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Preface

These lecture notes are far away from being complete and remain under construction. In
particular, these lecture notes do not yet contain a suitable comparison of the presented
material with existing results, arguments, and notions in the literature. This will be the
subject of a future version of these lecture notes.

Joshua Lee Padgett
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Chapter 1

Introduction

1.1 Introductory comments on supervised learning

Very roughly speaking, the field deep learning can be divided into three subfields, deep
supervised learning, deep unsupervised learning, and deep reinforcement learning. Algo-
rithms in deep supervised learning seem often to be most accessible for a mathematical
analysis. In the following we briefly sketch in a special situation some ideas of deep
supervised learning.

Let d,M ∈ N = {1, 2, 3, . . . }, E ∈ C(Rd,R), x1, x2, . . . , xM+1 ∈ Rd, y1, y2, . . . , yM ∈ R
satisfy for all m ∈ {1, 2, . . . ,M} that

ym = E(xm). (1.1)

In the framework described in the previous sentence we think of M ∈ N as the number of
available input-output data pairs, we think of d ∈ N as the dimension of the input data,
we think of E : Rd → R as an unknown function which relates input and output data
through (1.1), we think of x1, x2, . . . , xM+1 ∈ Rd as the available known input data, and
we think of y1, y2, . . . , yM ∈ R as the available known output data. The key question in
the context of supervised learning is then that one intends to approximately compute the
output E(xM+1) of the (M + 1)-th input data xM+1 without using explicit knowledge of
the function E : Rd → R but instead by using the knowledge of the M input-output data
pairs (x1, y1) = (x1, E(x1)), (x2, y2) = (x2, E(x2)), . . . , (xM , yM) = (xM , E(xM)) ∈ Rd × R.
To accomplish this, one considers the optimization problem of approximately computing
global minima of the function Φ: C(Rd,R)→ [0,∞) which satisfies for all φ ∈ C(Rd,R)
that

Φ(φ) =
M∑
m=1

|φ(xm)− ym|2. (1.2)

Observe that (1.1) ensures that Φ(E) = 0 and, in particular, we have that the unknown
function E : Rd → R in (1.1) above is a global minimizer of the function Φ: C(Rd,R)→
[0,∞). The optimization problem of approximately computing minima of the function
Φ is not suitable for discrete numerical computations on a computer as the function
Φ is defined on the infinite dimensional Banach space C(Rd,R). To overcome this we
introduce a spatially discretized version of this optimization problem. More specifically,
let d ∈ N, let ψ = (ψθ)θ∈Rd : Rd → C(Rd,R) be a function, and let Ψ: Rd → [0,∞) satisfy
Ψ = Φ ◦ ψ. We think of the set{

ψθ : θ ∈ Rd
}
⊆ C(Rd,R) (1.3)

8



Chapter 1. Introduction

as a parametrized set of functions which we employ to approximate the infinite dimen-
sional Banach space C(Rd,R) and we think of the function Rd 3 θ 7→ ψθ ∈ C(Rd,R)
as the parametrization function corresponding to this set. Taking the set in (1.3) and
its parametrization function Rd 3 θ 7→ ψθ ∈ C(Rd,R) into account, we then intend
to approximately compute minima of the function Φ restricted to the set {ψθ : θ ∈ Rd},
that is, we consider the optimization problem of approximately computing minima of the
function {

ψθ : θ ∈ Rd
}
3 φ 7→ Φ(φ) =

[
M∑
m=1

|φ(xm)− ym|2
]
∈ [0,∞). (1.4)

Employing the parametrization function Rd 3 θ 7→ ψθ ∈ C(Rd,R) one can also reformu-
late this optimization problem as the optimization problem of approximately computing
minima of the function

Rd 3 θ 7→ Ψ(θ) = Φ(ψθ) =

[
M∑
m=1

|ψθ(xm)− ym|2
]
∈ [0,∞) (1.5)

and this optimization is now accessible for discrete numerical computations. In the con-
text of deep supervised learning algorithms, one would choose the parametrization func-
tion Rd 3 θ 7→ ψθ ∈ C(Rd,R) as deep neural network parametrizations and one would
then apply a stochastic gradient descent optimization algorithm to the optimization prob-
lem in (1.5) to approximately compute minima of (1.5).

Dissemination prohibited. July 29, 2021 9



Chapter 2

Basics on artificial neural networks
(ANNs)

In this chapter we present two approaches on how artificial neural networks (ANNs) can
be described in a rigorous mathematical way.

2.1 Vectorized description of ANNs

2.1.1 Affine functions

Definition 2.1.1 (Affine functions). Let d,m, n ∈ N, s ∈ N0, θ = (θ1, θ2, . . . , θd) ∈ Rd

satisfy d ≥ s+mn+m. Then we denote by Aθ,sm,n : Rn → Rm the function which satisfies
for all x = (x1, x2, . . . , xn) ∈ Rn that

Aθ,sm,n(x) =


θs+1 θs+2 · · · θs+n
θs+n+1 θs+n+2 · · · θs+2n

θs+2n+1 θs+2n+2 · · · θs+3n
...

...
. . .

...
θs+(m−1)n+1 θs+(m−1)n+2 · · · θs+mn




x1

x2

x3
...
xn

+


θs+mn+1

θs+mn+2

θs+mn+3
...

θs+mn+m


=
([∑n

k=1 xkθs+k

]
+ θs+mn+1,

[∑n
k=1 xkθs+n+k

]
+ θs+mn+2,

. . . ,
[ n∑
k=1

xkθs+(m−1)n+k

]
+ θs+mn+m

)
(2.1)

and we call Aθ,sm,n the affine function from Rn to Rm associated to (θ, s).

2.1.2 Vectorized description of ANNs

Definition 2.1.2 (Vectorized description of ANNs). Let d, L ∈ N, l0, l1, . . . , lL ∈ N,
θ ∈ Rd satisfy

d ≥
L∑
k=1

lk(lk−1 + 1) (2.2)

10
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and let Ψk : Rlk → Rlk , k ∈ {1, 2, . . . , L}, be functions. Then we denote by N θ,l0
Ψ1,Ψ2,...,ΨL

:

Rl0 → RlL the function which satisfies for all x ∈ Rl0 that(
N θ,l0

Ψ1,Ψ2,...,ΨL

)
(x) =

(
ΨL ◦ A

θ,
∑L−1
k=1 lk(lk−1+1)

lL,lL−1
◦ΨL−1 ◦ A

θ,
∑L−2
k=1 lk(lk−1+1)

lL−1,lL−2
◦ . . .

. . . ◦Ψ2 ◦ Aθ,l1(l0+1)
l2,l1

◦Ψ1 ◦ Aθ,0l1,l0
)
(x) (2.3)

(cf. Definition 2.1.1) and we call N θ,l0
Ψ1,Ψ2,...,ΨL

the realization of the fully connected feed-
forward artificial neural network associated to θ with L + 1 layers and with dimensions
(l0, l1, . . . , lL) and activation functions (Ψ1,Ψ2, . . . ,ΨL).

2.1.3 Weights and biases of ANNs

Remark 2.1.3. Let L ∈ {2, 3, . . .}, v0, v1, . . . , vL−1 ∈ N0, l0, l1, . . . , lL, d ∈ N, θ =
(θ1, θ2, . . . , θd) ∈ Rd satisfy for all k ∈ {0, 1, . . . , L− 1} that

d ≥
L∑
i=1

li(li−1 + 1) and vk =
k∑
i=1

li(li−1 + 1), (2.4)

let Wk ∈ Rlk×lk−1, k ∈ {1, 2, . . . , L}, and bk ∈ Rlk , k ∈ {1, 2, . . . , L}, satisfy for all
k ∈ {1, 2, . . . , L} that

Wk =


θvk−1+1 θvk−1+2 . . . θvk−1+lk−1

θvk−1+lk−1+1 θvk−1+lk−1+2 . . . θvk−1+2lk−1

θvk−1+2lk−1+1 θvk−1+2lk−1+2 . . . θvk−1+3lk−1

...
...

...
...

θvk−1+(lk−1)lk−1+1 θvk−1+(lk−1)lk−1+2 . . . θvk−1+lklk−1


︸ ︷︷ ︸

weights

(2.5)

and
bk =

(
θvk−1+lklk−1+1, θvk−1+lklk−1+2, . . . , θvk−1+lklk−1+lk

)︸ ︷︷ ︸
biases

, (2.6)

and let Ψk : Rlk → Rlk , k ∈ {1, 2, . . . , L}, be functions. Then

(i) it holds that

N θ,l0
Ψ1,Ψ2,...,ΨL

= ΨL ◦Aθ,vL−1

lL,lL−1
◦ΨL−1 ◦Aθ,vL−2

lL−1,lL−2
◦ΨL−2 ◦ . . . ◦Aθ,v1

l2,l1
◦Ψ1 ◦Aθ,v0

l1,l0
(2.7)

and

(ii) it holds for all k ∈ {1, 2, . . . , L}, x ∈ Rlk−1 that Aθ,vk−1

lk,lk−1
(x) = Wkx+ bk

(cf. Definitions 2.1.1 and 2.1.2).

2.1.4 Activation functions

2.1.4.1 Multidimensional versions

To describe multidimensional activation functions, we frequently employ the concept of
the multidimensional version of a function. This concept is the subject of the next notion.
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Definition 2.1.4 (Multidimensional versions). Let d ∈ N and let ψ : R → R be a
function. Then we denote by Mψ,d : Rd → Rd the function which satisfies for all x =
(x1, x2, . . . , xd) ∈ Rd that

Mψ,d(x) = (ψ(x1), ψ(x2), . . . , ψ(xd)). (2.8)

and we call Mψ,d the d-dimensional version of ψ.

2.1.4.2 Single hidden layer artificial neural networks

Example 2.1.5. Let I,H ∈ N, θ = (θ1, θ2, . . . , θHI+2H+1) ∈ RHI+2H+1, x = (x1, x2, . . . ,
xI) ∈ RI and let ψ : R→ R be a function. Then

N θ,I
Mψ,H,idR

(x) =
(

(idR) ◦ Aθ,HI+H
1,H ◦Mψ,H ◦ Aθ,0H,I

)
(x)

= Aθ,HI+H
1,H

(
Mψ,H

(
Aθ,0H,I(x)

))
=

[
H∑
k=1

θHI+H+k ψ

([
I∑
i=1

xiθ(k−1)I+i

]
+ θHI+k

)]
+ θHI+2H+1.

(2.9)

(cf. Definitions 2.1.1, 2.1.2, and 2.1.4).

2.1.4.3 The rectifier function

In this subsection we formulate the rectifier function which is maybe the most commonly
used activation function in deep learning applications (cf., for example, Le Cun, Bengio,
& Hinton [21]).

Definition 2.1.6 (Rectifier function). We denote by r : R→ R the function which satis-
fies for all x ∈ R that

r(x) = max{x, 0}. (2.10)

and we call r the rectifier function.

Definition 2.1.7 (Multidimensional rectifier functions). Let d ∈ N. Then we denote by
Rd : Rd → Rd the function given by

Rd = Mr,d (2.11)

(cf. Definitions 2.1.4 and 2.1.6) and we call Rd the d-dimensional rectifier function.

Proposition 2.1.8 (An artificial neural network with the rectifier function as the acti-
vation function). Let W1 = w1 = 1, W2 = w2 = −1, b1 = b2 = B = 0. Then it holds for
all x ∈ R that

x = W1 max{w1x+ b1, 0}+W2 max{w2x+ b2, 0}+B. (2.12)

Proof of Proposition 2.1.8. Observe that for all x ∈ R it holds that

W1 max{w1x+ b1, 0}+W2 max{w2x+ b2, 0}+B

= max{w1x+ b1, 0} −max{w2x+ b2, 0} = max{x, 0} −max{−x, 0}
= max{x, 0}+ min{x, 0} = x.

(2.13)

The proof of Proposition 2.1.8 is thus complete.
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Exercise 2.1.1 (Real identity). Prove or disprove the following statement: There exist
d, L ∈ N, l1, l2, . . . , lL ∈ N, θ = (θ1, θ2, . . . , θd) ∈ Rd with d ≥ 2l1 +

[∑L
k=2 lk(lk−1 + 1)

]
+

lL + 1 such that for all x ∈ R it holds that(
N θ,1

Rl1 ,Rl2 ,...,RlL ,idR

)
(x) = x (2.14)

(cf. Definitions 2.1.2 and 2.1.7).

The statement of the next lemma, Lemma 2.1.9, provides a partial answer to Exer-
cise 2.1.1. Lemma 2.1.9 follows from an application of Proposition 2.1.8 and the detailed
proof of Lemma 2.1.9 is left as an exercise.

Lemma 2.1.9 (Real identity). Let θ = (1,−1, 0, 0, 1,−1, 0) ∈ R7. Then it holds for all
x ∈ R that (

N θ,1
R2,idR

)
(x) = x (2.15)

(cf. Definitions 2.1.2 and 2.1.7).

Exercise 2.1.2 (Absolute value). Prove or disprove the following statement: There exist
d, L ∈ N, l1, l2, . . . , lL ∈ N, θ = (θ1, θ2, . . . , θd) ∈ Rd with d ≥ 2l1 +

[∑L
k=2 lk(lk−1 + 1)

]
+

lL + 1 such that for all x ∈ R it holds that(
N θ,1

Rl1 ,Rl2 ,...,RlL ,idR

)
(x) = |x| (2.16)

(cf. Definitions 2.1.2 and 2.1.7).

Exercise 2.1.3 (Exponential). Prove or disprove the following statement: There exist
d, L ∈ N, l1, l2, . . . , lL ∈ N, θ = (θ1, θ2, . . . , θd) ∈ Rd with d ≥ 2l1 +

[∑L
k=2 lk(lk−1 + 1)

]
+

lL + 1 such that for all x ∈ R it holds that(
N θ,1

Rl1 ,Rl2 ,...,RlL ,idR

)
(x) = ex (2.17)

(cf. Definitions 2.1.2 and 2.1.7).

Exercise 2.1.4 (Two-dimensional maximum). Prove or disprove the following state-
ment: There exist d, L ∈ N, l1, l2, . . . , lL ∈ N, θ = (θ1, θ2, . . . , θd) ∈ Rd with d ≥
3l1 +

[∑L
k=2 lk(lk−1 + 1)

]
+ lL + 1 such that for all x, y ∈ R it holds that(
N θ,2

Rl1 ,Rl2 ,...,RlL ,idR

)
(x, y) = max{x, y} (2.18)

(cf. Definitions 2.1.2 and 2.1.7).

Exercise 2.1.5 (Real identity with two hidden layers). Prove or disprove the following
statement: There exist d, l1, l2 ∈ N, θ = (θ1, θ2, . . . , θd) ∈ Rd with d ≥ 2l1 + l1l2 + 2l2 + 1
such that for all x ∈ R it holds that(

N θ,1
Rl1 ,Rl2 ,idR

)
(x) = x (2.19)

(cf. Definitions 2.1.2 and 2.1.7).

The statement of the next lemma, Lemma 2.1.10, provides a partial answer to Exer-
cise 2.1.5. The proof of Lemma 2.1.10 is left as an exercise.
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Lemma 2.1.10 (Real identity with two hidden layers). Let θ = (1, −1, 0, 0, 1, −1, −1,
1, 0, 0, 1, −1, 0) ∈ R13. Then it holds for all x ∈ R that(

N θ,1
R2,R2,idR

)
(x) = x (2.20)

(cf. Definitions 2.1.2 and 2.1.7).

Exercise 2.1.6 (Three-dimensional maximum). Prove or disprove the following state-
ment: There exist d, L ∈ N, l1, l2, . . . , lL ∈ N, θ = (θ1, θ2, . . . , θd) ∈ Rd with d ≥
4l1 +

[∑L
k=2 lk(lk−1 + 1)

]
+ lL + 1 such that for all x, y, z ∈ R it holds that(
N θ,3

Rl1 ,Rl2 ,...,RlL ,idR

)
(x, y, z) = max{x, y, z} (2.21)

(cf. Definition 2.1.2 and Definition 2.1.7).

Exercise 2.1.7 (Multidimensional maxima). Prove or disprove the following statement:
For every k ∈ N there exist d, L ∈ N, l1, l2, . . . , lL ∈ N, θ = (θ1, θ2, . . . , θd) ∈ Rd with
d ≥ (k + 1)l1 +

[∑L
k=2 lk(lk−1 + 1)

]
+ lL + 1 such that for all x1, x2, . . . , xk ∈ R it holds

that (
N θ,k

Rl1 ,Rl2 ,...,RlL ,idR

)
(x1, x2, . . . , xk) = max{x1, x2, . . . , xk} (2.22)

(cf. Definitions 2.1.2 and 2.1.7).

Exercise 2.1.8 (Hat function). Prove or disprove the following statement: There exist
d, l ∈ N, θ = (θ1, θ2, . . . , θd) ∈ Rd with d ≥ 3l + 1 such that for all x ∈ R it holds that

(
N θ,1

Rl,idR

)
(x) =


1 : x ≤ 2

x− 1 : 2 < x ≤ 3

5− x : 3 < x ≤ 4

1 : x > 4

(2.23)

(cf. Definition 2.1.2 and Definition 2.1.7).

Exercise 2.1.9. Prove or disprove the following statement: There exist d, l ∈ N, θ =
(θ1, θ2, . . . , θd) ∈ Rd with d ≥ 3l + 1 such that for all x ∈ R it holds that

(
N θ,1

Rl,idR

)
(x) =


−2 : x ≤ 1

2x− 4 : 1 < x ≤ 3

2 : x > 3

(2.24)

(cf. Definition 2.1.2 and Definition 2.1.7).

Exercise 2.1.10. Prove or disprove the following statement: There exist d, l ∈ N, θ =
(θ1, θ2, . . . , θd) ∈ Rd with d ≥ 3l + 1 such that for all x ∈ [0, 1] it holds that(

N θ,1
Rl,idR

)
(x) = x2 (2.25)

(cf. Definition 2.1.2 and Definition 2.1.7).
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2.1.4.4 Clipping functions

Definition 2.1.11 (Clipping function). Let u ∈ [−∞,∞), v ∈ (u,∞]. Then we denote
by cu,v : R→ R the function which satisfies for all x ∈ R that

cu,v(x) = max{u,min{x, v}}. (2.26)

and we call cu,v the (u, v)-clipping function.

Definition 2.1.12 (Multidimensional clipping functions). Let d ∈ N, u ∈ [−∞,∞),
v ∈ (u,∞]. Then we denote by Cu,v,d : Rd → Rd the function given by

Cu,v,d = Mcu,v ,d (2.27)

(cf. Definitions 2.1.4 and 2.1.11) and we call Cu,v,d the d-dimensional (u, v)-clipping func-
tion.

2.1.4.5 The softplus function

Definition 2.1.13 (Softplus function). We denote by s : R → R the function which
satisfies for all x ∈ R that

s(x) = ln(1 + exp(x)) (2.28)

and we call s the softplus function.

The next result, Lemma 2.1.14 below, presents a few elementary properties of the
softplus function.

Lemma 2.1.14 (Properties of the softplus function). It holds

(i) for all x ∈ [0,∞) that x ≤ s(x) ≤ x+ 1,

(ii) that limx→−∞ s(x) = 0,

(iii) that limx→∞ s(x) =∞, and

(iv) that s(0) = ln(2)

(cf. Definition 2.1.13).

Proof of Lemma 2.1.14. Observe that the fact that 2 ≤ exp(1) ensures that for all x ∈
[0,∞) it holds that

x = ln(exp(x)) ≤ ln(1 + exp(x)) = ln(exp(0) + exp(x))

≤ ln(exp(x) + exp(x)) = ln(2 exp(x)) ≤ ln(exp(1) exp(x))

= ln(exp(x+ 1)) = x+ 1.

(2.29)

The proof of Lemma 2.1.14 is thus complete.

Note that Lemma 2.1.14 ensures that s(0) = ln(2) = 0.693 . . . (cf. Definition 2.1.13).
In the next step we introduce the multidimensional version of the softplus function (cf.
Definitions 2.1.4 and 2.1.13 above).

Definition 2.1.15 (Multidimensional softplus functions). Let d ∈ N. Then we denote
by Sd : Rd → Rd the function given by

Sd = Ms,d (2.30)

(cf. Definitions 2.1.4 and 2.1.13) and we call Sd the d-dimensional softplus function.
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2.1.4.6 The standard logistic function

Definition 2.1.16 (Standard logistic function). We denote by l : R → R the function
which satisfies for all x ∈ R that

l(x) =
1

1 + exp(−x)
=

exp(x)

exp(x) + 1
(2.31)

and we call l the standard logistic function.

Definition 2.1.17 (Multidimensional standard logistic functions). Let d ∈ N. Then we
denote by Ld : Rd → Rd the function given by

Ld = Ml,d (2.32)

(cf. Definitions 2.1.4 and 2.1.16) and we call Ld the d-dimensional standard logistic func-
tion.

2.1.4.7 Derivative of the standard logistic function

Proposition 2.1.18 (Logistic differential equation). It holds that l : R→ R is infinitely
often differentiable and it holds for all x ∈ R that

l(0) = 1/2, l′(x) = l(x)(1− l(x)) = l(x)− [l(x)]2, and (2.33)

l′′(x) = l(x)(1− l(x))(1− 2 l(x)) = 2[l(x)]3 − 3[l(x)]2 + l(x) (2.34)

(cf. Definition 2.1.16).

Proof of Proposition 2.1.18. Observe that (2.31) ensures that for all x ∈ R it holds that

l′(x) =
exp(−x)

(1 + exp(−x))2 = l(x)

(
exp(−x)

1 + exp(−x)

)
= l(x)

(
1 + exp(−x)− 1

1 + exp(−x)

)
= l(x)

(
1− 1

1 + exp(−x)

)
= l(x)(1− l(x)).

(2.35)

Hence, we obtain that for all x ∈ R it holds that

l′′(x) =
[
l(x)(1− l(x))

]′
= l′(x)(1− l(x)) + l(x)(1− l(x))′

= l′(x)(1− l(x))− l(x) l′(x) = l′(x)(1− 2 l(x))

= l(x)(1− l(x))(1− 2 l(x))

=
(
l(x)− [l(x)]2

)
(1− 2 l(x)) = l(x)− [l(x)]2 − 2[l(x)]2 + 2[l(x)]3

= 2[l(x)]3 − 3[l(x)]2 + l(x).

(2.36)

The proof of Proposition 2.1.18 is thus complete.
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2.1.4.8 Integral of the standard logistic function

Lemma 2.1.19 (Primitive of the standard logistic function). It holds for all x ∈ R that∫ x

−∞
l(y) dy =

∫ x

−∞

(
1

1 + e−y

)
dy = ln(1 + exp(x)) = s(x) (2.37)

(cf. Definitions 2.1.13 and 2.1.16).

Proof of Lemma 2.1.19. Observe that (2.28) implies that for all x ∈ R it holds that

s′(x) =

[
1

1 + exp(x)

]
exp(x) = l(x). (2.38)

The fundamental theorem of calculus hence shows that for all w, x ∈ R with w ≤ x it
holds that ∫ x

w

l(y)︸︷︷︸
≥0

dy = s(x)− s(w). (2.39)

Combining this with the fact that limw→−∞ s(w) = 0 establishes (2.37). The proof of
Lemma 2.1.19 is thus complete.

2.1.4.9 The hyperbolic tangent function

Definition 2.1.20 (Hyperbolic tangent). We denote by tanh: R→ R the function which
satisfies for all x ∈ R that

tanh(x) =
exp(x)− exp(−x)

exp(x) + exp(−x)
(2.40)

and we call tanh the hyperbolic tangent.

Definition 2.1.21 (Multidimensional hyperbolic tangent functions). Let d ∈ N. Then
we denote by Td : Rd → Rd the function given by

Td = Mtanh,d (2.41)

(cf. Definitions 2.1.4 and 2.1.20) and we call Td the d-dimensional hyperbolic tangent.

Lemma 2.1.22. It holds for all x ∈ R that

tanh(x) = 2 l(2x)− 1 (2.42)

(cf. Definitions 2.1.16 and 2.1.20).

Proof of Lemma 2.1.22. Observe that (2.31) and (2.40) ensure that for all x ∈ R it holds
that

2 l(2x)− 1 = 2

(
exp(2x)

exp(2x) + 1

)
− 1 =

2 exp(2x)− (exp(2x) + 1)

exp(2x) + 1

=
exp(2x)− 1

exp(2x) + 1
=

exp(x)(exp(x)− exp(−x))

exp(x)(exp(x) + exp(−x))

=
exp(x)− exp(−x)

exp(x) + exp(−x)
= tanh(x).

(2.43)

The proof of Lemma 2.1.22 is thus complete.
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2.1.4.10 The Heaviside function

Definition 2.1.23 (Heaviside function). We denote by h : R → R the function which
satisfies for all x ∈ R that

h(x) = 1[0,∞)(x) =

{
1 : x ≥ 0

0 : x < 0
(2.44)

and we call h the Heaviside function (we call h the Heaviside step function, we call h the
unit step function).

Definition 2.1.24 (Multidimensional Heaviside functions). Let d ∈ N. Then we denote
by Hd : Rd → Rd the function given by

Hd = Mh,d (2.45)

(cf. Definitions 2.1.4 and 2.1.23) and we call Hd the d-dimensional Heaviside function
(we call Hd the d-dimensional Heaviside step function, we call Hd the d-dimensional unit
step function).

2.1.4.11 The softmax function

Definition 2.1.25 (The softmax function). Let d ∈ N. Then we denote by Sd =

(S (1)
d ,S (2)

d , . . . ,S (d)
d ) : Rd → Rd the function which satisfies for all x = (x1, x2, . . . ,

xd) ∈ Rd that

Sd(x) =
(
S (1)
d (x),S (2)

d (x), . . . ,S (d)
d (x)

)
=

(
exp(x1)

(
∑d
i=1 exp(xi))

, exp(x2)

(
∑d
i=1 exp(xi))

, . . . , exp(xd)

(
∑d
i=1 exp(xi))

)
(2.46)

and we call Sd the d-dimensional softmax function.

Lemma 2.1.26. Let d ∈ N. Then

(i) it holds for all x ∈ Rd, k ∈ {1, 2, . . . , d} that S (k)
d (x) ∈ (0, 1] and

(ii) it holds for all x ∈ Rd that
d∑

k=1

S (k)
d (x) = 1 (2.47)

(cf. Definition 2.1.25).

Proof of Lemma 2.1.26. Observe that (2.46) demonstrates that for all x = (x1, x2, . . . , xd)
∈ Rd it holds that

d∑
k=1

S (k)
d (x) =

d∑
k=1

exp(xk)

(
∑d
i=1 exp(xi))

=
∑d
k=1 exp(xk)∑d
i=1 exp(xi)

= 1. (2.48)

The proof of Lemma 2.1.26 is thus complete.
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2.1.5 Rectified clipped ANNs

Definition 2.1.27 (Rectified clipped ANNs). Let L, d ∈ N, u ∈ [−∞,∞), v ∈ (u,∞],
l = (l0, l1, . . . , lL) ∈ NL+1, θ ∈ Rd satisfy

d ≥
L∑
k=1

lk(lk−1 + 1). (2.49)

Then we denote by N θ,l
u,v : Rl0 → RlL the function which satisfies for all x ∈ Rl0 that

N θ,l
u,v (x) =

{(
N θ,l0

Cu,v,lL

)
(x) : L = 1(

N θ,l0
Rl1 ,Rl2 ,...,RlL−1

,Cu,v,lL

)
(x) : L > 1

(2.50)

(cf. Definitions 2.1.2, 2.1.7, and 2.1.12).

2.2 Structured description of ANNs

2.2.1 Structured description of ANNs

Definition 2.2.1 (Structured description of ANNs). We denote by N the set given by

N =
⋃
L∈N

⋃
l0,l1,...,lL∈N

(�L
k=1(Rlk×lk−1 × Rlk)

)
, (2.51)

we denote by P : N → N, L : N → N, I : N → N, O : N → N, H : N → N0, D : N →(⋃∞
L=2 NL

)
, and Dn : N → N0, n ∈ N0, the functions which satisfy for all L ∈ N,

l0, l1, . . . , lL ∈ N, Φ ∈
(�L

k=1(Rlk×lk−1 × Rlk)
)
, n ∈ N0 that P(Φ) =

∑L
k=1 lk(lk−1 + 1),

L(Φ) = L, I(Φ) = l0, O(Φ) = lL, H(Φ) = L− 1, D(Φ) = (l0, l1, . . . , lL), and

Dn(Φ) =

{
ln : n ≤ L

0 : n > L,
(2.52)

and for every L ∈ N, l0, l1, . . . , lL ∈ N, Φ = ((W1, B1), (W2, B2), . . . , (WL, BL)) ∈
(�L

k=1

(Rlk×lk−1 ×Rlk)
)

we denote by W(·),Φ = (Wn,Φ)n∈{1,2,...,L} : {1, 2, . . . , L} → (
⋃
m,k∈N Rm×k)

and B(·),Φ = (Bn,Φ)n∈{1,2,...,L} : {1, 2, . . . , L} → (
⋃
m∈N Rm) the functions which satisfy for

all n ∈ {1, 2, . . . , L} that Wn,Φ = Wn and Bn,Φ = Bn.

Definition 2.2.2. We say that Φ is a neural network if and only if it holds that Φ ∈ N.

2.2.2 Realizations of ANNs

Definition 2.2.3 (Realization associated to an ANN). Let a ∈ C(R,R). Then we denote
by Ra : N→

(⋃
k,l∈N C(Rk,Rl)

)
the function which satisfies for all L ∈ N, l0, l1, . . . , lL ∈

N, Φ = ((W1, B1), (W2, B2), . . . , (WL, BL)) ∈
(�L

k=1(Rlk×lk−1 × Rlk)
)
, x0 ∈ Rl0 , x1 ∈

Rl1 , . . . , xL ∈ RlL with ∀ k ∈ {1, 2, . . . , L} : xk = Ma,lk(Wkxk−1 +Bk) that

Ra(Φ) ∈ C(Rl0 ,RlL) and (Ra(Φ))(x0) = WLxL−1 +BL (2.53)

(cf. Definitions 2.1.4 and 2.2.1).
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Lemma 2.2.4. Let Φ ∈ N (cf. Definition 2.2.1). Then

(i) it holds that D(Φ) ∈ NL(Φ)+1 and

(ii) it holds for all a ∈ C(R,R) that Ra(Φ) ∈ C(RI(Φ),RO(Φ))

(cf. Definition 2.2.3).

Proof of Lemma 2.2.4. Note that the assumption that

Φ ∈ N =
⋃
L∈N

⋃
(l0,l1,...,lL)∈NL+1

(�L
k=1(Rlk×lk−1 × Rlk)

)
(2.54)

ensures that there exist L ∈ N, l0, l1, . . . , lL ∈ N such that

Φ ∈
(�L

k=1(Rlk×lk−1 × Rlk)
)
. (2.55)

Observe that (2.55) assures that

L(Φ) = L, I(Φ) = l0, O(Φ) = lL, (2.56)

and D(Φ) = (l0, l1, . . . , lL) ∈ NL+1 = NL(Φ)+1. (2.57)

This establishes item (i). Moreover, note that (2.56) and (2.53) show that Ra(Φ) ∈
C(RI(Φ),RO(Φ)). This establishes item (ii). The proof of Lemma 2.2.4 is thus complete.

Exercise 2.2.1. Prove or disprove the following statement: There exists Φ ∈ N such
that

Rtanh(Φ) = l (2.58)

(cf. Definitions 2.1.16, 2.1.20, 2.2.1, and 2.2.3).

2.2.3 Compositions of ANNs

2.2.3.1 Standard compositions of ANNs

Definition 2.2.5 (Composition of ANNs). We denote by (·) • (·) : {(Φ,Ψ) ∈ N×N : I(Φ)
= O(Ψ)} → N the function which satisfies for all L,L ∈ N, l0, l1, . . . , lL, l0, l1, . . . , lL ∈
N, Φ = ((W1, B1), (W2, B2), . . . , (WL, BL)) ∈

(�L
k=1(Rlk×lk−1 × Rlk)

)
, Ψ = ((W1,B1),

(W2,B2), . . . , (WL,BL)) ∈
(�L

k=1(Rlk×lk−1 × Rlk)
)

with l0 = I(Φ) = O(Ψ) = lL that

Φ •Ψ =

(
(W1,B1), (W2,B2), . . . , (WL−1,BL−1), (W1WL,W1BL +B1),

(W2, B2), (W3, B3), . . . , (WL, BL)
) : (L > 1) ∧ (L > 1)

(
(W1W1,W1B1 +B1), (W2, B2), (W3, B3), . . . , (WL, BL)

)
: (L > 1) ∧ (L = 1)(

(W1,B1), (W2,B2), . . . , (WL−1,BL−1), (W1WL,W1BL +B1)
)

: (L = 1) ∧ (L > 1)(
(W1W1,W1B1 +B1)

)
: (L = 1) ∧ (L = 1)

(2.59)

(cf. Definition 2.2.1).
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2.2.3.2 Elementary properties of standard compositions of ANNs

Lemma 2.2.6. Let Φ,Ψ ∈ N satisfy I(Φ) = O(Ψ). Then

(i) it holds that L(Φ •Ψ) = L(Φ) + L(Ψ)− 1 and

(ii) it holds for all i ∈ {1, 2, . . . ,L(Φ •Ψ)} that

(Wi,(Φ•Ψ),Bi,(Φ•Ψ)) =


(Wi,Ψ,Bi,Ψ) : i < L(Ψ)

(W1,ΦWL(Ψ),Ψ,W1,ΦBL(Ψ),Ψ + B1,Φ) : i = L(Ψ)

(Wi−L(Ψ)+1,Φ,Bi−L(Ψ)+1,Φ) : i > L(Ψ).

(2.60)

Proof of Lemma 2.2.6. Note that (2.59) clearly implies items (i) and (ii). The proof of
Lemma 2.2.6 is thus complete.

Proposition 2.2.7. Let Φ1,Φ2 ∈ N satisfy I(Φ1) = O(Φ2) (cf. Definition 2.2.1). Then

(i) it holds that

D(Φ1 • Φ2) = (D0(Φ2),D1(Φ2), . . . ,DH(Φ2)(Φ2),D1(Φ1),D2(Φ1), . . . ,DL(Φ1)(Φ1)),
(2.61)

(ii) it holds that
[L(Φ1 • Φ2)− 1] = [L(Φ1)− 1] + [L(Φ2)− 1], (2.62)

(iii) it holds that
H(Φ1 • Φ2) = H(Φ1) +H(Φ2), (2.63)

(iv) it holds that

P(Φ1 • Φ2) = P(Φ1) + P(Φ2) + D1(Φ1)(DL(Φ2)−1(Φ2) + 1)

− D1(Φ1)(D0(Φ1) + 1)− DL(Φ2)(Φ2)(DL(Φ2)−1(Φ2) + 1)

≤ P(Φ1) + P(Φ2) + D1(Φ1)DH(Φ2)(Φ2),

(2.64)

and

(v) it holds for all a ∈ C(R,R) that Ra(Φ1 • Φ2) ∈ C(RI(Φ2),RO(Φ1)) and

Ra(Φ1 • Φ2) = [Ra(Φ1)] ◦ [Ra(Φ2)] (2.65)

(cf. Definitions 2.2.3 and 2.2.5).

Proof of Proposition 2.2.7. Throughout this proof let a ∈ C(R,R), let Lk ∈ N, k ∈ {1, 2},
satisfy for all k ∈ {1, 2} that Lk = L(Φk), let l1,0, l1,1, . . . , l1,L(Φ1), l2,0, l2,1, . . . , l2,L(Φ2) ∈ N,(
(Wk,1, Bk,1), (Wk,2, Bk,2), . . . , (Wk,Lk , Bk,Lk)

)
∈ (

�Lk
j=1(Rlk,j×lk,j−1 × Rlk,j)), k ∈ {1, 2},

satisfy for all k ∈ {1, 2} that

Φk =
(
(Wk,1, Bk,1), (Wk,2, Bk,2), . . . , (Wk,Lk , Bk,Lk)

)
, (2.66)

let L3 ∈ N, l3,0, l3,1, . . . , l3,L3 ∈ N, Φ3 =
(
(W3,1, B3,1), . . . , (W3,L3 , B3,L3)

)
∈ (

�L3
j=1

(Rl3,j×l3,j−1×Rl3,j)) satisfy that Φ3 = Φ1 • Φ2, let x0 ∈ Rl2,0 , x1 ∈ Rl2,1 , . . . , xL2−1 ∈ Rl2,L2−1

satisfy
∀ j ∈ N ∩ (0, L2) : xj = Ma,l2,j(W2,jxj−1 +B2,j) (2.67)
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(cf. Definition 2.1.4), let y0 ∈ Rl1,0 , y1 ∈ Rl1,1 , . . . , yL1−1 ∈ Rl1,L1−1 satisfy y0 = W2,L2xL2−1

+B2,L2 and
∀ j ∈ N ∩ (0, L1) : yj = Ma,l1,j(W1,jyj−1 +B1,j), (2.68)

and let z0 ∈ Rl3,0 , z1 ∈ Rl3,1 , . . . , zL3−1 ∈ Rl3,L3−1 satisfy z0 = x0 and

∀ j ∈ N ∩ (0, L3) : zj = Ma,l3,j(W3,jzj−1 +B3,j). (2.69)

Note that (2.59) ensures that

Φ3 = Φ1 • Φ2 =

(
(W2,1, B2,1), (W2,2, B2,2), . . . , (W2,L2−1, B2,L2−1),

(W1,1W2,L2 ,W1,1B2,L2 +B1,1), (W1,2, B1,2),

(W1,3, B1,3), . . . , (W1,L1 , B1,L1)
) : (L1 > 1) ∧ (L2 > 1)

(
(W1,1W2,1,W1,1B2,1 +B1,1), (W1,2, B1,2),

(W1,3, B1,3), . . . , (W1,L1 , B1,L1)
) : (L1 > 1) ∧ (L2 = 1)

(
(W2,1, B2,1), (W2,2, B2,2), . . . , (W2,L2−1, B2,L2−1),

(W1,1W2,L2 ,W1,1B2,L2 +B1,1)
) : (L1 = 1) ∧ (L2 > 1)

(W1,1W2,1,W1,1B2,1 +B1,1) : (L1 = 1) ∧ (L2 = 1).

(2.70)

Hence, we obtain that

[L(Φ1 • Φ2)− 1] = [(L2 − 1) + 1 + (L1 − 1)]− 1

= [L1 − 1] + [L2 − 1] = [L(Φ1)− 1] + [L(Φ2)− 1]
(2.71)

and D(Φ1 • Φ2) = (l2,0, l2,1, . . . , l2,L2−1, l1,1, l1,2, . . . , l1,L1). (2.72)

This establishes items (i)–(iii). In addition, observe that (2.72) demonstrates that

P(Φ1 • Φ2) =
L3∑
j=1

l3,j(l3,j−1 + 1)

=

[
L2−1∑
j=1

l3,j(l3,j−1 + 1)

]
+ l3,L2(l3,L2−1 + 1) +

[
L3∑

j=L2+1

l3,j(l3,j−1 + 1)

]

=

[
L2−1∑
j=1

l2,j(l2,j−1 + 1)

]
+ l1,1(l2,L2−1 + 1) +

[
L3∑

j=L2+1

l1,j−L2+1(l1,j−L2 + 1)

]

=

[
L2−1∑
j=1

l2,j(l2,j−1 + 1)

]
+

[
L1∑
j=2

l1,j(l1,j−1 + 1)

]
+ l1,1

(
l2,L2−1 + 1

)
=

[
L2∑
j=1

l2,j(l2,j−1 + 1)

]
+

[
L1∑
j=1

l1,j(l1,j−1 + 1)

]
+ l1,1(l2,L2−1 + 1)

− l2,L2(l2,L2−1 + 1)− l1,1(l1,0 + 1)

= P(Φ1) + P(Φ2) + l1,1(l2,L2−1 + 1)− l2,L2(l2,L2−1 + 1)

− l1,1(l1,0 + 1)

≤ P(Φ1) + P(Φ2) + l1,1l2,L2−1.

(2.73)
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This establishes item (iv). Moreover, observe that (2.70) and the fact that a ∈ C(R,R)
ensure that

Ra(Φ1 • Φ2) ∈ C(Rl2,0 ,Rl1,L1 ) = C(RI(Φ2),RO(Φ1)). (2.74)

Next note that (2.71) implies that L3 = L1 +L2− 1. This, (2.70), and (2.72) ensure that

(l3,0, l3,1, . . . , l3,L1+L2−1) = (l2,0, l2,1, . . . , l2,L2−1, l1,1, l1,2, . . . , l1,L1), (2.75)[
∀ j ∈ N ∩ (0, L2) : (W3,j, B3,j) = (W2,j, B2,j)

]
, (2.76)

(W3,L2 , B3,L2) = (W1,1W2,L2 ,W1,1B2,L2 +B1,1), (2.77)

and
[
∀ j ∈ N ∩ (L2, L1 + L2) : (W3,j, B3,j) = (W1,j+1−L2 , B1,j+1−L2)

]
. (2.78)

This, (2.67), (2.69), and induction imply that for all j ∈ N0∩ [0, L2) it holds that zj = xj.
Combining this with (2.77) and the fact that y0 = W2,L2xL2−1 +B2,L2 ensures that

W3,L2zL2−1 +B3,L2 = W3,L2xL2−1 +B3,L2

= W1,1W2,L2xL2−1 +W1,1B2,L2 +B1,1

= W1,1(W2,L2xL2−1 +B2,L2) +B1,1 = W1,1y0 +B1,1.

(2.79)

Next we claim that for all j ∈ N ∩ [L2, L1 + L2) it holds that

W3,jzj−1 +B3,j = W1,j+1−L2yj−L2 +B1,j+1−L2 . (2.80)

We prove (2.80) by induction on j ∈ N∩ [L2, L1 +L2). Note that (2.79) establishes (2.80)
in the base case j = L2. For the induction step note that the fact that L3 = L1 +L2− 1,
(2.68), (2.69), (2.75), and (2.78) imply that for all j ∈ N∩ [L2,∞)∩ (0, L1 +L2− 1) with

W3,jzj−1 +B3,j = W1,j+1−L2yj−L2 +B1,j+1−L2 (2.81)

it holds that

W3,j+1zj +B3,j+1 = W3,j+1Ma,l3,j(W3,jzj−1 +B3,j) +B3,j+1

= W1,j+2−L2Ma,l1,j+1−L2
(W1,j+1−L2yj−L2 +B1,j+1−L2) +B1,j+2−L2

= W1,j+2−L2yj+1−L2 +B1,j+2−L2 .

(2.82)

Induction hence proves (2.80). Next observe that (2.80) and the fact that L3 = L1+L2−1
assure that

W3,L3zL3−1 +B3,L3 = W3,L1+L2−1zL1+L2−2 +B3,L1+L2−1 = W1,L1yL1−1 +B1,L1 . (2.83)

The fact that Φ3 = Φ1 • Φ2, (2.67), (2.68), and (2.69) therefore prove that

[Ra(Φ1 • Φ2)](x0) = [Ra(Φ3)](x0) = [Ra(Φ3)](z0) = W3,L3zL3−1 +B3,L3

= W1,L1yL1−1 +B1,L1 = [Ra(Φ1)](y0)

= [Ra(Φ1)]
(
W2,L2xL2−1 +B2,L2

)
= [Ra(Φ1)]

(
[Ra(Φ2)](x0)

)
= [(Ra(Φ1)) ◦ (Ra(Φ2))](x0).

(2.84)

Combining this with (2.74) establishes item (v). The proof of Proposition 2.2.7 is thus
complete.

Dissemination prohibited. July 29, 2021 23



Chapter 2. Basics on artificial neural networks (ANNs)

2.2.3.3 Associativity of standard compositions of ANNs

Lemma 2.2.8. Let Φ1,Φ2,Φ3 ∈ N satisfy I(Φ1) = O(Φ2) and I(Φ2) = O(Φ3) (cf.
Definition 2.2.1). Then it holds that

(Φ1 • Φ2) • Φ3 = Φ1 • (Φ2 • Φ3) (2.85)

(cf. Definition 2.2.5).

Proof of Lemma 2.2.8. Throughout this proof let Φ4,Φ5,Φ6,Φ7 ∈ N satisfy that Φ4 =
Φ1 • Φ2, Φ5 = Φ2 • Φ3, Φ6 = Φ4 • Φ3, and Φ7 = Φ1 • Φ5, let Lk ∈ N, k ∈ {1, 2, . . . , 7}, sat-
isfy for all k ∈ {1, 2, . . . , 7} that Lk = L(Φk), let lk,0, lk,1, . . . , lk,Lk ∈ N, k ∈ {1, 2, . . . , 7},
and let

(
(Wk,1, Bk,1), (Wk,2, Bk,2), . . . , (Wk,Lk , Bk,Lk)

)
∈ (
�Lk

j=1(Rlk,j×lk,j−1 × Rlk,j)), k ∈
{1, 2, . . . , 7}, satisfy for all k ∈ {1, 2, . . . , 7} that

Φk =
(
(Wk,1, Bk,1), (Wk,2, Bk,2), . . . , (Wk,Lk , Bk,Lk)

)
. (2.86)

Observe that item (ii) in Proposition 2.2.7 and the fact that for all k ∈ {1, 2, 3} it holds
that L(Φk) = Lk proves that

L(Φ6) = L((Φ1 • Φ2) • Φ3) = L(Φ1 • Φ2) + L(Φ3)− 1

= L(Φ1) + L(Φ2) + L(Φ3)− 2 = L1 + L2 + L3 − 2

= L(Φ1) + L(Φ2 • Φ3)− 1 = L(Φ1 • (Φ2 • Φ3)) = L(Φ7).

(2.87)

Next note that Lemma 2.2.6, (2.86), and the fact that Φ4 = Φ1 • Φ2 imply that[
∀ j ∈ N ∩ (0, L2) : (W4,j, B4,j) = (W2,j, B2,j)

]
, (2.88)

(W4,L2 , B4,L2) = (W1,1W2,L2 ,W1,1B2,L2 +B1,1), (2.89)

and
[
∀ j ∈ N ∩ (L2, L1 + L2) : (W4,j, B4,j) = (W1,j+1−L2 , B1,j+1−L2)

]
. (2.90)

Hence, we obtain that[
∀ j ∈ N∩ (L3−1, L2 +L3−1) : (W4,j+1−L3 , B4,j+1−L3) = (W2,j+1−L3 , B2,j+1−L3)

]
, (2.91)

(W4,L2 , B4,L2) = (W1,1W2,L2 ,W1,1B2,L2 +B1,1), (2.92)

and[
∀ j ∈ N ∩ (L2 + L3 − 1, L1 + L2 + L3 − 1) :

(W4,j+1−L3 , B4,j+1−L3) = (W1,j+2−L2−L3 , B1,j+2−L2−L3)
]
. (2.93)

In addition, observe that Lemma 2.2.6, (2.86), and the fact that Φ5 = Φ2 • Φ3 demon-
strate that [

∀ j ∈ N ∩ (0, L3) : (W5,j, B5,j) = (W3,j, B3,j)
]
, (2.94)

(W5,L3 , B5,L3) = (W2,1W3,L3 ,W2,1B3,L3 +B2,1), (2.95)

and
[
∀ j ∈ N ∩ (L3, L2 + L3) : (W5,j, B5,j) = (W2,j+1−L3 , B2,j+1−L3)

]
. (2.96)

Moreover, note that Lemma 2.2.6, (2.86), and the fact that Φ6 = Φ4 • Φ3 ensure that[
∀ j ∈ N ∩ (0, L3) : (W6,j, B6,j) = (W3,j, B3,j)

]
, (2.97)

Dissemination prohibited. July 29, 2021 24



Chapter 2. Basics on artificial neural networks (ANNs)

(W6,L3 , B6,L3) = (W4,1W3,L3 ,W4,1B3,L3 +B4,1), (2.98)

and
[
∀ j ∈ N ∩ (L3, L4 + L3) : (W6,j, B6,j) = (W4,j+1−L3 , B4,j+1−L3)

]
. (2.99)

Furthermore, observe that Lemma 2.2.6, (2.86), and the fact that Φ7 = Φ1 • Φ5 show
that [

∀ j ∈ N ∩ (0, L5) : (W7,j, B7,j) = (W5,j, B5,j)
]
, (2.100)

(W7,L5 , B7,L5) = (W1,1W5,L5 ,W1,1B5,L5 +B1,1), (2.101)

and
[
∀ j ∈ N ∩ (L5, L1 + L5) : (W7,j, B7,j) = (W1,j+1−L5 , B1,j+1−L5)

]
. (2.102)

This, the fact that L3 ≤ L2 + L3 − 1 = L5, (2.94), and (2.97) imply that for all j ∈
N ∩ (0, L3) it holds that

(W6,j, B6,j) = (W3,j, B3,j) = (W5,j, B5,j) = (W7,j, B7,j). (2.103)

In addition, observe that (2.88), (2.89), (2.94), (2.95), (2.98), (2.100), (2.101), and the
fact that L5 = L2 + L3 − 1 demonstrate that

(W6,L3 , B6,L3) = (W4,1W3,L3 ,W4,1B3,L3 +B4,1)

=

{
(W2,1W3,L3 ,W2,1B3,L3 +B2,1) : L2 > 1

(W1,1W2,1W3,L3 ,W1,1W2,1B3,L3 +W1,1B2,1 +B1,1) : L2 = 1

=

{
(W2,1W3,L3 ,W2,1B3,L3 +B2,1) : L2 > 1

(W1,1(W2,1W3,L3),W1,1(W2,1B3,L3 +B2,1) +B1,1) : L2 = 1

=

{
(W5,L3 , B5,L3) : L2 > 1

(W1,1W5,L3 ,W1,1B5,L3 +B1,1) : L2 = 1

= (W7,L3 , B7,L3).

(2.104)

Next note that the fact that L5 = L2 + L3 − 1 < L1 + L2 + L3 − 1 = L3 + L4, (2.99),
(2.91), (2.96), and (2.100) ensure that for all j ∈ N with L3 < j < L5 it holds that

(W6,j, B6,j) = (W4,j+1−L3 , B4,j+1−L3) = (W2,j+1−L3 , B2,j+1−L3)

= (W5,j, B5,j) = (W7,j, B7,j).
(2.105)

Moreover, observe that the fact that L5 = L2 + L3 − 1 < L1 + L2 + L3 − 1 = L3 + L4,
(2.99), (2.104), (2.89), (2.96), and (2.101) prove that

(W6,L5 , B6,L5) =

{
(W4,L5+1−L3 , B4,L5+1−L3) : L2 > 1

(W6,L3 , B6,L3) : L2 = 1

=

{
(W4,L2 , B4,L2) : L2 > 1

(W7,L3 , B7,L3) : L2 = 1

=

{
(W1,1W2,L2 ,W1,1B2,L2 +B1,1) : L2 > 1

(W7,L5 , B7,L5) : L2 = 1

=

{
(W1,1W5,L5 ,W1,1B5,L5 +B1,1) : L2 > 1

(W7,L5 , B7,L5) : L2 = 1

= (W7,L5 , B7,L5).

(2.106)
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Furthermore, note that (2.99), (2.93), (2.102), and the fact that L5 = L2 + L3 − 1 ≥ L3

assure that for all j ∈ N with L5 < j ≤ L6 it holds that

(W6,j, B6,j) = (W4,j+1−L3 , B4,j+1−L3) = (W1,j+2−L2−L3 , B1,j+2−L2−L3)

= (W1,j+1−L5 , B1,j+1−L5) = (W7,j, B7,j).
(2.107)

Combining this with (2.87), (2.103), (2.104), (2.105), and (2.106) establishes that

(Φ1 • Φ2) • Φ3 = Φ4 • Φ3 = Φ6 = Φ7 = Φ1 • Φ5 = Φ1 • (Φ2 • Φ3). (2.108)

The proof of Lemma 2.2.8 is thus complete.

2.2.3.4 Powers and extensions of ANNs

Definition 2.2.9. Let d ∈ N. Then we denote by Id ∈ Rd×d the identity matrix in Rd×d.

Definition 2.2.10. We denote by (·)•n : {Φ ∈ N : I(Φ) = O(Φ)} → N, n ∈ N0, the
functions which satisfy for all n ∈ N0, Φ ∈ N with I(Φ) = O(Φ) that

Φ•n =

{(
IO(Φ), (0, 0, . . . , 0)

)
∈ RO(Φ)×O(Φ) × RO(Φ) : n = 0

Φ • (Φ•(n−1)) : n ∈ N
(2.109)

(cf. Definitions 2.2.1, 2.2.5, and 2.2.9).

2.2.4 Parallelizations of ANNs

2.2.4.1 Parallelizations of ANNs with the same length

Definition 2.2.11 (Parallelization of ANNs). Let n ∈ N. Then we denote by

Pn :
{

(Φ1,Φ2, . . . ,Φn) ∈ Nn : L(Φ1) = L(Φ2) = . . . = L(Φn)
}
→ N (2.110)

the function which satisfies for all L ∈ N, Φ1,Φ2, . . . ,Φn ∈ N with L = L(Φ1) = L(Φ2) =
· · · = L(Φn) that

Pn(Φ1,Φ2, . . . ,Φn) =






W1,Φ1 0 0 · · · 0

0 W1,Φ2 0 · · · 0
0 0 W1,Φ3 · · · 0
...

...
...

. . .
...

0 0 0 · · · W1,Φn

,

B1,Φ1

B1,Φ2

B1,Φ3

...
B1,Φn



,



W2,Φ1 0 0 · · · 0

0 W2,Φ2 0 · · · 0
0 0 W2,Φ3 · · · 0
...

...
...

. . .
...

0 0 0 · · · W2,Φn

,

B2,Φ1

B2,Φ2

B2,Φ3

...
B2,Φn



, . . . ,



WL,Φ1 0 0 · · · 0

0 WL,Φ2 0 · · · 0
0 0 WL,Φ3 · · · 0
...

...
...

. . .
...

0 0 0 · · · WL,Φn

,

BL,Φ1

BL,Φ2

BL,Φ3

...
BL,Φn







(2.111)

(cf. Definition 2.2.1).
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Lemma 2.2.12. Let n, L ∈ N, Φ1,Φ2, . . . ,Φn ∈ N satisfy L = L(Φ1) = L(Φ2) = . . . =
L(Φn) (cf. Definition 2.2.1). Then it holds that

Pn(Φ1,Φ2, . . . ,Φn) ∈
(

L�
k=1

(
R(

∑n
j=1 Dk(Φj))×(

∑n
j=1 Dk−1(Φj)) × R(

∑n
j=1 Dk(Φj))

))
(2.112)

(cf. Definition 2.2.11).

Proof of Lemma 2.2.12. Note that (2.111) proves (2.112). The proof of Lemma 2.2.12 is
thus complete.

Proposition 2.2.13. Let a ∈ C(R,R), n ∈ N, Φ = (Φ1,Φ2, . . . ,Φn) ∈ Nn satisfy
L(Φ1) = L(Φ2) = . . . = L(Φn) (cf. Definition 2.2.1). Then

(i) it holds that
Ra(Pn(Φ)) ∈ C

(
R[

∑n
j=1 I(Φj)],R[

∑n
j=1O(Φj)]

)
(2.113)

and

(ii) it holds for all x1 ∈ RI(Φ1), x2 ∈ RI(Φ2), . . . , xn ∈ RI(Φn) that(
Ra

(
Pn(Φ)

))
(x1, x2, . . . , xn)

=
(
(Ra(Φ1))(x1), (Ra(Φ2))(x2), . . . , (Ra(Φn))(xn)

)
∈ R[

∑n
j=1O(Φj)]

(2.114)

(cf. Definitions 2.2.3 and 2.2.11).

Proof of Proposition 2.2.13. Throughout this proof let L ∈ N satisfy L = L(Φ1), let
lj,0, lj,1, . . . , lj,L ∈ N, j ∈ {1, 2, . . . , n}, satisfy for all j ∈ {1, 2, . . . , n} that D(Φj) =
(lj,0, lj,1, . . . , lj,L), let ((Wj,1, Bj,1), (Wj,2, Bj,2), . . . , (Wj,L, Bj,L)) ∈ (

�L
k=1(Rlj,k×lj,k−1 ×

Rlj,k)), j ∈ {1, 2, . . . , n}, satisfy for all j ∈ {1, 2, . . . , n} that

Φj =
(
(Wj,1, Bj,1), (Wj,2, Bj,2), . . . , (Wj,L, Bj,L)

)
, (2.115)

let αk ∈ N, k ∈ {0, 1, . . . , L}, satisfy for all k ∈ {0, 1, . . . , L} that αk =
∑n

j=1 lj,k, let(
(A1, b1), (A2, b2), . . . , (AL, bL)

)
∈ (
�L

k=1(Rαk×αk−1 × Rαk)) satisfy that

Pn(Φ) =
(
(A1, b1), (A2, b2), . . . , (AL, bL)

)
(2.116)

(cf. Lemma 2.2.12), let (xj,0, xj,1, . . . , xj,L−1) ∈ (Rlj,0×Rlj,1×. . .×Rlj,L−1), j ∈ {1, 2, . . . , n},
satisfy for all j ∈ {1, 2, . . . , n}, k ∈ N ∩ (0, L) that

xj,k = Ma,lj,k(Wj,kxj,k−1 +Bj,k) (2.117)

(cf. Definition 2.1.4), and let x0 ∈ Rα0 , x1 ∈ Rα1 , . . . , xL−1 ∈ RαL−1 satisfy for all k ∈
{0, 1, . . . , L − 1} that xk = (x1,k, x2,k, . . . , xn,k). Observe that (2.116) demonstrates that
I(Pn(Φ)) = α0 and O(Pn(Φ)) = αL. Combining this with item (ii) in Lemma 2.2.4,
the fact that for all k ∈ {0, 1, . . . , L} it holds that αk =

∑n
j=1 lj,k, the fact that for all

j ∈ {1, 2, . . . , n} it holds that I(Φj) = lj,0, and the fact that for all j ∈ {1, 2, . . . , n} it
holds that O(Φj) = lj,L ensures that

Ra(Pn(Φ)) ∈ C(Rα0 ,RαL) = C
(
R[

∑n
j=1 lj,0],R[

∑n
j=1 lj,L]

)
= C

(
R[

∑n
j=1 I(Φj)],R[

∑n
j=1O(Φj)]

)
.

(2.118)
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This proves item (i). Moreover, observe that (2.111) and (2.116) demonstrate that for all
k ∈ {1, 2, . . . , L} it holds that

Ak =


W1,k 0 0 · · · 0

0 W2,k 0 · · · 0
0 0 W3,k · · · 0
...

...
...

. . .
...

0 0 0 · · · Wn,k

 and bk =


B1,k

B2,k

B3,k
...

Bn,k

. (2.119)

Combining this with (2.8), (2.117), and the fact that for all k ∈ N ∩ [0, L) it holds that
xk = (x1,k, x2,k, . . . , xn,k) implies that for all k ∈ N ∩ (0, L) it holds that

Ma,αk(Akxk−1 + bk) =


Ma,l1,k(W1,kx1,k−1 +B1,k)
Ma,l2,k(W2,kx2,k−1 +B2,k)

...
Ma,ln,k(Wn,kxn,k−1 +Bn,k)

 =


x1,k

x2,k
...

xn,k

 = xk. (2.120)

This, (2.53), (2.115), (2.116), (2.117), (2.119), the fact that x0 = (x1,0, x2,0, . . . , xn,0), and
the fact that xL−1 = (x1,L−1, x2,L−1, . . . , xn,L−1) ensure that(

Ra

(
Pn(Φ)

))
(x1,0, x2,0, . . . , xn,0) =

(
Ra

(
Pn(Φ)

))
(x0)

= ALxL−1 + bL =


W1,Lx1,L−1 +B1,L

W2,Lx2,L−1 +B2,L
...

Wn,Lxn,L−1 +Bn,L

 =


(Ra(Φ1))(x1,0)
(Ra(Φ2))(x2,0)

...
(Ra(Φn))(xn,0)

. (2.121)

This establishes item (ii). The proof of Proposition 2.2.13 is thus complete.

Proposition 2.2.14. Let n, L ∈ N, Φ1,Φ2, . . . ,Φn ∈ N satisfy L = L(Φ1) = L(Φ2) =
. . . = L(Φn) (cf. Definition 2.2.1). Then

(i) it holds for all k ∈ N0 that

Dk(Pn(Φ1,Φ2, . . . ,Φn)) = Dk(Φ1) + Dk(Φ2) + . . .+ Dk(Φn), (2.122)

(ii) it holds that

D
(
Pn(Φ1,Φ2, . . . ,Φn)

)
= D(Φ1) +D(Φ2) + · · ·+D(Φn), (2.123)

and

(iii) it holds that

P
(
Pn(Φ1,Φ2, . . . ,Φn)

)
≤ 1

2

[∑n
j=1P(Φj)

]2
(2.124)

(cf. Definition 2.2.11).

Proof of Proposition 2.2.14. Throughout this proof let lj,0, lj,1, . . . , lj,L ∈ N, j ∈ {1, 2, . . . ,
n}, satisfy for all j ∈ {1, 2, . . . , n}, k ∈ {0, 1, . . . , L} that lj,k = Dk(Φj). Note that
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Lemma 2.2.12 establishes item (i). In addition, observe that item (i) implies item (ii).
Moreover, note that item (i) demonstrates that

P(Pn(Φ1,Φ2, . . . ,Φn)) =
L∑
k=1

[∑n
i=1 li,k

][(∑n
i=1 li,k−1

)
+ 1
]

=
L∑
k=1

[∑n
i=1 li,k

][(∑n
j=1 lj,k−1

)
+ 1
]

≤
n∑
i=1

n∑
j=1

L∑
k=1

li,k(lj,k−1 + 1) ≤
n∑
i=1

n∑
j=1

L∑
k,`=1

li,k(lj,`−1 + 1)

=
n∑
i=1

n∑
j=1

[∑L
k=1 li,k

][∑L
`=1(lj,`−1 + 1)

]
≤

n∑
i=1

n∑
j=1

[∑L
k=1

1
2
li,k(li,k−1 + 1)

][∑L
`=1 lj,`(lj,`−1 + 1)

]
=

n∑
i=1

n∑
j=1

1
2
P(Φi)P(Φj) = 1

2

[∑n
i=1P(Φi)

]2

.

(2.125)

The proof of Proposition 2.2.14 is thus complete.

Corollary 2.2.15. Let n ∈ N, Φ = (Φ1,Φ2, . . . ,Φn) ∈ Nn satisfy that D(Φ1) = D(Φ2) =
. . . = D(Φn) (cf. Definition 2.2.1). Then it holds that P(Pn(Φ)) ≤ n2P(Φ1) (cf. Defini-
tion 2.2.11).

Proof of Corollary 2.2.15. Throughout this proof let L ∈ N, l0, l1, . . . , lL ∈ N satisfy
that D(Φ1) = (l0, l1, . . . , lL). Note that item (ii) in Proposition 2.2.14 and the fact that
∀ j ∈ {1, 2, . . . , n} : D(Φj) = (l0, l1, . . . , lL) demonstrate that

P(Pn(Φ1,Φ2, . . . ,Φn)) =
L∑
j=1

(nlj)
(
(nlj−1) + 1

)
≤

L∑
j=1

(nlj)
(
(nlj−1) + n

)
= n2

[
L∑
j=1

lj(lj−1 + 1)

]
= n2P(Φ1).

(2.126)

The proof of Corollary 2.2.15 is thus complete.

2.2.4.2 Parallelizations of ANNs with different lengths

Definition 2.2.16 (Parallelization of ANNs with different length). Let n ∈ N, Ψ =
(Ψ1,Ψ2, . . . ,Ψn) ∈ Nn satisfy for all j ∈ {1, 2, . . . , n} that H(Ψj) = 1 and I(Ψj) =
O(Ψj). Then we denote by

Pn,Ψ : {(Φ1,Φ2, . . . ,Φn) ∈ Nn : (∀ j ∈ {1, 2, . . . , n} : O(Φj) = I(Ψj))} → N (2.127)

the function which satisfies for all Φ = (Φ1,Φ2, . . . ,Φn) ∈ Nn with ∀ j ∈ {1, 2, . . . , n} :
O(Φj) = I(Ψj) that

Pn,Ψ(Φ) = Pn

(
Emaxk∈{1,2,...,n} L(Φk),Ψ1(Φ1), . . . , Emaxk∈{1,2,...,n} L(Φk),Ψn(Φn)

)
(2.128)

(cf. Definitions 2.2.1, 2.2.11, and 16.2.1 and Lemma 16.2.2).
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Corollary 2.2.17. Let a ∈ C(R,R), n ∈ N, I = (I1, I2, . . . , In), Φ = (Φ1,Φ2, . . . ,Φn) ∈
Nn satisfy for all j ∈ {1, 2, . . . , n}, x ∈ RO(Φj) that H(Ij) = 1, I(Ij) = O(Ij) = O(Φj),
and (Ra(Ij))(x) = x (cf. Definitions 2.2.1 and 2.2.3). Then

(i) it holds that
Ra

(
Pn,I(Φ)

)
∈ C

(
R[

∑n
j=1 I(Φj)],R[

∑n
j=1O(Φj)]

)
(2.129)

and

(ii) it holds for all x1 ∈ RI(Φ1), x2 ∈ RI(Φ2), . . . , xn ∈ RI(Φn) that(
Ra(Pn,I(Φ))

)
(x1, x2, . . . , xn)

=
(
(Ra(Φ1))(x1), (Ra(Φ2))(x2), . . . , (Ra(Φn))(xn)

)
∈ R[

∑n
j=1O(Φj)]

(2.130)

(cf. Definition 2.2.16).

Proof of Corollary 2.2.17. Throughout this proof let L ∈ N satisfy L = maxj∈{1,2,...,n}
L(Φj). Note that item (ii) in Lemma 16.2.2, the assumption that for all j ∈ {1, 2, . . . , n}
it holds that H(Ij) = 1, (16.5), (2.62), and item (ii) in Lemma 16.2.3 demonstrate

(I) that for all j ∈ {1, 2, . . . , n} it holds that L(EL,Ij(Φj)) = L and Ra(EL,Ij(Φj)) ∈
C(RI(Φj),RO(Φj)) and

(II) that for all j ∈ {1, 2, . . . , n}, x ∈ RI(Φj) it holds that(
Ra(EL,Ij(Φj))

)
(x) = (Ra(Φj))(x) (2.131)

(cf. Definition 16.2.1). Items (i)–(ii) in Proposition 2.2.13 therefore imply

(A) that

Ra

(
Pn

(
EL,I1(Φ1), EL,I2(Φ2), . . . , EL,In(Φn)

))
∈ C

(
R[

∑n
j=1 I(Φj)],R[

∑n
j=1O(Φj)]

)
(2.132)

and

(B) that for all x1 ∈ RI(Φ1), x2 ∈ RI(Φ2), . . . , xn ∈ RI(Φn) it holds that(
Ra

(
Pn

(
EL,I1(Φ1), EL,I2(Φ2), . . . , EL,In(Φn)

)))
(x1, x2, . . . , xn)

=
((
Ra

(
EL,I1(Φ1)

))
(x1),

(
Ra

(
EL,I2(Φ2)

))
(x2), . . . ,

(
Ra

(
EL,In(Φn)

))
(xn)

)
=
(

(Ra(Φ1))(x1), (Ra(Φ2))(x2), . . . , (Ra(Φn))(xn)
) (2.133)

(cf. Definition 2.2.11). Combining this with (2.128) and the fact that L = maxj∈{1,2,...,n}
L(Φj) ensures

(C) that
Ra

(
Pn,I(Φ)

)
∈ C

(
R[

∑n
j=1 I(Φj)],R[

∑n
j=1O(Φj)]

)
(2.134)

and

(D) that for all x1 ∈ RI(Φ1), x2 ∈ RI(Φ2), . . . , xn ∈ RI(Φn) it holds that(
Ra

(
Pn,I(Φ)

))
(x1, x2, . . . , xn)

=
(
Ra

(
Pn

(
EL,I1(Φ1), EL,I2(Φ2), . . . , EL,In(Φn)

)))
(x1, x2, . . . , xn)

=
(

(Ra(Φ1))(x1), (Ra(Φ2))(x2), . . . , (Ra(Φn))(xn)
)
.

(2.135)

This establishes items (i)–(ii). The proof of Corollary 2.2.17 is thus complete.
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2.2.5 Representations of the identities with rectifier functions

Definition 2.2.18. We denote by Id ∈ N, n ∈ N, the neural networks which satisfy for
all d ∈ N that

I1 =

(((
1
−1

)
,

(
0
0

))
,
((

1 −1
)
, 0
))
∈
(
(R2×1 × R2)× (R1×2 × R1)

)
(2.136)

and
Id = Pd(I1, I1, . . . ,I1) (2.137)

(cf. Definitions 2.2.1 and 2.2.11).

Lemma 2.2.19. Let d ∈ N. Then

(i) it holds that D(Id) = (d, 2d, d) ∈ N3,

(ii) it holds that Rr(Id) ∈ C(Rd,Rd), and

(iii) it holds for all x ∈ Rd that
(Rr(Id))(x) = x (2.138)

(cf. Definitions 2.2.1, 2.2.3, and 2.2.18).

Proof of Lemma 2.2.19. Throughout this proof let L = 2, l0 = 1, l1 = 2, l2 = 1. Note
that (2.136) ensures that

D(I1) = (1, 2, 1) = (l0, l1, l2). (2.139)

This and Lemma 2.2.12 prove that

Pd(I1, I1, . . . ,I1)

∈
(�L

k=1

(
R(dlk)×(dlk−1) × R(dlk)

))
=
((
R(2d)×d × R2d

)
×
(
Rd×(2d) × Rd

)) (2.140)

(cf. Definition 2.2.11). Hence, we obtain that D(Id) = (d, 2d, d) ∈ N3. This establishes
item (i). Next note that (2.136) assures that for all x ∈ R it holds that

(Rr(I1))(x) = r(x)− r(−x) = max{x, 0} −max{−x, 0} = x. (2.141)

Combining this and Proposition 2.2.13 demonstrates that for all x = (x1, x2, . . . , xd) ∈ Rd

it holds that Rr(Id) ∈ C(Rd,Rd) and

(Rr(Id))(x) =
(
Rr

(
Pd(I1, I1, . . . ,I1)

))
(x1, x2, . . . , xd)

=
(
(Rr(I1))(x1), (Rr(I1))(x2), . . . , (Rr(I1))(xd)

)
= (x1, x2, . . . , xd) = x.

(2.142)

This establishes items (ii)–(iii). The proof of Lemma 2.2.19 is thus complete.
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2.2.6 Scalar multiplications of ANNs

2.2.6.1 Affine transformations as ANNs

Definition 2.2.20 (Affine linear transformation ANN). Let m,n ∈ N, W ∈ Rm×n,
B ∈ Rm. Then we denote by AW,B ∈ (Rm×n × Rm) ⊆ N the neural network given by
AW,B = (W,B) (cf. Definitions 2.2.1 and 2.2.2).

Lemma 2.2.21. Let m,n ∈ N, W ∈ Rm×n, B ∈ Rm. Then

(i) it holds that D(AW,B) = (n,m) ∈ N2,

(ii) it holds for all a ∈ C(R,R) that Ra(AW,B) ∈ C(Rn,Rm), and

(iii) it holds for all a ∈ C(R,R), x ∈ Rn that (Ra(AW,B))(x) = Wx+B

(cf. Definitions 2.2.1, 2.2.3, and 2.2.20).

Proof of Lemma 2.2.21. Note the fact that AW,B ∈ (Rm×n × Rm) ⊆ N ensures that
D(AW,B) = (n,m) ∈ N2. This establishes item (i). Next observe that the fact that
AW,B = (W,B) ∈ (Rm×n×Rm) and (2.53) prove that for all a ∈ C(R,R), x ∈ Rn it holds
that Ra(AW,B) ∈ C(Rn,Rm) and

(Ra(AW,B))(x) = Wx+B. (2.143)

This establishes items (ii) and (iii). The proof of Lemma 2.2.21 is thus complete.

Lemma 2.2.22. Let Φ ∈ N (cf. Definition 2.2.1). Then

(i) it holds for all m ∈ N, W ∈ Rm×O(Φ), B ∈ Rm that

D(AW,B • Φ) = (D0(Φ),D1(Φ), . . . ,DH(Φ)(Φ),m), (2.144)

(ii) it holds for all a ∈ C(R,R), m ∈ N, W ∈ Rm×O(Φ), B ∈ Rm that Ra(AW,B • Φ) ∈
C(RI(Φ),Rm),

(iii) it holds for all a ∈ C(R,R), m ∈ N, W ∈ Rm×O(Φ), B ∈ Rm, x ∈ RI(Φ) that

(Ra(AW,B • Φ))(x) = W ((Ra(Φ))(x)) +B, (2.145)

(iv) it holds for all n ∈ N, W ∈ RI(Φ)×n, B ∈ RI(Φ) that

D(Φ •AW,B) = (n,D1(Φ),D2(Φ), . . . ,DL(Φ)(Φ)), (2.146)

(v) it holds for all a ∈ C(R,R), n ∈ N, W ∈ RI(Φ)×n, B ∈ RI(Φ) that Ra(Φ •AW,B) ∈
C(Rn,RO(Φ)), and

(vi) it holds for all a ∈ C(R,R), n ∈ N, W ∈ RI(Φ)×n, B ∈ RI(Φ), x ∈ Rn that

(Ra(Φ •AW,B))(x) = (Ra(Φ))(Wx+B), (2.147)

(cf. Definitions 2.2.3, 2.2.5, and 2.2.20).

Proof of Lemma 2.2.22. Note that Lemma 2.2.21 demonstrates that for all m,n ∈ N,
W ∈ Rm×n, B ∈ Rm, a ∈ C(R,R), x ∈ Rn it holds that Ra(AW,B) ∈ C(Rn,Rm) and

(Ra(AW,B))(x) = Wx+B. (2.148)

Combining this and Proposition 2.2.7 establishes items (i), (ii), (iii), (iv), (v), and (vi).
The proof of Lemma 2.2.22 is thus complete.
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2.2.6.2 Scalar multiplications of ANNs

Definition 2.2.23 (Scalar multiplications of ANNs). We denote by (·)~(·) : R×N→ N
the function which satisfies for all λ ∈ R, Φ ∈ N that

λ~ Φ = Aλ IO(Φ),0 • Φ (2.149)

(cf. Definitions 2.2.1, 2.2.5, 2.2.9, and 2.2.20).

Lemma 2.2.24. Let λ ∈ R, Φ ∈ N (cf. Definition 2.2.1). Then

(i) it holds that D(λ~ Φ) = D(Φ),

(ii) it holds for all a ∈ C(R,R) that Ra(λ~ Φ) ∈ C(RI(Φ),RO(Φ)), and

(iii) it holds for all a ∈ C(R,R), x ∈ RI(Φ) that

(Ra(λ~ Φ))(x) = λ
(
(Ra(Φ))(x)

)
(2.150)

(cf. Definitions 2.2.3 and 2.2.23).

Proof of Lemma 2.2.24. Throughout this proof let L ∈ N, l0, l1, . . . , lL ∈ N satisfy L =
L(Φ) and (l0, l1, . . . , lL) = D(Φ). Note that item (i) in Lemma 2.2.21 proves that

D(Aλ IO(Φ),0) = (O(Φ),O(Φ)) (2.151)

(cf. Definitions 2.2.9 and 2.2.20). Combining this and item (i) in Lemma 2.2.22 assures
that

D(λ~ Φ) = D(Aλ IO(Φ),0 • Φ) = (l0, l1, . . . , lL−1,O(Φ)) = D(Φ). (2.152)

This establishes item (i). Moreover, observe that items (ii)–(iii) in Lemma 2.2.22 demon-
strate that for all a ∈ C(R,R), x ∈ RI(Φ) it holds that Ra(λ ~ Φ) ∈ C(RI(Φ),RO(Φ))
and

(Ra(λ~ Φ))(x) = (Ra(Aλ IO(Φ),0 • Φ))(x)

= λ IO(Φ)

(
(Ra(Φ))(x)

)
= λ

(
(Ra(Φ))(x)

)
.

(2.153)

This establishes items (ii)–(iii). The proof of Lemma 2.2.24 is thus complete.

2.2.7 Sums of ANNs with the same length

2.2.7.1 Sums of vectors as neural networks

Definition 2.2.25. Let m,n ∈ N. Then we denote by Sm,n ∈ (Rm×(mn)×Rm) the neural
network given by

Sm,n = A(Im Im ... Im),0 (2.154)

(cf. Definitions 2.2.9 and 2.2.20).

Lemma 2.2.26. Let m,n ∈ N. Then

(i) it holds that Sm,n ∈ N,

(ii) it holds that D(Sm,n) = (mn,m) ∈ N2,
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(iii) it holds for all a ∈ C(R,R) that Ra(Sm,n) ∈ C(Rmn,Rm), and

(iv) it holds for all a ∈ C(R,R), x1, x2, . . . , xn ∈ Rm that

(Ra(Sm,n))(x1, x2, . . . , xn) =
n∑
k=1

xk (2.155)

(cf. Definitions 2.2.1, 2.2.3, and 2.2.25).

Proof of Lemma 2.2.26. Note that the fact that Sm,n ∈ (Rm×(mn) × Rm) ensures that
Sm,n ∈ N and D(Sm,n) = (mn,m) ∈ N2. This establishes items (i) and (ii). Next observe
that items (ii) and (iii) in Lemma 2.2.21 prove that for all a ∈ C(R,R), x1, x2, . . . , xn ∈
Rm it holds that Ra(Sm,n) ∈ C(Rmn,Rm) and

(Ra(Sm,n))(x1, x2, . . . , xn) =
(
Ra

(
A(Im Im ... Im),0

))
(x1, x2, . . . , xn)

= (Im Im . . . Im)(x1, x2, . . . , xn) =
n∑
k=1

xk
(2.156)

(cf. Definition 2.2.9 and Definition 2.2.20). This establishes items (iii) and (iv). The
proof of Lemma 2.2.26 is thus complete.

Lemma 2.2.27. Let m,n ∈ N, a ∈ C(R,R), Φ ∈ N satisfy O(Φ) = nm (cf. Defini-
tion 2.2.1). Then

(i) it holds that Ra(Sm,n • Φ) ∈ C(RI(Φ),Rm) and

(ii) it holds for all x ∈ RI(Φ), y1, y2, . . . , yn ∈ Rm with (Ra(Φ))(x) = (y1, y2, . . . , yn)
that (

Ra(Sm,n • Φ)
)
(x) =

n∑
k=1

yk (2.157)

(cf. Definitions 2.2.3, 2.2.5, and 2.2.25).

Proof of Lemma 2.2.27. Note that Lemma 2.2.26 ensures that for all x1, x2, . . . , xn ∈ Rm

it holds that Ra(Sm,n) ∈ C(Rnm,Rm) and

(Ra(Sm,n))(x1, x2, . . . , xn) =
n∑
k=1

xk. (2.158)

Combining this and item (v) in Proposition 2.2.7 establishes items (i)–(ii). The proof of
Lemma 2.2.27 is thus complete.

Lemma 2.2.28. Let n ∈ N, a ∈ C(R,R), Φ ∈ N (cf. Definition 2.2.1). Then

(i) it holds that Ra(Φ • SI(Φ),n) ∈ C(RnI(Φ),RO(Φ)) and

(ii) it holds for all x1, x2, . . . , xn ∈ RI(Φ) that(
Ra(Φ • SI(Φ),n)

)
(x1, x2, . . . , xn) = (Ra(Φ))

(
n∑
k=1

xk

)
(2.159)

(cf. Definitions 2.2.3, 2.2.5, and 2.2.25).

Proof of Lemma 2.2.28. Note that Lemma 2.2.26 demonstrates that for all m ∈ N,
x1, x2, . . . , xn ∈ Rm it holds that Ra(Sm,n) ∈ C(Rmn,Rm) and

(Ra(Sm,n))(x1, x2, . . . , xn) =
n∑
k=1

xk. (2.160)

Combining this and item (v) in Proposition 2.2.7 establishes items (i) and (ii). The proof
of Lemma 2.2.28 is thus complete.
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2.2.7.2 Concatenation of vectors as neural networks

Definition 2.2.29. Let m,n ∈ N, A ∈ Rm×n. Then we denote by A∗ ∈ Rn×m the
transpose of A.

Definition 2.2.30. Let m,n ∈ N. Then we denote by Tm,n ∈ (R(mn)×m×Rmn) the neural
network given by

Tm,n = A(Im Im ... Im)∗,0 (2.161)

(cf. Definitions 2.2.9, 2.2.20, and 2.2.29).

Lemma 2.2.31. Let m,n ∈ N. Then

(i) it holds that Tm,n ∈ N,

(ii) it holds that D(Tm,n) = (m,mn) ∈ N2,

(iii) it holds for all a ∈ C(R,R) that Ra(Tm,n) ∈ C(Rm,Rmn), and

(iv) it holds for all a ∈ C(R,R), x ∈ Rm that

(Ra(Tm,n))(x) = (x, x, . . . , x) (2.162)

(cf. Definitions 2.2.1, 2.2.3, and 2.2.30).

Proof of Lemma 2.2.31. Note that the fact that Tm,n ∈ (R(mn)×m × Rmn) ensures that
Tm,n ∈ N and D(Tm,n) = (m,mn) ∈ N2. This establishes items (i)–(ii). Next observe
that items (v)–(vi) in Lemma 2.2.22 prove that for all a ∈ C(R,R), x ∈ Rm it holds that
Ra(Tm,n) ∈ C(Rm,Rmn) and

(Ra(Tm,n))(x) =
(
Ra

(
A(Im Im ... Im)∗,0

))
(x)

= (Im Im . . . Im)∗x = (x, x, . . . , x)
(2.163)

(cf. Definitions 2.2.9 and 2.2.20). This establishes items (iii) and (iv). The proof of
Lemma 2.2.31 is thus complete.

Lemma 2.2.32. Let n ∈ N, a ∈ C(R,R), Φ ∈ N (cf. Definition 2.2.1). Then

(i) it holds that Ra(TO(Φ),n • Φ) ∈ C(RI(Φ),RnO(Φ)) and

(ii) it holds for all x ∈ RI(Φ) that(
Ra(TO(Φ),n • Φ)

)
(x) =

(
(Ra(Φ))(x), (Ra(Φ))(x), . . . , (Ra(Φ))(x)

)
(2.164)

(cf. Definitions 2.2.3, 2.2.5, and 2.2.30).

Proof of Lemma 2.2.32. Note that Lemma 2.2.31 ensures that for all m ∈ N, x ∈ Rm it
holds that Ra(Tm,n) ∈ C(Rm,Rmn) and

(Ra(Tm,n))(x) = (x, x, . . . , x). (2.165)

Combining this and item (v) in Proposition 2.2.7 establishes items (i) and (ii). The proof
of Lemma 2.2.32 is thus complete.
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Lemma 2.2.33. Let m,n ∈ N, a ∈ C(R,R), Φ ∈ N satisfy I(Φ) = mn (cf. Defini-
tion 2.2.1). Then

(i) it holds that Ra(Φ • Tm,n) ∈ C(Rm,RO(Φ)) and

(ii) it holds for all x ∈ Rm that(
Ra(Φ • Tm,n)

)
(x) = (Ra(Φ))(x, x, . . . , x) (2.166)

(cf. Definitions 2.2.3, 2.2.5, and 2.2.30).

Proof of Lemma 2.2.33. Observe that Lemma 2.2.31 demonstrates that for all x ∈ Rm it
holds that Ra(Tm,n) ∈ C(Rm,Rmn) and

(Ra(Tm,n))(x) = (x, x, . . . , x). (2.167)

Combining this and item (v) in Proposition 2.2.7 establishes items (i) and (ii). The proof
of Lemma 2.2.33 is thus complete.

2.2.7.3 Sums of ANNs

Definition 2.2.34 (Sums of ANNs with the same length). Let n ∈ Z, m ∈ {n, n +
1, . . .}, Φn,Φn+1, . . . ,Φm ∈ N satisfy for all k ∈ {n, n + 1, . . . ,m} that L(Φk) = L(Φn),
I(Φk) = I(Φn), and O(Φk) = O(Φn). Then we denote by

⊕m
k=n Φk (we denote by

Φn ⊕ Φn+1 ⊕ . . .⊕ Φm) the neural network given by

m⊕
k=n

Φk =
(
SO(Φn),m−n+1 •

[
Pm−n+1(Φn,Φn+1, . . . ,Φm)

]
• TI(Φn),m−n+1

)
∈ N (2.168)

(cf. Definitions 2.2.1, 2.2.2, 2.2.5, 2.2.11, 2.2.25, and 2.2.30).

Lemma 2.2.35. Let n ∈ Z, m ∈ {n, n + 1, . . .}, Φn,Φn+1, . . . ,Φm ∈ N satisfy for all
k ∈ {n, n + 1, . . . ,m} that L(Φk) = L(Φn), I(Φk) = I(Φn), and O(Φk) = O(Φn) (cf.
Definition 2.2.1). Then

(i) it holds that L(
⊕m

k=n Φk) = L(Φn),

(ii) it holds that

D
(

m⊕
k=n

Φk

)
=

(
I(Φn),

m∑
k=n

D1(Φk),
m∑
k=n

D2(Φk), . . . ,
m∑
k=n

DH(Φn)(Φk),O(Φn)

)
,

(2.169)

(iii) it holds for all a ∈ C(R,R) that Ra(
⊕m

k=n Φk) ∈ C(RI(Φn),RO(Φn)), and

(iv) it holds for all a ∈ C(R,R), x ∈ RI(Φn) that(
Ra

(
m⊕
k=n

Φk

))
(x) =

m∑
k=n

(Ra(Φk))(x) (2.170)

(cf. Definitions 2.2.3 and 2.2.34).
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Proof of Lemma 2.2.35. First, note that Lemma 2.2.12 proves that

D
(
Pm−n+1(Φn,Φn+1, . . . ,Φm)

)
=

(
m∑
k=n

D0(Φk),
m∑
k=n

D1(Φk), . . . ,
m∑
k=n

DL(Φn)−1(Φk),
m∑
k=n

DL(Φn)(Φk)

)
=

(
(m− n+ 1)I(Φn),

m∑
k=n

D1(Φk),
m∑
k=n

D2(Φk), . . . ,

m∑
k=n

DL(Φn)−1(Φk), (m− n+ 1)O(Φn)

)
(2.171)

(cf. Definition 2.2.11). Moreover, observe that item (ii) in Lemma 2.2.26 ensures that

D
(
SO(Φn),m−n+1

)
= ((m− n+ 1)O(Φn),O(Φn)) (2.172)

(cf. Definition 2.2.25). This, (2.171), and item (i) in Proposition 2.2.7 demonstrate that

D
(
SO(Φn),m−n+1 •

[
Pm−n+1(Φn,Φn+1, . . . ,Φm)

])
=

(
(m− n+ 1)I(Φn),

m∑
k=n

D1(Φk),
m∑
k=n

D2(Φk), . . . ,
m∑
k=n

DL(Φn)−1(Φk),O(Φn)

)
.

(2.173)

Next note that item (ii) in Lemma 2.2.31 assures that

D
(
TI(Φn),m−n+1

)
= (I(Φn), (m− n+ 1)I(Φn)) (2.174)

(cf. Definition 2.2.30). Combining this, (2.173), and, item (i) in Proposition 2.2.7 proves
that

D
(

m⊕
k=n

Φk

)
= D

(
SO(Φn),(m−n+1) •

[
Pm−n+1(Φn,Φn+1, . . . ,Φm)

]
• TI(Φn),(m−n+1)

)
=

(
I(Φn),

m∑
k=n

D1(Φk),
m∑
k=n

D2(Φk), . . . ,
m∑
k=n

DL(Φn)−1(Φk),O(Φn)

)
.

(2.175)

This establishes items (i) and (ii). Next observe that Lemma 2.2.33 and (2.171) ensure
that for all a ∈ C(R,R), x ∈ RI(Φn) it holds that

Ra([Pm−n+1(Φn,Φn+1, . . . ,Φm)] • TI(Φn),m−n+1) ∈ C(RI(Φn),R(m−n+1)O(Φn)) (2.176)

and (
Ra

(
[Pm−n+1(Φn,Φn+1, . . . ,Φm)] • TI(Φn),m−n+1

))
(x)

=
(
Ra

(
Pm−n+1(Φn,Φn+1, . . . ,Φm)

))
(x, x, . . . , x).

(2.177)

Combining this with item (ii) in Proposition 2.2.13 proves that for all a ∈ C(R,R),
x ∈ RI(Φn) it holds that(

Ra

(
[Pm−n+1(Φn,Φn+1, . . . ,Φm)] • TI(Φn),m−n+1

))
(x)

=
(
(Ra(Φn))(x), (Ra(Φn+1))(x), . . . , (Ra(Φm))(x)

)
∈ R(m−n+1)O(Φn).

(2.178)
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Lemma 2.2.27, (2.172), and Lemma 2.2.8 therefore demonstrate that for all a ∈ C(R,R),
x ∈ RI(Φn) it holds that Ra(

⊕m
k=n Φk) ∈ C(RI(Φn),RO(Φn)) and(

Ra

(
m⊕
k=n

Φk

))
(x)

=
(
Ra

(
SO(Φn),m−n+1 • [Pm−n+1(Φn,Φn+1, . . . ,Φm)] • TI(Φn),m−n+1

))
(x)

=
m∑
k=n

(Ra(Φk))(x).

(2.179)

This establishes items (iii)–(iv). The proof of Lemma 2.2.35 is thus complete.

2.2.8 On the connection to the vectorized description of ANNs

Definition 2.2.36. We denote by T : N→
(⋃

d∈N Rd
)

the function which satisfies for all

L, d ∈ N, l0, l1, . . . , lL ∈ N, Φ = ((W1, B1), (W2, B2), . . . , (WL, BL)) ∈
(�L

m=1(Rlm×lm−1 ×
Rlm)

)
, θ = (θ1, θ2, . . . , θd) ∈ Rd, k ∈ {1, 2, . . . , L} with T (Φ) = θ that

d = P(Φ), Bk =


θ(

∑k−1
i=1 li(li−1+1))+lklk−1+1

θ(
∑k−1
i=1 li(li−1+1))+lklk−1+2

θ(
∑k−1
i=1 li(li−1+1))+lklk−1+3

...
θ(

∑k−1
i=1 li(li−1+1))+lklk−1+lk

, (2.180)

and

Wk =
θ(

∑k−1
i=1 li(li−1+1))+1 θ(

∑k−1
i=1 li(li−1+1))+2 · · · θ(

∑k−1
i=1 li(li−1+1))+lk−1

θ(
∑k−1
i=1 li(li−1+1))+lk−1+1 θ(

∑k−1
i=1 li(li−1+1))+lk−1+2 · · · θ(

∑k−1
i=1 li(li−1+1))+2lk−1

θ(
∑k−1
i=1 li(li−1+1))+2lk−1+1 θ(

∑k−1
i=1 li(li−1+1))+2lk−1+2 · · · θ(

∑k−1
i=1 li(li−1+1))+3lk−1

...
...

. . .
...

θ(
∑k−1
i=1 li(li−1+1))+(lk−1)lk−1+1 θ(

∑k−1
i=1 li(li−1+1))+(lk−1)lk−1+2 · · · θ(

∑k−1
i=1 li(li−1+1))+lklk−1

,
(2.181)

(cf. Definition 2.2.1).

Lemma 2.2.37. Let a, b ∈ N, W = (Wi,j)(i,j)∈{1,2,...,a}×{1,2,...,b} ∈ Ra×b, B = (Bi)i∈{1,2,...,a}
∈ Ra. Then

T
(
AW,B

)
=(

W1,1,W1,2, . . . ,W1,b,W2,1,W2,2, . . . ,W2,b, . . . ,Wa,1,Wa,2, . . . ,Wa,b, B1, B2, . . . , Ba

)
(2.182)

(cf. Definitions 2.2.20 and 2.2.36).

Proof of Lemma 2.2.37. Observe that (2.180) clearly establishes (2.182). The proof of
Lemma 2.2.37 is thus complete.

Lemma 2.2.38. Let L ∈ N, l0, l1, . . . , lL ∈ N, let Wk = (Wk,i,j)(i,j)∈{1,2,...,lk}×{1,2,...,lk−1} ∈
Rlk×lk−1, k ∈ {1, 2, . . . , L}, and let Bk = (Bk,i)i∈{1,2,...,lk} ∈ Rlk , k ∈ {1, 2, . . . , L}. Then
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(i) it holds for all k ∈ {1, 2, . . . , L} that

T
(
((Wk, Bk))

)
=
(
Wk,1,1,Wk,1,2, . . . ,Wk,1,lk−1

,Wk,2,1,Wk,2,2, . . . ,Wk,2,lk−1
, . . . ,

Wk,lk,1,Wk,lk,2, . . . ,Wk,lk,lk−1
, Bk,1, Bk,2, . . . , Bk,lk

)
(2.183)

and

(ii) it holds that

T
((

(W1, B1), (W2, B2), . . . , (WL, BL)
))

=
(
W1,1,1,W1,1,2, . . . ,W1,1,l0 , . . . ,W1,l1,1,W1,l1,2, . . . ,W1,l1,l0 , B1,1, B1,2, . . . , B1,l1 ,

W2,1,1,W2,1,2, . . . ,W2,1,l1 , . . . ,W2,l2,1,W2,l2,2, . . . ,W2,l2,l1 , B2,1, B2,2, . . . , B2,l2 ,

. . . ,

WL,1,1,WL,1,2, . . . ,WL,1,lL−1
, . . .WL,lL,1,WL,lL,2, . . . ,WL,lL,lL−1

,

BL,1, BL,2, . . . , BL,lL

)
(2.184)

(cf. Definition 2.2.36).

Proof of Lemma 2.2.38. Note that Lemma 2.2.37 proves item (i). Moreover, observe that
(2.180) establishes item (ii). The proof of Lemma 2.2.38 is thus complete.

Exercise 2.2.2. Prove or disprove the following statement: The function T is injective
(cf. Definition 2.2.36).

Exercise 2.2.3. Prove or disprove the following statement: The function T is surjective
(cf. Definition 2.2.36).

Exercise 2.2.4. Prove or disprove the following statement: The function T is bijective
(cf. Definition 2.2.36).

Lemma 2.2.39. Let a ∈ C(R,R), Φ ∈ N, L ∈ N, l0, l1, . . . , lL ∈ N satisfy D(Φ) =
(l0, l1, . . . , lL) (cf. Definition 2.2.1). Then it holds for all x ∈ Rl0 that

(Ra(Φ))(x) =


(
N T (Φ),l0

idRlL

)
(x) : L = 1(

N T (Φ),l0
Ma,l1

,Ma,l2
,...,Ma,lL−1

,idRlL

)
(x) : L > 1

(2.185)

(cf. Definitions 2.1.2, 2.1.4, 2.2.3, and 2.2.36).

Proof of Lemma 2.2.39. Throughout this proof let ((W1, B1), (W2, B2), . . . , (WL, BL)) ∈(�L
k=1(Rlk×lk−1×Rlk)

)
satisfy Φ = ((W1, B1), (W2, B2), . . . , (WL, BL)). Note that (2.180)

shows that for all k ∈ {1, 2, . . . , L}, x ∈ Rlk−1 it holds that

Wkx+Bk =
(
AT (Φ),

∑k−1
i=1 li(li−1+1)

lk,lk−1

)
(x) (2.186)
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(cf. Definitions 2.1.1 and 2.2.36). This demonstrates that for all x0 ∈ Rl0 , x1 ∈ Rl1 , . . . , xL
∈ RlL with ∀ k ∈ {1, 2, . . . , L} : xk = Ma,lk(Wkxk−1 +Bk) it holds that

xL−1 = (2.187)
x0 : L = 1(
Ma,lL−1

◦ AT (Φ),
∑L−2
i=1 li(li−1+1)

lL−1,lL−2
◦Ma,lL−2

◦ AT (Φ),
∑L−3
i=1 li(li−1+1)

lL−2,lL−3
◦

. . . ◦Ma,l1 ◦ A
T (Φ),0
l1,l0

)
(x0)

: L > 1

(cf. Definition 2.1.4). Combining this and (2.186) with (2.3) and (2.53) proves that for
all x0 ∈ Rl0 , x1 ∈ Rl1 , . . . , xL ∈ RlL with ∀ k ∈ {1, 2, . . . , L} : xk = Ma,lk(Wkxk−1 + Bk)
it holds that (

Ra(Φ)
)
(x0) = WLxL−1 +BL =

(
AT (Φ),

∑L−1
i=1 li(li−1+1)

lL,lL−1

)
(xL−1)

=


(
N T (Φ),l0

idRlL

)
(x0) : L = 1(

N T (Φ),l0
Ma,l1

,Ma,l2
,...,Ma,lL−1

,idRlL

)
(x0) : L > 1

(2.188)

(cf. Definitions 2.1.2 and 2.2.3). The proof of Lemma 2.2.39 is thus complete.

Corollary 2.2.40. Let Φ ∈ N (cf. Definition 2.2.1). Then it holds for all x ∈ RI(Φ) that(
N T (Φ),D(Φ)
−∞,∞

)
(x) = (Rr(Φ))(x) (2.189)

(cf. Definitions 2.1.6, 2.1.27, 2.2.3, and 2.2.36).

Proof of Corollary 2.2.40. Note that Lemma 2.2.39, (2.50), (2.11), and the fact that for
all d ∈ N it holds that C−∞,∞,d = idRd establish (2.189) (cf. Definition 2.1.12). The proof
of Corollary 2.2.40 is thus complete.
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Chapter 3

Low-dimensional neural network
approximation results

3.1 One-dimensional neural network approximation

results

3.1.1 Linear interpolation of one-dimensional functions

3.1.1.1 On the modulus of continuity

Definition 3.1.1. Let A ⊆ R be a set and let f : A→ R be a function. Then we denote
by wf : [0,∞]→ [0,∞] the function which satisfies for all h ∈ [0,∞] that

wf (h) = sup
({
|f(x)− f(y)| ∈ [0,∞) : (x, y ∈ A with |x− y| ≤ h)

}
∪ {0}

)
(3.1)

and we call wf the modulus of continuity of f .

Lemma 3.1.2. Let a ∈ [−∞,∞], b ∈ [a,∞] and let f : ([a, b] ∩ R) → R be a function.
Then

(i) it holds that wf is non-decreasing,

(ii) it holds that f is uniformly continuous if and only if limh↘0wf (h) = 0,

(iii) it holds that f is globally bounded if and only if wf (∞) <∞,

(iv) it holds for all x, y ∈ [a, b] ∩ R that |f(x)− f(y)| ≤ wf (|x− y|), and

(v) it holds for all h, h ∈ [0,∞] that wf (h+ h) ≤ wf (h) + wf (h)

(cf. Definition 3.1.1).

Proof of Lemma 3.1.2. First, observe that (3.1) implies items (i), (ii), (iii), and (iv).
Moreover, note that (3.1) and the triangle inequality assure that for all h, h ∈ [0,∞] it
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holds that

wf (h+ h)

= sup
({
|f(x)− f(y)| ∈ [0,∞) :

(x, y ∈ [a, b] ∩ R with x ≤ y and |x− y| ≤ (h+ h))
}
∪ {0}

)
= sup

({
|f(x)− f(y)| ∈ [0,∞) :(

x, y, z ∈ [a, b] ∩ R with x ≤ z ≤ y, |x− z| ≤ h, and |y − z| ≤ h
)}
∪ {0}

)
≤ sup

({
|f(x)− f(z)|+ |f(z)− f(y)| ∈ [0,∞) :

(x, y, z ∈ [a, b] ∩ R with x ≤ z ≤ y, |x− z| ≤ h, and |z − y| ≤ h)
}
∪ {0}

)
≤ sup

({
|f(x)− f(z)| ∈ [0,∞) : (x, z ∈ [a, b] ∩ R with x ≤ z and |x− z| ≤ h)

}
∪ {0}

)
+ sup

({
|f(z)− f(y)| ∈ [0,∞) : (z, y ∈ [a, b] ∩ R with z ≤ y and |z − y| ≤ h)

}
∪ {0}

)
= wf (h) + wf (h)

(3.2)

(cf. Definition 3.1.1). This establishes item (v). The proof of Lemma 3.1.2 is thus
complete.

Lemma 3.1.3. Let A ⊆ R, L ∈ [0,∞) and let f : A → R satisfy for all x, y ∈ A that
|f(x)− f(y)| ≤ L|x− y|. Then it holds for all h ∈ [0,∞) that wf (h) ≤ Lh.

