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Preface to the First Edition

They throw geometry out the door, and it comes back through the win-
dow.
(H.G.Forder, Auckland 1973, reading new mathematics at the age of 84)

The subject of this book is numerical methods that preserve geometric properties of
the flow of a differential equation: symplectic integrators for Hamiltonian systems,
symmetric integrators for reversible systems, methods preserving first integrals and
numerical methods on manifolds, including Lie group methods and integrators for
constrained mechanical systems, and methods for problems with highly oscillatory
solutions. Structure preservation – with its questions as to where, how, and what for
– is the unifying theme.

In the last few decades, the theory of numerical methods for general (non-stiff
and stiff) ordinary differential equations has reached a certain maturity, and excel-
lent general-purpose codes, mainly based on Runge–Kutta methods or linear mul-
tistep methods, have become available. The motivation for developing structure-
preserving algorithms for special classes of problems came independently from such
different areas of research as astronomy, molecular dynamics, mechanics, theoreti-
cal physics, and numerical analysis as well as from other areas of both applied and
pure mathematics. It turned out that the preservation of geometric properties of the
flow not only produces an improved qualitative behaviour, but also allows for a more
accurate long-time integration than with general-purpose methods.

An important shift of view-point came about by ceasing to concentrate on the
numerical approximation of a single solution trajectory and instead to consider a
numerical method as a discrete dynamical system which approximates the flow of
the differential equation – and so the geometry of phase space comes back again
through the window. This view allows a clear understanding of the preservation of
invariants and of methods on manifolds, of symmetry and reversibility of methods,
and of the symplecticity of methods and various generalizations. These subjects are
presented in Chapters IV through VII of this book. Chapters I through III are of an
introductory nature and present examples and numerical integrators together with
important parts of the classical order theories and their recent extensions. Chapter
VIII deals with questions of numerical implementations and numerical merits of the
various methods.

It remains to explain the relationship between geometric properties of the nu-
merical method and the favourable error propagation in long-time integrations. This
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Long-time errorsGeometric integrators

Backward error analysis

is done using the idea of backward error analysis, where the numerical one-step
map is interpreted as (almost) the flow of a modified differential equation, which is
constructed as an asymptotic series (Chapter IX). In this way, geometric properties
of the numerical integrator translate into structure preservation on the level of the
modified equations. Much insight and rigorous error estimates over long time in-
tervals can then be obtained by combining this backward error analysis with KAM
theory and related perturbation theories. This is explained in Chapters X through
XII for Hamiltonian and reversible systems. The final Chapters XIII and XIV treat
the numerical solution of differential equations with high-frequency oscillations and
the long-time dynamics of multistep methods, respectively.

This book grew out of the lecture notes of a course given by Ernst Hairer at
the University of Geneva during the academic year 1998/99. These lectures were
directed at students in the third and fourth year. The reactions of students as well
as of many colleagues, who obtained the notes from the Web, encouraged us to
elaborate our ideas to produce the present monograph.

We want to thank all those who have helped and encouraged us to prepare this
book. In particular, Martin Hairer for his valuable help in installing computers and
his expertise in Latex and Postscript, Jeff Cash and Robert Chan for reading the
whole text and correcting countless scientific obscurities and linguistic errors, Haruo
Yoshida for making many valuable suggestions, Stéphane Cirilli for preparing the
files for all the photographs, and Bernard Dudez, the irreplaceable director of the
mathematics library in Geneva. We are also grateful to many friends and colleagues
for reading parts of the manuscript and for valuable remarks and discussions, in
particular to Assyr Abdulle, Melanie Beck, Sergio Blanes, John Butcher, Mari Paz
Calvo, Begoña Cano, Philippe Chartier, David Cohen, Peter Deuflhard, Stig Faltin-
sen, Francesco Fassò, Martin Gander, Marlis Hochbruck, Bulent Karasözen, Wil-
helm Kaup, Ben Leimkuhler, Pierre Leone, Frank Loose, Katina Lorenz, Robert
McLachlan, Ander Murua, Alexander Ostermann, Truong Linh Pham, Sebastian
Reich, Chus Sanz-Serna, Zaijiu Shang, Yifa Tang, Matt West, Will Wright.

We are especially grateful to Thanh-Ha Le Thi and Dr. Martin Peters from
Springer-Verlag Heidelberg for assistance, in particular for their help in getting most
of the original photographs from the Oberwolfach Archive and from Springer New
York, and for clarifying doubts concerning the copyright.

Geneva and Tübingen, November 2001 The Authors



Preface to the Second Edition

The fast development of the subject – and the fast development of the sales of the
first edition of this book – has given the authors the opportunity to prepare this sec-
ond edition. First of all we have corrected several misprints and minor errors which
we have discovered or which have been kindly communicated to us by several read-
ers and colleagues. We cordially thank all of them for their help and for their interest
in our work. A major point of confusion has been revealed by Robert McLachlan in
his book review in SIAM Reviews.

Besides many details, which have improved the presentation throughout the
book, there are the following major additions and changes which make the book
about 130 pages longer:

– a more prominent place of the Störmer–Verlet method in the exposition and the
examples of the first chapter;

– a discussion of the Hénon–Heiles model as an example of a chaotic Hamiltonian
system;

– a new Sect. IV.9 on geometric numerical linear algebra considering differential
equations on Stiefel and Grassmann manifolds and dynamical low-rank approxi-
mations;

– a new improved composition method of order 10 in Sect. V.3;
– a characterization of B-series methods that conserve quadratic first integrals and

a criterion for conjugate symplecticity in Sect. VI.8;
– the section on volume preservation taken from Chap. VII to Chap. VI;
– an extended and more coherent Chap. VII, renamed Non-Canonical Hamiltonian

Systems, with more emphasis on the relationships between Hamiltonian systems
on manifolds and Poisson systems;

– a completely reorganized and augmented Sect. VII.5 on the rigid body dynamics
and Lie–Poisson systems;

– a new Sect. VII.6 on reduced Hamiltonian models of quantum dynamics and Pois-
son integrators for their numerical treatment;

– an improved step-size control for reversible methods in Sects. VIII.3.2 and IX.6;
– extension of Sect. IX.5 on modified equations of methods on manifolds to include

constrained Hamiltonian systems and Lie–Poisson integrators;
– reorganization of Sects. IX.9 and IX.10; study of non-symplectic B-series meth-

ods that have a modified Hamiltonian, and counter-examples for symmetric meth-
ods showing linear growth in the energy error;
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– a more precise discussion of integrable reversible systems with new examples in
Chap. XI;

– extension of Chap. XIII on highly oscillatory problems to systems with several
constant frequencies and to systems with non-constant mass matrix;

– a new Chap. XIV on oscillatory Hamiltonian systems with time- or solution-
dependent high frequencies, emphasizing adiabatic transformations, adiabatic in-
variants, and adiabatic integrators;

– a completely rewritten Chap. XV with more emphasis on linear multistep meth-
ods for second order differential equations; a complete backward error analysis
including parasitic modified differential equations; a study of the long-time sta-
bility and a rigorous explanation of the long-time near-conservation of energy and
angular momentum.

Let us hope that this second revised edition will again meet good acceptance by our
readers.

Geneva and Tübingen, October 2005 The Authors
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Chapter I.
Examples and Numerical Experiments

This chapter introduces some interesting examples of differential equations and il-
lustrates different types of qualitative behaviour of numerical methods. We deliber-
ately consider only very simple numerical methods of orders 1 and 2 to emphasize
the qualitative aspects of the experiments. The same effects (on a different scale)
occur with more sophisticated higher-order integration schemes. The experiments
presented here should serve as a motivation for the theoretical and practical inves-
tigations of later chapters. The reader is encouraged to repeat the experiments or to
invent similar ones.

I.1 First Problems and Methods
Numerical applications of the case of two dependent variables are not
easily obtained. (A.J. Lotka 1925, p. 79)

Our first problems, the Lotka–Volterra model and the pendulum equation, are dif-
ferential equations in two dimensions and show already many interesting geometric
properties. Our first methods are various variants of the Euler method, the midpoint
rule, and the Störmer–Verlet scheme.

I.1.1 The Lotka–Volterra Model

We start with an equation from mathematical biology which models the growth of
animal species. If a real variable u(t) is to represent the number of individuals of a
certain species at time t, the simplest assumption about its evolution is du/dt = u·α,
where α is the reproduction rate. A constant α leads to exponential growth. In the
case of more species living together, the reproduction rates will also depend on
the population numbers of the other species. For example, for two species with
u(t) denoting the number of predators and v(t) the number of prey, a plausible
assumption is made by the Lotka–Volterra model

u̇ = u(v − 2)
v̇ = v(1− u),

(1.1)

where the dots on u and v stand for differentiation with respect to time. (We have
chosen the constants 2 and 1 in (1.1) arbitrarily.) A.J. Lotka (1925, Chap. VIII) used
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Fig. 1.1. Vector field, exact flow, and numerical flow for the Lotka–Volterra model (1.1)

this model to study parasitic invasion of insect species, and, with its help, V. Volterra
(1927) explained curious fishing data from the upper Adriatic Sea following World
War I.

Equations (1.1) constitute an autonomous system of differential equations. In
general, we write such a system in the form

ẏ = f(y) . (1.2)

Every y represents a point in the phase space, in equation (1.1) above y = (u, v)
is in the phase plane R

2. The vector-valued function f(y) represents a vector field
which, at any point of the phase space, prescribes the velocity (direction and speed)
of the solution y(t) that passes through that point (see the first picture of Fig. 1.1).

For the Lotka–Volterra model, we observe that the system cycles through three
stages: (1) the prey population increases; (2) the predator population increases by
feeding on the prey; (3) the predator population diminishes due to lack of food.

Flow of the System. A fundamental concept is the flow over time t. This is the
mapping which, to any point y0 in the phase space, associates the value y(t) of the
solution with initial value y(0) = y0. This map, denoted by ϕt, is thus defined by

ϕt(y0) = y(t) if y(0) = y0. (1.3)

The second picture of Fig. 1.1 shows the results of three iterations of ϕt (with t =
1.3) for the Lotka–Volterra problem, for a set of initial values y0 = (u0, v0) forming
an animal-shaped set A.1

Invariants. If we divide the two equations of (1.1) by each other, we obtain a single
equation between the variables u and v. After separation of variables we get

0 =
1− u

u
u̇− v − 2

v
v̇ =

d

dt
I(u, v)

1 This cat came to fame through Arnold (1963).
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where
I(u, v) = lnu− u + 2 ln v − v, (1.4)

so that I(u(t), v(t)) = Const for all t. We call the function I an invariant of the
system (1.1). Every solution of (1.1) thus lies on a level curve of (1.4). Some of
these curves are drawn in the pictures of Fig. 1.1. Since the level curves are closed,
all solutions of (1.1) are periodic.

I.1.2 First Numerical Methods

Explicit Euler Method. The simplest of all numerical methods for the system (1.2)
is the method formulated by Euler (1768),

yn+1 = yn + hf(yn). (1.5)

It uses a constant step size h to compute, one after the other, approximations y1, y2,
y3, . . . to the values y(h), y(2h), y(3h), . . . of the solution starting from a given
initial value y(0) = y0. The method is called the explicit Euler method, because
the approximation yn+1 is computed using an explicit evaluation of f at the already
known value yn. Such a formula represents a mapping

Φh : yn �→ yn+1,

which we call the discrete or numerical flow. Some iterations of the discrete flow for
the Lotka–Volterra problem (1.1) (with h = 0.5) are represented in the third picture
of Fig. 1.1.

Implicit Euler Method. The implicit Euler method

yn+1 = yn + hf(yn+1), (1.6)

is known for its all-damping stability properties. In contrast to (1.5), the approx-
imation yn+1 is defined implicitly by (1.6), and the implementation requires the
numerical solution of a nonlinear system of equations.

Implicit Midpoint Rule. Taking the mean of yn and yn+1 in the argument of f , we
get the implicit midpoint rule

yn+1 = yn + hf
(yn + yn+1

2

)
. (1.7)

It is a symmetric method, which means that the formula is left unaltered after ex-
changing yn ↔ yn+1 and h ↔ −h (more on symmetric methods in Chap. V).

Symplectic Euler Methods. For partitioned systems

u̇ = a(u, v)
v̇ = b(u, v),

(1.8)
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(2, 2) for the explicit Euler method, (4, 8) for the implicit Euler method, (4, 2) and (6, 2) for
the symplectic Euler method)

such as the problem (1.1), we consider also partitioned Euler methods

un+1 = un + ha(un, vn+1)
vn+1 = vn + hb(un, vn+1),

or
un+1 = un + ha(un+1, vn)
vn+1 = vn + hb(un+1, vn),

(1.9)

which treat one variable by the implicit and the other variable by the explicit Euler
method. In view of an important property of this method, discovered by de Vogelaere
(1956) and to be discussed in Chap. VI, we call them symplectic Euler methods.

Numerical Example for the Lotka–Volterra Problem. Our first numerical exper-
iment shows the behaviour of the various numerical methods applied to the Lotka–
Volterra problem. In particular, we are interested in the preservation of the invariant
I over long times. Fig. 1.2 plots the numerical approximations of the first 125 steps
with the above numerical methods applied to (1.1), all with constant step sizes. We
observe that the explicit and implicit Euler methods show wrong qualitative be-
haviour. The numerical solution either spirals outwards or inwards. The symplectic
Euler method (implicit in u and explicit in v), however, gives a numerical solution
that lies apparently on a closed curve as does the exact solution. Note that the curves
of the numerical and exact solutions do not coincide.

I.1.3 The Pendulum as a Hamiltonian System

A great deal of attention in this book will be addressed to Hamiltonian problems,
and our next examples will be of this type. These problems are of the form

ṗ = −Hq(p, q), q̇ = Hp(p, q), (1.10)

where the Hamiltonian H(p1, . . . , pd, q1, . . . qd) represents the total energy; qi are
the position coordinates and pi the momenta for i = 1, . . . , d, with d the number of
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degrees of freedom; Hp and Hq are the vectors of partial derivatives. One verifies
easily by differentiation (see Sect. IV.1) that, along the solution curves of (1.10),

H
(
p(t), q(t)

)
= Const , (1.11)

i.e., the Hamiltonian is an invariant or a first integral. More details about Hamil-
tonian systems and their derivation from Lagrangian mechanics will be given in
Sect. VI.1.

m

cos q 1
q

Pendulum. The mathematical pendulum (mass m = 1,
massless rod of length � = 1, gravitational acceleration
g = 1) is a system with one degree of freedom having the
Hamiltonian

H(p, q) = 1

2
p2 − cos q, (1.12)

so that the equations of motion (1.10) become

ṗ = − sin q, q̇ = p. (1.13)

Since the vector field (1.13) is 2π-periodic in q, it is natural to consider q as a vari-
able on the circle S1. Hence, the phase space of points (p, q) becomes the cylinder
R× S1. Fig. 1.3 shows some level curves of H(p, q). By (1.11), the solution curves
of the problem (1.13) lie on such level curves.

exact flowexact flow explicit Eulerexplicit Euler symplectic Eulersymplectic Euler

Fig. 1.3. Exact and numerical flow for the pendulum problem (1.13); step sizes h = t = 1

Area Preservation. Figure 1.3 (first picture) illustrates that the exact flow of a
Hamiltonian system (1.10) is area preserving. This can be explained as follows: the
derivative of the flow ϕt with respect to initial values (p, q),

ϕ′
t(p, q) =

∂
(
p(t), q(t)

)
∂(p, q)

,
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satisfies the variational equation 2

ϕ̇′
t(p, q) =

(
−Hpq −Hqq

Hpp Hqp

)
ϕ′

t(p, q) ,

where the second partial derivatives of H are evaluated at ϕt(p, q). In the case of
one degree of freedom (d = 1), a simple computation shows that

d

dt
detϕ′

t(p, q) =
d

dt

(∂p(t)
∂p

∂q(t)
∂q

− ∂p(t)
∂q

∂q(t)
∂p

)
= . . . = 0.

Since ϕ0 is the identity, this implies detϕ′
t(p, q) = 1 for all t, which means that the

flow ϕt(p, q) is an area-preserving mapping.
The last two pictures of Fig. 1.3 show numerical flows. The explicit Euler

method is clearly seen not to preserve area but the symplectic Euler method is (this
will be proved in Sect. VI.3). One of the aims of ‘geometric integration’ is the study
of numerical integrators that preserve such types of qualitative behaviour of the ex-
act flow.

explicit Eulerexplicit Euler symplectic Eulersymplectic Euler Störmer–VerletStörmer–Verlet

Fig. 1.4. Solutions of the pendulum problem (1.13); explicit Euler with step size h = 0.2,
initial value (p0, q0) = (0, 0.5); symplectic Euler with h = 0.3 and initial values q0 = 0,
p0 = 0.7, 1.4, 2.1; Störmer–Verlet with h = 0.6

Numerical Experiment. We apply the above numerical methods to the pendulum
equations (see Fig. 1.4). Similar to the computations for the Lotka–Volterra equa-
tions, we observe that the numerical solutions of the explicit Euler and of the im-
plicit Euler method (not drawn in Fig. 1.4) spiral either outwards or inwards. The
symplectic Euler method shows the correct qualitative behaviour, but destroys the
left-right symmetry of the problem. The Störmer–Verlet scheme, which we discuss
next, works perfectly even with doubled step size.

2 As is common in the study of mechanical problems, we use dots for denoting time-
derivatives, and we use primes for denoting derivatives with respect to other variables.
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Fig. 1.5. Carl Störmer (left picture), born: 3 September 1874 in Skien (Norway), died: 13 Au-
gust 1957.
Loup Verlet (right picture), born: 24 May 1931 in Paris

I.1.4 The Störmer–Verlet Scheme

The above equations (1.13) for the pendulum are of the form

ṗ = f(q)
q̇ = p

or q̈ = f(q) (1.14)

which is the important special case of a second order differential equation. The most
natural discretization of (1.14) is

qn+1 − 2qn + qn−1 = h2f(qn), (1.15)

which is just obtained by replacing the second derivative in (1.14) by the central
second-order difference quotient. This basic method, or its equivalent formulation
given below, is called the Störmer method in astronomy, the Verlet method 3 in mole-
cular dynamics, the leap-frog method in the context of partial differential equations,
and it has further names in other areas (see Hairer, Lubich & Wanner (2003), p. 402).
C. Störmer (1907) used higher-order variants for numerical computations concern-
ing the aurora borealis. L. Verlet (1967) proposed this method for computations in
molecular dynamics, where it has become by far the most widely used integration
scheme.

Geometrically, the Störmer–Verlet method can be seen as produced by parabo-
las, which in the points tn possess the right second derivative f(qn) (see Fig. 1.6

3 Irony of fate: Professor Loup Verlet, who later became interested in the history of science,
discovered precisely “his” method in Newton’s Principia (Book I, figure for Theorem I,
see Sect. I.2.1 below).
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qn−1

qn

qn+1

tn−1 tn tn+1

h h

qn−1

qn

qn+1

qn− 1
2

qn+ 1
2

pn− 1
2

pn

pn+ 1
2

tn−1 tn tn+1tn− 1
2

tn+ 1
2

Fig. 1.6. Illustration for the Störmer–Verlet method

to the left). But we can also think of polygons, which possess the right slope in the
midpoints (Fig. 1.6 to the right).

Approximations to the derivative p = q̇ are simply obtained by

pn =
qn+1 − qn−1

2h
and pn+1/2 =

qn+1 − qn

h
. (1.16)

One-Step Formulation. The Störmer–Verlet method admits a one-step formulation
which is useful for actual computations. The value qn together with the slope pn and
the second derivative f(qn), all at tn, uniquely determine the parabola and hence
also the approximation (pn+1, qn+1) at tn+1. Writing (1.15) as pn+1/2−pn−1/2 =
hf(qn) and using pn+1/2 + pn−1/2 = 2pn , we get by elimination of either pn+1/2

or pn−1/2 the formulae

pn+1/2 = pn + h

2
f(qn)

qn+1 = qn + hpn+1/2 (1.17)

pn+1 = pn+1/2 + h

2
f(qn+1)

which is an explicit one-step method Φh : (qn, pn) �→ (qn+1, pn+1) for the corre-
sponding first order system of (1.14). If one is not interested in the values pn of the
derivative, the first and third equations in (1.17) can be replaced by

pn+1/2 = pn−1/2 + h f(qn).

I.2 The Kepler Problem and the Outer Solar System

I awoke as if from sleep, a new light broke on me. (J. Kepler; quoted
from J.L.E. Dreyer, A history of astronomy, 1906, Dover 1953, p. 391)

One of the great achievements in the history of science was the discovery of the
laws of J. Kepler (1609), based on many precise measurements of the positions of
Mars by Tycho Brahe and himself. The planets move in elliptic orbits with the sun
at one of the foci (Kepler’s first law)
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r =
d

1 + e cosϕ
= a− ae cosE, (2.1)

Fae

d
a

r

M

a

b

ϕE

(where a = great axis, e = eccentricity, b =
a
√

1− e2, d = b
√

1− e2 = a(1 − e2), E = ec-
centric anomaly, ϕ = true anomaly).

Newton (Principia 1687) then explained this
motion by his general law of gravitational attrac-
tion (proportional to 1/r2) and the relation between
forces and acceleration (the “Lex II” of the Prin-
cipia). This then opened the way for treating arbi-
trary celestial motions by solving differential equa-
tions.

Two-Body Problem. For computing the motion of two bodies which attract each
other, we choose one of the bodies as the centre of our coordinate system; the motion
will then stay in a plane (Exercise 3) and we can use two-dimensional coordinates
q = (q1, q2) for the position of the second body. Newton’s laws, with a suitable
normalization, then yield the following differential equations

q̈1 = − q1

(q2
1 + q2

2)3/2
, q̈2 = − q2

(q2
1 + q2

2)3/2
. (2.2)

This is equivalent to a Hamiltonian system with the Hamiltonian

H(p1, p2, q1, q2) =
1
2
(
p2
1 + p2

2

)
− 1√

q2
1 + q2

2

, pi = q̇i. (2.3)

I.2.1 Angular Momentum and Kepler’s Second Law

The system has not only the total energy H(p, q) as a first integral, but also the
angular momentum

L(p1, p2, q1, q2) = q1p2 − q2p1. (2.4)

This can be checked by differentiation and is nothing other than Kepler’s second
law, which says that the ray FM sweeps equal areas in equal times (see the little
picture at the beginning of Sect. I.2).

A beautiful geometric justification of this law is due to I. Newton4 (Principia
(1687), Book I, figure for Theorem I). The idea is to apply the Störmer–Verlet
scheme (1.15) to the equations (2.2) (see Fig. 2.1). By hypothesis, the diago-
nal of the parallelogram qn−1qnqn+1, which is (qn+1 − qn) − (qn − qn−1) =
qn+1 − 2qn + qn−1 = Const · f(qn), points towards the sun S. Therefore, the
altitudes of the triangles qn−1qnS and qn+1qnS are equal. Since they have the com-
mon base qnS, they also have equal areas. Hence

det(qn−1, qn − qn−1) = det(qn, qn+1 − qn)

and by passing to the limit h → 0 we see that det(q, p) = Const . This is (2.4).

4 We are grateful to a private communication of L. Verlet for this reference
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qn−1

qn

qn+1

S

qn−qn−1

qn+1−qn

f(qn)

Fig. 2.1. Proof of Kepler’s Second Law (left); facsimile from Newton’s Principia (right)

We have not only an elegant proof for this invariant, but we also see that the
Störmer–Verlet scheme preserves this invariant for every h > 0.

I.2.2 Exact Integration of the Kepler Problem
Pour voir présentement que cette courbe ABC . . . est toûjours une Sec-
tion Conique, ainsi que Mr. Newton l’a supposé, pag. 55. Coroll.I. sans le
démontrer; il y faut bien plus d’adresse: (Joh. Bernoulli 1710, p. 475)

It is now interesting, inversely to the procedure of Newton, to prove that any solution
of (2.2) follows either an elliptic, parabolic or hyperbolic arc and to describe the
solutions analytically. This was first done by Joh. Bernoulli (1710, full of sarcasm
against Newton), and by Newton (1713, second edition of the Principia, without
mentioning a word about Bernoulli).

By (2.3) and (2.4), every solution of (2.2) satisfies the two relations

1
2
(
q̇2
1 + q̇2

2

)
− 1√

q2
1 + q2

2

= H0, q1q̇2 − q2q̇1 = L0, (2.5)

where the constants H0 and L0 are determined by the initial values. Using polar
coordinates q1 = r cosϕ, q2 = r sinϕ, this system becomes

1
2
(
ṙ2 + r2ϕ̇2

)
− 1

r
= H0, r2ϕ̇ = L0. (2.6)

For its solution we consider r as a function of ϕ and write ṙ = dr
dϕ · ϕ̇. The elimina-

tion of ϕ̇ in (2.6) then yields

1
2

(( dr

dϕ

)2

+ r2

)
L2

0

r4
− 1

r
= H0.

In this equation we use the substitution r = 1/u, dr = −du/u2, which gives (with
′ = d/dϕ)

1
2
(u′2 + u2)− u

L2
0

− H0

L2
0

= 0. (2.7)

This is a “Hamiltonian” for the system
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u′′ + u =
1
d

i.e., u =
1
d

+ c1 cosϕ + c2 sinϕ =
1 + e cos(ϕ− ϕ∗)

d
(2.8)

where d = L2
0 and the constant e becomes, from (2.7),

e2 = 1 + 2H0L
2
0 (2.9)

(by Exercise 7, the expression 1+2H0L
2
0 is non-negative). This is precisely formula

(2.1). The angle ϕ∗ is determined by the initial values r0 and ϕ0. Equation (2.1)
represents an elliptic orbit with eccentricity e for H0 < 0 (see Fig. 2.2, dotted line),
a parabola for H0 = 0, and a hyperbola for H0 > 0.

Finally, we must determine the variables r and ϕ as functions of t. With the
relation (2.8) and r = 1/u, the second equation of (2.6) gives

d2

(
1 + e cos(ϕ− ϕ∗)

)2 dϕ = L0 dt (2.10)

which, after an elementary, but not easy, integration, represents an implicit equation
for ϕ(t).

−2 −1 1

−1

−2 −1 1

1

−2 −1 1

−1

−2 −1 1

−1

1

explicit Euler

h = 0.0005

400 000 steps

symplectic Euler h = 0.05

4 000 steps

implicit midpoint
h = 0.05

4 000 steps

Störmer–Verlet

h = 0.05

4 000 steps

Fig. 2.2. Numerical solutions of the Kepler problem (eccentricity e = 0.6; in dots: exact
solution)
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I.2.3 Numerical Integration of the Kepler Problem

For the problem (2.2) we choose, with 0 ≤ e < 1, the initial values

q1(0) = 1− e, q2(0) = 0, q̇1(0) = 0, q̇2(0) =

√
1 + e

1− e
. (2.11)

This implies that H0 = −1/2, L0 =
√

1− e2, d = 1− e2 and ϕ∗ = 0. The period
of the solution is 2π (Exercise 5). Fig. 2.2 shows some numerical solutions for the
eccentricity e = 0.6 compared to the exact solution. After our previous experience,
it is no longer a surprise that the explicit Euler method spirals outwards and gives a
completely wrong answer. For the other methods we take a step size 100 times larger
in order to “see something”. We see that the nonsymmetric symplectic Euler method
distorts the ellipse, and that all methods exhibit a precession effect, clockwise for
Störmer–Verlet and symplectic Euler, anti-clockwise for the implicit midpoint rule.
The same behaviour occurs for the exact solution of perturbed Kepler problems
(Exercise 12) and has occupied astronomers for centuries.

Our next experiment (Fig. 2.3) studies the conservation of invariants and the
global error. The main observation is that the error in the energy grows linearly for
the explicit Euler method, and it remains bounded and small (no secular terms) for
the symplectic Euler method. The global error, measured in the Euclidean norm,
shows a quadratic growth for the explicit Euler compared to a linear growth for
the symplectic Euler. As indicated in Table 2.1 the implicit midpoint rule and the
Störmer–Verlet scheme behave similar to the symplectic Euler, but have a smaller

50 100

.01

.02

50 100

.2

.4

conservation of energy

symplectic Euler, h = 0.001

explicit Euler, h = 0.0001

conservation of energy

symplectic Euler, h = 0.001

explicit Euler, h = 0.0001

global error of the solution

symplectic Euler, h = 0.001

explicit Euler, h = 0.0001

global error of the solution

symplectic Euler, h = 0.001

explicit Euler, h = 0.0001

Fig. 2.3. Energy conservation and global error for the Kepler problem
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Table 2.1. Qualitative long-time behaviour for the Kepler problem; t is time, h the step size

method error in H error in L global error

explicit Euler O(th) O(th) O(t2h)

symplectic Euler O(h) 0 O(th)

implicit midpoint O(h2) 0 O(th2)

Störmer–Verlet O(h2) 0 O(th2)

error due to their higher order. We remark that the angular momentum L(p, q) is ex-
actly conserved by the symplectic Euler, the Störmer–Verlet, and the implicit mid-
point rule.

I.2.4 The Outer Solar System

The evolution of the entire planetary system has been numerically in-
tegrated for a time span of nearly 100 million years5. This calculation
confirms that the evolution of the solar system as a whole is chaotic, . . .

(G.J. Sussman & J. Wisdom 1992)

We next apply our methods to the system which describes the motion of the five
outer planets relative to the sun. This system has been studied extensively by as-
tronomers. The problem is a Hamiltonian system (1.10) (N -body problem) with

H(p, q) =
1
2

5∑
i=0

1
mi

pT
i pi −G

5∑
i=1

i−1∑
j=0

mi mj

‖qi − qj‖
. (2.12)

Here p and q are the supervectors composed by the vectors pi, qi ∈ R
3 (momenta

and positions), respectively. The chosen units are: masses relative to the sun, so that
the sun has mass 1. We have taken

m0 = 1.00000597682

to take account of the inner planets. Distances are in astronomical units (1 [A.U.] =
149 597 870 [km]), times in earth days, and the gravitational constant is

G = 2.95912208286 · 10−4.

The initial values for the sun are taken as q0(0) = (0, 0, 0)T and q̇0(0) = (0, 0, 0)T .
All other data (masses of the planets and the initial positions and initial veloci-
ties) are given in Table 2.2. The initial data is taken from “Ahnerts Kalender für
Sternfreunde 1994”, Johann Ambrosius Barth Verlag 1993, and they correspond to
September 5, 1994 at 0h00.6

5 100 million years is not much in astronomical time scales; it just goes back to “Jurassic
Park”.

6 We thank Alexander Ostermann, who provided us with this data.



14 I. Examples and Numerical Experiments

Table 2.2. Data for the outer solar system

planet mass initial position initial velocity

−3.5023653 0.00565429
Jupiter m1 = 0.000954786104043 −3.8169847 −0.00412490

−1.5507963 −0.00190589

9.0755314 0.00168318
Saturn m2 = 0.000285583733151 −3.0458353 0.00483525

−1.6483708 0.00192462

8.3101420 0.00354178
Uranus m3 = 0.0000437273164546 −16.2901086 0.00137102

−7.2521278 0.00055029

11.4707666 0.00288930
Neptune m4 = 0.0000517759138449 −25.7294829 0.00114527

−10.8169456 0.00039677

−15.5387357 0.00276725
Pluto m5 = 1/(1.3 · 108) −25.2225594 −0.00170702

−3.1902382 −0.00136504

J S
U

N

P

explicit Euler, h = 10

J S
U

N

P

implicit Euler, h = 10

J S
U

N

P

symplectic Euler, h = 100

J S
U

N

P

Störmer–Verlet, h = 200

Fig. 2.4. Solutions of the outer solar system

To this system we apply the explicit and implicit Euler methods with step size
h = 10, the symplectic Euler and the Störmer–Verlet method with much larger
step sizes h = 100 and h = 200, repectively, all over a time period of 200 000
days. The numerical solution (see Fig. 2.4) behaves similarly to that for the Kepler
problem. With the explicit Euler method the planets have increasing energy, they
spiral outwards, Jupiter approaches Saturn which leaves the plane of the two-body
motion. With the implicit Euler method the planets (first Jupiter and then Saturn)
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fall into the sun and are thrown far away. Both the symplectic Euler method and
the Störmer–Verlet scheme show the correct behaviour. An integration over a much
longer time of say several million years does not deteriorate this behaviour. Let us
remark that Sussman & Wisdom (1992) have integrated the outer solar system with
special geometric integrators.

I.3 The Hénon–Heiles Model

. . . because: (1) it is analytically simple; this makes the computation of
the trajectories easy; (2) at the same time, it is sufficiently complicated to
give trajectories which are far from trivial . (Hénon & Heiles 1964)

The Hénon–Heiles model was created for describing stellar motion, followed for a
very long time, inside the gravitational potential U0(r, z) of a galaxy with cylindrical
symmetry (Hénon & Heiles 1964). Extensive numerical experimentations should
help to answer the question, if there exists, besides the known invariants H and L,
a third invariant. Despite endless tentatives of analytical calculations during many
decades, such a formula had not been found.

After a reduction of the dimension, a Hamiltonian in two degrees of freedom of
the form

H(p, q) = 1

2
(p2

1 + p2
2) + U(q) (3.1)

is obtained and the question is, if such an equation has a second invariant. Here,
Hénon and Heiles put aside the astronomical origin of the problem and choose

U(q) = 1

2
(q2

1 + q2
2) + q2

1q2 −
1

3
q3
2 (3.2)

(see citation). The potential U is represented in Fig. 3.1. When U approaches 1
6 , the

level curves of U tend to an equilateral triangle, whose vertices are saddle points
of U . The corresponding system

q1q1

q2q2 UUUU

−.5 .5

1

−.5

P0

P1

P2

q1

q2

Fig. 3.1. Potential of the Hénon–Heiles Model and a solution
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−.3 .3

.3

−.3

P0
P1

P2

H = 1
12

q2

p2

−.4 .4

.4

−.4

P0
P1

P2

H = 1
8

q2

p2

Fig. 3.2. Poincaré cuts for q1 = 0, p1 > 0 of the Hénon–Heiles Model for H = 1
12

(6 orbits,
left) and H = 1

8
(1 orbit, right)

−.4

.4

−.4

P0

P1

P2

P7600

q2

p2 Explicit Euler
h = 10−5

H0 = 1
12

in bold: P1, . . . , P400

−.4 .4

.4

−.4

P0
P1

P2

P8000

q2

p2 Implicit Euler
h = 10−5

H0 = 1
8

in bold: P8000, . . . , P8328

Fig. 3.3. Poincaré cuts for numerical methods, one orbit each; explicit Euler (left), implicit
Euler (right). Same initial data as in Fig. 3.2

q̈1 = −q1 − 2q1q2 , q̈2 = −q2 − q2
1 + q2

2 (3.3)

has solutions with nontrivial properties. For given initial values with H(p0, q0) < 1
6

and q0 inside the triangle U ≤ 1
6 , the solution stays there and moves somehow like

a mass point gliding on this surface (see Fig. 3.1, right).

Poincaré Cuts. We fix first the energy H0 and put q10 = 0. Then for any point
P0 = (q20, p20), we obtain p10 from (3.1) as p10 =

√
2H0 − 2U0 − p2

20, where we
choose the positive root. We then follow the solution until it hits again the surface
q1 = 0 in the positive direction p1 > 0 and obtain a point P1 = (q21, p21); in the
same way we compute P2 = (q22, p22), etc. For the same initial values as in Fig. 3.1
and with H0 = 1

12 , the solution for 0 ≤ t ≤ 300 000 gives 46 865 Poincaré cuts
which are all displayed in Fig. 3.2 (left). They seem to lie exactly on a curve, as do
the orbits for 5 other choices of initial values. This picture thus shows “convincing
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100 200

10−5

10−4

10−3

10−2

10−1 global error

t

expl. Euler, h = .0001

sympl. Euler, h = .0001

Störmer–Verlet, h = .005

H = 1
12

H = 1
8

Fig. 3.4. Global error of numerical methods for nearly quasiperiodic and for chaotic solutions;
same initial data as in Fig. 3.2

evidence” for the existence of a second invariant, for which Gustavson (1966) has
derived a formal expansion, whose first terms represent perfectly these curves.

“But here comes the surprise” (Hénon–Heiles, p. 76): Fig. 3.2 shows to the right
the same picture in the (q2, p2) plane for a somewhat higher Energy H = 1

8 . The
motion turns completely to chaos and all hope for a second invariant disappears.
Actually, Gustavson’s series does not converge.

Numerical Experiments. We now apply numerical methods, the explicit Euler
method to the low energy initial values H = 1

12 (Fig. 3.3, left), and the implicit
Euler method to the high energy initial values (Fig. 3.3, right), both methods with a
very small step size h = 10−5. As we already expect from our previous experiences,
the explicit Euler method tends to increase the energy and turns order into chaos,
while the implicit Euler method tends to decrease it and turns chaos into order. The
Störmer–Verlet method (not shown) behaves as the exact solution even for step sizes
as large as h = 10−1.

In our next experiment we study the global error (see Fig. 3.4), once for the case
of the nearly quasiperiodic orbit (H = 1

12 ) and once for the chaotic one (H = 1
8 ),

both for the explicit Euler, the symplectic Euler, and the Störmer–Verlet scheme.
It may come as a surprise, that only in the first case we have the same behaviour
(linear or quadratic growth) as in Fig. 2.3 for the Kepler problem. In the second case
(H = 1

8 ) the global error grows exponentially for all methods, and the explicit Euler
method is worst.

Study of a Mapping. The passage from a point Pi to the next one Pi+1 (as ex-
plained for the left picture of Fig. 3.2) can be considered as a mapping Φ : Pi �→
Pi+1 and the sequence of points P0, P1, P2, . . . are just the iterates of this mapping.
This mapping is represented for the two energy levels H = 1

12 and H = 1
8 in

Fig. 3.5 and its study allows to better understand the behaviour of the orbits. We see
no significant difference between the two cases, simply for larger H the deforma-
tions are more violent and correspond to larger eigenvalues of the Jacobian of Φ. In
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Fig. 3.5. The Poincaré map Φ : P0 → P1 for the Hénon–Heiles Model

both cases we have seven fixed points, which correspond to periodic solutions of the
system (3.3). Four of them are stable and lie inside the white islands of Fig. 3.2.

I.4 Molecular Dynamics

We do not need exact classical trajectories to do this, but must lay great
emphasis on energy conservation as being of primary importance for this
reason. (M.P. Allen & D.J. Tildesley 1987)

Molecular dynamics requires the solution of Hamiltonian systems (1.10), where the
total energy is given by

H(p, q) =
1
2

N∑
i=1

1
mi

pT
i pi +

N∑
i=2

i−1∑
j=1

Vij

(
‖qi − qj‖

)
, (4.1)
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and Vij(r) are given potential functions. Here, qi and pi denote the positions and
momenta of atoms and mi is the atomic mass of the ith atom. We remark that the
outer solar system (2.12) is such an N -body system with Vij(r) = −Gmimj/r. In
molecular dynamics the Lennard–Jones potential

Vij(r) = 4εij

((σij

r

)12

−
(σij

r

)6
)

(4.2)

3 4 5 6 7 8

−.2

.0

.2 Lennard - Jones
is very popular (εij and σij are suit-
able constants depending on the atoms).
This potential has an absolute minimum
at distance r = σij

6
√

2. The force due to
this potential strongly repels the atoms
when they are closer than this value,
and they attract each other when they
are farther away.

1

2

3

4

5

6

7

Numerical Experiments with a Frozen Argon Crys-
tal. As in Biesiadecki & Skeel (1993) we consider the
interaction of seven argon atoms in a plane, where six of
them are arranged symmetrically around a centre atom.
As a mathematical model we take the Hamiltonian (4.1)
with N = 7, mi = m = 66.34 · 10−27 [kg],

εij = ε = 119.8 kB [J], σij = σ = 0.341 [nm],

where kB = 1.380658 ·10−23 [J/K] is Boltzmann’s constant (see Allen & Tildesley
(1987), page 21). As units for our calculations we take masses in [kg], distances in
nanometers (1 [nm] = 10−9 [m]), and times in nanoseconds (1 [nsec] = 10−9 [sec]).
Initial positions (in [nm]) and initial velocities (in [nm/nsec]) are given in Table 4.1.
They are chosen such that neighbouring atoms have a distance that is close to the
one with lowest potential energy, and such that the total momentum is zero and
therefore the centre of gravity does not move. The energy at the initial position is
H(p0, q0) ≈ −1260.2 kB [J].

For computations in molecular dynamics one is usually not interested in the tra-
jectories of the atoms, but one aims at macroscopic quantities such as temperature,
pressure, internal energy, etc. Here we consider the total energy, given by the Hamil-
tonian, and the temperature which can be calculated from the formula (see Allen &

Table 4.1. Initial values for the simulation of a frozen argon crystal

atom 1 2 3 4 5 6 7

position
0.00
0.00

0.02
0.39

0.34
0.17

0.36
−0.21

−0.02
−0.40

−0.35
−0.16

−0.31
0.21

velocity
−30
−20

50
−90

−70
−60

90
40

80
90

−40
100

−80
−60
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temperature
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temperature
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Verlet, h = 20 [fsec]

Fig. 4.1. Computed total energy and temperature of the argon crystal

Tildesley (1987), page 46)

T =
1

2NkB

N∑
i=1

mi‖q̇i‖2. (4.3)

We apply the explicit and symplectic Euler methods and also the Verlet method
to this problem. Observe that for a Hamiltonian such as (4.1) all three methods
are explicit, and all of them need only one force evaluation per integration step. In
Fig. 4.1 we present the numerical results of our experiments. The integrations are
done over an interval of length 0.2 [nsec]. The step sizes are indicated in femtosec-
onds (1 [fsec] = 10−6 [nsec]).

The two upper pictures show the values
(
H(pn, qn)−H(p0, q0)

)/
kB as a func-

tion of time tn = nh. For the exact solution, this value is precisely zero for all times.
Similar to earlier experiments we see that the symplectic Euler method is qualita-
tively correct, whereas the numerical solution of the explicit Euler method, although
computed with a much smaller step size, is completely useless (see the citation at
the beginning of this section). The Verlet method is qualitatively correct and gives
much more accurate results than the symplectic Euler method (we shall see later
that the Verlet method is of order 2). The two computations with the Verlet method
show that the energy error decreases by a factor of 4 if the step size is reduced by a
factor of 2 (second order convergence).

The two lower pictures of Fig. 4.1 show the numerical values of the temperature
difference T − T0 with T given by (4.3) and T0 ≈ 22.72 [K] (initial temperature).
In contrast to the total energy, this is not an exact invariant, but for our problem it
fluctuates around a constant value. The explicit Euler method gives wrong results,
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but the symplectic Euler and the Verlet methods show the desired behaviour. This
time a reduction of the step size does not reduce the amplitude of the oscillations,
which indicates that the fluctuation of the exact temperature is of the same size.

I.5 Highly Oscillatory Problems

In this section we discuss a system with almost-harmonic high-frequency oscilla-
tions. We show numerical phenomena of methods applied with step sizes that are
not small compared to the period of the fastest oscillations.

I.5.1 A Fermi–Pasta–Ulam Problem

. . . dealing with the behavior of certain nonlinear physical systems where
the non-linearity is introduced as a perturbation to a primarily linear prob-
lem. The behavior of the systems is to be studied for times which are long
compared to the characteristic periods of the corresponding linear prob-
lems. (E. Fermi, J. Pasta, S. Ulam 1955)

In the early 1950s MANIAC-I had just been completed and sat poised
for an attack on significant problems. ... Fermi suggested that it would
be highly instructive to integrate the equations of motion numerically for
a judiciously chosen, one-dimensional, harmonic chain of mass points
weakly perturbed by nonlinear forces. (J. Ford 1992)

The problem of Fermi, Pasta & Ulam (1955) is a simple model for simulations in
statistical mechanics which revealed highly unexpected dynamical behaviour. We
consider a modification consisting of a chain of 2m mass points, connected with al-
ternating soft nonlinear and stiff linear springs, and fixed at the end points (see Gal-
gani, Giorgilli, Martinoli & Vanzini (1992) and Fig. 5.1). The variables q1, . . . , q2m

q1 q2 q2m−1 q2m· · ·

stiff
harmonic

soft
nonlinear

Fig. 5.1. Chain with alternating soft nonlinear and stiff linear springs

(q0 = q2m+1 = 0) stand for the displacements of the mass points, and pi = q̇i for
their velocities. The motion is described by a Hamiltonian system with total energy

H(p, q) = 1

2

m∑
i=1

(
p2
2i−1 + p2

2i

)
+

ω2

4

m∑
i=1

(q2i − q2i−1)2 +
m∑

i=0

(q2i+1 − q2i)4,

where ω is assumed to be large. It is quite natural to introduce the new variables
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Fig. 5.2. Exchange of energy in the exact solution of the Fermi–Pasta–Ulam model. The
picture to the right is an enlargement of the narrow rectangle in the left-hand picture

x0,i =
(
q2i + q2i−1

)
/
√

2, x1,i =
(
q2i − q2i−1

)
/
√

2,

y0,i =
(
p2i + p2i−1

)
/
√

2, y1,i =
(
p2i − p2i−1

)
/
√

2,
(5.1)

where x0,i (i = 1, . . . ,m) represents a scaled displacement of the ith stiff spring,
x1,i a scaled expansion (or compression) of the ith stiff spring, and y0,i, y1,i their
velocities (or momenta). With this change of coordinates, the motion in the new
variables is again described by a Hamiltonian system, with

H(y, x) = 1

2

m∑
i=1

(
y2
0,i + y2

1,i

)
+

ω2

2

m∑
i=1

x2
1,i + 1

4

(
(x0,1 − x1,1)4+

+
m−1∑
i=1

(
x0,i+1 − x1,i+1 − x0,i − x1,i

)4 + (x0,m + x1,m)4
)
.

(5.2)
Besides the fact that the equations of motion are Hamiltonian, so that the total energy
is exactly conserved, they have a further interesting feature. Let

Ij(x1,j , y1,j) = 1

2

(
y2
1,j + ω2x2

1,j

)
(5.3)

denote the energy of the jth stiff spring. It turns out that there is an exchange of
energy between the stiff springs, but the total oscillatory energy I = I1 + . . . +
Im remains close to a constant value, in fact, I

(
(x(t), y(t)

)
= I

(
(x(0), y(0)

)
+

O(ω−1). For an illustration of this property, we choose m = 3 (as in Fig. 5.1),
ω = 50,

x0,1(0) = 1, y0,1(0) = 1, x1,1(0) = ω−1, y1,1(0) = 1,

and zero for the remaining initial values. Fig. 5.2 displays the energies I1, I2, I3
of the stiff springs together with the total oscillatory energy I = I1 + I2 + I3 as a
function of time. The solution has been computed very carefully with high accuracy,
so that the displayed oscillations can be considered as exact.
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I.5.2 Application of Classical Integrators

Which of the methods of the foregoing sections produce qualitatively correct ap-
proximations when the product of the step size h with the high frequency ω is rela-
tively large?

Linear Stability Analysis. To get an idea of the maximum admissible step size,
we neglect the quartic term in the Hamiltonian (5.2), so that the differential equation
splits into the two-dimensional problems ẏ0,i = 0, ẋ0,i = y0,i and

ẏ1,i = −ω2x1,i, ẋ1,i = y1,i. (5.4)

Omitting the subscripts, the solution of (5.4) is
(

y(t)
ωx(t)

)
=

(
cosωt − sinωt
sinωt cosωt

)(
y(0)
ωx(0)

)
.

The numerical solution of a one-step method applied to (5.4) yields
(

yn+1

ωxn+1

)
= M(hω)

(
yn

ωxn

)
, (5.5)

and the eigenvalues λi of M(hω) determine the long-time behaviour of the numeri-
cal solution. Stability (i.e., boundedness of the solution of (5.5)) requires the eigen-
values to be less than or equal to one in modulus. For the explicit Euler method
we have λ1,2 = 1 ± ihω, so that the energy In = (y2

n + ω2x2
n)/2 increases as

(1 + h2ω2)n/2. For the implicit Euler method we have λ1,2 = (1 ± ihω)−1, and
the energy decreases as (1 + h2ω2)−n/2. For the implicit midpoint rule, the ma-
trix M(hω) is orthogonal and therefore In is exactly preserved for all h and for all
times. Finally, for the symplectic Euler method and for the Störmer–Verlet scheme
we have

M(hω) =
(

1 −hω
hω 1− h2ω2

)
, M(hω) =

(
1− h2ω2

2 −hω
2

(
1− h2ω2

4

)

hω
2 1− h2ω2

2

)
,

respectively. For both matrices, the characteristic polynomial is λ2−(2−h2ω2)λ+1,
so that the eigenvalues are of modulus one if and only if |hω| ≤ 2.

Numerical Experiments. We apply several methods to the Fermi–Pasta–Ulam
(FPU) problem, with ω = 50 and initial data as given in Sect. I.5.1. The explicit
and implicit Euler methods give completely wrong solutions even for very small
step sizes. Fig. 5.3 presents the numerical results for H , I , I1, I2, I3 obtained with
the implicit midpoint rule, the symplectic Euler, and the Störmer–Verlet scheme.
For the small step size h = 0.001 all methods give satisfactory results, although the
energy exchange is not reproduced accurately over long times. The Hamiltonian H
and the total oscillatory energy I are well conserved over much longer time inter-
vals. The larger step size h = 0.03 has been chosen such that hω = 1.5 is close
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Fig. 5.3. Numerical solution for the FPU problem (5.2) with data as in Sect. I.5.1, obtained
with the implicit midpoint rule (left), symplectic Euler (middle), and Störmer–Verlet scheme
(right); the upper pictures use h = 0.001, the lower pictures h = 0.03; the first four pictures
show the Hamiltonian H − 0.8 and the oscillatory energies I1, I2, I3, I; the last two pictures
only show I2 and I

to the stability limit of the symplectic Euler and the Störmer–Verlet methods. The
values of H and I are still bounded over very long time intervals, but the oscillations
do not represent the true behaviour. Moreover, the average value of I is no longer
close to 1, as it is for the exact solution. These phenomena call for an explanation,
and for numerical methods with an improved behaviour (see Chap. XIII).

I.6 Exercises

1. Show that the Lotka–Volterra problem (1.1) in logarithmic scale, i.e., by putting
p = log u and q = log v, becomes a Hamiltonian system with the function (1.4)
as Hamiltonian (see Fig. 6.1).

p

q

.1 .2 .3 .5 1 2 3

.5

1

2

3

5

flow in log. scale

t = 1.3

ϕt

ϕt

ϕt

A

Fig. 6.1. Area preservation in logarithmic scale of the Lotka–Volterra flow
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2. Apply the symplectic Euler method (or the implicit midpoint rule) to problems
such as

(
u̇
v̇

)
=

(
(v − 2)/v
(1− u)/u

)
,

(
u̇
v̇

)
=

(
u2v(v − 2)
v2u(1− u)

)

with various initial conditions. Both problems have the same first integral (1.4)
as the Lotka–Volterra problem and therefore their solutions are also periodic.
Do the numerical solutions also show this behaviour?

3. A general two-body problem (sun and planet) is given by the Hamiltonian

H(p, pS , q, qS) =
1

2M
pT

SpS +
1

2m
pT p− GmM

‖q − qS‖
,

where qS , q ∈ R
3 are the positions of the sun (mass M ) and the planet (mass

m), pS , p ∈ R
3 are their momenta, and G is the gravitational constant.

a) Prove: in heliocentric coordinates Q := q − qS , the equations of motion are

Q̈ = −G(M + m)
Q

‖Q‖3 .

b) Prove that d
dt

(
Q(t) × Q̇(t)

)
= 0, so that Q(t) stays for all times t in the

plane E = {q ; dT q = 0}, where d = Q(0)× Q̇(0).
Conclusion. The coordinates corresponding to a basis in E satisfy the two-
dimensional equations (2.2).

4. In polar coordinates, the two-body problem (2.2) becomes

r̈ = −V ′(r) with V (r) =
L2

0

2r2
− 1

r

which is independent of ϕ. The angle ϕ(t) can be obtained by simple integration
from ϕ̇(t) = L0/r

2(t).
5. Compute the period of the solution of the Kepler problem (2.2) and deduce

from the result Kepler’s “third law”.
Hint. Comparing Kepler’s second law (2.6) with the area of the ellipse gives
1
2L0T = abπ. Then apply (2.7). The result is T = 2π(2|H0|)−3/2 = 2πa3/2.

6. Deduce Kepler’s first law from (2.2) by the elegant method of Laplace (1799).
Hint. Multiplying (2.2) with (2.5) gives

L0q̈1 =
d

dt

(q2

r

)
, L0q̈2 =

d

dt

(
−q1

r

)
,

and after integration L0q̇1 = q2
r + B, L0q̇2 = − q1

r + A, where A and B are
integration constants. Then eliminate q̇1 and q̇2 by multiplying these equations
by q2 and −q1 respectively and by subtracting them. The result is a quadratic
equation in q1 and q2.

7. Whatever the initial values for the Kepler problem are, 1 + 2H0L
2
0 ≥ 0 holds.

Hence, the value e is well defined by (2.9).
Hint. L0 is the area of the parallelogram spanned by the vectors q(0) and q̇(0).
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8. Implementation of the Störmer–Verlet scheme. Explain why the use of the one-
step formulation (1.17) is numerically more stable than that of the two-term
recursion (1.15).

9. Runge–Lenz–Pauli vector. Prove that the function

A(p, q) =




p1

p2

0


×




0
0

q1p2 − q2p1


− 1√

q2
1 + q2

2




q1

q2

0




is a first integral of the Kepler problem, i.e., A
(
p(t), q(t)

)
= Const along

solutions of the problem. However, it is not a first integral of the perturbed
Kepler problem of Exercise 12.

10. Add a column to Table 2.1 which shows the long-time behaviour of the error in
the Runge–Lenz–Pauli vector (see Exercise 9) for the various numerical inte-
grators.

11. For the Kepler problem, eliminate (p1, p2) from the relations H(p, q) = Const ,
L(p, q) = Const and A(p, q) = Const . This gives a quadratic relation for
(q1, q2) and proves that the solution lies on an ellipse, a parabola, or on a hy-
perbola.

12. Study numerically the solution of the perturbed Kepler problem with Hamil-
tonian

H(p1, p2, q1, q2) =
1
2
(
p2
1 + p2

2

)
− 1√

q2
1 + q2

2

− µ

3
√

(q2
1 + q2

2)3
,

where µ is a positive or negative small num-
ber. Among others, this problem describes
the motion of a planet in the Schwarzschild
potential for Einstein’s general relativity the-
ory7. You will observe a precession of the
perihelion, which, applied to the orbit of Mer-
cury, represented the historically first verifi-
cation of Einstein’s theory (see e.g., Birkhoff
1923, p. 261-264).

1 u

u′

η

µ = 0

µ > 0

The precession can also be expressed analytically: the equation for u = 1/r as
a function of ϕ, corresponding to (2.8), here becomes

u′′ + u =
1
d

+ µu2, (6.1)

where d = L2
0. Now compute the derivative of this solution with respect to µ,

at µ = 0 and u = (1 + e cos(ϕ−ϕ∗))/d after one period t = 2π. This leads to
η = µ(e/d2) ·2π sinϕ (see the small picture). Then, for small µ, the precession
after one period is

∆ϕ =
2πµ
d

. (6.2)

7 We are grateful to Prof. Ruth Durrer for helpful hints about this subject.



Chapter II.
Numerical Integrators

After having seen in Chap. I some simple numerical methods and a variety of nu-
merical phenomena that they exhibited, we now present more elaborate classes of
numerical methods. We start with Runge–Kutta and collocation methods, and we
introduce discontinuous collocation methods, which cover essentially all high-order
implicit Runge–Kutta methods of interest. We then treat partitioned Runge–Kutta
methods and Nyström methods, which can be applied to partitioned problems such
as Hamiltonian systems. Finally we present composition and splitting methods.

II.1 Runge–Kutta and Collocation Methods

Fig. 1.1. Carl David Tolmé Runge (left picture), born: 30 August 1856 in Bremen (Germany),
died: 3 January 1927 in Göttingen (Germany).
Wilhelm Martin Kutta (right picture), born: 3 November 1867 in Pitschen, Upper Silesia (now
Byczyna, Poland), died: 25 December 1944 in Fürstenfeldbruck (Germany)

Runge–Kutta methods form an important class of methods for the integration of
differential equations. A special subclass, the collocation methods, allows for a par-
ticularly elegant access to order, symplecticity and continuous output.
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II.1.1 Runge–Kutta Methods

In this section, we treat non-autonomous systems of first-order ordinary differential
equations

ẏ = f(t, y), y(t0) = y0. (1.1)

The integration of this equation gives y(t1) = y0 +
∫ t1

t0
f(t, y(t)) dt, and replacing

the integral by the trapezoidal rule, we obtain

y1 = y0 + h

2

(
f(t0, y0) + f(t1, y1)

)
. (1.2)

This is the implicit trapezoidal rule, which, in addition to its historical impor-
tance for computations in partial differential equations (Crank–Nicolson) and in
A-stability theory (Dahlquist), played a crucial role even earlier in the discovery of
Runge–Kutta methods. It was the starting point of Runge (1895), who “predicted”
the unknown y1-value to the right by an Euler step, and obtained the first of the
following formulas (the second being the analogous formula for the midpoint rule)

k1 = f(t0, y0)
k2 = f(t0 + h, y0 + hk1)

y1 = y0 + h
2

(
k1 + k2

)
k1 = f(t0, y0)

k2 = f(t0 + h
2 , y0 + h

2k1)
y1 = y0 + hk2.

(1.3)

These methods have a nice geometric interpretation (which is illustrated in the first
two pictures of Fig. 1.2 for a famous problem, the Riccati equation): they consist
of polygonal lines, which assume the slopes prescribed by the differential equation
evaluated at previous points.

Idea of Heun (1900) and Kutta (1901): compute several polygonal lines, each start-
ing at y0 and assuming the various slopes kj on portions of the integration interval,
which are proportional to some given constants aij ; at the final point of each poly-
gon evaluate a new slope ki. The last of these polygons, with constants bi, deter-
mines the numerical solution y1 (see the third picture of Fig. 1.2). This idea leads to
the class of explicit Runge–Kutta methods, i.e., formula (1.4) below with aij = 0
for i ≤ j.

1
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1

1

1

t

y

y0

k1
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expl. trap. rule
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y

k1

y0 1
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expl. midp. rule

t

y

y0

k1

a21
c2

a31 a32

c3

b1 b2 b3

1

k2

k3

y1

Fig. 1.2. Runge–Kutta methods for ẏ = t2 + y2, y0 = 0.46, h = 1; dotted: exact solution
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Much more important for our purpose are implicit Runge–Kutta methods, intro-
duced mainly in the work of Butcher (1963).

Definition 1.1. Let bi, aij (i, j = 1, . . . , s) be real numbers and let ci =
∑s

j=1 aij .
An s-stage Runge–Kutta method is given by

ki = f
(
t0 + cih, y0 + h

s∑
j=1

aijkj

)
, i = 1, . . . , s

y1 = y0 + h

s∑
i=1

biki.

(1.4)

Here we allow a full matrix (aij) of non-zero coefficients. In this case, the slopes
ki can no longer be computed explicitly, and even do not necessarily exist. For ex-
ample, for the problem set-up of Fig. 1.2 the implicit trapezoidal rule has no solu-
tion. However, the implicit function theorem assures that, for sufficiently small h,
the nonlinear system (1.4) for the values k1, . . . , ks has a locally unique solution
close to ki ≈ f(t0, y0).

Since Butcher’s work, the coefficients are usually displayed as follows:

c1 a11 . . . a1s

...
...

...
cs as1 . . . ass

b1 . . . bs

. (1.5)

Definition 1.2. A Runge–Kutta method (or a general one-step method) has order p,
if for all sufficiently regular problems (1.1) the local error y1 − y(t0 + h) satisfies

y1 − y(t0 + h) = O(hp+1) as h → 0.

To check the order of a Runge Kutta method, one has to compute the Taylor
series expansions of y(t0 + h) and y1 around to h = 0. This leads to the following
algebraic conditions for the coefficients for orders 1, 2, and 3:

∑
i bi = 1 for order 1;

in addition
∑

i bici = 1/2 for order 2;

in addition
∑

i bic
2
i = 1/3

and
∑

i,j biaijcj = 1/6 for order 3.

(1.6)

For higher orders, however, this problem represented a great challenge in the first
half of the 20th century. We shall present an elegant theory in Sect. III.1 which
allows order conditions to be derived.

Among the methods seen up to now, the explicit and implicit Euler methods

0
1

1 1
1

(1.7)
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are of order 1, the implicit trapezoidal and midpoint rules as well as both methods
of Runge

0
1 1/2 1/2

1/2 1/2
1/2 1/2

1

0
1 1

1/2 1/2

0
1/2 1/2

0 1

are of order 2. The most successful methods during more than half a century were
the 4th order methods of Kutta:

0
1/2 1/2
1/2 0 1/2
1 0 0 1

1/6 2/6 2/6 1/6

0
1/3 1/3
2/3 −1/3 1
1 1 −1 1

1/8 3/8 3/8 1/8

(1.8)

II.1.2 Collocation Methods
The high speed computing machines make it possible to enjoy the advan-
tages of intricate methods. (P.C. Hammer & J.W. Hollingsworth 1955)

t0 t1t0 + h/2

y0

y1

Collocation methods for ordinary differential equa-
tions have their origin, once again, in the implicit
trapezoidal rule (1.2): Hammer & Hollingsworth
(1955) discovered that this method can be interpreted
as being generated by a quadratic function “which
agrees in direction with that indicated by the differen-
tial equation at two points” t0 and t1 (see the picture
to the right). This idea allows one to “see much-used
methods in a new light” and allows various general-
izations (Guillou & Soulé (1969), Wright (1970)). An interesting feature of collo-
cation methods is that we not only get a discrete set of approximations, but also a
continuous approximation to the solution.

Definition 1.3. Let c1, . . . , cs be distinct real numbers (usually 0 ≤ ci ≤ 1). The
collocation polynomial u(t) is a polynomial of degree s satisfying

u(t0) = y0

u̇(t0 + cih) = f
(
t0 + cih, u(t0 + cih)

)
, i = 1, . . . , s,

(1.9)

and the numerical solution of the collocation method is defined by y1 = u(t0 + h).

For s = 1, the polynomial has to be of the form u(t) = y0 + (t− t0)k with

k = f(t0 + c1h, y0 + hc1k).

We see that the explicit and implicit Euler methods and the midpoint rule are collo-
cation methods with c1 = 0, c1 = 1 and c1 = 1/2, respectively.
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Fig. 1.3. Collocation solutions for the Lotka–Volterra problem (I.1.1); u0 = 0.2, v0 = 3.3;
methods of order 2: four steps with h = 0.4; method of order 4: two steps with h = 0.8;
dotted: exact solution

t0 t0+c1h t0+c2h t1

y0

y1

For s = 2 and c1 = 0, c2 = 1 we find, of
course, the implicit trapezoidal rule. The choice of
Hammer & Hollingsworth for the collocation points
is c1,2 = 1/2±

√
3/6, the Gaussian quadrature nodes

(see the picture to the right). We will see that the cor-
responding method is of order 4.

In Fig. 1.3 we illustrate the collocation idea with
these methods for the Lotka–Volterra problem (I.1.1). One can observe that, in spite
of the extremely large step sizes, the methods are quite satisfactory.

Theorem 1.4 (Guillou & Soulé 1969, Wright 1970). The collocation method of
Definition 1.3 is equivalent to the s-stage Runge–Kutta method (1.4) with coeffi-
cients

aij =
∫ ci

0

�j(τ) dτ, bi =
∫ 1

0

�i(τ) dτ, (1.10)

where �i(τ) is the Lagrange polynomial �i(τ) =
∏

l �=i(τ − cl)/(ci − cl).

Proof. Let u(t) be the collocation polynomial and define

ki := u̇(t0 + cih).

By the Lagrange interpolation formula we have u̇(t0 + τh) =
∑s

j=1 kj · �j(τ), and
by integration we get

u(t0 + cih) = y0 + h

s∑
j=1

kj

∫ ci

0

�j(τ) dτ.

Inserted into (1.9) this gives the first formula of the Runge–Kutta equation (1.4).
Integration from 0 to 1 yields the second one. 
�
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The above proof can also be read in reverse order. This shows that a Runge–
Kutta method with coefficients given by (1.10) can be interpreted as a collocation
method. Since τk−1 =

∑s
j=1 ck−1

j �j(τ) for k = 1, . . . , s, the relations (1.10) are
equivalent to the linear systems

C(q) :
s∑

j=1

aijc
k−1
j =

ck
i

k
, k = 1, . . . , q, all i

B(p) :
s∑

i=1

bic
k−1
i =

1
k
, k = 1, . . . , p,

(1.11)

with q = s and p = s. What is the order of a Runge–Kutta method whose coeffi-
cients bi, aij are determined in this way?

Compared to the enormous difficulties that the first explorers had in constructing
Runge–Kutta methods of orders 5 and 6, and also compared to the difficult algebraic
proofs of the first papers of Butcher, the following general theorem and its proof,
discovered in this form by Guillou & Soulé (1969), are surprisingly simple.

Theorem 1.5 (Superconvergence). If the condition B(p) holds for some p ≥ s,
then the collocation method (Definition 1.3) has order p. This means that the collo-
cation method has the same order as the underlying quadrature formula.

Proof. We consider the collocation polynomial u(t) as the solution of a perturbed
differential equation

u̇ = f(t, u) + δ(t) (1.12)

with defect δ(t) := u̇(t) − f
(
t, u(t)

)
. Subtracting (1.1) from (1.12) we get after

linearization that

u̇(t)− ẏ(t) =
∂f

∂y

(
t, y(t)

)(
u(t)− y(t)

)
+ δ(t) + r(t), (1.13)

where, for t0 ≤ t ≤ t0 + h, the remainder r(t) is of size O
(
‖u(t) − y(t)‖2

)
=

O(h2s+2) by Lemma 1.6 below. The variation of constants formula (see e.g., Hairer,
Nørsett & Wanner (1993), p. 66) then yields

y1−y(t0+h) = u(t0+h)−y(t0+h) =
∫ t0+h

t0

R(t0+h, s)
(
δ(s)+r(s)

)
ds, (1.14)

where R(t, s) is the resolvent of the homogeneous part of the differential equa-
tion (1.13), i.e., the solution of the matrix differential equation ∂R(t, s)/∂t =
A(t)R(t, s), R(s, s) = I , with A(t) = ∂f/∂y(t, y(t)). The integral over R(t0 +
h, s)r(s) gives a O(h2s+3) contribution. The main idea now is to apply the quadra-
ture formula (bi, ci)s

i=1 to the integral over g(s) = R(t0 + h, s)δ(s); because the
defect δ(s) vanishes at the collocation points t0 + cih for i = 1, . . . , s, this gives
zero as the numerical result. Thus, the integral is equal to the quadrature error, which
is bounded by hp+1 times a bound of the pth derivative of the function g(s). This
derivative is bounded independently of h, because by Lemma 1.6 all derivatives
of the collocation polynomial are bounded uniformly as h → 0. Since, anyway,
p ≤ 2s, we get y1 − y(t0 + h) = O(hp+1) from (1.14). 
�
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Lemma 1.6. The collocation polynomial u(t) is an approximation of order s to the
exact solution of (1.1) on the whole interval, i.e.,

‖u(t)− y(t)‖ ≤ C · hs+1 for t ∈ [t0, t0 + h] (1.15)

and for sufficiently small h.
Moreover, the derivatives of u(t) satisfy for t ∈ [t0, t0 + h]

‖u(k)(t)− y(k)(t)‖ ≤ C · hs+1−k for k = 0, . . . , s.

Proof. The collocation polynomial satisfies

u̇(t0 + τh) =
s∑

i=1

f
(
t0 + cih, u(t0 + cih)

)
�i(τ),

while the exact solution of (1.1) satisfies

ẏ(t0 + τh) =
s∑

i=1

f
(
t0 + cih, y(t0 + cih)

)
�i(τ) + hsE(τ, h),

where the interpolation error E(τ, h) is bounded by maxt∈[t0,t0+h] ‖y(s+1)(t)‖/s!
and its derivatives satisfy

‖E(k−1)(τ, h)‖ ≤ max
t∈[t0,t0+h]

‖y(s+1)(t)‖
(s− k + 1)!

.

This follows from the fact that, by Rolle’s theorem, the differentiated polynomial∑s
i=1 f

(
t0 + cih, y(t0 + cih)

)
�
(k−1)
i (τ) can be interpreted as the interpolation

polynomial of hk−1y(k)(t0 +τh) at s−k+1 points lying in [t0, t0 +h]. Integrating
the difference of the above two equations gives

y(t0 + τh)−u(t0 + τh) = h
s∑

i=1

∆fi

∫ τ

0

�i(σ) dσ+hs+1

∫ τ

0

E(σ, h) dσ (1.16)

with ∆fi = f
(
t0 + cih, y(t0 + cih)

)
− f

(
t0 + cih, u(t0 + cih)

)
. Using a Lipschitz

condition for f(t, y), this relation yields

max
t∈[t0,t0+h]

‖y(t)− u(t)‖ ≤ hC L max
t∈[t0,t0+h]

‖y(t)− u(t)‖+ Const · hs+1,

implying the statement (1.15) for sufficiently small h > 0.
The proof of the second statement follows from

hk
(
y(k)(t0 + τh)− u(k)(t0 + τh)

)
= h

s∑
i=1

∆fi �
(k−1)
i (τ) + hs+1 E(k−1)(τ, h)

by using a Lipschitz condition for f(t, y) and the estimate (1.15). 
�
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II.1.3 Gauss and Lobatto Collocation

Gauss Methods. If we take c1, . . . , cs as the zeros of the sth shifted Legendre
polynomial

ds

dxs

(
xs(x− 1)s

)
,

the interpolatory quadrature formula has order p = 2s, and by Theorem 1.5, the
Runge–Kutta (or collocation) method based on these nodes has the same order 2s.
For s = 1 we obtain the implicit midpoint rule. The Runge–Kutta coefficients for
s = 2 (the method of Hammer & Hollingsworth 1955) and s = 3 are given in
Table 1.1. The proof of the order properties for general s was a sensational result of
Butcher (1964a). At that time these methods were considered, at least by the editors
of Math. of Comput., to be purely academic without any practical value; 5 years
later their A-stability was discovered, 12 years later their B-stability, and 25 years
later their symplecticity. Thus, of all the papers in issue No. 85 of Math. of Comput.,
the one most important to us is the one for which publication was the most difficult.

Table 1.1. Gauss methods of order 4 and 6

1

2
−

√
3

6

1

4

1

4
−

√
3

6

1

2
+

√
3

6

1

4
+

√
3

6

1

4

1

2

1

2

1

2
−

√
15

10

5

36

2

9
−

√
15

15

5

36
−

√
15

30

1

2

5

36
+

√
15

24

2

9

5

36
−

√
15

24

1

2
+

√
15

10

5

36
+

√
15

30

2

9
+

√
15

15

5

36

5

18

4

9

5

18

Radau Methods. Radau quadrature formulas have the highest possible order,
2s − 1, among quadrature formulas with either c1 = 0 or cs = 1. The correspond-
ing collocation methods for cs = 1 are called Radau IIA methods. They play an
important role in the integration of stiff differential equations (see Hairer & Wanner
(1996), Sect. IV.8). However, they lack both symmetry and symplecticity, properties
that will be the subjects of later chapters in this book.

Lobatto IIIA Methods. Lobatto quadrature formulas have the highest possible or-
der with c1 = 0 and cs = 1. Under these conditions, the nodes must be the zeros
of
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ds−2

dxs−2

(
xs−1(x− 1)s−1

)
(1.17)

and the quadrature order is p = 2s− 2. The corresponding collocation methods are
called, for historical reasons, Lobatto IIIA methods. For s = 2 we have the implicit
trapezoidal rule. The coefficients for s = 3 and s = 4 are given in Table 1.2.

Table 1.2. Lobatto IIIA methods of order 4 and 6
0 0 0 0

1

2

5

24

1

3
− 1

24

1
1

6

2

3

1

6

1

6

2

3

1

6

0 0 0 0 0

5 −
√

5

10

11 +
√

5

120

25 −
√

5

120

25 − 13
√

5

120

−1 +
√

5

120

5 +
√

5

10

11 −
√

5

120

25 + 13
√

5

120

25 +
√

5

120

−1 −
√

5

120

1
1

12

5

12

5

12

1

12

1

12

5

12

5

12

1

12

II.1.4 Discontinuous Collocation Methods

Collocation methods allow, as we have seen above, a very elegant proof of their
order properties. By similar ideas, they also admit strikingly simple proofs for their
A- and B-stability as well as for symplecticity, our subject in Chap. VI. However,
not all method classes are of collocation type. It is therefore interesting to define a
modification of the collocation idea, which allows us to extend all the above proofs
to much wider classes of methods. This definition will also lead, later, to important
classes of partitioned methods.

Definition 1.7. Let c2, . . . , cs−1 be distinct real
numbers (usually 0 ≤ ci ≤ 1), and let b1, bs

be two arbitrary real numbers. The correspond-
ing discontinuous collocation method is then
defined via a polynomial of degree s − 2 sat-
isfying

u(t0) = y0 − hb1
(
u̇(t0)− f(t0, u(t0))

) t0 t0+h/2 t1

y0

hb1

hb3

y1

u̇(t0 + cih) = f
(
t0 + cih, u(t0 + cih)

)
, i = 2, . . . , s− 1,

y1 = u(t1)− hbs

(
u̇(t1)− f(t1, u(t1))

)
.

(1.18)
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The figure gives a geometric interpretation of the correction term in the first and
third formulas of (1.18). The motivation for this definition will become clear in the
proof of Theorem 1.9 below. Our first result shows that discontinuous collocation
methods are equivalent to implicit Runge–Kutta methods.

Theorem 1.8. The discontinuous collocation method of Definition 1.7 is equivalent
to an s-stage Runge–Kutta method (1.4) with coefficients determined by c1 = 0,
cs = 1, and

ai1 = b1, ais = 0 for i = 1, . . . , s,

C(s− 2) and B(s− 2),
(1.19)

with the conditions C(q) and B(p) of (1.11).

Proof. As in the proof of Theorem 1.4 we put ki := u̇(t0 + cih) (this time for
i = 2, . . . , s−1), so that u̇(t0+τh) =

∑s−1
j=2 kj ·�j(τ) by the Lagrange interpolation

formula. Here, �j(τ) corresponds to c2, . . . , cs−1 and is a polynomial of degree s−3.
By integration and using the definition of u(t0) we get

u(t0 + cih) = u(t0) + h

s−1∑
j=2

kj

∫ ci

0

�j(τ) dτ

= y0 + hb1k1 + h
s−1∑
j=2

kj

(∫ ci

0

�j(τ) dτ − b1�j(0)
)

with k1 = f(y0). Inserted into (1.18) this gives the first formula of the Runge–Kutta
equation (1.4) with aij =

∫ ci

0
�j(τ) dτ − b1�j(0). As for collocation methods, one

checks that the aij are uniquely determined by the condition C(s− 2). The formula
for y1 is obtained similarly. 
�

Table 1.3. Survey of discontinuous collocation methods

type characteristics prominent examples

b1 = 0, bs = 0 (s − 2)-stage collocation Gauss, Radau IIA, Lobatto IIIA

b1 = 0, bs �= 0 (s − 1)-stage with ais = 0 methods of Butcher (1964b)

b1 �= 0, bs = 0 (s − 1)-stage with ai1 = b1 Radau IA, Lobatto IIIC

b1 �= 0, bs �= 0 s-stage with ai1 = b1, ais = 0 Lobatto IIIB

If b1 = 0 in Definition 1.7, the entire first column in the Runge–Kutta tableau
vanishes, so that the first stage can be removed, which leads to an equivalent method
with s− 1 stages. Similarly, if bs = 0, we can remove the last stage. Therefore, we
have all classes of methods, which are “continuous” either to the left, or to the right,
or on both sides, as special cases in our definition.

In the case where b1 = bs = 0, the discontinuous collocation method (1.18) is
equivalent to the (s − 2)-stage collocation method based on c2, . . . , cs−1 (see Ta-
ble 1.3). The methods with bs = 0 but b1 �= 0, which include the Radau IA and
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Table 1.4. Lobatto IIIB methods of order 4 and 6

0
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√
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√

5

24
0

5 −
√
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√
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120
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√
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√
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Lobatto IIIC methods, are of interest for the solution of stiff differential equations
(Hairer & Wanner 1996). The methods with b1 = 0 but bs �= 0, introduced by
Butcher (1964a, 1964b), are of historical interest. They were thought to be compu-
tationally attractive, because their last stage is explicit. In the context of geometric
integration, much more important are methods for which both b1 �= 0 and bs �= 0.

Lobatto IIIB Methods (Table 1.4). We consider the quadrature formulas whose
nodes are the zeros of (1.17). We have c1 = 0 and cs = 1. Based on c2, . . . , cs−1

and b1, bs we consider the discontinuous collocation method. This class of meth-
ods is called Lobatto IIIB (Ehle 1969), and it plays an important role in geometric
integration in conjunction with the Lobatto IIIA methods of Sect. II.1.3 (see Theo-
rem IV.2.3 and Theorem VI.4.5). These methods are of order 2s−2, as the following
result shows.

Theorem 1.9 (Superconvergence). The discontinuous collocation method of Def-
inition 1.7 has the same order as the underlying quadrature formula.

Proof. We follow the lines of the proof of Theorem 1.5. With the polynomial u(t)
of Definition 1.7, and with the defect

δ(t) := u̇(t)− f
(
t, u(t)

)

we get (1.13) after linearization. The variation of constants formula then yields

u(t0 + h)− y(t0 + h) = R(t0 + h, t0)
(
u(t0)− y0

)

+
∫ t0+h

t0

R(t0 + h, s)
(
δ(s) + r(s)

)
ds,

which corresponds to (1.14) if u(t0) = y0. As a consequence of Lemma 1.10 below
(with k = 0), the integral over R(t0 + h, s)r(s) gives a O(h2s−1) contribution.
Since the defect δ(t0 + cih) vanishes only for i = 2, . . . , s−1, an application of the
quadrature formula to R(t0 +h, s)δ(s) yields hb1R(t0 +h, t0)δ(t0)+hbsδ(t0 +h)
in addition to the quadrature error, which is O(hp+1). Collecting terms suitably, we
obtain
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u(t1)− hbsδ(t1)− y(t1) = R(t1, t0)
(
u(t0) + hb1δ(t0)− y0

)

+O(hp+1) +O(h2s−1),

which, after using the definitions of u(t0) and u(t1), proves y1−y(t1) = O(hp+1)+
O(h2s−1). 
�

Lemma 1.10. The polynomial u(t) of the discontinuous collocation method (1.18)
satisfies for t ∈ [t0, t0 + h] and for sufficiently small h

‖u(k)(t)− y(k)(t)‖ ≤ C · hs−1−k for k = 0, . . . , s− 2.

Proof. The proof is essentially the same as that for Lemma 1.6. In the formulas for
u̇(t0 + τh) and ẏ(t0 + τh), the sum has to be taken from i = 2 to i = s − 1.
Moreover, all hs become hs−2. In (1.16) one has an additional term

y0 − u(t0) = hb1
(
u̇(t0)− f(t0, u(t0))

)
,

which, however, is just an interpolation error of size O(hs−1) and can be included
in Const · hs−1. 
�

II.2 Partitioned Runge–Kutta Methods

Some interesting numerical methods introduced in Chap. I (symplectic Euler and
the Störmer–Verlet method) do not belong to the class of Runge–Kutta methods.
They are important examples of so-called partitioned Runge–Kutta methods. In this
section we consider differential equations in the partitioned form

ẏ = f(y, z), ż = g(y, z), (2.1)

where y and z may be vectors of different dimensions.

II.2.1 Definition and First Examples

The idea is to take two different Runge–Kutta methods, and to treat the y-variables
with the first method (aij , bi), and the z-variables with the second method (âij , b̂i).

Definition 2.1. Let bi, aij and b̂i, âij be the coefficients of two Runge–Kutta meth-
ods. A partitioned Runge–Kutta method for the solution of (2.1) is given by

ki = f
(
y0 + h

s∑
j=1

aijkj , z0 + h

s∑
j=1

âij�j

)
,

�i = g
(
y0 + h

s∑
j=1

aijkj , z0 + h

s∑
j=1

âij�j

)
,

y1 = y0 + h
s∑

i=1

biki, z1 = z0 + h
s∑

i=1

b̂i�i.

(2.2)
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Methods of this type were originally proposed by Hofer in 1976 and by Griepen-
trog in 1978 for problems with stiff and nonstiff parts (see Hairer, Nørsett & Wanner
(1993), Sect. II.15). Their importance for Hamiltonian systems (see the examples of
Chap. I) has been discovered only in the last decade.

An interesting example is the symplectic Euler method (I.1.9), where the im-
plicit Euler method b1 = 1, a11 = 1 is combined with the explicit Euler method
b̂1 = 1, â11 = 0. The Störmer–Verlet method (I.1.17) is of the form (2.2) with
coefficients given in Table 2.1.

Table 2.1. Störmer–Verlet as a partitioned Runge–Kutta method

0 0 0

1 1/2 1/2
1/2 1/2

1/2 1/2 0

1/2 1/2 0
1/2 1/2

The theory of Runge–Kutta methods can be extended in a straightforward man-
ner to partitioned methods. Since (2.2) is a one-step method (y1, z1) = Φh(y0, z0),
the Definition 1.2 of the order applies directly. Considering problems ẏ = f(y),
ż = g(z) without any coupling terms, we see that the order of (2.2) cannot exceed
min(p, p̂), where p and p̂ are the orders of the two methods.

Conditions for Order Two. Expanding the exact solution of (2.1) and the numer-
ical solution (2.2) into Taylor series, we see that the method is of order 2 if the
coupling conditions

∑
ij biâij = 1/2,

∑
ij b̂iaij = 1/2 (2.3)

are satisfied in addition to the usual Runge–Kutta order conditions for order 2. The
method of Table 2.1 satisfies these conditions, and it is therefore of order 2. We also
remark that (2.3) is automatically satisfied by partitioned methods that are based on
the same quadrature nodes, i.e.,

ci = ĉi for all i (2.4)

where, as usual, ci =
∑

j aij and ĉi =
∑

j âij .

Conditions for Order Three. The conditions for order three already become quite
complicated, unless (2.4) is satisfied. In this case, we obtain the additional condi-
tions ∑

ij biâijcj = 1/6,
∑

ij b̂iaijcj = 1/6. (2.5)

The order conditions for higher order will be discussed in Sect. III.2.2. It turns out
that the number of coupling conditions increases very fast with order, and the proofs
for high order are often very cumbersome. There is, however, a very elegant proof of
the order for the partitioned method which is the most important one in connection
with “geometric integration”, as we shall see now.
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II.2.2 Lobatto IIIA–IIIB Pairs

These methods generalize the Störmer–Verlet method to arbitrary order. Indeed, the
left method of Table 2.1 is the trapezoidal rule, which is the Lobatto IIIA method
with s = 2, and the method to the right is equivalent to the midpoint rule and, apart
from the values of the ci, is the Lobatto IIIB method with s = 2. Sun (1993b) and
Jay (1996) discovered that for general s the combination of the Lobatto IIIA and
IIIB methods are suitable for Hamiltonian systems. The coefficients of the methods
for s = 3 are given in Table 2.2. Using the idea of discontinuous collocation, we
give a direct proof of the order for this pair of methods.

