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Preface

These lecture notes are far away from being complete and remain under construction. In
particular, these lecture notes do not yet contain a suitable comparison of the presented
material with existing results, arguments, and notions in the literature. This will be the
subject of a future version of these lecture notes.

Joshua Lee Padgett
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Chapter 1

Introduction

1.1 Introductory comments on supervised learning

Very roughly speaking, the field deep learning can be divided into three subfields, deep
supervised learning, deep unsupervised learning, and deep reinforcement learning. Algo-
rithms in deep supervised learning seem often to be most accessible for a mathematical
analysis. In the following we briefly sketch in a special situation some ideas of deep
supervised learning.

Let d, M e N={1,2,3,...}, £ € C(RLR), 21,72, ..., 2041 € RL Y1, 00, .., ynr €R
satisfy for all m € {1,2,..., M} that

Ym = E(Tm). (1.1)

In the framework described in the previous sentence we think of M € N as the number of
available input-output data pairs, we think of d € N as the dimension of the input data,
we think of £: R — R as an unknown function which relates input and output data
through (1.1), we think of z1, 2o, ..., 2341 € R? as the available known input data, and
we think of y1, 4., ...,ym € R as the available known output data. The key question in
the context of supervised learning is then that one intends to approximately compute the
output &(zps41) of the (M + 1)-th input data x4, without using explicit knowledge of
the function £: R? — R but instead by using the knowledge of the M input-output data
pairs (z1,y1) = (21, E(21)), (T2, y2) = (w9, E(x2)), - ., (Tar, ynr) = (xar, E(xar)) € RY x R.
To accomplish this, one considers the optimization problem of approximately computing
global minima of the function ®: C(R% R) — [0, 00) which satisfies for all ¢ € C(R? R)
that

B(d) = D _[6(zm) = yml” (1.2)

Observe that (1.1) ensures that ®(€) = 0 and, in particular, we have that the unknown
function £: RY — R in (1.1) above is a global minimizer of the function ®: C(R% R) —
[0,00). The optimization problem of approximately computing minima of the function
® is not suitable for discrete numerical computations on a computer as the function
® is defined on the infinite dimensional Banach space C(R? R). To overcome this we
introduce a spatially discretized version of this optimization problem. More specifically,
let 0 € N, let ¢ = (1g)gereo : R* — C(R? R) be a function, and let ¥: R® — [0, 00) satisfy
U = ® o). We think of the set

{vg: 6 e R°} C C(R%,R) (1.3)

8



Chapter 1. Introduction

as a parametrized set of functions which we employ to approximate the infinite dimen-
sional Banach space C(R? R) and we think of the function R’ 3 § — 1y € C(R% R)
as the parametrization function corresponding to this set. Taking the set in (1.3) and
its parametrization function R® > 6 +— vy € C(R? R) into account, we then intend
to approximately compute minima of the function ® restricted to the set {¢y: § € R},
that is, we consider the optimization problem of approximately computing minima of the
function

{e: 0 ER} 3 6= ©(¢) = [ZW(%) - ym|2] € [0, 00). (1.4)

Employing the parametrization function R® 3 6 + 1y € C(R%, R) one can also reformu-
late this optimization problem as the optimization problem of approximately computing
minima of the function

R? 30— W(0) = 0(thy) = [ZI%(%) - ym|2] € [0,00) (1.5)

and this optimization is now accessible for discrete numerical computations. In the con-
text of deep supervised learning algorithms, one would choose the parametrization func-
tion R? 3 0 — 1y € C(R% R) as deep neural network parametrizations and one would
then apply a stochastic gradient descent optimization algorithm to the optimization prob-
lem in (1.5) to approximately compute minima of (1.5).

DISSEMINATION PROHIBITED. JULY 29, 2021 9



Chapter 2

Basics on artificial neural networks

(ANNS)

In this chapter we present two approaches on how artificial neural networks (ANNs) can
be described in a rigorous mathematical way.

2.1 Vectorized description of ANNSs

2.1.1 Affine functions
Definition 2.1.1 (Affine functions). Let 0,m,n € N, s € Ny, 6 = (0y,0,, ..

b0 € R

satisfy 0 > s+mn+m. Then we denote by Agfn: R™ — R™ the function which satisfies
for all x = (x1,xa,...,x,) € R" that

03-‘,—1 95+2 T Hs-l—n 1 es-l—mn-l—l

es—i-n—‘rl 03+n+2 e 95-‘,—271 X2 03+mn+2

Afyfn(x) = es+2n+l 95+2n+2 T 95+3n T3 —+ 98+mn+3
es+(m—1)n+1 ‘93+(m—1)n+2 to 93+mn Tp es+mn+m

= ( [22:1 xk98+ki| + 95+mn+1) [Zzzl xkzgs—&-n-‘,—k] + 05+mn+27

R |:Z xk95+(m—1)n+k] + es+mn+m)
k=1

and we call Af,fn the affine function from R™ to R™ associated to (6, s).

2.1.2 Vectorized description of ANNSs
Definition 2.1.2 (Vectorized description of ANNs). Let 0,L € N, Iy, ly,...,lp € N,

0 € R? satisfy

L
0> Zlk(zk_1 +1)

10
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Chapter 2. Basics on artificial neural networks (ANNs)

and let Wy: R* — R* k€ {1,2,..., L}, be functions. Then we denote by /\/'9 lo ..... v,
Rl — R the function which satisfies for all v € R that

L—-1
(N@ lO )( ) (\IIL o Aevzk:l lk‘(lkfl""]-) o \IIL 1 o Ae Zk 1 lk(lk 1+1)

Wy, Vs, ¥, lr,lp—1 lp—1,lp—2

oWy o AP o @oAJ@@»(zm

(cf. Definition 2.1.1) and we call /\/’9 o ..., the realization of the fully connected feed-
forward artificial neural network assocmted to 0 with L + 1 layers and with dimensions
(lo,l1,...,11) and activation functions (Vq, ¥a, ..., VUr).

2.1.3 Weights and biases of ANNs

Remark 2.1.3. Let L € {2,3,...}, Vo, V1,...,0—1 € Ny, lo,l1,...,lp, 0 € N, 0 =
(01,05, ...,6,) € R® satisfy for all k € {0,1,...,L — 1} that

L k
}: i1+ 1 and vy =Y Li(lio +1), (2.4)
i=1 i=1

let Wy, € Rexbir ke {1,2,... )L}, and by, € R%*, k € {1,2,...,L}, satisfy for all
ke{l,2,... L} that

0%—14-1 9%—14—2 s 9vk-1+lk—1
evk71+lk71+1 90k71+lk71+2 s evk71+2lk71
Wy = evk71+21k71+1 evk71+2lk71+2 s evk71+3lk71 (2.5)
97}k—1+(lk_1)lk—1+1 evk—1+(lk_1)lk—1+2 v ekal‘i‘lklkfl
weights
and
b, = (ka—1+lklk—1+17 0vk—1+lklk—1+27 s ’evk—1+lklk—1+lk>7 (2'6)
biases

and let Uy: R — R% k€ {1,2,...,L}, be functions. Then
(i) it holds that

6,00 ole 0,012 91}1 6,v0
N‘I’1,‘1’2 SV T =ro 'AlL -1 © Vo ‘AlL W2 © W p0...0 ’A oW;o ‘All »lo ( )
and

(ii) it holds for all k € {1,2,..., L}, x € R that AV (z) = Wiz + by,

lkslk—1

(cf. Definitions 2.1.1 and 2.1.2).

2.1.4 Activation functions
2.1.4.1 Multidimensional versions
To describe multidimensional activation functions, we frequently employ the concept of

the multidimensional version of a function. This concept is the subject of the next notion.

DISSEMINATION PROHIBITED. JULY 29, 2021 11



Chapter 2. Basics on artificial neural networks (ANNs)

Definition 2.1.4 (Multidimensional versions). Let d € N and let v: R — R be a
function. Then we denote by My q: RY — R the function which satisfies for all x =
(21,9, ...,2q4) € R? that

My.a(x) = (V(z1), Y(22), ..., ¥(x4)). (2.8)

and we call My, 4 the d-dimensional version of 1.

2.1.4.2 Single hidden layer artificial neural networks

Example 2.1.5. Let ZLH €N, 0 = (91,92, ce 79HI+27-[+1) S RHI+2H+1, T = (131,372, ceey
r7) € RT and let ¢v: R — R be a function. Then

N ian (@) = ((idz) 0 AT 0 9y 30 0 AR ) ()

My 20,idr
= AT (O (A2 ()

H T
= [Z Onziasn ¥ ( |:Z:Ei9(k1)l+i:| + 9H1+k)
k=1

i=1

+ Onzyors1.

(cf. Definitions 2.1.1, 2.1.2, and 2.1.4).

2.1.4.3 The rectifier function

In this subsection we formulate the rectifier function which is maybe the most commonly
used activation function in deep learning applications (cf., for example, Le Cun, Bengio,

& Hinton [21]).

Definition 2.1.6 (Rectifier function). We denote by t: R — R the function which satis-
fies for all x € R that
t(z) = max{x,0}. (2.10)

and we call v the rectifier function.

Definition 2.1.7 (Multidimensional rectifier functions). Let d € N. Then we denote by
Rq: R — R? the function given by

Ry =M g (2.11)
(cf. Definitions 2.1.4 and 2.1.6) and we call Ry the d-dimensional rectifier function.

Proposition 2.1.8 (An artificial neural network with the rectifier function as the acti-
vation function). Let W) = w; =1, Wy = wy = —1, by = by = B = 0. Then it holds for
all x € R that

r = Wi max{wx + b1, 0} + Womax{wsx + b, 0} + B. (2.12)
Proof of Proposition 2.1.8. Observe that for all x € R it holds that

Wi max{wix + by, 0} + Wy max{wsx + be,0} + B
= max{wyz + by,0} — max{wsx + by, 0} = max{z,0} — max{—=z,0} (2.13)
= max{z,0} + min{z,0} = x.

The proof of Proposition 2.1.8 is thus complete. O]

DISSEMINATION PROHIBITED. JULY 29, 2021 12
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Exercise 2.1.1 (Real identity). Prove or disprove the following statement: There exist
0, LEN, li,lg,..., 1 €N, 0= (01,0s,...,0,) € R withd > 2l + [Sp_, lu(le1 + 1)] +
lp + 1 such that for all x € R it holds that

0,1
(lel,%lz ..... Ry idR)<x> =z (2.14)

L7
(cf. Definitions 2.1.2 and 2.1.7).

The statement of the next lemma, Lemma 2.1.9, provides a partial answer to Exer-
cise 2.1.1. Lemma 2.1.9 follows from an application of Proposition 2.1.8 and the detailed
proof of Lemma 2.1.9 is left as an exercise.

Lemma 2.1.9 (Real identity). Let = (1,—1,0,0,1,—1,0) € R". Then it holds for all
x € R that
(NSi;l,idR) () == (2.15)

(cf. Definitions 2.1.2 and 2.1.7).

Exercise 2.1.2 (Absolute value). Prove or disprove the following statement: There exist
0, LEN, lilo,..., 1l €N, 0= (01,0s,...,0,) € R withd > 2l + [Sp_y lu(le1 + 1)] +
lp + 1 such that for all x € R it holds that

97
(Nmi,ml,é, ..... 5 ide) (2) = || (2.16)

L
(cf. Definitions 2.1.2 and 2.1.7).

Exercise 2.1.3 (Exponential). Prove or disprove the following statement: There exist
0, LEN, li,ly,..., 1 €N, 0= (01,0s,...,0,) € R withd > 2l + [> 4y l(le—r +1)] +
lp, + 1 such that for all x € R it holds that

9,1 -
(N%zl,ml2 ..... %lL,id]R)(x) =¢€ (2.17)

(cf. Definitions 2.1.2 and 2.1.7).

Exercise 2.1.4 (Two-dimensional maximum). Prove or disprove the following state-
ment: There exist 0,L € N, Iy,ly,...,lp € N, 6 = (01,65,...,0,) € R® with 0 >
3l + [2522 Ue(le—q + 1)} + 1, + 1 such that for all x,y € R it holds that

07
(ij,% ..... mzL,idR)(W) = max{z,y} (2.18)
(cf. Definitions 2.1.2 and 2.1.7).

Exercise 2.1.5 (Real identity with two hidden layers). Prove or disprove the following
statement: There exist 0,11,lo € N, 0 = (01,04,...,60,) € R® with 0 > 2l + 11y + 25 + 1
such that for all x € R it holds that

(stii ,DRZQ,idR>(x) =z (2.19)
(cf. Definitions 2.1.2 and 2.1.7).

The statement of the next lemma, Lemma 2.1.10, provides a partial answer to Exer-
cise 2.1.5. The proof of Lemma 2.1.10 is left as an exercise.
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Lemma 2.1.10 (Real identity with two hidden layers). Let 0 = (1, —1, 0, 0, 1, —1, —1,
1,0,0,1, =1, 0) € R¥. Then it holds for all z € R that

(Nt i) (7) = @ (2.20)
(cf. Definitions 2.1.2 and 2.1.7).

Exercise 2.1.6 (Three-dimensional maximum). Prove or disprove the following state-
ment: There exist 0,L € N, ly,ly,...,lp € N, 6 = (01,65,...,0,) € R* with 0 >
4l + [Zé:z Le(l—1 + 1)} + 11, + 1 such that for all x,y,z € R it holds that
97
(Nmi”% %, idR)(a:,y,z) = max{z,y, 2} (2.21)

7777 L7
(cf. Definition 2.1.2 and Definition 2.1.7).

Exercise 2.1.7 (Multidimensional maxima). Prove or disprove the following statement:
For every k € N there exist 0,L € N, l3,ly,...,lp € N, 8 = (01,0,...,0,) € R® with
0> (k+ 1), + [25:2 Le(le—1 + 1)} + 1, + 1 such that for all x1,xs,...,2, € R it holds
that

(Ng{;’f’mlz mzL,idR)(xl’ Lo, . .. ,.Z'k) = max{a:l, Loy ... ,.Cljk} (222)

.....

(cf. Definitions 2.1.2 and 2.1.7).

Exercise 2.1.8 (Hat function). Prove or disprove the following statement: There exist
0,l€eN, 0=(01,05,...,0,) € R® with ® > 3l + 1 such that for all x € R it holds that

1 <2
r—1 :2<x<3
b—zx :3<zx<4
1 x> 4

(Mot lia) () = (2.23)
(cf. Definition 2.1.2 and Definition 2.1.7).

Exercise 2.1.9. Prove or disprove the following statement: There exist 0,1 € N, § =
(01,09,...,0,) € R® with ® > 3l + 1 such that for all x € R it holds that

—2 x <1
(Mo (@) = § 20 -4 1<z <3 (2.24)
2 x> 3

(cf. Definition 2.1.2 and Definition 2.1.7).

Exercise 2.1.10. Prove or disprove the following statement: There exist 0,1 € N, 0 =
(01,02, ...,0,) € R® withd > 31+ 1 such that for all x € [0,1] it holds that

( i%iidR)@:) = 2’ (2.25)

(cf. Definition 2.1.2 and Definition 2.1.7).
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2.1.4.4 Clipping functions

Definition 2.1.11 (Clipping function). Let u € [—00,0), v € (u,00]. Then we denote
by ¢y R = R the function which satisfies for all x € R that

Cup(2) = max{u, min{z,v}}. (2.26)
and we call ¢, , the (u,v)-clipping function.

Definition 2.1.12 (Multidimensional clipping functions). Let d € N, u € [—o00,00),
v € (u,00]. Then we denote by €, q: R — R? the function given by

Q:u,v,d = EIncuﬂ,,d (227)

(cf. Definitions 2.1.4 and 2.1.11) and we call €, 4 the d-dimensional (u,v)-clipping func-
tion.

2.1.4.5 The softplus function

Definition 2.1.13 (Softplus function). We denote by s: R — R the function which
satisfies for all x € R that
s(z) = In(1 + exp(z)) (2.28)

and we call s the softplus function.

The next result, Lemma 2.1.14 below, presents a few elementary properties of the
softplus function.

Lemma 2.1.14 (Properties of the softplus function). It holds
(1) for all x € [0,00) that x < s(x) <z + 1,
(i) that lim,_, . s(z) =0,
(iii) that lim, . s(x) = oo, and
(i) that 5(0) = In(2)
(cf. Definition 2.1.13).

Proof of Lemma 2.1.14. Observe that the fact that 2 < exp(1) ensures that for all z €
[0, 00) it holds that

x = In(exp(x)) < In(1 + exp(z)) = In(exp(0) + exp(x))
< In(exp(x) + exp(z)) = In(2exp(x)) < In(exp(1l) exp(z)) (2.29)
=In(exp(zr + 1)) =z + 1.
The proof of Lemma 2.1.14 is thus complete. O]

Note that Lemma 2.1.14 ensures that s(0) = In(2) = 0.693... (cf. Definition 2.1.13).
In the next step we introduce the multidimensional version of the softplus function (cf.
Definitions 2.1.4 and 2.1.13 above).

Definition 2.1.15 (Multidimensional softplus functions). Let d € N. Then we denote
by &4: RY — R? the function given by

Sy =M, (2.30)
(cf. Definitions 2.1./ and 2.1.13) and we call &, the d-dimensional softplus function.
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2.1.4.6 The standard logistic function

Definition 2.1.16 (Standard logistic function). We denote by I: R — R the function
which satisfies for all x € R that

B 1 _ exp(z)
{a) = 1+exp(—z) exp(z)+1 (231)

and we call | the standard logistic function.

Definition 2.1.17 (Multidimensional standard logistic functions). Let d € N. Then we
denote by £4: R* — R? the function given by

L4 =My (2.32)

(cf. Definitions 2.1. and 2.1.16) and we call £, the d-dimensional standard logistic func-
tion.
2.1.4.7 Derivative of the standard logistic function

Proposition 2.1.18 (Logistic differential equation). It holds that I: R — R is infinitely
often differentiable and it holds for all x € R that

[(0) = 1/2, ((x) = I(z)(1 — [(x) = [(z) — [(z)]%, and (2.33)
("(z) = (z)(1 — (z))(1 — 21(z)) = 2[((z)]® — 3[l(z)]* + (z) (2.34)
(cf. Definition 2.1.16).
Proof of Proposition 2.1.18. Observe that (2.31) ensures that for all x € R it holds that

o) = Dy (Lemln) )

(1 + exp(—x))? 1 + exp(—=x

B 1 +exp(—z)—1Y\ B 1 (2.35)
- () (- )
= [(2)(1 = U(z)).

Hence, we obtain that for all x € R it holds that

[((@)(1 = U2))]" = V(@)1 = () + U(x)(1 = ()’

[/ I

( )(1—[(37)) [(z) U(x) = V(2)(1 - 2U(x))
((2) (1 = () (1 = 21(x)) (2.36)

( (
((z) = [(2)]") (1 = 2(2)) = Wz) = [i@)]* — 2[()]" + 2[1(2)]’
2(1(2)]” = 3[1(2)]” + ().

The proof of Proposition 2.1.18 is thus complete. O]

[//

)
(
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2.1.4.8 Integral of the standard logistic function
Lemma 2.1.19 (Primitive of the standard logistic function). [t holds for all x € R that

/ " () dy — / ’ (1+1e_y)dy—ln(1+exp(x)) — 5(x) (2.37)

— 00 — 00

(cf. Definitions 2.1.15 and 2.1.10).
Proof of Lemma 2.1.19. Observe that (2.28) implies that for all z € R it holds that

§'(z) = [

The fundamental theorem of calculus hence shows that for all w,x € R with w < z it

holds that

1
1 + exp(z)

} exp(z) = I(z). (2.38)

/ ((y) dy = s(x) — s(w). (2.39)
w S~~~

>0
Combining this with the fact that lim, ., - s(w) = 0 establishes (2.37). The proof of
Lemma 2.1.19 is thus complete. [

2.1.4.9 The hyperbolic tangent function

Definition 2.1.20 (Hyperbolic tangent). We denote by tanh: R — R the function which
satisfies for all x € R that

exp(z) — exp(—x)
exp(x) + exp(—x)

tanh(x) = (2.40)

and we call tanh the hyperbolic tangent.

Definition 2.1.21 (Multidimensional hyperbolic tangent functions). Let d € N. Then
we denote by Ty: R? — RY the function given by

Ta = Miann,a (2.41)
(cf. Definitions 2.1.4 and 2.1.20) and we call T4 the d-dimensional hyperbolic tangent.
Lemma 2.1.22. [t holds for all x € R that
tanh(z) = 2[(2x) — 1 (2.42)
(cf. Definitions 2.1.16 and 2.1.20).

Proof of Lemma 2.1.22. Observe that (2.31) and (2.40) ensure that for all x € R it holds
that

B exp(2z) _ 2exp(2z) — (exp(2z) + 1)
20(2e) 1= 2(exp(Qx) + 1) T exp(2z) + 1
_exp(2z) —1  exp(z)(exp(z) — exp(—z))

= = 2.43
exp(2z) +1  exp(x)(exp(z) + exp(—x)) (243)
— exp(x) — exp(~7) = tanh(z).
exp(z) + exp(—x)
The proof of Lemma 2.1.22 is thus complete. O
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2.1.4.10 The Heaviside function

Definition 2.1.23 (Heaviside function). We denote by h: R — R the function which
satisfies for all x € R that

1 :2>0

[’J(x) = ]1[0’00)(.1') = {O . ; 0 (2.44)

and we call b the Heaviside function (we call b the Heaviside step function, we call by the
unit step function).

Definition 2.1.24 (Multidimensional Heaviside functions). Let d € N. Then we denote
by Hq: RT — R? the function given by

$a =My (2.45)

(cf. Definitions 2.1.4 and 2.1.23) and we call 4 the d-dimensional Heaviside function
(we call $4 the d-dimensional Heaviside step function, we call 4 the d-dimensional unit
step function).

2.1.4.11 The softmax function

Definition 2.1.25 (The softmax function). Let d € N. Then we denote by Sy =
(Yd(l),yd(m, . ,Yd(d)): R? — RY the function which satisfies for all x = (w1, 79, ...,
rq) € R? that

Fa@w) = (ZV(@), 27 (2),...,. (@)

— exp(z1) exp(z2) exp(zq) (246)
(L)’ (Bro@) " (Fiy )

and we call %, the d-dimensional softmax function.

Lemma 2.1.26. Let d € N. Then
(i) it holds for all x € R%, k € {1,2,...,d} that 7" (z) € (0,1] and
(ii) it holds for all x € R? that

> (@) =1 (2.47)

(cf. Definition 2.1.25).

Proof of Lemma 2.1.26. Observe that (2.46) demonstrates that for all z = (xy, za, ..., x4)
€ R? it holds that

d

U

/) exp owlm) _ Zierexp(er) _
The proof of Lemma 2.1.26 is thus complete. O
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2.1.5 Rectified clipped ANNs

Definition 2.1.27 (Rectified clipped ANNs). Let L,0 € N, u € [—00,00), v € (u, o],
1= (lp,ly,...,1lp) € NITL 0 € R? satisfy

L

0>l +1). (2.49)
k=1

Then we denote by Jl{f;}l: Rlo — Rz the function which satisfies for all + € R that

(Ne’lo )(x) L=1
VORI (2.50)
’ (Nm}lo,mIQ ..... mlL*l,cu,wL)(“f) tL>1

(cf. Definitions 2.1.2, 2.1.7, and 2.1.12).

2.2 Structured description of ANNs

2.2.1 Structured description of ANNs
Definition 2.2.1 (Structured description of ANNs). We denote by N the set given by

N = ULEN Ul07l1 lLEN(Xl?:l (leXlk71 X le))’ (251)

.....

we denote by P: N - N, L N >N, Z: NN, O: N >N, H: N - Ny, D: N —
(Uzoz2 NL), and D,: N — Ny, n € Ny, the functions which satisfy for all L € N,

loly, .0, €N, @ € (XE (Rt x Ri)), n € Ny that P(®) = S (1 + 1),
L(®) =L, (D) = ly, O(®) = I, H(®) =L —1, D(®) = (lp, 11, ...,11), and

l, n<L
D,(P) = {O . (2.52)

and for every L € N, lo,ly,...,l, € N, & = (W4, By), (Wa, Bs),...,(Wp,Byp)) € (><£Z1
(RI=¥t=1 % le)) we denote by Wiyo = Wha)ner2,ny: {1,2,..., L} — (UmkeN R™*F)
and Biye = (Bno)neqi 2,0y 11,2,..., L} = (U,en R™) the functions which satisfy for
allne{1,2,...,L} that Wy 0 =W, and B, o = B,

Definition 2.2.2. We say that ® is a neural network if and only if it holds that ® € N.

2.2.2 Realizations of ANNSs

Definition 2.2.3 (Realization associated to an ANN). Let a € C(R,R). Then we denote
by R,: N — (U,ﬁleN C(Rk,Rl)) the function which satisfies for all L € N, Iy, l1,...,l; €
N, @ = (Wi, B1), Wa, Ba),...,(Wr,Br)) € (Xp_(Re¥l-1 x RI¥)), 25 € Rlo,z; €
Rll, RN A~ Rz withVk € {1,2, ey L} T = QDTaJk(kak,l + Bk) that

Raq(P) € C(RP,R) and (Ro(®))(z0) = Wrar—1 + B (2.53)

(cf. Definitions 2.1.4 and 2.2.1).
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Lemma 2.2.4. Let ® € N (cf. Definition 2.2.1). Then

(i) it holds that D(®) € NF®+L gnd

(i3) it holds for all a € C(R,R) that R,(®) € C(RT(®) RO®)
(cf. Definition 2.2.3).

Proof of Lemma 2.2.). Note that the assumption that

®eN=U,n U(zo,h I )ENLH (Xﬁzl(lexzk_l X le)) (2.54)