Proof of Lemma 3.1.3. Observe that the assumption that for all x, y ∈ A it holds that
|f(x)− f(y)| ≤ L|x− y| and (3.1) imply that for all h ∈ [0,∞) it holds that

wf (h) = sup
({
|f(x)− f(y)| ∈ [0,∞) : (x, y ∈ A with |x− y| ≤ h)

}
∪ {0}

)
≤ sup

({
L|x− y| ∈ [0,∞) : (x, y ∈ A with |x− y| ≤ h)

}
∪ {0}

)
≤ sup({Lh, 0}) = Lh.

(3.3)

The proof of Lemma 3.1.3 is thus complete.

3.1.1.2 Linear interpolation of one-dimensional functions

Definition 3.1.4 (Linear interpolation operator). Let K ∈ N, x0, x1, . . . , xK , f0, f1, . . . , fK
∈ R satisfy x0 < x1 < . . . < xK. Then we denote by L f0,f1,...,fK

x0,x1,...,xK
: R → R the function

which satisfies for all k ∈ {1, 2, . . . , K}, x ∈ (−∞, x0), y ∈ [xk−1, xk), z ∈ [xK ,∞) that
(L f0,f1,...,fK

x0,x1,...,xK
)(x) = f0, (L f0,f1,...,fK

x0,x1,...,xK
)(z) = fK, and

(L f0,f1,...,fK
x0,x1,...,xK

)(y) = fk−1 +
( y−xk−1

xk−xk−1

)
(fk − fk−1). (3.4)

Lemma 3.1.5. Let K ∈ N, x0, x1, . . . , xK , f0, f1, . . . , fK ∈ R satisfy x0 < x1 < . . . < xK.
Then

(i) it holds for all k ∈ {0, 1, . . . , K} that

(L f0,f1,...,fK
x0,x1,...,xK

)(xk) = fk, (3.5)

(ii) it holds for all k ∈ {1, 2, . . . , K}, x ∈ [xk−1, xk] that

(L f0,f1,...,fK
x0,x1,...,xK

)(x) = fk−1 +
( x−xk−1

xk−xk−1

)
(fk − fk−1), (3.6)

and
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(iii) it holds for all k ∈ {1, 2, . . . , K}, x ∈ [xk−1, xk] that

(L f0,f1,...,fK
x0,x1,...,xK

)(x) =
(

xk−x
xk−xk−1

)
fk−1 +

( x−xk−1

xk−xk−1

)
fk. (3.7)

(cf. Definition 3.1.4).

Proof of Lemma 3.1.5. Observe that (3.4) implies items (i) and (ii). Moreover, note that
item (ii) implies that for all k ∈ {1, 2, . . . , K}, x ∈ [xk−1, xk] it holds that

(L f0,f1,...,fK
x0,x1,...,xK

)(x) =
[( xk−xk−1

xk−xk−1

)
−
( x−xk−1

xk−xk−1

)]
fk−1 +

( x−xk−1

xk−xk−1

)
fk

=
(

xk−x
xk−xk−1

)
fk−1 +

( x−xk−1

xk−xk−1

)
fk.

(3.8)

This proves item (iii). The proof of Lemma 3.1.5 is thus complete.

Lemma 3.1.6. Let K ∈ N, x0, x1, . . . , xK ∈ R satisfy x0 < x1 < . . . < xK and let
f : [x0, xK ]→ R be a function. Then

(i) it holds for all x, y ∈ R with x 6= y that∣∣(L f(x0),f(x1),...,f(xK)
x0,x1,...,xK

)(x)− (L f(x0),f(x1),...,f(xK)
x0,x1,...,xK

)(y)
∣∣

≤
(

max
k∈{1,2,...,K}

(
wf (|xk − xk−1|)
|xk − xk−1|

))
|x− y|

(3.9)

and

(ii) it holds that supx∈[x0,xK ]

∣∣(L f(x0),f(x1),...,f(xK)
x0,x1,...,xK )(x) − f(x)

∣∣ ≤ wf (maxk∈{1,2,...,K}|xk −
xk−1|)

(cf. Definitions 3.1.1 and 3.1.4).

Proof of Lemma 3.1.6. Throughout this proof let l : R → R satisfy for all x ∈ R that
l(x) = (L f(x0),f(x1),...,f(xK)

x0,x1,...,xK )(x) and let L ∈ [0,∞] satisfy

L = max
k∈{1,2,...,K}

(
wf (|xk − xk−1|)
|xk − xk−1|

)
(3.10)

(cf. Definitions 3.1.1 and 3.1.4). Observe that item (ii) in Lemma 3.1.5, item (iv) in
Lemma 3.1.2, and (3.10) assure that for all k ∈ {1, 2, . . . , K}, x, y ∈ [xk−1, xk] with x 6= y
it holds that

|l(x)− l(y)| =
∣∣∣( x−xk−1

xk−xk−1

)
(f(xk)− f(xk−1))−

( y−xk−1

xk−xk−1

)
(f(xk)− f(xk−1))

∣∣∣
=

∣∣∣∣(f(xk)− f(xk−1)

xk − xk−1

)
(x− y)

∣∣∣∣ ≤ (wf (|xk − xk−1|)
|xk − xk−1|

)
|x− y| ≤ L|x− y|.

(3.11)

This, item (iv) in Lemma 3.1.2, Lemma 3.1.5, and (3.10) ensure that for all k, l ∈
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{1, 2, . . . , K}, x ∈ [xk−1, xk], y ∈ [xl−1, xl] with k < l and x 6= y it holds that

|l(x)− l(y)|
≤ |l(x)− l(xk)|+ |l(xk)− l(xl−1)|+ |l(xl−1)− l(y)|
= |l(x)− l(xk)|+ |f(xk)− f(xl−1)|+ |l(xl−1)− l(y)|

≤ |l(x)− l(xk)|+

(
l−1∑

j=k+1

|f(xj)− f(xj−1)|

)
+ |l(xl−1)− l(y)|

≤ |l(x)− l(xk)|+

(
l−1∑

j=k+1

wf (|xj − xj−1|)

)
+ |l(xl−1)− l(y)|

≤ L

(
(xk − x) +

(
l−1∑

j=k+1

(xj − xj−1)

)
+ (y − xl−1)

)
= L|x− y|.

(3.12)

Combining this and (3.11) shows that for all x, y ∈ [x0, xK ] with x 6= y it holds that
|l(x) − l(y)| ≤ L|x − y|. This, the fact that for all x, y ∈ (−∞, x0] with x 6= y it holds
that |l(x) − l(y)| = 0 ≤ L|x − y|, the fact that for all x, y ∈ [xK ,∞) with x 6= y it holds
that |l(x) − l(y)| = 0 ≤ L|x − y|, and the triangle inequality hence demonstrate that
for all x, y ∈ R with x 6= y it holds that |l(x) − l(y)| ≤ L|x − y|. This proves item (i).
Moreover, note that (3.1), Lemma 3.1.2, and item (iii) in Lemma 3.1.5 assure that for all
k ∈ {1, 2, . . . , K}, x ∈ [xk−1, xk] it holds that

|l(x)− f(x)| =
∣∣∣∣( xk − x

xk − xk−1

)
f(xk) +

(
x− xk−1

xk − xk−1

)
f(xk−1)− f(x)

∣∣∣∣
=

∣∣∣∣( xk − x
xk − xk−1

)
(f(xk)− f(x)) +

(
x− xk−1

xk − xk−1

)
(f(xk−1)− f(x))

∣∣∣∣
≤
(

xk − x
xk − xk−1

)
|f(xk)− f(x)|+

(
x− xk−1

xk − xk−1

)
|f(xk−1)− f(x)|

≤ wf (|xk − xk−1|)
(

xk − x
xk − xk−1

+
x− xk−1

xk − xk−1

)
= wf (|xk − xk−1|) ≤ wf (maxj∈{1,2,...,K}|xj − xj−1|).

(3.13)

This establishes item (ii). The proof of Lemma 3.1.6 is thus complete.

Lemma 3.1.7. Let K ∈ N, L, x0, x1, . . . , xK ∈ R satisfy x0 < x1 < . . . < xK and let
f : [x0, xK ]→ R satisfy for all x, y ∈ [x0, xK ] that |f(x)− f(y)| ≤ L|x− y|. Then

(i) it holds for all x, y ∈ R that∣∣(L f(x0),f(x1),...,f(xK)
x0,x1,...,xK

)(x)− (L f(x0),f(x1),...,f(xK)
x0,x1,...,xK

)(y)
∣∣ ≤ L|x− y| (3.14)

and

(ii) it holds that supx∈[x0,xK ]

∣∣(L f(x0),f(x1),...,f(xK)
x0,x1,...,xK )(x)−f(x)

∣∣ ≤ L(maxk∈{1,2,...,K}|xk−xk−1|)

(cf. Definition 3.1.4).
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Proof of Lemma 3.1.7. Note that the assumption that for all x, y ∈ [x0, xK ] it holds that
|f(x) − f(y)| ≤ L|x − y|, Lemma 3.1.3, and item (i) in Lemma 3.1.6 demonstrate that
for all x, y ∈ R it holds that∣∣(L f(x0),f(x1),...,f(xK)

x0,x1,...,xK
)(x)− (L f(x0),f(x1),...,f(xK)

x0,x1,...,xK
)(y)

∣∣
≤
(

max
k∈{1,2,...,K}

(
L|xk − xk−1|
|xk − xk−1|

))
|x− y| = L|x− y|.

(3.15)

This proves item (i). Moreover, observe that the assumption that for all x, y ∈ [x0, xK ] it
holds that |f(x) − f(y)| ≤ L|x − y|, Lemma 3.1.3, and item (ii) in Lemma 3.1.6 assure
that

sup
x∈[x0,xK ]

∣∣(L f(x0),f(x1),...,f(xK)
x0,x1,...,xK

)(x)− f(x)
∣∣ ≤ L

(
max

k∈{1,2,...,K}
|xk − xk−1|

)
. (3.16)

This establishes item (ii). The proof of Lemma 3.1.7 is thus complete.

3.1.2 Activation functions as neural networks

Definition 3.1.8 (Activation functions as neural networks). Let n ∈ N. Then we denote
by in ∈ ((Rn×n×Rn)×(Rn×n×Rn)) ⊆ N the neural network given by in = ((In, 0), (In, 0))
(cf. Definitions 2.2.1 and 2.2.9).

Lemma 3.1.9. Let n ∈ N. Then

(i) it holds that D(in) = (n, n, n) ∈ N3,

(ii) it holds for all a ∈ C(R,R) that Ra(in) ∈ C(Rn,Rn), and

(iii) it holds for all a ∈ C(R,R) that Ra(in) = Ma,n

(cf. Definitions 2.1.4, 2.2.1, 2.2.3, and 3.1.8).

Proof of Lemma 3.1.9. Note the fact that in ∈ ((Rn×n×Rn)× (Rn×n×Rn)) ⊆ N ensures
that D(in) = (n, n, n) ∈ N3. This establishes item (i). Next observe the fact that in =
((In, 0), (In, 0)) ∈ ((Rn×n×Rn)× (Rn×n×Rn)) and (2.53) prove that for all a ∈ C(R,R),
x ∈ Rn it holds that Ra(in) ∈ C(Rn,Rn) and

(Ra(in))(x) = In(Ma,n(Inx+ 0)) + 0 = Ma,n(x). (3.17)

This establishes items (ii) and (iii). The proof of Lemma 3.1.9 is thus complete.

Lemma 3.1.10. Let Φ ∈ N (cf. Definition 2.2.1). Then

(i) it holds that

D(iO(Φ) • Φ)

= (D0(Φ),D1(Φ),D2(Φ), . . . ,DL(Φ)−1(Φ),DL(Φ)(Φ),DL(Φ)(Φ)) ∈ NL(Φ)+2,
(3.18)

(ii) it holds for all a ∈ C(R,R) that Ra(iO(Φ) • Φ) ∈ C(RI(Φ),RO(Φ)),

(iii) it holds for all a ∈ C(R,R) that Ra(iO(Φ) • Φ) = Ma,O(Φ) ◦ (Ra(Φ)),
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(iv) it holds that

D(Φ • iI(Φ))

= (D0(Φ),D0(Φ),D1(Φ),D2(Φ), . . . ,DL(Φ)−1(Φ),DL(Φ)(Φ)) ∈ NL(Φ)+2,
(3.19)

(v) it holds for all a ∈ C(R,R) that Ra(Φ • iI(Φ)) ∈ C(RI(Φ),RO(Φ)), and

(vi) it holds for all a ∈ C(R,R) that Ra(Φ • iI(Φ)) = (Ra(Φ)) ◦Ma,I(Φ)

(cf. Definitions 2.1.4, 2.2.3, 2.2.5, and 3.1.8).

Proof of Lemma 3.1.10. Note that Lemma 3.1.9 demonstrates that for all n ∈ N, a ∈
C(R,R), x ∈ Rn it holds that Ra(in) ∈ C(Rn,Rn) and

(Ra(in))(x) = Ma,n(x) (3.20)

(cf. Definitions 2.1.4, 2.2.3, and 3.1.8). Combining this and Proposition 2.2.7 establishes
items (i), (ii), (iii), (iv), (v), and (vi). The proof of Lemma 3.1.10 is thus complete.

3.1.3 Linear interpolation with neural networks

Lemma 3.1.11. Let α, β, h ∈ R, H ∈ N satisfy H = h~(i1 •Aα,β) (cf. Definitions 2.2.1,
2.2.5, 2.2.20, 2.2.23, and 3.1.8). Then

(i) it holds that H = ((α, β), (h, 0)),

(ii) it holds that D(H) = (1, 1, 1) ∈ N3,

(iii) it holds that Rr(H) ∈ C(R,R), and

(iv) it holds for all x ∈ R that (Rr(H))(x) = hmax{αx+ β, 0}

(cf. Definitions 2.1.6 and 2.2.3).

Proof of Lemma 3.1.11. Note that Lemma 2.2.21 ensures that Aα,β = (α, β), D(Aα,β) =
(1, 1) ∈ N2, Rr(Aα,β) ∈ C(R,R), and ∀x ∈ R : (Rr(Aα,β))(x) = αx + β (cf. Defini-
tions 2.1.6 and 2.2.3). Lemmas 3.1.9 and 3.1.10, (2.10), (2.53), and (2.59) therefore imply
that i1 •Aα,β = ((α, β), (1, 0)), D(i1 •Aα,β) = (1, 1, 1) ∈ N3, Rr(i1 •Aα,β) ∈ C(R,R),
and

∀x ∈ R : (Rr(i1 •Aα,β))(x) = r(Rr(Aα,β)(x)) = max{αx+ β, 0}. (3.21)

This, Lemma 2.2.24, and (2.149) ensure that h ~ (i1 •Aα,β) = ((α, β), (h, 0)), Rr(H) ∈
C(R,R), D(H) = (1, 1, 1), and

(Rr(H))(x) = h((Rr(i1 •Aα,β))(x)) = hmax{αx+ β, 0}. (3.22)

This establishes items (i)–(iv). The proof of Lemma 3.1.11 is thus complete.

Lemma 3.1.12. Let K ∈ N, f0, f1, . . . , fK , x0, x1, . . . , xK ∈ R satisfy x0 < x1 < . . . < xK
and let F ∈ N satisfy

F = A1,f0 •
(

K⊕
k=0

((
(fmin{k+1,K}−fk)

(xmin{k+1,K}−xmin{k,K−1})
− (fk−fmax{k−1,0})

(xmax{k,1}−xmax{k−1,0})

)
~ (i1 •A1,−xk)

))
(3.23)

(cf. Definitions 2.2.1, 2.2.5, 2.2.20, 2.2.23, 2.2.34, and 3.1.8). Then
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(i) it holds that D(F) = (1, K + 1, 1) ∈ N3,

(ii) it holds that Rr(F) ∈ C(R,R),

(iii) it holds that Rr(F) = L f0,f1,...,fK
x0,x1,...,xK

, and

(iv) it holds that P(F) = 3K + 4

(cf. Definitions 2.1.6, 2.2.3, and 3.1.4).

Proof of Lemma 3.1.12. Throughout this proof let c0, c1, . . . , cK ∈ R satisfy for all k ∈
{0, 1, . . . , K} that

ck =
(fmin{k+1,K} − fk)

(xmin{k+1,K} − xmin{k,K−1})
−

(fk − fmax{k−1,0})

(xmax{k,1} − xmax{k−1,0})
(3.24)

and let Φ0,Φ1, . . . ,ΦK ∈ ((R1×1×R1)×(R1×1×R1)) ⊆ N satisfy for all k ∈ {0, 1, . . . , K}
that Φk = ck ~ (i1 •A1,−xk). Observe that Lemma 3.1.11 assures that for all k ∈
{0, 1, . . . , K} it holds that Rr(Φk) ∈ C(R,R), D(Φk) = (1, 1, 1) ∈ N3, and ∀x ∈
R : (Rr(Φk))(x) = ck max{x−xk, 0} (cf. Definitions 2.1.6 and 2.2.3). This, Lemma 2.2.22,
Lemma 2.2.35, and (3.23) assure that D(F) = (1, K + 1, 1) ∈ N3 and Rr(F) ∈ C(R,R).
This establishes items (i) and (ii). Moreover, note that item (i) and (2.52) imply that

P(F) = 2(K + 1) + (K + 2) = 3K + 4. (3.25)

This proves item (iv). Next observe that (3.24), Lemma 2.2.22, and Lemma 2.2.35 ensure
that for all x ∈ R it holds that

(Rr(F))(x) = f0 +
K∑
k=0

(Rr(Φk))(x) = f0 +
K∑
k=0

ck max{x− xk, 0}. (3.26)

This and the fact that ∀ k ∈ {0, 1, . . . , K} : x0 ≤ xk assure that for all x ∈ (−∞, x0] it
holds that

(Rr(F))(x) = f0 + 0 = f0. (3.27)

Next we claim that for all k ∈ {1, 2, . . . , K} it holds that

k−1∑
n=0

cn = fk−fk−1

xk−xk−1
. (3.28)

We now prove (3.28) by induction on k ∈ {1, 2, . . . , K}. For the base case k = 1 observe
that (3.24) assures that

∑0
n=0 cn = c0 = f1−f0

x1−x0 . This proves (3.28) in the base case

k = 1. For the induction step note that (3.24) ensures that for all k ∈ {2, 3, . . . , K} with∑k−2
n=0 cn = fk−1−fk−2

xk−1−xk−2
it holds that

k−1∑
n=0

cn = ck−1 +
k−2∑
n=0

cn = fk−fk−1

xk−xk−1
− fk−1−fk−2

xk−1−xk−2
+ fk−1−fk−2

xk−1−xk−2
= fk−fk−1

xk−xk−1
. (3.29)

Induction thus proves (3.28). In addition, observe that (3.26), (3.28), and the fact that
∀ k ∈ {1, 2, . . . , K} : xk−1 < xk show that for all k ∈ {1, 2, . . . , K}, x ∈ [xk−1, xk] it holds
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that

(Rr(F))(x)− (Rr(F))(xk−1) =
K∑
n=0

cn(max{x− xn, 0} −max{xk−1 − xn, 0})

=
k−1∑
n=0

cn[(x− xn)− (xk−1 − xn)] =
k−1∑
n=0

cn(x− xk−1)

= (fk−fk−1

xk−xk−1
)(x− xk−1).

(3.30)

Next we claim that for all k ∈ {1, 2, . . . , K}, x ∈ [xk−1, xk] it holds that

(Rr(F))(x) = fk−1 + (fk−fk−1

xk−xk−1
)(x− xk−1). (3.31)

We now prove (3.31) by induction on k ∈ {1, 2, . . . , K}. For the base case k = 1 observe
that (3.27) and (3.30) demonstrate that for all x ∈ [x0, x1] it holds that

(Rr(F))(x) = (Rr(F))(x0) + (Rr(F))(x)− (Rr(F))(x0) = f0 + (f1−f0

x1−x0 )(x− x0). (3.32)

This proves (3.31) in the base case k = 1. For the induction step note that (3.30)
implies that for all k ∈ {2, 3, . . . , K}, x ∈ [xk−1, xk] with ∀ y ∈ [xk−2, xk−1] : (Rr(F))(y) =

fk−2 + (fk−1−fk−2

xk−1−xk−2
)(y − xk−2) it holds that

(Rr(F))(x) = (Rr(F))(xk−1) + (Rr(F))(x)− (Rr(F))(xk−1)

= fk−2 + (fk−1−fk−2

xk−1−xk−2
)(xk−1 − xk−2) + (fk−fk−1

xk−xk−1
)(x− xk−1)

= fk−1 + (fk−fk−1

xk−xk−1
)(x− xk−1).

(3.33)

Induction thus proves (3.31). Furthermore, observe that (3.24) and (3.28) ensure that

K∑
n=0

cn = cK +
K−1∑
n=0

cn = −fK−fK−1

xK−xK−1
+ fK−fK−1

xK−xK−1
= 0. (3.34)

The fact that ∀ k ∈ {0, 1, . . . , K} : xk ≤ xK and (3.26) hence imply that for all x ∈ [xK ,∞)
it holds that

(Rr(F))(x)− (Rr(F))(xK) =

[
K∑
n=0

cn(max{x− xn, 0} −max{xK − xn, 0})

]

=
K∑
n=0

cn[(x− xn)− (xK − xn)] =
K∑
n=0

cn(x− xK) = 0.

(3.35)

This and (3.31) show that for all x ∈ [xK ,∞) it holds that

(Rr(F))(x) = (Rr(F))(xK) = fK−1 + (fK−fK−1

xK−xK−1
)(xK − xK−1) = fK . (3.36)

Combining this, (3.27), (3.31), and (3.4) establishes item (iii). The proof of Lemma 3.1.12
is thus complete.

Exercise 3.1.1. Prove or disprove the following statement: There exists Φ ∈ N such
that P(Φ) ≤ 16 and

sup
x∈[−2π,2π]

∣∣cos(x)− (Rr(Φ))(x)
∣∣ ≤ 1

2
(3.37)

(cf. Definitions 2.1.6, 2.2.1, and 2.2.3).
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Exercise 3.1.2. Prove or disprove the following statement: There exists Φ ∈ N such
that I(Φ) = 4, O(Φ) = 1, P(Φ) ≤ 60, and ∀x, y, u, v ∈ R : (Rr(Φ))(x, y, u, v) =
max{x, y, u, v} (cf. Definitions 2.1.6, 2.2.1, and 2.2.3).

Exercise 3.1.3. Prove or disprove the following statement: For every m ∈ N there
exists Φ ∈ N such that I(Φ) = 2m, O(Φ) = 1, P(Φ) ≤ 3(2m(2m + 1)), and ∀x =
(x1, x2, . . . , x2m) ∈ R : (Rr(Φ))(x) = max{x1, x2, . . . , x2m} (cf. Definitions 2.1.6, 2.2.1,
and 2.2.3).

3.1.4 Neural network approximations for one-dimensional func-
tions

Lemma 3.1.13. Let K ∈ N, L, a, x0, x1, . . . , xK ∈ R, b ∈ (a,∞) satisfy for all k ∈
{0, 1, . . . , K} that xk = a + k(b−a)

K
, let f : [a, b] → R satisfy for all x, y ∈ [a, b] that

|f(x)− f(y)| ≤ L|x− y|, and let F ∈ N satisfy

F = A1,f(x0) •
(

K⊕
k=0

((
K(f(xmin{k+1,K})−2f(xk)+f(xmax{k−1,0}))

(b−a)

)
~ (i1 •A1,−xk)

))
(3.38)

(cf. Definitions 2.2.1, 2.2.5, 2.2.20, 2.2.23, 2.2.34, and 3.1.8). Then

(i) it holds that D(F) = (1, K + 1, 1),

(ii) it holds that Rr(F) ∈ C(R,R),

(iii) it holds that Rr(F) = L f(x0),f(x1),...,f(xK)
x0,x1,...,xK ,

(iv) it holds for all x, y ∈ R that |(Rr(F))(x)− (Rr(F))(y)| ≤ L|x− y|,

(v) it holds that supx∈[a,b]|(Rr(F))(x)− f(x)| ≤ L(b− a)K−1, and

(vi) it holds that P(F) = 3K + 4

(cf. Definitions 2.1.6, 2.2.3, and 3.1.4).

Proof of Lemma 3.1.13. Note that the fact that ∀ k ∈ {0, 1, . . . , K} : xmin{k+1,K} −
xmin{k,K−1} = xmax{k,1} − xmax{k−1,0} = (b− a)K−1 assures that for all k ∈ {0, 1, . . . , K} it
holds that

(f(xmin{k+1,K})−f(xk))

(xmin{k+1,K}−xmin{k,K−1})
− (f(xk)−f(xmax{k−1,0}))

(xmax{k,1}−xmax{k−1,0})
=

K(f(xmin{k+1,K})−2f(xk)+f(xmax{k−1,0}))

(b−a)
. (3.39)

This and items (i), (ii), (iii), and (iv) in Lemma 3.1.12 prove items (i), (ii), (iii), and (vi).
Combining item (iii) with the assumption that ∀x, y ∈ [a, b] : |f(x) − f(y)| ≤ L|x − y|
and item (i) in Lemma 3.1.7 establishes item (iv). Moreover, note that item (iii), the
assumption that ∀x, y ∈ [a, b] : |f(x)−f(y)| ≤ L|x−y|, item (ii) in Lemma 3.1.7, and the
fact that ∀ k ∈ {1, 2, . . . , K} : xk − xk−1 = (b − a)K−1 demonstrate that for all x ∈ [a, b]
it holds that

|(Rr(F))(x)− f(x)| ≤ L

(
max

k∈{1,2,...,K}
|xk − xk−1|

)
= L(b− a)K−1. (3.40)

This establishes item (v). The proof of Lemma 3.1.13 is thus complete.
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Lemma 3.1.14. Let L, a ∈ R, b ∈ [a,∞), ξ ∈ [a, b], let f : [a, b]→ R satisfy for all x, y ∈
[a, b] that |f(x)− f(y)| ≤ L|x− y|, and let F ∈ N satisfy F = A1,f(ξ) • (0 ~ (i1 •A1,−ξ))
(cf. Definitions 2.2.1, 2.2.5, 2.2.20, 2.2.23, and 3.1.8). Then

(i) it holds that D(F) = (1, 1, 1),

(ii) it holds that Rr(F) ∈ C(R,R),

(iii) it holds for all x ∈ R that (Rr(F))(x) = f(ξ),

(iv) it holds that supx∈[a,b]|(Rr(F))(x)− f(x)| ≤ Lmax{ξ − a, b− ξ}, and

(v) it holds that P(F) = 4

(cf. Definitions 2.1.6 and 2.2.3).

Proof of Lemma 3.1.14. Note that items (i) and (ii) in Lemma 2.2.22, and items (ii)
and (iii) in Lemma 3.1.11 establish items (i) and (ii). In addition, observe that item (iii)
in Lemma 2.2.22 and item (iii) in Lemma 2.2.24 assure that for all x ∈ R it holds that

(Rr(F))(x) = (Rr(0 ~ (i1 •A1,−ξ)))(x) + f(ξ)

= 0
(
(Rr(i1 •A1,−ξ))(x)

)
+ f(ξ) = f(ξ)

(3.41)

(cf. Definitions 2.1.6 and 2.2.3). This establishes item (iii). Next note that (3.41), the fact
that ξ ∈ [a, b], and the fact that for all x, y ∈ [a, b] it holds that |f(x)− f(y)| ≤ L|x− y|
assure that for all x ∈ [a, b] it holds that

|(Rr(F))(x)− f(x)| = |f(ξ)− f(x)| ≤ L|x− ξ| ≤ Lmax{ξ − a, b− ξ}. (3.42)

This establishes item (iv). Moreover, note that (2.52) and item (i) assure that

P(F) = 1(1 + 1) + 1(1 + 1) = 4. (3.43)

This establishes item (v). The proof of Lemma 3.1.14 it thus completed.

Corollary 3.1.15. Let ε ∈ (0,∞), L, a ∈ R, b ∈ (a,∞), K ∈ N0 ∩ [L(b−a)
ε

, L(b−a)
ε

+ 1),

x0, x1, . . . , xK ∈ R satisfy for all k ∈ {0, 1, . . . , K} that xk = a+ k(b−a)
max{K,1} , let f : [a, b]→ R

satisfy for all x, y ∈ [a, b] that |f(x)− f(y)| ≤ L|x− y|, and let F ∈ N satisfy

F = A1,f(x0) •
(

K⊕
k=0

((
K(f(xmin{k+1,K})−2f(xk)+f(xmax{k−1,0}))

(b−a)

)
~ (i1 •A1,−xk)

))
(3.44)

(cf. Definitions 2.2.1, 2.2.5, 2.2.20, 2.2.23, 2.2.34, and 3.1.8). Then

(i) it holds that D(F) = (1, K + 1, 1),

(ii) it holds that Rr(F) ∈ C(R,R),

(iii) it holds for all x, y ∈ R that |(Rr(F))(x)− (Rr(F))(y)| ≤ L|x− y|,

(iv) it holds that supx∈[a,b]|(Rr(F))(x)− f(x)| ≤ L(b−a)
max{K,1} ≤ ε, and

(v) it holds that P(F) = 3K + 4 ≤ 3L(b− a)ε−1 + 7
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(cf. Definitions 2.1.6, 2.2.1, and 2.2.3).

Proof of Corollary 3.1.15. Note that the fact that K ∈ N0 ∩ [L(b−a)
ε

, L(b−a)
ε

+ 1) implies

that L(b−a)
max{K,1} ≤ ε. This, items (i), (ii), (iv), and (v) in Lemma 3.1.13, and items (i), (ii),

(iii), and (iv) in Lemma 3.1.14 establish items (i), (ii), (iii), and (iv). Moreover, note that

the fact that K ≤ 1 + L(b−a)
ε

, item (vi) in Lemma 3.1.13, and item (v) in Lemma 3.1.14
assure that

P(F) = 3K + 4 ≤ 3L(b− a)

ε
+ 7. (3.45)

This establishes item (v). The proof of Corollary 3.1.15 is thus complete.

Definition 3.1.16 (p-norm). We denote by ‖·‖p :
(⋃∞

d=1 Rd
)
→ R, p ∈ [1,∞], the func-

tions which satisfy for all p ∈ [1,∞), d ∈ N, θ = (θ1, θ2, . . . , θd) ∈ Rd that ‖θ‖p =[∑d
i=1|θi|p

]1/p
and ‖θ‖∞ = maxi∈{1,2,...,d}|θi|.

Corollary 3.1.17. Let ε ∈ (0,∞), L ∈ [0,∞), a ∈ R, b ∈ [a,∞) and let f : [a, b] → R
satisfy for all x, y ∈ [a, b] that |f(x) − f(y)| ≤ L|x − y|. Then there exists F ∈ N such
that

(i) it holds that Rr(F) ∈ C(R,R),

(ii) it holds that H(F) = 1,

(iii) it holds that D1(F) ≤ L(b− a)ε−1 + 2,

(iv) it holds for all x, y ∈ R that |(Rr(F))(x)− (Rr(F))(y)| ≤ L|x− y|,

(v) it holds that supx∈[a,b]|(Rr(F))(x)− f(x)| ≤ ε,

(vi) it holds that P(F) = 3(D1(F)) + 1 ≤ 3L(b− a)ε−1 + 7, and

(vii) it holds that ‖T (F)‖∞ ≤ max{1, |a|, |b|, 2L, |f(a)|}

(cf. Definitions 2.1.6, 2.2.1, 2.2.3, 2.2.36, and 3.1.16).

Proof of Corollary 3.1.17. Throughout this proof assume w.l.o.g. that a < b, let K ∈
N0∩[L(b−a)

ε
, L(b−a)

ε
+1), x0, x1, . . . , xK ∈ R, c0, c1, . . . , cK ∈ R satisfy for all k ∈ {0, 1, . . . , K}

that xk = a+ k(b−a)
max{K,1} and

ck =
K(f(xmin{k+1,K})− 2f(xk) + f(xmax{k−1,0}))

(b− a)
, (3.46)

and let F ∈ N satisfy

F = A1,f(x0) •
(

K⊕
k=0

(ck ~ (i1 •A1,−xk))

)
(3.47)

(cf. Definitions 2.2.1, 2.2.5, 2.2.20, 2.2.23, 2.2.34, and 3.1.8). Note that Corollary 3.1.15
implies that

(I) it holds that D(F) = (1, K + 1, 1),

(II) it holds that Rr(F) ∈ C(R,R),
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(III) it holds for all x, y ∈ R that |(Rr(F))(x)− (Rr(F))(y)| ≤ L|x− y|,

(IV) it holds that supx∈[a,b]|(Rr(F))(x)− f(x)| ≤ ε, and

(V) it holds that P(F) = 3K + 4

(cf. Definitions 2.1.6 and 2.2.3). This establishes items (i), (iv), and (v). Next note that

item (I) and the fact that K ≤ 1 + L(b−a)
ε

prove items (ii) and (iii). Next observe that
items (I) and (V) imply that

P(F) = 3K + 4 = 3(K + 1) + 1 = 3(D1(F)) + 1 ≤ 3L(b−a)
ε

+ 7. (3.48)

This establishes item (vi). In the next step we observe that Lemma 3.1.11 shows that for
all k ∈ {0, 1, . . . , K} it holds that

ck ~ (i1 •A1,−xk) = ((1,−xk), (ck, 0)). (3.49)

Combining this with (2.168), (2.161), (2.154), and Lemma 2.2.6 demonstrates that

F =





1
1
...
1

,

−x0

−x1
...
−xK


, ((c0 c1 · · · cK

)
, f(x0)

)


∈ (R(K+1)×1 × RK+1)× (R1×(K+1) × R).

(3.50)

Lemma 2.2.38 therefore ensures that

‖T (F)‖∞ = max{|x0|, |x1|, . . . , |xK |, |c0|, |c1|, . . . , |cK |, |f(x0)|, 1} (3.51)

(cf. Definitions 2.2.36 and 3.1.16). In addition, note that the assumption that for all
x, y ∈ [a, b] it holds that |f(x) − f(y)| ≤ L|x − y| and the fact that ∀ k ∈ N ∩ (0, K +
1): xk − xk−1 = (b− a)[max{K, 1}]−1 imply that for all k ∈ {0, 1, . . . , K} it holds that

|ck| ≤
K(|f(xmin{k+1,K})− f(xk)|+ |f(xmax{k−1,0}))− f(xk)|

(b− a)

≤
KL(|xmin{k+1,K} − xk|+ |xmax{k−1,0} − xk|)

(b− a)

≤ 2KL(b− a)[max{K, 1}]−1

(b− a)
≤ 2L.

(3.52)

This and (3.51) establish item (vii). The proof of Corollary 3.1.17 is thus complete.

Corollary 3.1.18. Let L, a ∈ R, b ∈ [a,∞) and let f : [a, b] → R satisfy for all x, y ∈
[a, b] that |f(x)− f(y)| ≤ L|x− y|. Then there exist C ∈ R and F = (Fε)ε∈(0,1] : (0, 1]→
N such that for all ε ∈ (0, 1] it holds that Rr(Fε) ∈ C(R,R), supx∈[a,b]|(Rr(Fε))(x) −
f(x)| ≤ ε, H(Fε) = 1, ‖T (Fε)‖∞ ≤ max{1, |a|, |b|, 2L, |f(a)|}, and P(Fε) ≤ Cε−1 (cf.
Definitions 2.1.6, 2.2.1, 2.2.3, 2.2.36, and 3.1.16).

Proof of Corollary 3.1.18. Throughout this proof assume w.l.o.g. that L ≥ 0 and let
C = 3L(b− a) + 7. Observe that for all ε ∈ (0, 1] it holds that

3L(b− a)ε−1 + 7 ≤ 3L(b− a)ε−1 + 7ε−1 = Cε−1. (3.53)
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This and Corollary 3.1.17 establish that there exists F = (Fε)ε∈(0,1] : (0, 1] → N such
that for all ε ∈ (0, 1] it holds that Rr(Fε) ∈ C(R,R), supx∈[a,b]|(Rr(Fε))(x) − f(x)| ≤ ε,
H(Fε) = 1, ‖T (Fε)‖∞ ≤ max{|a|, |b|, 2L, |f(a)|}, and

P(Fε) ≤ 3L(b− a)ε−1 + 7 ≤ Cε−1 (3.54)

(cf. Definitions 2.1.6, 2.2.1, 2.2.3, 2.2.36, and 3.1.16). The proof of Corollary 3.1.18 is
thus complete.

Exercise 3.1.4. Prove or disprove the following statement: There exists Φ ∈ N such
that P(Φ) ≤ 10 and

sup
x∈[0,10]

∣∣√x− (Rr(Φ))(x)
∣∣ ≤ 1

4
(3.55)

(cf. Definitions 2.1.6, 2.2.1, and 2.2.3).

3.2 Multi-dimensional ANN approximation results

3.2.1 Approximations for Lipschitz continuous functions

Lemma 3.2.1. Let (E, δ) be a metric space, let L ∈ [0,∞), D ⊆ E, M ⊆ E satisfy
∅ 6=M ⊆ D, let f : D → R satisfy for all x ∈ D, y ∈ M that |f(x) − f(y)| ≤ Lδ(x, y),
and let F : E → R ∪ {∞} satisfy for all x ∈ E that

F (x) = sup
y∈M

[f(y)− Lδ(x, y)]. (3.56)

Then

(i) it holds for all x ∈M that F (x) = f(x),

(ii) it holds for all x ∈ D that F (x) ≤ f(x),

(iii) it holds for all x ∈ E that F (x) <∞,

(iv) it holds for all x, y ∈ E that |F (x)− F (y)| ≤ Lδ(x, y), and

(v) it holds for all x ∈ D that

|F (x)− f(x)| ≤ 2L

[
inf
y∈M

δ(x, y)

]
. (3.57)

Proof of Lemma 3.2.1. First, observe that the assumption that ∀x ∈ D, y ∈M : |f(x)−
f(y)| ≤ Lδ(x, y) ensures that for all x ∈ D, y ∈M it holds that

f(y) + Lδ(x, y) ≥ f(x) ≥ f(y)− Lδ(x, y). (3.58)

Hence, we obtain that for all x ∈ D it holds that

f(x) ≥ sup
y∈M

[f(y)− Lδ(x, y)] = F (x). (3.59)

This establishes item (ii). Moreover, note that (3.56) implies that for all x ∈M it holds
that

F (x) ≥ f(x)− Lδ(x, x) = f(x). (3.60)
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This and (3.59) establish item (i). Next note that (3.58) (applied for all y, z ∈ M with
x x y, y x z) and the triangle inequality ensure that for all x ∈ E, y, z ∈ M it holds
that

f(y)− Lδ(x, y) ≤ f(z) + Lδ(y, z)− Lδ(x, y) ≤ f(z) + Lδ(x, z). (3.61)

Hence, we obtain that for all x ∈ E, z ∈M it holds that

F (x) = sup
y∈M

[f(y)− Lδ(x, y)] ≤ f(z) + Lδ(x, z) <∞. (3.62)

This proves item (iii). Combining item (iii) with (3.56) and the triangle inequality shows
that for all x, y ∈ E it holds that

F (x)− F (y) =

[
sup
v∈M

(f(v)− Lδ(x, v))

]
−
[

sup
w∈M

(f(w)− Lδ(y, w))

]
= sup

v∈M

[
f(v)− Lδ(x, v)− sup

w∈M
(f(w)− Lδ(y, w))

]
≤ sup

v∈M

[
f(v)− Lδ(x, v)− (f(v)− Lδ(y, v))

]
= sup

v∈M
(Lδ(y, v)− Lδ(x, v))

≤ sup
v∈M

(Lδ(y, x) + Lδ(x, v)− Lδ(x, v)) = Lδ(x, y).

(3.63)

This and the fact that for all x, y ∈ E it holds that δ(x, y) = δ(y, x) establish item (iv).
Moreover, observe that items (i) and (iv), the triangle inequality, and the assumption
that ∀x ∈ D, y ∈M : |f(x)− f(y)| ≤ Lδ(x, y) ensure that for all x ∈ D it holds that

|F (x)− f(x)| = inf
y∈M
|F (x)− F (y) + f(y)− f(x)|

≤ inf
y∈M

(|F (x)− F (y)|+ |f(y)− f(x)|)

≤ inf
y∈M

(2Lδ(x, y)) = 2L

[
inf
y∈M

δ(x, y)

]
.

(3.64)

This establishes item (v). The proof of Lemma 3.2.1 is thus complete.

Corollary 3.2.2. Let (E, δ) be a metric space, let L ∈ [0,∞), M ⊆ E satisfy M 6= ∅,
let f : E → R satisfy for all x ∈ E, y ∈ M that |f(x) − f(y)| ≤ Lδ(x, y), and let
F : E → R ∪ {∞} satisfy for all x ∈ E that

F (x) = sup
y∈M

[f(y)− Lδ(x, y)]. (3.65)

Then

(i) it holds for all x ∈M that F (x) = f(x),

(ii) it holds for all x ∈ E that F (x) ≤ f(x),

(iii) it holds for all x, y ∈ E that |F (x)− F (y)| ≤ Lδ(x, y), and
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(iv) it holds for all x ∈ E that

|F (x)− f(x)| ≤ 2L

[
inf
y∈M

δ(x, y)

]
. (3.66)

Proof of Corollary 3.2.2. Note that Lemma 3.2.1 establishes items (i), (ii), (iii), and (iv).
The proof of Corollary 3.2.2 is thus complete.

Exercise 3.2.1. Prove or disprove the following statement: There exists Φ ∈ N such
that I(Φ) = 2, O(Φ) = 1, P(Φ) ≤ 60 000 000, and

sup
x,y∈[0,2π]

|sin(x) sin(y)− (Rr(Φ))(x, y)| ≤ 1
5
. (3.67)

3.2.2 ANN representations

3.2.2.1 ANN representations for the 1-norm

Definition 3.2.3 (1-norm ANN representations). We denote by (Ld)d∈N ⊆ N the neural
networks which satisfy that

(i) it holds that

L1 =

(((
1
−1

)
,

(
0
0

))
,
((

1 1
)
,
(
0
)))
∈ (R2×1 × R2)× (R1×2 × R1) (3.68)

and

(ii) it holds for all d ∈ {2, 3, 4, . . .} that Ld = S1,d •Pd(L1,L1, . . . ,L1)

(cf. Definitions 2.2.1, 2.2.5, 2.2.11, and 2.2.25).

Proposition 3.2.4. Let d ∈ N. Then

(i) it holds that D(Ld) = (d, 2d, 1),

(ii) it holds that Rr(Ld) ∈ C(Rd,R), and

(iii) it holds for all x ∈ Rd that (Rr(Ld))(x) = ‖x‖1

(cf. Definitions 2.1.6, 2.2.1, 2.2.3, 3.1.16, and 3.2.3).

Proof of Proposition 3.2.4. Note that the fact that D(L1) = (1, 2, 1) and Lemma 2.2.12
show that for all d ∈ {2, 3, 4, . . .} it holds that D(Pd(L1,L1, . . . ,L1)) = (d, 2d, d) (cf.
Definitions 2.2.1, 2.2.11, and 3.2.3). Combining this, Proposition 2.2.7, and Lemma 2.2.21
ensures that for all d ∈ {2, 3, 4, . . .} it holds that D(S1,d •Pd(L1,L1, . . . ,L1)) = (d, 2d, 1)
(cf. Definitions 2.2.5 and 2.2.25). This establishes item (i). Furthermore, observe that
(3.68) assures that for all x ∈ R it holds that

(Rr(L1))(x) = r(x) + r(−x) = max{x, 0}+ max{−x, 0} = |x| = ‖x‖1 (3.69)

(cf. Definitions 2.1.6, 2.2.3, and 3.1.16). Combining this and Proposition 2.2.13 shows
that for all d ∈ {2, 3, 4, . . .}, x = (x1, x2, . . . , xd) ∈ Rd it holds that(

Rr(Pd(L1,L1, . . . ,L1))
)
(x) = (|x1|, |x2|, . . . , |xd|). (3.70)
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This and Lemma 2.2.26 demonstrate that for all d ∈ {2, 3, 4, . . .}, x = (x1, x2, . . . , xd) ∈
Rd it holds that

(Rr(Ld))(x) =
(
Rr(S1,d •Pd(L1,L1, . . . ,L1))

)
(x)

=
(
Rr(S1,d)

)
(|x1|, |x2|, . . . , |xd|) =

d∑
n=1

|xn| = ‖x‖1.
(3.71)

This establishes items (ii)–(iii). The proof of Proposition 3.2.4 is thus complete.

Lemma 3.2.5. Let d ∈ N. Then

(i) it holds that B1,Ld = 0 ∈ R2d,

(ii) it holds that B2,Ld = 0 ∈ R,

(iii) it holds that W1,Ld ∈ {−1, 0, 1}(2d)×d,

(iv) it holds for all x ∈ Rd that ‖W1,Ldx‖∞ = ‖x‖∞, and

(v) it holds that W2,Ld = (1 1 · · · 1) ∈ R1×(2d)

(cf. Definitions 2.2.1, 3.1.16, and 3.2.3).

Proof of Lemma 3.2.5. Throughout this proof assume w.l.o.g. that d > 1. Note that the
fact that B1,L1 = 0 ∈ R2, the fact that B2,L1 = 0 ∈ R, the fact that B1,S1,d

= 0 ∈ R, and
the fact that Ld = S1,d • Pd(L1,L1, . . . ,L1) establish items (i)–(ii) (cf. Definitions 2.2.1,
2.2.5, 2.2.11, 2.2.25, and 3.2.3). In addition, observe that the fact that

W1,L1 =

(
1
−1

)
and W1,Ld =


W1,L1 0 · · · 0

0 W1,L1 · · · 0
...

...
. . .

...
0 0 · · · W1,L1

 ∈ R(2d)×d (3.72)

proves item (iii). Next note that (3.72) implies item (iv). Moreover, note that the fact
that B2,L1 = (1 1) and the fact that Ld = S1,d •Pd(L1,L1, . . . ,L1) show that

W2,Ld =
(
1 1 · · · 1

)︸ ︷︷ ︸
∈R1×d


W2,L1 0 · · · 0

0 W2,L1 · · · 0
...

...
. . .

...
0 0 · · · W2,L1


︸ ︷︷ ︸

∈Rd×(2d)

=
(
1 1 · · · 1

)
∈ R1×(2d).

(3.73)
This establishes item (v). The proof of Lemma 3.2.5 is thus complete.

3.2.2.2 ANN representations for maxima

Lemma 3.2.6. There exist unique (φd)d∈N ⊆ N which satisfy that

(i) it holds for all d ∈ N that I(φd) = d,

(ii) it holds for all d ∈ N that O(φd) = 1,
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(iii) it holds that φ1 = A1,0 ∈ R1×1 × R1,

(iv) it holds that

φ2 =

1 −1
0 1
0 −1

,
0

0
0

, ((1 1 −1
)
,
(
0
)) ∈ (R3×2 × R3)× (R1×3 × R1),

(3.74)

(v) it holds for all d ∈ {2, 3, 4, . . .} that φ2d = φd •
(
Pd(φ2, φ2, . . . , φ2)

)
, and

(vi) it holds for all d ∈ {2, 3, 4, . . .} that φ2d−1 = φd •
(
Pd(φ2, φ2, . . . , φ2, I1)

)
(cf. Definitions 2.2.1, 2.2.5, 2.2.11, 2.2.18, and 2.2.20).

Proof of Lemma 3.2.6. Throughout this proof let ψ ∈ N satisfy

ψ =

1 −1
0 1
0 −1

,
0

0
0

, ((1 1 −1
)
,
(
0
)) ∈ (R3×2 × R3)× (R1×3 × R1) (3.75)

(cf. Definition 2.2.1). Note that the fact that I(ψ) = 2, the fact that O(ψ) = 1, the
fact that L(ψ) = L(I1) = 2, Lemma 2.2.12, and Lemma 2.2.19 assure that for all d ∈ N
it holds that I(Pd(ψ, ψ, . . . , ψ)) = 2d, O(Pd(ψ, ψ, . . . , ψ)) = d, I(Pd(ψ, ψ, . . . , ψ, I1)) =
2d− 1, and O(Pd(ψ, ψ, . . . , ψ, I1)) = d (cf. Definitions 2.2.11 and 2.2.18). This, Proposi-
tion 2.2.7, and induction establish that there exists unique φd ∈ N, d ∈ N, which satisfy
that for all d ∈ N it holds that I(φd) = d, O(φd) = 1, and

φd =


A1,0 : d = 1

ψ : d = 2

φd/2 •
(
Pd/2(ψ, ψ, . . . , ψ)

)
: d ∈ {4, 6, 8, . . .}

φ(d+1)/2 •
(
P(d+1)/2(ψ, ψ, . . . , ψ, I1)

)
: d ∈ {3, 5, 7, . . .}.

(3.76)

The proof of Lemma 3.2.6 is thus complete.

Definition 3.2.7 (Maxima ANN representations). We denote by (Md)d∈N ⊆ N the neural
networks which satisfy that

(i) it holds for all d ∈ N that I(Md) = d,

(ii) it holds for all d ∈ N that O(Md) = 1,

(iii) it holds that M1 = A1,0 ∈ R1×1 × R1,

(iv) it holds that

M2 =

1 −1
0 1
0 −1

,
0

0
0

, ((1 1 −1
)
,
(
0
)) ∈ (R3×2 × R3)× (R1×3 × R1),

(3.77)

(v) it holds for all d ∈ {2, 3, 4, . . .} that M2d = Md •
(
Pd(M2,M2, . . . ,M2)

)
, and
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(vi) it holds for all d ∈ {2, 3, 4, . . .} that M2d−1 = Md •
(
Pd(M2,M2, . . . ,M2, I1)

)
(cf. Definitions 2.2.1, 2.2.5, 2.2.11, 2.2.18, and 2.2.20).

Definition 3.2.8 (Floor and ceiling of real numbers). We denote by d·e : R → Z and
b·c : R → Z the functions which satisfy for all x ∈ R that dxe = min(Z ∩ [x,∞)) and
bxc = max(Z ∩ (−∞, x]).

Proposition 3.2.9. Let d ∈ N. Then

(i) it holds that H(Md) = dlog2(d)e,

(ii) it holds for all i ∈ N that Di(Md) ≤ 3
⌈
d
2i

⌉
,

(iii) it holds that Rr(Md) ∈ C(Rd,R), and

(iv) it holds for all x = (x1, x2, . . . , xd) ∈ Rd that (Rr(Md))(x) = max{x1, x2, . . . , xd}

(cf. Definitions 2.1.6, 2.2.1, 2.2.3, 3.2.7, and 3.2.8).

Proof of Proposition 3.2.9. Throughout this proof assume w.l.o.g. that d > 1. Note that
(3.77) ensures that H(M2) = 1 (cf. Definitions 2.2.1 and 3.2.7). This and (2.111) demon-
strate that for all d ∈ {2, 3, 4, . . .} it holds that

H(Pd(M2,M2, . . . ,M2)) = H(Pd(M2,M2, . . . ,M2, I1)) = H(M2) = 1 (3.78)

(cf. Definitions 2.2.11 and 2.2.18). Combining this with Proposition 2.2.7 establishes that
for all d ∈ {3, 4, 5, . . .} it holds that

H(Md) = H(Mdd/2e) + 1 (3.79)

(cf. Definition 3.2.8). This assures that for all d ∈ {4, 6, 8, . . .} with H(Md/2) = dlog2(d/2)e
it holds that

H(Md) = dlog2(d/2)e+ 1 = dlog2(d)− 1e+ 1 = dlog2(d)e. (3.80)

Moreover, note that (3.79) and the fact that for all d ∈ {3, 5, 7, . . .} it holds that dlog2(d+
1)e = dlog2(d)e ensure that for all d ∈ {3, 5, 7, . . .} with H(Mdd/2e) = dlog2(dd/2e)e it holds
that

H(Md) =
⌈
log2(dd/2e)

⌉
+ 1 =

⌈
log2((d+1)/2)

⌉
+ 1

= dlog2(d + 1)− 1e+ 1 = dlog2(d + 1)e = dlog2(d)e.
(3.81)

Combining this and (3.80) demonstrates that for all d ∈ {3, 4, 5, . . .} with ∀ k ∈ {2, 3, . . . ,
d − 1} : H(Mk) = dlog2(k)e it holds that H(Md) = dlog2(d)e. The fact that H(M2) = 1
and induction hence establish item (i). Next note that the fact that D(M2) = (2, 3, 1)
assure that for all i ∈ N it holds that

Di(M2) ≤ 3 = 3
⌈

2
2i

⌉
. (3.82)

Moreover, observe that Proposition 2.2.7 and Lemma 2.2.12 imply that for all d ∈
{2, 3, 4, . . .}, i ∈ N it holds that

Di(M2d) =

{
3d : i = 1

Di−1(Md) : i ≥ 2
(3.83)
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and

Di(M2d−1) =

{
3d− 1 : i = 1

Di−1(Md) : i ≥ 2.
(3.84)

This assures that for all d ∈ {2, 4, 6, . . .} it holds that

D1(Md) = 3( d
2
) ≤ 3

⌈
d
2

⌉
. (3.85)

Moreover, note that (3.84) ensures that for all d ∈ {3, 5, 7, . . .} it holds that

D1(Md) = 3
⌈
d
2

⌉
− 1 ≤ 3

⌈
d
2

⌉
. (3.86)

This and (3.85) show that for all d ∈ {2, 3, . . .} it holds that

D1(Md) ≤ 3
⌈
d
2

⌉
. (3.87)

In addition, observe that (3.83) demonstrates that for all d ∈ {4, 6, 8, . . .}, i ∈ {2, 3, . . .}
with Di−1(Md/2) ≤ 3

⌈
(d/2) 1

2i−1

⌉
it holds that

Di(Md) = Di−1(Md/2) ≤ 3
⌈
(d/2) 1

2i−1

⌉
= 3
⌈

d
2i

⌉
. (3.88)

Furthermore, note that the fact that for all d ∈ {3, 5, 7, . . .}, i ∈ N it holds that
⌈
d+1
2i

⌉
=⌈

d
2i

⌉
and (3.84) assure that for all d ∈ {3, 5, 7, . . .}, i ∈ {2, 3, . . .} with Di−1(Mdd/2e) ≤

3
⌈
dd/2e 1

2i−1

⌉
it holds that

Di(Md) = Di−1(Mdd/2e) ≤ 3
⌈
dd/2e 1

2i−1

⌉
= 3
⌈
d+1
2i

⌉
= 3
⌈

d
2i

⌉
. (3.89)

This and (3.88) ensure that for all d ∈ {3, 4, . . .}, i ∈ {2, 3, . . .} with ∀ k ∈ {2, 3, . . . , d−
1}, j ∈ {1, 2, . . . , i− 1} : Dj(Mk) ≤ 3

⌈
k
2j

⌉
it holds that

Di(Md) ≤ 3
⌈

d
2i

⌉
. (3.90)

Combining this, (3.82), and (3.87) with induction establishes item (ii). Next observe that
(3.77) ensures that for all x = (x1, x2) ∈ R2 it holds that

(Rr(M2))(x) = max{x1 − x2, 0}+ max{x2, 0} −max{−x2, 0}
= max{x1 − x2, 0}+ x2 = max{x1, x2}

(3.91)

(cf. Definitions 2.1.6 and 2.2.3). Proposition 2.2.13, Proposition 2.2.7, Lemma 2.2.19,
and induction hence imply that for all d ∈ {2, 3, 4, . . .}, x = (x1, x2, . . . , xd) ∈ Rd it
holds that Rr(Md) ∈ C(Rd,R) and (Rr(Md))(x) = max{x1, x2, . . . , xd}. This establishes
items (iii)–(iv). The proof of Proposition 3.2.9 is thus complete.

Lemma 3.2.10. Let d ∈ N, i ∈ {1, 2, . . . ,L(Md)} (cf. Definitions 2.2.1 and 3.2.7). Then

(i) it holds that Bi,Md
= 0 ∈ RDi(Md),

(ii) it holds that Wi,Md
∈ {−1, 0, 1}Di(Md)×Di−1(Md), and

(iii) it holds for all x ∈ Rd that ‖W1,Md
x‖∞ ≤ 2‖x‖∞

(cf. Definition 3.1.16).
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Proof of Lemma 3.2.10. Throughout this proof assume w.l.o.g. that d > 2 (cf. items (iii)–
(iv) in Definition 3.2.7) and let A1 ∈ R3×2, A2 ∈ R1×3, C1 ∈ R2×1, C2 ∈ R1×2 satisfy

A1 =

1 −1
0 1
0 −1

, A2 =
(
1 1 −1

)
, C1 =

(
1
−1

)
, and C2 =

(
1 −1

)
.

(3.92)

Note that items (iv)–(vi) in Definition 3.2.7 assure that for all d ∈ {2, 3, 4, . . .} it holds
that

W1,M2d−1 =


A1 0 · · · 0 0
0 A1 · · · 0 0
...

...
. . .

...
...

0 0 · · · A1 0
0 0 · · · 0 C1


︸ ︷︷ ︸

∈R(3d−1)×(2d−1)

, W1,M2d =


A1 0 · · · 0
0 A1 · · · 0
...

...
. . .

...
0 0 · · · A1


︸ ︷︷ ︸

∈R(3d)×(2d)

,

B1,M2d−1 = 0 ∈ R3d−1, and B1,M2d = 0 ∈ R3d.

(3.93)

This and (3.92) proves item (iii). Furthermore, note that (3.93) and item (iv) in Defini-
tion 3.2.7 imply that for all d ∈ {2, 3, 4, . . .} it holds that B1,Md = 0. Items (iv)–(vi) in
Definition 3.2.7 hence ensures that for all d ∈ {2, 3, 4, . . .} it holds that

W2,M2d−1 =W1,Md


A2 0 · · · 0 0
0 A2 · · · 0 0
...

...
. . .

...
...

0 0 · · · A2 0
0 0 · · · 0 C2


︸ ︷︷ ︸

∈Rd×(3d−1)

, W2,M2d =W1,Md


A2 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · A2


︸ ︷︷ ︸

∈Rd×(3d)

,

B2,M2d−1 = B1,Md = 0, and B2,M2d = B1,Md = 0.

(3.94)

Combining this and item (iv) in Definition 3.2.7 shows that for all d ∈ {2, 3, 4, . . .} it holds
that B2,Md = 0. Moreover, note that (2.59) demonstrates that for all d ∈ {2, 3, 4, . . . , },
i ∈ {3, 4, . . . ,L(Md) + 1} it holds that

Wi,M2d−1 =Wi,M2d =Wi−1,Md and Bi,M2d−1 = Bi,M2d = Bi−1,Md . (3.95)

This, (3.92), (3.93), (3.94), the fact that for all d ∈ {2, 3, 4, . . .} it holds that B2,Md = 0,
and induction establish items (i)–(ii). The proof of Lemma 3.2.10 is thus complete.

3.2.2.3 ANN representations for maximum convolutions

Lemma 3.2.11. Let d,K ∈ N, L ∈ [0,∞), x1, x2, . . . , xK ∈ Rd, y = (y1, y2, . . . , yK) ∈ RK,
Φ ∈ N satisfy

Φ = MK •A−L IK ,y •PK

(
Ld •AId,−x1 ,Ld •AId,−x2 , . . . ,Ld •AId,−xK

)
• TK,d (3.96)

(cf. Definitions 2.2.1, 2.2.5, 2.2.9, 2.2.11, 2.2.20, 2.2.30, 3.2.3, and 3.2.7). Then
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(i) it holds that I(Φ) = d,

(ii) it holds that O(Φ) = 1,

(iii) it holds that H(Φ) = dlog2(K)e+ 1,

(iv) it holds that D1(Φ) = 2dK,

(v) it holds for all i ∈ {2, 3, . . .} that Di(Φ) ≤ 3
⌈

K
2i−1

⌉
,

(vi) it holds that ‖T (Φ)‖∞ ≤ max{1, L,maxk∈{1,2,...,K}‖xk‖∞, 2‖y‖∞}, and

(vii) it holds for all x ∈ Rd that (Rr(Φ))(x) = maxk∈{1,2,...,K}(yk − L‖x− xk‖1)

(cf. Definitions 2.1.6, 2.2.3, 2.2.36, 3.1.16, and 3.2.8).

Proof of Lemma 3.2.11. Throughout this proof let Ψk ∈ N, k ∈ {1, 2, . . . , K}, satisfy for
all k ∈ {1, 2, . . . , K} that Ψk = Ld •AId,−xk , let Ξ ∈ N satisfy

Ξ = A−L IK ,y •PK

(
Ψ1,Ψ2, . . . ,ΨK

)
• TK,d, (3.97)

and let ~·~ :
⋃
m,n∈NRm×n → [0,∞) satisfy for all m,n ∈ N, M = (Mi,j)i∈{1,...,m}, j∈{1,...,n}

∈ Rm×n that ~M~ = maxi∈{1,...,m}, j∈{1,...,n}|Mi,j|. Observe that (3.96) and Proposi-
tion 2.2.7 ensure that O(Φ) = O(MK) = 1 and I(Φ) = I(TK,d) = d. This proves
items (i)–(ii). Moreover, observe that the fact that for all m,n ∈ N, W ∈ Rm×n, B ∈ Rm

it holds that H(AW,B) = 0 = H(TK,d), the fact that H(Ld) = 1, and Proposition 2.2.7
assure that

H(Ξ) = H(A−L IK ,y) +H(PK(Ψ1,Ψ2, . . . ,ΨK)) +H(TK,d) = H(Ψ1) = H(Ld) = 1.
(3.98)

Proposition 2.2.7 and Proposition 3.2.9 hence ensure that

H(Φ) = H(MK • Ξ) = H(MK) +H(Ξ) = dlog2(K)e+ 1 (3.99)

(cf. Definition 3.2.8). This establishes item (iii). Next observe that the fact that H(Ξ) =
1, Proposition 2.2.7, and Proposition 3.2.9 assure that for all i ∈ {2, 3, . . .} it holds that

Di(Φ) = Di−1(MK) ≤ 3
⌈

K
2i−1

⌉
. (3.100)

This proves item (v). Furthermore, note that Proposition 2.2.7, Proposition 2.2.14, and
Proposition 3.2.4 assure that

D1(Φ) = D1(Ξ) = D1(PK(Ψ1,Ψ2, . . . ,ΨK)) =
K∑
i=1

D1(Ψi) =
K∑
i=1

D1(Ld) = 2dK. (3.101)

This establishes item (iv). Next observe that (2.59) and Lemma 3.2.10 imply that

Φ =
(
(W1,Ξ,B1,Ξ), (W1,MK

W2,Ξ,W1,MK
B2,Ξ),

(W2,MK
, 0), . . . , (WL(MK),MK

, 0)
)
.

(3.102)
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Moreover, note that the fact that for all k ∈ {1, 2, . . . , K} it holds that W1,Ψk =
W1,AId,−xk

W1,Ld =W1,Ld assures that

W1,Ξ =W1,PK(Ψ1,Ψ2,...,ΨK)W1,TK,d =


W1,Ψ1 0 · · · 0

0 W1,Ψ2 · · · 0
...

...
. . .

...
0 0 · · · W1,ΨK




Id
Id
...
Id



=


W1,Ψ1

W1,Ψ2

...
W1,ΨK

 =


W1,Ld
W1,Ld

...
W1,Ld

.
(3.103)

Lemma 3.2.5 hence demonstrates that ~W1,Ξ~ = 1. In addition, note that (2.59) implies
that

B1,Ξ =W1,PK(Ψ1,Ψ2,...,ΨK)B1,TK,d + B1,PK(Ψ1,Ψ2,...,ΨK) = B1,PK(Ψ1,Ψ2,...,ΨK) =


B1,Ψ1

B1,Ψ2

...
B1,ΨK

.
(3.104)

Furthermore, observe that Lemma 3.2.5 implies that for all k ∈ {1, 2, . . . , K} it holds
that

B1,Ψk =W1,LdB1,AId,−xk
+ B1,Ld = −W1,Ldxk. (3.105)

This, (3.104), and Lemma 3.2.5 show that

‖B1,Ξ‖∞ = max
k∈{1,2,...,K}

‖B1,Ψk‖∞ = max
k∈{1,2,...,K}

‖W1,Ldxk‖∞ = max
k∈{1,2,...,K}

‖xk‖∞ (3.106)

(cf. Definition 3.1.16). Combining this, (3.102), Lemma 3.2.10, and the fact that ~W1,Ξ~

= 1 shows that

‖T (Φ)‖∞ = max{~W1,Ξ~, ‖B1,Ξ‖∞,~W1,MK
W2,Ξ~, ‖W1,MK

B2,Ξ‖∞, 1}
≤ max

{
1,maxk∈{1,2,...,K}‖xk‖∞,~W1,MK

W2,Ξ~, ‖W1,MK
B2,Ξ‖∞

} (3.107)

(cf. Definition 2.2.36). Next note that Lemma 3.2.5 ensures that for all k ∈ {1, 2, . . . , K}
it holds that B2,Ψk = B2,Ld = 0. Hence, we obtain that B2,PK(Ψ1,Ψ2,...,ΨK) = 0. This implies
that

B2,Ξ =W1,A−L IK,y
B2,PK(Ψ1,Ψ2,...,ΨK) + B1,A−L IK,y

= B1,A−L IK,y
= y. (3.108)

In addition, observe that the fact that for all k ∈ {1, 2, . . . , K} it holds thatW2,Ψk =W2,Ld
assures that

W2,Ξ =W1,A−L IK,y
W2,PK(Ψ1,Ψ2,...,ΨK) = −LW2,PK(Ψ1,Ψ2,...,ΨK)

= −L


W2,Ψ1 0 · · · 0

0 W2,Ψ2 · · · 0
...

...
. . .

...
0 0 · · · W2,ΨK

 =


−LW2,Ld 0 · · · 0

0 −LW2,Ld · · · 0
...

...
. . .

...
0 0 · · · −LW2,Ld

.
(3.109)
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Item (v) in Lemma 3.2.5 and Lemma 3.2.10 hence imply that

~W1,MK
W2,Ξ~ ≤ L~W1,MK

~ ≤ L. (3.110)

Moreover, observe that (3.108), (3.109), and Lemma 3.2.10 assure that

‖W1,MK
B2,Ξ‖∞ ≤ 2‖B2,Ξ‖∞ = 2‖y‖∞. (3.111)

Combining this with (3.107) and (3.110) establishes item (vi). Next observe that Propo-
sition 3.2.4 and Lemma 2.2.22 show that for all x ∈ Rd, k ∈ {1, 2, . . . , K} it holds that

(Rr(Ψk))(x) =
(
Rr(Ld) ◦ Rr(AId,−xk)

)
(x) = ‖x− xk‖1. (3.112)

This, Proposition 2.2.13, and Proposition 2.2.7 imply that for all x ∈ Rd it holds that(
Rr(PK(Ψ1,Ψ2, . . . ,ΨK) • TK,d)

)
(x) =

(
‖x− x1‖1, ‖x− x2‖1, . . . , ‖x− xK‖1

)
. (3.113)

(cf. Definitions 2.1.6 and 2.2.3). Combining this and Lemma 2.2.22 establishes that for
all x ∈ Rd it holds that

(Rr(Ξ))(x) =
(
Rr(A−L IK ,y) ◦ Rr(PK(Ψ1,Ψ2, . . . ,ΨK) • TK,d)

)
(x)

=
(
y1 − L‖x− x1‖1, y2 − L‖x− x2‖1, . . . , yK − L‖x− xK‖1

)
.

(3.114)

Proposition 2.2.7 and Proposition 3.2.9 hence demonstrate that for all x ∈ Rd it holds
that

(Rr(Φ))(x) =
(
Rr(MK) ◦ Rr(Ξ)

)
(x)

= (Rr(MK))
(
y1 − L‖x− x1‖1, y2 − L‖x− x2‖1, . . . , yK − L‖x− xK‖1

)
= maxk∈{1,2,...,K}(yk − L‖x− xk‖1).

(3.115)

This establishes item (vii). The proof of Lemma 3.2.11 is thus complete.

3.2.3 Explicit approximations through ANNs

Proposition 3.2.12. Let d,K ∈ N, L ∈ [0,∞), let E ⊆ Rd be a set, let x1, x2, . . . , xK ∈ E,
let f : E → R satisfy for all x, y ∈ E that |f(x) − f(y)| ≤ L‖x − y‖1, and let y ∈ RK,
Φ ∈ N satisfy y = (f(x1), f(x2), . . . , f(xK)) and

Φ = MK •A−L IK ,y •PK

(
Ld •AId,−x1 ,Ld •AId,−x2 , . . . ,Ld •AId,−xK

)
• TK,d (3.116)

(cf. Definitions 2.2.1, 2.2.5, 2.2.9, 2.2.11, 2.2.20, 2.2.30, 3.1.16, 3.2.3, and 3.2.7). Then

supx∈E|(Rr(Φ))(x)− f(x)| ≤ 2L
[
supx∈E

(
mink∈{1,2,...,K}‖x− xk‖1

)]
(3.117)

(cf. Definitions 2.1.6 and 2.2.3).

Proof of Proposition 3.2.12. Throughout this proof let F : Rd → R satisfy for all x ∈ Rd

that
F (x) = maxk∈{1,2,...,K}(f(xk)− L‖x− xk‖1). (3.118)
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Observe that Corollary 3.2.2, (3.118), and the assumption that for all x, y ∈ E it holds
that |f(x)− f(y)| ≤ L‖x− y‖1 assure that

supx∈E|F (x)− f(x)| ≤ 2L
[
supx∈E

(
mink∈{1,2,...,K}‖x− xk‖1

)]
. (3.119)

Moreover, note that Lemma 3.2.11 ensures that for all x ∈ E it holds that F (x) =
(Rr(Φ))(x). Combining this and (3.119) establishes (3.117). The proof of Proposi-
tion 3.2.12 is thus complete.

Exercise 3.2.2. Prove or disprove the following statement: There exists Φ ∈ N such
that I(Φ) = 2, O(Φ) = 1, P(Φ) < 20, and

sup
v=(x,y)∈[0,2]2

∣∣x2 + y2 − 2x− 2y + 2− (Rr(Φ))(v)
∣∣ ≤ 3

8
. (3.120)

Exercise 3.2.3. Prove or disprove the following statement: For all n ∈ {3, 5, 7, . . . } it
holds that dlog2(n+ 1)e = dlog2(n)e.

3.2.4 Analysis of the approximation error

3.2.4.1 Covering number estimates

Definition 3.2.13 (Covering number). Let (E, δ) be a metric space and let r ∈ [0,∞].
Then we denote by C(E,δ),r ∈ N0 ∪{∞} (we denote by CE,r ∈ N0 ∪{∞}) the extended real
number given by

C(E,δ),r = min

({
n ∈ N0 :

[
∃A ⊆ E :

(
(|A| ≤ n) ∧ (∀x ∈ E :
∃ a ∈ A : δ(a, x) ≤ r)

)]}
∪ {∞}

)
. (3.121)

Exercise 3.2.4. Prove or disprove the following statement: For every metric space (X, d),
every Y ⊆ X, and every r ∈ [0,∞] it holds that C(Y,d|Y×Y ),r ≤ C(X,d),r.

Exercise 3.2.5. Prove or disprove the following statement: For every metric space (E, δ)
it holds that C(E,δ),∞ = 1.

Exercise 3.2.6. Prove or disprove the following statement: For every metric space (E, δ)
and every r ∈ [0,∞) with C(E,δ),r <∞ it holds that E is bounded. ( Note: A metric space
(E, δ) is bounded if and only if there exists r ∈ [0,∞) such that it holds for all x, y ∈ E
that δ(x, y) ≤ r.)

Exercise 3.2.7. Prove or disprove the following statement: For every bounded metric
space (E, δ) and every r ∈ [0,∞] it holds that C(E,δ),r <∞.

Lemma 3.2.14. Let d ∈ N, a ∈ R, b ∈ (a,∞), r ∈ (0,∞) and for every p ∈ [1,∞] let
δp : ([a, b]d) × ([a, b]d) → [0,∞) satisfy for all x, y ∈ [a, b]d that δp(x, y) = ‖x − y‖p (cf.
Definition 3.1.16). Then

(i) it holds for all p ∈ [1,∞) that

C([a,b]d,δp),r ≤
(⌈

d
1/p(b−a)

2r

⌉)d
≤

{
1 : r ≥ d(b−a)/2(d(b−a)

r

)d
: r < d(b−a)/2

(3.122)

and
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(ii) it holds that

C([a,b]d,δ∞),r ≤
(⌈

b−a
2r

⌉)d ≤ {1 : r ≥ (b−a)/2(
b−a
r

)d
: r < (b−a)/2

(3.123)

(cf. Definitions 3.2.8 and 3.2.13).

Proof of Lemma 3.2.14. Throughout this proof let (Np)p∈[1,∞] ⊆ N satisfy for all p ∈
[1,∞) that

Np =
⌈
d

1/p(b−a)
2r

⌉
and N∞ =

⌈
b−a
2r

⌉
, (3.124)

for every N ∈ N, i ∈ {1, 2, . . . , N} let gN,i ∈ [a, b] be given by gN,i = a + (i−1/2)(b−a)/N,
and for every p ∈ [1,∞] let Ap ⊆ [a, b]d be given by Ap = {gNp,1, gNp,2, . . . , gNp,Np}d
(cf. Definition 3.2.8). Observe that it holds for all N ∈ N, i ∈ {1, 2, . . . , N}, x ∈
[a+ (i−1)(b−a)/N, gN,i] that

|x− gN,i| = a+ (i−1/2)(b−a)
N

− x ≤ a+ (i−1/2)(b−a)
N

−
(
a+ (i−1)(b−a)

N

)
= b−a

2N
. (3.125)

In addition, note that it holds for all N ∈ N, i ∈ {1, 2, . . . , N}, x ∈ [gN,i, a+ i(b−a)/N] that

|x− gN,i| = x−
(
a+ (i−1/2)(b−a)

N

)
≤ a+ i(b−a)

N
−
(
a+ (i−1/2)(b−a)

N

)
= b−a

2N
. (3.126)

Combining (3.125) and (3.126) implies for all N ∈ N, i ∈ {1, 2, . . . , N}, x ∈ [a +
(i−1)(b−a)/N, a + i(b−a)/N] that |x − gN,i| ≤ (b−a)/(2N). This proves that for every N ∈ N,
x ∈ [a, b] there exists y ∈ {gN,1, gN,2, . . . , gN,N} such that

|x− y| ≤ b−a
2N
. (3.127)

This establishes that for every p ∈ [1,∞), x = (x1, x2, . . . , xd) ∈ [a, b]d there exists
y = (y1, y2, . . . , yd) ∈ Ap such that

δp(x, y) = ‖x− y‖p =

(
d∑
i=1

|xi − yi|p
)1/p

≤
(

d∑
i=1

(b−a)p

(2Np)p

)1/p

= d
1/p(b−a)

2Np
≤ d

1/p(b−a)2r

2d1/p(b−a)
= r.

(3.128)
Furthermore, (3.127) shows that for every x = (x1, x2, . . . , xd) ∈ [a, b]d there exists y =
(y1, y2, . . . , yd) ∈ A∞ such that

δ∞(x, y) = ‖x− y‖∞ = max
i∈{1,2,...,d}

|xi − yi| ≤ b−a
2N∞
≤ (b−a)2r

2(b−a)
= r. (3.129)

Note that (3.128), (3.124), and the fact that ∀x ∈ [0,∞) : dxe ≤ 1(0,1](x)+2x1(1,∞)(x) =
1(0,r](rx) + 2x1(r,∞)(rx) yield that for all p ∈ [1,∞) it holds that

C([a,b]d,δp),r ≤ |Ap| = (Np)
d =

(⌈
d

1/p(b−a)
2r

⌉)d
≤
(⌈d(b−a)

2r

⌉)d
≤
(
1(0,r]

(d(b−a)
2

)
+ 2d(b−a)

2r
1(r,∞)

(d(b−a)
2

))d
= 1(0,r]

(
d(b−a)

2

)
+
(
d(b−a)
r

)d
1(r,∞)

(
d(b−a)

2

) (3.130)

(cf. Definition 3.2.13). This proves item (i). In addition, (3.129), (3.124), and the fact
that ∀x ∈ [0,∞) : dxe ≤ 1(0,r](rx) + 2x1(r,∞)(rx) demonstrate that

C([a,b]d,δ∞),r ≤ |A∞| = (N∞)d =
(⌈

b−a
2r

⌉)d ≤ 1(0,r]

(
b−a

2

)
+
(
b−a
r

)d
1(r,∞)

(
b−a

2

)
. (3.131)

This implies item (ii). and thus completes the proof of Lemma 3.2.14.
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3.2.4.2 Convergence rates for the approximation error

Lemma 3.2.15. Let d ∈ N, L, a ∈ R, b ∈ (a,∞), let f : [a, b]d → R satisfy for all x, y ∈
[a, b]d that |f(x) − f(y)| ≤ L‖x − y‖1, and let F = A0,f((a+b)/2,(a+b)/2,...,(a+b)/2) ∈ R1×d × R1

(cf. Definitions 2.2.20 and 3.1.16). Then

(i) it holds that I(F) = d,

(ii) it holds that O(F) = 1,

(iii) it holds that H(F) = 0,

(iv) it holds that P(F) = d+ 1,

(v) it holds that ‖T (F)‖∞ ≤ supx∈[a,b]d |f(x)|, and

(vi) it holds that supx∈[a,b]d |(Rr(F))(x)− f(x)| ≤ dL(b−a)
2

(cf. Definitions 2.1.6, 2.2.1, 2.2.3, and 2.2.36).

Proof of Lemma 3.2.15. Note that the assumption that for all x, y ∈ [a, b]d it holds that
|f(x)− f(y)| ≤ L‖x− y‖1 assures that L ≥ 0. Next observe that Lemma 2.2.21 assures
that for all x ∈ Rd it holds that

(Rr(F))(x) = f
(

(a+b)/2, (a+b)/2, . . . , (a+b)/2
)
. (3.132)

The fact that for all x ∈ [a, b] it holds that |x− (a+b)/2| ≤ (a+b)/2 and the assumption that
for all x, y ∈ [a, b]d it holds that |f(x) − f(y)| ≤ L‖x − y‖1 hence ensure that for all
x = (x1, x2, . . . , xd) ∈ [a, b]d it holds that

|(Rr(F))(x)− f(x)| = |f
(

(a+b)/2, (a+b)/2, . . . , (a+b)/2
)
− f(x)|

≤ L
∥∥((a+b)/2, (a+b)/2, . . . , (a+b)/2

)
− x
∥∥

1

= L
d∑
i=1

|(a+b)/2− xi| ≤
d∑
i=1

L(b−a)
2

= dL(b−a)
2

.

(3.133)

This and the fact that ‖T (F)‖∞ = |f((a+b)/2, (a+b)/2, . . . , (a+b)/2)| ≤ supx∈[a,b]d|f(x)| com-
plete the proof of Lemma 3.2.15.

Proposition 3.2.16. Let d ∈ N, L, a ∈ R, b ∈ (a,∞), r ∈ (0, d/4), let f : [a, b]d → R
and δ : [a, b]d× [a, b]d → R satisfy for all x, y ∈ [a, b]d that |f(x)− f(y)| ≤ L‖x− y‖1 and
δ(x, y) = ‖x − y‖1, and let K ∈ N, x1, x2, . . . , xK ∈ [a, b]d, y ∈ RK, F ∈ N satisfy K =
C([a,b]d,δ),(b−a)r, supx∈[a,b]d

[
mink∈{1,2,...,K} δ(x, xk)

]
≤ (b− a)r, y = (f(x1), f(x2), . . . , f(xK)),

and

F = MK •A−L IK ,y •PK

(
Ld •AId,−x1 ,Ld •AId,−x2 , . . . ,Ld •AId,−xK

)
• TK,d (3.134)

(cf. Definitions 2.2.1, 2.2.5, 2.2.9, 2.2.11, 2.2.20, 2.2.30, 3.1.16, 3.2.3, 3.2.7, and 3.2.13).
Then

(i) it holds that I(F) = d,

(ii) it holds that O(F) = 1,
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(iii) it holds that H(F) ≤
⌈
d log2

(
3d
4r

)⌉
+ 1,

(iv) it holds that D1(F) ≤ 2d
(

3d
4r

)d
,

(v) it holds for all i ∈ {2, 3, . . .} that Di(F) ≤ 3
⌈(

3d
4r

)d 1
2i−1

⌉
,

(vi) it holds that P(F) ≤ 35
(

3d
4r

)2d
d2,

(vii) it holds that ‖T (F)‖∞ ≤ max{1, L, |a|, |b|, 2[supx∈[a,b]d |f(x)|]}, and

(viii) it holds that supx∈[a,b]d |(Rr(F))(x)− f(x)| ≤ 2L(b− a)r

(cf. Definitions 2.1.6, 2.2.3, 2.2.36, and 3.2.8).

Proof of Proposition 3.2.16. Note that the assumption that for all x, y ∈ [a, b]d it holds
that |f(x) − f(y)| ≤ L‖x − y‖1 assures that L ≥ 0. Next observe that Lemma 3.2.11,
(3.134), and Proposition 3.2.12 demonstrate that

(I) it holds that I(F) = d,

(II) it holds that O(F) = 1,

(III) it holds that H(F) = dlog2(K)e+ 1,

(IV) it holds that D1(F) = 2dK,

(V) it holds for all i ∈ {2, 3, . . .} that Di(F) ≤ 3
⌈

K
2i−1

⌉
,

(VI) it holds that ‖T (F)‖∞ ≤ max{1, L,maxk∈{1,2,...,K}‖xk‖∞, 2[maxk∈{1,2,...,K}|f(xk)|]},
and

(VII) it holds that supx∈[a,b]d |(Rr(F))(x)− f(x)| ≤ 2L
[
supx∈[a,b]d

(
mink∈{1,2,...,K} δ(x, xk)

)]
(cf. Definitions 2.1.6, 2.2.3, 2.2.36, and 3.2.8). Note that items (I) and (II) establish items
(i) and (ii). Next observe that item (i) in Lemma 3.2.14 and the fact that d

2r
≥ 2 imply

that

K = C([a,b]d,δ),(b−a)r ≤
(⌈

d(b−a)
2(b−a)r

⌉)d
=
(⌈

d
2r

⌉)d ≤ (3
2
( d

2r
)
)d

=
(

3d
4r

)d
. (3.135)

Combining this with item (III) assures that

H(F) = dlog2(K)e+ 1 ≤
⌈
log2

((
3d
4r

)d)⌉
+ 1 = dd log2

(
3d
4r

)
e+ 1. (3.136)

This establishes item (iii). Moreover, note that (3.135) and item (IV) imply that

D1(F) = 2dK ≤ 2d
(

3d
4r

)d
. (3.137)

This establishes item (iv). In addition, observe that item (V) and (3.135) establish
item (v). Next note that item (III) ensures that for all i ∈ N ∩ (1,H(F)] it holds that

K
2i−1 ≥ K

2H(F)−1 = K
2dlog2(K)e ≥ K

2log2(K)+1 = K
2K

= 1
2
. (3.138)
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Item (V) and (3.135) hence show that for all i ∈ N ∩ (1,H(F)] it holds that

Di(F) ≤ 3
⌈

K
2i−1

⌉
≤ 3K

2i−2 ≤
(

3d
4r

)d 3
2i−2 . (3.139)

Furthermore, note that the fact that for all x ∈ [a, b]d it holds that ‖x‖∞ ≤ max{|a|, |b|}
and item (VI) imply that

‖T (F)‖∞ ≤ max{1, L,maxk∈{1,2,...,K}‖xk‖∞, 2[maxk∈{1,2,...,K}|f(xk)|]}
≤ max{1, L, |a|, |b|, 2[supx∈[a,b]d |f(x)|]}.

(3.140)

This establishes item (vii). Moreover, observe that the assumption that for all x ∈ [a, b]d

it holds that mink∈{1,2,...,K} δ(x, xk) ≤ (b− a)r and item (VII) demonstrate that

supx∈[a,b]d |(Rr(F))(x)− f(x)| ≤ 2L
[
supx∈[a,b]d

(
mink∈{1,2,...,K} δ(x, xk)

)]
≤ 2L(b− a)r.

(3.141)

This establishes item (viii). It thus remains to prove item (vi). For this note that items (I)
and (II), (3.137), and (3.139) assure that

P(F) =

L(F)∑
i=1

Di(F)(Di−1(F) + 1)

≤ 2d
(

3d
4r

)d
(d+ 1) +

(
3d
4r

)d
3
(
2d
(

3d
4r

)d
+ 1
)

+

L(F)−1∑
i=3

(
3d
4r

)d 3
2i−2

((
3d
4r

)d 3
2i−3 + 1

)+
(

3d
4r

)d 3
2L(F)−3 + 1.

(3.142)

Next note that the fact that 3d
4r
≥ 3 ensures that

2d
(

3d
4r

)d
(d+ 1) +

(
3d
4r

)d
3
(
2d
(

3d
4r

)d
+ 1
)

+
(

3d
4r

)d 3
2L(F)−3 + 1

≤
(

3d
4r

)2d(
2d(d+ 1) + 3(2d+ 1) + 3

21−3 + 1
)

≤
(

3d
4r

)2d
d2(4 + 9 + 12 + 1) = 26

(
3d
4r

)2d
d2.

(3.143)

Moreover, observe that the fact that 3d
4r
≥ 3 implies that

L(F)−1∑
i=3

(
3d
4r

)d 3
2i−2

((
3d
4r

)d 3
2i−3 + 1

)
≤
(

3d
4r

)2d
L(F)−1∑
i=3

3
2i−2

(
3

2i−3 + 1
)

=
(

3d
4r

)2d
L(F)−1∑
i=3

[
9

22i−5 + 3
2i−2

]
=
(

3d
4r

)2d
L(F)−4∑
i=0

[
9
2
(4−i) + 3

2
(2−i)

]
≤
(

3d
4r

)2d(9
2

(
1

1−4−1

)
+ 3

2

(
1

1−2−1

))
= 9
(

3d
4r

)2d
.

(3.144)

Combining this, (3.142), and (3.143) demonstrates that

P(F) ≤ 26
(

3d
4r

)2d
d2 + 9

(
3d
4r

)2d ≤ 35
(

3d
4r

)2d
d2. (3.145)

This establishes item (vi). The proof of Proposition 3.2.16 is thus complete.
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Proposition 3.2.17. Let d ∈ N, L, a ∈ R, b ∈ (a,∞), r ∈ (0,∞) and let f : [a, b]d → R
satisfy for all x, y ∈ [a, b]d that |f(x) − f(y)| ≤ L‖x − y‖1 (cf. Definition 3.1.16). Then
there exists F ∈ N such that

(i) it holds that I(F) = d,

(ii) it holds that O(F) = 1,

(iii) it holds that H(F) ≤
(⌈
d log2

(
3d
4r

)⌉
+ 1
)
1(0,d/4)(r),

(iv) it holds that D1(F) ≤ 2d
(

3d
4r

)d
1(0,d/4)(r) + 1[d/4,∞)(r),

(v) it holds for all i ∈ {2, 3, . . .} that Di(F) ≤ 3
⌈(

3d
4r

)d 1
2i−1

⌉
,

(vi) it holds that P(F) ≤ 35
(

3d
4r

)2d
d21(0,d/4)(r) + (d+ 1)1[d/4,∞)(r),

(vii) it holds that ‖T (F)‖∞ ≤ max{1, L, |a|, |b|, 2[supx∈[a,b]d |f(x)|]}, and

(viii) it holds that supx∈[a,b]d |(Rr(F))(x)− f(x)| ≤ 2L(b− a)r

(cf. Definitions 2.1.6, 2.2.1, 2.2.3, 2.2.36, and 3.2.8).

Proof of Proposition 3.2.17. Throughout this proof assume w.l.o.g. that r < d/4 (cf.
Lemma 3.2.15), let δ : [a, b]d×[a, b]d → R satisfy for all x, y ∈ [a, b]d that δ(x, y) = ‖x−y‖1,
and let K ∈ N ∪ {∞} satisfy K = C([a,b]d,δ),(b−a)r. Note that item (i) in Lemma 3.2.14
assures that K <∞. This and (3.121) ensure that there exist x1, x2, . . . , xK ∈ [a, b]d such
that supx∈[a,b]d

[
mink∈{1,2,...,K} δ(x, xk)

]
≤ (b−a)r. Combining this with Proposition 3.2.16

establishes items (i)–(viii). The proof of Proposition 3.2.17 is thus complete.

Proposition 3.2.18. Let d ∈ N, L, a ∈ R, b ∈ (a,∞), ε ∈ (0, 1] and let f : [a, b]d → R
satisfy for all x, y ∈ [a, b]d that |f(x) − f(y)| ≤ L‖x − y‖1 (cf. Definition 3.1.16). Then
there exists F ∈ N such that

(i) it holds that I(F) = d,

(ii) it holds that O(F) = 1,

(iii) it holds that H(F) ≤ d
(
max

{
log2

(3dL(b−a)
2

)
, 0
}

+ log2(ε−1)
)

+ 2,

(iv) it holds that D1(F) ≤ ε−dd(3dmax{L(b− a), 1})d,

(v) it holds for all i ∈ {2, 3, . . .} that Di(F) ≤ ε−d3
( (3dL(b−a))d

2i
+ 1
)
,

(vi) it holds that P(F) ≤ ε−2d9
(
3dmax{L(b− a), 1}

)2d
d2,

(vii) it holds that ‖T (F)‖∞ ≤ max{1, L, |a|, |b|, 2[supx∈[a,b]d |f(x)|]}, and

(viii) it holds that supx∈[a,b]d |(Rr(F))(x)− f(x)| ≤ ε

(cf. Definitions 2.1.6, 2.2.1, 2.2.3, and 2.2.36).

Proof of Proposition 3.2.18. Throughout this proof assume w.l.o.g. that L 6= 0. Observe
that the assumption that for all x, y ∈ [a, b]d it holds that |f(x)− f(y)| ≤ L‖x− y‖1 and
the assumption that L 6= 0 ensure that L > 0. Note that Proposition 3.2.17 shows that
there exists F ∈ N which satisfies that
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(I) it holds that I(F) = d,

(II) it holds that O(F) = 1,

(III) it holds that H(F) ≤
(⌈
d log2

(3dL(b−a)
2ε

)⌉
+ 1
)
1(0,d/4)

(
ε

2L(b−a)

)
,

(IV) it holds that D1(F) ≤ 2d
(3dL(b−a)

2ε

)d
1(0,d/4)

(
ε

2L(b−a)

)
+ 1[d/4,∞)

(
ε

2L(b−a)

)
,

(V) it holds for all i ∈ {2, 3, . . .} that Di(F) ≤ 3
⌈(3dL(b−a)

2ε

)d 1
2i−1

⌉
,

(VI) it holds that P(F) ≤ 35
(3dL(b−a)

2ε

)2d
d21(0,d/4)

(
ε

2L(b−a)

)
+ (d+ 1)1[d/4,∞)

(
ε

2L(b−a)

)
,

(VII) it holds that ‖T (F)‖∞ ≤ max{1, L, |a|, |b|, 2[supx∈[a,b]d|f(x)|]}, and

(VIII) it holds that supx∈[a,b]d|(Rr(F))(x)− f(x)| ≤ ε

(cf. Definitions 2.1.6, 2.2.1, 2.2.3, 2.2.36, and 3.2.8). Moreover, note that item (III)
assures that

H(F) ≤
(
d
(
log2

(3dL(b−a)
2

)
+ log2(ε−1)

)
+ 2
)
1(0,d/4)

(
ε

2L(b−a)

)
≤ d
(
max

{
log2

(
3dL(b−a)

2

)
, 0
}

+ log2(ε−1)
)

+ 2.
(3.146)

In addition, observe that item (IV) implies that

D1(F) ≤ d
(3dmax{L(b−a),1}

ε

)d
1(0,d/4)

(
ε

2L(b−a)

)
+ 1[d/4,∞)

(
ε

2L(b−a)

)
≤ ε−dd(3dmax{L(b− a), 1})d.

(3.147)

Furthermore, note that item (V) ensures that for all i ∈ {2, 3, . . .} it holds that

Di(F) ≤ 3
((3dL(b−a)

2ε

)d 1
2i−1 + 1

)
≤ ε−d3

( (3dL(b−a))d

2i
+ 1
)
. (3.148)

Moreover, observe that item (VI) ensures that

P(F) ≤ 9
(3dmax{L(b−a),1}

ε

)2d
d21(0,d/4)

(
ε

2L(b−a)

)
+ (d+ 1)1[d/4,∞)

(
ε

2L(b−a)

)
≤ ε−2d9

(
3dmax{L(b− a), 1}

)2d
d2.

(3.149)

Combining this, (3.146), (3.147), (3.148), and items (I), (II), (VII), and (VIII) establishes
items (i), (ii), (iii), (iv), (v), (vi), (vii), and (viii). The proof of Proposition 3.2.18 is thus
complete.

Corollary 3.2.19. Let d ∈ N, L, a ∈ R, b ∈ (a,∞) and let f : [a, b]d → R satisfy for all
x, y ∈ [a, b]d that |f(x)−f(y)| ≤ L‖x−y‖1 (cf. Definition 3.1.16). Then there exist C ∈ R
and F = (Fε)ε∈(0,1] : (0, 1]→ N such that for all ε ∈ (0, 1] it holds that Rr(Fε) ∈ C(Rd,R),
supx∈[a,b]d |(Rr(Fε))(x)− f(x)| ≤ ε, and P(Fε) ≤ Cε−2d (cf. Definitions 2.1.6, 2.2.1, and
2.2.3).

Proof of Corollary 3.2.19. Throughout this proof let C = 9
(
3dmax{L(b − a), 1}

)2d
d2.

Note that items (i), (ii), (vi), and (viii) in Proposition 3.2.18 imply that for every ε ∈ (0, 1]
there exists Fε ∈ N such that Rr(Fε) ∈ C(Rd,R), supx∈[a,b]d|(Rr(Fε))(x) − f(x)| ≤ ε,

and P(Fε) ≤ Cε−2d. The proof of Corollary 3.2.19 is thus complete.
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3.2.5 Implicit approximations through ANNs

3.2.5.1 Embedding ANNs in larger architectures

Lemma 3.2.20. Let a ∈ C(R,R), L ∈ N, l0, l1, . . . , lL, l0, l1, . . . , lL ∈ N satisfy for all
k ∈ {1, 2, . . . , L} that l0 = l0, lL = lL, and lk ≥ lk, for every k ∈ {1, 2, . . . , L} let Wk =
(Wk,i,j)(i,j)∈{1,2,...,lk}×{1,2,...,lk−1} ∈ Rlk×lk−1, Wk = (Wk,i,j)(i,j)∈{1,2,...,lk}×{1,2,...,lk−1} ∈ Rlk×lk−1,
Bk = (Bk,i)i∈{1,2,...,lk} ∈ Rlk , Bk = (Bk,i)i∈{1,2,...,lk} ∈ Rlk , assume for all k ∈ {1, 2, . . . , L},
i ∈ {1, 2, . . . , lk}, j ∈ N∩ (0, lk−1] that Wk,i,j = Wk,i,j and Bk,i = Bk,i, and assume for all
k ∈ {1, 2, . . . , L}, i ∈ {1, 2, . . . , lk}, j ∈ N ∩ (lk−1, lk−1 + 1) that Wk,i,j = 0. Then

Ra

(
((W1, B1), (W2, B2), . . . , (WL, BL))

)
= Ra

(
((W1,B1), (W2,B2), . . . , (WL,BL))

)
(3.150)

(cf. Definition 2.2.3).

Proof of Lemma 3.2.20. Throughout this proof let πk : Rlk → Rlk , k ∈ {0, 1, . . . , L},
satisfy for all k ∈ {0, 1, . . . , L}, x = (x1, x2, . . . , xlk) that

πk(x) = (x1, x2, . . . , xlk). (3.151)

Observe that the assumption that l0 = l0 and lL = lL shows that

Ra

(
((W1, B1), (W2, B2), . . . , (WL, BL))

)
∈ C(Rl0 ,RlL) (3.152)

(cf. Definition 2.2.3). Furthermore, note that the assumption that for all k ∈ {1, 2, . . . , l},
i ∈ {1, 2, . . . , lk}, j ∈ N ∩ (lk−1, lk−1 + 1) it holds that Wk,i,j = 0 ensures that for all
k ∈ {1, 2, . . . , L}, x = (x1, x2, . . . , xlk−1

) ∈ Rlk−1 it holds that

πk(Wkx+ Bk) =

([
lk−1∑
i=1

Wk,1,ixi

]
+ Bk,1,

[
lk−1∑
i=1

Wk,2,ixi

]
+ Bk,2, . . . ,

[
lk−1∑
i=1

Wk,lk,ixi

]
+ Bk,lk

)

=

([
lk−1∑
i=1

Wk,1,ixi

]
+ Bk,1,

[
lk−1∑
i=1

Wk,2,ixi

]
+ Bk,2, . . . ,

[
lk−1∑
i=1

Wk,lk,ixi

]
+ Bk,lk

)
.

(3.153)

Combining this with the assumption that for all k ∈ {1, 2, . . . , L}, i ∈ {1, 2, . . . , lk},
j ∈ N ∩ (0, lk−1] that Wk,i,j = Wk,i,j and Bk,i = Bk,i shows that for all k ∈ {1, 2, . . . , L},
x = (x1, x2, . . . , xlk−1

) ∈ Rlk−1 it holds that

πk(Wkx+ Bk) =

([
lk−1∑
i=1

Wk,1,ixi

]
+Bk,1,

[
lk−1∑
i=1

Wk,2,ixi

]
+Bk,2, . . . ,

[
lk−1∑
i=1

Wk,lk,ixi

]
+Bk,lk

)
= Wkπk−1(x) +Bk.

(3.154)

Hence, we obtain that for all x0 ∈ Rl0 , x1 ∈ Rl1 , . . . , xL−1 ∈ RlL−1 , k ∈ N ∩ (0, L) with
∀m ∈ N ∩ (0, L) : xm = Ma,lm(Wmxm−1 + Bm) it holds that

πk(xk) = Ma,lk(πk(Wkxk−1 + Bk)) = Ma,lk(Wkπk−1(xk−1) +Bk) (3.155)
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(cf. Definition 2.1.4). Induction, the assumption that l0 = l0 and lL = lL, and (3.154)
therefore prove that for all x0 ∈ Rl0 , x1 ∈ Rl1 , . . . , xL−1 ∈ RlL−1 with ∀ k ∈ N ∩
(0, L) : xk = Ma,lk(Wkxk−1 + Bk) it holds that(
Ra

(
((W1, B1), (W2, B2), . . . , (WL, BL))

))
(x0) =

(
Ra

(
((W1, B1), (W2, B2), . . . , (WL, BL))

))
(π0(x0))

= WLπL−1(xL−1) +BL

= πL(WLxL−1 + BL) = WLxL−1 + BL

=
(
Ra

(
((W1,B1), (W2,B2), . . . , (WL,BL))

))
(x0)

(3.156)

(cf. Definition 2.2.3). The proof of Lemma 3.2.20 is thus complete.

Lemma 3.2.21. Let a ∈ C(R,R), L ∈ N, l0, l1, . . . , lL, l0, l1, . . . , lL ∈ N satisfy for all k ∈
{1, 2, . . . , L} that l0 = l0, lL = lL, and lk ≥ lk and let Φ ∈ N satisfy D(Φ) = (l0, l1, . . . , lL)
(cf. Definition 2.2.1). Then there exists Ψ ∈ N such that

D(Ψ) = (l0, l1, . . . , lL), ‖T (Ψ)‖∞ = ‖T (Φ)‖∞, and Ra(Ψ) = Ra(Φ)
(3.157)

(cf. Definitions 2.2.3, 2.2.36, and 3.1.16).

Proof of Lemma 3.2.21. Throughout this proof let Bk = (Bk,i)i∈{1,2,...,lk} ∈ Rlk , k ∈
{1, 2, . . . , L}, and Wk = (Wk,i,j)(i,j)∈{1,2,...,lk}×{1,2,...,lk−1} ∈ Rlk×lk−1 , k ∈ {1, 2, . . . , L}, sat-
isfy Φ = ((W1, B1), (W2, B2), . . . , (WL, BL)) and let Wk = (Wk,i,j)(i,j)∈{1,2,...,lk}×{1,2,...,lk−1} ∈
Rlk×lk−1 , k ∈ {1, 2, . . . , L}, and Bk = (Bk,i)i∈{1,2,...,lk} ∈ Rlk , k ∈ {1, 2, . . . , L}, satisfy for
all k ∈ {1, 2, . . . , L}, i ∈ {1, 2, . . . , lk}, j ∈ {1, 2, . . . , lk−1} that

Wk,i,j =

{
Wk,i,j : (i ≤ lk) ∧ (j ≤ lk−1)

0 : (i > lk) ∨ (j > lk−1)
and Bk,i =

{
Bk,i : i ≤ lk

0 : i > lk.
(3.158)

Note that (2.51) ensures that ((W1,B1), (W2,B2), . . . , (WL,BL)) ∈
(�L

i=1(Rli×li−1 ×
Rli)

)
⊆ N and

D
(
((W1,B1), (W2,B2), . . . , (WL,BL))

)
= (l0, l1, . . . , lL). (3.159)

Furthermore, observe that Lemma 2.2.38 and (3.158) show that

‖T
(
((W1,B1), (W2,B2), . . . , (WL,BL))

)
‖∞ = ‖T (Φ)‖∞ (3.160)

(cf. Definitions 2.2.36 and 3.1.16). In addition, note that Lemma 3.2.20 establishes that

Ra(Φ) = Ra

(
((W1, B1), (W2, B2), . . . , (WL, BL))

)
= Ra

(
((W1,B1), (W2,B2), . . . , (WL,BL))

)
(3.161)

(cf. Definition 2.2.3). The proof of Lemma 3.2.21 is thus complete.

