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Abstract

Recently, several variants of deep learning based approximation methods for partial differential
equations (PDEs) have been proposed and a number of very encouraging numerical simulations have
indicated the potential of such approximation methods to overcome the curse of dimensionality in the
numerical approximation of high-dimensional PDEs. Nonetheless, there is as yet no comprehensive
mathematical theory which explains why these methods seem to overcome the curse of dimensionality.
However, there are now several partial results available in the scientific literature which rigorously
prove that deep neural network (DNN) approximations indeed overcome the curse of dimensionality
in the approximation of PDEs in the sense that the number of real parameters used to describe the
approximating DNNs grows at most polynomially in both the PDE dimension d € N = {1,2,3,...}
and the reciprocal 1/ of the prescribed approximation accuracy € € (0,00). In the case of nonlinear
PDEs these prior works study DNN approximations for solutions of PDEs only at the time of maturity
T € (0,00) and it remained an open question whether DNN approximations can also approximate
entire solutions of nonlinear PDEs on the space-time region [0, 7] x R¢ without the curse of dimen-
sionality. It is precisely the subject of this article to overcome this obstacle. In particular, the main
result of this article shows that for all @ € R, b € [a, 00) it holds that DNNs can approximate solutions
of PDEs with Lipschitz nonlinearities on the space-time region [0,7] x [a,b]? without the curse of
dimensionality.
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1 Introduction

Recently, several variants of deep learning based approximation methods for partial differential equations
(PDEs) have been proposed and a number of very encouraging numerical simulations have indicated
the potential of such approximation methods to overcome the curse of dimensionality in the numerical
approximation of high-dimensional PDEs (cf., e.g., [1,2,3,4,5,6,8,9, 10, 11,13, 14,16,21,22,23 25 27,30,
31,32,33,34,35,37]). There is as yet no comprehensive mathematical theory which explains why these
methods seem to overcome the curse of dimensionality. However, there are now several partial results
available in the scientific literature which rigorously prove that deep neural network (DNN) approximations



indeed overcome the curse of dimensionality in the approximation of PDEs in the sense that the number
of real parameters used to describe the approximating DNNs grows at most polynomially in both the
PDE dimension d € N = {1,2,3,...} and the reciprocal 1/c of the prescribed approximation accuracy

€ E (0? Oo); Cf'? e'g'7 [?7 7 J 9 Y 9 Y ) 3 Y 7 ]' The a’rtiCleS [ J 9 Y 9 Y 9 9 ) ?
| study DNN approximations for linear PDEs and the articles [?,26] study DNN approximations for
nonlinear PDEs. Except for the articles [19,24] in the case of linear PDEs, all of the above articles

study DNN approximations for solutions of PDEs at the time of maturity 7" € (0, c0) but do not provide
approximations for the entire PDE solution on [0, 7] x R? and it remained an open question whether DNN
approximations can also approximate solutions of nonlinear PDEs on the space-time region [0,7] x R?
without the curse of dimensionality.

It is precisely the subject of this article to overcome this obstacle and to prove that DNNs have the
power to approximate solutions of certain nonlinear PDEs on the entire space-time region [0,7] x R?
without the curse of dimensionality. In particular, the main result of this article, ?? in ?? below, shows
that for all @ € R, b € [a,00) it holds that DNNs can approximate solutions of PDEs with Lipschitz
nonlinearities on the space-time region [0, 7] x [a, b]? without the curse of dimensionality. In order to lay
out the findings of this work in more detail, we present in Theorem 1.1 below a special case of 7?7 in 77
below.

Theorem 1.1. Let A: (Uyen RY) = (Uyen RY) and [|-]]: (Uyen RY) — [0, 00) satisfy for alld € N, z =
(71, T, ..., x4) € R that A(z) = (max{z,,0}, max{zy, 0}, ..., max{z,,0}) and ||| = S, (xx)?]"?, let
N = Upen U,y e Xiimy (R0 st REY) et R N = (U jey C(RE,RY)) and P: N — N satisfy for

77777

all L €N, lo,ly,...,lp €N, & = (Wi, By), Wa, By),...,(Wr,Bp)) € (Xp_(Reb—1 5 RE)), 25 € Rlo,
vy € RY, ..z € R withVk € {1,2,...,L — 1}: 2, = A(Wyrp_y + By) that R(®) € C(Rl Rz),
(R(®))(x0) = Wrap—1+Br, and P(®) = 30 li(lk—1+1), let T, 5, p € (0,00), (gae)@ereixo1) S N, let
f: R — R be Lipschitz continuous, let uqg € CH2([0,T] x R4, R), d € N, and assume for alld € N, z € R,
e € (0,1, t € [0,7] that R(gae) € C(RYR), f|(Voua)(0,2)| + elualt, 2)| + [ua(0,2) — (R(gas)) (@) <
erd™(1+ [|z||"), P(gae) < rd®e™", and

(%ud)(t,x) = (Ayug)(t,x) + f(uq(t, )). (1.1)

Then there exist (Uge)@e)enxoi] € N and ¢ € R such that for all d € N, € € (0,1] it holds that
R(uge) € C(RMER), Pug.) < cde™c, and

o
U[OT] o ua(y) — (Ruae)) W) dy|  <e. (1.2)

Theorem 1.1 is an immediate consequence of ?? in 7?7 below. 7?7, in turn, follows from ?? which
is the main result of this article (see 7?7 below for details). In the following we provide some explana-
tory comments concerning the mathematical objects appearing in Theorem 1.1 above. The function
A (Ugen RY) = (Ugen RY) in Theorem 1.1 above describes the multidimensional rectifier functions which
we employ as activation functions in the approximating DNNs in Theorem 1.1 above. The function
]2 (Ugen RY) — [0,00) describes the standard norms on R?, d € N, in the sense that for all d € N
it holds that ||-|: (UzsenR?) — [0,00) restricted to R? is nothing but the standard norm on R%. The
networks which we érriploy to approximate the solutions of the PDEs under consideration. The function
R:N = (Upien © (R*,R")) in Theorem 1.1 above assigns to each neural network its realization function.
More specifically, we observe that for every neural network ® € N it holds that R(®) € (U, ey C(R*,RY))
is the realization function of the neural network ® with the activation functions being multidimensional
versions of the rectifier function provided by A: (e RY) = (Uyen RY). The function P: N — N counts
for every neural network ® € N the number of real parameters employed in ®. More formally, we note that
for every neural network ® € N it holds that P(®) € N is the number of real numbers used to describe
the neural network ®. Furthermore, we observe that P(®) corresponds to the amount of memory that is
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needed on a computer to store the neural network ® € N. The real number T € (0, 00) in Theorem 1.1
above specifies the time horizon of the PDEs (see (1.1)) whose solutions we intend to approximate by
DNNs in (1.2) in Theorem 1.1 above. The real number x € (0,00) in Theorem 1.1 above is a constant
which we employ to formulate our regularity and approximation hypotheses in Theorem 1.1. The real
number p € (0, 00) in Theorem 1.1 above is used to specify the way we measure the error between the exact
solutions of the PDEs under consideration and their DNN approximations, that is, we measure the error
between the exact solutions of the PDEs under consideration and their DNN approximations in the LP-
sense (see (1.2) above for details). In Theorem 1.1 we assume that the initial conditions of the PDEs (see
(1.1)) whose solutions we intend to approximate by DNNs without the curse of dimensionality can be ap-
proximated by DNNs without the curse of dimensionality. The neural networks (gq,c)(a.e)enx(0,1] € N serve
as such approximating DNNs for the initial conditions of the PDEs (see (1.1)) whose solutions we intend
to approximate. In particular, we note that the hypothesis that for all d € N, z € R?, ¢ € (0,1], ¢t € [0, T
it holds that ||(V,ua)(0,2)|| + elua(t, )| + |ua(0,2) — (R(gae))(z)| < erd®(1 + ||z]|*) in Theorem 1.1
above ensures that for all d € N, z € R? it holds that (R(ga.))(x) converges to uq(0,z) as € converges to
0. The function f: R — R in Theorem 1.1 above specifies the nonlinearity in the PDEs (see (1.1)) whose
solutions we intend to approximate by DNNs in Theorem 1.1. The functions ug4: [0,7] x R = R, d € N,
in Theorem 1.1 above describe the exact solutions of the PDEs in (1.1). Theorem 1.1 establishes that
there exist neural networks uz. € N, (d,e) € N x (0,1], such that for all d € N, ¢ € (0,1] it holds that
the LP-distance between the exact solution ug: [0,7] x R? — R of the PDE in (1.1) and the realization
R(uge): R4 — R of the neural network ug. with respect to the Lebesgue measure on the space-time
region [0,7] x [0,1]¢ is bounded by e and such that the number of parameters of the neural networks
uz. € N, (d,e) € N x (0,1], grows at most polynomially in both the PDE dimension d € N and the
reciprocal 1/e of the prescribed approximation accuracy € € (0, 1]. Theorem 1.1 is restricted to measuring
the LP-distance with respect to the Lebesgue measure on [0,7] x [0, 1]¢ but our more general DNN ap-
proximation results in ?? below (see ?? and 7?7 in ??7) allow measuring the LP-distance with respect to
more general probability measures on [0, 7] x R In particular, for all @ € R, b € (a,00) we have that
the more general DNN approximation results in 77 below allow measuring the LP-distance with respect
to the uniform distribution on [0, 7] X [a, b]%.
The rest of this article is structured in the following way:

2 Properties of solutions of partial differential equations (PDEs)

A comment from Josh: Should I refer to the equations as “stochastic fixed point equations”,
rather than PDEs?

2.1 An a priori bound for solutions of PDEs
A comment from Josh: This is new...

Definition 2.1 (The Euclidean norm). We denote by ||-|| : (Uzeny R?) — [0, 00) the function which satisfies
for alld €N, x = (x1, 9, ..., 24) € R? that ||z|| = [0, |=:[*]7>.

A comment from Josh: This is new...
Note: The result can be cited from the paper with Nguyen, if we want...

Lemma 2.2. Letd € N, T, L,C € (0,00), p,q € [1,00), let f € C([0,T] x R x R,R) and g € C(R% R)
satisfy for allt € [0,T], v € RY, v,w € R that | f(t, z,v)—f(t,z,w)| < Llv—w| and |g(z)| < C(1+]||x|))?, let
(9, F,P) be a probability space, let W: [0, T] x Q — R? be a standard Brownian motion, let u € C([0,T] x
R R) satisfy for allt € [0,T], x € R? that E[|g(x +Wr_,)| +ftT |f(s, 2+ Wy_p,u(s,z+Ws_y))|ds] < oo
and

u(t,z) = Elg(x + Wr_)] + /t E[f(s,2+ W _ s, u(s,x + W_4))] ds (2.1)
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cf. Definition 2.1). en 1t holds for all x € that
(fDﬁ )Th holds f [l R? th

sup (E“u(t,m + Wt)}qDl/q <eM(T+1)C

te[0,T

sup (E[(l + ||z + WtH)qu%] : (2.2)

te[0,7

Proof of Lemma 2.2. Throughout this proof let p;: B(R?) — [0, 1], t € [0,7T] be the probability measures
which satisfy for all ¢ € [0,7], B € B(R?) that

w(B) =P(x + W, € B). (2.3)
The integral transformation theorem, (2.1), and the triangle inequality show for all ¢ € [0, T that
l/q

(2flute+ WW})% = ([ 1t mta)

-(L

< ( 5 IElg(z+ Wr_)] | ut(d2)>l/q

T q q
E {g(z +Wr_y) + / f(s,2+Ws_p,u(s, 2+ Ws_y)) ds] ,ut(dz))

(2.4)

T 1/q
+/ ( ’E[f(s,z—l—WS_t,u(s,z—i—WS_t))} |q,ut(dz)) ds.
t R4

Next, Jensen’s inequality, Fubini’s theorem, (2.3), the fact that W has independent and stationary in-
crements, and the fact that for all z € R? it holds that |g(z)] < C(1 + ||z||?) demonstrate that for all
t € [0,7] it holds that

Elg(: + Waoi)]|" () < [ B[lge + Wr = Wol'] m(d)
Re Re . (2.5)
_ E[\g(w FW, Wy — wt)yq] _ E[\g(x +WT)|‘1] < E[cq(1 + |z +WT\|> } .

Furthermore, Jensen’s inequality, Fubini’s theorem, (2.3), the fact that W has independent and stationary
increments, the triangle inequality, the fact that for all + € [0,T], z € R?, v,w € R that |f(¢,z,v) —
f(t,z,w)| < Llv — wl, and the fact that for all x € R? it holds that |g(z)| < C(1 + ||z||?) demonstrate for
all t € [0, 7] that

/tT ( » }]E [f(s, 24+ Wy, u(s, z + Ws_t))] {q Mt(d2)>1/q ds
Vg

g/tT (E“f(s,z+W5,u(s,z+Ws))\qD ds

T a
g/t (E“f(s,x—l—WS,O)lq]) ds (2.6)

T Y/a
+/ (E[yf(s,z+ws,u(s,z+ws))—f(s,x+ws,o>yQD ds

pg
< T sup (E{C"(l + Hx—i—WsH> ])
s€[0,7T

/q /g

+/tT (E[Lq yu(s,x+Ws)|"D ds.



Combining this with (2.4) and (2.5) implies that for all ¢ € [0, 7] it holds that

(IE “u(t, T+ Wt)ﬂ )Vq

g (2.7)
Pq T Ya
< (T +1)C sup E{<1+\|x+WsH) } +L/ (E[|u(s,x+ws)|qD ds.
s€[0,7T t
Next, A comment from Josh: Add citation... shows that
|u(s, )] Ju(s, y)]
sup sup —————— < sup sup ———— < 00. (2.8)
sefo,7)yere (L+ YID" ™ sepryyera 1+ [lyl”
This, the triangle inequality, and the fact that E[||Wr|"] < oo show that
T 1/q T pq Ya
| (Bt war] ) as < | sup sup 25U (8] (1o w) ] ) a
0 s€[0,T] yeRd (L + [lyll) 0 (2.9)
u(s,y)| Vo) ? |
< | sup sup ————r5 | T |1+ |z]+ <E[||WT||W]> < o0.
selo.1] yere (1+ [[yl))”
This, Gronwall’s integral inequality, and (2.7) establish for all ¢ € [0, 7] that
l/q - l/q
(E[|u(t,:c+wt)qu < (T +1)C sup ]E[<1+ ||:z:+Ws||) } . (2.10)
s€[0,T]
The proof of Lemma 2.2 is thus completed. [

2.2 Stability properties for solutions of PDEs

A comment from Josh: This is new...

Lemma 2.3. Let d € N, T,L,C,B € (0,00), p,q € [1,00), let fi,f> € C([0,T] x R? x R,R) and
g1, 92 € C(RUR) satisfy for allt € [0,T], z € RY, v,w € R, i € {1,2} that |f;(t,x,v) — fi(t,z,w)| <
Lo —wl, |g:@) < CO+ [P, and mas{| fults 2, ) — folt 2, 0)] [9n(2) — g2(@)[} < B+ [zl + o],
let (Q,F,P) be a probability space, let W: [0,T] x Q — R? be a standard Brownian motion, and let
ur,up € C([0,T] x RYR) satisfy for all t € [0,T], x € RY, i € {1,2} that E[|g;(x + Wr_,)| —i—ftT |fi(s,x+
W, ui(s, 2+ Wi_y))| ds] < oo and

T
ui(t,x) = Elgi(x + Wr_y)] + / E[fi(s,z + Wy, ui(s,x + W_4))] ds (2.11)
t
(cf. Definition 2.1). Then it holds for all t € [0,T], x € R? that

]E“ul(t,x + W) —us(t,x + Wt)‘] < B(e"(T + 1))qul (C+1)

s€[0,T7]

sup E[(l + Hx—i—WsH)pq]] . (2.12)

Proof of Lemma 2.3. First, (2.11), the triangle inequality, and the fact that W has stationary increments
show for all ¢ € [0,7], z € R? that

|uq (t, ) — us(t, x)|
< ]E[‘gl(:lz' + Wr_y) — gal + WT*I‘)‘]

g (2.13)
+ / E[lfl(s, T+ W ui(s, 2+ W y)) — fils,x + Wy, us(s, o + Ws_t))|] ds :
t

T
+ / ]E|:|f1<87$ + Ws—t7 u2(87 x + Ws—t)) - f2<57$ + Ws—t7 u2(87 x + Ws—t))'] ds.
t
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This, Fubini’s theorem, the fact that W has independent increments, and the fact that for all ¢ € [0, 7],
reRY v,weR, i€ {1,2} that |f;(t,z,v) — fi(t,x,w)| < L|v — w| ensure that for all ¢ € [0,T], z € R?
it holds that

E Uul(t, T + Wt> - U2<t, T+ Wt)|:|

< E[}gl(x + Wr) — go( +WT)‘]

T
+/ E[|f1(s,x+Ws,u1(s,x+Ws)) —fl(s,ac—i-WS,uQ(s,x—i-Ws))ﬂ ds

+ /tTE“fl(S,x + W, ua(s,r+ Wy)) — fals, 2+ Wy, ug(s, v + Ws))@ ds (2.14)
<E[lgi(a+ Wr) — gala + W)
+L/tTE[|u1(s,x+Ws) — UQ(S,1'+WS>’:| ds

+T sup E[[fl(s,w—i-Ws,uQ(s,x—i-Ws)) — fa(s,x + Wy, us(s,z + Wy))|| .
s€[0,7T

This, Gronwall’s lemma, and Lemma 2.2 yield for all € R? that

sup ]E[!ul(s, x4+ W) —us(s,z + Ws)u

s€[0,7T

< el (E[|gl($+WT) _92($+WT)|} (2.15)

+T sup E[|f1(s,x+Ws,uQ(s,x+Ws)) — f2<3,x+Ws,U2(3,x+W8))|:|> )

s€[0,T]

Furthermore, the fact that for all t € [0,T], z € RY, v € R, i € {1,2} it holds that max{|f,(t,z,v) —
fo(t,z,v)|, |g1(x) — g2()|} < B((1 + ||z]|)P? + |v|?), the triangle inequality, and Lemma 2.2 imply for all
r € R? that

E[‘gl(x + Wr) — ga(z + WT)”

+T sup E|:|f1(S,ZE+WS,u2(S,I+WS>> —fg(S,I+WS,u2(S,£E+WS))|:|
s€[0,7

pq T
< B sup ]E[<1+||x—|—Ws||> } + BT sup E[|u2(x+WS)|q .

selo.7] s€l0,T] (2.16)

pq [ pq
< B sup ]E[<1+ ||x+W5||> } + BT (" (T +1)C)? sup E <1+ ||x+Ws||) ]
s€[0,7 s€[0,7] L

pq]
<B(T+1)(e"(T+1))"(C?+1) sup E[(H— ||a:+Ws||> :
s€[0,7 i

This, (2.15), and the triangle inequality yield that

sup E[‘ul(s, x4+ Wy) —us(s,z + WS)‘]
$€[0,T (2 17)

< B(e"(T+ 1))"*1 (C?+1) sup E{(1 + ||z +W5||)pq} .
$€[0,7T

The proof of Lemma 2.3 is thus completed. O



A comment from Josh: This is new...

Corollary 2.4. Letd € N, T, L,C,B € (0,00), p,q € [1,00), let fi,fo € C([0,T] x RY x R,R) and
g1, 92 € C(RER) satisfy for all t € [0,T], v € RY, v,w € R, i € {1,2} that |fi(t,z,v) — fi(t,z,w)] <
Llv—wl, |gi(z)| < C(1+[|z])), and max{[f1({,z,v) = fo(t, 2, )|, |91(x) — g2(@)[} < B((1+ [|z])" + [v]?),
let (Q,F,P) be a probability space, let W: [0,T] x Q — R? be a standard Brownian motion, and let
uy,ug € C([0,T] x RYR) satisfy for allt € [0,T], z € R, i € {1,2} that E[|g;(x + Wr_¢)] —l—j;T |fi(s,x+
W, ui(s, 2+ Wi_y))| ds] < oo and

T
uz(ta l’) = ]E[gz(x + WT—t)] + / E[.fl(sa x4+ Ws—ta ui(87 T+ Ws—t))] ds (2]‘8)
t
(cf. Definition 2.1). Then it holds for all t € [0,T], x € R? that

|ui (t,2) — ua(t, x)| < B(e" (T + 1))q+1 (C7+1)

sup E[(l + ||z +W3H)pq:|] : (2.19)

s€[0,T7
Note: Finish updating this proof...

Proof of Corollary 2./. Throughout this proof let V;: [0,7 — 4] x R - R, t € [0,7], and F: [0,T —t] x
R? x R,R), t € [0,T], be the functions which satisfy for all t € [0,7 — t], x € R, v € R, i € {1,2} that
Vidt,x) = wi(t + t,x) and F((t,z,v) = f;(t + t,z,v). Note that (2.18) and A comment from Josh:
Add reference/reason... ensure for all t € [0,7 — t|, z € R i € {1,2} it holds that

Vidlt,x) = ui(t + t, x)
T

=Elgi(x + Wp_gq9)] + / E[fi(s, 2 + Wy_41q, ui(s, 7+ W_py))] ds
(t+1)

(T—t) (2.20)
= Elgi(x + Wir_y_¢)] + / Elfi(s+t o+ W, ui(s +t, 2 + W,_y))]ds
¢
(T-t)
— Elgi(z + Wer_o_0)] + / E[Fy(s.2 + Wy, Vigls,  + W_,))] ds
¢
and
(T—)
E |gl<l’ + W(T—t)—t)‘ + / |F1i,t(37 x 4+ stt; V},t(s, X 4+ stt))| ds
! ., (2.21)
=E {|Qz($ + Wr_40)| + / | fi(s, 2 + W_pg, ui(s, 2 + We_1g))| ds} < 0.
(t+t)
Further note that for all t € [0,7 —t], * € RY, v,w € R i € {1,2} it holds that
|Fii(t,z,v) — Fii(t,z,w)| = | fi(t+ t,z,0) — filt +t,z,w)| < Ljv — w] (2.22)
and
|F17f(t7 .CC,’U) - F2,t(t7x7 U)’ = |f1(t =+ t,HT, U) - f(t + tu x, U)‘ S B(l + ’U|q>' (223)

In addition, note that the hypothesis that u;,us € C([0,T] x R% R) ensures that for all t € [0, 7] it holds
that Vi, Vo € C([0,T — ] x RYR). Combining this, (2.20), (2.21), (2.22), and (2.23) with Lemma 2.3
(with uy = Vi, ue = Vo, fi = Fiy, fo = Fox, g1 = g1, g2 = g2, T =T — t in the notation of Lemma 2.3)
demonstrates for every t € [0,T], ¢t € [0,T — t|, z € R that

E| Vit + Wo) = Vaulto + W) | < B (T+1))" (C9+1)

s€[0,T]

sup ]E[(l + \\x+Ws‘|)pq]] . (2.24)



This implies for all t € [0, T] that

E[\VM(O, 7+ W) — Vo (0,2 + WO)” - E[\ul(t, ) — us(t, :L‘)” = ur(t, ) — us(t, )|

(2.25)
< B((T+1))"(C+1) | sup E[(1+ o+ WS||)”q]] .
s€[0,7T
The proof of Corollary 2.4 is thus completed. 0

2.3 Temporal regularity properties for solutions of PDEs
A comment from Josh: This is new...

Lemma 2.5. Letd € N, C € (0,00), p € [1,00), let g € CL (R R) satisfy for all z € RY that ||(Vg)(z)]| <
C(1+ ||z]))P, let (Q, F,P) be a probability space, and let W: [0,T] x Q — R? be a standard Brownian
motion (cf. Definition 2.1). Then it holds for all t,t € [0,T], x € RY that

s€[0,T7]

E[}g(m + W) —g(z —|—Wt)}] < Clt—t]"?(d+2)" [ sup E[(l + ||z +Ws|’)p}] : (2.26)

A comment from Josh: Double-check this proof...

Proof of Lemma 2.5. Note that the fact that for all z € R? it holds that [|(Vg)(x)|| < C(1 + ||z||)?, the
fundamental theorem of calculus, the Cauchy-Schwarz inequality, and the fact that W has independent
increments assure for all ¢,t € [0,7], x € R? it holds that

E||g(e + W) — g+ W,)|| <E (EBPT] II(Vg)(:HWs)H) HWu—ﬂH]

<E| sup C(1+|z+ W,|)"
_SE[O,T]

E[[[We—]] (2.27)

< C'| sup E[(l + ||z +Ws||)p}

s€[0,7

E[||[We—ql]] -

Note that the fact that for all ¢,t € [0,7] the random variable ||Wi—+/,/—¢]|* is chi-squared distributed
with d degrees of freedom and Jenson’s inequality imply that for all ¢,t € [0, 7] it holds that

r(5+2) " o [f[ (g +j)

(s =0

Combining (2.27) and (2.28) then yields the desired result. The proof of Lemma 2.5 is thus completed. [

1/2

E[IW e} < E[IWiq]?] = 2t—4 < Jt—t(d+2). (2:28)

A comment from Josh: This is new...
Note: I had to add an additional regularity assumption to f...

