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Abstract

In recent years, several deep learning-based methods for the approximation of high-
dimensional partial differential equations (PDEs) have been proposed. The consider-
able interest these methods have generated in the scientific literature is in large part
due to numerical simulations which appear to demonstrate that some of these deep
learning-based approximation methods might have the capacity to overcome the curse
of dimensionality in the numerical approximation of PDEs in the sense that the number
of computational operations they require to achieve a certain approximation accuracy
e € (0,00) grows at most polynomially in the PDE dimension d € N = {1,2,3,...} and
the reciprocal of €. While there is thus far no mathematical result which proves that
one of these methods is indeed capable of overcoming the curse of dimensionality in the
numerical approximation of PDEs, there are now a number of rigorous mathematical
results in the scientific literature which show that deep neural networks (DNNs) have
the expressive power to approximate solutions of high-dimensional PDEs without the
curse of dimensionality in the sense that the number of real parameters used to describe
the approximating DNNs grows at most polynomially in both the PDE dimension d € N
and the reciprocal 1/e of the prescribed approximation accuracy ¢ € (0,00). More specif-
ically, [Hutzenthaler, M., Jentzen, A., Kruse, T., and Nguyen, T. A., SN Part. Diff.



Equ. Appl. 1, 2 (2020)] proves that for every T € (0,0), a € R, b € [a,0) it holds that
solutions ug: [0,T] x R? - R, d € N, of semilinear heat equations with Lipschitz con-
tinuous nonlinearities can be approximated by DNNs spatially in the L2-sense on [a, b]?
and temporally at time of maturity ¢ = 1" without the curse of dimensionality provided
that the initial value functions R? 5 &+ ug(0,2) € R, d € N, can be approximated by
DNNs without the curse of dimensionality. It is the key contribution of this article to
generalize this result by proving this statement in the LP-sense with p € (0, o0).
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1 Introduction

Finding approximate solutions to high-dimensional partial differential equations (PDEs) is
one of the most challenging issues in computational mathematics. In recent years, several
deep learning-based methods for this approximation problem have been proposed and have
received significant attention in the scientific literature; cf., e.g., [1,2,3,5,6,7,8, 10, 11,12,

, 10,16, 19,24,25,26, 29,32, 35,36, 37,38,39,10,42,44]. The considerable interest in deep
learning-based approximation methods for high-dimensional PDEs is in large part due to
numerical simulations which appear to demonstrate that some of these deep learning-based
approximation methods might have the capacity to overcome the curse of dimensionality
in the numerical approximation of PDEs in the sense that the number of computational
operations they require to achieve a certain approximation accuracy ¢ € (0,00) grows at
most polynomially in the PDE dimension d € N = {1,2,3,...} and the reciprocal of e.
In spite of the numerous highly encouraging numerical simulations for deep learning-based
approximation methods for high-dimensional PDEs indicating this potential, there is thus
far no mathematical result which proves that one of these methods is indeed capable of
overcoming the curse of dimensionality in the numerical approximation of PDEs. However,
in the last three years, a number of rigorous mathematical results have appeared in the
scientific literature which show that deep neural networks (DNNs) have the expressive power
to approximate solutions of high-dimensional PDEs without the curse of dimensionality in
the sense that the number of real parameters used to describe the approximating DNNs
grows at most polynomially in both the PDE dimension d € N and the reciprocal /= of the
prescribed approximation accuracy ¢ € (0,00); cf., e.g., [9,14,17,18,20,21,23,28,30,33,34,11].
While the articles [9, 14, 17,18,20,21,23,28,33,34,41] prove such DNN approximation results
for linear PDEs, the article [30] establishes a DNN approximation result for certain nonlinear
PDEs. More specifically, Hutzenthaler et al. [30| proves that for every T € (0,00), a € R,
b€ [a,) solutions ugy: [0,T] x R? — R, d € N, of semilinear heat equations with Lipschitz-
continuous nonlinearities can be approximated by DNNs spatially in the L2-sense on [a, b]?
and temporally at time of maturity t = T" without the curse of dimensionality provided that
the initial value functions R? 5 x +— u4(0,2) € R, d € N, can be approximated by DNNs
without the curse of dimensionality.

It is the key contribution of this article to generalize this result by proving this statement
in the LP-sense with p € (0,00). In order to illustrate the contribution of this article in
more detail, we now present in the following result, Theorem 1.1 below, a special case of
Theorem 4.1 in Section 4.1, which is the main result of this paper.

Theorem 1.1. Let vy e N, v e {1,2,3,4}, T,k,p,a € (0,0), a;,ay, a3, a4 € C(R,R) satisfy
for all x € R that a;(z) = (max{x,0}), as(z) = 27, a3(x) = max{z,ax}, and as(x) =
In(1 + exp(z)), let A: UgenR? — UgenRY satisfy for all d € N, x = (xq,...,24) € R? that
A<I> = (al,(xl),...,a,,(xd)), let N = ULENUl0,117~~JL€N(><l€=1(leXlk71 x le)); let R: N —
(UrienC (R RY) and P: N — N satisfy for all L € N, o, ly,...,lp € N, & = (W, By),
(WQ,BQ),...,(WL,BL)) € (Xizl(leXlk’l X le)), o € Rlo; X1 € Rll, ..., I, € RZL with
VEke {1, 2, Ce ,L}Z T = A(Wk‘%kfl + Bk) that

R(®) € C(RY,RE), (R(®))(xo) = Wi+ B, and P(®) =S+ L(ly1+1), (1.1)



let (Ga)(ae)enx 1] € N, let f: R — R be Lipschitz continuous, let uq € C*2([0,T] x R%, R),
d € N, and assume for alld € N, x = (z1,...,24) € RY, £ € (0,1], t € (0,T] that R(ga.) €
C(R%R), elug(t, z)] + [ug(0, 2) — (R(gae)) ()] < erd(1+ X0 |2x])*, P(gae) < kd*e™", and

(%ud)(t,x) = (Ayug)(t,z) + f(uq(t,x)). (1.2)

Then there exist c € R and (Mqc)(ge)enx01] S N such that for all d € N, € € (0,1] it holds
that R(ug.) € C(RYR), P(ug.) < cd’e™¢, and

Yp
U[O )~ R @ | <o (1.3)

Note #1: We will need to update the descriptions below based on our changes
in Theorem 1.1 above...

Theorem 1.1 is an immediate consequence of Corollary 4.15 in Section 4.3 below. Corol-
lary 4.15, in turn, follows from Theorem 4.1 which is the main result of this article (see
Section 4 below for details). In the following we provide some explanatory comments concern-
ing the mathematical objects appearing in Theorem 1.1 above. The function A : UgenR¢ —
UgenR? in Theorem 1.1 above describes the multidimensional rectifier functions which we
employ as activation functions in the approximating DNNs in Theorem 1.1 above. The func-
tion ||| : UszenR? — [0, 00) describes the standard norms on R?, d € N, in the sense that for
all d € N we have that [|-]|: UsenR? — [0, 00) restricted to R? is nothing but the standard
norm on RY. The set N = ULeNUlo,ll,.,,,lLeN(Xizl(leXlk*1 x R%)) in Theorem 1.1 above
represents the set of all neural networks which we employ to approximate the solutions of
the PDEs under consideration. The function R: N — Uy enC (R¥, R!) in Theorem 1.1 above
assigns to each neural network its realization function. More specifically, we observe that for
every neural network ® € N we have that R(®) € Ug enC (RF, R!) is the realization function
of the neural network ® with the activation functions being multidimensional versions of the
rectifier function provided by A: UgenR? — UgenR?. The function P: N — N counts for
every neural network ® € N the number of real parameters employed in ®. More formally,
we note that for every neural network ® € N we have that P(®) € N is the number of real
numbers used to describe the neural network ®. Furthermore, we observe that P(®) corre-
sponds to the amount of memory that is needed on a computer to store the neural network
® € N. The real number T € (0,00) in Theorem 1.1 above specifies the time horizon of the
PDEs (see (1.2)) whose solutions we intend to approximate by DNNs in (1.3) in Theorem 1.1
above. The real number € (0,0) in Theorem 1.1 above is a constant which we employ to
formulate our regularity and approximation hypotheses in Theorem 1.1. The real number
p € (0,00) in Theorem 1.1 above is used to specify the way we measure the error between the
exact solutions of the PDEs under consideration and their DNN approximations, that is, we
measure the error between the exact solutions of the PDEs under consideration and their
DNN approximations in the LP-sense (see (1.3) above for details). In Theorem 1.1 we assume
that the initial conditions of the PDEs (see (1.2)) whose solutions we intend to approximate
by DNNs without the curse of dimensionality can be approximated by DNNs without the
curse of dimensionality. The neural networks g4 € N, d € N, € € (0, 1], serve as such approx-
imating DNNs for the initial conditions of the PDEs (see (1.2)) whose solutions we intend to
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approximate. In particular, we note that the hypothesis that for all d € N, x € R?, ¢ € (0, 1],
t € (0,T] we have that e|uq(t, x)| + |uq(0, z) — (R(gac))(2)| < erd®(1+ ||z||*) in Theorem 1.1
above ensures that for all d € N, x € R? we have that (R(ga.))(z) ¢ onverges to u4(0, ) as e
converges to 0. The function f: R — R in Theorem 1.1 above specifies the nonlinearity in the
PDEs (see (1.2)) whose solutions we intend to approximate by DNNs in Theorem 1.1. The
functions ug4: [0,7] x R - R, d € N, in Theorem 1.1 above describe the exact solutions of
the PDEs in (1.2). Observe that the hypothesis that for all d e N, z € R? ¢ € (0,1], ¢t € (0,T]
we have that e|ug(t, )| +|uqa(0, ) — (R(g4.)) (z)| < ed®(1+||z||*) in Theorem 1.1 above also
ensures that for alld € N, 2 € R? ¢ € [0, T] we have that |ug(t, z)| < kd*(1+]|z]|*). Note that
the fact that for all for all d € N, z € R?, ¢ € [0,T] we have that |ug(t,z)| < xd®(1 + ||2]|*)
in particular ensures that the solutions u,: [0,7] x R? — R, d € N, of (1.2) grow at most
polynomially. This polynomial growth of the solutions is employed in order to assure that
the solutions of (1.2) with the fixed initial value functions R? 5 z + u4(0,7) € R, d € N, are
unique. Theorem 1.1 establishes that there exist neural networks ug. € N, de N, ¢ € (0,1],
such that for all d € N, € € (0, 1] we have that the LP-distance between the exact solution
ug: [0,T] xR? — R at time T of the PDE in (1.2) and the realization R (us.): R? — R of the
neural network u, . with respect to the Lebesgue measure on [0, 1] is bounded by & and such
that the number of parameters of the neural networks us. € N, d € N, € € (0, 1], grows at
most polynomially in both the PDE dimension d € N and the reciprocal /= of the prescribed
approximation accuracy € € (0,1]. Theorem 1.1 is restricted to measuring the LP-distance
with respect to the Lebesgue measure on [0, 1]¢ but our more general DNN approximation
results in Section 4 below (see Theorem 4.1 and Corollary 4.15 in Section 4) allow measuring
the LP-distance with respect to more general probability measures on R?. In particular, for
all a € R, b e (a,0) we have that the more general DNN approximation results in Section 4
below allow measuring the LP-distance with respect to the uniform distribution on [a, b]%.
The remainder of this article is organized as follows:

2 Artificial neural network (ANN) calculus

2.1 Structured description of ANNs

[Comment #2 from Josh: Consider the following options. .. }

(i) We denote by N the set given by
N = Uren Uzo,h ..... lLeN<><£:1(leXlk71 X le)) (2.1)

(ii) We denote by N the set given by
N =Uren Uiy ... zLeN<><£=1(leXlk*1 x Ri¥)) (2.2)

(iii) We denote by N the set given by

N = ULEN Ulo,ll ..... lL€N<><£:1(leXlk71 X le)) (23)
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(iv) We denote by N the set given by

N = UrenUip ..., lLeN(XLl(RZkXZ'H x R')) (24)

[Comment #3 from Josh: Which of the following look better? }
D e (XL (R RY)), @ & (XE_y (R x RE)), @ € (xf, (Rt x R

Definition 2.1 (Artificial neural networks). We denote by N the set given by

L x
N = ULEN Ulo,ll ..... lLEN(inl(le lk_l X le)) (25>

and we denote by P: N - N, L: N > N, Z: N - N, O:N - N, H: N - Ny =
{0,1,2,...}, D: N — UrenNY, and D,,: N — Ny, n € Ny, the functions which satisfy for all
LeN, lol,....lp e N, ®e (X;_ (Rexbt x RW)) ne Ny that P(®) = v l(lhy + 1),
L(P)=L,Z(D) =1y, O@) =1, H(®) =L -1, D(®) = (lp,l1,...,I1), and

l, n<L
]Dn((I)):{O N (2.6)

Definition 2.2 (Neural network). We say that ® is a neural network if and only if it holds
that ® € N (cf. Definition 2.1).