ensures that there exist L € N, [y, [1,...,l; € N such that

~~~~~

D € (X (Rlixl-1 x Riv)). (2.55)
Observe that (2.55) assures that
L@)=L, I(®@)=l, O@) =1, (2.56)

and  D(®) = (lp, 1y, ...,1;) € NEFL = NE®)+L (2.57)

This establishes item (i). Moreover, note that (2.56) and (2.53) show that R,(®) €
C(RE®) RO®)), This establishes item (ii). The proof of Lemma 2.2.4 is thus complete.
[l

Exercise 2.2.1. Prove or disprove the following statement: There exists ® € N such
that
Riann(P) =1 (2.58)

(cf. Definitions 2.1.10, 2.1.20, 2.2.1, and 2.2.3).

2.2.3 Compositions of ANNs
2.2.3.1 Standard compositions of ANNs

Definition 2.2.5 (Composition of ANNs). We denote by (-) @ (-): {(®,¥) € NxN: Z(P)
= O(V)} — N the function which satisfies for all L,£ € N, lo,l1,... 1, lo,l1,...,lg €
N, ® = (Wi, By), Wa, Ba),...,(Wr, Br)) € (Xi_(Rixl-t x RIW)), W = (#4, %),
(%,@2), Ceey (%, %/Q)) < (Xizl(R[’“X[k*1 X R[k)) with 1y = I((I)) = O(\I/) = [¢ that

eV =

( (M, B1), (Wa, Bs),...,(War, Bar), Wi, W1 Bs + By),
(W, Ba), (Ws, Bg), ..., (W, Br))

((Wl%, Wl%l + Bl), (WQ, Bg), (W3, Bg), ey (WL, BL)> : (L > 1) A (2 = 1)

(4, B)), W, Bo), ... (Wer, B ), (WiHe, Wi Bs + Br))  (L=1)A(L>1)

. ((Wl%, Wp%l + Bl)) : (L = 1) N (2 = 1)
(2.59)

(cf. Definition 2.2.1).
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2.2.3.2 Elementary properties of standard compositions of ANNs
Lemma 2.2.6. Let &,V € N satisfy Z(®) = O(V). Then

(i) it holds that L(® e W) = L(P®) + L(V) — 1 and

(i) it holds for alli € {1,2,...,L(D e V)} that

Wiw, Biw) D1 < L(V)
Wi@ew), Bi@ew)) = § Wi aWeiw) ., WieBrww + Bie) :i=L(¥) (2.60)
Wi—zwy41,0, Bicc(w)+1,0) ci > L(U).

Proof of Lemma 2.2.6. Note that (2.59) clearly implies items (i) and (ii). The proof of
Lemma 2.2.6 is thus complete. O

Proposition 2.2.7. Let &, P, € N satisfy Z(P1) = O(P2) (cf. Definition 2.2.1). Then
(i) it holds that
D(D; 0 ) = (Do(P2), Dy (P2), - . ., Diyg(a) (P2), Dy (P1), Do (P1), ..., Do) (P1)),

(2.61)

(i1) it holds that
[L(D) @ Dy) — 1] = [L(Dy) — 1] + [L(Dy) — 1], (2.62)

(#1) it holds that

(iv) it holds that

P(Py 0 0y) =P(P1) + P (D) + Dy (1) (Dray—1(P2) + )
— ]D)l((I)l)(DQ(CI)l) + 1) ]D)l; £ ((I)Q)(]D)£ (@2) + 1) (2.64)
< P(P1) + P(P2) + Dy (P1) Dy, (P2),

and
(v) it holds for all a € C(R,R) that Ro(P; e ®y) € C(RE(®2) RO®) gnd
Ra(q)l ] (1)2) = [Ra((Dl)] o} [RQ(CDQ)] (265)

(cf. Definitions 2.2.3 and 2.2.5).

Proof of Proposition 2.2.7. Throughout this prooflet a € C(R,R), let Ly € N, k € {1,2},
satisfy for all k& € {1, 2} that Lk = ,C((I)k>, let ll,O; 11’1, e 117£(q>1), l270, 12’1, ey lgyﬁ(qb) € N,
((Wk,ka,l)’ (Wk2, Bra), .-, (Wk,LkaBk,Lk)) € (Xfﬁl(Rl’“’le’“’j‘l x Rivi)), k€ {1,2},
satisfy for all k € {1,2} that

q)k = ((Wk,la Bk,1)7 (Wk,Za Bk‘,?)a R (Wk‘,Lka Bk,Lk))7 (266)

let Ly € N, l30,031,...,l30, € N, &3 = ((W3,17 Bs1),...,(Wsr,, B3,L3)) € (Xfil
(Rlixlg-1 xRB.3)) satisfy that 3 = O, @ Oy, let 79 € R20 1p € Rl21 . 2y, | € Rz
satisfy

\V/j eNN (O, LQ)Z Xy = fmah’j(Wngj_l + Bg’j) (267)
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(cf. Definition 2.1.4), let yo € Riv0 4y € Rbr . yp € Rita-t satisfy yo = Wo 27, 1

+ B2,L2 and
VJ € N N (0, Ll)Z yJ = E)ﬁa,ll,j (Wl,jyjfl —+ Bl,j)7

and let 2o € RB0 2y € RB1 . 2p. ) € Rbs—1 gatisfy 2y = 29 and
Vi€ NN(0,Ls): 2 = May, (Wa,zior + Ba).
Note that (2.59) ensures that
Dy = By 0Dy =

( ((WQ,h B2,1)7 (W2,27 B272)7 ey (WQ,LQ—ly BQ,LQ—I))
(Wi aWar, Wi1Bar, + Bi1), (Wi, Big), (L1 >1)A(Ly>1)
(Wl,Sa Bl,S): cety (Wl,L17 Bl,Ll))
((W1,1W2,17 WiaBay + Bi), (Wh2, Big),
(Wl,?)a Bl,?))a ceey (W17L17 Bl,Ll))

((W2,17 B2,1)7 (W2,27 B2,2)7 ey (WQ,LQ—h B2,Lg—1)7
(Wi aWo,r,, Wi1Bo 1, + B1,1))

(W1 1Wa 1, W11B21 + By1) (L =1)A(Ly=1).
Hence, we obtain that

[L(P10Dy) —1]=[(Le—1)+14+ (L1 —1)] -1
=Ly — 1]+ [Ly — 1] = [L£(P1) — 1] + [L(P2) — 1]

and D((I)l ([ ] (I)Q) = (1270, l271, Ce 7l2,L2717 l1717 l1,27 ey ll,Ll)'
This establishes items (i)—(iii). In addition, observe that (2.72) demonstrates that

L3
P(q)l [ ] <I>2) = Z l3,j(l3,j—1 —|— 1)
7j=1

(1,1 i L
= | > lbajllsj1 +1)| +ilsr,(ar,1 + 1)+ | > Isi(lsj-1+1)
= ] i=Lat1
(1,1 i Ls
= | > lbyllejr+1)| +hallo,a+ 1)+ > hyjrppa(lijr, +1)
L 7=t ] j=La+1

[1o—1 I
= 1| > bLillbja+1)|+ (> bl +1)| + 14 (l2,L2—1 + 1)
=1 =2
-L2 Ll
= > billbja+ )|+ | Db+ 1) +la(lop,—1 +1)
j=1 =1

— oy (lope—1+1) = lia(lip+1)

=P(D1) +P(P2) + l11(lapy—1+1) —lor,(lop,—1 + 1)
—lii(ho+1)

<P(P1) +P(P2) + lialor,—1-

DISSEMINATION PROHIBITED. JULY 29, 2021

(2.68)

(2.69)

(2.70)

(2.71)

(2.72)

(2.73)

22



Chapter 2. Basics on artificial neural networks (ANNs)

This establishes item (iv). Moreover, observe that (2.70) and the fact that a € C(R,R)
ensure that
Rao(Py @ By) € C(R20, R ) = C(RF(®2) ROV, (2.74)

Next note that (2.71) implies that L3 = Ly + Ly — 1. This, (2.70), and (2.72) ensure that

(l3,07 l3,17 ... 7l3,L1+L271) - (l2,07 l2,17 s 712,[/2717 l1,17 l1,27 s 7l1,L1)7 (275)

[Vj € NN(0,Ly): (Way, Bs;) = (Way, Bay)], (2.76)

(Ws.L,, Ba,p,) = WiaWoaL,, Wi1Ba 1, + Biy), (2.77)

and [VJ eNN (LQ, Ll + Lg): (WS,j7 Bg’j) = (Wl,j+1fL2a Bl,j+lfL2):| . (278)

This, (2.67), (2.69), and induction imply that for all j € NyN|0, L) it holds that z; = z;.
Combining this with (2.77) and the fact that yo = Ws r,21,-1 + Ba 1, ensures that

Ws 1,201+ B3 pr, = Ws 1,01,-1 + Bs 1,
=WiaWar,20,1 + WiaBsr, + Bia (2.79)
- Wl,l(WQ,Lgl'Lz—l + B27L2) + Bl71 = Wl,ly() + Bl,l'

Next we claim that for all j € NN [Ly, Ly + L) it holds that
Wi jzj1+ Bsj = Wij1-1,YjL, + Bijii-L,- (2.80)

We prove (2.80) by induction on j € NN[Ly, L1 + Ls). Note that (2.79) establishes (2.80)
in the base case j = Lo. For the induction step note that the fact that Ly = Ly + Lo — 1,
(2.68), (2.69), (2.75), and (2.78) imply that for all j € NN [Lg,00) N (0, Ly + Ly — 1) with

Wszj—1+ Bsj = Wi ji-1,Yj—1. + Bij+1-1. (2.81)
it holds that

Wi jr1zj + B jir = Wa 1My ;(Wa jzj-1 + B j) + Bs ja
= W2 1Moty o0 p, Wiji1-1.Yj-1, + Brjti-1,) + Bije-1, (2.82)
= Wi jro-1,Yj+1-1. + Bijt2-1.-

Induction hence proves (2.80). Next observe that (2.80) and the fact that Ly = L1+ Lo—1
assure that

W3,L3zL371 + B3,L3 = W3,L1+L2712L1+L272 + B3,L1+L271 = Wl,LlyL1fl _'_ Bl,L1' (283)
The fact that &3 = ®; @ Py, (2.67), (2.68), and (2.69) therefore prove that

[Ra(P1 @ @2)](x0) = [Ra(P3)](20) = [Ra(P3)](20) = W3 1,20,-1 + Bs 1y
= Wiyr,—1 + Bin, = [Ra(®1)](v0)
= [Ra(®1)] (W2,L2xL271 + B2,L2)
= [Ra(®1)]([Ra(P2)](20)) = [(Ra(P1)) © (Ra(P2))](20).

Combining this with (2.74) establishes item (v). The proof of Proposition 2.2.7 is thus
complete. 0

(2.84)
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2.2.3.3 Associativity of standard compositions of ANNs
Lemma 2.2.8. Let &1, Dy, &3 € N satisfy Z(P1) = O(Ps) and Z(P2) = O(P3) (cf.
Definition 2.2.1). Then it holds that

(D) 0 Dy) @ Dy =Dy 0 (Dy 0 Dy) (2.85)
(cf. Definition 2.2.5).

Proof of Lemma 2.2.8. Throughout this proof let ®4, ®5, g, P; € N satisfy that &, =
D 0Dy 5 =Dy 0 D3, Og =Dy @ D3, and P; = Py @ Py let L € N, k€ {1,2,..., 7}, sat-
isfy for all k € {1,2,...,7} that Ly = L(®y), let lpo,lka, -, e, €N, ke {1,2,...,7},
and let (Wi, Br1)s (Wi, Bi2), - o, (Wep, Biz,)) € (X7 (Rimixti-t x Rid)), k€
{1,2,...,7}, satisfy for all k € {1,2,...,7} that

@ = (Wi, Bea)s Wiz, Beo)s - .., Wiry, Brry))- (2.86)

Observe that item (ii) in Proposition 2.2.7 and the fact that for all k£ € {1,2,3} it holds
that £(®) = Ly proves that

L(Dg) = L((B1 @ D) @ Dy) = L(D) 8 Dy) + L(D3) — 1
= L(®1) + L(Dy) + L(P3) —2 =Ly + Ly + Ly — 2 (2.87)
= L(q)l) + E(CDQ ° @3) —1= ,C(q)l ® (CI)Q ® @3)) == ﬁ(q)ﬂ

Next note that Lemma 2.2.6, (2.86), and the fact that &4 = ®; @ &y imply that

Vi €NN(0,Ly): (Way, Baj) = (Way, Baj)l, (2.88)
(Wa,L,, Bar,) = W11Wa r,, Wi1Bs 1, + Bi1), (2.89)
and [\V/] € NN (LQ, Ll + LQ)i (W4’j, B4’j) = (Wl,j+1—L27 Bl,j+1—L2)j| . (290)

Hence, we obtain that
VjeNN(Ls—1,Lo+Ls—1): (Wyjp1-ry, Bajii-rs) = (Wajsi-ry, Bajai-1,)], (2.91)
(Wir,, Bar,) = WiiWap,, Wi1Bar, + Bi1), (2.92)
and
[\V/] ENQ(L2+L3—1,L1+LQ+L3—1)Z
(Wajsr-1s, Bajar-rs) = Wi jio—ro—14, Bijio-r1s-1,)] - (2.93)

In addition, observe that Lemma 2.2.6, (2.86), and the fact that &5 = ®, @ &3 demon-
strate that

[\V/] eNN (O, L3)I (W5’j7 B57j) = (W&j) BgJ)}, (294)
(Ws,Lss Bs.;) = (Wo i Wa 1, Wa1 B3 1, + Bay), (2.95)
and [V] eNN (Lg, L2 + Lg) . (W57j, B5,j) = (WQ,j+1—L3’ B2,j+1—L3)} . (296)

Moreover, note that Lemma 2.2.6, (2.86), and the fact that &5 = 4 O3 ensure that

[\V/j eNN (O, Lg)l (W&j, B(;,j) = (W&j) Bgd‘)}, (297)
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(We,Ls, Bo.1s) = Wa1Ws 1y, Wa1Bs 1, + Ban), (2.98)
and [V] eNN (Lg, L4 + Lg) . (Wﬁ,j7 BG,j) = (W4,j+1—L3a B47j+1—L3)} . (299)

Furthermore, observe that Lemma 2.2.6, (2.86), and the fact that ®; = &, e &5 show
that
[VjeNN(0,Ls): (W, Bry) = (Wsy, Bsj)l, (2.100)

(W7,L5= B7,L5) = (W1,1W5,L5, Wi1Bs 1, + 31,1)7 (2.101)

and [\V/] eNN <L57 L1 + L5)Z (W77j, B7’j) = (Wl,j—l—l—Ls; BL]‘_H_LE))} . (2102)

This, the fact that Ly < Ly + L3 — 1 = Ls, (2.94), and (2.97) imply that for all j €
NN (0, L3) it holds that

(Ws 4, Boj) = (Waj, Bsj) = (Ws 5, Bs j) = (Wrj, Brj). (2.103)

In addition, observe that (2.88), (2.89), (2.94), (2.95), (2.98), (2.100), (2.101), and the
fact that Ls = Ly + L3 — 1 demonstrate that

(We Ly, Bo,rs) = Wa1Ws 1y, Wa1Bs 1, + Baa)

(Wz Wiy, Wo1Bs 1, + Bs 1) Ly >1

(Wi aWo iWs 1y, Wi iWo1Bs p, + Wi1Bag + Bi1) :La=1

(Woi1Ws 1y, Wo1Bs 1, + Ba1) t Ly >1 (2.104)
(Wia(Wo W 1), Wi1(Wa1Bs s+ Bag) + B11) :Ly=1

(Ws,Ly, Bs.1.,) Lo >1

(Wl W o, Wi 1Bs 1, + By, 1) Ly=1

= (W7,L3 ) B7,L3) .

Next note that the fact that L5 = LQ + Lg —1< L1 + LQ + L3 —1= L3 + L4, (299),
(2.91), (2.96), and (2.100) ensure that for all j € N with L3 < j < Ls it holds that

(Wej, Bsj) = Wajs1-r1s Bajri-rs) = Wajp1-r1s, Baji1-Ls)

2.105
= (Wsj, Bs;) = (Wr, Brj). ( )

Moreover, observe that the fact that Ly = Lo+ L3 — 1 < Ly 4+ Lo+ L3 — 1 = L3 + Ly,
(2.99), (2.104), (2.89), (2.96), and (2.101) prove that

W L5 B - tLy>1
(W6 [/57 B6 L5) — ( 4,L5+1 L37 4’L5+1 LS) 2
<W67L37 B6,L3) : L2 — 1

_ ) Wipy, Big,) Ly >1
Wiy, Brr,) :La=1

) WiaWap,  WinBop, + Biy) Ly >1 (2.106)
(W7,L57 B7,L5) Ly =1

_ (Wi iWs 15, Wi1Bs 1o + Bi1) Lo > 1
(W7,L5a B?,Ls) Ly =1

= (W7,L5 ) B7,L5 ) .
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Furthermore, note that (2.99), (2.93), (2.102), and the fact that Ls = Ly + L3 — 1 > L3
assure that for all j € N with Ly < j < Lg it holds that

(Wej, Bej) = Waj1-1s, Bajri-1;,) = Wijro- L,y Brjro-r1,-1L3)
= (Wijri-1s, Brjsi-1;) = Wy, Brj).

Combining this with (2.87), (2.103), (2.104), (2.105), and (2.106) establishes that
(q)l L] q)z) L] @3 = @4 [ ] @3 = q)G = @7 = (I)l [ J (I)5 = q)l (] (CI>2 [ ] CI>3) (2108)

(2.107)

The proof of Lemma 2.2.8 is thus complete. O]

2.2.3.4 Powers and extensions of ANNs

Definition 2.2.9. Let d € N. Then we denote by I; € R¥™? the identity matriz in R,

Definition 2.2.10. We denote by (-)*": {® € N: Z(®) = O(P)} — N, n € Ny, the
functions which satisfy for alln € Nog, ® € N with Z(®) = O(®) that

I 0,0,...,0)) € RO®XO®) 5 RO®) :p =
gon — | (o, (0,0,..,0)) € 8 " (2.109)
P o (P*"1) :n €N
(cf. Definitions 2.2.1, 2.2.5, and 2.2.9).
2.2.4 Parallelizations of ANNSs
2.2.4.1 Parallelizations of ANNs with the same length
Definition 2.2.11 (Parallelization of ANNs). Let n € N. Then we denote by
P,: {(®1,Ps,...,P0,) e N": L(®)) = L(Dy) =...=L(P,)} = N (2.110)
the function which satisfies for all L € N, &1, ®q, ... &, € N with L = L(P;) = L(Py) =
o= L(P,) that
Wi.e, 0 o .- 0 B .o,
0 Wie, o - 0 B ¢,
Pn(q)l, (I)Q, RN q)n) = 0 0 W1,<I>3 e 0 , Bl7q>3
0 0 0 - Wi, B,
Wa o, 0 0 o 0 Bs.o,
O W27¢)2 O st 0 BQ @2
0 0 Wre, - 0 |, Bmg ., (2.111)
0 0 0 - Whg, Bz D,
Wr.a, 0 0 ce 0 Br.s,
0 WL7<1>2 0 s 0 BL i
0 0 WL,¢3 c 0 , BL , @3
0 0 0 s WL,<I>n BL D

(cf. Definition 2.2.1).
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Lemma 2.2.12. Letn,L € N, &1, Dy, ..., &, € N satisfy L = L(Dy) = L(Py) = ... =
L(P,,) (c¢f. Definition 2.2.1). Then it holds that

P, (D, Dy,...,D,) € (>L< (R(Z}Ll Dk (®5))x (521 De-1(P5)) 5 R(j=1 Dk(‘bj)))) (2.112)
k=1

(cf. Definition 2.2.11).

Proof of Lemma 2.2.12. Note that (2.111) proves (2.112). The proof of Lemma 2.2.12 is
thus complete. O

Proposition 2.2.13. Let a € C(R,R), n € N, & = (&, Dy,...,D,) € N" satisfy
L(Py) = L(Dy) =...=L(D,) (cf Definition 2.2.1). Then

(i) it holds that
Ra(Po(®)) € C(R[Z}Ll (%)) RIXZj= O(‘I’j)]) (2.113)

and

(ii) it holds for all x; € RT(®) x5 € RE®2) 2. € RE®) that

(Ra (Pn(CID))) (x1, T, ..., Ty,)

= ((Ra(®1)) (1), (Ra(®2))(22), - - -, (Ra(®))(2,)) € RE=G=10(25)] (2.114)

(cf. Definitions 2.2.3 and 2.2.11).

Proof of Proposition 2.2.13. Throughout this proof let L € N satisfy L = L(®;), let
Lioslia, ...l € N, j € {1,2,...,n}, satisfy for all j € {1,2,...,n} that D(®;) =
(L0 lis -+ bin)s Tet (Wi, Bja), (Wia, Bya), oo, (Wi, Bip)) € (X (R#xbrmr x
RU*)), j € {1,2,...,n}, satisfy for all j € {1,2,...,n} that

®; = (Wj1, Bja), Wiz, Bja), ..., (Wi, BiL)), (2.115)

let ap € N, k € {0,1,..., L}, satisfy for all k € {0,1,..., L} that oy = D7 I, let
((Al, bl), (AQ, bg), N (AL, bL)) S (><£:1(Rak><ak,1 X Rak» satisfy that

P, (@) = ((A1,b1), (A2,b2),..., (AL, bL)) (2.116)

(cf. Lemma 2.2.12), let (20,1, .,2j1-1) € (REOxRE1x. . xRbL-1) 5 € {1,2,... n},
satisfy for all j € {1,2,...,n}, k€ NN (0, L) that

l"j,k = i)ﬁa,lj’k (M/vj'7k17j7k_1 + Bjjk) (2.117)

(cf. Definition 2.1.4), and let rfg € R ry € R, ... rp 1 € R*-1 satisfy for all k €
{0,1,...,L — 1} that ry = (z14, Tak, ..., Tnk). Observe that (2.116) demonstrates that
Z(P,(P)) = ap and O(P,(P)) = ay. Combining this with item (ii) in Lemma 2.2.4,
the fact that for all £ € {0,1,..., L} it holds that a4 = Z?’:l lj k, the fact that for all
j €{1,2,...,n} it holds that Z(®;) = [, and the fact that for all j € {1,2,...,n} it
holds that O(®,) = [; , ensures that

Ra(Po(®)) € C(R™,R) = C(RZ5= o], R i)

= (RIS 2@ RIZ 0@y, (2.118)
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This proves item (i). Moreover, observe that (2.111) and (2.116) demonstrate that for all
ke {1,2,...,L} it holds that

Wip 0 0 - 0 Bix
0 Wiy 0 - 0 By

A, =] 0 0 Wsy -+ 0 and b, = | Bax |. (2.119)
0 0 0 - W By i

Combining this with (2.8), (2.117), and the fact that for all £k € NN [0, L) it holds that
e = (1, Tag, . .., Tpy) implies that for all k € NN (0, L) it holds that

ma,llyk(wl,kxl,kfl + By ) T1k
Mo, Worxo g1+ Bag) Tk
Mo (Arkr-1 + b) = T = 7 = (2.120)
ma,lnyk(Wn,kxn,k—l + Bn,k) T,k
This, (2.53), (2.115), (2.116), (2.117), (2.119), the fact that o = (1,0, 2,0, - - ., Tno), and
the fact that r,—1 = (z1,L-1,%2,0-1, ..., Tp—1) ensure that
(Ra (Pn(‘b)))(ﬂﬁl,o, 2,05 - - - 7xn,0> = (Ra (Pn<q)))) (xo)
Wirri—1+ B (Ra(P1))(21,0)
Warxar—1+ Bay, (Ra(P2))(22,0) (2.121)
= At + 0 = : = : .
Wn,an,Lfl + Bn,L (Ra(q)n))(xn,[))
This establishes item (ii). The proof of Proposition 2.2.13 is thus complete. O

Proposition 2.2.14. Let n,L € N, &1, ®,,... &, € N satisfy L = L(P1) = L(Ds) =
... = L(®,) (c¢f. Definition 2.2.1). Then

(i) it holds for all k € Ny that

Dy(P (1, B, ..., D)) = Dy(®) + Dy(Bs) + . ... + Dy(d,), (2.122)

(i) it holds that
D(P, (@1, B, .., @,)) = D(®)) + D(®2) + -+~ + D(d,), (2.123)

and

(#11) it holds that
P(Pu(®1,®s,...,@,)) < 5[5, P(2))]° (2.124)

(cf. Definition 2.2.11).

Proof of Proposition 2.2.1/. Throughout this prooflet i;0,4;1,...,l; € N, j € {1,2,...,
n}, satisfy for all j € {1,2,...,n}, k € {0,1,...,L} that [;; = Dy(®;). Note that
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Lemma 2.2.12 establishes item (i). In addition, observe that item (i) implies item (ii).
Moreover, note that item (i) demonstrates that

P(Pn(q)la Py, .., (I)n)> - XL: [Z?:l li’k} [(27:1 li’kil) - 1}

k=1

B kzi:[zﬁl livk} [(27;:1 lj,k—l) + 1}

n n L n n L
< Z Z Zli,k(lj,k—l +1) < Z Z Lig(ljo—1 +1)
i=1 j=1 k=1 i=1 j=1 k=1 (2.125)
= Z Z [25:1 li,k] [Zf:l(lj,lifl + 1)}
i=1 j=1
<> [25:1 slin(ligp—1 + 1)} [Zle Le(lje—1 + 1)}
i=1 j=1
=SS iP@)P(@) = §[S P@)]
i=1 j=1
The proof of Proposition 2.2.14 is thus complete. O
D(®,) =

Corollary 2.2.15. Letn € N, & = ($y, o, ..., P,) € N satisfy that D(P,) =
.= D(®,) (c¢f. Definition 2.2.1). Then it holds that P(P,(®)) < n?*P(®y) (cf. Defini-
tion 2.2.11).

Proof of Corollary 2.2.15. Throughout this proof let L € N, lg,l1,...,l; € N satisfy
that D(®,) = (lo,l1,...,l1). Note that item (ii) in Proposition 2.2.14 and the fact that
Vje{l,2,...,n}: D(®;) = (lo,1,...,l;) demonstrate that

L L
P(Pn(q)l, (I)Q, ey q)n)) = Z(nl )((nlj,l) + 1) S Z(nlj)((nlj,l) + TL)
= = (2.126)
=32 11+ 1) = nP(@y)
The proof of Corollary 2.2.15 is thus complete. O

2.2.4.2 Parallelizations of ANNs with different lengths

Definition 2.2.16 (Parallelization of ANNs with different length). Let n € N, ¥ =
(U, Uy,...,¥,) € N satisfy for all j € {1,2,...,n} that H(¥;) = 1 and Z(¥;) =
O(V;). Then we denote by

Pow: {(®1,By,...,0,) € N": (Vje{1,2,...,n}: O@,) =I(T,))} > N  (2.127)

the function which satisfies for all ® = (1, Do, ..., P,) € N" withVj € {1,2,...,n}:

Pn7\11(¢)> - Pn (gmaxke{l,Z ..... n} £(¢k)7‘1/1 (¢)1)7 et 7gmaxk€{1’2 """ n} L‘,(Cbk),‘l/n((pn)) (2128)

(cf. Definitions 2.2.1, 2.2.11, and 16.2.1 and Lemma 10.2.2).
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Corollary 2.2.17. Let a € C(R,R), n € N, I = (I}, I,,...,L,), & = ($1,Ps,...,P,) €
N" satisfy for all j € {1,2,...,n}, x € RO®) that H(I,) = 1, Z([;) = O(I;) = O(®;),
and (Rq(L;))(x) = x (cf. Definitions 2.2.1 and 2.2.3). Then

(i) it holds that
Ry (Pn,ﬂ<q))) € C(R[Z?zl Z(®))] RIX5= O(q’j)}) (2.129)

and
(i3) it holds for all z; € RT®) x5 € RT®2) 2, € R(®) that
(Ra(Prg(®))) (1, 22, ..., x)
= ((Ra(@1))(@1), (Ra(®2))(2), - - (Ra(®n))(x0)) € RE=1 )
(cf. Definition 2.2.16).

Proof of Corollary 2.2.17. Throughout this proof let L € N satisfy L = maxX;jef1,2,...n)
L(®;). Note that item (ii) in Lemma 16.2.2, the assumption that for all j € {1,2,...,n}
it holds that H(I;) =1, (16.5), (2.62), and item (ii) in Lemma 16.2.3 demonstrate

(I) that for all j € {1,2,...,n} it holds that £(EL1,(®;)) = L and R4(Ery, (P;)) €
C(RT(®3) RO®i)) and
(IT) that for all j € {1,2,...,n}, x € RT(®) it holds that
(RalErs, () () = (Ra(®,)) () (2.131)
(cf. Definition 16.2.1). Items (i)—(ii) in Proposition 2.2.13 therefore imply
(A) that

R. (Pn (5L,111 (®1), 5L,J12((I)2), o ’gL,Hn(q)n))) e C(R[Z}Ll I(éj)}’R[Z}’:l O(cbj)])
(2.132)

(2.130)

and
(B) that for all z; € R¥(®) g, € RT®2) g, € R¥®) it holds that
(Ra(Pn(8L7H1(<I>1),ELJI?(@Q), .. ,€L7HH(¢H))))(x1,x2, ey Ty)
— (RalE0 (@) @0), (Ra(E0(®2))) @) (Ra(E01, (@) @) (2138)
= ((Ra(®)(@1), (Ra(@2))(z2), ., (Ra(®)) ()

(cf. Definition 2.2.11). Combining this with (2.128) and the fact that L = maxjcqi 2, n)
L(®;) ensures

(C) that
R, (PH’H@))) e C(R[Z?ﬁ I(‘i’j)],R[Z}Ql O(‘I’j)}) (2.134)

and
(D) that for all 2; € R¥®) 2, € RT(®2) 2, € RT(®4) it holds that
(Ra(Pn,H(q)))) (I‘l, T, ... ,,In)

= (Ra (Pn (5L,111((I)1), Erp(P2), ... ,51:,11”((1%)))) (w1, 72,...,7,) (2.135)
= ((Ra(@1))(@1), (Ra(@2))(@2), .-, (Ra(@a))(22)).
This establishes items (i)—(ii). The proof of Corollary 2.2.17 is thus complete. O
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2.2.5 Representations of the identities with rectifier functions

Definition 2.2.18. We denote by J4 € N, n € N, the neural networks which satisfy for
all d € N that

3, = (((_11) (8)) ((1 —1),0)) € (R* x R?) x (R™2x RY))  (2.136)

jd :Pd(jl,jl,-..,jl) (2137)
(cf. Definitions 2.2.1 and 2.2.11).

and

Lemma 2.2.19. Let d € N. Then
(1) it holds that D(J4) = (d,2d,d) € N3,
(ii) it holds that R.(J4) € C(R* R?), and

(i) it holds for all x € R that
(Re(J9))(z) = x (2.138)
(cf. Definitions 2.2.1, 2.2.5, and 2.2.18).

Proof of Lemma 2.2.19. Throughout this proof let L = 2, [ = 1, Il; = 2, I, = 1. Note
that (2.136) ensures that
D(31) = (1,2,1) = (lo, Iy, I9). (2.139)

This and Lemma 2.2.12 prove that

Py(31,731,...,71)

(Xk 1( R(dR)x(dle—1) R(dm))) —_ ((R(Qd)xd % RQd) % (Rdx(gd) y Rd)) (2.140)

(cf. Definition 2.2.11). Hence, we obtain that D(J4) = (d,2d,d) € N3. This establishes
item (i). Next note that (2.136) assures that for all z € R it holds that
(Re(31))(z) = t(x) — v(—2x) = max{z,0} — max{—=x,0} = . (2.141)

Combining this and Proposition 2.2.13 demonstrates that for all z = (21, 2o, ..., z4) € R?
it holds that R.(J4) € C(R% R?) and

(Rt(jd))<l'> (R (Pd(jl,~1, ,jl>))(l’1,$2,...,l’d)
= ((Re(31))(21), (R (31))(372)’ 5 (Re(31))(a)) (2.142)
= (1‘1,112, e ,l‘d)
This establishes items (ii)—(iii). The proof of Lemma 2.2.19 is thus complete. O

DISSEMINATION PROHIBITED. JULY 29, 2021 31



Chapter 2. Basics on artificial neural networks (ANNs)

2.2.6 Scalar multiplications of ANNs
2.2.6.1 Affine transformations as ANNs

Definition 2.2.20 (Affine linear transformation ANN). Let m,n € N, W € R"™*"
B € R™. Then we denote by Awp € (R™™ x R™) C N the neural network given by
Ay g = (W,B) (c¢f Definitions 2.2.1 and 2.2.2).

Lemma 2.2.21. Let m,n € N, W € R™*" B € R™. Then

(i) it holds that D(Awg) = (n,m) € N?,

(i1) it holds for all a € C(R,R) that R.(Aw.p) € C(R",R™), and

(i1i) it holds for all a € C(R,R), x € R" that (Ro(Awp))(x) = Wz + B
(cf. Definitions 2.2.1, 2.2.3, and 2.2.20).

Proof of Lemma 2.2.21. Note the fact that Ay, € (R™™ x R™) C N ensures that
D(Awp) = (n,m) € N?. This establishes item (i). Next observe that the fact that
Ay p = (W,B) € (R™" xR™) and (2.53) prove that for all « € C(R,R), x € R™ it holds
that Ra(AVV,B) € C(Rn,Rm) and

(Ro(Aw,p))(z) = Wz + B. (2.143)

This establishes items (ii) and (iii). The proof of Lemma 2.2.21 is thus complete. O
Lemma 2.2.22. Let ® € N (c¢f. Definition 2.2.1). Then
(i) it holds for allm € N, W € R™*9®) B ¢ R™ that

D(Aw,p @) = (Do(®),D1(D), ..., Dyy(a)(P), m), (2.144)

(ii) it holds for all a € C(R,R), m € N, W € R™O®) B € R™ that R,(Awp e ®) €

C(RT® R™),
(iii) it holds for all a € C(R,R), m € N, W € R™*9®) B c R™ z € R¥® that
(Ra(Awis » ®))(2) = W ((Ra(®))(2)) + B. (2.145)

(iv) it holds for alln € N, W € RE®>" B ¢ R¥(®) that
D((I) d AW,B) = (TL, ]D)l(q))7 ]D)2(<I)>7 s 7D£(<1>)((I)))7 (2146)

(v) it holds for all a € C(R,R), n € N, W € RI®>*n B € RE®) that R, (P e Ay ) €
C(R",RO®)), and
(vi) it holds for alla € C(R,R), n € N, W € R*®>*" B ¢ RI(®) 7 ¢ R" that
(Ra(® @ Ay p))(2) = (Ro(®))(Wa + B), (2.147)
(cf. Definitions 2.2.3, 2.2.5, and 2.2.20).

Proof of Lemma 2.2.22. Note that Lemma 2.2.21 demonstrates that for all m,n € N
W eR™™ BeR™ aecCR,R), z€R"it holds that R,(Aw ) € C(R",R™) and

(RQ(AW,B))(JJ) =Wz + B. (2148)
Combining this and Proposition 2.2.7 establishes items (i), (ii), (iii), (iv), (v), and (vi).
The proof of Lemma 2.2.22 is thus complete. O
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2.2.6.2 Scalar multiplications of ANNs

Definition 2.2.23 (Scalar multiplications of ANNs). We denote by (1)®(-): RxN — N
the function which satisfies for all A € R, ® € N that

A® D = A0 ® (2.149)
(cf. Definitions 2.2.1, 2.2.5, 2.2.9, and 2.2.20).
Lemma 2.2.24. Let A € R, ® € N (¢f. Definition 2.2.1). Then
(1) it holds that D(\ ® ®) = D(P),
(ii) it holds for all a € C(R,R) that R,(A ® ®) € C(RE®) RO®) gnd
(iii) it holds for all a € C(R,R), x € RX®) that

(Ra(A® ©))(7) = A((Ra(®))(2)) (2.150)

(cf. Definitions 2.2.3 and 2.2.23).

Proof of Lemma 2.2.2/. Throughout this proof let L € N, ly,ly,...,l;, € N satisty L =

L(®) and (lp, l4,...,lr) = D(P). Note that item (i) in Lemma 2.2.21 proves that
D<A)\Io(q>)70) = (O(@>7O(CI))) (2'151)

(cf. Definitions 2.2.9 and 2.2.20). Combining this and item (i) in Lemma 2.2.22 assures
that
D(}\ ® (b) = D(AAI@(Q),O ® q)) = (l(], l17 ce ,lLfl, O(q))) = D((I)) (2152)

This establishes item (i). Moreover, observe that items (ii)—(iii) in Lemma 2.2.22 demon-
strate that for all a € C(R,R), x € R¥?® it holds that R,(\A ® ®) € C(RX® RO®)

and

(Ra(A® ))(2) = (Ru(Anigg0 ® ©))(2)
— Moo (Ra(®))(2)) = A((Ra(®))(2)).

This establishes items (ii)—(iii). The proof of Lemma 2.2.24 is thus complete. O

(2.153)

2.2.7 Sums of ANNs with the same length

2.2.7.1 Sums of vectors as neural networks

Definition 2.2.25. Let m,n € N. Then we denote by S, ,, € (Rmx(mn) R™) the neural
network given by
Smn = Ay T . Tn)0 (2.154)

(cf. Definitions 2.2.9 and 2.2.20).
Lemma 2.2.26. Let m,n € N. Then
(i) it holds that S,,,, € N,
(ii) it holds that D(S,,,) = (mn,m) € N?,
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(111) it holds for all a € C(R,R) that R.(Sy.n) € C(R™ R™), and
() it holds for all a € C(R,R), z1,xs,...,x, € R™ that

Ra(Smn)) (@1, oy ..o Tn) = D Ty, (2.155)
k=1

(cf. Definitions 2.2.1, 2.2.3, and 2.2.25).

Proof of Lemma 2.2.26. Note that the fact that S,,, € (R™ (™" x R™) ensures that
Sman € N and D(S,,,) = (mn, m) € N2, This establishes items (i) and (ii). Next observe
that items (ii) and (iii) in Lemma 2.2.21 prove that for all a« € C(R,R), xy,29,...,2, €
R™ it holds that R.(S,..) € C(R™,R™) and

(Ra(Sm,n»(fEla Lo, ... ,ZEn) = (Ra (A(Im Im ... Im),0>)(x1’ To,. .. 71:71)

n 2.156
=Ln Ly ... Ly)(z1,20,...,2,) = T ( )
k=1
(cf. Definition 2.2.9 and Definition 2.2.20). This establishes items (iii) and (iv). The
proof of Lemma 2.2.26 is thus complete. ]

Lemma 2.2.27. Let m,n € N, a € C(R,R), & € N satisfy O(®) = nm (cf. Defini-
tion 2.2.1). Then

(i) it holds that Ru(Spm.n  ®) € C(RF® R™) and

(i3) it holds for all z € RT®) yi 9o, ... yn € R™ with (Ro(®))() = (y1,v2,- -+, Yn)
that

(Ro(Sun s D) (&) = 3 (2.157)

(cf. Definitions 2.2.3, 2.2.5, and 2.2.25).

Proof of Lemma 2.2.27. Note that Lemma 2.2.26 ensures that for all 1, xs,...,2, € R™
it holds that R, (S,.,) € C(R™,R™) and

(Ra(Simn)) (@1, 20y ..y ) = éxk (2.158)

Combining this and item (v) in Proposition 2.2.7 establishes items (i)-(ii). The proof of
Lemma 2.2.27 is thus complete. O

Lemma 2.2.28. Letn € N, a € C(R,R), ® € N (¢f. Definition 2.2.1). Then
(i) it holds that R,(P @ Sz(s),) € C(R™® RO®)) and

(ii) it holds for all x1, s, ..., z, € RX®) that
(Ra((p [ ] SI(q>)m))(ZL'1, To, ... ,ZBn) = (Ra(q))) (Z ka> (2159)
k=1

(cf. Definitions 2.2.3, 2.2.5, and 2.2.25).

Proof of Lemma 2.2.28. Note that Lemma 2.2.26 demonstrates that for all m € N,
T1, T, ..., &, € R™ it holds that R, (S,.,.) € C(R™,R™) and

(Ra(Simn)) (1, 2oy .., ) = éxk (2.160)

Combining this and item (v) in Proposition 2.2.7 establishes items (i) and (ii). The proof
of Lemma 2.2.28 is thus complete. O
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2.2.7.2 Concatenation of vectors as neural networks

Definition 2.2.29. Let m,n € N, A € R™*". Then we denote by A* € R™™ the
transpose of A.

Definition 2.2.30. Let m,n € N. Then we denote by T, ., € (RUmm)>xm 5 RMY the neural
network given by
Tm,n = A(Im LIm ... I;m)*,0 (2.161)

(cf. Definitions 2.2.9, 2.2.20, and 2.2.29).
Lemma 2.2.31. Let m,n € N. Then
(i) it holds that T,,, € N,
(ii) it holds that D(T,,,) = (m, mn) € N?,
(i1i) it holds for all a € C(R,R) that Ro(Ty,,) € C(R™,R™), and
(iv) it holds for all a € C(R,R), x € R™ that

(Ro(Tpon))(x) = (z, 2, ..., 2) (2.162)

(cf. Definitions 2.2.1, 2.2.53, and 2.2.50).

Proof of Lemma 2.2.51. Note that the fact that T,,, € (R(™)>™ x R™") ensures that
Tyn € N and D(T,,,,) = (m,mn) € N2 This establishes items (i)—(ii). Next observe
that items (v)—(vi) in Lemma 2.2.22 prove that for all a« € C(R,R), 2 € R™ it holds that
Ro(Tyn) € C(R™,R™) and

(Ra(Tmn))(SL’) = (Ra(A(Im L ... Im)*,o))(l’

2.163
=L, Ln ... L)'z =(z,2,...,2) ( )

(cf. Definitions 2.2.9 and 2.2.20). This establishes items (iii) and (iv). The proof of
Lemma 2.2.31 is thus complete. O
Lemma 2.2.32. Letn € N, a € C(R,R), ® € N (¢f. Definition 2.2.1). Then
(i) it holds that Ro(To@)n @ ®) € C(RF®) R"O®) and
(ii) it holds for all x € R*®) that
(Ru(Tomy ) (2) = ((Ru(®)(), (Ra(@))(@), .-, (Ry(@))(w)) (2164

(cf. Definitions 2.2.3, 2.2.5, and 2.2.30).

Proof of Lemma 2.2.52. Note that Lemma 2.2.31 ensures that for all m € N, z € R™ it
holds that R,(T,,,) € C(R™,R™") and

(Ro(Tpon))(2) = (2,2, ..., ). (2.165)

Combining this and item (v) in Proposition 2.2.7 establishes items (i) and (ii). The proof
of Lemma 2.2.32 is thus complete. ]
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Lemma 2.2.33. Let m,n € N, a € C(R,R), & € N satisfy Z(®) = mn (cf. Defini-
tion 2.2.1). Then
(i) it holds that R,(® e T,,,,) € C(R™ R®) and
(i1) it holds for all x € R™ that

(Ra(@ @ Tp))(2) = (Ro(®)) (2,2, ..., 2) (2.166)

(cf. Definitions 2.2.3, 2.2.5, and 2.2.50).

Proof of Lemma 2.2.33. Observe that Lemma 2.2.31 demonstrates that for all x € R™ it
holds that R,(T,,,) € C(R™,R™) and

(Ro(Tn))(x) = (2,2, ..., ). (2.167)

Combining this and item (v) in Proposition 2.2.7 establishes items (i) and (ii). The proof
of Lemma 2.2.33 is thus complete. O

2.2.7.3 Sums of ANNs

Definition 2.2.34 (Sums of ANNs with the same length). Let n € Z, m € {n,n +
L...}, @, P001,..., P, € N satisfy for all k € {n,n+1,...,m} that L(Py) = L(D,),
Z(®) = Z(P,), and O(Py) = O(P,). Then we denote by @, P (we denote by
S, DD, 1D ... DD,) the neural network given by

D i = (So@,)m-nt1® [Pm-nt1(Pn, Ppi1, ..., Pn)] ® Tr@,)mnt1) € N (2.168)
k=n

(cf. Definitions 2.2.1, 2.2.2, 2.2.5, 2.2.11, 2.2.25, and 2.2.30).

Lemma 2.2.35. Letn € Z, m € {n,n+1,...}, ®,,P,11,..., P, € N satisfy for all
ke {nn+1,....m} that L(Pr) = L(D,), Z(Pr) = Z(P,), and O(Pr) = O(P,) (cf.
Definition 2.2.1). Then

(i) it holds that L(ED]-,, Pr) = L(D,),
(i) it holds that

D(ﬁ} @k) = (ﬂcpn),ki Dl(@k),gj Ds(®y), .. ki DH(q;n)((I)k),O(CI)n)),
- - - - (2.169)
(iii) it holds for all a € C(R,R) that R,(ED,., 1) € C(RX®») RO®)) gnd
(v) it holds for all a € C(R,R), x € RT(®) that
(Re( @ #) )0 = L Rut@)(2) (2170)

k=n

(cf. Definitions 2.2.3 and 2.2.34).
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Proof of Lemma 2.2.55. First, note that Lemma 2.2.12 proves that
D(Pm—n—i—l(q)ny q)n-l—la ceey q)m))
= (Z Do(Px), >° Di(Pr),- -+, > De(@,)-1(Pr), Do Dﬁ(%)(q’k))
k=n k=n k=n k=n
m m (2.171)
= (n—n+ D20, £ Du(o0),  Da(e).....

k=n k=n

é’; Dego,)1(Pr), (m —n+ 1)0(q>n))

(cf. Definition 2.2.11). Moreover, observe that item (ii) in Lemma 2.2.26 ensures that
D(So@,)m-n+1) = ((m—n+1)0(®,), O(®,)) (2.172)

(cf. Definition 2.2.25). This, (2.171), and item (i) in Proposition 2.2.7 demonstrate that

D(SO(@n),m—n—H hd [Pm—n+1 (Cbna q)n—i—ly R q)m)])
m ) (2.173)

_ <(m o+ DI(®,), S Dy (D), é Dy(®y), ..., 3 Dea,y-1(®4), O(®,,)

k;:n k=n

Next note that item (ii) in Lemma 2.2.31 assures that

D(Tz(@,)m—n+1) = (Z(Py), (m — n+ 1)Z(D,,)) (2.174)
(cf. Definition 2.2.30). Combining this, (2.173), and, item (i) in Proposition 2.2.7 proves
that
o(&)
= D(So(@,),(m-n+1) ® [Pm—nt1(Pn, Prt1, .., Prm)] ® Tz(@,),(m—n+1)) (2.175)
— <z(q>n), éﬂ)l(@k), kimg@k), . ’kim@"“@k)’ 0(<1>n)).

This establishes items (i) and (ii). Next observe that Lemma 2.2.33 and (2.171) ensure
that for all @ € C(R,R), x € R*(®») it holds that

Ra([Prnni1 (@, @ity oo, )] @ T,y moni1) € C(REE®D RIM=mEDO@)) (2 176)

and

(Ra([Pm—n+1((I)na (I)n—l—l; cee 7(I)m)] L4 TI(<I>n),m—n+1))(x)

- (Ra(Pm—n+l((I)n, (I)n+1, . ,(I)m))) (l‘, Ty.o.. ,I). (2'177)

Combining this with item (ii) in Proposition 2.2.13 proves that for all a € C(R,R),
r € RT(®4) it holds that

(Ra([Pm*nJrl ((I)na (bn+17 BRI (Dm>] 1 TI(QDn),m—n—l—l))(x)

= (Ra(®n))(2), (Ra(Prs1)) (@), - . ., (Ra(®p))(2)) € RIMTHIOEn), (2.178)
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Lemma 2.2.27, (2.172), and Lemma 2.2.8 therefore demonstrate that for all a € C'(R,R),
z € RZ®) it holds that R,(ED)., ®x) € C(RE®=) RO®n)) and

(7(& )
= (Ra(So@,)m-nt1® [Prn-nt1(Pn, Pos1y- - @in)] @ Tr(@,)mni1) ) (2) (2.179)

=D (Ra(@)(@).
k=n
This establishes items (iii)—(iv). The proof of Lemma 2.2.35 is thus complete. O

2.2.8 On the connection to the vectorized description of ANNs

Definition 2.2.36. We denote by T: N — (Uyey RY) the function which satisfies for all
L,deN, lg,ly,...,l, €N, &= ((Wy,By), Wy, Bs),...,(Wp,Br)) € (Xgﬂ(Rzmxzm_l 5
R™)), 0 = (01,0, ...,04) €RY, k€ {1,2,..., L} with T(®) = 0 that

9(2?;} Li(lim1+1) g1 +1
9(25:_11 Lili—141)+Hlglp—1+2
d = P(®)’ Bk = G(Zfz_f li(li—1+1))+lklk_1+3 5 (2180)
9(2?:711 Lili—141)+Hllp— 1+
and
Wi =
Q(Zf;f Li(li—1+1))+1 9(2?;11 Li(li—1+1))+2 9(2?;11 Li(li1+1))+le—1
Ot b1 O(sh o i) 12 Okttt ) 121
9(25;11 Li(li14+1) 4201 +1 9(25;11 Li(lio141)) 4201 +2 T 9(25;11 Li(lica4+1)+3le—1 | »

OE T (L1 + 1) Hgelge—s
(2.181)

LG+ ) U= Dl— 1+ PO (e +10) (I = 1)1 42

(cf. Definition 2.2.1).

Lemma 2.237 L€t a, b € N, W = (VVi,j)(i,j)G{l,Q ..... a}yx{1,2,....b} € RaXb, B = (Bi)i€{1,2 77777 a}
€ R®. Then

T (Aws) =
(Wia, Wig, ..., Wiy, Wor, Was, ..., Wap, ..., Wa1, Waa,...,Wap, B1, Bs,...,By)
(2.182)

(cf. Definitions 2.2.20 and 2.2.50).

Proof of Lemma 2.2.37. Observe that (2.180) clearly establishes (2.182). The proof of
Lemma 2.2.37 is thus complete. O

Lemma 2.2.38. Let L € N, g, l1,...,l € N, let W}, = (Wk,i,j)(i,j)e{m ..... Leyx {1,201} €
Ri>U-1 ke {1,2,...,L}, and let By, = (Bri)ic{1,2,.05} € R ke {1,2,...,L}. Then
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(1) it holds for all k € {1,2,...,L} that

T(((Wk7 Bk))) = (Wk,l,b Wk,1,27 ey Wk,l,lk,p Wk,?,la Wk,2,2) ceey Wk,Q,lk,U ey
Witets Wie2s -+ Wi 1 Bits Brgs -« -, Bry,)  (2.183)

and

(i1) it holds that

T(((W1, B1), (Wa, Ba), ... (W, By)) )
- <W17171, WLL?’ ey Wl,l,lw ey WLll,lv Wl,ll,Q, ey Wl,h,lov Bl,l; Bl,g, ey BLll?
W2,1,17 W2,1,27 R W?,l,llv S 7W2,l271a W27l2,27 CI W2,l2,l17 B271a B2,2a s 7B2,l27

)

Wrat, W, s Wroaap - Wroi 1, Weap 2, s Wroap i1
BL,l: BL,27 o 7BL,IL>
(2.184)
(cf. Definition 2.2.36).

Proof of Lemma 2.2.38. Note that Lemma 2.2.37 proves item (i). Moreover, observe that
(2.180) establishes item (ii). The proof of Lemma 2.2.38 is thus complete. O

Exercise 2.2.2. Prove or disprove the following statement: The function T is injective

(cf. Definition 2.2.56).

Exercise 2.2.3. Prove or disprove the following statement: The function T is surjective

(cf. Definition 2.2.30).

Exercise 2.2.4. Prove or disprove the following statement: The function T is bijective
(cf. Definition 2.2.56).

Lemma 2.2.39. Let a € C(R,R), ® € N, L € N, ly,ly,...,l;, € N satisfy D(®) =
(lo, 11, ..., 11) (cf Definition 2.2.1). Then it holds for all x € R that

(W) () L=1
(Ra(®))(x) = o (2.185)
(Nmiyll):%ayb ..... Dﬁa,lL_l,ideL)(x) tL>1

(cf. Definitions 2.1.2, 2.1.4, 2.2.3, and 2.2.56).

Proof of Lemma 2.2.59. Throughout this proof let ((Wy, By), (W2, Bs), ..., (W, Byr)) €
(Xroy (Rx-1 5 RW)) satisty & = (W, By), (Wa, Ba), ..., (Wz, Br)). Note that (2.180)
shows that for all k € {1,2,..., L}, x € R%1 it holds that

k=1, 1.
Wiz + By, = (Al 3= ity (g (2.186)

lk—1
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(cf. Definitions 2.1.1 and 2.2.36). This demonstrates that for all zp € R, x; e R, ... zp
€ RIL with Vk € {1, 2, c. ,L}Z T — ma,lk (Wkl'k—l + Bk) it holds that

Tr—1 = (2187)
Zo L =1
T(@), 7 il +1) T(®), 55 Ll +1)
(DﬁavlL—l © ‘Althlsz ' ' © mavlL—Q © ‘Alsz,lLf?, ' "o L >1

.09y, 0 AZSI;)’O) (x0)
(cf. Definition 2.1.4). Combining this and (2.186) with (2.3) and (2.53) proves that for
all xg € Rlo, T € Rll,. .., XL € R with Vk € {1,2,. . .,L}i T = EJJTaJk(kak_l + Bk)
it holds that

(Ra@))) (z0) = Wrrp 1+ Br = (AT(q’)’ZiL;l li(li*lﬂ))(xL_l)

loln—1
(Na™) (o) L L=1 (2.188)
(NDQSB:;(;%JZ ,,,,, fma,lLfl,ide)(xO) cL>1
(cf. Definitions 2.1.2 and 2.2.3). The proof of Lemma 2.2.39 is thus complete. O

Corollary 2.2.40. Let ® € N (cf. Definition 2.2.1). Then it holds for all z € R*®) that

(TP (2) = (Ro(®)) () (2.189)

(cf. Definitions 2.1.6, 2.1.27, 2.2.3, and 2.2.30).

Proof of Corollary 2.2.40. Note that Lemma 2.2.39, (2.50), (2.11), and the fact that for
all d € N it holds that €_ 4 = idga establish (2.189) (cf. Definition 2.1.12). The proof
of Corollary 2.2.40 is thus complete. [
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Low-dimensional neural network
approximation results

3.1 One-dimensional neural network approximation
results

3.1.1 Linear interpolation of one-dimensional functions
3.1.1.1 On the modulus of continuity

Definition 3.1.1. Let A C R be a set and let f: A — R be a function. Then we denote
by wy: [0,00] — [0,00] the function which satisfies for all h € [0, 00| that

wy(h) =sup({|f(z) = f(y)| € [0,00): (w,y € A with [z —y| < h)}U{0})  (3.1)
and we call wy the modulus of continuity of f.

Lemma 3.1.2. Let a € [—00,00], b € [a,00] and let f: ([a,b] NR) — R be a function.
Then

(1) it holds that wy is non-decreasing,
(i1) it holds that f is uniformly continuous if and only if limy~owys(h) =0,
(1i1) it holds that f is globally bounded if and only if wy(co) < oo,
(i) it holds for all x,y € [a,b] "R that |f(z) — f(y)| < ws(|lz —yl|), and
(v) it holds for all h,b € [0,00] that ws(h +bh) < ws(h) +ws(h)
(cf. Definition 5.1.1).

Proof of Lemma 3.1.2. First, observe that (3.1) implies items (i), (ii), (iii), and (iv).
Moreover, note that (3.1) and the triangle inequality assure that for all h, b € [0, 00| it
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holds that
wy(h+b)
= sup({I/(z) — f(y)| € [0,00):
(x,y € [a, b]ﬂRWlthx <yand [z —y| < (h+h))} U{0})
= sup({[/(z) — f(y)| € [0,00):

(:U,y,ZE [a,b] NR with <z <y, |z — 2| <h, and |y — 2| < h) } U{0})
< sup({[£(x) = F(2)] +1£(2) — F)] € 0,00):
(z,y,2 € [a,b) "R with z < 2 <y, |v — 2| < h, and |z —y| < h)} U{0})
<sup({|f(z) — f(2)] €[0,00): (2,2 € [a,b] "R with z < z and |z — z[ < h)} U{0})
+sup({|f(z) = f(y)| € [0,00): (z,y € [a,b] "R with z < y and |z — y| < h)} U {0})
= wy(h) +ws(h)
(3.2)

(cf. Definition 3.1.1). This establishes item (v). The proof of Lemma 3.1.2 is thus
complete. n

Lemma 3.1.3. Let A C R, L € [0,00) and let f: A — R satisfy for all x,y € A that
|f(x) = f(y)| < L|lz —y|. Then it holds for all h € [0,00) that w¢(h) < Lh.

Proof of Lemma 5.1.3. Observe that the assumption that for all x;y € A it holds that
|f(z) — f(y)| < L|z —y| and (3.1) imply that for all A € [0, 00) it holds that

wy(h) = sup({|f(z) — f(y)] € [0,00): (z,y € A with |z —y| < h)} U{0})

< sup({L!x —y| €[0,00): (z,y € A with |z —y| < h)} U{0}) (3.3)
< Sup({Lh’ O}) =

The proof of Lemma 3.1.3 is thus complete. O

3.1.1.2 Linear interpolation of one-dimensional functions

Definition 3.1.4 (Linear interpolation operator). Let K € N, xo, 21, .., 8k, fo, f1,- -5 [K
€ R satisfy to < 11 < ... < rx. Then we denote by %{:%{}:;}{K R — R the function

which satisfies for all k € {1,2,..., K}, x € (—00,¥0), ¥ € [tk_1,8k), Z € [tk,0) that
(gfo I fK)(x) — f07 (gfo I fK)(Z) — fK; and

Losr,--- 1374 Lo5X1 5015 137¢
(LDl W) = fror + (B2E2) (fe — fin). (34)

Lemma 3.1.5. Let K € N, 10,11, .,tk, fo, f1,---, [k € R satisfy xro <11 < ... < k.
Then

(1) it holds for all k € {0,1,..., K} that

(Ll (we) = fre (3.5)

05X,k K
(i) it holds for all k € {1,2,..., K}, x € [tx—1,1x] that
(LPo i) (@) = foor + (5252) (fe = feon), (3.6)

Le—Tk—1

and
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(#i) it holds for all k € {1,2,..., K}, x € [tr_1,1x] that

(Lol (@) = (H55) fror + (=) fe (3.7)

Le—Tk—1 Le—Tk—1

(cf. Definition 3.1.4).

Proof of Lemma 3.1.5. Observe that (3.4) implies items (i) and (ii). Moreover, note that
item (ii) implies that for all k£ € {1,2,..., K}, x € [tx_1, k] it holds that

(llaio) = [(22) = (22 S + G2

Ye—tk—1 Ye—tk—1 Ye—tk—1 (3 8)
. —x T—Lk—
- (zc:izc;cq)f’“*l T (x;c—xijl)fk'
This proves item (iii). The proof of Lemma 3.1.5 is thus complete. O

Lemma 3.1.6. Let K € N, 19,11,...,0x € R satisfy tvo < 11 < ... < rx and let
f: [ro,tx] = R be a function. Then

(i) it holds for all x,y € R with x # y that

‘(gf(m%f(n) 77777 f(m))(l.) _ (gf(;o%f(n) ~~~~~ f(IK))(y)‘

300 FEET LK L0sX15es K

_ 3.9
< (e, (2= e0D)) (3.9)
ke{1,2,.. K} Itk — Tr—1]

(ii) it holds that sup,cy, ¢ | (LT ETE) 1) — f(a)| < wy(maxpeq o,y ler —
Pk—l’)

and

(cf. Definitions 3.1.1 and 3.1.4).

Proof of Lemma 3.1.6. Throughout this proof let [: R — R satisfy for all x € R that
(@) = (L 270 (@) and let L € [0, 0] satisfy

L= max (wf(’x’“_x’“”)) (3.10)
ke{1,2,.. . K} |tk — L]

(cf. Definitions 3.1.1 and 3.1.4). Observe that item (ii) in Lemma 3.1.5, item (iv) in
Lemma 3.1.2, and (3.10) assure that for all k € {1,2,..., K}, =,y € [tr_1,1%] with x # y
it holds that

(=) = Wy)| =

(c=et ) (f(en) = flee1) = () (F () — f(x’“*l))’

e —Tk—1 th—Th_1
[ f(ew) _f(Ik—l)) B ‘ (wf(|xk—Ik—1|)) - )
B ‘ < Tk — Tk—1 (v=y)| = Itk — Tri] |z —y| < Lz —y.

(3.11)

This, item (iv) in Lemma 3.1.2, Lemma 3.1.5, and (3.10) ensure that for all k,1 €
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{1,2,....,K}, € [tr_1,%], ¥ € [r1-1, 1] with & < and = # y it holds that

[(z) — I(y)]
< [l(@) = ew)| + [Wex) — W-o)| + [(xi-1) — Uy)|
= |l(z) — Uxx)| + |f(25k) — fe—)| + M) — Wy)|

< [((z) — Uzx)| + < Z |f(x;) = f(x;- 1)|> + [(x1-1) — Ky)|

j=k+1 (3.12)

-1

< [U(z) = Uxe)| + ( > willy —xj—1|)> + [ [(xi-1) — ()|

j=k+1

< L((Zﬂk — )+ ( z_: (xj — Fj—l)) +(y - ?l—l)) = Lz —yl.

j=k+1

Combining this and (3.11) shows that for all z,y € [ro,rx]| Wwith z # y it holds that
[l(z) — ((y)|] < L|x — y|. This, the fact that for all z,y € (—o0, 1] with x # y it holds
that |[(z) — (y)| = 0 < L]z — y|, the fact that for all x,y € [rx,00) with & # y it holds
that |I[(z) — [(y)| = 0 < L|x — y|, and the triangle inequality hence demonstrate that
for all z,y € R with = # y it holds that |[(z) — I(y)| < L|z — y|. This proves item (i).
Moreover, note that (3.1), Lemma 3.1.2, and item (iii) in Lemma 3.1.5 assure that for all
ke{l,2,...,K}, © € [tg_1,rx) it holds that

1) = 1 = | (2 ) o) + (225 ) ) - 110

U — Tk—1 Lk — k-1
- ](j%) (Ft0) = 50 + (=52 o) = f0)
< (2D - s+ (S22 ey - sl O

Ly — & T — ¥Tk-1
< wy(le —xk_1|>( i )

e —Tk—1 Tk — Fk—1
=ws(|tr —1tr-1]) < wf(maxje{l,z ,,,,, K}|Zij —i1l)-

This establishes item (ii). The proof of Lemma 3.1.6 is thus complete. O

Lemma 3.1.7. Let K € N, L xo,t1,...,fx € R satisfy xrop < 11 < ... < tx and let
[+ [ro,xx] — R satisfy for all v,y € [vo,1x] that |f(x) — f(y)| < Llz —y|. Then

(i) it holds for all x,y € R that

‘(gf(m S0 f )Y () — (LT @) S @) f(IK))(y)‘ < L|lz —y| (3.14)

3003 R 193¢ L0sE1se-es 1954

and
(ii) it holds that sup,ep, ¢, 1| (LS 80T ®) () — f(2)] < L(maxgeqa,.. w1t — o))

(cf. Definition 5.1./).
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Proof of Lemma 3.1.7. Note that the assumption that for all =,y € [ro,2x] it holds that
|f(x) — f(y)| < Llz — y|, Lemma 3.1.3, and item (i) in Lemma 3.1.6 demonstrate that
for all z,y € R it holds that

|(gf(xo),f(n) ~~~~~ f(xx))(x) _ (Dgf(zco)yf(n) ~~~~~ f(;x))(y)’

Lo,r,..- 19:¢ L0o,X1,.-0y 1924
Lt — 10 3.15
g( max (m—w>)!x—y!=L|x—y|- (319)
ke{1,2,..K}\ |tk — Lk—1]

This proves item (i). Moreover, observe that the assumption that for all z,y € [ro, 1] it
holds that |f(z) — f(y)| < L|x — y|, Lemma 3.1.3, and item (ii) in Lemma 3.1.6 assure
that

P (0)f (@) f(¥r) — <L — 4.
xes[;(l),I;K]‘( £0,1 oo LK )(x) f(@‘ = ke{r&%fl(}’xk 1] (3.16)
This establishes item (ii). The proof of Lemma 3.1.7 is thus complete. O

3.1.2 Activation functions as neural networks

Definition 3.1.8 (Activation functions as neural networks). Let n € N. Then we denote
by i, € (R xR") x (R™"xR"™)) C N the neural network given by i,, = ((1,,0), (1,,,0))
(cf. Definitions 2.2.1 and 2.2.9).

Lemma 3.1.9. Let n € N. Then

(i) it holds that D(i,) = (n,n,n) € N3,

(ii) it holds for all a € C(R,R) that Ra(i,) € C(R™,R?), and
(111) it holds for all a € C(R,R) that R,(i,) = Man
(cf. Definitions 2.1.4, 2.2.1, 2.2.3, and 3.1.8).

Proof of Lemma 3.1.9. Note the fact that i,, € ((R"*" x R™) x (R™*" x R™)) C N ensures
that D(i,) = (n,n,n) € N3. This establishes item (i). Next observe the fact that i, =
((I,,0), (I,,0)) € (R™"™ x R™) x (R™" x R™)) and (2.53) prove that for all a € C(R,R),
x € R it holds that R,(i,) € C(R",R") and

(Ra(in))(x) = LM n(Inz 4+ 0)) + 0 = M, (). (3.17)
This establishes items (ii) and (iii). The proof of Lemma 3.1.9 is thus complete. O
Lemma 3.1.10. Let ® € N (¢f. Definition 2.2.1). Then
(i) it holds that

D(l@(@) [ ] (I))

= (Do(®), Dy (D), Da(P), . . ., D)1 (D), Di(ay (@), Di(ary (P)) € NEA®I+2, (3.18)

(i) it holds for all a € C(R,R) that R,(io@) @ P) € C(RT(®) RO®),
(iii) it holds for all a € C(R,R) that Ra(io@) @ ) = M, 0@ © (Ra(P)),
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(iv) it holds that

D((I) [ J iI(q;.))

— (DO((I))7 Do(q)>, DI(CI)), ]D)Q((I)), e ,]D)E((b)_l((l)), ]D)ﬁ(q))(q))) c Nﬁ(q;)_,_Q, (319)

(v) it holds for all a € C(R,R) that Ry(P eir@e)) € C(RT® RO®) and
(vi) it holds for all a € C(R,R) that R,(P @ iz@)) = (Ra(P)) 0 My z(a)
(cf. Definitions 2.1.4, 2.2.3, 2.2.5, and 3.1.8).

Proof of Lemma 3.1.10. Note that Lemma 3.1.9 demonstrates that for all n € N, a €
C(R,R), z € R™ it holds that R,(i,) € C(R™,R") and

(Ra(in))(x) = ma,n<x> (3‘20)

(cf. Definitions 2.1.4, 2.2.3, and 3.1.8). Combining this and Proposition 2.2.7 establishes
items (i), (ii), (iii), (iv), (v), and (vi). The proof of Lemma 3.1.10 is thus complete. [

3.1.3 Linear interpolation with neural networks

Lemma 3.1.11. Let o, B, h € R, H € N satisfy H = h®(i; @ A, 3) (c¢f. Definitions 2.2.1,
2.2.5, 2.2.20, 2.2.25, and 3.1.8). Then

(1) it holds that H = ((«v, B), (h,0)),
(ii) it holds that D(H) = (1,1,1) € N3,
(i11) it holds that R.(H) € C(R,R), and
(i) it holds for all x € R that (R.(H))(z) = hmax{az + 5,0}
(cf. Definitions 2.1.6 and 2.2.3).

Proof of Lemma 5.1.11. Note that Lemma 2.2.21 ensures that A, 3 = (o, §), D(An ) =
(1,1) € N?, R(Anp) € C(R,R), and Vz € R: (R(Aup))(z) = ax + B (cf. Defini-
tions 2.1.6 and 2.2.3). Lemmas 3.1.9 and 3.1.10, (2.10), (2.53), and (2.59) therefore imply
that i; e Ay 3 = ((o, 8),(1,0)), D(i;e Anp) = (1,1,1) € N3, R.(i; 0 A,5) € C(R,R),
and

VeeR: (Re(i1 @ Asp))(z) =t(R(Anp)(z)) = max{ax + 5,0}. (3.21)

This, Lemma 2.2.24, and (2.149) ensure that h ® (i, ¢ A, 5) = ((o, 8), (h,0)), R.(H) €
C(RR), D(H) = (1,1,1), and

(R:(H))(x) = h((R:(i1 ® Anp))(z)) = hmax{azx + ,0}. (3.22)
This establishes items (i)—(iv). The proof of Lemma 3.1.11 is thus complete. O

Lemma 3.1.12. Let K € N, fo, f1,..., fx,k0,k1,---, 8k € R satisfyro <11 < ... <Ig
and let F € N satisfy

K
F — A.Lfo ° (@ ((( (fmin{k:+1,K}_fk) _ (fk_fmax{kfl,o}) )> @ (11 .Al,;k>>)

=0 xmin{k+1,K}_xmin{k,K—1}) (;max{k,l}_gmax{kfl,o}
(3.23)

(cf. Definitions 2.2.1, 2.2.5, 2.2.20, 2.2.23, 2.2.3/, and 3.1.8). Then

DISSEMINATION PROHIBITED. JULY 29, 2021 46



Chapter 3.  Low-dimensional neural network approximation results

(i) it holds that D(F) = (1, K +1,1) € N3,
(i1) it holds that R.(F) € C(R,R),
(iii) it holds that R.(F) = ZJo./vIx “and
(iv) it holds that P(F) = 3K + 4
(cf. Definitions 2.1.6, 2.2.3, and 3.1.}).

Proof of Lemma 3.1.12. Throughout this proof let cg,cy,...,cx € R satisfy for all k €
{0,1,..., K} that

(fmin{k—l—l,K} - fk) . (fk - fmax{k—l,O})
(xmin{kJrl,K} - xmin{k,Kfl}) (xmax{k,l} - xmax{kfl,O})

(3.24)

Cr =
and let ®g, @y, ..., Py € (R xR x (R xR')) C N satisfy for all £ € {0,1,..., K}
that &, = ¢, ® (i1 A;_,,). Observe that Lemma 3.1.11 assures that for all £ €
{0,1,..., K} it holds that R.(®;) € C(R,R), D(®x) = (1,1,1) € N? and Vz €
R: (Re(Pr))(x) = ¢ max{z —1rx, 0} (cf. Definitions 2.1.6 and 2.2.3). This, Lemma 2.2.22,

Lemma 2.2.35, and (3.23) assure that D(F) = (1, K +1,1) € N? and R.(F) € C(R,R).
This establishes items (i) and (ii). Moreover, note that item (i) and (2.52) imply that

P(F) =2(K + 1) + (K +2) = 3K + 4. (3.25)

This proves item (iv). Next observe that (3.24), Lemma 2.2.22, and Lemma 2.2.35 ensure
that for all # € R it holds that

(Re(E) (@) = fo+ Y (Re(®i))(@) = fo + Y cxmax{z — . 0} (3.26)

This and the fact that V& € {0,1,..., K}: o < px assure that for all x € (—o0, 1] it
holds that

(Re(F))(z) = fo+0=fo (3.27)
Next we claim that for all k£ € {1,2,..., K} it holds that

k—1

— fe=fen
Z U ——— (3‘28)

n=0

We now prove (3.28) by induction on k € {1,2,..., K}. For the base case k = 1 observe
that (3.24) assures that S0_ ¢, = ¢y = % This proves (3.28) in the base case

k = 1. For the induction step note that (3.24) ensures that for all k£ € {2,3,..., K} with
Zﬁ;é ¢ = L=120k=2 4 16]ds that

Te—1—Tk—2
k—1 k—2
_ _ Je=fe—1  frk—1—fr—2 Je—1—fe—2 _ fe—fr—1 3.99
ZC" = -1+ ch T e—tk—1 Th—1—Ltk—2 + h—1—Fk—2  Ck—Fk—1 ( ’ )

Induction thus proves (3.28). In addition, observe that (3.26), (3.28), and the fact that
Vke{1,2,...,K}: tx_1 < rx show that for all k£ € {1,2,..., K}, © € [gx_1, 1) it holds
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that

(Re(F))(@) — (Re(F))(x-1) = Y cu(max{z -, 0} — max{r—s — 14, 0})

n=0
k-1 k—1
(3.30)
= Cn[<3j - ?n) - (xk—l - xn)] = ch(m - Ik—l)
n=0 n=0
= ()@ —xe).
Next we claim that for all k € {1,2,..., K}, € [gx_1,x] it holds that
(Re(F))(w) = fioo1 + (B=L22) (2 — i) (3.31)

e —Ik—1

We now prove (3.31) by induction on k € {1,2,..., K}. For the base case k = 1 observe
that (3.27) and (3.30) demonstrate that for all € [g, r1] it holds that

(Re(F))(2) = (Re(F)) (x0) + (Re(F))(2) — (Re(F))(x0) = fo + (£=2) (2 —x0). (3.3

2)
This proves (3.31) in the base case k = 1. For the induction step note that (3.30)
implies that for all k € {2,3,..., K}, € [rp—1,1%] with Vy € [tr—2, 15-1]: (R:(F))(y) =
Fooo 4 (L==05=2)(y — ¢, 0) it holds that

(Re(F))(x) = (Re(F)) (xr—1) + (Re(F)) () — (Re(F)) (x-1)
= froa + (L2022 (g ) — gy p) + (B2 (2 — ) (3.33)

= fior + (G5 @ = pe).

Induction thus proves (3.31). Furthermore, observe that (3.24) and (3.28) ensure that

—fr—1 fx—fr_1 __
ch =Ck T Z Cn = IK K -1 + TK—IK—1 0. <334)

The fact that VE € {0,1,..., K}: rx < rx and (3.26) hence imply that for all x € [px, 00)
it holds that

(Re(F))(2) = (Re

(max{z — r, 0} — max{rx — r,,0})

=[S
i

B (3.35)
(2 =) = (tx —50)] = D cnlz —1x) = 0.
This and (3.31) show that for all x € [px, c0) it holds that
(Re(F))(x) = (Re(F)(xxc) = o + (B (e — 1) = e (3.36)

IK—IK-1

Combining this, (3.27), (3.31), and (3.4) establishes item (iii). The proof of Lemma 3.1.12
is thus complete. O

Exercise 3.1.1. Prove or disprove the following statement: There exists ® € N such
that P(®) < 16 and
sup  [cos(z) — (Re(®))(2)| < 3 (3.37)

TE€[—2m, 27|

(cf. Definitions 2.1.6, 2.2.1, and 2.2.3).
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Exercise 3.1.2. Prove or disprove the following statement: There exists ® € N such
that Z(®) = 4, O(®) = 1, P(®) < 60, and Vzx,y,u,v € R: (R(P))(z,y,u,v) =
max{z,y,u,v} (cf Definitions 2.1.6, 2.2.1, and 2.2.3).

Exercise 3.1.3. Prove or disprove the following statement: For every m € N there
erists ® € N such that Z(®) = 2™, O(®) = 1, P(®) < 3(2™(2™ + 1)), and Vx =
(x1,22,...,x9m) € R: (Re(P))(x) = max{xy,xa,...,xom} (cf Definitions 2.1.6, 2.2.1,
and 2.2.3).

3.1.4 Neural network approximations for one-dimensional func-
tions
Lemma 3.1.13. Let K € N, L.a,ro,11,...,txk € R, b € (a,00) satisfy for all k €

{0,1,..., K} that v, = a + b a) , let f:]a,b] — R satisfy for all z,y € [a,b] that
|f(z) — f(y)| < Lz —y|, and let F € N satisfy

K
F— Al,f(;o) . (keao(<l{(f(xmin{k+1,1<})(ifg)k)Jrf(Imax{k1,0}))) ® (il ° Al,—u))) (3.38)

(cf. Definitions 2.2.1, 2.2.5, 2.2.20, 2.2.23, 2.2.34, and 3.1.8). Then
(i) it holds that D(F) = (1, K +1,1),
(i1) it holds that R.(F) € C(R,R),

(iii) it holds that Ry(F) = L EHT &0 fer),

(i) it holds for all z,y € R that |(R.(F))(x) — (R(F))(y)| < L|x — y],
(v) it holds that sup e, y|(Re(F))(z) — f(z)] < L(b—a)K™", and

(vi) it holds that P(F) = 3K + 4

(cf. Definitions 2.1.0, 2.2.5, and 3.1.4).

Proof of Lemma 3.1.15. Note that the fact that VA € {0,1,...,K}: tmin{r+1,6) —
Tmin{k,K—1} = Imax{k,1} — Imax{k—1,0} = (b —a)K ! assures that for all k € {0,1,..., K} it
holds that

(fEminger1,x) = F@)  (Fr) =FEmaxge—1,03) _ K(FEmingr+1,x1) =2F @) +f Emax{r—1,0})) (3 39)
(Emin{k+1,K} —Fmin{k,K—1}) (tmax{k,1} ~Fmax{k—1,0}) (b—a) ’ ’

This and items (i), (ii), (iii), and (iv) in Lemma 3.1.12 prove items (i), (ii), (iii), and (vi).
Combining item (iii) with the assumption that Vz,y € [a,b]: |f(z) — f(y)| < L]z — y
and item (i) in Lemma 3.1.7 establishes item (iv). Moreover, note that item (iii), the
assumption that Vz,y € [a,b]: |f(x)— f(y)| < L|z—y|, item (ii) in Lemma 3.1.7, and the
fact that Vk € {1,2,...,K}: 1, — 11 = (b — a) K~! demonstrate that for all = € [a, D]
it holds that

(RAEN) — )] < 2w =5l ) = LO- @)K (340
ke{1,2,....K}
This establishes item (v). The proof of Lemma 3.1.13 is thus complete. O]
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Lemma 3.1.14. Let L,a € R, b € [a,0), £ € [a,b], let f: [a,b] — R satisfy for all z,y €
la,b] that | f(x) — f(y)| < Llz —y|, and let F € N satisfy F = Ay je) 0 (0® (i, @ Ay _¢))
(cf. Definitions 2.2.1, 2.2.5, 2.2.20, 2.2.23, and 3.1.8). Then

(i) it holds that D(F) = (1,1,1),

(ii) it holds that R.(F) € C(R,R),

(#13) it holds for all x € R that (R.(F))(z) = f(§),

() it holds that sup,c(, y|(Re(F))(z) — f(z)| < Lmax{{ —a,b— &}, and
(v) it holds that P(F) = 4

(cf. Definitions 2.1.6 and 2.2.3).

Proof of Lemma 3.1.14. Note that items (i) and (i) in Lemma 2.2.22, and items (ii)
and (iii) in Lemma 3.1.11 establish items (i) and (ii). In addition, observe that item (iii)
in Lemma 2.2.22 and item (iii) in Lemma 2.2.24 assure that for all z € R it holds that

(Re(F))(z) = (Re(0 ® (i @ Ay —¢)))(2) + f(£)
= 0((Re(ir @ A1 —¢))(2)) + f(&) = f(&)

(cf. Definitions 2.1.6 and 2.2.3). This establishes item (iii). Next note that (3.41), the fact
that € € [a,b], and the fact that for all z,y € [a, b] it holds that |f(z) — f(y)| < L|z — y|
assure that for all x € [a, b] it holds that

[(Re(F))(2) = f(2)| = |f(§) = f(2)| < L|z = §] < Lmax{{ —a,b— ¢} (3.42)

This establishes item (iv). Moreover, note that (2.52) and item (i) assure that

(3.41)

PF)=11+1)+1(1+1) =4 (3.43)
This establishes item (v). The proof of Lemma 3.1.14 it thus completed. [

Corollary 3.1.15. Let € € (0,00), L,a € R, b € (a,0), K € Ny N [@, @ + 1),
Yo, X1, .-,k € R satisfy for all k € {0,1,..., K} that t, = a+ m];ib{;g)l}, let f:[a,b] - R
satisfy for all x,y € [a,b] that |f(z) — f(y)| < Lz — y|, and let F € N satisfy

K
F — ALf(};O) ° (]@)(<K(f(?min{k+l,K})_(iigf)'i'f(?max{k—lﬁ}))> ® (11 ° AL_;k))) (344)

(cf. Definitions 2.2.1, 2.2.5, 2.2.20, 2.2.23, 2.2.3}, and 3.1.8). Then
(i) it holds that D(F) = (1, K +1,1),
(ii) it holds that R.(F) € C(R,R),
(#i) it holds for all z,y € R that |(R.(F))(x) — (R(F))(y)| < L|z — vy,
(iv) it holds that sup,ep,y|(Re(F))(x) = f(2)| < piity < e, and

(v) it holds that P(F) = 3K +4 <3L(b—a)e ™t +7
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(cf. Definitions 2.1.6, 2.2.1, and 2.2.3).

Proof of Corollary 5.1.15. Note that the fact that K € Ny N [ Lb=a) L(be_a) + 1) implies

that ma)((b{f(a)l} < e. This, items (i), (ii), (iv), and (v) in Lemma 3.1.13, and items (i), (ii),
(iii), and (iv) in Lemma 3.1.14 establish items (i), (ii), (iii), and (iv). Moreover, note that
the fact that K < 1+ Z0= ), item (vi) in Lemma 3.1.13, and item (v) in Lemma 3.1.14

assure that

3L(b—
P(F) = 3K +4 < % +7. (3.45)
This establishes item (v). The proof of Corollary 3.1.15 is thus complete. O

Definition 3.1.16 (p-norm). We denote by ||-|l,: (Uje; R?) = R, p € [1, 00|, the func-
tions which satisfy for all p € [1,00), d € N, 0 = (0,0s,...,04) € R? that ||0], =

[0, 16,071 and [|6]|se = maxicqra, a6,

Corollary 3.1.17. Let ¢ € (0,00), L € [0,00), a € R, b € [a,00) and let f: [a,b] = R
satisfy for all x,y € [a,b] that |f(z) — f(y)| < Llx —y|. Then there exists F € N such
that

(1) it holds that R.(F) € C(R,R),
(i1) it holds that H(F) =
(iii) it holds that Dy(F) < L(b—a)e™ + 2,
(iv) it holds for all z,y € R that |(R(F))(x) — (R(F))(y)| < L|x — y],
(v) it holds that sup,e(, y|(R(F))(z) — f(z)] <e,
(vi) it holds that P(F) = 3(Dy(F)) +1<3L(b—a)e ' + 7, and
(vii) it holds that ||T(F)|lo < max{1,]al,[0],2L,|f(a)[}
(cf. Definitions 2.1.6, 2.2.1, 2.2.3, 2.2.36, and 3.1.16).
Proof of Corollary 3.1.17. Throughout this proof assume w.l.o.g. that a < b, let K €

N[22 O 1) v xy, .otk € R, eo,cn, -, e € Rsatisfy forall k € {0,1,..., K}

that 1, = a + m’;ib{}g)l} and

CL = K(f(Imin{k—i-l,K}) - Qf(;k‘) + f(&nax{k—l,O})) (3 46)
* (b—a) ’ '
and let F € N satisty
K
F = Ay o (@@k ® (ir o Al,_;k») (3.47)
k=0

(cf. Definitions 2.2.1, 2.2.5, 2.2.20, 2.2.23, 2.2.34, and 3.1.8). Note that Corollary 3.1.15
implies that

(I) it holds that D(F) = (1, K + 1, 1),
(IT) it holds that R.(F) € C(R,R),
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(III) it holds for all z,y € R that |[(R.(F))(z) — (R:(F))(y)| < L|z — y|,
(IV) it holds that sup,cp, 4 |(Re(F))(z) — f(2)| < ¢, and
(V) it holds that P(F) = 3K + 4
(cf. Definitions 2.1.6 and 2.2.3). This establishes items (i), (iv), and (v). Next note that

item (I) and the fact that K < 1+ @ prove items (ii) and (iii). Next observe that
items (I) and (V) imply that
P(F) = 3K +4=3(K + 1)+ 1=3(Dy(F)) + 1 < =2 7 (3.48)

This establishes item (vi). In the next step we observe that Lemma 3.1.11 shows that for
all k € {0,1,..., K} it holds that

cr ® (i1 @ Ay ) = (L, =), (&, 0)). (3.49)
Combining this with (2.168), (2.161), (2.154), and Lemma 2.2.6 demonstrates that

1 —to
1 —

F = ’ Il , ((CO cp o CK), f(xo)) (350)
1 —IK

e (R(KJrl)xl > RK+1) x (Rlx(K+1) > R)
Lemma 2.2.38 therefore ensures that

[T (F)lloo = max{]gol, [s1], - |l [eol, leal, - lexcl, 1f (xo) ], 1} (3.51)

(cf. Definitions 2.2.36 and 3.1.16). In addition, note that the assumption that for all
x,y € la,b] it holds that |f(x) — f(y)| < L]z — y| and the fact that V& € NN (0, K +
1): 1 — tho1 = (b— a)[max{K,1}]7! imply that for all ¥ € {0,1,..., K} it holds that

K(|f(22min{k+1,K}) - f(?ik)| + |f(?max{k71,0})) - f(?ik)|

<
el < (b—a)
KL min - max{k— -
o KLmingerna) = vl + omaxge1.0p = ) (3.52)
(b—a)
_ 131
2KL(b— a)max{K, 1}] <of.

This and (3.51) establish item (vii). The proof of Corollary 3.1.17 is thus complete. [J

Corollary 3.1.18. Let L,a € R, b € [a,00) and let f: [a,b] — R satisfy for all z,y €
la,b] that |f(xz) — f(y)| < Llx —y|. Then there exist C € R and F = (F.).c.1: (0,1] —
N such that for all e € (0,1] it holds that R.(F.) € C(R,R), sup,c,nl(Re(Fe))(x) —
f@) <e HEF:) =1, |T(F:)|lo < max{1,lal, [b],2L,[f(a)[}, and P(F.) < Ce™" (cf.
Definitions 2.1.6, 2.2.1, 2.2.3, 2.2.36, and 3.1.16).

Proof of Corollary 5.1.18. Throughout this proof assume w.l.o.g. that L > 0 and let
C =3L(b—a) + 7. Observe that for all £ € (0,1] it holds that

3L(b—a)e ' +7<3L(b—a)e ' +7e = Ce . (3.53)
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This and Corollary 3.1.17 establish that there exists F = (F.).c,1: (0,1] — N such
that for all ¢ € (0,1] it holds that R.(F.) € C(R,R), sup,e(, y(Re(Fe))(x) — f(2)] <,
H(F:) =1, | T(F)|lee < max{lal, [b],2L,|f(a)[}, and

P(F.) <3L(b—a)e ' +7<Ce! (3.54)

(cf. Definitions 2.1.6, 2.2.1, 2.2.3, 2.2.36, and 3.1.16). The proof of Corollary 3.1.18 is
thus complete. O

Exercise 3.1.4. Prove or disprove the following statement: There exists ® € N such
that P(®) < 10 and

sup |V — (Re(®)) ()] < & (3.55)

x€[0,10]
(cf. Definitions 2.1.6, 2.2.1, and 2.2.3).

3.2 Multi-dimensional ANN approximation results

3.2.1 Approximations for Lipschitz continuous functions

Lemma 3.2.1. Let (F,6) be a metric space, let L € [0,00), D C E, M C E satisfy
0 £ MCD,let f: D— R satisfy for allx € D, y € M that |f(z) — f(y)| < Lo(z,y),
and let F': E— RU{oo} satisfy for all x € E that

F(x) = ;élﬂg[f(y) — Lo(z,y)]. (3.56)

Then
(1) it holds for all x € M that F(z) = f(x),

(1t) it holds for all v € D that F(z) < f(z),

(i) it holds for all x € E that F(x) < oo,

(iv) it holds for all x,y € E that |F(x) — F(y)| < Lé(z,y), and
(v) it holds for all x € D that

P(e) — f(2)] < 2L [;55 5. yﬂ . (3.57)

Proof of Lemma 3.2.1. First, observe that the assumption that Vo € D, y € M : |f(z)—
f(y)] < Lé(x,y) ensures that for all z € D, y € M it holds that

fy)+ Lo(z,y) = f(x) = fy) — Lé(z,y). (3.58)
Hence, we obtain that for all x € D it holds that
flw) 2 sup[f(y) = Lo(w,y)] = F(z). (3.59)

This establishes item (ii). Moreover, note that (3.56) implies that for all z € M it holds
that
F(z) > f(z) - Lo(x,2) = f(z). (3.60)
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This and (3.59) establish item (i). Next note that (3.58) (applied for all y,z € M with
TNy, y N z) and the triangle inequality ensure that for all © € E, y,z € M it holds
that

F(y) = Lo(e,y) < (2) + Lo(y, =) — Lo(w,y) < f(z) + Lo(w,2).  (3.61)
Hence, we obtain that for all z € F, z € M it holds that

F(r) = ysgﬁ[f(y) — Lé(x,y)] < f(2) + Li(x, 2) < oo. (3.62)

This proves item (iii). Combining item (iii) with (3.56) and the triangle inequality shows
that for all x,y € E it holds that

Fle) = () = [ sup(7(0) = Lo(o.0)| = | sup (F(w) L0y )]

vEM weM

= sup |: (U) — L5(l‘, U) — sup (f(w) - L5<yaw>>}

veEM weM

< sup f(v) = Lo(z,v) — (f(v) — Ld(y,v))] (3.63)

[
= sup (Ld(y,v) — Li(z,v))
veEM

< ESE(Lé( z)+ Lo(z,v) — Lo(x,v)) = Lé(x,y).

This and the fact that for all x,y € F it holds that 6(z,y) = (y, x) establish item (iv).
Moreover, observe that items (i) and (iv), the triangle inequality, and the assumption
that Vo € D,y € M: |f(z) — f(y)| < Lé(x,y) ensure that for all z € D it holds that

(@) = f(@)] = inf [F(a) = F(y) + /() — /(@)
< inf (F(@) = F@l + 1) — /@) 3.6)

<1 = i .
Jnf (2Ld(z,y)) = 2L LlenAfA o(z, y)}

This establishes item (v). The proof of Lemma 3.2.1 is thus complete. O

Corollary 3.2.2. Let (E,0) be a metric space, let L € [0,00), M C E satisfy M # 0,
let f: E — R satisfy for all x € E, y € M that |f(x) — f(y)| < Lé(x,y), and let
F: E — RU{co} satisfy for all x € E that

Flx) = sup[ () =~ Lo, )] (3.55)

Then
(1) it holds for all x € M that F(x) = f(z),
(1) it holds for all x € E that F(x) < f(x),
(#i) it holds for all z,y € E that |F(z) — F(y)| < Lé(x,y), and
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(iv) it holds for all x € E that
|F(z) — f(x)] < QL[inf 5(:p,y)} (3.66)