Lemma 2.6. Letd € N, T, L,C € (0,00), p € [1,00), let f € C([0,T] x R x R,R) and g € C}(R% R)
satisfy for all s,t € [0,T], x € RY, v,w € R that |f(s,z,v) — f(t,z,w)] < L(|s —t| + |[v — w|) and
max{|f(t,z,0)|,](Vg)(z)||} < C(1+ |z|)?, let (Q, F,P) be a probability space, let W: [0,T] x Q — R?
be a standard Brownian motion, and let u € C([0,T] x R% R) satisfy for all t € [0,T], x € R? that
Ellg(z + Wp_y)| + ftT |f(s,2 + Ws_p,u(s,z+ Wg_))|ds] < oo and

u(t, z) = Elg(x + Wr_)] + /t E[f(s, 2 + Wy s, u(s,z + W, 0)] ds (2.29)
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(cf. Definition 2.1). Then it holds for all t,t € [0,T], v € R? that

]E[|u(t, r+ W) —u(t,z + Wt)|]
(2.30)

< VIt—t (eLT [C(1+(d+2)1/2) + L(T + Ce™™) (T+1>} sup E[(HIIHWSIIV}D-

s€[0,T]

A comment from Josh: I should probably clean up this bound (above)...
Note: Double-check proof...

Proof of Lemma 2.6. Throughout this proof let § = t —t. Without loss of generality, assume that ¢ <
First, (2.29), the triangle inequality, and the fact that W has stationary increments show for all ¢, t € [0, 77,
r € R? that

E[\u(t, ) — u(t, @\] =E [|u(t +0,2) — u(t, x)!}

—F HE [9(x + Wr_g15)) = g(z + Wr_y)]

|

T-6 T
+ / ]E[f(s+5,x+WS_t,u(s+5,x+W5_t)} ds—/ E[f(s,x—I—Ws_t,u(s,quWS_t)} ds
t t

T T
+ / E[f(s, T+ Wo_(145), u(s, z + WS,(H(;))} ds — / E[f(s, r+ W, u(s,z+ Ws_t)} ds
t+9 t

) HE [9(z + Wr_(14s) — g(z + W )]

|

< Eﬂg(ﬂj + WTf(Hé)) —g(z + WT—t)‘]

T—6
+ / ]E“f(s, T+ W u(s+ 0,2+ W, y)— f(s,x+ Wy, u(s,z + Ws_t)‘] ds
t
T—6
+ / ]E“f(s +0,x+We u(s+ 0,24+ Wey)— f(s,x+ W,y u(s+ 0,z + Ws_t)u ds
t

T
+ / E “f(s, x4+ Wy u(s,x+ Ws_t)‘] ds.

T-5
(2.31)

This, Fubini’s theorem, the fact that W has independent increments, and the fact that for all s,¢ € [0, 7],
r € R v,w € R that |f(s,z,v) — f(t,z,w)| < L(]s — t| + |[v — w]|) ensure that for all ¢,t € [0,T], x € R?
it holds that

E[‘u(t +0, 2+ W) —u(t,x + Wt)u

< E[‘g(x +Wr_s) — gz + WT)”

T—6

+/ E“f(s,x—i—ws,u(s—l—é,x—i—ws)—f(s,x—l—Ws,u(s,x—i-Ws)‘] ds
tT—5

+/ E[|f(s—|—5,x+WS,u(s+5,a:—I—WS)—f(s,x+Ws,u(s,x+Ws)‘] ds (2.32)
] .

+/TTaE[|f(S’x+WS’U(S’I+WS)H ds

S E[‘g(x—FWT_(;) _9<I+WT)|} +L/tT5E[‘u(5+5,x—|—Ws) —u(s,x—i—Ws)” ds

+ LT 4+ sup E[‘f(s,x—i-ws,u(s,x—i-ws)u )

s€[0,T7]
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This, Gronwall’s lemma, and Lemma 2.2 yield for all z € R that

sup E “u(t + 6,2+ W) —u(t, v+ Wt)‘]
te[0,7—46]

< T (E[ lg(z + Wr_s) — g(z + WT)H +oLT (2.33)

+0 sup E[‘f(s,x + W, u(s, x + Ws)u )
s€[0,T

Note that Lemma 2.2, the fact that for all s, € [0,7], z € R? v,w € R that |f(s,z,v) — f(t,z,w)| <

L(|s — t| + |[v — w|), and the fact that for all ¢t € [0,T], z € R? that |f(¢,2,0)] < C(1 + ||z||)?, and the

triangle inequality assure that for all s € [0, 7] it holds that

E[‘f(s,x—kws,u(s,x—i-ws)”
<E |f(s,x+W5,u(s,x+Ws) —f(s,x—l—Ws,O)‘] —I—E[‘f(s,x—I—WS,O)‘]

< L (E[lu(s, o+ W,)|| ) + € (E[(1+ ]z + W, ] (2.34)

< L{ (T +1)C wa“HWx+WNﬂ

t€[0,T7]

) +C (E[(l + |z +WSH)”D

IN

(L4 1)Ce"™ (T 4+ 1) | sup E[(l + ||z + thl)”}

t€[0,T]

This, (2.33), Lemma 2.5, and the triangle inequality then imply for all z € R? that

sup E[‘u(s + 6,2+ W) —u(s,z + Ws)ﬂ
s€[0,7—4)

< et (C (6(d+2))"? ( sup E[(l + H:IJ—%—WS)H)IJ]) +oLT

s€[0,T7
) (2.35)

sup E[(l + |+ ws||)pq}]> .

s€[0,T]

V(L +1)Ce (T +1)

sup E[(1+ 2+ W]
s€[0,T7]

<5 (eLT [C (1 + (d+ 2)1/2> + L(T+Ce") (T + 1)}

The proof of Lemma 2.6 is thus completed. n
A comment from Josh: This is new...

Corollary 2.7. Letd € N, T, L,C € (0,00), p,q € [1,00), let f € C([0,T] x R*x R, R) and g € C*(R%,R)
satisfy for all s,t € [0,T], x € RY, v,w € R that |f(s,z,v) — f(t,z,w)] < L(|s —t| + |[v — w|) and
max{|f(t,z,0)|,[|(Vg)(z)]|} < C(1+ |z|)?, let (Q, F,P) be a probability space, let W: [0,T] x Q — R?
be a standard Brownian motion, and let u € C([0,T] x R% R) satisfy for all t € [0,T], x € R? that
Ellg(z + Wp_,)| + ftT |f(s,x + Ws_p,u(s,z+ Wg_))|ds] < oo and

T
u(t,x) = Elg(z + Wr_y)] + / E[f(s,x + Wy, u(s,z + Ws_,))]ds (2.36)
t
(cf. Definition 2.1). Then it holds for all t,t € [0,T], z € R¢ that

<V]t—t (eLT [C (1 +(d+ 2)1/2) + L (T + Ce*) (T + 1)}

s€[0,T7]

sup ]E[(l + ||z + Ws\|)p]]> : (2:37)
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Proof of Corollary 2.7. A comment from Josh: Add proof... m

2.4  Full history recursive multilevel Picard (MLP) approximations of solu-
tions of PDEs

A comment from Josh: This is new...

Lemma 2.8. Letd, M € N, T, L,C € (0,00), p,q € [1,00), let f € C([0,T]xR¥xR,R) and g € C(R% R)
satisfy for allt € [0,T], v € RY, v,w € R that | f(t, z,v)—f(t,z,w)| < Llv—w| and |g(z)| < C(1+]||z||)?, let
(Q, F,P) be a probability space, let W: [0, T] x Q — R? be a standard Brownian motion, let u € C([0,T] x
R% R) satisfy for allt € [0,T], z € R? that E[|g(x + Wr_)| +ftT |f(s,24+ Wy, u(s,x+Ws_y))|ds] < oo
and

u(t,z) = Elg(z + Wr_)] + /t E[f(s, 7 + Wy, uls,z + W, 1))] ds, (2.38)

let © = (U,en Z"), let u?: Q — [0,1], 0 € O, be independent uniformly distributed random variables, let
U [0, T)xQ —[0,T], 0 € O, satisfy for allt € [0,T],0 € © that U = t+ (T —t)u’, let W: [0,T] x Q —
R, 0 € O, be independent standard Brownian motions, assume for all § € © that U° and W9 are
independent, for every 0 € ©, t € [0,T], s € [t,T] let X, ,: Q — R? satisfy V), = WE — W¢, and let

t,s,x °

U2 [0, T] xR x Q =R, n €Ny, 6 €0, satisfy for alln € Ng, 0 € ©,t € [0,T], x € R? that

Inn(n) [x
Up(t,z) = —]IT/[n > g(x + KE%Q_IC))]
k=1
STt | (6,0.6) 0ik) 1 7(0.0k) (5 (0:k) (0,i.5)
- 0.k 0,i.k 0.k 0.k 0,i.k
+ — Mn—i ; (f (Z/{t ,LU + 1/;7ut(0,i,k)77 Uz (Z/{t 737 + Y;Mt(e’i’k))) (239)

i) £ (U0 Y i Uiy (U 400 ) >]

t,Z/{t(e’i’k)’ max{i—1,0}
(cf. Definition 2.1). Then it holds for all t € [0,T], x € R? that

Vol (€1 +2LT)"
sup E[(Huﬁwsu)pq] “ <€ (1 +2L7) ) (2.40)
s€[0,7] M™/?

(B[ 105t 2) - u(t, x)ﬂ)l/q < (T4 1)C

Proof of Lemma 2.8. A comment from Josh: Add proof... [

3 Artificial neural network (ANN) calculus

3.1 ANNs
Definition 3.1 (Artificial neural networks). We denote by N the set given by

N =Upen U(zo,h ..... IL)ENL+1 (X£:1(leﬂk71 X le)) ; (3.1)

we refer to the elements of N as neural networks, and we denote by P,L,Z,O: N — N, H: N — Ny,
D: N — (Uzo:2 NL), andD,,: N — Ny, n € Ny, the functions which satisfy for all L € N, Iy, 11, ..., € N,
NS ()(ﬁzl(IleXlk*1 X le)), n € Ny that P(®) = Zle L(lk—1 + 1), L(®) = L, Z(P) = Iy, O(P) = I,
H(P) =L -1, D(®) = (lo,l1,...,11), and

U P 32)

12



Definition 3.2 (Neural network). We say that ® is a neural network if and only if it holds that ® € N
(cf. Definition 3.1).

Definition 3.3 (Maximum norm). We denote by [|-|| : (UzenyR?) — [0,00) the function which satisfies
for alld € N, v = (x1, 29, ...,74) € R? that

. (3.3)

lzll = max |z
1€{1,2,...,d}

3.2 Realizations of DNNs

Definition 3.4 (Rectifier function). We denote by v: R — R the function which satisfies for all x € R
that
t(z) = max{z, 0}. (3.4)

Definition 3.5 (Multidimensional version). Let d € N and let a € C(R,R) be a function. Then we denote
by Myq: RY — R the function which satisfies for all x = (x1,xa,...,24) € R? that

Moa(z) = (a(xy),a(za), ..., a(xg)). (3.5)

Definition 3.6 (Realization associated to a DNN). Let a € C(R,R). Then we denote by R,: N —
(UweN C(RF,RY)) the function which satisfies for all L € N, lo,l1,...,l, € N, & = (W1, By), (W2, Ba),
ooy (Wr,Br)) € (Xpoy (RbX=1 x RIk)), zg € Rl 2y € RU, ..z oy € Riz with V€ NN (0,L): @y =
ma,lk (kak—l + Bk) that

Ro(®) € C(RY R™)  and  (Ra(®))(20) = Wrap 1 + By (3.6)
(cf. Definitions 3.1 and 3.5).
A comment from Josh: Do I need this result?
Lemma 3.7. Let ® € N (¢f. Definition 3.1). Then
(i) it holds that D(®) € N+ gnd
(i) it holds for all a € C(R,R) that R,(®) € C(RI(®) RO®)
(cf. Definition 5.6).

Proof of Lemma 3.7. Note that the assumption that ® € N = U, cxyUgy .. lL)ENL+1(><£:1(leXlk71 X
R!*)) ensures that there exist L € N, ly,1y,...,I; € N such that

® € (X (Rl x RI)) . (3.7)

Observe that (3.7) assures that
L@)=L,  I(®)=l,  O@) =1y (3.8)
and  D(®) = (Ip, 1y, ... 1) € NI+ = NA®HL (3.9)
This establishes item (i). Moreover, note that (3.8) and (3.6) show that R,(®) € C(R*(®) RO®)). This
establishes item (ii). The proof of Lemma 3.7 is thus completed. ]
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3.3 Compositions of ANNs
3.3.1 Standard compositions of ANNs

Definition 3.8 (Composition of ANNs). We denote by (-) @ (-): {(®1,P2) € N x N: Z(P) = O(P2)}
— N the function which satisfies for all L, £ € N, lo, 1y, ..., lp,lo, b1, ..., lgc € N, &y = (W4, By), (Wa, Bs),
= (WL7 BL)) € (Xé:l(leXlk71 X le)); ®2 = ((%7 '%1>) (%7 ‘@2)7 SRR (%7‘%2)) € (Xi:l(R[kX[kil X

O 0Dy =
(((1.20), (W3, Bo).....(Wer, Beor), WiHe WiBe + Br), o
(W, Bs), (W3, Bs), ..., (Wy,Bp))
(Wi, Wi, + Br), (Wa, Ba), (W3, Bs), ..., (Wi, By)) L>1=2¢ (3.10)
(H1, Br), W, Bs), ..., Wer, Bor), Wi, W1 B+ By)) :L=1<g
(W1, W1, + By)) L=1=¢
(cf. Definition 5.1).
3.3.2 Elementary properties of standard compositions of ANNs
A comment from Josh: I think I need this result...
Proposition 3.9. Let &, P, € N satisfy that Z(P1) = O(Ps) (cf. Definition 3.1). Then
(i) it holds that
D(D1 @ Dy) = (Do(P2),D1(P2), ..., Dr@s)—1(P2), D1 (P1), Do(P1), ..., Drayy (P1)), (3.11)
(i) it holds that
[L(Py @ 0y) — 1] = [L(Py) — 1] + [L£(D,) — 1], (3.12)
(i) it holds that
H(Dy @ Do) = H(Dy) + H(D2), (3.13)

(iv) it holds that

P(Py 0 Dy) = P(P1) + P(P2) + D1 (1) (Dray)-1(P2) + 1)
— Dl(q)l)(]DO(q)l) + 1) — D£(¢2)(@2)(DL(¢2)_1(®2) -+ 1) (3.14)
< P(P1) + P(P2) + Dy (P1)Dr(ay)—1(P2),

and
(v) it holds for all a € C(R,R) that Ro(®; e ®y) € C(RT(*2) RO®) gnd
Ra(D1 0 Dy) = [Ry(P1)] 0 [Ra(Ps)] (3.15)

(cf. Definitions 3.6 and 3.8).

Proof of Proposition 3.9. Throughout this proof let a € C'(R,R), let Ly € N, k € {1,2}, satisfy for all
k S {17 2} that Lk - £<q)k)7 let ll,OJ ll,l7 L 7l1,£(¢'1)7 l2,07 l2,17 LR 7l2,£(¢‘2) S NJ ((Wk,la Bk,1)7 (Wk,27 Bk,Q)) R
(Wh,y, Brr,)) € (xfﬁl(le!J‘Xlkvﬂ'*l x R3)), k € {1,2}, satisfy for all k € {1,2} that

Op = ((Wk,lu Bi1), Wika,Br2), ..., Wi, Bk,Lk))a (3.16)
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let Ly € N, l370, l3,1, ey l3’L3 eN, &3 = ((Wg’l, 33’1)7 RN (W3,L3, B3,L3)) € (xfil (Rl&j xl3,5-1 XRl?”j)) sa,tisfy

that @5 = &, @ Oy, let 25 € R20, 2, € Rk .  TLy—1 € R2.L2-1 satisfy that

\V/] € NN (O, LQ)I Xy = Qﬁa’l” (W2,j$j—1 + BQJ)

(3.17)

(cf. Definition 3.5), let yo € R0 4 € Riv1 .. yp 1 € Rivta-t satisfy that yy = Wa r,%1,-1 + B2 1, and

VieNN(0,Li): y; = Moy, ,(Wiy5-1 + Buiy),
and let 2o € R0 2y € Rl .. 2. 1 € RBs—1 satisfy that 29 = xo and
VieNN(0,Ls): zj = Moy, ,(Wajzj_1 + Bsj).
Note that (3.10) ensures that
Dy =D, 0Dy =

( ((WQ,D B2,1)7 (W2,27 B2,2)7 ey (WQ,LQ—h B2,L2—1)7
(Wl,1W2,L2; Wl,lBQ,LQ + Bl,1)7 (W1,27 Bl,2)7 : Ll >1< L2
(W1,37 B1,3)7 ety (Wl,L17 Bl,[q))

((W1,1W2,1, Wi1Ba1 + Bi1), (Wig, Bia),

Li>1=1,
(Wl,37 Bl,3)7 ceey (WI,L17 Bl,Ll))
B B . _1,Bar._
((W2,17 2,1)7 (W2,27 2,2)7 7(W2,L2 1, P2 Lo 1)7 Ll _ 1 < L2
(Wi aWor,, Wi1Bo 1, + Bl,l))
(W1 Wo i, W11Bs1 + Bi1) Ly =1= 1Ly

Hence, we obtain that

[E(q)loq)g)—l] = [(Lg—l)—f—l—l—([q—l)] —1
=Ly — 1]+ [Ly — 1] = [L(Py) — 1] + [L(D2) — 1]

and D((I)l [ ] (I)Q) = (1270, 1271, e ,127[/2_1, l171, l172, ey ll,Ll)'
This establishes items (i), (ii), and (iii). In addition, observe that (3.22) demonstrates that

L3
P(Predy) =3 I3;(l3;-1+1)
i=1

[L,—1 Ls
= laj(laj1+ )| +lar,(lap,a + 1)+ | Y Isi(lsj1+1)
| J=1 | j=La+1
[£,-1 T L
= | > byl + )| +haller, 1+ 1)+ | > lhyjreni(lijr, +1)
L 7=t ] j=La+1

(1,1
- Z lg’j(lg,j_l + 1) +
7=1

+ha(lop,—1 + 1)

Ly
> bl +1)
=2

L2 Ll
= (> b+ )|+ | Db+ 1) +ha(lop,—1+1)
j=1 j=1

— o, (g1 +1) = lia(lo+1)

=P(®1) +P(P2) + l11(lapy—1+1) —lar,(lopy—1 + 1)
—la(lip+1)

<P(Py) +P(P2) + lialary—1-
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This establishes item (iv). Moreover, observe that (3.20) and the fact that a € C'(R,R) ensure that
Ra(Py @ By) € C(R20, RIL1) = C(RT(®2) ROV, (3.24)

Next note that (3.21) implies that L3 = L; + Lo — 1. This, (3.20), and (3.22) ensure that

(l3,07 l3,17 K 7l3,L1+L271) = (l2,07 12,17 cee 712,[/2717 ll,l? l1,27 s 7l1,L1)7 (325)

[Vj € NN(0,Ly): (Way, Byj) = (Way, Baj), (3.26)

(W31, B3,n,) = Wi1Wo,L,, W11 Ba 1, + Bi1), (3.27)

and [VJ eNnN (LQ, Ll + LQ): (W&j, B&j) = (Wl,j+lfL27 Bl,j+1fL2):| . (328)

This, (3.17), (3.19), and induction imply that for all j € Ny N [0, L2) it holds that z; = z;. Combining
this with (3.27) and the fact that yo = Wy 1,21,-1 + Ba 1, ensures that

W3,L2ZL2—1 + B37L2 = W3,L2xL2—1 + B3,L2
= WiaWs 1, 20,1 + WinBa g, + Bia (3.29)
=Wi1(War, 2,1+ Bar,) + Bia = Wii1yo + B 1.

Next we claim that for all j € NN [Ly, Ly 4+ Lo) it holds that
Wi 21+ Bsj = Wijsi-LoYj—r, + Bijii-Lo. (3.30)

We prove (3.30) by induction on j € NN[Lg, Ly + L). Note that (3.29) establishes (3.30) in the base case
j = Lo. For the induction step note that the fact that Ly = L; + Ly — 1, (3.18), (3.19), (3.25), and (3.28)
imply that for all 7 € NN [Ly,00) N (0, Ly + Ly — 1) with

Wsizj—1+ Bsj = Wi j1-1.Yj—1, + Bij1-1, (3.31)
it holds that

Wi 1125 + Baji1 = Wa j10Mai, ,(Wa j25-1 + Ba j) + Bs j
= Wijio-1.Maty ;o1 0y Wig1-1aYj-1, + Bijii-1,) + Bijra-1, (3.32)

= Wi jro-L,Yj+1-L, + B1jia-L,-
Induction hence proves (3.30). Next observe that (3.30) and the fact that L3 = Ly + Ly — 1 assure that
Wi r.205—1 + B3, = Ws 14 10-1204100—2 + B3 1140,-1 = Wi, yr,—1 + Bip,. (3.33)
The fact that 3 = O, @ $y, (3.17), (3.18), and (3.19) therefore prove that

[Ra(P1 @ D2)](20) = [Ra(P3)](w0) = [Ra(P3)](20) = Wi 152151 + Ba L,
=Wi,Yr,-1 + Bir, = [Ra(®1)](%0)

3.34
= [Ra(®1)] (WQ,L2$L2—1 + BZ,LZ) ( )
= [Ra(@1)]([Ra(®2)](20)) = [(Ra(®1)) 0 (Ra(P2))](w0)-

Combining this with (3.24) establishes item (v). The proof of Proposition 3.9 is thus completed. O

A comment from Josh: Do I need this result?

Corollary 3.10. Let Ll, LQ, L3 € N, ll,O; ll,lv Ce ,lLLl,lQ’O, l271, ce ,lg}LQ, 1370, l371, ey l3,L3 eN satisfy that
ll,O = ZQ’LQ and let (I)k = ((Wk,laBk,l); (Wkg, Bk,g), ey (Wk,Lk; Bk,Lk)) & (X][-/il(le’lek’j_l X le’j)), k €
{1,2, 3}, satisfy that &3 = 1 @ Oy (cf. Definitions 3.1 and 3.8). Then
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(i) it holds that
L3 = E(q)g) = ﬁ(q)l) + E(@Q) —1= Ll + L2 -1 Z maX{Ll, LQ}, (335)

(i1) it holds for all j € NN (0, Ls) that
(Wa,j, Bsj) = (Waj, Bayj), (3.36)

(#13) it holds that
(Ws.1,, Bs,) = (WiaWa r,, W11Ba 1, + Bi11), (3.37)

and
(i) it holds for all j € NN (Lg, Ly + Lo) = NN (La,00) N [1, L3] that

(Waj, Bsj) = (Wij—ry11, Bij-r,41)- (3.38)

Proof of Corollary 3.10. Observe that item (ii) in Proposition 3.9 proves item (i). Moreover, note that
(3.10) establishes items (ii), (iii), and (iv). The proof of Corollary 3.10 is thus completed. O
3.3.3 Associativity of standard compositions of ANNs

A comment from Josh: I think I need this result...

Lemma 3.11. Let ®1, Py, 3 € N satisfy that Z(P1) = O(Py) and Z(P2) = O(P3) (¢f. Definition 3.1).
Then it holds that
(P10 Dy) @Dy =Dy 0 (Dy0D3) (3.39)

(cf. Definition 3.8).

