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Abstract

Full-history recursive multilevel Picard (MLP) approximation schemes have been shown
to overcome the curse of dimensionality in the numerical approximation of high-dimensional
semilinear partial differential equations (PDEs) with general time horizons and Lipschitz con-
tinuous nonlinearities. However, each of the error analyses for MLP approximation schemes
in the existing literature studies the L2-root-mean-square distance between the exact solution
of the PDE under consideration and the considered MLP approximation and none of the error
analyses in the existing literature provides an upper bound for the more general Lp-distance
between the exact solution of the PDE under consideration and the considered MLP approx-
imation. It is the key contribution of this article to extend the L2-error analysis for MLP
approximation schemes in the literature to a more general Lp-error analysis with p ∈ (0,∞).
In particular, the main result of this article proves that the proposed MLP approximation
scheme indeed overcomes the curse of dimensionality in the numerical approximation of high-
dimensional semilinear PDEs with the approximation error measured in the Lp-sense with
p ∈ (0,∞).
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1 Introduction
It is one of the most challenging topics in computational mathematics to design and analyze
algorithms for the approximative solution of high-dimensional partial differential equations (PDEs)
and there are several promising approaches to this topic in the scientific literature.

We refer, for instance, to Darbon & Osher [12] for approximation methods for certain high-
dimensional first-order Hamilton–Jacobi–Bellman PDEs. We refer, for instance, to [10, 37, 38, 39]
and the references mentioned therein for approximation methods for PDEs based on density esti-
mations and particle systems. We refer, for instance, to [8,9,11,20,36] and the references mentioned
therein for approximation methods based on Picard iterations and suitable projections on function
spaces. We refer, for instance, to [10, 24, 25, 26, 45, 48] and the references mentioned therein for
approximation methods for semilinear parabolic PDEs based on branching diffusion approxima-
tions. We refer, for instance, to [46,47] for approximation methods for semilinear parabolic PDEs
based on standard Monte Carlo approximations for nested conditional expectations. We refer, for
instance, to [5, 13, 14, 17, 18, 22, 34, 35, 42, 44] and the references therein for deep learning-based
approximation methods for high-dimensional PDEs. We refer, for instance, to [15, 16, 30] for full-
history recursive multilevel Picard approximation methods for semilinear parabolic PDEs (in the
following we abbreviate full-history recursive multilevel Picard by MLP).

Standard numerical approximation methods for high-dimensional nonlinear PDEs in the sci-
entific literature suffer from the curse of dimensionality (cf., e.g., Bellman [7], Novak & Wozni-
akowski [41, Chapter 1], and Novak & Ritter [40]) in the sense that the number of computational
operations required to approximately compute the PDE solution by means of the considered nu-
merical approximation method grows at least exponentially in the reciprocal 1/ε of the prescribed
approximation accuracy ε ∈ (0,∞) or the PDE dimension d ∈ N = {1, 2, 3, . . . }. As of today, to
the best of our knowledge, MLP approximation schemes are the only approximation schemes for
high-dimensional PDEs in the scientific literature for which it has been proven that they overcome
the curse of dimensionality in the numerical approximation of semilinear heat PDEs with general
time horizons and Lipschitz continuous nonlinearities in the sense that the number of computa-
tional operations required to approximately compute the PDE solution using MLP approximation
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schemes grows at most polynomially in both the reciprocal 1/ε of the prescribed approximation
accuracy ε ∈ (0,∞) and the dimension d ∈ N of the PDE; cf. Hutzenthaler et al. [30]. This type
of scaling of computational complexity is also referred to as polynomial tractability in the scientific
literature (cf., e.g., Novak & Wozniakowski [41, Definition 4.44]).

The complexity analysis in [30] has been extended to more general MLP approximation schemes
and more general classes of nonlinear PDEs. More specifically, we refer to [28, 31] for complexity
analyses for MLP approximation schemes for parabolic semilinear PDEs involving more general
second-order differential operators than just the Laplacian, we refer to Beck et al. [3] for com-
plexity analyses for MLP approximation schemes for parabolic semilinear PDEs with possibly
non-Lipschitz continuous nonlinearities such as Allen-Cahn equations, we refer to Beck et al. [2]
for complexity analyses for MLP approximation schemes for elliptic semilinear PDEs with Lips-
chitz continuous nonlinearities, we refer to [27,32] for complexity analyses for MLP approximation
schemes for parabolic semilinear PDEs with gradient-dependent nonlinearities, and we refer to Giles
et al. [19] for complexity analyses for a general class of MLP approximation schemes for semilinear
heat PDEs. We also refer to [6, 15] for numerical simulations for MLP approximation schemes.
Each of the error analyses for MLP approximation schemes in the above-mentioned articles studies
the L2-root-mean-square distance between the exact solution of the PDE under consideration and
the considered MLP approximation and none of the error analyses in the above-mentioned articles
provides an upper bound for the more general Lp-distance where p ∈ (0,∞) between the exact
solution of the PDE under consideration and the considered MLP approximation.

It is precisely the subject of this article to extend the L2-error analyses for MLP approximation
schemes in [30] to a more general Lp-error analysis with p ∈ (0,∞) and, thereby, also introduce a
slightly different variation of the previously studied MLP approximation schemes; see (1.2) below.

It turns out that it is not straightforward to extend the L2-error analysis for MLP approximation
schemes from the literature to a more general Lp-error analysis with p ∈ [2,∞) (cf., e.g., Rio [43,
Theorem 2.1]). A central difficulty is related to the issue that in our Lp-error analysis the growth
of the number of samples used to approximate expectations via Monte Carlo averages must be
more carefully chosen; see (1.9) and (1.10) below for details.

To better illustrate the findings of this work, we present in the following result, Theorem 1.1
below, a special case of Theorem 4.6, the main result of this paper. Below Theorem 1.1 we add
some explanatory comments regarding the statement of Theorem 1.1 and the mathematical objects
appearing in Theorem 1.1 and we also present a brief sketch of our proof of Theorem 1.1.
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Theorem 1.1. Let T, κ, δ, p ∈ (0,∞), Θ =
⋃
n∈NZn, let f : R → R be Lipschitz continuous, let

ud ∈ C1,2([0, T ] × Rd,R), d ∈ N, satisfy for all d ∈ N, t ∈ [0, T ], x = (x1, x2, . . . , xd) ∈ Rd that
|ud(t, x)| ≤ κdκ(1 +

∑d
k=1|xk|)κ and

( ∂
∂t
ud)(t, x) = (∆xud)(t, x) + f(ud(t, x)), (1.1)

let (Ω,F ,P) be a probability space, let uθ : Ω→ [0, 1], θ ∈ Θ, be i.i.d. random variables, assume for
all r ∈ (0, 1) that P(u0 ≤ r) = r, let W d,θ : [0, T ]×Ω→ Rd, d ∈ N, θ ∈ Θ, be independent standard
Brownian motions, assume that (uθ)θ∈Θ and (W d,θ)(d,θ)∈N×Θ are independent, let φ : N → N and
Ud,θ
n,m : [0, T ]× Rd × Ω→ R, d, n,m ∈ Z, θ ∈ Θ, satisfy for all n ∈ N0, d,m ∈ N, θ ∈ Θ, t ∈ [0, T ],

x ∈ Rd that φ(m) = max{k ∈ N : k ≤ exp(|ln(m)|1/2)} and

Ud,θ
n,m(t, x) =

n−1∑
i=0

t
(φ(m))n−i

[
(φ(m))n−i∑

k=1

[
f
(
U
d,(θ,i,k)
i,m (tu(θ,i,k), x+

√
2W

d,(θ,i,k)

t−tu(θ,i,k))
)

(1.2)

− 1N(i) f
(
U
d,(θ,−i,k)
i−1,m (tu(θ,i,k), x+

√
2W

d,(θ,i,k)

t−tu(θ,i,k))
)]]

+ 1N(n)
(φ(m))n

[
(φ(m))n∑
k=1

ud
(
0, x+

√
2W

d,(θ,0,−k)
t

)]
,

and for every d, n,m ∈ N let Cd,n,m ∈ N be the number of function evaluations of f and ud(0, ·) and
the number of realizations of scalar random variables which are used to compute one realization of
Ud,0
n,m(T, 0) : Ω→ R (see (4.28) for a precise definition). Then there exist c ∈ R and n : N×(0, 1]→

N such that for all d ∈ N, ε ∈ (0, 1] it holds that(
E
[
|ud(T, 0)− Ud,0

n(d,ε),n(d,ε)(T, 0)|p
])1/p ≤ ε and Cd,n(d,ε),n(d,ε) ≤ cdcε−(2+δ). (1.3)

Theorem 1.1 is an immediate consequence of Theorem 4.6 in Section 4 below. Theorem 4.6,
which is the main result of this article, in turn, follows from Proposition 4.4 (see Section 4 below
for details). In the following we provide some explanatory comments concerning the mathematical
objects appearing in Theorem 1.1 above.

In Theorem 1.1 we intend to approximate the solutions of the PDEs in (1.1). The strictly
positive real number T ∈ (0,∞) in Theorem 1.1 describes the time horizon of the PDEs in (1.1),
the Lipschitz continuous function f : R → R specifies the nonlinearity of the PDEs in (1.1), and
the functions ud : [0, T ]× Rd → R, d ∈ N, are the solutions of the PDEs in (1.1).

The strictly positive real number κ ∈ (0,∞) in Theorem 1.1 is employed to formulate a reg-
ularity condition for the solutions ud : [0, T ] × Rd → R, d ∈ N, of the PDEs in (1.1) which we
impose in Theorem 1.1. More formally, in Theorem 1.1 we assume that the solution functions
ud : [0, T ]×Rd → R, d ∈ N, of the PDEs in (1.1) satisfy the regularity condition that for all d ∈ N,
t ∈ [0, T ], x ∈ Rd it holds that

|ud(t, x)| ≤ κdκ
(
1 +

∑d
k=1|xk|

)κ
. (1.4)

This condition ensures that the solution functions ud : [0, T ]×Rd → R, d ∈ N, of the PDEs in (1.1)
are at most polynomially growing both in the spatial variable x ∈ Rd and in the PDE dimension
d ∈ N. Observe that the condition in (1.4) also ensures that solutions of the PDEs in (1.1) with
the fixed initial value functions Rd 3 x 7→ ud(0, x) ∈ R, d ∈ N, are unique.

In (1.2) we recursively specify the proposed MLP approximations which we employ in Theo-
rem 1.1 to approximate the solutions of the PDEs in (1.1). The proposed MLP approximation
method is a random approximation algorithm which is defined on an artificial probability space.
The probability space (Ω,F ,P) in Theorem 1.1 is this artificial probability space on which we
defined the proposed MLP approximations.

To formulate the proposed MLP approximations, we need, roughly speaking, sufficiently many
independent random variables as random input sources and to formulate these sufficiently many
independent random variables, we need, roughly speaking, a sufficiently large index set over which
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the sufficiently many independent random variables are defined. The set Θ =
⋃
n∈NZn in Theo-

rem 1.1 is precisely this sufficiently large index set which allows us to introduce sufficiently many
independent random variables over this index set and the i.i.d. random variables uθ : Ω → [0, 1],
θ ∈ Θ, and the independent standard Brownian motions W d,θ : [0, T ] × Ω → Rd, d ∈ N, θ ∈ Θ,
are the sufficiently many independent random variables which we use to specify the MLP approx-
imations in (1.2). Observe that the assumption that for all r ∈ (0, 1) it holds that P(u0 ≤ r) = r
in Theorem 1.1 ensures that the random variables uθ : Ω → [0, 1], θ ∈ Θ, are on [0, 1] continuous
uniformly distributed random variables.

The MLP approximations specified in (1.2) differ from previously introduced MLP approxima-
tions, roughly speaking, in the sense that a smaller number of Monte Carlo samples is employed.
In Theorem 1.1 this smaller number of Monte Carlo samples is formulated through the function
φ : N → N which increases quite slowly to infinity. More formally, Lemma 4.5 in Subsection 4.4
below proves that for every ε ∈ (0,∞) there exists c ∈ R such that for all x ∈ [1,∞) it holds
that limy→∞ φ(y) =∞ and φ(x) ≤ cxε. This slow increase to infinity is an important argument in
our Lp-error analysis for the proposed MLP approximations (see (1.9), (1.10), and Subsection 4.4
below for further details).

The natural numbers Cd,n,m ∈ N, d,m, n ∈ N, in Theorem 1.1 measure the computational
cost of the proposed MLP approximations. More specifically, for every d,m, n ∈ N we have that
Cd,n,m is the sum of the number of function evaluations of the nonlinearity f : R → R, of the
number of function evaluations of the initial value function Rd 3 x 7→ ud(0, x) ∈ R, and of the
number of one-dimensional random variables which are used to compute one realization of the
MLP approximation Ud,0

n,m(T, 0) : Ω → R. We also refer to (4.28) in Proposition 4.4 in Section 4
below for the precise specification of the natural numbers Cd,n,m ∈ N, d,m, n ∈ N.

Theorem 1.1 reveals that the MLP approximations in (1.2) approximate the values ud(T, 0) ∈ R,
d ∈ N, of the solution functions ud : [0, T ] × Rd → R, d ∈ N, at the terminal time t = T and at
the space point x = 0 ∈ Rd with a computational effort which grows at most polynomially in the
PDE dimension d ∈ N and up to an arbitrarily small polynomial order at most quadratically in
the reciprocal of the prescribed approximation accuracy ε > 0. This arbitrarily small polynomial
order is described through the real number δ ∈ (0,∞) in Theorem 1.1.

Due to the fact that the MLP approximations proposed in (1.2) differ slightly from the MLP
approximations which have been previously employed in L2-error analyses in the scientific liter-
ature, we now briefly sketch the main ideas in the proof of Theorem 1.1. The first step in our
sketch of the proof of Theorem 1.1 is to reformulate the PDEs under consideration as stochastic
fixed-point equations. Specifically, in the context of (1.1) we have that the Feynman-Kac formula
proves that the solution functions ud : [0, T ]×Rd → R, d ∈ N, of the PDEs in (1.1) are the unique
at most polynomially growing functions which satisfy for all d ∈ N, θ ∈ Θ, t ∈ [0, T ], x ∈ Rd that

ud(t, x) = E
[
ud(0, x+

√
2W d,θ

t )
]

+

∫ t

0

E
[
f(ud(s, x+

√
2W d,θ

t−s))
]
ds. (1.5)

In the next step we note that (1.2), the assumption that W d,θ : [0, T ]×Ω→ Rd, d ∈ N, θ ∈ Θ, are
independent standard Brownian motions, and the assumption that uθ : Ω→ [0, 1], θ ∈ Θ, are i.i.d.
random variables assure that for all n ∈ N0, d,m ∈ N, θ ∈ Θ, t ∈ [0, T ], x ∈ Rd it holds that

E
[
Ud,θ
n,m(t, x)

]
− 1N(n)E

[
ud
(
0, x+

√
2W d,θ

t

)]
= t

[
n−1∑
i=0

E
[
f
(
U
d,(θ,i)
i,m (tuθ, x+

√
2W d,θ

t−tuθ)
)
− 1N(i)f

(
U
d,(θ,−i)
i−1,m (tuθ, x+

√
2W d,θ

t−tuθ)
)]]

= t

[
n−1∑
i=0

E
[
f
(
Ud,θ
i,m(tuθ, x+

√
2W d,θ

t−tuθ)
)
− 1N(i)f

(
Ud,θ
i−1,m(tuθ, x+

√
2W d,θ

t−tuθ)
)]] (1.6)

(cf. Lemmas 3.3 and 3.5 and (3.24) in the proof of Lemma 3.5 for the details). In addition, we
observe that the assumption that W d,θ : [0, T ]× Ω→ Rd, d ∈ N, θ ∈ Θ, are independent standard
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Brownian motions, the assumption that uθ : Ω → [0, 1], θ ∈ Θ, are i.i.d. random variables, and a
telescoping sum argument demonstrate that for all n ∈ N0, d,m ∈ N, θ ∈ Θ, t ∈ [0, T ], x ∈ Rd it
holds that

t

[
n−1∑
i=0

E
[
f
(
Ud,θ
i,m(tuθ, x+

√
2W d,θ

t−tuθ)
)
− 1N(i)f

(
Ud,θ
i−1,m(tuθ, x+

√
2W d,θ

t−tuθ)
)]]

(1.7)

= 1N(n) tE
[
f
(
Ud,θ
n−1,m(tuθ, x+

√
2W d,θ

t−tuθ)
)]

= 1N(n)

[∫ t

0

E
[
f
(
Ud,θ
n−1,m(s, x+

√
2W d,θ

t−s)
)]
ds

]
(cf. Lemmas 3.4 and 3.5). Combining (1.5), (1.6), and (1.7) indicates that for all n ∈ N0, d,m ∈ N,
θ ∈ Θ, t ∈ [0, T ], x ∈ Rd we have that

E
[
Ud,θ
n,m(t, x)

]
= 1N(n)

(
E
[
ud
(
0, x+

√
2W d,θ

t

)]
+

∫ t

0

E
[
f
(
Ud,θ
n−1,m(s, x+

√
2W d,θ

t−s)
)]
ds

)
≈ 1N(n)

(
E
[
ud
(
0, x+

√
2W d,θ

t

)]
+

∫ t

0

E
[
f
(
ud(s, x+

√
2W d,θ

t−s)
)]
ds

)
(1.8)

= 1N(n)ud(t, x)

(cf. Lemmas 3.5 and 3.14). Observe that (1.8) suggests that the proposed MLP approximations
Ud,θ
n,m : [0, T ]× Rd × Ω→ R, n ∈ N0, d,m ∈ N, θ ∈ Θ, behave in expectation like Picard iterations

for the stochastic fixed-point equations in (1.5). The final step in our sketch of the proof of
Theorem 1.1 is to employ a Monte Carlo approach to approximate the expectations in (1.6). This
final step is where the MLP approximations proposed in (1.2) differ from the MLP approximations
which have been previously employed in L2-error analyses in the scientific literature. Specifically,
the MLP approximations proposed in (1.2) use the fact that for all n ∈ N0, i ∈ {0, 1, . . . , n − 1},
d ∈ N, θ ∈ Θ, t ∈ [0, T ], x ∈ Rd we have that

1
(φ(m))n−i

(φ(m))n−i∑
k=1

[
f
(
U
d,(θ,i,k)
i,m (tu(θ,i,k), x+

√
2W

d,(θ,i,k)

t−tu(θ,i,k))
)

− 1N(i)f
(
U
d,(θ,−i,k)
i−1,m (tu(θ,i,k), x+

√
2W

d,(θ,i,k)

t−tu(θ,i,k))
)]

(1.9)

is a Monte Carlo approximation of

E
[
f
(
U
d,(θ,i)
i,m (tuθ, x+

√
2W d,θ

t−tuθ)
)
− 1N(i)f

(
U
d,(θ,−i)
i−1,m (tuθ, x+

√
2W d,θ

t−tuθ)
)]

(1.10)

employing (φ(m))n−i ∈ N samples. The function φ : N→ N thus determines the number of samples
used in the Monte Carlo approximations in the MLP approximations proposed in (1.2).

In our Lp-error analysis the specific choice of φ is a subtle issue and, in particular, in our Lp-
error analysis there is some fine-tuning needed in the choice of the function φ. On the one hand,
the function φ must be chosen large enough so that the error due to approximating expectations
via Monte Carlo averages is small enough. On the other hand, in our recursive Gronwall-type Lp-
error analysis in Lemma 3.13 in Subsection 3.6 and Lemma 3.14 in Subsection 3.7 the exponential
term exp(mp/2/p) arises in the upper bounds (see (3.72) in Lemma 3.13, (3.75) in Lemma 3.14,
and (4.38) in the proof of Proposition 4.4) where m ∈ N will be replaced by φ(m). To control this
term, our Lp-error analysis employs the assumption that (φ(m)p/2/m)m∈N is a bounded sequence.
More specifically, if p ∈ (0, 2], then φ may be chosen to be the identity, but if p ∈ (2,∞), then φ
must grow much slower and the choice ∀m ∈ N : φ(m) = max{k ∈ N : k ≤ exp(|ln(m)|1/2)} is a
suitable p-independent choice.

The remainder of this article is structured as follows. In Section 2 we establish regularity prop-
erties for solutions of stochastic fixed-point equations. Afterwards, in Section 3 we introduce MLP
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approximations for the stochastic fixed-point equations from Section 2, we study their measura-
bility and integrability properties, and we establish Lp-error bounds between the exact solutions
of the stochastic fixed-point equations and the MLP approximations. Finally, in Section 4 we
establish some elementary estimates for full-history recursions and combine these estimates with
the regularity properties for solutions of stochastic fixed-point equations, which we established
in Section 2, and the Lp-error analysis for MLP approximations for stochastic fixed-point equa-
tions, which we established in Section 3, to obtain a computational complexity analysis for MLP
approximations for semilinear partial differential equations.