yeM

Proof of Corollary 3.2.2. Note that Lemma 3.2.1 establishes items (i), (ii), (iii), and (iv).
The proof of Corollary 3.2.2 is thus complete. O]

Exercise 3.2.1. Prove or disprove the following statement: There exists ® € N such
that Z(®) = 2, O(®) =1, P(P) < 60000000, and

sup [sin(z)sin(y) — (Re(®))(z, y)| < . (3.67)

z,y€[0,27]

3.2.2 ANN representations

3.2.2.1 ANN representations for the 1-norm

Definition 3.2.3 (1-norm ANN representations). We denote by (Ly)gen € N the neural
networks which satisfy that

(i) it holds that

L, = (((_11) (8)) (@ 1), (0))) € (R x R?) x (RV2xRY)  (3.68)

and

(11) it holds for all d € {2,3,4,...} that Ly =Sy 4@ Py(Ly, Ly, ..., L)
(cf. Definitions 2.2.1, 2.2.5, 2.2.11, and 2.2.25).
Proposition 3.2.4. Let d € N. Then

(i) it holds that D(ILy) = (d,2d, 1),

(ii) it holds that R.(Ly) € C(R% R), and
(iii) it holds for all x € R? that (R.(Ly))(z) = ||z|
(cf. Definitions 2.1.6, 2.2.1, 2.2.5, 3.1.16, and 3.2.3).

Proof of Proposition 3.2.4. Note that the fact that D(LL;) = (1,2,1) and Lemma 2.2.12
show that for all @ € {2,3,4,...} it holds that D(P,(L1,Ly,...,L4)) = (9,20,0) (cf.
Definitions 2.2.1, 2.2.11, and 3.2.3). Combining this, Proposition 2.2.7, and Lemma 2.2.21
ensures that for all 0 € {2,3,4,...} it holds that D(S1, @ Py(Ly,Ly,...,Ly)) = (9,20, 1)
(cf. Definitions 2.2.5 and 2.2.25). This establishes item (i). Furthermore, observe that
(3.68) assures that for all x € R it holds that

(Re(Ly))(z) = t(z) + t(—2) = max{z, 0} + max{—=z,0} = |z| = ||z| (3.69)

(cf. Definitions 2.1.6, 2.2.3, and 3.1.16). Combining this and Proposition 2.2.13 shows
that for all 0 € {2,3,4,...}, x = (21,72, ...,2,) € R? it holds that

(Re(Po(Ly, Ly, ..., Ly)))(z) = (Ja, |2, ..., |7a])- (3.70)
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This and Lemma 2.2.26 demonstrate that for all @ € {2,3,4,...}, © = (z1,29,...,23) €
R? it holds that

(Re(Lo))(x) = (Re(S1 @ Po(Ly, L, ..., L)) (x)
d (3.71)
= (Re(S10)) (|l 2], ., |a]) = 2 |7nl = [z
This establishes items (ii)—(iii). The proof of Proposition 3.2.4 is thus complete. O

Lemma 3.2.5. Let d € N. Then
(i) it holds that B, 1, = 0 € R*,
(i1) it holds that By, =0 € R,
(iii) it holds that Wiy, € {—1,0,1}dxd
() it holds for all x € R? that |Wi L, = ||2]|ee, and
(v) it holds that Wy, = (1 1 --- 1) € R*(2d)
(cf. Definitions 2.2.1, 3.1.16, and 3.2.3).

Proof of Lemma 5.2.5. Throughout this proof assume w.l.o.g. that d > 1. Note that the
fact that By, =0 € R?, the fact that Byp, = 0 € R, the fact that Bis,, =0€R, and
the fact that Ly, = S, 5 @ Py(ILy, Ly, ..., L;) establish items (i)—(ii) (cf. Definitions 2.2.1,
2.2.5,2.2.11, 2.2.25, and 3.2.3). In addition, observe that the fact that

WIJL1 0 0
0 Wiz, - 0

WI,L1:(_11) and ~ Wi, =| . A .| RO (3.72)
0 0 o Wi,

proves item (iii). Next note that (3.72) implies item (iv). Moreover, note that the fact
that By, = (1 1) and the fact that Ly = S; ;@ Py4(L;, Ly, ...,L;) show that

)/\/27]1‘1 0 ... 0
0 War, - 0
Wor, = (1 1 - 1) ) ?’L . . = (1 1 ... 1) e R4
N e’ . . T .
cR1xd 0 0 o WZLI
eR«;;@d)
(3.73)
This establishes item (v). The proof of Lemma 3.2.5 is thus complete. O

3.2.2.2 ANN representations for maxima

Lemma 3.2.6. There exist unique (¢q)aqen € N which satisfy that
(i) it holds for all d € N that Z(¢pg) = d,
(i1) it holds for all d € N that O(¢4) = 1,
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(ifi) it holds that ¢, = A, € R x R,
(iv) it holds that

1 -1 0
¢o = 0 1 ],{0]],((1 1 =1),(0)| € (R”*xR*) x (R™? x R"),
0 —1 0
74)
(v) it holds for all d € {2,3,4,...} that ¢og = Pgq @ (Pd(¢27 O, . .. ,gz52)), and
(vi) it holds for all d € {2,3,4,...} that ¢oq_1 = dg® (Pa(d2, ¢, ..., ¢2,71))
(cf. Definitions 2.2.1, 2.2.5, 2.2.11, 2.2.18, and 2.2.20).
Proof of Lemma 3.2.6. Throughout this proof let ¢y € N satisfy
1 -1 0
Y= 0 1 ],10].((1 1 =1),(0)| € ®*?* xR’ x (R xR") (3.75)
0 -1 0

(cf. Definition 2.2.1). Note that the fact that Z(¢)) = 2, the fact that O(¢)) = 1, the
fact that £(¢) = L£(J;) = 2, Lemma 2.2.12, and Lemma 2.2.19 assure that for all d € N
it holds that Z(Pg(v, 1), ...,¢)) = 2d, OP (1,0, ..., ) = d, Z(Pg(v,2, ..., ¢, T31)) =
2d—1, and O(Py(¥, %, ...,1,71)) = d (cf. Definitions 2.2.11 and 2.2.18). This, Proposi-
tion 2.2.7, and induction establish that there exists unique ¢4 € N, d € N, which satisfy
that for all d € N it holds that Z(¢4) = d, O(¢4) = 1, and

A d=1
cd =2
ba = v (3.76)
¢d/2. (Pd/2(¢7¢a7¢)) :d e {4,6,8,}
Dtz ® (Pasn2(, v, ..., 31)) de{3,57,..}.
The proof of Lemma 3.2.6 is thus complete. O]

Definition 3.2.7 (Maxima ANN representations). We denote by (My)aen € N the neural
networks which satisfy that

(1) it holds for all d € N that Z(M,) = d,
(i1) it holds for all d € N that O(My) = 1,
(iii) it holds that M; = Ao € R x RY,
(iv) it holds that

1 -1\ /0
M, = 0 1 |, [o]].((1 1 =1),(0))] € ®¥* xR? x (R xR
0 -1/ \0

Y

(3.77)
(v) it holds for all d € {2,3,4,...} that Myy = M, e (Pd(MQ,I\\/JIQ, . ,Mg)), and
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(1)2) it holds fO?" all d € {27 3,4, .. } that Myg_1 = My e (Pd(MQ, Mo, ..., My, 31))
(cf. Definitions 2.2.1, 2.2.5, 2.2.11, 2.2.18, and 2.2.20).

Definition 3.2.8 (Floor and ceiling of real numbers). We denote by [-]: R — Z and
|-]: R — Z the functions which satisfy for all x € R that [z] = min(Z N [z,00)) and
|z] = max(Z N (—o0, x]).

Proposition 3.2.9. Let d € N. Then

(1) it holds that H(M,) = [log,(d)],

(it) it holds for all i € N that D;(My) < 3[ %],

(iii) it holds that R.(My) € C(R% R), and

(iv) it holds for all x = (z1, 22, ..., 24) € R? that (R«(My))(z) = max{xy, s, ..., 24}
(cf. Definitions 2.1.6, 2.2.1, 2.2.3, 3.2.7, and 3.2.8).

Proof of Proposition 3.2.9. Throughout this proof assume w.l.o.g. that d > 1. Note that
(3.77) ensures that H(My) = 1 (cf. Definitions 2.2.1 and 3.2.7). This and (2.111) demon-
strate that for all 9 € {2,3,4,...} it holds that

H(Py(My, My, ..., M,)) = H(Po(My, My, ..., My, 7)) = H(M,) = 1 (3.78)

(cf. Definitions 2.2.11 and 2.2.18). Combining this with Proposition 2.2.7 establishes that
for all 0 € {3,4,5,...} it holds that

H(My) = H (M) + 1 (3.79)

(cf. Definition 3.2.8). This assures that for all 9 € {4,6,8,...} with H(Mss) = [log,(?/2)]
it holds that

H (M) = [logy(%/2)] + 1 = [logy(0) — 11 + 1 = [logy(d)]. (3.80)

Moreover, note that (3.79) and the fact that for all® € {3,5,7,...} it holds that [log,(d+
1)] = [logy(0)] ensure that for all 0 € {3,5,7,...} with H(Mjo/,1) = [log,([?/2])] it holds
that

H(My) = [logy([?/2])] +1 = [logy(@+1/2)] + 1
= [logy (0 +1) = 1] + 1 = [log,(d + 1)] = [log,(?)].
Combining this and (3.80) demonstrates that for alld € {3,4,5,...} withVk € {2,3,...,
0 —1}: H(Mg) = [logy(k)] it holds that H(M,) = [log,(0)]. The fact that H(Ms) =

1
and induction hence establish item (i). Next note that the fact that D(Msy) = (2,3, 1)
assure that for all 7 € N it holds that

(3.81)

D;(M,) <3 =3[2]. (3.82)

Moreover, observe that Proposition 2.2.7 and Lemma 2.2.12 imply that for all 9 €
{2,3,4,...}, i € N it holds that

D; (M) z{ | . (3.83)
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and .
Dy (Maa_1) = { | o, (3.84)
This assures that for all @ € {2,4,6, ...} it holds that
Dy (M,) = 3(3) < 3[3]. (3.85)
Moreover, note that (3.84) ensures that for all 9 € {3,5,7,...} it holds that
Dy (M) =3[3] —1 < 3[3]. (3.86)
This and (3.85) show that for all © € {2,3,...} it holds that
D; (M,) < 3[3]. (3.87)

In addition, observe that (3.83) demonstrates that for all 0 € {4,6,8,...},7€{2,3,...}
with ID;_ 1(Ma/2 ) < 3{ 1 W it holds that

D;(M,) = D1 (Map) < 3[(%/2) 52| =3[ %] (3.88)

Furthermore, note that the fact that for all @ € {3,5,7,...}, ¢ € N it holds that P;—W =
[2] and (3.84) assure that for all 0 € {3,5,7,...}, i € {2,3,...} with D;_y (M) <

21

3| [?/2] 5] it holds that

D;(Mp) = D1 (M) < 3[[¥/2] 525 | = 3[2] =3[2]. (3.89)

This and (3.88) ensure that for all 0 € {3,4,...},i € {2,3,...} withVk € {2,3,...,0 —
1},j€{1,2,...,i—1}: D;(My) < 3[£] it holds that

D;(M,) <3[Z]. (3.90)

Combining this, (3.82), and (3.87) with induction establishes item (ii). Next observe that
(3.77) ensures that for all x = (z1,z2) € R? it holds that

(R:(My))(z) = max{x; — x2,0} + max{xs, 0} — max{—xs,0}

= max{xr; — xs,0} + x5 = max{xy, x2}

(3.91)

(cf. Definitions 2.1.6 and 2.2.3). Proposition 2.2.13, Proposition 2.2.7, Lemma 2.2.19,
and induction hence imply that for all @ € {2,3,4,...}, * = (x1,29,...,25) € R° it
holds that R.(M,) € C(R® R) and (R.(M,))(z) = max{zy, z2,...,2y}. This establishes
items (iii)—(iv). The proof of Proposition 3.2.9 is thus complete. O

Lemma 3.2.10. Letd € N, i € {1,2,...,L(My)} (c¢f. Definitions 2.2.1 and 3.2.7). Then
(i) it holds that By, = 0 € RP:«Ma),
(ii) it holds that Wiy, € {—1,0,1}PiMa)xPis(Ma) =gy g

(iii) it holds for all x € R that Wi, s < 27w

(cf. Definition 3.1.16).
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Proof of Lemma 5.2.10. Throughout this proof assume w.l.o.g. that d > 2 (cf. items (iii)—
(iv) in Definition 3.2.7) and let A; € R3*?, A, € R C) € R*1, () € R satisfy

1 -1
Ai=10 1], Ay=(1 1 -1), Clz<_11>, and Cy=(1 -1).
0 —1

(3.92)

Note that items (iv)—(vi) in Definition 3.2.7 assure that for all @ € {2,3,4,...} it holds
that

A 0 0
0 A 0 0 0 A 0
Wl Mop—1 : . . . ) Wl Map . : .. . )
0 0 -+ A 0 c o (3.93)
o 0 --- 0 N 0 0 h
eR(:Q)rxm)

ER(%,;),X (20—-1)

BI,M%A =0¢€ R30_17 and Bl,Mga =0€eR®.

This and (3.92) proves item (iii). Furthermore, note that (3.93) and item (iv) in Defini-
tion 3.2.7 imply that for all @ € {2,3,4,...} it holds that By, = 0. Items (iv)—(vi) in
Definition 3.2.7 hence ensures that for all 9 € {2,3,4,...} it holds that

om0 o A 00
2 0 A 0
Wa My 1 = Wi, : S . Wa Mo, = Wi, ) E
O 0 --- Ay, O X
0 0 - 0 Oy OO A
. ><\(,3371) - cRY X (30)

827M20_1 = Bl,Ma = O, and BZM% = Bl,Mo =0.
(3.94)

Combining this and item (iv) in Definition 3.2.7 shows that for all 0 € {2, 3,4, ...} it holds
that By, = 0. Moreover, note that (2.59) demonstrates that for all 9 € {2,3,4,...,},
i€{3,4,...,L(M,) + 1} it holds that

WiMay_1 = WiMa, = Wi M, and Biisy_ 1 = Biny, = Bicim,- (3.95)

This, (3.92), (3.93), (3.94), the fact that for all @ € {2,3,4,...} it holds that By, = 0,
and induction establish items (i)—(ii). The proof of Lemma 3.2.10 is thus complete. [

3.2.2.3 ANN representations for maximum convolutions

Lemma 3.2.11. Letd, K € N, L € [0,00), t1,82,---,kx € RY, 9= (91,92,...,0x) € RE]
® € N satisfy

o = MK ° A—LIK,U ° PK(Ld ® AIm—Ilv]Ld L] A[d,_m, c ,]Ld L] A[d,_;K) L] TK,d (396)

(cf. Definitions 2.2.1, 2.2.5, 2.2.9, 2.2.11, 2.2.20, 2.2.50, 3.2.3, and 3.2.7). Then
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(i) it holds that Z(®) = d,

(i1) it holds that O(P) =1,

(111) it holds that H(®) = [logy(K)] + 1,

(1v) it holds that Dy (®) = 2dK,

(v) it holds for all i € {2,3,...} that D;(®) < 3[55:],

(vi) it holds that | T(®)| e < max{1, L, maxpeqi .. [tk loos 2|9]loo}, and
(vii) it holds for all x € R? that (R«(®))(x) = maxyeqi 2, i} (0 — Lz — z1]1)
(cf. Definitions 2.1.0, 2.2.5, 2.2.36, 3.1.16, and 3.2.8).

Proof of Lemma 3.2.11. Throughout this proof let ¥;, € N, k € {1,2,..., K}, satisfy for
all k€ {1,2,..., K} that ¥, =L, e Ay, _,,,let = € N satisfy

E:A—LIK,g.PK(\I[h\IJQwH;\PK) .TK,da (397)

and let [|-]|: U

m,neN

R™*™ — [0, 00) satisfy for all m,n € N, M = (M; ;)icq1,...m}, je{1,...n}
t (3

..........

tion 2.2.7 ensure that O(®) = O(Mg) = 1 and Z(®) = Z(Tk4) = d. This proves
items (i)—(ii). Moreover, observe that the fact that for all m,n € N, 20 € R™*" B € R™
it holds that H(Amwss) = 0 = H(Tk.4), the fact that H(L,) = 1, and Proposition 2.2.7
assure that

H(Z) = H(A_L1,y) + HPx (U1, Uy, .. Ug)) + H(Trq) = H(Vy) = H(Ly) = 1.
(3.98)

Proposition 2.2.7 and Proposition 3.2.9 hence ensure that
H(P) =H(Mg e Z) = H(Mg) + H(Z) = [logy(K)] + 1 (3.99)

(cf. Definition 3.2.8). This establishes item (iii). Next observe that the fact that H(Z) =
1, Proposition 2.2.7, and Proposition 3.2.9 assure that for all 7 € {2,3,...} it holds that

Di(®) = Di-1 (Mx) < 3[55]. (3.100)

This proves item (v). Furthermore, note that Proposition 2.2.7, Proposition 2.2.14, and
Proposition 3.2.4 assure that

K K
Dy(®) = Dy () = Dy (Pre (W1, Vs, ..., Uk)) = Y Dy(¥;) = Y Dy(Lg) = 2dK. (3.101)
i=1 i=1
This establishes item (iv). Next observe that (2.59) and Lemma 3.2.10 imply that

¢ = ((Wl,Ea 81,5)7 (WI,MKWZEa Wl,MKBZE)a

3.102
(Wz,MK, O)a ceey (Wc(MK),Mw 0)) ( )
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Moreover, note that the fact that for all £ € {1,2,...,K} it holds that Wy, =
Wina,,  WiL, = WiL, assures that

Wiw, 0 -+ 0 Ia
0 Wiy, -+ 0 I,
Wiz = Wikt oo Wire, = | . S :
0 0 - Wie) \Ly
* (3.103)
Wi e, WiL,
(Wi | [ Wi
Wi w WiL,
Lemma 3.2.5 hence demonstrates that [|[W; z|| = 1. In addition, note that (2.59) implies
that
Biw,
Biw,
Biz = WP, s, v ) BiTgy T BLpg s, . vx) = BLPr(w, s, 05) = :
Biwy
(3.104)

Furthermore, observe that Lemma 3.2.5 implies that for all £ € {1,2,..., K} it holds
that

Biw, =WiL,Bia, ., +Bir, = —WiLte. (3.105)
This, (3.104), and Lemma 3.2.5 show that

B Zlloo — B oo — oo — [e'e)
1B ke{%?}.,‘,m” 1w, | ke{rll};?iK}|lW1,Ldzckll ke{?ffK}||“|| (3.106)

(cf. Definition 3.1.16). Combining this, (3.102), Lemma 3.2.10, and the fact that [|[W; =
= 1 shows that
[7(®)|loo = max{ Wi zll, |B1zlloc, [Winaxe Wazl, Wi mg B2z lloos 1}

(3.107)
< max{l, maxye(1,2,.... k| Tk |loos [ Wime Waz ||, IWhimg Bozlloo

(cf. Definition 2.2.36). Next note that Lemma 3.2.5 ensures that for all k € {1,2,..., K}
it holds that By y, = Byp, = 0. Hence, we obtain that By p, (v, v,,..w,) = 0. This implies
that

,,,,,

By = = Wl,A_LIK,UBZPK(\Ill,\IJg ) T Bl,A_LIKm = B1,A_L1K,., =1. (3.108)

.....

In addition, observe that the fact that for all k € {1,2,..., K} it holds that Wh ¢, = Wh 1,
assures that

WQ,E - Wl,A_LIK’nWQ,PK(\Ill,\IJQ ..... \IIK) - _LW2,PK(\111,\I/2 ..... \I/K)
Wag, 0 -+ 0 IWey, 0 -0
0 M 0 0 LW, - 0
0 0 - W, 0 0 - —LWi,

(3.109)
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Item (v) in Lemma 3.2.5 and Lemma 3.2.10 hence imply that
VL Wasll < LW I < L. (3.110)
Moreover, observe that (3.108), (3.109), and Lemma 3.2.10 assure that

Wi Bazlloo < 2[[Bazlloo = 2[[9)]|co- (3.111)

Combining this with (3.107) and (3.110) establishes item (vi). Next observe that Propo-
sition 3.2.4 and Lemma 2.2.22 show that for all x € R¢, k € {1,2,..., K} it holds that

(Re(Wi) (@) = (Re(La) © Re(Agy—g)) () = [l — xll1. (3.112)
This, Proposition 2.2.13, and Proposition 2.2.7 imply that for all z € R? it holds that

(Rt(PK<‘If1, \IIQ, ceey \I/K) [ TK,d))(I) = (HIE — x1||1, H.T — I2H17 ey ”.SL’ — xK”l) (3113)

(cf. Definitions 2.1.6 and 2.2.3). Combining this and Lemma 2.2.22 establishes that for
all z € R? it holds that

(Re(E))(z) = (Re(A_L1,ey) 0 Re(Pi(V1, Vs, ..., V) @ Ty g)) ()

(3.114)
= (01 — Ll|z —r1lli, 92 — Lllz — zoll1s - - -9k — Lz _PKHI)-

Proposition 2.2.7 and Proposition 3.2.9 hence demonstrate that for all z € R? it holds
that

(Re(@))(x) = (Re(Mx) 0 Re(D)) ()
= (Re(Mk)) (91 — Lllz — 11]l1, 92 = Lllz = g2lh, - -, 9x — Ll — 1k |h)

= MaXge(1,2,..., K}(Uk — Ll|z — rill1)-
(3.115)

This establishes item (vii). The proof of Lemma 3.2.11 is thus complete. O]

3.2.3 Explicit approximations through ANNs

Proposition 3.2.12. Letd, K € N, L € [0,00), let E C R? be a set, letr1,1,...,tx € E,
let f: E — R satisfy for all z,y € E that |f(z) — f(y)| < L||x — yl|l1, and let n € RE,

® € N satisfy vy = (f(v1), f(x2), ..., f(rx)) and
P=MygeoeA_ ;. 4o PK(Ld oAy, LyeAy, ,....L;e AId,—;K) eTr, (3.116)
(cf. Definitions 2.2.1, 2.2.5, 2.2.9, 2.2.11, 2.2.20, 2.2.30, 3.1.16, 3.2.3, and 3.2.7). Then
sup,ep|(Re(®))(2) — f(2)] < 2L [sup,ep(mingeq o, .yl — 2ell1)] (3.117)
(cf. Definitions 2.1.6 and 2.2.3).

Proof of Proposition 5.2.12. Throughout this proof let F': R? — R satisfy for all z € R?
that

F(x) = maxgeqi2,..x3(f(tr) — Lllz — tel1)- (3.118)
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Observe that Corollary 3.2.2, (3.118), and the assumption that for all z,y € F it holds
that |f(z) — f(y)| < L||z — yl||; assure that

sup,cp|F () — f(z)] < 2L[super (minke{l,g ,,,,, K|z — ;k||1)} (3.119)

Moreover, note that Lemma 3.2.11 ensures that for all z € FE it holds that F(x) =
(Re(®))(x). Combining this and (3.119) establishes (3.117). The proof of Proposi-
tion 3.2.12 is thus complete. [

Exercise 3.2.2. Prove or disprove the following statement: There exists ® € N such
that Z(®) = 2, O(®) =1, P(P) < 20, and

sup |27 + Y7 — 2z — 2y + 2 — (R(D))(v)| <
v=(z,y)€[0,2]?

lw

. (3.120)

Exercise 3.2.3. Prove or disprove the following statement: For all n € {3,5,7,...} it
holds that [logy(n 4 1)] = [logy(n)].

3.2.4 Analysis of the approximation error
3.2.4.1 Covering number estimates

Definition 3.2.13 (Covering number). Let (E,0) be a metric space and let r € [0, 00].
Then we denote by CE)™ € NgU{oo} (we denote by CE" € NgU {00} ) the extended real
number given by

CEAT — min<{n € Ny: {HA CE: (”3/;' GSZ) g\(yifgﬁ;) )} } U {oo}). (3.121)

Exercise 3.2.4. Prove or disprove the following statement: For every metric space (X, d),
every Y C X, and every r € [0,00] it holds that CY-dlyxv)r < Cc(Xd)r,

Exercise 3.2.5. Prove or disprove the following statement: For every metric space (E,0)
it holds that CF9)> = 1.

Exercise 3.2.6. Prove or disprove the following statement: For every metric space (F,0)
and every r € [0, 00) with CE9" < oo it holds that E is bounded. (Note: A metric space
(E,9) is bounded if and only if there exists r € [0,00) such that it holds for all v,y € E
that 6(z,y) <r.)

Exercise 3.2.7. Prove or disprove the following statement: For every bounded metric
space (E,8) and every r € [0,00] it holds that CF)" < .

Lemma 3.2.14. Let d € N, a € R, b € (a,00), r € (0,00) and for every p € [1,00] let
dp: ([a,0]") x ([a,0]Y) — [0,00) satisfy for all x,y € [a,b]* that §,(z,y) = ||z —yll, (cf.
Definition 3.1.16). Then

(1) it holds for all p € [1,00) that

d 1 Ly > d(b*a)/Q
cllabl o) < ([MD < = 3.122
=AU S ey ey (3.122)

r

and
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(i) it holds that

1 > (-a)/
cllablh o) < (Th=a])¢ < = 3.123
— ("27‘—‘) ( 7a)d IT<(b_a)/2 ( )

(cf. Definitions 3.2.8 and 53.2.13).
Proof of Lemma 3.2.14. Throughout this proof let (M,)pep,00) € N satisfy for all p €
[1,00) that

M, =[] and o = [52], (3.124)

2r 2r

for every N € N, i € {1,2,...,N} let gn; € [a,b] be given by gn; = a + (i=/2)(b-a)/N
and for every p € [1,00] let A, C [a,b]* be given by A, = {gm,.1,9m,2, - -, I, m, }*
(cf. Definition 3.2.8). Observe that it holds for all N € N, i € {1,2,...,N}, = €
la + (i=D-a)/N gy ;] that

|z — gny| = a+ RO < g g (200 (g ZDGma)y b (3195)

In addition, note that it holds for all N € N, i € {1,2,..., N}, z € [gn,, a+i(b-2)/N] that

| — gl =2 — (a+ ) < g o8 (4 EROZD) _ boa - (3196)

Combining (3.125) and (3.126) implies for all N € N, ¢ € {1,2,...,N}, = € [a +
(i-1D(-a)/n, a + ib-a)/n] that |x — gny;| < ¢—a)/2n). This proves that for every N € N,
x € [a, b] there exists y € {gn1,9n2,--., gy N} such that

|z —y| < 552 (3.127)

This establishes that for every p € [1,00), © = (x1,%9,...,74) € [a,b]? there exists
y=(y1,Y2,...,Ya) € Ap such that

d & 4 pap N droma) _ dYr(b—a)ar
op(z,y) = llz —yll, = (lei—yilp) < <Zl —<2mp)P> =T, S 2drea)

=1

(3.128)
Furthermore, (3.127) shows that for every = (z1,3,...,74) € [a,b]¢ there exists y =
(Y1,Y2, -+, Ya) € Aso such that
_ o _ o b—a (b—a)2r
Ooo(,y) = |lz = Ylloo = z-e{rf,lf,‘.}id}m vil < gmt < Speay =7 (3.129)

Note that (3.128), (3.124), and the fact that Vo € [0,00): [2] < L11(x) + 2211 00)(2) =
Loy (rz) + 201 o0y (rx) yield that for all p € [1,00) it holds that

P (b—a d —a
clodtttnr < |4,| = (w,)" = ([2=2]) < (P‘“;r )
< (Ton (M52) + 2091, ) (452))
= 10 (%5 2) + (222) 1 ) (152)
)

(cf. Definition 3.2.13). This proves item (i). In addition, (3.129), (3.124), and the fact
that Vo € [0,00): [2] < L (rz) + 201, o) (r2) demonstrate that

clat® ) <A | = M) = ([52])! < T (52) + (52) ooy (554).  (3.131)

This implies item (ii). and thus completes the proof of Lemma 3.2.14. O]

IS

(3.130)
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3.2.4.2 Convergence rates for the approximation error

Lemma 3.2.15. Let d € N, L,a € R, b € (a,0), let f: [a,b]? — R satisfy for all x,y €
[a, b]d that | f(z) — f(y)| < Lllz — yll1, and let F = Ag f(atv))z,atv)f,....(at0)2) € R4 x R!
(cf. Definitions 2.2.20 and 3.1.16). Then

(i) it holds that Z(F) = d,
(i) it holds that O(F) =1,

(111) it holds that H(F) =0,
(i) it holds that P(F) =d+ 1,
(v) it holds that ||'T(F)|lc < sup,eiqpalf(z)], and
(vi) it holds that sup,c(, ya|(Re(F))(z) — f(z)] < W
(cf. Definitions 2.1.6, 2.2.1, 2.2.3, and 2.2.536).

Proof of Lemma 3.2.15. Note that the assumption that for all ,y € [a,b]? it holds that
|f(z) — f(y)| < L||z — yl||, assures that L > 0. Next observe that Lemma 2.2.21 assures
that for all z € R? it holds that

(R:(F))(x) = f((aer)/Q7 (atd)fa, ..., (a+b)/2). (3.132)

The fact that for all x € [a, b] it holds that |z — (a+b)/2| < (a+b)/2 and the assumption that
for all ,y € [a,b]? it holds that |f(z) — f(y)| < L||x — y||; hence ensure that for all
x = (11,T,...,74) € [a,b]? it holds that

(Re(F))(x) — f(x)| = |f (@402, (@302, . (@40))2) — f(z)]

< L|| (@+h)/, (@tb)fa ..., (atb) /2) —a|, (3.133)

d
— L Z|<a+b>/2 — ) < z —a) _ dbba)
=1 =1

This and the fact that |7 (F)||e = [f((@+0)/2, (@Fb)/2, ... (a40)/2)]| < sup,.cp, el f ()] com-
plete the proof of Lemma 3.2.15. O

Proposition 3.2.16. Let d € N, L,a € R, b € (a ), r € (0,94), let f: [a,b]? — R

and 8 [a,b]? x [a,b]¢ — R satisfy for all x,y € |a,b]? that |f( )— f(y)] < L||x—yl||1 and

§(z,y) = ||lx — yll1, and let K € N, 11,10,...,2x € [a,b]¢, y € RE, F € N satisfy K =
(

Ce b= gup, 1, e [Mingeqi . xy 6(2, )] < (b— )7“ U—(f( 1), f(x2), -5 fK)),
and

K
<

F = MK [ ] A*LIK,U [ PK (Ld [ ] AIuh*Fl?IL’d [ ] AId7*F27 NN ,Ld o AId,*xK) ® TK,d (3134)

(cf. Definitions 2.2.1, 2.2.5, 2.2.9, 2.2.11, 2.2.20, 2.2.30, 3.1.16, 3.2.3, 3.2.7, and 3.2.13).
Then

(i) it holds that Z(F) = d,
(i1) it holds that O(F) =1,
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(iii) it holds that H(F) < [dlogy(34)] + 1,
(iv) it holds that Dy (F) < 2d(34)*,

(v) it holds for all i € {2,3,...} that D;(F) < 3((3f)d211 1,

(vi) it holds that P(F) < 35(34)*'a2,
(vii) it holds that ||T(F)|le < max{l, L,]al, |b],2[sup,c(,palf ()|}, and
(viii) it holds that sup,ci, el (Re(F)) () — f(x)] < 2L(b —a)r
(cf. Definitions 2.1.6, 2.2.3, 2.2.56, and 3.2.8).

Proof of Proposition 3.2.16. Note that the assumption that for all ,y € [a,b]? it holds

that |f(z) — f(y)| < L||x — yl||1 assures that L > 0. Next observe that Lemma 3.2.11,
(3.134), and Proposition 3.2.12 demonstrate that

(I) it holds that Z(F) = d,
(IT) it holds that O(F) =

)
)
(III) it holds that H(F) = [logy(K)] + 1,
(IV) it holds that Dy (F) = 2dK,

(V) it holds for all ¢ € {2,3,...} that D;(F) < 3[55;],
)

(VI) it holds that ||7(F)||ew < max{l,L,maxke{LQ ..... K}H;k|]oo,2[maxk€{1,2 77777 K}]f(;k)\]},
and

(VII) it holds that supxe[a’b]d|(Rt(F))(:c) — f(z)| < 2L [supxe[a,b]d (minke{l,g 77777 K} 5(1’,1%))]

(cf. Definitions 2.1.6, 2.2.3, 2.2.36, and 3.2.8). Note that items (I) and (II) establish items

(i) and (ii). Next observe that item (i) in Lemma 3.2.14 and the fact that & > 2 imply
that

d
K =clenoer < ([ma]) = (4 < G = @) 61y
Combining this with item (III) assures that
H(F) = [logy(K)] + 1< [logy(34)") ] + 1= [d1ogy ()] + 1. (3.136)

This establishes item (iii). Moreover, note that (3.135) and item (IV) imply that
Dy (F) = 2dK < 2d(3)". (3.137)

This establishes item (iv). In addition, observe that item (V) and (3.135) establish
item (v). Next note that item (III) ensures that for all i € NN (1, H(F)] it holds that

K K _ K K _ K _1
2i—1 2 2H(F)—1 7 9ofloga(K)] 2 ologo (K)+1 ™ 2K — 2° (3138)
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Item (V) and (3.135) hence show that for all i € NN (1, H(F)] it holds that

D;(F) < 3[5:] < 35 < (3)7.4,. (3.139)

21
Furthermore, note that the fact that for all z € [a, b]? it holds that ||x||. < max{]|al,|b|}
and item (VI) imply that
[T (F)[loo < max{l, L, maxye(12,.,x}[2xllos 2[maxpeqi 2 ey [ f(xx)[]}
< max{l, L, |a|a |b|’ Q[Supxe[a,b]d|f('r>|]}'

This establishes item (vii). Moreover, observe that the assumption that for all = € [a, b]
it holds that mingeqi0,.. .k} 6(z,1x) < (b — a)r and item (VII) demonstrate that

(3.140)

Supxe[a,b}dKRt(F))(l') - f(l’)‘ <2L [Supze[a,b]d (mink€{1,2 ~~~~~ K} 5<x7;k))j|

< 2L(b—a)r. (3:141)

This establishes item (viii). It thus remains to prove item (vi). For this note that items (I)
and (II), (3.137), and (3.139) assure that

L(F)
_ Z D;(F)(D;_1(F) + 1)

< 2d(3) " (d+1) + (2)3(2d(3) + 1) (3.142)
L(F)—1
+ r 2% 73+ 1 _7' 2£(1§)—3 + 1.
1=3

Next note that the fact that 3—d > 3 ensures that

2d(3) " (d+1) + (39)*3(2d(39)" + 1) + (39) b + 1
< (3)*"(2d(d + 1) + 3(2d + 1) + 525 + 1) (3.143)
< (34 ) d2(4+9+12—|—1)_26(3d) 402,

Moreover, observe that the fact that i—‘j > 3 implies that

L£(F)-1 L£(F)-1
> (@) (@)D <G Y e+
=3 =3
@ty [ + 5]
4r 22— 21—
— (3.144)
2d£( )—4 ‘
= () 2047 + 3279
=0

< ()" G (=) + (=) =9(3)™

Combining this, (3.142), and (3.143) demonstrates that
P(F) < 26(34)*'q? 4+ 9(34)*" < 35(34)* g2, (3.145)

This establishes item (vi). The proof of Proposition 3.2.16 is thus complete. O]
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Proposition 3.2.17. Letd € N, L,a € R, b € (a,00), 7 € (0,00) and let f: [a,b]? — R

satisfy for all x,y € [a,b]? that |f(x) — f(y)| < L||lz — y|ly (c¢f. Definition 3.1.16). Then
there exists F € N such that

(i) it holds that Z(F) = d,

(i1) it holds that O(F) =1,
(iii) it holds that H(F) < ([dlog,(32)] + 1)L, (1),
(iv) it holds that Dy (F) < 2d(32) "1 g ) () + Ljgjace) (1),

(v) it holds for all i € {2,3,...} that D;(F) < 3[(34)" L],

2i—1

(vi) it holds that P(F) < 35(3)* @1 (0.4 (r) + (d + 1)L gs e (r),

(vii) it holds that || T (F)||e < max{1, L, [al, ], 2[sup,c(q 44| f(7)]]}, and
(viii) it holds that sup,e i, el (Re(F))(x) — f(x)] < 2L(b —a)r
(cf. Definitions 2.1.6, 2.2.1, 2.2.5, 2.2.56, and 3.2.8).

Proof of Proposition 3.2.17. Throughout this proof assume w.l.o.g. that r < d/4 (cf.
Lemma 3.2.15), let 0 : [a, b]¢x [a, b]? — R satisfy for all z, y € [a, b]? that §(z,y) = |lz—y|1,
and let K € NU {oo} satisty K = C([*8"9).0~a)r  Note that item (i) in Lemma 3.2.14
assures that K < co. This and (3.121) ensure that there exist t1,1s,...,Ix € [a,b]? such
that sup,egpa [mingeqio,.. 3 0(z, )] < (b—a)r. Combining this with Proposition 3.2.16
establishes items (i)—(viii). The proof of Proposition 3.2.17 is thus complete. O

Proposition 3.2.18. Letd € N, L,a € R, b € (a,00), € € (0,1] and let f: [a,b]? — R

satisfy for all z,y € [a,b]? that |f(x) — f(y)| < L||lz — y|li (c¢f. Definition 3.1.16). Then
there exists F € N such that

(i) it holds that Z(F) = d,

(i1) it holds that O(F) =1,
(i11) it holds that H(F) < d(max{logQ(MQb_a)),O} +logy(e7h)) + 2,
(iv) it holds that Dy (F) < e~4d(3d max{L(b — a),1})4,

(v) it holds for all i € {2,3,...} that D;(F) < 5*d3((3dL(§—i_a))d +1),

(vi) it holds that P(F) < e~219(3d max{L(b — a),1})*d?,

(vii) it holds that || T (F)||o < max{1, L, [al, [b], 2[sup,e(q 44| f(7)[]}, and
(viii) it holds that sup,e, pal(Re(F))(7) — f(2)] < ¢
(cf. Definitions 2.1.6, 2.2.1, 2.2.3, and 2.2.56).

Proof of Proposition 3.2.18. Throughout this proof assume w.l.o.g. that L # 0. Observe
that the assumption that for all x,y € [a,b]? it holds that |f(x) — f(y)| < L|lz — y||; and
the assumption that L # 0 ensure that L > 0. Note that Proposition 3.2.17 shows that
there exists F € N which satisfies that
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(I) it holds that Z(F) = d,
(IT) it holds that O(F) =

?

(ITT) it holds that H(F) < ((dlogz(wﬂ + 1)]1(0=d/4)(m)’

(IV) it holds that D, (F) < 2d(%@)d1(07d/4)(m) + Lioo0) (3705727 )

(V) it holds for all i € {2,3,...} that I;(F) < 3[(2Ll=)? L]

2e 2t
(VI) it holds that P( ) < 35(3dL (b=a ) d2]l(0 d/4) ( ( )) + (d + ]->]l[d/4,oo)(2L(Z,a))7
(VIT) it holds that |7 (F)|lc < max{1,L,|al,|b|, 2[supx€[a7b]d|f(x)|]}, and
(VII) it holds that sup,c, el (Re(F))(z) — f(z)| < ¢

(cf. Definitions 2.1.6, 2.2.1, 2.2.3, 2.2.36, and 3.2.8). Moreover, note that item (III)
assures that

H(F) < (d(logy ((*F=) +logy (™) +2) 10,0 (35—

e (3.146)
< d(max{logz(—a)) 0} +logy(e™")) + 2.
In addition, observe that item (IV) implies that
max —a), d £ g
Dy (F) < a3 1) (s5=5) + Lieaoo) (310)
(3.147)
< e7%d(3dmax{L(b—a),1})%.
Furthermore, note that item (V) ensures that for all ¢ € {2,3,...} it holds that
D (F) < 3((2EL=a))? L. 4 1) < g-d3(Ldhloal® | ), (3.148)
Moreover, observe that item (VI) ensures that
P(F) < 9(3mosdLio=a.1} 1}) d* Lo, (3z5=a7) + (A + Do) (375=07) (3.149)
< e *9(3d max{L(b — a), 1})2d

Combining this, (3.146), (3.147), (3.148), and items (I), (II), (VII), and (VIII) establishes
items (i), (ii), (iii), (iv), (v), (vi), (vii), and (viii). The proof of Proposition 3.2.18 is thus
complete. O

Corollary 3.2.19. Letd € N, L,a € R, b € (a,00) and let f: [a,b]? — R satisfy for all
x,y € [a,b]? that | f(z)— f(y)| < L||w—yl|l1 (cf. Definition 5.1.16). Then there exist C € R
and F = (F.).c01): (0,1] = N such that for alle € (0,1] it holds that R.(F.) € C(R% R),
SUP,epapal (Re(Fo))(z) — f(2)] <€, and P(F.) < Ce?* (cf. Definitions 2.1.6, 2.2.1, and
2.2.3).

Proof of Corollary 3.2.19. Throughout this proof let C' = 9(3d max{L(b — a), 1})2d

Note that items (i), (ii), (vi), and (viii) in Proposition 3.2.18 imply that for every ¢ € (0, 1]
there exists F. € N such that Re(F.) € C(R%R), sup,c(,yal (Re(Fe))(z) — f(x)] < €
and P(F.) < Ce~22. The proof of Corollary 3.2.19 is thus complete. O
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3.2.5 Implicit approximations through ANNs

3.2.5.1 Embedding ANNSs in larger architectures

Lemma 3.2.20. Let a € C(R,R), L € N, Iy, ly,...,l1,lo,l,..., I, € N satisfy for all
ke {l1,2,...,L} that ly = ly, I, =11, and ; > I, for every k € {1,2,...,L} let W =
(W) i) ett 2 didx (12,1} € RN A= (Wi i) jyeti 2, i x 1,2, by} € RV,
By = (Brji)ic{1,2,..1:} € R, B, = (Bri)icpr 2,y € R"%, assume for allk € {1,2,...,L},
ie{1,2,...,lk}, 7 € NN(0,lk_1] that Wi, ; = Wi, and By; = By, and assume for all
ke{l,2,....L}y,ie{1,2,....1t}, € NN (lh_1, l1 + 1) that #5;; = 0. Then

Rao((Wh, Br), (Wa, Ba), ..., (Wi, Br))) = Ra((#4, B1), (W, Bs), .. "(%’%?3,)350)
(cf. Definition 2.2.3). |

Proof of Lemma 5.2.20. Throughout this proof let m,: R* — R% k € {0,1,...,L},
satisfy for all k € {0,1,..., L}, x = (z1, 29, ...,z ) that

i (z) = (x1, 22, ..., 21,). (3.151)
Observe that the assumption that [y = [y and [;, = [;, shows that
Ro((Wh, By), (Wa, By), ..., (W, Br))) € C(R°,R'™) (3.152)

(cf. Definition 2.2.3). Furthermore, note that the assumption that for all k € {1,2,...,1},
ie{1,2,...,0}, j € NN (lg—1,lr—1 + 1) it holds that #;,; = 0 ensures that for all
ke{1,2,...,L}, x = (z1,29,...,2_,) € R¥*1 it holds that

Me—1 MMe—1 k-1
Wk(%$+=@k)=< Z%uﬂfz + B Z%zzxz + Bras - Z%z“% —l-c%’k,zk)

Mle—1 —lk 1 _lk 1
:< Z%ul‘z + By 1, Z%2zxz + Broy .- Z%zkﬂ?z +<@k,lk>-

"~ (3.153)

Combining this with the assumption that for all £ € {1,2,..., L}, i € {1,2,...,1},
Jj € NN (0,l;_1] that #,; ; = Wy, ,; and HBy; = By, shows that for all k € {1,2,..., L},
= (z1,29,...,2,_,) € R%1 it holds that

lk—1 lg—1 le—1
m(Wx + Br) = ( [Z Wi | + B, Z Whoiri| + Bra, ..., [Z Wi | + Bk,lk>
=1 =1 =1
= Wkﬂk,1($) + By
(3.154)
Hence, we obtain that for all zyp € R, z; € R", ... 2, ; € Rt k € NN (0,L) with
Vm e NN (0,L): xpm =My, (#mTm_1 + Brm) it holds that
Wk(xk) = Dﬁa,lk (Wk(%flfk_1 + @k)) = ?)ﬁa,lk(ka_l(xk_l) + Bk) (3155)

DISSEMINATION PROHIBITED. JULY 29, 2021 71



Chapter 3.  Low-dimensional neural network approximation results

(cf. Definition 2.1.4). Induction, the assumption that Iy = [y and I, = [;, and (3.154)
therefore prove that for all zp € R% z; € R", ..., 2;_; € R“1 with Vk € NN
(0,L): xp = My, (Wwk—1 + Pr) it holds that

(Ra((Wh, By), (Wa, Ba), ..., (W, Br)))) (z0) = (Ra (W1, By), (W2, Bs), ..., (Wy, By)))) (mo(x))
= Wyrp—1(xp—1) + By
= WL(WLZL’L_l -+ '@L) =Wrxr_1 + By,

= (Ra((#1. 1), (W, Bo), ..., (W1, B1)))) (x0)
(3.156)

(cf. Definition 2.2.3). The proof of Lemma 3.2.20 is thus complete. O

Lemma 3.2.21. Leta € C(R,R), L € N, lp,ly,..., 15, lo, b, ..., I € N satisfy for all k €
{1,2,..., L} that ly = lo, [y =1, and Iy, > I and let & € N satisfy D(®) = (lo, l1,...,1L)
(cf. Definition 2.2.1). Then there exists V € N such that

D(¥) = (I, b, ), (T(W)le = [T (@)oo and  Ra(¥) = Ra(®)
(3.157)
(cf. Definitions 2.2.3, 2.2.56, and 3.1.16).

Proof of Lemma 3.2.21. Throughout this proof let By = (B;)ic{1,2,.0,} € R, k €
{17 2,... >L}7 and Wy = (Wk,i,j)(i,j)e{l,Z ,,,,, U }x{1,2,0lk—1} € leXlk717 ke {L 27 s 7L}7 sat-
isfy ® = (W, B1), (Wa, Bs), ..., (Wi, Br)) and let Wi = (Wi ) ij)ef1.2.. by x{1.2. 1} €
RU*bh-1 ke {1,2,...,L}, and By = (Bri)icq12..,) € R*, k€ {1,2,..., L}, satisfy for
all ke {1,2,.... LY, ie{1,2,... L}, je€{1,2,... [} that

Wiii 0@ <U)N(G <l By, 1<
W = kyisj (Z' < ly) (J‘ < lj—1) and By, = k, Z k (3.158)
0 3(2>lk)\/(j>lk,1) 0 21> .

Note that (2.51) ensures that ((204,B1), (Ws,Bs),..., (W, B)) € (XiL:1(R[iX[i—1 %
R"%)) C N and

D(((W1,B1), (Wa, Bs), ..., (W, Br))) = (lo, b, ..., [1). (3.159)
Furthermore, observe that Lemma 2.2.38 and (3.158) show that

17 (201, B1), (W, Bo), - ., (W, B1))) o = 1T ()]l (3.160)
(cf. Definitions 2.2.36 and 3.1.16). In addition, note that Lemma 3.2.20 establishes that

Ra(®) = Ro((Wh, By), Wa, B), ..., (W, Br))) = Ra(((21,B1), (22, Bs), ..., (W, BL)))
(3.161)
(cf. Definition 2.2.3). The proof of Lemma 3.2.21 is thus complete. O

Lemma 3.2.22. Let L, £ e N, lo, ll, ce ,ZL, [0, [1, ceey [2 € N, (I)l = ((Wl, Bl), (WQ, Bz),
(Wi, Br)) € (X (Rt x RI)) &y = (Wi, By), (W, Ba), ..., (We, Be)) €
(Yo (R%X-1 x RI¥)). Then

IT(®1 0 ©2)[loc < max{[|T(21)]loc, [T (22)lloc,

| T (W20, Wi B + B1)))||.}
(3 162)
(cf. Definitions 2.2.5, 2.2.56, and 3.1.16).
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Proof of Lemma 3.2.22. Note that (2.59) and Lemma 2.2.38 establish (3.162). The proof
of Lemma 3.2.22 is thus complete. ]

Lemma 3.2.23. Let d,L € N, & € N satisfy L > L(P) and d = O(P) (cf. Defini-
tion 2.2.1). Then
17 (EL,3,(®)]loc < max{L, |7(®)]l} (3.163)

(cf. Definitions 2.2.18, 2.2.56, 3.1.10, and 16.2.1).

Proof of Lemma 3.2.25. Throughout this proof assume w.l.o.g. that L > £(®) and let
lo, ll, e 7lL7E(<I>)+1 e N Satisfy (lo, ll, ce ,lL,ﬁ(q))Jrl) = (d, 2d, Zd, ce ,Zd, d) Note that
Lemma 2.2.19 ensures that D(J4) = (d,2d,d) € N? (cf. Definition 2.2.18). Item (i) in
Lemma 16.2.2 hence establishes that

E((jd)o(lﬁll(@))) — L—L((I))—i—l and D((jd)o(Lfﬁ(@))) — (ZO’ l17 o lL—E(fb)-i-l)( c NL)E(q))JrQ
3.164

(cf. Definition 2.2.10). This shows that there exist W, € RIx*b—1 k€ {1,2,...,L —
L(®)+ 1}, and By € R* k€ {1,2,...,L — L(®) + 1}, which satisfy

(30) 5@ = (W, By), (Wa, Ba), ..., (Wi @)1, Br—c(@)+1))- (3.165)

Next observe that (2.111), (2.136), (2.137), (2.59), and (2.109) demonstrate that

1 0 0
-1 0 0

o 1 - 0

Wl _ 0 -1 --- 0 c R(2d)><d
8 8 e 11 (3.166)
1 -1 0 0 0 O
o 01 -1 .--- 0 O
and W rc@oyr=1. . . . | oL | e REED,

o 0 o0 o0 --- 1 -1

Moreover, note that (2.111), (2.136), (2.137), (2.59), and (2.109) prove that for all k €
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NN (1,L — £(®) + 1) it holds that

1 0 0
_01 (1) 8 1 =10 0 0 0

Wy=|0 -1 oY 0 ?_1 00
00 R L -1
O 0 --- -1 CRAX (2d)

) e ’ (3.167)
1 -1 0 0 0 0
-1 1 0 0 0 0
0 0 1 -1 0 0
o o -1 1 0 0 |cpedxe)

o 0 0 0 - 1 -1
o 0 0 0 --- —1 1

In addition, observe that (2.136), (2.137), (2.111), (2.109), and (2.59) show that for all
ke NNJ[1,L— L(P)] it holds that

B,=0€R* and By g@)41 =0€R% (3.168)
Combining this, (3.166), and (3.167) establishes that
| T ((Fa)EEE) || =1 (3.169)

(cf. Definitions 2.2.36 and 3.1.16). Furthermore, note that (3.166) demonstrates that for
all k e N, 0 = (wi7j)(i7j)e{172 77777 dyx{1,2,...k} € R%** it holds that

W11 W12 - W1,k
—Wy1 —Wi2 - —Wigk
Wa,1 Wa2 - W2,k
Wi = | w21 —wa2 - —way | € REDXK (3.170)
Wq,1 Wqo - W,k
—Wq1 —Wqz2 - —Wk

Next observe that (3.166) and (3.168) show that for all B = (b, bs, ..., bs) € R? it holds
that

1 0 0 by
-1 0 0 ; —by
0o 1 - 0 bl by
w®s+B=|0 -1-- 0 =] b | er (3.171)
0 0 1 ba by
0 0 -1 —by
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Combining this with (3.170) proves that for all k € N, 20 € R™* 98 € R? it holds that
[T (7220, W8 + B))) ||, = (| T ((20,8))) || .. (3.172)
This, Lemma 3.2.22, and (3.169) establish that
T(E o = | T(((T0)* D) 0 @
17 (ELau(®@))] || (( 0 )o@l (3.173)
< max{{[| T ((32)* ) || 1T (@ )Hoo} = max{L, [|7(®)[|oc }
(cf. Definition 16.2.1). The proof of Lemma 3.2.23 is thus complete. O

Lemma 3.2.24. Let L,£ € N, lg,l1,...,l1, 1o, l1,...,le € N satisfy for alli € NN [0, L)
that £ > L lg = lg, lg =11, and l; > 1;, assume for alli € NN(L—1,£) that [; > 2, and
let ® € N satisfy D(®) = (lo, l1,...,1l5) (cf. Definition 2.2.1). Then there exists ¥ € N
such that

D) = (o, b, L), [TVl <max{L,[|T(®)[lsc},  and  Re(¥)=Re(P)
(3.174)
(cf. Definitions 2.1.6, 2.2.3, 2.2.56, and 3.1.16).

Proof of Lemma 5.2.2/. Throughout this proof let = € N satisfy = = g5, (P) (cf.
Definitions 2.2.18 and 16.2.1). Note that item (i) in Lemma 2.2.19 demonstrates that
D(31,) = (I1,2lz,1;) € N3, Combining this with Lemma 16.2.4 shows that D(Z) € N+1

and
lo,ly,...,1 L8 =1L
D(E) = (o, iy s ) < (3.175)
(lo,ll,...,lLfl,QlL,QlL,...,QZL,ZL) 2> L.

Moreover, observe that Lemma 3.2.23 (applied with d <~ I, L ~ £, & v & in the
notation of Lemma 3.2.23) establishes that

[T (E) oo < max{l, [[T(®)[oc} (3.176)

(cf. Definitions 2.2.36 and 3.1.16). In addition, note that item (iii) in Lemma 2.2.19
ensures that for all € R' it holds that

(Re(31,))(x) == (3.177)
(cf. Definitions 2.1.6 and 2.2.3). This and item (ii) in Lemma 16.2.3 prove that
R(Z) = Ro(®). (3.178)

In the next step, we observe that (3.175), the assumption that for all 7 € [0, L) it holds
that [p = ly, e = Iy, and [; < [;, the assumption that for all i € NN (L — 1, £) it holds
that [; > 2[;, and Lemma 3.2.21 (applied with a v~ v, L ~ £, (lo,l1,...,l.) v D(2),
(lo, Ly ooy L) (lo, by, ...y Le), @ o E in the notation of Lemma 3.2.21) ensure that there
exists ¥ € N such that

D) = (ol le), [T () = ITE)lees and  Re(¥) = Re(Z). (3.179)

Combining this with (3.176) and (3.178) establishes (3.174). The proof of Lemma 3.2.24
is thus complete. O
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Lemma 3.2.25. Letu € [—00,00), v € (u,00], L, £,d,0 €N, 0 € R, Iy, ly,... 15, Lo, 11, ...

N satisfy for all i € NN [0,L) that d > Zle Li(lioy +1),0 > Zle L+ 1), £>L,
lo = lo, le =z, and [; > 1; and assume for all i € NN (L —1,£) that l; > 2. Then
there exists ¥ € R® such that

[9]]oc < max{L, |0}  and ARt = gflod ) (3.180)
(cf. Definitions 2.1.27 and 3.1.16).

Proof of Lemma 3.2.25. Throughout this proof let ny, 7, ...,n4s € R satisfy

0 = (77177727"'777(1) (3181)

and let @ € (X[, Rixli-1 x Rl) satisfy

T(®) = (n1,m2, - - s (@) (3.182)

(cf. Definition 2.2.36). Note that Lemma 3.2.24 establishes that there exists ¥ € N which
satisfies

D(W) = (I, ;- L), ([ T(V)]lee < max{L,[|T(®)[},  and  Re(¥) = R(D)
(3.183)
(cf. Definitions 2.1.6, 2.2.1, 2.2.3, and 3.1.16). Next let ¥ = (91,95, ...,%) € R? satisfy

Note that (3.181), (3.182), (3.183), and (3.184) show that

[Plloe = IT(¥)lloc < max{L, [[T(P)loc} < max{l,[|0]|o}- (3.185)

Next observe that Corollary 2.2.40 and (3.182) establish that for all x € R" it holds that
(AL ) @) = (AT (@) = (Re(@)) (). (3.186)

In addition, observe that Corollary 2.2.40, (3.183), and (3.184) prove that for all z € R
it holds that
(A ollotrte)y () = (TP (2) = (Ro(0)) (). (3.187)

—00,00

Combining this and (3.186) with (3.183) and the assumption that [y = [y and [¢ = [,
demonstrates that
Ly Ollodd) 0 (lotte) (3.188)

— 00,00 — 00,00

Hence, we obtain that

0,(lol1,s-5l 9, (lo, 115005 [
</’/67(10,11 ..... L) — Q:u,v,lL o N (lo,la L) — Q:u,v,[g o N (Io,fy,...le) = %1791;([0’[1’ le) (3189)

u,v —00,00 —00,00

(cf. Definition 2.1.12). This and (3.185) establish (3.180). The proof of Lemma 3.2.25 is
thus complete. O]
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3.2.5.2 Implicit approximation through ANNs with variable architectures

Corollary 3.2.26. Let d, K,d,L € N, 1 = (lp,1;,...,1) € N\ [ € [0, 00) satisfy for
alli€ {2,3,...,L—1} that L > [logy,(K)] +2,lo =d, I, =1, 1; > 2dK, 1; > 3[55],
and d > ZZI;I L,(L_1+ 1), let ECR? be a set, let t1,ta,...,8x € E, and let f: E — R

satisfy for all x,y € E that |f(z) — f(y)| < L||lx — y||1 (c¢f. Definitions 3.1.16 and 3.2.8).
Then there exists § € RY such that

0|0 < max{l, L, maxpeq 2, i} l[Tk]loos 2maxpeq1 2. iy | f(2x)]} (3.190)
and
supzeE|f(a:) - Jl/_e(;lo,oo(a:)| < 2L[supz€E (infke{m ,,,,, rlle — ;kHlﬂ (3.191)
(cf. Definition 2.1.27).

Proof of Corollary 5.2.26. Throughout this proof let let n € RE & € N satisfy n =
(.f(z:l)v f(IZ)a s 7f(xK)) and

¢ = MK (] A*LIK,U [ J PK (Ld ® A1d7,n,ﬂ4d ® A1d7,x2, ce ,Ld [ ] AIdﬁZZK) [ ] TK,d (3192)

(cf. Definitions 2.2.1, 2.2.5, 2.2.9, 2.2.11, 2.2.20, 2.2.30, 3.2.3, and 3.2.7). Observe that
Lemma 3.2.11 and Proposition 3.2.12 establish that

(I) it holds that £(®) = [logy(K)] + 2,
(IT) it holds that Z(®) = d,
(ITT) it holds that O(®) = 1,
(IV) it holds that Dy (®) = 2dK,
(V) it holds for all i € {2,3,..., £(®) — 1} that D;(®) < 3[55+],
)

(VI) it holds that [[7(®)||cc < max{l, L, maxpeqi2,  x}l|tklloo, 2 maxpeqi o, i3 f(Tr)]}s
and

(VII) it holds that sup,ep|f(z) — (Re(®))(2)] < 2L[sup,ep (infreqio,. k3l — will1)]

(cf. Definitions 2.1.6, 2.2.3, and 2.2.36). In addition note that the fact that L >
[logy(K)] 42 = L(®), the fact that 1y = d = Dy(P), the fact that 1; > 2dK = D (P), the
fact that for all i € {2,3,...,£(®) — 1} it holds that 1; > 3[555] > D;(®), the fact that
for all i € {L£(®), L(P) +1,...,L — 1} it holds that 1, > 3[555] > 2 = 2D, (®), and
the fact that l, = 1 = Dg(g)(P) with Lemma 3.2.25 establishes that there exists § € RY
which satisfies that

10]loo < max{1, [T (®)|o}  and A% ol) — T (9] (3.193)

—00,00

This and item (VI) ensure that
0] < max{l, L, maxpeq2,. i} |8kl oo 2maXpeqi o, k3| f(x)|} (3.194)
Moreover, note that (3.193), Corollary 2.2.40, and item (VII) assure that
sup,ep (1) = ALK ()] = sup,ep| () — AL (@)

= sup,ep|f(2) — (Re(®))(2)| (3.195)
< QL[SUPzeE (infk€{1,2 ..... K}Hx - ZﬂkHlﬂ
(cf. Definition 2.1.27). The proof of Corollary 3.2.26 is thus complete. O]
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Corollary 3.2.27. Let d, K,d,L € N, 1 = (lp,1;,...,1p) € NV [ € [0,00), u €
[—00,00), v € (u,00] satisfy for all i € {2,3,...,L — 1} that L > [log, K|+ 2, 1 = d,
I, = 1, L > 2dK, |; > 3[55], and d > 7 L1 + 1), let E C R? be a set, let
I, ...tk € E, and let f: E — ([u,v]NR) satisfy for all x,y € E that |f(z) — f(y)] <
L||z — y||1 (cf. Definitions 3.1.16 and 3.2.8). Then there exists 6 € RY such that

19l < max{l, L, maxkeqrz, . iy l|oklloc: 2maxpe o, iy | fer)]} (3.196)

and
super{f(x) — %?él(x)‘ < 2L[super (infke{m _____ K|z — ;kHl)}. (3.197)
(cf. Definition 2.1.27).

Proof of Corollary 3.2.27. Observe that Corollary 3.2.26 implies that there exists # € R4
such that

[0llcc < max{1, L, maxpeqia.. .k} l[Tklloos 2Mmaxpeqi o x| f(2r)]} (3.198)
and
super‘f(x) - ‘/Kec;l,oo(x)‘ < QL[SUPer (infke{l,Z ..... K}||$ - Fk”l” (3.199)
Moreover, observe that the assumption that f(E) C [u,v] shows that for all x € F it
holds that f(x) = c,,(f(z)) (cf. Definitions 2.1.11 and 2.1.27). The fact that for all
x,y € R it holds that |c,,(z) — cu(y)| < |z —y| and (3.199) hence establish that
SqueE’f(I) - ‘/Vu?{)l(x)‘ = Superlcu,v(f(x)) - cu,v(meél,oo(x)”
< super‘f(x) - meé:),oo(x)’ <2L [SuprE (infk6{1,2 ..... K}Hx - Ik”l)} :

The proof of Corollary 3.2.27 is thus complete. O

(3.200)

3.2.5.3 OLD Convergence rates for the approximation error

Lemma 3.2.28. Let d,d,L € N, Lya € R, b € (a,00), u € [—00,00), v € (u,0],
1= (Ip,L,...,1) € NV gssume 1y = d, I, = 1, and d > Z}:l L(L_1 + 1), and let
[ a,b]* = ([u,v] NR) satisfy for all z,y € [a,b]? that |f(x) — f(y)| < Lljx — yll1 (cf.
Definition 5.1.16). Then there exists ¥ € RY such that ||0||s < sup,c(,palf(2)] and

< dL(b—a)

SUP e el N (7) = f(2)] € = (3.201)

(cf. Definition 2.1.27).

Proof of Lemma 3.2.28. Throughout this prooflet 0 € N be given by 0 = Z}:l 1;(1;i-141),
let m = (my, my,...,my) € [a,b]?satisfy foralli € {1,2,...,d} that m; = (a+b)/2, and let
9 = (01,02,...,9q) € R satisfy for alli € {1,2,...,d}\ {0} that 9, = 0 and ¥, = f(m).
Observe that the assumption that Iy, = 1 and the fact that Vi € {1,2,...,0—1}: 9, =0
show that for all x = (z1,29,...,21,_,) € R-1 it holds that
L-1 ML—1
‘Afjgijl 11(1’_1+1)(x) - Z—Zjl 19[2%:711 li(1i1+1)]+ixi} * 0[2}';11 li(li71+1)]+lL—1+1
M1

== ﬁ[zilu(liﬁn](1L1i+1>f’5i} s gy (3:202)

M1
= 190(1L1i+1)xi:| +v =1 = f(m)
=1

)
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(cf. Definition 2.1.1). Combining this with the fact that f(m) € [u,v] ensures that for
all z € R't-1 it holds that

( uvlLoAﬂzz v il 1+1))(l‘) :( uvlo“évgz:Z o lilli- 1+1))(l’) :Cu,v(f(m>)

I, ln—1 Llp 1

= max{u, min{f(m), v}} = max{u, f(m)} = f(m)
(3.203)

(cf. Definitions 2.1.11 and 2.1.12). This proves for all z € R? that
HMw) = f(m). (3.204)

In addition, note that it holds for all x € [a,m;], r € [my,b] that |m; — 2| =m; —z =
(@+b)fo—p < (a+b)/o—q = (b=a)/3 and |m;—1| = r—m; = p—(@+b)/a < h—(a+b)/2 = (b=a)/2. The
assumption that Va,y € [a,b]: |f(z)— f(y)| < L||x—y]|; and (3.204) hence demonstrate
that for all x = (21,22, ...,24) € [a,b]? it holds that

d
| A (@) = f(2)] = |f(m) = f(2)] < Lllm — ], = L;Imi —

(b —a) dL(b —a)
5 :

(3.205)

—LZ|m1—xz| <Z

This and the fact that |||l = maxieqio, . ay[¥il = [f(m)] < sup,e(, el f(2)] complete
the proof of Lemma 3.2.28. O]

Proposition 3.2.29. Let d,d,L € N, A € (0,00), L,a € R, b € (a,0), u € [—00,0),
v e (u,00], 1= (o, Ly,.... 1) € N“ assume L > 1+ ([logy(4/2a) ] + 1)1 (51,00 (A), 1o =
d, I} > Al (gaoy(A), I =1, and d > Z?:l 1;(1;-14+1), assume for alli € {2,3,...,L—1}
that 1; > 3[A/@'a)|1(ga,00)(A), and let f: [a,b]" = ([u,v] NR) satisfy for all z,y € [a,b]"
that |f(x) — f(y)| < L||lx — yll1 (¢f Definitions 3.1.16 and 3.2.8). Then there exists
¥ € RY such that |9 s < max{1, L, |al, 6], 2[sup,e(q el f(2)]]} and

3dL(b—a
Sup:ve[a,b]d|%i;l(x) - f<$)| < % (3206)

(cf. Definition 2.1.27).

Proof of Proposition 3.2.29. Throughout this proof assume w.l.o.g. that A > 6% (cf.

Lemma 3.2.28), let 3 € Z satisfy 3 = L(%)l/dj. Note that the fact that for all k£ € N it
holds that 2k < 2(2%~1) = 2% implies that 3% = 6?/2¢ < 4/(24). Therefore, we obtain that

2<2(A) < (2)-1<3, (3.207)

In the next step let r € (0, 00) satisfy r = d(b—a)/23, let §: [a, b]¢ x [a, b]¢ — R satisfy for all
z,y € [a,b)? that 6(z,y) = ||z — y|1, and let K € NU{oo} satisfy K = max(2, C([®t"9)r)
(cf. Definition 3.2.13). Observe that equation (3.207) and item (i) in Lemma 3.2.14
establish that

K = max{2, ¢ty < max{ ([ U= aw) }:maX{Q,(BDd} =37 < o0, (3.208)

This implies that
4 <2dK <2d3% < 24 = A (3.209)
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Combining this and the fact that L > 1+ ([logy(4/2d)) | +1)1 a5\ (A) = [logy(4/2a)) ] +2
hence proves that [log,(K)] < [logy(4/2a))| < L — 2. This, (3.209), the assumption
that 1} > Al(gin)(A) = A, and the assumption that Vi € {2,3,...,.L —1}:1; >
3[4/ @ia) |1 (gi,00)(A) = 3[4/2'a)] imply that for all i € {2,3,...,L — 1} it holds that
L > [log,(K)]+2, L1 >A>2dK, and L >3[:4]>3[5]. (3.210)
Let 11,12,...,Ix € [a,b]? satisfy
SUD e [q,b]d [infke{m _____ K} 5(1’7%)] <. (3.211)

Observe that (3.210), the assumptions that Iy = d, I, = 1, d > 3. 1;(l;i_; + 1), and
Va,y € [a,b]¢: |f(x) — f(y)| < L||z — yll1, and Corollary 3.2.27 show that there exists
¥ € RY such that

||19||oo < max{l,L,mane{Lg ,,,,, K}||Ik||oo, 2man€{1,2 ..... K}|f(?k)|} (3-212)
and

Supxe[a,b]d|‘/1(ui;1(x) - f(CL’)| <2L [Supme[a,b]d (inka{laQ ----- K}Hx - gk“l)] (3 213)
=2L [Supxe[&b]d (il’lfke{l,? ..... K} (S(IE, gk))} :

Note that (3.212) implies that
||19||oo < max{l, L, |(I|, |b|a 2supx€[a,b]d|f(x)|}' (3214)

Moreover, note that the fact that for all k € N it holds that 2k < 2(271) = 2k (3.213),
(3.207), and (3.211) demonstrate that

. dL(b—a
Supxe[a,b}d|%ﬁl(a}> - f(17)| <2L [Supxe[a,b}d (lnfk€{1,2 ..... K} 5(‘%7?19))] <2Lr = %
< dL(b—a)  (2d)/*3dL(b — a) < 3dL(b— a)
Toa)yt 2A'¢ = AV
3\2d
(3.215)
Combining this with (3.214) completes the proof of Proposition 3.2.29. O

Corollary 3.2.30. Let d € N, L,a € R, b € (a,00) and let f: [a,b]® — R satisfy for
all z,y € la,b)* that | f(x) — f(y)| < Lllz —yl1 (¢f- Definition 3.1.16). Then there exist
CeR and ® = (P.).c01: (0,1] = N such that

(i) it holds for all € € (0,1] that || T(®.)|| < max{1, L, |al, |b],2[sup,e(qnalf ()]},
(i1) it holds for all & € (0,1] that sup,cp,yal(Re(®:))(x) — f(2)] <,
(iii) it holds for all & € (0,1] that H(®.) < d(logy(e™!) + logy(d) + logy(3L(b—a)) + 1),

and
(iv) it holds for all e € (0, 1] that P(®.) < Ce=

(cf. Definitions 2.1.6, 2.2.1, 2.2.3, and 2.2.30).
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Proof of Corollary 5.2.50. Throughout this proof assume w.l.o.g. that L > 0, let ¢ €
d
0,1], A € (0,00) L € N satisfy A = 3dL(b=a) and L = 2 + [logy(4/(29))], let 1 =
€ 2

(lo, 1y, ..., 1) € NV satisfy for all i € {2,3,...,L —1} that Iy = d, I, = 1, 1, = [A],
and 1; = 3[4/2ia)], and let ¢, C € R satisfy

c=log,(3L(b—a))+1 and  C = 2(3dL(b—a))™ +(d+19)(3dL(b—a))* +d+11.

(3.216)
(cf. Definition 3.2.8). Observe that the fact that L > 1+ ([logy(25)] + 1)1 (64.00)(A), the
fact that I} > Al ga o) (A), the fact that 1y = d, the fact that for all i € {2,3,..., L — 1}
it holds that 1; > 3551164 o) (A), the fact that the fact that 1, = 1, Proposition 3.2.29
, and Corollary 2.2.40 prove that there exists ¥ & (><ZL:1(R1¢X11'*1 X Rli)) C N which
satisfies ||7(V)||oe < max{1, L,|al, |b], 2[sup,ep4e| f ()]} and

510l (R ) 2) — ()] < 20D (3217

(cf. Definitions 2.1.6, 2.2.1, 2.2.3, and 2.2.36). Note that the fact that d > 1 implies that

H(W) = L — 1 =1+ logy(4/20)] = [logy(4)] < [Nlogy(A)] = [dlogy (*L=2)]

< d(10g2<571) + log,(d) + log,(3L(b — a))) +1 < d(logy(e™") + logy(d) + ¢).
(3.218)

Furthermore, observe that

= 3 L1 +1) = [A](d+1)+3[41(TAT+D) +Z 313411 (3171 + 1)]+3[ zerg ] +1.

(3.219)
Next note that the fact that L = 1+ [log,(4/a)] > 1+ log,y(4/d), the fact that d > 1, and
the fact that Vo € R: [z] < 2 + 1 imply that

[AJ(d+ 1)+ 3[2T1([A1+ D)+ 3[2g ] + 1< (A+1)(d+1) +3(4 + 1) (A+2) +4
=2A+(d+4+ 2)A+d+11
AP+ (d+ A +d+11.

IN

(3.220)

Moreover, observe that the fact that Vo € (0,00): logy(z) = logy(¢/2) + 1 < z/2 + 1
implies that
L <2+logy(4) <3+ <3+4. (3.221)

This demonstrates that

=
—

Il
w

i

B[AT (3251 +1)] SSE (g + 1) (524, + )

%2121 12AZQ +9A221 7,_|_12L 3)

< 347 3A+9A+6A A7+ 277/1.

(3.222)
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Combining (3.216), (3.219), (3.220), and (3.222) with the fact that £ € (0, 1] shows that

P(U) < 2A*+ (d+19)A+d + 11
= 9(3dL(b — )™ + (d +19) (3dL(b — a)) e + d + 11 (3.223)
< [2(dL(0 — )™ + (d+19)(BdL(b — )" +d + 1] = 0=
Combining this (3.218), and (3.223) completes the proof of Corollary 3.2.30. O
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Overall error analysis

4.1 Bias-variance decomposition

Lemma 4.1.1 (Bias-variance decomposition). Let (2, F,P) be a probability space, let
(S,8) be a measurable space, let X: Q2 — S and Y: Q — R be random variables with
E[[Y]?] < oo, and let v: L2*(Px;R) — [0,00) satisfy for all f € L*(Px;R) that v(f) =
E[|f(X) = Y|?]. Then

(i) it holds for all f € L2(Px;R) that
r(f) = E[|f(X) - E[Y|X]]"] + E[|lY - E[Y|X]]"], (4.1)
(ii) it holds for all f,g € L*(Px;R) that
r(f) —r(9) = E[|f(X) - E[Y|X]]"] - E[|9(X) - E[Y|X]["], (4.2)
and
(iii) it holds for all f,g € L*(Px;R) that
E[|f(X) - EY|X][*] = E[lg(X) = E[Y|X]]*] + (x(f) - x(9))- (4.3)

Proof of Lemma j.1.1. First, observe that the assumption that for all f € L*(Px;R) it
holds that r(f) = E[|f(X) — Y|°] shows that for all f € £2(Px;R) it holds that

r(f) = E[|f(X) = Y["] = E[|(f(X) — E[Y|X]) + (E[Y|X] — V)[*]
~ E[|/(X) — EIY| X)) + 2E[(£(X) - EIY |X]) (EY|X] - V)] + E[[E[Y[X] - Y[’
— E[|f(X) — E[Y|X]]*] +2E[]E[(f(X) — E[Y|X]) (E[Y|X] - V)| X]] E[[E[Y]X] -
— E[|£(X) - E[Y|X]?] +2E[(f(X) — E[Y|X)E[(E[Y|X] - V)| X}] E[[E[Y]X] -
=E[f(X) -E[Y|X][’] +2E[(f(X) - E[Y|X])(E [Y|X ElY|X])] +E[[E[Y|X] -
= E[|f(X) - E[Y|X]]’] + E[[E[Y|X] - Y.
(4.4)
This implies that for all f, g € L?(Px;R) it holds that
r(f) —r(g) = E[|f(X) - E[Y|X]]*] - E[lg(X) — E[Y|X]]*]. (4.5)
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Hence, we obtain that for all f,g € £?(Px;R) it holds that
E[|f(X) - EY|X]"] = E[lg(X) - E[Y[X][*] +x(f) - r(9)- (4.6)

Combining this with (4.4) and (4.5) establishes items (i), (ii), and (iii). The proof of
Lemma 4.1.1 is thus complete. [

4.2 Overall error decomposition

Proposition 4.2.1. Let d,d,L,M,K,N € N, B € [0,00), u € R, v € (u,00), 1
(lp,Ly,...,1y) € NLFUT C {0,1,...,N}, D C R, assume 0 € T, 1y = d, Iy, =
and d > Zle L(Li—y + 1), let (2, F,P) be a probability space, let X;: Q@ — D, j
{1,2,...,M}, and Y;: Q — [u,v], j € {1,2,..., M}, be random wvariables, let £: D —
[u,v] be B(D)/B([u,v])-measurable, assume that it holds P-a.s. that £(X;) = E[Y1]|X1],
let Opn: @ = R, k,n € Ny, satisfy (Up—, Oro()) C [-B, B4, let R: RY — [0, 00)
satisfy for all § € RY that R(0) = E[|A21(X1) — Y1[*], and let Z: RY x Q — [0,00) and
k: Q — (Ng)? satisfy for all § € RY, w € Q that

L
€

1 M
7(0.) = 37 | SO ) V] and (@7)
k(w) € argmin(k,n)e{l,Z ..... K}XT, |0k n(W)||co<B Z(Opn(w),w) (4.8)

cf. Definitions 2.1.27 and 5.1.10). en it holds for a € |—-b, that
(cf. Defi 2.1.27 and 3.1.16). Th holds for all ¥ € [—B, B] th

/ A8\ () — E(x) P, (do)

D

< [supaenl A2 () — £(@)7] + 2[supper_ppalZ(6) — R(6)]]
+ MmNk n)e(1,2,.... K} xT, |0k e <BIZ (Okn) — Z(V)].

(4.9)

Proof of Proposition J.2.1. Throughout this proof let r: £?(Px,;R) — [0, 00) satisfy for
all f € L2(Px,;R) that v(f) = E[|f(X;) — Y1|*]. Observe that the assumption that
Vw e Q: Yi(w) € [u,v] and the fact that V0 € RY, 2 € RY: A 2(2) € [u,v] ensure that
for all # € RY it holds that E[|Y;[*] < max{u? v*} < co and

/ AN @) Py (d) = E[| AL (XD)P] < max{u?, 0%} < oo. (4.10)
D

Item (iii) in Lemma 4.1.1 (applied with (2, F,P) ~ (Q,F,P), (S,S) <~ (D,B(D)),
XX, Y n(Q3w—Yi(w eR),rar, fo A g A0 p for 0,0 € RY
in the notation of item (iii) in Lemma 4.1.1) hence proves that for all 6,9 € RY it holds
that

/D AP z) — E(x) By, (da)
CE[LA(X) — ECO)P] = E[AG(X) — B[] X

\U

= E[| AN (X0) — EDIX]P] + r(A 2 ) — (A2 o) (4.11)
= E[| A1) — ECO)] + E[A5(X0) = i) — E[ A2 (X0) - Yif?]

— [ 4%} (@) — £(@)* Px, (da) + R(9) — R(Y).
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This implies that for all 8,79 € RY it holds that
[ 1488w — @) B o)
— [ 142 @) - @) Py, (dx) — [2(6) — R(O)) + 2(0) — R(D) + 2(0) — R (D)
< [ 142}0) - E@) Py, (dr) + |12(0) - RO)] + |2(9) — R(9)] + 2(0) — ()
< [ 1420) = E@)P P, () + 2[ima,eqan 1R (n) ~ RO + 2(6) — 2(0).

(4.12)

Next note that the fact that Vw € Q: ||Oxw)(w)|l« < B ensures that for all w € € it

holds that Oy,)(w) € [-B, B]%. Combining (4.12) with (4.8) hence establishes that for
all ¥ € [-B, B]¢ it holds that

[ Al (@) = £ () Py, (dx)
< | A5 (@) = E@)P Px, (dz) + 2[suppe;_p ga| 2(0) — R(O)]] + 2(Ox) — Z(9)

= /D [ A (@) = E(2) P Px, (dz) + 2[suppe;_p 5jal 2(0) — R(0)]]

+ MiNE p)e(1,2,..., K}xT, [0k nlloc<BZ (Okn) — Z(V)]
< [SUPIEDL/VJ?JI(@ —E(@)[] + 2[Sup9€[—B,B]d|‘%(‘9) —~R(9)]]
+ MiN(n)ef1,2,... K}XT, [Opnlloe<BIZ(Okn) — Z(V)].
(4.13)

The proof of Proposition 4.2.1 is thus complete. O
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Optimization through random
initializations

5.1 Analysis of the optimization error

5.1.1 The complementary distribution function formula

Lemma 5.1.1 (Complementary distribution function formula). Let u: B([0,00)) —
[0, 00| be a sigma-finite measure. Then

/Ooox/t(dx) = /OOO p([z,00)) dz = /OOO w((z,00))dz. (5.1)

Proof of Lemma 5.1.1. First, observe that

[ entan) - /m[/dy} () = /w[/wﬂ<_m,z]<y>dy]u<dx> N
//ﬂ[yoo ) dy p(dx). >

Next note that the fact that [0,00)% 3 (z,y) — 100 (2) € Ris (B([0, 00))®B(]0, 00)))/B(R)-
measurable, the assumption that y is a sigma-finite measure, and Fubini’s theorem show
that

// ly00) (%) dy p(dw) = // [,00) dxdy—/ooou([ym))dy- (5.3)

Combining this with (5.2) demonstrates that for all € € (0, 00) it holds that

| entan = [ ntincondy = [ it oo) dy

. . (5.4)
> [ ully+=oo)dy= [ ully. o)y
0 €
Beppo Levi’s monotone convergence theorem hence establishes that
| antan = [ utoonay= [ o)y
0 0 0
> sw | [ uloona] (5.5
e€(0,00) LS e

- [ [ nloon 1ot dy] = [ w0 .

e€(0,00
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The proof of Lemma 5.1.1 is thus complete. [

5.1.2 Estimates for the optimization error involving comple-
mentary distribution functions

Lemma 5.1.2. Let (E,d) be a metric space, let © € E, K € N, p,L € (0,00), let

(Q, F,P) be a probability space, let Z#: E x Q — R be (B(E) ® F)/B(R)-measurable,

assume for all y € E, w € Q that |%(z,w) — Z(y,w)| < Li(z,y), and let X}: Q — E,

ke{l,2,...,K}, be i.i.d. random variables. Then

E[mingeqa,. i) | 2(Xy) — Z(x)|"] < IP /0 TPOX, ) > )Ede. (5.6)

Proof of Lemma 5.1.2. Throughout this proof let Y: Q — [0, 00) satisfy for all w € Q
that Y(w) = mingeqio,. k3 [0(Xi(w),x)]P. Observe that the fact that Y is a random
variable, the assumption that Vy € F,w € Q: |Z(z,w) — Z(y,w)| < Li(z,y), and
Lemma 5.1.1 demonstrate that

)| R(Xe) = Z(2)]"] < LPE[mingeq ... [6( X, 2))7]

WWM:MA%M@wWE (5.7)

]E [minke{ljg

77777

:anzm/

0

o0

_ / P(Y > ¢)de = L7 / P(minkea... x3[6(Xe, @) > €) de.
0 0

Moreover, observe that the assumption that X, k € {1,2,..., K}, are i.i.d. random
variables shows that for all € € (0, 00) it holds that

P(mingeq12,.. k3 [0(Xp, 2)]? > ) =P(Vk € {1,2,..., K}: [6(Xy, 2)]" > ¢)

i K e (538)
= [T (X0 ) > €) = P(E(X0, )" > o) = P(O(X,2) > ™))"

Combining this with (5.7) proves (5.6). The proof of Lemma 5.1.2 is thus complete. [

5.2 Strong convergences rates for the optimization
error

5.2.1 Properties of the gamma and the beta function

Lemma 5.2.1. Let T': (0,00) — (0,00) and B: (0,00)* — (0,00) satisfy for all z,y €
(0,00) that T'(x) = [ t* e ' dt and B(z,y) = fol t* Y1 —t)v=tdt. Then

(1) it holds for all x € (0,00) that I'(x + 1) = 2 I'(z),

(i) it holds that I'(1) =T'(2) = 1, and

(111) it holds for all x,y € (0,00) that B(z,y) = Fr(gig)
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Proof of Lemma 5.2.1. Throughout this proof let z,y € (0, 00), let ®: (0,00) x (0,1) —
(0, 00)? satisfy for all u € (0,00), v € (0,1) that

(I)(u? U) = (U(l - U)? U’U), (59)
and let f: (0,00)% — (0, 00) satisfy for all s,¢ € (0,00) that
f(s,t) = s@ D= o= (s (5.10)

Observe that the integration by parts formula assures that for all z € (0, 00) it holds that

MNx+1)= / et )=1) =t gy _/ 4 [_eft} dt
0 0

= —([tl’et]zgo - w/o a1 ot dt) = :U/O tE Ve tdt = - T(x).
This establishes item (i). Moreover, note that
I'(1) :/ et dt = [—e "= = 1. (5.12)
0

This and item (i) prove item (ii). Next note that the integral transformation theorem
with the diffeomorphism (1,00) 3 ¢+ 7 € (0,1) ensures that

1 o0
By = [ 0= [ -
0 1

_ /1 (D[]0 gy — /1 =0 (¢ — 1) Vg (5.13)

00 o oo #y=1)
=/ (t+1)" y)t(y_l)dt:/ ——dt.
0 o (t4 1))

In addition, note that

[(z) -T(y) = { / @D ot dt] { / tw=1) ot dt}
0 0

= [/OO s@=1) s ds] [/00 =1 ot dt]
0 0

o roo (5.14)
_ / / @1 D) =) gy g
o Jo
[ fsnds,
(0,00)?
Moreover, observe that for all (u,v) € (0,00) x (0,1) it holds that
(0= |T Y Y (5.15)
v w | '
Hence, we obtain that for all (u,v) € (0,00) x (0,1) it holds that
det(®'(u,v)) = (1 — v)u —v(—u) = u —vu+vu = u € (0,00). (5.16)

DISSEMINATION PROHIBITED. JULY 29, 2021 88



Chapter 5.  Optimization through random initializations

This, (5.14), and the integral transformation theorem show that
M) Tl) = [ f(B(a,0) [det(®u,0)| (w0
(0,00) % (0,1)

(u(1 — v)) @Y (yo) W= e~ @A=0Fw) 4y gy dy

I
oo 1

= / / u(wﬂ/—l) e U ,U(y—l) (1 _ U)(x—l) dv du (517)
0 0

This establishes item (iii). The proof of Lemma 5.2.1 is thus complete. O
Lemma 5.2.2. [t holds for all o,z € [0,1] that (1 —2)* <1 — ax.

Proof of Lemma 5.2.2. Note that the fact that for all y € [0,00) it holds that [0, 00) >
2+ y* € [0,00) is convex implies that for all a, z € [0, 1] it holds that
1-2)*<a(l—2)' +(1—a)1—2)°
(1-2)° a(l—2)'+ (1-a)(1 - 2) s
=a—ar+1l—-a=1-ax.
The proof of Lemma 5.2.2 is thus complete. O]

Proposition 5.2.3. Let I': (0,00) — (0,00) and -,: (0,00) — Ny satisfy for all z €
(0,00) that T'(x) = [[7t" e~ dt and x, = max([0,2) "Ny). Then

(i) it holds that I': (0,00) — (0,00) is convet,
(i) it holds for all z € (0,00) that I'(x + 1) = 2 T'(z) < 2% < max{l,z"},
(111) it holds for all x € (0,00), a € [0, 1] that

(max{z +a —1,0})* < e +f;)1a < F(?(j;)a) < 2 (5.19)

and
(iv) it holds for all x € (0,00), a € [0,00) that
I'(z+ a)
()
Proof of Proposition 5.2.3. Throughout this proof let |-]: [0,00) — Ny satisfy for all
x € [0,00) that |z] = max([0,x] N Npy). Observe that the fact that for all ¢ € (0,00) it

holds that R 2 x — t* € (0,00) is convex implies that for all z,y € (0,00), @ € [0,1] it
holds that

(max{z + min{a — 1,0},0})* < < (x +max{a —1,0})". (5.20)

F(Ozl‘ + (1 _ a)y) _ / taw—i—(l—a)y—le—t dt = / ta:c—l—(l—oc)yt—le—t dt
0 0

g/ (at” + (1 — a)t¥)t et dt
0

= a/ t"retdt + (1 — a)/ tvtemtdt
0 0
