Artificial Neural Networks Applied to Stochastic Monte Carlo as a
Way to Approximate Modified Heat Equations, and Their

Associated Parameters, Depths, and Accuracies.

Shakil Rafi

February 29, 2024

Contents

I On Convergence of Brownian Motion Monte Carlo

1 Introduction.
1.1 Motivation oL e e
1.2 Notation, Definitions & Basic notions.
1.2.1 Norms and Inner Products
1.2.2 Probability Space and Brownian Motion
1.2.3 Lipschitz and Related Notions
1.2.4 Kolmogorov Equations
1.2.5 Linear Algebra Notation and Definitions
1.2.6 O-type Notation and Function Growth

1.2.7 The Concatenation of Vectors & Functions

2 Brownian Motion Monte Carlo
2.1 Brownian Motion Preliminaries e
2.2 Monte Carlo Approximations e

2.3 Bounds and Covnvergence e e e e e e

3 That u is a Viscosity Solution
3.1 Some Preliminarieso e
3.2 Viscosity Solutions L
3.3 Solutions, Characterization, and Computational Bounds to the Kolmogorov Back-

ward Equations e

10
12
13
15
17

20
20
26
28

4 Brownian motion Monte Carlo of the non-linear case 65

IT A Structural Description of Artificial Neural Networks 67
5 Introduction and Basic Notions About Neural Networks 68
5.1 The Basic Definition of ANNs and instantiations of ANNs 68
5.2 Compositions of ANNs o 72
5.2.1 Composition e e 72

5.3 Stacking of ANNs of Equal Depth 77
5.4 Stacking of ANNs of Unequal Depth 82
5.5 Affine Linear Transformations as ANNs and Their Properties. 83
5.6 Sums of ANNs of Same End-widths 0oL 86
5.6.1 Neural Network Sum Properties 88

5.6.2 Sum of ANNs of Unequal Depth But Same End-widths 94

5.7 Linear Combinations of ANNs and Their Properties 95
5.8 Neural Network Diagrams 106

6 ANN Product Approximations 108
6.1 Approximation for Products of Two Real Numbers 108
6.1.1 The squares of real numbers in [0,1] oL, 109

6.1.2 The Sqrnetwork L 117

6.1.3 The Prdnetwork 122

6.2 Higher Approximations e 127
6.2.1 The Tun Neural Networks and Their Properties 128

6.2.2 The Pwr Neural Networks and Their Properties 133

6.2.3 anffc and Neural Network Polynomials. 143

6.2.4 Xpn%© Csn? Snel® and Neural Network Approximations of e, cos(z), and

7 A modified Multi-Level Picard and Associated Neural Network 156

8 ANN first approximations 159

8.1 ANN Representations for One-Dimensional Identity and some associated properties . 159

8.2 Trp”, Etr™" and Neural Network Approximations For the Trapezoidal Rule. 168
8.3 Maximum Convolution Approximations for Multi-Dimensional Functions 169
8.3.1 The Nrm{ Networkso oo v ittt 169
8.3.2 The Mxm? Neural Networks v v v v v vt 171

8.3.3 The MC Neural Network and Approximations via Maximum Convolutions . 176

8.3.4 Lipschitz Function Approximations 181

8.3.5 Explicit ANN Approximations v v 183

IIT A deep-learning solution for v and Brownian motions 185
9 ANN representations of Brownian Motion Monte Carlo 186
9.1 The EN™9¢ Neural Networko 189
9.2 The UEL &% Neural Networko 194
9.3 The UEXfng;i network . ..o L 198
9.4 The UESY &% metwork 203

10 Conclusions and Further Research 213
10.1 Further operations and further kinds of neural networks 213
10.1.1 Mergers and Dropout L 213

10.2 Code Listings o . o o o e 218

Part 1

On Convergence of Brownian Motion

Monte Carlo

Chapter 1

Introduction.

1.1 Motivation

Artificial neural networks represent a sea change in computing. They have successfully been used
in a wide range of applications, from protein-folding in (), knot theory in

(), and extracting data from gravitational waves in ()

As neural networks become more ubiquitous, we see that the number of parameters required to
train them increases, which poses two problems: accessibility on low-power devices and the amount
of energy needed to train these models, see for instance () and ().
Parameter estimates become increasingly crucial in an increasingly climate-challenged world. That
we know strict and precise upper bounds on parameter estimates tells us when training becomes

wasteful, in some sense, and when, perhaps, different approaches may be needed.

Our goal in this dissertation is threefold:

(i) Firstly, we will take something called Multi-Level Picard first introduced in ()
and (), and in particular, the version of Multi-Level Picard that appears in

(). We show that dropping the drift term and substantially simplifying

the process still results in convergence of the method and polynomial bounds for the number of
computations required and rather nice properties for the approximations, such as integrability

and measurability.

(ii) We will then go on to realize that the solution to a modified version of the heat equation has
a solution represented as a stochastic differential equation by Feynman-Kac and further that
a version of this can be realized by the modified multi-level Picard technique mentioned in
Item (i), with certain simplifying assumptions since we dropped the drift term. A substantial
amount of this is inspired by Beck et al. (2021¢) and much earlier work in Karatzas and

Shreve (1991) and Da Prato and Zabczyk (2002).

(iii) By far, the most significant part of this dissertation is dedicated to expanding and building
upon a framework of neural networks as appears in Grohs et al. (2023). We modify this
definition highly and introduce several new neural network architectures to this framework
(Tay, Pwr, Trp, Tun, Etr, among others) and show, for all these neural networks, that the pa-
rameter count grows only polynomially as the accuracy of our model increases, thus beating
the curse of dimensionality. This finally paves the way for giving neural network approxi-
mations to the techniques realized in Item (ii). We show that it is not too wasteful (defined
on the polynomiality of parameter counts) to use neural networks to approximate MLP to
approximate a stochastic differential equation equivalent to certain parabolic PDEs as Feyn-

man-Kac necessitates.

We end this dissertation by proposing two avenues of further research: analytical and al-
gebraic. This framework of understanding neural networks as ordered tuples of ordered
pairs may be extended to give neural network approximation of classical PDE approximation
techniques such as Runge-Kutta, Adams-Moulton, and Bashforth. We also propose three
conjectures about neural networks, as defined in Grohs et al. (2023). They form a bimodule,

and that realization is a functor.

This dissertation is broken down into three parts. At the end of each part, we will encounter
tent-pole theorems, which will eventually lead to the final neural network approximation outcome.
These tentpole theorems are Theorem 2.3.4, Theorem 3.3.1, and Theorem. Finally, the culmination

of these three theorems is Theorem, the end product of the dissertation.

1.2 Notation, Definitions & Basic notions.

We introduce here basic notations that we will be using throughout this dissertation. Large parts
are taken from standard literature inspired by Matriz Computations by (),
and Probability: Theory & Ezamples by Rick ().

1.2.1 Norms and Inner Products

Definition 1.2.1 (Euclidean Norm). Let |||z : R — [0,00) denote the Euclidean norm defined

for every d € Ny and for all x = {x1, 29, -- ,xq} € R? as:

d 3
lzlle = (ZJC?) (1.2.1)
=1

For the particular case that d = 1 and where it is clear from context, we will denote || - ||g as |- |.

Definition 1.2.2 (Max Norm). Let ||-||,, : R? — [0,00) denote the maz norm defined for every

d € Ny and for all x = {x1,z2,--- , 24} € R? as:
= i 1.2.2
ol = _gmax | {1} (122)
We will denote the max norm ||-|| . @ R™*™ — [0,00) defined for every m,n € N and for all

A e R™*™ qs:
Allmax = 141, 1.2.3
(A= _ s [14], (123)
je{1,2,....,n}

Definition 1.2.3 (Frobenius Norm). Let ||-||F : R™*™ — [0,00) denote the Frobenius norm defined

for every m,n € N and for all A € R™*" qs:

(NI

m n

1AllE = { DD 141 (1.2.4)

i=1 j=1

Definition 1.2.4 (Euclidean Inner Product). Let (-,-) : R? x R — R denote the Euclidean inner

product defined for every d € N, for allR? > & = {x1, 29, ..., x4}, and for allR? > y = {y1, 2, ..., ya}

as:

d
(z,y) = Z (ziyi) (1.2.5)

i=1
1.2.2 Probability Space and Brownian Motion
Definition 1.2.5 (Probability Space). A probability space is a triple (Q, F,P) where:
(i) Q is a set of outcomes called the sample space.

(i) F is a set of events called the event space, where each event is a set of outcomes from the

sample space. More specifically, it is a o-algebra on the set €.

(iii) A measurable function P : F — [0,1] assigning each event in the event space a probability
between 0 and 1. More specifically, P is a measure on {2 with the caveat that the measure of

the entire space is 1, i.e., P(2) = 1.

Definition 1.2.6 (Random Variable). Let (Q, F,P) be a probability space, and let d € Ny. For

some d € Ny a random variable is a measurable function X : Q — R,
Definition 1.2.7 (Expectation). Given a probability space (2, F,P), the expected value of a random
variable X, denoted E [X] is the Lebesgue integral given by:
E[X] = / XdP (1.2.6)
Q

Definition 1.2.8 (Stochastic Process). A stochastic process is a family of random variables over
a fized probability space (2, F,R), indexed over a set, usually [0,T) for T € (0,00).
Definition 1.2.9 (Stochastic Basis). A stochastic basis is a tuple (0, F,P,F) where:

(i) (0, F,P) is a probability space equipped with a filtration F where,

(i) F = (Fi)ier, is a collection of non-decreasing sets under inclusion where for every i € I, I

being equipped in total order, it is the case that F; is a sub o-algebra of F.

Definition 1.2.10 (Brownian Motion Over a Stochastic Basis). Given a stochastic basis (2, F,P,TF)

a standard (Fy¢)ejo,m)-Brownian motion Wy is a mapping Wy : [0,T] x Q — R? satisfying:

8

(i) Wy is Fy measurable for all t € [0, 00)

(it) Wy = 0 with P-a.s.

(7ii) Wy — Ws ~ Norm (0,t — s) when s € (0,1).

(iv) Wy — Ws is independent of Ws whenever s < t.
(v) The paths that Wy take are P-a.s. continuous.

Definition 1.2.11 ((F¢)c[o r-adapted Stochastic Process). Let T € (0,00). Let (2, F,P,F) be a

te
filtered probability space with the filtration indexed over [0,T). Let (S,X) be a measurable space.
Let X : [0,T] x Q — S be a stochastic process. We say that X is an (Ft).c(o,1)-adapted stochastic

process if it is the case that Xy : Q — S is (Ft, X) measurable for each t € [0,T].

Definition 1.2.12 ((Ft);c(o,r1-adapted stopping time). Let T' € (0,00), 7 € [0,T]. Assume a
filtered probability space (2, F,P,F). It is then the case that 7 € R is a stopping time if the

stochastic process X = (Xy)icpo,1) define as:

is adapted to the filtration F := (F;);cjo,m

Definition 1.2.13 (Strong Solution of Stochastic Differential Equation). Let d,m € N. Let u :
RY — R?, o : RY — R¥X™ be Borel-measurable. Let (Q, F,P, (Ft)tco,1)) be a stochastic basis, and
let W:[0,T] x Q = R? be a standard (Ft)iejo,m-Brownian motion. For allt € [0,T], x € R, let
Xhr = (Xst’w)se[t’T] x Q — R? be an (IF‘S)SG[LT]—adapted stochastic process with continuous sample

paths satisfying that for all t € [0,T] we have P-a.s. that:

t t
2t =X+ [tn i+ [otraiman, (1:28)
0 0

A strong solution to the stochastic differential equation (1.2.8) on probability space (0, F, P, (Ft)icp0,17),

w.r.t Brownian motion W, w.r.t to initial condition Xy = 0 is a stochastic process (Xi)ic(o,00) Sat-

isfying that:
(i) X: is adapted to the filtration (Ft)icpo,1)-
(i) P(Xy =0) = 1.
(iii) for allt € [0,T] it is the case that P (f(f | pu(r, X5 5 + Nl (r, X25) || pdW, < oo) =1

(iv) it holds with P-a.s. that X satisfies the equation:

t t
xhT = Xo + / ,U,(T, Xf’w)d’l” + / 0-<7ﬂ7 X7f7z)dw7” (129)
0 0

Definition 1.2.14 (Strong Uniqueness Property for Solutions to Stochastic Differential Equations).
Let it be the case that whenever we have two strong solutions X and f, w.r.t. process YW and initial
condition Xy = 0, as defined in Definition 1.2.13, it is also the case that P(X; = /'Eg) =1 for all
t €0, T]. We then say that the pair (u, o) exhibits a strong uniqueness property.

1.2.3 Lipschitz and Related Notions

Definition 1.2.15 (Globally Lipschitz Function). Let d € Ny. For every d € Ny, we say a function
f:RY = Re is (globally) Lipschitz if there exists an L € (0,00) such that for all x,y € R? it is the

case that :

1) = fWlle <L-lz-ylg (1.2.10)

The set of globally Lipschitz functions over set X will be denoted Lipq(X)

Corollary 1.2.15.1. Let d € Ny. For every d € Ny, a continuous function f € C(R%,R%) over a

compact set K C R? is Lipschitz over that set.

Proof. By Hiene-Cantor, f is uniformly continuous over set . Fix an arbitrary € and let be from

the definition of uniform continuity. By compactness we have a finite cover of K by balls of radius

10

0, centered around x; € K:

N
K C | Bs(xi) (1.2.11)
=1

Note that within a given ball, no point z; is such that |z; — ;| > §. Thus, by uniform continuity,

we have the following:
|f(xi) — flzj)] <e Vi,je{l,2,..,N} (1.2.12)

and thus let £ be defined as:

€~ max ’M (1.2.13)
i,j€{1,2,...,N} Tj—Tj
i#]

£ satisfies the Lipschitz property. To see this, let z1,x2 be two arbitrary points within . Let
Bs(x;) and Bs(z;) be two points such that x; € Bs(z;) and x € Bs(x;). The triangle inequality

then yields that:

[f (1) = f(@2)| < |f (1) = fl@a)| + [f (i) = flap)] + [f(25) = f22)]
< | fwi) = flag)] + 2€
<Lz — x| + 2€

< Lz — 29| + 2€

for all € € (0, 00). O

Definition 1.2.16 (Locally Lipschitz Function). Let d € Ny. For every d € Ny a function
f:RY = RY s locally Lipschitz if for all zg € R? there exists a compact set K C Domain(f)

containing o, and a constant L € (0,00) for that compact set such that

sup J@) = Jy) <L (1.2.14)
w0

The set of locally Lipschitz functions over set X will be denoted Lipy (X).

11

Corollary 1.2.16.1. A function f : R — R that is globally Lipschitz is also locally Lipschitz.

More concisely Lipg(X) € Lipy (X).

Proof. Assume not, that is to say, there exists a point z € Domain(f), a compact set K C
Domain(f), and points z1,x9 € K such that:

>0 (1.2.15)

This directly contradicts Definition 1.2.15. O

1.2.4 Kolmogorov Equations

Definition 1.2.17 (Kolmogorov Equation). We take our definition from (,
. (7.0.1)) with, u ~u, G~ o, F o, and ¢ ~ g, and for our purposes we set A : R% — 0.

Given a separable Hilbert space H (in our case R?), and letting pu : [0, T] x R? — R?, o : [0, T]| xRY —

RYX™ and g : R* = R be at least Lipschitz, a Kolmogorov Equation is an equation of the form:

(%u) (t,z) = § Trace (o (t,z) [0 (t,2)]" (Hessp u) (t,2)) + (u(t,), (Vau) (¢, 2)) (1.2.16)

u(0,z) = g(x)

Definition 1.2.18 (Strict Solution to Kolmogorov Equation). Let d € Ny. For every d € Ny a

function u : [0,T] x R? = R is a strict solution to (1.2.16) if and only if:
(i) we CV1([0,T] x RY) and u(0,-) =g
(ii) u(t,-) € UCH2([0,T] x R, R)
(7ii) For all x € Domain(A), u(-,z) is continuously differentiable on [0,00) and satisfies (1.2.16).

Definition 1.2.19 (Generalized Solution to Kolmogorov Equation). A generalized solution to

(1.2.16) is defined as:
u(t,z) =K [g (X5")] (1.2.17)

Where the stochastic process X is the solution to the stochastic differential equation, for x € RY,

12

tel0,T]:

t t
xhr = / i (Xf’x) dr + / o (X,f’m) dw, (1.2.18)
0 0

Definition 1.2.20 (Laplace Operator w.r.t. x). Letd € Ny, and f € C? (Rd,R). For every d € Ny,

the Laplace operator V2 : C?(R4,R) — R is defined as:

d
Axfzvif::V-Vf:Zgj (1.2.19)
i=1 "

1.2.5 Linear Algebra Notation and Definitions
Definition 1.2.21 (Identity, Zero Matrix, and the 1-matrix). Let d € N. We will define the identity

matriz for every d € N as the matriz I; € R¥™9 given by:

1 i=j
I = [, = (1.2.20)

0 else

Note that T; = 1.
Let m,n,i,5 € N. For every myn € N, i € {1,2,...,m}, and j € {1,2,...,n} we define the zero

matric Op, , € R™*™ as:

(1.2.21)

Omn = [@m,n]i,j =0

Where we only have a column of zeros, it is convenient to denote 04 where d is the height of the

column.
Let m,n,i,j5 € N. For every myn € N, 1 € {1,2,...,m}, and j € {1,2,...,n} we define matriz of

ones epypn, € R™*™ as:

(1.2.22)

Cmmn = [e]i,j =1

Where we only have a column of ones, it is convenient to denote eq where d is the height of the

column.

13

Definition 1.2.22 (Single-entry matrix). Let m,n,k,l € N and let c € R. For k € NN [1,m] and
l € NN [1,n], we will denote by k;;". € R™*™ as the matriz defined by:

,C

ke = Skl] T 2.

0 :else

Definition 1.2.23 (Complex conjugate and transpose). Let m,n,i,j € N, and A € C™*". For

every myn € N, i € {1,2,...,m} and j € {1,2,...,n}, we denote by A* € C"*™ the matriz:

A" = (A7), =TAL, (1.2.24)

Where it is clear that we are dealing with real matrices, i.e., A € R™*™ we will denote this as AT.
Definition 1.2.24 (Column and Row Notation). Let m,n,i,j € N and let A € R™ ™. For every
m,n € N and i € {1,2,...,m} we denote i-th row as:

[Aliv = |ai1 aig - ain (1.2.25)

))

Similarly for every m,n € N and j € {1,2,...,n}, we done the j-th row as:

al’]

-
Al = 7 (1.2.26)

am 7j

Definition 1.2.25 (Component-wise notation). Let m,n,i,j € N, and let A € R™*™. Let f : R —

R. For allm,n e N,ie {1,2,...,m}, and j € {1,2,...,n} we will define f ([A]**) € RM*™ gs:

7(141...) = 7 (40)], (1.2.27)

2
Thus under this notation the component-wise square of A is ([A]**> , the component-wise sin s

sin ([A]**> and the Hadamard product of A, B € R™ " then becomes A® B = [A], , x [B], ,.

14

Remark 1.2.26. Where we are dealing with a row vector x € R¥™! and it is evident from the

context we may choose to write f ([x],).
Definition 1.2.27 (The Diagonalization Operator). Let mi,ma,n1,n9 € N. Given A € R"™>*™

and B € R™2*"2 e will denote by diag (A, B) the matrix:

®mlvn2

A
diag (A4, B) = (1.2.28)
O,y B

Remark 1.2.28. diag (41, Ag, ..., A,) is defined analogously for a finite set of matrices A1, Aa, ..., Ay,.

Definition 1.2.29 (Number of rows and columns notation). Let m,n € N. Let A € R™*™. Let
rows : R™*" — N and columns : R™*" — N, be the functions respectively rows(A) = m and

columns (A4) = n.

1.2.6 O-type Notation and Function Growth

Definition 1.2.30 (O-type notation). Let g € C(R,R). We say that f € C(R,R) is in O(g(x)),
denoted f € O(g(x)), if there exists ¢ € (0,00) and zo € (0,00) such that for all x € [xg,00) it is

the case that:
0< f(x) <c-g(x) (1.2.29)

We say that f € Q(g(x)) if there exists ¢ € (0,00) and zg € (0,00) such that for all x € [xg,00) it

is the case that:
0< egle) < f(a) (1.2.30)

We say that f € O(g(z)) if there exists c1,c2, 9 € (0,00) such that for all x € [xg,00) it is the case

that:

0<cag(x) < f <cog(x) (1.2.31)

Corollary 1.2.30.1 (Bounded functions and O-type notation). Let f(x) € C(R,R), then:

15

(i) if f is bounded above for all x € R, it is in O(1) for some constant ¢ € R.

(it) if [is bounded below for all x € R, it is in Q(1) for some constant ¢ € R.
(7ii) if f is bounded above and below for all x € R, it is in ©(1) for some constant ¢ € R.
Proof. Assume f € C'(R,R), then:

(i) Assume for all z € R it is the case that f(z) < M for some M € R, then there exists an

xo € (0,00) such that for all z € (zp,00) it is also the case that 0 < f(z) < M, whence

f(z) € O(1).

(ii) Assume for all z € R it is the case that f(x) > M for some M € R, then there exists an

xo € (0,00) such that for all z € [zg,00) it is also the case that f(z) > M > 0, whence

fz) € Q(1).
(iii) This is a consequence of items (i) and (ii).
O

Corollary 1.2.30.2. Let n € Ng. For some n € Ny, let f € O(a™). It is then also the case that
J o (@),

Proof. Let f € O(z™). Then there exists ¢, xzg € (0,00), such that for all z € [z, 00) it is the case

that:
fz) <cp- a2 (1.2.32)

Note however that for all n € Ny, there also exists ¢1,x1 € (0,00) such that for all z € (z,00) it

is the case that:
" < ep - (1.2.33)
Thus taken together this implies that for all z € (max {xg,2z1},00) it is the case that:

flz) <co-a™ <cy-ep-a™t? (1.2.34)

16

O

Definition 1.2.31 (The floor and ceiling functions). We denote by |-] : R — Z and [-] : R — Z

the functions satisfying for all x € R that x| = max (Z N (—o0,z]) and [z] = min (Z N (—oo, z]).

1.2.7 The Concatenation of Vectors & Functions

Definition 1.2.32 (Vertical Vector Concatenation). Let m,n € N. Let x = [x1 x2 ...)T € R™
and y = [y1,Y2,--.,yn]T € R™. For every m,n € N, we will denote by x ~ y € R™ x R™ the vector

given as:

€1

Z2

Tm

(1.2.35)
Y1

Y2

Yn

Remark 1.2.33. We will stipulate that when concatenating vectors as x1 — X2, x1 is on top, and

To 1s at the bottom.

Corollary 1.2.33.1. Let my,me,ni,ne € N, such that mi = ni1, mg = ng, and let x € R™,

y € R™ reR™, andy € R"™. It is then the case that [vt ~ |+ [y ~ 9] =[xz +y] ~ [+v].

17

Proof. This follows straightforwardly from the fact that:

T U1 T+ Y1
T2 Y2 T2 + Y2
Lmy Ynq Ty + Yng
[t~ + [y ~v] = + = =[z+y] ~ [x+] (1.2.36)
151 N1 I+
r2 D2 2 + 92
Emo Yo Ty + ny

O

Definition 1.2.34 (Function Concatenation). Let mi,ni,ma,ny € N. Let f : R™ — R™
and g : R™ — R". We will denote by f —~ g : R™ x R™ — R™ x R™ qs the func-
tion given for all v = {x1,29,...,2m,} € R™, T € {T1,Z2,...,Tmy} € R™, and x —~ T =
{z1,22, ..., Tmy, T1, T2, ..., Ty } € R™ X R™2 by:

I

Z2

N (1.2.37)

Lo

Corollary 1.2.34.1. Let m,n € N. Let 1 € R"™,z9 € R", and f € C (R,R). It is then the case

that f (x1 —~ x2) = f(21) ~ f (z2).

Proof. This follows straightforwardly from the definition of function concatenation. O

18

Lemma 1.2.35. Let mi,mg,n1,ne € N. Let f € C(R™ R™) and g € C (R™2,R™). [t is then

also the case that f —~ g € C (R™ x R™ R x R"2).

Proof. Let R™2 x R™ be equipped with the usual product topology, i.e., the topology generated
by all products X x Y of open subsets X € R™2 and Y € R™. In such a case let V. C R™2 x R™
be an open subset. Then let it be that V; and V, are the canonical projections to the first and
second factors respectively. Since projection under the usual topology is continuous, it is the case
that V; C R™2 and V, C R" are open sets, respectively. As such it is then also the case that
f71 (V) € R™ and g~ (V) C R™ are open sets as well by continuity of f and g. Thus, their

product is open as well, proving the lemma. O

19

Chapter 2

Brownian Motion Monte Carlo

2.1 Brownian Motion Preliminaries

We will present here some standard invariants of Brownian motions. The proofs are standard and

can be found in for instance () and ().

Lemma 2.1.1 (Markov property of Brownian motions). Let T' € R, ¢t € [0,T], and d € N. Let
(Q, F,P) be a probability space. Let Wy : [0,T] x Q — R? be a standard Brownian motion. Fiz
s €10,00). Let Wy = Wsrt —Ws. Then 2 = {20, : t € [0,00)} is also a standard Brownian motion

independent of W.

Proof. We check against the Brownian motion axioms. First note that Qg = Ws10 — Ws = 0 with
P-a.s.

Note that t — Ws4y — Ws is P-a.s. continuous as it is the difference of two functions that are also
P-a.s. continuous.

Note next that for h € (0,00) it is the case that:

E[Wrn — W] = EWspion — Won — Wags + Wy
=E Wspieh — Weit] = E[Wepp, — Wy

—0-0=0 (2.1.1)

20

We note finally that:

VWin — M) =V Wspipn — Ws = Wept + Wy

=V [W8+t+h - WSth] -V [WS - Ws] + Cov (Ws—i-t =+ Vs+ts VVs+h — Ws)

=h—-0=h

Finally note that two stochastic processes W, X are independent whenever given a set of sample
points t1, ta, ..., t, € [0,T] it is the case that the vectors Wy, , Wy,, ..., W,]T and [Xy,, Xbyy .o, X2,)T
are independent vectors.

That being the case note that the independent increments property of Brownian motions yields
that, Wsit, — Ws, Wepty, — We, ..., Weys, — Wy is independent of Wy, Wy,, ..., W, i.e. 20 and

W are independent. O

Lemma 2.1.2 (Independence of Brownian Motion). Let T' € (0,00). Let (2, F,P) be a probability
space. Let X,Y :[0,T] x — R be standard Brownian motions. It is then the case that they are

independent of each other.

Proof. We say that two Brownian motions are independent of each of each other if given a sampling
vector of times (t1,to, ..., t,), the vectors (X4, Xy, ... &s,) and (V4y, Viy, - - -, M,) are independent.
As such let n € N and let (¢1,t9,...t,) be a vector or times with samples as given above. Consider
now a new Brownian motion X' —), wherein our samples are now (Xy, — Vi, Xty — Vigy -+ s Xty — Vi) -
By the independence property of Brownian motions, these increments must be independent of each
other. Whence it is the case that the vectors (X3, X4, ..., X,) and (Vi , Viy,y - - -, Wi,) are indepen-

dent. O

Lemma 2.1.3 (Scaling Invariance). Let T € R, ¢t € [0,T], and d € N. Let (Q, F,P) be a probability
space. Let Wy : [0,T] x Q — R? be a standard Brownian motion. Let a € R\ {0}. It is then the

case that Xy == %Walt is also a standard Brownian motion.

Proof. We check against the Brownian motion axioms. Note for instance that the function ¢ — A}

is a product of a constant with a function that is P-a.s. continuous yielding a function that is also

P-a.s. continuous.

21

Note also for instance that Xy = % W20 = 0 with P-a.s.

Note that for all h € (0,00), and ¢t € [0,7]] it is the case that:

1 1
E [Xt+h - Xt] =E aWa2-(t+h) - aWaZt

1
= EE [WGQ-(t+h) - WaQ-t]

=0

Note that for all h € (0,00), and ¢t € [0,T] it is the case that:

1 1
\Y [Xt+h - Xt] =V EWa2~(t+h) - EWaQ-t

1
=5V Waz.(t1n) = Waz1]

=ﬂi/<t+h—t>

= (2.1.2)

Finally note that for ¢t € [0,7] and s € [0,¢) it is the case that W,2;, — W2, is independent of

W,2.s. Whence it is also the case that Ay — X is independent of AXj. O

Lemma 2.1.4 (Summation of Brownian Motions). Let T € R, t € [0,T] and d € N. Let (2, F,P)
be a probability space. Let Wy, Xy : [0,T] x Q — R? be a standard independent Brownian motions.
It is then the case that the process Yy defined as Vi = % W, + X,) is also a standard Brownian

motion.

Proof. Note that t — % (W + &:) is P-a.s. continuous as it is the linear combination of two
functions that are also R-a.s. continuous.

Note also that Yy = % Wy + Xp) = 04 0 = 0 with P-a.s.

22

Note that for all h € (0,00) and ¢ € [t,T] it is the case that:

E [% (Vesn — yt)] =E [% With + X — Wy — &)
_ %E Wiin — Wil + %E Xy —]

=0
Note that for all h € (0,00), and t € [0,T] it is the case that:

v [i Vn — y»] —v [

1
NG 5 With + X — Wy — Xt)}

S

1

1
=V |— Wn —Wy) + —= (X, — &
\/5(t+h t) \/5(t+h t)]
1 1
= §V[Wt+h — Wy + §V[Xt+h —] + Cov W X
=h

O

Definition 2.1.5 (Of £). Letp € [2,00). We denote by ¢, € R the real number given by ¢ := inf{c €
R} where it holds that for every probability space (?, F,P) and every random variable X : Q@ — R
with E[|X]] < oo that (E[|X — E[X])?])7 < c(E[|X]7])7 .

Definition 2.1.6 (Primary Setting). Let d,m € N, T, £,p € [0,00), p € [2,00) m = €,\/p — 1,
0 =17, g € C(RY,R), assume for all t € [0,T),z € R? that:

max{|g(x)[} < £ (1 +||z]%) (2.1.3)

and let (Q, F,P) be a probability space. Let WP : [0,T] x Q — R%, 6 € © be independent standard
Brownian motions, let u € C([0,T] x RY, R) satisfy for allt € [0,T], x € R%, that E[|g(z+W2_,)|] <

00 and:

u(t,z) =E [g (x + W_,)] (2.1.4)

23

and let let U? : [0,T] x RE x Q — R, 6 € © satisfy, § € ©, t € [0,T], x € R?, that:

(2.1.5)

Lemma 2.1.7. Assume Setting 2.1.6 then:
(i) it holds for alln € Ny, 0 € © that U? : [0,T] x R? x Q — R is a continuous random field.

(ii) it holds that for all 6 € © that o (U?) C o ((W(e’v))V€@>~

(iii) it holds that (U?), g, (W)

peor 0Te independent.

(iv) it holds for all n,m €, i,k,i, € Z, with (i,k) # (i,¢) that (U(g’i’k))geg and (U(G“)) are

0cO

independent and,

(v) it holds that (U9)9Ee are identically distributed random variables.

Proof. For (i) Consider that W}eiot’_k) are continuous random fields and that g € C(R%,R), we have

that U?(t,r) is the composition of continuous functions with m > 0 by hypothesis, ensuring no

singularities. Thus U? : [0,7] x R x Q — R.

For (ii) observe that for all § € © it holds that W’ is B ([0,7] ® o (W?)) /B (R?)-measurable, this,

and induction on prove item (ii).

Moreover observe that item (ii) and the fact that for all € © it holds that <W1(90€’g)), WY are

independently establish item (iii).
Furthermore, note that (ii) and the fact that for all i, k,i,¢ € Z, 0 € ©, with (i, k) # (i,) it holds

that (W(evi’k’ﬁ)) and (W(GJ,W)) are independent establish item (iv).

Y€O YO

Hutzenhaler () , Corollary 2.5) establish item (v). This completes the

proof of Lemma 1.1. O

Lemma 2.1.8. Assume Setting 2.1.6. Then it holds for # € ©, s € [0,T], t € [s,T], x € R? that:

] +/STIE |07 (v + WE,)

E HW (t, x+ Wf_s>

5[l +mt)

} dr<oco (2.1.6)

24

Proof. Note that (2.1.3), the fact that for all 7, a, b € [0, 00) it holds that (a+b)" < 2max{r=10} (g7 4
b"), and the fact that for all @ € © it holds that E [|W4|] < oo, assure that for all s € [0,7],

t € [s,T], 0 € © it holds that:

E |9tz +WE,)

| <Be(1+le+WIE)]

< g [1 42010 (o), + R [HW%H’;D] < 0 (2.1.7)

We next claim that for all s € [0,77], t € [s,T], 6 € © it holds that:

] —I—/STIE |07 (rye + WE,)

To prove this claim observe the triangle inequality and (2.1.5), demonstrate that for all s € [0,77,

E HU9 (t,x +Wf_s>

] dr < oo (2.1.8)

€ [s,T], 8 € ©, it holds that:

E HU9 (t, x4 Wf_s)

ilﬁ: Hg (33 FWE L+ Wg’ﬂ"i)) H] (2.1.9)

1
m
i=1

| <

Now observe that (2.1.7) and the fact that (W?)gce are independent imply that for all s € [0, 77,

€ [s,T], 6 € ©, i € Z it holds that:

| <o @110

o (e W)| 8 o (5 8] - 5[l o)

Combining (2.1.9) and (2.1.10) demonstrate that for all s € [0,T7], t € [s,T], 6 € © it holds that:

E HUa(t,erWf,s)

} < 0 (2.1.11)

Finally observe that for all s € [0,7] 6 € © it holds that:

/TIE HUG (r,x + Wf_s)

Combining (??), (2.1.11), and (2.1.12) completes the proof of Lemma 2.1.8.

} < (2.1.12)

} < (T —s) TSE%]E HUQ (r,:c ~I—Wf_s)

25

Corollary 2.1.8.1. Assume Setting 2.1.6, then we have:

(i) it holds that t € [0,T],r € R? that:

E[|U° (t,z)[] + E Hg (x+W}°;‘1"”)H < 00 (2.1.13)

12) 1t holds that t € |0,T|,x € that:
(ii) it holds th [0,T] R? th

E[U°(t2)] =E [g (= + W05 (2.1.14)

Proof. (i) is a restatement of Lemma 2.1.8 in that for all ¢ € [0,T7:

E[JU)] +E [jg (= + w5)]
<E HU9 (t,a; v WS,S)

|+ /STE 0 (o w2,

< o0 (2.1.15)

| +E[lg (z+ L) | ar

Furthermore (ii) is a restatement of (4.0.7) with § = 0, m = 1, and k¥ = 1. This completes the
proof of Corollary 2.1.8.1. U

2.2 Monte Carlo Approximations

Lemma 2.2.1. Let p € (2,00), n € N, let (Q, F,P), be a probability space and let X; : Q@ — R,

i€{1,2,....,n} be i.i.d. random variables with E[|X}|] < co. Then it holds that:

(E

Proof. The hypothesis that for all i € {1,2,...,n} it holds that A; : Q@ — R are i.i.d. random

]

D < {p‘ 1] CE[X - E[x)P) (2.2.1)

n

E[x] - % <Zn: Xi)

variables ensures that:

|

E[%] - (zn: Xi>

. (Z (B[] - x»)

i=1

26

This combined with the fact that for all i € {1,2,...,n} it is the case that &; : Q@ — R are i.i.d.

random variables and e.g. (Rio, , Theorem 2.1) (with p ~ p, (Si)icfo,1,....n} O (ZL:1(E[XI€] —
Xk)), (Xi)ie{l,Q,.‘.,n} A (E[X;] — Xi)ief1,2,...,ny in the notation of (Rio, , Theorem 2.1) ensures
that:

AN G N n "\
(IE E[X)] — — <ZX) D = |E [Z(Em])])
i=1 =1
< S E R - Xirm?]
=1

=22 [nE[E] -)] (2.23)
=P @R - 4 (2.2.4)
This completes the proof of the lemma. O

Corollary 2.2.1.1. Let p € [2,00), n € N, let (Q, F,P) be a probability space, and let X; : Q@ — R,

i€ {1,2,...,n} be i.i.d random variables with E [|X1]] < co. Then it holds that:

<E

Proof. Observe that e.g. (, , Proposition 2.3) and Lemma 2.3.1 establish (2.2.5). [

p

),, < [p; 1] " E % — B[P (2.2.5)

E[X] - % <Z Xi)
i=1

Corollary 2.2.1.2. Letp € [2,00), n € N, let (2, F,P), be a probability space, and let X; : Q@ — R,

i€{1,2,...,n}, be i.i.d. random variables with E[|X}|] < oo, then:

1
n p P
1 Poep—1 1
(E E[x] - - (Z Xi)]) < % (E[|xF])? (2.2.6)
i=1 nz
Proof. This a direct consequence of Definition 2.1.5 and Corollary 2.2.1.1. U

27

2.3 Bounds and Covnvergence

Lemma 2.3.1. Assume Setting /.0.1. Then it holds for all t € [0,T], x € R?

o =

E|[0°(t2+ W) —E[U° (t,2 +W0)][*])

< 2 (& o+

1
m?2

o =

} (2.3.1)

Proof. For notational simplicity, let Gy, : [0, 7] x R? x Q@ — R, k € Z, satisfy for all k € Z, t € [0,T],

r € R? that:
Gr(t,x) =g (x + W:(Foiot’_k)> (2.3.2)

Observe that the hypothesis that (W(’)ge@ are independent Brownian motions and the hypothesis

that g € C(R?,R) assure that for all £ € [0,T],x € R? it holds that (Gy(t,))xez are i.i.d. random

variables. This and Corollary 2.2.1.2 (applied for every t € [0,T], x € R? with p ~ p, n .~ m,

(Xe)req1,2,...m} O (Gr(t,7))kef1,2,...,m}), With the notation of Corollary 2.2.1.2 ensure that for all
€ [0,T], € RY, it holds that:

gz

Combining this, with (1.16), (1.17), and item (ii) of Corollary 2.1.8.1 yields that:

—E [Gl (t, a;)]

=

m

p P L
D < T (E (Gt)PP (2.3.3)

[Z Gi(t, z)
k=1

(B [l°w. - & [0°6.0)] 1))’

-\ % Gilt,2)| ~E[Gr(t,2)] pD; (2.3.4)
< [|Gl< o))’ 0.55)
- 2 [l i)’] (236)

This and the fact that WY has independent increments ensure that for all n €, ¢ € [0,T], x € R? it

28

holds that:

o=

1
p

|

<% | (E[loe+m)])

3.2

(B[|0° (te+ W) —E[U° (ta+W))][])

This completes the proof of Lemma 2.3.1.

Lemma 2.3.2. Assume Setting 2.1.6. Then it holds for all, t € [0,T], x € R? that:

1
p

([0 o) —u o+ WD) P]) < () ([lo (e)]

Proof. Observe that from Corollary 2.1.8.1 item (ii) we have:

E [U%(t,z)] = E [g (x + W}Oﬂ"”)]

This and (4.0.6) ensure that:

u(t,z) — E [Uo(t,$)] =0

E [Uo(t,m)] —u(t,x) =0

(2.3.7)

(2.3.8)

(2.3.9)

(2.3.10)

This, and the fact that WW° has independent increments, assure that for all, t € [0,T], = € R?, it

holds that:

(B[|E[V° (.o +W0)] _u(t,“wf)\”])% =0< (Ef|u(t.e +W)])

This along with (4.0.6) ensure that:

29

(2.3.11)

Notice that the triangle inequality gives us:

(k10" o) = e WOP])" < (000004 90) 0%+ 0]

ol

+(E[EL (ta+ W)~ ulta+ W)

(2.3.13)
This, combined with (1.26), (1.21), the independence of Brownian motions, gives us:
1 m 1
(B[(to+W0) —u(ta+W)[])’ < (1) ([lg (@ +ni)[])"
m?2
1
m 1
_ <_1> (B [lg (@ +Wi)[])" (2.3.14)
m2
This completes the proof of Lemma 2.3.2. O

Lemma 2.3.3. Assume Setting 2.1.6. Then it holds for all t € [0,T], x € R? that:

(IE UUO (tz+W)) —u (t,w+WtO)’pD% <L <£1> (sup E [(1 + Hx%—WSH%)ﬂ)p (2.3.15)

m?2 s€[0,T7]

Proof. Observe that Lemma 2.3.2 ensures that:

(B[(ta+W0) —u(t.a+W))])'1’ < <n’;) (B [lg (= +w9)["])'1° (2.3.16)
Observe next that (4.0.6) ensures that:
(%) (E [lg (@ +Wh) *’D% <e (%) (B[+]+ W%H’?E)”D% (2.3.17)

Which in turn yields that:

1

¢ <£> (B [+ o+ n2I5)7])" <2 <£> (sup E[(1+ HHWgug)p])" (2.3.18)

1
m2 m?2 s€[0,T]

30

Combining 2.3.16, 2.3.17, and 2.3.18 yields that:

(E[’Uo(t,x—l—wto) u(t,z+ W) % <% ‘g 3:+WT)’D;

o =

<2<i> (sup E[(1+ [|=+W?|[}) }) (2.3.19)

T
2 s€[0,T7
This completes the proof of Lemma 2.3.3. O

Corollary 2.3.3.1. Assume Setting 2.1.6. Then it holds for all t € [0,T], x € R? that:

(]E [‘UO (t,x) — u(t,:n)‘pD% <L <11> (sup E [(1+|| z+ WY %) }) ' (2.3.20)

mz2 s€[0,T]

Proof. Observe that for all t € [0,7 —] and t € [0,7], and the fact that W° has independent

increments it is the case that:

u(t+t2) =E|g (e + Wh_ipg) | =E[g (o + Wir_g_y)] (2.3.21)

It is also the case that:

m

Z (W(90 kz)

k=1

Ut + t,x) [Zg(ﬂweotﬁ)]:

Then, applying Lemma 2.3.3, applied for all t € [0,7], with £ L, pp, pp, T~ (T —1) is

such that for all t € [0,7], t € [0,T —], x € R? we have:

=

LR e——Yi)

<L (7:%) <Seﬁ)17111?_q]E [(1 + HSE + W;)H%)p}> 3
<e <ﬂ> (sup E[(1+ o+ Wo|[}) DF (2.3.22)

1
m2 s€[0,T]

31

Thus we get for all t € [0, 7], z € R%, n &:

o =
o =

(EB[10°) —uto)P]) = ([0 (L2 +08) —u (b +WE)[])

1

i
) 2(m1> (sup B[(1+ Hx+W3H§;)p]> (2.3.23)
m2 s€[0,T]
This completes the proof of Corollary 2.3.3.1. -

Theorem 2.3.4. Let T,L,p,q,0 € [0,00),m € N, © = (J,cn%Z", let gq € C(R%R), and as-
sume that d € N, t € [0,T], = (z1,72,...,279) € RY, v,w € R and that max{|gq(z)|} <
LdP (1—}—2%:1 |xk|), let (Q, F,P) be a probability space, let W0 . [0,T] x Q@ — R%, d € N,
0 € O, be independent standard Brownian motions, assume for every d € N that (Wd’e)oeg

are independent, let ug € C([0,T] x R4 R), d € N, satisfy for alld € N, t € [0,T], x € R? that
E [gw (a: + W%Etﬂ < 00 and:

ua (t,2) = E |ga (o + W2,)| (2.3.24)

Let U . [0,T] xR x Q - R, d €N, me€Z, 0 c O, satisfy for all, d € N, m € Z, § € O,
t€10,T], x € RY that:

1 | _
U (ta) = — [Z 9a (x + WO k))] (2.3.25)
k=1

and for every d,n,m € N let Cq,m € Z be the number of function evaluations of uq(0,-) and
the number of realizations of scalar random variables which are used to compute one realization of
UE(T,0): Q — R.

There then exists ¢ € R, and 9 : N x (0,1] — N such that for all d € N, € € (0, 1] it holds that:

p])% <e (2.3.26)

sup sup E ||uq(t, z) — {720)
t€[0,T) z€[—L,L)4 (H N(de)

and:

Can(de) N(de) S cde=(2+0) (2.3.27)

32

Proof. Throughout the proof let my = /p — 1, p € [2,00), let F¢ C F,d €N, te[0,T] satisfy for
all d € N, t € [0,T] that:

Nseper] @ (0 (Wﬂ’o r € [0,8]) U{deF:PA) = O}) t<T

Fé = (2.3.28)
a(a(Wsd’O:se[O,T])U{AE}":IP’(A):O}) =T
Observe that (2.3.28) guarantees that F{ C F, d € N, t € [0, 7] satisfies that:
(I) it holds for all d € N that {A € F : P(A) =0} C Fd
(IT) it holds for all d € N, ¢ € [0, T], that F{ = Nseqe.1) e,
Combining item (I), item (II), (2.3.28) and (, , Lemma 2.17) assures us

that for all d € N it holds that W0 : [0, T] x Q — R? is a standard (Q,]—", P, (F}) })—Brownian

tel0,T
Brownian motion. In addition (58) ensures that it is the case that for all d € N, z € R? it holds
that [0,7] x Q 3 (t,w) — z + W (w) € R? is an (]Fgl)te[o 7] /B (R%)-adapted stochastic process

with continuous sample paths.

This and the fact that for all d € N, t € [0,T], z € R? it holds that aq(t,z) = 0, and the fact that
foralld € N, t € [0,T], z,v € R? it holds that by(t, z)v = v yield that for all d € N, x € R it holds

that [0,7] x Q3 (t,w) — x + Wtd’o(w) € R? satisfies for all ¢ € [0, 7] it holds P-a.s. that:

t t t t
z+ W =z + / 0ds + / AW = g + / aq(s,x + W0)ds + / ba(s, z + WE0)dw 0
0 0 0 0

(2.3.29)

This and () , Lemma 2.6) (applied for every d € N, z € R? with d ~
dm~d T AT, C,nd Con0,FAF & a,un ag,on bg, W o WX A
([O,T] x Q3 (t,w) —x+ Wtd’o(w) € Rd) in the notation of (, , Lemma

2.6) ensures that for all r € [0,00), d € N, z € RY, ¢ € [0, 7] it holds that

E [Hx + W;LOHT] < max{T, 1} <(1 + ||x||2>% +(r+ 1)d%> exp (@) <oo (2:3.30)

This, the triangle inequality, and the fact that for all v,w € [0,00), r € (0,1], it holds that

33

v+w) <v" 4+ w" assure that for a €|2,0),a e N,z € 1t holds that
() hat for all p € [2,00), d € N R? it holds th

o (e[o)) e o wﬂwfﬂuz’w

s€[0,T7

<1+ maX{T%, 1} <(1 + H$||?2>% +(gp +1)d %) exp (M)
<2 ((1 Flel) T+ v+ 1>d%> exp (M i %)

S? <(1 + HxH%)%p + (ap + 1)dgz~£) exp <[Q(qp +3)+1) T)

: (2.3.31)

Given that for alld € N, z € [~L, L]? it holds that ||z|| 5 <

Ldz , this demonstrates for all p € [2, 00),
d € N, it holds that:

1
c(2) (Lo e (2[(o eml)]))

<L <%> (S0P [((1 + ||~”6H2E> H +(gp +1)d %> exp <[q<qp + ;3) +1] T>D
Sk (%) ((1 +L20) % + (gp +1)d %‘) exp (qu T3+ ”T)

: (2.3.32)

Combining this with Corollary 2.3.3.1 tells us that

=

(& [[uatt, z) - U2 .2])
() (om <E{<1+Hw+wswuz>”]>“)

(o) o 220

2

(2.3.33)
This and the fact that for all d € N and € € (0,00) and the fact that m, < 2, it holds that for fixed
L,q,p,d,T there exists an My, 4 47 € R such that Ny > My, 4 a7 forces:

L | M

2
md,e

((1+L2d)q7 (gp + 1)d %) exp<[q(qp+g)+1]:r> <.

34

Thus (2.3.33) and (2.3.34) together proves (2.3.26).

Note that €4, . ;. is the number of function evaluations of u4(0,) and the number of realizations
of scalar random variables which are used to compute one realization of U%’zé(T, 0): Q — R
Let ‘ﬁ;; be the value of M, . that causes equality in (2.3.34). In such a situation the number of
evaluations of u4(0, -) do not exceed ’)@TE. Each evaluation of u4(0, -) requires at most one realization

of scalar random variables. Thus we do not exceed 2‘)/’1?1;. Thus note that:

P 1T
iy e < 2 [me ((1+220) % + (o +1)a%) exp (qu ha ;’) 1 >] et (2:3.35)

Note that other than d and e everything on the right-hand side is constant or fixed. Hence (2.3.35)

can be rendered as:
Q:dysnd,svmd,e S Cdkg_l (2336)

Where both ¢ and k are dependent on L,p, m, L U

35

Chapter 3

That u is a Viscosity Solution

We can extend the work for the heat equation to generic parabolic partial differential equations.
We do this by first introducing viscosity solutions to Kolmogorov PDEs as given in Crandall &

Lions () and further extended, esp. in ().

