ C(R,R), x ∈ RI(νu), it is the case that Ra

󰀓
νi • AffII(νi)

,Bi

󰀔
∈ C

󰀃
RI(νu),RO(νu)

󰀄
and further

that:

󰀓
Ra

󰀓
νi • AffII(νi)

,bi

󰀔󰀔
(x) = (Ra (νi)) (x+ bi) (5.6.23)

This along with (Grohs et al., 2022, Lemma 3.14) ensures that for all i ∈ {u, u + 1, ..., v}, a ∈

C (R,R), x ∈ RI(νu), it is the case that:

Ra

󰀓
ci ⊛

󰀓
νi • AffII(νi)

,Bi

󰀔󰀔
∈ C

󰀓
RI(νu),RO(νu)

󰀔
(5.6.24)

and:

󰀓
Ra

󰀓
ci ⊛

󰀓
νi • AffII(νi)

,bi

󰀔󰀔󰀔
(x) = ci (Ra (νi)) (x+ bi) (5.6.25)

Now observe that (Grohs et al., 2022, Lemma 3.28) and (5.6.21) ensure that for all a ∈ C (R,R),

x ∈ RI(νu), it is the case that Ra (µ) ∈ C
󰀃
RI(νu),RO(νu)

󰀄
and that:

(Ra (µ)) (x) =
󰀓
Ra

󰀓
⊕v

i=u

󰀓
ci ⊛

󰀓
νi • AffII(νi)

,bi

󰀔󰀔󰀔󰀔
(x)

=

v󰁛

i=u

󰀓
Ra

󰀓
ci ⊛

󰀓
νi • AffII(νi)

,bi

󰀔󰀔󰀔
(x)

=

v󰁛

i=u

ci (Ra (νi)) (x+ bi)

This establishes items (ii)–(iii) and thus the proof is complete.
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Lemma 5.6.8. Let u, v ∈ Z with u 󰃑 v. Let λu,λu+1, ...,λv ∈ R. Let νu, νu+1, ..., νv, µ ∈ NN,

Bu, Bu+1, ..., Bv ∈ RI(µ) satisfy that L(νu) = L(νu+1) = ... = L(νv) and further that:

µ =
󰁫
⊕v

i=u

󰀓󰀓
AffII(ν1)

,bi •ν
󰀔
⊛ ci

󰀔󰁬
(5.6.26)

It then holds:

(i) That:

L(µ) =
󰀣
I(νu),

v󰁛

i=u

W1 (νu) ,

v󰁛

i=u

W2 (νu) , ...,

v󰁛

i=u

WD(νu)−1 (νu) ,O(νu)

󰀤

=
󰀃
I(νu), nW1(νu), nW2(νu), ..., nWD(νu−1),O(νu)

󰀄
(5.6.27)

(ii) that for all a ∈ C (R,R), that Ra(µ) ∈ C
󰀃
RI(νu),RO(νu)

󰀄
, and

(iii) for all a ∈ C (R,R) and x ∈ RI(νu) that:

(Ra (µ)) (x) =

v󰁛

i=u

(Ra (νi)) (cix+ bi) (5.6.28)

Proof. Assume hypothesis that L(νu) = L(νu+1) = ... = L(νv). Note that Item (i) of Lemma 5.4.2

gives us that for all i ∈ {u, u+ 1, ..., v} that:

L
󰀓
AffII(νi),Bi

󰀔
= L

󰀓
AffII(νu)

󰀔
= (I (νu) , I (νu)) ∈ N2 (5.6.29)

Note then that (Grohs et al., 2023, Proposition 2.6, Item (ii)) tells us that for all i ∈ {u, u+1, ..., v}

it is the case that:

L
󰀓
AffII(νi)

,Bi •ν
󰀔
=

󰀃
I(νu),W1 (νu) ,W2 (νu) , ...,WD(νu) (νu)

󰀄
(5.6.30)

This and Item (i) of Lemma 5.6.4 tells us that for all i ∈ {u, u+ 1, ..., v} it is the case that:

L
󰀓󰀓

AffII(νi),bi
•ν

󰀔
⊛ ci

󰀔
= L

󰀓
AffII(νi),bi

•ν
󰀔

(5.6.31)
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This, (5.6.30), and (Grohs et al., 2022, Lemma 3.28, Item (ii)) tell us that:

L(µ) = L
󰀓
⊕v

i=u

󰀓󰀓
AffII(νi),bi

•νi
󰀔
⊛ ci

󰀔󰀔

=

󰀣
I(νu),

v󰁛

i=u

W1 (νu) ,

v󰁛

i=u

W2 (νu) , ...,

v󰁛

i=u

WD(νu)−1 (νu) ,O (νu)

󰀤

=
󰀃
I(νu), nW1(νu), nW2(νu), ..., nWD(νu)−1(νu),O(νu)

󰀄
(5.6.32)

This establishes Item (i). Items (i) and (ii) from Lemma 5.4.4 tells us that for all i ∈ {u, u+1, ..., v},

a ∈ C(R,R), x ∈ RI(νu), it is the case that Ra

󰀓
νi • AffII(νi)

,Bi

󰀔
∈ C

󰀃
RI(νu),RO(νu)

󰀄
and further

that:

󰀓
Ra

󰀓
AffII(νi)

,bi •νi
󰀔󰀔

(x) = (Ra (νi)) (x) + bi (5.6.33)

This along with Lemma 5.6.4 ensures that for all i ∈ {u, u + 1, ..., v}, a ∈ C (R,R), x ∈ RI(νu), it

is the case that:

Ra

󰀓󰀓
AffII(νi)

,bi •νi
󰀔
⊛ ci

󰀔
∈ C

󰀓
RI(νu),RO(νu)

󰀔
(5.6.34)

and:

󰀓
Ra

󰀓󰀓
AffII(νi)

,bi •νi
󰀔
⊛ ci

󰀔󰀔
(x) = (Ra (νi)) (cix+ bi) (5.6.35)

Now observe that (Grohs et al., 2022, Lemma 3.28) and (5.5.8) ensure that for all a ∈ C (R,R),

x ∈ RI(νu), it is the case that Ra (µ) ∈ C
󰀃
RI(νu),RO(νu)

󰀄
and that:

(Ra (µ)) (x) =
󰀓
Ra

󰀓
⊕v

i=u

󰀓
AffII(νi)

,bi •νi
󰀔󰀔

⊛ ci

󰀔
(x) (5.6.36)

=

v󰁛

i=u

󰀓
Ra

󰀓󰀓
AffII(νi)

,bi •νi
󰀔
⊛ ci

󰀔󰀔
(x) (5.6.37)

=

v󰁛

i=u

(Ra (νi)) (cix+ bi)

This establishes items (ii)–(iii) and thus the proof is complete.
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Lemma 5.6.9. Let L ∈ N, u, v ∈ Z with u 󰃑 v. Let cu, cu+1, ..., cv ∈ R. νu, νu+1, ..., νv, µ, I ∈ NN,

Bu, Bu+1, ..., Bv ∈ RI(νu), a ∈ C (R,R), satisfy for all j ∈ N ∩ [u, v] that L = maxi∈N∩[u,v]D(νi),

I(νj) = I(νu), O(νj) = I(I) = O(I), H(I) = 1, Ra(I) = IR, and that:

µ = ⊞v
i=u,I

󰀓
ci ⊛

󰀓
νi • AffII(νi),

,bi

󰀔󰀔
(5.6.38)

We then have:

(i) it holds that:

L(µ) =
󰀣
I(νu),

v󰁛

i=u

W1 (EL,I (νi)) ,

v󰁛

i=u

W2 (EL,I (νi)) , ...,

v󰁛

i=u

WL−1 (EI,I (νi) ,O (νu))

󰀤

(5.6.39)

(ii) it holds that Ra(µ) ∈ C
󰀃
RI(νu),RO(νu)

󰀄
, and that,

(iii) it holds for all x ∈ RI(νu) that:

(Ra (µ)) (x) =

v󰁛

i=u

ci (Ra (νi)) (x+ bi) (5.6.40)

Proof. Note that Item(i) from Lemma 5.6.7 establish Item(i) and (5.5.26), in addition, items (v)

and (vi) from Lemma 5.4.4 tell us that for all for all i ∈ N ∩ [u, v], x ∈ RI(νu , it holds that

Ra

󰀓
νi • AffII(νi)

,Bi ∈ C
󰀃
RI(νu),RO(νu)

󰀄󰀔
and further that:

󰀓
Ra

󰀓
νi • AffII(νi)

,Bi

󰀔󰀔
(x) = (Ra (νi)) (x+ bk) (5.6.41)

This, Lemma 5.6.3 and (Grohs et al., 2023, Lemma 2.14, Item (ii)) show that for all i ∈ N ∩ [u, v],

x ∈ RI(νu), it holds that:

Ra

󰀓
EL,I

󰀓
ci ⊛

󰀓
νi • AffII(νi)

,bi

󰀔󰀔󰀔
= Ra

󰀓
ci ⊛

󰀓
νi • AffII(νi)

,bi

󰀔󰀔
∈ C

󰀓
RI(νu),RO(νu)

󰀔
(5.6.42)

87



and:

󰀓
Ra

󰀓
EL,I

󰀓
ci ⊛

󰀓
νi • AffII(νi)

,bi

󰀔󰀔󰀔󰀔
(x) =

󰀓
Ra

󰀓
ci ⊛

󰀓
νi • AffII(νi)

,bi

󰀔󰀔󰀔
(x)

= ci (Ra (νi)) (x+ bi) (5.6.43)

This combined with (Grohs et al., 2022, Lemma 3.28) and (5.6.21) demonstrate that for all x ∈

RI(νu) it holds that Ra (µ) ∈ C
󰀃
RI(νu),RO(νu)

󰀄
and that:

(Ra (µ)) (x) =
󰀓
Ra

󰀓
⊞v

i=u,I

󰀓
ci ⊛

󰀓
νi • AffII(νi)

󰀔󰀔󰀔󰀔
(x)

=
󰀓
Ra

󰀓
⊕v

i=u EL,I

󰀓
ci ⊛

󰀓
νi • AffII(νi)

,bi

󰀔󰀔󰀔󰀔
(x)

=

v󰁛

i=u

ci (Ra (νi)) (x+ bi) (5.6.44)

This establishes Items(ii)–(iii) thus proving the lemma.

Lemma 5.6.10. Let L ∈ N, u, v ∈ Z with u 󰃑 v. Let cu, cu+1, ..., cv ∈ R. νu, νu+1, ..., νv, µ, I ∈ NN,

Bu, Bu+1, ..., Bv ∈ RI(νu), a ∈ C (R,R), satisfy for all j ∈ N ∩ [u, v] that L = maxi∈N∩[u,v]D(νi),

I(νj) = I(νu), O(νj) = I(I) = O(I), H(I) = 1, Ra(I) = IR, and that:

µ = ⊞v
i=u,I

󰀓󰀓
AffII(νi)

,bi •νi
󰀔
⊛ ci

󰀔
(5.6.45)

We then have:

(i) it holds that:

L(µ) =
󰀣
I(νu),

v󰁛

i=u

W1 (EL,I (νi)) ,

v󰁛

i=u

W2 (EL,I (νi)) , ...,

v󰁛

i=u

WL−1 (EL,I (νi) ,O (νu))

󰀤

(5.6.46)

(ii) it holds that Ra(µ) ∈ C
󰀃
RI(νu),RO(νu)

󰀄
, and that,

(iii) it holds for all x ∈ RI(νu) that:

(Ra (µ)) (x) =

v󰁛

i=u

(Ra (νi)) (cix+ bi) (5.6.47)
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Proof. Note that Item(i) from Lemma 5.6.8 establish Item(i) and (5.5.26), in addition, items (ii)

and (iii) from Lemma 5.4.4 tell us that for all for all i ∈ N ∩ [u, v], x ∈ RI(νu , it holds that

Ra

󰀓
AffII(νi)

,Bi •νi ∈ C
󰀃
RI(νu),RO(νu)

󰀄󰀔
and further that:

󰀓
Ra

󰀓
AffII(νi)

,Bi •νi
󰀔󰀔

(x) = (Ra (νi)) (x) + bk (5.6.48)

This, Lemma 5.6.4 and (Grohs et al., 2023, Lemma 2.14, Item (ii)) show that for all i ∈ N ∩ [u, v],

x ∈ RI(νu), it holds that:

Ra

󰀓
EL,I

󰀓󰀓
AffII(νi)

,bi •νi
󰀔
⊛ ci

󰀔󰀔
= Ra

󰀓󰀓
AffII(νi)

,bi •νi
󰀔
⊛ ci

󰀔
∈ C

󰀓
RI(νu),RO(νu)

󰀔
(5.6.49)

and:

󰀓
Ra

󰀓
EL,I

󰀓󰀓
AffII(νi)

,bi •νi
󰀔
⊛ ci

󰀔󰀔󰀔
(x) =

󰀓
Ra

󰀓
ci ⊛

󰀓
νi • AffII(νi)

,bi

󰀔󰀔󰀔
(x)

= (Ra (νi)) (cix+ bi) (5.6.50)

This and (Grohs et al., 2022, Lemma 3.28) and (5.6.31) demonstrate that for all x ∈ RI(νu) it holds

that Ra (µ) ∈ C
󰀃
RI(νu),RO(νu)

󰀄
and that:

(Ra (µ)) (x) =
󰀓
Ra

󰀓
⊞v

i=u,I

󰀓󰀓
AffII(νi)

•νi
󰀔
⊛ ci

󰀔󰀔󰀔
(x)

=
󰀓
Ra

󰀓
⊕v

i=u EL,I

󰀓󰀓
AffII(νi)

,bi •νi
󰀔
⊛ ci

󰀔󰀔󰀔
(x)

=

v󰁛

i=u

(Ra (νi)) (cix+ bi) (5.6.51)

This completes the proof.
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Chapter 6

ANN Product Approximations

6.1 Approximation for simple products

Lemma 6.1.1. Let (ck)k∈N ⊆ R, (Ak)k∈N ∈ R4×4, B ∈ R4×1, (Ck)k∈N satisfy for all k ∈ N that:

Ak =

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

2 −4 2 0

2 −4 2 0

2 −4 2 0

−ck 2ck −ck 1

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

B =

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

0

−1
2

−1

0

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

Ck =

󰀗
−ck 2ck −ck 1

󰀘
(6.1.1)

and that:

ck = 21−2k (6.1.2)

It is then the case that

(i) There exists unique ξk ∈ NN, k ∈ N which satisfies for all k ∈ [2,∞) ∩ N that ξ1 =

(AffC1,0 •i4) • Affe4,B. Note that for all d ∈ N, id = ((Id, 0d) , (Id, 0d)) (explained in detail

in Definition 9.1.1), and that:

ξk = (AffCk,0 •i4) •
󰀃
AffAk−1,B •i4

󰀄
• · · · • (AffA1,B •i4) • Affe4,B (6.1.3)

(ii) for all k ∈ N we have Rr ∈ C (R,R)

90



(iii) for all k ∈ N we have L (ξk) = (1, 4, 4, ..., 4, 1) ∈ Nk+2

(iv) for all k ∈ N, x ∈ R \ [0, 1] that (Rr (ξk)) (x) = r (x)

(v) for all k ∈ N, x ∈ [0, 1], we have
󰀏󰀏x2 − (Rr (ξk)) (x)

󰀏󰀏 󰃑 2−2k−2, and

(vi) for al k ∈ N , we have that P (ξk) = 20k − 7

Proof. Let gk : R → [0, 1], k ∈ N be the functions defined as such, satisfying for all k ∈ N, x ∈ R

that:

g1 (x) =

󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰀽

2x : x ∈
󰀅
0, 12

󰀄

2− 2x : x ∈
󰀅
1
2 , 1

󰀆

0 : x ∈ R \ [0, 1]

(6.1.4)

gk+1 = g1(gk)

and let fk : [0, 1] → [0, 1], k ∈ N0 be the functions satisfying for all k ∈ N0, n ∈ {0, 1, ..., 2k − 1},

x ∈
󰀅
n
2k
, n+1

2k

󰀄
that fk(1) = 1 and:

fk(x) =

󰀗
2n+ 1

2k

󰀘
x− n2 + n

22k
(6.1.5)

and let rk = (rk,1, rk,2, rk,3, rk,4) : R → R4, k ∈ N be the functions which which satisfy for all x ∈ R,

k ∈ N that:

r1 (x) =

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

r1,1(x)

r2,1(x)

r3,1(x)

r4,1(x)

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

= r

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

x

x− 1
2

x− 1

x

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

(6.1.6)

rk+1 = Ak+1rk(x)

Note that since it is the case that for all x ∈ R that r(x) = max{x, 0}, (6.1.4) and (6.1.6) shows
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that it holds for all x ∈ R that:

2r1,1(x)− 4r2,1(x) + 2r3,1(x) = 2 r(x)− 4 r

󰀕
x− 1

2

󰀖
+ 2 r (x− 1)

= 2max{x, 0}− 4max

󰀝
x− 1

2
, 0

󰀞
+ 2max{x− 1, 0}

= g1(x) (6.1.7)

Note also that combined with (6.1.5), the fact that for all x ∈ [0, 1] it holds that f0(x) = x =

max{x, 0} tells us that for all x ∈ R:

r4,1(x) = max{x, 0} =

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

f0(x) : x ∈ [0, 1]

max{x, 0} : x ∈ R \ [0, 1]
(6.1.8)

We next claim that for all k ∈ N it is the case that:

(∀x ∈ R : 2r1,k(x)− 4r2,k(x) + 2r3,k(x) = g(x)) (6.1.9)

and that:

󰀳

󰁅󰁅󰁃∀x ∈ R : r4,k(x) =

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

fk−1(x) : x ∈ [0, 1]

max{x, 0} : x ∈ R \ [0, 1]

󰀴

󰁆󰁆󰁄 (6.1.10)

We prove (6.1.9) and (6.1.10) by induction. The base base of k = 1 is proved by (6.1.7) and (6.1.8).