Proof of Lemma 3.11. Throughout this proof let &4, &5, g, P; € N satisfy that &, = D, e Oy, Oy =
Dy 0 D3, Oy = D0 D3, and Py = Py e Dy, let L, € N, k € {1,2,...,7}, satisfy for all k € {1,2,...,7}
that Lk = ﬁ(q)k), let lk70,lk71, ce 7lk,Lk € N, k € {1,2, .. .,7}, and let ((Wk,laBk,1)> (Wk72,Bk72), ceey
(WL Be,n,)) € (Xfﬁl(leJ”kvj—l x Riwi)), ke {1,2,...,7}, satisfy for all k € {1,2,...,7} that

@y, = (Wi, Bea)s Wiz, Beo)s - .., Wiy, Brny))- (3.40)
Proposition 3.9 and the fact that for all £ € {1,2,3} it holds that £(®y) = Ly proves that

L(®6)

L((DP10Dy)edD3)=L(D0Dy)+ L(P3) — 1
(CI)I) + E(q)g ° @3) —1= ,C(q)l ® (@2 ® @3)) == L(@7)

Il
oD

Next note that Corollary 3.10, (3.40), and the fact that &, = ®; e &5 imply that

[Vj eNN (O, LQ): (W47j, B4,j) = (WQJ, BQJ)], (342)
(Wi nos Bar,) = WiaWa r,, W1 Bo 1, + Bi1), (3.43)
and [V] e NN (LQ, Ll -+ LQ)S (W47j, B4’j) = (Wl,j+1fL27 Bl’jJrl,LQ)} . (344)
Hence, we obtain that
[VjeNN(Ly—1,Ly+ Ly — 1): (Waj1-rg, Bajri-ry) = (Wajii-rg: Bajiios)] (3.45)
(Wa,L,, Bar,) = W11Wa r,, Wi1Bs 1, + Bi1), (3.46)
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and

VieNN(Ly+ Ly —1,Ly + Lo+ Ly — 1):
(Wiji1-rg Bujii-rs) = Wijio- 14, Brjio-r,-1,)] - (3.47)

In addition, observe that Corollary 3.10, (3.40), and the fact that &5 = ®, @ &3 demonstrate that

[Vj eNN (O, L3)I (W57j, B5,j) = (Wgﬂ‘, Bgd)], (348)
(W5,L3’ B5,L3) = (W2,1W3,L37 Wo1Bs 1, + 32,1), (3.49)
and Vi e NN (Ls, Lo+ Ls): (Wsj, Bsj) = Wojr1-1y, Bajii-1,)]- (3.50)
Moreover, note that Corollary 3.10, (3.40), and the fact that &5 = ®, @ P35 ensure that
[V] eNN (O, L3>I (W&j, BG’J‘) = (W&j, Bg,j)], (351)
(W&Lsa B6,Ls) = (W4,1W3,L37 Wy1Bs o, + B4,1), (3.52)
and [Vj S NN (Lg, L4 + Lg)i (Wﬁ,j7 BG’]‘) == (W4,j+1—L37 B4,j+1—L3)} . (353)
Furthermore, observe that Corollary 3.10, (3.40), and the fact that ®; = ®; e 5 show that
[\V/] eNN (O, L5)I (sz, B77j> = (W57j, B57j)], (354)
(W7,L57 B?,Ls) = (W1,1W5,L5, WiiBs 1, + B1,1), (3.55)
and [V] e NN (L5, L1 + L5)Z (W77j, B77j) = (Wl,j+1—L57 Bl,j-i‘l—Ls)} . (356)

This, the fact that Ly < Ly + L3 — 1 = Lj, (3.48), and (3.51) imply that for all j € NN (0, Ls) it holds
that
(Wej, Bsj) = (Ws, B3 ;) = (Ws 3, Bs ;) = (Wr 3, Brj). (3.57)

In addition, observe that (3.42), (3.43), (3.48), (3.49), (3.52), (3.54), (3.55), and the fact that Ls =
Ly + Ly — 1 demonstrate that

(We Ly, Bo.ry) = Wi iWs 1y, Wa1Bs 1, + Ba1)

(Wo Wy 1,, W1 B3 1, + Ba 1) Ly >1

(Wi W W5 1, Wi iWa1Bsp, + Wi1Bay+ Bi1) Le=1

(Wz \Ws 1y, Wo1Bs 1, + Bo 1) Ly >1 (3.58)
(Wi a(Wo W 1), Wi1(Wa1Bsy + Bag) + Bi1) :La=1

(W5 L37B5L3> : L2 > 1

(Wi aWs, 04, Wi1Bs 1, + B11) Lo =1

= (W7 Ly, Br.Ly)-

Next note that the fact that L5 = L2 + L3 —1< L1 + L2 + L3 —1= L3 + L4, (353), (345), (350), and
(3.54) ensure that for all j € N with L3 < j < L it holds that

(W3, Bej) = Waj1-1s, Bajri-1,) = Wajp1-r15, Bajr1-1s)

3.59
= (Ws;, Bs ;) = (Wz, Br ;). (359
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Moreover, observe that the fact that Ly = Lo+ L3 —1 < L1+ Lo+ L3 —1 = L3+ Ly, (3.53), (3.58), (3.43),
(3.50), and (3.55) prove that

(WﬁL B6L ) = <M/;’L’L5'~'1_LS7 B4,L5+1—L3) : LQ > 1
5 (W67L3, B6,L3> : LQ -1

(W4 Lo» B4,L2) : L2 >1

(Wirs Brr,) 1Lo=1

(Wi aWsp,,Wi1Bap, + Bi11) Ly >1 (3.60)
(W7L5,B7L5) Ly =1

(WiaWs 1, Wi1Bs 1y + Bi1) Lo >1

(Wz.Ls, Br.15) cLy=1

Furthermore, note that (3.53), (3.47), (3.56), and the fact that Ls = Ly + L3 — 1 > L3 assure that for all
7 € Nwith Ly < j < Lg it holds that

(We,j, Bsj) = Wajs1-r1s Bajii-rs) = Wijso-r,- L, Bljto-r1,-Ls)

3.61
= (Wijr1-1s: Bijri-1;) = Wry, Br). (3.61)
Combining this with (3.41), (3.57), (3.58), (3.59), and (3.60) establishes that
((I)l o (I)Q) ° (I)g == q)4 [ ] q)g = (I)G = (1)7 = (I>1 [ J @5 == (I)l [ ] <(I)2 [ ] (1)3) (362)
The proof of Lemma 3.11 is thus completed. O
3.3.4 Compositions of ANNs and affine linear transformations
A comment from Josh: I think I need this result...
Corollary 3.12. Let ® € N (cf. Definition 3.1). Then
(1) it holds for all A € N with L(A) =1 and Z(A) = O(P) that
P(A e d) < [max{ %}] P(®) (3.63)
and
(i1) it holds for all A € N with L(A) =1 and Z(P) = O(A) that
P@eA)< [max{l, ggggg}] P(®) (3.64)

(cf. Definition 5.8).

Proof of Corollary 5.12. Throughout this proof let L € N, [y, ly,...,lp € N, A, Ay € N satisfy that
L(A1) = L(Ay) =1, Z(A;) = O(®), Z(P) = O(Ay), and D(P) = (lp, 1, ...,I1). Observe that item (iv) in
Proposition 3.9, the fact that O(®) = [, the fact that Z(®) = Iy, and the fact that for all k£ € {1,2} it
holds that D(Ay) = (Z(Ag), O(Ak)) ensure that

(3.65)




and

P(Dehy) = [ZL; L (L1 + 1)} + U [Z(As) + 1]

o _
= | 3 bt + D) + |22 1+ 1)
Lm=2 i (366)

< :max{l,%}: [Zl (1 + )1 + [max{l,%}] Li(lo+1)

= {1 22 }] | 5 s+ 1) = [mac{1. 52} Pl

This establishes items (i) and (ii). The proof of Corollary 3.12 is thus completed. O

3.3.5 Powers and extensions of ANNs

Definition 3.13 (Identity matrix). Let d € N. Then we denote by 13 € R¥? the identity matriz in R

Definition 3.14 (Powers of ANNs). We denote by (-)*": {® € N: Z(P) = O(P)} — N, n € Ny, the
functions which satisfy for all n € Ny, ® € N with Z(®) = O(®P) that

(3.67)

o (Iog), (0,0,...,0)) € RO®XO®) x RO®) :p =0
| Do (D) neN

(cf. Definitions 3.1, 3.8, and 5.13).

Definition 3.15 (Extension of ANNs). Let L € N, U € N satisfy that Z(V) = O(¥). Then we denote
by Epw: {® € N: (L(P) < L and O(®) = Z(V))} — N the function which satisfies for all ® € N with
L(P) <L and O(P) =Z(V) that

Epw(®) = (U L£®)) ¢ @ (3.68)

(cf. Definitions 3.1, 3.8, and 5.1/).

A comment from Josh: Do I need this result?

Lemma 3.16. Let d,i € N, ¥ € N satisfy that D(V) = (d,i,d) (cf. Definition 3.1). Then
(i) it holds for all n € Ny that L(V*") =n+ 1, D(¥*") € N"*2 and

o ) (d)d) :n=0
D(w )_{(d,i,i,...,i,d) ‘neN (3.69)
and
(ii) it holds for all ® € N, L € NN [L(®), 00) with O(®) = d that L(Ew(P)) = L and
P(Eru(®))
P(®) L L(®) =1L (3.70)
< .
- {[(max{l,é JP(®@)+ (L—L(®)—1)i+d)(i+1)] :L(P®)<L

(cf. Definitions 3.1/, 3.15, and 3.15).
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Proof of Lemma 3.16. Throughout this proof let ® € N, ly,ly,...,lz@) € N satisfy that O(®) = d and
D(®) = (lo,lr, .., le@) € NPT and let ary € N, k € NgN[0,L], L € NN [£(®), 00), satisfy for all
LeNN[L(P),00), k € Ny [0, L] that

Iy k< L(D)
arr =<1 L(P)<k<L. (3.71)
d k=1L

We claim that for all n € Ny it holds that

(d,d) n=0

. 3.72
(d,i,i,...,i,d) :n€N (3.72)

LP")=n+1 and N2 5 D(P*") = {

We now prove (3.72) by induction on n € Ny. Note that the fact that U*0 = (I;,0) € R x R? (cf.
Definition 3.13) establishes (3.69) in the base case n = 0. For the induction step Ny > n - n+ 1€ N
assume that there exists n € Ny such that

(d,d) n=0

. 3.73
(d,i,i,...,i,d) :neN (3.73)

LOU")=n+1 and N'"?3D(U") = {
Observe that Lemma 3.7, (3.67), items (i) and (ii) in Proposition 3.9, (3.73), and the hypothesis that
D(¥) = (d,i,d) imply that

LOUHHY) = L0 (W) = LOW) + LOP") =1=2+(n+1)—1=(n+1)+1

3.74
and D(\II’(”+1)) _ D(\I’ ° (\I’.n)) _ (d, i, i, . ,i, d) c Nn+3. ( )

Induction thus proves (3.72). Next note that (3.72) establishes item (i). In addition, observe that items (i)
and (ii) in Proposition 3.9, item (i), (3.68), and (3.71) ensure that for all L € NN [£(®), c0) it holds that

L(Erw(®)) = L(PEED)) 0 D) = L(WEE@) 4 £(d) —1

(L= L(®) + 1)+ L(®) -1 =L (3.75)
and
D(ELw(P)) = D((‘I"(L_L(@))) e ®) = (arp,ars,....arr). (3.76)
Combining this with (3.71) demonstrates that
L(Eci@)u(P)) = L(P) (3.77)
and
D(&@W(‘I’)) = (ar(@),0, AL@)1;- - - AL(®),c(®)) (3.78)
= (lo, 11, -, (@) = D(P).
Hence, we obtain that
P(Ec@)u(®)) = P(D). (3.79)

Next note that (3.71), (3.76), and the fact that ;@) = O(®) = d imply that for all L € NN (L(P), 00) it
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holds that
L
P(ELw(®)) =

k

apr(apg—1+1)
1

[c(@)-1

=1 > applapp—+1)| +
k=1

-1

= le(lg—1 + 1)

L
>, apr(apr—1+1)
k=L (®)

[ @)

+ | > apx(apr—1+1)
| k=L(®)

B
&

B
Il
—

L
> apklapg—1+1)
k=L (®)+1
)—1
be(lg—r + 1)

+

£

o

+ar @) (ar,c@)-1+ 1)

ol
[y

L-1

> apk(app—1+1)
k=L(®)+1

+ + {i app(apg—1+1) (3.80)

k=L

£(®)—1
= lk(lk—l + 1) -+ i(ll;(q)),l + 1)

C

ol
[y

(L= 1= (£(®) + 1)+ 1)i(i+ 1) + arr(ago +1)

£(®)-1

= le(lg—1 +1)| + é [lﬁ(@)(lﬁ(@),l + 1)}
k=1

~

(L= £(®) = 1)i(i+ 1) +d(i+1)
< [max{1,+}] 5 le(lg—1 + 1)

=1

= [max{1, L} P(®) + (L — L(®) — 1)i(i+ 1) + d(i + 1).

+(L—L(®)—1)i(i+1)+di+1)

Combining this with (3.79) establishes (3.70). The proof of Lemma 3.16 is thus completed. O

A comment from Josh: This result is needed for properties of generalized parallelizations...

Lemma 3.17. Let a € C(R,R), I € N satisfy for all x € R*W that Z(1) = O(1) and (R.(I))(x) = x (cf.
Definitions 3.1 and 3.6). Then

(i) it holds for alln € Ny, x € R*W that
Ro(I*") € C(RTD RIM) and (Ro(I*™))(2) = (3.81)
and
(i) it holds for all ® € N, L € NN [L(®), 00), x € RE®) with O(®) = Z(I) that

Ra(Er3(®)) € CRI, RO and  (Ry(E11(®)))(x) = (Ra(®))(x) (3.82)

(cf. Definitions 3.1/ and 3.15).

Proof of Lemma 3.17. Throughout this proof let & € N, L,d € N satisfy that £(®) < L and Z(I) =
O(®) = d. We claim that for all n € Ny it holds that

Ro(I") € C(RL,RY)  and Ve R (R (I°)(z) = 2. (3.83)
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We now prove (3.83) by induction on n € Ny. Note that (3.67) and the fact that O(I) = d demonstrate that
Ra(I*%) € C(RY,RY) and Vr € R?: (R,(I*°))(z) = z. This establishes (3.83) in the base case n = 0. For
the induction step observe that for all n € Ny with R,(I*?) € C(R?, R?) and Vo € R?: (R, (I°"))(x) = z
it holds that

R (I* ) = Ry (Te (I°)) = (Ro(I)) 0 (R (")) € C(RY, RY) (3.84)

and
Vo eRY: (Ro(I)) (z) = ([Ra(D)] 0 [Ra(1°)]) (z)
= (Ra()) ((Ra(I*™))(z)) = (Ru(D))(z) = =.

Induction thus proves (3.83). Next observe that (3.83) establishes item (i). Moreover, note that (3.68),
item (v) in Proposition 3.9, item (i), and the fact that Z(I) = O(®) ensure that

(3.85)

Ra(ELu(®)) = Ra((I*F4)) 0 @)

€ C(RT® ROMY — C(RT® RTO) — C(RT@) RO@) (3.86)
and
Vo € RE: (Ry(E04(®))) (@) = (Ra(I"E9)) (Ro(®)) (@) s
= (Ra(®))(2). '
This establishes item (ii). The proof of Lemma 3.17 is thus completed. O

Lemma 3.18. Let d,i, L, £ € N, o, 1, ..., 15 1 €N, &, € N satisfy £ > L, D(®) = (lo, b1, ..., 11_1,d)
and D(V) = (d,i,d) (cf. Definition 5.1). Then it holds that D(E¢w(®)) € N and

(lg,ll,...,lL_l,d) L8 =1L

3.88
(lo,ll,...,lLfl,i,i,...,i,d) L8> L ( )

D(Eew(®)) = {

(cf. Definition 3.15).
Proof of Lemma 5.18. Observe that item (i) in Lemma 3.16 ensures that L(U**~D) = € — [ + 1,
D(P*EL)) € Ne=L+2 and

(d,d) L£=1L

D\DQ(S—L) —
( )= Vi id) e>1

(cf. Definition 3.14). Combining this with Proposition 3.9 shows that £((U*(*~5)) e ®) = L(W*(*~L)) 4
L(P) —1= g D(¥**1)ed)c N+ and

(3.89)

e 390
This and (3.68) establish (3.88). The proof of Lemma 3.18 is thus completed. O
3.4 Parallelizations of ANNs
3.4.1 Parallelizations of ANNs with the same length
Definition 3.19 (Parallelization of ANNs). Let n € N. Then we denote by
P,: {(®1,®s,...,P,) e N": L(P)) = L(Py) =...=L(P,)} = N (3.91)

the function which satisfies for all L € N, (lio,l11,---,0l0), (lao,la1, -y lon), ooy (lnoslny -y lnp) €
NAL @) = (Wi, Bia), (Wia, Bia), ..., (Wi, Bip)) € (Xpoy (Riexhiess x Rik)) @y = ((Way, Bay),
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(Wa, Bag),...,(Wa,Bay)) € (Xézl(RlMXl?vk—l X ]Rl%k)), o
(Whor, Bup)) € (X oy (Rinextns-t x Rink)) that

’ q)n - ((Wn,b Bn,1)7 (Wn,27 Bn,2); ceey

Wipn 0 0 0 Bia
0 W2,1 0 0 B2,1
P, (®,®y,...,0,) = 0 0 Wiy 0 |, Bs1] |,
0 0 0 Wi B4
WLQ 0 0 0 BI,Q
0 Wy, 0 - 0 By o
0 0 WS’Q T 0 ) B3’2 5. ) (392)
0 0 0 - Who B2
Wir O 0 0 By 1
0 W2 L 0 0 BQ,L
0 0 W37L 0 , B3,L
0 0 0 Whr By
(cf. Definition 5.1).
A comment from Josh: I think I need this result...
Lemma 3.20. Let n,L € N, &1, 0y, ... &, € N satisfy that L = L(P1) = L(Dy) = ... = L(P,) (cf.
Definition 3.1). Then it holds that
P, (D, Dy,...,D,) € <><£:1 (R(Z;L:l D (@) (721 D (Pr-1)) 5 R Dj(‘I)k)))) (3.93)

(cf. Definition 3.19).
Proof of Lemma 3.20. Note that (3.92) establishes (3.93). The proof of Lemma 3.20 is thus completed. [
A comment from Josh: I think I need this result...

Proposition 3.21. Let a € C(R,R), n € N, & = (&1, D, ...
... = L(P,) (c¢f Definition 3.1). Then

,®,) € N" satisfy that L(P1) = L(Py) =

(i) it holds that

Ra(Po(®)) € O(R[Z?:l (%)) RIXj= 0(%)]) (3.94)
and
(ii) it holds for all x; € RT(®V x5 € RE®2) 2. € RE®) that
(Ra(Pn(fI))))(xl, Toy ..., Ty) (3.95)
= ((Ra(®1))(21), (Ra(®2))(w2), - ., (Ra(Pn)) () € RIZ=1 O '
(cf. Definitions 3.6 and 3.19).
Proof of Proposition 3.21. Throughout this proof let L € N satisfy that L = L£(®y), let l;0,0;1,...,0;1 €

N, j € {1,2,...,n}, satisfy for all j € {1,2,...,n} that D(®,) = lir), let ((Wj,l,BjJ),

(lj70, lj717 ey
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(Wiz, Bia), -, (Wiz, Bir)) € (x by (Rt x RY#)), j € {1,2,...,n}, satisfy for all j € {1,2,...,n}
that

;= ((I/Vj,lv Bj1), Wj2,Bj2),...,(WjL, Bj,L))a (3.96)
let o € N, k € {0,1,..., L}, satisfy for all k € {0,1,..., L} that ay = Y7 L, let (A1, 1), (Az, b)), .. .,
(Ap,br)) € (xf_; (Rowxer-1 x R)) satisfy that

P, (®) = ((A1,b1), (A2, b2), ..., (AL, br)) (3.97)

cf. Lemma 3.20), let (2,0, %:1,...,2,0-1) € (Rb0 x Rl x ... x Rbr-1), 5 € {1,2,...,n}, satisfy for all
4,05 4, Js
je{1,2,...,n}, ke NN (0, L) that

ik = Moy, (Wirzjn1+ Bjr) (3.98)

(cf. Definition 3.5), and let rg € R ry € R ... r;, 1 € R gatisfy for all £ € {0,1,...,L — 1}
that rp = (x1k, T2k, .-, Tng). Observe that (3.97) demonstrates that Z(P,(®)) = oy and O(P,(®)) =
ar. Combining this with item (ii) in Lemma 3.7, the fact that for all £ € {0,1,...,L} it holds that
o = Y5y ik, the fact that for all j € {1,2,...,n} it holds that Z(®;) = l;0, and the fact that for all
Jj€{1,2,...,n} it holds that O(®;) = [; 1, ensures that

Ra(Pn(®)) € C(R™, R™) = C(RE== 1ol R )

= C(RIZ/= Z(®)] RIZj=: O@)), (3.99)

This proves item (i). Moreover, observe that (3.92) and (3.97) demonstrate that for all &k € {1,2,..., L}
it holds that

Wie 0 0 - 0 Biy
0 Wae 0 - 0 By

Ak: — 0 0 Wg’k L 0 and bk = B3,k . (3100)
0 0 0 - W B

Combining this with (3.5), (3.98), and the fact that for all k € NN [0, L) it holds that ry = (z1x, 2k, - -,
Zn ) implies that for all £ € NN (0, L) it holds that

gﬁa,ll,k<wl,kx1,k*1 + By ) Tk
Mo, Worxo k1 + Bay) Tk

mtmak (Aksxk—l + bk) = B . = . = Lk (3101)
S):na,ln,k (kaxn,k—l + Bmk) L,k

This, (3.6), (3.96), (3.97), (3.98), (3.100), the fact that ro = (21,0, 220, -,Zn0), and the fact that r,_; =
(T1,0-1,%2,0-1,- -, Tn —1) ensure that

(Ra (Pn(@)>) (Il’o, Z2.0; - - - ,$n70) = (Ra (Pn(q)>))<§0)

Wirxi -1+ Bir (Ra(@1))(1,0)
 Aypss by — WgnyZL',l + By 1, _ (Ra(q)g.))(.fzo) . (3.102)
Wostnis+ Bus)  \(Ru(®,))(w00)
This establishes item (ii). The proof of Proposition 3.21 is thus completed. O

A comment from Josh: I think I need this result...
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Proposition 3.22. Let n,L € N, & = (&1, Py, ..., D,) € N satsify that L = L(D1) = L(D9) = ... =
L(D,) (cf. Definition 3.1). Then

(i) it holds that
D(P,(®)) = (3] Do(®)), X7, Di(Dy), .., 227, Di(Dy)) (3.103)

and

(i) it holds that
P(P.(®)) < §[S0, P(@))]° (3.104)

(cf. Definition 3.19).

Proof of Proposition 5.22. Throughout this proof let l;o,l;1,...,0; € N, j € {1,2,...,n}, satisfy for all
je{l,2,...,n}, ke{0,1,...,L} that ;; = Dy(P;). Note that Lemma 3.20 assures that

D(Pu(®)) = (71 Lo X joy bt o5 2oy L) (3.105)

This establishes item (i). Moreover, observe that (3.105) demonstrates that

- i [Z?:l lz}k} [(ZL li,k—l) + 1]

k=1

-3 [t (S te 1]

n n L n n L
Szzzli,k(lj,kq-i-l)ﬁ lek -1+ 1)
i=1 j=1 k=1 i=1 j=1 k=1 (3.106)
=> 3 [Zi:l li,k} [ZeL:l(lj,e—l + 1)}
i=1 j=1
<)Y [Zézl slin(lin—1 + 1)] [Zle Lie(Lje—1 + 1)}
i=1 j=1
S Y@@ =[x P@)]
=1 j=1
The proof of Proposition 3.22 is thus completed. 0

A comment from Josh: I think I need this result...

Corollary 3.23. Letn € N, & = (&, Py, ..., D,) € N” satisfy that D(®;) = D(P2) = ... = D(P,) (cf.
Definition 3.1). Then it holds that P(P,(®)) < n*P(®;) (cf. Definition 5.19).

Proof of Corollary 3.25. Throughout this proof let L € N, Iy, l4,...,l; € N satisfy that D(®1) = (lo, 1,
.,1). Note that item (i) in Proposition 3.22 and the fact that Vj € {1,2,...,n}: D(®;) = (lo, l1, . . .,
l;,) demonstrate that

P10, ) = 00 (nly-1) 1) £ 301 (0dy-1) + )
= = (3.107)
= n2 [ ; lj(lj_l + 1):| = nZP(q)l)
The proof of Corollary 3.23 is thus completed. O
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3.4.2 Parallelizations of ANNs with different lengths

A comment from Josh: Should we update this definition to match that of the generalized
sum?

Definition 3.24 (Parallelization of ANNs with different length). Let n € N, W = (U, Uy, ... ¥, ) € N”
satisfy for all j € {1,2,...,n} that H(¥;) =1 and Z(V;) = O(V,). Then we denote by
Poy: {(®1,0s,...,8,) € N": (Vje{L,2,...,n}: O(®;) =Z(¥,;))} - N (3.108)

the function which satisfies for all ® = (P, Po,...,P,) € N™ with Vj € {1,2,...,n}: O(®;) = Z(V;)
that
Pou(®) =P, (gmaxk€{1,2 ,,,,, n} C(%)v‘h(q)l)? T ’gmaxke{1,2 ,,,,, n}C(%),‘Pn(an)) (3.109)

(cf. Definitions 3.1, 3.15, and 3.19 and Lemma 3.10).
A comment from Josh: I think I need this result...

Corollary 3.25. Let a € C(R,R), n € N, I = (I}, 1y,...,L,), & = (P, Ps,...,
all j € {1,2,...,n}, x € RO®) that H([;) = 1, Z(I;) = O(I;) = O(®,), and
Definitions 3.1 and 3.6). Then

(i) it holds that

AP@*
3
SN~—
Mm
%
Vo)
S
%‘i
b=y
3
3

Ry (Pn,ﬂ<q))) e C(R[Z?:1 ()] RIX5=1 O(‘Iﬁ)}) (3.110)
and
) I(®1 I(®2 (s
1 ) sy totn
(i) it holds for all z, € RT(®V x, € RT(®2) z, € RE®) that

(Ra(Pr(®))) (21, 2, . .., 2)

= ((Ra(®1))(21), (Ra(®2))(22), - - -, (Ra(®y)) () € RE=G=1 O] (3.111)

(cf. Definition 3.2/).