Table 2.2. Coefficients of the 3-stage Lobatto IIIA–IIIB pair

0 0 0 0

1/2 5/24 1/3 −1/24

1 1/6 2/3 1/6

1/6 2/3 1/6

0 1/6 −1/6 0

1/2 1/6 1/3 0

1 1/6 5/6 0

1/6 2/3 1/6

Theorem 2.2. The partitioned Runge–Kutta method composed of the s-stage Lo-
batto IIIA and the s-stage Lobatto IIIB method, is of order 2s− 2.

Proof. Let c1 = 0, c2, . . . , cs−1, cs = 1 and b1, . . . , bs be the nodes and weights of
the Lobatto quadrature. The partitioned Runge–Kutta method based on the Lobatto
IIIA–IIIB pair can be interpreted as the discontinuous collocation method

u(t0) = y0

v(t0) = z0 − hb1
(
v̇(t0)− g(u(t0), v(t0))

)

u̇(t0 + cih) = f
(
u(t0 + cih), v(t0 + cih)

)
, i = 1, . . . , s

v̇(t0 + cih) = g
(
u(t0 + cih), v(t0 + cih)

)
, i = 2, . . . , s− 1

y1 = u(t1)
z1 = v(t1)− hbs

(
v̇(t1)− g(u(t1), v(t1))

)
,

(2.6)

where u(t) and v(t) are polynomials of degree s and s−2, respectively. This is seen
as in the proofs of Theorem 1.4 and Theorem 1.8. The superconvergence (order
2s − 2) is obtained with exactly the same proof as for Theorem 1.9, where the
functions u(t) and y(t) have to be replaced with (u(t), v(t))T and (y(t), z(t))T ,
etc. Instead of Lemma 1.10 we use the estimates (for t ∈ [t0, t0 + h])

‖u(k)(t)− y(k)(t)‖ ≤ c · hs−k for k = 0, . . . , s,

‖v(k)(t)− z(k)(t)‖ ≤ c · hs−1−k for k = 0, . . . , s− 2,

which can be proved by following the lines of the proofs of Lemma 1.6 and
Lemma 1.10. 
�



II.2 Partitioned Runge–Kutta Methods 41

II.2.3 Nyström Methods
Da bis jetzt die direkte Anwendung der Rungeschen Methode auf den
wichtigen Fall von Differentialgleichungen zweiter Ordnung nicht behan-
delt war . . . (E.J. Nyström 1925)

Second-order differential equations

ÿ = g(t, y, ẏ) (2.7)

form an important class of problems. Most of the differential equations in Chap. I
are of this form (e.g., the Kepler problem, the outer solar system, problems in mole-
cular dynamics). This is mainly due to Newton’s law that forces are proportional
to second derivatives (acceleration). Introducing a new variable z = ẏ for the first
derivative, the problem (2.7) becomes equivalent to the partitioned system

ẏ = z, ż = g(t, y, z). (2.8)

A partitioned Runge–Kutta method (2.2) applied to this system yields

ki = z0 + h
s∑

j=1

âij�j ,

�i = g
(
t0 + cih, y0 + h

s∑
j=1

aijkj , z0 + h
s∑

j=1

âij�j

)
,

y1 = y0 + h
s∑

i=1

biki, z1 = z0 + h
s∑

i=1

b̂i�i.

(2.9)

If we insert the formula for ki into the others, we obtain Definition 2.3 with

aij =
s∑

k=1

aikâkj , bi =
s∑

k=1

bkâki. (2.10)

Definition 2.3. Let ci, bi, aij and b̂i, âij be real coefficients. A Nyström method for
the solution of (2.7) is given by

�i = g
(
t0 + cih, y0 + cihẏ0 + h2

s∑
j=1

aij�j , ẏ0 + h

s∑
j=1

âij�j

)
,

y1 = y0 + hẏ0 + h2
s∑

i=1

bi�i, ẏ1 = ẏ0 + h

s∑
i=1

b̂i�i.

(2.11)

For the important special case ÿ = g(t, y), where the vector field does not de-
pend on the velocity, the coefficients âij need not be specified. A Nyström method is
of order p if y1−y(t0 +h) = O(hp+1) and ẏ1− ẏ(t0 +h) = O(hp+1). It is not suf-
ficient to consider y1 alone. The order conditions will be discussed in Sect. III.2.3.

Notice that the Störmer–Verlet scheme (I.1.17) is a Nyström method for prob-
lems of the form ÿ = g(t, y). We have s = 2, and the coefficients are c1 = 0, c2 = 1,
a11 = a12 = a22 = 0, a21 = 1/2, b1 = 1/2, b2 = 0, and b̂1 = b̂2 = 1/2. With
qn+1/2 = qn + h

2 vn+1/2 the step (qn−1/2, vn−1/2) �→ (qn+1/2, vn+1/2) of (I.1.17)

becomes a one-stage Nyström method with c1 = 1/2, a11 = 0, b1 = b̂1 = 1.
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II.3 The Adjoint of a Method
We shall see in Chap. V that symmetric numerical methods have many impor-
tant properties. The key for understanding symmetry is the concept of the adjoint
method.

The flow ϕt of an autonomous differential equation

ẏ = f(y), y(t0) = y0 (3.1)

satisfies ϕ−1
−t = ϕt. This property is not, in general, shared by the one-step map

Φh of a numerical method. An illustration is presented in the upper picture of
Fig. 3.1 (a), where we see that the one-step map Φh for the explicit Euler method
is different from the inverse of Φ−h, which is the implicit Euler method.

Definition 3.1. The adjoint method Φ∗
h of a method Φh is the inverse map of the

original method with reversed time step −h, i.e.,

Φ∗
h := Φ−1

−h (3.2)

(see Fig. 3.1 (b)). In other words, y1 = Φ∗
h(y0) is implicitly defined by Φ−h(y1) =

y0. A method for which Φ∗
h = Φh is called symmetric.

y0

y1Φh

Φ−h

y0

y1
Φh

Φ−h

(a)

Φ−h

Φ∗
h

(b)

y0

y1

ϕh(y0)

Φ−h

Φ∗
h

Φ−h

Φ∗
h

e

e∗
(c)

Fig. 3.1. Definition and properties of the adjoint method

The consideration of adjoint methods evolved independently from the study of
symmetric integrators (Stetter (1973), p. 125, Wanner (1973)) and from the aim of
constructing and analyzing stiff integrators from explicit ones (Cash (1975) calls
them “the backward version” which were the first example of mono-implicit meth-
ods and Scherer (1977) calls them “reflected methods”).

The adjoint method satisfies the usual properties such as (Φ∗
h)∗ = Φh and (Φh ◦

Ψh)∗ = Ψ∗
h ◦ Φ∗

h for any two one-step methods Φh and Ψh. The implicit Euler
method is the adjoint of the explicit Euler method. The implicit midpoint rule is
symmetric (see the lower picture of Fig. 3.1 (a)), and the trapezoidal rule and the
Störmer–Verlet method are also symmetric.

The following theorem shows that the adjoint method has the same order as the
original method, and, with a possible sign change, also the same leading error term.

Theorem 3.2. Let ϕt be the exact flow of (3.1) and let Φh be a one-step method of
order p satisfying



II.4 Composition Methods 43

Φh(y0) = ϕh(y0) + C(y0)hp+1 +O(hp+2). (3.3)

The adjoint method Φ∗
h then has the same order p and we have

Φ∗
h(y0) = ϕh(y0) + (−1)pC(y0)hp+1 +O(hp+2). (3.4)

If the method is symmetric, its (maximal) order is even.

Proof. The idea of the proof is exhibited in drawing (c) of Fig. 3.1. From a given
initial value y0 we compute ϕh(y0) and y1 = Φ∗

h(y0), whose difference e∗ is the
local error of Φ∗

h. This error is then “projected back” by Φ−h to become e. We see
that −e is the local error of Φ−h, i.e., by hypothesis (3.3),

e = (−1)pC(ϕh(y0))hp+1 +O(hp+2). (3.5)

Since ϕh(y0) = y0 +O(h) and e = (I +O(h))e∗, it follows that

e∗ = (−1)pC(y0)hp+1 +O(hp+2)

which proves (3.4). The statement for symmetric methods is an immediate conse-
quence of this result, because Φh = Φ∗

h implies C(y0) = (−1)pC(y0), and therefore
C(y0) can be different from zero only for even p. 
�

II.4 Composition Methods

The idea of composing methods has some tradition in several variants: composition
of different Runge–Kutta methods with the same step size leading to the Butcher
group, which is treated in Sect. III.1.3; cyclic composition of multistep methods for
breaking the “Dahlquist barrier” (see Stetter (1973), p. 216); composition of low
order Runge–Kutta methods for increasing stability for stiff problems (Gentzsch &
Schlüter (1978), Iserles (1984)). In the following, we consider the composition of a
given basic one-step method (and, eventually, its adjoint method) with different step
sizes. The aim is to increase the order while preserving some desirable properties
of the basic method. This idea has mainly been developed in the papers of Suzuki
(1990), Yoshida (1990), and McLachlan (1995).

Let Φh be a basic method and γ1, . . . , γs real numbers. Then we call its compo-
sition with step sizes γ1h, γ2h, . . . , γsh, i.e.,

Ψh = Φγsh ◦ . . . ◦ Φγ1h, (4.1)

the corresponding composition method (see Fig. 4.1 (a)).

Theorem 4.1. Let Φh be a one-step method of order p. If

γ1 + . . . + γs = 1

γp+1
1 + . . . + γp+1

s = 0,
(4.2)

then the composition method (4.1) is at least of order p + 1.
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Ψh

(a)

y0 y1

y2

y3

ϕΣγih(y0)

Φγ1h
Φγ2h

Φγ3h e1

e2

e3 =E3

E2

E1(b)

y0 y1

y2

Ψh(y0)

ϕΣγih(y0)

Φγ1h
Φγ2h

Φγ3h

Fig. 4.1. Composition of method Φh with three step sizes

Proof. The proof is presented in Fig. 4.1 (b) for s = 3. It is very similar to the proof
of Theorem 3.2. By hypothesis

e1 = C(y0) · γp+1
1 hp+1 +O(hp+2)

e2 = C(y1) · γp+1
2 hp+1 +O(hp+2)

e3 = C(y2) · γp+1
3 hp+1 +O(hp+2).

(4.3)

We have, as before, yi = y0 +O(h) and Ei = (I +O(h))ei for all i and obtain, for∑
γi = 1,

ϕh(y0)−Ψh(y0) = E1 +E2 +E3 = C(y0)(γ
p+1
1 +γp+1

2 +γp+1
3 )hp+1 +O(hp+2)

which shows that under conditions (4.2) the O(hp+1)-term vanishes. 
�

Example 4.2 (The Triple Jump). Equations (4.2) have no real solution for odd p.
Therefore, the order increase is only possible for even p. In this case, the smallest
s which allows a solution is s = 3. We then have some freedom for solving the
two equations. If we impose symmetry γ1 = γ3, then we obtain (Creutz & Gocksch
1989, Forest 1989, Suzuki 1990, Yoshida 1990)

γ1 = γ3 =
1

2− 21/(p+1)
, γ2 = − 21/(p+1)

2− 21/(p+1)
. (4.4)

This procedure can be repeated: we start with a symmetric method of order 2, apply
(4.4) with p = 2 to obtain order 3; due to the symmetry of the γ’s this new method
is in fact of order 4 (see Theorem 3.2). With this new method we repeat (4.4) with
p = 4 and obtain a symmetric 9-stage composition method of order 6, then with
p = 6 a 27-stage symmetric composition method of order 8, and so on. One obtains
in this way any order, however, at the price of a terrible zig-zag of the step points
(see Fig. 4.2).

−1 0 1 2 −1 0 1 2 −1 0 1 2

γ1

−γ2

γ3
p=4 p=6 p=8

Fig. 4.2. The Triple Jump of order 4 and its iterates of orders 6 and 8
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Example 4.3 (Suzuki’s Fractals). If one desires methods with smaller values of
γi, one has to increase s even more. For example, for s = 5 the best solution of
(4.2) has the sign structure + +−+ + with γ1 = γ2 (see Exercise 7). This leads to
(Suzuki 1990)

γ1 = γ2 = γ4 = γ5 =
1

4− 41/(p+1)
, γ3 = − 41/(p+1)

4− 41/(p+1)
. (4.5)

The repetition of this algorithm for p = 2, 4, 6, . . . leads to a fractal structure of the
step points (see Fig. 4.3).

0 1 0 1 0 1

γ1 γ2

−γ3

γ4 γ5

p=4 p=6 p=8

Fig. 4.3. Suzuki’s “fractal” composition methods

Composition with the Adjoint Method. If we replace the composition (4.1) by the
more general formula

Ψh = Φαsh ◦ Φ∗
βsh ◦ . . . ◦ Φ∗

β2h ◦ Φα1h ◦ Φ∗
β1h, (4.6)

the condition for order p + 1 becomes, by using the result (3.4) and a similar proof
as above,

β1 + α1 + β2 + . . . + βs + αs = 1

(−1)pβp+1
1 + αp+1

1 + (−1)pβp+1
2 + . . . + (−1)pβp+1

s + αp+1
s = 0.

(4.7)

This allows an order increase for odd p as well. In particular, we see at once the
solution α1 = β1 = 1/2 for p = s = 1, which turns every consistent one-step
method of order 1 into a second-order symmetric method

Ψh = Φh/2 ◦ Φ∗
h/2. (4.8)

Example 4.4. If Φh is the explicit (resp. implicit) Euler method, then Ψh in (4.8)
becomes the implicit midpoint (resp. trapezoidal) rule.

Example 4.5. In a second-order problem q̇ = p, ṗ = g(q), if Φh is the sym-
plectic Euler method, which discretizes q by the implicit Euler and p by the ex-
plicit Euler method, then the composed method Ψh in (4.8) is the Störmer–Verlet
method (I.1.17).
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A Numerical Example. To demonstrate the numerical performance of the above
methods, we choose the Kepler problem (I.2.2) with e = 0.6 and the initial values
from (I.2.11). As integration interval we choose [0, 7.5], a bit more than one revo-
lution. The exact solution is obtained by carefully evaluating the integral (I.2.10),
which gives

ϕ = 8.67002632314281495159108828552, (4.9)

with the help of which we compute r, ϕ̇, ṙ from (I.2.8) and (I.2.6). This gives

q1 = −0.828164402690770818204757585370
q2 = 0.778898095658635447081654480796
p1 = −0.856384715343395351524486215030
p2 = −0.160552150799838435254419104102 .

(4.10)

As the basic method we use the Verlet scheme and compare in Fig. 4.4 the perfor-
mances of the composition sequences of the Triple Jump (4.4) and those of Suzuki
(4.5) for a large number of different equidistant basic step sizes and for orders
p = 4, 6, 8, 10, 12. Each basic step is then divided into 3, 9, 27, 81, 243 respectively
5, 25, 125, 625, 3125 composition steps and the maximal final error is compared
with the total number of function evaluations in double logarithmic scales. For each
method and order, all the points lie asymptotically on a straight line with slope −p.
Therefore, theoretically, a higher order method will become superior when the pre-
cision requirements become sufficiently high. But we see that for orders 10 and 12
these “break even points” are far beyond any precision of practical interest, after
some 40 or 50 digits. We also observe that the wild zig-zag of the Triple Jump (4.4)
is a more serious handicap than the enormous number of small steps of the Suzuki
sequence (4.5).

For later reference we have also included, in black symbols, the results obtained
by the two methods (V.3.11) and (V.3.13) of orders 6 and 8, respectively, which will
be the outcome of a more elaborate order theory of Chap. III.
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Fig. 4.4. Numerical results of the Triple Jump and Suzuki step sequences (grey symbols)
compared to optimal methods (black symbols)
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II.5 Splitting Methods

The splitting idea yields an approach that is completely different from Runge–Kutta
methods. One decomposes the vector field into integrable pieces and treats them
separately.

f = f [1] + f [2]

Fig. 5.1. A splitting of a vector field

We consider an arbitrary system ẏ = f(y) in R
n, and suppose that the vector

field is “split” as (see Fig. 5.1)

ẏ = f [1](y) + f [2](y). (5.1)

If then, by chance, the exact flows ϕ
[1]
t and ϕ

[2]
t of the systems ẏ = f [1](y) and

ẏ = f [2](y) can be calculated explicitly, we can, from a given initial value y0, first
solve the first system to obtain a value y1/2, and from this value integrate the second
system to obtain y1. In this way we have introduced the numerical methods

Φ∗
h = ϕ

[2]
h ◦ ϕ

[1]
h

Φh = ϕ
[1]
h ◦ ϕ

[2]
h

Φ∗
h

y0 y1/2

y1

ϕ
[1]
h

ϕ
[2]
h Φh

y0

y1/2 y1

ϕ
[2]
h

ϕ
[1]
h

(5.2)

where one is the adjoint of the other. These formulas are often called the Lie–
Trotter splitting (Trotter 1959). By Taylor expansion we find that (ϕ[1]

h ◦ϕ[2]
h )(y0) =

ϕh(y0)+O(h2), so that both methods give approximations of order 1 to the solution
of (5.1). Another idea is to use a symmetric version and put

Φ
[S]
h = ϕ

[1]
h/2 ◦ ϕ

[2]
h ◦ ϕ

[1]
h/2 , Φ

[S]
h

y0

y1

ϕ
[1]
h/2

ϕ
[2]
h

ϕ
[1]
h/2

(5.3)

which is known as the Strang splitting1 (Strang 1968), and sometimes as the
Marchuk splitting (Marchuk 1968). By breaking up in (5.3) ϕ

[2]
h = ϕ

[2]
h/2 ◦ ϕ

[2]
h/2,

1 The article Strang (1968) deals with spatial discretizations of partial differential equations
such as ut = Aux + Buy . There, the functions f [i] typically contain differences in only
one spatial direction.
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we see that the Strang splitting Φ
[S]
h = Φh/2 ◦ Φ∗

h/2 is the composition of the Lie-
Trotter method and its adjoint with halved step sizes. The Strang splitting formula
is therefore symmetric and of order 2 (see (4.8)).

Example 5.1 (The Symplectic Euler and the Störmer–Verlet Schemes). Sup-
pose we have a Hamiltonian system with separable Hamiltonian H(p, q) = T (p) +
U(q). We consider this as the sum of two Hamiltonians, the first one depending only
on p, the second one only on q. The corresponding Hamiltonian systems

ṗ = 0
q̇ = Tp(p)

and
ṗ = −Uq(q)
q̇ = 0

(5.4)

can be solved without problem to yield

p(t) = p0

q(t) = q0 + t Tp(p0)
and

p(t) = p0 − t Uq(q0)
q(t) = q0.

(5.5)

Denoting the flows of these two systems by ϕT
t and ϕU

t , we see that the symplectic
Euler method (I.1.9) is just the composition ϕT

h ◦ ϕU
h . Furthermore, the adjoint of

the symplectic Euler method is ϕU
h ◦ ϕT

h , and by Example 4.5 the Verlet scheme is
ϕU

h/2 ◦ϕT
h ◦ϕU

h/2, the Strang splitting (5.3). Anticipating the results of Chap. VI, the

flows ϕT
h and ϕU

h are both symplectic transformations, and, since the composition of
symplectic maps is again symplectic, this gives an elegant proof of the symplecticity
of the “symplectic” Euler method and the Verlet scheme.

General Splitting Procedure. In a similar way to the general idea of composi-
tion methods (4.6), we can form with arbitrary coefficients a1, b1, a2, . . . , am, bm

(where, eventually, a1 or bm, or both, are zero)

Ψh = ϕ
[2]
bmh ◦ ϕ

[1]
amh ◦ ϕ

[2]
bm−1h ◦ . . . ◦ ϕ

[1]
a2h ◦ ϕ

[2]
b1h ◦ ϕ

[1]
a1h (5.6)

and try to increase the order of the scheme by suitably determining the free coeffi-
cients. An early contribution to this subject is the article of Ruth (1983), where, for
the special case (5.4), a method (5.6) of order 3 with m = 3 is constructed. Forest
& Ruth (1990) and Candy & Rozmus (1991) extend Ruth’s technique and construct
methods of order 4. One of their methods is just (4.1) with γ1, γ2, γ3 given by (4.4)
(p = 2) and Φh from (5.3). A systematic study of such methods started with the
articles of Suzuki (1990, 1992) and Yoshida (1990).

A close connection between the theories of splitting methods (5.6) and of com-
position methods (4.6) was discovered by McLachlan (1995). Indeed, if we put
β1 = a1 and break up ϕ

[2]
b1h = ϕ

[2]
α1h ◦ ϕ

[2]
β1h (group property of the exact flow)

where α1 is given in (5.8), further ϕ[1]
a2h = ϕ

[1]
β2h ◦ ϕ

[1]
α1h and so on (cf. Fig. 5.2), we

see, using (5.2), that Ψh of (5.6) is identical with Ψh of (4.6), where

Φh = ϕ
[1]
h ◦ ϕ

[2]
h so that Φ∗

h = ϕ
[2]
h ◦ ϕ

[1]
h . (5.7)

A necessary and sufficient condition for the existence of αi and βi satisfying (5.8)
is that

∑
ai =

∑
bi, which is the consistency condition anyway for method (5.6).
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Φ∗
β1h

Φα1h

Φ∗
β2h

Φα2h

Φ∗
β3h

y0

y1

ϕ
[1]
a1h

ϕ
[2]
b1h

ϕ
[1]
a2h

ϕ
[2]
b2h

ϕ
[1]
a3h

ϕ
[2]
b3h

a1 = β1

b1 = β1 + α1

a2 = α1 + β2

b2 = β2 + α2

a3 = α2 + β3

b3 = β3

(5.8)

Fig. 5.2. Equivalence of splitting and composition methods

Combining Exact and Numerical Flows. It may happen that the differential equa-
tion ẏ = f(y) can be split according to (5.1), such that only the flow of, say,
ẏ = f [1](y) can be computed exactly. If f [1](y) constitutes the dominant part of
the vector field, it is natural to search for integrators that exploit this information.
The above interpretation of splitting methods as composition methods allows us to
construct such integrators. We just consider

Φh = ϕ
[1]
h ◦ Φ

[2]
h , Φ∗

h = Φ
[2]∗
h ◦ ϕ

[1]
h (5.9)

as the basis of the composition method (4.6). Here ϕ
[1]
t is the exact flow of ẏ =

f [1](y), and Φ
[2]
h is some first-order integrator applied to ẏ = f [2](y). Since Φh of

(5.9) is consistent with (5.1), the resulting method (4.6) has the desired high order.
It is given by

Ψh = ϕ
[1]
αsh ◦ Φ

[2]
αsh ◦ Φ

[2]∗
βsh ◦ ϕ

[1]
(βs+αs−1)h

◦ Φ
[2]
αs−1h ◦ . . . ◦ Φ

[2]∗
β1h ◦ ϕ

[1]
β1h. (5.10)

Notice that replacing ϕ
[2]
t with a low-order approximation Φ

[2]
t in (5.6) would not

retain the high order of the composition, because Φ
[2]
t does not satisfy the group

property.

Splitting into More than Two Vector Fields. Consider a differential equation

ẏ = f [1](y) + f [2](y) + . . . + f [N ](y), (5.11)

where we assume that the flows ϕ
[j]
t of the individual problems ẏ = f [j](y) can

be computed exactly. In this case there are many possibilities for extending (5.6)
and for writing the method as a composition of ϕ

[1]
ajh, ϕ

[2]
bjh, ϕ

[3]
cjh, . . . . This makes

it difficult to find optimal compositions of high order. A simple and efficient way is
to consider the first-order method
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Φh = ϕ
[1]
h ◦ ϕ

[2]
h ◦ . . . ◦ ϕ

[N ]
h

together with its adjoint as the basis of the composition (4.6). Without any additional
effort this yields splitting methods for (5.11) of arbitrary high order.

II.6 Exercises

1. Compute all collocation methods with s = 2 as a function of c1 and c2. Which
of them are of order 3, which of order 4?

2. Prove that the collocation solution plotted in the right picture of Fig. 1.3 is com-
posed of arcs of parabolas.

3. Let b1 = b4 = 1/8, c2 = 1/3, c3 = 2/3, and consider the corresponding
discontinuous collocation method. Determine its order and find the coefficients
of the equivalent Runge–Kutta method.

4. Show that each of the symplectic Euler methods in (I.1.9) is the adjoint of the
other.

5. (Additive Runge–Kutta methods). Let bi, aij and bi, âij be the coefficients of
two Runge–Kutta methods. An additive Runge–Kutta method for the solution
of ẏ = f [1](y) + f [2](y) is given by

ki = f [1]
(
y0 + h

s∑
j=1

aijkj

)
+ f [2]

(
y0 + h

s∑
j=1

âijkj

)

y1 = y0 + h
s∑

i=1

biki.

Show that this can be interpreted as a partitioned Runge–Kutta method (2.2)
applied to

ẏ = f [1](y) + f [2](z), ż = f [1](y) + f [2](z)

with y(0) = z(0) = y0. Notice that y(t) = z(t).
6. Let Φh denote the Störmer–Verlet scheme, and consider the composition

Φγ2k+1h ◦ Φγ2kh ◦ . . . ◦ Φγ2h ◦ Φγ1h

with γ1 = . . . = γk = γk+2 = . . . = γ2k+1. Compute γ1 and γk+1 such
that the composition gives a method of order 4. For several differential equa-
tions (pendulum, Kepler problem) study the global error of a constant step size
implementation as a function of k.

7. Consider the composition method (4.1) with s = 5, γ5 = γ1, and γ4 = γ2.
Among the solutions of

2γ1 + 2γ2 + γ3 = 1, 2γ3
1 + 2γ3

2 + γ3
3 = 0

find the one that minimizes |2γ5
1 + 2γ5

2 + γ5
3 |.

Remark. This property motivates the choice of the γi in (4.5).



Chapter III.
Order Conditions, Trees and B-Series

In this chapter we present a compact theory of the order conditions of the meth-
ods presented in Chap. II, in particular Runge–Kutta methods, partitioned Runge–
Kutta methods, and composition methods by using the notion of rooted trees and
B-series. These ideas lead to algebraic structures which have recently found inter-
esting applications in quantum field theory. The chapter terminates with the Baker-
Campbell-Hausdorff formula, which allows another access to the order properties
of composition and splitting methods.

Some parts of this chapter are rather short, but nevertheless self-contained. For
more detailed presentations we refer to the monographs of Butcher (1987), of Hairer,
Nørsett & Wanner (1993), and of Hairer & Wanner (1996). Readers mainly inter-
ested in geometric properties of numerical integrators may continue with Chap-
ters IV, V or VI before returning to the technically more difficult jungle of trees.

III.1 Runge–Kutta Order Conditions and B-Series
Even the standard notation has been found to be too heavy in dealing with
fourth and higher order processes, . . . (R.H. Merson 1957)

In this section we derive the order conditions of Runge–Kutta methods by com-
paring the Taylor series of the exact solution of (1.1) with that of the numerical
solution. The computation is much simplified, first by considering an autonomous
system of equations (Gill 1951), and second, by the use of rooted trees (connected
graphs without cycles and a distinguished vertex; Merson 1957). The theory has
been developed by Butcher in the years 1963-72 (see Butcher (1987), Sect. 30) and
by Hairer & Wanner in 1973-74 (see Hairer, Nørsett & Wanner (1993), Sections II.2
and II.12). Here we give new simplified proofs.

III.1.1 Derivation of the Order Conditions

We consider an autonomous problem

ẏ = f(y), y(t0) = y0, (1.1)

where f : R
n → R

n is sufficiently differentiable. A problem ẏ = f(t, y) can be
brought into this form by appending the equation ṫ = 1. We develop the subsequent
theory in four steps.
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Er sagte es klar und angenehm,
was erstens, zweitens und drittens käm’. (W. Busch, Jobsiade 1872)

First Step. We compute the higher derivatives of the solution y at the initial point
t0. For this, we have from (1.1)

y(q) =
(
f(y)

)(q−1)
(1.2)

and compute the latter derivatives by using the chain rule, the product rule, the
symmetry of partial derivatives, and the notation f ′(y) for the derivative as a linear
map (the Jacobian), f ′′(y) the second derivative as a bilinear map and similarly for
higher derivatives. This gives

ẏ = f(y)

ÿ = f ′(y) ẏ (1.3)

y(3) = f ′′(y)(ẏ, ẏ) + f ′(y) ÿ

y(4) = f ′′′(y)(ẏ, ẏ, ẏ) + 3f ′′(y)(ÿ, ẏ) + f ′(y) y(3)

y(5) = f (4)(y)(ẏ, ẏ, ẏ, ẏ) + 6f ′′′(y)(ÿ, ẏ, ẏ) + 4f ′′(y)(y(3), ẏ)

+3f ′′(y)(ÿ, ÿ) + f ′(y) y(4),

and so on. The coefficients 3, 6, 4, 3, . . . appearing in these expressions have a cer-
tain combinatorial meaning (number of partitions of a set of q−1 elements), but for
the moment we need not know their values.

Second Step. We insert in (1.3) recursively the computed derivatives ẏ, ÿ, . . . into
the right side of the subsequent formulas. This gives for the first few

ẏ = f

ÿ = f ′f (1.4)

y(3) = f ′′(f, f) + f ′f ′f

y(4) = f ′′′(f, f, f) + 3f ′′(f ′f, f) + f ′f ′′(f, f) + f ′f ′f ′f,

where the arguments (y) have been suppressed. The expressions which appear in
these formulas, denoted by F (τ), will be called the elementary differentials. We
represent each of them by a suitable graph τ (a rooted tree) as follows:

f ′′

f ′ f

f
Each f becomes a vertex, a first derivative f ′ becomes a

vertex with one branch, and a kth derivative f (k) becomes a
vertex with k branches pointing upwards. The arguments of the
k-linear mapping f (k)(y) correspond to trees that are attached
on the upper ends of these branches. The tree to the right cor-
responds to f ′′(f ′f, f). Other trees are plotted in Table 1.1. In
the above process, each insertion of an already known derivative
consists of grafting the corresponding trees upon a new root as
in Definition 1.1 below, and inserting the corresponding elementary differentials as
arguments of f (m)(y) as in Definition 1.2.



III.1 Runge–Kutta Order Conditions and B-Series 53

Table 1.1. Trees, elementary differentials, and coefficients

|τ | τ graph α(τ) F (τ) γ(τ) φ(τ) σ(τ)

1 1 f 1
∑

i bi 1

2 [ ] 1 f ′f 2
∑

ij biaij 1

3 [ , ] 1 f ′′(f, f) 3
∑

ijk biaijaik 2

3 [[ ]] 1 f ′f ′f 6
∑

ijk biaijajk 1

4 [ , , ] 1 f ′′′(f, f, f) 4
∑

ijkl biaijaikail 6

4 [[ ], ] 3 f ′′(f ′f, f) 8
∑

ijkl biaijaikajl 1

4 [[ , ]] 1 f ′f ′′(f, f) 12
∑

ijkl biaijajkajl 2

4 [[[ ]]] 1 f ′f ′f ′f 24
∑

ijkl biaijajkakl 1

Definition 1.1 (Trees). The set of (rooted) trees T is recursively defined as follows:
a) the graph with only one vertex (called the root) belongs to T ;
b) if τ1, . . . , τm ∈ T , then the graph obtained

by grafting the roots of τ1, . . . , τm to a new
vertex also belongs to T . It is denoted by

τ = [τ1, . . . , τm],

and the new vertex is the root of τ .
�root

τ1 τ2 τm

We further denote by |τ | the order of τ (the number of vertices), and by α(τ) the
coefficients appearing in the formulas (1.4). We remark that some of the trees among
τ1, . . . , τm may be equal and that τ does not depend on the ordering of τ1, . . . , τm.
For example, we do not distinguish between [[ ], ] and [ , [ ]].

Definition 1.2 (Elementary Differentials). For a tree τ ∈ T the elementary differ-
ential is a mapping F (τ) : R

n → R
n, defined recursively by F ( )(y) = f(y)

and

F (τ)(y) = f (m)(y)
(
F (τ1)(y), . . . , F (τm)(y)

)
for τ = [τ1, . . . , τm].

Examples of these constructions and the corresponding coefficients are seen in
Table 1.1. With these definitions, we obtain from (1.4):

Theorem 1.3. The qth derivative of the exact solution is given by

y(q)(t0) =
∑
|τ |=q

α(τ)F (τ)(y0), (1.5)

where α(τ) are positive integer coefficients. 
�
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Third Step. We now turn to the numerical solution of the Runge–Kutta method
(II.1.4), which, by putting hki = gi, we write as

gi = hf(ui) (1.6)

and
ui = y0 +

∑
j

aij gj , y1 = y0 +
∑

i

bi gi, (1.7)

where ui, gi and y1 are functions of h. We develop the derivatives of (1.6), by
Leibniz’ rule, and obtain g

(q)
i = h(f(ui))(q) + q · (f(ui))(q−1). This gives, for

h = 0,
g
(q)
i = q · (f(ui))(q−1), (1.8)

the same expression as in (1.2), with y just replaced by ui and with an extra factor
q. Consequently, exactly as in (1.3),

ġi = 1 · f(y0)

g̈i = 2 · f ′(y0) u̇i (1.9)

g
(3)
i = 3 ·

(
f ′′(y0)(u̇i, u̇i) + f ′(y0) üi

)

g
(4)
i = 4 ·

(
f ′′′(y0)(u̇i, u̇i, u̇i) + 3f ′′(y0)(üi, u̇i) + f ′(y0)u

(3)
i

)

g
(5)
i = 5 ·

(
f (4)(y0)(u̇i, u̇i, u̇i, u̇i) + 6f ′′′(y0)(üi, u̇i, u̇i) + 4f ′′(y0)(u

(3)
i , u̇i)

+ 3f ′′(y0)(üi, üi) + f ′(y0)u
(4)
i

)
,

and so on. Here, the derivatives of gi and ui are evaluated at h = 0.

Fourth Step. We now insert recursively the derivatives u̇i, üi, . . . into (1.9). This
will give the next higher derivative of gi, and, using

u
(q)
i =

∑
j

aij · g(q)
j , (1.10)

which follows from (1.7), also the next higher derivative of ui. This process begins
as

ġi = 1 · f u̇i = 1 ·
(∑

jaij

)
· f

g̈i = (1 · 2)
(∑

jaij

)
f ′f üi = (1 · 2)

(∑
jkaijajk

)
f ′f (1.11)

and so on. If we compare these formulas with the first lines of (1.4), we see that the
results are precisely the same, apart from the extra factors. We denote the integer
factors 1, 1·2, . . . by γ(τ) and the factors containing the aij’s by gi(τ) and ui(τ),
respectively. We obtain by induction that the same happens in general, i.e. that, in
contrast to (1.5),
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g
(q)
i

∣∣
h=0

=
∑
|τ |=q

γ(τ) · gi(τ) · α(τ)F (τ)(y0)

u
(q)
i

∣∣
h=0

=
∑
|τ |=q

γ(τ) · ui(τ) · α(τ)F (τ)(y0),
(1.12)

where α(τ) and F (τ) are the same quantities as before. This is seen by continuing
the insertion process of the derivatives u

(q)
i into the right-hand side of (1.9). For

example, if u̇i and üi are inserted into 3f ′′(üi, u̇i), we will obtain the corresponding
expression as in (1.4), multiplied by the two extra factors ui( ), brought in by üi,
and ui( ) from u̇i. For a general tree τ = [τ1, . . . , τm] this will be

gi(τ) = ui(τ1) · . . . · ui(τm) . (1.13)

Second, the factors γ( ) and γ( ) will receive the additional factor q = |τ | from
(1.9), i.e., we will have in general

γ(τ) = |τ | γ(τ1) · . . . · γ(τm). (1.14)

Then, by (1.10),

ui(τ) =
∑

j

aij gj(τ) =
∑

j

aij · uj(τ1) · . . . · uj(τm). (1.15)

This formula can be re-used repeatedly, as long as some of the trees τ1, . . . , τm are
of order > 1. Finally, we have from the last formula of (1.7), that the coefficients for
the numerical solution, which we denote by φ(τ) and call the elementary weights,
satisfy

φ(τ) =
∑

i

bi gi(τ). (1.16)

We summarize the result as follows:

Theorem 1.4. The derivatives of the numerical solution of a Runge–Kutta method
(II.1.4), for h = 0, are given by

y
(q)
1

∣∣
h=0

=
∑
|τ |=q

γ(τ) · φ(τ) · α(τ)F (τ)(y0), (1.17)

where α(τ) and F (τ) are the same as in Theorem 1.3, the coefficients γ(τ) satisfy
γ( ) = 1 and (1.14). The elementary weights φ(τ) are obtained from the tree τ as
follows: attach to every vertex a summation letter (“i” to the root), then φ(τ) is the
sum, over all summation indices, of a product composed of bi, and factors ajk for
each vertex “j” directly connected with “k” by an upwards directed branch.

Proof. Repeated application of (1.15) followed by (1.16) shows that the elementary
weight φ(τ) is the collection of

∑
i bi from (1.16) and all

∑
j aij of (1.15). 
�
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Theorem 1.5. The Runge–Kutta method has order p if and only if

φ(τ) =
1

γ(τ)
for |τ | ≤ p. (1.18)

Proof. The comparison of Theorem 1.3 with Theorem 1.4 proves the sufficiency
of condition (1.18). The necessity of (1.18) follows from the independence of the
elementary differentials (see e.g., Hairer, Nørsett & Wanner (1993), Exercise 4 of
Sect. II.2). 
�

Example 1.6. For the following tree of order 9 we have

∑
i,j,k,l,m,n,p,q,r

biaijajmainaikaklalqalrakp =
1

9 · 2 · 5 · 3

or, by using
∑

j aij = ci,

∑
i,j,k,l

biciaijcjaikckaklc
2
l =

1
270

.
i

j k

l
m

n

p

q r

The quantities φ(τ) and γ(τ) for all trees up to order 4 are given in Table 1.1. This
also verifies the formulas (II.1.6) stated previously.

III.1.2 B-Series

We now introduce the concept of B-series, which gives further insight into the be-
haviour of numerical methods and allows extensions to more general classes of
methods.

Motivated by formulas (1.12) and (1.17) above, we consider the corresponding
series as the objects of our study. This means, we study power series in h|τ | contain-
ing elementary differentials F (τ) and arbitrary coefficients which are now written in
the form a(τ). Such series will be called B-series. To move from (1.6) to (1.13) we
need to prove a result stating that a B-series inserted into hf(·) is again a B-series.
We start with

B(a, y) = y + a( )hf(y) + a( )h2(f ′f)(y) + . . . = y + δ, (1.19)

and get by Taylor expansion

hf
(
B(a, y)

)
= hf(y + δ) = hf(y) + hf ′(y)δ +

h

2!
f ′′(y)(δ, δ) + . . . . (1.20)

Inserting δ from (1.19) and multiplying out, we obtain the expression

hf
(
B(a, y)

)
= hf + h2a( )f ′f + h3a( )f ′f ′f +

h3

2!
a( )2f ′′(f, f)

+h4a( )a( )f ′′(f ′f, f) + . . . .
(1.21)
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This beautiful formula is not yet perfect for two reasons. First, there is a denominator
2! in the fourth term. The origin of this lies in the symmetry of the tree . We
thus introduce the symmetry coefficients of Definition 1.7 (following Butcher 1987,
Theorem 144A). Second, there is no first term y. We therefore allow the factor a(∅)
in Definition 1.8.

Definition 1.7 (Symmetry coefficients). The symmetry coefficients σ(τ) are de-
fined by σ( ) = 1 and, for τ = [τ1, . . . , τm],

σ(τ) = σ(τ1) · . . . · σ(τm) · µ1!µ2! · . . . , (1.22)

where the integers µ1, µ2, . . . count equal trees among τ1, . . . , τm.

Definition 1.8 (B-Series). For a mapping a : T ∪ {∅} → R a formal series of the
form

B(a, y) = a(∅)y +
∑
τ∈T

h|τ |

σ(τ)
a(τ)F (τ)(y) (1.23)

is called a B-series.1

The main results of the theory of B-series have their origin in the paper of
Butcher (1972), although series expansions were not used there. B-series were then
introduced by Hairer & Wanner (1974). The normalization used in Definition 1.8
is due to Butcher & Sanz-Serna (1996). The following fundamental lemma gives a
second way of finding the order conditions.

Lemma 1.9. Let a : T ∪ {∅} → R be a mapping satisfying a(∅) = 1. Then the
corresponding B-series inserted into hf(·) is again a B-series. That is

h f
(
B(a, y)

)
= B(a′, y), (1.24)

where a′(∅) = 0, a′( ) = 1, and

a′(τ) = a(τ1) · . . . · a(τm) for τ = [τ1, . . . , τm]. (1.25)

Proof. Since a(∅) = 1 we have B(a, y) = y + O(h), so that hf
(
B(a, y)

)
can be

expanded into a Taylor series around y. As in formulas (1.20) and (1.21), we get

1 In this section we are not concerned about the convergence of the series. We shall see
later in Chap. IX that the series converges for sufficiently small h, if a(τ) satisfies an
inequality |a(τ)| ≤ γ(τ)cd|τ | and if f(y) is an analytic function. If f(y) is only k-times
differentiable, then all formulas of this section remain valid for the truncated B-series∑

τ∈T,|τ |≤k ·/· with a suitable remainder term of size O(hk+1) added.
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hf
(
B(a, y)

)
= h

∑
m≥0

1
m!

f (m)(y)
(
B(a, y)− y

)m

= h
∑
m≥0

1
m!

∑
τ1∈T

· · ·
∑

τm∈T

h|τ1|+...+|τm|

σ(τ1) · . . . · σ(τm)
· a(τ1) · . . . · a(τm)

· f (m)(y)
(
F (τ1)(y), . . . , F (τm)(y)

)

=
∑
m≥0

∑
τ1∈T

· · ·
∑

τm∈T

h|τ |

σ(τ)
µ1!µ2! · . . .

m!
· a′(τ)F (τ)(y)

with τ = [τ1, . . . , τm]

=
∑
τ∈T

h|τ |

σ(τ)
a′(τ)F (τ)(y) = B(a′, y).

The last equality follows from the fact that there are
(

m
µ1,µ2,...

)
possibilities for writ-

ing the tree τ in the form τ = [τ1, . . . , τm]. For example, the trees [ , , [ ]],
[ , [ ], ] and [[ ], , ] appear as different terms in the upper sum, but only as
one term in the lower sum. 
�

Back to the Order Conditions. We present now a new derivation of the order
conditions that is solely based on B-series and on Lemma 1.9. Let a Runge–Kutta
method, say formulas (1.6) and (1.7), be given. All quantities in the defining formu-
las are set up as B-series, gi = B(gi, y0), ui = B(ui, y0), y1 = B(φ, y0). Then,
either the linearity and/or Lemma 1.9, translate the formulas of the method into cor-
responding formulas for the coefficients (1.13), (1.15), and (1.16). This recursively
justifies the ansatz as B-series.

Assuming the exact solution to be a B-series B(e, y0), a term-by-term derivation
of this series and an application of Lemma 1.9 to (1.1) yields

e(τ) =
1
|τ | e(τ1) · . . . · e(τm).

Together with definition (1.14) of γ(τ) we thus obtain

e(τ) =
1

γ(τ)
. (1.26)

A comparison of the coefficients of the B-series y1 = B(ϕ, y0) with those of the
exact solution gives (1.18) and proves Theorem 1.5 again .

Comparing the B-series B(e, y0) for the exact solution with Theorem 1.3, we
get as a byproduct the formula

α(τ) =
|τ |!

σ(τ) · γ(τ)
. (1.27)

If the available tools are enriched by the more general composition law of Theo-
rem 1.10 below, this procedure can be applied to yet larger classes of methods.
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III.1.3 Composition of Methods

The order theory for the composition of methods goes back to 1969, when Butcher
used it to circumvent the order barrier for explicit 5th order 5 stage methods. It led to
the seminal publication of Butcher (1972), where the general composition formula
in (1.34) was expressed recursively.

Composition of Runge–Kutta Methods. Suppose that, starting from an initial
value y0, we compute a numerical solution y1 using a Runge–Kutta method with
coefficients aij , bi and step size h. Then, continuing from y1, we compute a value
y2 using another method with coefficients a∗ij , b

∗
i and the same step size. This com-

position of two methods is now considered as a single method (with coefficients
âij , b̂i). The problem is to derive the order properties of this new method, in par-
ticular to express the elementary weights φ̂(τ) in terms of those of the original two
methods.

If the value y1 from the first method is inserted into the starting value for the
second method, one sees that the coefficients of the combined method are given by
(here written for two-stage methods)

â11 â12

â21 â22

â31 â32 â33 â34

â41 â42 â43 â44

b̂1 b̂2 b̂3 b̂4

=

a11 a12

a21 a22

b1 b2 a∗11 a∗12
b1 b2 a∗21 a∗22

b1 b2 b∗1 b∗2

(1.28)

and our problem is to compute the elementary weights of this scheme.

Derivation. The idea is to write the sum for φ̂(τ), say for the tree , in full detail

φ̂( ) =
4∑

i=1

4∑
j=1

4∑
k=1

4∑
l=1

b̂i âij âik âkl = . . . (1.29)

and to split each sum into the two different index sets. This leads to 2|τ | dif-
ferent expressions

∑2
i=1

∑2
j=1

∑2
k=1

∑2
l=1 ./. +

∑4
i=3

∑2
j=1

∑2
k=1

∑2
l=1 ./. +∑2

i=1

∑4
j=3

∑2
k=1

∑2
l=1 ./. + . . .. We symbolize each expression by drawing the

corresponding vertex of τ as a bullet for the first index set and as a star for the sec-
ond. However, due to the zero pattern in the matrix in (1.28) (the upper right corner
is missing), each term with “star above bullet” can be omitted, since the correspond-
ing âij’s are zero. So the only combinations to be considered are those of Fig. 1.1.
We finally insert the quantities from the right tableau in (1.28),

φ̂( ) =
∑

bi aij aik akl +
∑

b∗i bj bk akl +
∑

b∗i a∗ij bk akl +
∑

b∗i bj a
∗
ik bl

+
∑

b∗i a∗ij a
∗
ik bl +

∑
b∗i bj a

∗
ik a∗kl +

∑
b∗i a∗ij a

∗
ik a∗kl,
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l
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j k

l

Fig. 1.1. Combinations with nonzero product

and we observe that each factor of the type bj interrupts the summation, so that the
terms decompose into factors of elementary weights of the individual methods as
follows:

φ̂( ) = φ( ) + φ∗( ) · φ( )φ( ) + φ∗( ) · φ( ) + φ∗( ) · φ( )φ( )

+ φ∗( ) · φ( ) + φ∗( ) · φ( ) + φ∗( ) .

The trees composed of the “star” nodes of τ in Fig. 1.1 constitute all possible “sub-
trees” θ (from the empty tree to τ itself) having the same root as τ . This is the key
for understanding the general result.

Ordered Trees. In order to formalize the procedure of Fig. 1.1, we introduce the
set OT of ordered trees recursively as follows: ∈ OT, and

if ω1, . . . , ωm ∈ OT, then also the ordered m-tuple (ω1, . . . , ωm) ∈ OT. (1.30)

As the name suggests, in the graphical representation of an ordered tree the order of
the branches leaving cannot be permuted. Neglecting the ordering, a tree τ ∈ T can
be considered as an equivalence class of ordered trees, denoted τ = ω.

For example, the tree of Fig. 1.1 has two orderings, namely and . We
denote by ν(τ) the number of possible orderings of the tree τ . It is given by ν( ) =
1 and

ν(τ) =
m!

µ1!µ2! · . . .
ν(τ1) · . . . · ν(τm) (1.31)

for τ = [τ1, . . . , τm], where the integers µ1, µ2, . . . are the numbers of equal trees
among τ1, . . . , τm. This number is closely related to the symmetry coefficient σ(τ),
because the product κ(τ) = σ(τ)ν(τ) satisfies the recurrence relation

κ(τ) = m!κ(τ1) · . . . · κ(τm). (1.32)

We introduce the set OST(ω) of ordered subtrees of an ordered tree ω ∈ OT by

OST( ) = {∅, } (1.33)

OST(ω) = {∅} ∪ {(θ1, . . . , θm) ; θi ∈ OST(ωi)} for ω = (ω1, . . . , ωm).

Each ordered subtree θ ∈ OST(ω) is naturally associated with a tree θ ∈ T obtained
by neglecting the ordering and the ∅-components of θ. For every tree τ ∈ T we
choose, once and for all, an ordering. We denote this ordered tree by ω(τ), and we
put OST(τ) = OST(ω(τ)).
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For the tree of Fig. 1.1, considered as an ordered tree, the ordered subtrees cor-
respond to the trees composed of the “star” nodes.

The General Rule. The general composition rule now be-
comes visible: for θ ∈ OST(ω) we denote by ω\θ the “for-
est” collecting the trees left over when θ has been removed
from the ordered tree ω. For brevity we set τ\θ := ω(τ)\θ.
With the conventions φ∗(θ) = φ∗(θ) and φ∗(∅) = 1 we
then have

θ

δ

δ δ
δ

δ

δ

φ̂(τ) =
∑

θ∈OST(τ)

(
φ∗(θ) ·

∏
δ∈τ\θ

φ(δ)
)
. (1.34)

This composition formula for the trees up to order 3 reads:

φ̂( ) = φ∗(∅) · φ( ) + φ∗( )

φ̂( ) = φ∗(∅) · φ( ) + φ∗( ) · φ( ) + φ∗( )

φ̂( ) = φ∗(∅) · φ( ) + φ∗( ) · φ( )2 + 2φ∗( ) · φ( ) + φ∗( )

φ̂( ) = φ∗(∅) · φ( ) + φ∗( ) · φ( ) + φ∗( ) · φ( ) + φ∗( )

The tree τ = has the subtrees displayed in Fig. 1.2. It contains symmetries in that
the third and fourth subtrees are topologically equivalent. This explains the factor 2
in the expression for the elementary weight.

i

j k

i

j k

i

j k

i

j k

i

j k

Fig. 1.2. A tree with symmetry

III.1.4 Composition of B-Series

We now extend the above composition law to general B-series, i.e., we insert the
B-series themselves into each other, as sketched in Fig. 1.3. This allows us to gen-
eralize Lemma 1.9 (because hf(y) is a special B-series).

y0

y1

y2

B(a, y0) B(b, y1)

B(ab, y0)

Fig. 1.3. Composition of B-series

We start with an observation of Murua (see, e.g., Murua & Sanz-Serna (1999),
p. 1083), namely that the proof of Lemma 1.9 remains the same if the function hf(y)
is replaced with any other function hg(y); in this case (1.21) is replaced with
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hg
(
B(a, y)

)
= hg + h2a( )g′f + h3a( )g′f ′f +

h3

2!
a( )2g′′(f, f)

+h4a( )a( )g′′(f ′f, f) + . . . .
(1.35)

Such series will reappear in Sect. III.3.1 below. Extending this idea further to, say,
f ′′(y)(v1, v2), where v1, v2 are two fixed vectors, we obtain

hf ′′(B(a, y)
)
(v1, v2) = hf ′′(v1, v2) + h2a( )f ′′′(v1, v2, f) (1.36)

+ h3a( )f ′′′(v1, v2, f
′f) + 1

2!
h3a( )2f ′′′′(v1, v2, f, f)

+ h4a( )a( )f ′′′′(v1, v2, f
′f, f) + . . . .

This idea will lead to a direct proof of the following theorem of Hairer & Wanner
(1974).

Theorem 1.10. Let a : T ∪ {∅} → R be a mapping satisfying a(∅) = 1 and let
b : T ∪ {∅} → R be arbitrary. Then the B-series B(a, y) inserted into B(b, ·) is
again a B-series

B
(
b,B(a, y)

)
= B(ab, y), (1.37)

where the group operation ab(τ) is as in (1.34), i.e.,

ab(τ) =
∑

θ∈OST(τ)

b(θ) · a(τ \ θ) with a(τ \ θ) =
∏

δ∈τ\θ

a(δ). (1.38)

Proof. (a) In part (c) below we prove by induction on |ϑ|, ϑ ∈ T that

h|ϑ|

σ(ϑ)
F (ϑ)

(
B(a, y)

)
=

∑
(τ,θ)∈A(ϑ)

h|τ |

σ(τ)
a(τ \ θ)F (τ)(y), (1.39)

where
A(ϑ) =

{
(τ, θ) ; τ ∈ T, θ ∈ OST(τ), θ = ϑ

}
.

Multiplying (1.39) by b(ϑ) and summing over all ϑ ∈ T yields the statement (1.37)-
(1.38), because ∑

ϑ∈T

∑
(τ,θ)∈A(ϑ)

·/· =
∑
τ∈T

∑
θ∈OST(τ)

·/ · .

(b) Choosing a different ordering of τ in the definition of OST(τ) yields the
same sum in (1.39). Therefore (1.39) is equivalent to

h|ϑ|

σ(ϑ)
F (ϑ)

(
B(a, y)

)
=

∑
(ω,θ)∈Ω(ϑ)

h|ω|

σ(ω)ν(ω)
a(ω \ θ)F (ω)(y), (1.40)

where
Ω(ϑ) =

{
(ω, θ) ; ω ∈ OT, θ ∈ OST(ω), θ = ϑ

}
,

and ν(τ) is the number of orderings of the tree τ , see (1.31). Functions defined on
trees are naturally extended to ordered trees. In (1.40) we use |ω| = |τ |, σ(ω) =
σ(τ), ν(ω) = ν(τ), a(ω \ θ) = a(τ \ θ), and F (ω)(y) = F (τ)(y) for ω = τ .
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(c) For ϑ = and ω = (ω1, . . . , ωm) we have a(ω \ θ) = a(ω1) · . . . · a(ωm) if
θ = . Since we have a one-to-one correspondence (ω, θ) ↔ ω between Ω( ) and
OT, and since the expression in the sum of (1.40) is independent of the ordering of
ω, formula (1.40) is precisely Lemma 1.9.

To prove (1.40) for a general tree ϑ = [ϑ1, . . . , ϑl], we apply the idea put for-
ward in (1.36) to hf (l)

(
B(a, y)

)
(v1, . . . , vl) with fixed v1, . . . , vl, and obtain as in

the proof of Lemma 1.9

hf (l)
(
B(a, y)

)
(v1, . . . , vl) =

∑
m≥0

1
m!

∑
τl+1∈T

· · ·
∑

τl+m∈T

h|τl+1|+...+|τl+m|+1

σ(τl+1) · . . . · σ(τl+m)

· a(τl+1) ·. . .· a(τl+m) · f (l+m)(y)
(
v1, . . . , vl, F (τl+1)(y), . . . , F (τl+m)(y)

)
.

Changing the sums over trees to sums over ordered trees we obtain

hf (l)
(
B(a, y)

)
(v1, . . . , vl) =

∑
m≥0

1
m!

∑
ωl+1∈OT

· · ·
∑

ωl+m∈OT

h|ωl+1|+...+|ωl+m|+1

κ(ωl+1) · . . . · κ(ωl+m)

· a(ωl+1) ·. . .· a(ωl+m) · f (l+m)(y)
(
v1, . . . , vl, F (ωl+1)(y), . . . , F (ωl+m)(y)

)
.

We insert vj = h|ϑj |

σ(ϑj)
F (ϑj)

(
B(a, y)

)
into this relation, and we apply our induction

hypothesis

vj =
h|ϑj |

σ(ϑj)
F (ϑj)

(
B(a, y)

)
=

∑
(ωj ,θj)∈Ω(ϑj)

h|ωj |

κ(ωj)
a(ωj \ θj)F (ωj)(y).

We then use the recursive definitions of σ(ϑ) and F (ϑ)(y) on the left-hand side. On
the right-hand side we use the multilinearity of f (l+m), the recursive definitions of
|ω|, κ(ω), F (ω)(y) for ω = (ω1, . . . , ωl+m), and the facts that

a(ω \ θ) = a(ω1 \ θ1) · . . . · a(ωl \ θl) · a(ωl+1) · . . . · a(ωl+m)

and

∑
(ω1,θ1)∈Ω(ϑ1)

· · ·
∑

(ωl,θl)∈Ω(ϑl)

∑
ωl+1∈OT

· · ·
∑

ωl+m∈OT

·/· = m!µ1!µ2! · . . .
(l + m)!

∑
(ω,θ)∈Ωl+m(ϑ)

·/·

where µ1, µ2, . . . count equal trees among ϑ1, . . . , ϑl, and Ωl+m(ϑ) consists of
those pairs (ω, θ) ∈ Ω(ϑ) for which ω is of the form ω = (ω1, . . . , ωl+m). The
factorials appear, because to every (l + m)-tuple of the left-hand sum correspond(

l+m
m,µ1,µ2,...

)
elements in Ωl+m(ϑ), obtained by permuting the order. This yields

formula (1.40) and hence (1.39). 
�
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Example 1.11. The composition laws for the trees of order ≤ 4 are

ab( ) = b(∅) · a( ) + b( )
ab( ) = b(∅) · a( ) + b( ) · a( ) + b( )
ab( ) = b(∅) · a( ) + b( ) · a( )2 + 2b( ) · a( ) + b( )

ab( ) = b(∅) · a( ) + b( ) · a( ) + b( ) · a( ) + b( )

ab( ) = b(∅) · a( ) + b( ) · a( )3 + 3b( ) · a( )2 + 3b( ) · a( )
+ b( )

ab( ) = b(∅) · a( ) + b( ) · a( )a( ) + b( ) · a( ) + b( ) · a( )2

+ b( ) · a( ) + b( ) · a( ) + b( )

ab( ) = b(∅) · a( ) + b( ) · a( ) + b( ) · a( )2 + 2b( ) · a( )

+ b( )

ab( ) = b(∅) · a( ) + b( ) · a( ) + b( ) · a( ) + b( ) · a( ) + b( )

Remark 1.12. The composition law (1.38) can alternatively be obtained from the
corresponding formula (1.34) for Runge–Kutta methods by using the fact that B-
series which represent Runge–Kutta methods are “dense” in the space of all B-series
(see Theorem 306A of Butcher 1987).

III.1.5 The Butcher Group

John C. Butcher,
born: 31 March 1933 in Auckland

(New Zealand)

The composition law (1.38) can be turned into
a group operation, by introducing a unit ele-
ment

e(∅) = 1, e(τ) = 0 for τ ∈ T , (1.41)

and by computing the inverse element of a
given a. This is obtained recursively from
the table of Example 1.11, by requiring
aa−1(τ) = 0 and by inserting the previously
known values of a−1(ϑ). This gives for the
first orders

a−1( ) = −a( )
a−1( ) = −a( ) + a( )2

a−1( ) = −a( ) + 2a( )a( )− a( )3

a−1( ) = −a( ) + 2a( )a( )− a( )3
(1.42)
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We can distinguish several realizations of this group:

GRK the set of Runge–Kutta schemes with composition (1.28);
GEW the set of elementary weights of Runge–Kutta schemes with the composition

law (1.34);
GTM the set of tree mappings a : T ∪ {∅} → R satisfying a(∅) = 1 with

composition (1.38);
GBS the set of B-series (1.23) satisfying a(∅) = 1 with composition (1.37).

A technical difficulty concerns the group GRK, where “reducible” schemes must be
identified (by deleting unnecessary stages or by combining stages that give identical
results) to the same “irreducible” method (see Butcher (1972), or Butcher & Wanner
(1996), p. 140). The definition of φ(τ) in Theorem 1.4 describes a group isomor-
phism from GRK to GEW, further, GEW is a subgroup of GTM and Theorem 1.10
shows that formula (1.23) constitutes a group homomorphism from GTM to GBS.
Because the elementary differentials are independent (see, e.g., Hairer, Nørsett &
Wanner (1993), Exercise 4 of Sect. II.2), the last two groups are isomorphic. The
group GRK can also be extended by allowing “continuous” Runge–Kutta schemes
with “infinitely many stages” (see Butcher (1972), or Butcher & Wanner (1996),
p. 141). The term “Butcher group” was introduced by Hairer & Wanner (1974).

This paper tells the story of a mathematical object that was created by
John Butcher in 1972 and was rediscovered by Alain Connes, Henri
Moscovici and Dirk Kreimer in 1998. (Ch. Brouder 2004)

Connection with Hopf Algebras and Quantum Field Theory. A surprising con-
nection between Runge–Kutta theory and renormalization in quantum field theory
has been discovered by Brouder (2000). One denotes by a Hopf algebra a graded
algebra which, besides the usual product, also possesses a coproduct, a tool used by
H. Hopf (1941) 2 in his topological classification of certain manifolds. Hopf algebras
generated by families of rooted trees proved to be extremely useful for simplifying
the intricate combinatorics of renormalization (Kreimer 1998). Kreimer’s Hopf al-
gebra H is the space generated by linear combinations of families of rooted trees
and the coproduct is a mapping � : H → H⊗H which is, for the first trees, given
by

�( ) = ⊗ 1 + 1⊗
�( ) = ⊗ 1 + ⊗ + 1⊗

�( ) = ⊗ 1 + ⊗ + 2 ⊗ + 1⊗

�( ) = ⊗ 1 + ⊗ + ⊗ + 1⊗

(1.43)

It can be clearly seen, that this algebraic structure is precisely the one underlying
the composition law of Example 1.11, so that the Butcher group GTM becomes the
corresponding character group. The so-called antipodes of trees τ ∈ H, denoted by
S(τ), are for the first trees

2 Not to be confused with E. Hopf, the discoverer of the “Hopf bifurcation”.
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S( ) = −
S( ) = − +
S( ) = − + 2 −

S( ) = − + 2 −

(1.44)

and, apparently, describes the inverse element (1.42) in the Butcher group.

III.2 Order Conditions for Partitioned Runge–Kutta
Methods

We now apply the ideas of the previous section to the creation of the order conditions
for partitioned Runge–Kutta methods (II.2.2) of Sect. II.2. These results can then
also be applied to Nyström methods.

III.2.1 Bi-Coloured Trees and P-Series

Let us consider a partitioned system

ẏ = f(y, z), ż = g(y, z) (2.1)

(non-autonomous problems can be brought into this form by appending ṫ = 1).
We start by computing the derivatives of its exact solution, which are to be inserted
into the Taylor series expansion. By analogy with (1.4) we obtain in this case the
derivatives of y at t0 as follows:

ẏ = f

ÿ = fyf + fzg (2.2)

y(3) = fyy(f, f) + 2 fyz(f, g) + fzz(g, g) + fyfyf + fyfzg + fzgyf + fzgzg.

Here, fy, fz, fyz, . . . denote partial derivatives and all terms are to be evaluated at
(y0, z0). Similar expressions are obtained for the derivatives of z(t).

fzy

gyz f

gf

The terms occurring in these expressions are again
called the elementary differentials F (τ)(y, z). For their
graphical representation as a tree τ , we distinguish be-
tween “black” vertices for representing an f and “white”
vertices for a g. Upwards pointing branches represent par-
tial derivatives, with respect to y if the branch leads to a
black vertex, and with respect to z if it leads to a white
vertex. With this convention, the graph to the right corre-
sponds to the expression fzy

(
gyz(f, g), f

)
(see Table 2.1 for more examples).

We denote by TP the set of graphs obtained by the above procedure, and we
call them (rooted) bi-coloured trees. The first graphs are and . By analogy with
Definition 1.1, we denote by
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Table 2.1. Bi-coloured trees, elementary differentials, and coefficients

|τ | τ graph α(τ) F (τ) γ(τ) φ(τ) σ(τ)

1 1 f 1
∑

i bi 1

2 [ ]y 1 fyf 2
∑

ij biaij 1

2 [ ]y 1 fzg 2
∑

ij biâij 1

3 [ , ]y 1 fyy(f, f) 3
∑

ijk biaijaik 2

3 [ , ]y 2 fyz(f, g) 3
∑

ijk biaij âik 1

3 [ , ]y 1 fzz(g, g) 3
∑

ijk biâij âik 2

3 [[ ]y]y 1 fyfyf 6
∑

ijk biaijajk 1

3 [[ ]y]y 1 fyfzg 6
∑

ijk biaij âjk 1

3 [[ ]z]y 1 fzgyf 6
∑

ijk biâijajk 1

3 [[ ]z]y 1 fzgzg 6
∑

ijk biâij âjk 1

1 1 g 1
∑

i b̂i 1

2 [ ]z 1 gyf 2
∑

ij b̂iaij 1

etc etc etc etc

[τ1, . . . , τm]y and [τ1, . . . , τm]z, τ1, . . . , τm ∈ TP

the bi-coloured trees obtained by connecting the roots of τ1, . . . , τm to a new root,
which is in the first case, and in the second. Furthermore, we denote by TPy

and TPz the subsets of TP which are formed by trees with black and white roots,
respectively. Hence, the trees of TPy correspond to derivatives of y(t), whereas
those of TPz correspond to derivatives of z(t).

As in Definition 1.2 we denote the number of vertices of τ ∈ TP by |τ |, the
order of τ . The symmetry coefficient σ(τ) is again defined by

σ( ) = σ( ) = 1,

and, for τ = [τ1, . . . , τm]y or τ = [τ1, . . . , τm]z , by

σ(τ) = σ(τ1) · . . . · σ(τm) · µ1!µ2! . . . , (2.3)

where the integers µ1, µ2, . . . count equal trees among τ1, . . . , τm ∈ TP . This is
formally the same definition as in Sect. III.1. Observe, however, that σ(τ) depends
on the colouring of the vertices. For example, we have σ( ) = 2, but σ( ) = 1.
By analogy with Definition 1.8 we have:
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Definition 2.1 (P-Series). For a mapping a : TP ∪ {∅y, ∅z} → R a series of the
form

P
(
a, (y, z)

)
=




a(∅y)y +
∑

τ∈TPy

h|τ |

σ(τ)
a(τ)F (τ)(y, z)

a(∅z)z +
∑

τ∈TPz

h|τ |

σ(τ)
a(τ)F (τ)(y, z)




is called a P-series.

The following results correspond to Lemma 1.9 and formula (1.26). They are
obtained in exactly the same manner as the corresponding results for non-partitioned
Runge–Kutta methods (Sect. III.1). We therefore omit their proofs.

Lemma 2.2. Let a : TP ∪ {∅y, ∅z} → R satisfy a(∅y) = a(∅z) = 1. Then

h

(
f
(
P
(
a, (y, z)

))

g
(
P
(
a, (y, z)

))
)

= P
(
a′, (y, z)

)
,

where a′(∅y) = a′(∅z) = 0, a′( ) = a′( ) = 1, and

a′(τ) = a(τ1) · . . . · a(τm), (2.4)

if either τ = [τ1, . . . , τm]y or τ = [τ1, . . . , τm]z . 
�
Theorem 2.3 (P-Series of Exact Solution). The exact solution of (2.1) is a P-series(
y(t0 + h), z(t0 + h)

)
= P

(
e, (y0, z0)

)
, where e(∅y) = e(∅z) = 1 and

e(τ) =
1

γ(τ)
for all t ∈ TP (2.5)

where the γ(τ) have the same values as for mono-coloured trees. 
�

III.2.2 Order Conditions for Partitioned Runge–Kutta Methods

The next result corresponds to Theorem 1.4 and is a consequence of Lemma 2.2.

Theorem 2.4 (P-Series of Numerical Solution). The numerical solution of a par-
titioned Runge–Kutta method (II.2.2) is a P-series (y1, z1) = P

(
φ, (y0, z0)

)
, where

φ(∅y) = φ(∅z) = 1 and

φ(τ) =

{ ∑s
i=1 biφi(τ) for τ ∈ TPy

∑s
i=1 b̂iφi(τ) for τ ∈ TPz.

(2.6)

The expression φi(τ) is defined by φi( ) = φi( ) = 1 and by

φi(τ) = ψi(τ1)·. . .·ψi(τm) with ψi(τk) =

{∑s
jk=1 aijk

φjk
(τk) if τk ∈ TPy

∑s
jk=1 âijk

φjk
(τk) if τk ∈ TPz

(2.7)
for τ = [τ1, . . . , τm]y or τ = [τ1, . . . , τm]z .
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Proof. These formulas result from Lemma 2.2 by writing (hki, h�i) from the for-
mulas (II.2.2) as a P-series (hki, h�i) = P

(
φi, (y0, z0)

)
so that

(h
∑

j

aijkj , h
∑

j

âij�j) = P
(
ψi, (y0, z0)

)

is also a P-series. Observe that equation (2.6) corresponds to (1.16) (where gi has to
be replaced with φi) and that formula (2.7) comprises (1.13) and (1.15), where we
now write ψi instead of ui. 
�

The expressions φ(τ) are shown in Table 2.1 for all trees in TPy up to order
|τ | ≤ 3. A similar table must be added for trees in TPz , where all roots are white
and all bi are replaced with b̂i. The general rule is the following: attach to every
vertex a summation index. Then, the expression φ(τ) is a sum over all summation
indices with the summand being a product of bi or b̂i (depending on whether the
root “i” is black or white) and of ajk (if “k” is black) or âjk (if “k” is white), for
each vertex “k” directly above “j”.

Theorem 2.5 (Order Conditions). A partitioned Runge–Kutta method (II.2.2) has
order r, i.e., y1 − y(t0 + h) = O(hr+1), z1 − z(t0 + h) = O(hr+1), if and only if

φ(τ) =
1

γ(τ)
for τ ∈ TPy ∪ TPz with |τ | ≤ r. (2.8)

Proof. This corresponds to Theorem 1.5 and is seen by comparing the expansions
of Theorems 2.4 and 2.3. 
�

Example 2.6. We see that not only does every individual Runge–Kutta method have
to be of order r, but also the so-called coupling conditions between the coefficients
of both methods must hold. The order conditions mentioned above (see formulas

(II.2.3) and (II.2.5)) correspond to the trees , , and . For the tree sketched
below we obtain

∑
i,j,k,l,m,n,p,q,r

biâij âjmâinaikâklalqalrakp =
1

9 · 2 · 5 · 3

or, by using
∑

j aij = ci and
∑

j âij = ĉi,

∑
i,j,k,l

biĉiâij ĉjaikckâklc
2
l =

1
270

.
i

j k

l
m

n

p

q r

III.2.3 Order Conditions for Nyström Methods

A “modern” order theory for Nyström methods (II.2.11) of Sect. II.2.3 was first
given in 1976 by Hairer & Wanner (see Sect. II.14 of Hairer, Nørsett & Wanner
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1993). Later it turned out that these conditions are obtained easily by applying the
theory of partitioned Runge–Kutta methods to the system

ẏ = z ż = g(y, z), (2.9)

which is of the form (2.1). This function has the partial derivative fz = I and all
other derivatives of f are zero. As a consequence, many elementary differentials are
zero and the corresponding order conditions can be omitted. The only trees remain-
ing are those for which

“black vertices have at most one son and this son must be white”. (2.10)

Example 2.7. The tree sketched below apparently satisfies condition (2.10) and the
corresponding order condition becomes, by Theorem 2.4 and formula (2.8),

∑
i,j,k,...,v

biâij âjkakmaknâkpâjqaqrârsaj�â�tatuatv =
1

13·12·4·3·2·4·3 .

Due to property (2.10), each aik inside the tree comes with a
corresponding âkj , and by (2.10), both factors contract to an
aij ; similarly, the black root is only connected to one white
vertex, the corresponding biâij simplifies to bj . We thus get

∑
j,k,q,s,t

bj âjkc
2
k ĉkâjqaqsajtc

2
t =

1
13 · 3456

.
i

j

k q �

m n p
r t

s u v

Each of the above order conditions for a tree in TPy has a “twin” in TPz of one
order lower with the root cut off. For the above example this twin becomes

∑
j,k,q,s,t

bj âjkc
2
k ĉkâjqaqsajtc

2
t =

1
3456

.

We need only consider the trees in TPz if

bi = bi(1− ci)

is satisfied (see Lemma II.14.13 of Hairer, Nørsett & Wanner (1993), Sect. II.14).

Remark 2.8. Strictly speaking, the theory of partitioned methods is applicable to
Nyström methods only if the matrix (âij) is invertible. However, since we arrive at
expansions with a finite number of algebraic conditions, we can recover the singular
case by a continuous perturbation of the coefficients.

Equations without Friction. Although condition (2.10) already eliminates many
order conditions, Nyström methods for the general problem ÿ = g(y, ẏ) cannot be
much better than an excellent Runge–Kutta method applied pairwise to system (2.9).
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There is, however, an important special case where much more progress is possible,
namely equations of the type

ÿ = g(y), (2.11)

which corresponds to motion without friction. In this case, the function for ż in (2.9)
is independent of z, and in addition to (2.10) we have a second condition, namely

“white vertices have only black sons”. (2.12)

Both conditions reduce the remaining trees drastically. Along each branch, there
occur alternating black and white vertices. Ramifications only happen at white ver-
tices. This case allows the construction of excellent numerical methods of high or-
ders. For example, the following 13 trees

assure order 5, whereas ordinary Runge–Kutta theory requires 17 conditions for this
order. See Hairer, Nørsett & Wanner (1993), pages 291f, for tables, examples and
references.

III.3 Order Conditions for Composition Methods

We have seen in the preceding chapter that composition methods of arbitrarily high
order can be obtained with the use of Theorem II.4.1. However, as demonstrated in
Fig. II.4.4, these methods are not attractive for high orders. This section is devoted
to the derivation of order conditions, which then allow the construction of optimal
high order composition methods.

The order conditions for these methods are often derived via the Baker-Campbell-
Hausdorff formula. This will be the subject of Sect. III.5 below. Only very recently,
Murua & Sanz-Serna (1999) have found an elegant theory based on the idea of B-
series. This paper has largely inspired the subsequent presentation.

III.3.1 Introduction

The principal tool in this section is the Taylor series expansion

Φh(y) = y + hd1(y) + h2d2(y) + h3d3(y) + . . . (3.1)

of the basic method. The only hypothesis which we require for this method is con-
sistency, i.e., that

d1(y) = f(y). (3.2)

All other functions di(y) are arbitrary.
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The underlying idea for obtaining the expansions for composition methods is, in
fact, very simple: we just insert the series (3.1), with varying values of h, into itself.
All our experience from Sect. III.1.2 with the insertion of a B-series into a function
will certainly be helpful. We demonstrate this for the case of the composition Ψh =
Φα2h ◦ Φα1h. Applied to an initial value y0, this gives with (3.1)

y1 = Φα1h(y0) = y0 + hα1d1(y0) + h2α2
1d2(y0) + . . .

y2 = Φα2h(y1) = y1 + hα2d1(y1) + h2α2
2d2(y1) + . . . .

(3.3)

We now insert the first series into the second, in the same way as we did in (1.35).
Then, for example, the term h2α2

2d2(y1) becomes

y2 = . . . + h2α2
2d2(y0) + h3α2

2α1d
′
2(y0)d1(y0) (3.4)

+ h4α2
2α

2
1d

′
2(y0)d2(y0) +

h4

2
α2

2α
2
1d

′′
2 (y0)(d1(y0), d1(y0)) + . . .

We see that we arrive at “generalized” B-series, where the elementary differentials
contain not only one function, but are composed of infinitely many functions and
their derivatives. We symbolize the four terms written in (3.4) by the trees

2 2

1

2

2

2

1 1

.

This leads us to the following definition.

Definition 3.1 (∞-Trees, B∞-series). We extend Definitions 1.1 and 1.2 to T∞,
the set of all rooted trees where each vertex bears a positive integer without any
further restriction, and use the notation

1 , 2 , 3 , . . . = the trees with one vertex;

[τ1, . . . , τm]i = the tree τ formed by a new root i connected to τ1, . . . , τm;

F ( i )(y) = di(y);

F (τ)(y) = d
(m)
i (y)(F (τ1)(y), . . . , F (τm)(y)) for τ as above;

|τ | = 1 + |τ1|+ . . . + |τm|, the number of vertices of τ ;

||τ || = i + ||τ1||+ . . . + ||τm||, the sum of the labels of τ ;

σ(τ) = µ1!µ2! · . . . · σ(τ1) · . . . · σ(τm),
where µ1, µ2, . . . count equal trees among τ1, . . . , τm,
the symmetry coefficient respecting the labels;

i(τ) = i, the label of the root of τ .

For a map a : T∞ ∪ {∅} → R we write

B∞(a, y) = a(∅)y +
∑

τ∈T∞

h||τ ||

σ(τ)
a(τ)F (τ)(y) (3.5)

which extends the notion of B-series to the new situation.
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Example 3.2. For the tree

τ =
4

1 7

6 65

⇔ τ = [τ1, τ2]4 where τ1 = 1 , τ2 =
7

6 65

(3.6)

we have
F (τ)(y) = d ′′

4 (y)
(
d1(y), d ′′′

7 (y)
(
d5(y), d6(y), d6(y)

))

τ = [ 1 , [ 5 , 6 , 6 ]7]4, |τ | = 6, ||τ || = 29, σ(τ) = 2, i(τ) = 4 .

The above calculations for (3.4) are governed by the following lemma.

Lemma 3.3. For a series B∞(a, y) with a(∅) = 1 we have

hidi

(
B∞(a, y)

)
=

∑
τ∈T∞,i(τ)=i

h||τ ||

σ(τ)
a′(τ)F (τ)(y), (3.7)

where a′( i ) = 1 and

a′(τ) = a(τ1) · . . . · a(τm) for τ = [τ1, . . . , τm]i. (3.8)

Proof. This is a straightforward extension of Lemma 1.9 with exactly the same
proof. 
�

The preceding lemma leads directly to the order conditions for composition
methods. However, if we continue with compositions of the type (II.4.1), we arrive
at conditions without real solutions. We therefore turn to compositions including the
adjoint method as well.

III.3.2 The General Case

As in (II.4.6), we consider

Ψh = Φαsh ◦ Φ∗
βsh ◦ . . . ◦ Φα2h ◦ Φ∗

β2h ◦ Φα1h ◦ Φ∗
β1h, (3.9)

and we obtain with the help of the above lemma the corresponding B∞-series.

Lemma 3.4 (Recurrence Relations). The following compositions are B∞-series
(
Φ∗

βkh ◦ . . . ◦ Φα1h ◦ Φ∗
β1h

)
(y) = B∞(bk, y)

(
Φαkh ◦ Φ∗

βkh ◦ . . . ◦ Φα1h ◦ Φ∗
β1h

)
(y) = B∞(ak, y).

(3.10)

Their coefficients are recursively given by ak(∅) = 1, bk(∅) = 1, a0(τ) = 0 for all
τ ∈ T∞, and

bk(τ) = ak−1(τ)− (−βk)i(τ) b′k(τ),

ak(τ) = bk(τ) + α
i(τ)
k b′k(τ).

(3.11)
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Proof. The coefficients a0(τ) correspond to the identity map B∞(a0, y) = y. The
second formula of (3.11) follows from

B∞(ak, y) = Φαkh

(
B∞(bk, y)

)
= B∞(bk, y) +

∑
i≥1

αi
kh

idi

(
B∞(bk, y)

)
,

and from an application of Lemma 3.3.
The relation B∞(bk, y) = Φ∗

βkh

(
B∞(ak−1, y)

)
, which involves the adjoint

method, needs a little trick: we write it as B∞(ak−1, y) = Φ−βkh

(
B∞(bk, y)

)
(remember that Φ∗

h = Φ−1
−h), apply Lemma 3.3 again, and reverse the formula. This

gives the first equation of (3.11). 
�

Adding the equations of (3.11), we get

ak(τ) = ak−1(τ) +
(
α

i(τ)
k − (−βk)i(τ)

)
b′k(τ). (3.12)

Because of b′k( i ) = 1, we obtain

ak( i ) =
k∑

�=1

(
αi

� − (−β�)i
)

bk( i ) =
k−1∑
�=1

αi
� −

k∑
�=1

(−β�)i =
k∑

�=1

′(
αi

� − (−β�)i
)
.

(3.13)

The fact that, for bk( i ), the sum of (−β�)i is from 1 to k, but the sum of αi
� is only

from 1 to k − 1, has been indicated by a prime attached to the summation symbol.
Continuing to apply the formulas (3.11) and (3.12) to more and more complicated
trees, we quickly understand the general rule for the coefficients of an arbitrary tree.

Example 3.5. The tree τ in (3.6) gives

4

1 7

6 65

k

	 m

n p q as(τ) =
s∑

k=1

(α4
k − β4

k)
k∑

�=1

′
(α� + β�)

·
k∑

m=1

′
(α7

m + β7
m)

m∑
n=1

′
(α5

n + β5
n)

( m∑
p=1

′
(α6

p − β6
p)

)2

.

(3.14)

The Order Conditions. The exact solution of ẏ = f(y) is a B-series y(t0 + h) =
B(e, y0) (see (1.26)). Since d1(y) = f(y), every B-series is also a B∞-series with
e(τ) = 0 for trees with at least one label different from 1. Therefore, we also have
y(t0 + h) = B∞(e, y0), where the coefficients e(τ) satisfy e( 1 ) = 1, e(τ) = 0 if
i(τ) > 1, and

e(τ) =
1
|τ | e(τ1) · . . . · e(τm) for τ = [τ1, . . . , τm]1. (3.15)
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Theorem 3.6. The composition method Ψh(y) = B∞(as, y) of (3.9) has order p if

as(τ) = e(τ) for τ ∈ T∞ with ||τ || ≤ p. (3.16)

Proof. This follows from a comparison of the B∞-series for the numerical and the
exact solution. For the necessity of (3.16), the independence of the elementary dif-
ferentials has to be studied as in Exercise 3. 
�

III.3.3 Reduction of the Order Conditions

The order conditions of the foregoing section are indeed beautiful, but for the mo-
ment they are not of much use, because of the enormous number of trees in T∞ of
a certain order. For example, there are 166 trees in T∞ with ||τ || ≤ 6. Fortunately,
the equations are not all independent, as we shall see now.

Definition 3.7 (Butcher 1972, Murua & Sanz-Serna 1999). For two trees in T∞,
u = [u1, . . . , um]i and v = [v1, . . . , vl]j , we denote

u ◦ v := [u1, . . . , um, v]i , u× v := [u1, . . . , um, v1, . . . , vl]i+j (3.17)

and call them the Butcher product and merging product, respectively (see Fig. 3.1).