Definition 2.3 (Euclidean and maximum norms). We denote by [|-|: UgenR? — R and

Il : UsenR? — R the functions which satisfy for all d € N, z = (z1,...,24) € R? that
d 2

]l = [ |2a*]7* and [|lz]] = maxieq ... a2l

Definition 2.4 (Rectifier function). We denote by t: R — R the function which satisfies
for all z € R that v(x) = max{z, 0}.

Definition 2.5 (Multidimensional version). Let d € N and let a € C(R,R). Then we denote
by M,.qa: RY — R? the function which satisfies for all x = (z1,...,z4) € R? that

Moa(z) = (a(z1),...,a(zq)). (2.7)

Definition 2.6 (Realization associated to a DNN). Let a € C'(R,R). Then we denote by
Ra: N — (UrienC(RF RY)) the function which satisfies for all L € N, Iy, l1,...,l, € N,
O = (W1, B1),(Wa, Ba),...,(Wr, Br)) € (Xy_ (Re¥h-1 x RI¥)), 25 € Rlo, 2y e R, ...,
Tr_1€ Rz with Vk € {1, 2,... ,L}: Ty = ma,lk (kak—l + Bk) that

Ro(®) e C(R R%)  and  (Ra(®))(20) = Wrar 1 + By (2.8)

(cf. Definitions 2.1 and 2.5).



2.2 Compositions of ANNs

Definition 2.7 (Composition of ANNs). We denote by (-) e (): {(®1,P2) e NxN: Z(Py) =
O(®3)} — N the function which satisfies for all L, £ € N, I, l1, ..., I, lp, b, ..., lc e N, &y =
(W4, By), (Wa, Bs),...,(Wp,Br)) € (Xﬁzl(leXlk—l x R)), &y = (W1, B1), (W, Ba), . . .,
(We, Bs)) € (Xy_, (RW*01 x R¥)) with Iy = Z(®1) = O(Ps) = [g that

Dy oDy =
(W, B1), (W, Bs), ..., Wer,Bo1), W1 W, W1 Bs + By), Lo1-g
(Wa, By), (W5, Bs), ..., (W, By))
L (W, W1 B, + By), (W, Bs), (Ws, Bs), ..., (W, Bp)) L>1=¢ (2:9)
(W1, B), (W, Ba), ..., Wer, Bor), WiWe, Wi Be + By)) :L=1<¢
(W73, W%, + By)) L=1=¢

(cf. Definition 2.1).

2.2.1 Powers and extensions of ANNs

Definition 2.8 (Identity matrix). Let d € N. Then we denote by I; € R?*? the identity
matrix in R?*4,

Definition 2.9 (Powers of ANNs). We denote by (-)**: {® € N: Z(®) = O(®)} — N,
n € Ny, the functions which satisfy for all n € Ny, ® € N with Z(®) = O(®P) that

I 0,0,...,0)) e RO@)*O(®) » RO®) . p =0
q)on — {( O(‘b)?( P Y )) € X n (21())

P o (P*"71) :neN
(cf. Definitions 2.1, 2.7, and 2.8).

Definition 2.10 (Extension of ANNs). Let L € N, ¥ € N satisfy that Z(V) = O(¥).
Then we denote by € ¢: {® € N: (L(®) < L and O(®) = Z(V))} — N the function which
satisfies for all ® € N with £(®) < L and O(®) = Z(V) that

Epw(®) = (UL E®)) o @ (2.11)

(cf. Definitions 2.1, 2.7, and 2.9).

2.3 Parallelizations of ANNs
Definition 2.11 (Parallelization of ANNs). Let n € N. Then we denote by

P, {(®1,Ps,...,9,) e N": L(D1) = L(Dy) =... = L(P,)} > N (2.12)

the function which satisfies for all L € N, (li0,l11,.--,0.0), (l20,l21,---5l21),- -5 (lnos ln 1,
coslpr) € NEFL @y = (Wyy,Bi1), Wia, Bia),...,(Wir,Bi)) € (Xizl(Rll”“Xl”“*l X
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Rl”“))y Dy = (Wan,Boyr), (Waa, Ba2),...,(War,Bapr)) € (>< £=1(R12"“X12’k’1 X Rl“))a e
q)n = ((Wn,la Bn,1)7 (Wn,27 Bn,Z)a I (Wn,Lv Bn,L)) € (>< é:l(Rln’len’k_l X R%,k)) that

Wipn 0 0 0 B
0 Wy 0 .- 0 By
P, (®,®,,...,0,) = 0 0 Wi -~ 0 || Bsa |,
0 0 0 Wha B,
Wia 0 0 0 B
0 Wiy 0 .- 0 B,
0 0 Wso -+ 0 || Bsa2|],..., (2.13)
0 0 0 W2 B,
WI,L 0 0 0 Bl,L
0 WQ L 0 0 BQ,L
0 0 Wg,L 0 , BS,L
0 0 0 Wt B,.1

(cf. Definition 2.1).

2.4 Affine linear transformations as ANNs

Definition 2.12 (Affine linear transformation ANN). Let m,n € N, W € R™*" B € R™.

Then we denote by Ay, g € (R™*™ x R™) < N the neural network given by Ay, g = (W, B)
(cf. Definitions 2.1 and 2.2).

Lemma 2.13. Let m,ne N, W e R™" BeR™. Then

(i) it holds that D(Aw ) = (n,m) € N?,

(i1) it holds for all a € C(R,R) that R.(Awg) € C(R",R™), and
(iii) it holds for all a € C(R,R), z € R™ that (R.(Awp))(z) = Wz + B
(cf. Definitions 2.1, 2.6, and 2.12).

Proof of Lemma 2.13. Observe that the fact that Ay p € (R™*" x R™) < N ensures that
D(Awp) = (n,m) € N? (cf. Definitions 2.1 and 2.12). This establishes item (i). Next, note
that the fact that Ay g = (W, B) € (R™"™ x R™) and (2.8) assure that for all a € C(R,R),
x € R” it holds that R,(Awg) € C(R",R™) and

(Ra(Awp))(x) = Wa + B (2.14)

(cf. Definition 2.6). This establishes items (ii) and (iii). The proof of Lemma 2.13 is thus
complete. O



Lemma 2.14. Let ® € N (c¢f. Definition 2.1). Then
(i) it holds for allme N, W e R™*°®) B e R™ that

D<AW,B L] (I)) = (Dg(q)), Dl(q)), . ,]D)L(q))_l(q)), m) € NL((I))+1, (215)

(ii) it holds for all a € C(R,R), m € N, W € R™O® B e R™ that R,(Awpe®) €
C(RT™),R™),

(iii) it holds for all a € C(R,R), me N, W e R™9®) B eR™ reRX® that

(Ra(Aw,p » ®))(2) = W(Ra(®))(2) + B, (2.16)

(iv) it holds for allm e N, W e RE®>*n B e RH®) that

D(® o Awp) = (n,D1(2),Da(®),..., Dy (P)) € NAOIHL (2.17)

(v) it holds for all a € C(R,R), n e N, W € RI®>n B e RI® that R,(PeAyp) €
C(R",RO®)) and
(vi) it holds for allae C(R,R), ne N, W e RZ®>n B e RX®) e R™ that

(Ro(P o Awp))(x) = (Ru(P))(Wx + B) (2.18)

(cf. Definitions 2.6, 2.7, and 2.12).

Proof of Lemma 2.1/. Observe that Lemma 2.13 proves that for all m,n € N, W € R™*",
BeR", aeC(R,R), z € R" it holds that R,(Aw ) € C(R",R™) and

(Ro(Awp))(z) =Wz + B (2.19)

(cf. Definitions 2.6 and 2.12). Combining this and, e.g., Grohs et al. [22, Proposition 2.6]
establishes items (i), (ii), (iii), (iv), (v), and (vi). The proof of Lemma 2.14 is thus complete.
]

2.5 Linear combinations of ANNs
2.5.1 Summations of ANNs

Definition 2.15. Let m,n € N. Then we denote by &,,, € (R™*(™ x R™) the neural
network given by &,,, = Ag 1,0 (cf. Definitions 2.2, 2.8, and 2.12).

m Im ..

Definition 2.16 (Matrix transpose). Let m,n € N, A € R™*". Then we denote by A* €
R™™ the transpose of A.

Definition 2.17 (Transpose ANN). Let m,n € N. Then we denote by T,,,, € (R")>xm x
R™™) the neural network given by %,,, = Aq, T )*,0 (cf. Definitions 2.2, 2.8, 2.12,
and 2.16).

Im ...



Definition 2.18 (Sums of ANNs with the same length). Let u € Z, v € Z n [u,0),
O, Pyi, ..., P, € N satisty for all k € N N [u,v] that L(Pr) = L(D,), Z(Pr) = Z(Pu),

and O(®y) O(®,) (cf. Definition 2.1). Then we denote by @;_, P, (we denote by
O, DDy D...DD,) the neural network given by
& 0 = (Sowayu-uet @ [Pouat (@ @ustyo o @)] 0 Troyomaen ) N (2:20)

(cf. Definitions 2.2, 2.7, 2.11, 2.15, and 2.17).

Definition 2.19 (Sums of ANNs with different lengths). Let w € Z, v € Z n [u,®0), Py,
Dyi1,..., P, U e N satisfy for all £ € N n [u,v] that Z(®) = Z(P,), O(Px) = Z(¥) =
O(V), and H(V) = 1 (cf. Definition 2.1). Then we denote by Hj_, ;@ (we denote by
O, Hy Py 1Hy - . . HyP,) the neural network given by

k\pq)k = kC—:Bugmane{u,u+1 ,,,,, v} E(q)j),\lf(®k) € N (221>

(cf. Definitions 2.2, 2.10, and 2.18).

2.5.2 Linear combinations of certain ANNs with the same length

Definition 2.20 (Scalar multiplications of ANNs). We denote by (-)® (-): R x N — N the
function which satisfies for all A € R, ® € N that A\® ® = A1, 00 P (cf. Definitions 2.1,
2.7, 2.8, and 2.12).

Lemma 2.21. LetueZ,veZn|u,0), n=v—u+1, hy,hyi1,...,hy ER, &y, Py, ...,

®,, ¥ e N, By, Bus1, ..., By, € RE® satisfy D(®,) = D(Puyy) = ... = D(®,) and
\I] = k@_} (hk @ ((I)k ° AII(ék),Bk)) (222)

(cf. Definitions 2.1, 2.7, 2.8, 2.12, 2.18, and 2.20). Then
(i) it holds that

D(\Ij) = (I(CDU)a ZZ:U Dl(q)u)’ ZZ:U DZ(Cbu)a SRR ZZ=u D£(¢u)—l(q)U)7 O(Cbu))

2.23
= (I(CDU), nDy (Py,), nDa(Py), ..., nDr@,)—1(Pu), O(Cbu)), ( )
(i) it holds for all a € C(R,R) that Ry(¥) € C(RE®w) RO®W))  gnd
(iii) it holds for all a € C(R,R), x € RT(®w) that
(Ra(W)) () = 3 hi(Ra(®r)) (2 + By) (2.24)

(cf. Definition 2.6).
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Proof of Lemma 2.21. First, note that the hypothesis that D(®,) = D(®y11) = ... = D(D,)
and item (i) in Lemma 2.13 show that for all k € {u,u + 1,...,v} it holds that

D(AII(%)ka) = D(AII(%),Bk) = (I(CI)U),I(CI)U)) € N2~ (2.25)

This and, e.g., Grohs et al. [22, item (i) in Proposition 2.6] demonstrate that for all k €
{u,u+1,...,v} it holds that

D(Pr 0 Aryy, ) 8) = (Z(Pu), Di(Pu), Da(P), - -+, Dea,) (Pu)).- (2.26)

Observe that this and, e.g., Grohs et al. [23, item (i) in Lemma 3.14| yield that for all
ke {u,u+1,...,v} it holds that

D(hk @ (D o AII(q)k),Bk)) = D( 0 Aryy, m,)- (2.27)
Combining this, (2.26), and, e.g., Grohs et al. [23, item (ii) in Lemma 3.28] establish that

D(W) = D (B, (70 ® (e 0 Aty 5,)) )

= (Z(®u), Th_, Di(0), h_, Da(@0), ... Dy, D1 (), O(2,))  (2:28)
= (Z(®y), nDy (Py,), nDa(Py,), . . ., nDz(@,)—1(Pu), O(Py,)).