Proof of Corollary 3.25. Throughout this proof let L € N satisfy that L = max;jcqi2, n) £(®;). Note
that item (ii) in Lemma 3.16, the hypothesis that for all j € {1,2,...,n} it holds that H(L;)
(3.12), and item (ii) in Lemma 3.17 demonstrate

(I) that for all j € {1,2,...,n} it holds that £(E,1,(®;)) = L and Ru(ELy, (@) € C(RH®) RO®))
and

(II) that for all j € {1,2,...,n}, € R%®) it holds that
(RulE01,(®,))) (@) = (Ra(@,))(2) (3112)
(cf. Definition 3.15). items (i) and (ii) in Proposition 3.21 therefore imply

(A) that
R, (Pn (gL,Hl (®1>, gL,]IQ (q)g), ey SL,Hn (q)n)) € C(R[Zyzl I(q)j)], R[Z?:1 O(q)j)]) (3113)

and

(B) that for all z; € R*(®V) 2, € RT(®2) g, € R¥®) it holds that

(Ra (Pn (gL,]Il (Cbl), 5L,]I2(q)2)7 e 7SL,Hn(q)n))))(x17 o, ... ,Zlfn)
= (Ra(En (@) (1), (Ra(E1ra(@2))) (22), -, (Ra(Ers, (90))) (a0 (3.114)
= ((Ra(@0)) (1), (Ra(®2))(22), .- (Ra(®0)) (0))
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(cf. Definition 3.19). Combining this with (3.109) and the fact that L = maxjefi 2,0y £(®;) ensures

-----

(C) that
Ry (Pn,ﬂ<q))) € C(R[Z?:l I(q’j)],R[Z}Ll 0(‘133')}) (3.115)

and

(D) that for all 2; € R¥(®) 2y € RT(®2) 2, € RY(®4) it holds that

(Ra (Pn7]1((p)))(x]_7 Toy .oy Ty)
= (Ra(Pu(ELny (B1), ELy(B), -, ELs, (B0)))) (1,72, 1) (3.116)
= ((Ra(@0))(21), (Ra(@2)) (@), ., (Ra(@2))(2)).

This establishes items (i) and (ii). The proof of Corollary 3.25 is thus completed. O
A comment from Josh: I think I need this result...

Corollary 3.26. Letn,L € N, iy,i5,...,i, €N, U = (U, Uy, ..., V), D = (D1, Dy,...,D,) € N" satisfy
forallj € {1,2,...,n} that D(¥;) = (O(®,),i;, O(®;)) and L = maxyeqi 2.0y L(Pr) (cf. Definition 5.1).
Then it holds that

P(Pru(®))
< %< [22‘;1 [ O(iéj)}} P(®;) H(E(éj),w)(L)}
+ [Z;‘:l (L= L£(®;) — 1)i; (i + 1) + O(®;) (i; + 1)) Lig(a,),00) (L)

+ [Z}ll P(®;) ﬂ{c@j)}(L)] )2

(3.117)

(cf. Definition 3.2/).

Proof of Corollary 3.26. Observe that (3.109), item (ii) in Proposition 3.22, and item (ii) in Lemma 3.16
assure that

P(Prw(®))
73( (Erw, (P1),EL,w,(P2), ... ELw, (D))
S%[Z _1 P, ( @))}
< 3( [0 Do (1. 50651 P®0) et o 1] (3.118)
[0 (B = £(25) = 1) (i + 1) + O(®;) (i + 1)) Liecay.o0 (L)
[Z] L P(2)) Ligea )}(L)] )
(cf. Definitions 3.15 and 3.19). The proof of Corollary 3.26 is thus completed. O

3.5 Linear transformations of ANNs

A comment from Josh: I have restructured this subsection...
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3.5.1 Linear transformations as ANNs

A comment from Josh: Is this an appropriate place for these results?

Definition 3.27 (Affine linear transformation ANN). Let m,n € N, W € R™" B € R™. Then we
denote by Awp € (R™" x R™) C N the neural network given by Awp = (W, B) (cf. Definitions 3.1
and 3.2).

Lemma 3.28. Let m,n € N, W € R™*" B € R™. Then

(i) it holds that D(Awg) = (n,m) € N?,

(i1) it holds for all a € C(R,R) that R.,(Aw.p) € C(R",R™), and
(111) it holds for all a € C(R,R), x € R" that (R.(Awp))(x) =Wz + B
(cf. Definitions 3.1, 3.6, and 3.27).

Proof of Lemma 3.28. Note the fact that Ay 5 € (R™" xR™) C N ensures that D(Aw.z) = (n,m) € N2
This establishes item (i). Next, observe that the fact that Ay, p = (W, B) € (R™"™ x R™) and (3.6) prove
that for all a € C(R,R), z € R" it holds that R,(Aw ) € C(R",R™) and

(Ro(Awp))(z) = W + B. (3.119)
This establishes items (ii) and (iii). The proof of Lemma 3.28 is thus completed. O
Lemma 3.29. Let ® € N (cf. Definition 5.1). Then
(i) it holds for allm € N, W € R™*9(®) B ¢ R™ that

D(Aw,p e @) = (Dy(®),Dy(D),...,D@)-1(P),m) € N (3.120)

(ii) it holds for all a € C(R,R), m € N, W € R™*9®) B € R™ that R,(Awp e ®) € C(REHY R™),
(i) it holds for all a € C(R,R), m € N, W € R™*9®) B c R™ z € R*® that

(Ra(Aw.p @ ®))(z) = W((Ra(®))(z)) + B, (3.121)

(iv) it holds for allm € N, W € RZ®)*n B € RE®) that

D(® e Awp) = (n,D1(D),Da(®), ..., Dy (P)) € NI (3.122)

(v) it holds for all a € C(R,R), n € N, W € RE®>" B ¢ RE® that R,(P e Ay p) € C(R* RO®),
and

(vi) it holds for alla € C(R,R), n € N, W € R*®>*" B ¢ RT(®) 2 c R" that

(Ra(® ® Aw p))(2) = (Ra(®))(We + B) (3.123)

(cf. Definitions 3.0, 3.8, and 3.27).

Proof of Lemma 3.29. Note that Lemma 3.28 demonstrates that for all m,n € N, W € R™*" B € R™,
a € C(R,R), x € R" it holds that R,(Aw ) € C(R",R™) and

(Ra(Awp))(z) = Wz + B. (3.124)

Combining this and Proposition 3.9 establishes items (i), (ii), (iii), (iv), (v), and (vi). The proof of
Lemma 3.29 is thus completed. O
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Definition 3.30 (Activation ANN). Letn € N. Then we denote by i, € (R xR") x (R"*"xR™)) C N
the neural network given by i, = ((1,,,0), (I,,0)) (cf. Definitions 3.1, 3.2, and 3.13).

Lemma 3.31. Let n € N (cf. Definition 3.1). Then

(i) it holds that D(i,) = (n,n,n) € N3,

(ii) it holds for all a € C(R,R) that Ra(in) € C(R™, R, and
(111) it holds for all a € C(R,R) that R,(i,) = Ma,
(cf. Definitions 3.5, 3.6, and 5.30).

Proof of Lemma 3.31. Note the fact that i, € (R™" x R") x (R™" x R")) C N ensures that D(i,) =
(n,m,n) € N3. This establishes item (i). Next observe the fact that i, = ((I,,,0), (I,,,0)) € ((R™*" x R") x
(R™™ x R™)) and (3.6) prove that for all a € C(R,R), x € R™ it holds that R,(i,,) € C(R",R™) and

(Ra(in))(x) = L(My Iz 4+ 0)) + 0 = M, (). (3.125)
This establishes items (ii) and (iii). The proof of Lemma 3.31 is thus completed. O
Lemma 3.32. Let ® € N (cf. Definition 3.1). Then
(i) it holds that D(ios) ® ®) = (Z(P), D1 (D), Da(®),...,Dr@)-1(P), O(®), O(P)) € N2
(ii) it holds for all a € C(R,R) that R,(io@) ® ®) € C(RT®) RO®),
(iii) it holds for all a € C(R,R), x € RX®) that (R.(io@) ® ®))(z) = M, 0@ (Ra(P))(2)),
(iv) it holds that D(® e iz@)) = (Z(®),Z(P),D1(P),Da(P), ..., De@)-1(P), O(P)) € NE®DF2,
(v) it holds for all a € C(R,R) that Ry(P eiz@)) € C(RH® RO®) and
(vi) it holds for all a € C(R,R), x € RT®) that (Ru(P e iz@)))(z) = (Ru(®))(Myz@)(2))
(cf. Definitions 3.6 and 3.50).

Proof of Lemma 3.32. Note that Lemma 3.31 demonstrates that for all n € N, a € C(R,R), x € R" it
holds that R,(i,) € C(R™,R") and

(Ra(ln))(x) = ma,n(x)- (3126)
Combining this and Proposition 3.9 establishes items (i), (ii), (iii), (iv), (v), and (vi). The proof of
Lemma 3.32 is thus completed. O

3.5.2 Scalar multiplications of ANNs

Definition 3.33 (Scalar multiplications of ANNs). We denote by (-) ® (-) : R x N — N the function
which satisfies for all A € R, ® € N that

A® P =Ay,00P (3.127)
(cf. Definitions 3.1, 3.8, 3.13, and 3.27).
Lemma 3.34. Let A € R, ® € N (c¢f. Definition 5.1). Then
(1) it holds that D(\ ® @) = D(P),
(i3) it holds for all a € C(R,R) that R,(A ® ®) € C(RT®) RO®) and
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(iii) it holds for all a € C(R,R), x € RT®) that
(Ra(A® ©))(z) = A((Ra(®))(2)) (3.128)

(cf. Definitions 3.6 and 3.33).

Proof of Lemma 3.34. Throughout this proof let L € N, ly,l1,...,l, € N satisfy that L = L£(P) and
(lo,l1,...,lr) = D(P). Note that item (i) in Lemma 3.28 proves that

D(Axige0) = (0(2),0(®)) (3.129)
(cf. Definitions 3.13 and 3.27). Combining this and item (i) in Proposition 3.9 assures that
DA ® ®) = D(Anipg0®®) = (o, L1y, 111, 0(D)) = D(®),. (3.130)

This establishes item (i). Moreover, observe that items (i) and (ii) in Lemma 3.29 demonstrate that for
all a € O(R,R), x € RT(®) it holds that R,(A ® ®) € C(R*®) RO®)) and

(Ra(A® ))(2) = (Ru(Anige0 ® ©))(2)
— Moo) (Ra(®))(2)) = A((Ra(®))(2)).

This establishes items (ii) and (iii). The proof of Lemma 3.34 is thus completed. O

(3.131)

3.6 Representations of the identities with rectifier functions

A comment from Josh: This is new...

Definition 3.35 (Identity network). We denote by I € N the neural network which satisfies that

I— (((_11) , (8)) , ((1 1) 0)) € (R¥ x R?) x (R™*2 x RY)) (3.132)

(cf. Definitions 3.1 and 3.2).

A comment from Josh: This is new...

Lemma 3.36. Let a € C(R,R) satisfy for all x € R that a(x) = max{z,0}. Then
(1) it holds that D(I) = (1,2,1) € N3,
(i1) it holds that R,(I) € C(R,R), and

(#3) it holds for all x € R that (R,(I))(z) = x

(cf. Definitions 3.1, 3.6, and 3.35).

Proof of Lemma 3.56. Throughout this proof let L =2, 1y =1, l; = 2, I = 1. Note that (3.132) ensures
that D(I) = (1,2,1) € N3, This establishes item (i). Next note that (3.132) assures that for all x € R it
holds that

(Ro(D))(2) = a(z) — a(—x) = max{z,0} — max{—=x,0} = x. (3.133)

This establishes items (ii) and (iii). The proof of Lemma 3.36 is thus completed. O
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3.7 Sums of ANNs
3.7.1 Sums of ANNs with the same length
Definition 3.37. Let m,n € N. Then we denote by &,,,, € (R™*™ x R™) the pair given by
Smm =Ad, 1n .. )0 (3.134)
(cf. Definitions 3.13 and 3.27).
A comment from Josh: I think I need this...
Lemma 3.38. Let m,n € N. Then
(1) it holds that &,,,, € N,
(ii) it holds that D(S,,,) = (nm,m) € N2,
(iii) it holds for all a € C(R,R) that Ry(Syy) € C(R™,R™), and
(iv) it holds for all a € C(R,R), xy,x9,...,2, € R™ that
(Ra(Smpn)) (@1, T2, ... Ty) = D> oy T (3.135)

(cf. Definitions 3.1, 3.6, and 3.37).

Proof of Lemma 5.58. Note that the fact that &,,, € (Rmx(”m) x R™) ensures that &,,, € N and
D(6,,,) = (nm,m) € N2 This establishes items (i) and (ii). Next observe that items (ii) and (iii) in
Lemma 3.28 prove that for all a € C(R,R), x1,x9,...,2, € R™ it holds that R,(S,,,) € C(R"™ R™)
and

(Ra<6m,n))($17 Zo,y ... 73311) - (Ra (A(Im ] P Im),O))(ajlv T, ... axn)
=(Ln Ln ... In)(z1, 20,0, @0) = D pr T

(cf. Definitions 3.13 and 3.27). This establishes items (iii) and (iv). The proof of Lemma 3.38 is thus
completed. O

(3.136)

A comment from Josh: I think I need this...

Lemma 3.39. Let m,n € N, a € C(R,R), ® € {U € N: O(¥) = nm} (cf. Definition 3.1). Then
(i) it holds that Ry(G,, @ ®) € C(RT®) R™) and
(i) it holds for all x € R*®)  y1. yn, ..., yp € R™ with (Re(®))(z) = (y1, %2, - - -, yn) that

(Ra(Sn @ ®)) () = D0, (3.137)

(cf. Definitions 3.6, 3.8, and 3.37).

Proof of Lemma 3.39. Note that Lemma 3.38 ensures that for all xy,x5,...,2, € R™ it holds that
Ra(Smn) € C(R™ R™) and

(Ra(Gm,n))<xla Xy ... 73;77,) - Zzzl Lk (3138)

Combining this and item (v) in Proposition 3.9 establishes items (i) and (ii). The proof of Lemma 3.39 is
thus completed. O

A comment from Josh: I think I need this...
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Lemma 3.40. Letn € N, a € C(R,R), ® € N (cf. Definition 3.1). Then
(i) it holds that R,(® @ Sr@),) € C(R™H®) RO®) and

(i3) it holds for all x1,x,. .., x, € R*® that
(Ro(P @ Sr@)n)) (1,22, ..., 2n) = (Ra(®)(h_; ) (3.139)

(cf. Definitions 3.6, 3.8, and 3.37).

Proof of Lemma 3./0. Note that Lemma 3.38 demonstrates that for all m € N, zy,25,...,2, € R™ it
holds that R,(&,,,) € C(R™,R™) and

(Ra(Gmn)) (@1, T2y .oy Tn) =D py T (3.140)

Combining this and item (v) in Proposition 3.9 establishes items (i) and (ii). The proof of Lemma 3.40 is
thus completed. O

Definition 3.41 (Matrix transpose). Let m,n € N, A € R™". Then we denote by A* € R™™ the
transpose of A.

Definition 3.42 (Transpose ANN). Let m,n € N. Then we denote by T,,,, € (RP™>*™ x R"™) the pair
gien by

T = Ay, T . L) 0 (3.141)

(cf. Definitions 3.13, 3.27, and 3./1).
A comment from Josh: I think I need this...
Lemma 3.43. Let m,n € N. Then
(1) it holds that %, ,, € N,
(ii) it holds that D(% ) = (m,nm) € N?,
(1i1) it holds for all a € C(R,R) that Ry.(Tpn) € C(R™,R™), and
(i) it holds for all a € C(R,R), x € R™ that

(Ra(Zm))(2) = (2,2, ..., ) (3.142)

(cf. Definitions 3.1, 3.6, and 5.42).

Proof of Lemma 3.43. Note that the fact that T, , € (R("m)xm x R™) ensures that ¥,,,, € N and
D(%mn) = (m,nm) € N2 This establishes items (i) and (ii). Next observe that items (ii) and (iii) in
Lemma 3.28 prove that for all a € C(R,R), z € R™ it holds that R,(%,,,) € C(R™,R™) and

(Ra(‘smn))<x) = (Ra(A(Im I ... Im)*,o))(l’

3.143
=L, Ln ... Lp)'z=(z,2,...,2) ( )

(cf. Definitions 3.13 and 3.27). This establishes items (iii) and (iv). The proof of Lemma 3.43 is thus
completed. O
A comment from Josh: I think I need this...
Lemma 3.44. Let n € N, a € C(R,R), ® € N (¢f. Definition 3.1). Then

(i) it holds that Ry(To@)n ® ®) € C(RT® RrO®) and
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(ii) it holds for all x € RY®) that
(Ra(To@)n @ 2))(z) = (Ra(2))(2), (Ra(®))(@), - - . (Ra(®))(x)) (3.144)

(cf. Definitions 3.0, 3.8, and 3.42).

Proof of Lemma 3./4. Note that Lemma 3.43 ensures that for all m € N, x € R™ it holds that R, (%,.n) €
C(R™,R™) and

(Ra(Tpn)) (@) = (2,1, ..., 2). (3.145)

Combining this and item (v) in Proposition 3.9 establishes items (i) and (ii). The proof of Lemma 3.44 is
thus completed. O

A comment from Josh: I think I need this...

Lemma 3.45. Let m,n € N, a € C(R,R), ® € {¥ € N: Z(V) = nm} (cf. Definition 3.1). Then
(i) it holds that R,(® e T,,,) € C(R™,RO®) and
(i) it holds for all x € R™ that

(Ra(® ® %)) (2) = (Ro(®)) (2, 2, ... ., @) (3.146)

(cf. Definitions 3.6, 3.8, and 5.42).

Proof of Lemma 5.45. Observe that Lemma 3.43 demonstrates that for all x € R™ it holds that R, (%) €
C(R™,R™) and

(Ra(Zn))(x) = (z,2, ..., ). (3.147)

Combining this and item (v) in Proposition 3.9 establishes items (i) and (ii). The proof of Lemma 3.45 is
thus completed. O

Definition 3.46 (Sums of DNNs with the same length). Let n € N, &y, &y, ... &, € N satisfy for
all k€ {1,2,...,n} that L(Py) = L(Dy), Z(Pr) = Z(Py), and O(Pg) = O(Py). Then we denote by
Bref1,2,..n3Pr (we denote by &1 @ Py @ ... B D,,) the neural network given by

@ke{l,Z ..... n} P, = (Go(Ql)m ° [Pn<q)1, (I)Q, C )(I)nﬂ ° ‘ZI(‘I)l),n) eN (3148)
(cf. Definitions 3.1, 3.2, 3.8, 3.19, 3.37, and 3./2).
A comment from Josh: I think I need this...

Lemma 3.47. Let n € N, &1, ®,,.... D, € N satisfy for all k € {1,2,...,n} that L(Dy) = L(Dy),
Z(Pr) = Z(Py), and O(Py) = O(Py) (cf. Definition 3.1). Then

(Z) it hOldS that 'C(@ke{l,Q 77777 n}q)k:> = ﬁ(q)l),
(i) it holds that
D(®refr,2,...n} Pr) (3.149)
= (Z(P1), > p_ D1 (Pr), Do py Da(®r), oy Yopy Doy —1(Pi), O(P1)),
(iti) it holds for all a € C(R,R) that Ro(Prer2,..nyPr) € C(RI®) RO®V)  and
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(v) it holds for all a € C(R,R), x € RT(®) that

n

(Ra(@reqr2..m®r)) (@) = Y (Ra(®%))(x) (3.150)

k=1
(cf. Definitions 3.6 and 3.40).
Proof of Lemma 5.47. First, note that Lemma 3.20 proves that

D(P, (3, dy,...,D,))
- (ZTkL:l D()((I)k)? Zzzl Dl ((I)k)a R ZZ:]_ DE(<I>1)71<(I)I€)7 Zzzl Dﬁ(‘l’l)(q)k)) (3151)
= (nZ(®1), >opy Di(Ph), 2oy Do D), - -, D iy Di@y)—1(Pr), nO(91))

(cf. Definition 3.19). Moreover, observe that item (ii) in Lemma 3.38 ensures that
D(Go(@)n) = (nO(®1), O(®1)) (3.152)
(cf. Definition 3.37). This, (3.151), and item (i) in Proposition 3.9 demonstrate that

D(@O((I)l)m, L4 [Pn(®17 (DQa s 7¢n)})

= (nI<(I)1)> Zk:l Dl(q)k)ﬂ Zk:l ]D)2<(I)k)7 R Zk:l Dﬁ(q’l)*l(@k)v O((I)l))‘
Next note that item (ii) in Lemma 3.43 assures that
D(Tx(w1)n) = (Z(21), nZ(P1)) (3.154)

(cf. Definition 3.42). Combining this, (3.153), and item (i) in Proposition 3.9 proves that
D(DBref1,2,...n} Pr)
= D(So@)n® [Pn(P1, P2, ..., P)] @ Tria,)n) (3.155)
= (Z(®1), >y Di(Pr), 2oy DaAP), - Dy Do) —1(P), O(Dy)).

This establishes items (i) and (ii). Next observe that Lemma 3.45 and (3.151) ensure that for all a €
C(R,R), z € R¥®V it holds that R,([Pn(®1, P, ..., P,)] @ Tr@,)n) € C(RE®D R"O(®)) and

(Ra([Pn(®1, @y, 0p)]  Tr(ay)n) ) (2)

= (Ra(Po(®1, 0y, ... ) (z, 7, ..., 7). (3.156)

Combining this with item (ii) in Proposition 3.21 proves that for all a € C(R, R), x € RZ(®*1) it holds that

(Ra([Pn((Pl; (1)2, ey (I)n)] [ ] gl'(cpl)m)) (ZE)

= (Ra(®1))(2), (Ra(®2))(2), ..., (Ra(Pn))(z)) € RV (3.157)

Lemma 3.39, (3.152), and Lemma 3.11 therefore demonstrate that for all a € C(R,R), z € RT(®1) it holds
that Ro(Brefi2,..n1Pr) € C(RT(®1) RO(®1)) and

(Ra(@ke{m ..... n} (I)k)) (z)

- 3.158
= (Ra (60(@1)@ (] [Pn(q)h @2, ey CI)n)] [ ] ‘Iz(cpl),n))(l‘) == Z(Ra(q)k))(x) ( )
k=1
This establishes items (iii) and (iv). The proof of Lemma 3.47 is thus completed. O
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3.7.2 Sums of ANNs with different lengths

A comment from Josh: This has been updated...

Definition 3.48 (Sums of ANNs with different lengths). Let u € N, v € NN (u, 00), @y, i1, ..., Py, ¥ €
N satisfy that Z(®,,) = Z(Pyy1) = ... = Z(P,), O(P,) = O(Pyyq1) = ... = O(P,) =Z(V) = O(V¥), and
H(V) = 1. Then we denote by B} _, yPr (we denote by ©, By @ yy By - - By ,,) the tuple given by

BB = 6 B, £l () (3.159)
(cf. Definitions 3.1, 3.42, and 3.46).
A comment from Josh: I think I need this...
Lemma 3.49. Let a € C(R,R), u € N, v € NN (u,0), Dy, Pyi1,...,P, € N U (U, Wity - ey

U,) € Nt satisfy for all k € {u,u+1,...,v} that Z(®y) = Z(P,), O(Px) = 0(5 )y H(Vg) = 1,
Z(Vy) = O(¥y) = O(Dy,), and (Ro(Yy))(z) = x (c¢f. Definitions 3.1 and 3.6). Then

(i) it holds that L(B}_, ¢Pr) = L(Pu),
(i) it holds that
D (8 =0 Ps)
= ( (1), 71 Dt e, 2008 (@) Sy D (e

s 2kt P s,y £@0) -1 (Emasic i, v}£<¢k),w(q’k))’o(q’1)>>

o c@n.w(®r)) (3.160)

,,,,,

(iii) it holds that Ra(By—, ¢ Px) € C(RF®) RO®W) and

(iv) it holds for all v € RT(®«) that

Ra(Bieuu®s) = Y Ra(®), (3.161)
k=u
(cf. Definition 3./8).
Proof of Lemma 3.49. A comment from Josh: Add proof... O

3.8 Linear combinations of ANNs

A comment from Josh: Should I prove a “simpler” result for linear combinations?

3.8.1 Linear combinations of ANNs with the same length

A comment from Josh: I’'m not sure if I need this...

Lemma 3.50. Let n € N, hy,hg,...,h, € R, &1, P,,..., D, € N satisfy that D(
D(®,), let Ay € Rz(q’l)x(”z ) k€ {1 2,...,n}, satzsfy for all k € {1,2,...,n},
R that Ay = xp, and let \If eN satzsfy that

) =D(®) =... =

- ( 1)16{12 ,,,,, n} €

n} (e ® (Pr @Ay, ) (3.162)

,,,,,,

(cf. Definitions 3.1, 3.27, 3.33, and 3.46). Then
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(i) it holds that
D(\I}) = (TZI(CI)l), TL]Dl((I)l)7 HDQ(CI)l), e ,nID)[;(q,l)_l(@l), O(@ﬂ), (3163)

(ii) it holds that P(¥) < n?*P(d,),
(i) it holds for all a € C(R,R) that R,(¥) € C(R™(®) RO®)  gnd
(iv) it holds for all a € C(R,R), & = (4)ke(1,2,..ny € R™Z®V that

2) =Y hie(Ra(®r))(22) (3.164)

(cf. Definition 5.6).
Proof of Lemma 3.50. First, note that item (i) in Lemma 3.28 ensures for all k € {1,2,...,n} that
D(A4, o) = (nZ(®,),Z(®)) € N%. (3.165)
This and item (i) in Proposition 3.9 prove for all k € {1,2,...,n} that
D(®), 0 Ay, o) = (nZ(Dy), Dy (D), Do(®y), . .., Doy () (3.166)
Item (i) in Lemma 3.34 therefore demonstrates for all k£ € {1,2,...,n} that

D(h ® (D0 Ay o) =D(Pre Ay, o)
= (TLI((I)1>,D1(CI)k>, DQ(CI)k), e ;DL(<1>k)—1(CI)k)7 O((I)k)) (3167)
= (nZ(®1),D1(®1), Dy(®1), ..., Dpay—1(P1), O(®1)).