1

7

6

6 1 1

8 1

4 3

u v

1

7

6

6

1 1

8 1

4

3

u ◦ v

1

7

6

6

1 1

8 1

4

3

v ◦ u

1

7

6

6 1 1

8 1

7

u × v

Fig. 3.1. The Butcher product and the merging product

The merging product is associative and commutative, the Butcher product is
neither of the two. To simplify the notation, we write products of several factors
without parentheses, when we mean evaluation from left to right:

u

v1 v2 v3

u ◦ v1 ◦ v2 ◦ . . . ◦ vs = (((u ◦ v1) ◦ v2) ◦ . . .) ◦ vs. (3.18)

Here the factors v1, . . . , vs can be freely permuted.
All subsequent results concern properties of ak(τ) as well as bk(τ), valid for all

k. To avoid writing all formulas twice, we replace ak(τ) and bk(τ) everywhere by
a neutral symbol c(τ).
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Lemma 3.8 (Switching Lemma). All ak, bk of Lemma 3.4 satisfy, for all u, v ∈
T∞, the relation

c(u ◦ v) + c(v ◦ u) = c(u) · c(v)− c(u× v). (3.19)

Proof. The recursion formulas (3.11) are of the form

a(τ) = b(τ) + αi(τ) b′(τ). (3.20)

We arrange this formula, for all five trees of Fig. 3.1, as follows:

a(u ◦ v) + a(v ◦ u) + a(u× v) − a(u)a(v)

= b(u ◦ v) + b(v ◦ u) + b(u× v) − b(u)b(v)

+ αi(u)b′(u ◦ v) + αi(v)b′(v ◦ u) + αi(u)+i(v)b′(u× v)

− αi(u)b′(u)b(v)−αi(v)b′(v)b(u)−αi(u)αi(v)b′(u)b′(v) .

Because of b′(u ◦ v) = b′(u)b(v) and b′(u × v) = b′(u)b′(v), the last two rows
cancel, hence

a(τ) satisfies (3.19) ⇔ b(τ) satisfies (3.19). (3.21)

Thus, beginning with a0, then b1, then a1, etc., all ak and bk must satisfy (3.19). 
�

The Switching Lemma 3.8 reduces considerably the number of order conditions.
Since the right-hand expression involves only trees with |τ | < |u ◦ v|, and since
relation (3.19) is also satisfied by e(τ), an induction argument shows that the order
conditions (3.16) for the trees u ◦ v and v ◦ u are equivalent. The operation u ◦ v �→
v ◦u consists simply in switching the root from one vertex to the next. By repeating
this argument, we see that we can freely move the root inside the graph, and of all
these trees, only one needs to be retained. For order 6, for example, there remain 68
conditions out of the original 166.

Our next results show how relation (3.19) also generates a considerable amount
of reductions of the order conditions. These ideas (for the special situation of sym-
plectic methods) have already been exploited by Calvo & Hairer (1995b).

Lemma 3.9. Assume that all bk of Lemma 3.4 satisfy a relation of the form

N∑
i=1

Ai

mi∏
j=1

c(uij) = 0 (3.22)

with all mi > 0. Then, for any tree w, all ak and bk satisfy the relation

N∑
i=1

Ai c(w ◦ ui1 ◦ ui2 ◦ . . . ◦ ui,mi
) = 0. (3.23)
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Proof. The relation (3.20), written for the tree w ◦ ui1 ◦ ui2 ◦ . . . ◦ ui,mi
, is

a(w ◦ ui1 ◦ . . . ◦ ui,mi
) = b(w ◦ ui1 ◦ . . . ◦ ui,mi

)

+ αi(w) b′(w)b(ui1) · . . . · b(ui,mi
).

Multiplying with Ai and summing over i, this shows that, under the hypothesis
(3.22) for b, the relation (3.23) holds for b if and only if it holds for a. The coef-
ficients a0(τ) = 0 for the identity map satisfy (3.22) and (3.23) because mi > 0.
Starting from this, we again conclude (3.23) recursively for all ak and bk. 
�

The following lemma 3 extends formula (3.19) to the case of several factors.

Lemma 3.10. For any three trees u, v, w all ak, bk of Lemma 3.4 satisfy a relation

c(u ◦ v ◦ w) + c(v ◦ u ◦ w) + c(w ◦ u ◦ v) = c(u) · c(v) · c(w) + . . . , (3.24)

where the dots indicate a linear combination of products
∏

j c(vj) with |v1|+ |v2|+
. . . < |u| + |v| + |w| and, for each term, at least one of the vj possesses a label
larger than one. The general formula, for m trees u1, . . . , um, is

m∑
i=1

c
(
ui ◦ u1 ◦ . . . ◦ ui−1 ◦ ui+1 ◦ . . . ◦ um

)
=

m∏
i=1

c(ui) + . . . . (3.25)

Proof. We apply Lemma 3.9 to (3.19) and obtain

c(w ◦ (u ◦ v)) + c(w ◦ (v ◦ u)) = c(w ◦ u ◦ v)− c(w ◦ (u× v)). (3.26)

Next, we apply the Switching Lemma 3.8 to the trees to the left and get

c(w ◦ (u ◦ v)) + c(u ◦ v ◦ w) = c(w) · c(u ◦ v)− c(w × (u ◦ v))
c(w ◦ (v ◦ u)) + c(v ◦ u ◦ w) = c(w) · c(v ◦ u)− c(w × (v ◦ u)).

Adding these formulas and subtracting (3.26) gives

c(u ◦ v ◦ w) + c(v ◦ u ◦ w) + c(w ◦ u ◦ v) = c(w)
(
c(u ◦ v) + c(v ◦ u)

)
+ . . .

which becomes (3.24) after another use of the Switching Lemma. Thereby, every-
thing which goes into “+ . . .” contains somewhere a merging product, whose roots
introduce necessarily labels larger than one.

Continuing like this, we get recursively (3.25) for all m. 
�

In order that the further simplifications do not turn into chaos, we fix, once and
for all, a total order relation (written <) on T∞, where we only require that the
order respects the number of vertices, i.e., that

u < v whenever |u| < |v|. (3.27)

Similar to the strategy introduced by Hall (1950) for simplifying bracket expressions
in Lie algebras, we define the following subset of T∞.

3 due to A. Murua, private communication, Feb. 2001
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Definition 3.11 (Hall Set). The Hall set corresponding to an order relation (3.27)
is a subset H ⊂ T∞ defined by

i ∈ H for i = 1, 2, 3, . . .
τ ∈ H ⇔ there exist u, v ∈ H, u > v, such that τ = u ◦ v.

Example 3.12. The trees in the subsequent table are ordered from left to right with
respect to |τ |, and from top to bottom within fixed |τ |. There remain finally 22
conditions for order 6.

A Hall set H with ||τ || ≤ 6:

1

2

3

4

5

6

2

1

3

1

3

2

4

1

4

2

5

1

2

1 1

2

1 2

2

1 3

3

1 1

3

1 2

4

1 1

2
1

1
1

2
1

1
2

3
1

1
1

2
1

1 1
1

Not in H are, for example:

1

1

because u = v = 1 ;

1

1 1

because u = 1

1

is not in H;

i

j

k

because u = i < v = j

k

;

1

1
1

1
because u = 1

1 1

is not in H;

2

1 2

1

because u = v = 2

1

.

Theorem 3.13 (Murua & Sanz-Serna 1999). For each τ ∈ T∞ there are constants
Ai, integers mi and trees uij ∈ H such that for all ak, bk of Lemma 3.4 we have

c(τ) =
N∑

i=1

Ai

mi∏
j=1

c(uij), uij ∈ H, |ui1|+ . . . + |ui,mi
| ≤ |τ |. (3.28)

Proof. We proceed by induction on |τ |. For τ = i the statement is trivial, because
i ∈ H. We thus consider τ ∈ T∞ with |τ | ≥ 2, write it as τ = u ◦ v, and conclude

through the following two steps.

First Step. We apply the induction hypothesis (3.28) to v, i.e.,

c(v) =
∑

i

Bi

∏
j

c(vij), vij ∈ H,
∑

j |vij | ≤ |v|. (3.29)

To this, we apply Lemma 3.9 followed by the Switching Lemma 3.8:

c(τ) = c(u ◦ v) =
∑

i

Bi c(u ◦ vi1 ◦ vi2 . . . ◦ vi,ni
)

= −
∑

i

Bi c
(
vini

◦ (u ◦ vi1 ◦ . . . ◦ vi,ni−1)
)

+ . . . .
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The “+ . . .” indicate terms containing trees to which we can apply our induction
hypothesis. Inside the above expressions, we apply the induction hypothesis to the
trees u ◦ vi1 ◦ . . . ◦ vi,ni−1, followed once again by Lemma 3.9. We arrive at a huge
double sum which constitutes a linear combination of expressions of the form

c
(
u1 ◦ u2 ◦ . . . ◦ um

)
(3.30)

and of terms “+ . . .” covered by the induction hypothesis. The point of the above
dodges was to make sure that all u1, u2, . . . , um are in H.

Second Step. It remains to reduce an expression (3.30) to the form required by
(3.28). The trees u2, . . . , um can be permuted arbitrarily; we arrange them in in-
creasing order u2 ≤ . . . ≤ um.

Case 1. If u1 > u2, then by definition u1 ◦ u2 = w ∈ H and we absorb the
second factor into the first and obtain a product w ◦u3 ◦ . . . ◦um with fewer factors.

Case 2. If u1 < u2 ≤ . . ., we shuffle the factors with the help of Lemma 3.10
and obtain for (3.30) the expression

−
m∑

i=2

c(ui ◦ u1 ◦ . . .) +
m∏

i=1

c(ui) + . . . .

With the first terms we return to Case 1, the second term is precisely as in (3.28),
and the terms “+ . . .” are covered by the induction hypothesis.

Case 3. Now let u1 = u2 < . . . . In this case, the formula (3.25) of Lemma 3.10
contains the term (3.30) twice. We group both together, so that (3.30) becomes

−1

2

m∑
i=3

c(ui ◦ u1 ◦ u1 ◦ . . .) + 1

2

m∏
i=1

c(ui) + . . .

and we go back to Case 1. If the first three trees are equal, we group three equal
terms together and so on.

The whole reduction process is repeated until all Butcher products have disap-
peared. 
�

Theorem 3.14 (Murua & Sanz-Serna 1999). The composition method Ψh(y) =
B∞(as, y) of (3.9) has order p if and only if

as(τ) = e(τ) for τ ∈ H with ‖τ‖ ≤ p.

The coefficients e(τ) are those of Theorem 3.6.

Proof. We have seen in Sect. II.4 that composition methods of arbitrarily high order
exist. Since the coefficients Ai of (3.28) do not depend on the mapping c(τ), this
together with Theorem 3.6 implies that the relation (3.28) is also satisfied by the
mapping e for the exact solution. This proves the statement. 
�
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Example 3.15. The order conditions for orders p = 1, . . . , 4 become, with the trees
of Example 3.12 and the rule of (3.14), as follows:

Order 1: 1

s∑
k=1

(αk + βk) = 1

Order 2: 2

s∑
k=1

(α2
k − β2

k) = 0

Order 3: 3

s∑
k=1

(α3
k + β3

k) = 0

2

1 s∑
k=1

(α2
k − β2

k)
k∑

�=1

′
(α� + β�) = 0

Order 4: 4

s∑
k=1

(α4
k − β4

k) = 0

3

1 s∑
k=1

(α3
k + β3

k)
k∑

�=1

′
(α� + β�) = 0

2

1 1 s∑
k=1

(α2
k − β2

k)
( k∑

�=1

′
(α� + β�)

)2

= 0,

(3.31)

where, as above, a prime attached to a summation symbol indicates that the sum of
αi

� is only from 1 to k − 1, whereas the sum of (−β�)i is from 1 to k. Similarly, the
remaining trees of Example 3.12 with ||τ || = 5 and ||τ || = 6 give the additional
conditions for order 5 and 6.

We shall see in Sect. V.3 how further reductions and numerical values are ob-
tained under various assumptions of symmetry.

III.3.4 Order Conditions for Splitting Methods

Splitting methods, introduced in Sect. II.5, are based on differential equations of the
form

ẏ = f1(y) + f2(y), (3.32)

where the flows ϕ
[1]
t and ϕ

[2]
t of the systems ẏ = f1(y) and ẏ = f2(y) are assumed

to be known exactly. In this situation, the method

Φh = ϕ
[1]
h ◦ ϕ

[2]
h

is of first order and, together with its adjoint Φ∗
h = ϕ

[2]
h ◦ ϕ

[1]
h , can be used as the

basic method in the composition (3.9). This yields

Ψh = ϕ
[1]
as+1h ◦ ϕ

[2]
bsh ◦ ϕ

[1]
ash ◦ . . . ◦ ϕ

[2]
b2h ◦ ϕ

[1]
a2h ◦ ϕ

[2]
b1h ◦ ϕ

[1]
a1h (3.33)

where
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bi = αi + βi, ai = αi−1 + βi (3.34)

with the conventions α0 = 0 and βs+1 = 0. Consequently, the splitting method
(3.33) is a special case of (3.9) and we have the following obvious result.

Theorem 3.16. Suppose that the composition method (3.9) is of order p for all
basic methods Φh, then the splitting method (3.33) with ai, bi given by (3.34) is of
the same order p. 
�

We now want to establish the reciprocal result. To every consistent splitting
method (3.33), i.e., with coefficients satisfying

∑
i ai =

∑
i bi = 1, there exist

unique αi, βi such that (3.34) holds. Does the corresponding composition method
have the same order?

Theorem 3.17. If a consistent splitting method (3.33) is of order p at least for
problems of the form (3.32) with the integrable splitting

f1(y) =
(

g1(y2)
0

)
, f2(y) =

(
0

g2(y1)

)
where y =

(
y1

y2

)
, (3.35)

then the corresponding composition method has the same order p for an arbitrary
basic method Φh.

Proof. McLachlan (1995) proves this result in the setting of Lie algebras. We give
here a proof using the tools of this section.

a) The flows corresponding to the two vector fields f1 and f2 of (3.35) are
ϕ

[1]
t (y) = y + tf1(y) and ϕ

[2]
t (y) = y + tf2(y), respectively. Consequently, the

method Φh = ϕ
[1]
h ◦ ϕ

[2]
h can be written in the form (3.1) with

d1(y) = f1(y) + f2(y), dk+1(y) = 1

k!
f

(k)
1 (y)

(
f2(y), . . . , f2(y)

)
. (3.36)

The idea is to construct, for every tree τ ∈ H, functions g1(y2) and g2(y1) such that
the first component of F (τ)(0) is non-zero whereas the first component of F (σ)(0)
vanishes for all σ ∈ T∞ different from τ . This construction will be explained in
part (b) below. Since the local error of the composition method is a B∞-series with
coefficients as(τ) − e(τ), this implies that the order conditions for τ ∈ H with
‖τ‖ ≤ p are necessary already for this very special class of problems. Theorem 3.14
thus proves the statement.

b) For the construction of the functions g1(y2) and g2(y1) we have to understand
the structure of F (τ)(y) with dk(y) given by (3.36). Consider for example the tree
τ ∈ T∞ of Fig. 3.2, for which we have F (τ)(y) = d′′2(y)

(
d1(y), d3(y)

)
. Inserting

dk(y) from (3.36), we get by Leibniz’ rule a linear combination of eight expressions
(i ∈ {1, 2})

f ′′′
1

(
f2, fi, f

′′
1 (f2, f2)

)
, f ′′

1

(
f ′
2fi, f

′′
1 (f2, f2)

)
,

f ′′
1

(
fi, f

′
2f

′′
1 (f2, f2)

)
, f ′

1f
′′
2

(
fi, f

′′
1 (f2, f2)

)
,
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2

1 3

τ

1

1

2 3

2 3

τb

Fig. 3.2. Trees for illustrating the equivalence of the order conditions between composition
and splitting methods

each of which can be identified with a bi-coloured tree (see Sect. III.2.1, a vertex
corresponds to f1 and to f2). The trees corresponding to these expressions

with i = 1 are shown in Fig. 3.2. Due to the special form of dk(y) in (3.36) and
due to the fact that in trees of the Hall set H the vertex 1 can appear only at the
end of a branch, there is always at least one bi-coloured tree where the vertices
are separated by those of and vice versa. We now select such a tree, denoted by
τb, and we label the black and white vertices with {1, 2, . . .}. We then let y1 =
(y1

1 , . . . , y
1
n)T and y2 = (y2

1 , . . . , y
2
m)T , where n and m are the numbers of vertices

and in τb, respectively. Inspired by “Exercise 4” of Hairer, Nørsett & Wanner
(1993), page 155, we define the ith component of g1(y2) as the product of all y2

j

where j runs through the labels of the vertices directly above the vertex with
label i. The function g2(y1) is defined similarly. For the example of Fig. 3.2, the tree
τb yields

g1(y2) =




y2
1

y2
2y

2
3

1


 , g2(y1) =




y1
2y

1
3

1
1


 .

One can check that with this construction the bi-coloured tree τb is the only one
for which the first component of the elementary differential evaluated at y = 0 is
different from zero. This in turn implies that among all trees of T∞ only the tree τ
has a non-vanishing first component in its elementary differential. 
�

Necessity of Negative Steps for Higher Order. One notices that all the compo-
sition methods (II.4.6) of oder higher than two with Φh given by (II.5.7) lead to a
splitting (II.5.6) where at least one of the coefficients ai and bi is negative. This
may be undesirable, especially when the flow ϕ

[i]
t originates from a partial differen-

tial equation that is ill-posed for negative time progression. The following result has
been proved independently by Sheng (1989) and Suzuki (1991) (see also Goldman
& Kaper (1996)). We present the elegant proof found by Blanes & Casas (2005).

Theorem 3.18. If the splitting method (II.5.6) is of order p ≥ 3 for general f [1] and
f [2], then at least one of the ai and at least one of the bi are strictly negative.

Proof. The condition in equation (3.31) for the tree 3 reads

s∑
k=1

(α3
k + β3

k) = 0 or also
s+1∑
k=1

(α3
k−1 + β3

k) = 0

(remember that α0 = 0 and βs+1 = 0). Now apply the fact that x3 +y3 < 0 implies
x + y < 0 and conclude with formulas (3.34). 
�
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III.4 The Baker-Campbell-Hausdorff Formula

This section treats the Baker-Campbell-Hausdorff (short BCH or CBH) formula on
the composition of exponentials. It was proposed in 1898 by J.E. Campbell and
proved independently by Baker (1905) and Hausdorff (1906). This formula will
provide an alternative approach to the order conditions of composition (Sect. II.4)
and splitting methods (Sect. II.5). For its derivation we shall use the inverse of the
derivative of the exponential function.

III.4.1 Derivative of the Exponential and Its Inverse

Elegant formulas for the derivative of exp and for its inverse can be obtained by
the use of matrix commutators [Ω,A] = ΩA − AΩ. If we suppose Ω fixed, this
expression defines a linear operator A �→ [Ω,A]

ad Ω(A) = [Ω,A], (4.1)

which is called the adjoint operator (see Varadarajan (1974), Sect. 2.13). Let us start
by computing the derivatives of Ωk. The product rule for differentiation becomes

( d

dΩ
Ωk

)
H = HΩk−1 + ΩHΩk−2 + . . . + Ωk−1H, (4.2)

and this equals kHΩk−1 if Ω and H commute. Therefore, it is natural to write
(4.2) as kHΩk−1 to which are added correction terms involving commutators and
iterated commutators. In the cases k = 2 and k = 3 we have

HΩ + ΩH = 2HΩ + ad Ω(H)

HΩ2 + ΩHΩ + Ω2H = 3HΩ2 + 3
(
ad Ω(H)

)
Ω + ad 2

Ω(H),

where ad i
Ω denotes the iterated application of the linear operator ad Ω . With the

convention ad 0
Ω(H) = H we obtain by induction on k that

( d

dΩ
Ωk

)
H =

k−1∑
i=0

(
k

i + 1

)(
ad i

Ω(H)
)
Ωk−i−1. (4.3)

This is seen by applying Leibniz’ rule to Ωk+1 = Ω ·Ωk and by using the identity
Ω
(
ad i

Ω(H)
)

=
(
ad i

Ω(H)
)
Ω + ad i+1

Ω (H).

Lemma 4.1. The derivative of expΩ =
∑

k≥0
1
k! Ω

k is given by

( d

dΩ
expΩ

)
H =

(
d expΩ(H)

)
expΩ,

where

d expΩ(H) =
∑
k≥0

1
(k + 1)!

ad k
Ω(H). (4.4)

The series (4.4) converges for all matrices Ω.
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Proof. Multiplying (4.3) by (k!)−1 and summing, then exchanging the sums and
putting j = k − i− 1 yields

( d

dΩ
expΩ

)
H =

∑
k≥0

1
k!

k−1∑
i=0

(
k

i + 1

)(
ad i

Ω(H)
)
Ωk−i−1

=
∑
i≥0

∑
j≥0

1
(i + 1)! j!

(
ad i

Ω(H)
)
Ωj .

The convergence of the series follows from the boundedness of the linear operator
ad Ω (we have ‖ad Ω‖ ≤ 2‖Ω‖). 
�

Lemma 4.2 (Baker 1905). If the eigenvalues of the linear operator ad Ω are differ-
ent from 2�πi with � ∈ {±1,±2, . . .}, then d expΩ is invertible. Furthermore, we
have for ‖Ω‖ < π that

d exp−1
Ω (H) =

∑
k≥0

Bk

k!
ad k

Ω(H), (4.5)

where Bk are the Bernoulli numbers, defined by
∑

k≥0(Bk/k!)xk = x/(ex − 1).

Proof. The eigenvalues of d expΩ are µ =
∑

k≥0 λk/(k + 1)! = (eλ − 1)/λ,
where λ is an eigenvalue of ad Ω . By our assumption, the values µ are non-zero, so
that d expΩ is invertible. By definition of the Bernoulli numbers, the composition of
(4.5) with (4.4) gives the identity. Convergence for ‖Ω‖ < π follows from ‖ad Ω‖ ≤
2‖Ω‖ and from the fact that the radius of convergence of the series for x/(ex − 1)
is 2π. 
�

III.4.2 The BCH Formula

Let A and B be two arbitrary (in general non-commuting) matrices. The problem is
to find a matrix C(t), such that

exp(tA) exp(tB) = expC(t). (4.6)

In order to get a first idea of the form of C(t), we develop the expression to the left in
a series: exp(tA) exp(tB) = I+t(A+B)+ t2

2 (A2+2AB+B2)+O(t3) =: I+X .
For sufficiently small t (hence ‖X‖ is small), the series expansion of the logarithm
log(I + X) = X −X2/2 + . . . yields a matrix C(t) = log(I + X) = t(A + B) +
t2

2

(
A2 + 2AB + B2 − (A + B)2

)
+ O(t3), which satisfies (4.6). This series has

a positive radius of convergence, because it is obtained by elementary operations of
convergent series.

The main problem of the derivation of the BCH formula is to get explicit for-
mulas for the coefficients of the series for C(t), and to express the coefficients of
t2, t3, . . . in terms of commutators. With the help of the following lemma, recurrence
relations for these coefficients will be obtained, which allow for an easy computa-
tion of the first terms.
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John Edward Campbell 4 Henry Frederick Baker5 Felix Hausdorff 6

Lemma 4.3. Let A and B be (non-commuting) matrices. Then, (4.6) holds, where
C(t) is the solution of the differential equation

Ċ = A + B +
1
2

[A−B,C] +
∑
k≥2

Bk

k!
ad k

C(A + B) (4.7)

with initial value C(0) = 0. Recall that ad CA = [C,A] = CA−AC , and that Bk

denote the Bernoulli numbers as in Lemma 4.2.

Proof. We follow Varadarajan (1974), Sect. 2.15, and we consider for small s and t
a smooth matrix function Z(s, t) such that

exp(sA) exp(tB) = expZ(s, t). (4.8)

Using Lemma 4.1, the derivative of (4.8) with respect to s is

A exp(sA) exp(tB) = d expZ(s,t)

(∂Z

∂s
(s, t)

)
expZ(s, t),

so that
∂Z

∂s
= d exp−1

Z (A) = A− 1
2

[Z,A] +
∑
k≥2

Bk

k!
ad k

Z(A). (4.9)

We next take the inverse of (4.8)

4 John Edward Campbell, born: 27 May 1862 in Lisburn, Co Antrim (Ireland), died: 1 Oc-
tober 1924 in Oxford (England).

5 Henry Frederick Baker, born: 3 July 1866 in Cambridge (England), died: 17 March 1956
in Cambridge.

6 Felix Hausdorff, born: 8 November 1869 in Breslau, Silesia (now Wroclaw, Poland), died:
26 January 1942 in Bonn (Germany).
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exp(−tB) exp(−sA) = exp
(
−Z(s, t)

)
,

and differentiate this relation with respect to t. As above we get

∂Z

∂t
= d exp−1

−Z(B) = B +
1
2

[Z,B] +
∑
k≥2

Bk

k!
ad k

Z(B), (4.10)

because ad k
−Z(B) = (−1)kad k

Z(B) and the Bernoulli numbers satisfy Bk = 0
for odd k > 2. A comparison of (4.6) with (4.8) gives C(t) = Z(t, t). The stated
differential equation for C(t) therefore follows from Ċ(t) = ∂Z

∂s (t, t) + ∂Z
∂t (t, t),

and from adding the relations (4.9) and (4.10). 
�

Using Lemma 4.3 we can compute the first Taylor coefficients of C(t),

exp(tA) exp(tB) = exp
(
tC1 + t2C2 + t3C3 + t4C4 + t5C5 + . . .

)
. (4.11)

Inserting this expansion of C(t) into (4.7) and comparing like powers of t gives

C1 = A + B

C2 = 1

4
[A−B,A + B] = 1

2
[A,B]

C3 = 1

6

[
A−B,

1

2
[A,B]

]
= 1

12

[
A, [A,B]

]
+ 1

12

[
B, [B,A]

]

C4 = . . . = 1

24

[
A,

[
B, [B,A]

]]
(4.12)

C5 = . . . = − 1

720

[
A,

[
A,

[
A, [A,B]

]]]
− 1

720

[
B,

[
B,

[
B, [B,A]

]]]

+ 1

360

[
A,

[
B,

[
B, [B,A]

]]]
+ 1

360

[
B,

[
A,

[
A, [A,B]

]]]

+ 1

120

[
A,

[
A,

[
B, [B,A]

]]]
+ 1

120

[
B,

[
B,

[
A, [A,B]

]]]
.

Here, the dots . . . in the formulas for C4 and C5 indicate simplifications with the
help of the Jacobi identity

[
A, [B,C]

]
+

[
C, [A,B]

]
+

[
B, [C,A]

]
= 0, (4.13)

which is verified by straightforward calculation. For higher order the expressions
soon become very complicated.

The Symmetric BCH Formula. For the construction of symmetric splitting meth-
ods it is convenient to use a formula for the composition

exp
(

t

2
A
)

exp(tB) exp
(

t

2
A
)

= exp
(
tS1 + t3S3 + t5S5 + . . .

)
. (4.14)

Since the inverse of the left-hand side is obtained by changing the sign of t, the
same must be true for the right-hand side. This explains why only odd powers of
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t are present in (4.14). Applying the BCH formula (4.11) to exp( t
2A) exp( t

2B) =
expC(t) and a second time to exp(C(t)) exp(−C(−t)) yields for the coefficients
of (4.14) (Yoshida 1990)

S1 = A + B

S3 = − 1

24

[
A, [A,B]

]
+ 1

12

[
B, [B,A]

]

S5 = 7

5760

[
A,

[
A,

[
A, [A,B]

]]]
− 1

720

[
B,

[
B,

[
B, [B,A]

]]]

+ 1

360

[
A,

[
B,

[
B, [B,A]

]]]
+ 1

360

[
B,

[
A,

[
A, [A,B]

]]]

− 1

480

[
A,

[
A,

[
B, [B,A]

]]]
+ 1

120

[
B,

[
B,

[
A, [A,B]

]]]
.

(4.15)

III.5 Order Conditions via the BCH Formula

Using the BCH formula we present an alternative approach to the order conditions
of splitting and composition methods. The main idea is to write the flow of a differ-
ential equation formally as the exponential of the Lie derivative.

III.5.1 Calculus of Lie Derivatives

Wolfgang Gröbner7

For a differential equation

ẏ = f [1](y) + f [2](y),

it is convenient to study the composition of the
flows ϕ

[1]
t and ϕ

[2]
t of the systems

ẏ = f [1](y), ẏ = f [2](y), (5.1)

respectively. We introduce the differential op-
erators (Lie derivative)

Di =
∑

j

f
[i]
j (y)

∂

∂yj

which means that for differentiable functions
F : R

n → R
m we have

DiF (y) = F ′(y)f [i](y). (5.2)

It follows from the chain rule that, for the solutions ϕ
[i]
t (y0) of (5.1),

7 Wolfgang Gröbner, born: 11 February 1899 in Gossensass, South Tyrol (now Italy), died:
10 August 1980 in Innsbruck.
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d

dt
F
(
ϕ

[i]
t (y0)

)
=

(
DiF

)(
ϕ

[i]
t (y0)

)
, (5.3)

and applying this operator iteratively we get

dk

dtk
F
(
ϕ

[i]
t (y0)

)
=

(
Dk

i F
)(

ϕ
[i]
t (y0)

)
. (5.4)

Consequently, the Taylor series of F
(
ϕ

[i]
t (y0)

)
, developed at t = 0, becomes

F
(
ϕ

[i]
t (y0)

)
=

∑
k≥0

tk

k!
(Dk

i F )(y0) = exp(tDi)F (y0). (5.5)

Now, putting F (y) = Id(y) = y, the identity map, this is the Taylor series of the
solution itself

ϕ
[i]
t (y0) =

∑
k≥0

tk

k!
(Dk

i Id)(y0) = exp(tDi)Id(y0). (5.6)

If the functions f [i](y) are not analytic, but only N -times continuously differen-
tiable, the series (5.6) has to be truncated and a O(hN ) remainder term has to be
included.

Lemma 5.1 (Gröbner 1960). Let ϕ[1]
s and ϕ

[2]
t be the flows of the differential equa-

tions ẏ = f [1](y) and ẏ = f [2](y), respectively. For their composition we then have
(
ϕ

[2]
t ◦ ϕ[1]

s

)
(y0) = exp(sD1) exp(tD2) Id(y0).

Proof. This is precisely formula (5.5) with i=1, t replaced with s, and with F (y) =
ϕ

[2]
t (y) = exp(tD2)Id(y0). 
�

Remark 5.2. Notice that the indices 1 and 2 as well as s and t to the left and right
in the identity of Lemma 5.1 are permuted. Gröbner calls this phenomenon, which
sometimes leads to some confusion in the literature, the “Vertauschungssatz”.

Remark 5.3. The statement of Lemma 5.1 can be extended to more than two flows.
If ϕ[j]

t is the flow of a differential equation ẏ = f [j](y), then we have
(
ϕ[m]

u ◦ . . . ◦ ϕ
[2]
t ◦ ϕ[1]

s

)
(y0) = exp(sD1) exp(tD2) · . . . · exp(uDm)Id(y0).

This follows by induction on m.

In general, the two operators D1 and D2 do not commute, so that the composi-
tion exp(tD1) exp(tD2)Id(y0) is different from exp

(
t(D1 + D2)

)
Id(y0) , which

represents the solution ϕt(y0) of ẏ = f(y) = f [1](y) + f [2](y). The relation of
Lemma 5.1 suggests the use of the BCH formula. However, D1 and D2 are un-
bounded differential operators so that the series expansions that appear cannot be
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expected to converge. A formal application of the BCH formula with tA and tB
replaced with sD1 and tD2, respectively, yields

exp(sD1) exp(tD2) = exp
(
D(s, t)

)
, (5.7)

where the differential operator D(s, t) is obtained from (4.11) as

D(s, t) = sD1 + tD2 + st

2
[D1,D2] + s2t

12

[
D1, [D1,D2]

]

+st2

12

[
D2, [D2,D1]

]
+ s2t2

24

[
D1,

[
D2, [D2,D1]

]]
+ . . . .

(5.8)

The Lie bracket for differential operators is calculated exactly as for matrices,
namely, [D1,D2] = D1D2 − D2D1. But how can we interpret (5.7) rigorously?
Expanding both sides in Taylor series we see that

exp(sD1) exp(tD2) = I+sD1+tD2+ 1

2

(
s2D2

1 +2stD1D2+t2D2
2

)
+ . . . (5.9)

and

exp
(
D(s, t)

)
= I + D(s, t) + 1

2
D(s, t)2 + . . .

= I + sD1 + tD2 + 1

2

(
(sD1 + tD2)2 + st[D1,D2]

)
+ . . . .

By derivation of the BCH formula we have a formal identity, i.e., both series have
exactly the same coefficients. Moreover, every finite truncation of the series can be
applied without any difficulties to sufficiently differentiable functions F (y). Con-
sequently, for N -times differentiable functions the relation (5.7) holds true, if both
sides are replaced by their truncated Taylor series and if aO(hN ) remainder is added
(h = max(|s|, |t|)).

III.5.2 Lie Brackets and Commutativity

If we apply D2 to a function F , followed by an application of D1, we will obtain
partial derivatives of F of first and second orders. However, if we subtract from this
the same expression with D1 and D2 reversed, the second derivatives will cancel
(this was already remarked upon by Jacobi (1862), p. 39: “differentialia partialia
secunda functionis f non continere”) and we see that the Lie bracket

[D1,D2] = D1D2 −D2D1 =
∑

i

(∑
j

(∂f
[2]
i

∂yj
f

[1]
j − ∂f

[1]
i

∂yj
f

[2]
j

)) ∂

∂yi
(5.10)

is again a linear differential operator. So, from two vector fields f [1] and f [2] we
obtain a third vector field f [3].



90 III. Order Conditions, Trees and B-Series

The geometric meaning of the new vector
field can be deduced from Lemma 5.1. We see
by subtracting (5.9) from itself, once as it stands
and once with sD1 and tD2 permuted, that

f [3]

y0

ϕ
[1]
s

ϕ
[2]
tϕ

[2]
t

ϕ
[1]
s

ϕ
[2]
t ◦ϕ[1]

s (y0)−ϕ[1]
s ◦ϕ[2]

t (y0) = st [D1,D2] Id(y0)+. . . = st f [3](y0)+. . . (5.11)

(see the picture), where “+ . . .” are terms of order≥ 3. This leads us to the following
result.

Lemma 5.4. Let f [1](y) and f [2](y) be defined on an open set. The corresponding

flows ϕ
[1]
s and ϕ

[2]
t commute everywhere for all sufficiently small s and t, if and only

if
[D1,D2] = 0. (5.12)

Proof. The “only if” part is clear from (5.11). For proving the “if” part, we take s
and t fixed, and subdivide, for a given n, the integration intervals into n equidistant
parts ∆s = s/n and ∆t = t/n. This allows us to transform the solution ϕ

[2]
t ◦

ϕ
[1]
s (y0) by a discrete homotopy in n2 steps into the solution ϕ

[1]
s ◦ ϕ

[2]
t (y0), each

time appending a small rectangle of sizeO(n−2). If we denote such an intermediate
stage by

Γk = . . . ◦ ϕ
[2]
j2∆t ◦ ϕ

[1]
i2∆s ◦ ϕ

[2]
j1∆t ◦ ϕ

[1]
i1∆s(y0)

then we have Γ0 = ϕ
[2]
t ◦ϕ[1]

s (y0) and Γn2 = ϕ
[1]
s ◦ϕ[2]

t (y0) (see Fig. 5.1). Now, for
n →∞, we have the estimate

|Γk+1 − Γk| ≤ O(n−3),

because the error terms in (5.11) are of order 3 at least, and because of the dif-
ferentiability of the solutions with respect to initial values. Thus, by the triangle
inequality |Γn2 − Γ0| ≤ O(n−1) and the result is proved. 
�

y0
Γ0 = ϕ

[2]
t ◦ ϕ

[1]
s

Γn2 = ϕ
[1]
s ◦ ϕ

[2]
t

Γk

Γk+1

Fig. 5.1. Estimation of commuting solutions
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III.5.3 Splitting Methods

We follow the approach of Yoshida (1990) for obtaining the order conditions of
splitting methods (II.5.6). The idea is the following: with the use of Lemma 5.1 we
write the method as a product of exponentials, then we apply formally the Baker-
Campbell-Hausdorff formula to get one exponential of a series in powers of h. Fi-
nally, we compare this series with h(D1 + D2), which corresponds to the exact
solution of (5.1).

The splitting method (II.5.6), viz.,

Ψh = ϕ
[2]
bmh ◦ ϕ

[1]
amh ◦ ϕ

[2]
bm−1h ◦ . . . ◦ ϕ

[1]
a2h ◦ ϕ

[2]
b1h ◦ ϕ

[1]
a1h, (5.13)

is a composition of expressions ϕ
[2]
bjh ◦ϕ

[1]
ajh which, by Lemma 5.1 and by (5.7), can

be written as an exponential

ϕ
[2]
bjh ◦ ϕ

[1]
ajh = exp

(
ajhE

1
1 + bjhE

1
2 + ajbjh

2E2
1

+a2
jbjh

3E3
1 + ajb

2
jh

3E3
2 + a2

jb
2
jh

4E4
1 + . . .

)
Id,

(5.14)

where we use the abbreviations

E1
1 = D1, E1

2 = D2, E2
1 = 1

2
[D1,D2], E3

1 = 1

12

[
D1, [D1,D2]

]
,

E3
2 = 1

12

[
D2, [D2,D1]

]
, E4

1 = 1

24

[
D1[D2, [D2,D1]]

]
,

and the dots indicate O(h5) expressions.
We next define Ψ (j) recursively by

Ψ (0) = Id, Ψ (j) = ϕ
[2]
bjh ◦ ϕ

[1]
ajh ◦ Ψ (j−1), (5.15)

so that Ψ (m) is equal to our method (5.13). Aiming to write Ψ (j) also as an exponen-
tial of differential operators, we are confronted with computing commutators of the
expressions Ej

i . We see that [E1
1 , E

1
2 ] = 2E2

1 , [E1
1 , E

2
1 ] = 6E3

1 , [E1
2 , E

2
1 ] = −6E3

2 ,
[E1

1 , E
3
2 ] = 2E4

1 , and [E1
2 , α

3
1] = −2E4

1 as a consequence of the Jacobi identity
(4.13). But the other commutators cannot be expressed in terms of Ej

i . We therefore
introduce

E4
2 = 1

24

[
D1, [D1, [D1,D2]]

]
, E4

3 = 1

24

[
D2, [D2, [D2,D1]]

]
.

This allows us to formulate the following result.

Lemma 5.5. The method Ψ (j), defined by (5.15), can be formally written as

Ψ (j) = exp
(
c11,jhE

1
1 + c12,jhE

1
2 + c21,jh

2E2
1 + c31,jh

3E3
1

+c32,jh
3E3

2 + c41,jh
4E4

1 + c42,jh
4E4

2 + c43,jh
4E4

3 + . . .
)
Id,
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where all coefficients are zero for j = 0, and where for j ≥ 1

c11,j = c11,j−1 + aj , c12,j = c12,j−1 + bj ,

c21,j = c21,j−1 + ajbj + c11,j−1bj − c12,j−1aj ,

c31,j = c31,j−1 + a2
jbj + 2c11,j−1ajbj − 3c21,j−1aj

+(c11,j−1)
2bj − c11,j−1c

1
2,j−1aj + c12,j−1a

2
j ,

c32,j = c32,j−1 + ajb
2
j − 4c12,j−1ajbj + 3c21,j−1bj

+(c12,j−1)
2aj − c11,j−1c

1
2,j−1bj + c11,j−1b

2
j ,

and similar but more complicated formulas for c4i,j .

Proof. Due to the reversed order in Lemma 5.1 we have to compute exp(A) exp(B),
where A is the argument of the exponential for Ψ (j−1) and B is that of (5.14). The
rest is a tedious but straightforward application of the BCH formula. One has to use
repeatedly the formulas for [Ej

i , E
l
k], stated before Lemma 5.5. 
�

Theorem 5.6. The splitting method (5.13) is of order p if

c11,m = c12,m = 1 , ck
�,m = 0 for k = 2, . . . , p and all �. (5.16)

The coefficients ck
�,m are those defined in Lemma 5.5.

Proof. This is an immediate consequence of Lemma 5.5, because the conditions of
order p imply that the Taylor series expansion of Ψ (m)(y0) coincides with that of
the solution ϕh(y0) = exp

(
h(D1 + D2)

)
y0 up to terms of size O(hp). 
�

A simplification in the order conditions arises for symmetric methods (5.13),
that is, for coefficients satisfying am+1−i = ai and bm−i = bi for all i (and bm = 0).
By Theorem II.3.2, it is sufficient to consider the order conditions (5.16) for odd k
only.

III.5.4 Composition Methods

We now consider composition methods (II.4.6), viz.,

Ψh = Φαsh ◦ Φ∗
βsh ◦ . . . ◦ Φ∗

β2h ◦ Φα1h ◦ Φ∗
β1h, (5.17)

where Φh is a first-order method for ẏ = f(y) and Φ∗
h is its adjoint. We assume

Φh = exp
(
hC1 + h2C2 + h3C3 + . . .

)
Id (5.18)

with differential operators Ci, and such that C1 is the Lie derivative operator cor-
responding to ẏ = f(y). For the splitting method Φh = ϕ

[2]
h ◦ ϕ

[1]
h this follows

from (5.14), and for general one-step methods this is a consequence of Sect. IX.1 on
backward error analysis. The adjoint method then satisfies
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Φ∗
h = exp

(
hC1 − h2C2 + h3C3 − . . .

)
Id. (5.19)

From now on the procedure is similar to that of Sect. III.5.3. We define Ψ (j) recur-
sively by

Ψ (0) = Id, Ψ (j) = Φαjh ◦ Φ∗
βjh ◦ Ψ (j−1), (5.20)

so that Ψ (m) becomes (5.17). We apply the BCH formula to obtain

Φαjh ◦ Φ∗
βjh = exp

(
βjhC1 − β2

j h
2C2 + . . .

)
exp

(
αjhC1 + α2

jh
2C2 + . . .

)
Id

= exp
(
(αj + βj)hE1

1 + (α2
j − β2

j )h2E2
1

+ (α3
j + β3

j )h3E3
1 + 1

2
αjβj(αj + βj)h3E3

2 + . . .
)
Id

where
Ek

1 = Ck, E3
2 = [C1, C2].

We then have the following result.

Lemma 5.7. The method Ψ (j) of (5.20) can be formally written as

Ψ (j) = exp
(
γ1
1,jhE

1
1 + γ2

1,jh
2E2

1 + γ3
1,jh

3E3
1 + γ3

2,jh
3E3

2 + . . .
)
Id,

where all coefficients are zero for j = 0, and where for j = 1, . . . ,m

γ1
1,j = γ1

1,j−1 + αj + βj

γ2
1,j = γ2

1,j−1 + α2
j − β2

j

γ3
1,j = γ3

1,j−1 + α3
j + β3

j

γ3
2,j = γ3

2,j−1 + 1

2
αjβj(αj + βj) + 1

2
γ1
1,j−1(α

2
j − β2

j )− 1

2
γ2
1,j−1(αj + βj).

Proof. Similar to Lemma 5.5, the result follows using the BCH formula. 
�

Theorem 5.8. The composition method (5.17) is of order p if

γ1
1,m = 1 , γk

�,m = 0 for k = 2, . . . , p and all �. (5.21)

The coefficients γk
�,m are those defined in Lemma 5.7. 
�

It is interesting to see how these order conditions are related to those obtained
with the use of trees. The conditions γ1

1,m = 1 and γ2
1,m = γ3

1,m = 0 are identical
to the first three order conditions of Example 3.15. The remaining condition for
order 3, γ3

2,m = 0, reads

m∑
k=1

αkβk(αk + βk) +
m∑

k=1

(α2
k − β2

k)
k−1∑
i=1

(αi + βi)−
m∑

k=1

(αk + βk)
k−1∑
i=1

(α2
i − β2

i )

=
m∑

k=1

(α2
k − β2

k)
k∑

i=1

′
(αi + βi)−

m∑
k=1

(αk + βk)
k∑

i=1

′
(α2

i − β2
i ) = 0.
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This condition is just the difference of the order conditions for the trees 2 ◦ 1 and
1 ◦ 2 , whose sum is zero by the Switching Lemma 3.8. Therefore the condition
γ3
2,m = 0 is equivalent to (though more complicated than) the fourth condition of

Example 3.15.

Symmetric Composition of Symmetric Methods. Consider now a composition

Ψh = Φγmh ◦ . . . ◦ Φγ2h ◦ Φγ1h ◦ Φγ2h ◦ . . . ◦ Φγmh, (5.22)

where Φh is a symmetric method that can be written as

Φh = exp
(
hS1 + h3S3 + h5S5 + . . .

)
Id

with S1 the Lie derivative operator corresponding to ẏ = f(y). For the Strang
splitting Φh = ϕ

[1]
h/2 ◦ ϕ

[2]
h ◦ ϕ

[1]
h/2 such an expansion follows from the symmetric

BCH formula (4.14), and for general symmetric one-step methods from Sect. IX.2.
The derivation of the order conditions is similar to the above with Ψ (j) defined by

Ψ (1) = Φγ1h, Ψ (j) = Φγjh ◦ Ψ (j−1) ◦ Φγjh,

so that Ψ (m) becomes (5.22).

Lemma 5.9. The method Ψ (j) can be formally written as

Ψ (j) = exp
(
σ1

1,jhE
1
1 + σ3

1,jh
3E3

1 + σ5
1,jh

5E5
1 + σ5

2,jh
5E5

2 + . . .
)
Id,

where Ek
1 = Sk, E5

2 =
[
S1[S1, S3]

]
, and where σk

1,1 = γk
1 , σ5

2,1 = 0, and

σk
1,j = σk

1,j−1 + 2γk
j

σ5
2,j = σ5

2,j−1 + 1

6

(
γ3

j (σ1
1,j−1)

2 − γjσ
1
1,j−1σ

3
1,j−1 − γ2

j σ
3
1,j−1 + γ4

j σ
1
1,j−1

)
.

Proof. The result is a consequence of the symmetric BCH formula (4.14) with
γjhS1 + γ3

j h
3S3 + . . . and σ1

1,j−1hE
1
1 + σ3

1,j−1hE
3
1 + . . . in the roles of t

2A and
tB, respectively. 
�

Theorem 5.10. The composition method (5.22) is of order p if

σ1
1,m = 1 , σk

�,m = 0 for odd k = 3, . . . , p and all �. (5.23)

The coefficients σk
�,m are those defined in Lemma 5.9. 
�

Symmetric composition methods up to order 10 will be constructed and dis-
cussed in Sect. V.3.
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III.6 Exercises

1. Find all trees of orders 5 and 6.
2. (A. Cayley 1857). Denote the number of trees of order q by aq. Prove that

a1 + a2x + a3x
2 + a4x

3 + . . . = (1− x)−a1(1− x2)−a2(1− x3)−a3 · . . . .

q 1 2 3 4 5 6 7 8 9 10

aq 1 1 2 4 9 20 48 115 286 719

3. Independency of the elementary differentials: show that for every τ ∈ T there
is a system (1.1) such that the first component of F (τ)(0) equals 1, and the first
component of F (u)(0) is zero for all trees u �= t.
Hint. Consider a monotonic labelling of τ , and define y′i as the product over all
yj , where j runs through all labels of vertices that lie directly above the vertex
“i”. For the first labelling of the tree of Exercise 4 this would be ẏ1 = y2y3,
ẏ2 = 1, ẏ3 = y4, and ẏ4 = 1.

4. Prove that the coefficient α(τ) of Defin-
ition 1.2 is equal to the number of possi-
ble monotonic labellings of the vertices
of τ , starting with the label 1 for the
root. For example, the tree [[ ], ] has
three different monotonic labellings.

1

3 2

4

1

2 3

4

1

2 4

3

In addition, deduce, from (1.22), the recursion formula

α(τ) =
(

|τ | − 1
|τ1|, . . . , |τm|

)
α(τ1) · . . . · α(τm)

1
µ1!µ2! . . .

, (6.1)

where the integers µ1, µ2, . . . count equal trees among τ1, . . . , τm and
(

|τ | − 1
|τ1|, . . . , |τm|

)
=

(|τ | − 1)!
|τ1|! · . . . · |τm|!

denotes the multinomial coefficient.
Remark. In the theoretical physics literature, the coefficients α(τ) are written
CM(τ) and called “Connes-Moscovici weights”.

5. If we denote by N(τ) the number of elements in OST(τ), then show that

N( ) = 2, N([τ1, . . . , τm]) = 1 + N(τ1) · . . . ·N(τm).

Use this result to compute the number of subtrees of the christmas tree decorat-
ing formula (1.34). Answer: 6865.

6. Prove that the elementary differentials for partitioned problems are indepen-
dent. For a given tree (τ ∈ TP , find a problem (2.1) such that a certain compo-
nent of F (τ)(p, q) vanishes for all u ∈ TP except for τ .
Hint. Consider the construction of Exercise 3, and define the partitioning of y
into (p, q) according to the colours of the vertices.
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7. The number of order conditions for partitioned Runge–Kutta methods (II.2.2)
is 2ar for order r, where ar is given by (see Hairer, Nørsett & Wanner (1993),
page 311)

r 1 2 3 4 5 6 7 8 9 10

ar 1 2 7 26 107 458 2058 9498 44987 216598

Find a formula similar to that of Exercise 2.
8. For the special second order differential equation ÿ = g(y) , and for a Nyström

method

�i = g
(
y0 + cih ẏ0 + h2

s∑
j=1

aij�j

)
,

y1 = y0 + hẏ0 + h2
s∑

i=1

βi�i, ẏ1 = ẏ0 + h

s∑
i=1

bi�i,

(6.2)

consider the simplifying assumption

CN(η) :
s∑

j=1

aijc
k−2
j =

ck
i

k(k − 1)
, k = 2, . . . , η,

DN(ζ) :
s∑

i=1

bic
k−2
i aij = bj

( ck
j

k(k − 1)
− cj

k − 1
+

1
k

)
, k = 2, . . . , ζ.

Prove that if the quadrature formula (bi, ci) is of order p, if βi = bi(1 − ci)
for all i, and if the simplifying assumptions CN(η), DN(ζ) are satisfied with
2η + 2 ≥ p and ζ + η ≥ p, then the Nyström method has order p.

9. Nyström methods of maximal order 2s. Prove that there exists a one-parameter
family of s-stage Nyström methods (6.2) for ÿ = g(y), which have order 2s.
Hint. Consider the Gaussian quadrature formula and define the coefficients aij

by CN(s) and by

s∑
i=1

bic
k−2
i ais = bj

( ck
s

k(k − 1)
− cs

k − 1
+

1
k

)

for k = 2, . . . , s.
10. Prove that the coefficient C4 in the series (4.11) of the Baker-Campbell-

Hausdorff formula is given by C4 = [A, [B, [B,A]]]/24.
11. Prove that the series (4.11) converges for |t| < ln 2/(‖A‖+ ‖B‖).
12. By Theorem 5.10 four order conditions have to be satisfied such that the sym-

metric composition method (5.22) is of order 6. Prove that these conditions are
equivalent to the four conditions of Example V.3.15. (Care has to be taken due
to the different meaning of the γi.)



Chapter IV.
Conservation of First Integrals and Methods
on Manifolds

This chapter deals with the conservation of invariants (first integrals) by numerical
methods, and with numerical methods for differential equations on manifolds. Our
investigation will follow two directions. We first investigate which of the methods
introduced in Chap. II conserve invariants automatically. We shall see that most of
them conserve linear invariants, a few of them quadratic invariants, and none of
them conserves cubic or general nonlinear invariants. We then construct new classes
of methods, which are adapted to known invariants and which force the numerical
solution to satisfy them. In particular, we study projection methods and methods
based on local coordinates of the manifold defined by the invariants. We discuss
in some detail the case where the manifold is a Lie group. Finally, we consider
differential equations on manifolds with orthogonality constraints, which often arise
in numerical linear algebra.

IV.1 Examples of First Integrals
Je nomme intégrale une équation u = Const . telle que sa différentielle
du = 0 soit vérifiée identiquement par le système des équations différen-
tielles proposées . . . (C.G.J. Jacobi 1840, p. 350)

We consider differential equations

ẏ = f(y), (1.1)

where y is a vector or possibly a matrix.

Definition 1.1. A non-constant function I(y) is called a first integral of (1.1) if

I ′(y)f(y) = 0 for all y. (1.2)

This implies that every solution y(t) of (1.1) satisfies I
(
y(t)

)
= I(y0) = Const .

Synonymously with “first integral”, the terms invariant or conserved quantity or
constant of motion are also used.

In Chap. I we have seen many examples of differential equations with invariants.
For example, the Lotka–Volterra problem (I.1.1) has I(u, v) = lnu−u+2 ln v− v
as first integral. The pendulum equation (I.1.13) has H(p, q) = p2/2−cos q, and the
Kepler problem (I.2.2) has two first integrals, namely H and L of (I.2.3) and (I.2.4).
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Example 1.2 (Conservation of the Total Energy). Hamiltonian systems are of the
form

ṗ = −Hq(p, q), q̇ = Hp(p, q),

where Hq = ∇qH =
(
∂H/∂q

)T
and Hp = ∇pH =

(
∂H/∂p

)T
are the column

vectors of partial derivatives. The Hamiltonian function H(p, q) is a first integral.
This follows at once from H ′(p, q) =

(
∂H/∂p, ∂H/∂q

)
and

∂H

∂p

(
−∂H

∂q

)T

+
∂H

∂q

(∂H

∂p

)T

= 0.

Example 1.3 (Conservation of the Total Linear and Angular Momentum of
N-Body Systems). We consider a system of N particles interacting pairwise with
potential forces which depend on the distances of the particles. This is formulated
as a Hamiltonian system with total energy (I.4.1), viz.,

H(p, q) =
1
2

N∑
i=1

1
mi

pT
i pi +

N∑
i=2

i−1∑
j=1

Vij

(
‖qi − qj‖

)
.

Here qi, pi ∈ R
3 represent the position and momentum of the ith particle of mass

mi, and Vij(r) (i > j) is the interaction potential between the ith and jth particle.
The equations of motion read

q̇i =
1
mi

pi , ṗi =
N∑

j=1

νij (qi − qj)

where, for i > j, we have νij = νji = −V ′
ij(rij)/rij with rij = ‖qi−qj‖, and νii is

arbitrary, say νii = 0. The conservation of the total linear momentum P =
∑N

i=1 pi

and the angular momentum L =
∑N

i=1 qi × pi is a consequence of the symmetry
relation νij = νji:

d

dt

N∑
i=1

pi =
N∑

i=1

N∑
j=1

νij(qi − qj) = 0

d

dt

N∑
i=1

qi × pi =
N∑

i=1

1
mi

pi × pi +
N∑

i=1

N∑
j=1

qi × νij(qi − qj) = 0 .

Example 1.4 (Conservation of Mass in Chemical Reactions). Suppose that three
substances A, B, C undergo a chemical reaction such as1

A
0.04−−→ B (slow)

B + B
3·107

−−→ C + B (very fast)

B + C
104

−−→ A + C (fast).

1 This Robertson problem is very popular in testing codes for stiff differential equations.
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We denote the masses (or concentrations) of the substances A, B, C by y1, y2, y3,
respectively. By the mass action law this leads to the equations

A: ẏ1 = − 0.04 y1 + 104 y2y3

B: ẏ2 = 0.04 y1 − 104 y2y3 − 3 · 107 y2
2

C: ẏ3 = 3 · 107 y2
2

We see that ẏ1 + ẏ2 + ẏ3 = 0, hence the total mass I(y) = y1 + y2 + y3 is an
invariant of the system.

As was noted by Shampine (1986), such linear invariants are generally con-
served by numerical integrators.

Theorem 1.5 (Conservation of Linear Invariants). All explicit and implicit
Runge–Kutta methods conserve linear invariants. Partitioned Runge–Kutta meth-
ods (II.2.2) conserve linear invariants if bi = b̂i for all i, or if the invariant depends
only on p or only on q.

Proof. Let I(y) = dT y with a constant vector d, so that dT f(y) = 0 for all y.
In the case of Runge–Kutta methods we thus have dT ki = 0, and consequently
dT y1 = dT y0 +hdT (

∑s
i=1 biki) = dT y0. The statement for partitioned methods is

proved similarly. 
�

Next we consider differential equations of the form

Ẏ = A(Y )Y, (1.3)

where Y can be a vector or a matrix (not necessarily a square matrix). We then have
the following result.

Theorem 1.6. If A(Y ) is skew-symmetric for all Y (i.e., AT = −A), then the
quadratic function I(Y ) = Y TY is an invariant. In particular, if the initial value Y0

consists of orthonormal columns (i.e., Y T
0 Y0 = I), then the columns of the solution

Y (t) of (1.3) remain orthonormal for all t.

Proof. The derivative of I(Y ) is I ′(Y )H = Y TH + HTY . Thus, we have
I ′(Y )f(Y ) = I ′(Y )(A(Y )Y ) = Y TA(Y )Y + Y TA(Y )TY for all Y which van-
ishes, because A(Y ) is skew-symmetric. This proves the statement. 
�

Example 1.7 (Rigid Body). The motion of a free rigid body, whose centre of mass
is at the origin, is described by the Euler equations

ẏ1 = a1y2y3, a1 = (I2 − I3)/(I2I3)

ẏ2 = a2y3y1, a2 = (I3 − I1)/(I3I1) (1.4)

ẏ3 = a3y1y2, a3 = (I1 − I2)/(I1I2)
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where the vector y = (y1, y2, y3)T represents the angular momentum in the
body frame, and I1, I2, I3 are the principal moments of inertia (Euler (1758b); see
Sect. VII.5 for a detailed description. This problem can be written as




ẏ1

ẏ2

ẏ3


 =




0 y3/I3 −y2/I2
−y3/I3 0 y1/I1
y2/I2 −y1/I1 0







y1

y2

y3


 , (1.5)

which is of the form (1.3) with a skew-symmetric matrix A(Y ). By Theorem 1.6,
y2
1 + y2

2 + y2
3 is an invariant. A second quadratic invariant is

H(y1, y2, y3) =
1
2

( y2
1

I1
+

y2
2

I2
+

y2
3

I3

)
,

which represents the kinetic energy.
Inspired by the cover page of Marsden & Ratiu (1999), we present in Fig. 1.1

the sphere with some of the solutions of (1.4) corresponding to I1 = 2, I2 = 1
and I3 = 2/3. They lie on the intersection of the sphere with the ellipsoid given
by H(y1, y2, y3) = Const . In the left picture we have included the numerical so-
lution (30 steps) obtained by the implicit midpoint rule with step size h = 0.3 and
initial value y0 = (cos(1.1), 0, sin(1.1))T . It stays exactly on a solution curve. This
follows from the fact that the implicit midpoint rule preserves quadratic invariants
exactly (Sect. IV.2).

For the explicit Euler method (right picture of Fig. 1.1, 320 steps with h =
0.05 and the same initial value) we see that the numerical solution shows a wrong
qualitative behaviour (it should lie on a closed curve). The numerical solution even
drifts away from the sphere.

implicit midpoint explicit Euler

Fig. 1.1. Solutions of the Euler equations (1.4) for the rigid body



IV.2 Quadratic Invariants 101

IV.2 Quadratic Invariants

Quadratic invariants appear often in applications. Examples are the conservation
law of angular momentum in N -body systems (Example 1.3), the two invariants of
the rigid body motion (Example 1.7), and the invariant Y TY of Theorem 1.6. We
therefore consider differential equations (1.1) and quadratic functions

Q(y) = yTCy, (2.1)

where C is a symmetric square matrix. It is an invariant of (1.1) if yTCf(y) = 0
for all y.

IV.2.1 Runge–Kutta Methods

We shall give a complete characterization of Runge–Kutta methods which automati-
cally conserve all quadratic invariants. We first of all consider the Gauss collocation
methods.

Theorem 2.1. The Gauss methods of Sect. II.1.3 (collocation based on the shifted
Legendre polynomials) conserve quadratic invariants.

Proof. Let u(t) be the collocation polynomial of the Gauss methods (Defini-
tion II.1.3). Since d

dtQ
(
u(t)

)
= 2u(t)TCu̇(t), it follows from u(t0) = y0 and

u(t0 + h) = y1 that

yT
1 Cy1 − yT

0 Cy0 = 2
∫ t0+h

t0

u(t)TCu̇(t) dt. (2.2)

The integrand u(t)TCu̇(t) is a polynomial of degree 2s − 1, which is integrated
without error by the s-stage Gaussian quadrature formula. It therefore follows from
the collocation condition

u(t0 + cih)TCu̇(t0 + cih) = u(t0 + cih)TCf
(
u(t0 + cih)

)
= 0

that the integral in (2.2) vanishes. 
�

Since the implicit midpoint rule is the special case s = 1 of the Gauss methods,
the preceding theorem explains its good behaviour for the rigid body simulation in
Fig 1.1.

Theorem 2.2 (Cooper 1987). If the coefficients of a Runge–Kutta method satisfy

biaij + bjaji = bibj for all i, j = 1, . . . , s, (2.3)

then it conserves quadratic invariants.2

2 For irreducible methods, the conditions of Theorem 2.2 and Theorem 2.4 are also neces-
sary for the conservation of all quadratic invariants. This follows from the discussion in
Sect. VI.7.3.
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Proof. The proof is the same as that for B-stability, given independently by Burrage
& Butcher and Crouzeix in 1979 (see Hairer & Wanner (1996), Sect. IV.12).

The relation y1 = y0 + h
∑s

i=1 biki of Definition II.1.1 yields

yT
1 Cy1 = yT

0 Cy0+h
s∑

i=1

bi k
T
i Cy0+h

s∑
j=1

bj y
T
0 Ckj+h2

s∑
i,j=1

bibj k
T
i Ckj . (2.4)

We then write ki = f(Yi) with Yi = y0 + h
∑s

j=1 aijkj . The main idea is to
compute y0 from this relation and to insert it into the central expressions of (2.4).
This yields (using the symmetry of C)

yT
1 Cy1 = yT

0 Cy0 + 2h
s∑

i=1

bi Y
T
i Cf(Yi) + h2

s∑
i,j=1

(bibj − biaij − bjaji) kT
i Ckj .

The condition (2.3) together with the assumption yTCf(y) = 0, which states that
yTCy is an invariant of (1.1), imply yT

1 Cy1 = yT
0 Cy0. 
�

The criterion (2.3) is very restrictive. One finds that among all collocation and
discontinuous collocation methods (Definition II.1.7) only the Gauss methods sat-
isfy this criterion (Exercise 6). On the other hand, it is possible to construct other
high-order Runge–Kutta methods satisfying (2.3). The key for such a construction is
the W -transformation (see Hairer & Wanner (1996), Sect. IV.5), which is exploited
in the articles of Sun (1993a) and Hairer & Leone (2000).

IV.2.2 Partitioned Runge–Kutta Methods

We next consider partitioned Runge–Kutta methods for systems ẏ = f(y, z),
ż = g(y, z). Usually such methods cannot conserve general quadratic invariants
(Exercise 4). We therefore concentrate on quadratic invariants of the form

Q(y, z) = yTDz, (2.5)

where D is a matrix of the appropriate dimensions. Observe that the angular mo-
mentum of N -body systems (Example 1.3) is of this form.

Theorem 2.3 (Sun 1993b). The Lobatto IIIA - IIIB pair conserves all quadratic
invariants of the form (2.5). In particular, this is true for the Störmer–Verlet scheme
(see Sect. II.2.2).

Proof. Let u(t) and v(t) be the (discontinuous) collocation polynomials of the Lo-
batto IIIA and Lobatto IIIB methods, respectively (see Sect. II.2.2). In analogy to
the proof of Theorem 2.1 we have

Q
(
u(t0 + h), v(t0 + h)

)
−Q

(
u(t0), v(t0)

)

=
∫ t0+h

t0

(
Q
(
u̇(t), v(t)

)
+ Q

(
u(t), v̇(t)

))
dt.

(2.6)
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Since u(t) is of degree s and v(t) of degree s − 2, the integrand of (2.6) is a poly-
nomial of degree 2s− 3. Hence, an application of the Lobatto quadrature yields the
exact result. Using the fact that Q(y, z) is an invariant of the differential equation,
i.e., Q

(
f(y, z), z

)
+ Q

(
y, g(y, z)

)
≡ 0, we thus obtain for the integral in (2.6)

hb1 Q
(
u(t0), δ(t0)

)
+ hbs Q

(
u(t0 + h), δ(t0 + h)

)
,

where δ(t) = v̇(t)− g
(
u(t), v(t)

)
denotes the defect. It now follows from u(t0) =

y0, u(t0 + h) = y1 (definition of Lobatto IIIA) and from v(t0) = z0 − hb1δ(t0),
v(t0 + h) = z1 + hbsδ(t0 + h) (definition of Lobatto IIIB) that Q(y1, z1) −
Q(y0, z0) = 0, which proves the theorem. 
�

Exchanging the role of the IIIA and IIIB methods also leads to an integrator
that preserves quadratic invariants of the form (2.5). The following characterization
extends Theorem 2.2 to partitioned Runge–Kutta methods.

Theorem 2.4. If the coefficients of a partitioned Runge–Kutta method (II.2.2) sat-
isfy

biâij + b̂jaji = bib̂j for i, j = 1, . . . , s, (2.7)

bi = b̂i for i = 1, . . . , s, (2.8)

then it conserves quadratic invariants of the form (2.5).
If the partitioned differential equation is of the special form ẏ = f(z), ż = g(y),

then condition (2.7) alone implies that invariants of the form (2.5) are conserved.

Proof. The proof is nearly identical to that of Theorem 2.2. Instead of (2.4) we get

yT
1 Dz1 = yT

0 Dz0 + h

s∑
i=1

bi k
T
i Dz0 + h

s∑
j=1

b̂j y
T
0 D�j + h2

s∑
i,j=1

bib̂j k
T
i D�j .

Denoting by (Yi, Zi) the arguments of ki = f(Yi, Zi) and �i = g(Yi, Zi), the same
trick as in the proof of Theorem 2.2 gives

yT
1 Dz1 = yT

0 Dz0 + h
s∑

i=1

bi f(Yi, Zi)TDZi + h
s∑

j=1

b̂j Y
T
j Dg(Yj , Zj)

+ h2
s∑

i,j=1

(bib̂j − biâij − b̂jaji) kT
i D�j . (2.9)

Since (2.5) is an invariant, we have f(y, z)TDz + yTDg(y, z) = 0 for all y and z.
Consequently, the two conditions (2.7) and (2.8) imply yT

1 Dz1 = yT
0 Dz0.

For the special case where f depends only on z and g only on y, the assumption
f(z)TDz + yTDg(y) = 0 (for all y, z) implies that f(z)TDz = −yTDg(y) =
Const . Therefore, condition (2.8) is no longer necessary for the proof of the state-
ment. 
�
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IV.2.3 Nyström Methods

An important class of partitioned differential equations is ẏ = z, ż = g(y) or,
equivalently,

ÿ = g(y). (2.10)

Many examples of Chap. I are of this form, in particular the N -body problem of
Example 1.3 for which the angular momentum is a quadratic first integral. Nyström
methods (Definition II.2.3),

�i = g
(
y0 + cih ẏ0 + h2

s∑
j=1

aij�j

)
,

y1 = y0 + hẏ0 + h2
s∑

i=1

βi�i, ẏ1 = ẏ0 + h
s∑

i=1

bi�i,

(2.11)

are adapted to the numerical solution of (2.10) and it is interesting to investigate
which methods within this class can conserve quadratic invariants.

Theorem 2.5. If the coefficients of the Nyström method (2.11) satisfy

βi = bi(1− ci) for i = 1, . . . , s,

bi(βj − aij) = bj(βi − aji) for i, j = 1, . . . , s,
(2.12)

then it conserves all quadratic invariants of the form yTD ẏ.

Proof. The quadratic form Q(y, ẏ) = yTD ẏ is a first integral of (2.10) if and only
if

ẏTD ẏ + yTDg(y) = 0 for all y, ẏ ∈ R
n. (2.13)

This implies that D is skew-symmetric and that yTDg(y) = 0.
In the same way as for the proofs of Theorems 2.2 and 2.4 we now com-

pute yT
1 D ẏ1 using the formulas of (2.11) and we substitute y0 by Yi − cihẏ0 −

h2
∑

j aij�j , where Yi denotes the argument of g in (2.11). This yields

yT
1 D ẏ1 = yT

0 D ẏ0 + h ẏT
0 D ẏ0 + h

s∑
i=1

bi Y
T
i D �i

+ h2
s∑

i=1

βi �
T
i D ẏ0 + h2

s∑
i=1

bi(1− ci) ẏT
0 D �i

+ h3
s∑

i,j=1

bi(βj − aij) �T
j D �i.

Using the skew-symmetry of D and Y T
i D �i = Y T

i Dg(Yi) = 0, condition (2.12)
implies the conservation property yT

1 D ẏ1 = yT
0 D ẏ0. 
�
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Remark 2.6 (Composition Methods). If a method Φh conserves quadratic invari-
ants (e.g., the mid-point rule by Theorem 2.1 or the Störmer–Verlet scheme by Theo-
rem 2.3 or a Nyström method of Theorem 2.5), then so does the composition method

Ψh = Φγsh ◦ . . . ◦ Φγ1h. (2.14)

This obvious property is one of the most important motivations for considering com-
position methods.

IV.3 Polynomial Invariants

We consider two classes of problems with polynomial invariants for degree higher
than two. First, we treat linear problems for which the determinant of the resolvent is
an invariant, and we show that (partitioned) Runge–Kutta methods cannot conserve
them automatically. Second, we study isospectral flows.

IV.3.1 The Determinant as a First Integral

We consider quasi-linear problems

Ẏ = A(Y )Y, Y (0) = Y0 (3.1)

where Y and A(Y ) are n × n matrices. In the following we denote the trace of a
matrix A = (aij)n

i,j=1 by traceA =
∑n

i=1 aii.

Lemma 3.1. If traceA(Y ) = 0 for all Y , then g(Y ) := detY is an invariant of
the matrix differential equation (3.1).

Proof. It follows from

det
(
Y + εAY

)
= det

(
I + εA

)
detY =

(
1 + ε traceA +O(ε2)

)
detY

that g′(Y )(AY ) = traceA ·detY (this is the Abel–Liouville–Jacobi–Ostrogradskii
identity). Hence, the determinant g(Y ) = detY is an invariant of the differential
equation (3.1) if traceA(Y ) = 0 for all Y . 
�

Since detY represents the volume of the parallelepiped generated by the
columns of the matrix Y , the conservation of the invariant g(Y ) = detY is related
to volume preservation. This topic will be further discussed in Sect. VI.9. Here, we
consider detY as a polynomial invariant of degree n, and we investigate whether
Runge–Kutta methods can automatically conserve this invariant for n ≥ 3. The key
lemma for this study is the following.
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Lemma 3.2 (Feng Kang & Shang Zai-jiu 1995). Let R(z) be a differentiable
function defined in a neighbourhood of z = 0, and assume that R(0) = 1 and
R′(0) = 1. Then, we have for n ≥ 3

detR(A) = 1 for all n× n matrices A satisfying traceA = 0, (3.2)

if and only if R(z) = exp(z) .

Proof. The “if” part follows from Lemma 3.1, because for constant A the solution
of Ẏ = AY , Y (0) = I is given by Y (t) = exp(At).

For the proof of the “only if” part, we consider diagonal matrices of the form
A = diag(µ, ν,−(µ + ν), 0, . . . , 0), which have traceA = 0, and for which

R(A) = diag
(
R(µ), R(ν), R(−(µ + ν)), R(0), . . . , R(0)

)
.

The assumptions R(0) = 1 and (3.2) imply

R(µ)R(ν)R(−(µ + ν)) = 1 (3.3)

for all µ, ν close to 0. Putting ν = 0, this relation yields R(µ)R(−µ) = 1 for all µ,
and therefore (3.3) can be written as

R(µ)R(ν) = R(µ + ν) for all µ, ν close to 0. (3.4)

This functional equation can only be satisfied by the exponential function. This is
seen as follows: from (3.4) we have

R(µ + ε)−R(µ)
ε

= R(µ)
R(ε)−R(0)

ε
.

Taking the limit ε → 0 we obtain R′(µ) = R(µ), because R′(0) = 1. This implies
R(µ) = exp(µ). 
�

Theorem 3.3. For n ≥ 3, no Runge–Kutta method can conserve all polynomial
invariants of degree n.

Proof. It is sufficient to consider linear problems Ẏ = AY with constant matrix A
satisfying traceA = 0, so that g(Y ) = detY is a polynomial invariant of degree
n. Applying a Runge–Kutta method to such a differential equation yields Y1 =
R(hA)Y0, where

R(z) = 1 + zbT (I − zA)−11l

(bT = (b1, . . . , bs), 1l = (1, . . . , 1)T and A = (aij) is the matrix of Runge–
Kutta coefficients) is the so-called stability function. It is seen to be rational.
By Lemma 3.2 it is therefore not possible that detR(hA) = 1 for all A with
traceA = 0. 
�

This negative result motivates the search for new methods which can conserve
polynomial invariants (see Sects. IV.4, IV.8 and VI.9). We consider here another
interesting class of problems with polynomial invariants of degree higher than two.
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IV.3.2 Isospectral Flows

Such flows are created by a matrix differential equation

L̇ = [B(L), L], L(0) = L0 (3.5)

where L0 is a given symmetric matrix, B(L) is skew-symmetric for all L, and
[B,L] = BL− LB is the commutator of B and L. Many interesting problems can
be written in this form. We just mention the Toda system, the continuous realization
of QR-type algorithms, projected gradient flows, and inverse eigenvalue problems
(see Chu (1992) and Calvo, Iserles & Zanna (1997) for long lists of references).

Lemma 3.4 (Lax 1968, Flaschka 1974). Let L0 be symmetric and assume that
B(L) is skew-symmetric for all L. Then, the solution L(t) of (3.5) is a symmetric
matrix, and its eigenvalues are independent of t.

Proof. The symmetry of L(t) follows from the fact that the commutator of a skew-
symmetric with a symmetric matrix gives a symmetric matrix.

To prove the isospectrality of the flow, we define U(t) by

U̇ = B
(
L(t)

)
U, U(0) = I. (3.6)

Then, we have (d/dt)(U−1LU) = U−1(L̇ − BL + LB)U = 0, and hence
U(t)−1L(t)U(t) = L0 for all t, so that L(t) = U(t)L0U(t)−1 is the solution
of (3.5). This proves the result. 
�

Note that, since B(L) is skew-symmetric, the matrix U(t) of (3.6) is orthogonal
by Theorem 1.6.

Lemma 3.4 shows that the characteristic polynomial det(L−λI) =
∑n

i=0 aiλ
i

and hence the coefficients ai also are independent of t. These coefficients are all
polynomial invariants (e.g., a0 = detL, an−1 = ±traceL). Because of Theo-
rem 3.3 there is no hope that Runge–Kutta methods applied to (3.5) can conserve
these invariants automatically for n ≥ 3.

Isospectral Methods. The proof of Lemma 3.4, however, suggests an interesting
approach for the numerical solution of (3.5). For n = 0, 1, . . . we solve numerically

U̇ = B(ULnU
T )U, U(0) = I (3.7)

and we put Ln+1 = ÛLnÛ
T , where Û is the numerical approximation Û ≈ U(h)

after one step (cf. Calvo, Iserles & Zanna 1999). If B(L) is skew-symmetric for all
matrices L, then UTU is a quadratic invariant of (3.7) and the methods of Sect. IV.2
will produce an orthogonal Û . Consequently, Ln+1 and Ln have exactly the same
eigenvalues, and they remain symmetric.

Diele, Lopez & Politi (1998) suggest the use of the Cayley transform U =
(I − Y )−1(I + Y ) , which transforms (3.7) into

Ẏ = 1

2
(I − Y )B

(
ULnU

T
)
(I + Y ), Y (0) = 0,
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and the orthogonality of U into the skew-symmetry of Y (see Lemma 8.8 below).
Since all (also explicit) Runge–Kutta methods preserve the skew-symmetry of Y ,
which is a linear invariant, this yields an approach to explicit isospectral methods.

Connection with the QR Algorithm. In a diversion from the main theme of this
section, we now show the relationship of the flow of (3.5) with the QR algorithm for
the symmetric eigenvalue problem. Starting from a real symmetric matrix A0, the
basic QR algorithm (without shifts) computes a sequence of orthogonally similar
matrices A1, A2, A3, . . . , expected to converge towards a diagonal matrix carrying
the eigenvalues of A0. Iteratively for k = 0, 1, 2, . . ., one computes the QR decom-
position of Ak:

Ak = QkRk

with Qk orthogonal, Rk upper triangular (the decomposition becomes unique if the
diagonal elements of Rk are taken positive). Then, Ak+1 is obtained by reversing
the order of multiplication:

Ak+1 = RkQk.

It is an easy exercise to show that Q(k) = Q0Q1 . . . Qk−1 is the matrix in the
orthogonal similarity transformation between A0 and Ak:

Ak = Q(k)TA0Q(k) (3.8)

and the same matrix Q(k) is the orthogonal factor in the QR decomposition of Ak
0 :

Ak
0 = Q(k)R(k). (3.9)

Consider now, for an arbitrary real function f defined on the eigenvalues of a real
symmetric matrix L0, the QR decomposition

exp(tf(L0)) = Q(t)R(t) (3.10)

and define
L(t) := Q(t)TL0Q(t). (3.11)

The relations (3.8) and (3.9) then show that for integer times t = k, the matrix
exp

(
f(L(k))

)
= Q(k)T exp

(
f(L0)

)
Q(k) coincides with the kth matrix in the QR

algorithm starting from A0 = exp(f(L0)):

exp(f(L(k))) = Ak . (3.12)

Now, how is all this related to the system (3.5)? Differentiating (3.11) as in the
proof of Lemma 3.4 shows that L(t) solves a differential equation of the form L̇ =
[B,L] with the skew-symmetric matrix B = −QT Q̇. At first sight, however, B is a
function of t, not of L. On the other hand, differentiation of (3.10) yields (omitting
the argument t where it is clear from the context)

f(L0)QR = f(L0) exp(tf(L0)) = exp(tf(L0))f(L0) = Q̇R + QṘ ,
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and since f(L) = QT f(L0)Q by (3.11), this becomes

f(L) = QT Q̇ + ṘR−1 .

Here the left-hand side is a symmetric matrix, and the right-hand side is the sum of a
skew-symmetric and an upper triangular matrix. It follows that the skew-symmetric
matrix B = −QT Q̇ is given by

B(L) = f(L)+ − f(L)T
+, (3.13)

where f(L)+ denotes the part of f(L) above the diagonal. Hence, L(t) is the solu-
tion of an autonomous system (3.5) with a skew-symmetric B(L).

For f(x) = x and assuming L0 symmetric and tridiagonal, the flow of (3.5) with
(3.13) is known as the Toda flow. The QR iterates A0 = exp(L0), A1, A2, . . . of the
exponential of L0 are seen to be equal to the exponentials of the solution L(t) of
the Toda equations at integer times: Ak = exp(L(k)), a discovery of Symes (1982).
An interesting connection of the Toda equations with a mechanical system will be
discussed in Sect. X.1.5.

For f(x) = log x, the above arguments show that the QR iteration itself, starting
from a positive definite symmetric tridiagonal matrix, is the evaluation Ak = L(k)
at integer times of a solution L(t) of the differential equation (3.5) with B given
by (3.13). This relationship was explored in a series of papers by Deift, Li, Nanda
& Tomei (1983, 1989, 1993).

Notwithstanding the mathematical beauty of this relationship, it must be re-
marked that the practical QR algorithm (with shifts and deflation) follows a different
path.

IV.4 Projection Methods

Und bist du nicht willig, so brauch ich Gewalt.
(J.W. Goethe, Der Erlkönig)

Suppose we have an (n−m)-dimensional submanifold of R
n,

M = {y ; g(y) = 0} (4.1)

(g : R
n → R

m), and a differential equation ẏ = f(y) with the property that

y0 ∈M implies y(t) ∈M for all t. (4.2)

We want to emphasize that this assumption is weaker than the requirement that
all components gi(y) of g(y) are invariants in the sense of Definition 1.1. In fact,
assumption (4.2) is equivalent to g′(y)f(y) = 0 for y ∈M, whereas Definition 1.1
requires g′(y)f(y) = 0 for all y ∈ R

n. In the situation of (4.2) we call g(y) a weak
invariant, and we say that ẏ = f(y) is a differential equation on the manifold M.
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0 25 50

.994

.996

.998

1.000

Fig. 4.1. The implicit midpoint rule applied to the differential equation (4.3). The picture
shows the numerical values for q2

1 + q2
2 obtained with step size h = 0.1 (thick line) and

h = 0.05 (thin line)

Example 4.1. Consider the pendulum equation written in Cartesian coordinates:

q̇1 = p1, ṗ1 = −q1λ,

q̇2 = p2, ṗ2 = −1− q2λ,
(4.3)

where λ = (p2
1 + p2

2 − q2)/(q2
1 + q2

2). One can check by differentiation that q1p1 +
q2p2 (orthogonality of the position and velocity vectors) is an invariant in the sense
of Definition 1.1. However, q2

1+q2
2 (length of the pendulum) is only a weak invariant.

The experiment of Fig. 4.1 shows that even methods which conserve quadratic first
integrals (cf. Sect. IV.2) do not conserve the quadratic weak invariant q2

1 + q2
2 . No

numerical method that is allowed to evaluate the vector field f(y) outside M can
be expected to conserve weak invariants exactly. This is one of the motivations for
considering the methods of this and the subsequent sections.

A natural approach to the numerical solution of differential equations on mani-
folds is by projection (see e.g., Hairer & Wanner (1996), Sect. VII.2, Eich-Soellner
& Führer (1998), Sect. 5.3.3).

Algorithm 4.2 (Standard Projection Method). Assume that yn ∈ M. One step
yn �→ yn+1 is defined as follows (see Fig. 4.2):

• Compute ỹn+1 = Φh(yn), where Φh is an arbitrary one-step method applied to
ẏ = f(y);

• project the value ỹn+1 onto the manifold M to obtain yn+1 ∈M.

M
Φh

ỹ1

y0

y1 y2

y3

Fig. 4.2. Illustration of the standard projection method

For yn ∈ M the distance of ỹn+1 to the manifold M is of the size of the local
error, i.e., O(hp+1). Therefore, the projection does not deteriorate the convergence
order of the method.
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For the computation of yn+1 we have to solve the constrained minimization
problem

‖yn+1 − ỹn+1‖ → min subject to g(yn+1) = 0. (4.4)

In the case of the Euclidean norm, a standard approach is to introduce Lagrange mul-
tipliers λ = (λ1, . . . , λm)T , and to consider the Lagrange function L(yn+1, λ) =
‖yn+1 − ỹn+1‖2/2 − g(yn+1)Tλ. The necessary condition ∂L/∂yn+1 = 0 then
leads to the system

yn+1 = ỹn+1 + g′(ỹn+1)Tλ

0 = g(yn+1).
(4.5)

We have replaced yn+1 with ỹn+1 in the argument of g′(y) in order to save some
evaluations of g′(y). Inserting the first relation of (4.5) into the second gives a non-
linear equation for λ, which can be efficiently solved by simplified Newton itera-
tions:

∆λi = −
(
g′(ỹn+1)g′(ỹn+1)T

)−1

g
(
ỹn+1+g′(ỹn+1)Tλi

)
, λi+1 = λi+∆λi.