This establishes item (i). Furthermore, note that item (vi) and item (v) in Lemma 2.14 imply
that for all k € {u,u +1,...,v}, a € C(R,R), € R*®) it holds that R,(Py A1y, 5,) €
C(R¥(®«) RO(®wW) and

(Ra(@r s Avyyo, ) ) (@) = (Ra(@0)) (@ + By) (2.29)

(cf. Definition 2.6). Combining this and, e.g., Grohs et al. [23, Lemma 3.14| ensures that for
all ke {u,u+1,...,v}, ae C(R,R), x € RX®) it holds that

Ra <hk ® (Dy o AII(%>73,€)) e O(RE®@) RO(®w)) (2.30)

and
(Ra (hk ® (CI)k * AII(ék)aBk))>(x) = hk(Ra((Pk))(x + Bk) (2.31)

Moreover, observe that, e.g., Grohs et al. [23, Lemma 3.28] and (2.27) assure that for all
a € C(R,R), z € R*® it holds that R,(¥) € C(R*(®») RO(®w)) and

(Ra())(@) = (Ra(@Fllx ® (P ¢ Aty 5))) )(@)

; o (2.32)
= 2 (R“(h’“ ® (D o AIZ(¢k>ka)))(x) = > hi(Ra(Pr))(x + By).
ke=u k=u
This establishes items (ii) and (iii). The proof of Lemma 2.21 is thus complete. O]
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2.5.3 Linear combinations of certain ANNs with different lengths

Lemma 2.22. Let L € N, w € Z, v € Z n [u,0), hy, hyt1,-.. hy € R, Oy Py, ..o
®,,3, ¥ € N, By, Bys1,...,B, € RI®) g e C(R,R) satisfy for all j € N [u,v] that
L = manJGNﬁ[u,U] L(@k), I(q)]) = I((I)u>; O<q)j> = Z(:‘) = O(J); H(J) = 17 R(z(ﬁ) = idR;

and
v

V= k,:; <hk ® (Di e AII(%)kaD (2.33)
(cf. Definitions 2.1, 2.6, 2.7, 2.8, 2.12, 2.19, and 2.20). Then
(i) it holds that
L) (2.34)

= (z(®.), kg D1 (£1.5(®4)), ;; Dy(Era(®4)), - N Dr 1 (Ea(®1)), O(®,)),

k=u
(ii) it holds that Rq(¥) € C(RE(®) RO®W)  and

(iii) it holds for all x € R*(®w) that

(Ra(¥))(@) = 2 hi(Ra(®r))(x + Br) (2.35)

(cf. Definition 2.10).

Proof of Lemma 2.22. Note that item (i) in Lemma 2.21 establishes item (i). In addition,
observe that item (vi) and item (v) in Lemma 2.14 prove that for all k € N [u, v], 2 € RZ(®)
it holds that R, (®y ® Ay, | 5,) € C(R®), RO®)) and

(Ra(®@ Aty ) ) (@) = (Ra(®0)) (@ + By). (2.36)

This, e.g., Grohs et al. [23, Lemma 3.14], and, e.g., Grohs et al. [22, item (ii) in Lemma 2.14]
show that for all k € N N [u, v], 2 € R*® it holds that

Ra (SLJ(hk ® (D @ AIZW,BR))) = Ra(hi ® (Px @ Ay, ) 5,)) € C(RF®W RO®) (2.37)

and

(Ra (SLJ(hk ® (Dy o AII(%),Bk))))(x) _ (Ra(hk ® (Dy o AIIW,Bk)))(x)
— Me(Ra(®0))(z + By)

(2.38)

(cf. Definition 2.10). Combining this, e.g., Grohs et al. [23, Lemma 3.28|, and (2.27) demon-
strates that for all x € RZ(®%) it holds that R,(¥) € C(R*(®«) RO(®w)) and

k=u,J

Ro0)(5) = (Ra( 8 (1® (@10 Arr, ) ) )0
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_ <7za (kéf“ (e ® (@ o AII(q)k),Bk))))(x) (2.39)
= > <Ra (gL,?) <hk ® (q)k ° AII(¢k>ka)>>><x> = é]uhk(Ra(Cbk))(I + By)

k=u

(cf. Definition 2.18). This establishes items (ii) and (iii). The proof of Lemma 2.22 is thus
complete. O

3 ANN representations for MLP approximations

3.1 Activation functions as neural networks

Definition 3.1 (Activation ANN). Let n € N. Then we denote by i, € (R™*™ x R") x
(R™"™ x R™)) < N the neural network given by i,, = ((I,,,0), (I,,0)) (cf. Definitions 2.1, 2.2,
and 2.8).

Lemma 3.2. Let n e N. Then

(i) it holds that D(i,) = (n,n,n) € N3,

(i) it holds for all a € C'(R,R) that R,(i,) € C(R",R"), and
(111) it holds for all a € C(R,R) that R,(in) = Man
(cf. Definitions 2.1, 2.5, 2.6, and 3.1).

Proof of Lemma 3.2. Note that the fact that i, € (R™*" x R") x (R™" x R™)) < N yields
that D(i,) = (n,n,n) € N® (cf. Definitions 2.1 and 3.1). This establishes item (i). Next,
observe that the fact that i, = ((I,,0), (I,,0)) € (R™*" x R™) x (R™™ x R")) and (2.8)
establish that for all a € C(R,R), z € R™ it holds that R,(i,) € C(R",R") and

(Ra(in))(2) = In(Mapn(Inz + 0)) + 0 = M () (3.1)

(cf. Definitions 2.5, 2.6, and 2.8). This establishes items (ii) and (iii). The proof of Lemma 3.2
is thus complete. O

Lemma 3.3. Let ® € N (c¢f. Definition 2.1). Then
(i) it holds that

Dliog » @) = (Z(®),Dy(®), Dy(®). ... Doy (2), O(2), O(®)) € NSO (32)
(i) it holds for all a € C(R,R) that R,(io@) @ ®) € C(RT(®) RO®))
(iii) it holds for all a € C(R,R), x € RT® that (R.(io@) ® ®))(x) = M0 ((Ra(P))(z)),
(iv) it holds that

D(P e iz@) = (Z(®), Z(®), Dy (P),Da(®), ..., Dp(a)—1(P), O(®)) € N4®*2 1 (3.3)
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v) it holds for all a € C(R,R) that Rq(P e ize)) € C(RT®) RO®)  and
(®)
(vi) it holds for all a € C(R,R), z € RX®) that (Ry(P e i7@)))(7) = (Ra(P)) (Mo z(2)(2))
(cf. Definitions 2.5, 2.6, 2.7, and 3.1).

Proof of Lemma 3.5. Note that Lemma 3.2 implies that for all n € N, a € C(R,R), z € R”
it holds that R,(i,) € C(R",R") and

(Ra(in))(2) = Man(x) (3.4)

(cf. Definitions 2.5, 2.6, and 3.1). Combining this and, e.g., Grohs et al. [22, Proposition 2.6]
establishes items (i), (ii), (iii), (iv), (v), and (vi). The proof of Lemma 3.3 is thus complete.
m

3.2 ANN representations for one-dimensional identity

Definition 3.4 (Identity network). Let v € Ny. Then we denote by I, € N the neural
network which satisfies

I - (((_11) (8)) (@ (—1)”),0)) e (R x R?) x (RV2 xRY))  (3.5)

(cf. Definitions 2.1 and 2.2).

Lemma 3.5. Let a € [0,0), a € C(R,R), ¥ € N satisfy for all x € R that a(x) = max{z, ax}
and ¥ = (1 + )" ' ®Ly (¢f. Definitions 2.1, 2.20, and 3./). Then

(i) it holds for all v € Ny that D(L,) = (1,2,1) € N3,
(i1) it holds for all x € R that (R.(11))(x) = (1 + o)z,
(iii) it holds that D(¥) = (1,2,1) € N3,
(iv) it holds that R,(V) € C(R,R), and
(v) it holds for all x € R that (R,(¥))(x) =z
(cf. Definition 2.6).

Proof of Lemma 3.5. Observe that (3.5) ensures that for all v € Ny it holds that D(I,) =
(1,2,1) € N®. This establishes item (i). Furthermore, note that (3.5) assures that for all
x € R it holds that
(Ro(I1))(x) = a(x) — a(—x) = max{z, ar} — max{—x, —ax} (3.6)
= max{z, azr} + min{z, azr} = (1 + o)z '
(cf. Definition 2.6). This establishes item (ii). Moreover, observe that item (i) in Lemma 2.21
(applied with w =~ 1, v =~ 1, hy =~ (1 + o)™, &, —~ I, B, =~ 0, ¥ — ¥ in the notation of
Lemma 2.21) establishes item (iii). Combining (3.6) and item (iii) in Lemma 2.21 (applied
with u —~ 1, v~ 1, hy =~ (1 +a)™', &, ~ I, B, —~ 0, ¥ —~ ¥, g — a in the notation of
Lemma 2.21) therefore proves items (iv) and (v). The proof of Lemma 3.5 is thus complete.
0
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Lemma 3.6. Let v € N [2,00), by, b,...,b, € R, a € C(R,R) satisfy for all x € R that
a(z) =27 and by < by < ... <b,. Then

(i) there exist unique co, c1, .. ., cy € R which satisfy for allk € {0,1,...,~} that 1y (k) co+
7 1 CZ(bZ) = IL{'y71}<k3) 71,

(i) there exists a unique ¥ € N which satisfies

1=

U=A,e (.él (ci ® (iy o Alybi))) (3.7)

(iii) it holds that D(¥) = (1,~,1) € N3,
(i) it holds that R,(V) € C(R,R), and
(v) it holds for all x € R that (Ra(¥))(z) =
(cf. Definitions 2.1, 2.6, 2.7, 2.12, 2.18, 2.20, and 3.1).

Proof of Lemma 3.6. Throughout this proof let B = (B, ;)i jeq1.2,.. 4+1; € ROTV*X0FD satisfy
forallé,j7€{1,2,...,7} that By;41 =1, B;; =0, B,1; =1, and By ;1 ;41 = (b;)"" ! and let
D = (Dy,Dy,...,D )% € RO gatisfy for all k e {1,2,...,v+1} that Dy, = 1,y (k)y*
(cf. Definition 2.16). Note that the assumption that b; < by, < ... < b, and, e.g., Horn and
Johnson [27, Eq. (0.9.11.2)] show that

det(B) = (—1)*" det((B)ojequa, 1) = (—1)7*" [Hi,jeu,;...,ﬂ (b, - bi)] L0 (38)

1<j

This demonstrates that there exists a unique C = (cg,cq,...,c,)* € RO+ guch that
BC = D. This establishes item (i). In addition, observe that Lemma 2.21 and item (i)
establish item (ii). Next, note that item (i) in Lemma 2.21 and item (i) in Lemma 3.3 yield
that

D(¥) = (Z(ir), 3=y Du(in), O(n)) = (1,7, 1) (3.9)
(cf. Definitions 2.1 and 3.1). This establishes item (iii). Furthermore, observe that item (iii)
in Lemma 3.2 and item (iii) in Lemma 2.21 establish that for all x € R it holds that

(Ro(0))(@) = co + (Ra (@11 (c: ® (1 ¢ A1) ) ) @)

— e+ Nei(Rali) (& + bi) = co + Deile + by)’

i=1 =1

(3.10)

(cf. Definitions 2.6, 2.7, 2.12, 2.18, and 2.20). This and bionomial theorem imply that for all
x € R it holds that

(Ra(¥)) () = ¢ + iczlé( )ﬂ 7 (b;)? ] =co+ i( )[i A (b )j:|x'Yj‘ (3.11)

i=1
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Combining (3.11) and item (i) hence ensures that

v v , ‘
Ro)(0) = o 3 0)| Seatwy |7
P (3.12)
=Co+ Zo(j) [1{7—1}(j) v - 1i3(4) Co]ﬁ*j = .
J:
This establishes items (iv) and (v). The proof of Lemma 3.6 is thus complete. O

Lemma 3.7. Let vy € Nn [2,00), by,b,...,b, € R, a € C(R,R) satisfy for all x € R that
a(z) = (max{z,0})” and by < by < ... <b,y. Then

(1) it holds for all x € R that (R.(1,))(z) = 27,

(ii) there em’stkumque Co,5 C1,s - - 3 cy € R which satisfy for allk € {0,1,...,~} that 11,y (k) co+
iz Gi(bi)" = Liyny (k)

(7i) there exists a unique ¥ € N which satisfies

U=A,e (é (ci ® (L, Al,bi))), (3.13)

=1

(iv) it holds that D(V) = (1,2v,1) € N3,
(v) it holds that R,(¥) € C(R,R), and
(vi) it holds for all z € R that (R,(¥))(x) =z
(cf. Definitions 2.1, 2.6, 2.7, 2.12, 2.18, 2.20, and 5.4).
Proof of Lemma 3.7. First, note that (3.5) assures that for all € R it holds that