3.1 Some Preliminaries
We take work previously pioneered by () and (), and then seek to re-apply
concepts first applied in () and ().

Lemma 3.1.1. Let dym € N, T € (0,00). Let p € C2([0,T] x RLRY) and o € CH2([0,T] x
RY, R*™) satisfying that they have non-empty compact supports and let & = supp(u) Usupp(o) C
[0,T] x R, Let (Q,F,P, (Ft)ieo,m)) be a filtered probability space satisfying usual conditions. Let
W :[0,T] x Q = R™ be a standard (Fy),eo.1) -Brownian motion, and let X : [0,T] x Q@ — R® be an
(Ft)te(o,1-adapted stochastic process with continuous sample paths satisfying for all t € [0, T] with

P-a.s. that:

t t
X=X+ / w(s, Xs)ds —I—/ o(s, Xs)dWs (3.1.1)
0 0

It then holds that:
(i) [P(X¢6)=1) = (P(Vte€[0,T]: X = A&p) =1)]
(ii) [P(XpeS)=1) = (P(Vt€[0,T]: X € &) =1)]

36

Proof. Assume that P(X) ¢ &) = 1, meaning that the particle almost surely starts outside &. It
is then the case that P(Vt € [0,7T] : |u(t, Xo)||g + ||o(t, X0)||F = 0) = 1 as the p and o are outside

their supports, and we integrate over zero over time.

It is then the case that:
Y= ([O,T] X Q3 (tw) = Xo(w) €]Rd) (3.1.2)

is an (Ft),c(0,7) adapted stochastic process with continuous sample paths satisfying that for all

t € [0,T] with P-almost surety that:

t t ¢ ¢
V=X +/ Ods +/ 0dWs = Xy +/ wu(s, Xo)ds +/ o(s, Xo)dWs
0 0 0 0

t t
=X+ / w(s,Vs)ds +/ o(s,Vs)dWs (3.1.3)
0 0

Note that since p € CH2([0,T] x R4, RY) and o € CH2([0,T] x RZ,R¥™) and since continuous
functions are locally Lipschitz, and since this is especially true in the space variable for ;4 and o, the
fact that G is compact and continuous functions over compact sets are Lipschitz and bounded, and
(Karatzas and Shreve, 1991, Theorem 5.2.5) allows us to conclude that strong uniqueness holds,

that is to say:
PVte[0,T]: X =X) =P (Vte[0,T]: X, =) =1 (3.1.4)

establishing the case (i).

Assume now that P(Xp € &) = 1 that is to say that the particle almost surely starts inside . We
define 7: Q@ — [0,7] as 7 = inf{t € [0,T] : X; & &}. 7 is an (F;);e[o,r)-adapted stopping time. On
top of 7 we can define Y : [0,7] x @ — R, for all t € [0,7], w € Q as Vy(w) = Xpinfr,r}(W). Y
is thus an (Ft)te[ovgp]-adapted stochastic process with continuous sample paths. Note however that

for t > 7 it is the case ||u(t, V) + o(t,V4)||lr = 0 as we are outside their supports. For ¢ < 7 it is

37

also the case that)y = A&;. This yields with P-a.s. that:

min{¢,7} min{¢,7}
Ve = Xmin{t,T} = Xp + / /'5(57 Xs)d‘s + / 0(57 XS)dWS
0 0

t t
=&p + / 1 {O<S<T}:u(83 Xs)ds + / 1 {0<S<’T}O-(S7 XS)dWS
0 0

t

t
:X0+/ ,u(s,)@)ds%—/ o(s,Vs)dWy (3.1.5)
0 0

Thus another application of (Karatzas and Shreve, 1991, Theorem 5.2.5) and the fact that within
our compact support &, the continuous functions y and o are Lipschitz and hence locally Lipschitz,

and also bounded gives us:

Proving case (ii). O

Lemma 3.1.2. Let d,m € N, T € (0,00). Let g € C>(R4R). Let u € C3([0,T] x R, R?) and
o € CH3([0,T] x R4, R¥>™) have non-empty compact supports and let & = supp(u) Usupp(c). Let
(0, F, P, (Ft)tcpo,r)) be a stochaastic basis and let W : [0, T]xQ — R™ be a standard (Fy),e(o,7)-Brownian
motion. For every t € [0,T] , = € R%, let X4* = (Xst’x)se[t,T] ST x Q@ — RE be an
(Fs)sep,r-adapted stochastic process with continuous sample paths satisfying for all s € [t, T] with

P-almost surety that:
XL =2+ /ts w(r, X5)dr + /ts o(r, X dW, (3.1.7)
also let u: R — R satisfy for allt € [0,T], x € R? that:
u(t,z) =E [g(x;w)] (3.1.8)

then it is the case that we have:

(i) u € CY2([0,T] x R%, R) and

38

(ii) for allt € [0,T], z € RY that u(T,x) = g(x) and:

(%u) (t,z) + %Trace (o (t,x) o (t,x)]" (Hessp u) (t,x)) + (u(t,x), (Vyu) (t,2)) =0

(3.1.9)

Proof. We break the proof down into two cases, inside the support & = supp(p) U supp(o) and
outside the support: [0,7] x (R?\ &).

For the case inside &. Note that we may deduce from Item (i) of Lemma 3.1.1 that for all ¢ € [0, 7],
z € R\ G it is the case that P(Vs € [t,T] : X&" = x) = 1. Thus for all t € [0,T], z € R*\ & we

have, deriving from (3.1.8):

u(t,x) =E [g <X;x>} = g(x) (3.1.10)

Note that g(z) only has a space parameter and so derivatives w.r.t. ¢ is 0. Inhereting from
the regularity properties of g and (3.1.10), we may assume for all t € [0,T], z € R?\ &, that
ul[o, 1) (rR\&) € CY2([0,T] x (R?\ &)). Note that the hypotheses that u € C13([0,T] x R?, RY) and
o € CH3([0,T] x R4, R¥™) allow us to apply Theorem 7.4.3, Theorem 7.4.5 and Theorem 7.5.1

from Da Prato and Zabezylk (2002) for t € [0,T], x € R?\ &, to give us:
(i) ue C12([0,T] x R%, R).
(i)

0

0
(au> (t,x)
(%u) (t,x) + %Trace (o(t,z) [o(t,)]" (Hessy u) (t,x)) + (u(t, x), (Vzu) (t,x))

(3.1.11)

Now consider the case within support &. Note that by hypothesis p and ¢ must at least be locally
Lipschitz. Thus (Karatzas and Shreve, 1991, Theorem 5.2.5) allows us to conclude that within &

the pair (p, o) for our our stochastic process XL defined in (3.1.7) must exhibit a strong uniqueness

property.

39

Further note that Item (i) from Lemma 3.1.1 tells us that:
P(Vt € [0,T]: X5 € &) = 1. (3.1.12)

Note that again the hypotheses that u € C13([0, 7] x R%, R?%) and o € C13([0, T] x RY, R¥*™) and
g€ C’Q(Rd) allow us to apply Theorem 7.4.3, Theorem 7.4.5 and Theorem 7.5.1 from Da Prato and

Zabezylk (2002) for t € [0,T], x € &, to give us:

(i) u e CH2([0,T] x R R).
(i)

<%u> (t,x) + % Trace (o(t,z) [o(t,x)]" (Hessy u) (¢, x)) + (u(t, z), (Vzu) (¢, 2)) =0

(3.1.13)

Note that (3.1.7) and (3.1.8) together prove that u(7,z) = g(x). This completes the proof. O

3.2 Viscosity Solutions

Definition 3.2.1 (Symmetric Matrices). Let d € N. The set of symmetric matrices is denoted Sq
given by Sqg = {A € Sq: A* = A}.

Definition 3.2.2 (Upper semi-continuity). A function f: U — R is upper semi-continuous at xg

if for every € > 0, there exists 6 > 0 such that:
f(z) < f(xo) + ¢ for all x € B (z9,0) NU (3.2.1)

Definition 3.2.3 (Lower semi-continuity). A function f : U — R is lower semi-continuous at xg

if for every € > 0, there exists 6 > 0 such that:
f(z) > f(xo) — € for all x € B(x9,0) NU (3.2.2)

Corollary 3.2.3.1. Given two upper semi-continuous functions f, g : R — R, their sum (f + g) :

R? — R is also upper semi-continuous.

40

Proof. From definitions, at any given ¢ € RY, for any € € (0, 00) there exist neighborhoods U and

V around zg such that:

(Vz € U) (f(z) < f(zo) +¢) (3:2.3)
(Vz € V) (g(z) < g(zo) +¢) (3.2.4)
and hence:
(Vo € UNV) (f(2) + g(z) < f(wo) + g(xo) + 2€) (3.2.5)
O

Corollary 3.2.3.2. Given an upper semi-continuous function f : R — R, it is the case that

(—f) : R4 = R is lower semi-continuous.

Proof. Let f:R? — R be upper semi-continuous. At any given o € R?, for any ¢ € (0,00) there

exists a neighborhood U around zg such that:

(Vz e U) (f(z) < f(xo) +¢) (3.2.6)

This also means that:

(Ve e U) (= f(x) = —f(x0) —€)
(3.2.7)
This completes the proof. O

Definition 3.2.4 (Degenerate Elliptic Functions). Let d € N, T € (0,00), let O C R? be a
non-empty open set, and let (-,-) : R? x R — R be the standard Euclidean inner product on R%. G

is degenerate elliptic on (0,T) x O x R x R? x Sy if and only if:
(i) G:(0,T) x O xR x R x Sg — R is a function, and

(ii) for all t € (0,T), z € O, r € R, p € RY, A B € Sy, with Vy € R%: (Ay,y) < (By,y) that

41

G(t7x7r’p’A) < G(t7$7T’p7B)'

Remark 3.2.5. Lett € (0,7), x € RY, r ¢ R, p € RY, A €Sy. Let u € CV2([0,T] x R% R),
and let o : R4 — R4 gnd p - RY — R? be infinitely often differentiable. The function G :
(0,7) x R x R x RY x Sy — R given by:

G(t,z,r,p, A) = %Trace (o(z) [o(z)]" (Hessy u) (t,x)) + (u(t, z), Vau (t, x)) (3.2.8)

where (t,z,u(t,x), p(z),o(z) [o(z)]*) € (0,T) x R x R x R? x Sy, is degenerate elliptic.

Lemma 3.2.6. Given a function G : (0,T) x O x R x R? x S; — R that is degerate elliptic on
(0,T) x O x R x R? x Sy it is also the case that H : (0,T) x O x R x RY x Sy — R given by

H(t,x,r,p,A) = =G(t,z, —r, —p, —A) is degenerate elliptic on (0,T) x O x R x R? x S.

Proof. Note that H is a function. Assume for y € R? it is the case that (Ay,y) < (By,y) then
it is also the case by (??) that (—Ay,y) > (—By,y) for y € R?. However since G is monotoically
increasing over the subset of (0,7) x O x R x R? x Sy where (Ay,y) < (By,y) then it is also the
case that H(t,z,r,p, A) = -G(t,z,—r,—p,—A) > —G(t,z,—r,—p,—B) = H(t,z,r,p, B).

O

Definition 3.2.7 (Viscosity subsolutions). Letd € N, T € (0,00), let © C R be a non-empty open
set, and let G : (0,T) x O x Rx R xSy — R be degenrate elliptic. Then we say that u is a viscosity
solution of (gu) (t,z) + G (t,z,u(t, z), (Vyu) (t,z), (Hessy u) (t,z)) >0 for (t,z,) € (0,T) x O if

and only if there exists a set A such that:
(i) we have that (0,T) x O C A.
(7i) we have that u: A — R is an upper semi-continuous function from A to R, and

(iii) we have that for all t € (0,T), x € O, ¢ € CH2((0,T) x O,R) with ¢(t,x) = u(t,x) and

¢ > u that:

<%ud> (t,x) + G (t,x,p(t,), (Va0) (t,), (Hess, @) (t,z)) =0 (3.2.9)

42

Definition 3.2.8 (Viscosity supersolutions). Let d € N, T € (0,00), let O C R? be a non-empty
open set, and let G : (0,T) x O x R x R x S4 — R be degenrate elliptic. Then we say that u
is a viscosity solution of (%u) (t,x) + G (t,z,u(t,z), (Vyu) (t,z), (Hessy u) (¢,x)) <0 for (t,x,) €

(0,T) x O if and only if there exists a set A such that:
(i) we have that (0,T) x O C A.
(7i) we have that u: A — R is an upper semi-continuous function from A to R, and

(i4i) we have that for all t € (0,T), x € O, ¢ € CH?((0,T) x O,R) with ¢(t,x) = u(t,x) and

¢ < u that:
0
<§ud> (t,z)+ G (t,x,o(t,x), (Va0) (t,x), (Hessy @) (t,z)) <0 (3.2.10)

Definition 3.2.9 (Viscosity solution). Let d € N, T € (0,00), @ C R¢ be a non-empty open set
and let G : (0,T) x O x R xR? xSy — R be degenerate elliptic. Then we say that ug is a viscosity

solution to (%ud) (t,x) + G(t,z,u(t,z), Vy(z,t), (Hessg uq)(t, x)) if and only if:

(i) u is a viscosity subsolution of (%ud) (t,x) + G(t,z,u(t,x), Vy(x,t), (Hessy ug)(t,z)) = 0 for
(t,xz) € (0,T) x O

(7i) w is a viscosity supersolution of (%ud) (t,z)+G(t,x,u(t,z), Vy(z,t), (Hessg uq)(t,z)) = 0 for
(t,x) € (0,T) x O

Lemma 3.2.10. Let d € N, T € (0,00), t € (0,7T), let © C R? be an open set, let v € O,
¢ € CH2((0,T) x O,R), let G : (0,T) x OxRxR% xSy — R be degenerate elliptic and let ug(0,T) x
O — R be a viscosity solution of (%ud) (t,x) + G (t,z,u(t,x), (Vgup) (t,x), (Hessy uq) (t,x)) > 0

for (t,z) € (0,T) x O, and assume that w — ¢ has a local mazimum at (t,t) € (0,T) x O, then:

(%d)) (t,v) + G (tr,u(tv), (Veo) (t), (Hessy ¢) (t,r)) =0 (3.2.11)

Proof. That u is upper semi-continuous ensures that there exists as a neighborhood U around (t, v)
and ¢ € CH2((0,T) x O,R) where:
(i) for all (t,z) € (0,T) x O that u(t,v) —(t,t) > u(t,z) — (L, x)

43

(ii) for all (¢,x) € U that ¢(t,z) = ¢(t, x).

We therefore obtain that:

<%¢> (t,v) + G (t,r,u(t,v), (V) (t,v), (Hessy @) (¢, 1))
= (%¢> (1) + G (tr,u(t v), (Vo) (t v), (Hessy v)(t v) > 0 (3.2.12)

O

Lemma 3.2.11. Letd € N, T € (0,00), let O C R? be a non-empty open set, let uy, : (0,T)xO — R,
n € Ny be functions, let Gy, : (0,T) x O x R x R? x Sy — R, n € N be degenerate elliptic, assume

that G is upper semi-continuous for all non-empty compact K C (0,T) x O x R x R? x Sy that:
limsup | sup (lun(t,) — wo(t,@)| + [Gult,, 7. p, A) — Golt,z,r,p, A))| =0 (32.13)
n_)w (t7x7r7p7A)E’C
and assume for all n € N that u,, is a viscosity solution of:
au

< 0 n> (t,x) + Gp (t,x, un(t, z), (Vaun)(t, x), (Hessg up)(t, z)) = 0 (3.2.14)

then ug is a viscosity solution of:

<%ug> (t,z) + Gy (t, z,up(t, x), (Vyuo)(t, z), (Hessy ug)(t,xz)) =0 (3.2.15)

Proof. Let (to,x,) € (0,T) x O. Let ¢. € C2((0,T) x O,R) satisfy for all € € (0,00), s € (0,T),

y € O that ¢o(to, o) = uo(to, o), ¢o(to, o) = uo(to, o), and:
be(5,y) = do(s,y) +e(|s —to| + |ly — 2ol £) (3.2.16)

Let § € (0,00) be such that {(s,y) € R? x R : max (|s — to|?, ||y — 20/|%) < 0}. Note that this

and (3.2.27) then imply for all ¢ € (0,00) there exists an v, € N such that for all n > v, and

44

max (|s — tol, ||y — xo||g) < 6, it is the case that:

1)

sup (Jun(s, y) = uo(s,y)l) < 5 (3.2.17)

Note that this combined with (3.2.16) tells us that for all € € (0,00), n € NN [v, 00), s € (0,7,

y € O, with |s —to| <0, ||y — xol|g <6, |s —to] + ||y — zol|g > ¢ that:

un(to, 0) — ¢e(to, 0) = un(to, o) — ¢do(to, o) (3.2.18)

= up(to, xo) — uo(to, xo)
—&d
>

2

= un(s,y) —uo(s,y) —e(Is —to|l + ly — wollE)
= un(s,y) — ¢o(s,y) — € (s —to| + ||y — wollE)

= un(s, y) - ¢€(57 y) (3219)

Note that Corollary 3.2.3.1 implies that for all € € (0,00) and n € N that u, — ¢. is upper
semi-continuous. There therefore exists for all € € (0,00) and n € N, a 75 € (tg — d,t0 + J) and a

p5,, where ||p5, — zo|| < ¢ such that:

Un (T, Pn) = Ge(Trs P7) 2 un(s,y) — P=(s,9) (3.2.20)

By Lemma 3.2.10, it must be the case that for all € € (0,00) and n € NN [v., 00):

0
(W) (750 02) + G (75, 75t (75, 5 (Vi) (75 05 , (Hlossy 62) (75, 05)) 2 0 (3.2.21)

45

Note however that (3.2.20) along with (3.2.16) and (3.2.27) yields that for all € € (0, 00) that:

lim sup [un (Tza p%) - d)e(T:;a P%)]

n—o0

2 limsup [un (75, 7) = (d0(7n, £7) + € (17 = ol + [lpn, — 2ollE))]

n—oo

= limsup [un (7, 7) = w0 (75, P) = € (|7 = to| + o7, = 2ol)]
n—oo

— timsup [—& (|75 — to] + [}, — zo]l)] <0 (3.2.22)

n—oo

However note also that since G is upper semi-continuous, further the fact that, ¢g € ((0,7') x O, R),
and then (3.2.27), and (3.2.16), imply for all € € (0, co) we have that: limsup,,_, . ‘(%gbg) (15, p5) — (%gbo) (to, xo)|

0 and:

Gy (to, zo, ¢o (to, z0) , (Vo) (to, xo) , (Hessz ¢o) (to, o) + Idga)

= G (to, zo, uo (to, z0) , (Vatde) (to, o) , (Hessz dc) (to, o))

> lim sup [Go (75, 05, tn (75, 05) (Ve (75, 05, (Hess, &) (75, p5) (3.2.23)
n—oo

> i sup [Go (75, 75 tn (75, 95) , (Va2) (75, 55) , (Hess, 62) (75, p5)] (3.2.24)
n—oo

This with (3.2.20) assures for all € € (0, 00) that:

<%¢0> (to, wo) + Go (to, xo, Po (to, z0) » (Vo) (to, xo) , (Hess; ¢o) (to, o) + eldga) = 0 (3.2.25)

That Gq is upper semi-continuous then yields that:

(%@ﬁo) (to, z0) + Go (to, zo, ¢o (to, o) , (Vo) (to, xo) , (Hessy ¢o) (to, zo) + ldga) > 0 (3.2.26)

This establishes (3.2.29) which establishes the lemma.
O

Corollary 3.2.11.1. Letd € N, T € (0,00), let O C R? be a non-empty open set, let u, : (0,T) x

O — R, n € Ny be functions, let G, : (0,T) x O x Rx R x S; — R, n € Ny be degenerate elliptic,

46

assume that G is lower semi-continuous for all non-empty compact K C (0,T) x O x R x R? x Sy

that:

lmsup | sup (un(t,#) — wo(t,)] + [Galts 2,1, A) — Goltz,mpy A =0 (3:2.27)
n—00 (t,x,r,p,A)EX

and assume for all n € N that u,, is a viscosity solution of:

0

arln (t,x) + Gp (t,x, un(t, z), (Vau,)(t, x), (Hessg up)(t, z)) < 0 (3.2.28)
then ug is a viscosity solution of:

0

510 (t,z) + Gy (t, z,up(t, x), (Vyuo)(t, z), (Hessy ug)(t,x)) <0 (3.2.29)

Proof. Let v, : (0,T) x O — R, n € Ng and H,, : (0,7) x O x R x R x §; — R satisfy for
alln € No, t € (0,T), z € O, r € R, p € R* A € Sy that v,(t,2) = —u,(t,z) and that

H,(t,z) = —Gy(t,z,—r,—p,—A).

Note that Corollary 3.2.3.2 gives us that Hy is upper semi-continuous. Note also that since it is
the case that for all n € Ny, G, is degenerate elliptic then it is also the case by Lemma 3.2.6 that
H,, is degenerate elliptic for all n € Ny. These together with (3.2.28) ensure that for all n € N, v,

is a viscosity solution of:
0
5Vn (t,x) + Hy, (t, z, v, (t,), (Vo) (t,z), (Hessg vy) (t,2)) > 0 (3.2.30)
This together with (3.2.27) establish that:
lim sup Sup (|Un(t,.’L') _UO(tvx)‘ + |Hn(t,$,7“,p, A) _Ho(taxvr7p7 A)|) =0 (3231)
n—oo | (t,z,rp,A)EX

This (3.2.30) and the fact that Hp is upper semi-continuous then establish that:

<%vo) (t,z)+ Ho (t,z,v0(t, z), (Vguvo)(t,x), (Hessz vo) (¢,) =0 (3.2.32)

47

for (¢,2) € (0,7) x O. Hence vy is a viscosity solution of:

<%uo) (t,z) + Hy (t,x,up(t,x), (Vyup)(t, x), (Hessy up)(t,x)) <0 (3.2.33)

This completes the proof. O

Corollary 3.2.11.2. Letd € N, T € (0,00), let O C R? be a non-empty set, let uy, : (0,T)xO — R,
n € Ny, be functions, let Gy, : (0,T) x O x R x R? x Sq — R, n € Ny be degenerate elliptic, assume
also that Gy : (0,T) x O x R x R x Sg — R be consinuous and assume for all non-empty compact

K C(0,T) x OxRxRExSy it is the case that:

lim sup Sup <|G7L (t7x>7'7p7 A) —Go (t7$7r7p7A)’ + |U‘TL (t7x) — Up (t’ l’)‘) =0 (3234)
n—oo | (t,x,r,p,A)EX

and further assume for all n € N, that u, is a viscosity solution of:
0
Hun (t,x) + Gp (t,x,up (t,x), (Vzuy) (t,x), (Hessg up) (t,2)) =0 (3.2.35)

for (t,x) € (0,T) x O, then we have that ugy is a viscosity solution of:

<%uo> (t,z) + Go (t,z,ug (t,), (Vauo) (¢,), (Hess, ug) (t,2)) =0 (3.2.36)

Proof. Note that Lemma 3.2.11 gives us that ug is a viscosity solution of:

(%U@) (t,x) + Gy (t,x,uo(t,x), (Vyuo)(t, z), (Hessg up) (¢, x)) = 0 (3.2.37)

for (t,z) € (0,T) x O. Also note that Corollary 3.2.11.1 ensures that ug is a viscosity solution of:

0
<au0> (t,z) + Gy (t, x,up(t, x), (Vyuo)(t, z), (Hessy ug)(t,x)) <0 (3.2.38)
Taken together these prove the corollary. O

Lemma 3.2.12. For all a,b € R it is the case that (a + b)? < 2a? + 2b%.

48

Proof. Since for all a,b € R it is the case that (a — b)? > 0 we then have that:

(a+b)* < (a+b)*+(a—0b)?
< a®+2ab+ b+ a® — 2ab + b?
= 2a” + 2b
This completes the proof. O
Lemma 3.2.13. Let d,;m € N, T € (0,00). Let O C R? be a non-empty compact set, and for all

n € No, pn € C([0,T] x O,R), o, € C([0,T] x O,R¥>X™) assume also:

lim sup [sup sup (|| pn(t, x) = po(t,) |g + llon(t, z) — oo(t, rc)llp)] =0 (3.2.39)
n—oo |t€[0,7] z€0

Let (2, F,R) be a stochastic basis and let W : [0,T] x Q@ — R™ be a standard (F)yc[o,1)-Brownian
motion for everyt € [0,T], x € O, let X4 = (Xo%) eyt [t T] x Q — R? be an (Fy) e) adapted

stochastic process with continuous sample paths, satisfying for all s € [t,T] we have P-a.s.
S S
2 =t [20y + [ot apte)aw, (3.2.40)
t t
then it is the case that:
n—oo | t€[0,T] s€lt,T] €O

lim sup [sup sup sup (E [HX;L” - XSMHZDI =0 (3.2.41)

for (t,z) € (0,T) x RY,

Proof. Since O is compact, let L € R be such that for all ¢t € [0,7], x,y € O it is the case that:

ot 2) — polt,)~ loo(t,2) + ool)| < Lle — s (3202
Furthermore ([<aratzas and Shreve, 1991, Theorem 5.2.9) tells us that:
sup E [||[X" g] < o0 (3.2.43)
s€(t,T)

49

Note now that (3.2.40) tells us that:
S S
X — X = / pn (7, XJHT) = o (ry X7) dr +/ on (1, X0 — oo (r, X)W, (3.2.44)
t t

Minkowski's Inequality applied to (3.2.44) then tells us for all n € N, ¢t € [0,T], s € [¢t,T], and

z € O that:

1

S =
(B [zt = 20 g)E < [(8 [l 22 = ol 224 [3]) e

27\ 3
<E]) (3.2.45)
E

1t6's isometry applied to the second summand yields:

/ (o, XPH) — ao(r, XOHT)) ATV,
t

s 1
(8 (g = a0)E < [(B [l 22) = ot A2]) ar+

(SIS

(/:E [||Un(7"7 XY — oo(r, Xovt@)m dr) (3.2.46)

Applying Lemma 3.2.12 followed by the Cauchy-Schwarz Inequality then gives us for all n € N,
t€[0,7], s € [t,T], and = € O that:

E [apte - apte

s 3 2
3 <2 [(@ I) -t ar
t
+2 /t B [l 274) — oo, 404 2] ar
<oT /SE o, 75) = o, X4 ||7,] dr
t

+2 / K [Han(r, XY oo (r, x}t@)uﬂ dr (3.2.47)
t

Applying Lemma 3.2.12 again to each summand then yields for all n € N, t € [0,T] s € [t,T], and

50

x € O it is the case that:

B [l —]
S
szzfl/ (2 [[1mnr, X707) = o, X0] + 2B [[lato(r, 24) = po(r, 2200)|[3]) ar
t

2
+ 2/ (QIE [Han(r, XY — oo, Xfm)Hﬂ + 2E [||o0(r, XH*) — oo(r, X,Q’t’x)HF]) dr (3.2.48)
t
However assumption (3.2.42) then gives us that for alln € N, ¢t € [0,T], s € [t,T], and x € O that:

E[|xrte - x0te|2] <ar2@ 1) [E[|apte - x0e|2] ar
E ¢ E

+AT(T + 1) | sup_sup (|lun(r,y) = po(r)l + lon(r.y) = oo(r,v)I})

r€l0,T] yeRd

Finally Gronwall's Inequality with assumption (3.2.43) gives us for all n € N, ¢ € [0,T], s € [¢,T],

z € O that:

E ([t — x0te|7]

2
SAT(T+1) | sup_sup ([lpa(r,y) = po(r,9)IE + lon(r,y) — oy (ry)ll7) | 7T (3.2.49)

r€[0,T] yeR?

Applying lim sup,,_, ., to both sides and applying (3.2.39) gives us for alln € N, t € [0, 7], s € [¢,T],

z € O that:

limsup E [HXg’t’x - Xg’t’zHQE]

n—oo
] 2
<limsup [4T(T+1) | sup sup ([lan(ry) = o(r,y) I3 + llow(r,) - oo(r, y)llfv)] et T(T“)]
n—oo T€[07T] yGRd
] 2
<AT(T +1) |limsup [sup_sup (|lan(r,y) = pro(r y)II3 + lon(r,y) = oo, y)\lfv)” T
n—oo | rel0,T] ycR4
<0
This completes the proof. O

Lemma 3.2.14. Let d,m € N, T € (0,00), let O C [0,T] x R%, let u € C([0,T] x O,R?) and

o € C([0,T] x O,R™™) have compact supports such that supp(u) U supp(c) C [0,T] x O let

51

g € C(RLR). Let (Q,F,P, (Ft)iepo,r)) be a stochastic basis, let W : [0, T] x Q — R™ be a standard
(Ft)sefo,r] Brownian motion, for every t € [0,T], x € RY, let X = (Xst’;t)se[tﬂ [, T] x Q — R?
be an (Fs)sep,r) adapted stochastic process with continuous sample paths satisfying for all s € [t,T]

with F-a.s. that:
X' = x4 / p(r, X507 dr + / o (r,XM") dw, (3.2.50)
t t
and further let u : [0,T] x R? — R satisfy for allt € [0,T], x € R? that:

u(t,z) = E [g (X}x)] (3.2.51)

Then u is a viscosity solution of:
0 1 X
<§u> (t,z) + 5 Trace (o(t,x) [o(t, z)]" (Hessp u) (t,x)) + (u(t,x), (Vyu) (t,x2)) =0 (3.2.52)

and where u(T,x) = g(x) for (t,z) € (0,T) x O.

Proof. Let & = supp(p) Usupp(c) C [0,7] x O be bounded in space by p € (0,00), as S C
[0,T] x (—p, p)¢. This exists as the supports are compact and thus by Hiene-Borel is closed and
bounded. Let s,,,m,, € C>([0, 7] x R%, R¥*™) where | J,,cy [Supp(sn) U supp(m,,)] C [0, 7] x (—p, p)?
satisfy for n € N that:

limsup | sup_sup (|mn(t, 2) — u(t.2)| g + lsn — o(t.)])| =0 (3.2.53)
n—oo [t€[0,T] z€ER

We construct a set of degenerate elliptic functions, G™ : (0,T) x R? x R x R% x Sy — R with n € Ny

such that:
GO(t,x,r,p, A) = %Trace (o(t,x)[o(t,x)]"A) + (u(t, z),p) (3.2.54)
and
G"(t,x,r,p,A) = %Trace (sn(t, x)[sn(t,x)]"A) + (u(t, x), p) (3.2.55)

52

Also let g, € C®°(R% R) for n € N satisfy for all n € N that:

limsup sup sup ([|gn(z) — g(z)||g) =0 (3.2.56)
n—00 te[0,T] zeRd

Further let X™4% = (%?’t’w)se[t,T] : [t, T] x © — R? be an (Fy) et rj-adapted stochastic process with

continuous sample paths that satisfy:
S S
Xsn,t,:c =r+ / mn(ra Xrnyt#:)dr + / 571(7'7 Xrnﬂ:’w)dWT (3257)
t t

Finally let u™ : [0, 7] x R? — R for n € N be:

W= [gn (x;”)} (3.2.58)
and:

u = E g (27" (3.2.59)
Note that (Beck et al., 2021h, Lemma 2.2) with g ™ gi, g My, 0 A 5, X5 A XWET gives us

u” € C12(0, 7] x R4, R), and u™(t,x) = gi(z) where:

(%u") (t,x) + %Trace (sn(t, @) [5n(t, 2)]" (Hessz u™) (¢, x)) + (my (¢, x), (Vou™) ((,2)) =0

(3.2.60)

And by Definitions 3.2.7, 3.2.8, and 3.2.9 we have that u™ is a viscosity solution of

(%u”) (t,x) + %Trace (5 (t,) [5(t, 2)]" (Hessz u™) (¢, 2)) + (my, (¢, 2), (Vau™) (¢ x)) =0
(3.2.61)
for (t,x) € (0,T) x R%.

Since for all n € N, it is the case that S = (supp(m,,) U supp(sy) Usupp(p) Usupp(o)) C [0,T] x
(—p, p)% and because of (3.2.50) of (3.2.57) we have that (Beck et al., 20214, Lemma 3.2, Ttem (ii))
which yields that for alln € N, t € [0,T], z € R4\ (—p, p)® that P(Vs € [t,T] : 8" =z = X") =

53

1. This in turn shows that for all n € N, 2 € R?\ (—p, p)¢ that u™(t,z) = u’(¢, 2) which along with

(3.2.58) and (3.2.59) yields that:

sup sup [|u"(t,z) —uo(t,:c)u = sup sup [|u"(t) —u0(¢,)]
t€[0,T] zeR? t€[0,T] Z‘G(—p,p)d

<o (5] (5) o)
te[0,T] z€(—p,p)¢

]) (3.2.62)

Note that Lemma 3.2.13 allows us to conclude that:

limsup | sup sup (IE [H.’{%m—X;xHD =0 (3.2.63)
00 |t€[0,T] 2€(~p.p)e

But then we have that (3.2.62) which yields that:
n—0 | t€[0,T] zeR4

lim sup [sup sup ([u”(t,z) — uo(t,w)’)] =0 (3.2.64)

However now note that (3.2.55) and (3.2.61) thus yield that for n € Ng, u™ is a viscosity solution

to:
0
<au"> (t,x) + G" (t,z,u™ (t,2) , (Vou™) (t, 2) , (Hessy u”) (t,z)) = 0 (3.2.65)

But since we've established (3.2.53) we have that for a non-empty compact set C C (0,7") x O X

R x R% x S, that:

lim sup sup ‘G" (t,x,r,p,A) — G° (t,z,7,p, A)‘
nﬁm (t7z7r7p7A)€C

<limsup[sup Hu(tﬁv)—mn(tvw)HEllpllE]
n_>oo (t7z7r7p7A)€C

=0 (3.2.66)

+limsup[sup lo(t,2) [o(t, 2)]" — sn(t,) [$u(t, 2)]" || [All £
n—00 (t,x,r,p,A)eC

This, together with (3.2.64), (3.2.65) and Corollary 3.2.11.2 yields that u is also a viscosity solution

54

to:

9 o 0 0 0 _

5" (t,z) + G° (t,z,u’(t,2), (Vou') (¢, 2), (Hess,) (t,2)) =0 (3.2.67)
Finally note that (3.2.53), (3.2.57), (3.2.59), and (3.2.67) yield that u is a viscosity solution of::

<%u> (t,x) + %Trace (o(t,z) [o(t,)] (Hessy u) (t,2)) + (u(t,x), (Va) (t,2)) =0 (3.2.68)

for (t,x) € [0,T] x R%. Finally (3.2.50) and (3.2.51) allows us to conclude that for all z € R? it is

the case that u(7T,x) = g(x). This concludes the proof. O

Lemma 3.2.15. Letd,m € N, T € (0,00), further let O C R? be a non, empty compact set. Let ev-

eryr € (0,00) satisfy the condition that O, C O, where O, ={z € O: (|z|lp <r and {y eR?: ly —z||lp < 1} C C
let g € C(O,R), p€ C([0,T] x O,R), V € CH2([0,T] x O, (0,00)), assume that for all t € [0,T],

x € O that:

o ({122 = 0l + Lo 02) = o)l

==yl e 0Tl y € Ona £uf U(0}) <00

(3.2.69)

(%V) (t,x) + % Trace (o(t,z) [o(t,x)]" (Hess, V) (¢, 2)) + (u(t,z), (VLV) (t,2)) <0 (3.2.70)

assume that Sup,.c (o, [infxeo\o,« V(t,m)] = 00 and inf,¢ () [supte[O,T] SUP,co\O, (%)} =
0. Let (Q,F,P,(Fi)epr) be a stochastic basis and let W : [0,T] x Q@ — R™ be a standard
(Ft)iejo,r)-Brownian motion, for every t € [0,T], z € O let X"* = (Xst’x)se[tﬂ [T xQ — O
be an (FS)SE[LT}-adapted stochastic process with continuous sample paths satisfying that for all

s € [t,T], we have P-a.s. that:

X;’x = $+/ M(Ta Xﬁx)dr"’_/ 0'(7’, szvx)dW"" (3271)
t t

55

also let u : [0,T] x R — R satisfy for all t € [0,T], z € R? that:
u(t,z) = E [u(T, X}’m)} (3.2.72)
It is then the case that u is a viscosity solution to:
0 1 %
(Eu> (t,x) + 3 Trace (o(t,x) [o(t, z)]" (Hessy u) (t,x)) + (u(t,x), (V) (t,2)) =0 (3.2.73)

for (t,x) € (0,T) x O with u(T,z) = g(z).

Proof. Let it be the case, that throughout the proof, for n € N, we have that g, € C(R% R),

compactly supported and that [|J,cysupp(gm)] € [0,7] x O and further that:

lim sup [sup sup <M>] =0 (3.2.74)

n—oo | ¢€[0,T]) €0 V(T,)
Let is also be the case that for n € N, m,, € C([0,T] x R, R?%) and s,, € C([0, T] x R%, R¥*™) satisfy:

(i) for all n € N:

[mn(t,y) = ma(t,y)le + llsn(t, ©) = sn(t y)lle

sup sup =0 (3.2.75)
te[0,T) z,yeR z#y HI - y”E
(ii) forallalln e N, t € [0,T], x € O:
vy (t @) [lmn(t, 2) — u(t, @) + llsn(t, ©) — ot 2)[[r] = 0 (3.2.76)
and
(iii) forallm € N, ¢t € [0,T], z € R*\ {V < n + 1} that:
[(t, 2)[2 + llsn(t, 2)||F = 0 (3.2.77)

Next for every n € N, t € [0, T] and z € R? let it be the case that X3 = (XI"") epr [t] x Q% —

56

R? be a stochastic process with continuous sample paths satisfying:
S S
%?’t’w =z + / mn(ra %Zﬂzw)dr + / 5n(7", x?7t7w)dWT (3278)

t t
Let u” : [0,7] x R = R, k € N, n € Ny, satisfy for all n € N, ¢t € [0,T], x € R? that:

wk () = E [gk(%?t’x)} (3.2.79)
and

WOk (t) = B [gk (X}“)} (3.2.80)

and finally let, for every n € N, ¢t € [0,7], x € O, there be TR QN [t,T] which satisfy
;" = inf ({s € [t, T), max{V (s, X5"), V(s, X&)} = n} U {T}> We may apply Lemma 3.2.14 with

[N My, 0N Sy, g gk to show that for all n, k € N we have that u™F is a viscosity solution to:

(%Wﬁ) (t,z) + %Trace <5n(t,) [sn(t,)]* (Hessx u”’k) (t, :c)) + (ma(t,2), (Vx(u"’k) (t,z)) =0

(3.2.81)

for (t,x) € (0,7) x RZ But note that items (i)-(iii) and 3.2.78 give us that, in line with (Beck

et al., 2021a, Lemma 3.5):
P (¥s € [6T] 11 [y X007 =1 (e XE7) =1 (3.2.82)
Further this implies that for all n,k € N, ¢t € [0,T], = € O that:

E{|on (X5) - on(X])

]

| =Bt gy |0 ER") = an(X0)

<2 |uplou] 7 <7
yeO
Note that this combined with (Beck et al., 20214, Lemma 3.1) implies for all t € [0,T], z € O,

o7

n € N we have that E [V (ttnw, X;ﬁ)} < V(t,x), which then further proves that:

P(ty* <T)

Rt) — uo,k(t,x)’ < 2 |sup |gx(y)|
yeO

sup |ge(y)|| P (V <tfl’x, X:;ﬁ) > n)
yeO n

< % [sup lok(y)|| E [V (tf;x,Xth»)}

yeO

V(t,z,)

2
< — [sup|gr(y)|
n (yeO

Together these imply that for all k¥ € N and compact K C [0,7] x O:

=0 (3.2.83)

wR (L) — w0k (1, m)\)
k—oo | (t,m)ek

lim sup[sup (

But again note that since have that sup,¢ g o) |:inft€[07T]7xeRd\Or V(t, CE):| = oo and (3.2.76) tell us

that for all compact I C [0,7] x O we have that:

lim sup [sup ([lmy(t,z) — p(t,z)||g + ||sn(t,z) — a(t,x)HF)] =0 (3.2.84)

n—oo | (t,z)ek

Note that (3.2.81), (3.2.83) and Corollary 3.2.11.2 tell us that for all £ € N we have that u®* is a

viscosity solution to:

(%uo’k> (t,x) + %Trace (a(tw) lo(t,z)]" (Hessz uo’k) (t,x)) + (u(t, z), (uno’k> (t,x)) =0

(3.2.85)

for (t,z) € (0,7) x O. However note that (3.2.71),(3.2.74), (3.2.80) prove that for all compact

K C[0,T] x O we have:

lim sup [sup ‘uo’k(t,x) - u(t,:v)‘] =0 (3.2.86)
k—oo [(t,x)ek

58

This together with (3.2.85), (3.2.74), Corollary 3.2.11.2 shows that ug is a viscosity solution to:
0 1 *
pra (t,z) + 3 Trace (o(t,x) [o(t, z)]" (Hessg u) (t,x)) + (u(t, x), (Vzu)) =0 (3.2.87)

for (t,x) € (0,T) x O. By (3.2.73) we are ensured that for all z € R? we have that u(T,z) = g(z)

which together with proves the proposition.

3.3 Solutions, Characterization, and Computational Bounds to

the Kolmogorov Backward Equations

Theorem 3.3.1 (Existence and characterization of ug). Let T' € (0,00). Let (2, F,P) be a prob-
ability space. Let oq € C (Rd,RdXd) and pg € C (Rd,Rd) for d € N, let uqg € C1? ([O,T] X Rd,R)
satisfy for alld € N, t € [0,T] , x € R? that:

<%ud> (t,z) + % Trace (o4(z) [oq4(x)]" (Hessz ug) (¢,) + (pa(x), (Viug) (t,z)) =0 (3.3.1)

let W [0,T] x Q = RY, deN be a standard Brownian motions and let X4 : [t, T] x Q — RY,
d e N, tel0,T], be a stochastic process with continuous sample paths satisfying for all d € N,

t€0,T], s € [t,T], x € R, we have P-a.s. that:
AT = g 4 /st I (X,fl’t’x) dr + /St o (X;i’t’m> dw? (3.3.2)
Then for alld € N, t € [0,T], x € R, it holds that:
wg(t,z) = E [ud (T, xtdm)] (3.3.3)

Furthermore, uq is a viscosity solution to (3.3.1).

Proof. This is a consequence of Lemma 3.1.2 and 3.2.14. O

99

Corollary 3.3.1.1. LetT € (0,00), let (2, F,P) be a probability space, let uqg € C2 ([O,T] X Rd,R),
d € N satisfy for alld €N, t € [0,T], x € R? that:

(%ud> (t,z) + % (Vaug) (t,z) =0 (3.3.4)

Let We: [0,T] x Q = R?, d € N be standard Brownian motions, and let X4 : [t,T] x Q — R,
deN,tel0,T], z € R be a stochastic process with continuous sample paths satisfying that for

allde N, t€[0,T], s € [t,T], € R we have P-a.s. that:
xdbT — g 4 /t) AWl =z +We | (3.3.5)
Then for alld €N, t € [0,T], x € R? it holds that:
ualt,z) =E [ud (T, Xtd’T”’“")} (3.3.6)

Proof. This is a special case of Theorem 3.3.1. It is the case where o4(x) = I, the uniform identity
function where I is the identity matrix in dimension d for d € N, and p4(z) = 0g,1 where 0y is the

zero vector in dimension d for d € N. O

Lemma 3.3.2. Let T' € (0,00), let (Q,F,P), be a probability space, let og € C’,? (Rd,R), and
ae O (:L'Q) for d € N, be infinitey often differentiable function, let uqg € CH2 ([O,T] X Rd,R),
d € N, satisfy for alld € N, t € [0,T], x € R?, that:

<%ud> (t,z) + % (V2ug) (t,2) + aq (2) ug (t,2) =0 (3.3.7)

Let W1 [0,T] x Q — R? be standard Brownian motions and let X% - [t,T] x Q@ — R¢, d € N,
te[0,T], x € R? be a stochastic process with continuous sample paths satisfying that for all d € N,

t€0,T], s € (t,T], x € RY, we have P-a.s. that:

t1 1
Xt — 4 +/ 5an/\};i = ngfr (3.3.8)

60

Then for alld €N, t € [0,T], x € R? it holds that:

ug (t,2) =B [exp (/t ' g (X;W) dr> g (T, X;W)] (3.3.9)

Proof. Let vg : R — R be continuous. Throughout the proof let ug (¢, z) = e~ t@)y,(t, x) for all
deN,te€l0,T], z € R?. For notational simplicity, we will drop the d, t, 2 wherever it is obvious.

Therefore the derivatives become:

up = —ae 1 + ey, (3.3.10)

1
= [e_taV§v + 2(Vv, Vee ') 4 vvge_ta] (3.3.11)

1 2
3 Vel = g

This then renders (3.3.7) as:

1
—ae Y + ey + = [eTIOV20 4 2(V,0, Ve 1) +0V2e Y + ae=t ' = 0

2
1
ey, + 3 [e_to‘Viv — 2te Vv, Via) + vVie_to‘] =0
1
ey, + 3 [e_mvgv —2te™ ' (V,v, Vea) — tve_tavgzca] =0

v + % [ngu — 2t(Vyv, V) — tvvga] =0
v + % (V2 — 2¢(V,a, Vo) — toV2a] =0

1 1
ve + §Viv + (—tVa, Vyu) — §tvv§a =0 (3.3.12)

Let o(t,x) = Iy, i.e. the uniform identity function. Let u(t,z) = —tVa for t € [0,T], 2 € R?, and

for fixed a. Let f(t,z,v) = —1tvVZa for t € [0,T],z € R

Claim 3.3.3. It is the case that for for all x € R and t € [0,T] that (x, u(t,z)) < L(1+ ||z|g)

for some constant L € (0, 00).

Proof. Since a has bounded first and second derivatives let:

B = max ¢ sup ||Vza| g, sup ’Via‘ (3.3.13)
x€R4 z€RI

61

Note that we then have the Cauchy-Schwarz inequality:

(@, p(t, 2)) < [z, =tVaa)||p < 2] 2[[tVeal s
< T ([lz]lzB)
ST (B+d)|z]e

= Lol < L(1+ |l2l}) (3:3.14)

It also follows that ||o(t,2)||r = vVd < L < L(1 + ||z||p). O

Claim 3.3.4. It is the case that for all z,y € R?, and t € [0,T] that: |u(t,) —p(t,y)|| g +|o(t, x) —

o(t,y)le < €zl + lylle) (lz —yllz) for some constant € € (0, 00).

Proof. The fact that for all x,y € R? and t € [0, T] it is the case that ||o(t,2) — o(t,y)|r = 0, the

fact that for all z,y € R? it is the case that (||z[|z+ [|y|lz)(||z — y||z) > 0 and (3.3.13) tells us that:

la(t,) = p(t y)lle + llo(t z) — ot y)llr = lpt2) = pit,y)le +0
= [[tVza(z) = tVia(y)| e
S TVea(z) = Vea(y)le

< 2T (3.3.15)

Now consider a function f € C ([0, T] x R%, R?), where for all z,y € R? it is the case that f(z)—f(y) <
C (l|lz]lg + |lyllg) (lx + ylle). Note then that setting y = x + h gives us:

fz + h) — f(z)
h

fz + h) — f(z)
h

<E (=g + ||z + hlE)

lim
h—0

< lim E (||z||g + ||z + Al g)
h—0

Vaf ()| < 2€ |zl = A x| (3.3.16)

This suggests that V,f € O (x) and in particular that f € O (2?). However with § < p we first notice
that because p < 278 in (3.3.15) it must also be that case that u € O(1) by Corollary 1.2.30.1.