Lemma 3.2.22. Let L,L ∈ N, l0, l1, . . . , lL, l0, l1, . . . , lL ∈ N, Φ1 = ((W1, B1), (W2, B2),
. . . , (WL, BL)) ∈

(�L
k=1(Rlk×lk−1 × Rlk)

)
, Φ2 = ((W1,B1), (W2,B2), . . . , (WL,BL)) ∈(�L

k=1(Rlk×lk−1 × Rlk)
)
. Then

‖T (Φ1 • Φ2)‖∞ ≤ max
{
‖T (Φ1)‖∞, ‖T (Φ2)‖∞,

∥∥T (((W1WL,W1BL +B1))
)∥∥
∞

}
(3.162)

(cf. Definitions 2.2.5, 2.2.36, and 3.1.16).
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Proof of Lemma 3.2.22. Note that (2.59) and Lemma 2.2.38 establish (3.162). The proof
of Lemma 3.2.22 is thus complete.

Lemma 3.2.23. Let d, L ∈ N, Φ ∈ N satisfy L ≥ L(Φ) and d = O(Φ) (cf. Defini-
tion 2.2.1). Then

‖T (EL,Id(Φ))‖∞ ≤ max{1, ‖T (Φ)‖∞} (3.163)

(cf. Definitions 2.2.18, 2.2.36, 3.1.16, and 16.2.1).

Proof of Lemma 3.2.23. Throughout this proof assume w.l.o.g. that L > L(Φ) and let
l0, l1, . . . , lL−L(Φ)+1 ∈ N satisfy (l0, l1, . . . , lL−L(Φ)+1) = (d, 2d, 2d, . . . , 2d, d). Note that
Lemma 2.2.19 ensures that D(Id) = (d, 2d, d) ∈ N3 (cf. Definition 2.2.18). Item (i) in
Lemma 16.2.2 hence establishes that

L((Id)
•(L−L(Φ))) = L−L(Φ)+1 and D((Id)

•(L−L(Φ))) = (l0, l1, . . . , lL−L(Φ)+1) ∈ NL−L(Φ)+2

(3.164)
(cf. Definition 2.2.10). This shows that there exist Wk ∈ Rlk×lk−1 , k ∈ {1, 2, . . . , L −
L(Φ) + 1}, and Bk ∈ Rlk , k ∈ {1, 2, . . . , L− L(Φ) + 1}, which satisfy

(Id)
•(L−L(Φ)) = ((W1, B1), (W2, B2), . . . , (WL−L(Φ)+1, BL−L(Φ)+1)). (3.165)

Next observe that (2.111), (2.136), (2.137), (2.59), and (2.109) demonstrate that

W1 =



1 0 · · · 0
−1 0 · · · 0
0 1 · · · 0
0 −1 · · · 0
...

...
. . .

...
0 0 · · · 1
0 0 · · · −1


∈ R(2d)×d

and WL−L(Φ)+1 =


1 −1 0 0 · · · 0 0
0 0 1 −1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 1 −1

 ∈ Rd×(2d).

(3.166)

Moreover, note that (2.111), (2.136), (2.137), (2.59), and (2.109) prove that for all k ∈
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N ∩ (1, L− L(Φ) + 1) it holds that

Wk =



1 0 · · · 0
−1 0 · · · 0
0 1 · · · 0
0 −1 · · · 0
...

...
. . .

...
0 0 · · · 1
0 0 · · · −1


︸ ︷︷ ︸

∈R(2d)×d


1 −1 0 0 · · · 0 0
0 0 1 −1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 1 −1


︸ ︷︷ ︸

∈Rd×(2d)

=



1 −1 0 0 · · · 0 0
−1 1 0 0 · · · 0 0
0 0 1 −1 · · · 0 0
0 0 −1 1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 1 −1
0 0 0 0 · · · −1 1


∈ R(2d)×(2d).

(3.167)

In addition, observe that (2.136), (2.137), (2.111), (2.109), and (2.59) show that for all
k ∈ N ∩ [1, L− L(Φ)] it holds that

Bk = 0 ∈ R2d and BL−L(Φ)+1 = 0 ∈ Rd. (3.168)

Combining this, (3.166), and (3.167) establishes that∥∥T ((Id)•(L−L(Φ))
)∥∥
∞ = 1 (3.169)

(cf. Definitions 2.2.36 and 3.1.16). Furthermore, note that (3.166) demonstrates that for
all k ∈ N, W = (wi,j)(i,j)∈{1,2,...,d}×{1,2,...,k} ∈ Rd×k it holds that

W1W =



w1,1 w1,2 · · · w1,k

−w1,1 −w1,2 · · · −w1,k

w2,1 w2,2 · · · w2,k

−w2,1 −w2,2 · · · −w2,k
...

...
. . .

...
wd,1 wd,2 · · · wd,k
−wd,1 −wd,2 · · · −wd,k


∈ R(2d)×k. (3.170)

Next observe that (3.166) and (3.168) show that for all B = (b1, b2, . . . , bd) ∈ Rd it holds
that

W1B +B1 =



1 0 · · · 0
−1 0 · · · 0
0 1 · · · 0
0 −1 · · · 0
...

...
. . .

...
0 0 · · · 1
0 0 · · · −1




b1

b2
...
bd

 =



b1

−b1

b2

−b2
...
bd
−bd


∈ R2d. (3.171)
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Combining this with (3.170) proves that for all k ∈ N, W ∈ Rd×k, B ∈ Rd it holds that∥∥T (((W1W,W1B +B1))
)∥∥
∞ =

∥∥T (((W,B))
)∥∥
∞. (3.172)

This, Lemma 3.2.22, and (3.169) establish that

‖T (EL,Id(Φ))‖∞ =
∥∥T (((Id)•(L−L(Φ))) • Φ

)∥∥
∞

≤ max
{∥∥T ((Id)•(L−L(Φ))

)∥∥
∞, ‖T (Φ)‖∞

}
= max{1, ‖T (Φ)‖∞}

(3.173)

(cf. Definition 16.2.1). The proof of Lemma 3.2.23 is thus complete.

Lemma 3.2.24. Let L,L ∈ N, l0, l1, . . . , lL, l0, l1, . . . , lL ∈ N satisfy for all i ∈ N ∩ [0, L)
that L ≥ L l0 = l0, lL = lL, and li ≥ li, assume for all i ∈ N∩ (L−1,L) that li ≥ 2lL, and
let Φ ∈ N satisfy D(Φ) = (l0, l1, . . . , lL) (cf. Definition 2.2.1). Then there exists Ψ ∈ N
such that

D(Ψ) = (l0, l1, . . . , lL), ‖T (Ψ)‖∞ ≤ max{1, ‖T (Φ)‖∞}, and Rr(Ψ) = Rr(Φ)
(3.174)

(cf. Definitions 2.1.6, 2.2.3, 2.2.36, and 3.1.16).

Proof of Lemma 3.2.24. Throughout this proof let Ξ ∈ N satisfy Ξ = EL,IlL (Φ) (cf.
Definitions 2.2.18 and 16.2.1). Note that item (i) in Lemma 2.2.19 demonstrates that
D(IlL) = (lL, 2lL, lL) ∈ N3. Combining this with Lemma 16.2.4 shows that D(Ξ) ∈ NL+1

and

D(Ξ) =

{
(l0, l1, . . . , lL) : L = L

(l0, l1, . . . , lL−1, 2lL, 2lL, . . . , 2lL, lL) : L > L.
(3.175)

Moreover, observe that Lemma 3.2.23 (applied with d x lL, L x L, Φ x Φ in the
notation of Lemma 3.2.23) establishes that

‖T (Ξ)‖∞ ≤ max{1, ‖T (Φ)‖∞} (3.176)

(cf. Definitions 2.2.36 and 3.1.16). In addition, note that item (iii) in Lemma 2.2.19
ensures that for all x ∈ RlL it holds that

(Rr(IlL))(x) = x (3.177)

(cf. Definitions 2.1.6 and 2.2.3). This and item (ii) in Lemma 16.2.3 prove that

Rr(Ξ) = Rr(Φ). (3.178)

In the next step, we observe that (3.175), the assumption that for all i ∈ [0, L) it holds
that l0 = l0, lL = lL, and li ≤ li, the assumption that for all i ∈ N ∩ (L − 1,L) it holds
that li ≥ 2lL, and Lemma 3.2.21 (applied with a x r, L x L, (l0, l1, . . . , lL) x D(Ξ),
(l0, l1, . . . , lL) x (l0, l1, . . . , lL), Φ x Ξ in the notation of Lemma 3.2.21) ensure that there
exists Ψ ∈ N such that

D(Ψ) = (l0, l1, . . . , lL), ‖T (Ψ)‖∞ = ‖T (Ξ)‖∞, and Rr(Ψ) = Rr(Ξ). (3.179)

Combining this with (3.176) and (3.178) establishes (3.174). The proof of Lemma 3.2.24
is thus complete.
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Lemma 3.2.25. Let u ∈ [−∞,∞), v ∈ (u,∞], L,L, d, d ∈ N, θ ∈ Rd, l0, l1, . . . , lL, l0, l1, . . . , lL ∈
N satisfy for all i ∈ N ∩ [0, L) that d ≥

∑L
i=1 li(li−1 + 1), d ≥

∑L
i=1 li(li−1 + 1), L ≥ L,

l0 = l0, lL = lL, and li ≥ li and assume for all i ∈ N ∩ (L − 1,L) that li ≥ 2lL. Then
there exists ϑ ∈ Rd such that

‖ϑ‖∞ ≤ max{1, ‖θ‖∞} and N ϑ,(l0,l1,...,lL)
u,v = N θ,(l0,l1,...,lL)

u,v (3.180)

(cf. Definitions 2.1.27 and 3.1.16).

Proof of Lemma 3.2.25. Throughout this proof let η1, η2, . . . , ηd ∈ R satisfy

θ = (η1, η2, . . . , ηd) (3.181)

and let Φ ∈
(�L

i=1 Rli×li−1 × Rli
)

satisfy

T (Φ) = (η1, η2, . . . , ηP(Φ)) (3.182)

(cf. Definition 2.2.36). Note that Lemma 3.2.24 establishes that there exists Ψ ∈ N which
satisfies

D(Ψ) = (l0, l1, . . . , lL), ‖T (Ψ)‖∞ ≤ max{1, ‖T (Φ)‖∞}, and Rr(Ψ) = Rr(Φ)
(3.183)

(cf. Definitions 2.1.6, 2.2.1, 2.2.3, and 3.1.16). Next let ϑ = (ϑ1, ϑ2, . . . , ϑd) ∈ Rd satisfy

(ϑ1, ϑ2, . . . , ϑP(Ψ)) = T (Ψ) and ∀ i ∈ N ∩ (P(Ψ), d + 1): ϑi = 0. (3.184)

Note that (3.181), (3.182), (3.183), and (3.184) show that

‖ϑ‖∞ = ‖T (Ψ)‖∞ ≤ max{1, ‖T (Φ)‖∞} ≤ max{1, ‖θ‖∞}. (3.185)

Next observe that Corollary 2.2.40 and (3.182) establish that for all x ∈ Rl0 it holds that(
N θ,(l0,l1,...,lL)
−∞,∞

)
(x) =

(
N T (Φ),D(Φ)
−∞,∞

)
(x) = (Rr(Φ))(x). (3.186)

In addition, observe that Corollary 2.2.40, (3.183), and (3.184) prove that for all x ∈ Rl0

it holds that (
N ϑ,(l0,l1,...,lL)
−∞,∞

)
(x) =

(
N T (Ψ),D(Ψ)
−∞,∞

)
(x) = (Rr(Ψ))(x). (3.187)

Combining this and (3.186) with (3.183) and the assumption that l0 = l0 and lL = lL
demonstrates that

N θ,(l0,l1,...,lL)
−∞,∞ = N ϑ,(l0,l1,...,lL)

−∞,∞ . (3.188)

Hence, we obtain that

N θ,(l0,l1,...,lL)
u,v = Cu,v,lL ◦N θ,(l0,l1,...,lL)

−∞,∞ = Cu,v,lL ◦N ϑ,(l0,l1,...,lL)
−∞,∞ = N ϑ,(l0,l1,...,lL)

u,v (3.189)

(cf. Definition 2.1.12). This and (3.185) establish (3.180). The proof of Lemma 3.2.25 is
thus complete.
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3.2.5.2 Implicit approximation through ANNs with variable architectures

Corollary 3.2.26. Let d,K,d,L ∈ N, l = (l0, l1, . . . , lL) ∈ NL+1, L ∈ [0,∞) satisfy for
all i ∈ {2, 3, . . . ,L − 1} that L ≥ dlog2(K)e + 2, l0 = d, lL = 1, l1 ≥ 2dK, li ≥ 3d K

2i−1 e,
and d ≥

∑L
i=1 li(li−1 + 1), let E ⊆ Rd be a set, let x1, x2, . . . , xK ∈ E, and let f : E → R

satisfy for all x, y ∈ E that |f(x)− f(y)| ≤ L‖x− y‖1 (cf. Definitions 3.1.16 and 3.2.8).
Then there exists θ ∈ Rd such that

‖θ‖∞ ≤ max{1, L,maxk∈{1,2,...,K}‖xk‖∞, 2 maxk∈{1,2,...,K}|f(xk)|} (3.190)

and

supx∈E
∣∣f(x)−N θ,l

−∞,∞(x)
∣∣ ≤ 2L

[
supx∈E

(
infk∈{1,2,...,K}‖x− xk‖1

)]
(3.191)

(cf. Definition 2.1.27).

Proof of Corollary 3.2.26. Throughout this proof let let y ∈ RK , Φ ∈ N satisfy y =
(f(x1), f(x2), . . . , f(xK)) and

Φ = MK •A−L IK ,y •PK

(
Ld •AId,−x1 ,Ld •AId,−x2 , . . . ,Ld •AId,−xK

)
• TK,d (3.192)

(cf. Definitions 2.2.1, 2.2.5, 2.2.9, 2.2.11, 2.2.20, 2.2.30, 3.2.3, and 3.2.7). Observe that
Lemma 3.2.11 and Proposition 3.2.12 establish that

(I) it holds that L(Φ) = dlog2(K)e+ 2,

(II) it holds that I(Φ) = d,

(III) it holds that O(Φ) = 1,

(IV) it holds that D1(Φ) = 2dK,

(V) it holds for all i ∈ {2, 3, . . . ,L(Φ)− 1} that Di(Φ) ≤ 3d K
2i−1 e,

(VI) it holds that ‖T (Φ)‖∞ ≤ max{1, L,maxk∈{1,2,...,K}‖xk‖∞, 2 maxk∈{1,2,...,K}|f(xk)|},
and

(VII) it holds that supx∈E|f(x)− (Rr(Φ))(x)| ≤ 2L
[
supx∈E

(
infk∈{1,2,...,K}‖x− xk‖1

)]
(cf. Definitions 2.1.6, 2.2.3, and 2.2.36). In addition note that the fact that L ≥
dlog2(K)e+2 = L(Φ), the fact that l0 = d = D0(Φ), the fact that l1 ≥ 2dK = D1(Φ), the
fact that for all i ∈ {2, 3, . . . ,L(Φ)− 1} it holds that li ≥ 3d K

2i−1 e ≥ Di(Φ), the fact that
for all i ∈ {L(Φ),L(Φ) + 1, . . . ,L − 1} it holds that li ≥ 3d K

2i−1 e ≥ 2 = 2DL(Φ)(Φ), and
the fact that lL = 1 = DL(Φ)(Φ) with Lemma 3.2.25 establishes that there exists θ ∈ Rd

which satisfies that

‖θ‖∞ ≤ max{1, ‖T (Φ)‖∞} and N θ,(l0,l1,...,lL)
−∞,∞ = N T (Φ),D(Φ)

−∞,∞ . (3.193)

This and item (VI) ensure that

‖θ‖∞ ≤ max{1, L,maxk∈{1,2,...,K}‖xk‖∞, 2 maxk∈{1,2,...,K}|f(xk)|}. (3.194)

Moreover, note that (3.193), Corollary 2.2.40, and item (VII) assure that

supx∈E
∣∣f(x)−N θ,(l0,l1,...,lL)

−∞,∞ (x)
∣∣ = supx∈E

∣∣f(x)−N T (Φ),D(Φ)
−∞,∞ (x)

∣∣
= supx∈E

∣∣f(x)− (Rr(Φ))(x)
∣∣

≤ 2L
[
supx∈E

(
infk∈{1,2,...,K}‖x− xk‖1

)] (3.195)

(cf. Definition 2.1.27). The proof of Corollary 3.2.26 is thus complete.
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Corollary 3.2.27. Let d,K,d,L ∈ N, l = (l0, l1, . . . , lL) ∈ NL+1, L ∈ [0,∞), u ∈
[−∞,∞), v ∈ (u,∞] satisfy for all i ∈ {2, 3, . . . ,L − 1} that L ≥ dlog2Ke + 2, l0 = d,
lL = 1, l1 ≥ 2dK, li ≥ 3d K

2i−1 e, and d ≥
∑L

i=1 li(li−1 + 1), let E ⊆ Rd be a set, let
x1, x2, . . . , xK ∈ E, and let f : E → ([u, v]∩R) satisfy for all x, y ∈ E that |f(x)− f(y)| ≤
L‖x− y‖1 (cf. Definitions 3.1.16 and 3.2.8). Then there exists θ ∈ Rd such that

‖θ‖∞ ≤ max{1, L,maxk∈{1,2,...,K}‖xk‖∞, 2 maxk∈{1,2,...,K}|f(xk)|} (3.196)

and
supx∈E

∣∣f(x)−N θ,l
u,v (x)

∣∣ ≤ 2L
[
supx∈E

(
infk∈{1,2,...,K}‖x− xk‖1

)]
. (3.197)

(cf. Definition 2.1.27).

Proof of Corollary 3.2.27. Observe that Corollary 3.2.26 implies that there exists θ ∈ Rd

such that

‖θ‖∞ ≤ max{1, L,maxk∈{1,2,...,K}‖xk‖∞, 2 maxk∈{1,2,...,K}|f(xk)|} (3.198)

and

supx∈E
∣∣f(x)−N θ,l

−∞,∞(x)
∣∣ ≤ 2L

[
supx∈E

(
infk∈{1,2,...,K}‖x− xk‖1

)]
. (3.199)

Moreover, observe that the assumption that f(E) ⊆ [u, v] shows that for all x ∈ E it
holds that f(x) = cu,v(f(x)) (cf. Definitions 2.1.11 and 2.1.27). The fact that for all
x, y ∈ R it holds that |cu,v(x)− cu,v(y)| ≤ |x− y| and (3.199) hence establish that

supx∈E
∣∣f(x)−N θ,l

u,v (x)
∣∣ = supx∈E|cu,v(f(x))− cu,v(N

θ,l
−∞,∞(x))|

≤ supx∈E
∣∣f(x)−N θ,l

−∞,∞(x)
∣∣ ≤ 2L

[
supx∈E

(
infk∈{1,2,...,K}‖x− xk‖1

)]
.

(3.200)

The proof of Corollary 3.2.27 is thus complete.

3.2.5.3 OLD Convergence rates for the approximation error

Lemma 3.2.28. Let d,d,L ∈ N, L, a ∈ R, b ∈ (a,∞), u ∈ [−∞,∞), v ∈ (u,∞],
l = (l0, l1, . . . , lL) ∈ NL+1, assume l0 = d, lL = 1, and d ≥

∑L
i=1 li(li−1 + 1), and let

f : [a, b]d → ([u, v] ∩ R) satisfy for all x, y ∈ [a, b]d that |f(x) − f(y)| ≤ L‖x − y‖1 (cf.
Definition 3.1.16). Then there exists ϑ ∈ Rd such that ‖ϑ‖∞ ≤ supx∈[a,b]d |f(x)| and

supx∈[a,b]d|N ϑ,l
u,v (x)− f(x)| ≤ dL(b− a)

2
(3.201)

(cf. Definition 2.1.27).

Proof of Lemma 3.2.28. Throughout this proof let d ∈ N be given by d =
∑L

i=1 li(li−1+1),
let m = (m1,m2, . . . ,md) ∈ [a, b]d satisfy for all i ∈ {1, 2, . . . , d} that mi = (a+b)/2, and let
ϑ = (ϑ1, ϑ2, . . . , ϑd) ∈ Rd satisfy for all i ∈ {1, 2, . . . ,d}\{d} that ϑi = 0 and ϑd = f(m).
Observe that the assumption that lL = 1 and the fact that ∀ i ∈ {1, 2, . . . , d− 1} : ϑi = 0
show that for all x = (x1, x2, . . . , xlL−1

) ∈ RlL−1 it holds that

Aϑ,
∑L−1
i=1 li(li−1+1)

1,lL−1
(x) =

[
lL−1∑
i=1

ϑ[
∑L−1
i=1 li(li−1+1)]+ixi

]
+ ϑ[

∑L−1
i=1 li(li−1+1)]+lL−1+1

=

[
lL−1∑
i=1

ϑ[
∑L
i=1 li(li−1+1)]−(lL−1−i+1)xi

]
+ ϑ∑L

i=1 li(li−1+1)

=

[
lL−1∑
i=1

ϑd−(lL−1−i+1)xi

]
+ ϑd = ϑd = f(m)

(3.202)
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(cf. Definition 2.1.1). Combining this with the fact that f(m) ∈ [u, v] ensures that for
all x ∈ RlL−1 it holds that(

Cu,v,lL ◦ A
ϑ,
∑L−1
i=1 li(li−1+1)

lL,lL−1

)
(x) =

(
Cu,v,1 ◦ A

ϑ,
∑L−1
i=1 li(li−1+1)

1,lL−1

)
(x) = cu,v(f(m))

= max{u,min{f(m), v}} = max{u, f(m)} = f(m)

(3.203)

(cf. Definitions 2.1.11 and 2.1.12). This proves for all x ∈ Rd that

N ϑ,l
u,v (x) = f(m). (3.204)

In addition, note that it holds for all x ∈ [a,m1], x ∈ [m1, b] that |m1 − x| = m1 − x =
(a+b)/2−x ≤ (a+b)/2−a = (b−a)/2 and |m1−x| = x−m1 = x−(a+b)/2 ≤ b−(a+b)/2 = (b−a)/2. The
assumption that ∀x, y ∈ [a, b]d : |f(x)−f(y)| ≤ L‖x−y‖1 and (3.204) hence demonstrate
that for all x = (x1, x2, . . . , xd) ∈ [a, b]d it holds that

|N ϑ,l
u,v (x)− f(x)| = |f(m)− f(x)| ≤ L‖m− x‖1 = L

d∑
i=1

|mi − xi|

= L
d∑
i=1

|m1 − xi| ≤
d∑
i=1

L(b− a)

2
=
dL(b− a)

2
.

(3.205)

This and the fact that ‖ϑ‖∞ = maxi∈{1,2,...,d}|ϑi| = |f(m)| ≤ supx∈[a,b]d|f(x)| complete
the proof of Lemma 3.2.28.

Proposition 3.2.29. Let d,d,L ∈ N, A ∈ (0,∞), L, a ∈ R, b ∈ (a,∞), u ∈ [−∞,∞),
v ∈ (u,∞], l = (l0, l1, . . . , lL) ∈ NL+1, assume L ≥ 1 + (dlog2(A/(2d))e+ 1)1(6d,∞)(A), l0 =

d, l1 ≥ A1(6d,∞)(A), lL = 1, and d ≥
∑L

i=1 li(li−1 +1), assume for all i ∈ {2, 3, . . . ,L−1}
that li ≥ 3dA/(2id)e1(6d,∞)(A), and let f : [a, b]d → ([u, v] ∩ R) satisfy for all x, y ∈ [a, b]d

that |f(x) − f(y)| ≤ L‖x − y‖1 (cf. Definitions 3.1.16 and 3.2.8). Then there exists
ϑ ∈ Rd such that ‖ϑ‖∞ ≤ max{1, L, |a|, |b|, 2[supx∈[a,b]d |f(x)|]} and

supx∈[a,b]d |N ϑ,l
u,v (x)− f(x)| ≤ 3dL(b− a)

A1/d
(3.206)

(cf. Definition 2.1.27).

Proof of Proposition 3.2.29. Throughout this proof assume w.l.o.g. that A > 6d (cf.

Lemma 3.2.28), let Z ∈ Z satisfy Z = b
(
A
2d

)1/dc. Note that the fact that for all k ∈ N it
holds that 2k ≤ 2(2k−1) = 2k implies that 3d = 6d/2d ≤ A/(2d). Therefore, we obtain that

2 ≤ 2
3

(
A
2d

)1/d ≤
(
A
2d

)1/d − 1 < Z. (3.207)

In the next step let r ∈ (0,∞) satisfy r = d(b−a)/2Z, let δ : [a, b]d× [a, b]d → R satisfy for all
x, y ∈ [a, b]d that δ(x, y) = ‖x− y‖1, and let K ∈ N∪{∞} satisfy K = max(2, C([a,b]d,δ),r)
(cf. Definition 3.2.13). Observe that equation (3.207) and item (i) in Lemma 3.2.14
establish that

K = max{2, C([a,b]d,δ),r} ≤ max
{

2,
(
dd(b−a)

2r
e
)d}

= max{2, (dZe)d} = Zd <∞. (3.208)

This implies that
4 ≤ 2dK ≤ 2dZd ≤ 2dA

2d
= A. (3.209)
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Combining this and the fact that L ≥ 1+(dlog2(A/(2d))e+1)1(6d,∞)(A) = dlog2(A/(2d))e+2
hence proves that dlog2(K)e ≤ dlog2(A/(2d))e ≤ L − 2. This, (3.209), the assumption
that l1 ≥ A1(6d,∞)(A) = A, and the assumption that ∀ i ∈ {2, 3, . . . ,L − 1} : li ≥
3dA/(2id)e1(6d,∞)(A) = 3dA/(2id)e imply that for all i ∈ {2, 3, . . . ,L− 1} it holds that

L ≥ dlog2(K)e+ 2, l1 ≥ A ≥ 2dK, and li ≥ 3d A
2id
e ≥ 3d K

2i−1 e. (3.210)

Let x1, x2, . . . , xK ∈ [a, b]d satisfy

supx∈[a,b]d

[
infk∈{1,2,...,K} δ(x, xk)

]
≤ r. (3.211)

Observe that (3.210), the assumptions that l0 = d, lL = 1, d ≥
∑L

i=1 li(li−1 + 1), and
∀x, y ∈ [a, b]d : |f(x) − f(y)| ≤ L‖x − y‖1, and Corollary 3.2.27 show that there exists
ϑ ∈ Rd such that

‖ϑ‖∞ ≤ max{1, L,maxk∈{1,2,...,K}‖xk‖∞, 2 maxk∈{1,2,...,K}|f(xk)|} (3.212)

and

supx∈[a,b]d |N ϑ,l
u,v (x)− f(x)| ≤ 2L

[
supx∈[a,b]d

(
infk∈{1,2,...,K}‖x− xk‖1

)]
= 2L

[
supx∈[a,b]d

(
infk∈{1,2,...,K} δ(x, xk)

)]
.

(3.213)

Note that (3.212) implies that

‖ϑ‖∞ ≤ max{1, L, |a|, |b|, 2 supx∈[a,b]d |f(x)|}. (3.214)

Moreover, note that the fact that for all k ∈ N it holds that 2k ≤ 2(2k−1) = 2k, (3.213),
(3.207), and (3.211) demonstrate that

supx∈[a,b]d |N ϑ,l
u,v (x)− f(x)| ≤ 2L

[
supx∈[a,b]d

(
infk∈{1,2,...,K} δ(x, xk)

)]
≤ 2Lr =

dL(b− a)

Z

≤ dL(b− a)

2
3

(
A
2d

)1/d
=

(2d)1/d3dL(b− a)

2A1/d
≤ 3dL(b− a)

A1/d
.

(3.215)

Combining this with (3.214) completes the proof of Proposition 3.2.29.

Corollary 3.2.30. Let d ∈ N, L, a ∈ R, b ∈ (a,∞) and let f : [a, b]d → R satisfy for
all x, y ∈ [a, b]d that |f(x)− f(y)| ≤ L‖x− y‖1 (cf. Definition 3.1.16). Then there exist
C ∈ R and Φ = (Φε)ε∈(0,1] : (0, 1]→ N such that

(i) it holds for all ε ∈ (0, 1] that ‖T (Φε)‖∞ ≤ max{1, L, |a|, |b|, 2[supx∈[a,b]d |f(x)|]},

(ii) it holds for all ε ∈ (0, 1] that supx∈[a,b]d |(Rr(Φε))(x)− f(x)| ≤ ε,

(iii) it holds for all ε ∈ (0, 1] that H(Φε) ≤ d(log2(ε−1) + log2(d) + log2(3L(b− a)) + 1),
and

(iv) it holds for all ε ∈ (0, 1] that P(Φε) ≤ Cε−2d

(cf. Definitions 2.1.6, 2.2.1, 2.2.3, and 2.2.36).
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Proof of Corollary 3.2.30. Throughout this proof assume w.l.o.g. that L > 0, let ε ∈
(0, 1], A ∈ (0,∞) L ∈ N satisfy A =

(
3dL(b−a)

ε

)d
and L = 2 + dlog2(A/(2d))e, let l =

(l0, l1, . . . , lL) ∈ NL+1 satisfy for all i ∈ {2, 3, . . . ,L − 1} that l0 = d, lL = 1, l1 = dAe,
and li = 3dA/(2id)e, and let c, C ∈ R satisfy

c = log2(3L(b−a)) + 1 and C = 9
8

(
3dL(b−a)

)2d
+ (d+ 19)

(
3dL(b−a)

)d
+d+ 11.

(3.216)
(cf. Definition 3.2.8). Observe that the fact that L ≥ 1 +

(
dlog2

(
A
2d

)
e+ 1

)
1(6d,∞)(A), the

fact that l1 ≥ A1(6d,∞)(A), the fact that l0 = d, the fact that for all i ∈ {2, 3, . . . ,L− 1}
it holds that li ≥ 3d A

2id
e1(6d,∞)(A), the fact that the fact that lL = 1, Proposition 3.2.29

, and Corollary 2.2.40 prove that there exists Ψ ∈
(�L

i=1

(
Rli×li−1 × Rli

))
⊆ N which

satisfies ‖T (Ψ)‖∞ ≤ max{1, L, |a|, |b|, 2[supx∈[a,b]d |f(x)|]} and

supx∈[a,b]d |(Rr(Ψ))(x)− f(x)| ≤ 3dL(b− a)

A1/d
= ε. (3.217)

(cf. Definitions 2.1.6, 2.2.1, 2.2.3, and 2.2.36). Note that the fact that d ≥ 1 implies that

H(Ψ) = L− 1 = 1 + dlog2(A/(2d))e = dlog2(A
d

)e ≤ dlog2(A)e = dd log2

(
3dL(b−a)

ε

)
e

≤ d
(
log2(ε−1) + log2(d) + log2(3L(b− a))

)
+ 1 ≤ d(log2(ε−1) + log2(d) + c).

(3.218)

Furthermore, observe that

P(Ψ) =
L∑
i=1

li(li−1+1) = dAe(d+1)+3d A
4d
e(dAe+1)+

L−1∑
i=3

[
3d A

2id
e
(
3d A

2i−1d
e+ 1

)]
+3d A

2L−1d
e+1.

(3.219)
Next note that the fact that L = 1 + dlog2(A/d)e ≥ 1 + log2(A/d), the fact that d ≥ 1, and
the fact that ∀x ∈ R : dxe ≤ x+ 1 imply that

dAe(d+ 1) + 3d A
4d
e(dAe+ 1) + 3d A

2L−1d
e+ 1 ≤ (A+ 1)(d+ 1) + 3

(
A
4d

+ 1
)
(A+ 2) + 4

= 3
4d
A2 + (d+ 4 + 3

2d
)A+ d+ 11

≤ 3
4
A2 + (d+ 11

2
)A+ d+ 11.

(3.220)

Moreover, observe that the fact that ∀x ∈ (0,∞) : log2(x) = log2(x/2) + 1 ≤ x/2 + 1
implies that

L ≤ 2 + log2(A
d

) ≤ 3 + A
2d
≤ 3 + A

2
. (3.221)

This demonstrates that

L−1∑
i=3

[
3d A

2id
e
(
3d A

2i−1d
e+ 1

)]
≤ 3

L−1∑
i=3

(
A

2id
+ 1
)(

3A
2i−1d

+ 4
)

= 9A2

d2

L−1∑
i=3

21−2i + 12A
d

L−1∑
i=3

2−i + 9A
d

L−1∑
i=3

21−i + 12(L− 3)

≤ 3
8
A2 + 3A+ 9

2
A+ 6A = 3

8
A2 + 27

2
A.

(3.222)
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Combining (3.216), (3.219), (3.220), and (3.222) with the fact that ε ∈ (0, 1] shows that

P(Ψ) ≤ 9
8
A2 + (d+ 19)A+ d+ 11

= 9
8

(
3dL(b− a)

)2d
ε−2d + (d+ 19)

(
3dL(b− a)

)d
ε−d + d+ 11

≤
[

9
8

(
3dL(b− a)

)2d
+ (d+ 19)

(
3dL(b− a)

)d
+ d+ 11

]
ε−2d = Cε−2d.

(3.223)

Combining this (3.218), and (3.223) completes the proof of Corollary 3.2.30.
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Overall error analysis

4.1 Bias-variance decomposition

Lemma 4.1.1 (Bias-variance decomposition). Let (Ω,F ,P) be a probability space, let
(S,S) be a measurable space, let X : Ω → S and Y : Ω → R be random variables with
E[|Y |2] < ∞, and let r : L2(PX ;R) → [0,∞) satisfy for all f ∈ L2(PX ;R) that r(f) =
E[|f(X)− Y |2]. Then

(i) it holds for all f ∈ L2(PX ;R) that

r(f) = E
[
|f(X)− E[Y |X]|2

]
+ E

[
|Y − E[Y |X]|2

]
, (4.1)

(ii) it holds for all f, g ∈ L2(PX ;R) that

r(f)− r(g) = E
[
|f(X)− E[Y |X]|2

]
− E

[
|g(X)− E[Y |X]|2

]
, (4.2)

and

(iii) it holds for all f, g ∈ L2(PX ;R) that

E
[
|f(X)− E[Y |X]|2

]
= E

[
|g(X)− E[Y |X]|2

]
+
(
r(f)− r(g)

)
. (4.3)

Proof of Lemma 4.1.1. First, observe that the assumption that for all f ∈ L2(PX ;R) it
holds that r(f) = E[|f(X)− Y |2] shows that for all f ∈ L2(PX ;R) it holds that

r(f) = E
[
|f(X)− Y |2

]
= E

[
|(f(X)− E[Y |X]) + (E[Y |X]− Y )|2

]
= E

[
|f(X)− E[Y |X]|2

]
+ 2E

[(
f(X)− E[Y |X]

)(
E[Y |X]− Y

)]
+ E

[
|E[Y |X]− Y |2

]
= E

[
|f(X)− E[Y |X]|2

]
+ 2E

[
E
[(
f(X)− E[Y |X]

)(
E[Y |X]− Y

)∣∣X]]+ E
[
|E[Y |X]− Y |2

]
= E

[
|f(X)− E[Y |X]|2

]
+ 2E

[(
f(X)− E[Y |X]

)
E
[(
E[Y |X]− Y

)∣∣X]]+ E
[
|E[Y |X]− Y |2

]
= E

[
|f(X)− E[Y |X]|2

]
+ 2E

[(
f(X)− E[Y |X]

)(
E[Y |X]− E[Y |X]

)]
+ E

[
|E[Y |X]− Y |2

]
= E

[
|f(X)− E[Y |X]|2

]
+ E

[
|E[Y |X]− Y |2

]
.

(4.4)

This implies that for all f, g ∈ L2(PX ;R) it holds that

r(f)− r(g) = E
[
|f(X)− E[Y |X]|2

]
− E

[
|g(X)− E[Y |X]|2

]
. (4.5)
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Hence, we obtain that for all f, g ∈ L2(PX ;R) it holds that

E
[
|f(X)− E[Y |X]|2

]
= E

[
|g(X)− E[Y |X]|2

]
+ r(f)− r(g). (4.6)

Combining this with (4.4) and (4.5) establishes items (i), (ii), and (iii). The proof of
Lemma 4.1.1 is thus complete.

4.2 Overall error decomposition

Proposition 4.2.1. Let d,d,L,M,K,N ∈ N, B ∈ [0,∞), u ∈ R, v ∈ (u,∞), l =
(l0, l1, . . . , lL) ∈ NL+1, T ⊆ {0, 1, . . . , N}, D ⊆ Rd, assume 0 ∈ T, l0 = d, lL = 1,
and d ≥

∑L
i=1 li(li−1 + 1), let (Ω,F ,P) be a probability space, let Xj : Ω → D, j ∈

{1, 2, . . . ,M}, and Yj : Ω → [u, v], j ∈ {1, 2, . . . ,M}, be random variables, let E : D →
[u, v] be B(D)/B([u, v])-measurable, assume that it holds P-a.s. that E(X1) = E[Y1|X1],
let Θk,n : Ω → Rd, k, n ∈ N0, satisfy

(⋃∞
k=1 Θk,0(Ω)

)
⊆ [−B,B]d, let R : Rd → [0,∞)

satisfy for all θ ∈ Rd that R(θ) = E[|N θ,l
u,v (X1)− Y1|2], and let R : Rd × Ω→ [0,∞) and

k : Ω→ (N0)2 satisfy for all θ ∈ Rd, ω ∈ Ω that

R(θ, ω) =
1

M

[
M∑
j=1

|N θ,l
u,v (Xj(ω))− Yj(ω)|2

]
and (4.7)

k(ω) ∈ argmin(k,n)∈{1,2,...,K}×T, ‖Θk,n(ω)‖∞≤B R(Θk,n(ω), ω) (4.8)

(cf. Definitions 2.1.27 and 3.1.16). Then it holds for all ϑ ∈ [−B,B]d that∫
D

|N Θk,l
u,v (x)− E(x)|2 PX1(dx)

≤
[
supx∈D|N ϑ,l

u,v (x)− E(x)|2
]

+ 2
[
supθ∈[−B,B]d|R(θ)−R(θ)|

]
+ min(k,n)∈{1,2,...,K}×T, ‖Θk,n‖∞≤B|R(Θk,n)−R(ϑ)|.

(4.9)

Proof of Proposition 4.2.1. Throughout this proof let r : L2(PX1 ;R)→ [0,∞) satisfy for
all f ∈ L2(PX1 ;R) that r(f) = E[|f(X1) − Y1|2]. Observe that the assumption that
∀ω ∈ Ω: Y1(ω) ∈ [u, v] and the fact that ∀ θ ∈ Rd, x ∈ Rd : N θ,l

u,v (x) ∈ [u, v] ensure that
for all θ ∈ Rd it holds that E[|Y1|2] ≤ max{u2, v2} <∞ and∫

D

|N θ,l
u,v (x)|2 PX1(dx) = E

[
|N θ,l

u,v (X1)|2
]
≤ max{u2, v2} <∞. (4.10)

Item (iii) in Lemma 4.1.1 (applied with (Ω,F ,P) x (Ω,F ,P), (S,S) x (D,B(D)),
X x X1, Y x (Ω 3 ω 7→ Y1(ω) ∈ R), r x r, f x N θ,l

u,v |D, g x N ϑ,l
u,v |D for θ, ϑ ∈ Rd

in the notation of item (iii) in Lemma 4.1.1) hence proves that for all θ, ϑ ∈ Rd it holds
that ∫

D

|N θ,l
u,v (x)− E(x)|2 PX1(dx)

= E
[
|N θ,l

u,v (X1)− E(X1)|2
]

= E
[
|N θ,l

u,v (X1)− E[Y1|X1]|2
]

= E
[
|N ϑ,l

u,v (X1)− E[Y1|X1]|2
]

+ r(N θ,l
u,v |D)− r(N ϑ,l

u,v |D) (4.11)

= E
[
|N ϑ,l

u,v (X1)− E(X1)|2
]

+ E
[
|N θ,l

u,v (X1)− Y1|2
]
− E

[
|N ϑ,l

u,v (X1)− Y1|2
]

=

∫
D

|N ϑ,l
u,v (x)− E(x)|2 PX1(dx) + R(θ)−R(ϑ).

Dissemination prohibited. July 29, 2021 84



Chapter 4. Overall error analysis

This implies that for all θ, ϑ ∈ Rd it holds that∫
D

|N θ,l
u,v (x)− E(x)|2 PX1(dx)

=

∫
D

|N ϑ,l
u,v (x)− E(x)|2 PX1(dx)− [R(θ)−R(θ)] + R(ϑ)−R(ϑ) + R(θ)−R(ϑ)

≤
∫
D

|N ϑ,l
u,v (x)− E(x)|2 PX1(dx) + |R(θ)−R(θ)|+ |R(ϑ)−R(ϑ)|+ R(θ)−R(ϑ)

≤
∫
D

|N ϑ,l
u,v (x)− E(x)|2 PX1(dx) + 2

[
maxη∈{θ,ϑ}|R(η)−R(η)|

]
+ R(θ)−R(ϑ).

(4.12)

Next note that the fact that ∀ω ∈ Ω: ‖Θk(ω)(ω)‖∞ ≤ B ensures that for all ω ∈ Ω it
holds that Θk(ω)(ω) ∈ [−B,B]d. Combining (4.12) with (4.8) hence establishes that for
all ϑ ∈ [−B,B]d it holds that∫

D

|N Θk,l
u,v (x)− E(x)|2 PX1(dx)

≤
∫
D

|N ϑ,l
u,v (x)− E(x)|2 PX1(dx) + 2

[
supθ∈[−B,B]d|R(θ)−R(θ)|

]
+ R(Θk)−R(ϑ)

=

∫
D

|N ϑ,l
u,v (x)− E(x)|2 PX1(dx) + 2

[
supθ∈[−B,B]d|R(θ)−R(θ)|

]
+ min(k,n)∈{1,2,...,K}×T, ‖Θk,n‖∞≤B[R(Θk,n)−R(ϑ)]

≤
[
supx∈D|N ϑ,l

u,v (x)− E(x)|2
]

+ 2
[
supθ∈[−B,B]d|R(θ)−R(θ)|

]
+ min(k,n)∈{1,2,...,K}×T, ‖Θk,n‖∞≤B|R(Θk,n)−R(ϑ)|.

(4.13)

The proof of Proposition 4.2.1 is thus complete.
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Chapter 5

Optimization through random
initializations

5.1 Analysis of the optimization error

5.1.1 The complementary distribution function formula

Lemma 5.1.1 (Complementary distribution function formula). Let µ : B([0,∞)) →
[0,∞] be a sigma-finite measure. Then∫ ∞

0

xµ(dx) =

∫ ∞
0

µ([x,∞)) dx =

∫ ∞
0

µ((x,∞)) dx. (5.1)

Proof of Lemma 5.1.1. First, observe that∫ ∞
0

xµ(dx) =

∫ ∞
0

[∫ x

0

dy

]
µ(dx) =

∫ ∞
0

[∫ ∞
0

1(−∞,x](y) dy

]
µ(dx)

=

∫ ∞
0

∫ ∞
0

1[y,∞)(x) dy µ(dx).

(5.2)

Next note that the fact that [0,∞)2 3 (x, y) 7→ 1[y,∞)(x) ∈ R is (B([0,∞))⊗B([0,∞)))/B(R)-
measurable, the assumption that µ is a sigma-finite measure, and Fubini’s theorem show
that∫ ∞

0

∫ ∞
0

1[y,∞)(x) dy µ(dx) =

∫ ∞
0

∫ ∞
0

1[y,∞)(x)µ(dx) dy =

∫ ∞
0

µ([y,∞)) dy. (5.3)

Combining this with (5.2) demonstrates that for all ε ∈ (0,∞) it holds that∫ ∞
0

xµ(dx) =

∫ ∞
0

µ([y,∞)) dy ≥
∫ ∞

0

µ((y,∞)) dy

≥
∫ ∞

0

µ([y + ε,∞)) dy =

∫ ∞
ε

µ([y,∞)) dy.

(5.4)

Beppo Levi’s monotone convergence theorem hence establishes that∫ ∞
0

xµ(dx) =

∫ ∞
0

µ([y,∞)) dy ≥
∫ ∞

0

µ((y,∞)) dy

≥ sup
ε∈(0,∞)

[∫ ∞
ε

µ([y,∞)) dy

]
= sup

ε∈(0,∞)

[∫ ∞
0

µ([y,∞))1(ε,∞)(y) dy

]
=

∫ ∞
0

µ([y,∞)) dy.

(5.5)
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The proof of Lemma 5.1.1 is thus complete.

5.1.2 Estimates for the optimization error involving comple-
mentary distribution functions

Lemma 5.1.2. Let (E, δ) be a metric space, let x ∈ E, K ∈ N, p, L ∈ (0,∞), let
(Ω,F ,P) be a probability space, let R : E × Ω → R be (B(E) ⊗ F)/B(R)-measurable,
assume for all y ∈ E, ω ∈ Ω that |R(x, ω) −R(y, ω)| ≤ Lδ(x, y), and let Xk : Ω → E,
k ∈ {1, 2, . . . , K}, be i.i.d. random variables. Then

E
[
mink∈{1,2,...,K}|R(Xk)−R(x)|p

]
≤ Lp

∫ ∞
0

[P(δ(X1, x) > ε
1/p)]K dε. (5.6)

Proof of Lemma 5.1.2. Throughout this proof let Y : Ω → [0,∞) satisfy for all ω ∈ Ω
that Y (ω) = mink∈{1,2,...,K}[δ(Xk(ω), x)]p. Observe that the fact that Y is a random
variable, the assumption that ∀ y ∈ E, ω ∈ Ω: |R(x, ω) − R(y, ω)| ≤ Lδ(x, y), and
Lemma 5.1.1 demonstrate that

E
[
mink∈{1,2,...,K}|R(Xk)−R(x)|p

]
≤ Lp E

[
mink∈{1,2,...,K}[δ(Xk, x)]p

]
= Lp E[Y ] = Lp

∫ ∞
0

y PY (dy) = Lp
∫ ∞

0

PY ((ε,∞)) dε

= Lp
∫ ∞

0

P(Y > ε) dε = Lp
∫ ∞

0

P
(
mink∈{1,2,...,K}[δ(Xk, x)]p > ε

)
dε.

(5.7)

Moreover, observe that the assumption that Xk, k ∈ {1, 2, . . . , K}, are i.i.d. random
variables shows that for all ε ∈ (0,∞) it holds that

P
(
mink∈{1,2,...,K}[δ(Xk, x)]p > ε

)
= P

(
∀ k ∈ {1, 2, . . . , K} : [δ(Xk, x)]p > ε

)
=

K∏
k=1

P([δ(Xk, x)]p > ε) = [P([δ(X1, x)]p > ε)]K = [P(δ(X1, x) > ε
1/p)]K .

(5.8)

Combining this with (5.7) proves (5.6). The proof of Lemma 5.1.2 is thus complete.

5.2 Strong convergences rates for the optimization

error

5.2.1 Properties of the gamma and the beta function

Lemma 5.2.1. Let Γ: (0,∞) → (0,∞) and B : (0,∞)2 → (0,∞) satisfy for all x, y ∈
(0,∞) that Γ(x) =

∫∞
0
tx−1e−t dt and B(x, y) =

∫ 1

0
tx−1(1− t)y−1 dt. Then

(i) it holds for all x ∈ (0,∞) that Γ(x+ 1) = xΓ(x),

(ii) it holds that Γ(1) = Γ(2) = 1, and

(iii) it holds for all x, y ∈ (0,∞) that B(x, y) = Γ(x)Γ(y)
Γ(x+y)

.
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Proof of Lemma 5.2.1. Throughout this proof let x, y ∈ (0,∞), let Φ: (0,∞)× (0, 1)→
(0,∞)2 satisfy for all u ∈ (0,∞), v ∈ (0, 1) that

Φ(u, v) = (u(1− v), uv), (5.9)

and let f : (0,∞)2 → (0,∞) satisfy for all s, t ∈ (0,∞) that

f(s, t) = s(x−1) t(y−1) e−(s+t). (5.10)

Observe that the integration by parts formula assures that for all x ∈ (0,∞) it holds that

Γ(x+ 1) =

∫ ∞
0

t((x+1)−1) e−t dt = −
∫ ∞

0

tx
[
−e−t

]
dt

= −
([
txe−t

]t=∞
t=0
− x

∫ ∞
0

t(x−1) e−t dt

)
= x

∫ ∞
0

t(x−1) e−t dt = x · Γ(x).

(5.11)

This establishes item (i). Moreover, note that

Γ(1) =

∫ ∞
0

t0e−t dt = [−e−t]t=∞t=0 = 1. (5.12)

This and item (i) prove item (ii). Next note that the integral transformation theorem
with the diffeomorphism (1,∞) 3 t 7→ 1

t
∈ (0, 1) ensures that

B(x, y) =

∫ 1

0

t(x−1) (1− t)(y−1)dt =

∫ ∞
1

[
1
t

](x−1) [
1− 1

t

](y−1) 1
t2
dt

=

∫ ∞
1

t(−x−1)
[
t−1
t

](y−1)
dt =

∫ ∞
1

t(−x−y)(t− 1)(y−1)dt

=

∫ ∞
0

(t+ 1)(−x−y)t(y−1)dt =

∫ ∞
0

t(y−1)

(t+ 1)(x+y)
dt.

(5.13)

In addition, note that

Γ(x) · Γ(y) =

[∫ ∞
0

t(x−1) e−t dt

][∫ ∞
0

t(y−1) e−t dt

]
=

[∫ ∞
0

s(x−1) e−s ds

][∫ ∞
0

t(y−1) e−t dt

]
=

∫ ∞
0

∫ ∞
0

s(x−1) t(y−1) e−(s+t) dt ds

=

∫
(0,∞)2

f(s, t) d(s, t).

(5.14)

Moreover, observe that for all (u, v) ∈ (0,∞)× (0, 1) it holds that

Φ′(u, v) =

[
1− v −u
v u

]
. (5.15)

Hence, we obtain that for all (u, v) ∈ (0,∞)× (0, 1) it holds that

det(Φ′(u, v)) = (1− v)u− v(−u) = u− vu+ vu = u ∈ (0,∞). (5.16)
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This, (5.14), and the integral transformation theorem show that

Γ(x) · Γ(y) =

∫
(0,∞)×(0,1)

f(Φ(u, v)) |det(Φ′(u, v))| d(u, v)

=

∫ ∞
0

∫ 1

0

(u(1− v))(x−1) (uv)(y−1) e−(u(1−v)+uv) u dv du

=

∫ ∞
0

∫ 1

0

u(x+y−1) e−u v(y−1) (1− v)(x−1) dv du

=

[∫ ∞
0

u(x+y−1) e−u du

][∫ 1

0

v(y−1) (1− v)(x−1) dv

]
= Γ(x+ y)B(y, x).

(5.17)

This establishes item (iii). The proof of Lemma 5.2.1 is thus complete.

Lemma 5.2.2. It holds for all α, x ∈ [0, 1] that (1− x)α ≤ 1− αx.

Proof of Lemma 5.2.2. Note that the fact that for all y ∈ [0,∞) it holds that [0,∞) 3
z 7→ yz ∈ [0,∞) is convex implies that for all α, x ∈ [0, 1] it holds that

(1− x)α ≤ α(1− x)1 + (1− α)(1− x)0

= α− αx+ 1− α = 1− αx.
(5.18)

The proof of Lemma 5.2.2 is thus complete.

Proposition 5.2.3. Let Γ: (0,∞) → (0,∞) and z·{ : (0,∞) → N0 satisfy for all x ∈
(0,∞) that Γ(x) =

∫∞
0
tx−1e−t dt and zx{ = max([0, x) ∩ N0). Then

(i) it holds that Γ: (0,∞)→ (0,∞) is convex,

(ii) it holds for all x ∈ (0,∞) that Γ(x+ 1) = xΓ(x) ≤ xzx{ ≤ max{1, xx},

(iii) it holds for all x ∈ (0,∞), α ∈ [0, 1] that

(max{x+ α− 1, 0})α ≤ x

(x+ α)1−α ≤
Γ(x+ α)

Γ(x)
≤ xα, (5.19)

and

(iv) it holds for all x ∈ (0,∞), α ∈ [0,∞) that

(max{x+ min{α− 1, 0}, 0})α ≤ Γ(x+ α)

Γ(x)
≤ (x+ max{α− 1, 0})α. (5.20)

Proof of Proposition 5.2.3. Throughout this proof let b·c : [0,∞) → N0 satisfy for all
x ∈ [0,∞) that bxc = max([0, x] ∩ N0). Observe that the fact that for all t ∈ (0,∞) it
holds that R 3 x 7→ tx ∈ (0,∞) is convex implies that for all x, y ∈ (0,∞), α ∈ [0, 1] it
holds that

Γ(αx+ (1− α)y) =

∫ ∞
0

tαx+(1−α)y−1e−t dt =

∫ ∞
0

tαx+(1−α)yt−1e−t dt

≤
∫ ∞

0

(αtx + (1− α)ty)t−1e−t dt

= α

∫ ∞
0

tx−1e−t dt+ (1− α)

∫ ∞
0

ty−1e−t dt

= αΓ(x) + (1− α)Γ(y).

(5.21)
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This shows item (i). Next note that item (ii) in Lemma 5.2.1 and item (i) establish that
for all α ∈ [0, 1] it holds that

Γ(α + 1) = Γ(α · 2 + (1− α) · 1) ≤ αΓ(2) + (1− α)Γ(1) = α + (1− α) = 1. (5.22)

This yields for all x ∈ (0, 1] that

Γ(x+ 1) ≤ 1 = xzx{ = max{1, xx}. (5.23)

Induction, item (i) in Lemma 5.2.1, and the fact that ∀x ∈ (0,∞) : x− zx{ ∈ (0, 1] hence
ensure that for all x ∈ [1,∞) it holds that

Γ(x+ 1) =

[
zx{∏
i=1

(x− i+ 1)

]
Γ(x− zx{ + 1) ≤ xzx{Γ(x− zx{ + 1) ≤ xzx{ ≤ xx = max{1, xx}.

(5.24)
Combining this and (5.23) with item (i) in Lemma 5.2.1 establishes item (ii). Fur-
thermore, note that Hölder’s inequality and item (i) in Lemma 5.2.1 prove that for all
x ∈ (0,∞), α ∈ [0, 1] it holds that

Γ(x+ α) =

∫ ∞
0

tx+α−1e−t dt =

∫ ∞
0

tαxe−αtt(1−α)x−(1−α)e−(1−α)t dt

=

∫ ∞
0

[txe−t]α[tx−1e−t]1−α dt

≤
(∫ ∞

0

txe−t dt

)α(∫ ∞
0

tx−1e−t dt

)1−α

= [Γ(x+ 1)]α[Γ(x)]1−α = xα[Γ(x)]α[Γ(x)]1−α

= xαΓ(x).

(5.25)

This and item (i) in Lemma 5.2.1 demonstrate that for all x ∈ (0,∞), α ∈ [0, 1] it holds
that

xΓ(x) = Γ(x+ 1) = Γ(x+ α + (1− α)) ≤ (x+ α)1−αΓ(x+ α). (5.26)

Combining (5.25) and (5.26) yields that for all x ∈ (0,∞), α ∈ [0, 1] it holds that

x

(x+ α)1−α ≤
Γ(x+ α)

Γ(x)
≤ xα. (5.27)

Furthermore, observe that item (i) in Lemma 5.2.1 and (5.27) imply that for all x ∈
(0,∞), α ∈ [0, 1] it holds that

Γ(x+ α)

Γ(x+ 1)
=

Γ(x+ α)

xΓ(x)
≤ xα−1. (5.28)

This shows for all α ∈ [0, 1], x ∈ (α,∞) that

Γ(x)

Γ(x+ (1− α))
=

Γ((x− α) + α)

Γ((x− α) + 1)
≤ (x− α)α−1 =

1

(x− α)1−α . (5.29)

This, in turn, ensures for all α ∈ [0, 1], x ∈ (1− α,∞) that

(x+ α− 1)α = (x− (1− α))α ≤ Γ(x+ α)

Γ(x)
. (5.30)
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Next note that Lemma 5.2.2 proves that for all x ∈ (0,∞), α ∈ [0, 1] it holds that

(max{x+ α− 1, 0})α = (x+ α)α
(

max{x+ α− 1, 0}
x+ α

)α
= (x+ α)α

(
max

{
1− 1

x+ α
, 0

})α
≤ (x+ α)α

(
1− α

x+ α

)
= (x+ α)α

(
x

x+ α

)
=

x

(x+ α)1−α .

(5.31)

This and (5.27) establish item (iii). Moreover, observe that induction, item (i) in Lemma 5.2.1,
the fact that ∀α ∈ [0,∞) : α − bαc ∈ [0, 1), and item (iii) demonstrate that for all
x ∈ (0,∞), α ∈ [0,∞) it holds that

Γ(x+ α)

Γ(x)
=

[bαc∏
i=1

(x+ α− i)
]

Γ(x+ α− bαc)
Γ(x)

≤
[bαc∏
i=1

(x+ α− i)
]
xα−bαc

≤ (x+ α− 1)bαcxα−bαc

≤ (x+ max{α− 1, 0})bαc(x+ max{α− 1, 0})α−bαc

= (x+ max{α− 1, 0})α.

(5.32)

Furthermore, the fact that ∀α ∈ [0,∞) : α − bαc ∈ [0, 1), item (iii), induction, and
item (i) in Lemma 5.2.1 imply that for all x ∈ (0,∞), α ∈ [0,∞) it holds that

Γ(x+ α)

Γ(x)
=

Γ(x+ bαc+ α− bαc)
Γ(x)

≥ (max{x+ bαc+ α− bαc − 1, 0})α−bαc
[

Γ(x+ bαc)
Γ(x)

]
= (max{x+ α− 1, 0})α−bαc

[bαc∏
i=1

(x+ bαc − i)
]

Γ(x)

Γ(x)

≥ (max{x+ α− 1, 0})α−bαcxbαc

= (max{x+ α− 1, 0})α−bαc(max{x, 0})bαc

≥ (max{x+ min{α− 1, 0}, 0})α−bαc(max{x+ min{α− 1, 0}, 0})bαc

= (max{x+ min{α− 1, 0}, 0})α.

(5.33)

Combining this with (5.32) shows item (iv). The proof of Proposition 5.2.3 is thus
complete.

Corollary 5.2.4. Let B : (0,∞)2 → (0,∞) satisfy for all x, y ∈ (0,∞) that B(x, y) =∫ 1

0
tx−1(1 − t)y−1 dt and let Γ: (0,∞) → (0,∞) satisfy for all x ∈ (0,∞) that Γ(x) =∫∞

0
tx−1e−t dt. Then it holds for all x, y ∈ (0,∞) with x+ y > 1 that

Γ(x)

(y + max{x− 1, 0})x
≤ B(x, y) ≤ Γ(x)

(y + min{x− 1, 0})x
≤ max{1, xx}
x(y + min{x− 1, 0})x

.

(5.34)
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Proof of Corollary 5.2.4. Note that item (iii) in Lemma 5.2.1 ensures that for all x, y ∈
(0,∞) it holds that

B(x, y) =
Γ(x)Γ(y)

Γ(y + x)
. (5.35)

In addition, observe that for all x, y ∈ (0,∞) with x + y > 1 it holds that y + min{x −
1, 0} > 0. This and item (iv) in Proposition 5.2.3 demonstrate that for all x, y ∈ (0,∞)
with x+ y > 1 it holds that

0 < (y + min{x− 1, 0})x ≤ Γ(y + x)

Γ(y)
≤ (y + max{x− 1, 0})x. (5.36)

Combining this with (5.35) and item (ii) in Proposition 5.2.3 shows that for all x, y ∈
(0,∞) with x+ y > 1 it holds that

Γ(x)

(y + max{x− 1, 0})x
≤ B(x, y) ≤ Γ(x)

(y + min{x− 1, 0})x
≤ max{1, xx}
x(y + min{x− 1, 0})x

.

(5.37)
The proof of Corollary 5.2.4 is thus complete.

5.2.2 Product measurability of continuous random fields

Lemma 5.2.5 (Projections in metric spaces). Let (E, d) be a metric space, let n ∈ N,
e1, e2, . . . , en ∈ E, and let P : E → E satisfy for all x ∈ E that

P (x) = emin{k∈{1,2,...,n} : d(x,ek)=min{yd(x,e1),d(x,e2),...,d(x,en)}}. (5.38)

Then

(i) it holds for all x ∈ E that

d(x, P (x)) = min
k∈{1,2,...,n}

d(x, ek) (5.39)

and

(ii) it holds for all A ⊆ E that P−1(A) ∈ B(E).

Proof of Lemma 5.2.5. Throughout this proof let D = (D1, . . . , Dn) : E → Rn satisfy for
all x ∈ E that

D(x) = (D1(x), D2(x), . . . , Dn(x)) = (d(x, e1), d(x, e2), . . . , d(x, en)). (5.40)

Note that (5.38) ensures that for all x ∈ E it holds that

d(x, P (x)) = d(x, emin{k∈{1,2,...,n} : d(x,ek)=min{d(x,e1),d(x,e2),...,d(x,en)}}) = min
k∈{1,2,...,n}

d(x, ek).

(5.41)
This establishes item (i). It thus remains to prove item (ii). For this observe that the
fact that d : E × E → [0,∞) is continuous ensures that D : E → Rn is continuous.
Hence, we obtain that D : E → Rn is B(E)/B(Rn)-measurable. Next note that item (i)
demonstrates that for all k ∈ {1, 2, . . . , n}, x ∈ P−1({ek}) it holds that

d(x, ek) = d(x, P (x)) = min
l∈{1,2,...,n}

d(x, el). (5.42)
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Hence, we obtain that for all k ∈ {1, 2, . . . , n}, x ∈ P−1({ek}) it holds that

k ≥ min{l ∈ {1, 2, . . . , n} : d(x, el) = min{d(x, e1), d(x, e2), . . . , d(x, en)}}. (5.43)

Moreover, note that (5.38) ensures that for all k ∈ {1, 2, . . . , n}, x ∈ P−1({ek}) it holds
that

min

{
l ∈ {1, 2, . . . , n} : d(x, el) = min

u∈{1,2,...,n}
d(x, eu)

}
∈
{
l ∈ {1, 2, . . . , n} : el = ek

}
⊆
{
k, k + 1, . . . , n

}
.

(5.44)

Therefore, we obtain that for all k ∈ {1, 2, . . . , n}, x ∈ P−1({ek}) with ek /∈ (∪l∈N∩[0,k){el})
it holds that

min

{
l ∈ {1, 2, . . . , n} : d(x, el) = min

u∈{1,2,...,n}
d(x, eu)

}
≥ k. (5.45)

Combining this with (5.43) yields that for all k ∈ {1, 2, . . . , n}, x ∈ P−1({ek}) with
ek /∈ (∪l∈N∩[0,k){el}) it holds that

min

{
l ∈ {1, 2, . . . , n} : d(x, el) = min

u∈{1,2,...,n}
d(x, eu)

}
= k. (5.46)

Hence, we obtain that for all k ∈ {1, 2, . . . , n} with ek /∈ (∪l∈N∩[0,k){el}) it holds that

P−1({ek}) ⊆
{
x ∈ E : min

{
l ∈ {1, 2, . . . , n} : d(x, el) = min

u∈{1,2,...,n}
d(x, eu)

}
= k

}
.

(5.47)
This and (5.38) show that for all k ∈ {1, 2, . . . , n} with ek /∈ (∪l∈N∩[0,k){el}) it holds that

P−1({ek}) =

{
x ∈ E : min

{
l ∈ {1, 2, . . . , n} : d(x, el) = min

u∈{1,2,...,n}
d(x, eu)

}
= k

}
.

(5.48)
Combining (5.40) with the fact that D : E → Rn is B(E)/B(Rn)-measurable therefore
demonstrates that for all k ∈ {1, 2, . . . , n} with ek /∈ (∪l∈N∩[0,k){el}) it holds that

P−1({ek})

=

{
x ∈ E : min

{
l ∈ {1, 2, . . . , n} : d(x, el) = min

u∈{1,2,...,n}
d(x, eu)

}
= k

}
=

{
x ∈ E : min

{
l ∈ {1, 2, . . . , n} : Dl(x) = min

u∈{1,2,...,n}
Du(x)

}
= k

}
=

{
x ∈ E :

(
∀ l ∈ N ∩ [0, k) : Dk(x) < Dl(x) and
∀ l ∈ {1, 2, . . . , n} : Dk(x) ≤ Dl(x)

)}

=

k−1⋂
l=1

{x ∈ E : Dk(x) < Dl(x)}︸ ︷︷ ︸
∈B(E)

⋂
 n⋂
l=1

{x ∈ E : Dk(x) ≤ Dl(x)}︸ ︷︷ ︸
∈B(E)

 ∈ B(E).

(5.49)

Hence, we obtain that for all f ∈ {e1, e2, . . . , en} it holds that

P−1({f}) ∈ B(E). (5.50)
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Therefore, we obtain that for all A ⊆ E it holds that

P−1(A) = P−1(A ∩ {e1, e2, . . . , en})
= ∪f∈A∩{e1,e2,...,en} P−1({f})︸ ︷︷ ︸

∈B(E)

∈ B(E). (5.51)

This establishes item (ii). The proof of Lemma 5.2.5 is thus complete.

Lemma 5.2.6. Let (E, d) be a separable metric space, let (E , δ) be a metric space, let
(Ω,F) be a measurable space, let X : E × Ω → E, assume for all e ∈ E that Ω 3 ω 7→
X(e, ω) ∈ E is F/B(E)-measurable, and assume for all ω ∈ Ω that E 3 e 7→ X(e, ω) ∈ E
is continuous. Then X : E × Ω→ E is (B(E)⊗ F)/B(E)-measurable.

Proof of Lemma 5.2.6. Throughout this proof let e = (em)m∈N : N→ E satisfy {em : m ∈ N} =
E, let Pn : E → E, n ∈ N, satisfy for all n ∈ N, x ∈ E that

Pn(x) = emin{k∈{1,2,...,n} : d(x,ek)=min{d(x,e1),d(x,e2),...,d(x,en)}}, (5.52)

and let Xn : E × Ω→ E , n ∈ N, satisfy for all n ∈ N, x ∈ E, ω ∈ Ω that

Xn(x, ω) = X(Pn(x), ω). (5.53)

Note that (5.53) shows that for all n ∈ N, B ∈ B(E) it holds that

(Xn)−1(B) = {(x, ω) ∈ E × Ω: Xn(x, ω) ∈ B}

=
⋃

y∈Im(Pn)

([
(Xn)−1(B)

]
∩
[
(Pn)−1({y})× Ω

])
=

⋃
y∈Im(Pn)

{
(x, ω) ∈ E × Ω:

[
Xn(x, ω) ∈ B and x ∈ (Pn)−1({y})

]}
=

⋃
y∈Im(Pn)

{
(x, ω) ∈ E × Ω:

[
X(Pn(x), ω) ∈ B and x ∈ (Pn)−1({y})

]}
.

(5.54)

Item (ii) in Lemma 5.2.5 hence implies that for all n ∈ N, B ∈ B(E) it holds that

(Xn)−1(B) =
⋃

y∈Im(Pn)

{
(x, ω) ∈ E × Ω:

[
X(y, ω) ∈ B and x ∈ (Pn)−1({y})

]}
=

⋃
y∈Im(Pn)

(
{(x, ω) ∈ E × Ω: X(y, ω) ∈ B} ∩

[
(Pn)−1({y})× Ω

])
=

⋃
y∈Im(Pn)

([
E ×

(
(X(y, ·))−1(B)

)︸ ︷︷ ︸
∈(B(E)⊗F)

]
∩
[
(Pn)−1({y})× Ω︸ ︷︷ ︸

∈(B(E)⊗F)

])
∈ (B(E)⊗ F).

(5.55)

This proves that for all n ∈ N it holds that Xn is (B(E) ⊗ F)/B(E)-measurable. In
addition, note that item (i) in Lemma 5.2.5 and the assumption that for all ω ∈ Ω it
holds that E 3 x 7→ X(x, ω) ∈ E is continuous imply that for all x ∈ E, ω ∈ Ω it holds
that

lim
n→∞

Xn(x, ω) = lim
n→∞

X(Pn(x), ω) = X(x, ω). (5.56)

Combining this with the fact that for all n ∈ N it holds that Xn : E ×Ω→ E is (B(E)⊗
F)/B(E)-measurable shows that X : E × Ω → E is (B(E) ⊗ F)/B(E)-measurable. The
proof of Lemma 5.2.6 is thus completed.
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5.2.3 Strong convergences rates for the optimization error

Proposition 5.2.7. Let d, K ∈ N, L, α ∈ R, β ∈ (α,∞), let (Ω,F ,P) be a probability
space, let R : [α, β]d × Ω → R be a random field, assume for all θ, ϑ ∈ [α, β]d, ω ∈ Ω
that |R(θ, ω) −R(ϑ, ω)| ≤ L‖θ − ϑ‖∞, let Θk : Ω → [α, β]d, k ∈ {1, 2, . . . , K}, be i.i.d.
random variables, and assume that Θ1 is continuous uniformly distributed on [α, β]d

(cf. Definition 3.1.16). Then

(i) it holds that R is a (B([α, β]d)⊗F)/B(R)-measurable function and

(ii) it holds for all θ ∈ [α, β]d, p ∈ (0,∞) that(
E
[
mink∈{1,2,...,K}|R(Θk)−R(θ)|p

])1/p

≤ L(β − α) max{1, (p/d)1/d}
K1/d

≤ L(β − α) max{1, p}
K1/d

.
(5.57)

Proof of Proposition 5.2.7. Throughout this proof assume w.l.o.g. that L > 0, let δ :
([α, β]d) × ([α, β]d) → [0,∞) satisfy for all θ, ϑ ∈ [α, β]d that δ(θ, ϑ) = ‖θ − ϑ‖∞, let

B : (0,∞)2 → (0,∞) satisfy for all x, y ∈ (0,∞) that B(x, y) =
∫ 1

0
tx−1(1−t)y−1 dt, and let

Θ1,1,Θ1,2, . . . ,Θ1,d : Ω → [α, β] satisfy Θ1 = (Θ1,1,Θ1,2, . . . ,Θ1,d). First of all, note that
the assumption that ∀ θ, ϑ ∈ [α, β]d, ω ∈ Ω: |R(θ, ω)−R(ϑ, ω)| ≤ L‖θ−ϑ‖∞ ensures that
for all ω ∈ Ω it holds that [α, β]d 3 θ 7→ R(θ, ω) ∈ R is continuous. Combining this with
the fact that ([α, β]d, δ) is a separable metric space, the fact that for all θ ∈ [α, β]d it holds
that Ω 3 ω 7→ R(θ, ω) ∈ R is F/B(R)-measurable, and Lemma 5.2.6 proves item (i).
Next observe that for all θ ∈ [α, β], ε ∈ [0,∞) it holds that

min{θ + ε, β} −max{θ − ε, α} = min{θ + ε, β}+ min{ε− θ,−α}
= min

{
θ + ε+ min{ε− θ,−α}, β + min{ε− θ,−α}

}
= min

{
min{2ε, θ − α + ε},min{β − θ + ε, β − α}

}
≥ min

{
min{2ε, α− α + ε},min{β − β + ε, β − α}

}
= min{2ε, ε, ε, β − α} = min{ε, β − α}.

(5.58)

The assumption that Θ1 is continuous uniformly distributed on [α, β]d hence shows that
for all θ = (θ1, θ2, . . . , θd) ∈ [α, β]d, ε ∈ [0,∞) it holds that

P(‖Θ1 − θ‖∞ ≤ ε) = P
(
maxi∈{1,2,...,d}|Θ1,i − θi| ≤ ε

)
= P

(
∀ i ∈ {1, 2, . . . ,d} : − ε ≤ Θ1,i − θi ≤ ε

)
= P

(
∀ i ∈ {1, 2, . . . ,d} : θi − ε ≤ Θ1,i ≤ θi + ε

)
= P

(
∀ i ∈ {1, 2, . . . ,d} : max{θi − ε, α} ≤ Θ1,i ≤ min{θi + ε, β}

)
= P

(
Θ1 ∈

[
×d
i=1[max{θi − ε, α},min{θi + ε, β}]

])
= 1

(β−α)d

d∏
i=1

(min{θi + ε, β} −max{θi − ε, α})

≥ 1
(β−α)d

[min{ε, β − α}]d = min
{

1, εd

(β−α)d

}
.

(5.59)

Therefore, we obtain for all θ ∈ [α, β]d, p ∈ (0,∞), ε ∈ [0,∞) that

P(‖Θ1 − θ‖∞ > ε
1/p) = 1− P(‖Θ1 − θ‖∞ ≤ ε

1/p)

≤ 1−min
{

1, ε
d/p

(β−α)d

}
= max

{
0, 1− ε

d/p

(β−α)d

}
.

(5.60)
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This, item (i), the assumption that ∀ θ, ϑ ∈ [α, β]d, ω ∈ Ω: |R(θ, ω) − R(ϑ, ω)| ≤
L‖θ − ϑ‖∞, the assumption that Θk, k ∈ {1, 2, . . . , K}, are i.i.d. random variables, and
Lemma 5.1.2 (applied with (E, δ) x ([α, β]d, δ), (Xk)k∈{1,2,...,K} x (Θk)k∈{1,2,...,K} in the
notation of Lemma 5.1.2) establish that for all θ ∈ [α, β]d, p ∈ (0,∞) it holds that

E
[
mink∈{1,2,...,K}|R(Θk)−R(θ)|p

]
≤ Lp

∫ ∞
0

[P(‖Θ1 − θ‖∞ > ε
1/p)]K dε

≤ Lp
∫ ∞

0

[
max

{
0, 1− ε

d/p

(β−α)d

}]K
dε = Lp

∫ (β−α)p

0

(
1− ε

d/p

(β−α)d

)K
dε

= p
d
Lp(β − α)p

∫ 1

0

t
p/d−1(1− t)K dt = p

d
Lp(β − α)p

∫ 1

0

t
p/d−1(1− t)K+1−1 dt

= p
d
Lp(β − α)p B(p/d, K + 1).

(5.61)

Corollary 5.2.4 (applied with xx p/d, y x K + 1 for p ∈ (0,∞) in the notation of (5.34)
in Corollary 5.2.4) hence demonstrates that for all θ ∈ [α, β]d, p ∈ (0,∞) it holds that

E
[
mink∈{1,2,...,K}|R(Θk)−R(θ)|p

]
≤

p
d
Lp(β − α)p max{1, (p/d)p/d}

p
d

(K + 1 + min{p/d− 1, 0})p/d
≤ Lp(β − α)p max{1, (p/d)p/d}

Kp/d
.

(5.62)

This implies for all θ ∈ [α, β]d, p ∈ (0,∞) that(
E
[
mink∈{1,2,...,K}|R(Θk)−R(θ)|p

])1/p

≤ L(β − α) max{1, (p/d)1/d}
K1/d

≤ L(β − α) max{1, p}
K1/d

.
(5.63)

This shows item (ii) and thus completes the proof of Proposition 5.2.7.

5.3 Strong convergences rates for the optimization

error involving ANNs

5.3.1 Local Lipschitz continuity estimates for the parametriza-
tion functions associated to ANNs

Lemma 5.3.1. Let a, x, y ∈ R. Then

|max{x, a} −max{y, a}| ≤ max{x, y} −min{x, y} = |x− y|. (5.64)

Proof of Lemma 5.3.1. Observe that

|max{x, a} −max{y, a}| = |max{max{x, y}, a} −max{min{x, y}, a}|
= max

{
max{x, y}, a

}
−max

{
min{x, y}, a

}
= max

{
max{x, y} −max

{
min{x, y}, a

}
, a−max

{
min{x, y}, a

}}
≤ max

{
max{x, y} −max

{
min{x, y}, a

}
, a− a

}
= max

{
max{x, y} −max

{
min{x, y}, a

}
, 0
}
≤ max

{
max{x, y} −min{x, y}, 0

}
= max{x, y} −min{x, y} = |max{x, y} −min{x, y}| = |x− y|.

(5.65)

The proof of Lemma 5.3.1 is thus complete.
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Corollary 5.3.2. Let a, x, y ∈ R. Then

|min{x, a} −min{y, a}| ≤ max{x, y} −min{x, y} = |x− y|. (5.66)

Proof of Corollary 5.3.2. Note that Lemma 5.3.1 ensures that

|min{x, a} −min{y, a}| = |−(min{x, a} −min{y, a})| = |max{−x,−a} −max{−y,−a}|
≤ |(−x)− (−y)| = |x− y|.

(5.67)

The proof of Corollary 5.3.2 is thus complete.

Lemma 5.3.3. Let d ∈ N. Then it holds for all x, y ∈ Rd that

‖Rd(x)−Rd(y)‖∞ ≤ ‖x− y‖∞ (5.68)

(cf. Definitions 2.1.7 and 3.1.16).

Proof of Lemma 5.3.3. Note that Lemma 5.3.1 establishes (5.68). The proof of Lemma 5.3.3
is thus complete.

Lemma 5.3.4. Let d ∈ N, u ∈ [−∞,∞), v ∈ (u,∞]. Then it holds for all x, y ∈ Rd that

‖Cu,v,d(x)− Cu,v,d(y)‖∞ ≤ ‖x− y‖∞ (5.69)

(cf. Definitions 2.1.12 and 3.1.16).

Proof of Lemma 5.3.4. Note that Lemma 5.3.1, Corollary 5.3.2, and the fact that for all
x ∈ R it holds that max{−∞, x} = x = min{x,∞} show that for all x, y ∈ R it holds
that

|cu,v(x)−cu,v(y)| = |max{u,min{x, v}}−max{u,min{y, v}}| ≤ |min{x, v}−min{y, v}| ≤ |x−y|
(5.70)

(cf. Definition 2.1.11). Hence, we obtain that for all x = (x1, x2, . . . , xd), y = (y1, y2, . . . , yd) ∈
Rd it holds that

‖Cu,v,d(x)− Cu,v,d(y)‖∞ = max
i∈{1,2,...,d}

|cu,v(xi)− cu,v(yi)| ≤ max
i∈{1,2,...,d}

|xi − yi| = ‖x− y‖∞
(5.71)

(cf. Definitions 2.1.12 and 3.1.16). The proof of Lemma 5.3.4 is thus complete.

Lemma 5.3.5 (Row sum norm, operator norm induced by the maximum norm). Let
a, b ∈ N, M = (Mi,j)(i,j)∈{1,2,...,a}×{1,2,...,b} ∈ Ra×b. Then

sup
v∈Rb\{0}

[
‖Mv‖∞
‖v‖∞

]
= max

i∈{1,2,...,a}

[
b∑

j=1

|Mi,j|

]
≤ b

[
max

i∈{1,2,...,a}
max

j∈{1,2,...,b}
|Mi,j|

]
(5.72)

(cf. Definition 3.1.16).
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Proof of Lemma 5.3.5. Observe that

sup
v∈Rb

[
‖Mv‖∞
‖v‖∞

]
= sup

v∈Rb, ‖v‖∞≤1

‖Mv‖∞ = sup
v=(v1,v2,...,vb)∈[−1,1]b

‖Mv‖∞

= sup
v=(v1,v2,...,vb)∈[−1,1]b

(
max

i∈{1,2,...,a}

∣∣∣∣∣ b∑
j=1

Mi,jvj

∣∣∣∣∣
)

= max
i∈{1,2,...,a}

(
sup

v=(v1,v2,...,vb)∈[−1,1]b

∣∣∣∣∣ b∑
j=1

Mi,jvj

∣∣∣∣∣
)

= max
i∈{1,2,...,a}

(
b∑

j=1

|Mi,j|

)
(5.73)

(cf. Definition 3.1.16). The proof of Lemma 5.3.5 is thus complete.

Theorem 5.3.6. Let a ∈ R, b ∈ [a,∞), d, L ∈ N, l = (l0, l1, . . . , lL) ∈ NL+1 satisfy

d ≥
L∑
k=1

lk(lk−1 + 1). (5.74)

Then it holds for all θ, ϑ ∈ Rd that

sup
x∈[a,b]l0

‖N θ,l
−∞,∞(x)−N ϑ,l

−∞,∞(x)‖∞

≤ max{1, |a|, |b|}‖θ − ϑ‖∞

[
L−1∏
m=0

(lm + 1)

][
L−1∑
n=0

(
max{1, ‖θ‖n∞} ‖ϑ‖L−1−n

∞
)]

≤ Lmax{1, |a|, |b|}(max{1, ‖θ‖∞, ‖ϑ‖∞})L−1

[
L−1∏
m=0

(lm + 1)

]
‖θ − ϑ‖∞

≤ Lmax{1, |a|, |b|} (‖l‖∞ + 1)L (max{1, ‖θ‖∞, ‖ϑ‖∞})L−1 ‖θ − ϑ‖∞

(5.75)

(cf. Definition 2.1.27 and Definition 3.1.16).

Proof of Theorem 5.3.6. Throughout this proof let θj = (θj,1, θj,2, . . . , θj,d) ∈ Rd, j ∈
{1, 2}, let d ∈ N satisfy

d =
L∑
k=1

lk(lk−1 + 1), (5.76)

let Wj,k ∈ Rlk×lk−1 , k ∈ {1, 2, . . . , L}, j ∈ {1, 2}, and Bj,k ∈ Rlk , k ∈ {1, 2, . . . , L},
j ∈ {1, 2}, satisfy for all j ∈ {1, 2}, k ∈ {1, 2, . . . , L} that

T
((

(Wj,1, Bj,1), (Wj,2, Bj,2), . . . , (Wj,L, Bj,L)
))

= (θj,1, θj,2, . . . , θj,d), (5.77)

let φj,k ∈ N, k ∈ {1, 2, . . . , L}, j ∈ {1, 2}, satisfy for all j ∈ {1, 2}, k ∈ {1, 2, . . . , L} that

φj,k =
(
(Wj,1, Bj,1), (Wj,2, Bj,2), . . . , (Wj,k, Bj,k)

)
∈
[�k

i=1

(
Rli×li−1 × Rli

)]
, (5.78)

let D = [a, b]l0 , let mj,k ∈ [0,∞), j ∈ {1, 2}, k ∈ {0, 1, . . . , L}, satisfy for all j ∈ {1, 2},
k ∈ {0, 1, . . . , L} that

mj,k =

{
max{1, |a|, |b|} : k = 0

max{1, supx∈D ‖(Rr(φj,k))(x)‖∞} : k > 0,
(5.79)
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and let ek ∈ [0,∞), k ∈ {0, 1, . . . , L}, satisfy for all k ∈ {0, 1, . . . , L} that

ek =

{
0 : k = 0

supx∈D ‖(Rr(φ1,k))(x)− (Rr(φ2,k))(x)‖∞ : k > 0
(5.80)

(cf. Definitions 2.1.6, 2.2.3, 2.2.36, and 3.1.16). Note that Lemma 5.3.5 demonstrates
that

e1 = sup
x∈D
‖(Rr(φ1,1))(x)− (Rr(φ2,1))(x)‖∞ = sup

x∈D
‖(W1,1x+B1,1)− (W2,1x+B2,1)‖∞

≤
[
sup
x∈D
‖(W1,1 −W2,1)x‖∞

]
+ ‖B1,1 −B2,1‖∞

≤

[
sup

v∈Rl0\{0}

(
‖(W1,1 −W2,1)v‖∞

‖v‖∞

)][
sup
x∈D
‖x‖∞

]
+ ‖B1,1 −B2,1‖∞

≤ l0 ‖θ1 − θ2‖∞max{|a|, |b|}+ ‖B1,1 −B2,1‖∞ ≤ l0 ‖θ1 − θ2‖∞max{|a|, |b|}+ ‖θ1 − θ2‖∞
= ‖θ1 − θ2‖∞(l0 max{|a|, |b|}+ 1) ≤ m1,0 ‖θ1 − θ2‖∞(l0 + 1).

(5.81)

Moreover, observe that the triangle inequality assures that for all k ∈ {1, 2, . . . , L}∩(1,∞)
it holds that

ek = sup
x∈D
‖(Rr(φ1,k))(x)− (Rr(φ2,k))(x)‖∞

= sup
x∈D

∥∥∥[W1,k

(
Rlk−1

(
(Rr(φ1,k−1))(x)

))
+B1,k

]
−
[
W2,k

(
Rlk−1

(
(Rr(φ2,k−1))(x)

))
+B2,k

]∥∥∥
∞

≤
[
sup
x∈D

∥∥∥W1,k

(
Rlk−1

(
(Rr(φ1,k−1))(x)

))
−W2,k

(
Rlk−1

(
(Rr(φ2,k−1))(x)

))∥∥∥
∞

]
+ ‖θ1 − θ2‖∞.

(5.82)

The triangle inequality hence implies that for all j ∈ {1, 2}, k ∈ {1, 2, . . . , L} ∩ (1,∞) it
holds that

ek ≤
[
sup
x∈D

∥∥(W1,k −W2,k

)(
Rlk−1

(
(Rr(φj,k−1))(x)

))∥∥
∞

]
+

[
sup
x∈D

∥∥∥W3−j,k

(
Rlk−1

(
(Rr(φ1,k−1))(x)

)
−Rlk−1

(
(Rr(φ2,k−1))(x)

))∥∥∥
∞

]
+ ‖θ1 − θ2‖∞

≤

[
sup

v∈Rlk−1\{0}

(
‖(W1,k −W2,k)v‖∞

‖v‖∞

)][
sup
x∈D

∥∥Rlk−1

(
(Rr(φj,k−1))(x)

)∥∥
∞

]
+ ‖θ1 − θ2‖∞

+

[
sup

v∈Rlk−1\{0}

(
‖W3−j,kv‖∞
‖v‖∞

)][
sup
x∈D

∥∥Rlk−1

(
(Rr(φ1,k−1))(x)

)
−Rlk−1

(
(Rr(φ2,k−1))(x)

)∥∥
∞

]
.

(5.83)

Lemma 5.3.5 and Lemma 5.3.3 therefore show that for all j ∈ {1, 2}, k ∈ {1, 2, . . . , L} ∩
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(1,∞) it holds that

ek ≤ lk−1 ‖θ1 − θ2‖∞
[
sup
x∈D

∥∥Rlk−1

(
(Rr(φj,k−1))(x)

)∥∥
∞

]
+ ‖θ1 − θ2‖∞

+ lk−1 ‖θ3−j‖∞
[
sup
x∈D

∥∥Rlk−1

(
(Rr(φ1,k−1))(x)

)
−Rlk−1

(
(Rr(φ2,k−1))(x)

)∥∥
∞

]
≤ lk−1 ‖θ1 − θ2‖∞

[
sup
x∈D
‖(Rr(φj,k−1))(x)‖∞

]
+ ‖θ1 − θ2‖∞

+ lk−1 ‖θ3−j‖∞
[
sup
x∈D
‖(Rr(φ1,k−1))(x)− (Rr(φ2,k−1))(x)‖∞

]
≤ ‖θ1 − θ2‖∞(lk−1 mj,k−1 + 1) + lk−1 ‖θ3−j‖∞ ek−1.

(5.84)

Hence, we obtain that for all j ∈ {1, 2}, k ∈ {1, 2, . . . , L} ∩ (1,∞) it holds that

ek ≤ mj,k−1 ‖θ1 − θ2‖∞(lk−1 + 1) + lk−1 ‖θ3−j‖∞ ek−1. (5.85)

Combining this with (5.81), the fact that e0 = 0, and the fact that m1,0 = m2,0 demon-
strates that for all j ∈ {1, 2}, k ∈ {1, 2, . . . , L} it holds that

ek ≤ mj,k−1(lk−1 + 1)‖θ1 − θ2‖∞ + lk−1 ‖θ3−j‖∞ ek−1. (5.86)

This shows that for all j = (jn)n∈{0,1,...,L} : {0, 1, . . . , L} → {1, 2} and all k ∈ {1, 2, . . . , L}
it holds that

ek ≤ mjk−1,k−1(lk−1 + 1)‖θ1 − θ2‖∞ + lk−1 ‖θ3−jk−1
‖∞ ek−1. (5.87)

Therefore, we obtain that for all j = (jn)n∈{0,1,...,L} : {0, 1, . . . , L} → {1, 2} and all k ∈
{1, 2, . . . , L} it holds that

ek ≤
k−1∑
n=0

([
k−1∏

m=n+1

(
lm ‖θ3−jm‖∞

)]
mjn,n(ln + 1)‖θ1 − θ2‖∞

)

= ‖θ1 − θ2‖∞

[
k−1∑
n=0

([
k−1∏

m=n+1

(
lm ‖θ3−jm‖∞

)]
mjn,n(ln + 1)

)]
.

(5.88)

Next observe that Lemma 5.3.5 ensures that for all j ∈ {1, 2}, k ∈ {1, 2, . . . , L}∩ (1,∞),
x ∈ D it holds that

‖(Rr(φj,k))(x)‖∞ =
∥∥∥Wj,k

(
Rlk−1

(
(Rr(φj,k−1))(x)

))
+Bj,k

∥∥∥
∞

≤

[
sup

v∈Rlk−1\{0}

‖Wj,kv‖∞
‖v‖∞

]∥∥Rlk−1

(
(Rr(φj,k−1))(x)

)∥∥
∞ + ‖Bj,k‖∞

≤ lk−1 ‖θj‖∞
∥∥Rlk−1

(
(Rr(φj,k−1))(x)

)∥∥
∞ + ‖θj‖∞

≤ lk−1 ‖θj‖∞‖(Rr(φj,k−1))(x)‖∞ + ‖θj‖∞
=
(
lk−1‖(Rr(φj,k−1))(x)‖∞ + 1

)
‖θj‖∞

≤ (lk−1mj,k−1 + 1)‖θj‖∞ ≤ mj,k−1(lk−1 + 1)‖θj‖∞.
(5.89)
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Hence, we obtain for all j ∈ {1, 2}, k ∈ {1, 2, . . . , L} ∩ (1,∞) that

mj,k ≤ max{1,mj,k−1(lk−1 + 1)‖θj‖∞}. (5.90)

Furthermore, note that Lemma 5.3.5 assures that for all j ∈ {1, 2}, x ∈ D it holds that

‖(Rr(φj,1))(x)‖∞ = ‖Wj,1x+Bj,1‖∞

≤

[
sup

v∈Rl0\{0}

‖Wj,1v‖∞
‖v‖∞

]
‖x‖∞ + ‖Bj,1‖∞

≤ l0 ‖θj‖∞ ‖x‖∞ + ‖θj‖∞ ≤ l0 ‖θj‖∞max{|a|, |b|}+ ‖θj‖∞
= (l0 max{|a|, |b|}+ 1)‖θj‖∞ ≤ m1,0(l0 + 1)‖θj‖∞.

(5.91)

Therefore, we obtain that for all j ∈ {1, 2} it holds that

mj,1 ≤ max{1,mj,0(l0 + 1)‖θj‖∞}. (5.92)

Combining this with (5.90) demonstrates that for all j ∈ {1, 2}, k ∈ {1, 2, . . . , L} it holds
that

mj,k ≤ max{1,mj,k−1(lk−1 + 1)‖θj‖∞}. (5.93)

Hence, we obtain that for all j ∈ {1, 2}, k ∈ {0, 1, . . . , L} it holds that

mj,k ≤ mj,0

[
k−1∏
n=0

(ln + 1)

][
max{1, ‖θj‖∞}

]k
. (5.94)

Combining this with (5.88) proves that for all j = (jn)n∈{0,1,...,L} : {0, 1, . . . , L} → {1, 2}
and all k ∈ {1, 2, . . . , L} it holds that

ek ≤ ‖θ1 − θ2‖∞

[
k−1∑
n=0

([
k−1∏

m=n+1

(
lm ‖θ3−jm‖∞

)](
mjn,0

[
n−1∏
v=0

(lv + 1)

]
max{1, ‖θjn‖n∞}(ln + 1)

))]

= m1,0 ‖θ1 − θ2‖∞

[
k−1∑
n=0

([
k−1∏

m=n+1

(
lm ‖θ3−jm‖∞

)]([ n∏
v=0

(lv + 1)

]
max{1, ‖θjn‖n∞}

))]

≤ m1,0 ‖θ1 − θ2‖∞

[
k−1∑
n=0

([
k−1∏

m=n+1

‖θ3−jm‖∞

][
k−1∏
v=0

(lv + 1)

]
max{1, ‖θjn‖n∞}

)]

= m1,0 ‖θ1 − θ2‖∞

[
k−1∏
n=0

(ln + 1)

][
k−1∑
n=0

([
k−1∏

m=n+1

‖θ3−jm‖∞

]
max{1, ‖θjn‖n∞}

)]
.

(5.95)

Therefore, we obtain that for all j ∈ {1, 2}, k ∈ {1, 2, . . . , L} it holds that

ek ≤ m1,0 ‖θ1 − θ2‖∞

[
k−1∏
n=0

(ln + 1)

][
k−1∑
n=0

([
k−1∏

m=n+1

‖θ3−j‖∞

]
max{1, ‖θj‖n∞}

)]

= m1,0 ‖θ1 − θ2‖∞

[
k−1∏
n=0

(ln + 1)

][
k−1∑
n=0

(
max{1, ‖θj‖n∞} ‖θ3−j‖k−1−n

∞
)]

≤ km1,0 ‖θ1 − θ2‖∞(max{1, ‖θ1‖∞, ‖θ2‖∞})k−1

[
k−1∏
m=0

(
lm + 1

)]
.

(5.96)

The proof of Theorem 5.3.6 is thus complete.
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Corollary 5.3.7. Let a ∈ R, b ∈ [a,∞), u ∈ [−∞,∞), v ∈ (u,∞], d, L ∈ N, l =
(l0, l1, . . . , lL) ∈ NL+1 satisfy

d ≥
L∑
k=1

lk(lk−1 + 1). (5.97)

Then it holds for all θ, ϑ ∈ Rd that

sup
x∈[a,b]l0

‖N θ,l
u,v (x)−N ϑ,l

u,v (x)‖∞ ≤ Lmax{1, |a|, |b|} (‖l‖∞+1)L (max{1, ‖θ‖∞, ‖ϑ‖∞})L−1 ‖θ−ϑ‖∞

(5.98)
(cf. Definitions 2.1.27 and 3.1.16).

Proof of Corollary 5.3.7. Note that Lemma 5.3.4 and Theorem 5.3.6 demonstrate that
for all θ, ϑ ∈ Rd it holds that

sup
x∈[a,b]l0

‖N θ,l
u,v (x)−N ϑ,l

u,v (x)‖∞

= sup
x∈[a,b]l0

‖Cu,v,lL(N θ,l
−∞,∞(x))− Cu,v,lL(N ϑ,l

−∞,∞(x))‖∞

≤ sup
x∈[a,b]l0

‖N θ,l
−∞,∞(x)−N ϑ,l

−∞,∞(x)‖∞

≤ Lmax{1, |a|, |b|} (‖l‖∞ + 1)L (max{1, ‖θ‖∞, ‖ϑ‖∞})L−1 ‖θ − ϑ‖∞

(5.99)

(cf. Definitions 2.1.12, 2.1.27, and 3.1.16). This completes the proof of Corollary 5.3.7.

5.3.2 Strong convergences rates for the optimization error in-
volving ANNs

Lemma 5.3.8. Let d,d,L,M ∈ N, B, b ∈ [1,∞), u ∈ R, v ∈ (u,∞), l = (l0, l1, . . . , lL) ∈
NL+1, D ⊆ [−b, b]d, assume l0 = d, lL = 1, and d ≥

∑L
i=1 li(li−1 + 1), let Ω be a set, let

Xj : Ω → D, j ∈ {1, 2, . . . ,M}, and Yj : Ω → [u, v], j ∈ {1, 2, . . . ,M}, be functions, and
let R : [−B,B]d × Ω→ [0,∞) satisfy for all θ ∈ [−B,B]d, ω ∈ Ω that

R(θ, ω) =
1

M

[
M∑
j=1

|N θ,l
u,v (Xj(ω))− Yj(ω)|2

]
(5.100)

(cf. Definition 2.1.27). Then it holds for all θ, ϑ ∈ [−B,B]d, ω ∈ Ω that

|R(θ, ω)−R(ϑ, ω)| ≤ 2(v − u)bL(‖l‖∞ + 1)LBL−1‖θ − ϑ‖∞ (5.101)

(cf. Definition 3.1.16).

Proof of Lemma 5.3.8. Observe that the fact that ∀x1, x2, y ∈ R : (x1 − y)2 − (x2 −
y)2 = (x1 − x2)((x1 − y) + (x2 − y)), the fact that ∀ θ ∈ Rd, x ∈ Rd : N θ,l

u,v (x) ∈ [u, v],
and the assumption that ∀ j ∈ {1, 2, . . . ,M}, ω ∈ Ω: Yj(ω) ∈ [u, v] prove that for all
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θ, ϑ ∈ [−B,B]d, ω ∈ Ω it holds that

|R(θ, ω)−R(ϑ, ω)|

=
1

M

∣∣∣∣[ M∑
j=1

|N θ,l
u,v (Xj(ω))− Yj(ω)|2

]
−
[
M∑
j=1

|N ϑ,l
u,v (Xj(ω))− Yj(ω)|2

]∣∣∣∣
≤ 1

M

[
M∑
j=1

∣∣[N θ,l
u,v (Xj(ω))− Yj(ω)]2 − [N ϑ,l

u,v (Xj(ω))− Yj(ω)]2
∣∣]

=
1

M

[
M∑
j=1

(∣∣N θ,l
u,v (Xj(ω))−N ϑ,l

u,v (Xj(ω))
∣∣

·
∣∣[N θ,l

u,v (Xj(ω))− Yj(ω)] + [N ϑ,l
u,v (Xj(ω))− Yj(ω)]

∣∣)]
≤ 2

M

[
M∑
j=1

([
supx∈D|N θ,l

u,v (x)−N ϑ,l
u,v (x)|

][
supy1,y2∈[u,v]|y1 − y2|

])]
= 2(v − u)

[
supx∈D|N θ,l

u,v (x)−N ϑ,l
u,v (x)|

]
.

(5.102)

In addition, combining the assumptions that D ⊆ [−b, b]d, d ≥
∑L

i=1 li(li−1 + 1), l0 = d,
lL = 1, b ≥ 1, and B ≥ 1 with Corollary 5.3.7 (applied with a x −b, b x b, u x u,
v x v, d x d, L x L, l x l in the notation of Corollary 5.3.7) shows that for all
θ, ϑ ∈ [−B,B]d it holds that

supx∈D|N θ,l
u,v (x)−N ϑ,l

u,v (x)| ≤ supx∈[−b,b]d |N θ,l
u,v (x)−N ϑ,l

u,v (x)|
≤ L max{1, b}(‖l‖∞ + 1)L(max{1, ‖θ‖∞, ‖ϑ‖∞})L−1‖θ − ϑ‖∞
≤ bL(‖l‖∞ + 1)LBL−1‖θ − ϑ‖∞.

(5.103)

This and (5.102) imply that for all θ, ϑ ∈ [−B,B]d, ω ∈ Ω it holds that

|R(θ, ω)−R(ϑ, ω)| ≤ 2(v − u)bL(‖l‖∞ + 1)LBL−1‖θ − ϑ‖∞. (5.104)

The proof of Lemma 5.3.8 is thus complete.