Combining this with item (ii) in Lemma 3.47 ensures that

D(‘I’) = D(@ke{LQ ..... n} (hk ® ((I)k hd QnAk)))

3.168
= (nI(q)l), nID)1<(I)1), nDz(q)l), Ce ,nDﬁ(q;.l)_l((I)l), O((I)l)) ( )

This establishes item (i). Hence, we obtain that
P(V) < n?*P(dy). (3.169)

This establishes item (ii). Moreover, observe that items (v) and (vi) in Lemma 3.29 assure for all k €
{1,2,...,n}, a € O(R,R), x = (;)ic(12..n} € R™®) that R, (P @ Ay, ) € C(R™Z@) RO®H) and

(Ra(®r @ An0)) (@) = (Ra(®))(Ar) = (Ra(®))(x1)- (3.170)

Combining this with items (ii) and (iii) in Lemma 3.34 proves for all k& € {1,2,...,n}, a € C(R,R),
T = (T)ief1,.my € R that Ry(hy ® (0 @ An, o)) € C(R™®),ROV) and

(Ra(hi, @ (Br @ Any0) () = hi(Ra(®)) (1) (3.171)

Items (iii) and (iv) in Lemma 3.47 and (3.167) hence ensure for alla € C(R,R), & = (2;)icf12,..n} € RAI(®1)
that R, (V) € C(R"(®1) RO(®1)) and

(Ra(¥))(2) = (Ra (eakem ,,,,, } (he ® (D @ Ay, 0))))(2)

hk @ (I)k . A'Ak 0)))( ) = hk(Ra(q)k))<xk) (3172)

k=1

HM:

This establishes items (iii) and (iv). The proof of Lemma 3.50 is thus completed. O
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3.8.2 Linear combinations of ANNs with different lengths

A comment from Josh: I think I need this result...

Lemma 3.51. Let a € C(R,R), n € N, hy,hy,...,h, € R, &, Py,... P, € N satisfy for all k €
{1,2,...,n} that Z(®y) = (), let Ay € RE@IX(L@) 'k c {12 ... n}, satisfy for allk € {1,2,...,n},
T = (xi)ie{lz ,,,,, ny € R™2(®) that Apx = xp, and let ¥ € N satisfy that
U= ;ﬁé (e ® (B0 A, 0)) (3.173)
(cf. Definitions 3.1, 3.6, 3.27, 3.33, 3.35, and 3.48). Then
(i) it holds that
D(¥) = A comment from Josh: Add vector..., (3.174)
(i) it holds that P(V) < A comment from Josh: Add value...,

(iii) it holds that Rq(¥) € C(R"(®x) RO®w)  and

,,,,,

(Ra(W))(x) = > hi(Ra(®)) (). (3.175)
k=u
Proof of Lemma 3.51. A comment from Josh: Add proof.... O

4 ANN representations for MLP approximations

4.1 ANN representations for MLP approximations
Lemma 4.1. Let o, 5, M € [0,00), U, € [0,00), n € Ny, satisfy for all n € N that

n—1

Uy < oM™+ M" ™ (max{B, Uy} + In(k) max{B, Unax(i-1,0}}) - (4.1)
k=0

Then it holds for all n € N that U, < (2M + 1)" max{«, 8}.

Proof of Lemma /.1. We prove Lemma 4.1 by induction on n € Ny. Throughout this proof let S, € [0, 00),
n € Ny, satisfy for all n € Ny that

n—1

Sp=M"+ > M " ((2M + 1)F + Ly(k) (2M + 1)mxth=10n) (4.2)
k=0
For the base case n = 0 note that (4.1) implies that Uy < a < max{a, §}. This proves the base case n = 0.

For the induction step from n € Ny to n + 1 € N let n € Ny and assume that for all k € {0,1,...,n} it
holds that Uy < (2M + 1)* max{«, 3}. Note that (4.1) yields that

Unr < oM™ 4 " M (max{ 8, Up} + In(k) max{8, Unax(r—10y})
k=0
< aM™ 4 Z M=k (max{s3, (2M + 1)* max{a, 3}}
k=0 (4.3)
+ln(k) max{g, (2M + 1)">* "% max{a, 5}})

< oM™+ max{a, B} Y M ((2M + 1)F + Ty(k) (2M 4 1)mextiotoh)
k=0
< max{a, 5}Sn11.
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Note that by (4.2) and the assumption that M € [0, 00) it follows that

Sn+1 = M7’L+1 + ZM”H—I—]{: ((2M + 1)k + :H_N(k) (2M + 1)1113.)({]4:—1,0})
k=0

= M 4 Z MR QM 4 1) Z MR QM 4 1)k

2M + 1)t — M”+1 (2M + 1) — M™

_ o | M

* { M+1 * M+1 (4.4)
_ M(@2M + 1)+t N MeM+n*  TMM 4 MT

B M+1 M+1 M+1

S MTL+1 _'_

MEM o+ @My T
M+1 M+1 M+1
= (2M + 1),

Combining (4.3) and (4.4) completes the induction step, which establishes (4.1). The proof of Lemma 4.1
is thus completed. []

Lemma 4.2. Let © = (J,.y2Z"), d,M € N, T € (0,00), f € C(R,R), g € C(RLR), F,G € N satisfy
that R.(F) = f, and R.(G) = g, let u’ € [0,1], § € ©, and U®: [0,T] — [0,T], 6 € O, satisfy for all
te[0,T),0€0 thatd =t+ (T —t)u’, let W9: [0, T] - R 6 €O, for every € ©,t € [0,T], s € [t,T]
let Y,fs c R? satisfy Y,fs =Wl —WP, and let U?: [0,T] x R - R, n € Ny, 6 € O, satisfy for all § € O,
n €Ny, t € [0,T], x € R? that

M’ﬂ
Yo(e )]

k=1

. ILN(TL)
Ug(t,m) ==

. (4.5)

n—1
0,3,k (0,—i,k 0,i.k 0,i,k
+y 0y Z(f o U™ = 1) (£ o Ul o) J (U™ 2+ Y5 )
=0

k=

(cf. Definitions 3.1, 3.4, and 3.6). Then

(i) there ewist unique U’ nt €N, t €[0,T], n € Ny, 0 € ©, which satisfy for all 01,0, € ©, n € Ny,
ti1,ty € [0,T] that D(U"l ) =D(UZ,),

n,t1
(i) it holds for all @ € ©, t € [0,T] that Uj, = ((00 ... 0),0) € R"* x R,
(11t) it holds for all € ©, n € N, t € [0,T] that

0 M1
Un,t - @ M” (G AI Y(e 0, k))
n—l [ (T _ t) Mt 6.ik)
Hq z‘:E%‘,I ( Nn—i ) €3 (k:El?,I ((F U (0zk)> .Ald, (o, éﬂkz) k)))]] (4'6)
o [ =TI (e O-i)
Bt i:EE,I ( Mn—i ® k;:Eq,I (F ¢ Umax{z—l 0}, L{(e 2 k)> A Y(e zgkf k) 7

A comment from Josh: Would a different construction yield better estimates?
(iv) it holds for all @ € ©, n € Ny, t € [0,T] that L(U?,) = nH(F) 4+ max{1, In(n) L(G)},
(v) it holds for all € ©, n € Ny, t € [0,T] that H\D(Uflt)m < (2M 4+ 1)"max{2, [|[D(F)|, ||D(G)||},
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(vi) it holds for all @ € ©, n € Ny, t € [0,T], x € R* that Uf(t,z) = (R.(UY,))(x), and
(vii) it holds for all 0 € ©, n € Ny, t € [0,T] that
P(UY,) < 20 (F) + max{1, Ly(n) £(G)} [(2M + 1) max{2, |[DE)], DG} (4.7
A comment from Josh: I need to double-check the above... Can it be improved?
(cf. Definitions 3.8, 3.13, 3.27, 3.33, 3.35, 3.37, and 3.48).

A comment from Josh: The proof is still being update/finalized...
A comment from Josh: I cannot do what I did in (4.8)...

Proof of Lemma 4.2. Throughout this proof let x} € N, £ € {1,2,...,L(F Ugyo) — 1}, n € Ny, satisfy
for all n € Ny, £ € {1,2,...,L(F ¢ U} ;) — 1} that

i = MY D (Egpauy ) a(G)) + 3 M Du(Egravy ) (F o Ulp))
n 2 (4.8)
+ Z Mn+1_iD€<gl:(FoU%,o)J<F * Ultax(i-1.0}.0))-

=0

We prove items (i), (ii), (iii), (iv), (v), and (vi) by induction on n € Ny. For the base case n = 0 note that
the fact that for all @ € ©, t € [0,T], € R? we have U’(t,r) = 0 and A comment from Josh: Add
lemma imply that there exist unique Uj, € N, ¢ € [0, T, § € ©, such that it holds for all § € ©, ¢ € [0, T
that U, = ((00 ... 0),0) € R™? x R! and for all 61,0, € O, t;,t, € [0,T] that D(UY,) = D(UR,).
Moreover, by the assumption that R,(G) € C(R?% R) it follows that for all € ©, t € [0,T], x € R?
it holds that £(US,) = 1 = max{1,0}, [[D(UL,)]| = d < D) < max{|DE)],[|D(G)]]}, and
(Re(U§,)(x) = U§(t, x). This proves the base case n = 0. For the induction step from n € Ny to n+1 € Ny
let n € Ny and assume that items (i), (ii), (iii), (iv), (v), and (vi) hold true for all £ € {0,1,...,n}. A
comment from Josh: Add reference... shows that for all € ©, t € [0, T] that

D(G . AId,YfJ — D(G). (4.9)
(4.9) and A comment from Josh: Add reference... demonstrate that for all # € ©, t € [0, 7] that
Mrtl 1
D(,E?,I (Mn+1 ® (G ¢ AIde,?HO’k)))) (4.10)
= D(Z(G), M™'Dy(G), M"'Dy(G), ..., M" "' Dria)-1(G), O(G)) .
Next, the induction hypothesis implies for all § € ©, t € [0,7], £ € {0,1,...,n} that D(U?,) = D(U 0)-

0
, 20)
This and A comment from Josh: Add reference... imply that for all 6,7 € ©, t € [0,T], { €
{0,1,...,n} it holds that

D (UZug . AId,Yjuf) = D(UZW) = D(Uy,). (4.11)

This, Lemma 3.11, A comment from Josh: Add lemma, and the induction hypothesis then yield for
alld.ne O, te[0,T],¢e€{0,1,...,n} it holds that

D ( (Feuy,)s Ald%g) —D (F . (Ug’uf . AId,%E)) ~D(FeUY,)
— (Z(FeU)y) Dy (FeUly) Do(F e Uly) ... Decuy yecr—i (F o Usy) . O(F o ULy) ) (412)

— (4.1 (F o ULy) Do(F o ULy) .. Dgwy ey (F o Ul) 1)
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This, A comment from Josh: Add reference..., and the induction hypothesis shows that for all
i€{0,1,...,n},0 € ©,t €[0,T] that Note: The following is incorrect and needs to be updated...

Mrti= Mt
D( IE,I <(F v 91(51 ’”) A, y© fe’%)) B D< ’EJ (e U?’O)) (4.13)
= (@, M D (F e UDy) , MMy (F e UR) o, M Doy (F 0 U,) 1))
Note that by the induction hypothesis we have for all i € {0,1,...,n}, 0 € ©, ¢t € [0,T] that
L(UY,) = L(UYy) = iH(F) + max{1, In(i) L(G)} (4.14)
and, as a consequence of (4.14), for all i,5 € {0,1,...,n}, 0 € ©,t € [0,T] with i < j it follows that
L(U7,) = L(U) < L(UY,) = L(UY,). (4.15)
(4.15) and Definition 3.8 then imply that for all 4,5 € {0,1,...,n}, 0 € ©, ¢t € [0,T] with i < j it follows

that
LFeU!,)=L(FeU)) <L(FeU))) =L(FeU)). (4.16)

This, (4.13), Definition 3.15, A comment from Josh: Add reference... and the induction hypothesis
show that forall ¢ € {0,1,...,n},0 € ©,¢ € [0,7] that Note: The following needs to be corrected...

n (T _ t) Mnt1—t 0 i k
i (iE(H),I (M"H—i ® kg,l (F U U ’”) Ay, Y(B fekf k)
- (T —1) M 0
(ZE(E), [(M”“ = kE? I (F ¢ Ui’o)

D
K (4.17)
<d Z M)y, <€£ FeU0 )3 (F U€0)> Z M, (‘C/‘L(FoUQL’O),J (F i Ug,o)) ;

=0 =0

n

Z M”+1_ZD£(U0 VL (F) <g£ F.UO )3 (F ° UZ 0)) 1)

=0

This, (4.10), A comment from Josh: Add reference..., and the induction hypothesis ensure that for
all @ € ©, t € [0,T] that Note: This needs to be corrected...

D(Uj,1,)

Mn+1 1
- ([ & (M—+ °(ae Ald,nﬁ‘%‘)"’“))}
- . r (T . t) Mntl—i (GJ’]@)
By i:Bg’I (Mn-l—l—i ® kEJ (F * Ui,ufe’i”“)) * AIdYt(Zwk)k) (4.18)
[ o [ (t —T)1n(i) aeE (0,—ik)
Hh z'EcH),I (W ® kg,l (F * Umax{z Lopu " k)> * A Y(g fekz k)

o n+1 n+1 n+1
= (d, Ky K ""’“L(F-Ugo)—1’1> .

This demonstrates for all 01,0, € ©, t1,t5 € [0,T] that

D(U1y) =D(U2 ) - (4.19)
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By A comment from Josh: Add reference..., (4.18), and the induction hypothesis it follows that for
all 9 € ©, ¢t € [0,T] that

‘C(Ufl—‘rl,t) =L(Fe Ufz,t) = £<Ufz,t) + L(F) -1

= (nH(F) + max{1, Ix(n) L(G)}) + H(F) = (n + 1)H(F) + max{1, In(n) L(G)}. (4.20)

Furthermore, (4.8) and (4.18), A comment from Josh: Add reference..., Lemma 4.1, and the induc-
tion hypothesis ensure for all § € O, ¢t € [0,T] that Note: The following needs to be corrected...

DS I < max {d, iz, geansg 11}

< M Dy (€, g G+ Y M D(Epe FeU’
—ge{o,l,..].(,rlc%?.ug,())}( HEeweon0al@) z; {EaeeunalF # Vo)

+ Z M”"’l_iDE(Sﬁ(FoU?L’U)J(F ° Ugaax{i—l,()},o))>
i=0

< M max{2,[|D(G)]|}

30 (a2 D(F U} + max(2, ID(F & Ui yo10)1)
< " max(2, (G}
£ M (a2, D)L DU} + mas(2, [DE), [D(Uugs 1050011}
=0
< (M 1 1) max(2, [ D). [ID(G)] )
(4.21)

Finally, A comment from Josh: Add references..., and the induction hypothesis assure for all § € ©,
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€ [0,T], x € R? that Note: This should all be correct...

63 ona )
" (Z:B_gl ((f/—’;f ) (Mn l ((F Uwz(j“”) * A Y<Gg;gk)>>]>>(x)
([ () (5, (vt a0

3

k=1 st
n—1 i
(T —1) M (0,i.)
! i=0 M= & ’“E’I (F * Uiv“t(e’i’k)> * AId’Yt(,ZE;’ITZ,M (%)
n—1 . ;
(t =T) 1n(3) M (0,~i.k)
—. F ’ ’ : ) A— 7,
" —~ M Rl s ( * Unestio 1040 1Y J? 0 (@) (4.22)
1|
- e [ Dol )
k=1
n—1 Mri
(T —1) (0,0.k)
R <F U ) A o
+ - i ; ¢ ° (8,5,k) I Y(Zwkf N ($)
n—1 . Mt
(t — T) I[N(Z) (9 i k)
+ 0 Mn—i kz:; Rt <F ¢ Umax{z 1,0}, U(G ‘ M) AId Y(iéekz) k) (ﬁ)
M" n—1 M
1 0,0,—k T —t) 0,i,k 0,ik 0,ik
= — [ g<I + Y;(TO )> + <an Z <f o Ui( )><Z/{t( )7 T+ Y;(ut(e,i),k)>
k=1 i=0 k=1

n—i

n—1 . M
(T—t) HN(Z) (0,—i,k) 0.0k 0.k
* i Z <(f Umax{z 1 0})<ut( )7 + Y(u(g z)k)> — Ug (t, a:)

=0 k=1

This completes the induction step. The proof of Lemma 4.2 is thus completed. n

4.2 ANN representations for the PDE nonlinearity

4.2.1 Linear interpolation with ANNs

A comment from Josh: I left this material here... Should I move it to Section 3.5.17
Lemma 4.3. Let o, 3, h € R. Then

(i) there exists a unique H € (R xR!) x (R xR')) C N which satisfies that H=h® (i A, 3) =
(e, B), (h,0)),

(i) it holds that R.(H) € C(R,R),
(iii) it holds that D(H) = (1,1,1) € N3, and
(iv) it holds for all x € R that (R.(H))(x) = hmax{ax + 3,0} = h[ax + 8] L(~p/a,00)(¥)
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(cf. Definitions 3.1, 3.8, 3.27, 3.30, and 3.33).

Proof of Lemma 4.5. Note that Definition 3.27 and Lemma 3.28 ensure that for all x € R it holds that
A,z = (o,8) € (R™ xR C N, D(A,p) = (1,1) € N?, R(A,3) € C(R,R), and (R.(Anp))(z) =
azr + B. By (3.6), Definitions 3.8 and 3.30, and Lemmas 3.31 and 3.32 it follows for all x € R that
1o A, 5= ((a,),(1,0)) € (R xR') x (R xRY)) C N, D(i;0A,5) = (1,1,1) e N*, R.(i10 A, p5) €
C(R,R), and

(Re(i1 @ Agp))(x) = max{ax + 3,0} = [ax + B]1(_p/a00)(T). (4.23)

This, Definition 3.33, and Lemma 3.34 ensure that there exists a unique H € ((R™! x R!) x (R™! x
R')) € N which satisfies for all o € Rthat H=h® (i ¢ A,5) = ((a, 8),(h,0)), R(H) € C(R,R),
DH) = (1,1,1) € N, and

(Re(H))(2) = h((Re(ix @ Aap))(2)) = hlaw + BIL(-p/a.00) (7). (4.24)
This establishes items (i), (ii), (iii), and (iv). The proof of Lemma 4.3 is thus completed. O
Lemma 4.4. Let K € N, ho,hy,...,hg,t0,%1,---,kx € R satisfyro <p1 < ... <rx. Then

(i) there exists a unique ¥ € N which satisfies

K . _ _
U = Al,ho ° <@ <<( A(hmln{k+_1,1<}‘ hi) (e hm_ax{k—l,o}) )) ® (il ° Al,—;k)>) , (4.25)

k=0 me{k-{»l,K} Imln{k,K—l}) (;max{k,l} ;max{k—l,o}

(ii) it holds that D(¥) = (1, K +1,1) € N?,

(ii) it holds that R.(V) € C(R,R),

(i) it holds for all k € {0,1,..., K} that (R(W))(xx) = hx, and
(v) it holds for all k € {1,2,..., K}, x € R that

ho cx € (—00, 1]
(Re(W)) () = bt + (Whg;)(x—;k_l) L2 € (S, ] (4.26)
hK S (;K,OO)

(cf. Definitions 3.1, 3.27, 3.50, 3.33, and 3.37).
Proof of Lemma /.. Throughout this proof let cg, ¢y, ..., cx € R satisfy for all k € {0,1,..., K} that

hmin - h h - hmax -
o — (hminger1,xy —he) (I (k—1.0}) ‘ (4.27)

(xmin{lﬁ»l,K} - Xmin{k,Kfl}) (xmax{k,l} - rmax{kfl,O})

Observe that Lemma 4.3 assures for each k € {0,1,..., K} that

(I) there exists a unique & € ((RM*!'xRY)x (R™*!xR!)) C N which satisfies that @), = c;®(i;0A; ) =

((17 _?k>7 (Ck7 0))?
(IT) it holds that R.(®) € C(R,R),

(ITI) it holds that D(®;) = (1,1,1) € N3,
(IV) it holds that (R.(®x))(z) = cklr — ti]L(ey.00) (2)-
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Item (I) and Lemmas 3.29 and 3.47 guarantee the existence of a unique ¥ € ((RM!'xR!)x (R™*!xR!)) C N
such that

K
¥ = A17h0 ® (kE_BO (Ck ® (11 ® Al:?k))) . (428)
This establishes item (i). Items (II) and (III), Lemmas 3.29 and 3.47, and (4.28) assure that R.(¥) €
C(R,R) and D(¥) = (1, K+1,1) € N3. This establishes items (ii) and (iii). Next, observe that item (IV),
(4.27), and Lemmas 3.29 and 3.47 assure for all x € R it holds that

(Re(0))(z) = ho + Z = ho + Z ¢ max{z — gy, 0}. (4.29)
k=0
This and the fact that Vk € {0,1,..., K}: ro < gy assure that for all x € (—oo, 1] it holds that
(Re(W))(x) = ho + 0 = hy. (4.30)

In addition, observe that the fact that V& € {1, 2,...,K}: 1 <rrandthe fact that VEk € {1,2,..., K}:
Zﬁ;é Cp = i show that for all £ € {1,2,..., K}, © € (tx_1, ] it holds that

e—tk—1

(Re(W))(@) = (Re(W)) (1) = ) e (max{z — 1, 0} — max{rx — £, 0})

n=0

k
(4.31)
= ch (1 = 8)] = D enle — 1)
n=0
h hi_1
= (Gn @~ Erm1)-
Next, we claim that for all kK € {1,2,..., K}, z € (rx_1, 2] it holds that
(Re(W))(2) = gy + (B=2=) (2 — i) (4.32)

We now prove (4.32) by induction on k € {1,2,..., K}. For the base case k = 1 observe that (4.30) and
(4.31) demonstrate that for all x € (ro,r1] it holds that

(Re(W))(z) = (Re(¥))(x0) + (Re(¥))(w) — (Re(¥))(x0) = ho + (£=32) (@ — t0)- (4.33)

r1—ro

This proves (4.32) in the base case k = 1. For the induction step note that (4.31) implies for all k£ €
{23, K}, 2 € (vpmr, 1] With Vy € (ve—2, ti1]: (Re(¥))(y) = haa + (2222 (y — py,_p) it holds that

(Re(¥)) () = (Re(¥)) (¥5-1) + (Re(¥)) () = (Re(¥)) (x£-1)
= hj—2 + (%)(?k—l — thoa) + (2Rt — ) = hy + (%)(ﬁ — k1)

e —Tk—1

(4.34)

Induction thus proves (4.32). Furthermore, observe that (4.32), the fact that Vk € {0,1,..., K}: 1t <1k,
and the fact that 3.% ¢, = 0 imply that for all 2 € (r, 00) it holds that

(Re(¥) (@) = (Re(¥))(xx) = | Y e (max{z — £, 0} — max{rx — £, 0})
= N (4.35)
:ch[(x_xn) ?K_In chx_xl{
This and (4.32) show that for all x € (rg, c0) it holds that
(Re(W))(2) = (Re(¥)) (k) = -1 + (i) (i — ¥x-1) = D (4.36)

IK—IK-1

Combining this, (4.30), and (4.32) establishes item (v). Moreover, note that item (v) implies item (iv).
The proof of Lemma 4.4 is thus completed. O
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4.2.2 ANN approximations of one-dimensional functions

Definition 4.5 (Modulus of continuity). Let f: R — R be a function. Then we denote by wy: [0, 00| —
[0, 00] the function which satisfies for all h € [0, 00| that

wy () = sup({1f(z) = F(y)| € [0.00): (wy € R with | —y| < h)} U{0}) (4.37

and we call wy the modulus of continuity of f.
Lemma 4.6. Let f: R — R be a function. Then

(1) it holds that wy is non-decreasing,

(11) it holds that f is uniformly continuous if and only if limp\ o ws(h) =0,

(111) it holds that f is globally bounded if and only if we(oco0) < oo,

(i) it holds for all x,y € R that | f(x) — f(y)| < ws(|lzx —y|), and

(v) it holds for all h,b € [0, 00] that we(h +b) < ws(h) + we(h)
(cf. Definition 4.5).

Proof of Lemma /.6. First, observe that items (i), (ii), and (iv) are an immediate consequence of the
definition of ws. Next, note that item (iii) follows directly from the definition of a globally bounded set.
Finally, by Definition 4.5 and the triangle inequality it holds for all h, § € [0, oc| that

wy(h+b) =sup({|f(z) = f(y)| € [0,00): (z,y € R with [z —y| < (h + b))} U{0})
< sup({ f(z € [0,00): (z,y € R with |z — y| < (h+h))} u {0})

)
) )

+sup({ | F(z = hE=t) = f(y)| € 0,00): (w,y € R with |z —y| < (h+1)) f U{0})
)
(

(4.38)

< sup({ f(z) €[0,00): (z,y € R with |z —y| < h)} U {0})
—i—sup({ fla=hg=h) = f(y)| € [0,00): (z,y € R with |z — y| < h)} U{0}>
= wy(h) +ws(h).