However since O(c) C O(z) € O (2?) by Corollary 1.2.30.2 it is also the case that p € O (2?), and

62

hence there exists a € satisfying the claim. This proves the claim. O
Claim 3.3.5. It is the case that |f(t,x,v) — f(t,z,w)| < L|v —w|

Proof. Note that by the absolute homogeneity property of norms, we have:

’f(t,.%‘,’l}) - f(tvwi)|

1 1
‘ﬁtvvga - §thia

1
= ‘gtVi,a v — w|

1
< §T|Via“v—w|
1
< =TB |v — w|
2
<T(B+d)|v—w

= L|v—w| (3.3.17)

Note that we may rewrite (3.3.12) as:

0 1 .
(g30) () + 5 e (o (1) o (0] (Hss, o) (1) + o (1.2) (920) ()
+f (v (tz) =0
We realize that (3.3.12) is a case of (Beck et al., 2021¢, Corollary 3.9) where it is the case that:
u(t,)~ v(t,z), where oq(z) = Iy for all z € RY, d € N, where u(t,r) = —tV,a for fixed a and
for all t € [0,T], z € R?, and where f (t,z,u(t,x)) = —3tuV2a for fixed a and for all ¢t € [0,7T7,
r € R%

We thus have that there exists a unique, at most polynomially growing viscosity solution v €

C ([0,T] x R%,R) given as:

T
v(t,x) =E [v (T, y;m) +/ f (s, V5%, 0 (s, Y5%)) ds (3.3.18)
t
Let V : [0,T] x & — R™ be a standard (F¢);c(y 7y-Brownian motion. Note that this also implies

63

that the) in (3.3.18) is characterized as:

v =as [(ue oty ars [0 o), (3319
t t

With substitution, this is then:

Yot =g —i—/ —rVga (Vo) dr —i—/ Iay,
t t

y;vx = — / rVo (:){Z”’) dr + Vs_¢
t

Note that our initial substitution tells us: v(t,z) = e!*®u(t,z). And so we have that:

v(t,z) =E

v(t,z) =E
@y (t,z) = E

u(t,z) =E _

v (T, X;”) - /tTf (s, X270 (s, X)) ds] (3.3.20)
)

tv (s, X07) Via (xb") ds}

1
2
[Toe (X:tpx)] u (T, X:tpm) - %/tTtexp [to (X5")] w (2, X07) Via (XH") ds

[Ta (X;x) - ta(g;)] u (T, X}x)]

1 T i))
" [W/t texp [tor (X07)] u (, X07) Vier (XD)ds]

64

Chapter 4

Brownian motion Monte Carlo of the

non-linear case

We now seek to apply the techniques introduced in Chapter 2 on ?7. To do so we need a variation

of Setting 4.0.1. To that end we define such a setting. Assume v, f, @ from Lemma 3.3.2.

Definition 4.0.1 (Subsequent Setting). Let g € C (RdJR) be the function defined by:
g(z) = (T z) (4.0.1)
Let F: C([0,T] x R4 R) — C ([, T] x R%,R) be the functional defined as:
(F' () (t,x) = [(t, 2,0 (¢, 2)) (4.0.2)
Note also that by Claim 3.3.5 it is the case that:
|f (8,2, w) = f (£, 2,0)] < L|w — 1wl (4.0.3)

Note also that since f (t,x,0) =0, and since by (, , Corollary 3.9), v is growing at

most polynomially, it is then the case that:

max {|f (t,2,0)],|g (2)[} < £ (1 + [Je]]?) (4.0.4)

65

Substituting (4.0.1) and (4.0.2) into (3.3.20) renders (3.5.20) as:

r T
v(t,z) =E |v (T, X;’m —I—/ (s, XL (s, Xg’m)) ds]
t

/Tf (S,Xst’z,v (s, Xs“”)) ds]
t

v(t,x) =E |v

Letd,m € N, T,£,p € [0,00), p € [2,00) m=t,/p—1, © = ,enZ", f € C([0,T] x R? x R),
g € C(RLR), let F: C([0,T) x RLR) — C ([0, T] x R4, R) assume for all t € [0,T),z € R? that:

|f (tz,w) = f(t2,w)| < Llw—w[max{|f(tz,0)],]g(@)]} < L(1+z]p) (4.0.5)

and let (Q, F,P) be a probability space, let u’ : Q — [0,1], § € © be i.i.d. random variables,
and suume for all @ € ©, r € (0,1) that P(u <r) = r, let U? : [0,7] x @ — [0,T], 6 € ©
satisty for all t € [0,T], 0 € © that U =t + (T —t)u?, let W2 : [0,T] x Q@ — R, 6 € © be
independent standard Brownian motions, let u € C([0,T] x R% R) satisfy for all t € [0,T], z € RY,

that E Hg (z+W2_)|] + ftTE [(F (u)) (s,2+W0,)] < oo and:
T
u(t,z) =E [g (x + W_,)] —i—/t E[(F (u)) (s,z+W._,)] ds (4.0.6)

and let let U? . [0,T] x R x Q = R, 0 € ©, n € Z satisfy for all® € ©, t € [0,T], z € R?, n € Ny
that:

k=1
Tt — (0,3,k) (6,i,k) (0,i,k)
+ Z mn—1 Z (F (UZ)) u y L + Wufg’i”“) (407)
i=1 k=1

66

Part 11

A Structural Description of Artificial

Neural Networks

67

Chapter 5

Introduction and Basic Notions

About Neural Networks

We seek here to introduce a unified framework for artificial neural networks. This framework
borrows from the work presented in () and work done by Joshua Padgett, Benno
Kuckuk, and Arnulf Jentzen (unpublished). With this framework in place, we wish to study ANNs
from the perspective of trying to see the number of parameters required to define a neural network to
solve certain PDEs. The curse of dimensionality here refers to the number of parameters necessary

to model PDEs and their growth (exponential or otherwise) as dimensions d increase.

5.1 The Basic Definition of ANNs and instantiations of ANNs

Definition 5.1.1 (Rectifier Function). Let d € N and x € R%. We denote byt : R — R the function

given by:
t(x) = max {0, z} (5.1.1)

Definition 5.1.2 (Artificial Neural Networks). Denote by NN the set given by:

=) <>L< [le“k—l lekD (5.1.2)

LeNIg,l1,...,.lpeN \k=1

68

An artificial neural network is a tuple (v,P,D,1,0,H,L,W) where v € NN and is equipped with the

following functions (referred to as auziliary functions) satisfying for allv € (Xﬁzl [lexzk—l X le]) :

(i) P : NN — N denoting the number of parameters of v, given by:

~

Pw)=> l(k1+1) (5.1.3)

k=1

(ii) D : NN — N denoting the number of layers of v other than the input layer given by:

D(v) =L (5.1.4)
(7ii) | : NN — N denoting the width of the input layer, given by:

(v) =1l (5.1.5)
(iv) O : NN — N denoting the width of the output layer, given by:

o) =1p (5.1.6)

(v) H: NN — Ny denoting the number of hidden layers (i.e., layers other than the input and

output), given by:

H(v) =L -1 (5.1.7)

(vi) L: NN = Up ey N% denoting the width of layers as an (L + 1)-tuple, given by:
L(l/) = (l07l17l27'-'7lL) (518)

We sometimes refer to this as the layer configuration or layer architecture of v.

69

(vii) W; : NN — Ny denoting the width of layer i, given by:

W) =4 (5.1.9)

Note that this implies that that v = ((Wy,b1), (Wa,ba),...(Wr,br)) € (X,I;J:l [Rbexte—1 leD.

Note that we also denote by Weight.) , : (Weight,, ,)ne(1,2,...1} {1,2,....,L} — (Um,keN Rka>
and also Bias(, , : (Biasn,,,){w’._”L} :{1,2,..,L} — (UmeN Rm) the functions that satisfy for all
n € {1,2,..., L} that Weight, , = W; i.e. the weights matrix for neural network v at layer i and
Bias;, = b;, i.e. the bias vector for neural network v at layer 7.

We will call [y the starting width and Iy, the finishing width. Together, they will be referred to as

end-widths.

Remark 5.1.3. Notice that our definition varies somewhat from the conventional ones found in
Petersen and Voigtlaender (2018) and Grohs et al. (2023) in that whereas the former talk about
auziliary functions as existing within the set NN we will talk about these auxiliary functions as
something elements of NN are endowed with. In other words, elements of NN may exist whose
depths and parameter counts, for instance, are undefined and non-determinate.

Note that we develop this definition to closely align to popular deep-learning frameworks such as
PyTorch, TensorFlow, and FLux, where, in principle, it is always possible to know the parameter
count, depth, number of layers, and other auziliary information.

We will often say let v € NN, and it is implied that the tuple v with the auxiliary functions is what
is being referred to. This is analogous to when we say that X is a topological but we mean the pair
(X,7), i.e. X endowed with topology T, or when we say that'Y is a measurable space when we

mean the triple (X,Q, pn), i.e. X, endowed with c—algebra 2, and measure .

Definition 5.1.4 (Instantiations of Artificial Neural Networks with Activation Functions). Let
a e C(R,R), we denote by T, : NN — (Uk,leNC (Rk,Rl)> the function satisfying for all L € N,
loyl1,..,l;, e N, v = ((Wl,bl),(WQ,bg),...,(WL,bL)) S (X£:1 [lexbﬁl X le]), xro € Rlo,xl S

70

Figure 5.1: A neural network v with L (v) = (4,4, 3, 2)

R, .oxp o € R and with Ve e NN (0,L) : 2, = a ([kak + bk]*7*>such that:

Je(v) €C (RlO,RlL) and (Ja () (x0) = Wrar_1 + br (5.1.10)

Remark 5.1.5. For an R implementation see Listings 10.1, 10.2, 10.3, and 10.4
Lemma 5.1.6. Let v € NN, it is then the case that:

(i) L(v) € NP+ and

(ii) for alla € C' (R,R), Iy € C (R'™) ROW)

Proof. By assumption:

veNN= [U <>L< [RZWH x leD (5.1.11)

LeN (lg,l1,...,1.)eNL+1 \k=1

This ensures that there exist Iy, 1, ...,Ir, L € N such that:
L
ve [X [Rlﬂ’jfl x RBJ} (5.1.12)
j=1

This also ensures that L(v) = (lo, 1, ..., 1) € N/F1 = NP@+1 and further that 1(v) = ly, O(v) = I,

and that D(v) = L. Together with (5.1.10), this proves the lemma. O

71

5.2 Compositions of ANNs

The first operation we want to be able to do is to compose neural networks. Note that the compo-
sition is not done in an obvious way; for instance, note that the last layer of the first component of

the composition is superimposed with the first layer of the second component of the composition.

5.2.1 Composition

Definition 5.2.1 (Compositions of ANNs). We denote by (-) ® (-) : {(v1,v2) € NN X NN : (1) =
O(r1)} — NN the function satisfying for all L,M € N,lo,l1,...,lp,mg,m1,....,mpyr € N, vy =
(W1,b1), (Wa,ba), ..., (Wr,br)) € <X£=1 [Riext-1 leD, and vy = (W{,0}), (W3, b5) ... (Wy,, b)) €
(Xi\il [RM™MEXMk—1 5 Rmk]> with log = (1) = O(v2) = mp and :

((W1,61), (W3, 09), (W _y, Uy —y)s (WaWiy, Wibly, + b1), (Wa, ba),
o (Wi b1) S(L>1)AM>1)
viev2 =\ (WiWy, Wit} + b1), (Wa, b2), (W3, b3), ..., (WLbL)) S(L>DAM=1)
(W1,01), (W3, 05), ..., (Why_q, bhy—1) (Wi, by + b1)) (L=1)AM>1)
(WLW7, Wibh +b1)) (L=1)A(M=1)
(5.2.1)

Remark 5.2.2. For an R implementation see Listing 10.7
Lemma 5.2.3. Let v, u € NN be such that O(p) = (v). It is then the case that:
(i) D(v e 1)) = D(v) + D(yx) — 1

(ii) For alli € {1,2,...D(veu)} that:

(Weightiv(l,,u) , Biasiv(y,u))
(Weight; ,, Bias; ;) 11 < D(p)

2

= (WeightLl, Weightp,,) .. Weight, , Biasp(,,) . + Biasl,l,) :1=D(p)

<WeightifD(u)+l,u Biasi—D(u)-i—l,V) i > D(p)

72

Proof. This is a consequence of (5.2.1), which implies both (i) and (ii). O

Lemma 5.2.4. Let vy,v2,v3 € NN satisfy that |(v1) = O(v2) and |(v2) = O(v3), it is then the case

that:

(vrev) o3 =10 (1r003) (5.2.2)
Proof. This is a consequence of (, , Lemma 2.8) with &1 ~ 11, &3 N 19, and
®3 vz, and the functions Z A I, L A D and O <~ O. O

The following Lemma will be important later on, referenced numerous times, and found in (

, Proposition 2.6). For completion, we will include a simplified version of the proof here.

Lemma 5.2.5. Let v1,v5 € NN. Let it also be that O (v1) = | (v2). It is then the case that:
(i) D(v1ev2) =D (v1) +D(12) - 1
(ii) L(v1 @) = (Wi (12) ,Wa (12) ;- .., W), W1 (1), Wa (1), ..., Wp(g,) (1))
(i) H(vi evy) =H (v1) +H ()
() P(vieva) <P (v1)+P(v2) + Wi (1) - Wiy, (v2)

(v) for all a € C (R, R) that Jq (v1 @ 1) () € C (R'W2), ROW) and further:

Ja(v1 0v2) = [Jq (11)] © [Tq (12)] (5.2.3)

Proof. Note that Items (i)---(iii) are a simple consequence of Definition 5.2.1. Specifically, given
neural networks 1,9 € NN, and D (v1) = n and D (v2) = m, note that for all four cases, we have
that the depth of the composed neural network v e is given by n—1+m —1 = n+m —1 proving
Item (i). Note that the outer neural network loses its last layer, yielding Item (ii) in all four cases.

Finally since, for all v € NN it is the case that H (v) = D (v) — 1, Item (i) yields Item (iii).

73

Now, suppose it is the case that v3 = v, e 5 and that:

v = ((Wi,b11), Wia,b12),..., (WirL,,b1,1,))
vo = (Wa1,b2,1), (Waz2,b22),...,(War,,b21,))

v3 = ((W31,b31),(W32,b32),...,(W3 1,,b31,))

And that:

L(v1) = (liali2, -0 liny)
L(v2) = (l21,0l22, .-, l2.1,)

L(vievs) =(l31,032,...,13.1,)

and further let zq € R%20, 2, € Rl ... ,TLy—1 € Rl2,L2-1 satisfy the condition that:

Vke NN (0,Ly) :xp =a ([Wg,kfﬂk—l + bQ,k]*,*)
also let yo € R0, ¢y € RILY . yp 4 € Rf2.L2-1 gatisfy:

VEeNN(0,L1) :yr=a ([Wl,kyk_1 + b1,k]*7*)
and finally let zg € RB.0, 2z e RB1 2[s—1 € R'.23-1 gatisfy:

Vk e NN (0, Lg) 1z =a ([W&ka—l + b37k]*7*)

74

(5.2.4)

(5.2.5)

(5.2.6)

(5.2.7)

(5.2.8)

Note then that by Item (i) of Definition 5.1.2 we have that:

(v1017) Zl3k (I3 k-1 +1)

rLy—1 Ls
= | > baUspr +1)| +lsr Usror + D+ | D Iap(sp-1+1)

[k=1 k=Ly+1

rLy—1 Ls
= 2 laj (l2,j-1 +) +la(l2,p-1+1)+ Z li—ry41 (lj—r, +1)

k=Ly+1

rLy—1 Ly

= Z lz7J lg k-1t 1) le,j (ll,k—l + 1) + l1,1 (l27L2_1 + 1)
—2

i Lg l’zﬂl
= Zl2,k (log—1+1) Z g (lig—1+ 1) | +l11(lon,—1 + 1)

k=1 k=1

— o1, (o1 +1) —lig(lip+1)

=P1)+P@e)+hi-lor,—1 (5.2.9)

Thus establishing Item (iv). Note by Definition 5.2.1, and the fact that a € C' (R, R) it is the case

that
Ja(r1 o) €C (R'(”l), RO(W)) (5.2.10)
Next note that by definition, it is the case that:
L(vreve) = (l20,l2,1,- 12 001,011,112, -, l1,1,) (5.2.11)
And further that:

Vk e NN (0, Lg) : (Wg,k, b37/€) = (W27k, ngg)
(W3 14,b3.0,) = (Wi - Wap,, Wiiba 1, +b1,1)

and Vk € NN (Lo, L1 + Lo) : (Wgyk, b37k) = (W1’j+1_L2, bl,j+1—L2) (5.2.12)

Since for all k € NN [0, Lg) it is the case that z; = x; and the fact that yo = Wa,xr,—1 + b2,1,

75

ensures us that:

W3 1,200—1+ 03,0, = W3 ,T1,-1 + b3,1,
=WiiWa r,2p,—1 +Wiiba 1, +b11

= Wi (Wa,1,@1,-1 + b2,,) + 01,0 = Wiayo + b1 (5.2.13)
We next claim that for all k € NN [Lg, L + Lg) it is the case that:
Wi gzk—1 + b3k = Wi kt1-Lo¥k—Lo + 01 ktr1-1o (5.2.14)

This can be proved via induction on k € NN [Lg, L; + La). Consider that our base case of k = Lo

in (5.2.14) is fulfilled by (5.2.13). Now note that for all £ € NN [Lg,00) N (0, Ly + Ly — 1) with:

W3 kzk—1 + b3k = Wikt 1—LoWk—Lo + 01 k1 Lo (5.2.15)

it holds that:

W3 k+12k + b3 k11 = W3 k41 ([W3,kzk—1 + bs,k]*,*> + b3 k41
= Wi kyo—ro (Wi kt1—LoVk—Lo) + 01 k41-1o) + b1 kt2-L,

= Wi k42— LoVk+1-Ly + b1 kt2— L, (5.2.16)

Whence induction proves (5.2.14). This, along with the fact that Ly = L; 4+ Ly — 1 then indicates

that:

W3,L3ZL3—1 + b3,L3 = W3,L1+L2—1ZL1+L2—2 + b3,L1+L2—1 = Wl,LlyLl—l + bl,Ll (5217)

76

Finally, the fact that v3 = 11 @ 15, in addition with (5.2.6),(5.2.7), and (5.2.8) then tells us that:

[Ja (v1 @ 12)] (x0) = [Ta (v3)] (w0) = [Ta (v3)] (20) = W35 L52L5-1 + b3, L4
= Wi,L,yr,—1 + b1, = [Ja (1)] (o)
= [Ja (11)] ([Wz,Lngz—l + bz,Lz]*,*>

= [Ja ()] ([3a (v2)] (20)) = [Ta (v1)] © [Ta (v2)] (20) (5.2.18)

This and (5.2.10) then prove Item (v), hence proving the lemma. O

5.3 Stacking of ANNs of Equal Depth

Definition 5.3.1 (Stacking of ANNs of same depth). Let L,n € N, and let v1,va,...,v, € NN,
such that D (v1) =D (v2) = --- = D (vy) = L. As such, for alli € {1,...,n}, let it also be the case
that L (v;) = ((Wf,bll) , (Wé,b’z) ,...,(Wi,bi)). We then denote by B v;, the neural network

whose layer architecture is given by:

L (B v;) = ((diag (Wi, Wi, ..., W) by ~ bf, ~ - ~b}),

(diag (W7, WZ,...,W}) by, ~bi, ~ -+ ~b}))

Remark 5.3.2. For an R implementation see Listing 7?7

Lemma 5.3.3. Let v1,v5 € NN, with D (1) =D (1n), 1 € R™, 25 € R™2, and r € R™T™2, [et
Je (1) : R™ — R™ | and 3, : R™2 — R". It is then the case that 3, (11 Bua) () = J: (1) (x1) —~

jr (1/2) (332)

PT‘OOf. Let L (1/1) = ((Wl, bl) 5 (Wg, bg) geeey (WL, bL)) and |_ (1/2) = ((Qﬁl, [11) y (Q:Uz, bg) geeay (QﬁL, bL)),

77

and as such it is the case according to Definition 5.3.1 that:
L (11 Brp) = ((diag (W1, 201) ,b1 ~ b1),
(diag (W2, 202) ,b2 — b2),
(diag (W,201) ,b) —~ by))

Note that for all, a € (R,R), j € {1,2,...,L — 1} and for all z e Reolumns(Wj)+columns(W;) 5,

Rcolumns(Wj), x9 € Rcolumns(mj)’ y € Rrows(Wj)—‘rrows(Qﬂj), Yy € Rrows(Wj), ys €]Rrows(ﬂﬁj)7 where

yr=a (Wb,) v =a ([0 22+ b)),), y = a ([diag (W,,20,) -2+ (b; ~ b)) it is
the case that, Corollary 1.2.34.1 tells us that:

y = a([diag (W;,20) - @+ (b ~ b)) = a ([(W; - @1 +b;) ~ (- 2246,)

Note that this is repeated from one layer to the next, yielding that J, (11 Bwe) (r) = J¢ (v1) (z1) —~

jt (VQ) (1’2) O

Remark 5.3.4. Given n,L € N, v1,vs,...,v, € NN such that L = D(v1) = D(12) = ... = D(vy,) it

is then the case, as seen from (77?) that:
L
B v € (x {R(Zyzlwk(w))x(zyﬂWk71(uj)) « R(Z5=1 Wk(W))]) (5.3.2)
k=1

Lemma 5.3.5. Let n,L € N, v1,v9,...,v, € NN satisfty that L =D (v1) =D (v2) = --- = D (vy).

It is then the case that:

n 2
P([HiL1m)]) < % [Z P (Vz‘)] (5.3.3)

78

Proof. Note that by Remark 5.5.2 we have that:

L [n 1T n
P(BiLw]) = Z Zli,k (Zli7k—1> +1
=1 Lim=1 1 L\i=1

L n 7 n
= Z Z li Z lijk—1] +1
=1 1| \s=1

k=1 L
n n L
< Z Z Zli,k (ljp—1+1)
=1 j=1 k=1
L
< Z Z D ik (e +1)
1 =1 /¢=1
L
233)3 STZRER
—1 Lk=1 =1
L
<ZZ Z%lzk (lijg—1+1) Zlﬂz je-1+1
i=1 j=1 Lk=1

n 2
1 1
= ZZ 3 () =5 [Z P (Vi)] (5.3.4)
=1 j=1 i=1
This completes the proof of the lemma. O

Corollary 5.3.5.1. Let n € N. Let vy, v, ...,v, € NN satisfy that L (v1) =L (va) =--- =L (v,). It

1s then the case that:
P(E™ 1) <n?P (1) (5.3.5)

Proof. Since it is the case that for all j € {1,2,...,n} that: L (v;) = (lo,l1,...,{r), where lo,l1,...,lp, L €

N, we may say that:

L L
=) Z) [(nlj—1) Z) [(nlj—1) + n]

Jj=1 Jj=1

L
= ’I’LQ |:Z lj (ljfl + 1)] = ’I’L2 P (Vl) (536)

79

Lemma 5.3.6. Let v1,v2 € NN, such that D (v1) = D (v2) = L. It is then the case that P (v1) +
P (1/2) < P (Vl E| 1/2).

Proof. Remark 5.3.4 tells us that:

1/1E|1/2€<

The definition of P() from Defition 5.1.2, and the fact that W; > 1 for all i € {1,2,..., L} tells us

Pl
IX=

[R(Wk(Vl)+Wk(V2))X(Wk:—l(V1)+Wk:—1(V2)) > kaz(V1)+Wk(V2):|) (5.3.7)

then that:

M=

P(1Bure) =) [(Wg(v1)+ Wi (r2)) x (Wg-1 (1) + Wi—1 (v2) +1)]

B
Il
—

I
M=

Wi (1) W1 (1) + Wi (1) Wg—1 (12)

i
L

=

+ Wy, (v1) + Wy (v2) Wi—1 (1) + Wi (v2) Wi—1 (v2) + Wy, (12)]

Mu

[Wk (1/1) Wi_1 (1/1) + W, (1/1) + W, (VQ)Wk 1 (VQ) + W, (Vg)]

B
Il
—

I
M=

L
[Wk (1/1) (Wk 1 1/1 + 1 + Z Wk V2 kal (V2) + 1)]
k=1

e
Il
—

-

(1) + P (r2) (5.3.8)

Corollary 5.3.6.1. Let vy,v9,v3 € NN. Let P (v2) < P (v3). It is then the case that P (11 Bie) <
P (1/1 = V3).

Proof. Lemma 5.3.6 tells us that:

0P (Ul) + P (1/3) <P (1/1 H 1/3) (539)

OLP (1/1) +P (1/2) <P (1/1 = VQ) (5310)

80

Subtracting (5.3.9) from (5.3.10) gives us that:

0<P(Vg)—P(l/g)<P(V15V3)—P(I/1E|V2)

P(riBur) <P(v1Buw)

O

Lemma 5.3.7. Let my,ma,n1,ny € N. Let vi,va € NN, such that 3, (v1) € C(R™ R™) and

/

x
J: (12) € C (R™2,R"™). It is then the case that (J4(v1 B 1)) = (Ja(ra B 1)) for

x € R™ ' € R™, upto transposition.

Proof. Note that this is a consequence of the commutativity of summation in the exponents of
(5.3.2), and the fact that switching v; and vy with a transposition results in a transposed output

for transposed input. O

Lemma 5.3.8. Leta € C (R,R), n € N, and v = 8]'_,v; satisfy the condition that D(v1) = D(1») =

... = D(vy). It is then the case that 34 (v) € C (RZ?:1 '(”"),RE?=1O(”Z')>

Proof. Let L = D(v1), and let lj0,0;1...0L;,, € N satisfy for all i € {1,2,...,n} that L(v;) =
(li,(]a lity ... lz‘,L)- Furthermore let ((WiJ, bi,l) , (W@Q, bi’g) s enny (WZ‘7L, bi,L)) € (XJI-JZI [Rli,j Xlij—1 % le‘])

satisfy for all i € {1,2,...,n} that:
vi= (Wi, bi1), Wiz, bi2), ..., (Wi, bir)) (5.3.11)

Let a; € Nwith j € {0, 1, ..., L} satisfy that a; = > l; j and let ((A1,b1), (A2,b2), ..., (AL, br)) €

<X§:1 [R¥*5-1 x RO‘J’]> satisfy that:

B vi = ((A1,b1), (A2,b2) , ..., (AL, bL)) (5.3.12)

See Remark 5.3.2. Let 0, %1, ..., T4, —1 € (Rlivo x Rlit x ... x Rl%L—l) satisfy foralli € {1,2,...,n}

k€ NN (0,L) that:
zij = Multg” (Wijai -1+ biy) (5.3.13)

81

Note that (5.3.12) demonstrates that | (B} v;) = ap and O (H_;v;) = ar. This and Item(ii) of
Lemma 5.1.6, and the fact that for all i € {1,2,...,n}it is the case that [(1;) = l; 0 and O(v;) = l; 1,

ensures that:

3a (Biy) € O (R, R*) = C (RE=ro, RE= ov)

—C (RZ:;I 1) R ow)

This proves the lemma. O

5.4 Stacking of ANNs of Unequal Depth

We will often encounter neural networks that we want to stack but have unequal depth. Definition
5.3.1 only deals with neural networks of the same depth. We will facilitate this situation by
introducing a form of * “padding" for our neural network. Hence, they come out to the same length

before stacking them. This padding will be via the "tunneling" neural network, as shown below.

Definition 5.4.1 (Identity Neural Network). We will denote by ldg € NN the neural network

satisfying for all d € N that:

(i)
Idy = : <[1 - 1] : [OD € (R xR?) x (R™ZxRY)) (5.4.1)

(ii)
ldg = B, Id; (5.4.2)

Ford > 1.
Remark 5.4.2. We will discuss some properties of |d in Section 6.2.

Definition 5.4.3 (The Tunneling Neural Network). We define the tunneling neural network, de-

82

Tun <] V2

Figure 5.2: Diagrammmatic representation of the stacking of unequal depth neural networks

noted as Tun, forn € N and d € N by:

Affr, o n=1

TunﬁiZ =4 Idy) (5.4.3)

" 2ldyg neNN[3,00)

We will drop the requirement for d and Tun,, by itself will be used to denote Tun}l.
Remark 5.4.4. We will discuss some properties of the Tunfb network in Section 0.2.

Definition 5.4.5. Let n € N, and vy, 10, ...,v, € NN. We will define the stacking of unequal length

neural networks, denoted <} v; as the neural network given by:

Qv = By [Tunmax, (D)} +1-D(ws) *¥i) (5.4.4)

Diagrammatically, this can be thought of as:

Lemma 5.4.6. Let v1,v5 € NN. It is then the case that:

P (11©w) <2 (max {P (11),P (1)})? (5.4.5)

«

Proof. This is a straightforward consequence of Lemma 5.3.5. O

5.5 Affine Linear Transformations as ANNs and Their Properties.

Definition 5.5.1. Let m,n € N, W € R™*" b € R™. We denote by Affy;, € (R™*™ x R™) C NN

the neural network given by Affyy, = (W, 0)).

83

Lemma 5.5.2. Let m,n € N, W € R™*" b e R™. It is then the case that:
(i) L(Affy,) = (n,m) € N2
(it) for all a € C(R,R) it is the case that Jo(Affyp) € C(R™,R™)

(7it) for alla € C(R,R), x € R™ we have (Jo(Affyp))(x) = Wa +b

Proof. Note that (4) is a consequence of Definition 5.1.2 and 5.5.1. Note next that Affyy, = (W,b) €
(R™*™ x R™) C NN. Note that (5.1.10) then tells us that Jq(Affyy,) = Wa + b which in turn proves

(74) and (u3i) O

Remark 5.5.3. Given W € R™*", and b € R™*!, it is the case that according to Definition (5.1.3)

we have: P(Affyp) =m xn+m
Remark 5.5.4. For an R implementation see Listing 77
Lemma 5.5.5. Let v € NN. It is then the case that:

(i) For allm € N, W € R"™*0)

L(Affy, 5 ov) = (Wo(v), W (v), ..., Wp(,)_1(v), m) € NPWH (5.5.1)

(i) For all a € C(R,R), m € N, W € R™OW B ¢ R™, we have that J(Affyypev) €
C (R'™,R™).

(iii) For all a € C(R,R), m € N, W ¢ R™*OW) B e R™, 2 € R'™ that:

(3 (Affyy o0)) () = W (3o () () + b (5.5.2)

(i) For alln € N, W € R'®)*n b ¢ R that:

L(v e Affyrp) = (1, W1 (1), Wa(v), ..., Wp,)(v)) € NP@H (5.5.3)

(v) For alla € C(R,R), n e N, W € RW*n p e R® that 3, (v e Affy,) € C (R, R°™)) and,

84

(vi) For alla e C(R,R), ne€ N, W e R®x*n p e R 2 e R" that:

(Ja (v @ Affyp)) (2) = (Ja (v)) (W + b) (5.5.4)

Proof. From Lemma 5.5.2 we see that J,(Affyy,) € C(R™,R™) given by Jq(Affyp) = Wa +b. This

and Lemma 5.2.5 prove (i) — (vi). O

Corollary 5.5.5.1. Let m,n € N, and W € R™*" and b € R™. Let v € NN. [t is then the case

that:

(i) for all Affyy, € NN with | (Affy) = O (v) that:

SRS W ALCLCL T P 555

(it) for all Affy, € NN with O (Affyy) =1 (v) that:

P (v e Affy) < {max{l, %H P (v) (5.5.6)

Proof. Let it be the case that L (v) = (lp,l1,...,11) for lp,l1,....,Ilp, L € N. Lemma 5.5.5, Item (i),

and Lemma 5.2.5 then tells us that:

[L—1
P (Affyyp o) = Zz lm—1+1)
[O(Affwyb)

= Zz l—1+1) »
- L—1
max{l,MH [Zlm (lm—1+1)

lL m=1

= :max{l,w}] [ilm (b1 +1)

ZL m=1

+ O (Affyp) (IL—1 + 1)

} Ip (lp—1+1)

e {0, 2GR)

N

85

and further that:

L
P(veAffwp) = | Y b (ln1+ 1) | + 1 (1 (Affyrp) +1)

Lm=2
r L
| (Aff +1
=Yl (1 + 1) HAffwe) ¥ 11, 0 41
lp+1
Lm=2
[|(Aﬂ:Wb)+ 1 [(Affyyp) + 1
< 1, Wb T 1, Wb/ T2 1
_max{ I+ 1 H [Zl lm—1+1 —i—[max{ a1 li(lo+1)
[| (Afbe +1 | (Affyyp) + 1
- R A L (It + 1) | = AW ¥ 2L p
_max{ T+ 1 H [Z v [max{ () +1 ®)
This completes the proof of the lemma. O

Lemma 5.5.6. Let aj,az be two affine neural networks as defined in Definition 5.5.1. It is then

the case that ay B as is also an affine neural network

Proof. This follows straightforwardly from Definition 5.3.1, where, given that a; = ((W1,b;)), and
az = ((Wa,b2)), their stackings is the neural network ((diag (W1, Wa2),b1 — b2)), which is clearly

an affine neural network. O

5.6 Sums of ANNs of Same End-widths

Definition 5.6.1 (The Cpy Network). We define the neural network, Cpy,x € NN forn,k € N as
the neural network given by:

prn,k = AfF[Hk Hk .]Ik]T,[an
N— ———

n—many

(5.6.1)

Where k represents the dimensions of the vectors being copied and n is the number of copies of the

vector being made.
Remark 5.6.2. See Listing 77

Lemma 5.6.3. Let n,k € N and let Cpy,, ;, € NN, it is then the case for all n,k € N that:

(i) D (Cpynz) =1

86

(ii) P (Cpy,) = nk? + nk

Proof. Note that (i) is a consequence of Definition 5.5.1 and (ii) follows from the structure of

Definition 5.6.4 (The Sum Network). We define the neural network Sum,,j for n,k € N as the

neural network given by:

n—many

Where k represents the dimensions of the vectors being added and n is the number of vectors being

added.
Remark 5.6.5. See again, Listing 77
Lemma 5.6.6. Let n,k € N and Sum,, ;, € NN, it is then the case for all n,k € N that:
(i) D(Sum, ;) =1
(ii) P (Sumyx) = nk? + k
Proof. (i) is a consequence of Definition 5.5.1 and (ii) follows from the structure of Sum,, 4. O

Definition 5.6.7 (Sum of ANNs of the same depth and same end widths). Let u,v € Z with
u < v. Let vy, vys1, ...,y € NN satisfy for all i € NN [u,v] that D(v;) = D(vy,), (1) = (vy), and
O(v;) = O(vy,). We then denote by @', v; or alternatively vy, & vyy1 @ ... S vy the neural network

given by:

Di—yVi = (Sumvfu+1,0(l/2) * [Elfzuyl} ® pr(v7u+1),l(y1)) (5.6.3)

Remark 5.6.8. For an R implementation, see Listing 10.9.

87

5.6.1 Neural Network Sum Properties

Lemma 5.6.9. Let v1,v5 € NN satisfy that D(v1) = D(v2) = L, 1(v1) = l(12), and O(v1) = O(1a),

and L(v1) = (li1, 012, ..li,n) and L(v2) = (I, 12,2, ..., l2,1) it is then the case that:

i (Vl N VQ) =F (AfF[HO(VQ) HO(VQ)]’QO(VQ) * [Vl : V2] * Aff[ﬂl(m) Hl(ul)]Tv@ZI(uﬂ) (5.6'4)
1
<5 (P () +P(w))?
Proof. Note that by Lemma 5.3.5 we have that:
1
P (1 Bra) =5 (P (1) +P () (5.6.5)

Note also that since Cpy and Sum are affine neural networks, from Corollary 5.5.5.1 we get that:

P (11 B va] » Coyayy)) < max {1, %} 5 (P) +P ()

(P (1) + P (1n))? (5.6.6)

N —

and further that:

O (Affyp) 1 9
P (Sum27o(1/15y2) A2 =EZIK) pr2’|(,/1)> < [max {1, EIABIE (P (1) + P (1))
1
2

= — (P (1) +P(n))? (5.6.7)
]
Corollary 5.6.9.1. Letn € N. Let vq,va,...,v, € NN satisfy that L (v1) =L (ve) =--- =L (v,). It

is then the case that:

P (é y,-> <n?P (1) (5.6.8)
i=1

Proof. Let L (v1) = (lo, 1, ..., 1) where for all i € {0,1,..., L} it is the case that l;, L € N. Corollary

88

5.3.5.1 then tells us that:

P(ELwi) <n’P(v) (5.6.9)

Then from Corollary 5.5.5.1, and (5.6.6) we get that:

P <[E?:1Vi] ° CPY2,|(V1)> <n’P (1) (5.6.10)

And further that:
P (Squ,O(E?ZIVi) o B vi]e prm(yl)) <n?P (v1) (5.6.11)
O

Lemma 5.6.10. Let vy, v € NN satisfy that D(vq) = D(va) = L, I(v1) = l(v2), and O(v1) = O(v2),

and L(v1) = (li,1,l2,..li,n) and L(ve) = (l21, 122, ..., l2,1.) it is then the case that:
D (1/1 (&) 1/2) =1L (5612)

Proof. Note that D (Cpy, ;) = 1 = D(Sum,y) for all n,k € N. Note also that D (v; Bry) =
D (1) = D (v2) and that for v, u € NN it is the case that D (v e u) = D (v) + D (1) — 1. Thus:

o [Byl o Aff

D(ri®v))=D(v1®vy) =D (Aff[ﬂo(uz) oy 00va)

M) Hl(un]Tv@z-l(ul))

=L

Lemma 5.6.11. Let vq,v2 € NN, such that D(v1) = D(12) = L, I(v1) = (1) = lp, and O(v1) =
O(va) = lg,. It is then the case that I(v1 @ va) = I(ve ® 11), i.e., the instantiated sum of ANNs of

the same depth and same end widths is commutative.

Proof. Let vi = ((W1,b1), (Wa,b2), ..., (Wr,br)) and let vo = (W], b)), (W3,b), ..., (W}, b})). Note

89

that Definition 5.3.1 then tells us that:

W1 0 b1 WQ 0 b2
vy By =))) ytey
o wil | o wi| |u,
Wi, 0 br,
o wi| |w,

Note also that by Claims 7?7 and ?? and Definition 5.5.1 we know that:

Aff . | [0310001 (5.6.13)
(i) Iiwp)] ™ 0210091 - 2)
I(v2)
and:
Ao, Tow] 02061 = ([Ho(m) HO(Vl):| ’@20(”1)’1> (5.6.14)

Applying Definition 5.2.1, specifically the second case, (5.6.3) and (??) yields that:

v1 Huinl o Aff

1 Bl [iug) Tigwg)] 021(ug).1
Wi 0| [Ty | [b Wa 0| |b WL 0| |bg
0wl || o) o wyl |u, o wil |v,
Wwh by Wy 0 by Wi 0 br,
wi | | o wy |v o wil| |y

Applying Claim ?? and especially the third case of Definition 5.2.1 to to the above then gives us:

Afr[ﬂowl) Towp)) 0 ® 1 Brale AfF[Hm) Iigug) 0
Wi By Wy 0 by [:| Wi, 0 |: br,
=)) PR]IO v]IO v b]IO e]IO v }
W B, o wi| |u I (v2) *O(v2) 0w (v2) *O(v2) b,
Wl b1 WQ 0 bg [
=) ’)) ey (WL W£:| ,bL + blL)) (5615)
wil |, o wy| |n -

90

Now note that:

wioo | |v, W} by
1%} = V1 = y 5 3 [RRRS]
0 Wl b1 0 W2 b2
w0 | |,
0 WwWg br,
And thus:
Aff[ﬂo(VQ) Io(vy))0 o[2Bu]e Aff[lh(ul) I[I(ul)]T70
wil (v Wy oo | (v
=))))) W£ WL 9 blL + bL
W1 bl 0 W2 b2

Let z € R"™) note then that:

Wi by Wiz + by
T+ =
Wi b} Wiz + b

The full instantiation of (5.6.15) is then given by:
(o v
The full instantiation of (5.6.16) is then given by:

(1 v

Wiy (o (Wy (Wi +04) +05) +...) + b4
W1 (...(Wa (Wi + b1) +b) + ...) + br1

WL _1(.(Wo Wiz + b1) 4 ba) +...) + br 1
Wi (o (W Wiz + b)) +) +..) + b,

+bL+b,L

+br + b7,

Since (5.6.27) and (5.6.18) are the same this proves that vy © vo = vo @ 1.

This is a special case of (, , Lemma 3.28).

(5.6.16)

(5.6.17)

(5.6.18)

Lemma 5.6.12. Let ly,ly,...,l;, € N. Let v € NN with L(v) = (lo,l1,...,lz.). There then exists a

neural network Zry,;, 1, € NN such that I(v ® Zryyy,,..1,) = I(Lrig 1,0, V) = V.

91

Proof. Let v = (Wy,b1),(Wa,b2),...,(Wg,br)), where Wy € Rl b € Rl Wy € Rl2Xh by €
Rz .. W € Rliexli-1 b, € RZ. Denote by Zry, 1,,...1, the neural network which for all lg, 1, ...,11, €

N is given by:

ZrlOJI,mJL = ((®11le7 ®11) ’ (@lz,lw@h) EEREY) (®1L,1L71’®1L)) (5'6‘19)

Thus, by (5.6.27), we have that:

0
I(Zryy gy, ®V) = [0 WL} + by,
Wr_1(o..(Wo (Wi 4+ b1) + b2) +...) + br—1
= WL(WLfl(...Wg (W1$ + bl) + bg) +) + bLfl) + b, (5.6.20)
- WL_1<...(W2 (W1$+b1)+b2)+...)+bL_1
I(v@Zryy,,.0) = |Wr 0 + b,
0
=Wr(Wr_1(..Ws (W1JZ + bl) +b2) +...)+br—1) + b1, (5.6.21)
And finally:
TI(V) = WL(WL_l(...WQ (Wll‘ + bl) + bg) +) + bL—l) + by, (5.6.22)
This completes the proof.]

Lemma 5.6.13. Given neural networks vy,1v9,v3 € NN with fized depth L, fized starting width of
lo and fized finishing width of lr,, it is then the case that I (11 ® v2) D v3) =T (11 & (v2 B v3)), i.e.

the instantiation with a continuous activation function of @ is associative.

Proof. Let v = (W51, (WEBL) oy (WEBL)), 1o = (W2,B2), (WE.B2) ,.... (W2,12)), and
v = ((Wl?’, bz{’) , (W23, b%) yeees (Wg, b%)) Then (5.6.27) tells us that:

Wiy (o (W3 (Wia +b1) +b3) + ...) + by

+ by, + b7
Wi_y (o (W3 (WEe +07) +03) +...) +0F_,

I @ re) = [Wi Wg}

92

And thus:

J(n @) o) (z)=

Wi (o (W3 (Wia + 1) +03) +...) + b1, b
L L

Wi WQ}
] [L FUIW2 (W (W 82) +03) +) + 02 + b}

J []1 w3
W3y (o (W3 (Wz 4+ 63) +b3) +..) + 63,

(5.6.23)

Similarly, we have that:

Ja(1 ® (e ®v3)) (x) =
Wiy (o (W3 (Wi +b1) +b3) + ...) +b)_,
J [Wl I[] W2 (o (W2 (W2z +02) +b2) +...) + b2 + b}
L [Wf g} o (o (W3 (W 1) +03) +..) +07 4 R L
Wi_y (o (W3 (Wia +63) +63) +...) + b3 _,

(5.6.24)

Note that the associativity of matrix-vector multiplication ensures that (5.6.23) and (5.6.24) are

the same. 0

Definition 5.6.14 (Commutative Semi-group). A set X equipped with a binary operation x is

called a monoid if:
(i) for all x,y,z € X it is the case that (xxy)*xz=x* (y*2z) and
(ii) for all x,y € X it is the case that x xy =y * x

Theorem 5.6.15. For fixed depth and layer widths, the set of instantiated neural networks v € NN

form a commutative semi-group under the operation of &®.
Proof. This is a consequence of Lemmas 5.6.11, 5.6.12, and 5.6.13. O

Lemma 5.6.16. Let v, € NN, with the same length and end-widths. It is then the case that

Jo(vdp) =04 (V) + Ta(1).

93

PT’OOf. Let v = ((Wlabl)v(W27b2)7-"a (WvaL)) and n= ((Wllabll)7(W2,ab/2)7a (W£7blL)) Note

now that by (5.6.27) we have that:

Ja(v) =Wra(Wr_1(...a(Waa (Wiz +by) +ba) +...) + br—1) + b, (5.6.25)
And:

Jo () =Wia(Wi_i(..a(Wya (Wiz + b)) +b5) +...) +bp_y) + b (5.6.26)
In addition, because of the block matrix structure of the weights of our summands:

- a(WL_l(...a(Wga(Wla;—i—bl)—|—b2)—|—...)—i—bL_1) ,
wwow@=w, wl|" e Y
a(Wi_y(..aWja(Wiz +by) +bh) +...) + by _4)

I
=

L a(WL,l(... a(Wz a(W1$ + bl) + bg) +) + bLfl) + by,

+Wrpa(Wi_1(.a(Wya (Wiz + b)) +b5) +...) + b _y) + b,
=Ja (v) () + Ja (1) (z) (5.6.27)
This proves the lemma. O

Lemma 5.6.17. Let n € N. Let vi,vs,...,v, € NN. It is then the case that:
n n
Ja <€B u,) => 3 (v) (5.6.28)
i=1 i=1
Proof. This is the consequence of a finite number of applications of Lemma 5.6.16. U

5.6.2 Sum of ANNs of Unequal Depth But Same End-widths

Definition 5.6.18 (Sum of ANNs of different depths but same end widths). Let n € N. Let
V1,12, ..., Vn € NN such that they have the same end widths. We define the neural network ¢ v; €

NN, the neural network sum of neural networks of unequal depth as:

@?:11/7; = (Summo(m) [[e;}:uljl] [] prn,|(l/1)) (5629)

94

Lemma 5.6.19. Let n € N. Let v1,v5 € NN and assume also that they have the same end-widths.

It is then the case that:

jt (I/1$l/2) (x) = jt (V1> + jt (1/2) (5630)

Proof. Note that Lemma 6.2.3 tellls us that for all n € N it is the case that J; (Tun,,) () = z. This

combined with Lemma 5.2.5 then tells us that for all n € N it is the case for all ¥ € NN that:

Je (Tuny ev) () = T3¢ (v) (x) (5.6.31)

Thus, this means that:

Je (1912) (z) =

/N

Summo(,&) [[I/leyz] [prn,l(lll)>

=TJ: (1) (z) + J: (12) (2) (5.6.32)

This then proves the lemma. U

Lemma 5.6.20. Let n € N. Let v1,vs,...,v, € NN. Let it also be the case that they have the same

end-widths. It is then the case that:

n

Je(91v) (@) =) Fc (i) () (5.6.33)
i=1
Proof. This is a consequence of a finite number of applications of Lemma 5.6.19. O

5.7 Linear Combinations of ANNs and Their Properties
Definition 5.7.1 (Scalar left-multiplication with an ANN). Let A € R. We will denote by (-)>(-) :
R x NN — NN the function that satisfy for all A € R and v € NN that A>v = Aff}\ﬂo(u),o o,

Definition 5.7.2 (Scalar right-multiplication with an ANN). Let A\ € R. We will denote by

()< (:) : NN xR — NN the function satisfying for allv € NN and A € R that v<A=v e Affar,).0-

Remark 5.7.3. Note that whereas A\ € R, the actual neural network in question, properly speaking,

must always be referred to as \> or <\, and we shall do so whenever this comes up in any neural

95

network diagrams. This is by analogy with, for example, log, or N for X # 0, where the argument

A is generally always written except for A = 10 for the logarithm or A = 2 for the root.
Remark 5.7.4. For an R implementation, see Listing 10.8
Lemma 5.7.5. Let A € R and v € NN. it is then the case that:

(i) LAA>v) =L(v)

(ii) For all a € C(R,R) that Jo(A\>v) € C (R'W), ROM)

(ii) For all a € C(R,R), and x € R'™ that:

Ja (Ab 1) = ATa(v) (5.7.1)

Proof. Let v € NN such that L(v) = (Iy,l2,...,11) and D(v) = L where 13,12, ...,l,, L € N. Then

Item (i) of Lemma 5.5.2 tells us that:

L (Affﬂowo) = (O(v),0(»)) (5.7.2)

This and Item (i) from Lemma 5.5.5 gives us that:
LOsy) =L (AfrAH()(V),O 01/) = (lo,11, -, l11,0(v)) = L(v) (5.7.3)

Which proves (). Item (ii) — (i) of Lemma 5.5.2 then prove that for all a € C(R,R), z € R'*),

that J,(A>v) € C (R'(”)’O(”)) given by:

(32 (A5) (2) = (Ta (Affaigy,, o ov)) (@)

= Mow) (Fa (1)) (2)) = A ((Ta (v)) (x)) (5.7.4)

This establishes Items (ii)—(iii), completing the proof. O
Lemma 5.7.6. Let A € R and v € NN. [t is then the case that:

(i) L(ra)) = L(v)

96

(ii) For all a € C (R,R) that Ja(v <) € C (R'®) ROW))

(iii) For all a € C (R,R), and x € R'™) that:

Ja (v <) =T4(v) (Az) (5.7.5)

Proof. Let v € NN such that L(v) = (I1,12,...,1r) and D(v) = L where By,ls,...,l,, L € N. Then

Item (i) of Lemma 5.5.2 tells us that:
L (Affﬂl(y)p) = (I(v),1(»)) (5.7.6)
This and Item (iv) of Lemma 5.5.5 tells us that:
L(v <)) =L (u . Affml(u)) = (I(v), 11,13, ..., 1) = L(v) (5.7.7)

Which proves (7). Item (v)--(vi) of Lemma 5.5.5 then prove that for all a € C(R,R), z € R'®) that
Ja(vaX) el (R'(”)’O(")) given by:

(Ja (v <) (z) = (ja (V . AfFM[](V),O)) ()
= (3 () (Affa,,) (@)

= (Ja (v)) (Az) (5.7.8)

This completes the proof. O

Lemma 5.7.7. Let v, u € NN with the same length and end-widths, and A € R. It is then the case,

forall a € C (R, R) that:

Jo (v @ 1) aN) (&) = Ta (V9 N) @ (2 X)) ()

= (Ja () (Az) + (Ta (1)) (Az)

Proof. Let v = (W1,b1), (Wa,b2),...,(Wr,br)) and p = ((W7,b0}), (W3,05),....(W,,b;)). Then

97

from Lemma 5.7.6 and (5.6.27) we have that:

(Ja (v @ p) <A) ()

= (Ja (v @) (Az)

[:| Je (WLfl(...(jt (WQ (jt (Wl)\I—f-bl))—f-bg))—}-...) +bL,1) ,
= WL W£ + bL + bL
e (W] (o (T (W3 (T WAz + 1Y) + bh)) +...) + b _4)

(=

Note that:

(ja (V)) (/\.7:) =Wy -3 (WL—l(-u(jr (W2 (j,; (Wl)\x + bl)) + bQ)) +) + bL—l) + by,

(5.7.9)
and that:
(Ja (1)) Ax) = W - Te (W1 (. (Te Wy (Te (WiAz + 1)) +05)) +...) + b)) +b7, (5.7.10)
This, together with Lemma 5.6.16, completes the proof.]