=al(z)+ (1 —a)(y).

(5.21)
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This shows item (i). Next note that item (ii) in Lemma 5.2.1 and item (i) establish that
for all a € [0, 1] it holds that
INa+1l)=T(a-2+(1-a)- ) <al’'@Q)+(1-a)(1)=a+(1—a)=1. (5.22)
This yields for all x € (0, 1] that
Iz+1) <1=2z"% =max{l,z"}. (5.23)

Induction, item (i) in Lemma 5.2.1, and the fact that Vz € (0,00): x — x, € (0, 1] hence
ensure that for all z € [1,00) it holds that

LIJ

Cx+1) = {H(a: —i+ 1)} Mex— 2, +1) <ax®T(r— z, +1) <™ <2" =max{l,2"}.

i=1
(5.24)
Combining this and (5.23) with item (i) in Lemma 5.2.1 establishes item (ii). Fur-
thermore, note that Hélder’s inequality and item (i) in Lemma 5.2.1 prove that for all
€ (0,00), a € [0, 1] it holds that

F(Jf + CY) = / ta?+a*1€7t dt = / tozxefoét]f(lfoé)xf(lfa)67(1704)1e dt
0 0
B / [tre e T dt
0

o0 « o0 11—«
< ( / tret dt) ( / P et dt)
0 0

= [z + DI L@ = 2" @))*[O(2)]
= 2°T(x).

(5.25)

This and item (i) in Lemma 5.2.1 demonstrate that for all 2 € (0,00), a € [0, 1] it holds
that

zT(z)=T(x+1)=T@x+a+(1-a)<(z+a) T(z+a). (5.26)
Combining (5.25) and (5.26) yields that for all x € (0,00), « € [0, 1] it holds that

T < I'(z + «)

T S T . (5.27)

IN

Furthermore, observe that item (i) in Lemma 5.2.1 and (5.27) imply that for all z €
(0,00), a € [0, 1] it holds that

Nz4+a) TI'(z+4a) < ol

Dx+1) z0(z) — v (5:28)
This shows for all « € [0,1], z € (a, 00) that
I'(x) _N@—a)+a) 1 1
Mer(—a) Te=ayrn =@ " =g (5.29)
This, in turn, ensures for all « € [0,1], € (1 — a, 00) that
(t+a—1)° = (z—(1—a) < &L (5.30)

DISSEMINATION PROHIBITED. JULY 29, 2021 90



Chapter 5.  Optimization through random initializations

Next note that Lemma 5.2.2 proves that for all z € (0,00), a € [0,1] it holds that

(max{z +a —1,0})" = (z+ a)a(max{x +a— 1,0})a

z+a

= (z+a)" (max{l - x—il-a’o}) (5.31)
< (x+a)“(1—xia) :(x+a)a(xj—a)
_W'

This and (5.27) establish item (iii). Moreover, observe that induction, item (i) in Lemma 5.2.1,
the fact that Va € [0,00): o — |a] € [0,1), and item (iii) demonstrate that for all
€ (0,00), a € [0, 00) it holds that

S = [t oo FE < [ oo

(z + o — 1)lelge-le] (5.32)
(z 4+ max{a — 1,0 (z + max{o — 1,0})>" 1o

= (x + max{a —1,0})".

<
<

Furthermore, the fact that Va € [0,00): o — |a] € [0,1), item (iii), induction, and
item (i) in Lemma 5.2.1 imply that for all z € (0,00), a € [0, 00) it holds that

Pzta) Pltlofta—]a])

> (max{z + |a] + o — |a] — 1,0})* [ {F(mr‘é‘x%ab}
B N
— (max{a-+ o~ 1,0)* | [{ (e + o] 9| ) 5:39)

> (max{r +a —1 0})04—M la]

= (max{x +a —1,0})*" Lo (max{zx, O})LO‘J
> (max{z + min{a — 1,0},0})* [ (max{z + min{a — 1,0},0})!
= (max{z + min{a — 1,0},0})°.

Combining this with (5.32) shows item (iv). The proof of Proposition 5.2.3 is thus
complete. O

Corollary 5.2.4. Let B: (0,00)* — (0,00) satisfy for all z,y € (0,00) that B(z,y) =
f t*7 11 — t)¥"1dt and let T: (0,00) — (0,00) satisfy for all z € (0,00) that T'(z) =
fo -1 _t dt Then it holds for all x,y € (0,00) with x +y > 1 that

[(x)

['(x) max{1, z"}
(y + max{x — 1,0})* =

(y + min{z — 1,0})* ~— z(y + min{z — 1,0})*
(5.34)

< B(z,y) <
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Proof of Corollary 5.2.4. Note that item (iii) in Lemma 5.2.1 ensures that for all z,y €

(0, 00) it holds that

()l (y)

B(z,y) = ——=.
(r9) Iy + )

In addition, observe that for all z,y € (0,00) with  +y > 1 it holds that y + min{x —

1,0} > 0. This and item (iv) in Proposition 5.2.3 demonstrate that for all x,y € (0, c0)
with z +y > 1 it holds that

(5.35)

[(y + )

['(y)

Combining this with (5.35) and item (ii) in Proposition 5.2.3 shows that for all z,y €
(0,00) with  + y > 1 it holds that

0 < (y+ min{z — 1,0})* < < (y + max{z — 1,0})". (5.36)

[(x) ['(x) max{1,z"}
< B(z,y) < . < . :
(y + max{x — 1,0})* (y + min{z — 1,0})* = z(y + min{z — 1,0})*
(5.37)
The proof of Corollary 5.2.4 is thus complete. O]

5.2.2 Product measurability of continuous random fields

Lemma 5.2.5 (Projections in metric spaces). Let (E,d) be a metric space, let n € N,
e1,62,...,e, € B, and let P: F — E satisfy for all x € E that

P(JT) = €min{ke{1,2,...,n}: d(z,e;)=min{yd(z,e1),d(z,e2),...,d(z,en)}} - (538)
Then
(1) it holds for all x € E that

d(z,P(z)) = min d(z,eg) (5.39)

ke{1,2,....,n}
and
(1) it holds for all A C E that P~'(A) € B(E).

Proof of Lemma 5.2.5. Throughout this proof let D = (D, ..., D,): E — R" satisfy for
all z € I that

D(z) = (Di(z), Da(x), ..., Dy(x)) = (d(x,e1),d(z, e3),...,d(x,e,)). (5.40)

Note that (5.38) ensures that for all x € E' it holds that

d( ( )) d({lf €min{kc{1,2,...,n}: d(z,ex)=min{d(z,e1),d(z,e2),..., d(m,en)}}) = ke{lir,lQI,n,n} d(fL’, ek)-
(5.41)
This establishes item (i). It thus remains to prove item (ii). For this observe that the
fact that d: E x E — [0,00) is continuous ensures that D: E — R" is continuous.
Hence, we obtain that D: E — R™ is B(E)/B(R")-measurable. Next note that item (i)
demonstrates that for all £ € {1,2,...,n}, z € P~'({ex}) it holds that

d(xz,ex) = d(x, P(x)) = le{%i'r'l. " d(x,ep). (5.42)
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Hence, we obtain that for all k € {1,2,...,n}, z € P~*({ex}) it holds that
kE>min{l € {1,2,...,n}: d(x,e;) = min{d(x, e1),d(x,e2),...,d(z,e,)}}. (5.43)

Moreover, note that (5.38) ensures that for all k € {1,2,...,n}, z € P7'({e;}) it holds
that

min{l €{1,2,...,n}: d(z,e) = min d(x,eu)}

ue{l,2,...,n}

e{le{l,2,....n}:eg=e,} C{k,k+1,...,n}.

(5.44)

Therefore, we obtain that for all k € {1,2,...,n}, z € P~'({ex}) with ey & (Uiennpom{er})
it holds that

ue{l,2,...,n}

min{l €{1,2,...,n}: d(x,e) = min d(ac,eu)} > k. (5.45)

Combining this with (5.43) yields that for all & € {1,2,...,n}, * € P7'({e}) with
Ck §é (UleNm[o,k){el}) it holds that

min{l e{1,2,...,n}:d(z,¢) = {1r1n21n }d(:v,eu)} = k. (5.46)
uel,2,..., n

Hence, we obtain that for all k € {1,2,...,n} with ex & (Ujennjo,r){ei}) it holds that

P ({ex}) C {w cE: min{l €{1,2,...,n}: d(z,e;) = min d(x,eu)} = k}

ue{l,2,...,n}
(5.47)
This and (5.38) show that for all k € {1,2,...,n} with ex & (Uiennjo,r){ei}) it holds that

_1({€k}):{er: min{lE{l,Q,...,n}:d(:l:,el): min d(x,eu)}:k;}

ue{l,2,...,n}
(5.48)
Combining (5.40) with the fact that D: E — R" is B(E)/B(R")-measurable therefore
demonstrates that for all k € {1,2,...,n} with e € (Uiennpr{e:}) it holds that

P~ ({ex})

{:c €kl mln{l €{1,2,...,n}: d(z,¢) = ue{rflzmn} d(x,eu)} = k:}
{az €kE: mm{l €{1,2,...,n}: Di(z) = ue{rlr,IQi?.,n} Du(aj)} = k}
fres (\’JiN{Eé?i’f?:ﬁ'f(?kaf;(i%fif )
= {kﬂl{x € E: Dy(x) < Dy(x ﬂ (n] € E: Diy(x) < Di(x)} | € B(E).
=1 eB(E) =1 €B(E)

Hence, we obtain that for all f € {ey,es,...,¢,} it holds that
“'({f}) € B(E). (5.50)
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Therefore, we obtain that for all A C F it holds that
p*l(A) = Pil(A n {617 €2,.. ., en})

= UreAn{er,ez,en} P_l({f}) € B(E). (5'51)
———
EB(E)
This establishes item (ii). The proof of Lemma 5.2.5 is thus complete. O

Lemma 5.2.6. Let (E,d) be a separable metric space, let (£,9) be a metric space, let
(Q,F) be a measurable space, let X: E x Q — &, assume for all e € E that 1 5 w +—
X(e,w) € € is F/B(E)-measurable, and assume for all w € Q that £ > e — X(e,w) € €
is continuous. Then X: E x Q — & is (B(E) @ F)/B(E)-measurable.

Proof of Lemma 5.2.6. Throughout this prooflet e = (€, )men: N — E satisfy {e,,: m € N} =
E let P,: E— E, n € N, satisfy for all n € N, x € F that

Pn(x) = €min{ke{1,2,....,n}: d(x,ex)=min{d(z,e1),d(z,e2),....d(z,en)} }> (552)
and let X,,: Ex Q — &, n €N, satisfy foralln e N, x € F, w € Q that
Xo(z,w) = X (P, (z),w). (5.53)

Note that (5.53) shows that for all n € N, B € B(£) it holds that
(X)) H(B) = {(z,w) € E x Q: X,(x,w) € B}

- U ([ @] n )y x )

y€lm(Py)

= U {(w,w) € ExQ: [Xn(x,w) € Band z € (Pn)fl({y})]}

y€lm(Pr)

_ U {(%w) cExQ: [X(pn(;p),w) € Bandx € (Pn)—l({y})} }

y€lm(Py)

(5.54)

Item (ii) in Lemma 5.2.5 hence implies that for all n € N, B € B() it holds that

(X,)"Y(B) = (z,w) € B x Q: [X(y,w) cBand e (Pn)_l({y})]}

yel

8

(Pn)

{(z,w) € Ex Q: X(y,w) € B} [(P) ' ({y}) x Q})

5

y€lm(Py)

I I
A/~ /—~ =

[ x ((X(5,)"'(B)] 0 [(P) () x Q] ) € (BE) & F).

(Pn) c(B(E)aF) €(B(E)®F)

8

yel

(5.55)

This proves that for all n € N it holds that X, is (B(F) ® F)/B(€)-measurable. In
addition, note that item (i) in Lemma 5.2.5 and the assumption that for all w € Q it
holds that £ 5 x — X (z,w) € & is continuous imply that for all x € E, w € Q it holds
that

T}LH;Q Xz, w) = 711;120 X(Py(2),w) = X(z,w). (5.56)

Combining this with the fact that for all n € N it holds that X,,: ExQ — £ is (B(EF) ®
F)/B(£)-measurable shows that X: E x Q — £ is (B(F) ® F)/B(€)-measurable. The
proof of Lemma 5.2.6 is thus completed. O
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5.2.3 Strong convergences rates for the optimization error

Proposition 5.2.7. Let d, K € N, L,a € R, € («,00), let (Q,F,P) be a probability
space, let Z: o, B9 x Q — R be a random field, assume for all 0,9 € [a, B¢, w € Q
that | % (0,w) — Z(9,w)| < L||0 — I|so, let Op: Q@ — [a, 8], k € {1,2,..., K}, be i.i.d.
random wvariables, and assume that ©1 is continuous uniformly distributed on [a, 8]¢
(cf. Definition 3.1.16). Then

(i) it holds that Z is a (B([a, B]9) @ F)/B(R)-measurable function and
(ii) it holds for all 0 € [, 8], p € (0,00) that
(B mingeqns..x)|2(00) — 2(0)]) "

< L(B — a) max{1, (v/a) "/} - L(B — a) max{1, p} (5.57)
- K4 — KY/d

Proof of Proposition 5.2.7. Throughout this proof assume w.l.o.g. that L > 0, let :
([, B1Y) x ([, B]9) — [0, 00) satisfy for all 0,9 € [a, 5] that 6(6,9) = |6 — V]|, let
B: (0,00)? — (0, 00) satisfy for all z, y € (0, 00) that B(x,y) = fol t*1(1—¢t)v=1 dt, and let
©11,012,...,014: Q = [a, f] satisfy ©1 = (01,1,01,...,0;4). First of all, note that
the assumption that V0,9 € [, 8]9, w € Q: |2(0,w)—RZ(9,w)| < L||#—1| ensures that
for all w € Q it holds that [, 8]Y 3 6 — Z(0,w) € R is continuous. Combining this with
the fact that ([a, ]9, ) is a separable metric space, the fact that for all § € [, 5]¢ it holds
that Q > w = Z(0,w) € R is F/B(R)-measurable, and Lemma 5.2.6 proves item (i).
Next observe that for all 8 € [«, ], € € [0,00) it holds that

min{f + ¢, f} — max{f — ¢,a} = min{f + ¢, 5} + min{e — 0, —a}

=min{f + ¢ + min{e — 0, —a},  + min{e — 0, —a}}

= min{min{2e,6 — a + ¢}, min{8 — 0 +¢, 8 — a}} (5.58)

> min{min{2s,0 — a4+ ¢}, min{8 — S +¢, 8 —a}}

= min{2¢,¢,¢, 8 — a} = min{e, 5 — a}.
The assumption that ©; is continuous uniformly distributed on [c, 5]¢ hence shows that
for all = (0y,0,,...,0q) € [, B]¢, € € [0,00) it holds that

P01 — 0l < &) = P(maxieq1,....a}/01, — 0i <€)

:P(WE {1,2,...,d}: —e <Oy, —6;,<¢)
(V@E{l? d}:Qi—eg@uSQmLs)
=P(Vie{1,2,...,d}: max{f; —e,a} < O; <min{0; +¢, 5})
(

O € [xL, max{@ e,a}, min{; + ¢, 5}]])
5 (mm{9 +¢e, 8} — max{6; — e, a})

(5.59)

[mln{e B—a}]?= min{l, ﬁ}.
Therefore, we obtain for all § € [, 8]9, p € (0,00), € € [0, 00) that
P([©1 = Ol > ") = 1 = P([|61 = 0l < "7)

. I/p c9/p (560)
Sl—mln{l,m}:maX{O 1— m}
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This, item (i), the assumption that V0,9 € [a, 8], w € Q: |Z(0,w) — Z(I,w)| <
L||0 — 9|, the assumption that O, k € {1,2,..., K}, are i.i.d. random variables, and
Lemma 5.1.2 (applied with (E,6) <~ ([a, 8]9,0), (Xi)keq1,2,... k3 O (Ok)kef1,2,.. k) in the
notation of Lemma 5.1.2) establish that for all § € [a, ]9, p € (0,00) it holds that

E[mingeq1,s,...x}[%Z(Ok) — Z(0)[F] < Lp/ [P(|©1 — 0]|oc > ")) de
0

<o [ fmacfo1 - 22 -1 “‘”(l__ed/p ) e
- 0 ’ (B—a)d 0 (B—a)d (5.61)

! 1
=273 — a)p/ t”/d‘l(l - t)K dt = BLP(8 — a)p/ tP/d—l(l B t)K“—l a
0 0
= 21P(8 — a)’B(r/a, K +1).

Corollary 5.2.4 (applied with v~ ?/d, y v K + 1 for p € (0, 00) in the notation of (5.34)
in Corollary 5.2.4) hence demonstrates that for all € [, 5]¢, p € (0, 00) it holds that

E[minke{m ..... K} % (Or) — ‘%(‘9)‘10}

_ &8 = )P max{l, ()"} _ LP(3 — a)P max{1, (7/a)"} (5.62)
~ B(K + 1+ min{#/a — 1, 0})ra — KP/d :

This implies for all § € [, £]4, p € (0,00) that
(B [mingeqis.. k)| 2(Or) — 2(0)F])

< L(B — a)max{1, (¢/a)"/4} _ L(B — a) max{1,p} (5.63)
— Kl/d iy Kl/d .
This shows item (ii) and thus completes the proof of Proposition 5.2.7. O

5.3 Strong convergences rates for the optimization
error involving ANNSs

5.3.1 Local Lipschitz continuity estimates for the parametriza-
tion functions associated to ANNs

Lemma 5.3.1. Let a,x,y € R. Then
lmax{z,a} — max{y, a}| < max{z,y} — min{z,y} =[x — y|. (5.64)
Proof of Lemma 5.3.1. Observe that
|max{z, a} — max{y, a}| = |[max{max{z,y},a} — max{min{x, y},a}|
= max{max{x,y}, a} — max{min{x, v}, a}
= max{max{:c, y} — max{min{z,y},a},a — max{min{z, y}, a}}
< max{max{x, y} — max{min{z,y},a},a — a} (5.65)
= max{max{x, y} — max{min{z,y},a}, 0} < max{max{x, y} —min{z, y}, 0}
= max{z,y} — min{z, y} = |max{z,y} — min{z,y}| = |z — y|.
The proof of Lemma 5.3.1 is thus complete. O]
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Corollary 5.3.2. Let a,z,y € R. Then
|min{z, a} — min{y, a}| < max{z,y} — min{z,y} = |z — y|. (5.66)

Proof of Corollary 5.5.2. Note that Lemma 5.3.1 ensures that

|min{x, CL} - min{ya CL}| - |—(m1n{x, CL} - min{y7 CL})| - |max{—x, —CL} - max{—y, —CL}’
< |(=z) = (=)l =z —yl.
(5.67)
The proof of Corollary 5.3.2 is thus complete. O
Lemma 5.3.3. Let d € N. Then it holds for all x,y € R that
[Ra(z) = Ra(¥)lloo < [l = ylloo (5.68)

(cf. Definitions 2.1.7 and 3.1.16).

Proof of Lemma 5.3.3. Note that Lemma 5.3.1 establishes (5.68). The proof of Lemma 5.3.3
is thus complete. O]

Lemma 5.3.4. Letd € N, u € [—00,0), v € (u,00]. Then it holds for all z,y € R? that

1€u0.a(2) = Cupa(y)llo < [l = ylloo (5.69)
(cf. Definitions 2.1.12 and 3.1.10).

Proof of Lemma 5.5.4. Note that Lemma 5.3.1, Corollary 5.3.2, and the fact that for all
x € R it holds that max{—o0,z} = x = min{x, 0o} show that for all z,y € R it holds
that

|CU,U(x)_cU,U(y>| = |H1aX{U, I'IliIl{.I, v}}—max{u, min{y7 U}}| < |1’I1iIl{.I‘7 U}_min{y7 U}| < |‘T—y|
(5.70)

(cf. Definition 2.1.11). Hence, we obtain that for all x = (21, %2, ..., %4),y = (Y1,Y2, ..., Ya) €

R it holds that

Heiu,v,d(iﬂ) - Qtu,v,d<y>HOO = ie{rlr}Qa,f(.,d}’cuyv(‘%i) - cu,v(yi)‘ < ze{rlr,l;?x,d}lxl - yZ’ - ”QZ’ - y”oo
(5.71)
(cf. Definitions 2.1.12 and 3.1.16). The proof of Lemma 5.3.4 is thus complete. O

Lemma 5.3.5 (Row sum norm, operator norm induced by the maximum norm). Let
a,be N, M = (Mi,j)(i,j)e{1,2 ..... ayx{1,2,..,b} € R**P. Then

M|l b
sup {H il ]: max [Z|Mi,y’|
j=1

vERP\{0} [[0]oo i€{1,2,....a}

< b[ max max b}]Mm-| (5.72)

1€{1,2,...,a} je{1,2,...,

(cf. Definition 3.1.16).
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Proof of Lemma 5.3.5. Observe that

Mol s
sup[” ” } — s Moo= s [Mo]
veR? HUHOO vERY ||v||00<1 v=(v1,v2,...,05)E€[—1,1]®
b
= sup max | > M, v;
v=(v1,v2,...,05)€[—1,1]® <i€{172 """ a}|j=1 7 >
) > [0,
= max sup M;;vi| | = max M; ;
1€{1,2,...,a} v=(v1,v2,...,0)E[—1,1]0 | =1 I 1€{1,2,...,a} =1 J
(5.73)
(cf. Definition 3.1.16). The proof of Lemma 5.3.5 is thus complete. O

Theorem 5.3.6. Let a € R, b € [a,00), d,L € N, | = (lp, l1,...,l5) € N satisfy

L
d>> Il +1). (5.74)
k=1

Then it holds for all 0,9 € R? that

0, 9,1
sup H‘/V—oo,oo(x) - ‘/V—oo,oo(x)”oo

z€[a,b)lo
L-1 L-1
< max{1, [al, [b}|0 — V]| [H (I + 1) || (max{1, [|6]%} Hﬁugoln)]
m=0 n=0 (5.75)
L—-1
< Lmax{1, a], b} (max{1, |0 oo, [|9]|oc})" " [H (Lo + 1) [0 = 9]
m=0

< Lmax{L, |al, o[} (|lf]loo + 1)* (max{1, |0loc, 0]l )10 — Dl
(cf. Definition 2.1.27 and Definition 3.1.16).
Proof of Theorem 5.3.6. Throughout this proof let §; = (0;1,0;2,...,0,4) € R, j €

{1,2}, let 0 € N satisfy
L

0= Lls1+1), (5.76)

k=1

let Wp € Rexber e {1,2,...,L}, j € {1,2}, and B, € R* k € {1,2,...,L},
J € {1,2}, satisfy for all j € {1,2}, k € {1,2,..., L} that

T((Wj1,Bj1), Wja, Bja),--.. (Wi, Bjr))) = (051,052, .., 00), (5.77)
let ¢, € N, ke {1,2,...,L}, j € {1,2}, satisfy for all j € {1,2}, k € {1,2,..., L} that
diw = (W1, Bjn), (Wi, Bia), .., (Wi, Bip)) € [XE (RExt-r x RE)], (5.78)

let D = [a,b], let m;;, € [0,00), j € {1,2}, k € {0,1,..., L}, satisfy for all j € {1,2},
ke {0,1,...,L} that

max{1, |a|, |b|} k=0
R 5.79
s {max{l,supm IRt >0, >79)
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and let ¢, € [0,00), k € {0,1,..., L}, satisfy for all k € {0,1,..., L} that

0 k=0
ey = {supng [(Re(d1.6))(2) — (Re(h2s))(@)]loo : k>0 (5.80)

(cf. Definitions 2.1.6, 2.2.3, 2.2.36, and 3.1.16). Note that Lemma 5.3.5 demonstrates
that

e1 = sup [[(Re(¢11))(z) — (Re(¢21)) () |loc = sup [(Wiiz + Bia) — (Waiz + Baj)lleo

zeD

< {sup (W1 — Wz,l)l'||oo:| + B — Baall

xeD
S[ sup (||(W1,1—W2,1)U||oo>

veR\{0} it
<l H91 - 92”00 max{|a|, ’b|} + HBl,l - B2,1Hoo <l ||‘91 - 92||oo max{\a|, |b|} + H91 - 92Hoo
= [|61 — ba|oo(lo max{|al, [b]} + 1) < myg 01 — b2l (lo + 1).

{sup quoo] - 1Bus = Boa |l
€D

(5.81)

Moreover, observe that the triangle inequality assures that for all k € {1,2,..., L}N(1, 00)
it holds that

e = sup [[(Re(¢16)) (%) = (Re(d2.4))() |0

= 38616115 H [Wl,k (%lk_l ((Rt(¢1,k—1))($))> + Bl,k;] - [WQ,I@ (mlk_l ((Rr(¢2,k—1))(95))> + B2,k} HOO
< [328 Wk (R, (R0 0))(@)) ) = Wa (R, (Re(dp 1)) () HOO] + 1102 = B2ll.

(5.82)

The triangle inequality hence implies that for all j € {1,2}, k € {1,2,..., L} N (1,00) it
holds that

e, < [SHPH (Wi — W) (9, 1((Rt<¢j,k—1))(x)))Hoo:|

zeD

’ [2‘28 Wamgie (B (Relor0) (@) = B, (Refdnp) (@) ) Hw] 1161 = el
su (Wi = Wa)lle su ! e(Pjk—1)) (T 1 — 02f|eo

S[veRzk_?\{0}< - )ergum“(m(@, I >>||oo}+ue 0l
su M sSu l t\P1e—1))\T)) — 2k—1)

ol (Pl aplon (Rerecno) - (Reeninio.

(5.83)

Lemma 5.3.5 and Lemma 5.3.3 therefore show that for all j € {1,2}, k € {1,2,...,L} N

DISSEMINATION PROHIBITED. JULY 29, 2021 99



Chapter 5.  Optimization through random initializations
(1,00) it holds that
e < oo 1~ Bl [suplh, (R0 D). | + 161 = 8l
re

AT [iggumzk_l((Rtwl,k_l))(m)) - m_l(<Rt<¢2,k_1>><x>>uoo}

0.84
< it 161 = Ol [suplRe(ya )0 + 161~ Bl .
xre
+ L1 [103—;| oo [SUBH(Rr(¢1,k1))(5U> - (Rr(¢2,k1))(f’5)“oo]
S
< ||6h = O2loo(lk—1 M1 + 1) + L1 [|03— ]| 00 k-1
Hence, we obtain that for all j € {1,2}, k € {1,2,..., L} N (1,00) it holds that
e < m;r—1 ||Q1 — 02||oo(lk—1 + 1) + lk—l ||‘93—j||oo Cr—1. (585)

Combining this with (5.81), the fact that e¢; = 0, and the fact that m; y = ma demon-
strates that for all j € {1,2}, k € {1,2,..., L} it holds that

CL S mj,k,l(lk,l + 1)”91 — 62”00 -+ lkfl H63fjHoo CrL—1- (586)

This shows that for all j = (ju)nefo1,..,03: {0,1,..., L} = {1,2} and all k € {1,2,...,L}
it holds that

e <y g1 (o1 + D0 = Oalloc + Lot (055, lloc er—1- (5.87)

Therefore, we obtain that for all j = (jn)neqon,.,0y: {0,1,..., L} = {1,2} and all k €
{1,2,..., L} it holds that

k—1 k—1
ep < Z ([ H (Im ||93—jm||oo)] m, n(ln + 1)[161 — 92||oo>
n=0

m:”“k_l . (5.88)
= (|61 — b2l [Z ([ IT @ ||93jm||oo)] o (ln + 1))

Next observe that Lemma 5.3.5 ensures that for all j € {1,2}, k € {1,2,...,L} N (1, 00),
x € D it holds that

[(Re(@50) @)l = || Wi (B, (Re@s0-1)(@)) ) + B

‘ o0

<| sup R (Re(@a-1)) (@) || o + I1Bjklloo
verii-n oy 10lloo

< lo-1 105100 [ 9%,y (Re(@56-1)) (@) ||, + 165l
< 1 105 oo [ (Re(D50-1)) () o + 11651l

= (L1 ll(Re(@jh-1)) ()| oo + 1) 1105l
< (-1 + D10]lco < Myt (le—1 + 1)[|0]] -

(5.89)
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Hence, we obtain for all j € {1,2}, k € {1,2,..., L} N (1,00) that
m;, < max{l,m;;_1(l—1 + 1)]|6;]l}- (5.90)
Furthermore, note that Lemma 5.3.5 assures that for all j € {1,2}, 2 € D it holds that
[(Re(95.0))(@)llse = W1 + Bjall

sy Wl
= (5.91)

veR 0\ {0} V]| 0o
<o [10;lloo lIzlloo + 116;lloc < Lo 116;]loc max{]al, B[} + {16l
= (lomax{[al, [b[} + 1)[;]loc < m10(l0 + 1)][6;]oc-
Therefore, we obtain that for all j € {1,2} it holds that
m;q < max{l,mjp(lg + 1)”(%“00} (592)

Combining this with (5.90) demonstrates that for all j € {1,2}, k € {1,2,..., L} it holds
that

]Hﬂclloo +1Bjalloo

mj,k S maX{l,mM,l(lk,l + 1>H9JHOO} (593)
Hence, we obtain that for all j € {1,2}, k € {0,1,..., L} it holds that
k-1 .
mye < myo | [+ 1) | [max{1, [|6;]l}]"- (5.94)
n=0
Combining this with (5.88) proves that for all j = (ju)neqo1,..,03: {0,1,..., L} — {1,2}

and all £ € {1,2,..., L} it holds that
k—1 k—1 n—1
er < (101 — 02| [Z [ IT @ ||93—jm||oo)] (mjn,o [H(lv + 1) | max{1, |6, 15} (I + 1)))]
n=0 m=n+1 v=0
(k=1 /[ k-1 n
=myp |01 — ba|o Z( II (@ H93jm||oo)] ( [ + 1) | max{1, H@jnHZo}))
L n=0 Lm=n-+1 v=0
k=1 /T k-1 k-1
< my g [|0r — b2 Z( 11 I\Qs—ijoo] [H(lu + 1) | max{1, H9jn|\§o}>]
L n=0 | m=n-+1 v=0
Mk—1 k—1 k—1
=m0 — Ol | [ + 1| | D ([ 1T ||93—jm||oo] max{1, [|6;,[|% )] :
L n=0 n=0 m=n+1
(5.95)
Therefore, we obtain that for all j € {1,2}, k € {1,2,..., L} it holds that
k-1 7 k-1 k—1
er <m0 — Oolloo [ [ + D[ D] ([ IT 1165-5llc | max{1, H@HZO})]
Ln=0 1 Ln=0 m=n-+1
Mk—1 7 k-1
=m0 = Oaflo | [ [ + 1) (max{1, [|6;]I} ||93—j|!]§51_")] (5.96)
Ln=0 1 Ln=
k-1
< kmyg |61 — sl oo (max{L, |61 ]|oc, |62l })* [H (lm +1) |-
m=0
The proof of Theorem 5.3.6 is thus complete. O]
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Corollary 5.3.7. Let a € R, b € [a,00), u € [—00,0), v € (u,¢|, d,L € N, [ =
(lo, 11, ..., 1) € NEVL satisfy

L
d>> Ll +1). (5.97)
k=1

Then it holds for all 6,9 € R? that

up 1475 (@)= A (@) oo < Lmax{L, Jal, [b]} ([ flsc+1)" (max{L, [|0]loc, O]l )" 1000
x€|a,b|'o

(5.98)
(cf. Definitions 2.1.27 and 3.1.16).

Proof of Corollary 5.5.7. Note that Lemma 5.3.4 and Theorem 5.3.6 demonstrate that
for all 6,9 € R? it holds that

sup || A% (@) — A% (@) e

z€la,b]lo
= Ssup ||€u7U,ZL(‘/KQO,i>,OO(x)) - €u7v,lL(JV—ﬂo7cl>,oo(x))|loo

z€[a,b]lo (5.99)
< sup | A (7)) = A (@) s

z€la,b]lo

< Lmax{1, |al, [bl} ([[1lloc + 1)* (max{L [0llcc, [Pl })* " 16 = 7]

(cf. Definitions 2.1.12, 2.1.27, and 3.1.16). This completes the proof of Corollary 5.3.7. [

5.3.2 Strong convergences rates for the optimization error in-
volving ANNSs

Lemma 5.3.8. Letd,d,L, M € N, B;b€ [1,00), u € R, v € (u,00), 1 = (lp,1;,...,1p) €
NUtL D C [=b,b]%, assume lg = d, I, = 1, and d > S5 L(L_y + 1), let Q be a set, let
X;:Q—=D,je{l,2,..., M}, and Y;: Q — [u,v], j € {1,2,..., M}, be functions, and
let Z: [—B, B]Y x Q — [0,00) satisfy for all § € [—B, B]Y, w € Q that

1M
#(0.6) = 37 | LI ) = ()P (5.100)
=1
(cf. Definition 2.1.27). Then it holds for all 0,9 € [-B, B]%, w € Q that

%(0,w) — Z(9,w)| < 2(v—w)bL(||]1]|oe + 1)*B*H0 — 9o (5.101)
(cf. Definition 3.1.16).
Proof of Lemma 5.3.8. Observe that the fact that Vi, @9,y € R: (z; — y)? — (29 —

y)? = (x1 — x2)((x1 — y) + (22 — y)), the fact that V0 € RY, 2 € RY: A2\ (2) € [u,v],
and the assumption that Vj € {1,2,..., M}, w € Q: Y;(w) € [u,v] prove that for all
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0,9 € [—-B, B]Y, w € Q it holds that

= 37| 2 (A ) = A ) (5,102

2(v — ) [sup,ep| A0 (@) — A0 )]

M
< 7| 2 (paco A2 0) = A B0yl = 1)

In addition, combining the assumptions that D C [—b,b]¢, d > Z{;l Ll +1), 1) =d,
I, =1, > 1, and B > 1 with Corollary 5.3.7 (applied with a v —=b, b "~ b, u  u,
v, dnd, L« L, [~ 1in the notation of Corollary 5.3.7) shows that for all
0,9 € [-B, B]4 it holds that

SUP,ep| Ao (2) — A5 (2)| < Supgepyal A () — A5 ()]

< Lmax{1, 0}(|[lec + 1)*(max{L, |0]loc, [9]loc "0 = 9llos (5.103)

< OL(|[Uloe + B0 = 0 oo

This and (5.102) imply that for all 6,9 € [-B, B]9, w € Q it holds that
|20, w) — Z(9,w)| < 2(v —u)bL(|[1]|s + 1)*B¥ 7|0 — 9| 0o (5.104)
The proof of Lemma 5.3.8 is thus complete. O

Corollary 5.3.9. Let d,d,o,L,M,K € N, B;b € [1,0), u € R, v € (u,00), 1 =
(Ip, 1y, ..., 1) € NMHU D C [—b,b]%, assumely=d, I, =1, andd >0 = S Li(l,_; +1),
let (2, F,P) be a probability space, let O: Q — [-B,B]Y, k € {1,2,...,K}, be i.i.d.
random variables, assume that ©y is continuous uniformly distributed on [—B, B]4, let
X;:Q = D, je{l,2,....M}, and Y;: Q — [u,v], j € {1,2,...,M}, be random
variables, and let #: [—B, B] x Q — [0, 00) satisfy for all 0 € [-B, B]4, w € Q that

#(0.) = 37 | DI ) = V()P (5105

(cf. Definition 2.1.27). Then
(i) it holds that Z is a (B(|—B, B]) @ F)/B([0, 00))-measurable function and
(ii) it holds for all § € [—B, B]9, p € (0,00) that

(B [mingeqiz,..11%2(0x) — 2(0)"]) " (5.106)
< 4(v — u)bL(|[1]| o + 1)*BY/max{1,r/o} < 4(v — u)bL(|[)| s + 1)¥B* max{1, p}
o K'Y - KL (Mo +1)72]
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(cf. Definition 3.1.16).

Proof of Corollary 5.53.9. Throughout this proof let L € R be given by L = 2(v —
u)bL(|[1]|oo + 1)¥BYY let P: [-B, B]Y — [—B, B]° satisfy for all 0 = (0,0,,...,0q) €
[—B, B]? that P(0) = (01,04,...,0,), and let R: [-B,B]® x Q@ — R satisfy for all
0 € [-B,B]°, w € Q that

R(0,w) = Lzm?ﬂXj(w)) - Yj<w>|2} (5.107)

Note that the fact that V6 € [-B, B]?: A% = 4L implies that for all § € [-B, B]4,
w € it holds that

R0,0) =~ [ﬁ A ) = VP
(5.108)
sz”ﬂ (X, () - wﬂ — R(P(9).).

Furthermore, Lemma 5.3.8 (applied withd ~ 9, Z ~ ([-B, B’xQ 3 (0,w) — R(0,w) €
[0,00)) in the notation of Lemma 5.3.8) demonstrates that for all 6,9 € [-B, B]°, w € Q
it holds that

[R(0,0) = R(¥,w)| < 2(v — w)bL(|[l]jo + 1)*B 1|0 = Vljoc = L[|0 = I]|c.  (5.109)

Moreover, observe that the assumption that X, j € {1,2,..., M}, and Y}, j € {1,2,...,
M}, are random variables ensures that R: [—B, B]® x Q@ — R is a random field. This,
(5.109), the fact that Po©y: Q — [-B, B]°, k € {1,2,..., K}, arei.i.d. random variables,
the fact that Po©; is continuous uniformly distributed on [— B, B]®, and Proposition 5.2.7
(applied with d W0, « » =B, 8 A B, Z ~ R, (Op)kefi2,..x} VO (P 0 Op)kei2,. k)
in the notation of Proposition 5.2.7) prove that for all § € [—B, B]4, p € (0, 00) it holds
that R is (B([—B, B]®) ® F)/B(R)-measurable and

(E [minke{lg ,,,,, K}|R(P(@k)) — R(P(e))‘p})l/l)
< L(28) max{l, (p/a)1/a} _ 4(’0 - U)bL(Hl”OO + 1)LBL max{l (p/b)l/a} (5110)
= Kl/a Kl/a

The fact that P is B([—B, B]Y)/B(|—B, B]?)-measurable and (5.108) hence show item (i).
In addition, (5.108), (5.110), and the fact that 2 <0 =1 Ll +1) < L(1fo + 1)?
yield that for all @ € [-B, B]4, p € (0,0) it holds that

(E [minke{l,z ,,,,, K}|e@(@k) _ %(e)lp})l/p

— (E[mingeqa,..i|RP(OL) — R(PO)P]) (5.111)
< 4(v — u)bL(|1||oe + 1) By /max{1,7/s} < 4(v — u)bL(|1)| oo + 1)L BY max{1, p}
- K'Y - KL ([Mloo+1) 2]

This establishes item (ii). The proof of Corollary 5.3.9 is thus complete. O
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Analysis of the generalisation error

6.1 Monte Carlo estimates

Lemma 6.1.1. Let d, M € N, let (Q, F,P) be a probability space, let X;: Q — R?, j €
{1,2,..., M}, be independent random variables, and assume max;jc(i .. vy E[|| X2 <
oo (cf. Definition 3.1.16). Then

1 [M 1 M TN 1
E|||— Xi|-E|l— ) X, < —= max
( [HM L; ]} [MJ; ]} QD T VM Le{m ----- M)
Proof of Lemma 6.1.1. Throughout this proof let (-,-): R? x RY — R satisfy for all z =

(21,22, ..,2a), ¥ = (Y1, Y2, .- -, ¥a) € R that (x,y) = Z?Zl x;v;. Note that the fact that
for all x € R? it holds that (z,z) = ||z||3 shows that

il =l =)

77777

E[1X,-EX]E) ] (6.1)

2

2
2

= [56] B[ Z |

- 13 06 - mip (6:2)
- | & (- B - i)

- % LM X5 = ]E[Xj]||§} " % {(i,j)e{l,z§M}2J¢j<Xi - EIL X~ B

This, the fact that for all independent random variables Y, Z: Q — R? with E[||Y]|, +
|Z]]2] < oo it holds that E[|(X,Y)|] < co and E[(Y, Z)] = (E[Y],E[Z]), and the as-
sumption that X;: Q@ — R? j € {1,2,..., M}, are independent random variables imply

105



Chapter 6. Analysis of the generalisation error

that
|80 e £

M= M=

1 (& ) 1
= 372 | = B —EXI] | + 55 (E[X: - E[X]].E[X; - E[X}]])

=1 (i.4)€{1.2,, M2, ij

1 _M 2
=0 J;E[HXj — E[X;]|I3]

1 2
<7 Le{{%ﬂ’SM}E[”Xﬁ - E[XJ]HQ}]'

(6.3)

This completes the proof of Lemma 6.1.1. O]

Definition 6.1.2 (Rademacher family). Let (2, F,P) be a probability space and let J be
a set. Then we say that (r});es is a P-Rademacher family if and only if it holds that
ri: Q@ —= {-1,1}, j € J, are independent random variables with ¥Vj € J: P(r; = 1) =
P(T’j = —1)

Definition 6.1.3 (p-Kahane-Khintchine constant). Let p € (0,00). Then we denote by
R, € (0,00] the extended real number given by

( i IR-Banach space (E, ||| g): 1)
I probability space (2, F,P):
_ , IP-Rademacher family (r;) en:
=supg c € |0,00): J/3€ > 6.4
By = supq e €[0,00) Ik €N: 3w, 29, 00 € E\ {0}: (6.4
1/1) 1/2
k k 2
\ (ESannl]) " = (@IS rwly]) ]

(cf. Definition 6.1.2).
Lemma 6.1.4. It holds for all p € [2,00) that 8, < /p —1 < 0o (cf. Definition 6.1.3).

Proposition 6.1.5. Let d,M € N, p € [2,00), let (2, F,P) be a probability space,
let X;: Q — R j € {1,2,...,M}, be independent random variables, and assume
maxei,2,.,m} E[|| Xjll2] < oo (cf. Definition 3.1.16). Then

() ol

(cf. Definition 6.1.3 and Lemma 6.1.4).

1/2

p} )1/P <28, L% E[]1X; — E[X;]1])7 (6.5)

2 =1

Corollary 6.1.6. Let d,M € N, p € [2,00), let (2, F,P) be a probability space, let
X;: Q=R je{1,2,..., M}, be independent random variables, and assume max;e(,2,..m} B[] Xj|l2] <
oo (cf. Definition 3.1.16). Then
1 [M 1M Y 2vp—1
E|l— X | -E|—=Y X, S —
(<l 5] -elm20]l)) <

A_ 1P P
P2 e, (B0 - ELGIE) .

(6.6)

2
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Proof of Corollary 6.1.6. Observe that Proposition 6.1.5 and Lemma 6.1.4 imply that

(el 0] - £ D/
(e[ 0] -3 x][])

M
28, [ M 2, 1/2
< 205 el - ELxig)”
=1 (6.7)
1/2
'ﬁp 2/;7
<7 je{{g??iM}(E[”Xj - E[X;][I5])
ﬁ? p
=i ]E{{g%_)fM}(E[HXj - E[X;]|5])
2\/]) —1 1/p
< ——=—| max (E[|X; - E[X]][E])
VM o [5e{1.2,...M}
(cf. Definition 6.1.3). The proof of Corollary 6.1.6 is thus complete. ]

6.2 Uniform strong error estimates for random fields

Lemma 6.2.1. Let (E,&) be a separable topological space, let (2, F) be a measurable
space, let f.: Q — R, © € E, be F/B(R)-measurable, and assume for all w € ) that
E >z~ f.(w) € R is continuous. Then it holds that

Q3w sup({fe(w): € E}U{0}) € RU {o0} (6.8)
is F /B(R U {oc0})-measurable.

Proof of Lemma 6.2.1. Throughout this proof assume w.l.o.g. that E # 0, let F': Q —
R U {oo} satisty for all w € Q that F(w) = sup,cp fz(w), and let E C E be an at most
countable and dense subset of E. Note that the fact that E is dense in E implies that
for all g € C(E,R) it holds that

sup g(z) = sup g(z). (6.9)
zel z€E

This and the assumption that for all w € Q it holds that £ 3 =z — f,(w) € Ris a
continuous function show that for all w € Q it holds that

F(w) = sup fi(w) = sup fo(w). (6.10)

zelR zeE

The assumption that for all z € E' it holds that f, is F/B(R)-measurable hence demon-
strates that F'is F/B(R)-measurable. The proof of Lemma 6.2.1 is thus complete. [

Lemma 6.2.2. Let (E,§) be a separable metric space, assume E # 0, let L € R, let
(Q, F,P) be a probability space, let Z,: Q — R, x € E, be random variables, and assume
for all x,y € E that E[|Z,|] < o0 and |Z, — Z,| < Lé(x,y). Then it holds that

Q3w sup,ep|Z:(w) — E[Z,]] € [0, 0] (6.11)
is F /B([0, 00])-measurable.
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Proof of Lemma 6.2.2. Note that the assumption that for all x;y € E it holds that
|Z, — Z,| < Lé(x,y) shows that for all z,y € E it holds that

(Z, —BIZ) — (2, — BIZ,))| = |(Z — ) + (E[Z,) — EIZ])| < |Z. — Z,| + [E[Z,] — E[Z,
< Lo(z,y) + [E[Z:] = E[Z,]| = Lo(x, y) + [E[Z, — Z,]|
< Li(z,y) +E[|Z, — Z,|] < Lé(x,y) + Lo(z,y) = 2Lo(z,y).

(6.12)

This implies that for all w € Q it holds that E 5 = — |Z,(w) — E[Z,]| € R is a continuous
function. Combining this and the assumption that E is separable with Lemma 6.2.1
completes the proof of Lemma 6.2.2. n

Lemma 6.2.3. Let (E,0) be a separable metric space, let N € N, p,L,ry,ry,...,rNy €
[0,00), 21,29,...,28v € E satisfy E C (Ufil{x € E:0(x,z) < r}), let (Q,F, p) be
a measure space, let Z,: Q — R, © € E, be F/B(R)-measurable, and assume for all
x,y € E that |Z, — Z,| < Lé(z,y). Then

[ swlze@p u) < & [ (Er+ |2, ) uid) (6.13

(cf. Lemma 6.2.1).

Proof of Lemma 6.2.5. Throughout this proof let By, By, ..., By C FE satisfy for all ¢ €
{1,2,...,N} that B; = {z € E: 6(z,2) < r;}. Note that the fact that E = Y, B;
shows that

SUPyep|Z:| = SUP,e (Y, B;) | Zy| = maxX;eq1 2, N} SUP,ep, | Za|. (6.14)

This establishes that

/ sup | Zo(@)P pudw) = [ max  sup|Zo(w)]? p(dw)
O zelR (9] i€{1v2 7777 N} x€eB;

N . (6.15)
< | Ysup|Z (W) p(dw) = 32 [ sup|Zy(w) [P p(dw).

Qi=12€B; i=1JQ z€B;

Furthermore, the assumption that Vz,y € E: |Z, — Z,| < Li(x,y) implies that for all
ie{l,2,...,N}, x € B; it holds that

|Zw| = |Zw —Z,+ Zzz'| < |Zw - ZZ¢| + |Zzz| < Lo(z, 2) + |ZZ7,| < Lr;+ |Zzz| (6‘16)
Combining this with (6.15) proves that

N
/ sup | Z, (o) pl(dw) < 3 / (Lrs + 2 (@)} u(w). (6.17)
O xelk 1=1JQ
The proof of Lemma 6.2.3 is thus complete. ]

Lemma 6.2.4. Let p, L,r € (0,00), let (E,0) be a separable metric space, let (Q, F, i)
be a measure space, assume E # 0 and p(Q) # 0, let Z,: Q - R, z € E, be F/B(R)-
measurable, and assume for all x,y € E that |Z, — Z,| < Lé(x,y). Then

/ sup | Z, (@) p(dw) < B [sup / (Lr + ] Zo(w)])? () (6.18)
Q Q

zel zeE

(cf. Definition 3.2.13 and Lemma 6.2.1).
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Proof of Lemma 6.2.4. Throughout this proof assume w.l.o.g. that C#9" < oo, let N €
N be given by N = CF97 and let 21, 2o, . .., 2y € E satisfy E C Uf\;l{x €EFE:0(x,z) <
r}. Note that Lemma 6.2.3 (applied with r; v~ 7, 79 7, ..., "x v 7 in the notation of
Lemma 6.2.3) establishes that

[ suplZu@P uide) < 5 [ (Br 412, )P utde)

zelE

(6.19)
N
<3 {Sup / (Lr+ ]Zx(w)|)pu(dw)} _ N[sup / (Lr+ |Zx(w)y)m(dw)].
i=1|z€eE JQ el JQ
The proof of Lemma 6.2.4 is thus complete. O

Lemma 6.2.5. Let p € [1,00), L,r € (0,00), let (E,d) be a separable metric space,
assume E # 0, let (Q, F,P) be a probability space, let Z,: Q — R, x € E, be random
variables, and assume for all x,y € E that E[|Z,|] < oo and |Z, — Z,| < Lé(z,y). Then

(E[sup,celZe — E[Z]1]) " < (€F0)P |2Lr + sup,ep (B[|Z, — EIZ]]) | (6.20)

(cf. Definition 3.2.13 and Lemma 6.2.2).

Proof of Lemma 6.2.5. Throughout this proof let Y,: Q@ — R, x € E| satisfy for all
x € B, w € N that Y, (w) = Z,(w) — E[Z,]. Note that it holds for all z,y € E that

Yo =Yy = (2 = ElZ.]) = (2, = BlZ)))| < |Z: — 2] + [E[Z:] — E[Z,]|

< Lo(x,y) + E[|Z, — Z,|] < 2Ld(x,y). (6.21)

Combining this with Lemma 6.2.4 (applied with L v~ 2L, (Q, F, ) N (2, F,P), (Z2)zep
(Y2)zer in the notation of Lemma 6.2.4) implies that

(E[sup,eplZ: — EIZP])" = (E[sup,epl¥al]) ™

< (D7) sup, e (B[(2Lr + |V2])]) ]
< (A 32” N [|Yx|le/p} (6.22)
= (CEDyIr[2Lr + sup, e (E[| Z, — E[Z)1)) "]
The proof of Lemma 6.2.5 is thus complete. O]

Lemma 6.2.6. Let M € N, p € [2,00), L,r € (0,00), let (E,0) be a separable metric
space, assume E # 0, let (Q, F,P) be a probability space, for every x € E let Yy j: Q —
R, j € {1,2,..., M}, be independent random variables, assume for all x,y € E, j €
{1,2,..., M} that E[|Y, ;|| < o0 and |Y,; — Y, ;| < Lé(x,y), and let Z,: Q@ - R, z € E,
satisfy for all x € E that

2= 3 | £ Vo). (623

Then
(1) it holds for all x € E that E[|Z,]] < o0

(11) it holds that Q1 3 w — sup,cp|Z.(w) — E[Z,]| € [0,00] is F/B([0, 00])-measurable,
and
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(iii) it holds that

(E[supmeE|Z —E[Z]F])"

) 1y (6.24)
S 2(6( ) /e |:L + \/\/j (super maxje{l 2,..., M} (]E“Y:E’] - E[Yx,]] |p]) / >i|

(cf. Definition 3.2.13).

Proof of Lemma 6.2.6. Note that the assumption that Vo € E, j € {1,2,..., M}: E[|Y, ;]| <
oo implies that for all z € E it holds that

z,j

1 M
E{|Z. || =E|—
121 [M

<4 Lz BV, ll) < e BIV]<oo (629

je{1,2,...M}

This proves item (i). Next observe that the assumption that Va,y € E, j € {1,2,..., M}:
Y, — Y, ;| < Ld(x,y) demonstrates that for all z,y € E it holds that

1| M M
|2 — 2] = M‘ LZ Y;c,j] - LZ Yy,j]
=1 =1

Combining this with item (i) and Lemma 6.2.2 establishes item (ii). It thus remains to
show item (iii). For this note that item (i), (6.26), and Lemma 6.2.5 yield that

1 M
< 1| Z ol < B 020

(E[sup,eplZe — E[Z,]PP])" < (CE) )1/”[2Lr+super(E[|Zx—E[Zpr])l/p]. (6.27)

Moreover, (6.25) and Corollary 6.1.6 (applied with d ™ 1, (X})jeq1.2,..m3 0 (Yas)jef1,2,.... 03
for x € F in the notation of Corollary 6.1.6) prove that for all x € E it holds that

(E[1Z. —EIZP])" = ( H i LZ Yw} -k [%é Y”“"’J} p} )w (6.28)

N o
<= L‘e gax - (E[[Yz; — E[Yz,]]"]) } :

This and (6.27) imply that

(E[sup,eplZ: — EIZ)P]) "
< (BN 2L + 221 (sup, e p maxeqra,..an (E[1Vag — BV lP)) )| (6.20)

= 2(C By [Lr + V\}% (super maxjefi 2, vy (E[[Ya; — E[Ya;][7]) /;,)].

The proof of Lemma 6.2.6 is thus complete. O]

Corollary 6.2.7. Let M € N, p € [2,00), L,C € (0,00), let (E,d) be a separable
metric space, assume E # (), let (0, F,P) be a probability space, for every v € E let
Y.t Q= R, je{l,2,..., M}, be independent random variables, assume for all x,y €
E,je{l,2,...,M} that E[|Y,;]] < 00 and |Y,; — Y, ;| < Li(z,y), and let Z,: @ — R,
x € E, satisfy for all x € E that

1 [M
= '§:1 Ym} ) (6.30)
Then
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(1) it holds for all x € E that E[|Z,|] < oo

(i1) it holds that Q > w > sup,cp|Z.(w) — E[Z,]| € [0,00] is F/B([0, 00])-measurable,
and

(iii) it holds that

(E[sup,cx|Z. — E[ZP])"

l/p »
< 2?13\;1 (C(E Qe ) [C’ + Sup,cp maxjeqr 2,y (E[| Y, — E[Yz,j”p})l/ ]
(6.31)

(cf. Definition 3.2.13).

Proof of Corollary 6.2.7. Note that Lemma 6.2.6 shows items (i) and (ii). In addition,
Lemma 6.2.6 (applied with r »~ ¢vP=1/(zva1) in the notation of Lemma 6.2.6) ensures
that

(E[sup,cplZ. — E[Z.]])”

<2(c7 )% [Li? + L2 (sup.cp ke (B Ve — BV 1) )

= 21 (e [0 4 sup,epmasieqa, an (B[Ysy B, P) "] (632
This establishes item (iii) and thus completes the proof of Corollary 6.2.7. O

6.3 Strong convergence rates for the generalisation
error

Lemma 6.3.1. Let M € N, p € [2,00), L,C,;b € (0,00), let (E,5) be a separable
metric space, assume E # 0, let (0, F,P) be a probability space, let X, ;j: & — R,
je{l,2,.... M}, z € E, and Y;: Q - R, j € {1,2,..., M}, be functions, assume for
all v € E that (X,;,Y;), j € {1,2,..., M}, are i.i.d. random variables, assume for all
vye B, je{l,2,...,M} that | X,,; = Y;| <band|X,; — X, ;| < Lé(x,y), letR: £ —
[0,00) satisfy for all x € E that R(z) = E[|X,1 — Y1?], and let Z: E x Q — [0,00)
satisfy for all x € E, w € () that

B, ) = Lzmj() vi)P). (6.33)

Then

(1) it holds that Q > w — sup,cp|Z(z,w) — R(x)| € [0, 00] is F /B([0, 00])-measurable
and

(i) it holds that

Vo (B, =\ [2(C + 1)b2p— T
(Elsup,cpl(a) ~ RG] < (205007 )" [AEED ] (o

(cf. Definition 3.2.13).
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Proof of Lemma 6.3.1. Throughout this prooflet V, ;: @ - R, j € {1,2,... ., M},z € E,
satisfy for allz € E, j € {1,2,..., M} that J,; = | X, ; — Y;|*>. Note that the assumption
that for all x € F it holds that (XM,YJ) je{1,2,..., M}, are i.i.d. random variables
ensures that for all x € F it holds that

s = o[ 3 8l -vip)| - EEE T _pe. ey

Furthermore, the assumption that Vo € E, j € {1,2,...,M}: |X,; —Y;| < b shows that
forall z € E, j € {1,2,..., M} it holds that

E[|Vzil] = E[| Xo; — YjI") <07 < o0, (6.36)
Vej = BlVag) = 1Xeg = Vil = B[[Xoy = YiP"] < [Xoy Vi <0% (6.37)
and
EVe ] = Ve =E[|Xe; = V"] = [Xe; = VI SE[|Xo; - VP°] <0 (6.38)
Combining (6.36)—(6.38) implies for all z € E, j € {1,2,..., M} that

(E[IY2 —ED2IP]) 7 < (B[07]) 7 = 02, (6.39)
Moreover, note that the assumptions that Va,y € E, j € {1,2,...,M}: [|X,,; — Y| <
band |X,,; — X, ;| < Li(z,y)] and the fact that Vzi, 29,y € R: (1 — y)? — (23 — y)* =
(1 — 22)((z1 — y) + (2 — y)) establish that for all x,y € E, j € {1,2,..., M} it holds
that

Ve = Vil = (X = V5)? — (X, = V))?
<[ Xpj — Xy il(|Xey — Y| + Xy — Yil) (6.40)
Combining this, (6.35), (6.36), and the fact that for all z € FE it holds that ), ;,
j€{1,2,..., M}, are independent random variables with Corollary 6.2.7 (applied with

L~ 2bL C 2 Cb2 ( x])xGE je{1,2,....,M} ¥ (yx])er je{1,2,....M}; (Z:r)a:EE 2 (Q S w
H(r,w) € R)zep in the notation of Corollary 6.2.7) and (6.39) proves item (i) and

(Efsup.cpl#(2) - R(@)]) " = (E[sup,cp|%(a) ~ EI2(@)]])"
— b2 p=1\ I/p 1/p
< % (C(E"S)’ WLVAT ) [Cb2 + SUP,cp MaXje(12,... M} (E“yx,j - E[yw”pD ! } (6.41)

— Vp Lp Cbyp=1\ Y/p 2(0 + 1)[)2 D — 1
< 21 (p(E8), 2 | 121 _ (p(E0), St vV ‘
< 25t (c A ) e+ = (c ) =

This shows item (ii) and thus completes the proof of Lemma 6.3.1. O]

Proposition 6.3.2. Let d,d,M € N, L,b € (0,00), a« € R, 3 € (a,0), D C R, [et
(2, F,P) be a probability space, let X; = (X- Y;): Q= (DxR), je{l,2,...,M}, be
i.i.d. random variables, let f = (fo)pciaga: o, B]9 — C(D,R), assume for all 0,0 €
0, B9, j € {1,2,..., M}, 2 € D that | fo(X;) — Y;| < b and |fo(z) — fo(w)| < L6~ 9]l
let R: [a, B]9 — [0,00) satisfy for all 0 € [a, ]d that R(0) = E[| fo(X1) — Y1|%], and let
X o, B]9 x Q — [0,00) satisfy for all 6 € |a, B]4, w € Q that

#(0.) = 37 | S5 - Ve (6.42)
(cf. Definition 3.1.16). Then
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(i) it holds that 2 > w > suPye(y gal Z (0, w)—R(0)| € [0, 00] is F /B([0, o] )-measurable
and

(i1) it holds for all p € (0,00) that

(E [suppe(a g4l2(0) — R(O)[P]) "

< inf 2(C' + 1)b?*max{1, [2v/ ML(3 — a)(Cb)~ ']} \/max{L, p, 4/c}

T Ce€(0,00) \/M (643)
< inf 2(C + 1)b?\/emax{l,p,dIn(4M L%(3 — a)2(Cb)~2)}

~ 0€(0,00) \/M '

Proof of Proposition 0.3.2. Throughout this proof let p € (0,00), let (kc)ce,0) €
(0,00) satisfy for all C € (0,00) that ko = 2VMLB-2)/cw), let Xp;: @ — R, j €
{1,2,...,M}, 0 € [, 8]9, satisfy for all § € [, 8], j € {1,2,... ,M} that Xy ; = fo(X;)
and let §: ([, B]9) x ([a, B]?) — [0, 00) satisfy for all 6,9 € [, B]¢ that §(0, 1) = ||0—1| -
First of all, note that the assumption that V6 € [a, 8], j € {1,2,..., M}: |fo(X;)-Y;] <
b implies for all 0 € [a, ]9, j € {1,2,..., M} that

| Xy — Y| = [fo(X;) = Yj[ <0 (6.44)

In addition, the assumption that V60,9 € [o, 8], z € D: |fo(z) — fo(z)| < L||0 — 9]|wo
ensures for all 0,9 € [a, 8], j € {1,2,..., M} that

| Xy — X 3| = | fo(X;) = fo(Xj)| < supyeplfo(x)— folx)| < LI|6 -V = L5(0,). (6.45)

Combining this, (6.44), and the fact that for all § € [a,S]? it holds that (X, ,Y;),
j€{1,2,..., M}, are i.i.d. random variables with Lemma 6.3.1 (applied with p «\ ¢,

C O, (Eb) < ([a,8]%0), (Xaj)ecr,jefiz..ny O (Xoj)ocaga, jeqi2,...my for ¢ €
2,00), C' € (0,00) in the notation of Lemma 6.3.1) demonstrates that for all C' € (0, c0),
q € [2,00) it holds that > w = supye(y ga|Z(0,w) — R(0)| € [0,00] is F/B([0, c0])-
measurable and

Vq N cov=i\Ya [2(C' + 1)b%/q — 1
(E supacio sl 2(6) ~ RO < (0705557 )| AELDNVIZE] (a0

(cf. Definition 3.2.13). This finishes the proof of item (i). Next observe that item (ii) in
Lemma 3.2.14 (applied with d ~d, a ™ a, b~ 3, r r for r € (0,00) in the notation
of Lemma 3.2.14) shows that for all r € (0, 00) it holds that

ClIIT < o, (25%) + (52) Moo (%5°)
< max{1, (2) }(1[0 1(55%) + e (552)) (6.47)

— max{1, (552)"}.

This yields for all C' € (0,00), ¢ € [2, 00) that
(C<[a,md,a),%)”q < max {1’ (2(5a>wﬂ>‘3}

Cby/q—1
} - maX{l (kc) }

< max{l (—Q(Bfa)Lm>
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Jensen’s inequality and (6.46) hence prove that for all C,e € (0, 00) it holds that

(B [5uPocio 41 (0) — R(O)])
< (E[supgeia 54| 2(0) — R(0)[m204] ) mtzrares
2(C' + 1)b*y/max{2, p,d/c} — 1
vM (6.49)
C)min{d/Q,d/p,s}} 2(0 —+ 1)b2\/max{1,p — 17 d/g — 1}
VM
2(C' + 1) max{1, (k) }/max{1, p, d/s
<
VM

Next note that the fact that Va € (1,00): a/C™@) = "@/@n@) — ¢'/2 — | /o > 1 ensures
that for all C' € (0, 00) with k¢ > 1 it holds that

2(C + 1) max{1, (rc)° } /max{1, p, d/s}]

< max{l, (nc)m}

= max{1, (x

inf
€€(0,00)

VM
_ 2(C + D max{1, (re) ")} fmax{ L, p, 3 W)} (650
- vM
2(C' + 1)b?/emax{1,p,dIn([rc]?)}
N :

In addition, observe that it holds for all C' € (0, 00) with k¢ < 1 that

2(C' + 1)b*max{1, (ko) }/max{1, p,d/:} ]

inf
€€(0,00)

VM
2(C + 1)b2\/ml < 2AC+ 1Y max{1,p} (6.51)
= <

= inf
€€(0,00)

Vi Vil
2(C + 1)b*/emax{1,p,dIn([rc]?)}
< .
VM
Combining (6.49) with (6.50) and (6.51) demonstrates that

(E [subgefa, e #(0) — R0 0)7])"”

< i |ACFDmax{l, (rc) }\/W]

T C,e€(0,00) I v M
o [20 4 08 max{1, [VATL( — )(Ch) 7}/ L 4
= in
C,e€(0,00) v M (652)
_ e [0+ 0pemadtp din(kel)}
in
 Ce(0,00) I v M
- [2(C + 1)0?/emax{1, p, dIn(AML2(3 — )2(Cbh) 2)}
= in .
Ce(0,00) I v M
This establishes item (ii) and thus completes the proof of Proposition 6.3.2. O]
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Corollary 6.3.3. Let d,d,L,M € N, B)b € [1,0), u € R, v € [u+ 1,00), 1 =
(Ip, 1y, ..., 1) € N¥U D C [=b,0]?, assumelg=d, I, = 1, and d > S5 L(Liy + 1), let
(Q,F,P) be a probability space, let X; = (X;,Y;): Q@ — (D x [u,v]), j € {1,2,..., M},
be i.i.d. random variables, let R: [—-B, B]¢ — [0,00) satisfy for all € [—-B, B]? that
R(0) = E[|A4%1(X1) — Y1|?], and let Z: [—-B,B]? x Q — [0,00) satisfy for all 0 €
[-B,B]4, w e Q that

#(0.) = 37 | LI ) = ()P (6.53)

(cf. Definition 2.1.27). Then
(i) it holds that Q > w > supye_p pualZ(0,w) — R(0)] € [0,00] is F/B([0,00])-

measurable and

(i) it holds for all p € (0,00) that

(E[supser_pps2(60) ~ROF]) "
~ 90— w’L(|[ls + 1) y/max{p, n(4(Mb) (1] + 1) B)}
. VM (6.54)
< 9(v — u)?L(||1]|sc + 1)? max{p, In(3M Bb)}
- VM
(cf. Definition 3.1.16).

Proof of Corollary 6.5.5. Throughout this proof let 0 € N be given by 0 = Z}Il L(L+
1), let L € (0,00) be given by L = bL(||1||ec +1)“BY, let f = (fo)oe-p,5p: [-B, B> =
C(D,R) satisty for all 0 € [-B,B]*, x € D that fy(x) = A%\ (), let Z: [-B,B]> —

[0, 00) satisfy for all 6 € [-B, B]® that Z(0) = E[| fo(X1) — Y1|?] = E[|/%'(X1) — V1],
and let R: [—B, B]° x Q — [0, 00) satisfy for all § € [-B, B]°, w € Q that

1 [M 1 [M
RO.w) = 37| S 1A = V)P | = 57| SHSGE) - VW] 659
Note that the fact that V6 € R, z € R?: A4 %!(z) € [u,v] and the assumption that
Vjie{l,2,...,M}:Y;() C [u,v] imply for all 0 € [-B,B]°, j € {1,2,..., M} that
| fo(X5) = V5] = [A0NX;) = Y| < supy, yycpunlys — v2l = v —u. (6.56)

Moreover, the assumptions that D C [—b, b]¢, 1y = d, and 1, = 1, Corollary 5.3.7 (applied
witha ~ =b, b b, u Nu, v nv,d 0, L L |~ 1in the notation of Corol-
lary 5.3.7), and the assumptions that b > 1 and B > 1 ensure that for all 6,9 € [-B, B]°,
x € D it holds that

Fol@) = Fo(@)] < supye el X0 w) — A2 )]
< Lmax{1, 0} (1o + 1) (max{L, [8lloc. [0l = Vlloc  (6.57)
< BL(|l|oc + DYBY 6 — 9]l = L[I6 — ).

Furthermore, the facts that d > 0 and VO = (61,60,,...,04) € RY: %?{;1 = %%1,92 """ 02)1
prove that for all w € ) it holds that

Supee[fB,B]dL%(@a w) —R(0)] = SUpee[fB,B}°|R(9»W> —%(0)|. (6.58)
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Next observe that (6.56), (6.57), Proposition 6.3.2 (applied with d v 0, b v — u,
an =B, B RANZ, % ~ R in the notation of Proposition 6.3.2), and the facts
that v —u > (u+1) —u=1and 0 < L[|l (Jljec +1) < L(|]1]|oc + 1)* demonstrate
that for all p € (0,00) it holds that Q > w > supgei_p pp|R(0,w) — Z(0)| € [0,00] is
F/B([0, 00])-measurable and

(E [Supgg[,B,B}a |R(9) — %(9) ‘p:| ) p

< inf _2(0_'_1>(U_u>2\/emax{l’p’aln<4ML2(ZB>2(C[U—u])*2)}

T Ce(0,00) i \/M (659)
< inf 2(C + 1)(v — u)?y/emax{1, p, LNl + 1)? n(2TM L2B2C-2)}

T Ce(0,00) I \/M .

This and (6.58) establish item (i). In addition, combining (6.58)—(6.59) with the fact
that 26L% < 26 . 22(L—1) = 24+2L < 94L+2L — 96L anq the facts that 3 >e, B> 1, L > 1,
M > 1, and b > 1 shows that for all p € (0, 00) it holds that

(E [suppe_p.5a| 2(0) — RO)])” = (E[supgei_p.p:|RO) — 2(0)17]) "
< 2(Y2+ 1) (v — u)?y/emax{l, p, L(|[l]|oc + 1)2In(24M L2 B?22)}
- NITi
3(v — u)?y/emax{p, L[]l + 12 (25 MEPL2 ([ + 1)2B7E)}
NaTi
_ 3 — w?Vemax{p, 3L (N + D’ MR MP(I]lc + B0y (6:60)

=

_ 3 — u)*y/Bmax{p LA + 1

~—

2 In(22(M6?)/0 (1|0 + 1) B) }

=

9(v — u)*L(|[lfl + 1)y/max{p, In
<
v M
Furthermore, note that the fact that Vn € N: n < 2"~ and the fact that ||1|| > 1 imply
that

~—~

4(Mb) (||l +1)B)}

4([1|oo + 1) < 22 - 2Nt D=1 — 93 . 2(Mlee+1)=2 < 32, 3(lllec+1)=2 — 3(Illec+1) (6.61)

This demonstrates for all p € (0, c0) that

9(v — u)’L(|[1l + 1) v/max{p, In(4(M0)"/ (|l + 1) B)}

vVM
90 = wL( + 1) /amap, (W + D W@ ZBITI= )] g oo
B VM
9(v — u)?L(|[1]|oo + 1)* max{p, In(3M Bb)}
< .
vM
Combining this with (6.60) shows item (ii). The proof of Corollary 6.3.3 is thus complete.
[
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Analysis of the overall error

7.1 Full strong error analysis for the training of ANNs

Lemma 7.1.1. Letd,d,L € N, p € [0,00), u € [-00,00), v € (u,00], 1 = (lp, 1y, ...,1p) €
Nl D C R?, assume ly = d, I, = 1, and d > ZZ];I Ly +1), let £&: D — R
be B(D)/B(R)-measurable, let (Q,F,P) be a probability space, and let X: Q — D,
k: Q — (No)?, and Oy,,: Q = R, k,n € Ny, be random variables. Then

(i) it holds that RY xR 5 (0, z) — AN (x) € R is (B(RY) @ B(RY)) /B(R)-measurable,
(ii) it holds that Q 3 w + Ok (w) € RY is F/B(RY)-measurable, and

(iii) it holds that
Qo3w— / ]%?}k(”)(w)’l(x) — E(x)]PPx(dx) € [0, o] (7.1)
D

is F /B([0, 00])-measurable
(cf. Definition 2.1.27).

Proof of Lemma 7.1.1. First, observe that Corollary 5.3.7 (applied with a v —||z||o0, b
12|00, u N u, v v, d~d, L AL, I~ 1for z € R in the notation of Corollary 5.3.7)
demonstrates that for all x € R?, 6,79 € R? it holds that

|</’Z?7}1($) - %ﬁjl(ﬁﬂ < SUPy e[ ]loos ]l oo]l0 |</’Z(,91}1(y) - %ﬁll(y)’

L L1 (7.2)
< Lmax{1, [[#{loo } (Ioe + 1)™ (max{L, [|f]loc, [[Illoc})™ 16 = Voo
(cf. Definition 3.1.16). This implies for all z € R that
RY> 60— A0 (z) eR (7.3)

is continuous. In addition, the fact that V6 € RY: 4% € C(R% R) ensures that for
all 0 € RY it holds that R? 3 = — A4 %l(z) € R is B(R?)/B(R)-measurable. This,

(7.3), the fact that (RY,||-||oc|ra) is a separable normed R-vector space, and Lemma 5.2.6
show item (i). Next we prove item (ii). For this let =: Q — RY satisfy for all w €
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that =Z(w) = O (w). Observe that the assumption that Oy, :  — RY, k,n € Ny, and
k: Q — (Np)? are random variables establishes that for all U € B(R?) it holds that

E'U) ={weQ: Ew) €U} ={w € Q: Oyy(w) € U}
={w e Q: [3k,n € No: ([Opn(w) € U A [k(w) = (k,n)])] }

_ k[’_jo [’jo({w €Q: Opaw) EUIN{w e Qi kw) = (kn)})  (T4)

= U U ([(Orn) ()] N[k ({(k,n)})]) € F.

k=0n=0

This implies item (ii). Moreover, note that item (i)-item (ii) yield that Q x R >
(w,2) = A () € R is (F ® B(R?))/B(R)-measurable. This and the assump-
tion that £: D — R is B(D)/B(R)-measurable demonstrate that Q2 x D > (w,x)
| A S @ () — E(x)|P € [0,00) is (F @ B(D))/B([0, 00))-measurable. Tonelli’s theorem
hence establishes item (iii). The proof of Lemma 7.1.1 is thus complete. O

Proposition 7.1.2. Let d,d,L, M, K,N € N, b,c € [1,00), B € [¢,0), u € R, v €
(u,00), 1= (lp,13,...,1) e N\HL T C {0,1,...,N}, D C [-b,b]¢, assume 0 € T, 1y = d,
I, =1, and d > le:l L(Liq + 1), let (2, F,P) be a probability space, let X;: Q — D,
JEN, and Y;: Q — [u,v], 7 € N, be functions, assume that (X;,Y;), j € {1,2,..., M},
are i.i.d. random variables, let £: D — [u,v] be B(D)/B([u,v])-measurable, assume that

it holds P-a.s. that £(X;) = E[V1|Xy], let Orn: Q@ — R, k,n € Ny, and k: Q —

(No)? be random variables, assume (\Upe, @ho(Q)) C [- B,B] , assume that Oy, k €

{1,2,..., K}, are i.i.d., assume that Oy is continuous uniformly distributed on [—c, ]9,

and let Z: RY x Q — [0,00) satisfy for all € RY, w € Q that

1 M
#(0.) = 37 | S ) @] and (7.5)
k(w) € argmin(k,n)e{l,Q ..... K}XT, ||k n(W)||co<B K (O (W), w) (7.6)

(cf. Definitions 2.1.27 and 3.1.16). Then it holds for all p € (0,00) that

(=l - e an)' )"
4(v — u)bL(|[1|| e + 1)kt max{1, p}

< [infGE[fc,c}d SumeDL”{f{}(x) - S(m)ﬂ + KL (Moo +1)~2]
18 max{1, (v — u)*}L(||1]|o + 1) max{p, In(3M Bb)}
’ Vi
[lnfGE[—c cJd SqueD|%?{;l(x) - 5(x)|2}
20max{1, (v — u)?}bL(||l||c + 1)¥ " BY max{p, In(3M)}
mln{\/_ M. KL (Uleo+1)~ }}

(cf. item (iii) in Lemma 7.1.1).

(7.7)

+

Proof of Proposition 7.1.2. Throughout this proof let R: RY — [0, 00) satisfy for all
0 € R? that R(0) = E[|.4,%'(X1) — Y1|°]. First of all, observe that the assumption that
(Ury ©1,0(2)) C [-B, B]4, the assumption that 0 € T, and Proposition 4.2.1 show that
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for all ¥ € [—B, B]4 it holds that

/ A8 () — E(2)]? P, (da)

< [Supaep @) — E@)P] + 2[5upger_ppel #(6) — RO)]
+ Ming nye (1,2, K} T, [Opnlloo<BIZ(Okn) — Z(V)|

< [supsepl A3 (@) = E@)] + 2[supgei—p,p1al 2(0) — R(O)]] e
+ minge(12,.. K}, ||@k,0||oo§3192(@k,0) — (V)|

= [supyep| A (x) — E(@) ] + 2[supge;_p pal 2(0) — R(9)]
+ mingeqi 2., K}|f%j(@k,0) —Z(0)|.

Minkowski’s inequality hence establishes that for all p € [1,00), ¥ € [—¢,c]¢ C [-B, B]4
it holds that

(- orpean) )
< (Efsup,ep| A5 () = £(@)P7]) " + 2(E[supperppal2(0) ~ ROP])”

+ (E[mingeqia... )| 2(Or0) — Z(0)7])" (7.9)
< [Supx€D|%ﬁ}l(fL‘) —E(@)P] +2(E [supge[foB]dL@(@) _ R(0)|p])1/”

+ SUDge—cga (B [minger . k3|2 (Ok0) — %(6’)|p})1/p

(cf. item (i) in Corollary 6.3.3 and item (i) in Corollary 5.3.9). Next note that Corol-
lary 6.3.3 (applied with v v\ max{u + 1,v}, R ~\ R|_p pa, Z  Z|_p paxq in the
notation of Corollary 6.3.3) proves that for all p € (0, 00) it holds that

(E[supoe;-p.502(6) ~R(O)])”
9(max{u + 1,v} — u)?L(||l]|ec + 1)? max{p, In(3M Bb)}
= VM (7.10)
_ 9max{1, (v — u)*}L(J|1]|oc + 1)* max{p, In(3M Bb)}
i :

In addition, observe that Corollary 5.3.9 (applied with @ ~ Y27 L(Liy + 1), B ~
¢, (Or)kefrz..xy N (23 w — H{Gkoe[—ccd}( w)Opo(w) € [_Cuc]d)kE{l,Q ..... K}, #£ N
R|(—cgaxq in the notation of Corollary 5.3.9) implies that for all p € (0,00) it holds
that

SUDpe| Cc]d(IE[minke{l,g 77777 K”%(@k,g)—%(@)m)%

) p
= Sup@e[—c,c]d ( [mlnké{l 2,..,K} |'%(:H'{9k 06[—070}‘1}@]“,0) - ‘%<9) |p}) (711)
4(v — w)DL(|1| oo + 1)Ect max{1, p}
<
- KL (|1 oo +1)~2]

Combining this, (7.9), (7.10), and the fact that In(3M Bb) > 1 with Jensen’s inequality
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demonstrates that for all p € (0,00) it holds that
(B[ ([ 148" ) - €@ Px, (a)) | )%
- (E {(/DW%‘"(I) ~ £()]*Px, (d@)maxﬂ’p}} )'“”

< [infe(c,ga supgepl 400 (2) — E(@) ]
..... 1) 2 (Or0) — 2 (0)| 7)) i (7.12)

+ 2(E[suppei_p 5l 2(6) — R(O)=0#1]) mslin

_ 4(v — w)bL(|1|| oo + 1)Ect max{1, p}
< [t eugs 0D ph A20) — E()P] + Rl

N 18 max{1, (v — u)*}L(||1]|c + 1)* max{p, In(3M Bb)}
i :

Moreover, note that the fact that Vz € [0,00): z+1 < e* < 3% and the facts that Bb > 1
and M > 1 ensure that

+ SUPge|_c d (E [mingeq2

In(3M Bb) < In(3M35°~1) = In(3%°M) = BbIn([35°M]Y®) < BbIn(3M).  (7.13)

The facts that |1l +1>2, B>¢>1,In(3M) >1,b> 1, and L > 1 hence show that
for all p € (0,00) it holds that

4(v — u)bL(||1]|c + 1) c* max{1, p}
KL (oo+1) 2]
N 18 max{1, (v — u)*}L(]|1]|oc + 1)* max{p, In(3M Bb)}

vM
2(|Nls + 1) max{1, (v — u)?}bL(|[1||oc + 1)¥ BE max{p, In(3M)} 4
= K (Moot 7] (7.14)
18 max{1, (v — u)*}OL(||1]|c + 1)* B max{p, In(3M)}
+
vM
20 max{1, (v — u)?}L(|[1]|c + )Y B¥ max{p, In(3M)}
- mln{\/ K[L (INMfoo+1)~ }} ’
This and (7.12) complete the proof of Proposition 7.1.2. O

Lemma 7.1.3. Let a,z,p € (0,00), M,c € [1,00), B € [¢c,00). Then
(i) it holds that ax? < exp(a"2X) and
(ii) it holds that In(3M Bc) < 28 1n(eM).

Proof of Lemma 7.1.5. First, note that the fact that Vy € R: y + 1 < e¥ demonstrates
that

ax? = (al/”x)p = [e(al/pﬁ -1+ 1)}p < [eexp(al/pg — 1)}p = exp(al/”%). (7.15)

This proves item (i).
Second, observe that item (i) and the fact that 2v3/e < 23/1s ensure that

3B% < exp(\/_QB) = eXp(Q‘[B) < exp(22). (7.16)
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The facts that B > ¢ > 1 and M > 1 hence imply that
In(3MBe) < In(3B*M) < In([eM]*"*) = ZE1n(eM). (7.17)
This establishes item (ii). The proof of Lemma 7.1.3 is thus complete. [

Theorem 7.1.4. Let d,d,L, M, K,N € N, A € (0,00), Lya,u € R, b € (a,0), v €
(u,0), ¢ € [max{l,L,|al,|b|,2|ul,2[v]}, ), B € [c,00), 1 = (lp,1;,... 1) € NEFL
T C {0,1,...,N}, assume 0 € T, L > Aletoo)D/2a) + 1, Iy = d, 1; > Alge,)(A),
I, = 1, and d > 3% L,(Liy + 1), assume for all i € {2,3,...} N [0,L) that 1; >
1(64,00) (A) max{4/a — 2i + 3,2}, let (Q,F,P) be a probability space, let X;: Q@ — [a,b]?,
JEN, and Y;: Q — [u,v], j € N, be functions, assume that (X;,Y;), j € {1,2,..., M},
are i.i.d. random variables, let £: [a,b]* — [u,v] satisfy P-a.s. that £(X;) = E[Y;|X1],
assume for all z,y € [a,b]? that |E(x) — E(y)| < Lz —yl1, let O @ — R, k,n € Ny,
and k: Q — (No)? be random variables, assume (e, Oro(?)) C [ B, B]4, assume that
Oko, k € {1,2,..., K}, are i.i.d., assume that ©1 is continuous uniformly distributed
on [—c,c]d, and let Z: R x Q — [0,00) satisfy for all § € RY, w € Q that

1 M
#0.9) = 37 |SIAG) - V@R wd @y
=1
k(w) € argming, ,yeq12,. K} xT, [0pn (@) <B Z(Okn(w),w) (7.19)

(cf. Definitions 2.1.27 and 3.1.16). Then it holds for all p € (0,00) that

([ 0P )
9?L*(b —a)?  4(v — u)L(|[|le + 1)EcE T max{1, p}

= A4 KL (e +1)72]
18 max{1, (v — u)*}L(||1]|oc + 1)? max{p, In(3M Bc)}
_I_
v M
36" AL(|f| + DY max{1,p} = 23B3L(||l||e + 1)?> max{p,In(eM)}
S Ty T KL (=17 + 7

(7.20)
(cf. item (iii) in Lemma 7.1.1).

Proof of Theorem 7.1.J. First of all, note that the assumption that Vz,y € [a, b]?: |E(x)—
E(y)| < L|jx — yl||, ensures that £: [a,b] — [u,v] is B([a, b]?)/B([u, v])-measurable. The
fact that max{1, |al,|b|} < ¢ and Proposition 7.1.2 (applied with b « max{1, |al,|b|},
D A [a,b]? in the notation of Proposition 7.1.2) hence show that for all p € (0,00) it
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holds that

(E| (b2 = 60 i dx) D

< [1nf9€[—c c]d SUPgz¢|q, b]d\
4<v—u)max{1,|a|,|b|}L<||1||oo >chax{1,p}
+ KTt D7)
N 18 max{1, (v — u)?}L(|[1]|oe + 1)* max{p, In(3M Bmax{1, |al, [b|})}

vM
- 4(v — w)L(|[f|o + 1)*c¥* max{1, p}
< [1nf9€[7c,c]d Supme[a,b]d‘%?{}(x) - 5(x)|2] + KL= oo +1)~2]

N 18 max{1, (v — u)*}L(|[1]|oc + 1)* max{p, In(3M Bc)}
=7 .
Furthermore, observe that Proposition 3.2.29 (applied with f v £ in the notation of

Proposition 3.2.29) proves that there exists ¥ € R? such that ||| < max{1, L, |al,[b], 2[sup e, /€ (2)]
and

(7.21)

3dL(b— a)
Supxe[a7b]d|%l,91;1<x) - g(l‘)| S T

The fact that V. € [a,b]?: £(x) € [u,v] hence implies that

(7.22)

[9lloe < max{1, L, |al, [b], 2[ul, 2]v[} < c. (7.23)
This and (7.22) demonstrate that

lnfGE[ c,c]d Sque[a b4 ‘ ( ) g( ) |

< Sque[a,b]d| u,v ( ) ( )|2 (7.24)
[3dL(b - a)] > 9d2L2(b — a)?

< = .

- AYd A%

Combining this with (7.21) establishes that for all p € (0, 00) it holds that

(B[( [ ree) P an)])”

< 9BL?(b—a)?  4(v — u)L(|1|le + 1)Ec ™ max{1, p}
ST T KL (Mot D7)
N 18 max{1, (v — u)*}L(||l||c + 1) max{p, In(3M Bc)}

VM

Moreover, note that the facts that max{1, L, |a|, |b|} < ¢ and (b — a)* < (|a| + |b])?
2(a® + 1?) yield that

(7.25)

9L (b —a)? < 18c%(a® + b?) < 18c*(c® + ¢*) = 36¢". (7.26)

In addition, the fact that B > ¢ > 1, the fact that M > 1, and item (ii) in Lemma 7.1.3 en-
sure that In(3M Be) < 28 1In(eM). This, (7.26), the fact that (v—u) < 2max{|ul, |[v]} =
max{2|ul,2|v|} < ¢ < B, and the fact that B > 1 prove that for all p € (0,00) it holds
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that
92L*(b —a)?  4(v — u)L(|le + 1)EcE T max{1, p}
A%/ KL ([Mloo+1) 2]

18 max{1, (v — u)*}L(||1]|o + 1)* max{p, In(3M Bc)}

+
vVM

36" AL(|[l]l + 1)EcE P max{1,p} = 23B3L(||l||e + 1) max{p,In(eM)}

= A7 KL (Mt D 7] + NGTi '

(7.27)
Combining this with (7.25) shows (7.20). The proof of Theorem 7.1.4 is thus complete. [

Corollary 7.1.5. Let d,d,L,M,K,N € N, Lya,u € R, b € (a,00), v € (u,0), ¢ €
max{1, L, |al, |b], 2|ul,2|v|}, <), B € [¢,00), 1 = (lp,1,...,1p) € NLFL T C {0,1,...,
N}, assume 0 € T, 1y = d, I, = 1, and d > Zz];l L(Ly + 1), let (Q,F,P) be a
probability space, let X;: Q — [a,b]?, j € N, and Y;: Q — [u,v], j € N, be functions,
assume that (X;,Y;), j € {1,2,..., M}, are i.i.d. random variables, let £: [a,b]* — [u,v]
satisfy P-a.s. that £(X;) = E[Y1]|X4], assume for all z,y € [a,b]? that |E(z) — E(y)| <
Ll|lz —y|1, let Opp: Q@ = R, k,n € Ny, and k: Q — (Ny)? be random variables, assume
(Uzozl @k,o(Q)) C [-B, B]4, assume that O, k € {1,2,..., K}, are i.i.d., assume that
O1, is continuous uniformly distributed on [—c,c|?, and let Z: R x Q — [0,00) satisfy
for all ® € R, w € Q) that

1 [ M
#0.0) = 37 |ZIA) - V@R a2
=1
k(w) € argming, ,ye12.. K)xT, |65 @)w<B Z (Okn(w), w) (7.29)
(cf. Definitions 2.1.27 and 3.1.16). Then it holds for all p € (0,00) that

<E K/[b} [ Al (@) — E@)* Py, (dx)>p/2 } >1/,,

. 3L — a) 2w — WL(los + 1) max{1, /21"
~ [min({L} U{l;: i e NN [0,L)})]"/ KL~ (1l +1)72]
3max{1l,v — u}(||l||oc + 1)[L max{p, 21n(3MBc)}]l/2
+ M1/4 (730)
< 6dc? 2L(|11| 0 + 1)Lt max{1,p}
~ [min({L}U{L: i e NN [0,L)})]"* KL~ (Mo +1) 2]
5B%L(||1]|c + 1) max{p,In(eM)}
+ il

(cf. item (iii) in Lemma 7.1.1).

Proof of Corollary 7.1.5. Throughout this proof let A € (0,00) be given by
A=min({L} U{l;: : e NN[0,L)}). (7.31)

Note that (7.31) ensures that

LEA:A—l—l-lz(A—l)]l[g,ooﬂA)—l—l

, (7.32)
> (A= 2)Lpooy(A) +1 = 222 47 > Aletea) 4
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Moreover, note that the assumption that Iy, = 1 and (7.31) imply that
L = hiy(L) + hilpe) (L) = Ly (L) + Allpe (L) = A = Ale,00)(A). (7.33)
Furthermore, observe that (7.31) shows that for all ¢ € {2,3,...} N[0, L) it holds that

L >A> A]l[gpo)(A) > ]1[2700)(14) maX{A -1, 2} = 1[2700)(14) maX{A — 4+ 3, 2}

7.34
> 12,00 (A) max{A — 2i + 3,2} > L(gd,00)(A) max{A/a — 2i + 3,2}. (7.34)

Combining (7.32)—(7.34) and Theorem 7.1.4 (applied with p v 2/2 for p € (0,00) in the
notation of Theorem 7.1.4) establishes that for all p € (0, 00) it holds that

([(f b - st ) )
_9PLA(b— ) 40— w)L([Us + DM max{1,7/2)

- A% KL (Moo +1) 2]
N 18 max{1, (v — u)*}L(||1]|oc + 1)* max{?/2,In(3M Bc)} (7.35)
v M
36d%"  AL(|]1]|le + 1)EcE P max{1,r/2}  23B3L(|]1]|e + 1)? max{r/2, In(eM)}
= A KL (Mt 7 NG '

This, (7.31), and the facts that L > 1, ¢ > 1, B > 1, and In(eM) > 1 demonstrate that
for all p € (0, 00) it holds that

(B(f, b0 ~ )P P a) )"