Corollary 5.3.9. Let d,d, d,L,M,K ∈ N, B, b ∈ [1,∞), u ∈ R, v ∈ (u,∞), l =
(l0, l1, . . . , lL) ∈ NL+1, D ⊆ [−b, b]d, assume l0 = d, lL = 1, and d ≥ d =

∑L
i=1 li(li−1 +1),

let (Ω,F ,P) be a probability space, let Θk : Ω → [−B,B]d, k ∈ {1, 2, . . . , K}, be i.i.d.
random variables, assume that Θ1 is continuous uniformly distributed on [−B,B]d, let
Xj : Ω → D, j ∈ {1, 2, . . . ,M}, and Yj : Ω → [u, v], j ∈ {1, 2, . . . ,M}, be random
variables, and let R : [−B,B]d × Ω→ [0,∞) satisfy for all θ ∈ [−B,B]d, ω ∈ Ω that

R(θ, ω) =
1

M

[
M∑
j=1

|N θ,l
u,v (Xj(ω))− Yj(ω)|2

]
(5.105)

(cf. Definition 2.1.27). Then

(i) it holds that R is a (B([−B,B]d)⊗F)/B([0,∞))-measurable function and

(ii) it holds for all θ ∈ [−B,B]d, p ∈ (0,∞) that(
E
[
mink∈{1,2,...,K}|R(Θk)−R(θ)|p

])1/p
(5.106)

≤
4(v − u)bL(‖l‖∞ + 1)LBL

√
max{1, p/d}

K1/d
≤ 4(v − u)bL(‖l‖∞ + 1)LBL max{1, p}

K [L−1(‖l‖∞+1)−2]
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(cf. Definition 3.1.16).

Proof of Corollary 5.3.9. Throughout this proof let L ∈ R be given by L = 2(v −
u)bL(‖l‖∞ + 1)LBL−1, let P : [−B,B]d → [−B,B]d satisfy for all θ = (θ1, θ2, . . . , θd) ∈
[−B,B]d that P (θ) = (θ1, θ2, . . . , θd), and let R : [−B,B]d × Ω → R satisfy for all
θ ∈ [−B,B]d, ω ∈ Ω that

R(θ, ω) =
1

M

[
M∑
j=1

|N θ,l
u,v (Xj(ω))− Yj(ω)|2

]
. (5.107)

Note that the fact that ∀ θ ∈ [−B,B]d : N θ,l
u,v = N P (θ),l

u,v implies that for all θ ∈ [−B,B]d,
ω ∈ Ω it holds that

R(θ, ω) =
1

M

[
M∑
j=1

|N θ,l
u,v (Xj(ω))− Yj(ω)|2

]
=

1

M

[
M∑
j=1

|N P (θ),l
u,v (Xj(ω))− Yj(ω)|2

]
= R(P (θ), ω).

(5.108)

Furthermore, Lemma 5.3.8 (applied with d x d, R x ([−B,B]d×Ω 3 (θ, ω) 7→ R(θ, ω) ∈
[0,∞)) in the notation of Lemma 5.3.8) demonstrates that for all θ, ϑ ∈ [−B,B]d, ω ∈ Ω
it holds that

|R(θ, ω)−R(ϑ, ω)| ≤ 2(v − u)bL(‖l‖∞ + 1)LBL−1‖θ − ϑ‖∞ = L‖θ − ϑ‖∞. (5.109)

Moreover, observe that the assumption that Xj, j ∈ {1, 2, . . . ,M}, and Yj, j ∈ {1, 2, . . . ,
M}, are random variables ensures that R : [−B,B]d × Ω → R is a random field. This,
(5.109), the fact that P ◦Θk : Ω→ [−B,B]d, k ∈ {1, 2, . . . , K}, are i.i.d. random variables,
the fact that P ◦Θ1 is continuous uniformly distributed on [−B,B]d, and Proposition 5.2.7
(applied with d x d, α x −B, β x B, R x R, (Θk)k∈{1,2,...,K} x (P ◦ Θk)k∈{1,2,...,K}
in the notation of Proposition 5.2.7) prove that for all θ ∈ [−B,B]d, p ∈ (0,∞) it holds
that R is (B([−B,B]d)⊗F)/B(R)-measurable and(

E
[
mink∈{1,2,...,K}|R(P (Θk))−R(P (θ))|p

])1/p

≤ L(2B) max{1, (p/d)1/d}
K1/d

=
4(v − u)bL(‖l‖∞ + 1)LBL max{1, (p/d)1/d}

K1/d
.

(5.110)

The fact that P is B([−B,B]d)/B([−B,B]d)-measurable and (5.108) hence show item (i).
In addition, (5.108), (5.110), and the fact that 2 ≤ d =

∑L
i=1 li(li−1 + 1) ≤ L(‖l‖∞ + 1)2

yield that for all θ ∈ [−B,B]d, p ∈ (0,∞) it holds that(
E
[
mink∈{1,2,...,K}|R(Θk)−R(θ)|p

])1/p

=
(
E
[
mink∈{1,2,...,K}|R(P (Θk))−R(P (θ))|p

])1/p
(5.111)

≤
4(v − u)bL(‖l‖∞ + 1)LBL

√
max{1, p/d}

K1/d
≤ 4(v − u)bL(‖l‖∞ + 1)LBL max{1, p}

K [L−1(‖l‖∞+1)−2]
.

This establishes item (ii). The proof of Corollary 5.3.9 is thus complete.
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Chapter 6

Analysis of the generalisation error

6.1 Monte Carlo estimates

Lemma 6.1.1. Let d,M ∈ N, let (Ω,F ,P) be a probability space, let Xj : Ω → Rd, j ∈
{1, 2, . . . ,M}, be independent random variables, and assume maxj∈{1,2,...,M} E[‖Xj‖2] <
∞ (cf. Definition 3.1.16). Then(

E
[∥∥∥∥ 1

M

[
M∑
j=1

Xj

]
−E
[

1

M

M∑
j=1

Xj

]∥∥∥∥2

2

])1/2

≤ 1√
M

[
max

j∈{1,2,...,M}

(
E
[
‖Xj−E[Xj]‖2

2

])1/2
]
. (6.1)

Proof of Lemma 6.1.1. Throughout this proof let 〈·, ·〉 : Rd × Rd → R satisfy for all x =
(x1, x2, . . . , xd), y = (y1, y2, . . . , yd) ∈ Rd that 〈x, y〉 =

∑d
i=1 xiyi. Note that the fact that

for all x ∈ Rd it holds that 〈x, x〉 = ‖x‖2
2 shows that∥∥∥∥ 1

M

[
M∑
j=1

Xj

]
− E

[
1

M

M∑
j=1

Xj

]∥∥∥∥2

2

=
1

M2

∥∥∥∥[ M∑
j=1

Xj

]
− E

[
M∑
j=1

Xj

]∥∥∥∥2

2

=
1

M2

∥∥∥∥ M∑
j=1

(
Xj − E[Xj]

)∥∥∥∥2

2

=
1

M2

[
M∑
i,j=1

〈
Xi − E[Xi], Xj − E[Xj]

〉]
=

1

M2

[
M∑
j=1

‖Xj − E[Xj]‖2
2

]
+

1

M2

[ ∑
(i,j)∈{1,2,...,M}2, i 6=j

〈
Xi − E[Xi], Xj − E[Xj]

〉]
.

(6.2)

This, the fact that for all independent random variables Y, Z : Ω → Rd with E[‖Y ‖2 +
‖Z‖2] < ∞ it holds that E[|〈X, Y 〉|] < ∞ and E[〈Y, Z〉] = 〈E[Y ],E[Z]〉, and the as-
sumption that Xj : Ω → Rd, j ∈ {1, 2, . . . ,M}, are independent random variables imply
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that

E
[∥∥∥∥ 1

M

[
M∑
j=1

Xj

]
− E

[
1

M

M∑
j=1

Xj

]∥∥∥∥2

2

]
=

1

M2

[
M∑
j=1

E
[
‖Xj − E[Xj]‖2

2

]]
+

1

M2

[ ∑
(i,j)∈{1,2,...,M}2, i 6=j

〈
E
[
Xi − E[Xi]

]
,E
[
Xj − E[Xj]

]〉]
=

1

M2

[
M∑
j=1

E
[
‖Xj − E[Xj]‖2

2

]]
≤ 1

M

[
max

j∈{1,2,...,M}
E
[
‖Xj − E[Xj]‖2

2

]]
.

(6.3)

This completes the proof of Lemma 6.1.1.

Definition 6.1.2 (Rademacher family). Let (Ω,F ,P) be a probability space and let J be
a set. Then we say that (rj)j∈J is a P-Rademacher family if and only if it holds that
rj : Ω → {−1, 1}, j ∈ J , are independent random variables with ∀ j ∈ J : P(rj = 1) =
P(rj = −1).

Definition 6.1.3 (p-Kahane–Khintchine constant). Let p ∈ (0,∞). Then we denote by
Kp ∈ (0,∞] the extended real number given by

Kp = sup


c ∈ [0,∞) :


∃R-Banach space (E, ‖·‖E) :
∃ probability space (Ω,F ,P) :
∃P-Rademacher family (rj)j∈N :
∃ k ∈ N : ∃x1, x2, . . . , xk ∈ E \ {0} :(

E
[∥∥∑k

j=1 rjxj
∥∥p
E

])1/p

= c
(
E
[∥∥∑k

j=1 rjxj
∥∥2

E

])1/2




(6.4)

(cf. Definition 6.1.2).

Lemma 6.1.4. It holds for all p ∈ [2,∞) that Kp ≤
√
p− 1 <∞ (cf. Definition 6.1.3).

Proposition 6.1.5. Let d,M ∈ N, p ∈ [2,∞), let (Ω,F ,P) be a probability space,
let Xj : Ω → Rd, j ∈ {1, 2, . . . ,M}, be independent random variables, and assume
maxj∈{1,2,...,M} E[‖Xj‖2] <∞ (cf. Definition 3.1.16). Then(

E
[∥∥∥∥[ M∑

j=1

Xj

]
− E

[
M∑
j=1

Xj

]∥∥∥∥p
2

])1/p

≤ 2Kp

[
M∑
j=1

(
E
[
‖Xj − E[Xj]‖p2

])2/p
]1/2

(6.5)

(cf. Definition 6.1.3 and Lemma 6.1.4).

Corollary 6.1.6. Let d,M ∈ N, p ∈ [2,∞), let (Ω,F ,P) be a probability space, let
Xj : Ω→ Rd, j ∈ {1, 2, . . . ,M}, be independent random variables, and assume maxj∈{1,2,...,M} E[‖Xj‖2] <
∞ (cf. Definition 3.1.16). Then(
E
[∥∥∥∥ 1

M

[
M∑
j=1

Xj

]
− E

[
1

M

M∑
j=1

Xj

]∥∥∥∥p
2

])1/p

≤ 2
√
p− 1√
M

[
max

j∈{1,2,...,M}

(
E
[
‖Xj − E[Xj]‖p2

])1/p
]
.

(6.6)

Dissemination prohibited. July 29, 2021 106



Chapter 6. Analysis of the generalisation error

Proof of Corollary 6.1.6. Observe that Proposition 6.1.5 and Lemma 6.1.4 imply that(
E
[∥∥∥∥ 1

M

[
M∑
j=1

Xj

]
− E

[
1

M

M∑
j=1

Xj

]∥∥∥∥p
2

])1/p

=
1

M

(
E
[∥∥∥∥[ M∑

j=1

Xj

]
− E

[
M∑
j=1

Xj

]∥∥∥∥p
2

])1/p

≤ 2Kp
M

[
M∑
j=1

(
E
[
‖Xj − E[Xj]‖p2

])2/p
]1/2

≤ 2Kp
M

[
M

(
max

j∈{1,2,...,M}

(
E
[
‖Xj − E[Xj]‖p2

])2/p
)]1/2

=
2Kp√
M

[
max

j∈{1,2,...,M}

(
E
[
‖Xj − E[Xj]‖p2

])1/p
]

≤ 2
√
p− 1√
M

[
max

j∈{1,2,...,M}

(
E
[
‖Xj − E[Xj]‖p2

])1/p
]

(6.7)

(cf. Definition 6.1.3). The proof of Corollary 6.1.6 is thus complete.

6.2 Uniform strong error estimates for random fields

Lemma 6.2.1. Let (E,E ) be a separable topological space, let (Ω,F) be a measurable
space, let fx : Ω → R, x ∈ E, be F/B(R)-measurable, and assume for all ω ∈ Ω that
E 3 x 7→ fx(ω) ∈ R is continuous. Then it holds that

Ω 3 ω 7→ sup
(
{fx(ω) : x ∈ E} ∪ {0}

)
∈ R ∪ {∞} (6.8)

is F/B(R ∪ {∞})-measurable.

Proof of Lemma 6.2.1. Throughout this proof assume w.l.o.g. that E 6= ∅, let F : Ω →
R ∪ {∞} satisfy for all ω ∈ Ω that F (ω) = supx∈E fx(ω), and let E ⊆ E be an at most
countable and dense subset of E. Note that the fact that E is dense in E implies that
for all g ∈ C(E,R) it holds that

sup
x∈E

g(x) = sup
x∈E

g(x). (6.9)

This and the assumption that for all ω ∈ Ω it holds that E 3 x 7→ fx(ω) ∈ R is a
continuous function show that for all ω ∈ Ω it holds that

F (ω) = sup
x∈E

fx(ω) = sup
x∈E

fx(ω). (6.10)

The assumption that for all x ∈ E it holds that fx is F/B(R)-measurable hence demon-
strates that F is F/B(R)-measurable. The proof of Lemma 6.2.1 is thus complete.

Lemma 6.2.2. Let (E, δ) be a separable metric space, assume E 6= ∅, let L ∈ R, let
(Ω,F ,P) be a probability space, let Zx : Ω→ R, x ∈ E, be random variables, and assume
for all x, y ∈ E that E[|Zx|] <∞ and |Zx − Zy| ≤ Lδ(x, y). Then it holds that

Ω 3 ω 7→ supx∈E|Zx(ω)− E[Zx]| ∈ [0,∞] (6.11)

is F/B([0,∞])-measurable.
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Proof of Lemma 6.2.2. Note that the assumption that for all x, y ∈ E it holds that
|Zx − Zy| ≤ Lδ(x, y) shows that for all x, y ∈ E it holds that

|(Zx − E[Zx])− (Zy − E[Zy])| = |(Zx − Zy) + (E[Zy]− E[Zx])| ≤ |Zx − Zy|+ |E[Zx]− E[Zy]|
≤ Lδ(x, y) + |E[Zx]− E[Zy]| = Lδ(x, y) + |E[Zx − Zy]|
≤ Lδ(x, y) + E[|Zx − Zy|] ≤ Lδ(x, y) + Lδ(x, y) = 2Lδ(x, y).

(6.12)

This implies that for all ω ∈ Ω it holds that E 3 x 7→ |Zx(ω)−E[Zx]| ∈ R is a continuous
function. Combining this and the assumption that E is separable with Lemma 6.2.1
completes the proof of Lemma 6.2.2.

Lemma 6.2.3. Let (E, δ) be a separable metric space, let N ∈ N, p, L, r1, r2, . . . , rN ∈
[0,∞), z1, z2, . . . , zN ∈ E satisfy E ⊆

(⋃N
i=1{x ∈ E : δ(x, zi) ≤ ri}

)
, let (Ω,F , µ) be

a measure space, let Zx : Ω → R, x ∈ E, be F/B(R)-measurable, and assume for all
x, y ∈ E that |Zx − Zy| ≤ Lδ(x, y). Then∫

Ω

sup
x∈E
|Zx(ω)|p µ(dω) ≤

N∑
i=1

∫
Ω

(Lri + |Zzi(ω)|)p µ(dω) (6.13)

(cf. Lemma 6.2.1).

Proof of Lemma 6.2.3. Throughout this proof let B1, B2, . . . , BN ⊆ E satisfy for all i ∈
{1, 2, . . . , N} that Bi = {x ∈ E : δ(x, zi) ≤ ri}. Note that the fact that E =

⋃N
i=1Bi

shows that

supx∈E|Zx| = supx∈(
⋃N
i=1 Bi)

|Zx| = maxi∈{1,2,...,N} supx∈Bi |Zx|. (6.14)

This establishes that∫
Ω

sup
x∈E
|Zx(ω)|p µ(dω) =

∫
Ω

max
i∈{1,2,...,N}

sup
x∈Bi
|Zx(ω)|p µ(dω)

≤
∫

Ω

N∑
i=1

sup
x∈Bi
|Zx(ω)|p µ(dω) =

N∑
i=1

∫
Ω

sup
x∈Bi
|Zx(ω)|p µ(dω).

(6.15)

Furthermore, the assumption that ∀x, y ∈ E : |Zx − Zy| ≤ Lδ(x, y) implies that for all
i ∈ {1, 2, . . . , N}, x ∈ Bi it holds that

|Zx| = |Zx − Zzi + Zzi | ≤ |Zx − Zzi |+ |Zzi | ≤ Lδ(x, zi) + |Zzi| ≤ Lri + |Zzi |. (6.16)

Combining this with (6.15) proves that∫
Ω

sup
x∈E
|Zx(ω)|p µ(dω) ≤

N∑
i=1

∫
Ω

(Lri + |Zzi(ω)|)p µ(dω). (6.17)

The proof of Lemma 6.2.3 is thus complete.

Lemma 6.2.4. Let p, L, r ∈ (0,∞), let (E, δ) be a separable metric space, let (Ω,F , µ)
be a measure space, assume E 6= ∅ and µ(Ω) 6= 0, let Zx : Ω → R, x ∈ E, be F/B(R)-
measurable, and assume for all x, y ∈ E that |Zx − Zy| ≤ Lδ(x, y). Then∫

Ω

sup
x∈E
|Zx(ω)|p µ(dω) ≤ C(E,δ),r

[
sup
x∈E

∫
Ω

(Lr + |Zx(ω)|)p µ(dω)

]
(6.18)

(cf. Definition 3.2.13 and Lemma 6.2.1).
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Proof of Lemma 6.2.4. Throughout this proof assume w.l.o.g. that C(E,δ),r <∞, let N ∈
N be given by N = C(E,δ),r, and let z1, z2, . . . , zN ∈ E satisfy E ⊆

⋃N
i=1{x ∈ E : δ(x, zi) ≤

r}. Note that Lemma 6.2.3 (applied with r1 x r, r2 x r, . . . , rN x r in the notation of
Lemma 6.2.3) establishes that∫

Ω

sup
x∈E
|Zx(ω)|p µ(dω) ≤

N∑
i=1

∫
Ω

(Lr + |Zzi(ω)|)p µ(dω)

≤
N∑
i=1

[
sup
x∈E

∫
Ω

(Lr + |Zx(ω)|)p µ(dω)

]
= N

[
sup
x∈E

∫
Ω

(Lr + |Zx(ω)|)p µ(dω)

]
.

(6.19)

The proof of Lemma 6.2.4 is thus complete.

Lemma 6.2.5. Let p ∈ [1,∞), L, r ∈ (0,∞), let (E, δ) be a separable metric space,
assume E 6= ∅, let (Ω,F ,P) be a probability space, let Zx : Ω → R, x ∈ E, be random
variables, and assume for all x, y ∈ E that E[|Zx|] <∞ and |Zx − Zy| ≤ Lδ(x, y). Then(

E
[
supx∈E|Zx − E[Zx]|p

])1/p ≤ (C(E,δ),r)
1/p
[
2Lr + supx∈E

(
E
[
|Zx − E[Zx]|p

])1/p
]

(6.20)

(cf. Definition 3.2.13 and Lemma 6.2.2).

Proof of Lemma 6.2.5. Throughout this proof let Yx : Ω → R, x ∈ E, satisfy for all
x ∈ E, ω ∈ Ω that Yx(ω) = Zx(ω)− E[Zx]. Note that it holds for all x, y ∈ E that

|Yx − Yy| = |(Zx − E[Zx])− (Zy − E[Zy])| ≤ |Zx − Zy|+ |E[Zx]− E[Zy]|
≤ Lδ(x, y) + E[|Zx − Zy|] ≤ 2Lδ(x, y).

(6.21)

Combining this with Lemma 6.2.4 (applied with Lx 2L, (Ω,F , µ) x (Ω,F ,P), (Zx)x∈E x
(Yx)x∈E in the notation of Lemma 6.2.4) implies that(

E
[
supx∈E|Zx − E[Zx]|p

])1/p
=
(
E
[
supx∈E|Yx|p

])1/p

≤ (C(E,δ),r)
1/p
[
supx∈E

(
E
[
(2Lr + |Yx|)p

])1/p
]

≤ (C(E,δ),r)
1/p
[
2Lr + supx∈E

(
E
[
|Yx|p

])1/p
]

= (C(E,δ),r)
1/p
[
2Lr + supx∈E

(
E
[
|Zx − E[Zx]|p

])1/p
]
.

(6.22)

The proof of Lemma 6.2.5 is thus complete.

Lemma 6.2.6. Let M ∈ N, p ∈ [2,∞), L, r ∈ (0,∞), let (E, δ) be a separable metric
space, assume E 6= ∅, let (Ω,F ,P) be a probability space, for every x ∈ E let Yx,j : Ω →
R, j ∈ {1, 2, . . . ,M}, be independent random variables, assume for all x, y ∈ E, j ∈
{1, 2, . . . ,M} that E[|Yx,j|] <∞ and |Yx,j − Yy,j| ≤ Lδ(x, y), and let Zx : Ω→ R, x ∈ E,
satisfy for all x ∈ E that

Zx =
1

M

[
M∑
j=1

Yx,j

]
. (6.23)

Then

(i) it holds for all x ∈ E that E[|Zx|] <∞,

(ii) it holds that Ω 3 ω 7→ supx∈E|Zx(ω) − E[Zx]| ∈ [0,∞] is F/B([0,∞])-measurable,
and
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(iii) it holds that(
E
[
supx∈E|Zx − E[Zx]|p

])1/p

≤ 2(C(E,δ),r)
1/p
[
Lr +

√
p−1√
M

(
supx∈E maxj∈{1,2,...,M}

(
E
[
|Yx,j − E[Yx,j]|p

])1/p
)] (6.24)

(cf. Definition 3.2.13).

Proof of Lemma 6.2.6. Note that the assumption that ∀x ∈ E, j ∈ {1, 2, . . . ,M} : E[|Yx,j|] <
∞ implies that for all x ∈ E it holds that

E[|Zx|] = E
[

1

M

∣∣∣∣ M∑
j=1

Yx,j

∣∣∣∣] ≤ 1

M

[
M∑
j=1

E[|Yx,j|]
]
≤ max

j∈{1,2,...,M}
E[|Yx,j|] <∞. (6.25)

This proves item (i). Next observe that the assumption that ∀x, y ∈ E, j ∈ {1, 2, . . . ,M} :
|Yx,j − Yy,j| ≤ Lδ(x, y) demonstrates that for all x, y ∈ E it holds that

|Zx − Zy| =
1

M

∣∣∣∣[ M∑
j=1

Yx,j

]
−
[
M∑
j=1

Yy,j

]∣∣∣∣ ≤ 1

M

[
M∑
j=1

|Yx,j − Yy,j|
]
≤ Lδ(x, y). (6.26)

Combining this with item (i) and Lemma 6.2.2 establishes item (ii). It thus remains to
show item (iii). For this note that item (i), (6.26), and Lemma 6.2.5 yield that(

E
[
supx∈E|Zx − E[Zx]|p

])1/p ≤ (C(E,δ),r)
1/p
[
2Lr + supx∈E

(
E
[
|Zx − E[Zx]|p

])1/p
]
. (6.27)

Moreover, (6.25) and Corollary 6.1.6 (applied with dx 1, (Xj)j∈{1,2,...,M} x (Yx,j)j∈{1,2,...,M}
for x ∈ E in the notation of Corollary 6.1.6) prove that for all x ∈ E it holds that

(
E
[
|Zx − E[Zx]|p

])1/p
=

(
E
[∣∣∣∣ 1

M

[
M∑
j=1

Yx,j

]
− E

[
1

M

M∑
j=1

Yx,j

]∣∣∣∣p])1/p

≤ 2
√
p− 1√
M

[
max

j∈{1,2,...,M}

(
E
[
|Yx,j − E[Yx,j]|p

])1/p
]
.

(6.28)

This and (6.27) imply that(
E
[
supx∈E|Zx − E[Zx]|p

])1/p

≤ (C(E,δ),r)
1/p
[
2Lr + 2

√
p−1√
M

(
supx∈E maxj∈{1,2,...,M}

(
E
[
|Yx,j − E[Yx,j]|p

])1/p
)]

= 2(C(E,δ),r)
1/p
[
Lr +

√
p−1√
M

(
supx∈E maxj∈{1,2,...,M}

(
E
[
|Yx,j − E[Yx,j]|p

])1/p
)]
.

(6.29)

The proof of Lemma 6.2.6 is thus complete.

Corollary 6.2.7. Let M ∈ N, p ∈ [2,∞), L,C ∈ (0,∞), let (E, δ) be a separable
metric space, assume E 6= ∅, let (Ω,F ,P) be a probability space, for every x ∈ E let
Yx,j : Ω → R, j ∈ {1, 2, . . . ,M}, be independent random variables, assume for all x, y ∈
E, j ∈ {1, 2, . . . ,M} that E[|Yx,j|] <∞ and |Yx,j − Yy,j| ≤ Lδ(x, y), and let Zx : Ω→ R,
x ∈ E, satisfy for all x ∈ E that

Zx =
1

M

[
M∑
j=1

Yx,j

]
. (6.30)

Then
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(i) it holds for all x ∈ E that E[|Zx|] <∞,

(ii) it holds that Ω 3 ω 7→ supx∈E|Zx(ω) − E[Zx]| ∈ [0,∞] is F/B([0,∞])-measurable,
and

(iii) it holds that(
E
[
supx∈E|Zx − E[Zx]|p

])1/p

≤ 2
√
p−1√
M

(
C(E,δ),C

√
p−1

L
√
M

)1/p[
C + supx∈E maxj∈{1,2,...,M}

(
E
[
|Yx,j − E[Yx,j]|p

])1/p
]

(6.31)

(cf. Definition 3.2.13).

Proof of Corollary 6.2.7. Note that Lemma 6.2.6 shows items (i) and (ii). In addition,
Lemma 6.2.6 (applied with r x C

√
p−1/(L

√
M) in the notation of Lemma 6.2.6) ensures

that(
E
[
supx∈E|Zx − E[Zx]|p

])1/p

≤ 2
(
C(E,δ),C

√
p−1

L
√
M

)1/p[
LC
√
p−1

L
√
M

+
√
p−1√
M

(
supx∈E maxj∈{1,2,...,M}

(
E
[
|Yx,j − E[Yx,j]|p

])1/p
)]

= 2
√
p−1√
M

(
C(E,δ),C

√
p−1

L
√
M

)1/p[
C + supx∈E maxj∈{1,2,...,M}

(
E
[
|Yx,j − E[Yx,j]|p

])1/p
]
. (6.32)

This establishes item (iii) and thus completes the proof of Corollary 6.2.7.

6.3 Strong convergence rates for the generalisation

error

Lemma 6.3.1. Let M ∈ N, p ∈ [2,∞), L,C, b ∈ (0,∞), let (E, δ) be a separable
metric space, assume E 6= ∅, let (Ω,F ,P) be a probability space, let Xx,j : Ω → R,
j ∈ {1, 2, . . . ,M}, x ∈ E, and Yj : Ω → R, j ∈ {1, 2, . . . ,M}, be functions, assume for
all x ∈ E that (Xx,j, Yj), j ∈ {1, 2, . . . ,M}, are i.i.d. random variables, assume for all
x, y ∈ E, j ∈ {1, 2, . . . ,M} that |Xx,j − Yj| ≤ b and |Xx,j −Xy,j| ≤ Lδ(x, y), let R : E →
[0,∞) satisfy for all x ∈ E that R(x) = E[|Xx,1 − Y1|2], and let R : E × Ω → [0,∞)
satisfy for all x ∈ E, ω ∈ Ω that

R(x, ω) =
1

M

[
M∑
j=1

|Xx,j(ω)− Yj(ω)|2
]
. (6.33)

Then

(i) it holds that Ω 3 ω 7→ supx∈E|R(x, ω)−R(x)| ∈ [0,∞] is F/B([0,∞])-measurable
and

(ii) it holds that

(
E
[
supx∈E|R(x)−R(x)|p

])1/p ≤
(
C(E,δ),Cb

√
p−1

2L
√
M

)1/p
[

2(C + 1)b2
√
p− 1√

M

]
(6.34)

(cf. Definition 3.2.13).
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Proof of Lemma 6.3.1. Throughout this proof let Yx,j : Ω→ R, j ∈ {1, 2, . . . ,M}, x ∈ E,
satisfy for all x ∈ E, j ∈ {1, 2, . . . ,M} that Yx,j = |Xx,j−Yj|2. Note that the assumption
that for all x ∈ E it holds that (Xx,j, Yj), j ∈ {1, 2, . . . ,M}, are i.i.d. random variables
ensures that for all x ∈ E it holds that

E[R(x)] =
1

M

[
M∑
j=1

E
[
|Xx,j − Yj|2

]]
=
M E

[
|Xx,1 − Y1|2

]
M

= R(x). (6.35)

Furthermore, the assumption that ∀x ∈ E, j ∈ {1, 2, . . . ,M} : |Xx,j −Yj| ≤ b shows that
for all x ∈ E, j ∈ {1, 2, . . . ,M} it holds that

E[|Yx,j|] = E[|Xx,j − Yj|2] ≤ b2 <∞, (6.36)

Yx,j − E[Yx,j] = |Xx,j − Yj|2 − E
[
|Xx,j − Yj|2

]
≤ |Xx,j − Yj|2 ≤ b2, (6.37)

and

E[Yx,j]− Yx,j = E
[
|Xx,j − Yj|2

]
− |Xx,j − Yj|2 ≤ E

[
|Xx,j − Yj|2

]
≤ b2. (6.38)

Combining (6.36)–(6.38) implies for all x ∈ E, j ∈ {1, 2, . . . ,M} that(
E
[
|Yx,j − E[Yx,j]|p

])1/p ≤
(
E
[
b2p
])1/p

= b2. (6.39)

Moreover, note that the assumptions that ∀x, y ∈ E, j ∈ {1, 2, . . . ,M} : [|Xx,j − Yj| ≤
b and |Xx,j −Xy,j| ≤ Lδ(x, y)] and the fact that ∀x1, x2, y ∈ R : (x1 − y)2 − (x2 − y)2 =
(x1 − x2)((x1 − y) + (x2 − y)) establish that for all x, y ∈ E, j ∈ {1, 2, . . . ,M} it holds
that

|Yx,j − Yy,j| = |(Xx,j − Yj)2 − (Xy,j − Yj)2|
≤ |Xx,j −Xy,j|(|Xx,j − Yj|+ |Xy,j − Yj|)
≤ 2b|Xx,j −Xy,j| ≤ 2bLδ(x, y).

(6.40)

Combining this, (6.35), (6.36), and the fact that for all x ∈ E it holds that Yx,j,
j ∈ {1, 2, . . . ,M}, are independent random variables with Corollary 6.2.7 (applied with
L x 2bL, C x Cb2, (Yx,j)x∈E, j∈{1,2,...,M} x (Yx,j)x∈E, j∈{1,2,...,M}, (Zx)x∈E x (Ω 3 ω 7→
R(x, ω) ∈ R)x∈E in the notation of Corollary 6.2.7) and (6.39) proves item (i) and(

E
[
supx∈E|R(x)−R(x)|p

])1/p
=
(
E
[
supx∈E|R(x)− E[R(x)]|p

])1/p

≤ 2
√
p−1√
M

(
C(E,δ),Cb

2√p−1

2bL
√
M

)1/p[
Cb2 + supx∈E maxj∈{1,2,...,M}

(
E
[
|Yx,j − E[Yx,j]|p

])1/p
]

≤ 2
√
p−1√
M

(
C(E,δ),Cb

√
p−1

2L
√
M

)1/p

[Cb2 + b2] =
(
C(E,δ),Cb

√
p−1

2L
√
M

)1/p
[

2(C + 1)b2
√
p− 1√

M

]
.

(6.41)

This shows item (ii) and thus completes the proof of Lemma 6.3.1.

Proposition 6.3.2. Let d,d,M ∈ N, L, b ∈ (0,∞), α ∈ R, β ∈ (α,∞), D ⊆ Rd, let
(Ω,F ,P) be a probability space, let Xj = (Xj, Yj) : Ω → (D × R), j ∈ {1, 2, . . . ,M}, be
i.i.d. random variables, let f = (fθ)θ∈[α,β]d : [α, β]d → C(D,R), assume for all θ, ϑ ∈
[α, β]d, j ∈ {1, 2, . . . ,M}, x ∈ D that |fθ(Xj)−Yj| ≤ b and |fθ(x)−fϑ(x)| ≤ L‖θ−ϑ‖∞,
let R : [α, β]d → [0,∞) satisfy for all θ ∈ [α, β]d that R(θ) = E[|fθ(X1) − Y1|2], and let
R : [α, β]d × Ω→ [0,∞) satisfy for all θ ∈ [α, β]d, ω ∈ Ω that

R(θ, ω) =
1

M

[
M∑
j=1

|fθ(Xj(ω))− Yj(ω)|2
]

(6.42)

(cf. Definition 3.1.16). Then
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(i) it holds that Ω 3 ω 7→ supθ∈[α,β]d|R(θ, ω)−R(θ)| ∈ [0,∞] is F/B([0,∞])-measurable
and

(ii) it holds for all p ∈ (0,∞) that(
E
[
supθ∈[α,β]d|R(θ)−R(θ)|p

])1/p

≤ inf
C,ε∈(0,∞)

[
2(C + 1)b2 max{1, [2

√
ML(β − α)(Cb)−1]ε}

√
max{1, p, d/ε}√

M

]

≤ inf
C∈(0,∞)

[
2(C + 1)b2

√
emax{1, p,d ln(4ML2(β − α)2(Cb)−2)}√

M

]
.

(6.43)

Proof of Proposition 6.3.2. Throughout this proof let p ∈ (0,∞), let (κC)C∈(0,∞) ⊆
(0,∞) satisfy for all C ∈ (0,∞) that κC = 2

√
ML(β−α)/(Cb), let Xθ,j : Ω → R, j ∈

{1, 2, . . . ,M}, θ ∈ [α, β]d, satisfy for all θ ∈ [α, β]d, j ∈ {1, 2, . . . ,M} that Xθ,j = fθ(Xj),
and let δ : ([α, β]d)×([α, β]d)→ [0,∞) satisfy for all θ, ϑ ∈ [α, β]d that δ(θ, ϑ) = ‖θ−ϑ‖∞.
First of all, note that the assumption that ∀ θ ∈ [α, β]d, j ∈ {1, 2, . . . ,M} : |fθ(Xj)−Yj| ≤
b implies for all θ ∈ [α, β]d, j ∈ {1, 2, . . . ,M} that

|Xθ,j − Yj| = |fθ(Xj)− Yj| ≤ b. (6.44)

In addition, the assumption that ∀ θ, ϑ ∈ [α, β]d, x ∈ D : |fθ(x) − fϑ(x)| ≤ L‖θ − ϑ‖∞
ensures for all θ, ϑ ∈ [α, β]d, j ∈ {1, 2, . . . ,M} that

|Xθ,j−Xϑ,j| = |fθ(Xj)−fϑ(Xj)| ≤ supx∈D|fθ(x)−fϑ(x)| ≤ L‖θ−ϑ‖∞ = Lδ(θ, ϑ). (6.45)

Combining this, (6.44), and the fact that for all θ ∈ [α, β]d it holds that (Xθ,j, Yj),
j ∈ {1, 2, . . . ,M}, are i.i.d. random variables with Lemma 6.3.1 (applied with p x q,
C x C, (E, δ) x ([α, β]d, δ), (Xx,j)x∈E, j∈{1,2,...,M} x (Xθ,j)θ∈[α,β]d, j∈{1,2,...,M} for q ∈
[2,∞), C ∈ (0,∞) in the notation of Lemma 6.3.1) demonstrates that for all C ∈ (0,∞),
q ∈ [2,∞) it holds that Ω 3 ω 7→ supθ∈[α,β]d|R(θ, ω) − R(θ)| ∈ [0,∞] is F/B([0,∞])-
measurable and(

E
[
supθ∈[α,β]d|R(θ)−R(θ)|q

])1/q ≤
(
C([α,β]d,δ),Cb

√
q−1

2L
√
M

)1/q
[

2(C + 1)b2
√
q − 1√

M

]
(6.46)

(cf. Definition 3.2.13). This finishes the proof of item (i). Next observe that item (ii) in
Lemma 3.2.14 (applied with d x d, a x α, b x β, r x r for r ∈ (0,∞) in the notation
of Lemma 3.2.14) shows that for all r ∈ (0,∞) it holds that

C([α,β]d,δ),r ≤ 1[0,r]

(
β−α

2

)
+
(
β−α
r

)d
1(r,∞)

(
β−α

2

)
≤ max

{
1,
(
β−α
r

)d}(
1[0,r]

(
β−α

2

)
+ 1(r,∞)

(
β−α

2

))
= max

{
1,
(
β−α
r

)d}
.

(6.47)

This yields for all C ∈ (0,∞), q ∈ [2,∞) that(
C([α,β]d,δ),Cb

√
q−1

2L
√
M

)1/q

≤ max

{
1,
(

2(β−α)L
√
M

Cb
√
q−1

)d
q

}
≤ max

{
1,
(

2(β−α)L
√
M

Cb

)d
q

}
= max

{
1, (κC)

d
q

}
.

(6.48)
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Jensen’s inequality and (6.46) hence prove that for all C, ε ∈ (0,∞) it holds that(
E
[
supθ∈[α,β]d |R(θ)−R(θ)|p

])1/p

≤
(
E
[
supθ∈[α,β]d|R(θ)−R(θ)|max{2,p,d/ε}]) 1

max{2,p,d/ε}

≤ max
{

1, (κC)
d

max{2,p,d/ε}

}2(C + 1)b2
√

max{2, p, d/ε} − 1√
M

= max
{

1, (κC)min{d/2,d/p,ε}}2(C + 1)b2
√

max{1, p− 1, d/ε− 1}√
M

≤
2(C + 1)b2 max{1, (κC)ε}

√
max{1, p, d/ε}√

M
.

(6.49)

Next note that the fact that ∀ a ∈ (1,∞) : a1/(2 ln(a)) = eln(a)/(2 ln(a)) = e1/2 =
√
e ≥ 1 ensures

that for all C ∈ (0,∞) with κC > 1 it holds that

inf
ε∈(0,∞)

[
2(C + 1)b2 max{1, (κC)ε}

√
max{1, p, d/ε}√

M

]

≤
2(C + 1)b2 max{1, (κC)1/(2 ln(κC ))}

√
max{1, p, 2d ln(κC)}√

M

=
2(C + 1)b2

√
emax{1, p,d ln([κC ]2)}√

M
.

(6.50)

In addition, observe that it holds for all C ∈ (0,∞) with κC ≤ 1 that

inf
ε∈(0,∞)

[
2(C + 1)b2 max{1, (κC)ε}

√
max{1, p, d/ε}√

M

]

= inf
ε∈(0,∞)

[
2(C + 1)b2

√
max{1, p, d/ε}√
M

]
≤

2(C + 1)b2
√

max{1, p}√
M

≤
2(C + 1)b2

√
emax{1, p,d ln([κC ]2)}√

M
.

(6.51)

Combining (6.49) with (6.50) and (6.51) demonstrates that(
E
[
supθ∈[α,β]d|R(θ)−R(θ)|p

])1/p

≤ inf
C,ε∈(0,∞)

[
2(C + 1)b2 max{1, (κC)ε}

√
max{1, p, d/ε}√

M

]

= inf
C,ε∈(0,∞)

[
2(C + 1)b2 max{1, [2

√
ML(β − α)(Cb)−1]ε}

√
max{1, p, d/ε}√

M

]

≤ inf
C∈(0,∞)

[
2(C + 1)b2

√
emax{1, p,d ln([κC ]2)}√

M

]

= inf
C∈(0,∞)

[
2(C + 1)b2

√
emax{1, p,d ln(4ML2(β − α)2(Cb)−2)}√

M

]
.

(6.52)

This establishes item (ii) and thus completes the proof of Proposition 6.3.2.
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Corollary 6.3.3. Let d,d,L,M ∈ N, B, b ∈ [1,∞), u ∈ R, v ∈ [u + 1,∞), l =
(l0, l1, . . . , lL) ∈ NL+1, D ⊆ [−b, b]d, assume l0 = d, lL = 1, and d ≥

∑L
i=1 li(li−1 + 1), let

(Ω,F ,P) be a probability space, let Xj = (Xj, Yj) : Ω → (D × [u, v]), j ∈ {1, 2, . . . ,M},
be i.i.d. random variables, let R : [−B,B]d → [0,∞) satisfy for all θ ∈ [−B,B]d that
R(θ) = E[|N θ,l

u,v (X1) − Y1|2], and let R : [−B,B]d × Ω → [0,∞) satisfy for all θ ∈
[−B,B]d, ω ∈ Ω that

R(θ, ω) =
1

M

[
M∑
j=1

|N θ,l
u,v (Xj(ω))− Yj(ω)|2

]
(6.53)

(cf. Definition 2.1.27). Then

(i) it holds that Ω 3 ω 7→ supθ∈[−B,B]d|R(θ, ω) − R(θ)| ∈ [0,∞] is F/B([0,∞])-
measurable and

(ii) it holds for all p ∈ (0,∞) that(
E
[
supθ∈[−B,B]d|R(θ)−R(θ)|p

])1/p

≤ 9(v − u)2L(‖l‖∞ + 1)
√

max{p, ln(4(Mb)1/L(‖l‖∞ + 1)B)}√
M

≤ 9(v − u)2L(‖l‖∞ + 1)2 max{p, ln(3MBb)}√
M

(6.54)

(cf. Definition 3.1.16).

Proof of Corollary 6.3.3. Throughout this proof let d ∈ N be given by d =
∑L

i=1 li(li−1 +
1), let L ∈ (0,∞) be given by L = bL(‖l‖∞+ 1)LBL−1, let f = (fθ)θ∈[−B,B]d : [−B,B]d →
C(D,R) satisfy for all θ ∈ [−B,B]d, x ∈ D that fθ(x) = N θ,l

u,v (x), let R : [−B,B]d →
[0,∞) satisfy for all θ ∈ [−B,B]d that R(θ) = E[|fθ(X1) − Y1|2] = E[|N θ,l

u,v (X1) − Y1|2],
and let R : [−B,B]d × Ω→ [0,∞) satisfy for all θ ∈ [−B,B]d, ω ∈ Ω that

R(θ, ω) =
1

M

[
M∑
j=1

|fθ(Xj(ω))− Yj(ω)|2
]

=
1

M

[
M∑
j=1

|N θ,l
u,v (Xj(ω))− Yj(ω)|2

]
. (6.55)

Note that the fact that ∀ θ ∈ Rd, x ∈ Rd : N θ,l
u,v (x) ∈ [u, v] and the assumption that

∀ j ∈ {1, 2, . . . ,M} : Yj(Ω) ⊆ [u, v] imply for all θ ∈ [−B,B]d, j ∈ {1, 2, . . . ,M} that

|fθ(Xj)− Yj| = |N θ,l
u,v (Xj)− Yj| ≤ supy1,y2∈[u,v]|y1 − y2| = v − u. (6.56)

Moreover, the assumptions that D ⊆ [−b, b]d, l0 = d, and lL = 1, Corollary 5.3.7 (applied
with a x −b, b x b, u x u, v x v, d x d, L x L, l x l in the notation of Corol-
lary 5.3.7), and the assumptions that b ≥ 1 and B ≥ 1 ensure that for all θ, ϑ ∈ [−B,B]d,
x ∈ D it holds that

|fθ(x)− fϑ(x)| ≤ supy∈[−b,b]d|N θ,l
u,v (y)−N ϑ,l

u,v (y)|
≤ L max{1, b}(‖l‖∞ + 1)L(max{1, ‖θ‖∞, ‖ϑ‖∞})L−1‖θ − ϑ‖∞
≤ bL(‖l‖∞ + 1)LBL−1‖θ − ϑ‖∞ = L‖θ − ϑ‖∞.

(6.57)

Furthermore, the facts that d ≥ d and ∀ θ = (θ1, θ2, . . . , θd) ∈ Rd : N θ,l
u,v = N (θ1,θ2,...,θd),l

u,v

prove that for all ω ∈ Ω it holds that

supθ∈[−B,B]d|R(θ, ω)−R(θ)| = supθ∈[−B,B]d|R(θ, ω)−R(θ)|. (6.58)
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Next observe that (6.56), (6.57), Proposition 6.3.2 (applied with d x d, b x v − u,
α x −B, β x B, R x R, R x R in the notation of Proposition 6.3.2), and the facts
that v − u ≥ (u + 1) − u = 1 and d ≤ L‖l‖∞(‖l‖∞ + 1) ≤ L(‖l‖∞ + 1)2 demonstrate
that for all p ∈ (0,∞) it holds that Ω 3 ω 7→ supθ∈[−B,B]d |R(θ, ω) − R(θ)| ∈ [0,∞] is
F/B([0,∞])-measurable and(

E
[
supθ∈[−B,B]d |R(θ)−R(θ)|p

])1/p

≤ inf
C∈(0,∞)

[
2(C + 1)(v − u)2

√
emax{1, p, d ln(4ML2(2B)2(C[v − u])−2)}√

M

]

≤ inf
C∈(0,∞)

[
2(C + 1)(v − u)2

√
emax{1, p,L(‖l‖∞ + 1)2 ln(24ML2B2C−2)}√

M

]
.

(6.59)

This and (6.58) establish item (i). In addition, combining (6.58)–(6.59) with the fact
that 26L2 ≤ 26 · 22(L−1) = 24+2L ≤ 24L+2L = 26L and the facts that 3 ≥ e, B ≥ 1, L ≥ 1,
M ≥ 1, and b ≥ 1 shows that for all p ∈ (0,∞) it holds that(

E
[
supθ∈[−B,B]d|R(θ)−R(θ)|p

])1/p
=
(
E
[
supθ∈[−B,B]d |R(θ)−R(θ)|p

])1/p

≤
2(1/2 + 1)(v − u)2

√
emax{1, p,L(‖l‖∞ + 1)2 ln(24ML2B222)}√

M

=
3(v − u)2

√
emax{p,L(‖l‖∞ + 1)2 ln(26Mb2L2(‖l‖∞ + 1)2LB2L)}√

M

≤ 3(v − u)2
√
emax{p, 3L2(‖l‖∞ + 1)2 ln([26LMb2(‖l‖∞ + 1)2LB2L]1/(3L))}√

M

≤ 3(v − u)2
√

3 max{p, 3L2(‖l‖∞ + 1)2 ln(22(Mb2)1/(3L)(‖l‖∞ + 1)B)}√
M

≤ 9(v − u)2L(‖l‖∞ + 1)
√

max{p, ln(4(Mb)1/L(‖l‖∞ + 1)B)}√
M

.

(6.60)

Furthermore, note that the fact that ∀n ∈ N : n ≤ 2n−1 and the fact that ‖l‖∞ ≥ 1 imply
that

4(‖l‖∞ + 1) ≤ 22 · 2(‖l‖∞+1)−1 = 23 · 2(‖l‖∞+1)−2 ≤ 32 · 3(‖l‖∞+1)−2 = 3(‖l‖∞+1). (6.61)

This demonstrates for all p ∈ (0,∞) that

9(v − u)2L(‖l‖∞ + 1)
√

max{p, ln(4(Mb)1/L(‖l‖∞ + 1)B)}√
M

≤ 9(v − u)2L(‖l‖∞ + 1)
√

max{p, (‖l‖∞ + 1) ln([3(‖l‖∞+1)(Mb)1/LB]1/(‖l‖∞+1))}√
M

≤ 9(v − u)2L(‖l‖∞ + 1)2 max{p, ln(3MBb)}√
M

.

(6.62)

Combining this with (6.60) shows item (ii). The proof of Corollary 6.3.3 is thus complete.
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Analysis of the overall error

7.1 Full strong error analysis for the training of ANNs

Lemma 7.1.1. Let d,d,L ∈ N, p ∈ [0,∞), u ∈ [−∞,∞), v ∈ (u,∞], l = (l0, l1, . . . , lL) ∈
NL+1, D ⊆ Rd, assume l0 = d, lL = 1, and d ≥

∑L
i=1 li(li−1 + 1), let E : D → R

be B(D)/B(R)-measurable, let (Ω,F ,P) be a probability space, and let X : Ω → D,
k : Ω→ (N0)2, and Θk,n : Ω→ Rd, k, n ∈ N0, be random variables. Then

(i) it holds that Rd×Rd 3 (θ, x) 7→ N θ,l
u,v (x) ∈ R is (B(Rd)⊗B(Rd))/B(R)-measurable,

(ii) it holds that Ω 3 ω 7→ Θk(ω)(ω) ∈ Rd is F/B(Rd)-measurable, and

(iii) it holds that

Ω 3 ω 7→
∫
D

|N Θk(ω)(ω),l
u,v (x)− E(x)|p PX(dx) ∈ [0,∞] (7.1)

is F/B([0,∞])-measurable

(cf. Definition 2.1.27).

Proof of Lemma 7.1.1. First, observe that Corollary 5.3.7 (applied with ax −‖x‖∞, bx
‖x‖∞, ux u, v x v, dx d, Lx L, l x l for x ∈ Rd in the notation of Corollary 5.3.7)
demonstrates that for all x ∈ Rd, θ, ϑ ∈ Rd it holds that

|N θ,l
u,v (x)−N ϑ,l

u,v (x)| ≤ supy∈[−‖x‖∞,‖x‖∞]l0 |N θ,l
u,v (y)−N ϑ,l

u,v (y)|
≤ L max{1, ‖x‖∞}(‖l‖∞ + 1)L(max{1, ‖θ‖∞, ‖ϑ‖∞})L−1‖θ − ϑ‖∞

(7.2)

(cf. Definition 3.1.16). This implies for all x ∈ Rd that

Rd 3 θ 7→ N θ,l
u,v (x) ∈ R (7.3)

is continuous. In addition, the fact that ∀ θ ∈ Rd : N θ,l
u,v ∈ C(Rd,R) ensures that for

all θ ∈ Rd it holds that Rd 3 x 7→ N θ,l
u,v (x) ∈ R is B(Rd)/B(R)-measurable. This,

(7.3), the fact that (Rd, ‖·‖∞|Rd) is a separable normed R-vector space, and Lemma 5.2.6
show item (i). Next we prove item (ii). For this let Ξ: Ω → Rd satisfy for all ω ∈ Ω
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that Ξ(ω) = Θk(ω)(ω). Observe that the assumption that Θk,n : Ω → Rd, k, n ∈ N0, and
k : Ω→ (N0)2 are random variables establishes that for all U ∈ B(Rd) it holds that

Ξ−1(U) = {ω ∈ Ω: Ξ(ω) ∈ U} = {ω ∈ Ω: Θk(ω)(ω) ∈ U}
=
{
ω ∈ Ω:

[
∃ k, n ∈ N0 : ([Θk,n(ω) ∈ U ] ∧ [k(ω) = (k, n)])

]}
=
∞⋃
k=0

∞⋃
n=0

(
{ω ∈ Ω: Θk,n(ω) ∈ U} ∩ {ω ∈ Ω: k(ω) = (k, n)}

)
=
∞⋃
k=0

∞⋃
n=0

(
[(Θk,n)−1(U)] ∩ [k−1({(k, n)})]

)
∈ F .

(7.4)

This implies item (ii). Moreover, note that item (i)–item (ii) yield that Ω × Rd 3
(ω, x) 7→ N Θk(ω)(ω),l

u,v (x) ∈ R is (F ⊗ B(Rd))/B(R)-measurable. This and the assump-
tion that E : D → R is B(D)/B(R)-measurable demonstrate that Ω × D 3 (ω, x) 7→
|N Θk(ω)(ω),l

u,v (x)−E(x)|p ∈ [0,∞) is (F ⊗B(D))/B([0,∞))-measurable. Tonelli’s theorem
hence establishes item (iii). The proof of Lemma 7.1.1 is thus complete.

Proposition 7.1.2. Let d,d,L,M,K,N ∈ N, b, c ∈ [1,∞), B ∈ [c,∞), u ∈ R, v ∈
(u,∞), l = (l0, l1, . . . , lL) ∈ NL+1, T ⊆ {0, 1, . . . , N}, D ⊆ [−b, b]d, assume 0 ∈ T, l0 = d,
lL = 1, and d ≥

∑L
i=1 li(li−1 + 1), let (Ω,F ,P) be a probability space, let Xj : Ω → D,

j ∈ N, and Yj : Ω → [u, v], j ∈ N, be functions, assume that (Xj, Yj), j ∈ {1, 2, . . . ,M},
are i.i.d. random variables, let E : D → [u, v] be B(D)/B([u, v])-measurable, assume that
it holds P-a.s. that E(X1) = E[Y1|X1], let Θk,n : Ω → Rd, k, n ∈ N0, and k : Ω →
(N0)2 be random variables, assume

(⋃∞
k=1 Θk,0(Ω)

)
⊆ [−B,B]d, assume that Θk,0, k ∈

{1, 2, . . . , K}, are i.i.d., assume that Θ1,0 is continuous uniformly distributed on [−c, c]d,
and let R : Rd × Ω→ [0,∞) satisfy for all θ ∈ Rd, ω ∈ Ω that

R(θ, ω) =
1

M

[
M∑
j=1

|N θ,l
u,v (Xj(ω))− Yj(ω)|2

]
and (7.5)

k(ω) ∈ argmin(k,n)∈{1,2,...,K}×T, ‖Θk,n(ω)‖∞≤B R(Θk,n(ω), ω) (7.6)

(cf. Definitions 2.1.27 and 3.1.16). Then it holds for all p ∈ (0,∞) that(
E
[(∫

D
|N Θk,l

u,v (x)− E(x)|2 PX1(dx)
)p ])1/p

≤
[
infθ∈[−c,c]d supx∈D|N θ,l

u,v (x)− E(x)|2
]

+
4(v − u)bL(‖l‖∞ + 1)LcL max{1, p}

K [L−1(‖l‖∞+1)−2]

+
18 max{1, (v − u)2}L(‖l‖∞ + 1)2 max{p, ln(3MBb)}√

M

≤
[
infθ∈[−c,c]d supx∈D|N θ,l

u,v (x)− E(x)|2
]

+
20 max{1, (v − u)2}bL(‖l‖∞ + 1)L+1BL max{p, ln(3M)}

min{
√
M,K [L−1(‖l‖∞+1)−2]}

(7.7)

(cf. item (iii) in Lemma 7.1.1).

Proof of Proposition 7.1.2. Throughout this proof let R : Rd → [0,∞) satisfy for all
θ ∈ Rd that R(θ) = E[|N θ,l

u,v (X1) − Y1|2]. First of all, observe that the assumption that(⋃∞
k=1 Θk,0(Ω)

)
⊆ [−B,B]d, the assumption that 0 ∈ T, and Proposition 4.2.1 show that
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for all ϑ ∈ [−B,B]d it holds that∫
D

|N Θk,l
u,v (x)− E(x)|2 PX1(dx)

≤
[
supx∈D|N ϑ,l

u,v (x)− E(x)|2
]

+ 2
[
supθ∈[−B,B]d|R(θ)−R(θ)|

]
+ min(k,n)∈{1,2,...,K}×T, ‖Θk,n‖∞≤B|R(Θk,n)−R(ϑ)|
≤
[
supx∈D|N ϑ,l

u,v (x)− E(x)|2
]

+ 2
[
supθ∈[−B,B]d|R(θ)−R(θ)|

]
+ mink∈{1,2,...,K}, ‖Θk,0‖∞≤B|R(Θk,0)−R(ϑ)|

=
[
supx∈D|N ϑ,l

u,v (x)− E(x)|2
]

+ 2
[
supθ∈[−B,B]d|R(θ)−R(θ)|

]
+ mink∈{1,2,...,K}|R(Θk,0)−R(ϑ)|.

(7.8)

Minkowski’s inequality hence establishes that for all p ∈ [1,∞), ϑ ∈ [−c, c]d ⊆ [−B,B]d

it holds that(
E
[(∫

D
|N Θk,l

u,v (x)− E(x)|2 PX1(dx)
)p ])1/p

≤
(
E
[
supx∈D|N ϑ,l

u,v (x)− E(x)|2p
])1/p

+ 2
(
E
[
supθ∈[−B,B]d|R(θ)−R(θ)|p

])1/p

+
(
E
[
mink∈{1,2,...,K}|R(Θk,0)−R(ϑ)|p

])1/p

≤
[
supx∈D|N ϑ,l

u,v (x)− E(x)|2
]

+ 2
(
E
[
supθ∈[−B,B]d |R(θ)−R(θ)|p

])1/p

+ supθ∈[−c,c]d
(
E
[
mink∈{1,2,...,K}|R(Θk,0)−R(θ)|p

])1/p

(7.9)

(cf. item (i) in Corollary 6.3.3 and item (i) in Corollary 5.3.9). Next note that Corol-
lary 6.3.3 (applied with v x max{u + 1, v}, R x R|[−B,B]d , R x R|[−B,B]d×Ω in the
notation of Corollary 6.3.3) proves that for all p ∈ (0,∞) it holds that(

E
[
supθ∈[−B,B]d|R(θ)−R(θ)|p

])1/p

≤ 9(max{u+ 1, v} − u)2L(‖l‖∞ + 1)2 max{p, ln(3MBb)}√
M

=
9 max{1, (v − u)2}L(‖l‖∞ + 1)2 max{p, ln(3MBb)}√

M
.

(7.10)

In addition, observe that Corollary 5.3.9 (applied with d x
∑L

i=1 li(li−1 + 1), B x
c, (Θk)k∈{1,2,...,K} x (Ω 3 ω 7→ 1{Θk,0∈[−c,c]d}(ω)Θk,0(ω) ∈ [−c, c]d)k∈{1,2,...,K}, R x
R|[−c,c]d×Ω in the notation of Corollary 5.3.9) implies that for all p ∈ (0,∞) it holds
that

supθ∈[−c,c]d
(
E
[
mink∈{1,2,...,K}|R(Θk,0)−R(θ)|p

])1/p

= supθ∈[−c,c]d
(
E
[
mink∈{1,2,...,K}|R(1{Θk,0∈[−c,c]d}Θk,0)−R(θ)|p

])1/p

≤ 4(v − u)bL(‖l‖∞ + 1)LcL max{1, p}
K [L−1(‖l‖∞+1)−2]

.

(7.11)

Combining this, (7.9), (7.10), and the fact that ln(3MBb) ≥ 1 with Jensen’s inequality
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demonstrates that for all p ∈ (0,∞) it holds that(
E
[(∫

D
|N Θk,l

u,v (x)− E(x)|2 PX1(dx)
)p ])1/p

≤
(
E
[(∫

D
|N Θk,l

u,v (x)− E(x)|2 PX1(dx)
)max{1,p}

]) 1
max{1,p}

≤
[
infθ∈[−c,c]d supx∈D|N θ,l

u,v (x)− E(x)|2
]

+ supθ∈[−c,c]d
(
E
[
mink∈{1,2,...,K}|R(Θk,0)−R(θ)|max{1,p}]) 1

max{1,p}

+ 2
(
E
[
supθ∈[−B,B]d|R(θ)−R(θ)|max{1,p}]) 1

max{1,p}

≤
[
infθ∈[−c,c]d supx∈D|N θ,l

u,v (x)− E(x)|2
]

+
4(v − u)bL(‖l‖∞ + 1)LcL max{1, p}

K [L−1(‖l‖∞+1)−2]

+
18 max{1, (v − u)2}L(‖l‖∞ + 1)2 max{p, ln(3MBb)}√

M
.

(7.12)

Moreover, note that the fact that ∀x ∈ [0,∞) : x+1 ≤ ex ≤ 3x and the facts that Bb ≥ 1
and M ≥ 1 ensure that

ln(3MBb) ≤ ln(3M3Bb−1) = ln(3BbM) = Bb ln([3BbM ]
1/(Bb)) ≤ Bb ln(3M). (7.13)

The facts that ‖l‖∞ + 1 ≥ 2, B ≥ c ≥ 1, ln(3M) ≥ 1, b ≥ 1, and L ≥ 1 hence show that
for all p ∈ (0,∞) it holds that

4(v − u)bL(‖l‖∞ + 1)LcL max{1, p}
K [L−1(‖l‖∞+1)−2]

+
18 max{1, (v − u)2}L(‖l‖∞ + 1)2 max{p, ln(3MBb)}√

M

≤ 2(‖l‖∞ + 1) max{1, (v − u)2}bL(‖l‖∞ + 1)LBL max{p, ln(3M)}
K [L−1(‖l‖∞+1)−2]

+
18 max{1, (v − u)2}bL(‖l‖∞ + 1)2Bmax{p, ln(3M)}√

M

≤ 20 max{1, (v − u)2}bL(‖l‖∞ + 1)L+1BL max{p, ln(3M)}
min{

√
M,K [L−1(‖l‖∞+1)−2]}

.

(7.14)

This and (7.12) complete the proof of Proposition 7.1.2.

Lemma 7.1.3. Let a, x, p ∈ (0,∞), M, c ∈ [1,∞), B ∈ [c,∞). Then

(i) it holds that axp ≤ exp
(
a1/p px

e

)
and

(ii) it holds that ln(3MBc) ≤ 23B
18

ln(eM).

Proof of Lemma 7.1.3. First, note that the fact that ∀ y ∈ R : y + 1 ≤ ey demonstrates
that

axp = (a
1/px)p =

[
e
(
a

1/p x
e
− 1 + 1

)]p ≤ [e exp
(
a

1/p x
e
− 1
)]p

= exp
(
a

1/p px
e

)
. (7.15)

This proves item (i).
Second, observe that item (i) and the fact that 2

√
3/e ≤ 23/18 ensure that

3B2 ≤ exp
(√

32B
e

)
= exp

(
2
√

3B
e

)
≤ exp

(
23B
18

)
. (7.16)
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The facts that B ≥ c ≥ 1 and M ≥ 1 hence imply that

ln(3MBc) ≤ ln(3B2M) ≤ ln([eM ]
23B/18) = 23B

18
ln(eM). (7.17)

This establishes item (ii). The proof of Lemma 7.1.3 is thus complete.

Theorem 7.1.4. Let d,d,L,M,K,N ∈ N, A ∈ (0,∞), L, a, u ∈ R, b ∈ (a,∞), v ∈
(u,∞), c ∈ [max{1, L, |a|, |b|, 2|u|, 2|v|},∞), B ∈ [c,∞), l = (l0, l1, . . . , lL) ∈ NL+1,
T ⊆ {0, 1, . . . , N}, assume 0 ∈ T, L ≥ A1(6d,∞)(A)/(2d) + 1, l0 = d, l1 ≥ A1(6d,∞)(A),
lL = 1, and d ≥

∑L
i=1 li(li−1 + 1), assume for all i ∈ {2, 3, . . .} ∩ [0,L) that li ≥

1(6d,∞)(A) max{A/d − 2i + 3, 2}, let (Ω,F ,P) be a probability space, let Xj : Ω → [a, b]d,
j ∈ N, and Yj : Ω → [u, v], j ∈ N, be functions, assume that (Xj, Yj), j ∈ {1, 2, . . . ,M},
are i.i.d. random variables, let E : [a, b]d → [u, v] satisfy P-a.s. that E(X1) = E[Y1|X1],
assume for all x, y ∈ [a, b]d that |E(x)−E(y)| ≤ L‖x− y‖1, let Θk,n : Ω→ Rd, k, n ∈ N0,
and k : Ω→ (N0)2 be random variables, assume

(⋃∞
k=1 Θk,0(Ω)

)
⊆ [−B,B]d, assume that

Θk,0, k ∈ {1, 2, . . . , K}, are i.i.d., assume that Θ1,0 is continuous uniformly distributed
on [−c, c]d, and let R : Rd × Ω→ [0,∞) satisfy for all θ ∈ Rd, ω ∈ Ω that

R(θ, ω) =
1

M

[
M∑
j=1

|N θ,l
u,v (Xj(ω))− Yj(ω)|2

]
and (7.18)

k(ω) ∈ argmin(k,n)∈{1,2,...,K}×T, ‖Θk,n(ω)‖∞≤B R(Θk,n(ω), ω) (7.19)

(cf. Definitions 2.1.27 and 3.1.16). Then it holds for all p ∈ (0,∞) that(
E
[(∫

[a,b]d
|N Θk,l

u,v (x)− E(x)|2 PX1(dx)
)p ])1/p

≤ 9d2L2(b− a)2

A2/d
+

4(v − u)L(‖l‖∞ + 1)LcL+1 max{1, p}
K [L−1(‖l‖∞+1)−2]

+
18 max{1, (v − u)2}L(‖l‖∞ + 1)2 max{p, ln(3MBc)}√

M

≤ 36d2c4

A2/d
+

4L(‖l‖∞ + 1)LcL+2 max{1, p}
K [L−1(‖l‖∞+1)−2]

+
23B3L(‖l‖∞ + 1)2 max{p, ln(eM)}√

M
(7.20)

(cf. item (iii) in Lemma 7.1.1).

Proof of Theorem 7.1.4. First of all, note that the assumption that ∀x, y ∈ [a, b]d : |E(x)−
E(y)| ≤ L‖x− y‖1 ensures that E : [a, b]d → [u, v] is B([a, b]d)/B([u, v])-measurable. The
fact that max{1, |a|, |b|} ≤ c and Proposition 7.1.2 (applied with b x max{1, |a|, |b|},
D x [a, b]d in the notation of Proposition 7.1.2) hence show that for all p ∈ (0,∞) it
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holds that(
E
[(∫

[a,b]d
|N Θk,l

u,v (x)− E(x)|2 PX1(dx)
)p ])1/p

≤
[
infθ∈[−c,c]d supx∈[a,b]d|N θ,l

u,v (x)− E(x)|2
]

+
4(v − u) max{1, |a|, |b|}L(‖l‖∞ + 1)LcL max{1, p}

K [L−1(‖l‖∞+1)−2]

+
18 max{1, (v − u)2}L(‖l‖∞ + 1)2 max{p, ln(3MBmax{1, |a|, |b|})}√

M
(7.21)

≤
[
infθ∈[−c,c]d supx∈[a,b]d|N θ,l

u,v (x)− E(x)|2
]

+
4(v − u)L(‖l‖∞ + 1)LcL+1 max{1, p}

K [L−1(‖l‖∞+1)−2]

+
18 max{1, (v − u)2}L(‖l‖∞ + 1)2 max{p, ln(3MBc)}√

M
.

Furthermore, observe that Proposition 3.2.29 (applied with f x E in the notation of
Proposition 3.2.29) proves that there exists ϑ ∈ Rd such that ‖ϑ‖∞ ≤ max{1, L, |a|, |b|, 2[supx∈[a,b]d|E(x)|]}
and

supx∈[a,b]d |N ϑ,l
u,v (x)− E(x)| ≤ 3dL(b− a)

A1/d
. (7.22)

The fact that ∀x ∈ [a, b]d : E(x) ∈ [u, v] hence implies that

‖ϑ‖∞ ≤ max{1, L, |a|, |b|, 2|u|, 2|v|} ≤ c. (7.23)

This and (7.22) demonstrate that

infθ∈[−c,c]d supx∈[a,b]d|N θ,l
u,v (x)− E(x)|2

≤ supx∈[a,b]d |N ϑ,l
u,v (x)− E(x)|2

≤
[

3dL(b− a)

A1/d

]2

=
9d2L2(b− a)2

A2/d
.

(7.24)

Combining this with (7.21) establishes that for all p ∈ (0,∞) it holds that(
E
[(∫

[a,b]d
|N Θk,l

u,v (x)− E(x)|2 PX1(dx)
)p ])1/p

≤ 9d2L2(b− a)2

A2/d
+

4(v − u)L(‖l‖∞ + 1)LcL+1 max{1, p}
K [L−1(‖l‖∞+1)−2]

+
18 max{1, (v − u)2}L(‖l‖∞ + 1)2 max{p, ln(3MBc)}√

M
.

(7.25)

Moreover, note that the facts that max{1, L, |a|, |b|} ≤ c and (b − a)2 ≤ (|a| + |b|)2 ≤
2(a2 + b2) yield that

9L2(b− a)2 ≤ 18c2(a2 + b2) ≤ 18c2(c2 + c2) = 36c4. (7.26)

In addition, the fact that B ≥ c ≥ 1, the fact thatM ≥ 1, and item (ii) in Lemma 7.1.3 en-
sure that ln(3MBc) ≤ 23B

18
ln(eM). This, (7.26), the fact that (v−u) ≤ 2 max{|u|, |v|} =

max{2|u|, 2|v|} ≤ c ≤ B, and the fact that B ≥ 1 prove that for all p ∈ (0,∞) it holds
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that

9d2L2(b− a)2

A2/d
+

4(v − u)L(‖l‖∞ + 1)LcL+1 max{1, p}
K [L−1(‖l‖∞+1)−2]

+
18 max{1, (v − u)2}L(‖l‖∞ + 1)2 max{p, ln(3MBc)}√

M

≤ 36d2c4

A2/d
+

4L(‖l‖∞ + 1)LcL+2 max{1, p}
K [L−1(‖l‖∞+1)−2]

+
23B3L(‖l‖∞ + 1)2 max{p, ln(eM)}√

M
.

(7.27)

Combining this with (7.25) shows (7.20). The proof of Theorem 7.1.4 is thus complete.

Corollary 7.1.5. Let d,d,L,M,K,N ∈ N, L, a, u ∈ R, b ∈ (a,∞), v ∈ (u,∞), c ∈
[max{1, L, |a|, |b|, 2|u|, 2|v|},∞), B ∈ [c,∞), l = (l0, l1, . . . , lL) ∈ NL+1, T ⊆ {0, 1, . . . ,
N}, assume 0 ∈ T, l0 = d, lL = 1, and d ≥

∑L
i=1 li(li−1 + 1), let (Ω,F ,P) be a

probability space, let Xj : Ω → [a, b]d, j ∈ N, and Yj : Ω → [u, v], j ∈ N, be functions,
assume that (Xj, Yj), j ∈ {1, 2, . . . ,M}, are i.i.d. random variables, let E : [a, b]d → [u, v]
satisfy P-a.s. that E(X1) = E[Y1|X1], assume for all x, y ∈ [a, b]d that |E(x) − E(y)| ≤
L‖x− y‖1, let Θk,n : Ω→ Rd, k, n ∈ N0, and k : Ω→ (N0)2 be random variables, assume(⋃∞

k=1 Θk,0(Ω)
)
⊆ [−B,B]d, assume that Θk,0, k ∈ {1, 2, . . . , K}, are i.i.d., assume that

Θ1,0 is continuous uniformly distributed on [−c, c]d, and let R : Rd × Ω→ [0,∞) satisfy
for all θ ∈ Rd, ω ∈ Ω that

R(θ, ω) =
1

M

[
M∑
j=1

|N θ,l
u,v (Xj(ω))− Yj(ω)|2

]
and (7.28)

k(ω) ∈ argmin(k,n)∈{1,2,...,K}×T, ‖Θk,n(ω)‖∞≤B R(Θk,n(ω), ω) (7.29)

(cf. Definitions 2.1.27 and 3.1.16). Then it holds for all p ∈ (0,∞) that(
E
[(∫

[a,b]d
|N Θk,l

u,v (x)− E(x)|2 PX1(dx)
)p/2 ])1/p

≤ 3dL(b− a)

[min({L} ∪ {li : i ∈ N ∩ [0,L)})]1/d
+

2[(v − u)L(‖l‖∞ + 1)LcL+1 max{1, p/2}]1/2

K [(2L)−1(‖l‖∞+1)−2]

+
3 max{1, v − u}(‖l‖∞ + 1)[L max{p, 2 ln(3MBc)}]1/2

M 1/4
(7.30)

≤ 6dc2

[min({L} ∪ {li : i ∈ N ∩ [0,L)})]1/d
+

2L(‖l‖∞ + 1)LcL+1 max{1, p}
K [(2L)−1(‖l‖∞+1)−2]

+
5B2L(‖l‖∞ + 1) max{p, ln(eM)}

M 1/4

(cf. item (iii) in Lemma 7.1.1).

Proof of Corollary 7.1.5. Throughout this proof let A ∈ (0,∞) be given by

A = min({L} ∪ {li : i ∈ N ∩ [0,L)}). (7.31)

Note that (7.31) ensures that

L ≥ A = A− 1 + 1 ≥ (A− 1)1[2,∞)(A) + 1

≥
(
A− A

2

)
1[2,∞)(A) + 1 =

A1[2,∞)(A)

2
+ 1 ≥ A1(6d,∞)(A)

2d
+ 1.

(7.32)
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Moreover, note that the assumption that lL = 1 and (7.31) imply that

l1 = l11{1}(L) + l11[2,∞)(L) ≥ 1{1}(L) + A1[2,∞)(L) = A ≥ A1(6d,∞)(A). (7.33)

Furthermore, observe that (7.31) shows that for all i ∈ {2, 3, . . .} ∩ [0,L) it holds that

li ≥ A ≥ A1[2,∞)(A) ≥ 1[2,∞)(A) max{A− 1, 2} = 1[2,∞)(A) max{A− 4 + 3, 2}
≥ 1[2,∞)(A) max{A− 2i+ 3, 2} ≥ 1(6d,∞)(A) max{A/d− 2i+ 3, 2}.

(7.34)

Combining (7.32)–(7.34) and Theorem 7.1.4 (applied with p x p/2 for p ∈ (0,∞) in the
notation of Theorem 7.1.4) establishes that for all p ∈ (0,∞) it holds that(

E
[(∫

[a,b]d
|N Θk,l

u,v (x)− E(x)|2 PX1(dx)
)p/2 ])2/p

≤ 9d2L2(b− a)2

A2/d
+

4(v − u)L(‖l‖∞ + 1)LcL+1 max{1, p/2}
K [L−1(‖l‖∞+1)−2]

+
18 max{1, (v − u)2}L(‖l‖∞ + 1)2 max{p/2, ln(3MBc)}√

M
(7.35)

≤ 36d2c4

A2/d
+

4L(‖l‖∞ + 1)LcL+2 max{1, p/2}
K [L−1(‖l‖∞+1)−2]

+
23B3L(‖l‖∞ + 1)2 max{p/2, ln(eM)}√

M
.

This, (7.31), and the facts that L ≥ 1, c ≥ 1, B ≥ 1, and ln(eM) ≥ 1 demonstrate that
for all p ∈ (0,∞) it holds that(

E
[(∫

[a,b]d
|N Θk,l

u,v (x)− E(x)|2 PX1(dx)
)p/2 ])1/p

≤ 3dL(b− a)

[min({L} ∪ {li : i ∈ N ∩ [0,L)})]1/d
+

2[(v − u)L(‖l‖∞ + 1)LcL+1 max{1, p/2}]1/2

K [(2L)−1(‖l‖∞+1)−2]

+
3 max{1, v − u}(‖l‖∞ + 1)[L max{p, 2 ln(3MBc)}]1/2

M 1/4

≤ 6dc2

[min({L} ∪ {li : i ∈ N ∩ [0,L)})]1/d
+

2[L(‖l‖∞ + 1)LcL+2 max{1, p/2}]1/2

K [(2L)−1(‖l‖∞+1)−2]
(7.36)

+
5B3[L(‖l‖∞ + 1)2 max{p/2, ln(eM)}]1/2

M 1/4

≤ 6dc2

[min({L} ∪ {li : i ∈ N ∩ [0,L)})]1/d
+

2L(‖l‖∞ + 1)LcL+1 max{1, p}
K [(2L)−1(‖l‖∞+1)−2]

+
5B2L(‖l‖∞ + 1) max{p, ln(eM)}

M 1/4
.

The proof of Corollary 7.1.5 is thus complete.

7.2 Full strong error analysis for the training of ANNs

with optimisation via stochastic gradient descent

with random initialisation

Corollary 7.2.1. Let d,d,L,M,K,N ∈ N, L, a, u ∈ R, b ∈ (a,∞), v ∈ (u,∞), c ∈
[max{1, L, |a|, |b|, 2|u|, 2|v|},∞), B ∈ [c,∞), l = (l0, l1, . . . , lL) ∈ NL+1, T ⊆ {0, 1, . . . ,
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N}, (Jn)n∈N ⊆ N, (γn)n∈N ⊆ R, assume 0 ∈ T, l0 = d, lL = 1, and d ≥
∑L

i=1 li(li−1 + 1),
let (Ω,F ,P) be a probability space, let Xk,n

j : Ω → [a, b]d, k, n, j ∈ N0, and Y k,n
j : Ω →

[u, v], k, n, j ∈ N0, be functions, assume that (X0,0
j , Y 0,0

j ), j ∈ {1, 2, . . . ,M}, are i.i.d. ran-
dom variables, let E : [a, b]d → [u, v] satisfy P-a.s. that E(X0,0

1 ) = E[Y 0,0
1 |X0,0

1 ], assume for
all x, y ∈ [a, b]d that |E(x)−E(y)| ≤ L‖x−y‖1, let Θk,n : Ω→ Rd, k, n ∈ N0, and k : Ω→
(N0)2 be random variables, assume

(⋃∞
k=1 Θk,0(Ω)

)
⊆ [−B,B]d, assume that Θk,0, k ∈

{1, 2, . . . , K}, are i.i.d., assume that Θ1,0 is continuous uniformly distributed on [−c, c]d,
let Rk,n

J : Rd × Ω → [0,∞), k, n, J ∈ N0, and Gk,n : Rd × Ω → Rd, k, n ∈ N, satisfy for
all k, n ∈ N, ω ∈ Ω, θ ∈ {ϑ ∈ Rd : (Rk,n

Jn (·, ω) : Rd → [0,∞) is differentiable at ϑ)} that
Gk,n(θ, ω) = (∇θRk,n

Jn )(θ, ω), assume for all k, n ∈ N that Θk,n = Θk,n−1−γnGk,n(Θk,n−1),
and assume for all k, n ∈ N0, J ∈ N, θ ∈ Rd, ω ∈ Ω that

Rk,n
J (θ, ω) =

1

J

[
J∑
j=1

|N θ,l
u,v (Xk,n

j (ω))− Y k,n
j (ω)|2

]
and (7.37)

k(ω) ∈ argmin(l,m)∈{1,2,...,K}×T, ‖Θl,m(ω)‖∞≤B R0,0
M (Θl,m(ω), ω) (7.38)

(cf. Definitions 2.1.27 and 3.1.16). Then it holds for all p ∈ (0,∞) that(
E
[(∫

[a,b]d
|N Θk,l

u,v (x)− E(x)|2 PX0,0
1

(dx)
)p/2 ])1/p

≤ 3dL(b− a)

[min({L} ∪ {li : i ∈ N ∩ [0,L)})]1/d
+

2[(v − u)L(‖l‖∞ + 1)LcL+1 max{1, p/2}]1/2

K [(2L)−1(‖l‖∞+1)−2]

+
3 max{1, v − u}(‖l‖∞ + 1)[L max{p, 2 ln(3MBc)}]1/2

M 1/4
(7.39)

≤ 6dc2

[min({L} ∪ {li : i ∈ N ∩ [0,L)})]1/d
+

2L(‖l‖∞ + 1)LcL+1 max{1, p}
K [(2L)−1(‖l‖∞+1)−2]

+
5B2L(‖l‖∞ + 1) max{p, ln(eM)}

M 1/4

(cf. item (iii) in Lemma 7.1.1).

Proof of Corollary 7.2.1. Observe that Corollary 7.1.5 (applied with (Xj)j∈N x (X0,0
j )j∈N,

(Yj)j∈N x (Y 0,0
j )j∈N, R x R0,0

M in the notation of Corollary 7.1.5) shows (7.39). The
proof of Corollary 7.2.1 is thus complete.

Corollary 7.2.2. Let d,d,L,M,K,N ∈ N, L, a, u ∈ R, b ∈ (a,∞), v ∈ (u,∞), c ∈
[max{1, L, |a|, |b|, 2|u|, 2|v|},∞), B ∈ [c,∞), l = (l0, l1, . . . , lL) ∈ NL+1, T ⊆ {0, 1, . . . ,
N}, (Jn)n∈N ⊆ N, (γn)n∈N ⊆ R, assume 0 ∈ T, l0 = d, lL = 1, and d ≥

∑L
i=1 li(li−1 + 1),

let (Ω,F ,P) be a probability space, let Xk,n
j : Ω → [a, b]d, k, n, j ∈ N0, and Y k,n

j : Ω →
[u, v], k, n, j ∈ N0, be functions, assume that (X0,0

j , Y 0,0
j ), j ∈ {1, 2, . . . ,M}, are i.i.d. ran-

dom variables, let E : [a, b]d → [u, v] satisfy P-a.s. that E(X0,0
1 ) = E[Y 0,0

1 |X0,0
1 ], assume for

all x, y ∈ [a, b]d that |E(x)−E(y)| ≤ L‖x−y‖1, let Θk,n : Ω→ Rd, k, n ∈ N0, and k : Ω→
(N0)2 be random variables, assume

(⋃∞
k=1 Θk,0(Ω)

)
⊆ [−B,B]d, assume that Θk,0, k ∈

{1, 2, . . . , K}, are i.i.d., assume that Θ1,0 is continuous uniformly distributed on [−c, c]d,
let Rk,n

J : Rd × Ω → [0,∞), k, n, J ∈ N0, and Gk,n : Rd × Ω → Rd, k, n ∈ N, satisfy for
all k, n ∈ N, ω ∈ Ω, θ ∈ {ϑ ∈ Rd : (Rk,n

Jn (·, ω) : Rd → [0,∞) is differentiable at ϑ)} that
Gk,n(θ, ω) = (∇θRk,n

Jn )(θ, ω), assume for all k, n ∈ N that Θk,n = Θk,n−1−γnGk,n(Θk,n−1),
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and assume for all k, n ∈ N0, J ∈ N, θ ∈ Rd, ω ∈ Ω that

Rk,n
J (θ, ω) =

1

J

[
J∑
j=1

|N θ,l
u,v (Xk,n

j (ω))− Y k,n
j (ω)|2

]
and (7.40)

k(ω) ∈ argmin(l,m)∈{1,2,...,K}×T, ‖Θl,m(ω)‖∞≤B R0,0
M (Θl,m(ω), ω) (7.41)

(cf. Definitions 2.1.27 and 3.1.16). Then

E
[∫

[a,b]d
|N Θk,l

u,v (x)− E(x)|PX0,0
1

(dx)
]
≤ 2[(v − u)L(‖l‖∞ + 1)LcL+1]1/2

K [(2L)−1(‖l‖∞+1)−2]

+
3dL(b− a)

[min{L, l1, l2, . . . , lL−1}]1/d
+

3 max{1, v − u}(‖l‖∞ + 1)[2L ln(3MBc)]1/2

M 1/4

≤ 6dc2

[min{L, l1, l2, . . . , lL−1}]1/d
+

5B2L(‖l‖∞ + 1) ln(eM)

M 1/4
+

2L(‖l‖∞ + 1)LcL+1

K [(2L)−1(‖l‖∞+1)−2]

(7.42)

(cf. item (iii) in Lemma 7.1.1).

Proof of Corollary 7.2.2. Note that Jensen’s inequality implies that

E
[∫

[a,b]d
|N Θk,l

u,v (x)− E(x)|PX0,0
1

(dx)
]
≤ E

[(∫
[a,b]d
|N Θk,l

u,v (x)− E(x)|2 PX0,0
1

(dx)
)1/2 ]

.

(7.43)
This and Corollary 7.2.1 (applied with px 1 in the notation of Corollary 7.2.1) complete
the proof of Corollary 7.2.2.

Corollary 7.2.3. Let d,d,L,M,K,N ∈ N, L ∈ R, c ∈ [max{2, L},∞), B ∈ [c,∞),
l = (l0, l1, . . . , lL) ∈ NL+1, T ⊆ {0, 1, . . . , N}, (Jn)n∈N ⊆ N, (γn)n∈N ⊆ R, assume
0 ∈ T, l0 = d, lL = 1, and d ≥

∑L
i=1 li(li−1 + 1), let (Ω,F ,P) be a probability space, let

Xk,n
j : Ω → [0, 1]d, k, n, j ∈ N0, and Y k,n

j : Ω → [0, 1], k, n, j ∈ N0, be functions, assume
that (X0,0

j , Y 0,0
j ), j ∈ {1, 2, . . . ,M}, are i.i.d. random variables, let E : [0, 1]d → [0, 1]

satisfy P-a.s. that E(X0,0
1 ) = E[Y 0,0

1 |X0,0
1 ], assume for all x, y ∈ [0, 1]d that |E(x)−E(y)| ≤

L‖x− y‖1, let Θk,n : Ω→ Rd, k, n ∈ N0, and k : Ω→ (N0)2 be random variables, assume(⋃∞
k=1 Θk,0(Ω)

)
⊆ [−B,B]d, assume that Θk,0, k ∈ {1, 2, . . . , K}, are i.i.d., assume that

Θ1,0 is continuous uniformly distributed on [−c, c]d, let Rk,n
J : Rd×Ω→ [0,∞), k, n, J ∈

N0, and Gk,n : Rd × Ω → Rd, k, n ∈ N, satisfy for all k, n ∈ N, ω ∈ Ω, θ ∈ {ϑ ∈
Rd : (Rk,n

Jn (·, ω) : Rd → [0,∞) is differentiable at ϑ)} that Gk,n(θ, ω) = (∇θRk,n
Jn )(θ, ω),

assume for all k, n ∈ N that Θk,n = Θk,n−1−γnGk,n(Θk,n−1), and assume for all k, n ∈ N0,
J ∈ N, θ ∈ Rd, ω ∈ Ω that

Rk,n
J (θ, ω) =

1

J

[
J∑
j=1

|N θ,l
u,v (Xk,n

j (ω))− Y k,n
j (ω)|2

]
and (7.44)

k(ω) ∈ argmin(l,m)∈{1,2,...,K}×T, ‖Θl,m(ω)‖∞≤B R0,0
M (Θl,m(ω), ω) (7.45)

(cf. Definitions 2.1.27 and 3.1.16). Then

E
[∫

[0,1]d
|N Θk,l

u,v (x)− E(x)|PX0,0
1

(dx)
]

≤ 3dL

[min{L, l1, l2, . . . , lL−1}]1/d
+

3(‖l‖∞ + 1)[2L ln(3MBc)]1/2

M 1/4
+

2[L(‖l‖∞ + 1)LcL+1]1/2

K [(2L)−1(‖l‖∞+1)−2]

≤ dc3

[min{L, l1, l2, . . . , lL−1}]1/d
+
B3L(‖l‖∞ + 1) ln(eM)

M 1/4
+

L(‖l‖∞ + 1)LcL+1

K [(2L)−1(‖l‖∞+1)−2]
(7.46)

(cf. item (iii) in Lemma 7.1.1).
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Proof of Corollary 7.2.3. Observe that Corollary 7.2.2 (applied with a x 0, u x 0,
b x 1, v x 1 in the notation of Corollary 7.2.2), the facts that B ≥ c ≥ max{2, L} and
M ≥ 1, and item (ii) in Lemma 7.1.3 show that

E
[∫

[0,1]d
|N Θk,l

u,v (x)− E(x)|PX0,0
1

(dx)
]

≤ 3dL

[min{L, l1, l2, . . . , lL−1}]1/d
+

3(‖l‖∞ + 1)[2L ln(3MBc)]1/2

M 1/4
+

2[L(‖l‖∞ + 1)LcL+1]1/2

K [(2L)−1(‖l‖∞+1)−2]

≤ dc3

[min{L, l1, l2, . . . , lL−1}]1/d
+

(‖l‖∞ + 1)[23BL ln(eM)]1/2

M 1/4
+

[L(‖l‖∞ + 1)Lc2L+2]1/2

K [(2L)−1(‖l‖∞+1)−2]

≤ dc3

[min{L, l1, l2, . . . , lL−1}]1/d
+
B3L(‖l‖∞ + 1) ln(eM)

M 1/4
+

L(‖l‖∞ + 1)LcL+1

K [(2L)−1(‖l‖∞+1)−2]
. (7.47)

The proof of Corollary 7.2.3 is thus complete.
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Chapter 8

Stochastic gradient descent type
optimization methods

This chapter reviews and studies stochastic gradient descent (SGD) type optimization
methods such as the classical plain vanilla SGD optimization method (see Section 8.1)
as well as more sophisticated SGD type optimization methods including SGD type op-
timization methods with momenta (cf. Sections 8.2, 8.3, and 8.7 below) and SGD type
optimization methods with adaptive modifications of the learning rate (cf. Sections 8.4–
8.7 below). We also refer to the overview article Ruder [26] and the reference list in [16]
for further references on SGD type optimization methods.

8.1 The stochastic gradient descent optimization method

Definition 8.1.1 (Stochastic gradient descent optimization method). Let d ∈ N, (γn)n∈N ⊆
[0,∞), (Jn)n∈N ⊆ N, let (Ω,F ,P) be a probability space, let (S,S) be a measurable space,
let ξ : Ω → Rd and Xn,j : Ω → S, j ∈ {1, 2, . . . , Jn}, n ∈ N, be random variables, and
let F = (F (θ, x))(θ,x)∈Rd×S : Rd × S → R and G : Rd × S → Rd satisfy for all x ∈ S,
θ ∈ {v ∈ Rd : F (·, x) is differentiable at v} that

G(θ, x) = (∇θF )(θ, x). (8.1)

Then we say that Θ is the stochastic gradient descent process on ((Ω,F ,P), (S,S)) for the
loss function F with generalized gradient G, learning rates (γn)n∈N, batch sizes (Jn)n∈N,
initial value ξ, and data (Xn,j)j∈{1,2,...,Jn},n∈N (we say that Θ is the stochastic gradient
descent process for the loss function F with learning rates (γn)n∈N, batch sizes (Jn)n∈N,
initial value ξ, and data (Xn,j)j∈{1,2,...,Jn},n∈N) if and only if it holds that Θ: N0×Ω→ Rd

is the function from N0 × Ω to Rd which satisfies for all n ∈ N that

Θ0 = ξ and Θn = Θn−1 − γn

[
1

Jn

Jn∑
j=1

G(Θn−1, Xn,j)

]
. (8.2)

8.1.1 Properties of the learning rates of the SGD optimization
method

8.1.1.1 Bias-variance decomposition of the mean square error

Lemma 8.1.2 (Bias-variance decomposition of the mean square error). Let d ∈ N,
ϑ ∈ Rd, let 〈〈·, ·〉〉 : Rd×Rd → R be a scalar product, let ~·~ : Rd → [0,∞) be the function
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which satisfies for all v ∈ Rd that ~v~ =
√
〈〈v, v〉〉, let (Ω,F ,P) be a probability space,

and let Z : Ω→ Rd be a random variable with E[~Z~] <∞. Then

E
[
~Z − ϑ~

2
]

= E
[
~Z − E[Z]~2

]
+ ~E[Z]− ϑ~

2. (8.3)

Proof of Lemma 8.1.2. Observe that the assumption that E[~Z~] <∞ and the Cauchy-
Schwarz inequality ensure that

E
[
|〈〈Z − E[Z],E[Z]− ϑ〉〉|

]
≤ E

[
~Z − E[Z]~~E[Z]− ϑ~

]
≤ (E[~Z~] + ~E[Z]~)~E[Z]− ϑ~ <∞.

(8.4)

The linearity of the expectation hence shows that

E
[
~Z − ϑ~

2
]

= E
[
~(Z − E[Z]) + (E[Z]− ϑ)~

2
]

= E
[
~Z − E[Z]~2 + 2〈〈Z − E[Z],E[Z]− ϑ〉〉+ ~E[Z]− ϑ~

2
]

= E
[
~Z − E[Z]~2

]
+ 2〈〈E[Z]− E[Z],E[Z]− ϑ〉〉+ ~E[Z]− ϑ~

2

= E
[
~Z − E[Z]~2

]
+ ~E[Z]− ϑ~

2.

(8.5)

The proof of Lemma 8.1.2 is thus complete.

8.1.1.2 On the stochasticity in the SGD optimization method

In this section we present Lemma 8.1.7, Corollary 8.1.8, and Example 8.1.9. Our proof
of Lemma 8.1.7 employs the auxiliary results in Lemmas 8.1.3–8.1.6 below. Lemma 8.1.3
recalls an elementary and well known property for the expectation of the product of
independent random variables (see, e.g., Klenke [19, Theorem 5.4]). In the elementary
Lemma 8.1.6 we prove under suitable hypotheses the measurability of certain derivatives
of a function. A result similar to Lemma 8.1.6 can, e.g., be found in [16, Lemma 4.4].

Lemma 8.1.3. Let (Ω,F ,P) be a probability space and let X, Y : Ω→ R be independent
random variables with E[|X|+ |Y |] <∞. Then

(i) it holds that E
[
|XY |

]
= E

[
|X|
]
E
[
|Y |
]
<∞ and

(ii) it holds that E[XY ] = E[X]E[Y ].

Proof of Lemma 8.1.3. Note that the fact that (X, Y )(P) = (X(P))⊗(Y (P)), the integral
transformation theorem, Fubini’s theorem, and the assumption that E[|X|+ |Y |] < ∞
assure that

E
[
|XY |

]
=

∫
Ω

|X(ω)Y (ω)|P(dω)

=

∫
R×R
|xy|

(
(X, Y )(P)

)
(dx, dy)

=

∫
R

[∫
R
|xy| (X(P))(dx)

]
(Y (P))(dy)

=

∫
R
|y|
[∫

R
|x| (X(P))(dx)

]
(Y (P))(dy)

=

[∫
R
|x| (X(P))(dx)

][∫
R
|y| (Y (P))(dy)

]
= E

[
|X|
]
E
[
|Y |
]
<∞.

(8.6)
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This proves item (i). In addition, observe that item (i), the fact that (X, Y )(P) =
(X(P))⊗(Y (P)), the integral transformation theorem, and Fubini’s theorem demonstrate
that

E
[
XY

]
=

∫
Ω

X(ω)Y (ω)P(dω)

=

∫
R×R

xy
(
(X, Y )(P)

)
(dx, dy)

=

∫
R

[∫
R
xy (X(P))(dx)

]
(Y (P))(dy)

=

∫
R
y

[∫
R
x (X(P))(dx)

]
(Y (P))(dy)

=

[∫
R
x (X(P))(dx)

][∫
R
y (Y (P))(dy)

]
= E[X]E[Y ].

(8.7)

This establishes item (ii). The proof of Lemma 8.1.3 is thus complete.

Lemma 8.1.4. Let d, n ∈ N, let 〈〈·, ·〉〉 : Rd ×Rd → R be a scalar product, let ~·~ : Rd →
[0,∞) be the function which satisfies for all v ∈ Rd that ~v~ =

√
〈〈v, v〉〉, let (Ω,F ,P)

be a probability space, and let X1, X2, . . . , Xn : Ω→ Rd be independent random variables
which satisfy E[~X1~ + ~X2~ + . . .+ ~Xn~] <∞. Then it holds that

E
[
~
∑n

k=1(Xk − E[Xk])~
2
]

=
n∑
k=1

E
[
~Xk − E[Xk]~

2]. (8.8)

Proof of Lemma 8.1.4. First, note that Lemma 8.1.3 and the assumption that
E[~X1~ + ~X2~ + . . .+ ~Xn~] <∞ ensure that for all k1, k2 ∈ {1, 2, . . . , n} with k1 6= k2

it holds that

E
[
|〈〈Xk1 − E[Xk1 ], Xk2 − E[Xk2 ]〉〉|

]
≤ E

[
~Xk1 − E[Xk1 ]~~Xk2 − E[Xk2 ]~

]
<∞ (8.9)

and

E
[
〈〈Xk1 − E[Xk1 ], Xk2 − E[Xk2 ]〉〉

]
= 〈E[Xk1 − E[Xk1 ]],E[Xk2 − E[Xk2 ]]〉
= 〈E[Xk1 ]− E[Xk1 ],E[Xk2 ]− E[Xk2 ]〉 = 0.

(8.10)
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Hence, we obtain that

E
[
~
∑n

k=1(Xk − E[Xk])~
2
]

= E
[〈∑n

k1=1(Xk1 − E[Xk1 ]),
∑n

k2=1(Xk2 − E[Xk2 ])
〉]

= E
[∑n

k1,k2=1〈Xk1 − E[Xk1 ], Xk2 − E[Xk2 ]〉
]

= E


(

n∑
k=1

~Xk − E[Xk]~
2

)
+

 n∑
k1,k2=1
k1 6=k2

〈〈Xk1 − E[Xk1 ], Xk2 − E[Xk2 ]〉〉




=

(
n∑
k=1

E
[
~Xk − E[Xk]~

2])+

 n∑
k1,k2=1
k1 6=k2

E[〈〈Xk1 − E[Xk1 ], Xk2 − E[Xk2 ]〉〉]


=

n∑
k=1

E
[
~Xk − E[Xk]~

2].

(8.11)

The proof of Lemma 8.1.4 is thus complete.

Lemma 8.1.5 (Factorization lemma for independent random variables). Let (Ω,F ,P) be
a probability space, let (X,X ) and (Y,Y) be measurable spaces, let X : Ω → X be F/X -
measurable, let Y : Ω → Y be F/Y-measurable, assume that X and Y are independent,
let Φ: X × Y → [0,∞] be (X ⊗ Y)/B([0,∞])-measurable, and let φ : Y → [0,∞] be the
function which satisfies for all y ∈ Y that φ(y) = E

[
Φ(X, y)

]
. Then

(i) it holds that the function φ is Y/B([0,∞])-measurable and

(ii) it holds that
E
[
Φ(X, Y )

]
= E

[
φ(Y )

]
. (8.12)

Proof of Lemma 8.1.5. First, note that Fubini’s theorem (cf., e.g., Klenke [19, (14.6) in
Theorem 14.16]), the assumption that the function X : Ω → X is F/X -measurable, and
the assumption that the function Φ: X × Y → [0,∞] is (X ⊗ Y)/B([0,∞])-measurable
demonstrate that the function

Y 3 y 7→ φ(y) = E
[
Φ(X, y)

]
=

∫
Ω

Φ(X(ω), y)P(dω) ∈ [0,∞] (8.13)

is Y/B([0,∞])-measurable. This proves item (i). Next observe that the integral transfor-
mation theorem, the fact that (X, Y )(P) = (X(P))⊗ (Y (P)), and Fubini’s theorem prove
that

E
[
Φ(X, Y )

]
=

∫
Ω

Φ(X(ω), Y (ω))P(dω)

=

∫
X×Y

Φ(x, y)
(
(X, Y )(P)

)
(dx, dy)

=

∫
Y

[∫
X

Φ(x, y) (X(P))(dx)

]
(Y (P))(dy)

=

∫
Y
E
[
Φ(X, y)

]
(Y (P))(dy)

=

∫
Y
φ(y) (Y (P))(dy) = E

[
φ(Y )

]
.

(8.14)
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This establishes item (ii). The proof of Lemma 8.1.5 is thus complete.

Lemma 8.1.6. Let d ∈ N, let (S,S) be a measurable space, let F = (F (θ, x))θ∈Rd,x∈S :
Rd × S → R be (B(Rd) ⊗ S)/B(R)-measurable, and assume for every x ∈ S that the
function Rd 3 θ 7→ F (θ, x) ∈ R is differentiable. Then it holds that the function

Rd × S 3 (θ, x) 7→ (∇θF )(θ, x) ∈ Rd (8.15)

is (B(Rd)⊗ S)/ B(Rd)-measurable.

Proof of Lemma 8.1.6. Throughout this proof let G = (G1, . . . , Gd) : Rd×S → Rd be the
function which satisfies for all θ ∈ Rd, x ∈ S that

G(θ, x) = (∇θF )(θ, x). (8.16)

The assumption that the function F : Rd × S → R is (B(Rd) ⊗ S)/B(R)-measurable
implies that for all i ∈ {1, . . . , d}, h ∈ R\{0} it holds that the function

Rd × S 3 (θ, x) = ((θ1, . . . , θd), x) 7→
(
F ((θ1,...,θi−1,θi+h,θi+1,...,θd),x)−F (θ,x)

h

)
∈ R (8.17)

is (B(Rd) ⊗ S)/B(R)-measurable. The fact that for all i ∈ {1, . . . , d}, θ = (θ1, . . . , θd) ∈
Rd, x ∈ S it holds that

Gi(θ, x) = lim
n→∞

(
F ((θ1,...,θi−1,θi+2−n,θi+1,...,θd),x)−F (θ,x)

2−n

)
(8.18)

hence ensures that for all i ∈ {1, . . . , d} it holds that the function Gi : Rd × S → R is
(B(Rd) ⊗ S)/B(R)-measurable. This implies that G is (B(Rd) ⊗ S)/B(Rd)-measurable.
The proof of Lemma 8.1.6 is thus complete.