(Ro(L))(z) = a(z) + (—1)"a(—2z) = (max{z,0})” + (—1)7 (max{—=z,0})’

— (max{x70})7 n (min{x,O}y _ (3.14)

(cf. Definitions 2.6 and 3.4). This establishes item (i). Moreover, observe that item (i) in
Lemma 3.6 establishes item (ii). In addition, note that Lemma 2.21 and item (ii) establish
item (iii). Next, observe that item (i) in Lemma 2.21 and item (i) in Lemma 3.5 prove that

D(V) = (Z(1,), X, D1 (L), O(L,)) = (1,27, 1) (3.15)

(cf. Definition 2.1). This establishes item (iv). Furthermore, note that item (i) and item (iii)
in Lemma 2.21 show that for all z € R it holds that

(Ra())(2) = o + (Ra(SL1 (@ (1, 0 A1) ) ) @)
Y Y (3.16)
=cy+ Z,;lci(Ra(Iv»(x +b;)=co+ Elci(x + ;)"
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(cf. Definitions 2.7, 2.12, 2.18, and 2.20). This and bionomial theorem demonstrate that for
all x € R it holds that

(Ra(0)) () = co + Ses [i (a7 (bm] - +§(3) [ ici(bi)j]x“"j. (3.17)

i=1 |j=0 i=1

Combining (3.17) and item (ii) therefore yields that

v Y '
(Ru(W)() = o+ X(; )[; () ]
; _ (3.18)
~cot B0t~ L =
This establishes items (v) and (vi). The proof of Lemma 3.7 is thus complete. O

Lemma 3.8. Let a € C(R,R) satisfy for all x € R that a(x) = In(1 + exp(z)). Then
(i) it holds that R,(I;) € C(R,R) and
(i) it holds for all z € R that (R,(I1))(x) = x
(cf. Definitions 2.6 and 3.4).
Proof of Lemma 3.8. Observe that (3.5) establishes that for all z € R it holds that
(Ra(I1))(z) = a(z) — a(—z) = In(1 + exp(z)) — In(1 + exp(—=z))
_ ln( 14+ exp(x))) _ ln(exp(x)) . (3.19)

1+ exp(—=x

(cf. Definitions 2.6 and 3.4). This establishes items (i) and (ii). The proof of Lemma 3.8 is
thus complete. O

3.3 ANN representations for MLP approximations

Lemma 3.9. Let © = | J, 2", d, M,0 e N, T € (0,0), a € C(R,R), J,F,G € N satisfy

D(J) = (1,0,1), Ra(J) = idg, Ru(F) € C(R,R), and R,(G) € C(R4R), for every 6 € ©

let U’ |o, ] [0,T] and W9: [0,T] — R? be functions, for every 0 € ©, n € Ny let
9.0, T] x RY — R satisfy for all t € [0,T], x € R¢ that

w
Ul(t,z) = ﬂjﬁ) 3 (Ra(G)) (x + W}ﬂ%"”)] (3.20)
k=1
n_l B 0,i,k 0,—1i,k 0,i,k 03,k
Z = Z ) o U) = In(@)(Ra(F) o UL ) @0 WG ) |,

and let Uet eN, te[0,T], neZ, 0 e O, satisfy for all 0 € ©, n € N, t € [0,T] that
UL, = ((00 ... 0),0)e R x R and

O TR
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n—1 [ Mnfi i
M, ((T—t))@( ((Feulih),) oA, o, ))” (3.21)

Mn—i k “’]

n—1 [ — 3 M=t (6,—1i,k)
Hj ((t o H*N( )> ® ( <(F UmaX{Z 1,0}, Z/{(e ‘ k)) AI VV(Q(GZ zk;c) )) ] ]
= —t

Mn—i k=13

(cf. Definitions 2.1, 2.6, 2.7, 2.8, 2.12, 2.18, 2.19, and 2.20). Then

(i) it holds for all 01,05 € ©, n € Ny, t1,t5 € [0,T] that D(UL, ) = D(UR,),

(i) it holds for all @ € ©, n € Ny, t € [0,T] that L(U?,) < max{v, L(G)} + nH(F),

(#1) it holds for all @ € ©, n € Ny, t € [0,T] that
PRI < maxc{o, IDE), DG} (1 + v2) M7, (3.22)

(iv) it holds for all @ € ©, n e Ny, t € [0,T], z € R? that US(t, x) = (Ra(UY,))(x), and

(v) it holds for all @ € ©, n e Ny, t € [0,T] that
P(UL,) < 2(L(G) + nH(F)) | (1 + v2) M max{2, || D(F) .| D(G m}] (3.23)

(cf. Definition 2.3).
Proof of Lemma 3.9. Throughout this proof let ®? it €EN,0€0,neN,te|0,T], satisfy for

all 0 € ©, neN, te|0,T] that
Mn
@fm = k@ ( O) (G e A, LW k)))
— 1}, t € [0, T], satisfy for all 6 € O,

(3.24)

eN,0e€0,je{0,1}, ne N, ie{0,1,....,n

let W0
— 1}, t € [0, T] that

n,i,t

j € {0, 1} neN, 26{0,1,...,
- Ml((F U 1)7i.k) ) e A (8,4,k) >, (3.25)
B W fth_

it max{z jO}Z/{(QZk)

let Hnjt

t € [0,T] that

eN,0e0, je{0,1}, ne N, te|0,T], satisty for all § € ©, j € {0,1}, n € N,

(3.26)

n—1
EZ = @ [(( 1)7 (:g/[s)le H—])@\Dnzt]

— 1}, t € [0,T1], satisfy for all § € O,

G

let L7, eN, 00, je{0,1},neN,ie{0,1,....n
je{0,1},neN,i€{0,1,...,n—1}, t € [0,T] that

0. _ (0,(=1)7i,k)
L = %5y £(F U ), (3.27)
and let L, € N, n € N, satisfy for all n € N that
L, = max{ L(G), max LY. (3.28)
(1.7)e{0,1,...,n—1}x{0,1} 7
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We prove items (i), (ii), (iii), and (iv) by induction on n € Ny. For the base case n = 0 note
that the fact for all § € ©, t € [0,T7] it holds that Uf, = ((00 ... 0),0) € R" x R implies
that for all 0,60, € ©, t1,t; € [0,T] it holds that

D(Uy,) = (1,d,1) = D(Ug,). (3.29)

Moreover, observe that the fact that (3.20) implies that for all § € ©, ¢ € [0, T], z € R? it holds
that U§(t, ) = 0 and the fact for all 0 € ©, ¢ € [0,T] it holds that Uf, = ((00 ... 0),0) €
R**? x R! ensure that for all # € ©, t € [0,T], z € R? it holds that

LU =1, [P ]| =d,  and  (Ru(UG))(x) = Ug(t,2) (3.30)

(cf. Definition 2.3). Combining (3.29), (3.30), and the fact that the assumption that R.(G) €
C(R4R) implies that max{0, ||D(F)||, IP(G)||} = d hence proves items (i), (ii), (iii),
and (iv) in the the base case n = 0. For the induction step Ng 3 (n—1) --s neNlet ne N
and assume that items (i), (ii), (iii), and (iv) hold true for all k¥ € {0,1,...,n — 1}. Note
that the hypothesis that for every 6 € ©, t € [0, 7] it holds that W € R? and Lemma 2.21
(applied for every 6 € ©, t € [0,T] with

""" 0.0k (3.31)

in the notation of Lemma 2.21) assure that for all § € ©, t € [0, T], x € R? it holds that
D(®0,) = (d, M"D1(G), M"Ds(G),..., M"Dgg)-1(G),1) = D(®%) e NH@+1 (3.32)

and .
(Ra ((I)ftt))(x) = M

In addition, observe that the induction hypothesis and, e.g., Grohs et al. [22, item (ii) in
Proposition 2.6] prove that for all 6 € ©, j € {0,1}, i € {0,1,...,n — 1}, t € [0,T] it holds
that

| SR+ W) (3.33)

k=1

j 0,(—1)74k
Li’jitz max E(FOU(’( _),Z’) (Gik)>
T ke{1,2,...,M"—1} max{i—j7,0},U; "

= max [E(F) + £<U(9’(71)ji’k) ) — 1]

. . 0,1,k
ke{1,2,..., M7=} max{i—5,0}.U "M

= max [L(F) + E(UO ) - 1]

ke{1,2,..., M=} max{i—j,0},0

(3.34)

0 0,5
= max E F [ ) U . — L »J .
ke{1,2,..., Mn—i} ( max{i J,O},O) 13,0

This, the induction hypothesis, the hypothesis that for all § € ©, ¢ € [0,T] it holds that
W7 € RY, the hypothesis that for all § € ©, t € [0, 7] it holds that U{ € [0,T], Lemma 2.22
(applied for every j € {0,1},i€ {0,1,...,n—1}, 0 € ©, t € [0,T] with

n—i ~ ~ 0,0,k
u = 1a vie~ M , AJ e \j) (Bk:)ke{u,u+1 ..... v} = <Wut(9’i’k)7t>ke{l’2 ,,,,, Mn=i}

(hk)ke{u,u+1 v} (1)ke{1,2 ..... M7=}, L~ L?{io, U~ \I’%,ta aa (3.35)

(9’(71)ji7k)
(Pr)requutt,..op = (Fo max{i—j,o},uf‘“””)ke{l,z ..... M=y
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in the notation of Lemma 2.22), and, e.g., Grohs et al. [22, Proposition 2.6| show that for
allfe®, jef{0,1},ie{0,1,...,n—1},te[0,T], z € R? it holds that

D (\Ijz’it) (3.36)
- ’ kgl ! L?L’i'o’s ( * ma’x{iijvo}:ut(gyiﬂk)> ’ kgl 2 L?L’,Ji,O“NJ ( ° maX{i*j,O},Z/{t(e’i’k)) )
Mt .
(0,(=1)73,k)
Z ]DL?LJZ 0o <€L%§,0’J (F * Umax{i*jzo}:ut(e’i’k))> ’ 1) (337)

<d M Z]D)l(gLoé J (F i Umax{z —73,0}, O)) 9 Mn_iD2 (gLSL”JZ'.,OJ (F i U?nax{i—j,O},O)) )
A 0,5
s M Do —1<€L2L’i073 (F * U?nax{i—j,O},O))? 1 D(‘I’% 0) e Nlwio*!
and

RV )@ = S (Ra(F e UCCTE ) o W, )

max{i—3,0} U,

k
M i i
= 3 (Ra(®) o R, (UL ))(q,- FW ) (3.38)

max{ifj,O},Z/{t(g’z‘k)

= 3 (Ra®) o USSR ) U 2+ WG, ).

max{i—j,0}
Combining (3.36), (3.38), and Lemma 2.22 (applied for every j € {0,1}, 8 € O, t € [0,T]
with
L LY

n,2,07

I

U e 1, V e~ Mn—i’ 3 L 37 ((I)k)ke{ourl ..... } ( nlt)ze{Ol 7777 n—1}’

(hk)kefuutt,...op <(_1)](7]“M—7f)7111w(2+])

(3.39)

B Uy vy~ (I n—
>ie{071 77777 ety (Bi)ketuuti,...op = Ta)kefon,..., 1

in the notation of Lemma 2.22) demonstrates that for all j € {0,1}, 0 € ©, t € [0,T], v € R?
it holds that

. n—1 n
D(E) = (d, S D1 (E,5 (W10). S a(,, 2 (902,))
S (€0 (W) 1)
_ (d, S Du(E,(¥200)), 20 Da (€0, 4 (829,)).