For the choice λ0 = 0 the first increment ∆λ0 is of sizeO(hp+1), so that the conver-
gence is usually extremely fast. Often, one simplified Newton iteration is sufficient.

−1 1

−1

1

exact solution
Example 4.3. As a first example we consider the
perturbed Kepler problem (see Exercise I.12) with
Hamiltonian function

H(p, q) =
1
2
(
p2
1 + p2

2

)
− 1√

q2
1 + q2

2

− 0.005
2
√

(q2
1 + q2

2)3
,

and initial values q1(0) = 1 − e, q2(0) = 0,
p1(0) = 0, p2(0) =

√
(1 + e)/(1− e) (eccentric-

ity e = 0.6) on the interval 0 ≤ t ≤ 200. The exact
solution (plotted to the right) is approximately an ellipse that rotates slowly around
one of its foci. For this problem we know two first integrals: the Hamiltonian func-
tion H(p, q) and the angular momentum L(p, q) = q1p2 − q2p1.

We apply the explicit Euler method and the symplectic Euler method (I.1.9),
both with constant step size h = 0.03. The result is shown in Fig. 4.3. The nu-
merical solution of the explicit Euler method (without projection) is completely
wrong. The projection onto the manifold {H(p, q) = H(p0, q0)} improves the nu-
merical solution, but it still has a wrong qualitative behaviour. Only projection onto
both invariants, H(p, q) = Const and L(p, q) = Const gives the correct behav-
iour. The symplectic Euler method already shows the correct behaviour without
any projections (see Chap. IX for an explanation). Surprisingly, a projection onto
H(p, q) = Const destroys this behaviour, the numerical solution approaches the
centre and the simplified Newton iterations fail to converge beyond t = 25.23. Pro-
jection onto both invariants re-establishes the correct behaviour.
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1

−1 1
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1

−1 1

−1

1

−1 1

−1

1

without projection

explicit Euler, h = 0.03

with projection onto H with projection onto H and L

without projection

symplectic Euler, h = 0.03

with projection onto H with projection onto H and L

Fig. 4.3. Numerical solutions obtained with and without projections

J S
U

N

P

explicit Euler, projection onto H

J S
U

N

P

explicit Euler, projection onto H and L

Fig. 4.4. Explicit Euler method with projections applied to the outer solar system, step size
h = 10 (days), interval 0 ≤ t ≤ 200 000

Example 4.4 (Outer Solar System). Having encountered excellent experience
with projections onto H and L for the perturbed Kepler problem (Example 4.3),
let us apply the same idea to a more realistic problem in celestial mechanics. We
consider the outer solar system as described in Sect. I.2. The numerical solution
of the explicit Euler method applied with constant step size h = 10, once with
projection onto H = Const and once with projection onto H = Const and
L = Const , is shown in Fig. 4.4 (observe that the conservation of the angular
momentum L(p, q) =

∑N
i=1 qi × pi consists of three first integrals). We see a slight

improvement in the orbits of Jupiter, Saturn and Uranus (compared to the explicit
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Euler method without projections, see Fig. I.2.4), but the orbit of Neptune becomes
even worse. There is no doubt that this problem contains a structure which cannot
be correctly simulated by methods that only preserve the total energy H and the
angular momentum L.

Example 4.5 (Volume Preservation). Consider the matrix differential equation
Ẏ = A(Y )Y , where traceA(Y ) = 0 for all Y . We know from Lemma 3.1 that
g(Y ) = detY is an invariant which cannot be automatically conserved by Runge–
Kutta methods. Here, we show how we can enforce this invariant by projection. Let
Ỹn+1 be the numerical approximation obtained with an arbitrary one-step method.

We consider the Frobenius norm ‖Y ‖F =
√∑

i,j |yij |2 for measuring the distance

to the manifold {Y ; g(Y ) = 0}. Using g′(Y )(AY ) = traceA detY (see the proof
of Lemma 3.1) with A chosen such that the product AY contains only one non-zero
element, the projection step (4.5) is seen to become (Exercise 9)

Yn+1 = Ỹn+1 + µỸ −T
n+1 (4.6)

with the scalar µ = λ det Ỹn+1. This leads to the scalar nonlinear equation
det

(
Ỹn+1 + µỸ −T

n+1

)
= detYn, for which simplified Newton iterations become

det
(
Ỹn+1 + µiỸ

−T
n+1

)(
1 + (µi+1 − µi) trace

(
(Ỹ T

n+1Ỹn+1)−1
))

= detYn.

If the QR-decomposition of Ỹn+1 is available from the computation of det Ỹn+1,
the value of trace

(
(Ỹ T

n+1Ỹn+1)−1
)

can be computed efficiently withO(n3/3) flops
(see e.g., Golub & Van Loan (1989), Sect. 5.3.9).

The above projection is preferable to Yn+1 = cỸn+1, where c ∈ R is chosen
such that detYn+1 = detYn. This latter projection is already ill-conditioned for
diagonal matrices with entries that differ by several magnitudes.

As a conclusion to the above numerical experiments we see that a projection
can give excellent results, but can also destroy the good long-time behaviour of the
solution if applied inappropriately. If the original method already preserves some
structure, then projection to a subset of invariants may destroy the good long-time
behaviour. An important modification for reversible differential equations (symmet-
ric projections) will be presented in Sect. V.4.1.

IV.5 Numerical Methods Based on Local Coordinates

A second important class of methods for the numerical treatment of differential
equations on manifolds uses local coordinates. Before explaining the ideas, we find
it appropriate to discuss in more detail manifolds and differential equations on man-
ifolds.
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IV.5.1 Manifolds and the Tangent Space

In Sect. IV.4 we assumed that locally (in a neighbourhood U of a ∈ R
n) a manifold

is given by constraints, i.e.,

M = {y ∈ U ; g(y) = 0}, (5.1)

where g : U → R
m is differentiable, g(a) = 0, and g′(a) has full rank m.

Here, we use local parameters to characterize a manifold. Let ψ : V → R
n be

differentiable (V ⊂ R
n−m is a neighbourhood of 0), ψ(0) = a, and assume that

ψ′(0) has full rank n−m. Then, a manifold is locally given by

M = {y = ψ(z) ; z ∈ V } (5.2)

provided that V is sufficiently small, so that ψ : V → ψ(V ) is bijective with
continuous inverse. The variables z are called parameters or local coordinates of
the manifold.

As an example, consider the unit sphere which, in the form (5.1), is given by the
function g(y1, y2, y3) = y2

1 + y2
2 + y2

3 − 1. There are many possible choices of local
coordinates. Away from the equator (i.e., y3 = 0), we can take z = (z1, z2)T :=
(y1, y2)T and ψ(z) =

(
z1, z2,±

√
1− z2

1 − z2
2

)T
. Alternatively, we can consider

spherical coordinates ψ(α, β) =
(
cosα sinβ, sinα sinβ, cosβ

)T
away from the

north and south poles (i.e., y1 = y2 = 0, y3 = ±1).
The tangent to a curve (or the tangent plane to a surface) is an affine space

passing through the contact point a ∈ M. It is convenient to place the origin at a,
so that we obtain a vector space. More precisely, for a manifold M we define the
tangent space at a ∈M as

TaM =
{
v ∈ R

n
∣∣∣ there exists a differentiable path γ : (−ε, ε) → R

n

with γ(t) ∈M for all t, γ(0) = a, γ̇(0) = v

}
. (5.3)

Lemma 5.1. If the manifold M is given by (5.1), where g : U → R
m is differen-

tiable, g(a) = 0, and g′(a) has full rank m, then we have

TaM = ker g′(a) = {v ∈ R
n | g′(a)v = 0}. (5.4)

If M is given by (5.2), where ψ : V → R
n is differentiable, ψ(0) = a, and ψ′(0)

has full rank n−m, then we have

TaM = Imψ′(0) = {ψ′(0)w |w ∈ R
n−m}. (5.5)

Proof. a) For a path γ(t) satisfying γ(0) = a and g
(
γ(t)

)
= 0 it follows by differ-

entiation that g′(a)γ̇(0) = 0. Consequently, we have TaM⊂ ker g′(a).
Consider now the function F (t, u) = g

(
a+tv+g′(a)Tu

)
. We have F (0, 0) = 0

and an invertible ∂F/∂u(0, 0) = g′(a)g′(a)T , so that by the implicit function the-
orem the relation F (t, u) = 0 can be solved locally for u = u(t). If v ∈ ker g′(a),
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it follows that u̇(0) = 0, and the path γ(t) = a + tv + g′(a)Tu(t) satisfies all
requirements of (5.3), so that also TaM⊃ ker g′(a).

b) AssumeM to be given by (5.2). For an arbitrary η : (−ε, ε) → R
m satisfying

η(0) = 0, the path γ(t) = ψ
(
η(t)

)
lies in M and satisfies γ̇(0) = ψ′(0)η̇(0). This

proves Imψ′(0) ⊂ TaM.
The assumption on the rank of ψ′(0) implies that, after a reordering of the

components, we have ψ(z) = (ψ1(z), ψ2(z))T , where ψ1(z) is a local diffeomor-
phism (by the inverse function theorem). We show that every smooth path γ(t) in
M can be written as γ(t) = ψ

(
η(t)

)
with some smooth η(t). This then implies

TaM ⊂ Imψ′(0). To prove this we split γ(t) = (γ1(t), γ2(t))T according to the
partitioning of ψ, and we define η(t) = ψ−1

1

(
γ1(t)

)
. Since for γ(t) ∈M the second

part γ2(t) is uniquely determined by γ1(t), this proves γ(t) = ψ
(
η(t)

)
. 
�

a

ψ(z)

Qz

g′(a)Tu

The proof of the preceding lemma shows
the equivalence of the representations (5.1) and
(5.2) of manifolds in R

n. Let M be given by
(5.1), and assume that the columns of Q form
an orthogonal basis of TaM. As in part (a) of
the proof of Lemma 5.1 the condition g

(
a +

Qz + g′(a)Tu
)

= 0 defines locally (close to
z = 0) a function u(z) which satisfies u(0) =
0 and u′(0) = 0. Hence, the manifold M is
also given by (5.2) with the function ψ(z) = a + Qz + g′(a)Tu(z).

On the other hand, let M be given by (5.2). Part (b) of the proof of Lemma 5.1
shows that y = ψ(z) can be partitioned into y1 = ψ1(z) and y2 = ψ2(z), where
ψ1 is a local diffeomorphism. Consequently, M is also given by (5.1) with g(y) =
y2 − ψ2

(
ψ−1

1 (y1)
)
.

IV.5.2 Differential Equations on Manifolds

In Sect. IV.4 we introduced differential equations on a manifold as problems satis-
fying (4.2). With the help of Lemma 5.1 we are now in a position to characterize
such problems without knowledge of the solutions.

Theorem 5.2. Let M be a submanifold of R
n. The problem ẏ = f(y) is a differen-

tial equation on the manifold M (i.e., it satisfies (4.2)) if and only if

f(y) ∈ TyM for all y ∈M. (5.6)

Proof. The necessity of (5.6) follows from the definition of TyM, because the exact
solution of the differential equation lies in M and has f(y) as derivative.

To prove the sufficiency, we assume (5.6) and letM be locally, near y0, be given
by a parametrization y = ψ(z) as in (5.2). We try to write the solution of ẏ = f(y),
y(0) = y0 = ψ(z0) as y(t) = ψ(z(t)). If this is at all possible, then z(t) must
satisfy
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ψ′(z)ż = f
(
ψ(z)

)

which, by assumption (5.6) and the second part of Lemma 5.1, is equivalent to

ż = ψ′(z)+f
(
ψ(z)

)
, (5.7)

where A+ = (ATA)−1AT denotes the pseudo-inverse of a matrix with full column
rank. Conversely, define z(t) as the solution of (5.7) with z(0) = z0, which is known
to exist locally in t by the standard existence and uniqueness theory of ordinary
differential equations on R

m. Then y(t) = ψ(z(t)) is the solution of ẏ = f(y) with
y(0) = y0. Hence, the solution y(t) remains in M. 
�

We remark that the sufficiency proof of Theorem 5.2 only requires the function
f(y) to be defined on M. Due to the equivalence of ẏ = f(y) with (5.7) the prob-
lem is transported to the space of local coordinates. The standard local theory for
ordinary differential equations on an Euclidean space (existence and uniqueness of
solutions, . . .) can thus be extended in a straightforward way to differential equa-
tions on manifolds, i.e., ẏ = f(y) with f : M→ R

n satisfying (5.6).

IV.5.3 Numerical Integrators on Manifolds

Whereas the projection methods of Sect. IV.4 require the function f(y) of the differ-
ential equation to be defined in a neighbourhood of M (see Fig. 4.2), the numerical
methods of this section evaluate f(y) only on the manifold M. The idea is to apply
the numerical integrator in the parameter space rather than in the space where M is
embedded.

Algorithm 5.3 (Local Coordinates Approach). Assume that yn ∈ M and that ψ
is a local parametrization of M satisfying ψ(zn) = yn. One step yn �→ yn+1 is
defined as follows (see Fig. 5.1):

• Compute z̃n+1 = Φh(zn), the result of the method Φh applied to (5.7);
• define the numerical solution by yn+1 = ψ( z̃n+1).

It is important to remark that the parametrization y = ψ(z) can be changed at every
step.

z0

z̃1

y0

z1
z̃2

y1

y2 y3

y4

Fig. 5.1. The numerical solution of differential equations on manifolds via local coordinates
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As indicated at the beginning of Sect. IV.5.1, there are many possible choices
of local coordinates. Consider the pendulum equation of Example 4.1, where M ={
(q1, q2, p1, p2) | q2

1 + q2
2 = 1, q1p1 + q2p2 = 0

}
. A standard parametrization here

is q1 = sinα, q2 = − cosα, p1 = ω cosα, and p2 = ω sinα. In the new coordinates
(α, ω) the problem becomes simply α̇ = ω, ω̇ = − sinα. Other typical choices are
the exponential map ψ(Z) = exp(Z) for differential equations on Lie groups, and
the Cayley transform ψ(Z) = (I−Z)−1(I +Z) for quadratic Lie groups. This will
be studied in more detail in Sect. IV.8 below. Here we discuss two commonly used
choices which do not use a special structure of the manifold.

Generalized Coordinate Partitioning. We assume that the manifold is given by
(5.1). If g : R

n → R
m has a Jacobian with full rank m at y = a, we can find a par-

titioning y = (y1, y2), such that ∂g/∂y2(a) is invertible. In this case we can choose
the components of y1 as local coordinates. The function y = ψ(z) is then given by
y1 = z and y2 = ψ2(z), where ψ2(z) is implicitly defined by g

(
z, ψ2(z)

)
= 0.

This approach has been promoted by Wehage & Haug (1982) in the context of con-
strained mechanical systems, and the partitioning is found by Gaussian elimination
with full pivoting applied to the matrix g′(a). Another way of finding the partition-
ing is by the use of the QR decomposition with column change.

Tangent Space Parametrization. Let the manifold M be given by (5.1), and
collect the vectors of an orthogonal basis of TaM in the matrix Q. We then consider
the parametrization

ψa(z) = a + Qz + g′(a)Tu(z), (5.8)

where u(z) is defined by g
(
ψa(z)

)
= 0, exactly as in the discussion after the proof

of Lemma 5.1. Differentiating (5.8) yields
(
Q + g′(a)Tu′(z)

)
ż = ẏ = f(y) = f

(
ψa(z)

)
.

Since QTQ = I and g′(a)Q = 0, this relation is equivalent to the differential
equation

ż = QT f
(
ψa(z)

)
, (5.9)

which corresponds to (5.7). If we apply a numerical method to (5.9), every function
evaluation requires the projection of an element of the tangent space onto the mani-
fold. This procedure is illustrated in Fig. 5.1, and was originally proposed by Potra &
Rheinboldt (1991) for the solution of the Euler–Lagrange equations of constrained
multibody systems (see also Hairer & Wanner (1996), p. 476).
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IV.6 Differential Equations on Lie Groups

Marius Sophus Lie3

Theorem 1.6 and Lemma 3.1 are particu-
lar cases of a more general result which can
be conveniently formulated with the concept
of Lie groups and Lie algebras (see Olver
(1986) and Varadarajan (1974) for an intro-
duction to these subjects).

A Lie group is a group G which is a dif-
ferentiable manifold, and for which the prod-
uct is a differentiable mapping G×G → G.
We restrict our considerations to matrix Lie
groups, that is, Lie groups which are sub-
groups of GL(n), the group of invertible
n × n matrices with the usual matrix prod-
uct as the group operation.

Example 6.1. An important example of a
Lie group is the group

O(n) =
{
Y ∈ GL(n) | Y TY = I

}

of all orthogonal matrices. It is the zero set of g(Y ) = Y TY −I , where we consider
g as a mapping from the set of all n × n matrices (i.e., R

n·n) to the set of all
symmetric matrices (which can be identified with R

n(n+1)/2). The derivative g′(Y )
is surjective for Y ∈ O(n), because for any symmetric matrix K the choice H =
Y K/2 solves the equation g′(Y )H = K. Therefore, the matrix g′(Y ) has full rank
(cf. (5.1)) so that O(n) defines a differentiable manifold of dimension n2 − n(n +
1)/2 = n(n− 1)/2. The set O(n) is also a group with unit element I (the identity).
Since the matrix multiplication is a differentiable mapping, O(n) is a Lie group.

Table 6.1 lists further prominent examples. The matrix J appearing in the defi-
nition of the symplectic group is the matrix determining the symplectic structure on
R

n (see Sect. VI.2).
As the following lemma shows, the tangent space g = TIG at the identity I of
a matrix Lie group G is closed under forming commutators of its elements. This
makes g an algebra, the Lie algebra of the Lie group G.

Lemma 6.2 (Lie Bracket and Lie Algebra). Let G be a matrix Lie group and let
g = TIG be the tangent space at the identity. The Lie bracket (or commutator)

[A,B] = AB −BA (6.1)

defines an operation g × g → g which is bilinear, skew-symmetric ([A,B] =
−[B,A]), and satisfies the Jacobi identity

[
A, [B,C]

]
+

[
C, [A,B]

]
+

[
B, [C,A]

]
= 0. (6.2)

3 Marius Sophus Lie, born: 17 December 1842 in Nordfjordeid (Norway), died: 18 February
1899.
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Table 6.1. Some matrix Lie groups and their corresponding Lie algebras

Lie group Lie algebra

GL(n) = {Y | det Y �= 0} gl(n) = {A | arbitrary matrix}
general linear group Lie algebra of n × n matrices

SL(n) = {Y | det Y = 1} sl(n) = {A | trace(A) = 0}
special linear group special linear Lie algebra

O(n) = {Y | Y T Y = I} so(n) = {A | AT + A = 0}
orthogonal group skew-symmetric matrices

SO(n) = {Y ∈ O(n) | det Y = 1} so(n) = {A | AT + A = 0}
special orthogonal group skew-symmetric matrices

Sp(n) = {Y | Y T JY = J} sp(n) = {A | JA + AT J = 0}
symplectic group

Proof. By definition of the tangent space, for A,B ∈ g, there exist differentiable
paths α(t), β(t) (|t| < ε) in G such that α(t) = I+tA(t) with a continuous function
A(t) with A(0) = A, and similarly β(t) = I+tB(t) with B(0) = B. Now consider
the path γ(t) in G defined by

γ(t) = α(
√
t)β(

√
t)α(

√
t)−1β(

√
t)−1, t ≥ 0.

An elementary computation then yields

γ(t) = I + t[A,B] + o(t).

With the extension γ(t) = γ(−t)−1 for negative t, this is a differentiable path in
G satisfying γ(0) = I and γ̇(0) = [A,B]. Hence [A,B] ∈ g by definition of the
tangent space. The properties of the Lie bracket can be verified in a straightforward
way. 
�

Example 6.3. Consider again the orthogonal group O(n). Since the derivative of
g(Y ) = Y TY − I at the identity is g′(I)H = ITH + HT I = H + HT , it follows
from the first part of Lemma 5.1 that the Lie algebra corresponding to O(n) consists
of all skew-symmetric matrices. The right column of Table 6.1 gives the Lie algebras
of the other Lie groups listed there.

The following basic lemma shows that the exponential map yields a local para-
metrization of the Lie group near the identity, with the Lie algebra (a linear space)
as the parameter space.
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Lemma 6.4 (Exponential Map). Consider a matrix Lie group G and its Lie alge-
bra g. The matrix exponential is a map

exp : g → G,

i.e., for A ∈ g we have exp(A) ∈ G. Moreover, exp is a local diffeomorphism in a
neighbourhood of A = 0.

Proof. For A ∈ g, it follows from the definition of the tangent space g = TIG that
there exists a differentiable path α(t) in G satisfying α(0) = I and α̇(0) = A. For
a fixed Y ∈ G, the path γ(t) := α(t)Y is in G and satisfies γ(0) = Y and γ̇(0) =
AY . Consequently, AY ∈ TY G and Ẏ = AY defines a differential equation on the
manifold G. The solution Y (t) = exp(tA) is therefore in G for all t.

Since exp(H) − exp(0) = H + O(H2), the derivative of the exponential map
at A = 0 is the identity, and it follows from the inverse function theorem that exp is
a local diffeomorphism close to A = 0. 
�

The proof of Lemma 6.4 shows that for a matrix Lie group G the tangent space
at Y ∈ G has the form

TY G = {AY | A ∈ g}. (6.3)

By Theorem 5.2, differential equations on a matrix Lie group (considered as a man-
ifold) can therefore be written as

Ẏ = A(Y )Y (6.4)

where A(Y ) ∈ g for all Y ∈ G. The following theorem summarizes this discussion,
and extends the statements of Theorem 1.6 and Lemma 3.1 to more general matrix
Lie groups.

Theorem 6.5. Let G be a matrix Lie group and g its Lie algebra. If A(Y ) ∈ g for
all Y ∈ G and if Y0 ∈ G, then the solution of (6.4) satisfies Y (t) ∈ G for all t. 
�

If in addition A(Y ) ∈ g for all matrices Y , and if

G = {Y | g(Y ) = Const}

is one of the Lie groups of Table 6.1, then g(Y ) is an invariant of the differential
equation (6.4) in the sense of Definition 1.1.
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IV.7 Methods Based on the Magnus Series Expansion

Wilhelm Magnus4

Before we discuss the numerical solution of
differential equations (6.4) on Lie groups, let
us give an explicit formula for the solution of
linear matrix differential equations

Ẏ = A(t)Y. (7.1)

No assumption on the matrix A(t) is made
for the moment (apart from continuous de-
pendence on t). For the scalar case, the solu-
tion of (7.1) with Y (0) = Y0 is given by

Y (t) = exp
(∫ t

0

A(τ) dτ
)
Y0. (7.2)

Also in the case where the matrices A(t) and∫ t

0
A(τ) dτ commute, (7.2) is the solution of

(7.1). In the general non-commutative case
we follow the approach of Magnus (1954) and we search for a matrix function Ω(t)
such that

Y (t) = exp
(
Ω(t)

)
Y0

solves (7.1). The main ingredient for the solution will be the inverse of the derivative
of the matrix exponential. It has been studied in Sect. III.4, Lemma III.4.2, and is
given by

d exp−1
Ω (H) =

∑
k≥0

Bk

k!
ad k

Ω(H), (7.3)

where Bk are the Bernoulli numbers, and ad Ω(A) = [Ω,A] = ΩA − AΩ is the
adjoint operator introduced in (III.4.1).

Theorem 7.1 (Magnus 1954). The solution of the differential equation (7.1) can be
written as Y (t) = exp

(
Ω(t)

)
Y0 with Ω(t) defined by

Ω̇ = d exp−1
Ω

(
A(t)

)
, Ω(0) = 0. (7.4)

As long as ‖Ω(t)‖ < π, the convergence of the d exp−1
Ω expansion (7.3) is assured.

Proof. Comparing the derivative of Y (t) = exp
(
Ω(t)

)
Y0,

Ẏ (t) =
( d

dΩ
expΩ(t)

)
Ω̇(t)Y0 =

(
d expΩ(t)

(
Ω̇(t)

))
exp

(
Ω(t)

)
Y0,

with (7.1) we obtain A(t) = d expΩ(t)

(
Ω̇(t)

)
. Applying the inverse operator

d exp−1
Ω to this relation yields the differential equation (7.4) for Ω(t). The state-

ment on the convergence is a consequence of Lemma III.4.2. 
�
4 Wilhelm Magnus, born: 5 February 1907 in Berlin (Germany), died: 15 October 1990.
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The first few Bernoulli numbers are B0 = 1, B1 = −1/2, B2 = 1/6, B3 = 0.
The differential equation (7.4) therefore becomes

Ω̇ = A(t)− 1
2
[
Ω,A(t)

]
+

1
12

[
Ω,

[
Ω,A(t)

]]
+ . . . ,

which is nonlinear in Ω. Applying Picard fixed point iteration after integration yields

Ω(t) =
∫ t

0

A(τ) dτ − 1
2

∫ t

0

[∫ τ

0

A(σ) dσ,A(τ)
]
dτ

+
1
4

∫ t

0

[∫ τ

0

[∫ σ

0

A(µ) dµ,A(σ)
]
dσ,A(τ)

]
dτ (7.5)

+
1
12

∫ t

0

[∫ τ

0

A(σ) dσ,
[∫ τ

0

A(µ) dµ,A(τ)
]]

dτ + . . . ,

which is the so-called Magnus expansion. For smooth matrices A(t) the remain-
der in (7.5) is of size O(t5) so that the truncated series inserted into Y (t) =
exp

(
Ω(t)

)
Y0 gives an excellent approximation to the solution of (7.1) for small t.

Numerical Methods Based on the Magnus Expansion. Iserles & Nørsett (1999)
study the general form of the Magnus expansion (7.5), and they relate the iterated
integrals and the rational coefficients in (7.5) to binary trees. For a numerical inte-
gration of

Ẏ = A(t)Y, Y (t0) = Y0 (7.6)

(where Y is a matrix or a vector) they propose using Yn+1 = exp(hΩn)Yn, where
hΩn is a suitable approximation of Ω(h) given by (7.5) with A(tn + τ) instead of
A(τ). Of course, the Magnus expansion has to be truncated and the integrals have
to be approximated by numerical quadrature.

We follow here the collocation approach suggested by Zanna (1999). The idea
is to replace A(t) locally by an interpolation polynomial

Â(t) =
s∑

i=1

�i(t)A(tn + cih),

and to solve Ẏ = Â(t)Y on [tn, tn + h] by the use of the truncated series (7.5).

Theorem 7.2. Consider a quadrature formula (bi, ci)s
i=1 of order p ≥ s, and let

Y (t) and Z(t) be solutions of Ẏ = A(t)Y and Ż = Â(t)Z, respectively, satisfying
Y (tn) = Z(tn). Then, Z(tn + h)− Y (tn + h) = O(hp+1).

Proof. We write the differential equation for Z as Ż = A(t)Z +
(
Â(t) − A(t)

)
Z

and use the variation of constants formula to get

Z(tn + h)− Y (tn + h) =
∫ tn+h

tn

R(tn + h, τ)
(
Â(τ)−A(τ)

)
Z(τ) dτ.

Applying our quadrature formula to this integral gives zero as result, and the re-
mainder is of size O(hp+1). Details of the proof are as for Theorem II.1.5. 
�
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Example 7.3. As a first example, we use the midpoint rule (c1 = 1/2, b1 = 1). In
this case the interpolation polynomial is constant, and the method becomes

Yn+1 = exp
(
hA(tn + h/2)

)
Yn, (7.7)

which is of order 2.

Example 7.4. The two-stage Gauss quadrature is given by c1,2 = 1/2 ±
√

3/6,
b1,2 = 1/2. The interpolation polynomial is of degree one and we have to apply
(7.5) in order to get an approximation Yn+1. Since we are interested in a fourth
order approximation, we can neglect the remainder term (indicated by . . . in (7.5)).
Computing analytically the iterated integrals over products of �i(t) we obtain

Yn+1 = exp
(
h

2
(A1 + A2) +

√
3h2

12
[A2, A1]

)
Yn, (7.8)

where A1 = A(tn + c1h) and A2 = A(tn + c2h). This is a method of order four.
The terms of (7.5) with triple integrals give O(h4) expressions, whose leading term
vanishes by the symmetry of the method (Exercise V.7). Therefore, they need not
be considered.

Theorem 7.2 allows us to obtain methods of arbitrarily high order. A straightfor-
ward use of the expansion (7.5) yields an expression with a large number of commu-
tators. Munthe-Kaas & Owren (1999) and Blanes, Casas & Ros (2000a) construct
higher order methods with a reduced number of commutators. For example, for or-
der 6 the required number of commutators is reduced from 7 to 4.

Let us remark that all numerical methods of this section are of the form
Yn+1 = exp(hΩn)Yn, where Ωn is a linear combination of A(tn + cih) and of
their commutators. If A(t) ∈ g for all t, then also hΩn lies in the Lie algebra g, so
that the numerical solution stays in the Lie group G if Y0 ∈ G (this is a consequence
of Lemma 6.4).

IV.8 Lie Group Methods

Consider a differential equation

Ẏ = A(Y )Y, Y (0) = Y0 (8.1)

on a matrix Lie group G. This means that Y0 ∈ G and that A(Y ) ∈ g for all
Y ∈ G. Since this is a special case of differential equations on a manifold, projection
methods (Sect. IV.4) as well as methods based on local coordinates (Sect. IV.5) are
well suited for their numerical treatment. Here we present further approaches which
also yield approximations that lie on the manifold.

All numerical methods of this section can be extended in a straightforward way
to non-autonomous problems Ẏ = A(t, Y )Y with A(t, Y ) ∈ g for all t and all
Y ∈ G. Just to simplify the notation we restrict ourselves to the formulation (8.1).
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IV.8.1 Crouch-Grossman Methods

The discipline of Lie-group methods owes a great deal to the pioneering
work of Peter Crouch and his co-workers . . .

(A. Iserles, H.Z. Munthe-Kaas, S.P. Nørsett & A. Zanna 2000)

The numerical approximation of explicit Runge–Kutta methods is obtained by a
composition of the following two basic operations: (i) an evaluation of the vector
field f(Y ) = A(Y )Y and (ii) a computation of an update of the form Y + haf(Z).
For example, the left method of (II.1.3) consists of the following steps: evaluate
K1 = f(Y0); compute Ỹ1 = Y0 + hK1; evaluate K2 = f(Ỹ1); compute Y1/2 =
Y0 + h

2K1; compute Y1 = Y1/2 + h
2K2.

In the context of differential equations on Lie groups, these methods have the
disadvantage that, even when Y ∈ G and Z ∈ G, the update Y + haA(Z)Z is in
general not in the Lie group. The idea of Crouch & Grossman (1993) is to replace
the “update” operation with exp

(
haA(Z)

)
Y .

Definition 8.1. Let bi, aij (i, j = 1, . . . , s) be real numbers. An explicit s-stage
Crouch-Grossman method is given by

Y (i) = exp(hai,i−1Ki−1) · . . . · exp(hai1K1)Yn, Ki = A(Y (i)),

Yn+1 = exp(hbsKs) · . . . · exp(hb1K1)Yn.

For example, the method of Runge described above (s = 2, a21 = 1, b1 = b2 =
1/2) leads to

Yn+1 = exp
(

h

2
K2

)
exp

(
h

2
K1

)
Yn, (8.2)

where K1 = A(Yn) and K2 = A
(
exp(hK1)Yn

)
.

By construction, the methods of Crouch-Grossman give rise to approximations
Yn which lie exactly on the manifold defined by the Lie group. But what can be said
about their order of accuracy?

Theorem 8.2. Let ci =
∑

j aij . A Crouch-Grossman method has order p (p ≤ 3) if
the following order conditions are satisfied:

order 1 :
∑

i bi = 1 (8.3)

order 2 :
∑

i bici = 1/2 (8.4)

order 3 :
∑

i bic
2
i = 1/3 (8.5)

∑
ij biaijcj = 1/6 (8.6)

∑
i b

2
i ci + 2

∑
i<j bicibj = 1/3. (8.7)

Proof. As in the case of Runge–Kutta methods, the order conditions can be found
by comparing the Taylor series expansions of the exact and the numerical solution.
In addition to the conditions stated in the theorem, this leads to relations such as
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∑
i

b2i ci + 2
∑
i<j

bibjcj = 2

3
. (8.8)

Adding this equation to (8.7) we find 2
∑

ij bicibj = 1, which is satisfied by (8.3)
and (8.4). Hence, the relation (8.8) is already a consequence of the conditions stated
in the theorem. 
�

Table 8.1. Crouch-Grossman methods of order 3

0

−1/24 −1/24

17/24 161/24 −6

1 −2/3 2/3

0

3/4 3/4

17/24 119/216 17/108

13/51 −2/3 24/17

Crouch & Grossman (1993) present several solutions of the system (8.3)–(8.7),
one of which is given in the left array of Table 8.1. The construction of higher order
Crouch-Grossman methods is very complicated (“. . . any attempt to analyze algo-
rithms of order greater than three will be very complex, . . .”, Crouch & Grossman,
1993).

The theory of order conditions for Runge–Kutta methods (Sect. III.1) has been
extended to Crouch-Grossman methods by Owren & Marthinsen (1999). It turns out
that the order conditions for classical Runge–Kutta methods form a subset of those
for Crouch-Grossman methods. The first new condition is (8.7). For a method of
order 4, thirteen conditions (including those of Theorem 8.2) have to be satisfied.
Solving these equations, Owren & Marthinsen (1999) construct a 4th order method
with s = 5 stages.

IV.8.2 Munthe-Kaas Methods

These methods were developed in a series of papers by Munthe-Kaas (1995, 1998,
1999). The main motivation behind the first of these papers was to develop a the-
ory of Runge–Kutta methods in a coordinate-free framework. After attempts that
led to new order conditions (as for the Crouch-Grossman methods), Munthe-Kaas
(1999) had the idea to write the solution as Y (t) = exp

(
Ω(t)

)
Y0 and to solve

numerically the differential equation for Ω(t). It sounds awkward to replace the
differential equation (8.1) by a more complicated one. However, the nonlinear in-
variants g(Y ) = 0 of (8.1) defining the Lie group are replaced with linear invariants
g′(I)(Ω) = 0 defining the Lie algebra, and we know from Sect. IV.1 that essentially
all numerical methods automatically conserve linear invariants.

It follows from the proof of Theorem 7.1 that the solution of (8.1) can be written
as Y (t) = exp

(
Ω(t)

)
Y0, where Ω(t) is the solution of Ω̇ = d exp−1

Ω

(
A
(
Y (t)

))
,

Ω(0) = 0. Since it is not practical to work with the operator d exp−1
Ω , we truncate

the series (7.3) suitably and consider the differential equation
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Ω̇ = A
(
exp(Ω)Y0

)
+

q∑
k=1

Bk

k!
ad k

Ω

(
A
(
exp(Ω)Y0

))
, Ω(0) = 0. (8.9)

This leads to the following method.

Algorithm 8.3 (Munthe-Kaas 1999). Consider the problem (8.1) with A(Y ) ∈ g
for Y ∈ G. Assume that Yn lies in the Lie group G. Then, the step Yn �→ Yn+1 is
defined as follows:

• consider the differential equation (8.9) with Yn instead of Y0, and apply a Runge–
Kutta method (explicit or implicit) to get an approximation Ω1 ≈ Ω(h),

• then define the numerical solution by Yn+1 = exp
(
Ω1)Yn.

Before analyzing this algorithm, we emphasize its close relationship with Algo-
rithm 5.3. In fact, if we identify the Lie algebra g with R

k (where k is the dimension
of the vector space g), the mapping ψ(Ω) = exp(Ω)Yn is a local parametrization
of the Lie group G (see Lemma 6.4). Apart from the truncation of the series in (8.9),
Algorithm 8.3 is a special case of Algorithm 5.3.

Important properties of the Munthe-Kaas methods are given in the next two
theorems.

Theorem 8.4. Let G be a matrix Lie group and g its Lie algebra. If A(Y ) ∈ g
for Y ∈ G and if Y0 ∈ G, then the numerical solution of the Lie group method of
Algorithm 8.3 lies in G, i.e., Yn ∈ G for all n = 0, 1, 2, . . . .

Proof. It is sufficient to prove that for Y0 ∈ G the numerical solution Ω1 of the
Runge–Kutta method applied to (8.9) lies in g. Since the Lie bracket [Ω,A] is an
operation g × g → g, and since exp(Ω)Y0 ∈ G for Ω ∈ g, the right-hand expres-
sion of (8.9) is in g for Ω ∈ g. Hence, (8.9) is a differential equation on the vector
space g with solution Ω(t) ∈ g. All operations in a Runge–Kutta method give
results in g, so that the numerical approximation Ω1 also lies in g. 
�

Theorem 8.5. If the Runge–Kutta method is of (classical) order p and if the trun-
cation index in (8.9) satisfies q ≥ p − 2, then the method of Algorithm 8.3 is of
order p.

Proof. For sufficiently smooth A(Y ) we have Ω(t) = tA(Y0) + O(t2), Y (t) =
Y0 + O(t) and [Ω(t), A(Y (t))] = O(t2). This implies that ad k

Ω(t)(A(Y (t))) =
O(tk+1), so that the truncation of the series in (8.9) induces an error of sizeO(hq+2)
for |t| ≤ h. Hence, for q + 2 ≥ p, this truncation does not affect the order of
convergence. 
�

The most simple Lie group method is obtained if we take the explicit Euler
method as basic discretization and q = 0 in (8.9). This leads to the so-called Lie–
Euler method

Yn+1 = exp
(
hA(Yn)

)
Yn. (8.10)

This is also a special case of the Crouch-Grossman methods of Definition 8.1.
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Taking the implicit midpoint rule as the basic discretization and again q = 0 in
(8.9), we obtain the Lie midpoint rule

Yn+1 = exp(Ω)Yn, Ω = hA
(
exp(Ω/2)Yn

)
. (8.11)

This is an implicit equation in Ω and has to be solved by fixed point iteration or by
Newton-type methods.

Example 8.6. We take the coefficients of the right array of Table 8.1. They give rise
to 3rd order Munthe-Kaas and 3rd order Crouch-Grossman methods. We apply both
methods with the large step size h = 0.35 to the system (1.5) which is already of the
form (8.1). Observe that Y0 is a vector in R

3 and not a matrix, but all results of this
section remain valid for this case. For the computation of the matrix exponential we
use the Rodrigues formula (Exercise 17). The numerical results (first 1000 steps) are
shown in Fig. 8.1. We see that the numerical solution stays on the manifold (sphere),
but on the sphere the qualitative behaviour is not correct. A similar behaviour could
be observed for projection methods (the orthogonal projection consists simply in
dividing the approximation Ỹn+1 by its norm) and by the methods based on local
coordinates.

Crouch-Grossman methods and Munthe-Kaas methods are very similar. If they
are based on the same set of Runge–Kutta coefficients, both methods use s evalu-
ations of the matrix A(Y ). The Crouch-Grossman methods require in general the
computation of s(s + 1)/2 matrix exponentials, whereas the Munthe-Kaas meth-
ods require only s of them. On the other hand, Munthe-Kaas methods need also the
computations of a certain number of commutators which increases with q in (8.9).
In such a comparison one has to take into account that every classical Runge–Kutta
method defines a Munthe-Kaas method of the same order, but Crouch-Grossman
methods of high order are very difficult to obtain, and need more stages for the
same order (if p ≥ 4).

Munthe-Kaas method Crouch–Grossman method

Fig. 8.1. Solutions of the Euler equations (1.4) for the rigid body
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IV.8.3 Further Coordinate Mappings

The methods of Algorithm 8.3 are based on the local parametrization ψ(Ω) =
exp(Ω)Yn. For all Lie groups, this is a diffeomorphism between the Lie group and
the corresponding Lie algebra. Are there other, computationally more efficient para-
metrizations that can be used in special situations?

The Cayley Transform. Lie groups of the form

G = {Y | Y TPY = P}, (8.12)

where P is a given constant matrix, are called quadratic Lie groups. The corre-
sponding Lie algebra is given by g = {Ω | PΩ + ΩTP = 0}. The orthogonal
group O(n) and the symplectic group Sp(n) are prominent special cases (see Ta-
ble 6.1). For such groups we have the following analogue of Lemma 6.4.

Lemma 8.7. For a quadratic Lie group G, the Cayley transform

cayΩ = (I −Ω)−1(I + Ω)

maps elements of g into G. Moreover, it is a local diffeomorphism near Ω = 0.

Proof. For Ω ∈ g (i.e., PΩ + ΩTP = 0) we have P (I + Ω) = (I − Ω)TP and
also P (I − Ω)−1 = (I + Ω)−TP . For Y = (I − Ω)−1(I + Ω) this immediately
implies Y TPY = P . 
�

The use of the Cayley transform for the numerical integration of differential
equations on Lie groups has been proposed by Lewis & Simo (1994) and Diele,
Lopez & Peluso (1998) for the orthogonal group, and by Lopez & Politi (2001) for
general quadratic groups. It is based on the following result, which is an adaptation
of Lemma III.4.1 and Lemma III.4.2 to the Cayley transform.

Lemma 8.8. The derivative of cayΩ is given by

( d

dΩ
cayΩ

)
H =

(
d cay Ω(H)

)
cayΩ,

where
d cay Ω(H) = 2(I −Ω)−1H(I + Ω)−1. (8.13)

For the inverse of d cay Ω we have

d cay −1
Ω (H) = 1

2
(I −Ω)H(I + Ω). (8.14)

Proof. By the usual rules of calculus we obtain

( d

dΩ
cayΩ

)
H = (I −Ω)−1H(I −Ω)−1(I + Ω) + (I −Ω)−1H,

and a simple algebraic manipulation proves the statements. 
�
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The numerical approach for solving (8.1) in the case of quadratic Lie groups
is an adaptation of the Algorithm 8.3. We consider the local parametrization Y =
ψ(Ω) = cay (Ω)Yn, and we apply one step of a numerical method to the differential
equation Ω̇ = d cay −1

Ω A
(

cay (Ω)Yn

)
which, by (8.14), is equivalent to

Ω̇ = 1

2
(I −Ω)A

(
cay (Ω)Yn

)
(I + Ω).

This equation replaces (8.9) in the Algorithm 8.3. Since no truncation of an infinite
series is necessary here, this approach is a special case of Algorithm 5.3.

Canonical Coordinates of the Second Kind. For a basis {C1, C2, . . . , Cd} of
the Lie algebra g the coordinates z1, . . . , zd of the local parametrization ψ(z) =
exp

(∑d
i=1 ziCi

)
of the Lie group G are called canonical coordinates of the first

kind. Here we are interested in the parametrization

ψ(z) = exp
(
z1C1

)
exp

(
z2C2

)
· . . . · exp

(
zdCd

)
, (8.15)

and we call z = (z1, . . . , zd)T canonical coordinates of the second kind (Varadara-
jan 1974). The use of these coordinates in connection with the numerical solution
of differential equations on Lie groups has been promoted by Celledoni & Iserles
(2001) and Owren & Marthinsen (2001). The idea behind this choice is that, due to
a sparse structure of the Ci, the computation of exp(z1C1), . . . , exp(zdCd) may be
much cheaper than the computation of exp(

∑
i ziCi).

With the change of coordinates y = ψ(z), the differential equation (8.1) be-
comes ψ′(z)ż = A

(
(ψ(z)

)
ψ(z), which is equivalent to

A
(
ψ(z)

)
=

d∑
i=1

żi exp(z1C1) · . . . · exp(zi−1Ci−1)

·Ci · exp(−zi−1Ci−1) · . . . · exp(−z1C1)

=
d∑

i=1

żi

(
F1 ◦ . . . ◦ Fi−1

)
Ci,

(8.16)

where we use the notation FjC = exp(zjCj)C exp(−zjCj) for the linear operator
Fj : g → g; see Exercise 12. We need to compute ż1, . . . , żd from (8.16), and this
will usually be a computationally expensive task. However, for several Lie algebras
and for well chosen bases this can be done very efficiently. The crucial idea is the
following: we let F̂j be defined by

F̂jCi =

{
FjCi if i > j

Ci if i ≤ j,
(8.17)

and we assume that
(
F1 ◦ . . . ◦ Fi−1

)
Ci =

(
F̂1 ◦ . . . ◦ F̂i−1

)
Ci, i = 2, . . . , d. (8.18)
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Under this assumption, we have
(
F1 ◦ . . . ◦ Fi−1

)
Ci =

(
F̂1 ◦ . . . ◦ F̂i−1

)
Ci =(

F̂1 ◦ . . . ◦ F̂d−1

)
Ci, and the relation (8.16) becomes

(
F̂1 ◦ . . . ◦ F̂d−1

)( d∑
i=1

żiCi

)
= A

(
ψ(z)

)
. (8.19)

In the situations which we have in mind, the operators F̂j can be efficiently inverted,
and Algorithm 5.3 can be applied to the solution of (8.1).

The main difficulty of using this coordinate transform is to find a suitable or-
dering of a basis such that condition (8.18) is satisfied. The following lemma sim-
plifies this task. We use the notation αk(C) for the coefficient in the representation
C =

∑d
k=1 αk(C)Ck.

Lemma 8.9. Let {C1, . . . , Cd} be a basis of the Lie algebra g. If for every pair
j < i and for k < j we have

αk(FjCi) �= 0 =⇒ F�Ck = Ck for � satisfying k ≤ � < j, (8.20)

then the relation (8.18) holds for all i = 2, . . . , d.

Proof. We write F̂i−1Ci = Fi−1Ci =
∑

k αk(Fi−1Ci)Ck. It follows from the
definition of F̂j and from (8.20) that (F̂i−2◦F̂i−1)Ci = (Fi−2◦Fi−1)Ci. A repeated
application of this argument proves the statement. 
�

Owren & Marthinsen (2001) have studied Lie algebras that admit a basis satis-
fying (8.18) for all z. We present here one of their examples.

Example 8.10 (Special Linear Group). Consider the differential equation (8.1)
on the Lie group SL(n) = {Y | detY = 1}, i.e., the matrix A(Y ) lies in sl(n) =
{A | traceA = 0}. As a basis of the Lie algebra sl(n) we choose Eij = eie

T
j for

i �= j, and Di = eie
T
i − ei+1e

T
i+1 for 1 ≤ i < n (here, ei = (0, . . . , 1, . . . , 0)T

denotes the vector whose only non-zero element is in the ith position). Following
Owren & Marthinsen (2001) we order the elements of this basis as

E12 < . . . < E1n < E23 < . . . < E2n < . . . < En−1,n

< E21 < . . . < En1 < E32 < . . . < En2 < . . . < En,n−1

< D1 < . . . < Dn−1.

With the use of Lemma 8.9 one can check in a straightforward way that the relation
(8.18) is satisfied. In nearly all situations αk(FjCi) = 0 for k < j < i, so that
(8.18) represents an empty condition. Consequently, the żi can be computed from
(8.19). Due to the sparsity of the matrices Eij and Di, the computation of F̂−1

i can
be done very efficiently.
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IV.9 Geometric Numerical Integration Meets
Geometric Numerical Linear Algebra

The persistent use of orthogonal transformations is a hallmark of numerical linear
algebra. Correspondingly, manifolds incorporating orthogonality constraints play
an important role all over this field; see Edelman, Arias & Smith (1998) on the
geometry of algorithms with orthogonality constraints. In addition to the orthogonal
group O(n), the manifolds of primary interest are:

Vn,k, the Stiefel manifold of n× k matrices with k orthonormal columns,
Gn,k, the Grassmann manifold of orthogonal projections of R

n onto k-dimensional
subspaces, and

Mm×n
k , the manifold of m × n matrices of rank k, which is related to orthogonal

transformations via the singular value decomposition and a related decomposi-
tion discussed below.

IV.9.1 Numerical Integration on the Stiefel Manifold

Eduard Stiefel5

The original motivation for Stiefel Manifolds
(in Stiefel 1935) was the topological problem,
whether a manifold M can possess k everywhere
linearly independent continuous vector fields. The
problem, which had been solved for the case k =
1, was much harder for k > 1. In order to attack
this question, Stiefel introduced ‘his’ manifold

Vn,k = {Y ∈ R
n×k |Y TY = I}, (9.1)

as an auxiliary tool for the definition of what later
became known as the Stiefel-Whitney classes6.

Here, we are interested in computations on
these manifolds for their own, with many appli-
cations, as for example the computation of Lya-
punov exponents of differential equations; see Ex-
ercise 22 as well as Bridges & Reich (2001) and Dieci, Russell & van Vleck (1997).
There are also many cases where orthogonality constraints concern only some of
the variables in a differential equation. In molecular dynamics, for example, such
orthogonality constraints arise in the Car-Parrinello approach to ab initio molecu-
lar dynamics (Car & Parrinello 1985) and in the multiconfiguration time-dependent
Hartree method of quantum molecular dynamics (Beck, Jäckle, Worth & Meyer
2000).

5 Eduard L. Stiefel, born: 21 April 1909 in Zürich, died: 25 November 1979; photo: Bil-
darchiv ETH-Bibliothek, Zürich.

6 We are grateful to our colleague A. Haefliger for this indication.
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Tangent and Normal Space. We choose a fixed matrix Y in the Stiefel manifold
V = Vn,k. Then the tangent space (5.4) at Y ∈ V consists of the matrices Z such
that (Y + εZ)T (Y + εZ) remains I for ε → 0. Differentiating we obtain

TY V = {Z ∈ R
n×k |ZTY + Y TZ = 0}, (9.2)

i.e., Y TZ is skew-symmetric. This represents 1
2k(k + 1) conditions, thus TY V is of

dimension nk − 1
2k(k + 1).

For defining the normal space, we use the standard Euclidean inner product on
R

n×k, i.e.,
〈A,B〉 = trace(ATB) =

∑
ij aijbij , (9.3)

whose corresponding norm is the Frobenius norm

‖A‖F =
√∑

ij a
2
ij . (9.4)

Then the normal space at Y is given by

NY V = {K ∈ R
n×k |K ⊥ TY V} = {Y S |S symmetric k × k matrix}. (9.5)

To show this, we observe that the orthogonality Y S ⊥ TY V follows from 〈Y S,Z〉 =
trace(SY TZ) = 〈S, Y TZ〉 and the fact that any symmetric matrix A is orthogonal
to any skew-symmetric matrix B.7 A dimension count (the matrix S has 1

2k(k + 1)
free elements) now shows us that the space defined in (9.5) fills the entire orthogonal
complement of TY V .

Orthogonality-Preserving Runge–Kutta Methods. Suppose now that we have to
solve a differential equation Ẏ = F (Y ) on a Stiefel manifold V . The orthogonality
constraints Y TY = I are preserved, if the derivative F (Y ) lies in the tangent space
TY V , i.e., if F (Y )TY + Y TF (Y ) = 0, for every Y ∈ V (weak invariants, see
Sect. IV.4). In the (exceptional) case where they are in fact true invariants, i.e., if
F (Y )TY + Y TF (Y ) = 0 for all Y ∈ R

n×k, then the orthogonality constraints are
quadratic, and are therefore preserved exactly by the implicit Runge–Kutta meth-
ods of Sect. IV.2.1, in particular the Gauss methods. These methods give numerical
solutions on the Stiefel manifold, but use function evaluations outside the manifold.

In the general case of only weak invariants, a standard approach for enforcing
orthogonality is the introduction of Lagrange multipliers, which can be interpreted
as artificial forces in the direction of the normal space keeping the solutions on the
manifold. Due to the structure of NY V (see (9.5)), the problem becomes here

Ẏ = F (Y ) + Y Λ, Y TY = I (9.6)

with a symmetric Lagrange multiplier matrix Λ ∈ R
k×k; see also Exercise 10.

Any numerical method for differential-algebraic equations can now be applied, e.g.,

7 Indeed, split the sum in (9.3) in two parts i < j and i > j, and interchange i ↔ j in the
second sum. Then both sums are identical with opposite sign.
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appropriate Runge-Kutta methods as in Chap. VI and Sect. VII.4 of Hairer & Wan-
ner (1996). A symmetric adaptation of Gauss methods to such problems is given by
Jay (2005).

Below we shall study in great detail mechanical systems with constraints (see
Sect. VII.1). In the case of orthogonality constraints, such problems can be treated
successfully with Lobatto IIIA-IIIB partitioned Runge–Kutta methods, which in ad-
dition to orthogonality preserve other important geometric properties such as re-
versibility and symplecticity.

ỹ1

ỹ2

α
O

(a)

UT ỹ1

UT ỹ2

UT y1

σ1

σ2

O

(b)

ỹ1

ỹ2

y1

y2 O

(c)

Fig. 9.1. Projection onto the Stiefel manifold using the singular value decomposition

Projection Methods. If we want to use the projection method of Algorithm 4.2, we
have to perform, after every integration step, the projection (4.4), which requires to
find for any given matrix Ỹ a matrix Y ∈ V with

‖Y − Ỹ ‖F → min . (9.7)

This projection can be obtained as follows: if Ỹ is not in V (but close), then its
column vectors ỹ1, . . . , ỹk will have norms different from 1 and/or their angles
will not be right angles. These quantities determine an ellipsoid, if we require that
these vectors represent conjugate diameters 8 (see Fig. 9.1 (a)). This ellipsoid is then
transformed to principal axes in R

k by an orthogonal map UT (picture (b)). We let
σ1, . . . , σk be the length of these axes. If the coordinates are now divided by σi,
then the ellipsoid becomes the unit sphere and the vectors UT ỹi become orthonor-
mal vectors UT yi. These vectors, when transformed back with U , lie in V and are
the projection we were searching for (picture (c)). For a proof of the optimality, see
Exercise 21.

Connection with the Singular Value Decomposition. We have by construction that
UT yi = Σ−1UT ỹi where Σ = diag(σ1, . . . σk). If we finally map these vectors by
an orthogonal matrix V to the unit base, we see that V Σ−1UT Ỹ = I , or

Ỹ = UΣV T (9.8)

which is the singular value decomposition of Ỹ . This connection allows us to use
standard software for our calculations. The projected matrix is then Y = UV T .

8 Here we touch another of Stiefel’s great ideas, the CG algorithm.
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Remark 1. When the differential equation possesses some symmetry (see the next
chapter), then the symmetric projection algorithm V.4.1 is preferable to be used
instead.

Remark 2. The above procedure is equivalent to the one proposed by D. Higham
(1997): the orthogonal projection is the first factor of the polar decomposition Ỹ =
Y R (where Y has orthonormal columns and R is symmetric positive definite). The
equivalence is seen from the polar decomposition Ỹ = (UV T )(V ΣV T ). A related
procedure, where the first factor of the QR decomposition of Ỹ is used instead of
that of the polar decomposition, is proposed in Dieci, Russell & van Vleck (1994).

Y

ψY (Z)

Z

Y S

PY (F )

F

Tangent Space Parametrization. For the appli-
cation of the methods of Sect. IV.5, in particular
Subsection IV.5.3, to the case of Stiefel mani-
folds, we have to find the formulas for the pro-
jection (5.8) (see the wrap figure).

For a fixed Y , let Y +Z be an arbitrary matrix
in Y + TY V , for which we search the projection
ψY (Z) to V . Because of the structure of NY V
(see (9.5)), we have that

ψY (Z) = Y + Z + Y S (9.9)

is a local parametrization of V , if S is symmetric and if ψY (Z)TψY (Z) = I . This
condition, when multiplied out, shows that S has to be a solution of the algebraic
Riccati equation

S2 + 2S + SY TZ + ZTY S + ZTZ = 0. (9.10)

Observe that for k = 1, where the Stiefel manifold reduces to the unit sphere in
R

n, the equation (9.10) is a scalar quadratic equation and can be easily solved. For
k > 1, it can be solved iteratively using the scheme (e.g., starting with S0 = 0)

(I + ZTY )Sn + Sn(I + Y TZ) = −ZTZ − S2
n−1.

Using a Schur decomposition Y TZ = QTRQ (where Q is orthogonal and R upper
triangular), the elements of QSnQ

T can be computed successively starting from the
left upper corner. We refer to the monograph of Mehrmann (1991) for a detailed
discussion of the solution of linear and algebraic Riccati equations.

Next, we compute for the matrix F its orthogonal projection PY (F ) to TY V ,
i.e., by (9.5), we have to find a symmetric matrix S̃ such that PY (F ) = F − Y S̃.
The tangent condition PY (F )TY +Y TPY (F ) = 0 leads to S̃ = (FTY +Y TF )/2,
so that

PY (F ) = F − 1

2

(
Y FTY + Y Y TF

)
. (9.11)

With the parametrization ψY (Z) of (9.9) the transformed differential equation,
when projected to the tangent space, yields

Ż = PY F
(
ψY (Z)

)
, (9.12)
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in complete analogy to (5.9). The numerical solution of (9.12) requires, for every
function evaluation, the solution of the Riccati equation (9.10) and the computation
of a projection onto the tangent space, each needing O(nk2) operations. Compared
with the projection method, the overhead (i.e., the computation apart from the evalu-
ation of F (Y )) is more expensive, but the approach described here has the advantage
that all evaluations of F are exactly on the manifold V .

IV.9.2 Differential Equations on the Grassmann Manifold

The Grassmann manifold is obtained from the Stiefel manifold by identifying ma-
trices in Vn,k that span the same subspace (see Fig. 9.2 (a)). Since any two such
matrices result from each other by right multiplication with an orthogonal k × k
matrix, the resulting manifold is the quotient manifold

Gn,k = Vn,k/O(k). (9.13)

An equivalence class [Y ] ∈ Gn,k defines an orthogonal projection P = Y Y T of
rank k, and conversely, every orthogonal basis of the range of P yields a represen-
tative Y ∈ Vn,k. We can thus view the Grassmann manifold as

Gn,k =
{
P

∣∣∣ P is an orthogonal projection onto
a k-dimensional subspace of R

n

}
. (9.14)
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Fig. 9.2. Integration of a differential equation on the Grassmann manifold

The Tangent Space. The map Y �→ P = Y Y T from V → G has the tangent map
(derivative) 9

TY V → TPG : δY �→ δP = δY Y T + Y δY T , (9.15)

and we wish to apply all the methods for TY V from the arsenal of the preceding
section to problems in TPG. However, the dimension of TPG is by 1

2k(k− 1) lower
than the dimension of TY V . This difference is the dimension of O(k) and also of

9 Here we write δY for tangent matrices at Y (what has been Z in (9.2)), and similarly
for other matrices; Lagrange’s δ-notation here becomes preferable, since we will have,
especially in the next subsection, more and more matrices moving around.
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so(k), the vector space of skew-symmetric k × k matrices. The key idea is now
the following: if we replace the condition from (9.2), Y T δY skew-symmetric, by
Y T δY = 0, then we remove precisely the superfluous degrees of freedom. Indeed,
the extended tangent map

TY V → TPG × so(k) : δY �→ (δY Y T + Y δY T , Y T δY ) (9.16)

is an isomorphism, since it is readily seen to have zero null-space and the dimensions
of the vector spaces agree. The tangent space is thus characterized as

TPG = {δP = δY Y T + Y δY T | Y T δY = 0}, (9.17)

and every δP ∈ TPG corresponds to a unique δY with Y T δY = 0. Note that this
condition on δY does not depend on the representative Y of [Y ].
Differential Equations. Consider now a differential equation on G,

Ṗ = G(P ), (9.18)

with a vector field G on G. The condition G(P ) ∈ TPG means, since the tangent
map (9.15) is onto, that there exists for P = Y Y T a vector F (Y ) such that

G(P ) = F (Y )Y T + Y F (Y )T with FTY + Y TF = 0 (9.19)

i.e., F (Y ) ∈ TY V . However, from a given initial position Y , there are many F
which produce the same movement G of the subspace represented by P (see Fig. 9.2
(b)). By (9.16), the movement of Y becomes unique if we require that this movement
is orthogonal to the subspace (see Fig. 9.2 (c)),

Y T Ẏ = 0 . (9.20)

Multiplying the derivative Ṗ = Ẏ Y T + Y Ẏ T with Y T from the left, we obtain,
under condition (9.20), Y T Ṗ = Ẏ T and, by (9.18) and (9.19), Ẏ = Y FTY + F or

Ẏ = (I − Y Y T )F (Y ). (9.21)

Geometrically, this means that the vector F (Y ), which could be chosen arbitrarily
in TY V , is projected to the orthogonal complement of the subspace spanned by Y or
P = Y Y T . The derivative Ẏ in (9.21) is independent of the particular choice of F .

Equation (9.21) is a differential equation on the Stiefel manifold V that can be
solved numerically by the methods described in the previous subsection.

Example 9.1 (Oja Flow). A basic example arises in neural networks (Oja 1989):
solutions on Vn,k of the differential equation

Ẏ = (I − Y Y T )AY (9.22)

with a constant symmetric positive definite matrix A ∈ R
n×n tend to an orthogonal

basis of an invariant subspace of A as t →∞ (Yan, Helmke & Moore 1994).
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A naı̈ve comparison of this equation with (9.21) would lead to F (Y ) = AY , but
this function does not satisfy the tangent condition FTY + Y TF = 0 from (9.19).
So we use the fact that (I − Y Y T )2 = I − Y Y T and set F (Y ) = (I − Y Y T )AY .
With this, G(P ) from (9.18) and (9.19) becomes

Ṗ = (I − P )AP + PA(I − P ). (9.23)

We have obtained the result that equation (9.22) can be viewed as a differential
equation on the Grassmann manifold Gn,k.

However, for the numerical integration it is more practical to work with (9.22).

IV.9.3 Dynamical Low-Rank Approximation

Low-rank approximation of large matrices is a basic model reduction technique in
many application areas, such as image compression and latent semantic indexing in
information retrieval; see for example Simon & Zha (2000). Here, we consider the
task of computing low rank approximations to matrices A(t) ∈ R

m×n depending
smoothly on t. At any time t, a best approximation to A(t) of rank k is a matrix
X(t) in the manifold Mk = Mm×n

k of rank-k matrices that satisfies

X(t) ∈Mk such that ‖X(t)−A(t)‖F = min! (9.24)

The problem is solved by a singular value decomposition of A(t), truncating all
singular values after the r largest ones. When the matrix is so large that a complete
singular value decomposition is not feasible, a standard approach to obtain an ap-
proximate solution is based on the Lanczos bidiagonalization process with A(t), as
discussed in Simon & Zha (2000).

Following Koch & Lubich (2005), we here consider instead the low-rank ap-
proximation Y (t) ∈ Mk determined from the condition that for every t the deriva-
tive Ẏ (t), which is in the tangent space TY (t)Mk, be chosen as

Ẏ (t) ∈ TY (t)Mk such that ‖Ẏ (t)− Ȧ(t)‖F = min! (9.25)

This is complemented with an initial condition, ideally Y (t0) = X(t0). For given
Y (t), the derivative Ẏ (t) is obtained by a linear projection, though onto a solution-
dependent vector space. Problem (9.25) yields a differential equation on Mk. We
will see that with a suitable factorization of rank-k matrices, we obtain a system
of differential equations for the factors that is well-suited for numerical integration.
The differential equations contain only the increments Ȧ(t), which may be much
sparser than the full data matrix A(t).

Koch & Lubich (2005) show that Y (t) yields a quasi-optimal approximation
on intervals where a good smooth approximation exists. It must be noted, however,
that the best rank-k approximation X(t) may have discontinuities, which cannot
be captured in Y (t). This is already seen from the example of finding a rank-1
approximation to diag(e−t, et), where starting from t0 < 0 yields X(t) = Y (t) =
diag(e−t, 0) for t < 0, but Y (t) = diag(e−t, 0) and X(t) = diag(0, et) for t > 0.
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The best approximation X(t) has a discontinuity at t = 0, caused by a crossing of
singular values of which one is inside and the other one outside the approximation.
An algorithmic remedy is to restart (9.25) at regular intervals.

In contrast to (9.24), the approach (9.25) extends immediately to the low-rank
approximation of solutions of matrix differential equations Ȧ = F (A). Here,
Ȧ(t) in (9.25) is simply replaced by the approximation F (Y (t)), which yields the
minimum-defect low-rank approximation Y (t) by choosing

Ẏ ∈ TYMk such that ‖Ẏ − F (Y )‖F = min! (9.26)

An approach of this type is of common use in quantum dynamics, where the phys-
ical model reduction of the multivariate Schrödinger equation by the analogue of
(9.26) is known as the Dirac-Frenkel time-dependent variational principle, after
Dirac (1930) and Frenkel (1934); see also Beck, Jäckle, Worth & Meyer (2000)
and Sect. VII.6.

Decompositions of Rank-k Matrices and of Their Tangent Matrices. Every real
rank-k matrix of dimension m× n can be written in the form

Y = USV T (9.27)

where U ∈ Vm,k and V ∈ Vn,k have orthonormal columns, and S ∈ R
k×k is

nonsingular. The singular value decomposition yields S diagonal, but here we do
not assume a special form of S. The representation (9.27) is not unique: replacing
U by Ũ = UP and V by Ṽ = V Q with orthogonal matrices P,Q ∈ O(k) and
correspondingly S by S̃ = PTSQ, yields the same matrix Y = USV T = Ũ S̃Ṽ T .

As a substitute for the non-uniqueness in (9.27), we use – as in the previous
subsection – a unique decomposition in the tangent space. Every tangent matrix
δY ∈ TYMk at Y = USV T is of the form (see Exercise 23)

δY = δUSV T + UδSV T + USδV T , (9.28)

where δS ∈ R
k×k and δU ∈ TUVm,k, δV ∈ TV Vn,k. Conversely, δS, δU, δV are

uniquely determined by δY if we impose the orthogonality constraints

UT δU = 0, V T δV = 0. (9.29)

Equations (9.28) and (9.29) yield

δS = UT δY V,

δU = (I − UUT )δY V S−1, (9.30)

δV = (I − V V T )δY TUS−T .

Formulas (9.28) and (9.30) establish an isomorphism between the subspace

{(δS, δU, δV ) ∈ R
k×k × R

m×k × R
n×k |UT δU = 0, V T δV = 0}

and the tangent space TYMk.
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Differential Equations for the Factors. The minimization condition (9.25) is
equivalent to the orthogonal projection of Ȧ(t) onto the tangent space TY (t)Mk:
find Ẏ ∈ TYMk (we omit the argument t) satisfying

〈Ẏ − Ȧ, δY 〉 = 0 for all δY ∈ TYMk, (9.31)

with the Frobenius inner product 〈A,B〉 = trace(ATB). With this formulation we
derive differential equations for the factors in the representation (9.27).

Theorem 9.2. For Y = USV T ∈ Mk with nonsingular S ∈ R
k×k and with

U ∈ R
m×k and V ∈ R

n×k having orthonormal columns, condition (9.25) or (9.31)
is equivalent to Ẏ = U̇SV T + UṠV T + USV̇ T , where

Ṡ = UT ȦV

U̇ = (I − UUT )ȦV S−1 (9.32)

V̇ = (I − V V T )ȦTUS−T .

Proof. For u ∈ R
m, v ∈ R

n and B ∈ R
m×n, we use the identity

〈uvT , B〉 = uTBv.

In view of (9.29) we require UT U̇ = V T V̇ = 0 along the solution trajectory in order
to define a unique representation of Ẏ . We first substitute δY = uiv

T
j , for i, j =

1, . . . , k, in (9.31), where ui, vj denote the columns of U, V , respectively. This is of
the form (9.27) with δU = δV = 0 and one non-zero element in δS. In this way we
find Ṡ = UT ȦV. Similarly, choosing δY =

∑k
j=1 δu sijv

T
j , i = 1, . . . , k, where

δu ∈ R
m is arbitrary with UT δu = 0, we obtain the stated differential equation

for U , and likewise for δY =
∑k

j=1 ujsjiδv
T with V T δv = 0 the differential

equation for V . 
�

The differential equations (9.32) are closely related to differential equations for
other smooth matrix decompositions, in particular the smooth singular value decom-
position; see, e.g., Dieci & Eirola (1999) and Wright (1992). Unlike the differential
equations for singular values given there, the equations (9.32) have no singularities
at points where singular values of Y (t) coalesce.

For the minimum-defect low-rank approximation (9.26) of a matrix differential
equation Ȧ = F (A), we just need to replace Ȧ by F (Y ) for Y = USV T in the
differential equations (9.32).

The matrices U(t) and V (t) evolve on Stiefel manifolds. The differential equa-
tions (9.32) can thus be solved numerically by the methods discussed in Sect. IV.9.1.

IV.10 Exercises

1. Prove that the symplectic Euler method (I.1.9) conserves quadratic invariants
of the form (2.5). Explain the “0” entries of Table (I.2.1).
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2. Prove that under condition (2.3) a Runge–Kutta method preserves all invariants
of the form I(y) = yTCy + dT y + c.

3. Prove that an s-stage diagonally implicit Runge–Kutta method (i.e., aij = 0 for
i < j) satisfies the condition (2.3) if and only if it is equivalent to a composition
Φbsh ◦ . . . ◦ Φb1h based on the implicit midpoint rule.

4. Prove the following statements: a) If a partitioned Runge–Kutta method con-
serves general quadratic invariants pTCp + 2pTDq + qTEq, then each of the
two Runge–Kutta methods has to conserve quadratic invariants separately.
b) If both methods, {bi, aij} and {b̂i, âij} are irreducible, satisfy (2.3) and if
(2.7)-(2.8) hold, then we have bi = b̂i and aij = âij for all i, j.

5. Prove that the Gauss methods are the only collocation methods satisfying (2.3).
Hint. Use the ideas of the proof of Lemma 13.9 in Hairer & Wanner (1996).

6. Discontinuous collocation methods with either b1 �= 0 or bs �= 0 (Defini-
tion II.1.7) cannot satisfy the criterion (2.3).

7. (Sanz-Serna & Abia 1991, Saito, Sugiura & Mitsui 1992). The condition (2.3)
acts as simplifying assumption for the order conditions of Runge–Kutta meth-
ods. Assume that the order conditions are satisfied for the trees u and v. Prove
that it is satisfied for u ◦ v if and only if it is satisfied for v ◦ u, and that it is
automatically satisfied for trees of the form u ◦ u.
Remark. u ◦ v denotes the Butcher product introduced in Sect. VI.7.2.

8. If L0 is a symmetric, tridiagonal matrix that is sufficiently close to Λ =
diag(λ1, . . . , λn), where λ1 > λ2 > . . . > λn are the eigenvalues of L0, then
the solution of (3.5) with B(L) = L+−LT

+ converges exponentially fast to the
diagonal matrix Λ. Hence, the numerical solution of (3.5) gives an algorithm
for the computation of the eigenvalues of the matrix L0.
Hint. Let β1, . . . , βn be the entries in the diagonal of L, and α1, . . . , αn−1

those in the subdiagonal. Assume that |βk(0) − λk| ≤ R/3 and |αk(0)| ≤ R
with some sufficiently small R. Prove that βk(t) − βk+1(t) ≥ µ − R and
|αk(t)| ≤ Re−(µ−R)t for all t ≥ 0, where µ = mink(λk − λk+1) > 0.

9. Elaborate Example 4.5 for the special case where Y is a matrix of dimension
2. In particular, show that (4.6) is the same as (4.5), and check the formulas for
the simplified Newton iterations.

10. (Brenan, Campbell & Petzold (1996), Sect. 2.5.3). Consider the differential
equation ẏ = f(y) with known invariants g(y) = Const , and assume that g′(y)
has full rank. Prove by differentiation of the constraints that, for initial values
satisfying g(y0) = 0, the solution of the differential-algebraic equation (DAE)

ẏ = f(y) + g′(y)Tµ

0 = g(y)

also solves the differential equation ẏ = f(y).
Remark. Most methods for DAEs (e.g., stiffly accurate Runge–Kutta methods
or BDF methods) lead to numerical integrators that preserve exactly the con-
straints g(y) = 0. The difference from the projection method of Sect. IV.4 is
that here the internal stages also satisfy the constraint.
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11. Prove that SL(n) is a Lie group of dimension n2 − 1, and that sl(n) is its Lie
algebra (see Table 6.1 for the definitions of SL(n) and sl(n)).

12. Let G be a matrix Lie group and g its Lie algebra. Prove that for Y ∈ G and
A ∈ g we have Y AY −1 ∈ g.
Hint. Consider the path γ(t) = Y α(t)Y −1.

13. Consider a problem Ẏ = A(Y )Y , for which A(Y ) ∈ so(n) whenever Y ∈
O(n), but where A(Y ) is an arbitrary matrix for Y �∈ O(n).
a) Prove that Y0 ∈ O(n) implies Y (t) ∈ O(n) for all t.
b) Show by a counter-example that the numerical solution of the implicit mid-
point rule does not necessarily stay in O(n).

14. (Feng Kang & Shang Zai-jiu 1995). Let R(z) = (1 + z/2)/(1 − z/2) be the
stability function of the implicit midpoint rule. Prove that for A ∈ sl(3) we
have

detR(hA) = 1 ⇔ detA = 0.

15. (Iserles & Nørsett 1999). Introducing y1 = y and y2 = ẏ, write the problem

ÿ + ty = 0, y(0) = 1, ẏ(0) = 0

in the form (7.6). Then apply the numerical method of Example 7.4 with dif-
ferent step sizes on the interval 0 ≤ t ≤ 100. Compare the result with that
obtained by fourth order classical (explicit or implicit) Runge–Kutta methods.
Remark. If A(t) in (7.6) (or A(t, y) in (8.1)) are much smoother than the solu-
tion y(t), then Lie group methods are usually superior to standard integrators,
because Lie group methods approximate A(t), whereas standard methods ap-
proximate the solution y(t) by polynomials.

16. Deduce the BCH formula from the Magnus expansion (IV.7.5).
Hint. For constant matrices A and B consider the matrix function A(t) defined
by A(t) = B for 0 ≤ t ≤ 1 and A(t) = A for 1 ≤ t ≤ 2.

17. (Rodrigues formula, see Marsden & Ratiu (1999), page 291). Prove that

exp(Ω) = I+
sinα

α
Ω+

1
2

( sin(α/2)
α/2

)2

Ω2 for Ω =




0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0




where α =
√

ω2
1 + ω2

2 + ω2
3 . This formula allows for an efficient implementa-

tion of the Lie group methods in O(3).
18. The solution of Ẏ = A(Y )Y, Y (0) = Y0, is given by Y (t) = exp

(
Ω(t)

)
Y0,

where Ω(t) solves the differential equation (8.9). Compute the first terms of the
t-expansion of Ω(t).
Result. Ω(t) = tA(Y0) + t2

2 A′(Y0)A(Y0)Y0 + t3

6

(
A′(Y0)2A(Y0)Y 2

0 +
A′(Y0)A(Y0)2Y0+A′′(Y0)

(
A(Y0)Y0, A(Y0)Y0

)
− 1

2

[
A(Y0), A′(Y0)A(Y0)Y0

])
.

19. Consider the 2-stage Gauss method of order p = 4. In the corresponding Lie
group method, eliminate the presence of Ω in [Ω,A] by iteration, and neglect
higher order commutators. Show that this leads to
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Ω1 = h
(

1

4
A1 +

(
1

4
−

√
3

6

)
A2

)
− h2

2

(
− 1

12
+

√
3

24

)
[A1, A2]

Ω2 = h
((

1

4
+

√
3

6

)
A1 + 1

4
A2

)
− h2

2

(
1

12
+

√
3

24

)
[A1, A2]

y1 = exp
(
h
(

1

2
A1 + 1

2
A2

)
− h2

√
3

12
[A1, A2]

)
y0,

where Ai = A(Yi) and Yi = exp(Ωi)y0. Prove that this is a Lie group method
of order 4. Is it symmetric?

20. In Zanna (1999) a Lie group method similar to that of Exercise 19 is presented.
The only difference is that the coefficients (−1/12 +

√
3/24) and (1/12 +√

3/24) in the formulas for Ω1 and Ω2 are replaced with (−5/72+
√

3/24) and
(5/72 +

√
3/24), respectively. Is there an error somewhere? Are both methods

of order 4?
21. Show that for given Ỹ the solution of problem (9.7) is Y = UV T , where

Ỹ = UΣV T is the singular value decomposition of Ỹ .
Hint. Since ‖USV T ‖F = ‖S‖F holds for all orthogonal matrices U and V ,
it is sufficient to consider the case Ỹ = (Σ, 0)T with Σ = diag(σ1, . . . , σk).
Prove that ‖(Σ, 0)T − Y ‖2F ≥

∑k
i=1(σi − 1)2 for all matrices Y satisfying

Y TY = I .
22. Show that the solution of the matrix differential equation Ẏ = A(t)Y on R

n×k,
with initial values Y0 ∈ Vn,k, can be decomposed as

Y (t) = U(t)S(t), where U(t) ∈ Vn,k, S(t) ∈ R
k×k

satisfy the differential equations

Ṡ = UTAUS, U̇ = (I − UUT )AU

with initial values S0 = I , U0 = Y0.
Remark: These differential equations can be used for the computation of Lya-
punov exponents as an alternative to the differential equations discussed in
Bridges & Reich (2001) and Dieci, Russell & van Vleck (1997).

23. Consider the map GL(k)×Vm,k×Vn,k →Mk that associates to (S,U, V ) the
rank-k matrix Y = USV T . Show that the extended tangent map

R
k×k × TUVm,k × TV Vn,k → TYMk × so(k)× so(k)

(δS, δU, δV ) �→ (δUSV T + UδSV T + USδV T , UT δU, V T δV )

is an isomorphism.
24. Let A(t) ∈ R

n×n be symmetric and depend smoothly on t. Show that the
solution P (t) ∈ Gn,k of the dynamical low-rank approximation problem on the
Grassmann manifold,

Ṗ ∈ TPGn,k with ‖Ṗ − Ȧ‖F = min!,

is given as P = Y Y T where Y ∈ Vn,k solves the differential equation

Ẏ = (I − Y Y T )ȦY.



Chapter V.
Symmetric Integration and Reversibility

Symmetric methods of this chapter and symplectic methods of the next chapter play
a central role in the geometric integration of differential equations. We discuss re-
versible differential equations and reversible maps, and we explain how symmetric
integrators are related to them. We study symmetric Runge–Kutta and composition
methods, and we show how standard approaches for solving differential equations
on manifolds can be symmetrized. A theoretical explanation of the excellent long-
time behaviour of symmetric methods applied to reversible differential equations
will be given in Chap. XI.

V.1 Reversible Differential Equations and Maps

Conservative mechanical systems have the property that inverting the initial direc-
tion of the velocity vector and keeping the initial position does not change the solu-
tion trajectory, it only inverts the direction of motion. Such systems are “reversible”.
We extend this notion to more general situations.

Definition 1.1. Let ρ be an invertible linear transformation in the phase space of
ẏ = f(y). This differential equation and the vector field f(y) are called ρ-reversible
if

ρf(y) = −f(ρy) for all y. (1.1)

y
f(y)

ρy
ρf(y)

−ρf(y)
f(ρy)

ρ
u

v
y0

y1

ρy0

ρy1

ρ
ρ

ϕt

ϕt

u

v

Fig. 1.1. Reversible vector field (left picture) and reversible map (right picture)
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This property is illustrated in the left picture of Fig. 1.1. For ρ-reversible differ-
ential equations the exact flow ϕt(y) satisfies

ρ ◦ ϕt = ϕ−t ◦ ρ = ϕ−1
t ◦ ρ (1.2)

(see the picture to the right in Fig. 1.1). The right identity is a consequence of the
group property ϕt ◦ ϕs = ϕt+s, and the left identity follows from

d

dt

(
ρ ◦ ϕt

)
(y) = ρf

(
ϕt(y)

)
= −f

(
(ρ ◦ ϕt)(y)

)

d

dt

(
ϕ−t ◦ ρ

)
(y) = −f

(
(ϕ−t ◦ ρ)(y)

)
,

because all expressions of (1.2) satisfy the same differential equation with the same
initial value (ρ ◦ϕ0)(y) = (ϕ0 ◦ρ)(y) = ρy. Formula (1.2) motivates the following
definition.

Definition 1.2. A map Φ(y) is called ρ-reversible if

ρ ◦ Φ = Φ−1 ◦ ρ.

Example 1.3. An important example is the partitioned system

u̇ = f(u, v), v̇ = g(u, v), (1.3)

where f(u,−v) = −f(u, v) and g(u,−v) = g(u, v). Here, the transformation ρ is
given by ρ(u, v) = (u,−v). If we call a vector field or a map reversible (without
specifying the transformation ρ), we mean that it is ρ-reversible with this particu-
lar ρ. All second order differential equations ü = g(u) written as u̇ = v, v̇ = g(u)
are reversible. As a first implication of reversibility on the dynamics we mention
the following fact: if u and v are scalar, and if (1.3) is reversible, then any solution
that crosses the u-axis twice is periodic (Exercise 5, see also the solution of the
pendulum problem in Fig. I.1.4).

It is natural to search for numerical methods that produce a reversible numerical
flow when they are applied to a reversible differential equation. We then expect the
numerical solution to have long-time behaviour similar to that of the exact solution;
see Chap. XI for more precise statements. It turns out that the ρ-reversibility of a
numerical one-step method is closely related to the concept of symmetry.

Thus the method is theoretically symmetrical or reversible, a terminology
we have never seen applied elsewhere.

(P.C. Hammer & J.W. Hollingsworth 1955)

Definition 1.4. A numerical one-step method Φh is called symmetric or time-
reversible,1 if it satisfies

Φh ◦ Φ−h = id or equivalently Φh = Φ−1
−h.

1 The study of symmetric methods has its origin in the development of extrapolation meth-
ods (Gragg 1965, Stetter 1973), because the global error admits an asymptotic expansion
in even powers of h. The notion of time-reversible methods is more common in the Com-
putational Physics literature (Buneman 1967).
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With the Definition II.3.1 of the adjoint method (i.e., Φ∗
h = Φ−1

−h), the condition
for symmetry reads Φh = Φ∗

h. A method y1 = Φh(y0) is symmetric if exchanging
y0 ↔ y1 and h ↔ −h leaves the method unaltered. In Chap. I we have already en-
countered the implicit midpoint rule (I.1.7) and the Störmer–Verlet scheme (I.1.17),
both of which are symmetric. Many more symmetric methods will be given in the
following sections.

Theorem 1.5. If a numerical method, applied to a ρ-reversible differential equa-
tion, satisfies

ρ ◦ Φh = Φ−h ◦ ρ, (1.4)

then the numerical flow Φh is a ρ-reversible map if and only if Φh is a symmetric
method.

Proof. As a consequence of (1.4) the numerical flow Φh is ρ-reversible if and only
if Φ−h ◦ ρ = Φ−1

h ◦ ρ. Since ρ is an invertible transformation, this is equivalent to
the symmetry of the method Φh. 
�

Similarly, it is also true that a symmetric method is ρ-reversible if and only if
the ρ-compatibility condition (1.4) holds.