Lemma 8.1.7. Let d ∈ N, (γn)n∈N ⊆ [0,∞), (Jn)n∈N ⊆ N, let 〈·, ·〉 : Rd × Rd → R
be a scalar product, let ‖·‖ : Rd → [0,∞) be the function which satisfies for all v ∈ Rd

that ‖v‖ =
√
〈v, v〉, let (Ω,F ,P) be a probability space, let ξ : Ω → Rd be a random

variable, let (S,S) be a measurable space, let Xn,j : Ω → S, j ∈ {1, 2, . . . , Jn}, n ∈
N, be i.i.d. random variables, assume that ξ and (Xn,j)j∈{1,2,...,Jn},n∈N are independent,
let F = (F (θ, x))(θ,x)∈Rd×S : Rd × S → R be (B(Rd) ⊗ S)/B(R)-measurable, assume for
all x ∈ S that (Rd 3 θ 7→ F (θ, x) ∈ R) ∈ C1(Rd,R), assume for all θ ∈ Rd that
E
[
‖(∇θF )(θ,X1,1)‖

]
< ∞ (cf. Lemma 8.1.6), let V : Rd → [0,∞] be the function which

satisfies for all θ ∈ Rd that

V(θ) = E
[∥∥(∇θF )(θ,X1,1)− E

[
(∇θF )(θ,X1,1)

]∥∥2
]
, (8.19)

and let Θ: N0 × Ω→ Rd be the stochastic process which satisfies for all n ∈ N that

Θ0 = ξ and Θn = Θn−1 − γn

[
1

Jn

Jn∑
j=1

(∇θF )(Θn−1, Xn,j)

]
. (8.20)

Then it holds for all n ∈ N, ϑ ∈ Rd that(
E
[
‖Θn − ϑ‖2

])1/2 ≥ γn
(Jn)1/2

(
E
[
V(Θn−1)

])1/2
. (8.21)
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Proof of Lemma 8.1.7. Throughout this proof let φn : Rd → [0,∞], n ∈ N, be the func-
tions which satisfy for all n ∈ N, θ ∈ Rd that

φn(θ) = E
[∥∥∥θ − γn

Jn

[∑Jn
j=1(∇θF )(θ,Xn,j)

]
− ϑ
∥∥∥2
]
. (8.22)

Observe that Lemma 8.1.2 ensures that for all ϑ ∈ Rd and all random variables Z : Ω→ Rd

with E[‖Z‖] <∞ it holds that

E
[
‖Z − ϑ‖2

]
= E

[
‖Z − E[Z]‖2

]
+ ‖E[Z]− ϑ‖2

≥ E
[
‖Z − E[Z]‖2

]
.

(8.23)

Hence, we obtain for all n ∈ N, θ ∈ Rd that

φn(θ) = E
[∥∥∥ γnJn[∑Jn

j=1(∇θF )(θ,Xn,j)
]
− (θ − ϑ)

∥∥∥2
]

≥ E
[∥∥∥ γnJn[∑Jn

j=1(∇θF )(θ,Xn,j)
]
− E

[
γn
Jn

[∑Jn
j=1(∇θF )(θ,Xn,j)

]]∥∥∥2
]

= (γn)2

(Jn)2 E
[∥∥∥∑Jn

j=1

(
(∇θF )(θ,Xn,j)− E

[
(∇θF )(θ,Xn,j)

])∥∥∥2
]
.

(8.24)

Lemma 8.1.4, the fact that Xn,j : Ω → S, j ∈ {1, 2, . . . , Jn}, n ∈ N, are i.i.d. random
variables, and the fact that for all n ∈ N, j ∈ {1, 2, . . . , Jn}, θ ∈ Rd it holds that

E
[
‖(∇θF )(θ,Xn,j)‖

]
= E

[
‖(∇θF )(θ,X1,1)‖

]
<∞ (8.25)

hence demonstrates that for all n ∈ N, θ ∈ Rd it holds that

φn(θ) ≥ (γn)2

(Jn)2

[
Jn∑
j=1

E
[∥∥(∇θF )(θ,Xn,j)− E

[
(∇θF )(θ,Xn,j)

]∥∥2
]]

= (γn)2

(Jn)2

[
Jn∑
j=1

E
[∥∥(∇θF )(θ,X1,1)− E

[
(∇θF )(θ,X1,1)

]∥∥2
]]

= (γn)2

(Jn)2

[
Jn∑
j=1

V(θ)

]
= (γn)2

(Jn)2

[
JnV(θ)

]
=
(

(γn)2

Jn

)
V(θ).

(8.26)

In addition, observe that (8.20), (8.22), the fact that for all n ∈ N it holds that Θn−1

and Xn are independent random variables, and Lemma 8.1.5 assure that for all n ∈ N,
ϑ ∈ Rd it holds that

E
[
‖Θn − ϑ‖2

]
= E

[∥∥∥Θn−1 − γn
Jn

[∑Jn
j=1(∇θF )(Θn−1, Xn,j)

]
− ϑ
∥∥∥2
]

= E
[
φn(Θn−1)

]
.

(8.27)

Combining this with (8.26) proves that for all n ∈ N, ϑ ∈ Rd it holds that

E
[
‖Θn − ϑ‖2

]
≥ E

[(
(γn)2

Jn

)
V(Θn−1)

]
=
(

(γn)2

Jn

)
E
[
V(Θn−1)

]
. (8.28)

This establishes (8.21). The proof of Lemma 8.1.7 is thus complete.
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Corollary 8.1.8. Let d ∈ N, ε ∈ [0,∞), (γn)n∈N ⊆ [0,∞), (Jn)n∈N ⊆ N, let 〈·, ·〉 : Rd ×
Rd → R be a scalar product, let ‖·‖ : Rd → [0,∞) be the function which satisfies for
all v ∈ Rd that ‖v‖ =

√
〈v, v〉, let (Ω,F ,P) be a probability space, let ξ : Ω → Rd be a

random variable, let (S,S) be a measurable space, let Xn,j : Ω → S, j ∈ {1, 2, . . . , Jn},
n ∈ N, be i.i.d. random variables, assume that ξ and (Xn,j)j∈{1,2,...,Jn},n∈N are independent,
let F = (F (θ, x))(θ,x)∈Rd×S : Rd × S → R be (B(Rd) ⊗ S)/B(R)-measurable, assume for
all x ∈ S that (Rd 3 θ 7→ F (θ, x) ∈ R) ∈ C1(Rd,R), assume for all θ ∈ Rd that
E
[
‖(∇θF )(θ,X1,1)‖

]
<∞ (cf. Lemma 8.1.6) and(

E
[∥∥(∇θF )(θ,X1,1)− E

[
(∇θF )(θ,X1,1)

]∥∥2
])1/2

≥ ε, (8.29)

and let Θ: N0 × Ω→ Rd be the stochastic process which satisfies for all n ∈ N that

Θ0 = ξ and Θn = Θn−1 − γn

[
1

Jn

Jn∑
j=1

(∇θF )(Θn−1, Xn,j)

]
. (8.30)

Then

(i) it holds for all n ∈ N, ϑ ∈ Rd that

(
E
[
‖Θn − ϑ‖2

])1/2 ≥ ε

(
γn

(Jn)1/2

)
(8.31)

and

(ii) it holds for all ϑ ∈ Rd that

lim inf
n→∞

(
E
[
‖Θn − ϑ‖2

])1/2 ≥ ε

(
lim inf
n→∞

[
γn

(Jn)1/2

])
. (8.32)

Proof of Corollary 8.1.8. Throughout this proof let V : Rd → [0,∞] be the function which
satisfies for all θ ∈ Rd that

V(θ) = E
[∥∥(∇θF )(θ,X1,1)− E

[
(∇θF )(θ,X1,1)

]∥∥2
]
. (8.33)

Note that (8.29) assures that for all θ ∈ Rd it holds that

V(θ) ≥ ε2. (8.34)

Lemma 8.1.7 therefore demonstrates that for all n ∈ N, ϑ ∈ Rd it holds that(
E
[
‖Θn − ϑ‖2

])1/2 ≥ γn
(Jn)1/2

(
E
[
V(Θn−1)

])1/2 ≥
[

γn
(Jn)1/2

]
(ε2)

1/2 =
γnε

(Jn)1/2
. (8.35)

This proves item (i). Furthermore, note that item (i) implies item (ii). The proof of
Corollary 8.1.8 is thus complete.

Example 8.1.9 (A lower bound for the SGD optimization method). Let d ∈ N, (γn)n∈N ⊆
[0,∞), (Jn)n∈N ⊆ N, let ‖·‖ : Rd → [0,∞) be the d-dimensional Euclidean norm, let
(Ω,F ,P) be a probability space, let ξ : Ω → Rd be a random variable, let Xn,j : Ω → Rd,
j ∈ {1, 2, . . . , Jn}, n ∈ N, be i.i.d. random variables with E[‖X1,1‖] < ∞, assume that ξ
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and (Xn,j)j∈{1,2,...,Jn},n∈N are independent, let F = (F (θ, x))(θ,x)∈Rd×Rd : Rd × Rd → R be
the function which satisfies for all θ, x ∈ Rd that

F (θ, x) = 1
2
‖θ − x‖2, (8.36)

and let Θ: N0 × Ω→ Rd be the stochastic process which satisfies for all n ∈ N that

Θ0 = ξ and Θn = Θn−1 − γn

[
1

Jn

Jn∑
j=1

(∇θF )(Θn−1, Xn,j)

]
. (8.37)

Then

(i) it holds for all θ ∈ Rd that

E
[
‖(∇θF )(θ,X1,1)‖

]
<∞, (8.38)

(ii) it holds for all θ ∈ Rd that

E
[∥∥(∇θF )(θ,X1,1)− E

[
(∇θF )(θ,X1,1)

]∥∥2
]

= E
[
‖X1,1 − E[X1,1]‖2

]
, (8.39)

and

(iii) it holds for all n ∈ N, ϑ ∈ Rd that

(
E
[
‖Θn − ϑ‖2

])1/2 ≥
(
E
[
‖X1,1 − E[X1,1]‖2

])1/2
[

γn
(Jn)1/2

]
. (8.40)

Proof of Example 8.1.9. First, note that (8.36) and Lemma 13.2.4 imply that for all θ, x ∈
Rd it holds that

(∇θF )(θ, x) = 1
2
(2(θ − x)) = θ − x. (8.41)

The assumption that E[‖X1,1‖] <∞ therefore assures that for all θ ∈ Rd it holds that

E
[
‖(∇θF )(θ,X1,1)‖

]
= E

[
‖θ −X1,1‖

]
≤ ‖θ‖+ E

[
‖X1,1‖

]
<∞. (8.42)

This establishes item (i). Moreover, observe that (8.41) and item (i) ensure that for all
θ ∈ Rd it holds that

E
[
‖(∇θF )(θ,X1,1)− E[(∇θF )(θ,X1,1)]‖2

]
= E

[
‖(θ −X1,1)− E[ θ −X1,1]‖2

]
= E

[
‖X1,1 − E[X1,1]‖2

]
.

(8.43)

This proves item (ii). In addition, note that item (i) in Corollary 8.1.8 and items (i)–(ii)
establish item (iii). The proof of Example 8.1.9 is thus complete.

8.1.1.3 A lower bound for the natural logarithm

In the next auxiliary result, Lemma 8.1.10 below, we recall a well known lower bound for
the natural logarithm.

Lemma 8.1.10 (A lower bound for the natural logarithm). It holds for all x ∈ (0,∞)
that

ln(x) ≥ (x− 1)

x
. (8.44)
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Proof of Lemma 8.1.10. First, note that the fundamental theorem of calculus ensures
that for all x ∈ [1,∞) it holds that

ln(x) = ln(x)− ln(1) =

∫ x

1

1

t
dt ≥

∫ x

1

1

x
dt =

(x− 1)

x
. (8.45)

Moreover, observe hat the fundamental theorem of calculus ensures that for all x ∈ (0, 1]
it holds that

ln(x) = ln(x)− ln(1) = −(ln(1)− ln(x)) = −
[∫ 1

x

1

t
dt

]
=

∫ 1

x

(
−1

t

)
dt ≥

∫ 1

x

(
−1

x

)
dt = (1− x)

(
−1

x

)
=

(x− 1)

x
.

(8.46)

Combining this and (8.45) establishes (8.44). The proof of Lemma 8.1.10 is thus complete.

8.1.1.4 Summable learning rates

Lemma 8.1.11 (Gradient descent fails to converge for a summable sequence of learning
rates). Let d ∈ N, ϑ ∈ Rd, ξ ∈ Rd/{ϑ}, α ∈ (0,∞), (γn)n∈N ⊆ (0,∞)\{1/α} satisfy∑∞

n=1 γn <∞, let ‖·‖ : Rd → [0,∞) be the d-dimensional Euclidean norm, let f : Rd → R
be the function which satisfies for all θ ∈ Rd that

f(θ) = α
2
‖θ − ϑ‖2, (8.47)

and let Θ: N0 → Rd be the function which satisfies for all n ∈ N that Θ0 = ξ and

Θn = Θn−1 − γn(∇f)(Θn−1). (8.48)

Then

(i) it holds for all n ∈ N0 that

Θn − ϑ =

[
n∏
k=1

(1− γkα)

]
(ξ − ϑ), (8.49)

(ii) it holds that

lim inf
n→∞

[
n∏
k=1

∣∣1− γkα∣∣] > 0, (8.50)

and

(iii) it holds that
lim inf
n→∞

‖Θn − ϑ‖ > 0. (8.51)

Proof of Lemma 8.1.11. Throughout this proof let m ∈ N satisfy for all k ∈ N ∩ [m,∞)
that γk < 1/(2α). Observe that Lemma 13.2.4 implies that for all θ ∈ Rd it holds that

(∇f)(θ) = α
2
(2(θ − ϑ)) = α(θ − ϑ). (8.52)
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Therefore, we obtain for all n ∈ N that

Θn − ϑ = Θn−1 − γn(∇f)(Θn−1)− ϑ
= Θn−1 − γnα(Θn−1 − ϑ)− ϑ
= (1− γnα)(Θn−1 − ϑ).

(8.53)

Induction hence proves that for all n ∈ N it holds that

Θn − ϑ =

[
n∏
k=1

(1− γkα)

]
(Θ0 − ϑ), (8.54)

This and the assumption that Θ0 = ξ establish item (i). Next observe that the fact that
for all k ∈ N it holds that γkα 6= 1 ensures that

m−1∏
k=1

∣∣1− γkα∣∣ > 0. (8.55)

Moreover, note that the fact that for all k ∈ N∩ [m,∞) it holds that γkα ∈ (0, 1/2) assures
that for all k ∈ N ∩ [m,∞) it holds that

(1− γkα) ∈ (1/2, 1). (8.56)

This, Lemma 8.1.10, and the assumption that
∑∞

n=1 γn < ∞ demonstrate that for all
n ∈ N ∩ [m,∞) it holds that

ln

(
n∏

k=m

∣∣1− γkα∣∣) =
n∑

k=m

ln(1− γkα)

≥
n∑

k=m

(1− γkα)− 1

(1− γkα)
=

n∑
k=m

[
− γkα

(1− γkα)

]

≥
n∑

k=m

[
−γkα

(1
2
)

]
= −2α

[
n∑

k=m

γk

]
≥ −2α

[
∞∑
k=1

γk

]
> −∞.

(8.57)

Combining this with (8.55) proves that for all n ∈ N ∩ [m,∞) it holds that

n∏
k=1

∣∣1− γkα∣∣ =

[
m−1∏
k=1

∣∣1− γkα∣∣] exp

(
ln

(
n∏

k=m

∣∣1− γkα∣∣))

≥

[
m−1∏
k=1

∣∣1− γkα∣∣] exp

(
−2α

[
∞∑
k=1

γk

])
> 0.

(8.58)

Therefore, we obtain that

lim inf
n→∞

[
n∏
k=1

∣∣1− γkα∣∣] ≥ [m−1∏
k=1

∣∣1− γkα∣∣] exp

(
−2α

[
∞∑
k=1

γk

])
> 0. (8.59)
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This proves item (ii). Furthermore, observe that items (i)–(ii) and the assumption that
ξ 6= ϑ demonstrate that

lim inf
n→∞

‖Θn − ϑ‖ = lim inf
n→∞

∥∥∥∥∥
[

n∏
k=1

(1− γkα)

]
(ξ − ϑ)

∥∥∥∥∥
= lim inf

n→∞

(∣∣∣∣∣
n∏
k=1

(1− γkα)

∣∣∣∣∣‖ξ − ϑ‖
)

= ‖ξ − ϑ‖

(
lim inf
n→∞

[
n∏
k=1

∣∣1− γkα∣∣]) > 0.

(8.60)

This establishes item (iii). The proof of Lemma 8.1.11 is thus complete.

8.1.2 Example of a stochastic gradient descent process

Example 8.1.13 below, in particular, provides an error analysis for the SGD optimization
method in the case of one specific stochastic optimization problem (see (8.61) below).
More general error analyses for the SGD optimization method can, e.g., be found in [16,
17] and the references mentioned therein (cf. Subsection 8.1.4 below).

Lemma 8.1.12 (Example of a stochastic gradient descent process). Let d ∈ N, let
‖·‖ : Rd → [0,∞) be the d-dimensional Euclidean norm, let (Ω,F ,P) be a probability
space, let Xn : Ω → Rd, n ∈ N, be i.i.d. random variables with E[‖X1‖2] < ∞, let
F = (F (θ, x))(θ,x)∈Rd×Rd : Rd×Rd → R and f : Rd → R be the functions which satisfy for
all θ, x ∈ Rd that

F (θ, x) = 1
2
‖θ − x‖2 and f(θ) = E

[
F (θ,X1)

]
, (8.61)

and let Θ: N0×Ω→ Rd be the stochastic process which satisfies for all n ∈ N that Θ0 = 0
and

Θn = Θn−1 − 1
n
(∇θF )(Θn−1, Xn). (8.62)

Then

(i) it holds that {θ ∈ Rd : f(θ) = infw∈Rd f(w)} = {E[X1]},

(ii) it holds for all n ∈ N that Θn = 1
n
(X1 + . . .+Xn),

(iii) it holds for all n ∈ N that(
E
[
‖Θn − E[X1]‖2

])1/2
=
(
E
[
‖X1 − E[X1]‖2

])1/2
n−

1/2, (8.63)

and

(iv) it holds for all n ∈ N that

E[f(Θn)]− f(E[X1]) = 1
2
E
[
‖X1 − E[X1]‖2

]
n−1. (8.64)

Proof of Lemma 8.1.12. Throughout this proof let 〈·, ·〉 : Rd×Rd → R be the d-dimensional
Euclidean scalar product. Note that the assumption that E[‖X1‖2] <∞ and Lemma 8.1.2
ensure that for all θ ∈ Rd it holds that

f(θ) = E
[
F (θ,X1)

]
= 1

2
E
[
‖X1 − θ‖2

]
= 1

2

(
E
[
‖X1 − E[X1]‖2

]
+ ‖θ − E[X1]‖2

)
.

(8.65)
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This proves item (i). Moreover, note that Lemma 13.2.4 ensures that for all θ, x ∈ Rd it
holds that

(∇θF )(θ, x) = 1
2
(2(θ − x)) = θ − x. (8.66)

This and (8.62) assure that for all n ∈ N it holds that

Θn = Θn−1 − 1
n
(Θn−1 −Xn) = (1− 1

n
) Θn−1 + 1

n
Xn = (n−1)

n
Θn−1 + 1

n
Xn. (8.67)

Next we claim that for all n ∈ N it holds that

Θn = 1
n
(X1 + . . .+Xn). (8.68)

We now prove (8.68) by induction on n ∈ N. For the base case n = 1 note that (8.67)
implies that

Θ1 =
(

0
1

)
Θ0 +X1 =

(
1
1

)
(X1). (8.69)

This establishes (8.68) in the base case n = 1. For the induction step note that (8.67)
ensures that for all n ∈ {2, 3, . . .} with Θn−1 = 1

(n−1)
(X1 + . . .+Xn−1) it holds that

Θn = (n−1)
n

Θn−1 + 1
n
Xn =

[
(n−1)
n

][
1

(n−1)

]
(X1 + . . .+Xn−1) + 1

n
Xn

= 1
n
(X1 + . . .+Xn−1) + 1

n
Xn = 1

n
(X1 + . . .+Xn).

(8.70)

Induction thus proves (8.68). Next observe that (8.68) establishes item (ii). Moreover,
note that Lemma 8.1.4, item (ii), and the fact that (Xn)n∈N are i.i.d. random variables
with E[‖X1‖] <∞ ensure that for all n ∈ N it holds that

E
[
‖Θn − E[X1]‖2

]
= E

[
‖ 1
n
(X1 + . . .+Xn)− E[X1]‖2

]
= E

[∥∥∥∥ 1

n

[
n∑
k=1

(Xk − E[X1])

]∥∥∥∥2
]

=
1

n2

(
E

[∥∥∥∥ n∑
k=1

(Xk − E[Xk])

∥∥∥∥2
])

=
1

n2

[
n∑
k=1

E
[
‖Xk − E[Xk]‖2

]]
=

1

n2

[
nE
[
‖X1 − E[X1]‖2

]]
=

E[‖X1 − E[X1]‖2]

n
.

(8.71)

This implies item (iii). It thus remains to prove item (iv). For this note that (8.65) and
(8.71) assure that for all n ∈ N it holds that

E[f(Θn)]− f(E[X1])

= E
[

1
2

(
E
[
‖E[X1]−X1‖2

]
+ ‖Θn − E[X1]‖2

)]
− 1

2

(
E
[
‖E[X1]−X1‖2

]
+ ‖E[X1]− E[X1]‖2

)
= 1

2
E
[
‖Θn − E[X1]‖2

]
= 1

2
E
[
‖X1 − E[X1]‖2

]
n−1.

(8.72)

This establishes item (iv). The proof of Lemma 8.1.12 is thus complete.
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8.1.3 Examples for stochastic optimization problems

Example 8.1.13 (Sums of optimiziation problems). Let d,N ∈ N, (γn)n∈N ⊆ [0,∞),
ξ ∈ Rd, let fk : Rd → R, k ∈ {1, 2, . . . , N}, be differentiable functions, let (Ω,F ,P) be a
probability space, let kn : Ω → {1, 2, . . . , N}, n ∈ N, be independent U{1,2,...,N}-distributed
random variables, let Θ: N0 × Ω → Rd be the stochastic process which satisfies for all
n ∈ N that

Θ0 = ξ and Θn = Θn−1 − γn(∇fkn)(Θn−1), (8.73)

and let F : Rd × {1, 2, . . . , N} → R be the function which satisfies for all θ ∈ Rd, k ∈
{1, 2, . . . , N} that

F (θ, k) = fk(θ). (8.74)

Then

(i) it holds that Θ is the stochastic gradient descent process for the loss function F with
learning rates (γn)n∈N, batch sizes N 3 n 7→ 1 ∈ N, initial value ξ, and data (kn)n∈N
(cf. Definition 8.1.1) and

(ii) it holds for all θ ∈ Rd that

E
[
F (θ, k1)

]
=

1

N

[
N∑
k=1

fk(θ)

]
. (8.75)

Proof of Example 8.1.13. First, note that (8.74) ensures that for all n ∈ N it holds that

Θn = Θn−1 − γn(∇fkn)(Θn−1) = Θn−1 − γn(∇θF )(Θn−1, kn). (8.76)

Combining this with the assumption that Θ0 = ξ proves item (i). Moreover, observe that
(8.74) and the assumption that k1 is a U{1,2,...,N}-distributed random variable demonstrate
that

E
[
F (θ, k1)

]
=

1

N

[
N∑
k=1

F (θ, k)

]
=

1

N

[
N∑
k=1

fk(θ)

]
. (8.77)

This establishes item (ii). The proof of Example 8.1.13 is thus complete.

Example 8.1.14 (Objective functions induced by data). Let d,N, I,O ∈ N, (γn)n∈N ⊆
[0,∞), ξ ∈ Rd, x1, x2, . . . , xN ∈ RI, let ‖·‖ : RO → [0,∞) be the O-dimensional Euclidean
norm, let Φ: RI → RO be a function, let u = (uθ(x))(θ,x)∈Rd×RI : Rd × RI → RO be a
function which satisfies for every x ∈ RI that the function Rd 3 θ 7→ uθ(x) ∈ RO
is differentiable, let F : Rd × {1, 2, . . . , N} → R be the function which satisfies for all
θ ∈ Rd, k ∈ {1, 2, . . . , N} that

F (θ, k) = ‖uθ(xk)− Φ(xk)‖2, (8.78)

let (Ω,F ,P) be a probability space, let kn : Ω → {1, 2, . . . , N}, n ∈ N, be independent
U{1,2,...,N}-distributed random variables, and let Θ: N0×Ω→ Rd be the stochastic process
which satisfies for all n ∈ N that Θ0 = ξ and

Θn = Θn−1 − γn(∇θF )(Θn−1, kn) (8.79)

Then
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(i) it holds that Θ is the stochastic gradient descent process for the loss function F with
learning rates (γn)n∈N, batch sizes N 3 n 7→ 1 ∈ N, initial value ξ, and data (kn)n∈N
(cf. Definition 8.1.1) and

(ii) it holds for all θ ∈ Rd that

E
[
F (θ, k1)

]
=

1

N

[
N∑
k=1

‖uθ(xk)− Φ(xk)‖2

]
. (8.80)

Proof of Example 8.1.14. Throughout this proof let fk : Rd → R, k ∈ {1, 2, . . . , N}, be
the functions which satisfy for all θ ∈ Rd, k ∈ {1, 2, . . . , N} that

fk(θ) = ‖uθ(xk)− Φ(xk)‖2. (8.81)

Note that Example 8.1.13 (applied with fk x fk for k ∈ {1, 2, . . . , N} in the notation of
Example 8.1.13) establishes items (i)–(ii). The proof of Example 8.1.14 is thus complete.

8.1.4 Convergence rates in dependence of learning rates

The next result, Theorem 8.1.15 below, specifies strong and weak convergence rates for
the SGD optimization method in dependence on the asymptotic behavior of the sequence
of learning rates. The statement and the proof of Theorem 8.1.15 can be found in [17,
Theorem 1.1].

Theorem 8.1.15 (Convergence rates in dependence of learning rates). Let d ∈ N,
α, γ, ν ∈ (0,∞), ξ ∈ Rd, let 〈·, ·〉 : Rd × Rd → R be the d-dimensional Euclidean scalar
product, let ‖·‖ : Rd → [0,∞) be the d-dimensional Euclidean norm, let (Ω,F ,P) be a
probability space, let Xn : Ω→ Rd, n ∈ N, be i.i.d. random variables with E[‖X1‖2] <∞
and P(X1 = E[X1]) < 1, let (rε,i)ε∈(0,∞),i∈{0,1} ⊆ R satisfy for all ε ∈ (0,∞), i ∈ {0, 1}
that

rε,i =


ν/2 : ν < 1

min{1/2, γα + (−1)iε} : ν = 1

0 : ν > 1,

(8.82)

let F = (F (θ, x))(θ,x)∈Rd×Rd : Rd ×Rd → R and f : Rd → R be the functions which satisfy
for all θ, x ∈ Rd that

F (θ, x) = α
2
‖θ − x‖2 and f(θ) = E

[
F (θ,X1)

]
, (8.83)

and let Θ: N0 × Ω→ Rd be the stochastic process which satisfies for all n ∈ N that

Θ0 = ξ and Θn = Θn−1 − γ
nν

(∇θF )(Θn−1, Xn). (8.84)

Then

(i) there exists a unique ϑ ∈ Rd such that {θ ∈ Rd : f(θ) = infw∈Rd f(w)} = {ϑ},

(ii) for every ε ∈ (0,∞) there exist c0, c1 ∈ (0,∞) such that for all n ∈ N it holds that

c0n
−rε,0 ≤

(
E
[
‖Θn − ϑ‖2

])1/2 ≤ c1n
−rε,1 , (8.85)

and

(iii) for every ε ∈ (0,∞) there exist C0, C1 ∈ (0,∞) such that for all n ∈ N it holds that

C0n
−2rε,0 ≤ E[f(Θn)]− f(ϑ) ≤ C1n

−2rε,1 . (8.86)
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8.2 The stochastic gradient descent optimization method

with classical momentum

In this section we present the SGD optimization method with classical momentum. The
idea for classical momentum was first introduced by Polyak for the (deterministic) GD
optimization method (see Polyak [25] and Section 14.2 above).

Definition 8.2.1 (Momentum stochastic gradient descent optimization method). Let d ∈
N, (γn)n∈N ⊆ [0,∞), (Jn)n∈N ⊆ N, (αn)n∈N ⊆ [0, 1], let (Ω,F ,P) be a probability space, let
(S,S) be a measurable space, let ξ : Ω→ Rd and Xn,j : Ω→ S, j ∈ {1, 2, . . . , Jn}, n ∈ N,
be random variables, and let F = (F (θ, x))(θ,x)∈Rd×S : Rd × S → R and G : Rd × S → Rd

be functions which satisfy for all x ∈ S, θ ∈ {v ∈ Rd : F (·, x) is differentiable at v} that

G(θ, x) = (∇θF )(θ, x). (8.87)

Then we say that Θ is the momentum stochastic gradient descent process on ((Ω,F ,P),
(S,S)) for the loss function F with generalized gradient G, learning rates (γn)n∈N, batch
sizes (Jn)n∈N, momentum decay factors (αn)n∈N, initial value ξ, and data (Xn,j)j∈{1,2,...,Jn},n∈N
(we say that Θ is the momentum stochastic gradient descent process for the loss function
F with learning rates (γn)n∈N, batch sizes (Jn)n∈N, momentum decay factors (αn)n∈N, ini-
tial value ξ, and data (Xn,j)j∈{1,2,...,Jn},n∈N) if and only if Θ: N0×Ω→ Rd is the function
from N0×Ω to Rd which satisfies that there exists a function m : N0×Ω→ Rd such that
for all n ∈ N it holds that

Θ0 = ξ, m0 = 0, (8.88)

mn = αnmn−1 + (1− αn)

[
1

Jn

Jn∑
j=1

G(Θn−1, Xn,j)

]
, (8.89)

and Θn = Θn−1 − γnmn. (8.90)

8.3 The stochastic gradient descent optimization method

with Nesterov momentum

Nesterov accelerated stochastic gradient descent (NAG) builds on the idea of classical
momentum and attemps to provide some kind of foresight to the scheme. This idea
was first introduced by Nesterov as an adaption of the deterministic momentum GD
optimization method (see Nesterov [22]).

Definition 8.3.1 (Nesterov accelerated stochastic gradient descent optimization method).
Let d ∈ N, (γn)n∈N ⊆ [0,∞), (Jn)n∈N ⊆ N, (αn)n∈N ⊆ [0, 1], let (Ω,F ,P) be a prob-
ability space, let (S,S) be a measurable space, let ξ : Ω → Rd and Xn,j : Ω → S, j ∈
{1, 2, . . . , Jn}, n ∈ N, be random variables, and let F = (F (θ, x))(θ,x)∈Rd×S : Rd × S → R
and G : Rd × S → Rd be functions which satisfy for all x ∈ S, θ ∈ {v ∈ Rd : F (·, x) is
differentiable at v} that

G(θ, x) = (∇θF )(θ, x). (8.91)

Then we say that Θ is the Nesterov accelerated stochastic gradient descent process on
((Ω,F ,P), (S,S)) for the loss function F with generalized gradient G, learning rates
(γn)n∈N, batch sizes (Jn)n∈N, momentum decay factors (αn)n∈N, initial value ξ, and data
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(Xn,j)j∈{1,2,...,Jn},n∈N (we say that Θ is the Nesterov accelerated stochastic gradient descent
process for the loss function F with learning rates (γn)n∈N, batch sizes (Jn)n∈N, momen-
tum decay rates (αn)n∈N, initial value ξ, and data (Xn,j)j∈{1,2,...,Jn},n∈N) if and only if
Θ: N0 × Ω → Rd is the function from N0 × Ω to Rd which satisfies that there exists a
function m : N0 × Ω→ Rd such that for all n ∈ N it holds that

Θ0 = ξ, m0 = 0, (8.92)

mn = αnmn−1 + (1− αn)

[
1

Jn

Jn∑
j=1

G
(
Θn−1 − γnαnmn−1, Xn,j

)]
, (8.93)

and Θn = Θn−1 − γnmn. (8.94)

8.4 The adaptive stochastic gradient descent opti-

mization method (Adagrad)

Definition 8.4.1 (Adagrad stochastic gradient descent optimization method). Let d ∈ N,
(γn)n∈N ⊆ [0,∞), (Jn)n∈N ⊆ N, ε ∈ (0,∞), let (Ω,F ,P) be a probability space, let
(S,S) be a measurable space, let ξ : Ω → Rd and Xn,j : Ω → S, j ∈ {1, 2, . . . , Jn},
n ∈ N, be random variables, and let F = (F (θ, x))(θ,x)∈Rd×S : Rd × S → R and G =
(G1, . . . , Gd) : Rd× S → Rd be functions which satisfy for all x ∈ S, θ ∈ {v ∈ Rd : F (·, x)
is differentiable at v} that

G(θ, x) = (∇θF )(θ, x). (8.95)

Then we say that Θ is the Adagrad stochastic gradient descent process on ((Ω,F ,P),
(S,S)) for the loss function F with generalized gradient G, learning rates (γn)n∈N, batch
sizes (Jn)n∈N, regularizing factor ε, initial value ξ, and data (Xn,j)j∈{1,2,...,Jn},n∈N (we say
that Θ is the Adagrad stochastic gradient descent process for the loss function F with
learning rates (γn)n∈N, batch sizes (Jn)n∈N, regularizing factor ε, initial value ξ, and data
(Xn,j)j∈{1,2,...,Jn},n∈N) if and only if it holds that Θ = (Θ(1), . . . ,Θ(d)) : N0×Ω→ Rd is the
function from N0 × Ω to Rd which satisfies for all n ∈ N, i ∈ {1, 2, . . . , d} that Θ0 = ξ
and

Θ(i)
n = Θ

(i)
n−1

− γn
(
ε+

n∑
k=1

[
1
Jk

∑Jk
j=1Gi(Θk−1, Xk,j)

]2
)−1/2

[
1

Jn

Jn∑
j=1

Gi(Θn−1, Xn,j)

]
.

(8.96)

8.5 The root mean square propagation stochastic gra-

dient descent optimization method (RMSprop)

Definition 8.5.1 (RMSprop stochastic gradient descent optimization method). Let d ∈
N, (γn)n∈N ⊆ [0,∞), (Jn)n∈N ⊆ N, (βn)n∈N ⊆ [0, 1], ε ∈ (0,∞), let (Ω,F ,P) be a
probability space, let (S,S) be a measurable space, let ξ : Ω → Rd and Xn,j : Ω → S,
j ∈ {1, 2, . . . , Jn}, n ∈ N, be random variables, and let F = (F (θ, x))(θ,x)∈Rd×S : Rd ×
S → R and G = (G1, . . . , Gd) : Rd × S → Rd be functions which satisfy for all x ∈ S,
θ ∈ {v ∈ Rd : F (·, x) is differentiable at v} that

G(θ, x) = (∇θF )(θ, x). (8.97)
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Then we say that Θ is the RMSprop stochastic gradient descent process on ((Ω,F ,P),
(S,S)) for the loss function F with generalized gradient G, learning rates (γn)n∈N, batch
sizes (Jn)n∈N, second moment decay factors (βn)n∈N, regularizing factor ε, initial value
ξ, and data (Xn,j)j∈{1,2,...,Jn},n∈N (we say that Θ is the RMSprop stochastic gradient de-
scent process for the loss function F with learning rates (γn)n∈N, batch sizes (Jn)n∈N,
second moment decay factors (βn)n∈N, regularizing factor ε, initial value ξ, and data
(Xn,j)j∈{1,2,...,Jn},n∈N) if and only if it holds that Θ = (Θ(1), . . . ,Θ(d)) : N0 × Ω → Rd

is the function from N0 × Ω to Rd which satisfies that there exists a function M =
(M(1), . . . ,M(d)) : N0 × Ω→ Rd such that for all n ∈ N, i ∈ {1, 2, . . . , d} it holds that

Θ0 = ξ, M0 = 0, (8.98)

M(i)
n = βnM(i)

n−1 + (1− βn)

[
1

Jn

Jn∑
j=1

Gi(Θn−1, Xn,j)

]2

, (8.99)

and Θ(i)
n = Θ

(i)
n−1 −

γn[
ε+ M(i)

n

]1/2
[

1

Jn

Jn∑
j=1

Gi(Θn−1, Xn,j)

]
. (8.100)

Hinton et al. [14] suggests the choice that for all n ∈ N it holds that

βn = 0.9 (8.101)

as default values for the second moment decay factors (βn)n∈N ⊆ [0, 1] in Definition 8.5.1.
This default value in used several machine learning libraries that implement RMSprop
(see, e.g., Tensorflow [28] and Lasagne [20]).

8.6 The Adadelta stochastic gradient descent opti-

mization method

The Adadelta SGD optimization method was proposed in Zeiler [30]. It is a extension
of RMSprop SGD optimization method. Like the RMSprop SGD optimization method,
the Adadelta SGD optimization method adapts the learning rate for every component
separately. To do this, the Adadelta SGD optimization method uses two exponentially
decaying averages: one over the squares of the past partial derivatives and another one
over the squares of the past increments (cf. Definition 8.6.1 below).

Definition 8.6.1 (Adadelta stochastic gradient descent optimization method). Let d ∈
N, (Jn)n∈N ⊆ N, (βn)n∈N, (δn)n∈N ⊆ [0, 1], ε ∈ (0,∞), let (Ω,F ,P) be a probability space,
let (S,S) be a measurable space, let ξ : Ω → Rd and Xn,j : Ω → S, j ∈ {1, 2, . . . , Jn},
n ∈ N, be random variables, and let F = (F (θ, x))(θ,x)∈Rd×S : Rd × S → R and G =
(G1, . . . , Gd) : Rd× S → Rd be functions which satisfy for all x ∈ S, θ ∈ {v ∈ Rd : F (·, x)
is differentiable at v} that

G(θ, x) = (∇θF )(θ, x). (8.102)

Then we say that Θ is the Adadelta stochastic gradient descent process on ((Ω,F ,P),
(S,S)) for the loss function F with generalized gradient G, batch sizes (Jn)n∈N, second
moment decay factors (βn)n∈N, delta decay factors (δn)n∈N, regularizing factor ε, initial
value ξ, and data (Xn,j)j∈{1,2,...,Jn},n∈N (we say that Θ is the Adadelta stochastic gra-
dient descent process for the loss function F with batch sizes (Jn)n∈N, second moment
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decay factors (βn)n∈N, delta decay factors (δn)n∈N, regularizing factor ε, initial value ξ,
and data (Xn,j)j∈{1,2,...,Jn},n∈N) if and only if it holds that Θ = (Θ(1), . . . ,Θ(d)) : N0 ×
Ω → Rd is the function from N0 × Ω to Rd which satisfies that there exist functions
M = (M(1), . . . ,M(d)),∆ = (∆(1), . . . ,∆(d)) : N0 × Ω → Rd such that for all n ∈ N,
i ∈ {1, 2, . . . , d} it holds that

Θ0 = ξ, M0 = 0, ∆0 = 0, (8.103)

M(i)
n = βnM(i)

n−1 + (1− βn)

[
1

Jn

Jn∑
j=1

Gi(Θn−1, Xn,j)

]2

, (8.104)

Θ(i)
n = Θ

(i)
n−1 −

(
ε+ ∆

(i)
n−1

ε+ M(i)
n

)1/2
[

1

Jn

Jn∑
j=1

Gi(Θn−1, Xn,j)

]
, (8.105)

and ∆(i)
n = δn∆

(i)
n−1 + (1− δn)

∣∣Θ(i)
n −Θ

(i)
n−1

∣∣2. (8.106)

8.7 The adaptive moment estimation stochastic gra-

dient descent optimization method (Adam stochas-

tic gradient descent optimization method)

Definition 8.7.1 (Adam stochastic gradient descent optimization method). Let d ∈ N,
(γn)n∈N ⊆ [0,∞), (Jn)n∈N ⊆ N, (αn)n∈N, (βn)n∈N ⊆ [0, 1), let (Ω,F ,P) be a proba-
bility space, let (S,S) be a measurable space, let ξ : Ω → Rd and Xn,j : Ω → S, j ∈
{1, 2, . . . , Jn}, n ∈ N, be random variables, and let F = (F (θ, x))(θ,x)∈Rd×S : Rd × S → R
and G = (G1, . . . , Gd) : Rd × S → Rd be functions which satisfy for all x ∈ S, θ ∈ {v ∈
Rd : F (·, x) is differentiable at v} that

G(θ, x) = (∇θF )(θ, x). (8.107)

Then we say that Θ is the Adam stochastic gradient descent process on ((Ω,F ,P), (S,S))
for the loss function F with generalized gradient G, learning rates (γn)n∈N, batch sizes
(Jn)n∈N, momentum decay factors (αn)n∈N, second moment decay factors (βn)n∈N, initial
value ξ, and data (Xn,j)j∈{1,2,...,Jn},n∈N (we say that Θ is the Adam stochastic gradient
descent process for the loss function F with learning rates (γn)n∈N, batch sizes (Jn)n∈N,
momentum decay factors (αn)n∈N, second moment decay factors (βn)n∈N, initial value
ξ, and data (Xn,j)j∈{1,2,...,Jn},n∈N) if and only if it holds that Θ = (Θ(1), . . . ,Θ(d)) : N0 ×
Ω → Rd is the function from N0 × Ω to Rd which satisfies that there exist functions
m = (m(1), . . . ,m(d)), M = (M(1), . . . ,M(d)) : N0 × Ω → Rd such that for all n ∈ N,
i ∈ {1, 2, . . . , d} it holds that

Θ0 = ξ, m0 = 0, M0 = 0, (8.108)

mn = αn mn−1 + (1− αn)

[
1

Jn

Jn∑
j=1

G(Θn−1, Xn,j)

]
, (8.109)

M(i)
n = βnM(i)

n−1 + (1− βn)

[
1

Jn

Jn∑
j=1

Gi(Θn−1, Xn,j)

]2

, (8.110)
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and Θ(i)
n = Θ

(i)
n−1 − γn

[
ε+

[
M(i)
n

(1−
∏n
l=1 βl)

]1/2
]−1
[

m
(i)
n

(1−
∏n

l=1 αl)

]
. (8.111)

Kingma & Ba [18] suggests the choice that for all n ∈ N it holds that that

γn = 0.001, αn = 0.9, βn = 0.999, and ε = 10−8 (8.112)

as default values for (γn)n∈N, (αn)n∈N, (βn)n∈N, and ε in Definition 8.7.1.
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Generalization error

9.1 Concentration inequalities for random variables

This section is inspired by Duchi [8].

9.1.1 Markov’s inequality

Lemma 9.1.1 (Markov inequality). Let (Ω,F , µ) be a measure space, let X : Ω→ [0,∞)
be an F/B([0,∞))-measurable function, and let ε ∈ (0,∞). Then

µ
(
X ≥ ε

)
≤
∫

Ω
X dµ

ε
. (9.1)

Proof of Lemma 9.1.1. Observe that the fact that X ≥ 0 proves that

1{X≥ε} =
ε1{X≥ε}

ε
≤
X1{X≥ε}

ε
≤ X

ε
. (9.2)

Hence, we obtain that

µ(X ≥ ε) =

∫
Ω

1{X≥ε} dµ ≤
∫

Ω
X dµ

ε
. (9.3)

The proof of Lemma 9.1.1 is thus complete.

9.1.2 A first concentration inequality

9.1.2.1 On the variance of bounded random variables

Lemma 9.1.2. Let x ∈ [0, 1], y ∈ R. Then

(x− y)2 ≤ (1− x)y2 + x(1− y)2. (9.4)

Proof of Lemma 9.1.2. Observe that the assumption that x ∈ [0, 1] assures that

(1− x)y2 + x(1− y)2 = y2 − xy2 + x− 2xy + xy2 ≥ y2 + x2 − 2xy = (x− y)2. (9.5)

This establishes (9.4). The proof of Lemma 9.1.2 is thus complete.

Lemma 9.1.3. It holds that supp∈R p(1− p) = 1
4
.
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Proof of Lemma 9.1.3. Throughout this proof let f : R→ R be the function which satis-
fies for all p ∈ R that f(p) = p(1− p). Observe that the fact that ∀ p ∈ R : f ′(p) = 1− 2p
implies that {p ∈ R : f ′(p) = 0} = {1/2}. Combining this with the fact that f is a strictly
concave function implies that

sup
p∈R

p(1− p) = sup
p∈R

f(p) = f(1/2) = 1/4. (9.6)

The proof of Lemma 9.1.3 is thus complete.

Lemma 9.1.4. Let (Ω,F ,P) be a probability space and let X : Ω → [0, 1] be a random
variable. Then

Var(X) ≤ 1/4. (9.7)

Proof of Lemma 9.1.4. Observe that Lemma 9.1.2 implies that

Var(X) = E
[
(X − E[X])2

]
≤ E

[
(1−X)(E[X])2 +X(1− E[X])2

]
= (1− E[X])(E[X])2 + E[X](1− E[X])2

= (1− E[X])E[X](E[X] + (1− E[X]))

= (1− E[X])E[X].

(9.8)

This and Lemma 9.1.3 demonstrate that Var(X) ≤ 1/4. The proof of Lemma 9.1.4 is thus
complete.

Lemma 9.1.5. Let (Ω,F ,P) be a probability space, let a ∈ R, b ∈ [a,∞), and let
X : Ω→ [a, b] be a random variable. Then

Var(X) ≤ (b− a)2

4
. (9.9)

Proof of Lemma 9.1.5. Throughout this proof assume w.l.o.g. that a < b. Observe that
Lemma 9.1.4 implies that

Var(X) = E
[
(X − E[X])2

]
= (b− a)2 E

[(
X−a−(E[X]−a)

b−a

)2
]

= (b− a)2 E
[(

X−a
b−a − E

[
X−a
b−a

])2
]

= (b− a)2 Var
(
X−a
b−a

)
≤ (b− a)2(1

4
) =

(b− a)2

4
.

(9.10)

The proof of Lemma 9.1.5 is thus complete.

9.1.2.2 A concentration inequality

Lemma 9.1.6. Let (Ω,F ,P) be a probability space, let N ∈ N, ε ∈ (0,∞), a1, a2, . . . , aN ∈
R, b1 ∈ [a1,∞), b2 ∈ [a2,∞), . . . , bN ∈ [aN ,∞), and let Xn : Ω → [an, bn], n ∈
{1, 2, . . . , N}, be independent random variables. Then

P

(∣∣∣∣∣
N∑
n=1

(
Xn − E[Xn]

)∣∣∣∣∣ ≥ ε

)
≤
∑N

n=1(bn − an)2

4ε2
. (9.11)

Dissemination prohibited. July 29, 2021 148



Chapter 9. Generalization error

Proof of Lemma 9.1.6. Note that Lemma 9.1.1 assures that

P

(∣∣∣∣∣
N∑
n=1

(
Xn − E[Xn]

)∣∣∣∣∣ ≥ ε

)
= P

∣∣∣∣∣
N∑
n=1

(
Xn − E[Xn]

)∣∣∣∣∣
2

≥ ε2


≤

E
[∣∣∑N

n=1

(
Xn − E[Xn]

)∣∣2]
ε2

.

(9.12)

In addition, note that the assumption that Xn : Ω → [an, bn], n ∈ {1, 2, . . . , N}, are
independent variables and Lemma 9.1.5 demonstrate that

E
[∣∣∑N

n=1

(
Xn − E[Xn]

)∣∣2] =
N∑

n,m=1

E
[(
Xn − E[Xn]

)(
Xm − E[Xm]

)]
=

N∑
n=1

E
[(
Xn − E[Xn]

)2
]
≤
∑N

n=1(bn − an)2

4
.

(9.13)

Combining this with (9.12) establishes

P

(∣∣∣∣∣
N∑
n=1

(
Xn − E[Xn]

)∣∣∣∣∣ ≥ ε

)
≤
∑N

n=1(bn − an)2

4ε2
(9.14)

The proof of Lemma 9.1.6 is thus complete.

9.1.3 Moment-generating functions

Definition 9.1.7. Let (Ω,F ,P) be a probability space and let X : Ω → R be a random
variable. Then we denote by MX,P : R → [0,∞] (we denote by MX : R → [0,∞]) the
function which satisfies for all t ∈ R that

MX,P(t) = E
[
etX
]

(9.15)

and we call MX,P the moment-generating function of X with respect to P (we call MX,P
the moment-generating function of X).

9.1.3.1 Moment-generation function for the sum of independent random
variables

Lemma 9.1.8. Let (Ω,F ,P) be a probability space, let t ∈ R, N ∈ N, and let Xn : Ω→ R,
n ∈ {1, 2, . . . , N}, be independent random variables. Then

M∑N
n=1Xn

(t) =
∏N

n=1
MXn(t). (9.16)

Proof of Lemma 9.1.8. Observe that Fubini’s theorem ensures that for all t ∈ R it holds
that

M∑N
n=1Xn

(t) = E
[
et(

∑N
n=1 Xn)

]
= E

[∏N

n=1
etXn

]
=
∏N

n=1
E
[
etXn

]
=
∏N

n=1
MXn(t).

(9.17)
The proof of Lemma 9.1.8 is thus complete.
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9.1.4 Chernoff bounds

9.1.4.1 Probability to cross a barrier

Proposition 9.1.9. Let (Ω,F ,P) be a probability space, let X : Ω → R be a random
variable, and let ε ∈ R. Then

P(X ≥ ε) ≤ inf
λ∈[0,∞)

(
e−λε E

[
eλX
])

= inf
λ∈[0,∞)

(
e−λεMX(λ)

)
. (9.18)

Proof of Proposition 9.1.9. Note that Lemma 9.1.1 ensures that for all λ ∈ [0,∞) it holds
that

P(X ≥ ε) ≤ P(λX ≥ λε) = P(exp(λX) ≥ exp(λε)) ≤ E[exp(λX)]

exp(λε)
= e−λε E

[
eλX
]
.

(9.19)
The proof of Proposition 9.1.9 is thus complete.

Corollary 9.1.10. Let (Ω,F ,P) be a probability space, let X : Ω → R be a random
variable, and let c, ε ∈ R. Then

P(X ≥ c+ ε) ≤ inf
λ∈[0,∞)

(
e−λεMX−c(λ)

)
. (9.20)

Proof of Corollary 9.1.10. Throughout this proof let Y : Ω→ R satisfy

Y = X − c. (9.21)

Observe that Proposition 9.1.9 and (9.21) ensure that

P(X − c ≥ ε) = P(Y ≥ ε) ≤ inf
λ∈[0,∞)

(
e−λεMY (λ)

)
= inf

λ∈[0,∞)

(
e−λεMX−c(λ)

)
. (9.22)

The proof of Corollary 9.1.10 is thus complete.

Corollary 9.1.11. Let (Ω,F ,P) be a probability space, let X : Ω → R be a random
variable with E[|X|] <∞, and let ε ∈ R. Then

P(X ≥ E[X] + ε) ≤ inf
λ∈[0,∞)

(
e−λεMX−E[X](λ)

)
. (9.23)

Proof of Corollary 9.1.11. Observe that Corollary 9.1.10 (applied with c x E[X] in the
notation of Corollary 9.1.10) establishes (9.23). The proof of Corollary 9.1.11 is thus
complete.

9.1.4.2 Probability to fall below a barrier

Corollary 9.1.12. Let (Ω,F ,P) be a probability space, let X : Ω → R be a random
variable, and let c, ε ∈ R. Then

P(X ≤ c− ε) ≤ inf
λ∈[0,∞)

(
e−λεMc−X(λ)

)
. (9.24)

Proof of Corollary 9.1.12. Throughout this proof let c ∈ R satisfy c = −c and let X : Ω→
R satisfy

X = −X. (9.25)

Observe that Corollary 9.1.10 and (9.25) ensure that

P(X ≤ c− ε) = P(−X ≥ −c+ ε) = P(X ≥ c + ε) ≤ inf
λ∈[0,∞)

(
e−λεMX−c(λ)

)
= inf

λ∈[0,∞)

(
e−λεMc−X(λ)

)
.

(9.26)

The proof of Corollary 9.1.12 is thus complete.
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9.1.4.3 Sums of independent random variables

Corollary 9.1.13. Let (Ω,F ,P) be a probability space, let ε ∈ R, N ∈ N, and let
Xn : Ω→ R, n ∈ {1, 2, . . . , N}, be independent random variables with maxn∈{1,2,...,N} E[|Xn|] <
∞. Then

P

([
N∑
n=1

(
Xn − E[Xn]

)]
≥ ε

)
≤ inf

λ∈[0,∞)

(
e−λε

[
N∏
n=1

MXn−E[Xn](λ)

])
. (9.27)

Proof of Corollary 9.1.13. Throughout this proof let Yn : Ω → R, n ∈ {1, 2, . . . , N},
satisfy for all n ∈ {1, 2, . . . , N} that

Yn = Xn − E[Xn]. (9.28)

Observe that Proposition 9.1.9, Lemma 9.1.8, and (9.28) ensure that

P

([
N∑
n=1

(
Xn − E[Xn]

)]
≥ ε

)
= P

([
N∑
n=1

Yn

]
≥ ε

)
≤ inf

λ∈[0,∞)

(
e−λεM∑N

n=1 Yn
(λ)
)

= inf
λ∈[0,∞)

(
e−λε

[
N∏
n=1

MYn(λ)

])
= inf

λ∈[0,∞)

(
e−λε

[
N∏
n=1

MXn−E[Xn](λ)

])
.

(9.29)

The proof of Corollary 9.1.13 is thus complete.

9.1.5 Hoeffding’s inequality

9.1.5.1 On the moment-generating function for bounded random variables

Lemma 9.1.14. Let (Ω,F ,P) be a probability space, let λ, a ∈ R, b ∈ (a,∞), p ∈ [0, 1]
satisfy p = −a

(b−a)
, let X : Ω→ [a, b] be a random variable with E[X] = 0, and let φ : R→ R

satisfy for all x ∈ R that φ(x) = ln(1− p+ pex)− px. Then

E
[
eλX
]
≤ eφ(λ(b−a)). (9.30)

Proof of Lemma 9.1.14. Observe that for all x ∈ R it holds that

x(b− a) = bx− ax = [ab− ax] + [bx− ab] = [a(b− x)] + [b(x− a)]

= a(b− x) + b[b− a− b+ x] = a(b− x) + b[(b− a)− (b− x)].
(9.31)

Hence, we obtain that for all x ∈ R it holds that

x = a

(
b− x
b− a

)
+ b

[
1−

(
b− x
b− a

)]
. (9.32)

This implies that for all x ∈ R it holds that

λx =

(
b− x
b− a

)
λa+

[
1−

(
b− x
b− a

)]
λb. (9.33)

The fact that the function R 3 x 7→ ex ∈ R is convex hence demonstrates that for all
x ∈ [a, b] it holds that

eλx = exp

((
b− x
b− a

)
λa+

[
1−

(
b− x
b− a

)]
λb

)
≤
(
b− x
b− a

)
eλa +

[
1−

(
b− x
b− a

)]
eλb.

(9.34)
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The assumption that E[X] = 0 therefore assures that

E
[
eλX
]
≤
(

b

b− a

)
eλa +

[
1−

(
b

b− a

)]
eλb. (9.35)

Combining this with the fact that

b

(b− a)
= 1−

[
1−

(
b

(b− a)

)]
= 1−

[(
(b− a)

(b− a)

)
−
(

b

(b− a)

)]
= 1−

[
−a

(b− a)

]
= 1−p

(9.36)
demonstrates that

E
[
eλX
]
≤
(

b

b− a

)
eλa +

[
1−

(
b

b− a

)]
eλb = (1− p)eλa + [1− (1− p)]eλb = (1− p)eλa + p eλb

=
[
(1− p) + p eλ(b−a)

]
eλa.

(9.37)

Moreover, note that the assumption that p = −a
(b−a)

shows that p(b− a) = −a. Hence, we

obtain that a = −p(b− a). This and (9.37) assure that

E
[
eλX
]
≤
[
(1− p) + p eλ(b−a)

]
e−pλ(b−a) = exp

(
ln
([

(1− p) + p eλ(b−a)
]
e−pλ(b−a)

))
= exp

(
ln
(
(1− p) + p eλ(b−a)

)
− pλ(b− a)

)
= exp(φ(λ(b− a))).

(9.38)

The proof of Lemma 9.1.14 is thus complete.

9.1.5.2 Hoeffding’s lemma

Lemma 9.1.15. Let p ∈ [0, 1] and let φ : R → R satisfy for all x ∈ R that φ(x) =
ln(1− p+ pex)− px. Then it holds for all x ∈ R that φ(x) ≤ x2

8
.

Proof of Lemma 9.1.15. Observe that the fundamental theorem of calculus ensures that
for all x ∈ R it holds that

φ(x) = φ(0) +

∫ x

0

φ′(y) dy = φ(0) + φ′(0)x+

∫ x

0

∫ y

0

φ′′(z) dz dy ≤ φ(0) + φ′(0)x+
x2

2

[
sup
z∈R

φ′′(z)

]
.

(9.39)

Moreover, note that for all x ∈ R it holds that

φ′(x) =

[
pex

1− p+ pex

]
−p and φ′′(x) =

[
pex

1− p+ pex

]
−
[

p2e2x

(1− p+ pex)2

]
. (9.40)

Hence, we obtain that

φ′(0) =

[
p

1− p+ p

]
− p = 0. (9.41)

In the next step we combine (9.40) and the fact that for all a ∈ R it holds that

a(1− a) = a− a2 = −
[
a2 − 2a

[
1
2

]
+
[

1
2

]2]
+
[

1
2

]2
= 1

4
−
[
a− 1

2

]2 ≤ 1
4

(9.42)

to obtain that for all x ∈ R it holds that φ′′(x) ≤ 1
4
. This, (9.39), and (9.41) ensure that

for all x ∈ R it holds that

φ(x) ≤ φ(0) + φ′(0)x+
x2

2

[
sup
z∈R

φ′′(z)

]
= φ(0) +

x2

2

[
sup
z∈R

φ′′(z)

]
≤ φ(0) +

x2

8
=
x2

8
.

(9.43)

The proof of Lemma 9.1.15 is thus complete.
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Lemma 9.1.16. Let (Ω,F ,P) be a probability space, let a ∈ R, b ∈ [a,∞), λ ∈ R, and
let X : Ω→ [a, b] be a random variable with E[X] = 0. Then

E
[
exp(λX)

]
≤ exp

(
λ2(b−a)2

8

)
. (9.44)

Proof of Lemma 9.1.16. Throughout this proof assume w.l.o.g. that a < b, let p ∈ R
satisfy p = −a

(b−a)
, and let φr : R→ R, r ∈ [0, 1], satisfy for all r ∈ [0, 1], x ∈ R that

φr(x) = ln(1− r + rex)− rx. (9.45)

Observe that the assumption that E[X] = 0 and the fact that a ≤ E[X] ≤ b ensures that
a ≤ 0 ≤ b. Combining this with the assumption that a < b implies that

0 ≤ p =
−a

(b− a)
≤ (b− a)

(b− a)
= 1. (9.46)

Lemma 9.1.14 and Lemma 9.1.15 hence demonstrate that

E
[
eλX
]
≤ eφp(λ(b−a)) = exp(φp(λ(b− a))) ≤ exp

(
(λ(b−a))2

8

)
= exp

(
λ2(b−a)2

8

)
. (9.47)

The proof of Lemma 9.1.16 is thus complete.

9.1.5.3 Probability to cross a barrier

Lemma 9.1.17. Let β ∈ (0,∞), ε ∈ [0,∞) and let f : [0,∞) → [0,∞) be the function
which satisfies for all λ ∈ [0,∞) that f(λ) = βλ2 − ελ. Then

inf
λ∈[0,∞)

f(λ) = f( ε
2β

) = − ε2

4β
. (9.48)

Proof of Lemma 9.1.17. Observe that for all λ ∈ R it holds that

f ′(λ) = 2βλ− ε. (9.49)

Moreover, note that

f( ε
2β

) = β
[
ε

2β

]2

− ε
[
ε

2β

]
= ε2

4β
− ε2

2β
= − ε2

4β
. (9.50)

Combining this and (9.49) establishes (9.48). The proof of Lemma 9.1.17 is thus complete.

Corollary 9.1.18. Let (Ω,F ,P) be a probability space, let N ∈ N, ε ∈ [0,∞), a1, a2, . . . , aN ∈
R, b1 ∈ [a1,∞), b2 ∈ [a2,∞), . . . , bN ∈ [aN ,∞) satisfy

∑N
n=1(bn − an)2 6= 0, and let

Xn : Ω→ [an, bn], n ∈ {1, 2, . . . , N}, be independent random variables. Then

P

([
N∑
n=1

(
Xn − E[Xn]

)]
≥ ε

)
≤ exp

(
−2ε2∑N

n=1(bn − an)2

)
. (9.51)

Proof of Corollary 9.1.18. Throughout this proof let β ∈ (0,∞) satisfy

β =
1

8

[
N∑
n=1

(bn − an)2

]
. (9.52)
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Observe that Corollary 9.1.13 ensures that

P

([
N∑
n=1

(
Xn − E[Xn]

)]
≥ ε

)
≤ inf

λ∈[0,∞)

(
e−λε

[
N∏
n=1

MXn−E[Xn](λ)

])
. (9.53)

Moreover, note that Lemma 9.1.16 proves that for all n ∈ {1, 2, . . . , N} it holds that

MXn−E[Xn](λ) ≤ exp
(
λ2[(bn−E[Xn])−(an−E[Xn])]2

8

)
= exp

(
λ2(bn−an)2

8

)
. (9.54)

Combining this with (9.53) and Lemma 9.1.17 ensures that

P

([
N∑
n=1

(
Xn − E[Xn]

)]
≥ ε

)
≤ inf

λ∈[0,∞)

(
exp

([
N∑
n=1

(
λ2(bn−an)2

8

)]
− λε

))

= inf
λ∈[0,∞)

[
exp

(
λ2

[∑N
n=1(bn − an)2

8

]
− λε

)]
= exp

(
inf

λ∈[0,∞)

[
βλ2 − ελ

])

= exp

(
−ε2

4β

)
= exp

(
−2ε2∑N

n=1(bn − an)2

)
.

(9.55)

The proof of Corollary 9.1.18 is thus complete.

9.1.5.4 Probability to fall below a barrier

Corollary 9.1.19. Let (Ω,F ,P) be a probability space, let N ∈ N, ε ∈ [0,∞), a1, a2, . . . , aN ∈
R, b1 ∈ [a1,∞), b2 ∈ [a2,∞), . . . , bN ∈ [aN ,∞) satisfy

∑N
n=1(bn − an)2 6= 0, and let

Xn : Ω→ [an, bn], n ∈ {1, 2, . . . , N}, be independent random variables. Then

P

([
N∑
n=1

(
Xn − E[Xn]

)]
≤ −ε

)
≤ exp

(
−2ε2∑N

n=1(bn − an)2

)
. (9.56)

Proof of Corollary 9.1.19. Throughout this proof let Xn : Ω→ [−bn,−an], n ∈ {1, 2, . . . , N},
satisfy for all n ∈ {1, 2, . . . , N} that

Xn = −Xn. (9.57)

Observe that Corollary 9.1.18 and (9.57) ensure that

P

([
N∑
n=1

(
Xn − E[Xn]

)]
≤ −ε

)
= P

([
N∑
n=1

(
−Xn − E[−Xn]

)]
≥ ε

)

= P

([
N∑
n=1

(
Xn − E[Xn]

)]
≥ ε

)
≤ exp

(
−2ε2∑N

n=1(bn − an)2

)
.

(9.58)

The proof of Corollary 9.1.19 is thus complete.
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9.1.5.5 Hoeffding’s inequality

Corollary 9.1.20. Let (Ω,F ,P) be a probability space, let N ∈ N, ε ∈ [0,∞), a1, a2, . . . , aN ∈
R, b1 ∈ [a1,∞), b2 ∈ [a2,∞), . . . , bN ∈ [aN ,∞) satisfy

∑N
n=1(bn − an)2 6= 0, and let

Xn : Ω→ [an, bn], n ∈ {1, 2, . . . , N}, be independent random variables. Then

P

(∣∣∣∣∣
N∑
n=1

(
Xn − E[Xn]

)∣∣∣∣∣ ≥ ε

)
≤ 2 exp

(
−2ε2∑N

n=1(bn − an)2

)
. (9.59)

Proof of Corollary 9.1.20. Observe that

P

(∣∣∣∣∣
N∑
n=1

(
Xn − E[Xn]

)∣∣∣∣∣ ≥ ε

)

= P

({[
N∑
n=1

(
Xn − E[Xn]

)]
≥ ε

}
∪

{[
N∑
n=1

(
Xn − E[Xn]

)]
≤ −ε

})

≤ P

([
N∑
n=1

(
Xn − E[Xn]

)]
≥ ε

)
+ P

([
N∑
n=1

(
Xn − E[Xn]

)]
≤ −ε

)
.

(9.60)

Combining this with Corollary 9.1.18 and Corollary 9.1.19 establishes (9.59). The proof
of Corollary 9.1.20 is thus complete.

Corollary 9.1.21. Let (Ω,F ,P) be a probability space, let N ∈ N, ε ∈ [0,∞), a1, a2, . . . , aN ∈
R, b1 ∈ [a1,∞), b2 ∈ [a2,∞), . . . , bN ∈ [aN ,∞) satisfy

∑N
n=1(bn − an)2 6= 0, and let

Xn : Ω→ [an, bn], n ∈ {1, 2, . . . , N}, be independent random variables. Then

P

(
1

N

∣∣∣∣∣
N∑
n=1

(
Xn − E[Xn]

)∣∣∣∣∣ ≥ ε

)
≤ 2 exp

(
−2ε2N2∑N

n=1(bn − an)2

)
. (9.61)

Proof of Corollary 9.1.21. Observe that Corollary 9.1.20 ensures that

P

(
1

N

∣∣∣∣∣
N∑
n=1

(
Xn − E[Xn]

)∣∣∣∣∣ ≥ ε

)
= P

(∣∣∣∣∣
N∑
n=1

(
Xn − E[Xn]

)∣∣∣∣∣ ≥ εN

)
≤ 2 exp

(
−2(εN)2∑N
n=1(bn − an)2

)
.

(9.62)
The proof of Corollary 9.1.21 is thus complete.

Exercise 9.1.1. Prove or disprove the following statement: For every probability space
(Ω,F ,P), every N ∈ N, ε ∈ [0,∞), and every random variable X = (X1, X2, . . . , XN) : Ω→
[−1, 1]N with ∀ a = (a1, a2, . . . , aN) ∈ [−1, 1]N : P(

⋂N
i=1{Xi ≤ ai}) =

∏N
i=1

ai+1
2

it holds
that

P

(
1

N

∣∣∣∣∣
N∑
i=1

(Xn − E[Xn])

∣∣∣∣∣ ≥ ε

)
≤ 2 exp

(
−ε2N

2

)
. (9.63)

Exercise 9.1.2. Prove or disprove the following statement: For every probability space
(Ω,F ,P), every N ∈ N, and every random variable X = (X1, X2, . . . , XN) : Ω→ [−1, 1]N

with ∀ a = (a1, a2, . . . , aN) ∈ [−1, 1]N : P(
⋂N
i=1{Xi ≤ ai}) =

∏N
i=1

ai+1
2

it holds that

P

(
1

N

∣∣∣∣∣
N∑
n=1

(Xn − E[Xn])

∣∣∣∣∣ ≥ 1

2

)
≤ 2
[e

4

]N
. (9.64)
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Exercise 9.1.3. Prove or disprove the following statement: For every probability space
(Ω,F ,P), every N ∈ N, and every random variable X = (X1, X2, . . . , XN) : Ω→ [−1, 1]N

with ∀ a = (a1, a2, . . . , aN) ∈ [−1, 1]N : P(
⋂N
i=1{Xi ≤ ai}) =

∏N
i=1

ai+1
2

it holds that

P

(
1

N

∣∣∣∣∣
N∑
n=1

(Xn − E[Xn])

∣∣∣∣∣ ≥ 1

2

)
≤ 2

[
e− e−3

4

]N
. (9.65)

Exercise 9.1.4. Prove or disprove the following statement: For every probability space
(Ω,F ,P), every N ∈ N, ε ∈ [0,∞), and every standard normal random variable X =
(X1, X2, . . . , XN) : Ω→ RN it holds that

P

(
1

N

∣∣∣∣∣
N∑
n=1

(Xn − E[Xn])

∣∣∣∣∣ ≥ ε

)
≤ 2 exp

(
−ε2N

2

)
. (9.66)

9.1.6 A strengthened Hoeffding’s inequality

Lemma 9.1.22. Let f, g : (0,∞)→ R satisfy for all x ∈ (0,∞) that f(x) = 2 exp(−2x)
and g(x) = 1

4x
. Then

(i) it holds that limx→∞
f(x)
g(x)

= limx↘0
f(x)
g(x)

= 0 and

(ii) it holds that g(1
2
) = 1

2
< 2

3
< 2

e
= f(1

2
).

Proof of Lemma 9.1.22. Note that the fact that limx→∞
exp(−x)
x−1 = limx↘0

exp(−x)
x−1 = 0

establishes item (i). Moreover, observe that the fact that e < 3 implies item (ii). The
proof of Lemma 9.1.22 is thus complete.

Corollary 9.1.23. Let (Ω,F ,P) be a probability space, let N ∈ N, ε ∈ (0,∞), a1, a2, . . . , aN ∈
R, b1 ∈ [a1,∞), b2 ∈ [a2,∞), . . . , bN ∈ [aN ,∞) satisfy

∑N
n=1(bn − an)2 6= 0, and let

Xn : Ω→ [an, bn], n ∈ {1, 2, . . . , N}, be independent random variables. Then

P

(∣∣∣∣∣
N∑
n=1

(
Xn − E[Xn]

)∣∣∣∣∣ ≥ ε

)
≤ min

{
1, 2 exp

(
−2ε2∑N

n=1(bn − an)2

)
,

∑N
n=1(bn − an)2

4ε2

}
.

(9.67)

Proof of Corollary 9.1.23. Observe that Lemma 9.1.6, Corollary 9.1.20, and the fact that
for all B ∈ F it holds that P(B) ≤ 1 establish (9.67). The proof of Corollary 9.1.23 is
thus complete.

9.2 Covering number estimates

This section is inspired by Section 6 in Chapter I in Cucker & Smale [6] and Section 1.1
in Carl & Stephani [4].
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9.2.1 Entropy quantities

9.2.1.1 Covering radii (Outer entropy numbers)

Definition 9.2.1. Let (X, d) be a metric space and let n ∈ N. Then we denote by
C(X,d),n ∈ [0,∞] (we denote by CX,n ∈ [0,∞]) the extended real number given by

C(X,d),n = inf
({
r ∈ [0,∞] :

(
∃A ⊆ X :

[
(|A| ≤ n) ∧ (∀x ∈ X : ∃ a ∈ A : d(a, x) ≤ r)

])})
(9.68)

and we call C(X,d),n the n-covering radius of (X, d) (we call CX,r the n-covering radius of
X).

Lemma 9.2.2. Let (X, d) be a metric space, let n ∈ N, r ∈ [0,∞], assume X 6= ∅,
and let A ⊆ X satisfy |A| ≤ n and ∀x ∈ X : ∃ a ∈ A : d(a, x) ≤ r. Then there exist
x1, x2, . . . , xn ∈ X such that

X ⊆

[
n⋃
i=1

{v ∈ X : d(xi, v) ≤ r}

]
. (9.69)

Proof of Lemma 9.2.2. Note that the assumption that X 6= ∅ and the assumption that
|A| ≤ n imply that there exist x1, x2, . . . , xn ∈ X which satisfy A ⊆ {x1, x2, . . . , xn}.
This and the assumption that ∀x ∈ X : ∃ a ∈ A : d(a, x) ≤ r ensure that

X ⊆

[⋃
a∈A

{v ∈ X : d(a, v) ≤ r}

]
⊆

[
n⋃
i=1

{v ∈ X : d(xi, v) ≤ r}

]
. (9.70)

The proof of Lemma 9.2.2 is thus complete.

Lemma 9.2.3. Let (X, d) be a metric space, let n ∈ N, r ∈ [0,∞], x1, x2, . . . , xn ∈ X
satisfy X ⊆

[⋃n
i=1{v ∈ X : d(xi, v) ≤ r}

]
. Then there exists A ⊆ X such that |A| ≤ n

and
∀x ∈ X : ∃ a ∈ A : d(a, x) ≤ r. (9.71)

Proof of Lemma 9.2.3. Throughout this proof let A = {x1, x2, . . . , xn}. Note that the
assumption that X ⊆

[⋃n
i=1{v ∈ X : d(xi, v) ≤ r}

]
implies that for all v ∈ X there exists

i ∈ {1, 2, . . . , n} such that d(xi, v) ≤ r. Hence, we obtain that

∀x ∈ X : ∃ a ∈ A : d(a, x) ≤ r. (9.72)

The proof of Lemma 9.2.3 is thus complete.

Lemma 9.2.4. Let (X, d) be a metric space, let n ∈ N, r ∈ [0,∞], and assume X 6= ∅.
Then the following two statements are equivalent:

(i) There exists A ⊆ X such that |A| ≤ n and ∀x ∈ X : ∃ a ∈ A : d(a, x) ≤ r.

(ii) There exist x1, x2, . . . , xn ∈ X such that X ⊆
[⋃n

i=1{v ∈ X : d(xi, v) ≤ r}
]
.

Proof of Lemma 9.2.4. Note that Lemma 9.2.2 and Lemma 9.2.3 prove that ((i)⇔(ii)).
The proof of Lemma 9.2.4 is thus complete.
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Lemma 9.2.5. Let (X, d) be a metric space and let n ∈ N. Then

C(X,d),n =


0 : X = ∅

inf

({
r ∈ [0,∞) :

(
∃x1, x2, . . . , xn ∈ X :

X ⊆
[

n⋃
m=1

{v ∈ X : d(xm, v) ≤ r}
])}

∪ {∞}
) : X 6= ∅.

(9.73)

Proof of Lemma 9.2.5. Throughout this proof assume w.l.o.g. that X 6= ∅ and let a ∈ X.
Note that the assumption that d is a metric implies that for all x ∈ X it holds that
d(a, x) ≤ ∞. Combining this with Lemma 9.2.4 proves (9.73). This completes the proof
of Lemma 9.2.5.

Exercise 9.2.1. Prove or disprove the following statement: For every metric space (X, d)
and every n,m ∈ N it holds that C(X,d),n <∞ if and only if C(X,d),m <∞.

Exercise 9.2.2. Prove or disprove the following statement: For every metric space (X, d)
and every n ∈ N it holds that (X, d) is bounded if and only if C(X,d),n <∞.

Exercise 9.2.3. Prove or disprove the following statement: For every n ∈ N and every
metric space (X, d) with X 6= ∅ it holds that

C(X,d),n = infx1,x2,...,xn∈X supv∈X mini∈{1,2,...,n} d(xi, v) = infx1,x2,...,xn∈X supxn+1∈X mini∈{1,2,...,n} d(xi, xn+1).
(9.74)

9.2.1.2 Covering numbers

Definition 9.2.6. Let (X, d) be a metric space and let r ∈ [0,∞]. Then we denote by
C(X,d),r ∈ [0,∞] (we denote by CX,r ∈ [0,∞]) the extended real number given by

C(X,d),r = inf
({
n ∈ N0 :

(
∃A ⊆ X :

[
(|A| ≤ n) ∧ (∀x ∈ X : ∃ a ∈ A : d(a, x) ≤ r)

])}
∪{∞}

)
(9.75)

and we call C(X,d),r the r-covering number of (X, d) (we call CX,r the r-covering number
of X).

Lemma 9.2.7. Let (X, d) be a metric space and let r ∈ [0,∞]. Then

C(X,d),r =


0 : X = ∅

inf

({
n ∈ N :

(
∃x1, x2, . . . , xn ∈ X :

X ⊆
[

n⋃
m=1

{v ∈ X : d(xm, v) ≤ r}
])}

∪ {∞}
) : X 6= ∅.

(9.76)

Proof of Lemma 9.2.7. Throughout this proof assume w.l.o.g. that X 6= ∅. Observe that
Lemma 9.2.4 establishes (9.76). The proof of Lemma 9.2.7 is thus complete.

Exercise 9.2.4. Prove or disprove the following statement: For every r ∈ [0,∞], every
metric space (X, d), and every Y ⊆ X it holds that

C(Y,d|Y×Y ),r ≤ C(X,d),r. (9.77)
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9.2.1.3 Packing radii (Inner entropy numbers)

Definition 9.2.8. Let (X, d) be a metric space and let n ∈ N. Then we denote by
P(X,d),n ∈ [0,∞] (we denote by PX,n ∈ [0,∞]) the extended real number given by

P(X,d),n = sup
({
r ∈ [0,∞) :

(
∃x1, x2, . . . , xn+1 ∈ X :

[
mini,j∈{1,2,...,n+1}, i 6=j d(xi, xj)

]
> 2r

)}
∪ {0}

)
(9.78)

and we call P(X,d),n the n-packing radius of (X, d) (we call PX,r the n-packing radius of
X).

Exercise 9.2.5. Prove or disprove the following statement: For every n ∈ N and every
metric space (X, d) with X 6= ∅ it holds that

P(X,d),n = 1
2

[
supx1,x2,...,xn+1∈X mini,j∈{1,2,...,n+1}, i 6=j d(xi, xj)

]
. (9.79)

9.2.1.4 Packing numbers

Definition 9.2.9. Let (X, d) be a metric space and let r ∈ [0,∞]. Then we denote by
P(X,d),r ∈ [0,∞] (we denote by PX,r ∈ [0,∞]) the extended real number given by

P(X,d),r = sup
({
n ∈ N :

(
∃x1, x2, . . . , xn+1 ∈ X :

[
mini,j∈{1,2,...,n+1}, i 6=j d(xi, xj)

]
> 2r

)}
∪ {0}

)
(9.80)

and we call P(X,d),r the r-packing number of (X, d) (we call PX,r the r-packing number of
X).

9.2.2 Inequalities for packing entropy quantities in metric spaces

9.2.2.1 Lower bounds for packing radii based on lower bounds for packing
numbers

Lemma 9.2.10 (Lower bounds for packing radii). Let (X, d) be a metric space and let
n ∈ N, r ∈ [0,∞] satisfy n ≤ P(X,d),r. Then r ≤ P(X,d),n.

Proof of Lemma 9.2.10. Note that (9.80) ensures that there exist x1, x2, . . . , xn+1 ∈ X
such that [

mini,j∈{1,2,...,n+1}, i 6=j d(xi, xj)
]
> 2r. (9.81)

This implies that P(X,d),n ≥ r. The proof of Lemma 9.2.10 is thus complete.

9.2.2.2 Upper bounds for packing numbers based on upper bounds for pack-
ing radii

Lemma 9.2.11. Let (X, d) be a metric space and let n ∈ N, r ∈ [0,∞] satisfy P(X,d),n <
r. Then P(X,d),r < n.

Proof of Lemma 9.2.11. Observe that Lemma 9.2.10 establishes that P(X,d),r < n. The
proof of Lemma 9.2.11 is thus complete.
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9.2.2.3 Upper bounds for packing radii based on upper bounds for covering
radii

Lemma 9.2.12. Let (X, d) be a metric space and let n ∈ N. Then P(X,d),n ≤ C(X,d),n.

Proof of Lemma 9.2.12. Throughout this proof assume w.l.o.g. that C(X,d),n < ∞ and
P(X,d),n > 0, let r ∈ [0,∞), x1, x2, . . . , xn ∈ X satisfy

X ⊆

[
n⋃

m=1

{v ∈ X : d(xm, v) ≤ r}

]
, (9.82)

let r ∈ [0,∞), x1,x2, . . . ,xn+1 ∈ X satisfy[
mini,j∈{1,2,...,n+1}, i 6=j d(xi,xj)

]
> 2r, (9.83)

and let ϕ : X → {1, 2, . . . , n} satisfy for all v ∈ X that

ϕ(v) = min{m ∈ {1, 2, . . . , n} : v ∈ {w ∈ X : d(xm, w) ≤ r}} (9.84)

(cf. Lemma 9.2.5). Observe that (9.84) shows that for all v ∈ X it holds that

v ∈
{
w ∈ X : d(xϕ(v), w) ≤ r

}
. (9.85)

Hence, we obtain that for all v ∈ X it holds that

d(v, xϕ(v)) ≤ r (9.86)

Moreover, note that the fact that ϕ(x1), ϕ(x2), . . . , ϕ(xn+1) ∈ {1, 2, . . . , n} ensures that
there exist i, j ∈ {1, 2, . . . , n+ 1} which satisfy

i 6= j and ϕ(xi) = ϕ(xj). (9.87)

The triangle inequality, (9.83), and (9.86) hence show that

2r < d(xi,xj) ≤ d(xi, xϕ(xi)) + d(xϕ(xi),xj) = d(xi, xϕ(xi)) + d(xj, xϕ(xj)) ≤ 2r. (9.88)

This implies that r < r. The proof of Lemma 9.2.12 is thus complete.

9.2.2.4 Upper bounds for packing radii in balls of metric spaces

Lemma 9.2.13. Let (X, d) be a metric space, let n ∈ N, x ∈ X, r ∈ (0,∞], and let
S = {v ∈ X : d(x, v) ≤ r}. Then P(S,d|S×S),n ≤ r.

Proof of Lemma 9.2.13. Throughout this proof assume w.l.o.g. that P(S,d|S×S),n > 0. Ob-
serve that for all x1,x2, . . . ,xn+1 ∈ S, i, j ∈ {1, 2, . . . , n+ 1} it holds that

d(xi,xj) ≤ d(xi, x) + d(x,xj) ≤ 2r. (9.89)

Hence, we obtain that for all x1,x2, . . . ,xn+1 ∈ S it holds that

mini,j∈{1,2,...,n+1},i 6=j d(xi,xj) ≤ 2r. (9.90)

Moreover, note that (9.78) ensures that for all ρ ∈ [0,P(S,d|S×S),n) there exist x1,x2, . . . ,xn+1 ∈
S such that

mini,j∈{1,2,...,n+1},i 6=j d(xi,xj) > 2ρ. (9.91)

This and (9.90) demonstrate that for all ρ ∈ [0,P(S,d|S×S),n) it holds that 2ρ < 2r. The
proof of Lemma 9.2.13 is thus complete.
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9.2.3 Inequalities for covering entropy quantities in metric spaces

9.2.3.1 Upper bounds for covering numbers based on upper bounds for cov-
ering radii

Lemma 9.2.14. Let (X, d) be a metric space and let r ∈ [0,∞], n ∈ N satisfy C(X,d),n < r.
Then C(X,d),r ≤ n.

Proof of Lemma 9.2.14. Observe that the assumption that C(X,d),n < r ensures that there
exists A ⊆ X such that |A| ≤ n and

X ⊆

[⋃
a∈A

{v ∈ X : d(a, v) ≤ r}

]
. (9.92)

This establishes that C(X,d),r ≤ n. The proof of Lemma 9.2.14 is thus complete.

Lemma 9.2.15. Let (X, d) be a compact metric space and let r ∈ [0,∞], n ∈ N, satisfy
C(X,d),n ≤ r. Then C(X,d),r ≤ n.

Proof of Lemma 9.2.15. Throughout this proof assume w.l.o.g. that X 6= ∅ and let xk,m ∈
X, m ∈ {1, 2, . . . , n}, k ∈ N, satisfy for all k ∈ N that

X ⊆

[
n⋃

m=1

{
v ∈ X : d(xk,m, v) ≤ r + 1

k

}]
(9.93)

(cf. Lemma 9.2.4). Note that the assumption that (X, d) is a compact metric space demon-
strates that there exist x = (xm)m∈{1,2,...,n} : {1, 2, . . . , n} → X and k = (kl)l∈N : N → N
which satisfy that

lim supl→∞maxm∈{1,2,...,n} d(xm, xkl,m) = 0 and lim supl→∞ kl =∞. (9.94)

Next observe that the assumption that d is a metric ensures that for all v ∈ X, m ∈
{1, 2, . . . , n}, l ∈ N it holds that

d(v, xm) ≤ d(v, xkl,m) + d(xkl,m, xm). (9.95)

This and (9.93) prove that for all v ∈ X, l ∈ N it holds that

minm∈{1,2,...,n} d(v, xm) ≤ minm∈{1,2,...,n}[d(v, xkl,m) + d(xkl,m, xm)]

≤
[
minm∈{1,2,...,n} d(v, xkl,m)

]
+
[
maxm∈{1,2,...,n} d(xkl,m, xm)

]
≤
[
r + 1

kl

]
+
[
maxm∈{1,2,...,n} d(xkl,m, xm)

]
.

(9.96)

Hence, we obtain for all v ∈ X that

minm∈{1,2,...,n} d(v, xm) ≤ lim supl→∞
([
r + 1

kl

]
+
[
maxm∈{1,2,...,n} d(xkl,m, xm)

])
= r.

(9.97)

This establishes that C(X,d),r ≤ n. The proof of Lemma 9.2.15 is thus complete.
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9.2.3.2 Upper bounds for covering radii based on upper bounds for covering
numbers

Lemma 9.2.16. Let (X, d) be a metric space and let r ∈ [0,∞], n ∈ N satisfy C(X,d),r ≤ n.
Then C(X,d),n ≤ r.

Proof of Lemma 9.2.16. Observe that the assumption that C(X,d),r ≤ n ensures that there
exists A ⊆ X such that |A| ≤ n and

X ⊆

[⋃
a∈A

{v ∈ X : d(a, v) ≤ r}

]
. (9.98)

This establishes that C(X,d),n ≤ r. The proof of Lemma 9.2.16 is thus complete.

9.2.3.3 Upper bounds for covering radii based on upper bounds for packing
radii

Lemma 9.2.17. Let (X, d) be a metric space and let n ∈ N. Then C(X,d),n ≤ 2P(X,d),n.

Proof of Lemma 9.2.17. Throughout this proof assume w.l.o.g. that X 6= ∅, assume
w.l.o.g. that P(X,d),n < ∞, let r ∈ [0,∞] satisfy r > P(X,d),n, and let N ∈ N0 ∪ {∞}
satisfy N = P(X,d),r. Observe that Lemma 9.2.11 ensures that

N = P(X,d),r < n. (9.99)

Moreover, note that the fact that N = P(X,d),r and (9.80) demonstrate that for all
x1, x2, . . . , xN+1, xN+2 ∈ X it holds that

mini,j∈{1,2,...,N+2}, i 6=j d(xi, xj) ≤ 2r. (9.100)

In addition, observe that the fact that N = P(X,d),r and (9.80) imply that there exist
x1, x2, . . . , xN+1 ∈ X which satisfy that

min
(
{d(xi, xj) : i, j ∈ {1, 2, . . . , N + 1}, i 6= j} ∪ {∞}

)
> 2r. (9.101)

Combining this with (9.100) establishes that for all v ∈ X it holds that

mini∈{1,2,...,N} d(xi, v) ≤ 2r. (9.102)

Hence, we obtain that for all w ∈ X it holds that

w ∈

[
n⋃

m=1

{v ∈ X : d(xi, v) ≤ 2r}

]
. (9.103)

Therefore, we obtain that

X ⊆

[
n⋃

m=1

{v ∈ X : d(xi, v) ≤ 2r}

]
. (9.104)

Combining this and Lemma 9.2.5 shows that C(X,d),n ≤ 2r. The proof of Lemma 9.2.17
is thus complete.
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9.2.3.4 Equivalence of covering and packing radii

Corollary 9.2.18. Let (X, d) be a metric space and let n ∈ N. Then P(X,d),n ≤ C(X,d),n ≤
2P(X,d),n.

Proof of Corollary 9.2.18. Observe that Lemma 9.2.12 and Lemma 9.2.17 establish that
P(X,d),n ≤ C(X,d),n ≤ 2P(X,d),n. The proof of Corollary 9.2.18 is thus complete.

9.2.4 Inequalities for entropy quantities in finite dimensional
vector spaces

9.2.4.1 Measures induced by Lebesgue-Borel measures

Lemma 9.2.19. Let (V,~·~) be a normed vector space, let N ∈ N, let b1, b2, . . . , bN ∈ V
be a Hamel-basis of V , let λ : B(RN)→ [0,∞] be the Lebesgue-Borel measure on RN , let
Φ: RN → V satisfy for all r = (r1, r2, . . . , rN) ∈ RN that Φ(r) = r1b1 + r2b2 + . . .+ rNbN ,
and let ν : B(V )→ [0,∞] satisfy for all A ∈ B(V ) that

ν(A) = λ(Φ−1(A)). (9.105)

Then

(i) it holds that Φ is linear,

(ii) it holds for all r = (r1, r2, . . . , rN) ∈ RN that ~Φ(r)~ ≤
[∑N

n=1~bn~2
]1/2[∑N

n=1|rn|2
]1/2

,

(iii) it holds that Φ ∈ C(RN , V ),

(iv) it holds that Φ is bijective,

(v) it holds that (V,B(V ), ν) is a measure space,

(vi) it holds for all r ∈ (0,∞), v ∈ V , A ∈ B(V ) that ν({(ra+ v) ∈ V : a ∈ A}) =
rNν(A),

(vii) it holds for all r ∈ (0,∞) that ν({v ∈ V : ~v~ ≤ r}) = rNν({v ∈ V : ~v~ ≤ 1}),
and

(viii) it holds that ν({v ∈ V : ~v~ ≤ 1}) > 0.

Proof of Lemma 9.2.19. Note that for all r = (r1, r2, . . . , rN), s = (s1, s2, . . . , sN) ∈ RN ,
ρ ∈ R it holds that

Φ(ρr + s) = (ρr1 + s1)b1 + (ρr2 + s2)b2 + · · ·+ (ρrN + sN)bN = ρΦ(r) + Φ(s). (9.106)

This establishes item (i). Next observe that Hölder’s inequality shows that for all r =
(r1, r2, . . . , rN) ∈ RN it holds that

~Φ(r)~ = ~r1b1 + r2b2 + · · ·+ rNbN~ ≤
N∑
n=1

|rn|~bn~ ≤

[
N∑
n=1

~bn~
2

]1/2[ N∑
n=1

|rn|2
]1/2

.

(9.107)
This establishes item (ii). Moreover, note that item (ii) proves item (iii). Furthermore,
observe that the assumption that b1, b2, . . . , bN ∈ V is a Hamel-basis of V establishes
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item (iv). Next note that (9.105) and item (iii) prove item (v). In addition, observe that
the integral transformation theorem shows that for all r ∈ (0,∞), v ∈ RN , A ∈ B(RN) it
holds that

λ
({

(ra+ v) ∈ RN : a ∈ A
})

= λ
({
ra ∈ RN : a ∈ A

})
=

∫
RN
1{ra∈RN : a∈A}(x) dx

=

∫
RN
1A(x

r
) dx = rN

∫
RN
1A(x) dx = rNλ(A).

(9.108)

Combining item (i) and item (iv) hence demonstrates that for all r ∈ (0,∞), v ∈ V ,
A ∈ B(V ) it holds that

ν({(ra+ v) ∈ V : a ∈ A}) = λ
(
Φ−1({(ra+ v) ∈ V : a ∈ A})

)
= λ

({
Φ−1(ra+ v) ∈ RN : a ∈ A

})
= λ

({[
rΦ−1(a) + Φ−1(v)

]
∈ RN : a ∈ A

})
= λ

({[
ra+ Φ−1(v)

]
∈ RN : a ∈ Φ−1(A)

})
= rNλ(Φ−1(A)) = rNν(A).

(9.109)

This establishes item (vi). Hence, we obtain that for all r ∈ (0,∞) it holds that

ν({v ∈ V : ~v~ ≤ r}) = ν({rv ∈ V : ~v~ ≤ 1}) = rNν({v ∈ V : ~v~ ≤ 1}) = rNν(X).
(9.110)

This establishes item (vii). Furthermore, observe that (9.110) demonstrates that

∞ = λ(RN) = ν(V ) = lim sup
r→∞

[
ν({v ∈ V : ~v~ ≤ r})

]
= lim sup

r→∞

[
rNν({v ∈ V : ~v~ ≤ 1})

]
.

(9.111)
Hence, we obtain that ν({v ∈ V : ~v~ ≤ 1}) 6= 0. This establishes item (viii). The proof
of Lemma 9.2.19 is thus complete.

9.2.4.2 Upper bounds for packing radii

Lemma 9.2.20. Let (V,~·~) be a normed vector space, let X = {v ∈ V : ~v~ ≤ 1}, let
d : X × X → [0,∞) satisfy for all v, w ∈ X that d(v, w) = ~v − w~, and let n,N ∈ N
satisfy N = dim(V ). Then

P(X,d),n ≤ 2 (n+ 1)−
1/N . (9.112)

Proof of Lemma 9.2.20. Throughout this proof assume w.l.o.g. that P(X,d),n > 0, let
ρ ∈ [0,P(X,d),n), let λ : B(RN) → [0,∞] be the Lebesgue-Borel measure on RN , let
b1, b2, . . . , bN ∈ V be a Hamel-basis of V , let Φ: RN → V satisfy for all r = (r1, r2, . . . , rN) ∈
RN that

Φ(r) = r1b1 + r2b2 + . . .+ rNbN , (9.113)

and let ν : B(V )→ [0,∞] satisfy for all A ∈ B(V ) that

ν(A) = λ(Φ−1(A)). (9.114)

Observe that Lemma 9.2.13 ensures that ρ < P(X,d),n ≤ 1. Moreover, note that (9.78)
shows that there exist x1, x2, . . . , xn+1 ∈ X which satisfy

mini,j∈{1,2,...,n+1},i 6=j~xi − xj~ = mini,j∈{1,2,...,n+1},i 6=j d(xi, xj) > 2ρ. (9.115)
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Observe that (9.115) ensures that for all i, j ∈ {1, 2, . . . , n+ 1} with i 6= j it holds that

{v ∈ V : ~xi − v~ ≤ ρ} ∩ {v ∈ V : ~xj − v~ ≤ ρ} = ∅. (9.116)

Moreover, note that (9.115) and the fact that ρ < 1 show that for all j ∈ {1, 2, . . . , n+1},
w ∈ {v ∈ X : d(xj, v) ≤ ρ} it holds that

~w~ ≤ ~w − xj~ + ~xj~ ≤ ρ+ 1 ≤ 2. (9.117)

Therefore, we obtain that for all j ∈ {1, 2, . . . , n+ 1} it holds that

{v ∈ V : ~v − xj~ ≤ ρ} ⊆ {v ∈ V : ~v~ ≤ 2}. (9.118)

Next observe that Lemma 9.2.19 ensures that (V,B(V ), ν) is a measure space. Combining
this and (9.116) with (9.118) proves that

n+1∑
j=1

ν({v ∈ V : ~v − xj~ ≤ ρ}) = ν

(
n+1⋃
j=1

{v ∈ V : ~v − xj~ ≤ ρ}

)
≤ ν({v ∈ V : ~v~ ≤ 2}).

(9.119)
Lemma 9.2.19 hence shows that

(n+ 1)ρNν(X) =
n+1∑
j=1

[
ρNν({v ∈ V : ~v~ ≤ 1})

]
=

n+1∑
j=1

ν({v ∈ V : ~v~ ≤ ρ})

=
n+1∑
j=1

ν({v ∈ V : ~v − xj~ ≤ ρ}) ≤ ν({v ∈ V : ~v~ ≤ 2}) = 2Nν({v ∈ V : ~v~ ≤ 1}) = 2Nν(X).

(9.120)

Next observe that Lemma 9.2.19 demonstrates that ν(X) > 0. Combining this with
(9.120) assures that (n+ 1)ρN ≤ 2N . Therefore, we obtain that ρN ≤ (n+ 1)−12N .

Hence, we obtain that ρ ≤ 2(n+ 1)−
1/N . The proof of Lemma 9.2.20 is thus complete.

9.2.4.3 Upper bounds for covering radii

Corollary 9.2.21. Let (V,~·~) be a normed vector space, let X = {v ∈ V : ~v~ ≤ 1},
let d : X ×X → [0,∞) satisfy for all v, w ∈ X that d(v, w) = ~v −w~, and let n,N ∈ N
satisfy N = dim(V ). Then

C(X,d),n ≤ 4 (n+ 1)−
1/N . (9.121)

Proof of Corollary 9.2.21. Observe that Corollary 9.2.18 and Lemma 9.2.20 establish
(9.121). The proof of Corollary 9.2.21 is thus complete.

9.2.4.4 Lower bounds for covering radii

Lemma 9.2.22. Let (V,~·~) be a normed vector space, let X = {v ∈ V : ~v~ ≤ 1}, let
d : X × X → [0,∞) satisfy for all v, w ∈ X that d(v, w) = ~v − w~, and let n,N ∈ N
satisfy N = dim(V ). Then

n−
1/N ≤ C(X,d),n. (9.122)
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Proof of Lemma 9.2.22. Throughout this proof assume w.l.o.g. that C(X,d),n < ∞, let
ρ ∈ (C(X,d),n,∞), let λ : B(RN) → [0,∞] be the Lebesgue-Borel measure on RN , let
b1, b2, . . . , bN ∈ V be a Hamel-basis of V , let Φ: RN → V satisfy for all r = (r1, r2, . . . , rN) ∈
RN that

Φ(r) = r1b1 + r2b2 + . . .+ rNbN , (9.123)

and let ν : B(V )→ [0,∞] satisfy for all A ∈ B(V ) that

ν(A) = λ(Φ−1(A)). (9.124)

The fact that ρ > C(X,d),n demonstrates that there exist x1, x2, . . . , xn ∈ X which satisfy

X ⊆

[
n⋃

m=1

{v ∈ X : d(xm, v) ≤ ρ}

]
. (9.125)

Lemma 9.2.19 hence shows that

ν(X) ≤ ν

(
n⋃

m=1

{v ∈ X : d(xm, v) ≤ ρ}

)
≤

n∑
m=1

ν({v ∈ X : d(xm, v) ≤ ρ})

=
n∑

m=1

[
ρNν({v ∈ X : d(xm, v) ≤ 1})

]
≤ nρNν(X).

(9.126)

This and Lemma 9.2.19 demonstrate that 1 ≤ nρN . Hence, we obtain that ρN ≥ n−1.
This ensures that ρ ≥ n−1/N . The proof of Lemma 9.2.22 is thus complete.

9.2.4.5 Lower and upper bounds for covering radii

Corollary 9.2.23. Let (V,~·~) be a normed vector space, let X = {v ∈ V : ~v~ ≤ 1},
let d : X ×X → [0,∞) satisfy for all v, w ∈ X that d(v, w) = ~v −w~, and let n,N ∈ N
satisfy N = dim(V ). Then

n−
1/N ≤ C(X,d),n ≤ 4 (n+ 1)−

1/N . (9.127)

Proof of Corollary 9.2.23. Observe that Corollary 9.2.21 and Lemma 9.2.22 establish
(9.127). The proof of Corollary 9.2.23 is thus complete.

9.2.4.6 Scaling property for covering radii

Lemma 9.2.24. Let (V,~·~) be a normed vector space, let d : V ×V → [0,∞) satisfy for
all v, w ∈ V that d(v, w) = ~v − w~, let n ∈ N, r ∈ (0,∞), and let X ⊆ V and X ⊆ V
satisfy X = {rv ∈ V : v ∈ X}. Then

C(X,d|X×X),n = r C(X,d|X×X),n. (9.128)

Proof of Lemma 9.2.24. Throughout this proof let Φ: V → V satisfy for all v ∈ V that
Φ(v) = rv. Observe that Exercise 9.2.3 shows that

r C(X,d),n = r
[
infx1,x2,...,xn∈X supv∈X mini∈{1,2,...,n} d(xi, v)

]
= infx1,x2,...,xn∈X supv∈X mini∈{1,2,...,n}~rxi − rv~

= infx1,x2,...,xn∈X supv∈X mini∈{1,2,...,n}~Φ(xi)− Φ(v)~

= infx1,x2,...,xn∈X supv∈X mini∈{1,2,...,n} d(Φ(xi),Φ(v))

= infx1,x2,...,xn∈X supv∈X mini∈{1,2,...,n} d(Φ(xi), v)

= infx1,x2,...,xn∈X supv∈X mini∈{1,2,...,n} d(xi, v) = C(X,d|X×X),n.

(9.129)

This establishes (9.128). The proof of Lemma 9.2.24 is thus complete.
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9.2.4.7 Upper bounds for covering numbers

Proposition 9.2.25. Let (V,~·~) be a normed vector space with dim(V ) <∞, let r, R ∈
(0,∞), X = {v ∈ V : ~v~ ≤ R}, and let d : X ×X → [0,∞) satisfy for all v, w ∈ X that
d(v, w) = ~v − w~. Then

C(X,d),r ≤

{
1 : r ≥ R[

4R
r

]dim(V )
: r < R

(9.130)

(cf. Definition 9.2.6).