(B 5 (¥20)) 1) = DI € N

(3.40)

ZDLOJ

n,i,0"

and

(Ra(Z03))(@) = :i( SRR (R, (90,)) () (3.41)
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n—1 . M .
_ (=17 (T—t) In(i+7) (0,(=1)74,k) (6,1,k) (6,1,k)
=S (s )[ S (Ru(F) o UL N 0+ WO, )|

=0 k=1

Next, note that (3.32), (3.36), (3.40), item (i) in Lemma 2.22 (applied for every 6 € O,

e [0,T] withu =~ 1, v~ 3, L e~ Ly, & =~ &, &y~ E00 &y~ E03, J =~ 3, by = 1,
hy e~ 1, hy —~ 1, By =~ 0, By —~ 0, B3 = 0 in the notation of Lemma 2.22), and, e.g., Grohs
et al. [22, item (i) in Proposition 2.6] yield that for all § € ©, t € [0, T'] it holds that

D(UY,) = D(20, @, =% B, =0}
(D1 (0,)) + D1 (62 (E) + By (6 (220,
Do (&L,.5(®0,0)) + D2 (L.3(Znz)) + P2 (L. 2(Z02)).
Do, (Eua(®,)) + Dr,s (1,3 (E00)) + Drr (E1,0(E00)), 1) (3.42)

- (daDl(gmn,s(@go)) + D1 (EL,3(Z00)) + D1 (8,3 (En)),
D5 (&1, (Pno)) + D2 (Er,(En)) + P2 (Er,a (Zn0)),
D1 (€, (#00)) + Duct (61, (205)) + Droa (1,2 (E06)), 1)
= D((I)qg,o Hs ’_‘?1(()) Hj = = 1) = D(Ug,o) e Nin+L,
Next, observe that (3.24), (3.25), (3.26), (3.33), (3.38), (3.41), and item (iii) in Lemma 2.22
(apphed for every 0 € ©, t € [0,T] with u ~ 1, v =~ 3, L — L,, &; — ®f, &y — =09

—n,t»
Py —~ Hnt7\jh\j hy «—~ 1, hg —~ 1, h3 —~ 1, B — 0, B, — 0, B3 — 0 in the notation of
Lemma 2.22) establish that for all @ € ©, t € [0, 7], z € R? it holds that

(Ra(US))(2) = (Ra(®@Y, By Z7 By E1))(2)
= (Ra(®)))(2) + (Ra(E2D)(2) + (Ra(E01)) (2)
- l% (Ra(G))(a + W(e’o’k))]
~ | Ut Tt
N oy Mgi (Ru(F [70)Y (14050) @)
= Mn—i = a( )O i )( t , T+ ut(G,i,k)_t)
+nz_]1(t—T) (i) Mnii(R (F) o [70—ik) )(u(e,i,k) R ) )
= M k=1 max{i—1,0}/ 37 ’ Ut (3.43)
un
= Ll(Ra(G))(:ﬁ + Wi ’”)]
oy [ M R (T o Uk (140ih) P 0.id)
+ Pt kgl ( o(F) o U )( t T+ ) t)
M .
+ EO (t—]a?n]l_l\!(l) [ P (Ra(F) 5 Ui(91 1k))(ut(91k)’ + W;{?Z,flg)_t)]
=U’(t,x).
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Furthermore, note that (3.42) and Jensen’s inequality imply that for all @ € ©, t € [0,T] it
holds that

1P, ) = [P0l
cmfo, e (D16 80) + D a(EE) + D a(EE)) |

< o lnax _1}[max{a,m (£, 5(290)) } + max{o, i (EL, 5(E20)) } (3.44)

+ max{0, Dk(&Ln‘,(”SLB))}]
< |IP(E.s (@) | + 1D (Ers Eno)lll + 1P (. s Eno) I

This, (3.32), (3.36), (3.40), (3.42), the 1nduct10n hypothesis, Jensen s inequality, and, e.g.,
Grohs et al. |22, item (i) in Proposition 2.6] ensure that for all € ©, t € [0, T'] it holds that

DUl = [P < |\|D(5Lw (@)l + [P (En.3(En0) )\H + 1P (L, 3 Eno)
< max{o, M| D(G)[|} + max{b, S lio(s,) m} N max{b, S lio(w,) m}

n—1 .
< max{o, M [D(@) ]} + maxfo, S |[p( « U}

n—1 .
+ max{b, ;M"_ZH‘D(F . U?nax{z‘—l,O},O) |H}

< max{d, M"(|D(G)||}
n—1 T
+ ZMTL—l

i=0
< max{0, M"||D(G)|}

D(F e U},)

D(F o Ulgir00) I} (3.45)

n—1 T
+ > M |max{0, [|D(F)
i=0 -

< (max{d, [ D(G)I} + nmax{d, [|D(F)][}) M"

(U20) [} + max{o, IDE)]],

D(Uhuciir010) I}]

n—1

LS e H\D(U?o)m + H]D(U?nax{iq,o},o)M]'

=0

Combining this and, e.g., Hutzenthaler et al. [31, Corollary 4.3| (applied with v «— 0, 8 — M,
o = max(2, DG}, a1 — max{o, [DE}, (@5)efoss ~ (PUL)ifor..oy in the
notation of Hutzenthaler et al. [31, Corollary 4.3]) assures that for all 6 € ©, ¢t € [0,T] it
holds that

ID(US )| < & (max{o. D@} + max{, [[DE)}) (1 +v2)"M
< max{2, [[D(E)]]. DG} (1 +v2)"M".

Moreover, observe that the induction hypothesis, (3.28), (3.42), Jensen’s inequality, and,
e.g., Grohs et al. |22, item (ii) in Proposition 2.6] prove that for all § € ©, t € [0, 7] it holds
that

(3.46)

6\ _ 0\ _ _ o
LU = £(U0G) = Ly = e £(G). | max LR e U0 |
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maX{c (u {0, 1,...2X1}x{0 1} <£( ) T £(Umax{z —3,0}, 0) }

) Unna(i—; 3.47
maX{£ (z ])6{0,1?1.?1)51}”0,1} E( maX{ijx]}’O) } ( )
< max{ L(G max (maXD,EG +maxi_.’0,HF)}

{ (z 7)e{0,1,....n—1}x{0,1} { ( )} { J } ( )

= max{ + [max{0d, L(G)} + (n — 1)7—[(F)]} < max{0, L(G)} + nH(F).

Combining (3.42), (3.43), (3.46), and (3.47) completes the induction step. Induction hence
establishes items ( ), (ii), (iii), and (iv). In addition, note that item (ii) and item (iii) show
that for all # € ©, n € Ny, t € [0,T] it holds that

E(U9
PUL) < S IIP@L NPl + 1] < 2207 llo(w )|
k= (3.48)
< 2(5(@) +nH(F))(maX{a, D@, ID(G ||\}) (1+V2)" M,
This establishes item (v). The proof of Lemma 3.9 is thus complete. O

4 ANN approximations for PDEs

4.1 ANN approximation results with general activation functions

Theorem 4.1. Let p,q,r,L,C, ay, a1, 5o, 1, T € [0,0), q € [2,0), a € C(R,R), J €
N, (Fae)@eenoxo1] S N, for every d € Ny let f; € C(R™{d1} R) for every d € N
let vy: B(RY) — [0,1] be a probability measure, and assume for all d € Ny, v,w € R,
r e Reaxldll o ¢ (0,1] that (Sgally|P va(dy)) /e < Od", H(T) = 1, Re(J) = idg,
Ra(Fae) € ORI R), max{] fo(v) = fo(w)], |(Ra(Fo.))(v) = (Ra(Fo.)) (w)]} < Llv—w,
gminia ) L(Fy.) + fmintany | D(Fy.)|| < C(max{d, 1})?, and

el(Ra(Fa)) (@) + [fa(z) = (Ra(Fae))(2)| < eClmax{d, 1})P(1 + [lz[)"*  (4.1)
(cf. Definitions 2.1, 2.3, and 2.6). Then

(i) for every de N, ¢ € (0,00) there exists a unique at most polynomially growing viscosity
solution ug € C([0,T] x R4 R) of

(gt a)(t,x) + e(Agug)(t, x) + f(ud(t,x)) =0 (4.2)

with ug(T, x) = gq(x) for (t,x) € (0,T) x R? and
(ii) there exist (Ugye)(are)enxorxo1] S N and 1 = (15)se(0,00): R — R such that for all
deN, te0,T], € (0,1], § € (0,00) it holds that Ry(Ugse) € C(RLR), P(Uyye) <

776dp(7+4q+(2+q)5)8—(4+2§+max{a0,a1}+2 max{S30,51}) and

<JRd|Ud(t, z) = (Ra(Ugye)) ()| Vd(dx)>l/cl <e. (4.3)
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[Note #4: Update the proof of Theorem 4.1... J

Proof of Theorem 4.1. Throughout this proof let B € [0,0), (m)reny S N satisfy for all
k € N that liminf; ., m; = oo, lim supjﬁOO (m)¥2/; < oo, and my1 < By, let © =, yZ"
let (Q, F,P) be a probabihty space let u?: Q — [0,1], 0 € ©, be i.i.d. random variables, let
U [0, T] x Q — [0,T], 6 € O, satisfyforallte[o 1], Ge@thatue—t—l—(T t)u?, let
W0 10,T] x Q - R4, d e N, 0 € ©, be independent standard Brownian motions, assume
for every d € N that (L{ )oco and (W‘w)ge@ are independent, let vz € C([0,T] x R, R),
deN, e e (0,1], satisfy for all d e N, e € (0,1], t € [0, T], z € R? that

vt a) = B[ (Ru(Ca))o+ Wi + | CE[(Ru(F)) vz WIS s, (4.)

let U - [0,T] xREx Q- R, d,j,neZ, 0O, ee (0,1], satisfy for all € € (0,1], n € Ny,

n,j,€

d,jeN,0eO,tel0,T], e R?that

Ul (t,x) =

n,J,€

Z7.778

o (T —t) |2 4,(0,i,k) (7 ,(0,0.k) d4,(6,i,%)
£ ol N [(RaEDUETD @ e+ Wil ) (45)

1,],6 u(e yisk) —t

— 1 (0) (R (F2)) (UL (g8 g 4 00 ))}],

let U ¢ N, d,j,neZ 0 e®©, te[0,T],ce (0,1], satisfy for all € € (0,1], € O,

n,J,t

d,j,neN, te[0,T] that U3¢ = ((00 ... 0),0) € R™? x R! and

(my)"
Ul = |8 (i © (Gucea, 5‘5’_(2*0"’“))>]

k=1
[ n—1 [ (mj)n—t
(T—-1) Z (0,0 k:) €
[ n—1 [ . (mj)n—?
N (t=T) In(4) 2 d,(0,—i,k) e
e iv:‘ ( 2 ) ® ( k,ﬁ <(FE * Umax{Z 1,0},5.44"" w) e Ay, Wd((eef:)) t>>]]

(cf. Lemma 3.9), let ¢4 € [1,0), d € N, satisfy for all d € N that

co = (C+ D)d (" (T + 1)) (€ + 1) +1)

Y(pqaa) 1(pqq) P 4.7
-[1+(j Jelpatan)) o+ (ELWE]) ] , 0
R4

let By €N, deN, ee(0,1], satisfy for all d e N, ¢ € (0, 1] that

By = max{?, [[D(F)||, ID(Ga:)ll}, (4.8)

24



let 4. € (0,1], de N, ¢ € (0, 1], satisfy for all d € N, € € (0, 1] that 0. = /(ca+1), and assume
without loss of generality that max{|f(0)| + 1,9} < C (cf. Definitions 2.7, 2.8, 2.12, 2.18,
2.19, and 2.20). Observe that the triangle inequality and the assumption that for all d € N,
re R g€ (0,1] it holds that e|(Ra(Gae)) ()| + |ga(z) — (Ra(Gar))(x)| < eCdP(1 + ||z||)P9
demonstrate that for all d e N, z € R, ¢ € (0, 1] it holds that

194(2)| < |ga(2) = (Ra(Gae)) ()| +[(Ra(Gae)) ()| < eCd”(1+||z|[)?"+CdP (1+[|][)*?. (4.9)
This yields that for all d € N, z € R? it holds that
|9a(2)| < (C'+ 1)d"(1 + [z[)™. (4.10)

Combining this, the assumption that for all w, z € R it holds that | f(w)—f(z)| < Llw—z|, and
Beck et al. [1, Corollary 3.10] (applied for every d € N with d e~ d, m —~d, L —~ L, T —~ T,
p— (R >z (0,0,...,0) e RY), 0~ 1y f =~ ([0,T] x R x R 3 (t,z,w) — f(w) € R),
g = ga, W = W40 in the notation of Beck et al. |1, Corollary 3.10]) establishes item (i).
Next, note that the fact that for all d € N the random variable ||W#/v7||? is a chi-squared
distributed random variable with d-degrees of freedom, Jensen’s inequality, and, e.g., Simon
[13, Eq. (2.35)] establish that for all d € N it holds that

(E[”Wg,oﬂpqq])? < E[HW;,OHquq] — (QT)pquWI — (QT)pqq[ 1__[ (%l + k)] (4.11)

This implies that for all d € N it holds that

L(pq rqq—1 Y/(2pan)
(]E[I|W;£70||pqq]>/< = \/ﬁ[ [T+ k:)] < \/ZT(g +pgq — 1). (4.12)

k=0

Combining this and the assumption that for all d € N it holds that ({g[|z|[P% v4(dz))"@® <
Cd" ensures that there exists C' € [0,0) such that for all d € N it holds that

ca < O[3+ d" + V)™ < Cdirrta, (4.13)

Furthermore, observe that the triangle inequality assures that for all n € No, d e N, § € (0, 1],
t € [0,77] it holds that

URd B[ Justt. ) - Ut ”d<dx))% (4.14)
< ([ ute. - vd,a(t,a:)|qud(dm))1/q ([, BfJunste. ) - 0001 ud(d@)l/“.