Lemma 5.7.8. Let v, € NN with the same length and end-widths, and A € R. It is then the case,
for all a € C (R,R) that:

Ja(Ae (v @ p) (x) =To (A>v) & (A>p)) ()

A (Ja (@) () + A (Ta (1) (2)

Proof. Let v = (W1,b1),(Wa,b2),...,(Wr,br)) and p = ((W7,b)), (W3,05),...,(W},b;)). Then
from Lemma 5.7.6 and (5.6.27) we have that:

Ja(A (v @ p)) (2)

=Ja(A> (v @ p) (Az)

[} Je (Wit (oo(Te (W (Te Wiz +b1)) + b2)) + ...) + br_1) ,
=A- Wi, W1 +br + bL
Te (W] 1 (o (Te (W3 (T Wiz 4+ b)) + b5)) +...) + b))

98

Note that:

A (Ta) (x) = W Te (W1 (oo (Te (Wa (3e (Wi +b1)) +b2)) +...) +br1) + by (5.7.11)
and that:

A (Ta () (@) = Wi - Te (Wi (o (Te (W3 (Te Wiz + b)) + b)) +...) + b))+ (5.7.12)

This, together with Lemma 5.6.16, completes the proof. U

Lemma 5.7.9. Let u,v € Z with u < v and n = v —u+ 1. Let Ay, Ayg1,--, Ay € R, Let
Vs Vuids s Vos b € NN, By, Byii, ..., By € R satisfy that L(vy) = L(vur1) = ... = L(v) and
further that:

= |0t (e (wo At 5))| (5.7.13)

It then holds:

(i) That:

L(n) = (I(VU)a Zwl (Vu) ,Z Wa (V) 5 -y ZWD(uu)—l (Vu) vO(VU)>

= (I(Vu)7 nWl(Vu)v nWQ(Vu)v) nWD(uufl)v O(Vu))

(ii) that for all a € C' (R, R), that J4(u) € C (R'(""),RO(V")), and

(iii) for all a € C' (R,R) and z € R') that:
(Ja (1)) (x) = Zc (Ja () (z + By) (5.7.14)

Proof. Assume hypothesis that L(v,) = L(vy+1) = ... = L(v,,). Note that Item (i) of Lemma 5.5.2

gives us that for all ¢ € {u,u+ 1,...,v} that:

L (Affy,)5) = L (Affy,,) = (1) 1 () € N2 (5.7.15)

99

This together with Lemma 5.2.5, Item (i), assures us that for all i € {u,u+ 1,...,v} it is the case

that:
L (yi . AfFHI(VZ_>7Bi) = (1), Wi () , Wa (1) o0 Wi o) () (5.7.16)
This and (Grohs et al., 2022) Lemma 3.14, Item (i)) tells us that for all ¢ € {u,u+1,...,v} it is the
case that:
L (civ (vi Ay, 5)) = L (vi o Afl,) (5.7.17)
This, (5.7.16), and (Grohs et al., 2022, Lemma 3.28, Item (ii)) then yield that:

|

(I Vu ZWl Vu ZWQ Uu ZWD (va) O(Vu)>

I(va), n Wi (v), n Wa (1), .., n Wp) —1 (), O (1) (5.7.18)

L ((VZ o Affy,)))
= (I(

This establishes item (i). Items (v) and (vi) from Lemma 5.5.5 tells us that for all ¢ € {u,u+1,...,v},

ace C(R,R), ze€ R'() it is the case that Jq (Vl o Afﬁll(B > eC]R' vu) Ro(”“)) and further that:

(3a (yi . AfFHl(VZ_)M)) () = (Ja (1)) (+ bs) (5.7.19)

This along with (Grohs et al,, 2022, Lemma 3.14) ensures that for all i € {u,u + 1,...,0}, a €

C (R,R), z € R'™) it is the case that:

3 (civ (vi o Affy,)) € C (R, RO0) (5.7.20)

and:
(3a (5 (v 0 Affy, 0.)) (@) = €3 (30 () (& + By) (5.7.21)
Now observe that (Grohs et al.; 2022, Lemma 3.28) and (5.7.17) ensure that for all a € C' (R, R),

100

z € R it is the case that Jq (u) € C (R'™), RO} and that:

Ba () () = (3 (@1, (0 (v 0 Affy 0,)))) @)
_ Zv: (Ju (ci > (W . Affﬂl(yi),bi))) (x)
= Z_U: ¢i (Ja (vi)) (x + by)

This establishes items (ii)--(iii); thus, the proof is complete. O
Lemma 5.7.10. Let u,v € Z with u < v. Let Ay, Ayt1, .., v € R. Let vy, Vyt1, .oy Uy, o € NN,

By, But1, ..., By € R"W satisfy that L(vy) = L(vyi1) = ... = L(,) and further that:

o= [@;’:u ((Affﬂlwbi .,,) < c)} (5.7.22)

It then holds:

(i) That:

L(n) = (I(VU)a Zwl (Vu) ,ZW2 (Vu) 5oy ZWD(VU)—I (Vu) vO(VU)>

= (I(vu), n W1 (v),n Wa(v), ..., n Wp 1y, O(v)) (5.7.23)

(ii) that for all a € C (R,R), that Ja(u) € C (R'¥), ROM)) and

(iii) for alla € C (R,R) and x € R'"™) that:

(Ja (1) () = (Ta (v0)) (ciw + by) (5.7.24)

1=u

Proof. Assume hypothesis that L(v,) = L(vy+1) = ... = L(v,). Note that Item (i) of Lemma 5.5.2

gives us that for all i € {u,u+1,...,v} that:

L (Affﬂl(u_),Bi) —L (Afrﬂl(%)) = (1(r),1 () € N2 (5.7.25)

(3

101

Note then that Lemma 5.2.5, Item (ii), tells us that for all i € {u,u + 1,...,v} it is the case that:
L (Affr,), o) = (1), Wi () s Wa (1) 5oy Wogay) () (5.7.26)
This and Item (i) of Lemma 5.7.6 tells us that for all 7 € {u,u + 1,...,v} it is the case that:

L((Affy,,,,, o) <ci) =L (Affy,,,, o) (5.7.27)

This, (5.7.26), and (Grohs et al,, 2022, Lemma 3.28, Item (ii)) tell us that:

((Afﬁh(”b ><16i)>
(I (V) ZWl () ZW2 (Yu) ZWD (va)—1 (Vu) aO(Vu)>

L
(I), n Wi (v), n Wa(vy), .o, n Wiy -1 (V) O(l/u>) (5.7.28)

This establishes Item (i). Items (i) and (ii) from Lemma 5.5.5 tells us that for all i € {u,u+1,...,v},

a e C(R,R), z € R it is the case that Jq (,,i o Affy, 5)) RO()) and further that:

(Ja (Afrﬂwbi .yi)) (@) = (Ja (1)) (x) + bi (5.7.29)

This along with Lemma 5.7.6 ensures that for all i € {u,u + 1,...,v}, a € C(R,R), z € R"") it is

the case that:

a ((Affﬂl(ui>7bi .,,Z.) q ci> cC (R'<”u>,R°("u>> (5.7.30)

and:
(ja ((Affﬂl(m,bi .,,Z.) 4 c)) () = (Ja (1)) (ciz + b) (5.7.31)
Now observe that (Grohs et al, 2022, Lemma 3.28) and (??) ensure that for all a € C (R,R),

102

z € R it is the case that Jq (u) € C (R'™), RO} and that:

(Ja (1)) (z) = (3a (@;;u (Affﬂl(m,bi .,,i)) q ci) (x) (5.7.32)
v
= Z <3a ((Affﬁ|(yi>7bi oui) 4 cl)) () (5.7.33)
=" (3a (1)) (ciz + b;)
This establishes items (ii)--(iii); thus, the proof is complete. O

Lemma 5.7.11. Let L € N, u,v € Z withu < v. Let ¢y, cyt1, .-y Cy € R. vy, Vg1, vy Uy, i1, J € NN,
Bu,Buit, ..., B, € R a e C(R,R), satisfy for all j € NN [u,v] that L = max;ennu,s] D(%i),
I(vj) = l(vu), O(vj) = 1(3) = O(J), H(J) =1, 34(3) = Ir, and that:

=0, (ci > (1/2- ° Affﬂl(u-),7bi>) (5.7.34)

We then have:

(i) it holds that:

L(p) = <|(l/u), D> Wi(€Ls (1), sz (€L () s > Wro1 (€r5(v),0 (%)))

i=u

(5.7.35)
(ii) it holds that J4(pn) € C (R'(”u),]RO(”“)), and that,
(iii) it holds for all z € R'“) that:
(Ja () () =i (Ja (v4)) (x + bi) (5.7.36)

Proof. Note that Item(i) from Lemma 5.7.9 establish Item(i) and (5.6.25); in addition, items

(v) and (vi) from Lemma 5.5.5 tell us that for all i € NN [u,v], = € R'*™ it holds that

103

Jq (I/i . AfFHI(ui)VBi eC (R'(”“), RO(V“))) and further that:

(3a (vi @ Aff,,,m,)) (2) = (Ja (1)) (@ + b) (5.7.37)

This, Lemma 5.7.5 and () , Lemma 2.14, Item (ii)) show that for all i € NN [u, v],

z € R'™) it holds that:

90 (€ra (crv (o Aty) = Ta (crn (vio Affy, 0)) € C (R RO) (5.7.38)

and:
(3a (€ra (civ (vio At 0)))) @) = (3a (civ (viw A, 0,)) (@)
=¢; (Ja () (x + by) (5.7.39)
This combined with (, , Lemma 3.28) and (5.7.17) demonstrate that for all z € R!(*)

it holds that Jq (1) € C (R'«), RO)) and that:

(3a (1)) () = (30 (B (er> (v 0 Aff,,)))) (@)

_ (ja (@é’:u € (cl» > (yi . AfFH|<Vi)7bi>)>> (z)

v

= ¢ (Ja (1)) (x +b;) (5.7.40)
i=u
This establishes Items(ii)--(iii), thus proving the lemma. O

Lemma 5.7.12. Let L € N, u,v € Z with u < v. Let ¢y, Cyt1, sy € Ro vy, Vs 1y ooy Uiy 4, I € NN,
Bu,Buit,..., B, € R a € C(R,R), satisfy for all j € NN [u,v] that L = max;enn(u,s] D(¥i),
I(vj) = l(w), O(vj) = 1(3) = O(T), H(J) =1, 34(3) = Ir, and that:

=B ((Affy, 0 o) i) (5.7.41)

We then have:

104

(i) it holds that:

L(p) = <I(Vu)a D Wi (€15 (1) ,ZW2 (€5 (13)s s D Wr1 (€5 (1), 0 (Vu)))

i=u

(5.7.42)
(ii) it holds that Jq(p) € C (R') ROWW) " and that,
(iii) it holds for all x € R'«) that:
(3a () (@) = D (Ja (13)) (cix + by) (5.7.43)

i=u

Proof. Note that Item(i) from Lemma 5.7.10 establish Item(i) and (5.6.25); in addition, items
(ii) and (iii) from Lemma 5.5.5 tell us that for all i € NN [u,v], 2 € R'® it holds that

4 (Affﬂl(y_), 5oy €C (R'(”u),RO(Vu))) and further that:

(ja (Affﬂl(ui),Bi .yi)) (2) = (o (1)) () + by (5.7.44)

This, Lemma 5.7.6 and (Grohs et al.; 2023, Lemma 2.14, Item (ii)) show that for all i € NN [u, v],

z € R'™) it holds that:

3 (€1 ((Affy, 00vi) i)) = 3a ((Affy, 0 00) aci) € C (ROD,ROMI) (5.7.45)

and:
(ju <Q3L73 ((Affm(yiybi 01/1') < Cz))) (l‘) = <ja (Ci > (l/l' . AfFHI(Vi)vbi>)) (l‘)
= (ja (I/z)) (CiSL' + bz) (5.7.46)
This and (Crohs et al., 2022, Lemma 3.28) and (5.7.27) demonstrate that for all z € R'*) it holds

105

that Jq (1) € C (R'), RO¢)) and that:

(3a (1) (@) = (30 (B ((Affi,, o01) <ci))) (@)

_ <3a (@Lu ¢r s ((Affﬂl . oui) < ci>)) (2)

v

= (3 () (ci + by) (5.7.47)

1=u

2

This completes the proof. O

5.8 Neural Network Diagrams

Conceptually, it will be helpful to construct what are called *“neural network diagrams'. They
take inspiration from diagrams typically seen in the literature, for instance, (),
(), and (). They are constructed as follows. Lines with arrows

indicate the flow of data:

x
—

%
x

Named neural networks are always enclosed in boxes with serif fonts:

A
a,b

Where possible, we seek to label the arrows going in and going out of a boxed neural network with

the appropriate operations that take place:
ax +b T

It is often more helpful to draw the arrows from right to left, as above.

Stacked neural networks are drawn in adjacent boxes.

a:t—i—b- T

106

For neural networks that take in two inputs and give out one output, we use two arrows going in

and one arrow going out:

r+y
+——— Sumgy ;

For neural networks that take in one input and give out two outputs, we use one arrow going in

and two arrows going out:

Cpyy o f——

Thus taking this all together the sum of neural networks Aff, ;, Aff. 4 € NN is given by:

ar+b+cr+d

107

Chapter 6

ANN Product Approximations

6.1 Approximation for Products of Two Real Numbers

We will build up the tools necessary to approximate e via neural networks in the framework
described in the previous sections. While much of the foundation comes from, e.g.,

() way, we will, along the way, encounter neural networks not seen in the literature, such as the
Tay, Pwr, Tun, and finally a neural network approximant for e®. For each of these neural networks,

we will be concerned with at least the following:

(i) whether their instantiations using the ReLU function (often just continuous functions) are

continuous.
ii) whether their depths are bounded, at most polynomially, on the type of accuracy we want, €.
y

(iii) whether their parameter estimates are bounded at most polynomially on the type of accuracy

we want, €.

(iv) The accuracy of our neural networks.

108

6.1.1 The squares of real numbers in [0, 1]

Definition 6.1.1 (The iy Network). For alld € N we will define the following set of neural networks

as " activation neural networks'' denoted iy as:

ig = ((Ig,04) , Iz, 0g)) (6.1.1)

Lemma 6.1.2. Let d € N. It is then the case that:
(i) J¢ (ia) € C (R4, RY).
(7i) L(ig) = (d,d,d)

(iii) P (i) = 2d? + 2d

Proof. Ttem (i) is straightforward from the fact that for all d € N it is the case that J, (ig) =
Iy (3. ([I4],) + 04) + 04. Ttem (ii) is straightforward from the fact that Iy € R4, We realize Item

(iii) by observation. O

Lemma 6.1.3. Let (ck)eny € R, (Ag)peny € R, B € R, (Cy) ey satisfy for all k € N that:

2 -4 2 0 0
2 -4 2 0 -1
Ak = B= Ck = |—cg 201(: —Ck 1 (612)
2 -4 2 0 -1
—Ck QCk —Ck 1 0
and that:
cp = 2172k (6.1.3)

Let ®;, € NN, k € N satisfy for all k € [2,00) NN that &1 = (Affc, o i) @ Affe, B, that for alld € N,
id = ((Hdv@d)) <Hd7@d)) and that

(I)k = (Aﬂ"cho 014) L] (Aﬂ:Ak_l,B 014) ®:---0 (AffAl’B 0i4) L] Affe47B (6.1.4)

It is then the case that:

109

(i) for all k € N, z € R we have T, (Pf) (x) € C (R,R)

(ii) for all k € N we have L (®y) = (1,4,4, ...,4,1) € Nk+2

(iii) for all k € N, x € R\ [0,1] that (3. (Pr)) (z) =t (x)

(iv) for all k € N, z € [0,1], we have ‘1‘2 — (3¢ (&) (LE)‘ <2722 and
(v) for al k € N, we have that P (®y) = 20k — 7

Proof. Let g : R — [0,1], k € N be the functions defined as such, satisfying for all k € N, 2z € R

that:
2x S [0, %)
() =92-22 :z€[}1] (6.1.5)
0 cx € R\ [0,1]

\

Gk+1 = 91(gk)

and let fy, : [0,1] — [0,1], k¥ € Ny be the functions satisfying for all k € Ng, n € {0,1,...,2% — 1},

x € [2%, "2—“,;1) that fx(1) =1 and:

2n+1 n?+n
and let 7, = (76,1, 7,2, 7,3, Tha) 1 R — R%, k € N be the functions which which satisfy for all z € R,
k € N that:
r1,1(x) T
1
ro1(x T— 5
r (z) = 2@ _ 2 (6.1.7)
r3.1(2) rz—1
7’471(56)_ i X i

Tht1 = App17r(2)

Note that since it is the case that for all z € R that t(z) = max{z,0}, (6.1.5) and (6.1.7) shows

110

that it holds for all x € R that:
1
2ry1(x) —4ron(z) 4+ 2rgq(z) = 2¢(z) — 4¢ (ac - 5) +2v(x—1)

1
= 2max{z,0} — 4max {:c — 5,0} + 2max{z — 1,0}

= g1(v) (6.1.8)

Note also that combined with (6.1.6), the fact that for all x € [0,1] it holds that fo(x) = = =

max{z,0} tells us that for all x € R:

fo(x) cx € [0,1]
ran (@) = max{z, 0} = { (6.1.9)

max{z,0} :ze€R\][0,1]

We next claim that for all k£ € N, it is the case that:
(Vo € R : 2rq g (z) — 4o () + 2r35(x) = g(x)) (6.1.10)
and that:

Vo € R :ryp(a) = fiale) welnl (6.1.11)

max{z,0} :x€R\][0,1]

We prove (6.1.10) and (6.1.11) by induction. The base base of k = 1 is proved by (6.1.8) and
(6.1.9). For the induction step N 3 k — k + 1 assume there does exist a k¥ € N such that for all

x € R it is the case that:
2ry k(@) — dro (@) + 2r3 p(2) = gi(@) (6.1.12)

and:

ryx(z) = finle) e (6.1.13)

max{z,0} :z€R\]J0,1]

111

Note that then (6.1.5),(6.1.7), and (6.1.8) then tells us that for all z € R it is the case that:

g1 (1) = 91(gr(2)) = 91(2r1k(2) + dro(2) + 2731 (2))

=2t (2r1 k() +4rop + 2r31(2))

1
—4r <2T’17k (SL‘) — 47"2,k + 27’37k(I) — 5)
+2¢ (2r gk (z) — dro () + 2r3 p(x) — 1)

= 271 o1 (2) — 4ro 1 (%) + 273 o1 (2) (6.1.14)

In addition note that (6.1.6), (6.1.7), and (6.1.9) tells us that for all z € R:

=t(-— [2_2’“] gk () + 74 (CL‘)) (6.1.15)

This and the fact that for all € R it is the case that v () = max{x, 0}, that for all z € [0,1] it is

the case that fi (x) > 0, (6.1.13), shows that for all z € [0,1] it holds that:

k—1
rapt1 () =t (—2 [2_%94 + fr-1 (:U)) =t | -2 (2_2kgk (a:)) + - (2_2jgj (ac))
j=1
k
=t | — Z 2_2jgj (.7}) =1 (fk (.T})) = fk (x) (6.1.16)
j=1

Note next that (6.1.13) and (6.1.15) then tells us that for all z € R\ [0, 1]:
T4 k+1 () = max {— (2_2kgz (x)) +rag (:U)} = max{max{x,0},0} = max{x,0} (6.1.17)

Combining (6.1.14) and (6.1.16) proves (6.1.10) and (6.1.11). Note that then (6.1.2) and (6.1.10)

112

assure that for all k € N, z € R it holds that J, (®;) € C (R,R) and that:

(e (Pr)) (2)
= (3t ((Affck,[) oij)e (AfFA,ﬁl,B oi4) o -0 (Affy, peiy)e Aff%B)) (x)

= (=2) g (@) + 22 Hry () + (—2) g (2) + Tag (2)

(g2 ([ﬁ,k (95)_+27“3,k (f)} s (x)> trap (@)

_ 922k <["“1,k (z) _+2r3,k (z)

@) s 0

_ 92k (4T2,k (LL') — 27'17,~C (51;) — 27‘37k (l’)) + T4k ($)

. [2—%} 201 4 (z) — dro g (2) + 2731, (2)] + T4 () = — [2_%} g (@) +rap(z) (6.1.18)

This and (6.1.11) tell us that:

T
I

(36 (@) (2) = = (27201 (@) + for () = = (27 g1 (@) + 2 - {

<.
Il
—_

k
== 122279 @)| = fe (@)
j=1
Which then implies for all k£ € N, x € [0, 1] that it holds that:
[4% = (3e (D)) ()| < 27242 (6.1.19)

This, in turn, establishes Item (i).

Finally observe that (6.1.18) then tells us that for all £k € N, x € R\ [0, 1] it holds that:
(3 (Pr)) (z) = =27 % gy, (2) + ra (2) = rax (v) = max{z,0} = v(z) (6.1.20)

This establishes Item(iv). Note next that Item(iii) ensures for all k£ € N that D (§;) = k + 1, and:

k
P(®r)=4(1+1)+ !Z4(4+1)] +(44+1)=8420(k—1)+5=20k—7 (6.1.21)
j=2

113

This, in turn, proves Item(vi). The proof of the lemma is thus complete. U

Remark 6.1.4. For an R implementation see Listing 10.13

1e+01 -
— NIV VERY/
S
[
= 1e-03-
£
S factor(k)
©
> — 1
>
5 — 2
o
—_ — 5
D

1e-07 -
£ — 10
o
T — 15
E — 20
IS
()
o le11-
o

Yy

Figure 6.1: Plot of log;, of the L! difference between ®; and z? over [0, 1] for different values of k

Corollary 6.1.4.1. Let ¢ € (0,00), M = min{$log, (') = 1,00} NN, (ck)pey € R, (Ak)pen S

R4, B € R, (Cy) ey satisfy for all k € N that:

2 -4 2 0 0
2 -4 2 0 -1
Aj = , B= Ch=|—cx 20 —cp 1 (6.1.22)
2 -4 2 0 -1
—Ck QCk —Ck 1 0

where:
cp = 2172k (6.1.23)
and let ® € NN be defined as:

[Affc, o ®is] @ Affe, B M=1
o = (6.1.24)

[Affc,, 0 0ia] ® [Affa,, o@is] @ @ [Aff4, peis] @ Affe, z M € [2,00) NN

it is then the case that:

(1) 3. (®) € C(R,R)

(ii) L(®) = (1,4,4,...,4,1) € NM+2

(iii) it holds for all x € R\ [0,1] that (I, (P)) (z) = v(x)

(iv) it holds for all x € [0,1] that |2 — (J; (®)) (z)| <272M~2 e

(v) D(®) < M +1 < max{3log, (¢7!) + 1,2}, and

(vi) P(®) =20M — 7 < max {10log, (¢7') — 7,13}

Proof. Ttems (i)--(iii) are direct consequences of Lemma 6.1.3, Items (i)--(iii). Note next the fact

that M = min {N N [% log, (8_1) — 1] ,oo} ensures that:

M = min {Nﬂ B log, (5_1) — 1] ,oo} > min { [max {1, % log, (5_1) — 1} ,oo] } > %log2 (5_1) -1

(6.1.25)

This and Item (v) of Lemma 6.1.3 demonstrate that for all z € [0,1] it then holds that:
|22 — (3, (@) ()] < 272M 2 = 27 2(MH+D) g-loa(=7") — ¢ (6.1.26)

Thus establishing Item (iv). The fact that M = min {NN [logy (¢7!) — 1,00} and Item (ii) of

115

Lemma 6.1.3 tell us that:
D(®)=M+1 gmax{%logz (e +1,2} (6.1.27)
Which establishes Item(v). This and Item (v) of Lemma 6.1.3 then tell us that:
P(®n) <20M —7<20 max{% log, (e71) ,2} — 7=max {10log, (¢7') — 7,13} (6.1.28)

This completes the proof of the corollary. O

Remark 6.1.5. For an implementation in R, see Listing 10.15

Contour plot of the 1-norm difference for values of x and eps

1.00

0.000, 0.005]
0.005, 0.010]
0.010, 0.015]

0.75

(

(

(

(0.015, 0.020]

(0.020, 0.025]
2 e (0.025, 0.030]
o (0.030, 0.035]
(0.035, 0.040]
(
(
(
(
(

0.040, 0.045]

FEEEEEEEEN:
<
@

0.045, 0.050]
0.25
0.050, 0.055]
0.055, 0.060]

0.060, 0.065]

0.00

0.00 0.25 0.50 0.75 1.00

Figure 6.2: Contour plot of the L! difference between ® and 22 over [0, 1] for different values of e.

116

Remark 6.1.6. Note that (6.1.24) implies that D (®) > 4.

Now that we have neural networks that perform the squaring operation inside [—1,1], we may

extend to all of R. Note that this neural network representation differs somewhat from the ones in

(2023).

6.1.2 The Sqr network

Lemma 6.1.7. Let d,e € (0,00), a € (0,00), q¢ € (2,00), ® € NN satisfy that § = 24%2254%2, o=
1

()72, Jv(®) € C(R,R), D(®) < max {1log,(67") + 1,2}, P(®) < max {10log, (671) — 7,13},

supger\[0,1] | (Je () —v(x)| = 0, and sup,cp |22 — (3. (®)) ()| < &, let U € NN be the neural

network given by:
= (Aff,-2 0D 0 Affo o) P (Aff,-2 0D 0 Aff_4) (6.1.29)

(i) it holds that 3. (¥) € C' (R, R).
(7i) it holds that (3. (¥)) (0) =0
(i3) it holds for all z € R that 0 < (3. (V) (z) < € + |z/?
(iv) it holds for all x € R that |2? — (3, (¥)) (2) | < e max{1,|z|?}
(v) it holds that D(V¥) < max{l + = Lo+ 2(q 3—2) 1082 (¢ (e™h) ,2}, and
(vi) it holds that P (¥) < max { {;_L%} logy (e71) + (18_—02 — 28, 52}

Proof. Note that for all z € R it is the case that:

(3. (D) (St (Aff,—2 oD o Aff, g) ® (Affa_zp Do AfF_ayo))) (x)
(3t (Aff —2gede Affmo)) (x) + (jt (Aff(fz’O Hoxs Aff_a,o)) (x)

=ai<~ (®)) (0a

)+ 5
_ [(% > (3¢ (B)) <— (%)%m>] (6.1.30)

117

This and the assumption that ® € C (R, R) along with the assumption that supepyjo,17 | (3 (®)) () —

t(z)| =0 tells us that for all z € R it holds that:

(6.1.31)

This, in turn, establishes Item (i)--(ii). Observe next that from the assumption that J, (®) €
C (R,R) and the assumption that sup,cgyj1]](J: (®)) (z) — v(z)| = 0 ensure that for all z €
R\ [-1,1] it holds that:

[T (P)] () + [T (@) (—2)] = v (z) + t(—2) = max{z, 0} + max{—=x,0}

= || (6.1.32)

The assumption that for all sup,epjo,1) | (J¢ (®)) (#)—v (z) [= 0 and the assumption that sup,¢o 1) |22 —
(3¢ (®)) (z) | < d show that:

sup |2 — (3¢ (®)] (2) + [3e (@) (2))]

z€[—1,1]

= maX{ sup |2 — (v(z) + [Je (@)] (—2))|, sup [a* — ([3c (®)] (z) + t(—ﬂc))!}

z€[—1,0] z€[0,1]

= max{ sup ‘(—33)2 —(3:(®)) (=)

z€[—1,0]

= sup ‘xz — (3. (®)) (x)‘
z€(0,1]

N

5 (6.1.33)

—1 —1

Next observe that (6.1.30) and (6.1.32) show that for all x € R\ [— ()2, (5) q”} it holds that:

_ (E)ﬁ'x' < Jzf? (6.1.34)

118

The triangle inequality then tells us that for all € R\ [— (5)2,(3) ‘1—_2} it holds that:

= @) @) = [+ = (5) 7 o < (1 + (5) 7 o

__1
— (mq 2|72 4 (%)) m—(q—l)>

€ q=2 € =1 € q—1
< (ke (5) 7+ () e (9))

= (5+5) al" = e folt < cmaxc {1, 2} (6.1.35)

-2 g =1 =
Note that (6.1.33), (6.1.30) and the fact that 6 = 27=2¢7%7 then tell for all € [— (5)2,(5) ‘1—2]

it holds that:

L (6.1.36)
€\ q—2 ~ ~
<(5)" [sup [y — [3:(®)] (v) + [3:(®)] ()|
ye[_lvl]
€\ =2 E\q=2 =2 _a_
<(2)" 6= (=) 21272 = < a
< (2>] (2) 24-2¢aq e < emax{l, |z|7}
Now note that this and (6.1.35) tells us that for all z € R it is the case that:
‘xQ — (3 (1)) (:L‘)‘ < emax{l,|z|?} (6.1.37)

—1 1

This establishes Item (v). Note that, (6.1.36) tells that for all x € [— (5)2.(5) ‘ITQ} it is the case

that:
(3 (9)) (2)] <[22 = (3 (©)) (2)] + |2]* < & + | (6.1.38)
This and (6.1.35) tells us that for all z € R:
(3e) (z)] < e+ Jaf (6.1.39)

This establishes Item (iv).

—2
Note next that by Corollary 5.5.5.1, Remark 5.5.2, the hypothesis, and the fact that 6 = 27773

119

tells us that:

— max {L + [qi] log, (¢) + 1, 2} (6.1.40)

This establishes Item (v).

—2
Notice next that the fact that § = QEN%? tells us that:

log, (671 = log, (2%25%’2) - q_% + Hq%’z] log, (5—1)] (6.1.41)

Note that by , Corollary 5.5.5.1 we have that:
I (Aﬂ:fa 0) + 1
—a0) < ,————=——>|P(®)=P(® .1.42
P (P eAff_0) [max{ (@) + 1 H () (®) (6)

and further that:

P (D e Aff_q0)

O (Aff_y2,)

P (Affo-s00® Aff_a0) = |max 1, 5o
—a,0

<P

(@) (6.1.43)

By symmetry note also that P (Aff,—2 o e® e Aff, o) = P (Aff,—2, e® e Aff_, o) and also that L (Aff,—2 o e® e Aff, ()

L (Aff(rz’o odoe AfF_a,o). Thus Lemma 5.6.9, Corollary 5.3.5.1, and the hypothesis tells us that:

P(T)=P(®3)
< AP (D)

= 4max {10log, (67') — 7,13} (6.1.44)

120

This, and the fact that § = 27=2¢72 renders (6.1.44) as:

4max {10logy (67') — 7,13} = 4max {10log, (6~ ') — 7,13}

2
= 4max{10 <— + 32 log, (5—1)> -7, 13}

q—2 q

40q 1 80
= maX{ [m] log, (e7') + P 28, 52} (6.1.45)

O

Remark 6.1.8. We will often find it helpful to refer to this network for fized ¢ € (0,00) and

q € (2,00) as the Sqr?® network.

Remark 6.1.9. For an R implementation see Listing 10.17

log 10 experimental depths Log10 upper limits of depth

M 0204 W o204
W <o B 408
B ©s.08 B o508
" M o810 » . (0.8,1.0)
o’ B o 3?2 | JGERE
| EXRR) | GEXR)

(1.4,1.6)
(1.6,1.8]
(1.8,2.0] 1

(1.4,1.6]
(16,1.8]
(18,20

Figure 6.3: Left: log;, of depths for a simulation with ¢ € [2.1,4], ¢ € (0.1,2], and = € [-5,5], all
with 50 mesh-points. Right: The theoretical upper limits over the same range of values

‘ Min. 15 Qu. Median ~ Mean 39 Qu. Max.
Experimental |22 — J,(Sqr®®)(z) ‘ 0.000003 0.089438 0.337870 3.148933 4.674652 20.00
Theoretical |z — J:(Sqr)?€(z) | 0.010 1.715 10.402 48.063 45.538 1250.00
Difference ‘ 0.001 1.6012 9.8655 449141 40.7102 1230

Table 6.1: Theoretical upper bounds for L' error, experimental L' error and their forward differ-
ence, with ¢ € [2.1,4], € € (0.1, 2], and = € [—5, 5], all with 50 mesh-points.

121

6.1.3 The Prd network

We are finally ready to give neural network representations of arbitrary products of real numbers.
However, this representation differs somewhat from those found in the literature, especially Grohs
et al. (2023), where parallelization (stacking) is used instead of neural network sums. This will help

us calculate W; and the width of the second to last layer.

Lemma 6.1.10. Let 6, € (0,00), q € (2,00), A1, Ay, A3 € R'2 ¥ € NN satisfy for all z € R
that § = e (2071 +1)7", Ay = [1 1], Ay =[1 0], 43 = [0 1], 3. € C(R,R), (3, (¥))(0) =
0, 0 < (3:(9)(z) <6+ |z |22 — (3:.(V)) (z)| < dmax{1,|z|?}, D(¥) < max{l + q_% +
sl logy (671) .2}, and P () < max{[%] logy (671) + % - 28,52}, then:

2(g—2) q

(i) there exists a unique I' € NN satisfying:

I = (% > (Ve AffA1,0)> b ((-%) > (Ve AffA2,0)> ¢ ((-%) > (Ve Afng,O)) (6.1.46)

(i) it that 3. (T') € C (R R)
(iit) it holds for all x € R that (3. (I")) (z,0) = (3. (")) (0,y) =0

x
(iv) it holds for any x,y € R that |xy — (I, (T')) < emax{l, x|, |y|?}
Y

(v) it holds that P(T") < 3% [log, (¢71) + ¢ + 1] — 252
(vi) it holds that D (T') < %5 [logy (¢7') + ¢

(vit) it holds that Wy (I') = 24

(viii) it holds that Wy = 24

122

Proof. Note that:

(3 (¥)) (z) — 5 (3 (¥)) () (6.1.48)

(3. (1) (M) = 5 3 (0) (2 4+0) — 5 (3 (V) (x) — 5 (3:()) (0)
=0
= 2 @) (0+y) — £ (26 (1)) (0) — 5 (3 () (v)

— @y | |” (6.1.49)
Yy

Next, observe that since by assumption it is the case for all z, € R that |22 — (3. (¥)) (z) | <

123

s max{1, |z|7}, zy = 3|z + y|* — 1|x|? — |y|?, triangle Inequality and from (6.1.48) we have that:

(3 (T) () — zy|
= % [(Jr (V) (z +y) — |z + y\2] - % [(m (0)) (z) — W] - % [(m (0)) (z) — W]
< ’% (3 () (@ +) — 2+ yP| + % (3 () (@) — o] + % ((5(9)) (2) — Iyl?]

(o9

< g max {1, |z +y|?} + max {1, [} + max {1,]y|*}]

Note also that since for all a, 3 € R and p € [1,00) we have that |a + S|P < 2P~ (Ja|P + |B[P) we

have that:

|(T3e (9)) () — 2yl

< g [max {1,277 z|? 4+ 277" |y|} + max {1, [z|7} + max {1, |y|?}]

< g [max {1,207 z[7} + 2971 5|7 + max {1, |2]7} + max {1, |y|*}]
g[2q+2] max {1, [z|?,|y|?} = emax {1, |z|?,|z|?}

This proves Item (iv).
By symmetry it holds that P (1> (U e Affs, 0)) = P (=5 > (U e Affa,) = P (=35> (¥ eAffs,p))
and further that L (5> (U e Affa, 0)) = L(—3> (VeAffa,0)) =L (—1(VeAffs,)). Note also

that Corollary 5.5.5.1 tells us that for all ¢ € {1,2,3} and a € {3, —3} it is the case that:
P(a> (T eAffy, o)) =P (¥) (6.1.50)

This, together with Corollary 5.6.9.1 indicates that:

40q _ 80

124

Combined with the fact that § = ¢ (2‘1_1 + 1)_1, this is then rendered as:

40q 80

= 9max{ [(14_%] (log, (5—1) +logy (2971 +1)) + (18—02 — 28, 52} (6.1.52)

Note that:

logy (2971 + 1) =logy (2971 + 1) — log, (29) + ¢

2071 41 o
= log, <T>+q:10g2(2 L4270 4 g

3
<logy (271 +272) + ¢ = log, (1> +q=1logy(3) —2+¢q (6.1.53)

Combine this with the fact that for all ¢ € (2,00) it is the case that < () > 2 then gives us that:

40q -1 40q -1 40¢(g — 1)
1 24 1) —282> |——|1 24 —28= ———~= —28 > 52 6.1.54
2 o (20 1) 28> |2 o, (207 - (6.1.54)
This then finally renders (6.1.52) as:
. 80
9 max (logy (e7') +1logy (2771 +1)) + P 28,52
1l 40q] 80
< i _ -
<9 -2 (logy (e71) + logs (3) 2+q)+q 5 28]
[40q] . 2> }
=9||—=]| (logy (677) +1logy (3) =2+ — | — 28
g—2] &2 () g2 (3) p
40q | _
<9 3 (logy (e71) +log, (3) — 1) — 28]
360
e 5 lloga (£71) + ¢+ logy (3) — 1] — 252 (6.1.55)

Note that Lemma 5.6.10, Lemma 5.5.5, the hypothesis, and the fact that § = ¢ (2‘1_1 + 1)_1 tell us

125

that:

5+ 2(qq_ 3 loe: (671 ,2}

1
= max{l + -2 + 2(q(i) [log2 (5—1) + log, (2‘1—1 + 1)] ,2}

1 q -
:max{1+q_2+2(q_2) (log, (e 1)+q—1),2} (6.1.56)

Since it is the case that L2 > 2 for ¢ € (2,00) we have that:

2(q—2)

max{1+ L4 (10g2(8_1)+q—1),2}
¢=2 2(¢-2)

:1+qi2+2(qq_2)(log2(€1)+q—1)

<1+ 5 lom () +)

(6.1.57)

Observe next that for ¢ € (0,00), € € (0,00), I' consists of, among other things, three stacked
(¥ o Affa, 0) networks where i € {1,2,3}. Corollary 5.5.5.1 tells us therefore, that W; (I') = 3 -
Wi (¥). On the other hand, note that each W networks consist of, among other things, two stacked
® networks, which by Corollary 5.5.5.1 and Lemma 6.1.7, yields that W; (I') = 6 - Wy (®). Finally
from Corollary 6.1.4.1, and Corollary 5.5.5.1, we see that the only thing contributing to the W, (®)
is Wi (i4), which was established from Lemma 6.1.2 as 4. Whence we get that W, (I') =6 -4 = 24,
and that Wy (I') = 24. This proves Item (vii)—(viii). This then completes the proof of the

Lemma. O

Corollary 6.1.10.1. Let 6,¢ € (0,00), ¢ € (2,00), A1, Az, A3 € R™™2, U € N satisfy for

LA =1 1, Ay =1 0], A3 = [0 1], 3, € C(R,R),

all v € R that § = (2971 4+1)"
(3e () (0) = 0, 0 < (3 (W) (@) < 5+ 22, 22 — (3 (¥)) (2)| < Fmax{l,[2l7}, D(¥) <
max{1+ Ly + gy logy (571) .2}, and P (¥) < max { [;{Lg} logy (51) + A% — 28, 52}, and finally
let T' be defined as in Lemma 6.1.10, i.e.:

= (% ® (Ve AffAl,O)) P <<—%> ® (Ve AffAQ,O)) &y ((—%) ® (Ve Afng,O)) (6.1.58)

It is then the case for all x,y € R that:

Je

3
() (z,y) < 5 (3 +2% +y) <e+22° + 27 (6.1.59)

Proof. Note that the triangle inequality, the fact that 6 = ¢ (2‘1‘1 + 1)*1, the fact that for all

z,y € R it is the case that |z + y[? < 2 (|z|* + |y|*) and (6.1.48) tell us that:

3 (1) (2, 9)| <

N

b |

13 (¥) (z +y)| + % 3¢ (¥) (z)] + % 3 () (y)]
(5+yx+yy)+ (5+|:c12) —|—%(5+|y\2)

(\ac|2 +[y*) = <%> (207 4+ 1) 4+

2 € 2 2 §(2)
2(2q P el) < 3 (5 +1eP + 1

C.ol\DI»—tl\DI»—l

(e
l\DICO

(l* + 191?)

w

<e+ 222 + 22 (6.1.60)

O

Remark 6.1.11. We shall refer to this neural network for a given q € (2,00) and given € € (0, 00)

from now on as Prd?*.

Remark 6.1.12. For an R implementation see Listing 77

Remark 6.1.13. Diagrammatically, this can be represented as:

6.2 Higher Approximations

We take inspiration from the Sum neural network to create the Prd neural network. However, we

first need to define a special neural network called tunneling neural network to stack two neural

networks not of the same length effectively.

127

> (‘I) ° AffAl,o)

Sum 2> (Do Affa,) <] Cpy <

> ((I) ° AffAQ,o)

Figure 6.4: A neural network diagram of the Sqr.

6.2.1 The Tun Neural Networks and Their Properties

Definition 6.2.1 (R—,2023, The Tunneling Neural Networks). We define the tunneling neural

network, denoted as Tun, for n € N by:

AfFLO n=1

Tun, = 1 1d; ‘=92 (6.2.1)

" 2ld; neNNI3,00)

\

Where Idy is as in Definition 8.1.1.
Remark 6.2.2. For an R implementation see Listing 10.12

Lemma 6.2.3. Let n € N, z € R and Tun, € NN. For alln € N and x € R, it is then the case

that:
(i) 3¢ (Tun,) € C (R,R)
(i) D (Tun,) =n

(7ii) (Je (Tuny,)) () =

128

2 n=1
(iv) P (Tun,) =
7+6(n—2) :neNN[2,00)
(v) L(Tuny) = (lo, 1, ..y lp—1,11) = (1,2,...,2,1)
Proof. Note that Affy; € C (R,R) and by Lemma 8.1.2 we have that Id; € C' (R,R). Finally, the
composition of continuous functions is continuous, hence Tun,, € C (R,R) for n € NN [2,00). This
proves Item (i).
Note that by Lemma 5.5.2 it is the case that D (Aff; o) = 1 and by Lemma 8.1.1 it is the case that
D (Id;) = 2. Assume now that for all n < N that D (Tun,) = n, then for the inductive step, by

Lemma 5.2.5 we have that:

D (Tunp41) = D (¢" ! 1d;)
=D ((¢"?Idy) @ Idy)

=n+2-1=n+1 (6.2.2)
This completes the induction and proves Item (i)—(iii). Note next that by (5.1.10) we have that:
(T3¢ (Affr9)) (z) =z (6.2.3)

Lemma 8.1.2; Ttem (iii) also tells us that:
(3. (Idy)) () = ¢t(x) —v(—2) =2 (6.2.4)

Assume now that for all n < N that Tun, (x) = 2. For the inductive step, by Lemma 8.1.2, Item

129

(iii), and we then have that:

(3 (Tunpi1)) (z) = (Je (" 1d1)) (@) (2)
= (3 (("721d1) o 1dy))

((3e ("7 1d1)) © (3 (Id1))) (=)
= ((3c (Tuny)) o (I (Id1))) (=)

=z (6.2.5)

<o (|2 B 1) (1) 1))

=13

Now for the inductive step assume that for all n < N € N, it is the case that P (Tun,,) = 7+6(n—2).

130

For the inductive step, we then have:

P (Tun,y1) = P (Tun, eld;)

1 0 1 -1 0 I
=P) 3) av<|:1 —].:|7 0:|> .Idl
-1 0 -1 1 0 .

=74+6(n—2)+6=7+6((n+1)—2) (6.2.6)

This proves Item (iv).

Note finally that Item (v) is a consequence of Lemma 8.1.2; Item (i), and Lemma 5.2.5 O

Definition 6.2.4 (R—, 2023, The Multi-dimensional Tunneling Network). We define the multi-

-dimensional tunneling neural network, denoted as TunfL forn e N and d e N by:

/

Afﬁ[d@d n=1

Tuni = {1, =2 (6.2.7)

" 2ld; :neNNJ[3,00)
Where Idg is as in Definition 8.1.1.

Remark 6.2.5. We may drop the requirement for a d and write Tun,, where d = 1, and it is evident

from the context.

Lemma 6.2.6. Letn € N, d e N, x € R and Tuni € NN. Foralln e N, de N, and x € R, it is

then the case that:
(i) 3¢ (Tund) € C (R, R)
(i) D (Tunﬁ) =n

(iii) (3¢ (Tund)) (z) =z

131

8d* + 5d n=1
(iv) P (Tung) =

4d® +3d+ (n—1) (4d* +2d) :neNNJ[2,00)
(v) L(Tund) = (lo, 11, ..., -1, 11) = (d,2d, ..., 2d, d)
Proof. Note that Items (i)—(iii) are consequences of Lemma 8.1.2 and Lemma 5.2.5 respectively.

Note now that by observation P (Tunﬁl) = d?+d. Next Lemma 8.1.4 tells us that P (Tung) = 4d*+3d

Note also that by definition of neural network composition, we have the following:

P (Tung) (6.2.8)
e -
1 0 1 -1 0
—p NN e o (6.2.9)
1| o 1 -1| o
L L _1_ _0_
. . _
1 0 1 -1 0
1| o 1 -1| o
L _1_ _0_ .
([T 1 o] 1 1 1 o]
-1 0 1 1 0 1 -1
=P , , , , ,
1| o 1 —1| o 1 -1
A\ | ~1| o] i ~1 1] |o]

=2dxd+2d+2dx2d+2d+2dxd+d
=2d% +2d + 4d%> + 2d + 2d*> + d
= 8d* + 5d (6.2.10)

Suppose now that for all naturals up to and including n, it is the case that P (Tu nz) = 4d? + 3d +

132

(n —2) (4d? + 2d). For the inductive step, we have the following:

P (Tunﬁ+1> —p (Tun;{. Idd)

(1 1 o] (1 1
-1 0 -1 1 1 -1 0
= P))) b 9)
1 0 1 -1 0 1 -1 0
L\ | —1] 0] i -1 1] [0]
° |dd}
(1 1 ol (1 -1 1 o] (1 -1 1 o]
—1 0 -1 1 0 -1 1 0
= P))) b b b
1 0 1 -1 0 1 -1 0
L\ | —1] |0] i -1 1] [0] | -1 1] [0]
| l
= 4d® + 3d + (n — 2) (4d® 4 2d) + 4d® + 2d
=4d®> +3d + (n — 1) (4d® + 2d)
This proves Item (iv). Finally, Item (v) is a consequence of Lemma 5.5.2 O
6.2.2 The Pwr Neural Networks and Their Properties
Definition 6.2.7 (R—, 2023, The Power Neural Network). Letn € N. Letd,e € (0,00), g € (2, 00),

-1

satisfy that 6 = ¢ (2‘1_1 + 1) We define the power neural networks Pwrl® € NN, denoted for

133

Tun D(Pwrd<)

Figure 6.5: A representation of a typical Pwrl® network.

n € Ny as:

Aﬂ:()71 n=20

a,e _
Pwrl® =

Prd®< e | Tunp(pyae) BPwryZ | @ Cpyy; :n €N

Diagrammatically, this can be represented as:
Remark 6.2.8. For an R implementation see Listing 10.19

Remark 6.2.9. Note that for alli €N, q € (2,00), € € (0,00), each Pwr!® differs from Pwrgjf1 by

atleast one Prd%¢ network.