. 34L(b — a) 20 WL + V¥ max(1, )]
~ [min({L}U{L: i e NN[0,L)})]"* KL (Moo +1)72]
3max{1,v — u}(||l]|ec + 1)[Lmax{p, 2In(3M Bc)}]
+ Rl
< Gdc? AL + D e 2 max {1 )]
S min({L}U{L:ieNAO.LNF K@) (1) 7 (7.36)
5B LI e + 1)? masc{sfo, In(e M)}
+ il
< 6dc? 2L(|[1]|oo + D)2 max{1, p}
~ [min({L} U{L: ¢ e NN [0,L)})]¥ KL~ ([1oo+1)72]
5B2L(|[1]|oe + 1) max{p, In(eM)}
+ il .
The proof of Corollary 7.1.5 is thus complete. ]

7.2 Full strong error analysis for the training of ANNSs
with optimisation via stochastic gradient descent
with random initialisation

Corollary 7.2.1. Let d,d,L,M,K,N € N, Lya,u € R, b € (a,00), v € (u,0), ¢ €
[max{1, L, |al, |b], 2ul],2|v|},0), B € [¢,00), 1 = (lp,1,...,1p) € NLFL T C {0,1,...

)
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N}, (J)nen CN, (Y)nen € R, assume 0 € T, Iy =d, 1, =1, and d > Zg‘zl L +1),
let (2, F,P) be a probability space, let Xf’”: Q — [a, b, k,n,j € Ny, and Y]k” Q —
[u,v], k,n,j € No, be functions, assume that (X°,Y29), j € {1,2,..., M}, are i.i.d. ran-
dom variables, let £ [a,b]? — [u,v] satisfy P-a.s. that £(XY) = E[Y | XD0], assume for
all x,y € [a,b]? that |E(x) —E(y)| < Ll|x—yll1, let Oppn: Q@ — R kn € Ny, andk: Q —
(No)? be random variables, assume (Upe, Oro(Q)) C [-B, B]%, assume that Oy, k €
{1,2,..., K}, are i.i.d., assume that ©1 is continuous uniformly distributed on [—c, |9,
let %" RY x Q — [0,00), k,n,J € Ny, and GF": RY x Q — R, k.n € N, satisfy for
alk,neN weQ, 0e{deR: (Zy"(-,w): RY — [0,00) is differentiable at 9)} that
Gkn(0,w) = (Vg%_’f;”)(@,w), assume for all k,n € N that O, = O 1 — G (Opn_1),
and assume for all k,n € Ny, J €N, 0 € RY, w € Q that

177

B (0.) = 5| S @) <V ed (7
=1

k(w) € argming e kyxT, [0 (@)oo <B Zt (O1m(W), W) (7.38)

(cf. Definitions 2.1.27 and 3.1.16). Then it holds for all p € (0,00) that

(El(f -t 0]

< 3dL(b — a) L 2w = WLl + D maxfl, r/2}] "

~ min({L}uU{L: i€ NN0,L)})]7 KL~ (oo +1)72]
N 3max{1,v — u}(||l]|ec + 1)[Lmax{p, 2In(3M Bc)}]"/

T (7.39)
< 6dc? 2L(|[1]|oo + DX max{1, p}
~ min({L} U{L;: i € NN [0,L)})]"* KL= (Moo +1)72]
N 5B2L(|[1]|oe + 1) max{p, In(eM)}

MY+
(cf. item (iii) in Lemma 7.1.1).

Proof of Corollary 7.2.1. Observe that Corollary 7.1.5 (applied with (X;);en < (X79)jen,

(Yi)jen 0 (Y?0)jen, Z ~ Z37 in the notation of Corollary 7.1.5) shows (7.39). The

proof of Corollary 7.2.1 is thus complete. O

Corollary 7.2.2. Let d,d,L,M,K,N € N, Lya,u € R, b € (a,0), v € (u,0), ¢ €
[max{1, L, |a|, |b], 2|u|, 2|v|}, <), B € [c,00), 1 = (Ip,1;,...,1p) € NEFL T C {0,1,...,
N}, (J)nen €N, (Vn)nen C R, assume 0 € T, Iy =d, 1, =1, and d > Z?:l L +1),
let (2, F,P) be a probability space, let X]’-“’”: Q — [a,b] k,n,j € Ny, and Y;k” Q —
[u,v], k,n,j € No, be functions, assume that (X3°,Y9), j € {1,2,..., M}, are i.i.d. ran-
dom variables, let £ [a,b]? — [u,v] satisfy P-a.s. that £(XY) = E[Y°| X0, assume for
all z,y € [a,b]? that |E(x) —E(y)| < Ll|x—yll1, let Oppn: Q@ — R k,n € Ny, andk: Q —
(No)? be random variables, assume (Upe, Oro(Q)) C [-B, B]%, assume that Oy, k €
{1,2,..., K}, are i.i.d., assume that ©1 is continuous uniformly distributed on [—c, |9,
let %" RY x Q — [0,00), k,n,J € Ny, and GF": RY x Q — R, k.n € N, satisfy for
alk,neN weQ, 0e{deR: (Z"(-,w): RY = [0,00) is differentiable at 9)} that
Gh(0,w) = (VoZ5™)(0,w), assume for all k,n € N that O, = Opn_1 —1G"" (O n_1),
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and assume for all k,n € Ny, J €N, 0 € RY, w € Q that

1 J
B (0.) = | S -V wd ()
k(w) € argming e i1 k<, 01 (@)oo <8 Zt (Orm(W), W) (7.41)

(cf. Definitions 2.1.27 and 3.1.16). Then

_ L L+1]Y/2
B[ [, A8 - £(a)| Bygatan)] < 0T e £ 17
3dL(b— a) 3max{l,v — u}(|[lflo + 1)[2L1n(3M Bc)]"? (7.42)
min{L, 1,1, ... 1 }]"¢ MY+ '
< 6dc? 5B?L(|[1]|eo + 1) In(eM) = 2L(|[1]|oc + 1)%ctH!
= [min{L, 1,1, ..., 11 }]/ M KICL) (Mt D)7

(cf. item (iii) in Lemma 7.1.1).
Proof of Corollary 7.2.2. Note that Jensen’s inequality implies that

B[] o K30) — £ Brgo )] < E[( [ JHEH @)~ E@I Bygotan)) ]

(7.43)
This and Corollary 7.2.1 (applied with p v~ 1 in the notation of Corollary 7.2.1) complete
the proof of Corollary 7.2.2. ]

Corollary 7.2.3. Let d,d,L,M,K,N € N, L € R, ¢ € [max{2,L},00), B € [c,0),
1 = (Ip,1y,...,1g) € N\FLU T C {0,1,...,N}, (J)neny € N, (f)nen € R, assume
0eT, ly=d, 1y, =1, andd > Z:i[‘:l L(L_1+ 1), let (2, F,P) be a probability space, let
X Q— (0,19, k,n,j € No, and Y": Q = [0,1], k,n,j € Ny, be functions, assume
that (X7°,Y9), j € {1,2,..., M}, are i.i.d. random variables, let £: (0,14 — [0, 1]
satisfy P-a.s. that £(XV0) = E[Y20| X 0], assume for all z,y € [0, 1]¢ that |E(x) —E(y)| <
L||lz —y||1, let Op: Q@ = R, k,n € Ny, and k: Q — (Np)? be random variables, assume
(Uzozl @M(Q)) C [-B, B]4, assume that O, k € {1,2,...,K}, are i.i.d., assume that
O1, is continuous uniformly distributed on [—c,c]d, let Z%": R4 x Q — [0,0), k,n,J €
Ny, and GF": R4 x Q@ — RY, k,n € N, satisfy for all k,n € N, w € Q, 0 € {9 €
RY: (Z57(-,w): RY — [0,00) is differentiable at 9)} that GF"(0,w) = (VeZ5")(0,w),
assume for all k,n € N that Oy,,, = O 1 =¥ G""(Or.n_1), and assume for all k,n € Ny,
JEN, R, we that

1 J

B 0w) = 3| @) V@R ad (4
=1

k(w) € al"gmin(z,m)e{m ..... K}XT, |01m(w)||cc<B %Rf(@l,m(w),w) (7.45)

(cf. Definitions 2.1.27 and 3.1.16). Then

E| [l A% (@) = )| Bpo ()|

- 3dL (|l + DRLIEBMBe)] ™ | 2[L([[ Ul + 1t
- [mln{L, 11, 12, R IL_l}]l/d M4 KL= (|Neo+1) 2]

- dc? BL(|Ulo + D In(eM) | L([Uo + 1)Ee™ (7.46)
- [mln{L, 11, 12, ey lL_l}]l/d M1/4 K[(QL)_1(||1||00+1)_2] ’

(cf. item (iii) in Lemma 7.1.1).
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Proof of Corollary 7.2.3. Observe that Corollary 7.2.2 (applied with a v~ 0, u ~ 0,
b~ 1, v 1 in the notation of Corollary 7.2.2), the facts that B > ¢ > max{2, L} and
M > 1, and item (ii) in Lemma 7.1.3 show that

E [/[0 1}d|%%k7l(m) — &(z)| Pyo0(dz)

- 3dL 3(|1|sc + D[2LIn(BMBe)]?  2[L(|[1]|o + 1)Ee ]2

= [min{L,1;, 1, ... 1} M4 KL ([es+1)2]

< dc” (Moo + DE3BLInM)] | [L([Uo + )" ]

= [min{L,1;, 1, ... 1p_4 }]"¢ M4 KL~ (oo +1)72]

< dc? B3L(|[l]|ec + 1) In(eM) N L(|[f|oo + 1)kctt! (7.47)

= [min{L,1;,1,,...,1p_; }]4 M4 KICL) T (Mleo+1) 2] ‘
The proof of Corollary 7.2.3 is thus complete. O]
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Chapter 8

Stochastic gradient descent type
optimization methods

This chapter reviews and studies stochastic gradient descent (SGD) type optimization
methods such as the classical plain vanilla SGD optimization method (see Section 8.1)
as well as more sophisticated SGD type optimization methods including SGD type op-
timization methods with momenta (cf. Sections 8.2, 8.3, and 8.7 below) and SGD type
optimization methods with adaptive modifications of the learning rate (cf. Sections 8.4—
8.7 below). We also refer to the overview article Ruder [26] and the reference list in [10]
for further references on SGD type optimization methods.

8.1 The stochastic gradient descent optimization method

Definition 8.1.1 (Stochastic gradient descent optimization method). Letd € N, (7,,)nen C
[0,00), (Jn)nen C N, let (2, F,P) be a probability space, let (S,S) be a measurable space,
let £:Q — R? and X,,;: Q@ — S, j € {1,2,...,J,}, n € N, be random variables, and
let F'= (F(0,7)))crixs: R x S — R and G: R? x S — RY satisfy for all v € S,
0 € {veR: F(-,x) is differentiable at v} that

G(0,x) = (VoF)(0,x). (8.1)
Then we say that © is the stochastic gradient descent process on ((2, F,P), (S,S)) for the
loss function F' with generalized gradient G, learning rates (7Vn)nen, batch sizes (J,)nen,
initial value &, and data (X, ;)jc(1,2,...J.}nen (we say that © is the stochastic gradient
descent process for the loss function F with learning rates (Y, )nen, batch sizes (Jp,)nen,
initial value &, and data (X, 5)je(1,2,....0.ynen) if and only if it holds that ©: Ny x Q — R4
is the function from Ny x 0 to R? which satisfies for alln € N that

J
1 n
O =¢ and 0, =6,1— " [J_n ;1 G(On-1, Xnj) |- (8.2)

8.1.1 Properties of the learning rates of the SGD optimization
method

8.1.1.1 Bias-variance decomposition of the mean square error

Lemma 8.1.2 (Bias-variance decomposition of the mean square error). Let d € N,
9 eRL et (-,-): RExRE — R be a scalar product, let ||-||: RC — [0, 00) be the function
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which satisfies for all v € RY that ||v]| = /{v,v)), let (2, F,P) be a probability space,
and let Z: Q0 — R4 be a random variable with E[|| Z||] < oco. Then
E[llZ - 9] = E[llZ - E[Z]|I*] + IIE[Z] — 9||*. (8.3)

Proof of Lemma 8.1.2. Observe that the assumption that E[|| Z]|] < co and the Cauchy-
Schwarz inequality ensure that

E[|(Z - E[Z],E[Z] - )] <E[llZ - E[Z]|IIE[Z] -]

< (B[IZ]IT + IEZ1DIEZ] = 9| < oo &4
The linearity of the expectation hence shows that
E[llZ - 0l"] =E[[I(Z — E[Z]) + (E[Z] — 9)[I"]
=E[||Z - E[Z]|I* + 2(Z - E[Z], E[Z] - 9)) + || E[Z] - J||"] (8.5)
=E[||Z - E[Z]|I"] + 2(E[Z] - E[Z], E[Z] — 9)) + |[E[Z] — 9|
=E[||Z - E[Z]|"] + |IE[Z] — 2|*.
The proof of Lemma 8.1.2 is thus complete. O

8.1.1.2 On the stochasticity in the SGD optimization method

In this section we present Lemma 8.1.7, Corollary 8.1.8, and Example 8.1.9. Our proof
of Lemma 8.1.7 employs the auxiliary results in Lemmas 8.1.3-8.1.6 below. Lemma 8.1.3
recalls an elementary and well known property for the expectation of the product of
independent random variables (see, e.g., Klenke [19, Theorem 5.4]). In the elementary
Lemma 8.1.6 we prove under suitable hypotheses the measurability of certain derivatives
of a function. A result similar to Lemma 8.1.6 can, e.g., be found in [16, Lemma 4.4].

Lemma 8.1.3. Let (Q, F,P) be a probability space and let X,Y : Q — R be independent
random variables with E[|X |+ |Y|] < co. Then

(i) it holds that E[|XY|] = E[|X|]E[]Y]] < oo and
(i) it holds that E[XY] = E[X]E[Y].

Proof of Lemma 8.1.3. Note that the fact that (X, Y)(P) = (X(P))® (Y (P)), the integral
transformation theorem, Fubini’s theorem, and the assumption that E[|X|+ |Y|] < oo
assure that

E[|XY]] /\X w)| P(dw)
-/ XR'”' ((X.Y)(B)) (dr, dy)
= [| et x@pian]| @

=[] [ 1l cx@pian | v eycan)
]

= E[|X|JE[]Y]] < 0.

(8.6)
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This proves item (i). In addition, observe that item (i), the fact that (X,Y)(P) =
(X(P))® (Y (P)), the integral transformation theorem, and Fubini’s theorem demonstrate

that
E[XY] / X (w dw)
- / o (X, Y)(B) (dr,dy)
- [[[avcxnan] @
= [o] [ = exepian]| 0@

=[xy [ [y @]
— E[X]E[Y].

(8.7)

This establishes item (ii). The proof of Lemma 8.1.3 is thus complete. O

Lemma 8.1.4. Letd,n € N, let {(-,-): R x R? — R be a scalar product, let ||-||: R —
[0,00) be the function which satisfies for all v € RY that ||v]| = /{v,v)), let (Q, F,P)
be a probability space, and let X1, X, ..., X,: Q — R be independent random variables
which satisfy E[|| X1 || + || Xal| + ... + || Xa]|] < co. Then it holds that

B 132k (X — E[XG])]] } ZE 1 — ELX] 1] (8.8)

Proof of Lemma 8.1.4. First, note that Lemma 8.1.3 and the assumption that
E[| X1 || + | X2l + .- 4+ | Xall] < oo ensure that for all ki, ke € {1,2,...,n} with ky # ks
it holds that

E[{(Xk, — E[X,], Xk, — E[Xe]) ] < E[IIXk, — ELX 11Xk, — EX]l] <oo (8.9)

and

E[( X, — E[Xy], Xk, — E[X3,])
= (E[X, — E[X}, ]|, E[Xx, — E[X,]]) (8.10)
= <E[Xk1] - ]E[Xk1]7E[Xk2] - E[Xk2]> = 0.
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Hence, we obtain that
E |l ko (X — LX) ]
=E[(X % o1 (X — E[Xk]), Yok, (Xk, — E[X1,)))]
=E&¢Mﬂua—EMMJ@—Ewmﬁ

n

(ZHXk E[X]|| ) > ( Xk, — E[X4, ], Xk, — E[X4,])

k1,ko= .
111];2]621 (8 11)

( B[ Xk — [Xk]HQ}> + | D ElXn —E[Xy], Xi, — E[Xp,])]

k1,ko=1
k1#ks
= Z (11X, — E[X4]7].
k=1
The proof of Lemma 8.1.4 is thus complete. O

Lemma 8.1.5 (Factorization lemma for independent random variables). Let (Q, F,P) be
a probability space, let (X, X) and (Y,)) be measurable spaces, let X: Q — X be F/X-
measurable, let Y: Q — Y be F/Y-measurable, assume that X and Y are independent,
let &: X xY — [0,00] be (X ® YV)/B([0,0])-measurable, and let ¢: Y — [0,00] be the
function which satisfies for all y € Y that ¢(y) = E[@(X, y)} Then

(i) it holds that the function ¢ is Y /B([0, cc])-measurable and

(i1) it holds that
E[®(X,Y)] =E[o(Y)]. (8.12)

Proof of Lemma 8.1.5. First, note that Fubini’s theorem (cf., e.g., Klenke [19, (14.6) in
Theorem 14.16]), the assumption that the function X: Q — X is F/X-measurable, and
the assumption that the function ®: X x Y — [0, 00] is (X ® Y)/B([0, oo])-measurable
demonstrate that the function

Y3y o) = E[B(X0)] = [ 6(X@) )P € Do) (313

is J/B(|0, oc])-measurable. This proves item (i). Next observe that the integral transfor-
mation theorem, the fact that (X,Y)(P) = (X(P)) ® (Y(P)), and Fubini’s theorem prove
that

E[@(Y, V)] = | $(X().Y () P(d)
_ /XXY(D(a:,y) ((X,Y)(P)) (dz, dy)
= [| [ 2 xnan] vrepan (814
—/mmxwﬂnmmm
/ oy dy) = E[6(Y)].
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This establishes item (ii). The proof of Lemma 8.1.5 is thus complete. [

Lemma 8.1.6. Let d € N, let (S,S) be a measurable space, let F' = (F(0,%))perd ves
R? x S — R be (B(R?) @ S)/B(R)-measurable, and assume for every x € S that the
function R > 0+ F(0,z) € R is differentiable. Then it holds that the function

RY x S 3 (0,2) — (VoF)(0,r) € R? (8.15)
is (B(RY) ® S)/ B(RY)-measurable.

Proof of Lemma 8.1.6. Throughout this proof let G = (G, ..., Gy): R?x S — R? be the
function which satisfies for all € R%, x € S that

G0, ) = (VoF)(0, ). (8.16)

The assumption that the function F: R? x S — R is (B(RY) ® S)/B(R)-measurable
implies that for all i € {1,...,d}, h € R\{0} it holds that the function

RYx S35 (0,2) = ((6h,...,00),2) — <F<<"1~“79H’9i+’“i;+1 vvvvv 9@,@4(9,@) eR (8.17)

is (B(R?) ® S)/B(R)-measurable. The fact that for all i € {1,...,d}, 0 = (61,...,04) €
R? x € S it holds that

Gi(6, ) :T}LIEO(F((91,...,ai_1,9i+2*;a£+1 ..... Hd),a:)—F(G,x)) (8.18)
hence ensures that for all i € {1,...,d} it holds that the function G;: RY x S — R is
(B(RY) ® S)/B(R)-measurable. This implies that G is (B(R?) ® S)/B(R%)-measurable.
The proof of Lemma 8.1.6 is thus complete. O

Lemma 8.1.7. Let d € N, (Vu)nen C [0,00), (Ju)nen C N, let (-,): RE x R4 — R
be a scalar product, let ||-||: RS — [0,00) be the function which satisfies for all v € RY
that |[v]| = /(v,v), let (2, F,P) be a probability space, let £: Q — R? be a random
variable, let (S,S) be a measurable space, let X, ;: Q@ — S, j € {1,2,...,J,}, n €
N, be i.i.d. random wvariables, assume that & and (Xnd')je{l’Q ,,,,, Ja}meN are independent,
let F = (F(0,2))@)erixs: R x S — R be (BR?) ® S)/B(R)-measurable, assume for
all z € S that (R 5 0 — F(0,z) € R) € CYRYR), assume for all 0 € R? that
E[|(VoF)(0, X11)|]] < oo (c¢f. Lemma 8.1.6), let V: R? — [0, 00] be the function which
satisfies for all 0 € RY that

V(0) = E[|[(VoF) (6, X1,) ~ E[(VoF) (0. X,)] ] (5.19)

and let ©: Ny x 2 — R? be the stochastic process which satisfies for alln € N that

J,
1 n
Q=¢  and O, =0, — [J— Z(VGF)(@n_l,Xn,j)] : (8.20)
n =1
Then it holds for alln € N, ¥ € R? that
1/2 Yn 1/2
Eln —9IP))™ 2 757 EV©n-1)]) " (3.21)
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Proof of Lemma 8.1.7. Throughout this proof let ¢,: R — [0,00], n € N, be the func-
tions which satisfy for all n € N, § € R? that

on®) =B [~ 3 [S1.am)0.%,5)] - o] 8.2

Observe that Lemma 8.1.2 ensures that for all ¢ € R% and all random variables Z: € — R¢
with E[||Z]|] < oo it holds that

E[|Z —9|°] =E[|Z — E[Z]|"] + |E[Z] — 9||*

> E[|1Z - ElZ)P]. (8:23)

Hence, we obtain for all n € N, § € R that

o) [ |3 [Si 0P 0.%,)] - 0~ )]
> E[ 2 [ (VoF) (6, Xoy)| — B[220 (VeF) (6, X.) || } (8.24)
= B[, (9016, %) - B[(VaP)0. %)) ]

Lemma 8.1.4, the fact that X, ,;: Q@ — S, j € {1,2,...,J,},n € N, are i.i.d. random
variables, and the fact that for alln € N, j € {1,2,...,J,}, 0 € R? it holds that

E[I(VeF) (0, Xui)ll] = E[Il(VeF)(0, X10)l] < o0 (8.25)

hence demonstrates that for all n € N, # € R? it holds that

6n0)> 5 S [} om0 ,) - B[0P0 X, 1]
= &% ZnE[HWeF)(H,Xl,l) —E[(VoF)(0, X1,1)] \ﬂ] (8.26)

Lj=1

= Bl (7, 1(0)] = (“;32)12(9).

Jn
2
= G | 22V

Lj=1

In addition, observe that (8.20), (8.22), the fact that for all n € N it holds that ©,,_;
and X,, are independent random variables, and Lemma 8.1.5 assure that for all n € N,
¥ € R? it holds that

Combining this with (8.26) proves that for all n € N, ¥ € R? it holds that
E[ll. - o)) > E[ (2L )v(e. )] = (%2 )EM(©,1)]. (8.28)

This establishes (8.21). The proof of Lemma 8.1.7 is thus complete. O]

2] (8.27)
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Corollary 8.1.8. Let d € N, € € [0,00), (Yn)nen C [0,00), (Jn)nenw C N, let (-, -): RY x
R? — R be a scalar product, let ||-||: RT — [0,00) be the function which satisfies for
all v € RY that ||v|| = /{v,v), let (2, F,P) be a probability space, let £: Q — R be a
random variable, let (S,S) be a measurable space, let X, ;: Q@ — S, j € {1,2,...,J,},
n € N, be i.i.d. random variables, assume that & and (ij)je{LQ _____ Ja}.meN are independent,
let F = (F(0,%))@u)erixs: R x S = R be (BR?) ® S)/B(R)-measurable, assume for
all z € S that (R* 2 0 — F(0,r) € R) € C'(RYR), assume for all 0 € R? that
E[[(VoF)(0, X1.1)|]] < oo (cf. Lemma 8.1.6) and

(B[l F) 0. %10 ~ E[vom) 0 X1)]|]) = (8.29)

and let ©: Ny x Q — R? be the stochastic process which satisfies for all n € N that

J
1 n
O =¢ and  ©,=0,_1— 7 [J—n ;WOF)(@n_l,Xn,j)] . (8.30)
Then
(i) it holds for alln € N, ¥ € R? that
&0, 9P > < 75 (8:31)
- (Jn)1/2
and
(ii) it holds for all ¥ € R? that
hﬂglf(]E[H@” - 19"2})1/2 > 5(1151_1}i0rolf {(JZ;1/2:| ) (8.32)

Proof of Corollary 8.1.8. Throughout this proof let V: R — [0, oo] be the function which
satisfies for all § € R? that

V() = B[ (VoF)(6, X1.) ~ E[(VoF)(6, X,0)] ] (5.:33)
Note that (8.29) assures that for all § € R? it holds that
V(6) > &2 (8.34)

Lemma 8.1.7 therefore demonstrates that for all n € N, ¢ € R¢ it holds that

(B[]0, —9)*])"* > (ngw EMV©,1)])" > {(J:’;%} (e2)2 — (]:;/2, (8.35)

This proves item (i). Furthermore, note that item (i) implies item (ii). The proof of
Corollary 8.1.8 is thus complete. O

Example 8.1.9 (A lower bound for the SGD optimization method). Letd € N, (7, )nen C
0,00), (Jn)new € N, let ||||: RY — [0,00) be the d-dimensional Euclidean norm, let
(Q, F,P) be a probability space, let &: Q — R? be a random variable, let X, ;: QO — RY,
je{1,2,...,J,}, n € N, be i.i.d. random variables with E[|| X1 1]|] < oo, assume that £
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and (Xnj)je{1,.2,..0,}men are independent, let F' = (F(0,7))9.2)crixrd: R x R? — R be
the function which satisfies for all 0,z € R? that

and let ©: Ny x Q — R? be the stochastic process which satisfies for alln € N that

Jn

Q=¢  and  ©,=6,,— 7 Jin;(vm(@n_l,xn,j) . (8.37)
Then
(i) it holds for all 6 € R? that
E[(VoF) (6, X00)1]] < oo, (8.38)

(ii) it holds for all € R? that
E|[[(VoF)(6, X1.0) = E[(VeF)(6, X00)] || = B[l —E[X0a)?], (8:39)

and

(iii) it holds for alln € N, ¥ € R? that

(E[©, —912])”* > (B[||X01 — E[X1,])12]) " LJZ}/J , (8.40)

Proof of Example 8.1.9. First, note that (8.36) and Lemma 13.2.4 imply that for all 6,z €
R? it holds that
(VoF)(0,2) = 5(2(0 —z)) =0 — = (8.41)

The assumption that E[[| X} 1]]] < co therefore assures that for all € R it holds that
E[[|(VoF)(0, X11)[I] = E[|0 = Xpall] < 10/ + E[[| X14]l] < o0. (8.42)

This establishes item (i). Moreover, observe that (8.41) and item (i) ensure that for all
6 € R it holds that
E[[[(VoF) (0, X1,1) — E[(VoF)(0, X1.1)]I"]

B0 X11) — E[6 — Xua]|?] = E[X0, — EX0]J7. (543

This proves item (ii). In addition, note that item (i) in Corollary 8.1.8 and items (i)—(ii)
establish item (iii). The proof of Example 8.1.9 is thus complete. O]

8.1.1.3 A lower bound for the natural logarithm

In the next auxiliary result, Lemma 8.1.10 below, we recall a well known lower bound for
the natural logarithm.

Lemma 8.1.10 (A lower bound for the natural logarithm). It holds for all z € (0, 00)

that
(z—1)

T

In(z) > (8.44)
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Proof of Lemma 8.1.10. First, note that the fundamental theorem of calculus ensures
that for all € [1,00) it holds that

ln(:c)zln(:c)—ln(l):/x%dtz/xldt: (z=1),

i T

(8.45)

Moreover, observe hat the fundamental theorem of calculus ensures that for all x € (0, 1]
it holds that

1

In(z) = In(z) — In(1) = —(In(1) — In(z)) = — [/1 ; dt}

[ [ aenn( -5

Combining this and (8.45) establishes (8.44). The proof of Lemma 8.1.10 is thus complete.
[

(8.46)

8.1.1.4 Summable learning rates
Lemma 8.1.11 (Gradient descent fails to converge for a summable sequence of learning
rates). Let d € N, 9 € R%, & € RY/{9}, a € (0,00), (Yn)nen C (0,00)\{Va} satisfy
S Yn < 00, let ||| R — [0, 00) be the d-dimensional Euclidean norm, let f: R* — R
be the function which satisfies for all 0 € R? that

F0) =56 -0l (8.47)
and let ©: Ny — R? be the function which satisfies for all n € N that Oy = £ and
Then

(i) it holds for all n € Ny that

k=1
(i) it holds that
lim inf [H}l - %a‘] > 0, (8.50)
n—o00 Pl
and
(#1) it holds that
lim inf||©,, — || > 0. (8.51)
n—oo

Proof of Lemma 8.1.11. Throughout this proof let m € N satisfy for all £k € NN [m, 00)
that 7, < /(2a). Observe that Lemma 13.2.4 implies that for all § € R? it holds that

(V£)(0) = 5(20 — 9)) = a(0 — ). (8.52)
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Therefore, we obtain for all n € N that
®n —U = ®n—1 - fyn(vf)(@n—l) — v
= @n,1 — ’)/nOé(@n,1 - 19) -9 (853)
= (1 = 7,0) (0,1 — V).
Induction hence proves that for all n € N it holds that

n

0, —9= [H(l — V)

k=1

(©0 — 1), (8.54)

This and the assumption that ©y = £ establish item (i). Next observe that the fact that
for all £ € N it holds that vy« # 1 ensures that

m—1

ITIt = el >o0. (8.55)

k=1

Moreover, note that the fact that for all & € NN[m, 00) it holds that v.a € (0, 1/2) assures
that for all £ € NN [m,00) it holds that

(1 =) € (1/2,1). (8.56)

This, Lemma 8.1.10, and the assumption that Y >, v, < oo demonstrate that for all
n € NN [m,oco) it holds that

ln<H 11— ykoz|> = Z In(1 — )
k=m k=m

~(I—ma) =1 ¢ { Tk }
> — = - 8.57
D YR D] b ey (8:57)
> [ @] = 2« [Z 'yk] > —2a [Z ’yk] > —00.
k=m (3) k=m k=1
Combining this with (8.55) proves that for all n € NN [m, co) it holds that
n fm—1 7 n
H|1—fyka‘: H‘l—fyk(ﬂ exp<1n<H|1—7ka|>>
k=1 L k=1 i k=m
S - o (8.58)
> H|1—7k04| exp(—Za[Z”y;i) > 0.
L k=1 i k=1

Therefore, we obtain that

li}gi;}lf [H’l - 'ykoz|] > [H 11— 'yka‘] exp (—Qa [Z ’)/k]> > 0. (8.59)

k=1 k=1
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This proves item (ii). Furthermore, observe that items (i)—(ii) and the assumption that
¢ # 1 demonstrate that

lim inf||©,, — 9| = lim inf [Hu - %a)] (=)
- hgig;f( T = wa)llie - ﬁu> (8.60)
k=1
= || =9 (liggf [H|1 - %a}D > 0.
k=1
This establishes item (iii). The proof of Lemma 8.1.11 is thus complete. [

8.1.2 Example of a stochastic gradient descent process

Example 8.1.13 below, in particular, provides an error analysis for the SGD optimization

method in the case of one specific stochastic optimization problem (see (8.61) below).

More general error analyses for the SGD optimization method can, e.g., be found in [16,
] and the references mentioned therein (cf. Subsection 8.1.4 below).

Lemma 8.1.12 (Example of a stochastic gradient descent process). Let d € N, let
|-]]: RY — [0,00) be the d-dimensional Euclidean norm, let (0, F,P) be a probability
space, let X,: @ — R4 n € N, be iid. random variables with E[||X1]|?] < oo, let
F = (F(0,7))64)crdxra: R? x R? = R and f: R? = R be the functions which satisfy for
all 0,7 € R? that

FO,2) =10 —x|> and  f(0) =E[F(0,X,)], (8.61)

and let ©: Ny x Q — R? be the stochastic process which satisfies for alln € N that ©y = 0
and

0, =6,_1 — 2(VoF) (0,1, X,). (8.62)
Then
(i) it holds that {6 € R:: f(0) = inf,cpe f(w)} = {E[X,]},
(i) it holds for all n € N that ©,, = %(Xl +...+ X,),
(#i) it holds for all n € N that
(E[le. - EXIP]) " = (B[I1x: - EL][P]) " n~, (8.63)
and
(iv) it holds for all n € N that
E[f(0,)] - (EIX\]) = }E[1X, — E[X]|]n " (5.64)
Proof of Lemma 8.1.12. Throughout this proof let (-, -): RZxR? — R be the d-dimensional

Euclidean scalar product. Note that the assumption that E[|| X1 ||*] < oo and Lemma 8.1.2
ensure that for all § € R? it holds that

f(0) =E[F(6,X1)] = 3 E[[| X, —0|]

_ L(E[X, — ELXLIP] + 16 - ELXR). (8:65)
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This proves item (i). Moreover, note that Lemma 13.2.4 ensures that for all 6,z € R? it
holds that

(VoF)(0,2) = 5(2(0 — z)) =0 — = (8.66)
This and (8.62) assure that for all n € N it holds that

0,=6,1 -0, ,-X,)=01-Y0,,+1x,=¢,  +1x,. (867

Next we claim that for all n € N it holds that
0, = %(X1+...+Xn). (8.68)

We now prove (8.68) by induction on n € N. For the base case n = 1 note that (8.67)
implies that

01 = (9)00 + X1 = (F)(X1). (8.69)

This establishes (8.68) in the base case n = 1. For the induction step note that (8.67)
ensures that for all n € {2,3,...} with ©,_; = (nil) (X1 +...4+ X,_1) it holds that

0, = (n—1) O,_1+ %Xn = [(n_l)] [(n 1)] (Xl +...+ anl) + %Xn

n n

(8.70)
=YX+ X, )+ X, = ;(X1+--.+Xn)-

Induction thus proves (8.68). Next observe that (8.68) establishes item (ii). Moreover,
note that Lemma 8.1.4, item (ii), and the fact that (X, ),en are i.i.d. random variables
with E[|| X1]|] < oo ensure that for all n € N it holds that

E[ll©, — EX1]I1"] = E[ll3 (X1 + ... + X,) — E[X41]]]?]

| |

— || 2] S o6 - Bxi))
=ni<E 35 (X ~ E[Xq)) D

ny
k=1

(8.71)
= 5[5 e~ Exe]

= L [nElx - ExR)]
_ B[l X; —E[X4][*]

n

This implies item (iii). It thus remains to prove item (iv). For this note that (8.65) and
(8.71) assure that for all n € N it holds that

E[f(©n)] - f(E[X4])
=E[3(E[|E[X:] - Xi[P’] + €. — E[X1]|1%)]
— LE[IEX)) — X4|°] + |E[X4] - E[X][?) (8.72)
= 3 E[[|©n — E[X4]||"]
=3 E[| X - E[X [P n”
This establishes item (iv). The proof of Lemma 8.1.12 is thus complete. O]
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8.1.3 Examples for stochastic optimization problems

Example 8.1.13 (Sums of optimiziation problems). Let d, N € N, (7,)nen C [0,00),
EeR et fr,: R = R, k€ {1,2,..., N}, be differentiable functions, let (2, F,P) be a
probability space, let k,: Q@ — {1,2,..., N}, n € N, be independent U o, ny-distributed
random variables, let ©: Ny x Q — R? be the stochastic process which satisfies for all
n € N that

Og=¢ and On=06,-1— % (Vi) (On-1), (8.73)

and let F: R4 x {1,2,...,N} — R be the function which satisfies for all § € R, k €
{1,2,...,N} that
F(0,k) = fu(6). (8.74)

Then

(i) it holds that © is the stochastic gradient descent process for the loss function F with
learning rates (Yn)nen, batch sizes N > n— 1 € N, initial value &, and data (ky,)nen
(cf. Definition 8.1.1) and

(ii) it holds for all € R? that
L[
E[F(0.k)] = [Z fkw)] . (8.75)
k=1

Proof of Example 8.1.15. First, note that (8.74) ensures that for all n € N it holds that
6n = @n—l - ’Yn(vfkn)(gn—l) = @n—l - P)/n(VGF)(@n—la kn) (876)

Combining this with the assumption that ©¢ = £ proves item (i). Moreover, observe that
(8.74) and the assumption that k; is a Uy o, ny-distributed random variable demonstrate

.....

that
L[ [
E|\F(0,k)| = —= F = = . .
[FOk)] = | o F0R)| = 5 [Z fkw)] (5.77)
This establishes item (ii). The proof of Example 8.1.13 is thus complete. O

Example 8.1.14 (Objective functions induced by data). Let d, N,Z,O € N, (7,)nen C
[0,00), £ € RY, 21, 9,..., 25 € RE, et ||| : R® — [0, 00) be the O-dimensional Euclidean
norm, let ®: RT — R® be a function, let u = (ug(2)) (0,2)erixRT : R? x RT — R be a
function which satisfies for every x € RT that the function R? > 0 — wug(z) € RO
is differentiable, let F: R x {1,2,..., N} — R be the function which satisfies for all
0eRY ke{l,2,...,N} that

F(0,k) = |lug(zx) — ()|, (8.78)
let (2, F,P) be a probability space, let k,: Q@ — {1,2,...,N}, n € N, be independent
wny-distributed random variables, and let ©: Ny x € — R? be the stochastic process
which satisfies for all n € N that ©g = £ and

®n = anl — ’}/n(VQF) (@nfl, kn) (879)

Then
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(i) it holds that © is the stochastic gradient descent process for the loss function F with
learning rates (Yn)nen, batch sizes N 3 nw— 1 € N, initial value £, and data (k,)nen
(cf. Definition 8.1.1) and

(ii) it holds for all 6 € RY that
L [X
E[F(0,k)] = }kﬂﬂumw — O(a)|*] - (8.80)

Proof of Example 8.1.1/4. Throughout this proof let f,: R? — R, k € {1,2,..., N}, be
the functions which satisfy for all # € R, k € {1,2,..., N} that

Fe(0) = lJug(x) — @ ()| (8.81)

Note that Example 8.1.13 (applied with f « f for k € {1,2,..., N} in the notation of
Example 8.1.13) establishes items (i)—(ii). The proof of Example 8.1.14 is thus complete.
0

8.1.4 Convergence rates in dependence of learning rates

The next result, Theorem 8.1.15 below, specifies strong and weak convergence rates for
the SGD optimization method in dependence on the asymptotic behavior of the sequence
of learning rates. The statement and the proof of Theorem 8.1.15 can be found in [17,
Theorem 1.1].

Theorem 8.1.15 (Convergence rates in dependence of learning rates). Let d € N,
a,v,v € (0,00), £ € RY, et (-,-): R x RT — R be the d-dimensional Euclidean scalar
product, let ||-||: RY — [0,00) be the d-dimensional Euclidean norm, let (2, F,P) be a
probability space, let X,,: Q@ — R, n € N, be i.i.d. random variables with E[|| X, |]*] < oo
and P(X, = E[X1]) < 1, let (rc;)ec(0,00),ici0,13 € R satisfy for all e € (0,00), i € {0,1}
that

v/2 v<l1
re; =< min{Y/2,ya + (=1)c} :v=1 (8.82)
0 v >1,

let F'= (F(0,7))0)ecrixrd: R x RY = R and f: R? — R be the functions which satisfy
for all 0,z € R? that

FO.x)=5l0—al®  and  f(6) = E[F(6, X)), (8.83)
and let ©: Ny x Q — R? be the stochastic process which satisfies for all n € N that
Oy =¢ and On =6n1— L (VoF) (0,1, Xy). (8.84)

Then
(i) there exists a unique 9 € R such that {6 € R?: f(0) = inf,,cpa f(w)} = {9},

(ii) for every e € (0,00) there ezist ¢y, ¢y € (0,00) such that for all n € N it holds that
con "0 < (E[||©, — 19||2D1/2 <cn et (8.85)
and

(iii) for every e € (0,00) there exist Cy, Cy € (0,00) such that for all n € N it holds that
Con™ =0 < E[f(0,)] — f(¥) < Cin~ 2=, (8.86)
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8.2 The stochastic gradient descent optimization method
with classical momentum

In this section we present the SGD optimization method with classical momentum. The
idea for classical momentum was first introduced by Polyak for the (deterministic) GD
optimization method (see Polyak [25] and Section 14.2 above).

Definition 8.2.1 (Momentum stochastic gradient descent optimization method). Letd €
N, (Yn)nen € [0,00), (Jn)neny C N, (an)nen C [0, 1], let (2, F,P) be a probability space, let
(S,8) be a measurable space, let £: Q — R and X, ;: @ — S, j€{1,2,...,J,}, n €N,
be random variables, and let F = (F(0,2))pnerixs: R x S = R and G: R* x S — R
be functions which satisfy for all x € S, 6 € {v € R¢: F(-,x) is differentiable at v} that

G0, 1) = (V4F)(0,z). (8.87)

Then we say that © is the momentum stochastic gradient descent process on ((2, F,P),
(S,8)) for the loss function F with generalized gradient G, learning rates (7,)nen, batch
sizes (Jn)nen, momentum decay factors (o, )nen, initial value §, and data (X, ;) je1,2,..,7.} men
(we say that © is the momentum stochastic gradient descent process for the loss function
F with learning rates (7, )nen, batch sizes (J,)nen, momentum decay factors (au,)nen, ini-
tial value &, and data (X ;)jeq1,2,....0.}.nen) if and only if ©: No x Q — R? is the function
from Ny x Q to R? which satisfies that there exists a function m: Ny x Q — R? such that
for all n € N it holds that

@0 = 5, mgy = O, (888)

m, = a,m, 1+ (1 —a,)

J,
1 n
T E G(@n_l,XnJ‘)], (8.89)
noi

and 0, =06,_1—7,m,. (8.90)

8.3 The stochastic gradient descent optimization method
with Nesterov momentum

Nesterov accelerated stochastic gradient descent (NAG) builds on the idea of classical
momentum and attemps to provide some kind of foresight to the scheme. This idea
was first introduced by Nesterov as an adaption of the deterministic momentum GD
optimization method (see Nesterov [22]).

Definition 8.3.1 (Nesterov accelerated stochastic gradient descent optimization method).
Let d € N, (Yn)nen C [0,00), (Ju)nen € N, (an)nen C [0,1], let (2, F,P) be a prob-
ability space, let (S,8) be a measurable space, let &: Q — R and X,,;: Q — S, j €
{1,2,...,Jn}, n €N, be random variables, and let F' = (F(0,7))ps)erixs: R?x S = R
and G: R x S — R? be functions which satisfy for all z € S, § € {v € R4: F(-,z) is
differentiable at v} that

G(0,z) = (VoF)(0,x). (8.91)

Then we say that © 1is the Nesterov accelerated stochastic gradient descent process on
((Q,F,P),(S,8)) for the loss function F with generalized gradient G, learning rates
(Yn)nen, batch sizes (Jy)nen, momentum decay factors (o, )nen, initial value &, and data
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(Xnj)jef1,2,....0n men (we say that © is the Nesterov accelerated stochastic gradient descent
process for the loss function F with learning rates (7n)nen, batch sizes (J,)nen, momen-
tum decay rates (aum)nen, nitial value &, and data (X, j)jcq1,2,..0.3.nen) if and only if
O: Ny x Q — R? is the function from Ny x Q to R? which satisfies that there exists a
function m: Ny x Q@ — R? such that for all n € N it holds that

@0 = f, my = O, (892)

1 &
m, = a,m,_; + (1 — o) + > G(On1 — Yamyy, Xj) | (8.93)
and 0, =0,1—vm,. (8.94)

8.4 The adaptive stochastic gradient descent opti-
mization method (Adagrad)

Definition 8.4.1 (Adagrad stochastic gradient descent optimization method). Let d € N,
(Yn)nen C [0,00), (Ju)nen € N, & € (0,00), let (Q,F,P) be a probability space, let
(S,8) be a measurable space, let £&: Q — R and X,,;: Q — S, j € {1,2,...,J,},
n € N, be random variables, and let F' = (F(0,7))gz)erixs: R x S — R and G =
(Gy,...,Gq): RTx S — R be functions which satisfy for allx € S, 0 € {veR: F(-,x)
is differentiable at v} that

G(0,z) = (VoF)(0, ). (8.95)

Then we say that © is the Adagrad stochastic gradient descent process on ((2, F,P),
(S,8)) for the loss function F' with generalized gradient G, learning rates (7, )nen, batch
sizes (Jn)nen, reqularizing factor €, initial value &, and data (X, ;)jeq1,2,.. 0} men (we say
that © 1is the Adagrad stochastic gradient descent process for the loss function F with
learning rates (Yn)nen, batch sizes (Jp)nen, reqularizing factor e, initial value &, and data
(Xnj)jet1.2, .gntmen) if and only if it holds that © = (OW, ..., 0@): Ny x Q — R is the
function from Ny x Q to R which satisfies for alln € N, i € {1,2,...,d} that Oy = ¢
and

e =,

n

I (8.96)

_%(5+Z[ S Gl @;ﬂ_l,Xk,j)r)l/zl ZG -1, Xnj) |-

8.5 The root mean square propagation stochastic gra-
dient descent optimization method (RMSprop)

Definition 8.5.1 (RMSprop stochastic gradient descent optimization method). Let d €
N, (")nen € [0,00), (Jn)neny € N, (Bn)nen C [0,1], € € (0,00), let (Q,F,P) be a
probability space, let (S,S) be a measurable space, let £: Q — R? and X,,;: Q — S,
Je{1,2,...,Jn}, n €N, be random variables, and let F' = (F(0,2))(1)erixs: R? x
S =R and G = (Gy,...,Gy): R? x S — R? be functions which satisfy for all x € S,
0 € {veR:: F(-,x) is differentiable at v} that

G(0,x) = (VoF)(0,x). (8.97)
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Then we say that © is the RMSprop stochastic gradient descent process on ((2, F,P),
(S,8)) for the loss function F' with generalized gradient G, learning rates (7, )nen, batch
sizes (Jn)nen, second moment decay factors (Bn)nen, reqularizing factor €, initial value
€, and data (X, j)jeq1,2,..., 0.1 men (we say that © is the RMSprop stochastic gradient de-
scent process for the loss function F with learning rates (Vn)nen, batch sizes (J,)nen,
second moment decay factors (Bn)nen, reqularizing factor e, initial value &, and data
(Xnj)jef1,2,...0nrmen) if and only if it holds that © = OW, .. ,0@): Nyx Q — R?
is the function from Ny x Q to R? which satisfies that there exists a function M =
(M® . M@D): Ny x Q = R such that for alln € N, i € {1,2,...,d} it holds that

Oy =& My =0, (8.98)
I 2
M@ = 5, MY, +(1-35,) [JinZGi(@n_l,Xw)] , (8.99)
j=1
and OV =00 W [ Z Gi(On_1, X )] . (8.100)
Hinton et al. [14] suggests the choice that for all n € N it holds that
fn =09 (8.101)

as default values for the second moment decay factors (5, )nen C [0, 1] in Definition 8.5.1.
This default value in used several machine learning libraries that implement RMSprop
(see, e.g., Tensorflow [28] and Lasagne [20]).

8.6 The Adadelta stochastic gradient descent opti-
mization method

The Adadelta SGD optimization method was proposed in Zeiler [30]. Tt is a extension
of RMSprop SGD optimization method. Like the RMSprop SGD optimization method,
the Adadelta SGD optimization method adapts the learning rate for every component
separately. To do this, the Adadelta SGD optimization method uses two exponentially
decaying averages: one over the squares of the past partial derivatives and another one
over the squares of the past increments (cf. Definition 8.6.1 below).

Definition 8.6.1 (Adadelta stochastic gradient descent optimization method). Let d €
N, (Ju)nen €N, (Bn)nen, (0n)nen C [0,1], € € (0,00), let (Q, F,P) be a probability space,
let (S,8) be a measurable space, let £: Q2 — R? and X,,;: Q@ = S, j € {1,2,...,J,.},
n € N, be random variables, and let F = (F(0,%)) @ erixs: R? X S — R and G =
(Gy,...,Gq): RTx S — R? be functions which satisfy for allz € S, 0 € {v € RY: F(-,x)
is differentiable at v} that

G(0,z) = (VoF)(0,x). (8.102)

Then we say that © is the Adadelta stochastic gradient descent process on ((S2, F,P),
(S,8)) for the loss function F with generalized gradient G, batch sizes (Jy)nen, Second
moment decay factors (B,)nen, delta decay factors (8,)nen, regularizing factor €, initial
value &, and data (Xn,j)je{l,g _____ Jn}meEN (we say that © is the Adadelta stochastic gra-
dient descent process for the loss function F with batch sizes (J,)nen, second moment
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decay factors (Bn)nen, delta decay factors (0,)nen, regularizing factor e, initial value &,
and data (X, ;)je(12.. 0.3men) if and only if it holds that © = (OW, ... ,0@): Ny x
Q — R? is the function from Ny x Q to R? which satisfies that there exist functions
M = (MO, ... M)A = (AW .. AD): Ny x Q — R? such that for all n € N,
i€ {l1,2,...,d} it holds that

Oo=¢6  My=0, Ay=0, (8.103)

2
MY = 8, M, 1—ﬁn[ ZG o1, X )], (8.104)

5+M

@g>:eg>_1_(i) [ za >], (8.105)

and  AD =6,AY + (14,09 -0, (8.106)

8.7 The adaptive moment estimation stochastic gra-
dient descent optimization method (Adam stochas-
tic gradient descent optimization method)

Definition 8.7.1 (Adam stochastic gradient descent optimization method). Let d € N,
(7n)n€N g [Oyoo>; (Jn)nEN g N; (Oén)nel\h (ﬁn)nGN g [071>7 l@t <Q7‘F7P) b@ a pTObCL—
bility space, let (S,S) be a measurable space, let &: Q — RY and X,,;: Q — S, j €
{1,2,...,Jn}, n €N, be random variables, and let ' = (F/(0,7))(p2)erixs: R?x S — R
and G = (G1,...,Gq): R x S — RY be functions which satisfy for allz € S, 6 € {v €
Re: F(-,z) is differentiable at v} that

G(0,7) = (V4F) (0, z). (8.107)

Then we say that © is the Adam stochastic gradient descent process on ((2, F,P), (S,S))
for the loss function F with generalized gradient G, learning rates (7Vn)nen, batch sizes
(Jn)nen, momentum decay factors (o, )nen, Second moment decay factors (B )nen, initial
value &, and data (X, j)jeq1,2,..J.}nen (we say that © is the Adam stochastic gradient
descent process for the loss function F with learning rates (Yn)nen, batch sizes (J,)nen,
momentum decay factors (o )nen, second moment decay factors (Bp)nen, initial value
¢, and data (X, )jef12,.. .0,y men) if and only if it holds that © = (W, ... ©@): N; x
Q — R? is the function from Ny x Q to R? which satisfies that there exist functions
m = m®Y, ... . m?), M= MY, . . . MD:NyxQ — R? such that for all n € N,
ie{1,2,...,d} it holds that

@0 = f, mgy = O, Mg = 0, (8108)

m, = a,m,_; + (1 —a,) [ ZG w1, X | (8.109)
12

M@ = g, MY | + 1—@1[ ZG et X)) | (8.110)
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. . i 1/2 ! m(Z)
wi 6 =00~ [+ i) | ||
1 7 (1_Hl:1 ﬁl) (1 - Hl:l Ql)

Kingma & Ba [18] suggests the choice that for all n € N it holds that that
Y, =0.001, @, =09,  3,=0999, and e=10"°

as default values for (V,)nen, (n)nen, (Bn)nen, and e in Definition 8.7.1.

DISSEMINATION PROHIBITED. JULY 29, 2021

(8.111)

(8.112)

146



Chapter 9

Generalization error

9.1 Concentration inequalities for random variables

This section is inspired by Duchi [3].

9.1.1 Markov’s inequality

Lemma 9.1.1 (Markov inequality). Let (2, F, u) be a measure space, let X : Q — [0, 00)

be an F /B([0, 00))-measurable function, and let € € (0,00). Then

M(XZE)SM-
€

Proof of Lemma 9.1.1. Observe that the fact that X > 0 proves that

€ - € €

Lix>a =

Hence, we obtain that

Jo X dp

X =e)= / Lixzeydp < :
Q g

The proof of Lemma 9.1.1 is thus complete.

9.1.2 A first concentration inequality
9.1.2.1 On the variance of bounded random variables

Lemma 9.1.2. Let x € [0,1], y € R. Then
(—y)* < (1 -2)y +a(l-y)"
Proof of Lemma 9.1.2. Observe that the assumption that x € [0, 1] assures that
1=z +2(1—y)? =y* —ay’ + o — 2y +ay® > y* + 2° — 20y = (x —y)*.
This establishes (9.4). The proof of Lemma 9.1.2 is thus complete.

Lemma 9.1.3. It holds that sup,c p(1 —p) = 1.

147

(9.1)
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Proof of Lemma 9.1.5. Throughout this proof let f: R — R be the function which satis-
fies for all p € R that f(p) = p(1 —p). Observe that the fact that Vp € R: f'(p) =1—2p
implies that {p € R: f'(p) = 0} = {!/2}. Combining this with the fact that f is a strictly
concave function implies that

supp(1 — p) = sup f(p) = f(Y/2) = Y/a. (9.6)
peER pER
The proof of Lemma 9.1.3 is thus complete. ]

Lemma 9.1.4. Let (Q, F,P) be a probability space and let X : Q — [0,1] be a random
variable. Then

Var(X) < /. (9.7)
Proof of Lemma 9.1.4. Observe that Lemma 9.1.2 implies that

Var(X) = E[(X - E[X])?] <E[(1 - X)(E[X])* + X(1 - E[X])’]

)
= (1 - E[X])(E[X])* + E[X](1 - E[X])* 9.8)
= (1 - EX]E[X](E[X] + (1 - E[X])) '
= (1 - E[X]E[X].

This and Lemma 9.1.3 demonstrate that Var(X) < 1/4. The proof of Lemma 9.1.4 is thus
complete. O

Lemma 9.1.5. Let (2, F,P) be a probability space, let a € R, b € [a,00), and let
X: Q — [a,b] be a random variable. Then

(b—ay

X) <
Var(X) < 1

(9.9)

Proof of Lemma 9.1.5. Throughout this proof assume w.l.o.g. that a < b. Observe that
Lemma 9.1.4 implies that

Var(X) = E[(X — E[X])?] = (b - a)QE[<M)2}

b—a
Ca —a1\2
= (b—a)’E|(3=2 - E[3=2))’] (9.10)
bh— 2
= (b—a)® Var(X= )g(b—a)@)—( 4@
The proof of Lemma 9.1.5 is thus complete. O

9.1.2.2 A concentration inequality

Lemma 9.1.6. Let (0, F,P) be a probability space, let N € N, ¢ € (0,00), ay,a9,...,ax €

R, by € [a1,00), by € [ag,00), ..., by € [an,0), and let X,,: Q — [a,,by], n €
{1,2,..., N}, be independent random variables. Then
N N
Zn:1(bn —ay)?
IP’( ;(Xn ~E[X,])| > 5) < e . (9.11)
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Proof of Lemma 9.1.6. Note that Lemma 9.1.1 assures that

2

IP( ENJ(Xn - E[X,])| > 5) =P i(xn —-E[X,])| =&

(9.12)

E[| 20 (X0 — BX))[]

In addition, note that the assumption that X, : Q — [a,,b,), n € {1,2,...,N}, are
independent variables and Lemma 9.1.5 demonstrate that

B[S, (% - 5] = 3 E[(X, - B (X0 — BLX,)
e N 2 (9.13)
= ;E[(Xn ~Elx,))] < Zollm

Combining this with (9.12) establishes

N

ZnNzl(bn — ay)”
IP’( n21<Xn ~E[X,])| > e) < v (9.14)
The proof of Lemma 9.1.6 is thus complete. O

9.1.3 Moment-generating functions

Definition 9.1.7. Let (Q, F,P) be a probability space and let X: Q — R be a random
variable. Then we denote by Mxp: R — [0,00] (we denote by Mx: R — [0,00]) the
function which satisfies for allt € R that

Mxp(t) = E[e"] (9.15)

and we call Mxp the moment-generating function of X with respect to P (we call Mx p
the moment-generating function of X ).

9.1.3.1 Moment-generation function for the sum of independent random
variables

Lemma 9.1.8. Let (2, F,P) be a probability space, lett € R, N € N, and let X,,: Q — R,
n€{1,2,..., N}, be independent random variables. Then

My x, (1) = Hivzl My, (t). (9.16)

Proof of Lemma 9.1.8. Observe that Fubini’s theorem ensures that for all ¢ € R it holds
that

N N N N
Mzﬁl\le Xn (t) = E [et(znzl X’ﬂ)i| = E |:Hn:1 etXni| f— ]i[n:1 E[etXn] == Hn:1 MXH (t)
(9.17)
The proof of Lemma 9.1.8 is thus complete. O]
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9.1.4 Chernoff bounds
9.1.4.1 Probability to cross a barrier

Proposition 9.1.9. Let (Q,F,P) be a probability space, let X: Q@ — R be a random
variable, and let € € R. Then

P(X >¢) < inf (e E[e*]) = inf (e Mx(N). (9.18)

A€[0,00) A€[0,00)
Proof of Proposition 9.1.9. Note that Lemma 9.1.1 ensures that for all A € [0, c0) it holds
that
E[exp(AX)]

P(X 2 €) SPAX 2 Ae) = Plexp(AX) 2 exp(Ae)) < = s

—eME [e’\X} .

(9.19)
The proof of Proposition 9.1.9 is thus complete. O

Corollary 9.1.10. Let (2, F,P) be a probability space, let X: Q — R be a random
variable, and let c,e € R. Then

P(X >c+e) < inf (e My_.(N)). (9.20)

A€[0,00)
Proof of Corollary 9.1.10. Throughout this proof let Y : 2 — R satisfy
Y=X-—c (9.21)
Observe that Proposition 9.1.9 and (9.21) ensure that
P(X—c>e)=PY >¢) < inf (e*My(A\) = inf (e My_.(N). (9.22)

A€[0,00) A€E[0,00)
The proof of Corollary 9.1.10 is thus complete. O]

Corollary 9.1.11. Let (2, F,P) be a probability space, let X: Q — R be a random
variable with E[|X|] < oo, and let ¢ € R. Then

P(X >E[X]+¢) < . i[rolf )(e*AE My _gx)(N)). (9.23)
€|0,00

Proof of Corollary 9.1.11. Observe that Corollary 9.1.10 (applied with ¢ v~ E[X] in the
notation of Corollary 9.1.10) establishes (9.23). The proof of Corollary 9.1.11 is thus
complete. O

9.1.4.2 Probability to fall below a barrier

Corollary 9.1.12. Let (2, F,P) be a probability space, let X: Q — R be a random
variable, and let c,e € R. Then

P(X <c—¢)< R i[glf )(6_)‘€ M._x(})). (9.24)
€10,00
Proof of Corollary 9.1.12. Throughout this proof let ¢ € R satisfy ¢ = —cand let X: (2 —
R satisfy
X=-X. (9.25)
Observe that Corollary 9.1.10 and (9.25) ensure that
PX<c—g)=P(-X>—-c+e)=PX>c+e) < inf (e Mx_(N))

A€E[0,00)

(9.26)
= inf (e M.x(N)).
AEI[IOI,OO) (e X( >)
The proof of Corollary 9.1.12 is thus complete. O
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9.1.4.3 Sums of independent random variables

Corollary 9.1.13. Let (2, F,P) be a probability space, let ¢ € R, N € N, and let

Xn: Q=R ne{l,2,...,N}, beindependent random variables with max,ecq1 2, ny E[| X,|] <
o0o. Then
N
P X, —E[X,])| >¢| < inf A M 9.27
(B sma] o) <, ({fpsocsr]). o

Proof of Corollary 9.1.15. Throughout this proof let Y,,: @ — R, n € {1,2,..., N},
satisfy for all n € {1,2,..., N} that

Y, = X, — E[X,]. (9.28)

Observe that Proposition 9.1.9, Lemma 9.1.8, and (9.28) ensure that

N N
P X, —E[X,])| >c| =P Y| >c| < intf (*AEM )\)
(Ben-mma] =) (] o) g
¢ (9.29)
o —)Xe . —)\e
B )\el{)lfc;o) <e H My, (A ] > B Ael[{)lio) (e b_[l Mg (/\)] ) '
The proof of Corollary 9.1.13 is thus complete. O

9.1.5 Hoeffding’s inequality
9.1.5.1 On the moment-generating function for bounded random variables

Lemma 9.1. 14 Let (2, F,P) be a probability space, let \,a € R, b € (a,00), p € [0,1]

satisfy p = %, let X: Q — [a,b] be a random variable with E[X]| = 0, and let ¢: R — R
satisfy for a,ll 93 € R that ¢(z) =In(1 — p+ pe*) — px. Then
E[e*Y] < e?P0ma)), (9.30)

Proof of Lemma 9.1.1/. Observe that for all x € R it holds that

r(b—a) = br — ax = [ab — az] + b — ab] = [a(b — 2)] + [o(x — o)}
=alb—z)+bb—a—-b+2z]=alb—x)+b[(b—a)— (b—2x)]. (9.31)

Hence, we obtain that for all € R it holds that

x:a(l;:z)m[l_@:z)] (9.32)

This implies that for all z € R it holds that

)\x:(l;:z)/\ant{l—(Z_a)})\b (9.33)

The fact that the function R > =z +— ¢* € R is convex hence demonstrates that for all
x € [a,b] it holds that

(e [ G0 ) = G0 b G2

(9.34)
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The assumption that E[X] = 0 therefore assures that

E[eM] < (%) e+ {1 — ( faﬂe”’. (9.35)

Combining this with the fact that

ki [1‘ (ﬁ)] - Kﬁii§> - ((bf@)} :1‘{@_—&@} Sl
demonstrates that
E[™] < (b%) " {1 - (b b )} — (=) 4 [1— (1= p))e® = (1 - p)e 4 pe®

_ [(1 . p) _’_pek(b—a)}eka.

S

(9.37)

Moreover, note that the assumption that p = (b_ (=) shows that p(b — a) = —a. Hence, we
obtain that @ = —p(b — a). This and (9.37) assure that

E[e**] < [(1—p) +petD]e P79 = exp(In([(1 — p) + p b~ ]e 2070
= exp(In((1 —p) +pe**) — pA(b — a)) = exp(3(A(b — a))).
The proof of Lemma 9.1.14 is thus complete. O]

(9.38)

9.1.5.2 Hoeffding’s lemma

Lemma 9.1.15. Let p € [0,1] and let ¢p: R — R satisfy for all z € R that ¢p(x) =

In(1 — p+ pe®) —px. Then it holds for all x € R that ¢p(x) < 5

Proof of Lemma 9.1.15. Observe that the fundamental theorem of calculus ensures that
for all z € R it holds that

+ [ dway=o0) o+ [ [ o) dzay < o0)+ o0)a + - [sup ¢”<z>] -

2 z€R
(9.39)
Moreover, note that for all x € R it holds that

s [rie] o me o= [ [ ] oo

T

Hence, we obtain that
p
'0)=|——| —p=0. 9.41
50 [1_p+p] b (9.41)
In the next step we combine (9.40) and the fact that for all @ € R it holds that
a(l —a)=a—a*= [a —2ali } :%—[a—%fg}l (9.42)
<

to obtain that for all € R it holds that ¢”(x)
for all x € R it holds that

This, (9.39), and (9.41) ensure that

1
4

x? - 2
o) < 000) + 600 + 2 [sop o (2)] = 600)+ & [swp )] < 000+ £ = L.
z€R z€R
(9.43)
The proof of Lemma 9.1.15 is thus complete. O]
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Lemma 9.1.16. Let (Q, F,P) be a probability space, let a € R, b € [a,00), A € R, and
let X: Q — [a,b] be a random variable with E[X] = 0. Then

E[exp(AX)] < exp (M) . (9.44)

Proof of Lemma 9.1.16. Throughout this proof assume w.l.o.g. that a < b, let p € R
satisfy p = =4, and let ¢, R > R, r € [0, 1], satisfy for all » € [0,1], x € R that

¢p(x) =In(l —r+re”) —ra. (9.45)

Observe that the assumption that E[X] = 0 and the fact that a < E[X] < b ensures that
a < 0 <b. Combining this with the assumption that a < b implies that

—a_ _ (b—a)

e U e

=1. (9.46)

Lemma 9.1.14 and Lemma 9.1.15 hence demonstrate that
]E[GAX] < PO~ — oxp(g,(A(b — a))) < eXP(M) — eXp(M)- (9.47)

The proof of Lemma 9.1.16 is thus complete. O

9.1.5.3 Probability to cross a barrier
Lemma 9.1.17. Let 5 € (0,00), € € [0,00) and let f: [0,00) — [0,00) be the function
which satisfies for all X € [0,00) that f(\) = SA? —eX. Then

inf f(\) = f(5) =5 (9.48)

A€E[0,00)

Proof of Lemma 9.1.17. Observe that for all A € R it holds that

f'A) =26\ —e. (9.49)
Moreover, note that
g =slg] <8 =5-5--% (950)
Combining this and (9.49) establishes (9.48). The proof of Lemma 9.1.17 is thus complete.
O
Corollary 9.1.18. Let (2, F,P) be a probability space, let N € N, € € [0,00), ay,a9,...,an €
R, by € [a;,00), by € [ag,00), ..., by € [an,00) satisfy S0 _ (b, — an)® # 0, and let
Xn: Q= [an,by], n€{1,2,..., N}, be independent random variables. Then
al —2¢?
IP’( [; (X, —E[X,])| > g> < exp(zg:1(bn - an)2> . (9.51)
Proof of Corollary 9.1.18. Throughout this proof let 5 € (0, 00) satisfy
f=1 [i(bn - )] . (9.52)
8=
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Observe that Corollary 9.1.13 ensures that

P( [Z (Xo —E[X.]) | > 8) < of <6A€ [E Mxn—za[xn}()\)] > (9.53)

n=1
Moreover, note that Lemma 9.1.16 proves that for all n € {1,2,..., N} it holds that

MXTL—IE[XH}()\) < exp(A [(bn*E[Xn])g(an*]E[Xn])} ) _ exp(M). (9.54)

Combining this with (9.53) and Lemma 9.1.17 ensures that
N N
P X, —EX,])| >¢) < inf (PR | - 5
N 2
. 2| 2 (bn — an) . 2
_ n _ - — 5
)\el[I(]l,Eo) [exp ()\ [ < ] As)] exp (AEI[I&EO) 2 5)@) (9.55)

= X <_—€2> = X _262
) T S — a2 )

The proof of Corollary 9.1.18 is thus complete. O

9.1.5.4 Probability to fall below a barrier

Corollary 9.1.19. Let (2, F,P) be a probability space, let N € N, € € [0,00), ay,as,...,an €
R, by € [a1,00), by € [ag,0), ..., by € [an,00) satisfy Zﬁ:}:l(bn —a,)? # 0, and let
Xn: Q= [an,by], n€{1,2,..., N}, be independent random variables. Then

P( [Z (X, —E[X.)]| < —5> < exp (ZL?;{ an)2). (9.56)

n=1
Proof of Corollary 9.1.19. Throughout this prooflet X,,: Q — [—b,, —a,],n € {1,2,..., N},
satisfy for all n € {1,2,..., N} that

X, = —X,. (9.57)

Observe that Corollary 9.1.18 and (9.57) ensure that

IP( jv:(Xn — E[Xn]) < —5) = ]P’( ﬁ:(—Xn — E[—Xn])] > 5)
n=1 :n;l "
— IP( _;(xn ~E[X,))| > g) < exp(zﬁ;l(bn - an)2>
(9.58)
The proof of Corollary 9.1.19 is thus complete. [
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9.1.5.5 Hoeffding’s inequality
Corollary 9.1.20. Let (2, F,P) be a probability space, let N € N, € € [0,00), ay,as,...,an €

R, by € [a1,00), by € [ag,0), ..., by € [an,00) satisfy 27]:[:1(1771 —an)? # 0, and let
Xn: Q= [ay,by], n€{1,2,..., N}, be independent random variables. Then
al —2¢?
P(|S (X, - EX.))| > e) < 28Xp< ) (9.59)
( nzjl ZnN=1(bn — ap)?

Proof of Corollary 9.1.20. Observe that

) (9.60)

59). The proof

> 5} U { [XN:(Xn — E[Xn})] < —¢

}
< pqn:(xn—wm] > ) +P( 2

Combining this with Corollary 9.1.18 and Corollary 9.1.19 establishes (

of Corollary 9.1.20 is thus complete. O]
Corollary 9.1.21. Let (2, F,P) be a probability space, let N € N, ¢ € [0,00), ay,aq,...,ax €
R, by € [a1,00), by € [ag, ), ..., by € [an,00) satisfy Zivzl(bn —a,)? # 0, and let
Xn: Q= [an, by], n € {1,2,..., N}, be independent random variables. Then
N
1 —2e2N?
Pl — X, —E|X,])| > <2ex . 9.61
(N 2 (X ~EX)) ) p(z:jl(bn—am) (9.61)

Proof of Corollary 9.1.21. Observe that Corollary 9.1.20 ensures that

1| al —2(eN)?
Pl — X, —E[X,])|>c]| =P X, —E[X,])| >eN | <2ex )
(N 2_ (¥ ~B[X)) ) (Z( (X)) ) p<25:1<bn_an>2>
(9.62)
The proof of Corollary 9.1.21 is thus complete. ]

Exercise 9.1.1. Prove or disprove the following statement: For every probability space
(Q, F,P), every N € N, € € [0,00), and every random variable X = (X1, Xs,..., Xn): Q —
[—1, 1Y with Va = (a1, ay,...,ay) € [-1, 1N PO {X: < a;}) = [IY, %L it holds

2
that
1 —2N
IP’(N > g> < 2exp( 52 ) (9.63)

Exercise 9.1.2. Prove or disprove the following statement: For every probability space
(2, F,P), every N € N, and every random variable X = (X1, Xo,..., Xn): Q — [-1, 1]V
with ¥V a = (a1, as,...,ay) € [-1,1N: PN {X; < a:}) = [IY, @t it holds that

> 5) < 2[Z]N. (9.64)
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Exercise 9.1.3. Prove or disprove the following statement: For every probability space
(2, F,P), every N € N, and every random variable X = (X1, Xo,..., Xn): Q — [-1, 1]V
with¥Va = (a1, as,...,ay) € [-1,1N: PN {X; < a;}) = [IY, @t it holds that

]P’(% > %) <2 {6 _46_31N. (9.65)

Exercise 9.1.4. Prove or disprove the following statement: For every probability space
(Q,F,P), every N € N, € € [0,00), and every standard normal random variable X =

(X1, Xo,..., Xn): Q — RY it holds that
p( 2 s o) < 2exp( 2N (9.66)
N >e | <2exp 5 ) )

9.1.6 A strengthened Hoeffding’s inequality

N

n=1

N

Z(Xn - E[Xn])

n=1

Lemma 9.1.22. Let f,g: (0,00) = R satisfy for all x € (0,00) that f(z) = 2exp(—2x)

and g(z) = 1=. Then

(i) it holds that lim, % = lim,\ o % =0 and

(i) it holds that g(3) = 5 < 2 < 2 = f(3).
Proof of Lemma 9.1.22. Note that the fact that lim,_ . exg(jx) = lim,\ o % =0
establishes item (i). Moreover, observe that the fact that e < 3 implies item (ii). The
proof of Lemma 9.1.22 is thus complete. n

Corollary 9.1.23. Let (2, F,P) be a probability space, let N € N, € € (0,00), ay,as,...,ax €
R, by € [a1,00), by € [ag, ), ..., by € [an,00) satisfy Zf:[:l(bn —an)? # 0, and let
Xn: Q= [ay,by], n€{1,2,..., N}, be independent random variables. Then

_9.2 N _ 2
P > e | <ming 1,2exp ~ 2 ) anl(an an) .
Zn:l(bn - (ln)2 e

(9.67)
Proof of Corollary 9.1.23. Observe that Lemma 9.1.6, Corollary 9.1.20, and the fact that
for all B € F it holds that P(B) < 1 establish (9.67). The proof of Corollary 9.1.23 is
thus complete. O

N

> (X —E[X,)

n=1

9.2 Covering number estimates

This section is inspired by Section 6 in Chapter I in Cucker & Smale [0] and Section 1.1
in Carl & Stephani [1].
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9.2.1 Entropy quantities
9.2.1.1 Covering radii (Outer entropy numbers)

Definition 9.2.1. Let (X,d) be a metric space and let n € N. Then we denote by
Cix,ayn € [0,00] (we denote by Cxp, € [0,00]) the extended real number given by

Cxayn = inf({r €[0,00]: BACX: [(JA] <n)A(Vz € X:Ja€ A:d(a,z) < r)})})
(9.68)

and we call Cix g)n the n-covering radius of (X,d) (we call Cx, the n-covering radius of
X).

Lemma 9.2.2. Let (X,d) be a metric space, let n € N, r € [0,00], assume X # 0,
and let A C X satisfy |A| < n and Vo € X:3Ja € A: d(a,x) < r. Then there exist
T1,%a, ..., Ty € X such that

X C [O{v € X:d(z;,v) < 7"}] . (9.69)

Proof of Lemma 9.2.2. Note that the assumption that X # () and the assumption that
|A] < n imply that there exist z1,xo,...,2, € X which satisfy A C {zy,29,...,2,}.
This and the assumption that Vo € X: Ja € A: d(a,z) < r ensure that

X C [U{v € X:d(a,v) < r}] C [U{v e X:d(z;,v) <r}|. (9.70)
acA i=1
The proof of Lemma 9.2.2 is thus complete. O]

Lemma 9.2.3. Let (X,d) be a metric space, let n € N, r € [0,00], x1,29,...,2, € X
satisfy X C [Ui_{v € X: d(x;,v) < r}]. Then there exists A C X such that |A] < n
and

Vee X:Jae A:d(a,z) <. (9.71)

Proof of Lemma 9.2.3. Throughout this proof let A = {zy,x9,...,2,}. Note that the
assumption that X C [UJi_,{v € X: d(z;,v) < r}] implies that for all v € X there exists
i€{1,2,...,n} such that d(z;,v) < r. Hence, we obtain that

Vee X:3ae A d(a,x) <. (9.72)
The proof of Lemma 9.2.3 is thus complete. n

Lemma 9.2.4. Let (X,d) be a metric space, let n € N, r € [0,00], and assume X # ().
Then the following two statements are equivalent:

(i) There exists A C X such that |A| <n andVx € X:Ja€ A:d(a,z) <.
(it) There exist x1, s, ..., 2, € X such that X C [Jl_,{v € X: d(z;,v) < r}].

Proof of Lemma 9.2.4. Note that Lemma 9.2.2 and Lemma 9.2.3 prove that ((i)<(ii)).
The proof of Lemma 9.2.4 is thus complete. O
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Lemma 9.2.5. Let (X, d) be a metric space and let n € N. Then

(

0 X =0
Coxarm = inf({r € [0,00): (H:El,a:Q, oo T € X oy
\ X C [mgl{v € X: d(wpm,v) < 7"}] )} U {oo}> | |

(9.73)

Proof of Lemma 9.2.5. Throughout this proof assume w.l.o.g. that X # () and let a € X.
Note that the assumption that d is a metric implies that for all z € X it holds that
d(a,z) < oo. Combining this with Lemma 9.2.4 proves (9.73). This completes the proof
of Lemma 9.2.5. O

Exercise 9.2.1. Prove or disprove the following statement: For every metric space (X, d)
and every n,m € N it holds that Cix 4, < 00 if and only if C(x a4)m < 0o.

Exercise 9.2.2. Prove or disprove the following statement: For every metric space (X, d)
and every n € N it holds that (X, d) is bounded if and only if C(x,q)n < 0.

Exercise 9.2.3. Prove or disprove the following statement: For every n € N and every
metric space (X, d) with X # (0 it holds that

C(X,d),n = lnfcvl,ccg ..... zn€X SUPyex Mief1.2,... n} d(xi, U) = lnfccl,ccg ..... zn€X SUDg,  ex MMief12 . n} d(Ii, $n+1)

(9.74)

9.2.1.2 Covering numbers

Definition 9.2.6. Let (X,d) be a metric space and let r € [0,00]. Then we denote by
CEDr € [0, 00] (we denote by CX" € [0,00]) the extended real number given by

cXdr — inf({n eNp: (FACKX: [(JAl<n)A(VzeX:TFae A: d(a,z) < T)])}U{OO})

(9.75)
and we call CXD" the r-covering number of (X,d) (we call CX" the r-covering number

of X).
Lemma 9.2.7. Let (X, d) be a metric space and let r € [0,00]. Then

/

0 X =0
X _ inf({n e N: <E|x1,x2, ey € X
. : X A 0.
X C {U {veX:dxnm,v) Sr}})}U{oo})
m=1

) (9.76)
Proof of Lemma 9.2.7. Throughout this proof assume w.l.o.g. that X # (). Observe that
Lemma 9.2.4 establishes (9.76). The proof of Lemma 9.2.7 is thus complete. O]

Exercise 9.2.4. Prove or disprove the following statement: For every r € [0, 00|, every
metric space (X,d), and every Y C X it holds that

C(Yvd‘YXY)vr S C(de)v"" (977)
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9.2.1.3 Packing radii (Inner entropy numbers)

Definition 9.2.8. Let (X,d) be a metric space and let n € N. Then we denote by
Pix,ayn € [0,00] (we denote by Px ,, € [0,00]) the extended real number given by

P(Xd)m = Sup({r < [0, OO): (El T1,L2y -y Tnt1 cX: [mini,jg{l’z 7777 n+1}, i#j d(.fL'Z, .I'J)] > ZT)} U {0})
(9.78)

and we call P(x ), the n-packing radius of (X,d) (we call P*" the n-packing radius of

X).

Exercise 9.2.5. Prove or disprove the following statement: For every n € N and every
metric space (X, d) with X # ) it holds that

Pixdayn = 5 [SUsy oo erex MG je(2, i1}, i (i, 25)] (9.79)

9.2.1.4 Packing numbers

Definition 9.2.9. Let (X,d) be a metric space and let r € [0,00]. Then we denote by
PEAT € [0, 00] (we denote by PX™ € [0,00]) the extended real number given by

P(X’d)’r = Sup({n e N: (El T1,X9,...,Tpy1 € X: [mini’je{m ..... n+1},i#j d(.%l, x])} > 27’)} U {O})
(9.80)

and we call PXDT the r-packing number of (X, d) (we call PX" the r-packing number of

X).

9.2.2 Inequalities for packing entropy quantities in metric spaces

9.2.2.1 Lower bounds for packing radii based on lower bounds for packing
numbers

Lemma 9.2.10 (Lower bounds for packing radii). Let (X,d) be a metric space and let
n €N, r € [0,00] satisfy n < PEDT Then r < Pix.ayn-