Moreover, note that the assumption that for all w € R, e € (0, 1] it holds that [(R,(F.))(w)—
f(w)| < Cemax{1,|w|?} proves that for all € € (0,1] it holds that

[(Ra(Fe))(0)] < |(Ra(Fe))(0) = fFO) + [f(O) s e+ [f(O)] < C. (4.15)
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In addition, observe that the assumption that for all d € N, z € RY, w € R, § € (0, 1] it holds
that [ f(w) — (Ra(Fs))(w)| < Cdmax{L, |w|?} and |ga(z) — (Ra(Gas)) ()| < 0CdP(1+ [[z]|)P
shows that for all d e N, w e R, x € R¢, § € (0,1] it holds that

max{|f(w) — (Ra(F5))(w)], |9a(z) — (Ra(Gas)) ()]} (4.16)

< max{C6(1 + |w|?),0Cd"(1 + ||z||)**} < 6(C + 1)d”((1 + ||z[|)** + |w]?). '
Combining this, (4.10), (4.15), the assumption that for all d € N, w,z €e R, x € R%, § € (0, 1] it
holds that max{|f(w)—f(2)|, |(Ra(Fs))(w)—(Ra(Fs))(2)|} < Llw—2z| and §|(Ra(Gays))(z)|+
194(2) — (Ra(Gays)) ()| < 0CdP(1+ ||z]|)??, and Hutzenthaler et al. [30, Lemma 2.3] (applied
for every d € N, § € (0,1] with f1 —~ f, fo = Ro(Fs), 91 = ga, 92 = Ra(Gas), T — T,
L—~L, B~ (C+1)d, 6=~ 6C+1)d?, W e~ W yy =~ ug, ug =~ vg5, p = p, ¢ = q in the
notation of Hutzenthaler et al. |30, Lemma 2.3]) demonstrate that for all d € N, ¢ € (0, 1],

€ [0,77] it holds that

l/q
< Rd|ud(t,x) —vgs(t, z)|* l/d(dx)> <O(C+ )dP (" (T + 1))q+1((0 +1)9dP + 1) (4.17)

L (e el + ey )|

Combining (4.17) and the triangle inequality hence yields that for all d € N, ¢ € (0, 1],
t € [0,77] it holds that

l/q

1/q
( d|ud(t, x) —vgs(t, z)|? l/d(dx)) < ¢q0. (4.18)
R

Next, note that (4.15) and the assumption that for all d € N, z € R%, § € (0, 1] it holds that
0(Ra(Gas))(x)] + |ga(z) — (Ra(Gas))(x)] < ICdP(1 + ||z||)P? establish that for all d € N,
re R §e (0,1] it holds that

max{|(R.(Fs))(0)], (Ra(Gas))(2)|} < max{C,Cd’(1 + ||z[|)**} = CdP(1 + ||z[)". (4.19)

This and the fact that for all n € N, wy,wa, ..., w, € [0,00) it holds that [>,_, wi]”* <
S (wy)”? imply that for all d € N, z = (21, 29,...,74) € RY, § € (0,1] it holds that

max{|(Ra(F5))(0)],|(Ra(Gas)) (@)} < CadP(1+ [S5_, xk]?]2)™

(4.20)
< OdP(1+ 30 |lo)™.

Combining this, the assumption that for all d € N, w,z € R, § € (0,1] it holds that
max{|f(w) — f(2)|,|(Ra(Fs))(w) — (Ra(Fs))(2)|} < L|w — 2|, and Hutzenthaler et al. [31,
Proposition 4.4] (applied for every 0 € (0,1] with 7" — T, B —~ B, L — max{L,C},
p =D, g pg g = g, (my)jen = (my)jen, | = Ra(Fs), (ga)aen = (Ra(Gas))den,
0 — 0, (W)geo — (u)gea, (U)sco — U)sco, W) (wpenxe = (W) wpenxo, (Ud)den —
(Va,6) den, (Uj;?)(n,j,d,g)eZXZXNx@ — (Ugﬁé)(mj’d,g)eZXZXNx@ in the notation of Hutzenthaler et
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al. [31, Proposition 4.4]) ensures that there exists : N x R — N such that for all d € N,
€ [0,T], 6 € (0,1] it holds that

(JRdE[‘Ud"s(t’x) — Uy@s)naa st x)}q] Vd(dx))l/q < ( y & Vd(dl'))l/q =5 (4.21)

Combining (4.14), (4.18), and (4.21) therefore assures that there exists 7: N x R — N such
that for all d e N, t € [0,T], § € (0,1] it holds that

l/q
(J]Rd E[|ud(t, T) — Uzk(t)i,é),n(d,é)75(t’ x)ﬂ yd(dx)) < cgd + 9. (4.22)

This and Fubini’s theorem prove that there exists 7: N x R — N such that for all d € N,
€ [0,T1], € € (0,1] it holds that

“|].

q
- Jd E[‘ud(t,x) — UZ’&%E)ﬂ(d’éd,a)’&dﬁ(t, .I)‘ ] va(dz) < (cadae + 5d,5)q = &9,
R

d, q
) = Ul a2 il .
4.23

(4.23) hence shows that there exists 72: N x R — N such that for all d € N, t € [0,T],
e € (0,1] it holds that there exists wg. € €2 such that

dO
Rd!ud(t,x) U ey m(de) 5a (t, 2, Wae | vy(de) < e (4.24)

Furthermore, observe that (4.6) and item (iv) in Lemma 3.9 (applied for every d,j € N,
€ (O, 1] with @ =~ @, d — d, M —~ Mj, F —~ FE, G — Gdﬁ, (ue)ge@ =~ (ua)ee@, (W9>ge@ =~

(Wseo, (U)mp)ezxo — (Ugj?,e)(n,e)ezx@, (Ul ) msoyezxor)xe = (Ui’gf)(n,t,e)em[o,T]x@ in
the notation of Lemma 3.9) demonstrate that for all d,n,j € N, t € [0,T], x € R%, ¢ € (0,1]
it holds that (Ro(U™%%))(z) = U™ _(¢,x). Combining this and (4.24) establishes (4.3).

n,J,t n,J,€
Moreover, note that item (v) in Lemma 3.9 implies there exists 7z: N x R — N such that for

alldeN, te[0,T], e (0,1] it holds that
P(Us ey i)
< 2(L(Ga2) + 2l HE) [ (14 VD) (my 1) max{o, IDE DG} |
2(£(Ge) + HE)) (max{2 [IDE)ID(G )} ) (4.25)
[ (ot 2) (0 V2 ()" ]

In addition, observe that the assumption that for all d € N, € € (0, 1] it holds that L(F.) <
Ce™ ID(FL)|| < Ce™, L(Gy.) < CdPe™?, and ||D(Gq.)|| < CdPe=® ensures that for all
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deN, g€ (0,1] it holds that

(£(Ga.) + H(F.)) (max{o, [DE)], ID(Ga)l})

< (Ce™ + Ce™) (max{C, ¢, Cdpga}f (4.26)

2
< 20dP max{e ", e (max{o, Ce, (Jd%“’})
< 203d3p€f max{3,\} (max{&t*”, 8701})2 < 203d3p87(max{5,)\}+2max{fy,a})'
This, (4.25), and Hutzenthaler et al. [31, Proposition 4.4| (applied with p —~ p, ¢ — pq,
f=~Yo, de~d, a—~1,0—0, (mj)jen = (Mj)jen, 72 = 7 in the notation of Hutzenthaler

et al. [31, Proposition 4.4]) assure that there exists 2: NxR — Nand ¢ = (¢5)sc0,00): R = R
such that for all de N, ¢ € (0,1], 6 € (0, 0) it holds that

2
P (Ui’?fd’n(d’e)i) < 203d3p€f(max{ﬁ,/\}+2 max{~y,a}) I:(ﬂ/(d, g)) 1/2(1 + \@)ﬂ(d,a) (mn(d,g)) n(d,E)]

< 2083 PP~ (max{BA 2 max{y.a}) [Céd(p+pq)(2+5)5—(2+5)]2 (4.27)
< (cé)2203dp(7+4q+(2+q)5)6—(4+25+max{5,)\}+2max{%a})‘
This establishes item (ii). The proof of Theorem 4.1 is thus complete. 0

4.2 One-dimensional neural network approximation results
4.2.1 The modulus of continuity

Definition 4.2 (Modulus of continuity). Let A € R be a set and let f: R — R be a function.
Then we denote by wy: [0,00] — [0, 0] the function which satisfies for all h € [0, o] that

wy(h) = sup({LF(@) — f()| € [0.0): (e.y € Awith |e—yl <B)}U{0})  (4:28)

and we call wy the modulus of continuity of f.
Lemma 4.3. Let a € [—0, 0], be [a,©] and let f: ([a,b] nR) — R be a function. Then

(1) it holds that wy is non-decreasing,

(11) it holds that f is uniformly continuous if and only if limp~ o ws(h) = 0,

(11t) it holds that f is globally bounded if and only if wy(c0) < oo,

(iv) it holds for all x,y € [a,b] "R that | f(x) — f(y)| < we(lx —y|), and

(v) it holds for all h,b € [0,00] that wr(h +b) < wp(h) + ws(h)
(cf. Definition 4.2).
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Proof of Lemma 4.5. First, note that (4.28) implies items (i), (ii), (iii), and (iv). Next,
observe that (4.28) and the triangle inequality ensure that for all h, h € [0, 0] it holds that

wy(h + )
= sup({|£(x) = f(y)| € [0,0): @,y € [a,b] A R: o —y| < (h+ b))} U {0})
) )| €[0,0): (w.y€ [a,0] AR: [w—y] < (h+5))} o {0})
( ()] € [0,%): (w,y € [a,b] A R: o —y| < (h+ D)) } U {0})
< sup({]f(x) — o —hE) e [0,0): (2 € [a,b] A R: |z —y| < h)} Y {0}) (4.29)
( ()] € [0.2): (w9 € [o,0] A R: |z —y] <) } U {0})

= wf(h) + w b)
(cf. Definition 4.2). This establishes item (v). The proof of Lemma 4.3 is thus complete. [

Lemma 4.4. Let A < R, L € [0,00), and let f: A — R satisfy for all x,y € A that
|f(x)—f(y)| < Llz—y|. Then it holds for all h € [0, 00) that ws(h) < Lh (cf. Definition 4.2).

Proof of Lemma /.j. Note that the assumption that for all z,y € A it holds that |f(z) —
f(y)] < Llx — y| and (4.28) assure that for all h € [0, 00) it holds that

we(h) = Sup<{|f(x) — f(y)| €[0,00): (x,y € A with |z —y| < h)} U {0}) (4.30)
< sup({L|a: —yle[0,0): (z,y € A with |z —y[ < h)} U {0}) < sup({Lh,0}) = Lh

(cf. Definition 4.2). The proof of Lemma 4.4 is thus complete. O

4.2.2 Linear interpolation of one-dimensional functions

Definition 4.5 (Linear interpolation function). Let K € N, ro,11,...,2k, fo, f1,---, fk €R
satisfy 1o < 11 < --- < rx. Then we denote by ZJ/o:/1-/k . R — R the function which satisfies

Lok, IK

for all k € {1,2,..., K}, x € (—0,8), ¥ € [th-1,1k), 2 € [tx,0) that (LL00-Ix)(x) = fo,
(lod ) (2) = Ji, and

L05E1 -0 LK
(Zlodrdy () = frog + (E=) (f — foor). (4.31)

e —Tk—1

Lemma 4.6. Let K € N, Io,xl,...,;K,fo,fl,...,f[( eR satisfy that o <@ < <Igk-
Then
(i) it holds for all k € {0,1,..., K} that (Lo I5) (1) = fr,

£0,815--+s K

(i) it holds for all k € {1,2,..., K}, x € [tp_1,Lk] that
(nggoxflxiK)(fﬂ) = fro1 + (=0 (fe — fuo1), (4.32)

Le—rk—1

and
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(#3) it holds for all k € {1,2,..., K}, x € [tp_1,Lk] that

(Zilod (@) = (255 ) o + (G ) fa (4.33)

e —Trk—1 e —Trk—1

(cf. Definition 4.5).

Proof of Lemma 4.6. Observe that (4.31) proves items (i) and (ii). Furthermore, note that
item (ii) shows that for all k € {1,2,..., K}, x € [rx_1, )] it holds that

(Bt = [1 - () s+ (B = (225 s+ (G20 (130

e —tk—1 L —Tlk—1 I —Fk—1 I —Fk—1
(cf. Definition 4.5). This proves item (iii). The proof of Lemma 4.6 is thus complete.