Compared to the symmetry of the method, condition (1.4) is much less restric-
tive. It is automatically satisfied by most numerical methods. Let us briefly discuss
the validity of (1.4) for different classes of methods.

• Runge–Kutta methods (explicit or implicit) satisfy (1.4) without any restriction
other than (1.1) on the vector field (Stoffer 1988). Let us illustrate the proof with
the explicit Euler method Φh(y0) = y0 + hf(y0):

(ρ ◦ Φh)(y0) = ρy0 + hρf(y0) = ρy0 − hf(ρy0) = Φ−h(ρy0).

• Partitioned Runge–Kutta methods applied to a partitioned system (1.3) satisfy the
condition (1.4) if ρ(u, v) =

(
ρ1(u), ρ2(v)

)
with invertible ρ1 and ρ2. The proof is

the same as for Runge–Kutta methods. Notice that the mapping ρ(u, v) = (u,−v)
of Example 1.3 is of this special form.

• Composition methods. If two methods Φh and Ψh satisfy (1.4), then so does the
adjoint Φ∗

h and the composition Φh ◦Ψh. Consequently, the composition methods
(3.1) and (3.2) below, which compose a basic method Φh and its adjoint with
different step sizes, have the property (1.4) provided the basic method Φh has it.

• Splitting methods are based on a splitting ẏ = f [1](y)+f [2](y) of the differential
equation. If both vector fields, f [1](y) and f [2](y), satisfy (1.1), then their exact
flows ϕ

[1]
h and ϕ

[2]
h satisfy (1.2). In this situation, the splitting method (II.5.6) has

the property (1.4).
• For differential equations on manifolds we have to assume that ρ maps M to
M. Otherwise, condition (1.1) does not make sense. For the projection method
of Algorithm IV.4.2 with orthogonal projection onto the manifold we have: if
the basic method satisfies (1.4) and if ρ is an orthogonal matrix, then it satisfies
(1.4) as well. This follows from the fact that the tangent and normal spaces satisfy
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TρyM = ρTyM and NρyM = ρ−TNyM, respectively. A similar result holds
for methods based on local coordinates, if the local parametrization is well cho-
sen. For example, this is the case if ρψ(z) is the parametrization at ρy0 whenever
ψ(z) is the parametrization at y0.

V.2 Symmetric Runge–Kutta Methods

We give a characterization of symmetric methods of Runge–Kutta type and mention
some important examples.

V.2.1 Collocation and Runge–Kutta Methods

Symmetric collocation methods are characterized by the symmetry of the colloca-
tion points with respect to the midpoint of the integration step.

Theorem 2.1. The adjoint method of a collocation method (Definition II.1.3) based
on c1, . . . , cs is a collocation method based on c∗1, . . . , c

∗
s , where

c∗i = 1− cs+1−i. (2.1)

In the case that ci = 1− cs+1−i for all i, the collocation method is symmetric.
The adjoint method of a discontinuous collocation method (Definition II.1.7)

based on b1, bs and c2, . . . , cs−1 is a discontinuous collocation method based on
b∗1, b

∗
s and c∗2, . . . , c

∗
s−1, where

b∗1 = bs, b∗s = b1 and c∗i = 1− cs+1−i. (2.2)

In the case that b1 = bs and ci = 1− cs+1−i for all i, the discontinuous collocation
method is symmetric.

0 c1 c2 c3 c4 c5 1

same bi

Fig. 2.1. Symmetry of collocation methods

Proof. Exchanging (t0, y0) ↔ (t1, y1) and h ↔ −h in the definition of a collo-
cation method we get u(t1) = y1, u̇(t1 − cih) = f

(
t1 − cih, u(t1 − cih)

)
, and

y0 = u(t1 − h). Inserting t1 = t0 + h this yields the collocation method based
on c∗i of (2.1). Observe that the c∗i can be arbitrarily permuted. For discontinuous
collocation methods the proof is similar. 
�

The preceding theorem immediately yields the following result.
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Corollary 2.2. The Gauss formulas (Table II.1.1), as well as the Lobatto IIIA (Ta-
ble II.1.2) and Lobatto IIIB formulas (Table II.1.4) are symmetric integrators. 
�

Theorem 2.3 (Stetter 1973, Wanner 1973). The adjoint method of an s-stage
Runge–Kutta method (II.1.4) is again an s-stage Runge–Kutta method. Its coeffi-
cients are given by

a∗ij = bs+1−j − as+1−i,s+1−j , b∗i = bs+1−i. (2.3)
If

as+1−i,s+1−j + aij = bj for all i, j, (2.4)

then the Runge–Kutta method (II.1.4) is symmetric.2

Proof. Exchanging y0 ↔ y1 and h ↔ −h in the Runge–Kutta formulas yields

ki = f
(
y0 + h

s∑
j=1

(bj − aij)kj

)
, y1 = y0 + h

s∑
i=1

biki. (2.5)

Since the values
∑s

j=1(bj − aij) = 1− ci appear in reverse order, we replace ki by
ks+1−i in (2.5), and then we substitute all indices i and j by s+1− i and s+1− j,
respectively. This proves (2.3).

The assumption (2.4) implies a∗ij = aij and b∗i = bi, so that Φ∗
h = Φh. 
�

Explicit Runge–Kutta methods cannot fulfill condition (2.4) with i = j, and it is
not difficult to see that no explicit Runge–Kutta can be symmetric (Exercise 2). Let
us therefore turn our attention to diagonally implicit Runge–Kutta methods (DIRK),
for which aij = 0 for i < j, but with diagonal elements that can be non-zero. In
this case condition (2.4) becomes

aij = bj = bs+1−j for i > j, ajj + as+1−j,s+1−j = bj . (2.6)

The Runge–Kutta tableau of such a method is thus of the form (e.g., for s = 5)

c1 a11

c2 b1 a22

c3 b1 b2 a33

1− c2 b1 b2 b3 a44

1− c1 b1 b2 b3 b2 a55

b1 b2 b3 b2 b1

(2.7)

with a33 = b3/2, a44 = b2 − a22, and a55 = b1 − a11. If one of the bi vanishes,
then the corresponding stage does not influence the numerical result. This stage can
therefore be suppressed, so that the method is equivalent to one with fewer stages.
Our next result shows that methods (2.7) can be interpreted as the composition of
θ-methods, which are defined as
2 For irreducible Runge–Kutta methods, the condition (2.4) is also necessary for symmetry

(after a suitable permutation of the stages).
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Φθ
h(y0) = y1, where y1 = y0 + hf

(
(1− θ)y0 + θy1

)
. (2.8)

Observe that the adjoint of the θ-method is Φθ∗
h = Φ1−θ

h .

Theorem 2.4. A diagonally implicit Runge–Kutta method satisfying the symmetry
condition (2.4) and bi �= 0 is equivalent to a composition of θ-methods

Φα1∗
b1h ◦ Φα2∗

b2h ◦ . . . ◦ Φα2
b2h ◦ Φα1

b1h, (2.9)

where αi = aii/bi.

Proof. Since the θ-method is a Runge–Kutta method with tableau

θ θ

1

this follows from the discussion in Sect. III.1.3. We have used Φ
αs+1−i

bs+1−ih
= Φαi∗

bih

which holds, because bs+1−i = bi and αs+1−i = 1− αi by (2.6). 
�

A more detailed discussion of such methods is therefore postponed to Sect. V.3
on symmetric composition methods.

V.2.2 Partitioned Runge–Kutta Methods

Applying partitioned Runge–Kutta methods (II.2.2) to general partitioned systems

ẏ = f(y, z), ż = g(y, z), (2.10)

it is obvious that for their symmetry both Runge–Kutta methods have to be symmet-
ric (because ẏ = f(y) and ż = g(z) are special cases of (2.10)). The proof of the
following result is identical to that of Theorem 2.3 and therefore omitted.

Theorem 2.5. If the coefficients of both Runge–Kutta methods bi, aij and b̂i, âij

satisfy the condition (2.4), then the partitioned Runge–Kutta method (II.2.2) is sym-
metric. 
�

As a consequence of this theorem we obtain that the Lobatto IIIA-IIIB pair (see
Sect. II.2.2) and, in particular, the Störmer–Verlet scheme are symmetric integrators.

An interesting feature of partitioned Runge–Kutta methods is the possibility of
having explicit, symmetric methods for problems of the form

ẏ = f(z), ż = g(y). (2.11)

Second order differential equations ÿ = g(y), written in the form ẏ = z, ż = g(y)
have this structure, and also all Hamiltonian systems with separable Hamiltonian
H(p, q) = T (p)+V (q). It is not possible to get explicit symmetric integrators with
non-partitioned Runge–Kutta methods (Exercise 2).

The Störmer–Verlet method (Table II.2.1) applied to (2.11) reads
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z1/2 = z0 + h

2
g(y0)

y1 = y0 + h f(z1/2)

z1 = z1/2 + h

2
g(y1)

and is the composition Φ∗
h/2 ◦ Φh/2, where

(
y1

z1

)
= Φh

(
y0

z0

)
,

y1 = y0 + hf(z1)
z1 = z0 + hg(y0)

(2.12)

is the symplectic Euler method and
(

y1

z1

)
= Φ∗

h

(
y0

z0

)
,

y1 = y0 + hf(z0)
z1 = z0 + hg(y1)

(2.13)

its adjoint. All these methods are obviously explicit. How can they be extended to
higher order? The idea is to consider partitioned Runge–Kutta methods based on
diagonally implicit methods such as in (2.7). If aii · âii = 0, then one component
of the ith stage is given explicitly and, due to the special structure of (2.11), the
other component is also obtained in a straightforward manner. In order to achieve
aii · âii = 0 with a symmetric partitioned method, we have to assume that s, the
number of stages, is even.

Theorem 2.6. A partitioned Runge–Kutta method, based on two diagonally implicit
methods satisfying aii · âii = 0 and (2.4) with bi �= 0 and b̂i �= 0, is equivalent
to a composition of Φbih and Φ∗

bih
with Φh and Φ∗

h given by (2.12) and (2.13),
respectively. 
�

For example, the partitioned method

0
b1 b2
b1 b2 0
b1 b2 b2 b1

b1 b2 b2 b1

b̂1
b̂1 0
b̂1 b̂2 b̂2
b̂1 b̂2 b̂2 0
b̂1 b̂2 b̂2 b̂1

satisfies the assumptions of the preceding theorem. Since the methods have identical
stages, the numerical result only depends on b̂1, b1 + b2, b̂2 + b̂3, b3 + b4, and
b̂4. Therefore, we can assume that b̂i = bi and the method is equivalent to the
composition Φ∗

b1h ◦ Φb2h ◦ Φ∗
b2h ◦ Φb1h.

V.3 Symmetric Composition Methods

In Sect. II.4 the idea of composition methods is introduced, and a systematic way
of obtaining high-order methods is outlined. These methods, based on (II.4.4) or on
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(II.4.5), turn out to be symmetric, but they require too many stages. A theory of order
conditions for general composition methods is developed in Sect. III.3. Here, we
apply this theory to the construction of high-order symmetric methods. We mainly
follow two lines.

• Symmetric composition of first order methods.

Ψh = Φαsh ◦ Φ∗
βsh ◦ . . . ◦ Φ∗

β2h ◦ Φα1h ◦ Φ∗
β1h, (3.1)

where Φh is an arbitrary first order method. In order to make this method sym-
metric, we assume αs = β1, αs−1 = β2, etc.

• Symmetric composition of symmetric methods.

Ψh = Φγsh ◦ Φγs−1h ◦ . . . ◦ Φγ2h ◦ Φγ1h, (3.2)

where Φh is a symmetric second order method and γs = γ1, γs−1 = γ2, etc.

V.3.1 Symmetric Composition of First Order Methods

Because of Lemma 3.2 below, every method (3.2) is a special case of method (3.1).
In this subsection we concentrate on methods that are of the form (3.1) but not of
the form (3.2).

For constructing methods (3.1) of a certain order, one has to solve the system
of nonlinear equations given in Theorem III.3.14 (see also Example III.3.15). The
symmetry assumption on the coefficients considerably simplifies this system.

Theorem 3.1. If the coefficients of method (3.1) satisfy αs+1−i = βi for all i, then
it is sufficient to consider those trees with odd ‖τ‖.

Proof. This is a consequence of Theorem II.3.2 (the maximal order of symmetric
methods is even). In fact, if the condition for order 1 is satisfied, it is automatically
of order 2. If, in addition, the conditions for order 3 are satisfied, it is automatically
of order 4, etc. 
�

It may come as a surprise that the popular leapfrog . . . can be beaten, but
only slightly. (R.I. McLachlan 1995)

Methods of Order 2. The only remaining condition for order two is
∑s

k=1(αk +
βk) = 1, and, for s = 1, the symmetry requirement leads to Φh/2◦Φ∗

h/2. Depending
on the choice of Φh, this method is equivalent to the midpoint rule, the trapezoidal
rule, or the Störmer–Verlet scheme, all very famous and frequently used. However,
McLachlan (1995) discovered that the case s = 2 can be slightly more advanta-
geous. We obtain

Φαh ◦ Φ∗
(1/2−α)h ◦ Φ(1/2−α)h ◦ Φ∗

αh, (3.3)

where α is a free parameter, which can serve for clever tuning.

Minimizing the Local Error of Composition Methods. Subtracting the B∞-
series of the numerical and the exact solutions (see Sect. III.3.2), we obtain
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Fig. 3.1. The error functions |qi(α)| defined in (3.5) (left picture). Work-precision diagrams
for the Kepler problem (as in Fig. II.4.4) and for method (3.3) with α = 0.25 (Störmer–
Verlet), α = 0.1932 (McLachlan), and α = 0.22. “IE”: method Φh treats position by implicit
Euler, velocity by explicit Euler; “EI”: method Φh treats position by explicit Euler, velocity
by implicit Euler

Ψh(y)− ϕh(y) = hp+1
∑

‖τ‖=p+1

1
σ(τ)

(
a(τ)− e(τ)

)
F (τ)(y) +O(hp+2).

Assuming that the basic method has an expansion Φh(y) = y +hf(y)+h2d2(y)+
h3d3(y) + . . . , we obtain for method (3.3), similar to (III.3.3), the local error

h3
(
q1(α)d3(y) + q2(α)

(
d′2f

)
(y) + q3(α)

(
f ′d2

)
(y)

+1

2
q4(α)

(
f ′′(f, f)

)
(y) + q5(α)

(
f ′f ′f

)
(y)

)
+O(h4),

(3.4)

which contains one term for each of the 5 trees τ ∈ T∞ with ||τ || = 3. The qi(α)
are the polynomials

q1(α) = 1

4

(
1− 6α + 12α2

)
, q2(α) = 1

4

(
−1 + 6α− 8α2

)
,

q3(α) = −α2, q4(α) = 1

6

(
1− 6α + 6α2

)
, q5(α) = 1

3
q1(α),

(3.5)

which are plotted in the left picture of Fig. 3.1. If we allow arbitrary basic methods
and arbitrary problems, all elementary differentials in the local error are indepen-
dent, and there is no overall optimal value for α. We see that the modulus of q1(α)
and q2(α) are minimal for α = 1/4, which is precisely the value corresponding to a
double application of Φh/2 ◦ Φ∗

h/2 with halved step size. But the values |q3(α)| and
|q4(α)| become smaller with decreasing α (close to α = 1/4). McLachlan (1995)
therefore minimizes some norm of the error (see Exercise 4) and arrives at the value
α = 0.1932.

In the numerical experiment of Fig. 3.1 we apply method (3.3) with three differ-
ent values of α to the Kepler problem (with data as in Fig. II.4.4 and the symplectic
Euler method for Φh). Once we treat the position variable by the implicit Euler
method and the velocity variable by the explicit Euler method (central picture), and
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once the other way round (right picture). We notice that the method which is best in
one case is worst in the other.

This simple experiment shows that choosing the free parameters of the method
by minimizing some arbitrary measure of the error coefficients is problematic. For
higher order methods there are many more expressions in the dominating term of
the local error (for example: 29 terms for ||τ || = 5). The corresponding functions qi

give a lot of information on the local error, and they indicate the region of parame-
ters that produce good methods. But, unless more information is known about the
problem (second order differential equation, nearly integrable systems), one usually
minimizes, for orders of 8 or 10, just the maximal values of the αi, βi, or γi (Kahan
& Li 1997).

Methods of Order 4. Theorem 3.1 and Example III.3.15 give 3 conditions for
order 4. Therefore, we put s = 3 in (3.1) and assume symmetry β1 = α3, β2 = α2,
and β3 = α1. This leads to the conditions

α1 + α2 + α3 = 1

2
, α3

1 + α3
2 + α3

3 = 0, (α2
3 − α2

1)(α1 + α2) = 0.

Since with α1 +α2 = 0 or with α1 +α3 = 0 the first two of these equations are not
compatible, the unique solution of this system is

α1 = α3 =
1

2 (2− 21/3)
, α2 = − 21/3

2 (2− 21/3)
.

We observe that βi = αi for all i. Therefore, Φαih ◦Φ∗
βih

can be grouped together in
(3.1) and we have obtained a method of type (3.2), which is actually method (II.4.4)
with p = 2.

Again, the solutions with the minimal number of stages do not give the best
methods (remember the good performance of Suzuki’s fourth order method (II.4.5)
in Fig. II.4.4), so we look for 4th order methods with larger s. McLachlan (1995)
has constructed a method for s = 5 with particularly small error terms and nice
coefficients

β1 = α5 = 14 −
√

19

108
, α1 = β5 = 146 + 5

√
19

540
, (3.6)

β2 = α4 = −23 − 20
√

19

270
, α2 = β4 = −2 + 10

√
19

135
, β3 = α3 = 1

5
,

which he recommends “for all uses”.
In Fig. 3.2 we compare the numerical performances of all these methods on our

already well-known example in both variants (implicit-explicit and vice-versa). We
see that the best methods in one picture may be worse in the other. For comparison,
the results are surrounded by “ghosts in grey” representing good formulae from the
next lower (order 2) and the next higher (order 6) class of methods.

Methods Tuned for Special Problems. In the case where one is applying a special
method to a special problem (e.g., to second order differential equations or to small
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Fig. 3.2. Work-precision diagrams for methods of order 4 as in Fig. 3.1; “3j”: the Triple Jump
(II.4.4); “su”: method (II.4.5) of Suzuki; “ml”: McLachlan (3.6); “bm”: method (3.7); in
grey: neighbouring order methods Störmer/Verlet (order 2) and p6 s9 (order 6)

perturbations of integrable systems), more spectacular gains of efficiency are pos-
sible. For example, Blanes & Moan (2002) have constructed the following fourth
order method with s = 6

β1 = α6 = 0.082984406417405, α1 = β6 = 0.16231455076687,
β2 = α5 = 0.23399525073150, α2 = β5 = 0.37087741497958 ,
β3 = α4 = −0.40993371990193, α3 = β4 = 0.059762097006575 ,

(3.7)

which, when correctly applied to second order differential equations (right picture
of Fig. 3.2) exhibits excellent performance.

Further methods, adapted to the integration of second order differential equa-
tions, have been constructed by Forest (1992), McLachlan & Atela (1992), Calvo
& Sanz-Serna (1993), Okunbor & Skeel (1994), and McLachlan (1995). Another
important situation, which allows a tuning of the parameters, are near-integrable
systems such as the perturbed two-body motion (e.g., the outer solar system consid-
ered in Chap. I). If the differential equation can be split into ẏ = f [1](y) + f [2](y),
where ẏ = f [1](y) is exactly integrable and f [2](y) is small compared to f [1](y),
special integrators should be used. We refer to Kinoshita, Yoshida & Nakai (1991),
Wisdom & Holman (1991), Saha & Tremaine (1992), and McLachlan (1995b) for
more details and for the parameters of such integrators.

Methods of Order 6. By Theorem 3.1 and Example III.3.12 a method (3.1) has to
satisfy 9 conditions for order 6. It turns out that these order conditions have already
a solution with s = 7, but all known solutions with s ≤ 8 are equivalent to methods
of type (3.2). With order 6 we are apparently close to the point where the enormous
simplifications of the order conditions due to Theorem 3.3 below start to outperform
the freedom of choosing different values for αi and βi. We therefore continue our
discussion by considering only the special case (3.2).
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V.3.2 Symmetric Composition of Symmetric Methods

The introduction of more symmetries into the method simplifies considerably the or-
der conditions. These simplifications can be best understood with a sort of “Choleski
decomposition” of symmetric methods (Murua & Sanz-Serna 1999).

Lemma 3.2. For every symmetric method Φh(y) that admits an expansion in pow-
ers of h, there exists Φ̂h(y) such that

Φh(y) =
(
Φ̂h/2 ◦ Φ̂∗

h/2

)
(y).

Proof. Since Φh(y) = y + O(h) is close to the identity, the existence of a unique
method Φ̂h(y) = y+hd1(y)+h2d2(y)+ . . . satisfying Φh = Φ̂h/2 ◦ Φ̂h/2 follows
from Taylor expansion and from a comparison of like powers of h.

If Φh(y) is symmetric, we have in addition

Φh = Φ−1
−h = Φ̂−1

−h/2 ◦ Φ̂−1
−h/2,

and Φ̂h/2 = Φ̂−1
−h/2 = Φ̂∗

h/2 follows from the uniqueness of Φ̂h. 
�

We let Φh be a symmetric method, and we consider the composition

Ψh = Φγsh ◦ . . . ◦ Φγ2h ◦ Φγ1h. (3.8)

Using the method Φ̂h of Lemma 3.2, this composition method is equivalent to (3.1)
(Φh replaced with Φ̂h) with

αi = βi =
γi

2
. (3.9)

Theorem 3.3. For composition methods (3.8) with symmetric Φh it is sufficient to
consider the order conditions of Theorem III.3.14 for τ ∈ H where all vertices of τ
have odd indices.

Proof. If i(τ) is even, it follows from αk = βk and from (III.3.11) that

as(τ) = as−1(τ) = . . . = a1(τ) = a0(τ) = 0.

Since e(τ) = 0 for such trees, the corresponding order condition is automatically
satisfied. Any other vertex with an even index can be brought to the root by applying
the Switching Lemma III.3.8. 
�

After this reduction, only 7 conditions survive for order 6 from the trees dis-
played in Example III.3.12. A further reduction in the number of order conditions is
achieved by assuming symmetric coefficients in method (3.8), i.e.,

γs+1−j = γj for all j. (3.10)

This implies that the overall method Ψh is symmetric, so that the order conditions
for trees with an even ||τ || need not be considered. This proves the following result.
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Fig. 3.3. Symmetric Composition of Symmetric Methods up to order 10

Theorem 3.4. For composition methods (3.8) with symmetric Φh, satisfying (3.10),
it is sufficient to consider the order conditions for τ ∈ H where all vertices of τ
have odd indices and where ‖τ‖ is odd. 
�

Figure 3.3 shows the remaining order conditions for methods up to order 10. We
see that for order 6 there remain only 4 conditions, much less than the 166 that we
started with (Theorem III.3.6).

Example 3.5. The rule of (III.3.14) leads to the following conditions for symmetric
composition of symmetric methods:

Order 2: 1

s∑
k=1

γk = 1

Order 4: 3

s∑
k=1

γ3
k = 0

Order 6: 5

s∑
k=1

γ5
k = 0

3

1 1 s∑
k=1

γ3
k

( k∑
�=1

′
γ�

)2

= 0

Order 8: 7

s∑
k=1

γ7
k = 0

5

1 1 s∑
k=1

γ5
k

( k∑
�=1

′
γ�

)2

= 0

3

1 3 s∑
k=1

γ3
k

k∑
�=1

′
γ�

k∑
m=1

′
γ3

m = 0
3

1
1 1

1
s∑

k=1

γ3
k

( k∑
�=1

′
γ�

)4

= 0.

Here, similar to Example III.3.15, a prime attached to a summation symbol indi-
cates that the last term γi

� is taken as γi
�/2.

Methods of Order 4. The methods (II.4.4) and (II.4.5) are both of the form (3.8),
and those with p = 2 yield methods of order 4. We have seen in the experiment
of Fig. II.4.4 that the method (II.4.5) yields more precise approximations; see also
Fig. 3.2. We do not know of any 4th order method of type (3.2) that is significantly
better than method (3.1) with coefficients (3.6).
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Methods of Order 6. If we search for a minimal stage solution of the four
equations for order 6, we apparently need four free parameters γ1, γ2, γ3, γ4; then
γ5, γ6, γ7 are determined by symmetry. Equation 1 gives γ4 = 1−2(γ1 +γ2 +γ3).
So we end up with three equations for the three unknowns γ1, γ2, γ3. A numerical
search for this problem produces three solutions, the best of which has been discov-
ered by many authors, in particular by Yoshida (1990), and is as follows:

γ1 = γ7 = 0.78451361047755726381949763
γ2 = γ6 = 0.23557321335935813368479318
γ3 = γ5 = −1.17767998417887100694641568

γ4 = 1.31518632068391121888424973 0 1

p6 s7

(3.11)

Using computer algebra, Koseleff (1996) proves that the nonlinear system for
γ1, γ2, γ3 has not more than three real solutions.

Similar to the situation for order 4, where relaxing the minimal number of stages
allowed a significant increase of performance, we also might expect to obtain better
methods of order 6 in this way. McLachlan (1995) increases s by two and constructs
good methods with small error coefficients. By minimizing maxi |γi|, Kahan & Li
(1997) obtain the following excellent method 3

γ1 = γ9 = 0.39216144400731413927925056
γ2 = γ8 = 0.33259913678935943859974864
γ3 = γ7 = −0.70624617255763935980996482
γ4 = γ6 = 0.08221359629355080023149045

γ5 = 0.79854399093482996339895035 0 1

p6 s9

(3.12)

This method produces, with a comparable number of total steps, errors which are
typically smaller than those of method (3.11). Numerical results of these two meth-
ods are given in Fig. 3.4.
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Fig. 3.4. Work-precision diagrams for methods of order 6 for the Kepler problem as in
Fig. 3.1; “7”: method p6 s7 of (3.11); “9”: method p6 s9 of (3.12); in grey: neighbouring
order methods (3.6) (order 4) and p8 s17 (order 8)

3 The authors are grateful to S. Blanes for this reference.
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Methods of Order 8. For order 8, Fig. 3.3 represents 8 equations to solve. This in-
dicates that the minimal value of s is 15. A numerical search for solutions γ1, . . . , γ8

of these equations produces hundreds of solutions. We choose among all these the
solution with the smallest max(|γi|). The coefficients, which were originally given
by Suzuki & Umeno (1993), Suzuki (1994), and later by McLachlan (1995), are as
follows:

γ1 = γ15 = 0.74167036435061295344822780
γ2 = γ14 = −0.40910082580003159399730010
γ3 = γ13 = 0.19075471029623837995387626
γ4 = γ12 = −0.57386247111608226665638773
γ5 = γ11 = 0.29906418130365592384446354
γ6 = γ10 = 0.33462491824529818378495798
γ7 = γ9 = 0.31529309239676659663205666

γ8 = −0.79688793935291635401978884

0 1

p8 s15

(3.13)

By putting s = 17 we obtain one degree of freedom in solving the equations. This
allows an improvement on the foregoing method. The best known solution, slightly
better than a method of McLachlan (1995), has been found by Kahan & Li (1997)
and is given by

γ1 = γ17 = 0.13020248308889008087881763
γ2 = γ16 = 0.56116298177510838456196441
γ3 = γ15 = −0.38947496264484728640807860
γ4 = γ14 = 0.15884190655515560089621075
γ5 = γ13 = −0.39590389413323757733623154
γ6 = γ12 = 0.18453964097831570709183254
γ7 = γ11 = 0.25837438768632204729397911
γ8 = γ10 = 0.29501172360931029887096624

γ9 = −0.60550853383003451169892108

0 1

p8 s17

(3.14)

Numerical results, in the same style as above, are given in Fig. 3.5.

6

10
102 103 10410−21

10−18

10−15

10−12

10−9

10−6

10−3

100

6

10
102 103 10410−21

10−18

10−15

10−12

10−9

10−6

10−3

100Order 8

15

17

er
ro

r

f. eval.

IE

Order 8

15

17er
ro

r

f. eval.

EI

Fig. 3.5. Work-precision diagrams for methods of order 8 for the Kepler problem as in
Fig. 3.1; “15”: method p8 s15 of (3.13); “17”: method p8 s17 of (3.14); in grey: neighbouring
order methods p6 s9 (order 6) and p10 s35 (order 10)
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Methods of Order 10. The first methods of order 10 were given by Kahan & Li
(1997) with s = 31 and s = 33, which could be improved on after some nights of
computer search (see method (V.3.15) of the first edition). A significantly improved
method for s = 35 (see Fig. 3.5 for a comparison with eighth order methods) has in
the meantime been found by Sofroniou & Spaletta (2004):

γ1 = γ35 = 0.07879572252168641926390768
γ2 = γ34 = 0.31309610341510852776481247
γ3 = γ33 = 0.02791838323507806610952027
γ4 = γ32 = −0.22959284159390709415121340
γ5 = γ31 = 0.13096206107716486317465686
γ6 = γ30 = −0.26973340565451071434460973
γ7 = γ29 = 0.07497334315589143566613711
γ8 = γ28 = 0.11199342399981020488957508
γ9 = γ27 = 0.36613344954622675119314812
γ10 = γ26 = −0.39910563013603589787862981
γ11 = γ25 = 0.10308739852747107731580277
γ12 = γ24 = 0.41143087395589023782070412
γ13 = γ23 = −0.00486636058313526176219566
γ14 = γ22 = −0.39203335370863990644808194
γ15 = γ21 = 0.05194250296244964703718290
γ16 = γ20 = 0.05066509075992449633587434
γ17 = γ19 = 0.04967437063972987905456880

γ18 = 0.04931773575959453791768001

0 1

p10 s35

(3.15)

V.3.3 Effective Order and Processing Methods

There has recently been a revival of interest in the concept of “effective
order”. (J.C. Butcher 1998)

The concept of effective order was introduced by Butcher (1969) with the aim of
constructing 5th order explicit Runge–Kutta methods with 5 stages. The idea is to
search for a computationally efficient method Kh such that with a suitable χh,

Ψh = χh ◦Kh ◦ χ−1
h (3.16)

has an order higher than that of Kh. The method Kh is called the kernel, and χh can
be interpreted as a transformation in the phase space, close to the identity. Because
of

ΨN
h = χh ◦KN

h ◦ χ−1
h ,

an implementation of Ψh over N steps with constant step size h has the same com-
putational efficiency as Kh. The computation of χ−1

h has only to be done once at the
beginning of the integration, and χh has to be evaluated only at output points, which
can be performed on another processor. In the article López-Marcos, Sanz-Serna &
Skeel (1996) the notion of preprocessing for the step χ−1

h and postprocessing for
χh is introduced.



V.3 Symmetric Composition Methods 159

Example 3.6 (Störmer–Verlet as Processed Symplectic Euler Method). Con-
sider a split differential equation, let Φ[LT ]

h = ϕ
[2]
h ◦ ϕ

[1]
h be the Lie-Trotter formula

or symplectic Euler method (see Sect. II.5), and Φ
[S]
h = ϕ

[1]
h/2 ◦ϕ

[2]
h ◦ϕ[1]

h/2 the Strang
splitting or Störmer–Verlet scheme. As a consequence of the group property of the
exact flow, we have

Φ
[S]
h = ϕ

[1]
h/2 ◦ Φ

[LT ]
h ◦ ϕ

[1]
−h/2 = χh ◦ Φ

[LT ]
h ◦ χ−1

h

with χh = ϕ
[1]
h/2. Hence, applying the Lie-Trotter formula with processing yields a

second order approximation.

Since the use of geometric integrators requires constant step sizes, it is quite
natural that Butcher’s idea of effective order has been revived in this context. A sys-
tematic search for processed composition methods started with the works of Wis-
dom, Holman & Touma (1996), McLachlan (1996), and Blanes, Casas & Ros (1999,
2000b).

Let us explain the technique of processing in the situation where the kernel Kh

is a symmetric composition

Kh = Φγsh ◦ . . . ◦ Φγ2h ◦ Φγ1h (γs+1−i = γi for all i) (3.17)

of a symmetric method Φh. We suppose that the processor is of the form

χh = Φδrh ◦ . . . ◦ Φδ2h ◦ Φδ1h, (3.18)

such that its inverse is given by (use the symmetry Φ−1
h = Φ−h)

χ−1
h = Φ−δ1h ◦ Φ−δ2h ◦ . . . ◦ Φ−δrh. (3.19)

Order Conditions. The composite method Ψh = χh ◦ Kh ◦ χ−1
h is of the form

Ψh = Φε2r+sh ◦ . . . ◦ Φε2h ◦ Φε1h with

(ε2r+s, . . . , ε2, ε1) = (δr, . . . , δ1, γs, . . . , γ1,−δ1, . . . ,−δr). (3.20)

Theorem 3.3 thus tells us that only the order conditions corresponding to τ ∈ H,
whose vertices have odd indices, have to be considered. Unfortunately, the sequence
{εi} of (3.20) does not satisfy the symmetry relation (3.10), unless all δi vanish.
However, if we require

χ−h(y) = χh(y) +O(hp+1), (3.21)

we see that χ−1
h (y) = χ∗

h(y) + O(hp+1), and the method Ψh = χh ◦ Kh ◦ χ−1
h

is symmetric up to terms of order O(hp+1). Consequently, the reduction of Theo-
rem 3.4 is valid, so that for order p only the trees of Fig. 3.3 have to be considered.

For the first tree of Example 3.5 the order condition is

1 =
2r+s∑
k=1

εk =
s∑

k=1

γk,
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and we see that this is a condition on the kernel Kh only. Similarly, for odd i we
have

0 =
2r+s∑
k=1

εi
k =

s∑
k=1

γi
k, (3.22)

so that also the trees 3 , 5 , 7 , . . . give conditions on Kh and cannot be influenced
by the processor. We next consider the trees of Example 3.5 with three vertices,
whose order condition is

0 =
2r+s∑
k=1

εi
k

k∑
�=1

′
εj

�

k∑
m=1

′
εq

m.

We split the sums according to the partitioning into δi, γi,−δi in (3.20), and we
denote the expressions appearing in Example 3.5 by a(τ) and those corresponding
to χh and χ−1

h by b(τ) and b−1(τ), respectively. Using the abbreviations τi for the
tree with one vertex labelled i, τij for the tree with two vertices labelled i (the root)
and j, and by τijq the trees with three vertices labelled i (root), j and q (vertices that
are directly connected to the root), this yields

0 = b−1(τijq) + a(τi)b−1(τj)b−1(τq) + a(τij)b−1(τq)

+ a(τiq)b−1(τj) + a(τijq) + b(τi)b−1(τj)b−1(τq) (3.23)

+ b(τi)b−1(τj)a(τq) + b(τi)a(τj)b−1(τq) + b(τi)a(τj)a(τq)

+ b(τij)b−1(τq) + b(τij)a(τq) + b(τiq)b−1(τj) + b(τiq)a(τj) + b(τijq).

How can we simplify this long expression? First of all, we imagine Kh to be the
identity (either s = 0 or all γi = 0), so that Ψh = χh ◦χ−1

h becomes the identity. In
this situation, the terms involving a(τ) are not present in (3.23), and we obtain

0 = b−1(τijq) + b(τi)b−1(τj)b−1(τq) + b(τij)b−1(τq) + b(τiq)b−1(τj) + b(τijq).

We can thus remove all terms in (3.23) that do not contain a factor a(τ). Now ob-
serve that by (3.21), χh(y) as well as χ−1

h (y) have an expansion in even powers of
h. Therefore, b(τ) and b−1(τ) vanish for all τ with odd ‖τ‖. Formula (3.23) thus
simplifies considerably and yields

0 = a(τ311) + 2b(τ31)a(τ1), (3.24)

0 = a(τ511) + 2b(τ51)a(τ1), (3.25)

0 = a(τ313) + b(τ31)a(τ3) + b(τ33)a(τ1). (3.26)

A similar computation for the last tree in Example 3.5 gives (in an obvious notation)

0 = a(τ31111) + 4b(τ31)a(τ1)3 + 4b(τ3111)a(τ1). (3.27)

Since a(τ1) =
∑s

i=1 γi = 1, the conditions (3.24), (3.25) and (3.27) can be inter-
preted as conditions on the processor, namely on b(τ31), b(τ51) and b(τ3111). We
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already have a(τ3) = 0 from (3.22), and an application of the Switching Lemma
III.3.8 gives b(τ33) = 1

2

(
b(τ3)2 − b(τ6)

)
. The term b(τ3) vanishes by (3.21) and

b(τ6) = 0 is a consequence of the proof of Theorem 3.3. Therefore (3.26) is equiv-
alent to a(τ313) = 0. We summarize our computation in the following theorem.

Theorem 3.7. The processing method Ψh = χh ◦Kh ◦χ−1
h is of order p (p ≤ 8), if

• the coefficients γi of the kernel satisfy the conditions of the left column in Exam-
ple 3.5, i.e., 3 conditions for order 6, and 5 conditions for order 8;

• the coefficients δi of the processor are such that (3.21) holds (4 conditions for
order 6, and 8 conditions for order 8), and in addition condition (3.24) for order
6, and (3.24), (3.25), (3.27) for order 8 are satisfied. 
�

Remark 3.8. Although we have presented the computations only for p ≤ 8, the
result is general. All trees τ ∈ H, which are not of the form τ = u ◦ 1 , give
rise to conditions on the kernel Kh (for a similar result in the context of Runge–
Kutta methods see Butcher & Sanz-Serna (1996)). The remaining conditions have
to be satisfied by the coefficients of the processor. Due to the reduced number of
order conditions, it is relatively easy to construct high order kernels. However, the
difficulty in constructing a suitable processor increases rapidly with the order.

The application of the processing technique is two-fold. A first possibility is
to take one of the high-order composition methods of the form (3.2), e.g., one of
those presented in Sect. V.3.2, and to exploit the freedom in the coefficients of the
processor to make the error constants smaller.

Another possibility is to start from the beginning and to construct a method Kh

with coefficients satisfying only the conditions of Theorem 3.7. Methods of effective
order 6 and 8 have been constructed in this way by Blanes (2001).

V.4 Symmetric Methods on Manifolds

Numerical methods for differential equations on manifolds have been introduced
in Sections IV.4 and IV.5. The presented algorithms are in general not symmetric.
We discuss here suitable symmetric modifications which often have an improved
long-time behaviour. We consider a differential equation

ẏ = f(y), f(y) ∈ TyM (4.1)

on a manifold M, and we assume that the manifold is either given as the zero set of
a function g(y) or by means of a suitable parametrization y = ϕ(z).

V.4.1 Symmetric Projection

Due to the projection at the end of an integration step, the standard projection
method (Algorithm IV.4.2) is not symmetric (see Fig. IV.4.2). In order to make the
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overall algorithm symmetric, one has to apply a kind of “inverse projection” at the
beginning of each integration step. This idea has first been used by Ascher & Reich
(1999) to enforce conservation of energy, and it has been applied in more general
contexts by Hairer (2000).

Algorithm 4.1 (Symmetric Projection Method). Assume that yn ∈ M. One step
yn �→ yn+1 is defined as follows (see Fig. 4.1, right picture):

• ỹn = yn + G(yn)Tµ where g(yn) = 0 (perturbation step);
• ỹn+1 = Φh(ỹn) (symmetric one-step method applied to ẏ = f(y));
• yn+1 = ỹn+1 + G(yn+1)Tµ with µ such that g(yn+1) = 0 (projection step).

Here, G(y) = g′(y) denotes the Jacobian of g(y). It is important to take a
symmetric method in the second step, and the same vector µ in the perturbation and
projection steps.

M

y0

y1 y2

y3

M

y0
y3

Fig. 4.1. Standard projection (left picture) compared to symmetric projection (right)

Existence of the Numerical Solution. The vector µ and the numerical approxima-
tion yn+1 are implicitly defined by

F (h, yn+1, µ) =
(

yn+1 − Φh

(
yn + G(yn)Tµ

)
−G(yn+1)Tµ

g(yn+1)

)
= 0. (4.2)

Since F (0, yn, 0) = 0 and since

∂F

∂(yn+1, µ)
(
0, yn, 0) =

(
I −2G(yn)T

G(yn) 0

)
(4.3)

is invertible (provided that G(yn) has full rank), an application of the implicit func-
tion theorem proves the existence of the numerical solution for sufficiently small
step size h. The simple structure of the matrix (4.3) can also be exploited for an
efficient solution of the nonlinear system (4.2) using simplified Newton iterations.
If the basic method Φh is itself implicit, the nonlinear system (4.2) should be solved
in tandem with ỹn+1 = Φh(ỹn).

Order. For a study of the local error we let yn := y(tn) be a value on the exact
solution y(t) of (4.1). If the basic method Φh is of order p, i.e., if y(tn + h) −
Φh

(
y(tn)

)
= O(hp+1), we have F

(
h, y(tn+1), 0

)
= O(hp+1). Compared to (4.2)

the implicit function theorem yields
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yn+1 − y(tn+1) = O(hp+1) and µ = O(hp+1).

This proves that the symmetric projection method of Algorithm 4.1 has the same
order as the underlying one-step method Φh.

Symmetry of the Algorithm. Exchanging h ↔ −h and yn ↔ yn+1 in the Algo-
rithm 4.1 yields

ỹn = yn+1 + G(yn+1)Tµ, g(yn+1) = 0,
ỹn+1 = Φ−h(ỹn),
yn = ỹn+1 + G(yn)Tµ, g(yn) = 0.

The auxiliary variables µ, ỹn, and ỹn+1 can be arbitrarily renamed. If we replace
them with −µ, ỹn+1, and ỹn, respectively, we get the formulas of the original al-
gorithm provided that the method Φh of the intermediate step is symmetric. This
proves the symmetry of the algorithm.

Various modifications of the perturbation and projection steps are possible with-
out destroying the symmetry. For example, one can replace the arguments yn and
yn+1 in G(y) with (yn +yn+1)/2. It might be advantageous to use a constant direc-
tion, i.e., ỹn = yn + ATµ, yn+1 = ỹn+1 + ATµ with a constant matrix A. In this
case the matrix G(y)AT has to be invertible along the solution in order to guarantee
the existence of the numerical solution.

Reversibility. From Theorem 1.5 we know that symmetry alone does not imply
the ρ-reversibility of the numerical flow. The method must also satisfy the compat-
ibility condition (1.4). It is straightforward to check that this condition is satisfied
if the integrator Φh of the intermediate step of Algorithm 4.1 satisfies (1.4) and, in
addition,

ρG(y)T = G(ρy)Tσ (4.4)

holds with some constant invertible matrix σ. In many interesting situations we
have g(ρy) = σ−T g(y) with a suitable σ, so that (4.4) follows by differentiation
if ρρT = I . Similarly, when a projection with constant direction y = ỹ + ATµ is
applied, the matrix A has to satisfy ρAT = ATσ for a suitably chosen invertible
matrix σ (see the experiment of Example 4.4 below).

Example 4.2. Let us consider the equations of motion of a rigid body as described
in Example IV.1.7. They constitute a differential equation on the manifold

M = {(y1, y2, y3) | y2
1 + y2

2 + y2
3 = 1},

and it is ρ-reversible with respect to ρ(y1, y2, y3) = (−y1, y2, y3), and also with
respect to ρ(y1, y2, y3) = (y1,−y2, y3) and ρ(y1, y2, y3) = (y1, y2,−y3). For a
numerical simulation we take I1 = 2, I2 = 1, I3 = 2/3, and the initial value
y0 =

(
cos(0.9), 0, sin(0.9)

)
. We apply the trapezoidal rule (II.1.2) with the large

step size h = 1 in three different versions.
The upper picture of Fig. 4.2 shows the result of a direct application of the trape-

zoidal rule. The numerical solution lies apparently on a closed curve, but it does not



164 V. Symmetric Integration and Reversibility

Fig. 4.2. Numerical simulation of the rigid body equations. The three pictures correspond
to a direct application (upper), to the standard projection (lower left), and to the symmetric
projection (lower right) of the trapezoidal rule; 5000 steps with step size h = 1

lie exactly on the manifold M. This can be seen as follows: the trapezoidal rule ΦT
h

is conjugate to the implicit midpoint rule ΦM
h via a half-step of the explicit Euler

method χh/2. In fact the relations

ΦT
h = χ∗

h/2 ◦ χh/2 and ΦM
h = χh/2 ◦ χ∗

h/2

hold, so that

ΦT
h = χ−1

h/2 ◦ ΦM
h ◦ χh/2 and (ΦT

h )N = χ−1
h/2 ◦ (ΦM

h )N ◦ χh/2.

Consequently, the trajectory of the trapezoidal rule is obtained from the trajectory
of the midpoint rule by a simple change of coordinates. On the other hand, the
numerical solution of the midpoint rule lies exactly on a solution curve because it
conserves quadratic invariants (Theorem IV.2.1).

Using standard orthogonal projection (Algorithm IV.4.2) we obviously obtain a
numerical solution lying on the manifold M. But as we can see from the lower left
picture of Fig. 4.2, it does not remain near a closed curve and converges to a fixed
point. The lower right picture shows that the use of the symmetric orthogonal pro-
jection (Algorithm 4.1) recovers the property of remaining near the closed solution
curve.
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Example 4.3 (Numerical Experiment with Constant Direction of Projection).
We consider the pendulum equation in Cartesian coordinates (see Example IV.4.1),

q̇1 = p1, ṗ1 = −q1λ,

q̇2 = p2, ṗ2 = −1− q2λ
(4.5)

with λ = (p2
1 + p2

2 − q2)/(q2
1 + q2

2). This is a problem on the manifold

M =
{
(q1, q2, p1, p2) | q2

1 + q2
2 = 1, q1p1 + q2p2 = 0

}
.

It is ρ-reversible with respect to ρ(q1, q2, p1, p2) = (q1, q2,−p1,−p2) and also with
respect to ρ(q1, q2, p1, p2) = (−q1, q2, p1,−p2).

We apply two kinds of symmetric projection
methods. First, we consider an orthogonal projec-
tion ontoM as in Algorithm 4.1. Second, we project
parallel to coordinate axes. More precisely, we fix
the first components in position and velocity if the
angle of the pendulum is close to 0 or π (vertical
projection in the picture to the right), and we fix the
second components if the angle is close to ±π/2
(horizontal projection). The regions where the di-
rection of projection changes, are overlapping.

We notice in Fig. 4.3 that for the orthogonal projection method the energy er-
ror remains bounded, and this is also true for integrations over much longer time
intervals. This is in agreement with the observation of Chap. I, where symmetric
methods showed an excellent long-time behaviour when applied to reversible dif-
ferential equations.
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Fig. 4.3. Global error in the total energy for two different projection methods – orthogonal
and coordinate projection – with the trapezoidal rule as basic integrator. Initial values for
the position are (cos 0.8,− sin 0.8) (left picture) and (cos 0.8, sin 0.8) (right picture); zero
initial values in the velocity; step sizes are h = 0.1 (solid) and h = 0.05 (thin dashed)

For the coordinate projection, however, we observe a bounded energy error only
for the initial value that is close to equilibrium (no change in the direction of the
projection is necessary). As soon as the direction has to be changed (right picture
of Fig. 4.3) a linear drift in the energy error becomes visible. Hence, care has to be
taken with the choice of the projection. For an explanation of this phenomenon we
refer to Chap. IX on backward error analysis and to Chap. XI on perturbation theory
of reversible mappings.
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Fig. 4.4. Global error in the total energy for a symmetric projection method violating (1.4).
Initial values for the position are (cos 0.8,− sin 0.8) and (0, 0) for the velocity; step sizes
are h = 0.1 (solid) and h = 0.05 (thin dashed)

Example 4.4 (A Symmetric but Non-Reversible Projection Method). We con-
sider the pendulum equation as in Example 4.3. This time, however, we apply a
projection ỹn = yn + ATµ, yn+1 = ỹn+1 + ATµ with

A =
(

ε 1 0 0
ε 0 0 1

)
, ε = 0.2.

For ε = 0 this corresponds to the vertical projection used in Example 4.3. For
ε �= 0 there is no matrix σ such that ρAT = ATσ holds for one of the mappings
ρ that make the problem ρ-reversible. Hence condition (1.4) is violated, and the
method is thus not ρ-reversible. The initial values are chosen such that g′(y)AT is
invertible and well-conditioned along the solution. Although the projection direction
need not be changed during the integration and the method is symmetric, the long-
time behaviour is disappointing as shown in Fig. 4.4. This experiment illustrates that
condition (1.4) is also important for a qualitatively correct simulation.

V.4.2 Symmetric Methods Based on Local Coordinates

Numerical methods for differential equations on manifolds that are based on local
coordinates (Algorithm IV.5.3) are in general not symmetric. For example, if we
consider the parametrization (IV.5.8) with respect to the tangent space at y0, the ad-
joint method would be parametrized by the tangent space at y1. We can circumvent
this difficulty by the following algorithm (Hairer 2001).

Algorithm 4.5 (Symmetric Local Coordinates Approach). Assume that yn ∈M
and that ψa is a local parametrization of M satisfying ψa(0) = a (close to yn).
One step yn �→ yn+1 is defined as follows (see Fig. 4.5):

• find zn (close to 0) such that ψa(zn) = yn;
• z̃n+1 = Φh(zn) (symmetric one-step method applied to (IV.5.7);
• yn+1 = ψa( z̃n+1);
• choose a in the parametrization such that zn + z̃n+1 = 0.

It is important to remark that the parametrization y = ψa(z) is in general changed
in every step.
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y0

z0

a

z̃1

y1

z1

z̃2

y2

y3

Fig. 4.5. Symmetric use of local tangent space parametrization

This algorithm is illustrated in Fig. 4.5 for the tangent space parametrization
(IV.5.8), given by

ψa(z) = a + Q(a)z + g′(a)Tua(z), (4.6)

where the columns of Q(a) form an orthogonal basis of TaM and the function
ua(z) is such that ψa(z) ∈M. It satisfies ua(0) = 0 and u′

a(0) = 0.

Existence of the Numerical Solution. In Algorithm 4.5 the values a ∈M and zn

are implicitly determined by

F (h, zn, a) =
(

zn + Φh(zn)
ψa(zn)− yn

)
= 0, (4.7)

and the numerical solution is then explicitly given by yn+1 = ψa

(
Φh(zn)

)
. For

more clarity we also use here the notation ψ(z, a) = ψa(z). If the parametrization
ψ(z, a) is differentiable, we have

∂F

∂(zn, a)
(
0, 0, yn) =

(
2I 0

∂ψ
∂z (0, yn) ∂ψ

∂a (0, yn)

)
. (4.8)

Since ψ(z, a) ∈ M for all z and a ∈ M, the derivative with respect to a lies
in the tangent space. Assume now that the parametrization ψ(z, a) is such that the
restriction of ∂ψ

∂a (0, yn) onto the tangent space Tyn
M is bijective. Then, the matrix

(4.8) is invertible on R
d × Tyn

M (d denotes the dimension of the manifold). The
implicit function theorem thus proves the existence of a numerical solution (zn, a)
close to (0, yn). In the case where ψa(z) is given by (4.6), the matrix

∂ψ

∂a
(0, a) = I − g′(a)T

(
g′(a)g′(a)T

)−1
g′(a)

is a projection onto the tangent space TaM and satisfies the above assumptions
provided that g′(a) has full rank.

Order. We let yn := y(tn) be a value on the exact solution y(t) of (4.1). Then we
fix a ∈M as follows: we replace the upper part of the definition (4.7) of F (h, zn, a)
with zn + ϕ

(z)
h (zn), where ϕ

(z)
t denotes the exact flow of the differential equation

for z(t) equivalent to (4.1). The above considerations show that such an a exists;
let us call it a∗. If Φh is of order p, we then have F

(
h, z(tn), a∗

)
= O(hp+1).

An application of the implicit function theorem thus gives zn − z(tn) = O(hp+1),
implying z̃n+1−z(tn+1) = O(hp+1), and finally also yn+1−y(tn+1) = O(hp+1).
This proves order p for the method defined by Algorithm 4.5.
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Symmetry. Exchanging h ↔ −h and yn ↔ yn+1 in Algorithm 4.5 yields

ψa(zn) = yn+1, z̃n+1 = Φ−h(zn), yn = ψa(z̃n+1), zn + z̃n+1 = 0.

If we also exchange the auxiliary variables zn and z̃n+1 and if we use the symmetry
of the basic method Φh, we regain the original formulas. This proves the symmetry
of the algorithm. Again various kinds of modifications are possible. For example,
the condition zn + z̃n+1 = 0 can be replaced with zn + z̃n+1 = χ(h, zn, z̃n+1). If
χ(−h, v, u) = χ(h, u, v), the symmetry of Algorithm 4.5 is not destroyed.

Reversibility. In general, we cannot expect the method of Algorithm 4.5 to satisfy
the ρ-compatibility condition (1.4), which is needed for ρ-reversibility. However, if
the parametrization is such that

ρψa(z) = ψρa(σz) for some invertible σ , (4.9)

we shall show that the compatibility condition (1.4) holds. We first prove that
for a ρ-reversible problem ẏ = f(y) the differential equation (IV.5.7), written as
ż = Fa(z), is σ-reversible in the sense that σFa(z) = −Fρa(σz). This follows
from ρψ′

a(z) = ψ′
ρa(σz)σ (which is seen by differentiation of (4.9)) and from

f
(
ψρa(σz)

)
= −ρ f

(
ψa(z)

)
, because

ψ′
a(z)Fa(z) = f

(
ψa(z)

)
=⇒ ψ′

ρa(σz)σFa(z) = −f
(
ψρa(σz)

)
.

If the basic method Φh satisfies σ ◦Φh = Φ−h ◦σ when applied to ż = Fa(z) (e.g.,
for all Runge–Kutta methods), the formulas of Algorithm 4.5 satisfy

ρ yn = ρψa(zn) = ψρa(σzn), σz̃n+1 = Φ−h(σzn),

ψρa(σz̃n+1) = ρψa(z̃n+1) = ρ yn+1, σzn + σz̃n+1 = 0.

This proves that, starting with ρyn and a negative step size −h, the Algorithm 4.5
produces ρyn+1, where yn+1 is just the result obtained with initial value yn and
step size h. But this is nothing other than the ρ-compatibility condition (1.4) for
Algorithm 4.5.

In order to verify condition (4.9) for the tangent space parametrization (4.6), we
write it as ψa(Z) = a + Z + N(Z), where Z is an arbitrary element of the tan-
gent space TaM and N(Z) is orthogonal to TaM such that ψa(Z) ∈ M. Since
ρTaM = TρaM and since, for a ρ satisfying ρρT = I , the vector ρN(Z) is or-
thogonal to TρaM, we have ρψa(Z) = ψρa(ρZ). This proves (4.9) for the tangent
space parametrization of a manifold.

Example 4.6. We repeated the experiment of Example 4.2 with Algorithm IV.5.3,
using tangent space parametrization and the trapezoidal rule as basic integrator, and
compared it to the symmetrized version of Algorithm 4.5. We were surprised to see
that both algorithms worked equally well and gave a numerical solution lying near
a closed curve. An explanation is given in Exercise 11. There it is shown that for the
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Fig. 4.6. Numerical simulation of the rigid body equations; standard use of tangent space
parametrization with the trapezoidal rule as basic method (left picture) and its symmetrized
version (right picture); 5000 steps with step size h = 0.4

special situation where M is a sphere, the standard algorithm is also symmetric for
the trapezoidal rule. Let us therefore modify the problem slightly.

We consider the rigid body equations (IV.1.4) as a differential equation on the
manifold

M =
{

(y1, y2, y3)
∣∣∣ y

2
1

I1
+

y2
2

I2
+

y2
3

I3
= Const

}
(4.10)

with parameters and initial data as in Example 4.2, and we apply the standard and the
symmetrized method based on tangent space parametrization. The result is shown
in Fig. 4.6. In both cases the numerical solution lies on the manifold (by definition
of the method), but only the symmetric method has a correct long-time behaviour.

Symmetric Lie Group Methods. We turn our attention to particular problems

Ẏ = A(Y )Y, Y (0) = Y0, (4.11)

where A(Y ) is in the Lie algebra g whenever Y is in the corresponding Lie group
G. The exact solution then evolves on the manifold G. Munthe-Kaas methods
(Sect. IV.8.2) are in general not symmetric, even if the underlying Runge–Kutta
method is symmetric. This is due to the unsymmetric use of the local coordinates
Y = exp(Ω)Y0. However, accidentally, the Lie group method based on the implicit
midpoint rule

Yn+1 = exp(Ω)Yn, Ω = hA
(
exp(Ω/2)Yn

)
(4.12)

is symmetric. This can be seen as usual by exchanging h ↔ −h and Yn ↔ Yn+1

(and also Ω ↔ −Ω for the auxiliary variable). Numerical computations with the
rigid body equations (considered as a problem on the sphere) shows an excellent
long-time behaviour for this method similar to that of the right picture in Fig. 4.6. In
contrast to the implicit midpoint rule (I.1.7), the numerical solution of (4.12) does
not lie exactly on the ellipsoid (4.10); see Exercise 12.
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For the construction of further symmetric Lie group methods we can apply the
ideas of Algorithm 4.5. As local parametrization we choose

ψU (Ω) = exp(Ω)U, (4.13)

where U = exp(Θ)Yn plays the role of the midpoint on the manifold. We put Zn =
−Θ so that ψU (Zn) = Yn. With this starting value Zn we apply any symmetric
Runge–Kutta method to the differential equation

Ω̇ = A
(
ψU (Ω)

)
+

q∑
k=1

Bk

k!
ad k

Ω

(
A
(
ψU (Ω)

))
, Ω(0) = −Θ, (4.14)

(cf. (IV.8.9)) and thus obtain Z̃n+1. According to Algorithm 4.5, Θ is implicitly
determined by the condition Zn + Z̃n+1 = 0, and the numerical approximation is
obtained from

Yn+1 = ψU (Z̃n+1) = exp(Z̃n+1) exp(Θ)Yn = exp(2Θ)Yn.

The method obtained in this way is identical to Algorithm 2 of Zanna, Engø &
Munthe-Kaas (2001). With the coefficients of the 2-stage Gauss method (Table
II.1.1) and with q = 1 in (4.14) we thus get

Ω1 = −h

√
3

6

(
A2 −

1

2
[Ω2, A2]

)
, Ω2 = h

√
3

6

(
A1 −

1

2
[Ω1, A1]

)

Yn+1 = exp
(
2Θ

)
Yn = exp

(
h

2

(
A1 + A2

)
− h

4

(
[Ω1, A1] + [Ω2, A2]

))
Yn,

where Ai = A
(
exp(Ωi) exp(Θ)Yn

)
. This is a symmetric Lie group method of order

four. We can reduce the number of commutators by replacing Ωi in the right-hand
expression with its dominating term. This yields

Ω1 = −h

√
3

6
A2 + h2

24
[A1, A2], Ω2 = h

√
3

6
A1 −

h2

24
[A1, A2]

Yn+1 = exp
(

h

2

(
A1 + A2

)
− h2

√
3

12
[A1, A2]

)
Yn

(4.15)

(cf. Exercise IV.19). Although we have neglected terms of size O(h4), the method
remains of order four, because the order of symmetric methods is always even.

For any linear invertible transformation ρ, the parametrization (4.13) satisfies

ρψU (Ω) = ρ exp(Ω)U = exp(ρΩρ−1)ρU = ψρU (σU)

with σΩ = ρΩρ−1. Hence (4.9) holds true. If the problem (4.11) is ρ-reversible, i.e.,
ρA(Y ) = −A(ρY )ρ, then the truncated differential equation (4.14) is σ-reversible
for all choices of the truncation index q. Moreover, after the simplifications that lead
to method (4.15), the ρ-compatibility condition (1.4) is also satisfied.
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The following variant is also proposed in Zanna, Engø & Munthe-Kaas (2001).
Instead of computing Θ from the relation Zn + Z̃n+1 = 0, Θ is determined by

Zn + Z̃n+1 = h

s∑
i=1

ei

(
Ai −

1

2
[Ωi, Ai] + . . .

)
.

If the coefficients satisfy es+1−i = −ei, this modification gives symmetric Lie
group methods.

V.5 Energy – Momentum Methods and Discrete
Gradients

Conventional numerical methods, when applied to the ordinary differen-
tial equations of motion of classical mechanics, conserve the total energy
and angular momentum only to the order of the truncation error. Since
these constants of motion play a central role in mechanics, it is a great
advantage to be able to conserve them exactly.

(R.A. LaBudde & D. Greenspan 1976)

This section is concerned with numerical integrators for the equations of motion
of classical mechanics which conserve both the total energy and angular momen-
tum. Their construction is related to the concept of discrete gradients. The meth-
ods considered are symmetric, which is incidental but useful: in our view their
good long-time behaviour is a consequence of their symmetry (and reversibility)
more than of their exact conservation properties; see the disappointing behaviour of
the non-symmetric energy- and momentum-conserving projection method in Exam-
ple IV.4.4.

A Modified Midpoint Rule. Consider first a single particle of mass m in R
3,

with position coordinates q(t) ∈ R
3, moving in a central force field with potential

U(q) = V (‖q‖) (e.g., V (r) = −1/r in the Kepler problem). With the momenta
p(t) = m q̇(t), the equations of motion read

q̇ =
1
m

p , ṗ = −∇U(q) = −V ′(‖q‖) q

‖q‖ .

Constants of motion are the total energy H = T (p) + U(q), with T (p) =
‖p‖2/(2m), and the angular momentum L = q × p:

d

dt
(q × p) = q̇ × p + q × ṗ =

1
m

p× p− V ′(‖q‖) 1
‖q‖ q × q = 0 .

We know from Sect. IV.2 that the implicit midpoint rule conserves the quadratic
invariant L = q× p, and Theorem IV.2.4 (or a simple direct calculation) shows that
L remains actually conserved by any modification of the form
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qn+1 = qn +
h

m
pn+1/2

pn+1 = pn − κh∇U(qn+1/2)
with

pn+1/2 = 1
2 (pn + pn+1)

qn+1/2 = 1
2 (qn + qn+1)

(5.1)

where κ is an arbitrary real number. Simo, Tarnow & Wong (1992) introduce
this additional parameter κ and determine it so that the total energy is conserved:
H(pn+1, qn+1) = H(pn, qn). With the notation Fn+1/2 = −∇U(qn+1/2) =
−V ′(‖qn+1/2‖)/‖qn+1/2‖ · qn+1/2 we have

T (pn+1) = T (pn + κhFn+1/2) = T (pn) +
κh

m
pT

n+1/2 Fn+1/2 ,

and hence the condition for conservation of the total energy H = T + U becomes

κ
h

m
pT

n+1/2 Fn+1/2 = U(qn)− U(qn+1) .

This gives a reasonable method even if pT
n+1/2 Fn+1/2 is arbitrarily close to zero.

This is seen as follows: let σ = −κV ′(‖qn+1/2‖)/‖qn+1/2‖ so that κFn+1/2 =
σqn+1/2. The above condition for energy conservation then reads

σ
h

m
pT

n+1/2 qn+1/2 = V (‖qn‖)− V (‖qn+1‖) ,

where we note further that

h

m
pT

n+1/2 qn+1/2 = (qn+1 − qn)T 1
2 (qn+1 + qn)

= 1
2

(
‖qn+1‖2 − ‖qn‖2

)
=

(
‖qn+1‖ − ‖qn‖

)
1
2

(
‖qn+1‖+ ‖qn‖

)
.

These formulas give

σ = −V (‖qn+1‖)− V (‖qn‖)
‖qn+1‖ − ‖qn‖

1
1
2

(
‖qn+1‖+ ‖qn‖

) , (5.2)

with which method (5.1) becomes

qn+1 = qn +
h

m
pn+1/2

pn+1 = pn − h
V (‖qn+1‖)− V (‖qn‖)

‖qn+1‖ − ‖qn‖
qn+1/2

1
2

(
‖qn+1‖+ ‖qn‖

) .

(5.3)

This is a second-order symmetric method which conserves the total energy and
the angular momentum. It evaluates only the potential U(q) = V (‖q‖). The force
−∇U(q) = −V ′(‖q‖) q

‖q‖ is approximated by finite differences.
The energy- and momentum-conserving method (5.3) first appeared in LaBudde

& Greenspan (1974). The method (5.1) or (5.3) is the starting point for extensions
in several directions to other problems of mechanics and other methods; see Simo,
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Tarnow & Wong (1992), Simo & Tarnow (1992), Lewis & Simo (1994, 1996), Gon-
zalez & Simo (1996), Gonzalez (1996), and Reich (1996b). In the following we
consider a direct generalization to systems of particles, also given in LaBudde &
Greenspan (1974).

An Energy-Momentum Method for N-Body Systems. We consider a system of
N particles interacting pairwise with potential forces which depend on the distances
between the particles. As in Example IV.1.3, this is formulated as a Hamiltonian
system with total energy

H(p, q) = 1

2

N∑
i=1

1
mi

pT
i pi +

N∑
i=2

i−1∑
j=1

Vij

(
‖qi − qj‖

)
. (5.4)

As an extension of method (5.3), we consider the following method (where we now
write the time step number as a superscript for notational convenience)

qn+1
i = qn

i +
h

mi
p

n+1/2
i

pn+1
i = pn

i + h

N∑
j=1

σij

(
q

n+1/2
i − q

n+1/2
j

) (5.5)

where p
n+1/2
i = 1

2 (pn
i + pn+1

i ), qn+1/2
i = 1

2 (qn
i + qn+1

i ), and for i > j,

σij = σji = −
Vij(rn+1

ij )− Vij(rn
ij)

rn+1
ij − rn

ij

1
1
2 (rn

ij + rn+1
ij )

(5.6)

with rn
ij = ‖qn

i − qn
j ‖, and σii = 0. This method has the following properties.

Theorem 5.1 (LaBudde & Greenspan 1974). The method (5.5) with (5.6) is a
second-order symmetric implicit method which conserves the total linear momen-
tum P =

∑N
i=1 pi, the total angular momentum L =

∑N
i=1 qi × pi, and the total

energy H .

Proof. A comparison of (5.6) with the equations of motion shows that the method
is of order 2. Similar to the continuous case (Example IV.1.3), the conservation
of linear and angular momentum is obtained as a consequence of the symmetry
σij = σji for all i, j. For the linear momentum we have

N∑
i=1

pn+1
i =

N∑
i=1

pn
i + h

N∑
i=1

N∑
j=1

σij (qn+1/2
i − q

n+1/2
j ) =

N∑
i=1

pn
i .

For the proof of the conservation of the angular momentum we observe that the
first equation of (5.5) together with p

n+1/2
i = 1

2 (pn+1
i + pn

i ) yields

(
qn+1
i − qn

i

)
×

(
pn+1

i + pn
i

)
= 0 (5.7)
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for all i. The second equation of (5.5) together with q
n+1/2
i = 1

2 (qn+1
i + qn

i ) gives

N∑
i=1

(
qn+1
i + qn

i

)
×

(
pn+1

i − pn
i

)
= 0 , (5.8)

because σij = σji and therefore
∑N

i,j=1 σij q
n+1/2
i × q

n+1/2
j = 0. Adding the sum

over i of (5.7) to the equation (5.8) proves the statement
∑N

i=1 qn+1
i × pn+1

i =∑N
i=1 qn

i × pn
i .

It remains to show the energy conservation. Now, the kinetic energy T (p) =
1
2

∑N
i=1 m−1

i pT
i pi at step n + 1 is

T (pn+1) = T (pn) +
N∑

i=1

( h

mi
p

n+1/2
i

)T
N∑

j=1

σij

(
q

n+1/2
i − q

n+1/2
j

)

= T (pn) +
N∑

i=1

N∑
j=1

σij

(
qn+1
i − qn

i

)T (
q

n+1/2
i − q

n+1/2
j

)
.

Using once more the symmetry σij = σji, the double sum reduces to

1

2

N∑
i=1

N∑
j=1

σij

((
qn+1
i − qn+1

j

)
−

(
qn
i − qn

j

))T 1

2

((
qn+1
i − qn+1

j

)
+

(
qn
i − qn

j

))

=
N∑

i=2

i−1∑
j=1

σij
1

2

((
rn+1
ij

)2 −
(
rn
ij

)2
)
.

On the other hand, the change in the potential energy is

U(qn+1)− U(qn) =
N∑

i=2

i−1∑
j=1

(
Vij(rn+1

ij )− Vij(rn
ij)

)
,

and hence (5.6) yields the conservation of the total energy H = T + U . 
�

Discrete-Gradient Methods. The methods (5.3) and (5.5) are of the form

yn+1 = yn + hB(yn+1, yn)∇H(yn+1, yn) (5.9)

where B(ŷ, y) is a skew-symmetric matrix for all ŷ, y, and ∇H(ŷ, y) is a discrete
gradient of H , that is, a continuous function of (ŷ, y) satisfying

∇H(ŷ, y)T (ŷ − y) = H(ŷ)−H(y)

∇H(y, y) = ∇H(y) .
(5.10)

The symmetry of the methods is seen from the properties B(ŷ, y) = B(y, ŷ) and
∇H(ŷ, y) = ∇H(y, ŷ). For example, for method (5.3) we have, with y = (p, q)
and ŷ = (p̂, q̂),
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B(ŷ, y) =
(

0 −I3
I3 0

)
and ∇H(ŷ, y) =

(
1
2 (p̂ + p)

σ(q̂, q) 1
2 (q̂ + q)

)

where σ(q̂, q) is given by the expression (5.2) with (q̂, q) in place of (qn+1, qn) or
by the corresponding limit as ‖q̂‖ → ‖q‖.

The discrete-gradient method (5.9) is consistent with the differential equation

ẏ = B(y)∇H(y) (5.11)

with the skew-symmetric matrix B(y) = B(y, y). This system conserves H , since

d

dt
H(y) = ∇H(y)T ẏ = ∇H(y)T B(y)∇H(y) = 0 ,

and, as was noted by Gonzalez (1996) and McLachlan, Quispel & Robidoux (1999),
H is also conserved by method (5.9).

Theorem 5.2. The discrete-gradient method (5.9) conserves the invariant H of the
system (5.11).

Proof. The definitions (5.10) of a discrete gradient and of the method (5.9) give

H(yn+1)−H(yn) = ∇H(yn+1, yn)T (yn+1 − yn)
= h∇H(yn+1, yn)T B(yn+1, yn)∇H(yn+1, yn) = 0 ,

where the last equality follows from the skew-symmetry of B(yn+1, yn). 
�

Example 5.3. The Lotka–Volterra system (I.1.1) can be written as
(

u̇
v̇

)
=

(
0 −uv
uv 0

)
∇H(u, v)

with the invariant H(u, v) = lnu − u + 2 ln v − v of (I.1.4). Possible choices of a
discrete gradient are the coordinate increment discrete gradient (Itoh & Abe 1988)

∇H(û, v̂;u, v) =




H(û, v)−H(u, v)
û− u

H(û, v̂)−H(û, v)
v̂ − v


 (5.12)

and the midpoint discrete gradient (Gonzalez 1996)

∇H(ŷ, y) = ∇H(y) +
H(ŷ)−H(y)−∇H(y)T∆y

‖∆y‖2 ∆y (5.13)

with y = 1
2 (ŷ + y) and ∆y = ŷ − y. In contrast to (5.12), the discrete gradient

(5.13) yields a symmetric discretization.

A systematic study of discrete-gradient methods is given in Gonzalez (1996)
and McLachlan, Quispel & Robidoux (1999).
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V.6 Exercises

1. Prove that (after a suitable permutation of the stages) the condition cs+1−i =
1− ci (for all i) is also necessary for a collocation method to be symmetric.

2. Prove that explicit Runge–Kutta methods cannot be symmetric.
Hint. If a one-step method applied to ẏ = λy yields y1 = R(hλ)y0 then, a
necessary condition for the symmetry of the method is R(z)R(−z) = 1 for all
complex z.

3. Consider an irreducible diagonally implicit Runge–Kutta method (irreducible
in the sense of Sect. VI.7.3). Prove that the condition (2.4) is necessary for the
symmetry of the method. No permutation of the stages has to be performed.

4. Let Φh = ϕ
[1]
h ◦ ϕ[2]

h , where ϕ
[i]
t represents the exact flow of ẏ = f [i](y). In the

situation of Theorem III.3.17 prove that the local error (3.4) of the composition
method (3.3) has the form

h3
(

1

24
(6α− 1)

[
D2, [D2,D1]

]
+ 1

12
(1− 6α + 6α2)

[
D1, [D1,D2]

])
Id(y),

where, as usual, Dig(y) = g′(y)f [i](y). The value α = 0.1932 is found by
minimizing the expression (6α− 1)2 + 4(1− 6α + 6α2)2 (McLachlan 1995).

5. For the linear transformation ρ(p, q) = (−p, q), consider a ρ-reversible problem
(1.3) with scalar p and q. Prove that every solution which crosses the q-axis
twice is periodic.

6. Prove that if a numerical method conserves quadratic invariants (IV.2.1), then
so does its adjoint.

7. For the numerical solution of ẏ = A(t)y consider the method yn �→ yn+1

defined by yn+1 = z(tn + h), where z(t) is the solution of

ż = Â(t)z, z(tn) = yn,

and Â(t) is the interpolation polynomial based on symmetric nodes c1, . . . , cs,
i.e., cs+1−i + ci = 1 for all i.
a) Prove that this method is symmetric.
b) Show that yn+1 = exp(Ω(h))yn holds, where Ω(h) has an expansion in odd
powers of h. This justifies the omission of the terms involving triple integrals
in Example IV.7.4.

8. If Φh stands for the implicit midpoint rule, what are the Runge–Kutta coeffi-
cients of the composition method (3.8)? The general theory of Sect. III.1 gives
three order conditions for order 4 (those for the trees of order 2 and 4 are auto-
matically satisfied by the symmetry of the method). Are they compatible with
the two conditions of Example 3.5?

9. Make a numerical comparison of our favourite composition methods p6 s9,
p8 s17, and p10 s35 for the Lorenz problem

y′1 = −σ(y1 − y2) y1(0) = 10 σ = 10
y′2 = −y1y3 + ry1 − y2 y2(0) = −20 r = 28
y′3 = y1y2 − by3 y3(0) = 20 b = 8/3

(6.1)
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Fig. 6.1. Comparison of various composition methods applied to the Lorenz equations

with exact solution

y1(1) = 8.635692709892506017930544628639
y2(1) = 2.798663387927457052023080059065
y3(1) = 33.36063508973142157789185846267

(6.2)

by composing for 0 ≤ t ≤ 1 the second order symmetric splitting scheme (see
Kahan & Li 1997) which, for the time-stepping yi �→ Yi , is given by

Y1 − y1 = h

2

(
−σ(y1 + Y1 − y2 − Y2)

)

Y2 − y2 = h

2

(
−y1Y3 − Y1y3 + ry1 + rY1 − y2 − Y2

)

Y3 − y3 = h

2

(
y1Y2 + Y1y2 − by3 − bY3

)
.

(6.3)

This method requires, for each step, the solution of a linear system only. The
results are shown in Fig. 6.1.

10. Symmetrized order conditions (Suzuki 1992). Prove that for methods (3.8) of
order four with γi satisfying (3.10)

s∑
k=1

γ3
k

( k∑
�=1

′
γ�

)2

= 0 ⇐⇒
s∑

k=1

γ3
k

( k∑
�=1

′
γ�

)( ′ s∑
�=k

γ�

)
= 0.

The prime after (before) a sum sign indicates that the term with highest (low-
est) index is divided by 2. Prove also that the order conditions given in Suzuki
(1992) for order p ≤ 8 are equivalent to those of Example 3.5. Is this also true
for order p = 10?
Hint. Use relations like

∑k
�=1

′
γ� = 1−′∑s

�=k γ� .

11. Let M =
{
(y1, y2, y3) | y2

1 + y2
2 + y2

3 = 1
}

, and consider for a ∈ M the
tangent space parametrization

ψa(z) = a + z + aua(z),
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where, for z ∈ TaM, the real value ua(z) is determined by the requirement
ψa(z) ∈ M. Prove that Algorithm IV.5.3, with the trapezoidal rule in the role
of Φh, is a symmetric method.
Hint. Since z is a linear combination of a and ψa(z), it is uniquely determined
by aT z (which is zero) and ψa(z)T z.

12. (Zanna, Engø & Munthe-Kaas 2001). Verify numerically that the Lie group
method (4.12) based on the implicit midpoint rule does not conserve general
quadratic first integrals. One can consider the rigid body equations in the form
(IV.1.5).



Chapter VI.
Symplectic Integration of Hamiltonian
Systems

Fig. 0.1. Sir William Rowan Hamilton, born: 4 August 1805 in Dublin, died: 2 September
1865. Famous for research in optics, mechanics, and for the invention of quaternions

Hamiltonian systems form the most important class of ordinary differential equa-
tions in the context of ‘Geometric Numerical Integration’. An outstanding property
of these systems is the symplecticity of the flow. As indicated in the following dia-
gram,

Ordinary Differential Equations
of motion canonical

(Lagrange) (Hamilton)

1st order Partial DE
Generating Functions

(Hamilton-Jacobi)

Variational Principles
(Lagrange, Hamilton)

Hamiltonian theory operates in three different domains (equations of motion, partial
differential equations and variational principles) which are all interconnected. Each
of these viewpoints, which we will study one after the other, leads to the construction
of methods preserving the symplecticity.
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VI.1 Hamiltonian Systems

Hamilton’s equations appeared first, among thousands of other formulas, and in-
spired by previous research in optics, in Hamilton (1834). Their importance was im-
mediately recognized by Jacobi, who stressed and extended the fundamental ideas,
so that, a couple of years later, all the long history of research of Galilei, Newton,
Euler and Lagrange, was, in the words of Jacobi (1842), “to be considered as an
introduction”. The next mile-stones in the exposition of the theory were the monu-
mental three volumes of Poincaré (1892,1893,1899) on celestial mechanics, Siegel’s
“Lectures on Celestial Mechanics” (1956), English enlarged edition by Siegel &
Moser (1971), and the influential book of V.I. Arnold (1989; first Russian edition
1974). Beyond that, Hamiltonian systems became fundamental in many branches of
physics. One such area, the dynamics of particle accelerators, actually motivated the
construction of the first symplectic integrators (Ruth 1983).

VI.1.1 Lagrange’s Equations

Équations différentielles pour la solution de tous les problèmes de Dy-
namique. (J.-L. Lagrange 1788)

Joseph-Louis Lagrange1

The problem of computing the dynamics
of general mechanical systems began with
Galilei (published 1638) and Newton’s Prin-
cipia (1687). The latter allowed one to reduce
the movement of free mass points (the “mass
points” being such planets as Mars or Jupiter)
to the solution of differential equations (see
Sect. I.2). But the movement of more com-
plicated systems such as rigid bodies or bod-
ies attached to each other by rods or springs,
were the subject of long and difficult devel-
opments, until Lagrange (1760, 1788) found
an elegant way of treating such problems in
general.

We suppose that the position of a mechan-
ical system with d degrees of freedom is de-
scribed by q = (q1, . . . , qd)T as generalized
coordinates (this can be for example Cartesian coordinates, angles, arc lengths along
a curve, etc.). The theory is then built upon two pillars, namely an expression

T = T (q, q̇) (1.1)

which represents the kinetic energy (and which is often of the form 1
2 q̇

TM(q)q̇
where M(q) is symmetric and positive definite), and by a function

1 Joseph-Louis Lagrange, born: 25 January 1736 in Turin, Sardinia–Piedmont (now Italy),
died: 10 April 1813 in Paris.
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U = U(q) (1.2)

representing the potential energy. Then, after denoting by

L = T − U (1.3)

the corresponding Lagrangian, the coordinates q1(t), . . . , qd(t) obey the differential
equations

d

dt

(
∂L

∂q̇

)
=

∂L

∂q
, (1.4)

which constitute the Lagrange equations of the system. A numerical (or analytical)
integration of these equations allows one to predict the motion of any such system
from given initial values (“Ce sont ces équations qui serviront à déterminer la courbe
décrite par le corps M et sa vitesse à chaque instant”; Lagrange 1760, p. 369).

Example 1.1. For a mass point of mass m in R
3 with Cartesian coordinates x =

(x1, x2, x3)T we have T (ẋ) = m(ẋ2
1 + ẋ2

2 + ẋ2
3)/2. We suppose the point to move

in a conservative force field F (x) = −∇U(x). Then, the Lagrange equations (1.4)
become mẍ = F (x), which is Newton’s second law. The equations (I.2.2) for the
planetary motion are precisely of this form.

Example 1.2 (Pendulum). For the mathematical pendulum of Sect. I.1 we take the
angle α as coordinate. The kinetic and potential energies are given by T = m(ẋ2 +
ẏ2)/2 = m�2α̇2/2 and U = mgy = −mg� cosα, respectively, so that the Lagrange
equations become −mg� sinα−m�2α̈ = 0 or equivalently α̈ + g

� sinα = 0.

VI.1.2 Hamilton’s Canonical Equations

An diese Hamiltonsche Form der Differentialgleichungen werden die
ferneren Untersuchungen, welche den Kern dieser Vorlesung bilden,
anknüpfen; das Bisherige ist als Einleitung dazu anzusehen.

(C.G.J. Jacobi 1842, p. 143)

Hamilton (1834) simplified the structure of Lagrange’s equations and turned them
into a form that has remarkable symmetry, by

• introducing Poisson’s variables, the conjugate momenta

pk =
∂L

∂q̇k
(q, q̇) for k = 1, . . . , d, (1.5)

• considering the Hamiltonian

H := pT q̇ − L(q, q̇) (1.6)

as a function of p and q, i.e., taking H = H(p, q) obtained by expressing q̇ as a
function of p and q via (1.5).

Here it is, of course, required that (1.5) defines, for every q, a continuously differ-
entiable bijection q̇ ↔ p. This map is called the Legendre transform.
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Theorem 1.3. Lagrange’s equations (1.4) are equivalent to Hamilton’s equations

ṗk = −∂H

∂qk
(p, q), q̇k =

∂H

∂pk
(p, q), k = 1, . . . , d. (1.7)

Proof. The definitions (1.5) and (1.6) for the momenta p and for the Hamiltonian H
imply that

∂H

∂p
= q̇T + pT ∂q̇

∂p
− ∂L

∂q̇

∂q̇

∂p
= q̇T ,

∂H

∂q
= pT ∂q̇

∂q
− ∂L

∂q
− ∂L

∂q̇

∂q̇

∂q
= −∂L

∂q
.

The Lagrange equations (1.4) are therefore equivalent to (1.7). 
�

Case of Quadratic T . In the case that T = 1
2 q̇

TM(q)q̇ is quadratic, where M(q)
is a symmetric and positive definite matrix, we have, for a fixed q, p = M(q)q̇, so
that the existence of the Legendre transform is established. Further, by replacing the
variable q̇ by M(q)−1p in the definition (1.6) of H(p, q), we obtain

H(p, q) = pTM(q)−1p− L
(
q,M(q)−1p

)

= pTM(q)−1p− 1
2
pTM(q)−1p + U(q) =

1
2
pTM(q)−1p + U(q)

and the Hamiltonian is H = T + U , which is the total energy of the mechanical
system.