This establishes item (v). The proof of Lemma 4.6 is thus completed. O

Lemma 4.7. Let K € N, ro,11,...,8x € R satisfy to <11 < ... < tx and let f: [ro,tx] — R be a
function. Then

(i) there exists a unique F € N which satisfies

K ) _ —
F— AL o ( K ((( (i sn00) = FG8) () f(xmax{kfl,m)))) @ (iy o Al,—;k))) (4.39)

k=0 Imin{k-‘—l,K}*Imin{k,K—l}) (Fmax{k,l}fxmax{k—l,o}

(i) it holds that D(F) = (1, K +1,1),

(i1i) it holds that R.(F) € C(R,R),

(iv) it holds for all k € {0,1,..., K} that (R(F))(xx) = f(xx),
(v) it holds for all k € {1,2,..., K}, x € R that

f(xo) tx € (—00,10]
(Re(E))() = { Fleim) + (L8000 () e (uom] (4.40)
f(rx) cx € (rg,0)
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(vi) it holds for all x,y € R that

(RAE)@) ~ RE)] < (e (EEED) oy aan

\Fk - ka1|

(vii) it holds that SUD (o k] [(Re(F))(z) — f(x)| < wy(maxgeqo,.. k) [Tk — Er—1]), and

(viii) it holds that P(F) = 3K + 4

(cf. Definitions 3.1, 3./, 3.0, 3.8, 3.27, 3.30, 3.37, and J.5).

Proof of Lemma /.7. Throughout this proof let cg, ¢y, ..., cx € R satisfy for all k € {0,1,..., K} that

e = (f(xmin{k—i—l,l(}) - f(?k» N (f(?k> - f(&nax{k—l,O})) (442)

(zsmin{kJrl,K} - ?min{k,Kfl}) (;max{k,l} - Imax{kfl,O})

and let L € [0, o] satisty that

L= max (wf“““_“‘l')) (4.43)
ke{12,.K} \ [tr — Lk
(cf. Definition 4.5). Then Lemma 4.4 assures that
(I) there exists a unique F € N which satisfies
K
F=A e (;_90 (cr®(iro Al,xk))) ; (4.44)

(IT) it holds that D(F) = (1, K +1,1) € N3,

(III) it holds that R.(F) € C(R,R),

(IV) it holds for all £k € {0,1,..., K} that (R.(F))(xx) = f(zxx), and
(V) it holds for all z € R, k € {1,2,..., K} that

f(xo) ta € (—00,10]
(Re(E))(@) = { Flemr) + (18000 () 2o (r,md (4.45)
f(rx) s € (rg, )

(cf. Definitions 3.1, 3.27, 3.30, 3.33, and 3.37). This establishes items (i), (ii), (iii), (iv), and (v). Next,
observe that for all k € {1,2,..., K}, z,y € [tx_1, £x] it holds that

RN - RPN = | (L)) oy < (Bl oy )

(cf. Definition 4.5 and Lemma 4.6). This, item (iv), Definition 4.5, and Lemma 4.6 assure that for all
k,le{l,2,...,K}, x € [tp_1,t], ¥ € [t1-1, 1] with & < [ it holds that

[(Re(F)) () — (Re(F)) ()]

< (R <»<> (Re(F))(e0)] + |(Re(F)) (55) — (Ra(F))(511)] + | (Re(F)) (51 1) — (Re(F))()
— |(Ru(F)) (@) — (ReFN )] + F(E) — Fl)] + [(Re(F)) ) — (Re(F)) o)
g(wgﬁw“f‘)u—m+wﬂm—n40+(ﬂ%%3%ﬁ)mq—m
k k—1 . 1 -1 (447)
<L ((?k — )+ (i (¥ — ?jl)) +(y — I11)> = Llz —yl.
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Combining this and (4.46) shows that for all z,y € [ro,rk] it holds that |(R.(F))(z) — (R:(F))(y)| <
Ljz —y|. This, the fact that for all z,y € (—o0, o] it holds that |(R.(F))(z) — (R.(F))(y)| = 0 < L]z —y|,
the fact that for all z,y € [rx, 00) it holds that |(R.(F))(z) — (R.(F))(y)| = 0 < L|z —y|, and the triangle
inequality hence demonstrate that for all z,y € R it holds that |(R.(F))(z) — (R.(F))(y)| < L|z — y|.
This establishes item (vi). Moreover, note that Definition 4.5, Lemma 4.6, item (iv), and the fact that
for all k € {1,2,..., K}, z € R that

Ly — X T — L1

L — Lk—1 L — Y1

—1 (4.48)

assure that for all k € {1,2,..., K}, © € [rx_1, rx] it holds that

L — k-1 L — Lk—1

RAE)(@) - f0)] = [(RAEN@) — (B4 Z2520 ) )

I — 2 L — Tk—1
< 1) = J@)| | ————| + —f@)| | ———
o) = SO e ol TR
-z T —
< wylon = ) (P 4 220
Ye —Yk—1 Tk — k-1
= wy(tx — rr—1]) S wp(maxjepn 2wy |87 — rj-1])-
This establishes item (vii). By Definition 3.1 and item (ii) it follows that
PU)=(K+1)(1+1)+1(K+1)+1)=3K +4. (4.50)
This establishes item (viii). The proof of Lemma 4.7 is thus complete. O

Lemma 4.8. Let K € N, L xo,11,...,tx € R satisfy ro <11 < ... <rx andlet f: [ro,tx] — R satisfy
for all x,y € [ro,rk] that |f(x) — f(y)| < L|x —y|. Then

(i) there exists a unique F € N which satisfies

K . _ _
F — A.]_yf(;o) ° <@ <<( (.f(?zmm{k-&-l,K}) f(}”k)) (f(fik) f(&nax{k—l,()}))) ® (il .AL_Ik))) 7 (451)

k=0 Imin{k+1,K} 7?min{k,K—1}) o (xmax{k,l}f}ﬂmax{k—l,O})

(i) it holds that D(F) = (1, K +1,1),

(iii) it holds that R.(F) € C(R,R),

(iv) it holds for all k € {0,1,..., K} that (R.(F))(xx) = f(xx),
(v) it holds for all k € {1,2,..., K}, x € R that

f(x) L € (=00, xo
(Re(F))(2) = q f(xr—1) + (%)(IE — k1) 7€ (-1 Mk, (4.52)
f(rx) cx € (1, 00)

(vi) it holds for all x,y € R that |(R(F))(z) — (R(F))(y)| < L|x —y|,

(vii) it holds that Sup,ep, o) |(Re(F))(z) — f(2)] < L(maxgeqr 2, .k} [tk — Fr-1]), and
(viii) it holds that P(F) = 3K + 4

(cf. Definitions 3.1, 3.4, 3.6, 3.8, 3.27, 3.30, and 3.37).
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Proof of Lemma /.8. Throughout this proof let ¢q, ¢y, ..., cx € R satisfy for all k € {0,1,..., K} that

= (f(xmin{kJrl,K}) - f(gk)) B (f(gk) - f(xmax{kfl,o})) (4 53)
(;min{k—&—l,K} - Imin{k,K—l}) (;max{k,l} - ;max{k—l,O})

Then Lemma 4.7 assures that

(I) there exists a unique F € IN which satisfies

K
F=A e (;_90 (cr®(iro Al,;k))) ; (4.54)

(IT) it holds that D(F) = (1, K +1,1) € N3,

(III) it holds that R.(F) € C(R,R),

(IV) it holds for all k£ € {0,1,..., K} that (R.(F))(xx) = f(xx),
(V) it holds for all x € R, k € {1,2,..., K} that

F(xo) 2 € (~o0,5
(Re(F)) (@) = { Flon) + (L) (o — ) e (mormid (4.55)
Flex) 1 € (g, 00)
(VI) it holds for all z,y € R that
_ Y 0t S VAR Y
(RE) - RPN < (me (B0 oy s

(VII) it holds that sup e, ) (Re(F))(z) — f(2)| < wp(maxpeqr 2, xy [tx — Te-1]), and
(VIII) it holds that P(F) =3K +4

(cf. Definitions 3.1, 3.27, 3.30, 3.33, and 3.37). This establishes items (i), (ii), (iii), (iv), (v), and (viii).
Observe that the fact that for all z,y € [ro, rx] it holds that |f(x) — f(y)| < L|z — y| and Definition 4.5
imply for all z,y € [ro, rx]| it holds that

wilJz = yl) = sup({If(u) — F(0)] € [0.00): (u,v € R with [u— o] < |z — yI)} U{0})

< SUP({L’u — 1}’ < [O,oo): (U,U € R with ]u — 1}| < ’x — y’)} U {0}) < L’l’ . y’ (457)

This and item (IV) imply for all z,y € [ro,rx]| it holds that

|<Rt<F>><x>—<Rt<F>><y>|s( . (w(lm—xk_u)))|x—y|gL|x—y|. (4.58)

ke{1,2,..,.K} |t — Tr1

This, the fact that for all z,y € (—o0, 1] it holds that |(R.(F))(z) — (R(F))(y)| = 0 < L|x — y|, the
fact that for all z,y € [rx,00) it holds that |(R.(F))(z) — (R:(F))(y)] = 0 < L]z — y|, and the triangle
inequality hence demonstrate for all z,y € R it holds that |(R.(F))(z) — ( {(F))(y)| < Lz —y|. This
establishes item (vi). Note that Lemma 4.6, (4.57), and item (VII) assure for all & € {0,1,..., K},
x € [ro, k] it holds that

\(R«F))(x)—f@)rwf( mex |5k — ga 1|) max (st — tes]))

ke{1,2,...,.K} ke{1,2,...K} (4 59)
< Lty — 1)) = L — k-1l ) -
< ke{rf,lf).iz«}( |tk — Ee-1]) (ke{rﬁlﬁ}fm |tk — Tk 1\)
This establishes item (vii). The proof of Lemma 4.8 it thus completed. ]
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Corollary 4.9. Let K € N, L a,xo,t1,---,tx € R, b € (a,00) satisfy for all k € {0,1,..., K} that
w=a+ @ and let f: [a,b] — R satisfy for all z,y € [a,b] that |f(z) — f(y)| < Ll — y|. Then

(i) there exists a unique F € N which satisfies

K ) _
F _ A_l,f(;o) ° < @ <<K(f(xmm{k+l,K}) (ii(j)k)""f(;max{kfl,o}))) @ (il [ ] A_ka))) s (460)

k=0

(i1) it holds that R.(F) € C(R,R),
(#i) it holds that D(F) = (1, K +1,1),
(iv) it holds for all x,y € R that |(R.(F))(z) — (R(F))(y)| < L|z — y|,
(v) it holds that sup,c(,y |(Re(F))(x) — f(2)] < L(b—a)K~", and
(vi) it holds that P(F) = 3K +4
(cf. Definitions 3.1, 3.4, 3.6, 3.8, 3.27, 3.30, and 3.57).

Proof of Corollary 4.9. Note that for all k& € {0,1,...,K} it holds that fminfkt1,5} — Fmin{k,k—1} =
Imax{k,1} — ¥max{k—1,0} = (b - a)Kil and

(f(xmin{k-f-l’K}) - f(Xk)) (f(Xk) - f(?max{k—l,O})) K(f(?min{k:—‘rl,K}) - 2f<?k> + f(xmax{k—l,o}))

(Z:min{kJrl,K} - Pmin{k,Kfl}) (rmax{k,l} - rmax{kfl,O}) (b - (I)

(4.61)
This and items (i), (ii), (iii), (vi), and (viii) of Lemma 4.8 prove items (i), (ii), (iii), (iv), and (vi).
Moreover, note that item (vii) of Lemma 4.8 demonstrates that for all x € [a, b] it holds that

b—a
R~ F < (el vl ) = () (4.62)
This establishes item (v). The proof of Corollary 4.9 is thus completed. O

Lemma 4.10. Let L,a € R, b € (a,00), £ € [a,b] and let f: [a,b] — R satisfy for all x,y € |a,b] that
|f(z) — f(y)| < Llz —y|. Then

(i) there exists a unique F € N which satisfies F = Ay )@ (0® (i1 @ Ay _¢)),
(i1) it holds that R.(F) € C(R,R),

(#i) it holds that D(F) = (1,1, 1),

(iv) it holds for all x € R that (R.(F))(z) = f(&),
(v) it holds that sup,e(, y |(Re(F))(z) — f(x)] < Lmax{¢ —a,b— &}, and

(vi) it holds that P(F) = 4

(cf. Definitions 3.1, 3./, 3.0, 3.8, 3.27, and 3.30).

Proof of Lemma 4.10. Note that Definitions 3.8 and 3.27, items (i) and (ii) of Lemma 3.28, items (i)
and (ii) of Lemma 3.29, and items (i), (ii), and (iii) of Lemma 4.3 establish items (i), (ii), and (iii). By
Definitions 3.4, 3.6, 3.8, 3.27, and 3.30 it follows for all x € R that

(Re(F)) (@) = (Re(Avpe) @ (0® (i1 0 Ay ¢))) ) (2) = f(&) (4.63)
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This establishes item (iv). Note that (4.63), the fact that & € [a, b], and the fact that for all x,y € [a, ]
it holds that |f(x) — f(y)| < L|x — y| assure that for all z € [a,b] it holds that

(Re(F)) () — f(2)] = |£(§) = f(2)] < Ljz = ¢§] < Lmax{{ —a,b— ¢} (4.64)

This establishes item (v). Moreover, note that Definition 3.1 and item (iii) assure that
PF)=1+1(1+1)+1=4. (4.65)
This establishes item (vi). The proof of Lemma 4.10 it thus completed. O

Corollary 4.11. Let ¢ € (0,00), L,a € R, b € (a,0), K € No N[~ (b 9 L(b =9 4 1), ro,11,... 1k € R
satisfy for all k € {0,1,..., K} that tp = a+ mag(b{;)l} and let f: [a,b] — ]R satzsfy for all x,y € [a,b] that
|ﬂ@—f@H§H$—MWMW

(i) there exists a unique F € N which satisfies

K . _
F = A]-yf(FO) ) (k@o <<K(f(}"m1n{k+1,K}) (iig)k)+f(}"max{k—l,0}))) ® (11 * AL—;k))) 7 (466)

(i1) it holds that R.(F) € C(R,R),
(#i) it holds that D(F) = (1, K +1,1),
(iv) it holds for all z,y € R that |(R(F))(x) — (R(F))(y)| < L|x — y],

(v) it holds that sup,e(, ) |(Re(F)) () — f(x)] < migf{Kal} <eg, and

(vi) it holds that P(F) = 3K +4 <3L(b—a)e™ ' +7
(cf. Definitions 3.1, 3.4, 3.6, 3.8, 3.27, 3.30, and 3.57).

Proof of Corollary /.11. Note that the fact that K € Ny N [2E=2 (b;a) + 1) implies that (lf{;)l} <e.
This, items (i), (ii), (iii), (iv), and (v) of Corollary 4.9, and 1tems (i ), (i), (iii), (iv), and (v) of Lemma 4.10
establish items (i), (ii), (iii), (iv), and (v). In addition, note that for all k¥ € Ny N [L(b a) (b;a) +1) it
holds that k — La’% This and the fact that K € Ny N [L(b a) L(b 9 4 1) therefore ensure that

K<1+ L(b a) Item (vi) of Corollary 4.9 and item (vi) of Lemma 4. 1() hence assure that

PF)=3K+4<

—3L<b€_ )47 (4.67)

This establishes item (vi). The proof of Corollary 4.11 is thus completed. O

Corollary 4.12. Lete € (0,00), L,a € R, b € (a,00) and let f: [a,b] — R satisfy for all x,y € |a,b] that
|f(x) — f(y)| < Llz —y|. Then there exists F € N such that

(i) it holds that R.(F) € C(R,R),
(i1) it holds that H(F) =1,
(iii) it holds that Dy(F) < L(b—a)e™! + 2,
(i) it holds for all z,y € R that |(R(F))(z) — (R(F))(y)| < L|x — y],

(
(v) it holds that sup,ep, ) [(Re(F))(x) — f(z)] <&, and
)

)
(vi) it holds that P(F) = 3(Dy(F))+1<3L(b—a)e +7
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(cf. Definitions 3.1, 3./, and 3.6).

Proof of Corollary /.12. Throughout this proof let K € NyN [ (ba) L(b 9+ 1), xo, 1, - - -, tx € R satisfy

for all k € {0,1,..., K} that t, = a + ma(b{;)l} and let F € N satlsfy that

K , _
F= Ao (k@o <<K(f(xmm{k+1,K}) (ifg)k)-*-f(xmax{kﬂ,o}))) ® (i e ALM))) (4.68)
(cf. Definitions 3.8, 3.27, 3.30, and 3.37). By items (i), (ii), (iv), (v), and (vi) of Corollary 4.11 the neural
network F satisfies items (i), (ii), (iv), (v), and (vi). Next, note that for all K € Ng N [L(b a) L(bg_a) +1)
it holds that k& — . This and the fact that K € Ny [2=2) (b€ % 4 1) therefore ensures that

K <1+ (b Lb=a) Comblmng this with item (iii) of Corollary 4.11 establishes item (iii). The proof of
Corollary 4. 12 is thus completed. ]

Corollary 4.13. Let ¢ € (0,00), L,a € R, b € (a,0), K € Ny ﬂ[ (b= a) L(b L(b=a) +1), ro,r1,-..,txk € R
satisfy for all k € {0,1,..., K} that rx, = a + m’;ib{;l} and let f: R — R satzsfy for all x,y € R that
|f(x) = f(y)] < Llz —yl|. Then

(i) there exists a unique F € N which satisfies

K ) _
F _ A_Lf(xo) ° (k@o ((K(f(?mm{kJrl,K}) (if;(;))v))+f(xmax{k71,0}))) @ (il ° AL_Ik))) , (469)

(i) it holds that R.(F) € C(R,R),
(#i) it holds that D(F) = (1, K +1,1),
(iv) it holds for all x,y € R that |(R.(F))(z) — (R(F))(y)| < L|z — y|,

(1) it holds that $up,eioyy |(Re(F))(x) — f(2)] < el <

(vi) it holds for all x € (—o0,a) U (b,00) that |(R.(F))(z) — f(x)| < L(min{a — z,x — b}), and
(vii) it holds that P(F) =3K +4 <3L(b—a)e ' +7
(cf. Definitions 3.1, 3.4, 3.6, 3.8, 3.27, 3.30, 3.37, and 4.5).

Proof of Corollary 4.13. First, observe that items (i), (ii), (iii), (iv), (v), and (vi) of Corollary 4.11 estab-
lish items (i), (ii), (iii), (iv), (v), and (vii). Note that the triangle inequality, item (iv) of Lemma 4.8, and
the fact that for all z,y € R it holds that |f(z) — f(y)| < L|z — y| imply that for all z € (—o0, a) it holds
that

[(Re(F))(z) — f(z)| = | f(a) = fz)| < Llz — a] = L(a — x). (4.70)
In addition, note that triangle inequality, item (iv) of Lemma 4.8, and the fact that for all z,y € R it
holds that |f(z) — f(y)| < L|z — y| imply that for all x € (b, c0) it holds that

(Re(F)) () — f(z)| = | f(b) = f(2)| < Llz — b = L(z — b). (4.71)

It then follows from (4.70) and (4.71) that for all z € (—o00,a) U (b, o) it holds that
|(Re(F))(2) — f(2)] < L(min{a — z,z — b}). (4.72)
This establishes item (vi). The proof of Corollary 4.13 is thus completed. O

Corollary 4.14. Let € € (0,00), ¢ € (1,00), L,a € R, b € (a,00) and let f: R — R satisfy for all
z,y € R that | f(z) — f(y)| < Llx — y|. Then there exists F € N such that
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(i) it holds that R.(F) € C(R,R),

(i1) it holds that H(F) =1,

(iii) it holds that Dy (F) < (2£)%= 42,

(iv) it holds for all x,y € R that |(R.(F))(x) — (R(F))(y)| < L|z — yl,
(v) it holds for all x € R that |(R.(F))(z) — f(x)| < e(max{1, |z|?}), and

(vi) it holds that P(F) = 3(D1(F)) +1 < % +7

(cf. Definitions 3.1, 3./, and 3.6).

Proof of Corollary /.14. Throughout this proof let K € Ny, R € (0,00) satisfy that 2L = ¢RI~ and
K € [%%, % +1), let ro,r1,...,tx € R satisfy for all k € {0,1,..., K} that r, = —R+ mai’{“[]?l}, and let
F € N satisfy that

K . —
F=Ai;u) e ( ® ((KU(FW{M,K}) 22]2%)”(%“%71’0}))) CICK Aka))) (4.73)

k=0

(cf. Definitions 3.8, 3.27, 3.30, and 3.37). Items (ii), (iii), and (iv) of Corollary 4.13 then establish items (i),
(i), and (iv). Next, note that for all k& € No N [2£8 2L 4 1) it holds that k — 1 < 22£. This and the fact

e

that K € Ny N [%ﬁ, 2LE 1 1) therefore ensures that K < 1+ %. This, the fact that 2L = eR?!, and

)

item (iii) then imply that

2LR 2L (2L 2L\
Dl(F):K+1§2+—:2+—(—) :2+(—) . (4.74)
9 € 9 €

This establishes item (iii). By item (v) of Corollary 4.13 we have that it holds for all z € [—R, R] that

(Re(F))(2) — f(z)] < % < & < e(max{1, |2]7}). (4.75)

By item (vi) of Corollary 4.13 we have that it holds for all z € (—oo, —R) U (R, 00) that
[(Re(F))(z) — f(z)| < L(min{—R — z,z — R}). (4.76)
This and the fact that 2L = e R7~! imply that for all z € (—oo, —R) U (R, c0) it holds that

(Ru(F)) (@) — f(@)] _ Limin{—R 2,0~ R}) _ L] + B
ma( L[}~ maxL e} maL [o)
2L|x| 2L|x| 2L 2L

< < <
— max{l, |z[7} T fale T fzlemt TR

(4.77)

=E£.

Combining this with (4.75) then establishes item (v). Item (vi) of Corollary 4.9, the fact that 2L = e R,
and the fact that K € Ny N[22 2LE 4 1) imply that

6LR 3(2L)4/a=Y)
P(F) <BK +4< 2= +7= =" +T. (4.78)
This establishes item (vi). The proof of Corollary 4.14 is thus completed. O
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5 ANN Approximation Results

5.1 ANN approximations for products
A comment from Josh: I need this result...

Lemma 5.1. Let (c;)ren € R, (Ap)pen € R A B € R (Cp)ren € R4 satisfy for all k € N that

2 -4 2 0 1 0
2 —4 2 0 1 —1
—Ck 2Ck —Cg 1 1 0

and ¢, = 272k, Then

(1) there exist unique ®, € N, k € N, which satisfy for all k € [2,00) NN that &1 = (Ac,00is) @ App
and that

O, = (Ag,00iys) @ (AAk,l,B ° i4) ° (AAk,2,B ° i4) o...0(Ay peiy)eA,p, (5.2)

(i1) it holds for all k € N that R.(®;) € C(R,R),
(iii) it holds for all k € N that D(®y) = (1,4,4,...,4,1) € NF2
(iv) it holds for all k € N, x € R\|[0, 1] that (R.(Px))(x) = v(x),
(v) it holds for all k € N, x € [0,1] that |2* — (R(®p))(z)| <2772 and
(vi) it holds for all k € N that P(®y) =20k — 7
(cf. Definitions 3.1, 3.4, 3.6, 3.27, and 3.30).
A comment from Josh: I’m still updating this proof...

Proof of Lemma 5.1. Throughout this proof let (ax)ren € R, (Ok)ren € R satisfy for all £ € N that
ar = —c¢ and [ = 2¢, let g,: R — [0, 1], k € N, be the functions which satisfy for all £ € N, x € R that

2z €1[0,3)
gi(z)=S2-2z :ze€l31] (5.3)
0 r € R\[0,1]

and gr+1(x) = g1(gx(2)), let fx: [0,1] — [0,1], & € Ny, be the functions which satisfy for all £ € Ny,
ne{0,1,...,28 =1}, z € [%, %) that fi(1) =1 and

o> oF
filw) = [2 )0 — ), (5.4)
and let 7, = (rr1,Th2, k3, Tha): R = RY k € N, be the functions which satisfy for all z € R, k € N that
ri(z) = (ra(e), rie(@), ris(z), ria(@) = Mea(z, 2 — 3,2 — 1, 2) (5.5)

and
e () = (Fre1 (), rrr,2(2), 7es1,3(2), Trara(2)) = Mo (Apprre () + bega). (5.6)

Note that A comment from Josh: Add stuff.... This establishes items (i), (ii), and (iii). Note that
(3.5), (5.3), and (5.5) and the fact that for all x € R it holds that v(z) = max{z,0} show that for all
x € R it holds that

2r11(z) — 4rio(x) + 2r15(z) = 2e(z) — 4e(z — 5) + 2v(z — 1)

5.7
= 2max{z, 0} — 4max{z — 3,0} + 2max{z — 1,0} = g (). (5.7)
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Furthermore, observe that (3.5) and (5.5), the fact that for all z € R it holds that t(z) = max{z,0}, and
the fact that for all x € [0,1] it holds that fy(z) = x = max{z,0} imply that for all z € R it holds that

Next we claim that for all k € N it holds that

(Vo € R: 2r1(z) — drga(w) + 2r3(2) = gi(w)) (5.9)
and

(reem o ={0ily R0 o

We now prove (5.9) and (5.10) by induction on k£ € N. Note that (5.7) and (5.8) prove (5.9) and (5.10) in
the base case k = 1. For the induction step N> k — k +1 € NN [2,00) assume that there exists k € N
such that for all x € R it holds that

2rp1(x) — Arga(x) + 21 3(x) = gi(2) (5.11)

) fea(@) rx € [0,1]
and rra(z) = {max{x,o} cx € R\[0,1]

Observe that (3.5), (5.1), (5.6), (5.7), and (5.11) ensure that for all x € R it holds that

(5.12)

gr1(@) = 91(gk(@)) = 91(2re(2) — dria(2) + 2re3(2))
:2t(2rk71( ) — 4rga(x) + 2r5( ))

- 4t(2rk71(x) —Adryo(x) + 2r3(x) —

+ 2t(2rk71(x) —dryo(x) + 2rp3(z) —

= 2rp111(2) — 4rpp12() + 240 3(2).