For the induction step N ∋ k → k + 1 assume there does exist a k ∈ N such that for all x ∈ R it is

the case that:

2r1,k(x)− 4r2,k(x) + 2r3,k(x) = gk(x) (6.1.11)

and:

r4,k(x) =

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

fk−1(x) : x ∈ [0, 1]

max{x, 0} : x ∈ R \ [0, 1]
(6.1.12)
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Note that then (6.1.4),(6.1.6), and (6.1.7) then tells us that for all x ∈ R it is the case that:

gk+1 (x) = g1(gk(x)) = g1(2r1,k(x) + 4r2,k(x) + 2r3,k(x))

= 2 r (2r1,k(x)) + 4r2,k + 2r3,k(x))

− 4 r

󰀕
2r1,k (x)− 4r2,k + 2r3,k(x)−

1

2

󰀖

+ 2 r (2r1,k(x)− 4r2,k(x) + 2r3,k(x)− 1)

= 2r1,k+1(x)− 4r2,k+1(x) + 2r3,k+1(x) (6.1.13)

In addition note that (6.1.5), (6.1.6), and (6.1.8) tells us that for all x ∈ R:

r4,k+1(x) = r
󰀓
(−2)3−2(k+1) r1,k (x) + 24−2(k+1)r2,k (x) + (−2)3−2(k+1) r3,k (x) + r4,k (x)

󰀔

= r
󰀓
(−2)1−2k r1,k (x) + 22−2krk,2 (x) + (−2)1−2k r3,k (x) + r4,k (x)

󰀔

= r
󰀓
2−2k

󰀅
−2r1,k (x) + 22r2,k (x)− 2r3,k (x)

󰀆
+ r4,k (x)

󰀔

= r
󰀓
−
󰁫
2−2k

󰁬
[2r1,k (x)− 4r2,k (x) + 2r3,k (x)] + r4,k (x)

󰀔

= r
󰀓
−
󰁫
2−2k

󰁬
gk (x) + r4,k (x)

󰀔
(6.1.14)

This and the fact that for all x ∈ R it is the case that r (x) = max{x, 0}, that for all x ∈ [0, 1] it is

the case that fk (x) 󰃍 0, (6.1.12), shows that for all x ∈ [0, 1] it holds that:

r4,k+1 (x) = r
󰀓
−2

󰁫
2−2kgk

󰁬
+ fk−1 (x)

󰀔
= r

󰀳

󰁃−2
󰀓
2−2kgk (x)

󰀔
+ x−

󰀵

󰀷
k−1󰁛

j=1

󰀃
2−2jgj (x)

󰀄
󰀶

󰀸

󰀴

󰁄

= r

󰀳

󰁃x−

󰀵

󰀷
k󰁛

j=1

2−2jgj (x)

󰀶

󰀸

󰀴

󰁄 = r (fk (x)) = fk (x) (6.1.15)

Note next that (6.1.12) and (6.1.14) then tells us that for all x ∈ R \ [0, 1]:

r4,k+1 (x) = max
󰁱
−
󰀓
2−2kgx (x)

󰀔
+ r4,k (x)

󰁲
= max{max{x, 0}, 0} = max{x, 0} (6.1.16)

Combining (6.1.13) and (6.1.15) proves (6.1.9) and (6.1.10). Note that then (6.1.1) and (6.1.9)
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assure that for all k ∈ N, x ∈ R it holds that Rr (ξk) ∈ C (R,R) and that:

(Rr (ξk)) (x)

=
󰀃
Rr

󰀃
(AffCk,0 •i4) •

󰀃
AffAk−1,B •i4

󰀄
• · · · • (AffA1,B •i4) • Affe4,B

󰀄󰀄
(x)

= (−2)1−2k r1,k (x) + 22−2kr2,k (x) + (−2)1−2k r3,k (x) + r4,k (x)

= (−2)2−2k

󰀕󰀗
r1,k (x) + r3,k (x)

−2

󰀘
+ r2,k (x)

󰀖
+ r4,k (x)

= 22−2k

󰀕󰀗
r1,k (x) + r3,k (x)

−2

󰀘
+ r2,k (x)

󰀖
+ r4,k (x)

= 2−2k (4r2,k (x)− 2r1,k (x)− 2r3,k (x)) + r4,k (x)

= −
󰁫
2−2k

󰁬
[2r1,k (x)− 4r2,k (x) + 2r3,k (x)] + r4,k (x) = −

󰁫
2−2k

󰁬
gk (x) + r4,k (x) (6.1.17)

This and (6.1.10) tell us that:

(Rr (ξk)) (x) = −
󰀓
2−2kgk (x)

󰀔
+ fk−1 (x) = −

󰀓
2−2kgk (x)

󰀔
+ x−

󰀵

󰀷
k−1󰁛

j=1

2−2jgj (x)

󰀶

󰀸

= x−

󰀵

󰀷
k󰁛

j=1

2−2jgj (x)

󰀶

󰀸 = fk (x)

Which then implies for all k ∈ N, x ∈ [0, 1] that it holds that:

󰀐󰀐x2 − (Rr (ξk)) (x)
󰀐󰀐 󰃑 2−2k−2 (6.1.18)

This in turn establish Item (i).

Finally observe that (6.1.17) then tells us that for all k ∈ N, x ∈ R \ [0, 1] it holds that:

(Rr (ξk)) (x) = −2−2kgk (x) + r4,k (x) = r4,k (x) = max{x, 0} = r(x) (6.1.19)

This establishes Item(iv). Note next that Item(iii) ensures for all k ∈ N that D (ξk) = k + 1, and:

P (ξk) = 4(1 + 1) +

󰀵

󰀷
k󰁛

j=2

4 (4 + 1)

󰀶

󰀸+ (4 + 1) = 8 + 20 (k − 1) + 5 = 20k − 7 (6.1.20)
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This in turn proves Item(vi). The proof of the lemma is thus complete.

Lemma 6.1.2. Let δ, 󰂃 ∈ (0,∞), α ∈ (0,∞), q ∈ (2,∞), Φ ∈ NN satisfy that δ = 2
−2
q−2 ε

q
q−2 ,

α =
󰀃
ε
2

󰀄 1
q−2 , Φ ∈ C (R,R), D(Φ) 󰃑 max

󰀋
1
2 log2(δ

−1) + 1, 2
󰀌
, P(Φ) 󰃑 max

󰀋
10 log2

󰀃
δ−1

󰀄
− 7, 13

󰀌
,

supx∈R\[0,1] | (Rr (Φ)− r(x)| = 0, and supx∈[0,1] |x2 − (Rr (Φ)) (x) | 󰃑 δ, then:

(i) there exists a unique Ψ ∈ NN, satisfying: Ψ =
󰀃
Affα−2,0 •Φ • Affα,0

󰀄󰁏󰀃
Affα−2,0 •Φ • Aff−α,0

󰀄

(ii) it holds that Rr (Ψ) ∈ C (R,R).

(iii) it holds that (Rr (Ψ)) (0) = 0

(iv) it holds for all x ∈ R that 0 󰃑 (Rr (Ψ)) (x) 󰃑 ε+ |x|2

(v) it holds for all x ∈ R that |x2 − (Rr (Ψ)) (x) | 󰃑 εmax{1, |x|q}

(vi) it holds that D(Ψ) 󰃑 max
󰁱
1 + 1

q−2 + q
2(q−2) log2

󰀃
ε−1

󰀄
, 2
󰁲
, and

(vii) it holds that P (Ψ) 󰃑 max
󰁱󰁫

40q
q−2

󰁬
log2

󰀃
ε−1

󰀄
+ 80

q−2 − 28, 52
󰁲

Proof. Note that for all x ∈ R it is the case that:

(Rr (Ψ)) (x) =
󰀃
Rr

󰀃
(Affα−2 •Φ • Affα,0)⊕

󰀃
Affα−2,0 •Φ • Aff−α,0

󰀄󰀄󰀄
(x)

=
󰀃
Rr

󰀃
Affα−2,0 •Φ • Affα,0

󰀄󰀄
(x) +

󰀃
Rr

󰀃
Affα−2,0 •Φ • Aff−α,0

󰀄󰀄
(x)

=
1

α2
(Rr (Φ)) (αx) +

1

α2
(Rr (Φ)) (−αx)

=
1

󰀃
ε
2

󰀄 2
q−2

󰀗
(Rr (Φ))

󰀕󰀓ε
2

󰀔 1
q−2

x

󰀖
+ (Rr (Φ))

󰀕
−
󰀓ε
2

󰀔 1
q−2

x

󰀖󰀘
(6.1.21)

This and the assumption that Φ ∈ C (R,R) along with the assumption that supx∈R\[0,1] | (Rr (Φ)) (x)−

r (x) | = 0 tells us that for all x ∈ R it holds that:

(Rr (Ψ)) (0) =
󰀓ε
2

󰀔 −2
q−2

[(Rr (Φ)) (0) + (Rr (Φ)) (0)]

=
󰀓ε
2

󰀔 −2
q−2

[r(0) + r(0)]

= 0 (6.1.22)
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This in turn establishes Item (iii). Observe next that from the assumption that Rr (Φ) ∈ C (R,R)

and the assumption that supx∈R\[0,1] | (Rr (Φ)) (x) − r(x)| = 0 ensure that for all x ∈ R \ [−1, 1] it

holds that:

[Rr (Φ)] (x) + [Rr (Φ) (−x)] = r (x) + r(−x) = max{x, 0}+max{−x, 0}

= |x| (6.1.23)

The assumption that for all supx∈R\[0,1] | (Rr (Φ)) (x)−r (x) | = 0 and the assumption that supx∈[0,1] |x2−

(Rr (Φ)) (x) | 󰃑 δ show that:

sup
x∈[−1,1]

󰀏󰀏x2 − ([Rr (Φ)] (x) + [Rr (Φ) (x)])
󰀏󰀏

= max

󰀫
sup

x∈[−1,0]

󰀏󰀏x2 − (r(x) + [Rr (Φ)] (−x))
󰀏󰀏 , sup

x∈[0,1]

󰀏󰀏x2 − ([Rr (Φ)] (x) + r (−x))
󰀏󰀏
󰀬

= max

󰀫
sup

x∈[−1,0]

󰀏󰀏󰀏(−x)2 − (Rr (Φ)) (−x)
󰀏󰀏󰀏 , sup

x∈[0,1]

󰀏󰀏x2 − (Rr (Φ)) (x)
󰀏󰀏
󰀬

= sup
x∈[0,1]

󰀏󰀏x2 − (Rr (Φ)) (x)
󰀏󰀏 󰃑 δ (6.1.24)

Next observe that (6.1.21) and (6.1.23) show that for all x ∈ R \
󰁫
−
󰀃
ε
2

󰀄 −1
q−2 ,

󰀃
ε
2

󰀄 −1
q−2

󰁬
it holds that:

0 󰃑 [Rr (Ψ)] (x) =
󰀓ε
2

󰀔 −2
q−2

󰀕
[Rr (Φ)]

󰀕󰀓ε
2

󰀔 1
q−2

x

󰀖
+ [Rr (Φ)]

󰀕
−
󰀓ε
2

󰀔 1
q−2

x

󰀖󰀖

=
󰀓ε
2

󰀔 −2
q−2

󰀏󰀏󰀏󰀏
󰀓ε
2

󰀔 1
q−2

x

󰀏󰀏󰀏󰀏 =
󰀓ε
2

󰀔 −1
q−2

|x|
󰃑 |x|2 (6.1.25)

The triangle inequality then tells us that for all x ∈ R \
󰁫
−
󰀃
ε
2

󰀄 −1
q−2 ,

󰀃
ε
2

󰀄 −1
q−2

󰁬
it holds that:

󰀏󰀏x2 − (Rr (Ψ)) (x)
󰀏󰀏 =

󰀏󰀏󰀏󰀏x
2 −

󰀓ε
2

󰀔 −1
q−2 |x|

󰀏󰀏󰀏󰀏 󰃑
󰀕
|x|2 +

󰀓ε
2

󰀔 −1
q−2 |x|

󰀖

=

󰀕
|x|q |x|−(q−2) +

󰀓ε
2

󰀔 −1
q−2 |x|q |x|−(q−1)

󰀖

󰃑
󰀕
|x|q

󰀓ε
2

󰀔 q−2
q−2

+
󰀓ε
2

󰀔 −1
q−2 |x|q

󰀓ε
2

󰀔 q−1
q−2

󰀖

=
󰀓ε
2
+

ε

2

󰀔
|x|q = ε |x|q 󰃑 εmax {1, |x|q} (6.1.26)
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Note that (6.1.24), (6.1.21) and the fact that δ = 2
−2
q−2 ε

q
q−2 then tell for all x ∈

󰁫
−
󰀃
ε
2

󰀄 −1
q−2 ,

󰀃
ε
2

󰀄 −1
q−2

󰁬

it holds that:

󰀏󰀏x2 − (Rr(Φ)) (x)
󰀏󰀏

=
󰀓ε
2

󰀔 −2
q−2

󰀏󰀏󰀏󰀏󰀏

󰀕󰀓ε
2

󰀔 1
q−2

x

󰀖2

−
󰀕
[Rr(Φ)]

󰀕󰀓ε
2

󰀔 1
q−2

x

󰀖
+ [Rr(Φ)] (−y)

󰀖󰀏󰀏󰀏󰀏󰀏

󰃑
󰀓ε
2

󰀔 −2
q−2

󰀥
sup

y∈[−1,1]

󰀏󰀏y2 − [Rr(Φ)] (y) + [Rr(Φ)] (−y)
󰀏󰀏
󰀦

󰃑
󰀓ε
2

󰀔 −2
q−2

δ =
󰀓ε
2

󰀔 −2
q−2

2
−2
q−2 ε

q
q−2 = ε 󰃑 εmax{1, |x|q}

(6.1.27)

Now note that this and (6.1.26) tells us that for all x ∈ R it is the case that:

󰀏󰀏x2 − (Rr (Ψ)) (x)
󰀏󰀏 󰃑 εmax{1, |x|q} (6.1.28)

This establishes Item (v). Note that, (6.1.27) tells that for all x ∈
󰁫
−
󰀃
ε
2

󰀄 −1
q−2 ,

󰀃
ε
2

󰀄 1
q−2

󰁬
it is the case

that:

|(Rr (Ψ)) (x)| 󰃑
󰀏󰀏x2 − (Rr (Ψ)) (x)

󰀏󰀏+ |x|2 󰃑 ε+ |x|2 (6.1.29)

This and (6.1.26) tells us that for all x ∈ R:

|(Rr) (x)| 󰃑 ε+ |x|2 (6.1.30)

This establishes Item (iv). Notice next that

Remark 6.1.3. Note that from here onward we will refer to the neural network network Ψ defined

in Lemma 9.1.3 Item(i) as the Sqr neural network.