Lemma 6.2.10. Let z,y € R, € € (0,00) and q € (2,00). It is then the case for all x,y € R that:
emax {1, |z|% |y|?} < e+ elz|?+ ely|?. (6.2.11)

Proof. We will do this in the following cases:

For the case that |z| < 1 and |y| < 1 we then have:
emax {1, |z|% |y|?} = e < e +e|x|? + ¢|y|? (6.2.12)
For the case that |z| < 1 and |y| > 1, without loss of generality we have then:
emax {1, |z|% y|?} <ely|? <e+elx]|? +ely|?: (6.2.13)

134

For the case that |x| > 1 and |y| > 1, and without loss of generality that |z| > |y| we have that:

emax{1, [z[?, [y} = efz[" < e+ efx|" +ely[? (6.2.14)

O

Lemma 6.2.11. Let p; for i € {1,2,...} be the set of functions defined for € € (0,00), and x € R

as follows:

p1 =ce+2+ 2z

pi=c+2(pim1)’ +20af* fori>2 (6.2.15)
For alln € N and € € (0,00) and q € (2,00) it holds for all x € R that:
|Je (Pwrh®) ()] < pn (6.2.16)
Proof. Note that by Corollary 6.1.10.1 it is the case that:
3¢ (Pwri®) ()| = (3¢ (Prd®®) (1, 2)[< p1 (6.2.17)
and applying (6.2.17) twice, it is the case that:

|Je (Pwr®) ()| = |Jc (Prd?®) (3. (Prd®® (1,2)) ,)|
< e+ 2|7 (Prd?®) (1, 2)] + 2|2|?

<e+42p% + 2022 = po (6.2.18)

Let's assume this holds for all cases up to and including n. For the inductive step, Corollary 6.1.10.1

135

tells us that:

|3c (Pwriity) (2)] < (3¢ (Prd?®® (3, (Prd?® (3, -+ (1,2) @) ,2) - -))]
< 3¢ [Prd®* (Pwri* (z) , z)]

<e+2p2 + 2|22 = pupa (6.2.19)

This completes the proof of the lemma. O

Remark 6.2.12. Note that since any instance of p; contains an instance of p;—1 fori € NN[2,00),

we have that p, € O (52(”_1))

Lemma 6.2.13. For alln € N, g € (2,00), and ¢ € (0,00), it is the case that P <T”nD(Pwr‘3ﬁ)> <
P (Pwrl®).

Proof. Note that for all n € N it is straightforwardly the case that P (Pwrl®) > P (TunD(Pqu,fl)>

because for all n € N, a Pwr?® network contains a TunD(“) network. Note now that for all

q,
Pwr "

i € N we have from Lemma 6.2.3 that 5 < P (Tun;11) — P (Tun;) < 6. Recall from Corollary 6.1.4.1
that every instance of the ® network contains atleast one i4 network, which by Lemma 6.1.2 has 40
parameters, whence the Prd?® network has atleast 40 parameters for all € € (0,00) and ¢ € (2, 00).
Note now that for all i € N, Pwr?* and Pwrgf1 differ by atleast as many parameters as there are in
Prd9¢, since, indeed, they differ by atleast one more Prd?®. Thus for every increment in 7, Pwr%8
outstrips Tun; by at-least 40 — 6 = 34 parameters. This is true for all ¢ € N. Whence it is the case

that for all i € N, it is the case that P (Tun;) < P (Pwr?®). O]

Lemma 6.2.14 (R—,2023). Let 6, € (0,0), ¢ € (2,0), and § = ¢ (2‘1_1 + 1)_1. Let n € Ny,

and Pwr, € NN. It is then the case for all n € Ny, and z € R that:
(i) (3: (Pwri)) (z) € C'(R,R)

1 n=20
(ii) D(Pwr®®) <
n[ﬁ[log2(671)+q]—l]+1 :neN

1 n=20
(iii) Wy (Pwrl®) =

2442(n—-1) :neN

136

2 :n=20
(iv) P(Pwrl®) <

443 (155=1) (5% logy (=71) + g +1] +372) in€N

0 n=20
(v) 2" — (Je (Pwrk®)) (x)] <
|x (2"t — 3¢ (Pwr®e) (x))| +e+lz/+pl |, :neN

Where we let p; for i € {1,2,...} be the set of functions defined as follows:

p1:5+2+2|x|2

pi=c+2(pi1)? + 2|z (6.2.20)
And whence we get that:
|z" — T, (Pwrl®) (z)] € O (52‘1("_1)) forn =2 (6.2.21)
1 n=0
(01) Wy py) (Pwrt?) =
24 neN

Proof. Note that Item (ii) of Lemma 5.5.2 ensures that J. (Pwrg) = Aff; o € C (R,R). Note next

that by Item (v) of Lemma 5.2.5, with ®; v vy, P92 ™ 19,4 N v, we have that:

(T (1 012)) () = ((Te (1)) © (Te (12))) () (6.2.22)

This, with the fact that the composition of continuous functions is continuous, the fact the stacking

of continuous instantiated neural networks is continuous tells us that (J.Pwr,) € C(R,R) for

n € NN [2,00). This establishes Item (i).

Note next that by observation D (Pwr{®) =1 and by Item (iv) of Lemma 8.1.2, it is the case that

D (Idy) = 2. By Lemmas 5.6.3 and 5.2.3 it is also the case that: D (Prdq’e) [TunD(pwerl) = Pwrg’il} . pr) =

D (PrdqyE . {TunD(pwrZ,fl) = Pwr%’fl]) Note also that by Lemma we have that D (TunD(PwrZ’fl) = Pwrg’;) =

137

D (Pwrg’fl). This with Lemma 5.2.5 then yields for n € N that:

D (Pwr?®) =D

Prd e [TunD ze) HPwr?®]) pr271>

(
o (
D (Prd) + D (Tung pyeec)) = 1

9 [logz () + q] +D (TunD(PWr)) -1

o)+l 0 () (6229

Prd e [TunD Pwr<) = PwrZ’flb

//\

And hence for all n € N it is the case that:

D (Pwr%) — D (Pwr?*) < qL

5 llogz (¢71) +4] — 1 (6.2.24)

This, in turn, indicates that:

[logy (71) +¢q] — 1] +1 (6.2.25)

This proves Item (ii).
Note now that Wy (Pwrd®) = Wy (Affy 1) = 1. Further Lemma 5.2.5, Remark 5.5.2, tells us that for
all i,k € N it is the case that W; (Tung) < 2. Observe that since Cpy, ;, Pwr®, and T“”D(Pwrg’a)

are all affine neural networks, Lemma 5.5.5, Corollary 5.5.5.1, and Lemma 6.1.10 tells us that:

Wi (Pwr?€) = W, (Prdq’e . [TunD(Pqu - BPwl } . cpym)

=W, (Prd?¢) = 24 (6.2.26)

138

And that:

Wi (Pwrd®) = W, (Prd%f . [TunD(Pwrg,s) = Pwr‘l”s} . cpym)

=W, <[TunD(P 7¢) H Pwr{ ED

=24+2=26

This completes the base case. For the inductive case, assume that for all ¢ up to and including

1 11=20
k € N it is the case that Wy (Pwr?®) < . For the case of k + 1, we get that:

2442(i—1) :ieN

W, (Pwrk_H) W, <Prdq’5 ° [TunD(Pqu = = Pwrk } ° pr271>
=W <[TunD(Pqu ey HPwr} 6})

)
=W <TunD Pur:) +W1 Pwr)

2 k=0
< (6.2.27)

2442k :keN

This establishes Item (iii).
For Item (iv), we will prove this in cases.
Case 1: Pwrl® :

Note that by Lemma 5.5.2 we have that:
P (Pwrl®) = P (Affy1) = 2 (6.2.28)

This completes Case 1.
Case 2: Pwrl® where n € N:

Note that Lemma 5.3.5, Lemma 6.2.13, Corollary 5.3.5.1, Lemma 5.3.6, and Corollary 5.3.6.1, tells

139

us it is the case that:

P (Pwr B Tunp py,ae)) < P (Pwris, BIPwri?))

< 4P (Pwrlf)) (6.2.29)

Then Lemma 5.2.5 and Corollary 5.5.5.1 tells us that:

P ([Pwrg’il = TunD(Pwerl)] o CPY2,1)

=P ([Pwr EITunD(F,Wr)])

< 4P (Pwrl)) (6.2.30)

Note next that by definition for all ¢ € (2,00), and ¢ € (0,00) it is case that WH(Pwrg’E) Pwrd® =
Wy (affy.,) = 1. Now, by Lemma 6.1.10, and by construction of Pwr?® we may say that for i € N it

is the case that:
WH(Pwrg,e) = Wh(prdos) = 24 (6.2.31)
Note also that by Lemma 6.2.3 it is the case that:
W (TunD e) ~2 (6.2.32)
(o))
Furthermore, note that for n € [2,00) NN Lemma 6.1.10 tells us that:

WH([PwrZ’iIETunD(P)]) ([Pwr 1 B Tunp (pyge)]) =24+2=26 (6.2.33)
Win—1

140

Finally Lemma 5.2.5, (6.2.30), a geometric series argument, and Corollary 5.3.5.1, also tells us that:

b (Pt (6.2.34)
=P (PrdqE [PWf ETU“D(PwrZ;fl)] * pr”)

=P (Prdq’ao [PWr 15 Tunp(py,ae)])

< P (Prd?®) + 4P (Pwr?®) +

Wi (Prd?) - W
+ 1(') H([Pwr ETun

) ([Pty B Tumg e)

(PwrgL’El)
=P (Prd?®) + 4P (Pwrlf,) + 624

n+1 q,€ 4t —1 Q€
= 4" P (Pwrd®) + — (P (Prd?¢) + 624)
nid (AT —1Y [360q 1
— 45 2 i=2 [logy (e71) + g+ 1] + 372 (6.2.35)

Next note that (J; (Pwrg 1)) (z) is exactly 1, which implies that for all z € R we have that |20 —
(Je (Pwrg.1) (%)) | = 0. Note also that the instantiations of Tun, and Cpy,; are exact. Note next
that since Tun, and Cpy,; are exact, the only sources of error for Pwrl® are n compounding
applications of Prd?®.

Note also that by definition, it is the case that:

T (Pwr€) = T, | Prd? (3, [Prd?€ (- - 3, [Prd?< (1,2)], - - 2)] , z) (6.2.36)

/

n—copies

Lemma 6.1.10 tells us that:

|z — T (Prd?® (1,2))| < emax{1, |27} < e+ |z|? (6.2.37)

141

The triangle inequality, Lemma 6.2.10, Lemma 6.1.10, and Corollary 6.1.10.1 then tells us that:

|2 — 3¢ (Pwri®) (2)]

= |z -z — T, (Prd?® (3, (Prd?® (1,2)), 2))|

<oz —ax -3 (Prd? (1,2))| + |z - T (Prd?® (1,2)) — 3¢ (Prd®* (3, (Prd?® (1, 2)) , z))|
= |z (x — J: (Prd? (1,2)))| + € + e |z|?! + ¢ |T, (Prd?® (1, 2))|?

< |ze +2e || + e+ ez +ele + 2 + 2|

= |ze + ze |z|?| + e + € |z|? + ep] (6.2.38)

Note that this takes care of our base case. Assume now that for all integers up to and including n,

it is the case that:

2" — TJe (Pwrd®) (z)| < |z - " — 2 3 (PwrlE)) ()| + |2 - Te (Pwrl?)) (@) — T (Pwrd®) (z)]
<z (@™ =T (Pwrley) (2))] + e +elz|?+ e [T (PwrdE)) (2)]?

<z (2"t =3 (PwrlZ)) (2))| + e +elz|f +epl_, (6.2.39)

n—1

For the inductive case, we see that:

2" -7, (Pwri’il) (CL‘)‘ < ’x"‘H — - T, (Pwrl®) (x)’ + |33 - Je (Pwrl®) (z) — T (Pwr%’il)l
<o (2™ = T (Pwrd®) (z))| + € + e|z|? + & | T (Pwrd®) (z)|?

< o (2" = T (Pwr®) (2))] + € +elz|? + epy (6.2.40)

Note that since p, € O (62(”_1)) for n € NN [2,00), it is the case for all z € R then that
|z — T (Pwrd®) (z)] € O (52‘1(”_1)) for n > 2.
Finally note that WH(PWYS,E) (Pwrd®) =1 from observation. For n € N, note that the second to last

layer is the second to last layer of the Prd9® network. Thus Lemma 6.1.10 tells us that:

WH(Pwr(TIr’f) (PWI‘%’E) = (6241)

142

This completes the proof of the lemma. O

Remark 6.2.15. Note each power network Pwrl is at least as big as the previous power network

Pwr%’fl, one differs from the other by one Prd¥"® network.

6.2.3 anfl’fc and Neural Network Polynomials.

Definition 6.2.16 (Neural Network Polynomials). Letd,e € (0,00), g € (2,00) and§ = (2971 + 1)_1.
For fived q,¢, fived n € Ng, and for C = {co,c1,...,cn} € R™ (the set of coefficients), we will

define the following objects as neural network polynomials:
n
Pnml, = @ (ci > [Tunmaxi{D(Pwr;?’E)}+1—D(Pwr3’5) . Pwrg’a}) (6.2.42)

1=0

Remark 6.2.17. Diagrammatically, these can be represented as

Tun Pwrg’a
/ fun PWI’%E \
<—1 Sumy, 411 CpYpt1,1 f—
\ Tun Pwr37€
,€
Pwr

Figure 6.6: Neural network diagram for an elementary neural network polynomial.
Lemma 6.2.18 (R—,2023). Let 6, € (0,00), ¢ € (2,00) and § = ¢ (277! + 1)71. It is then the
case for alln € Ng and x € R that:

(i) 3 (anffo> € O (R,R)
1 n=20
(ii) D (an‘é’%) <
n[q% [logy (¢71) + ¢ —1} +1 :neN

143

2 n=20

(iii) P (angfc) <
(n+1) [4”+% + (%) (fﬁ—og [logy (e7') +q+1] + 372)} :neN

(iv) | eia =3 (Pami%,) (@) < S0y (| (271 = 30 (Pwrf) (@) + & + [o]7 +)
Where p; are the set of functions defined for i € N as such:

p1:5+1+|x|2

pi=c+ (pi-1)” + |2 (6.2.43)

Whence it is the case that:

n
> e’ = 3 (Pamiz) (@)
=0

€0 (qu("—l)) (6.2.44)

(v) Wy (an%’%) =2+ 23n + n?

1 n=20
(UZ) WH(anfl”Ec) (angl?,EC> <
24+2n :neN

Proof. Note that by Lemma 5.7.5, Lemma 6.2.14, and Lemma 5.2.5 for all n € Ny it is the case

that:
n
jt (an%,EC> = j" (|:Ci > [Tunmaxi{D(Pwrg’E)}+1—D(Pwrg’5) b Pwrgﬁ”)
=0

n
€
= Z C; jt (Tunmaxi{D(Pwr?’s)}—H—D(Pwrg’s) [] PWI’;I >
=1
n
= Z ¢; T (Pwr?®)
i=1

Since Lemma 6.2.14 tells us that (J, (Pwrl?)) (z) € C (R, R), for all n € Ny and since the finite sum

of continuous functions is continuous, this proves Item (i).

Note that Pnm&* is only as deep as the deepest of the Pwr]*® networks, which from the definition is

144

Pwr®® which in turn also has the largest bound. Therefore, by Lemma 5.2.5, Lemma 5.5.5, Lemma

5.6.10, and Lemma 6.2.14, we have that:

D (an%’%) < D (Pwr?®)

1 n=20
<

n[qTqQ [log2(5_1)+q]—1]+1 :n€eN

This proves Item (ii).

Note next that for the case of n = 0, we have that:
Pnm® = ¢; > Pwr{* (6.2.45)

This then yields us 2 parameters.

Note that each neural network summand in Pnm?*° consists of a combination of Tun; and Pwry for
some k € N. Each Pwrg has at least as many parameters as a tunneling neural network of that
depth, as Lemma 6.2.13 tells us. This, finally, with Lemma 5.5.5, Corollary 5.5.5.1, and Lemma

6.2.14 then implies that:

n
P <ang’fc) =P (@ [ci > [Tunmaxi{D(Pwrg’E)}—i—l—D(Pwrg’E) o Pwr?’ﬂ])

1=0

< (n+1)-P(¢;>[Tuny @ Pwrde])

< (n+1)-P(Pwrl®)

2 n=20
<

(n+1) [4"*3 + (%) (% [logQ (6_1) +q+ 1] +372)} :neN

This proves Item (iii).

Finally, note that for all ¢ € N, Lemma 6.2.14, and the triangle inequality then tells us that it is

145

the case for all 7 € N that:

’xi — T (Pwrl®) (:v)‘ < ‘:L'Z —x-J (Pwrg’_sl) (JZ)’ + |:v T (Pwrgfl) (z) — T (Pwr?®) (:L’)‘

(6.2.46)

This, Lemma 6.2.28, and the fact that instantiation of the tunneling neural network leads to the
identity function (Lemma 6.2.3 and Lemma 5.2.5), together with Lemma 5.7.8, and the absolute
homogeneity condition of norms, then tells us that for all x € R, and cg,cq,...,c, € R it is the

case that:

n
Z cix' — 3, <an%’sc (:c)) ‘

1=0

=0

Z cizt — 3, [@ [ci > Tunmaxi{D(Pwrg’e)}+17D(Pwrg’e) ° Pwrg’a}] (x)
i=0

=1 =0

En: iz’ - Zn: i (9 [T {0 urt 1) * POt (‘”))'

< Z |cil - ‘95% — 3 [TUnmaxi{D(Pwrg’E)}+1—D(Pwrg’5) ° PWV?’E} (95)‘
i=1

3

< Z lci - (|Jz (2" = T (Pwr?) ()| + &+ |27 + pL,)
i=1

Note however that since for all z € R and i € NN[2, 00), Lemma 6.1.10 tells us that ‘x’ — T (Pwr?®) (:c)‘ €
O (EQQ(i_l)), this, and the fact that f+¢g € O (z%)if f € O (z%),9g€ O (xb), and a > b, then implies

that:
Z leil - (| (2 = 3 (Pwrls)) (@) | +e+ [z +pl,) €O (62‘1(”_1)) (6.2.47)

i=1

This proves Item (iv).

Note next in our construction Affy; will require tunneling whenever ¢ € N in Pwrg’a. Lemma 5.5.5

146

and Corollary 5.5.5.1 then tell us that:

n
Wi (Pnm2®) = W, <@ [Ci > [Tunmaxi{D<Pwrg’E)}—i—l—D(Pwrg’E) o Pwrg’eﬂ)

=0
n
=W; <@ Pwrg’5>
=0
n n
<YWy (Pwrf) =2+ 5 (244244 2(n — 1)) =2+ 2n +n’
=0

(6.2.48)

This proves Item (v).

Finally note that from the definition of the Pnm]",, it is evident that Wy (Prt,) (Pwrg%) =1
since Pwr'c, = Affg 1. Other than this network, for all ¢ € N, Pwr?, end in the Prd?® network, and
the deepest of the Pwr!® networks is Pwr®® inside Pnm?%,. All other Pwr{® must end in tunnels.

Whence in the second to last layer, Lemma 6.1.10 tells us that:

1 n=20
< (6.2.49)

24+2n :neN

H(ani’fc)

This completes the proof of the Lemma. O

6.2.4 Xpn®©, Csn?®, Sne’®, and Neural Network Approximations of e, cos(x), and

sin(z).

Once we have neural network polynomials, we may take the next leap to transcendental functions.
Here, we will explore neural network approximations for three common transcendental functions:

e”, cos(x), and sin(z).

Lemma 6.2.19. Let v1,v5 € NN, f,g € C(R,R), and 1,62 € (0,00) such that for all x € R it

holds that |f(x) — 3¢ (11)| < €1 and |g(x) — T¢ (v2)| < 2. It is then the case for all x € R that:

I[f +g](x) =T ([r1 o)) (2)] < 1+ &2 (6.2.50)

147

Proof. Note that the triangle inequality tells us:

[+9](z) = Te [@ o] (2)| = |f (x) + g (2) = Te (1) (2) = Te (12) ()]
< (@) = Te (1) (@)] + g (2) = Te (1) (2))]

S D)

O

Lemma 6.2.20. Let n € N. Let vi,v9,....,v, € NN, €1,69,...,6, € (0,00) and fi1, fo,..., fn €
C (R,R) such that for alli € {1,2,...,n}, and for allx € R, it is the case that, |f; (x) — J¢ (v4) (z)| <

g;. It is then the case for all x € R, that:

n n

3

d fi@) - P Ow) (@) <D e (6.2.51)
i=1 i=1 i=1
Proof. This is a consequence of a finite number of applications of (6.2.50). O

Definition 6.2.21 (R—2023, Xpn%*© and the Neural Network Taylor Approximations for e around
x=0). Let 0, € (0,00), g € (2,00) and 6 = ¢ (2‘1*1 + 1)71, and let Pwr®® be as in Lemma 6.2.1/.

We define, for all n € Ny, the family of neural networks Xpnl© as:

n

1 e

Xpni© = P [Z, s [Tunmaxi{o(pwrgf) }+1-D(Purt<) ® Pwr’ H (6.2.52)
=0

Lemma 6.2.22 (R—,2023). Let 6,e € (0,00), q € (2,00) and § = ¢ (2771 +1) 7", It is then the

case for allm € Ng and x € R that:

(i) Je (Xpni©) (z) € C (R, R)
(1 n=20
(ii) D (Xpn3?) <

kn[q% [logy (e71) + ¢ —1} +1 :neN

,

2 n=20
(ii) P (Xpnk) <

(n+1) [4743 + (£521) (2% [log, (=7!) +q+1] +372)] ineN

\

148

(iv)

n

1 .
305 (o (0 =3 (Purt) ()| 2+ [alt +)
i=1

>[5 -0 0

Where p; are the set of functions defined for i € N as such:

pr=c+1+z/

pi=ce+ (pic1)” + |z (6.2.53)
Whence it is the case that:

co <e2q<”—1>> (6.2.54)

(v) W1 (Xpn%€) = 2 + 23n + n?
(U’i) WH(Xpn;S) (Xpanlﬁ) < 24 + 2n

Proof. This follows straightforwardly from Lemma 6.2.18 with ¢; v % for all n € N and 7 €
{0,1,...,n}. In particular, Item (iv) benefits from the fact that for all i € Ny, it is the case that

> 0. O

Lemma 6.2.23 (R, 2023). Let 6, € (0,00), q € (2,00) and § = ¢ (2971 +1) 7" It is then the

case for alln € Ny and x € [a,b] C R, where 0 € [a,b] C R that:

n
. L G, e - "t
\ex — Je (Xpn?ﬁ) (.73)‘ < Z Al (|:1: (x” - Jy (PWF?L’il) (.’B)H +e+]w\q + pfl_l) + W
i=0
(6.2.55)
Proof. Note that Taylor's theorem states that for « € [a,b] C R it is the case that:
n) 3 n+1
" x es -
= = -— 6.2.56
¢ Z[i!]+(n+1)! (6.2.56)

=0

149

Where € is between 0 and x in the Lagrange form of the remainder. Note then, for all n € Ny,
x € [a,b] € R, and & between 0 and x, it is the case, by monotonicity of e” that the second summand

is bounded by:

ef gt b |g[rt

CESI TS

(6.2.57)

This, and the triangle inequality, then indicates that for all x € [a,b] C R, and & between 0 and z

that:

le® — T, (Xpnd*©)

D=3 [5] + -2t

=0
n i b n+1
. q.e e fz["
<[] - oo o)+ T
_ n 1 | (n—1 ,j (P q,€)() | | ‘q+ q) eb.‘x‘n+1
< 1221 q x —Je (Pwr”) (x) +e+|x Po_1)+ 7(n+ i)

Whence we have that for fixed n € Ny and b € [0, 00), the last summand is constant, whence it is

the case that:
le” — 3, (XpnZ©) ()| € O (EQqW—U) (6.2.58)

O

Definition 6.2.24 (The Csn?® Networks, and Neural Network Cosines). Let §,e € (0,00), q €
(2,00) and 6 = ¢ (2‘1_1 + 1)_1. Let Pwrl® be a neural networks as defined in Definition 6.2.7. We

will define the neural networks Csn®® as:

n 1y
CSH?L’E = @ |:(221) > |:Tunmaxi{D(PWr‘?’a)}+1—D(Pwr‘?’€) s PWF%;€:|:| (6259)

Lemma 6.2.25 (R—, 2023). Let §,e € (0,00), ¢ € (2,00) and § =€ (297" + 1)_1. It is then the

case for alln € Ng and x € R that:

(i) J¢ (Csni®) (z) € C(R,R)

150

1 :n=20
(7i) D (Csnd®) <
2n [%2 [log2(5_1)+q]—1}+1 :neN

\ q

2 :n=20
(7ii) P (Csni®) <

(2n+1) [4243 4 (£50=1) (39 [log, (+71) + g+ 1] +372)| ineN

\

(Jo (271 = 3 (Pwrg) (2))] + &+ |2|7 + p3;)

(iv) |Sig e = 30 (o) ()| < T, |5
Where p; are the set of functions defined for i € N as such:

p1:5+1+|:v|2

pi =ce+ (pi-1)” + |z (6.2.60)
Whence it is the case that:

S CD 2 g, (cont) ()
prd 27!

€0 (52‘1@“—”) (6.2.61)

Proof. Ttem (i) derives straightforwardly from Lemma 6.2.18. This proves Item (i).
Next, observe that since Csn?® will contain, as the deepest network in the summand, Pwr2 , we

may then conclude that

n=20

—210g2)+q]—1}+1 :neN

This proves Item (ii).

151

A similar argument to the above, Lemma 5.5.5, and Corollary 5.5.5.1 reveals that:

P(Csn®) =P (@ [(;21‘) > [Tunmaxi{D(Pwrg’s)}+1—D(Pwrg’5) o Pwrf’ﬂ])

i=0
<(n+1)-P(¢;>[Tunje Pwrgf])

<(n+1)-P(Pwrd®)

2 n=20

N

(n+1) [4243 4 (£5020) (29 [log, (=) +q+1] +372)] ineN

This proves Item (iii).
In a similar vein, we may argue from Lemma 6.2.18 and from the absolute homogeneity property

of norms that:

S e o conte <x>>‘

i=0
n) n)
(=1 o . (-1’ ,
= Z 2! ™ — Je @ 21 > Tunmaxm{D(Pwrgf)}—‘,-l—D(Pwrgf) d Pwrgf (gj)
i=0 ’ i=0 ’
n) n)
(1 (1) 7
B o0 YT 2! (J v [T““maxzi{D(Pwr%f)}+1—D(Pwr%f) ¢ Pwrgf] (x))
i=1 i=0
| (-1
_ i~ 7
< Z 24! | ’ ‘.’IZ f- Je [TunmaXQi{D(Pwrgf)}JrlfD(Pwrgf) i Pwrgf} (l‘)‘
i=1 ’
| (-1 ;
<230 | |l (@ = 30 (Pwrgy) (@) | + & + [l + 5,)|
i=1 ’

Whence we have that:

co (52(1(2"—1)> (6.2.62)

This proves Item (iv). O

Lemma 6.2.26 (R—, 2023). Let d,e € (0,00), q € (2,00) and § = ¢ (2971 + 1)_1. It is then the

152

case for all n € Ny and x € [a,b] C [0,00) that:

(-1’
2i!

’x‘nJrl

(n+1)!

(Jo (2" = 3c (PwriZy) (@) | + &+ fal* +pl_1) + +

n

lcos (z) — Te (Csn®) (2)] <)
i=0

Proof. Note that Taylor's theorem states that for all x € [a,b] € R, where 0 € [a,b], it is the case

that:

n (_1)ixi COS("+1) (5) cpntl

cos () 2i (n+1)!

I
+

(6.2.63)

Note further that for all n € Ny, and # € R, it is the case that cos(™ () < 1. Whence we may
conclude that for all n € Ny, = € [a,b] C R, where 0 € [a,b] and & between 0 and x, we may bound
the second summand by:

cos(™t1) (5) . pntl ‘x’n—i-l
(n+1)! S (n+1)!

(6.2.64)

This, and the triangle inequality, then indicates that for all x € [a,b] C [0,00) and & € [0, z]:

n -1 (2 COS(n-H) Lt N
eon (@) = 3 (Cont) &) = |3 G @ ffy ~ 2 (Coni”) (@)
. (_1)i 7 q,€ ’x|n+1
S ; g @ e (Conit) @)+)
n 1 i . N
< 3| SR e ot =) o) e+ et)
i=1)
:Z/,|n+1
(n+1)!
This completes the proof of the Lemma. O

Definition 6.2.27 (R—, 2023, The Snel® Newtorks and Neural Network Sines.). . Let d,e €
(0,00), g € (2,00) and § = e (2971 + 1)_1. Let Pwr?® be a neural network defined in Definition

6.2.7. We will define the neural network Csn,, . as:

Snefl® = Csn®" o Aff; _= (6.2.65)

153

Lemma 6.2.28 (R—, 2023). Let 0,¢ € (0,00), g € (2,00) and 6 = ¢ (277! + 1)_1. It is then the

case for allm € Ny and x € R that:

(i) T (Snel*) € C (R, R)

1 n=0
(7i) D (Snel*) <
2n [quQ [log, (e71) +¢] —1} +1 :neN

¢

2 n=20
(7ii) P (Snel®) <

(2n+1) [42’”% + (%) <% [logy (e7H) +q+1] + 372)] :neN
\

(iv)
2 e
[D) fowremn o
S (D) (-2 - o)+t

Where p; are the set of functions defined for i € N as such:

pr=c+1+ |z

pi =c+ (pi-1)” + |z (6.2.66)

Whence it is the case that:

ZZ”; (;il!)i (‘T - %)2 — T3¢ (Snef”) (z)

€0 (»32‘1(2”—1)) (6.2.67)

Proof. This follows straightforwardly from Lemma 6.2.25, and the fact that by Corollary 5.5.5.1,

there is not a change to the parameter count, by Lemma 5.2.10, there is no change in depth,

154

by Lemma 5.5.2, and Lemma 6.2.25, continuity is preserved, and the fact that AffL_g is exact

and hence contributes nothing to the error, and finally by the fact that AfFly,% — (-) — § under

instantiation, assures us that the Sne?® has the same error bounds as Csn?*. O

Lemma 6.2.29 (R—, 2023). Let d,e € (0,00), g € (2,00) and 6 = ¢ (277! + 1)71. It is then the

case for allm € Ny and x € [a,b] C [0,00) that:

[sin (z) — Je (Sney®) ()]

<SS (=) (5 -t o= 3)) i)

|2l
(6.2.68)

|$|n+1

MCE]

Proof. Note that the fact that sin (z) = cos (¢ — §), Lemma 5.2.5, and Lemma 5.5.2 then renders

(6.2.68) as:

sin () — J; (Snel®)]

= ‘cos (ac - g) —Je (Csn%’8 oAfFL,%) ($)‘

“fom (e) - (- 3)
‘cos(:n 2) Je Con® (z 5

<3 G (-5 (3" oty (o=)| e bnts) o 215

O

Remark 6.2.30. Note that under these neural network architectures the famous Pythagorean
identity sin? (x) +cos? (z) = 1, may be rendered approzimately, for fized n,q,c as: [Sqr®® e Csn%®| @
[Sqr? eSnel<]. A full discussion of the associated parameter, depth, and accuracy bounds are

beyond the scope of this dissertation, and may be appropriate for future work.

155

Chapter 7

A modified Multi-Level Picard and

Associated Neural Network

We now look at neural networks in the context of multi-level Picard iterations.

Lemma 7.0.1. Let o, 3, M € [0,00), Uy, € [0,00), for n € Ny satisfy for alln € N that:

n—1
U, <aM™+ Z Ml (max {B,U;} + 1 (i) max {B, Umax{i,l,o}}) (7.0.1)
i=0

It is then also the case that for all m € N that U, < (2M + 1)" max {«, 8}.

Proof. Let:
Sp=M"+3 M [(QM F1) () (2M + 1)max{l*1’0}} (7.0.2)

1=0

We prove this by induction. The base case of n = 0 already implies that Uy < a < max{«, 5}.

Next assume that U, < (2M + 1)" max {«, 8} holds for all integers upto and including n, it is then

156

the case that:

n
Ups1 < aM™ ! + Z M (max {8, Us} + 1y (i) max {8, Unaxi—1,0} })
=0

<aM™ 4 Z M {max {B, (2M + 1)* max {a,ﬁ}}
=0

+1 (i) max {B, (2M + 1)mk=10} pax {a, B}H

< aMn—i—l + max {Oé,,B} Z Mn—i—l—i |:(2M + 1)1 +1y (Z) (2M + 1)max{i71,0}]
1=0

< max {a, B} Sp+1 (7.0.3)

Then (7.0.2) and the assumption that M € [0, 00) tells us that:

Sn+1 = Mn-l—l + ZMTH—I—i [(QM + 1)2 +1y (Z) (2M + 1)max{i—1,0}i|
=0

n n
= M"Y M M+ 1)F 4y T M (2M 4 1)

=0 =1
oM +1)"T — ptl (2M +1)" — M"™
— g | M
+ M1 * M+1
_ iy M M +)"t (2M +1)" M4 M
N M+1 M+1 M+1
1 1
< My M@eM+1)" eM 4+t et [T
M +1 M+1 M+T
= (2M +1)"*! (7.0.4)
This completes the induction step proving (7.0.1). O

Lemma 7.0.2. Let © — (U”ENZ”>, d,M €N, T € (0,), f € C(RR), g€ C(RLR),
F,G € NN satisfy that 3. (F) = f and 3. (G) = g, let u’ € [0,1], 0 € ©, and U’ : [0,T] — [0,T],
0 € ©, satisfy for all t € [0,T], theta € © that U} =t + (T — t)u?, let WP : [0,T] — R, 0 € O, for
every 0 € ©, t € [0,T], s € [t,T], let Y, € R satisfy Vi, = WE =W/ and let U] : [0,T] x R? — R,

157

n € Ng, 0 € O, satisfy for all§ € ©, n € Ny, t € [0,T], x € R? that:

o _1n(n) 3~ 0,0,-F)
U, (t,z) A7 Zg (x + Vi)

k=1
(70U —10) (70U 0 0))) <ut(97i7k)’:c + yfi;}’g’f?,k)ﬂ

(7.0.5)

Mnfi

n—1
T—1t
+ Z Mn—i
i=0 k=1

it 1is then the case that:

(i) there exists unique Uivt € NN, t € [0,T], n € Ny, 0 € O, which satisfy for all 1,05 € O,
n € No, t,ts € [0,T] that L (Uf;tl) -y (u,ﬂ’ftz).

(ii) for all € ©, t € [0,T] that Ug,t =[0 0 --- 0],[0]) € R*x R!

(iii) for all® € ©, n € N, t € [0,T] that:

i 1
0 _
o L@ (M“ (G) Affﬂdvyiff’k))]

T —t n—i i i
n_1 M 0,1,k 0,ik
o () s ())]
(t — T)]l N Mt (0,—i,k)
(Mn—i ® EBk:UI Fe Umax{i—l,O},Ut(G’i’k) * Affﬂd’y:ij(,;)i,k)
Uy

(7.0.6)

n—1
By Eizo,n

(iv) that for all @ € ©, n € Ny, t € [0,T], that D (Ufm) =n-H(F)+ max{l,1n(n)D(G)}

(v) that for all® € ©, n € Ny, t € [0, T, that ||L (U(,it)H < (2M 4 1)"max {2, ||L (F)|| pax + IL (G) || 2}

max
(vi) it holds for all @ € ©, n € Ng, t € [0,T], x € R? that U? (t,x) = (Jt (Ufm)) (z), and
(vii) it holds for all 8 € ©, n € Ny, t € [0,T] that:

P(U5.,) < 2nH (F) + max {1, 1 () D (G)}[2M + 1)" max {2, I (F) s 1L (6) e}

(7.0.7)

158

Chapter 8

ANN first approximations

8.1 ANN Representations for One-Dimensional Identity and some

associated properties

Definition 8.1.1 (One Dimensional Identity Neural Network). We will denote by Idg € NN the

neural network satisfying for all d € N that:

()

(ii)
ldg = B¢, Id; (8.1.2)

Ford > 1.
Lemma 8.1.2. Let d € N, it is then the case that:
(i) L(1dg) = (d,2d,d) € N3.

(ii) J: (Idg) € C (R4, RY).

159

(iii) For all x € R? that:
(Te (Ida)) (2) = @

(iv) For d € N it is the case that D (ldg) = 2

Proof. Note that (8.1.1) ensure that L(ldg) = (1,2,1). Furthermore, (8.1.2) and Remark 5.3.12
prove that L(ldg) = (d, 2d, d) which in turn proves Item (i). Note now that Remark 5.3.12 tells us

that:
L
Idd — Egi:1 (Idl) e (X |:Rdli><dl¢71 X Rdli]> — ((RQdXd % R2d> % (RdXQd % Rd)) (813)
i=1
Note that 8.1.1 ensures that for all x € R it is the case that:
(3¢ (Idy)) (z) = v(x) — t(—2z) = max{z,0} — max{—=x,0} =z (8.1.4)

And Lemma 5.3.8 shows us that for all 2 = (z1,2,...,75) € R? it is the case that J.(ldg) €

C (Rd,Rd) and that:

(3a (140)) (@) = (30 (BLL1 (1))) (@1, 2, s 0)
(36 (141)) (1), (3a (141)) (1) , s (3 (1d1)) ()

= (21,22, ...,2q) = (8.1.5)

This proves Item (ii)—(iii). Item (iv) follows straightforwardly from Item (i). This establishes the

lemma.]
Remark 8.1.3. Note here the difference between Definition ??7 and Definition 8.1.1.

Lemma 8.1.4 (R—, 2023). Let d € N. It then the case that for all d € N we have that P (Idg) =
4d* + 3d

Proof. By observation we have that P (Id;) = 4(1)? + 3(1) = 7. By induction, suppose that this

holds for all natural numbers up to and including n, i.e., for all naturals up to and including n; it

160

is the case that P (id,) = 4n? + 3n. Note then that Id,+1 = Id,, HId;. For Wi and Ws of this new
network, this adds a combined extra 8n + 4 parameters. For b; and by of this new network, this

adds a combined extra 3 parameters. Thus, we have the following;:
An* 4+ 3n+8n+4+3=4(n+1)*+3(n+1) (8.1.6)

This completes the induction and hence proves the Lemma. O

Lemma 8.1.5. Let v € NN with end-widths d. It is then the case that 3. (Idgev) (x) = T, (v e ldg) =

J: (v), i.e. 1dg acts as a compositional identity.

Proof. From (5.2.1) and Definition 8.1.1 we have eight cases.

Case 1 where d = 1 and subcases:
(1.i) Id;ev where D(v) =1

(L.ii) Idg ev where D(v) > 1

(1.iii) v eldg where D(v) =1

(1.iv) v eld; where D(v) > 1
Case 2 where d > 1 and subcases:
(2.i) Idgev where D(v) =1

(2.ii) Id; ev where D(v) > 1

(2.iii) v eldg where D(v) =1

(2.iv) v eld; where D(v) > 1

Case 1.i: Let v = ((W1,b1)). Deriving from Definitions 8.1.1 and 5.2.1 we have that:

1 1 0
Id| e = Wy, b1 +) ([1 — 1,] , [()D (8.1.7)
-1 -1 0

S ({8

161

Let x € R. Upon instantiation with v and d = 1 we have:

(3: (Idy ov)) () = t(Whx + by) — e(—Wix — by)

= max{Wix + b1,0} — max{—Wjz — b1,0}

= Wiz + b

=T:(v)

Case 1.ii: Let v = ((W1,b1),(Wa,b2),...,(Wp,br)). Deriving from Definition 8.1.1 and 5.2.1 we

have that:

|d1 oy —

1 1 0
(Wlabl)7(W27b2)7"'7(WL—lva—l)a WL7 bL+) <|:1 — 1}) |:O:|>

-1 -1 0

Wy, br,
(Wlabl)7(W27b2)a-"a(WLflabLfl)a y) (|:]. —1:|) |:O:|>

Wy, —br,

Let x € R. Note that upon instantiation with v, the last two layers are:

t(WLCC + bL) - t(—WLx —byr, 0)

= max{Wrz + br,0} — max{—Wrx — br,0}

= WL$+bL

(8.1.9)

This, along with Case 1. i, implies that the uninstantiated last layer is equivalent to (W7, br)

whence Id; ev = v.

Case 1.i5i: Let v = ((Wh,b1)). Deriving from Definition 8.1.1 and 5.2.1 we have:

veld; =

D).l gt oo
1) w0

162

Let x € R. Upon instantiation with v we have that:

<m<u-|d1>)<x>:{w1 _wl}r 1w

—T

=W, + b, =3, (v) (8.1.10)

Case 1.7v: Let v = ((W1,b1),(Wa,b2),...,(Wr,br)). Deriving from Definitions 8.1.1 and 5.2.1 we

have that:

1 0
V0|d1 = s s <|:W1 _W1:| ,b1> ,(Wz,bz),...,(WL,bL) (8.1.11)
-1 0

Let x € R. Upon instantiation with t, we have that the first two layers are:

[W1 — Wl] v v + by
=W t(l‘) —Wh t(—l’) + by
— W (e(z) — v(=2)) + by

= Wiz + b =T, (V) (8.1.12)

This, along with Case 1. iii, implies that the uninstantiated first layer is equivalent (17, b1) whence
we have that v eld; = v.

Observe that Definitions 5.3.1 and 8.1.1 tells us that:

163

d—many d—many

Weight|d1 1 Weightkil 2
B, 1d; = ;024 |, ,0q

Weight|d1 1 Weight|dl 2

Case 2.i Let d € NN [l,00). Let v € NN be v = (Wj,b1) with end-widths d. Deriving from

Definitions 5.2.1 and 8.1.1 we have:

Weightldl,l Weightldl,l
Idger = W, by |,
Weightg Weight,y,
Weightkjl’z
,0g
VVeight,dh2
(Wit « [b1]1
—[Wilix| |—[b1h Weightyy, o
=)) 7@d
[(Wi]a,s [b1]a I Weightld1,2_
|~ Wilax| |[—[b1]a]

Let « € R%. Upon instantiation with v we have that:

(T (Idg o)) ()

= u(Wi]ie -2+ [ba)1) = e(=[Wiliw -z = [b1]1) + -
+ t(Wilas -+ [br]a) — e(=[Wilaw - @ = [b1]a)

= Wil o+ [l + -+ [Was - @ + [bi]a

=Wix+b =7, (I/)

164

Case 2.ii: Let v = ((W1,b1),(Wa,b2),...,(Wpr,br)). Deriving from Definition 8.1.1 and 5.2.1 we

have that:
[Wil | [Bl]
—Weli«| |[=[bLh
Idgev = | (Wy,b1), (Wa,b2), ... (Wr—1,br-1), : ; : ; ([1 —1] ; {0])
(WLl [brla
| —Wilas| |—[brld]

Note that upon instantiation with t, the last two layers become:

(Wil -2+ [br]1) —e(=[Wiliw- @ — [br]1) + -
+v((Welax - @+ [brla) — v(=[Wila« - @ — [br]a)
=[Wilis-x+ b+ + [Wilax -2+ [brla

— Wi+ by (8.1.13)

This, along with Case 2.i implies that the uninstantiated last layer is equivalent to (W, br,) whence
Idjev = v.

Case 2.iii: Let v = ((Wh,b1)). Deriving from Definition 8.1.1 and 5.2.1 we have:

I/Oldd

Weightkjl’l Weight|d1’2

Weightml’l Weight|dl72

165

Upon instantiation with v we have that:

(Je (v)) (x) (8.1.14)
[z]1
—[z]x
= |Wilia = [Wilex o+ Wilea — [Wilia| T 5 + b1
[z]a
—[x]a

= Wil e(z]) — Wil e(=[z]) + - + Wileav((z]a) — [Wileav(=[z]a) + b1
= [Wl]*,l x4+ [W1]*,d - [x]q

=Wix+ b = jt(V) (8.1.15)

Case 2.iv: Let v = (W1,b1), (Wa,b2),...,(Wr,br)). Deriving from Definitions 8.1.1 and 5.2.1 we

have:

V0|dd

Weightml’l
= 024 | <[[W1]*1 — Wil - Wilea — [Wl]*,d] >b1> e

VVeightldh1

(W3, bg) s eeny (WL, bL)>

166

Upon instantiation with t, we have that the first two layers are:

(3: (v)) () (8.1.16)
]
—[z]x
= |Wilia = [Wilsq -+ Wilea — [Wilia| ® : + b1
[%]a
| —[#]a]

= Wil e(z]) — Wil e(=[z]) + -+ Wil av([z]a) — [Wileav(=[z]a) + b1
= [Wl]*,l x4+ [Wﬂ*,d - [x]q

This, along with Case 2. iii, implies that the uninstantiated first layer is equivalent to (Wp,br)
whence |d; ev = v.

This completes the proof. O

Definition 8.1.6 (Monoid). Given a set X with binary operation *, we say that X is a monoid

under the operation * if:

(i) For all z,y € X it is the case that v vy € X

(ii) For all x,y,z € X it is the case that (x xy) x z = x * (y * 2)
(iii) The exists a unique element e € X such that exx =x*e=2x

Theorem 8.1.7. Let d € N. For a fized d, the set of all neural networks v € NN with instantiations

in v and end-widths d form a monoid under the operation of e.
Proof. This is a consequence of Lemma 8.1.5 and Lemma 5.2.4. U

Remark 8.1.8. By analogy with matrices, we may find it helpful to refer to neural networks of

end-widths d as ' square neural networks of size d''.

167

8.2 Trp", Etr"" and Neural Network Approximations For the Trape-
zoidal Rule.

Definition 8.2.1 (The Trp neural network). Let h € Rsqg. We define the Trp" € NN neural network

as:

Trph = Affls) g (8.2.1)

h
2

[Ny

Lemma 8.2.2. Let h € (—00,00). It is then the case that:
(i) for & = {x1,z2} € R? that (J. (Trph)) (z) € C (R* R)
(ii) for x = {z1,2z2} € R? that (J. (Trph)) (z) = $h(z1 + 22)
(iti) D (Trp") =1
(iv) P (Trph) =3
(v) L (Trph) =(2,1)
Proof. This a straight-forward consequence of Lemma 5.5.1 O

Definition 8.2.3 (The Etr neural network). Let n € N and h € Rso. We define the neural network

Etr™" € NN as:

Etrh = Aff[L h] 0 (8.2.2)

Lemma 8.2.4. Letn € N. Let xg € (—00,00), and ,, € [xg,00). Let x = [wg 21 ... ,] € R*! and

h € (—o00,00) such that for all i € {0,1,...,n} it is the case that x; = xo +i-h. Then:
(i) for all x € R™*1 it is the case that (Jt (Etr”’h)) (x)eC (R”H,R)

(ii) for alln € N, and h € (0,00) it is the case that (J; (Etr”’h)) () =% -20+h 214+ +h-

Tn—1 + % * T
(iii) for alln € N, and h € (0,00) it is the case that D (Etr"’h) =1

168

(tv) for alln € N and h € (0,00) it is the case that P (Etr"’h) =n+2
(v) for alln € N and h € (0,00) it is the case that L (Etr”’h) =(n+1,1)
Proof. This a straightforward consequence of Lemma 5.5.1. O

Remark 8.2.5. Let h € (0,00). Note then that Trp" is simply Etr®".

8.3 Maximum Convolution Approximations for Multi-Dimensional

Functions

8.3.1 The Nrm{ Networks

Definition 8.3.1 (The Nrmf neural network). We denote by (Nrmil)alEN C NN the family of neural

networks that satisfy:

(i) ford=1:

Nrmj = : : <[1 1] : [OD € (RT! x R?) x (RM? xRY) (8.3.1)

(ii) forde {2,3,..}:

Nrm{ = Sumy o [Ele Nrmﬂ (8.3.2)

Lemma 8.3.2. Let d € N. It is then the case that:
(i) L (Nrm{) = (d,2d,1)
(ii) (3¢ (Nrm$)) (z) € C (R, R)

(iii) that for all x € R? that (3. (Nrm{)) (2) = [|z||,
(iv) it holds H (Nrm{) =1

(v) it holds that P (Nrm{) < 7d?

169

(vi) it holds that D (Nrm{) = 2

Proof. Note that by observation, it is the case that L (Nrm‘li) = (1,2,1). This and Remark 5.5.2
tells us that for all d € {2,3,...} it is the case that L (B¢, Nrmcf) = (d,2d,d). This, Lemma 5.2.5,
and Lemma 5.5.2 ensure that for all d € {2,3,4,...} it is the case that L (Nrmff) = (d,2d, 1), which
in turn establishes Item (i).

Notice now that (8.3.1) ensures that:
(l (Nrmgl)) (z) = ¢t (z) + t (—x) = max{z, 0} + max{—z,0} = |z| = ||z|; (8.3.3)

This along with () , Proposition 2.19) tells us that for all d € {2,3,4,...} and

r = (21,29, ...,2q) € R? it is the case that:

(m [E;Ll Nrmﬂ) () = (|z1], |z2| s oory |a]) (8.3.4)

This together with Lemma 5.2.3 tells us that:

<3t (Nrmf)) = (31. (Sude o [Elf-l:l Nrmﬂ)) (x)
d

= (Jc (Sumg)) (|a], [l ooy zal) = D sl = || (8.3.5)

=1

Note next that by observation H (N rm%) = 1. Remark 5.5.2 then tells us that since the number of
layers remains unchanged under stacking, it is then the case that H (Nrm%) =H (EI?Z1 Nrm;{) =1.