2 Stochastic fixed-point equations
In this section we establish in Corollary 2.5 below appropriate regularity results for solutions of
stochastic fixed-point equations with polynomially growing solutions. In Corollary 2.5 we assume,
among other things, that the nonlinearity f : [0, T ] × Rd × R → R and the terminal condition
g : Rd → R of the stochastic fixed-point equation in (2.18) satisfy the polynomial growth bound
that there exist L, p ∈ [0,∞) such that for all t ∈ [0, T ], x = (x1, x2, . . . , xd) ∈ Rd it holds that

max{|f(t, x, 0)|, |g(x)|} ≤ L
(
1 + [

∑d
k=1|xk|2]p/2

)
(2.1)

(see above (2.18) in Corollary 2.5). Observe that in the case x = 0 ∈ Rd, p = 0 we have
that (2.1) reduces to the condition that for all t ∈ [0, T ] it holds that max{|f(t, 0, 0)|, |g(0)|} ≤
L(1 + [

∑d
k=1|0|2]p/2) = L(1 + 00) = 2L.

Our proof of Corollary 2.5 uses the regularity result for stochastic fixed-point equations with
Lipschitz continuous nonlinearities in Lemma 2.3 below. Similar regularity results for stochastic
fixed-point equations can, e.g., be found in Hutzenthaler et al. [29, Lemma 2.2]. Our proof of
Lemma 2.3 uses the well-known backward formulation of the Gronwall inequality in Corollary 2.2
below. In our proof of Corollary 2.2 we use the well-known forward formulation of the Gronwall
inequality in Lemma 2.1. Lemma 2.1 is a direct consequence of, e.g., the generalized Gronwall
inequality in Henry [23, Lemma 7.1.1].

2.1 Gronwall-type inequalities

Lemma 2.1. Let T, γ ∈ [0,∞), let β : [0, T ] → [0,∞) be a function, let α : [0, T ] → [0,∞] be
measurable, and assume for all t ∈ [0, T ] that

∫ t
0
α(s) ds <∞ and

α(t) ≤ β(t) + γ

∫ t

0

α(s) ds. (2.2)

Then it holds for all t ∈ [0, T ] that α(t) ≤ [sups∈[0,t] β(s)] exp(γt).

Corollary 2.2. Let T, γ ∈ [0,∞), let β : [0, T ] → [0,∞) be non-increasing, let α : [0, T ] → [0,∞]

be measurable, and assume for all t ∈ [0, T ] that
∫ T
t
α(s) ds <∞ and

α(t) ≤ β(t) + γ

∫ T

t

α(s) ds. (2.3)

Then it holds for all t ∈ [0, T ] that α(t) ≤ β(t) exp(γ(T − t)) <∞.

Proof of Corollary 2.2. Throughout this proof let Λ: [0, T ]→ [0,∞] and a : [0, T ]→ [0,∞) satisfy
for all t ∈ [0, T ] that

Λ(t) = α(T − t) and a(t) = β(T − t). (2.4)
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Note that the hypothesis that α is measurable and (2.4) ensure that Λ is measurable. In addition,
observe that the hypothesis that for all t ∈ [0, T ] it holds that

∫ T
t
α(s) ds < ∞ and (2.4) assure

that for all t ∈ [0, T ] it holds that∫ t

0

Λ(s) ds =

∫ t

0

α(T − s) ds =

∫ T

T−t
α(s) ds ≤

∫ T

0

α(s) ds <∞. (2.5)

Moreover, note that the hypothesis that β is non-increasing and (2.4) guarantee that a is non-
decreasing. Furthermore, observe that (2.3), (2.4), and (2.5) demonstrate that for all t ∈ [0, T ] it
holds that

Λ(t) = α(T − t) ≤ β(T − t) +γ

∫ T

T−t
α(s) ds = a(t) +γ

∫ t

0

α(T − s) ds = a(t) +γ

∫ t

0

Λ(s) ds. (2.6)

This, (2.4), the fact that Λ is measurable, (2.5), the fact that a is non-decreasing, and Lemma 2.1
(applied with T x T , γ x γ, β x a, α x Λ in the notation of Lemma 2.1) prove that for all
t ∈ [0, T ] it holds that

Λ(t) ≤

[
sup
s∈[0,t]

a(s)

]
exp(γt) = a(t) exp(γt) <∞. (2.7)

Combining this and (2.4) establishes that for all t ∈ [0, T ] it holds that

α(t) ≤ β(t) exp(γ(T − t)) <∞. (2.8)

The proof of Corollary 2.2 is thus complete.

2.2 A priori bounds for solutions of stochastic fixed-point equations

Lemma 2.3. Let d ∈ N, T, L ∈ [0,∞), q ∈ [1,∞), f ∈ C([0, T ] × Rd × R,R), g ∈ C(Rd,R),
u ∈ C([0, T ] × Rd,R), let (Ω,F ,P) be a probability space, let W : [0, T ] × Ω → Rd be a standard
Brownian motion, and assume for all t ∈ [0, T ], x ∈ Rd, v, w ∈ R that |f(t, x, v) − f(t, x, w)| ≤
L|v−w|, E[|g(x+WT−t)|+

∫ T
t
|f(s, x+Ws−t, u(s, x+Ws−t))| ds]+

∫ T
t

(E[|u(s, x+Ws)|q])1/q ds <∞,
and

u(t, x) = E
[
g(x+WT−t)

]
+

∫ T

t

E
[
f(s, x+Ws−t, u(s, x+Ws−t))

]
ds. (2.9)

Then it holds for all t ∈ [0, T ], x ∈ Rd that(
E
[∣∣u(t, x+Wt)

∣∣q])1/q (2.10)

≤ exp
(
L(T − t)

)[(
E
[∣∣g(x+WT )

∣∣q])1/q + (T − t)(q−1)/q

(∫ T

t

E
[∣∣f(s, x+Ws, 0)

∣∣q] ds)1/q].
Proof of Lemma 2.3. Throughout this proof let α : [0, T ] × Rd → [0,∞] satisfy for all t ∈ [0, T ],
x ∈ Rd that

α(t, x) =
(
E
[
|g(x+WT )|q

])1/q
+ (T − t)(q−1)/q

(∫ T

t

E
[
|f(s, x+Ws, 0)|q

]
ds

)1/q
(2.11)

and assume without loss of generality that for all x ∈ Rd it holds that α(0, x) < ∞. Note that
(2.11) ensures that for all x ∈ Rd it holds that [0, T ] 3 t 7→ α(t, x) ∈ [0,∞) is non-increasing. In
addition, observe that (2.9), the triangle inequality, Jensen’s inequality, Fubini’s theorem, and the
fact that W has independent increments assure that for all t ∈ [0, T ], x ∈ Rd it holds that(

E
[
|u(t, x+Wt)|q

])1/q
8



=

(
E
[∣∣∣E[g(x+WT−t +Wt)

]
+
∫ T
t
E
[
f(s, x+Ws−t +Wt, u(s, x+Ws−t +Wt))

]
ds
∣∣∣q])1/q

=

(
E
[∣∣∣E[g(x+WT )

]
+
∫ T
t
E
[
f(s, x+Ws, u(s, x+Ws))

]
ds
∣∣∣q])1/q (2.12)

≤
(
E
[∣∣E[g(x+WT )

]∣∣q])1/q +

(
E
[∣∣∫ T

t
E
[
f(s, x+Ws, u(s, x+Ws))

]
ds
∣∣q])1/q

≤
(
E
[
|g(x+WT )|q

])1/q
+

∫ T

t

(
E
[
|f(s, x+Ws, u(s, x+Ws))|q

])1/q
ds.

Next note that the triangle inequality and the hypothesis that for all t ∈ [0, T ], x ∈ Rd, v, w ∈ R
it holds that |f(t, x, v)− f(t, x, w)| ≤ L|v − w| demonstrate that for all t ∈ [0, T ], x ∈ Rd it holds
that ∫ T

t

(
E
[
|f(s, x+Ws, u(s, x+Ws))|q

])1/q
ds ≤

∫ T

t

(
E
[
|f(s, x+Ws, 0))|q

])1/q
ds

+

∫ T

t

(
E
[
|f(s, x+Ws, u(s, x+Ws))− f(s, x+Ws, 0)|q

])1/q
ds (2.13)

≤
∫ T

t

(
E
[
|f(s, x+Ws, 0))|q

])1/q
ds+ L

∫ T

t

(
E
[
|u(s, x+Ws)|q

])1/q
ds.

Furthermore, observe that Hölder’s inequality shows that for all t ∈ [0, T ], x ∈ Rd it holds that

∫ T

t

(
E
[
|f(s, x+Ws, 0))|q

])1/q
ds =

([∫ T

t

(
E
[
|f(s, x+Ws, 0))|q

])1/q
ds

]q)1/q

≤
(

(T − t)q−1

∫ T

t

E
[
|f(s, x+Ws, 0))|q

]
ds

)1/q
(2.14)

= (T − t)(q−1)/q

(∫ T

t

E
[
|f(s, x+Ws, 0))|q

]
ds

)1/q
.

Combining this, (2.11), (2.12), and (2.13) guarantees that for all t ∈ [0, T ], x ∈ Rd it holds that

(
E
[
|u(t, x+Wt)|q

])1/q ≤ α(t, x) + L

∫ T

t

(
E
[
|u(s, x+Ws)|q

])1/q
ds. (2.15)

This, (2.11), the fact that for all x ∈ Rd it holds that [0, T ] 3 t 7→ α(t, x) ∈ [0,∞) is non-increasing,
the hypothesis that for all t ∈ [0, T ], x ∈ Rd it holds that

∫ T
t

(E[|u(s, x + Ws)|q])1/q ds < ∞, and
Corollary 2.2 (applied for every x ∈ Rd with T x T , γ x L, β x ([0, T ] 3 t 7→ α(t, x) ∈ [0,∞)),
α x ([0, T ] 3 t 7→ (E[|u(t, x + Wt)|q])1/q ∈ [0,∞]) in the notation of Corollary 2.2) establish that
for all t ∈ [0, T ], x ∈ Rd it holds that(

E
[
|u(t, x+Wt)|q

])1/q ≤ α(t, x) exp
(
L(T − t)

)
. (2.16)

The proof of Lemma 2.3 is thus complete.

Definition 2.4. We denote by ‖·‖ : (
⋃
d∈NRd)→ [0,∞) the function which satisfies for all d ∈ N,

x = (x1, x2, . . . , xd) ∈ Rd that ‖x‖ = [
∑d

k=1|xk|2]1/2.

Corollary 2.5. Let d ∈ N, T, L,L, p ∈ [0,∞), q ∈ [1,∞), f ∈ C([0, T ]×Rd×R,R), g ∈ C(Rd,R),
u ∈ C([0, T ] × Rd,R), let (Ω,F ,P) be a probability space, let W : [0, T ] × Ω → Rd be a standard
Brownian motion, and assume for all t ∈ [0, T ], x ∈ Rd, v, w ∈ R that |f(t, x, v) − f(t, x, w)| ≤
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L|v − w|, max{|f(t, x, 0)|, |g(x)|} ≤ L(1 + ‖x‖p), E[|g(x + WT−t)| +
∫ T
t
|f(s, x + Ws−t, u(s, x +

Ws−t))| ds] <∞, and

u(t, x) = E
[
g(x+WT−t)

]
+

∫ T

t

E
[
f(s, x+Ws−t, u(s, x+Ws−t))

]
ds (2.17)

(cf. Definition 2.4). Then it holds for all t ∈ [0, T ], x ∈ Rd that(
E
[∣∣u(t, x+Wt)

∣∣q])1/q ≤ L(T + 1) exp(LT )

[
sup
s∈[0,T ]

(
E
[(

1 + ‖x+Ws‖p
)q])1/q]

<∞. (2.18)

Proof of Corollary 2.5. Throughout this proof let Ft ⊆ F , t ∈ [0, T ], satisfy for all t ∈ [0, T ] that

Ft =

{⋂
s∈(t,T ] σ

(
σ(Wr : r ∈ [0, s]) ∪ {A ∈ F : P(A) = 0}

)
: t < T

σ
(
σ(Ws : s ∈ [0, T ]) ∪ {A ∈ F : P(A) = 0}

)
: t = T

(2.19)

and let a ∈ C([0, T ]× Rd,Rd) and b ∈ C([0, T ]× Rd,Rd×d) satisfy for all t ∈ [0, T ], x, v ∈ Rd that
a(t, x) = 0 and b(t, x)v = v. Note that (2.19) guarantees that Ft ⊆ F , t ∈ [0, T ], satisfies that

(I) it holds that {A ∈ F : P(A) = 0} ⊆ F0 and

(II) it holds for all t ∈ [0, T ] that Ft = ∩s∈(t,T ]Fs.

Combining items (I) and (II), (2.19), and, e.g., Hutzenthaler et al. [31, Lemma 2.17] (applied with
m x d, T x T , W x W , Ht x Ft, (Ω,F ,P, (Ft)t∈[0,T ]) x (Ω,F ,P, (σ(Ws : s ∈ [0, t]) ∪ {A ∈
F : P(A) = 0})t∈[0,T ]) in the notation of [31, Lemma 2.17]) hence assures that W : [0, T ]× Ω→ R
is a standard (Ω,F ,P, (Ft)t∈[0,T ])-Brownian motion. Combining this, the hypothesis that for all
t ∈ [0, T ], x ∈ Rd, v, w ∈ R it holds that |f(t, x, v)−f(t, x, w)| ≤ L|v−w|, the hypothesis that for all
t ∈ [0, T ], x ∈ Rd it holds that max{|f(t, x, 0)|, |g(x)|} ≤ L(1 + ‖x‖p), and Beck et al. [4, Corollary
3.9] (applied with dx d, mx d, T x T , Lx max{d1/2, L}, C x 0, f x f , g x g, µx a, σ x b,
W x W , (Ω,F ,P, (Ft)t∈[0,T ]) x (Ω,F ,P, (Ft)t∈[0,T ]) in the notation of [4, Corollary 3.9]) ensures
that

sup
s∈[0,T ]

sup
y∈Rd

(
|u(s, y)|
1 + ‖y‖p

)
<∞. (2.20)

This, the fact that for all r, v, w ∈ [0,∞) it holds that (v+w)r ≤ 2max{r−1,0}(vr +wr), the triangle
inequality, and the fact that for all r ∈ [0,∞) it holds that E[‖WT‖r] < ∞ demonstrate that for
all t ∈ [0, T ], x ∈ Rd it holds that∫ T

t

(
E
[
|u(s, x+Ws)|q

])1/q
ds ≤

[
sup
s∈[0,T ]

sup
y∈Rd

|u(s, y)|
1 + ‖y‖p

]∫ T

0

(
E
[
(1 + ‖x+Ws‖p)q

])1/q
ds

≤

[
sup
s∈[0,T ]

sup
y∈Rd

|u(s, y)|
1 + ‖y‖p

]∫ T

0

[
1 + 2max{p−1,0}(E[(‖x‖p + ‖Ws‖p)q

])1/q]
ds (2.21)

≤ T

[
sup
s∈[0,T ]

sup
y∈Rd

|u(s, y)|
1 + ‖y‖p

][
1 + 2max{p−1,0}‖x‖p + 2max{p−1,0}(E[‖WT‖pq

])1/q]
<∞.

Combining this, the hypothesis that for all t ∈ [0, T ], x ∈ Rd, v, w ∈ R it holds that |f(t, x, v) −
f(t, x, w)| ≤ L|v−w|, the hypothesis that for all t ∈ [0, T ], x ∈ Rd it holds that E[|g(x+WT−t)|+∫ T
t
|f(s, x+Ws−t, u(s, x+Ws−t))| ds] <∞, and Lemma 2.3 establishes that for all t ∈ [0, T ], x ∈ Rd

it holds that(
E
[
|u(t, x+Wt)|q

])1/q (2.22)
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≤ exp
(
L(T − t)

)[(
E
[
|g(x+WT )|q

])1/q
+ (T − t)(q−1)/q

(∫ T

t

E
[
|f(s, x+Ws, 0)|q

]
ds

)1/q]

≤ exp(LT )

[(
E
[
|g(x+WT )|q

])1/q
+ T

(q−1)/q

(∫ T

0

E
[
|f(s, x+Ws, 0)|q

]
ds

)1/q]
.

Next observe that the hypothesis that for all x ∈ Rd it holds that |g(x)| ≤ L(1 + ‖x‖p) and (2.21)
show that for all x ∈ Rd it holds that

E
[
|g(x+WT )|q

]
≤ E

[
Lq(1 + ‖x+WT‖p)q

]
≤ sup

s∈[0,T ]

E
[
Lq(1 + ‖x+Ws‖p)q

]
<∞. (2.23)

In addition, note that the hypothesis that for all t ∈ [0, T ], x ∈ Rd it holds that |f(t, x, 0)| ≤
L(1 + ‖x‖p) and (2.21) assure that for all x ∈ Rd it holds that(∫ T

0

E
[
|f(s, x+Ws, 0)|q

]
ds

)1/q
≤
(∫ T

0

E
[
Lq(1 + ‖x+Ws‖p)q

]
ds

)1/q
≤ LT

1/q

[
sup
s∈[0,T ]

(
E
[
(1 + ‖x+Ws‖p)q

])1/q]
<∞.

(2.24)

Combining this, (2.22), and (2.23) proves that for all t ∈ [0, T ], x ∈ Rd it holds that(
E
[
|u(t, x+Wt)|q

])1/q ≤ L(T + 1) exp(LT )

[
sup
s∈[0,T ]

(
E
[
(1 + ‖x+Ws‖p)q

])1/q]
<∞. (2.25)

The proof of Corollary 2.5 is thus complete.

3 Full-history recursive multilevel Picard (MLP) approxima-
tions

In this section we introduce and provide the Lp-error analysis for MLP approximations for solutions
of stochastic fixed-point equations. More specifically, we prove Corollary 3.15 below, which is a non-
recursive Lp-error bound for MLP approximations for solutions of stochastic fixed-point equations.
Our proof of Corollary 3.15 uses Lemma 3.14, which provides a potentially sharper Lp-error bound
for MLP approximations for solutions of stochastic fixed-point equations. Our proof of Lemma 3.14,
in turn, employs Lemma 3.10 and the elementary auxiliary results in Lemma 3.11, Lemma 3.12,
and Lemma 3.13. Our proof of the recursive error bound in Lemma 3.10 employs Lemma 3.9. Our
proof of Lemma 3.9, in turn, is based on Lemma 3.5 and the elementary Monte Carlo approximation
results in Lemma 3.6, Corollary 3.7, and Corollary 3.8. Our proof of Lemma 3.5 uses Lemma 3.3
and Lemma 3.4, which are elementary results regarding the measurability and integrability of MLP
approximations for solution of stochastic fixed-point equations, respectively.

Lemma 3.3 is, e.g., proved as Hutzenthaler et al. [30, Lemma 3.2]. Lemma 3.4 is, e.g., proved as
Hutzenthaler et al. [30, Lemma 3.3]. Only for completeness we include in this section the detailed
proofs of Lemma 3.3 and Lemma 3.4, respectively. Lemma 3.11 and Lemma 3.12 are well-known
elementary results and we include their proofs for completeness, as well. The elementary result
Lemma 3.13 is a slight generalization of the result in Hutzenthaler et al. [28, Lemma 3.11].

3.1 MLP approximations

Definition 3.1. Let p ∈ [2,∞). Then we denote by Kp ∈ R the real number given by

Kp = inf

c ∈ R :

It holds for every probability space (Ω,F ,P) and every
random variable X : Ω→ R with E[|X|] <∞ that(
E
[
|X − E[X]|p

])1/p ≤ c
(
E
[
|X|p

])1/p

. (3.1)
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Setting 3.2. Let d,m ∈ N, T, L,L, p ∈ [0,∞), p ∈ [2,∞), m = Kp

√
p− 1, Θ =

⋃
n∈NZn,

f ∈ C([0, T ]×Rd ×R,R), g ∈ C(Rd,R), let F : C([0, T ]×Rd,R)→ C([0, T ]×Rd,R), assume for
all t ∈ [0, T ], x ∈ Rd, w,w ∈ R, v ∈ C([0, T ]× Rd,R) that

|f(t, x, w)− f(t, x,w)| ≤ L|w −w|, max{|f(t, x, 0)|, |g(x)|} ≤ L(1 + ‖x‖p), (3.2)

and
(F (v))(t, x) = f(t, x, v(t, x)), (3.3)

let (Ω,F ,P) be a probability space, let uθ : Ω→ [0, 1], θ ∈ Θ, be i.i.d. random variables, assume for
all θ ∈ Θ, r ∈ (0, 1) that P(uθ ≤ r) = r, let U θ : [0, T ]×Ω→ [0, T ], θ ∈ Θ, satisfy for all t ∈ [0, T ],
θ ∈ Θ that U θt = t+ (T − t)uθ, let W θ : [0, T ]×Ω→ Rd, θ ∈ Θ, be independent standard Brownian
motions, assume that (U θ)θ∈Θ and (W θ)θ∈Θ are independent, let u ∈ C([0, T ] × Rd,R) satisfy for
all t ∈ [0, T ], x ∈ Rd that E[|g(x+W 0

T−t)|+
∫ T
t
|(F (u))(s, x+W 0

s−t)| ds] <∞ and

u(t, x) = E
[
g(x+W 0

T−t)
]

+

∫ T

t

E
[
(F (u))(s, x+W 0

s−t)
]
ds, (3.4)

and let U θ
n : [0, T ] × Rd × Ω → R, n ∈ Z, θ ∈ Θ, satisfy for all n ∈ N0, θ ∈ Θ, t ∈ [0, T ], x ∈ Rd

that

U θ
n(t, x) =

1N(n)

mn

[
mn∑
k=1

g(x+W
(θ,0,−k)
T−t )

]

+
n−1∑
i=0

(T − t)
mn−i

[
mn−i∑
k=1

(F (U
(θ,i,k)
i )− 1N(i)F (U

(θ,−i,k)
i−1 ))(U (θ,i,k)

t , x+W
(θ,i,k)

U(θ,i,k)
t −t

)

] (3.5)

(cf. Definitions 2.4 and 3.1).