Lemma 6.1.4. Let δ, ε ∈ (0,∞), q ∈ (2,∞), A1, A2, A3 ∈ R1×2, Φ ∈ N satisfy for all x ∈ R

that δ = ε
󰀃
2q−1 + 1

󰀄−1
, A1 = [1 1], A2 = [1 0], A3 = [0 1], Rr ∈ C (R,R), (Rr (Φ)) (0) =

0, 0 󰃑 (Rr (Φ)) (x) 󰃑 δ + |x|2, |x2 − (Rr (Φ)) (x) | 󰃑 δmax{1, |x|q}, D (Φ) 󰃑 max{1 + 1
q−2 +

q
2(q−2) log2

󰀃
δ−1

󰀄
, 2}, and P (Φ) 󰃑 max

󰁱󰁫
40q
q−2

󰁬
log2

󰀃
δ−1

󰀄
+ 80

q−2 − 28, 52
󰁲
, then:
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(i) there exists a unique Γ ∈ NN satisfying:

Γ =

󰀕
1

2
⊛ (Φ • AffA1,0)

󰀖󰁐󰀕󰀕
−1

2

󰀖
⊛ (Φ • AffA2,0)

󰀖󰁐󰀕󰀕
−1

2

󰀖
⊛ (Φ • AffA3,0)

󰀖

(6.1.31)

(ii) it holds that Rr (Γ) ∈ C
󰀃
R2,R

󰀄

(iii) it holds for all x ∈ R that (Rr (Γ)) (x, 0) = (Rr (Γ)) (0, y) = 0

(iv) it holds for any x, y ∈ R that

󰀏󰀏󰀏󰀏󰀏󰀏󰀏
xy − (Rr (Γ))

󰀳

󰁅󰁃

󰀵

󰀹󰀷
x

y

󰀶

󰀺󰀸

󰀴

󰁆󰁄

󰀏󰀏󰀏󰀏󰀏󰀏󰀏
󰃑 εmax{1, |x|q, |y|q}

(v) it holds that P(Γ) 󰃑 360q
q−2

󰀅
log2

󰀃
ε−1

󰀄
+ q + 1

󰀆
− 252, and

(vi) it holds that D (Γ) 󰃑 q
q−2

󰀅
log2

󰀃
ε−1

󰀄
+ q

󰀆

Proof. Note that:

(Rr (Γ))

󰀳

󰁅󰁃

󰀵

󰀹󰀷
x

y

󰀶

󰀺󰀸

󰀴

󰁆󰁄 = Rr

󰀕󰀕
1

2
⊛ (Φ • AffA1,0)

󰀖󰁐󰀕󰀕
−1

2

󰀖
⊛ (Φ • AffA2,0)

󰀖󰁐
(6.1.32)

󰀕󰀕
−1

2

󰀖
⊛ (Φ • AffA3,0)

󰀖󰀖
󰀳

󰁅󰁃

󰀵

󰀹󰀷
x

y

󰀶

󰀺󰀸

󰀴

󰁆󰁄

= Rr

󰀕
1

2
⊛ (Φ • AffA1,0)

󰀖
󰀳

󰁅󰁃

󰀵

󰀹󰀷
x

y

󰀶

󰀺󰀸

󰀴

󰁆󰁄+Rr

󰀕󰀕
−1

2

󰀖
⊛ (Φ • AffA2,0)

󰀖
󰀳

󰁅󰁃

󰀵

󰀹󰀷
x

y

󰀶

󰀺󰀸

󰀴

󰁆󰁄

+Rr

󰀕󰀕
−1

2

󰀖
⊛ (Φ • AffA3,0)

󰀖
󰀳

󰁅󰁃

󰀵

󰀹󰀷
x

y

󰀶

󰀺󰀸

󰀴

󰁆󰁄

=
1

2
(Rr (Φ))

󰀳

󰁅󰁃
󰀗
1 1

󰀘
󰀵

󰀹󰀷
x

y

󰀶

󰀺󰀸

󰀴

󰁆󰁄− 1

2
(Rr (Φ))

󰀳

󰁅󰁃
󰀗
1 0

󰀘
󰀵

󰀹󰀷
x

y

󰀶

󰀺󰀸

󰀴

󰁆󰁄

− 1

2
(Rr (Φ))

󰀳

󰁅󰁃
󰀗
0 1

󰀘
󰀵

󰀹󰀷
x

y

󰀶

󰀺󰀸

󰀴

󰁆󰁄

=
1

2
(Rr (Φ)) (x+ y)− 1

2
(Rr (Φ)) (x)−

1

2
(Rr (Φ)) (y) (6.1.33)

98



Note that this, and the assumption that (Rr (Φ)) (x) ∈ C (R,R) and that (Rr (Φ)) (0) = 0 ensures:

(Rr (Γ))

󰀳

󰁅󰁃

󰀵

󰀹󰀷
x

0

󰀶

󰀺󰀸

󰀴

󰁆󰁄 =
1

2
(Rr (Φ)) (x+ 0)− 1

2
(Rr (Φ)) (x)−

1

2
(Rr (Φ)) (0)

= 0

=
1

2
(Rr (Φ)) (0 + y)− 1

2
(Rr (Φ)) (0)−

1

2
(Rr (Φ)) (y)

= (Rr (Γ))

󰀳

󰁅󰁃

󰀵

󰀹󰀷
0

y

󰀶

󰀺󰀸

󰀴

󰁆󰁄 (6.1.34)

Next, observe that since by assumption it is the case for all x, y ∈ R that |x2 − (Rr (Φ)) (x) | 󰃑

δmax{1, |x|q}, xy = 1
2 |x+ y|2 − 1

2 |x|
2 − 1

2 |y|
2, triangle Inequality and from (6.1.33) we have that:

|(Rr (Γ) (x, y))− xy|

=

󰀏󰀏󰀏󰀏
1

2

󰁫
(Rr (Φ)) (x+ y)− |x+ y|2

󰁬
− 1

2

󰁫
(Rr (Φ)) (x)− |x|2

󰁬
− 1

2

󰁫
(Rr (Φ)) (x)− |y|2

󰁬󰀏󰀏󰀏󰀏

󰃑
󰀏󰀏󰀏󰀏
1

2

󰁫
(Rr (Φ)) (x+ y)− |x+ y|2

󰁬
+

1

2

󰁫
(Rr (Φ)) (x)− |x|2

󰁬
+

1

2

󰁫
(Rr (Φ)) (x)− |y|2

󰁬󰀏󰀏󰀏󰀏

󰃑 δ

2
[max {1, |x+ y|q}+max {1, |x|q}+max {1, |y|q}]

Note also that since for all α,β ∈ R and p ∈ [1,∞) we have that |α + β|p 󰃑 2p−1 (|α|p + |β|p) we

have that:

|(Rr (Φ)) (x)− xy|

󰃑 δ

2

󰀅
max

󰀋
1, 2q−1|x|q + 2q−1 |y|q

󰀌
+max {1, |x|q}+max {1, |y|q}

󰀆

󰃑 δ

2

󰀅
max

󰀋
1, 2q−1|x|q

󰀌
+ 2q−1 |y|q +max {1, |x|q}+max {1, |y|q}

󰀆

󰃑 δ

2
[2q + 2]max {1, |x|q , |y|q} = εmax {1, |x|q , |x|q}

This proves Item(iv). Note that P (AffAi) = 2 for i = {1, 2, 3}. This, combined with (Grohs et al.,

2023, Lemma 2.6, Item(iv)), and the fact that P (Φ) 󰃑 max
󰁱󰁫

40q
q−2

󰁬
log2

󰀃
δ−1

󰀄
+ 80

q−2 − 28, 52
󰁲
, and
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Lemma 5.4.2 Item (i) tells us that for i = 1, 2, 3:

P
󰀕
1

2
⊛ (Φ • AffAi,0)

󰀖

󰃑 O(Φ)2 + P(Φ) + P (AffAi,0) +W1(Φ) · W1 (AffAi,0)

= 12 + P(Φ) + (1 · 2 + 1) + (lφ,1 · 1)

= 6 + P (Φ)

󰃑 6 + max

󰀝󰀗
40q

q − 2

󰀘
log2

󰀃
δ−1

󰀄
+

80

q − 2
− 28, 52

󰀞

Notice now that by Lemma 5.5.6 we have that

P
󰀕󰀕

1

2
⊛ (Φ • AffA1,0)

󰀖
⊕

󰀕󰀕
−1

2

󰀖
⊛ (Φ • AffA2,0)

󰀖󰀖

󰃑 6 + max

󰀝󰀗
40q

q − 2

󰀘
log2

󰀃
δ−1

󰀄
+

80

q − 2
− 28, 52

󰀞

+max

󰀝󰀗
40q

q − 2

󰀘
log2

󰀃
δ−1

󰀄
+

80

q − 2
− 28, 52

󰀞

Remark 6.1.5. We shall refer to this neural network for a given q and given ε from now on as

Prdq,ε.

6.2 Higher Approximations

We take inspiration from the Sum neural network to create the Prd neural network, however we

first need to define a special neural network called tunneling neural network so that we are able to

effectively parallelize two neural networks not of the same length.
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6.2.1 The Tun Neural Network

Definition 6.2.1 (The Tunneling Neural Network). We define the tunneling neural network, de-

noted as Tunn for n ∈ N by:

Tunn =

󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰀽

Aff1,0 : n = 1

Id1 : n = 2

•n−2 Id1 n ∈ N ∩ [3,∞)

(6.2.1)

Where Id1 is as in Definition 9.2.1.

Lemma 6.2.2. Let n ∈ N, x ∈ R and Tunn ∈ NN. For all n ∈ N and x ∈ R, it is then the case

that:

(i) Rr (Tunn) ∈ C (R,R)

(ii) D (Tunn) = n

(iii) (Rr (Tunn)) (x) = x

(iv) P (Tunn) =

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

2 : n = 1

7 + 6(n− 2) n ∈ N ∩ [2,∞)

(v) L (Tunn) = (l0, l1, ..., lL−1, lL) = (1, 2, ..., 2, 1)

Proof. Note that by Lemma 5.4.2 it is the case that D (Aff1,0) = 1 and by Lemma 9.2.1 it is the

case that D (Id1) = 2. Assume now that for all n 󰃑 N that D (Tunn) = n, then for the inductive

step, by Lemma 5.2.2 we have that:

D (Tunn+1) = D
󰀃
•n−1 Id1

󰀄

= D
󰀃󰀃
•n−2 Id1

󰀄
• Id1

󰀄

= n+ 2− 1 = n+ 1 (6.2.2)

This completes the induction and hence Item (i) and Item (iii). Note next that by (5.1.13) we have
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that:

(Rr (Aff1,0)) (x) = x (6.2.3)

Lemma 9.2.2, Item (iii) also tells us that:

(Rr (Id1)) (x) = r(x)− r(−x) = x (6.2.4)

Assume now that for all n 󰃑 N that Tunn (x) = x. For the inductive step, by Lemma 9.2.2, Item

(iii), and we then have that:

(Rr (Tunn+1)) (x) =
󰀃
Rr

󰀃
•n−1 Id1

󰀄󰀄
(x) (x)

=
󰀃
Rr

󰀃󰀃
•n−2 Id1

󰀄
• Id1

󰀄󰀄

=
󰀃󰀃
Rr

󰀃
•n−2 Id1

󰀄󰀄
◦ (Rr (Id1))

󰀄
(x)

= ((Rr (Tunn)) ◦ (Rr (Id1))) (x)

= x (6.2.5)

This proves Item (ii). Next note that P (Aff1,0) = 2. Note also that:

P (Id1) = P

󰀵

󰀹󰀷

󰀳

󰁅󰁃

󰀳

󰁅󰁃

󰀵

󰀹󰀷
1

−1

󰀶

󰀺󰀸 ,

󰀵

󰀹󰀷
0

0

󰀶

󰀺󰀸

󰀴

󰁆󰁄 ,

󰀕󰀗
1 −1

󰀘
,

󰀗
0

󰀘󰀖
󰀴

󰁆󰁄

󰀶

󰀺󰀸

= 7

And that by definition of composition:

P (Tun2) = P

󰀵

󰀹󰀷

󰀳

󰁅󰁃

󰀳

󰁅󰁃

󰀵

󰀹󰀷
1

−1

󰀶

󰀺󰀸 ,

󰀵

󰀹󰀷
0

0

󰀶

󰀺󰀸

󰀴

󰁆󰁄 ,

󰀕󰀗
1 −1

󰀘
,

󰀗
0

󰀘󰀖
󰀴

󰁆󰁄 •

󰀳

󰁅󰁃

󰀳

󰁅󰁃

󰀵

󰀹󰀷
1

−1

󰀶

󰀺󰀸 ,

󰀵

󰀹󰀷
0

0

󰀶

󰀺󰀸

󰀴

󰁆󰁄 ,

󰀕󰀗
1 −1

󰀘
,

󰀗
0

󰀘󰀖
󰀴

󰁆󰁄

󰀶

󰀺󰀸

= P

󰀵

󰀹󰀷

󰀳

󰁅󰁃

󰀳

󰁅󰁃

󰀵

󰀹󰀷
1

−1

󰀶

󰀺󰀸 ,

󰀵

󰀹󰀷
0

0

󰀶

󰀺󰀸

󰀴

󰁆󰁄 ,

󰀳

󰁅󰁃

󰀵

󰀹󰀷
1 −1

−1 1

󰀶

󰀺󰀸 ,

󰀵

󰀹󰀷
0

0

󰀶

󰀺󰀸

󰀴

󰁆󰁄 ,

󰀕󰀗
1 −1

󰀘
,

󰀗
0

󰀘󰀖
󰀴

󰁆󰁄

󰀶

󰀺󰀸

= 13
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Now for the inductive step assume that for all n 󰃑 N ∈ N, it is the case that P (Tunn) = 7+6(n−2).