]
Lemma 4.7. Let K € N, ro,11,...,tx € R satisfyro <11 <--- <rx andlet f: [ro,tx] = R
be a function. Then

(i) it holds for all x,y € R with x # y that

‘(gf(;o%f(?l) ,,,,, f(xx))(x)_(gf(xo),f(xl) ,,,,, f(FK))<y)’

Losr1,- ol K Lo5r1,-- K

< max (M) |z — | (4.35)
k(12 Ky \ loeEea] Y

and

Las s )

7777 197¢

(i) it holds that supze[x07gk]|( x) — f(a:)! < wy(maxpeqr 2, ky|te — tr—1])

(cf. Definitions 4.2 and 4.5).

Proof of Lemma /.7. Throughout this proof let [: R — R satisfy for all x € R that [(x) =
(LLCT DI ) (1) and et L e [0, 0] satisfy

''''' 'K

L= max (M> (4.36)

ke{1,2,. K} \ [t

(cf. Definitions 4.2 and 4.5). Observe that item (iv) in Lemma 4.3, (4.36), and item (ii) in
Lemma 4.6 demonstrate that for all k € {1,2,..., K}, z,y € [tr_1,5x] with x # y it holds

that
(;i_—xﬁ) (f(?k) - f(?kﬂ)) . (ﬁ:ﬁ) (f(?k) - f(qu))‘

l(z) = U(y)| =
_ ’(f(zck) — f(zﬂk—1)>(x _))l < (wfém —Zik—|1|)>|x _yl <Ll —yl.
E— Fk—1

L — Tk—1

(4.37)

This, item (iv) in Lemma 4.3, Lemma 4.6, (4.36), and the triangle inequality yield that for
all j,ke{l,2,...,K}, v €[rj_1,15], ¥ € [t5—1, 2] With j < k and = # y it holds that

() = 1(y)| < [1(z) = 1x;)] + 11(xs) — 1ee—1)] + [1(xe—1) — U(y)]
= [l(z) — 1) + [ f (&) = flee—1)| + [1(xe-1) — 1(y)]
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< [l(x) — Uxj)| + :Zillf(xi) - f(zci_l)\] + [U(xr—1) — Uy)| (4.38)
< |l(z) — U(x;)| + :Zilwf(‘?i — Iil’)] + [U(xk—1) — l(y)|

i=j+1

< L((xj —z)+ [ kf (x — zm)] +(y - xkl) = Lz —y|.

Combining this and (4.37) establishes that for all x,y € [ro,rx]| with x # y it holds that
ll(x) — l(y)] < L|x —y|. This, the fact that for all z,y € (—o0, o] with = # y it holds that
ll(x) = l(y)] = 0 < L|z — y|, the fact that for all z,y € [rx,00) with z # y it holds that
ll(x) = (y)] = 0 < L|z — y|, and the triangle inequality imply that for all z,y € R with
x # y it holds that |l(x) — I(y)] < L|z — y|. This proves item (i). Moreover, note that
(4.28), Lemma 4.3, item (iii) in Lemma 4.6, and the triangle inequality ensure that for all
ke{l,2,...,K}, x € [rg_1, 1] it holds that

o) = 7 = | (2 ) gt + (£ ) - 10

L — Te—1 e — Tk
(B2 )00 - s+ (25 ) (o) - F0)
< (P - sl (E2E ) - Sl @)

L — T — k-1
s wf(lxk - Xk_lD <Ik — L1 a Ly — Ikl)

= wf(’?k - ?k71|) < wy (mane{l,Q ..... K}|}3j - ?j—1|)-
This establishes item (ii). The proof of Lemma 4.7 is thus complete. O

Lemma 4.8. Let K € N, L,xo,11,...,tx € R satisfyro <t1 < -+ <rx and let f: [ro,rx] —
R satisfy for all z,y € |ro,xx] that | f(z) — f(y)| < L|x —y|. Then

(i) it holds for all z,y € R that
‘(gf(zco%f(n) ,,,,, Fex)y(z) — (L G0 ). f(w))@)‘ < Llz —y| (4.40)

Losr1,- ol K Losr1,-- K

and
(i) it holds that sup ¢
(cf. Definition 4.5).

Proof of Lemma /.8. First, observe that the assumption that for all z,y € [ro, k] it holds
that |f(z) — f(y)] < L|z — y|, Lemma 4.4, and item (i) in Lemma 4.7 assure that for all
x,y € R it holds that

ff;{)%?)’f(n) ----- f(;x))(x)

;o,;K]l( ----- 197 - f(x){ < L(maxke{1,2 ..... K}|?k - ?k‘—1|)

‘(gf(xo)vf(n) ----- f(xx))(x)*(gf(;o),f(n) ----- f(?K))(y)‘

05Xl K Losr1,-- K

4.41
gl max <Lm_xkll)]|x_y|:L|$_y| ( )

ke(1,2,... K} \ [Tl
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(cf. Definition 4.5). This proves item (i). In addition, note that the assumption that for all
x,y € [ro,rx] it holds that |f(z) — f(y)| < L|x — y|, Lemma 4.4, and item (ii) in Lemma 4.7
prove that

P F ) f(e1),.f (exc) _ <L — ). 4.49

xe?ii]’( T )() = f(2)] e e = pei| (4.42)

This establishes item (ii). The proof of Lemma 4.8 is thus complete. []
4.2.3 Linear interpolation with ANNs

[Note #5: Need to update everything below this point. .. J

Lemma 4.9. Let o,f,h € R, H e N satisfy H= h® (i; e Ay g) (cf. Definitions 2.1, 2.7,
2.12, 2.20, and 3.1). Then

(1) it holds that H = ((«v, ), (h,0)),
(ii) it holds that D(H) = (1,1,1) € N3,
(111) it holds that R.(H) € C(R,R), and
(iv) it holds for all x € R that (R.(H))(x) = hmax{az + 3,0}
(cf. Definitions 2./ and 2.6).

Proof of Lemma 4.9. Observe that Lemma 2.13 shows that for all x € R it holds that
A,z = (o,8), D(Ang) = (1,1) € N?, R(A,p) € C(R,R), and (R (Anp))(z) = az + 3
(cf. Definitions 2.4 and 2.6). Lemma 3.2, Lemma 3.3, (2.8), and (2.9) therefore demonstrate
that for all € R it holds that i e A, 5 = ((o, 8),(1,0)), D(i; e Apnp) = (1,1,1) € N?,
Rt(il L Aa,ﬁ) € O(R,R), and

(Re(i1 @ App))(x) = t(Re(Anp)(z)) = max{azx + 3,0}. (4.43)

This, e.g., Grohs et al. [23, Lemma 3.14|, and Definition 2.20 yield that for all € R it holds
that h® (iy ® An ) = (@, B). (.0)). Ru(H) € C(R, E), D(H) = (L 1,1), and

(R:(H))(z) = h((R.(i1 ® Anp))(z)) = hmax{azx + [, 0}. (4.44)
This establishes items (i), (ii), (iii), and (iv). The proof of Lemma 4.9 is thus complete. [

Lemma 4.10. Let K € N, fo, f1,..., fx,%0,81,...,kx € R satisfyxo <p1 < - - < rg and let
F € N satisfy

K . _ _
F — Al,fo o (@ <( (fmin{k+1,K}—fk) (e fmaxge—1,03) )® (il o AL—:%))) (4‘45>

k=0 (Fmin{kﬂ,K}*Fmin{k,Kﬂ}) (Imax{k,n*limax{kfl,o})
(cf. Definitions 2.1, 2.7, 2.12, 2.18, 2.20, and 3.1). Then
(1) it holds that D(F) = (1, K +1,1) e N3,
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(i1) it holds that R.(F) € C(R,R),
(iii) it holds that Re(F) = £ i?)f;i) """ 1) - and

(iv) it holds that P(F) = 3K + 4
(cf. Definitions 2.4, 2.6, and 4.5).

Proof of Lemma /.10. Throughout this proof let cg, ¢y, ..., cx € R satisfy for all k € {0,1,
., K} that
(fumingk+1,63 — fx) (e Swaxpp-10)

(Ymingk+1,K} — Emin{k,k—13)  (Tmax{k,1} — Emax{k—1,0})
and let @y, ®y,..., Py € (R xRY) x (R x R)) = N satisfy for all k € {0,1,..., K} that
Q) =, ®(iy © Ay, ). Observe that Lemma 4.9 assures that for all k € {0,1,..., K} it holds
that R.(®x) € C(R,R), D(®;) = (1,1,1) e N3, and Vz € R: (R.(P1))(2) = ¢ max{x —xz, 0}
(cf. Definitions 2.4 and 2.6). This, Lemma 2.14, (4.45), and e.g., Grohs et al. [23, Lemma 3.28|
assure that D(F) = (1,K + 1,1) € N? and R.(F) € C(R,R). This establishes items (i)
and (ii). Moreover, note that item (i) and (2.6) imply that

P(F) = 2(K +1) + (K +2) = 3K + 4. (4.47)

This proves item (iv). Next observe that (4.46), Lemma 2.14, and e.g., Grohs et al. [23,
Lemma 3.28| ensure that for all x € R it holds that

(4.46)

C =

(Re(F))(z) = fo + é}O(Rt((I)k))(x) = fo+ é}ock max{x — rx, 0}. (4.48)

This and the fact that V& € {0,1,..., K}: ro < 1) assure that for all z € (—o0,0] it holds
that

(Re(F))(x) = fo+ 0= fo. (4.49)
Next we claim that for all k€ {1,2,..., K} it holds that
ch = Lzl (4.50)

We now prove (4.50) by induction on k €{1,2,..., K}. For the base case k = 1 observe that

(4.46) assures that Y _ ¢, = co = Q — ThlS proves (4.50) in the base case k = 1. For the

induction step from {1, 2,..., K — 1} ( —1) --» k€ {2,3,..., K} note that (4.46) ensures
that for all k € {2,3,..., K} with Yn_5 ¢, = L2202 it holds that
—fk—1 Jo—1—fr—2 Joe—1—=fo—2 _ fe—fr—1
ch = Ck-1F Z Cn = Ik The1  Th—1—Fk—2 T Pe—1—tk—2  h—Th—1 (4'51>

Induction thus proves (4.50). In addition, observe that (4.48), (4.50), and the fact that
Vke{l,2,...,K}: tj_1 < show that for all k€ {1,2,..., K}, © € [tr_1, k] it holds that

(Re(F))(2) — (Re(F)) (x1-1) = f} cn(max{z — ty, 0} — max{rz_1 — rn, 0})
. (4.52)

=Yl ) — (6 — 1] - 2<x —nen) = (B2 (- we):

n=0
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Next we claim that for all k€ {1,2,..., K}, x € [gx_1, tx] it holds that

(Re(F))(%) = fo-1 + (fk fie I (1 — tp1). (4.53)

e —Tk—1

We now prove (4.53) by induction on k € {1,2,..., K'}. For the base case k = 1 observe that
(4.49) and (4.52) demonstrate that for all x € [ro,r1] it holds that

(Re(F)) (@) = (Re(F))(®0) + (Re(F))(2) — (Re(F))(x0) = fo + (£50) (v —x0).  (4.54)

This proves (4.53) in the base case k = 1. For the induction step from {1,2,..., K —1} 3 (k—
1) --» k€ {2,3,..., K} note that (4.52) implies that for all k € {2,3,..., K}, z € [rp_1, L]
with Yy € [tr_2,tk-1]: (R(F))(y) = fro + (M)(y — I;_o) it holds that

(Re(F))(2) = (Re(F)) (x1-1) + (Re(F))(z) — (Re(F)) (x1-1) (4.55)
= fr2+ (%)(?k 1 — Tk— 2) + (J;i f: 11)(95 — i) = fre1 + (J;: f: 11)(96 — Lh1).