In Chap. I we have seen several examples of Hamiltonian systems, e.g., the pen-
dulum (I.1.13), the Kepler problem (I.2.2), the outer solar system (I.2.12), etc. In the
following we consider Hamiltonian systems (1.7) where the Hamiltonian H(p, q) is
arbitrary, and so not necessarily related to a mechanical problem.

VI.2 Symplectic Transformations
The name “complex group” formerly advocated by me in allusion to line
complexes, . . . has become more and more embarrassing through colli-
sion with the word “complex” in the connotation of complex number. I
therefore propose to replace it by the Greek adjective “symplectic.”

(H. Weyl (1939), p. 165)

A first property of Hamiltonian systems, already seen in Example 1.2 of Sect. IV.1,
is that the Hamiltonian H(p, q) is a first integral of the system (1.7). In this section
we shall study another important property – the symplecticity of its flow. The basic
objects to be studied are two-dimensional parallelograms lying in R

2d. We suppose
the parallelogram to be spanned by two vectors

ξ =
(

ξp

ξq

)
, η =

(
ηp

ηq

)

in the (p, q) space (ξp, ξq, ηp, ηq are in R
d) as
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P =
{
tξ + sη | 0 ≤ t ≤ 1, 0 ≤ s ≤ 1

}
.

In the case d = 1 we consider the oriented area

or.area (P ) = det
(

ξp ηp

ξq ηq

)
= ξpηq − ξqηp (2.1)

(see left picture of Fig. 2.1). In higher dimensions, we replace this by the sum of the
oriented areas of the projections of P onto the coordinate planes (pi, qi), i.e., by

ω(ξ, η) :=
d∑

i=1

det
(

ξp
i ηp

i

ξq
i ηq

i

)
=

d∑
i=1

(ξp
i η

q
i − ξq

i η
p
i ). (2.2)

This defines a bilinear map acting on vectors of R
2d, which will play a central role

for Hamiltonian systems. In matrix notation, this map has the form

ω(ξ, η) = ξTJη with J =
(

0 I
−I 0

)
(2.3)

where I is the identity matrix of dimension d.

Definition 2.1. A linear mapping A : R
2d → R

2d is called symplectic if

ATJA = J

or, equivalently, if ω(Aξ,Aη) = ω(ξ, η) for all ξ, η ∈ R
2d.

p

q

ξ

η

p

q

Aξ

Aη

A

Fig. 2.1. Symplecticity (area preservation) of a linear mapping

In the case d = 1, where the expression ω(ξ, η) represents the area of the paral-
lelogram P , symplecticity of a linear mapping A is therefore the area preservation
of A (see Fig. 2.1). In the general case (d > 1), symplecticity means that the sum
of the oriented areas of the projections of P onto (pi, qi) is the same as that for the
transformed parallelograms A(P ).

We now turn our attention to nonlinear mappings. Differentiable functions can
be locally approximated by linear mappings. This justifies the following definition.

Definition 2.2. A differentiable map g : U → R
2d (where U ⊂ R

2d is an open set)
is called symplectic if the Jacobian matrix g′(p, q) is everywhere symplectic, i.e., if

g′(p, q)TJ g′(p, q) = J or ω(g′(p, q)ξ, g′(p, q)η) = ω(ξ, η).

Let us give a geometric interpretation of symplecticity for nonlinear mappings.
Consider a 2-dimensional sub-manifold M of the 2d-dimensional set U , and sup-
pose that it is given as the image M = ψ(K) of a compact set K ⊂ R

2, where
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ψ(s, t) is a continuously differentiable function. The manifold M can then be con-
sidered as the limit of a union of small parallelograms spanned by the vectors

∂ψ

∂s
(s, t) ds and

∂ψ

∂t
(s, t) dt.

For one such parallelogram we consider (as above) the sum over the oriented areas
of its projections onto the (pi, qi) plane. We then sum over all parallelograms of the
manifold. In the limit this gives the expression

Ω(M) =
∫∫

K

ω

(
∂ψ

∂s
(s, t),

∂ψ

∂t
(s, t)

)
ds dt. (2.4)

The transformation formula for double integrals implies that Ω(M) is independent
of the parametrization ψ of M .

Lemma 2.3. If the mapping g : U → R
2d is symplectic on U , then it preserves the

expression Ω(M), i.e.,
Ω
(
g(M)

)
= Ω(M)

holds for all 2-dimensional manifolds M that can be represented as the image of a
continuously differentiable function ψ.

Proof. The manifold g(M) can be parametrized by g ◦ ψ. We have

Ω
(
g(M)

)
=

∫∫

K

ω

(
∂(g ◦ ψ)

∂s
(s, t),

∂(g ◦ ψ)
∂t

(s, t)
)

ds dt = Ω(M),

because (g ◦ψ)′(s, t) = g′
(
ψ(s, t)

)
ψ′(s, t) and g is a symplectic transformation. 
�

For d = 1, M is already a subset of R
2 and we choose K = M with ψ the

identity map. In this case, Ω(M) =
∫∫

M
ds dt represents the area of M . Hence,

Lemma 2.3 states that all symplectic mappings (also nonlinear ones) are area pre-
serving.

We are now able to prove the main result of this section. We use the notation
y = (p, q), and we write the Hamiltonian system (1.7) in the form

ẏ = J−1∇H(y), (2.5)

where J is the matrix of (2.3) and ∇H(y) = H ′(y)T .
Recall that the flow ϕt : U → R

2d of a Hamiltonian system is the mapping that
advances the solution by time t, i.e., ϕt(p0, q0) = (p(t, p0, q0), q(t, p0, q0)), where
p(t, p0, q0), q(t, p0, q0) is the solution of the system corresponding to initial values
p(0) = p0, q(0) = q0.

Theorem 2.4 (Poincaré 1899). Let H(p, q) be a twice continuously differentiable
function on U ⊂ R

2d. Then, for each fixed t, the flow ϕt is a symplectic transforma-
tion wherever it is defined.

Proof. The derivative ∂ϕt/∂y0 (with y0 = (p0, q0)) is a solution of the vari-
ational equation which, for the Hamiltonian system (2.5), is of the form Ψ̇ =
J−1∇2H

(
ϕt(y0)

)
Ψ , where∇2H(p, q) is the Hessian matrix of H(p, q) (∇2H(p, q)



VI.2 Symplectic Transformations 185

−1 0 1 2 3 4 5 6 7 8 9

−2

−1

1

2

A

ϕπ/2(A)

ϕπ(A)

B

ϕπ/2(B)

ϕπ(B)

ϕ3π/2(B)

Fig. 2.2. Area preservation of the flow of Hamiltonian systems

is symmetric). We therefore obtain

d

dt

((∂ϕt

∂y0

)T

J
(∂ϕt

∂y0

))
=

( d

dt

∂ϕt

∂y0

)T

J
(∂ϕt

∂y0

)
+

(∂ϕt

∂y0

)T

J
( d

dt

∂ϕt

∂y0

)

=
(∂ϕt

∂y0

)T

∇2H
(
ϕt(y0)

)
J−TJ

(∂ϕt

∂y0

)
+

(∂ϕt

∂y0

)T

∇2H
(
ϕt(y0)

)(∂ϕt

∂y0

)
= 0,

because JT = −J and J−TJ = −I . Since the relation
(∂ϕt

∂y0

)T

J
(∂ϕt

∂y0

)
= J (2.6)

is satisfied for t = 0 (ϕ0 is the identity map), it is satisfied for all t and all (p0, q0),
as long as the solution remains in the domain of definition of H . 
�
Example 2.5. We illustrate this theorem with the pendulum problem (Example 1.2)
using the normalization m = � = g = 1. We have q = α, p = α̇, and the Hamil-
tonian is given by

H(p, q) = p2/2− cos q.

Fig. 2.2 shows level curves of this function, and it also illustrates the area preser-
vation of the flow ϕt. Indeed, by Theorem 2.4 and Lemma 2.3, the areas of A and
ϕt(A) as well as those of B and ϕt(B) are the same, although their appearance is
completely different.

We next show that symplecticity of the flow is a characteristic property for
Hamiltonian systems. We call a differential equation ẏ = f(y) locally Hamiltonian,
if for every y0 ∈ U there exists a neighbourhood where f(y) = J−1∇H(y) for
some function H .

Theorem 2.6. Let f : U → R
2d be continuously differentiable. Then, ẏ = f(y) is

locally Hamiltonian if and only if its flow ϕt(y) is symplectic for all y ∈ U and for
all sufficiently small t.
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Proof. The necessity follows from Theorem 2.4. We therefore assume that the flow
ϕt is symplectic, and we have to prove the local existence of a function H(y) such
that f(y) = J−1∇H(y). Differentiating (2.6) and using the fact that ∂ϕt/∂y0 is a
solution of the variational equation Ψ̇ = f ′(ϕt(y0)

)
Ψ , we obtain

d

dt

((∂ϕt

∂y0

)T

J
(∂ϕt

∂y0

))
=

(∂ϕt

∂y0

)(
f ′(ϕt(y0)

)T
J+Jf ′(ϕt(y0)

))(∂ϕt

∂y0

)
= 0.

Putting t = 0, it follows from J = −JT that Jf ′(y0) is a symmetric matrix for
all y0. The Integrability Lemma 2.7 below shows that Jf(y) can be written as the
gradient of a function H(y). 
�

The following integrability condition for the existence of a potential was already
known to Euler and Lagrange (see e.g., Euler’s Opera Omnia, vol. 19. p. 2-3, or
Lagrange (1760), p. 375).

Lemma 2.7 (Integrability Lemma). Let D ⊂ R
n be open and f : D → R

n be
continuously differentiable, and assume that the Jacobian f ′(y) is symmetric for all
y ∈ D. Then, for every y0 ∈ D there exists a neighbourhood and a function H(y)
such that

f(y) = ∇H(y) (2.7)

on this neighbourhood. In other words, the differential form f1(y) dy1 + . . . +
fn(y) dyn = dH is a total differential.

Proof. Assume y0 = 0, and consider a ball around y0 which is contained in D. On
this ball we define

H(y) =
∫ 1

0

yT f(ty) dt + Const .

Differentiation with respect to yk, and using the symmetry assumption ∂fi/∂yk =
∂fk/∂yi yields

∂H

∂yk
(y) =

∫ 1

0

(
fk(ty) + yT ∂f

∂yk
(ty)t

)
dt =

∫ 1

0

d

dt

(
tfk(ty)

)
dt = fk(y),

which proves the statement. 
�

For D = R
2d or for star-shaped regions D, the above proof shows that the func-

tion H of Lemma 2.7 is globally defined. Hence the Hamiltonian of Theorem 2.6
is also globally defined in this case. This remains valid for simply connected sets
D. A counter-example, which shows that the existence of a global Hamiltonian in
Theorem 2.6 is not true for general D, is given in Exercise 6.

An important property of symplectic transformations, which goes back to Jacobi
(1836, “Theorem X”), is that they preserve the Hamiltonian character of the differ-
ential equation. Such transformations have been termed canonical since the 19th
century. The next theorem shows that canonical and symplectic transformations are
the same.
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Theorem 2.8. Let ψ : U → V be a change of coordinates such that ψ and ψ−1

are continuously differentiable functions. If ψ is symplectic, the Hamiltonian system
ẏ = J−1∇H(y) becomes in the new variables z = ψ(y)

ż = J−1∇K(z) with K(z) = H(y). (2.8)

Conversely, if ψ transforms every Hamiltonian system to another Hamiltonian sys-
tem via (2.8), then ψ is symplectic.

Proof. Since ż = ψ′(y)ẏ and ψ′(y)T∇K(z) = ∇H(y), the Hamiltonian system
ẏ = J−1∇H(y) becomes

ż = ψ′(y)J−1ψ′(y)T∇K(z) (2.9)

in the new variables. It is equivalent to (2.8) if

ψ′(y)J−1ψ′(y)T = J−1. (2.10)

Multiplying this relation from the right by ψ′(y)−T and from the left by ψ′(y)−1

and then taking its inverse yields J = ψ′(y)TJψ′(y), which shows that (2.10) is
equivalent to the symplecticity of ψ.

For the inverse relation we note that (2.9) is Hamiltonian for all K(z) if and
only if (2.10) holds. 
�

VI.3 First Examples of Symplectic Integrators

Feng Kang2

Since symplecticity is a characteristic prop-
erty of Hamiltonian systems (Theorem 2.6),
it is natural to search for numerical methods
that share this property. Pioneering work on
symplectic integration is due to de Vogelaere
(1956), Ruth (1983), and Feng Kang (1985).
Books on the now well-developed subject are
Sanz-Serna & Calvo (1994) and Leimkuhler
& Reich (2004).

Definition 3.1. A numerical one-step method
is called symplectic if the one-step map

y1 = Φh(y0)

is symplectic whenever the method is applied
to a smooth Hamiltonian system.

2 Feng Kang, born: 9 September 1920 in Nanjing (China), died: 17 August 1993 in Beijing;
picture obtained from Yuming Shi with the help of Yifa Tang.
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Fig. 3.1. Area preservation of numerical methods for the pendulum; same initial sets as in
Fig. 2.2; first order methods (left column): h = π/4; second order methods (right column):
h = π/3; dashed: exact flow

Example 3.2. We consider the pendulum problem of Example 2.5 with the same
initial sets as in Fig. 2.2. We apply six different numerical methods to this problem:
the explicit Euler method (I.1.5), the symplectic Euler method (I.1.9), and the im-
plicit Euler method (I.1.6), as well as the second order method of Runge (II.1.3)
(the right one), the Störmer–Verlet scheme (I.1.17), and the implicit midpoint rule
(I.1.7). For two sets of initial values (p0, q0) we compute several steps with step size
h = π/4 for the first order methods, and h = π/3 for the second order methods.
One clearly observes in Fig. 3.1 that the explicit Euler, the implicit Euler and the
second order explicit method of Runge are not symplectic (not area preserving). We
shall prove below that the other methods are symplectic. A different proof of their
symplecticity (using generating functions) will be given in Sect. VI.5.

In the following we show the symplecticity of various numerical methods from
Chapters I and II when they are applied to the Hamiltonian system in the vari-
ables y = (p, q),

ṗ = −Hq(p, q)
q̇ = Hp(p, q)

or equivalently ẏ = J−1∇H(y),

where Hp and Hq denote the column vectors of partial derivatives of the Hamil-
tonian H(p, q) with respect to p and q, respectively.
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Theorem 3.3 (de Vogelaere 1956). The so-called symplectic Euler methods (I.1.9)

pn+1 = pn − hHq(pn+1, qn)
qn+1 = qn + hHp(pn+1, qn)

or
pn+1 = pn − hHq(pn, qn+1)
qn+1 = qn + hHp(pn, qn+1)

(3.1)

are symplectic methods of order 1.

Proof. We consider only the method to the left of (3.1). Differentiation with respect
to (pn, qn) yields

(
I + hHT

qp 0
−hHpp I

)(
∂(pn+1, qn+1)

∂(pn, qn)

)
=

(
I −hHqq

0 I + hHqp

)
,

where the matrices Hqp,Hpp, . . . of partial derivatives are all evaluated at (pn+1, qn).
This relation allows us to compute ∂(pn+1,qn+1)

∂(pn,qn) and to check in a straightforward

way the symplecticity condition
(∂(pn+1,qn+1)

∂(pn,qn)

)T
J
(∂(pn+1,qn+1)

∂(pn,qn)

)
= J . 
�

The methods (3.1) are implicit for general Hamiltonian systems. For separable
H(p, q) = T (p) + U(q), however, both variants turn out to be explicit. It is inter-
esting to mention that there are more general situations where the symplectic Euler
methods are explicit. If, for a suitable ordering of the components,

∂H

∂qi
(p, q) does not depend on pj for j ≥ i, (3.2)

then the left method of (3.1) is explicit, and the components of pn+1 can be com-
puted one after the other. If, for a possibly different ordering of the components,

∂H

∂pi
(p, q) does not depend on qj for j ≥ i, (3.3)

then the right method of (3.1) is explicit. As an example consider the Hamiltonian

H(pr, pϕ, r, ϕ) = 1

2

(
p2

r + r−2p2
ϕ

)
− r cosϕ + (r − 1)2,

which models a spring pendulum in polar coordinates. For the ordering ϕ < r,
condition (3.2) is fulfilled, and for the inverse ordering r < ϕ condition (3.3). Con-
sequently, both symplectic Euler methods are explicit for this problem. The methods
remain explicit if the conditions (3.2) and (3.3) hold for blocks of components in-
stead of single components.

We consider next the extension of the Störmer–Verlet scheme (I.1.17), consid-
ered in Table II.2.1.

Theorem 3.4. The Störmer–Verlet schemes (I.1.17)

pn+1/2 = pn −
h

2
Hq(pn+1/2, qn)

qn+1 = qn + h

2

(
Hp(pn+1/2, qn) + Hp(pn+1/2, qn+1)

)

pn+1 = pn+1/2 −
h

2
Hq(pn+1/2, qn+1)

(3.4)
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and
qn+1/2 = qn + h

2
Hq(pn, qn+1/2)

pn+1 = pn −
h

2

(
Hp(pn, qn+1/2) + Hp(pn+1, qn+1/2)

)

qn+1 = qn+1/2 + h

2
Hq(pn+1, qn+1/2)

(3.5)

are symplectic methods of order 2.

Proof. This is an immediate consequence of the fact that the Störmer–Verlet scheme
is the composition of the two symplectic Euler methods (3.1). Order 2 follows from
its symmetry. 
�

We note that the Störmer–Verlet methods (3.4) and (3.5) are explicit for separa-
ble problems and for Hamiltonians that satisfy both conditions (3.2) and (3.3).

Theorem 3.5. The implicit midpoint rule

yn+1 = yn + hJ−1∇H
(
(yn+1 + yn)/2

)
(3.6)

is a symplectic method of order 2.

Proof. Differentiation of (3.6) yields

(
I − h

2
J−1∇2H

)(∂yn+1

∂yn

)
=

(
I +

h

2
J−1∇2H

)
.

Again it is straightforward to verify that
(∂yn+1

∂yn

)T
J
(∂yn+1

∂yn

)
= J . Due to its sym-

metry, the midpoint rule is known to be of order 2 (see Theorem II.3.2). 
�

The next two theorems are a consequence of the fact that the composition of
symplectic transformations is again symplectic. They are also used to prove the
existence of symplectic methods of arbitrarily high order, and to explain why the
theory of composition methods of Chapters II and III is so important for geometric
integration.

Theorem 3.6. Let Φh denote the symplectic Euler method (3.1). Then, the compo-
sition method (II.4.6) is symplectic for every choice of the parameters αi, βi.

If Φ̂h is symplectic and symmetric (e.g., the implicit midpoint rule or the
Störmer–Verlet scheme), then the composition method (V.3.8) is symplectic too. 
�

Theorem 3.7. Assume that the Hamiltonian is given by H(y) = H1(y) + H2(y),
and consider the splitting

ẏ = J−1∇H(y) = J−1∇H1(y) + J−1∇H2(y).

The splitting method (II.5.6) is then symplectic. 
�
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VI.4 Symplectic Runge–Kutta Methods

The systematic study of symplectic Runge–Kutta methods started around 1988, and
a complete characterization has been found independently by Lasagni (1988) (using
the approach of generating functions), and by Sanz-Serna (1988) and Suris (1988)
(using the ideas of the classical papers of Burrage & Butcher (1979) and Crouzeix
(1979) on algebraic stability).

VI.4.1 Criterion of Symplecticity

We follow the approach of Bochev & Scovel (1994), which is based on the following
important lemma.

Lemma 4.1. For Runge–Kutta methods and for partitioned Runge–Kutta methods
the following diagram commutes:

ẏ = f(y), y(0) = y0 −→
ẏ = f(y), y(0) = y0

Ψ̇ = f ′(y)Ψ, Ψ(0) = I
(method

(method

{yn} −→ {yn, Ψn}

(horizontal arrows mean a differentiation with respect to y0). Therefore, the numer-
ical result yn, Ψn, obtained from applying the method to the problem augmented by
its variational equation, is equal to the numerical solution for ẏ = f(y) augmented
by its derivative Ψn = ∂yn/∂y0.

Proof. The result is proved by implicit differentiation. Let us illustrate this for the
explicit Euler method

yn+1 = yn + hf(yn).

We consider yn and yn+1 as functions of y0, and we differentiate with respect to y0

the equation defining the numerical method. For the Euler method this gives

∂yn+1

∂y0
=

∂yn

∂y0
+ hf ′(yn)

∂yn

∂y0
,

which is exactly the relation that we get from applying the method to the variational
equation. Since ∂y0/∂y0 = I , we have ∂yn/∂y0 = Ψn for all n. 
�

The main observation now is that the symplecticity condition (2.6) is a quadratic
first integral of the variational equation: we write the Hamiltonian system together
with its variational equation as

ẏ = J−1∇H(y), Ψ̇ = J−1∇2H(y)Ψ. (4.1)

It follows from
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(J−1∇2H(y)Ψ)TJΨ + ΨTJ(J−1∇2H(y)Ψ) = 0

(see also the proof of Theorem 2.4) that ΨTJΨ is a quadratic first integral of the
augmented system (4.1).

Therefore, every Runge–Kutta method that preserves quadratic first integrals, is
a symplectic method. From Theorem IV.2.1 and Theorem IV.2.2 we thus obtain the
following results.

Theorem 4.2. The Gauss collocation methods of Sect. II.1.3 are symplectic. 
�

Theorem 4.3. If the coefficients of a Runge–Kutta method satisfy

biaij + bjaji = bibj for all i, j = 1, . . . , s, (4.2)

then it is symplectic. 
�

Similar to the situation in Theorem V.2.4, diagonally implicit, symplectic Runge–
Kutta methods are composition methods.

Theorem 4.4. A diagonally implicit Runge–Kutta method satisfying the symplec-
ticity condition (4.2) and bi �= 0 is equivalent to the composition

ΦM
bsh ◦ . . . ◦ ΦM

b2h ◦ ΦM
b1h,

where ΦM
h stands for the implicit midpoint rule.

Proof. For i = j condition (4.2) gives aii = bi/2 and, together with aji = 0 (for
i > j), implies aij = bj . This proves the statement. 
�

The assumption “bi �= 0” is not restrictive in the sense that for diagonally im-
plicit Runge–Kutta methods satisfying (4.2) the internal stages corresponding to
“bi = 0” do not influence the numerical result and can be removed.

To understand the symplecticity of partitioned Runge–Kutta methods, we write
the solution Ψ of the variational equation as

Ψ =
(

Ψp

Ψ q

)
.

Then, the Hamiltonian system together with its variational equation (4.1) is a parti-
tioned system with variables (p, Ψp) and (q, Ψq). Every component of

ΨTJΨ = (Ψp)TΨ q − (Ψ q)TΨp

is of the form (IV.2.5), so that Theorem IV.2.3 and Theorem IV.2.4 yield the fol-
lowing results.

Theorem 4.5. The Lobatto IIIA - IIIB pair is a symplectic method. 
�
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Theorem 4.6. If the coefficients of a partitioned Runge–Kutta method (II.2.2) sat-
isfy

biâij + b̂jaji = bib̂j for i, j = 1, . . . , s, (4.3)

bi = b̂i for i = 1, . . . , s, (4.4)

then it is symplectic.
If the Hamiltonian is of the form H(p, q) = T (p) + U(q), i.e., it is separable,

then the condition (4.3) alone implies the symplecticity of the numerical flow. 
�

We have seen in Sect. V.2.2 that within the class of partitioned Runge–Kutta
methods it is possible to get explicit, symmetric methods for separable systems ẏ =
f(z), ż = g(y). A similar result holds for symplectic methods. However, as in
Theorem V.2.6, such methods are not more general than composition or splitting
methods as considered in Sect. II.5. This has first been observed by Okunbor &
Skeel (1992).

Theorem 4.7. Consider a partitioned Runge–Kutta method based on two diago-
nally implicit methods (i.e., aji = âji = 0 for i > j), assume aii · âii = 0 for all
i, and apply it to a separable Hamiltonian system with H(p, q) = T (p) + U(q). If
(4.3) holds, then the numerical result is the same as that obtained from the splitting
method (II.5.6).

By (II.5.8), such a method is equivalent to a composition of symplectic Euler
steps.

Proof. We first notice that the stage values ki = f(Zi) (for i with bi = 0) and
�i = g(Yi) (for i with b̂i = 0) do not influence the numerical solution and can be
removed. This yields a scheme with non-zero bi and b̂i, but with possibly non-square
matrices (aij) and (âij).

Since the method is explicit for separable problems, one of the reduced matrices
(aij) or (âij) has a row consisting only of zeros. Assume that it is the first row of
(aij), so that a1j = 0 for all j. The symplecticity condition thus implies âi1 = b̂1 �=
0 for all i ≥ 1, and ai1 = b1 �= 0 for i ≥ 2. This then yields â22 �= 0, because
otherwise the first two stages of (âij) would be identical and one could be removed.
By our assumption we get a22 = 0, âi2 = b̂2 �= 0 for i ≥ 2, and ai2 = b2 for i ≥ 3.
Continuing this procedure we see that the method becomes

. . . ◦ ϕ
[2]

b̂2h
◦ ϕ

[1]
b2h ◦ ϕ

[2]

b̂1h
◦ ϕ

[1]
b1h,

where ϕ
[1]
t and ϕ

[2]
t are the exact flows corresponding to the Hamiltonians T (p) and

U(q), respectively. 
�

The necessity of the conditions of Theorem 4.3 and Theorem 4.6 for symplectic
(partitioned) Runge–Kutta methods will be discussed at the end of this chapter in
Sect. VI.7.4.



194 VI. Symplectic Integration of Hamiltonian Systems

A second order differential equation ÿ = g(y), augmented by its variational
equation, is again of this special form. Furthermore, the diagram of Lemma 4.1
commutes for Nyström methods, so that Theorem IV.2.5 yields the following result
originally obtained by Suris (1988, 1989).

Theorem 4.8. If the coefficients of a Nyström method (IV.2.11) satisfy

βi = bi(1− ci) for i = 1, . . . , s,

bi(βj − aij) = bj(βi − aji) for i, j = 1, . . . , s,
(4.5)

then it is symplectic. 
�

VI.4.2 Connection Between Symplectic and Symmetric Methods

There exist symmetric methods that are not symplectic, and there exist symplectic
methods that are not symmetric. For example, the trapezoidal rule

y1 = y0 + h

2

(
f(y0) + f(y1)

)
(4.6)

is symmetric, but it does not satisfy the condition (4.2) for symplecticity. In fact,
this is true of all Lobatto IIIA methods (see Example II.2.2). On the other hand, any
composition Φγ1h ◦ Φγ2h (γ1 + γ2 = 1) of symplectic methods is symplectic but
symmetric only if γ1 = γ2.

However, for (non-partitioned) Runge–Kutta methods and for quadratic Hamil-
tonians H(y) = 1

2y
TCy (C is a symmetric real matrix), where the corresponding

system (2.5) is linear,
ẏ = J−1Cy, (4.7)

we shall see that both concepts are equivalent.
A Runge–Kutta method, applied with step size h to a linear system ẏ = Ly, is

equivalent to
y1 = R(hL)y0, (4.8)

where the rational function R(z) is given by

R(z) = 1 + zbT (I − zA)−11l, (4.9)

A = (aij), bT = (b1, . . . , bs), and 1lT = (1, . . . , 1). The function R(z) is called
the stability function of the method, and it is familiar to us from the study of stiff
differential equations (see e.g., Hairer & Wanner (1996), Chap. IV.3).

For the explicit Euler method, the implicit Euler method and the implicit mid-
point rule, the stability function R(z) is given by

1 + z,
1

1− z
,

1 + z/2
1− z/2

.
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Theorem 4.9. For Runge–Kutta methods the following statements are equivalent:

• the method is symmetric for linear problems ẏ = Ly;
• the method is symplectic for problems (4.7) with symmetric C;
• the stability function satisfies R(−z)R(z) = 1 for all complex z.

Proof. The method y1 = R(hL)y0 is symmetric, if and only if y0 = R(−hL)y1

holds for all initial values y0. But this is equivalent to R(−hL)R(hL) = I .
Since Φ′

h(y0) = R(hL), symplecticity of the method for the problem (4.7) is de-
fined by R(hJ−1C)TJR(hJ−1C) = J . For R(z) = P (z)/Q(z) this is equivalent
to

P (hJ−1C)TJP (hJ−1C) = Q(hJ−1C)TJQ(hJ−1C). (4.10)

By the symmetry of C, the matrix L := J−1C satisfies LTJ = −JL and hence
also (Lk)TJ = J(−L)k for k = 0, 1, 2, . . . . Consequently, (4.10) is equivalent to

P (−hJ−1C)P (hJ−1C) = Q(−hJ−1C)Q(hJ−1C),

which is nothing other than R(−hJ−1C)R(hJ−1C) = I . 
�

VI.5 Generating Functions
. . . by which the study of the motions of all free systems of attracting or
repelling points is reduced to the search and differentiation of one central
relation, or characteristic function. (W.R. Hamilton 1834)

Professor Hamilton hat . . . das merkwürdige Resultat gefunden, dass . . .
sich die Integralgleichungen der Bewegung . . . sämmtlich durch die par-
tiellen Differentialquotienten einer einzigen Function darstellen lassen.

(C.G.J. Jacobi 1837)

We enter here the second heaven of Hamiltonian theory, the realm of partial dif-
ferential equations and generating functions. The starting point of this theory was
the discovery of Hamilton that the motion of the system is completely described
by a “characteristic” function S, and that S is the solution of a partial differential
equation, now called the Hamilton–Jacobi differential equation.

It was noticed later, especially by Siegel (see Siegel & Moser 1971, §3), that
such a function S is directly connected to any symplectic map. It received the name
generating function.

VI.5.1 Existence of Generating Functions

We now consider a fixed Hamiltonian system and a fixed time interval and denote
by the column vectors p and q the initial values p1, . . . , pd and q1, . . . , qd at t0 of a
trajectory. The final values at t1 are written as P and Q. We thus have a mapping
(p, q) �→ (P,Q) which, as we know, is symplectic on an open set U .

The following results are conveniently formulated in the notation of differential
forms. For a function F we denote by dF = F ′ its (Fréchet) derivative. We denote
by dq = (dq1, . . . , dqd)T the derivative of the coordinate projection (p, q) �→ q.
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Theorem 5.1. A mapping ϕ : (p, q) �→ (P,Q) is symplectic if and only if there
exists locally a function S(p, q) such that

PT dQ− pT dq = dS. (5.1)

This means that PT dQ− pT dq is a total differential.

Proof. We split the Jacobian of ϕ into the natural 2× 2 block matrix

∂(P,Q)
∂(p, q)

=
(

Pp Pq

Qp Qq

)
.

Inserting this into (2.6) and multiplying out shows that the three conditions

PT
p Qp = QT

p Pp, PT
p Qq − I = QT

p Pq, QT
q Pq = PT

q Qq (5.2)

are equivalent to symplecticity. We now insert dQ = Qp dp + Qq dq into the left-
hand side of (5.1) and obtain

(
PTQp, P

TQq − pT
)(

dp
dq

)
=

(
QT

p P

QT
q P − p

)T (
dp
dq

)
.

To apply the Integrability Lemma 2.7, we just have to verify the symmetry of the
Jacobian of the coefficient vector,

(
QT

p Pp QT
p Pq

QT
q Pp − I QT

q Pq

)
+

∑
i

Pi
∂2Qi

∂(p, q)2
. (5.3)

Since the Hessians of Qi are symmetric anyway, it is immediately clear that the
symmetry of the matrix (5.3) is equivalent to the symplecticity conditions (5.2). 
�

Reconstruction of the Symplectic Map from S. Up to now we have considered
all functions as depending on p and q. The essential idea now is to introduce new
coordinates; namely (5.1) suggests using z = (q,Q) instead of y = (p, q). This is a
well-defined local change of coordinates y = ψ(z) if p can be expressed in terms of
the coordinates (q,Q), which is possible by the implicit function theorem if ∂Q

∂p is
invertible. Abusing our notation we again write S(q,Q) for the transformed function
S(ψ(z)). Then, by comparing the coefficients of dS = ∂S(q,Q)

∂q dq + ∂S(q,Q)
∂Q dQ

with (5.1), we arrive at3

P =
∂S

∂Q
(q,Q), p = −∂S

∂q
(q,Q). (5.4)

If the transformation (p, q) �→ (P,Q) is symplectic, then it can be reconstructed
from the scalar function S(q,Q) by the relations (5.4). By Theorem 5.1 the converse

3 On the right-hand side we should have put the gradient ∇QS = (∂S/∂Q)T . We shall
not make this distinction between row and column vectors when there is no danger of
confusion.
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is also true: any sufficiently smooth and nondegenerate function S(q,Q) “gener-
ates” via (5.4) a symplectic mapping (p, q) �→ (P,Q). This gives us a powerful tool
for creating symplectic methods.

Mixed-Variable Generating Functions. Another often useful choice of coordi-
nates for generating symplectic maps are the mixed variables (P, q). For any con-

tinuously differentiable function Ŝ(P, q) we clearly have dŜ = ∂Ŝ
∂P dP + ∂Ŝ

∂q dq. On

the other hand, since d(PTQ) = PT dQ+QT dP , the symplecticity condition (5.1)
can be rewritten as QT dP +pT dq = d(QTP −S) for some function S. It therefore
follows from Theorem 5.1 that the equations

Q =
∂Ŝ

∂P
(P, q), p =

∂Ŝ

∂q
(P, q) (5.5)

define (locally) a symplectic map (p, q) �→ (P,Q) if ∂2Ŝ/∂P∂q is invertible.

Example 5.2. Let Q = χ(q) be a change of position coordinates. With the gener-
ating function Ŝ(P, q) = PTχ(q) we obtain via (5.5) an extension to a symplectic
mapping (p, q) �→ (P,Q). The conjugate variables are thus related by p = χ′(q)TP .

Mappings Close to the Identity. We are mainly interested in the situation where
the mapping (p, q) �→ (P,Q) is close to the identity. In this case, the choices (p,Q)
or (P, q) or

(
(P + p)/2, (Q + q)/2

)
of independent variables are convenient and

lead to the following characterizations.

Lemma 5.3. Let (p, q) �→ (P,Q) be a smooth transformation, close to the identity.
It is symplectic if and only if one of the following conditions holds locally:

• QT dP + pT dq = d(PT q + S1) for some function S1(P, q);
• PT dQ + qT dp = d(pTQ− S2) for some function S2(p,Q);
• (Q− q)T d(P + p)− (P − p)T d(Q + q) = 2 dS3

for some function S3
(
(P + p)/2, (Q + q)/2

)
.

Proof. The first characterization follows from the discussion before formula (5.5) if
we put S1 such that PT q+S1 = Ŝ = QTP−S. For the second characterization we
use d(pT q) = pT dq+ qT dp and the same arguments as before. The last one follows
from the fact that (5.1) is equivalent to (Q− q)T d(P + p)− (P − p)T d(Q + q) =
d
(
(P + p)T (Q− q)− 2S

)
. 
�

The generating functions S1, S2, and S3 have been chosen such that we obtain
the identity mapping when they are replaced with zero. Comparing the coefficient
functions of dq and dP in the first characterization of Lemma 5.3, we obtain

p = P +
∂S1

∂q
(P, q), Q = q +

∂S1

∂P
(P, q). (5.6)
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Whatever the scalar function S1(P, q) is, the relation (5.6) defines a symplectic
transformation (p, q) �→ (P,Q). For S1(P, q) := hH(P, q) we recognize the sym-
plectic Euler method (I.1.9). This is an elegant proof of the symplecticity of this
method. The second characterization leads to the adjoint of the symplectic Euler
method.

The third characterization of Lemma 5.3 can be written as

P = p− ∂2S
3
(
(P + p)/2, (Q + q)/2

)
,

Q = q + ∂1S
3
(
(P + p)/2, (Q + q)/2

)
,

(5.7)

which, for S3 = hH , is nothing other than the implicit midpoint rule (I.1.7) applied
to a Hamiltonian system. We have used the notation ∂1 and ∂2 for the derivative with
respect to the first and second argument, respectively. The system (5.7) can also be
written in compact form as

Y = y + J−1∇S3
(
(Y + y)/2

)
, (5.8)

where Y = (P,Q), y = (p, q), S3(w) = S3(u, v) with w = (u, v), and J is the
matrix of (2.3).

VI.5.2 Generating Function for Symplectic Runge–Kutta
Methods

We have just seen that all symplectic transformations can be written in terms of gen-
erating functions. What are these generating functions for symplectic Runge–Kutta
methods? The following result, proved by Lasagni in an unpublished manuscript
(with the same title as the note Lasagni (1988)), gives an alternative proof for The-
orem 4.3.

Theorem 5.4. Suppose that

biaij + bjaji = bibj for all i, j (5.9)

(see Theorem 4.3). Then, the Runge–Kutta method

P = p− h

s∑
i=1

biHq(Pi, Qi), Pi = p− h

s∑
j=1

aijHq(Pj , Qj),

Q = q + h

s∑
i=1

biHp(Pi, Qi), Qi = q + h

s∑
j=1

aijHp(Pj , Qj)
(5.10)

can be written as (5.6) with

S1(P, q, h) = h

s∑
i=1

biH(Pi, Qi)− h2
s∑

i,j=1

biaijHq(Pi, Qi)THp(Pj , Qj). (5.11)
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Proof. We first differentiate S1(P, q, h) with respect to q. Using the abbreviations
H[i] = H(Pi, Qi), Hp[i] = Hp(Pi, Qi), . . . , we obtain

∂

∂q

(∑
i

biH[i]
)

=
∑

i

biHp[i]T
(∂p

∂q
− h

∑
j

aij
∂

∂q
Hq[j]

)

+
∑

i

biHq[i]T
(
I + h

∑
j

aij
∂

∂q
Hp[j]

)
.

With

0 =
∂p

∂q
− h

∑
j

bj
∂

∂q
Hq[j]

(this is obtained by differentiating the first relation of (5.10)), Leibniz’ rule

∂

∂q

(
Hq[i]THp[j]

)
= Hq[i]T

∂

∂q
Hp[j] + Hp[j]T

∂

∂q
Hq[i]

and the condition (5.9) therefore yield the first relation of

∂S1(P, q, h)
∂q

= h
∑

i

biHq[i],
∂S1(P, q, h)

∂P
= h

∑
i

biHp[i].

The second relation is proved in the same way. This shows that the Runge–Kutta
formulas (5.10) are equivalent to (5.6). 
�

It is interesting to note that, whereas Lemma 5.3 guarantees the local existence
of a generating function S1, the explicit formula (5.11) shows that for Runge–Kutta
methods this generating function is globally defined. This means that it is well-
defined in the same region where the Hamiltonian H(p, q) is defined.

Theorem 5.5. A partitioned Runge–Kutta method (II.2.2), satisfying the symplec-
ticity conditions (4.3) and (4.4), is equivalent to (5.6) with

S1(P, q, h) = h

s∑
i=1

biH(Pi, Qi)− h2
s∑

i,j=1

biâijHq(Pi, Qi)THp(Pj , Qj).

If the Hamiltonian is of the form H(p, q) = T (p) + U(q), i.e., it is separable,
then the condition (4.3) alone implies that the method is of the form (5.6) with

S1(P, q, h) = h

s∑
i=1

(
biU(Qi) + b̂iT (Pi)

)
− h2

s∑
i,j=1

biâijUq(Qi)TTp(Pj , ).

Proof. This is a straightforward extension of the proof of the previous theorem. 
�
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VI.5.3 The Hamilton–Jacobi Partial Differential Equation

C.G.J. Jacobi4

We now return to the above construction of
S for a symplectic transformation (p, q) �→
(P,Q) (see Theorem 5.1). This time, how-
ever, we imagine the point P (t), Q(t) to
move in the flow of the Hamiltonian system
(1.7). We wish to determine a smooth gener-
ating function S(q,Q, t), now also depending
on t, which generates via (5.4) the symplectic
map (p, q) �→

(
P (t), Q(t)

)
of the exact flow

of the Hamiltonian system.
In accordance with equation (5.4) we

have to satisfy

Pi(t) =
∂S

∂Qi

(
q,Q(t), t

)
,

pi = − ∂S

∂qi

(
q,Q(t), t

)
.

(5.12)

Differentiating the second relation with respect to t yields

0 =
∂2S

∂qi∂t

(
q,Q(t), t

)
+

d∑
j=1

∂2S

∂qi∂Qj

(
q,Q(t), t

)
· Q̇j(t) (5.13)

=
∂2S

∂qi∂t

(
q,Q(t), t

)
+

d∑
j=1

∂2S

∂qi∂Qj

(
q,Q(t), t

)
· ∂H
∂Pj

(
P (t), Q(t)

)
(5.14)

where we have inserted the second equation of (1.7) for Q̇j . Then, using the chain
rule, this equation simplifies to

∂

∂qi

(
∂S

∂t
+ H

( ∂S

∂Q1
, . . . ,

∂S

∂Qd
, Q1, . . . , Qd

))
= 0. (5.15)

This motivates the following surprisingly simple relation.

Theorem 5.6. If S(q,Q, t) is a smooth solution of the partial differential equation

∂S

∂t
+ H

( ∂S

∂Q1
, . . . ,

∂S

∂Qd
, Q1, . . . , Qd

)
= 0 (5.16)

with initial values satisfying ∂S
∂qi

(q, q, 0) + ∂S
∂Qi

(q, q, 0) = 0, and if the matrix(
∂2S

∂qi∂Qj

)
is invertible, then the map (p, q) �→

(
P (t), Q(t)

)
defined by (5.12) is

the flow ϕt(p, q) of the Hamiltonian system (1.7).
Equation (5.16) is called the “Hamilton–Jacobi partial differential equation”.

4 Carl Gustav Jacob Jacobi, born: 10 December 1804 in Potsdam (near Berlin), died: 18
February 1851 in Berlin.
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Proof. The invertibility of the matrix
(

∂2S
∂qi∂Qj

)
and the implicit function theorem

imply that the mapping (p, q) �→
(
P (t), Q(t)

)
is well-defined by (5.12), and, by

differentiation, that (5.13) is true as well.
Since, by hypothesis, S(q,Q, t) is a solution of (5.16), the equations (5.15)

and hence also (5.14) are satisfied. Subtracting (5.13) and (5.14), and once again
using the invertibility of the matrix

(
∂2S

∂qi∂Qj

)
, we see that necessarily Q̇(t) =

Hp

(
P (t), Q(t)

)
. This proves the validity of the second equation of the Hamiltonian

system (1.7).
The first equation of (1.7) is obtained as follows: differentiate the first relation

of (5.12) with respect to t and the Hamilton–Jacobi equation (5.16) with respect
to Qi, then eliminate the term ∂2S

∂Qi∂t . Using Q̇(t) = Hp

(
P (t), Q(t)

)
, this leads in

a straightforward way to Ṗ (t) = −Hq

(
P (t), Q(t)

)
. The condition on the initial

values of S ensures that (P (0), Q(0)) = (p, q). 
�

In the hands of Jacobi (1842), this equation turned into a powerful tool for the
analytic integration of many difficult problems. One has, in fact, to find a solution
of (5.16) which contains sufficiently many parameters. This is often possible with
the method of separation of variables. An example is presented in Exercise 11.

Hamilton–Jacobi Equation for S1, S2, and S3. We now express the Hamilton–
Jacobi differential equation in the coordinates used in Lemma 5.3. In these coordi-
nates it is also possible to prescribe initial values for S at t = 0.

From the proof of Lemma 5.3 we know that the generating functions in the
variables (q,Q) and (P, q) are related by

S1(P, q, t) = PT (Q− q)− S(q,Q, t). (5.17)

We consider P, q, t as independent variables, and we differentiate this relation with
respect to t. Using the first relation of (5.12) this gives

∂S1

∂t
(P, q, t) = PT ∂Q

∂t
− ∂S

∂Q
(q,Q, t)

∂Q

∂t
− ∂S

∂t
(q,Q, t) = −∂S

∂t
(q,Q, t).

Differentiating (5.17) with respect to P yields

∂S1

∂P
(P, q, t) = Q− q + PT ∂Q

∂P
− ∂S

∂Q
(q,Q, t)

∂Q

∂P
= Q− q.

Inserting ∂S
∂Q = P and Q = q + ∂S1

∂P into the Hamilton–Jacobi equation (5.16) we
are led to the equation of the following theorem.

Theorem 5.7. If S1(P, q, t) is a solution of the partial differential equation

∂S1

∂t
(P, q, t) = H

(
P, q +

∂S1

∂P
(P, q, t)

)
, S1(P, q, 0) = 0, (5.18)

then the mapping (p, q) �→
(
P (t), Q(t)

)
, defined by (5.6), is the exact flow of the

Hamiltonian system (1.7).
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Proof. Whenever the mapping (p, q) �→
(
P (t), Q(t)

)
can be written as (5.12) with

a function S(q,Q, t), and when the invertibility assumption of Theorem 5.6 holds,
the proof is done by the above calculations. Since our mapping, for t = 0, reduces
to the identity and cannot be written as (5.12), we give a direct proof.

Let S1(P, q, t) be given by the Hamilton–Jacobi equation (5.18), and assume
that (p, q) �→ (P,Q) =

(
P (t), Q(t)

)
is the transformation given by (5.6). Differen-

tiation of the first relation of (5.6) with respect to time t and using (5.18) yields5

(
I +

∂2S1

∂P∂q
(P, q, t)

)
Ṗ = −∂2S1

∂t∂q
(P, q, t) = −

(
I +

∂2S1

∂P∂q
(P, q, t)

)∂H

∂Q
(P,Q).

Differentiation of the second relation of (5.6) gives

Q̇ =
∂2S1

∂t∂P
(P, q, t) +

∂2S1

∂P 2
(P, q, t)Ṗ

=
∂H

∂P
(P,Q) +

∂2S1

∂P 2
(P, q, t)

(∂H

∂Q
(P,Q) + Ṗ

)
.

Consequently, Ṗ = −∂H
∂Q (P,Q) and Q̇ = ∂H

∂P (P,Q), so that
(
P (t), Q(t)

)
=

ϕt(p, q) is the exact flow of the Hamiltonian system. 
�

Writing the Hamilton–Jacobi differential equation in the variables (P + p)/2,
(Q + q)/2 gives the following formula.

Theorem 5.8. Assume that S3(u, v, t) is a solution of

∂S3

∂t
(u, v, t) = H

(
u− 1

2
∂S3

∂v
(u, v, t), v +

1
2
∂S3

∂u
(u, v, t)

)
(5.19)

with initial condition S3(u, v, 0) = 0. Then, the exact flow ϕt(p, q) of the Hamil-
tonian system (1.7) satisfies the system (5.7).

Proof. As in the proof of Theorem 5.7, one considers the transformation (p, q) �→(
P (t), Q(t)

)
defined by (5.7), and then checks by differentiation that

(
P (t), Q(t)

)
is a solution of the Hamiltonian system (1.7). 
�

Writing w = (u, v) and using the matrix J of (2.3), the Hamilton–Jacobi equa-
tion (5.19) can also be written as

∂S3

∂t
(w, t) = H

(
w +

1
2
J−1∇S3(w, t)

)
, S3(w, 0) = 0. (5.20)

The solution of (5.20) is anti-symmetric in t, i.e.,

S3(w,−t) = −S3(w, t). (5.21)

5 Due to an inconsistent notation of the partial derivatives ∂H
∂Q

, ∂S1

∂q
as column or row vec-

tors, this formula may be difficult to read. Use indices instead of matrices in order to check
its correctness.
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This can be seen as follows: let ϕt(w) be the exact flow of the Hamiltonian system
ẏ = J−1∇H(y). Because of (5.8), S3(w, t) is defined by

ϕt(w)− w = J−1∇S3
(
(ϕt(w) + w)/2, t

)
.

Replacing t with −t and then w with ϕt(w) we get from ϕ−t

(
ϕt(t)

)
= w that

w − ϕt(w) = J−1∇S3
(
(w + ϕt(w))/2,−t

)
.

Hence S3(w, t) and −S3(w,−t) are generating functions of the same symplectic
transformation. Since generating functions are unique up to an additive constant
(because dS = 0 implies S = Const), the anti-symmetry (5.21) follows from the
initial condition S3(w, 0) = 0.

VI.5.4 Methods Based on Generating Functions

To construct symplectic numerical methods of high order, Feng Kang (1986), Feng
Kang, Wu, Qin & Wang (1989) and Channell & Scovel (1990) proposed computing
an approximate solution of the Hamilton–Jacobi equation. For this one inserts the
ansatz

S1(P, q, t) = tG1(P, q) + t2G2(P, q) + t3G3(P, q) + . . .

into (5.18), and compares like powers of t. This yields

G1(P, q) = H(P, q),

G2(P, q) = 1

2

(∂H

∂P

∂H

∂q

)
(P, q),

G3(P, q) = 1

6

(
∂2H

∂P 2

(∂H

∂q

)2

+
∂2H

∂P∂q

∂H

∂P

∂H

∂q
+

∂2H

∂q2

(∂H

∂P

)2
)

(P, q).

If we use the truncated series

S1(P, q) = hG1(P, q) + h2G2(P, q) + . . . + hrGr(P, q) (5.22)

and insert it into (5.6), the transformation (p, q) �→ (P,Q) defines a symplectic one-
step method of order r. Symplecticity follows at once from Lemma 5.3 and order r
is a consequence of the fact that the truncation of S1(P, q) introduces a perturbation
of size O(hr+1) in (5.18). We remark that for r ≥ 2 the methods obtained require
the computation of higher derivatives of H(p, q), and for separable Hamiltonians
H(p, q) = T (p) + U(q) they are no longer explicit (compared to the symplectic
Euler method (3.1)).

The same approach applied to the third characterization of Lemma 5.3 yields

S3(w, h) = hG1(w) + h3G3(w) + . . . + h2r−1G2r−1(w),

where G1(w) = H(w),
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G3(w) =
1
24
∇2H(w)

(
J−1∇H(w), J−1∇H(w)

)
,

and further Gj(w) can be obtained by comparing like powers of h in (5.20). In this
way we get symplectic methods of order 2r. Since S3(w, h) has an expansion in
odd powers of h, the resulting method is symmetric.

The Approach of Miesbach & Pesch. With the aim of avoiding higher derivatives
of the Hamiltonian in the numerical method, Miesbach & Pesch (1992) propose
considering generating functions of the form

S3(w, h) = h
s∑

i=1

biH
(
w + hciJ

−1∇H(w)
)
, (5.23)

and to determine the free parameters bi, ci in such a way that the function of (5.23)
agrees with the solution of the Hamilton–Jacobi equation (5.20) up to a certain order.
For bs+1−i = bi and cs+1−i = −ci this function satisfies S3(w,−h) = −S3(w, h),
so that the resulting method is symmetric. A straightforward computation shows that
it yields a method of order 4 if

s∑
i=1

bi = 1,
s∑

i=1

bic
2
i =

1
12

.

For s = 3, these equations are fulfilled for b1 = b3 = 5/18, b2 = 4/9, c1 = −c3 =√
15/10, and c2 = 0. Since the function S3 of (5.23) has to be inserted into (5.20),

these methods still need second derivatives of the Hamiltonian.

VI.6 Variational Integrators

A third approach to symplectic integrators comes from using discretized versions
of Hamilton’s principle, which determines the equations of motion from a varia-
tional problem. This route has been taken by Suris (1990), MacKay (1992) and
in a series of papers by Marsden and coauthors, see the review by Marsden &
West (2001) and references therein. Basic theoretical properties were formulated
by Maeda (1980,1982) and Veselov (1988,1991) in a non-numerical context.

VI.6.1 Hamilton’s Principle

Ours, according to Leibniz, is the best of all possible worlds, and the laws
of nature can therefore be described in terms of extremal principles.

(C.L. Siegel & J.K. Moser 1971, p. 1)

Man scheint dies Princip früher ... unbemerkt gelassen zu haben.
Hamilton ist der erste, der von diesem Princip ausgegangen ist.

(C.G.J. Jacobi 1842, p. 58)
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Hamilton gave an improved mathematical formulation of a principle
which was well established by the fundamental investigations of Euler
and Lagrange; the integration process employed by him was likewise
known to Lagrange. The name “Hamilton’s principle”, coined by Jacobi,
was not adopted by the scientists of the last century. It came into use,
however, through the textbooks of more recent date.

(C. Lanczos 1949, p. 114)

Lagrange’s equations of motion (1.4) can be viewed as the Euler–Lagrange equa-
tions for the variational problem of extremizing the action integral

S(q) =
∫ t1

t0

L(q(t), q̇(t)) dt (6.1)

among all curves q(t) that connect two given points q0 and q1:

q(t0) = q0 , q(t1) = q1 . (6.2)

In fact, assuming q(t) to be extremal and considering a variation q(t) + ε δq(t)
with the same end-points, i.e., with δq(t0) = δq(t1) = 0, gives, using a partial
integration,

0 =
d

dε

∣∣∣
ε=0

S(q + ε δq) =
∫ t1

t0

(∂L

∂q
δq +

∂L

∂q̇
δq̇

)
dt =

∫ t1

t0

(∂L

∂q
− d

dt

∂L

∂q̇

)
δq dt ,

which leads to (1.4). The principle that the motion extremizes the action integral is
known as Hamilton’s principle.

We now consider the action integral as a function of (q0, q1), for the solution
q(t) of the Euler–Lagrange equations (1.4) with these boundary values (this exists
uniquely locally at least if q0, q1 are sufficiently close),

S(q0, q1) =
∫ t1

t0

L(q(t), q̇(t)) dt . (6.3)

The partial derivative of S with respect to q0 is, again using partial integration,

∂S

∂q0
=

∫ t1

t0

(∂L

∂q

∂q

∂q0
+

∂L

∂q̇

∂q̇

∂q0

)
dt

=
∂L

∂q̇

∂q

∂q0

∣∣∣
t1

t0
+

∫ t1

t0

(∂L

∂q
− d

dt

∂L

∂q̇

) ∂q

∂q0
dt = −∂L

∂q̇
(q0, q̇0)

with q̇0 = q̇(t0), where the last equality follows from (1.4) and (6.2). In view of the
definition (1.5) of the conjugate momenta, p = ∂L/∂q̇, the last term is simply −p0.
Computing ∂S/∂q1 = p1 in the same way, we thus obtain for the differential of S

dS =
∂S

∂q1
dq1 +

∂S

∂q0
dq0 = p1 dq1 − p0 dq0 (6.4)

which is the basic formula for symplecticity generating functions (see (5.1) above),
obtained here by working with the Lagrangian formalism.
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VI.6.2 Discretization of Hamilton’s Principle

Discrete-time versions of Hamilton’s principle are of mathematical interest in their
own right, see Maeda (1980,1982), Veselov (1991) and references therein. Here they
are considered with the aim of deriving or understanding numerical approximation
schemes. The discretized Hamilton principle consists of extremizing, for given q0

and qN , the sum

Sh({qn}N
0 ) =

N−1∑
n=0

Lh(qn, qn+1) . (6.5)

We think of the discrete Lagrangian Lh as an approximation

Lh(qn, qn+1) ≈
∫ tn+1

tn

L(q(t), q̇(t)) dt , (6.6)

where q(t) is the solution of the Euler–Lagrange equations (1.4) with boundary
values q(tn) = qn, q(tn+1) = qn+1. If equality holds in (6.6), then it is clear
from the continuous Hamilton principle that the exact solution values {q(tn)} of
the Euler–Lagrange equations (1.4) extremize the action sum Sh. Before we turn
to concrete examples of approximations Lh, we continue with the general theory
which is analogous to the continuous case.

The requirement ∂Sh/∂qn = 0 for an extremum yields the discrete Euler–
Lagrange equations

∂Lh

∂y
(qn−1, qn) +

∂Lh

∂x
(qn, qn+1) = 0 (6.7)

for n = 1, . . . , N − 1, where the partial derivatives refer to Lh = Lh(x, y). This
gives a three-term difference scheme for determining q1, . . . , qN−1.

We now set

Sh(q0, qN ) =
N−1∑
n=0

Lh(qn, qn+1)

where {qn} is a solution of the discrete Euler–Lagrange equations (6.7) with the
boundary values q0 and qN . With (6.7) the partial derivatives reduce to

∂Sh

∂q0
=

∂Lh

∂x
(q0, q1),

∂Sh

∂qN
=

∂Lh

∂y
(qN−1, qN ) .

We introduce the discrete momenta via a discrete Legendre transformation,

pn = −∂Lh

∂x
(qn, qn+1) . (6.8)

The above formula and (6.7) for n = N then yield

dSh = pN dqN − p0 dq0. (6.9)
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If (6.8) defines a bijection between pn and qn+1 for given qn, then we obtain a
one-step method Φh : (pn, qn) �→ (pn+1, qn+1) by composing the inverse dis-
crete Legendre transform, a step with the discrete Euler–Lagrange equations, and
the discrete Legendre transformation as shown in the diagram:

(qn, qn+1)
(6.7)
−→ (qn+1, qn+2)

(6.8)
)

( (6.8)

(pn, qn) (pn+1, qn+1)

The method is symplectic by (6.9) and Theorem 5.1. A short-cut in the computation
is obtained by noting that (6.7) and (6.8) (for n + 1 instead of n) imply

pn+1 =
∂Lh

∂y
(qn, qn+1) , (6.10)

which yields the scheme

(pn, qn)
(6.8)
−→ (qn, qn+1)

(6.10)
−→ (pn+1, qn+1) .

Let us summarize these considerations, which can be found in Maeda (1980), Suris
(1990), Veselov (1991) and MacKay (1992).

Theorem 6.1. The discrete Hamilton principle for (6.5) gives the discrete Euler–
Lagrange equations (6.7) and the symplectic method

pn = −∂Lh

∂x
(qn, qn+1) , pn+1 =

∂Lh

∂y
(qn, qn+1) . (6.11)

These formulas also show that Lh is a generating function (5.4) for the sym-
plectic map (pn, qn) �→ (pn+1, qn+1). Conversely, since every symplectic method
has a generating function (5.4), it can be interpreted as resulting from Hamilton’s
principle with the generating function (5.4) as the discrete Lagrangian. The classes
of symplectic integrators and variational integrators are therefore identical.

We now turn to simple examples of variational integrators obtained by choosing
a discrete Lagrangian Lh with (6.6).

Example 6.2 (MacKay 1992). Choose Lh(qn, qn+1) by approximating q(t) of
(6.6) as the linear interpolant of qn and qn+1 and approximating the integral by
the trapezoidal rule. This gives

Lh(qn, qn+1) =
h

2
L
(
qn,

qn+1 − qn

h

)
+

h

2
L
(
qn+1,

qn+1 − qn

h

)
(6.12)

and hence the symplectic scheme, with vn+1/2 = (qn+1 − qn)/h for brevity,
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pn =
1
2
∂L

∂q̇
(qn, vn+1/2) +

1
2
∂L

∂q̇
(qn+1, vn+1/2)−

h

2
∂L

∂q
(qn, vn+1/2)

pn+1 =
1
2
∂L

∂q̇
(qn, vn+1/2) +

1
2
∂L

∂q̇
(qn+1, vn+1/2) +

h

2
∂L

∂q
(qn+1, vn+1/2) .

For a mechanical Lagrangian L(q, q̇) = 1
2 q̇

TMq̇−U(q) this reduces to the Störmer–
Verlet method

Mvn+1/2 = pn + 1

2
hFn

qn+1 = qn + hvn+1/2

pn+1 = Mvn+1/2 + 1

2
hFn+1

where Fn = −∇U(qn). In this case, the discrete Euler–Lagrange equations (6.7)
become the familiar second-difference formula M(qn+1 − 2qn + qn−1) = h2Fn.

Example 6.3 (Wendlandt & Marsden 1997). Approximating the integral in (6.6)
instead by the midpoint rule gives

Lh(qn, qn+1) = hL
(qn+1 + qn

2
,
qn+1 − qn

h

)
. (6.13)

This yields the symplectic scheme, with the abbreviations qn+1/2 = (qn+1 + qn)/2
and vn+1/2 = (qn+1 − qn)/h,

pn =
∂L

∂q̇
(qn+1/2, vn+1/2)−

h

2
∂L

∂q
(qn+1/2, vn+1/2)

pn+1 =
∂L

∂q̇
(qn+1/2, vn+1/2) +

h

2
∂L

∂q
(qn+1/2, vn+1/2) .

For L(q, q̇) = 1
2 q̇

TMq̇ − U(q) this becomes the implicit midpoint rule

Mvn+1/2 = pn + 1

2
hFn+1/2

qn+1 = qn + hvn+1/2

pn+1 = Mvn+1/2 + 1

2
hFn+1/2

with Fn+1/2 = −∇U( 1
2 (qn+1 + qn)).

VI.6.3 Symplectic Partitioned Runge–Kutta Methods Revisited

To obtain higher-order variational integrators, Marsden & West (2001) consider the
discrete Lagrangian

Lh(q0, q1) = h

s∑
i=1

biL
(
u(cih), u̇(cih)

)
(6.14)
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where u(t) is the polynomial of degree s with u(0) = q0, u(h) = q1 which ex-
tremizes the right-hand side. They then show that the corresponding variational in-
tegrator can be realized as a partitioned Runge–Kutta method. We here consider the
slightly more general case

Lh(q0, q1) = h

s∑
i=1

biL(Qi, Q̇i) (6.15)

where
Qi = q0 + h

s∑
j=1

aijQ̇j

and the Q̇i are chosen to extremize the above sum under the constraint

q1 = q0 + h
s∑

i=1

biQ̇i .

We assume that all the bi are non-zero and that their sum equals 1. Note that (6.14)
is the special case of (6.15) where the aij and bi are integrals (II.1.10) of Lagrange
polynomials as for collocation methods.

With a Lagrange multiplier λ = (λ1, . . . , λd) for the constraint, the extremality
conditions obtained by differentiating (6.15) with respect to Q̇j for j = 1, . . . , s,
read

s∑
i=1

bi
∂L

∂q
(Qi, Q̇i)haij + bj

∂L

∂q̇
(Qj , Q̇j) = bjλ .

With the notation

Ṗi =
∂L

∂q
(Qi, Q̇i) , Pi =

∂L

∂q̇
(Qi, Q̇i) (6.16)

this simplifies to

bjPj = bjλ− h
s∑

i=1

biaijṖi . (6.17)

The symplectic method of Theorem 6.1 now becomes

p0 = −∂Lh

∂x
(q0, q1)

= −h

s∑
i=1

biṖi

(
I + h

s∑
j=1

aij
∂Q̇j

∂q0

)
− h

s∑
j=1

bjPj
∂Q̇j

∂q0

= −h

s∑
i=1

biṖi + λ .

In the last equality we use (6.17) and h
∑

j bj∂Q̇j/∂q0 = −I , which follows from
differentiating the constraint. In the same way we obtain
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p1 =
∂Lh

∂y
(q0, q1) = λ .

Putting these formulas together, we see that (p1, q1) result from applying a parti-
tioned Runge–Kutta method to the Lagrange equations (1.4) written as a differential-
algebraic system

ṗ =
∂L

∂q
(q, q̇) , p =

∂L

∂q̇
(q, q̇) . (6.18)

That is

p1 = p0 + h
s∑

i=1

biṖi , q1 = q0 + h
∑s

i=1 biQ̇i ,

Pi = p0 + h

s∑
j=1

âijṖj , Qi = q0 + h
∑s

j=1 aijQ̇j ,

(6.19)

with âij = bj − bjaji/bi so that the symplecticity condition (4.3) is fulfilled, and
with Pi, Qi, Ṗi, Q̇i related by (6.16). Since equations (6.16) are of the same form as
(6.18), the proof of Theorem 1.3 shows that they are equivalent to

Ṗi = −∂H

∂q
(Pi, Qi) , Q̇i =

∂H

∂p
(Pi, Qi) (6.20)

with the Hamiltonian H = pT q̇−L(q, q̇) of (1.6). We have thus proved the follow-
ing, which is similar in spirit to a result of Suris (1990).

Theorem 6.4. The variational integrator with the discrete Lagrangian (6.15) is
equivalent to the symplectic partitioned Runge–Kutta method (6.19), (6.20) applied
to the Hamiltonian system with the Hamiltonian (1.6). 
�

In particular, as noted by Marsden & West (2001), choosing Gaussian quadrature
in (6.14) gives the Gauss collocation method applied to the Hamiltonian system,
while Lobatto quadrature gives the Lobatto IIIA - IIIB pair.

VI.6.4 Noether’s Theorem

. . . enthält Satz I alle in Mechanik u.s.w. bekannten Sätze über erste In-
tegrale. (E. Noether 1918)

We now return to the subject of Chap. IV, i.e., the existence of first integrals, but
here in the context of Hamiltonian systems. E. Noether found the surprising result
that continuous symmetries in the Lagrangian lead to such first integrals. We give in
the following a version of her “Satz I”, specialized to our needs, with a particularly
short proof.

Theorem 6.5 (Noether 1918). Consider a system with Hamiltonian H(p, q) and
Lagrangian L(q, q̇). Suppose {gs : s ∈ R} is a one-parameter group of transfor-
mations (gs ◦ gr = gs+r) which leaves the Lagrangian invariant:
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L(gs(q), g′s(q)q̇) = L(q, q̇) for all s and all (q, q̇). (6.21)

Let a(q) = (d/ds)|s=0 gs(q) be defined as the vector field with flow gs(q). Then

I(p, q) = pTa(q) (6.22)

is a first integral of the Hamiltonian system.

Example 6.6. Let G be a matrix Lie group with Lie algebra g (see Sect. IV.6). Sup-
pose L(Qq,Qq̇) = L(q, q̇) for all Q ∈ G. Then pTAq is a first integral for every
A ∈ g. (Take gs(q) = exp(sA)q.) For example, G = SO(n) yields conservation of
angular momentum.

We prove Theorem 6.5 by using the discrete analogue, which reads as follows.

Theorem 6.7. Suppose the one-parameter group of transformations {gs : s ∈ R}
leaves the discrete Lagrangian Lh(q0, q1) invariant:

Lh(gs(q0), gs(q1)) = Lh(q0, q1) for all s and all (q0, q1). (6.23)

Then (6.22) is a first integral of the method (6.11), i.e., pT
n+1a(qn+1) = pT

na(qn).

Proof. Differentiating (6.23) with respect to s gives

0 =
d

ds

∣∣∣
s=0

Lh(gs(q0), gs(q1)) =
∂Lh

∂x
(q0, q1)a(q0) +

∂Lh

∂y
(q0, q1)a(q1).

By (6.11) this becomes 0 = −pT
0 a(q0) + pT

1 a(q1). 
�

Theorem 6.5 now follows by choosing Lh = S of (6.3) and noting (6.4) and

S(q(t0), q(t1)) =
∫ t1

t0

L
(
q(t), q̇(t)

)
dt

=
∫ t1

t0

L
(
gs(q(t)),

d

dt
gs(q(t))

)
dt = S

(
gs(q(t0)), gs(q(t1))

)
.

Theorem 6.7 has the appearance of giving a rich source of first integrals for sym-
plectic methods. However, it must be noted that, unlike the case of the exact flow
map in the above formula, the invariance (6.21) of the Lagrangian L does not in
general imply the invariance (6.23) of the discrete Lagrangian Lh of the numerical
method. A noteworthy exception arises for linear transformations gs as in Exam-
ple 6.6, for which Theorem 6.7 yields the conservation of quadratic first integrals
pTAq, such as angular momentum, by symplectic partitioned Runge–Kutta methods
– a property we already know from Theorem IV.2.4. For Hamiltonian systems with
an associated Lagrangian L(q, q̇) = 1

2 q̇
TMq̇ − U(q), all first integrals originating

from Noether’s Theorem are quadratic (see Exercise 13).
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VI.7 Characterization of Symplectic Methods

Up to now in this chapter, we have presented sufficient conditions for the symplec-
ticity of numerical integrators (usually in terms of certain coefficients). Here, we
will prove necessary conditions for symplecticity, i.e., answer the question as to
which methods are not symplectic. It will turn out that the sufficient conditions of
Sect. VI.4, under an irreducibility condition on the method, are also necessary. The
main tool is the Taylor series expansion of the numerical flow y0 �→ Φh(y0), which
we assume to be a B-series (or a P-series).

VI.7.1 B-Series Methods Conserving Quadratic First Integrals

The numerical solution of a Runge–Kutta method (II.1.4) can be written as a
B-series

y1 = B(a, y0) = y0 +
∑
τ∈T

h|τ |

σ(τ)
a(τ)F (τ)(y0) (7.1)

with coefficients a(τ) given by

a(τ) =
s∑

i=1

bigi(τ) for τ ∈ T (7.2)

(see (III.1.16) and Sect. III.1.2). Our aim is to express the sufficient condition for
the exact conservation of quadratic first integrals (which is the same as for symplec-
ticity) in terms of the coefficients a(τ). For this we multiply (4.2) by gi(u) · gj(v)
(where u = [u1, . . . , um] and v = [v1, . . . , vl] are trees in T ) and we sum over all i
and j. Using (III.1.13) and the recursion (III.1.15) this yields

s∑
i=1

bigi(u ◦ v) +
s∑

j=1

bjgj(v ◦ u) =
( s∑

i=1

bigi(u)
)( s∑

j=1

bjgj(v)
)
,

where we have used the Butcher product (see, e.g., Butcher (1987), Sect. 143)

u ◦ v = [u1, . . . , um, v], v ◦ u = [v1, . . . , vl, u] (7.3)

(compare also Definition III.3.7 and Fig. 7.1 below). Because of (7.2), this implies

a(u ◦ v) + a(v ◦ u) = a(u) · a(v) for u, v ∈ T. (7.4)

We now forget that the B-series (7.1) has been obtained from a Runge–Kutta
method, and we ask the following question: is the condition (7.4) sufficient for a
B-series method defined by (7.1) to conserve exactly quadratic first integrals (and
to be symplectic)? The next theorem shows that this is indeed true, and we shall see
later that condition (7.4) is also necessary (cf. Chartier, Faou & Murua 2005).
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Theorem 7.1. Consider a B-series method Φh(y) = B(a, y) and problems
ẏ = f(y) having Q(y) = yTCy (with symmetric matrix C) as first integral.

If the coefficients a(τ) satisfy (7.4), then the method exactly conserves Q(y) and
it is symplectic.

Proof. a) Under the assumptions of the theorem we shall prove in part (c) that

B(a, y)TCB(a, y) = yTCy+
∑

u,v∈T

h|u|+|v|

σ(u)σ(v)
m(u, v)F (u)(y)TCF (v)(y) (7.5)

with m(u, v) = a(u) · a(v)− a(u ◦ v)− a(v ◦ u). Condition (7.4) is equivalent to
m(u, v) = 0 and thus implies the exact conservation of Q(y) = yTCy.

To prove symplecticity of the method it is sufficient to show that the diagram of
Lemma 4.1 commutes for general B-series methods. This is seen by differentiating
the elementary differentials and by comparing them with those for the augmented
system (Exercise 8). Symplecticity of the method thus follows as in Sect. VI.4.1
form the fact that the symplecticity relation is a quadratic first integral of the aug-
mented system.

b) Since Q(y) = yTCy is a first integral of ẏ = f(y), we have yTCf(y) = 0
for all y. Differentiating m times this relation with respect to y yields

m∑
j=1

kT
j Cf (m−1)(y)

(
k1, . . . , kj−1, kj+1 . . . , km

)
+yTCf (m)(y)

(
k1, . . . , km) = 0.

Putting kj = F (τj)(y) we obtain the formula

yTCF ([τ1, . . . , τm])(y) = −
m∑

j=1

F (τj)(y)TCF ([τ1, . . . , τj−1, τj+1, . . . , τm])(y),

which can also be written in the form

yTC
F (τ)(y)
σ(τ)

= −
∑

u,v∈T,v◦u=τ

F (u)(y)T

σ(u)
C

F (v)(y)
σ(v)

. (7.6)

c) With (7.1) the expression yT
1 Cy1 becomes

B(a, y)TCB(a, y) = yTCy + 2yTC
∑
τ∈T

h|τ |

σ(τ)
a(τ)F (τ)(y)

+
∑

u,v∈T

h|u|+|v|

σ(u)σ(v)
a(u) a(v)F (u)(y)TCF (v)(y).

Since C is symmetric, formula (7.6) remains true if we sum over trees u, v such that
u ◦ v = τ . Inserting both formulas into the sum over τ leads directly to (7.5). 
�
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Extension to P-Series. All the previous results can be extended to partitioned meth-
ods. To find the correct conditions on the coefficients of the P-series, we use the fact
that the numerical solution of a partitioned Runge–Kutta method (II.2.2) is a P-series

(
p1

q1

)
=

(
Pp(a, (p0, q0))

Pq(a, (p0, q0))

)
=

(
p0

q0

)
+

(∑
u∈TPp

h|u|

σ(u) a(u)F (u)(p0, q0)∑
v∈TPq

h|v|

σ(v) a(v)F (v)(p0, q0)

)

(7.7)
with coefficients a(τ) given by

a(τ) =

{ ∑s
i=1 biφi(τ) for τ ∈ TPp∑s
i=1 b̂iφi(τ) for τ ∈ TPq

(7.8)

(see Theorem III.2.4). We assume here that the elementary differentials F (τ)(p, q)
originate from a partitioned sytem

ṗ = f1(p, q), q̇ = f2(p, q), (7.9)

such as the Hamiltonian system (1.7). This time we multiply (4.3) by φi(u) · φj(v)
(where u = [u1, . . . , um]p ∈ TPp and v = [v1, . . . , vl]q ∈ TPq) and we sum over
all i and j. Using the recursion (III.2.7) this yields

s∑
i=1

biφi(u ◦ v) +
s∑

j=1

b̂jφj(v ◦ u) =
( s∑

i=1

biφi(u)
)( s∑

j=1

b̂jφj(v)
)
, (7.10)

where u ◦ v = [u1, . . . , um, v]p and v ◦ u = [v1, . . . , vl, u]q . Because of (7.8), this
implies the relation

a(u ◦ v) + a(v ◦ u) = a(u) · a(v) for u ∈ TPp, v ∈ TPq. (7.11)

Since φi(τ) is independent of the colour of the root of τ , condition (4.4) implies

a(τ) is independent of the colour of the root of τ . (7.12)

Theorem 7.2. Consider a P-series method (p1, q1) = Φh(p0, q0) given by (7.7),
and a problem (7.9) having Q(p, q) = pTE q as first integral.

i) If the coefficients a(τ) satisfy (7.11) and (7.12), the method exactly conserves
Q(p, q) and it is symplectic for general Hamiltonian systems (1.7).

ii) If the coefficients a(τ) satisfy only (7.11), the method exactly conserves
Q(p, q) for problems of the form ṗ = f1(q), q̇ = f2(p), and it is symplectic for
separable Hamiltonian systems where H(p, q) = T (p) + U(q).

Proof. This is very similar to that of Theorem 7.1. If Q(p, q) = pTE q is a first
integral of (7.9), we have f1(p, q)TE q + pTE f2(p, q) = 0 for all p and q. Differ-
entiating m times with respect to p and n times with respect to q yields
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0 = Dm
p Dn

q f1(p, q)
(
k1, . . . , km, �1, . . . , �n

)T
E q

+ pTE Dm
p Dn

q f2(p, q)
(
k1, . . . , km, �1, . . . , �n

)
(7.13)

+
n∑

j=1

Dm
p Dn−1

q f1(p, q)
(
k1, . . . , km, �1, . . . , �j−1, �j+1, . . . , �n

)T
E �j

+
m∑

i=1

kT
i E Dm−1

p Dn
q f2(p, q)

(
k1, . . . , ki−1, ki+1, . . . , km, �1, . . . , �n

)
.

Putting ki = F (ui)(p, q) with ui ∈ TPp, �j = F (vj)(p, q) with vj ∈ TPq, τp =
[u1, . . . , um, v1, . . . , vn]p and τq = [u1, . . . , um, v1, . . . , vn]q, we obtain as in part
(b) of the proof of Theorem 7.1 that

F (τp)(p, q)T

σ(τp)
E q + pTE

F (τq)(p, q)
σ(τq)

(7.14)

=
∑

u◦v=τp

F (u)(p, q)T

σ(u)
E

F (v)(p, q)
σ(v)

+
∑

v◦u=τq

F (u)(p, q)T

σ(u)
E

F (v)(p, q)
σ(v)

,

where the sums are over u ∈ TPp and v ∈ TPq.
With (7.7) the expression pT

1 E q1 becomes

Pp(a, (p, q))TE Pq(a, (p, q)) = pTE q (7.15)

+
∑

u∈TPp

h|u|

σ(u)
a(u)F (u)(p, q)TE q + pTE

∑
v∈TPq

h|v|

σ(v)
a(v)F (v)(p, q)

+
∑

u∈TPp,v∈TPq

h|u|+|v|

σ(u)σ(v)
a(u)a(v)F (u)(p, q)TE F (v)(p, q).

Condition (7.12) implies that a(τp) = a(τq) for the trees in (7.14). Since also |τp| =
|τq| and σ(τp) = σ(τq), two corresponding terms in the sums of the second line
in (7.15) can be jointly replaced by the use of (7.14). As in part (c) of the proof of
Theorem 7.1 this together with (7.11) then yields

Pp(a, (p, q))TE Pq(a, (p, q)) = pTE q,

which proves the conservation of quadratic first integrals pTE q. Symplecticity fol-
lows as before, because the diagram of Lemma 4.1 also commutes for general P-
series methods.

For the proof of statement (ii) we notice that f1(q)TE q + pTE f2(p) = 0 im-
plies that f1(q)TE q = 0 and pTE f2(p) = 0 vanish separately. Instead of (7.14)
we thus have two identities: the term F (τp)(p, q)TE q/σ(τp) becomes equal to the
first sum in (7.14), and pTE F (τq)(p, q)/σ(τq) to the second sum. Consequently,
the previous argumentation can be applied without the condition a(τp) = a(τq). 
�
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Second Order Differential Equations. We next consider partitioned systems of
the particular form

ṗ = f1(q), q̇ = Cp + c, (7.16)

where C is a matrix and c a vector. Since problems of this type are second or-
der differential equations q̈ = Cf1(q), partitioned Runge–Kutta methods become
equivalent to Nyström methods (see Sects. II.2.3 and IV.2.3).

An important special case are Hamiltonian systems

ṗ = −∇U(q), q̇ = Cp + c (7.17)

(or, equivalently, q̈ = −C∇U(q)). They correspond to Hamiltonian functions

H(p, q) = 1

2
pTCp + cT p + U(q), (7.18)

where the kinetic energy is at most quadratic in p (here, C is usually symmetric).
In a P-series representation of the numerical solution, many elementary differen-

tials vanish identically. Only those trees have to be considered, whose neighbouring
vertices have different colour (the problem is separable) and whose white vertices
have at most one son6 (second component is linear). We denote this set of trees by

TNp =
{
τ ∈ TPp

∣∣∣ neighbouring vertices of τ have different colour
white vertices of τ have at most one son

}
, (7.19)

and we let TNq be the corresponding subset of TPq.
The same procedure as for partitioned methods permits us to write the symplec-

ticity condition of Theorem 4.8 in terms of the coefficients a(τ) of the P-series.
Assuming a( ) = a( ) = 1, the two conditions of (4.5) lead to

a( ◦ u) + a(u ◦ ) = a(u) a( ) for u ∈ TNp (7.20)

a(u)a( ◦ v)− a(u ◦◦ v) = a( ◦ u)a(v)− a(v ◦◦u) for u, v ∈ TNp (7.21)

where we use the abbreviating notation

u ◦◦ v = u ◦ ( ◦ v) = [u1, . . . , um, [v]q]p
u

v

(7.22)

if u = [u1, . . . , um]p. Notice that for u, v ∈ TNp, the trees u ◦ , u ◦◦ v and v ◦◦u
are in TNp, and ◦ u is in TNq.

Theorem 7.3. Consider a P-series method (7.7) for differential equations (7.16)
having Q(p, q) = pTEq as first integral.

If the coefficients a(τ) satisfy (7.20) and (7.21), the method exactly conserves
Q(p, q) and it is symplectic for Hamiltonian systems with H(p, q) of the form (7.18).

6 Attention: with respect to (III.2.10) the vertices have opposite colour, because the linear
dependence is in the second component in (7.17) whereas it is in the first component in
(III.2.9).
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Proof. Since the elementary differentials F (τ)(p, q) vanish identically for τ �∈
TNp ∪ TNq, we can arbitrarily define a(τ) for trees outside TNp ∪ TNq with-
out changing the method (throughout this proof we implicitly assume that for the
considered trees neighbouring vertices have different colour). We shall do this in
such a way that (7.11) holds.

Consider first the tree u ◦◦ v. There is exactly one vertex between the roots of u
and v. Making this vertex to the root gives the tree [u, v]q which is not in TNq. We
define for u, v ∈ TNp

a([u, v]q) := a(u)a( ◦ v)− a(u ◦◦ v).

Condition (7.21) shows that a([u, v]q) is independent of permuting u and v and is
thus well-defined. For trees that are neither in TNp ∪ TNq nor of the form [u, v]q
with u, v ∈ TNp we let a(τ) = 0. This extension of a(τ) implies that condition
(7.11) holds for all trees, and part (ii) of Theorem 7.2 yields the statement. Notice
that for problems ṗ = f1(q), q̇ = f2(p) only trees, for which neighbouring vertices
have different colour, are relevant. 
�

VI.7.2 Characterization of Symplectic P-Series (and B-Series)

A characterization of symplectic B-series was first obtained by Calvo & Sanz-Serna
(1994). We also consider P-series with various important special situations.

Theorem 7.4. Consider a P-series method (7.7) applied to a general partitioned
differential equation (7.9). Equivalent are:

1) the coefficients a(τ) satisfy (7.11) and (7.12),
2) quadratic first integrals of the form Q(p, q) = pTE q are exactly conserved,
3) the method is symplectic for general Hamiltonian systems (1.7).

Proof. The implication (1)⇒(2) follows from part (i) of Theorem 7.2, (2)⇒(3) is a
consequence of the fact that the symplecticity condition is a quadratic first integral of
the variational equation (see the proof of Theorem 7.2). The remaining implication
(3)⇒(1) will be proved in the following two steps.

a) We fix two trees u ∈ TPp and v ∈ TPq, and we construct a (polynomial)
Hamiltonian such that the transformation (7.7) satisfies

(∂(p1, q1)
∂p1

0

)T

J
(∂(p1, q1)

∂q2
0

)
= C

(
a(u ◦ v) + a(v ◦ u)− a(u) · a(v)

)
(7.23)

with C �= 0 (here, p1
0 denotes the first component of p0, and q2

0 the second compo-
nent of q0). The symplecticity of (7.7) implies that the expression in (7.23) vanishes,
so that condition (7.11) has to be satisfied.