For the inductive step we then have:

P (Tunn+1) = P (Tunn • Id1)

= P

󰀵

󰀹󰀷

󰀳

󰁅󰁃

󰀳

󰁅󰁃

󰀵

󰀹󰀷
1

−1

󰀶

󰀺󰀸 ,

󰀵

󰀹󰀷
0

0

󰀶

󰀺󰀸

󰀴

󰁆󰁄 ,

󰀳

󰁅󰁃

󰀵

󰀹󰀷
1 −1

−1 1

󰀶

󰀺󰀸 ,

󰀵

󰀹󰀷
0

0

󰀶

󰀺󰀸

󰀴

󰁆󰁄 , · · · ,
󰀕󰀗

1 −1

󰀘
,

󰀗
0

󰀘󰀖
󰀴

󰁆󰁄 • Id1

󰀶

󰀺󰀸

= P

󰀵

󰀹󰀷

󰀳

󰁅󰁃

󰀳

󰁅󰁃

󰀵

󰀹󰀷
1

−1

󰀶

󰀺󰀸 ,

󰀵

󰀹󰀷
0

0

󰀶

󰀺󰀸

󰀴

󰁆󰁄 ,

󰀳

󰁅󰁃

󰀵

󰀹󰀷
1 −1

−1 1

󰀶

󰀺󰀸 ,

󰀵

󰀹󰀷
0

0

󰀶

󰀺󰀸

󰀴

󰁆󰁄 , · · · ,

󰀳

󰁅󰁃

󰀵

󰀹󰀷
1 −1

−1 1

󰀶

󰀺󰀸 ,

󰀵

󰀹󰀷
0

0

󰀶

󰀺󰀸

󰀴

󰁆󰁄 ,

󰀕󰀗
1 −1

󰀘
,

󰀗
0

󰀘󰀖
󰀴

󰁆󰁄

󰀶

󰀺󰀸

= 7 + 6(n− 2) + 6 = 7 + 6 ((n+ 1)− 2) (6.2.6)

This proves Item (iv).

Note finally that Item (v) is a consequence of Lemma 9.2.2, Item (i) and (Grohs et al., 2023,

Proposition 2.6)

6.2.2 The Pwr and Tay Neural Networks

Definition 6.2.3 (The Power Neural Network). Let n ∈ N. Let δ, ε ∈ (0,∞), q ∈ (2,∞), satisfy

that δ = ε
󰀃
2q−1 + 1

󰀄−1
. We define the power neural networks Pwrq,εn ∈ NN, denoted for n ∈ N0 as:

Pwrq,εn =

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

Aff0,1 n = 0

Prdq,ε •
󰁫
TunD(Pwrq,εn−1)

⊟Pwrq,εn−1

󰁬
• Cpy2,1 N ∩ [1,∞)

Lemma 6.2.4. Let δ, ε ∈ (0,∞), q ∈ (2,∞), and δ = ε
󰀃
2q−1 + 1

󰀄−1
. Let n ∈ N0, and Pwrn ∈ NN.

It is then the case for all n ∈ N0, and x ∈ R that:

(i) (Rr (Pwr
q,ε
n )) (x) ∈ C (R,R)

(ii) D(Pwrq,εn ) 󰃑

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

1 n = 0

q
q−2

󰀅
log2

󰀃
ε−1

󰀄
+ q

󰀆
+D

󰀓
TunD(Pwrq,εn−1)

󰀔
− 1 n 󰃍 1
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(iii) P(Pwrq,εn ) 󰃑

󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰀽

2 n = 0

360q
q−2

󰀅
log2

󰀃
ε−1

󰀄
+ q + 1

󰀆
+ 4

󰀃
D
󰀃
Pwrq,εn−1

󰀄󰀄
+ P

󰀃
Pwrq,εn−1

󰀄

+W1

󰀃
Pwrq,εn−1

󰀄
+ 2WD(Pwrq,εn−1)−2

󰀃
Pwrq,εn−1

󰀄
− 235 n 󰃍 1

(iv) |xn − (Rr (Pwr
q,ε
n )) (x)| 󰃑

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

0 n = 0, 1

εmax
󰀋
1, |x|q ,

󰀏󰀏Rr

󰀃
Pwrq,εn−1

󰀄
(x)

󰀏󰀏q󰀌 n 󰃍 2

Proof. Note that Lemma 9.2.2 ensures that Rr (Pwr0) ∈ C (R,R). Note next that by (Grohs et al.,

2023, Proposition 2.6), with Φ1 ↶ ν1,Φ2 ↶ ν2, a ↶ r, we have that:

(Rr (ν1 • ν2)) (x) = ((Rr (ν1)) ◦ (Rr (ν2))) (x) (6.2.7)

This, with the fact that, the composition of continuous functions is continuous, the fact the par-

allelization of continuous realized neural networks is continuous tells us that (Rr Pwrn) ∈ C (R,R)

for n ∈ N ∩ [2,∞).

Note next that by Lemma 9.2.2, it is the case that D (Id1) = 1. By Lemmas 5.5.2 and 5.2.2 it is also

the case that: D
󰀓
Prdq,ε •

󰁫
TunD(Pwrq,εn−1)

⊟Pwrq,εn−1

󰁬
• Cpy

󰀔
= D

󰀓
Prdq,ε •

󰁫
TunD(Pwrq,εn−1)

⊟Pwrq,εn−1

󰁬󰀔
.

Note also that by parallelization properties we have thatD
󰀓
TunD(Pwrq,εn−1)

⊟Pwrq,εn−1

󰀔
= D

󰀃
Pwrq,εn−1

󰀄
.

This with (Grohs et al., 2023, Proposition 2.6) and the fact that • is associative then yields that

for n 󰃍 2 that:

D (Pwrq,εn ) = D
󰀓
Prd •

󰁫
TunD(Pwrq,εn−1)

⊟Pwrq,εn−1

󰁬
• Cpy2,1

󰀔

= D
󰀓
Prd •

󰁫
TunD(Pwrq,εn−1)

⊟Pwrq,εn−1

󰁬󰀔

= D (Prd) +D
󰀓
TunD(Pwrq,εn−1)

󰀔
− 1

󰃑 q

q − 2

󰀅
log2

󰀃
ε−1

󰀄
+ q

󰀆
+D

󰀓
TunD(Pwrq,εn−1)

󰀔
− 1

(6.2.8)

Next note that by Lemma 5.4.2 we have that:

P (Pwrq,ε0 ) = P (Aff0,1) = 2 (6.2.9)
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Next note that by (Grohs et al., 2023, Proposition 2.6) we then have that for n 󰃍 2:

P
󰀓󰁫

TunD(Pwrq,εn−1)
⊟Pwrq,εn−1

󰁬
• Cpy2,1

󰀔

󰃑 P
󰀓󰁫

TunD(Pwrq,εn−1)
⊟Pwrq,εn−1

󰁬󰀔
+ P

󰀃
Cpy2,1

󰀄
+

󰀃
2 +W1

󰀃
Pwrq,εn−1

󰀄󰀄
· 1

= P
󰀓󰁫

TunD(Pwrq,εn−1)
⊟Pwrq,εn−1

󰁬󰀔
+W1

󰀃
Pwrq,εn−1

󰀄
+ 6

= P
󰀓
TunD(Pwrq,εn−1)

󰀔
+ P

󰀃
Pwrq,εn−1

󰀄
+W1

󰀃
Pwrq,εn−1

󰀄
+ 6

= 4
󰀃
D
󰀃
Pwrq,εn−1

󰀄󰀄
+ P

󰀃
Pwrq,εn−1

󰀄
+W1

󰀃
Pwrq,εn−1

󰀄
+ 13 (6.2.10)

and that:

P
󰀓
Prd •

󰁫
TunD(Pwrq,εn−1)

⊟Pwrq,εn−1

󰁬
• Cpy2,1

󰀔

= P (Prd) + P
󰀓󰁫

TunD(Pwrq,εn−1)
⊟Pwrq,εn−1

󰁬
• Cpy2,1

󰀔
+W1 (Prd) ·

󰁫
WD(Pwrq,εn−1)−2

󰀃
Pwrq,εn−1

󰀄
+ 2

󰁬

󰃑 P (Prd) + 4
󰀃
D
󰀃
Pwrq,εn−1

󰀄󰀄
+ P

󰀃
Pwrq,εn−1

󰀄
+W

󰀃
Pwrq,εn−1

󰀄
+ 13

+W1 (Prd) ·
󰁫
WD(Pwrq,εn−1)−2

󰀃
Pwrq,εn−1

󰀄
+ 2

󰁬

󰃑 360q

q − 2

󰀅
log2

󰀃
ε−1

󰀄
+ q + 1

󰀆
− 252 + 4

󰀃
D
󰀃
Pwrq,εn−1

󰀄󰀄
+ P

󰀃
Pwrq,εn−1

󰀄
+W1

󰀃
Pwrq,εn−1

󰀄
+ 13

+W1 (Prd) ·
󰁫
WD(Pwrq,εn−1)−2

󰀃
Pwrq,εn−1

󰀄
+ 2

󰁬

=
360q

q − 2

󰀅
log2

󰀃
ε−1

󰀄
+ q + 1

󰀆
− 252 + 4

󰀃
D
󰀃
Pwrq,εn−1

󰀄󰀄
+ P

󰀃
Pwrq,εn−1

󰀄
+W1

󰀃
Pwrq,εn−1

󰀄
+ 13

+ 2WD(Pwrq,εn−1)−2

󰀃
Pwrq,εn−1

󰀄
+ 4

=
360q

q − 2

󰀅
log2

󰀃
ε−1

󰀄
+ q + 1

󰀆
+ 4

󰀃
D
󰀃
Pwrq,εn−1

󰀄󰀄
+ P

󰀃
Pwrq,εn−1

󰀄
+W1

󰀃
Pwrq,εn−1

󰀄

+ 2WD(Pwrq,εn−1)−2

󰀃
Pwrq,εn−1

󰀄
− 235

Next note that Rr (Pwr0,1) and Rr (Pwr1,0) are exactly 1 and x respectively. Note also that the

realizations of Tunn and Cpy2,1 are exact. Thus it is the case that for all n ∈ N, we have that

R(Pwrq,εn )(x) = Rr

󰀃
Prdq,ε

󰀃
R
󰀃
Pwrq,εn−1

󰀄
(x) , x

󰀄󰀄
Note then that Lemma 6.1.4 then gives us that for
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all n ∈ N it is the case that:

|xn −Rr (Pwr
q,ε
n )| =

󰀏󰀏xn−1 · x−Rr

󰀃
Prdq,ε

󰀃
Rr

󰀃
Pwrq,εn−1

󰀄
(x) , x

󰀄󰀄󰀏󰀏

󰃑 εmax
󰀋
1, |x|q,

󰀏󰀏Rr

󰀃
Pwrq,εn−1

󰀄
(x)

󰀏󰀏q󰀌 (6.2.11)

This completes the lemma.

Remark 6.2.5. Note we may now define what we will call neural network polynomials as objects

of the form:

󰁞

n∈N0

󰀥
n󰁐

i=0

󰀓
ci ⊛ Emaxi∈{0,1,...,n}{D(Pwrq,εi )}−D(Pwrq,εi ),Id1 [Pwr

q,ε
i ]

󰀔󰀦
⊆ NN (6.2.12)

Where ci ∈ R, for all i ∈ {0, 1, ..., n}.

Definition 6.2.6 (Taylor Approximations for ex around x = 0). Let δ, ε ∈ (0,∞), q ∈ (2,∞) and

δ = ε
󰀃
2q−1 + 1

󰀄−1
. We define, for all n ∈ N0, the family of neural networks Tayexpn,q,ε as:

Tayexpn,q,ε =

n󰁐

i=0

󰀗
1

i!
⊛ Emaxi∈{0,1,...,n}{D(Pwrq,εi )}−D(Pwrq,εi ),Id1 [Pwr

q,ε
i ]

󰀘
(6.2.13)

Lemma 6.2.7. Let ν1, ν2 ∈ NN, f, g ∈ C (R,R), and ε1, ε2 ∈ (0,∞) such that for all x ∈ R it

holds that |f(x)−Rr (ν1)| 󰃑 ε1 and |g(x)−Rr (ν2)| 󰃑 ε2. It is then the case for all x ∈ R that:

|[f + g] (x)−Rr ([ν1 ⊕ ν2]) (x)| 󰃑 ε1 + ε2 (6.2.14)

Proof. Note that the triangle inequality then tells us:

|[f + g] (x)−Rr [ν1 ⊕ ν2] (x)| = |f (x) + g (x)−Rr (ν1) (x)−Rr (ν2) (x)|

󰃑 |f (x)−Rr (ν1) (x)|+ |g (x)−Rr (ν2) (x)|

󰃑 ε1 + ε2
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Lemma 6.2.8. Let n ∈ N. Let ν1, ν2, ..., νn ∈ NN, ε1, ε2, ..., εn ∈ (0,∞) and f1, f2, ..., fn ∈ C (R,R)

such that for all i ∈ {1, 2, ..., n}, and for all x ∈ R, it is the case that, |fi (x)−Rr (νi) (x)| 󰃑 εi. It

is then the case for all x ∈ R, that:

󰀏󰀏󰀏󰀏󰀏

n󰁛

i=1

fi (x)−
n󰁐

i=1

(Rr (νi)) (x)

󰀏󰀏󰀏󰀏󰀏 󰃑
n󰁛

i=1

εi (6.2.15)

Proof. This is a consequence of a finite number of applications of (6.2.14).

Lemma 6.2.9. Let δ, ε ∈ (0,∞), q ∈ (2,∞) and δ = ε
󰀃
2q−1 + 1

󰀄−1
. It is then the case for all

n ∈ N0 and x ∈ R that:

(i) Rr

󰀃
Tayexpn,q,ε

󰀄
∈ C (R,R)

(ii) D
󰀃
Tayexpn,q,ε

󰀄
󰃑

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

2 n = 0

q
q−2

󰀅
log2

󰀃
ε−1

󰀄
+ q

󰀆
+D

󰀓
TunD(Pwrq,εn−1)

󰀔
− 1 n 󰃍 1

(iii) P
󰀃
Tayexpn,q,ε

󰀄
󰃑

󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰀽

2 n = 0

360q
q−2

󰀅
log2

󰀃
ε−1

󰀄
+ q + 1

󰀆
+ 4

󰀃
D
󰀃
Pwrq,εn−1

󰀄󰀄
+ P

󰀃
Pwrq,εn−1

󰀄

+W1

󰀃
Pwrq,εn−1

󰀄
+ 2WD(Pwrq,εn−1)−2

󰀃
Pwrq,εn−1

󰀄
− 235 n 󰃍 1

(iv)
󰀏󰀏󰀏
󰁓n

i=0

󰁫
xi

i!