Proof of Lemma 9.2.10. Note that (9.80) ensures that there exist z1,z9,...,2,41 € X
such that

[mini7j6{172 ..... n+1}, i) d(Il, Z'J)] > 2r. (981)
This implies that P(x 4y, = r. The proof of Lemma 9.2.10 is thus complete. O

9.2.2.2 Upper bounds for packing numbers based on upper bounds for pack-
ing radii

Lemma 9.2.11. Let (X, d) be a metric space and let n € N, r € [0, 00] satisfy P(x,an <
r. Then P < n,

Proof of Lemma 9.2.11. Observe that Lemma 9.2.10 establishes that P47 < n. The
proof of Lemma 9.2.11 is thus complete. O]
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9.2.2.3 Upper bounds for packing radii based on upper bounds for covering
radii

Lemma 9.2.12. Let (X,d) be a metric space and let n € N. Then Px.a)n < Cx.d)n-

Proof of Lemma 9.2.12. Throughout this proof assume w.l.o.g. that C(x 4, < oo and
Px.ayn >0, let r € [0,00), 71,72, ..., 7, € X satisfy

X C || JfveX:damv) <r}, (9.82)
m=1
let r € [0,00), X1,X2,...,X,11 € X satisfy
[mini7j€{172 ..... n+1},i;ﬁj d(X“X])} > 21‘, (983)

and let p: X — {1,2,...,n} satisfy for all v € X that
e(v) =min{m € {1,2,...,n}:ve{w e X: d(w,,w) <r}} (9.84)
(cf. Lemma 9.2.5). Observe that (9.84) shows that for all v € X it holds that
ve{we X: dxpw),w) <r}. (9.85)
Hence, we obtain that for all v € X it holds that
d(v, Tpw)) <7 (9.86)

Moreover, note that the fact that ¢(x1),¢(x2),...,0(Xpe1) € {1,2,...,n} ensures that
there exist 4, € {1,2,...,n + 1} which satisfy

i£i  ad  p(x) = (). (9.57)
The triangle inequality, (9.83), and (9.86) hence show that
2r < d(x;,X;) < d(X4, Typ(xy)) + A(Tp(xy), Xj) = d(Xi, Ty(xy)) + A(Xj, Tpx,)) < 2r. (9.88)

This implies that r < r. The proof of Lemma 9.2.12 is thus complete. O

9.2.2.4 Upper bounds for packing radii in balls of metric spaces

Lemma 9.2.13. Let (X,d) be a metric space, let n € N, v € X, r € (0,00], and let
S={veX:dx,v) <r}. Then Psdg,s)m <T-

Proof of Lemma 9.2.13. Throughout this proof assume w.l.o.g. that P(g4|s,s)n > 0. Ob-
serve that for all xq,%a,...,X,41 € 5, 4,7 € {1,2,...,n+ 1} it holds that

d(xi,x5) < d(x;, ) + d(z,x;) < 2r. (9.89)

Hence, we obtain that for all x;,x5,...,x,11 € S it holds that

min; jeg1,2,.. nt1},i25 A%, X;5) < 2r. (9.90)
Moreover, note that (9.78) ensures that for all p € [0, P(s 4/, ¢),n) there exist X1, Xo, ..., Xp41 €
S such that

min; jeq1,2,....n41},i5 4(Xi, X;) > 2p. (9.91)
This and (9.90) demonstrate that for all p € [0, P(sdjg,)n) it holds that 2p < 2r. The
proof of Lemma 9.2.13 is thus complete. O]
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9.2.3 Inequalities for covering entropy quantities in metric spaces

9.2.3.1 Upper bounds for covering numbers based on upper bounds for cov-
ering radii

Lemma 9.2.14. Let (X, d) be a metric space and let r € [0,00], n € N satisfy Cix,a)n <.
Then CXDr < .

Proof of Lemma 9.2.14. Observe that the assumption that C(x ), < r ensures that there
exists A C X such that |A| < n and

X C U{UEX: d(a,v) <r}|. (9.92)
acA
This establishes that CX9" < n. The proof of Lemma 9.2.14 is thus complete. [

Lemma 9.2.15. Let (X,d) be a compact metric space and let r € [0,00], n € N, satisfy
Cixayn < 1. Then CXDr < g,

Proof of Lemma 9.2.15. Throughout this proof assume w.l.o.g. that X # () and let zy, ,,, €
X, me{l,2,...,n}, k € N, satisfy for all £ € N that

X C U{UEX: d(@pm,v) <7+ 1} (9.93)

m=1

(cf. Lemma 9.2.4). Note that the assumption that (X, d) is a compact metric space demon-
strates that there exist ¥ = (tm)meqi2,.my: {1,2,...,n} = X and k = (k;)jen: N = N
which satisfy that

lim sup;_, o, MaXme1,2,....n} ATms Thym) = 0 and limsup,_, . k; = oc. (9.94)

Next observe that the assumption that d is a metric ensures that for all v € X, m €
{1,2,...,n}, [ € N it holds that

d('U, ?m) S d<U7 xkl,m) + d('rkl,m7 xm) (995)
This and (9.93) prove that for all v € X, [ € N it holds that

< minyeqo, AV, Thym) + ATy s )]
< [miﬂme{1,2 7777 n) d(U,mkl,m)} + [maxme{m ..... n} d(xkl,mypm)]
< [r+ ]+ [maxmeq 2,y A(Trm, tn)] .

minmE{l,Q ..... n} d(“»?m)

(9.96)
Hence, we obtain for all v € X that

minm6{1,2 ..... n} d(U, ;m) S lim SUP; 00 ( [T + kil} + [maxme{l,Q ..... n} d(xkl,m; xm)}) =T
(9.97)

This establishes that C®" < n. The proof of Lemma 9.2.15 is thus complete. n
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9.2.3.2 Upper bounds for covering radii based on upper bounds for covering
numbers

Lemma 9.2.16. Let (X, d) be a metric space and letr € [0,00], n € N satisfy CXDm < n,
Then Cix.gn <7

Proof of Lemma 9.2.16. Observe that the assumption that CX4" < n ensures that there
exists A C X such that |A| <n and

J{v e X:da,v) <r}. (9.98)
acA
This establishes that C(x ), < r. The proof of Lemma 9.2.16 is thus complete. O

9.2.3.3 Upper bounds for covering radii based on upper bounds for packing
radii

Lemma 9.2.17. Let (X,d) be a metric space and let n € N. Then Cix,ayn < 2P(x,a)n-

Proof of Lemma 9.2.17. Throughout this proof assume w.l.o.g. that X # (), assume
w.lo.g. that Pxan. < 00, let r € [0,00] satisfy © > P(x q)n, and let N € Ny U {oo}
satisfy N = P47 Observe that Lemma 9.2.11 ensures that

N = pEDr <y, (9.99)

Moreover, note that the fact that N = P&4I7 and (9.80) demonstrate that for all
X1, To, ..., TN+1, T2 € X it holds that

Min; jeq1,2,...,.N+2}, i (T35, 1) < 2r. (9.100)

In addition, observe that the fact that N = P&497 and (9.80) imply that there exist
X1, To, ..., Tn+1 € X which satisfy that

min ({d(z;, z;): i,5 € {1,2,...,N + 1}, i # j} U {oo}) > 2r. (9.101)
Combining this with (9.100) establishes that for all v € X it holds that
min;eq1 2, vy d(xi,v) < 2r. (9.102)

Hence, we obtain that for all w € X it holds that

(ONS [O {veX:dz;,v) < 27‘}] : (9.103)

m=1

Therefore, we obtain that

[O {veX:dx,v) < 27"}]. (9.104)

Combining this and Lemma 9.2.5 shows that C(x 4), < 2r. The proof of Lemma 9.2.17
is thus complete. O
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9.2.3.4 Equivalence of covering and packing radii

Corollary 9.2.18. Let (X,d) be a metric space and let n € N. Then Pix.an < Cixayn <
2,P(X’d)’n.

Proof of Corollary 9.2.18. Observe that Lemma 9.2.12 and Lemma 9.2.17 establish that
Px.ayn < Cx.ayn < 2P(x,a)n- The proof of Corollary 9.2.18 is thus complete. O

9.2.4 Inequalities for entropy quantities in finite dimensional
vector spaces

9.2.4.1 Measures induced by Lebesgue-Borel measures

Lemma 9.2.19. Let (V,||-||) be a normed vector space, let N € N, let by, by, ...,by € V
be a Hamel-basis of V, let \: B(RY) — [0, 00] be the Lebesgue-Borel measure on RY | let
O: RN — V satisfy for allr = (r1,r9,...,7y5) € RY that ®(r) = riby +robs+ ... +7y5by,
and let v: B(V') — [0, 00] satisfy for all A € B(V') that

v(A) = \(®1(A)). (9.105)
Then
(i) it holds that ® is linear,
(ii) it holds for allr = (r1,79, ..., rx) € RY that [|0()|| < [N, 16a]12] [N, Iral?] 72,
(iii) it holds that ® € C(RY V),
(iv) it holds that ® is bijective,
(v) it holds that (V,B(V'),v) is a measure space,

(vi) it holds for all r € (0,00), v € V, A € B(V) that v({(ra+v) € V:a€ A}) =
Vv (A),

(vii) it holds for all r € (0,00) that v({v e V: |jv|| <r}) = rVv({v e V: || <1}),

and
(viii) it holds that v({v € V: ||v]| < 1}) > 0.

Proof of Lemma 9.2.19. Note that for all r = (ry,79,...,75), $ = (81,82,...,5y) € RY]
p € R it holds that

D(pr+s) = (pri+ s1)bi + (pra + s2)ba + - - + (pry + sn)bn = p@(r) + O(s). (9.106)

This establishes item (i). Next observe that Holder’s inequality shows that for all r =
(r1,79,...,7n) € RY it holds that

N N Ver N 12
@) = [lrabs + raby + - + rvbll < [ralllball < [ZHMF] [ZWP]
n=1 n=1 n=1
(9.107)

This establishes item (ii). Moreover, note that item (ii) proves item (iii). Furthermore,
observe that the assumption that by,bs,...,b5 € V is a Hamel-basis of V' establishes
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item (iv). Next note that (9.105) and item (iii) prove item (v). In addition, observe that
the integral transformation theorem shows that for all r € (0,00), v € RY, A € B(RY) it
holds that

AM{(ra+v)eRY:ae A}) =A({raeRY:a € A}) = /RN LiraerN : acay () dz

:/RN lA(f)dx:rN/ Ta(z)de = rVA(A).

RN

(9.108)

Combining item (i) and item (iv) hence demonstrates that for all r € (0,00), v € V,
A € B(V) it holds that

vi{(ra+v) e Viae AY) =A@ '({(ra+v) e V:ae A})) =A({2 ' (ra+v) e RV: a € A})

A{[r® " (a) + @ ' (v)] e RY:a € A})

=A{[ra+ @ '(v)] eRY:a € @ (A)}) =rVA(@'(A)) ="V (A).
(9.109)

This establishes item (vi). Hence, we obtain that for all » € (0,00) it holds that

v({v e Vel <r}) =v({rve Ve[l <1}) = r*v({v € Vi o] < 1}) = rv(X).
(9.110)
This establishes item (vii). Furthermore, observe that (9.110) demonstrates that

00 = ARY) = p(V) = limsup |v({v € V: |v]| < r})} = limsup [rNu({v eVl < 1)

r—00

(9.111)
Hence, we obtain that v({v € V: |Jv|| < 1}) # 0. This establishes item (viii). The proof
of Lemma 9.2.19 is thus complete. O

9.2.4.2 Upper bounds for packing radii

Lemma 9.2.20. Let (V,||-]|) be a normed vector space, let X = {v e V: ||jv|| <1}, let
d: X x X — [0,00) satisfy for all v,w € X that d(v,w) = [|[v — w||, and let n,N € N
satisfy N = dim(V'). Then

Pxayn < 2(n+1)7"". (9.112)

Proof of Lemma 9.2.20. Throughout this proof assume w.l.o.g. that Pix 4, > 0, let
p € [0,Pxapn), let A: BRY) — [0,00] be the Lebesgue-Borel measure on RY, let
b1, by, ..., by €V beaHamel-basis of V, let ®: RY — V satisfy forallr = (ry,79,...,7x5) €
R that

O(r) =riby +12bs + ... + ryby, (9.113)

and let v: B(V) — [0, o0] satisfy for all A € B(V) that

v(A) = A(®1(A)). (9.114)

Observe that Lemma 9.2.13 ensures that p < Px.q» < 1. Moreover, note that (9.78)
shows that there exist x1, 25, ..., 2,11 € X which satisfy

MiNG jef1,2,...n41}i5 | T — 25l = mingjeq 2, ni1y,iz d(2i, 5) > 2p. (9.115)
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Observe that (9.115) ensures that for all i,j € {1,2,...,n+ 1} with ¢ # j it holds that
{veV:|z—vl <ptn{veV: |z —vl <p} =0 (9.116)

Moreover, note that (9.115) and the fact that p < 1 show that for all j € {1,2,...,n+1},
w e {ve X:d(z;,v) < p} it holds that

lwll < flw =2 + [l < p+1<2. (9.117)
Therefore, we obtain that for all j € {1,2,...,n+ 1} it holds that
fveV:|lv—uml <p} C{veV: | <2} (9.118)

Next observe that Lemma 9.2.19 ensures that (V, B(V'), v) is a measure space. Combining
this and (9.116) with (9.118) proves that

n+1 n+1
v({v e Vi v —a;]l < p}) = V(U{v eV flv—ua < p}) <v({veV:|v| <2}).
j=1 j=1
(9.119)

Lemma 9.2.19 hence shows that

n+1 n+1
(n+ Dp"v(X)=> [pPMv{veV: ol <1H] = v({v e V: |v|| < p})

j=1 j=1

= Z v({v e V:llo—z;l <p}) <v{veV: vl <2}) =2%v({v e V: |Ju]| < 1}) = 2"Vp(X).
" (9.120)

Next observe that Lemma 9.2.19 demonstrates that v(X) > 0. Combining this with
(9.120) assures that (n+1)pN < 2N. Therefore, we obtain that pV < (n+4 1) "2V,
Hence, we obtain that p < 2(n + 1)_1/N. The proof of Lemma 9.2.20 is thus complete. [

9.2.4.3 Upper bounds for covering radii

Corollary 9.2.21. Let (V,||-||) be a normed vector space, let X = {v e V: ||v]| < 1},
let d: X x X — [0,00) satisfy for all v,w € X that d(v,w) = ||lv—w||, and let n, N € N
satisfy N = dim(V'). Then

Cixayn < 4(n+1)77", (9.121)

Proof of Corollary 9.2.21. Observe that Corollary 9.2.18 and Lemma 9.2.20 establish
(9.121). The proof of Corollary 9.2.21 is thus complete. O

9.2.4.4 Lower bounds for covering radii

Lemma 9.2.22. Let (V,||-||) be a normed vector space, let X = {v e V: ||jv|| < 1}, let
d: X x X — [0,00) satisfy for all v,w € X that d(v,w) = [|v — w||, and let n,N € N
satisfy N = dim(V'). Then

nN < Clxdyn- (9.122)
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Proof of Lemma 9.2.22. Throughout this proof assume w.lo.g. that Cix 4, < o0, let
p € (Cixapns 00), let A: B(RY) — [0,00] be the Lebesgue-Borel measure on RY, let
bi,bs,...,by €V beaHamel-basis of V,let ®: RY — V satisfy for all r = (ri,ro,...,rn) €
RY that

®(r) =riby +12by + ... + ryby, (9.123)
and let v: B(V) — [0, o0] satisfy for all A € B(V') that
v(A) = M@ 71(A)). (9.124)

The fact that p > C(x 4),, demonstrates that there exist x1,xs,...,x, € X which satisfy

X C

o {ve X:d(zn,v) < p}] : (9.125)

m=1

Lemma 9.2.19 hence shows that

v(X) < V(U{v € X:d(xy,v) < p}) < v({v e X: d(xy,,v) < p})

3

et m= (9.126)
= Z PN v({v e X: d(zy,v) < 1})] < np™v(X).
m=1
This and Lemma 9.2.19 demonstrate that 1 < np". Hence, we obtain that p¥ > n7!.
This ensures that p > n~"7". The proof of Lemma 9.2.22 is thus complete. O]

9.2.4.5 Lower and upper bounds for covering radii

Corollary 9.2.23. Let (V,||-||) be a normed vector space, let X = {v e V: |jv[| <1},
let d: X x X — [0,00) satisfy for all v,w € X that d(v,w) = ||v —w]||, and let n, N € N
satisfy N = dim(V'). Then

nN < Clixayn < 4(n+1)77V, (9.127)
Proof of Corollary 9.2.23. Observe that Corollary 9.2.21 and Lemma 9.2.22 establish
(9.127). The proof of Corollary 9.2.23 is thus complete. O

9.2.4.6 Scaling property for covering radii

Lemma 9.2.24. Let (V. ||-||) be a normed vector space, let d: V xV — [0, 00) satisfy for
all v,w € V that d(v,w) = ||lv —w||, let n € N, r € (0,00), and let X CV and X C V
satisfy X = {rv e V:v e X}. Then

Clrdizsx)n = T CXdlxx) - (9.128)

Proof of Lemma 9.2.2/. Throughout this proof let ®: V' — V satisfy for all v € V' that
®(v) = rv. Observe that Exercise 9.2.3 shows that

02y X SUD, Wiy d(B(2:), B(0)) (9129
=inf,, 2, 2.ex SUPycx M2, 0y A(P(2;), V)
= inffvl,xz ..... zn€X SUPyex mini6{1,2 ..... n} d(xiv U) = C(xvd\xwe)vn'
This establishes (9.128). The proof of Lemma 9.2.24 is thus complete. O]
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9.2.4.7 Upper bounds for covering numbers

Proposition 9.2.25. Let (V,||-[|) be a normed vector space with dim(V') < oo, let r, R €
(0,00), X ={veV: ||| <R}, and let d: X x X — [0, 00) satisfy for all v,w € X that
d(v,w) = ||lv —w||. Then

1 r>R
cXdr < - - 9.130
(a4 < R (8-130)

(cf. Definition 9.2.6).

Proof of Proposition 9.2.25. Throughout this proof assume w.l.o.g. that dim(V) > 0,
assume w.l.o.g. that » < R, let [-]: [0, 00) — [0, 00) satisfy for all x € [0, 00) that

[z] = inf([x, 00) NN), (9.131)

let N € N satisfy N = dim(V), let n € N satisfy

n= Hg} T 1} , (9.132)

let X={veV:|v|| <1}, and let 0: X x X — [0, 00) satisfy for all v,w € X that
o(0,w) = [Jv — wl]. (9.133)

Observe that Corollary 9.2.21 proves that

Caxoym <4(n+1)""". (9.134)
The fact that
4R1Y 4R1Y 4R1Y
n—l—le—R] —1}%—12 {—R] —1]+1:[—R} (9.135)
r r r
therefore ensures that
71/]\] 1
ARTY AR r
<4 )N <4 |22 =4|—| == 1
C(%,a),n < (n+ ) < [ . } [ . ] Ia (9 36)
This and Lemma 9.2.24 demonstrate that
C(X,d),n = RC(x@),n S R[%] =T (9.137)

Lemma 9.2.15 hence ensures that

ARTY AR dm(V)
CXDr < < {_R} _ {_R} | (9.138)
r r
The proof of Proposition 9.2.25 is thus complete. ]
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9.3 Risk minimization

9.3.1 Bias-variance decomposition

Lemma 9.3.1 (Bias-variance decomposition). Let (2, F,P) be a probability space, let
(S,S) be a measurable space, let X: Q — S and Y: Q — R be random variables with
E[|Y )] < oo, and let £: L2(Px;R) — [0,00) satisfy for all f € L*(Px;R) that E(f) =
E[|f(X) —=Y|?]. Then

(i) it holds for all f € L*(Px;R) that
E(f) =E[If(X) - EY|X]] + E[Y — E[Y]X]|], (9.139)
(ii) it holds for all f,g € L2(Px;R) that
E(f) — E(9) = E[If(X) - E[Y|X][] —E[lg(X) - E[Y|X]], (9.140)

and

(iii) it holds for all f,g € L*(Px;R) that
E[|f(X) - E[Y|X]]"] = E[|9(X) - E[Y|X][*] + ((f) — £(9)). (9.141)

Proof of Lemma 9.3.1. First, observe that the assumption that for all f € L?(Px;R) it
holds that £(f) = E[|f(X) — Y|*] shows that for all f € £2(Px;R) it holds that

E(f) =E[If(X) = Y’] =E[|(f(X) - E[Y|X]) + (E[Y|X] - Y)[]
= E[|f(X) - E[Y|X]]*] + 2E[(f(X) - E[Y|X]) (E[Y|X] - Y)] + E[[E[Y|X] - Y[*]
— E[|f(X) - E[Y|X]P"] + 2E[E[(f(X) - [Y]X]) YIX]-Y)|X]| + E[ElY|X] -
— E[|f(X) — E[Y|X]]%] +2E[(f(X) — E[Y|X)E[(E[Y|X] - X]] E[[E[Y]X] -
=E[f(X) -E[Y|X][’] +2E[(f(X) - E[Y|X])(E [Y|X E[Y|X])] + E[[E[Y|X] —
= E[|f(X) - E[Y|X]]*] +E[[E[Y|X] - Y|’]
(9.142)
This implies that for all f, g € £L2(Px;R) it holds that
E(f) - E(g) = E[|f(X) - E[Y|X]]"] - E[|g(X) — E[Y|X][]. (9.143)
Hence, we obtain that for all f,g € L*(Px;R) it holds that
E[|f(X) - E[Y|X]"] = E[lg(X) - E[Y[X]"] + £(f) — £(9). (9.144)

Combining this with (9.142) and (9.143) establishes items (i), (ii), and (iii). The proof
of Lemma 9.3.1 is thus complete. O
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9.3.2 Risk minimization for measurable functions

Proposition 9.3.2. Let (2, F,P) be a probability space, let (S,S) be a measurable space,
let X: Q — S andY : Q — R be random variables, assume E[|Y|?] < oo, let £: L2(Px;R) —
[0, 00) satisfy for all f € L2(Px;R) that E(f) =E|[|f(X) — Y|*]. Then it holds that

{f € L2(Px;R): E(f) = infyer2prir) E(9)} = {f € L2(Bx:;R): £(f) = E[|E[Y|X] - Y[]}
_ {f € L2(Px;R): f(X) = E[Y|X] P-a..}.
(9.145)

Proof of Proposition 9.5.2. Note that Lemma 9.3.1 shows that for all g € L?(Px;R) it
holds that
E(g) =E[|g(X) — E[Y|X]]’] + E[|JE[Y|X] - Y. (9.146)

Hence, we obtain that for all g € £L2(Px;R) it holds that

E(g9) > E[[E[Y]X] - Y] (9.147)
Furthermore, note that (9.146) shows that
{f € L2(Px;R): £(f) =E[[ENY |X] - Y]} = {f € L2(Px:;R): E[|f(X) — E[Y|X]]"] = 0}

= {f € L2(Px;R): f(X) = E[Y|X] P-as.}.
(9.148)

Combining this with (9.147) establishes (9.145). The proof of Proposition 9.3.2 is thus
complete. O

Proposition 9.3.3. Let (2, F,IP) be a probability space, let (S,S) be a measurable space,
let X:Q — S be a random variable, let M = {(f: S — R): f is S/B(R)-measurable},
let o € M, let £: M — [0,00) satisfy for all f € M that E(f) = E[\f(X) — cp(X)|2].
Then it holds that

{f e M: &(f) = infgep E(9)} = {f € M: E(f) = 0} = {f € M: P(f(X) = (X)) = 1},

Proof of Proposition 9.3.3. Note that the assumption that for all f € M it holds that
E(f) =E[|f(X) — ¢(X)[?] implies that £(p) = 0. Hence, we obtain that

glél/a E(g) = (9.150)
Furthermore, observe that
{feM:E(f)=0}={f e M:E[|f( X)|’] =0}
={feM: Hweﬂf’ @) #e(X@N) =0} 10
={fe M:P(X'({z € S: f(z) # p(z)})) = 0}
={f e M:Px({z € S: f(z) # ¢(z)}) = 0}.
The proof of Proposition 9.3.3 is thus complete. O
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9.3.3 Risk minimization for continuous functions

Proposition 9.3.4. Let (Q, F,P) be a probability space, let (E,d) be a metric space,
let X:Q — E be a random variable, assume for all x € E, r € (0,00) that Px({y €
E:d(z,y) <r}) >0, let p € C(E,R), let £: C(E,R) — [0,00] satisfy for all f €
C(E,R) that E(f) =E[|f(X) — o(X)[*]. Then it holds that

{f € C(ER): E(f) = infyecimm E(9)} = {f € C(E,R): £(f) =0} = {p}.  (9.152)

Proof of Proposition 9.3.4. Note that the assumption that for all f € C'(E,R) it holds

that £(f) = E[|f(X) — ¢(X)|?] implies that £(p) = 0. Furthermore, note that the fact

that ¢ € C(E,R) implies that for all f € C(E,R), x € E with f(z) # ¢(x) there exists
€ (0, 00) such that

lye B dxv,y) <r} C{y € E: f(y) # ¢oy)}. (9.153)

Combining this with the assumption that for all x € E| r € (0, 00) it holds that Px({y €
E:d(xz,y) <r}) > 0 shows that for all f € C(E,R) with f # ¢ it holds that

Px({y € E: f(y) # ¢(y)}) > 0. (9.154)

This implies that for all f € C(E,R) with f # ¢ it holds that
&N = E[f(X) = o(OF] = [1/@) = e@PPxlar) >0 (@159
The proof of Proposition 9.3.4 is thus complete. O

9.4 Empirical risk minimization

9.4.1 Measurability properties for suprema

Lemma 9.4.1. Let (E,&) be a topological space, assume E # 0, let E C E be an
at most countable set, assume that E is dense in E, let (2, F) be a measurable space,
let f,: Q2 = R, z € E, be F/B(R)-measurable functions, assume for all w € Q that
E > 2w~ f.(w) € R is a continuous function, and let F': Q@ — R U {oo} satisfy for all
w € Q that F(w) = sup,cp fo(w). Then

(1) it holds for all w € Q) that F(w) = sup,eg f2(w) and

(i1) it holds that F' is an F/B(R U {oco})-measurable function.

Proof of Lemma 9.4.1. Note that the assumption that E is dense in E implies that for
all g € C(E,R) it holds that

sup g(z) = sup g(z). (9.156)

zeE zeE

This and the assumption that for all w € Q it holds that £ 5 = — f,(w) € R is a
continuous function show that for all w € €2 it holds that

F(w) = sgg fao(w) = sgg fe(w). (9.157)

This establishes item (i). Next note that item (i) and the assumption that for all x € E
it holds that f,:  — R is an F/B(R)-measurable function demonstrate item (ii). The
proof of Lemma 9.4.1 is thus complete. O
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Lemma 9.4.2. Let (E,0) be a separable metric space, assume E # 0, let (Q, F,P) be
a probability space, let L € R, and let Z,: Q0 — R, x € E, be random variables which
satisfy for all x,y € E that E||Z,|] < oo and |Z, — Z,| < Lé(x,y). Then

(1) it holds for all z,y € E, n € Q that |(Z,(n) —E[Z,]) — (Z,(n) —E[Z,])| < 2L(z,y)
and

(1) it holds that Q > n — sup,c|Z.(n) —E[Z,]| € [0, 00] is an F /B([0, 00])-measurable
function.

Proof of Lemma 9.4.2. Note that the assumption that for all z;y € E it holds that
|Z, — Z,| < Lé(x,y) shows that for all z,y € E, n € it holds that

(Ze(n) — E[Z:]) — (Z,(n) = BZ,))| = [(Z:(n) — Z,(n)) + (E[Z,] - E[Z:])|
< |Za(n) = Zy(n)| + |E[Z:] = E[Z,]] < Lo(x,y) + [E[Z:] — E[Z,]|
= Li(z,y) + [E[Z, — Z,]| < Li(x,y) + E[|Z, — Z,|] < Li(2,y) + Lo(z,y) = 2L5(,y).
(9.158)
This proves item (i). Next observe that item (i) implies that for all n € Q it holds
that £ 5 x — |Z.(n) — E[Z,]| € R is a continuous function. Combining this and the

assumption that F is separable with Lemma 9.4.1 establishes item (ii). The proof of
Lemma 9.4.2 is thus complete. ]

9.4.2 Concentration inequalities for random fields

Lemma 9.4.3. Let (F,d) be a separable metric space and let F C E be a set. Then
(F.d|rxr) (9.159)

18 a separable metric space.

Proof of Lemma 9./.3. Throughout this proof assume w.lo.g. that F # (), let e =
(eén)nen: N — E be a sequence of elements in £ such that {e, € E: n € N} is dense in
E, and let f = (fn)nen: N — F be a sequence of elements in F' such that for all n € N
it holds that

0 re, €F
d(fn,en) < 9.160
(Jnsn) {[infxep d(x,en)] + 2% ce, ¢ F. ( )
Observe that for all v € F\{e,, € E: m € N}, n € N it holds that
inf < inf
nf d(v, fm) < et d(v, fm)
< inf  [d(v, em) + dlem, fin)]
meNN[n,00)
1
< i i i
< m€§2&,w) [d(v, em) + |infrer d(z, €,)] + o (9.161)

1
< inf [2 d(v,en) + 2—m}

meNN[n,00)
1 1
<2| inf d — =
- |:m€§rrﬁl[n,oo) (U,Gm):| + 2n 2m
Combining this with the fact that for all v € Fn{e, € E: m € N} it holds that
inf,,en d(v, fn) = 0 ensures that the set {f,, € F': n € N} is dense in F. The proof of

Lemma 9.4.3 is thus complete. O
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Lemma 9.4.4. Let (E, ) be a separable metric space, lete, L € R, N € N, 21, 29,...,2y5 €
E satisfy £ C Ufil{x € E:2L0(x,z) < e}, let (2, F,P) be a probability space, and let
Zy: Q— R, x € E, be random variables which satisfy for all x,y € E that |Z, — Z,| <
Lé(z,y). Then

=2

P(sup,c 5| Zs| > €) < Z (12..] > £) (9.162)

(cf. Lemma 9./.1).

Proof of Lemma 9.4.4. Throughout this proof let By, By, ..., By C FE satisfy for all © €
{1,2,...,N} that B, = {x € E: 2Ld(x,2;) < €}. Observe that the triangle inequality
and the assumption that for all z,y € E it holds that |Z, — Z,,| < Lé(x,y) show that for
alli e {1,2,...,N}, z € B; it holds that

|Zm| = |Zz —Z, + Zzi| < |Zr - Zzz-| + |Zzz-| < L(S(xvzi) zil = % zi | (9-163)

Combining this with Lemma 9.4.1 and Lemma 9.4.3 proves that for all i € {1,2,..., N}
it holds that

P(sup,ep,|Z:] > ¢) <P+ |2.,| > ) =P(|Z.,| > £). (9.164)
This, Lemma 9.4.1, and Lemma 9.4.3 establish that

| 2 ) = P(ULi{s0psep 1] = €})

N
P(supcp,|Zs| > €) < ) P(|Z] > 5)

P(sup,cp|Z:| > €) = P<Squ€(Ufi1Bi)
(9.165)

(VAN
1>

This completes the proof of Lemma 9.4.4. O

Lemma 9.4.5. Let (E, ) be a separable metric space, assume E # 0, let ¢, L € (0, 00),
let (2, F,P) be a probability space, and let Z,: Q — R, x € E, be random variables which
satisfy for all x,y € E that |Z, — Z,| < Ld(z,y). Then

[CE5) T P(sup,ep| Zo| > €) < sup,epP(|Z:] > ). (9.166)
(cf. Definition 9.2.6 and Lemma 9.4.1).

Proof of Lemma 9.4.5. Throughout this proof let N € N U {oc} satisfy N = C(Fsz,
assume without loss of generality that N < oo, and let zi,2,,...,2y € F satisfy
ECcUN{z € E:d(x,2) < 57} (cf. Definition 9.2.6). Observe that Lemma 9.4.1
and Lemma 9.4.4 establish that

N
P(sup,eplZe| > €) <> P(12.| > §) < N[sup,epP(|Z:] > §)]. (9.167)

i=1
This completes the proof of Lemma 9.4.5. n

Lemma 9.4.6. Let (E, ) be a separable metric space, assume E # 0, let ¢, L € (0, 00),
let (Q, F,P) be a probability space, and let Z,: Q@ — R, x € E, be random variables which
satisfy for all x,y € E that E[|Z,|] < 00 and |Z, — Z,| < Lé(z,y). Then

[CENTT) T P(sup,ep| Ze — E[Z,)| > ) < sup,epP(1Z. — E[Z,)| > ). (9.168)
(cf. Definition 9.2.6 and Lemma 9.4.2).
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Proof of Lemma 9.4.6. Throughout this proof let Y,: Q@ — R, x € FE, satisfy for all
x € E,neQthat Y.(n) = Z,(n) — E[Z,]. Observe that Lemma 9.4.2 ensures that for all
x,y € E it holds that

Y, —Y,| <2Lé(z,y). (9.169)

This and Lemma 9.4.5 (applied with (E,d) v« (F,0), ¢ v e, L ~ 2L, (Q,F,P) <
(Q,F,P), (Zs)zer v (Yz)zer in the notation of Lemma 9.4.5) establish (9.168). The
proof of Lemma 9.4.6 is thus complete. O

Lemma 9.4.7. Let (E,0) be a separable metric space, assume E # (), let M € N,

e, L,D € (0,00), let (2, F,P) be a probability space, for everyx € EletYy1,Yeo, ..., Yo ur:

[0, D] be independent random variables, assume for all x,y € E, m € {1,2,..., M} that
Yom — Yym| < Lé(x,y), and let Z,: Q@ — [0,00), x € E, satisfy for all x € E that

M
E Yom|-
m=1

1
Ly = — 1
i (9.170)

Then
(1) it holds for all x € E that E[|Z,|] < D < o0,

(11) it holds that Q@ 3 n — sup,cp|Z.(n) —E[Z.]| € [0, 00] is an F /B([0, 00])-measurable
function, and

(#1) it holds that

e —e2M
P(supyes|Z. — E[Z,]] > ¢) < 2050 exp( = ) (9.171)

(cf. Definition 9.2.6).

Proof of Lemma 9.4.7. First, observe that the triangle inequality and the assumption
that for all z,y € E, m € {1,2,..., M} it holds that |Y, ,, — Y, m| < Lé(z,y) imply that
for all z,y € E it holds that

M
E Yim
m=1

M
§ ‘Yx,m - Yy,m|
m=1

Next note that the assumption that for all z € E, m € {1,2,..., M}, w € Q it holds that
|Yy.m(w)| € [0, D] ensures that for all € E it holds that

M M
> Yo > E[Y..]
m=1 m=1

This proves item (i). Furthermore, note that item (i), (9.172), and Lemma 9.4.2 establish
item (ii). Next observe that (9.170) shows that for all z € E it holds that

1 1
M

M
2 Yo

< Lo(z,y).

1
Zy— 7, = |—
| yl M

M
Z (Yx,m - me)
m=1

(9.172)

1
<
- M

1 1
E[|Z.]) =E| = < D < . (9.173)

1| & 1 | & 1| &
w3 S -5 S| = 305 - 2|

(9.174)
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Combining this with Corollary 9.1.21 (applied with (2, F,P) ~ (Q, F,P), N A M, e
5, (ar,az,...,an) ~ (0,0,...,0), (b1,b2,....0n) » (D, D,...,D), (Xp)neqi2,...N} O
(Yam)me{1,2,..,m3 for o € E in the notation of Corollary 9.1.21) ensures that for all x € E
it holds that

e —2 [%} 2M2 —&*M

Combining this, (9.172), and (9.173) with Lemma 9.4.6 establishes item (iii). The proof
of Lemma 9.4.7 is thus complete. O

9.4.2.1 Uniform estimates for the statistical learning error

Lemma 9.4.8. Let (E,0) be a separable metric space, assume E # (), let M € N,
e,L,D € (0,00), let (2, F,IP) be a probability space, let Xym: Q@ - R, z € E, m €
{1,2,...., M}, and Y,,: Q@ = R, m € {1,2,..., M}, be functions, assume for all x € E
that (Xzm,Ym), m € {1,2,..., M}, are i.i.d. random variables, assume for all x,y € E,
m € {1,2,..., M} that | X, m — Xym| < Lo(z,y) and | Xym — Y| < D, let €,: Q —
[0,00), x € E, satisfy for all x € E that

1 M
sz:_ Xxm_Ym2
i | 0

and let £, € [0,00), x € E, satisfy for all v € E that &, = E[|X,1 — Y1|*]. Then
Q3w sup,ep|€r(w) — & €[0,00] is an F/B([0, 0c])-measurable function and

, (9.176)

. —2M
P(sup,c x| €x — E| > ¢) < 200 sip eXp( 25D4 ) (9.177)

(cf. Definition 9.2.6).

Proof of Lemma 9.4.8. Throughout this prooflet &, ,,: Q@ — [0,D?,z € E,m € {1,2,..., M},
satisfy for all z € E, m € {1,2,..., M} that

Observe that the fact that for all z1, 72,y € R it holds that (x1 — y)? — (22 — y)? =
(1 — x2)((x1 — y) + (x2 — y)), the assumption that for all x € E, m € {1,2,..., M} it
holds that | X, ,, — Y| < D, and the assumption that for all x,y € £, m € {1,2,..., M}
it holds that | X, ,, — Xym| < Lé(x,y) imply that for all z,y € E, m € {1,2,..., M} it
holds that

|g:c,m - gy7m| = ‘(Xx,m - Ym)2 - (Xy,m - Ym)2| = |Xx,m - XymH(Xx,m - Ym) + (nym - Ym)‘
<X = Xyl ([ Xom — Yol + [ Xym — Yin|) < 2D[X, 0 — Xym| < 2LD6(z,y).

(9.179)
In addition, note that (9.176) and the assumption that for all + € FE it holds that

(Xam, Ym), m € {1,2,..., M}, are ii.d. random variables show that for all z € FE it
holds that

1 [ 1 [ M 1 [
sed= & [Soetn ] - 3 Snp v - [35e] e
m=1 m=1 ot

(9.180)
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Furthermore, observe that the assumption that for all x € E it holds that (X, ., Y:m),
m € {1,2,..., M}, are i.i.d. random variables ensures that for all x € F it holds that
Ermsm € {1,2,..., M}, are i.i.d. random variables. Combining this, (9.179), and (9.180)
with Lemma 9.4.7 (applied with (E,d) <~ (E,8), M ~ M, e ~ e, L ~2LD, D ~ D?
(97]:, P) 2 (Qp/T, P), (Yr,m)meE,me{l,Q ..... M} ¥ (ffx,m)er,me{m ..... M} (Za:)zEE = (Q”:a:)er
in the notation of Lemma 9.4.7) establishes (9.177). The proof of Lemma 9.4.8 is thus
complete. O

Lemma 9.4.9. Let d,o, M € N, R,L,R,c € (0,00), let D C R?¢ be a compact set, let
(Q, F,P) be a probability space, let X,,: Q@ — D, m € {1,2,..., M}, and Y,,: Q@ — R,
m € {1,2,..., M}, be functions, assume that (X,,,Yy), m € {1,2,..., M}, are i.i.d. ran-
dom variables, let H = (Hg)pe|-rrp: [—R, R]° = C(D,R) satisfy for all 0,9 € [-R, R]°,
x € D that |Hy(x)— Hy(x)| < L||0 — 9|0, assume for all@ € [-R, R]®, m € {1,2,..., M}
that |He(X,) — Y| < R and E[|Y1]?] < oo, let £: C(D,R) — [0,00) satisfy for all
f € C(D,R) that E(f) = E[|f(X1) — Y1|?], and let €: [-R, R]® x Q — [0,00) satisfy for
all € [-R, R]°, w € Q that

M

&(6,0) = - [Zme(xm(w)) - Ym<w>|2] (9.181)

m=1

(¢f. Definition 5.1.16). Then Q > w > supye_g gpl€(0,w) — E(Hyp)| € [0,00] is an
F /B([0, 00])-measurable function and

2LRR1° —e2M
P(supee[_Rﬁ]aK’E(@) —E(Hy)| > ¢) < 2max{1, [3 gRR] }exp( ° ) (9.182)

2R4

Proof of Lemma 9./.9. Throughout this proof let B C R? satisfy B = [-R, R]°* = {0 €
R%: |0]]oc < R} and let 0: B x B — [0, 00) satisfy for all 6,9 € B that

5(0,9) = 1|0 — . (9.183)

Observe that the assumption that (X,,,Y,,), m € {1,2,..., M}, are i.i.d. random vari-
ables and the assumption that for all # € [—R, R]°® it holds that Hy is a continuous
function imply that for all § € B it holds that (Hg(X,,),Yn), m € {1,2,..., M},
are i.i.d. random variables. Combining this, the assumption that for all 8,9 € B,
x € D it holds that |Hy(x) — Hy(z)| < L||@ — ¥||~, and the assumption that for all
0 e B,me{l,2,...,M} it holds that |Hyp(X,,) — Yin| <R with Lemma 9.4.8 (applied
with (F,0) «~ (B,0), M ~ M, e ~n e, L ~n L, D ~n R, (F,P) ~ (QFP),
(Xam)zer,mef1,2,..m3 O (Ho(Xm))oeB me1,2,..mys Ym)merz,.my 0 (Yi)meqi,2,... M3
(E)ece N (22 w — EB,w) € 0, OO)))0€B7 (&x)zer v (E(Hp))oep in the nota-
tion of Lemma 9.4.8) establishes that 3 w +— supycp|€(0,w) — E(Hp)| € [0,00] is an
F/B([0, co])-measurable function and

2RA
(cf. Definition 9.2.6). Moreover, note that Proposition 9.2.25 (applied with V' -~ R?,

Il ~ (R > 2+ [[2]| € [0,00)), 7 575, R R, X ~ B, d~ § in the notation of
Proposition 9.2.25) demonstrates that

c —2M
P (supaes[€(6) - £(H)| > 2) < 2050w exp () (9.181)

: 2LRR]’
CBo)sim < max{l, {3 RR] } (9.185)
£
This and (9.184) prove (9.182). The proof of Lemma 9.4.9 is thus complete. O
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Lemma 9.4.10. Let 9, M,L € N, u € R, v € (u,0), R € [1,00), ¢,b € (0,00),
1= (lo,l1,...,Ip) € N satisfy I, =1 and Sp_, k(e +1) <0, let D C [~b,b]" be a
compact set, let (Q,F,P) be a probability space, let X,,: Q@ — D, m € {1,2,..., M},
and Y0 Q — Ju,v], m € {1,2,..., M}, be functions, assume that (Xm,Ym), m €
{1,2,..., M}, are i.i.d. random variables, let £: C(D,R) — [0,00) satisfy for all f €
C(D,R) that E(f) = E[|f(X1) — Y1]?], and let €: [-R, R]®> x Q — [0,00) satisfy for all
0 € [-R,R]°, w € Q) that

¢(0,w) = + [ZIJV‘”( m(w ))—Ym(W)V] (9.186)

m=1

(cf. Definitions 2.1.27 and 5.1.16). Then Q@ > w Supee[—R,R}°’€(97w) —E(ANp)| €
[0, 00] is an F /B(]0, 0c])-measurable function and
P(suppe(p,mp| €(0) — E(A7])| = €)

SQmaX{l’ {32Lmax{1’b}<m!;o+1)LRL<U_U)]0}6XP(2<;€—%>. (9.187)

Proof of Lemma 9./.10. Throughout this proof let £ € (0, 00) satisfy
£ = Lmax{1,b} (||l||ec + )R- (9.188)

Observe that Corollary 5.3.7 (applied with a v~ =b, b b, u ™~ u, v N v, d "0, L AL,
[ A [ in the notation of Corollary 5.3.7) and the assumption that D C [—b,b])" show that
for all 6,9 € [—R, R]° it holds that

sup [ A0 (z) — A0 2)| < sup | A (@) — A ()]

rzeD z€[—b,bllo
< Lmax{1,b} (Jllflee + 1)* (max{1, |0]]oc, [9floc )"0 = ¥loc
< Lmax{1,b} (Jllfloc + 1)*R*H0 = V]|oc = £]|6 — V]| o
(9.189)

Furthermore, observe that the fact that for all # € R?, 2 € R it holds that 4%/ (x) €
[u, v] and the assumption that for allm € {1,2,..., M}, w € Q it holds that Y,,,(w) € [u, v]
demonstrate that for all 0 € [-R, R]°, m € {1,2,..., M} it holds that

A (X)) = Y| <0 — (9.190)

Combining this and (9.189) with Lemma 9.4.9 (applied with d ~ Iy, 0 0, M ~ M,
RARLALRAv—ucne DD (QFP) A~ (QFP), (Xn)nei2,. .M} O
(Xm)me{LQ ..... M} (Ym)m€{1,2 ..... M} ¥ ((Q S W Ym(w) € R))me{l,Q ..... M}s H A~ ([—R, R]a >
0 — N)0p € C(D,R)), £ ~E, €~ € in the notation of Lemma 9.4.9) establishes
that Q > w — supge[_RvR}a’QE(Q,w) — E(Ap)| € 10,00] is an F/B([0, o0])-measurable

function and

IUPSL 2
P(SUPGG[—R,R]°|€(9> — 8(%?{)1|D)‘ > 8) < QmaX{L FQSR(U U)} }eXp<2 eeM )

£ (v —u)?
(9.191)
The proof of Lemma 9.4.10 is thus complete. O]
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Analysis of the optimization error

10.1 Convergence rates for the minimum Monte Carlo
method

Lemma 10.1.1. Let (Q, F,P) be a probability space, let 9, N € N, let ||-]|: R* — [0, 00)

be a norm, let H C R® be a set, let 9 € §, Lye € (0,00), let €: H x Q — R be a

(B($H) @ F)/B(R)-measurable function, assume for all x,y € §, w € Q that |€(x,w) —

E(y,w)| < Ll|z —yl|, and let ©,,: Q@ — $H, n € {1,2,..., N}, be i.i.d. random variables.
Then

P([mingeqi,. v €(0,)] — €W) > ¢) < [P(||©: — 9 > i)}N < exp(—NP(]|©: —(19| ? £)).
10.1

Proof of Lemma 10.1.1. Note that the assumption that for all x,y € $, w € Q it holds
that |€(z,w) — E(y,w)| < L||z — y|| implies that

(min,eq .. vy €(0,)] — €(0) = minyep o v [E(O,) — E(0)]
S minne{l’g ..... N}‘G(@n) — @(19)’ S minne{m ..... N} [L|H®n — 7.9“” (102)
= L{minneq 2. vy|0n = 9]

The assumption that ©,,, n € {1,2,..., N}, are i.i.d. random variables and the fact that
Ve eR:1—x <e ® hence show that

P([minne{l,Q ..... N} e(@n)] - 6(79) > 5) S P(L [minne{l,z 77777 N}‘H@,n — 19‘”] > 8)
..... wmill€n =9l > £) = [P(ler - 9]l > £)]" (10.3)
— [1=P(|&y =9 < £)]" < exp(=NP(]|©, = 9] < £)).

=P (minne{l,g

The proof of Lemma 10.1.1 is thus complete. [

10.2 Continuous uniformly distributed samples
Lemma 10.2.1. Let (2, F,IP) be a probability space, let 9, N € N, a € R, b € (a,0),

Y € [a,b]°, Lye € (0,00), let €: [a,b]° x Q — R be a (B([a,b)°) @ F)/B(R)-measurable
function, assume for all x,y € [a,b]°, w € Q that |€(z,w) — E(y,w)| < L||z — Y|, let
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O,: Q = [a,b]°, n € {1,2,...,N}, be i.i.d. random wvariables, and assume that O is
continuous uniformly distributed on [a,b]° (cf. Definition 3.1.16). Then

P([minnei..ny €(0,)] — (W) > ¢) < exp (—Nmin{l, ﬁ}) (10.4)

Proof of Lemma 10.2.1. Note that the assumption that ©; is continuous uniformly dis-
tributed on [a, b]® ensures that

P01 =¥ < £) > P(|IO1 — (a,a,....a)| < £) =P(]|©1 — (a,qa,...,a)|| < min{$,b—a})
_ [min{%,b—a} ° — uin £ ?
- | - {LL@_QJ }

Combining this with Lemma 10.1.1 proves (10.4). The proof of Lemma 10.2.1 is thus
complete. O

(10.5)
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Chapter 11

Full error analysis for training
algorithms for DNNSs

11.1 Overall error decomposition

Lemma 11.1.1. Let (Q, F,P) be a probability space, let d, M € N, let D C R? be a
compact set, let X0 Q@ — D, m € {1,2,..., M}, and Y,,,: @ - R, m € {1,2,..., M},
be functions, assume that (X, Yy), m € {1,2,..., M}, are i.i.d. random variables, as-
sume E[|Y1]?] < oo, let £: C(D,R) — [0,00) satisfy for all f € C(D,R) that E(f) =
E[|lf(X1) — Y1|], and let €: C(D,R) x Q — [0,00) satisfy for all f € C(D,R), w €

that .
1
- [Dﬂxm(w» - Ym<w>|2]. (11
m=1
Then it holds for all f,¢ € C(D,R) that

E[|f(X1) —EY11X1)])] = E[|¢(X1) — EA|X0] "] + £(f) — E(9)

< B[lo(X,) - BN + [e(7) - €0)] + 2 max e(o) - ()]

(11.2)

Proof of Lemma 11.1.1. Note that Lemma 9.3.1 ensures that for all f,¢ € C(D,R) it
holds that
[If(Xl) E[Y1] X1’
Ello(X1) — EMIX1][°] + E(f) — €(9)
= E[|6(X1) — EWIXJ][*] + E(f) — €(f) + €(f) — €(¢) + €(¢) — E(9)
E[|¢(X1) = EWXH[] + [(E(f) = €())) + (€(¢) — £(0))] + [€(f) — €(9)]

(11.3)
B[606) ~EMIXIE] + | Y let) - @] + [6() - &)
velf,o}
B[606) ~ EIXP] +2 L%ga )- 6<v>|] +[e() - ).
The proof of Lemma 11.1.1 is thus complete. O]

Lemma 11.1.2. Let (2, F,P) be a probability space, let d,o, M € N, let D C R be a
compact set, let B C R® be a set, let H = (Hyp)gep: B — C(D,R) be a function, let
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Xn: Q= D, me{1,2,.... M}, and Yy,: Q@ — R, m € {1,2,..., M}, be functions,
assume that (X, Y,), m € {1,2,..., M}, are i.i.d. random variables, assume E[|Y;]?] <
0o, let o: D — R be a B(D)/B(R)-measurable function, assume it holds P-a.s. that
o(Xy) = E[V11X4], let £: C(D,R) — [0,00) satisfy for all f € C(D,R) that E(f) =
E[|lf(X1) — Y1|%], and let €: B x Q — [0, 00) satisfy for all § € B, w € Q that

€(0,) = o7 [DHe(Xm(w» ~Yalw)P]. (1.4
Then it holds for all 0,9 € B that
Hl) = ol P, 00) = [ |Hale) = (o) P, (o) + E(Fa) — (710
P b (11.5)
< [ Volo) — (o) P, (o) + [€06) — €(0)] +2 sl — (11|

Proof of Lemma 11.1.2. First, observe that Lemma 11.1.1 (applied with (2, F,P) <
(Q7~F7 P)7 d -~ da M A~ M7 DA D7 (Xm)m€{1,2 ..... M} 2 (Xm)me{l,Q ..... M} (Ym)me{l,Q ..... M} ‘2
(Ym)m6{1,2 ..... M} E N 87 (G (O(DaR) x> (f?w) = ﬁ [Z%:l'f(Xm(w)) _Ym(w)|2] S
[0,00)) in the notation of Lemma 11.1.1) shows that for all §,9 € B it holds that

E[|Hy(X1) — E[Yi|X:1])?] = E[|Ho(X1) — EYV3|X4][%] + E(Hp) — E(Hy)

< E[|Hy (X)) — EVIX] ] + [€(6) — e()] + 2[ ma |€(n) 6<Hn)|]

ne{0,9} (11.6)

< E[|H,(X,) — EViIX[] + [€6) - €(0)] +2 [Sup|€(77) - 5<Hn>|} .

neb

In addition, note that the assumption that it holds P-a.s. that ¢(X;) = E[Y;]|X}] ensures
that for all n € B it holds that

E[|H, (X)) — EM[X])[] = E[|H,y(X1) — o(X0)[] = /DIHn(ﬂf) — ¢(@)|* Px, (dz).

(11.7)
Combining this with (11.6) establishes (11.5). The proof of Lemma 11.1.2 is thus com-
plete. O

11.2 Analysis of the convergence speed

11.2.1 Convergence rates for convergence in probability

Lemma 11.2.1. Let (2, F,P) be a probability space, let u € R, v € (u,00), 0, L € N,
let | = (lo,ly,...,1p) € NI satisfy 1, = 1 and ZiLzl Li(liii+1) <0, let BCR? be
a non-empty compact set, and let X: Q — R and Y: Q — [u,v] be random variables.
Then

(i) it holds for all 0 € B, w € Q that |2/ (X (w)) =Y (w)]* € [0, (v — u)?],

(ii) it holds that B > 6 — E[|A4%1(X) — Y|?] € [0,00) is continuous, and
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(iii) there exists ¥ € B such that B[|A%(X) = Y|?] = [L/l{f{f(X) —Y)?]

(cf. Definition 2.1.27).

Proof of Lemma 11.2.1. First, note that the fact that for all § € R®, = € R% it holds
that 4%/(x) € [u,v] and the assumption that for all w € it holds that Y (w) € [u,v]
demonstrate item (i). Next observe that Corollary 5.3.7 ensures that for all w € Q it
holds that B 3 0 — |A4%/(X (w)) — Y (w)|* € [0,00) is a continuous function. Combining
this and item (i) with Lebesgue’s dominated convergence theorem establishes item (ii).
Furthermore, note that item (ii) and the assumption that B C R? is a non-empty compact
set prove item (iii). The proof of Lemma 11.2.1 is thus complete. O

Theorem 11.2.2. Let (Q, F,P) be a probability space, let d,0, K, M € N, € € (0,00),
Lu€R, v e (u,00), let D C R be a compact set, assume |D| > 2, let X,,: Q — D,
m e {1,2,...,M}, and Y,,: Q — [u,v], m € {1,2,..., M}, be functions, assume that
(X, Ym), m € {1,2,..., M}, are i.i.d. random variables, let §: D x D — [0,00) sat-
isfy for all x = (x1,29,...,24),y = (Y1,Y2,.-.,Ya) € D that 6(x,y) = 2?21’%‘ — il
let o: D — [u,v] satisfy P-a.s. that p(X1) = E[Y1|X4], assume for all x,y € D that
lo(x) — p(y)| < Lé(z,y), let N € NN [max{2,CP9ic} o0), let | € NN (N,o00),
let 1 = (Ip,ly,..., ) € NF satisfy for all i € NN [2,N], j € NN [N,l) that [y =
d, l, > 2dN, I; > 2N —2i+3, [; > 2, [, = 1, and Sh_ h(le1 + 1) < 0, let
R € [max{l, L,sup,cpl|z]loo; 2[sup,eple(2)[]}, 00), let B C R® satisfy B = [—R, R]°,
let €: B x Q — [0,00) satisfy for all 0 € B, w € Q that

[Zw“ -~ Ym(w)|2], (11.8)

let Op: Q — B, k€ {1,2,..., K}, be i.i.d. random variables, assume that Oy is continu-
ous uniformly distributed on B, and let =: 1 — B salisfy 2 = Oninfre{1,2,..., K} €(O))=mine (1 ...} €(O))}
(cf. Definitions 2.1.27, 3.1.16, and 9.2.6). Then

P( e ot B, a) > ) <o K min gy )
+ 2exp (o ln(max{l, 128111 +§3ZRZ+1(U — }) - %) (11.9)

Proof of Theorem 11.2.2. Throughout this prooflet M C D satisfy | M| = max{2, Pz }
and

AL [sup(lnf §(z, y))] <e, (11.10)

zeD
let b € [0, 00) satisfy b = sup,.p||2||e, let £: C(D,R) — [0, 00) satisty for all f € C(D,R)
that £(f) = E[|f(X1) —Y1|?], and let ¥ € B satisty £(A.%|p) = infoep E(A D) (cf.
Lemma 11.2.1). Observe that the assumption that for all z,y € D it holds that |p(z) —
o(y)| < Lo(z,y) implies that ¢ is a B(D)/B([u,v])-measurable function. Lemma 11.1.2
(applied with (2, F,P) ~ (Q, F,P),d ~"d, o0 O, M ~AM, D D, BB, H~N
(B 50— %?{;"D € C(DaR))7 (XM)m€{1,2 ..... M} ¥ (Xm)me{l,z ..... M}, (Ym)me{l,z ..... M} N
(23 w=Ynw) € R)nepro,..my, ¢ N (D32 @) €R), ENE, € Ein the
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notation of Lemma 11.1.2) therefore ensures that for all w € €2 it holds that

/D AED () — o) Py, (d)

0eB

(. J

-~

S/Dl%ﬁl(w)—so(x)lwxl(dwﬂ[Q(E(M)aw)—é(ﬁ,a))ﬁ? sup|€(0, w) — E(A%p)] |-

/

R Optimization error ~
Approximation error Generalization error

(11.11)

Next observe that the assumption that N > max{2,CP%)iz} = | M| shows that for all
i € NN [2,N] it holds that [ > M|+ 1, [; > 2d|M| and [; > 2|M| — 2i + 3. The
assumption that for all z,y € D it holds that |p(z) — ¢(y)| < Lé(x,y), the assumption
that R > max{1l, L, sup,.p||2|lc: 2[sup.eple(2)|]}, 77 (applied with d ~ d, 2 D, £ A,
LALunuveao, DD fog Mo M, L~ Lin the notation of ?77), and
(11.10) hence ensure that there exists n € B which satisfies

d
sup| A% (2) — p(w)] < 2L sup inf > e — vl
z€D ’ x=(21,%2,...,04)ED y=(y1,92,-Ya) EM i—1 (11 12)

ot fa (g st < &

Lemma 11.1.2 (applied with (2, F,P) ~ (2, F,P),d ~d, 0 ~n 0, M ~ M, D ~ D,
B B7 H ~ (B >0 — %?{HD € C(DvR))> (Xm)me{l,Z ..... M} ¥ (Xm)m€{1,2 ,,,,, M}y
(Yo )megiz,..my O (2 3 w = YVi(w) € R)mepro,.my, © 0 (D 3 2= p(x) € R),
E N E, €~ € in the notation of Lemma 11.1.2) and the assumption that £(4,%!|p) =
infoep E(A|p) therefore prove that

wlm

/ A (@) — ()] Py, (da) / A @) — ol B (de) + £ ) — E(AHD)

—
<0

2
< [ 1A @) — e P (de) < sup | 42(a) ~ wl)f < -
D

zeD

(11.13)

Combining this with (11.11) shows that for all w € € it holds that

[ A )0 P () < T4 [0, )00, 0)] 2 suple6. )£ (Ao |

0eB

Hence, we obtain that <11‘14)
P [ 14510 - )P Pra) > ) < P([€(2) - )] + 2 suple(®) - A0 | >
< IP’(@(E) — &) > %) +IP(§L£|€( ) = EA )| > ;) (11.15)

Next observe that Corollary 5.3.7 (applied with a v —=b, b ™ b, u N~ u, v N v, d N,
L A~ 1, I ~ lin the notation of Corollary 5.3.7) demonstrates that for all #,¢ € B it holds
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that
sup [ A0 (z) = A5 (@) < sup [ AN (x) — A5 (@)
z€D z€[—b,b]d

< tmax{1, 0} ([ oo + 1" (max{1, [|0loc, [€lloc )"0 — €]l
< IR([|loe + D'RTHO = Elloc = U([|H]oe + 'R0 — €]l
(11.16)

Combining this with the fact that for all § € R®, z € D it holds that #,%/(x) € [u, v], the
assumption that for all m € {1,2,..., M} w € Q it holds that Y,,(w) € [u,v], the fact
that for all 21, 75,y € R it holds that (x; —y)? — (22 —y)? = (21— 22) (1 —y) + (22 —¥)),
and (11.8) ensures that for all 6,& € B, w € Q it holds that

€0, w) — (¢, w)]
| Dot - | - S - vt

= D (A X)) = A X ) (A Ko ) = V) + (A Ko (0) = Vo)) ‘

L[
<3712
- <2(v—u)
< 2(0 = w)l([loo + 1)' R0 — €| -
Lemma 10.2.1 (applied with (2, F,P) < gQ,]—",IP’), 0N, NAK,an—R, bR,

¥ N 7,9, LA Q(U — U)l(”[”oo + 1)lRl, g N Ez, ¢ QE, (@n)HE{l,Q ..... N} N (@k)ke{1,2 ..... K} n
the notation of Lemma 10.2.1) therefore shows that

(11.17)

J

[ At (Xm(@)) = A Xm (@) [ (X)) = Yo (@) + | A5 (X () — YMW)H)]

P(ez(z) —€0) > %) - ]P’( [ min ez(@k)] —€0) > %2)

ke{l,2,... K}
2(v — u)l([(;}_ D RP(2R)? }) (11.18)
= exp (—Kmin{la (16(v — u)[(HiHOO TR })

Moreover, note that Lemma 9.4.10 (applied withd W0, M ~A M, L A~ I, u N u, v v,
RARecAZ bbbl DA D (QFP) A (QFP), (Xpn)mepo. v o
(Xm)megr2,.mp Y)mepiz,my O Ym)mepio,ay, € 0 E, € A € in the notation of
Lemma 9.4.10) establishes that

< exp (—K min{l,

B (supsesle(®) - 2001 2 5 )
gzmax{l,{128lmax{1,b}<|m|oo+1>ZRZ<U_U>T}eXp( 32__M )

g2 (v —u)?

Ipl+L(,, 0 _ 4
< omax] 1, 1281(||t]|ce + 1) R (v — u) exp M
g2 32(v —u)*
1281(][1]| 0 + 1R (0 — w) M
= 2€Xp (D hl(maX{l’ 52 — m .
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Combining this and (11.18) with (11.15) proves that

2
2p 2) < —Kmind 1 ©
B 13— e B ) > ) < exp(( K mind . gy
1281(]|l|so + 1)' R (v — u) etM
-+ 2eXp (0 ln(max{l, 52 — m . (1120)
The proof of Theorem 11.2.2 is thus complete. O]

Corollary 11.2.3. Let (2, F,P) be a probability space, let d, o, K, M,7 € N, € € (0, 00),
Lia,u € R, b € (a,0), v € (u,00), R € [max{1, L, |al, |b], 2|ul,2|v|}, 00), let X,: Q@ —
[a,b]?, m € {1,2,..., M}, be i.i.d. random variables, let o: [a,b]® — [u,v] satisfy for all
x,y € [a,b]? that |p(x) — o(y)| < L||x — y|l2, assume 7 > 2d(2dL(b — a)e™t + 2) and
0>7(d+ 1)+ (r=3)r(t+1)+7+1, let L € N satisfy [ = (d,7,7,...,7,1), let BCR®
satisfy B = [—R, R]°, let €: B x Q0 — [0,00) satisfy for all € B, w €  that

[ZVV&I - w(Xm(W))IQI, (11.21)

let Op: Q — B, k€ {1,2,..., K}, be i.i.d. random variables, assume that Oy is continu-
ous uniformly distributed on B, and let =: Q0 — B satisfy 2= = Ominfre{1,2,..., K} €(Or)=mine (1 0.k} €(©1)}

(cf. Definition 2.1.27). Then
12 -2
< — K min< 1
<) <on(-wmn{s ey )

P(U[ab’ =l(@) — o(z)* Py, (dz)

+ 2exp (a In (max{l, 128(7 + 1)€T2RT<” —) }) _ %) (11.22)

Proof of Corollary 11.2.5. Throughout this proof let N € N satisfy

2dL(b —
N:min{kEN: k> w} (11.23)
let M C [a,b]? satisfy M = {a,a + %52,...,a + T p1d ot 5. [a,0]? x [a, b]*

[0, 00) satisfy for all x = (xl,mg,...,xd),y = (yl,yg,...,yd) € [a,b]? that §(z,y) =
Z?zlm —y;|, and let lo, 1, ..., l-—1 € N satisfy [ = (lp,l1,...,l,—1). Observe that for all
x € [a,b] there exists y € {a,a+ 5%, ..., a + M ,b} such that |z —y| < 252, This

demonstrates that

4L[ sup < inf Zp:z Yi >] < W <e. (11.24)

z=(z1,22,...,24)Ea,b]? (Y1.42,-ya)

Hence, we obtain that )
C@b%0) 3t < |M| = (N + 1) (11.25)

Next note that (11.23) implies that N < 2dL(b — a)e™' + 1. The assumption that
7 > 2d(2dL(b — a)e~! + 2)? therefore ensures that

7> 2d(N + 1) > (N +1)? 4 2. (11.26)
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Hence, we obtain that for all i € {2,3,..., (N + 1)}, j € {(N + 1)¢+ 1,(N + 1)¢ +
2,...,7— 2} it holds that

lh=d, L=7>2dN+1)% I, 1=1, Li=7>2(N+1)"~2i+3, and [;=7>2.
(11.27)
Furthermore, observe that the assumption that for all z,y € [a, b]? it holds that |o(z) —
o(y)| < L||x — y||2 implies that for all 2,y € [a, b]? it holds that |¢(z) — p(y)| < Lé(z,y).
Combining this, (11.25), (11.26), (11.27), and the assumption that @ > 7(d + 1) + (7 —
3T(r+1)+7+1=371(1 +1) with Theorem 11.2.2 (applied with (€, F,P)
QFP),dndd A0, KAK MM ene, LAL unu vav, DA a, b,
(Xm>me{1,2 ,,,,, M} ¥ (Xm)me{1,2 ..... M} (Ym)me{l,z ..... M} ¥ (QD(Xm))me{l,z ..... M} 0N 0, PN
oo N (N+D)L 1l AnT—1L 1AL RAR B~ B, €A € (Op)hefio,. .k} O
(Ok)keq1,2,...k}, = Z in the notation of Theorem 11.2.2) establishes that

=10 2 2
P( [ [ e - e@Pexan| > )

= e (_Kmm{l’ 16(0 —u)(7 —612;(7 TR })
+2€Xp<a (max{ 128(7 — 1) (7 + 1)~ IRT<U—U)}) M )

2

< exp (—K mln{l, 1600 — ) (r £ 1) B })

+ 2exp (a In (max{l, 128(7 + ZRT(U ) }) - %)

The proof of Corollary 11.2.3 is thus complete. O]

(11.28)

Corollary 11.2.4. Let (2, F,P) be a probability space, letd € N, L,a,u € R, b € (a,00),
v € (u,00), R € [max{1, L, |al, ||, 2|u|, 2|v|}, 00), let Xpn: Q — [a,b]%, m € N, be i.i.d.
random variables, let p: [a,b]? — [u,v] satisfy for all x,y € [a,b]? that |p(x) — @(y)] <
Ll|lz — y||2, let I, € N7, 7 € N, satisfy for all T € NN [3,00) that I, = (d,7,7,...,7,1),
let € arr: [—R,R° x Q — [0,00), 0, M, 7 € N, satisfy for allo, M € N, 7 € NN [3,00),
e |—R R, weQuwithd>71(d+1)+ (1—3)7(t+1)+7+1 that

1

Conrr(0w) = 57 DAL (Xn(w)) = @(Xm(W))F] : (11.29)

for every ® € N let Oy : Q@ — [-R,R]°, k € N, be i.i.d. random wvariables, assume for

alld € N that Oy 3 is continuous uniformly distributed on [—R, R|°, and let =y e prr: 2 —

[—R,R]°, 0, K, M, € N, satisfy for alld, K, M, 7 € N that =y k. m,» = Ov min{ke{1,2,... K} € 0,7 (O, 1) =min e ¢
(cf. Definition 2.1.27). Then there exists ¢ € (0,00) such that for all 0, K, M, 7 € N,

e € (0, Vv —u] with T > 2d(2dL(b—a)e™* +2) and 0 > 7(d+ 1)+ (1 —=3)7(7+1) +7+1

it holds that

1/2
P N En Ml () Py, (d > €
(U{ AR ) = () B, ) ) a0

<exp(—K(cr) ™) 4+ 2exp(dIn((cr)7e7?) — ¢ le' M),
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Proof of Corollary 11.2.4. Throughout this proof let ¢ € (0, 00) satisfy
c =max{32(v — u)*,256(v — u + 1)R}. (11.31)

Note that Corollary 11.2.3 establishes that for all 9, K, M,7 € N, € € (0,00) with 7 >
2d(2dL(b—a)e ™t +2)¢ and 0 > 7(d + 1) + (7 — 3)7(7 + 1) + 7 + 1 it holds that

520

P ( [t (@) = @) )
[a,0]
T RT _ 4
+2exp(0 1n<max{1, L28(r + 1" R(w — u) }) - 32&) (11.32)

c2

Next observe that (11.31) ensures that for all 7 € N it holds that
16(v —u)(t+1)"R" < (16(v —u+1)(71+ 1)R)" < (32(v —u+ 1)R7)" < (c7)". (11.33)

The fact that for all € € (0,vv —u|, 7 € N it holds that £ < 16(v — u)(t + 1)"R"
therefore shows that for all € € (0, /v — u], 7 € N it holds that

- mi”{l’ (160 —u)(r + 1R } W6 L VR = (o)

(11.34)

Furthermore, note that (11.31) implies that for all 7 € N it holds that
128(7+ 1)"R™(v —u) < 128(27)"R™(v — u) < (256R7(v —u+1))" < (er)™.  (11.35)

The fact that for all € € (0, /v — u], 7 € N it holds that € < 128(7 +1)"R" (v — u) hence
proves that for all £ € (0,1/v — u|, 7 € N it holds that

In <maX{1, 128(7 + 1)"R™(v — u) }) _ 1][1(128(7 +1)"R"(v — u)) < m(@)

g2 g2 €

(11.36)

In addition, observe that (11.31) ensures that

—1 —1
— < — 11.37
R2(v—u)t ~ ¢ ( )
Combining this, (11.34), and (11.36) with (11.32) proves that for all 9, K, M,7 € N,
e € (0,vv —u] with 7 > 2d(2dL(b — a)e 1 +2)?and 0 > 7(d+ 1)+ (7 =3)7(7+ 1) +7+1
it holds that

1/2
P([/ | Ao m () — p(a) P Px, (dz) | > 6)
[l (11.38)

< eXp(ZcI:—)gj) + 2exp(a ln<(0;)7) B 542\4)

The proof of Corollary 11.2.4 is thus complete. O

Corollary 11.2.5. Let (2, F,P) be a probability space, let d € N, L,a,u € R, b € (a,0),
v € (u,00), R € [max{1, L, |al, ||, 2|u|, 2|v|}, 00), let Xpn: Q — [a,b]%, m € N, be i.i.d.
random variables, let ¢: [a,b]? — [u,v] satisfy for all x,y € [a,b]? that |p(x) — o(y)| <
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L||lz — y||2, let [, € N7, 7 € N, satisfy for all T € NN [3,00) that I, = (d,7,7,...,7,1),
let € nrr: [—R, R x 2 — [0,00), 0, M, 7 € N, satisfy for allo, M € N, 7 € NN [3,00),
0e[-R,RP°, weQuwithd>71(d+ 1)+ (1 =3)7(t+ 1)+ 7+ 1 that

QfaMrew *M

Z\JVQ ) (Xon(w)) — @(Xm(w))l2], (11.39)

for every ® € N let Opr: Q — [—-R, R]°, k € N, be i.i.d. random variables, assume for

alld € N that Oy 1 is continuous uniformly distributed on [—R, R|°, and let Zy e prr: 2 —

[—R,R]°, 0, K, M, T € N, satisfy for alld, K, M, 7 € N that = g m,r = Ov min{ke{1,2,..., Kk} €0, M, (O k) =min ¢ ¢
(cf. Definition 2.1.27). Then there exists ¢ € (0,00) such that for all 9, K, M,7 € N,

e € (0,vv —u] with T > 2d(2dL(b—a)e ™ +2)? and 0 > 7(d+ 1)+ (1 =3)7(t+1) +7+1

it holds that

P( [ pzssnte(a) ol Py, (00) > )
[a,b]?

<exp(—K(cr)%e®) 4+ 2exp(dIn((c7)e?) — ¢ e M).

(11.40)

Proof of Corollary 11.2.5. Note that Jensen’s inequality shows that for all f € C([a, b]¢, R)
it holds that

3
[ e < | [ 1@Pea)] (11.41)
[a,b]* [a,b]*
Combining this with Corollary 11.2.4 proves (11.40). The proof of Corollary 11.2.5 is
thus complete. O

11.2.2 Convergence rates for strong convergence

Lemma 11.2.6. Let (2, F,P) be a probability space, let ¢ € [0,00), and let X: Q —
[—c, c] be a random variable. Then it holds for all ,p € (0,00) that

E[|X[P] < P P(|X| < &) + PP X]| > &) < e + P P(|X]| > ¢). (11.42)

Proof of Lemma 11.2.6. Observe that the assumption that for all w € it holds that
| X (w)| < ¢ ensures that for all €,p € (0, 00) it holds that

E[’X’p] = E[’X’pﬂ{‘XEE}} —|—E[’X’p]1{|X|>€}} < gP P(’X’ < €)+Cp ]P)(‘X’ > 5) < gPycP ]P)(‘X’ > 5).
(11.43)
The proof of Lemma 11.2.6 is thus complete. O]

Corollary 11.2.7. Let (2, F,P) be a probability space, let d € N, L,a,u € R, b € (a,0),
v € (u,00), R € [max{1, L, |al, |b], 2|u|, 2|v|}, 00), let Xp: Q — [a,b]%, m € N, be i.i.d.
random variables, let ¢: [a,b]? — [u,v] satisfy for all x,y € [a,b]? that |p(x) — o(y)| <
L||lz — y||2, let [, € N7, 7 € N, satisfy for all T € NN [3,00) that I, = (d,7,7,...,7,1),
let € arr: [—R, R x 2 — [0,00), 0, M, 7 € N, satisfy for alld, M € N, 7 € NN [3,00),
0e[-R,RP°, weQuwithd>71(d+ 1)+ (1=3)7(t+ 1)+ 7+ 1 that

Eyarr(0,w) = M ZL/VQ 1 (X (W) — (X (W), (11.44)
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for every 0 € N let ©pp: Q — [—R,R]°, k € N, be i.i.d. random variables, assume for

alld € N that Oy 3 is continuous uniformly distributed on [—R, R|°, and let =y e prr: 2 —

[_R7 R]D; 0, K7 M7 T E N7 satisfy fOT‘ allaa K7 M7 7 € N that ED,K,M,T = 60,min{k€{1,2 ,,,,, K}: € v, (O 1)=ming¢
(cf. Definition 2.1.27). Then there exists ¢ € (0,00) such that for all 0, K, M, 7 € N,

p € [1,00), € € (0,v/v —u] with 7 > 2d(2dL(b — a)e ™ +2) and 0 > 7(d + 1) + (7 —

3)7(T+ 1)+ 7+ 1 it holds that

< (v —u)[exp(—K(ct) ™) + 2exp(d ln( )7e?) 0_154M)}1/p +e.

Proof of Corollary 11.2.7. First, observe that Corollary 11.2.4 ensures that there exists
¢ € (0, 00) which satisfies for all 9, K, M, 7 € N, £ € (0, /v — u] with 7 > 2d(2dL(b — a)e '+
2)%and 0 > 7(d+ 1)+ (1 = 3)7(7 + 1) + 7 + 1 that

1/2
P N KMl () 2P d} >
([/{ AR @) = () B, ) ) g

<exp(—K(cr)e®) 4+ 2exp(dIn((cr)e?) — ¢ e M).

Lemma 11.2.6 (applied with (Q,F,P) ~ (Q,F.P), c nv—u, X ~ (2 3> w —
[ﬁabdlﬂza’K’M’T(w)’[T(x) o(z)]? Py, (d:z:)]l/2 € [u—v,v—u]) in the notation of Lemma 11.2.6)
hence ensures that for all 9, K, M,7 € N, ¢ € (0,y/v—u], p € (0,00) with 7 >
(1 =3)7(r

2d(2dL(b — a)e ' +2)* and 0 > 7(d + 1) + + 1) + 7 + 1 it holds that

p/2
([ @) = oo, o) ]
0] (11.47)

<eP 4+ (v—u)’ [exp(—K(CT)_T°52°) +2exp(dIn((cr)7e7?) — 6_164M)] :

E

The fact that for all p € [1,00), 2,y € [0, 00) it holds that (z +y)"? < 2"/» 44" therefore
establishes (11.45). The proof of Corollary 11.2.7 is thus complete. O
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Chapter 12

Machine learning for partial
differential equations (PDEs)

12.1 Linear heat PDEs

This section is a modified extract from the article Beck et al. [1].

12.1.1 Stochastic optimization problems for expectations of ran-
dom variables

Lemma 12.1.1. Let (Q,F,P) be a probability space and let X: Q — R be a random
variable which satisfies E[|X|?] < co. Then

(i) it holds for every y € R that

E[|X - y?] = E[|X — E[X)"] + [E[X] -y (12.1)

(i1) it holds that there exists a unique real number z € R such that

E[|X —z])] = ;gﬂgEUX—yﬂ, (12.2)
and
(iii) it holds that
E[|X —E[X]]?] = ;QH{;EHX —yl*]. (12.3)

Proof of Lemma 12.1.1. Observe that the fact that E[|X|] < oo ensures that for every
y € R it holds that

E[|X —yl’] =E[|X — E[X] +E[X] — y|]
=E[X -EX)? + 2(X ~EXDEX] -9 + EX] -] |,
= E[|X - E[X]]’] +2(E[X] - y)E[X — E[X]] + |E[X] - y|* '
=E[|X - E[X]]] + [E[X] -y

This establishes item (i). Items (ii) and (iii) are immediate consequences of item (i). The
proof of Lemma 12.1.1 is thus complete. O

189



Chapter 12.  Machine learning for partial differential equations (PDEs)

12.1.2 Stochastic optimization problems for expectations of ran-
dom fields

Proposition 12.1.2. Let d € N, a € R, b € (a,0), let (2, F,P) be a probability space,
let X = (Xo)uciapa: [a,0]* x @ — R be a (B([a,b]) ® F)/B(R)-measurable function,
assume for every x € [a,b]? that E[|X,|?] < oo, and assume that the function |a,b]? >
x — E[X,] € R is continuous. Then

(i) it holds that there exists a unique continuous function u: [a,b]® — R such that

/[Md]EUXx —u(z)]’]dz = inf (/[a’b]d E[|X, — v(z)[*] dx) (12.5)

veC([a,b]4,R)
and
(ii) it holds for every x € [a,b]? that u(z) = E[X,].

Proof of Proposition 12.1.2. Note that item (i) in Lemma 12.1.1 and the assumption
that Vz € [a,b]?: E[|X,]?] < oo ensure that for every function u: [a,b]? — R and every
x € [a,b]? it holds that

E[|X, — u(@)]’] = E[|X, — ELX.]P] + [E[X.] - u(z)P”. (12.6)

Fubini’s theorem (see, e.g., Klenke [19, Theorem 14.16]) hence proves that for every
continuous function u: [a, b]¢ — R it holds that

/[a’b]dE“Xx—u(:Eﬂ ]dx:/[a’b]dEUXx—E[Xx]l ]dx+/ E[X,] — u(z)]?de. (12.7)

[a,b]

The assumption that the function [a,b]? > z — E[X,] € R is continuous therefore
demonstrates that

/ E[|X. — E[X,]]*] dz
[a,b]

> inf (/ E[\Xx — v(a:)ﬂ dx)
vEC([a,b]4R) \ J[q,b]d

= el / . Xx_EXxdeJr/ EXx—vxzdx) 12.8
UEC([a,bF,R)( [a,b]d U [ ” :| [a’b]d’ [ ] ( )‘ ( )

> inf (/ EUX:E — E[XQC”?] dx)
veC([a,b]4,R) [a,b]d
:/ E[|X, — E[X,]|?] dz.
[a,b]?

Hence, we obtain that

/[(Lb]dIE[IXx —E[X,]]’]dz =  inf (/WdEUXx —v(z)[?] dx). (12.9)

veC([a,b]4,R)

Again the fact that the function [a,b]? 3 z — E[X,] € R is continuous therefore proves
that there exists a continuous function u: [a, b]¢ — R such that

/[a,b}d E[|X, —uw(z)]?]dz = inf (/W)]d E[|X, — v(z)[] dx). (12.10)

veC([a,b]4,R)
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Next observe that (12.7) and (12.9) yield that for every continuous function u: [a, b — R
with

veC([a,b]4,R)

/ E[|X, —u(z)]?]dz = inf (/ E[|X, —v(2)?] dx) (12.11)
[a>b]d [a,b]d
it holds that

/ E[|X, — E[X,]]’] dz
[a,b]¢

= inf (/[a’b]dEUXi —v(z)]?] dm) = /[a’b]d}EUXﬁ — u(z)?] da (12.12)

veC([a,b]4,R)

~ [ BB [ B - u@)P e
[a,b]4

[a,0]

Hence, we obtain that for every continuous function u: [a, b]? — R with

/[a’b]d E[|X, —u(z)’]dz = inf (/[W E[|X, — v(z)] dx) (12.13)

veC([a,b]4,R)

it holds that
/ E[X,] — u(z)]?dz = 0. (12.14)
[a,b]¢

This and the assumption that the function [a,b]¢ 3 z +— E[X,] € R is continuous yield
that for every continuous function u: [a, b — R with

E[|X, — u(z)|*] dz = inf (/ EXx—vadx> 12.15
[ Bl v ar= e ([ R o] (12.15)
and every x € [a, b]? it holds that u(x) = E[X,]. Combining this with (12.10) completes
the proof of Proposition 12.1.2. O]

12.1.3 Feynman—Kac formulas
12.1.3.1 Feynman—Kac formulas providing existence of solutions

Proposition 12.1.3. Let T € (0,00), d,m € N, B € R™™ ¢ € C*R%R) satisfy

supgepe [ 3121 ([0 ()] + (52 0) ()] + (55255 #) (2)])] < o0, let (2, F,P) be a probability

space, let Z: Q0 — R™ be a standard normal random variable, and let u: [0,T] x R? — R
satisfy for all t € [0,T), v € R? that

ult, z) = E[go(x + \/%BZ)} . (12.16)
Then
(i) it holds that u € C*2([0,T] x R, R) and
(ii) it holds for all t € [0,T], x € R that

(%)(z&, x) = § Trace(BB* (Hess, u)(t, z)) (12.17)
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(cf. Definition 2.2.29).

Proof of Proposition 12.1.5. Throughout this prooflet e; = (1,0,...,0),e2 = (0,1,...,0),... €, =
(0,...,0,1) € R™ let (-, -): (Upen(R*xRF)) — Rsatisfy forallk € N,z = (21, 29,...,74),y =
(Y1,%2, . yr) € RF that (z,y) = Zle z;y;, and let ¥, = (Vra(y))yerm: R —

R, t € [0,7], x € R? satisfy for all ¢t € [0,7], z € RY y € R™ that ¢,.(y) =

o(r + \/_By) Note that the assumptlon that ¢ € C?(R% R), the assumption that

SUDP,cpd [Ezjzl(\go(x)] + ](8‘; ) ()| + ](%lax ©)(z)|)] < oo, the chain rule, and Lebesgue’s
dominated convergence theorem ensure that

(I) for all x € R? it holds that (0,7] 3 ¢t — u(t,z) € R is differentiable,

(IT) for all ¢ € [0,T] it holds that R? 2 z + u(t,z) € R is twice differentiable,
(IIT) for all t € (0,T], z € R? it holds that
(9)(t,2) = E|((Vo)(@ + VIBZ), 5% BZ))|. (12.18)
and

(IV) for all t € [0,T], x € R? it holds that

(Hess, u)(t,z) = E [(Hess ©)(x + \/EBZ)} . (12.19)

Observe that items (II1) and (IV), the assumption that ¢ € C?(R? R), the assumption
that sup,czs Sy (19(2)|+ (9 @) + (2 0)@))] < 00, the fact that B[ Z]]] <
oo, and Lebesgue’s dominated convergence theorem prove that (0,7] x R? 3 (¢,z)
(24)(t,z) € R and [0,7] x R* 5> (t,x) + (Hess, u)(t,z) € R™? are continuous (cf.
Definition 3.1.16). Next note that item (IV) and the fact that for all X € R™*? Y € Rxm
it holds that Trace(XY') = Trace(Y X) imply that for all ¢ € (0,7], z € R? it holds that

1 Trace(BB*(Hess, u)(t,z)) =E [% Trace(BB*(Hess ¢)(z + \/%BZ))]

m

]E[Trace(B*(HeSS ¢)(z +VtBZ)B )] =3 [Z (er, B*(Hess o) (z + \/EBZ)BelJ}

k=1

N —=

N

E| S (Bey, (Hess o) (x + VIBZ)Bey) | = LE|S (o + VEBZ)(Bey, Bey)
- 1| ] = 32] |

k=1 k=1