Proof of Proposition 9.2.25. Throughout this proof assume w.l.o.g. that dim(V ) > 0,
assume w.l.o.g. that r < R, let d·e : [0,∞)→ [0,∞) satisfy for all x ∈ [0,∞) that

dxe = inf([x,∞) ∩ N), (9.131)

let N ∈ N satisfy N = dim(V ), let n ∈ N satisfy

n =

⌈[
4R

r

]N
− 1

⌉
, (9.132)

let X = {v ∈ V : ~v~ ≤ 1}, and let d : X× X→ [0,∞) satisfy for all v, w ∈ X that

d(v, w) = ~v − w~. (9.133)

Observe that Corollary 9.2.21 proves that

C(X,d),n ≤ 4 (n+ 1)−
1/N . (9.134)

The fact that

n+ 1 =

⌈[
4R

r

]N
− 1

⌉
+ 1 ≥

[[
4R

r

]N
− 1

]
+ 1 =

[
4R

r

]N
(9.135)

therefore ensures that

C(X,d),n ≤ 4 (n+ 1)−
1/N ≤ 4

[[
4R

r

]N]−1/N

= 4

[
4R

r

]−1

=
r

R
. (9.136)

This and Lemma 9.2.24 demonstrate that

C(X,d),n = R C(X,d),n ≤ R
[ r
R

]
= r. (9.137)

Lemma 9.2.15 hence ensures that

C(X,d),r ≤ n ≤
[

4R

r

]N
=

[
4R

r

]dim(V )

. (9.138)

The proof of Proposition 9.2.25 is thus complete.

Dissemination prohibited. July 29, 2021 167



Chapter 9. Generalization error

9.3 Risk minimization

9.3.1 Bias-variance decomposition

Lemma 9.3.1 (Bias-variance decomposition). Let (Ω,F ,P) be a probability space, let
(S,S) be a measurable space, let X : Ω → S and Y : Ω → R be random variables with
E[|Y |2] < ∞, and let E : L2(PX ;R) → [0,∞) satisfy for all f ∈ L2(PX ;R) that E(f) =
E[|f(X)− Y |2]. Then

(i) it holds for all f ∈ L2(PX ;R) that

E(f) = E
[
|f(X)− E[Y |X]|2

]
+ E

[
|Y − E[Y |X]|2

]
, (9.139)

(ii) it holds for all f, g ∈ L2(PX ;R) that

E(f)− E(g) = E
[
|f(X)− E[Y |X]|2

]
− E

[
|g(X)− E[Y |X]|2

]
, (9.140)

and

(iii) it holds for all f, g ∈ L2(PX ;R) that

E
[
|f(X)− E[Y |X]|2

]
= E

[
|g(X)− E[Y |X]|2

]
+
(
E(f)− E(g)

)
. (9.141)

Proof of Lemma 9.3.1. First, observe that the assumption that for all f ∈ L2(PX ;R) it
holds that E(f) = E[|f(X)− Y |2] shows that for all f ∈ L2(PX ;R) it holds that

E(f) = E
[
|f(X)− Y |2

]
= E

[
|(f(X)− E[Y |X]) + (E[Y |X]− Y )|2

]
= E

[
|f(X)− E[Y |X]|2

]
+ 2E

[(
f(X)− E[Y |X]

)(
E[Y |X]− Y

)]
+ E

[
|E[Y |X]− Y |2

]
= E

[
|f(X)− E[Y |X]|2

]
+ 2E

[
E
[(
f(X)− E[Y |X]

)(
E[Y |X]− Y

)∣∣X]]+ E
[
|E[Y |X]− Y |2

]
= E

[
|f(X)− E[Y |X]|2

]
+ 2E

[(
f(X)− E[Y |X]

)
E
[(
E[Y |X]− Y

)∣∣X]]+ E
[
|E[Y |X]− Y |2

]
= E

[
|f(X)− E[Y |X]|2

]
+ 2E

[(
f(X)− E[Y |X]

)(
E[Y |X]− E[Y |X]

)]
+ E

[
|E[Y |X]− Y |2

]
= E

[
|f(X)− E[Y |X]|2

]
+ E

[
|E[Y |X]− Y |2

]
.

(9.142)

This implies that for all f, g ∈ L2(PX ;R) it holds that

E(f)− E(g) = E
[
|f(X)− E[Y |X]|2

]
− E

[
|g(X)− E[Y |X]|2

]
. (9.143)

Hence, we obtain that for all f, g ∈ L2(PX ;R) it holds that

E
[
|f(X)− E[Y |X]|2

]
= E

[
|g(X)− E[Y |X]|2

]
+ E(f)− E(g). (9.144)

Combining this with (9.142) and (9.143) establishes items (i), (ii), and (iii). The proof
of Lemma 9.3.1 is thus complete.

Dissemination prohibited. July 29, 2021 168



Chapter 9. Generalization error

9.3.2 Risk minimization for measurable functions

Proposition 9.3.2. Let (Ω,F ,P) be a probability space, let (S,S) be a measurable space,
let X : Ω→ S and Y : Ω→ R be random variables, assume E[|Y |2] <∞, let E : L2(PX ;R)→
[0,∞) satisfy for all f ∈ L2(PX ;R) that E(f) = E

[
|f(X)− Y |2

]
. Then it holds that{

f ∈ L2(PX ;R) : E(f) = infg∈L2(PX ;R) E(g)
}

=
{
f ∈ L2(PX ;R) : E(f) = E

[
|E[Y |X]− Y |2

]}
= {f ∈ L2(PX ;R) : f(X) = E[Y |X] P-a.s.}.

(9.145)

Proof of Proposition 9.3.2. Note that Lemma 9.3.1 shows that for all g ∈ L2(PX ;R) it
holds that

E(g) = E
[
|g(X)− E[Y |X]|2

]
+ E

[
|E[Y |X]− Y |2

]
. (9.146)

Hence, we obtain that for all g ∈ L2(PX ;R) it holds that

E(g) ≥ E
[
|E[Y |X]− Y |2

]
. (9.147)

Furthermore, note that (9.146) shows that{
f ∈ L2(PX ;R) : E(f) = E

[
|E[Y |X]− Y |2

]}
=
{
f ∈ L2(PX ;R) : E

[
|f(X)− E[Y |X]|2

]
= 0
}

= {f ∈ L2(PX ;R) : f(X) = E[Y |X] P-a.s.}.
(9.148)

Combining this with (9.147) establishes (9.145). The proof of Proposition 9.3.2 is thus
complete.

Proposition 9.3.3. Let (Ω,F ,P) be a probability space, let (S,S) be a measurable space,
let X : Ω → S be a random variable, let M = {(f : S → R) : f is S/B(R)-measurable},
let ϕ ∈ M, let E : M → [0,∞) satisfy for all f ∈ M that E(f) = E

[
|f(X) − ϕ(X)|2

]
.

Then it holds that

{f ∈M : E(f) = infg∈M E(g)} = {f ∈M : E(f) = 0} = {f ∈M : P(f(X) = ϕ(X)) = 1}.
(9.149)

Proof of Proposition 9.3.3. Note that the assumption that for all f ∈ M it holds that
E(f) = E[|f(X)− ϕ(X)|2] implies that E(ϕ) = 0. Hence, we obtain that

inf
g∈M
E(g) = 0. (9.150)

Furthermore, observe that

{f ∈M : E(f) = 0} =
{
f ∈M : E

[
|f(X)− ϕ(X)|2

]
= 0
}

=
{
f ∈M : P

(
{ω ∈ Ω: f(X(ω)) 6= ϕ(X(ω))}

)
= 0
}

=
{
f ∈M : P

(
X−1({x ∈ S : f(x) 6= ϕ(x)})

)
= 0
}

= {f ∈M : PX({x ∈ S : f(x) 6= ϕ(x)}) = 0}.

(9.151)

The proof of Proposition 9.3.3 is thus complete.
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9.3.3 Risk minimization for continuous functions

Proposition 9.3.4. Let (Ω,F ,P) be a probability space, let (E, δ) be a metric space,
let X : Ω → E be a random variable, assume for all x ∈ E, r ∈ (0,∞) that PX({y ∈
E : d(x, y) < r}) > 0, let ϕ ∈ C(E,R), let E : C(E,R) → [0,∞] satisfy for all f ∈
C(E,R) that E(f) = E

[
|f(X)− ϕ(X)|2

]
. Then it holds that

{f ∈ C(E,R) : E(f) = infg∈C(E,R) E(g)} = {f ∈ C(E,R) : E(f) = 0} = {ϕ}. (9.152)

Proof of Proposition 9.3.4. Note that the assumption that for all f ∈ C(E,R) it holds
that E(f) = E[|f(X) − ϕ(X)|2] implies that E(ϕ) = 0. Furthermore, note that the fact
that ϕ ∈ C(E,R) implies that for all f ∈ C(E,R), x ∈ E with f(x) 6= ϕ(x) there exists
r ∈ (0,∞) such that

{y ∈ E : d(x, y) < r} ⊆ {y ∈ E : f(y) 6= ϕ(y)}. (9.153)

Combining this with the assumption that for all x ∈ E, r ∈ (0,∞) it holds that PX({y ∈
E : d(x, y) < r}) > 0 shows that for all f ∈ C(E,R) with f 6= ϕ it holds that

PX({y ∈ E : f(y) 6= ϕ(y)}) > 0. (9.154)

This implies that for all f ∈ C(E,R) with f 6= ϕ it holds that

E(f) = E
[
|f(X)− ϕ(X)|2

]
=

∫
S

|f(x)− ϕ(x)|2 PX(dx) > 0. (9.155)

The proof of Proposition 9.3.4 is thus complete.

9.4 Empirical risk minimization

9.4.1 Measurability properties for suprema

Lemma 9.4.1. Let (E,E ) be a topological space, assume E 6= ∅, let E ⊆ E be an
at most countable set, assume that E is dense in E, let (Ω,F) be a measurable space,
let fx : Ω → R, x ∈ E, be F/B(R)-measurable functions, assume for all ω ∈ Ω that
E 3 x 7→ fx(ω) ∈ R is a continuous function, and let F : Ω → R ∪ {∞} satisfy for all
ω ∈ Ω that F (ω) = supx∈E fx(ω). Then

(i) it holds for all ω ∈ Ω that F (ω) = supx∈E fx(ω) and

(ii) it holds that F is an F/B(R ∪ {∞})-measurable function.

Proof of Lemma 9.4.1. Note that the assumption that E is dense in E implies that for
all g ∈ C(E,R) it holds that

sup
x∈E

g(x) = sup
x∈E

g(x). (9.156)

This and the assumption that for all ω ∈ Ω it holds that E 3 x 7→ fx(ω) ∈ R is a
continuous function show that for all ω ∈ Ω it holds that

F (ω) = sup
x∈E

fx(ω) = sup
x∈E

fx(ω). (9.157)

This establishes item (i). Next note that item (i) and the assumption that for all x ∈ E
it holds that fx : Ω → R is an F/B(R)-measurable function demonstrate item (ii). The
proof of Lemma 9.4.1 is thus complete.
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Lemma 9.4.2. Let (E, δ) be a separable metric space, assume E 6= ∅, let (Ω,F ,P) be
a probability space, let L ∈ R, and let Zx : Ω → R, x ∈ E, be random variables which
satisfy for all x, y ∈ E that E[|Zx|] <∞ and |Zx − Zy| ≤ Lδ(x, y). Then

(i) it holds for all x, y ∈ E, η ∈ Ω that |(Zx(η)−E[Zx])− (Zy(η)−E[Zy])| ≤ 2Lδ(x, y)
and

(ii) it holds that Ω 3 η 7→ supx∈E|Zx(η)−E[Zx]| ∈ [0,∞] is an F/B([0,∞])-measurable
function.

Proof of Lemma 9.4.2. Note that the assumption that for all x, y ∈ E it holds that
|Zx − Zy| ≤ Lδ(x, y) shows that for all x, y ∈ E, η ∈ Ω it holds that

|(Zx(η)− E[Zx])− (Zy(η)− E[Zy])| = |(Zx(η)− Zy(η)) + (E[Zy]− E[Zx])|
≤ |Zx(η)− Zy(η)|+ |E[Zx]− E[Zy]| ≤ Lδ(x, y) + |E[Zx]− E[Zy]|
= Lδ(x, y) + |E[Zx − Zy]| ≤ Lδ(x, y) + E[|Zx − Zy|] ≤ Lδ(x, y) + Lδ(x, y) = 2Lδ(x, y).

(9.158)

This proves item (i). Next observe that item (i) implies that for all η ∈ Ω it holds
that E 3 x 7→ |Zx(η) − E[Zx]| ∈ R is a continuous function. Combining this and the
assumption that E is separable with Lemma 9.4.1 establishes item (ii). The proof of
Lemma 9.4.2 is thus complete.

9.4.2 Concentration inequalities for random fields

Lemma 9.4.3. Let (E, d) be a separable metric space and let F ⊆ E be a set. Then

(F, d|F×F ) (9.159)

is a separable metric space.

Proof of Lemma 9.4.3. Throughout this proof assume w.l.o.g. that F 6= ∅, let e =
(en)n∈N : N → E be a sequence of elements in E such that {en ∈ E : n ∈ N} is dense in
E, and let f = (fn)n∈N : N → F be a sequence of elements in F such that for all n ∈ N
it holds that

d(fn, en) ≤

{
0 : en ∈ F[
infx∈F d(x, en)

]
+ 1

2n
: en /∈ F.

(9.160)

Observe that for all v ∈ F\{em ∈ E : m ∈ N}, n ∈ N it holds that

inf
m∈N

d(v, fm) ≤ inf
m∈N∩[n,∞)

d(v, fm)

≤ inf
m∈N∩[n,∞)

[d(v, em) + d(em, fm)]

≤ inf
m∈N∩[n,∞)

[
d(v, em) +

[
infx∈F d(x, em)

]
+

1

2m

]
≤ inf

m∈N∩[n,∞)

[
2 d(v, em) +

1

2m

]
≤ 2

[
inf

m∈N∩[n,∞)
d(v, em)

]
+

1

2n
=

1

2n
.

(9.161)

Combining this with the fact that for all v ∈ F ∩ {em ∈ E : m ∈ N} it holds that
infm∈N d(v, fm) = 0 ensures that the set {fn ∈ F : n ∈ N} is dense in F . The proof of
Lemma 9.4.3 is thus complete.
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Lemma 9.4.4. Let (E, δ) be a separable metric space, let ε, L ∈ R, N ∈ N, z1, z2, . . . , zN ∈
E satisfy E ⊆

⋃N
i=1{x ∈ E : 2Lδ(x, zi) ≤ ε}, let (Ω,F ,P) be a probability space, and let

Zx : Ω → R, x ∈ E, be random variables which satisfy for all x, y ∈ E that |Zx − Zy| ≤
Lδ(x, y). Then

P(supx∈E|Zx| ≥ ε) ≤
N∑
i=1

P
(
|Zzi | ≥ ε

2

)
(9.162)

(cf. Lemma 9.4.1).

Proof of Lemma 9.4.4. Throughout this proof let B1, B2, . . . , BN ⊆ E satisfy for all i ∈
{1, 2, . . . , N} that Bi = {x ∈ E : 2Lδ(x, zi) ≤ ε}. Observe that the triangle inequality
and the assumption that for all x, y ∈ E it holds that |Zx−Zy| ≤ Lδ(x, y) show that for
all i ∈ {1, 2, . . . , N}, x ∈ Bi it holds that

|Zx| = |Zx − Zzi + Zzi | ≤ |Zx − Zzi |+ |Zzi | ≤ Lδ(x, zi) + |Zzi | ≤ ε
2

+ |Zzi |. (9.163)

Combining this with Lemma 9.4.1 and Lemma 9.4.3 proves that for all i ∈ {1, 2, . . . , N}
it holds that

P
(
supx∈Bi |Zx| ≥ ε

)
≤ P

(
ε
2

+ |Zzi | ≥ ε
)

= P
(
|Zzi| ≥ ε

2

)
. (9.164)

This, Lemma 9.4.1, and Lemma 9.4.3 establish that

P(supx∈E|Zx| ≥ ε) = P
(

supx∈(
⋃N
i=1Bi)

|Zx| ≥ ε
)

= P
(⋃N

i=1

{
supx∈Bi|Zx| ≥ ε

})
≤

N∑
i=1

P
(
supx∈Bi |Zx| ≥ ε

)
≤

N∑
i=1

P
(
|Zzi | ≥ ε

2

)
.

(9.165)

This completes the proof of Lemma 9.4.4.

Lemma 9.4.5. Let (E, δ) be a separable metric space, assume E 6= ∅, let ε, L ∈ (0,∞),
let (Ω,F ,P) be a probability space, and let Zx : Ω→ R, x ∈ E, be random variables which
satisfy for all x, y ∈ E that |Zx − Zy| ≤ Lδ(x, y). Then[

C(E,δ), ε
2L

]−1P(supx∈E|Zx| ≥ ε) ≤ supx∈E P
(
|Zx| ≥ ε

2

)
. (9.166)

(cf. Definition 9.2.6 and Lemma 9.4.1).

Proof of Lemma 9.4.5. Throughout this proof let N ∈ N ∪ {∞} satisfy N = C(E,δ), ε
2L ,

assume without loss of generality that N < ∞, and let z1, z2, . . . , zN ∈ E satisfy
E ⊆

⋃N
i=1{x ∈ E : δ(x, zi) ≤ ε

2L
} (cf. Definition 9.2.6). Observe that Lemma 9.4.1

and Lemma 9.4.4 establish that

P(supx∈E|Zx| ≥ ε) ≤
N∑
i=1

P
(
|Zzi | ≥ ε

2

)
≤ N

[
supx∈E P

(
|Zx| ≥ ε

2

)]
. (9.167)

This completes the proof of Lemma 9.4.5.

Lemma 9.4.6. Let (E, δ) be a separable metric space, assume E 6= ∅, let ε, L ∈ (0,∞),
let (Ω,F ,P) be a probability space, and let Zx : Ω→ R, x ∈ E, be random variables which
satisfy for all x, y ∈ E that E[|Zx|] <∞ and |Zx − Zy| ≤ Lδ(x, y). Then[

C(E,δ), ε
4L

]−1P(supx∈E|Zx − E[Zx]| ≥ ε) ≤ supx∈E P
(
|Zx − E[Zx]| ≥ ε

2

)
. (9.168)

(cf. Definition 9.2.6 and Lemma 9.4.2).
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Proof of Lemma 9.4.6. Throughout this proof let Yx : Ω → R, x ∈ E, satisfy for all
x ∈ E, η ∈ Ω that Yx(η) = Zx(η)−E[Zx]. Observe that Lemma 9.4.2 ensures that for all
x, y ∈ E it holds that

|Yx − Yy| ≤ 2Lδ(x, y). (9.169)

This and Lemma 9.4.5 (applied with (E, δ) x (E, δ), ε x ε, L x 2L, (Ω,F ,P) x
(Ω,F ,P), (Zx)x∈E x (Yx)x∈E in the notation of Lemma 9.4.5) establish (9.168). The
proof of Lemma 9.4.6 is thus complete.

Lemma 9.4.7. Let (E, δ) be a separable metric space, assume E 6= ∅, let M ∈ N,
ε, L,D ∈ (0,∞), let (Ω,F ,P) be a probability space, for every x ∈ E let Yx,1, Yx,2, . . . , Yx,M : Ω→
[0, D] be independent random variables, assume for all x, y ∈ E, m ∈ {1, 2, . . . ,M} that
|Yx,m − Yy,m| ≤ Lδ(x, y), and let Zx : Ω→ [0,∞), x ∈ E, satisfy for all x ∈ E that

Zx =
1

M

[
M∑
m=1

Yx,m

]
. (9.170)

Then

(i) it holds for all x ∈ E that E[|Zx|] ≤ D <∞,

(ii) it holds that Ω 3 η 7→ supx∈E|Zx(η)−E[Zx]| ∈ [0,∞] is an F/B([0,∞])-measurable
function, and

(iii) it holds that

P(supx∈E|Zx − E[Zx]| ≥ ε) ≤ 2C(E,δ), ε
4L exp

(
−ε2M

2D2

)
(9.171)

(cf. Definition 9.2.6).

Proof of Lemma 9.4.7. First, observe that the triangle inequality and the assumption
that for all x, y ∈ E, m ∈ {1, 2, . . . ,M} it holds that |Yx,m − Yy,m| ≤ Lδ(x, y) imply that
for all x, y ∈ E it holds that

|Zx − Zy| =

∣∣∣∣∣ 1

M

[
M∑
m=1

Yx,m

]
− 1

M

[
M∑
m=1

Yy,m

]∣∣∣∣∣ =
1

M

∣∣∣∣∣
M∑
m=1

(
Yx,m − Yy,m

)∣∣∣∣∣
≤ 1

M

[
M∑
m=1

∣∣Yx,m − Yy,m∣∣] ≤ Lδ(x, y).

(9.172)

Next note that the assumption that for all x ∈ E, m ∈ {1, 2, . . . ,M}, ω ∈ Ω it holds that
|Yx,m(ω)| ∈ [0, D] ensures that for all x ∈ E it holds that

E
[
|Zx|

]
= E

[
1

M

[
M∑
m=1

Yx,m

]]
=

1

M

[
M∑
m=1

E
[
Yx,m

]]
≤ D <∞. (9.173)

This proves item (i). Furthermore, note that item (i), (9.172), and Lemma 9.4.2 establish
item (ii). Next observe that (9.170) shows that for all x ∈ E it holds that

|Zx − E[Zx]| =

∣∣∣∣∣ 1

M

[
M∑
m=1

Yx,m

]
− E

[
1

M

[
M∑
m=1

Yx,m

]]∣∣∣∣∣ =
1

M

∣∣∣∣∣
M∑
m=1

(
Yx,m − E

[
Yx,m

])∣∣∣∣∣.
(9.174)
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Combining this with Corollary 9.1.21 (applied with (Ω,F ,P) x (Ω,F ,P), N xM , εx
ε
2
, (a1, a2, . . . , aN) x (0, 0, . . . , 0), (b1, b2, . . . , bN) x (D,D, . . . , D), (Xn)n∈{1,2,...,N} x

(Yx,m)m∈{1,2,...,M} for x ∈ E in the notation of Corollary 9.1.21) ensures that for all x ∈ E
it holds that

P
(
|Zx − E[Zx]| ≥ ε

2

)
≤ 2 exp

(
−2
[
ε
2

]2
M2

MD2

)
= 2 exp

(
−ε2M

2D2

)
. (9.175)

Combining this, (9.172), and (9.173) with Lemma 9.4.6 establishes item (iii). The proof
of Lemma 9.4.7 is thus complete.

9.4.2.1 Uniform estimates for the statistical learning error

Lemma 9.4.8. Let (E, δ) be a separable metric space, assume E 6= ∅, let M ∈ N,
ε, L,D ∈ (0,∞), let (Ω,F ,P) be a probability space, let Xx,m : Ω → R, x ∈ E, m ∈
{1, 2, . . . ,M}, and Ym : Ω → R, m ∈ {1, 2, . . . ,M}, be functions, assume for all x ∈ E
that (Xx,m, Ym), m ∈ {1, 2, . . . ,M}, are i.i.d. random variables, assume for all x, y ∈ E,
m ∈ {1, 2, . . . ,M} that |Xx,m − Xy,m| ≤ Lδ(x, y) and |Xx,m − Ym| ≤ D, let Ex : Ω →
[0,∞), x ∈ E, satisfy for all x ∈ E that

Ex =
1

M

[
M∑
m=1

|Xx,m − Ym|2
]
, (9.176)

and let Ex ∈ [0,∞), x ∈ E, satisfy for all x ∈ E that Ex = E[|Xx,1 − Y1|2]. Then
Ω 3 ω 7→ supx∈E|Ex(ω)− Ex| ∈ [0,∞] is an F/B([0,∞])-measurable function and

P(supx∈E|Ex − Ex| ≥ ε) ≤ 2C(E,δ), ε
8LD exp

(
−ε2M

2D4

)
(9.177)

(cf. Definition 9.2.6).

Proof of Lemma 9.4.8. Throughout this proof let Ex,m : Ω→ [0, D2], x ∈ E, m ∈ {1, 2, . . . ,M},
satisfy for all x ∈ E, m ∈ {1, 2, . . . ,M} that

Ex,m = |Xx,m − Ym|2. (9.178)

Observe that the fact that for all x1, x2, y ∈ R it holds that (x1 − y)2 − (x2 − y)2 =
(x1 − x2)((x1 − y) + (x2 − y)), the assumption that for all x ∈ E, m ∈ {1, 2, . . . ,M} it
holds that |Xx,m−Ym| ≤ D, and the assumption that for all x, y ∈ E, m ∈ {1, 2, . . . ,M}
it holds that |Xx,m −Xy,m| ≤ Lδ(x, y) imply that for all x, y ∈ E, m ∈ {1, 2, . . . ,M} it
holds that

|Ex,m − Ey,m| =
∣∣(Xx,m − Ym)2 − (Xy,m − Ym)2

∣∣ = |Xx,m −Xy,m|
∣∣(Xx,m − Ym) + (Xy,m − Ym)

∣∣
≤ |Xx,m −Xy,m|

(
|Xx,m − Ym|+ |Xy,m − Ym|

)
≤ 2D|Xx,m −Xy,m| ≤ 2LDδ(x, y).

(9.179)

In addition, note that (9.176) and the assumption that for all x ∈ E it holds that
(Xx,m, Ym), m ∈ {1, 2, . . . ,M}, are i.i.d. random variables show that for all x ∈ E it
holds that

E
[
Ex
]

=
1

M

[
M∑
m=1

E
[
|Xx,m − Ym|2

]]
=

1

M

[
M∑
m=1

E
[
|Xx,1 − Y1|2

]]
=

1

M

[
M∑
m=1

Ex

]
= Ex.

(9.180)

Dissemination prohibited. July 29, 2021 174



Chapter 9. Generalization error

Furthermore, observe that the assumption that for all x ∈ E it holds that (Xx,m, Ym),
m ∈ {1, 2, . . . ,M}, are i.i.d. random variables ensures that for all x ∈ E it holds that
Ex,m, m ∈ {1, 2, . . . ,M}, are i.i.d. random variables. Combining this, (9.179), and (9.180)
with Lemma 9.4.7 (applied with (E, δ) x (E, δ), M x M , ε x ε, L x 2LD, D x D2,
(Ω,F ,P) x (Ω,F ,P), (Yx,m)x∈E,m∈{1,2,...,M} x (Ex,m)x∈E,m∈{1,2,...,M}, (Zx)x∈E = (Ex)x∈E
in the notation of Lemma 9.4.7) establishes (9.177). The proof of Lemma 9.4.8 is thus
complete.

Lemma 9.4.9. Let d, d,M ∈ N, R,L,R, ε ∈ (0,∞), let D ⊆ Rd be a compact set, let
(Ω,F ,P) be a probability space, let Xm : Ω → D, m ∈ {1, 2, . . . ,M}, and Ym : Ω → R,
m ∈ {1, 2, . . . ,M}, be functions, assume that (Xm, Ym), m ∈ {1, 2, . . . ,M}, are i.i.d. ran-
dom variables, let H = (Hθ)θ∈[−R,R]d : [−R,R]d → C(D,R) satisfy for all θ, ϑ ∈ [−R,R]d,
x ∈ D that |Hθ(x)−Hϑ(x)| ≤ L‖θ−ϑ‖∞, assume for all θ ∈ [−R,R]d, m ∈ {1, 2, . . . ,M}
that |Hθ(Xm) − Ym| ≤ R and E[|Y1|2] < ∞, let E : C(D,R) → [0,∞) satisfy for all
f ∈ C(D,R) that E(f) = E[|f(X1)− Y1|2], and let E : [−R,R]d × Ω→ [0,∞) satisfy for
all θ ∈ [−R,R]d, ω ∈ Ω that

E(θ, ω) =
1

M

[
M∑
m=1

|Hθ(Xm(ω))− Ym(ω)|2
]

(9.181)

(cf. Definition 3.1.16). Then Ω 3 ω 7→ supθ∈[−R,R]d|E(θ, ω) − E(Hθ)| ∈ [0,∞] is an
F/B([0,∞])-measurable function and

P
(
supθ∈[−R,R]d |E(θ)− E(Hθ)| ≥ ε

)
≤ 2 max

{
1,

[
32LRR

ε

]d}
exp

(
−ε2M

2R4

)
. (9.182)

Proof of Lemma 9.4.9. Throughout this proof let B ⊆ Rd satisfy B = [−R,R]d = {θ ∈
Rd : ‖θ‖∞ ≤ R} and let δ : B ×B → [0,∞) satisfy for all θ, ϑ ∈ B that

δ(θ, ϑ) = ‖θ − ϑ‖∞. (9.183)

Observe that the assumption that (Xm, Ym), m ∈ {1, 2, . . . ,M}, are i.i.d. random vari-
ables and the assumption that for all θ ∈ [−R,R]d it holds that Hθ is a continuous
function imply that for all θ ∈ B it holds that (Hθ(Xm), Ym), m ∈ {1, 2, . . . ,M},
are i.i.d. random variables. Combining this, the assumption that for all θ, ϑ ∈ B,
x ∈ D it holds that |Hθ(x) − Hϑ(x)| ≤ L‖θ − ϑ‖∞, and the assumption that for all
θ ∈ B, m ∈ {1, 2, . . . ,M} it holds that |Hθ(Xm) − Ym| ≤ R with Lemma 9.4.8 (applied
with (E, δ) x (B, δ), M x M , ε x ε, L x L, D x R, (Ω,F ,P) x (Ω,F ,P),
(Xx,m)x∈E,m∈{1,2,...,M} x (Hθ(Xm))θ∈B,m∈{1,2,...,M}, (Ym)m∈{1,2,...,M} x (Ym)m∈{1,2,...,M},
(Ex)x∈E x

(
(Ω 3 ω 7→ E(θ, ω) ∈ [0,∞))

)
θ∈B, (Ex)x∈E x (E(Hθ))θ∈B in the nota-

tion of Lemma 9.4.8) establishes that Ω 3 ω 7→ supθ∈B|E(θ, ω) − E(Hθ)| ∈ [0,∞] is an
F/B([0,∞])-measurable function and

P
(
supθ∈B|E(θ)− E(Hθ)| ≥ ε

)
≤ 2C(B,δ), ε

8LR exp

(
−ε2M

2R4

)
(9.184)

(cf. Definition 9.2.6). Moreover, note that Proposition 9.2.25 (applied with V x Rd,
~·~ x (Rd 3 x 7→ ‖x‖∞ ∈ [0,∞)), r x ε

8LR , R x R, X x B, d x δ in the notation of
Proposition 9.2.25) demonstrates that

C(B,δ), ε
8LR ≤ max

{
1,

[
32LRR

ε

]d}
. (9.185)

This and (9.184) prove (9.182). The proof of Lemma 9.4.9 is thus complete.
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Lemma 9.4.10. Let d,M,L ∈ N, u ∈ R, v ∈ (u,∞), R ∈ [1,∞), ε, b ∈ (0,∞),
l = (l0, l1, . . . , lL) ∈ NL+1 satisfy lL = 1 and

∑L
k=1 lk(lk−1 + 1) ≤ d, let D ⊆ [−b, b]l0 be a

compact set, let (Ω,F ,P) be a probability space, let Xm : Ω → D, m ∈ {1, 2, . . . ,M},
and Ym : Ω → [u, v], m ∈ {1, 2, . . . ,M}, be functions, assume that (Xm, Ym), m ∈
{1, 2, . . . ,M}, are i.i.d. random variables, let E : C(D,R) → [0,∞) satisfy for all f ∈
C(D,R) that E(f) = E[|f(X1) − Y1|2], and let E : [−R,R]d × Ω → [0,∞) satisfy for all
θ ∈ [−R,R]d, ω ∈ Ω that

E(θ, ω) =
1

M

[
M∑
m=1

|N θ,l
u,v (Xm(ω))− Ym(ω)|2

]
(9.186)

(cf. Definitions 2.1.27 and 3.1.16). Then Ω 3 ω 7→ supθ∈[−R,R]d

∣∣E(θ, ω) − E
(
N θ,l
u,v |D

)∣∣ ∈
[0,∞] is an F/B([0,∞])-measurable function and

P
(
supθ∈[−R,R]d

∣∣E(θ)− E
(
N θ,l
u,v |D

)∣∣ ≥ ε
)

≤ 2 max

{
1,

[
32Lmax{1, b}(‖l‖∞ + 1)LRL(v − u)

ε

]d}
exp

(
−ε2M

2(v − u)4

)
.

(9.187)

Proof of Lemma 9.4.10. Throughout this proof let L ∈ (0,∞) satisfy

L = Lmax{1, b} (‖l‖∞ + 1)LRL−1. (9.188)

Observe that Corollary 5.3.7 (applied with ax −b, bx b, ux u, v x v, dx d, Lx L,
l x l in the notation of Corollary 5.3.7) and the assumption that D ⊆ [−b, b]l0 show that
for all θ, ϑ ∈ [−R,R]d it holds that

sup
x∈D
|N θ,l

u,v (x)−N ϑ,l
u,v (x)| ≤ sup

x∈[−b,b]l0
|N θ,l

u,v (x)−N ϑ,l
u,v (x)|

≤ Lmax{1, b} (‖l‖∞ + 1)L (max{1, ‖θ‖∞, ‖ϑ‖∞})L−1‖θ − ϑ‖∞
≤ Lmax{1, b} (‖l‖∞ + 1)LRL−1‖θ − ϑ‖∞ = L‖θ − ϑ‖∞.

(9.189)

Furthermore, observe that the fact that for all θ ∈ Rd, x ∈ Rl0 it holds that N θ,l
u,v (x) ∈

[u, v] and the assumption that for allm ∈ {1, 2, . . . ,M}, ω ∈ Ω it holds that Ym(ω) ∈ [u, v]
demonstrate that for all θ ∈ [−R,R]d, m ∈ {1, 2, . . . ,M} it holds that

|N θ,l
u,v (Xm)− Ym| ≤ v − u. (9.190)

Combining this and (9.189) with Lemma 9.4.9 (applied with d x l0, d x d, M x M ,
R x R, L x L, R x v − u, ε x ε, D x D, (Ω,F ,P) x (Ω,F ,P), (Xm)m∈{1,2,...,M} x
(Xm)m∈{1,2,...,M}, (Ym)m∈{1,2,...,M} x ((Ω 3 ω 7→ Ym(ω) ∈ R))m∈{1,2,...,M}, H x ([−R,R]d 3
θ 7→ N θ,l

u,v |D ∈ C(D,R)), E x E , E x E in the notation of Lemma 9.4.9) establishes

that Ω 3 ω 7→ supθ∈[−R,R]d

∣∣E(θ, ω) − E
(
N θ,l
u,v |D

)∣∣ ∈ [0,∞] is an F/B([0,∞])-measurable
function and

P
(
supθ∈[−R,R]d

∣∣E(θ)− E
(
N θ,l
u,v |D

)∣∣ ≥ ε
)
≤ 2 max

{
1,

[
32LR(v − u)

ε

]d}
exp

(
−ε2M

2(v − u)4

)
.

(9.191)
The proof of Lemma 9.4.10 is thus complete.
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Chapter 10

Analysis of the optimization error

10.1 Convergence rates for the minimum Monte Carlo

method

Lemma 10.1.1. Let (Ω,F ,P) be a probability space, let d, N ∈ N, let ~·~ : Rd → [0,∞)
be a norm, let H ⊆ Rd be a set, let ϑ ∈ H, L, ε ∈ (0,∞), let E : H × Ω → R be a
(B(H) ⊗ F)/B(R)-measurable function, assume for all x, y ∈ H, ω ∈ Ω that |E(x, ω) −
E(y, ω)| ≤ L~x − y~, and let Θn : Ω → H, n ∈ {1, 2, . . . , N}, be i.i.d. random variables.
Then

P
([

minn∈{1,2,...,N} E(Θn)
]
− E(ϑ) > ε

)
≤
[
P
(
~Θ1 − ϑ~ > ε

L

)]N ≤ exp
(
−N P

(
~Θ1 − ϑ~ ≤ ε

L

))
.

(10.1)

Proof of Lemma 10.1.1. Note that the assumption that for all x, y ∈ H, ω ∈ Ω it holds
that |E(x, ω)− E(y, ω)| ≤ L~x− y~ implies that[

minn∈{1,2,...,N} E(Θn)
]
− E(ϑ) = minn∈{1,2,...,N}[E(Θn)− E(ϑ)]

≤ minn∈{1,2,...,N}|E(Θn)− E(ϑ)| ≤ minn∈{1,2,...,N}
[
L~Θn − ϑ~

]
= L

[
minn∈{1,2,...,N}~Θn − ϑ~

]
.

(10.2)

The assumption that Θn, n ∈ {1, 2, . . . , N}, are i.i.d. random variables and the fact that
∀x ∈ R : 1− x ≤ e−x hence show that

P
([

minn∈{1,2,...,N} E(Θn)
]
− E(ϑ) > ε

)
≤ P

(
L
[
minn∈{1,2,...,N}~Θn − ϑ~

]
> ε
)

= P
(
minn∈{1,2,...,N}~Θn − ϑ~ > ε

L

)
=
[
P
(
~Θ1 − ϑ~ > ε

L

)]N
=
[
1− P

(
~Θ1 − ϑ~ ≤ ε

L

)]N ≤ exp
(
−N P

(
~Θ1 − ϑ~ ≤ ε

L

))
.

(10.3)

The proof of Lemma 10.1.1 is thus complete.

10.2 Continuous uniformly distributed samples

Lemma 10.2.1. Let (Ω,F ,P) be a probability space, let d, N ∈ N, a ∈ R, b ∈ (a,∞),
ϑ ∈ [a, b]d, L, ε ∈ (0,∞), let E : [a, b]d × Ω → R be a (B([a, b]d) ⊗ F)/B(R)-measurable
function, assume for all x, y ∈ [a, b]d, ω ∈ Ω that |E(x, ω) − E(y, ω)| ≤ L‖x − y‖∞, let
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Θn : Ω → [a, b]d, n ∈ {1, 2, . . . , N}, be i.i.d. random variables, and assume that Θ1 is
continuous uniformly distributed on [a, b]d (cf. Definition 3.1.16). Then

P
([

minn∈{1,2,...,N} E(Θn)
]
− E(ϑ) > ε

)
≤ exp

(
−N min

{
1,

εd

Ld(b− a)d

})
. (10.4)

Proof of Lemma 10.2.1. Note that the assumption that Θ1 is continuous uniformly dis-
tributed on [a, b]d ensures that

P
(
‖Θ1 − ϑ‖∞ ≤ ε

L

)
≥ P

(
‖Θ1 − (a, a, . . . , a)‖∞ ≤ ε

L

)
= P

(
‖Θ1 − (a, a, . . . , a)‖∞ ≤ min{ ε

L
, b− a}

)
=

[
min{ ε

L
, b− a}

(b− a)

]d
= min

{
1,

[
ε

L (b− a)

]d}
.

(10.5)

Combining this with Lemma 10.1.1 proves (10.4). The proof of Lemma 10.2.1 is thus
complete.
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Chapter 11

Full error analysis for training
algorithms for DNNs

11.1 Overall error decomposition

Lemma 11.1.1. Let (Ω,F ,P) be a probability space, let d,M ∈ N, let D ⊆ Rd be a
compact set, let Xm : Ω → D, m ∈ {1, 2, . . . ,M}, and Ym : Ω → R, m ∈ {1, 2, . . . ,M},
be functions, assume that (Xm, Ym), m ∈ {1, 2, . . . ,M}, are i.i.d. random variables, as-
sume E[|Y1|2] < ∞, let E : C(D,R) → [0,∞) satisfy for all f ∈ C(D,R) that E(f) =
E[|f(X1)− Y1|2], and let E : C(D,R) × Ω → [0,∞) satisfy for all f ∈ C(D,R), ω ∈ Ω
that

E(f, ω) =
1

M

[
M∑
m=1

|f(Xm(ω))− Ym(ω)|2
]
. (11.1)

Then it holds for all f, φ ∈ C(D,R) that

E
[
|f(X1)− E[Y1|X1]|2

]
= E

[
|φ(X1)− E[Y1|X1]|2

]
+ E(f)− E(φ)

≤ E
[
|φ(X1)− E[Y1|X1]|2

]
+
[
E(f)− E(φ)

]
+ 2

[
max
v∈{f,φ}

|E(v)− E(v)|
]
.

(11.2)

Proof of Lemma 11.1.1. Note that Lemma 9.3.1 ensures that for all f, φ ∈ C(D,R) it
holds that

E
[
|f(X1)− E[Y1|X1]|2

]
= E

[
|φ(X1)− E[Y1|X1]|2

]
+ E(f)− E(φ)

= E
[
|φ(X1)− E[Y1|X1]|2

]
+ E(f)− E(f) + E(f)− E(φ) + E(φ)− E(φ)

= E
[
|φ(X1)− E[Y1|X1]|2

]
+
[(
E(f)− E(f)

)
+
(
E(φ)− E(φ)

)]
+
[
E(f)− E(φ)

]
≤ E

[
|φ(X1)− E[Y1|X1]|2

]
+

[ ∑
v∈{f,φ}

|E(v)− E(v)|

]
+
[
E(f)− E(φ)

]
≤ E

[
|φ(X1)− E[Y1|X1]|2

]
+ 2

[
max
v∈{f,φ}

|E(v)− E(v)|
]

+
[
E(f)− E(φ)

]
.

(11.3)

The proof of Lemma 11.1.1 is thus complete.

Lemma 11.1.2. Let (Ω,F ,P) be a probability space, let d, d,M ∈ N, let D ⊆ Rd be a
compact set, let B ⊆ Rd be a set, let H = (Hθ)θ∈B : B → C(D,R) be a function, let
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Xm : Ω → D, m ∈ {1, 2, . . . ,M}, and Ym : Ω → R, m ∈ {1, 2, . . . ,M}, be functions,
assume that (Xm, Ym), m ∈ {1, 2, . . . ,M}, are i.i.d. random variables, assume E[|Y1|2] <
∞, let ϕ : D → R be a B(D)/B(R)-measurable function, assume it holds P-a.s. that
ϕ(X1) = E[Y1|X1], let E : C(D,R) → [0,∞) satisfy for all f ∈ C(D,R) that E(f) =
E[|f(X1)− Y1|2], and let E : B × Ω→ [0,∞) satisfy for all θ ∈ B, ω ∈ Ω that

E(θ, ω) =
1

M

[
M∑
m=1

|Hθ(Xm(ω))− Ym(ω)|2
]
. (11.4)

Then it holds for all θ, ϑ ∈ B that∫
D

|Hθ(x)− ϕ(x)|2 PX1(dx) =

∫
D

|Hϑ(x)− ϕ(x)|2 PX1(dx) + E(Hθ)− E(Hϑ)

≤
∫
D

|Hϑ(x)− ϕ(x)|2 PX1(dx) +
[
E(θ)− E(ϑ)

]
+ 2

[
sup
η∈B
|E(η)− E(Hη)|

]
.

(11.5)

Proof of Lemma 11.1.2. First, observe that Lemma 11.1.1 (applied with (Ω,F ,P) x
(Ω,F ,P), dx d, M xM , D x D, (Xm)m∈{1,2,...,M} x (Xm)m∈{1,2,...,M}, (Ym)m∈{1,2,...,M} x
(Ym)m∈{1,2,...,M}, E x E , E x

(
C(D,R)×Ω 3 (f, ω) 7→ 1

M

[∑M
m=1|f(Xm(ω))−Ym(ω)|2

]
∈

[0,∞)
)

in the notation of Lemma 11.1.1) shows that for all θ, ϑ ∈ B it holds that

E
[
|Hθ(X1)− E[Y1|X1]|2

]
= E

[
|Hϑ(X1)− E[Y1|X1]|2

]
+ E(Hθ)− E(Hϑ)

≤ E
[
|Hϑ(X1)− E[Y1|X1]|2

]
+
[
E(θ)− E(ϑ)

]
+ 2

[
max
η∈{θ,ϑ}

|E(η)− E(Hη)|
]

≤ E
[
|Hϑ(X1)− E[Y1|X1]|2

]
+
[
E(θ)− E(ϑ)

]
+ 2

[
sup
η∈B
|E(η)− E(Hη)|

]
.

(11.6)

In addition, note that the assumption that it holds P-a.s. that ϕ(X1) = E[Y1|X1] ensures
that for all η ∈ B it holds that

E
[
|Hη(X1)− E[Y1|X1]|2

]
= E

[
|Hη(X1)− ϕ(X1)|2

]
=

∫
D

|Hη(x)− ϕ(x)|2 PX1(dx).

(11.7)
Combining this with (11.6) establishes (11.5). The proof of Lemma 11.1.2 is thus com-
plete.

11.2 Analysis of the convergence speed

11.2.1 Convergence rates for convergence in probability

Lemma 11.2.1. Let (Ω,F ,P) be a probability space, let u ∈ R, v ∈ (u,∞), d, L ∈ N,
let l = (l0, l1, . . . , lL) ∈ NL+1 satisfy lL = 1 and

∑L
i=1 li(li−1 + 1) ≤ d, let B ⊆ Rd be

a non-empty compact set, and let X : Ω → Rl0 and Y : Ω → [u, v] be random variables.
Then

(i) it holds for all θ ∈ B, ω ∈ Ω that |N θ,l
u,v (X(ω))− Y (ω)|2 ∈ [0, (v − u)2],

(ii) it holds that B 3 θ 7→ E
[
|N θ,l

u,v (X)− Y |2
]
∈ [0,∞) is continuous, and
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(iii) there exists ϑ ∈ B such that E
[
|N ϑ,l

u,v (X)− Y |2
]

= inf
θ∈B

E
[
|N θ,l

u,v (X)− Y |2
]

(cf. Definition 2.1.27).

Proof of Lemma 11.2.1. First, note that the fact that for all θ ∈ Rd, x ∈ Rl0 it holds
that N θ,l

u,v (x) ∈ [u, v] and the assumption that for all ω ∈ Ω it holds that Y (ω) ∈ [u, v]
demonstrate item (i). Next observe that Corollary 5.3.7 ensures that for all ω ∈ Ω it
holds that B 3 θ 7→ |N θ,l

u,v (X(ω))− Y (ω)|2 ∈ [0,∞) is a continuous function. Combining
this and item (i) with Lebesgue’s dominated convergence theorem establishes item (ii).
Furthermore, note that item (ii) and the assumption that B ⊆ Rd is a non-empty compact
set prove item (iii). The proof of Lemma 11.2.1 is thus complete.

Theorem 11.2.2. Let (Ω,F ,P) be a probability space, let d, d, K,M ∈ N, ε ∈ (0,∞),
L, u ∈ R, v ∈ (u,∞), let D ⊆ Rd be a compact set, assume |D| ≥ 2, let Xm : Ω → D,
m ∈ {1, 2, . . . ,M}, and Ym : Ω → [u, v], m ∈ {1, 2, . . . ,M}, be functions, assume that
(Xm, Ym), m ∈ {1, 2, . . . ,M}, are i.i.d. random variables, let δ : D × D → [0,∞) sat-
isfy for all x = (x1, x2, . . . , xd), y = (y1, y2, . . . , yd) ∈ D that δ(x, y) =

∑d
i=1|xi − yi|,

let ϕ : D → [u, v] satisfy P-a.s. that ϕ(X1) = E[Y1|X1], assume for all x, y ∈ D that
|ϕ(x) − ϕ(y)| ≤ Lδ(x, y), let N ∈ N ∩ [max{2, C(D,δ), ε

4L},∞), let l ∈ N ∩ (N,∞),
let l = (l0, l1, . . . , ll) ∈ Nl+1 satisfy for all i ∈ N ∩ [2, N ], j ∈ N ∩ [N, l) that l0 =
d, l1 ≥ 2dN , li ≥ 2N − 2i + 3, lj ≥ 2, ll = 1, and

∑l
k=1 lk(lk−1 + 1) ≤ d, let

R ∈ [max{1, L, supz∈D‖z‖∞, 2[supz∈D|ϕ(z)|]},∞), let B ⊆ Rd satisfy B = [−R,R]d,
let E : B × Ω→ [0,∞) satisfy for all θ ∈ B, ω ∈ Ω that

E(θ, ω) =
1

M

[
M∑
m=1

|N θ,l
u,v (Xm(ω))− Ym(ω)|2

]
, (11.8)

let Θk : Ω→ B, k ∈ {1, 2, . . . , K}, be i.i.d. random variables, assume that Θ1 is continu-
ous uniformly distributed on B, and let Ξ: Ω→ B satisfy Ξ = Θmin{k∈{1,2,...,K} : E(Θk)=minl∈{1,2,...,K} E(Θl)}
(cf. Definitions 2.1.27, 3.1.16, and 9.2.6). Then

P
(∫

D

|N Ξ,l
u,v (x)− ϕ(x)|2 PX1(dx) > ε2

)
≤ exp

(
−K min

{
1,

ε2d

(16(v − u)l(‖l‖∞ + 1)lRl+1)d

})
+ 2 exp

(
d ln

(
max

{
1,

128l(‖l‖∞ + 1)lRl+1(v − u)

ε2

})
− ε4M

32(v − u)4

)
. (11.9)

Proof of Theorem 11.2.2. Throughout this proof letM⊆ D satisfy |M| = max{2, C(D,δ), ε
4L}

and

4L

[
sup
x∈D

(
inf
y∈M

δ(x, y)

)]
≤ ε, (11.10)

let b ∈ [0,∞) satisfy b = supz∈D‖z‖∞, let E : C(D,R)→ [0,∞) satisfy for all f ∈ C(D,R)
that E(f) = E[|f(X1)− Y1|2], and let ϑ ∈ B satisfy E(N ϑ,l

u,v |D) = infθ∈B E(N θ,l
u,v |D) (cf.

Lemma 11.2.1). Observe that the assumption that for all x, y ∈ D it holds that |ϕ(x)−
ϕ(y)| ≤ Lδ(x, y) implies that ϕ is a B(D)/B([u, v])-measurable function. Lemma 11.1.2
(applied with (Ω,F ,P) x (Ω,F ,P), d x d, d x d, M x M , D x D, B x B, H x
(B 3 θ 7→ N θ,l

u,v |D ∈ C(D,R)), (Xm)m∈{1,2,...,M} x (Xm)m∈{1,2,...,M}, (Ym)m∈{1,2,...,M} x
((Ω 3 ω 7→ Ym(ω) ∈ R))m∈{1,2,...,M}, ϕ x (D 3 x 7→ ϕ(x) ∈ R), E x E , E x E in the
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notation of Lemma 11.1.2) therefore ensures that for all ω ∈ Ω it holds that∫
D

|N Ξ(ω),l
u,v (x)− ϕ(x)|2 PX1(dx)

≤
∫
D

|N ϑ,l
u,v (x)− ϕ(x)|2 PX1(dx)︸ ︷︷ ︸

Approximation error

+
[
E(Ξ(ω), ω)− E(ϑ, ω)

]︸ ︷︷ ︸
Optimization error

+ 2

[
sup
θ∈B
|E(θ, ω)− E(N θ,l

u,v |D)|
]

︸ ︷︷ ︸
Generalization error

.

(11.11)

Next observe that the assumption that N ≥ max{2, C(D,δ), ε
4L} = |M| shows that for all

i ∈ N ∩ [2, N ] it holds that l ≥ |M| + 1, l1 ≥ 2d|M| and li ≥ 2|M| − 2i + 3. The
assumption that for all x, y ∈ D it holds that |ϕ(x) − ϕ(y)| ≤ Lδ(x, y), the assumption
that R ≥ max{1, L, supz∈D‖z‖∞, 2[supz∈D|ϕ(z)|]}, ?? (applied with dx d, d x d, L x l,
L x L, u x u, v x v, D x D, f x ϕ, M x M, l x l in the notation of ??), and
(11.10) hence ensure that there exists η ∈ B which satisfies

sup
x∈D
|N η,l

u,v (x)− ϕ(x)| ≤ 2L

[
sup

x=(x1,x2,...,xd)∈D

(
inf

y=(y1,y2,...,yd)∈M

d∑
i=1

|xi − yi|

)]

= 2L

[
sup
x∈D

(
inf
y∈M

δ(x, y)

)]
≤ ε

2
.

(11.12)

Lemma 11.1.2 (applied with (Ω,F ,P) x (Ω,F ,P), d x d, d x d, M x M , D x D,
B x B, H x (B 3 θ 7→ N θ,l

u,v |D ∈ C(D,R)), (Xm)m∈{1,2,...,M} x (Xm)m∈{1,2,...,M},
(Ym)m∈{1,2,...,M} x ((Ω 3 ω 7→ Ym(ω) ∈ R))m∈{1,2,...,M}, ϕ x (D 3 x 7→ ϕ(x) ∈ R),
E x E , E x E in the notation of Lemma 11.1.2) and the assumption that E(N ϑ,l

u,v |D) =
infθ∈B E(N θ,l

u,v |D) therefore prove that∫
D

|N ϑ,l
u,v (x)− ϕ(x)|2 PX1(dx) =

∫
D

|N η,l
u,v (x)− ϕ|2 PX1(dx) + E(N ϑ,l

u,v |D)− E(N η,l
u,v |D)︸ ︷︷ ︸

≤0

≤
∫
D

|N η,l
u,v (x)− ϕ(x)|2 PX1(dx) ≤ sup

x∈D
|N η,l

u,v (x)− ϕ(x)|2 ≤ ε2

4
.

(11.13)

Combining this with (11.11) shows that for all ω ∈ Ω it holds that∫
D

|N Ξ(ω),l
u,v (x)−ϕ(x)|2 PX1(dx) ≤ ε2

4
+
[
E(Ξ(ω), ω)−E(ϑ, ω)

]
+2

[
sup
θ∈B
|E(θ, ω)−E(N θ,l

u,v |D)|
]
.

(11.14)
Hence, we obtain that

P
(∫

D

|N Ξ,l
u,v (x)− ϕ(x)|2 PX1(dx) > ε2

)
≤ P

([
E(Ξ)− E(ϑ)

]
+ 2

[
sup
θ∈B
|E(θ)− E(N θ,l

u,v |D)|
]
>

3ε2

4

)
≤ P

(
E(Ξ)− E(ϑ) >

ε2

4

)
+ P

(
sup
θ∈B
|E(θ)− E(N θ,l

u,v |D)| > ε2

4

)
. (11.15)

Next observe that Corollary 5.3.7 (applied with a x −b, b x b, u x u, v x v, d x d,
Lx l, l x l in the notation of Corollary 5.3.7) demonstrates that for all θ, ξ ∈ B it holds
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that

sup
x∈D
|N θ,l

u,v (x)−N ξ,l
u,v (x)| ≤ sup

x∈[−b,b]d
|N θ,l

u,v (x)−N ξ,l
u,v (x)|

≤ lmax{1, b}(‖l‖∞ + 1)l(max{1, ‖θ‖∞, ‖ξ‖∞})l−1‖θ − ξ‖∞
≤ lR(‖l‖∞ + 1)lRl−1‖θ − ξ‖∞ = l(‖l‖∞ + 1)lRl‖θ − ξ‖∞.

(11.16)

Combining this with the fact that for all θ ∈ Rd, x ∈ D it holds that N θ,l
u,v (x) ∈ [u, v], the

assumption that for all m ∈ {1, 2, . . . ,M} ω ∈ Ω it holds that Ym(ω) ∈ [u, v], the fact
that for all x1, x2, y ∈ R it holds that (x1−y)2− (x2−y)2 = (x1−x2)((x1−y)+(x2−y)),
and (11.8) ensures that for all θ, ξ ∈ B, ω ∈ Ω it holds that

|E(θ, ω)− E(ξ, ω)|

=

∣∣∣∣∣ 1

M

[
M∑
m=1

|N θ,l
u,v (Xm(ω))− Ym(ω)|2

]
− 1

M

[
M∑
m=1

|N ξ,l
u,v (Xm(ω))− Ym(ω)|2

]∣∣∣∣∣ (11.17)

=
1

M

∣∣∣∣∣
M∑
m=1

((
N θ,l
u,v (Xm(ω))−N ξ,l

u,v (Xm(ω))
)[(

N θ,l
u,v (Xm(ω))− Ym(ω)

)
+
(
N ξ,l
u,v (Xm(ω))− Ym(ω)

)])∣∣∣∣∣
≤ 1

M

[
M∑
m=1

(∣∣N θ,l
u,v (Xm(ω))−N ξ,l

u,v (Xm(ω))
∣∣ [|N θ,l

u,v (Xm(ω))− Ym(ω)|+ |N ξ,l
u,v (Xm(ω))− Ym(ω)|

]︸ ︷︷ ︸
≤2(v−u)

)]

≤ 2(v − u)l(‖l‖∞ + 1)lRl‖θ − ξ‖∞.

Lemma 10.2.1 (applied with (Ω,F ,P) x (Ω,F ,P), d x d, N x K, a x −R, b x R,
ϑx ϑ, Lx 2(v − u)l(‖l‖∞ + 1)lRl, εx ε2

4
, E x E, (Θn)n∈{1,2,...,N} x (Θk)k∈{1,2,...,K} in

the notation of Lemma 10.2.1) therefore shows that

P
(
E(Ξ)− E(ϑ) >

ε2

4

)
= P

([
min

k∈{1,2,...,K}
E(Θk)

]
− E(ϑ) >

ε2

4

)
≤ exp

(
−K min

{
1,

(
ε2

4

)d
[2(v − u)l(‖l‖∞ + 1)lRl]d(2R)d

})
= exp

(
−K min

{
1,

ε2d

(16(v − u)l(‖l‖∞ + 1)lRl+1)d

})
.

(11.18)

Moreover, note that Lemma 9.4.10 (applied with d x d, M xM , Lx l, ux u, v x v,
R x R, ε x ε2

4
, b x b, l x l, D x D, (Ω,F ,P) x (Ω,F ,P), (Xm)m∈{1,2,...,M} x

(Xm)m∈{1,2,...,M}, (Ym)m∈{1,2,...,M} x (Ym)m∈{1,2,...,M}, E x E , E x E in the notation of
Lemma 9.4.10) establishes that

P
(

supθ∈B|E(θ)− E(N θ,l
u,v |D)| ≥ ε2

4

)
≤ 2 max

{
1,

[
128lmax{1, b}(‖l‖∞ + 1)lRl(v − u)

ε2

]d}
exp

(
−ε4M

32(v − u)4

)
≤ 2 max

{
1,

[
128l(‖l‖∞ + 1)lRl+1(v − u)

ε2

]d}
exp

(
−ε4M

32(v − u)4

)
= 2 exp

(
d ln

(
max

{
1,

128l(‖l‖∞ + 1)lRl+1(v − u)

ε2

})
− ε4M

32(v − u)4

)
.

(11.19)
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Combining this and (11.18) with (11.15) proves that

P
(∫

D

|N Ξ,l
u,v (x)− ϕ(x)|2 PX1(dx) > ε2

)
≤ exp

(
−K min

{
1,

ε2d

(16(v − u)l(‖l‖∞ + 1)lRl+1)d

})
+ 2 exp

(
d ln

(
max

{
1,

128l(‖l‖∞ + 1)lRl+1(v − u)

ε2

})
− ε4M

32(v − u)4

)
. (11.20)

The proof of Theorem 11.2.2 is thus complete.

Corollary 11.2.3. Let (Ω,F ,P) be a probability space, let d, d, K,M, τ ∈ N, ε ∈ (0,∞),
L, a, u ∈ R, b ∈ (a,∞), v ∈ (u,∞), R ∈ [max{1, L, |a|, |b|, 2|u|, 2|v|},∞), let Xm : Ω →
[a, b]d, m ∈ {1, 2, . . . ,M}, be i.i.d. random variables, let ϕ : [a, b]d → [u, v] satisfy for all
x, y ∈ [a, b]d that |ϕ(x) − ϕ(y)| ≤ L‖x − y‖2, assume τ ≥ 2d(2dL(b − a)ε−1 + 2)d and
d ≥ τ(d+ 1) + (τ − 3)τ(τ + 1) + τ + 1, let l ∈ Nτ satisfy l = (d, τ, τ, . . . , τ, 1), let B ⊆ Rd

satisfy B = [−R,R]d, let E : B × Ω→ [0,∞) satisfy for all θ ∈ B, ω ∈ Ω that

E(θ, ω) =
1

M

[
M∑
m=1

|N θ,l
u,v (Xm(ω))− ϕ(Xm(ω))|2

]
, (11.21)

let Θk : Ω→ B, k ∈ {1, 2, . . . , K}, be i.i.d. random variables, assume that Θ1 is continu-
ous uniformly distributed on B, and let Ξ: Ω→ B satisfy Ξ = Θmin{k∈{1,2,...,K} : E(Θk)=minl∈{1,2,...,K} E(Θl)}
(cf. Definition 2.1.27). Then

P

([∫
[a,b]d
|N Ξ,l

u,v (x)− ϕ(x)|2 PX1(dx)

]1/2

> ε

)
≤ exp

(
−K min

{
1,

ε2d

(16(v − u)(τ + 1)τRτ )d

})
+ 2 exp

(
d ln

(
max

{
1,

128(τ + 1)τRτ (v − u)

ε2

})
− ε4M

32(v − u)4

)
. (11.22)

Proof of Corollary 11.2.3. Throughout this proof let N ∈ N satisfy

N = min

{
k ∈ N : k ≥ 2dL(b− a)

ε

}
, (11.23)

let M ⊆ [a, b]d satisfy M = {a, a + b−a
N
, . . . , a + (N−1)(b−a)

N
, b}d, let δ : [a, b]d × [a, b]d →

[0,∞) satisfy for all x = (x1, x2, . . . , xd), y = (y1, y2, . . . , yd) ∈ [a, b]d that δ(x, y) =∑d
i=1|xi − yi|, and let l0, l1, . . . , lτ−1 ∈ N satisfy l = (l0, l1, . . . , lτ−1). Observe that for all

x ∈ [a, b] there exists y ∈ {a, a+ b−a
N
, . . . , a+ (N−1)(b−a)

N
, b} such that |x− y| ≤ b−a

2N
. This

demonstrates that

4L

[
sup

x=(x1,x2,...,xd)∈[a,b]d

(
inf

y=(y1,y2,...,yd)∈M

d∑
i=1

|xi − yi|

)]
≤ 2Ld(b− a)

N
≤ ε. (11.24)

Hence, we obtain that
C([a,b]d,δ), ε

4L ≤ |M| = (N + 1)d. (11.25)

Next note that (11.23) implies that N < 2dL(b − a)ε−1 + 1. The assumption that
τ ≥ 2d(2dL(b− a)ε−1 + 2)d therefore ensures that

τ > 2d(N + 1)d ≥ (N + 1)d + 2. (11.26)
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Hence, we obtain that for all i ∈ {2, 3, . . . , (N + 1)d}, j ∈ {(N + 1)d + 1, (N + 1)d +
2, . . . , τ − 2} it holds that

l0 = d, l1 = τ ≥ 2d(N+1)d, lτ−1 = 1, li = τ ≥ 2(N+1)d−2i+3, and lj = τ ≥ 2.
(11.27)

Furthermore, observe that the assumption that for all x, y ∈ [a, b]d it holds that |ϕ(x)−
ϕ(y)| ≤ L‖x− y‖2 implies that for all x, y ∈ [a, b]d it holds that |ϕ(x)−ϕ(y)| ≤ Lδ(x, y).
Combining this, (11.25), (11.26), (11.27), and the assumption that d ≥ τ(d + 1) + (τ −
3)τ(τ + 1) + τ + 1 =

∑τ−1
i=1 li(li−1 + 1) with Theorem 11.2.2 (applied with (Ω,F ,P) x

(Ω,F ,P), d x d, d x d, K x K, M x M , ε x ε, L x L, u x u, v x v, D x [a, b]d,
(Xm)m∈{1,2,...,M} x (Xm)m∈{1,2,...,M}, (Ym)m∈{1,2,...,M} x (ϕ(Xm))m∈{1,2,...,M}, δ x δ, ϕ x
ϕ, N x (N + 1)d, l x τ − 1, l x l, R x R, B x B, E x E, (Θk)k∈{1,2,...,K} x
(Θk)k∈{1,2,...,K}, Ξ x Ξ in the notation of Theorem 11.2.2) establishes that

P

([∫
[a,b]d
|N Ξ,l

u,v (x)− ϕ(x)|2 PX1(dx)

]1/2

> ε

)

≤ exp

(
−K min

{
1,

ε2d

(16(v − u)(τ − 1)(τ + 1)τ−1Rτ )d

})
+ 2 exp

(
d ln

(
max

{
1,

128(τ − 1)(τ + 1)τ−1Rτ (v − u)

ε2

})
− ε4M

32(v − u)4

)
≤ exp

(
−K min

{
1,

ε2d

(16(v − u)(τ + 1)τRτ )d

})
+ 2 exp

(
d ln

(
max

{
1,

128(τ + 1)τRτ (v − u)

ε2

})
− ε4M

32(v − u)4

)
.

(11.28)

The proof of Corollary 11.2.3 is thus complete.

Corollary 11.2.4. Let (Ω,F ,P) be a probability space, let d ∈ N, L, a, u ∈ R, b ∈ (a,∞),
v ∈ (u,∞), R ∈ [max{1, L, |a|, |b|, 2|u|, 2|v|},∞), let Xm : Ω → [a, b]d, m ∈ N, be i.i.d.
random variables, let ϕ : [a, b]d → [u, v] satisfy for all x, y ∈ [a, b]d that |ϕ(x) − ϕ(y)| ≤
L‖x − y‖2, let lτ ∈ Nτ , τ ∈ N, satisfy for all τ ∈ N ∩ [3,∞) that lτ = (d, τ, τ, . . . , τ, 1),
let Ed,M,τ : [−R,R]d × Ω→ [0,∞), d,M, τ ∈ N, satisfy for all d,M ∈ N, τ ∈ N ∩ [3,∞),
θ ∈ [−R,R]d, ω ∈ Ω with d ≥ τ(d+ 1) + (τ − 3)τ(τ + 1) + τ + 1 that

Ed,M,τ (θ, ω) =
1

M

[
M∑
m=1

|N θ,lτ
u,v (Xm(ω))− ϕ(Xm(ω))|2

]
, (11.29)

for every d ∈ N let Θd,k : Ω → [−R,R]d, k ∈ N, be i.i.d. random variables, assume for
all d ∈ N that Θd,1 is continuous uniformly distributed on [−R,R]d, and let Ξd,K,M,τ : Ω→
[−R,R]d, d, K,M, τ ∈ N, satisfy for all d, K,M, τ ∈ N that Ξd,K,M,τ = Θd,min{k∈{1,2,...,K} : Ed,M,τ (Θd,k)=minl∈{1,2,...,K} Ed,M,τ (Θd,l)}
(cf. Definition 2.1.27). Then there exists c ∈ (0,∞) such that for all d, K,M, τ ∈ N,
ε ∈ (0,

√
v − u] with τ ≥ 2d(2dL(b−a)ε−1 +2)d and d ≥ τ(d+1)+(τ −3)τ(τ +1)+ τ +1

it holds that

P

([∫
[a,b]d
|N Ξd,K,M,τ ,lτ

u,v (x)− ϕ(x)|2 PX1(dx)

]1/2

> ε

)
≤ exp

(
−K(cτ)−τdε2d

)
+ 2 exp

(
d ln
(
(cτ)τε−2

)
− c−1ε4M

)
.

(11.30)
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Proof of Corollary 11.2.4. Throughout this proof let c ∈ (0,∞) satisfy

c = max{32(v − u)4, 256(v − u+ 1)R}. (11.31)

Note that Corollary 11.2.3 establishes that for all d, K,M, τ ∈ N, ε ∈ (0,∞) with τ ≥
2d(2dL(b− a)ε−1 + 2)d and d ≥ τ(d+ 1) + (τ − 3)τ(τ + 1) + τ + 1 it holds that

P

([∫
[a,b]d
|N Ξd,K,M,τ ,lτ

u,v (x)− ϕ(x)|2 PX1(dx)

]1/2

> ε

)
≤ exp

(
−K min

{
1,

ε2d

(16(v − u)(τ + 1)τRτ )d

})
+ 2 exp

(
d ln

(
max

{
1,

128(τ + 1)τRτ (v − u)

ε2

})
− ε4M

32(v − u)4

)
. (11.32)

Next observe that (11.31) ensures that for all τ ∈ N it holds that

16(v − u)(τ + 1)τRτ ≤ (16(v − u+ 1)(τ + 1)R)τ ≤ (32(v − u+ 1)Rτ)τ ≤ (cτ)τ . (11.33)

The fact that for all ε ∈ (0,
√
v − u], τ ∈ N it holds that ε2 ≤ 16(v − u)(τ + 1)τRτ

therefore shows that for all ε ∈ (0,
√
v − u], τ ∈ N it holds that

−min

{
1,

ε2d

(16(v − u)(τ + 1)τRτ )d

}
=

−ε2d

(16(v − u)(τ + 1)τRτ )d
≤ −ε

2d

(cτ)τd
. (11.34)

Furthermore, note that (11.31) implies that for all τ ∈ N it holds that

128(τ + 1)τRτ (v − u) ≤ 128(2τ)τRτ (v − u) ≤ (256Rτ(v − u+ 1))τ ≤ (cτ)τ . (11.35)

The fact that for all ε ∈ (0,
√
v − u], τ ∈ N it holds that ε2 ≤ 128(τ + 1)τRτ (v−u) hence

proves that for all ε ∈ (0,
√
v − u], τ ∈ N it holds that

ln

(
max

{
1,

128(τ + 1)τRτ (v − u)

ε2

})
= ln

(
128(τ + 1)τRτ (v − u)

ε2

)
≤ ln

(
(cτ)τ

ε2

)
(11.36)

In addition, observe that (11.31) ensures that

−1

32(v − u)4
≤ −1

c
. (11.37)

Combining this, (11.34), and (11.36) with (11.32) proves that for all d, K,M, τ ∈ N,
ε ∈ (0,

√
v − u] with τ ≥ 2d(2dL(b− a)ε−1 +2)d and d ≥ τ(d+1)+(τ−3)τ(τ +1)+τ +1

it holds that

P

([∫
[u,v]d
|N Ξd,K,M,τ ,lτ

u,v (x)− ϕ(x)|2 PX1(dx)

]1/2

> ε

)

≤ exp

(
−Kε2d

(cτ)τd

)
+ 2 exp

(
d ln

(
(cτ)τ

ε2

)
− ε4M

c

)
.

(11.38)

The proof of Corollary 11.2.4 is thus complete.

Corollary 11.2.5. Let (Ω,F ,P) be a probability space, let d ∈ N, L, a, u ∈ R, b ∈ (a,∞),
v ∈ (u,∞), R ∈ [max{1, L, |a|, |b|, 2|u|, 2|v|},∞), let Xm : Ω → [a, b]d, m ∈ N, be i.i.d.
random variables, let ϕ : [a, b]d → [u, v] satisfy for all x, y ∈ [a, b]d that |ϕ(x) − ϕ(y)| ≤
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L‖x − y‖2, let lτ ∈ Nτ , τ ∈ N, satisfy for all τ ∈ N ∩ [3,∞) that lτ = (d, τ, τ, . . . , τ, 1),
let Ed,M,τ : [−R,R]d × Ω→ [0,∞), d,M, τ ∈ N, satisfy for all d,M ∈ N, τ ∈ N ∩ [3,∞),
θ ∈ [−R,R]d, ω ∈ Ω with d ≥ τ(d+ 1) + (τ − 3)τ(τ + 1) + τ + 1 that

Ed,M,τ (θ, ω) =
1

M

[
M∑
m=1

|N θ,lτ
u,v (Xm(ω))− ϕ(Xm(ω))|2

]
, (11.39)

for every d ∈ N let Θd,k : Ω → [−R,R]d, k ∈ N, be i.i.d. random variables, assume for
all d ∈ N that Θd,1 is continuous uniformly distributed on [−R,R]d, and let Ξd,K,M,τ : Ω→
[−R,R]d, d, K,M, τ ∈ N, satisfy for all d, K,M, τ ∈ N that Ξd,K,M,τ = Θd,min{k∈{1,2,...,K} : Ed,M,τ (Θd,k)=minl∈{1,2,...,K} Ed,M,τ (Θd,l)}
(cf. Definition 2.1.27). Then there exists c ∈ (0,∞) such that for all d, K,M, τ ∈ N,
ε ∈ (0,

√
v − u] with τ ≥ 2d(2dL(b−a)ε−1 +2)d and d ≥ τ(d+1)+(τ −3)τ(τ +1)+ τ +1

it holds that

P
(∫

[a,b]d
|N Ξd,K,M,τ ,lτ

u,v (x)− ϕ(x)|PX1(dx) > ε

)
≤ exp

(
−K(cτ)−τdε2d

)
+ 2 exp

(
d ln
(
(cτ)τε−2

)
− c−1ε4M

)
.

(11.40)

Proof of Corollary 11.2.5. Note that Jensen’s inequality shows that for all f ∈ C([a, b]d,R)
it holds that ∫

[a,b]d
|f(x)|PX1(dx) ≤

[∫
[a,b]d
|f(x)|2 PX1(dx)

] 1
2

. (11.41)

Combining this with Corollary 11.2.4 proves (11.40). The proof of Corollary 11.2.5 is
thus complete.

11.2.2 Convergence rates for strong convergence

Lemma 11.2.6. Let (Ω,F ,P) be a probability space, let c ∈ [0,∞), and let X : Ω →
[−c, c] be a random variable. Then it holds for all ε, p ∈ (0,∞) that

E[|X|p] ≤ εp P(|X| ≤ ε) + cp P(|X| > ε) ≤ εp + cp P(|X| > ε). (11.42)

Proof of Lemma 11.2.6. Observe that the assumption that for all ω ∈ Ω it holds that
|X(ω)| ≤ c ensures that for all ε, p ∈ (0,∞) it holds that

E[|X|p] = E
[
|X|p1{|X|≤ε}

]
+E
[
|X|p1{|X|>ε}

]
≤ εp P(|X| ≤ ε)+cp P(|X| > ε) ≤ εp+cp P(|X| > ε).

(11.43)
The proof of Lemma 11.2.6 is thus complete.

Corollary 11.2.7. Let (Ω,F ,P) be a probability space, let d ∈ N, L, a, u ∈ R, b ∈ (a,∞),
v ∈ (u,∞), R ∈ [max{1, L, |a|, |b|, 2|u|, 2|v|},∞), let Xm : Ω → [a, b]d, m ∈ N, be i.i.d.
random variables, let ϕ : [a, b]d → [u, v] satisfy for all x, y ∈ [a, b]d that |ϕ(x) − ϕ(y)| ≤
L‖x − y‖2, let lτ ∈ Nτ , τ ∈ N, satisfy for all τ ∈ N ∩ [3,∞) that lτ = (d, τ, τ, . . . , τ, 1),
let Ed,M,τ : [−R,R]d × Ω→ [0,∞), d,M, τ ∈ N, satisfy for all d,M ∈ N, τ ∈ N ∩ [3,∞),
θ ∈ [−R,R]d, ω ∈ Ω with d ≥ τ(d+ 1) + (τ − 3)τ(τ + 1) + τ + 1 that

Ed,M,τ (θ, ω) =
1

M

[
M∑
m=1

|N θ,lτ
u,v (Xm(ω))− ϕ(Xm(ω))|2

]
, (11.44)
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for every d ∈ N let Θd,k : Ω → [−R,R]d, k ∈ N, be i.i.d. random variables, assume for
all d ∈ N that Θd,1 is continuous uniformly distributed on [−R,R]d, and let Ξd,K,M,τ : Ω→
[−R,R]d, d, K,M, τ ∈ N, satisfy for all d, K,M, τ ∈ N that Ξd,K,M,τ = Θd,min{k∈{1,2,...,K} : Ed,M,τ (Θd,k)=minl∈{1,2,...,K} Ed,M,τ (Θd,l)}
(cf. Definition 2.1.27). Then there exists c ∈ (0,∞) such that for all d, K,M, τ ∈ N,
p ∈ [1,∞), ε ∈ (0,

√
v − u] with τ ≥ 2d(2dL(b − a)ε−1 + 2)d and d ≥ τ(d + 1) + (τ −

3)τ(τ + 1) + τ + 1 it holds that(
E

[(∫
[a,b]d
|N Ξd,K,M,τ ,lτ

u,v (x)− ϕ(x)|2 PX1(dx)

)p/2])1/p

≤ (v − u)
[
exp
(
−K(cτ)−τdε2d

)
+ 2 exp

(
d ln
(
(cτ)τε−2

)
− c−1ε4M

)]1/p
+ ε.

(11.45)

Proof of Corollary 11.2.7. First, observe that Corollary 11.2.4 ensures that there exists
c ∈ (0,∞) which satisfies for all d, K,M, τ ∈ N, ε ∈ (0,

√
v − u] with τ ≥ 2d(2dL(b− a)ε−1+

2)d and d ≥ τ(d+ 1) + (τ − 3)τ(τ + 1) + τ + 1 that

P

([∫
[a,b]d
|N Ξd,K,M,τ ,lτ

u,v (x)− ϕ(x)|2 PX1(dx)

]1/2

> ε

)
≤ exp

(
−K(cτ)−τdε2d

)
+ 2 exp

(
d ln
(
(cτ)τε−2

)
− c−1ε4M

)
.

(11.46)

Lemma 11.2.6 (applied with (Ω,F ,P) x (Ω,F ,P), c x v − u, X x (Ω 3 ω 7→[∫
[a,b]d
|N Ξd,K,M,τ (ω),lτ

u,v (x)−ϕ(x)|2 PX1(dx)
]1/2 ∈ [u−v, v−u]) in the notation of Lemma 11.2.6)

hence ensures that for all d, K,M, τ ∈ N, ε ∈ (0,
√
v − u], p ∈ (0,∞) with τ ≥

2d(2dL(b− a)ε−1 + 2)d and d ≥ τ(d+ 1) + (τ − 3)τ(τ + 1) + τ + 1 it holds that

E

[(∫
[a,b]d
|N Ξd,K,M,τ ,lτ

u,v (x)− ϕ(x)|2 PX1(dx)

)p/2]
≤ εp + (v − u)p

[
exp
(
−K(cτ)−τdε2d

)
+ 2 exp

(
d ln
(
(cτ)τε−2

)
− c−1ε4M

)]
.

(11.47)

The fact that for all p ∈ [1,∞), x, y ∈ [0,∞) it holds that (x+y)1/p ≤ x1/p +y1/p therefore
establishes (11.45). The proof of Corollary 11.2.7 is thus complete.
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Chapter 12

Machine learning for partial
differential equations (PDEs)

12.1 Linear heat PDEs

This section is a modified extract from the article Beck et al. [1].

12.1.1 Stochastic optimization problems for expectations of ran-
dom variables

Lemma 12.1.1. Let (Ω,F ,P) be a probability space and let X : Ω → R be a random
variable which satisfies E[|X|2] <∞. Then

(i) it holds for every y ∈ R that

E
[
|X − y|2

]
= E

[
|X − E[X]|2

]
+ |E[X]− y|2, (12.1)

(ii) it holds that there exists a unique real number z ∈ R such that

E
[
|X − z|2

]
= inf

y∈R
E
[
|X − y|2

]
, (12.2)

and

(iii) it holds that
E
[
|X − E[X]|2

]
= inf

y∈R
E
[
|X − y|2

]
. (12.3)

Proof of Lemma 12.1.1. Observe that the fact that E[|X|] < ∞ ensures that for every
y ∈ R it holds that

E
[
|X − y|2

]
= E

[
|X − E[X] + E[X]− y|2

]
= E

[
|X − E[X]|2 + 2(X − E[X])(E[X]− y) + |E[X]− y|2

]
= E

[
|X − E[X]|2

]
+ 2(E[X]− y)E

[
X − E[X]

]
+ |E[X]− y|2

= E
[
|X − E[X]|2

]
+ |E[X]− y|2.

(12.4)

This establishes item (i). Items (ii) and (iii) are immediate consequences of item (i). The
proof of Lemma 12.1.1 is thus complete.
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12.1.2 Stochastic optimization problems for expectations of ran-
dom fields

Proposition 12.1.2. Let d ∈ N, a ∈ R, b ∈ (a,∞), let (Ω,F ,P) be a probability space,
let X = (Xx)x∈[a,b]d : [a, b]d × Ω → R be a (B([a, b]d) ⊗ F)/B(R)-measurable function,
assume for every x ∈ [a, b]d that E[|Xx|2] < ∞, and assume that the function [a, b]d 3
x 7→ E[Xx] ∈ R is continuous. Then

(i) it holds that there exists a unique continuous function u : [a, b]d → R such that∫
[a,b]d

E
[
|Xx − u(x)|2

]
dx = inf

v∈C([a,b]d,R)

(∫
[a,b]d

E
[
|Xx − v(x)|2

]
dx

)
(12.5)

and

(ii) it holds for every x ∈ [a, b]d that u(x) = E[Xx].

Proof of Proposition 12.1.2. Note that item (i) in Lemma 12.1.1 and the assumption
that ∀x ∈ [a, b]d : E[|Xx|2] < ∞ ensure that for every function u : [a, b]d → R and every
x ∈ [a, b]d it holds that

E
[
|Xx − u(x)|2

]
= E

[
|Xx − E[Xx]|2

]
+ |E[Xx]− u(x)|2. (12.6)

Fubini’s theorem (see, e.g., Klenke [19, Theorem 14.16]) hence proves that for every
continuous function u : [a, b]d → R it holds that∫

[a,b]d
E
[
|Xx− u(x)|2

]
dx =

∫
[a,b]d

E
[
|Xx−E[Xx]|2

]
dx+

∫
[a,b]d
|E[Xx]− u(x)|2 dx. (12.7)

The assumption that the function [a, b]d 3 x 7→ E[Xx] ∈ R is continuous therefore
demonstrates that∫

[a,b]d
E
[
|Xx − E[Xx]|2

]
dx

≥ inf
v∈C([a,b]d,R)

(∫
[a,b]d

E
[
|Xx − v(x)|2

]
dx

)
= inf

v∈C([a,b]d,R)

(∫
[a,b]d

E
[
|Xx − E[Xx]|2

]
dx+

∫
[a,b]d
|E[Xx]− v(x)|2 dx

)
≥ inf

v∈C([a,b]d,R)

(∫
[a,b]d

E
[
|Xx − E[Xx]|2

]
dx

)
=

∫
[a,b]d

E
[
|Xx − E[Xx]|2

]
dx.

(12.8)

Hence, we obtain that∫
[a,b]d

E
[
|Xx − E[Xx]|2

]
dx = inf

v∈C([a,b]d,R)

(∫
[a,b]d

E
[
|Xx − v(x)|2

]
dx

)
. (12.9)

Again the fact that the function [a, b]d 3 x 7→ E[Xx] ∈ R is continuous therefore proves
that there exists a continuous function u : [a, b]d → R such that∫

[a,b]d
E
[
|Xx − u(x)|2

]
dx = inf

v∈C([a,b]d,R)

(∫
[a,b]d

E
[
|Xx − v(x)|2

]
dx

)
. (12.10)
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Next observe that (12.7) and (12.9) yield that for every continuous function u : [a, b]d → R
with ∫

[a,b]d
E
[
|Xx − u(x)|2

]
dx = inf

v∈C([a,b]d,R)

(∫
[a,b]d

E
[
|Xx − v(x)|2

]
dx

)
(12.11)

it holds that∫
[a,b]d

E
[
|Xx − E[Xx]|2

]
dx

= inf
v∈C([a,b]d,R)

(∫
[a,b]d

E
[
|Xx − v(x)|2

]
dx

)
=

∫
[a,b]d]

E
[
|Xx − u(x)|2

]
dx

=

∫
[a,b]d

E
[
|Xx − E[Xx]|2

]
dx+

∫
[a,b]d
|E[Xx]− u(x)|2 dx.

(12.12)

Hence, we obtain that for every continuous function u : [a, b]d → R with∫
[a,b]d

E
[
|Xx − u(x)|2

]
dx = inf

v∈C([a,b]d,R)

(∫
[a,b]d

E
[
|Xx − v(x)|2

]
dx

)
(12.13)

it holds that ∫
[a,b]d
|E[Xx]− u(x)|2 dx = 0. (12.14)

This and the assumption that the function [a, b]d 3 x 7→ E[Xx] ∈ R is continuous yield
that for every continuous function u : [a, b]d → R with∫

[a,b]d
E
[
|Xx − u(x)|2

]
dx = inf

v∈C([a,b]d,R)

(∫
[a,b]d

E
[
|Xx − v(x)|2

]
dx

)
(12.15)

and every x ∈ [a, b]d it holds that u(x) = E[Xx]. Combining this with (12.10) completes
the proof of Proposition 12.1.2.

12.1.3 Feynman–Kac formulas

12.1.3.1 Feynman–Kac formulas providing existence of solutions

Proposition 12.1.3. Let T ∈ (0,∞), d,m ∈ N, B ∈ Rd×m, ϕ ∈ C2(Rd,R) satisfy
supx∈Rd

[∑d
i,j=1(|ϕ(x)| + |( ∂

∂xi
ϕ)(x)| + |( ∂2

∂xi∂xj
ϕ)(x)|)

]
<∞, let (Ω,F ,P) be a probability

space, let Z : Ω→ Rm be a standard normal random variable, and let u : [0, T ]×Rd → R
satisfy for all t ∈ [0, T ], x ∈ Rd that

u(t, x) = E
[
ϕ(x+

√
tBZ)

]
. (12.16)

Then

(i) it holds that u ∈ C1,2([0, T ]× Rd,R) and

(ii) it holds for all t ∈ [0, T ], x ∈ Rd that

(∂u
∂t

)(t, x) = 1
2

Trace
(
BB∗(Hessx u)(t, x)

)
(12.17)
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(cf. Definition 2.2.29).

Proof of Proposition 12.1.3. Throughout this proof let e1 = (1, 0, . . . , 0), e2 = (0, 1, . . . , 0), . . . , em =
(0, . . . , 0, 1) ∈ Rm, let 〈·, ·〉 : (∪k∈N(Rk×Rk))→ R satisfy for all k ∈ N, x = (x1, x2, . . . , xk), y =
(y1, y2, . . . , yk) ∈ Rk that 〈x, y〉 =

∑k
i=1 xiyi, and let ψt,x = (ψt,x(y))y∈Rm : Rm →

R, t ∈ [0, T ], x ∈ Rd, satisfy for all t ∈ [0, T ], x ∈ Rd, y ∈ Rm that ψt,x(y) =
ϕ(x +

√
tBy). Note that the assumption that ϕ ∈ C2(Rd,R), the assumption that

supx∈Rd [
∑d

i,j=1(|ϕ(x)|+ |( ∂
∂xi
ϕ)(x)|+ |( ∂2

∂xi∂xj
ϕ)(x)|)] <∞, the chain rule, and Lebesgue’s

dominated convergence theorem ensure that

(I) for all x ∈ Rd it holds that (0, T ] 3 t 7→ u(t, x) ∈ R is differentiable,

(II) for all t ∈ [0, T ] it holds that Rd 3 x 7→ u(t, x) ∈ R is twice differentiable,

(III) for all t ∈ (0, T ], x ∈ Rd it holds that

(∂u
∂t

)(t, x) = E
[〈

(∇ϕ)(x+
√
tBZ), 1

2
√
t
BZ
〉]
, (12.18)

and

(IV) for all t ∈ [0, T ], x ∈ Rd it holds that

(Hessx u)(t, x) = E
[
(Hessϕ)(x+

√
tBZ)

]
. (12.19)

Observe that items (III) and (IV), the assumption that ϕ ∈ C2(Rd,R), the assumption
that supx∈Rd

[∑d
i,j=1(|ϕ(x)|+ |( ∂

∂xi
ϕ)(x)|+ |( ∂2

∂xi∂xj
ϕ)(x)|)

]
<∞, the fact that E

[
‖Z‖2

]
<

∞, and Lebesgue’s dominated convergence theorem prove that (0, T ] × Rd 3 (t, x) 7→
(∂u
∂t

)(t, x) ∈ R and [0, T ] × Rd 3 (t, x) 7→ (Hessx u)(t, x) ∈ Rd×d are continuous (cf.
Definition 3.1.16). Next note that item (IV) and the fact that for allX ∈ Rm×d, Y ∈ Rd×m

it holds that Trace(XY ) = Trace(Y X) imply that for all t ∈ (0, T ], x ∈ Rd it holds that

1
2

Trace
(
BB∗(Hessx u)(t, x)

)
= E

[
1
2

Trace
(
BB∗(Hessϕ)(x+

√
tBZ)

)]
= 1

2
E
[
Trace

(
B∗(Hessϕ)(x+

√
tBZ)B

)]
= 1

2
E
[
m∑
k=1

〈ek, B∗(Hessϕ)(x+
√
tBZ)Bek〉

]
= 1

2
E
[
m∑
k=1

〈Bek, (Hessϕ)(x+
√
tBZ)Bek〉

]
= 1

2
E
[
m∑
k=1

ϕ′′(x+
√
tBZ)(Bek, Bek)

]
= 1

2t
E
[
m∑
k=1

(ψt,x)
′′(Z)(ek, ek)

]
= 1

2t
E
[
m∑
k=1

( ∂2

∂y2
k
ψt,x)(Z)

]
= 1

2t
E[(∆ψt,x)(Z)]

(12.20)

(cf. Definition 2.2.29). The assumption that Z : Ω → Rm is a standard normal random
variable and integration by parts hence ensure that for all t ∈ (0, T ], x ∈ Rd it holds that

1
2

Trace
(
BB∗(Hessx u)(t, x)

)
=

1

2t

∫
Rm

(∆ψt,x)(y)

[
exp(− 〈y,y〉

2
)

(2π)m/2

]
dy =

1

2t

∫
Rm
〈(∇ψt,x)(y), y〉

[
exp(− 〈y,y〉

2
)

(2π)m/2

]
dy

=
1

2
√
t

∫
Rm

〈
B∗(∇ϕ)(x+

√
tBy), y

〉[exp(− 〈y,y〉
2

)

(2π)m/2

]
dy

=
1

2
√
t
E
[
〈B∗(∇ϕ)(x+

√
tBZ), Z〉

]
= E

[
〈(∇ϕ)(x+

√
tBZ), 1

2
√
t
BZ〉

]
.

(12.21)
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Item (III) therefore proves that for all t ∈ (0, T ], x ∈ Rd it holds that

(∂u
∂t

)(t, x) = 1
2

Trace
(
BB∗(Hessx u)(t, x)

)
. (12.22)

The fundamental theorem of calculus hence implies that for all t, s ∈ (0, T ], x ∈ Rd it
holds that

u(t, x)− u(s, x) =

∫ t

s

(∂u
∂t

)(r, x) dr =

∫ t

s

1
2

Trace
(
BB∗(Hessx u)(r, x)

)
dr. (12.23)

The fact that [0, T ]×Rd 3 (t, x) 7→ (Hessx u)(t, x) ∈ Rd×d is continuous therefore ensures
for all t ∈ (0, T ], x ∈ Rd that

u(t, x)− u(0, x)

t
= lim

s↘0

[
u(t, x)− u(s, x)

t

]
=

1

t

∫ t

0

1
2

Trace
(
BB∗(Hessx u)(r, x)

)
dr.

(12.24)
This and the fact that [0, T ] × Rd 3 (t, x) 7→ (Hessx u)(t, x) ∈ Rd×d is continuous imply
that for all x ∈ Rd it holds that

lim sup
t↘0

∣∣∣∣u(t, x)− u(0, x)

t
− 1

2
Trace

(
BB∗(Hessx u)(0, x)

)∣∣∣∣
≤ lim sup

t↘0

[
1

t

∫ t

0

∣∣1
2

Trace
(
BB∗(Hessx u)(s, x)

)
− 1

2
Trace

(
BB∗(Hessx u)(0, x)

)∣∣ ds]
≤ lim sup

t↘0

[
sup
s∈[0,t]

∣∣∣12 Trace
(
BB∗

(
(Hessx u)(s, x)− (Hessx u)(0, x)

))∣∣∣] = 0.

(12.25)

Item (I) hence establishes that for all x ∈ Rd it holds that [0, T ] 3 t 7→ u(t, x) ∈ R is
differentiable. Combining this with (12.25) and (12.22) ensures that for all t ∈ [0, T ],
x ∈ Rd it holds that

(∂u
∂t

)(t, x) = 1
2

Trace
(
BB∗(Hessx u)(t, x)

)
. (12.26)

This and the fact that [0, T ] × Rd 3 (t, x) 7→ (Hessx u)(t, x) ∈ Rd×d is continuous estab-
lish item (i). In addition, note that (12.26) establishes item (ii). The proof of Proposi-
tion 12.1.3 is thus complete.

Definition 12.1.4. Let (Ω,F ,P) be a probability space. We say that W is an m-
dimensional P-standard Brownian motion (we say that W is a P-standard Brownian mo-
tion, we say that W is a standard Brownian motion) if and only if there exists T ∈ (0,∞)
such that

(i) it holds that m ∈ N,

(ii) it holds that W : [0, T ]× Ω× Rm is a function,

(iii) it holds for all ω ∈ Ω that [0, T ] 3 s 7→ Ws(ω) ∈ Rm is continuous,

(iv) it holds for all ω ∈ Ω that W0(ω) = 0 ∈ Rm,

(v) it holds for all t1 ∈ [0, T ], t2 ∈ [0, T ] with t1 < t2 that Ω 3 ω 7→ (t2−t1)−1/2(Wt2(ω)−
Wt1(ω)) ∈ Rm is a standard normal random variable, and
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Figure 12.1: Four trajectories of a 1-dimensional standard Brownian motion

(vi) it holds for all n ∈ {3, 4, 5, . . . }, t1, t2, . . . , tn ∈ [0, T ] with t1 ≤ t2 ≤ · · · ≤ tn that
Wt2 −Wt1 , Wt3 −Wt2 , . . . , Wtn −Wtn−1 are independent.

Corollary 12.1.5. Let T ∈ (0,∞), d,m ∈ N, B ∈ Rd×m, ϕ ∈ C2(Rd,R) satisfy
supx∈Rd

[∑d
i,j=1

(
|ϕ(x)|+ |( ∂

∂xi
ϕ)(x)|+ |( ∂2

∂xi∂xj
ϕ)(x)|

)]
<∞, let (Ω,F ,P) be a probability

space, let W : [0, T ]×Ω→ Rm be a standard Brownian motion, and let u : [0, T ]×Rd → R
satisfy for all t ∈ [0, T ], x ∈ Rd that

u(t, x) = E
[
ϕ(x+BWt)

]
(12.27)

(cf. Definition 12.1.4). Then

(i) it holds that u ∈ C1,2([0, T ]× Rd,R) and

(ii) it holds for all t ∈ [0, T ], x ∈ Rd that

(∂u
∂t

)(t, x) = 1
2

Trace
(
BB∗(Hessx u)(t, x)

)
(12.28)

(cf. Definition 2.2.29).

Proof of Corollary 12.1.5. First, observe that the assumption that W : [0, T ]× Ω→ Rm

is a standard Brownian motion ensures that for all t ∈ [0, T ], x ∈ Rd it holds that

u(t, x) = E[ϕ(x+BWt)] = E
[
ϕ

(
x+
√
tB

WT√
T

)]
. (12.29)

The fact that WT√
T

: Ω→ Rm is a standard normal random variable and Proposition 12.1.3

hence establish items (i) and (ii). The proof of Corollary 12.1.5 is thus complete.
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12.1.3.2 Feynman–Kac formulas providing uniqueness of solutions

Lemma 12.1.6 (A special case of Vitali’s convergence theorem). Let (Ω,F ,P) be a
probability space, let Xn : Ω→ R, n ∈ N0, be random variables with P(lim supn→∞|Xn −
X0| = 0) = 1, and let p ∈ (1,∞) satisfy supn∈N E[|Xn|p] <∞. Then

(i) it holds that lim supn→∞ E
[
|Xn −X0|

]
= 0,

(ii) it holds that E[|X0|] <∞, and

(iii) it holds that lim supn→∞
∣∣E[Xn]− E[X0]

∣∣ = 0.

Proposition 12.1.7. Let d ∈ N, T, ρ ∈ (0,∞), let f ∈ C([0, T ] × Rd,R), let u ∈
C1,2([0, T ]×Rd,R) have at most polynomially growing partial derivatives, assume for all
t ∈ [0, T ], x ∈ Rd that

(∂u
∂t

)(t, x) = ρ (∆xu)(t, x) + f(t, x), (12.30)

let (Ω,F ,P) be a probability space, and let W : [0, T ] × Ω → Rd be a standard Brownian
motion (cf. Definition 12.1.4). Then it holds for all t ∈ [0, T ], x ∈ Rd that

u(t, x) = E
[
u(0, x+

√
2ρWt) +

∫ t

0

f(t− s, x+
√

2ρWs) ds

]
. (12.31)

Proof of Proposition 12.1.7. Throughout this proof let 〈·, ·〉 : Rd ×Rd → R satisfy for all
x = (x1, x2, . . . , xd), y = (y1, y2, . . . , yd) ∈ Rd that 〈x, y〉 =

∑d
i=1 xiyi, let D1 : [0, T ] ×

Rd → R satisfy for all t ∈ [0, T ], x ∈ Rd thatD1(t, x) = (∂u
∂t

)(t, x), letD2 = (D2,1, D2,2, . . . , D2,d) : [0, T ]×
Rd → Rd satisfy for all t ∈ [0, T ], x ∈ Rd that D2(t, x) = (∇xu)(t, x), let H =
(Hi,j)i,j∈{1,2,...,d} : [0, T ] × Rd → Rd×d satisfy for all t ∈ [0, T ], x ∈ Rd that H(t, x) =
(Hessx u)(t, x), let γ : Rd → R satisfy for all z ∈ Rd that

γ(z) = (2π)−
d/2 exp

(
−‖z‖

2
2

2

)
, (12.32)

and let vt,x : [0, t]→ R, t ∈ [0, T ], x ∈ Rd, satisfy for all t ∈ [0, T ], x ∈ Rd, s ∈ [0, t] that

vt,x(s) = E
[
u(s, x+

√
2ρWt−s)

]
. (12.33)

Note that the assumption that W is a standard Brownian motion implies that for all
t ∈ (0, T ], s ∈ [0, t) it holds that (t − s)−1/2Wt−s : Ω → Rd is a standard normal random
variable. This ensures that for all t ∈ (0, T ], x ∈ Rd, s ∈ [0, t) it holds that

vt,x(s) = E
[
u(s, x+

√
2ρ(t− s)(t− s)−1/2Wt−s)

]
=

∫
Rd
u(s, x+

√
2ρ(t− s)z)γ(z) dz.

(12.34)
The assumption that u has at most polynomially growing partial derivatives, the fact
that (0,∞) 3 s 7→

√
s ∈ (0,∞) is differentiable, the chain rule, and Vitali’s convergence

theorem hence show that for all t ∈ (0, T ], x ∈ Rd, s ∈ [0, t) it holds that vt,x|[0,t) ∈
C1([0, t),R) and

(vt,x)
′(s) =

∫
Rd

[
D1(s, x+

√
2ρ(t− s)z) +

〈
D2(s, x+

√
2ρ(t− s)z), −ρz√

2ρ(t−s)

〉]
γ(z) dz.

(12.35)
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Next note that the fact that for all z ∈ Rd it holds that (∇γ)(z) = −γ(z)z implies that
for all t ∈ (0, T ], x ∈ Rd, s ∈ [0, t) it holds that∫

Rd

〈
D2(s, x+

√
2ρ(t− s)z), −ρz√

2ρ(t−s)

〉
γ(z) dz =

∫
Rd

〈
D2(s, x+

√
2ρ(t− s)z), ρ(∇γ)(z)√

2ρ(t−s)

〉
dz

= ρ√
2ρ(t−s)

∑d

i=1

[∫
Rd
D2,i(s, x+

√
2ρ(t− s)z)( ∂γ

∂zi
)(z1, z2, . . . , zd) dz

]
.

(12.36)

Next observe that integration by parts proves that for all t ∈ (0, T ], x ∈ Rd, s ∈ [0, t),
i ∈ {1, 2, . . . , d}, a ∈ R, b ∈ (a,∞) it holds that∫ b

a

D2,i(s, x+
√

2ρ(t− s)(z1, z2, . . . , zd))(
∂γ
∂zi

)(z1, z2, . . . , zd) dzi

=
[
D2,i(s, x+

√
2ρ(t− s)(z1, z2, . . . , zd))γ(z1, z2, . . . , zd)

]zi=b
zi=a

−
∫ b

a

√
2ρ(t− s)Hi,i(s, x+

√
2ρ(t− s)(z1, z2, . . . , zd))γ(z1, z2, . . . , zd) dzi.