󰁬
−Rr

󰀃
Tayexpn,q,ε

󰀄󰀏󰀏󰀏 󰃑
󰁓n

i=1
ε
i! max

󰀋
1, |x|q ,

󰀏󰀏Rr

󰀃
Pwrq,εi−1

󰀄
(x)

󰀏󰀏q󰀌

Proof. Note that by Lemma 5.6.3, Lemma 6.2.4, and (Grohs et al., 2023, Proposition 2.6) for all

n ∈ N0 it is the case that:

Rr

󰀃
Tayexpn,q,ε

󰀄
= Rr

󰀥
n󰁐

i=0

󰀗
1

i!
⊛ Emaxi∈{0,1,...,n}{D(Pwrq,εi )}−D(Pwrq,εi ),Id1 [Pwr

q,ε
i ]

󰀘󰀦

=

n󰁛

i=0

1

i!
Rr

󰁫
Emaxi∈{0,1,...,n}{D(Pwrq,εi )}−D(Pwrq,εi ),Id1 [Pwr

q,ε
i ]

󰁬

=

n󰁛

i=0

1

i!
Rr [Pwr

q,ε
i ]

(6.2.16)

Since (Rr (Pwr
q,ε
n )) (x) ∈ C (R,R), for all n ∈ N0 and since the finite sum of continuous functions

is continuous, this proves Item (i).
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Note that Tayexpn,q,ε is only as deep as the deepest of the Pwrq,εi networks, which from definition is

Pwrq,εn , which in turn has the largest bound. Therefore, by Lemma 5.5.7 and Lemma 5.4.4 we have

that:

D
󰀃
Tayexpn,q,ε

󰀄
= D (Pwrq,εn )

󰃑

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

2 n = 0

q
q−2

󰀅
log2

󰀃
ε−1

󰀄
+ q

󰀆
+D

󰀓
TunD(Pwrq,εn−1)

󰀔
− 1 n 󰃍 1

Note that P (Id1) = 7 and further Definition 5.2.1 and (Grohs et al., 2023, Proposition 2.6) tells us

that for ν = ((W1, b1) , (W2, b2) , ..., (WL, bL)) ∈ NN it is the case that:

P (Id1 •ν) 󰃑 7 + P (ν) + 2 · WL−1 (ν) (6.2.17)

Which then in turn implies that for L ∈ N and ν ∈ NN, it is the case that:

P (EL,Id1 (ν)) = P
󰀓
Id

•(L−D(ν))
1 •ν

󰀔

󰃑 P
󰀓
Id

•(L−D(ν))
1

󰀔
+ P (ν) + 2 · WD(ν)−1 (ν)

= 7 + 6 (L−D (ν)− 1) + P (ν) + 2 · WD(ν)−1 (ν)

= 6L− 6D (ν) + 1 + P (ν) + 2 · WD(ν)−1 (ν)

Note that each neural network summand in Tayexpn,q,ε consists of a combination of Tunk and Pwrk

for some k ∈ N. Each Pwrk has at-least as many parameters as a tunneling neural network of that
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depth, i.e. Tunk. This, finally, with Lemma 6.2.4 then implies that:

P
󰀃
Tayexpn,q,ε

󰀄
= P

󰀥
n󰁐

i=0

󰀗
1

i!
⊛ Emaxi∈{0,1,...,n}{D(Pwrq,εi )}−D(Pwrq,εi ),Id1 [Pwr

q,ε
i ]

󰀘󰀦

󰃑 n · P
󰀕

1

n!
⊛ Pwrn

󰀖

󰃑 n · P (Pwrn) + 2

󰃑

󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰀽

2 n = 0

360q
q−2

󰀅
log2

󰀃
ε−1

󰀄
+ q + 1

󰀆
+ 4

󰀃
D
󰀃
Pwrq,εn−1

󰀄󰀄
+ P

󰀃
Pwrq,εn−1

󰀄

+W1

󰀃
Pwrq,εn−1

󰀄
+ 2WD(Pwrq,εn−1)−2

󰀃
Pwrq,εn−1

󰀄
− 235 n 󰃍 1

Finally, note that for all i ∈ N, Lemma 6.2.4, and by absolute homogenity of norms, the fact that

1
i! 󰃍 0 for all i ∈ N, and (Grohs et al., 2023, Proposition 2.6) then tells us that it is the case that:

󰀏󰀏xi − (Rr (Pwri)) (x)
󰀏󰀏 󰃑 εmax {1, |x|q , |Rr (Pwri−1) (x)|q}

1

i!

󰀏󰀏xi − (Rr (Pwri)) (x)
󰀏󰀏 󰃑 ε

i!
max {1, |x|q , |Rr (Pwri−1) (x)|q}

󰀏󰀏󰀏󰀏
xi

i!
−
󰀕
Rr

󰀕
1

i!
⊛ Pwri

󰀖󰀖
(x)

󰀏󰀏󰀏󰀏 󰃑
ε

i!
max {1, |x|q , |Rr (Pwri−1) (x)|q} (6.2.18)

This, Lemma 6.2.9, and the fact that realization of the tunneling neural network leads to the

identity function (Lemma 6.2.2 and (Grohs et al., 2023, Proposition 2.6)) then tells us that:

󰀏󰀏󰀏󰀏󰀏

n󰁛

i=0

󰀗
xi

i!

󰀘
−Rr

󰀃
Tayexpn,q,ε

󰀄
󰀏󰀏󰀏󰀏󰀏

=

󰀏󰀏󰀏󰀏󰀏

n󰁛

i=0

󰀗
xi

i!

󰀘
−Rr

󰀥
n󰁐

i=0

󰀗
1

i!
⊛ Emaxi∈{0,1,...,n}{D(Pwrq,εi )}−D(Pwrq,εi ),Id1 [Pwr

q,ε
i ]

󰀘󰀦󰀏󰀏󰀏󰀏󰀏

󰃑
n󰁛

i=1

ε

i!
max

󰀋
1, |x|q ,

󰀏󰀏Rr

󰀃
Pwrq,εi−1

󰀄
(x)

󰀏󰀏q󰀌

Lemma 6.2.10. Let δ, ε ∈ (0,∞), q ∈ (2,∞) and δ = ε
󰀃
2q−1 + 1

󰀄−1
. It is then the case for all
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n ∈ N0 and x ∈ [a, b] ⊆ R󰃍0 that:

󰀏󰀏ex −Rr

󰀃
Tayexpn,q,ε

󰀄
(x)

󰀏󰀏 󰃑
n󰁛

i=1

ε

i!
max

󰀋
1, |x|q ,

󰀏󰀏Rr

󰀃
Pwrq,εi−1

󰀄
(x)

󰀏󰀏q󰀌+

󰀏󰀏󰀏󰀏
eb · bn+1

(n+ 1)!

󰀏󰀏󰀏󰀏 (6.2.19)

Proof. Note that Taylor’s theorem states that for x ∈ [a, b] ⊆ R󰃍0 it is the case that:

ex =

n󰁛

i=0

󰀗
xi

i!

󰀘
+

eξ · xn+1

(n+ 1)!
(6.2.20)

Where ξ ∈ [0, x] in the Lagrange form of the remainder. Note then, for all n ∈ N0, x ∈ [a, b] ⊆ R,

and ξ ∈ [0, x] it is the case that the second summand is bounded by:

eξ · xn+1

(n+ 1)!
󰃑 eb · bn+1

(n+ 1)!
(6.2.21)

This, and the triangle inequality then indicates that for all x ∈ [a, b] ⊆ R󰃍0 :

󰀏󰀏ex −Rr

󰀃
Tayexpn,q,ε

󰀄
(x)

󰀏󰀏 =

󰀏󰀏󰀏󰀏󰀏

n󰁛

i=0

󰀗
xi

i!

󰀘
+

eξ · xn+1

(n+ 1)!
−Rr

󰀃
Tayexpn,q,ε

󰀄
(x)

󰀏󰀏󰀏󰀏󰀏

󰃑
󰀏󰀏󰀏󰀏󰀏

n󰁛

i=0

󰀗
xi

i!

󰀘
−Rr

󰀃
Tayexpn,q,ε

󰀄
(x)

󰀏󰀏󰀏󰀏󰀏+
󰀏󰀏󰀏󰀏
eb · bn+1

(n+ 1)!

󰀏󰀏󰀏󰀏

󰃑
n󰁛

i=1

ε

i!
max

󰀋
1, |x|q ,

󰀏󰀏Rr

󰀃
Pwrq,εi−1

󰀄
(x)

󰀏󰀏q󰀌+

󰀏󰀏󰀏󰀏
eb · bn+1

(n+ 1)!

󰀏󰀏󰀏󰀏
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Chapter 7

A modified Multi-Level Picard and

associated neural network

We now look at neural networks in the context of multi-level Picard iterations.

Lemma 7.0.1. Let α,β,M ∈ [0,∞), Un ∈ [0,∞), for n ∈ N0 satisfy for all n ∈ N that:

Un 󰃑 αMn +

n−1󰁛

i=0

Mn−i
󰀃
max {β, Ui}+ N (i)max

󰀋
β, Umax{i−1,0}

󰀌󰀄
(7.0.1)

It is then also the case that for all n ∈ N that Un 󰃑 (2M + 1)nmax {α,β}.

Proof. Let:

Sn = Mn +

n−1󰁛

i=0

Mn−i
󰁫
(2M + 1)i + N (i) (2M + 1)max{i−1,0}

󰁬
(7.0.2)

We prove this by induction. The base case of n = 0 already implies that U0 󰃑 α 󰃑 max {α,β}.

Next assume that Un 󰃑 (2M + 1)nmax {α,β} holds for all integers upto and including n, it is then
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the case that:

Un+1 󰃑 αMn+1 +

n󰁛

i=0

Mn+1−i
󰀃
max {β, Ui}+ N (i)max

󰀋
β, Umax{i−1,0}

󰀌󰀄

󰃑 αMn+1 +

n󰁛

i=0

Mn+1−i
󰁫
max

󰁱
β, (2M + 1)k max {α,β}

󰁲

+ N (i)max
󰁱
β, (2M + 1)max{k−1,0}max {α,β}

󰁲󰁬

󰃑 αMn+1 +max {α,β}
n󰁛

i=0

Mn+1−i
󰁫
(2M + 1)i + N (i) (2M + 1)max{i−1,0}

󰁬

󰃑 max {α,β}Sn+1 (7.0.3)

Then (7.0.2) and the assumption that M ∈ [0,∞) tells us that:

Sn+1 = Mn+1 +

n󰁛

i=0

Mn+1−i
󰁫
(2M + 1)i + N (i) (2M + 1)max{i−1,0}

󰁬

= Mn+1
n󰁛

i=0

Mn+1−i (2M + 1)k +

n󰁛

i=1

Mn+1−i (2M + 1)i−1

= Mn+1 +M

󰀥
(2M + 1)n+1 −Mn+1

M + 1

󰀦
+M

󰀗
(2M + 1)n −Mn

M + 1

󰀘

= Mn+1 +
M (2M + 1)n+1

M + 1
+

(2M + 1)n

M + 1
−M

󰀗
Mn+1 +Mn

M + 1

󰀘

󰃑 Mn+1 +
M (2M + 1)n+1

M + 1
+

(2M + 1)n+1

M + 1
−Mn+1

󰀗
✘✘✘✘M + 1

✘✘✘✘M + 1

󰀘

= (2M + 1)n+1 (7.0.4)

This completes the induction step proving (7.0.1).

Lemma 7.0.2. Let Θ =
󰀓󰁖n∈N Zn

󰀔
, d,M ∈ N, T ∈ (0,∞), f ∈ C (R,R), g,∈ C

󰀃
Rd,R

󰀄
, F,G ∈

NN satisfy that Rr (F) = f and Rr (G) = g, let uθ ∈ [0, 1], θ ∈ Θ, and Uθ : [0, T ] → [0, T ], θ ∈ Θ,

satisfy for all t ∈ [0, T ], theta ∈ Θ that Uθ
t = t+ (T − t)uθ, let Wθ : [0, T ] → Rd, θ ∈ Θ, for every

θ ∈ Θ, t ∈ [0, T ], s ∈ [t, T ], let Yθ
t,s ∈ R satisfy Yθ

t,s = Wθ
s − Wθ

t and let Uθ
n : [0, T ] × Rd → R,
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n ∈ N0, θ ∈ Θ, satisfy for all θ ∈ Θ, n ∈ N0, t ∈ [0, T ], x ∈ Rd that:

U θ
n (t, x) =

N (n)

Mn

󰀥
Mn󰁛

k=1

g
󰀓
x+ Y(θ,0,−k)

t,T

󰀔󰀦

+

n−1󰁛

i=0

T − t

Mn−i

󰀵

󰀷
Mn−i󰁛

k=1

󰀓󰀓
f ◦ U (θ,i,k)

i

󰀔
− N (i)

󰀓
f ◦ U (θ,−i,k)

max{i−1,0}

󰀔󰀔󰀕
U (θ,i,k)
t , x+ Y(θ,i,k)

t,U(θ,i,k)
t

󰀖󰀶

󰀸

(7.0.5)

it is then the case that:

(i) there exists unique Uθ
n,t ∈ NN, t ∈ [0, T ], n ∈ N0, θ ∈ Θ, which satisfy for all θ1, θ2 ∈ Θ,

n ∈ N0, t1, t2 ∈ [0, T ] that L
󰀓
Uθ1
n,t1

󰀔
= L

󰀓
Uθ2
n,t2

󰀔
.

(ii) for all θ ∈ Θ, t ∈ [0, T ] that Uθ
0,t = [[0 0 · · · 0] , [0]) ∈ R1×d × R1

(iii) for all θ ∈ Θ, n ∈ N, t ∈ [0, T ] that:

Uθ
n,t =

󰀥
Mn󰁐

k=1

󰀕
1

Mn
⊛

󰀕
G • AffId,Y

(θ,0,−k
t,T

󰀖󰀖󰀦

⊞I

󰀗
⊞n−1

i=0,I

󰀗󰀕
T − t

Mn−i

󰀖
⊛

󰀕
⊞Mn−i

k=1,I

󰀕󰀕
F • U(θ,i,k)

i,U(θ,i,k)
t

󰀖
• AffId ,Y

(θ,i,k)

t,U(θ,i,k)
t

󰀖󰀖󰀘󰀘

⊞I

󰀥
⊞n−1

i=0,I

󰀥󰀕
(t− T ) N
Mn−i

󰀖
⊛

󰀣
⊞Mn−i

k=1,I

󰀣󰀕
F • U(θ,−i,k)

max{i−1,0},U(θ,i,k)
t

󰀖
• AffId,Y

(θ,i,k)

t,U(θ,i,k)
t

󰀤󰀤󰀦󰀦

(7.0.6)

(iv) that for all θ ∈ Θ, n ∈ N0, t ∈ [0, T ], that D
󰀃
Uθ
n,t

󰀄
= n · H (F) + max {1, N (n)D (G)}

(v) that for all θ ∈ Θ, n ∈ N0, t ∈ [0, T ], that
󰀐󰀐L

󰀃
Uθ
n,t

󰀄󰀐󰀐
max

󰃑 (2M + 1)nmax {2, 󰀂L (F)󰀂max , 󰀂L (G)󰀂F }

(vi) it holds for all θ ∈ Θ, n ∈ N0, t ∈ [0, T ], x ∈ Rd that U θ
n (t, x) =

󰀃
Rr

󰀃
Uθ
n,t

󰀄󰀄
(x), and

(vii) it holds for all θ ∈ Θ, n ∈ N0, t ∈ [0, T ] that:

P
󰀓
Uθ
n,t

󰀔
󰃑 2nH (F) + max {1, 1N (n)D (G)} [(2M + 1)nmax {2, 󰀂L (F)󰀂max , 󰀂L (G)󰀂max}]

2

(7.0.7)

113



Chapter 8

Some categorical ideas about neural

networks
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Chapter 9

ANN first approximations

9.1 Activation Function as Neural Networks

Definition 9.1.1 (Activation ANN). Let n ∈ N. We denote by in ∈ ((Rn×n × Rn)× (Rn×n × Rn)) ⊆

NN the neural network given by in = ((In, 0n) , (In, 0n))

Lemma 9.1.2. Let n ∈ N, it then holds that:

(i) L(in) = (n, n, n) ∈ N3.

(ii) For all a ∈ C (R,R) that Ra (in) ∈ C (Rn,Rn) and,

(iii) For all a ∈ C (R,R) that Ra (in) = Multna

Proof. The fact that in ∈ ((Rn×n × Rn)× (Rn×n × Rn)) ⊆ NN tells us that L(in) = (n, n, n) ∈ N3.