3.2 Measurability properties of MLP approximations

Lemma 3.3. Assume Setting 3.2. Then

(i) it holds for all n ∈ N0, θ ∈ Θ that U θ
n : [0, T ]× Rd × Ω→ R is a continuous random field,

(ii) it holds1 for all n ∈ N0, θ ∈ Θ that σ(U θ
n) ⊆ σ((U (θ,ϑ))ϑ∈Θ, (W

(θ,ϑ))ϑ∈Θ),

(iii) it holds for all n ∈ N0 that (U θ
n)θ∈Θ, (W θ)θ∈Θ, and (U θ)θ∈Θ are independent,

(iv) it holds for all n,m ∈ N0, i, k, i, k ∈ Z with (i, k) 6= (i, k) that (U
(θ,i,k)
n )θ∈Θ and (U

(θ,i,k)
m )θ∈Θ are

independent, and

(v) it holds for all n ∈ N0 that (U θ
n)θ∈Θ are identically distributed random variables.

Proof of Lemma 3.3. We first prove item (i) by induction. For the base case n = 0 note that (3.5)
ensures that for all θ ∈ Θ, t ∈ [0, T ], x ∈ Rd it holds that U θ

0 (t, x) = 0. This implies that for
all θ ∈ Θ it holds that U θ

0 : [0, T ] × Rd × Ω → R is a continuous random field. This establishes
item (i) in the base case n = 0. For the induction step N0 3 (n − 1) 99K n ∈ N let n ∈ N
and assume that for every k ∈ {0, 1, . . . , n − 1}, θ ∈ Θ it holds that U θ

k : [0, T ] × Rd × Ω → Rd

is a continuous random field. This, the hypothesis that f ∈ C([0, T ] × Rd,R), (3.3), and, e.g.,
Hutzenthaler et al. [30, Item (i) in Lemma 2.9] (applied for every n ∈ N0, θ ∈ Θ with d x d,

1Note that for every A ⊆ 2
Ω it holds that σ(A) is a sigma-algebra on Ω and note that for every A ⊆ 2

Ω and
every sigma-algebra B on Ω with A ⊆ B it holds that σ(A) ⊆ B.
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T x T , (Ω,F ,P) x (Ω,F ,P), F x F , U x U θ
k in the notation of [30, Item (i) of Lemma 2.9])

imply that for all k ∈ {0, 1, . . . , n− 1}, θ ∈ Θ it holds that

[0, T ]× Rd × Ω 3 (t, x, ω) 7→
[
F
(
[0, T ]× Rd 3 (s, y) 7→ U θ

k (s, y, ω) ∈ R
)]

(t, x) ∈ R (3.6)

is a continuous random field. Combining this, the hypothesis that g ∈ C(Rd,R), the fact that for all
θ ∈ Θ it holds that W θ : [0, T ]×Ω→ Rd and U θ : [0, T ]×Ω→ [0, T ] are continuous random fields,
(3.5), Hutzenthaler et al. [31, Lemma 2.14], and Beck et al. [1, Lemma 2.4] proves that for all θ ∈ Θ
it holds that U θ

n : [0, T ] × Rd × Ω → Rd is a continuous random field. Induction thus establishes
item (i). Next note that (3.6), Beck et al. [1, Lemma 2.4], and item (i) assure that for all n ∈ N0,
θ ∈ Θ it holds that F (U θ

n) is (B([0, T ]×Rd)⊗ σ(U θ
n))/B(R)-measurable. This, (3.5), the fact that

for all θ ∈ Θ it holds that W θ is (B([0, T ])⊗σ(W θ))/B(Rd)-measurable, the fact that for all θ ∈ Θ
it holds that U θ is (B([0, T ]) ⊗ σ(uθ))/B([0, T ])-measurable, and induction on N0 prove item (ii).
Moreover, observe that item (ii) and the fact that for all θ ∈ Θ it holds that (U (θ,ϑ))ϑ∈Θ, (W

(θ,ϑ))ϑ∈Θ,
W θ, and uθ are independent establish item (iii). Furthermore, note that item (ii) and the fact that
for all i, k, i, k,∈ Z, θ ∈ Θ with (i, k) 6= (i, k) it holds that ((U (θ,i,k,ϑ))ϑ∈Θ, (W

(θ,i,k,ϑ))ϑ∈Θ) and
((U (θ,i,k,ϑ))ϑ∈Θ, (W

(θ,i,k,ϑ))ϑ∈Θ) are independent establish item (iv). In addition, observe that the
fact that (3.5) implies that for all θ ∈ Θ, t ∈ [0, T ], x ∈ Rd it holds that U θ

0 (t, x) = 0, the
hypothesis that (W θ)θ∈Θ are independent standard Brownian motions, the hypothesis that (uθ)θ∈Θ

are i.i.d. random variables, items (i), (ii), (iii), and (iv), Hutzenthaler et al. [30, Corollary 2.5], and
induction on N0 establish item (v). The proof of Lemma 3.3 is thus complete.

3.3 Integrability properties of MLP approximations

Lemma 3.4. Assume Setting 3.2. Then it holds for all n ∈ N0, θ ∈ Θ, s ∈ [0, T ], t ∈ [s, T ],
x ∈ Rd that

E
[
|U θ

n(t, x+W θ
t−s)|

]
+ E

[
|g(x+W θ

t−s)|
]

+ E
[
|(F (U θ

n))(U θt , x+W θ
Uθt −t

)|
]

+

∫ T

s

E
[
|U θ

n(r, x+W θ
r−s)|

]
dr +

∫ T

s

E
[
|(F (U θ

n))(r, x+W θ
r−s)|

]
dr <∞.

(3.7)

Proof of Lemma 3.4. Throughout this proof let x ∈ Rd and assume without loss of generality
that T ∈ (0,∞). Note that (3.2), the fact that for all r, a, b ∈ [0,∞) it holds that (a + b)r ≤
2max{r−1,0}(ar + br), and the fact that for all θ ∈ Θ it holds that E[‖W θ

T‖p] <∞ assure that for all
s ∈ [0, T ], t ∈ [s, T ], θ ∈ Θ it holds that

E
[
|g(x+W θ

t−s)|
]
≤ E

[
L(1 + ‖x+W θ

t−s‖p)
]
≤ L

[
1 + 2max{p−1,0}(‖x‖p + E

[
‖W θ

T‖p
])]

<∞. (3.8)

Next we claim that for all n ∈ N0, s ∈ [0, T ], t ∈ [s, T ], θ ∈ Θ it holds that

E
[
|U θ

n(t, x+W θ
t−s)|

]
+ E

[
|(F (U θ

n))(U θt , x+W θ
Uθt −t

)|
]

+

∫ T

s

E
[
|U θ

n(r, x+W θ
r−s)|

]
dr +

∫ T

s

E
[
|(F (U θ

n))(r, x+W θ
r−s)|

]
dr <∞.

(3.9)

We now prove (3.9) by induction on n ∈ N0. For the base case n = 0 note that the fact that
(3.5) implies that for all t ∈ [0, T ], θ ∈ Θ it holds that U θ

0 (t, x) = 0 ensures that for all s ∈ [0, T ],
t ∈ [s, T ] it holds that

E
[
|U θ

0 (t, x+W θ
t−s)|

]
+ E

[
|(F (U θ

0 ))(U θt , x+W θ
Uθt −t

)|
]

+

∫ T

s

E
[
|U θ

0 (r, x+W θ
r−s)|

]
dr +

∫ T

s

E
[
|(F (U θ

0 ))(r, x+W θ
r−s)|

]
dr (3.10)

= E
[
|(F (0))(U θt , x+W θ

Uθt −t
)|
]

+

∫ T

s

E
[
|(F (0))(r, x+W θ

r−s)|
]
dr.
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In addition, observe that (3.2), (3.3), and (3.8) guarantee that for all s ∈ [0, T ], t ∈ [s, T ], θ ∈ Θ
it holds that

E
[
|(F (0))(U θt , x+W θ

Uθt −t
)|
]

+

∫ T

s

E
[
|(F (0))(r, x+W θ

r−s)|
]
dr

≤ E
[
L
(
1 + ‖x+W θ

Uθt −t
‖p
)]

+

∫ T

s

E
[
L
(
1 + ‖x+W θ

r−s‖p
)]
dr (3.11)

≤ (T + 1) sup
r∈[0,T ]

(
E
[
L
(
1 + ‖x+W θ

r ‖p
)])

<∞.

Combining this and (3.10) establishes (3.9) in the base case n = 0. For the induction step N0 3
(n − 1) 99K n ∈ N let n ∈ N and assume that for all k ∈ {0, 1, . . . , n − 1}, s ∈ [0, T ], t ∈ [s, T ],
θ ∈ Θ it holds that

E
[
|U θ

k (t, x+W θ
t−s)|

]
+ E

[
|(F (U θ

k ))(U θt , x+W θ
Uθt −t

)|
]

(3.12)

+

∫ T

s

E
[
|U θ

k (r, x+W θ
r−s)|

]
dr +

∫ T

s

E
[
|(F (U θ

k ))(r, x+W θ
r−s)|

]
dr <∞.

Observe that (3.5) and the triangle inequality demonstrate that for all s ∈ [0, T ], t ∈ [s, T ], θ ∈ Θ
it holds that

E
[
|U θ

n(t, x+W θ
t−s)|

]
≤ 1N(n)

mn

[
mn∑
i=1

E
[
|g(x+W θ

t−s +W
(θ,0,−i)
T−t )|

]]
(3.13)

+
n−1∑
i=0

(T−t)
mn−i

[
mn−i∑
k=1

E
[
|(F (U

(θ,i,k)
i ))(U (θ,i,k)

t , x+W θ
t−s +W

(θ,i,k)

U(θ,i,k)
t −t

)|
]

+ 1N(i)E
[
|(F (U

(θ,−i,k)
i−1 ))(U (θ,i,k)

t , x+W θ
t−s +W

(θ,i,k)

U(θ,i,k)
t −t

)|
]]
.

Next note that (3.8) and the fact that (W θ)θ∈Θ are independent standard Brownian motions imply
that for all s ∈ [0, T ], t ∈ [s, T ], θ ∈ Θ, i ∈ Z it holds that

E
[
|g(x+W θ

t−s +W
(θ,0,i)
T−t )|

]
= E

[
|g(x+W θ

(t−s)+(T−t))|
]

= E
[
|g(x+W θ

T−s)|
]
<∞. (3.14)

Furthermore, observe that (3.12), Lemma 3.3, the fact that (W θ)θ∈Θ are independent standard
Brownian motions, the fact that (U θ)θ∈Θ are i.i.d. random variables, the hypothesis that (W θ)θ∈Θ

and (U θ)θ∈Θ are independent, the hypothesis that for all θ ∈ Θ, r ∈ (0, 1) it holds that P(uθ ≤
r) = r, Hutzenthaler et al. [31, Lemma 2.15], and Hutzenthaler et al. [31, Lemma 3.7] guarantee
that for all i ∈ {0, 1, . . . , n− 1}, k ∈ Z, s ∈ [0, T ], t ∈ [s, T ], θ ∈ Θ it holds that

(T − t)E
[
|(F (U

(θ,i,k)
i ))(U (θ,i,k)

t , x+W θ
t−s +W

(θ,i,k)

U(θ,i,k)
t −t

)|
]

=

∫ T

t

E
[
|(F (U

(θ,i,k)
i ))(r, x+W θ

t−s +W
(θ,i,k)
r−t )|

]
dr (3.15)

=

∫ T

t

E
[
|(F (U θ

i ))(r, x+W θ
t−s +W θ

r−t)|
]
dr =

∫ T

t

E
[
|(F (U θ

i ))(r, x+W θ
r−s)|

]
dr <∞.

Combining this, (3.12), (3.13), and (3.14) establishes that for all s ∈ [0, T ], t ∈ [s, T ], θ ∈ Θ it
holds that

E
[
|U θ

n(t, x+W θ
t−s)|

]
≤

(
n−1∑
i=0

1
mn−i

[
mn−i∑
k=1

∫ T

t

E
[
|(F (U θ

i ))(r, x+W θ
r−s)|

]
dr

+ 1N(i)

∫ T

t

E
[
|(F (U θ

i−1))(r, x+W θ
r−s)|

]
dr

])
+
1N(n)

mn

[
mn∑
i=1

E
[
|g(x+W θ

T−s)|
]]
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=

[
n−1∑
i=0

∫ T

t

E
[
|(F (U θ

i ))(r, x+W θ
r−s)|

]
dr (3.16)

+ 1N(i)

∫ T

t

E
[
|(F (U θ

i−1))(r, x+W θ
r−s)|

]
dr

]
+ 1N(n)E

[
|g(x+W θ

T−s)|
]

≤ 1N(n)E
[
|g(x+W θ

T−s)|
]

+ 2

[
n−1∑
i=0

∫ T

t

E
[
|(F (U θ

i ))(r, x+W θ
r−s)|

]
dr

]
<∞.

This implies that for all s ∈ [0, T ], θ ∈ Θ it holds that∫ T

s

E
[
|U θ

n(r, x+W θ
r−s)|

]
dr ≤ (T − s) sup

r∈[s,T ]

E
[
|U θ

n(r, x+W θ
r−s)|

]
(3.17)

≤ (T − s)
(
1N(n)E

[
|g(x+W θ

T−s)|
]

+ 2

[
n−1∑
i=0

∫ T

s

E
[
|(F (U θ

i ))(r, x+W θ
r−s)|

]
dr

])
<∞.

Combining this, the triangle inequality, (3.2), (3.3), and (3.11) proves that for all s ∈ [0, T ], θ ∈ Θ
it holds that∫ T

s

E
[
|(F (U θ

n))(r, x+W θ
r−s)|

]
dr

≤
∫ T

s

E
[
|(F (U θ

n)− F (0))(r, x+W θ
r−s)|

]
dr +

∫ T

s

E
[
|(F (0))(r, x+W θ

r−s)|
]
dr (3.18)

≤ L

∫ T

s

E
[
|U θ

n(r, x+W θ
r−s)|

]
dr +

∫ T

s

E
[
|(F (0))(r, x+W θ

r−s)|
]
dr <∞.

This, (3.16), (3.17), and induction prove (3.9). Combining (3.9) with (3.8) therefore establishes
(3.7). The proof of Lemma 3.4 is thus complete.

3.4 Expectations of MLP approximations

Lemma 3.5. Assume Setting 3.2. Then

(i) it holds for all n ∈ N0, θ ∈ Θ, t ∈ [0, T ], x ∈ Rd that (F (U
(θ,n,k)
n ))(U (θ,n,k)

t , x + W
(θ,n,k)

U(θ,n,k)
t −t

)−

1N(n)(F (U
(θ,−n,k)
n−1 ))(U (θ,n,k)

t , x+W
(θ,n,k)

U(θ,n,k)
t −t

), k ∈ Z, are i.i.d. random variables,

(ii) it holds for all n ∈ N0, t ∈ [0, T ], x ∈ Rd that

E
[
|U0

n(t, x)|
]

+ E
[
|g(x+W

(0,0,−1)
T−t )|

]
+

n−1∑
i=0

E
[
|(F (U

(0,i,1)
i )− 1N(i)F (U

(0,−i,1)
i−1 ))(U (0,i,1)

t , x+W
(0,i,1)

U(0,i,1)
t −t

)|
]
<∞,

(3.19)

(iii) it holds for all n ∈ N0, t ∈ [0, T ], x ∈ Rd that

E
[
U0
n(t, x)

]
= 1N(n)E

[
g
(
x+W

(0,0,−1)
T−t

)]
+ (T − t)

[
n−1∑
i=0

E
[
(F (U

(0,i,1)
i )− 1N(i)F (U

(0,−i,1)
i−1 ))(U (0,i,1)

t , x+W
(0,i,1)

U(0,i,1)
t −t

)
]]
,

(3.20)

and

(iv) it holds for all n ∈ N0, θ ∈ Θ, t ∈ [0, T ], x ∈ Rd that

(T − t)E
[
|(F (U θ

n)− 1N(n)F (U θ
n−1))(U θt , x+W θ

Uθt −t
)|
]

=

∫ T

t

E
[
|(F (U θ

n)− 1N(n)F (U θ
n−1))(r, x+W θ

r−t)|
]
dr <∞.

(3.21)
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Proof of Lemma 3.5. Throughout this proof let x ∈ Rd. Observe that Lemma 3.3, the hypothesis
that (U θ)θ∈Θ are i.i.d. random variables, the hypothesis that (W θ)θ∈Θ are independent standard
Brownian motions, Hutzenthaler et al. [30, Corollary 2.5], and Hutzenthaler et al. [30, Item (i) of
Lemma 2.6] (applied for every n ∈ N0, θ ∈ Θ with d x d, T x T , (Ω,F ,P) x (Ω,F ,P), F x F ,
U x U θ

n in the notation of [30, Item (i) of Lemma 2.6]) imply that for all n ∈ N0, θ ∈ Θ, t ∈ [0, T ]
it holds that (

F (U (θ,n,k)
n )− 1N(n)F (U

(θ,−n,k)
n−1 )

)(
U (θ,n,k)
t , x+W

(θ,n,k)

U(θ,n,k)
t −t

)
, k ∈ Z, (3.22)

are i.i.d. random variables. This establishes item (i). Next note that the triangle inequality,
Lemma 3.3, Lemma 3.4, (3.3), (3.5), and the fact that (W θ)θ∈Θ are independent standard Brownian
motions guarantee that for all n ∈ N0, t ∈ [0, T ] it holds that

E
[
|U0

n(t, x)|
]

+ E
[
|g(x+W

(0,0,−1)
T−t )|

]
+
∑n−1

i=0 E
[
|(F (U

(0,i,1)
i )− 1N(i)F (U

(0,−i,1)
i−1 ))(U (0,i,1)

t , x+W
(0,i,1)

U(0,i,1)
t −t

)|
]

≤ E
[
|U0

n(t, x)|
]

+ E
[
|g(x+W

(0,0,−1)
T−t )|

]
+
∑n−1

i=0 E
[
|(F (U

(0,i,1)
i ))(U (0,i,1)

t , x+W
(0,i,1)

U(0,i,1)
t −t

)|
]

+
∑n−1

i=0 1N(i)E
[
|(F (U

(0,−i,1)
i−1 ))(U (0,i,1)

t , x+W
(0,i,1)

U(0,i,1)
t −t

)|
]

(3.23)

≤ E
[
|U0

n(t, x)|
]

+ E
[
|g(x+W 0

T−t)|
]

+ 2
∑n−1

i=0 E
[
|(F (U0

i ))(U0
t , x+W 0

U0
t −t

)|
]
<∞.

This establishes item (ii). Furthermore, observe that item (i), item (ii), Lemma 3.3, (3.3), (3.5),
and the fact that (W θ)θ∈Θ are independent standard Brownian motions ensure that for all n ∈ N0,
t ∈ [0, T ] it holds that

E
[
U0
n(t, x)

]
=
1N(n)

mn

[
mn∑
k=1

E
[
g(x+W

(0,0,−k)
T−t )

]]
+

n−1∑
i=0

(T−t)
mn−i

[
mn−i∑
k=1

E
[
(F (U

(0,i,k)
i )− 1N(i)F (U

(0,−i,k)
i−1 ))(U (0,i,k)

t , x+W
(0,i,k)

U(0,i,k)
t −t

)
]]

(3.24)

= 1N(n)E
[
g(x+W

(0,0,−1)
T−t )

]
+ (T − t)

[
n−1∑
i=0

E
[
(F (U

(0,i,1)
i )− 1N(i)F (U

(0,−i,1)
i−1 ))(U (0,i,1)

t , x+W
(0,i,1)

U(0,i,1)
t −t

)
]]
.