) (5.13)

)

1
2
1

In addition, observe that (3.5), (5.1), (5.6), and (5.11) demonstrate that for all x € R it holds that

rrena(@) = v((=2)° 20 g (0) + 2720 o () + (=2)° 20 g (@) + rpa ()
=v((=2)""*rp(z) +2°° Tkg(l')‘f‘( 2)" "y () + ra(2))
=t(2” 2"?[—27%1 () + 2o (2) — 2rps(2)] + rial)) (5.14)
:t( [2 2k} [27’k 1( )—47%2(1’) +27”k3( ):| +7”k4( )) = t(— [272k}gk((13) —|—Tk74<$)).

Combining this with 5.12, A comment from Josh: Add reference..., the fact that for all x € R it
holds that v(x) = max{z,0}, and the fact that for all z € [0, 1] it holds that f(z) > 0 shows that for all
x € [0,1] it holds that

eena(2) = e~ 272 (@)] + fir () = o — (@) 42— [ (27¥g,(2))] )
= (5.15)

= (o - [ X 2%0(0)]) = (o) = fulw).

Next note that (5.12) and (5.14), A comment from Josh: Add reference..., and the hypothesis that
for all z € R it holds that a(x) = max{z,0} prove that for all z € R\|0, 1] it holds that

e a(z) = a( (2 %)) + rk74($)) — a(max{z, 0}) = max{z, 0}. (5.16)
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Combining (5.13) and (5.15) hence proves (5.9) and (5.10) in the case k + 1. Induction thus establishes
(5.9) and (5.10). Next note that (3.6), (5.1), (5.5), (5.6), and (5.9) A comment from Josh: Add
definition references for the new network... A comment from Josh: Add lemma references...
assure that for all £ € N, x € R it holds that R.(®;) € C(R,R) and

(Re(®r))(x)

= (Rt( (Ac,o®iq)® (AAk,l,B ° i4) ° (AAk,z,B ° i4) -0 (Ay peoiy)e AA,B))(l')

= (=2)7 1 (1) + 25 o (@) + (—2) " HFres(z) + rpa(e)

— (—2)r (| (@) 4 rpa(a) (5.17)
= 2272 < [—Tk’l(x()jg’?’(x)] + Tk,2($)> + ra(T)

=972 (47‘;@2(30) —2rpa(x) — 2rk73(:€)) + rpa(2)

E— [2_2k] [2rk71(x) —Adrpa(x) + 2rk,3(x)] +rpa(z) = — [Q_Qk}gk(x) + rpa(z).

Combining this with 5.10 and A comment from Josh: Add reference... shows that for all £ € N,
x € [0, 1] it holds that

(Ru(@))(z) = ~(2 (@) + firr(2) = (2 g(2) + 2~ [ 3 2%g,(0)]
a (5.18)

k .
— - [212—239]-(95)] — fula).
=
A comment from Josh: Add reference... therefore implies that for all k € N, x € [0, 1] it holds that
|27 — (Re(®y)) ()] < 27272 (5.19)

This establishes item (v). Moreover, observe that A comment from Josh: Add reference..., (5.10)
and (5.17) ensure that for all £ € N, z € R\[0, 1] it holds that

(Re(®1))(7) = =27 gi(z) + 14.4(2) = ra(7) = max{z, 0} = v(z). (5.20)
This establishes item (iv). Note that item (iii) ensures for all k£ € N that £(®;) =k + 1 and
k
P(0r) =4(1+1)+ | > _4(4 +1)=8+20(k—1)+5=20k—T. (5.21)
=2

This establishes item (vi). The proof of Lemma 5.1 is thus completed. O

A comment from Josh: I need this result...

Corollary 5.2. Let ¢ € (0,00), M = min([2logy(67!) —1,00) NN), (ck)ken C R, (Ap)ren € R,
A, B € R (Cy)ren C R satisfy for all k € N that

2 -4 2 0 1 0
Ay = ; :i g 8 , A= 1 , B = :% , C = (—ck 2c,  —cp 1) . (5.22)
—c, 2¢, —c, 1 1 0
and ¢, = 2726 Then
(1) there exists a unique ® € N which satisfies that
(Ac,0®is) @ App M =1

q) = (A‘CM70 i 14) b (AA]wth L l4) L (AAM,Q,B L4 14) (523)

: : M€ [2,00)NN’
o...o(Aypeiy) e A,
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(i1) it holds that R.(®) € C(R,R),

(iii) it holds that D(®) = (1,4,4,...,4,1) € NM+2,

(iv) it holds for all x € R\[0,1] that (R.(®))(z) = t(x),

(v) it holds for all z € [0,1] that |2? — (R(®))(z)| < 272M72 < ¢,
(vi) it holds that £L(®) = M + 1 < max{ilog,(e7') + 1,2}, and
(vii) it holds that P(®) = 20M — 7 < max{101log,(¢~ ') — 7,13}
(cf. Definitions 3.1, 3.4, 3.6, 3.27, and 3.30).

Note: Double-check proof...

Proof of Corollary 5.2. Note that items (i), (ii), and (iv) of Lemma 5.1 establish items (i), (ii), and (iv).
Next note the fact that M = min(N N[5 logy(e7!) — 1,00)) assures that

M =min(NnN [$logy(e7") — 1,00)) > min([max{1, $log,(¢7") —1},00)) > logy(e7!) — 1.  (5.24)
This and item (v) of Lemma 5.1 demonstrate that for all 2z € [0, 1] it holds that
22 — (Re(®)) ()] < 272M72 = 972M+1) < 9—loga(e™) — (5.25)

This establishes item (v). Furthermore, the fact that M = min(N N [ log,(¢7!) —1,00)) and item (iii) of
Lemma 5.1 assure that

L(P) =M+ 1 < max{3logy(c™) +1,2}. (5.26)

This establishes item (vi). This and item (vi) of Lemma 5.1 show that
P(®rr) < 20M — 7 < 20max{} log,(e7), 2} — 7 = max{10log,(¢7') — 7,13}. (5.27)
This establishes item (vii). The proof of Corollary 5.2 is thus completed. O

A comment from Josh: I need this result...

Lemma 5.3. Let 6, € (0,00), a € (0,00), ¢ € (2,00), ® € N satisfy that § = 2772V,

a = (¢2)7«» & ¢ C(R,R), L(P) < max{210g2(5 )+ 1,2}, P(®) < max{10log,(671) — 7,13},
SUDP,ery 0,1 [(R ( ))(x) —t(z)| = 0, and sup,c (o [2° — (Re(®))(x)| < 6 (cf. Definitions 3.1, 3.4, and 3.6).

Then
(1) there exists a unique ¥ € N which satisfies U = (A,—2o0 P oA o) P (Ay—2o0DPeA_, ),
(i1) it holds that R.(¥V) € C(R,R),
(111) it holds that (R.(¥))(0) = 0,
(iv) it holds for all z € R that 0 < (R(¥))(z) < e+ |x|?,
(v) it holds for all x € R that |v? — (R(¥))(z)| < e max{1, |z|?},
(vi) it holds that L(V) < max{1 + L5 + 5557 loga(e71), 2}, and

(vii) it holds that P(¥) < max{ [2%] loga(e™") + %5 — 28,52}
(cf. Definitions 3.8, 3.19, 3.27, and 3.37).
Note: Double-check proof...
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Proof of Lemma 5.3. A comment from Josh: Add references... This establishes items (i) and (ii).
Next, note that A comment from Josh: Add references... ensure that for all x € R it holds that

(Re(¥))(x) = (Re(Aq—200PeA o) D (A,2p0PeA_,)) ()
= (Re(Ag—200PeAy0))(z) + (Re(Ag—2p0PeA_0))(z) (5.28)
= (5) 70 [(RA@((5)"0) + (Ro®))(~(5)" )]

This, the assumption that ® € C(R,R), and the assumption that sup,cg, 1) |[(Re(®))(z) — v(z)| = 0
ensure that for all z € R it holds that

(Re(0))(0) = (5)77 [(Re(®))(0) + (Re(®))(0)] = (5)~7** [¢(0) + ¢(0)] = 0. (5.29)

This establishes item (iii). Next, observe that the assumption that R.(®) € C(R,R) and the assumption
that sup,cg 1) [(Re(®))(z) — v(z)| = 0 ensure that for all ¥ € R\[—1,1] it holds that

[Re(®)](x) + [Re(P)](—2) = v(x) + t(—2) = max{x,0} + max{—z,0}

= max{z,0} — min{z, 0} = |z|. (5.30)

The assumption that for all sup,cg, o] [(Re(®))(x) — t(2)| = 0 and the assumption that sup,cp [#* —
(Re(®)) ()] < 6 show that

sup |a” — ([Re(®)](2) + [Re(®)](—2))|

z€[—1,1]
— max{ s[up | ‘xQ — (t(x) + [Rt((I))](—:L'))! , s?p] ’:BQ — ([Rt(q))](x) + t(—x))| }
z€[~1,0 z€[0,1 (5.31)
=max{_sup |(=a)’ = (Re(@))(=2)]. sup [s* = (Re(@))(2)] }
- sup o = (RY®)(e)] <

Next observe that (5.28) and (5.30) prove that for all x € R\[—(g/2)~"@=? (g/2)~"@?] it holds that

0 < [RU(W](@) = (5) 7 (R @)]((5)7) + [Re(@))( = (5) ) (5.32)
_ (g)_z/(q,z) ‘(%)1/@—2)1,} _ (g)*l/(q72)|l.| < |$|2

The triangle inequality therefore ensures that for all 2 € R\[—(g/2)~ 2 (£/2)~Y@=] it holds that

|27 = (Re(0))(@)] = |22 = (5)" VP lal| < (|2l + (5) 7V lal)

_ (|xlq‘x|,(q,2) + (g)flﬂq*z)|x|q’x|7(q71))

(5.33)

= (5 + 9)lal" = elaf? < emax{1, a7},

Next note that (5.28) and (5.31), and the fact that § = 27%@2¢%@2 demonstrate that for all x €
[—(/2)~/@2 (g/2)~"«=2] it holds that

|22 — (Re(¥)) ()|
— ( )—2/(1172) ((%)1/(%2)93)2 _ <[Rt<q))]((%)1/(q72)x> + [Rr(q))]< . (%)1/(q,2)x)>‘
< (3)2/<q2>[ sup [y* = ([Re(®)](y) + [Re(®)] ()|

yE[—l,l]
< (%>,2/(q72)5 _ (%)—2/(1172)272/(1172)6(1/0172) =< €II1&X{1, ‘x|61}

(5.34)
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Combining this and (5.33) implies that for all z € R it holds that
|2 — (Re(¥))(2)| < emax{1, x|} (5.35)

This establishes item (v). In addition, note that (5.34) ensures that for all z € [—(g/2)~ "= (g/2)~ "]
it holds that
(Re(¥)(@)] < [2* = (Re(¥))(@)] + |2]* < e + [l (5.36)

This and (5.32) show for all x € R that
(Re(¥)) ()] < &+ al”, (5.37)

This establishes item (iv). Furthermore, observe that the fact that 6 = 27%@~2¢%(~2 ensures that

logy (") = logy(272e ) = 2y [[ <] 1og2<g*1)]. (5.38)

A comment from Josh: Finish proof... Note: I need parameter estimate results for the
sum of neural networks... In addition observe that A comment from Josh: Add references...
demonstrate that

LV)=L(A,200PeA,q) =L(P) < max{ilog,(67")+ 1,2}
:maX{1+( 2)—1—[[ ]logQ( )],2}.

This establishes item (vi). The proof of Lemma 5.3 is thus completed. O

(5.39)

A comment from Josh: I need this...

Lemma 5.4. Let 6,6 € (0,00), ¢ € (2,00), A, Ay, Az € RY™2 & € N satisfy for all v € R that
6 =c2 '+ 1) A = (1 1), A =(10), Ay = (0 1), @ € CR,R), (Re(P))(0) = 0,0 <
(Re(®))(x) < 6+ |zf?, |22 — (Re(®))(2 )| < dmax{L, 2]}, £(®) < max{l + 15 + 555 loga(671), 2},

and P(®) < max{[ 40 } log,(671) + @ — 28,52} (cf. Definitions 5.1, 5./, and 5.6). Then

(i) there exists a unique I' € N which satisfies that
F=(G®(PeA,0)d((—3) ®(PeAL))D((—3)®(PeAy,,)) (5.40)

(ii) it holds that R.(T') € C(R* R),
(ii) it holds for all x € R that (R.(I"))(z,0) = (R4('))(0,2) = 0,
(iv) it holds for all z,y € R that |xy — (R(I"))(z,y)| < e max{1, |z|,|y|?},
(v) it holds that P(I') < 36°q 5 llogy(e™!) + g + 1] — 252, and
(vi) it holds that L(T') < %5 [logy(e™") + 4]
(cf. Definitions 3.8, 3.27, 3.33, and 3.37).
Proof of Lemma 5.4. A comment from Josh: Add proof... O
A comment from Josh: I need this...
Lemma 5.5. Let € € (0,00), ¢ € (2,00). Then there exists I' € N such that
(i) it holds that R.(T') € C(R* R),
(i1) it holds for all x € R that (R.(I"))(x,0) = (R4('))(0,2) = 0,
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(111) it holds for all x,y € R that |vy — (R(1))(x,y)| < emax{l,|z|?, |y|?},
(iv) it holds that P(I') < 360q 5 log,(e™ D4 q+1] — 252, and
(v) it holds that L(T") < ﬁ[logQ(e_ )+ 4]
(cf. Definitions 3.1, 3.4, and 3.6).
Proof of Lemma 5.5. A comment from Josh: Add proof... O

5.2 Linear interpolation of MLP approximations
5.2.1 Properties of linear interpolations

A comment from Josh: Should I move these results to Section 4.2.27

Definition 5.6 (Linear interpolation function). Let K € N, o, 11, ..,tx, fo, f1,---, [k €R satz’sfy X <
< ...<trx. Then we denote by .,iﬂfo’fl """ /. R — R the function which satisfies for allk € {1,2,... K},

0581 ye-0y LK
r 6( 00,10), § € [tk 0), t € [tr-1, xk) that (%ﬁ%{}.i:‘,g’,{f‘)( ) = fo, (LLo206)(s) = fi, and
ey _ t 1
(LIl i) (1) = fro + (222 (fi — foor)- (5.41)

A comment from Josh: I need this...
Lemma 5.7. Let K € N, ro,t1,...,8x, fo, f1,. -, [k € R satisfyxo <11 < ... <px. Then
(i) it holds for all k € {0,1,..., K} that (Lo Jv-Tx) (1)) = fi,

Lok, K

(i) it holds for all k € {1,2,..., K}, x,y € [tx—1, k] that

---------- | fro—fr—1l
(LIl ) = (Ll Wl = Gzl — vl (5.42)
and
(#13) it holds for all z,y € R that
.......... | fr—Fr—1]
(LR @) = (G| < | _max (B2 ]le —y (5.43)

(cf. Definition 5.6).
Note: This needs to be double-checked...

Proof of Lemma 5.7. Throughout this proof let L € R satisfy that L = maxjcqi o, K}<||£Z:f::11\‘)' Note
that Definition 5.6 implies item (i). Next observe that for all k € {1,2,..., K}, x,y € [rg_1, tx] it holds
that

|(LJoul i) () — (Lo 1mf) ()| = (feztimaly | — ). (5.44)

T0,E1 ek K FOSEL, kK [t —rk—1]

This establishes item (ii). The triangle inequality and item (ii) assure that for all k,1 € {1,2,... K},
T € [Ik—l,?kz], Yy € [;l_l,zcl] with k& < [ it holds that

|( Ppfofros fK)(x)_(gfo,fl ,,,,, fK)(y)|

Y0815l K L0815l K
< (Ll @) = fil + e = fial + | fior = (G000 ()]
= (L) @) = (L@ |+ e = fial + (L0 () = (L0 W)
-1
[ fi ] [fi=fioa] (5.45)
(|F: x: 11\)‘ — | + Z |15 = fi- 1’+(\xi ;zl h)’?l 1=yl
j=k+1
-1
< L||r—xl+ Z v — il + [t —yl| = Lz -yl
j=k+1
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Combining this and item (ii) shows that for all z,y € [ro, rx] it holds that

(23l @) = (L) W) < Llw — gl (5.46)
This, the fact that for all x,y € (=00, ro] it holds that (o1 o/x) (x) — (Lo oIk ) (y)| = 0 < L|z — vy,
the fact that for all 2,y € [xx, 00) it holds that |(LZo12/1) () — (Lo 12/1) (y)| = 0 < L|z—y|, and the
triangle inequality hence demonstrate for all 2,y € R it holds that [(Z/0/0/x) () — (Lo 1-2T%) (y)] =
0 < L|z — y|. This establishes item (iii). The proof of Lemma 5.7 is thus completed. O

5.2.2 Properties of linear interpolations employing a perturbed product function
A comment from Josh: Do we want a different name?

Definition 5.8 (Perturbed linear interpolation function). Let K € N, ro,z1,..,tx, fo, f1,---, [k € R
satisfy to < r1 < ... < rx and let p: R* — R be a function. Then we denote by ngéfiol’f}.:;}(’ff(: R—-R

the function which satisfies for all k € {1,2,..., K}, r € (—00,¥0), § € [tx,00), t € [tr_1,Lr) that
(PEdTicd)(1) = fo, (PRt (s) = fre, and

L0,X1,.-0y .FK
(P2Sodrndicy (1) = fr_y +p(Z f — o). (5.47)

e —rk—1

A comment from Josh: I need this...

Lemma 5.9. Lete,q € [0,00), K € N, ro,21,.--,Lk, fo, f1,-- -, [ € R satisfyro <11 < ... <rx and let
p: R?* = R satisfy for all z,y € R that |vy — p(z,y)| < emax{1, |z|%, |y|?}1r\ oy (zy). Then

(i) it holds for all k € {1,2,..., K}, x € [tx_1,1x] that
(PE0) () = (L) )] < emax{L, Uy = feal7, (549

Y0,r1,-- ol K L0,k K
(i) it holds for all k € {1,2,..., K}, x,y € [rx_1,2k] that

(PEEEE) @) = (PEREOW < (BEEDle = ol + emax{L, fe = feal), (5.49)

X0,X1 5ol K X0,X15e ol K — \tg—rr—1|

and

(iv) it holds for all k € {1,2,..., K}, x € [tp_1,Lk]) that
(PRIt i) (@) — fil < [fr — frooa| + e max{L, | fi — fo1|"} (5.50)

(cf. Definitions 5.6 and 5.8).
Proof of Lemma 5.9. A comment from Josh: Add proof... O

A comment from Josh: I need this...
Note: Should this be combined with the previous lemma?

Lemma 5.10. Let €,q € [07 00)7 K e N; Lo, L1, - -- 7;K7f07f17 s 7vagO7gl7' -, 9K € R Satisf?/ h<n <
... <1tk and let p: R* — R satisfy for all z,y € R that |zy — p(z,y)| < emax{1, [z|%, [y|?}Lr\ 0} (zy).
Then it holds for all k € {1,2,..., K}, © € [rx_1,1x] that

Joofis o f 190,915+
(P20~ (Peoo] < max, 16— o]+ 2emox{ 12 max 15— al')} (50

(cf. Definition 5.8).
Proof of Lemma 5.10. A comment from Josh: Add proof... O]
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5.3 Linear interpolation of ANNs
5.3.1 ANN representation of the perturbed linear interpolation function

A comment from Josh: This is new...

Lemma 5.11. Let ¢ € (0,00), ¢ € (2,0), d, K €N, 1o,11,...,tx €R, fo, f1,..., fx € C(RLR), P, Fy,
Fi,...,Fg € N satisfy for all k € {0,1,...,K}, 2,y € R that ro < 11 < ... < 1, R(P) € C(R%: R),
|2y — (Re(P)) (2, y)| < emax{1, |z|?, |y|?} 1r\joy (zy), and Re(Fi) = fr (cf. Definitions 3.1, 3.4, and 3.6).
Then

(1) there exists a unique G € N which satisfies

G =F,H; [ é% (P ° [PQ,(LI) ((il oA ), << 1 ) ® (Fmin{k+1,K}

k—=0.1 Imin{k+1,K} ~¥fmin{k,K—1}

EEII((—1)®Fk)> M1 (( : ) @(Fmax{kl,O}BHI((_l)@Fk)))})} ;

Imax{k,1} ~"¥max{k—1,0}

(5.52)

(ii) it holds that R.(G) € C(R¥1 R), and
(iii) it holds for allt € R, z € R that (R.(Q))(t,z) = ((@;(?f;(lli?_’f;%x)’fl(x) """ @)y (g
(cf. Definitions 3.8, 3.24, 3.27, 3.33, 3.35, 3.37, and 5.8).
Proof of Lemma 5.11. A comment from Josh: Add proof... O
A comment from Josh: This is new...

Lemma 5.12. Let ¢ € (0,00), ¢ € (2,00), d, K €N, 19,11,...,tx €R, fo, f1,..., fx € C(RLR), P, Fy,
Fi,...,Fg € N satisfy for all k € {0,1,..., K}, 2,y € R that ro < 11 < ... < 1, R(P) € C(R% R),
|[Ey - (Rt(P))(l‘ay” < 5maX{1, |I|q7 |y|q}lR\{0}(xy)7 and Rt(Fk) - fk (Cf Deﬁnitions 3']7 347 and 36)
Then

(i) there exists a unique G € N which satisfies

K
G = FoHx [ B <P . [P2,(I,I) ((il * A ) (( ! ) ® (Fmin{k+1,K}

k=0,1 Imin{k+1,K} “fmin{k, K -1}

(5.53)

HEII((—l)@Fk)> H1 (( : ) @(Fmax{k—l,O}EEI<(_1)@Fk)>>i|>:| ,

Imax{k,1} “¥max{k—1,0}

(ii) it holds that R.(G) € C(R™ R),

(iii) it holds for allt € R, z € R? that (Ry(G))(t, z) = (2 Phfol@hfi(w)ic(w)y 4y
(i) it holds that L(G) < L(P) + max{l, H(Fy), H(F1),..., H(Fk)}, and

(v) it holds that P(G) < A comment from Josh: Add value...,
(cf. Definitions 3.8, 3.24, 3.27, 3.33, 3.35, 3.37, and 5.8).

Proof of Lemma 5.12. A comment from Josh: Add proof... O
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5.3.2 ANN representation of the perturbed linear interpolation of MLP approximations

A comment from Josh: This is new...

Lemma 5.13. Let © = (J,cnZ"), € € (0,00), g € (2,00), d, K, M € N, ro,11,....tx,T €R, F,G,P €
N satisfy for all z,y € R that 0 = o <11 < ... <tx = T, R(F) € C(R,R), R(G) € C(R%R),
R.(P) € C(R*,R), and |zy — (Re(P))(z,y)| < emax{l,|z|% |y|7} L\ jo1(zy), let u? € [0,1], 6 € O, let
U°: [0, T) — [0,T], 0 € ©, satisfy for allt € [0,T), 6 € O thatUf = t+ (T —t)u?, let W?: [0,T] — R?, § €
O, for every 0 € ©,t € [0,T], s € [t,T] let Y7, € R? satisfy Y, = W! =W, and let U] [0,T] x R? = R,
n € Ny, 0 € O, satisfy for alln € Ng, § € ©,t € [0,T], x € R? that

M’n
In(n) 0,0,—k
Up(t, x) = SR Z(Ra(G))<$ +Y,7 ))
k=1
n—1 (T t) [
- 0,ik 0,ik 0,ik
+ Z = Z (RQ(F) o UZ-( )><ut( )a T+ Y;(ut(e)m) (5.54)
i=0 | k=1
TL*I M”l i
(T_t> (6,—1,k 6,i,k 0,i,k
B Mn—i < O Umax{z )1 0}))(ut( )7 T+ Y(u(9 3’6))
i=0 | k=1

(cf. Definitions 3.1, 3.4, and 3.6). Then

(i) there exist unique Ufm €N, t€[0,T], n €Ny, 0 €O, which satisfy for all € ©, n € N, t € [0,T]
that Uf, = ((0 0 ... 0),0) € R™ x R" and

9 a1
Un,t: @ M" (G AI Y(eo k))
n—l [ (T_t) Mn—i (GZk
o B | (e )@(f‘il((F *Uliitin) * Auyiess (5.59)

et [ /(= T) (i) i O—ik)
H z‘:B(a),I ( Mnr—i © kE,I (F.Umax{z IO}U(GMJ Ay, Y(e Zekzk) ’

(ii) there exist unique ®° € N, n € Ny, 6 € ©, which satisfy for all § € ©, n € Ny that

0 K : 1 0
(I) U” 0 B |:kE%J (P ¢ |:P2’(I’I) <(11 ¢ Alﬁ?k)’ <(Fmin{k+1,K}*Fmin{k,K—1}) ® (U”’Fmin{kH,K}

0 1 0 9
Br((-1)® U’”‘k)> B ((Fmax{k,l}—imax{k—l,m) ® (U”’Fmax{k—l’o} B (= )®U"F'€)>>>D] ’
(5.56)
(iii) it holds for all @ € ©, n € Ny, t € [0,T], x € R? that
(Re(®9))(t, 7) = (PR D) Unto ) Unlora) Unlerea) (), (5.57)
() it holds for all 0 € ©, n € Ny that L(®) < A comment from Josh: Add value..., and
(v) it holds for all € ©, n € Ny that P(®Y) < A comment from Josh: Add value...
(cf. Definitions 3.8, 3.13, 3.24, 3.27, 3.50, 3.33, 3.35, 3.48, and 5.8).
Proof of Lemma 5.13. A comment from Josh: Add proof... O]
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6 ANN approximations for PDEs

6.1 ANN approximations with specific polynomial convergence rates

A comment from Josh: Some of the details regarding the constants will be updated...
Note: I may need different assumptions on « and §...