This establishes Item (i). Note next that 5.1.13 establishes that for all a ∈ C (R,R), x ∈ Rn it

holds that Ra (in) ∈ C (Rn,Rn) and that:

(Ra (in)) (x) = In (Multna (Inx+ 0n,1)) + 0n,1 = Multna (x) (9.1.1)

Lemma 9.1.3. Let ν ∈ NN. Then:
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(i) It holds that:

L
󰀃
iO(ν) • ν

󰀄
=

󰀃
I(ν),W1(ν),W2(ν), ...,WD(ν)−1,O(ν),O(ν)

󰀄
∈ ND(ν)+2 (9.1.2)

(ii) It holds that for all a ∈ C (R,R) that Ra

󰀃
iO(ν) • ν

󰀄
∈ C

󰀃
RI(ν),RO(ν)

󰀄

(iii) It holds that for all a ∈ C (R,R), x ∈ RI(ν) that
󰀃
Ra

󰀃
iO(ν) • ν

󰀄󰀄
(x) = Multna ((Ra (ν)) (x))

(iv) It holds that:

L
󰀃
ν • iI(ν)

󰀄
=

󰀃
I(ν), I(ν),W1(ν),W2(ν), ...,WD(ν)−1 (ν) ,O(ν)

󰀄
∈ ND(ν)+2 (9.1.3)

(v) It holds that for all a ∈ C (R,R) that Ra

󰀃
ν • iI(ν)

󰀄
∈ C

󰀃
RI(ν),RO(ν)

󰀄
, and

(vi) It holds for all a ∈ C (R,R) that
󰀃
Ra

󰀃
ν • iI(ν)

󰀄󰀄
(x) = (Ra (ν))

󰀓
Mult

I(ν)
a (x)

󰀔

Proof. Note that Lemma 9.1.3 implies that for all n ∈ N, a ∈ C (R,R), x ∈ Rn, it holds that

Ra (in) ∈ C (Rn,Rn) and:

(Ra (in)) (x) = Multna (x) (9.1.4)

This and (Grohs et al., 2023, Proposition 2.6) establishes Items (i)–(vi). This completes the proof

of the lemma.

9.2 ANN Representations for One-Dimensional Identity

Definition 9.2.1 (Identity Neural Network). We will denote by Idd ∈ NN the neural network

satisfying for all d ∈ N that:

(i)

Id1 =

󰀳

󰁅󰁃

󰀳

󰁅󰁃

󰀵

󰀹󰀷
1

−1

󰀶

󰀺󰀸 ,

󰀵

󰀹󰀷
0

0

󰀶

󰀺󰀸

󰀴

󰁆󰁄
󰀕󰀗

1 − 1

󰀘
,

󰀗
0

󰀘󰀖
󰀴

󰁆󰁄 ∈
󰀃󰀃
R2×1 × R2

󰀄
×

󰀃
R1×2 × R1

󰀄󰀄
(9.2.1)
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(ii)

Idd = ⊟d
i=1 Id1 (9.2.2)

For d > 1.

Lemma 9.2.2. Let d ∈ N, it is then the case that:

(i) L(Idd) = (d, 2d, d) ∈ N3.

(ii) Rr (Idd) ∈ C
󰀃
Rd,Rd

󰀄
.

(iii) For all x ∈ Rd that:

(Rr (Idd)) (x) = x

Proof. Note that (9.2.1) ensure that L(Idd) = (1, 2, 1). Furthermore, (9.2.2) and Remark 5.3.6

prove that L(Idd) = (d, 2d, d) which in turn proves Item (i). Note now that Remark 5.3.6 tells us

that:

Idd = ⊟d
i=1 (Id1) ∈

󰀣
L×
i=1

󰁫
Rdli×dli−1 × Rdli

󰁬󰀤
=

󰀓󰀓
R2d×d × R2d

󰀔
×

󰀓
Rd×2d × Rd

󰀔󰀔
(9.2.3)

Note that 9.2.1 ensures that for all x ∈ R it is the case that:

(Rr (Id1)) (x) = r(x)− r(−x) = max{x, 0}−max{−x, 0} = x (9.2.4)

And Lemma 5.3.4 shows us that for all x = (x1, x2, ..., xd) ∈ Rd it is the case that Rr (Idd) ∈

C
󰀃
Rd,Rd

󰀄
and that:

(Ra (Idd)) (x) =
󰀓
Ra

󰀓
⊟d

i=1 (Id1)
󰀔󰀔

(x1, x2, ..., xd)

= ((Ra (Id1)) (x1) , (Ra (Id1)) (x1) , ..., (Ra (Id1)) (xd))

= (x1, x2, ..., xd) = x (9.2.5)

This proves Item (ii)–(iii), thus establishing the lemma.
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Note here the difference between Definition 9.1.1 and Definition 9.2.1.

Lemma 9.2.3. Let ν ∈ NN with end-widths d. It is then the case that Rr (Idd •ν) (x) = Rr (ν • Idd) =

Rr (ν), i.e. Idd acts as a compositional identity.

Proof. From (5.2.1) and Definition 9.2.1 we have eight cases.

Case 1 where d = 1 and subcases:

(1.i) Idd •ν where D(ν) = 1

(1.ii) Idd •ν where D(ν) > 1

(1.iii) ν • Idd where D(ν) = 1

(1.iv) ν • Idd where D(ν) > 1

Case 2 where d > 1 and subcases:

(2.i) Idd •ν where D(ν) = 1

(2.ii) Idd •ν where D(ν) > 1

(2.iii) ν • Idd where D(ν) = 1

(2.iv) ν • Idd where D(ν) > 1

Case 1.i: Let ν = ((W1, b1)). Deriving from Definitions 9.2.1 and 5.2.1 we have that:

Id1 •ν =

󰀳

󰁅󰁃

󰀳

󰁅󰁃

󰀵

󰀹󰀷
1

−1

󰀶

󰀺󰀸W1,

󰀵

󰀹󰀷
1

−1

󰀶

󰀺󰀸 b1 +

󰀵

󰀹󰀷
0

0

󰀶

󰀺󰀸

󰀴

󰁆󰁄 ,

󰀕󰀗
1 − 1,

󰀘
,

󰀗
0

󰀘󰀖
󰀴

󰁆󰁄 (9.2.6)

=

󰀳

󰁅󰁃

󰀳

󰁅󰁃

󰀵

󰀹󰀷
W1

−W1

󰀶

󰀺󰀸 ,

󰀵

󰀹󰀷
b1

−b1

󰀶

󰀺󰀸

󰀴

󰁆󰁄 ,

󰀕󰀗
1 − 1

󰀘
,

󰀗
0

󰀘󰀖
󰀴

󰁆󰁄 (9.2.7)

Let x ∈ R. Upon realization with r and d = 1 we have:

(Rr (Id1 •ν)) (x) = r(W1x+ b1)− r(−W1x− b1)

= max{W1x+ b1, 0}−max{−W1x− b1, 0}

= W1x+ b1

= Rr(ν)
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Case 1.ii: Let ν = ((W1, b1) , (W2, b2) , ..., (WL, bL)). Deriving from Definition 9.2.1 and 5.2.1 we

have that:

Id1 •ν =

󰀳

󰁅󰁃(W1, b1) , (W2, b2) , ..., (WL−1, bL−1) ,

󰀳

󰁅󰁃

󰀵

󰀹󰀷
1

−1

󰀶

󰀺󰀸WL,

󰀵

󰀹󰀷
1

−1

󰀶

󰀺󰀸 bL +

󰀵

󰀹󰀷
0

0

󰀶

󰀺󰀸

󰀴

󰁆󰁄 ,

󰀕󰀗
1 − 1

󰀘
,

󰀗
0

󰀘󰀖
󰀴

󰁆󰁄

=

󰀳

󰁅󰁃(W1, b1) , (W2, b2) , ..., (WL−1, bL−1) ,

󰀳

󰁅󰁃

󰀵

󰀹󰀷
WL

−WL

󰀶

󰀺󰀸 ,

󰀵

󰀹󰀷
bL

−bL

󰀶

󰀺󰀸

󰀴

󰁆󰁄 ,

󰀕󰀗
1 −1

󰀘
,

󰀗
0

󰀘󰀖
󰀴

󰁆󰁄

Let x ∈ R. Note that upon realization with r the last two layers are:

r(WLx+ bL)− r(−WLx− bL, 0)

= max{WLx+ bL, 0}−max{−WLx− bL, 0}

= WLx+ bL (9.2.8)

This, along with Case 1.i implies that the unrealized last layer is equivalent to (WL, bL) whence

Id1 •ν = ν.

Case 1.iii: Let ν = ((W1, b1)). Deriving from Definition 9.2.1 and 5.2.1 we have:

ν • Id1 =

󰀳

󰁅󰁃

󰀳

󰁅󰁃

󰀵

󰀹󰀷
1

−1

󰀶

󰀺󰀸 ,

󰀵

󰀹󰀷
0

0

󰀶

󰀺󰀸

󰀴

󰁆󰁄 ,

󰀕
W1

󰀗
1 − 1

󰀘
,W1

󰀗
0

󰀘
+ b1

󰀖
󰀴

󰁆󰁄

=

󰀳

󰁅󰁃

󰀳

󰁅󰁃

󰀵

󰀹󰀷
1

−1

󰀶

󰀺󰀸 ,

󰀵

󰀹󰀷
0

0

󰀶

󰀺󰀸

󰀴

󰁆󰁄 ,

󰀕󰀗
W1 −W1

󰀘
, b1

󰀖
󰀴

󰁆󰁄

Let x ∈ R. Upon realization with r we have that:

(Rr (ν • Id1)) (x) =
󰀗
W1 −W1

󰀘
r

󰀳

󰁅󰁃

󰀵

󰀹󰀷
x

−x

󰀶

󰀺󰀸

󰀴

󰁆󰁄+ b1

= W1 r(x)−W1 r(−x) + b1

= W1 (r(x)− r(−x)) + b1

= Wx + b1 = Rr (ν) (9.2.9)

119



Case 1.iv: Let ν = ((W1, b1) , (W2, b2) , ..., (WL, bL)). Deriving from Definitions 9.2.1 and 5.2.1 we

have that:

ν • Id1 =

󰀳

󰁅󰁃

󰀳

󰁅󰁃

󰀵

󰀹󰀷
1

−1

󰀶

󰀺󰀸 ,

󰀵

󰀹󰀷
0

0

󰀶

󰀺󰀸

󰀴

󰁆󰁄 ,

󰀕󰀗
W1 −W1

󰀘
, b1

󰀖
, (W2, b2) , ..., (WL, bL)

󰀴

󰁆󰁄 (9.2.10)

Let x ∈ R. Upon realization with r we have that the first two layers are:

󰀗
W1 −W1

󰀘
r

󰀳

󰁅󰁃

󰀵

󰀹󰀷
x

−x

󰀶

󰀺󰀸

󰀴

󰁆󰁄+ b1

= W1 r(x)−W1 r(−x) + b1

= W1 (r(x)− r(−x)) + b1

= W1x+ b1 = Rr (ν) (9.2.11)

This along with Case 1.iii implies that the unrealized first layer is equivalent (W1, b1) whence we

have that ν • Id1 = ν.

Observe that Definitions 5.3.1 and 9.2.1 tells us that:

⊟d
i=1 Idi =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

d−many󰁽 󰂀󰁿 󰁾󰀵

󰀹󰀹󰀹󰀹󰀷

WeightId1,1
. . .

WeightId1,1

󰀶

󰀺󰀺󰀺󰀺󰀸
, 02d

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

,

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

d−many󰁽 󰂀󰁿 󰁾󰀵

󰀹󰀹󰀹󰀹󰀷

WeightId1,2
. . .

WeightId1,2

󰀶

󰀺󰀺󰀺󰀺󰀸
, 0d

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

Case 2.i Let d ∈ N ∩ [1,∞). Let ν ∈ NN be ν = (W1, b1) with end-widths d. Deriving from
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Definitions 5.2.1 and 9.2.1 we have:

Idd •ν =

󰀳

󰁅󰁅󰁅󰁅󰁃

󰀳

󰁅󰁅󰁅󰁅󰁃

󰀵

󰀹󰀹󰀹󰀹󰀷

WeightId1,1
. . .

WeightId1,1

󰀶

󰀺󰀺󰀺󰀺󰀸
W1,

󰀵

󰀹󰀹󰀹󰀹󰀷

WeightId1,1
. . .

WeightId1,1

󰀶

󰀺󰀺󰀺󰀺󰀸
b1

󰀴

󰁆󰁆󰁆󰁆󰁄
,

󰀳

󰁅󰁅󰁅󰁅󰁃

󰀵

󰀹󰀹󰀹󰀹󰀷

WeightId1,2
. . .

WeightId1,2

󰀶

󰀺󰀺󰀺󰀺󰀸
, 0d

󰀴

󰁆󰁆󰁆󰁆󰁄

󰀴

󰁆󰁆󰁆󰁆󰁄

=

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

[W1]1,∗

−[W1]1,∗
...

[W1]d,∗

−[W1]d,∗

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

,

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

[b1]1

−[b1]1
...

[b1]d

−[b1]d

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

,

󰀳

󰁅󰁅󰁅󰁅󰁃

󰀵

󰀹󰀹󰀹󰀹󰀷

WeightId1,2
. . .

WeightId1,2

󰀶

󰀺󰀺󰀺󰀺󰀸
, 0d

󰀴

󰁆󰁆󰁆󰁆󰁄

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

Let x ∈ Rd. Upon realization with r we have that:

(Rr (Idd •ν)) (x)

= r([W1]1,∗ · x+ [b1]1)− r(−[W1]1,∗ · x− [b1]1) + · · ·

+ r([W1]d,∗ · x+ [b1]d)− r(−[W1]d,∗ · x− [b1]d)

= [W1]1,∗ · x+ [b1]1 + · · ·+ [W1]d,∗ · x+ [b1]d

= W1x+ b1 = Rr (ν)

Case 2.ii: Let ν = ((W1, b1) , (W2, b2) , ..., (WL, bL)). Deriving from Definition 9.2.1 and 5.2.1 we

have that:

Idd •ν =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

(W1, b1) , (W2, b2) , ..., (WL−1, bL−1) ,

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

[WL]1,∗

−[WL]1,∗
...

[WL]d,∗

−[WL]d,∗

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

,

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

[bL]1

−[bL]1
...

[bL]d

−[bL]d

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

,

󰀕󰀗
1 −1

󰀘
,

󰀗
0

󰀘󰀖

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄
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Note that upon realization with r the last two layers become:

r([WL]1,∗ · x+ [bL]1)− r(−[WL]1,∗ · x− [bL]1) + · · ·

+ r([WL]d,∗ · x+ [bL]d)− r(−[WL]d,∗ · x− [bL]d)

= [WL]1,∗ · x+ [bL]1 + · · ·+ [WL]d,∗ · x+ [bL]d

= WLx+ bL (9.2.12)

This, along with Case 2.i implies that the unrealized last layer is equivalent to (WL, bL) whence

Idd •ν = ν.

Case 2.iii: Let ν = ((W1, b1)). Deriving from Definition 9.2.1 and 5.2.1 we have:

ν • Idd

=

󰀳

󰁅󰁅󰁅󰁅󰁃

󰀳

󰁅󰁅󰁅󰁅󰁃

󰀵

󰀹󰀹󰀹󰀹󰀷

WeightId1,1
. . .

WeightId1,1

󰀶

󰀺󰀺󰀺󰀺󰀸
, 02d

󰀴

󰁆󰁆󰁆󰁆󰁄
,

󰀳

󰁅󰁅󰁅󰁅󰁃
W1

󰀵

󰀹󰀹󰀹󰀹󰀷

WeightId1,2
. . .

WeightId1,2

󰀶

󰀺󰀺󰀺󰀺󰀸
, b1

󰀴

󰁆󰁆󰁆󰁆󰁄

󰀴

󰁆󰁆󰁆󰁆󰁄

Upon realization with r we have that:

(Rr (ν)) (x) (9.2.13)

=

󰀗
[W1]∗,1 − [W1]∗,1 · · · [W1]∗,d − [W1]∗,d

󰀘
r

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

[x]1

−[x]1
...