This establishes item (iii). In addition, observe that item (i), item (ii), Lemma 3.3, the fact that
(U θ)θ∈Θ are i.i.d. random variables, the hypothesis that for all θ ∈ Θ, r ∈ (0, 1) it holds that
P(uθ ≤ r) = r, and Hutzenthaler et al. [31, Lemma 3.7] demonstrate that for all n ∈ N0, θ ∈ Θ,
t ∈ [0, T ] it holds that

(T − t)E
[
|(F (U θ

n)− 1N(n)F (U θ
n−1))(U θt , x+W θ

Uθt −t
)|
]

=

∫ T

t

E
[
|(F (U θ

n)− 1N(n)F (U θ
n−1))(r, x+W θ

r−t)|
]
dr <∞.

(3.25)

This establishes item (iv). The proof of Lemma 3.5 is thus complete.

3.5 Monte Carlo approximations

Lemma 3.6. Let p ∈ (2,∞), n ∈ N, let (Ω,F ,P) be a probability space, and let Xi : Ω → R,
i ∈ {1, 2, . . . , n}, be i.i.d. random variables with E[|X1|] <∞. Then it holds that(

E
[
|E[X1]− 1

n

(∑n
i=1Xi

)
|p
])1/p ≤ [p−1

n

]1/2(E[|X1 − E[X1]|p
])1/p

. (3.26)

16



Proof of Lemma 3.6. First, observe that the hypothesis that for all i ∈ {1, 2, . . . , n} it holds that
Xi : Ω→ R are i.i.d. random variables assures that

E
[
|E[X1]− 1

n
(
∑n

i=1Xi)|p
]

= E
[
| 1
n
(
∑n

i=1(E[X1]−Xi))|p
]

= n−p E
[
|
∑n

i=1(E[Xi]−Xi)|p
]
. (3.27)

Combining this, the fact that for all i ∈ {1, 2, . . . , n} it holds that Xi : Ω → R are i.i.d. random
variables, and, e.g., [43, Theorem 2.1] (applied with p x p, (Si)i∈{0,1,...,n} x (

∑i
k=1(E[Xk] −

Xk))i∈{0,1,...,n}, (Xi)i∈{1,2,...,n} x (E[Xi]−Xi)i∈{1,2,...,n} in the notation of [43, Theorem 2.1]) ensures
that (

E
[
|E[X1]− 1

n

(∑n
i=1 Xi

)
|p
])2/p

= 1
n2

(
E
[
|
∑n

i=1(E[Xi]−Xi)|p
])2/p

≤ (p−1)
n2

[∑n
i=1

(
E
[
|E[Xi]−Xi|p

])2/p]
= (p−1)

n2

[
n
(
E
[
|E[X1]−X1|p

])2/p]
= (p−1)

n

(
E
[
|E[X1]−X1|p

])2/p
.

(3.28)

The proof of Lemma 3.6 is thus complete.

Corollary 3.7. Let p ∈ [2,∞), n ∈ N, let (Ω,F ,P) be a probability space, and let Xi : Ω → R,
i ∈ {1, 2, . . . , n}, be i.i.d. random variables with E[|X1|] <∞. Then it holds that(

E
[
|E[X1]− 1

n
(
∑n

i=1Xi)|p
])1/p ≤ [p−1

n

]1/2(E[|X1 − E[X1]|p
])1/p

. (3.29)

Proof of Corollary 3.7. Observe that, e.g., Grohs et al. [21, Lemma 2.3] and Lemma 3.6 establish
(3.29). The proof of Corollary 3.7 is thus complete.

Corollary 3.8. Let p ∈ [2,∞), n ∈ N, let (Ω,F ,P) be a probability space, and let Xi : Ω → R,
i ∈ {1, 2, . . . , n}, be i.i.d. random variables with E[|X1|] <∞. Then(

E
[
|E[X1]− 1

n
(
∑n

i=1Xi)|p
])1/p ≤ Kp

√
p−1

n1/2

(
E
[
|X1|p

])1/p (3.30)

(cf. Definition 3.1).

Proof of Corollary 3.8. Note that Definition 3.1 and Corollary 3.7 demonstrate that (3.30) holds.
The proof of Corollary 3.8 is thus complete.

3.6 Recursive error bounds for MLP approximations

Lemma 3.9. Assume Setting 3.2. Then it holds for all n ∈ N0, t ∈ [0, T ], x ∈ Rd that(
E
[∣∣U0

n

(
t, x+W 0

t

)
− E

[
U0
n

(
t, x+W 0

t

)]∣∣p])1/p
≤ 1N(n)m

mn/2

[(
E
[∣∣g(x+W 0

T

)∣∣p])1/p + (T − t)(p−1)/p

(∫ T

t

E
[∣∣f(s, x+W 0

s , 0
)∣∣p] ds)1/p] (3.31)

+
n−1∑
i=0

L(T − t)(p−1)/pm

m(n−i)/2

[(
1(0,n)(i) + 1[0,n−1)(i)m

1/2
)(∫ T

t

E
[∣∣(U0

i − u
)(
s, x+W 0

s

)∣∣p] ds)1/p].
Proof of Lemma 3.9. Throughout this proof let Gk : [0, T ] × Rd × Ω → R, k ∈ Z, satisfy for all
k ∈ Z, t ∈ [0, T ], x ∈ Rd that

Gk(t, x) = g(x+W
(0,0,−k)
T−t ) (3.32)

and let Fj,k
n,i : [0, T ]×Rd×Ω→ R, n, i, j, k ∈ Z, satisfy for all n ∈ N, i ∈ {0, 1, . . . , n− 1}, j, k ∈ Z,

t ∈ [0, T ], x ∈ Rd that

Fj,k
n,i(t, x) = (F (U

(0,j,k)
i )− 1N(i)F (U

(0,−j,k)
i−1 ))(U (0,j,k)

t , x+W
(0,j,k)

U(0,j,k)
t −t

). (3.33)
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Observe that the hypothesis that (W θ)θ∈Θ are independent standard Brownian motions and the
hypothesis that g ∈ C(Rd,R) assure that for all t ∈ [0, T ], x ∈ Rd it holds that (Gk(t, x))k∈Z are
i.i.d. random variables. This and Corollary 3.8 (applied for every n ∈ N, t ∈ [0, T ], x ∈ Rd with
p x p, n x mn, (Xk)k∈{1,2,...,mn} x (Gk(t, x))k∈{1,2,...,mn} in the notation of Corollary 3.8) ensure
that for all n ∈ N0, t ∈ [0, T ], x ∈ Rd it holds that(

E
[∣∣ 1
mn

[∑mn

k=1 Gk(t, x)
]
− E

[
G1(t, x)

]∣∣p])1/p ≤ m
mn/2

(
E
[
|G1(t, x)|p

])1/p
. (3.34)

Next note that item (i) of Lemma 3.5 and Corollary 3.8 (applied for every n ∈ N, i ∈ {0, 1, . . . ,
n − 1}, t ∈ [0, T ], x ∈ Rd with p x p, n x mn−i, (Xk)k∈{1,2,...,mn−i} x (Fi,k

n,i(t, x))k∈{1,2,...,mn−i}
in the notation of Corollary 3.8) demonstrate that for all n ∈ N, i ∈ {0, 1, . . . , n − 1}, t ∈ [0, T ],
x ∈ Rd it holds that(

E
[∣∣ 1
mn−i

[∑mn−i

k=1 Fi,k
n,i(t, x)

]
− E

[
Fi,1
n,i(t, x)

]∣∣p])1/p ≤ m

m(n−i)/2

(
E
[
|Fi,1

n,i(t, x)|p
])1/p

. (3.35)

Combining this, (3.5), (3.32), (3.33), (3.34), item (iii) of Lemma 3.5, and the triangle inequality
implies that for all n ∈ N0, t ∈ [0, T ], x ∈ Rd it holds that(

E
[∣∣U0

n(t, x)− E
[
U0
n(t, x)

]∣∣p])1/p
=
(
E
[∣∣(1N(n)

mn

[∑mn

k=1 Gk(t, x)
]

+
∑n−1

i=0
(T−t)
mn−i

[∑mn−i

k=1 Fi,k
n,i(t, x)

])
−
(
1N(n)E

[
G1(t, x)

]
+
∑n−1

i=0 (T − t)E
[
Fi,1
n,i(t, x)

])∣∣p])1/p
≤ 1N(n)

(
E
[∣∣ 1
mn

[∑mn

k=1 Gk(t, x)
]
− E

[
G1(t, x)

]∣∣p])1/p (3.36)

+
∑n−1

i=0 (T − t)
(
E
[∣∣ 1
mn−i

[∑mn−i

k=1 Fi,k
n,i(t, x)

]
− E

[
Fi,1
n,i(t, x)

]∣∣p])1/p
≤ 1N(n)m

mn/2

(
E
[
|G1(t, x)|p

])1/p
+

n−1∑
i=0

(T−t)m
m(n−i)/2

(
E
[
|Fi,1

n,i(t, x)|p
])1/p

.

Moreover, observe that (3.33) and items (i) and (iv) of Lemma 3.5 assure that for all n ∈ N0,
t ∈ [0, T ], x ∈ Rd it holds that

n−1∑
i=0

(T−t)m
m(n−i)/2

(
E
[
|Fi,1

n,i(t, x)|p
])1/p

=
n−1∑
i=0

(T−t)(p−1)/pm

m(n−i)/2

(
(T − t)E

[
|Fi,1

n,i(t, x)|p
])1/p

=
n−1∑
i=0

(T−t)(p−1)/pm

m(n−i)/2

(∫ T

t

E
[∣∣(F (U

(0,i,1)
i )− 1N(i)F (U

0,−i,1)
i−1 )

)(
s, x+W

(0,i,1)
s−t

)∣∣p] ds)1/p. (3.37)

Furthermore, note that (3.3), (3.5), and the triangle inequality guarantee that for all n ∈ N0,
t ∈ [0, T ], x ∈ Rd it holds that

n−1∑
i=0

(T−t)(p−1)/pm

m(n−i)/2

(∫ T

t

E
[∣∣(F (U

(0,i,1)
i )− 1N(i)F (U

0,−i,1)
i−1 )

)(
s, x+W

(0,i,1)
s−t

)∣∣p] ds)1/p
≤ 1N(n)(T−t)(p−1)/pm

mn/2

(∫ T

t

E
[∣∣f(s, x+W

(0,0,1)
s−t , 0)

∣∣p] ds)1/p (3.38)

+
n−1∑
i=1

(T−t)(p−1)/pm

m(n−i)/2

[(∫ T

t

E
[∣∣(F (U

(0,i,1)
i )− F (u)

)(
s, x+W

(0,i,1)
s−t

)∣∣p] ds)1/p
+

(∫ T

t

E
[∣∣(F (u)− F (U

(0,−i,1)
i−1 )

)(
s, x+W

(0,i,1)
s−t

)∣∣p] ds)1/p].
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Combining this, Lemma 3.3, (3.2), (3.3), (3.32), (3.36), (3.37), and the fact that (W θ)θ∈Θ are
independent standard Brownian motions demonstrates that for all n ∈ N0, t ∈ [0, T ], x ∈ Rd it
holds that(

E
[∣∣U0

n(t, x)− E
[
U0
n(t, x)

]∣∣p])1/p ≤ 1N(n)m

mn/2

(
E
[
|G1(t, x)|p

])1/p
+

n−1∑
i=0

(T−t)m
m(n−i)/2

(
E
[
|Fi,1

n,i(t, x)|p
])1/p

≤ 1N(n)m

mn/2

[(
E
[∣∣g(x+W 1

T−t
)∣∣p])1/p + (T − t)(p−1)/p

(∫ T

t

E
[∣∣f(s, x+W

(0,0,1)
s−t , 0)

∣∣p] ds)1/p]

+
n−1∑
i=1

L(T−t)(p−1)/pm

m(n−i)/2

[(∫ T

t

E
[∣∣(U (0,i,1)

i − u
)(
s, x+W

(0,i,1)
s−t

)∣∣p] ds)1/p
+

(∫ T

t

E
[∣∣(u− U (0,−i,1)

i−1

)(
s, x+W

(0,i,1)
s−t

)∣∣p] ds)1/p] (3.39)

= 1N(n)m

mn/2

[(
E
[∣∣g(x+W 0

T−t
)∣∣p])1/p + (T − t)(p−1)/p

(∫ T

t

E
[∣∣f(s, x+W 0

s−t, 0)
∣∣p] ds)1/p]

+
n−1∑
i=0

L(T−t)(p−1)/pm

m(n−i)/2

[(
1(0,n)(i) + 1[0,n−1)(i)m

1/2
)(∫ T

t

E
[∣∣(U0

i − u
)(
s, x+W 0

s−t
)∣∣p] ds)1/p].

This and the fact thatW 0 has independent increments ensure that for all n ∈ N0, t ∈ [0, T ], x ∈ Rd

it holds that(
E
[∣∣U0

n(t, x+W 0
t )− E

[
U0
n(t, x+W 0

t )
]∣∣p])1/p

≤ 1N(n)m

mn/2

[(
E
[∣∣g(x+W 0

T

)∣∣p])1/p + (T − t)(p−1)/p

(∫ T

t

E
[∣∣f(s, x+W 0

s , 0)
∣∣p] ds)1/p] (3.40)

+
n−1∑
i=0

L(T−t)(p−1)/pm

m(n−i)/2

[(
1(0,n)(i) + 1[0,n−1)(i)m

1/2
)(∫ T

t

E
[∣∣(U0

i − u
)(
s, x+W 0

s−t
)∣∣p] ds)1/p].

The proof of Lemma 3.9 is thus complete.

Lemma 3.10. Assume Setting 3.2. Then it holds for all n ∈ N0, t ∈ [0, T ], x ∈ Rd that(
E
[∣∣U0

n(t, x+W 0
t )− u(t, x+W 0

t )
∣∣p])1/p (3.41)

≤ m exp(L(T − t))
mn/2

[(
E
[∣∣g(x+W 0

T )
∣∣p])1/p + (T − t)(p−1)/p

(∫ T

t

E
[∣∣f(s, x+W 0

s , 0)
∣∣p] ds)1/p]

+
n−1∑
i=0

L(T − t)(p−1)/pm

m(n−i)/2

[(
1(0,n)(i) +m

1/2
)(∫ T

t

E
[∣∣(U0

i − u)(s, x+W 0
s )
∣∣p] ds)1/p].

Proof of Lemma 3.10. First, observe that Lemma 3.4, Corollary 2.5, and the triangle inequality
ensure that for all n ∈ N0, t ∈ [0, T ], x ∈ Rd it holds that(

E
[
|U0

n(t, x)− u(t, x)|p
])1/p

≤
(
E
[
|U0

n(t, x)− E[U0
n(t, x)]|p

])1/p
+
(
E
[
|E[U0

n(t, x)]− u(t, x)|p
])1/p

.
(3.42)

Next note that items (ii), (iii), and (iv) of Lemma 3.5, the fact that (W θ)θ∈Θ are independent
standard Brownian motions, and (3.5) demonstrate that for all n ∈ N0, t ∈ [0, T ], x ∈ Rd it holds
that

E
[
U0
n(t, x)

]
= 1N(n)E

[
g(x+W

(0,0,−1)
T−t )

]
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+ (T − t)
[
n−1∑
i=0

E
[
(F (U

(0,i,1)
i )− 1N(i)F (U

(0,−i,1)
i−1 ))(U (0,i,1)

t , x+W
(0,i,1)

U(0,i,1)
t −t

)
]]

(3.43)

= 1N(n)E
[
g(x+W 0

T−t)
]

+

[
n−1∑
i=0

∫ T

t

E
[
(F (U

(0,i,1)
i )− 1N(i)F (U

(0,−i,1)
i−1 ))(s, x+W

(0,i,1)
s−t )

]
ds

]
.

In addition, observe that (3.3), the fact that (W θ)θ∈Θ are independent standard Brownian motions,
the fact that (U θ)θ∈Θ are i.i.d. random variables, items (iii) and (v) of Lemma 3.3, and [30, Lemma
2.2] prove that for all i ∈ N0, t ∈ [0, T ], s ∈ [t, T ], x ∈ Rd it holds that

E
[
(F (U

(0,i,1)
i )− 1N(i)F (U

(0,−i,1)
i−1 ))(s, x+W

(0,i,1)
s−t )

]
= E

[
(F (U

(0,i,1)
i ))(s, x+W

(0,i,1)
s−t )

]
− 1N(i)E

[
(F (U

(0,−i,1)
i−1 ))(s, x+W

(0,i,1)
s−t )

]
= E

[
(F (U0

i ))(s, x+W 0
s−t)
]
− 1N(i)E

[
(F (U0

i−1))(s, x+W 0
s−t)
]
.

(3.44)

Combining this, Lemma 3.4, and (3.43) yields that for all n ∈ N0, t ∈ [0, T ], x ∈ Rd it holds that

E
[
U0
n(t, x)

]
= 1N(n)E

[
g(x+W 0

T−t)
]

+

[
n−1∑
i=0

∫ T

t

(
E
[
(F (U0

i ))(s, x+W 0
s−t)
]
− 1N(i)E

[
(F (U0

i−1))(s, x+W 0
s−t)
])
ds

]

= 1N(n)

[
E
[
g(x+W 0

T−t)
]

+

∫ T

t

E
[
(F (U0

n−1))(s, x+W 0
s−t)
]
ds

]
.

(3.45)

This and (3.4) show that for all n ∈ N0, t ∈ [0, T ], x ∈ Rd it holds that

u(t, x)− E
[
U0
n(t, x)

]
=

{
u(t, x) : n = 0∫ T
t
E
[
(F (u)− F (U0

n−1))(s, x+W 0
s−t)
]
ds : n ∈ N

. (3.46)

This, (3.2), (3.3), Corollary 2.5, the triangle inequality, Jensen’s inequality, Fubini’s theorem, and
the fact that W 0 has independent increments assure that for all n ∈ N0, t ∈ [0, T ], x ∈ Rd it holds
that(

E
[
|E[U0

n(t, x+W 0
t )]− u(t, x+W 0

t )|p
])1/p (3.47)

≤ 1{0}(n)
(
E
[
|u(t, x+W 0

t )|p
])1/p

+ 1N(n)

(
E

[∣∣∣∣∫ T

t

E
[
(F (u)− F (U0

n−1))(s, x+W 0
s )
]
ds

∣∣∣∣p
])1/p

≤ 1{0}(n)
(
E
[
|u(t, x+W 0

t )|p
])1/p

+ 1N(n)

∫ T

t

(
E
[
|(F (u)− F (U0

n−1))(s, x+W 0
s )|p
])1/p

ds

≤ 1{0}(n)
(
E
[
|u(t, x+W 0

t )|p
])1/p

+ 1N(n)L

∫ T

t

(
E
[
|(u− U0

n−1)(s, x+W 0
s )|p
])1/p

ds.

Next observe that Hölder’s inequality ensures that for all n ∈ N, t ∈ [0, T ], x ∈ Rd it holds that∫ T

t

(
E
[
|(u− U0

n−1)(s, x+W 0
s )|p
])1/p

ds =

([∫ T

t

(
E
[
|(u− U0

n−1)(s, x+W 0
s )|p
])1/p

ds

]p)1/p

≤
(

(T − t)p−1

∫ T

t

E
[
|(u− U0

n−1)(s, x+W 0
s )|p
]
ds

)1/p
(3.48)

= (T − t)(p−1)/p

(∫ T

t

E
[
|(u− U0

n−1)(s, x+W 0
s )|p
]
ds

)1/p
.

Combining this, Lemma 2.3, and (3.47) demonstrates that for all n ∈ N0, t ∈ [0, T ], x ∈ Rd it
holds that(

E
[∣∣E[U0

n(t, x+W 0
t )
]
− u(t, x+W 0

t )
∣∣p])1/p
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≤ 1{0}(n) exp
(
L(T − t)

)[(
E
[
|g(x+WT )|p

])1/p
+ (T − t)(p−1)/p

(∫ T
t
E
[
|f(s, x+Ws, 0)|p

]
ds
)1/p]

+ 1N(n)L(T − t)(p−1)/p
(∫ T

t
E
[
|(u− U0

n−1)(s, x+W 0
s )|p
]
ds
)1/p
. (3.49)

This, Lemma 3.9, (3.42), and the fact that m ∈ [1,∞) guarantee that for all n ∈ N0, t ∈ [0, T ],
x ∈ Rd it holds that(

E
[
|U0

n(t, x+W 0
t )− u(t, x+W 0

t )|p
])1/p (3.50)

≤ m exp(L(T − t))
mn/2

[(
E
[
|g(x+W 0

T )|p
])1/p

+ (T − t)(p−1)/p

(∫ T

t

E
[
|f(s, x+W 0

s , 0)|p
]
ds

)1/p]

+
n−1∑
i=0

L(T − t)(p−1)/pm

m(n−i)/2

[(
1(0,n)(i) +m

1/2
)(∫ T

t

E
[
|(U0

i−1 − u)(s, x+W 0
s )|p
]
ds

)1/p]
.