For given u ∈ TPp and v ∈ TPq we define the Hamiltonian as follows: to the
branches of u ◦ v we attach the numbers 3, . . . , |u| + |v| + 1 such that the branch
between the roots of u and v is labelled by 3. Then, the Hamiltonian is a sum of
as many terms as vertices in the tree. The summand corresponding to a vertex is a
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u v u ◦ v v ◦ u

34
5

6 7 8

Fig. 7.1. Illustration of the Hamiltonian (7.24)

product containing the factor pj (resp. qj) if an upward leaving branch “j” is directly
connected with a black (resp. white) vertex, and the factor qi (resp. pi) if the vertex
itself is black (resp. white) and the downward leaving branch has label “i”. Finally,
the factors q2 and p1 are included in the terms corresponding to the roots of u and
v, respectively. For the example of Fig. 7.1 we have

H(p, q) = q2q3q4p5 + p1p3p7p8 + p4p6 + q5 + q6 + q7 + q8. (7.24)

The components F i(τ)(p, q) of the elementary differentials corresponding to
the Hamiltonian system (with the Hamiltonian constructed above) satisfy

F 2(u ◦ v)(p, q) = (−1)δ(u◦v)σ(u ◦ v) · p1,

F 1(v ◦ u)(p, q) = (−1)δ(v◦u)σ(v ◦ u) · q2,

F 3(u)(p, q) = (−1)δ(u)σ(u) · q2

F 3(v)(p, q) = (−1)δ(v)σ(v) · p1,

(7.25)

and for all other trees τ ∈ TP and components i we have

∂F i(τ)
∂p1

(0, 0) =
∂F i(τ)
∂q2

(0, 0) = 0.

In (7.25), δ(τ) counts the number of black vertices of τ , and the symmetry coefficient
σ(τ) is that of (III.2.3). For example, σ(u) = 1 and σ(v) = 2 for the trees of
Fig. 7.1. The verification of (7.25) is straightforward. The coefficient (−1)δ(τ) is due
to the minus sign in the first part of the Hamiltonian system (1.7), and the symmetry
coefficient σ(τ) appears in exactly the same way as in the multidimensional Taylor
formula. Due to the zero initial values, no elementary differential other than those
of (7.25) give rise to non-vanishing expressions in (7.23). Consider for example
the second component of F (τ)(p, q) for a tree τ ∈ TPp. Since we are concerned
with the Hamiltonian system (1.7), this expression starts with a derivative of Hq2 .
Therefore, it contributes to (7.23) at p0 = q0 = 0 only if it contains the factor
Hq2q3q4p5 (for the example of Fig. 7.1). This in turn implies the presence of factors
Hp3..., Hp4... and Hq5.... Continuing this line of reasoning, we find that F 2(τ)(p, q)
contributes to (7.23) at p0 = q0 = 0 only if τ = u ◦ v. With similar arguments we
see that only the elementary differentials of (7.25) have to be considered. We now
insert (7.25) into (7.7), and we compute its derivatives with respect to p1 and q2.
This then yields (7.23) with C = (−1)δ(u)+δ(v)h|u|+|v|, and completes the proof
concerning condition (7.11).
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b) The necessity of condition (7.12) is seen similarly. We fix a tree τ ∈ TPp

and we let τ ∈ TPq be the tree obtained from τ by changing the colour of the root.
We then attach the numbers 3, . . . , |τ | + 1 to the branches of τ , and we define a
Hamiltonian as above but, different from adding the factors q2 and p1, we include
the factor p1q2 to the term corresponding to the root. For the tree τ = u of Fig. 7.1
this yields

H(p, q) = p1q2q3p4 + p3p5 + q4 + q5.

With this Hamiltonian we get

F 2(τ)(p, q) = (−1)δ(τ)σ(τ) · p1,

F 1(τ)(p, q) = (−1)δ(τ)σ(τ) · q2,

and these are the only elementary differentials contributing to the left-hand expres-
sion of (7.23). We thus get

(∂(p1, q1)
∂p1

0

)T

J
(∂(p1, q1)

∂q2
0

)
= (−1)δ(τ)h|τ |

(
a(τ)− a(τ)

)
,

which completes the proof of Theorem 7.4. 
�

Theorem 7.5. Consider a P-series method (7.7) applied to a separable partitioned
differential equation ṗ = f1(q), q̇ = f2(p). Equivalent are:

1) the coefficients a(τ) satisfy (7.11),
2) quadratic first integrals of the form Q(p, q) = pTE q are exactly conserved,
3) the method is symplectic for separable Hamiltonians H(p, q) = T (p)+U(q).

Proof. The implications (1)⇒(2)⇒(3) follow as before from part (ii) of Theo-
rem 7.2. The remaining implication (3)⇒(1) is a consequence of the fact that the
Hamiltonian constructed in part (a) of the proof of Theorem 7.4 is separable, when
u and v have no neighbouring vertices of the same colour. 
�

Theorem 7.6. Consider a B-series method (7.1) for ẏ = f(y). Equivalent are:
1) the coefficients a(τ) satisfy (7.4),
2) quadratic first integrals of the form Q(y) = yTCy are exactly conserved,
3) the method is symplectic for general Hamiltonian systems ẏ = J−1∇H(y).

Proof. The implications (1)⇒(2)⇒(3) follow from Theorem 7.1. The remaining
implication (3)⇒(1) follows from Theorem 7.4, because a B-series with coefficients
a(τ), τ ∈ T , applied to a partitioned differential equation, can always be interpreted
as a P-series (Definition III.2.1), where a(τ) := a(ϕ(τ)) for τ ∈ TP and ϕ : TP →
T is the mapping that forgets the colouring of the vertices. This follows from the
fact that

α(τ)F (τ)(y) =
(∑

u∈TPp,ϕ(u)=τ α(u)F (u)(p, q)∑
v∈TPq,ϕ(v)=τ α(v)F (v)(p, q)

)

for τ ∈ T , because α(u) · σ(u) = α(v) · σ(v) = e(τ) · |τ |! . Here, y = (p, q), the
elementary differentials F (τ)(y) are those of Definition III.1.2, whereas F (u)(p, q)
and F (v)(p, q) are those of Table III.2.1. 
�
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Theorem 7.7. Consider a P-series method (7.7) applied to the special partitioned
system (7.16). Equivalent are:

1) the coefficients a(τ) satisfy (7.20) and (7.21),
2) quadratic first integrals of the form Q(p, q) = pTE q are exactly conserved,
3) the method is symplectic for Hamiltonian systems of the form (7.17).

Proof. The implications (1)⇒(2)⇒(3) follow from Theorem 7.3. The remaining
implication (3)⇒(1) can be seen as follows.

Condition (7.20) is a consequence of the the proof of Theorem 7.4, because for
u ∈ TNp and v = the Hamiltonian constructed there is of the form (7.18).

To prove condition (7.21) we have to modify slightly the definition of H(p, q).
We take u, v ∈ TNp and define the polynomial Hamiltonian as follows: to the
branches of u ◦◦ v we attach the numbers 3, . . . , |u| + |v| + 2. The Hamiltonian is
then a sum of as many terms as vertices in the tree. The summands are defined as in
the proof of Theorem 7.4 with the only exception that to the terms corresponding to
the roots of u and v we include the factors q2 and q1, respectively, instead of q2 and
p1. This gives a Hamiltonian of the form (7.18), for which the expression

(∂(p1, q1)
∂q1

0

)T

J
(∂(p1, q1)

∂q2
0

)
(7.26)

becomes equal to

a(u)a( ◦ v)− a(u ◦◦ v)− a( ◦ u)a(v) + a(v ◦◦u) (7.27)

up to a nonzero constant. By symplecticity, (7.26) is zero so that also (7.27) has to
vanish. This proves the validity of condition (7.21). 
�

VI.7.3 Irreducible Runge–Kutta Methods

We are now able to study to what extent the conditions of Theorem 4.3 and Theo-
rem 4.6 are also necessary for symplecticity. Consider first the 2-stage method

1/2 α 1/2 − α

1/2 β 1/2 − β

1/2 1/2

.

The solution of the corresponding Runge–Kutta system (II.1.4) is given by k1 =
k2 = k, where k = f(y0 +k/2), and hence y1 = y0 +hk. Whatever the values of α
and β are, the numerical solution of the Runge–Kutta method is identical to that of
the implicit midpoint rule, so that it defines a symplectic transformation. However,
the condition (4.2) is only satisfied for α = β = 1/4.

Definition 7.8. Two stages i and j of a Runge–Kutta method (II.1.4) are said to be
equivalent for a class (P) of initial value problems, if for every problem in (P) and
for every sufficiently small step size we have ki = kj (ki = kj and �i = �j for
partitioned Runge–Kutta methods (II.2.2)).
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The method is called irreducible for (P) if it does not have equivalent stages.
It is called irreducible if it is irreducible for all sufficiently smooth initial value
problems.

For a more amenable characterization of irreducible Runge–Kutta methods, we
introduce an ordering on T (and on TP ), and we consider the following s × ∞
matrices

ΦRK =
(
φ(τ); τ ∈ T

)
with entries φi(τ) = gi(τ) given by (III.1.13),7

ΦPRK =
(
φ(τ); τ ∈ TPp

)
=

(
φ(τ); τ ∈ TPq

)
with entries φi(τ) given by (III.2.7);

observe that φi(τ) does not depend on the colour of the root,
Φ∗

PRK =
(
φ(τ); τ ∈ TP ∗

p

)
=

(
φ(τ); τ ∈ TP ∗

q

)
where TP ∗

p (resp. TP ∗
q ) is the set

of trees in TPp (resp. TPq) whose neighbouring vertices have different colours.

Lemma 7.9 (Hairer 1994). A Runge–Kutta method is irreducible if and only if the
matrix ΦRK has full rank s.

A partitioned Runge–Kutta method is irreducible if and only if the matrix ΦPRK

has full rank s.
A partitioned Runge–Kutta method is irreducible for separable problems ṗ =

f1(q), q̇ = f2(p) if and only if the matrix Φ∗
PRK has full rank s.

Proof. If the stages i and j are equivalent, it follows from the expansion

ki =
∑
τ∈T

h|τ |

σ(τ)
φi(τ)F (τ)(y0)

(see the proof of Theorem III.1.4) and from the independency of the elementary
differentials (Exercise III.3) that φi(τ) = φj(τ) for all τ ∈ T . Hence, the rows
i and j of the matrix ΦRK are identical. The analogous statement for partitioned
Runge–Kutta methods follows from Theorem III.2.4 and Exercise III.6. This proves
the sufficiency of the “full rank” condition.

We prove its necessity only for partitioned Runge–Kutta methods applied to sep-
arable problems (the other situations can be treated similarly). For separable prob-
lems, only trees in TP ∗

p ∪ TP ∗
q give rise to non-vanishing elementary differentials.

Irreducibility therefore implies that for every pair (i, j) with i �= j there exists a tree
τ ∈ TP ∗

p such that φi(τ) �= φj(τ). Consequently, a certain finite linear combina-
tion of the columns of Φ∗

PRK has distinct elements, i.e., there exist vectors ξ ∈ R
∞

(only finitely many non zero elements) and η ∈ R
s with Φ∗

PRKξ = η and ηi �= ηj

for i �= j. Due to the fact that φi([τ1, . . . , τm]) = φi([τ1]) · . . . · φi([τm]), the com-
ponentwise product of two columns of Φ∗

PRK is again a column of Φ∗
PRK. Continuing

this argumentation and observing that (1, . . . , 1)T is a column of Φ∗
PRK, we obtain

a matrix X such that Φ∗
PRKX = (ηj−1

i )s
i,j=1 is a Vandermonde matrix. Since the ηi

are distinct, the matrix Φ∗
PRK has to be of full rank s. 
�

7 In this section we let φ(τ) ∈ R
s denote the vector whose elements are φi(τ), i = 1, . . . , s.

This should not be mixed up with the value φ(τ) of (III.1.16).
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VI.7.4 Characterization of Irreducible Symplectic Methods

The necessity of the condition (4.2) for symplectic Runge–Kutta methods was first
stated by Lasagni (1988). Abia & Sanz-Serna (1993) extended his proof to parti-
tioned methods. We follow here the ideas of Hairer (1994).

Theorem 7.10. An irreducible Runge–Kutta method (II.1.4) is symplectic if and
only if the condition (4.2) holds.

An irreducible partitioned Runge–Kutta method (II.2.2) is symplectic if and only
if the conditions (4.3) and (4.4) hold.

A partitioned Runge–Kutta method, irreducible for separable problems, is sym-
plectic for separable Hamiltonians H(p, q) = T (p) +U(q) if and only if the condi-
tion (4.3) holds.

Proof. The “if” part of all three statements has been proved in Theorem 4.3 and
Theorem 4.6. We prove the “only if” part for partitioned Runge–Kutta methods
applied to general Hamiltonian systems (the other two statements can be obtained
in the same way).

We consider the s × s matrix M with entries mij = biâij + b̂jaji − bib̂j . The
computation leading to formula (7.11) shows that for u ∈ TPp and v ∈ TPq

φ(u)TM φ(v) = a(u ◦ v) + a(v ◦ u)− a(u) · a(v)

holds. Due to the symplecticity of the method, this expression vanishes and we
obtain

ΦT
PRKM ΦPRK = 0,

where ΦPRK is the matrix of Lemma 7.9. An application of this lemma then yields
M = 0, which proves the necessity of (4.3).

For the vector d with components di = bi − b̂i we get dTΦPRK = 0, and we
deduce from Lemma 7.9 that d = 0, so that (4.4) is also seen to be necessary. 
�

VI.8 Conjugate Symplecticity
The symplecticity requirement may be too strong if we are interested in a correct
long-time behaviour of a numerical integrator. Stoffer (1988) suggests considering
methods that are not necessarily symplectic but conjugate to a symplectic method.

Definition 8.1. Two numerical methods Φh and Ψh are mutually conjugate, if there
exists a global change of coordinates χh, such that

Φh = χ−1
h ◦ Ψh ◦ χh. (8.1)

We assume that χh(y) = y +O(h) uniformly for y varying in a compact set.

For a numerical solution yn+1 = Φh(yn), lying in a compact subset of the
phase space, the transformed values zn = χh(yn) constitute a numerical solution
zn+1 = Ψh(zn) of the second method. Since yn − zn = O(h), both numerical
solutions have the same long-time behaviour, independently of whether one method
shares certain properties (e.g., symplecticity) with the other.
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VI.8.1 Examples and Order Conditions

The most prominent pair of conjugate methods are the trapezoidal and midpoint
rules. Their conjugacy has been originally exploited by Dahlquist (1975) in an in-
vestigation on nonlinear stability.

If we denote by ΦE
h and ΦI

h the explicit and implicit Euler methods, respectively,
then the trapezoidal rule ΦT

h and the implicit midpoint rule ΦM
h can be written as

ΦT
h = ΦI

h/2 ◦ ΦE
h/2, ΦM

h = ΦE
h/2 ◦ ΦI

h/2

(see Fig. 8.1). This shows ΦT
h = χ−1

h ΦM
h χh with χh = ΦE

h/2, implying that the
trapezoidal and midpoint rules are mutually conjugate. The change of coordinates,
which transforms the numerical solution of one method to that of the other, isO(h)-
close to the identity.

trap. trap.

expl.E.
expl.E.impl.E

.

impl.E
.

√
midp. midp.

√
midp.

midp. midp.

O(h2)

=

Fig. 8.1. Conjugacy of the trapezoidal rule and the implicit midpoint rule

In fact, we can do even better. If we let Φh/2 be the square root of ΦM
h (i.e.,

Φh/2 ◦ Φh/2 = ΦM
h , see Lemma V.3.2), then we have (Fig. 8.1)

ΦT
h = (ΦE

h/2)
−1 ◦ ΦM

h ◦ ΦE
h/2 = (ΦE

h/2)
−1 ◦ Φh/2 ◦ Φh/2 ◦ Φh/2 ◦ Φ−1

h/2 ◦ ΦE
h/2

so that the trapezoidal and the midpoint rules are conjugate via χh = Φ−1
h/2 ◦ ΦE

h/2.

Since Φh/2 and ΦE
h/2 are both consistent with the same differential equation, the

transformation χh is O(h2)-close to the identity. This shows that for every numeri-
cal solution of the trapezoidal rule there exists a numerical solution of the midpoint
rule which remains O(h2)-close as long as it stays in a compact set. A single trajec-
tory of the non-symplectic trapezoidal rule therefore behaves very much the same
as a trajectory of the symplectic implicit midpoint rule.

A Study via B-Series. An investigation of Runge–Kutta methods, conjugate to
a symplectic method, leads us to the following weaker requirement: we say that a
numerical method Φh is conjugate to a symplectic method Ψh up to order r, if there
exists a transformation χh(y) = y +O(h) such that

Φh(h) =
(
χ−1

h ◦ Ψh ◦ χh

)
(y) +O(hr+1). (8.2)

This implies that the error of such a method behaves as the superposition of the error
of a symplectic method of order p with that of a non-symplectic method of order r.
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In the following we assume that all methods considered as well as the conjugacy
mapping χh can be represented as B-series

Φh(y) = B(a, y), Ψh(y) = B(b, y), χh(y) = B(c, y). (8.3)

Using the composition formula (III.1.38) of B-series, condition (8.2) becomes

(ac)(τ) = (cb)(τ) for |τ | ≤ r. (8.4)

The following results are taken from the thesis of P. Leone (2000).

Theorem 8.2. Let Φh(y) = B(a, y) represent a numerical method of order 2.
a) It is always conjugate to a symplectic method up to order 3.
b) It is conjugate to a symplectic method up to order 4, if and only if

a( , )− 2a( , ) = 0, a( , )− 2a( , ) = 0. (8.5)

Here, we use the abbreviation a(u, v) = a(u) · a(v)− a(u ◦ v)− a(v ◦ u).

Proof. The condition (8.4) allows us to express b(τ) as a function of a(u) for |u| ≤
|τ | and of c(v) for |v| ≤ |τ |−1 (use the formulas of Example III.1.11). All we have
to do is to check the symplecticity conditions b(u, v) = 0 for |u| + |v| ≤ r (see
Theorem 7.6).

Since the method Φh is of order 2, we obtain b( ) = 1 and b( ) = 1/2. We
arbitrarily fix c( ) = 0, so that the symplecticity condition b( , ) = 0 becomes
2c( ) = a( , ). Defining c( ) by this relation proves statement (a).

For order 4, the three symplecticity conditions b( , ) = b( , [[ ]]) =
b( , ) = 0 have to be fulfilled. One of them can be satisfied by defining suit-
ably c( ) + c([[ ]]); the other two conditions are then equivalent to (8.5). 
�

Theorem 8.3. Let Φh(y) = B(a, y) represent a numerical method of order 4. It is
conjugate to a symplectic method up to order 5, if and only if

a( , )− 2a( , ) = 0, a( , )− 3a( , ) + 3a( , ) = 0,

a( , )− a( , )− 2a( , ) + 3a( , ) = 0.

Proof. The idea of the proof is the same as in the preceding theorem. The verifica-
tion is left as an exercise for the reader. 
�

Example 8.4. A direct computation shows that for the Lobatto IIIB method with
s = 3 we have a( , ) = 1/144, and a(u, v) = 0 for all other pairs with
|u| + |v| = 5. Theorem 8.3 therefore proves that this method is not conjugate to
a symplectic method up to order 5.

For the Lobatto IIIA method with s = 3 we obtain a( , ) = −1/144,
a( , [[ ]]) = −1/288, and a(u, v) = 0 for the remaining pairs with |u|+ |v| = 5.
This time the conditions of Theorem 8.3 are fulfilled, so that the Lobatto IIIA
method with s = 3 is conjugate to a symplectic method up to order 5 at least.
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VI.8.2 Near Conservation of Quadratic First Integrals

We have already met in Sect. VI.4.1 a close relationship between symplecticity and
the conservation of quadratic first integrals. The aim of this section is to show a
similar connection between conjugate symplecticity and the near conservation of
quadratic first integrals. This has first been observed and proved by Chartier, Faou
& Murua (2005) using the algebra of rooted trees.

Let Q(y) = yTCy (with symmetric matrix C) be a quadratic first integral of
ẏ = f(y), and assume that Φh(y) is conjugate to a method Ψh(y) that exactly con-
serves quadratic first integrals (e.g., symplectic Runge–Kutta methods). This means
that yn+1 = Φh(yn) satisfies

χh(yn+1)TCχh(yn+1) = χh(yn)TCχh(yn),

and the expression Q̃(y) = χh(y)TCχh(y) is exactly conserved by the numerical
solution of Φh(y). If χh(y) = B(c, y) is a B-series, this is of the form

Q̃(y) =
∑

τ,ϑ∈T∪{∅}
h|τ |+|ϑ|β(τ, ϑ)F (τ)(y)TC F (ϑ)(y), (8.6)

where F (∅)(y) = y and |∅| = 0 for the empty tree, and β(∅, ∅) = 1. We have
the following criterion for conjugate symplecticity, where all formulas have to be
interpreted in the sense of formal series.

Theorem 8.5. Assume that a one-step method Φh(y) = B(a, y) leaves (8.6) invari-
ant for all problems ẏ = f(y) having Q(y) = yTCy as first integral.

Then, it is conjugate to a symplectic integrator Ψh(z), i.e., there exists a transfor-
mation z = χh(y) = B(c, y) such that Ψh(z) = χh ◦Φh ◦χ−1

h (z), or equivalently,
Ψh(z) = B(c−1ac, z) is symplectic.

Proof. The idea is to search for a B-series B(c, y) such that the expression (8.6)
becomes

Q̃(y) = B(c, y)TC B(c, y).

The mapping z = χh(y) = B(c, y) then provides a change of variables such that
the original first integral Q(z) = zTCz is invariant in the new variables. By Theo-
rem 7.6 this then implies that Ψh is symplectic.

By Lemma 8.6 below, the expression (8.6) can be written as

Q̃(y) = yTC
(
y +

∑
θ∈T

h|θ|η(θ)F (θ)(y)
)
, (8.7)

where η(θ) = 0 for |θ| < r, if the perturbation in (8.6) is of size O(hr). Using the
same lemma once more, we obtain

B(c, y)TC B(c, y) = yTC
(
y + 2

∑
θ∈T

h|θ|

σ(θ)
c(θ)F (θ)(y)

)

+ yTC
(∑

θ∈T

( h|θ|

σ(θ)

∑
τ,ϑ∈T

σ(θ)κτ,ϑ(θ)
σ(τ)σ(ϑ)

c(τ)c(ϑ)F (θ)(y)
)
.

(8.8)
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A comparison of the coefficients in (8.7) and (8.8) uniquely defines c(θ) in a recur-
sive manner. We have c(θ) = 0 for |θ| < r, so that the transformation z = B(c, y)
is O(hr) close to the identity. 
�

The previous proof is based on the following result.

Lemma 8.6. Let Q(y) = yTCy (with symmetric matrix C) be a first integral of
ẏ = f(y). Then, for every pair of trees τ, ϑ ∈ T , we have

F (τ)(y)TC F (ϑ)(y) = yTC
(∑

θ∈T

κτ,ϑ(θ)F (θ)(y)
)
.

This sum is finite and only over trees satisfying |θ| = |τ |+ |ϑ|.
Proof. By definition of a first integral we have yTC f(y) = 0 for all y. Differentia-
tion with respect to y gives

f(y)TC k + yTC f ′(y)k = 0 for all k. (8.9)

Putting k = F (ϑ)(y), this proves the statement for τ = .
Differentiating once more yields

(f ′(y)�)TC k + �TC f ′(y)k + yTC f ′′(y)(k, �) = 0.

Putting � = f(y) and using (8.9), we get the statement for τ = . With � =
F (τ1)(y) we obtain the statement for τ = [τ1] provided that it is already proved for
τ1. We need a further differentiation to get a similar statement for τ = [τ1, τ2], etc.
The proof concludes by induction on the order of τ . 
�

Partitioned Methods. This criterion for conjugate symplecticity can be extended
to partitioned P-series methods. For partitioned problems

ṗ = f1(p, q), q̇ = f2(p, q) (8.10)

we consider first integrals of the form L(p, q) = pTE q, where E is an arbitrary
constant matrix. If Φh(p, q) is conjugate to a method that exactly conserves L(p, q),
then it will conserve a modified first integral of the form

L̃(p, q) =
∑

τ∈TPp∪{∅p},ϑ∈TPq∪{∅q}
h|τ |+|ϑ|β(τ, ϑ)F (τ)(p, q)TE F (ϑ)(p, q), (8.11)

where β(∅p, ∅q) = 1, F (∅p)(p, q) = p, F (∅q)(p, q) = q. We first extend Lemma 8.6
to the new situation.

Lemma 8.7. Let L(p, q) = pTE q be a first integral of (8.10). Then, for every pair
of trees τ ∈ TPp, ϑ ∈ TPq, we have

F (τ)(p, q)TE F (ϑ)(p, q) = pTE
( ∑

θ∈TPq

κτ,ϑ(θ)F (θ)(p, q)
)

+
( ∑

θ∈TPp

κτ,ϑ(θ)F (θ)(p, q)
)T

E q.
(8.12)

These sums are finite and only over trees satisfying |θ| = |τ |+ |ϑ|.
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Proof. Since L(p, q) = pTE q is a first integral of the differential equation, we
have f1(p, q)TE q+pTE f2(p, q) = 0 for all p and q. As in the proof of Lemma 8.6
the statement follows from differentiation of this relation. 
�
Theorem 8.8. Assume that a partitioned one-step method Φh(p, q) = P (a, (p, q))
leaves (8.11) invariant for all problems (8.10) having L(p, q) = pTE q as first
integral.

Then it is conjugate to a symplectic integrator Ψh(u, v), i.e., there is a transfor-
mation (u, v) = χh(p, q) = P (c, (p, q)) such that Ψh(u, v) = χh ◦Φh ◦χ−1

h (u, v),
or equivalently, Ψh(u, v) = P (c−1ac, (u, v)) is symplectic.

Proof. We search for a P-series P (c, (p, q)) =
(
Pp(c, (p, q)), Pq(c, (p, q))

)T
such

that the expression (8.11) can be written as

L̃(p, q) = Pp(c, (p, q))TE Pq(c, (p, q)).

As in the proof of Theorem 8.5 the mapping (u, v) = χh(p, q) = P (c, (p, q)) then
provides the searched change of variables.

Using Lemma 8.7 the expression (8.11) becomes

L̃(p, q) = pTE
(
q +

∑
θ∈TPq

h|θ|η(θ)F (θ)(p, q)
)

+
( ∑

θ∈TPp

h|θ|η(θ)F (θ)(p, q)
)T

E q.

Also Pp(c, (p, q))TE Pq(c, (p, q)) can be written in such a form, and a comparison
of the coefficients yields the coefficients c(τ) of the P-series P (c, (p, q)) in a recur-
sive manner. We again have that P (c, (p, q)) is O(hr) close to the identity, if the
perturbation in (8.11) is of size O(hr). 
�

The statement of Theorem 8.8 remains true in the class of second order differ-
ential equations q̈ = f1(q), i.e., ṗ = f1(p), q̇ = p.

VI.9 Volume Preservation

The flow ϕt of a Hamiltonian system preserves volume in phase space: for every
bounded open set Ω ⊂ R

2d and for every t for which ϕt(y) exists for all y ∈ Ω,

vol(ϕt(Ω)) = vol(Ω) ,

where vol(Ω) =
∫

Ω
dy. This identity is often referred to as Liouville’s theorem. It

is a consequence of the transformation formula for integrals and the fact that

det
∂ϕt(y)

∂y
= 1 for all t and y, (9.1)

which follows directly from the symplecticity and ϕ0 = id. The same argument
shows that every symplectic transformation, and in particular every symplectic in-
tegrator applied to a Hamiltonian system, preserves volume in phase space.

More generally than for Hamiltonian systems, volume is preserved by the flow
of differential equations with a divergence-free vector field:
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Lemma 9.1. The flow of a differential equation ẏ=f(y) in R
n is volume-preserving

if and only if divf(y) = 0 for all y.

Proof. The derivative Y (t) = ∂ϕt

∂y (y0) is the solution of the variational equation

Ẏ = A(t)Y , Y (0) = I ,

with the Jacobian matrix A(t) = f ′(y(t)) at y(t) = ϕt(y0). From the proof of
Lemma IV.3.1 we obtain the Abel–Liouville–Jacobi–Ostrogradskii identity

d

dt
detY = traceA(t) · detY. (9.2)

Note that here traceA(t) = divf(y(t)). Hence, detY (t) = 1 for all t if and only if
divf(y(t)) = 0 for all t. Since this is valid for all choices of initial values y0, the
result follows. 
�

Example 9.2 (ABC Flow). This flow, named after the three independent authors
Arnold, Beltrami and Childress, is given by the equations

ẋ = A sin z + C cos y
ẏ = B sinx + A cos z
ż = C sin y + B cosx

(9.3)

and has all diagonal elements of f ′ identically zero. It is therefore volume preserv-
ing. In Arnold (1966, p. 347) it appeared in a footnote as an example of a flow with
rotf parallel to f , thus violating Arnold’s condition for the existence of invariant
tori (Arnold 1966, p. 346). It was therefore expected to possess interesting chaotic
properties and has since then been the object of many investigations showing their
non-integrability (see e.g., Ziglin (1996)). We illustrate in Fig. 9.1 the action of this
flow by transforming, in a volume preserving manner, a ball in R

3. We see that,
very soon, the set is strongly squeezed in one direction and dilated in two others.
The solutions thus depend in a very sensitive way on the initial values.

Volume-Preserving Numerical Integrators. The question arises as to whether
volume-preserving integrators can be constructed for every differential equation
with volume-preserving flow. Already for linear problems, Lemma IV.3.2 shows
that no standard method can be volume-preserving for dimension n ≥ 3. Never-
theless, positive answers were found by Qin & Zhu (1993), Shang (1994a,1994b),
Feng & Shang (1995) and Quispel (1995). In the following we present the approach
of Feng & Shang (1995). The key is the following result which generalizes and
reinterprets a construction of H. Weyl (1940) for n = 3.

Theorem 9.3 (Feng & Shang 1995). Every divergence-free vector field f : R
n →

R
n can be written as the sum of n− 1 vector fields

f = f1,2 + f2,3 + . . . + fn−1,n
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x

y

z

t = 0

t = 1.9

t = 3.8

Fig. 9.1. Volume preserving deformation of the ball of radius 1, centred at the origin, by the
ABC flow; A = 1/2, B = C = 1

where each fk,k+1 is Hamiltonian in the variables (yk, yk+1): there exist functions
Hk,k+1 : R

n → R such that

fk,k+1 = (0, . . . , 0,−∂Hk,k+1

∂yk+1
,
∂Hk,k+1

∂yk
, 0, . . . , 0)T .

Proof. In terms of the components of f = (f1, . . . , fn)T , the functions Hk,k+1

must satisfy the equations

f1 = −∂H1,2

∂y2
, f2 =

∂H1,2

∂y1
− ∂H2,3

∂y3
, . . . ,

fn−1 =
∂Hn−2,n−1

∂yn−2
− ∂Hn−1,n

∂yn
, fn =

∂Hn−1,n

∂yn−1
.

We thus set

H1,2 = −
∫ y2

0

f1 dy2

and for k = 2, . . . , n− 2

Hk,k+1 =
∫ yk+1

0

(∂Hk−1,k

∂yk−1
− fk

)
dyk+1 .
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It remains to construct Hn−1,n from the last two equations. We see by induction
that for k ≤ n− 2,

∂2Hk,k+1

∂yk∂yk+1
= −

(∂f1

∂y1
+ . . . +

∂fk

∂yk

)
,

and hence the integrability condition for Hn−1,n,

∂

∂yn−1

(∂Hn−2,n−1

∂yn−2
− fn−1

)
=

∂fn

∂yn
,

reduces to the condition divf = 0, which is satisfied by assumption. Hn−1,n can
thus be constructed as

Hn−1,n =
∫ yn

0

(∂Hn−2,n−1

∂yn−2
− fn−1

)
dyn +

∫ yn−1

0

fn|yn=0 dyn−1 ,

which completes the proof. 
�

The above construction also shows that

fk,k+1 = (0, . . . , 0, fk + gk,−gk+1, 0, . . . , 0)

with

gk+1 =
∫ yk+1

0

(∂f1

∂y1
+ . . . +

∂fk

∂yk

)
dyk+1

for 1 ≤ k ≤ n− 2, and g1 = 0 and gn = −fn.
With the decomposition of Lemma 9.3 at hand, a volume-preserving algorithm

is obtained by applying a splitting method with symplectic substeps. For example,
as proposed by Feng & Shang (1995), a second-order volume-preserving method is
obtained by Strang splitting with symplectic Euler substeps:

ϕh ≈ Φh = Φ
[1,2]∗
h/2 ◦ . . . ◦ Φ

[n−1,n]∗
h/2 ◦ Φ

[n−1,n]
h/2 ◦ . . . ◦ Φ

[1,2]
h/2

where Φ
[k,k+1]
h/2 is a symplectic Euler step of length h/2 applied to the system with

right-hand side fk,k+1, and ∗ denotes the adjoint method. In this method, one step
ŷ = Φh(y) is computed component-wise, in a Gauss-Seidel-like manner, as

y1 = y1 +
h

2
f1(y1, y2, . . . , yn)

yk = yk +
h

2
fk(y1, . . . , yk, yk+1, . . . , yn) +

h

2
gk|yk

yk
for k = 2, . . . , n− 1

yn = yn +
h

2
fn(y1, . . . , yn−1, yn) (9.4)

with gk|yk
yk = gk(y1, . . . , yk, yk+1, . . . , yn)− gk(y1, . . . , yk−1, yk, . . . , yn), and
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ŷn = yn +
h

2
fn(y1, . . . , ŷn)

ŷk = yk +
h

2
fk(y1, . . . , yk, ŷk+1 . . . , ŷn)− h

2
gk|ŷk

yk
for k = n− 1, . . . , 2

ŷ1 = y1 +
h

2
f1(y1, ŷ2, . . . , ŷn) (9.5)

with gk|ŷk

yk
= gk(y1, . . . , yk−1, ŷk, . . . , ŷn) − gk(y1, . . . , yk, ŷk+1, . . . , ŷn). The

method is one-dimensionally implicit in general, but becomes explicit in the par-
ticular case where ∂fk/∂yk = 0 for all k.

Separable Partitioned Systems. For problems of the form

ẏ = f(z), ż = g(y) (9.6)

with y ∈ R
m, z ∈ R

n, the scheme (9.4) becomes the symplectic Euler method, (9.5)
its adjoint, and its composition the Lobatto IIIA - IIIB extension of the Störmer–
Verlet method. Since symplectic explicit partitioned Runge–Kutta methods are com-
positions of symplectic Euler steps (Theorem VI.4.7), this observation proves that
such methods are volume-preserving for systems (9.6). This fact was obtained by
Suris (1996) by a direct calculation, without interpreting the methods as composi-
tion methods. The question arises as to whether more symplectic partitioned Runge–
Kutta methods are volume-preserving for systems (9.6).

Theorem 9.4. Every symplectic Runge–Kutta method with at most two stages is
volume-preserving for systems (9.6) of arbitrary dimension.

Proof. (a) The idea is to consider the Hamiltonian system with

H(u, v, y, z) = uT f(z) + vT g(y),

where (u, v) are the conjugate variables to (y, z). This system is of the form

ẏ = f(z)

ż = g(y)

u̇ = −g′(y)T v

v̇ = −f ′(z)Tu.
(9.7)

Applying the Runge–Kutta method to this augmented system does not change the
numerical solution for (y, z). For symplectic methods the matrix

(∂(y1, z1, u1, v1)
∂(y0, z0, u0, v0)

)
= M =

(
R 0
S T

)
(9.8)

satisfies MTJM = J which implies RTT = I . Below we shall show that detT =
detR. This yields detR = 1 which implies that the method is volume preserving.

(b) One-stage methods. The only symplectic one-stage method is the implicit
midpoint rule for which R and T are computed as
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(
I − h

2
E1

)
R = I + h

2
E1 (9.9)

(
I + h

2
ET

1

)
T = I − h

2
ET

1 , (9.10)

where E1 is the Jacobian of the system (9.6) evaluated at the internal stage value.
Since

E1 =
(

0 f ′(z1/2)
g′(y1/2) 0

)
,

a similarity transformation with the matrix D = diag(I,−I) takes E1 to −E1.
Hence, the transformed matrix satisfies

(
I − h

2
ET

1

)
(D−1TD) = I + h

2
ET

1 .

A comparison with (9.9) and the use of detXT = detX proves detR = detT for
the midpoint rule.

(c) Two-stage methods. Applying a two-stage implicit Runge–Kutta method to
(9.7) yields (

I − ha11E1 −ha12E2

−ha21E1 I − ha22E2

)(
R1

R2

)
=

(
I
I

)
,

where Ri is the derivative of the (y, z) components of the ith stage with respect to
(y0, z0), and Ei is the Jacobian of the system (9.6) evaluated at the ith internal stage
value. From the solution of this system the derivative R of (9.8) is obtained as

R = I + (b1E1, b2E2)
(

I − ha11E1 −ha12E2

−ha21E1 I − ha22E2

)−1 (
I
I

)
.

With the determinant identity

det(U) det(X −WU−1V ) = det
(

U V
W X

)
= det(X) det(U − V X−1W ),

which is seen by Gaussian elimination, this yields

detR =
det

(
I ⊗ I − h((A− 1lbT )⊗ I)E

)

det
(
I ⊗ I − h(A⊗ I)E

) ,

where A and b collect the Runge–Kutta coefficients, and E = blockdiag (E1, E2).
For D−1TD we get the same formula with E replaced by ET . If A is an arbitrary
2× 2 matrix, it follows from block Gaussian elimination that

det
(
I ⊗ I − h(A⊗ I)E

)
= det

(
I ⊗ I − h(A⊗ I)ET

)
, (9.11)

which then proves detR = detT . Notice that the identity (9.11) is no longer true
in general if A is of dimension larger than two. 
�
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Fig. 9.2. Volume preservation of Gauss methods applied to (9.12) with h = 0.8

We are curious to see whether Theorem 9.4 remains valid for symplectic Runge–
Kutta methods with more than two stages. For this we apply the Gauss methods with
s = 2 and s = 3 to the problem

ẋ = sin z, ẏ = cos z, ż = sin y + cosx (9.12)

with initial value (0, 0, 0). We show in Fig. 9.2 the determinant of the derivative of
the numerical flow as a function of time. Only the two-stage method is volume-
preserving for this problem which is in agreement with Theorem 9.4.

VI.10 Exercises

1. Let α and β be the generalized coordinates of the double
pendulum, whose kinetic and potential energies are

T =
m1

2
(ẋ2

1 + ẏ2
1) +

m2

2
(ẋ2

2 + ẏ2
2)

U = m1gy1 + m2gy2.

Determine the generalized momenta of the correspond-
ing Hamiltonian system.

m1

�1α

m2

�2 β

2. A non-autonomous Hamiltonian system is given by a time-dependent Hamil-
tonian function H(p, q, t) and the differential equations

ṗ = −Hq(p, q, t), q̇ = Hp(p, q, t).

Verify that these equations together with ė = −Ht(p, q, t) and ṫ = 1 are the
canonical equations for the extended Hamiltonian H̃(p̃, q̃) = H(p, q, t) + e
with p̃ = (p, e) and q̃ = (q, t).

3. Prove that a linear transformation A : R
2 → R

2 is symplectic, if and only if
detA = 1.

4. Consider the transformation (r, ϕ) �→ (p, q), defined by

p = ψ(r) cosϕ, q = ψ(r) sinϕ.

For which function ψ(r) is it a symplectic transformation?
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5. Prove that the definition (2.4) of Ω(M) does not depend on the parametrization
ϕ, i.e., the parametrization ψ = ϕ ◦ α, where α is a diffeomorphism between
suitable domains of R

2, leads to the same result.
6. On the set U = {(p, q) ; p2 + q2 > 0} consider the differential equation

(
ṗ
q̇

)
=

1
p2 + q2

(
p
q

)
. (10.1)

Prove that
a) its flow is symplectic everywhere on U ;
b) on every simply-connected subset of U the vector field (10.1) is Hamiltonian
(with H(p, q) = −Im log(p + iq) + Const);
c) it is not possible to find a differentiable function H : U → R such that (10.1)
is equal to J−1∇H(p, q) for all (p, q) ∈ U .
Remark. The vector field (10.1) is locally (but not globally) Hamiltonian.

7. (Burnton & Scherer 1998). Prove that all members of the one-parameter family
of Nyström methods of order 2s, constructed in Exercise III.9, are symplectic
and symmetric.

8. Prove that the statement of Lemma 4.1 remains true for methods that are for-
mally defined by a B-series, Φh(y) = B(a, y).

9. Compute the generating function S1(P, q, h) of a symplectic Nyström method
applied to q̈ = U(q).

10. Find the Hamilton–Jacobi equation (cf. Theorem 5.7) for the generating func-
tion S2(p,Q) of Lemma 5.3.

11. (Jacobi’s method for exact integration). Suppose we have a solution S(q,Q, t, α)
of the Hamilton–Jacobi equation (5.16), depending on d parameters α1, . . . , αd

such that the matrix
(

∂2S
∂αi∂Qj

)
is invertible. Since this matrix is the Jacobian

of the system
∂S

∂αi
= 0 i = 1, . . . , d, (10.2)

this system determines a solution path Q1, . . . , Qq which is locally unique. In
possession of an additional parameter (and, including the partial derivatives
with respect to t, an additional row and column in the Hessian matrix condi-
tion), we can also determine Qj(t) as function of t. Apply this method to the
Kepler problem (I.2.2) in polar coordinates, where, with the generalized mo-
menta pr = ṙ, pϕ = r2ϕ̇, the Hamiltonian becomes

H =
1
2

(
p2

r +
p2

ϕ

r2

)
− M

r

and the Hamilton–Jacobi differential equation (5.16) is

St +
1
2
(
Sr

)2 +
1

2r2

(
Sϕ

)2 − M

r
= 0.

Solve this equation by the ansatz S(t, r, ϕ) = θ1(t)+θ2(r)+θ3(ϕ) (separation
of variables).
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Result. One obtains

S =
∫ √

2α1r2 + 2Mr − α2
2

dr

r
+ α2ϕ− α1t.

Putting, e.g., ∂S/∂α2 = 0, we obtain ϕ = arcsin Mr−α2
2√

M2+2α1α2
2 r

by evaluating

an elementary integral. This, when resolved for r, leads to the elliptic movement
of Kepler (Sect. I.2.2). This method turned out to be most effective for the exact
integration of difficult problems. With the same ideas, just more complicated
in the computations, Jacobi solves in “lectures” 24 through 30 of (Jacobi 1842)
the Kepler motion in R

3, the geodesics of ellipsoids (his greatest triumph), the
motion with two centres of gravity, and proves a theorem of Abel.

12. (Chan’s Lobatto IIIS methods.) Show that there exists a one-parameter family
of symplectic, symmetric (and A-stable) Runge–Kutta methods of order 2s− 2
based on Lobatto quadrature (Chan 1990). A special case of these methods can
be obtained by taking the arithmetic mean of the Lobatto IIIA and Lobatto IIIB
method coefficients (Sun 2000).
Hint. Use the W -transformation (see Hairer & Wanner (1996), p. 77) by putting
Xs,s−1 = −Xs−1,s an arbitrary constant.

13. For a Hamiltonian system with associated Lagrangian L(q, q̇) = 1
2 q̇

TMq̇ −
U(q), show that every first integral I(p, q) = pTa(q) resulting from Noether’s
Theorem has a linear a(q) = Aq + c with skew-symmetric MA.
Hint. (a) It is sufficient to consider the case M = I .
(b) Show that a′(q) is skew-symmetric.
(c) Let aij(q) = ∂ai

∂qj
(q). Using the symmetry of the Hessian of each compo-

nent ai(q), show that aij(q) does not depend on qi, qj , and is at most linear in
the remaining components qk. With the skew-symmetry of a′(q), conclude that
a′(q) = Const .

14. Consider the unconstrained optimal control problem

C
(
q(T )

)
→ min

q̇(t) = f
(
q(t), u(t)

)
, q(0) = q0

(10.3)

on the interval [0, T ], where the control function is assumed to be continuous.
Prove that first-order necessary optimality conditions can be written as

q̇(t) = ∇pH
(
p(t), q(t), u(t)

)
, q(0) = q0

ṗ(t) = −∇qH
(
p(t), q(t), u(t)

)
, p(T ) = ∇qC

(
q(T )

)

0 = ∇uH
(
p(t), q(t), u(t)

)
,

(10.4)

where the Hamiltonian is given by

H(p, q, u) = pT f(q, u)

(we assume that the Hessian∇2
uH(p, q, u) is invertible, so that the third relation

of (10.4) defines u as a function of (p, q)).
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Hint. Consider a slightly perturbed control function u(t) + εδu(t), and let
q(t)+εδq(t)+O(ε2) be the corresponding solution of the differential equation
in (10.3). With the function p(t) of (10.4) we then have

C ′(q(T )
)
δq(T ) =

∫ T

0

d

dt

(
p(t)T δq(t)

)
dt =

∫ T

0

p(t)T fu

(
. . .

)
δu(t)dt.

The algebraic relation of (10.4) then follows from the fundamental lemma of
variational calculus.

15. A Runge–Kutta discretization of the problem (10.3) is

C(qN ) → min
qn+1 = qn + h

∑s
i=1 bif(Qni, Uni)

Qni = qn + h
∑s

j=1 aijf(Qnj , Unj)
(10.5)

with n = 0, . . . , N − 1 and h = T/N . We assume bi �= 0 for all i. Introducing
suitable Lagrange multipliers for the constrained minimization problem (10.5),
prove that there exist pn, Pni such that the optimal solution of (10.5) satisfies
(Hager 2000)

qn+1 = qn + h
∑s

i=1 bi∇pH(Pni, Qni, Uni)
Qni = qn + h

∑s
j=1 aij∇pH(Pnj , Qnj , Unj)

pn+1 = pn − h
∑s

i=1 b̂i∇qH(Pni, Qni, Uni)
Pni = pn − h

∑s
j=1 âij∇qH(Pnj , Qnj , Unj)

0 = ∇uH(Pni, Qni, Uni)

(10.6)

with pN = ∇qC(qN ) and given initial value q0, where the coefficients b̂i and
âij are determined by

b̂i = bi, biâij + b̂jaji = bib̂j . (10.7)

Consequently, (10.6) can be considered as a symplectic discretization of (10.4);
see Bonnans & Laurent-Varin (2006).

16. (Hager 2000). For an explicit s-stage Runge–Kutta method of order p = s and
bi �= 0, consider the partitioned Runge–Kutta method with additional coeffi-
cients b̂i and âij defined by (10.7). Prove the following:
a) For p = s = 3, the partitioned method is of order 3 if and only if c3 = 1.
b) For p = s = 4, the partitioned method is of order 4 without any restriction.



Chapter VII.
Non-Canonical Hamiltonian Systems

We discuss theoretical properties and the structure-preserving numerical treatment
of Hamiltonian systems on manifolds and of the closely related class of Poisson
systems. We present numerical integrators for problems from classical and quantum
mechanics.

VII.1 Constrained Mechanical Systems

Constrained mechanical systems form an important class of differential equations
on manifolds. Their numerical treatment has been extensively investigated in the
context of differential-algebraic equations and is documented in monographs like
that of Brenan, Campbell & Petzold (1996), Eich-Soellner & Führer (1998), Hairer,
Lubich & Roche (1989), and Chap. VII of Hairer & Wanner (1996). We concentrate
here on the symmetry and/or symplecticity of such numerical integrators.

VII.1.1 Introduction and Examples

Consider a mechanical system described by position coordinates q1, . . . , qd, and
suppose that the motion is constrained to satisfy g(q) = 0 where g : R

d → R
m with

m < d. Let T (q, q̇) = 1

2
q̇TM(q)q̇ be the kinetic energy of the system and U(q) its

potential energy, and put

L(q, q̇) = T (q, q̇)− U(q)− g(q)Tλ, (1.1)

where λ = (λ1, . . . , λm)T consists of Lagrange multipliers. The Euler–Lagrange
equation of the variational problem for

∫ t

0
L(q, q̇) dt is then given by

d

dt

(∂L

∂q̇

)
− ∂L

∂q
= 0.

Written as a first order differential equation we get

q̇ = v

M(q) v̇ = f(q, v)−G(q)Tλ

0 = g(q),
(1.2)

where f(q, v) = − ∂
∂q

(
M(q)v

)
v +∇qT (q, v)−∇qU(q) and G(q) = ∂g

∂q (q) .
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Example 1.1 (Spherical Pendulum). We denote by q1, q2, q3 the Cartesian coor-
dinates of a point with mass m that is connected with a massless rod of length �
to the origin. The kinetic and potential energies are T = m

2 (q̇2
1 + q̇2

2 + q̇2
3) and

U = mgq3 , respectively, and the constraint is the fixed length of the rod. We thus
get the system

q̇1 = v1 mv̇1 = −2q1λ

q̇2 = v2 mv̇2 = −2q2λ

q̇3 = v3 mv̇3 = −mg − 2q3λ

0 = q2
1 + q2

2 + q2
3 − �2.

(1.3)

The physical meaning of λ is the tension in the rod which maintains the constant
distance of the mass point from the origin.

Existence and Uniqueness of the Solution. A standard approach for studying
the existence of solutions of differential-algebraic equations is to differentiate the
constraints until an ordinary differential equation is obtained. Differentiating the
constraint in (1.2) twice with respect to time yields

0 = G(q) v and 0 = g′′(q)(v, v) + G(q) v̇. (1.4)

The equation for v̇ in (1.2) together with the second relation of (1.4) constitute a
linear system for v̇ and λ,

(
M(q) G(q)T

G(q) 0

)(
v̇
λ

)
=

(
f(q, v)

−g′′(q)(v, v)

)
. (1.5)

Throughout this chapter we require the matrix appearing in (1.5) to be invertible for
q close to the solution we are looking for. This then allows us to express v̇ and λ as
functions of (q, v). Notice that the matrix in (1.5) is invertible when G(q) has full
rank and M(q) is invertible on kerG(q) = {h | G(q)h = 0}.

We are now able to discuss the existence of a solution of (1.2). First of all,
observe that the initial values q0, v0, λ0 cannot be arbitrarily chosen. They have to
satisfy the first relation of (1.4) and λ0 = λ(q0, v0), where λ(q, v) is obtained from
(1.5). In the case that q0, v0, λ0 satisfy these conditions, we call them consistent
initial values. Furthermore, every solution of (1.2) has to satisfy

q̇ = v, v̇ = v̇(q, v), (1.6)

where v̇(q, v) is the function obtained from (1.5). It is known from standard theory
of ordinary differential equations that (1.6) has locally a unique solution. This solu-
tion

(
q(t), v(t)

)
together with λ(t) := λ

(
q(t), v(t)

)
satisfies (1.5) by construction,

and hence also the two differential equations of (1.2). Integrating the second relation
of (1.4) twice and using the fact that the integration constants vanish for consistent
initial values, proves also the remaining relation 0 = g(q) for this solution.
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Formulation as a Differential Equation on a Manifold. We denote by

Q = {q ; g(q) = 0} (1.7)

the configuration manifold, on which the positions q are constrained to lie. The
tangent space at q ∈ Q is TqQ = {v ; G(q)v = 0}. The equations (1.6) define thus
a differential equation on the manifold

TQ =
{
(q, v) ; q ∈ Q, v ∈ TqQ

}
=

{
(q, v) ; g(q) = 0, G(q)v = 0

}
, (1.8)

the tangent bundle ofQ. Indeed, we have just shown that for initial values (q0, v0) ∈
TQ (i.e., consistent initial values) the problems (1.6) and (1.2) are equivalent, so that
the solutions of (1.6) stay on TQ.

Reversibility. The system (1.2) and the corresponding differential equation (1.6)
are reversible with respect to the involution ρ(q, v) = (q,−v), if f(q,−v) =
f(q, v). This follows at once from Example V.1.3, because the solution v̇(q, v) of
(1.5) satisfies v̇(q,−v) = v̇(q, v)

For the numerical solution of differential-algebraic equations “index reduction”
is a very popular technique. This means that instead of directly treating the prob-
lem (1.2) one numerically solves the differential equation (1.6) on the manifold
M. Projection methods (Sect. IV.4) as well as methods based on local coordinates
(Sect. IV.5) are much in use. If one is interested in a correct simulation of the re-
versible structure of the problem, the symmetric methods of Sect. V.4 can be ap-
plied. Here we do not repeat these approaches for this particular situation, instead
we concentrate on the symplectic integration of constrained systems.

VII.1.2 Hamiltonian Formulation

In Sect. VI.1 we have seen that, for unconstrained mechanical systems, the equa-
tions of motion become more structured if we use the momentum coordinates
p = ∂L

∂q̇ = M(q)q̇ in place of the velocity coordinates v = q̇. Let us do the same
for the constrained system (1.2). As in the proof of Theorem VI.1.3 we obtain the
equivalent system

q̇ = Hp(p, q)
ṗ = −Hq(p, q)−G(q)Tλ

0 = g(q),
(1.9)

where
H(p, q) = 1

2
pTM(q)−1p + U(q) (1.10)

is the total energy of the system; Hp and Hq denote the column vectors of partial
derivatives. Differentiating the constraint in (1.9) twice with respect to time, we get

0 = G(q)Hp(p, q), (1.11)

0 =
∂

∂q

(
G(q)Hp(p, q)

)
Hp(p, q)−G(q)Hpp(p, q)

(
Hq(p, q) + G(q)Tλ

)
, (1.12)
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and assuming the matrix

G(q)Hpp(p, q)G(q)T is invertible, (1.13)

equation (1.12) permits us to express λ in terms of (p, q).

Formulation as a Differential Equation on a Manifold. Inserting the so-obtained
function λ(p, q) into (1.9) gives a differential equation for (p, q) on the manifold

M =
{
(p, q) ; g(q) = 0, G(q)Hp(p, q) = 0

}
. (1.14)

As we will now see, this manifold has a differential-geometric interpretation as
the cotangent bundle of the configuration manifold Q = {q ; g(q) = 0}. The
Lagrangian for a fixed q ∈ Q is a function on the tangent space TqQ, i.e.,
L(q, ·) : TqQ → R. Its (Fréchet) derivative evaluated at q̇ ∈ TqQ is therefore a lin-
ear mapping dq̇L(q, q̇) : TqQ → R, or in other terms, dq̇L(q, q̇) is in the cotangent
space T ∗

q Q. Since the duality is such that 〈dq̇L(q, q̇), v〉 = ∂L
∂q̇ (q, q̇)v for v ∈ TqQ,

condition (1.13) ensures that the Legendre transform q̇ �→ p = dq̇L(q, q̇) is an in-
vertible transformation between TqQ and T ∗

q Q. We can therefore consider T ∗
q Q as

a subspace of R
d if every p ∈ T ∗

q Q is identified with ∂L
∂q̇ (q, q̇)T = M(q)q̇ ∈ R

d for
the unique q̇ ∈ TqQ for which p = dq̇L(q, q̇) holds. With this identification,

T ∗
q Q = {M(q)q̇ ; q̇ ∈ TqQ},

and the duality is given by 〈p, v〉 = pT v for p ∈ T ∗
q Q and v ∈ TqQ. We thus have

p = M(q)q̇ ∈ T ∗
q Q if and only if q̇ = M(q)−1p = Hp(p, q) ∈ TqQ. Since the

tangent space at q ∈ Q is TqQ = {q̇ ; G(q)q̇ = 0}, we obtain that

p ∈ T ∗
q Q if and only if G(q)Hp(p, q) = 0.

Denoting by T ∗Q = {(p, q) ; q ∈ Q, p ∈ T ∗
q Q} the cotangent bundle of Q, we

thus see that the constraint manifold M of (1.14) equals

M = T ∗Q. (1.15)

The constrained Hamiltonian system (1.9) with Hamiltonian (1.10) can thus be
viewed as a differential equation on the cotangent bundle T ∗Q of the configura-
tion manifold Q.

In the following we consider the system (1.9)–(1.12) with (1.13) where H(p, q)
is an arbitrary smooth function. The constraint manifold is then still given by (1.14).
The existence and uniqueness of the solution of (1.9) can be discussed as before.

Reversibility. It is readily checked that the system (1.9) is reversible if H(−p, q) =
H(p, q). This is always satisfied for a Hamiltonian (1.10).

Preservation of the Hamiltonian. Differentiation of H
(
p(t), q(t)

)
with respect to

time yields
−HT

p Hq −HT
p GTλ + HT

q Hp
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with all expressions evaluated at
(
p(t), q(t)

)
. The first and the last terms cancel,

and the central term vanishes because GHp = 0 on the solution manifold. Conse-
quently, the Hamiltonian H(p, q) is constant along solutions of (1.9).

Symplecticity of the Flow. Since the flow of the system (1.9) is a transformation
on M, its derivative is a mapping between the corresponding tangent spaces. In
agreement with Definition VI.2.2 we call a map ϕ : M → M symplectic if, for
every x = (p, q) ∈M,

ξT
1 ϕ′(x)TJ ϕ′(x)ξ2 = ξT

1 Jξ2 for all ξ1, ξ2 ∈ TxM. (1.16)

If ϕ is actually defined and continuously differentiable in an open subset of R
2d

that contains M, then ϕ′(x) in the above formula is just the usual Jacobian matrix.
Otherwise, some care is necessary in the interpretation of (1.16): ϕ′ is the tangent
map given by the directional derivative ϕ′(x)ξ := (d/dτ)|τ=0 ϕ(γ(τ)) for ξ ∈
TxM, where γ is a path on M with γ(0) = x, γ̇(0) = ξ. The expression ξT

1 ϕ′(x)T

in (1.16) should then be interpreted as (ϕ′(x)ξ1)T .

Theorem 1.2. Let H(p, q) and g(q) be twice continuously differentiable. The flow
ϕt : M→M of the system (1.9) is then a symplectic transformation on M, i.e., it
satisfies (1.16).

Proof. We let x = (p, q), so that the system (1.9) becomes ẋ = J−1
(
∇H(x) +∑

i λi(x)∇gi(x)
)

, where λi(x) and gi(x) are the components of λ(x) and g(x),
and λ(x) is the function obtained from (1.12). The variational equation of this sys-
tem, satisfied by the directional derivative Ψ = ϕ′

t(x0)ξ, with x0 = (p0, q0), reads

Ψ̇ = J−1
(
∇2H(x) +

m∑
i=1

λi(x)∇2gi(x) +
m∑

i=1

∇gi(x)∇λi(x)T
)
Ψ.

A direct computation, analogous to that in the proof of Theorem VI.2.4, yields for
ξ1, ξ2 ∈ TxM

d

dt

(
ξT
1 ϕ′

t(x0)TJ ϕ′
t(x0)ξ2

)
= . . . =

m∑
i=1

ξT
1 ϕ′

t(x0)T∇gi(x)∇λi(x)Tϕ′
t(x0)ξ2

−
m∑

i=1

ξT
1 ϕ′

t(x0)T∇λi(x)∇gi(x)Tϕ′
t(x0)ξ2. (1.17)

Since gi

(
ϕt(x0)

)
= 0 for x0 ∈ M, we have ∇gi(x)Tϕ′

t(x0)ξ2 = 0 and the same
for ξ1, so that the expression in (1.17) vanishes. This proves the symplecticity of the
flow on M. 
�

Differentiating the constraint in (1.9) twice and solving for the Lagrange multi-
plier from (1.12) (this procedure is known as “index reduction” of the differential-
algebraic system) yields the differential equation

q̇ = Hp(p, q), ṗ = −Hq(p, q)−G(q)Tλ(p, q), (1.18)
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Fig. 1.1. Numerical solution of the symplectic Euler method applied to (1.18) with H(p, q) =
1
2
(p2

1 + p2
2 + p2

3) + q3, g(q) = q2
1 + q2

2 + q2
3 − 1 (spherical pendulum); initial value q0 =

(0, sin(0.1),− cos(0.1)), p0 = (0.06, 0, 0), step size h = 0.003 for method “sE” (without
projection) and h = 0.03 for method “sEproj” (with projection)

where λ(p, q) is obtained from (1.12). If we solve this system with the symplectic
Euler method (implicit in p, explicit in q), the qualitative behaviour of the numeri-
cal solution is not correct. As was observed by Leimkuhler & Reich (1994), there
is a linear error growth in the Hamiltonian and also a drift from the manifold M
(method “sE” in Fig. 1.1). The explanation for this behaviour is the fact that (1.18)
is no longer a Hamiltonian system. If we combine the symplectic Euler applied
to (1.18) with an orthogonal projection onto M (method “sEproj”), the result im-
proves considerably but the linear error growth in the Hamiltonian is not eliminated.
This numerical experiment illustrates that “index reduction” is not compatible with
symplectic integration.

VII.1.3 A Symplectic First Order Method

We extend the symplectic Euler method to Hamiltonian systems with constraints.
We integrate the p-variable by the implicit and the q-variable by the explicit Euler
method. This gives

p̂n+1 = pn − h
(
Hq(p̂n+1, qn) + G(qn)Tλn+1

)

qn+1 = qn + hHp(p̂n+1, qn)
0 = g(qn+1).

(1.19)

The numerical approximation (p̂n+1, qn+1) satisfies the constraint g(q) = 0 , but
not G(q)Hp(p, q) = 0 . To get an approximation (pn+1, qn+1) ∈ M, we append
the projection

pn+1 = p̂n+1 − hG(qn+1)Tµn+1

0 = G(qn+1)Hp(pn+1, qn+1).
(1.20)

Let us discuss some basic properties of this method.

Existence and Uniqueness of the Numerical Solution. Inserting the definition
of qn+1 from the second line of (1.19) into 0 = g(qn+1) gives a nonlinear system
for p̂n+1 and hλn+1. Due to the factor h in front of Hp(p̂n+1, qn), the implicit
function theorem cannot be directly applied to prove existence and uniqueness of
the numerical solution. We therefore write this equation as
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0 = g(qn+1) = g(qn) +
∫ 1

0

G
(
qn + τ(qn+1 − qn)

)
(qn+1 − qn) dτ.

We now use g(qn) = 0, insert the definition of qn+1 from the second line of
(1.19) and divide by h. Together with the first line of (1.19) this yields the system
F
(
p̂n+1, hλn+1, h

)
= 0 with

F
(
p, ν, h

)
=




p− pn + hHq(p, qn) + G(qn)T ν∫ 1

0

G
(
qn + τhHp(p, qn)

)
Hp(p, qn) dτ


 .

Since (pn, qn) ∈M with M from (1.14), we have F (pn, 0, 0) = 0. Furthermore,

∂F

∂(p, ν)
(
pn, 0, 0

)
=

(
I G(qn)T

G(qn)Hpp(pn, qn) 0

)
,

and this matrix is invertible by (1.13). Consequently, an application of the implicit
function theorem proves that the numerical solution (p̂n+1, hλn+1) (and hence also
qn+1) exists and is locally unique for sufficiently small h.

The projection step (1.20) constitutes a nonlinear system for pn+1 and hµn+1,
to which the implicit function theorem can be directly applied.

Convergence of Order 1. The above use of the implicit function theorem yields
the rough estimates

p̂n+1 = pn +O(h), hλn+1 = O(h), hµn+1 = O(h),

which, together with the equations (1.19) and (1.20), give

qn+1 = q(tn+1) +O(h2), pn+1 = p(tn+1)−G
(
q(tn+1)

)T
ν +O(h2),

where
(
p(t), q(t)

)
is the solution of (1.9) passing through (pn, qn) ∈ M at t = tn.

Inserting these relations into the second equation of (1.20) we get

0 = G
(
q(t)

)
Hp

(
p(t), q(t)

)
+ G

(
q(t)

)
Hpp

(
p(t), q(t)

)
G
(
q(t)

)T
ν +O(h2)

at t = tn+1. Since G
(
q(t)

)
Hp

(
p(t), q(t)

)
= 0 , it follows from (1.13) that ν =

O(h2). The local error is therefore of size O(h2).
The convergence proof now follows standard arguments, because the method is

a mapping Φh : M → M on the solution manifold. We consider the solutions(
pn(t), qn(t)

)
of (1.9) passing through the numerical values (pn, qn) ∈ M at t =

tn, we estimate the difference of two successive solutions in terms of the local error
at tn, and we sum up the propagated errors (see Fig. 3.2 of Sect. II.3 in Hairer,
Nørsett & Wanner (1993)). This proves that the global error satisfies pn − p(tn) =
O(h) and qn − q(tn) = O(h) as long as tn = nh ≤ Const .
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Symplecticity. We first study the mapping (pn, qn) �→ (p̂n+1, qn+1) defined by
(1.19), and we consider λn+1 as a function λ(pn, qn). Differentiation with respect
to (pn, qn) yields
(

I + hHT
qp 0

−hHpp I

)(
∂(p̂n+1, qn+1)

∂(pn, qn)

)
=

(
I − hGTλp S − hGTλq

0 I + hHqp

)
, (1.21)

where S = −hHqq − hλT gqq is a symmetric matrix, the expressions Hqp, Hpp,
Hqq, G are evaluated at (p̂n+1, qn), and λ, λp, λq at (pn, qn). A computation, iden-
tical to that of the proof of Theorem VI.3.3, yields

(∂(p̂n+1, qn+1)
∂(pn, qn)

)T

J
(∂(p̂n+1, qn+1)

∂(pn, qn)

)
=

(
0 I − hλT

p G

−I + hGTλp h(GTλq − λT
q G)

)
.

We multiply this relation from the left by ξ1 ∈ T(pn,qn)M and from the right by
ξ2 ∈ T(pn,qn)M. With the partitioning ξ = (ξp, ξq) we have G(qn)ξq,j = 0 for
j = 1, 2 so that the expression reduces to ξT

1 Jξ2. This proves the symplecticity
condition (1.16) for the mapping (pn, qn) �→ (p̂n+1, qn+1) .

Similarly, the projection step (p̂n+1, qn+1) �→ (pn+1, qn+1) of (1.20) gives

∂(pn+1, qn+1)
∂(p̂n+1, qn+1)

=
(

I − hGTµp S − hGTµq

0 I

)
,

where µn+1 of (1.20) is considered as a function of (p̂n+1, qn+1), and S =
−hµT gqq. This is formally the same as (1.21) with H ≡ 0. Consequently, the
symplecticity condition is also satisfied for this mapping. As a composition of two
symplectic transformations, the numerical flow of our first order method is therefore
also symplectic.
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Fig. 1.2. Spherical pendulum problem solved with the symplectic Euler method (1.19)-
(1.20) and with the implicit Euler method; initial value q0 = (sin(1.3), 0, cos(1.3)),
p0 = (3 cos(1.3), 6.5,−3 sin(1.3)), step size h = 0.01
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Numerical Experiment. Consider the equations (1.3) for the spherical pendulum.
For a mass m = 1 they coincide with the Hamiltonian formulation. Figure 1.2
(upper picture) shows the numerical solution (vertical coordinate q3) over many
periods obtained by method (1.19)-(1.20). We observe a regular qualitatively correct
behaviour. For the implicit Euler method (i.e., the argument qn is replaced with qn+1

in (1.19)) the numerical solution, obtained with the same step size and the same
initial values, is less satisfactory. Already after one period the solution deteriorates
and the pendulum loses energy.

VII.1.4 SHAKE and RATTLE

The numerical method (1.19)-(1.20) is only of order 1 and it is not symmetric. An
algorithm that is of order 2, symmetric and symplectic was originally considered for
separable Hamiltonians

H(p, q) = 1

2
pTM−1p + U(q) (1.22)

with constant mass matrix M . Notice that in this case we are concerned with a
second order differential equation Mq̈ = −Uq(q)−G(q)Tλ with g(q) = 0.

SHAKE. Ryckaert, Ciccotti & Berendsen (1977) propose the method

qn+1 − 2qn + qn−1 = −h2M−1
(
Uq(qn) + G(qn)Tλn

)

0 = g(qn+1)
(1.23)

for computations in molecular dynamics. It is a straightforward extension of the
Störmer–Verlet scheme (I.1.15). The p-components, not used in the recursion, are
approximated by pn = M(qn+1 − qn−1)/2h.

RATTLE. The three-term recursion (1.23) may lead to an accumulation of round-
off errors, and a reformulation as a one-step method is desirable. Using the same
procedure as in (I.1.17) we formally get

pn+1/2 = pn −
h

2

(
Uq(qn) + G(qn)Tλn

)

qn+1 = qn + hM−1pn+1/2, 0 = g(qn+1)

pn+1 = pn+1/2 −
h

2

(
Uq(qn+1) + G(qn+1)Tλn+1

)
.

(1.24)

The difficulty with this formulation is that λn+1 is not yet available at this step (it
is computed together with qn+2). As a remedy, Andersen (1983) suggests replacing
the last line in (1.24) with a projection step similar to (1.20)

pn+1 = pn+1/2 −
h

2

(
Uq(qn+1) + G(qn+1)Tµn

)

0 = G(qn+1)M−1pn+1.
(1.25)
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This modification, called RATTLE, has the further advantage that the numerical ap-
proximation (pn+1, qn+1) lies on the solution manifold M. The symplecticity of
this algorithm has been established by Leimkuhler & Skeel (1994).

Extension to General Hamiltonians. As observed independently by Jay (1994)
and Reich (1993), the RATTLE algorithm can be extended to general Hamiltonians
as follows: for consistent values (pn, qn) ∈M define

pn+1/2 = pn −
h

2

(
Hq(pn+1/2, qn) + G(qn)Tλn

)

qn+1 = qn + h

2

(
Hp(pn+1/2, qn) + Hp(pn+1/2, qn+1)

)

0 = g(qn+1)

pn+1 = pn+1/2 −
h

2

(
Hq(pn+1/2, qn+1) + G(qn+1)Tµn

)

0 = G(qn+1)Hp(pn+1, qn+1).

(1.26)

The first three equations of (1.26) are very similar to (1.19) and the last two equa-
tions to (1.20). The existence of (locally) unique solutions (pn+1/2, qn+1, λn) and
(pn+1, µn) can therefore be proved in the same way. Notice also that this method
gives a numerical solution that stays exactly on the solution manifold M.

Theorem 1.3. The numerical method (1.26) is symmetric, symplectic, and conver-
gent of order two.

Proof. Although this theorem is the special case s = 2 of Theorem 1.4, we outline
its proof. We will see that the convergence result is easier to obtain for s = 2 than
for the general case.

If we add to (1.26) the consistency conditions g(qn) = 0, G(qn)Hp(pn, qn) =
0 of the initial values, the symmetry of the method follows at once by exchanging
h ↔ −h, pn+1 ↔ pn, qn+1 ↔ qn, and λn ↔ µn. The symplecticity can be proved
as for (1.19)-(1.20) by computing the derivative of (pn+1, qn+1) with respect to
(pn, qn), and by verifying the condition (1.16). This does not seem to be simpler
than the symplecticity proof of Theorem 1.4.

The implicit function theorem applied to the two subsystems of (1.26) shows

pn+1/2 = pn +O(h), hλ = O(h), pn+1 = pn+1/2 +O(h), hµ = O(h),

and, inserted into (1.26), yields

qn+1 = q(tn+1) +O(h2), pn+1 = p(tn+1)−G
(
q(tn+1)

)T
ν +O(h2).

Convergence of order one follows therefore in the same way as for method (1.19)-
(1.20). Since the order of a symmetric method is always even, this implies conver-
gence of order two. 
�

An easy way of obtaining high order methods for constrained Hamiltonian sys-
tems is by composition (Reich 1996a). Method (1.26) is an ideal candidate as basic
integrator for compositions of the form (V.3.2). The resulting integrators are sym-
metric, symplectic, of high order, and yield a numerical solution that stays on the
manifold M.
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VII.1.5 The Lobatto IIIA - IIIB Pair

Another possibility for obtaining high order symplectic integrators for constrained
Hamiltonian systems is by the use of partitioned Runge–Kutta or discontinuous col-
location methods. We consider the system (1.9) and we search for polynomials u(t)
of degree s, w(t) of degree s− 1, and v(t) of degree s− 2 such that

u(tn) = qn, v(tn) = pn − hb1δ(tn) (1.27)

with the defect

δ(t) = v̇(t) + Hq

(
v(t), u(t)

)
+ G

(
u(t)

)T
w(t) (1.28)

and, using the abbreviation tn,i = tn + cih,

u̇(tn,i) = Hp

(
v(tn,i), u(tn,i)

)
, i = 1, . . . , s (1.29)

v̇(tn,i) = −Hq

(
v(tn,i), u(tn,i)

)
−G

(
u(tn,i)

)T
w(tn,i), i = 2, . . . , s− 1

0 = g
(
u(tn,i)

)
, i = 1, . . . , s.

If these polynomials exist, the numerical solution is defined by

qn+1 = u(tn + h), pn+1 = v(tn + h)− hbsδ(tn + h)

0 = G(qn+1)Hp(pn+1, qn+1).
(1.30)

Why Discontinuous Collocation Based on Lobatto Quadrature? At a first
glance (Theorem VI.4.2) it seems natural to consider collocation methods based on
Gaussian quadrature for the entire system. This, however, has the disadvantage that
the numerical solution does not satisfy g(qn+1) = 0. To achieve this requirement,
tn + h has to be one of the collocation points, i.e., we must have cs = 1. Unfortu-
nately, none of the collocation or discontinuous collocation methods with cs = 1 is
symplectic (see Exercise IV.6). We therefore turn our attention to partitioned meth-
ods, and we treat only the q-component by a collocation method satisfying cs = 1.
To satisfy the s conditions g

(
u(tn,i)

)
= 0 of (1.29) there are only s − 1 free pa-

rameters w(tn), w(tn + c2h), . . . , w(tn + cs−1h) available. A remedy is to choose
c1 = 0 so that the first condition g

(
u(tn)

)
= 0 is automatically verified. Encour-

aged by Theorem VI.4.5 we are thus led to consider the Lobatto nodes in the role
of the ci. The use of the partitioned Lobatto IIIA - IIIB pair for the treatment of
constrained Hamiltonian systems has been suggested by Jay (1994, 1996).

Existence and Uniqueness of the Numerical Solution. The polynomial u(t) of
degree s is uniquely determined by u(tn) = qn and u̇(tn,i) =: Q̇i (i = 1, . . . , s),
the polynomial v(t) of degree s − 2 is uniquely determined by v(tn,i) =: Pi (i =
1, . . . , s − 1), and the polynomial w(t) of degree s − 1 is uniquely determined
by hw(tn,i) =: Λi (i = 1, . . . , s). Notice that the value Λs is only involved in
(1.30) and not in (1.27)-(1.29). For the nonlinear system (1.27)-(1.29) we therefore
consider
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X =
(
Q̇1, . . . , Q̇s, P1, . . . , Ps−1, Λ1, . . . , Λs−1

)

as independent variables, and we write the system as F (X,h) = 0. The function
F is composed of the s conditions for u̇(tn,i), of the definition of v(tn) (divided
by b1) and the s − 2 conditions for v̇(tn,i) (multiplied by h), and finally of the
s − 1 equations 0 = g

(
u(tn,i)

)
for i = 2, . . . , s (divided by h). Observe that

0 = g
(
u(tn)

)
is automatically satisfied by the consistency of (pn, qn). We note that

Ps = v(tn + h) and Ṗi = hv̇(tn,i) are linear combinations of P1, . . . , Ps−1 with
coefficients independent of the step size h.

The function F (X,h) is well-defined for h in a neighbourhood of 0. For the first
two blocks this is evident, for the last one it follows from the identity

1

h
g
(
u(tn,i)

)
=

∫ ci

0

G
(
u(tn + θh)

)
u̇(tn + θh) dθ

using the fact that u̇(tn + θh) is a linear combination of Q̇i for i = 1, . . . , s. With
the values

X0 =
(
Hp(pn, qn), . . . , Hp(pn, qn), pn, . . . , pn, 0, . . . , 0

)

we have that F (X0, 0) = 0, because the values (pn, qn) are assumed to be consis-
tent. In view of an application of the implicit function theorem we compute

∂F

∂X

(
X0, 0

)
=




I ⊗ I −D ⊗Hpp 0
0 B ⊗ I I ⊗GT

A⊗G 0 0


 , (1.31)

where Hpp, G are evaluated at (pn, qn), and A,B,D are matrices of dimension
(s− 1)× s, (s− 1)× (s− 1) and s× (s− 1) respectively that depend only on the
Lobatto quadrature and not on the differential equation. For example, the matrix B
represents the linear mapping

(
P1, . . . , Ps−1

)
�→

(
Ṗ1 + b−1

1 P1, Ṗ2, . . . , Ṗs−1

)
.

This mapping is invertible, because the values on the right-hand side uniquely de-
termine the polynomial v(t) of degree s− 2.

Block Gaussian elimination then shows that (1.31) is invertible if and only if the
matrix

ADB−1 ⊗GHppG
T is invertible.

Because of (1.13) it remains to show that ADB−1 is invertible.
To achieve this without explicitly computing the matrices A,B,D, we apply the

method to the problem where p and q are of dimension one, H(p, q) = p2/2, and
g(q) = q. Assuming h = 1 we get

u(0) = 0, v(0) = −b1
(
v̇(0) + w(0)

)

u̇(ci) = v(ci) for i = 1, . . . , s
v̇(ci) = −w(ci) for i = 2, . . . , s− 1
0 = u(ci) for i = 1, . . . , s,

(1.32)
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which is equivalent to




I −D 0
0 B I
A 0 0







(u̇(ci))s
i=1

(v(ci))s−1
i=1

(w(ci))s−1
i=1


 =




0
0
0


 , (1.33)

because Hpp(p, q) = 1 and G(q) = 1. Since u(t) is a polynomial of degree s,
the last equation of (1.32) implies that u(t) = C

∏s
j=1(t − cj) . By the second

relation the polynomial u̇(t) − v(t), which is of degree s − 1, vanishes at s points.
Hence, v(t) ≡ u̇(t), which is possible only if C = 0, because the degree of v(t) is
s−2. Consequently, the linear system (1.33) has only the trivial solution, so that the
matrix in (1.33) and hence also ADB−1 is invertible.

The implicit function theorem applied to F (X,h) = 0 shows that the nonlinear
system (1.27)-(1.30) possesses a locally unique solution for sufficiently small step
sizes h. Using the free parameter Λs = hw(tn + h), a further application of the
implicit function theorem, this time to the small system (1.30), proves the existence
and local uniqueness of pn+1.

Theorem 1.4. Let (bi, ci)s
i=1 be the weights and nodes of the Lobatto quadrature

(c.f. (II.1.17)). The method (1.27)-(1.29)-(1.30) is symmetric, symplectic, and super-
convergent of order 2s− 2.

Proof. Symmetry. To the formulas (1.27)-(1.29)-(1.30) we add the consistency re-
lations g(qn) = 0, G(qn)Hp(pn, qn) = 0. Then we exchange (tn, pn, qn) ↔
(tn+1, pn+1, qn+1) and h ↔ −h. Since b1 = bs and cs+1−i = 1−ci for the Lobatto
quadrature, the resulting formulas are equivalent to the original method (see also the
proof of Theorem V.2.1).

Symplecticity. We fix ξ1, ξ2 ∈ T(pn,qn)M, we put xn = (pn, qn)T , and we consider
the bilinear mapping

Q
(∂pn+1

∂xn
,
∂qn+1

∂xn

)
= ξT

1

((∂qn+1

∂xn

)T(∂pn+1

∂xn

)
−

(∂pn+1

∂xn

)T(∂qn+1

∂xn

))
ξ2.

The symplecticity of the transformation (pn, qn) �→ (pn+1, qn+1) on the manifold
M is then expressed by the relation

Q
(∂pn+1

∂xn
,
∂qn+1

∂xn

)
= Q

(∂pn

∂xn
,
∂qn

∂xn

)
. (1.34)

We now follow closely the proof of Theorem IV.2.3. We consider the polyno-
mials u(t), v(t), w(t) of the method (1.27)-(1.29)-(1.30) as functions of t and
xn = (pn, qn), and we compute

Q
(∂v(tn+1)

∂xn
,
∂u(tn+1)

∂xn

)
− Q

(∂v(tn)
∂xn

,
∂u(tn)
∂xn

)

=
∫ tn+1

tn

dQ

dt

(∂v(t)
∂xn

,
∂u(t)
∂xn

)
dt.

(1.35)
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Since u(t) is a polynomial of degree s and v(t) of degree s − 2, the integrand in
(1.35) is a polynomial in t of degree 2s−3. It is thus integrated without error by the
Lobatto quadrature. By definition these polynomials satisfy the differential equation
at the interior collocation points. Therefore, it follows from (1.17) that

dQ

dt

(∂v(tn,i)
∂xn

,
∂u(tn,i)
∂xn

)
= 0 for i = 2, . . . , s− 1,

and that

dQ

dt

(∂v(tn,i)
∂xn

,
∂u(tn,i)
∂xn

)
= Q

(∂δ(tn,i)
∂xn

,
∂u(tn,i)
∂xn

)
for i = 1 and i = s.

Applying the Lobatto quadrature to the integral in (1.35) thus yields

hb1 Q
(∂δ(tn)

∂xn
,
∂u(tn)
∂xn

)
+ hbs Q

(∂δ(tn+1)
∂xn

,
∂u(tn+1)

∂xn

)
,

and the symplecticity relation (1.34) follows in the same way as in the proof of
Theorem IV.2.3.

Superconvergence. This is the most difficult part of the proof. We remark that super-
convergence of Runge–Kutta methods for differential-algebraic systems of index 3
has been conjectured by Hairer, Lubich & Roche (1989), and a first proof has been
obtained by Jay (1993) for collocation methods. In his thesis Jay (1994) proves su-
perconvergence for a more general class of methods, including the Lobatto IIIA -
IIIB pair, using a “rooted-tree-type” theory. A sketch of that very elaborate proof
is published in Jay (1996). Using the idea of discontinuous collocation, the elegant
proof for collocation methods can now be extended to cover the Lobatto IIIA - IIIB
pair. In the following we explain how the local error can be estimated.

We consider the polynomials u(t), v(t), w(t) defined in (1.27)-(1.29)-(1.30),
and we define defects µ(t), δ(t), θ(t) as follows:

u̇(t) = Hp

(
v(t), u(t)

)
+ µ(t)

v̇(t) = −Hq

(
v(t), u(t)

)
−G

(
u(t)

)T
w(t) + δ(t)

0 = g
(
u(t)

)
+ θ(t).

(1.36)

By definition of the method we have

µ(tn + cih) = 0, i = 1, . . . , s
δ(tn + cih) = 0, i = 2, . . . , s− 1
θ(tn + cih) = 0, i = 1, . . . , s.