Note next that Lemma 5.2.4 then tells us that H (Sumg ;) = 0 whence Lemma 5.2.5 tells us that:

H <Nrm‘1i> =H (Sude . [Bgzl Nrm%])

H (Sumg) + H ([E;i:l Nrm}]) —0+1=1 (8.3.6)

Note next that:

Nrm} = : : ([1 1] : [OD € (R¥*! x R?) x (RV? x RY) (8.3.7)

170

and as such P (Nrm%) = 7. This, combined with Cor 5.3.5.1, and the fact that we are stacking

identical neural networks then tells us that:
P ([Eglzl Nrmﬂ) < 7d? (8.3.8)
Then Lemma Corollary 5.5.5.1, Lemma 5.6.6, and Lemma 5.2.5 tells us that:

P <Nrm‘f> =P (Sude . [Elle Nrmﬂ)

N

P ([E;Ll Nrmﬂ) < 7d2 (8.3.9)

This establishes Item (v).

Finally, by observation D (N rm%) = 2, we are stacking the same neural network when we have Nrm‘f.
Stacking has no effect on depth from Definition 5.3.1, and by Lemma 5.2.5, D (Su mg,1 e [Elglzl Nrmﬂ) =
D (EI Nrm%). Thus we may conclude that D (Nrmff) =D (Nrm%) =2.

This concludes the proof of the lemma. O

8.3.2 The Mxm? Neural Networks

Given x € R, it is straightforward to find the maximum; z is the maximum. For z € R? we may

find the maximum via network (8.3.8.1), i.e. Mxm?

. The strategy is to find maxima for half our

entries and half repeatedly until we have one maximum. For z € R? where d is even we may stack

d copies of Mxm? to halve, and for z € R? where d is odd and greater than 3 we may introduce
d—1

" “padding'' via the Id; network and thus require 5= copies of Mxm? to halve.

Definition 8.3.3 (Maxima ANN representations). Let (Mxmd) C NN represent the neural

deN

networks that satisfy:
(i) for alld € N that | (Mxm?) = d
(i) for alld € N that O (Mxm?) =1

(iii) that Mxm! = Aff; g € R™>*! x R!

171

(iv) that:

1 —1| o
Mxm? = 0o 11/,]0 <[1 1 —1],[0D
0 —1| |o

(v) it holds for all d € {2,3,...} that Mxm*® = Mxm® e [BL; Mxm?|, and
(vi) it holds for all d € {2,3,...} that Mxm?*~1 = Mxm®e [(B¢_; Mxm?) B Id1].

Remark 8.3.4. Diagrammatically, this can be represented as:

(8.3.10)

ﬁ////’ Mxm
Mxm?
;////// ‘\\\\ Mxm?
Mxm?
Mxm?
< | Mxm? /
Mxm?
/ \ Mxm?
Mxm?
\ " —

Figure 8.1: Neural network diagram for Mxm?.

Lemma 8.3.5. Let d € N, it is then the case that:
(i) H (l\/lxmd) = [log, (d)]

(ii) for alli € N that W; (Mxm?) < 3]

e

]

i) J. (Mxm?) € C (R%,R) and
(i) e (

(iv) for all x = (x1, 22, ...,4) € R we have that (TJt (Mxmd)) (x) = max{z1,x2, ..., 24}

172

(U) P (Mxmd) < (%dQ + 3d) (1 + %’—Ing(d)-H—l)
(vi) D (Mxm?) = [log, (d)] + 1

Proof. Assume w.l.o.g. that d > 1. Note that (8.3.10) ensures that H (Mxmd) = 1. This and (5.3.1)

then tell us that for all d € {2,3,4,...} it is the case that:
H (Egl:l Mme) = H ([E;Ll Mxmﬂ 5 Id1> = H (Mxm?) = 1
This and Lemma 5.2.5 tells us that for all d € {3,4,5, ...} it holds that:
H (Mxmd) —H (Mxm(%W) +1 (8.3.11)

And for d € {4,6,8, ...} with H <Mxm [%1) = [logQ (%)] it holds that:

H (Mxmd) - {bgz (gﬂ +1 = [logy (d) — 1] +1 = [log, (d)] (8.3.12)

Moreover (8.3.11) and the fact that for all d € {3,5,7,...} it holds that [logy (d + 1)] = [logy (d)]
ensures that for all d € {3,5,7,...} with H (Mxm(%w = [log, ([g}ﬂ it holds that:

)< o [4)] 2= (252

= [logy (d4+ 1) — 1] + 1 = [logy (d + 1)]| = [logy (d)] (8.3.13)

This and (8.3.12) demonstrate that for all d € {3,4,5,...} with ¥k € {2,3,...,d — 1} : H (Mxm?) =
[logy (k)] it holds htat H (Mxmd) = [logy (d)]. The fact that H (Mxm2) = 1 and induction establish
Item (i).

We next note that L (Mxm?) = (2,3,1). This then indicates that for all i € N that:

W; (Mxm?) < 3=3 {ﬂ : (8.3.14)

173

Note then that Lemma 5.2.5 and Remark 5.5.2 tells us that:

W, (Mmed)) =t (8.3.15)

Wi—l (I\/Ixmd)) > 2
And:

3d 1 =1
W, (I\/Imed_l) - (8.3.16)

Wz‘—l (I\/Ixmd)) 2 2

This in turn assures us that for all d € {2,4,6, ..., } it holds that:

A (Mxmd) ~3 (g) <3 m (8.3.17)

Moreover, note that (8.3.16) tells us that for all d € {3,5,7,...} it holds that:

d d
Ay _a || 4 <al?
a (Mxm) 3 [J 1<3 [zw (8.3.18)
This and (8.3.17) shows that for all d € {2, 3, ...} it holds that:
a (Mxmd) <3 M (8.3.19)
2

Additionally note that (8.3.15) demonstrates that for all d € {4,6,8,...}, i € {2,3,...} with

W,;_1 (Mxm%) <3 f(%) 21%11 it holds that:

Wi (Mxmd) = Wi, (Mxm%) <3 Kg) 2}4 ~3 [;W (8.3.20)

Furthermore note also the fact that for all d € {3,5,7,...}, i € N it holds that [Z] = [£] and

21’
(8.3.16) assure that for all d € {3,5,7,...}, i € {2,3,...} with W;_, (Mxm(gw < 3[[4] 54] it
holds that:

W, (Mxm®) = Wiy (Mxml31) <3 H%ﬂ 2@-11} =3 [d; ﬂ =3 EW (8.3.21)

This and (8.3.20) tells us that for all d € {3,4,...}, i € {2,3,..} with Vk € {2,3,...,d — 1},

je{1,2,...;i— 1} : W; (Mxm"*) < 3[2£] it holds that:

W, (Mxmd) <3 {;1 (8.3.22)

This, combined with (8.3.14), (8.3.19), with induction establishes Item (ii).

I
Next observe that (8.3.10) tells that for x = € R? it becomes the case that:
T2

(3 (Mme)) () = max{x; — x9,0} + max{xy,0} — max{—x2,0}

= max{z; — x2,0} + x2 = max{z1,x2} (8.3.23)

Note next that Lemma 8.1.2) Lemma 5.2.5, and (Grohs et al., 2023, Proposition 2.19) then imply
for all d € {2,3,4,...}, * = {21,292, ...,74} € R? it holds that (jt (Mxmd)) (x) € C (Rd,R). and
(3 (Mxmd)) (x) = max{x1,z2,...,x4}. This establishes Items (iii)-(iv).

Consider now the fact that Item (ii) implies that the layer architecture forms a geometric series

whence we have that the number of bias parameters is bounded by:

2

1 Mogs (d)]+1
< {3(1 (1 -3 ﬂ (8.3.24)

3d (1 _ (1)[oga(d)]+1 Mogy ()] +1
2((2)1):3d<1—1 2o >
2

For the weight parameters, consider the fact that our widths follow a geometric series with ratio %,

and considering that we have an upper bound for the number of hidden layers, and the fact that

175

Wg (I\/Ixmd) = d, would then tell us that the number of weight parameters is bounded by:

hogi(:dﬂ [(%) Wo (Mxm) <%>i+1 Wy (Mxm*)

1=0

_ hoidﬂ [(%)2”1 <W0 (Mxmd))Q_

7=

llog, ()] ; 2] Togy(@)] ;
:% gz ((%) Wo (Mxmd)> :% gz [G) d2] (8.3.25)

1=0 1=0

Notice that this is a geometric series with ratio %, which would then reveal that:
[loga(d)] i 2([log, (d)]+1
1 1) 2 5 1 2([logy(d)]+1)
= - <= 1—= 3.2
5 ; [<4>d] 3d(5 (8.3.26)

Thus, we get that:

2([logy (d)])+1 Mogy (d)] +1
P(Mxmd><§d2<1—% ’ >+{3d<1—% ’)
. 2d2 . 1 2([logy (d)])+1 2 (1 1 2([logy(d)]1+1) 2397
\ﬁ(‘é)4(‘5 ﬂ (8:3.27)
2 1 2(Tlogy (d)]+1)
< Kgd +3d) (1 +5) n 1} (8.3.28)

This proves Item (v).
Item (vi) is a straightforward consequence of Item (i). This completes the proof of the lemma. [
8.3.3 The MC Neural Network and Approximations via Maximum Convolutions

Let f : [a,b] — R be a continuous bounded function with Lipschitz constant L. Let xg < 27 <

- < xy be a set of sample points within [a,b], with it being possibly the case that that for
all i € {0,1,...,N}, z; ~ Unif([a,d]). For all i € {0,1,..., N}, define a series of functions
fos f1,- - fn :[a,b] — R, as such:

fi=f(xi) = L |z — (8.3.29)

176

We will call the approximant max;c(o1,.. n}1fi}, the maximum convolution approximation. This

converges to f, as shown in
Lemma 8.3.6. Let d, N € N, L € [0,00), x1,22,...,2x € R, y = (y1,92,...,yn) € RN and
MC € NN satisfy that:

MCYy! = Mxm™ o Aff_ 11y @ (BI, [Nrme e Affy, |) @ Coyy g (8.3.30)

It is then the case that:
(i) 1(MCY) = d
(i) 0 (MCXy) =1
(iii) H (MCQ;’) = [log, (N)] + 1

(i) Wi (Mcg@d) — 24N

(v) for alli € {2,3,...} we have W; (Mcg@d> <3 {25_[1]

(vi) it holds for all z € R® that (Jr (Mci\f@d)) (x) = maxeqro ny (i — L |z — a4])y)

(vid) it holds that P (MCN,) < [(32 +3a) (1+ FM=OT) 1] 7n2g2 4+ 3[4 - 20
Proof. Throughout this proof let S; € NN satisfy for all ¢ € {1,2,..., N} that S; = NrmiloAfFHd,_xi
and let X € NN satisfy:

X = Aff_r1y e ([BIL,Si]) ® Cpynag (8.3.31)

Note that (8.3.30) and Lemma 5.2.5 tells us that O (R) = O(Mme) = 1 and I<MC£{§Jd) =
I (Cpyy,q) = d. This proves Items (i)--(ii). Next observe that since it is the case that H (Cpyy 4)

and H (Nrm‘f) =1, Lemma 5.2.5 then tells us that:

H(X) = H(Aff_11y) + H (B1,S:) + H (Cpyny) =1 (8.3.32)

177

Thus Lemma 5.2.5 and Lemma 8.3.5 then tell us that:
H(MC) = H (Mxm" eX) = H (Mxm®™) + H (X) = [log, (N)] + 1 (8.3.33)

Which in turn establishes Item (iii).

Note next that Lemma 5.2.5 and (Grohs et al.,, 2023, Proposition 2.20) tells us that:
N N
A (Mcg’yd) =W (X) =W (BY,S) =Y Wi (s) =Y W, (Nrm‘f) = 2dN (8.3.34)
i=1 i=1

This establishes Item (iv).
Next observe that the fact that H(X) = 1, Lemma 5.2.5 and Lemma 8.3.5 tells us that for all

i€ {2,3,...} it is the case that:

W, (MCR) = Wiy (Mxm?™) <3 ’725_71-‘ (8.3.35)

This establishes Item (v).

Next observe that Lemma 8.3.2 and Lemma 5.5.5 tells us that for all 2 € R, i € {1,2,...,N} it

holds that:

(3¢ (M) (@) = (36 (Nrmd) 0 3 (Aff, 2) (@) = e — il (8.3.36)
This an (Grohs et al., 2023, Proposition 2.20) combined establishes that for all z € R? it holds
that:

(3: ([BEL1Si] o Cpyn,a)) (@) = (o — @1l 1z = @2l1, oo Iz — 2v11)

(8.3.37)
This and Lemma 5.5.5 establishes that for all z € R? it holds that:
(3: (X)) () = (Te (Aff_p1y) © (T ([BL,Si] @ Cpyna)) (z)
= (1 — Ll|z — 21|, y2 — Ll|x — z2|, ...,yn — Lllz — 2N 1) (8.3.38)

178

Then Lemma 5.2.5 and Lemma 8.3.5 tells us that for all z € R? it holds that:

(3 (MCXy')) (@) = (3¢ (Mxm™) o (3 (X)) ()
= (3 (Mxm™)) (y1 — Ll|z — 21/, 52 — L]z — 2|1, ... yv — L]z — 2n1)

) i bl 8.3.39
(12N} (v & — zi|1) ()

This establishes Item (vi).
For Item (vii) note that Lemma 8.3.2, Remark 5.3.4, Lemma 8.3.2, and Corollary 5.5.5.1 tells us

that for all d € N and z € R? it is the case that:
P (Nrm‘f .Affﬂd,_w) <P (Nrm‘f) < 7d? (8.3.40)

This, along with Corollary 5.3.5.1, and because we are stacking identical neural networks, then tells

us that for all N € N, it is the case that:
P (Egil [Nrm‘f oAffHd,_zD < TN2? (8.3.41)
Observe next that Corollary 5.5.5.1 tells us that for all d, N € N and z € R? it is the case that:
P ((Efvzl [Nrmgl .Affﬂd,_xD . cpyw) <P (Egvzl [Nrmgl.Aer_x]) < TNZ? (8.3.42)

Now, let d, N € N, L € [0,00), let x1,x9,...,zxy € R? and let y = {y1,92,...,yn} € RY. Observe

that again, Corollary 5.5.5.1, and (8.3.42) tells us that:

P (Aff_mw . (Ef\il [Nrm‘f . Aff]ld,—a:i:|) J CPYN,d>

<P (Bfil [Nrm“lloAfFHm_wD < TN2d?

179

Finally Lemma 5.2.5, (8.3.34), and Lemma 8.3.5 yields that:

P(MCY:) = P (Mme N (Eﬁl [Nrmgl .Afme_MD . cpvad)
<P (Mme . (Egil [Nrmcf . Afﬁldv_a;D)
< P (Mxm”) 4P ((EiNzl [NrmclloAfFHdv_x:)) +
Wi (Mxm™) 'WH(Egvzl[Nrm‘lioAfFHd,_w]) (Elijil [Nrmil.AfFHd,—x})

2([logy (d)]+1) 1
<K§d2+3d> <1+% i >+1 +7N2d2+3g12d1\f

Remark 8.3.7. We may represent the neural network diagram for Mxm? as:

Nrm'f Aty

Nrm¢ Affr, s,
<— Mxm? AFF_ L1y

Nrm¢ Affiy—,

Nrmcll Affr,—z,

Figure 8.2: Neural network diagramfor the Mxm network

180

(8.3.43)

Cpyn.d

8.3.4 Lipschitz Function Approximations

Lemma 8.3.8. Let (E,d) be a metric space. Let L € [0,00), DCE, d#CCD. Let f: D —R
satisfy for all x € D, y € C that |f(z) — f(y)| < Ld (z,y), and let F : E — RU {00} satisfy for all
x € E that:

F (2) = sup [f (y) — Ld (2,)] (8.3.44)
yeC

It is then the case that:
(i) for all x € C that F(x) = f(x)
(7t) it holds for all x € D, that F(x) < f(x)
(iii) it holds for all x € E that F (x) < 0o
(iv) it holds for all x,y € E that |F(x) — F(y)| < Ld (z,y) and,

(v) it holds for all x € D that:

|F(x) — f(x)] <2L ng(fjd(az,y)] (8.3.45)

Proof. The assumption that Vo € D,y € C: |f(x) — f(y)| < Ld (x,y) ensures that:
f(y) = Ld(z,y) < f(z) < fy) + Ld (z,y) (8.3.46)

For x € D, it then renders as:

f(z) = sup [f(y) — Ld (z,y)] (8.3.47)
yelC
This establishes Item (i). Note that (8.3.45) then tells us that for all € C it holds that:
F(2) 2 f(z) — Ld(z,y) = f (z) (8.3.48)

This with (8.3.47) then yields Item (i).

181

Note next that (8.3.46, with x v~ y and y v~ 2) and the triangle inequality ensure that for all

x € E, y,z € C it holds that:
We then obtain for all x € E, z € C it holds that:

F(x) = suIC)v [f(y) — Ld(z,y)] < f(z)+ Ld (z,2) < 00 (8.3.50)
ye

This proves Item (iii). Item (iii), (8.3.44), and the triangle inequality then shows that for all
xz,y € F, it holds that:

Fla) = F(3) = [sup (o) ~ La (2,0))| = [sup (7(w) = Ld ()

veC wel

=sup | f(v) — Ld (z,v) — sup (f(w) — Ld (y,w))}
vel weC
< 21618 [f(’U) — Ld (l’, ’U) — (f(v) — Ld (ya w))]
= sup (Ld (y,v) + Ld (2,v) — Ld (,v)) = Ld (z,y) (8.3.51)

This establishes Item (v). Finally, note that Items (i) and (iv), the triangle inequality, and the

assumption that Vo € D,y € C : |f(x) — f(y)| < Ld (z,y) ensure that for all z € D it holds that:

|F(z) = f(z)] = inf |F(z) = F(y) + f(y) = f(2)|

yeC
< inf ([F(z) = F(y)| + [f(y) — f(@)])
yeC
< ylgg (2Ld (x,y)) = 2L [ylgéd(x, y)] (8.3.52)
This establishes Item (v) and hence establishes the Lemma. O

Corollary 8.3.8.1. Let (E,d) be a metric space, let L € [0,00), @ # C C E, let f : E — R satisfy

forallx € E, y e C that | f(z) — f(y)| < Ld (z,y), and let F : E — RU {oco} satisfy for all z € E

182

that:

F(z) = sup [f(y) — Ld (z,y)] (8.3.53)
yeC

It is then the case that:
(i) for all x € C that F(x) = f(z)
(7i) for all x € E that F(x) < f(x)
(iii) for all x,y € E that |F(x) — f(y)| < Ld (z,y) and

(iv) for all x € E that:

|F'(x) — f(x)] < 2L ng(fjd(x,y)] (8.3.54)

Proof. Note that Lemma 8.3.4 establishes Items (i)—(iv). O

8.3.5 Explicit ANN Approximations

Lemma 8.3.9. Let d,N € N, L € [0,00). Let E C R% Let x1,29,...,.axy € E, let f : E —
R satisfy for all 1,31 € E that |f(x1) — f(y1)] < Lljz1 — 22|, and let MC € NN and y =

(f (wl) f (:L'Q) goees f (xN)) satisfy:
MCY! = Mxm” o Aff_ 11y @ [B, N 0 Affi,, .| o Coy g (8.3.55)

It is then the case that:

3 (M) (@) - ’<2L[< i —)] 8.3.56
sup| (36 (ME2)) (0= F @ <20 g (ggin b =i)| (8350
Proof. Throughout this proof let F' : R? — R satisfy that:

F(z)= max (f(x;)— Lz —) (8.3.57)

i€{1,2,....N}

183

Note then that Corollary 8.3.8.1, (8.3.57), and the assumption that for all x,y € E it holds that

|f(z) — f(y)| < L||x —yl|, assures that:

sup |F(x) — f(z)] < 2L [Sup (min |z — xilll)} (8.3.58)

x€E zeE \1€{1,2,...,N}

Then Lemma 8.3.6 tells us that for all x € E it holds that F(z) = (3, (MC)) (z). This combined
with (8.3.58) establishes (8.3.56). O

Lemma 8.3.10. Let d,N € N, L € [0,00). Let [a,b] C R%. Let 21,29,...,ox € [a,b], let
f :]a,b] = R satisfy for all x1,x2 € [a,b] that |f(x1) — f(z2)| < L|z1 — 22| and let MCi\{; € NN

and y = f ([z],) satisfy:
MCY; = Mxm" e Aff_p1, o [, Nrm e Affy _,.] @ Coyy, (8.3.59)

It is then the case that for approrimant MCQ{;} that:
(i) 1(MCz) =1

(i) O (MCY;)) =1

(iii) H (MCL,)) = [logy (N)] + 1

(iv) Wi (MCI1) = 2N

(v) for alli € {2,3,...} we have Wy (MCCJE\{;}) <3 [25_711

(vi) it holds for all z € R that (J; (MCQ{%})) (z) = max;eq10,. Ny (i — L]z — 24])
(vii) it holds that P (MC}}') <6+ 7N?+3[5] 2N
(viii) Supef) |F(2) — f(2)| < 2LIFH

Proof. Ttems (i)—(vii) is an assertion of Lemma 8.3.6. Item (viii) is an assertion of Lemma &8.3.9

with d ~ 1. O

184

Part 111

A deep-learning solution for v and

Brownian motions

185

Chapter 9

ANN representations of Brownian

Motion Monte Carlo

This is tentative without any reference to f.

Lemma 9.0.1 (R~-,2023). Letd,M € N, T € (0,00) , a € C(R,R), T" € NN, satisfy that I, (Gq) €
C (Rd,R), for every 0 € ©, let U? : [0,T] — [0,T] and WP : [0,T] — R? be functions , for every
0 €O, letUY:[0,T] = R — R satisfy satisfy for all t € [0,T], x € R? that:

M
Ul(t,z) = % [Z (Ja (1)) (ac + wwvo’—’“))] (9.0.1)

k=1

Let U? € NN , 0 € © satisfy for all 0 € ©, t € [0,T) that:

M
1
U? = [@ (M > <Gd ° Affﬂmwéf_’(i’_k)))] (9.0.2)
k=1

It is then the case that:
(i) for all 61,05 € ©, t1,ts € [0,T] that L (Uﬁ;) =L (Uf;).
(i) for all @ € ©, t € [0,T), that D (U{) < D(Gy)

(117) for all® € ©, t € [0,T] that:

()

<L (6a) lhnax (14 V2) M (9.03)

max

186

(iv) for all0 € ©,t €[0,T], x € R that U%(t,z) = (Ja (U?)) (x) and

(v) for all @ € ©, t € [0,T] that:
P (U?) <2D(Go) [(1+ V2) M 1L (G] : (9.0.4)

Proof. Throughout the proof let P/ € NN, 6 € ©, t € [0, T] satisfy for all § € ©, t € [0, T] that:

M

P! =D [% > (Gae Affﬂwwqeﬂ,o,tk)} (9.0.5)

k=1

Note the hypothesis that for all 8 € O, t € [0,T] it holds that Wte € R? and Lemma 5.7.9 applied
for every 6 € © t € [0,T] with v A M, Cicfuust,.o} O ()

(9,0,4@))
(WT*t ke{1,.2,...M}’
Lemma 5.7.9 tells us that for all § € ©, ¢ € [0,7], and = € R? it holds that: La lala

i€{u,u+l,...,v}’ (Bi)ie{u,qul,...,v} A

(Mi)icfuutt,vt O (Cd)ictuust,.op K O ®Y and with the notation of
L(P?) = (& MW1 (G), M W3 (G) ... MWp(g) 1 (G),1) = L (P§) € NP(O+! (9.0.6)

and that:

(3 (°1)) (@) = 37 [0.6 (- Wﬂk))]

k=

—_

=U%(t,2) (9.0.7)

This proves Item (i).
Note that (9.0.6), and (9.0.7) also implies that:

L (U?) =L (Pf)
- <d, W, (Pf) W, (Pf) s Wp(g) (Pf) ,t)

=L (Uj) e NP(©)+1 (9.0.8)

187

This indicates that for all § € ©, t € [0, 7] it is the case that:

()] =Ll
= e 3%), (W (P))

This, (9.0.6), and Lemma 5.2.5 ensure that for all 0 € O, ¢ € [0, 7] it is the case that:

[()] =t W)l < L PO < MIL©G)I

< MIL(G)lo + M [||L (UB)]] (9.0.9)
Then (Hutzenthaler et al, 2021, Corollary 4.3), with v m~ 0, 8~ M, k A 1, ag ~ ||L(G)||,
ar N 0, (mi)i€{0,17_”7k} a (HL()H)16{01 in the notation of (Hutzenthaler et al., 2021,

Corollary 4.3) yields for all § € ©, t € [0,T] that:

(U], < z0t@ (14 v2) M
<L @)l (1+v2) M

Note that Lemma 5.2.5, Ttem (iii), proves that for all # € ©, t € [0, T it is the case that:
D (Ug’) =D (UJ) =D (G) (9.0.10)

This proves Items (ii)--(iii) and (9.0.7) proves Item (iv).

Items (ii)--(iii) together shows that for all 6 € ©, t € [0, 7] it is the case that:

()< > ()
o[t
(

max

)HL(UG)H
) UL ©)l) (1+v2) M

D (@) (IL(O)l) (1+v2) M

<D

This proves Item (v) and hence the whole lemma. O

188

9.1 The E)"%¢ Neural Network

Lemma 9.1.1 (R—, 2023). Let n,N € N and h € (0,00). Let 6, € (0,00), q € (2,00), satisfy
that § = e (2971 + 1)_1. Let a € (—00,00), b € [a,00). Let f : [a,b] = R be continuous and have
second derivatives almost everywhere in [a,b]. Let a = z9 < 21 < -+ < xy-1 < xy = b such that
for alli € {0,1,...,N} it is the case that h = 3%, and x; =20 +i-h . Let v = [xg 1 -+ zN] and

as such let f ([a:]**> = [f(xo) f(z1) --- f(xn)]. Let ENM9 € NN be the neural network given by:
ENRaE — Xpnd© o EtrV:h (9.1.1)

It is then the case that:
(i) for all x € RN+ we have that (TIt (Efyvh’qva)) (x)eC (]RN“,R)
1 n=20

(ii) D (EY™) <
n [% [logy (671) + ¢ —1] +1 :n>1

q—2
(iii)
p(EnN,h,q@)
N +2 n=20
<
(3N +1) (n+1) 4743 + (£951) (5% [logy (=71) + g +1] +372)| :neN
(iv) for all x = {xg,z1,...,2n} € RNT! where a = v9 < 71 < --- < an_1 < zy = b we have
that:

exp [/a ’ fd:c] ~ 7 (EilV ’h’q’e) (f ([“’]))‘

b_ 3 b_ 3 n—1
< <12]§2 e |2+ e 4
"1
ZH 13 (Pwr?) (B)| + e+ 217+ pL,) (9.1.2)
=1

(v) it is the case that WH(EN’h"I@) (Erly,h,q,e) <24+ 2n

189

Proof. Note that Lemma 8.2.4 tells us that J, (EtrN’h) eC (RN+1,R), and Lemma 6.2.22 tells us
that J. (Xpn2©) (z) € C' (R,R). Next, note that Lemma 5.2.5 and the fact that the composition of

continuous functions is continuous yields that:

~ N,h,q, _ o~ s
Je <En qE) =i (Xpn%E OAff[h hoh %]7())

2
=3 (Xpn%) 0 3¢ (Affs , jn)0) € C (RYTLR)

2

Since both component neural networks are continuous, and the composition of continuous functions
is continuous, so is EN""%¢. This proves Item (i).
Next note that D (Aﬂ:[ﬁ hoh ﬁ]) =1, and thus Lemma 5.2.5 and Lemma 6.2.22 tells us that:
2 2
N,h
D (EX"°) =D (Xpnt e Affly,)
=D (Xpn%va) +D (Aff[% hoh %]70) —1
— D (Xprf?)

1 n=20
<

n{q_% [log2(5_1)+q]~1]+1 :n €N

This proves Item (ii).
Next note that by Corollary 5.5.5.1, Lemma 6.2.22, Lemma 8.2.4, and the fact that | (EtrN’h) =

N + 1, and | (Xpn?©) = 1, tells us that, for all N € N it is the case that:

P (EN"e)
I (EtrV") +1
< 1, =—————=¢| - P (Xpn%*©
[max{ I (Xpn®?) + 1 (Xpne)
1
= <§N+ 1) - P (Xpnk*©)
N +2 n=20

<
(3N +1) (0 +1) 4743 + (295=1) (5% [logy (=71) +q+1] +372)]| :neN

This proves Item (iii).

190

Note next that:

N,h
Aff[h hoh %]70 = Etr (9.1.3)

2

Thus the well-known error term of the trapezoidal rule tells us that for [a,b] C R, and for £ € [a, b]

it is the case that:

/ ey da - (3 (Ee¥)) (1 (m*,*))‘ <= g (9.1.4)

and for n € Ny, d,e € (0,00), ¢ € (2,00) and 6 = €<2q_1 + 1)_1, and for x € [a,b] C R, with

0 € [a, b] it is the case, according to Lemma 9.1.1, that:

n

€ — 3 (Xpn) ()] < 3

=1

1
il

eb . ‘:13|"+1
(n+1)!

(9.1.5)

(|:c (:z:"’1 — T (Pwrl)) (:z:))| +e+ x|+ pl_y) +

Note now that for f € Cye (R,R), [fda € [a,b] € R, 0 € [a,b], and ¢ between 0 and [fda it is

the case that:

n+1
b n [y /b i et ’ff fd:c’
de| = — d .1.6
exp | [] 2| (L) |+ (9:1.6)
And thus the triangle inequality, Lemma 5.2.5, and Lemma 6.2.22, tells us that for x = {xg, z1,..., 2N},
a=x9 <2 <--<ay=band [a,b C R that:
b
o [[] -3 (£272) (5 (11..)
n [i1 3 b il
1 b i1 €S- (fa fdx)
= — N q,€ N,h
; - (/a fdx) oD T (Xpnn o Etr)(f ([m]))
- i ¢ b n+1
n [b e ‘fa fdx
< — e { q,€ ~ N,h 1
<27 (/ fd:v> 3 (ko) () 0 e (Er™) (7 (Iel.)) |+ —(r o — (04D

Note that the instantiation of Etr™" is exact as it is the instantiation of an affine neural network.

191

Je (EtrN’h) (f ([w]**>> Then Lemma 6.2.22 tells us that:

For notational simplicity let = =

3

— | =

1 - €\ (= = 2
(2 (= = 30 (Pwrt) @)+ e+ Bl + (7)) (919

<5

=1

~

> [2] - oot @)

=0

Where for ¢ € N, let piE_l be the family of functions defined as such:

PEL=et1+ =

p; =e+ (pi1)* +[EP (9.1.9)
This then leaves us with:
n 1 b i n =0 n 1 b i =i
Z[ﬂ ([1)] 5 <2 [‘ ([1) —”
i=0 a i=0 i=0 @
1 b oo
S+ g)| a </a fdx) ol
b i ,
<n- — d - = 1.1
" ie?llf,%.}.)fn} 1! </a ! x) (9-1.10)
Note that for each i € {1,...,n} it holds that:
= (9.1.11)

</abfd:c>i—5i:</abfdx—5> [(/abfdx>i_l+</abfd;,;>i_2.3+...+u

Note that the well-known error bounds for the trapezoidal rule tell us that = and f: fdx differ by

3
at most % 1" (&) in absolute terms, and thus:

(b—a) (9.1.12)

b 3
- — a
max {:,/a fda:} <E+ o 7(6)

This then renders (9.1.11) as:
i—1

b i _a)? —a)?® !
</ fd:c> -z (b12N2) F1(E) i [E+ (b12N2) f” (g)] (9.1.13)

192

Note that this also renders (9.1.10) as:

S ()] -5]

i=0 1=0

(b—a)’
12N2

(b—a)’

12\2 =+

f1(&-n*-

n—1
1’ (5)] (9.1.14)

This, the triangle inequality and (9.1.8), then tell us for all x € [a,b] C [0, 00) that:

; [71' </b ! dw)] —Je (Xpni©) (x) 0 2

n 1 b 7] n EZ n =i
S Z [ﬁ (/ fdJU) - Z [?} + [?] — T (Xpn?#) (z) o E‘
=0 ’ a] i=0 : i=0 :
(b _ a)3 Y) _: (b _ a)g , n—1
oy L&)t B o Q)+
n 1 ‘ _
a (’5 (E7" =3 (Pwr!5) (B)| +e + 2|7 + (p;_l)q) (9.1.15)
i=1

This, applied to (9.1.7) then gives us that:

exp [/ ’ fdx] =3¢ (EN9) (1 (M))‘

n+1
n b i ek ’f” fdx
1 - ~ a
<[5 [H([) | om0 (o) 5 () +
i=1 a _
r n—1
(b — Q)S " 2 - (b — a)3 "
< 1@ |2 @O+
n+1
"1 - - eg-‘f;fdx
= (== ~ q,€ = - =
5 (= (._ — Jt (Pwri_l) (_4))’ + e+ |\—4|q + (Pi_l)) + (n T 1)' (9116)
=1
This proves Item (iv).
Finally note that Lemma 6.2.22 tells us that:
W N.h (EN’h’q’E) =W q,e (Xpnq’s)
H(EN M) \Tn H(Xpn#®) n
<24+ 2n (9.1.17)

193

Remark 9.1.2. We may represent the Eflv’h’q’a diagrammatically as follows:

<R
o Tun Pwrg <— R
7> Tun Pwr] \
Cpy,,.1 EtrNh
<— Cpy,.1
N
- <— R
ik Pwrl

Figure 9.1: Diagram of EN-ma¢,

9.2 The UEfj’ézq’s Neural Network

Lemma 9.2.1 (R—,2023). Let n,N,h € N. Let §,e € (0,00), q¢ € (2,00), satisfy that 6 =
e (2071 + 1)_1. Let a € (—00,00), b € [a,00). Let f : [a,b] = R be continuous and have second
derivatives almost everywhere in [a,b]. Let a = xog < x1 < -+- < xny-—1 < N = b such that for all

i €{0,1,..., N} it is the case that h =252, and x; = x9+1i-h . Letx = [vg a1 -+ aN] and as such

n,h,q,e

let f ([m]**> = [f(xo) f(z1) -+ f(zn)]. Let EZF € NN be the neural network given by:
Eanthva = Xpnl©e EtrNl (9.2.1)

Let Gg € NN be the neural network which instantiates as uqg = J (Gq) (z) € C (Rd, R) for all x € R?.

Let UET]:féZq’E be the neural network given as:

UE 9% = Prdi o [ENT050G, 9.2.2)

194

It is then the case that for all x = {xg,x1,...,2x} € RNT! and 2 € RY that:

nde

(i) 3 (VENG) (£ () ~ o) € C (RN+! x RY,R)

>< L5 [logs (71) +¢] +D(Ga) — 1 ‘n=0

(ii) D (VEY &7
7243 [logy (€71) +q] + max {D (EN¢"7) D (G} —1 in>1

TL7Gd
(7ii) It is also the case that:

P (UENL) < % logy (£71) +q + 1] + 324 + 48n

+24Wi(g,) (Ga) + 4 max {P (E,’jvhv%e) P (Gd)} (9.2.3)

(iv) It is also the case that:

exp (/ b fda:> ua (2) = 3 (VENLS) (F([e]. ~ =)

b q b q
< 3e + 2e|u(x)]? + 2¢ [exp </ fd:n) + € |exp </ fd:z:) —e| —eu(x)
a a
Where, as per Lemma 9.1.1, ¢ is defined as:
b
‘EnN’h’q’E (f ([z],)) — exp (/ fda:)‘ <e (9.2.4)
a
Remark 9.2.2. Diagrammatically UE,IY’h’q’E can be represented as:
Tu n Egvhﬁq?E 2 RN+1

<— | Prd?°

\ o 6, B

Proof. Note that from Lemma 5.2.5, and Lemma 5.3.3, we have that for r € RN*1 and 2 € R? it is
¢ (Prd?)oT ([ERVM9°9G,]) (f (W,) ~).

=7
Then Lemma 6.1.10 tells us that J, (Prd?€) € C' (R% R). Lemma 9.1.1 tells us that J; (EnN’h’q’E) €

the case that J, (Prdq"€ ° [Eff’h’q@@Gd]) (f ([z]l, ~)

195

C (RN +1,]R) and by hypothesis it is the case that J, (Gy) € C (Rd,R). Thus, by the stacking
properties of continuous instantiated networks and the fact that the composition of continuous
functions is continuous, we have that J. (U Eg’&’lq’a) eC (]RN 1 x R, R).

Note that by Lemma 5.2.5 it is the case that:

D (UEN’h’q’€> = D (Prd®¥) + D (Efjvhvwe(;d) 1 (9.2.5)

TL,Gd

Lemma 9.1.1 and Lemma 6.1.10 then tell us that:

N,h,q,e
D (VEYZ)
4 Togy (e71) +¢q] + D (Gg) — 1 n=20
. 773 [loga (¢7%) + 4] + D (Ga) 0.2
e [log, (e71) + ¢] + max {D (E}""%¢) ,.D(Gy)} -1 :n>1
Note that then Lemma 5.2.5, Lemma 6.2.22, and Lemma 9.1.1 tell us that:
P (UENL?) < P(Prd®) + 4max {P (E""4<) P (Gy)}
q,€\ N,h,q,e
W (P Wy g, (ENhae0G,)
< P (Prd®) + 4max {P (EY") P (Gy) |
+ 24 [(24 + 2n) + WH(Gd) (Gd)]
— P (Prd®) + 4max {P (EY"<) P (Gy) |
+ 576 + 48n + 24 - Wy(g,) (Ga)
< % [log2 (5_1) +q+ 1] + 324 + 48n
+24Wyy(q,) (Ga) + 4 max {P (E;V’h’qvf) P (Gd)} (9.2.7)
Now note that Lemma 5.2.5, and Lemma 5.3.3 tells us that for all ¢t = {x1,z2,...,2,} € R™ and

x € R%:

3. (Prd o [EN56Gy |) (£ ([e],) ~ o) = 3 (Prd®) (3¢ (EN"<) 3¢ (Ga)) (f ([e).) ~).
(9.2.8)

196

Note then that the triangle inequality tells us that:

exv ([1) wat) = (VL) (7) ~)

exp < /ab fda;) g () — 3¢ (Pra®?) (3. (EN"9°) 3. (G)) (F (i) ~)

exp < / ’ fd:c> g (2) — T (Prd?) (eXp < / b fdx) g (3:)) ‘

2e(prat?) (e ([fae) ua (o)) - 2 (Prat?) (3 (49°) 30 (60) 7 () ~

<

i (9.2.9)

Note that Lemma 6.1.10 bounds the first summand. Note that by hypothesis J, (Gg) is exactly
ug (). Note also that by Lemma 9.1.1, Lemma 6.1.10, we realize that the second summand can be

bounded as such:

3¢ (Prd??) (exp < / b fd:v> g <x)> = 3 (Prd®) (3¢ (EN¢) 3¢ (64) (£ ([e),) ~)

< exp (/bfdx>ud(x)+€+e exp </bfdx>

= [0 (BN (£ (1)) 3¢ (Ga) () — = — = 3 (EX1) (1 ()| = ¢130 (Ga) (2))7] (9:2.10)

q
+ € |ug (x)]?

Per Lemma 9.1.1, let e represent the error in approximation of E,jy Mg that is to say for all x € RN+1

and corresponding f ([z],), let it be the case that:

X (7 () e ’ far)| < (02.11)

Thus EN P (f ([¢],)) is maximally e+ exp (f; fdac) and minimally exp (f; fda:) —e¢. Thus (9.2.10)

197

is rendered as:

exp(/abfdas>ud(33)+e—l—6 exp</abfd:v> el (@)
- [5 (EN’L“) 36 (Ga) (£ ([6),) ~ @) — & = & [3 (EN) ((i.))] = &3 (Ga) (@)
<exp())+e+e exp</abfda:> q—f—s\ud(x)]q
< —i—exp(/bfdx))ud()—e—e eXp</abfdx> —eq—slud(m>|q]
— exp 7 g (z —i—E—l—Eexp(fdx>q+€\ud(x)]q
—eu(t,z) — exp 7] g (z +s+sexp(afdx>—eq+a\ud(x)yq
— 92 + 2 [ug ()| + ¢ |exp </ fd:z:> —e +elexp (/jf@) " (@) (9.2.12)

This, together with (9.2.9), then tells us that:

v ([7o) 0) 3. (VYL (7) ~

exp (/ ’ fda:) g () — T (Prd?) <exp (/ ’ fda:) g (x)) ‘

e prar) (e ([) cua) =30 (Prav?) (32 (E1497) (7 (1) 30 60) @)

exp </" pio) q

+ € fug (2)[*
+ 26+ 2 |ug (x)|? + ¢

<

<e+te

— eug (2)
q
— g (z)

q
+ée

exp < b/ b fd:v)
exp < / fd:c> e

exp(/jfda:)—e
exp(/abfdac>q

= 3¢ + 2¢ |ug (z)|7 + 2¢ +¢

9.3 The UEXnN’éLfU’i network

Lemma 9.3.1 (R—,2023). Let n,N,h € N. Let §,e € (0,00), q¢ € (2,00), satisfy that 6 =
e (2071 + 1)71. Let a € (—00,0), b € [a,00). Let f : [a,b] — R be continuous and have second

derivatives almost everywhere in [a,b]. Let a = zg < x1 < -+ < xny-_1 < &y = b such that for all

198

i€{0,1,..., N} it is the case that h = bfTa, and x; =x0+1i-h . Let x = [xgx1 -+ xN]| and as such

n,h,q,e

let f ([w]**) = [f(xo) f(z1) -+ f(zn)]. Let EZP € NN be the neural network given by:
Eﬁ/,h,q,E = Xpn%"E o EtrNV:l (9'3'1)

Let Gg € NN be the neural networks which, for d € N, instantiate as ug = J; (Gg) (z) € C (Rd,R)
for all x € R,

Let UETI:]’(?‘;’I’E C NN be the neural networks given as:
UENLe = Prar< o [EN 120G, (9.3.2)
Finally let UEXth€ C NN be given the neural networks given by:

UEX Ve _ UEN hae o [Tun{VHEAfF@d’d,Xwi (9.3.3)

n,Gq,w;

It is then the case that for all x = {xg,21,...,2x} € RN*! and 2 € RY that:

(i) 3 (UEXY L2) € C (R x RY, R)

n,Gg,w

(i)
D(UExjjgf(j D ﬁ"dh’qf
%logz 1) +4¢]+D(Gy) -1 n=0
% log, (1) + ¢ —i—max{D (E%‘%J;%) D(Gd)} neN

(7ii) It is also the case that:

P (UBXY&es) = P (UENE) < ;’6_—0(; [logy (71) +q + 1] + 324 + 48n

+24Wyy(q,) (Ga) + 4 max {P (Ef:”h’q’a) P (Gd)} (9.3.4)

199

(iv) It is also the case that:

oo ([gas) uf () -3 (VEX02) 5 () ~

q q

b b
< 3€+2€|u§ (t,:c)‘q + 2¢ |exp </ fda:) + ¢ |exp </ fd:c> —e¢| —eul (2)
Where, as per Lemma 9.1.1, ¢ is defined as:
b
X (7 () - ([gas)| < 935

Proof. Note that (9.4.9) is an assertion of Feynman-Kac. Now notice that for 2 € RVT! x R it is
the case that:
3 (UBX)E05) (@) = 3¢ (VENESS o [Tuni ' B Ay, , 1, |) (2)

_ (U Eﬁjggf) 0T ([Tun{V g AfF@d,d,XWiD ()

Note that by Lemma 9.3.1 it holds that J, (UET]X’G}L:I’E) e C (]RN“'1 X Rd,R). Note also that by

Lemma 6.2.6, Tuniv *1 s continuous and by Lemma 5.5.2, Affy a.4,X.,; 18 continuous, and whence by

Lemma 6.2.6 and Lemma 5.5.5 it is the case that J, ([Tun{\”rl B AfF@d,mei}) (z) € C (RNFL x R4, RNFL x RY).
Finally, since the composition of continuous functions is continuous, and since we have functions

(RVHL X RY) i (RV+! x RY) 1 R we have that T (UEX) 2%) € C (RN*! x R%,R). This proves

Item (i).

Note next that by Lemma 6.2.6, it is the case that D (Tunf””l) =D (Aff@d’m%i) = 1. Thus by

Lemma 5.2.5 it is the case that D (UEX ;"¢) = D (UEY:%¢). This proves Item (ii
n,Gyg

n7Gd7wi

Next note that:

P (UEXN’h’q’E) —p <UEfX’th’E . [Tun{V“ EIAfF@d,d,XwiD (9.3.6)

n’Gd7wi

Note carefully that Definition 6.2.4 tells us that Tuniv + and so by Lemma 5.5.6,

= AfF]IN+1,N+17®N+1)

it must be the case that Tuniv 18 Affy 40X, 1S also an affine neural network. Whence, Corollary

200

5.5.5.1 tells us that:

n’Gd7wi

P(UEX) 05) = P (UENES o [Tunlt B AfR, 2.,])

| (Tund 1 B AR, 1,) + 1

< |max? 1, P (UEN e
ORI R

— P (UENZ™)

< 36_—02 [logy (e7') + g+ 1] + 324 + 48n

+24Wyy(q,) (Ga) + 4max {P (Ei}h’q»f) P (Gd)} (9.3.7)

Finally, note that both Affy;, and Tu ng are exact and contribute nothing to the uncertainty. Thus

UEXgéun’i has the same error bounds as UEnN’GhC’lq’E. That is to say that:

oo ([gas) uf () =30 (VEX02) 5 () ~

exp</abfdm>q exp</abfdz>—e

q
< 35+25’udT (t,:n)|q+25 +e —eul (x)

O

Corollary 9.3.1.1 (R—, 2024, Approximants for Brownian Motion). Let t € (0,00) and T €
(t,00). Let (2, F,P) be a probability space. Let n,N € N, and h € (0,00). Let 0, € (0,00),
q € (2,00), satisfy that § = & (2971 + 1)_1. Let f : [t,T] — R be continuous almost everywhere
in [t,T]. Let it also be the case that f = gob, where b : [t,T] — R%, and g : R — R. Let
t=ty) <ty <-- <ty_1 <ty =T such that for all i € {0,1,..., N} it is the case that h = %,
and t; =to+i-h . Lett = [tot; ---tn]| and as such let f ([t]**> = [f(to) f(t1) -+ f(tn)]. Let

Efzv’h’q’g € NN be the neural network given by:
ENMe = Xpne© o Ete" (9.3.8)
Let ug € C2 ([O,T] X Rd,R) satisfy for alld € N, t € [0,T], x € R? that:
ot

< 0) (t,2) + (Viug) (t,2) + aq (z) ug (t,2) = 0 (9.3.9)

201

Furthermore, let ul(z) = uq(T,x). Let Gg € NN be the neural networks which instantiate as
ul =73, (Gg) € C (R4, R).