(12.37)

The assumption that u has at most polynomially growing derivatives hence implies that
for all t ∈ (0, T ], x ∈ Rd, s ∈ [0, t), i ∈ {1, 2, . . . , d} it holds that∫

R
D2,i(s, x+

√
2ρ(t− s)(z1, z2, . . . , zd))(

∂γ
∂zi

)(z1, z2, . . . , zd) dzi

= −
√

2ρ(t− s)
∫
R
Hi,i(s, x+

√
2ρ(t− s)(z1, z2, . . . , zd))γ(z1, z2, . . . , zd) dzi.

(12.38)

Combining this with (12.36) and Fubini’s theorem ensures that for all t ∈ (0, T ], x ∈ Rd,
s ∈ [0, t) it holds that∫
Rd

〈
D2(s, x+

√
2ρ(t− s)z), −ρz√

2ρ(t−s)

〉
γ(z) dz = −ρ

∑d

i=1

∫
Rd
Hi,i(s, x+

√
2ρ(t− s)(z))γ(z) dz

= −
∫
Rd
ρTrace

(
H(s, x+

√
2ρ(t− s)(z))

)
γ(z) dz.

(12.39)

This, (12.35), (12.30), and the fact that for all t ∈ (0, T ], s ∈ [0, t) it holds that (t −
s)−1/2Wt−s : Ω → Rd is a standard normal random variable imply that for all t ∈ (0, T ],
x ∈ Rd, s ∈ [0, t) it holds that

(vt,x)
′(s) =

∫
Rd

[
D1(s, x+

√
2ρ(t− s)z)− ρTrace

(
H(s, x+

√
2ρ(t− s)z)

)]
γ(z) dz

=

∫
Rd
f(s, x+

√
2ρ(t− s)z)γ(z) dz = E

[
f(s, x+

√
2ρWt−s)

]
.

(12.40)

The fact that W0 = 0, the fact that for all t ∈ [0, T ], x ∈ Rd it holds that vt,x : [0, t]→ R
is a continuous function, and the fundamental theorem of calculus therefore demonstrate
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that for all t ∈ [0, T ], x ∈ Rd it holds that

u(t, x) = E
[
u(t, x+

√
2ρWt−t)

]
= vt,x(t) = vt,x(0) +

∫ t

0

(vt,x)
′(s) ds

= E
[
u(0, x+

√
2ρWt)

]
+

∫ t

0

E
[
f(s, x+

√
2ρWt−s)

]
ds.

(12.41)

Fubini’s theorem and the fact that u and f are at most polynomially growing hence
establish (12.31). This completes the proof of Proposition 12.1.7.

Corollary 12.1.8. Let d ∈ N, T, ρ ∈ (0,∞), % =
√

2ρT , a ∈ R, b ∈ (a,∞), let
ϕ : Rd → R be a function, let u ∈ C1,2([0, T ]× Rd,R) have at most polynomially growing
partial derivatives, assume for all t ∈ [0, T ], x ∈ Rd that u(0, x) = ϕ(x) and

(∂u
∂t

)(t, x) = ρ (∆xu)(t, x), (12.42)

let (Ω,F,P) be a probability space, and let W : Ω → Rd be a standard normal random
variable. Then

(i) it holds that the function ϕ : Rd → R is twice continuously differentiable with at
most polynomially growing derivatives and

(ii) it holds for every x ∈ Rd that u(T, x) = E
[
ϕ(%W + x)

]
.

Proof of Corollary 12.1.8. Note that the assumption that u ∈ C1,2([0, T ]×Rd,R) has at
most polynomially growing partial derivatives and the fact that for all x ∈ Rd it holds that
ϕ(x) = u(0, x) establish item (i). Next observe that Proposition 12.1.7 proves item (ii).
The proof of Corollary 12.1.8 is thus complete.

Definition 12.1.9. Let d ∈ N and let f : Rd → R and g : Rd → R be B(Rd)/B(R)-
measurable functions. Then we denote by f∗g :

{
x ∈ Rd : min

{∫
Rd max{0, f(x−y)g(y)} dy,−

∫
Rd min{0, f(x−

y)g(y)} dy
}
<∞

}
→ [−∞,∞] the function which satisfies for all x ∈ Rd with min

{∫
Rd max{0, f(x−

y)g(y)} dy,−
∫
Rd min{0, f(x− y)g(y)} dy

}
<∞ that

(f ∗ g)(x) =

∫
Rd
f(x− y)g(y) dy. (12.43)

Exercise 12.1.1. Let d ∈ N, T ∈ (0,∞), let γσ : Rd → R, σ ∈ (0,∞), satisfy for all
σ ∈ (0,∞), x ∈ Rd that

γσ(x) = (2πσ2)−
d
2 exp

(
−‖x‖2

2)

2σ2

)
, (12.44)

and for every ρ ∈ (0,∞) and ϕ ∈ C2(Rd,R) with supx∈Rd
[∑d

i,j=1

(
|ϕ(x)| + |( ∂

∂xi
ϕ)(x)| +

|( ∂2

∂xi∂xj
ϕ)(x)|

)]
<∞ let uρ,ϕ : [0, T ]× Rd → R satisfy for all t ∈ (0, T ], x ∈ Rd that

uρ,ϕ(0, x) = ϕ(x) and uρ,ϕ(t, x) = (ϕ ∗ γ√2tρ)(x). (12.45)

Prove or disprove the following statement: For every ρ ∈ (0,∞) and for every ϕ ∈
C2(Rd,R) with supx∈Rd

[∑d
i,j=1

(
|ϕ(x)|+ |( ∂

∂xi
ϕ)(x)|+ |( ∂2

∂xi∂xj
ϕ)(x)|

)]
<∞ it holds for all

t ∈ (0, T ), x ∈ Rd that uρ,ϕ ∈ C1,2([0, T ]× Rd,R) and

(∂uρ,ϕ
∂t

)(t, x) = ρ(∆xuρ,ϕ)(t, x). (12.46)
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Exercise 12.1.2. Prove or disprove the following statement: For every x ∈ R it holds
that

e−x
2/2 =

1√
2π

[∫
R
e−t

2/2e−ixt dt

]
. (12.47)

Exercise 12.1.3. Let d ∈ N, T ∈ (0,∞), let γσ : Rd → R, σ ∈ (0,∞), satisfy for all
σ ∈ (0,∞), x ∈ Rd that

γσ(x) = (2πσ2)−
d
2 exp

(
−‖x‖2

2

2σ2

)
, (12.48)

for every ϕ ∈ C2(Rd,R) with supx∈Rd
[∑d

i,j=1

(
|ϕ(x)|+ |( ∂

∂xi
ϕ)(x)|+ |( ∂2

∂xi∂xj
ϕ)(x)|

)]
<∞

let uϕ : [0, T ]× Rd → R satisfy for all t ∈ (0, T ], x ∈ Rd that

uϕ(0, x) = ϕ(x) and uϕ(t, x) = (ϕ ∗ γ√2t)(x), (12.49)

and let ψi : Rd → R, i ∈ Nd satisfy for all i = (i1, i2, . . . , id) ∈ Nd, x = (x1, x2, . . . , xd) ∈
Rd that

ψi(x) = 2
d
2

[
d∏

k=1

sin(ikπxk)

]
. (12.50)

Prove or disprove the following statement: For all i = (i1, i2, . . . , id) ∈ Nd, t ∈ [0, T ],
x ∈ Rd it holds that

uψi(t, x) = exp
(
−π2

[∑d
k=1|ik|

2
]
t
)
ψi(x). (12.51)

Exercise 12.1.4. Let d ∈ N, T ∈ (0,∞), let γσ : Rd → R, σ ∈ (0,∞), satisfy for all
σ ∈ (0,∞), x ∈ Rd that

γσ(x) = (2πσ2)−
d
2 exp

(
−‖x‖2

2

2σ2

)
, (12.52)

and let ψi : Rd → R, i ∈ Nd, satisfy for all i = (i1, i2, . . . , id) ∈ Nd, x = (x1, x2, . . . , xd) ∈
Rd that

ψi(x) = 2
d
2

[
d∏

k=1

sin(ikπxk)

]
. (12.53)

Prove or disprove the following statement: For every i ∈ Nd, s ∈ [0, T ], y ∈ Rd, and every
function u ∈ C1,2([0, T ]×Rd,R) with at most polynomially growing derivatives such that
it holds for all t ∈ (0, T ), x ∈ Rd that u(0, x) = ψi(x) and

(∂u
∂t

)(t, x) = (∆xu)(t, x) (12.54)

it holds that
u(s, y) = exp

(
−π2

[∑d
k=1|ik|

2
]
s
)
ψi(y). (12.55)

12.1.4 Stochastic optimization problems for PDEs

The proof of Proposition 12.1.10 is based on an application of Proposition 12.1.2 and
Proposition 12.1.7. A detailed proof of Proposition 12.1.10 can be found in Beck et al. [1,
Proposition 2.7].
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Proposition 12.1.10. Let d ∈ N, T, ρ ∈ (0,∞), % =
√

2ρT , a ∈ R, b ∈ (a,∞), let
ϕ : Rd → R be a function, let u ∈ C1,2([0, T ]× Rd,R) have at most polynomially growing
partial derivatives, assume for all t ∈ [0, T ], x ∈ Rd that u(0, x) = ϕ(x) and

(∂u
∂t

)(t, x) = ρ (∆xu)(t, x), (12.56)

let (Ω,F ,P) be a probability space, let W : Ω→ Rd be a standard normal random variable,
let ξ : Ω→ [a, b]d be a continuous uniformly distributed random variable, and assume that
W and ξ are independent. Then

(i) it holds that the function ϕ : Rd → R is twice continuously differentiable with at
most polynomially growing derivatives,

(ii) it holds that there exists a unique continuous function U : [a, b]d → R such that

E
[
|ϕ(%W + ξ)− U(ξ)|2

]
= inf

v∈C([a,b]d,R)
E
[
|ϕ(%W + ξ)− v(ξ)|2

]
, (12.57)

and

(iii) it holds for every x ∈ [a, b]d that U(x) = u(T, x).

Proof of Proposition 12.1.10. First, note that (12.56), the assumption that W is a stan-
dard normal random variable, and Corollary 12.1.8 prove that for all x ∈ Rd it holds that
the function ϕ : Rd → R is twice continuously differentiable with at most polynomially
growing derivatives and

u(T, x) = E
[
u(0, %W + x)

]
= E

[
ϕ(%W + x)

]
. (12.58)

Moreover, observe that the assumption that W is a standard normal random variable,
the fact that ϕ is continuous, and the fact that ϕ is at most polynomially growing and
continuous ensure that

(I) it holds that [a, b]d × Ω 3 (x, ω) 7→ ϕ(%W(ω) + x) ∈ R is (B([a, b]d) ⊗ F)/B(R)-
measurable and

(II) it holds for all x ∈ [a, b]d that E[|ϕ(%W + x)|2] <∞.

Proposition 12.1.2 and (12.58) hence ensure that

(A) there exists a unique continuous function U : [a, b]d → R which satisfies that∫
[a,b]d

E
[
|ϕ(%W + x)− U(x)|2

]
dx = inf

v∈C([a,b]d,R)

(∫
[a,b]d

E
[
|ϕ(%W + x)− v(x)|2

]
dx

)
(12.59)

and

(B) it holds for all x ∈ [a, b]d that U(x) = u(T, x).

Next note that the assumption that W and ξ are independent, item (I), and the as-
sumption that ξ is continuously uniformly distributed on [a, b]d imply that for all v ∈
C([a, b]d,R) it holds that

E
[
|ϕ(%W + ξ)− v(ξ)|2

]
=

1

(b− a)d

∫
[a,b]d

E
[
|ϕ(%W + x)− v(x)|2

]
dx. (12.60)

Combining this with item (A) establishes item (ii). In addition, observe that items (A)
and (B) and (12.60) establish item (iii). This completes the proof of Proposition 12.1.10.
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12.1.5 Towards a deep learning scheme for PDEs

Let d ∈ N, T, ρ ∈ (0,∞), % =
√

2ρT , a ∈ R, b ∈ (a,∞), let ϕ : Rd → R be a function, let
u ∈ C1,2([0, T ] × Rd,R) have at most polynomially growing partial derivatives, assume
for all t ∈ [0, T ], x ∈ Rd that u(0, x) = ϕ(x) and

(∂u
∂t

)(t, x) = ρ (∆xu)(t, x) (12.61)

let (Ω,F ,P) be a probability space, let W : Ω → Rd be a standard normally distributed
random variable, let ξ : Ω→ [a, b]d be a continuous uniformly distributed random variable,
assume that W and ξ are independent. Proposition 12.1.10 then ensures that the solution
u of the heat equation in (12.61) at time T on [a, b]d is the unique global minimizer of
the function

C([a, b]d,R) 3 v 7→ E
[
|ϕ(%W + ξ)− v(ξ)|2

]
∈ [0,∞). (12.62)

Now an idea of a simply machine learning based approximation method for PDEs (see [1])
is to approximate the set C([a, b]d,R) of all continuous functions from [a, b]d to R through
the set of all deep artificial neural networks with a fixed sufficiently large architecture.
More formally, let L ∈ N, l1, l2, . . . , lL ∈ N, d = (dl1 + l1) + (

∑L
k=2 lk(lk−1 + 1)) + (lL + 1)

and consider the function{
w ∈ C([a, b]d,R) :

[
∃ θ∈Rd : ∀x∈[a,b]d :

w(x)=(N θ,dRl1
,...,RlL

,idR
)(x)

]}
3 v 7→ E

[
|ϕ(%W + ξ)− v(ξ)|2

]
∈ [0,∞)

(12.63)
(cf. Definition 2.1.2). The approach of the machine learning scheme in Beck et al. [1] is
then to approximatively compute a suitable minimizer of the function in (12.63) and to
view the resulting approximation of a suitable minimizer of the function in (12.63) as an
approximation of the solution u of the heat equation in (12.61) at time T on [a, b]d. To
approximatively compute a suitable minimizer of the function in (12.63), we reformulate
(12.63) by employing the parametrization function induced by artificial neural networks
to obtain the function

Rd 3 θ 7→ E
[∣∣ϕ(%W + ξ)− (N θ,d

Rl1 ,...,RlL ,idR
)(ξ)

∣∣2] ∈ [0,∞). (12.64)

A suitable minimizer of the function in (12.64) can then be approximatively computed by
means of stochastic gradient descent optimization algorithms. We refer to Beck et al. [1]
for numerical simulations.

12.2 Nonlinear PDEs

12.2.1 Splitting approximations

Theorem 12.2.1. Let T ∈ (0,∞), p ∈ [1,∞), f ∈ C2(R,R), let ud ∈ C1,2([0, T ]×Rd,R),
d ∈ N, satisfy for all d ∈ N, t ∈ [0, T ], x ∈ Rd that

( ∂
∂t
ud)(t, x) = (∆xud)(t, x) + f(ud(t, x)), (12.65)

and assume for all d ∈ N, i, j ∈ {1, 2, . . . , d} that supt∈[0,T ] supx=(x1,x2,...,xd)∈Rd
[
(1 +∑d

k=1|xk|)−p(|(
∂2

∂xi∂xj
ud)(t, x)|+ |( ∂

∂t
ud)(t, x)|+ |f ′′(x1)|) + |f ′(x1)|

]
<∞. Then
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(i) there exist unique at most polynomially growing Ud,Nn ∈ C1,2([ (n−1)T
N

, nT
N

] × Rd,R),
d,N ∈ N, n ∈ {0, 1, . . . , N}, which satisfy for all d,N ∈ N, n ∈ {0, 1, . . . , N − 1},
t ∈ [nT

N
, (n+1)T

N
], s ∈ [−T

N
, 0], x ∈ Rd that Ud,Nn+1(nT

N
, x) = Ud,Nn (nT

N
, x)+ T

N
f(Ud,Nn (nT

N
, x)),

Ud,N0 (s, x) = ud(0, x), and

( ∂
∂t
Ud,Nn+1)(t, x) = (∆xUd,Nn+1)(t, x) (12.66)

and

(ii) there exists c ∈ R such that for all d,N ∈ N, x = (x1, x2, . . . , xd) ∈ Rd it holds that

|Ud,NN (T, x)− ud(T, x)| ≤ cdp+1N−
1/2
(
1 +

∑d
i=1|xi|

)p
. (12.67)

12.2.2 DNN approximation result

The next result, Theorem 12.2.1 below, establishes a DNN approximation result for non-
linear PDEs (cf. Grohs et al. [11] and Hutzenthaler et al. [15]).

Theorem 12.2.2. Let T, p, κ ∈ (0,∞), (gd,ε)d∈N,ε∈(0,1] ⊆ N, (cd)d∈N ⊆ (0,∞) (cf.
Definition 2.2.1), let f : R → R be globally Lipschitz continuous, for every d ∈ N let
ud ∈ C1,2([0, T ] × Rd,R), and assume for all d ∈ N, x ∈ Rd, ε ∈ (0, 1], t ∈ (0, T )
that Rr(gd,ε) ∈ C(Rd,R), |(Rr(gd,ε))(x)| ≤ κdκ(1 + ‖x‖κ2), |ud(0, x)− (Rr(gd,ε))(x)| ≤
εκdκ(1 + ‖x‖κ2), P(gd,ε) ≤ κdκε−κ, |ud(t, x)| ≤ cd(1 + ‖x‖cd2 ), and

(∂ud
∂t

)(t, x) = (∆xud)(t, x) + f(ud(t, x)) (12.68)

(cf. Definitions 2.1.6 and 2.2.3). Then there exist (ud,ε)d∈N,ε∈(0,1] ⊆ N and η ∈ (0,∞)
such that for all d ∈ N, ε ∈ (0, 1] it holds that P(ud,ε) ≤ ηdηε−η and[∫

[0,T ]×[0,1]d
|ud(y)− (Rr(ud,ε))(y)|pdy

]1/p

≤ ε. (12.69)

Numerical simulations for deep learning based approximation schemes for nonlinear
PDEs can, e.g., be found in [9, 12] and the references mentioned in [1].
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Chapter 13

Optimization through flows of
ordinary differential equations

13.1 Introductory comments for the training of arti-

ficial neural networks

In this section we briefly sketch how gradient descent type optimization methods factor
into machine learning problems. To do this, we now recall the deep supervised learning
framework sketched in Section 1.1 above. Let d,M ∈ N, E ∈ C(Rd,R), x1, x2, . . . , xM+1 ∈
Rd, y1, y2, . . . , yM ∈ R satisfy for all m ∈ {1, 2, . . . ,M} that

ym = E(xm), (13.1)

and let Φ: C(Rd,R)→ [0,∞) satisfy for all φ ∈ C(Rd,R) that

Φ(φ) =
M∑
m=1

|φ(xm)− ym|2. (13.2)

As in Section 1.1 we think of M ∈ N as the number of available input-output data
pairs, we think of d ∈ N as the dimension of the input data, we think of E : Rd → R as
an unknown function which relates input and output data through (13.1), we think of
x1, x2, . . . , xM+1 ∈ Rd as the available known input data, we think of y1, y2, . . . , yM ∈ R as
the available known output data, and the function Φ: C(Rd,R)→ [0,∞) is the objective
function in the optimization problem associated to the supervised learning problem in
(13.2) above (cf. (1.2) in Section 1.1 above). In particular, observe that Φ(E) = 0 and
we are trying to approximate the function E by approximatively computing a global
minimizer of the function Φ: Rd → R. In order to make this problem amenable to discrete
numerical computations, we consider a spatially discretized version of the problem, where
we compute minimizers of the function Φ restricted to a set of realization functions of
neural networks. To do this, let h ∈ N, l1, l2, . . . , lh,d ∈ N satisfy d = l1(d + 1) +[∑h

k=2 lk(lk−1 + 1)
]

+ lh + 1, and let

N =
{(

Rd 3 x 7→ N θ,d
Sl1 ,Sl2 ,...,Slh ,idR

(x) ∈ R
)

: θ ∈ Rd
}
⊆ C(Rd,R) (13.3)

(cf. Definitions 2.1.2 and 2.1.15). We think of h as the number of hidden layers of the
neural networks we use as approximators, for every i ∈ {1, 2, . . . , h} we think of li ∈ N
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as the number of neurons in the i-th hidden layer of the neural networks we use as
approximators, we think of d as the number of real parameters necessary to describe the
neural networks we use as approximators, and we think of N as the set of realization
functions of the neural networks we use as approximators.

We can now reformulate the optimization problem as the problem of approximately
computing minima of the function f : Rd → [0,∞) which satisfies for all θ ∈ Rd that

f(θ) =

[
M∑
m=1

∣∣∣(N θ,d
Sl1 ,Sl2 ,...,Slh ,idR

)
(xm)− ym

∣∣∣2] (13.4)

and this optimization is now accessible to discrete numerical computations.
Let ξ ∈ Rd and let Θ = (Θt)t∈[0,∞) : [0,∞) → Rd be a continuously differentiable

function which satisfies for all t ∈ [0,∞) that

Θ0 = ξ and Θ̇t = −(∇f)(Θt). (13.5)

Let (γn)n∈N ⊆ [0,∞) and let θ = (θn)n∈N0 : N0 → Rd satisfy for all n ∈ N that

θ0 = ξ and θn = θn−1 − γn(∇f)(θn−1). (13.6)

13.2 Auxiliary results

13.2.1 A Gronwall differential inequality

The following lemma, Lemma 13.2.1 below, is referred to as a Gronwall inequality in the
literature (cf., e.g., Henry [13, Chapter 7]). Gronwall inequalities are powerful tools to
study dynamical systems and, especially, solutions of differential equations.

Lemma 13.2.1 (Gronwall inequality). Let α ∈ R, T ∈ (0,∞), ε ∈ C1([0, T ],R) satisfy
for all t ∈ (0, T ) that

ε′(t) ≤ αε(t). (13.7)

Then it holds for all t ∈ [0, T ] that

ε(t) ≤ ε(0)eαt. (13.8)

Proof of Lemma 13.2.1. Throughout this proof let u : [0, T ]→ R satisfy for all t ∈ [0, T ]
that

u(t) =
ε(t)

eαt
= ε(t)e−αt. (13.9)

Observe that the assumption that ε ∈ C1([0, T ],R) implies that u ∈ C1([0, T ],R). More-
over, note that (13.7) assures that for all t ∈ (0, T ) it holds that

u′(t) = ε′(t)e−αt − ε(t)αe−αt ≤ αε(t)e−αt − ε(t)αe−αt = 0. (13.10)

The fundamental theorem of calculus hence demonstrates that for all t ∈ [0, T ] it holds
that

ε(t)

eαt
= u(t) = u(0) +

∫ t

0

u′(s) ds ≤ u(0) +

∫ t

0

0 ds = u(0) = ε(0). (13.11)

Therefore, we obtain for all t ∈ [0, T ] that

ε(t) ≤ ε(0)eαt. (13.12)

The proof of Lemma 13.2.1 is thus complete.

Dissemination prohibited. July 29, 2021 203



Chapter 13. Optimization through ODEs

13.2.2 Lyapunov-type functions for ordinary differential equa-
tions

Definition 13.2.2. We denote by 〈·, ·〉 :
[⋃

d∈N(Rd×Rd)
]
→ R the function which satisfies

for all d ∈ N, x = (x1, x2, . . . , xd), y = (y1, y2, . . . , yd) ∈ Rd that

〈x, y〉 =
d∑
i=1

xiyi. (13.13)

Lemma 13.2.3 (Lyapunov-type functions for ordinary differential equations). Let d ∈ N,
α ∈ R, T ∈ (0,∞), let O ⊆ Rd be an open set, let g ∈ C(O,Rd), V ∈ C1(O,R) satisfy
for all θ ∈ O that

V ′(θ)g(θ) = 〈(∇V )(θ), g(θ)〉 ≤ αV (θ), (13.14)

and let Θ ∈ C([0, T ], O) satisfy for all t ∈ [0, T ] that Θt = Θ0 +
∫ t

0
g(Θs) ds (cf. Defini-

tion 13.2.2). Then it holds for all t ∈ [0, T ] that

V (Θt) ≤ eαtV (Θ0). (13.15)

Proof of Lemma 13.2.3. Throughout this proof let ε : [0, T ] → R satisfy for all t ∈ [0, T ]
that ε(t) = V (Θt). Observe that the fundamental theorem of calculus, the chain rule,
and (13.14) ensure that for all t ∈ [0, T ] it holds that ε ∈ C1([0, T ],R) and

ε′(t) = d
dt

(V (Θt)) = V ′(Θt)
(

d
dt

(Θt)
)

= V ′(Θt)g(Θt) ≤ αV (Θt) = αε(t).
(13.16)

The Gronwall inequality, e.g., in Lemma 13.2.1 (applied with α x α, T x T , ε x ε in
the notation of Lemma 13.2.1) hence demonstrates that for all t ∈ [0, T ] it holds that

V (Θt) = ε(t) ≤ ε(0)eαt = eαtV (Θ0). (13.17)

The proof of Lemma 13.2.3 is thus complete.

13.2.3 On quadratic Lyapunov-type functions and coercivity-
type conditions

Lemma 13.2.4 (Derivative of the standard norm). Let d ∈ N, ϑ ∈ Rd and let f : Rd → R
satisfy for all θ ∈ Rd that

f(θ) = ‖θ − ϑ‖2
2 (13.18)

(cf. Definition 3.1.16). Then it holds for all θ ∈ Rd that f ∈ C∞(Rd,R) and

(∇f)(θ) = 2(θ − ϑ). (13.19)

Proof of Lemma 13.2.4. Throughout this proof let ϑ1, ϑ2, . . . , ϑd ∈ R satisfy ϑ = (ϑ1, ϑ2,
. . . , ϑd). Note that the fact that for all θ = (θ1, θ2, . . . , θd) ∈ Rd it holds that

f(θ) =
d∑
i=1

|θi − ϑi|2 (13.20)
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implies that for all θ = (θ1, θ2, . . . , θd) ∈ Rd it holds that f ∈ C∞(Rd,R) and

(∇f)(θ) =


(
∂f
∂θ1

)
(θ)

...(
∂f
∂θd

)
(θ)

 =

2(θ1 − ϑ1)
...

2(θd − ϑd)

 = 2(θ − ϑ). (13.21)

The proof of Lemma 13.2.4 is thus complete.

Corollary 13.2.5 (On quadratic Lyapunov-type functions and coercivity-type condi-
tions). Let d ∈ N, c ∈ R, T ∈ (0,∞), ϑ ∈ Rd, let O ⊆ Rd be an open set, let f ∈ C1(O,R)
satisfy for all θ ∈ O that

〈θ − ϑ, (∇f)(θ)〉 ≥ c‖θ − ϑ‖2
2, (13.22)

and let Θ ∈ C([0, T ], O) satisfy for all t ∈ [0, T ] that Θt = Θ0 −
∫ t

0
(∇f)(Θs) ds (cf.

Definitions 3.1.16 and 13.2.2). Then it holds for all t ∈ [0, T ] that

‖Θt − ϑ‖2 ≤ e−ct‖Θ0 − ϑ‖2. (13.23)

Proof of Corollary 13.2.5. Throughout this proof let g : O → Rd satisfy for all θ ∈ O that

g(θ) = −(∇f)(θ) (13.24)

and let V : O → R satisfy for all θ ∈ O that

V (θ) = ‖θ − ϑ‖2
2. (13.25)

Observe that Lemma 13.2.4 and (13.22) ensure that for all θ ∈ O it holds that V ∈
C1(O,R) and

V ′(θ)g(θ) = 〈(∇V )(θ), g(θ)〉 = 〈2(θ − ϑ), g(θ)〉
= −2〈(θ − ϑ), (∇f)(θ)〉 ≤ −2c‖θ − ϑ‖2

2 = −2cV (θ).
(13.26)

Lemma 13.2.3 hence proves that for all t ∈ [0, T ] it holds that

‖Θt − ϑ‖2
2 = V (Θt) ≤ e−2ct V (Θ0) = e−2ct ‖Θ0 − ϑ‖2

2. (13.27)

The proof of Corollary 13.2.5 is thus complete.

13.2.4 Sufficient and necessary conditions for local minima

Lemma 13.2.6. Let d ∈ N, let O ⊆ Rd be an open set, let ϑ ∈ O, let f : O → R be a
function, assume that f is differentiable at ϑ, and assume that (∇f)(ϑ) 6= 0. Then there
exists θ ∈ O such that f(θ) < f(ϑ).

Proof of Lemma 13.2.6. Throughout this proof let v ∈ Rd\{0} satisfy v = −(∇f)(ϑ), let
δ ∈ (0,∞) satisfy for all t ∈ (−δ, δ) that

ϑ+ tv = ϑ− t(∇f)(ϑ) ∈ O, (13.28)

and let g : (−δ, δ)→ R satisfy for all t ∈ (−δ, δ) that

g(t) = f(ϑ+ tv). (13.29)
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Note that for all t ∈ (0, δ) it holds that∣∣∣∣[g(t)− g(0)

t

]
+ ‖v‖2

2

∣∣∣∣ =

∣∣∣∣[f(ϑ+ tv)− f(ϑ)

t

]
+ ‖(∇f)(ϑ)‖2

2

∣∣∣∣
=

∣∣∣∣[f(ϑ+ tv)− f(ϑ)

t

]
+ 〈(∇f)(ϑ), (∇f)(ϑ)〉

∣∣∣∣
=

∣∣∣∣[f(ϑ+ tv)− f(ϑ)

t

]
− 〈(∇f)(ϑ), v〉

∣∣∣∣.
(13.30)

Therefore, we obtain that for all t ∈ (0, δ) it holds that∣∣∣∣[g(t)− g(0)

t

]
+ ‖v‖2

2

∣∣∣∣ =

∣∣∣∣[f(ϑ+ tv)− f(ϑ)

t

]
− f ′(ϑ)v

∣∣∣∣
=

∣∣∣∣f(ϑ+ tv)− f(ϑ)− f ′(ϑ)tv

t

∣∣∣∣ =
|f(ϑ+ tv)− f(ϑ)− f ′(ϑ)tv|

t
.

(13.31)

The assumption that f is differentiable at ϑ hence demonstrates that

lim sup
t↘0

∣∣∣∣[g(t)− g(0)

t

]
+ ‖v‖2

2

∣∣∣∣ = 0. (13.32)

The fact that ‖v‖2
2 > 0 therefore demonstrates that there exists t ∈ (0, δ) such that∣∣∣∣[g(t)− g(0)

t

]
+ ‖v‖2

2

∣∣∣∣ < ‖v‖2
2

2
. (13.33)

The triangle inequality and the fact that ‖v‖2
2 > 0 hence prove that

g(t)− g(0)

t
=

[
g(t)− g(0)

t
+ ‖v‖2

2

]
− ‖v‖2

2 ≤
∣∣∣∣[g(t)− g(0)

t

]
+ ‖v‖2

2

∣∣∣∣− ‖v‖2
2

<
‖v‖2

2

2
− ‖v‖2

2 = −‖v‖
2
2

2
< 0.

(13.34)

This ensures that
f(ϑ+ tv) = g(t) < g(0) = f(ϑ). (13.35)

The proof of Lemma 13.2.6 is thus complete.

Lemma 13.2.7 (A necessary condition for a local minimum). Let d ∈ N, let O ⊆ Rd be
an open set, let ϑ ∈ O, let f : O → R be a function, assume that f is differentiable at ϑ,
and assume

f(ϑ) = infθ∈O f(θ). (13.36)

Then (∇f)(ϑ) = 0.

Proof of Lemma 13.2.7. We prove Lemma 13.2.7 by contradiction. We thus assume that
(∇f)(ϑ) 6= 0. Lemma 13.2.6 then implies that there exists θ ∈ O such that f(θ) < f(ϑ).
Combining this with (13.36) shows that

f(θ) < f(ϑ) = inf
w∈O

f(w) ≤ f(θ). (13.37)

The proof of Lemma 13.2.7 is thus complete.
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Lemma 13.2.8 (A sufficient condition for a local minimum). Let d ∈ N and let c ∈
(0,∞), r ∈ (0,∞], ϑ ∈ Rd, B = {w ∈ Rd : ‖w − ϑ‖2 ≤ r}, f ∈ C1(Rd,R) satisfy for all
θ ∈ B that

〈θ − ϑ, (∇f)(θ)〉 ≥ c‖θ − ϑ‖2
2 (13.38)

(cf. Definitions 3.1.16 and 13.2.2). Then

(i) it holds for all θ ∈ B that f(θ)− f(ϑ) ≥ c
2
‖θ − ϑ‖2

2,

(ii) it holds that {θ ∈ B : f(θ) = infw∈B f(w)} = {ϑ}, and

(iii) it holds that (∇f)(ϑ) = 0.

Proof of Lemma 13.2.8. Throughout this proof let B be the set given by

B = {w ∈ Rd : ‖w − ϑ‖2 < r}. (13.39)

Note that (13.38) implies that for all v ∈ Rd with ‖v‖ ≤ r it holds that

〈(∇f)(ϑ+ v), v〉 ≥ c‖v‖2
2. (13.40)

The fundamental theorem of calculus hence demonstrates that for all θ ∈ B it holds that

f(θ)− f(ϑ) =
[
f(ϑ+ t(θ − ϑ))

]t=1

t=0

=

∫ 1

0

f ′(ϑ+ t(θ − ϑ))(θ − ϑ) dt

=

∫ 1

0

〈(∇f)(ϑ+ t(θ − ϑ)), t(θ − ϑ)〉1
t

dt

≥
∫ 1

0

c‖t(θ − ϑ)‖2
2

1

t
dt = c‖θ − ϑ‖2

2

[∫ 1

0

t dt

]
= c

2
‖θ − ϑ‖2

2.

(13.41)

This proves item (i). Next observe that (13.41) ensures that for all θ ∈ B\{ϑ} it holds
that

f(θ) ≥ f(ϑ) + c
2
‖θ − ϑ‖2 > f(ϑ). (13.42)

Hence, we obtain for all θ ∈ B\{ϑ} that

inf
w∈B

f(w) = f(ϑ) < f(θ). (13.43)

This establishes item (ii). It thus remains thus remains to prove item (iii). For this
observe that item (ii) ensures that

{θ ∈ B : f(θ) = infw∈B f(w)} = {ϑ}. (13.44)

Combining this, the fact that B is an open set, and Lemma 13.2.7 (applied with d x d,
O x B, ϑ x ϑ, f x f |B in the notation of Lemma 13.2.7) assures that (∇f)(ϑ) = 0.
This establishes item (iii). The proof of Lemma 13.2.8 is thus complete.
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13.2.5 On a linear growth condition

Lemma 13.2.9 (On a linear growth condition). Let d ∈ N, L ∈ (0,∞), r ∈ (0,∞],
ϑ ∈ Rd, B = {w ∈ Rd : ‖w − ϑ‖2 ≤ r}, f ∈ C1(Rd,R) satisfy for all θ ∈ B that

‖(∇f)(θ)‖2 ≤ L‖θ − ϑ‖2 (13.45)

(cf. Definition 3.1.16). Then it holds for all θ ∈ B that

f(θ)− f(ϑ) ≤ L
2
‖θ − ϑ‖2

2. (13.46)

Proof of Lemma 13.2.9. Observe that (13.45), the Cauchy-Schwarz inequality, and the
fundamental theorem of calculus ensure that for all θ ∈ B it holds that

f(θ)− f(ϑ) =
[
f(ϑ+ t(θ − ϑ))

]t=1

t=0

=

∫ 1

0

f ′(ϑ+ t(θ − ϑ))(θ − ϑ) dt

=

∫ 1

0

〈(∇f)(ϑ+ t(θ − ϑ)), θ − ϑ〉 dt

≤
∫ 1

0

‖(∇f)(ϑ+ t(θ − ϑ))‖2‖θ − ϑ‖2 dt

≤
∫ 1

0

L‖ϑ+ t(θ − ϑ)− ϑ‖2‖θ − ϑ‖2 dt

= L‖θ − ϑ‖2
2

[∫ 1

0

t dt

]
= L

2
‖θ − ϑ‖2

2

(13.47)

(cf. Definition 13.2.2). The proof of Lemma 13.2.9 is thus complete.

13.3 Optimization through flows of ordinary differ-

ential equations (ODEs)

13.3.1 Approximation of local minima through gradient flows

Proposition 13.3.1 (Approximation of local minima through gradient flows). Let d ∈ N,
c, T ∈ (0,∞), r ∈ (0,∞], ϑ ∈ Rd, B = {w ∈ Rd : ‖w − ϑ‖2 ≤ r}, ξ ∈ B, f ∈ C1(Rd,R)
satisfy for all θ ∈ B that

〈θ − ϑ, (∇f)(θ)〉 ≥ c‖θ − ϑ‖2
2, (13.48)

and let Θ ∈ C([0, T ],Rd) satisfy for all t ∈ [0, T ] that Θt = ξ −
∫ t

0
(∇f)(Θs) ds (cf.

Definitions 3.1.16 and 13.2.2). Then

(i) it holds that {θ ∈ B : f(θ) = infw∈B f(w)} = {ϑ},

(ii) it holds for all t ∈ [0, T ] that ‖Θt − ϑ‖2 ≤ e−ct‖ξ − ϑ‖2, and

(iii) it holds for all t ∈ [0, T ] that

0 ≤ c
2
‖Θt − ϑ‖2

2 ≤ f(Θt)− f(ϑ). (13.49)
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Proof of Proposition 13.3.1. Throughout this proof let V : Rd → [0,∞) satisfy for all
θ ∈ Rd that V (θ) = ‖θ − ϑ‖2

2, let ε : [0, T ] → [0,∞) satisfy for all t ∈ [0, T ] that
ε(t) = ‖Θt − ϑ‖2

2 = V (Θt), and let τ ∈ [0, T ] be the real number given by

τ = inf({t ∈ [0, T ] : Θt /∈ B} ∪ {T}) = inf
(
{t ∈ [0, T ] : ε(t) > r2} ∪ {T}

)
. (13.50)

Note that (13.48) and item (ii) in Lemma 13.2.8 establish item (i). Next observe that
Lemma 13.2.4 implies that for all θ ∈ Rd it holds that V ∈ C1(Rd, [0,∞)) and

(∇V )(θ) = 2(θ − ϑ). (13.51)

Moreover, observe that the fundamental theorem of calculus (see, e.g., Coleman [5, The-
orem 3.9]) and the fact that Rd 3 v 7→ (∇f)(v) ∈ Rd and Θ: [0, T ]→ Rd are continuous
functions ensure that for all t ∈ [0, T ] it holds that Θ ∈ C1([0, T ],Rd) and

d
dt

(Θt) = −(∇f)(Θt). (13.52)

Combining (13.48) and (13.51) hence demonstrates that for all t ∈ [0, τ ] it holds that
ε ∈ C1([0, T ], [0,∞)) and

ε′(t) = d
dt

(
V (Θt)

)
= V ′(Θt)

(
d
dt

(Θt)
)

= 〈(∇V )(Θt),
d
dt

(Θt)〉
= 〈2(Θt − ϑ),−(∇f)(Θt)〉
= −2〈(Θt − ϑ), (∇f)(Θt)〉
≤ −2c‖Θt − ϑ‖2

2 = −2cε(t).

(13.53)

The Gronwall inequality, e.g., in Lemma 13.2.1 therefore implies that for all t ∈ [0, τ ] it
holds that

ε(t) ≤ ε(0)e−2ct. (13.54)

Hence, we obtain for all t ∈ [0, τ ] that

‖Θt − ϑ‖2 =
√
ε(t) ≤

√
ε(0)e−ct = ‖Θ0 − ϑ‖2e

−ct = ‖ξ − ϑ‖2e
−ct. (13.55)

Next note that the assumption that r ∈ (0,∞] and the fact that ε : [0, T ] → [0,∞) is a
continuous function show that for all t ∈ (ε−1({0})) ∩ [0, T ) = {s ∈ [0, T ) : ε(s) = 0} it
holds that

inf
(
{s ∈ [t, T ] : ε(s) > r2} ∪ {T}

)
> t. (13.56)

Hence, we obtain that for all t ∈ (ε−1({0})) ∩ {0} it holds that

τ = inf
(
{s ∈ [0, T ] : ε(s) > r2} ∪ {T}

)
> 0. (13.57)

In addition, observe that (13.53) and the assumption that c ∈ (0,∞) assure that for all
t ∈ [0, τ ] with ε(t) > 0 it holds that

ε′(t) ≤ −2cε(t) < 0. (13.58)

The fact that ε′ : [0, T ]→ [0,∞) is a continuous function therefore demonstrates that for
all t ∈ [0, τ ] ∩ [0, T ) with ε(t) > 0 it holds that

inf({u ∈ [t, T ] : ε′(u) > 0} ∪ {T}) > t. (13.59)
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This shows that for all t ∈ (ε−1((0,∞))) ∩ {0} it holds that

inf({u ∈ [0, T ] : ε′(u) > 0} ∪ {T}) > 0. (13.60)

Next note that the fundamental theorem of calculus and the assumption that ξ ∈ B imply
that for all s ∈ [0, T ] with s < inf({u ∈ [0, T ] : ε′(u) > 0} ∪ {T}) it holds that

ε(s) = ε(0) +

∫ s

0

ε′(u) du ≤ ε(0) = ‖ξ − ϑ‖2
2 ≤ r2. (13.61)

Combining this with (13.60) establishes that for all t ∈ (ε−1((0,∞))) ∩ {0} it holds that
τ > 0. This and (13.57) ensure that

τ > 0. (13.62)

Combining this and (13.55) demonstrates that

‖Θτ − ϑ‖2 ≤ ‖ξ − ϑ‖2e
−cτ < r. (13.63)

The fact that ε : [0, T ] → [0,∞) is a continuous function and (13.62) hence assure that
τ = T . Combining this with (13.55) proves that for all t ∈ [0, T ] it holds that

‖Θt − ϑ‖2 ≤ ‖ξ − ϑ‖2e
−ct. (13.64)

This establishes item (ii). It thus remains to prove item (iii). For this observe that (13.48)
and item (i) in Lemma 13.2.8 demonstrate that for all θ ∈ B it holds that

0 ≤ c
2
‖θ − ϑ‖2

2 ≤ f(θ)− f(ϑ). (13.65)

Combining this, (13.64), and item (ii) implies that for all t ∈ [0, T ] it holds that

0 ≤ c
2
‖Θt − ϑ‖2

2 ≤ f(Θt)− f(ϑ) (13.66)

This establishes item (iii). The proof of Proposition 13.3.1 is thus complete.

13.3.2 Existence and uniqueness of solutions of ODEs

Lemma 13.3.2 (Local existence of maximal solution of ordinary differential equations).
Let d ∈ N, ξ ∈ Rd, T ∈ (0,∞), let ~·~ : Rd → [0,∞) be a norm, and let g : Rd → Rd be
a locally Lipschitz continuous function. Then there exist a unique real number τ ∈ (0, T ]
and a unique continuous function Θ: [0, τ)→ Rd such that for all t ∈ [0, τ) it holds that

lim inf
s↗τ

[
~Θs~ + 1

(T−s)

]
=∞ and Θt = ξ +

∫ t

0

g(Θs) ds. (13.67)

Lemma 13.3.3 (Local existence of maximal solution of ordinary differential equations
on an infinite time interval). Let d ∈ N, ξ ∈ Rd, let ~·~ : Rd → [0,∞) be a norm, and
let g : Rd → Rd be a locally Lipschitz continuous function. Then there exist a unique
extended real number τ ∈ (0,∞] and a unique continuous function Θ: [0, τ) → Rd such
that for all t ∈ [0, τ) it holds that

lim inf
s↗τ

[
~Θs~ + s

]
=∞ and Θt = ξ +

∫ t

0

g(Θs) ds. (13.68)
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Proof of Lemma 13.3.3. First, observe that Lemma 13.3.2 implies that there exist unique
real numbers τn ∈ (0, n], n ∈ N, and unique continuous functions Θ(n) : [0, τn) → Rd,
n ∈ N, such that for all n ∈ N, t ∈ [0, τn) it holds that

lim inf
s↗τn

[
�

�Θ(n)
s

�

� + 1
(n−s)

]
=∞ and Θ

(n)
t = ξ +

∫ t

0

g(Θ(n)
s ) ds. (13.69)

This shows that for all n ∈ N, t ∈ [0,min{τn+1, n}) it holds that

lim inf
s↗τn+1

[
�

�Θ(n+1)
s

�

� + 1
(n+1−s)

]
=∞ and Θ

(n+1)
t = ξ +

∫ t

0

g(Θ(n+1)
s ) ds. (13.70)

Hence, we obtain that for all n ∈ N, t ∈ [0,min{τn+1, n}) it holds that

lim inf
s↗min{τn+1,n}

[
�

�Θ(n+1)
s

�

� + 1
(n−s)

]
=∞ (13.71)

and Θ
(n+1)
t = ξ +

∫ t

0

g(Θ(n+1)
s ) ds. (13.72)

Combining this with (13.69) demonstrates that for all n ∈ N it holds that

τn = min{τn+1, n} and Θ(n) = Θ(n+1)|[0,min{τn+1,n}). (13.73)

Therefore, we obtain that for all n ∈ N it holds that

τn ≤ τn+1 and Θ(n) = Θ(n+1)|[0,τn). (13.74)

Next let t ∈ (0,∞] be the extended real number given by

t = lim
n→∞

τn (13.75)

and let Θ : [0, t)→ Rd satisfy for all n ∈ N, t ∈ [0, τn) that

Θt = Θ
(n)
t . (13.76)

Observe that for all t ∈ [0, t) there exists n ∈ N such that t ∈ [0, τn). This, (13.69), and
(13.74) assure that for all t ∈ [0, t) it holds that Θ ∈ C([0, t),Rd) and

Θt = ξ +

∫ t

0

g(Θs) ds. (13.77)

In addition, note that (13.73) ensures that for all n ∈ N, k ∈ {n, n+ 1, n+ 2, . . .} it holds
that

min{τk+1, n} = min{τk+1, k, n} = min{min{τk+1, k}, n} = min{τk, n}. (13.78)

This shows that for all n ∈ N, k ∈ {n + 1, n + 2, n + 3, . . . } it holds that min{τk, n} =
min{τk−1, n}. Hence, we obtain that for all n ∈ N, k ∈ {n + 1, n + 2, n + 3, . . .} it holds
that

min{τk, n} = min{τk−1, n} = . . . = min{τn+1, n} = min{τn, n} = τn. (13.79)
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Combining this with the fact that (τn)n∈N ⊆ [0,∞) is a non-decreasing sequence implies
that for all n ∈ N it holds that

min{t, n} = min
{

lim
k→∞

τk, n
}

= lim
k→∞

(
min{τk, n}

)
= lim

k→∞
τn = τn. (13.80)

Therefore, we obtain that for all n ∈ N with t < n it holds that

τn = min{t, n} = t. (13.81)

This, (13.69), and (13.76) demonstrate that for all n ∈ N with t < n it holds that

lim inf
s↗t

~Θs~ = lim inf
s↗τn

~Θs~ = lim inf
s↗τn

�

�Θ(n)
s

�

�

= − 1
(n−t) + lim inf

s↗τn

[
�

�Θ(n)
s

�

� + 1
(n−t)

]
= − 1

(n−t) + lim inf
s↗τn

[
�

�Θ(n)
s

�

� + 1
(n−s)

]
=∞.

(13.82)

Therefore, we obtain that
lim inf
s↗t

[
~Θs~ + s

]
=∞. (13.83)

Next note that for all t̂ ∈ (0,∞], Θ̂ ∈ C([0, t̂),Rd), n ∈ N, t ∈ [0,min{̂t, n}) with
lim infs↗t̂[~Θ̂s~ + s] =∞ and ∀ s ∈ [0, t̂) : Θ̂s = ξ +

∫ s
0
g(Θ̂u) du it holds that

lim inf
s↗min{̂t,n}

[
~Θ̂s~ + 1

(n−s)

]
=∞ and Θ̂t = ξ +

∫ t

0

g(Θ̂s) ds. (13.84)

This and (13.69) demonstrate that for all t̂ ∈ (0,∞], Θ̂ ∈ C([0, t̂),Rd), n ∈ N with
lim inft↗t̂[~Θ̂t~ + t] =∞ and ∀ t ∈ [0, t̂) : Θ̂t = ξ +

∫ t
0
g(Θ̂s) ds it holds that

min{̂t, n} = τn and Θ̂|[0,τn) = Θ(n). (13.85)

Combining (13.77) and (13.83) hence assures that for all t̂ ∈ (0,∞], Θ̂ ∈ C([0, t̂),Rd),
n ∈ N with lim inft↗t̂[~Θ̂t~ + t] =∞ and ∀ t ∈ [0, t̂) : Θ̂t = ξ +

∫ t
0
g(Θ̂s) ds it holds that

min{̂t, n} = τn = min{t, n} and Θ̂|[0,τn) = Θ(n) = Θ|[0,τn). (13.86)

This and (13.75) show that for all t̂ ∈ (0,∞], Θ̂ ∈ C([0, t̂),Rd) with lim inft↗t̂[~Θ̂t~+t] =

∞ and ∀ t ∈ [0, τ̂) : Θ̂t = ξ +
∫ t

0
g(Θ̂s) ds it holds that

t̂ = t and Θ̂ = Θ. (13.87)

Combining this, (13.77), and (13.83) completes the proof of Lemma 13.3.3.

13.3.3 Approximation of local minima through gradient flows
revisited

Theorem 13.3.4 (Approximation of local minima through gradient flows revisited). Let
d ∈ N and let c ∈ (0,∞), r ∈ (0,∞], ϑ ∈ Rd, B = {w ∈ Rd : ‖w − ϑ‖2 ≤ r}, ξ ∈ B,
f ∈ C2(Rd,R) satisfy for all θ ∈ B that

〈θ − ϑ, (∇f)(θ)〉 ≥ c‖θ − ϑ‖2
2 (13.88)

(cf. Definitions 3.1.16 and 13.2.2). Then
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(i) there exists a unique continuous function Θ: [0,∞)→ Rd such that for all t ∈ [0,∞)
it holds that

Θt = ξ −
∫ t

0

(∇f)(Θs) ds, (13.89)

(ii) it holds that {θ ∈ B : f(θ) = infw∈B f(w)} = {ϑ},

(iii) it holds for all t ∈ [0,∞) that ‖Θt − ϑ‖2 ≤ e−ct‖ξ − ϑ‖2, and

(iv) it holds for all t ∈ [0,∞) that

0 ≤ c
2
‖Θt − ϑ‖2

2 ≤ f(Θt)− f(ϑ). (13.90)

Proof of Theorem 13.3.4. First, observe that the assumption that f ∈ C2(Rd,R) ensures
that Rd 3 θ 7→ −(∇f)(θ) ∈ Rd is a continuously differentiable function. The fundamental
theorem of calculus hence implies that Rd 3 θ 7→ −(∇f)(θ) ∈ Rd is a locally Lipschitz
continuous function. Combining this with Lemma 13.3.3 (applied with g(θ) x −(∇f)(θ)
for θ ∈ Rd in the notation of Lemma 13.3.3) proves that there exists a unique extended
real number τ ∈ (0,∞] and a unique continuous function Θ: [0, τ) → Rd such that for
all t ∈ [0, τ) it holds that

lim inf
s↗τ

[
‖Θs‖2 + s

]
=∞ and Θt = ξ −

∫ t

0

(∇f)(Θs) ds. (13.91)

Next observe that Proposition 13.3.1 proves that for all t ∈ [0, τ) it holds that

‖Θt − ϑ‖2 ≤ e−ct‖ξ − ϑ‖2. (13.92)

This implies that

lim inf
s↗τ

‖Θs‖2 ≤
[
lim inf
s↗τ

‖Θs − ϑ‖2

]
+ ‖ϑ‖2

≤
[
lim inf
s↗τ

e−ct‖ξ − ϑ‖2

]
+ ‖ϑ‖2 ≤ ‖ξ − ϑ‖2 + ‖ϑ‖2 <∞.

(13.93)

This and (13.91) demonstrate that τ = ∞. This proves item (i). Moreover, note that
Proposition 13.3.1 and item (i) establish items (ii), (iii), and (iv). The proof of Theo-
rem 13.3.4 is thus complete.

13.3.4 Approximation error with respect to the objective func-
tion

Corollary 13.3.5 (Approximation error with respect to the objective function). Let
d ∈ N and let c, L ∈ (0,∞), r ∈ (0,∞], ϑ ∈ Rd, B = {w ∈ Rd : ‖w − ϑ‖2 ≤ r}, ξ ∈ B,
f ∈ C2(Rd,R) satisfy for all θ ∈ B that

〈θ − ϑ, (∇f)(θ)〉 ≥ c‖θ − ϑ‖2
2 and ‖(∇f)(θ)‖2 ≤ L‖θ − ϑ‖2 (13.94)

(cf. Definitions 3.1.16 and 13.2.2). Then
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(i) there exists a unique continuous function Θ: [0,∞)→ Rd such that for all t ∈ [0,∞)
it holds that

Θt = ξ −
∫ t

0

(∇f)(Θs) ds, (13.95)

(ii) it holds that {θ ∈ B : f(θ) = infw∈B f(w)} = {ϑ},

(iii) it holds for all t ∈ [0,∞) that ‖Θt − ϑ‖2 ≤ e−ct‖ξ − ϑ‖2, and

(iv) it holds for all t ∈ [0,∞) that

0 ≤ c
2
‖Θt − ϑ‖2

2 ≤ f(Θt)− f(ϑ) ≤ L
2
‖Θt − ϑ‖2

2 ≤ L
2
e−2ct‖ξ − ϑ‖2

2. (13.96)

Proof of Corollary 13.3.5. Theorem 13.3.4 and Lemma 13.2.9 establish items (i)–(iv).
The proof of Corollary 13.3.5 is thus complete.
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Deterministic gradient descent type
optimization methods

14.1 The gradient descent optimization method

In this section we review and study the classical plain vanilla GD optimization method
(cf., for example, Nesterov [23, Section 1.2.3], Boyd & Vandenberghe [2, Section 9.3],
and Bubeck [3, Chapter 3]). A simple intuition behind the GD optimization method is
the idea to solve a minimization problem by performing successive steps in direction of
the steepest descents of the objective function, that is, by performing successive steps in
the opposite direction of the gradients of the objective function. A slightly different and
maybe a bit more accurate perspective for the GD optimization method is to view the
GD optimization method as a plain vanilla Euler discretization of the gradient flow ODE
in Theorem 13.3.4 in Chapter 13.

Definition 14.1.1 (Gradient descent optimization method). Let d ∈ N, (γn)n∈N ⊆
[0,∞), ξ ∈ Rd and let f : Rd → R and g : Rd → Rd satisfy for all θ ∈ {v ∈ Rd : (f
is differentiable at v)} that

g(θ) = (∇f)(θ). (14.1)

Then we say that Θ is the gradient descent process for the objective function f with
generalized gradient g, learning rates (γn)n∈N, and initial value ξ (we say that Θ is the
gradient descent process for the objective function f with learning rates (γn)n∈N and initial
value ξ) if and only if it holds that Θ: N0 → Rd is the function from N0 to Rd which
satisfies for all n ∈ N that

Θ0 = ξ and Θn = Θn−1 − γng(Θn−1). (14.2)

14.1.1 Lyapunov-type stability for GD type optimization meth-
ods

Lemma 13.2.3 in Subsection 13.2.2 and Corollary 13.2.5 in Subsection 13.2.3 in Chapter 13
above, in particular, illustrate how Lyapunov-type functions can be employed to establish
convergence properties for gradient flows. The next two results, Proposition 14.1.2 and
Corollary 14.1.3 below, are, roughly speaking, the time-discrete anologon of Lemma 13.2.3
and Corollary 13.2.5, respectively.
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Proposition 14.1.2 (Lyapunov-type stability for discrete-time dynamical systems). Let
d ∈ N, ξ ∈ Rd, c ∈ (0,∞), (γn)n∈N ⊆ [0, c], let V : Rd → R, Φ: Rd × [0,∞) → Rd, and
ε : [0, c]→ [0,∞) satisfy for all θ ∈ Rd, t ∈ [0, c] that

V (Φ(θ, t)) ≤ ε(t)V (θ), (14.3)

and let Θ: N0 → Rd satisfy for all n ∈ N that

Θ0 = ξ and Θn = Φ(Θn−1, γn). (14.4)

Then it holds for all n ∈ N0 that

V (Θn) ≤
[

n∏
k=1

ε(γk)

]
V (ξ). (14.5)

Proof of Proposition 14.1.2. We prove (14.5) by induction on n ∈ N0. For the base case
n = 0 note that the assumption that Θ0 = ξ ensures that V (Θ0) = V (ξ). This establishes
(14.5) in the base case n = 0. For the induction step observe (14.4) and (14.3) ensure
that for all n ∈ N0 with V (Θn) ≤ (

∏n
k=1 ε(γk))V (ξ) it holds that

V (Θn+1) = V (Φ(Θn, γn+1)) ≤ ε(γn+1)V (Θn)

≤ ε(γn+1)

([
n∏
k=1

ε(γk)

]
V (ξ)

)
=

[
n+1∏
k=1

ε(γk)

]
V (ξ).

(14.6)

Induction thus establishes (14.5). This completes the proof of Proposition 14.1.2.

Corollary 14.1.3 (On quadratic Lyapunov-type functions for the GD optimization
method). Let d ∈ N, c ∈ (0,∞), ϑ, ξ ∈ Rd, (γn)n∈N ⊆ [0, c], f ∈ C1(Rd,R), let
~·~ : Rd → [0,∞) be a norm, let ε : [0, c] → [0,∞) satisfy for all θ ∈ Rd, t ∈ [0, c]
that

~θ − t(∇f)(θ)− ϑ~
2 ≤ ε(t)~θ − ϑ~

2, (14.7)

and let Θ: N0 → Rd satisfy for all n ∈ N that

Θ0 = ξ and Θn = Θn−1 − γn(∇f)(Θn−1). (14.8)

Then it holds for all n ∈ N0 that

~Θn − ϑ~ ≤
[

n∏
k=1

[ε(γk)]
1/2

]
~ξ − ϑ~. (14.9)

Proof of Corollary 14.1.3. Throughout this proof let V : Rd → R satisfy for all θ ∈ Rd

that
V (θ) = ~θ − ϑ~

2. (14.10)

Observe that Proposition 14.1.2 (applied with V x V in the notation of Proposi-
tion 14.1.2) implies that for all n ∈ N0 it holds that

~Θn − ϑ~
2 = V (Θn) ≤

[
n∏
k=1

ε(γk)

]
V (ξ) =

[
n∏
k=1

ε(γk)

]
~ξ − ϑ~

2. (14.11)

This establishes (14.9). The proof of Corollary 14.1.3 is thus complete.

Dissemination prohibited. July 29, 2021 216



Chapter 14. Deterministic GD type optimization methods

Corollary 14.1.3, in particular, illustrates that the one-step Lyapunov stability as-
sumption in (14.7) may provide us suitable estimates for the approximation errors asso-
ciated to the GD optimization method; see (14.9) above. The next result, Lemma 14.1.4
below, now provides us sufficient conditions which ensure that the one-step Lyapunov
stability condition in (14.7) is satisfied so that we are in the position to apply Corol-
lary 14.1.3 above to obtain estimates for the approximation errors associated to the GD
optimization method. Lemma 14.1.4 employs the growth condition and the coercivity-
type condition in (13.94) in Corollary 13.3.5 above. Results similar to Lemma 14.1.4
can, e.g., be found in Dereich & Müller-Gronbach [7, Remark 2.1] and Jentzen et al. [16,
Lemma 2.1]. We will employ the statement of Lemma 14.1.4 in our error analysis for the
GD optimization method in Subsection 14.1.2 below.

Lemma 14.1.4 (Sufficient conditions for a one-step Lyapunov-type stability condition).
Let d ∈ N, let 〈〈·, ·〉〉 : Rd × Rd → R be a scalar product, let ~·~ : Rd → [0,∞) satisfy for
all v ∈ Rd that ~v~ =

√
〈〈v, v〉〉, and let c, L ∈ (0,∞), r ∈ (0,∞], ϑ ∈ Rd, B = {w ∈

Rd : ~w − ϑ~ ≤ r}, f ∈ C1(Rd,R) satisfy for all θ ∈ B that

〈〈θ − ϑ, (∇f)(θ)〉〉 ≥ c~θ − ϑ~
2 and ~(∇f)(θ)~ ≤ L~θ − ϑ~. (14.12)

Then

(i) it holds that c ≤ L,

(ii) it holds for all θ ∈ B, γ ∈ [0,∞) that

~θ − γ(∇f)(θ)− ϑ~
2 ≤ (1− 2γc+ γ2L2)~θ − ϑ~

2, (14.13)

(iii) it holds for all γ ∈ (0, 2c
L2 ) that 0 ≤ 1− 2γc+ γ2L2 < 1, and

(iv) it holds for all θ ∈ B, γ ∈ [0, c
L2 ] that

~θ − γ(∇f)(θ)− ϑ~
2 ≤ (1− cγ)~θ − ϑ~

2. (14.14)

Proof of Lemma 14.1.4. First of all, note that (14.12) ensures that for all θ ∈ B, γ ∈
[0,∞) it holds that

~θ − γ(∇f)(θ)− ϑ~
2 = ~(θ − ϑ)− γ(∇f)(θ)~

2

= ~θ − ϑ~
2 − 2γ 〈〈θ − ϑ, (∇f)(θ)〉〉+ γ2

~(∇f)(θ)~
2

≤ ~θ − ϑ~
2 − 2γc~θ − ϑ~

2 + γ2L2
~θ − ϑ~

2

= (1− 2γc+ γ2L2)~θ − ϑ~
2.

(14.15)

This establishes item (ii). Moreover, note that the fact that B\{ϑ} 6= ∅ and (14.15) assure
that for all γ ∈ [0,∞) it holds that

1− 2γc+ γ2L2 ≥ 0. (14.16)

Hence, we obtain that

1− c2

L2 = 1− 2c2

L2 + c2

L2 = 1− 2
[
c
L2

]
c+

[
c2

L4

]
L2

= 1− 2
[
c
L2

]
c+

[
c
L2

]2
L2 ≥ 0.

(14.17)
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This implies that c2

L2 ≤ 1. Therefore, we obtain that c2 ≤ L2. This establishes item (i).
Furthermore, observe that (14.16) ensures that for all γ ∈ (0, 2c

L2 ) it holds that

0 ≤ 1− 2γc+ γ2L2 = 1− γ︸︷︷︸
>0

(2c− γL2)︸ ︷︷ ︸
>0

< 1. (14.18)

This proves item (iii). In addition, note that for all γ ∈ [0, c
L2 ] it holds that

1− 2γc+ γ2L2 ≤ 1− 2γc+ γ
[
c
L2

]
L2 = 1− cγ. (14.19)

Combining this with (14.15) establishes item (iv). The proof of Lemma 14.1.4 is thus
complete.

Exercise 14.1.1. Prove or disprove the following statement: There exist d ∈ N, γ ∈
(0,∞), ε ∈ (0, 1), r ∈ (0,∞], ϑ, θ ∈ Rd and there exists a function g : Rd → Rd such that
‖θ − ϑ‖2 ≤ r, ∀ ξ ∈ {w ∈ Rd : ‖w − ϑ‖2 ≤ r} : ‖ξ − γg(ξ)− ϑ‖2 ≤ ε‖ξ − ϑ‖2, and

〈θ − ϑ, g(θ)〉 < min
{

1−ε2
2γ
, γ

2

}
max

{
‖θ − ϑ‖2

2, ‖g(θ)‖2
2

}
. (14.20)

Exercise 14.1.2. Prove or disprove the following statement: For all d ∈ N, r ∈ (0,∞],
ϑ ∈ Rd and for every function g : Rd → Rd which satisfies ∀ θ ∈ {w ∈ Rd : ‖w − ϑ‖2 ≤
r} : 〈θ − ϑ, g(θ)〉 ≥ 1

2
max{‖θ − ϑ‖2

2, ‖g(θ)‖2
2} it holds that

∀θ ∈ {w ∈ Rd : ‖w−ϑ‖2 ≤ r} :
(
〈θ−ϑ, g(θ)〉 ≥ 1

2
‖θ−ϑ‖2

2 ∧ ‖g(θ)‖2 ≤ 2‖θ−ϑ‖2

)
. (14.21)

Exercise 14.1.3. Prove or disprove the following statement: For all d ∈ N, c ∈ (0,∞),
r ∈ (0,∞], ϑ, v ∈ Rd, f ∈ C1(Rd,R), s, t ∈ [0, 1] such that ‖v‖2 ≤ r, s ≤ t, and
∀ θ ∈ {w ∈ Rd : ‖w − ϑ‖2 ≤ r} : 〈θ − ϑ, (∇f)(θ)〉 ≥ c‖θ − ϑ‖2

2 it holds that

f(ϑ+ tv)− f(ϑ+ sv) ≥ c
2
(t2 − s2)‖v‖2

2. (14.22)

Exercise 14.1.4. Prove or disprove the following statement: For every d ∈ N, c ∈ (0,∞),
r ∈ (0,∞], ϑ ∈ Rd and for every f ∈ C1(Rd,R) which satisfies for all v ∈ Rd, s, t ∈ [0, 1]
with ‖v‖2 ≤ r and s ≤ t that f(ϑ+ tv)− f(ϑ+ sv) ≥ c(t2 − s2)‖v‖2

2 it holds that

∀ θ ∈ {w ∈ Rd : ‖w − ϑ‖2 ≤ r} : 〈θ − ϑ, (∇f)(θ)〉 ≥ 2c‖θ − ϑ‖2
2. (14.23)

Exercise 14.1.5. Let d ∈ N and for every v ∈ Rd, R ∈ [0,∞] let BR(v) = {w ∈
Rd : ‖w − v‖2 ≤ R}. Prove or disprove the following statement: For all r ∈ (0,∞],
ϑ ∈ Rd, f ∈ C1(Rd,R) the following two statements are equivalent:

(i) There exists c ∈ (0,∞) such that for all θ ∈ Br(ϑ) it holds that

〈θ − ϑ, (∇f)(θ)〉 ≥ c‖θ − ϑ‖2
2. (14.24)

(ii) There exists c ∈ (0,∞) such that for all v, w ∈ Br(ϑ), s, t ∈ [0, 1] with s ≤ t it holds
that

f(ϑ+ t(v − ϑ))− f(ϑ+ s(v − ϑ)) ≥ c(t2 − s2)‖v − ϑ‖2
2. (14.25)

Exercise 14.1.6. Let d ∈ N and for every v ∈ Rd, R ∈ [0,∞] let BR(v) = {w ∈
Rd : ‖v − w‖2 ≤ R}. Prove or disprove the following statement: For all r ∈ (0,∞],
ϑ ∈ Rd, f ∈ C1(Rd,R) the following three statements are equivalent:
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(i) There exist c, L ∈ (0,∞) such that for all θ ∈ Br(ϑ) it holds that

〈θ − ϑ, (∇f)(θ)〉 ≥ c‖θ − ϑ‖2
2 and ‖(∇f)(θ)‖2 ≤ L‖θ − ϑ‖2. (14.26)

(ii) There exist γ ∈ (0,∞), ε ∈ (0, 1) such that for all θ ∈ Br(ϑ) it holds that

‖θ − γ(∇f)(θ)− ϑ‖2 ≤ ε‖θ − ϑ‖2. (14.27)

(iii) There exists c ∈ (0,∞) such that for all θ ∈ Br(ϑ) it holds that

〈θ − ϑ, (∇f)(θ)〉 ≥ cmax
{
‖θ − ϑ‖2

2, ‖(∇f)(θ)‖2
2

}
. (14.28)

14.1.2 Error analysis for the GD optimization method

In this subsection we provide an error analysis for the GD optimization method. In
particular, we show under suitable hypotheses (cf. Proposition 14.1.5 below) that the GD
optimization method (cf. Definition 14.1.1 above) converges to a local minimum of the
objective function of the considered optimization problem.

14.1.2.1 Error estimates for the GD optimization method

Proposition 14.1.5 (Error estimates for the GD optimization method). Let d ∈ N,
c, L ∈ (0,∞), r ∈ (0,∞], (γn)n∈N ⊆ [0, 2c

L2 ], ϑ ∈ Rd, B = {w ∈ Rd : ‖w − ϑ‖ ≤ r}, ξ ∈ B,
f ∈ C1(Rd,R) satisfy for all θ ∈ B that

〈θ − ϑ, (∇f)(θ)〉 ≥ c‖θ − ϑ‖2
2 and ‖(∇f)(θ)‖2 ≤ L‖θ − ϑ‖2, (14.29)

and let Θ: N0 → Rd satisfy for all n ∈ N that

Θ0 = ξ and Θn = Θn−1 − γn(∇f)(Θn−1). (14.30)

Then

(i) it holds that {θ ∈ B : f(θ) = infw∈B f(w)} = {ϑ},

(ii) it holds for all n ∈ N that 0 ≤ 1− 2cγn + (γn)2L2 ≤ 1,

(iii) it holds for all n ∈ N that ‖Θn − ϑ‖2 ≤ (1− 2cγn + (γn)2L2)1/2‖Θn−1 − ϑ‖2 ≤ r,

(iv) it holds for all n ∈ N0 that

‖Θn − ϑ‖2 ≤
[

n∏
k=1

(1− 2cγk + (γk)
2L2)

1/2

]
‖ξ − ϑ‖2, (14.31)

and

(v) it holds for all n ∈ N0 that

0 ≤ f(Θn)− f(ϑ) ≤ L
2
‖Θn − ϑ‖2

2 ≤ L
2

[
n∏
k=1

(1− 2cγk + (γk)
2L2)

]
‖ξ − ϑ‖2

2. (14.32)
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Proof of Proposition 14.1.5. First, note that (14.29) and item (ii) in Lemma 13.2.8 prove
item (i). Moreover, observe that (14.29), item (iii) in Lemma 14.1.4, the assumption that
for all n ∈ N it holds that γn ∈ [0, 2c

L2 ], and the fact that

1− 2c
[

2c
L2

]
+
[

2c
L2

]2
L2 = 1− 4c2

L2 +
[

4c2

L4

]
L2 = 1− 4c2

L2 + 4c2

L2 = 1 (14.33)

and establish item (ii). Next we claim that for all n ∈ N it holds that

‖Θn − ϑ‖2 ≤ (1− 2cγn + (γn)2L2)
1/2‖Θn−1 − ϑ‖2 ≤ r. (14.34)

We now prove (14.34) by induction on n ∈ N. For the base case n = 1 observe that the
assumption that Θ0 = ξ ∈ B, item (ii) in Lemma 14.1.4, and item (ii) ensure that

‖Θ1 − ϑ‖2
2 = ‖Θ0 − γ1(∇f)(Θ0)− ϑ‖2

2

≤ (1− 2cγ1 + (γ1)2L2)‖Θ0 − ϑ‖2
2

≤ ‖Θ0 − ϑ‖2
2 ≤ r2.

(14.35)

This establishes (14.34) in the base case n = 1. For the induction step observe that
item (ii) in Lemma 14.1.4 and item (ii) imply that for all n ∈ N with Θn ∈ B it holds
that

‖Θn+1 − ϑ‖2
2 = ‖Θn − γn+1(∇f)(Θn)− ϑ‖2

2

≤ (1− 2cγn+1 + (γn+1)2L2)︸ ︷︷ ︸
∈[0,1]

‖Θn − ϑ‖2
2

≤ ‖Θn − ϑ‖2
2 ≤ r2.

(14.36)

This demonstrates that for all n ∈ N with ‖Θn − ϑ‖2 ≤ r it holds that

‖Θn+1 − ϑ‖2 ≤ (1− 2cγn+1 + (γn+1)2L2)
1/2‖Θn − ϑ‖2 ≤ r. (14.37)

Induction thus proves (14.34). Next observe that (14.34) establishes item (iii). Moreover,
note that induction and item (iii) prove item (iv). Furthermore, note that item (iii) and
the fact that Θ0 = ξ ∈ B ensure that for all n ∈ N0 it holds that Θn ∈ B. Combining
this, (14.29), and Lemma 13.2.9 with items (i) and (iv) establishes item (v). The proof
of Proposition 14.1.5 is thus complete.

14.1.2.2 Size of the learning rates

In the next result, Corollary 14.1.6 below, we, roughly speaking, specialize Proposi-
tion 14.1.5 to the case where the learning rates (γn)n∈N ⊆ [0, 2c

L2 ] are a constant sequence.

Corollary 14.1.6 (Convergence of gradient descent for constant learning rates). Let
d ∈ N, c, L ∈ (0,∞), r ∈ (0,∞], γ ∈ (0, 2c

L2 ), ϑ ∈ Rd, B = {w ∈ Rd : ‖w − ϑ‖ ≤ r},
ξ ∈ B, f ∈ C1(Rd,R) satisfy for all θ ∈ B that

〈θ − ϑ, (∇f)(θ)〉 ≥ c‖θ − ϑ‖2
2 and ‖(∇f)(θ)‖2 ≤ L‖θ − ϑ‖2, (14.38)

and let Θ: N0 → Rd satisfy for all n ∈ N that

Θ0 = ξ and Θn = Θn−1 − γ(∇f)(Θn−1). (14.39)

Then
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(i) it holds that {θ ∈ B : f(θ) = infw∈B f(w)} = {ϑ},

(ii) it holds that 0 ≤ 1− 2cγ + γ2L2 < 1,

(iii) it holds for all n ∈ N0 that

‖Θn − ϑ‖2 ≤
[
1− 2cγ + γ2L2

]n/2‖ξ − ϑ‖2, (14.40)

and

(iv) it holds for all n ∈ N0 that

0 ≤ f(Θn)− f(ϑ) ≤ L
2
‖Θn − ϑ‖2

2 ≤ L
2

[
1− 2cγ + γ2L2

]n‖ξ − ϑ‖2
2. (14.41)

Proof of Corollary 14.1.6. Observe that item (iii) in Lemma 14.1.4 proves item (ii). In
addition, note that Proposition 14.1.5 establishes items (i), (iii), and (iv). The proof of
Corollary 14.1.6 is thus complete.

Corollary 14.1.6 above establishes under suitable hypotheses convergence of the GD
optimization method in the case where the learning rates are constant and strictly smaller
than 2c

L2 . The next result, Lemma 14.1.7 below, demonstrates that the condition that the
learning rates are strictly smaller than 2c

L2 in Corollary 14.1.6 can, in general, not be
relaxed.

Lemma 14.1.7 (Sharp bounds on the learning rate for the convergence of gradient
descent). Let d ∈ N, α ∈ (0,∞), γ ∈ R, ϑ ∈ Rd, ξ ∈ Rd\{ϑ}, let f : Rd → R satisfy for
all θ ∈ Rd that

f(θ) = α
2
‖θ − ϑ‖2

2, (14.42)

and let Θ: N0 → Rd satisfy for all n ∈ N that

Θ0 = ξ and Θn = Θn−1 − γ(∇f)(Θn−1). (14.43)

Then

(i) it holds for all θ ∈ Rd that 〈θ − ϑ, (∇f)(θ)〉 = α‖θ − ϑ‖2
2,

(ii) it holds for all θ ∈ Rd that ‖(∇f)(θ)‖2 = α‖θ − ϑ‖2,

(iii) it holds for all n ∈ N0 that ‖Θn − ϑ‖2 = |1− γα|n‖ξ − ϑ‖2, and

(iv) it holds that

lim inf
n→∞

‖Θn − ϑ‖2 = lim sup
n→∞

‖Θn − ϑ‖2 =


0 : γ ∈ (0, 2/α)

‖ξ − ϑ‖2 : γ ∈ {0, 2/α}
∞ : γ ∈ R \ [0, 2/α].

(14.44)

Proof of Lemma 14.1.7. First of all, note that Lemma 13.2.4 ensures that for all θ ∈ Rd

it holds that f ∈ C∞(Rd,R) and

(∇f)(θ) = α
2
(2(θ − ϑ)) = α(θ − ϑ). (14.45)
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This proves item (ii). Moreover, observe that (14.45) assures that for all θ ∈ Rd it holds
that

〈θ − ϑ, (∇f)(θ)〉 = 〈θ − ϑ, α(θ − ϑ)〉 = α‖θ − ϑ‖2. (14.46)

This establishes item (i). Next note that (14.43) and (14.45) demonstrate that for all
n ∈ N it holds that

Θn − ϑ = Θn−1 − γ(∇f)(Θn−1)− ϑ
= Θn−1 − γα(Θn−1 − ϑ)− ϑ
= (1− γα)(Θn−1 − ϑ).

(14.47)

The assumption that Θ0 = ξ and induction hence prove that for all n ∈ N0 it holds that

Θn − ϑ = (1− γα)n(Θ0 − ϑ) = (1− γα)n(ξ − ϑ). (14.48)

Therefore, we obtain for all n ∈ N0 that

‖Θn − ϑ‖2 = |1− γα|n‖ξ − ϑ‖2. (14.49)

This establishes item (iii). Combining item (iii) with the fact that for all t ∈ (0, 2/α) it
holds that |1 − tα| ∈ [0, 1), the fact that for all t ∈ {0, 2/α} it holds that |1 − tα| = 1,
the fact that for all t ∈ R \ [0, 2/α] it holds that |1 − tα| ∈ (1,∞), and the fact that
‖ξ − ϑ‖2 > 0 establishes item (iv). The proof of Lemma 14.1.7 is thus complete.

14.1.2.3 Convergence rates

The next result, Corollary 14.1.8 below, establishes a convergence rate for the GD op-
timization method in the case of possibly non-constant learning rates. We prove Corol-
lary 14.1.8 through an application of Proposition 14.1.5 above.

Corollary 14.1.8 (Qualitative convergence of gradient descent). Let d ∈ N, c, L ∈
(0,∞), (γn)n∈N ⊆ [0,∞), ξ, ϑ ∈ Rd, f ∈ C1(Rd,R) satisfy for all θ ∈ Rd that

〈θ − ϑ, (∇f)(θ)〉 ≥ c‖θ − ϑ‖2
2, ‖(∇f)(θ)‖2 ≤ L‖θ − ϑ‖2, (14.50)

and 0 < lim inf
n→∞

γn ≤ lim sup
n→∞

γn <
2c
L2 , (14.51)

and let Θ: N0 → Rd satisfy for all n ∈ N that

Θ0 = ξ and Θn = Θn−1 − γn(∇f)(Θn−1). (14.52)

Then

(i) it holds that {θ ∈ Rd : f(θ) = infw∈Rd f(w)} = {ϑ},

(ii) there exist ε ∈ (0, 1), C ∈ R such that for all n ∈ N0 it holds that

‖Θn − ϑ‖2 ≤ εnC, (14.53)

and

(iii) there exist ε ∈ (0, 1), C ∈ R such that for all n ∈ N0 it holds that

0 ≤ f(Θn)− f(ϑ) ≤ εnC. (14.54)
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Proof of Corollary 14.1.8. Throughout this proof let α, β ∈ R satisfy

0 < α < lim inf
n→∞

γn ≤ lim sup
n→∞

γn < β < 2c
L2 (14.55)

(cf. (14.51)), let m ∈ N satisfy for all n ∈ N that γm+n ∈ [α, β], and let h : R→ R satisfy
for all t ∈ R that

h(t) = 1− 2ct+ t2L2. (14.56)

Observe that (14.50) and item (ii) in Lemma 13.2.8 prove item (i). In addition, observe
that the fact that for all t ∈ R it holds that h′(t) = −2c + 2tL2 implies that for all
t ∈ (−∞, c

L2 ] it holds that

h′(t) ≤ −2c+ 2
[
c
L2

]
L2 = 0. (14.57)

The fundamental theorem of calculus hence assures that for all t ∈ [α, β]∩ [0, c
L2 ] it holds

that

h(t) = h(α) +

∫ t

α

h′(s) ds ≤ h(α) +

∫ t

α

0 ds = h(α) ≤ max{h(α), h(β)}. (14.58)

Furthermore, observe that the fact that for all t ∈ R it holds that h′(t) = −2c + 2tL2

implies that for all t ∈ [ c
L2 ,∞) it holds that

h′(t) ≥ −2c+ 2
[
c
L2

]
L2 = 0. (14.59)

The fundamental theorem of calculus hence ensures that for all t ∈ [α, β] ∩ [ c
L2 ,∞) it

holds that

max{h(α), h(β)} ≥ h(β) = h(t) +

∫ β

t

h′(s) ds ≥ h(t) +

∫ β

t

0 ds = h(t). (14.60)

Combining this and (14.58) establishes that for all t ∈ [α, β] it holds that

h(t) ≤ max{h(α), h(β)}. (14.61)

Moreover, observe that the fact that α, β ∈ (0, 2c
L2 ) and item (iii) in Lemma 14.1.4 ensure

that
{h(α), h(β)} ⊆ [0, 1). (14.62)

Hence, we obtain that
max{h(α), h(β)} ∈ [0, 1). (14.63)

This implies that there exists ε ∈ R such that

0 ≤ max{h(α), h(β)} < ε < 1. (14.64)

Next note that the fact that for all n ∈ N it holds that γm+n ∈ [α, β] ⊆ [0, 2c
L2 ], items (ii)

and (iv) in Proposition 14.1.5 (applied with d x d, c x c, L x L, r x ∞, (γn)n∈N x
(γm+n)n∈N, ϑ x ϑ, ξ x Θm, f x f in the notation of Proposition 14.1.5), (14.50),
(14.52), and (14.61) demonstrate that for all n ∈ N it holds that

‖Θm+n − ϑ‖2 ≤

[
n∏
k=1

(1− 2cγm+k + (γm+k)
2L2)

1/2

]
‖Θm − ϑ‖2

=

[
n∏
k=1

(h(γm+k))
1/2

]
‖Θm − ϑ‖2

≤ (max{h(α), h(β)})n/2‖Θm − ϑ‖2

≤ ε
n/2‖Θm − ϑ‖2.

(14.65)
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This shows that for all n ∈ N with n > m it holds that

‖Θn − ϑ‖2 ≤ ε
(n−m)/2‖Θm − ϑ‖2. (14.66)

The fact that for all n ∈ N0 with n ≤ m it holds that

‖Θn − ϑ‖2 =

[
‖Θn − ϑ‖2

εn/2

]
ε
n/2 ≤

[
max

{
‖Θk − ϑ‖2

εk/2
: k ∈ {0, 1, . . . ,m}

}]
ε
n/2 (14.67)

hence assures that for all n ∈ N0 it holds that

‖Θn − ϑ‖2

≤ max

{[
max

{
‖Θk − ϑ‖2

εk/2
: k ∈ {0, 1, . . . ,m}

}]
ε
n/2, ε

(n−m)/2‖Θm − ϑ‖2

}
= (ε

1/2)n
[
max

{
max

{
‖Θk − ϑ‖2

εk/2
: k ∈ {0, 1, . . . ,m}

}
, ε−

m/2‖Θm − ϑ‖2

}]
= (ε

1/2)n
[
max

{
‖Θk − ϑ‖2

εk/2
: k ∈ {0, 1, . . . ,m}

}]
.

(14.68)

This proves item (ii). In addition, note that Lemma 13.2.9, item (i), and (14.68) assure
that for all n ∈ N0 it holds that

0 ≤ f(Θn)− f(ϑ) ≤ L
2
‖Θn − ϑ‖2

2

≤ εnL

2

[
max

{
‖Θk − ϑ‖2

2

εk
: k ∈ {0, 1, . . . ,m}

}]
.

(14.69)

This establishes item (iii). The proof of Corollary 14.1.8 is thus complete.

14.1.2.4 Error estimates in the case of small learning rates

Inequality (14.31) in item (iv) in Proposition 14.1.5 above provides us an error estimate
for the GD optimization method in the case where the learning rates (γn)n∈N in Proposi-
tion 14.1.5 satisfy that for all n ∈ N it holds that γn ≤ 2c

L2 . The error estimate in (14.31)
can be simplified in the special case where the learning rates (γn)n∈N satisfy the more
restrictive condition that for all n ∈ N it holds that γn ≤ c

L2 . This is the subject of the
next result, Corollary 14.1.9 below. We prove Corollary 14.1.9 through an application of
Proposition 14.1.5 above.

Corollary 14.1.9 (Error estimates in the case of small learning rates). Let d ∈ N,
c, L ∈ (0,∞), r ∈ (0,∞], (γn)n∈N ⊆ [0, c

L2 ], ϑ ∈ Rd, B = {w ∈ Rd : ‖w − ϑ‖ ≤ r}, ξ ∈ B,
f ∈ C1(Rd,R) satisfy for all θ ∈ B that

〈θ − ϑ, (∇f)(θ)〉 ≥ c‖θ − ϑ‖2
2 and ‖(∇f)(θ)‖2 ≤ L‖θ − ϑ‖2, (14.70)

and let Θ: N0 → Rd satisfy for all n ∈ N that

Θ0 = ξ and Θn = Θn−1 − γn(∇f)(Θn−1). (14.71)

Then

(i) it holds that {θ ∈ B : f(θ) = infw∈B f(w)} = {ϑ},
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(ii) it holds for all n ∈ N that 0 ≤ 1− cγn ≤ 1,

(iii) it holds for all n ∈ N0 that

‖Θn − ϑ‖2 ≤
[

n∏
k=1

(1− cγk)1/2

]
‖ξ − ϑ‖2, (14.72)

and

(iv) it holds for all n ∈ N0 that

0 ≤ f(Θn)− f(ϑ) ≤ L
2

[
n∏
k=1

(1− cγk)
]
‖ξ − ϑ‖2

2. (14.73)

Proof of Corollary 14.1.9. Note that item (ii) in Proposition 14.1.5 and the assumption
that for all n ∈ N it holds that γn ∈ [0, c

L2 ] ensure that for all n ∈ N it holds that

0 ≤ 1− 2cγn + (γn)2L2 ≤ 1− 2cγn + γn

[ c
L2

]
L2 = 1− 2cγn + γnc = 1− cγn ≤ 1. (14.74)

This proves item (ii). Moreover, note that (14.74) and Proposition 14.1.5 establish
items (i), (iii), and (iv). The proof of Corollary 14.1.9 is thus complete.

In the next result, Corollary 14.1.10 below, we, roughly speaking, specialize Corol-
lary 14.1.9 above to the case where the learning rates (γn)n∈N ⊆ [0, c

L2 ] are a constant
sequence.

Corollary 14.1.10 (Error estimates in the case of small and constant learning rates).
Let d ∈ N, c, L ∈ (0,∞), r ∈ (0,∞], γ ∈ (0, c

L2 ], ϑ ∈ Rd, B = {w ∈ Rd : ‖w − ϑ‖ ≤ r},
ξ ∈ B, f ∈ C1(Rd,R) satisfy for all θ ∈ B that

〈θ − ϑ, (∇f)(θ)〉 ≥ c‖θ − ϑ‖2
2 and ‖(∇f)(θ)‖2 ≤ L‖θ − ϑ‖2, (14.75)

and let Θ: N0 → Rd satisfy for all n ∈ N that

Θ0 = ξ and Θn = Θn−1 − γ(∇f)(Θn−1). (14.76)

Then

(i) it holds that {θ ∈ B : f(θ) = infw∈B f(w)} = {ϑ},

(ii) it holds that 0 ≤ 1− cγ < 1,

(iii) it holds for all n ∈ N0 that ‖Θn − ϑ‖2 ≤ (1− cγ)n/2‖ξ − ϑ‖2, and

(iv) it holds for all n ∈ N0 that 0 ≤ f(Θn)− f(ϑ) ≤ L
2

(1− cγ)n ‖ξ − ϑ‖2
2.

Proof of Corollary 14.1.10. Note that Corollary 14.1.10 is an immediate consequence of
Corollary 14.1.9. The proof of Corollary 14.1.10 is thus complete.
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14.1.2.5 On the spectrum of the Hessian of the objective function at a local
minimum

A crucial ingredient in our error analysis for the GD optimization method in Sub-
sections 14.1.2.1–14.1.2.4 above is to employ the growth and the coercivity-type hy-
potheses, e.g., in (14.29) in Proposition 14.1.5 above. In this subsection we disclose
in Lemma 14.1.12 below suitable conditions on the Hessians of the objective function of
the considered optimization problem which are sufficient to ensure that (14.29) is satisfied
so that we are in the position to apply the error analysis in Subsections 14.1.2.1–14.1.2.4
above (cf. Corollary 14.1.13 below). Our proof of Lemma 14.1.12 employs the following
classical result (see Lemma 14.1.11 below) for symmetric matrices with real entries.

Lemma 14.1.11 (Properties of the spectrum of real symmetric matrices). Let d ∈ N,
let A ∈ Rd×d be a symmetric matrix, and let S = {λ ∈ C : (∃ v ∈ Cd\{0} : Av = λv)}.
Then

(i) it holds that S = {λ ∈ R : (∃ v ∈ Rd\{0} : Av = λv)} ⊆ R,

(ii) it holds that

sup
v∈Rd\{0}

[
‖Av‖2

‖v‖2

]
= max

λ∈S
|λ|, (14.77)

and

(iii) it holds for all v ∈ Rd that

min(S )‖v‖2
2 ≤ 〈v,Av〉 ≤ max(S )‖v‖2

2. (14.78)

Proof of Lemma 14.1.11. Throughout this proof let e1, e2, . . . , ed ∈ Rd be the vectors
given by

e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , ed = (0, . . . , 0, 1). (14.79)

Observe that the spectral theorem for symmetric matrices (see, e.g., Petersen [24, Theo-
rem 4.3.4]) proves that there exist (d×d)-matrices Λ = (Λi,j)i,j∈{1,2,...,d}, O = (Oi,j)i,j∈{1,2,...,d} ∈
Rd×d such that S = {Λ1,1,Λ2,2, . . . ,Λd,d}, O∗O = OO∗ = Id, A = OΛO∗, and

Λ = (Λi,j)i,j∈{1,2,...,d} =

Λ1,1 0
. . .

0 Λd,d

 ∈ Rd×d (14.80)

(cf. Definition 2.2.9). Hence, we obtain that S ⊆ R. Next note that the assumption
that S = {λ ∈ C : (∃ v ∈ Cd\{0} : Av = λv)} ensures that for every λ ∈ S there exists
v ∈ Cd\{0} such that

ARe(v) + iAIm(v) = Av = λv = λRe(v) + iλIm(v). (14.81)

The fact that S ⊆ R therefore demonstrates that for every λ ∈ S there exists v ∈ Rd\{0}
such that Av = λv. This and the fact that S ⊆ R ensure that S ⊆ {λ ∈ R : (∃ v ∈
Rd\{0} : Av = λv)}. Combining this and the fact that {λ ∈ R : (∃ v ∈ Rd\{0} : Av =
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λv)} ⊆ S proves item (i). Furthermore, note that (14.80) assures that for all v =
(v1, v2, . . . , vd) ∈ Rd it holds that

‖Λv‖ =

[
d∑
i=1

|Λi,ivi|2
]1/2

≤

[
d∑
i=1

max
{
|Λ1,1|2, . . . , |Λd,d|2

}
|vi|2

]1/2

=
[
max

{
|Λ1,1|, . . . , |Λd,d|

}2‖v‖2
2

]1/2

= max
{
|Λ1,1|, . . . , |Λd,d|

}
‖v‖2

=
(
maxλ∈S |λ|

)
‖v‖2.

(14.82)

The fact that O is an orthogonal matrix and the fact that A = OΛO∗ therefore imply
that for all v ∈ Rd it holds that

‖Av‖2 = ‖OΛO∗v‖2 = ‖ΛO∗v‖2

≤
(
maxλ∈S |λ|

)
‖O∗v‖2

=
(
maxλ∈S |λ|

)
‖v‖2.

(14.83)

This implies that

sup
v∈Rd\{0}

[
‖Av‖2

‖v‖2

]
≤ sup

v∈Rd\{0}

[(
maxλ∈S |λ|

)
‖v‖2

‖v‖2

]
= maxλ∈S |λ|. (14.84)

In addition, note that the fact that S = {Λ1,1,Λ2,2 . . . ,Λd,d} ensures that there exists
j ∈ {1, 2, . . . , d} such that

|Λj,j| = maxλ∈S |λ|. (14.85)

Next observe that the fact that A = OΛO∗, the fact that O is an orthogonal matrix, and
(14.85) imply that

sup
v∈Rd\{0}

[
‖Av‖2

‖v‖2

]
≥ ‖AOej‖2

‖Oej‖2

= ‖OΛO∗Oej‖2 = ‖OΛej‖2

= ‖Λej‖2 = ‖Λj,jej‖2 = |Λj,j| = maxλ∈S |λ|.
(14.86)

Combining this and (14.84) establishes item (ii). It thus remains to prove item (iii). For
this note that (14.80) ensures that for all v = (v1, v2, . . . , vd) ∈ Rd it holds that

〈v,Λv〉 =
d∑
i=1

Λi,i|vi|2 ≤
d∑
i=1

max{Λ1,1, . . . ,Λd,d}|vi|2

= max{Λ1,1, . . . ,Λd,d}‖v‖2
2 = max(S )‖v‖2

2.

(14.87)

The fact that O is an orthogonal matrix and the fact that A = OΛO∗ therefore demon-
strate that for all v ∈ Rd it holds that

〈v, Av〉 = 〈v,OΛO∗v〉 = 〈O∗v,ΛO∗v〉
≤ max(S )‖O∗v‖2

2 = max(S )‖v‖2
2.

(14.88)

Moreover, observe that (14.80) implies that for all v = (v1, v2, . . . , vd) ∈ Rd it holds that

〈v,Λv〉 =
d∑
i=1

Λi,i|vi|2 ≥
d∑
i=1

min{Λ1,1, . . . ,Λd,d}|vi|2

= min{Λ1,1, . . . ,Λd,d}‖v‖2
2 = min(S )‖v‖2

2.

(14.89)
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The fact that O is an orthogonal matrix and the fact that A = OΛO∗ hence demonstrate
that for all v ∈ Rd it holds that

〈v, Av〉 = 〈v,OΛO∗v〉 = 〈O∗v,ΛO∗v〉
≥ min(S )‖O∗v‖2

2 = min(S )‖v‖2
2.

(14.90)

Combining this with (14.88) establishes item (iii). The proof of Lemma 14.1.11 is thus
complete.

We now present the promised Lemma 14.1.12 which discloses suitable conditions (cf.
(14.91)–(14.92) below) on the Hessians of the objective function of the considered opti-
mization problem which are sufficient to ensure that (14.29) is satisfied so that we are in
the position to apply the error analysis in Subsections 14.1.2.1–14.1.2.4 above.

Lemma 14.1.12 (Conditions on the spectrum of the Hessian of the objective function
at a local minimum). Let d ∈ N, let ~·~ : Rd×d → [0,∞) satisfy for all A ∈ Rd×d that

~A~ = supv∈Rd\{0}
‖Av‖2
‖v‖2 , and let λ, α ∈ (0,∞), β ∈ [α,∞), ϑ ∈ Rd, f ∈ C2(Rd,R) satisfy

for all v, w ∈ Rd that

(∇f)(ϑ) = 0, ~(Hess f)(v)− (Hess f)(w)~ ≤ λ‖v − w‖2, (14.91)

and {µ ∈ R : (∃u ∈ Rd\{0} : [(Hess f)(ϑ)]u = µu)} ⊆ [α, β]. (14.92)

Then it holds for all θ ∈ {w ∈ Rd : ‖w − ϑ‖2 ≤ α
λ
} that

〈θ − ϑ, (∇f)(θ)〉 ≥ α
2
‖θ − ϑ‖2

2 and ‖(∇f)(θ)‖2 ≤ 3β
2
‖θ − ϑ‖2. (14.93)

Proof of Lemma 14.1.12. Throughout this proof let B ⊆ Rd be the set given by

B =
{
w ∈ Rd : ‖w − ϑ‖2 ≤ α

λ

}
(14.94)

and let S ⊆ C be the set given by

S = {µ ∈ C : (∃u ∈ Cd\{0} : [(Hess f)(ϑ)]u = µu)}. (14.95)

Observe that the fact that (Hess f)(ϑ) ∈ Rd×d is a symmetric matrix, item (i) in Lemma
14.1.11, and (14.92) imply that

S = {µ ∈ R : (∃u ∈ Rd\{0} : [(Hess f)(ϑ)]u = µu)} ⊆ [α, β]. (14.96)

Next note that the assumption that (∇f)(ϑ) = 0 and the fundamental theorem of calculus
ensure that for all θ, w ∈ Rd it holds that

〈w, (∇f)(θ)〉 = 〈w, (∇f)(θ)− (∇f)(ϑ)〉

=
〈
w, [(∇f)(ϑ+ t(θ − ϑ))]t=1

t=0

〉
=

〈
w,

1

∫
0
[(Hess f)(ϑ+ t(θ − ϑ))](θ − ϑ) dt

〉
=

∫ 1

0

〈
w, [(Hess f)(ϑ+ t(θ − ϑ))](θ − ϑ)

〉
dt

=
〈
w, [(Hess f)(ϑ)](θ − ϑ)

〉
+

∫ 1

0

〈
w,
[
(Hess f)(ϑ+ t(θ − ϑ))− (Hess f)(ϑ)

]
(θ − ϑ)

〉
dt.

(14.97)
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The fact that (Hess f)(ϑ) ∈ Rd×d is a symmetric matrix, item (iii) in Lemma 14.1.11,
the Cauchy-Schwarz inequality, (14.96), (14.91), and (14.92) therefore imply that for all
θ ∈ B it holds that

〈θ − ϑ, (∇f)(θ)〉
≥
〈
θ − ϑ, [(Hess f)(ϑ)](θ − ϑ)

〉
−
∣∣∣∣∫ 1

0

〈
θ − ϑ,

[
(Hess f)(ϑ+ t(θ − ϑ))− (Hess f)(ϑ)

]
(θ − ϑ)

〉
dt

∣∣∣∣
≥ min(S )‖θ − ϑ‖2

2

−
∫ 1

0

‖θ − ϑ‖2

∥∥[(Hess f)(ϑ+ t(θ − ϑ))− (Hess f)(ϑ)
]
(θ − ϑ)

∥∥
2

dt

≥ α‖θ − ϑ‖2
2

−
∫ 1

0

‖θ − ϑ‖2~(Hess f)(ϑ+ t(θ − ϑ))− (Hess f)(ϑ)~‖θ − ϑ‖2 dt

≥ α‖θ − ϑ‖2
2 −

[∫ 1

0

λ‖ϑ+ t(θ − ϑ)− ϑ‖2 dt

]
‖θ − ϑ‖2

2

=

(
α−

[∫ 1

0

t dt

]
λ‖θ − ϑ‖2

)
‖θ − ϑ‖2

2 =
(
α− λ

2
‖θ − ϑ‖2

)
‖θ − ϑ‖2

2

≥
(
α− λα

2λ

)
‖θ − ϑ‖2

2 = α
2
‖θ − ϑ‖2

2.

(14.98)

Moreover, observe that (14.91), (14.96), (14.97), the fact that (Hess f)(ϑ) ∈ Rd×d is a
symmetric matrix, item (ii) in Lemma 14.1.11, the Cauchy-Schwarz inequality, and the
assumption that α ≤ β ensure that for all θ ∈ B, w ∈ Rd with ‖w‖2 = 1 it holds that

〈w, (∇f)(θ)〉
≤
∣∣〈w, [(Hess f)(ϑ)](θ − ϑ)

〉∣∣
+

∣∣∣∣∫ 1

0

〈
w,
[
(Hess f)(ϑ+ t(θ − ϑ))− (Hess f)(ϑ)

]
(θ − ϑ)

〉
dt

∣∣∣∣
≤ ‖w‖2‖[(Hess f)(ϑ)](θ − ϑ)‖2

+

∫ 1

0

‖w‖2‖[(Hess f)(ϑ+ t(θ − ϑ))− (Hess f)(ϑ)](θ − ϑ)‖2dt

≤

[
sup

v∈Rd\{0}

‖[(Hess f)(ϑ)]v‖2

‖v‖2

]
‖θ − ϑ‖2

+

∫ 1

0

~(Hess f)(ϑ+ t(θ − ϑ))− (Hess f)(ϑ)~‖θ − ϑ‖2 dt

≤ max
(
S
)
‖θ − ϑ‖2 +

[∫ 1

0

λ‖ϑ+ t(θ − ϑ)− ϑ‖2 dt

]
‖θ − ϑ‖2

≤
(
β + λ

[∫ 1

0

t dt

]
‖θ − ϑ‖2

)
‖θ − ϑ‖2 =

(
β + λ

2
‖θ − ϑ‖2

)
‖θ − ϑ‖2

≤
(
β + λα

2λ

)
‖θ − ϑ‖2 =

[
2β+α

2

]
‖θ − ϑ‖2 ≤ 3β

2
‖θ − ϑ‖2.