Theorem 6.1. Let r,L,c,C,a, 3 € [0,00), p,q € [1,00), q € (2,00), T € (0,00), f € C(R,R), for every
d € N let vg: B(R) — [0,1] be a probability measure on (R B(RY)), let g4 € CH(RY R), d € N, let
Gy- €N, deN, ¢ € (0,00), and assume for alld € N, v,w € R, z € RY, ¢ € (0,1] that |f(v) — f(w)| <
Llv—w|, Ri(Ga,e) € CHRER), ([[(Vga) ()| +](Re(Gae) ) (2) ) +194(2) = (Re(Gae)) ()| < eCaP(1+]z[[)™,
L(Gy.) < Cdre™ |D(Gyp)|| < CdPe™, and ( [gaur |[y[P9 va(dy)) /™™ < Cd™ (cf. Definitions 2.1, 3.1,
3.3, 3.4, and 3.6). Then

(i) there exist unique ug € C([0,T] x R4 R), d € N, which satisfy for every d € N, t € [0,T], x € R¢,
every probability space (Q, F,P), and every standard Brownian motion W: [0,T] x Q — R? that

[ua(s.y)|
SUDse(0,1) SupyeRd(lf”prq) < 00 and

ug(t,x) = Elga(z + Wr_y)] + /t E[f(ua(s,x + Ws_y))] ds (6.1)

and

(ii) there exist (Uae)(geemx o)) € N and n,c € (0,00) such that for all d € N, ¢ € (0,1} it holds that
R.(Uy.) € C(RHR), P(Uy.) < cd’e™¢, and

Ya
(/[o e 00 8) — (RelUa)) 9 valat dy>) <e. (6.2)

A comment from Josh: I will be more explicit on the bounds after the proof is com-
plete...

Proof of Theorem 6.1. Throughout this proof let M € N satisfy that M = inf{m € N: (+2LT)/ /m < 1},
let €; € R, d € N, satisfy for all d € N that €; = eT[CdP(1 + V/d + 2) + L(T + CdPe*T)(T + 1)], let
D € R satisfy D = eT(T 4+ 1)Ce", let €; € R, d € N, satisfy for all d € N that &; = CdP (e (T +
1)) ((CdP)?+1) A comment from Josh: I may need to fix this constant..., and assume without
loss of generality that

max{|f(0)] +1, A comment from Josh: Add value...} < C. (6.3)

Note that the triangle inequality and the fact that for all d € N, x € R? e € (0,1] it holds that
el(Re(Ga)) (@) + |ga(z) — (R(Gye))(x)| < eCdP(1 + ||x]|)P? imply for all d € N, x € R%, ¢ € (0, 1] that

|9a(2)] < [ga(z) = (Re(Gae)) (@) + [(Re(Gae)) ()] < eCdP(1 + [[2])P + CdP(1 + ||]])™. (6.4)
This proves for all d € N, x € R? that
|ga(2)] < (C'+ 1)d”(1 + [|a||)™. (6.5)

A comment from Josh: Add reference..., the fact that for all v,w € R it holds that |f(v) — f(w)| <
Ljv — w|, and (6.5) hence establish item (i). It thus remains to prove item (ii). To that end, note that
Corollary 4.14 ensures that there exists F. € N, ¢ € (0,1], which satisfy for all v,w € R, ¢ € (0, 1]
that R.(F.) € C(R,R), H(F.) =1, Dy(F.) < (%)qﬂqil) + 2, [(Re(F2))(v) — (Re(Fe))(w)] < Llv — w),
(Re(F2))(0) — £(0)] < e(max{1,]v]}), and

3(2L)‘1/(Q*1>
g9/(a-1)

P(F.) < +7. (6.6)
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Note that the fact that 1+ [f(0)| < C implies for all ¢ € (0, 1] that

[(Re(F2))(0)] < [(Re(F2))(0) = f(O)] + [£(0)| e +[f(0)] < C. (6.7)

A comment from Josh: Add reference..., the fact that for all v,w € R, ¢ € (0,1] it holds that
R:(F.) € C(R,R), |(R(F.))(v)—(R(F.))(w)| < Llv—w|, and the fact that foralld € N, e € (0,1], z € R?
it holds that |(R:(Ga.))(z)] < CdP(1+]|z||)?? ensure that there exist unique ug. € C([0, T]xR4 R), d € N,
e € (0,1], which satisfy for every d € N, ¢ € (0,1], ¢t € [0,T], x € RY, every probability space (92, F,P),

acly o

and every standard Brownian motion W¢: [0,T] x Q — R¢, d € N, that SUD,sefo,7] supyeRd(W

and
Ug(t,z) = E[(Re(Gae))(x + Wr_y)] + /t E[(Re(F.))(uge(s, x + Wyy))] ds. (6.8)

Next, let © = (U,,enZ"), let (€2, F,IP) be a probability space, let u’: Q —[0,1], # € O, be independent
uniformly distributed random variables, let U?: [0, 7] x Q — [0,T], 6 € O, satisfy for all t € [0,T], § € ©
that U = t + (T — t)u, for every d € N let W% [0,T] x Q — R% 6 € O, be independent standard
Brownian motions, assume for every d € N, 6 € © that &% and W?%? are independent, for every d € N,
0€0,tel0,T],set,T]let Y, @ — R satisty V' = WOI—W/ and let UZ ;52 [0, T]xR?x Q — R,
n €Ny, deN,de (0,1],0 € O, satisfy for alln € Ny, d € N, 6 € (0,1], 0 € ©, t € [0,T], x € R? that

M'n/
In(n
Ug,d,a(t,x): JI\\];”) Z(Rr(Gd,a))<w+Y;(§0 k)d)]
n_l M . .
+Z T Z( Fy)) (4", Y Uids” (T +Y“’§9’i);§)) (6.9)
=0 k=1

. 0,i, k: 0,i,k 0,—i,k 0,i,k 0,i,k
~Li(0) (Re(F) (U4 Y, s Ui oy (U 4 Y %)))] ,

let P, € N, v € (0,1], satisfy for all v € (0,1], v,w € R that R,(P,) € C(R*R) and |vw —
(Re(P.))(v,w)| < ymax{1, |v|% |w|?}, let Eyy: R = [1,00), d € N, X € [1,00), be the function which
satisfies for all d € N, \ € [1,00), z € R? that

Eax(e) = swp E|(1+[|o+ W) (6.10)

s€[0,T]

let ¢g € [1,00), d € N, satisfy for all d € N that

1/(pqa) P e pq
1+ (/RdH ||y||pqqyd<dy)) + E[|WH™]) : (6.11)

let K4 € N, d e N, e € (0,1], satisfy for all d € N, ¢ € (0, 1] that

T'?
K. = inf{k en: C&l” %}

7 (6.12)

let Ny € N, deN, e e (0,1], satisty for all d € N, ¢ € (0,1] that

, 1+2LT\" €
Nd,a = 1nf{n € N: |:© (W) :| S Z} s (613)

let By € N, d €N, e € (0,1], satisfy for all d € N, ¢ € (0, 1] that

By = max{2, [ D(F.) |, [ D(Gac)ll}, (6.14)
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let rxp € [0,T], K € N, k € {0,1,..., K}, satisfy for all K € N, k € {0,1,..., K} that rx) = 5, let
A comment from Josh: Add constant assumptions... let §;. € (0,1], d € N, ¢ € (0, 1], satisfy
for all d € N, € € (0,1] that 6, = o, and let 74, € (0,1], d € N, € € (0,1], satisfy for all d € N,
e € (0,1] that vqe = 35-. Observe that for all d € N, = € R? it holds that 1 < Eg,(z) < Egpe(),
1 < Eyq(r) < Eqpe(x), and

1/q q
(/ [Ed,pq@)]qyd(dt,dx)) - (/ lsup E[(1+|y:c+wg|\)m]] Vd(dt,dx)>
[0,T]xR4 (0,T]xRd | s€[0,T]
1/q
< ( [ [l + Ewe )™ z/d(dt,dx))
[0,T)xR4

1/(paq) D\ o) pq
Ve ([ ematan) o+ @) ] ~cu
(6.15)

1/q

IA

Further note that the fact that for all d € N the random variable ||W%/vT||9 is a chi-squared distributed
random variable with d degrees of freedom and Jensen’s inequality imply that for all d € N it holds that

(E[[WE]™])* < E[||Wg,||2pq] = (2T F(ir(—g)pq) = (2T)™ H <g+k> . (6.16)

This implies for all d € N that

BIW™)" = E[|wH])”™ < var H (4++)

1/(2pq) !
< \/2T (5 +pq—1). (6.17)

This, together with the fact that for all d € N it holds that ([ps: [|y||P*va(dy))Y@® < Cd" implies that
there exist C € (0, 00) such that for all d € N it holds that

pq

3
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Note that the triangle inequality implies that for all n € Ny, d, K € N, 6, € (0, 1] it holds that

( / E [(ud(t, 7) — (Pl st st D)) H valdt, d@) "
[0,T]xRe )
(Z/; . “ud(t, T) — ((@Zj{“éi:{)hf;;(;xo ), Umd,(;(;K,l,x),...,Ug,M(xK,K,x))(t)m vald, dx))
o 1/a
(Z /zcxk s B lug(t, ©) — ua(rr .k, )| valdt, d:c))

( [t o—1.0 K k) XRE

()

U (}: 7 7x) (L@x l:((h;’Y),’l’f.(’iK”O’ )7 d(;K,lv )7 ) d(;K,K7 ))(t>) v (d’7 Z ))

(C@Rt(PW)JJ‘d(;K,O)x)7ud(;K,l7‘2))"‘7ud(;K,K7z))(t)

TK,05EK, 1 K, K

[IK k—1:8K k] XR?

1q
q
_(t@;}(igﬁ;{)’f’;d’ifx(;lf;’z),ud,é(}"K,l71),~~~7ud,6(FK,K,Z))(t)’ I/d(dt,dx)>

K
§ : Re(Pry)uq,s (X K,0,%),Ud,5 (XK, 1,2)5 a5 (LK, K HT)

+ / ]EU(‘@FK,OJKJ ----- LK K )(t)
1 * [EK k=158 k] XRE

LK,0,EK 15005 LK, K

1/q
0 x s T q
G )><t>)]vd<dt,dx>> |

(6.19)
The fact that for all v,w € R it holds that |f(v) — f(w)| < L|v — w|, the fact that f(0) < C <
CdP(1 + ||z]|)P?, the fact that for all d € N, x € R? it holds that [|(Vga)(z)|| < CdP(1 + ||z|)*?, and
Corollary 2.7 (with L=L, C=C,p=pq, f = f, 9= gs, W= W9 t =1, t =g, in the notation of
Corollary 2.7) imply for all d, K € N, v € (0,1], k € {1,2,..., K} it holds that
/ |ua(t, ©) — ua(trr, ©)|* va(dt, dx)
[er b 1.0K k)X RE

< / [\/m(deEd,p(x))] q l/d(dt, dilf) (620)
[tk k10K k)X RE

< (%)q/z((’:d)q [/[;K,kl,ch,k]de [Eapg(2)]" va(dt, dx)] :

This implies for all d, K € N, v € (0, 1] it holds that

g
(Z/ |ua(t, ©) — uarscr, ©)|° l/d(dt,dx))
[erc k—1:0K k] XRE
q
" (s 6.21
= <?) (Z [/[ch k—1:0K k] XRY [Ed’pq(x)]q yd(dt7d$)]> (6.21)

k=1

_¢, (%) " ( /[0 o Bam @ v d@) " < (€ (%) "

(6.20), the triangle inequality, Jensen’s inequality, Definition 5.8, Lemma 5.9 (with A comment from
Josh: Add stuff... in the notation of Lemma 5.9), and Corollary 2.7 (with L = L, C = C, p = pq,
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=f,9=91s, W=W4 t =1r, t =rrs1 in the notation of Corollary 2.7) imply for all d, K € N,
€ (0,1], k € {1,2,..., K} it holds that

—

ud(;K,kyx) _ ((@RT(P"/L d(FK,Ov )’ d(IK,lv )’ ) d(IK,Kv ))<t>‘ Vd(dt7dx)

TR,0EK, 1y ol KK
[t k-1, k) XRY

< / “Ud(?K,ka ) — ug(tr k-1, )| +ymax{l, [ug(rrr, ¥) — va(tr k-1, $)|q}|q va(dt, dr)
[t k—1.0K 1) XRE

T\ T\ !
< / ¢, (f) Eqp(z) +ymax< 1, | €4 (?) Eqp(z)
[tk k—1:0 K k) XR?

This ensures for all d, K € N, v € (0,1], k € {1,2,..., K} it holds that

q
l/d(dt, dx)

(6.22)

K 1/q
Re(P~),u ), U ST ) yeen U, X q

> UalE1c s ) — (Pl bar i ey )| Ly (dt, da)

L [t k—1.0K k] XRE

¢, (%) " B (@) 4 max {1, (e:d (%) l/QEdJ,(a:)) q}

K
(k;Z; /[FK,k—mK,k]de
1/2 o s 1 e

= / [ <£) Ed,p<x> +ymax< 1, | €4 <Z> Ed,p(x) Vd(dt, dx) (6.23)

[0,T]xR? K 7
- T 1/2 T 2 ] N
(o <E) + ymax< 1, (€4)? (?) (/ [Egpq ()] va(dt, da;))
- i [0,T]xRd

[ T 1/2 T ‘1/2 7

< @d(E) +’Ymax{17(¢d)‘1 (K) } Cq.

q

IN

1/q
Vd(dt, d&:))

IA

The fact that for alld € N, v € R, x € R? ¢ € (0,1] it holds that |f(v) — (Re(F.))(v)| < e(max{1,|v|?})
and |gq(z) — (Re(Gae))(x)| < eCdP(1+ ||z||)P? implies that for all d € N, v € R, z € RY, ¢ € (0,1] it holds
that

max{|f(v) = (Re(Faz))(v)], |g9a(2) = (Re(Gae)) (@)} < max{e(max{1, [v|"}, eCd"(1 + |[x[|)"}

< eCdP((1+ |Jz])? + |v]9). (6.24)

Note that Lemma 5.10 (with e = v, ¢ = ¢, K = K, p = R(P,), and for all £ € {0,1,..., K} that
U = Ikk, fr = Ua(Tr g T), g = Uas(Exk, ) in the notation of Lemma 5.10), and the triangle inequality
imply for all d, K € N, § € (0,1], k € {1,2,..., K} it holds that

/[ZCK,khsz,k} xRd

_({@Rt(P’Y)7ud,6(FK,07x)»ud,6(}"K,l7x)’~~-7ud,6(}"K,K7$))(t) )q l/d(dt d:E)

Rr(Pw),Ud(IZK,O@),ud(IK,l,$)7~~~,Ud(IK,K,90)
(‘@IK,OJKJ ----- IK, K )(t)

TK,0LK 15005 LK K

S \/
[tk k1.0 K ) XR?

—i—2’ymax{1, 2‘1(‘ max |ug(tk;, ) — Udﬁ(x[(’j,.f)‘) }
je{k—1,k}

(6.25)

i e )~ vaslecs )

q
I/d(dt, dl’)

This, (6.5), (6.7), the fact that for all d € N, v,w € R, z € R%, & € (0,1] it holds that |f(v) — f(w)| <
Ljv—wl, |(Re(Fe))(v) = (Re(Fe))(w)] < Llv—wl, |f(0)] < C, el (Re(Gae)) ()| + [9a() = (Re(Gae)) (2)] <
eCdP(1+ ||x]|)P?, and Corollary 2.4 (with f; = f, fo = R(Fs), o1 = 9a, 92 = Re(Gays), L = L, B = 6CdP,
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C = CdP, W = W1 in the notation of Corollary 2.4) imply for all d, K € N, § € (0,1], k € {1,2,..., K}

it holds that
/[;K,k—laFK,k]XRd

_<=@;§<l(()§;<)ﬁdf;(§f;7 Yot 5 (EK,152)50 4,5 (VKK ))(t)‘ Vd(dt,dx) (6.26)

(@Rr(Pw)yud(FK,D»I):ud(?K,l75’3)7~~~,ud(}3K,K7$))(t)

LK,0,8K 1545 'K, K

< / H(SQEdEd,p(x)] + 2y max{1, [5qded7p(x)]q}‘q va(dt, de)
[er k10K k)X RE

This, Jensen’s inequality, and the triangle inequality imply for all d, K € N, § € (0, 1] it holds that

K
k=1 /[IK,kl,IK,k] xR4

1
_(L@Rr(P—y)yud,é(FK,O7x)»ud,§(FK,l7x)7-~-7ud,6(FK,K7x))(t)’q va(dt d:v)) &

K,0,EK 15005 LK, K

Re(Py),uq(rr,0,2),ud(tK,1,%), - ud(t K, KHT)
(‘@FK,O»IKJ ~~~~~ LK, K )(t)

= 1/q
= (Z /[K} |0€4Eap(x)] + 2y max{1, [§€4Eq(x)]}" va(dt, d@) 62
/q
- ( /[0 . |[6€4Eqp(x)] + 2y max{1, [Mded,p(m)]q}}qVd(dt,dx))

1/q
< [0€4 4+ 2ymax{2, (20€,)?}] (/[o . [Egpg(2)] valdt, d;v))
< [0€4 4+ 2ymax{2, (20€,)?}|cq.

Note that Lemma 5.10 (withe =, ¢ = ¢, K = K,p = R(P,), and forall k € {0,1,..., K'} that 1, = rx,
fr = uas(rr, ), g = U, O,d,(s(FK,ka x) in the notation of Lemma 5.10), and the triangle inequality imply

xRd

n

forall d, K € N, 6,7 € (0,1], k € {1,2,..., K} it holds that

Re(Pry) a5 (TK,0,%)Ud,5 (TR, 1,2) 5 5Ud,5 (LK, K HT)
/[ | J E |:‘ (‘@FK,OJKJ ----- 'K, K )(t)
K k—1.0K k) XR

Rt(Pv)»UO d 5(FK,0’1')7U? d 5(§K,1»Z):-~~7U0 d 5(?3K,K7‘T) q
_(’@FK,O,FK,hﬁJK,K " " )(t> Vd(dt, dl’)

S /
[t k-1, k] XRY

+2v max{l, 2’1( max |ugs(rk,;, ) — U27d75(;K7j,m)|q)}

je{k_lzk}

(6.28)

jomax oo 2) = Upgs(trg, o)l

q
vq(dt, dx)

This, the fact that for all v,w € R, § € (0, 1] it holds that |(R.(Fs))(v) — (R.(Fs))(w)| < Ljv — w|, the
fact that for all d € N, § € (0,1] it holds that |(R.(Gays))(z)| < CdP(1 + ||z||)P, (6.8), and Lemma 2.8
(with M = M, L =L, C =Cd’, p=p, f =Re(Fs), g = Re(Gap), u = ugs, U = UY ;5 in the notation
of Lemma 2.8) imply for all d, K € N, §,v € (0,1], k € {1,2,..., K} it holds that

Re(Pry) g, (XK,0,%)Ud,5 (EK,1,2) 5 Ud,5 (LK, K HT)
/[ xR E U (‘@§K,07FK,1 ~~~~~ LK, K )(t)
'K k—1.0K k) XR

Rt(P’Y))UEL d 5(FK,O"'E):U2 d 5(?1(,1@)7-“7(]2 d 5(IK,K7$) g
_(’@H(,O,IKJ ----- LK, K )(t> l/d(dt, de’)

(1+2LT)”) (1+2LT)" |
= / ©< n/2 ECL (J}) +2ymax<q 1, |29 ey Ed, (SL’)
[t k—1:0K k] XRE M/ b M P

vy(dt,dz).

(6.29)
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This, Jensen’s inequality, and the triangle inequality imply for all d, K € N, §,~v € (0, 1] it holds that

K

2 : Re(Pry)uq,s (X K,0,%),Ud,5 (LK, 1,2)5 a5 (LK, K HT)
/ ]E|:‘(‘@IK,07IK,1 77777 LK, K )(t)

k [erc 1,0k 6] XRE

_(‘@FKOFKI ,,,,, UK, K

*2”“““{1’ [2@ (“L#T))Ed(x)” Vd(dt,dx))l/q
) (/[O’T]XW @((1342—52”1)]5@( )+2Vmax{ [29(( J;\;niT) )Ed,p(a:)]q} Vd(dt,dg;))l/q
{Q <<1+MQ—§T)H) +27max{2’ (2©)q< HM%sz ) }]( — [Ed,pq(x)]ql/d(dt,dm))l/q

< Jo(CH20) s, o L2V
(6.30)

Combining (6.19) with (6.21), (6.23), (6.27), (6.30), and Fubini’s theorem then imply that for all d € N,
€ (0, 1] it holds that

R\-(P-y) n d, 5(3?]{0 I) Un,d,é(;Kal’x)""’Ug,d,é(xKﬁK7x))(t) ‘q:| I/d(dt dx)) 1/‘1

q

q

IN

Re(Pry ) UR ord,8 E(IKd,svo’x)’URf ordsd E(FKd,e!l’m)"“’UR/ sy VK g o Ky o) |
A o ot )0 vt da)
(0,T] xR : ’ e
= / ]El uq(t, x)
[0,T] xR
R':(P'Yd,s)’UR] 5vd,6 5(;K ,E’O’m)’UJOV E’d76 E(;K 75’17x)’.“’U10V E’d*é E(FK ﬂE'K ’E’m) !
IKd,E*O’de,s’I?""’;K:lize’Kdi e ’ e e )(t) Vd(dt, d:L‘)
T 1/2 T a/2
< 12¢, + 04 + 274 max{2, (26€4)?} + 74, maxq 1, (€g)*
Kd,s Kd,e
q
(14 2LT)Nae (14 2LT)Nae\ 1
+9 (W + 2’7d,a max 2, (2@)(] W (Cd)q
T 1/2 T a/2
S QQ:d + 5Qfd + 9’}’d7g + 27d7g(25€d)q + ’}/d,g(gd)q
Kd,s Kd,s
q
(1 + 2LT)Na< (1 +2LT)Nas\1
+2 <—MNd,s/2 +274:(29D)1 e (cq)?
<[5 5902900 (5) () + 5+ 2 (5) ] < [ X 4 10m] =
=12 4 Yd,e Yd,e 2 Vd.e 9 4 Yd,e 9 4 Vd,e - .
(6.31)
This implies for all d € N, € € (0, 1] there exists wq. € €2 such that
Re(Pry ) UY sy (K 08 UY sy (OK e 18)UR by WK g e K g o oT) |
/ ud(tv 33) - ( IKdE,o,deE,ltyi-’u,szjs,xdi b ’ b e )(t) Vd(dta d.CI?)
[0,7] x Rd ’ ’ e
<ef.
(6.32)
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A comment from Josh: The rest of the proof will come after I finish the ANN interpolation
details...
The proof of Theorem 6.1 is thus completed. O

6.2 ANN approximations with general polynomial convergence rates

A comment from Josh: This needs to be updated...

Corollary 6.2. Let T'x € (0,00), q € [1,00), f € C(R,R), let G4 € N, d € N, ¢ € (0,1], let
ug € C12([0,T] x R4 R), d € N, and assume for alld € N, v,w € R, x € R? ¢ € (0,1], t € [0,T] that
|f(v) = f(w)| < Klv—w|, Re(Gae) € C(RER), e([(Voua) (T, 2) ||+ [ualt, 2)]) +[ua(T, ) = (Re(Gae)) (2)] <
erd®(1 + ||z]|"), P(Gaye) < kd"e™", and

(%ud)(t, x)+ %(Axud)(t, x) + fa(ug(t,x)) =0 (6.33)

(cf. Definitions 2.1, 3.1, 3.3, 5.4, and 3.6). Then there exist ¢ € (0,00), Uy, € N, d € N, € € (0,1],
which satisfy for all d € N, € € (0,1] that R(Ug.) € C(R*™LR), P(Uy.) < cd€™¢, and

Ya
[/[0 TIx[o.1¢ lua(y) — (Re(Uae)) ()" dy| < e. (6.34)

Proof of Corollary 6.2. A comment from Josh: Add proof.... O]
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