— 1B S0 (D e)] = $E| £ (@) 2)] = 3Bl 2)
: (12.20)

(cf. Definition 2.2.29). The assumption that Z: Q@ — R™ is a standard normal random
variable and integration by parts hence ensure that for all t € (0, 7], z € R? it holds that

1 Trace(BB*(Hess, u)(t, z))
exp(— exp(—
R >[M]dy=% [ (ew.) [%ldy

2t (27T)m/2
1 ) exp(— 1) (12.21)
- 2_\/% Rm<B (Vo) (x + \/sz)7y> [W d
_ Q%z E[(B' (Vo) + ViBZ), 2)] = E[(Ve)w +ViB2), ;2B7)].
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Item (I1I) therefore proves that for all ¢ € (0,7], x € R? it holds that
(%—?)(t, x) = %Trace(BB*(Hessx w)(t, x)) (12.22)

The fundamental theorem of calculus hence implies that for all ¢,s € (0,7], v € R it
holds that

u(t,x) —u(s,x) = / (%)(T, x)dr = / : Trace(BB*(Hess, u)(r, z)) dr. (12.23)

The fact that [0, 7] x R? > (t,z) — (Hess, u)(t, ) € R™? is continuous therefore ensures
for all t € (0,7], x € R? that

u(t, z) — u(0, ) | ult 2) —uls, 2) _1 tl race *(Hess, u)(r,z)) dr
[ }_t/o ! Trace( BB (Hess, u)(r, ))(6;24)

This and the fact that [0,7] x R? 3 (t,2) > (Hess, u)(t,z) € R™? is continuous imply
that for all z € R? it holds that

t,x) —u(0
lim sup ult, 2) —u®2) _ 1 Trace(BB*(Hess, u)(O,x))‘
N0 t
1 t
< lir?\i}lp {% /o |% Trace(BB*(Hess, u)(s,z)) — 3 Trace(BB*(Hess, u)(0, z)) } ds]
< limsup | sup |4 Trace (BB*((Hessx u)(s, ) — (Hess, u)(0, x))) ‘] =0.
t\0 s€(o, t}

(12.25)

Item (I) hence establishes that for all z € R? it holds that [0,7] 3 ¢ — u(t,z) € R is
differentiable. Combining this with (12.25) and (12.22) ensures that for all ¢ € [0, T,
r € R? it holds that

(%4)(t,z) = § Trace(BB*(Hess, u)(t, z)). (12.26)

This and the fact that [0,7] x R? 5 (¢,z) — (Hess, u)(t,x) € R4 is continuous estab-
lish item (i). In addition, note that (12.26) establishes item (ii). The proof of Proposi-
tion 12.1.3 is thus complete. O

Definition 12.1.4. Let (2, F,P) be a probability space. We say that W is an m-
dimensional P-standard Brownian motion (we say that W is a P-standard Brownian mo-
tion, we say that W is a standard Brownian motion) if and only if there exists T € (0, 00)
such that

(i) it holds that m € N,

(i) it holds that W : [0,T] x Q x R™ is a function,
(#11) it holds for all w € Q that [0,T] 5 s — W(w) € R™ is continuous,
(i) it holds for all w € Q that Wy(w) =0 € R™,

(v) it holds for allt, € [0,T), ty € [0, T] witht; <ty that 3w+ (ta—t1) "> (W, (w)—
Wi, (w)) € R™ is a standard normal random variable, and
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Figure 12.1: Four trajectories of a 1-dimensional standard Brownian motion

(vi) it holds for alln € {3,4,5,...}, t1,ta, ..., t, € [0,T] with t; < ty < -+ < t, that
Wy, =Wy, Wy = Wiy, oo, W, = Wy, are independent.

Corollary 12.1.5. Let T € (0,00), d,m € N, B € R>*™ ¢ ¢ C*(R%LR) satisfy
SUD,cgd [szzl(\¢(x)] + (52 0) ()] + ](8x?;xjg0)(a:)|)} < 00, let (Q, F,P) be a probability
space, let W: [0, T] xQ — R™ be a standard Brownian motion, and let u: [0, T] x R — R
satisfy for all t € [0,T], v € R? that

u(t,x) = E|p(a+ BW)| (12.27)
(cf. Definition 12.1.4). Then
(i) it holds that uw € C*?([0,T] x RY,R) and
(ii) it holds for all t € [0,T], x € R? that

(24)(t,z) = L Trace(BB*(Hess, u)(t,z)) (12.28)

(cf. Definition 2.2.29).

Proof of Corollary 12.1.5. First, observe that the assumption that W: [0,7] x Q@ — R™
is a standard Brownian motion ensures that for all ¢ € [0, 7], x € R? it holds that

u(t,z) = Blp(z + BIW,)] = E [gp (x + ﬂB%ﬂ | (12.29)

The fact that %: ) — R™ is a standard normal random variable and Proposition 12.1.3
hence establish items (i) and (ii). The proof of Corollary 12.1.5 is thus complete. O
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12.1.3.2 Feynman—Kac formulas providing uniqueness of solutions

Lemma 12.1.6 (A special case of Vitali’s convergence theorem). Let (2, F,P) be a
probability space, let X,,: Q@ — R, n € Ny, be random variables with P(limsup,, , | X, —
Xo|=0) =1, and let p € (1,00) satisfy sup, ey E[|X,|P] < co. Then

(i) it holds that limsup, _, ., E[| X, — Xo|] =0,
(i) it holds that E[| X,|] < oo, and
(iii) it holds that limsup,,_,.|E[X,] — E[Xo]| = 0.

Proposition 12.1.7. Let d € N, T,p € (0,00), let f € C([0,T] x R4LR), let u €
01’2([0, T| x R4, R) have at most polynomially growing partial derivatives, assume for all
t€[0,T], z € R? that

(50)(t,2) = p(Agu)(t, ) + f(t,2), (12.30)

let (Q, F,P) be a probability space, and let W: [0,T] x Q — R be a standard Brownian
motion (cf. Definition 12.1.4). Then it holds for all t € [0,T], z € R that

u(t, z) = E|u(0,z + /2pW}) +/0 f(t—s,2+/2pW,) ds|. (12.31)

Proof of Proposition 12.1.7. Throughout this proof let (-,-): R x R? — R satisfy for all

v = (r1,29,...,%q), ¥y = (Y1,Y2,.--,ya) € R? that (z, y} Sz, let Dy: [0,T] x

Rd — R satisfy forallt € [0, T], x € Rd that Dl(t .T) ( )(t, ) let _D2 (D2717 D2’27 .. D2 d) [O T]
R? — R? satisfy for all t € [0,7], * € R? that Dg(t,x) (Vou)(t,z), let H =
(H;j)ijeqro.ar: [0,T] x RT — R4 satisfy for all ¢ € [0,7], z € ]Rd that H(t,z) =

(Hess, u)(t, z), let v: R4 — R satisfy for all z € R? that

7(z) = (2m) " exp(~ L2), (12.32)
and let v ,: [0,t] = R, t € [0,T], x € RY, satisfy for all t € [0,7], z € R%, s € [0,¢] that
Ui (s) = Elu(s,z 4+ /2pWi_y)]. (12.33)

Note that the assumption that W is a standard Brownian motion implies that for all
€ (0,T], s € [0,t) it holds that (t — s)”/?W,_,: Q@ — R? is a standard normal random
variable. This ensures that for all ¢t € (0,7], z € R%, s € [0,¢) it holds that

Ure(s) = Elu(s, x4+ /2p(t — s)(t — 5>71/2Wt,s)] = /Rd u(s, x4+ +/2p(t — s)2)y(2) d=.

(12.34)
The assumption that u has at most polynomially growing partial derivatives, the fact
that (0,00) 3 s — /s € (0,00) is differentiable, the chain rule, and Vitali’s convergence
theorem hence show that for all ¢ € (0,7], z € R, s € [0,t) it holds that v,y €
C([0,¢),R) and

(00 = [ [ Drtosa+ VBT 572) 4 ( Dalosc V20— 0, 2 ) )
(12.35)
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Next note that the fact that for all z € R it holds that (Vv)(z) = —v(z)z implies that
for all t € (0,T], z € RY, s € [0,1) it holds that

A/ 2p(1 —S) 1= Rl ’ ) azi Y Y ) d

(12.36)

Next observe that integration by parts proves that for all t € (0,T], z € R?, s € [0,1),
ie{l,2,...,d},a € R, b€ (a,00) it holds that

b
/ngi(s,x—k 2p(t—s)(z1,22,...,z))(gz)(zl,z%...,zd)dzi

zi=b

= |:D2,i(sax+ 2p(t — s)(21, 22, - 2a))7(21, 22, - - -, 2a) (12.37)

zZi=a

b
- / V2p(t = s)Hii(s,x 4+ /2p(t — s)(21, 22, ..., 2a))¥(21, 22, - . -, 2a) dzic

The assumption that v has at most polynomially growing derivatives hence implies that
forallt € (0,T],z € RY, s €[0,t),i € {1,2,...,d} it holds that

/Dgi(s,x—i- 2p(t — s)(21,22,- -, 2a ))(gz V(21 22, - - -y 2q) dz;
R
Y QP(t_S)/Hi,i(S7$+ 2p(t = s)(21, 22, .. 2a) V(215 22, - - -, Za) d2i.
R

Combining this with (12.36) and Fubini’s theorem ensures that for all ¢ € (0, 7], x € R%,
s € [0,t) it holds that

/Rd<D2(s,:c+ 20(t — 5)2), Qp( > dZ——pZzl/ Hii(s, 2+ \/2p(t — 5)(2))7(2) dz

= — /]Rd pTrace(H (s, z + \/2p(t — 5)(2)))v(2) dz.
(12.39)

(12.38)

This, (12.35), (12.30), and the fact that for all ¢ € (0,7], s € [0,¢) it holds that (¢t —
§)"2W,_y: Q — R? is a standard normal random variable imply that for all ¢ € (0,77,
r € RY, s €[0,t) it holds that

(vr2)/ () = /Rd [Dl(s, T+ /2p(t —s)z) — pTrace(H(s, x+/2p(t — s)z))]v(z) dz

» f(s,x+/2p(t —s)z)y(z)dz =E [f(s, T+ \/Q_,OWt_S)} :
(12.40)

The fact that Wy = 0, the fact that for all ¢ € [0,T], x € R? it holds that v;,: [0,¢] — R
is a continuous function, and the fundamental theorem of calculus therefore demonstrate
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that for all t € [0,T], z € R? it holds that
u(t,z) = [ (t,x + \/_Wt . ] = 0 2(t) = v..(0) + /Ot(vt,x)'(s) ds
- E[u(o, T+ \/z_pwt)} + /OtE[f(s,x + \/%Wt_s)] ds.

Fubini’s theorem and the fact that u and f are at most polynomially growing hence
establish (12.31). This completes the proof of Proposition 12.1.7. O

Corollary 12.1.8. Let d € N, T,p € (0,00), 0 = V20T, a € R, b € (a,0), let
©: RT = R be a function, let u € CH2([0,T] x R4, R) have at most polynomially growing
partial derivatives, assume for allt € [0,T], x € R? that u(0,z) = p(x) and

(12.41)

(84)(t,2) = p (Agu)(t, z), (12.42)

let (,F,P) be a probability space, and let W: Q — R? be a standard normal random
variable. Then

(i) it holds that the function ¢: RY — R is twice continuously differentiable with at
most polynomially growing derivatives and

(i) it holds for every x € R? that u(T,z) = E[p(oW + z)].

Proof of Corollary 12.1.8. Note that the assumption that u € C12([0, T] x R4, R) has at
most polynomially growing partial derivatives and the fact that for all # € R? it holds that
o(x) = u(0, ) establish item (i). Next observe that Proposition 12.1.7 proves item (ii).
The proof of Corollary 12.1.8 is thus complete. O

Definition 12.1.9. Let d € N and let f: R? — R and g: R? — R be B(R?) /B(R)-
measurable functions. Then we denote by fxg: {x € R?: min{ [, max{0, f(z—y)g(y)} dy, — [p. min{0,
Y)g9(y)}dy} < oo} — [—00, 00| the function which satisfies for all z € R? with min{ [, max{0, f(z—

Do)} A~ [oomin{0. £ — 9)g(n)} dy} < oo that

(f xg)(x) = f(l"— ¥)9(y) dy. (12.43)

Exercise 12.1.1. Let d € N, T € (0,00), let v,: R = R, o € (0,00), satisfy for all
€ (0,00), z € R? that

Yo(w) = (270%) 7% exp (@) (12.44)

and for every p € (0,00) and ¢ € C*(R%,R) with sup,cga [ij o)) + |(ai o) ()| +

|(#;xjg0)( 2)|)] < oo let upy: [0,T] x RY — R satisfy for all t € (0,T], v € R* that

Up,p(0,2) = () and Upp(t, ) = (¢ * Vyap) () (12.45)

Prove or disprove the following statement: For every p € (0,00) and for every ¢ €

C%*(R% R) with sup,cpa [sz:1(|g0(:c)| + ](82ig0)(:1:)] + \(8;?;6 )(@)])] < oo it holds for all
t€ (0,7), z € R? that u,, € C**([0,T] x R4, R) and

(%52 ) (1, 2) = p(Dgtpp)(t, 7). (12.46)
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Exercise 12.1.2. Prove or disprove the following statement: For every x € R it holds

that .
—x2/2 __ —t2/2 _—ixt
e = — e e dt|. 12.47

V2T Ma 1 ( )

Exercise 12.1.3. Let d € N, T € (0,00), let 7,: RY = R, o € (0,00), satisfy for all
o € (0,00), z € R? that

Yo (x) = (2m0?) % eXp(ﬂ), (12.48)

202

for every o € C*(R%, R) with sup,eza [, (|9(@)] + [(52:9) ()] + | (52255 @) (@)])] < o0
let u,: [0,T] x R* — R satisfy for all t € (0,T], x € R? that

u,(0,2) = p(x) and uy(t, ) = (0 *v5) (), (12.49)

and let ¢;: RY — R, i € N? satisfy for all i = (i1,ia,...,1q) € N, @ = (21, 20,...,34) €
R that .
Pi(x) = 2% [H Sin(ikﬂxk)] . (12.50)
k=1
Prove or disprove the following statement: For all i = (iy,4s,...,1q) € N¢, t € [0,7T],
x € R? it holds that
Uy, (t,x) = exp (=2 [T, i) (). (12.51)
Exercise 12.1.4. Let d € N, T € (0,00), let v,: RY = R, o € (0,00), satisfy for all
o€ (0,00), z € R? that

Yolw) = (2m0%) 72 exp(_QHZZ,Hz), (12.52)

and let v R — R, i € N, satisfy for all i = (i1,ia,...,iq) € N, 2 = (21, 29,...,14) €

R? that
d

Yi(z) = 2% [H sin(igmay)

k=1

. (12.53)

Prove or disprove the following statement: For everyi € N, s € [0,T], y € R%, and every
function u € CH2([0,T] x RY R) with at most polynomially growing derivatives such that
it holds for all t € (0,T), x € R? that u(0,z) = ¢;(z) and

(84)(t, 2) = (Apu)(t, ) (12.54)
it holds that
u(s,y) = exp(—m2 [ linl?] s) vi(y). (12.55)

12.1.4 Stochastic optimization problems for PDEs

The proof of Proposition 12.1.10 is based on an application of Proposition 12.1.2 and
Proposition 12.1.7. A detailed proof of Proposition 12.1.10 can be found in Beck et al. [1,
Proposition 2.7].
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Proposition 12.1.10. Let d € N, T,p € (0,00), 0 = v/2pT, a € R, b € (a,0), let
0: RY— R be a function, let u € CY2([0,T] x RY R) have at most polynomially growing
partial derivatives, assume for allt € [0,T], x € R? that u(0,z) = p(x) and

(50t 2) = p(Azu)(t, ), (12.56)

let (2, F,P) be a probability space, let W: Q@ — R? be a standard normal random variable,
let £: Q — [a,b]? be a continuous uniformly distributed random variable, and assume that
W and & are independent. Then

(i) it holds that the function ¢: RY — R is twice continuously differentiable with at
most polynomially growing derivatives,

(ii) it holds that there exists a unique continuous function U: [a,b]* — R such that

Ello(eW +¢) —U(¢)]?] = vec(i[gﬁg}d?R)E[\so(@W +&) —v(©)], (12.57)

and
(iii) it holds for every x € [a,b]? that U(z) = w(T, ).

Proof of Proposition 12.1.10. First, note that (12.56), the assumption that W is a stan-
dard normal random variable, and Corollary 12.1.8 prove that for all z € R? it holds that
the function ¢: R? — R is twice continuously differentiable with at most polynomially
growing derivatives and

u(T,z) = E[u(0, oW + z)| = E[p(oW + z)]. (12.58)

Moreover, observe that the assumption that W is a standard normal random variable,
the fact that ¢ is continuous, and the fact that ¢ is at most polynomially growing and
continuous ensure that

(I) it holds that [a,b]¢ x Q 3 (z,w) = (W (w) + x) € R is (B([a,b]?) @ F)/B(R)-
measurable and
(IT) it holds for all = € [a,b]¢ that E[|p(oW + )|?] < co.
Proposition 12.1.2 and (12.58) hence ensure that

(A) there exists a unique continuous function U: [a,b]? — R which satisfies that

E W+ z) — U(z)]*| dz = inf (/ E W+ x —vx2dx>
[ Eleew o) —v@Plas= it ([ E[loleW + ) ~viof]
(12.59)
and
(B) it holds for all z € [a,b]? that U(z) = u(T, ).

Next note that the assumption that W and £ are independent, item (I), and the as-
sumption that ¢ is continuously uniformly distributed on [a, b]? imply that for all v €
C([a, b]?, R) it holds that
1
Elle(oW +6) ~ o] = o [ Elle(@W +) —ow)lldr (1260)

Combining this with item (A) establishes item (ii). In addition, observe that items (A)
and (B) and (12.60) establish item (iii). This completes the proof of Proposition 12.1.10.
O]
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12.1.5 Towards a deep learning scheme for PDEs

Let de N, T,p € (0,00), 0= +/2pT, a € R, b € (a,00), let p: R — R be a function, let
u € C12([0,T] x R, R) have at most polynomially growing partial derivatives, assume
for all t € [0,T], x € R? that u(0,z) = ¢(z) and

(59)(t, ) = p (Agu)(t,x) (12.61)

let (2, F,P) be a probability space, let W: Q — R? be a standard normally distributed
random variable, let £: Q — [a, b]? be a continuous uniformly distributed random variable,
assume that W and ¢ are independent. Proposition 12.1.10 then ensures that the solution
u of the heat equation in (12.61) at time 7" on [a,b]? is the unique global minimizer of
the function

C(la,b]", R) 3 v = E[|p(oW + &) — v()[?] € [0, 00). (12.62)

Now an idea of a simply machine learning based approximation method for PDEs (see [1])
is to approximate the set C([a, b]?, R) of all continuous functions from [a, b]? to R through
the set of all deep artificial neural networks with a fixed sufficiently large architecture.
More formally, let L € N, Iy, ly, ..., I € N, o = (dly + 1) + (v, e(ler + 1)) + (I, + 1)
and consider the function

J0cR?: Vx€la,b]¢:

{w € C([(I, b]d7 R) : w(a:):(./\f;’ld

] | 20 Bl + ) - (@] € D.oc)
LSy dg

(12.63)
(cf. Definition 2.1.2). The approach of the machine learning scheme in Beck et al. [1] is
then to approximatively compute a suitable minimizer of the function in (12.63) and to
view the resulting approximation of a suitable minimizer of the function in (12.63) as an
approximation of the solution u of the heat equation in (12.61) at time 7" on [a, b]?. To
approximatively compute a suitable minimizer of the function in (12.63), we reformulate
(12.63) by employing the parametrization function induced by artificial neural networks
to obtain the function

R 5 0 E[|p(oW +€) — (3!

77777

%lL,ideg)‘Q} € [0, 00). (12.64)

A suitable minimizer of the function in (12.64) can then be approximatively computed by
means of stochastic gradient descent optimization algorithms. We refer to Beck et al. [1]
for numerical simulations.

12.2 Nonlinear PDEs

12.2.1 Splitting approximations

Theorem 12.2.1. Let T € (0,00), p € [1,00), f € C*(R,R), let ug € CH*([0, T] xR% R),
d € N, satisfy for alld € N, t € [0,T], v € R? that

(%ud)(t,x) = (Ayug)(t,x) + f(uq(t, )), (12.65)

.....

e l2k]) (g wa) (8 @)+ | (Grua) (8 @)+ | (20)]) + 1 f(21)]] < 00, Then
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(i) there exist unique at most polynomially growing UN € 01’2([("}1”, 2Z] x R, R),
d,N € N, ne€{0,1,...,N}, which satisfy for all d,N € N, n € {0,1,...,N — 1},
te [57, O 5 € (55,0, @ € R that U (57, @) = U (5 @)+ f U (5 2),

uéLN(Sa x) = ud(oax); and

(GU)(E2) = (A1) (¢t ) (12.66)

and

(ii) there exists ¢ € R such that for alld,N € N, x = (2, 5,...,34) € R? it holds that

UR" (T, 0) = wa(T, )| < ed? N2 (14 0 ) (12.67)

12.2.2 DNN approximation result

The next result, Theorem 12.2.1 below, establishes a DNN approximation result for non-
linear PDEs (cf. Grohs et al. [I 1] and Hutzenthaler et al. [15]).

Theorem 12.2.2. Let Tapv’% S (07 00)7 (gd,s)dEN,EG(O,l] - N; (Cd)dEN - <07 OO) (Cf
Definition 2.2.1), let f: R — R be globally Lipschitz continuous, for every d € N let
ug € CY2([0,T] x RYR), and assume for alld € N, z € R, ¢ € (0,1], t € (0,7)
that Rolage) € CRYR), [(Relgae)) ()] < wd*(1 -+ J2l}5), [a(0,2) — (Relgae)) ()] <
erd™(1+ ||z([5), P(ac) < wd™e™, |ua(t, 2)| < ca(1 + [l2][3"), and

(Gi)(t,2) = (Apua)(t, @) + f(ualt,x)) (12.68)
(cf. Definitions 2.1.6 and 2.2.3). Then there exist (Uge)aencco1] S N and n € (0,00)
such that for all d € N, € € (0,1] it holds that P(ug.) < nd’c~" and

l/p
|:/[; [0 1]d|ud(y) - (Rt<ud,e))<y)|pdy <e. (1269)

Numerical simulations for deep learning based approximation schemes for nonlinear
PDEs can, e.g., be found in [9, 12] and the references mentioned in [1].
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Chapter 13

Optimization through flows of
ordinary differential equations

13.1 Introductory comments for the training of arti-
ficial neural networks

In this section we briefly sketch how gradient descent type optimization methods factor
into machine learning problems. To do this, we now recall the deep supervised learning
framework sketched in Section 1.1 above. Let d, M € N, £ € C(R% R), x1,2s,...,Tp41 €
R 1,90, ..., yn € R satisfy for all m € {1,2,..., M} that

Ym = E(Tm), (13.1)

and let ®: C'(R4 R) — [0, 00) satisfy for all ¢ € C(R? R) that

O() = Y [¢(@m) — |’ (13.2)

As in Section 1.1 we think of M € N as the number of available input-output data
pairs, we think of d € N as the dimension of the input data, we think of £: R? — R as
an unknown function which relates input and output data through (13.1), we think of
T1,Ta, ..., Tare1 € R? as the available known input data, we think of y1, ¥, ..., yam € R as
the available known output data, and the function ®: C'(R% R) — [0, 00) is the objective
function in the optimization problem associated to the supervised learning problem in
(13.2) above (cf. (1.2) in Section 1.1 above). In particular, observe that ®(£) = 0 and
we are trying to approximate the function £ by approximatively computing a global
minimizer of the function ®: RY — R. In order to make this problem amenable to discrete
numerical computations, we consider a spatially discretized version of the problem, where
we compute minimizers of the function ® restricted to a set of realization functions of
neural networks. To do this, let A € N, ly,ls,...,l,,d € N satisfy d = l1(d + 1) +
[y el + 1)] + 1, + 1, and let

N={(R'>0= N e, .o, (%) €ER): 6 €RI} C OR,R) (13.3)

(cf. Definitions 2.1.2 and 2.1.15). We think of & as the number of hidden layers of the
neural networks we use as approximators, for every i € {1,2,... h} we think of /; € N
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as the number of neurons in the i-th hidden layer of the neural networks we use as
approximators, we think of d as the number of real parameters necessary to describe the
neural networks we use as approximators, and we think of 91 as the set of realization
functions of the neural networks we use as approximators.

We can now reformulate the optimization problem as the problem of approximately
computing minima of the function f: R — [0, 00) which satisfies for all § € RY that

M 2
0,d
f(0) = [Z‘ (Nell,elz, ..... Glh,idR)(xm) — Ym ] (13.4)
m=1
and this optimization is now accessible to discrete numerical computations.
Let £ € R? and let © = (O;)ic0.00): [0,00) — R be a continuously differentiable
function which satisfies for all ¢ € [0, 00) that

Let (Vn)nen C [0,00) and let 6 = (0,,)nen, : No — RY satisfy for all n € N that
Oy =¢ and Op =01 — (V) (1) (13.6)

13.2 Auxiliary results

13.2.1 A Gronwall differential inequality

The following lemma, Lemma 13.2.1 below, is referred to as a Gronwall inequality in the
literature (cf., e.g., Henry [13, Chapter 7]). Gronwall inequalities are powerful tools to
study dynamical systems and, especially, solutions of differential equations.

Lemma 13.2.1 (Gronwall inequality). Let o« € R, T € (0,00), € € C'([0,T],R) satisfy
for allt € (0,T) that

€ (t) < ae(t). (13.7)
Then it holds for all t € [0,T] that

e(t) < e(0)e™. (13.8)

Proof of Lemma 13.2.1. Throughout this proof let u: [0,T] — R satisfy for all ¢ € [0, T]
that

a(t) = W _ et (13.9)

Observe that the assumption that e € C1([0, 7], R) implies that u € C'([0, T],R). More-
over, note that (13.7) assures that for all £ € (0,7 it holds that

u'(t) = (t)e™™ — e(t)ae™ < ae(t)e™™ — e(t)ae ™ = 0. (13.10)

The fundamental theorem of calculus hence demonstrates that for all ¢ € [0, 7] it holds
that

¢ ¢
— =u(t) = u(0) + / u'(s)ds < u(0) + / 0ds = u(0) = €(0). (13.11)
0 0
Therefore, we obtain for all ¢ € [0, T] that
e(t) < €(0)e™. (13.12)
The proof of Lemma 13.2.1 is thus complete. O]
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13.2.2 Lyapunov-type functions for ordinary differential equa-
tions

Definition 13.2.2. We denote by (-,-): [Uen(R*XR?)] — R the function which satisfies
foralld eN, x = (21, 22,...,24), y = (Y1, Y2, . . ., ¥q) € R that

(z,y) = éafy (13.13)

Lemma 13.2.3 (Lyapunov-type functions for ordinary differential equations). Letd € N,
a€R, T e (0,00), let OCR? be an open set, let g € C(O,RY), V € CHO,R) satisfy
for all 6 € O that

V'(0)g(0) = (VV)(0),9(0)) < aV(6), (13.14)

and let © € C([0,T),0) satisfy for all t € [0,T] that ©; = Og + fo s)ds (cf. Defini-
tion 15.2.2). Then it holds for all t € [0,T] that
V(0;) < eV (Oy). (13.15)

Proof of Lemma 13.2.5. Throughout this proof let €: [0, 7] — R satisfy for all ¢ € [0,T]
that €(t) = V(©;). Observe that the fundamental theorem of calculus, the chain rule,
and (13.14) ensure that for all ¢ € [0, 7] it holds that € € C*([0,T],R) and

€(t) = (V(61) = V'(6,)(5(81))
— V'(©,)9(6y) < aV(6) = ae(t).

The Gronwall inequality, e.g., in Lemma 13.2.1 (applied with o« »~ a, T T, € v\ € in
the notation of Lemma 13.2.1) hence demonstrates that for all ¢ € [0, T it holds that

(13.16)

V(0;) = €(t) < €(0)e* = eV (Oy). (13.17)

The proof of Lemma 13.2.3 is thus complete. n

13.2.3 On quadratic Lyapunov-type functions and coercivity-
type conditions

Lemma 13.2.4 (Derivative of the standard norm). Letd € N, 9 € R? and let f: R? — R
satisfy for all € RY that

£(0) =16 — I3 (13.18)
(cf. Definition 3.1.16). Then it holds for all § € R? that f € C*°(R%,R) and
(V)(0) =2(0 - 0). (13.19)

Proof of Lemma 13.2.4. Throughout this proof let ¥, s, ..., 9, € R satisfy ¢ = (4, ¥s,
.,Y4). Note that the fact that for all § = (6,0,,...,0,) € R? it holds that

d
= 16: — 0| (13.20)
=1
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implies that for all § = (0y,0,...,0;) € R? it holds that f € C°(R%, R) and

() O\ (260 =)
(V)(0) = : = 5 =2(0 — V). (13.21)
(a%)(@) 2(0q — 94)
The proof of Lemma 13.2.4 is thus complete. O

Corollary 13.2.5 (On quadratic Lyapunov-type functions and coercivity-type condi-
tions). Letd € N, c € R, T € (0,00), ¥ € R?, let O C R? be an open set, let f € C1(O,R)
satisfy for all 8 € O that

(0 —9,(VF)(©0) = cllo 9|3, (13.22)

and let © € C([0,T],0) satisfy for all t € [0,T] that ©; = Oy — fo V) (Os)ds (cf.
Definitions 3.1.16 and 13.2.2). Then it holds for all t € [0,T] that

16 — V|2 < e™[|©g — V], (13.23)
Proof of Corollary 15.2.5. Throughout this proof let g: O — R satisfy for all § € O that
9(0) = —(V£)(0) (13.24)

and let V: O — R satisfy for all § € O that
V(6) = |6 — 9. (13.25)

Observe that Lemma 13.2.4 and (13.22) ensure that for all # € O it holds that V' €
C'(O,R) and

VI(0)g(0) = (VV)(0),9(0)) = (2(0 — 1), 9(0))

= 20— 0). (VN0) < -2l vl = —2ev(e). P

Lemma 13.2.3 hence proves that for all ¢ € [0, T] it holds that
18 = V|2 = V(0) < e ™ V(Og) = e * [|[©g — V2. (13.27)
The proof of Corollary 13.2.5 is thus complete. O

13.2.4 Sufficient and necessary conditions for local minima

Lemma 13.2.6. Let d € N, let O C R? be an open set, let ¥ € O, let f: O — R be a
function, assume that f is differentiable at 9, and assume that (V f)(9) # 0. Then there
exists 6 € O such that f(0) < f(V).

Proof of Lemma 15.2.6. Throughout this proof let v € R¥\ {0} satisfy v = —(V ) (1), let
d € (0,00) satisfy for all t € (—0, ) that

d+tv=09—-t(Vf)(V) €O, (13.28)
and let g: (—6,0) — R satisfy for all t € (=0, ) that

g(t) = F(0 + tv). (13.29)
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Note that for all ¢ € (0,6) it holds that

Hg(t) —9(0)] _ ‘ [f(?“tl;) — f(9)

_ ’ {f(tﬁ +t) = 1)
_ ’ [f(ﬁ +t) = f(0)

+1vll3

} DO

] (VH), (Vf)(ﬂ»‘ (13.30)

} (VN @), 0)

Therefore, we obtain that for all ¢ € (0, ) it holds that

—9(0 9 — f(v
[0 90) | g | [ L2 =IO _ p, .
_ ‘f(?‘/’ +tv) = f(0) = fW)tv| _ |f(0+1tv) = f(9) — f'(V)tv] '
t t '
The assumption that f is differentiable at ¢ hence demonstrates that
lim sup {M] + |lvl3| = o. (13.32)
N0 t

The fact that |[v]|3 > 0 therefore demonstrates that there exists ¢ € (0,d) such that

t) —g(0 2
t 2
The triangle inequality and the fact that ||v|2 > 0 hence prove that
g9(t) —g(0) _ [g(t) —g(0) g(t) — g(0)
IS S IE o] = ol < || 2 ol - ol
ol ol .
v v
< Tz — vz = —Tz <0.
This ensures that
f+tv) =g(t) <g(0) = f(D). (13.35)

The proof of Lemma 13.2.6 is thus complete. O

Lemma 13.2.7 (A necessary condition for a local minimum). Let d € N, let O C R? be
an open set, let 9 € O, let f: O — R be a function, assume that f is differentiable at 19,
and assume

f(9) = infeo f(0). (13.36)
Then (V f)(9) = 0.
Proof of Lemma 15.2.7. We prove Lemma 13.2.7 by contradiction. We thus assume that

(Vf)(¥) #0. Lemma 13.2.6 then implies that there exists § € O such that f(0) < f(9).
Combining this with (13.36) shows that

£(6) < F(9) = inf F(w) < £(6). (13.37)
The proof of Lemma 13.2.7 is thus complete. O]
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Lemma 13.2.8 (A sufficient condition for a local minimum). Let d € N and let ¢ €
(0,00), r € (0,00], ¥ € R, B = {w € R: ||w— 9|, <7}, f e CHRYR) satisfy for all
0 €B that

(0 —20,(V£)(©0)) = cllo —9|I2 (13.38)

(cf. Definitions 3.1.16 and 13.2.2). Then

(i) it holds for all 0 € B that f(0) — f(9) > |6 — 9|3,

2
(i) it holds that {6 € B: f(0) = infyep f(w)} = {V}, and

(i11) it holds that (V f)(9) = 0.
Proof of Lemma 15.2.8. Throughout this proof let B be the set given by

B={weR%: |w—1|, <r}. (13.39)
Note that (13.38) implies that for all v € R? with ||v|| < r it holds that

(VAW +v),v) = cllv]lz. (13.40)

The fundamental theorem of calculus hence demonstrates that for all § € B it holds that

£6) = F(9) = [0+ t(6 — 9))] =

:/1f’(19+t(9—19))(9—19)dt
o . (13.41)
:/ (V1) + 10— 1)), (6 — 0))

0

1 1
> [ elio - oniggae= o — o3| [ ] = 510 - o1z
0 0

This proves item (i). Next observe that (13.41) ensures that for all # € B\{J} it holds
that

F0) = f(9) + 510 = 0° > f(9). (13.42)
Hence, we obtain for all § € B\ {9} that
inf f(w) = f(V) < (0). (13.43)

This establishes item (ii). It thus remains thus remains to prove item (iii). For this
observe that item (ii) ensures that

(0 € B: f(0) = infyep f(w)} = {I). (13.44)

Combining this, the fact that B is an open set, and Lemma 13.2.7 (applied with d ~ d,
O~ B, 9 Y, f flpin the notation of Lemma 13.2.7) assures that (Vf)(¢) = 0.
This establishes item (iii). The proof of Lemma 13.2.8 is thus complete. O
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13.2.5 On a linear growth condition

Lemma 13.2.9 (On a linear growth condition). Let d € N, L € (0,00), r € (0,00],
Y eRY B={weR: |w—1I| <r}, feCHRYR) satisfy for all 0 € B that

(VA O]z < L[|0 — D] (13.45)
(cf. Definition 3.1.16). Then it holds for all 0 € B that
F0) = f(9) < 510 = V3. (13.46)

Proof of Lemma 13.2.9. Observe that (13.45), the Cauchy-Schwarz inequality, and the
fundamental theorem of calculus ensure that for all € B it holds that

£0) = £(0) = [£(0+ 16— )]
_ / P9+ t(6—0))(6—0)dt

_ / (V)W + 16— 9)),0 — 9) dt

0

1 (13.47)
< [ U0+ 0 =)l — vl
< /01 L||9+ (0 —9) — I||2]|0 — 9| dt
= wfo— o3| [ sar] = 40— a3
0
(cf. Definition 13.2.2). The proof of Lemma 13.2.9 is thus complete. O

13.3 Optimization through flows of ordinary differ-
ential equations (ODEs)

13.3.1 Approximation of local minima through gradient flows

Proposition 13.3.1 (Approximation of local minima through gradient flows). Let d € N,
¢, T € (0,00), 7 € (0,00], ¥ € R, B={weR: |lw—13|, <r}, £€B, feC(RYLR)
satisfy for all 8 € B that

(0 —9,(V)0)) > cllo 9|3, (13.48)

and let © € C([0,T],R?) satisfy for all t € [0,T] that ©; = & — fg(Vf)(@s)ds (cf.
Definitions 3.1.16 and 13.2.2). Then

(i) it holds that {6 € B: f(0) = inf,ep f(w)} = {0V},
(ii) it holds for all t € [0,T] that ||©; — Iz < e || — V|2, and
(111) it holds for allt € [0,T] that

0 < 510 = I3 < f(6r) — f(9). (13.49)
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Proof of Proposition 13.3.1. Throughout this proof let V: R? — [0,00) satisfy for all
6 € R? that V(0) = ||0 — 9|3, let e: [0,7] — [0,00) satisfy for all t € [0,T] that
e(t) = |©; — V)3 =V (0,), and let T € [0, T] be the real number given by

T =inf({t € [0,T]: ©, ¢ By U{T}) =inf({t € [0,T]: e(t) > r*}U{T}).  (13.50)

Note that (13.48) and item (ii) in Lemma 13.2.8 establish item (i). Next observe that
Lemma 13.2.4 implies that for all § € R? it holds that V € C*(R?, [0, 00)) and

(VV)(0) = 2(0 — 0). (13.51)

Moreover, observe that the fundamental theorem of calculus (see, e.g., Coleman [, The-
orem 3.9]) and the fact that R 3 v — (Vf)(v) € R and ©: [0,T] — R? are continuous
functions ensure that for all ¢ € [0, 7] it holds that © € C'([0,T], R?) and

£(0) = —(V1)(©y). (13.52)

Combining (13.48) and (13.51) hence demonstrates that for all ¢ € [0, 7] it holds that
e € C1([0,77,1]0,00)) and

€(t) = %(V(@t)) = V/(@t)(%(@t))
= ((VV)(©1), 5(64))
= (2(0, =), =(V[)(6))
= —=2((0: = 9),(V£)(6r))
< —2¢]|6; — 19“% = —2ce(t).

(13.53)

The Gronwall inequality, e.g., in Lemma 13.2.1 therefore implies that for all ¢ € [0, 7] it
holds that
e(t) < e(0)e 2. (13.54)

Hence, we obtain for all ¢ € [0, 7] that
18 = V|2 = Ve(t) < Ve(0)e™ = (|8 — Dl2e™" = [|§ = I|oe™". (13.55)

Next note that the assumption that r € (0, 00] and the fact that e: [0,7] — [0,00) is a
continuous function show that for all ¢t € (¢71({0})) N[0,T) = {s € [0,T): €(s) = 0} it
holds that

inf({s € [t,T]: e(s) > r*}U{T}) > t. (13.56)

Hence, we obtain that for all t € (e 71({0})) N {0} it holds that
T =inf({s € [0,T]: €(s) > r*} U{T}) > 0. (13.57)

In addition, observe that (13.53) and the assumption that ¢ € (0, 00) assure that for all
t € [0, 7] with €(¢) > 0 it holds that

€(t) < —2ce(t) < 0. (13.58)

The fact that € : [0,7] — [0,00) is a continuous function therefore demonstrates that for
all t € [0,7] N [0,T) with £(¢) > 0 it holds that

inf({u € [t,T): € (u) >0} U{T}) > t. (13.59)
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This shows that for all ¢ € (e71((0,00))) N {0} it holds that
inf({u € [0,T]: €(u) >0} U{T}) > 0. (13.60)

Next note that the fundamental theorem of calculus and the assumption that £ € B imply
that for all s € [0,7] with s <inf({u € [0,T]: €'(u) > 0} U{T'}) it holds that

e(s) = €(0) + /0S ¢ (u)du < €(0) = ||€ — 9|5 < . (13.61)

Combining this with (13.60) establishes that for all ¢ € (¢7((0,00))) N {0} it holds that
7 > 0. This and (13.57) ensure that
7> 0. (13.62)

Combining this and (13.55) demonstrates that
19, — D2 < ||€ — 267 < 7. (13.63)

The fact that e: [0,7] — [0,00) is a continuous function and (13.62) hence assure that
7 =T. Combining this with (13.55) proves that for all ¢ € [0, 7] it holds that

18 = Dl2 < [I§ = D26 (13.64)

This establishes item (ii). It thus remains to prove item (iii). For this observe that (13.48)
and item (i) in Lemma 13.2.8 demonstrate that for all § € B it holds that

0< 56— 013 < £(6) — 1(9). (13.65)
Combining this, (13.64), and item (ii) implies that for all ¢ € [0, 7] it holds that
0 < 5lle, =3 < f(Or) - f(V) (13.66)

This establishes item (iii). The proof of Proposition 13.3.1 is thus complete. O

13.3.2 Existence and uniqueness of solutions of ODEs

Lemma 13.3.2 (Local existence of maximal solution of ordinary differential equations).
Letd e N, £ e R, T € (0,00), let ||-||: RT — [0,00) be a norm, and let g: R? — R? be
a locally Lipschitz continuous function. Then there exist a unique real number T € (0,7
and a unique continuous function ©: [0,7) — R? such that for all t € [0,7) it holds that

t
lirn/inf[HI@s\H + (T—l_s)] =00 and O, =¢ +/ g(©,)ds. (13.67)
S /T 0

Lemma 13.3.3 (Local existence of maximal solution of ordinary differential equations
on an infinite time interval). Let d € N, £ € R?, et ||-||: R — [0,00) be a norm, and
let g: R* — R? be a locally Lipschitz continuous function. Then there exist a unique
extended real number T € (0,00] and a unique continuous function ©: [0,7) — R? such
that for all t € [0,7) it holds that

¢
lim/inf[m@sm +s] =00 and O, =¢ +/ g(0;) ds. (13.68)
S /T 0
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Proof of Lemma 15.3.3. First, observe that Lemma 13.3.2 implies that there exist unique
real numbers 7,, € (0,n], n € N, and unique continuous functions ©™: [0,7,) — R?
n € N, such that for all n € N, t € [0, 7,,) it holds that

t
tmin [[lO0]| + 1] =oe  and 6 =g+ / gOM)ds.  (13.60)
s,/"n 0

This shows that for all n € N, ¢ € [0, min{7,,41,n}) it holds that

t
11minf[m@g"+1>m +m} —o0 and O ¢4 / g(®" ) ds.  (13.70)
0

S, M1

Hence, we obtain that for all n € N, ¢ € [0, min{7,41,n}) it holds that

s/ﬂﬂiﬁ,n}w@gﬂ“)m + o] =0 (13.71)
and O =¢4 / tg(@g”“))ds. (13.72)
0
Combining this with (13.69) demonstrates that for all n € N it holds that
T = min{7,,1,n} and O = 0" ™) intri1n))- (13.73)
Therefore, we obtain that for all n € N it holds that
7w <7y and MW =00, (13.74)
Next let t € (0, 00] be the extended real number given by
t= nh_}rgo Tn (13.75)
and let ©: [0,t) — RY satisfy for all n € N, t € [0, 7,,) that
e, =0". (13.76)

Observe that for all ¢ € [0,t) there exists n € N such that t € [0,7,). This, (13.69), and
(13.74) assure that for all ¢ € [0, 1) it holds that © € C([0,t),RY) and

@, =¢+ /Otg(@s) ds. (13.77)

In addition, note that (13.73) ensures that for alln € N, k € {n,n+1,n+2,...} it holds
that

min{ 7,41, n} = min{7 41, k,n} = min{min{7,1, k},n} = min{m, n}. (13.78)
This shows that for allm € N, k € {n + 1,n+2,n+ 3,...} it holds that min{r,,n} =
min{7;_1,n}. Hence, we obtain that for alln € N, k € {n + 1,n+2,n+ 3,...} it holds
that

min{7g, n} = min{7_1,n} = ... = min{7,41,n} = min{r,, n} = 7,. (13.79)
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Combining this with the fact that (7,)neny C [0,00) is a non-decreasing sequence implies
that for all n € N it holds that

min{t,n} = mln{kh_glo Tk, n} = kli_}rgo(min{m, n}) = kli)rrolo Tn = T (13.80)
Therefore, we obtain that for all n € N with t < n it holds that
T, = min{t,n} = t. (13.81)
This, (13.69), and (13.76) demonstrate that for all n € N with t < n it holds that
lim inf[| ©, | = lim inf[| ©,| = lim inf ||

= ( g+ hsrg&nf “H@ ] (13.82)
. 1isn}igf[|\\@gn> is)} — .
Therefore, we obtain that
liminf[m@sm + 5] = co. (13.83)
Next note that for all t e (0,00, ©® € ([O t), R%), n E N, ¢t € [0,min{t,n}) with
lim inf, «[[|©;|| + s] = co and Vs € [0, t): ©, =&+ [ 9(©,) du it holds that
¢
liminf |[|©] + ﬁ] = 00 and 0, =¢ —|—/ 9(0y) ds. (13.84)
s /min{t,n} 0
This and (13.69) demonstrate that for all t € (0, oo] é) € C([0,1),R%), n € N with
lim inf, ~[]|©:| + ] = cc and V¢ € [0, 1): O, =&+ [3 9(©,)ds it holds that
min{t,n} = 7, and Ol =0". (13.85)
Combining (13.77) and (13.83) hence assures that for all te (0 oo] © € CO([0,1),RY),
n € N with liminf, «[||©:|| +t] = oo and V¢ € [0, ): 0, =¢+ fo s) ds it holds that
min{t,n} = 7,, = min{t,n} and é|[0,m) =0 = 0|, (13.86)
This and (13.75) show that for all £ € (0,00, © € C([0, 1), R?) with lim inft/@HH(;)tmth] =
oo and Vit € [0,7): O, = £ + [} g(©,)ds it holds that
t=t and ©=6. (13.87)
Combining this, (13.77), and (13.83) completes the proof of Lemma 13.3.3. O

13.3.3 Approximation of local minima through gradient flows
revisited

Theorem 13.3.4 (Approximation of local minima through gradient flows revisited). Let
d € N and let ¢ € (0,00), r € (0,00], ¥ € R, B = {w € R%: ||w — |, < 7}, € € B,
f € C?(R% R) satisfy for all § € B that

(0 =9.(V1)(0) = cllo -] (13.88)
(cf. Definitions 3.1.16 and 13.2.2). Then
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(i) there exists a unique continuous function ©: [0,00) — R? such that for allt € [0, 00)
it holds that

t
o =¢- [ (Vi)(©.)ds, (13.89)
0
(i) it holds that {0 € B: f(0) = inf,ep f(w)} = {V},
(iii) it holds for all t € [0,00) that ||©; — ¥z < e || — |2, and
(iv) it holds for all t € [0,00) that
0< 5110, =93 < £(©r) = f(¥). (13.90)
Proof of Theorem 13.3./. First, observe that the assumption that f € C?*(R¢, R) ensures
that RY 5 0 — —(V f)(0) € R is a continuously differentiable function. The fundamental
theorem of calculus hence implies that R 3 § — —(V f)(0) € R? is a locally Lipschitz
continuous function. Combining this with Lemma 13.3.3 (applied with g(8) ~ —(V f)(0)
for € R? in the notation of Lemma 13.3.3) proves that there exists a unique extended

real number 7 € (0,00] and a unique continuous function O: [0,7) — R¢ such that for
all t € [0,7) it holds that

lim inf [[|©]|2 + s] = oo and O, =¢— /t(Vf)(@s) ds. (13.91)
s T 0

Next observe that Proposition 13.3.1 proves that for all ¢ € [0, 7) it holds that
16 = V|2 < e™[[§ = D2 (13.92)
This implies that
liminf||©lls < |liminf||©, — 9 + |[¢
6 < |1, - ol | + 7

(13.93)
< [t el - o] + 191 < = 9l + 9]l < o

This and (13.91) demonstrate that 7 = oo. This proves item (i). Moreover, note that
Proposition 13.3.1 and item (i) establish items (ii), (iii), and (iv). The proof of Theo-
rem 13.3.4 is thus complete. O

13.3.4 Approximation error with respect to the objective func-
tion
Corollary 13.3.5 (Approximation error with respect to the objective function). Let
d € N and let ¢, L € (0,00), r € (0,00], 9 € R, B = {w € R%: ||lw—9| <1}, £ €B,
f € C?(R%R) satisfy for all § € B that
(O =0, (VH©O) = cllo =9Iz and (VO < L[ — D] (13.94)

(cf. Definitions 3.1.16 and 13.2.2). Then
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(i) there exists a unique continuous function ©: [0,00) — R? such that for allt € [0, 00)
it holds that

t
o =¢- [ (Vi)(©.)ds, (13.95)
0
(i) it holds that {0 € B: f(0) = inf,ep f(w)} = {V},
(iii) it holds for all t € [0,00) that ||©; — ¥z < e || — |2, and
(iv) it holds for all t € [0,00) that

0< 5160 — I3 < £(©) — f(9) < L0~V < Le™[le )3 (13.96)

Proof of Corollary 13.3.5. Theorem 13.3.4 and Lemma 13.2.9 establish items (i)—(iv).
The proof of Corollary 13.3.5 is thus complete. [
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Chapter 14

Deterministic gradient descent type
optimization methods

14.1 The gradient descent optimization method

In this section we review and study the classical plain vanilla GD optimization method
(cf., for example, Nesterov [23, Section 1.2.3], Boyd & Vandenberghe [2, Section 9.3],
and Bubeck [3, Chapter 3]). A simple intuition behind the GD optimization method is
the idea to solve a minimization problem by performing successive steps in direction of
the steepest descents of the objective function, that is, by performing successive steps in
the opposite direction of the gradients of the objective function. A slightly different and
maybe a bit more accurate perspective for the GD optimization method is to view the
GD optimization method as a plain vanilla Euler discretization of the gradient flow ODE
in Theorem 13.3.4 in Chapter 13.

Definition 14.1.1 (Gradient descent optimization method). Let d € N, (7,)nen C
[0,00), £ € R? and let f: RY — R and g: R* — R? satisfy for all 0 € {v € R4: (f
is differentiable at v)} that

9(8) = (V1)(0). (14.1)
Then we say that © s the gradient descent process for the objective function f with
generalized gradient g, learning rates (Vn)nen, and initial value & (we say that © is the
gradient descent process for the objective function f with learning rates (Vn)nen and initial
value &) if and only if it holds that ©: Ny — R? is the function from Ny to R? which
satisfies for allm € N that

@0 = 5 and @n = @n—l — ’)/ng(@n_l) (142)

14.1.1 Lyapunov-type stability for GD type optimization meth-
ods

Lemma 13.2.3 in Subsection 13.2.2 and Corollary 13.2.5 in Subsection 13.2.3 in Chapter 13
above, in particular, illustrate how Lyapunov-type functions can be employed to establish
convergence properties for gradient flows. The next two results, Proposition 14.1.2 and
Corollary 14.1.3 below, are, roughly speaking, the time-discrete anologon of Lemma 13.2.3
and Corollary 13.2.5, respectively.
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Proposition 14.1.2 (Lyapunov-type stability for discrete-time dynamical systems). Let
deN, £eRY ce (0,0), (Yn)nen C [0,c], let V:RE - R, &: R? x [0,00) — R?, and
e: [0,c] — [0, 00) satisfy for all 6 € R, t € [0,c| that

V(®(0,t)) <e(t)V(0), (14.3)
and let ©: Ny — R? satisfy for alln € N that
@0 = 5 and @n = (I)(@nfl, ")/n) (144)

Then it holds for all n € Ny that
V(e,) < Lﬁlg(%)} V(). (14.5)

Proof of Proposition 1/.1.2. We prove (14.5) by induction on n € Ny. For the base case
n = 0 note that the assumption that ©y = £ ensures that V(0y) = V(£). This establishes
(14.5) in the base case n = 0. For the induction step observe (14.4) and (14.3) ensure
that for all n € Ny with V(0,,) < (ITi_; e(v))V(€) it holds that

V(Oni1) = V(®(On, 1n41)) < €(1n41)V (On)

< e(Ynt1) ( L]i[l 6(%)} V(§)> = Ll;ll 5(%)} V(e). (14.6)

Induction thus establishes (14.5). This completes the proof of Proposition 14.1.2. O]

Corollary 14.1.3 (On quadratic Lyapunov-type functions for the GD optimization
method). Let d € N, ¢ € (0,00), 9,6 € RY, (Y)uen C [0,c], f € CHRELR), let
[-|I: R® — [0,00) be a norm, let : [0,¢] — [0,00) satisfy for all & € R, t € [0,(]
that

16 = ¢(V£)(0) = 91> < e(®)]16 - ]I, (14.7)

and let ©: Ny — R? satisfy for all n € N that
O =¢ and O, =06,_1—7%(V)(O,1). (14.8)

Then it holds for all n € Nqy that

16, — vl < [ﬁ [am)r”] e oI (14.9)

Proof of Corollary 1/.1.3. Throughout this proof let V: R? — R satisfy for all # € R?
that
2
V() =0 —9". (14.10)

Observe that Proposition 14.1.2 (applied with V' v~ V' in the notation of Proposi-
tion 14.1.2) implies that for all n € Ny it holds that

0, -0l = v®,) < |l etw|vie = | Hetw|le-vt. aan
This establishes (14.9). The proof of Corollary 14.1.3 is thus complete. O]
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Corollary 14.1.3, in particular, illustrates that the one-step Lyapunov stability as-
sumption in (14.7) may provide us suitable estimates for the approximation errors asso-
ciated to the GD optimization method; see (14.9) above. The next result, Lemma 14.1.4
below, now provides us sufficient conditions which ensure that the one-step Lyapunov
stability condition in (14.7) is satisfied so that we are in the position to apply Corol-
lary 14.1.3 above to obtain estimates for the approximation errors associated to the GD
optimization method. Lemma 14.1.4 employs the growth condition and the coercivity-
type condition in (13.94) in Corollary 13.3.5 above. Results similar to Lemma 14.1.4
can, e.g., be found in Dereich & Miiller-Gronbach [7, Remark 2.1] and Jentzen et al. [16,
Lemma 2.1]. We will employ the statement of Lemma 14.1.4 in our error analysis for the
GD optimization method in Subsection 14.1.2 below.

Lemma 14.1.4 (Sufficient conditions for a one-step Lyapunov-type stability condition).
Letd € N, let {{-,-): R x R — R be a scalar product, let ||-||: R? — [0, 00) satisfy for
all v € RY that ||[v]| = /{v,v)), and let ¢, L € (0,00), r € (0,00], ¥ € RY, B = {w €
Re: [|w — || <7}, f e CHRYR) satisfy for all 0 € B that

(0 —0,(VH@O) =l —o)*  and (VO < L6~ . (14.12)
Then
(1) it holds that ¢ < L,
(i1) it holds for all 0 € B, v € [0, 00) that

16 =1V 1)(0) = I < (1 = 2ye+~2L?)]|16 — 9%, (14.13)

i) it holds for all v € (0,25) that 0 <1 —2yc+2L? < 1, and
L

(iv) it holds for all @ € B, v € [0, 1z] that

16 =~(V£)(0) = 9]I° < (1 = en)]|6 2" (14.14)

Proof of Lemma 1/.1.4. First of all, note that (14.12) ensures that for all 8 € B, v €
[0, 00) it holds that

16 = (Y £)(0) = 0> = [|(6 — 0) — v (V)]
=16 = 9| = 2y (6 — 9, (VHO) + (V) (O)
<16 = 9)* = 2vcl|6 — I||* + 4*L?]|6 — *
= (1= 2yc++2L2)]0 — 9]

(14.15)

This establishes item (ii). Moreover, note that the fact that B\{d} # 0 and (14.15) assure
that for all v € [0, 00) it holds that

1 —2ve+~%L% > 0. (14.16)

Hence, we obtain that

1-S=1-2 42 —1-2[% <12
7z T 1 [L]C+[L}2 2 (14.17)
:1—2[%]0%—[%} L*>0
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This implies that 2—22 < 1. Therefore, we obtain that ¢* < L?. This establishes item (i).
Furthermore, observe that (14.16) ensures that for all v € (0, 25) it holds that
0<1—2yvc+~*L*=1— v (2c—~L?) < 1. (14.18)
—~———

>0 >0

This proves item (iii). In addition, note that for all v € [0, {5] it holds that

1 —2yc+~*L* < 1—276—1—7[%]1/2: 1—cy. (14.19)

Combining this with (14.15) establishes item (iv). The proof of Lemma 14.1.4 is thus
complete. O

Exercise 14.1.1. Prove or disprove the following statement: There exist d € N, v €
(0,00), € € (0,1), 7 € (0,00], 9,0 € RY and there exists a function g: RY — R? such that
10—Vl <7, VEE{w e R [lw =Dz <7} € —79(E) — Il < €l|€ = V|2, and

(60— 9, 9(60)) < min{ 15, 3} max{ 6 — 913, lg(®)]12}. (14.20

2y

Exercise 14.1.2. Prove or disprove the following statement: For all d € N, r € (0, o0],
Y € RY and for every function g: RT — R which satisfies VO € {w € RY: [Jw — I <
r}: {0 —9,9(0)) > g max{[|0 — V|3, [|g(0)]3} it holds that

0 € {w e RY: w—v]> <r}: ((0=0,9(0)) = 51091 A lg(®)]l2 < 2[10—9]|2). (14.21)

1
2

Exercise 14.1.3. Prove or disprove the following statement: For all d € N, ¢ € (0,00),
r € (0,00, 9,v € RY, f € CHRYLR), s,t € [0,1] such that ||vlls < 7, s < t, and
Vo e{weR: |w—9|<r}: (0—0,(Vf)(0) > c||0 — |3 it holds that

fO+tv) = f(O+ sv) > (2 — 7)) ||vlf3- (14.22)

Exercise 14.1.4. Prove or disprove the following statement: For everyd € N, ¢ € (0, 00),
r € (0,00], ¥ € R? and for every f € C1(RY,R) which satisfies for all v € R?, st € [0, 1]
with ||v]|s <7 and s <t that f(9 + tv) — f(9 + sv) > c(t? — s?)||v||3 it holds that

VO € {weR: |jw—1]y<r}: (09, (VF)O) > 26 — 9|2 (14.23)

Exercise 14.1.5. Let d € N and for every v € R, R € [0,00] let Br(v) = {w €
Re: ||lw — ||y < R}. Prove or disprove the following statement: For all v € (0,00],
v e R f e CLRYR) the following two statements are equivalent:

(i) There exists ¢ € (0,00) such that for all 6 € B,.(0) it holds that

(0 =9, (V)(0) = cllo - . (14.24)

(i) There ezists ¢ € (0,00) such that for all v,w € B.(9), s,t € [0, 1] with s <t it holds
that
f@W+tv—1)) = f(I+s(v—1)) > c(t* — s*)|v— 95 (14.25)

Exercise 14.1.6. Let d € N and for every v € R4, R € [0,00] let Br(v) = {w €
R?: [v — w|ls < R}. Prove or disprove the following statement: For all v € (0, 00],
v eRY fe CHRER) the following three statements are equivalent:
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(i) There exist ¢, L € (0,00) such that for all 0 € B,.(¥) it holds that

0 =0.(VHO) = cllo =13 and (V)2 < LIO -] (14.26)
(i1) There exist v € (0,00), € € (0,1) such that for all 8 € B,.(9) it holds that
10 =~ (V)(0) = D2 < el|f — D2 (14.27)
(i1i) There exists ¢ € (0,00) such that for all 8 € B,.(V) it holds that

(0 =9, (VA)(0)) = cmax{[|0 = 9|5, [(VH(O)]5}- (14.28)

14.1.2 Error analysis for the GD optimization method

In this subsection we provide an error analysis for the GD optimization method. In
particular, we show under suitable hypotheses (cf. Proposition 14.1.5 below) that the GD
optimization method (cf. Definition 14.1.1 above) converges to a local minimum of the
objective function of the considered optimization problem.

14.1.2.1 Error estimates for the GD optimization method

Proposition 14.1.5 (Error estimates for the GD optimization method). Let d € N,
¢,L € (0,00), 1 € (0,00], (Yn)nen € [0, 7], ¥ € R, B = {w € R": lw — 9| <1}, £ €B,
f € CYRY R) satisfy for all § € B that

0 =0, (V@) Zcl0=9ll;  and  [(VF)O)]2 < L6 —Il2, (14.29)
and let ©: Ny — R? satisfy for alln € N that
Oy =¢& and O, =06,-1—7%(V)(O,_1). (14.30)
Then
(i) it holds that {6 € B: f(0) = inf,ep f(w)} = {V},
(ii) it holds for alln € N that 0 < 1 — 2¢y, + (7,)2L* < 1,
(i) it holds for all n € N that |0, — 9|2 < (1 = 2¢vn + (70)?L*)?|Op_1 — V|2 < 7,
(iv) it holds for all n € Ny that

10, — ]l < Lﬁ (1 2e% + WLQW?} €~ 9l (1431)

and

(v) it holds for all n € Ny that

0< f(On) = f(¥) < 5110, — V5 < %{lﬁl (1= 2em + (%)2L2)1 I =9Iz (14.32)

k=1
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Proof of Proposition 14.1.5. First, note that (14.29) and item (ii) in Lemma 13.2.8 prove
item (i). Moreover, observe that (14.29), item (iii) in Lemma 14.1.4, the assumption that
for all n € N it holds that v, € [0, 2], and the fact that
2c 21272 4c? 4?7 72 4c? 4c?
1-2c[2]+ (2] LP=1-%% + [g)1*=1-% + 45 =1 (14.33)
and establish item (ii). Next we claim that for all n € N it holds that
180 = Dllo < (1~ 27+ (32 L2) 0,1 — D]ls < 1. (14.34

We now prove (14.34) by induction on n € N. For the base case n = 1 observe that the
assumption that g = £ € B, item (ii) in Lemma 14.1.4, and item (ii) ensure that

161 — 912 = 180 — %1 (VF)(O0) — V]2
< (1= 203 + (1)L €0 — 92 (14.35)
< |6 — I3 <>

This establishes (14.34) in the base case n = 1. For the induction step observe that
item (ii) in Lemma 14.1.4 and item (ii) imply that for all n € N with ©,, € B it holds
that

||@n+1 - 19”3 = ||@n - 7n+1(vf)(@n) - 19”%

< (1= 20941 + (3u41) L) €0 — O3 (14.36)

€0,1]
<16, — 9|3 < r*.

This demonstrates that for all n € N with ||©,, — ¥||2 < r it holds that
1801 = Vll2 < (1= 2941 + (Y1) L) [0, = |2 < 7 (14.37)

Induction thus proves (14.34). Next observe that (14.34) establishes item (iii). Moreover,
note that induction and item (iii) prove item (iv). Furthermore, note that item (iii) and
the fact that ©y = £ € B ensure that for all n € Ny it holds that ©,, € B. Combining
this, (14.29), and Lemma 13.2.9 with items (i) and (iv) establishes item (v). The proof
of Proposition 14.1.5 is thus complete. [
14.1.2.2 Size of the learning rates

In the next result, Corollary 14.1.6 below, we, roughly speaking, specialize Proposi-
tion 14.1.5 to the case where the learning rates (v, )nen C [0, 5] are a constant sequence.

Corollary 14.1.6 (Convergence of gradient descent for constant learning rates). Let
deN, ¢, L e (0,00), re€ (0,00, 7€ (0,2),9ecR,B={weR [|w—-9| <r},
£eB, f e CYRYR) satisfy for all € B that

O =0, (VHO) Zclo =95 and  [(VF)(O)]2 < L6 |2, (14.38)
and let ©: Ny — R? satisfy for alln € N that
@0 = 5 and @n = @n—l — ’Y(Vf)(@n—l) (1439)

Then
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(1) it holds that {0 € B: f(0) = inf,ep f(w)} = {V},
(ii) it holds that 0 <1 —2cy +~2L?* < 1,

(i1i) it holds for all n € Ny that

10n = ]|z < [1— 267 +~2L%] "€ = 02, (14.40)
and

(iv) it holds for all n € Ny that
0< f(©0) ~ f(9) < 10— DI < E[1 20y + L] € 93 (14.41)

Proof of Corollary 14.1.6. Observe that item (iii) in Lemma 14.1.4 proves item (ii). In
addition, note that Proposition 14.1.5 establishes items (i), (iii), and (iv). The proof of
Corollary 14.1.6 is thus complete. O

Corollary 14.1.6 above establishes under suitable hypotheses convergence of the GD
optimization method in the case where the learning rates are constant and strictly smaller

than % The next result, Lemma 14.1.7 below, demonstrates that the condition that the

learning rates are strictly smaller than % in Corollary 14.1.6 can, in general, not be

relaxed.

Lemma 14.1.7 (Sharp bounds on the learning rate for the convergence of gradient

descent). Let d € N, a € (0,00), v € R, ¥ € RY, £ € R\{V}, let f: R? — R satisfy for
all 0 € R? that

16) = £l - o] (1442
and let ©: Ny — R? satisfy for all n € N that
Oy =¢ and O, =0,_1 —v(Vf)(On_1). (14.43)
Then
(i) it holds for all § € R that (6 — 9, (Vf)(0)) = a||0 — 9|3,
(ii) it holds for all 8 € R that ||(V f)(0)]l2 = a6 — Iz,
(111) it holds for all n € Ny that ||©,, — V|2 = |1 —ya|*||§ — V|2, and
(1v) it holds that

0 S (OaQ/O‘)
lim inf|©, — V|l = lmsupl|©, = 9|, = S |6 = 9> 7€ {0,2a}  (14.44)
e 00 v e R\ [0,2/a].

Proof of Lemma 1/.1.7. First of all, note that Lemma 13.2.4 ensures that for all § € R?
it holds that f € C*(R4, R) and

(VI)(0) = 5200 = 7)) = a(f = ). (14.45)

DISSEMINATION PROHIBITED. JULY 29, 2021 221



Chapter 14. Deterministic GD type optimization methods

This proves item (ii). Moreover, observe that (14.45) assures that for all # € R it holds
that
(0=, (VF)(O)) = (0=, a(0 — ) = aff — " (14.46)

This establishes item (i). Next note that (14.43) and (14.45) demonstrate that for all
n € N it holds that

O0,—10=0,1—7V)(O,_1)—1
=0, —ya(0,1 —V) =10 (14.47)
= (1 =va)(On-1 — V).

The assumption that ©y = ¢ and induction hence prove that for all n € Ny it holds that
O, U= (1—-v2)"(0g—1) =(1—~ya)"({—9). (14.48)

Therefore, we obtain for all n € Ny that
180 = 2 = I1 = 10l 1€ = V]2 (14.49)

This establishes item (iii). Combining item (iii) with the fact that for all ¢t € (0,2/a) it
holds that |1 — ta| € [0,1), the fact that for all ¢ € {0,2/a} it holds that |1 — ta] = 1,
the fact that for all ¢ € R\ [0,2/o] it holds that |1 — ta| € (1,00), and the fact that
1€ — V|2 > 0 establishes item (iv). The proof of Lemma 14.1.7 is thus complete. O

14.1.2.3 Convergence rates

The next result, Corollary 14.1.8 below, establishes a convergence rate for the GD op-
timization method in the case of possibly non-constant learning rates. We prove Corol-
lary 14.1.8 through an application of Proposition 14.1.5 above.

Corollary 14.1.8 (Qualitative convergence of gradient descent). Let d € N, ¢, L €
(0,00), (Vn)nen C [0,00), &,9 € RY, f € CLRY, R) satisfy for all € RY that

O—0, (V@) =clo =203 (VHO)2 < L6 =V, (14.50)
and 0 < liminf~, <limsup~y, < %, (14.51)
Nn—o0 n—00

and let ©: Ny — R? satisfy for alln € N that
Oy =¢ and O, =0,_1 — 7 (V) (O,_1). (14.52)
Then
(i) it holds that {0 € R: f(0) = inf,cpe f(w)} = {9},
(i1) there exist € € (0,1), C' € R such that for all n € Ny it holds that
16, — V|2 < €"C, (14.53)
and
(i11) there exist € € (0,1), C' € R such that for all n € Ny it holds that

0< £(O,) — f(¥) < C. (14.54)
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Proof of Corollary 14.1.8. Throughout this proof let o, 5 € R satisty

0 < a < liminf~, < limsupy, < 8 < % (14.55)
n—oo

n—oo

(cf. (14.51)), let m € N satisfy for all n € N that v,,4, € [a, 5], and let h: R — R satisfy
for all t € R that
h(t) =1 — 2ct + t2L*. (14.56)

Observe that (14.50) and item (ii) in Lemma 13.2.8 prove item (i). In addition, observe
that the fact that for all ¢+ € R it holds that h'(t) = —2c¢ + 2¢tL? implies that for all
t € (=00, {37] it holds that

W(t) < —2c+2[5]|L* = 0. (14.57)

The fundamental theorem of calculus hence assures that for all ¢ € [a, 5] N[0, %] it holds

that o
h(t) = h(a) + /t h'(s)ds < h(a) + /tOds = h(a) < max{h(a),h(B)}. (14.58)

Furthermore, observe that the fact that for all ¢ € R it holds that h'(t) = —2c¢ + 2tL?
implies that for all ¢ € [Z,00) it holds that
W(t) > —2c+2[5]L* = 0. (14.59)

The fundamental theorem of calculus hence ensures that for all ¢ € [a, 8] N [{Z,00) it
holds that

B B
max{h(a),h(B)} > h(B) = h(t) +/ h'(s)ds > h(t) +/ 0ds = h(t). (14.60)
t t
Combining this and (14.58) establishes that for all ¢ € [«, 5] it holds that

h(t) < max{h(a), h(5)}. (14.61)

Moreover, observe that the fact that a, 8 € (0, %) and item (iii) in Lemma 14.1.4 ensure
that

{h(e), h(B)} €10, 1). (14.62)
Hence, we obtain that
max{h(«a), h(B)} € [0,1). (14.63)
This implies that there exists ¢ € R such that
0 < max{h(a),h(p)} <e < 1. (14.64)
Next note that the fact that for all n € N it holds that vy,4n € [, 8] C [0, 5], items (ii)

and (iv) in Proposition 14.1.5 (applied with d ~ d, ¢ v~ ¢, L ™ L, 7 00, (Yn)nen O
(Yman)nen, ¥ N 9, € A O, f o f in the notation of Proposition 14.1.5), (14.50),
(14.52), and (14.61) demonstrate that for all n € N it holds that

10msn = Il < | T = 207msk + () L) 72| 1€ = D2
Lk=1
= H(h('Ym—I—k))l/Q ||@m_19||2 (1465)
Lk=1

< (max{h(a), A(8)})"*©m — I
< "0, — V2.
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This shows that for all n € N with n > m it holds that
19, = V|2 < " ™10, — V2. (14.66)

The fact that for all n € Ny with n < m it holds that

16, — V|2 = [M} e? < [max{w' ke{01,... ,m}Hg”/2 (14.67)

8n/2 gk/g :

hence assures that for all n € Ny it holds that

100 — V|2
< max{ maX{H@kgk%%: ke{0,1,... ,m}}]gm,s(nmwﬂ@m — 19||2}

: . 14.68
= (7?)" max{max{”e)kngwz: ke{0,1,... ,m}},s_m/QH@m - 19H2H ( )
= (/)" max{”gl;c%%: ke {0,1,...,m}”.

This proves item (ii). In addition, note that Lemma 13.2.9, item (i), and (14.68) assure
that for all n € Ny it holds that

0< f(©,) — F(9) < Ll|©, — 3
- %{maX{M; ke {0,1,...,m}H. (14.69)

ok
This establishes item (iii). The proof of Corollary 14.1.8 is thus complete. O

14.1.2.4 Error estimates in the case of small learning rates

Inequality (14.31) in item (iv) in Proposition 14.1.5 above provides us an error estimate
for the GD optimization method in the case where the learning rates (7, )nen in Proposi-
tion 14.1.5 satisty that for all n € N it holds that ~, < % The error estimate in (14.31)
can be simplified in the special case where the learning rates (7, )nen satisfy the more
restrictive condition that for all n € N it holds that v, < ;5. This is the subject of the
next result, Corollary 14.1.9 below. We prove Corollary 14.1.9 through an application of

Proposition 14.1.5 above.

Corollary 14.1.9 (Error estimates in the case of small learning rates). Let d € N,
c,L € (0,00), 7€ (0,00, (Yn)nen € [0, 7z, ¥ € RY B ={w e R ||lw—9| <r}, £ €B,
f € CYRY,R) satisfy for all § € B that

O—0,(VHO) = cllo =02 and  [(VHO)2 < LI D2 (14.70)
and let ©: Ny — R? satisfy for all n € N that

Oy =¢ and ©n, =051 —7(Vf)(On_1). (14.71)
Then
(i) it holds that {0 € B: f(0) = inf,ep f(w)} = {0},
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(11) it holds for allm € N that 0 <1 — ¢y, <1,

(#13) it holds for all n € Ny that

10, — 9]ls < Lﬁlu - cvw]us N (14.72)

and

(i) it holds for all n € Ny that
o< 100 - 1) < [ {10 - e - . (14.73)

Proof of Corollary 14.1.9. Note that item (ii) in Proposition 14.1.5 and the assumption
that for all n € N it holds that v, € [0, /Z] ensure that for all n € N it holds that

c

0<1—2cv,+ ()°L* <1—2c, +%[L2

}LQ =12y, +yme=1—cy, < 1. (14.74)

This proves item (ii). Moreover, note that (14.74) and Proposition 14.1.5 establish
items (i), (iii), and (iv). The proof of Corollary 14.1.9 is thus complete. O

In the next result, Corollary 14.1.10 below, we, roughly speaking, specialize Corol-
lary 14.1.9 above to the case where the learning rates (7,)nen C [0, 7z] are a constant
sequence.

Corollary 14.1.10 (Error estimates in the case of small and constant learning rates).
Letd €N, ¢,L € (0,00), 7 € (0,00], v € (0, 5], ¥ € RY, B = {w e R ||w—9|| <r},
£e€B, feCYRYR) satisfy for all § € B that

(0 =0,(VAO) Zclo=9;  and  [(V)O)]2 < LI — Iz, (14.75)
and let ©: Ny — R? satisfy for alln € N that
Op=¢ and O, =0,_1 —Y(Vf)(On_1). (14.76)
Then
(1) it holds that {0 € B: f(0) = inf,ep f(w)} = {V},
(i1) it holds that 0 <1 — ¢y < 1,
(iii) it holds for all n € Ny that ||©,, — Vs < (1 — ey)"?||€ — V|2, and
(iv) it holds for all n € Ny that 0 < f(©,) — f(9) < £ (1 —cy)"||€ — 93

Proof of Corollary 1/.1.10. Note that Corollary 14.1.10 is an immediate consequence of
Corollary 14.1.9. The proof of Corollary 14.1.10 is thus complete. O]
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14.1.2.5 On the spectrum of the Hessian of the objective function at a local
minimum

A crucial ingredient in our error analysis for the GD optimization method in Sub-
sections 14.1.2.1-14.1.2.4 above is to employ the growth and the coercivity-type hy-
potheses, e.g., in (14.29) in Proposition 14.1.5 above. In this subsection we disclose
in Lemma 14.1.12 below suitable conditions on the Hessians of the objective function of
the considered optimization problem which are sufficient to ensure that (14.29) is satisfied
so that we are in the position to apply the error analysis in Subsections 14.1.2.1-14.1.2.4
above (cf. Corollary 14.1.13 below). Our proof of Lemma 14.1.12 employs the following
classical result (see Lemma 14.1.11 below) for symmetric matrices with real entries.

Lemma 14.1.11 (Properties of the spectrum of real symmetric matrices). Let d € N,
let A € R™ be a symmetric matriz, and let ¥ = {\ € C: (v € C\{0}: Av = \v)}.