(14.99)

Therefore, we obtain for all θ ∈ B that

‖(∇f)(θ)‖2 = sup
w∈Rd,‖w‖2=1

[〈w, (∇f)(θ)〉] ≤ 3β
2
‖θ − ϑ‖2. (14.100)
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Combining this and (14.98) establishes (14.93). The proof of Lemma 14.1.12 is thus
complete.

The next result, Corollary 14.1.13 below, combines Lemma 14.1.12 with Proposi-
tion 14.1.5 to obtain an error analysis which assumes the conditions in (14.91)–(14.92)
in Lemma 14.1.12 above. A result similar to Corollary 14.1.13 can, e.g., be found in
Nesterov [23, Theorem 1.2.4].

Corollary 14.1.13 (Error analysis for the GD optimization method under conditions
on the Hessian of the objective function). Let d ∈ N, let ~·~ : Rd×d → [0,∞) satisfy

for all A ∈ Rd×d that ~A~ = supv∈Rd\{0}
‖Av‖2
‖v‖2 , and let λ, α ∈ (0,∞), β ∈ [α,∞),

(γn)n∈N ⊆ [0, 4α
9β2 ], ϑ, ξ ∈ Rd, f ∈ C2(Rd,R) satisfy for all v, w ∈ Rd that

(∇f)(ϑ) = 0, ~(Hess f)(v)− (Hess f)(w)~ ≤ λ‖v − w‖2, (14.101)

{µ ∈ R : (∃u ∈ Rd\{0} : [(Hess f)(ϑ)]u = µu)} ⊆ [α, β], (14.102)

and ‖ξ − ϑ‖2 ≤ α
λ

, and let Θ: N0 → Rd satisfy for all n ∈ N that

Θ0 = ξ and Θn = Θn−1 − γn(∇f)(Θn−1). (14.103)

Then it holds for all n ∈ N that

‖Θn − ϑ‖2 ≤
[

n∏
k=1

[
1− αγk + 9β2(γk)2

4

]1/2
]
‖ξ − ϑ‖2 and (14.104)

0 ≤ f(Θn)− f(ϑ) ≤ 3β
4

[
n∏
k=1

[
1− αγk + 9β2(γk)2

4

]]
‖ξ − ϑ‖2

2. (14.105)

Proof of Corollary 14.1.13. Throughout this proof let 〈·, ·〉 : Rd × Rd → R be the d-
dimensional Euclidean scalar product. Note that (14.101), (14.102), and Lemma 14.1.12
prove that for all θ ∈ {w ∈ Rd : ‖w − ϑ‖2 ≤ α

λ
} it holds that

〈θ − ϑ, (∇f)(θ)〉 ≥ α
2
‖θ − ϑ‖2

2 and ‖(∇f)(θ)‖2 ≤ 3β
2
‖θ − ϑ‖2. (14.106)

Combining this, the assumption that ‖ξ − ϑ‖2 ≤ α
λ
, (14.103), and items (iv)–(v) in

Proposition 14.1.5 (applied with c x α
2
, L x 3β

2
, r x α

λ
in the notation of Proposition

14.1.5) establishes (14.104) and (14.105). The proof of Corollary 14.1.13 is thus complete.

14.1.2.6 Equivalent conditions on the objective function

Lemma 14.1.14. Let d ∈ N, let 〈〈·, ·〉〉 : Rd×Rd → R be a scalar product, let ~·~ : Rd →
[0,∞) satisfy for all v ∈ Rd that ~v~ =

√
〈〈v, v〉〉, let γ ∈ (0,∞), ε ∈ (0, 1), r ∈ (0,∞],

ϑ ∈ Rd, B = {w ∈ Rd : ~w − ϑ~ ≤ r}, and let g : Rd → Rd satisfy for all θ ∈ B that

~θ − γg(θ)− ϑ~ ≤ ε~θ − ϑ~. (14.107)

Then it holds for all θ ∈ B that

〈〈θ − ϑ, g(θ)〉〉 ≥ max
{[

1−ε2
2γ

]
~θ − ϑ~

2, γ
2
~g(θ)~

2
}

≥ min
{

1−ε2
2γ
, γ

2

}
max

{
~θ − ϑ~

2,~g(θ)~
2}. (14.108)
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Proof of Lemma 14.1.14. First, note that (14.107) ensures that for all θ ∈ B it holds that

ε2
~θ − ϑ~

2 ≥ ~θ − γg(θ)− ϑ~
2 = ~(θ − ϑ)− γg(θ)~

2

= ~θ − ϑ~
2 − 2γ 〈〈θ − ϑ, g(θ)〉〉+ γ2

~g(θ)~
2.

(14.109)

Hence, we obtain for all θ ∈ B that

2γ〈〈θ − ϑ, g(θ)〉〉 ≥ (1− ε2)~θ − ϑ~
2 + γ2

~g(θ)~
2

≥ max
{

(1− ε2)~θ − ϑ~
2, γ2

~g(θ)~
2} ≥ 0.

(14.110)

This demonstrates that for all θ ∈ B it holds that

〈〈θ − ϑ, g(θ)〉〉 ≥ 1
2γ

max
{

(1− ε2)~θ − ϑ~
2, γ2

~g(θ)~
2}

= max
{[

1−ε2
2γ

]
~θ − ϑ~

2, γ
2
~g(θ)~

2
}

≥ min
{

1−ε2
2γ
, γ

2

}
max

{
~θ − ϑ~

2,~g(θ)~
2}.

(14.111)

The proof of Lemma 14.1.14 is thus complete.

Lemma 14.1.15. Let d ∈ N, let 〈〈·, ·〉〉 : Rd×Rd → R be a scalar product, let ~·~ : Rd →
[0,∞) satisfy for all v ∈ Rd that ~v~ =

√
〈〈v, v〉〉, let c ∈ (0,∞), r ∈ (0,∞], ϑ ∈ Rd,

B = {w ∈ Rd : ~w − ϑ~ ≤ r}, and let g : Rd → Rd satisfy for all θ ∈ B that

〈〈θ − ϑ, g(θ)〉〉 ≥ cmax
{

~θ − ϑ~
2,~g(θ)~

2}. (14.112)

Then it holds for all θ ∈ B that

〈〈θ − ϑ, g(θ)〉〉 ≥ c~θ − ϑ~
2 and ~g(θ)~ ≤ 1

c
~θ − ϑ~. (14.113)

Proof of Lemma 14.1.15. Observe that (14.112) and the Cauchy-Schwarz inequality as-
sure that for all θ ∈ B it holds that

~g(θ)~
2 ≤ max

{
~θ − ϑ~

2,~g(θ)~
2} ≤ 1

c
〈〈θ − ϑ, g(θ)〉〉 ≤ 1

c
~θ − ϑ~~g(θ)~. (14.114)

Therefore, we obtain for all θ ∈ B that

~g(θ)~ ≤ 1
c
~θ − ϑ~. (14.115)

Combining this with (14.112) completes the proof of Lemma 14.1.15.

Lemma 14.1.16. Let d ∈ N, c ∈ (0,∞), r ∈ (0,∞], ϑ ∈ Rd, B = {w ∈ Rd : ‖w − ϑ‖2 ≤
r}, f ∈ C1(Rd,R) satisfy for all θ ∈ B that

〈θ − ϑ, (∇f)(θ)〉 ≥ c‖θ − ϑ‖2
2. (14.116)

Then it holds for all v ∈ Rd, s, t ∈ [0, 1] with ‖v‖2 ≤ r and s ≤ t that

f(ϑ+ tv)− f(ϑ+ sv) ≥ c
2
(t2 − s2)‖v‖2

2. (14.117)
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Proof of Lemma 14.1.16. First of all, observe that (14.116) implies that for all v ∈ Rd

with ‖v‖2 ≤ r it holds that

〈(∇f)(ϑ+ v), v〉 ≥ c‖v‖2
2. (14.118)

The fundamental theorem of calculus hence ensures that for all v ∈ Rd, s, t ∈ [0, 1] with
‖v‖2 ≤ r and s ≤ t it holds that

f(ϑ+ tv)− f(ϑ+ sv) =
[
f(ϑ+ hv)

]h=t

h=s

=

∫ t

s

f ′(ϑ+ hv)v dh

=

∫ t

s

1
h
〈(∇f)(ϑ+ hv), hv〉 dh

≥
∫ t

s

c
h
‖hv‖2

2 dh

= c

[∫ t

s

h dh

]
‖v‖2

2 = c
2
(t2 − s2)‖v‖2

2.

(14.119)

The proof of Lemma 14.1.16 is thus complete.

Lemma 14.1.17. Let d ∈ N, c ∈ (0,∞), r ∈ (0,∞], ϑ ∈ Rd, B = {w ∈ Rd : ‖w − ϑ‖2 ≤
r}, f ∈ C1(Rd,R) satisfy for all v ∈ Rd, s, t ∈ [0, 1] with ‖v‖2 ≤ r and s ≤ t that

f(ϑ+ tv)− f(ϑ+ sv) ≥ c(t2 − s2)‖v‖2
2. (14.120)

Then it holds for all θ ∈ B that

〈θ − ϑ, (∇f)(θ)〉 ≥ 2c‖θ − ϑ‖2
2. (14.121)

Proof of Lemma 14.1.17. Observe that (14.120) ensures that for all s ∈ (0, r]∩R, θ ∈ Rd

with ‖θ − ϑ‖2 < s it holds that

〈θ − ϑ, (∇f)(θ)〉 = f ′(θ)(θ − ϑ) = lim
h↘0

(
1
h

[
f(θ + h(θ − ϑ))− f(θ)

])
= lim

h↘0

(
1

h

[
f
(
ϑ+ (1+h)‖θ−ϑ‖2

s

(
s

‖θ−ϑ‖2 (θ − ϑ)
))

− f
(
ϑ+ ‖θ−ϑ‖2

s

(
s

‖θ−ϑ‖2 (θ − ϑ)
))])

≥ lim sup
h↘0

(
c

h

([
(1+h)‖θ−ϑ‖2

s

]2

−
[
‖θ−ϑ‖2

s

]2)∥∥∥ s
‖θ−ϑ‖2 (θ − ϑ)

∥∥∥2

2

)
= c

[
lim sup
h↘0

(
(1+h)2−1

h

)][
‖θ−ϑ‖2

s

]2∥∥∥ s
‖θ−ϑ‖2 (θ − ϑ)

∥∥∥2

2

= c

[
lim sup
h↘0

(
2h+h2

h

)]
‖θ − ϑ‖2

2

= c

[
lim sup
h↘0

(2 + h)

]
‖θ − ϑ‖2

2 = 2c‖θ − ϑ‖2
2.

(14.122)

Hence, we obtain that for all θ ∈ Rd with ‖θ − ϑ‖2 < r it holds that

〈θ − ϑ, (∇f)(θ)〉 ≥ 2c‖θ − ϑ‖2
2. (14.123)

Combining this with the fact that the function Rd 3 v 7→ (∇f)(v) ∈ Rd is continuous
establishes (14.121). The proof of Lemma 14.1.17 is thus complete.
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Lemma 14.1.18. Let d ∈ N, L ∈ (0,∞), r ∈ (0,∞], ϑ ∈ Rd, B = {w ∈ Rd : ‖w− ϑ‖2 ≤
r}, f ∈ C1(Rd,R) satisfy for all θ ∈ B that

‖(∇f)(θ)‖2 ≤ L‖θ − ϑ‖2. (14.124)

Then it holds for all v, w ∈ B that

|f(v)− f(w)| ≤ Lmax
{
‖v − ϑ‖2, ‖w − ϑ‖2

}
‖v − w‖2. (14.125)

Proof of Lemma 14.1.18. Observe that (14.124), the fundamental theorem of calculus,
and the Cauchy-Schwarz inequality assure that for all v, w ∈ B it holds that

|f(v)− f(w)| =
∣∣∣[f(w + h(v − w))

]h=1

h=0

∣∣∣
=

∣∣∣∣∫ 1

0

f ′(w + h(v − w))(v − w) dh

∣∣∣∣
=

∣∣∣∣∫ 1

0

〈
(∇f)

(
w + h(v − w)

)
, v − w

〉
dh

∣∣∣∣
≤
∫ 1

0

‖(∇f)
(
hv + (1− h)w

)
‖2‖v − w‖2 dh

≤
∫ 1

0

L‖hv + (1− h)w − ϑ‖2‖v − w‖2 dh

≤
∫ 1

0

L
(
h‖v − ϑ‖2 + (1− h)‖w − ϑ‖2

)
‖v − w‖2 dh

= L ‖v − w‖2

[∫ 1

0

(
h‖v − ϑ‖2 + h‖w − ϑ‖2

)
dh

]
= L

(
‖v − ϑ‖2 + ‖w − ϑ‖2

)
‖v − w‖2

[∫ 1

0

h dh

]
≤ Lmax{‖v − ϑ‖2, ‖w − ϑ‖2}‖v − w‖2.

(14.126)

The proof of Lemma 14.1.18 is thus complete.

Lemma 14.1.19. Let d ∈ N, L ∈ (0,∞), r ∈ (0,∞], ϑ ∈ Rd, B = {w ∈ Rd : ‖w− ϑ‖2 ≤
r}, f ∈ C1(Rd,R) satisfy for all v, w ∈ B that

|f(v)− f(w)| ≤ Lmax
{
‖v − ϑ‖2, ‖w − ϑ‖2

}
‖v − w‖2. (14.127)

Then it holds for all θ ∈ B that

‖(∇f)(θ)‖2 ≤ L‖θ − ϑ‖2. (14.128)

Proof of Lemma 14.1.19. Note that (14.127) implies that for all θ ∈ Rd with ‖θ−ϑ‖2 < r
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it holds that

‖(∇f)(θ)‖2

= sup
w∈Rd,‖w‖2=1

[
f ′(θ)(w)

]
= sup

w∈Rd,‖w‖2=1

[
lim
h↘0

[
1
h
(f(θ + hw)− f(θ))

]]
≤ sup

w∈Rd,‖w‖2=1

[
lim inf
h↘0

[
L
h

max
{
‖θ + hw − ϑ‖2, ‖θ − ϑ‖2

}
‖θ + hw − θ‖2

]]
= sup

w∈Rd,‖w‖2=1

[
lim inf
h↘0

[
Lmax

{
‖θ + hw − ϑ‖2, ‖θ − ϑ‖2

}
1
h
‖hw‖2

]]
= sup

w∈Rd,‖w‖2=1

[
lim inf
h↘0

[
Lmax

{
‖θ + hw − ϑ‖2, ‖θ − ϑ‖2

}]]
= sup

w∈Rd,‖w‖2=1

[
L‖θ − ϑ‖2

]
= L‖θ − ϑ‖2.

(14.129)

The fact that the function Rd 3 v 7→ (∇f)(v) ∈ Rd is continuous therefore establishes
(14.128). The proof of Lemma 14.1.19 is thus complete.

Corollary 14.1.20. Let d ∈ N, r ∈ (0,∞], ϑ ∈ Rd, B = {w ∈ Rd : ‖w − ϑ‖2 ≤ r},
f ∈ C1(Rd,R). Then the following four statements are equivalent:

(i) There exist c, L ∈ (0,∞) such that for all θ ∈ B it holds that

〈θ − ϑ, (∇f)(θ)〉 ≥ c‖θ − ϑ‖2
2 and ‖(∇f)(θ)‖2 ≤ L‖θ − ϑ‖2. (14.130)

(ii) There exist γ ∈ (0,∞), ε ∈ (0, 1) such that for all θ ∈ B it holds that

‖θ − γ(∇f)(θ)− ϑ‖2 ≤ ε‖θ − ϑ‖2. (14.131)

(iii) There exists c ∈ (0,∞) such that for all θ ∈ B it holds that

〈θ − ϑ, (∇f)(θ)〉 ≥ cmax
{
‖θ − ϑ‖2

2, ‖(∇f)(θ)‖2
2

}
. (14.132)

(iv) There exist c, L ∈ (0,∞) such that for all v, w ∈ B, s, t ∈ [0, 1] with s ≤ t it holds
that

f
(
ϑ+ t(v − ϑ)

)
− f

(
ϑ+ s(v − ϑ)

)
≥ c(t2 − s2)‖v − ϑ‖2

2 (14.133)

and |f(v)− f(w)| ≤ Lmax
{
‖v − ϑ‖2, ‖w − ϑ‖2

}
‖v − w‖2. (14.134)

Proof of Corollary 14.1.20. First, note that items (ii)–(iii) in Lemma 14.1.4 prove that
((i) ⇒ (ii)). Next observe that Lemma 14.1.14 demonstrates that ((ii) ⇒ (iii)). More-
over, note that Lemma 14.1.15 establishes that ((iii) ⇒ (i)). In addition, observe that
Lemma 14.1.16 and Lemma 14.1.18 show that ((i) ⇒ (iv)). Finally, note that Lemma
14.1.17 and Lemma 14.1.19 imply that ((iv) ⇒ (i)). The proof of Corollary 14.1.20 is
thus complete.
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14.2 The gradient descent optimization method with

classical momentum

Definition 14.2.1 (Momentum gradient descent optimization method). Let d ∈ N,
(γn)n∈N ⊆ [0,∞), (αn)n∈N ⊆ [0, 1], ξ ∈ Rd and let f : Rd → R and g : Rd → Rd sat-
isfy for all θ ∈ {v ∈ Rd : (f is differentiable at v)} that

g(θ) = (∇f)(θ). (14.135)

Then we say that Θ is the momentum gradient descent process for the objective function
f with generalized gradient g, learning rates (γn)n∈N, momentum decay factors (αn)n∈N,
and initial value ξ (we say that Θ is the momentum gradient descent process for the
objective function f with learning rates (γn)n∈N, momentum decay factors (αn)n∈N, and
initial value ξ) if and only if it holds that Θ: N0 → Rd is the function from N0 to Rd

which satisfies that there exists m : N0 → Rd such that for all n ∈ N it holds that

Θ0 = ξ, m0 = 0, (14.136)

mn = αnmn−1 + (1− αn)g(Θn−1), (14.137)

and Θn = Θn−1 − γnmn. (14.138)

14.2.1 A representation of the momentum GD optimization
method

In (14.136)–(14.138) the momentum GD optimization method is formulated by means
of a one-step recursion. This one-step recursion can efficiently be exploited in an imple-
mentation. The following elementary lemma, Lemma 14.2.2 below, provides a suitable
full-history recursive representation for the momentum GD optimization method, which
enables us to develop a better intuition for the momentum GD optimization method.

Lemma 14.2.2 (A representation of the momentum GD optimization method). Let
d ∈ N, (γn)n∈N ⊆ (0,∞), α ∈ [0, 1], ξ ∈ Rd, let f : Rd → R and g : Rd → Rd satisfy for
all θ ∈ {v ∈ Rd : (f is differentiable at v)} that

g(θ) = (∇f)(θ), (14.139)

and let Θ: N0 → Rd and m : N0 → Rd satisfy for all n ∈ N that

Θ0 = ξ, m0 = 0, Θn = Θn−1 − γnmn, (14.140)

and mn = αmn−1 + (1− α)g(Θn−1). (14.141)

Then

(i) it holds for all n ∈ N0 that

mn = (1− α)

[
n−1∑
k=0

αkg(Θn−1−k)

]
(14.142)

and

Dissemination prohibited. July 29, 2021 235



Chapter 14. Deterministic GD type optimization methods

(ii) it holds for all n ∈ N that

Θn = Θn−1 − γn(1− α)

[
n−1∑
k=0

αkg(Θn−1−k)

]
. (14.143)

Proof of Lemma 14.2.2. We prove (14.142) by induction on n ∈ N0. For the base case
n = 0 observe that (14.140) ensures that m0 = (1−α)0. This establishes (14.142) in the
base case n = 0. For the induction step observe that (14.141) assures that for all n ∈ N0

with

mn = (1− α)

[
n−1∑
k=0

αkg(Θn−1−k)

]
(14.144)

it holds that

mn+1 = αmn + (1− α)g(Θn)

= α

[
(1− α)

[
n−1∑
k=0

αkg(Θn−1−k)

]]
+ (1− α)g(Θn)

= (1− α)

[
n∑
k=1

αkg(Θn−k)

]
+ (1− α)α0g(Θn−0)

= (1− α)

[
n∑
k=0

αkg(Θn−k)

]
= (1− α)

(n+1)−1∑
k=0

αkg(Θ(n+1)−1−k)

.
(14.145)

Induction thus establishes (14.142). The proof of Lemma 14.2.2 is thus complete.

14.2.2 Error analysis for the momentum GD optimization me-
thod in the case of quadratic objective functions

In this subsection we provide in Subsection 14.2.2.2 below an error analysis for the mo-
mentum GD optimization method in the case of quadratic objective functions (cf. Propo-
sition 14.2.7 in Subsection 14.2.2.2 for the precise statement). In this specific case we
also provide in Subsection 14.2.2.3 below a comparison of the convergence speeds of the
plain vanilla GD optimization method and the momentum GD optimization method. In
particular, we prove, roughly speeking, that the momentum GD optimization method
outperfoms the plain vanilla GD optimization method in the specific case of quadratic
objective functions; see Corollary 14.2.9 in Subsection 14.2.2.3 for the precise statement.
For this comparison between the plain vanilla GD optimization method and the momen-
tum GD optimization method we employ a refined error analysis of the plain vanilla
GD optimization method in the case of quadratic objective functions. This refined error
analysis is the subject of the next subsection (Subsection 14.2.2.1 below).

14.2.2.1 Error analysis for the GD optimization method in the case of quad-
ratic objective functions

Lemma 14.2.3 (Error analysis for the GD optimization method in the case of quadratic
objective functions). Let d ∈ N, ξ ∈ Rd, ϑ = (ϑ1, ϑ2, . . . , ϑd) ∈ Rd, κ,K, λ1, λ2, . . . , λd ∈
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(0,∞) satisfy κ = min{λ1, λ2, . . . , λd} and K = max{λ1, λ2, . . . , λd}, let f : Rd → R
satisfy for all θ = (θ1, θ2, . . . , θd) ∈ Rd that

f(θ) = 1
2

[
d∑
i=1

λi|θi − ϑi|2
]
, (14.146)

and let Θ: N0 → Rd satisfy for all n ∈ N that

Θ0 = ξ and Θn = Θn−1 − 2
(K+κ)

(∇f)(Θn−1). (14.147)

Then it holds for all n ∈ N0 that

‖Θn − ϑ‖2 ≤
[K−κ
K+κ

]n‖ξ − ϑ‖2. (14.148)

Proof of Lemma 14.2.3. Throughout this proof let Θ(1),Θ(2), . . . ,Θ(d) : N0 → R satisfy
for all n ∈ N0 that Θn = (Θ

(1)
n ,Θ

(2)
n , . . . ,Θ

(d)
n ). Note that (14.146) implies that for all

θ = (θ1, θ2, . . . , θd) ∈ Rd, i ∈ {1, 2, . . . , d} it holds that(
∂f
∂θi

)
(θ) = λi(θi − ϑi). (14.149)

Combining this and (14.147) ensures that for all n ∈ N, i ∈ {1, 2, . . . , d} it holds that

Θ(i)
n − ϑi = Θ

(i)
n−1 − 2

(K+κ)

(
∂f
∂θi

)
(Θn−1)− ϑi

= Θ
(i)
n−1 − ϑi − 2

(K+κ)

[
λi(Θ

(i)
n−1 − ϑi)

]
=
(
1− 2λi

(K+κ)

)
(Θ

(i)
n−1 − ϑi).

(14.150)

Hence, we obtain that for all n ∈ N it holds that

‖Θn − ϑ‖2
2 =

d∑
i=1

|Θ(i)
n − ϑi|2

=
d∑
i=1

[∣∣1− 2λi
(K+κ)

∣∣2 |Θ(i)
n−1 − ϑi|2

]
≤
[
max

{∣∣1− 2λ1

(K+κ)

∣∣2, . . . , ∣∣1− 2λd
(K+κ)

∣∣2}][ d∑
i=1

|Θ(i)
n−1 − ϑi|2

]
=
[
max

{∣∣1− 2λ1

(K+κ)

∣∣, . . . , ∣∣1− 2λd
(K+κ)

∣∣}]2

‖Θn−1 − ϑ‖2
2.

(14.151)

Moreover, note that the fact that for all i ∈ {1, 2, . . . , d} it holds that λi ≥ κ implies that
for all i ∈ {1, 2, . . . , d} it holds that

1− 2λi
(K+κ)

≤ 1− 2κ
(K+κ)

= K+κ−2κ
K+κ

= K−κ
K+κ
≥ 0. (14.152)

In addition, observe that the fact that for all i ∈ {1, 2, . . . , d} it holds that λi ≤ K implies
that for all i ∈ {1, 2, . . . , d} it holds that

1− 2λi
(K+κ)

≥ 1− 2K
(K+κ)

= K+κ−2K
(K+κ)

= −
[K−κ
K+κ

]
≤ 0. (14.153)
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This and (14.152) ensure that for all i ∈ {1, 2, . . . , d} it holds that∣∣1− 2λi
(K+κ)

∣∣ ≤ K−κ
K+κ

. (14.154)

Combining this with (14.151) demonstrates that for all n ∈ N it holds that

‖Θn − ϑ‖2 ≤
[
max

{∣∣1− 2λ1

K+κ

∣∣, . . . , ∣∣1− 2λd
K+κ

∣∣}]‖Θn−1 − ϑ‖2

≤
[K−κ
K+κ

]
‖Θn−1 − ϑ‖2.

(14.155)

Induction therefore establishes that for all n ∈ N0 it holds that

‖Θn − ϑ‖2 ≤
[K−κ
K+κ

]n‖Θ0 − ϑ‖2 =
[K−κ
K+κ

]n‖ξ − ϑ‖2. (14.156)

The proof of Lemma 14.2.3 is thus complete.

Lemma 14.2.3 above establishes, roughly speaking, the convergence rate K−κ
K+κ

(see
(14.148) above for the precise statement) for the GD optimization method in the case of
the objective function (14.146). The next result, Lemma 14.2.4 below, essentially proves
in the situation of Lemma 14.2.3 that this convergence rate cannot be improved by means
of a difference choice of the learning rate.

Lemma 14.2.4 (Lower bound for the convergence rate of gradient descent for quadratic
objective functions). Let d ∈ N, ξ = (ξ1, ξ2, . . . , ξd), ϑ = (ϑ1, ϑ2, . . . , ϑd) ∈ Rd, γ, κ,K, λ1,
λ2 . . . , λd ∈ (0,∞) satisfy κ = min{λ1, λ2, . . . , λd} and K = max{λ1, λ2, . . . , λd}, let
f : Rd → R satisfy for all θ = (θ1, θ2, . . . , θd) ∈ Rd that

f(θ) = 1
2

[
d∑
i=1

λi|θi − ϑi|2
]
, (14.157)

and let Θ: N0 → Rd satisfy for all n ∈ N that

Θ0 = ξ and Θn = Θn−1 − γ(∇f)(Θn−1). (14.158)

Then it holds for all n ∈ N0 that

‖Θn − ϑ‖2 ≥
[
max{γK − 1, 1− γκ}

]n[
min

{
|ξ1 − ϑ1|, . . . , |ξd − ϑd|

}]
≥
[K−κ
K+κ

]n[
min

{
|ξ1 − ϑ1|, . . . , |ξd − ϑd|

}]
.

(14.159)

Proof of Lemma 14.2.4. Throughout this proof let Θ(1),Θ(2), . . . ,Θ(d) : N0 → R satisfy
for all n ∈ N0 that Θn = (Θ

(1)
n ,Θ

(2)
n , . . . ,Θ

(d)
n ) and let ι, I ∈ {1, 2, . . . , d} satisfy λι = κ

and λI = K. Observe that (14.157) implies that for all θ = (θ1, θ2, . . . , θd) ∈ Rd, i ∈
{1, 2, . . . , d} it holds that (

∂f
∂θi

)
(θ) = λi(θi − ϑi). (14.160)

Combining this with (14.158) implies that for all n ∈ N, i ∈ {1, 2, . . . , d} it holds that

Θ(i)
n − ϑi = Θ

(i)
n−1 − γ

(
∂f
∂θi

)
(Θn−1)− ϑi

= Θ
(i)
n−1 − ϑi − γλi(Θ

(i)
n−1 − ϑi)

= (1− γλi)(Θ(i)
n−1 − ϑi).

(14.161)
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Induction hence proves that for all n ∈ N0, i ∈ {1, 2, . . . , d} it holds that

Θ(i)
n − ϑi = (1− γλi)n(Θ

(i)
0 − ϑi) = (1− γλi)n(ξi − ϑi). (14.162)

This shows that for all n ∈ N0 it holds that

‖Θn − ϑ‖2
2 =

d∑
i=1

|Θ(i)
n − ϑi|2 =

d∑
i=1

[
|1− γλi|2n|ξi − ϑi|2

]
≥
[
min

{
|ξ1 − ϑ1|2, . . . , |ξd − ϑd|2

}][ d∑
i=1

|1− γλi|2n
]

≥
[
min

{
|ξ1 − ϑ1|2, . . . , |ξd − ϑd|2

}][
max{|1− γλ1|2n, . . . , |1− γλd|2n}

]
=
[
min

{
|ξ1 − ϑ1|, . . . , |ξd − ϑd|

}]2[
max{|1− γλ1|, . . . , |1− γλd|}

]2n
.

(14.163)

Furthermore, note that

max{|1− γλ1|, . . . , |1− γλd|} ≥ max{|1− γλI |, |1− γλι|}
= max{|1− γK|, |1− γκ|} ≥ max{γK − 1, 1− γκ}.

(14.164)

In addition, observe that for all α ∈ (−∞, 2
K+κ

] it holds that

max{αK − 1, 1− ακ} ≥ 1− ακ ≥ 1−
[

2
K+κ

]
κ = K+κ−2κ

K+κ
= K−κ
K+κ

. (14.165)

Moreover, note that for all α ∈ [ 2
K+κ

,∞) it holds that

max{αK − 1, 1− ακ} ≥ αK − 1 ≥
[

2
K+κ

]
K − 1 = 2K−(K+κ)

K+κ
= K−κ
K+κ

. (14.166)

Combining this, (14.164), and (14.165) proves that

max{|1− γλ1|, . . . , |1− γλd|} ≥ max{γK − 1, 1− γκ} ≥ K−κ
K+κ
≥ 0. (14.167)

This and (14.163) demonstrate that for all n ∈ N0 it holds that

‖Θn − ϑ‖2

≥
[
max{|1− γλ1|, . . . , |1− γλd|}

]n[
min

{
|ξ1 − ϑ1|, . . . , |ξd − ϑd|

}]
≥
[
max{γK − 1, 1− γκ}

]n[
min

{
|ξ1 − ϑ1|, . . . , |ξd − ϑd|

}]
≥
[K−κ
K+κ

]n[
min

{
|ξ1 − ϑ1|, . . . , |ξd − ϑd|

}]
.

(14.168)

The proof of Lemma 14.2.4 is thus complete.

14.2.2.2 Error analysis for the momentum GD optimization method in the
case of quadratic objective functions

In this subsection we provide in Proposition 14.2.7 below an error analysis for the mo-
mentum GD optimization method in the case of quadratic objective functions. Our
proof of Proposition 14.2.7 employs the two auxiliary results on quadratic matrices in
Lemma 14.2.5 and Lemma 14.2.6 below. Lemma 14.2.5 is a special case of the so-called
Gelfand spectral radius formula in the literature. The proof of Lemma 14.2.5 can, e.g.,
be found in Tropp [29] and Einsiedler & Ward [10, Theorem 11.6]. Lemma 14.2.6 estab-
lishes a formula for the determinants of quadratic block matrices (see (14.170) below for
the precise statement). Lemma 14.2.6 and its proof can, e.g., be found in Silvester [27,
Theorem 3].
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Lemma 14.2.5 (A special case of Gelfand’s spectral radius formula for real matrices).
Let d ∈ N, A ∈ Rd×d, S = {λ ∈ C : (∃ v ∈ Cd\{0} : Av = λv)} and let ~·~ : Rd → [0,∞)
be a norm. Then

lim inf
n→∞

[ sup
v∈Rd\{0}

~Anv~

~v~

]1/n
 = lim sup

n→∞

[ sup
v∈Rd\{0}

~Anv~

~v~

]1/n


= max
λ∈S∪{0}

|λ|.
(14.169)

Lemma 14.2.6 (Determinants for block matrices). Let d ∈ N, A,B,C,D ∈ Rd×d satisfy
CD = DC. Then

det

(
A B
C D

)
︸ ︷︷ ︸
∈R2d×2d

= det(AD −BC) (14.170)

Proof of Lemma 14.2.6. Throughout this proof let Dx ∈ Rd×d, x ∈ R, satisfy for all
x ∈ R that

Dx = D − x Id (14.171)

(cf. Definition 2.2.9). Observe that the fact that for all x ∈ R it holds that CDx = DxC
and the fact that for all X, Y, Z ∈ Rd×d it holds that

det

(
X Y
0 Z

)
= det(X) det(Z) = det

(
X 0
Y Z

)
(14.172)

(cf., e.g., Petersen [24, Proposition 5.5.3 and Proposition 5.5.4]) imply that for all x ∈ R
it holds that

det

((
A B
C Dx

)(
Dx 0
−C Id

))
= det

(
(ADx −BC) B
(CDx −DxC) Dx

)
= det

(
(ADx −BC) B

0 Dx

)
= det(ADx −BC) det(Dx).

(14.173)

Moreover, note that the multiplicative property of the determinant (see, e.g., Petersen [24,
(1) in Proposition 5.5.2]) implies that for all x ∈ R it holds that

det

((
A B
C Dx

)(
Dx 0
−C Id

))
= det

(
A B
C Dx

)
det

(
Dx 0
−C Id

)
= det

(
A B
C Dx

)
det(Dx) det(Id)

= det

(
A B
C Dx

)
det(Dx).

(14.174)

Combining this and (14.173) demonstrates that for all x ∈ R it holds that

det

(
A B
C Dx

)
det(Dx) = det(ADx −BC) det(Dx). (14.175)

Hence, we obtain for all x ∈ R that(
det

(
A B
C Dx

)
− det(ADx −BC)

)
det(Dx) = 0. (14.176)
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This implies that for all x ∈ R with det(Dx) 6= 0 it holds that

det

(
A B
C Dx

)
− det(ADx −BC) = 0. (14.177)

Moreover, note that the fact that {x ∈ R : det(Dx) = 0} = {x ∈ R : det(D − x Id) = 0}
is a finite set, the fact that the function

R 3 x 7→ det

(
A B
C Dx

)
− det(ADx −BC) ∈ R (14.178)

is continuous and (14.177) ensure that for all x ∈ R it holds that

det

(
A B
C Dx

)
− det(ADx −BC) = 0. (14.179)

Hence, we obtain for all x ∈ R that

det

(
A B
C Dx

)
= det(ADx −BC). (14.180)

This establishes that

det

(
A B
C D

)
= det

(
A B
C D0

)
= det(AD0 −BC) = det(AD −BC). (14.181)

The proof of Lemma 14.2.6 is thus completed.

We are now in the position to formulate and prove the promised error analysis for
the momentum GD optimization method in the case of quadratic objective functions; see
Proposition 14.2.7 below.

Proposition 14.2.7 (Error analysis for the momentum GD optimization method in
the case of quadratic objective functions). Let d ∈ N, ξ ∈ Rd, ϑ = (ϑ1, ϑ2 . . . , ϑd) ∈ Rd,
κ,K, λ1, λ2, . . . , λd ∈ (0,∞) satisfy κ = min{λ1, λ2, . . . , λd} and K = max{λ1, λ2, . . . , λd},
let f : Rd → R satisfy for all θ = (θ1, θ2, . . . , θd) ∈ Rd that

f(θ) = 1
2

[
d∑
i=1

λi|θi − ϑi|2
]
, (14.182)

and let Θ: N0 ∪ {−1} → Rd satisfy for all n ∈ N that Θ−1 = Θ0 = ξ and

Θn = Θn−1 − 4
(
√
K+
√
κ)2 (∇f)(Θn−1) +

[√
K−
√
κ√

K+
√
κ

]2

(Θn−1 −Θn−2). (14.183)

Then

(i) it holds that Θ|N0 : N0 → Rd is the momentum gradient descent process for the
objective function f with learning rates N 3 n 7→ 1√

Kκ ∈ [0,∞), momentum decay

factors N 3 n 7→
[K1/2−κ1/2

K1/2+κ1/2

]2 ∈ [0, 1], and initial value ξ (cf. Definition 14.2.1) and

(ii) for every ε ∈ (0,∞) there exists C ∈ (0,∞) such that for all n ∈ N0 it holds that

‖Θn − ϑ‖2 ≤ C
[√
K−
√
κ√

K+
√
κ

+ ε
]n
. (14.184)
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Proof of Proposition 14.2.7. Throughout this proof let ε ∈ (0,∞), let ~·~ : R2d×2d →
[0,∞) satisfy for all B ∈ R2d×2d that

~B~ = sup
v∈R2d\{0}

[
‖Bv‖2

‖v‖2

]
, (14.185)

let Θ(1),Θ(2), . . . ,Θ(d) : N0 → R satisfy for all n ∈ N0 that Θn = (Θ
(1)
n ,Θ

(2)
n , . . . ,Θ

(d)
n ), let

m : N0 → Rd satisfy for all n ∈ N0 that

mn = −
√
Kκ(Θn −Θn−1), (14.186)

let % ∈ (0,∞), α ∈ [0, 1) be given by

% = 4
(
√
K+
√
κ)2 and α =

[√
K−
√
κ√

K+
√
κ

]2

, (14.187)

let M ∈ Rd×d be the diagonal (d× d)-matrix given by

M =

(1− %λ1 + α) 0
. . .

0 (1− %λd + α)

, (14.188)

let A ∈ R2d×2d be the ((2d)× (2d))-matrix given by

A =

(
M (−α Id)
Id 0

)
, (14.189)

and let S ⊆ C be the set given by

S = {µ ∈ C : (∃ v ∈ C2d\{0} : Av = µv)} = {µ ∈ C : det(A− µ I2d) = 0} (14.190)

(cf. Definition 2.2.9). Observe that (14.183), (14.186), and the fact that

(
√
K+
√
κ)2−(

√
K−
√
κ)2

4

= 1
4

[
(
√
K +
√
κ+
√
K −
√
κ)(
√
K +
√
κ− [

√
K −
√
κ])
]

= 1
4

[
(2
√
K)(2

√
κ)
]

=
√
Kκ

(14.191)

assure that for all n ∈ N it holds that

mn

= −
√
Kκ(Θn −Θn−1)

= −
√
Kκ
(

Θn−1 −
[

4
(
√
K+
√
κ)2

]
(∇f)(Θn−1) +

[√
K−
√
κ√

K+
√
κ

]2

(Θn−1 −Θn−2)−Θn−1

)
=
√
Kκ
([

4
(
√
K+
√
κ)2

]
(∇f)(Θn−1)−

[√
K−
√
κ√

K+
√
κ

]2

(Θn−1 −Θn−2)

)
= (
√
K+
√
κ)2−(

√
K−
√
κ)2

4

[
4

(
√
K+
√
κ)2

]
(∇f)(Θn−1)

−
√
Kκ
[√
K−
√
κ√

K+
√
κ

]2

(Θn−1 −Θn−2)

=
[
1− (

√
K−
√
κ)2

(
√
K+
√
κ)2

]
(∇f)(Θn−1) +

[√
K−
√
κ√

K+
√
κ

]2[
−
√
Kκ(Θn−1 −Θn−2)

]
=

[
1−

[√
K−
√
κ√

K+
√
κ

]2
]
(∇f)(Θn−1) +

[√
K−
√
κ√

K+
√
κ

]2

mn−1.

(14.192)
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Moreover, note that (14.186) implies that for all n ∈ N0 it holds that

Θn = Θn−1 + (Θn −Θn−1)

= Θn−1 − 1√
Kκ

([
−
√
Kκ
]
(Θn −Θn−1)

)
= Θn−1 − 1√

Kκmn.
(14.193)

In addition, observe that the assumption that Θ−1 = Θ0 = ξ and (14.186) ensure that

m0 = −
√
Kκ
(
Θ0 −Θ−1

)
= 0. (14.194)

Combining this and the assumption that Θ0 = ξ with (14.192) and (14.193) proves
item (i). It thus remains to prove item (ii). For this observe that (14.182) implies that
for all θ = (θ1, θ2, . . . , θd) ∈ Rd, i ∈ {1, 2, . . . , d} it holds that(

∂f
∂θi

)
(θ) = λi(θi − ϑi). (14.195)

This, (14.183), and (14.187) imply that for all n ∈ N, i ∈ {1, 2, . . . , d} it holds that

Θ(i)
n − ϑi

= Θ
(i)
n−1 − %

(
∂f
∂θi

)
(Θn−1) + α(Θ

(i)
n−1 −Θ

(i)
n−2)− ϑi

= (Θ
(i)
n−1 − ϑi)− %λi(Θ

(i)
n−1 − ϑi) + α

(
(Θ

(i)
n−1 − ϑi)− (Θ

(i)
n−2 − ϑi)

)
= (1− %λi + α)(Θ

(i)
n−1 − ϑi)− α(Θ

(i)
n−2 − ϑi).

(14.196)

Combining this with (14.188) demonstrates that for all n ∈ N it holds that

Rd 3 (Θn − ϑ) = M(Θn−1 − ϑ)− α(Θn−2 − ϑ)

=
(
M (−α Id)

)︸ ︷︷ ︸
∈Rd×2d

(
Θn−1 − ϑ
Θn−2 − ϑ

)
︸ ︷︷ ︸

∈R2d

. (14.197)

This and (14.189) assure that for all n ∈ N it holds that

R2d 3
(

Θn − ϑ
Θn−1 − ϑ

)
=

(
M (−α Id)
Id 0

)(
Θn−1 − ϑ
Θn−2 − ϑ

)
= A

(
Θn−1 − ϑ
Θn−2 − ϑ

)
. (14.198)

Induction hence proves that for all n ∈ N0 it holds that

R2d 3
(

Θn − ϑ
Θn−1 − ϑ

)
= An

(
Θ0 − ϑ

Θ−1 − ϑ

)
= An

(
ξ − ϑ
ξ − ϑ

)
. (14.199)

This, in turn, implies that for all n ∈ N0 it holds that

‖Θn − ϑ‖2 ≤
√
‖Θn − ϑ‖2

2 + ‖Θn−1 − ϑ‖2
2

=

∥∥∥∥( Θn − ϑ
Θn−1 − ϑ

)∥∥∥∥
2

=

∥∥∥∥An(ξ − ϑξ − ϑ

)∥∥∥∥
2

≤ ~An~

∥∥∥∥(ξ − ϑξ − ϑ

)∥∥∥∥
2

= ~An~

√
‖ξ − ϑ‖2

2 + ‖ξ − ϑ‖2
2

= ~An~
√

2‖ξ − ϑ‖2.

(14.200)
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Next note that Lemma 14.2.5 demonstrates that

lim sup
n→∞

([
~An~

]1/n)
= lim inf

n→∞

([
~An~

]1/n)
= max

µ∈S∪{0}
|µ|. (14.201)

This implies that there exists m ∈ N such that for all n ∈ N0 ∩ [m,∞) it holds that[
~An~

]1/n ≤ ε+ max
µ∈S∪{0}

|µ|. (14.202)

Therefore, we obtain for all n ∈ N0 ∩ [m,∞) that

~An~ ≤
[
ε+ max

µ∈S∪{0}
|µ|
]n
. (14.203)

Furthermore, note that for all n ∈ N0 ∩ [0,m) it holds that

~An~

=
[
ε+ max

µ∈S∪{0}
|µ|
]n[

~An~

(ε+maxµ∈S∪{0}|µ|)n

]
≤
[
ε+ max

µ∈S∪{0}
|µ|
]n[

max
({

~Ak~

(ε+maxµ∈S∪{0}|µ|)k
: k ∈ N0 ∩ [0,m)

}
∪ {1}

)]
.

(14.204)

Combining this and (14.203) proves that for all n ∈ N0 it holds that

~An~

≤
[
ε+ max

µ∈S∪{0}
|µ|
]n[

max
({

~Ak~

(ε+maxµ∈S∪{0}|µ|)k
: k ∈ N0 ∩ [0,m)

}
∪ {1}

)]
.

(14.205)

Next observe that Lemma 14.2.6, (14.189), and the fact that for all µ ∈ C it holds that
Id(−µ Id) = −µ Id = (−µ Id) Id ensure that for all µ ∈ C it holds that

det(A− µ I2d) = det

(
(M − µ Id) (−α Id)

Id −µ Id

)
= det

(
(M − µ Id)(−µ Id)− (−α Id) Id

)
= det

(
(M − µ Id)(−µ Id) + α Id

)
.

(14.206)

This and (14.188) demonstrate that for all µ ∈ C it holds that

det(A− µ I2d)

= det


(
(1− %λ1 + α− µ)(−µ) + α

)
0

. . .

0
(
(1− %λd + α− µ)(−µ) + α

)


=
d∏
i=1

(
(1− %λi + α− µ)(−µ) + α

)
=

d∏
i=1

(
µ2 − (1− %λi + α)µ+ α

)
.

(14.207)
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Moreover, note that for all µ ∈ C, i ∈ {1, 2, . . . , d} it holds that

µ2 − (1− %λi + α)µ+ α

= µ2 − 2µ
[

(1−%λi+α)
2

]
+
[

(1−%λi+α)
2

]2

+ α−
[

(1−%λi+α)
2

]2

=
[
µ− (1−%λi+α)

2

]2

+ α− 1
4
[1− %λi + α]2

=
[
µ− (1−%λi+α)

2

]2

− 1
4

[[
1− %λi + α

]2 − 4α
]
.

(14.208)

Hence, we obtain that for all i ∈ {1, 2, . . . , d} it holds that{
µ ∈ C : µ2 − (1− %λi + α)µ+ α = 0

}
=

{
µ ∈ C :

[
µ− (1−%λi+α)

2

]2

= 1
4

[[
1− %λi + α

]2 − 4α
]}

=

{
(1−%λi+α)+

√
[1−%λi+α]2−4α

2
,

(1−%λi+α)−
√

[1−%λi+α]2−4α

2
,

}
=

⋃
s∈{−1,1}

{
1
2

[
1− %λi + α + s

√
(1− %λi + α)2 − 4α

]}
.

(14.209)

Combining this, (14.190), and (14.207) demonstrates that

S = {µ ∈ C : det(A− µ I2d) = 0}

=

{
µ ∈ C :

[
d∏
i=1

(
µ2 − (1− %λi + α)µ+ α

)
= 0

]}

=
d⋃
i=1

{
µ ∈ C : µ2 − (1− %λi + α)µ+ α = 0

}
=

d⋃
i=1

⋃
s∈{−1,1}

{
1
2

[
1− %λi + α + s

√
(1− %λi + α)2 − 4α

]}
.

(14.210)

Moreover, observe that the fact that for all i ∈ {1, 2, . . . , d} it holds that λi ≥ κ and
(14.187) ensure that for all i ∈ {1, 2, . . . , d} it holds that

1− %λi + α ≤ 1− %κ+ α = 1−
[

4
(
√
K+
√
κ)2

]
κ+ (

√
K−
√
κ)2

(
√
K+
√
κ)2

= (
√
K+
√
κ)2−4κ+(

√
K−
√
κ)2

(
√
K+
√
κ)2 = K+2

√
K
√
κ+κ−4κ+K−2

√
K
√
κ+κ

(
√
K+
√
κ)2

= 2K−2κ
(
√
K+
√
κ)2 = 2(

√
K−
√
κ)(
√
K+
√
κ)

(
√
K+
√
κ)2 = 2

[√
K−
√
κ√

K+
√
κ

]
≥ 0.

(14.211)

In addition, note that the fact that for all i ∈ {1, 2, . . . , d} it holds that λi ≤ K and
(14.187) assure that for all i ∈ {1, 2, . . . , d} it holds that

1− %λi + α ≥ 1− %K + α = 1−
[

4
(
√
K+
√
κ)2

]
K + (

√
K−
√
κ)2

(
√
K+
√
κ)2

= (
√
K+
√
κ)2−4K+(

√
K−
√
κ)2

(
√
K+
√
κ)2 = K+2

√
K
√
κ+κ−4K+K−2

√
K
√
κ+κ

(
√
K+
√
κ)2

= −2K+2κ
(
√
K+
√
κ)2 = −2

[
K−κ

(
√
K+
√
κ)2

]
= −2

[
(
√
K−
√
κ)(
√
K+
√
κ)

(
√
K+
√
κ)2

]
= −2

[√
K−
√
κ√

K+
√
κ

]
≤ 0.

(14.212)
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Combining this and (14.211) implies that for all i ∈ {1, 2, . . . , d} it holds that

(1− %λi + α)2 ≤
[
2
(√
K−
√
κ√

K+
√
κ

)]2

= 4
[√
K−
√
κ√

K+
√
κ

]2

= 4α. (14.213)

This and (14.210) demonstrate that

max
µ∈S∪{0}

|µ| = max
µ∈S
|µ|

= max
i∈{1,2,...,d}

max
s∈{−1,1}

∣∣∣∣12
[
1− %λi + α + s

√
(1− %λi + α)2 − 4α

]∣∣∣∣
=

1

2

[
max

i∈{1,2,...,d}
max

s∈{−1,1}

∣∣∣[1− %λi + α + s
√

(−1)(4α− [1− %λi + α]2)
]∣∣∣]

=
1

2

[
max

i∈{1,2,...,d}
max

s∈{−1,1}

∣∣∣[1− %λi + α + si
√

4α− (1− %λi + α)2
]∣∣∣2]1/2

.

(14.214)

Combining this with (14.213) proves that

max
µ∈S∪{0}

|µ|

= 1
2

[
max

i∈{1,2,...,d}
max

s∈{−1,1}

(∣∣1− %λi + α
∣∣2 +

∣∣s√4α− (1− %λi + α)2
∣∣2)]1/2

= 1
2

[
max

i∈{1,2,...,d}
max

s∈{−1,1}

(
(1− %λi + α)2 + 4α− (1− %λi + α)2

)]1/2

= 1
2
[4α]

1/2 =
√
α.

(14.215)

Combining (14.200) and (14.205) hence ensures that for all n ∈ N0 it holds that∥∥Θn − ϑ
∥∥

2

≤
√

2 ‖ξ − ϑ‖2~An~

≤
√

2 ‖ξ − ϑ‖2

[
ε+ max

µ∈S∪{0}
|µ|
]n

·
[
max

({
~Ak~

(ε+maxµ∈S∪{0}|µ|)k
∈ R : k ∈ N0 ∩ [0,m)

}
∪ {1}

)]
=
√

2 ‖ξ − ϑ‖2

[
ε+ α

1/2
]n[

max
({

~Ak~

(ε+α1/2)k
∈ R : k ∈ N0 ∩ [0,m)

}
∪ {1}

)]
=
√

2 ‖ξ − ϑ‖2

[
ε+

√
K−
√
κ√

K+
√
κ

]n[
max

({
~Ak~

(ε+α1/2)k
∈ R : k ∈ N0 ∩ [0,m)

}
∪ {1}

)]
.

(14.216)

This establishes item (ii). The proof of Proposition 14.2.7 it thus completed.

14.2.2.3 Comparison of the convergence speeds of the GD optimization me-
thod with and without classical momentum

In this subsection we provide in Corollary 14.2.9 below a comparison between the con-
vergence speeds of the plain vanilla GD optimization method and the momentum GD
optimization method. Our proof of Corollary 14.2.9 employs the auxiliary and elemen-
tary estimate in Lemma 14.2.8 below, the refined error analysis for the plain vanilla GD
optimization in Subsection 14.2.2.1 above (see Lemma 14.2.3 and Lemma 14.2.4 in Sub-
section 14.2.2.1), as well as the error analysis for the momentum GD optimization method
in Subsection 14.2.2.2 above (see Proposition 14.2.7 in Subsection 14.2.2.2).
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Lemma 14.2.8 (Comparison of the convergence rates of the GD optimization method
and the momentum GD optimization method). Let K, κ ∈ (0,∞) satisfy κ < K. Then

√
K −
√
κ√

K +
√
κ
<
K − κ
K + κ

. (14.217)

Proof of Lemma 14.2.8. Note that the fact that K − κ > 0 < 2
√
K
√
κ ensures that

√
K −
√
κ√

K +
√
κ

=
(
√
K −
√
κ)(
√
K +
√
κ)

(
√
K +
√
κ)2

=
K − κ

K + 2
√
K
√
κ+ κ

<
K − κ
K + κ

. (14.218)

The proof of Lemma 14.2.8 it thus completed.

Corollary 14.2.9 (Convergence rate comparisons between the GD optimization method
and the momentum GD optimization method). Let d ∈ N, κ,K, λ1, λ2, . . . , λd ∈ (0,∞),
ξ = (ξ1, ξ2, . . . , ξd), ϑ = (ϑ1, ϑ2, . . . , ϑd) ∈ Rd satisfy

κ = min{λ1, λ2, . . . , λd} < max{λ1, λ2, . . . , λd} = K, (14.219)

let f : Rd → R satisfy for all θ = (θ1, θ2, . . . , θd) ∈ Rd that

f(θ) = 1
2

[
d∑
i=1

λi|θi − ϑi|2
]
, (14.220)

let Θγ : N0 → Rd, γ ∈ (0,∞), satisfy for all γ ∈ (0,∞), n ∈ N that

Θγ
0 = ξ and Θγ

n = Θγ
n−1 − γ(∇f)(Θγ

n−1), (14.221)

and let M : N0 ∪ {−1} → Rd satisfy for all n ∈ N that M−1 =M0 = ξ and

Mn =Mn−1 − 4
(
√
K+
√
κ)2 (∇f)(Mn−1) +

[√
K−
√
κ√

K+
√
κ

]2

(Mn−1 −Mn−2). (14.222)

Then

(i) there exist γ, C ∈ (0,∞) such that for all n ∈ N0 it holds that

‖Θγ
n − ϑ‖2 ≤ C

[K−κ
K+κ

]n
, (14.223)

(ii) it holds for all γ ∈ (0,∞), n ∈ N0 that

‖Θγ
n − ϑ‖2 ≥

[
min{|ξ1 − ϑ1|, . . . , |ξd − ϑd|}

][K−κ
K+κ

]n
, (14.224)

(iii) for every ε ∈ (0,∞) there exists C ∈ (0,∞) such that for all n ∈ N0 it holds that

‖Mn − ϑ‖2 ≤ C
[√
K−
√
κ√

K+
√
κ

+ ε
]n
, (14.225)

and

(iv) it holds that
√
K−
√
κ√

K+
√
κ
< K−κ
K+κ

.

Dissemination prohibited. July 29, 2021 247



Chapter 14. Deterministic GD type optimization methods

Proof of Corollary 14.2.9. First, note that Lemma 14.2.3 proves item (i). Next observe
that Lemma 14.2.4 establishes item (ii). In addition, note that Proposition 14.2.7 proves
item (iii). Finally, observe that Lemma 14.2.8 establishes item (iv). The proof of Corol-
lary 14.2.9 is thus complete.

Corollary 14.2.9 above, roughly speaking, shows in the case of quadratic objective
functions that the momentum GD optimization method in (14.222) outperforms the clas-
sical plain vanilla GD optimization method (and, in particular, the classical plain vanilla
GD optimization method in (14.147) in Lemma 14.2.3 above) provided that the param-
eters λ1, λ2, . . . , λd ∈ (0,∞) in the objective function in (14.220) satisfy the assumption
that min{λ1, . . . , λd} < max{λ1, . . . , λd}. The next elementary result, Lemma 14.2.10
below, demonstrates that the momentum GD optimization method in (14.222) and the
plain vanilla GD optimization method in (14.147) in Lemma 14.2.3 above coincide in the
case where min{λ1, . . . , λd} = max{λ1, . . . , λd}.

Lemma 14.2.10 (Concurrence of the GD optimization method and the momentum GD
optimization method). Let d ∈ N, ξ, ϑ ∈ Rd, α ∈ (0,∞), let f : Rd → R satisfy for all
θ ∈ Rd that

f(θ) = α
2
‖θ − ϑ‖2

2, (14.226)

let Θ: N0 → Rd satisfy for all n ∈ N that

Θ0 = ξ and Θn = Θn−1 − 2
(α+α)

(∇f)(Θn−1), (14.227)

and let M : N0 ∪ {−1} → Rd satisfy for all n ∈ N that M−1 =M0 = ξ and

Mn =Mn−1 − 4
(
√
α+
√
α)2 (∇f)(Mn−1) +

[√
α−
√
α√

α+
√
α

]2

(Mn−1 −Mn−2). (14.228)

Then

(i) it holds that M|N0 : N0 → Rd is the momentum gradient descent process for the
objective function f with learning rates N 3 n 7→ 1/α ∈ [0,∞), momentum decay
factors N 3 n 7→ 0 ∈ [0, 1], and initial value ξ (cf. Definition 14.2.1),

(ii) it holds for all n ∈ N0 that Mn = Θn, and

(iii) it holds for all n ∈ N that Θn = ϑ =Mn.

Proof of Lemma 14.2.10. First, note that (14.228) implies that for all n ∈ N it holds that

Mn =Mn−1 − 4
(2
√
α)2 (∇f)(Mn−1) =Mn−1 − 1

α
(∇f)(Mn−1). (14.229)

Combining this with the assumption that M0 = ξ establishes item (i). Next note that
(14.227) ensures that for all n ∈ N it holds that

Θn = Θn−1 − 1
α

(∇f)(Θn−1). (14.230)

Combining this with (14.229) and the assumption that Θ0 = ξ = M0 proves item (ii).
Furthermore, observe that Lemma 13.2.4 assures that for all θ ∈ Rd it holds that

(∇f)(θ) = α
2
(2(θ − ϑ)) = α(θ − ϑ). (14.231)
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Next we claim that for all n ∈ N it holds that

Θn = ϑ. (14.232)

We now prove (14.232) by induction on n ∈ N. For the base case n = 1 note that (14.230)
and (14.231) imply that

Θ1 = Θ0 − 1
α

(∇f)(Θ0) = ξ − 1
α

(α(ξ − ϑ)) = ξ − (ξ − ϑ) = ϑ. (14.233)

This establishes (14.232) in the base case n = 1. For the induction step observe that
(14.230) and (14.231) assure that for all n ∈ N with Θn = ϑ it holds that

Θn+1 = Θn − 1
α

(∇f)(Θn) = ϑ− 1
α

(α(ϑ− ϑ)) = ϑ. (14.234)

Induction thus proves (14.232). Combining (14.232) and item (ii) establishes item (iii).
The proof of Lemma 14.2.10 is thus complete.

14.2.3 Comparison of the GD optimization method with and
without momentum in the case of a numerical example

In this subsection we provide a numerical comparison of the plain vanilla GD optimization
method and the momentum GD optimization method in the case of the specific quadratic
optimization problem in (14.235)–(14.236) below; see Illustration 14.2.11 below, Python
code 14.1, and Figure 14.1 below.

Illustration 14.2.11. Let K = 10, κ = 1, ϑ = (ϑ1, ϑ2) ∈ R2, ξ = (ξ1, ξ2) ∈ R2 satisfy

ϑ =

(
ϑ1

ϑ2

)
=

(
1
1

)
and ξ =

(
ξ1

ξ2

)
=

(
5
3

)
, (14.235)

let f : R2 → R satisfy for all θ = (θ1, θ2) ∈ R2 that

f(θ) =
(
κ
2

)
|θ1 − ϑ1|2 +

(K
2

)
|θ2 − ϑ2|2, (14.236)

let Θ: N0 → Rd satisfy for all n ∈ N that Θ0 = ξ and

Θn = Θn−1 − 2
(K+κ)

(∇f)(Θn−1) = Θn−1 − 2
11

(∇f)(Θn−1)

= Θn−1 − 0.18 (∇f)(Θn−1) ≈ Θn−1 − 0.18 (∇f)(Θn−1),
(14.237)

and let M,m : N0 → Rd satisfy for all n ∈ N that M0 = ξ, m0 = 0, Mn = Mn−1 −
0.3 mn, and

mn = 0.5 mn−1 + (1− 0.5) (∇f)(Mn−1)

= 0.5 (mn−1 + (∇f)(Mn−1)).
(14.238)

Then

(i) it holds for all θ = (θ1, θ2) ∈ R2 that

(∇f)(θ) =

(
κ(θ1 − ϑ1)
K(θ2 − ϑ2)

)
=

(
θ1 − 1

10 (θ2 − 1)

)
, (14.239)
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(ii) it holds that

Θ0 =

(
5
3

)
, (14.240)

Θ1 = Θ0 − 2
11

(∇f)(Θ0) ≈ Θ0 − 0.18(∇f)(Θ0)

=

(
5
3

)
− 0.18

(
5− 1

10(3− 1)

)
=

(
5− 0.18 · 4

3− 0.18 · 10 · 2

)
=

(
5− 0.72
3− 3.6

)
=

(
4.28
−0.6

)
,

(14.241)

Θ2 ≈ Θ1 − 0.18(∇f)(Θ1) =

(
4.28
−0.6

)
− 0.18

(
4.28− 1

10(−0.6− 1)

)
=

(
4.28− 0.18 · 3.28

−0.6− 0.18 · 10 · (−1.6)

)
=

(
4.10− 0.18 · 2− 0.18 · 0.28

−0.6 + 1.8 · 1.6

)
=

(
4.10− 0.36− 2 · 9 · 4 · 7 · 10−4

−0.6 + 1.6 · 1.6 + 0.2 · 1.6

)
=

(
3.74− 9 · 56 · 10−4

−0.6 + 2.56 + 0.32

)
=

(
3.74− 504 · 10−4

2.88− 0.6

)
=

(
3.6896
2.28

)
≈
(

3.69
2.28

)
,

(14.242)

Θ3 ≈ Θ2 − 0.18(∇f)(Θ2) ≈
(

3.69
2.28

)
− 0.18

(
3.69− 1

10(2.28− 1)

)
=

(
3.69− 0.18 · 2.69

2.28− 0.18 · 10 · 1.28

)
=

(
3.69− 0.2 · 2.69 + 0.02 · 2.69

2.28− 1.8 · 1.28

)
=

(
3.69− 0.538 + 0.0538
2.28− 1.28− 0.8 · 1.28

)
=

(
3.7438− 0.538

1− 1.28 + 0.2 · 1.28

)
=

(
3.2058

0.256− 0.280

)
=

(
3.2058
−0.024

)
≈
(

3.21
−0.02

)
,

(14.243)

...

and

(iii) it holds that

M0 =

(
5
3

)
, (14.244)

m1 = 0.5 (m0 + (∇f)(M0)) = 0.5

((
0
0

)
+

(
5− 1

10(3− 1)

))
=

(
0.5 (0 + 4)

0.5 (0 + 10 · 2)

)
=

(
2
10

)
,

(14.245)
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M1 =M0 − 0.3 m1 =

(
5
3

)
− 0.3

(
2
10

)
=

(
4.4
0

)
, (14.246)

m2 = 0.5 (m1 + (∇f)(M1)) = 0.5

((
2
10

)
+

(
4.4− 1

10(0− 1)

))
=

(
0.5 (2 + 3.4)
0.5 (10− 10)

)
=

(
2.7
0

)
,

(14.247)

M2 =M1 − 0.3 m2 =

(
4.4
0

)
− 0.3

(
2.7
0

)
=

(
4.4− 0.81

0

)
=

(
3.59

0

)
, (14.248)

m3 = 0.5 (m2 + (∇f)(M2)) = 0.5

((
2.7
0

)
+

(
3.59− 1
10(0− 1)

))
=

(
0.5 (2.7 + 2.59)

0.5 (0− 10)

)
=

(
0.5 · 5.29
0.5(−10)

)
=

(
2.5 + 0.145
−5

)
=

(
2.645
−5

)
≈
(

2.65
−5

)
,

(14.249)

M3 =M2 − 0.3 m3 ≈
(

3.59
0

)
− 0.3

(
2.65
−5

)
=

(
3.59− 0.795

1.5

)
=

(
3− 0.205

1.5

)
=

(
2.795
1.5

)
≈
(

2.8
1.5

)
,

(14.250)

...
.

1 # Example f o r GD and momentum GD
2

3 import numpy as np
4 import matp lo t l i b . pyplot as p l t
5

6 # Number o f s t ep s f o r the schemes
7 N = 8
8

9 # Problem s e t t i n g
10 d = 2
11 K = [ 1 . , 1 0 . ]
12

13 vartheta = np . array ( [ 1 . , 1 . ] )
14 x i = np . array ( [ 5 . , 3 . ] )
15

16 de f f (x , y ) :
17 r e s u l t = K[ 0 ] / 2 . ∗ np . abs (x − vartheta [ 0 ] ) ∗∗ 2 \
18 + K[ 1 ] / 2 . ∗ np . abs (y − vartheta [ 1 ] ) ∗∗ 2
19 re turn r e s u l t
20
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21 de f nab l a f ( x ) :
22 re turn K ∗ ( x − vartheta )
23

24 # Co e f f i c i e n t s f o r GD
25 gamma GD = 2 /(K[ 0 ] + K[ 1 ] )
26

27 # Co e f f i c i e n t s f o r momentum
28 gamma momentum = 0.3
29 alpha = 0 .5
30

31 # Placeho lde r f o r p r o c e s s e s
32 Theta = np . z e ro s ( (N+1, d) )
33 M = np . z e r o s ( (N+1, d) )
34 m = np . z e r o s ( (N+1, d) )
35

36 Theta [ 0 ] = x i
37 M[ 0 ] = x i
38

39 # Perform grad i ent descent
40 f o r i in range (N) :
41 Theta [ i +1] = Theta [ i ] − gamma GD ∗ nab l a f ( Theta [ i ] )
42

43 # Perform momentum GD
44 f o r i in range (N) :
45 m[ i +1] = alpha ∗ m[ i ] + (1 − alpha ) ∗ nab l a f (M[ i ] )
46 M[ i +1] = M[ i ] − gamma momentum ∗ m[ i +1]
47

48

49 ### Plot ###
50 p l t . f i g u r e ( )
51

52 # Plot the g rad i en t descent p roce s s
53 p l t . p l o t ( Theta [ : , 0 ] , Theta [ : , 1 ] ,
54 l a b e l = ”GD” , c o l o r = ”c” ,
55 l i n e s t y l e = ”−−” , marker = ”∗” )
56

57 # Plot the momentum grad i en t descent p roce s s
58 p l t . p l o t (M[ : , 0 ] , M[ : , 1 ] ,
59 l a b e l = ”Momentum” , c o l o r = ”orange ” , marker = ”∗” )
60

61 # Target value
62 p l t . s c a t t e r ( vartheta [ 0 ] , vartheta [ 1 ] ,
63 l a b e l = ” vartheta ” , c o l o r = ” red ” , marker = ”x” )
64

65 # Plot contour l i n e s o f f
66 x = np . l i n s p a c e (−3. , 7 . , 100)
67 y = np . l i n s p a c e (−2. , 4 . , 100)
68 X, Y = np . meshgrid (x , y )
69 Z = f (X, Y)
70 cp = p l t . contour (X, Y, Z , c o l o r s=” black ” ,
71 l e v e l s = [ 0 . 5 , 2 , 4 , 8 , 1 6 ] ,
72 l i n e s t y l e s=” : ” )
73

74 p l t . l egend ( )
75 p l t . s a v e f i g ( ”GD momentum plots . pdf ” )
76 p l t . show ( )

Source code 14.1: Python code for Figure 14.1
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2 0 2 4 6
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GD
Momentum
vartheta

Figure 14.1: Result of a call of Python code 14.1

14.3 The gradient descent optimization method with

Nesterov momentum

Definition 14.3.1 (Nesterov accelerated gradient descent optimization method). Let
d ∈ N, (γn)n∈N ⊆ [0,∞), (αn)n∈N ⊆ [0, 1], ξ ∈ Rd and let f : Rd → R and g : Rd → Rd

satisfy for all θ ∈ {v ∈ Rd : (f is differentiable at v)} that

g(θ) = (∇f)(θ). (14.251)

Then we say that Θ is the Nesterov accelerated gradient descent process for the objective
function f with generalized gradient g, learning rates (γn)n∈N, momentum decay factors
(αn)n∈N, and initial value ξ (we say that Θ is the Nesterov accelerated gradient descent
process for the objective function f with learning rates (γn)n∈N, momentum decay factors
(αn)n∈N, and initial value ξ) if and only if it holds that Θ: N0 → Rd is the function from
N0 to Rd which satisfies that there exists a function m : N0 → Rd such that for all n ∈ N
it holds that

Θ0 = ξ, m0 = 0, (14.252)

mn = αnmn−1 + (1− αn) g(Θn−1 − γnαnmn−1), (14.253)

and Θn = Θn−1 − γnmn. (14.254)

14.4 The adaptive gradient descent optimization method

(Adagrad optimization method)

Definition 14.4.1 (Adagrad optimization method). Let d ∈ N, (γn)n∈N ⊆ [0,∞), ε ∈
(0,∞), ξ ∈ Rd and let f : Rd → R and g = (g1, . . . , gd) : Rd → Rd satisfy for all θ ∈ {v ∈
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Rd : (f is differentiable at v)} that

g(θ) = (∇f)(θ). (14.255)

Then we say that Θ is the Adagrad gradient descent process for the objective function f
with generalized gradient g, learning rates (γn)n∈N, regularizing factor ε, and initial value
ξ (we say that Θ is the Adagrad gradient descent process for the objective function f with
learning rates (γn)n∈N, regularizing factor ε, and initial value ξ) if and only if it holds
that Θ = (Θ(1), . . . ,Θ(d)) : N0 → Rd is the function from N0 to Rd which satisfies for all
n ∈ N, i ∈ {1, 2, . . . , d} that

Θ0 = ξ and Θ(i)
n = Θ

(i)
n−1 − γn

[
ε+

n−1∑
k=0

|gi(Θk)|2
]−1/2

gi(Θn−1). (14.256)

14.5 The root mean square propagation gradient de-

scent optimization method (RMSprop gradient

descent optimization method)

Definition 14.5.1 (RMSprop gradient descent optimization method). Let d ∈ N, (γn)n∈N ⊆
[0,∞), (βn)n∈N ⊆ [0, 1], ε ∈ (0,∞), ξ ∈ Rd and let f : Rd → R and g = (g1, . . . , gd) : Rd →
Rd satisfy for all θ ∈ {v ∈ Rd : (f is differentiable at v)} that

g(θ) = (∇f)(θ). (14.257)

Then we say that Θ is the RMSprop gradient descent process for the objective function f
with generalized gradient g, learning rates (γn)n∈N, second moment decay factors (βn)n∈N,
regularizing factor ε, and initial value ξ (we say that Θ is the RMSprop gradient descent
process for the objective function f with learning rates (γn)n∈N, second moment decay
factors (βn)n∈N, regularizing factor ε, and initial value ξ) if and only if it holds that
Θ = (Θ(1), . . . ,Θ(d)) : N0 → Rd is the function from N0 to Rd which satisfies that there
exists a function M = (M(1), . . . ,M(d)) : N0 → Rd such that for all n ∈ N, i ∈ {1, 2, . . . , d}
it holds that

Θ0 = ξ, M0 = 0, M(i)
n = βnM(i)

n−1 + (1− βn)|gi(Θn−1)|2, (14.258)

and Θ(i)
n = Θ

(i)
n−1 − γn

[
ε+ M(i)

n

]−1/2
gi(Θn−1). (14.259)

14.6 The Adadelta gradient descent optimization method

Definition 14.6.1 (Adadelta gradient descent optimization method). Let d ∈ N, (βn)n∈N,
(δn)n∈N ⊆ [0, 1], ε ∈ (0,∞), ξ ∈ Rd and let f : Rd → R and g = (g1, . . . , gd) : Rd → Rd

satisfy for all θ ∈ {v ∈ Rd : (f is differentiable at v)} that

g(θ) = (∇f)(θ). (14.260)

Then we say that Θ is the Adadelta gradient descent process for the objective function
f with generalized gradient g, second moment decay factors (βn)n∈N, delta decay factors
(δn)n∈N, regularizing factor ε, and initial value ξ (we say that Θ is the Adadelta gradient
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descent process for the objective function f with second moment decay factors (βn)n∈N,
delta decay factors (δn)n∈N, regularizing factor ε, and initial value ξ) if and only if it
holds that Θ = (Θ(1), . . . ,Θ(d)) : N0 → Rd is the function from N0 to Rd which satisfies
that there exist functions M = (M(1), . . . ,M(d)), ∆ = (∆(1), . . . ,∆(d)) : N0 → Rd such that
for all n ∈ N, i ∈ {1, 2, . . . , d} it holds that

Θ0 = ξ, M0 = 0, ∆0 = 0, (14.261)

M(i)
n = βnM(i)

n−1 + (1− βn)|gi(Θn−1)|2, (14.262)

Θ(i)
n = Θ

(i)
n−1 −

[
ε+ ∆

(i)
n−1

ε+ M(i)
n

]1/2
gi(Θn−1), (14.263)

and ∆(i)
n = δn ∆

(i)
n−1 + (1− δn) |Θ(i)

n −Θ
(i)
n−1|2. (14.264)

14.7 The adaptive moment estimation gradient de-

scent optimization method (Adam gradient de-

scent optimization method)

Definition 14.7.1 (Adam gradient descent optimization method). Let d ∈ N, (γn)n∈N ⊆
[0,∞), (αn)n∈N, (βn)n∈N ⊆ [0, 1), ξ ∈ Rd and let f : Rd → R and g = (g1, . . . , gd) : Rd →
Rd satisfy for all θ ∈ {v ∈ Rd : (f is differentiable at v)} that

g(θ) = (∇f)(θ). (14.265)

Then we say that Θ is the Adam gradient descent process for the objective function f with
generalized gradient g, learning rates (γn)n∈N, momentum decay factors (αn)n∈N, second
moment decay factors (βn)n∈N, and initial value ξ (we say that Θ is the Adam gradient
descent process for the objective function f with learning rates (γn)n∈N, momentum decay
factors (αn)n∈N, second moment decay factors (βn)n∈N, and initial value ξ) if and only if
it holds that Θ = (Θ(1), . . . ,Θ(d)) : N0 → Rd is the function from N0 to Rd which satisfies
that there exist functions m = (m(1), . . . ,m(d)), M = (M(1), . . . ,M(d)) : N0 → Rd such
that for all n ∈ N, i ∈ {1, 2, . . . , d} it holds that

Θ0 = ξ, m0 = 0, M0 = 0, (14.266)

mn = αn mn−1 + (1− αn) g(Θn−1), (14.267)

M(i)
n = βnM(i)

n−1 + (1− βn)|gi(Θn−1)|2, (14.268)

and Θ(i)
n = Θ

(i)
n−1 − γn

[
ε+

[
M(i)
n

(1−
∏n
l=1 βl)

]1/2
]−1
[

m
(i)
n

(1−
∏n

l=1 αl)

]
. (14.269)
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Optimization through gradient
descent processes

15.1 The deterministic gradient descent optimization

method

Definition 15.1.1 (Gradient descent optimization method). Let d ∈ N, (γn)n∈N ⊆
[0,∞), ξ ∈ Rd and let f : Rd → R and g : Rd → Rd satisfy for all θ ∈ {v ∈ Rd : (f
is differentiable at v)} that

g(θ) = (∇f)(θ). (15.1)

Then we say that Θ is the gradient descent process for the objective function f with
generalized gradient g, learning rates (γn)n∈N, and initial value ξ (we say that Θ is the
gradient descent process for the objective function f with learning rates (γn)n∈N and initial
value ξ) if and only if it holds that Θ: N0 → Rd is the function from N0 to Rd which
satisfies for all n ∈ N that

Θ0 = ξ and Θn = Θn−1 − γng(Θn−1). (15.2)

15.2 The stochastic gradient descent optimization method

Definition 15.2.1 (Stochastic gradient descent optimization method). Let d ∈ N, (γn)n∈N ⊆
[0,∞), (Jn)n∈N ⊆ N, let (Ω,F ,P) be a probability space, let (S,S) be a measurable space,
let ξ : Ω → Rd and Xn,j : Ω → S, j ∈ {1, 2, . . . , Jn}, n ∈ N, be random variables, and
let F = (F (θ, x))(θ,x)∈Rd×S : Rd × S → R and G : Rd × S → Rd satisfy for all x ∈ S,
θ ∈ {v ∈ Rd : F (·, x) is differentiable at v} that

G(θ, x) = (∇θF )(θ, x). (15.3)

Then we say that Θ is the stochastic gradient descent process on ((Ω,F ,P), (S,S)) for the
loss function F with generalized gradient G, learning rates (γn)n∈N, batch sizes (Jn)n∈N,
initial value ξ, and data (Xn,j)j∈{1,2,...,Jn},n∈N (we say that Θ is the stochastic gradient
descent process for the loss function F with learning rates (γn)n∈N, batch sizes (Jn)n∈N,
initial value ξ, and data (Xn,j)j∈{1,2,...,Jn},n∈N) if and only if it holds that Θ: N0×Ω→ Rd

is the function from N0 × Ω to Rd which satisfies for all n ∈ N that

Θ0 = ξ and Θn = Θn−1 − γn

[
1

Jn

Jn∑
j=1

G(Θn−1, Xn,j)

]
. (15.4)
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Additional material

16.1 Compositions of ANNs and affine linear trans-

formations

Corollary 16.1.1. Let Φ ∈ N (cf. Definition 2.2.1). Then

(i) it holds for all A ∈ N with L(A) = 1 and I(A) = O(Φ) that

P(A • Φ) ≤
[
max

{
1, O(A)
O(Φ)

}]
P(Φ) (16.1)

and

(ii) it holds for all A ∈ N with L(A) = 1 and I(Φ) = O(A) that

P(Φ • A) ≤
[
max

{
1, I(A)+1
I(Φ)+1

}]
P(Φ) (16.2)

(cf. Definition 2.2.5).

Proof of Corollary 16.1.1. Throughout this proof let L ∈ N, l0, l1, . . . , lL ∈ N, A1,A2 ∈ N
satisfy L(A1) = L(A2) = 1, I(A1) = O(Φ), I(Φ) = O(A2), and D(Φ) = (l0, l1, . . . , lL).
Observe that item (iv) in Proposition 2.2.7, the fact that O(Φ) = lL, the fact that
I(Φ) = l0, and the fact that for all k ∈ {1, 2} it holds that D(Ak) = (I(Ak),O(Ak))
ensure that

P(A1 • Φ) =

[
L−1∑
m=1

lm(lm−1 + 1)

]
+
[
O(A1)

]
(lL−1 + 1)

=

[
L−1∑
m=1

lm(lm−1 + 1)

]
+
[
O(A1)
lL

]
lL(lL−1 + 1)

≤
[
max

{
1, O(A1)

lL

}][L−1∑
m=1

lm(lm−1 + 1)

]
+
[
max

{
1, O(A1)

lL

}]
lL(lL−1 + 1)

=
[
max

{
1, O(A1)

lL

}][ L∑
m=1

lm(lm−1 + 1)

]
=
[
max

{
1, O(A1)
O(Φ)

}]
P(Φ)

(16.3)
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and

P(Φ • A2) =

[
L∑

m=2

lm(lm−1 + 1)

]
+ l1

[
I(A2) + 1

]
=

[
L∑

m=2

lm(lm−1 + 1)

]
+
[
I(A2)+1
l0+1

]
l1(l0 + 1)

≤
[
max

{
1, I(A2)+1

l0+1

}][ L∑
m=2

lm(lm−1 + 1)

]
+
[
max

{
1, I(A2)+1

l0+1

}]
l1(l0 + 1)

=
[
max

{
1, I(A2)+1

l0+1

}][ L∑
m=1

lm(lm−1 + 1)

]
=
[
max

{
1, I(A2)+1
I(Φ)+1

}]
P(Φ).

(16.4)

This establishes items (i)–(ii). The proof of Corollary 16.1.1 is thus complete.

16.2 Powers and extensions of ANNs

Definition 16.2.1 (Extension of ANNs). Let L ∈ N, Ψ ∈ N satisfy I(Ψ) = O(Ψ). Then
we denote by EL,Ψ : {Φ ∈ N : (L(Φ) ≤ L and O(Φ) = I(Ψ))} → N the function which
satisfies for all Φ ∈ N with L(Φ) ≤ L and O(Φ) = I(Ψ) that

EL,Ψ(Φ) = (Ψ•(L−L(Φ))) • Φ (16.5)

(cf. Definitions 2.2.1, 2.2.5, and 2.2.10).

Lemma 16.2.2. Let d, i ∈ N, Ψ ∈ N satisfy that D(Ψ) = (d, i, d) (cf. Definition 2.2.1).
Then

(i) it holds for all n ∈ N0 that L(Ψ•n) = n+ 1, D(Ψ•n) ∈ Nn+2, and

D(Ψ•n) =

{
(d, d) : n = 0

(d, i, i, . . . , i, d) : n ∈ N
(16.6)

and

(ii) it holds for all Φ ∈ N, L ∈ N ∩ [L(Φ),∞) with O(Φ) = d that L
(
EL,Ψ(Φ)

)
= L

(cf. Definitions 2.2.10 and 16.2.1).

Proof of Lemma 16.2.2. Throughout this proof let Φ ∈ N satisfy O(Φ) = d. We claim
that for all n ∈ N0 it holds that

L(Ψ•n) = n+ 1 and Nn+2 3 D(Ψ•n) =

{
(d, d) : n = 0

(d, i, i, . . . , i, d) : n ∈ N.
(16.7)

We now prove (16.7) by induction on n ∈ N0. Note that the fact that Ψ•0 = (Id, 0) ∈
Rd×d×Rd (cf. Definition 2.2.9) establishes (16.7) in the base case n = 0. For the induction
step assume that there exists n ∈ N0 such that

L(Ψ•n) = n+ 1 and Nn+2 3 D(Ψ•n) =

{
(d, d) : n = 0

(d, i, i, . . . , i, d) : n ∈ N.
(16.8)
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Observe that Lemma 2.2.4, (2.109), items (i)–(ii) in Proposition 2.2.7, (16.8), and the
assumption that D(Ψ) = (d, i, d) imply that

L(Ψ•(n+1)) = L(Ψ • (Ψ•n)) = L(Ψ) + L(Ψ•n)− 1 = 2 + (n+ 1)− 1 = (n+ 1) + 1

and D(Ψ•(n+1)) = D(Ψ • (Ψ•n)) = (d, i, i, . . . , i, d) ∈ Nn+3.

(16.9)

Induction thus proves (16.7). Next note that (16.7) establishes item (i). In addition,
observe that item (ii) in Proposition 2.2.7, item (i), and (16.5) ensure that for all L ∈
N ∩ [L(Φ),∞) it holds that

L
(
EL,Ψ(Φ)

)
= L

(
(Ψ•(L−L(Φ))) • Φ

)
= L

(
Ψ•(L−L(Φ))

)
+ L(Φ)− 1

= (L− L(Φ) + 1) + L(Φ)− 1 = L.
(16.10)

This establishes item (ii). The proof of Lemma 16.2.2 is thus complete.

Lemma 16.2.3. Let a ∈ C(R,R), I ∈ N satisfy for all x ∈ RI(I) that I(I) = O(I) and
(Ra(I))(x) = x (cf. Definitions 2.2.1 and 2.2.3). Then

(i) it holds for all n ∈ N0, x ∈ RI(I) that

Ra(I•n) ∈ C(RI(I),RI(I)) and (Ra(I•n))(x) = x (16.11)

and

(ii) it holds for all Φ ∈ N, L ∈ N ∩ [L(Φ),∞), x ∈ RI(Φ) with O(Φ) = I(I) that

Ra(EL,I(Φ)) ∈ C(RI(Φ),RO(Φ)) and
(
Ra(EL,I(Φ))

)
(x) =

(
Ra(Φ)

)
(x) (16.12)

(cf. Definitions 2.2.10 and 16.2.1).

Proof of Lemma 16.2.3. Throughout this proof let Φ ∈ N, L, d ∈ N satisfy L(Φ) ≤ L
and I(I) = O(Φ) = d. We claim that for all n ∈ N0 it holds that

Ra(I•n) ∈ C(Rd,Rd) and ∀x ∈ Rd : (Ra(I•n))(x) = x. (16.13)

We now prove (16.13) by induction on n ∈ N0. Note that (2.109) and the fact that
O(I) = d demonstrate that Ra(I•0) ∈ C(Rd,Rd) and ∀x ∈ Rd : (Ra(I•0))(x) = x. This
establishes (16.13) in the base case n = 0. For the induction step observe that for all
n ∈ N0 with Ra(I•n) ∈ C(Rd,Rd) and ∀x ∈ Rd : (Ra(I•n))(x) = x it holds that

Ra(I•(n+1)) = Ra(I • (I•n)) = (Ra(I)) ◦ (Ra(I•n)) ∈ C(Rd,Rd) (16.14)

and

∀x ∈ Rd :
(
Ra(I•(n+1))

)
(x) =

(
[Ra(I)] ◦ [Ra(I•n)]

)
(x)

= (Ra(I))
((
Ra(I•n)

)
(x)
)

= (Ra(I))(x) = x.
(16.15)

Induction thus proves (16.13). Next observe that (16.13) establishes item (i). Moreover,
note that (16.5), item (v) in Proposition 2.2.7, item (i), and the fact that I(I) = O(Φ)
ensure that

Ra(EL,I(Φ)) = Ra((I•(L−L(Φ))) • Φ)

∈ C(RI(Φ),RO(I)) = C(RI(Φ),RI(I)) = C(RI(Φ),RO(Φ))
(16.16)
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and

∀x ∈ RI(Φ) :
(
Ra(EL,I(Φ))

)
(x) =

(
Ra(I•(L−L(Φ)))

)(
(Ra(Φ))(x)

)
= (Ra(Φ))(x).

(16.17)

This establishes item (ii). The proof of Lemma 16.2.3 is thus complete.

Lemma 16.2.4. Let d, i, L,L ∈ N, l0, l1, . . . , lL−1 ∈ N, Φ,Ψ ∈ N satisfy L ≥ L,
D(Φ) = (l0, l1, . . . , lL−1, d) and D(Ψ) = (d, i, d) (cf. Definition 2.2.1). Then it holds
that D(EL,Ψ(Φ)) ∈ NL+1 and

D(EL,Ψ(Φ)) =

{
(l0, l1, . . . , lL−1, d) : L = L

(l0, l1, . . . , lL−1, i, i, . . . , i, d) : L > L
(16.18)

(cf. Definition 16.2.1).

Proof of Lemma 16.2.4. Observe that item (i) in Lemma 16.2.2 ensures that L(Ψ•(L−L)) =
L− L+ 1, D(Ψ•(L−L)) ∈ NL−L+2, and

D(Ψ•(L−L)) =

{
(d, d) : L = L

(d, i, i, . . . , i, d) : L > L
(16.19)

(cf. Definition 2.2.10). Combining this with Proposition 2.2.7 shows that L((Ψ•(L−L)) • Φ) =
L(Ψ•(L−L)) + L(Φ)− 1 = L, D((Ψ•(L−L)) • Φ) ∈ NL+1, and

D((Ψ•(L−L)) • Φ) =

{
(l0, l1, . . . , lL−1, d) : L = L

(l0, l1, . . . , lL−1, i, i, . . . , i, d) : L > L.
(16.20)

This and (16.5) establish (16.18). The proof of Lemma 16.2.4 is thus complete.

Lemma 16.2.5. Let d, i ∈ N, Ψ ∈ N satisfy that D(Ψ) = (d, i, d) (cf. Definition 2.2.1).
Then

(i) it holds for all n ∈ N0 that L(Ψ•n) = n+ 1, D(Ψ•n) ∈ Nn+2, and

D(Ψ•n) =

{
(d, d) : n = 0

(d, i, i, . . . , i, d) : n ∈ N
(16.21)

and

(ii) it holds for all Φ ∈ N, L ∈ N∩ [L(Φ),∞) with O(Φ) = d that L
(
EL,Ψ(Φ)

)
= L and

P(EL,Ψ(Φ))

≤

{
P(Φ) : L(Φ) = L[(

max
{

1, i
d

})
P(Φ) +

(
(L− L(Φ)− 1) i + d

)
(i + 1)

]
: L(Φ) < L

(16.22)

(cf. Definitions 2.2.10, 16.2.1, and 16.2.1).
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Proof of Lemma 16.2.2. Throughout this proof let Φ ∈ N, l0, l1, . . . , lL(Φ) ∈ N satisfy
O(Φ) = d and D(Φ) = (l0, l1, . . . , lL(Φ)) ∈ NL(Φ)+1 and let aL,k ∈ N, k ∈ N0 ∩ [0, L],
L ∈ N ∩ [L(Φ),∞), satisfy for all L ∈ N ∩ [L(Φ),∞), k ∈ N0 ∩ [0, L] that

aL,k =


lk : k < L(Φ)

i : L(Φ) ≤ k < L

d : k = L

. (16.23)

We claim that for all n ∈ N0 it holds that

L(Ψ•n) = n+ 1 and Nn+2 3 D(Ψ•n) =

{
(d, d) : n = 0

(d, i, i, . . . , i, d) : n ∈ N
. (16.24)

We now prove (16.7) by induction on n ∈ N0. Note that the fact that Ψ•0 = (Id, 0) ∈
Rd×d×Rd (cf. Definition 2.2.9) establishes (16.6) in the base case n = 0. For the induction
step assume that there exists n ∈ N0 such that

L(Ψ•n) = n+ 1 and Nn+2 3 D(Ψ•n) =

{
(d, d) : n = 0

(d, i, i, . . . , i, d) : n ∈ N
. (16.25)

Observe that Lemma 2.2.4, (2.109), items (i)–(ii) in Proposition 2.2.7, (16.8), and the
assumption that D(Ψ) = (d, i, d) imply that

L(Ψ•(n+1)) = L(Ψ • (Ψ•n)) = L(Ψ) + L(Ψ•n)− 1 = 2 + (n+ 1)− 1 = (n+ 1) + 1

and D(Ψ•(n+1)) = D(Ψ • (Ψ•n)) = (d, i, i, . . . , i, d) ∈ Nn+3.

(16.26)

Induction thus proves (16.7). Next note that (16.7) establishes item (i). In addition,
observe that items (i)–(ii) in Proposition 2.2.7, item (i), (16.5), and (16.23) ensure that
for all L ∈ N ∩ [L(Φ),∞) it holds that

L
(
EL,Ψ(Φ)

)
= L

(
(Ψ•(L−L(Φ))) • Φ

)
= L

(
Ψ•(L−L(Φ))

)
+ L(Φ)− 1

= (L− L(Φ) + 1) + L(Φ)− 1 = L
(16.27)

and

D
(
EL,Ψ(Φ)

)
= D

(
(Ψ•(L−L(Φ))) • Φ

)
= (aL,0, aL,1, . . . , aL,L). (16.28)

Combining this with (16.23) demonstrates that

L
(
EL(Φ),Ψ(Φ)

)
= L(Φ) (16.29)

and

D
(
EL(Φ),Ψ(Φ)

)
= (aL(Φ),0, aL(Φ),1, . . . , aL(Φ),L(Φ))

= (l0, l1, . . . , lL(Φ)) = D(Φ).
(16.30)

Hence, we obtain that
P
(
EL(Φ),Ψ(Φ)

)
= P(Φ). (16.31)
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Next note that (16.23), (16.28), and the fact that lL(Φ) = O(Φ) = d imply that for all
L ∈ N ∩ (L(Φ),∞) it holds that

P
(
EL,Ψ(Φ)

)
=

L∑
k=1

aL,k(aL,k−1 + 1)

=

[
L(Φ)−1∑
k=1

aL,k(aL,k−1 + 1)

]
+

[
L∑

k=L(Φ)

aL,k(aL,k−1 + 1)

]

=

[
L(Φ)−1∑
k=1

lk(lk−1 + 1)

]
+

[
L(Φ)∑

k=L(Φ)

aL,k(aL,k−1 + 1)

]

+

[
L∑

k=L(Φ)+1

aL,k(aL,k−1 + 1)

]

=

[
L(Φ)−1∑
k=1

lk(lk−1 + 1)

]
+ aL,L(Φ)(aL,L(Φ)−1 + 1)

+

[
L−1∑

k=L(Φ)+1

aL,k(aL,k−1 + 1)

]
+

[
L∑

k=L

aL,k(aL,k−1 + 1)

]

=

[
L(Φ)−1∑
k=1

lk(lk−1 + 1)

]
+ i(lL(Φ)−1 + 1)

+
(
L− 1− (L(Φ) + 1) + 1

)
i(i + 1) + aL,L(aL,L−1 + 1)

=

[
L(Φ)−1∑
k=1

lk(lk−1 + 1)

]
+ i

d

[
lL(Φ)(lL(Φ)−1 + 1)

]
+
(
L− L(Φ)− 1

)
i(i + 1) + d(i + 1)

≤
[
max{1, i

d
}
][L(Φ)∑

k=1

lk(lk−1 + 1)

]
+
(
L− L(Φ)− 1

)
i(i + 1) + d(i + 1)

=
[
max{1, i

d
}
]
P(Φ) +

(
L− L(Φ)− 1

)
i(i + 1) + d(i + 1).

(16.32)

Combining this with (16.31) establishes (16.22). The proof of Lemma 16.2.2 is thus
complete.

16.3 Compositions of ANNs involving artificial iden-

tities

Definition 16.3.1 (Composition of ANNs involving artificial identities). Let Ψ ∈ N.
Then we denote by

(·)�Ψ (·) : {(Φ1,Φ2) ∈ N×N : I(Φ1) = O(Ψ) and O(Φ2) = I(Ψ)} → N (16.33)

the function which satisfies for all Φ1,Φ2 ∈ N with I(Φ1) = O(Ψ) and O(Φ2) = I(Ψ)
that

Φ1 �Ψ Φ2 = Φ1 • (Ψ • Φ2) = (Φ1 •Ψ) • Φ2 (16.34)

(cf. Definitions 2.2.1 and 2.2.5 and Lemma 2.2.8).
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Proposition 16.3.2. Let Ψ,Φ1,Φ2 ∈ N satisfy that H(Ψ) = 1, I(Φ1) = O(Ψ), and
O(Φ2) = I(Ψ) (cf. Definition 2.2.1). Then

(i) it holds that

D(Φ1 �Ψ Φ2) = (D0(Φ2),D1(Φ2), . . . ,DL(Φ2)−1(Φ2),D1(Ψ),D1(Φ1),D2(Φ1), . . . ,DL(Φ1)(Φ1)),
(16.35)

(ii) it holds that
L(Φ1 �Ψ Φ2) = L(Φ1) + L(Φ2), (16.36)

(iii) it holds that

P(Φ1 �Ψ Φ2) ≤
[
max

{
1, D1(Ψ)
I(Ψ)

, D1(Ψ)
O(Ψ)

}](
P(Φ1) + P(Φ2)

)
, (16.37)

and

(iv) it holds for all a ∈ C(R,R) that Ra(Φ1 �Ψ Φ2) ∈ C(RI(Φ2),RO(Φ1)) and

Ra(Φ1 �Ψ Φ2) = [Ra(Φ1)] ◦ [Ra(Ψ)] ◦ [Ra(Φ2)] (16.38)

(cf. Definitions 2.2.3 and 16.3.1).

Proof of Propositions 16.3.2. Throughout this proof let a ∈ C(R,R), L1, L2, l1,0, l1,1, . . . ,
l1,L(Φ1),
l2,0, l2,1, . . . , l2,L(Φ2), i ∈ N satisfy for all k ∈ {1, 2} that Lk = L(Φk), D(Φk) = (lk,0, lk,1, . . . , lk,L(Φk)),
and i = D1(Ψ). Note that item (i) in Proposition 2.2.7, the fact thatD(Φ2) = (l2,0, l2,1, . . . ,
l2,L2), the fact that L(Ψ) = 2, and the assumption that I(Ψ) = O(Φ2) show that

D(Ψ • Φ2) = (l2,0, l2,1, . . . , l2,L2−1, i,O(Ψ)) (16.39)

(cf. Definition 2.2.5). Combining this with item (i) in Proposition 2.2.7, the fact that
D(Φ1) = (l1,0, l1,1, . . . , l1,L1), and the assumption that I(Φ1) = O(Ψ) proves that

D(Φ1 �Ψ Φ2) = D
(
Φ1 • (Ψ • Φ2)

)
= (l2,0, l2,1, . . . , l2,L2−1, i, l1,1, l1,2, . . . , l1,L1). (16.40)

This establishes item (i). Moreover, observe that item (ii) in Proposition 2.2.7 and the
fact that L(Ψ) = 2 ensure that

L(Φ1 �Ψ Φ2) = L
(
Φ1 • (Ψ • Φ2)

)
= L(Φ1) + L(Ψ • Φ2)− 1

= L(Φ1) + L(Ψ) + L(Φ2)− 2 = L(Φ1) + L(Φ2).
(16.41)

This establishes item (ii). In addition, observe that (16.40), the fact that I(Ψ) = O(Φ2) =
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l2,L2 , and the fact that O(Ψ) = I(Φ1) = l1,0 demonstrate that

P(Φ1 �Ψ Φ2) =

[
L2−1∑
m=1

l2,m(l2,m−1 + 1)

]
+

[
L1∑
m=2

l1,m(l1,m−1 + 1)

]
+ i
(
l2,L2−1 + 1

)
+ l1,1(i + 1)

=

[
L2−1∑
m=1

l2,m(l2,m−1 + 1)

]
+

[
L1∑
m=2

l1,m(l1,m−1 + 1)

]
+ i
I(Ψ)

l2,L2

(
l2,L2−1 + 1

)
+ l1,1

(
i

O(Ψ)
l1,0 + 1

)
≤
[
max

{
1, i
I(Ψ)

}][ L2∑
m=1

l2,m(l2,m−1 + 1)

]
+
[
max

{
1, i
O(Ψ)

}][ L1∑
m=1

l1,m(l1,m−1 + 1)

]
≤
[
max

{
1, i
I(Ψ)

, i
O(Ψ)

}](
P(Φ1) + P(Φ2)

)
.

(16.42)

This establishes item (iii). Next note that item (v) in Proposition 2.2.7 implies that
Ra(Φ1 �Ψ Φ2) ∈ C(RI(Φ2),RO(Φ1)) and

Ra(Φ1 �Ψ Φ2) = Ra

(
Φ1 • (Ψ • Φ2)

)
=
[
Ra(Φ1)

]
◦
[
Ra(Ψ • Φ2)

]
=
([
Ra(Φ1)

]
◦
[
Ra(Ψ)

]
◦
[
Ra(Φ2)

])
∈ C(RI(Φ2),RO(Φ1)).

(16.43)

This establishes item (iv). The proof of Proposition 16.3.2 is thus complete.

16.4 Parallelization of ANNs with different lengths

Corollary 16.4.1. Let n, L ∈ N, i1, i2, . . . , in ∈ N, Ψ = (Ψ1,Ψ2, . . . ,Ψn),Φ = (Φ1,Φ2,
. . . ,Φn) ∈ Nn satisfy for all j ∈ {1, 2, . . . , n} that D(Ψj) = (O(Φj), ij,O(Φj)) and L =
maxk∈{1,2,...,n} L(Φk) (cf. Definition 2.2.1). Then it holds that

P
(
Pn,Ψ(Φ)

)
≤ 1

2

([∑n
j=1

[
max

{
1,

ij
O(Φj)

}]
P(Φj)1(L(Φj),∞)(L)

]
+
[∑n

j=1

(
(L− L(Φj)− 1) ij (ij + 1) +O(Φj) (ij + 1)

)
1(L(Φj),∞)(L)

]
+
[∑n

j=1P(Φj)1{L(Φj)}(L)
])2

(16.44)

(cf. Definition 2.2.16).

Proof of Corollary 16.4.1. Observe that (2.128), item (iii) in Proposition 2.2.14, and
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item (ii) in Lemma 16.2.2 assure that

P
(
Pn,Ψ(Φ)

)
= P

(
Pn

(
EL,Ψ1(Φ1), EL,Ψ2(Φ2), . . . , EL,Ψn(Φn)

))
≤ 1

2

[∑n
j=1P(EL,Ψj(Φj))

]2

≤ 1
2

([∑n
j=1

[
max

{
1,

ij
O(Φj)

}]
P(Φj)1(L(Φj),∞)(L)

]
+
[∑n

j=1

(
(L− L(Φj)− 1) ij (ij + 1) +O(Φj) (ij + 1)

)
1(L(Φj),∞)(L)

]
+
[∑n

j=1P(Φj)1{L(Φj)}(L)
])2

(16.45)

(cf. Definitions 2.2.11 and 16.2.1). The proof of Corollary 16.4.1 is thus complete.
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