The proof of Lemma 3.10 is thus complete.

Lemma 3.11. It holds for all n ∈ N that[n
3

]n
≤
[n
e

]n
< e
[n
e

]n
<

e

21/2

[n
e

]n+1/2

≤ n! ≤ e
[n
e

]n+1/2

< e

[
n+ 1

e

]n+1

(3.51)

and
nn ≤ 2−

1/2e
1/2nn+1/2 ≤ (n!)en ≤ e

1/2nn+1/2 ≤ (n+ 1)(n+1). (3.52)

Proof of Lemma 3.11. Throughout this proof let f : R → R satisfy for all x ∈ [2,∞) that f(x) =
(x− 1

2
)(ln(x)− ln(x− 1)). Observe that for all n ∈ N it holds that

ln(n!) = ln
(
n · (n− 1) · . . . · 2 · 1

)
=

n∑
k=1

ln(k)

=
n∑
k=2

[∫ k

k−1

ln(x) dx+

(
ln(k)−

∫ k

k−1

ln(x) dx

)]
.

(3.53)

In addition, note that for all k ∈ N it holds that

ln(k)−
∫ k

k−1

ln(x) dx = ln(k)−
[(
k ln(k)− k

)
−
(
(k − 1) ln(k − 1)− (k − 1)

)]
= 1− (k − 1)

(
ln(k)− ln(k − 1)

)
. (3.54)

This and (3.53) yield that for all n ∈ N it holds that

ln(n!) =
n∑
k=2

∫ k

k−1

ln(x) dx+
n∑
k=2

[
1− (k − 1)

(
ln(k)− ln(k − 1)

)]
=

∫ n

1

ln(x) dx+
n∑
k=2

[
1− (k − 1)

(
ln(k)− ln(k − 1)

)]
(3.55)

= n ln(n)− n+ 1 + 1
2

n∑
k=2

(
ln(k)− ln(k − 1)

)
+
∑n

k=2

[
1− (k − 1

2
)
(
ln(k)− ln(k − 1)

)]
= (n+ 1

2
) ln(n)− n+ 1 +

n∑
k=2

[1− f(k)].

Next observe that the fact that for all x ∈ [2,∞) it holds that f(x) = (x − 1
2
)(ln(x) − ln(x − 1))

implies that for all x ∈ [2,∞) it holds that

f ′(x) =
(
ln(x)− ln(x− 1)

)
+ (x− 1

2
)
(

1
x
− 1

x−1

)
. (3.56)
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This ensures that for all x ∈ [2,∞) it holds that

f ′′(x) = 2
(

1
x
− 1

x−1

)
− (x− 1

2
)
(

1
x2
− 1

(x−1)2

)
= 2

x2(x−1)2

[
2
(
x(x− 1)2 − x2(x− 1)

)
− (x− 1

2
)
(
(x− 1)2 − x2

)]
= 2

x2(x−1)2

[
−2x(x− 1) + (x− 1

2
)(2x− 1)

]
= 1

x2(x−1)2
> 0.

(3.57)

Combining this and (3.56) shows that for all x ∈ [2,∞) it holds that f ′ is increasing. This and
the fact that (3.56) implies that limx→∞ f

′(x) = 0 demonstrates that for all x ∈ [2,∞) it holds
that f ′(x) ∈ (−∞, 0]. Hence, we obtain that for all x ∈ [2,∞) it holds that f is non-increasing.
Combining this and the fact that limx→∞ f(x) = 1 assures that for all x ∈ [2,∞) it holds that
f(x) ∈ [1,∞). This and (3.55) guarantee that for all n ∈ N it holds that

ln(n!) = (n+ 1
2
) ln(n)− n+ 1 +

n∑
k=2

[1− f(k)] ≤ (n+ 1
2
) ln(n)− n+ 1. (3.58)

Furthermore, note that for all n ∈ N it holds that
n∑
k=2

[1− f(k)] =
n∑
k=2

[
1− (k − 1

2
)
(
ln(k)− ln(k − 1)

)]
= 1N(n− 1)

[
(n− 1)− (n− 1

2
) ln(n) + ln((n− 1)!)

]
.

(3.59)

Combining this, the fact that for all x ∈ [2,∞) it holds that f is non-increasing, and (3.55) ensures
that for all n ∈ N it holds that

n∑
k=2

[1− f(k)] = 1N(n− 1)
[
(n− 1)− (n− 1

2
) ln(n) + ln((n− 1)!)

]
= 1N(n− 1)

[
ln((n− 1)!)−

(
(n− 1

2
) ln(n− 1)− (n− 1) + 1

)
(3.60)

+ 1− (n− 1
2
) ln(n) + (n− 1

2
) ln(n− 1)

]
≥ 1N(n− 1)[1− f(n)] ≥ 1N(n− 1)[1− 3

2
ln(2)] ≥ −1

2
ln(2).

This and (3.55) show that for all n ∈ N it holds that

ln(n!) = (n+ 1
2
) ln(n)− n+ 1 +

n∑
k=2

[1− f(k)] ≥ (n+ 1
2
) ln(n)− n+ 1− 1

2
ln(2). (3.61)

Combining this and (3.58) proves that for all n ∈ N it holds that

nn

exp(n− 1)
≤ 2−

1/2 n(n+1/2)

exp(n− 1/2)
= exp

(
(n+ 1/2) ln(n)− n+ 1− ln(2

1/2)
)
≤ n!

≤ exp((n+ 1/2) ln(n)− n+ 1) =
n(n+1/2)

exp(n− 1)
≤ (n+ 1)(n+1)

exp(n)
.

(3.62)

The proof of Lemma 3.11 is thus complete.

Lemma 3.12. Let b·c : R→ Z satisfy for all x ∈ R that bxc = max{n ∈ Z : n ≤ x}. Then for all
m ∈ [1,∞) it holds that

max
n∈N0

mn/2

n!
≤ mbm

1/2c/2

bm1/2c!
<

exp(m1/2)

(bm1/2c)1/2
≤ exp(m

1/2). (3.63)

Proof of Lemma 3.12. Throughout this proof let m ∈ [1,∞), let d·e : R → Z satisfy for all x ∈ R
that dxe = min{n ∈ Z : x ≤ n}, and let f : N0 → R satisfy for all n ∈ N0 that f(n) = ln(mn/2) −
ln(n!). We claim that

max
n∈N0

f(n) = f(bm1/2c). (3.64)
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Note that for all n ∈ N0 it holds that

f(n) = ln(m
n/2)− ln

(
n · (n− 1) · . . . · 2 · 1

)
= n

2
ln(m)−

∑n
k=1 ln(k). (3.65)

This guarantees that for all n ∈ N it holds that

f(n)− f(n− 1) =
[
n
2

ln(m)−
∑n

k=1 ln(k)
]
−
[
n−1

2
ln(m)−

∑n−1
k=1 ln(k)

]
= 1

2
ln(m)− ln(n) = ln(m

1/2)− ln(n).
(3.66)

This and the fact that (0,∞) 3 x 7→ ln(x) ∈ R is increasing show that for all n ∈ {1, 2, . . . , bm1/2c}
it holds that f(n)− f(n− 1) ≥ 0. Furthermore, note that (3.66) and the fact that (0,∞) 3 x 7→
ln(x) ∈ R is increasing assure that for all n ∈ N ∩ [dm1/2e,∞) it holds that f(n) − f(n − 1) ≤ 0.
Combining this and the fact that for all n ∈ {1, 2, . . . , bm1/2c} it holds that f(n) − f(n − 1) ≥ 0
demonstrates that

max
n∈N0

f(n) = max{f(bm1/2c), f(dm1/2e)}. (3.67)

Next observe that (3.65), the fact that (0,∞) 3 x 7→ ln(x) ∈ R is increasing, and the fact that for
all x ∈ R it holds that bxc ≤ dxe guarantee that

f(dm1/2e)− f(bm1/2c)

=
(
dm1/2e ln(m

1/2)−
∑dm1/2e

k=1 ln(k)
)
−
(
bm1/2c ln(m1/2)−

∑bm1/2c
k=1 ln(k)

)
=
(
dm1/2e − bm1/2c

)
ln(m

1/2)−
(∑dm1/2e

k=1 ln(k)−
∑bm1/2c

k=1 ln(k)
)

(3.68)

= 1R\N(m
1/2) ln(m

1/2)−
∑dm1/2e

k=bm1/2c+1
ln(k) = 1R\N(m1/2)

[
ln(m1/2)− ln(dm1/2e)

]
≤ 0.

Combining this and (3.67) establishes (3.64). In addition, observe that Lemma 3.11, the fact that
for all x ∈ R it holds that bxc ≤ x, and the fact that ln(6) < 2 ensure that

f(bm1/2c) = ln(m
bm1/2c/2)− ln(bm1/2c!)

≤ ln(m
bm1/2c/2)−

(
bm1/2c+ 1

2

)
ln(bm1/2c) + bm1/2c − 1 + 1

2
ln(2)

=
[
ln(m

bm1/2c/2)− bm1/2c ln(bm1/2c)
]
− 1

2
ln(bm1/2c) + bm1/2c − 1 + 1

2
ln(2) (3.69)

≤ 1
2

ln(3)− 1
2

ln(bm1/2c) + bm1/2c − 1 + 1
2

ln(2)

< bm1/2c − 1
2

ln(bm1/2c) ≤ m
1/2 − 1

2
ln(bm1/2c).

Combining this, (3.64), and the fact that R 3 x 7→ exp(x) ∈ (0,∞) is monotone yields that

max
n∈N0

exp(f(n)) = max
n∈N0

mn/2

n!
≤ mbm

1/2c/2

bm1/2c!
< exp

(
m

1/2 − 1
2

ln(bm1/2c)
)

=
exp(m1/2)

(bm1/2c)1/2
≤ exp(m

1/2).

(3.70)

The proof of Lemma 3.12 is thus complete.

Lemma 3.13. Let M,N ∈ N, T ∈ (0,∞), τ ∈ [0, T ], a, b ∈ [0,∞), p ∈ [1,∞), let b·c : R → Z
satisfy for all x ∈ R that bxc = max{n ∈ Z : n ≤ x}, let fn : [τ, T ]→ [0,∞], n ∈ N0, be measurable,
assume sups∈[τ,T ]|f0(s)| <∞, and assume for all n ∈ {1, 2, . . . , N}, t ∈ [τ, T ] that

|fn(t)| ≤ a

Mn/2
+

n−1∑
i=0

[
b

M (n−i−1)/2

[∫ T

t

|fi(s)|p ds
]1/p]

. (3.71)
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Then

fN(τ) ≤
[
a+ b(T − τ)

1/p

[
sup
s∈[τ,T ]

|f0(s)|
]] (

1 + b(T − τ)1/p
)N−1

M (N−bMp/2c)/2(bM p/2c!)1/p

≤
[
a+ b(T − τ)

1/p

[
sup
s∈[τ,T ]

|f0(s)|
]](

1 + b(T − τ)1/p
)N−1

MN/2 exp
(
−Mp/2/p

) . (3.72)

Proof of Lemma 3.13. Note that Hutzenthaler et al. [28, Lemma 3.10] (applied with c x M−1/2,
αx τ , β x T in the notation of Hutzenthaler et al. [28, Lemma 3.10]) assures that

fN(τ) ≤
[
a+ b(T − τ)

1/p

[
sup
s∈[τ,T ]

|f0(s)|
]][

sup
k∈N0

M
k/2

(k!)1/p

](
1 + b(T − τ)

1/p
)N−1

. (3.73)

This, the fact that a, b ∈ [0,∞), and Lemma 3.12 (applied with M x Mp in the notation of
Lemma 3.12) prove that

fN(τ) ≤
[
a+ b(T − τ)

1/p

[
sup
s∈[τ,T ]

|f0(s)|
]] (

1 + b(T − τ)1/p
)N−1

M (N−bMp/2c)/2(bM p/2c!)1/p
(3.74)

≤
[
a+ b(T − τ)

1/p

[
sup
s∈[τ,T ]

|f0(s)|
]](

1 + b(T − τ)1/p
)N−1

MN/2 exp
(
−Mp/2/p

) .
The proof of Lemma 3.13 is thus complete.

3.7 Non-recursive error bounds for MLP approximations

Lemma 3.14. Assume Setting 3.2 and let b·c : R → Z satisfy for all x ∈ R that bxc = max{n ∈
Z : n ≤ x}. Then it holds for all n ∈ N0, t ∈ [0, T ], x ∈ Rd that(

E
[
|U0

n(t, x+W 0
t )− u(t, x+W 0

t )|p
])1/p

≤ mL(T + 1) exp(LT )(1 + 2LT )n

m(n−bmp/2c)/2(bmp/2c!)1/p

[
sup
s∈[0,T ]

(
E
[(

1 + ‖x+W 0
s ‖p
)p])1/p] (3.75)

≤ mL(T + 1) exp(LT )(1 + 2LT )n

mn/2 exp
(
−mp/2/p

) [
sup
s∈[0,T ]

(
E
[(

1 + ‖x+W 0
s ‖p
)p])1/p]

.

Proof of Lemma 3.14. Throughout this proof assume without loss of generality that T ∈ (0,∞),
let t ∈ [0, T ], b = 2LT (p−1)/pm, let a : Rd → R satisfy

a(x) = m exp(LT )

[(
E
[
|g(x+W 0

T )|p
])1/p

+ T
(p−1)/p

(∫ T

0

E
[
|f(s, x+W 0

s , 0)|p
]
ds

)1/p]
, (3.76)

and let fn,k : [t, T ]×Rd → [0,∞], n ∈ N0, k ∈ {0, 1, . . . , n}, satisfy for all n ∈ N0, k ∈ {0, 1, . . . , n},
r ∈ [t, T ], x ∈ Rd that

fn,k(r, x) =
(
E
[
|U0

k (r, x+W 0
r )− u(r, x+W 0

r )|p
])1/p

. (3.77)

Note that (3.77) ensures that for all n ∈ N0, k ∈ {0, 1, . . . , n} it holds that fn,k is measurable. In
addition, observe that (3.76), (3.77), and Lemma 3.10 assure that for all n ∈ N0, k ∈ {0, 1, . . . , n},
r ∈ [t, T ], x ∈ Rd it holds that

|fn,k(r, x)| =
(
E
[
|U0

k (r, x+W 0
r )− u(r, x+W 0

r )|p
])1/p
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≤ m exp(L(T − r))
mn/2

[(
E
[
|g(x+W 0

T )|p
])1/p

+ (T − r)(p−1)/p

(∫ T

r

E
[
|f(s, x+W 0

s , 0)|p
]
ds

)1/p]

+
k−1∑
i=0

L(T − r)(p−1)/pm

m(n−i)/2

[(
1(0,n)(i) +m

1/2
)(∫ T

r

E
[
|(U0

i−1 − u)(s, x+W 0
s )|p
]
ds

)1/p]

≤ m exp(LT )

mn/2

[(
E
[
|g(x+W 0

T )|p
])1/p

+ T
(p−1)/p

(∫ T

0

E
[
|f(s, x+W 0

s , 0)|p
]
ds

)1/p]
(3.78)

+
k−1∑
i=0

2LT (p−1)/pm

m(n−i−1)/2

(∫ T

r

E
[
|(U0

i−1 − u)(s, x+W 0
s )|p
]
ds

)1/p
=
a(x)

mn/2
+

k−1∑
i=0

[
b

m(n−i−1)/2

[∫ T

r

|fn,i(s, x)|p ds
]1/p]

.

Next note that (3.5), (3.76), and Corollary 2.5 assure that for all n ∈ N0, r ∈ [t, T ], x ∈ Rd it holds
that

|fn,0(r, x)| =
(
E
[
|U0

0 (r, x+W 0
r )− u(r, x+W 0

r )|p
])1/p

=
(
E
[
|u(r, x+W 0

r )|p
])1/p

≤ L(T + 1) exp(LT )

[
sup
s∈[0,T ]

(
E
[
(1 + ‖x+Ws‖p)q

])1/q]
<∞. (3.79)

Combining this, (3.76), (3.77), (3.78), and Lemma 3.13 (applied for every n ∈ N, x ∈ Rd with
ax a(x), bx b, N x n, τ x t, T x T , (fk)k∈{0,1,...,n} x ([t, T ] 3 r 7→ fn,k(r, x) ∈ [0,∞])k∈{0,1,...,n}
in the notation of Lemma 3.13) guarantees that for all n ∈ N, x ∈ Rd it holds that(

E
[
|U0

n(t, x+W 0
t )− u(t, x+W 0

t )|p
])1/p

= fn,n(t, x)

≤
[
a(x) + b(T − t)1/p

[
sup
s∈[t,T ]

|fn,0(s, x)|
]] (

1 + b(T − t)1/p
)n−1

m(n−bmp/2c)/2(bmp/2c!)1/p
(3.80)

≤
[
a(x) + b(T − t)1/p

[
sup
s∈[t,T ]

|fn,0(s, x)|
]](

1 + b(T − t)1/p
)n−1

mn/2 exp
(
−mp/2/p

) .

In addition, observe that (3.2) demonstrates that for all x ∈ Rd it holds that

(
E
[
|g(x+W 0

T )|p
])1/p

+ T
(p−1)/p

(∫ T

0

E
[
|f(s, x+W 0

s , 0)|p
]
ds

)1/p
≤ L

(
E
[
(1 + ‖x+W 0

T‖p)p
])1/p

+ T
(p−1)/p

(
LT sup

s∈[0,T ]

E
[
(1 + ‖x+W 0

s ‖p)p
])1/p

(3.81)

≤ L(T + 1)

[
sup
s∈[0,T ]

(
E
[
(1 + ‖x+W 0

s ‖p)p
])1/p]

.

This, the fact that b = 2LT (p−1)/pm, (3.76), and (3.79) show that for all n ∈ N, x ∈ Rd it holds that

a(x) + b(T − t)1/p

[
sup
s∈[t,T ]

|fn,0(s, x)|
]

≤
[
1 + 2LT

(p−1)/p(T − t)1/p
]
mL(T + 1) exp(LT )

[
sup
s∈[0,T ]

(
E
[
(1 + ‖x+W 0

s ‖p)p
])1/p] (3.82)

≤ [1 + 2LT ]mL(T + 1) exp(LT )

[
sup
s∈[0,T ]

(
E
[
(1 + ‖x+W 0

s ‖p)p
])1/p]

.

25



Combining this, (3.80), and the fact that for all n ∈ N it holds that(
1 + b(T − t)1/p

)n−1
=
(
1 + 2LT

(p−1)/p(T − t)1/p
)n−1 ≤ (1 + 2LT )n−1 (3.83)

proves that for all n ∈ N, x ∈ Rd it holds that(
E
[
|U0

n(t, x+W 0
t )− u(t, x+W 0

t )|p
])1/p

≤ mL(T + 1) exp(LT )(1 + 2LT )n

m(n−bmp/2c)/2(bmp/2c!)1/p

[
sup
s∈[0,T ]

(
E
[
(1 + ‖x+W 0

s ‖p)p
])1/p] (3.84)

≤ mL(T + 1) exp(LT )(1 + 2LT )n

mn/2 exp
(
−mp/2/p

) [
sup
s∈[0,T ]

(
E
[
(1 + ‖x+W 0

s ‖p)p
])1/p]

.

Combining this and (3.79) establishes (3.75). The proof of Lemma 3.14 is thus complete.