Induction thus proves (4.53). Furthermore, observe that (4.46) and (4.50) ensure that

K K-1 f f f 7
— _ _JKTJK-1 K—JK-1 __
n§:0cn = Ci + n§:0cn = e T o = 0. (4.56)

The fact that Vk € {0,1,..., K}: 1, < tx and (4.48) hence imply that for all z € [rx, 00) it
holds that

(RAE)(@) ~ (Ru(E)(sx) = | im0} e~ 5,,0)|

n . (4.57)
~ S aulle =) = (x —8)] = ealo —5x) =0
This and (4.53) show that for all x € [pg, o0) it holds that
(Re(F))(2) = (Re(F))(xxc) = frem1 + (ZELE0) (e — wrca) = fix (4.58)

Combining this, (4.49), (4.53), and (4.31) establishes item (iii). The proof of Lemma 4.10 is
thus complete. O

4.2.4 ANN approximations of one-dimensional functions

Lemma 4. 11 LetKe N, L,a,r0,11,...,tx € R, b€ (a,0) satisfy for all k € {0,1,..., K}
that vy = a+ 224 let f: [a,b] — R satisfy for all z,y € [a,b] that | f(z)— f(y)| < Lz —y|,
and let F e N satzsfy

K . —
F _ ALf(;O) o <@ ((K(f(xmm{k+l,K}) (iig)k)""f(xmax{k—l,o}))) @ (il [ ] Al,—F}g>)> (459)

k=0
(cf. Definitions 2.1, 2.7, 2.12, 2.18, 2.20, and 3.1). Then
(i) it holds that D(F) = (1, K + 1,1),
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(i1) it holds that R.(F) € C(R,R),

(111) it holds for all x,y € R that |(R.(F))(z) — (R(F))(y)| < L|z —y|,
(iv) it holds that sup,cp, y|(Re(F))(x) — f(2)| < L(b—a)K~", and
(v) it holds that P(F) = 3K + 4

(cf. Definitions 2./ and 2.6).

Proof of Lemma /.11. Note that the fact that Vk e {0,1,..., K}: Emin{k+1,K} — Emin{k,K—1} =
Tmax{k,1} — Emax{k—1,0} = (b — a)K 1 assures that for all k € {0,1,..., K} it holds that

(f(lfmin{kH,K})—f(Ik)) o (f(;k)_f(xmax{kfl,o})) _ K(f(;min{k+1,K})_2f(;k)+f(xmax{k71,0})) (460)

(;min{kﬁ—l,K}_Imin{k,K—l}) (Fmax{k,l}_xmax{k—l,O}) (b_a) ’

This and items (i), (ii), and (iv) in Lemma 4.10 prove items (i), (ii), and (v). In addition,
observe that (4.60) and item (iii) in Lemma 4.10 demonstrate that

R.(F) = P w0)f (1) f (k) (4.61)

L0581,y 193¢

Combining this with the assumption that Vaz,y € [a,b]: |f(z) — f(y)] < Llxz — y| and
item (i) in Lemma 4.8 establishes item (iii). Moreover, note that (4.61), the assumption
that Vz,y € [a,0]: |f(z) — f(y)] < L|x — y|, item (ii) in Lemma 4.8, and the fact that
Vke{l,2,....,K}: tx —tx_1 = (b— a)K ! demonstrate that for all z € [a, b] it holds that

RAEN) ~ F0) < L, =5l ) = LO- 0K (462)
ke{1,2,....K}
This establishes item (iv). The proof of Lemma 4.11 is thus complete. O

Lemma 4.12. Let L,a € R, b€ [a,0), £ € [a,b], let f: [a,b] — R satisfy for all z,y € [a, ]
that |f(x) — f(y)] < Llz —y|, and let F € N satisfy F = Aj )0 (0® (i1 ¢ Ay _¢)) (cf.
Definitions 2.1, 2.7, 2.12, 2.20, and 3.1). Then

(i) it holds that D(F) = (1,1, 1),
(ii) it holds that R«(F) € C(R,R),
(iii) it holds for all x € R that (Re(F))(x) = f(€),
(iv) it holds that sup ., 5| (Re(F))(x) — f(2)| < Lmax{¢ —a,b— &}, and
(v) it holds that P(F) = 4
(cf. Definitions 2./ and 2.6).

Proof of Lemma 4.12. Note that items (i) and (ii) in Lemma 2.14, and items (ii) and (iii) in
Lemma 4.9 establish items (i) and (ii). In addition, observe that item (iii) in Lemma 2.14
and, e.g., Grohs et al. [23, item (iii) in Lemma 3.14] assure that for all = € R it holds that

(Re(F))(2) = (Re(0® (i1 Ay ¢)))(x) + f(§)
= 0((Re(iy @ Ay —¢))(x)) + f(E) = f(€)
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(cf. Definitions 2.4 and 2.6). This establishes item (iii). Next note that (4.63), the fact that
¢ € [a,b], and the fact that for all x,y € [a,b] it holds that |f(z) — f(y)| < L|x — y| assure
that for all x € [a,b] it holds that

[(Re(F))(2) = f(@)| = |f(§) = f(@)] < L]z — €] < Lmax{§ —a,b— &} (4.64)

This establishes item (iv). Moreover, observe that (2.6) and item (i) assure that
PF)=11+1)+1(1+1) =4. (4.65)
This establishes item (v). The proof of Lemma 4.12 is thus complete. O

Corollary 4.13. Let ¢ € (0,0), L,a € R, b € (a,0), K € Ny n [L(bT_“),L(b_“) + 1),

Yo, 1,--.,tx € R satisfy for all k € {0,1,..., K} that t), = a + m’;ﬁ’{lgl}, let f:[a,b] - R
satisfy for all x,y € [a,b] that |f(x) — f(y)| < L|z — y|, and let F € N satisfy

K : - .
F= Ay o <k@0<<K(f(Imm{k+l,K}) (ii(j)k)‘f‘f(?max{k—l,O}))) ® (i o Al,—;k)>> (4.66)

(cf. Definitions 2.1, 2.7, 2.12, 2.18, 2.20, and 3.1). Then
(i) it holds that D(F) = (1, K +1,1),
(i1) it holds that R.(F) € C(R,R),
(#13) it holds for all z,y € R that |(R(F))(z) — (R(F))(y)| < L|z — vy,

(iv) it holds that SUp,e, | (Re(F))(x) — f(2)] < 72058 <&, and

(v) it holds that P(F) = 3K +4 <3L(b—a)e ™' +7
(cf. Definitions 2./ and 2.6).

Proof of Corollary /.13. Note that the fact that K € Ny n [2=2) L(b 9 4 1) implies that
mﬁf{b{;)l} < e. This, items (i), (ii), (iii), and (iv) in Lemma 4.11, and items (i), (ii), (iii),
and (iv) in Lemma 4.12 establish items (i), (ii), (iii), and (iv). Moreover, note that the fact

that K <1+ L(b %) ‘item (v) in Lemma 4.11, and item (v) in Lemma 4.12 assure that

L(b—
P(F) = 3K +4 < w +7. (4.67)
This establishes item (v). The proof of Corollary 4.13 is thus complete. O

Corollary 4.14. Let € € (0,1], L € [0,0), g € (1,00) and let f: R — R satisfy for all
x,y € R that |f(x) — f(y)| < L|lz —y|. Then there exists F € N such that

(i) it holds that R.(F) € C(R,R),
(i) it holds that H(F) =
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(iii) it holds that D (F) < 2(max{1,2L})¥«Ve=%a1 4 1,

(i) it holds for all z,y € R that |(R.(F))(z) — (R(F))(y)| < L]z — y],
(v) it holds for all z € R that |(R(F))(x) — f(z)| < emax{1,|z|?}, and
(vi) it holds that P(F) = 3(Dy(F)) + 1 < 12(max{1,2L})¥« vg=9D

(cf. Definitions 2.1, 2./, and 2.6).

Proof of Corollary /.14. Throughout this proof let a € [1,00) satisfy max{1,2L} = ca?™,
let g: [~a,a] — R satisfy for all z € [—a,a] that g(z) = f(z), let K = Ny n [2L2 2Le | 1)

Yo, L1, .-, K, Co,Cl,- -, Cx € R satisfy for all k€ {0,1,..., K} that rx, = —a + mﬁ?(’l} and
K min -2 + max{k—
o = (9(Tminfr+1,K) 9(tk) + 9(Emaxik 1,0}»))7 (4.68)
2a
and let F € N satisfy that
F = Aigw) < @ (r® (iv o Aly—xk))) (4.69)

(cf. Definitions 2.1, 2.7, 2.12, 2.18, 2.20, and 3.1). Observe that Corollary 4.13 implies that
(I) it holds that D(F) = (1, K + 1,1),
(I) it holds that R.(F) € C'(R,R),

(III) it holds for all z,y € R that |(R.(F))(z) — (R(F))(y)| < L|z — y|,

(1)

(V) it holds that P(F) = 3K + 4

it holds that sup,c(_, 4/(Re(F))(2) — g(z)| < mai{L[ag’l} < ¢, and

(cf. Definitions 2.4 and 2.6). This and the fact that for all z € [—a, a] it holds that g(z) = f(x)
establish items (i), (ii), and (iv). Next note that the triangle inequality, item (iv), the fact
that f(—a) = g(—a) = (R(F))(—a), the fact that f(a) = g(a) = (R:(F))(a), and the fact
that for all z,y € R it holds that |f(x) — f(y)| < L|x — y| ensure that for all x € R it holds
that

[(Re(F))(2) = f(2)] < [(Re(F)) () = fla)] + [f(a) = fF(O)] + |£(0) = f ()]

|(R(F)
= ;(zt(F;)(w) g(a)l + 1f(a) = F(O)] + [£(0) = f(2)| (4.70)

< [(Re(F)) () = (Re(F))(a)| + [ f(a) = f(O)] + |£(0) = f(=)]
< Llz —a|l + Lla| + L|z| = L(|lx — a| + a + |z|)
and
(Re(F)) () = f(2)| < [(Re(F))(2) = f(=a)| + [f(=a) = F(O)| + [ £(0) — f(x)]
= [(Re(F))(z) — g(=a)| + [f(=a) = fFO)| + [F(0) = f(x)| (471
< (Re(F)) (@) = (Re(F))(=a)| + [ f(=a) = F(O)] + |F(0) = f(2)]
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< Llz + a| + Lla|] + L|z| = L(Jx + a| + a + |z|).
(4.70) hence assures that for all x € (a,0) it holds that

(Re(F))(2) = f(2)] _ Lz —al+a+]z]) Llx—ata+tz)

max(Ll7} ~ madLlel} max(L el
(4.72)
2L B max{1,2L} _ max{1,2L} .
-~ max{l,|z[?} ~ max{l,|z?} = el
Moreover, (4.71) demonstrates that for all x € (—oo, —a) it holds that
|(Re(F))(2) = f(2)| _ Lz +al+a+]z)  L{=(z+a)+a—x)
ma(L o]~ max{ [al7] max{L, 7] )
2Lz _ max{1,2L} _ max{l,2L} '

© max{l,|z]7} ~ max{l,|z[7} = a9} —°

Combining this, (4.72), item (IV), and the fact that for all x € [—a, a] it holds that f(z) =
g(x) shows that for all z € R it holds [(R.(F))(x) — f(z)| < e max{l, |x|?}. This establishes
item (v). In addition, observe that item (I), the fact that max{1,2L} = ca?"!, and the fact
that K < 1+ 222 prove that

£

2L 1,2L 1,203\

K<1+—“<1+M:1+aqsza%2(m> . (4.74)

£ £ £

This establishes item (iii). Next observe that item (V) implies that
P(F) =3K +4=3(K + 1) + 1 = 3(Dy(F)) + 1. (4.75)

This and item (iii) guarantee that
3(Di(F)) + 1 < 4(Dy(F)) < 4[2(max{1,2L})7 e % 4 1] (4.76)
< 8(max{1,2L}) @ Ve~ 4 < 12(max{1,2L})Y @ VgD,

Combining (4.75) and (4.76) therefore establishes item (vi). The proof of Corollary 4.14 is
thus complete. O

4.3 ANN approximation results with general polynomial conver-
gence rates

Corollary 4.15. Let T, k,q € (0,0), f € C(R,R), let ||-]|: UzenR? — [0,0) satisfy for all

deN, z = (x1,29,...,74) € R that ||z| = [20_,|zx[?]"?, let Gqe € N, d e N, € € (0,1],

let ug € CY2([0,T] x R4 R), d € N, and assume for alld e N, v,w e R, z € R?, £ € (0,1],

t€[0,7) that | f(v) — f(w)| < Klv—wl|, Re(Gae) € C(RE,R), e (Re(Gae)) ()] +elualt, z)| +

|ug(T, x) — (Re(Gae))(z)| < erd™(1 + ||z||), P(Gae) < kd*e™", and

(%ud)(t,x) + %(Axud)(tw) + f(ud(t, :v)) =0 (4.77)
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(cf. Definitions 2.1, 2.3, 2.4, and 2.6). Then there exist Uy, € N, d € N, t € [0,T],
e € (0,1], and c € (0,00) which satisfy for all d e N, t € [0,T], € € (0,1] that R:(Ug,.) €
C(R4LR), P(Uy.) < cde™¢, and

l/q
(J d}ud(t, x) — (Rr(UdJ,E))(a:)!q das) <e. (4.78)
[0.1]
Proof of Corollary 4.15. The proof of Corollary 4.15 is thus complete. [
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