[x]d

−[x]d

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

+ b1

= [W1]∗,1 r([x]1)− [W1]∗,1 r(−[x]1) + · · ·+ [W1]∗,d r([x]d)− [W1]∗,d r(−[x]d) + b1

= [W1]∗,1 · [x]1 + · · ·+ [W1]∗,d · [x]d

= W1x+ b1 = Rr(ν) (9.2.14)

Case 2.iv: Let ν = ((W1, b1) , (W2, b2) , ..., (WL, bL)). Deriving from Definitions 9.2.1 and 5.2.1 we
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have:

ν • Idd

=

󰀳

󰁅󰁅󰁅󰁅󰁃

󰀳

󰁅󰁅󰁅󰁅󰁃

󰀵

󰀹󰀹󰀹󰀹󰀷

WeightId1,1
. . .

WeightId1,1

󰀶

󰀺󰀺󰀺󰀺󰀸
, 02d

󰀴

󰁆󰁆󰁆󰁆󰁄
,

󰀕󰀗
[W1]∗,1 − [W1]∗,1 · · · [W1]∗,d − [W1]∗,d

󰀘
, b1

󰀖
, ...

(W2, b2) , ..., (WL, bL))

Upon realization with r we have that the first two layers are:

(Rr (ν)) (x) (9.2.15)

=

󰀗
[W1]∗,1 − [W1]∗,1 · · · [W1]∗,d − [W1]∗,d

󰀘
r

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

[x]1

−[x]1
...

[x]d

−[x]d

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

+ b1

= [W1]∗,1 r([x]1)− [W1]∗,1 r(−[x]1) + · · ·+ [W1]∗,d r([x]d)− [W1]∗,d r(−[x]d) + b1

= [W1]∗,1 · [x]1 + · · ·+ [W1]∗,d · [x]d

= W1x+ b1 (9.2.16)

This, along with Case 2.iii implies that the unrealized first layer is equivalent to (WL, bL) whence

Idd •ν = ν.

This completes the proof.

Definition 9.2.4 (Monoid). Given a set X with binary operation ∗, we say that X is a monoid

under the operation ∗ if:

(i) For all x, y ∈ X it is the case that x ∗ y ∈ X

(ii) For all x, y, z ∈ X it is the case that (x ∗ y) ∗ z = x ∗ (y ∗ z)

(iii) The exists a unique element e ∈ X such that e ∗ x = x ∗ e = x
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Theorem 9.2.5. Let d ∈ N. For a fixed d, the set of all neural networks ν ∈ NN with realizations

in r and end-widths d form a monoid under the operation of •.

Proof. This is a consequence of Lemma 9.2.3 and Lemma 5.2.3.

Remark 9.2.6. By analogy with matrices we may find it helpful to refer to neural networks of

end-widths d as “square neural networks of size d”.

9.3 Modulus of Continuity

Definition 9.3.1. Let A ⊆ R and let f : A → R. We denote the modulus of continuity ωf :

[0,∞] → [0,∞] as the function given for all h ∈ [0,∞] as:

ωf (h) = sup ({|f(x)− f(y)| ∈ [0,∞) : (x, y ∈ A, |x− y| 󰃑 h)} ∪ {0}) (9.3.1)

Lemma 9.3.2. Let α ∈ [−∞,∞], b ∈ [a,∞], and let f : [a, b] ∩ R → R be a function. It is then

the case that for all all x, y ∈ [a, b] ∩ R that |f(x)− f(y)| 󰃑 ωf (|x− y|).

Proof. Note that (9.3.1) implies the lemma.

Lemma 9.3.3. Let A ⊆ R, L ∈ [0,∞), and let f : A → R satisfy for all x, y ∈ A that

|f(x)− f(y)| 󰃑 L |x− y|. It is then the case that for all h ∈ [0,∞) that ωf (h) 󰃑 Lh.

Proof. Since it holds for all x, y ∈ R that |f(x)− f(y)| 󰃑 L |x− y|, it then, with (9.3.1) imply for

all h ∈ [0,∞) that:

ωf (h) = sup ({|f(x)− f(y)| ∈ [0,∞) : (x, y ∈ A, |x− y| 󰃑 h)} ∪ {0})

󰃑 sup ({L |x− y| ∈ [0,∞) : (x, y ∈ A, |x− y| 󰃑 h)} ∪ {0})

󰃑 sup ({Lh, 0}) = Lh (9.3.2)

This completes the proof of the lemma.
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9.4 Linear Interpolation

Note that in order to approximate more complex function we need to have a framework for ap-

proximating genertic 1-dimensional continuous functions. We introduce the linear interpolation

operator, and later on see how neural networks can approximate 1-dimensional conitinuous func-

tions to arbitrary precision.

9.4.1 The Linear Interpolation Operator

Definition 9.4.1 (Linear Interpolation Operator). Let n ∈ N, x0, x1, ..., xn, y0, y1, ..., yn ∈ R. Let

it also be the case that x0 󰃑 x1 󰃑 · · · 󰃑 xn. We denote by Liny0,y1,...,ynx0,x1,...,xn
: R → R, the function that

satisfies for i ∈ {1, 2, ..., n}, and for all w ∈ (−∞, x0), x ∈ [xi−1, xi), z ∈ [xn,∞) that:

(i) Liny0,y1,...,ynx0,x1,...,xn
(w) = y0

(ii) Liny0,y1,...,ynx0,x1,...,xn
(x) = yi−1 +

yi−yi−1

xi−xi−1
(x− xi−1)

(iii) Liny0,y1,...,ynx0,x1,...,xn
(z) = yn

Lemma 9.4.2. Let n ∈ N, x0, x1, ..., xn, y0, y1, ..., yn ∈ R with x0 󰃑 x1 󰃑 · · · 󰃑 xn, it is then the

case that:

(i) for all i ∈ {0, 1, ..., n} that:

󰀃
Liny0,y1,...,ynx0,x1,...,xn

󰀄
(xi) = yi (9.4.1)

(ii) for all i ∈ {0, 1, ..., n} and x ∈ [xi−1, xi] that:

󰀃
Liny0,y1,...,ynx0,x1,...,xn

󰀄
(x) =

󰀕
xi − x

xi − xi−1

󰀖
yi−1 +

󰀕
x− xi−1

xi − xi−1

󰀖
yi (9.4.2)

Proof. Note that (9.4.1) is a direct consequence of Definition 9.4.1. Item (i) then implies for all

i ∈ {1, 2, ..., n} x ∈ [xi−1, xi] that:

󰀃
Liny0,y1,...,ynx0,x1,...,xn

󰀄
(x) =

󰀗󰀕
xi − xi−1

xi − xi−1

󰀖
−

󰀕
x− xi−1

xi − xi−1

󰀖󰀘
yi−1 +

󰀕
x− xi−1

xi − xi−1

󰀖
yi

=

󰀕
xi − x

xi − xi−1

󰀖
yi−1 +

󰀕
x− xi−1

xi − xi−1

󰀖
yi
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Lemma 9.4.3. Let N ∈ N, L, x0, x1, ..., xN ∈ R satisfy x0 < x1 < · · · < xN , and set let f :

[x0, xN ] → R satisfy for all x, y ∈ [x0, xN ] that |f(x)− f(y)| 󰃑 L |x− y|, it is then the case that:

(i) for all x, y ∈ R that:

󰀏󰀏󰀏
󰀓
Linf(x0),f(x1),...,f(xN )

x0,x1,...,xN

󰀔
(x)−

󰀓
Linf(x0),f(x1),...,f(xN )

x0,x1,...,xN

󰀔
(y)

󰀏󰀏󰀏 󰃑 L |x− y| (9.4.3)

, and

(ii) that:

sup
x∈[x0,xN ]

󰀏󰀏󰀏
󰀓
Linf(x0),f(x1),...,f(xN )

x1,x2,...,xN

󰀔
(x)− f (x)

󰀏󰀏󰀏 󰃑 L

󰀕
max

i∈{1,2,...N}
|xi − xi−1|

󰀖
(9.4.4)

Proof. The assumption that for all x, y ∈ [x0, xk] it is the case that |f(x)− f(y)| 󰃑 L |x− y| and

Lemma 9.3.3 prove Item (i) and Item (ii).

9.4.2 Neural Networks to approximate the Lin operator

Lemma 9.4.4. Let α,β, h ∈ R. Denote by ReLU ∈ NN the neural network given by ReLU =

h⊛ (i1 • Affα,β). It is then the case that:

(i) ReLU = ((α,β) , (h, 0))

(ii) L(ReLU) = (1, 1, 1) ∈ N3.

(iii) Rr (ReLU) ∈ C (R,R)

(iv) for all x ∈ R that (Rr (ReLU)) (x) = hmax{αx+ β, 0}

Proof. Note that by Definition 5.4.1 we know that Affα,β = ((α,β)), this with Definition 9.1.1, and

Definition 5.2.1 together tell us that i1 • Affα,β = (α,β). A further application of Definition 5.2.1,

and an application of Definition 5.6.1 yields that h ⊛ (i1 • Affα,β) = ((α,β) , (h, 0)). This proves

Item (i).

Note that L(Affα,β) = (1, 1), L(i1) = (1, 1, 1), and L(h) = 1. Item (i) of Lemma 9.1.3 therefore

tells us that L(ReLU) = L (h⊛ (i1 • Affα,β)). This proves Item (ii).
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Note that Lemmas 9.1.2 and 9.1.3 tell us that:

∀x ∈ R : (Rr (i1 • Affα,β)) (x) = r (Rr) (x) = max{αx+ β} (9.4.5)

This and Lemma 5.6.1 ensures that Rr (ReLU) ∈ C (R,R) and further that:

(Rr (ReLU)) (x) = h ((Rr (i1 • Affα,β)) (x)) = hmax{αx+ β, 0} (9.4.6)

This proves Item (iii)-(iv). This completes the proof of the lemma.

Lemma 9.4.5. Let N ∈ N, x0, x1, ..., xN , y0, y1, ..., yN ∈ R and further that x0 󰃑 x2 󰃑 · · · 󰃑 xN .

Let Φ ∈ NN satisfy that:

Φ = Aff1,y0 •
󰀣

N󰁐

i=0

󰀗󰀕
ymin{i+1,N} − yi

xmin{i+1,N} − xmin{i,N−1}
−

yi − ymax{i−1,0}
xmax{i,1} − xmax{i−1,0}

󰀖
⊛ (i1 • Aff1,−xi)

󰀘󰀤

(9.4.7)

It is then the case that:

(i) L(Φ) = (1, N + 1, 1) ∈ N3

(ii) Rr (Φ) ∈ C (R,R)

(iii) (Rr (Φ)) (x) = Liny0,y1,...,yNx0,x1,...,xN
(x)

(iv) P(Φ) = 3N + 4

Proof. For notational convenience, let it be the case that for all i ∈ {0, 1, 2, ..., N}:

hi =
ymin{i+1,N} − yi

xmin{i+1,N} − xmin{i,N−1}
−

yi − ymax{i−1,0}
xmax{i,1} − xmax{i−1,0}

(9.4.8)

Note that L (i1 • Aff1,−x0) = (1, 1, 1), and further that for all i ∈ {0, 1, 2, ..., N}, hi ∈ R. Lemma

9.4.4 then tells us that for all i ∈ {0, 1, 2, ..., N}, L (hi ⊛ (i1 • Aff1,−xi)) = (1, 1, 1),Rr (hi ⊛ (i1 • Aff1,−xi)) ∈

C (R,R), and that (Ra (hi ⊛ (i1 • Aff1,−xi))) (x) = himax{x − xk, 0}. This, (9.4.7), Lemma 5.4.4,

and (Grohs et al., 2022, Lemma 3.28) ensure that L(Φ) = (1, N + 1, 1) ∈ N3 and that Rr (Φ) ∈

C (R,R) establishing Items (i)–(ii).
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In addition, note that Item (i) and (5.1.11), tell us that:

P(Φ) =

W1󰁽 󰂀󰁿 󰁾
(N + 1)+ (N + 1)󰁿 󰁾󰁽 󰂀

b1

+

W2󰁽 󰂀󰁿 󰁾
(N + 1)+ 1󰁿󰁾󰁽󰂀

b2

= 3N + 4 (9.4.9)

Which proves Item (iv). For all i ∈ {0, 1, 2, ..., N}, let φi be φi = hi ⊛ (i • Aff1,−xi). Next note that

9.4.8, Lemma 5.4.4, and (Grohs et al., 2022, Lemma 3.28) then tell us that:

(Rr (Φ)) (x) = y0 +

n󰁛

i=1

(Ra (φi)) (x) = y0 +

n󰁛

i=1

himax{x− xi, 0} (9.4.10)

Since x0 󰃑 xi for all i ∈ {1, 2, ..., n}, it then is the case for all x ∈ (∞, x0] that:

(Rr (Φ)) (x) = y0 + 0 = y0 (9.4.11)

Claim 9.4.6. For all i ∈ {1, 2, ..., N} it is the case that :

i−1󰁛

j=0

hj =
yi − yi−1

xi − xi−1
(9.4.12)

We prove this claim by induction. For the base case of i = 1 we have:

0󰁛

j=0

h0 = h0 =
y1 − y0
x1 − x0

− y0 − y0
x1 − x0

=
y1 − y0
x1 − x0

(9.4.13)

This proves the base base for (9.4.12). Assume next that this holds for k, for the (k+1)-th induction

step we have:

k+1󰁛

j=0

hj =

k󰁛

j=0

hj + hk+1 =
yk − yk−1

xk − xk−1
+ hk+1

=
yk − yk−1

xk − xk−1
+

yk+2 − yk−1

xk+2 − xk+1
− yk+1 − yk

xk+1 − xk

=
yk+1 − yk
xk+1 − xk

(9.4.14)

This proves (9.4.12). In addition, note that (9.4.10), (9.4.12), and the fact that for all i ∈ {1, 2, ..., n}
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it is the case that xi−1 󰃑 xi tells us that for all i ∈ {1, 2, ..., n} and x ∈ [xi−1, xi] it is the case that:

(Rr (Φ)) (x)− (Ra (Φ)) (xi−1) =

n󰁛

j=0

hj (max{x− xj , 0}−max{xi−1 − xj , 0})

=

i−1󰁛

j=0

cj [(x− xj)− (xi−1 − xj)] =

i−1󰁛

j=0

cj (x− xi−1) =

󰀕
yi − yi−1

xi − xi−1

󰀖
(x− xi−1) (9.4.15)

Claim 9.4.7. For all i ∈ {1, 2, ..., N}, x ∈ [xi−1, xi] it is the case that:

(Rr (Φ)) (x) = yi−1 +

󰀕
yi − yi−1

xi − xi−1

󰀖
(x− xi−1) (9.4.16)

We will prove this claim by induction. For the base case of i = 1, (9.4.15) and (9.4.12) tell us that:

(Rr (Φ)) (x) = (Rr (Φ)) (x)− (Rr (Φ)) (xi−1) + (Rr (Φ)) (xi−1)

= y0 +

󰀕
y1 − y0
xi − xi−1

󰀖
(x− xi−1) (9.4.17)

For the induction step notice that (9.4.15) implies that for all i ∈ {2, 3, ..., N}, x ∈ [xi−1, xi], with

the realization that ∀x ∈ [xi−2, xi−1] : (Rr (Φ)) (x) = yi−2 +
󰀓

yi−1−yi−2

xi−1−xi−2

󰀔
(x− xi−2), it is then the

case that:

(Rr (Φ)) (x) = (Rr (Φ)) (xi−1) + (Rr (Φ)) (x)− (Rr (Φ)) (xi−1)

= yi−2 +

󰀕
yi−1 − yi−2

xi−1 − xi−2

󰀖
(xi−1 + xi−2) +

󰀕
yi − yi−1

xi − xi−1

󰀖
(x− xi−1)

= yi−1 +

󰀕
yi − yi−1

xi − xi−1

󰀖
(x− xi−1) (9.4.18)

Thus induction proves (9.4.16). Furthermore note that (9.4.12) and (9.4.8) tell us that:

N󰁛

i=0

hi = cN +

N−1󰁛

i=0

hi = − yN − yN−1

xN − xN−1
+

yN − yN−1

xN − xN−1
= 0 (9.4.19)

129



The fact that ∀i ∈ {0, 1, ..., N} : xi 󰃑 xN , together with (9.4.10) imply for all x ∈ [xN ,∞) that:

(Rr (Φ)) (x)− (Rr (Φ)) (xN ) =

󰀥
N󰁛

i=0

hi (max{x− xi, 0}−max{xN − xi, 0})
󰀦

=

N󰁛

i=0

hi [(x− xi)− (xN − ri)] =

N󰁛

i=0

hi (x− xN ) = 0

This and (9.4.16) tells us that for all x ∈ [xN ,∞) we have:

(Rr (Φ)) (x) = (Rr (Φ)) (xN ) = yN−1 +

󰀕
yN − yN−1

xN − xN−1

󰀖
(xN − xN−1) = xN (9.4.20)

Together with (9.4.11), (9.4.16), and Definition 9.4.1 establishes Item (iii) thus proving the lemma.