Corollary 3.15. Assume Setting 3.2. Then it holds for all n ∈ N0, t ∈ [0, T ], x ∈ Rd that(
E
[∣∣U0

n(t, x)− u(t, x)
∣∣p])1/p

≤ mL(T + 1) exp(LT )(1 + 2LT )n

mn/2 exp
(
−mp/2/p

) [
sup
s∈[0,T ]

(
E
[(

1 + ‖x+W 0
s ‖p
)p])1/p]

.
(3.85)

Proof of Corollary 3.15. Throughout this proof let Vt : [0, T − t] × Rd → R, t ∈ [0, T ], satisfy for
all t ∈ [0, T ], t ∈ [0, T − t], x ∈ Rd that

Vt(t, x) = u(t+ t, x), (3.86)

let Gt : C([0, T − t]×Rd,R)→ C([0, T − t]×Rd,R), t ∈ [0, T ], satisfy for all t ∈ [0, T ], t ∈ [0, T − t],
x ∈ Rd, v ∈ C([0, T − t]× Rd,R) that

(Gt(v))(t, x) = (F (v))(t+ t, x), (3.87)

let Rt,θ : [0, T − t]× Ω→ [0, T − t], t ∈ [0, T ], θ ∈ Θ, satisfy for all t ∈ [0, T ], t ∈ [0, T − t], θ ∈ Θ
that

Rθ,t
t = t+ (T − (t+ t))uθ, (3.88)

and let Vθ,t
n : [0, T − t] × Rd × Ω → R, t ∈ [0, T ], n ∈ N0, θ ∈ Θ, satisfy for all t ∈ [0, T ], n ∈ N0,

θ ∈ Θ, t ∈ [0, T − t], x ∈ Rd that

Vθ,t
n (t, x) = U θ

n(t+ t, x). (3.89)

Observe that (3.4), (3.86), (3.87), and the fact that W 0 has independent increments ensure that
for all t ∈ [0, T ], t ∈ [0, T − t], x ∈ Rd it holds that

Vt(t, x) = u(t+ t, x) = E
[
g(x+W 0

T−(t+t))
]

+

∫ T

(t+t)

E
[
(F (u))(s, x+W 0

s−(t+t))
]
ds

= E
[
g(x+W 0

(T−t)−t)
]

+

∫ (T−t)

t

E
[
(F (u))(s+ t, x+W 0

s−t)
]
ds

= E
[
g(x+W 0

(T−t)−t)
]

+

∫ (T−t)

t

E
[
(Gt(Vt))(s, x+W 0

s−t)
]
ds.

(3.90)

Combining this, (3.86), (3.87), and the hypothesis that for all t ∈ [0, T ], x ∈ Rd it holds that
E[|g(x + W 0

T−t)| +
∫ T
t
|F (u))(s, x + W 0

s−t)| ds] < ∞ implies that for all t ∈ [0, T ], t ∈ [0, T − t],
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x ∈ Rd it holds that

E

[∣∣g(x+W 0
(T−t)−t)

∣∣+

∫ (T−t)

t

∣∣(Gt(Vt))(s, x+W 0
s−t)
∣∣ ds]

= E
[∣∣g(x+W 0

T−(t+t))
∣∣+

∫ T

(t+t)

∣∣(F (u))(s, x+W 0
s−(t+t))

∣∣ ds] <∞. (3.91)

Next note that (3.2), (3.3), and (3.87) demonstrate that for all t ∈ [0, T ], t ∈ [0, T − t], x ∈ Rd,
v, w ∈ C([0, T − t]× Rd,R) it holds that

|(Gt(v))(t, x)− (Gt(w))(t, x)| = |(F (v))(t+ t, x)− (F (w))(t+ t, x)|
= |f(t+ t, x, v(t+ t, x))− f(t+ t, x, w(t+ t, x))| ≤ L|v(t+ t, x)− w(t+ t, x)|.

(3.92)

In addition, observe that (3.2), (3.3), and (3.87) show that for all t ∈ [0, T ], t ∈ [0, T − t], x ∈ Rd

it holds that
|(Gt(0))(t, x)| = |f(t+ t, x, 0)| ≤ L(1 + ‖x‖p). (3.93)

Moreover, note that (3.86), (3.90), and the hypothesis that u ∈ C([0, T ]×Rd,R) assure that for all
t ∈ [0, T ], t ∈ [0, T − t], x ∈ Rd it holds that Vt ∈ C([0, T − t]×Rd,R). Furthermore, observe that
(3.88), the hypothesis that (uθ)θ∈Θ are i.i.d. random variables, and the hypothesis that (W θ)θ∈Θ

and (U θ)θ∈Θ are independent ensure that for all t ∈ [0, T ] it holds that (W θ)θ∈Θ and (Rθ,t)θ∈Θ are
independent on [0, T − t]. Next note that (3.89) implies that for all t ∈ [0, T ], n ∈ N0, θ ∈ Θ,
t ∈ [0, T − t], x ∈ Rd it holds that

Vθ,t
n (t, x) = U θ

n(t+ t, x) = 1N(n)
mn

[
mn∑
k=1

g(x+W
(θ,0,−k)
T−(t+t) )

]
(3.94)

+
n−1∑
i=0

(T−(t+t))
mn−i

[
mn−i∑
k=1

[
(F (U

(θ,i,k)
i )− 1N(i)F (U

(θ,−i,k)
i−1 ))(U (θ,i,k)

(t+t) , x+W
(θ,i,k)

U(θ,i,k)
(t+t)

−(t+t)
)
]]
.

Combining this, the fact that for all t ∈ [0, T ], θ ∈ Θ that Ut = t + (T − t)uθ, (3.87), (3.88), and
(3.89) shows that for all t ∈ [0, T ], n ∈ N0, θ ∈ Θ, t ∈ [0, T − t], x ∈ Rd it holds that

Vθ,t
n (t, x) = 1N(n)

mn

[
mn∑
k=1

g(x+W
(θ,0,−k)
(T−t)−t )

]
+

n−1∑
i=0

(T−t)−t)
mn−i

[∑mn−i

k=1

[
(F (U

(θ,i,k)
i )− 1N(i)F (U

(θ,−i,k)
i−1 ))(t +R(θ,i,k),t

t , x+W
(θ,i,k)

R(θ,i,k),t
t −t

)
]]

= 1N(n)
mn

[
mn∑
k=1

g(x+W
(θ,0,−k)
(T−t)−t )

]
(3.95)

+
n−1∑
i=0

(T−t)−t)
mn−i

[∑mn−i

k=1

[
(Gt(V

(θ,i,k),t
i )− 1N(i)Gt(V

(θ,−i,k),t
i−1 ))(R(θ,i,k),t

t , x+W
(θ,i,k)

R(θ,i,k),t
t −t

)
]]
.

Combining this, (3.90), (3.91), (3.92), (3.93), the fact that 1 + m−1/2 ≤ 2, the fact that for all
t ∈ [0, T ], t ∈ [0, T − t], x ∈ Rd it holds that Vt ∈ C([0, T − t]× Rd,R), and Lemma 3.14 (applied
for every t ∈ [0, T ] with L x L, L x L, p x p, p x p, T x (T − t), g x g, F x Gt,
(U θ)θ∈Θ x (Rθ,t)θ∈Θ, u x Vt, (U θ

n)(n,θ)∈N0×Θ x (Vθ,t
n )(n,θ)∈N0×Θ in the notation of Lemma 3.14)

demonstrates that for all t ∈ [0, T ], t ∈ [0, T − t], x ∈ Rd, n ∈ N0 it holds that(
E
[
|V0,t

n (t, x+W 0
t )− Vt(t, x+W 0

t )|p
])1/p

≤ mL((T − t) + 1) exp(L(T − t))(1 + 2L(T − t))n

mn/2 exp
(
−mp/2/p

) [
sup

s∈[0,T−t]

(
E
[
(1 + ‖x+W 0

s ‖p)p
])1/p] (3.96)
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≤ mL(T + 1) exp(LT )(1 + 2LT )n

mn/2 exp
(
−mp/2/p

) [
sup
s∈[0,T ]

(
E
[
(1 + ‖x+W 0

s ‖p)p
])1/p]

.

This and (3.89) prove that for all t ∈ [0, T ], x ∈ Rd, n ∈ N0 it holds that(
E
[
|U0

n(t, x)− u(t, x)|p
])1/p

=
(
E
[
|V0,t

n (0, x+W 0
0 )− Vt(0, x+W 0

0 )|p
])1/p

≤ mL(T + 1) exp(LT )(1 + 2LT )n

mn/2 exp
(
−mp/2/p

) [
sup
s∈[0,T ]

(
E
[
(1 + ‖x+W 0

s ‖p)p
])1/p]

.
(3.97)

The proof of Corollary 3.15 is thus complete.

4 Computational complexity analysis for MLP approxima-
tions

In this section we use the results from Section 3 to provide the complexity analysis for MLP
approximations of solutions to stochastic fixed-point equations and semilinear PDEs. The main
result of this section is Theorem 4.6 in Subsection 4.4 below. The proof of Theorem 4.6 employs
Proposition 4.4 and the elementary auxiliary result in Lemma 4.5. The proof of Proposition 4.4,
in turn, is based on Corollary 3.15 and the elementary estimate for full-history recursions in
Corollary 4.3. Our proof of Corollary 4.3 employs the elementary result for full-history recursions
in Lemma 4.2. Our proof of Lemma 4.2, in turn, is based on the elementary result for two-step
recursions in Lemma 4.1. Lemma 4.1 is a special case of Hutzenthaler et al. [33, Lemma 2.1]. Only
for completeness we include in this section the detailed proof of Lemma 4.1.

4.1 Elementary estimates for two-step recursions

Lemma 4.1. Let β1, β2, b1, b2, α0, α1, α2, . . . ∈ C and let xk ∈ C, k ∈ N0, satisfy for all k ∈ N0,
j ∈ {1, 2} that xk = αk + 1[1,∞)(k) β1 xmax{k−1,0} + 1[2,∞)(k) β2 xmax{k−2,0}, (β1)2 6= −4β2, and
bj = 1

2

(
β1 − (−1)j

√
(β1)2 + 4β2

)
. Then it holds for all k ∈ N0 that b1 − b2 =

√
(β1)2 + 4β2 6= 0

and

xk =
1

(b1 − b2)

k∑
l=0

αl
(
[b1]k+1−l − [b2]k+1−l)

=
k∑
l=0

αl
((
β1 +

√
(β1)2 + 4β2

)k+1−l −
[
β1 −

√
(β1)2 + 4β2

]k+1−l)
2(k+1−l)

√
(β1)2 + 4β2

.

(4.1)

Proof of Lemma 4.1. Throughout this proof let x−1, x−2 ∈ C satisfy that x−1 = x−2 = 0 and let
yk ∈ C, k ∈ N0, satisfy for all k ∈ N0 that

yk =
1(

b2 − b1

) k∑
l=0

αl
(
[b2]k+1−l − [b1]k+1−l). (4.2)

Note that (4.2) and the fact that x0 = α0 ensure that

y0 =
1

(b2 − b1)

0∑
l=0

αl
(
[b2]1−l − [b1]1−l

)
= 1

(b2−b1)
· α0 ·

(
b2 − b1

)
= α0 = x0. (4.3)

This, (4.2), the fact that for all k ∈ N0 it holds that xk = αk + β1xk−1 + β2xk−2, the fact that
x−1 = x−2 = 0, and the fact that b1 + b2 = β1 prove that

y1 =
1

(b2 − b1)

1∑
l=0

αl
(
[b2]2−l − [b1]2−l

)
= 1

(b2−b1)

[
α0

(
[b2]2 − [b1]2

)
+ α1(b2 − b1)

]
= α0(b1 + b2) + α1 = α0β1 + α1 = x0β1 + α1 = α1 + β1x0 + β2x−1 = x1.

(4.4)
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Next observe that the quadratic formula implies that for all j ∈ {1, 2} it holds that (bj)
2 = β1bj+β2.

This and (4.2) assure that for all k ∈ N0 it holds that

yk+2 =
1

(b2 − b1)

k+2∑
l=0

αl
(
[b2]k+3−l − [b1]k+3−l) = αk+2(b2−b1)

(b2−b1)
+

k+1∑
l=0

αl
(b2−b1)

(
[b2]k+3−l − [b1]k+3−l)

= αk+2 +
k+1∑
l=0

αl
(b2−b1)

(
[b2]k+1−l[β1b2 + β2]− [b1]k+1−l[β1b1 + β2]

)
(4.5)

and

yk+2 = β1

[
k+1∑
l=0

αl
(b2−b1)

(
[b2]k+2−l − [b1]k+2−l

)]
+ β2

[
k+1∑
l=0

αl
(b2−b1)

(
[b2]k+1−l − [b1]k+1−l)]+ αk+2

= β1yk+1 + β2

[
k∑
l=0

αl
(b2−b1)

(
[b2]k+1−l − [b1]k+1−l)]+ αk+2 = β1yk+1 + β2yk + αk+2. (4.6)

Combining (4.3), (4.4), and (4.6) hence ensures that for all k ∈ N0 it holds that yk = xk. The
proof of Lemma 4.1 is thus complete.

4.2 Elementary estimates for full-history recursions

Lemma 4.2. Let γ ∈ {0, 1}, β ∈ (0,∞), let αk ∈ C, k ∈ N0, and xk ∈ C, k ∈ N0, satisfy for all
k ∈ N0 that

xk = αk +
k−1∑
l=0

(k − l)γβ(k−l)[xl + 1N(l)xmax{l−1,0}
]
. (4.7)

Then it holds for all k ∈ N0 that

xk =
k∑
l=0

[αl−1N(l) 2γβαmax{l−1,0}+1[2,∞)(l) γβ
2αmax{l−2,0}]

21+γ(k−l)
√

5γβ2+4γβ
([

3γβ+
√

5γβ2+4γβ
]k+1−l

−
[

3γβ−
√

5γβ2+4γβ
]k+1−l)−1 (4.8)

=


k∑
l=0

[
αl−1N(l)βαmax{l−1,0}

]([
β+
√
β2+β

]k+1−l
−
[
β−
√
β2+β

]k+1−l)
2
√
β2+β

: γ = 0

k∑
l=0

[
αl−1N(l) 2βαmax{l−1,0}+1[2,∞)(l)β

2αmax{l−2,0}

]
2(k+1−l)

√
5β2+4β

([
3β+
√

5β2+4β
]k+1−l

−
[

3β−
√

5β2+4β
]k+1−l)−1 : γ = 1

.

Proof of Lemma 4.2. Throughout this proof let x−1, x−2, x−3, α−1, α−2, α−3 ∈ C satisfy that x−1

= x−2 = x−3 = α−1 = α−2 = α−3 = 0. Note that (4.7) ensures that for all k ∈ N0 it holds that

xk = αk +
k−1∑
l=0

(k − l)γβ(k−l)[xl + xl−1]. (4.9)

Hence, we obtain that for all k ∈ N0 it holds that

xk+1 − βxk =

[
αk+1 +

k∑
l=0

(k + 1− l)γβ(k+1−l)[xl + xl−1]

]
− β

[
αk +

k−1∑
l=0

(k − l)γβ(k−l)[xl + xl−1]

]
= αk+1 − βαk + β[xk + xk−1] +

k−1∑
l=0

β(k+1−l)[(k + 1− l)γ − (k − l)γ][xl + xl−1]. (4.10)

This implies that for all k ∈ N0 it holds that

xk+1 − βxk = αk+1 − βαk + β[xk + xk−1] + 1{1}(γ)
k−1∑
l=0

β(k+1−l)[xl + xl−1]. (4.11)
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This proves that for all k ∈ N0 it holds that

xk+1 = αk+1 − βαk + 2βxk + β xk−1 + 1{1}(γ)
k−1∑
l=0

β(k+1−l)[xl + xl−1]. (4.12)

This and the fact that x0 = α0 show that for all k ∈ {−1, 0, 1, 2, . . . } it holds that

xk = [αk − βαk−1] + 2βxk−1 + βxk−2 + 1{1}(γ)
k−2∑
l=0

β(k−l)[xl + xl−1]. (4.13)

Therefore, we obtain that for all k ∈ N0 it holds that

xk − βxk−1 =

[
[αk − βαk−1] + 2βxk−1 + βxk−2 + 1{1}(γ)

k−2∑
l=0

β(k−l)[xl + xl−1]

]
− β

[
[αk−1 − βαk−2] + 2βxk−2 + βxk−3 + 1{1}(γ)

k−3∑
l=0

β(k−1−l)[xl + xl−1]

]
=
[
αk − 2βαk−1 + β2αk−2

]
+ 2βxk−1 + β[1− β]xk−2 − β2xk−2 − β2xk−3

+ 1{1}(γ)

[
k−2∑
l=0

β(k−l)[xl + xl−1]−
k−3∑
l=0

β(k−l)[xl + xl−1]

]
(4.14)

=
[
αk − 2βαk−1 + β2αk−2

]
+ 2βxk−1 + β[1− β]xk−2 − β2[xk−2 + xk−3]

+ 1{1}(γ) β2[xk−2 + xk−3]

=
[
αk − 2βαk−1 + β2αk−2

]
+ 2βxk−1 + β[1− β]xk−2 − 1{0}(γ) β2[xk−2 + xk−3].

This ensures that for all k ∈ N0 it holds that

xk =
[
αk − 2βαk−1 + β2αk−2

]
+ 3βxk−1 + β[1− β]xk−2 − 1{0}(γ) β2[xk−2 + xk−3]. (4.15)

Combining this, (4.13), and Lemma 4.1 yields that for all k ∈ N0 it holds that

xk =


k∑
l=0

[
αl−βαl−1

]([
2β+
√

4β2+4δβ
]k+1−l

−
[

2β−
√

4β2+4δβ
]k+1−l)

2(k+1−l)
√

4β2+4β
: γ = 0

k∑
l=0

([
3β+
√

(3β)2+4β−4β2
]k+1−l

−
[

3β−
√

(3β)2+4β−4β2
]k+1−l)[

αl−2βαl−1+β2αl−2

]−1

2(k+1−l)
√

(3β)2+4β−4β2
: γ = 1

. (4.16)

This proves that for all k ∈ N0 it holds that

xk =


k∑
l=0

[
αl−βαl−1

]([
β+
√
β2+β

]k+1−l
−
[
β−
√
β2+β

]k+1−l)
2
√
β2+β

: γ = 0

k∑
l=0

[
αl−2βαl−1+β2αl−2

]([
3β+
√

5β2+4β
]k+1−l

−
[

3β−
√

5β2+4β
]k+1−l)

2(k+1−l)
√

5β2+4β
: γ = 1

. (4.17)

The proof of Lemma 4.2 is thus complete.

Corollary 4.3. Let γ ∈ {0, 1}, β ∈ [1,∞), α0, α1, x0, x1, x2, . . . ∈ [0,∞) satisfy for all k ∈ N0 that

xk ≤ 1N(k)(α0 + α1k)βk +
k−1∑
l=0

(k − l)γβ(k−l)[xl + xmax{l−1,0}
]
. (4.18)

Then it holds for all k ∈ N0 that

xk ≤
(α0 + α1)βk1N(k)

(4 + γ)1/2(1 + 2(1+γ)/2)−k
=

1N(k)(α0 + α1)2−1(1 + 21/2)kβk : γ = 0

1N(k)(α0 + α1)5−1/2(3β)k : γ = 1
. (4.19)
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Proof of Corollary 4.3. Throughout this proof let A : N0 → [0,∞) satisfy for all k ∈ N0 that
Ak = 1N(k)(α0 + α1k)βk. Note that (4.18) ensures that x0 = 0. This assures that for all k ∈ N0 it
holds that

xk ≤ 1N(k)(α0 + α1k)βk +
k−1∑
l=0

(k − l)γβ(k−l)[xl + xmax{l−1,0}
]

= 1N(k)(α0 + α1k)βk +
k−1∑
l=0

(k − l)γβ(k−l)[xl + 1N(l)xmax{l−1,0}
] (4.20)

Next observe that for all l ∈ N0 it holds that

Al − 1N(l)βAmax{l−1,0} =
[
1N(l)(α0 + α1l)− 1N(l)1N(l − 1)(α0 + α1(l − 1))

]
βl

= 1{1}(l)(α0 + α1)β
(4.21)

and

Al − 1N(l)2βAmax{l−1,0} + 1[2,∞)(l)β
2Amax{l−2,0}

=
[
1N(l)(α0 + α1l)− 1N(l)21N(l − 1)(α0 + α1(l − 1)) + 1N(l − 2)(α0 + α1(l − 2))

]
βl

= 1{1}(l)(α0 + α1)β − 1{2}(l)α0β
2.

(4.22)

Lemma 4.2 therefore proves that for all k ∈ N0 it holds that

xk ≤ 1N(k)(α0 + α1)β

[
β +

√
β2 + β

]k − [β −√β2 + β
]k

2
√
β2 + β

≤ 1N(k)(α0 + α1)β

[
β +

√
β2 + β

]k
2
√
β2 + β

≤ 1N(k)
(α0 + α1)

2
(1 +

√
2)kβk

(4.23)

and

xk ≤ 1N(k)(α0 + α1)β

[
3β +

√
5β2 + 4β

]k
−
[
3β −

√
5β2 + 4β

]k
2k
√

5β2 + 4β

≤ 1N(k)(α0 + α1)β

[
3β +

√
5β2 + 4β

]k
2k
√

5β2 + 4β
= 1N(k)(α0 + α1)

βk
[
3 +

√
5 + 4

β

]k
2k
√

5 + 4
β

≤ 1N(k)
(α0 + α1)√

5
(3β)k.

(4.24)

Combining (4.23) and (4.24) hence establishes (4.19). The proof of Corollary 4.3 is thus complete.