Let We:[0,T] x Q — R?, d € N be standard Brownian motions, and let X% : [t,T] x Q — R?,
deN, te[0,T], z € R? be stochastic processes with continuous sample paths satisfying that for all

deN,te[0,T],s€[t,T], » € R we have P-a.s. that:
t
AT — g 4 / V2dWe (9.3.10)
S
It is then the case that for alld € N, t € [0,T], z € R? it holds that:
T
uq (t,z) =E [exp </ (ad o qul’t"”) dr) Ug (T, X%’t’x)} (9.3.11)
t
Let UEg’th’lq’E be the neural network given as:
N,h,qe _ q,€ N,h,q,e&
UE, 5" = Prd?“ e |E} Ga (9.3.12)
y thqug y .
Finally let UEX) G be given by:

UEX N ae _ UEiL\{,Gfll;q,E o [Tunivﬂ EAffﬂd,d,Xwi} (9.3.13)

ndezwi

It is then the case that for all x = {xg,x1,...,2x} € RNT and 2 € RY that:

o ([gas) uf () -3 (VEXE02) 7 () ~

b q b q
< 3e+ 2 quQ (tw)‘q + 2¢ |exp (/ fda:) + e |exp (/ fdm) —e| —eul (2)
a a
Where, as per Lemma 9.1.1, ¢ is defined as:
b
X (7 () - e ([)| < (9.3.14)

Proof. Note that for a fixed T € (0,00) it is the case that ug4 (t,2) € C? ([0,T] x R%,R) projects

down to a function ul (z) € C? (Rd,R). Furthermore given a probability space (€2, F,P) and a

202

stochastic process X5 : [t T x Q — RY, for a fixed outcome space w; € it is the case that X%H*

d,t,x

projects down to X5 : [t, T] — R%. Thus given ay : R? — R that is infinitely often differentiable,

we get that ag o XE 1 [t, T] — R.

d,t,x d,t7

Taken together with Lemma 9.3.1 with z ~ Xry”, f ™ ago X5, b AT, a ~ t, and ul (z)

d,t,x . .
Ug (T , Xy), our error term is rendered as is rendered as:

exp </T (ad o Xr‘fg;xds>> Uqg (T, ngt,z) — 3, (U EXZ:[Gh;“i)
t

eXp(/bfdw)q exp</bfdx>*e
a a

+e
This completes the proof of the Lemma. O

q
— euy (T Xd”)

q
< 3e+ 2 ‘ud (T, X,ffjf) + 2¢ i,

Remark 9.3.2. Diagrammatically, this can be represented as:

< | Prd?*

exp, f N+1
/ Tun <— ENmhae |[<—] TunM+1 <— R

Tun
< Gy < Aff@d 47/\’7&125;“ < RY

9.4 The UESN h’qg’z network

Lemma 9.4.1. Letvy,vs, ..., v, € NN such that for alli € {1,2,...,n} it is the cast that O (v;) = 1,
and it is also the case that D (v1) = D (vp) = --- = D (vp). Let x; € R 2o € R | 2, €

R'®n) gnd r € REi=1'04) | It js then the case that we have that:
J: (Sumy, 1 o [BHi14]) ZJ‘ v;) () (9.4.1)

Proof. Throughout the proof let z; € R'™) 2o € R'®2) 2, € R'™) and ¢ € R2i=1'(") guch

that y =21 —~ 29 —~ -+ —~ x,. Observe that by Lemma 5.2.5 we have that:
Je (Sumy, 1 o [HiL14]) (x) = T (Sumy1) 0 3 (HiL1v4) (¢) (9.4.2)

203

Note however that Defiition 5.1.4 yields that J. (Sum, 1) (x) =[11 --- 1]- 240 for x € R™. On the
other hand O (B! ,1;) = n and furthermore by Lemma 5.3.3 it is the case for r € RXi=1!'(*) that
Je (Bizyvi) (1) = Je () (1) ~ Te(v2) (w2) —~ -+~ Te (vn) (2n). Thus Te (Sumy,; @ [Bi, 1)) (1) is

rendered as:

Je (1) (21)

[1 1 ... 1] jt(yzz) (2) +O=i3t(l/i)(aci) (9.4.3)

Je (vn) (zn)
This completes the proof of the lemma. O

Lemma 9.4.2. Let vy,va,...,v, € NN with 1 (1) =1(12) = ... =1 (vy) and O (1) = O (1) =
... =0 (vy) =1 such that for alli € {1,2,...,n} it is the case that there exists f; € C (]R'(”l),]R),
and ¢; € (0,00), where for all x; € R'®™) | it is the case that | Je (1) (i) — f(xi) | < . It is then

the case that for all ¢ € R™) gnd T; € R'®) with r=x1 —~ Ty —~ -~ T, that:

19 (B7vi) (1)) = [~y fil @)1 <D e (9-4.4)
i=1

Proof. We will prove this with induction. This is straight-forward for the case where we have just
one neural network where for all z € R'1) it is the case that |3, (1) (z) — f (2)]|, <e1 = So1_; €.
Suppose now, that, ||J. (B}v;) (x) — [~y fil ®)|l; < Yi_q& holds true for all cases upto and
including n. Consider what happens when we have a triple, a function f,, 11, a neural network v, 41,
and £,11 € (0,00) with a maximum error over all z € R'™) of | T, (vp41) () — frs1 (2)] < €ny1

Then Lemma 5.3.3, Corollary 1.2.33.1, and the triangle inequality tells us that:

13 (B) (1) = [~ £i]]

< 13 (Bvi) (1) = [~z Ll @)l + 19 W) (2) = faga (2)]
n+1

<D e (9.4.5)
=1

This proves the inductive case and hence the Lemma. O

204

Lemma 9.4.3. Let (2, F,P) be a probability space. Let Xq: Q — Ry be a random variable. Let
f:Rq — R be a function such that for all z,x € RY it is the case that || f (z) — f)| < £z —1|.
It is then the case that V [f (X4)] < 222V [X,].

Proof. Let X4 be an i.i.d. copy of X;4. As such it is the case that Cov (X4, X4) = 0, whence it is
the case that V[X4, X4] = V[X4| + V[X4] = VX4 + V[-%X4] = V[X; — X4] = 2V [Xy4]. Note that
f(Xq) and f (X,) are also indepentend and thus Cov (f (Xg), f (¥X4)) = 0, and whence we get that
VIf(Xa) — f(Xq)] =2V [X,4). This then yields that:

2VI[f (Xq)] = VI[f (Xq) = [(X4)]
E|(f (Xa) = f (X2))] = EIf (Xa) - f (X))’
E[(f (Xa) - £ (%a))?]

—02.E [(Xd - xd)ﬂ

= £2.2V[Xy]

= V[f(Xa)] = £-V[X4 (9.4.6)

This proves the Lemma. O

Lemma 9.4.4 (R—, 2024, Approximants for Brownian Motion). Let t € (0,00) and T € (t,00).
Let (92, F,P) be a probability space. Let n,N € N, and h € (0,00). Let 6, € (0,00), q € (2,00),
satisfy that 0 = ¢ (2‘1_1 + 1)_1. Let f: [t,T] — R be continuous almost everywhere in [t,T]. Let
it also be the case that f = gob, where b : [t,T] = R, and g: R - R. Lett =ty <t; < --- <
tn—1 <ty = T such that for alli € {0,1,..., N} it is the case that h = %, andt; =tg+i-h .
Let t = [tot1 ---tn]| and as such let f ([t]**> = [f(to) f(t1) -+ f(tw)]. Let uqg € C (R4, R) satisfy
foralld €N, t € [0,T], x € R? that:

(%ud> (t,2) + (Viug) (t,x) + aq (z) ug (t,z) = 0 (9.4.7)

=

Furthermore, let ul(z) = uq(T,x). Let Gg € NN be the neural network which instantiates as

Let Wi :[0,T] x @ — R%, d € N be standard Brownian motions, and let X% : [t,T] x Q — R,

205

deN, te[0,T], z € R? be stochastic processes with continuous sample paths satisfying that for all

deN, te0,T), s€[t,T], x € R we have P-a.s, that:
t
AT — g 4 / V2aw? (9.4.8)
S

It is then the case that for alld € N, t € [0,T], z € R? it holds that:

ug (t,z) =E [exp < /t ! (ad o qul’t"”) dr> "y (T, X%,t,x)} (9.4.9)

Let Eﬁf’h’q’g C NN be neural networks given by:
ENRae — Xpnd© o EtrNoh (9.4.10)

Furthermore, let Gg € NN C NN be neural networks which instantiate as ug = J. (Gq) € C (Rd,R).

Furthermore, let UEQI’Gh(;q’E C NN be neural networks given by:
UEZ,Gh;q,s — Prd?€ o [Eg’h’q’seGd} (9.4.11)
Futhermore, let UEX;\[’(};T;Z C NN be neural networks given by:

UEXN,}LQ,E — UEr]Zél(;q,E ° Tuni\f—i—l ElAfF@d,d,Xwi (9412)

n,Gd,UJi

Finally let UESiVélc’iqgn C NN be neural networks which, for w; € Q, is given as:

N,hg, 1 Noha,
UES, Gl = 1 P (Sumn,l . [5?:1UEX “D (9.4.13)

n,Ggq,w;
It is then the case that for all X € RMNV+1) x Rnd.
(i) 3 (VESEs) € C (RMVHD) x R, R)

4 [logy (e7) +¢] +D(Ga) — 1 in=0
(ii) D (VESY&%5,) <4 2 loga (7)o + D16
53 [logy (¢7') + ¢] + max {D (E}""%¢) ,D(Gg)} =1 :n€eN

206

(iii) It is also the case that:

360
P (UESfX’&‘fg’n) <n?. [q_—‘; [logy (¢71) + q + 1] + 324 + 48n

+24 Wiy, (Ga) + 4 max {P (Efl\”h’q’s) P (Gd)}] (9.4.14)

(iv) It is also the case that:

n

S [([et vt ()] | o (st
eXp(/bfdx> exp(/bfdx)_e

Where, as per Lemma 9.1.1, ¢ is defined as:

q
— eug (2)

q

< 3e+2e Jull ()] + 2¢ +e

b
‘EQW — exp < / fdm)‘ <e (9.4.15)
a

Proof. Note that foralli € {1,2,...,n}, Lemma 9.3 tells us that J. (UEXN’h’q’E> eC (]RNJrl x RY, R).

1,Gg,wi

Lemma 5.6.17 and Lemma 5.6.16, thus tells us that J, ((@?:1 [U Ex/V: e })) =30, [Jt (U Ex Ve ﬂ .

1,Gg,w; 1,Gg,w;

The sum of continuous functions is continuous. Note next that %l> is an affine neural network, and
hence, by Lemma 5.5.2, must be continuous.

Then Lemmas 5.2.5, 5.3.8, and the fact that by Lemma 9.3 each of the individual stacked UEXYma.e

nde7wi

neural networks is continuous then ensures us that it must therefore be the case that: J, (U ESiVél;qg n) €

C (R"(NH) x R R). This proves Item (i).

)

Next note that by construction each UEXg’gc’lq(’u has the same depth, indeed for each ¢ the only

N,h,q,e
TL,Gd,UJ'L'

or layer architecture. Note that D (Sumy1) = D (i) =D (Aff;70> =1

thing different for each of the UEX is the parameters themselves and not the count or depth

Whence by Lemma 5.2.5 it is the case that D <UESTJ>7’£;‘15 n) =D (UEXT]ZT’(?;QL’Z_). This then proves
Item (ii).

géqu“i networks has the same architecture for all w; € € by

Next, observe that each of the UEX

207

construction. Corollary 5.3.5.1 then yields that:

n,Gq,w; 1,Gg,w;

P (EI;‘ZIUEXN’h’q’E) <n?.P (UEXN’h"“) (9.4.16)

Note for instance also that by Remark 5.5.3, it is the case that P (Sumy ;) = n+ 1. Furthermore,
since the output of the Sum neural network has length one, by Definition 5.7.1 it is the case that
P (i) = 2. Then Corollary 5.5.5.1 leads us to conclude that:

P (Summl ° [EI?:lUEXthqug}) <P (EI?:1UEXN’h’q’E>

n,Gg,w; n,Gq,w;
< ‘(12 P (UEXNJL%E)

n,Gq,w;
n?. [% [logy (e7') + ¢ + 1] + 324 + 48n

X

+24Wiy(g,) (Ga) + 4 max {P (E%W) P (Gd)}] (9.4.17)

and therefore that:

n7Gd7wi

P %D (Sumn,1 J [E'?=1UEXN7h7q£D>

<P (sumn,1 . [E;‘:lUEXN’h’q’ED

n7Gd7wi

<P (B UBX L)

n76d7wi

<n?- P (UBX)20)

n,Gq,w;
<n?. [5’6_—0‘; [logy (e7) +q+ 1] 4+ 324 + 48n
+24 Wiy, (Ga) + 4 max {P (E{jvthaa) P (Gd)H (9.4.18)

Observe that the absolute homogeneity condition for norms, the fact that the Brownian motions

are independent of each other, Lemma 9.4.1, the fact that n € N, the fact that the upper limit of

208

error remains bounded by the same bound for all w; € €2, and Lemma 9.4.2; then yields us:

(S fo ([ot st () o (vesito)

112[</ f (i) ds - (Xt)H 3> (sumare [B 1UEXf¥é‘;?£DH
< 1p ([7 () as o (e))] [(5 [UExff&?d)H

<2 oo (1 () o ()) -3 (vmit)|

<Joww ([1 () st ()) - 20 (vexys)

q

<36+25]u5(t,x)‘q—1—25 +e

exp (/ b fdx)

O

Corollary 9.4.4.1. Let N;n,n € N, h,e € (0,00), q € (2,00), given UESfjéld’qS’;n, the Monte Carlo

standard error for approximating exp (ftT f <ergtzz) ds - ul (Xfé:’:)) is:

s (9.4.19)

Proof. Note that u” is deterministic, and er ’é’x is a d-vector of random variables, where y = 0y,

and X = ;. Whence we have that:

\% [uT (m)] = [VuT (:c)]T S PR VT (x) + % - Trace (Hessﬁ (f) (x))

= [vul (x)]i + % - Trace (Hess? (f) (z)) (9.4.20)

For the second factor in our product consider the following:

T
Vi = / aqo X" ds (9.4.21)
t

209

Whose Reimann sum, with At = % and t; =t + kAt, and Lemma 9.4.3 is thus rendered as:

Alternatively:

Yn = At

n—1
> el)

k=0

VY] =V

n—1
A a0 XiET (tk)]
k=0
n—1

= (At)? Z [V [a o Xg’é’w (tk)H
< (A0 Y |e v (5" ()|

= (£a0* Y [V (4" (1)

Note that since aq is Lipschitz with constant £ we may say that:

‘CtdOXt—OdeXO‘g,Q"Xt—X()‘
= |agoX; —ay(x)| < £|X — x|

= agoX; < aq(z)+ L|X — x|

210

(9.4.22)

(9.4.23)

(9.4.24)

(9.4.25)

(9.4.26)

(9.4.27)

Thus it is the case that:

< ‘IE MT g () + Ssds}

T T
< ‘IE {/ xds —|—/ Ssds}
t t

<z(T—t)+¢& <T2 ; t2> (9.4.28)

T
’E {/ Qg © Xsds}
t

And it is also the case that:

o[)]

< ’1{«: [//Tt (a0 Xs) (ag o xs)] dsds

T? — 12 T? — t?
<x2(T—t)2+2£$(T—t)< 5 >+£2< 5) (9.4.29)

Remark 9.4.5. Note that diagrammatically, this can be represented as in figure below.

Remark 9.4.6. It may be helpful to think of this as a very crude form of ensembling.

211

Prd%*

|-
%

Sum

Prd?=

Figure 9.2: Neural network diagram for the UES network.

AN

/
AN

exp, f N+1
Tun EN,n,h,q,s Tu n{VH <R
Tun Aﬂ:y X
Gd d,d> < Rd
Tun ENmh.ae TunlV+t <R
Tun Aff,
Gd d,d>s < Rd

212

Chapter 10

Conclusions and Further Research

We will present three avenues of further research and related work on parameter estimates here.

10.1 Further operations and further kinds of neural networks

Note, for instance, that several classical operations are done on neural networks that have yet to
be accounted for in this framework and talked about in the literature. We will discuss two of them

dropout and dilation and provide lemmas that may be useful to future research.

10.1.1 Mergers and Dropout

Definition 10.1.1 (Hadamard Product). Letm,n € N. Let A, B € R™*". Foralli € {1,2,...,m}

and j € {1,2,...,n} define the Hadamard product @ : R™*™ x R™*"™ — R™*" qgs:
AoB:=[A0B],;=[A];; x[B];; Vij (10.1.1)

Definition 10.1.2 (Scalar product of weights). Let v € NN, L € N, 4,5,k € N, and ¢ € R.
Assume also that L (v) = (lo, 11,12, ...,l5). Assume then that the neural network is given by v =

(W, b1), (Wa,b2),...,(Wp,br)). Wewill denote by c®" v as the neural network which, fori € NN

[1,L —1], j € NA[1, 1], is given by c®™y = ((Wl, b1), (Wa,ba), ..., (W bi) , (WM, bm) o (W, bL))

213

where it is the case that:
Wi = (k{5 +1,) Wi (10.1.2)

Definition 10.1.3 (The Dropout Operator). Let v € NN, L € N, iy,i9,...,ik, 5,k € N, and
€1,C2,...,cp € R. Assume also that L (v) = (lo, 11,12, ...,l1). Assume then that the neural network
is given by v = (Wy,b1), Wa,ba),...,(Wg,br)). We will denote by Dropout ™ (v) the neural

network that is given by:
0@ (0@ (L..0@™"v...)) (10.1.3)

Where for each k € {1,2,...,n} it is the case that i ~ Unif{l, L — 1} and j ~ Unif{1,[;}
We will also define the dropout operator introduced in ().

Definition 10.1.4 (Realization with dropout). Let v € NN, L,n € N, p € (0,1), L(v) =
(lo,l1,...,Br), and that NN = ((W1,b1),(Wa,ba),...,(Wpr,br)). Let it be the case that for each
neN, p, ={z1,22,...,2,} € R" where for each i € {1,2,...,n} it is the case that x; ~ Bern(p).

We will then denote Jf) (v)eC (R'(”),RO(”)), the continuous function given by:

P W) =p, 0t (Wi (o, , @t (Wr—1(...) +br—1)) +bz) (10.1.4)

214

Bibliography

Arik, S. n and Pfister, T. (2021). TabNet: Attentive Interpretable Tabular Learning. Proceedings
of the AAAI Conference on Artificial Intelligence, 35(8):6679--6687. Number: 8.

Bass, R. F. (2011). Brownian Motion, page 6-12. Cambridge Series in Statistical and Probabilistic
Mathematics. Cambridge University Press.

Beck, C., Gonon, L., Hutzenthaler, M., and Jentzen, A. (2021a). On existence and uniqueness
properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical
Systems - B, 26(9):4927.

Beck, C., Hutzenthaler, M., and Jentzen, A. (2021b). On nonlinear Feynman—Kac formulas for vis-
cosity solutions of semilinear parabolic partial differential equations. Stochastics and Dynamics,
21(08).

Beck, C., Hutzenthaler, M., and Jentzen, A. (2021c). On nonlinear feynman—kac formulas for vis-
cosity solutions of semilinear parabolic partial differential equations. Stochastics and Dynamics,
21(08):2150048.

Carlsson, G. and Briiel Gabrielsson, R. (2018). Topological Approaches to Deep Learning. arXiv
e-prints, page arXiv:1811.01122.

Chollet, F. (2017). Xception: Deep learning with depthwise separable convolutions. In 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 1800--1807, Los
Alamitos, CA, USA. IEEE Computer Society.

Crandall, M. G., Ishii, H., and Lions, P.-L. (1992). User’s guide to viscosity solutions of second
order partial differential equations. Bull. Amer. Math. Soc., 27(1):1--67.

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics of
Control, Signals and Systems, 2(4):303--314.

Da Prato, G. and Zabczyk, J. (2002). Second Order Partial Differential Equations in Hilbert Spaces.
London Mathematical Society Lecture Note Series. Cambridge University Press.

Davies, A., Juh'asz, A., Lackenby, M., and Tomasev, N. (2021). The signature and cusp geometry
of hyperbolic knots. ArXiv, abs/2111.15323.

Durrett, R. (2019). Probability: Theory and Examples. Cambridge Series in Statistical and Prob-
abilistic Mathematics. Cambridge University Press.

E, W., Hutzenthaler, M., Jentzen, A., and Kruse, T. (2019). On Multilevel Picard Numeri-
cal Approximations for High-Dimensional Nonlinear Parabolic Partial Differential Equations

215

and High-Dimensional Nonlinear Backward Stochastic Differential Equations. J Sci Comput,
79(3):1534--1571.

E, W., Hutzenthaler, M., Jentzen, A., and Kruse, T. (2021). Multilevel Picard iterations for solving
smooth semilinear parabolic heat equations. Partial Differ. Equ. Appl., 2(6):80.

Golub, G. and Van Loan, C. (2013). Matriz Computations. Johns Hopkins Studies in the Mathe-
matical Sciences. Johns Hopkins University Press.

Grohs, P., Hornung, F., Jentzen, A., and von Wurstemberger, P. (2018). A proof that artifi-
cial neural networks overcome the curse of dimensionality in the numerical approximation of
Black-Scholes partial differential equations. Papers 1809.02362, arXiv.org.

Grohs, P., Hornung, F., Jentzen, A., and Zimmermann, P. (2023). Space-time error estimates
for deep neural network approximations for differential equations. Advances in Computational
Mathematics, 49(1):4.

Grohs, P., Jentzen, A., and Salimova, D. (2022). Deep neural network approximations for solutions
of PDEs based on monte carlo algorithms. Partial Differential Equations and Applications, 3(4).

Gyongy, 1. and Krylov, N. V. (1996). Existence of strong solutions for It6's stochastic equations
via approximations. Probability Theory and Related Fields, 105:143--158.

Hornik, K. (1991). Approximation capabilities of multilayer feedforward networks. Neural Networks,
4:251--257.

Hutzenthaler, M., Jentzen, A., Kruse, T., Anh Nguyen, T., and von Wurstemberger, P. (2020a).
Overcoming the curse of dimensionality in the numerical approximation of semilinear parabolic

partial differential equations. Proceedings of the Royal Society A: Mathematical, Physical and
Engineering Sciences, 476(2244):20190630.

Hutzenthaler, M., Jentzen, A., Kuckuck, B., and Padgett, J. L. (2021). Strong LP-error analy-
sis of nonlinear Monte Carlo approximations for high-dimensional semilinear partial differential
equations. Technical Report arXiv:2110.08297, arXiv. arXiv:2110.08297 [cs, math] type: article.

Hutzenthaler, M., Jentzen, A., and von Wurstemberger Wurstemberger (2020b). Overcoming the
curse of dimensionality in the approximative pricing of financial derivatives with default risks.
Electronic Journal of Probability, 25(none):1 -- 73.

It6, K. (1942a). Differential equations determining Markov processes (original in Japanese).
Zenkoku Shijo Sugaku Danwakai, 244(1077):1352--1400.

Ito, K. (1942b). On a stochastic integral equation. Proc. Imperial Acad. Tokyo,
244(1077):1352--1400.

Jentzen, A., Kuckuck, B., and von Wurstemberger, P. (2023). Mathematical introduction to deep
learning: Methods, implementations, and theory.

Karatzas, 1. and Shreve, S. (1991). Brownian Motion and Stochastic Calculus. Graduate Texts in
Mathematics (113) (Book 113). Springer New York.

Knoke, T. and Wick, T. (2021). Solving differential equations via artificial neural networks: Find-
ings and failures in a model problem. Examples and Counterexamples, 1:100035.

216

Lagaris, 1., Likas, A., and Fotiadis, D. (1998). Artificial neural networks for solving ordinary and
partial differential equations. IEEE Transactions on Neural Networks, 9(5):987-1000.

McCulloch, W. S. and Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity.
The bulletin of mathematical biophysics, 5(4):115--133.

Petersen, P. and Voigtlaender, F. (2018). Optimal approximation of piecewise smooth functions
using deep ReLU neural networks. Neural Netw, 108:296--330.

Plotly Technologies Inc (2015). Collaborative data science.
Rafi, S. (2024). nnR.
Rafi, S. and Padgett, J. L. (2024). nnR: Neural Networks Made Algebraic. R package version 0.1.0.

Rafi, S., Padgett, J. L., and Nakarmi, U. (2024). Towards an Algebraic Framework For Approxi-
mating Functions Using Neural Network Polynomials.

Rio, E. (2009). Moment Inequalities for Sums of Dependent Random Variables under Projective
Conditions. J Theor Probab, 22(1):146--163.

Shiebler, D., Gavranovié¢, B., and Wilson, P. (2021). Category theory in machine learning.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014). Dropout: a
simple way to prevent neural networks from overfitting. J. Mach. Learn. Res., 15(1):1929--1958.

Strubell, E., Ganesh, A.; and McCallum, A. (2019). Energy and policy considerations for deep
learning in nlp.

Tsaban, T., Varga, J. K., Avraham, O., Ben-Aharon, Z., Khramushin, A., and Schueler-Furman, O.
(2022). Harnessing protein folding neural networks for peptide—protein docking. Nat Commun,
13(1):176. Number: 1 Publisher: Nature Publishing Group.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, 1, and
Polosukhin, I. (2017). Attention is All you Need. In Advances in Neural Information Processing
Systems, volume 30. Curran Associates, Inc.

Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York.

Wickham, H., Francois, R., Henry, L., Miiller, K., and Vaughan, D. (2023). dplyr: A Grammar of
Data Manipulation. R package version 1.1.4, https://github.com/tidyverse/dplyr.

Wu, C.-J., Raghavendra, R., Gupta, U., Acun, B., Ardalani, N., Maeng, K., Chang, G., Behram,
F. A., Huang, J., Bai, C., Gschwind, M., Gupta, A., Ott, M., Melnikov, A., Candido, S., Brooks,
D., Chauhan, G., Lee, B., Lee, H.-H. S., Akyildiz, B., Balandat, M., Spisak, J., Jain, R., Rabbat,
M., and Hazelwood, K. (2022). Sustainable ai: Environmental implications, challenges and
opportunities.

Zhao, T., Lyu, R., Wang, H., Cao, Z., and Ren, Z. (2023). Space-based gravitational wave signal
detection and extraction with deep neural network. Commun Phys, 6(1):1--12. Number: 1
Publisher: Nature Publishing Group.

217

O ® N O U W N

NN R R R R R R R R R
B V ©® N O U WN RS

22
23
24
25
26
27
28

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

46
47
48
49

10.2 Code Listings

Parts of this code have been released on CRAN under the package name nnR, and can be found in
Rafi and Padgett (2024), with the corresponding repository being found at Rafi (2024):

Listing 10.1: R code for neural network generation

#' Function to generate a random matrix with specified dimensions.
#I
#' @param rows number of rows.
#' @param cols number of columns.
#I
#' @return a random matrix of dimension rows times columns with elements from
#' a standard normal distribution
generate_random_matrix <- function(rows, cols) {
(rows * cols) |>
rnorm() |>
matrix(rows, cols) -> result
return(result)

}

#' @title create_neural _network

#' @description Function to create a list of lists for neural network layers

#'

#' @param layer_architecture a list specifying the width of each layer

4

#' Qreturn An ordered list of ordered pairs of \eqn{(W,b)}. Where \egn{w} is the
matrix

#' representing the weight matrix at that layer and \egn{b} the bias vector. Entries

#' on the matrix come from a standard normal distribution. Neural networks

#' are defined to be elements belonging to the following set:

#' \degn{

#

#' \mathsf{NN} = \bigcup_{L\in \N} \bigcup_{1_0,1_1,...,1_L \in \N}

#' \left(\times"L_{k=1} \left[\mathbb{R}"{1_k \times 1_{k-1}} \times \R“{1_k}\right]

\right)

#

#

#'}

#

#

#'

#

#' We will use the definition of neural networks as found in:

#'

#' areferences Grohs, P., Hornung, F., Jentzen, A. et al.

#' Space-time error estimates for deep neural network approximations

#' for differential equations. Adv Comput Math 49, 4 (2023).

#' \url{https://doi.org/10.1007/s10444-022-09970-2}.

#' @export

create_neural_network <- function(layer_architecture) {
if (all(sapply(layer_architecture, function(x) is.numeric(x) &5 x %% 1 == 0 &§& x >
0)) == FALSE) {
stop("Non_integer_or_negative_neural_network_width_specified.")
} else if (layer_architecture |> length() < 2) {
stop("Neural_network_must_have_atleast_two_layers.")
} else {

218

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

O ® N O U W N R

B
)

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

layer_architecture [> length() -> L

Initialize the list of lists
neural_network <- list()

Generate matrices W and vectors b for each layer
for (i in 1:(L - 1)) {
Set dimensions for W and b
layer_architecture[i] -> input_size
layer_architecture[i + 1] -> output_size

Create matrix W
generate_random_matrix(output_size, input_size) -> W

Create vector b

output_size [>
rnorm() |>
matrix(output_size, 1) -> b

Add W and b to the list
list(W = W, b = b) -> neural_network[[i]]
}

return(neural_network)
}
}

Listing 10.2: R code for auxilliary functions

source("R/is_nn.R")

#' atitle hid

#I

#' @description The function that returns the number of hidden layers of a

#' neural network. Denoted \egn{\mathsf{H}}

#I

#' @param nu a neural network of the type generated by create_neural_network()
#l

#' By definition \egn{\mathsf{H}(\nu) = \mathsf{D}(\nu) - 1}

#I

#' areferences Definition 1.3.1. Jentzen, A., Kuckuck, B., and von Wurstemberger, P.

(2023).
#' Mathematical introduction to deep learning: Methods, implementations,
#' and theory. \url{https://arxiv.org/abs/2310.20360}.

L}
#' areturn Integer representing the number of hidden layers.
#' @export

hid <- function(nu) {
if (nu |> is_nn() == TRUE) {
return(length(nu) - 1)
} else {
stop("Only_neural_networks_can_have_hidden_layers")

}

#' atitle dep

#' adescription The function that returns the depth of a neural network. Denoted
#' \eqgn{\mathsf{D}}.

L}

219

30
31
32
33
34

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

79
80
81
82
83
84
85

#' @param nu a neural network of the type generated by

#' create_neural_network(). Very straightforwardly it is the

#' length of the list where neural networks are defined as an odered list of

#' lists.

#' @references Definition 1.3.1. Jentzen, A., Kuckuck, B., and von Wurstemberger, P.
(2023).

#' Mathematical introduction to deep learning: Methods, implementations,

#' and theory. \url{https://arxiv.org/abs/2310.20360}.

L}

#' @return Integer representing the depth of the neural network.

#' @export

dep <- function(nu) {
if (nu |> is_nn() == TRUE) {
return(length(nu))
} else {
stop("Only_neural_networks_can_have_depth")
}
}

#' @title inn

#' adescription The function that returns the input layer size of a neural

#' network. Denoted \egn{\mathsf{I}}

#l

#' @param nu A neural network of the type generated by

#' create_neural_network().

#l

#' @references Definition 1.3.1. Jentzen, A., Kuckuck, B., and von Wurstemberger, P.
(2023).

#' Mathematical introduction to deep learning: Methods, implementations,

#' and theory. \url{https://arxiv.org/abs/2310.20360}.

#l

#' @return An integer representing the input width of the neural network.

#' @export

inn <- function(nu) {
if (nu |> is_nn() == TRUE) {
return(dimCnul[111$wW)[2])
} else {
stop("Only_neural_networks_can_have_size_of_input_layers")

#' atitle out
#' adescription The function that returns the output layer size of a neural
#' network. Denoted \eqn{\mathsf{0}}.

#' @param nu A neural network of the type generated by create_neural_network().

#' @references Definition 1.3.1. Jentzen, A., Kuckuck, B., and von Wurstemberger, P.
(2023).

#' Mathematical introduction to deep learning: Methods, implementations,

#' and theory. \url{https://arxiv.org/abs/2310.20360}.

L}

#' @return An integer representing the output width of the neural network.

#' @export

out <- function(nu) {

220

86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101

102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

130
131
132

134
135
136
137
138
139
140
141
142

if (nu |> is_nn() == TRUE) {
return(dim(nul [length(nu)]I$w)[1])

} else {
stop("Ony_neural_networks_can_have_size_of_output_layers")

#' atitle lay

#' adescription The function that returns the layer architecture of a neural

#' network.

#l

#' @param nu A neural network of the type generated by

#' create_neural_network(). Denoted \eqn{\mathsf{L}}.

#l

#' @references Definition 1.3.1. Jentzen, A., Kuckuck, B., and von Wurstemberger, P.
(2023).

#' Mathematical introduction to deep learning: Methods, implementations,

#' and theory. \url{https://arxiv.org/abs/2310.20360}.

#'

#' areturn A tuple representing the layer architecture of our neural network.

#' @export

lay <- function(nu) {

if (nu |> is_nn() == TRUE) {
layer_architecture <- list()
for (i in 1:length(nu)) {

layer_architecture |> append(dim(nu[[i]1$W)[1]) -> layer_architecture

}
inn(nu) |> append(layer_architecture) -> layer_architecture
return(layer_architecture)

} else {
stop("Only_neural_networks_can_have_layer_architectures")

#' atitle param

#' adescription The function that returns the numbe of parameters of a neural

#' network.

#l

#' @param nu A neural network of the type generated by

#' create_neural_network(). Denoted \eqn{\mathsf{P}}.

#l

#' @references Definition 1.3.1. Jentzen, A., Kuckuck, B., and von Wurstemberger, P.
(2023).

#' Mathematical introduction to deep learning: Methods, implementations,

#' and theory. \url{https://arxiv.org/abs/2310.20360}.

#'

#' areturn An integer representing the parameter count of our neural network.

#' @export

param <- function(nu) {
if (nu |> is_nn() == TRUE) {
0 -> param_count
for (i in 1:length(nu)) {
param_count + length(nu[[i1]1$w) + length(nu[[i]1$b) -> param_count
}

return(param_count)

221

143
144
145
146

o U W N R

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

} else {
stop("Only_neural_networks_can_have_parameters")

Listing 10.3: R code for activation functions ReLLU and Sigmoid

#' @title: RelU

#' @description: The RelLU activation function

#l

#' aparam x A real number that is the input to our RelLU function.

#I

#' Qreturn The output of the standard ReLU function, i.e. \eqn{\max\{0,x\}}. See also
\code{\link{Sigmoid}}.

#' and \code{\link{Tanh}}.

#' @export

ReLU <- function(x) {
if (x [> is.numeric() && x |> length() == 1 && x |> is.finite()) {
return(x |> max(0))
} else {
stop("x_must_be_a_real_number")

}

#' atitle: Sigmoid

#' adescription The Sigmoid activation function.

#l

#' aparam x a real number that is the input to our Sigmoid function
#l

#' @Qreturn The output of a standard Sigmoid function,

#' i,e. \egn{\frac{1}{1 + \exp(-x)}}.

#' See also \code{\link{Tanh}}.and \code{\link{RelLU}}.

#' @export

Sigmoid <- function(x) {
if (x |> is.numeric() &5 x |> length() == 1 &§& x |> is.finite()) {
return(1 / (1 + exp(-x)))
} else {
stop("x_must_be_a_real_number")

}

#' atitle Tanh

#' adescription The tanh activation function

#I

#' @param x a real number

#l

#' Qreturn the \egn{tanh} of x. See also \code{\link{Sigmoid}} and
#' \code{\link{ReLU}}.

#' @export

Tanh <- function(x) {
if (x |> is.numeric() &5 x |> length() == 1 8§ x |> is.finite()) {
return(x |> tanh())
} else {
stop("x_must_be_a_real_number")

222

O O N O U W N R

e e e e =
o U s W N RS

17

18
19
20
21
22
23
24

25

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

Listing 10.4: R code for realizations

sou
sou

"
4
4
#'
H
4
#'
4
H
4
#
H
4

1

oy
#'
H
hy
#
4
by

1

y
4
H
4
4
#
4

ins
i

}

rce("R/aux_fun.R")
rce("R/is_nn.R")

atitle inst
@description The function that instantiates a neural network as created
by create_neural_network().

aparam neural_network An ordered list of lists, of the type generated by
create_neural_network() where each element in the

list of lists is a pair \egn{(W,b)} representing the weights and biases of
that layer.

\emph{NOTE:} We will call istantiation what Grohs et. al. call "realization".

areferences Grohs, P., Hornung, F., Jentzen, A. et al. Space-time error estimates
for deep

neural network approximations for differential equations. Adv Comput Math 49, 4
(2023).

https://doi.org/10.1007/s10444-022-09970-2.

Definition 1.3.4. Jentzen, A., Kuckuck, B., and von Wurstemberger, P. (2023).
Mathematical introduction to deep learning: Methods, implementations,
and theory. \url{https://arxiv.org/abs/2310.20360}

@param activation_function A continuous function applied to the output of each
layer

@param x our input to the continuous function formed from activation. Our input
will

be an element in \eqgn{\mathbb{R}"d} for some appropriate \eqn{d}.

areturn The output of the function that is the instantiation of the given
neural network with the given activation function at the given \egn{x}.

aexport

t <- function(neural_network, activation_function, x) {
f (neural_network |> is nn() == FALSE) {
stop("0Only_neural_networks_can_be_instantiated")
else if (neural _network |> inn() !'= x |>
matrix() |>
nrow()) {
stop("x_does_not_match_input_size_required_by_neural_network")
else {
if (dep(neural_network) == 1) {
neural_network[[1]11$W %*% x + neural_network[[1]]$b -> output
return(output)
}

x |> matrix() -> output

for (i in 1:(length(neural_network) - 1)) {
neural_network[[i]1$W %*% output + neural_network[[i]]$b -> linear_transform

223

52
53
54
55
56
57
58
59
60
61

O ® N O U B W N R

W W W WwwwNNRNNRNRNRNNNNRRR B B B B B B B
G F W N B © VO 0 N O U & WN RFPBP S OV 0 N O U & WN R S

36
37
38
39
40
41

42
43
44

apply(linear_transform,
MARGIN = 1,
FUN = activation_function
) -> output

neural_network[[length(neural_network)]]$W %*% output +
neural_network[[length(neural_network)]]$b -> output
return(output)
}
}

Listing 10.5: R code for parallelizing two neural networks

source("R/aux_fun.R")
source("R/Tun.R")
source("R/is_nn.R")

#' Function for creating a block diagonal given two matrices.
#l

#' aparam matrixl A matrix.

#' @param matrix2 A matrix

#l

#' areturn A block diagonal matrix with matrixl on top left
#' and matrix2 on bottom right.

create_block_diagonal <- function(matrixl, matrix2) {
nrow(matrix1l) -> ml
nrow(matrix2) -> m2
ncol(matrix1l) -> nil
ncol(matrix2) -> n2

Create a block diagonal matrix

0 |> matrix(ml + m2, nl + n2) -> block_diagonal_matrix

block_diagonal_matrix[1:m1, 1:n1] <- matrix1

block_diagonal_matrix[(m1 + 1):(m1 + m2), (n1 + 1):(n1 + n2)] <-
matrix2

return(block_diagonal_matrix)

#' atitle stk
#' @description A function that stacks neural networks.

#' @param nu neural network.
#' @param mu neural network.

#' @return A stacked neural network of \egn{\nu} and \egn{\mu}, i.e. \egn{\nu \
boxminus \mu}

#' \strong{NOTE:} This is different than the one given in Grohs, et. al. 2023.

#' While we use padding to equalize neural networks being parallelized our

#' padding is via the Tun network whereas Grohs et. al. uses repetitive

#' composition of the i network. We use repetitive composition of the \eqn{\mathsf{Id_

1}}
#' network. See \code{\link{Id}} \code{\link{comp}}

#' \strong{NOTE:} The terminology is also different from Grohs et. al. 2023.

224

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

63

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
920
91
92
93
94
95
%
97
98
99
100
101

4
4
4
4
4
4
4
4
4
4
4
4
4
4
by
4
4
4

We call stacking what they call parallelization. This terminology change was
inspired by the fact that parallelization implies commutativity but this
operation is not quite commutative. It is commutative up to transposition
of our input x under instantiation with a continuous activation function.

Also the work parallelization has a lot of baggage when it comes to
artificial neural networks in that it often means many different CPUs working
together.

\emph{Remark:} We will use only one symbol for stacking equal and unequal depth
neural networks, namely "stk". This is for usability but also that

for all practical purposes only the general stacking of neural networks

of different sizes is what is needed.

\emph{Remark:} We have two versions, a prefix and an infix version.

This operation on neural networks, called "parallelization" is found in:
areferences Grohs, P., Hornung, F., Jentzen, A. et al. Space-time error estimates
for deep

neural network approximations for differential equations. Adv Comput Math 49, 4
(2023).

https://doi.org/10.1007/s10444-022-09970-2

aexport

stk <- function(nu, mu) {

}

4
4
by
4

if (nu |> is_nn() 5 mu |> is _nn()) {
if (dep(nu) == dep(mu)) {

list() -> parallelized_network

for (i in 1:length(nu)) {
create_block_diagonal(nu[[i]]$W, mu[[i]]1$W) -> parallelized W
rbind(nu[[i]11$b, mu[[i]1]$b) -> parallelized b
list(W = parallelized W, b = parallelized_b) -> parallelized network[[i]]

}

return(parallelized_network)

if (dep(nu) > dep(mu)) {
(dep(nu) - dep(mu) + 1) |> Tun(d = out(mu)) -> padding
padding |> comp(mu) -> padded_network
nu |> stk(padded_network) -> parallelized_network
return(parallelized_network)

}

if (dep(nu) < dep(mu)) {
(dep(mu) - dep(nu) + 1) |> Tun(d = out(nu)) -> padding
padding |> comp(nu) -> padded_network
padded_network |> stk(mu) -> parallelized_network
return(parallelized_network)

} else {
stop("Please_try_stacking_neural_networks")

The stk function.

@param nu neural network.
@param mu neural network.

225

102

104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

O O N O U R W N R

10

11
12
13
14
15
16
17

18
19

1
#' areturn A stacked neural network of nu and mu.
#' @export

“%stk% <- function(nu, mu) {
if (nu |> is nn() &5 mu |> is nn()) {
if (dep(nu) == dep(mu)) {
list() -> parallelized_network
for (i in 1:1length(nu)) {
create_block_diagonal(nu[[i]]$w, mu[[i]I$W) -> parallelized W
rbind(nu[[i]1$b, mu[[i]1]1$b) -> parallelized_b
list(W = parallelized W, b = parallelized_b) -> parallelized network[[i]]
}
return(parallelized_network)

}

if (dep(nu) > dep(mu)) {
(dep(nu) - dep(mu) + 1) [|> Tun(d = out(mu)) -> padding
padding |> comp(mu) -> padded_network
nu |> stk(padded_network) -> parallelized_network
return(parallelized_network)

}

if (dep(nu) < dep(mu)) {
(dep(mu) - dep(nu) + 1) [> Tun(d = out(nu)) -> padding
padding |> comp(nu) -> padded_network
padded_network [|> stk(mu) -> parallelized_network
return(parallelized_network)

}

} else {
stop("Please_try_stacking_neural_networks")

Listing 10.6: R code for affine neural networks

#' atitle Aff

#' @description The function that returns \egn{\mathsf{Aff}} neural networks.
#'

#' @param W An \egn{m \times n} matrix representing the weight of the affine
#' neural network

#' @param b An \egn{m \times 1} vector representing the bias of the affine

#' neural network

#l

#' @references Grohs, P., Hornung, F., Jentzen, A. et al. Space-time error estimates
for deep

#' neural network approximations for differential equations. Adv Comput Math 49, 4
(2023).

#' https://doi.org/10.1007/s10444-022-09970-2

#I

#' Definition 2.3.1. Jentzen, A., Kuckuck, B., and von Wurstemberger, P. (2023).

#' Mathematical introduction to deep learning: Methods, implementations,

#' and theory. \url{https://arxiv.org/abs/2310.20360}

1

#' Qreturn Returns the network \eqn{((W,b))} representing an affine neural network.
Also

#' denoted as \egn{\mathsf{Aff}_{w,b}}

#' See also \code{\link{Cpy}} and \code{\link{Sum}}.

226

20
21
22
23
24
25
26
27
28
29
30
31
32
33

34
35
36
37
38
39
40

41
42

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

72
73
74

1

@export

Aff <- function(W, b) {

}

4
4
e
4
4

oy
4
4
ey
4
4
H

#l
#I

4
4
e
#
4

if (W |> is.matrix() == FALSE) (W |> matrix() -> W)
if (b |> is.matrix() == FALSE) (b |> matrix() -> b)
list(list(W = W, b = b)) -> return_network
return(return_network)

atitle Cpy

@description The function that returns \egn{\mathsf{Cpy}} neural networks.

These are neural networks defined as such

\deqgn{

\mathsf{Aff}_{\left[\mathbb{I}_k \: \mathbb{I} k \: \cdots \: \mathbb{I} k\right]”
T,0_{k}}

}

@param n number of copies to make.
@param k the size of the input vector.

@return Returns an affine network that makes a concatenated vector that is \eqn{n}
copies of the input vector of size \eqn{k}. See \code{\link{Aff}} and \code{\link{
Sum}}.

areferences Definition 2.4.6. Jentzen, A., Kuckuck, B., and von Wurstemberger, P.
(2023).

Mathematical introduction to deep learning: Methods, implementations,

and theory. \url{https://arxiv.org/abs/2310.20360}

Qexport

Cpy <- function(n, k) {

if (n%% 1 1=0 ||

n<1]]|

k %% 1 '=0 ||

k < 1) {

stop("n_and_k_must_be_natural_numbers")
} else {

k |> diag() -> W
for (1 in 2:n) {
W |> rbind(k |> diag()) -> W

@ |> matrix(n * k) -> b
list(list(W = W, b = b)) -> return_network
return(return_network)

}
atitle Sum
adescription The function that returns \eqn{\mathsf{Sum}} neural networks.
These are neural networks defined as such
\deqn{
\mathsf{Aff}_{\left[\mathbb{I} k \: \mathbb{I} k \: \cdots \: \mathbb{I} k\right
1,0_{k}}
}

@param n number of copies of a certain vector to be summed.

227

75
76
77
78
79
80
81

82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

O O N O U W N R

e s e e =
G s W N RS

16
17
18
19
20

#' aparam k the size of the summation vector.

#l

#' @Qreturn An affine neural network that will take a vector of size

#' \egn{n \times k} and return the summation vector that is of length

#' \eqni{k}. See also \code{\link{Aff}} and \code{\link{Cpy}}.

#l

#' @references Definition 2.4.1. Jentzen, A., Kuckuck, B., and von Wurstemberger, P.
(2023).

#' Mathematical introduction to deep learning: Methods, implementations,

#' and theory. \url{https://arxiv.org/abs/2310.20360}

#'

#l

#' @export

#l

Sum <- function(n, k) {
if (n%%1'=0 ||

n<1 ||

k %% 1 '=0 |

k < 1) {

stop("n_and_k_must_be_natural_numbers")
} else {

k |> diag() ->w
for (1 in 2:n) {
W |> cbind(k |> diag()) -> W

® |> matrix(k) -> b
list(list(W = W, b = b)) -> return_network

return(return_network)

Listing 10.7: R code for composition of two neural networks

source("R/aux_fun.R")
source("R/is_nn.R")

#' Qtitle comp

#' adescription The function that takes the composition of two neural

#' networks assuming they are compatible, i.e., given

#' \egn{\nu_1, \nu_2 \in \mathsf{NN}}, it must be the case that

#' \egn{\mathsf{I}(\nu)_1 = \mathsf{0}(\nu_2)}.

#l

#' @param phi_1 first neural network to be composed, goes on the left

#' @param phi_2 second neural network to be composed, goes on right

#l

#' @Qreturn The composed neural network. See also \code{\link{dep}}.

#' Composition of neural networks is the operation defined for \egqn{\nu_1 \in \mathsf{
NN} }

#' and \egn{\nu_2 \in \mathsf{NN}} as:

#' \degn{

#' \nu_1 \bullet \nu_2 = \begin{cases} ((W'_1,b'_1),

#' (w' 2,b" 2), ...,Cw_{m-1}, b'_{m-1}), (w_1w' M, w_1b' {M} + b_1), (W 2, b 2)
AN A

228

21

22
23

24
25
26
27
28
29
30
31
32
33
34
35

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
5
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

ey

#I
#l

y
4
H
by
4
4
#
by
4

"
4
4
#
4
4

#I
#I

(W.L,bL))& :(L>1)\land (M>1) \\((W_1w'_1,w_1b' 1+b_1),(W_2,b_2), (W_3,b
_3)1-"7

(W_Lb_L)) & :(L>1) \land (M=1) \\((w'_1, b'_1),(W'_2,b'_2), ...,

(w'_{mM-1}, b' {M-1})(W_1, b' M + b 1)) &:(L=1) \land (M>1) \\ ((w_1w'_ 1, W_1b'_1+b_
1)) &:(L=1)

\land (M=1)\end{cases}

areferences Grohs, P., Hornung, F., Jentzen, A. et al.

Space-time error estimates for deep neural network approximations
for differential equations. Adv Comput Math 49, 4 (2023).
\url{https://doi.org/10.1007/s10444-022-09970-2}.

areferences Definition 2.1.1. Jentzen, A., Kuckuck, B., and von Wurstemberger, P.
(2023).

Mathematical introduction to deep learning: Methods, implementations,

and theory. \url{https://arxiv.org/abs/2310.20360}

\emph{Remark:} We have two versions of this function, an
infix version for close resemblance to mathematical notation and
prefix version.

' @encoding utf8

@export

comp <- function(phi_1, phi_2) {

if (phi_1 |> is_nn() && phi_2 |> is_nn()) {
dep(phi_1) -> L
dep(phi_2) -> L_

if (L>18L_>1) {
phi_2[-L_] -> beginning
phi_1[-1] -> end
phi 1[[1]11$W %*% phi 2[[L_11$W -> mid W
phi 1[[1]1$w %x% phi 2[[L_]11$b + phi_1[[1]1]$b -> mid_b
list(W = mid W, b = mid_b) -> mid
c(
beginning,
list(mid),
end
) -> composed_network
return(composed_network)
}elseif (L>1 8L ==1) {
phi_1[[111$W %*% phi_2[[111$W -> beginning W
phi 1[[1]11$W %*% phi_2[[111$b + phi_1[[1]1]$b -> beginning_b
list(
W = beginning_W,
b = beginning_b
) -> beginning
phi_1[-1] -> end
c(
list(beginning),
end

229

76
77
78
79
80
81
82
83
84
85
86
87
88
89
920
91
92
93
94
95
96
97
98
929
100
101
102
103
104
105
106
107
108

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133

}

oy
4
by
4
4
by
4

) -> composed_network
return(composed_network)
} else if (L==16&1L_>1) {
phi_2[-L_] -> beginning
phi 1[[1]11$W %*% phi 2[[L_11$W -> end W
phi_1[[1]1$w %x% phi_2[[L_]11$b + phi_1[[1]1]1$b -> end_b
list(
W = end_W,
b = end_b
) -> end
c(
beginning,
list(end)
) -> composed_network
return(composed_network)
} else if (L==16&8L_==1) {
list() -> composed_network
phi 1[[111$W %*% phi 2[[111$W -> w
phi 1[[1]11$W %*% phi 2[[1]1$b + phi_1[[1]11$b -> b

list(
W= w,
b=~>0

) -> composed_network[[1]]
return(composed_network)

} else {
stop("Dimensionality_mismatch")

} else {
stop("Only_neural_networks_can_be_composed.")