9.5 Neural network approximation of 1-dimensional functions.

Lemma 9.5.1. Let N ∈ N, L.a.x0, x1, ..., xN ∈ R, b ∈ (a,∞), satisfy for all i ∈ {0, 1, ..., N} that

xi = a + i(b−a)
N . Let f : [a, b] → R satisfy for all x, y ∈ [a, b] that |f(x)− f(y)| 󰃑 L |x− y| and let

F ∈ NN satisfy:

F = Aff1,f(x0) •
󰀥

N󰁐

i=0

󰀣󰀣
N

󰀃
f
󰀃
xmin{i+1,N}

󰀄
− 2f (xi) + f

󰀃
xmax{i−1,0}

󰀄󰀄

b− a

󰀤
⊛ (Id1 •Aff1,−xk

)

󰀤󰀦

(9.5.1)

It is then the case that:

(i) L (F) = (1, N + 1, 1)

(ii) Rr (F) ∈ C (R,R)

(iii) Rr (F) = Lin
f(x0),f(x1),...,f(xN )
x1,x2,...,xN

(iv) it holds that for all x, y ∈ R that |(Rr (F)) (x)− (Rr (F)) (y)| 󰃑 L |x− y|

(v) it holds that supx∈[a,b] |(Rr (F)) (x)− f(x)| 󰃑 L(b−a)
N , and

(vi) P (F) = 3N + 4.

130



Proof. Note that since it is the case that for all i ∈ {0, 1, ..., N} : xmin{i+1,N} − xmin{i,N−1} =

xmax{i,1} − xmax{i−1,0} =
b−a
N , we have that:

f
󰀃
xmin{i+1,N}

󰀄
− f (xi)

xmin{i+1,N} − xmin{i,N−1}
−

f(xi)− f
󰀃
xmax{i−1,0}

󰀄

xmax{i,1} − xmax{i−1,0}
=

N
󰀃
f
󰀃
xmin{i+1,N}

󰀄
− 2f (xi) + f

󰀃
xmax{i−1,0}

󰀄󰀄

b− a

(9.5.2)

Thus Items (i)-(iv) of Lemma 9.4.5 prove Items (i)-(iii), and (vi) of this lemma. Item (iii) combined

with the assumption that for all x, y ∈ [a, b] : |f(x)− f(y)| 󰃑 |x− y| and Item (i) in Lemma 9.4.3

establish Item (iv). Furthermore, note that Item (iii), the assumption that for all x, y ∈ [a, b] :

|f(x)− f(y)| 󰃑 L |x− y|, Item (ii) in Lemma 9.4.3 and the fact that for all i ∈ {1, 2, ..., N} :

xi − xi−1 =
b−a
N demonstrate for all x ∈ [a, b] it holds that:

|(Rr (F)) (x)− f (x)| 󰃑 L

󰀕
max

i∈{1,2,...,N}
|xi − xi−1|

󰀖
=

L(b− a)

N
(9.5.3)

Lemma 9.5.2. Let L, a ∈ R, b ∈ [a,∞), ξ ∈ [a, b], let f : [a, b] → R satisfy for all x, y ∈ [a, b] that

|f(x)− f(y)| 󰃑 L |x− y|, and let F ∈ NN satisfy F = Aff1,f(ξ) • (0⊛ (i1 • Aff1,−ξ)), it is then the

case that:

(i) L (F) = (1, 1, 1)

(ii) Rr (F) ∈ C (R,R)

(iii) for all x ∈ R, we have (Rr (F)) (x) = f (ξ)

(iv) supx∈[a,b] |(Rr (F)) (x)− f(x)| 󰃑 Lmax{ξ − a, b− ξ}

(v) P (F) = 4

Proof. Note that Item (i) is a consequence of the fact that Aff1,−ξ is a neural network with a real

number as weight and a real number as a bias, and the fact that L (i1) = (1, 1, 1). Note also that

Item (iii) of Lemma 9.4.4 prove Item (iii).
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Note that from the construction of Aff we have that:

(Rr (F)) (x) = (Rr (0⊛ (i1 • Aff1,−ξ))) (x) + f (ξ)

= 0 ((Rr (i1 • Aff1,−ξ)) (x)) + f (ξ) = f (ξ) (9.5.4)

Which establishes Item (iii). Note that (9.5.4), the fact that ξ ∈ [a, b] and the fact that for all

x, y ∈ [a, b] it is the case that |f(x)− f(y)| 󰃑 |x− y| give us that for all x ∈ [a, b] it holds that:

|(Rr (F)) (x)− f (x)| = |f (ξ)− f (x)| 󰃑 L |x− ξ| 󰃑 Lmax {ξ − a, b− ξ} (9.5.5)

This establishes Item (iv). Note a simple parameter count yields that:

P (F) = 1(1 + 1) + 1(1 + 1) = 4 (9.5.6)

Establishing Item (v) and hence the lemma.

9.6 p-norm Approximations

Definition 9.6.1 (p-norm). Let d ∈ N, and p ∈ N ∩ [1,∞]. We denote by 󰀂 · 󰀂p : Rd → [0,∞) the

p-norm given for all x = (x1, x2, ..., xd) ∈ Rd by 󰀂x󰀂p =
󰁫󰁓d

i=1 xi

󰁬 1
d
and by 󰀂 · 󰀂∞ : Rd → [0,∞)

the max norm, given for all x = (x1, x2, ..., xd) ∈ Rd by 󰀂x󰀂∞ = maxi∈{1,2,...,d} |xi|.

Lemma 9.6.2. Let ε ∈ (0,∞), L ∈ [0,∞), a, b ∈ R with a 󰃑 b. and let f : [a, b] → R satisfy for

all x, y ∈ [a, b] that |f(x)− f(y)| 󰃑 L|x− y|. It is then the case that there exists a neural network

φ ∈ NN such that:

(i) Rr (φ) ∈ C (R,R)

(ii) H(φ) = 1

(iii) W1(φ) 󰃑 L(b− a)ε−1 + 2

(iv) for all x, y ∈ R, |(Rr (φ)) (x)− (Rr (φ)) (x)| 󰃑 L|x− y|

(v) it holds that supx∈[a,b] |(Ra (φ)) (x)− f(x)| 󰃑 ε
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(vi) it holds that P (φ) = 3 (W1 (φ)) + 1 󰃑 3L (b− a) ε−1 + 7 , and

(vii) 󰀂T (φ) 󰀂∞ 󰃑 max {1, |a|, |b|, 2L, |f(x)|}

Proof. Note
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Part III

A deep-learning solution for u and

Brownian motions
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Chapter 10

ANN representations of Brownian

Motion Monte Carlo

This is tentative without any reference to f .

Lemma 10.0.1. Let d,M ∈ N, T ∈ (0,∞) , a ∈ C(R,R), Γ ∈ NN, satisfy that Ra (G) ∈ C
󰀃
Rd,R

󰀄
,

for every θ ∈ Θ, let Uθ : [0, T ] → [0, T ] and Wθ : [0, T ] → Rd be functions , for every θ ∈ Θ, let

U θ : [0, T ] → Rd → R satisfy satisfy for all t ∈ [0, T ], x ∈ Rd that:

U θ(t, x) =
1

M

󰀥
M󰁛

k=1

(Ra (Γ))
󰀓
x+W(θ,0,−k)

󰀔󰀦
(10.0.1)

Let Uθ
t ∈ NN , θ ∈ Θ satisfy for all θ ∈ Θ, t ∈ [0, T ] that:

Uθ
t =

󰀥
M󰁐

k=1

󰀕
1

M
⊛

󰀕
G • AffId,W

(θ,0,−k)
T−t

󰀖󰀖󰀦
(10.0.2)

It is then the case that:

(i) for all θ1, θ2 ∈ Θ, t1, t2 ∈ [0, T ] that L
󰀓
Uθ1
t1

󰀔
= L

󰀓
Uθ2
t2

󰀔
.

(ii) for all θ ∈ Θ, t ∈ [0, T ], that D
󰀃
Uθ
t

󰀄
󰃑 D(G)

(iii) for all θ ∈ Θ, t ∈ [0, T ] that:

󰀐󰀐󰀐L
󰀓
Uθ
t

󰀔󰀐󰀐󰀐
max

󰃑 󰀂L (G) 󰀂max

󰀓
1 +

√
2
󰀔
M (10.0.3)
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(iv) for all θ ∈ Θ, t ∈ [0, T ], x ∈ Rd that U θ(t, x) =
󰀃
Ra

󰀃
Uθ

t

󰀄󰀄
(x) and

(v) for all θ ∈ Θ, t ∈ [0, T ] that:

P
󰀓
Uθ
t

󰀔
󰃑 2D (G)

󰁫󰀓
1 +

√
2
󰀔
M 󰀂L (G)󰀂max

󰁬2
(10.0.4)

Proof. Throughout the proof let Pθ
t ∈ NN, θ ∈ Θ, t ∈ [0, T ] satisfy for all θ ∈ Θ, t ∈ [0, T ] that:

Pθ
t =

M󰁐

k=1

󰀗
1

M
⊛

󰀓
G • AffId,Wθ,0,−k

T−t

󰀔󰀘
(10.0.5)

Note the hypothesis that for all θ ∈ Θ, t ∈ [0, T ] it holds that Wθ
t ∈ Rd and Lemma 5.6.7 applied

for every θ ∈ Θ t ∈ [0, T ] with v ↶ M , ci∈{u,u+1,...,v} ↶
󰀃

1
M

󰀄
i∈{u,u+1,...,v}, (Bi)i∈{u,u+1,...,v} ↶

󰀓
W(θ,0,−k)

T−t

󰀔

k∈{1,2,...,M}
, (νi)i∈{u,u+1,...,v} ↶ (G)i∈{u,u+1,...,v}, µ ↶ Φθ

t and with the notation of

Lemma 5.6.7 tells us that for all θ ∈ Θ, t ∈ [0, T ], and x ∈ Rd it holds that:

L
󰀓
Pθ
t

󰀔
=

󰀃
d,M W1 (G) ,M W2 (G) , ...,M WD(G)−1 (G) , 1

󰀄
= L

󰀃
P0
0

󰀄
∈ ND(G)+1 (10.0.6)

and that:

󰀓
Ra

󰀓
Pθ
t

󰀔󰀔
(x) =

1

M

󰀥
M󰁛

k=1

(Ra (G))
󰀓
x+W(θ,0,−k)

T−t

󰀔󰀦

= Uθ (t, x) (10.0.7)

This proves Item (i).

Note that (10.0.6), and (10.0.7) also implies that:

L
󰀓
Uθ
t

󰀔
= L

󰀓
Pθ
t

󰀔

=
󰀓
d,W1

󰀓
Pθ
t

󰀔
,W2

󰀓
Pθ
t

󰀔
, ...,WD(G)

󰀓
Pθ
t

󰀔
, t
󰀔

= L
󰀃
U0
0

󰀄
∈ ND(G)+1 (10.0.8)
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This indicates that for all θ ∈ Θ, t ∈ [0, T ] it is the case that:

󰀐󰀐󰀐L
󰀓
Uθ
t

󰀔󰀐󰀐󰀐
∞

=
󰀐󰀐L

󰀃
U0
0

󰀄󰀐󰀐
∞

= max
k∈{1,2,...,D(G)}

󰀃
Wk

󰀃
P0
0

󰀄󰀄

This, (10.0.6), and (Grohs et al., 2023, Proposition 2.6) ensure that for all θ ∈ Θ, t ∈ [0, T ] it is

the case that:

󰀐󰀐󰀐L
󰀓
Uθ
t

󰀔󰀐󰀐󰀐
∞

=
󰀐󰀐L

󰀃
U0
0

󰀄󰀐󰀐
∞ 󰃑

󰀐󰀐L
󰀃
P0
0

󰀄󰀐󰀐
∞ 󰃑 M 󰀂L (G)󰀂∞

󰃑 M 󰀂L (G)󰀂∞ +M
󰀅󰀐󰀐L

󰀃
U0
0

󰀄󰀐󰀐
∞
󰀆

(10.0.9)

Then (Hutzenthaler et al., 2021, Corollary 4.3), with γ ↶ 0, β ↶ M , k ↶ 1, α0 ↶ 󰀂L (G)󰀂∞,

α1 ↶ 0, (xi)i∈{0,1,...,k} ↶
󰀃󰀐󰀐L

󰀃
U0
0

󰀄󰀐󰀐
∞
󰀄
i∈{0,1,...,n} in the notation of (Hutzenthaler et al., 2021,

Corollary 4.3) yields for all θ ∈ Θ, t ∈ [0, T ] that:

󰀐󰀐󰀐L
󰀓
Uθ
t

󰀔󰀐󰀐󰀐
∞

󰃑 1

2
(󰀂L (G)󰀂∞)

󰀓
1 +

√
2
󰀔
M

󰃑 (󰀂L (G)󰀂∞)
󰀓
1 +

√
2
󰀔
M

Note that (Grohs et al., 2023, Proposition 2.6, Item (ii)) proves that for all θ ∈ Θ, t ∈ [0, T ] it is

the case that:

D
󰀓
Uθ
t

󰀔
= D

󰀃
U0
0

󰀄
= D (G) (10.0.10)

This proves Items (ii)–(iii) and (10.0.7) proves Item (iv).
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Items (ii)–(iii) together shows that for all θ ∈ Θ, t ∈ [0, T ] it is the case that:

P
󰀓
Uθ
t

󰀔
󰃑

D(Uθ
t )󰁛

k=1

󰀐󰀐󰀐L
󰀓
Uθ
t

󰀔󰀐󰀐󰀐
max

= D
󰀓
Uθ
t

󰀔󰀐󰀐󰀐L
󰀓
Uθ
t

󰀔󰀐󰀐󰀐
∞

󰃑 D
󰀓
Uθ
t

󰀔
(󰀂L (G)󰀂∞)

󰀓
1 +

√
2
󰀔
M

= D (G) (󰀂L (G)󰀂∞)
󰀓
1 +

√
2
󰀔
M

This proves Item (v) and hence the whole lemma.
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✞ ☎
import numpy as np

import matplotlib.pyplot as plt

# Set the number of steps and the step size

num_steps = 5000

step_size = 0.1

# Generate the random steps

steps = np.random.normal(0, 1, (2, num_steps )) * step_size ** 0.5

# Calculate the Brownian motion

brownian_motion = np.cumsum(steps , axis =1)

# Plot the Brownian motion

plt.plot(brownian_motion [0], brownian_motion [1])

plt.title(’Brownian␠Motion ’)

plt.xlabel(’X’)

plt.ylabel(’Y’)

plt.show()✝ ✆
Listing 1: Python
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