4.3 Complexity analysis in the case of stochastic fixed-point equations

Proposition 4.4. Let T, L, p, q, α, β, d,B ∈ [0,∞), m1,m2,m3, . . . ∈ N, Θ =
⋃
n∈NZn, let fd ∈

C([0, T ] × Rd × R,R), d ∈ N, and let gd ∈ C(Rd,R), d ∈ N, assume for all d ∈ N, t ∈ [0, T ],
x = (x1, x2, . . . , xd) ∈ Rd, v, w ∈ R that

lim inf
j→∞

mj =∞, md+1 ≤ Bmd, |fd(t, x, v)− fd(t, x, w)| ≤ L|v − w|, (4.25)

and max{|fd(t, x, 0)|, |gd(x)|} ≤ Ldp(1+
∑d

k=1|xk|)q, let (Ω,F ,P) be a probability space, let uθ : Ω→
[0, 1], θ ∈ Θ, be i.i.d. random variables, assume for all r ∈ (0, 1) it holds that P(u0 ≤ r) = r, let
U θ : [0, T ] × Ω → [0, T ], θ ∈ Θ, satisfy for all t ∈ [0, T ], θ ∈ Θ that U θt = t + (T − t)uθ, let
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W d,θ : [0, T ] × Ω → Rd, d ∈ N, θ ∈ Θ, be independent standard Brownian motions, assume for
every d ∈ N that (U θ)θ∈Θ and (W d,θ)θ∈Θ are independent, let ud ∈ C([0, T ]×Rd,R), d ∈ N, satisfy
for all d ∈ N, t ∈ [0, T ], x ∈ Rd that E[|gd(x+W d,0

T−t)|+
∫ T
t
|fd(s, x+W d,0

s−t, ud(s, x+W d,0
s−t))| ds] <∞

and

ud(t, x) = E
[
gd(x+W d,0

T−t)
]

+

∫ T

t

E
[
fd(s, x+W d,0

s−t, ud(s, x+W d,0
s−t))

]
ds, (4.26)

let Ud,θ
n,j : [0, T ]×Rd×Ω→ R, d, j, n ∈ Z, θ ∈ Θ, satisfy for all n ∈ N0, d, j ∈ N, θ ∈ Θ, t ∈ [0, T ],

x ∈ Rd that

Ud.θ
n,j (t, x) =

1N(n)

(mj)n

[
(mj)

n∑
k=1

gd
(
x+W

d,(θ,0,−k)
T−t

)]

+
n−1∑
i=0

(T − t)
(mj)n−i

[
(mj)

n−i∑
k=1

[
fd
(
U (θ,i,k)
t , x+W

d,(θ,i,k)

U(θ,i,k)
t −t

, U
d,(θ,i,k)
i,j

(
U (θ,i,k)
t , x+W

d,(θ,i,k)

U(θ,i,k)
t −t

))
(4.27)

− 1N(i) fd
(
U (θ,i,k)
t , x+W

d,(θ,i,k)

U(θ,i,k)
t −t

, U
d,(θ,−i,k)
i−1,j

(
U (θ,i,k)
t , x+W

d,(θ,i,k)

U(θ,i,k)
t −t

))]]
,

and let Cd,n,j ∈ R, d, n, j ∈ N0, satisfy for all d, j ∈ N, n ∈ N0 that

Cd,n,j ≤ 1N(n)αdd(mj)
n +

n−1∑
k=0

(mj)
n−k(αdd + Cd,k,j + Cd,max{k−1,0},j

)
. (4.28)

Then there exist n : N×R→ N and c = (cp,δ)(p,δ)∈R2 : R2 → R such that for all d ∈ N, ε, δ ∈ (0,∞),
p ∈ [2,∞) with lim supj→∞[(mj)p/2/j] <∞ it holds that

(n(d, ε))βCd,n(d,ε),n(d,ε) ≤ αdd(n(d, ε))β(1 +
√

2)n(d,ε)
(
mn(d,ε)

)n(d,ε)

≤ αcp,δd
d+(p+q)(2+δ)(min{1, ε})−(2+δ)

(4.29)

and
sup
t∈[0,T ]

sup
x∈[−L,L]d

(
E
[∣∣ud(t, x)− Ud,0

n(d,ε),n(d,ε)(t, x)
∣∣p])1/p ≤ ε. (4.30)

Proof of Proposition 4.4. Throughout this proof let mp = Kp

√
p− 1, p ∈ [2,∞), let Fdt ⊆ F , d ∈ N,

t ∈ [0, T ], satisfy for all d ∈ N, t ∈ [0, T ] that

Fdt =

{⋂
s∈(t,T ] σ

(
σ(W d,0

r : r ∈ [0, s]) ∪ {A ∈ F : P(A) = 0}
)

: t < T

σ
(
σ(W d,0

s : s ∈ [0, T ]) ∪ {A ∈ F : P(A) = 0}
)

: t = T
, (4.31)

let ad ∈ C([0, T ] × Rd,Rd), d ∈ N, satisfy for all d ∈ N, t ∈ [0, T ], x ∈ Rd that ad(t, x) = 0, let
bd ∈ C([0, T ] × Rd,Rd×d), d ∈ N, satisfy for all d ∈ N, t ∈ [0, T ], x, v ∈ Rd that bd(t, x)v = v, let
ηd,p ∈ [0,∞), d ∈ N, p ∈ [2,∞), satisfy for all p ∈ [2,∞), d ∈ N that

ηd,p = mpL2max{q,1}dp+q
(
(1 + L2)

q/2 + (qp + 1)
1/p
)

exp
( [q(qp+3)+1]T

2
+ (L+ 1)T

)
, (4.32)

and let n : N× R→ [1,∞] satisfy for all d ∈ N, ε ∈ (0,∞) that

n(d, ε) = (4.33)

inf

n ∈ N :

sup

ηd,p
[

(1+2LT ) exp
(

(mn)
p/2

n

)
(mn)1/2

]n
≤ ε :

p ∈ [2,∞) with
lim sup
j→∞

(mj)
p/2/j <∞


 ∪ {∞}


(cf. Definition 3.1). Observe that (4.31) guarantees that Fdt ⊆ F , d ∈ N, t ∈ [0, T ], satisfies that

32

Shakil Rafi
Supremum over time and space

Shakil Rafi
May or may not be necessary, as it is a sigma algebra to calculate F



(I) it holds for all d ∈ N that {A ∈ F : P(A) = 0} ⊆ Fd0 and

(II) it holds for all d ∈ N, t ∈ [0, T ] that Fdt = ∩s∈(t,T ]Fds.

Combining item (I), item (II), (4.31), and Hutzenthaler et al. [31, Lemma 2.17] therefore assures
that for all d ∈ N it holds that W d,0 : [0, T ]× Ω→ Rd is a standard (Ω,F ,P, (Fdt )t∈[0,T ])-Brownian
motion. In addition, note that (4.31) ensures that for all d ∈ N, x ∈ Rd it holds that [0, T ]× Ω 3
(t, ω) 7→ x + W d,0

t (ω) ∈ Rd is an (Fdt )t∈[0,T ]/B(Rd)-adapted stochastic process with continuous
sample paths. This, the fact that for all d ∈ N, t ∈ [0, T ], x ∈ Rd it holds that ad(t, x) = 0, and
the fact that for all d ∈ N, t ∈ [0, T ], x, v ∈ Rd it holds that bd(t, x)v = v yield that for all d ∈ N,
x ∈ Rd it holds that [0, T ]×Ω 3 (t, ω) 7→ x+W d,0

t (ω) ∈ Rd satisfies for all t ∈ [0, T ] it holds P-a.s.
that

x+W d,0
t = x+

∫ t

0

0 ds+

∫ t

0

dW d,0
s = x+

∫ t

0

ad(s, x+W d,0
s ) ds+

∫ t

0

bd(s, x+W d,0
s ) dW d,0

s . (4.34)

Combining this and Hutzenthaler et al. [31, Lemma 2.6] (applied for every d ∈ N, x ∈ Rd with
d x d, m x d, T x T , C1 x d, C2 x 0, F x Fd, ξ x x, µ x ad, σ x bd, W x W d,0,
X x ([0, T ] × Ω 3 (t, ω) 7→ x + W d,0

t (ω) ∈ Rd) in the notation of [31, Lemma 2.6]) ensures that
for all r ∈ [0,∞), d ∈ N, x ∈ Rd, t ∈ [0, T ] it holds that

E
[
‖x+W d,0

t ‖r
]
≤ max{T, 1}

(
(1 + ‖x‖2)

r/2 + (r + 1)d
r/2
)

exp
( r(r+3)T

2

)
<∞ (4.35)

(cf. Definition 2.4). This, the triangle inequality, and the fact that for all v, w ∈ [0,∞), r ∈ (0, 1]
it holds that (v + w)r ≤ vr + wr assure that for all p ∈ [2,∞), d ∈ N, x ∈ Rd it holds that

sup
s∈[0,T ]

(
E
[
(1 + ‖x+W d,0

s ‖q)p
])1/p ≤ 1 + sup

s∈[0,T ]

(
E
[
‖x+W d,0

s ‖qp
])1/p

≤ 1 + sup
s∈[0,T ]

(
max{T, 1}

(
(1 + ‖x‖2)

qp/2 + (pp + 1)d
qp/2
)

exp
( qp(qp+3)T

2

))1/p
≤ 1 + max{T 1/p, 1}

(
(1 + ‖x‖2)

q/2 + (qp + 1)
1/pd

q/2
)

exp
( q(qp+3)T

2

)
≤ 2
(
(1 + ‖x‖2)

q/2 + (qp + 1)
1/pd

q/2
)

exp
( q(qp+3)T

2
+ T

p

)
≤ 2
(
(1 + ‖x‖2)

q/2 + (qp + 1)
1/pd

q/2
)

exp
( [q(qp+3)+1]T

2

)
<∞.

(4.36)

Combining this, (4.32), and the fact that for all d ∈ N, x ∈ [−L,L]d it holds that ‖x‖ ≤ Ld1/2

demonstrates that for all p ∈ [2,∞), d ∈ N it holds that

mpL2max{q−1,0}dp+
q/2(T + 1) exp(LT )

[
sup

x∈[−L,L]d
sup
s∈[0,T ]

(
E
[
(1 + ‖x+W d,0

s ‖q)p
])1/p]

≤ mpL2max{q−1,0}dp+
q/2 exp(LT + T )

·

[
sup

x∈[−L,L]d

[
2
(
(1 + ‖x‖2)

q/2 + (qp + 1)
1/pd

q/2
)

exp
( [q(qp+3)+1]T

2

)]]
(4.37)

≤ mpL2max{q,1}dp+
q/2
(
(1 + L2d)

q/2 + (qp + 1)
1/pd

q/2
)

exp
( [q(qp+3)+1]T

2
+ (L+ 1)T

)
≤ mpL2max{q,1}dp+q

(
(1 + L2)

q/2 + (qp + 1)
1/p
)

exp
( [q(qp+3)+1]T

2
+ (L+ 1)T

)
= ηd,p <∞.

This and (4.25) guarantee that for all p ∈ [2,∞) which satisfy lim supj→∞[(mj)p/2/j] < ∞ it holds
that

lim sup
n→∞

ηd,p

[
(1 + 2LT ) exp

(
(mn)

p/2/n
)

(mn)1/2

]n
= 0. (4.38)

Combining this and (4.33) implies that for all d ∈ N, ε ∈ (0,∞) it holds that n(d, ε) ∈ N. Next
observe that the fact that for all m ∈ N, r, v1, v2, . . . , vm ∈ [0,∞) it holds that [

∑m
k=1 vk]

r ≤

33
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mmax{r−1,0}[
∑m

k=1 v
r
k] and the hypothesis that for all d ∈ N, t ∈ [0, T ], x = (x1, x2, . . . , xd) ∈ Rd

it holds that max{|fd(t, x, 0)|, |gd(x)|} ≤ Ldp(1 +
∑d

k=1|xk|)q ensure that for all d ∈ N, x =
(x1, x2, . . . , xd) ∈ Rd it holds that

max{|fd(t, x, 0)|, |gd(x)|} ≤ Ldp
(
1 +

∑d
k=1|xk|

)q ≤ L2max{q−1,0}dp
[
1 +

(∑d
k=1|xk|

)q]
≤ L2max{q−1,0}dp

[
1 +

(
d2−1

∑d
k=1|xk|2

)q/2] ≤ L2max{q−1,0}dp+q/2
(
1 + ‖x‖q

)
.

(4.39)

This, (4.25), and Corollary 3.15 (applied for every p ∈ [2,∞), d, j ∈ N with m x mj, m x mp,
p x q, f x fd, g x gd, T x T , L x L, L x L2max{q−1,0}dp+q/2, uθ x uθ, U θ x U θ, W θ x W d,θ,
u x ud, U0

n x Ud,0
n,j in the notation of Corollary 3.15) assure that for all p ∈ [2,∞), n ∈ N0,

d, j ∈ N, t ∈ [0, T ], x ∈ Rd it holds that(
E
[
|ud(t, x)− Ud,0

n,j (t, x)|p
])1/p (4.40)

≤
mpL2max{q−1,0}dp+q/2(T + 1) exp(LT )

(
1 + 2LT

)n
(mj)

n/2 exp
(
−(mj)

p/2/p
) [

sup
s∈[0,T ]

(
E
[
(1 + ‖x+W d,0

s ‖q)p
])1/p]

.

Combining this, (4.32), (4.36), and (4.37) demonstrates that for all p ∈ [2,∞), n ∈ N0, d, j ∈ N,
t ∈ [0, T ], x ∈ [−L,L]d it holds that

(
E
[
|ud(t, x)− Ud,0

n,j (t, x)|p
])1/p ≤ ηd,p

[(
1 + 2LT

)n
exp
(

(mj)
p/2/p
)

(mj)
n/2

]
. (4.41)

This, (4.33), and the fact that for all d ∈ N, ε ∈ (0,∞) it holds that n(d, ε) ∈ N prove that for all
p ∈ [2,∞) with lim supj→∞[(mj)p/2/j] <∞, d ∈ N, t ∈ [0, T ], x ∈ [−L,L]d, ε ∈ (0,∞) it holds that

(
E
[
|ud(t, x)− Ud,0

n(d,ε),n(d,ε)(t, x)|p
])1/p ≤ ηd,p

[(
1 + 2LT

)n(d,ε)
exp
(
(mn(d,ε))

p/2
)

(mn(d,ε))
n(d,ε)/2

]

≤ ηd,p

[(
1 + 2LT

)
exp((mn(d,ε))

p/2/n(d,ε))

(mn(d,ε))
1/2

]n(d,ε)

≤ ε.

(4.42)

This establishes (4.29). Next note that (4.28) implies that for all d, j ∈ N, n ∈ N0 it holds that

Cd,n,j ≤ 1N(n)αdd(mj)
n +

n−1∑
k=0

(mj)
n−kαdd +

n−1∑
k=0

(mj)
n−k(Cd,k,j + Cd,max{k−1,0},j

)
≤ 1N(n)

(
αdd + nαdd

)
(mj)

n +
n−1∑
k=0

(mj)
n−k(Cd,k,j + Cd,max{k−1,0},j

)
.

(4.43)

Combining this and Corollary 4.3 (applied for every d, j ∈ N with γ x 0, β x mj, α0 x αdd,
α1 x αdd, (xn)n∈N0 x (Cd,n,j)n∈N0 in the notation of Corollary 4.3) guarantees that for all n ∈ N0,
d, j ∈ N it holds that

Cd,n,j ≤ 1N(n)αdd(1 +
√

2)n(mj)
n. (4.44)

Furthermore, observe that (4.33), the fact that for all j ∈ N it holds that mj ∈ N, and the fact
that for all p ∈ [2,∞), d ∈ N it holds that ηd,p ∈ [0,∞) ensure that for all p ∈ [2,∞), d ∈ N,
ε ∈ (0,∞) with lim supj→∞[(mj)p/2/j] <∞ and n(d, ε) ∈ N ∩ [2,∞) it holds that

ηd,p

[
(1 + 2LT ) exp

(
(mn(d,ε)−1)

p/2/(n(d,ε)−1)
)

(mn(d,ε)−1)1/2

](n(d,ε)−1)

> min{1, ε}. (4.45)
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Combining this and (4.44) demonstrates that for all p ∈ [2,∞), d ∈ N, ε, δ ∈ (0,∞) with
lim supj→∞[(mj)p/2/j] <∞ and n(d, ε) ∈ N ∩ [2,∞) it holds that

(n(d, ε))βCd,n(d,ε),n(d,ε) ≤ 1N(n(d, ε))αdd(1 +
√

2)n(d,ε)(n(d, ε))β
(
mn(d,ε)

)n(d,ε)

≤
αdd
(
(1 +

√
2)mn(d,ε)

)n(d,ε)

(n(d, ε))−β

 ηd,p
min{1, ε}

[
(1 + 2LT ) exp

(
(mn(d,ε)−1)

p/2/(n(d,ε)−1)
)

(mn(d,ε)−1)1/2

](n(d,ε)−1)
(2+δ)

=
αdd(ηd,p)

(2+δ)

(min{1, ε})(2+δ)

[
(n(d, ε))β

(
(1 + 2LT ) exp

(
(mn(d,ε)−1)

p/2/(n(d,ε)−1)
))(n(d,ε)−1)(2+δ)(

(1 +
√

2)mn(d,ε)

)−n(d,ε)
(mn(d,ε)−1)(n(d,ε)−1)(1+δ/2))

]
(4.46)

≤ αdd(ηd,p)
(2+δ)

(min{1, ε})(2+δ)

[
sup
n∈N

(
(n+ 1)β

(
(1 +

√
2)mn+1

)(n+1)(
(1 + 2LT ) exp

(
(mn)

p/2/n
))n(2+δ)

(mn)n(1+δ/2)

)]

≤ αdd(1 +
√

2)(ηd,p)
(2+δ)

(min{1, ε})(2+δ)

[
sup
n∈N

(
(n+ 1)βmn+1(mn+1)n

(
(1 +

√
2)(1 + 2LT ) exp

(
(mn)

p/2/n
))

(mn)n(mn)n(δ/2)

)]
.

This and (4.25) ensure that for all p ∈ [2,∞), d ∈ N, ε, δ ∈ (0,∞) with lim supj→∞[(mj)p/2/j] <∞
and n(d, ε) ∈ N ∩ [2,∞) it holds that

(n(d, ε))βCd,n(d,ε),n(d,ε) (4.47)

≤ αdd(1 +
√

2)(ηd,p)
(2+δ)

(min{1, ε})(2+δ)

[
sup
n∈N

(
(n+ 1)βB2n+1m1

(
(1 +

√
2)(1 + 2LT ) exp

(
(mn)

p/2/n
))n(2+δ)

(mn)n(δ/2)

)]

≤ αddm1(1 +
√

2)B(ηd,p)
(2+δ)

(min{1, ε})(2+δ)

[
sup
n∈N

(
(n+ 1)β/n

(
(1 +

√
2)B(1 + 2LT ) exp

(
(mn)

p/2/n
))(2+δ)

(mn)δ/2

)n]
.

Moreover, note that (4.25), (4.28), and the fact that for all p ∈ [2,∞), d ∈ N it holds that
ηd,p ∈ [0,∞) ensure that for all p ∈ [2,∞), d ∈ N, ε, δ ∈ (0,∞) with lim supj→∞[(mj)p/2/j] < ∞ it
holds that

Cd,1,1 ≤ αddm1 +m1(αdd + Cd,0,0 + Cd,0,0) ≤ 2αddm1 ≤ αdd(1 +
√

2)Bm1

≤ αddm1(1 +
√

2)B(max{1, ηd,p})(2+δ)

(min{1, ε})(2+δ)
(4.48)

·

[
sup
n∈N

(
(n+ 1)β/n

(
(1 +

√
2)B(1 + 2LT ) exp

(
(mn)

p/2/n
))(2+δ)

(mn)δ/2

)n]
.

Combining this and (4.47) demonstrates that for all p ∈ [2,∞), d ∈ N, ε, δ ∈ (0,∞) with
lim supj→∞[(mj)p/2/j] <∞ it holds that

(n(d, ε))βCd,n(d,ε),n(d,ε) (4.49)

≤ αddm1(1 +
√

2)B(max{1, ηd,p})(2+δ)

(min{1, ε})(2+δ)

[
sup
n∈N

(
(n+ 1)β/n

(
B(1 + 2LT ) exp

(
(mn)

p/2/n
))(2+δ)

(1 +
√

2)−1(mn)δ/2

)n]
.