The “infix version of comp function

@param phi_1 first neural network to be composed, goes on the left
aparam phi_2 second neural network to be composed, goes on right

ardname comp
Qexport

“%comp%” <- function(phi_1, phi_2) {

if (phi_1 |> is_nn() &5 phi_2 |> is_nn()) {
dep(phi_1) -> L
dep(phi_2) -> L_

if(L>16L_>1){
phi_2[-L_] -> beginning
phi_1[-1] -> end
phi 1[[1]11$W %*% phi 2[[L_11$W -> mid W
phi_1[[1]1$w %*% phi_2[[L_1]1$b + phi_1[[1]1]$b -> mid_b
list(W = mid W, b = mid_b) -> mid
c(
beginning,
list(mid),
end
) -> composed_network
return(composed_network)

230

134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

157
158

160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175

O 0 N O U W N

e el
w N R e

}elseif (L>18L_==1) {
phi_1[[1]11$W %*% phi_2[[1]11$W -> beginning W
phi_1[[111$W %*% phi_2[[1]11$b + phi_1[[1]11$b -> beginning_b
list(
W = beginning W,
b = beginning_ b
) -> beginning
phi_1[-1] -> end
c(
list(beginning),
end
) -> composed_network
return(composed_network)
} else if (L==16&L_ > 1) {
phi_2[-L_] -> beginning
phi_1[[1]11$W %*% phi 2[[L_11$W -> end W
phi_1[[1]11$W %*% phi_ 2[[L_11$b + phi_1[[1]11$b -> end_b
list(

beginning,
list(end)
) -> composed_network
return(composed_network)
} else if (L==16&L_==1) {
list() -> composed_network
phi_1[[1]1$W %*% phi 2[[1]]1$W -> W
phi 1[[1]1$W %*% phi_2[[1]1$b + phi_1[[1]11$b -> b

list(
W= w,
b=0>b

) -> composed_network[[1]]
return(composed_network)
} else {
stop("Dimensionality_mismatch")
}
} else {
stop("Only_neural_networks_can_be_composed.")

Listing 10.8: R code for scalar multiplication

source("R/comp.R")
source("R/aux_fun.R")
source("R/is_nn.R")

"
by
4
4
by
4
by
by
4

atitle slm

@description The function that returns the left scalar multiplication
neural network

@param a A real number.

@param nu A neural network of the kind created by create_neural_network.

areturn Returns a neural network that is \egn{a \triangleright \nu}. This

231

14

15
16
17

18

19

20
21
22

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

60

61

62

63
64

#' instantiates as \eqn{a \cdot f(x)} under continuous function activation. More

specifically

#' we define operation as:

T

#' Let \egn{\lambda \in \mathbb{R}}. We will denote by \eqn{(\cdot) \triangleright (\
cdot):

#' \mathbb{R} \times \mathsf{NN} \rightarrow \mathsf{NN}} the function satisfying for
all

#' \egn{\nu \in \mathsf{NN}} and \egn{\lambda \in \mathbb{R}} that \egn{\lambda \
triangleright \nu =

#' \mathsf{Aff} {\lambda \mathbb{I} {\mathsf{I}(\nu)},0} \bullet \nu}.

#' @references Definition 2.3.4. Jentzen, A., Kuckuck, B., and von Wurstemberger, P.
(2023).

#' Mathematical introduction to deep learning: Methods, implementations,

#' and theory. \url{https://arxiv.org/abs/2310.20360}.

L}

#' \emph{Note:} We will have two versions of this operation, a prefix and an

#' infix version.

#' @export

slm <- function(a, nu) {

if (a |> is.numeric() &&
length(a) == 1 &&
a |> is.finite() &&
nu |> is nn()) {
nu |> out() -> constant _matrix_size
list() -> multiplier_network
a |> diag(constant_matrix_size) -> W
@ |> matrix(constant_matrix_size) -> b
list(W = W, b = b) -> multiplier_network[[1]]
multiplier_network [> comp(nu) -> return_network
return(return_network)

} else {
stop("a_must_be_a_real_number_and_nu_must_be_a_neural_network")

#' atitle srm

#' adescription The function that returns the right scalar multiplication

#' neural network

#l

#' @param nu A neural network of the type generated by create_neural_network().

#' @param a A real number.

#l

#' @return Returns a neural network that is \egn{\nu \triangleleft a}. This

#' instantiates as \eqn{f(a \cdot x)}.under continuous function activation. More

#' specifically we will define this operation as:

#l

#' Let \egn{\lambda \in \mathbb{R}}. We will denote by \egqn{(\cdot) \triangleleft (\
cdot):

#' \mathsf{NN} \times \mathbb{R} \rightarrow \mathsf{NN}} the function satisfying for
all

#' \egn{\nu \in \mathsf{NN}} and \egn{\lambda \in \mathbb{R}} that \egn{\nu \
triangleleft \lambda =

#' \nu \bullet \mathsf{Aff} {\lambda \mathbb{I} {\mathsf{I}(\nu)},0}}.

#' @references Definition 2.3.4. Jentzen, A., Kuckuck, B., and von Wurstemberger, P.

232

65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
920
91
92
93
94
95
%
97
98
99
100
101
102

104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121

(2023).
#' Mathematical introduction to deep learning: Methods, implementations,
#' and theory. \url{https://arxiv.org/abs/2310.20360}.
1
#' \emph{Note:} We will have two versions of this operation, a prefix
#' and an infix version.
#' @export

srm <- function(nu, a) {

if (a |> is.numeric() &&
length(a) == 1 &§
a |> is.finite() &&
nu |> is nn()) {
nu |> inn() -> constant_matrix_size
list() -> multiplier_network
a |> diag(constant_matrix_size) -> W
® |> matrix(constant matrix _size) -> b
list(W = W, b = b) -> multiplier_network[[1]]
nu |> comp(multiplier_network) -> return_network
return(return_network)

} else {
stop("a_must_be_a_real_number_and_nu_must_be_a_neural_network")

#I

#' @param a A real number.

#' @param nu A neural network of the type generated by create_neural_network().
#I

#' @rdname slm

#' @export

“%s1m%” <- function(a, nu) {
if (a |> is.numeric() &&
length(a) == 1 &§
a |> is.finite() &&
nu |> is_nn()) {
nu |> out() -> constant _matrix_size
list() -> multiplier_network
a |> diag(constant_matrix_size) -> W
® |> matrix(constant matrix size) -> b
list(W = W, b = b) -> multiplier_network[[1]]
multiplier_network |> comp(nu) -> return_network
return(return_network)
} else {
stop("a_must_be_a_real_number_and_nu_must_be_a_neural_network")
}
}

#' @param nu A neural network
#' @param a A real number.

#'
#' @rdname srm
#' @export

“%srm%” <- function(nu, a) {
if (a |> is.numeric() &&

233

122
123
124
125
126
127
128
129
130
131
132

134
135

O O N O U W N R

e el
w N RS

14
15
16
17
18
19
20
21
22
23
24

25
26
27
28
29
30

32
33
34
35
36
37
38
39

length(a) == 1 &&
a |> is.finite() &&
nu |> is_nn()) {
nu |> inn() -> constant_matrix_size
list() -> multiplier_network
a |> diag(constant_matrix_size) -> W
® |> matrix(constant matrix size) -> b
list(W = W, b = b) -> multiplier_network[[1]]
nu |> comp(multiplier_network) -> return_network
return(return_network)
} else {
stop("a_must_be_a_real_number_and_nu_must_be_a_neural_network")

Listing 10.9: R code for sum of two neural networks

SO
SO
SO
S©
SO

4
by
4
4
4
by
by

4
by
4
4
4
by
4
4
by
4
4

nn

urce("R/comp.R")
urce("R/stacking.R")
urce("R/aux_fun.R")
urce("R/Aff.R")
urce("R/is_nn.R")

atitle nn_sum

@description A function that performs the neural network sum for two

neural networks of the type generated by

create_neural_network(). Neural network sums are defined for

\egn{\nu_1 \in \mathsf{NN}} and \egn{\nu_2 \in \mathsf{NN}} as:

\deqn{

\oplus™v_{i=u}\nu_i \coloneqq \left(\mathsf{Sum}_{v-u+1,\mathsf{0}(\nu_2)} \bullet
\left[\boxminus®v_{i=u}\nu_i \right] \bullet \mathsf{Cpy}_ {(v-u+1),\mathsf{I}(\nu
_1)} \right)

}

areferences Grohs, P., Hornung, F., Jentzen, A. et al.

Space-time error estimates for deep neural network approximations
for differential equations. Adv Comput Math 49, 4 (2023).
\url{https://doi.org/10.1007/s10444-022-09970-2}.

@param nu_1 A neural network.
@param nu_2 A neural network.

@return A neural network that is the neural network sum of \egn{\nu_1} and \egn{\nu
_2}
i.e. \egn{\nu_1 \oplus \nu_2}.

\emph{Note:} We have two versions, an infix version and a prefix version.
aexport

_sum <- function(nu_1, nu_2) {

if (nu_1 [> is_nn() &&
nu 2 |[> is nn() &&
inn(nu_1) == inn(nu_2) &&
out(nu_1) == out(nu_2)) {
Cpy(2, inn(nu_1)) -> first_third
nu_1 [> stk(nu_2) -> mid_third
Sum(2, out(nu_1)) -> last_third

last_third [>

234

40 comp(mid_third) |[>

41 comp(first_third) -> return_network

42 return(return_network)

w3} else {

44 stop("Only_neural_networks_with_same_end-widths_may_be_summed")
45

6] }

47
sg|#' Function for calculating neural network sums
4o #'

so|#' @param nu_1 A neural network.

si|#' @param nu_2 A neural network.

52| #'

s3|#' @rdname nn_sum

so| #' @export

55| #'

s6| “%nn_sum%” <- function(nu_1, nu_2) {

571 if (nu_1 |> is_nn() &§

58 nu_2 |> is_nn() &&§
59 inn(nu_1) == inn(nu_2) &§&
60 out(nu_1) == out(nu_2)) {
61 Cpy(2, inn(nu_1)) -> first_third
62 nu_1 |> stk(nu_2) -> mid_third
63 sum(2, out(nu_1)) -> last_third
64
65 last_third |>
66 comp(mid_third) |[>
67 comp(first_third) -> return_network
68 return(return_network)
6o } else {
70 stop("Only_neural_networks_of_same_end_widths_may_be_summed")
71 }
72|}
Listing 10.10: R code for i
1| #' atitle: 1
2|#' @description The function that returns the \eqn{\mathbb{i}} network.
| #!
4| #' @param d the size of the \eqn{\mathsf{i}} network
5| #'
6|#' @Qreturn returns the i_d network
7
g1 <- function(d) {
o Tlist() -> return_network

[
S

d |> diag() -> w

0 |> matrix(d, 1) -> b

list(W = W, b = b) -> return_network[[1]]
list(W = W, b = b) -> return_network[[2]]
return(return_network)

e
AW N e

15| }

Listing 10.11: R code for Id neural networks
1| #' @title: Id
2|#' @description The function that returns the \eqn{\mathsf{Id_1}} networks.
3|#' @param d the dimension of the \eqn{Id} network, by default it is \eqn{1}.
ol #!

235

O ® N o v

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

o U E W N e

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

#' @return Returns the \egn{\mathsf{Id_1}} network.
#' @export
Id <- function(d = 1) {
if (d%s1!=0 ||
d <1
) 1
stop("d_must_be_natural_numbers")
} else if (d == 1) {
W1 <- c(1, -1) |> matrix()
b 1<- c(0, 0) |> matrix()
layer 1 <- list(W = W 1, b = b_1)
W2 <- c(1, -1) [> matrix(1, 2)
b 2<-0 |> matrix()
layer_2 <- list(W = W_2, b = b_2)
result <- list(layer_1, layer_2)
return(result)
} else if (d > 1) {
Id() -> return_network
for (j in 2:d) {
return_network |> stk(Id()) -> return_network
}
return(return_network)
} else {
stop("Unknown_error")
}
}
Listing 10.12: R code for Tun
source("R/comp.R")
source("R/Id.R")
#' Tun: The function that returns tunneling neural networks
4
#' @param n The depth of the tunnel network where \egn{n \in \mathbb{N} \cap [1,\infty

)}

#' @param d The dimension of the tunneling network. By default it is assumed to be \
eqn{1}.

#' @return A tunnel neural network of depth n. A tunneling neural
#' network is defined as the neural network \egn{\mathsf{Aff} {1,0}} for \egn{n=1},
#' the neural network \egn{\mathsf{Id}_ 1} for \egn{n=1} and the neural network
#' \egn{\bullet"{n-2}\mathsf{Id}_1} for \egn{n >2}. For this to work we
#' must provide an appropriate \eqn{n} and instantiate with RelLU at some
#' real number \eqn{x}.
#' @export
4
Tun <- function(n, d = 1) {
if (n%% 1 '=0 ||

n<1 ||
d%s1'!=0 ||
d <1
) {
stop("n_and_d_must_be_natural_numbers")
if (d == 1) {
if (n ==1) {

return(Aff(1, 0))

236

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

O W N O U R W N R

A A e =
N o s W N RS

18
19
20
21
22
23
24
25
26
27
28

} else if (n == 2) {
return(Id())
} else if (n > 2) {
Id() -> return_network
for (1 in 3:n) {
return_network |> comp(Id()) -> return_network
}

return(return_network)
}
} else if (d > 1) {
if (n == 1) {
return(Aff(diag(d), @ |> matrix()))
} else if (n == 1) {
return(Id(d))
} else if (n == 2) {
return(Id(d))
} else if (n > 2) {
Id(d) -> return_network
for (i in 3:n) {
return_network |> comp(Id(d)) -> return_network
}

return(return_network)
}
} else {
stop("Unknown_error")
}
}

Listing 10.13: R code for &y

source("R/comp.R")
source("R/Aff.R")
source("R/i.R")
source("R/aux_fun.R")
source("R/activations.R")

#' The c_k function

#I

#' @param k an integer in \egn{[1,\infty)}

#l

#' Qreturn the real number \eqn{2”{1-2k}}

#' areferences Grohs, P., Hornung, F., Jentzen, A. et al.

#' Space-time error estimates for deep neural network approximations

#' for differential equations. Adv Comput Math 49, 4 (2023).

#' https://doi.org/10.1007/s10444-022-09970-2

#I

#' areferences Definition 2.3.4. Jentzen, A., Kuckuck, B., and von Wurstemberger, P.
(2023).

#' Mathematical introduction to deep learning: Methods, implementations,

#' and theory. \url{https://arxiv.org/abs/2310.20360}.

c_k <- function(k) {
2™
1-2x*k
} -> result
return(result)

}

#' This is an intermediate variable, see reference.

237

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

c(o, -1/ 2, -1, @) |> matrix() -> B

#' C_k: The function that returns the C_k matrix

#I

#' @param k Natural number, the precision with which to approximate squares
#' within \eqn{[0,1]}

#I

#' @return A neural network that approximates the square of any real within
#' \eqn{[0,1]}

C_k <- function(k) {
c(-c_k(k), 2 * c _ k(k), -c_k(k), 1) |> matrix(1, 4) -> result
return(result)

}

#' A_k: The function that returns the matrix A_k
#I
#' @param k Natural number, the precision with which to approximate squares
#' within \eqn{[0,1]}
#l
#' areturn A neural network that approximates the square of any real within
#' \eqni[o,1]}
#l
A_k <- function(k) {
c(2, 2, 2, -c_k(k)) I>

c(-4, -4, -4, 2 * c_k(k)) I>

c(2, 2, 2, -c_k(k)) I>

c(o, 0, 0, 1) |>

matrix(4, 4) -> result

return(result)
}
#' This is an intermediate variable. See the reference
]

c(1, 1, 1, 1) |> matrix(4, 1) -> A

#' The Phi_k function
#
#' @param k an integer \eqn{k \in (2,\infty)}
#'
#' @return The Phi_k neural network
#' areferences Grohs, P., Hornung, F., Jentzen, A. et al.
#' Space-time error estimates for deep neural network approximations
#' for differential equations. Adv Comput Math 49, 4 (2023).
#' https://doi.org/10.1007/s10444-022-09970-2
#
Phi_k <- function(k) {
if (k |> is.numeric() &&

k |> length() == 1 &&

k >= 1 &&

k |> is.finite() &6&

k %% 1 == 0) {

if (k == 1) {

C k(1) |>
Aff(o) |>
comp(i(4)) I>

238

88
89
20
91
92
93
94
95
96
97
98
99
100
101
102

104
105
106
107

comp(Aff(A, B)) -> return_network
return(return_network)

}
if (k >=2) {

}

C k(k) |»>
Aff(0) |>
comp(i(4)) -> return_network
for (j in (k - 1):1) {
A_k(3) |>
Aff(B) |>
comp(i(4)) -> intermediate_network
return_network |> comp(intermediate_network) -> return_network
}
return_network [> comp(A |> Aff(B)) -> return_network
return(return_network)

} else {
stop("k_must_a_natural_number")

Listing 10.14: R code for simulations involving @y

1| source("Phi_k.R")
2| source("aux_fun")

239

source("realization.R")
source("activations.R")

library(ggplot2)

#' The Phi_k_diff function

1

10| #' @param x the number to be squared in [0,1]

11| #' @param k a parameter for Phi_k in [0, \infty)]

12| #'

13| #' @return the 1-norm error between x"2 and Phi_k approximation
14
15| Phi_k_diff <- function(x, k) {

16| return <- (k |> Phi_k() |> rlz(ReLU, x) - x"2) |>

O O N o U W

17 abs() -> result
18| return(result)
19| }

20
21| k_values <- c(1, 2, 5, 10, 15, 20)

22| x_values <- seq(-2, 2, length.out = 200)
23| Phi_k _diff v <- Vectorize(Phi k diff)

24
25| Phi_k_diff_data <- expand.grid(k = k_values, x = x_values)

26| Phi_k_diff_data$diff <- Phi_k_diff_v(Phi_k_diff_data$x, Phi_k_diff_data$k)
27
28| Library(ggplot2)

20| ggplot(Phi_k_diff_data, aes(x = x, y = diff, color = factor(k))) +

30| scale_y_loglo() +

311 geom_line() +

32| geom_line(aes(y = 2™(-2 * k - 2))) +

33 labs(

34 X x",

35 y = "logl0_of_the_1-norm_error_over_domain_[0,1]"

36|) -> Phi_k_diff_plot

37| ggsave("Phi_k_properties/diff.png", plot = Phi_k_diff_plot, width = 6, height = 5,
units = "in"

n,n

38
39| vectorized Phi_k <- Vectorize(Phi_k)
to|vectorized_param <- Vectorize(param)
41
x| param_data <- data.frame(x = 1:100, y = vectorized param(vectorized Phi k(1:100)))
43
wi| ggplot(param_data, aes(x = x, y = y)) +

ts5| geom_line() +

t6| theme_minimal() +

47| xlab("Size_of_k") +

48 ylab("Number_of_parameters") +

to| ggtitle("Plot_of_the_number_of_parameters_of_¢(k)_against_k") +
so| geom_smooth(method = "lm", se = FALSE, color = "blue")

51
52| vectorized_dep <- Vectorize(dep)
53
s4|dep_data <- data.frame(x = 1:100, y = vectorized dep(vectorized Phi k(1:100)))
55
s6| ggplot(dep_data, aes(x = x, y = y)) +
571 geom_line() +

sg| theme minimal() +

so| xlab("Size_of_k") +

240

60
6
62

-

O O N O U W N R

g B S S S RS S R R P W W W W W W W WWWRNNRNRNRNNNNNNRRR B B B B B B B
S VW ® N O G & W N P O VO © N O U & WN P S O ® N O U H WNRL S VO ® N O U »& WN P S

ylab("Depth_of_network") +
ggtitle("Plot_of_the_depth_of_¢(k)_against_k") +
geom_smooth(method = "lm", se = FALSE, color = "blue")

Listing 10.15: R code for ¢

source("R/Phi_k.R")
source("R/i.R")
source("R/Aff.R")

"
by
4
#
e
ey
4
#
by
4

The Phi function

@param eps parameter for Phi

areferences Grohs, P., Hornung, F., Jentzen, A. et al.

Space-time error estimates for deep neural network approximations
for differential equations. Adv Comput Math 49, 4 (2023).
https://doi.org/10.1007/s10444-022-09970-2

areturn neural network Phi that approximately squares a number between
0 and 1.

Phi <- function(eps) {

if (eps |> is.numeric() &&

eps |> length() == 1 &§

eps |> is.finite() &6

eps > 0) {

(0.5 * 1og2(1 / eps) - 1) |> ceiling() -> M

if (M<=0)1->M

if (M ==1) {
C_ k(1) |»>
Aff(0) |>
comp(i(4)) |>
comp(Aff(A, B)) -> return_network
return(return_network)

}

if (M >= 2) {
C_k(m) [|>
Aff(0) |>
comp(i(4)) -> return_network
for (j in (M - 1):1) {
A_k(3) |>
Aff(B) |>
comp(i(4)) -> intermediate_network
return_network |> comp(intermediate_network) -> return_network
}
return_network |> comp(A |> Aff(B)) -> return_network
return(return_network)

}

} else {

stop("eps_must_be_a_positive_real_number")

241

O ® N O U W N R

N NN NN R B R R B B B B B B
A& W N B S VO ® N O U R WN RS

Listing 10.16: R code for simulations involving ®

source("Phi.R")
source("aux_fun.R")
source("realization.R")
source("activations.R")

#' The Phi diff function

#I

#' aparam eps parameter for Phi

#' @param x number to be squared

#I

#' @Qreturn the 1-norm error between the result
#' and x"2

diff <- function(eps, x) {
(x"2 - eps |> Phi() |> riz(ReLU, x)) |>
abs() -> result
return(result)

}

eps_values <- c(1, 0.5, 0.1, 0.01, 0.001, 0.0001)
x_values <- seq(@, 1, length.out = 100)
vectorized diff <- Vectorize(diff)

diff_data <- expand.grid(eps = eps_values, x = x_values)

242

25
26
27
28
29
30
31
32
33
34

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

O O N O U W N R

e T R e e
N o B W N RS

18

19
20

diff_data$Phi_diff <- vectorized diff(diff_data$eps, diff_data$x)
library(ggplot2)

ggplot(diff_data, aes(x = x, y = eps, z = Phi_diff)) +
geom_contour_filled() +
ggtitle("Contour_plot_of_the_1-norm_difference_for_values_of_x_and_eps") +
theme_minimal() -> Phi_diff_contour_plot

ggsave("Phi_properties/Phi_diff_contour.png", plot = Phi_diff_contour_plot, width = 6,
height = 5, units = "in"

vectorized Phi k <- Vectorize(Phi k)
vectorized_param <- Vectorize(param)

param_data <- data.frame(x = 1:100, y = vectorized_param(vectorized Phi k(1:100)))

ggplot(param_data, aes(x, y)) +
geom_line() +
theme _minimal()

vectorized_dep <- Vectorize(dep)
dep_data <- data.frame(x = 1:100, y = vectorized_dep(vectorized Phi_k(1:100)))

ggplot(dep_data, aes(x = x, y = y)) +
geom_line() +
theme _minimal() +
xlab("Size_of_k") +
ylab("Depth_of_network") +
ggtitle("Plot_of_the_depth_of_¢(k)_against_k") +
geom_smooth(method = "lm", se = FALSE, color = "blue")

Listing 10.17: R code for Sqr

source("R/comp.R")
source("R/Aff.R")
source("R/nn_sum.R")
source("R/Phi.R")
source("R/aux_fun.R")

#' atitle Sqr
#' @description A function that returns the \eqn{\mathsf{Sqr}} neural networks.

#' Qparam q parameter for the Sqr network. \eqn{2 \in (2,\infty)}
#' @param eps parameter for the Sqr network. \egn{eps \in (@0,11}. You may
#' choose epsilon to be greater than 1 but that leads to large errors

#' areturn A neural network that approximates the square of a real number.when

#' provided appropriate \egn{q,\varepsilon} and upon instantiation with RelU,

#' and a real number \eqn{x}

#' @references Grohs, P., Hornung, F., Jentzen, A. et al. Space-time error estimates

for deep

#' neural network approximations for differential equations. Adv Comput Math 49, 4
(2023).

#' https://doi.org/10.1007/s10444-022-09970-2

243

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

O O N O U W N R

NN NN NNNNNNRRR B B B B BB
O ® N O LA W N R S WV N O U R WN RS

#
#' @export

Sqr <- function(q, eps) {
if (g <=2 || eps <= 0) {
stop("qg_must_be_>_2_and_eps_must_be_>_0")
} else {
2°(-2 / (g - 2)) = eps”™(q / (g - 2)) -> delta
(eps / 2)™(1 / (g - 2)) -> alpha

(0.5 * log2(1 / eps) - 1) |> ceiling() -> M
if (M<=0) 1elseM->M

(Aff(alpha™(-2), @) |> comp(Phi(delta))) [>
comp(Aff(alpha, 0)) -> first_summand

(Aff(alpha®™(-2), @) |> comp(Phi(delta))) |>
comp(Aff(-alpha, 0)) -> second_summand

first _summand |>
nn_sum(second_summand) -> return_network

return(return_network)

Listing 10.18: R code simulations involving Sqr

source("aux_fun.R")
source("Sqr.R")
source("instantiation.R")
source("activations.R")
library("tidyverse")

#' Sqr_diff function

#' @param q parameter for the Sqr network
#' @param eps parameter for the Sqr network
#' @param x the number to be squered

#' @return a neural network that approximately squares X.

Sqr_diff <- function(q, eps, x) {
return <- (Sqr(q, eps) |> rlz(ReLU, x) - x"2) |> abs()
return(return)

}
Sqr_diff_v <- Vectorize(Sqr_diff)

Sqr_data <- expand.grid(
q = seq(2.1, 4, length.out = 50),
eps = seq(0.01, 2, length.out = 50),
x = seq(-5, 5, length.out = 50)

)

244

30
31
32
33
34
35
36
37
38
39
40
41
42
43
A
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

771)

78
79
80
81
82
83
84
85
86
87

Sqr_data$diff <- Sqr_diff_v(Sqr_dataq, Sqr_dataeps, Sqr_data$x)

#' Function to calculate the theoretical upper bounds of the 1-norm error
#' over \mathbb{R}

#I

#' @param q parameter for the Sqr network

#' @param eps parameter for the Sqr network

#' @param x the number to be squered

#I

#' @Qreturn the maximum 1-norm error over \mathbb{R}

diff_upper_limit <- function(q, eps, x) {
eps * max(1, abs(x)"q)
}
diff_upper_limit_v <- Vectorize(diff_upper_limit)
Sqr_data$diff_upper_limit <- diff_upper_limit_v(Sqr_dataq, Sqr_dataeps, Sqr_data$x)
write_csv(Sqr_data, "Sqr_properties/Sqr_data.csv")
library(plotly)

fig <- plot_ly(
type = "isosurface",

X = Sqr_data$x,
y = Sqr_data$q,
z = Sqr_data$eps,

value = Sqr_data$diff,
isomin = 0.0001,

isomax = 5,
colorscale = "RdBu"
) >
layout(scene = list(
xaxis = list(title = "x"),
yaxis = list(title = "q"),
zaxis = list(title = "eps")
)) 1>
layout(scene = list(legend = list(title = "Diff_from_x"2")))
fig
library(ggplot2)

Sqr_data_aux <- expand.grid(
q = seq(2.1, 10, length.out = 100),
eps = seq(0.01, 4, length.out = 100)

Sqr_data_aux$param <- 0
for (k in 1:10000) {

Sqr_data_aux$param[k] <- Sqr(Sqr_data_aux$qlk]l, Sqr_data_aux$eps[k]) |> param()
}

experimental_params <- ggplot(Sqr_data_aux, aes(x = q, y = eps, z = logl0(param))) +
geom_contour_filled() +
theme minimal() +

245

88
89
20
91
92
93
94
95
%
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114

115

116/ }

117
118

119
120
121
122
123
124
125
126

127
128
129
130

131
132

134
135

136
137

138
139

labs(fill = "Log_10_number_of_parameters")
Sqr_data_aux$dep <- 0

for (k in 1:10000) {
Sqr_data_aux$dep[k] <- Sqr(Sqr_data_aux[k, 1$q, Sqr_data_aux[k, I$eps) [|> dep()
}

experimental_deps <- ggplot(Sqr_data_aux, aes(x = q, y = eps, z = logl0(dep))) +
geom_contour_filled(alpha = 0.8) +
scale_fill_continuous(breaks = seq(@, max(Sqr_data_aux$dep), by = 1)) +
theme_minimal() +
labs(fill = "log_10_experimental_depths")

param_upper_limit <- function(q, eps) {
(((40 * q) / (g - 2)) = ((1 / eps) I> log(2)) + 80 / (q - 2) - 28) |> max(52)

dep_upper_limit <- function(q, eps) {
((qg/ (2 %q-4)) ~10g2(1 / eps) +1/ (q-2)+1/(q-2)+1) |>max(2)
}

Sqr_data_aux$param_upper_limit <- 0

for (k in 1:10000) {
Sqr_data_aux$param_upper_limit[k] <- param_upper_limit(Sqr_data_aux[k,]$q, Sqr_data
_aux[k, 1$eps) I>
ceiling()

param_theoretical_upper_limits <- ggplot(Sqr_data_aux, aes(x = q, y = eps, z = log10(
param_upper_limit))) +
geom_contour_filled() +
theme minimal() +
labs(fill = "Logl@_upper_limits_of_parameters")

Sqr_data_aux$dep_upper_limit <- 0

for (k in 1:10000) {
Sqr_data_aux$dep_upper_limit[k] <- dep_upper_limit(Sqr_data_aux[k, 1$q, Sqr_data_aux
[k, 1$eps) I>
ceiling()
I

dep_theoretical_upper_limits <- ggplot(Sqr_data_aux, aes(x = g, y = eps, z = logl0(dep
_upper_limit))) +
geom_contour_filled() +
theme_minimal() +
labs(fill = "Logl@_upper_limits_of_depth")

ggsave("Sqr_properties/param_theoretical_upper_limits.png", plot = param_theoretical_
upper_limits, width = 6, height = 5, units = "in"

ggsave("Sqr_properties/dep_theoretical_upper_limits.png", plot = dep_theoretical_upper
_limits, width = 6, height = 5, units = "in"

ggsave("Sqr_properties/experimental_deps.png", plot = experimental_deps, width = 6,

246

140
141

O O N O LR W N R

W W W W WwwWwNNNNNNDNNNRNNDNNRRR R B B B B B P
O R W N R SO OV N O U PR WN R O W 0N U WN RS

37
38
39
40
41
42
43
44
45
46

height = 5, units = "in")

ggsave("Sqr_properties/experimental_params.png", plot = experimental_params, width =
6, height = 5, units = "in"

Listing 10.19: R code simulations involving Sqr

source("R/Prd.R")
source("R/Aff.R")
source("R/stacking.R")
source("R/Tun.R")
source("R/aux_fun.R")

#' atitle Pwr

#' adescription

#' A function that returns the \eqn{\mathsf{Pwr}} neural networks.

#

4

#' @param q inside \eqn{(2,\infty)}.

#' @param eps inside \eqn{(0,\infty)}.

#' aparam exponent the exponent which the Pwr network will approximate. Must be
#' a non-negative integer.

#

#' areturn A neural network that approximates raising a number to exponent, when
#' given appropriate \eqn{q,\varepsilon} and exponent when isntanatiated

#' under RelLU activation at \eqgn{x}.

#' @export

Pwr <- function(q, eps, exponent) {
if (q <= 2) {
stop("Too_small_q,_qg_must_be_>=_2")
} else if (eps <= 0) {
stop("Too_small_eps,_eps_must_be_>=_0")
} else if (exponent %% 1 != @ || exponent < 0) {
stop("Exponent_must_be_a_non-negative_integer")
} else {
if (exponent == 0) {
Aff(0, 1) -> return_network
return(return_network)
} else if (exponent >= 1) {
Cpy(2, 1) -> first_third
Pwr(q, eps, exponent - 1) |> stk(Pwr(q, eps, exponent - 1) |> dep() [> Tun()) ->
mid_third
Prd(q, eps) -> last_third
last_third |>
comp(mid_third) |>
comp(first_third) -> return_network
} else {
return("Invalid_exponent,_must_be_non-negative_integer")
}

return(return_network)

Listing 10.20: R code simulations involving Sqr

1‘source("Pwr.R“)

247

O W N O U W N

a gL U d s R RS R R R R R DWW WWWWWWW W NNRNDNNRNNNRNRNNRRR R B B B B p B
O ® N O U & W N P O VOV ® N O G & WN R OO O ® N O 1 & WN R OO VO O N O U & WNRLPL S O ® N O U & WN R S

library(tidyverse)

#' Pwr_3_diff function

#

#' @param q parameter for Pwr_3

#' @param eps parameter for Pwr_3

#' @param x the number to be cubed

#' @param exponent = 3, i.e. cubing a number

Pwr_3 diff <- function(q, eps, x, exponent = 3) {
return <- (Pwr(qg, eps, exponent = 3) [> rlz(ReLU, x) - x"3) [> abs()
return(return)

}
Pwr_3 diff v <- Vectorize(Pwr_ 3 diff)

Pwr_3_data <- expand.grid(
q = seq(2.1, 4, length.out = 50),
eps = seq(0.01, 2, length.out = 50),
x = seq(-5, 5, length.out = 50)

)

Pwr_3 data$diff <- Pwr_3_diff_v(Pwr_3_dataq, Pwr_3_dataeps, Pwr_3_data$x)
library(ggplot2)

ggplot(Pwr_3_data, aes(diff)) +
scale_x_logl0o() +
geom_density() +
theme_minimal()

library(plotly)

fig <- plot_Tly(
type = "isosurface",
x = Pwr_3 data$x,
y = Pwr_3_data$q,
z = Pwr_3_data$eps,
value = Pwr_ 3 data$diff,
isomin = 0.0001,

isomax = 5,
colorscale = "RdBu"
) >

layout(scene = list(
xaxis = list(title
yaxis = list(title = "q"),
zaxis = list(title =

) 1>

layout(scene = list(legend = list(title = "Diff_from_x"2")))

n
><_
-

I
D
©
wn
-

fig

Pwr_3_data_aux <- expand.grid(
q = seq(2.1, 10, length.out = 100),
eps = seq(0.01, 4, length.out = 100)

Pwr_3_data_aux$param <- 0

248

60
61
62

63
64
65
66
67
68
69
70
71
72
73

74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
920
91
92
93
94
95
9%
97
98
99

101
102
103
104
105
106

107| }

108
109
110
111
112

113
114

for (k in 1:10000) {
Pwr_3_data_aux$param[k] <- Pwr(Pwr_3_data_aux$ql[k], Pwr_3_data_aux$eps[k], exponent

= 3) |> param()
}

experimental_params <- ggplot(Pwr_3_data_aux, aes(x = q, y = eps, z = logl0(param))) +
geom_contour_filled() +
theme_minimal() +
labs(fill = "log_10_#_of_parameters")

Pwr_3_data_aux$dep <- 0

for (k in 1:10000) {
Pwr_3 data_aux$dep[k] <- Pwr(Pwr_3_data_aux[k, 1$q, Pwr_3_data_aux[k,]$eps,
exponent = 3) |> dep()
}

experimental_deps <- ggplot(Pwr_3_data_aux, aes(x = g, y = eps, z = loglo(dep))) +
geom_contour_filled(alpha = 0.8, breaks = seq(0, 10, 1)) +
scale_fill_continuous(breaks = seq(@, max(Pwr_3_data_aux$dep), by = 1)) +
theme_minimal() +
labs(fill = "logl0_depths")

#' The param_upper_limit funnction

#' @param q parameter for the Pwr network
#' @param eps parameter for the Pwr network

#' areturn the theoretical upper limit for the number of parameters

param_upper_limit <- function(qg, eps) {
4™(4.5) -> first summand
(4™4-1)/3 -> second_summand_a
((360%q)/(q-2))*(log2(1/eps)+q+1)+372 -> second_summand_b
first_summand + (second_summand_a * second_summand_b) -> result
return(result)

#' The dep_upper_limit function

#' @param q parameter for the Pwr_3 network
#' @param eps parameter for the Pwr_3 network

#' areturn the theoretical upper limit for the depth
dep_upper_limit <- function(q, eps) {
(Cqg / (g -2)) » (log2(1 / eps) +q) - 1) 3 + 1
Pwr_3_data_aux$param_upper_limit <- 0
for (k in 1:10000) {
Pwr_3_data_aux$param_upper_limit[k] <- param_upper_limit(Pwr_3_data_aux[k, 1$q, Pwr_

3_data_aux[k, J]$eps) I>
ceiling()

249

115
116

117
118
119
120
121
122
123
124

125

126

127

128
129

131
132

133

134

135

O ® N O LR W N R

N N e T L
© VW ® N O U & W N R S

21

22

23

24

param_theoretical_upper_limits <- ggplot(Pwr_3_data_aux, aes(x = q, y = eps, z = logl0
(param_upper_limit))) +
geom_contour_filled() +
theme _minimal() +
labs(fill = "Logl@_upper_limits_of_parameters")

Pwr_3_data_aux$dep_upper_limit <- 0

for (k in 1:10000) {
Pwr_3_data_aux$dep_upper_limit[k] <- dep_upper_limit(Pwr_3_data_aux[k, 1$q, Pwr_3_
data_aux[k,]$eps)
}

dep_theoretical_upper_limits <- ggplot(Pwr_3_data_aux, aes(x = q, y = eps, z = log10(
dep_upper_limit))) +
geom_contour_filled() +
theme_minimal() +
labs(fill = "Logl@_upper_limits_of_depth")

ggsave("Pwr_3_properties/param_theoretical_upper_limits.png", plot = param_theoretical
_upper_limits, width = 6, height = 5, units = "in"

ggsave("Pwr_3_properties/dep_theoretical _upper_limits.png", plot = dep_theoretical_
upper_limits, width = 6, height = 5, units = "in"

ggsave("Pwr_3_properties/experimental_deps.png", plot = experimental_deps, width = 6,
height = 5, units = "in"

ggsave("Pwr_3_properties/experimental_params.png", plot = experimental_params, width =

6, height = 5, units = "in")

Listing 10.21: R code simulations involving Sqr

source("R/Aff.R")
source("R/stacking.R")
source("R/comp.R")
source("R/nn_sum.R")

#' @title Nrm

#'

#' adescription

#' A function that creates the \eqn{\mathsf{Nrm}} neural networks.that take

#' the 1- norm of a \egn{d}-dimensional vector when instantiated with RelLU

#' activation.

y

4

#' aparam d the dimensions of the vector being normed.

y

#' @Qreturn a neural network that takes the 1-norm of a vector of

#' size d.under RelLU activation. This is the neural network that is:

#' \deqn{

#' \mathsf{Nrm}"1_1 = \left(\left(\begin{bmatrix} 1 \\ -1\end{bmatrix},

#' \begin{bmatrix} @ \\ 0 \end{bmatrix}\right), \left(\begin{bmatrix}1 &§& 1\end{
bmatrix},

#' \begin{bmatrix}o\end{bmatrix}\right) \right) \in \left(\mathbb{R}"{2 \times 1} \
times

#' \mathbb{R}"2 \right) \times \left(\mathbb{R}"“{1 \times 2} \times \mathbb{R}"1 \
right) \quad d=1 \\

#' \mathsf{Nrm} 1°d = \mathsf{Sum} {d,1} \bullet \left[\boxminus_{i=1}"d \mathsf{Nrm}
_1"1 \right] \quad d>1

250

25
26
27
28
29
30
31
32

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

O O N O U W N R

[e
w N ke

#' }

#

#

#

#' \emph{Note:} This function is split into two cases

#' much like the definition itself.

#'

#' Qreferences Lemma 4.2.1. Jentzen, A., Kuckuck, B., and von Wurstemberger, P. (2023)

#' Mathematical introduction to deep learning: Methods, implementations,
#' and theory. \url{https://arxiv.org/abs/2310.20360}

#' @export
#'
Nrm <- function(d) {
if (d%s1'=0 1| d<1){
stop("d_must_be_a_natural_number")
} else {
if (d == 1) {
c(1, -1) |> matrix() -> wW_1
c(e, 0) |> matrix() -> b_1
c(1, 1) I|> matrix(1, 2) -> W 2
0 |> matrix() -> b_2

list(w
list(w

W1, b =b 1) -> layer_1
W2, b=0>b2)->1layer_ 2

list(layer_1, layer_2) -> return_network

return(return_network)
} else if (d > 1) {
1 |> Nrm() -> first_compose
for (1 in 1:(d - 1)) {
first_compose |> stk(Nrm(1)) -> first_compose

Sum(d, 1) |> comp(first_compose) -> return_network
return(return_network)

} else {
stop("Possibly_taking_the_norm_of_an_invalid_sized_array")

Listing 10.22: R code simulations involving Sqr

source("R/Aff.R")
source("R/stacking.R")
source("R/comp.R")
source("R/nn_sum.R")
source("R/Id.R")

#' @title Mxm
#' @description The function that returns the \eqgn{\mathsf{Mxm}} neural networks.
#' These are neural networks of the type:

#' \degn{
#'\mathsf{Mxm}"1
#'\\
#'\mathsf{Mxm}"2

?

\mathsf{Aff}_{1,0} \quad d = 1 \\

\left(\left(\begin{bmatrix} 1 &§ -1 \\ @ § 1 \\ 0 & -1\end{bmatrix

251

14

15
16
17

18

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

#'\begin{bmatrix} @ \\ 0 \\@0\end{bmatrix}\right), \left(\begin{bmatrix}1&§1&-1\end{
bmatrix},

#'\begin{bmatrix}@\end{bmatrix}\right)\right) \quad d = 2 \\

#'\\

#'\mathsf{Mxm}"{2d} = \mathsf{Mxm}"d \bullet \left[\boxminus_{i=1}"d \mathsf{Mxm}"2\
right] \quad d > 2\\

#'\mathsf{Mxm}"*{2d-1} = \mathsf{Mxm}*d \bullet \left[\left(\boxminus”d_{i=1} \mathsf
{Mxm}"*2 \right)

#'\boxminus \mathsf{Id}_1\right] \quad d > 2

#I

#'}

#l

#' \emph{Note:} Because of certain quirks of R we will have split

#' into five cases. We add an extra case for \eqn{d = 3}. Unlike the paper

#' we will simply reverse engineer the appropriate \emph{d}.

#I

#' @param d The dimension of the input vector on instantiation.

#l

#' areturn The neural network that will ouput the maximum of a vector of

#' size \eqgn{d} when activated with the RelLU function.

#l

#' Qreferences Lemma 4.2.4. Jentzen, A., Kuckuck, B., and von Wurstemberger, P. (2023)

#' Mathematical introduction to deep learning: Methods, implementations,
#' and theory. \url{https://arxiv.org/abs/2310.20360}

#' @export

Mxm <- function(d) {
if (d%%1!=01|dc<1){
stop("d_must_be_a_natural_number")

}
if (d == 1) {
return(Aff(1, 0))
} else if (d == 2) {
c(1, 0, 0, -1, 1, -1) |> matrix(3, 2) -> W_1
c(0, 0, 0) |> matrix() -> b_1
c(1, 1, -1) |> matrix(1, 3) -> W_2
® |> matrix() -> b 2
list(W =w_1, b = -> layer_1
list(W = w2, b = -> layer_ 2
list(layer_1, layer_2) -> return_network
return(return_network)
} else if (d == 3) {
Mxm(2) [|> stk(Id()) -> first_compose
Mxm(2) |> comp(first_compose) -> return_network
return(return_network)
} else if ((d %% 2 == 0) § (d > 3)) {
d/ 2 ->d
Mxm(2) -> first_compose
for (1 in 1:(d - 1)) {
first_compose |> stk(Mxm(2)) -> first_compose

b 1)
b 2)

Mxm(d) |> comp(first_compose) -> return_network
return(return_network)
} else if ((d %% 2 '=0) & (d > 3)) {

252

68
69
70
71
72
73
74
75
76
77
78
79
80

O ® N O U W N R

WRNRNNNNNNNNNERRRB B B B B B B B
S VW ®W N O U & W N B & V © N O U » W N P S

31
32
33
34
35
36
37
38
39
40
41
42

(d -1)/2->d

Mxm(2) -> first_compose
for (i in 1:(d - 1)) {
first_compose |> stk(Mxm(2)) -> first_compose
}
first_compose |[> stk(Id()) -> first_compose
Mxm(d + 1) [> comp(first_compose) -> return_network
return(return_network)
} else {
stop("Possibly_taking_max_of_vector_of_length_0")

Listing 10.23: R code simulations involving Tay

source("R/Pwr.R")
source("R/nn_sum.R")
source("R/scalar mult.R")
source("R/Aff.R")

#' The Tay function

#I

#' aparam f the function to be Taylor approximated, for now "exp",
#' and "cos". NOTE use the quotation marks when using this arguments
#' @Qparam n the extent of Taylor approximations, a natural number

#' @param q argument for the Pwr networks \eqn{q \in (2,\infty)}

#' @Qparam eps argument for the Pwr networks \eqn{eps \in (0,\infty)}
#I

#' @return a neural network that approximates the function f

sin

Tay <- function(f, n, q, eps) {
if (n%%1'=0 1|l n<0){
stop("Number_of_Taylor_iteration_must_be_a_non_negative_integer")
} else if (g <2 || eps < 0) {
stop("q_must_be_>_2_and_eps_must_be_>_0")
} else if (f != "exp" §5 f != "sin" &5 f != "cos") {
stop("For_now,_only_Taylor_approximations_for_exp,_sin,_and_cos_is_available")
} else {
if (f == "exp") {
(1 / factorial(e)) |> slm(Pwr(q, eps, @)) -> return_network
if (n == 0) {
return(return_network)
}
for (1 in 1:n) {
return_network [> nn_sum((1 / factorial(i)) |> slm(Pwr(qg, eps, i))) -> return_
network

}

return(return_network)

}

if (f == "cos") {
1 |> stm(Pwr(q, eps, 0)) -> return_network
if (n == 0) {
return(return_network)

}

for (1 in 1:n) {
((-1)"1) / factorial(2 * i) -> coeff

253

43
A
45
46
47
48
49
50
51
52
53
54

O ® N O U W N R

SR S PR W W W W W W W W WWRNNRNDNNRNNDNRNNNRNRRR B R B B P B
2 W N RP © 0O ® N O P WRN R O OV 0 N O U & WN R OO O O N O U & WN LB S

return_network [> nn_sum(coeff |> slm(Pwr(q, eps, 2 * i))) -> return_network

}

return(return_network)

}

if (f == "sin") {
Tay("cos", n, g, eps) -> return_network
return_network |> comp(Aff(1, -pi / 2)) -> return_network
return(return_network)

}
}
}
Listing 10.24: R code simulations involving Etr
#' atitle Trp
#' @description The function that returns the \eqn{\mathsf{Trp}} networks.
1
#' @param h the horizontal distance between two mesh points
L}
#' @return The \eqn{\mathsf{Trp}} network that gives the area
#' when activated with ReLU and two meshpoint values x_1 and x_2.
#' @export

Trp <- function(h) {
if (h |> is.numeric() &&
h |> length() == 1 &&
h |> is.finite() &§&
h>0) {
cth /2, h/2) |>matrix(1, 2) -> W
0 |> matrix() -> b
list(list(W = W, b = b)) -> return_network
return(return_network)
} else {
stop("h_must_be_a_positive_real_number")
}
}

#' atitle Etr

#' @description The function that returns the \eqn{\mathsf{Etr}} networks.
4

#' @param n number of trapezoids to make. Note this will result in a set of
#' trapezoids.

#' Note that this will result in n+1 meshpoints including the starting a and
#' ending b

#'

#' \emph{Note: } Upon instantiation with any continuous function this neural
#' network must be fed with \egn{n+1} real numbers representing the values
#' of the function being approximated at the \egqn{n+1} meshpoints which are
#' the legs of the \egni{n} triangles as stipulated in the input parameters.
g

#' aparam h width of trapezoids

1
#' @return an approximation for area of the integral
#' @export

Etr <- function(n, h) {
if (h |> is.numeric() &&
h |> length() == 1 &§

254

45 h |> is.finite() &&

46 h >0 &&

47 n % 1 == 0 &&

48 n>1) {

49 cth / 2, repth, n - 1), h /2) |>

50 matrix() |>

51 t() > W

52 ® |> matrix() -> b

53 list(list(W = W, b = b)) -> return_network
54 return(return_network)

5]} oelse {

56 stop("n_must_be_a_natural_number_and_h_must_be_a_positive_real_number.")
57 }

sg| }

255