Then

(i) it holds that ¥ = {\ € R: (Jv € R\{0}: Av = \v)} CR,
(i) it holds that

A
up [H UHQ} = max|\|, (14.77)
verd\foy L [|V]]2 =
and
(iii) it holds for all v € RY that
min(.7)[|v[f3 < (v, Av) < max()|v]f5. (14.78)

Proof of Lemma 14.1.11. Throughout this proof let e, es,...,eq € R? be the vectors
given by

e =(1,0,...,0), er=1(0,1,0,...,0), ..., es=(0,...,0,1).  (14.79)

Observe that the spectral theorem for symmetric matrices (see, e.g., Petersen [24, Theo-
rem 4.3.4]) proves that there exist (dxd)-matrices A = (Ay )i jeq1,2,...a1, O = (Oij)ijefi...ap €
R such that . = {A11,Asa, ..., Nga}, OO = O0* =1,;, A = OAO*, and

A171 0
A= (Nij)ijeio..ay = € R4 (14.80)
0 Aia

(cf. Definition 2.2.9). Hence, we obtain that . C R. Next note that the assumption
that .7 = {\ € C: (3v € C\{0}: Av = \v)} ensures that for every A € .7 there exists
v € CN\{0} such that

ARe(v) +1ATm(v) = Av = v = MRe(v) + iATm(v). (14.81)

The fact that . C R therefore demonstrates that for every A € . there exists v € R\ {0}
such that Av = Av. This and the fact that . C R ensure that .¥ C {\ € R: (Fv €
RA\{0}: Av = \v)}. Combining this and the fact that {\ € R: (Jv € RN\{0}: Av =
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Av)} C . proves item (i). Furthermore, note that (14.80) assures that for all v =
(v1,v9,...,v4) € R? it holds that

d /2
Z|Ai,ivi|2] <
i1

2 /2
= [ma{IAsal, - Aqal o] (14.82)
= maX{|A1,1|, ce |Ad,d|}||7)“2
= (maxyes|A])|[v]]2.

The fact that O is an orthogonal matrix and the fact that A = OAO* therefore imply
that for all v € R? it holds that

[Av[lz = [OAO™ ]|z = [[AO™ ],
< (maxyez|A|)[|0™0]|2 (14.83)

= (maxyer|Al) [v]l2.

1/2
[Av] =

d
Z max{|A11[%, ..., [Agal}oi]?
i=1

This implies that

A maxye «| A ||v
veRA\ {0} [v]l2 veRA\ {0} [v][2

In addition, note that the fact that . = {A;1,A22...,Agq} ensures that there exists
j€{1,2,...,d} such that
|Aj ;| = maxyex|Al. (14.85)

Next observe that the fact that A = OAO*, the fact that O is an orthogonal matrix, and
(14.85) imply that

sup

A 41C j _ = ||OA
|:|| U||2:| > H 6‘7”2 — “OAO*Oe]”2 H ejHQ
veRI\{0}

V]2 |0¢; |2 (14.86)
= [[Aejlla = [[Aj ejll2 = [A;5] = maxaes|A.

Combining this and (14.84) establishes item (ii). It thus remains to prove item (iii). For
this note that (14.80) ensures that for all v = (vy, vy, ..., v4) € R? it holds that

2
(v, Av) ZA”]UZ < Zmax{All,...,Ad,d}\viy (14.87
= max{Al,l, " ,Ad,d}HvIIQ = max()[v[3-

The fact that O is an orthogonal matrix and the fact that A = OAO* therefore demon-
strate that for all v € R? it holds that

(v, Av) = (v, ONO*v) = (O*v, AO™v)

14.88
< max(#)[| 0% |2 = max(:#)|Joll2 (14.88)

Moreover, observe that (14.80) implies that for all v = (v, v, ...,v4) € R? it holds that

2
(v, Av) ZA”\M > me{Al Lo s Nagat|ui (14.89)

= IIllIl{ALl, o 7/\(17(1}\|1)||2 = mln(Y)HvH%
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The fact that O is an orthogonal matrix and the fact that A = OAO* hence demonstrate
that for all v € R? it holds that

(v, Av) = (v, OANO*v) = (O*v, AO*v)

14.90
> min(.7)[|0"v|3 = min(#)|[v]3. e

Combining this with (14.88) establishes item (iii). The proof of Lemma 14.1.11 is thus
complete. n

We now present the promised Lemma 14.1.12 which discloses suitable conditions (cf.
(14.91)—(14.92) below) on the Hessians of the objective function of the considered opti-
mization problem which are sufficient to ensure that (14.29) is satisfied so that we are in
the position to apply the error analysis in Subsections 14.1.2.1-14.1.2.4 above.

Lemma 14.1.12 (Conditions on the spectrum of the Hessian of the objective function
at a local minimum). Let d € N, let [|-]|: R®? — [0,00) satisfy for all A € R¥™? that

I A[l] = sup,cpa\ oy A2 “ond et X, o0 € (0,00), B € [, 0), ¥ € RY, f € C2HRLR) satisfy

l[oll2 7

for all v,w € R? that
(V@) =0, [I(Hess f)(v) = (Hess f)(w)[| < Allv —wlla, (14.91)
and  {j € R: (Gu e RA{0}: [(Hess £)(9)]u = pu)} € [a, 6. (14.92)
Then it holds for all 0 € {w € R%: lw — Vs < $} that
O—=0.(VHO) 251025 and  (VHO)l2 <TI0 — |2 (14.93)
Proof of Lemma 1/.1.12. Throughout this proof let B C R be the set given by
B = {weR" |w—d|,<$} (14.94)
and let . C C be the set given by
S ={p€C: (Jue CN\{0}: [(Hess f)(0)]u = pu)}. (14.95)

Observe that the fact that (Hess f)(9) € R™? is a symmetric matrix, item (i) in Lemma
14.1.11, and (14.92) imply that

S ={p€R: (3uc RN{0}: [(Hess f)(9)]u = pu)} C [, B]. (14.96)

Next note that the assumption that (V f)(¢) = 0 and the fundamental theorem of calculus
ensure that for all #,w € R? it holds that

(w, (V)(8)) = (w, (Vf)(0) = (Vf)(¥))
:<w, V)9 + (0 — 9))]= >

[(
_ <w, Ofl[(Hess £ + 46 — 9))](6— ) dt>

B

14.97
:/0 (w, [(Hess f)(0 4 t(0 — 9))](0 — 9)) dt ( )

= (w, [(Hess f)(9)](0 — 9))
+ /O (w, [(Hess f)(9 + (6 — 9)) — (Hess f)(9)] (6 — 9)) dt.
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The fact that (Hess f)(9) € R™? is a symmetric matrix, item (iii) in Lemma 14.1.11,
the Cauchy-Schwarz inequality, (14.96), (14.91), and (14.92) therefore imply that for all
6 € B it holds that

(0 —9,(VF)©))
> (0 =0, [(Hess £)(9)](0 — 9))

/0 (0= 9, [(Hess £)(0 + 18 — 9)) — (Hess £)(9)] (6 — 0)) e
> min(#))0 — 0]
[ 10 = Dl (s )00+ 0 ) = (s 1))} 0 = )]
> ol — 93 (14.98)

- /0 16 =9l (Hess f) (0 + #(0 — 9)) — (Hess f)(9)[|[| — J[| dt

1
> allf =92 — {/ A||v+t<e—ﬁ>—z9||2dt]||e—ﬂ||§

1
_ (a _ [ / tdt]Ane—m)ne—ﬁu% — (o= 26— 9]) 6 — 9|2
> (a—22) 6 — 9|2 = 26 — V]2

Moreover, observe that (14.91), (14.96), (14.97), the fact that (Hess f)() € R™? is a
symmetric matrix, item (ii) in Lemma 14.1.11, the Cauchy-Schwarz inequality, and the
assumption that o < 3 ensure that for all § € B, w € R? with |Jw]|| = 1 it holds that

(w, (V£)(0))
< |(w, [(Hess £)(9)](60 — 9))]

/0 (w, [(Hess f)(I + (6 — U)) — (Hess f)(9)](0 — 0)) dt
< [Jwl[2[[[(Hess f)()](6 — 9)|,

+ /0 [wllaf[[(Hess f)(9 + (6 — 9)) — (Hess f)(9)](0 — 0)]|pd?

wp NHess Dol y (14.99)
veR4\ {0} [v]]2

+ /O lI(Hess f) (9 + £(0 — ) — (Hess f)(0)|[[|6 — D2 dt

+

<

1
< max(.#) |0 — 9|2 + [/ N[O+ 0 — 9) — Ol dt ||| — O]
0

1

< (2] [ eatio— o1 )16~ 912 = (3 310 - olo)le ~ ol
0

< (6+2)10 = 9ll> = [ZZ=])0 — 01> < 210 — 9]

— 2

Therefore, we obtain for all 6 € B that

IVAHO = sup  [(w, (V)] <TI0 — 0|2 (14.100)

weR? ||w||2=1
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Combining this and (14.98) establishes (14.93). The proof of Lemma 14.1.12 is thus
complete. n

The next result, Corollary 14.1.13 below, combines Lemma 14.1.12 with Proposi-
tion 14.1.5 to obtain an error analysis which assumes the conditions in (14.91)-(14.92)
in Lemma 14.1.12 above. A result similar to Corollary 14.1.13 can, e.g., be found in
Nesterov [23, Theorem 1.2.4].

Corollary 14.1.13 (Error analysis for the GD optimization method under conditions

on the Hessian of the objective function). Let d € N, let ||-||: R™*? — [0,00) satisfy

for all A € R™ that ||Al| = sup,cpa (o) %, and let \,a € (0,00), f € [a,0),
(Y )nen C [0, ;60‘2] 9,6 e RY, f e C*HRYR) satisfy for all v,w € R that

(V@) =0, [I(Hess f)(v) = (Hess f)(w)[| < Allv = wllz, (14.101)

{p e R: (Fu € RN{0}: [(Hess f)(I)]u = pu)} C [a, F], (14.102)

and ||§ — D2 <, and let ©: Ny — R? satisfy for alln € N that

Then it holds for all n € N that

10, — 2 < L];[l[l—ow + 2 } }”f V|2 and (14.104)
0% 1(0) - £0) < % | T [1 - o+ 22622 i — o1 (14105

Proof of Corollary 1/.1.15. Throughout this proof let (-,-): R? x R? — R be the d-
dimensional Euclidean scalar product. Note that (14.101), (14.102), and Lemma 14.1.12
prove that for all § € {w € R*: ||w — ||y < $} it holds that

(0 —0,(V)©0) =510 -0l;  and (VO < F0 — Il (14.106)

Combining this, the assumption that || — d[]; < §, (14.103), and items (iv)-(v) in
Proposition 14.1.5 (applied with ¢ »~ §, L %, r - § in the notation of Proposition
14.1.5) establishes (14.104) and (14.105). The proof of Corollary 14.1.13 is thus complete.

]

14.1.2.6 Equivalent conditions on the objective function

Lemma 14.1.14. Let d € N, let {{-,-)): R? x R? — R be a scalar product, let ||-||: R —
0,00) satisfy for all v € RY that ||v]| = \/{v,v)), let v € (0,00), € € (0,1), r € (0, 00],
YeERY B={weR: ||w—17| <r}, and let g: R — R? satisfy for all 6 € B that

16 = ~vg(0) = ||| < 6 — ] (14.107)
Then it holds for all 0 € B that

(0 — 0, 9(0)) = max{ | 5] Il9 = 9I1%, 3 l9(6)”}

2 , ) (14.108)
> min{ 3", 4 } mas{[J0 — 0, 9(0)|I°}.
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Proof of Lemma 14.1.14. First, note that (14.107) ensures that for all € B it holds that

216 —9NI* = (16 —vg(8) = III” = [1(6 —9) —~9(8)[I”

) ) ) (14.109)
=160 =" =27 (0 =0, 9(0)) + g (@)
Hence, we obtain for all 8 € B that
270 — 9, g()) > (1 — 2|6 — 9| + +*[lg (8[|
16 = 9,900 = (1= )0 = DI+ +?llg(6)] a0

> max{ (1 —<)[|6 —J[I*,7* l9(®)]I"} > 0.
This demonstrates that for all # € B it holds that
(6 —9,9(0)) = 55 max{(L —)[|6 —I|I*,+* l9(6) I}
= max{ | 55216 = 9II%, 3l9(6) | (14.111)
> min{ 152, 3} max{||6 - 9%, [l9(0)1*}.

The proof of Lemma 14.1.14 is thus complete. O]

Lemma 14.1.15. Let d € N, let {(-,-)): R? x R — R be a scalar product, let ||-||: R —
[0,00) satisfy for all v € R? that ||v|| = /{v,v)), let ¢ € (0,00), r € (0,00], ¥ € R,
B ={weR: ||w—9| <r}, and let g: RT — R? satisfy for all € B that
(6 —.9(0)) = cmax{||6 —9|I”, llg(9)[" }- (14.112)
Then it holds for all 8 € B that
(6—0.90) =cllo=2I*  and |lg@I < 1|6 — . (14.113)

Proof of Lemma 1/.1.15. Observe that (14.112) and the Cauchy-Schwarz inequality as-
sure that for all § € B it holds that

g < max{[lo = 9II”, llg(O)]*} < £40 = 0,90 < L10 = dllllg@)].  (14.114)
Therefore, we obtain for all # € B that

gl < 16 —21l. (14.115)

Combining this with (14.112) completes the proof of Lemma 14.1.15. O

Lemma 14.1.16. Let d € N, c € (0,00), r € (0,00], ¥ € R, B = {w € R?: ||w — I <
r}, f € CHRYR) satisfy for all § € B that

(0 —20,(VF)(©0)) = cllo —9II2. (14.116)
Then it holds for all v € R?, s,t € [0,1] with ||v||s < r and s <t that

FO+tv) — f(O+ sv) > £(t* — ) ||vlf3- (14.117)
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Proof of Lemma 14.1.16. First of all, observe that (14.116) implies that for all v € R4
with [|v||s < r it holds that

(VN +v),0) > cllvllz. (14.118)

The fundamental theorem of calculus hence ensures that for all v € R?, 5.t € [0, 1] with
|v]]o < 7 and s <t it holds that

FO+tv) — f(0+s0) = [f(9+ ho)] !

- /tf’(ﬁ—i—hv)vdh

:/S (V)9 + hv), hv) dh (14.119)

t
/'HMMdh
[/‘hdﬂuvm::§< )l

The proof of Lemma 14.1.16 is thus complete. O]

Lemma 14.1.17. Let d € N, c € (0,00), r € (0,00], ¥ € R, B = {w € R?: [|w — Iz <
r}, f € CYRYR) satisfy for all v € RY, st € [0, 1] with ||v]|s <7 and s < t that

]
FO+tv) — f(9+ sv) > c(t? — s)||v]|3. (14.120)

Then it holds for all 8 € B that
(0 —0,(V£)(8)) > 2c]|6 - 9]5. (14.121)

Proof of Lemma 1/.1.17. Observe that (14.120) ensures that for all s € (0,7]NR, 6 € R?
with ||# — 9|2 < s it holds that

(0 =0, (V)(0)) = f'(0)(0 = ) = lim (5[ £ (0 + h(6 — ) = f(8)])

A e
~f(v+ @(Hefmb(ﬁ - ﬁ)))])

> hr;:\sgp(%([%r - [=])

gl -

e tmsup (272) 1o - o1

(6-9) 2) (14.122)

S
6—21l2

= c¢|limsup(2 + h)} 10 — 9|15 = 2¢||6 — J|5.
L N0

Hence, we obtain that for all § € R? with ||§ — ¥||y < r it holds that

00, (V)(0)) > 2]}0 — 0. (14.123)
Combining this with the fact that the function R? 3 v — (Vf)(v) € R? is continuous
establishes (14.121). The proof of Lemma 14.1.17 is thus complete. O
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Lemma 14.1.18. Letd € N, L € (0,00), r € (0,00], ¥ € RY, B = {w € R%: ||lw -2 <
r}, f € CHR R) satisfy for all € B that

(VA2 < L]0 — 2. (14.124)
Then it holds for all v,w € B that
f(v) = f(w)| £ Lmax{|jv =92, [w = Il }[|v = w]>. (14.125)

Proof of Lemma 14.1.18. Observe that (14.124), the fundamental theorem of calculus,
and the Cauchy-Schwarz inequality assure that for all v,w € B it holds that

h=1

[f(v) = f(w)] = |[f(w+h(v—w))],_,
— /0 f(w+h(v—w))(v—w) dh’

1
— / <(Vf)(w+h(v—w)),v—w>dh‘
0
< / 1(V£) (o + (1 = Byew) [aljo — w2
< /1L|]hv+(1—h)w—19||2||v—w||2dh (14.126)
0
1
< / L(hlJo —9ll2 + (1 — B) e — 9]2) o — wllz dh
1
—L| —wuz[ | (bl =1+ bl = 0]2) dh]
0
1
— L (=0l + o = 9] lo —w||2{/ hdh}
0
< Lmax{|Jv — 0|l [l — 2} ]}v — wl].

The proof of Lemma 14.1.18 is thus complete. O

Lemma 14.1.19. Letd € N, L € (0,00), r € (0,00], ¥ € R, B = {w € R4: ||w =9Iz <
r}, f € CHRYR) satisfy for all v,w € B that

[f(v) = f(w)] < Lmax{|lv — Dz, |w = I|2}Jv — w]l2. (14.127)
Then it holds for all 0 € B that
(V) (O)ll2 < L6 — D2 (14.128)

Proof of Lemma 1/.1.19. Note that (14.127) implies that for all § € R¢ with [|§ -9, < r
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it holds that

IvHOl:
= s [fO)w)

weRY ||w||2=1"

= su (L (£(0 + hw) — £(0
weRd7||5||2:1 :h\o[h(f( + hw) — f( ))]]

< sup  |liminf|Emax{||§ + hw — 9|fs, |0 — 9| ||0+hw—6’||2H
weRd ully=1 L N0 L" { } (14.129)
~  sup liminf-LmaX{HH—l—hw—ﬁﬂg,||6—19H2}%th|]2H

weRd [lwla=1L "0

= sup lim inf _LmaX{HH—l—hw—ﬁHz,|’6—19H2}H

weRd Jlwlo=1L MO

= swp (L0 =l = L0 -9

wERY ||w|2=1"

The fact that the function R? > v — (Vf)(v) € R? is continuous therefore establishes
(14.128). The proof of Lemma 14.1.19 is thus complete. O

Corollary 14.1.20. Let d € N, r € (0,00], ¥ € RY, B = {w € R?: [jw — ||y < 1},
f € CYRY R). Then the following four statements are equivalent:

(i) There exist ¢, L € (0,00) such that for all § € B it holds that

(0 =9.(VHO) = clo =93 and  [(VHO)2 < L0 =D (14.130)

(ii) There exist v € (0,00), € € (0,1) such that for all 0 € B it holds that

16 =~ (V)(0) =Dy < |6 = I (14.131)

(i1i) There exists ¢ € (0,00) such that for all @ € B it holds that

(0 =0, (VF)(0)) > cmax{[|0 — I3, [I(VF)(O)3}- (14.132)

(iv) There exist ¢, L € (0,00) such that for all v,w € B, s,t € [0,1] with s <t it holds
that

f@O+tv—=20)) = fF(I+s(v—"7)) > c(t® = s*)|lv—17]|3 (14.133)

and |f(v) = f(w)] < Lmax{[jv — Iz, [[w — I[]2}]|v — w2 (14.134)

Proof of Corollary 14.1.20. First, note that items (ii)—(iii) in Lemma 14.1.4 prove that
((i) = (ii)). Next observe that Lemma 14.1.14 demonstrates that ((ii) = (iii)). More-
over, note that Lemma 14.1.15 establishes that ((iii) = (i)). In addition, observe that
Lemma 14.1.16 and Lemma 14.1.18 show that ((i) = (iv)). Finally, note that Lemma
14.1.17 and Lemma 14.1.19 imply that ((iv) = (i)). The proof of Corollary 14.1.20 is
thus complete. O
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14.2 The gradient descent optimization method with
classical momentum

Definition 14.2.1 (Momentum gradient descent optimization method). Let d € N,
(Yn)nen C [0,00), (p)nen € [0,1], € € R? and let f: R — R and g: R? — R? sat-
isfy for all 0 € {v € R4: (f is differentiable at v)} that

g(0) = (Vf)). (14.135)

Then we say that © is the momentum gradient descent process for the objective function
f with generalized gradient g, learning rates (Yn)nen, momentum decay factors (o, )nen,
and initial value & (we say that © is the momentum gradient descent process for the
objective function f with learning rates (7Vn)nen, momentum decay factors (o, )nen, and
initial value €) if and only if it holds that ©: Ny — R? is the function from Ny to RY
which satisfies that there exists m: Ny — R such that for all n € N it holds that

@0 = f, my = O, (14136)
m, = a,m, 1+ (1 —a,)g(0,_1), (14.137)
and 0, =06,_1—vm,. (14.138)

14.2.1 A representation of the momentum GD optimization
method

In (14.136)—(14.138) the momentum GD optimization method is formulated by means
of a one-step recursion. This one-step recursion can efficiently be exploited in an imple-
mentation. The following elementary lemma, Lemma 14.2.2 below, provides a suitable
full-history recursive representation for the momentum GD optimization method, which
enables us to develop a better intuition for the momentum GD optimization method.

Lemma 14.2.2 (A representation of the momentum GD optimization method). Let
d €N, (Vn)nen C (0,00), a € [0,1], £ € RY, let f: RY — R and g: R? — RY satisfy for
all 0 € {v € RY: (f is differentiable at v)} that

g9(0) = (V1)(0), (14.139)
and let ©: Ny — R? and m: Ny — R? satisfy for all n € N that
Q=¢  mp=0, 6,=06,;—7m,, (14.140)

and  m, =am, 1+ (1 —a)g(0,_1). (14.141)
Then

(i) it holds for all n € Ny that

m, = (1 —a) [i ozkg(@n_l_k)] (14.142)
and
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(ii) it holds for alln € N that

n—1

O, =0,_1— (1l —a) [Z " g(On_1_1)|.

k=0

(14.143)

Proof of Lemma 1/.2.2. We prove (14.142) by induction on n € Ny. For the base case
n = 0 observe that (14.140) ensures that my = (1 — «)0. This establishes (14.142) in the
base case n = 0. For the induction step observe that (14.141) assures that for all n € Ny

with »
m, = (1 — a) [Z akg(@n_l_k)] (14.144)

it holds that

m,; = amy, + ( a>g<®n)
n—1
[1—04 [Zakg n—1-k)
k=0

=(1-a) Za 9O )| + (1 —a)ag(0, o) (14.145)

+ (1 —)g(6n)

(n+1)—

=(1-a) Zakg(Gn—k) =(1-a) Zag (n+1)-1-k)

Induction thus establishes (14.142). The proof of Lemma 14.2.2 is thus complete. ]

14.2.2 Error analysis for the momentum GD optimization me-
thod in the case of quadratic objective functions

In this subsection we provide in Subsection 14.2.2.2 below an error analysis for the mo-
mentum GD optimization method in the case of quadratic objective functions (cf. Propo-
sition 14.2.7 in Subsection 14.2.2.2 for the precise statement). In this specific case we
also provide in Subsection 14.2.2.3 below a comparison of the convergence speeds of the
plain vanilla GD optimization method and the momentum GD optimization method. In
particular, we prove, roughly speeking, that the momentum GD optimization method
outperfoms the plain vanilla GD optimization method in the specific case of quadratic
objective functions; see Corollary 14.2.9 in Subsection 14.2.2.3 for the precise statement.
For this comparison between the plain vanilla GD optimization method and the momen-
tum GD optimization method we employ a refined error analysis of the plain vanilla
GD optimization method in the case of quadratic objective functions. This refined error
analysis is the subject of the next subsection (Subsection 14.2.2.1 below).

14.2.2.1 Error analysis for the GD optimization method in the case of quad-
ratic objective functions

Lemma 14.2.3 (Error analysis for the GD optimization method in the case of quadratic
objective functions). Let d € N, € € R?, ¥ = (¥91,0,...,0q) € RY, 5, K, A1, Ao, ..., \g €
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(0,00) satisfy k = min{Ay, Ao, ..., A} and K = max{A;,Xo,..., \g}, let f: R — R
satisfy for all 0 = (01,0,,...,0,) € R? that

d
=21 A6 — 192-|2] , (14.146)
=1

and let ©: Ny — R? satisfy for all n € N that

Oy =¢ and 0, =0,_1— K:Jm (V) (On_1). (14.147)

Then it holds for all n € Nqy that

100 = D12 < [552]"11E = 2. (14.148)

Proof of Lemma 1/.2.3. Throughout this proof let @, 0@ .. ©@: N, — R satisfy
for all n € Ny that ©,, = (@%1),@%2), ce @,(Id)). Note that (14.146) implies that for all
0= (01,0o,...,00) €R? ie{1,2,...,d} it holds that

Combining this and (14.147) ensures that for all n € N, i € {1,2,...,d} it holds that

O — 0, = ), — o (55)(©n-1) — Ui
=00, — v — 25 MO, — )] (14.150)
= (1- &5) 05, —v,).

Hence, we obtain that for all n € N it holds that

d
18, = V[I5 =D [0 — ;|
=1
- (11~ sl e, o]
(14.151)
< [oas{l = B 1 - 2] [ D0 —W]
= [masx{|1 = 2o 1 = B[] €0t — 918

Moreover, note that the fact that for all i € {1,2,...,d} it holds that A; > « implies that
for all i € {1,2,...,d} it holds that

T Sl @e = S s e 20 (14.152)

In addition, observe that the fact that for all i € {1,2,...,d} it holds that A; < K implies
that for all ¢ € {1,2,...,d} it holds that

2\ 2K _ K+k—2K _ _[K=k
L - (K4-x) 21— (K+x) —  (K+x) _[ ] <0. (14.153)
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This and (14.152) ensure that for all i € {1,2,...,d} it holds that

{1_ 2\

| < Kox (14.154)

— K+4+k"°

Combining this with (14.151) demonstrates that for all n € N it holds that

16, — 9|s < [max{u . %\}] 18,1 — D 11155
< [z 101 = V2
Induction therefore establishes that for all n € Ny it holds that
10 = 91> < [522]"100 — VIl = [£22]" 1€ — 92- (14.156)
The proof of Lemma 14.2.3 is thus complete. O]
Lemma 14.2.3 above establishes, roughly speaking, the convergence rate E—jr: (see

(14.148) above for the precise statement) for the GD optimization method in the case of
the objective function (14.146). The next result, Lemma 14.2.4 below, essentially proves
in the situation of Lemma 14.2.3 that this convergence rate cannot be improved by means
of a difference choice of the learning rate.

Lemma 14.2.4 (Lower bound for the convergence rate of gradient descent for quadratic
objective functions). Letd € N, & = (&,&,...,&), 0 = (U1,09,...,94) € RL, v, Kk, K, A,
Ay, g € (0,00) satisfy £ = min{A;, g, ..., g} and K = max{\, As,..., \g}, let
f: R — R satisfy for all = (01,0,...,0;) € R? that

f0) =3

d
> il - 191-\2] : (14.157)
=1

and let ©: Ny — R? satisfy for alln € N that
Then it holds for all n € Ny that

180 = llo > [max{yK = 1,1 = ys}]" [min{jes = ], &4 = 0ul}]
> [2]" [min{|& — 91, 16— Val}]-

Proof of Lemma 14.2./. Throughout this proof let O 0@ . 0@: N, — R satisfy
for all n € Ny that ©,, = (@,(11),@%2), . .,@%d)) and let +,Z € {1,2,...,d} satisfy \, = &
and Az = K. Observe that (14.157) implies that for all § = (6,,60,,...,04) € R, i €
{1,2,...,d} it holds that

(14.159)

(55)(8) = Xi(6; — ). (14.160)

Combining this with (14.158) implies that for all n € N, i € {1,2,...,d} it holds that

00 5, 60, ()0 -0
=0W, — 0, — (0%, — ;) (14.161)
= (1—7A)(0,), — )
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Induction hence proves that for all n € Ny, ¢ € {1,2,...,d} it holds that

O =0 = (L= 2)"(0) = 9) = (1= 30" (& — ). (14.162)
This shows that for all n € Ny it holds that
d d
100 =01 = D100 = 0if2 = 7 [[1 = yxil"lg - vif?]
i=1 i=1
d
> [min{|& —h[?,.. ., € — Val*}] [ZH - 7)\1'\2"] (14.163)
i=1
> [min{|¢ — N ﬁd\z}} [max{|1 — SOV e | - ”y)\d|2”}]
. 2 2n
= [min{[& — %], ..., [& — Val}] " [max{|1 —yAi|,.., [T =X}
Furthermore, note that
maX{H - ’7)‘1‘7 R ‘1 - 7)‘d‘} = maX{H - 7)‘1‘7 ’1 - ’YAL‘} (14 164)
= max{|1l — yK|, |1 — y&|} > max{yK — 1,1 — yk}. '
In addition, observe that for all & € (—o0, KLM] it holds that
max{ok — 1,1 —ak} > 1 —ar > 1 — [k = b=2e = 2 (14.165)
Moreover, note that for all o € [,Ciﬁ, 00) it holds that
max{ak — 1,1 —ax} > ak — 1> [Z]K - 1 = 20 - Kon (14.166)
Combining this, (14.164), and (14.165) proves that
max{|l —YA\|,..., |1 =y} > max{yL — 1,1 — vk} > E;: > 0. (14.167)
This and (14.163) demonstrate that for all n € Ny it holds that
1©n = |2
> [max{|l — yAi],..., |1 = A} [min{|& — Vi), ., [&a — Yal}] (14.168)
> [max{yK — 1,1 — 7/{}}"[min{|§1 — ), |&a — Val }] '
> [K2]" [min{16s = a6~ 0]}
The proof of Lemma 14.2.4 is thus complete. ]

14.2.2.2 Error analysis for the momentum GD optimization method in the
case of quadratic objective functions

In this subsection we provide in Proposition 14.2.7 below an error analysis for the mo-
mentum GD optimization method in the case of quadratic objective functions. Our
proof of Proposition 14.2.7 employs the two auxiliary results on quadratic matrices in
Lemma 14.2.5 and Lemma 14.2.6 below. Lemma 14.2.5 is a special case of the so-called
Gelfand spectral radius formula in the literature. The proof of Lemma 14.2.5 can, e.g.,
be found in Tropp [29] and Einsiedler & Ward [10, Theorem 11.6]. Lemma 14.2.6 estab-
lishes a formula for the determinants of quadratic block matrices (see (14.170) below for
the precise statement). Lemma 14.2.6 and its proof can, e.g., be found in Silvester |
Theorem 3].

)
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Lemma 14.2.5 (A special case of Gelfand’s spectral radius formula for real matrices).
Letde N, Ae R 7 ={\eC: (FveCN{0}: Av = \v)} and let ||-||: R? — [0, c0)
be a norm. Then

1/n

1n
Y (I < 1 Jl A"
P = lim sup sup
n—o0 veRI\ {0} [ v]] n—00 veRA\ {0} o] (14.169)
= max |\l
Ae.#U{0}

Lemma 14.2.6 (Determinants for block matrices). Let d € N, A, B,C, D € R*™? satisfy

CD = DC. Then
det (A B ) — det(AD — BC) (14.170)

¢ D

c R2dx2d

Proof of Lemma 14.2.6. Throughout this proof let D, € R%¢ 2 € R, satisfy for all
x € R that
D,=D—-zx]y (14.171)

(cf. Definition 2.2.9). Observe that the fact that for all x € R it holds that CD, = D,C
and the fact that for all X,Y, Z € R it holds that

det (%( }Z/> — det(X) det(Z) = det @( 2)

, Proposition 5.5.3 and Proposition 5.5.4]) imply that for all z € R

(14.172)

(cf., e.g., Petersen |

it holds that
A B\(D, 0Y\ (AD, — BC) B
det ((C Dm> (—C Id>) = det((cpx ~ D,C) Dm)

B (AD, - BC) B
= det( 0 D,

= det(AD, — BC) det(D,).

(14.173)

Moreover, note that the multiplicative property of the determinant (see, e.g., Petersen [24,
(1) in Proposition 5.5.2]) implies that for all z € R it holds that

A B\(D, 0\\ , (A B D, 0
(@ p) (% ) —o(e o) % )

B

A
= det (C’ Dm) det(D,) det(Iy) (14.174)
A B
= det (C’ Dm) det(D,).
Combining this and (14.173) demonstrates that for all x € R it holds that
A B
det (C D ) det(D,) = det(AD, — BC)det(D,). (14.175)
Hence, we obtain for all x € R that
A B
det c D) det(AD, — BC) ) det(D,) = 0. (14.176)
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This implies that for all € R with det(D,) # 0 it holds that

A B
det ( e Dx) — det(AD, — BC) = 0. (14.177)

Moreover, note that the fact that {z € R: det(D,) = 0} = {z € R: det(D — z1;) = 0}
is a finite set, the fact that the function

R 3z +— det (él g) —det(AD, — BC) € R (14.178)

is continuous and (14.177) ensure that for all x € R it holds that

A B

det (C’ Dx) —det(AD, — BC') = 0. (14.179)

Hence, we obtain for all x € R that

A B
det (C Dm) = det(AD, — BC). (14.180)
This establishes that
A B A B

det (C D) = det (C’ Do) = det(ADy — BC) = det(AD — BC). (14.181)
The proof of Lemma 14.2.6 is thus completed. O

We are now in the position to formulate and prove the promised error analysis for
the momentum GD optimization method in the case of quadratic objective functions; see
Proposition 14.2.7 below.

Proposition 14.2.7 (Error analysis for the momentum GD optimization method in
the case of quadratic objective functions). Let d € N, £ € R, O = (91,05...,94) € RY,
Ry I, A, Ay ooy Ag € (0, 00) satisfy k = min{ Ay, A, ..., A\g} and K = max{\i, Ag, ..., \q},
let f: RY — R satisfy for all 0 = (01,0,,...,04) € R? that

d
f0) =3 [Z Ail0; — 9|, (14.182)
i=1
and let ©: Ng U {—1} — R? satisfy for alln € N that ©_; = Oy = ¢ and
2
@n = @n—l - m (vf)<®n—1) + [%;ﬁ} (®n—1 - @n—2)- (14183)

Then
(i) it holds that O|y,: Ng — R? is the momentum gradient descent process for the

objective function f with learning rates N > n —» \/;ICT{ € [0,00), momentum decay

factors N> n — [gg—ﬂf € [0, 1], and initial value & (cf. Definition 14.2.1) and

(i1) for every e € (0,00) there exists C € (0,00) such that for all n € Ny it holds that

16, — |, < C[%;g +g] . (14.184)
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Proof of Proposition 1/.2.7. Throughout this proof let e € (0,00), let ||-||: R?*2d —
0, 00) satisfy for all B € R?¥*2? that
Bv
1= sup Il (11185)
verza\{o} L [Ivlly

let 1,03 ..., 0@: Ny — R satisfy for all n € Ny that 0, = (07,02, ..., 0", let
m: Ny — R? satisfy for all n € Ny that

m, = —VKk(0, —60,_1), (14.186)
let p € (0,00), @ € [0,1) be given by

_ 4 _ [vE-v&]®
0=t and  a= [mwg} , (14.187)
let M € R™? be the diagonal (d x d)-matrix given by
(1 — Q)\l + CY) 0
M= , (14.188)
0 (1 — Q)\d + Oé)
let A € R?¥*24 he the ((2d) x (2d))-matrix given by
A= (M (malay (14.189)
Iy 0

and let . C C be the set given by
S ={pueC: (3veC*™{0}: Av =)} ={u € C: det(A — ply) =0}  (14.190)
(cf. Definition 2.2.9). Observe that (14.183), (14.186), and the fact that
(VR R (VR
= H(VE + Vi + VE = VR)(VE + Vi — [VE = Vi) (14.191)
= Hevh)eve)| = Vi

assure that for all n € N it holds that

m,

= —VKK(©, — 0,_1)

= —VKk (@n1 - [m} (V) (Onp-1) + [§;£}2<@n1 — 0, 2) — @nl)

= V([ (@) - [ (0 - 000))

VK+VE)2=(VK—v/E)?
= WA | s | (V)(©0)

_ Kﬁ[%;ﬁ] Q(G)n,l —0,_9)

i) 0@ + ][RR~ 000)

oo

VK+Vk
(14.192)
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Moreover, note that (14.186) implies that for all n € Ny it holds that
@n = @n—l + (@n - @n—l)
—0, - ﬁ([—\/m] (O, — @n_l)) =0, — m,.

In addition, observe that the assumption that ©_; = ©y = £ and (14.186) ensure that

(14.193)

my = —VKk (09— 0_;) =0. (14.194)

Combining this and the assumption that Oy = ¢ with (14.192) and (14.193) proves
item (i). It thus remains to prove item (ii). For this observe that (14.182) implies that
for all @ = (01,0,...,04) € RY i€ {1,2,...,d} it holds that

(g_efi)(@) = Ni(0; — ;). (14.195)
This, (14.183), and (14.187) imply that for all n € N, ¢ € {1,2,...,d} it holds that
=0, — o(5)(©n- >+a@ —0\),) — ¥
) - Z, (14.196)
= (0,1 — ) - Q)‘z(@ ( ne1 — Vi) = (0525 — 192))
=(1- @x+M@wam—a@$2 7).
Combining this with (14.188) demonstrates that for all n € N it holds that
150, —19)=M(O,_1 —09) —a(6,_, — V)
Op_1— Y
= (M (—aly) <@n_2 _ ﬁ) : (14.197)
cRd%x2d
c R2d
This and (14.189) assure that for all n € N it holds that
0, — v M (—aly)\ (On1 —7 O, — 1
2d n _ d n—1 _ n—1
R 9(&”—ﬂ)_(h ' )Q%2_§)_AQ%2_ﬁ) (14.198)
Induction hence proves that for all n € Ny it holds that
0, —1v Oy — 0 =1
2d n AN 0 AN
P (00 (S (D
This, in turn, implies that for all n € Ny it holds that
n@n—mu<\ﬂ@ = O3+ 1001 - 9
@ —19
n 1=
e,
) (14.200)

< [1A™|

(£70)
é-v)l,
= A"/ lle = 912+ llg = 92
— 4" |V2llE — 9l
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Next note that Lemma 14.2.5 demonstrates that

1imsup<UHA"HHI/") - nggf([uwuul/") — max |y (14.201)

00 pnesU{0}

This implies that there exists m € N such that for all n € Ny N [m, 00) it holds that

1/n
A" < . 14.202
(A" < e+ mas | (14.202)

Therefore, we obtain for all n € Ny N [m, 0o) that

A" <[ r. 14.203
[ A™]|] < 6+H€%§0}|u| ( )

Furthermore, note that for all n € Ny N [0,m) it holds that

A"l

= [5 + max \,u\] n[ LA™ }
pe.#U{0} (e+maxye 0oy D)™ (14.204)
< [E + max |M|r [max({( LA :keNyN [O,M)} U {1}”

neSJ{0} e+max, e o (o} |1)*

Combining this and (14.203) proves that for all n € Ny it holds that
A

" Pl . (
= [8 * ME%%J}{CO}“L@ [max({ (e+max,, e sou oy D"~ FeNon [O,m)} - {1}”

14.205)

Next observe that Lemma 14.2.6, (14.189), and the fact that for all 4 € C it holds that
Li(—ply) = —pls = (—ply) I ensure that for all p € C it holds that

det(A — pulyy) = det ((M ;d'u I1) (:z %Z) )

14.206
— det (M — 1) (—pla) — (—a 1) 1y) (14.206)
= det((M — pl)(—ply) + aly).
This and (14.188) demonstrate that for all 4 € C it holds that
det(A — plag)
(1= o\ +a—p)(—p) +a) 0
= det
0 (1= oha+a = p)(—p) + a)

d (14.207)
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Moreover, note that for all p € C, i € {1,2,...,d} it holds that
pr—(1—o\i+a)u+a
,u 2#[(1 g)\l+oé)j| n [(1—g/2\i+a)r+a_ |:(1—g;\7;+04):|2
[ 19’\+ar+04——[ — o\ +af
= [u—%} —i[[l—g)\i—koz]z—éla].

Hence, we obtain that for all : € {1,2,...,d} it holds that

(14.208)

{peC:p’—(1—oN+a)p+a=0}

:{,uG(C: [u—%r:i[[l—g&—kar—lla]}

_ {(1—g>\i+o¢)+ [1—oAi+a)?—da  (1—pri+a)—\/[1—oXi+a)?—4a } (14209)
- 2 ’ 2 ’

= U {%{1—@)\i+a+3\/(1—Q)\i+a)2—4oz}}.

se{-1,1}
Combining this, (14.190), and (14.207) demonstrates that
S ={peC: det(A — puly) =0}

:{MEC: H(MQ_(l—Q)\,-—l—a)u%—a):O]}

i=1
d

:U{MEC: uz—(l—g)\i+a)u+oz20}
i=1

:CJ U {%[1—Q)\i—l—a—i—S\/(l—Q)\i—l—oz)2—4a]}.

i=1 se{—1,1}

(14.210)

Moreover, observe that the fact that for all ¢ € {1,2,...,d} it holds that \; > x and
(14.187) ensure that for all ¢ € {1,2,...,d} it holds that

l—oN+a<l—prt+a=1 [(f+f) AR/
_ (YRRt (VE-VR)? _ K2VRyrtn—antK—2VEy/Ftn (14.211)
_ s (VR /)2 '
- e WRRUIE _ [YEE] 5 g
I R S R/ e

In addition, note that the fact that for all i« € {1,2,...,d} it holds that \; < K and
(14.187) assure that for all ¢ € {1,2,...,d} it holds that

4 (VK—/£)?
[(f+f> ]’C+ NENGE

(VE+VR)2 4K+ (VEK=VR)? _ K4+2VE\/R+r—4K+K—2VKr+r

l—oNi+a>1—pK+a=1-—

(VE+VR)? (VE+VE)?
14.212
_ K42 _ 2[ ]:_2[(f f)(fﬂ/%)] ( )
(VE+/R)? VK +f )2 (VE+V/k)?
_o| VK—E
2[f+f} <0
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Combining this and (14.211) implies that for all i € {1,2,...,d} it holds that

2 vE-vi\1? _ 4[vE=v&]? _
(1— o\ +a)? < [2(\/@\@)] —4[m+\/g} — 4a. (14.213)

This and (14.210) demonstrate that

ergﬂ%}lul = max|u|

= max max
i€{1,2,....d} se{—1,1}

1 2
5{1—@)\i+a+5\/(1—g)\i+a) —40(}

) (14.214)
"2 Le{rlnzaf(. 4y selo11) [1 —ohtatsy (=D —[1- okt a]ﬂ H
1 2] 72
= |ty s [1- v etV AT
Combining this with (14.213) proves that
max ||
pesU{0}
2 N
=11 max max(l— i +al” 4 [sv/4da — (1 — )\i—i-oz?)]
? Le{m ..... ay se{-11} 1-e [+ lavia =0 1)/ | (14.215)
2
=3 o (1= oo = =g o)
= 4a)" = Va.
Combining (14.200) and (14.205) hence ensures that for all n € Ny it holds that
165 = 9]l
< V21l€ = 9,147
< Valle= Ol e+l
LA (14.216)
. [max<{ v IS R: ke NoNn |0, m)} U {1})]
1/97M k
= V2 € = I, [e + 0" |max ({ ke € Ri ke Non [0,m) } U{1})]
—vr]" AF
— V26— 19|\2[g+ g&} [max<{(gﬂ v €R:keNo N, )} U {1})}
This establishes item (ii). The proof of Proposition 14.2.7 it thus completed. O

14.2.2.3 Comparison of the convergence speeds of the GD optimization me-
thod with and without classical momentum

In this subsection we provide in Corollary 14.2.9 below a comparison between the con-
vergence speeds of the plain vanilla GD optimization method and the momentum GD
optimization method. Our proof of Corollary 14.2.9 employs the auxiliary and elemen-
tary estimate in Lemma 14.2.8 below, the refined error analysis for the plain vanilla GD
optimization in Subsection 14.2.2.1 above (see Lemma 14.2.3 and Lemma 14.2.4 in Sub-
section 14.2.2.1), as well as the error analysis for the momentum GD optimization method
in Subsection 14.2.2.2 above (see Proposition 14.2.7 in Subsection 14.2.2.2).
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Lemma 14.2.8 (Comparison of the convergence rates of the GD optimization method
and the momentum GD optimization method). Let K,k € (0,00) satisfy k < K. Then

\/E—\/E<IC—&
VK+r K+r

Proof of Lemma 1/.2.8. Note that the fact that K — x > 0 < 2¢/K/k ensures that

VE—Vi (E-yRWE+VR) __ K-x _ _K-n
VK +/k (VK + k)2 K+2VKyrk+r K+r

The proof of Lemma 14.2.8 it thus completed. n

(14.217)

(14.218)

Corollary 14.2.9 (Convergence rate comparisons between the GD optimization method
and the momentum GD optimization method). Let d € N, k, I, A\, A, ..., A\g € (0,00),

é-: (517527 cee 7€d>; 19 - (1917792, RN ,19(1) € Rd S(ltiSfy
k=min{A;, Ay, ..., A\g} < max{A;, \a,..., \g} =K, (14.219)

let f: RY — R satisfy for all 0 = (0,,0,,...,0;) € R? that

d
f0) =3 [Z Ail0; — 191‘\2] ; (14.220)
i=1
let ©7: Ny — Re, v € (0,00), satisfy for all v € (0,00), n € N that
Oy=¢ and O] =0, —(V)(O)_,), (14.221)

and let M: Ng U {—=1} — R? satisfy for alln € N that M_; = My = & and

2
Mo = Mot = s (VHMat) + |02 ] (Mot = M) (14222)

Then

(1) there exist v,C € (0,00) such that for all n € Ny it holds that

167 — 92 < C[&=]", (14.223)

(i1) it holds for all v € (0,00),n € Ny that

107 = Illa > [min{|& — D], |& — dal}] [52]" (14.224)

(iii) for every e € (0,00) there exists C € (0,00) such that for all n € Ny it holds that

1M, — Ds < O[%;ﬁ + 5] , (14.225)

and

) VK—r —r
(iv) it holds that \/E+$ < §+n.
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Proof of Corollary 14.2.9. First, note that Lemma 14.2.3 proves item (i). Next observe
that Lemma 14.2.4 establishes item (ii). In addition, note that Proposition 14.2.7 proves
item (iii). Finally, observe that Lemma 14.2.8 establishes item (iv). The proof of Corol-
lary 14.2.9 is thus complete. [l

Corollary 14.2.9 above, roughly speaking, shows in the case of quadratic objective
functions that the momentum GD optimization method in (14.222) outperforms the clas-
sical plain vanilla GD optimization method (and, in particular, the classical plain vanilla
GD optimization method in (14.147) in Lemma 14.2.3 above) provided that the param-
eters A\, Ag,..., A\ € (0,00) in the objective function in (14.220) satisfy the assumption
that min{\,..., \¢} < max{\;,...,A\s}. The next elementary result, Lemma 14.2.10
below, demonstrates that the momentum GD optimization method in (14.222) and the
plain vanilla GD optimization method in (14.147) in Lemma 14.2.3 above coincide in the
case where min{\, ..., \g} = max{\;,..., \¢}.

Lemma 14.2.10 (Concurrence of the GD optimization method and the momentum GD
optimization method). Let d € N, £,9 € R?, a € (0,00), let f: RT — R satisfy for all
0 € R? that

F0) =516 =013, (14.226)
let ©: Ny — R? satisfy for all n € N that
Q=& and 0, =0,1— iy (V)(On), (14.227)

and let M: Ng U {—=1} — R? satisfy for alln € N that M_, = My = £ and

2
M= Moot = (s (VMo + [ VB8] (Mot = Maa). (14.228)
Then

(i) it holds that M|y,: Ng — R is the momentum gradient descent process for the
objective function f with learning rates N > n — 1/a € [0,00), momentum decay
factors N> n— 0 € [0,1], and initial value & (cf. Definition 14.2.1),

(i) it holds for all n € Ny that M,, = ©,,, and
(i) it holds for all n € N that ©,, =9 = M,,.
Proof of Lemma 1/.2.10. First, note that (14.228) implies that for all n € N it holds that
Moy =Mooy = Grap (V) (Mo1) = Mooy = (V) (M), (14.229)

Combining this with the assumption that My = ¢ establishes item (i). Next note that
(14.227) ensures that for all n € N it holds that

O, = 60,1 — L(Vf)(On). (14.230)

Combining this with (14.229) and the assumption that ©g = £ = M, proves item (ii).
Furthermore, observe that Lemma 13.2.4 assures that for all § € R it holds that

(V1) (0) = 2(2(0 —0)) = a(0 — ). (14.231)
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Next we claim that for all n € N it holds that
0, =9. (14.232)

We now prove (14.232) by induction on n € N. For the base case n = 1 note that (14.230)
and (14.231) imply that

01 =00 — 1 (Vf)(On) =¢ - L(a(§ —9)) =~ (§—9) =9 (14.233)

(&7

This establishes (14.232) in the base case n = 1. For the induction step observe that
(14.230) and (14.231) assure that for all n € N with ©,, = 9 it holds that

Opi1 =06, — L(Vf)(6,) =9 - L(a(@ - ) = 9. (14.234)
Induction thus proves (14.232). Combining (14.232) and item (ii) establishes item (iii).

The proof of Lemma 14.2.10 is thus complete. O]

14.2.3 Comparison of the GD optimization method with and
without momentum in the case of a numerical example

In this subsection we provide a numerical comparison of the plain vanilla GD optimization
method and the momentum GD optimization method in the case of the specific quadratic
optimization problem in (14.235)—(14.236) below; see Illustration 14.2.11 below, PYTHON
code 14.1, and Figure 14.1 below.

Illustration 14.2.11. Let K =10, s = 1, ¥ = (91,9,) € R?, £ = (&1, &) € R? satisfy

9 = (g;) = G) and €= (Z) = (g) (14.235)

let f: R? — R satisfy for all 0 = (01,0,) € R? that
f(0) = (£)161 — >+ (5)162 — Us?, (14.236)
let ©: Ny — R? satisfy for alln € N that Oy = £ and

— 2 — _ 2
@n - @nfl (;Cj) (Vf) (@nfl) @nfl 11 (vf)<@n71) (14237)
= @nfl —0.18 (Vf)(@nfl) ~ @nfl —0.18 (Vf)(@nfﬁ,

and let M,m: Ny — R? satisfy for all n € N that My = &, mg = 0, M,, = M, _; —
0.3m,, and

m, = 0.5m,_; + (1 — 0.5) (V) (Mn_1)

= 0.5 (m,, 1 + (Vf)(My1)). (14.238)

Then
(i) it holds for all 0 = (61,0,) € R? that

(V) = (Zi@g:%) = (109(192__11)>, (14.239)
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(i1) it holds that

5
o)
O1 =0 — Z(V[)(6y) = 60y — 0.18(V f)(6y)

5 5-1 5-0.18 -4
B (3) - 018 10(3—1)) B (3—0.18-10~2)

Oy &~ 01 — 0.18(Vf)(0;) = ( 286) 0.18 (10?—2(?6__1 1))

0
- 4.28 — 018 328 4.10—-0.18-2—0.18 - 0.28
- \—0.6—-0.18 - —06+18-1.6

_ (410—-0.36 —2- 9 4. 7 1074\  [3.74—9-56-10"*
B —06+16-1.6+0.2-1.6 - \—0.6 +2.56+0.32

3.74 — 504 - 1074 3.6896 3.69
2.88 -0.6 2.28 228 )’

3.69
O3 ~ Oy — 0.18(V f)(02) ~ ( )_018(10228—1))

[ 369-018-269 \  (3.69—0.2-2.69+0.02-2.69
2.28—0.18-10-1.28) — 228 —1.8-1.28

[ 3.69—-0.538+0.0538 \ 3.7438 — 0.538
- \228-1.28—-08-1.28) \1-128+0.2-1.28

B 3.2058 (32058 _ [ 3.21
—00.256 —0.280/) — \—0.024) ~ \ —0.02)°

and

(#1) it holds that

m; = 0.5 (mg + (Vf)(Mo)) =
(050 102) = (
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My = Mg — 0.3m, — (g) 03 (120> _ (464)’

my = 0.5 (my + (Vf)(M1)) = 0.5 ((120> * (13(%: 11)))
-(300) = ()
Mo = Mo — 05 (4(.)4) 03 (2(.)7) _ (4.4 —00.81) _ (3.6’)9
m3 = 0.5 (my + (Vf)(M,)) = 0.5 ((267) + (13(5?(?:11)))

- (o) - ()

_ (25+0.145\ _ [2.645\ _ (2.65
- -5 =5 )T\ =5 )

Ms =My —03m; ~ (3 (‘;’9> ~ 03 (2;655)

359 0795 3— 0205 2.795\ _ (2.8
N 1.5 ) 7 \15)’

)

(14.246)

(14.247)

(14.248)

(14.249)

(14.250)

# Example for GD and momentum GD

import numpy as np
import matplotlib.pyplot as plt

# Number of steps for the schemes
N=28

# Problem setting
2
[1., 10.]

vartheta = np.array ([1., 1.])
xi = np.array ([5., 3.])

def f(x, y):
result = K[0] / 2. % np.abs(x — vartheta[0]) =% 2 \
K[1] / 2. = np.abs(y — vartheta[l]) *x 2
return result
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Chapter 14. Deterministic GD type optimization methods

def nabla_f(x):
return K * (x — vartheta)

# Coefficients for GD
gamma GD = 2 /(K[0] + K[1])

# Coefficients for momentum
gamma_momentum = 0.3
alpha = 0.5

# Placeholder for processes
Theta = np.zeros ((N+1, d))
M = np.zeros ((N+1, d))
m = np.zeros ((N+1, d))

Theta [0] = xi
M[0] = xi
# Perform gradient descent

for i in range(N):
Theta[i+1] = Theta[i] — gamma GD % nabla_f(Theta[i])

# Perform momentum GD
for i in range(N):

m[i+1] = alpha * m[i] + (1 — alpha) % nabla_f(M[i])
M[i+1] =M[i] — gamma momentum % m[i+1]

##H+ Plot #4+

plt.figure ()

# Plot the gradient descent process
plt.plot (Theta[:, 0], Theta[:, 1],
label = , color = ,
linestyle = , marker = )

# Plot the momentum gradient descent process
plt.plot M[:, 0], M[:, 1],
label = , color = , marker = )

# Target value
plt.scatter (vartheta [0],vartheta[l],
label = , color = , marker = )
# Plot contour lines of f
x = np.linspace(—3., 7., 100)
y = np.linspace(—2., 4., 100)
X, Y = np.meshgrid(x, y)
Z

= (X, Y)
cp = plt.contour(X, Y, Z, colors= ,
levels = [0.5,2,4,8,16],
linestyles=":")

plt.legend ()
plt.savefig( )
plt .show ()

Source code 14.1: PYTHON code for Figure 14.1
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Figure 14.1: Result of a call of PYTHON code 14.1

14.3 The gradient descent optimization method with
Nesterov momentum

Definition 14.3.1 (Nesterov accelerated gradient descent optimization method). Let
d € N, (Vn)nen C [0,00), (n)nen € [0,1], € € R? and let f: R — R and g: R* — R?
satisfy for all 0 € {v € R: (f is differentiable at v)} that

g9(8) = (V1)(0). (14.251)

Then we say that © is the Nesterov accelerated gradient descent process for the objective
function f with generalized gradient g, learning rates (Vn)nen, momentum decay factors
(an)nen, and initial value § (we say that © is the Nesterov accelerated gradient descent
process for the objective function f with learning rates (Y, )nen, momentum decay factors
(Ctn)nen, and initial value &) if and only if it holds that ©: Ny — R? is the function from
Ny to R? which satisfies that there exists a function m: Ny — R? such that for alln € N
it holds that

O =¢  my=0, (14.252)
m, = a,m, 1+ (1 —a,)g9(0,_ 1 — a,m, 1), (14.253)
and 0, =06,_1—v.m,. (14.254)

14.4 The adaptive gradient descent optimization method
(Adagrad optimization method)

Definition 14.4.1 (Adagrad optimization method). Let d € N, (7,)neny C [0,00), € €
(0,00), E€RY and let f: RY = R and g = (g1,...,94): R? — R? satisfy for all 6 € {v €
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R2: (f is differentiable at v)} that

g(0) = (V[)(0). (14.255)

Then we say that © is the Adagrad gradient descent process for the objective function f
with generalized gradient g, learning rates (Vn)nen, reqularizing factor €, and initial value
¢ (we say that © is the Adagrad gradient descent process for the objective function f with
learning rates (Y, )nen, regularizing factor e, and initial value &) if and only if it holds
that © = (OW, ..., 0@D): Ny — R? is the function from Ny to R? which satisfies for all
neN,ie{l,2,...,d} that

. . n—1 —1/2
O=¢  and OV =09 {e + kz ]gi((%k)ﬂ 9i(©n_1). (14.256)
=0

14.5 The root mean square propagation gradient de-
scent optimization method (RMSprop gradient
descent optimization method)

Definition 14.5.1 (RMSprop gradient descent optimization method). Let d € N, (7, )nen C
[0,00), (Bp)nen C [0,1], € € (0,00), £ € R and let f: R - R and g = (g1,...,9q4): R —
R? satisfy for all § € {v € R?: (f is differentiable at v)} that

9(6) = (VF)(0). (14.257)

Then we say that © s the RMSprop gradient descent process for the objective function f
with generalized gradient g, learning rates (7, )nen, second moment decay factors (5, )nen,
reqularizing factor €, and initial value & (we say that © is the RMSprop gradient descent
process for the objective function f with learning rates (Vn)nen, second moment decay
factors (Bn)nen, reqularizing factor €, and initial value &) if and only if it holds that
0 = (0W,...,0W): Ny — R? is the function from Ny to R? which satisfies that there
exists a function M = (MW, ... M@): Ny — R such that for alln € N, i € {1,2,...,d}
it holds that

O =¢  My=0, MY =g8M" +(1-8)gO. 1) (14.258)
and O = G)S)_l — Y [e+ I\\/JIS)} A 9i(On-1). (14.259)

14.6 The Adadelta gradient descent optimization method

Definition 14.6.1 (Adadelta gradient descent optimization method). Letd € N, (3,,)nen,
(6n)nen C [0,1], € € (0,00), £ € R and let f: R - R and g = (g1,...,9q4): R? — R?
satisfy for all 0 € {v € R: (f is differentiable at v)} that

9(0) = (V)(0). (14.260)

Then we say that © 1is the Adadelta gradient descent process for the objective function
[ with generalized gradient g, second moment decay factors (Pp)nen, delta decay factors
(0n)nen, Teqularizing factor €, and initial value £ (we say that © is the Adadelta gradient
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descent process for the objective function f with second moment decay factors (5, )nen,
delta decay factors (0,)nen, reqularizing factor e, and initial value &) if and only if it
holds that © = (W, .. 0@W): Ny — R? is the function from Ny to R? which satisfies
that there exist functions Ml = (MM, .. M®) A = (AW AD): Ny — R? such that
for allm € N, i € {1,2,...,d} it holds that

Oy =&, M = 0, Ay =0, (14.261)
MY = B, M+ (1= 8,)l9:(On-1)I, (14.262)
. , INQIREE
o =6l - || ge,) (14.263)
e+ M,
and  AD =6, AV +(1-5,)09 -0 2 (14.264)

14.7 The adaptive moment estimation gradient de-
scent optimization method (Adam gradient de-
scent optimization method)

Definition 14.7.1 (Adam gradient descent optimization method). Let d € N, (7, )nen C
[0,00), (n)nen, (Bn)nen € [0,1), £ € R? and let f: R — R and g = (g1,...,94): R? —
R? satisfy for all § € {v € R: (f is differentiable at v)} that

9(0) = (V)(0). (14.265)

Then we say that © is the Adam gradient descent process for the objective function f with
generalized gradient g, learning rates (7n)nen, momentum decay factors (o, )nen, second
moment decay factors (Bn)nen, and initial value & (we say that © is the Adam gradient
descent process for the objective function f with learning rates (Vn)nen, momentum decay
factors (o, )nen, second moment decay factors (Bn)nen, and initial value &) if and only if
it holds that © = (O, ... 0@W): Ny — R? is the function from Ny to R which satisfies
that there exist functions m = (m® ... m@®) M = (M® ... MD): Ny — R? such
that for alln € N, i € {1,2,...,d} it holds that

@0 = g, mgy = O, Mg = 0, (14266)

m, =a,m, 1+ (1—a,)g(©,1), (14.267)

MY = 8, M| + (1= B,)]g:(On1) I, (14.268)

i o= o 14.269
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Chapter 15

Optimization through gradient
descent processes

15.1 The deterministic gradient descent optimization
method

[0,00), £ € R? and let f: RY — R and g: RY — R? satisfy for all 0 € {v € R4: (f
is differentiable at v)} that

Definition 15.1.1 (Gradient descent optimization method). Let d € N, (7,)nen C

9(0) = (V.)(0). (15.1)
Then we say that © s the gradient descent process for the objective function f with
generalized gradient g, learning rates (Yn)nen, and initial value & (we say that © is the
gradient descent process for the objective function f with learning rates (Vn)nen and initial
value &) if and only if it holds that ©: Ny — R? is the function from Ny to R? which
satisfies for all n € N that

@0 = 5 and @n = @n—l — an(@n—1)~ (152)

15.2 The stochastic gradient descent optimization method

Definition 15.2.1 (Stochastic gradient descent optimization method). Letd € N, (v,,)nen C
[0,00), (Jn)nen C N, let (2, F,P) be a probability space, let (S,S) be a measurable space,
let £:Q — R and X,,;: Q — S, j € {1,2,...,J,}, n € N, be random variables, and
let F'= (F(0,7)))erixs: R? x S = R and G: R? x S — R? satisfy for all x € S,

0 € {veR: F(-,x) is differentiable at v} that

G(0,2) = (VoF)(0, ). (15.3)

Then we say that © is the stochastic gradient descent process on ((2, F,P), (S,S)) for the
loss function F' with generalized gradient G, learning rates (7Vn)nen, batch sizes (Jp)nen,
initial value &, and data (X, ;)je(1,2,. . J.}nen (we say that © is the stochastic gradient
descent process for the loss function F with learning rates (Vn)nen, batch sizes (Jp,)nen,
initial value &, and data (X ;)je(1,2,...0.}.nen) if and only if it holds that ©: Ny x 0 — R?
is the function from Ny x 0 to R? which satisfies for all n € N that

J,
1 n
@0 = f and @n = @n—l — Tn [J_n El G<@n—17Xn,j) . (154)
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Chapter 16

Additional material

16.1 Compositions of ANNs and affine linear trans-
formations

Corollary 16.1.1. Let ® € N (¢f. Definition 2.2.1). Then
(i) it holds for all A € N with L(A) =1 and Z(A) = O(®P) that
P(Aed) < [max{ ,%}]P(@) (16.1)

and

(i1) it holds for all A € N with L(A) =1 and Z(P) = O(A) that

P(®eA) < [max{l Z(A)+1 }]P(cb) (16.2)

) (D) +1

(cf. Definition 2.2.5).

Proof of Corollary 16.1.1. Throughout this prooflet L € N, lg,l1,...,l, € N, A;, Ay € N
satisfy E(Al) = £(A2) = 17 I(Al) = O(@), I(@) = O(A2)7 and D(q)) = (lo,ll, ce ,lL>.
Observe that item (iv) in Proposition 2.2.7, the fact that O(®) = [, the fact that
Z(®) = ly, and the fact that for all k& € {1,2} it holds that D(Ay) = (Z(Ax), O(Ag))
ensure that

(
- -Lizl L (L1 + 1)} + [ngl)} Ip(lp—1+1)

< :max{l, Og‘jl) H [Lz_:l L (L1 + 1)} + [max{l, ngl) }]ZL(ZL—l +1)
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and

P(DeAy) = [i_ Ly (L1 + 1)} + 1 [Z(Ag) + 1]
_ i L (L1 + 1)— + [ ,Aj)fl}zl(zw 1)
-n=2 - (16.4)

- ST L
< _max{l, %} {Z (L1 + 1)] + [max{l, %H Li(lo+1)

=[x 2] [ 5ttt + )] = [man{1. B2} [ (@),

This establishes items (i)—(ii). The proof of Corollary 16.1.1 is thus complete. O

16.2 Powers and extensions of ANNs

Definition 16.2.1 (Extension of ANNs). Let L € N, W € N satisfy Z(V) = O(V). Then
we denote by Epw: {® € N: (L(P) < L and O(P) = Z(¥))} — N the function which
satisfies for all ® € N with L(®) < L and O(®) = Z(V) that

Epw(®) = (UL ED)) ¢ @ (16.5)
(cf. Definitions 2.2.1, 2.2.5, and 2.2.10).

Lemma 16.2.2. Let d,i € N, ¥ € N satisfy that D(V) = (d,i,d) (cf. Definition 2.2.1).
Then

i) it holds for all n € Ny that L(¥*") =n + 1, D(¥*") € N**2 and
(i) ;

(d,d) :n =20

16.6
(d,i,i,....i,d) :neN (16.6)

D(*") = {

and
(it) it holds for all ® € N, L € NN [L(®), 00) with O(®) = d that L(Epw(P)) = L
(cf. Definitions 2.2.10 and 16.2.1).

Proof of Lemma 16.2.2. Throughout this proof let & € N satisfy O(®) = d. We claim
that for all n € Ny it holds that

(d,d) :n=20

16.7
(d,i,i,...,i,d) :neN. (16.7)

LOU")=n+1 and N'"23D(U") = {

We now prove (16.7) by induction on n € Ny. Note that the fact that U0 = (I4,0) €
R4 x RY (cf. Definition 2.2.9) establishes (16.7) in the base case n = 0. For the induction
step assume that there exists n € Ny such that

(d,d) :n=20

LT =n+1 d N2 5 D(P*") =
(0™) =n o (™) {(d,i,i,...,i,d) ‘neN.

DISSEMINATION PROHIBITED. JULY 29, 2021 258



Chapter 16. Additional material

Observe that Lemma 2.2.4, (2.109), items (i)-(ii) in Proposition 2.2.7, (16.8), and the
assumption that D(V) = (d, i, d) imply that

LOUHD) = L(T e (T*) =L(V)+ LT —1=2+(n+1)—1=(n+1)+1
and DY) = D(V o (U*")) = (d,i,i,...,i,d) € N*+3,
(16.9)

Induction thus proves (16.7). Next note that (16.7) establishes item (i). In addition,
observe that item (ii) in Proposition 2.2.7, item (i), and (16.5) ensure that for all L €
NN [L(P),o00) it holds that

L(ELu(®)) = L{(TE ) 0 §) = £L(WEE) + £(D) —

16.10
=L-L(P)+1)+L(P)—-1=L. ( )
This establishes item (ii). The proof of Lemma 16.2.2 is thus complete. ]

Lemma 16.2.3. Let a € C(R,R), I € N satisfy for all z € R*D that Z(I) = O(I) and
(Ra(D))(z) = x (c¢f. Definitions 2.2.1 and 2.2.3). Then

(i) it holds for all n € Ny, x € RT® that
R.(I") € C(RTD RIDY  and (R I™)(z) =z (16.11)
and
(i) it holds for all ® € N, L € NN [L(®),00), x € RE®) with O(®) = Z(I) that
Ra(E11(®)) € CRF® RO and  (Ru(E1(®)))(2) = (Ra(®))(z) (16.12)

(cf. Definitions 2.2.10 and 16.2.1).

Proof of Lemma 16.2.3. Throughout this proof let ® € N, L,d € N satisfy L(®) < L
and Z(I) = O(®) = d. We claim that for all n € Ny it holds that

Ro(I*") € C(RL,RY)  and  VaeRY: (R, (I)(z) = . (16.13)

We now prove (16.13) by induction on n € Nj. Note that (2.109) and the fact that
O(I) = d demonstrate that R,(I*°) € C(R% RY) and Vx € R?: (R,(I*°))(z) = x. This
establishes (16.13) in the base case n = 0. For the induction step observe that for all
n € Ny with R,(I*") € C(R4,R?) and Vo € R?: (R,(I*"))(x) = x it holds that

R, (I*" ) = R, (T e (I°)) = (Ro(I)) o (Ro(I*")) € C(RY, RY) (16.14)
and
Vo e R (Ro(I)) (@) = ([Ra(M] o [R (H'“)D(z) (16.15)
= (Ra(D) ((Ra(I")) (z)) = ) =w.

Induction thus proves (16.13). Next observe that (16.13) establishes item (i). Moreover,
note that (16.5), item (v) in Proposition 2.2.7, item (i), and the fact that Z(I) = O(®)
ensure that

Ra(ELu(®)) = Ra (I 4)) 0 @)

€ O(RI@),RO(H)) — C(RI(@)’RI(H)> _ O(RI(Q)’R()(@)) (16.16)
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and
Vo e RT®: (R, (Epi(D)))(2) = (Ra(I"EE®N)) (R (®))(z)) (16.17)
= (Ra(®))().
This establishes item (ii). The proof of Lemma 16.2.3 is thus complete. O

Lemma 16.2.4. Let d,i,L,£ € N, lyp,l1,...,lp-1 € N, & ¥ € N satisfy £ > L,
D(®) = (lo,l1,...,lp—1,d) and D(V) = (d,i,d) (cf. Definition 2.2.1). Then it holds
that D(E¢w(®)) € N*1 and

(lo,ll,...,lLfl,d) L=1L

16.18
(l(],ll,...,lL_l,i,i,...,i,d) L8> 1L ( )

D(Eew(®)) = {

(cf. Definition 16.2.1).

Proof of Lemma 16.2.. Observe that item (i) in Lemma 16.2.2 ensures that £L(¥**~1)) =
£—L+1, D) e N*L+2 and

(d, d) L e=1

16.19
(d,ii,....i,d) :&>1L (16.19)

:D(\Ijo(SfL)) — {

(cf. Definition 2.2.10). Combining this with Proposition 2.2.7 shows that £((¥*(*~£)) e &) =
LTED) 4 L(®)—1=2 D(V*ED)ed) € N and

lo,ly, ... lp—1,d :£=1L

D((w) o) = f ol (16.20)
(lo,ll,...,lL_l,l,l,...,17d) £ > L.

This and (16.5) establish (16.18). The proof of Lemma 16.2.4 is thus complete. O

Lemma 16.2.5. Let d,i € N, U € N satisfy that D(V) = (d,i,d) (cf. Definition 2.2.1).
Then

(i) it holds for all n € Ny that L(¥*") = n + 1, D(¥*") € N**2, and

(d,d) :n=0

16.21
(d,i,i,...,i,d) :neN (16.21)

D(I*") = {

and

(it) it holds for all ® € N, L € NN [L(®), 00) with O(®) = d that L(ELw(P)) = L and

P(ELw(P))

{7’@) L(®) =L (16.22)
< .
| [(max{1, 1} )P(@) + (L — L(®) — 1)i+d)(i+1)] :L(P)<L

(cf. Definitions 2.2.10, 16.2.1, and 16.2.1).
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Proof of Lemma 16.2.2. Throughout this proof let ® € N, lo,[1,... ;@) € N satisfy
O(®) = d and D(®) = (o, l1, ..., le@)) € NP and let ar, € N, k € Ny N[0, L],
L e NN [L(D),00), satisfy for all L € NN [L(P),00), k € NgN [0, L] that

I, k< ﬁ(q))
apr = 1 : ﬁ(q)) <k<L. (16.23)
d k=1L

We claim that for all n € Ny it holds that

(d,d) :n=0

16.24
(d,i,i,...,i,d) :neN (16.24)

LU =n+1 and N2 35D = {

We now prove (16.7) by induction on n € Ny. Note that the fact that U0 = (I4,0) €
R4 x RY (cf. Definition 2.2.9) establishes (16.6) in the base case n = 0. For the induction
step assume that there exists n € Ny such that

(d,d) :n=0

16.25
(d,i,i,...,i,d) :neN (16.25)

L") =n+1 and N'"23DU") = {

Observe that Lemma 2.2.4, (2.109), items (i)—(ii) in Proposition 2.2.7, (16.8), and the
assumption that D(V¥) = (d,i,d) imply that
LT = L(U e (U*)) = L) + L(T") —1=24+(n+1)—1=(n+1)+1
and  D(U*"D) = D(V o (U*")) = (d,i,i,...,i,d) € N*+2,
(16.26)

Induction thus proves (16.7). Next note that (16.7) establishes item (i). In addition,
observe that items (i)—(ii) in Proposition 2.2.7, item (i), (16.5), and (16.23) ensure that
for all L € NN [L(P), 00) it holds that

L(Erw(®)) = L((TEE®)) 0 @) = L(TFEE)) 4 L(D) —

(L L)+ 1)+ L@) —1 =1L (16:27)
and
D(ELAII(CD)) = D((\I’.(L_L(q)))> b ‘I’) = (aL70a apis--- ,aL,L). (16.28)
Combining this with (16.23) demonstrates that
L(Eca)w(®)) = L(D) (16.29)
and
D(Eca)w(®)) = (ac@)0: Ac@) s - Ao c@) (16.30)
= (lo;l1, .-, @) = D(P).
Hence, we obtain that
P (Ec(a)u(P)) = P(P). (16.31)
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Next note that (16.23), (16.28), and the fact that I,y = O(®) = d imply that for all
L eNN(L(P),o0) it holds that

P(ELw(®)) = kXle arg(arp-1+1)

[c(®)-1 L
=1 > applapp—r+1) |+ | > apr(apr—1+1)
s | k=L(P)
[c(®)-1 [ c(@)
= > L+ +| > apklapr—1+1)
e | k=C(®)
L
+ Z aL,k(aka_l + 1)
k=L (®)+1
L(®)—1
= U(lk—1 + 1) | +ap @ (ar,c@)—1 + 1)
=1
L1 L (16.32)
+ >0 apglapg—r + )| + | > apx(apk—1 +1)
k=L (®)+1 py
[c(®)-1 i
= (-1 + 1) | +illg@)-1+1)
=1

+ (L —1—(L(®)+1)+ 1)i(i + 1) +apr(ap 1 +1)

[c(®)-1 _
= Le(lemr + 1) | + 2 [lz@)(le@)-1 +1)]
k=1
+(L—L(®)—1)i(i+1)+d(i+1)

L(®)
> le(le—1 + 1)
k=

1

< [max{1, }}] + (L —L(®)—1)ii+1)+d(i+1)

= [max{1, 1}]P(®) + (L — L(®) — 1)i(i+ 1) +d(i +1).

Combining this with (16.31) establishes (16.22). The proof of Lemma 16.2.2 is thus
complete. O

16.3 Compositions of ANNSs involving artificial iden-
tities

Definition 16.3.1 (Composition of ANNs involving artificial identities). Let ¥ € N.

Then we denote by
() Ow (+): {(P1,P2) e NXN:Z(P1) = O(V) and O(P2) =Z(¥)} - N (16.33)

the function which satisfies for all &1, Py € N with Z(®,) = O(¥) and O(P,) = Z(V)
that
OOy Py =D 0 (Vedy)=(D;0T)e Dy (16.34)

(cf. Definitions 2.2.1 and 2.2.5 and Lemma 2.2.8).

DISSEMINATION PROHIBITED. JULY 29, 2021 262



Chapter 16. Additional material
Proposition 16.3.2. Let ¥, ®,, 5 € N satisfy that H(V) = 1, Z(P,) = O(¥), and
O(®y) = Z(V) (cf. Definition 2.2.1). Then
(i) it holds that

D(®; Oy D) = (Do(P2), Dy (), - - ., Dpay)-1(P2), Dy (T), Dy (D), Do(D1), ... ., D(ay (B1)),

(16.35)

(i) it holds that
L(P; Oy §y) = L(Py) + L(Ps), (16.36)

(iii) it holds that
P(®) 0 @) < [max{1, 208, BN (P(@) + P(B2)), (16.37)

and
(iv) it holds for all a € C(R,R) that Rq(®; Oy ®y) € C(RT(®2) RO®)) gnd

Ra(P1 Oy o) = [Ra(P1)] 0 [Ra(¥)] 0 [Ra(P2)] (16.38)

(cf. Definitions 2.2.3 and 16.3.1).

Proof of Propositions 16.5.2. Throughout this proof let a € C(R,R), Ly, Lo, l10,l11, . - -,

l1,£(<1>1)7

l270, l271, ey l27£(¢2),i c N Satisfy fOI all k‘ - {1, 2} that Lk = ,C((I)k), D((I)k) = (lkﬁ, lk71, ey lk7£(¢k)),
and i = D, (V). Note that item (i) in Proposition 2.2.7, the fact that D(®3) = (l20, 21, - - -,

ls.1,), the fact that £(¥) = 2, and the assumption that Z(V) = O(P,) show that

D(\If o (I)Q) = (lg’o, l271, ceey l2,L2717 i7 O(\D)) (1639)

(cf. Definition 2.2.5). Combining this with item (i) in Proposition 2.2.7, the fact that
D(®1) = (10,011, - -, 1.1,), and the assumption that Z(P;) = O(¥) proves that

D(D) Oy P2) =D (P10 (Ve D)) = (oo, I, o1, lia g, oo, ln,). (16.40)

This establishes item (i). Moreover, observe that item (ii) in Proposition 2.2.7 and the
fact that £(¥) = 2 ensure that

£(<D1 @q; (I)Q) == ,C((bl [ ] (\If [ ] CDQ)) == ,C(q)l) + ,C(\If ® CDQ) —1

= L(D)) + L(V) + L(Dy) — 2 = L(Dy) + L (D). (16.41)

This establishes item (ii). In addition, observe that (16.40), the fact that Z(¥) = O(®,) =
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ls,1,, and the fact that O(V) = Z(®;) = [1 ¢ demonstrate that

[Lo—1

. -
PP 0w @) = | D bmlloma+ 1)+ | D bhm(lima +1)
m=1 _

L i L m=2

+i(loryor +1) +ha(i+1)

Lo—1 ML 1

=1 > bmlloma+1)| + > hm(lima+1)
m=1

Lm=2

+

7ty 222 (2,021 + 1) + Lo (Grgy o + 1) (16.42)
_ ) Lo

max{l, ﬁH {z lom(lom—1 + 1)}

- m=1

IN

+ [max{1, 555 }| LLZII U (b1 + 1)]

< [max{l, ﬁ, O(iq,) }] (P(@1) + P(P)).

This establishes item (iii). Next note that item (v) in Proposition 2.2.7 implies that

Ra(P1 Oy Po) =Ry (P 0 (Ve dy))
= [Ra(®1)] 0 [Ra(¥ @ B5)] (16.43)
= ([Ra(®1)] 0 [Ru(T)] 0 [Ru(®s)]) € C(RF®2) RO@),

This establishes item (iv). The proof of Proposition 16.3.2 is thus complete. ]

16.4 Parallelization of ANNs with different lengths
Corollary 16.4.1. Let n,L € N, iy,iy,...,i, € N, U = (U, Uy, ..., V), & = (P, Py,

..., ®,) € N satisfy for all j € {1,2,...,n} that D(V;) = (O(P;),1;,0(®,)) and L =
maxge(1,2,...n} L(Pr) (cf. Definition 2.2.1). Then it holds that

P(Pow(®))
<3 ([Z?l [max{1, o5y H P(®5) Liecay 0 (L)
T [Zgzl ((L = £(25) = i (i + 1) + O(2;) (i + 1)) Lie(a;),00) (L)

+ [Z}ll P(2)) ]1{£<<1>j>}(L)] )2

(16.44)

(cf. Definition 2.2.16).

Proof of Corollary 16.4.1. Observe that (2.128), item (iii) in Proposition 2.2.14, and
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item (ii) in Lemma 16.2.2 assure that

P(Pnu(®))
= P(Pn(gL@l((I)l), SL,\IIQ((I)2)7 s agL,\Ifn(q)")))

S PlEL, (@)]
3 [Zgzl[maX{L%{;j) }P(¢j)]l(£(¢’j),oo)([/):| (16.45)

[0 ((E — £@)) = D (5 + 1)+ 0@)) (i + 1) Lz, o0 (L)

N
N |+
—

IN

> P(®y) ]l{c@j)}(L)] )2

(cf. Definitions 2.2.11 and 16.2.1). The proof of Corollary 16.4.1 is thus complete. ]
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