This, the fact that m1 ∈ N, (4.37), (4.38), and (4.47) prove that for all p ∈ [2,∞), d ∈ N,
ε, δ ∈ (0,∞) with lim supj→∞[(mj)p/2/j] <∞ it holds that

(n(d, ε))βCd,n(d,ε),n(d,ε)

≤ αddm1(1 +
√

2)B

(min{1, ε})(2+δ)

[
sup
n∈N

(
(n+ 1)β/n

(
(1 +

√
2)B(1 + 2LT ) exp

(
(mn)

p/2/n
))(2+δ)

(mn)δ/2

)n]
(4.50)

35



·
(

max
{

1,mpL2max{q,1}dp+q
(
(1 + L2)

q/2 + (qp + 1)
1/p
)

exp
( [q(qp+3)+1]T

2
+ (L+ 1)T

)})(2+δ)

=
αm1Bd

d+(p+q)(2+δ)

(1 +
√

2)−1(min{1, ε})(2+δ)

[
sup
n∈N

(
(n+ 1)β/n

(
(1 +

√
2)B(1 + 2LT ) exp

(
(mn)

p/2/n
))(2+δ)

(mn)δ/2

)n]

·
(

max
{

1,mpL2max{q,1}((1 + L2)
q/2 + (qp + 1)

1/p
)

exp
( [q(qp+3)+1]T

2
+ (L+ 1)T

)})(2+δ)

<∞.

Combining (4.44) and (4.50) hence establishes (4.30). The proof of Proposition 4.4 is thus complete.

4.4 Complexity analysis in the case of semilinear partial differential
equations

Lemma 4.5. Let p ∈ (0,∞) and let φ : R → N satisfy for all x ∈ [1,∞) that φ(x) = max{k ∈
N : k ≤ exp(|ln(x)|1/2)}. Then

(i) it holds that lim supx→∞
[ (φ(x))p

x
+ 1

φ(x)

]
= 0 and

(ii) it holds for all x ∈ N that φ(x+ 1) ≤ 2φ(x).

Proof of Lemma 4.5. Throughout this proof let ψ : R → R satisfy for all x ∈ [1,∞) that ψ(x) =
exp(|ln(x)|1/2). Note that the fact that for all x ∈ [1,∞) it holds that ln(x) ∈ [0,∞) assures that
for all x ∈ (1,∞) it holds that

d
dx

(ψ(x))p =
p
(
exp(|ln(x)|1/2)

)p
2x|ln(x)|1/2

. (4.51)

This and the fact that for all x ∈ [1,∞) it holds that ln(x) ∈ [0,∞) ensure that for all x ∈ (1,∞)
it holds that

d2

dx2
(ψ(x))p = −

p
(
exp(|ln(x)|1/2)

)p[
2 ln(x)− p|ln(x)|1/2 + 1

]
4x2|ln(x)|3/2

. (4.52)

Combining this and (4.51) shows that (exp([p+
√

max{0, p2 − 8}]/4),∞) 3 x 7→ d
dx

(ψ(x))p ∈ R is
decreasing. This, the fact that (4.51) implies that for all x ∈ (1,∞) it holds that d

dx
(ψ(x))p ∈ [0,∞),

and L’Hôpital’s rule establish that

lim sup
x→∞

(ψ(x))p

x
= lim

x→∞
(ψ(x))p

x
= lim

x→∞
d
dx

(ψ(x))p = 0. (4.53)

Combining this, the fact that for all x ∈ [1,∞) it holds that φ(x) ≤ ψ(x), the fact that for
all x ∈ [1,∞) it holds that φ(x) ∈ N, and the fact that for all x ∈ [1,∞) it holds that φ is
non-decreasing proves that

lim sup
x→∞

[ (φ(x))p

x
+ 1

φ(x)

]
≤ lim sup

x→∞

(φ(x))p

x
+ lim sup

x→∞

1
φ(x)
≤ lim sup

x→∞

(ψ(x))p

x
+ lim sup

x→∞

1
φ(x)

= 0. (4.54)

This establishes item (i). Next note that for all x ∈ (1,∞) it holds that

φ(x+ 1)

φ(x)
=

max{k ∈ N : k ≤ exp(|ln(1 + x)|1/2)}
max{k ∈ N : k ≤ exp(|ln(x)|1/2)}

≤ exp(|ln(1 + x)|1/2)

exp(|ln(x)|1/2)− 1
. (4.55)

In addition, observe that the fact that for all x ∈ (1,∞) it holds that ln(x) ∈ (0,∞) demonstrates
that for all x ∈ (1,∞) it holds that

d

dx

exp((ln(1 + x))1/2)

exp((ln(x))1/2)− 1

=
exp(|ln(x+ 1)|1/2)

2[exp(|ln(x)|1/2)− 1]

[
1

(1 + x)|ln(x+ 1)|1/2
− exp(|ln(x)|1/2)

x[exp(|ln(x)|1/2)− 1]|ln(x)|1/2

]
≤ 0.

(4.56)
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This implies that for all x ∈ [3,∞) it holds that

exp(|ln(1 + x)|1/2)

exp(|ln(x)|1/2)− 1
≤ exp(|ln(4)|1/2)

exp(|ln(3)|1/2)− 1
≤ 2. (4.57)

Combining this and the fact that

φ(2)

φ(1)
=

max{k ∈ N : k ≤ exp(|ln(2)|1/2)}
max{k ∈ N : k ≤ exp(|ln(1)|1/2)}

≤ exp(|ln(2)|1/2) ≤ exp(ln(2)) = 2 (4.58)

proves that for all x ∈ N it holds that φ(x + 1) ≤ 2φ(x). This establishes item (ii). The proof of
Lemma 4.5 is thus complete.

Theorem 4.6. Let p, q, T, κ, d ∈ [0,∞), Θ =
⋃
n∈NZn, f ∈ C(R,R), let ud ∈ C1,2([0, T ]× Rd,R),

d ∈ N, assume for all d ∈ N, t ∈ [0, T ], x = (x1, x2, . . . , xd) ∈ Rd, v, w ∈ R that |f(v) − f(w)| ≤
κ|v − w|, |ud(t, x)| ≤ κdp(1 +

∑d
k=1|xk|)q, and

( ∂
∂t
ud)(t, x) + (∆xud)(t, x) + f(ud(t, x)) = 0, (4.59)

let (Ω,F ,P) be a probability space, let uθ : Ω→ [0, 1], θ ∈ Θ, be i.i.d. random variables, assume for
all r ∈ (0, 1) that P(u0 ≤ r) = r, let U θ : [0, T ]×Ω→ [0, T ], θ ∈ Θ, satisfy for all t ∈ [0, T ], θ ∈ Θ
that U θt = t+(T−t)uθ, let W d,θ : [0, T ]×Ω→ Rd, θ ∈ Θ, d ∈ N, be independent standard Brownian
motions, assume for all d ∈ N that (U θ)θ∈Θ and (W d,θ)θ∈Θ are independent, let φ : N → N and
Ud,θ
n,m : [0, T ]× Rd × Ω→ R, d, n,m ∈ Z, θ ∈ Θ, satisfy for all n ∈ N0, d,m ∈ N, θ ∈ Θ, t ∈ [0, T ],

x ∈ Rd that φ(m) = max{k ∈ N : k ≤ exp(|ln(m)|1/2)} and

Ud,θ
n,m(t, x) =

n−1∑
i=0

(T−t)
(φ(m))n−i

[
(φ(m))n−i∑

k=1

[
f
(
U
d,(θ,i,k)
i,m

(
U (θ,i,k)
t , x+

√
2W

d,(θ,i,k)

U(θ,i,k)
t −t

))
(4.60)

− 1N(i) f
(
U
d,(θ,−i,k)
i−1,m

(
U (θ,i,k)
t , x+

√
2W

d,(θ,i,k)

U(θ,i,k)
t −t

))]]
+ 1N(n)

(φ(m))n

[
(φ(m))n∑
k=1

ud
(
T, x+

√
2W

d,(θ,0,−k)
T−t

)]
,

and let Cd,n,m ∈ R, d, n,m ∈ N0, satisfy for all d,m ∈ N, n ∈ N0 that

Cd,n,m ≤ 1N(n)κdd(φ(m))n +
n−1∑
k=0

(φ(m))n−k
(
κdd + Cd,k,m + Cd,max{k−1,0},m

)
. (4.61)

Then there exist n : N × R → N and c = (cp,δ)(p,δ)∈R2 : R2 → R such that for all d ∈ N, ε, δ, p ∈
(0,∞) it holds that Cd,n(d,ε),n(d,ε) ≤ cp,δd

d+(p+q)(2+δ)(min{1, ε})−(2+δ) and

sup
t∈[0,T ]

sup
x∈[−

√
2κ,
√

2κ]d

(
E
[∣∣ud(t, x)− Ud,0

n(d,ε),n(d,ε)(t, x)
∣∣p])1/p ≤ ε. (4.62)

Proof of Theorem 4.6. Throughout this proof let ϕ : (0,∞)→ [2,∞) satisfy for all z ∈ (0,∞) that
ϕ(z) = max{2, z}, let D = max{2q/2κ, |f(0)|}, let Fdt ⊆ F , d ∈ N, t ∈ [0, T ], satisfy for all d ∈ N,
t ∈ [0, T ] that

Fdt =

{⋂
s∈(t,T ] σ

(
σ(W d,0

r : r ∈ [0, s]) ∪ {A ∈ F : P(A) = 0}
)

: t < T

σ
(
σ(W d,0

s : s ∈ [0, T ]) ∪ {A ∈ F : P(A) = 0}
)

: t = T
, (4.63)

let ad ∈ C([0, T ] × Rd,Rd), d ∈ N, and bd ∈ C([0, T ] × Rd,Rd×d), d ∈ N, satisfy for all d ∈ N,
t ∈ [0, T ], x, v ∈ Rd that ad(t, x) = 0 and bd(t, x)v =

√
2 v, letM1,M2,M3, . . . ∈ N satisfy for all

j ∈ N thatMj = φ(j), let Vd : [0, T ]×Rd → R, d ∈ N, satisfy for all d ∈ N, t ∈ [0, T ], x ∈ Rd that
Vd(t, x) = ud(t,

√
2x), let Fd : [0, T ]× Rd × R→ R, d ∈ N, satisfy for all d ∈ N, t ∈ [0, T ], x ∈ Rd,
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w ∈ R that Fd(t, x, w) = f(w), and let Vd,θ
n,j : [0, T ] × Rd × Ω → R, d, n, j ∈ Z, θ ∈ Θ, satisfy for

all d, n, j ∈ Z, θ ∈ Θ, t ∈ [0, T ], x ∈ Rd that Vd,θ
n,j(t, x) = Ud,θ

n,j (t,
√

2x). Note that the hypothesis
that for all v, w ∈ R it holds that |f(v) − f(w)| ≤ κ|v − w| assures that for all d ∈ N, t ∈ [0, T ],
x ∈ Rd, v, w ∈ R it holds that

|Fd(t, x, v)− Fd(t, x, w)| = |f(v)− f(w)| ≤ κ|v − w|. (4.64)

Next observe that the hypothesis that for all d ∈ N, t ∈ [0, T ], x ∈ Rd it holds that |ud(t, x)| ≤ κdp

(1 +
∑d

k=1|xk|)p ensures that for all d ∈ N, t ∈ [0, T ], x = (x1, x2, . . . , xd) ∈ Rd it holds that

max{|Fd(t, x, 0)|, |Vd(t, x)|} = max{|f(0)|, |ud(t,
√

2x)|}
≤ max{|f(0)|, κdp(1 +

∑d
k=1|
√

2xk|)q} ≤ Ddp(1 +
∑d

k=1|xk|)q.
(4.65)

In addition, note that (4.63) guarantees that Fdt ⊆ F , d ∈ N, t ∈ [0, T ], satisfies that

(I) it holds for all d ∈ N that {A ∈ F : P(A) = 0} ⊆ Fd0 and

(II) it holds for all d ∈ N, t ∈ [0, T ] that Fdt = ∩s∈(t,T ]Fds.

Combining items (I) and (II), (4.63), and Hutzenthaler et al. [31, Lemma 2.17] (applied with
m x d, T x T , W x W , Ht x Fdt , (Ω,F ,P, (Ft)t∈[0,T ]) x (Ω,F ,P, (σ(W d,0

s : s ∈ [0, t]) ∪ {A ∈
F : P(A) = 0})t∈[0,T ]) in the notation of [31, Lemma 2.17]) therefore assures that for all d ∈ N it
holds that W d,0 : [0, T ] × Ω → Rd is a standard (Ω,F ,P, (Fdt )t∈[0,T ])-Brownian motion. This, the
hypothesis that for all t ∈ [0, T ], x ∈ Rd, v, w ∈ R it holds that |f(v) − f(w)| ≤ κ|v − w|, the
hypothesis that for all d ∈ N, t ∈ [0, T ], x ∈ Rd it holds that |ud(t, x)| ≤ κdp(1 +

∑d
k=1|xk|)q,

and, e.g., Beck et al. [4, Corollary 3.9] (applied for every d ∈ N with d x d, m x d, T x T ,
L x max{

√
2d, κ}, C x 0, f x f , g x (Rd 3 x 7→ ud(T, x) ∈ R), µ x ad, σ x bd, W d,0 x W d,0,

(Ω,F ,P, (Ft)t∈[0,T ]) x (Ω,F ,P, (Fdt )t∈[0,T ]) in the notation of [4, Corollary 3.9]) ensure that for all
d ∈ N, t ∈ [0, T ], x ∈ Rd it holds that E[|ud(T, x+

√
2W d,0

T−t)|+
∫ T
t
|f(ud(s, x+

√
2W d,0

s−t))| ds] <∞
and

ud(t, x) = E
[
ud(T, x+

√
2W d,0

T−t)
]

+

∫ T

t

E
[
f(ud(s, x+

√
2W d,0

s−t))
]
ds. (4.66)

Combining this, the fact that for all d ∈ N, t ∈ [0, T ], x ∈ Rd it holds that Vd(t, x) = ud(t,
√

2x),
and the fact that for all d ∈ N, t ∈ [0, T ], x ∈ Rd, w ∈ R it holds that Fd(t, x, w) = f(w)
demonstrates that for all d ∈ N, t ∈ [0, T ], x ∈ Rd it holds that

E
[
|Vd(T, x+W d,0

T−t)|+
∫ T

t

|Fd(s, x+W d,0
s−t, Vd(s, x+W d,0

s−t))| ds
]

= E
[
|Vd(T, x+W d,0

T−t)|+
∫ T

t

|f(Vd(s, x+W d,0
s−t))| ds

]
= E

[
|ud(T,

√
2(x+W d,0

T−t))|+
∫ T

t

|f(ud(s,
√

2(x+W d,0
s−t)))| ds

]
<∞

(4.67)

and

Vd(t, x) = ud(t,
√

2x) = E
[
ud(T,

√
2(x+W d,0

T−t))
]

+

∫ T

t

E
[
f(ud(s,

√
2(x+W d,0

s−t)))
]
ds

= E
[
Vd(T, x+W d,0

T−t)
]

+

∫ T

t

E
[
f(Vd(s, x+W d,0

s−t))
]
ds (4.68)

= E
[
Vd(T, x+W d,0

T−t)
]

+

∫ T

t

E
[
Fd(s, x+W d,0

s−t, Vd(s, x+W d,0
s−t))

]
ds.
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Moreover, note that the fact that for all j ∈ N it holds thatMj = φ(j) and (4.60) show that for
all n ∈ N0, d, j ∈ N, θ ∈ Θ, t ∈ [0, T ], x ∈ Rd it holds that

Ud,θ
n,j (t,

√
2x) =

n−1∑
i=0

(T−t)
(Mj)n−i

[
(Mj)

n−i∑
k=1

[
f
(
U
d,(θ,i,k)
i,j

(
U (θ,i,k)
t ,

√
2(x+W

d,(θ,i,k)

U(θ,i,k)
t −t

)
))

(4.69)

− 1N(i) f
(
U
d,(θ,−i,k)
i−1,j

(
U (θ,i,k)
t ,

√
2(x+W

d,(θ,i,k)

U(θ,i,k)
t −t

)
))]]

+

[
(Mj)

n∑
k=1

1N(n)ud(T,
√

2(x+W
d,(θ,0,−k)
T−t ))

(Mj)n

]
.

This and the fact that for all d, n, j ∈ Z, θ ∈ Θ, t ∈ [0, T ], x ∈ Rd it holds that Vd,θ
n,j(t, x) =

Ud,θ
n,j (t,

√
2x) imply that for all n ∈ N0, d, j ∈ N, θ ∈ Θ, t ∈ [0, T ], x ∈ Rd it holds that

Ud,θ
n,j (t,

√
2x) = Vd,θ

n,j(t, x)

=
n−1∑
i=0

(T−t)
(Mj)n−i

[
(Mj)

n−i∑
k=1

[
f
(
V
d,(θ,i,k)
i,j

(
U (θ,i,k)
t , x+W

d,(θ,i,k)

U(θ,i,k)
t −t

))
(4.70)

− 1N(i) f
(
V
d,(θ,−i,k)
i−1,j

(
U (θ,i,k)
t , x+W

d,(θ,i,k)

U(θ,i,k)
t −t

))]]
+

[
(Mj)

n∑
k=1

1N(n)Vd(T,x+W
d,(θ,0,−k)
T−t )

(Mj)n

]
.

Combining this and the fact that for all d ∈ N, t ∈ [0, T ], x ∈ Rd, w ∈ R it holds that Fd(t, x, w) =
f(w) yields that for all n ∈ N0, d, j ∈ N, θ ∈ Θ, t ∈ [0, T ], x ∈ Rd it holds that

Vd,θ
n,j(t, x) =

1N(n)

(Mj)n

[
(Mj)

n∑
k=1

Vd
(
T, x+W

d,(θ,0,−k)
T−t

)]
(4.71)

+
n−1∑
i=0

(T − t)
(Mj)n−i

[
(Mj)

n−i∑
k=1

[
Fd
(
U (θ,i,k)
t , x+W

d,(θ,i,k)

U(θ,i,k)
t −t

,V
d,(θ,i,k)
i,j

(
U (θ,i,k)
t , x+W

d,(θ,i,k)

U(θ,i,k)
t −t

))
− 1N(i)Fd

(
U (θ,i,k)
t , x+W

d,(θ,i,k)

U(θ,i,k)
t −t

,V
d,(θ,−i,k)
i−1,j

(
U (θ,i,k)
t , x+W

d,(θ,i,k)

U(θ,i,k)
t −t

))]]
.

Furthermore, observe that Lemma 4.5 and the fact that for all m ∈ N it holds that φ(m) =
max{k ∈ N : k ≤ exp(|ln(m)|1/2)} imply that

(A) it holds for all p ∈ (0,∞) that lim supj→∞[(Mj)
m(p)/2/j + 1/Mj] = lim supj→∞[(φ(j))m(p)/2/j +

1/φ(j)] = 0 and

(B) it holds for all j ∈ N thatMj+1 = φ(j + 1) ≤ 2φ(j) = 2Mj.

Combining items (A) and (B), (4.64), (4.65), (4.67), (4.68), (4.71), and Proposition 4.4 (applied
with a x κ, d x d, α x κ, β x 0, p x p, q x q, B x 2, L x D, T x T , (mj)j∈N x (Mj)j∈N,
φ x φ, fd x Fd, gd x (Rd 3 x 7→ Vd(T, x) ∈ R), ud x Vd, (Ω,F ,P) x (Ω,F ,P), uθ x uθ,
U θ x U θ, W d,θ x W d,θ, Ud,θ

n,j x Vd,θ
n,j in the notation of Proposition 4.4) hence guarantees that

there exists n : N × R → N and c = (cp,δ)(p,δ)∈R2 : R2 → R such that for all d ∈ N, ε, δ ∈ (0,∞),
p ∈ [2,∞) it holds that Cd,n(d,ε),n(d,ε) ≤ cp,δd

d+(p+q)(2+δ)(min{1, ε})−(2+δ) and

sup
t∈[0,T ]

sup
x∈[−κ,κ]d

(
E
[
|Vd(t, x)−Vd,0

n(d,ε),n(d,ε)(t, x)|p
])1/p ≤ ε. (4.72)

This and Hölder’s inequality prove that there exist n : N× R→ N and c = (cp,δ)(p,δ)∈R2 : R2 → R
such that for all d ∈ N, ε, δ, p ∈ (0,∞) it holds that

Cd,n(d,ε),n(d,ε) ≤ cp,δd
d+(p+q)(2+δ)(min{1, ε})−(2+δ) (4.73)
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and

sup
t∈[0,T ]

sup
x∈[−κ,κ]d

E
[
|Vd(t, x)−Vd,0

n(d,ε),n(d,ε)(t, x)|p
]

≤ sup
t∈[0,T ]

sup
x∈[−κ,κ]d

(
E
[
|Vd(t, x)−Vd,0

n(d,ε),n(d,ε)(t, x)|ϕ(p)
])p/ϕ(p) ≤ εp.

(4.74)

Combining (4.73), (4.74), and the fact that for all n ∈ N0, d, j ∈ N, θ ∈ Θ, t ∈ [0, T ], x ∈ Rd it
holds that ud(t, x) = Vd(t, x/

√
2) and Ud,θ

n,j (t, x) = Vd,θ
n,j(t, x/

√
2) hence establishes (4.62). The proof

of Theorem 4.6 is thus complete.
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