(1.37)

We let q(t), p(t), λ(t) be the exact solution of (1.9) satisfying q(tn) = qn, p(tn) =
pn, and we consider the differences

∆u(t) = u(t)− q(t), ∆v(t) = v(t)− p(t), ∆w(t) = w(t)− λ(t).
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Subtracting (1.9) from (1.36) we get by linearization that

∆̇u = a11(t)∆u + a12(t)∆v + µ(t)

∆̇v = a21(t)∆u + a22(t)∆v + a23(t)∆w + δ(t),
(1.38)

where a12(t) = Hpp

(
p(t), q(t)

)
, and where the other aij(t) are given by similar

expressions. We have suppressed quadratic and higher order terms to keep the pre-
sentation as simple as possible. They do not influence the convergence result. To
eliminate ∆w in (1.38), we differentiate the algebraic relations in (1.9) and (1.36)
twice, and we subtract them. This yields

0 = F
(
t, µ(t)

)
+ b1(t)∆u + b2(t)∆v + B(t)∆w

+ G
(
u(t)

)
Hpp

(
v(t), u(t)

)
δ(t) + G

(
u(t)

)
µ̇(t) + θ̈(t),

where F (t, µ), B(t), b1(t), b2(t) are functions depending on p(t), q(t), λ(t), u(t),
v(t), w(t), and where F (t, 0) = 0 and B(t) ≈ G(qn)Hpp(pn, qn)G(qn)T . Because
of our assumption (1.13) we can extract ∆w from this relation, and we insert it into
(1.38). In this way we get a linear differential equation for ∆u,∆v, which can be
solved by the “variation of constants” formula. Using ∆u(tn) = 0 (by (1.27)), the
solution ∆v(tn + h) is seen to be of the form

∆v(tn + h) = R22(tn + h, tn)∆v(tn) +
∫ tn+h

tn

(
R21(tn + h, t)µ(t)

+ R22(tn + h, t)
(
δ(t) + F̃

(
t, µ(t)

)
+ c1(t)µ̇(t) (1.39)

+ C(t)
(
G
(
u(t)

)
Hpp

(
v(t), u(t)

)
δ(t) + θ̈(t)

)))
dt,

where R21 and R22 are the lower blocks of the resolvent, and F̃ , c1, C are functions
as before. To prove that the local error of the p-component

pn+1 − p(tn + h) = ∆v(tn + h)− hbsδ(tn + h) (1.40)

is of size O(h2s−1), we first integrate by parts those expressions in (1.39) which
contain a derivative. For example,

∫ tn+1

tn

a(t)µ̇(t) dt = a(t)µ(t)
∣∣∣
tn+1

tn

−
∫ tn+1

tn

ȧ(t)µ(t) dt = O(h2s−1),

because µ(tn) = µ(tn +h) = 0 by (1.37) and an application of the Lobatto quadra-
ture to the integral at the right-hand side gives zero as result with a quadrature error
of size O(h2s−1). Similarly, integrating by parts twice yields

∫ tn+1

tn

a(t)θ̈(t) dt = a(t)θ̇(t)
∣∣∣
tn+1

tn

− ȧ(t)θ(t)
∣∣∣
tn+1

tn

+
∫ tn+1

tn

ä(t)θ(t) dt

= a(tn+1)θ̇(tn+1)− a(tn)θ̇(tn) +O(h2s−1).
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To the other integrals in (1.39) we apply the Lobatto quadrature directly. Since
R22(tn+1, tn+1) is the identity, this gives

pn+1 − p(tn+1) = R22(tn+1, tn)
(
∆v(tn) + hb1δ(tn)

)
(1.41)

+ C̃(tn+1)
(
hbsG

(
u(tn+1)

)
Hpp

(
v(tn+1), u(tn+1)

)
δ(tn+1) + θ̇(tn+1)

)

+ C̃(tn)
(
hb1G

(
u(tn)

)
Hpp

(
v(tn), u(tn)

)
δ(tn)− θ̇(tn)

)
+O(h2s−1),

where C̃(t) = R(tn+1, t)C(t). The term ∆v(tn) + hb1δ(tn) vanishes by (1.27),
and differentiation of the algebraic relation in (1.36) yields

0 = G
(
u(t)

)(
Hp

(
v(t), u(t)

)
+ µ(t)

)
+ θ̇(t).

As a consequence of (1.27), (1.37) and the consistency of the initial values (pn, qn),
this gives

θ̇(tn) = −G(qn)Hp

(
pn − hb1δ(tn), qn

)

= hb1G(qn)Hpp

(
pn, qn

)
δ(tn) +O

(
h2δ(tn)2

)

= hb1G
(
u(tn)

)
Hpp

(
v(tn), u(tn)

)
δ(tn) +O

(
h2δ(tn)2

)
.

Using (1.30) we get in the same way

θ̇(tn+1) = −hbsG
(
u(tn+1)

)
Hpp

(
v(tn+1), u(tn+1)

)
δ(tn+1) +O

(
h2δ(tn+1)2

)
.

These estimates together show that the local error (1.41) is of size O(h2s−1) +
O
(
h2δ(t)2

)
. The defect δ(t) vanishes at s − 2 points in the interval [tn, tn+1], so

that δ(t) = O(hs−2) for t ∈ [tn, tn+1] (for a rigorous proof of this statement one
has to apply the techniques of the proof of Theorem II.1.5). Therefore we obtain
pn+1 − p(tn+1) = O(h2s−2), and by the symmetry of the method also O(h2s−1).

In analogy to (1.39), the variation of constants formula yields also an ex-
pression for the local error qn+1 − q(tn+1) = ∆u(tn+1). One only has to re-
place R21 and R22 with the upper blocks R11 and R12 of the resolvent. Using
R12(tn+1, tn+1) = 0, we prove in the same way that the local error of the q-
component is of size O(h2s−1).

The estimation of the global error is obtained in the same way as for the first
order method (1.19)-(1.20). Since the algorithm is a mapping Φh : M→M on the
solution manifold, it is not necessary to follow the technically difficult proofs in the
context of differential-algebraic equations. Summing up the propagated local errors
proves that the global error satisfies pn − p(tn) = O(h2s−2) and qn − q(tn) =
O(h2s−2) as long as tn = nh ≤ Const . 
�

VII.1.6 Splitting Methods

When considering splitting methods for constrained mechanical systems, it should
be borne in mind that such systems are differential equations on manifolds (see
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Sect. VII.1.2). Splitting methods should therefore be based on a decomposition
f(y) = f [1](y) + f [2](y), where both f [i](y) are vector fields on the same man-
ifold as f(y). Let us consider here the Hamiltonian system (1.9) with Hamiltonian

H(p, q) = H [1](p, q) + H [2](p, q). (1.42)

The manifold for this differential equation is

M =
{
(p, q) | g(q) = 0, G(q)Hp(p, q) = 0

}
. (1.43)

Notice that (1.9), when H is simply replaced with H [i], is not a good candidate for
splitting methods: the existence of a solution is not guaranteed, and if the solution
exists it need not stay on the manifold M. The following lemma indicates how
splitting methods should be applied.

Lemma 1.5. Consider a Hamiltonian (1.42), a function g(q) with G(q) = g′(q),
and let the manifold M be given by (1.43). If (1.13) holds and if

G(q)H [i]
p (p, q) = 0 for all (p, q) ∈M, (1.44)

then the system
q̇ = H

[i]
p (p, q)

ṗ = −H
[i]
q (p, q)−G(q)Tλ

0 = G(q)Hp(p, q)

(1.45)

defines a differential equation on the manifoldM, and its flow is a symplectic trans-
formation on M.

Proof. Differentiation of the algebraic relation in (1.45) with respect to time, and
replacing q̇ and ṗ with their differential equations, yields an explicit relation for
λ = λ(p, q) (as a consequence of (1.13)). Hence, a unique solution of (1.45) exists
locally if G(q0)Hp(p0, q0) = 0. The assumption (1.44) implies d

dtg
(
q(t)

)
= 0. This

together with the algebraic relation of (1.45) guarantees that for (p0, q0) ∈ M the
solution stays on the manifold M. The symplecticity of the flow is proved as for
Theorem 1.2. 
�

Suppose now that the Hamiltonian H(p, q) of (1.9) can be split as in (1.42),
where both H [i](p, q) satisfy (1.44). We denote by ϕ

[i]
t the flow of the system (1.45).

If these flows can be computed analytically, the Lie-Trotter splitting ϕ
[2]
h ◦ ϕ

[1]
h and

the Strang splitting ϕ
[1]
h/2 ◦ ϕ

[2]
h ◦ ϕ

[1]
h/2 yield first and second order numerical inte-

grators, respectively. Considering more general compositions as in (II.5.6) and using
the coefficients proposed in Sect. V.3, methods of high order are obtained. They give
numerical approximations lying on the manifold M, and they are symplectic (also
symmetric if the splitting is well chosen).
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For the important special case where

H(p, q) = T (p, q) + U(q)

is the sum of the kinetic and potential energies, both summands satisfy assumption
(1.44). This gives a natural splitting that is often used in practice.

Example 1.6 (Spherical Pendulum). We normalize all constants to 1 (cf. Exam-
ple 1.1) and we consider the problem (1.9) with

H(p, q) = 1

2

(
p2
1 + p2

2 + p2
3

)
+ q3, g(q) = 1

2

(
q2
1 + q2

2 + q2
3 − 1

)
.

We split the Hamiltonian as H [1](p, q) = 1
2

(
p2
1 + p2

2 + p2
3

)
and H [2](p, q) = q3 ,

and we solve (1.45) with initial values on the manifold

M =
{
(p, q) | q2

1 + q2
2 + q2

3 − 1 = 0, p1q1 + p2q2 + p3q3 = 0
}
.

The kinetic energy H [1](p, q) leads to the system

q̇ = p, ṗ = −qλ, qT p = 0,

which gives λ = pT
0 p0, so that the flow ϕ

[1]
t is just a planar rotation around the

origin. The potential energy H [2](p, q) leads to

q̇ = 0, ṗ = −(0, 0, 1)T − qλ, qT p = 0.

The flow ϕ
[2]
t keeps q(t) constant and changes p(t) linearly with time. Splitting

methods give simple, explicit and symplectic time integrators for this problem.

VII.2 Poisson Systems

This section is devoted to an interesting generalization of Hamiltonian systems,
where J−1 in (VI.2.5) is replaced with a nonconstant matrix B(y). Such struc-
tures were introduced by Sophus Lie (1888) and are today called Poisson systems.
They result, in particular, from Hamiltonian systems on manifolds written in non-
canonical coordinates. In a first subsection, however, we discuss the Poisson struc-
ture of Hamiltonian systems in canonical form.

VII.2.1 Canonical Poisson Structure

. . . quelques remarques sur la plus profonde découverte de M. Poisson,
mais qui, je crois, n’a pas été bien comprise ni par Lagrange, ni par les
nombreux géomètres qui l’ont citée, ni par son auteur lui-même.

(C.G.J. Jacobi 1840, p. 350)
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The derivative of a function F (p, q) along the flow of a Hamiltonian system

ṗ = −∂H

∂q
(p, q), q̇ =

∂H

∂p
(p, q), (2.1)

is given by (Lie derivative, see (III.5.3))

d

dt
F
(
p(t), q(t)

)
=

d∑
i=1

(∂F

∂pi
ṗi +

∂F

∂qi
q̇i

)
=

d∑
i=1

(∂F

∂qi

∂H

∂pi
− ∂F

∂pi

∂H

∂qi

)
. (2.2)

This remarkably symmetric structure motivates the following definition.

Definition 2.1. The (canonical) Poisson bracket of two smooth functions F (p, q)
and G(p, q) is the function

{F,G} =
d∑

i=1

(∂F

∂qi

∂G

∂pi
− ∂F

∂pi

∂G

∂qi

)
, (2.3)

or in vector notation {F,G}(y) = ∇F (y)TJ−1∇G(y), where y = (p, q) and J is
the matrix of (VI.2.3).

This Poisson bracket is bilinear, skew-symmetric ({F,G} = −{G,F}), it satis-
fies the Jacobi identity (Jacobi 1862, Werke 5, p. 46)

{
{F,G},H

}
+

{
{G,H}, F

}
+

{
{H,F}, G

}
= 0 (2.4)

(notice the cyclic permutations among F,G,H), and Leibniz’ rule

{F ·G,H} = F · {G,H}+ G · {F,H}. (2.5)

These formulas are obtained in a straightforward manner from standard rules of
calculus (see also Exercise 1).

With this notation, the Lie derivative (2.2) becomes

d

dt
F
(
y(t)

)
= {F,H}(y(t)). (2.6)

It follows that a function I(p, q) is a first integral of (2.1) if and only if

{I,H} = 0.

If we take F (y) = yi, the mapping that selects the ith component of y, we see that
the Hamiltonian system (2.1) or (VI.2.5), ẏ = J−1∇H(y), can be written as

ẏi = {yi,H}, i = 1, . . . , 2d. (2.7)
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Siméon Denis Poisson1

Poisson’s Discovery. At the beginning of
the 19th century, the hope of being able to
integrate a given system of differential equa-
tions by analytic formulas faded more and
more, and the energy of researchers went to
the construction of, at least, first integrals. In
this enthusiasm, Jacobi declared the subse-
quent result to be “Poisson’s deepest discov-
ery” (see citation) and his own identity, de-
veloped for its proof, a “gravissimum Theo-
rema”.

Theorem 2.2 (Poisson 1809). If I1 and I2
are first integrals, then their Poisson bracket
{I1, I2} is again a first integral.

Proof. This follows at once from the Jacobi
identity with F = I1 and G = I2. 
�

VII.2.2 General Poisson Structures

. . . the general concept of a Poisson manifold should be credited to So-
phus Lie in his treatise on transformation groups . . .

(J.E. Marsden & T.S. Ratiu 1999)

We now come to the announced generalization of Definition 2.1 of the canoni-
cal Poisson bracket, invented by Lie (1888). Indeed, many proofs of properties
of Hamiltonian systems rely uniquely on the bilinearity, the skew-symmetry and
the Jacobi identity of the Poisson bracket, but not on the special structure of
(2.3). So the idea is, more generally, to start with a smooth matrix-valued function
B(y) =

(
bij(y)

)
and to set

{
F,G

}
(y) =

n∑
i,j=1

∂F (y)
∂yi

bij(y)
∂G(y)
∂yj

(2.8)

(or more compactly {F,G}(y) = ∇F (y)TB(y)∇G(y)).

Lemma 2.3. The bracket defined in (2.8) is bilinear, skew-symmetric and satisfies
Leibniz’ rule (2.5) as well as the Jacobi identity (2.4) if and only if

bij(y) = −bji(y) for all i, j (2.9)

and for all i, j, k (notice the cyclic permutations among i, j, k)

n∑
l=1

(∂bij(y)
∂yl

blk(y) +
∂bjk(y)

∂yl
bli(y) +

∂bki(y)
∂yl

blj(y)
)

= 0 . (2.10)

1 Siméon Denis Poisson, born: 21 June 1781 in Pithiviers (France), died: 25 April 1840 in
Sceaux (near Paris).
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Proof. The main observation is that condition (2.10) is the Jacobi identity for the
special choice of functions F = yi, G = yj , H = yk because of

{yi, yj} = bij(y). (2.11)

If equation (2.4) is developed for the bracket (2.8), one obtains terms containing
second order partial derivatives – these cancel due to the symmetry of the Jacobi
identity – and terms containing first order partial derivatives; for the latter we may
assume F,G,H to be linear combinations of yi, yj , yk, so we are back to (2.10).
The details of this proof are left as an exercise (see Exercise 1). 
�

Definition 2.4. If the matrix B(y) satisfies the properties of Lemma 2.3, formula
(2.8) is said to represent a (general) Poisson bracket. The corresponding differential
system

ẏ = B(y)∇H(y), (2.12)

is a Poisson system. We continue to call H a Hamiltonian.

The system (2.12) can again be written in the bracket formulation (2.7). The
formula (2.6) for the Lie derivative remains also valid, as is seen immediately from
the chain rule and the definition of the Poisson bracket. Choosing F = H , this
shows in particular that the Hamiltonian H is a first integral for general Poisson
systems.

Definition 2.5. A function C(y) is called a Casimir function of the Poisson system
(2.12), if

∇C(y)TB(y) = 0 for all y.

A Casimir function is a first integral of every Poisson system with structure
matrix B(y), whatever the Hamiltonian H(y) is.

Example 2.6. The Lotka–Volterra equations of Sect. I.1.1 can be written as
(

u̇
v̇

)
=

(
0 uv

−uv 0

)
∇H(u, v), (2.13)

where H(u, v) = u − lnu + v − 2 ln v is the invariant (I.1.4). This is of the form
(2.12) with a matrix that is skew-symmetric and satisfies the identity (2.10).

Higher dimensional Lotka–Volterra systems can also have a Poisson structure
(see, e.g., Perelomov (1995) and Suris (1999)). For example, the system

ẏ1 = y1(y2 + y3), ẏ2 = y2(y1 − y3 + 1), ẏ3 = y3(y1 + y2 + 1)

can be written as



ẏ1

ẏ2

ẏ3


 =




0 y1y2 y1y3

−y1y2 0 −y2y3

−y1y3 y2y3 0


 ∇H(y) (2.14)
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with H(y) = −y1 + y2 + y3 + ln y2 − ln y3. Again one can check by direct com-
putation that (2.10) is satisfied.

In contrast to the structure matrix J−1 of Hamiltonian systems in canonical
form, the matrix B(y) of (2.12) need not be invertible. All odd-dimensional skew-
symmetric matrices are singular, and so is the matrix B(y) of (2.14). In this case,
the vector v(y) = (−1/y1,−1/y2, 1/y3)T satisfies v(y)TB(y) = 0. Since v(y) =
∇C(y) with C(y) = − ln y1−ln y2+ln y3, the function C(y) is a Casimir function.

VII.2.3 Hamiltonian Systems on Symplectic Submanifolds

An important motivation for studying Poisson systems is given by Hamiltonian
problems expressed in non-canonical coordinates.

Example 2.7 (Constrained Mechanical Systems). Consider the system (1.9)
written as the differential equation

ẋ = J−1
(
∇H(x) +

m∑
i=1

λi(x)∇gi(x)
)

(2.15)

on the manifold M = {x ; c(x) = 0} with c(x) =
(
g(q), G(q)Hp(p, q)

)T
and

x = (p, q)T (see (1.14)). As in the proof of Theorem 1.2, λi(x) and gi(x) are the
components of λ(x) and g(x), and λ(x) is the function obtained from (1.12). We
use y ∈ R

2(d−m) as local coordinates of the manifold M via the transformation

x = χ(y).

In these coordinates, the differential equation (2.15) becomes, with X(y) = χ′(y),

X(y) ẏ = J−1
(
∇H

(
χ(y)

)
+

m∑
i=1

λi

(
χ(y)

)
∇gi

(
χ(y)

))
.

We multiply this equation from the left with X(y)TJ and note that the columns of
X(y), which are tangent vectors, are orthogonal to the gradients ∇gi of the con-
straints. This yields

X(y)TJX(y) ẏ = X(y)T∇H
(
χ(y)

)
.

By assumption (1.13) the matrix X(y)TJX(y) is invertible. This is seen as follows:
X(y)TJX(y)v = 0 implies JX(y)v = c′(x)Tw for some w (x = χ(y)). By
c
(
χ(y)

)
= 0 and c′(x)X(y) = 0 we get c′(x)J−1c′(x)Tw = 0. It then follows

from the structure of c′(x) and from (1.13) that w = 0 and hence also v = 0.

With B(y) =
(
X(y)TJX(y)

)−1
and K(y) = H

(
χ(y)

)
, the above equation

for ẏ thus becomes the Poisson system ẏ = B(y)∇K(y). The matrix B(y) is skew-
symmetric and satisfies (2.10), see Theorem 2.8 below or Exercise 11.
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More generally, consider a symplectic submanifoldM of R
2d, that is, a manifold

for which the symplectic two-form2

ωx(ξ1, ξ2) = (Jξ1, ξ2) for ξ1, ξ2 ∈ TxM (2.16)

(with (·, ·) denoting the Euclidean inner product on R
2d) is non-degenerate for every

x ∈M : for ξ1 in the tangent space TxM,

ωx(ξ1, ξ2) = 0 for all ξ2 ∈ TxM implies ξ1 = 0.

In local coordinates x = χ(y), this condition is equivalent to the invertibility of
the matrix X(y)TJX(y) with X(y) = χ′(y), since every tangent vector at x =
χ(y) is of the form ξ = X(y)η and X(y) has linearly independent columns. A
manifold defined by constraints, M = {x ∈ R

2d | c(x) = 0}, is symplectic if the
matrix c′(x)J−1c′(x)T is invertible for every x ∈ M (see the argument at the end
of the previous example). This condition can be restated as saying that the matrix(
{ci, cj}(x)

)
of canonical Poisson brackets of the constraint functions is invertible.

We consider the reduction of the Hamiltonian system to the symplectic subman-
ifold M, which determines solution curves t �→ x(t) ∈M by the equations

(
Jẋ−∇H(x), ξ

)
= 0 for all ξ ∈ TxM. (2.17)

With the interpretation (∇H(x), ξ) = H ′(x)ξ = d
dt

∣∣
t=0

H(γ(t)) as a directional
derivative along a path γ(t) ∈ M with γ(0) = x and γ̇(0) = ξ, it is sufficient
that the Hamiltonian H is defined and differentiable on the manifold M. Equation
(2.17) can also be expressed as

ωx(ẋ, ξ) = H ′(x)ξ for all ξ ∈ TxM, (2.18)

a formulation that is susceptible to further generalization; cf. Marsden & Ratiu
(1999), Chap. 5.4, and Exercise 2. Choosing ξ = ẋ we obtain 0 = H ′(x)ẋ =
d
dtH(x(t)), and hence the Hamiltonian is conserved along solutions.

Note that for M of Example 2.7, the formulation (2.17) is equivalent to the
equations of motion (2.15) of the constrained mechanical system. It corresponds to
d’Alembert’s principle of virtual variations in constrained mechanics; see Arnold
(1989), p. 92. In quantum mechanics the Hamiltonian reduction (2.17) to a mani-
fold (in that case, a submanifold of the Hilbert space L2(RN ,R2) instead of R

2d)
is known as the Dirac–Frenkel time-dependent variational principle and is the ba-
sic tool for deriving reduced models of the many-body Schrödinger equation; see
Sect. VII.6 for an example. From a numerical analysis viewpoint, (2.17) can also be
viewed as a Galerkin method on the solution-dependent tangent space TxM.

In terms of the symplectic projection P (x) : R
2d → TxM for x ∈ M, defined

by determining P (x)v ∈ TxM for v ∈ R
2d from the condition

(JP (x)v, ξ) = (Jv, ξ) for all ξ ∈ TxM, (2.19)

2 Notice that this two-form is the negative of that introduced in Sect. VI.2. This slight in-
consistency makes the subsequent formulas nicer.
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formula (2.17) can be reformulated as the differential equation on M,

ẋ = P (x)J−1∇H(x). (2.20)

In coordinates x = χ(y), and again with X(y) = χ′(y), formula (2.17) becomes

X(y)T
(
JX(y)ẏ −∇H(χ(y))

)
= 0,

and with

B(y) =
(
X(y)TJX(y)

)−1
and K(y) = H(χ(y)), (2.21)

we obtain the differential equation

ẏ = B(y)∇K(y). (2.22)

Theorem 2.8. For a Hamiltonian system (2.17) on a symplectic submanifold M,
the equivalent differential equation in local coordinates, (2.22) with (2.21), is a
Poisson system.

Proof. In coordinates, the symplectic projection is given by

P (x) = X(y)B(y)X(y)TJ for x = χ(y) ∈M,

since for every tangent vector ξ = X(y)η we have by (2.21),

(JXBXTJv,Xη) = (XTJXBXTJv, η) = (XTJv, η) = (Jv,Xη).

From the decomposition R
2d = P (x)R2d⊕(I−P (x))R2d we obtain, by the implicit

function theorem, a corresponding splitting in a neighbourhood of the manifold M
in R

2d,
v = x + w with x ∈M, P (x)w = 0.

This permits us to extend smooth functions F (y) to a neighbourhood of M by
setting

F̂ (v) = F (y) for v = x + w with x = χ(y), P (x)w = 0.

We then have for the derivative F̂ ′(x) = F̂ ′(x)P (x) for x ∈ M and hence for its
transpose, the gradient, ∇F̂ (x) = P (x)T∇F̂ (x). Moreover, by the chain rule we
have ∇F (y) = X(y)T∇F̂ (x) for x = χ(y). For the canonical bracket this gives,
at x = χ(y),

{F̂ , Ĝ}can(x) = ∇F̂ (x)TP (x)J−1P (x)T∇Ĝ(x)
= ∇F (y)TB(y)∇G(y) = {F,G}(y),

and hence the required properties of the bracket defined by B(y) follow from the
corresponding properties of the canonical bracket. 
�
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VII.3 The Darboux–Lie Theorem

Theorem 2.8 also shows that a Hamiltonian system without constraints becomes a
Poisson system in non-canonical coordinates. Interestingly, a converse also holds:
every Poisson system can locally be written in canonical Hamiltonian form after
a suitable change of coordinates. This result is a special case of the Darboux–Lie
Theorem. Its proof was the result of several important papers: Jacobi’s theory of
simultaneous linear partial differential equations (Jacobi 1862), the works by Cleb-
sch (1866) and Darboux (1882) on Pfaffian systems, and, finally, the paper of Lie
(1888). We shall now retrace this development. Our first tool is a result on the com-
mutativity of Poisson flows.

VII.3.1 Commutativity of Poisson Flows and Lie Brackets

The elegant formula (2.6) for the Lie derivative is valid for general Poisson systems
with the vector field f(y) = B(y)∇H(y) of (2.12). Acting on a function F : R

n →
R, the Lie operator (III.5.2) becomes

DF = ∇FT f = ∇FTB(y)∇H = {F,H} (3.1)

and is again the Poisson bracket. This observation is the key for the following
lemma, which shows an interesting connection between the Lie bracket and the
Poisson bracket.

Lemma 3.1. Let two smooth Hamiltonians H [1](y) and H [2](y) be given.

If D1 is the Lie operator of B(y)∇H [1]

and D2 is the Lie operator of B(y)∇H [2],

then [D1,D2] is the Lie operator of B(y)∇{H [2],H [1]}
(3.2)

(notice, once again, that the indices 1 and 2 have been reversed).

Proof. After some clever permutations, the Jacobi identity (2.4) can be written as
{
{F,H [2]},H [1]

}
−

{
{F,H [1]},H [2]

}
=

{
F, {H [2],H [1]}

}
. (3.3)

By (3.1) this is nothing other than D1D2F −D2D1F = [D1,D2]F . 
�

Lemma 3.2. Consider two smooth Hamiltonians H [1](y) and H [2](y) on an open

connected set U , with D1 and D2 the corresponding Lie operators and ϕ
[1]
s (y) and

ϕ
[2]
t (y) the corresponding flows. Then, if the matrix B(y) is invertible, the following

are equivalent in U :

(i) {H [1],H [2]} = Const ;
(ii) [D1,D2] = 0;

(iii) ϕ
[2]
t ◦ ϕ

[1]
s = ϕ

[1]
s ◦ ϕ

[2]
t .

The conclusions “(i) ⇒ (ii) ⇔ (iii)” also hold for a non-invertible B(y).
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Proof. This is obtained by combining Lemma III.5.4 and Lemma 3.1. We need
the invertibility of B(y) to conclude that {H [1],H [2]} = Const follows from
B(y)∇{H [1],H [2]} = 0. 
�

VII.3.2 Simultaneous Linear Partial Differential Equations

If two functions F (y) and G(y) are given, formula (2.8) determines a function
h(y) = {F,G}(y) by differentiation. We now ask the inverse question: Given func-
tions G(y) and h(y), can we find a function F (y) such that {F,G}(y) = h(y) ?
This problem represents a first order linear partial differential equation for F . So we
are led to the following problem, which we first discuss in two dimensions.

One Equation. Given functions a(y1, y2), b(y1, y2), h(y1, y2), find all solutions
F (y1, y2) satisfying

a(y1, y2)
∂F

∂y1
+ b(y1, y2)

∂F

∂y2
= h(y1, y2). (3.4)

This equation is, for any point (y1, y2), a linear relation between the partial deriv-
atives of F , but does not determine them individually. There is one direction,
however, where the derivative is uniquely determined, namely that of the vector
n =

(
a(y1, y2), b(y1, y2)

)
, since the left-hand side of equation (3.4) is the direc-

tional derivative ∂F
∂n . The lines, which everywhere respect this direction, are called

characteristic lines (see left picture of Fig. 3.1). If we parametrize them with a para-
meter t, we can compute y1(t), y2(t) as well as F (t) = F

(
y1(t), y2(t)

)
as solutions

of the following ordinary differential equations

ẏ1 = a(y1, y2), ẏ2 = b(y1, y2), Ḟ = h(y1, y2). (3.5)

The initial values
(
y1(0), y2(0)

)
can be chosen on an arbitrary curve γ (which must

be transversal to the characteristic lines) and the values F |γ can be arbitrarily pre-
scribed. The solution F (y1, y2) of (3.4) is then created by the curves (3.5) wherever
the characteristic lines go (right picture of Fig. 3.1).

y1

y2

dy1

dy2

n

y1y2
F

γ

F (y1, y2)

Fig. 3.1. Characteristic lines and solution of a first order linear partial differential equation
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n2

n1

y1

y2

y3

Fig. 3.2. Characteristic surfaces of two first order linear partial differential equations

For one equation in n dimensions, the initial values
(
y1(0), . . . , yn(0)

)
can be

freely chosen on a manifold of dimension n−1 (e.g., the subspace orthogonal to the
characteristic line passing through a given point), and F can be arbitrarily prescribed
on this manifold. This guarantees the existence of n − 1 independent solutions in
the neighbourhood of a given point. Here, independent means that the gradients of
these functions are linearly independent.

Two Simultaneous Equations. Two simultaneous equations of dimension two are
trivial. We therefore suppose y = (y1, y2, y3) and two equations of the form

a
[1]
1 (y)

∂F

∂y1
+ a

[1]
2 (y)

∂F

∂y2
+ a

[1]
3 (y)

∂F

∂y3
= h1(y),

a
[2]
1 (y)

∂F

∂y1
+ a

[2]
2 (y)

∂F

∂y2
+ a

[2]
3 (y)

∂F

∂y3
= h2(y)

(3.6)

for an unknown function F (y1, y2, y3). This system can also be written as D1F =
h1,D2F = h2, where Di denotes the Lie operator corresponding to the vector field
a[i](y). Here, we have two directional derivatives prescribed, namely ∂F

∂n1
and ∂F

∂n2

where ni = a[i](y) (see Fig. 3.2). Therefore, we will have to follow both directions
and, instead of (3.5), we will have two sets of ordinary differential equations

ẏ1 = a
[1]
1 (y), ẏ2 = a

[1]
2 (y), ẏ3 = a

[1]
3 (y), Ḟ = h1(y)

ẏ1 = a
[2]
1 (y), ẏ2 = a

[2]
2 (y), ẏ3 = a

[2]
3 (y), Ḟ = h2(y).

(3.7)

If we prescribe F on a curve that is orthogonal to n1 and n2, and if we follow the
solutions of (3.7), we obtain the function F on two 2-dimensional surfaces S1 and
S2 containing the prescribed curve. Continuing from S1 along the second flow and
from S2 along the first flow, we may be led to the same point, but nothing guarantees
that the obtained values for F are identical. To get a well-defined F , additional
assumptions on the differential operators and on the inhomogeneities have to be
made.

The following theorem, which is due to Jacobi (1862), has been extended
by Clebsch (1866), who created the theory of complete systems (“vollständige
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Systeme”). These papers contained long analytic calculations with myriades of for-
mulas. The wonderful geometric insight is mainly due to Sophus Lie.

Theorem 3.3. Let D1, . . . , Dm be m (m < n) linear differential operators in R
n

corresponding to vector fields a[1](y), . . . , a[m](y) and suppose that these vectors
are linearly independent for y = y0. If

[Di,Dj ] = 0 for all i, j, (3.8)

then the homogeneous system

DiF = 0 for i = 1, . . . ,m

possesses (in a neighbourhood of y0) n − m solutions for which the gradients
∇F (y0) are linearly independent.

Furthermore, the inhomogeneous system of partial differential equations

DiF = hi for i = 1, . . . ,m

possesses a particular solution in a neighbourhood of y0, if and only if in addition
to (3.8) the functions h1(y), . . . , hm(y) satisfy the integrability conditions

Dihj = Djhi for all i, j. (3.9)

Proof. (a) Let V denote the space of vectors in R
n that are orthogonal to a[1](y0),

. . . , a[m](y0), and consider the (n −m)-dimensional manifold M = y0 + V . We
then extend an arbitrary smooth function F : M→ R to a neighbourhood of y0 by

F
(
ϕ

[m]
tm

◦ . . . ◦ ϕ
[1]
t1 (y0 + v)

)
= F

(
y0 + v

)
. (3.10)

Notice that (t1, . . . , tm, v) �→ y = ϕ
[m]
tm
◦. . .◦ϕ[1]

t1 (y0+v) defines a local diffeomor-
phism between neighbourhoods of 0 and y0. Since the application of the operator
Dm to (3.10) corresponds to a differentiation with respect to tm and the expression
F
(
ϕ

[m]
tm

◦ . . . ◦ ϕ
[1]
t1 (y0 + v)

)
is independent of tm by (3.10), we get DmF (y) = 0.

To prove DiF (y) = 0 for i < m, we first have to change the order of the flows ϕ
[j]
tj

in (3.10), which is permitted by Lemma III.5.4 and assumption (3.8), so that ϕ[i]
ti

is
in the left-most position.

(b) The necessity of (3.9) follows immediately from Dihj = DiDjF =
DjDiF = Djhi. For given hi satisfying (3.9) we define F (y) in a neighbourhood
of y0 (i.e., for small t1, . . . , tm and small v) by

F
(
ϕ

[m]
tm

◦ . . . ◦ ϕ
[1]
t1 (y0 + v)

)
=

∫ t1

0

h1

(
ϕ

[1]
t (y0 + v)

)
dt

+ . . . +
∫ tm

0

hm

(
ϕ

[m]
t ◦ ϕ

[m−1]
tm−1

◦ . . . ◦ ϕ
[1]
t1 (y0 + v)

)
dt,
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and we prove that it is a solution of the system DiF = hi for i = 1, . . . ,m. Since
only the last integral depends on tm, we immediately get by differentiation with
respect to tm that DmF = hm. For the computation of DiF we differentiate with
respect to ti. The first i − 1 integrals are independent of ti. The derivative of the
ith integral gives hi

(
ϕ

[i]
ti
◦ . . . ◦ ϕ

[1]
t1 (y0 + v)

)
, and the derivative of the remaining

integrals gives

∫ tj

0

Dihj

(
ϕ

[j]
t ◦ . . . ◦ ϕ

[1]
t1 (y0 + v)

)
dt =

∫ tj

0

Djhi

(
ϕ

[j]
t ◦ . . . ◦ ϕ

[1]
t1 (y0 + v)

)
dt

= hi

(
ϕ

[j]
tj
◦ . . . ◦ ϕ

[1]
t1 (y0 + v)

)
− hi

(
ϕ

[j−1]
tj−1

◦ . . . ◦ ϕ
[1]
t1 (y0 + v)

)

for j = i + 1, . . . ,m. Summing up, this proves DiF = hi. 
�

VII.3.3 Coordinate Changes and the Darboux–Lie Theorem

Jean Gaston Darboux3

The emphasis here is to simplify a given
Poisson structure as much as possible by a
coordinate transformation. We change from
coordinates y1, . . . , yn to ỹ1(y), . . . , ỹn(y)
with continuously differentiable functions
and an invertible Jacobian A(y) = ∂ỹ/∂y,

ỹ
R

n

y

R
n

R

diff.

F

G

F̃

G̃

Fig. 3.3. New coordinates in a Poisson system

and we denote F̃ (ỹ) := F (y) and G̃(ỹ) :=
G(y) (see Fig. 3.3). The Poisson structure as well as the Poisson flow on one space
will become another Poisson structure and flow on the other space by simply apply-
ing the chain rule:

∑
i,j

∂F (y)
∂yi

bij(y)
∂G(y)
∂yj

=
∑

i,j,k,l

∂F̃ (ỹ)
∂ỹk

∂ỹk

∂yi
bij

(
y(ỹ)

) ∂ỹl

∂yj

∂G̃(ỹ)
∂ỹl

. (3.11)

This is another Poisson structure with

b̃kl = {ỹk, ỹl} or B̃(ỹ) = A(y)B(y)A(y)T . (3.12)

3 Jean Gaston Darboux, born: 14 August 1842 in Nı̂mes (France), died: 23 February 1917
in Paris.
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The same structure matrix is obtained if the Poisson system (2.12) is written in these
new coordinates (Exercise 5).

Since A is invertible, the structure matrices B and B̃ have the same rank. We
now want to obtain the simplest possible form for B̃.

Theorem 3.4 (Darboux 1882, Lie 1888). Suppose that the matrix B(y) defines
a Poisson bracket and is of constant rank n − q = 2m in a neighbourhood of
y0 ∈ R

n. Then, there exist functions P1(y), . . . , Pm(y), Q1(y), . . . , Qm(y), and
C1(y), . . . , Cq(y) satisfying

{Pi, Pj} = 0 {Pi, Qj} = −δij {Pi, Cl} = 0

{Qi, Pj} = δij {Qi, Qj} = 0 {Qi, Cl} = 0

{Ck, Pj} = 0 {Ck, Qj} = 0 {Ck, Cl} = 0

(3.13)

on a neighbourhood of y0. The gradients of Pi, Qi, Ck are linearly independent,
so that y �→

(
Pi(y), Qi(y), Ck(y)

)
constitutes a local change of coordinates to

canonical form.

The functions C1(y), . . . , Cq(y) are called distinguished functions (ausgezeich-
nete Funktionen) by Lie.

Proof. We follow Lie’s original proof. Similar ideas, and the same notation, are
also present in Darboux’s paper. The proof proceeds in several steps, satisfying the
conditions of (3.13), from one line to the next, by solving systems of linear partial
differential equations.

(a) If all bij(y0) = 0, the constant rank assumption implies bij(y) = 0 in a
neighbourhood of y0. We thus have m = 0 and all coordinates Ci(y) = yi are
Casimirs.

(b) If there exist i, j with bij(y0) �= 0, we set Q1(y) = yi and we determine
P1(y) as the solution of the linear partial differential equation

{Q1, P1} = 1. (3.14)

Because of bij(y0) �= 0 the assumption of Theorem 3.3 is satisfied and this yields
the existence of P1. We next consider the homogeneous system

{Q1, F} = 0 and {P1, F} = 0 (3.15)

of partial differential equations. By Lemma 3.2 and (3.14) the Lie operators cor-
responding to Q1 and P1 commute, so that by Theorem 3.3 the system (3.15) has
n− 2 independent solutions F3, . . . , Fn. Their gradients together with those of Q1

and P1 form a basis of R
n. We therefore can change coordinates from y1, . . . , yn to

Q1, P1, F3, . . . , Fn (mapping y0 to ỹ0). In these coordinates the first two rows and
the first two columns of the structure matrix B̃(ỹ) have the required form.

(c) If b̃ij(ỹ0) = 0 for all i, j ≥ 3, we have m = 1 (similar to step (a)) and the
coordinates F3, . . . , Fn are Casimirs.
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(d) If there exist i ≥ 3 and j ≥ 3 with b̃ij(ỹ0) �= 0, we set Q2 = Fi and we
determine P2 from the inhomogeneous system

{Q1, P2} = 0, {P1, P2} = 0, {Q2, P2} = 1.

The inhomogeneities satisfy (3.9), and the Lie operators corresponding to Q1, P1,
Q2 commute (by Lemma 3.2). Theorem 3.3 proves the existence of such a P2. We
then consider the homogeneous system

{Q1, F} = 0, {P1, F} = 0, {Q2, F} = 0, {P2, F} = 0

and apply once more Theorem 3.3. We get n − 4 independent solutions, which
we denote again F5, . . . , Fn. As in part (b) of the proof we get new coordinates
Q1, P1, Q2, P2, F5, . . . , Fn, for which the first four rows and columns of the struc-
ture matrix are canonical.

(e) The proof now continues by repeating steps (c) and (d) until the structure
matrix has the desired form. 
�

Corollary 3.5 (Casimir Functions). In the situation of Theorem 3.4 the functions
C1(y), . . . , Cq(y) satisfy

{Ci,H} = 0 for all smooth H . (3.16)

Proof. Theorem 3.4 states that∇Ci(y)TB(y)∇H(y) = 0, when H(y) is one of the
functions Pj(y), Qj(y) or Cj(y). However, the gradients of these functions form a
basis of R

n. Consequently, ∇Ci(y)TB(y) = 0 and (3.16) is satisfied for all differ-
entiable functions H(y). 
�

This property implies that all Casimir functions are first integrals of (2.12) what-
ever H(y) is. Consequently, (2.12) is (close to y0) a differential equation on the
manifold

M = {y ∈ U | Ci(y) = Const i, i = 1, . . . ,m}. (3.17)

Corollary 3.6 (Transformation to Canonical Form). Denote the transformation
of Theorem 3.4 by z = ϑ(y) =

(
Pi(y), Qi(y), Ck(y)

)
. With this change of coordi-

nates, the Poisson system ẏ = B(y)∇H(y) becomes

ż = B0∇K(z) with B0 =
(

J−1 0
0 0

)
, (3.18)

where K(z) = H(y). Writing z = (p, q, c), this system becomes

ṗ = −Kq(p, q, c), q̇ = Kp(p, q, c), ċ = 0.

Proof. The transformed differential equation is

ż = ϑ′(y)B(y)ϑ′(y)T∇K(z) with y = ϑ−1(z),

and Theorem 3.4 states that ϑ′(y)B(y)ϑ′(y)T = B0. 
�
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VII.4 Poisson Integrators

Before discussing geometric numerical integrators, we show that many important
properties of Hamiltonian systems in canonical form remain valid for systems

ẏ = B(y)∇H(y), (4.1)

where B(y) represents a Poisson bracket.

VII.4.1 Poisson Maps and Symplectic Maps

We have already seen that the Hamiltonian H(y) is a first integral of (4.1). We shall
show here that the flow of (4.1) satisfies a property closely related to symplecticity.

Definition 4.1. A transformation ϕ : U → R
n (where U is an open set in R

n) is
called a Poisson map with respect to the bracket (2.8), if its Jacobian matrix satisfies

ϕ′(y)B(y)ϕ′(y)T = B
(
ϕ(y)

)
. (4.2)

An equivalent condition is that for all smooth real-valued functions F,G defined
on ϕ(U),

{F ◦ ϕ,G ◦ ϕ}(y) = {F,G}
(
ϕ(y)

)
, (4.3)

as is seen by the chain rule and choosing F,G as the coordinate functions. It is
clear from this condition that the composition of Poisson maps is again a Poisson
map. A comparison with (3.12) shows that Poisson maps leave the structure matrix
invariant.

For the canonical symplectic structure, where B(y) = J−1, condition (4.2) is
equivalent to the symplecticity of the transformation ϕ(y). This can be seen by tak-
ing the inverse of both sides of (4.2), and by multiplying the resulting equation with
ϕ′(y) from the right and with ϕ′(y)T from the left. Also in the situation of a Hamil-
tonian system (2.17) on a symplectic submanifold M, where B(y) is the structure
matrix of the differential equation in coordinates y as in Theorem 2.8, condition
(4.2) is equivalent to symplecticity in the sense of preserving the symplectic two-
form (2.16) on the tangent space, as in (1.16):

Definition 4.2. A map ψ : M → M on a symplectic manifold M is called sym-
plectic if for every x ∈M,

ωψ(x)

(
ψ′(x)ξ1, ψ′(x)ξ2) = ωx(ξ1, ξ2) for all ξ1, ξ2 ∈ TxM. (4.4)

A near-identity map ψ : M→M is symplectic if and only if the conjugate map
ϕ in local coordinates x = χ(y), with ϕ(y) given by ψ(x) = χ(ϕ(y)) for x = χ(y),
is a Poisson map for the structure matrix of (2.21), B(y) = (X(y)TJX(y))−1 with
X(y) = χ′(y). This holds because ψ′(x)ξ = X(ϕ(y))ϕ′(y)η for x = χ(y) and
ξ = X(y)η, and because (4.2) is equivalent to ϕ′(y)TX(ϕ(y))TJX(ϕ(y))ϕ′(y) =
X(y)TJX(y).
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Theorem 4.3. If B(y) is the structure matrix of a Poisson bracket, then the flow
ϕt(y) of the differential equation (4.1) is a Poisson map.

Proof. (a) For B(y) = J−1 this is exactly the statement of Theorem VI.2.4 on the
symplecticity of the flow of Hamiltonian systems. This result can be extended in a
straightforward way to the matrix B0 of (3.18).

(b) For the general case consider the change of coordinates z = ϑ(y) which
transforms (4.1) to canonical form (Theorem 3.4), i.e., ϑ′(y)B(y)ϑ′(y)T = B0 and
ż = B0∇K(z) with K(z) = H(y) (Corollary 3.6). Denoting the flows of (4.1) and
ż = B0∇K(z) by ϕt(y) and ψt(z), respectively, we have ψt

(
ϑ(y)

)
= ϑ

(
ϕt(y)

)
and by the chain rule ψ′

t

(
ϑ(y)

)
ϑ′(y) = ϑ′(ϕt(y)

)
ϕ′

t(y). Inserting this relation into
ψ′

t(z)B0ψ
′
t(z)

T = B0, which follows from (a), proves the statement.
A direct proof, avoiding the use of Theorem 3.4, is indicated in Exercise 6. 
�

From Theorems 2.8 and 4.3 and the remark after Definition 4.2 we note the
following.

Corollary 4.4. The flow of a Hamiltonian system (2.17) on a symplectic submani-
fold is symplectic.

The inverse of Theorem 4.3 is also true. It extends Theorem VI.2.6 from canon-
ically symplectic transformations to Poisson maps.

Theorem 4.5. Let f(y) and B(y) be continuously differentiable on an open set
U ⊂ R

m, and assume that B(y) represents a Poisson bracket (Definition 2.4).
Then, ẏ = f(y) is locally of the form (4.1), if and only if

• its flow ϕt(y) respects the Casimirs of B(y), i.e., Ci

(
ϕt(y)

)
= Const , and

• its flow is a Poisson map for all y ∈ U and for all sufficiently small t.

Proof. The necessity follows from Corollary 3.5 and from Theorem 4.3. For the
proof of sufficiency we apply the change of coordinates (u, c) = ϑ(y) of Theo-
rem 3.4, which transforms B(y) into canonical form (3.18). We write the differential
equation ẏ = f(y) in the new variables as

u̇ = g(u, c), ċ = h(u, c). (4.5)

Our first assumption expresses the fact that the Casimirs, which are the components
of c, are first integrals of this system. Consequently, we have h(u, c) ≡ 0. The
second assumption implies that the flow of (4.5) is a Poisson map for B0 of (3.18).
Writing down explicitly the blocks of condition (4.2), we see that this is equivalent
to the symplecticity of the mapping u0 �→ u(t, u0, c0), with c0 as a parameter.
From Theorem VI.2.6 we thus obtain the existence of a function K(u, c) such that
g(u, c) = J−1∇uK(u, c). Notice that for flows depending smoothly on a parameter,
the Hamiltonian also depends smoothly on it. Consequently, the vector field (4.5)
is of the form B0∇K(u, c). Transforming back to the original variables we obtain
f(y) = B(y)∇H(y) with H(y) = K

(
ϑ(y)

)
(see Corollary 3.6). 
�
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VII.4.2 Poisson Integrators

The preceding theorem shows that “being a Poisson map and respecting the Casimirs”
is characteristic for the flow of a Poisson system. This motivates the following defi-
nition.

Definition 4.6. A numerical method y1 = Φh(y0) is a Poisson integrator for the
structure matrix B(y), if the transformation y0 �→ y1 respects the Casimirs and if it
is a Poisson map whenever the method is applied to (4.1).

Observe that for a Poisson integrator one has to specify the class of structure
matrices B(y). A method will never be a Poisson integrator for all possible B(y).

Example 4.7. The symplectic Euler method reads

un+1 = un + hun+1vnHv(un+1, vn), vn+1 = vn − hun+1vnHu(un+1, vn)

for the Lotka–Volterra problem (2.13). It produces an excellent long-time behaviour
(Fig. 4.1, left picture). We shall show that this is a Poisson integrator for all separable
Hamiltonians H(u, v) = K(u)+L(v). For this we compute the Jacobian of the map
(un, vn) �→ (un+1, vn+1),
(

1− hvnHv 0
hvn(Hu+un+1Huu) 1

)(
∂(un+1, vn+1)

∂(un, vn)

)
=

(
1 hun+1(Hv+vnHvv)
0 1− hun+1Hu

)

(the argument of the partial derivatives of H is (un+1, vn) everywhere), and we
check in a straightforward fashion the validity of (4.2). A different proof, using
differential forms, is given in Sanz-Serna (1994) for a special choice of H(u, v).
Similarly, the adjoint of the symplectic Euler method is a Poisson integrator, and
so is their composition – the Störmer–Verlet scheme. Composition methods based
on this scheme yield high order Poisson integrators, because the composition of
Poisson maps is again a Poisson map.

The implicit midpoint rule, though symplectic when applied to canonical Hamil-
tonian systems, turns out not to be a Poisson map for the structure matrix B(u, v) of
(2.13). Figure 4.1 (right picture) shows that the numerical solution does not remain
near a closed curve.

It is a difficult task to construct Poisson integrators for general Poisson systems;
cf. the overview by Karasözen (2004). First of all, for non-constant B(y) condi-
tion (4.2) is no longer a quadratic first integral of the problem augmented by its
variational equation (see Sect. VI.4.1). Secondly, the Casimir functions can be ar-
bitrary and we know that only linear and quadratic first integrals can be conserved
automatically (Chap. IV). Therefore, Poisson integrators will have to exploit special
structures of the particular problem.

Splitting Methods. Consider a (general) Poisson system ẏ = B(y)∇H(y) and
suppose that the Hamiltonian permits a decomposition as H(y) = H [1](y) + . . . +
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Fig. 4.1. Numerical solutions of the Lotka–Volterra equations (2.13) (step size h = 0.25,
which is very large compared to the period of the solution; 1000 steps; initial values (4, 2)
and (6, 2) for all methods)

H [m](y), such that the individual systems ẏ = B(y)∇H [i](y) can be solved ex-
actly. The flow of these subsystems is a Poisson map and automatically respects
the Casimirs, and so does their composition. McLachlan (1993), Reich (1993), and
McLachlan & Quispel (2002) present several interesting examples.

Example 4.8. In the previous example of a Lotka–Volterra equation with separable
Hamiltonian H(u, v) = K(u) + L(v), the systems with Hamiltonian K(u) and
L(v) can be solved explicitly. Since the flow of each of the subsystems is a Poisson
map, so is their composition. Combining a half-step with L, a full step with K,
and again a half-step with L, we thus obtain the following Verlet-like second-order
Poisson integrator:

un+1/2 = exp
(h

2
vn∇L(vn)

)
un

vn+1 = exp
(
−hun+1/2∇K(un+1/2)

)
vn (4.6)

un+1 = exp
(h

2
vn+1∇L(vn+1)

)
un+1/2.

In the setting of Hamiltonian systems on a manifold, the splitting approach can
be formulated in the following way.

Variational Splitting. Consider a Hamiltonian system (2.17) on a symplectic man-
ifold M, and use a splitting H = H [1] + H [2] of the Hamiltonian in the following
algorithm:

1. Let x+
n ∈M be the solution at time h/2 of the equation for x,

(Jẋ−∇H [1](x), ξ) = 0 for all ξ ∈ TxM (4.7)

with initial value x(0) = xn.
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2. Let x−
n+1 be the solution at time h of

(Jẋ−∇H [2](x), ξ) = 0 for all ξ ∈ TxM (4.8)

with initial value x(0) = x+
n .

3. Take xn+1 as the solution at time h/2 of (4.7) with initial value x(0) = x−
n+1.

Splitting algorithms for Hamiltonian systems on manifolds have been studied by
Dullweber, Leimkuhler & McLachlan (1997) and Benettin, Cherubini & Fassò
(2001) in the context of rigid body dynamics; see Sect. VII.5. Lubich (2004) and
Faou & Lubich (2004) have studied the above splitting method for applications in
quantum molecular dynamics; see Sect. VII.6 for an example.

By Theorem 2.8, the substeps 1.–3. written in coordinates x = χ(y) are Poisson
systems ẏ = B(y)∇K [i](y) with K [i](y) = H [i](χ(y)), but the algorithm itself
is independent of the choice of coordinates. Since the substeps are exact flows of
Hamiltonian systems on the manifold M, their composition yields a symplectic
map. In the coordinates y the substeps are the exact flows of Poisson systems, and
hence their composition yields a Poisson map.

Poisson Integrators and Symplectic Integrators. Generally we note the follow-
ing correspondence, which rephrases the remark on symplectic maps and Poisson
maps after Definition 4.2. It applies in particular to the symplectic integrators for
constrained mechanics of Sect. VII.1.

Lemma 4.9. An integrator x1 = Ψh(x0) for a Hamiltonian system (2.17) on a
manifold M is symplectic if and only if the integrator written in local coordinates,
y1 = Φh(y0) corresponding to a coordinate map x = χ(y), is a Poisson integrator
for the structure matrix B(y) of (2.21).

VII.4.3 Integrators Based on the Darboux–Lie Theorem

If we explicitly know a transformation z = ϑ(y) that brings the system ẏ =
B(y)∇H(y) to canonical form (as in Corollary 3.6), we can proceed as fol-
lows: compute zn = ϑ(yn); apply a symplectic integrator to the transformed sys-
tem ż = B0∇K(z) (B0 is the matrix (3.18) and K(z) = H(y)) which yields
zn+1 = Ψh(zn); compute finally yn+1 from zn+1 = ϑ(yn+1). This yields a Poisson
integrator by the following lemma.

Lemma 4.10. Let z = (u, c) = ϑ(y) be the transformation of Theorem 3.4. Sup-
pose that the integrator Φh(y) takes the form

Ψh(z) =
(

Ψ1
h(u, c)
c

)

in the new variables z = (u, c). Then, Φh(y) is a Poisson integrator if and only if
u �→ Ψ1

h(u, c) is a symplectic integrator for every c.
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Proof. The integrator Φh(y) is Poisson for the structure matrix B(y) if and only if
Ψh(z) is Poisson for the matrix B0 of (3.18); see Exercise 7. By assumption, Ψh(z)
preserves the Casimirs of B0. The identity

Ψ ′
h(z)B0Ψ

′
h(z)T =

(
AJ−1AT 0

0 0

)

with A = ∂Ψ1
h/∂u proves the statement. 
�

Notice that the transformation ϑ has to be global in the sense that it has to be
the same for all integration steps. Otherwise a degradation in performance, similar
to that of the experiment in Example V.4.3, has to be expected.

Example 4.11. As a first illustration consider the Lotka–Volterra system (2.13).
Applying the transformation ϑ(u, v) = (lnu, ln v) = (p, q), this system becomes
canonically Hamiltonian with

K(p, q) = −H(u, v) = −H(ep, eq).

If we apply the symplectic Euler method to this Hamiltonian system, and if we
transform back to the original variables, we obtain the method

un+1 = un exp
(
hvnHv(un+1, vn)

)
,

vn+1 = vn exp
(
−hun+1Hu(un+1, vn)

)
.

(4.9)

In contrast to the method of Example 4.7, (4.9) is also a Poisson integrator for (2.13)
if H(u, v) is not separable. If we compose a step with step size h/2 of the symplec-
tic Euler method with its adjoint method, then we obtain again, in the case of a
separable Hamiltonian, the method (4.6).

Example 4.12 (Ablowitz–Ladik Discrete Nonlinear Schrödinger Equation).
An interesting space discretization of the nonlinear Schrödinger equation is the
Ablowitz–Ladik model

i ẏk + 1

∆x2

(
yk+1 − 2yk + yk−1

)
+ |yk|2

(
yk+1 + yk−1

)
= 0,

which we consider under periodic boundary conditions yk+N = yk (∆x = 1/N ).
It is completely integrable (Ablowitz–Ladik 1976) and, as we shall see below, it is a
Poisson system with noncanonical Poisson bracket. Splitting the variables into real
and imaginary parts, yk = uk + ivk, we obtain

u̇k = − 1

∆x2

(
vk+1 − 2vk + vk−1

)
−

(
u2

k + v2
k

)(
vk+1 + vk−1

)

v̇k = 1

∆x2

(
uk+1 − 2uk + uk−1

)
+

(
u2

k + v2
k

)(
uk+1 + uk−1

)
.

With u = (u1, . . . , uN ), v = (v1, . . . , vN ) this system can be written as
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(
u̇
v̇

)
=

(
0 −D(u, v)

D(u, v) 0

)(
∇uH(u, v)
∇vH(u, v)

)
, (4.10)

where D = diag(d1, . . . , dN ) is the diagonal matrix with entries

dk(u, v) = 1 + ∆x2
(
u2

k + v2
k

)
,

and the Hamiltonian is

H(u, v) =
1

∆x2

N∑
l=1

(
ulul−1 + vlvl−1

)
− 1

∆x4

N∑
l=1

ln
(
1 + ∆x2(u2

l + v2
l )

)
.

We thus get a Poisson system (the conditions of Lemma 2.3 are directly verified).
There are many possibilities to transform this system to canonical form. Tang,
Pérez-Garcı́a & Vázquez (1997) propose the transformation

pk =
1

∆x
√

1 + ∆x2v2
k

arctan
( ∆x√

1 + ∆x2v2
k

· uk

)
, qk = vk,

for which the inverse can be computed in a straightforward way. Here, we suggest
the transformation

pk = uk σ
(
∆x2(u2

k + v2
k)

)

qk = vk σ
(
∆x2(u2

k + v2
k)

) with σ(x) =

√
ln(1 + x)

x
, (4.11)

which treats the variables more symmetrically. Its inverse is

uk = pk τ
(
∆x2(p2

k + q2
k)

)

vk = qk τ
(
∆x2(p2

k + q2
k)

) with τ(x) =
expx− 1

x
.

Both transformations take the system (4.10) to canonical form. For the transforma-
tion (4.11) the Hamiltonian in the new variables is

H(p, q) =
1

∆x2

N∑
l=1

τ
(
∆x2(p2

l + q2
l )

)
τ
(
∆x2(p2

l−1 + q2
l−1)

)(
plpl−1 + qlql−1

)

− 1
∆x2

N∑
l=1

(
p2

l + q2
l

)
.

Applying standard symplectic schemes to this Hamiltonian yields Poisson integra-
tors for (4.10).

VII.5 Rigid Body Dynamics and Lie–Poisson Systems
... these topics, which, after all, have occupied workers in geometric me-
chanics for many years. (R. McLachlan 2003)

An important Poisson system is given by Euler’s famous equations for the mo-
tion of a rigid body (see left picture of Fig. 5.1), for which we recall the history and
derivation and present various structure-preserving integrators. Euler’s equations are
a particular case of Lie–Poisson systems, which result from a reduction process of
Hamiltonian systems on a Lie group.
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VII.5.1 History of the Euler Equations
“Le sujet que je me propose de traiter ici, est de la derniere importance
dans la Mécanique ; & j’ai déjà fait plusieurs efforts pour le mettre dans
tout son jour. Mais, quoique le calcul ait assès bien réussi, & que j’ai
découvert des formules analytiques ..., leur application étoit pourtant as-
sujettie à des difficultés qui m’ont paru presque tout à fait insurmontables.
Or, depuis que j’ai dévelopé les principes de la conoissance mécanique
des corps, la belle propriété des trois axes principaux dont chaque corps
est doué, m’a enfin mis en état de vaincre toutes ces difficultés, ...”

(Euler 1758b, p. 154)

A great challenge for Euler were his efforts to establish a mathematical analysis for
the motion of a rigid body. Due to the fact that such a body can have an arbitrary
shape and mass distribution (see left picture of Fig. 5.2), and that the rotation axis
can arbitrarily move with time, the problem is difficult and Euler struggled for many
years (all these articles are collected in Opera Omnia, Ser. II, Vols. 7 and 8). The
breakthrough was enabled by the discovery that any body, as complicated as may be
its configuration, reduces to an inertia ellipsoid with three principal axes and three
numbers, the principal moments of inertia (Euler 1758a; see the middle picture of
Fig. 5.2 and the citation).

Fig. 5.1. Left picture: first publication of the Euler equations in Euler (1758b). Right picture:
principal axes as eigenvectors in Lagrange (1788)

The Inertia Ellipsoid. We choose a moving coordinate system connected to the
body B and we consider motions of the body where the origin is fixed. By another
of Euler’s famous theorems, any such motion is infinitesimally a rotation around an
axis. We represent the rotation axis of the body by the direction of a vector ω and
the speed of rotation by the length of ω. Then the velocity of a mass point x of B is
given by the exterior product

v = ω × x =




ω2x3 − ω3x2

ω3x1 − ω1x3

ω1x2 − ω2x1


 =




0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0







x1

x2

x3


 (5.1)

(orthogonal to ω, orthogonal to x, and of length ‖ω‖ · ‖x‖ · sin γ; see the left picture
of Fig. 5.2). The kinetic energy is obtained by integrating the energy of the mass
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Fig. 5.2. A rigid body rotating around a variable axis (left); the corresponding inertia ellipsoid
(middle); the corresponding angular momentum (right)

points dm over the body

T = 1

2

∫

B
‖ω × x‖2 dm (5.2)

= 1

2

∫

B

(
(ω2x3 − ω3x2)2 + (ω3x1 − ω1x3)2 + (ω1x2 − ω2x1)2

)
dm .

If this is multiplied out, one obtains

T = 1

2
ωTΘω , where Θii =

∫

B
(x2

k+x2
�) dm, Θik = −

∫

B
xixk dm, (i �= k, �).

(5.3)
Euler (1758a) showed, by endless trigonometric transformations, that there exist
principal axes of the body in which this expression takes the form

T = 1

2

(
I1ω

2
1 + I2ω

2
2 + I3ω

2
3

)
. (5.4)

This was historically the first transformation of such a 3×3 quadratic form to diago-
nal form. Later, Lagrange (1788) discovered that these axes were the eigenvectors of
the matrix Θ and the moments of inertia Ik the corresponding eigenvalues (without
calling them so, see the right picture of Fig. 5.1).

The Angular Momentum. The first law of Newton’s Principia states that the mo-
mentum v · m of a mass point remains constant in the absence of exterior forces.
The corresponding quantity for rotational motion is the angular momentum, i.e.,
the exterior product x× v times the mass. Integrating over the body we obtain, with
(5.1),

y =
∫

B
(x× v) dm =

∫

B

(
x× (ω × x)

)
dm . (5.5)

If this is multiplied out, the matrix Θ appears again and one obtains the surprising
result (due to Poinsot 1834)
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y = Θω, or, in the principal axes coordinates, yk = Ik ωk . (5.6)

Such a relation is familiar from the theory of conjugate diameters (Apollonius, Book
II, Prop. VI): the angular momentum is a vector orthogonal to the plane of vectors
conjugate to ω (see the right picture of Fig. 5.2).

The Euler Equations. Euler’s paper (1758a), on his discovery of the principal axes,
is immediately followed by Euler (1758b), where he derives his equations for the
motion of a rigid body by long, doubtful and often criticized calculations, repeated
in a little less doubtful manner in Euler’s monumental treatise (1765). Beauty and
elegance, not only of the result, but also of the proof, is due to Poinsot (1834) and
Hayward (1856). It is masterly described by Klein & Sommerfeld (1897), and in
Chapter 6 of Arnold (1989).

From now on we choose the coordinate system, moving with the body, such that
the inertia tensor remains diagonal. We also watch the motion of the body from a
coordinate system stationary in the space. The transformation of a vector x ∈ R

3 in
the body frame 4, to the corresponding x̃ ∈ R

3 in the stationary frame, is denoted
by

x̃ = Q(t)x . (5.7)

The matrix Q(t) is orthogonal and describes the motion of the body: for x = ei we
see that the columns of Q(t) are the coordinates of the body’s principal axes in the
stationary frame.

The analogous statement to Newton’s first law for rotational motion is: in the
absence of exterior angular forces, the angular momentum ỹ, seen from the fixed
coordinate system, is a constant vector 5. This same vector y, seen from the moving
frame, which at any instance rotates with the body around the vector ω, rotates in
the opposite direction. Therefore we have from (5.1), by changing the signs of ω,
the derivatives 


ẏ1

ẏ2

ẏ3


 =




0 ω3 −ω2

−ω3 0 ω1

ω2 −ω1 0







y1

y2

y3


 . (5.8)

If we insert ωk = yk/Ik from (5.6), we obtain




ẏ1

ẏ2

ẏ3


 =




0 y3/I3 −y2/I2
−y3/I3 0 y1/I1
y2/I2 −y1/I1 0







y1

y2

y3


 =




(I−1
3 − I−1

2 ) y3y2

(I−1
1 − I−1

3 ) y1y3

(I−1
2 − I−1

1 ) y2y1




(5.9)
or, by rearranging the products the other way round,




ẏ1

ẏ2

ẏ3


 =




0 −y3 y2

y3 0 −y1

−y2 y1 0







y1/I1
y2/I2
y3/I3


 , (5.10)

4 Long-standing tradition, from Klein to Arnold, uses capitals for denoting the coordinates
in this moving frame; but this would lead to confusion with our subsequent matrix notation

5 For a proof of this statement by d’Alembert’s Principle, see Sommerfeld (1942), §II.13.
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written in two different ways as a Poisson system, whose right hand vectors are
the gradients of C(y) = 1

2

∑3
k=1 y2

k and H(y) = 1
2

∑3
k=1 I−1

k y2
k, respectively.

These are the two quadratic invariants of Chap. IV. The first represents the length
of the constant angular momentum ỹ in the orthogonal body frame, and the second
represents the energy (5.4).

Computation of the Position Matrix Q(t). Once we have solved the Euler equa-
tions for y(t), we obtain the rotation vector ω(t) by (5.6). It remains to find the ma-
trix Q(t) which gives the position of our rotating body. We know that the columns
of the matrix Q, seen in the stationary frame, correspond to the unit vectors ei in the
body frame. These rotate, by (5.1), with the velocity

(
ω × e1, ω × e2, ω × e3

)
=




0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


 =: W . (5.11)

We thus obtain Q̇, the rotational velocity expressed in the stationary frame, by the
back transformation (5.7):

Q̇ = QW or QT Q̇ = W . (5.12)

This is a differential system for Q which, because W is skew-symmetric, preserves
the orthogonality of Q. The problem is solved – in theory.

VII.5.2 Hamiltonian Formulation of Rigid Body Motion

In order to open the door for efficient numerical algorithms, we treat the rigid body
as a constrained Hamiltonian system.

Position Variables. The position of the rigid body at time t is determined, in view
of (5.7), by a three-dimensional orthogonal matrix Q(t). The constraints to be re-
spected are thus QTQ− I = 0.

Kinetic Energy. As in (5.12), we associate with Q and Q̇ the skew-symmetric
matrix W = QT Q̇ whose entries ωk, arranged as in (5.11), determine the kinetic
energy by (5.4):

T = 1

2

(
I1ω

2
1 + I2ω

2
2 + I3ω

2
3

)
.

For any diagonal matrix D = diag(d1, d2, d3) we observe

trace (WDWT ) = (d2 + d3)ω2
1 + (d3 + d1)ω2

2 + (d1 + d2)ω2
3 .

Therefore, with

I1 = d2 + d3, I2 = d3 + d1, I3 = d1 + d2 or dk =
∫

B
x2

k dm (5.13)
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(note that dk > 0 for all bodies that have interior points), we obtain the kinetic
energy as

T = 1

2
trace (WDWT ) . (5.14)

Inserting W = QT Q̇, we have

T = 1

2
trace (QT Q̇DQ̇TQ) = 1

2
trace (Q̇DQ̇T ) , (5.15)

since Q is an orthogonal matrix.

Conjugate Variables. We now have an expression for the kinetic energy in terms of
derivatives of position coordinates and are able to introduce the conjugate momenta

P = ∂T/∂Q̇ = Q̇D . (5.16)

If we suppose to have, in addition to T , a potential U(Q), we get the Hamiltonian

H(P,Q) = 1

2
trace

(
PD−1PT

)
+ U(Q) . (5.17)

Lagrange Multipliers. The constraints are given by the orthogonality of Q, i.e., the
equation g(Q) = QTQ−I = 0. Since this matrix is always symmetric, this consists
of 1

2n(n + 1) = 6 independent algebraic conditions, calling for six Lagrange multi-
pliers. If the expression G(Q)Tλ in (1.9) is actually computed, it turns out that this
term becomes the product QΛ, where the six Lagrange multipliers are arranged in a
symmetric matrix Λ; see also formula (IV.9.6). Thus, the constrained Hamiltonian
system (1.9) reads in our case, with ∇U =

(
∂U/∂Qij

)
,

Q̇ = PD−1

Ṗ = −∇U(Q)−QΛ (Λ symmetric)

0 = QTQ− I .

(5.18)

Reduction to the Euler Equations. The key idea is to introduce the matrix

Y = QTP = QT Q̇D = WD =




0 −d2ω3 d3ω2

d1ω3 0 −d3ω1

−d1ω2 d2ω1 0


 , (5.19)

where the ωk can be further expressed in terms of the angular momenta yk = Ik ωk.
Using the notation skew (A) = 1

2 (A−AT ), we see, with (5.13), that

Y − Y T = 2 skew (Y ) =




0 −y3 y2

y3 0 −y1

−y2 y1 0


 (5.20)

contains just the angular momenta. Moreover, DY is skew-symmetric. By (5.18)
the derivative of Y is seen to be
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Ẏ = Q̇TP +QT Ṗ = D−1PTP−QT∇U(Q)−Λ = D−1Y TY −QT∇U(Q)−Λ .

Taking the skew-symmetric part of this equation, the symmetric matrix Λ drops out
and we obtain

skew (Ẏ ) = skew (D−1Y TY )− skew (QT∇U(Q)) . (5.21)

These are, for U = 0, precisely the above Euler equations, obtained a second time.

VII.5.3 Rigid Body Integrators

For a numerical simulation of rigid body motions, one can either solve the con-
strained Hamiltonian system (5.18), or one can solve the differential equation (5.21)
for the angular momentum Y (t) in tandem with the equation (5.12) for Q(t). We
consider the following approaches: (I) an efficient application of the RATTLE algo-
rithm (1.26), and (II) various splitting methods.

(I) RATTLE
We apply the symplectic RATTLE algorithm (1.26) to the system (5.18), and rewrite
the formulas in terms of the variables Y and Q. This approach has been proposed
and developed independently by McLachlan & Scovel (1995) and Reich (1994).

An application of the RATTLE algorithm (1.26) to the system (5.18) yields

P1/2 = P0 −
h

2
∇U(Q0)−

h

2
Q0Λ0

Q1 = Q0 + hP1/2D
−1, QT

1 Q1 = I (5.22)

P1 = P1/2 −
h

2
∇U(Q1)−

h

2
Q1Λ1, QT

1 P1D
−1 + D−1PT

1 Q1 = 0,

where both Λ0 and Λ1 are symmetric matrices. We let Y0 = QT
0 P0, Y1 = QT

1 P1,
and Z = QT

0 P1/2D
−1. We multiply the first relation of (5.22) by QT

0 , the last
relation by QT

1 , and we eliminate the symmetric matrices Λ0 and Λ1 by taking the
skew-symmetric parts of the resulting equations. The orthogonality of QT

0 Q1 =
I + hZ implies hZTZ = −(Z + ZT ), which can then be used to simplify the last
relation. Altogether this results in the following algorithm.

Algorithm 5.1. Let Q0 be orthogonal and DY0 be skew-symmetric. One step
(Q0, Y0) �→ (Q1, Y1) of the method then reads as follows:

– find Z such that I + hZ is orthogonal and

skew (ZD) = skew (Y0)−
h

2
skew

(
QT

0∇U(Q0)
)
, (5.23)

– compute Q1 = Q0(I + hZ),
– compute Y1 such that DY1 is skew-symmetric and

skew (Y1) = skew (ZD)− skew
(
(Z + ZT )D

)
− h

2
skew

(
QT

1∇U(Q1)
)
.
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The second step is explicit, and the third step represents a linear equation for the
elements of Y1.

Computation of the First Step. We write for the known part of equation (5.23)

skew (Y0)−
h

2
skew

(
QT

0∇U(Q0)
)

=




0 −α3 α2

α3 0 −α1

−α2 α1 0


 = A (5.24)

and have to solve

1

2
(ZD −DZT ) = A , (I + hZT )(I + hZ) = I ,

1

2
(ZD + DZT ) = S

(the trick was to add the last equation with S an unknown symmetric matrix). Elim-
ination gives Z = (A + S)D−1 and ZT = D−1(S − A). Both inserted into the
second equation lead to a Riccati equation for S. There exist efficient algorithms
for such problems; see the reference in Sect. IV.5.3 and a detailed explanation in
McLachlan & Zanna (2005).

Remark 5.2 (Moser–Veselov Algorithm). An independent access to the above
formulas is given in a remarkable paper by Moser & Veselov (1991), by treating
the rigid body through a discretized variational principle, similar to the ideas of
Sect. VI.6.2. The equivalence is explained by McLachlan & Zanna (2005), follow-
ing a suggestion of B. Leimkuhler and S. Reich.

Quaternions (Euler Parameters). An efficient implementation of the above algo-
rithm requires suitable representations of orthogonal matrices, and the use of quater-
nions is a standard approach.

After having revolutionized Lagrangian mechanics (see Chapt. VI), Hamilton
struggled for years to generalize complex analysis to three dimensions. He finally
achieved his dream, however not in three dimensions, but in four, and founded in
1843 the theory of quaternions.

For an introduction to quaternions (whose coefficients are sometimes called
Euler parameters) we refer to Sects. IV.2 and IV.3 of Klein (1908), and for their
use in numerical simulations to Sects. 9.3 and 11.3 of Haug (1989). Quaternions
can be written as e = e0 + ie1 + je2 + ke3, where multiplication is defined via the
relations i2 = j2 = k2 = −1, ij = k, jk = i, ki = j, and ji = −k, kj = −i,
ik = −j. The product of two quaternions e · f (written in matrix notation) is

(e0 + ie1 + je2 + ke3)
·(f0 + if1 + jf2 + kf3)

=




e0 −e1 −e2 −e3

e1 e0 −e3 e2

e2 e3 e0 −e1

e3 −e2 e1 e0







f0

f1

f2

f3


 (5.25)

We see (in grey) that in dimensions 1, 2, 3 appears a skew-symmetric matrix E
whose structure is familiar to us. This part of the matrix changes sign if the two
factors are permuted.
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An important discovery, for three dimensional applications of the quaternions,
is the following: if a quaternion p is a 3-vector (i.e., has p0 = 0), then p′ = e·p·e is
a 3-vector, too, and the map p �→ p′ is described by the matrix

Q(e) = ‖e‖2I + 2e0E + 2E2, E =




0 −e3 e2

e3 0 −e1

−e2 e1 0


 (5.26)

where e = e0 − ie1 − je2 − ke3 and ‖e‖2 = e · e = e2
0 + e2

1 + e2
2 + e2

3.

Lemma 5.3. If ‖e‖ = 1, then the matrix Q(e) is orthogonal. Every orthogonal
matrix with detQ = 1 can be written in this form. We have Q(e)Q(f) = Q(ef), so
that the multiplication of orthogonal matrices corresponds to the multiplication of
quaternions.

Geometrically, the matrix Q effects a rotation around the axis ε = (e1, e2, e3)T

with rotation angle ϕ which satisfies tan(ϕ/2) = ‖ε‖/e0.

Proof. The condition QTQ = I can be verified directly using ET = −E and
E3 = −(e2

1 + e2
2 + e2

3)E. The reciprocal statement is a famous theorem of Euler; it
is based on the fact that ε is an eigenvector of Q, which in dimension 3× 3 always
exists. The formula for Q(e)Q(f) follows from e·f ·p·f ·e = (e·f)·p·(e·f).

The geometric property follows from the
virtues of the exterior product, because by
(5.1) the matrix Q maps a vector x to

x + 2e0 ε× x + 2 ε× (ε× x).
2e0‖ε‖

2‖ε‖2

1

1

ε x

Qx

ϕ/2ϕ
This consists in a rectangular mouvement in
a plane orthogonal to ε; first vertical to x by
an amount 2e0 ‖ε‖ (times the distance of x),
then parallel to x by an amount 2‖ε‖2.

Applying Pythagoras’ Theorem as (2e0 ‖ε‖)2 + (2‖ε‖2 − 1)2 = 1, it turns out
that the map is norm preserving if e2

0+‖ε‖2 = 1. The angle ϕ/2, whose tangens can
be seen to be ‖ε‖/e0, is an angle at the circumference of the circle for the rotation
angle ϕ at the center. 
�

For an efficient implementation of Algorithm 5.1 we represent the orthogonal
matrices Q0, Q1, and I + hZ by quaternions. This reduces the dimension of the
systems, and step 2 becomes a simple multiplication of quaternions. For solving
the nonlinear system of step 1, we let I + hZ = Q(e). With the values of αi

from (5.24) and with skew (hZD) = 2e0 skew (ED)+2 skew (E2D), the equation
(5.23) becomes




hα1

hα2

hα3


 = 2e0




I1e1

I2e2

I3e3


 + 2




(I3 − I2)e2e3

(I1 − I3)e3e1

(I2 − I1)e1e2


 , (5.27)

which, together with e2
0 + e2

1 + e2
2 + e2

3 = 1, represent four quadratic equations for
four unknowns. We solve them very quickly by a few fixed-point iterations: update
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Fig. 5.3. Numerical solutions of the rigid body equations; without/with gravitation,
with/without symmetry. Initial values y10 = 0.2 , y20 = 1.0 , y30 = 0.4 ; initial position
of Q0 determined by the quatenion e0 = 0.4 , e1 = 0.2 , e2 = 0.4 , e3 = 0.8 ; moments
of inertia I1 = 0.5, I2 = 0.85 (0.5 in the symmetric case), I3 = 1 ; step size h = 0.1,
integration interval 0 ≤ t ≤ 30

successively ei from the ith equation of (5.27) and then e0 from the normaliza-
tion condition. A Fortran subroutine RATORI for this algorithm is available on the
homepage <http://www.unige.ch/∼hairer>.

Conservation of Casimir and Hamiltonian. It is interesing to note that, in the ab-
sence of a potential, the Algorithm 5.1 preserves exactly the Casimir y2

1 + y2
2 + y2

3

and, more surprisingly, also the Hamiltonian 1
2 (y2

1/I1 + y2
2/I2 + y2

3/I3). This can
be seen as follows: without any potential we have skew (Y0) = skew (ZD) and
skew (Y1) = − skew (ZTD), so that the vectors (y10, y20, y30)T and (y11, y21, y31)T

are equal to u+v and u−v, respectively, where u and v are the vectors of the right-
hand side of (5.27). Since u and v are orthogonal, we have ‖u + v‖ = ‖u − v‖,
which proves the conservation of the Casimir.

To prove the conservation of the Hamiltonian, we first multiply the relation
(5.27) with G = diag(1/

√
I1, 1/

√
I2, 1/

√
I3), and then apply the same arguments.

The vectors Gu and Gv are still orthogonal.

Example 5.4 (Force-Free and Heavy Top). We present in Fig. 5.3 the numerical
solutions yi obtained by the above algorithm. In the case of the heavy top, we assume
the centre of gravity to be (0, 0, 1) in the body frame, and assume that the third
coordinate of the stationary frame is vertical. The potential energy due to gravity is



284 VII. Non-Canonical Hamiltonian Systems

then given by U(Q) = q33 and, expressed by quaternions (5.26), it is U = e2
0 −

e2
1 − e2

2 + e2
3.

(II) Splitting Methods
As before we consider the differential equation (5.21) for the angular momenta in
the body y1, y2, y3 together with the differential equation (5.12) for the rotation
matrix Q. An obvious splitting in the presence of a potential is

ϕU
h/2 ◦ ΦT

h ◦ ϕU
h/2, (5.28)

where ϕU
t represents the exact flow of

Q̇ = 0, skew (Ẏ ) = − skew (QT∇U(Q)),

and ΦT
h is a suitable numerical approximation of the system corresponding to ki-

netic energy only, i.e., without any potential U(Q). The use of splitting techniques
for rigid body dynamics was proposed by Touma & Wisdom (1994), McLach-
lan (1993), Reich (1994), and Dullweber, Leimkuhler & McLachlan (1997). Fassò
(2003) presents a careful study and comparison of various ways of splitting the ki-
netic energy.

Computation of ΦT
h . We do this by splitting once again, by letting several moments

of inertia tending to infinity (and the corresponding ωi tending to zero). In order
to avoid formal difficulties with infinite denominators, we write the system (5.10)
together with (5.12) in the form




ẏ1

ẏ2

ẏ3


 =




0 −y3 y2

y3 0 −y1

−y2 y1 0







Ty1(y)
Ty2(y)
Ty3(y)


 (5.29)

Q̇ = Q




0 −Ty3(y) Ty2(y)
Ty3(y) 0 −Ty1(y)
−Ty2(y) Ty1(y) 0


 , (5.30)

where T (y) = 1
2 (y2

1/I1 + y2
2/I2 + y2

3/I3) is the kinetic energy, and Tyi
(y) denote

partial derivatives.

Three Rotations Splitting. An obvious splitting of the kinetic energy is

T (y) = R1(y) + R2(y) + R3(y), Ri(y) = y2
i /(2Ii), (5.31)

which results in the numerical method

ΦT
h = ϕR3

h/2 ◦ ϕR2
h/2 ◦ ϕR1

h ◦ ϕR2
h/2 ◦ ϕR3

h/2,

where ϕRi
t is the exact flow of (5.29)-(5.30) with T (y) replaced by Ri(y). The flow

ϕR1
t is easily obtained: y1 remains constant and the second and third equation in

(5.29) boil down to the harmonic oscillator. We obtain
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y(t) = S(αt)y(0), Q(t) = Q(0)S(αt)T (5.32)

with α = y1(0)/I1 and the rotation matrix

S(θ) =




1 0 0
0 cos θ sin θ
0 − sin θ cos θ


 .

Similar simple formulas are obtained for the exact flows corresponding to R2

and R3.

Symmetric + Rotation Splitting. It is often advantageous, in particular for a nearly
symmetric body (I1 ≈ I2), to consider the splitting

T (y) = R(y) + S(y), R(y) =
( 1
I1
− 1

I2

)y2
1

2
, S(y) =

1
2

(y2
1 + y2

2

I2
+

y2
3

I3

)

and the corresponding numerical integrator

ΦT
h = ϕR

h/2 ◦ ϕS
h ◦ ϕR

h/2.

The exact flow ϕR
t is the same as (5.32) with I−1

1 replaced by I−1
1 − I−1

2 . The flow
of the symmetric force-free top ϕS

t possesses simple analytic formulas, too (see the
first picture of Fig. 5.3): we observe a precession of y with constant speed around a
cone and a rotation of the body around ω with constant speed. Therefore

y(t) = B(βt)y(0), Q(t) = Q(0)A(t)B(βt)T , (5.33)

where β = (I−1
3 − I−1

2 )y3(0), and

A(t) = exp

(
t

I2




0 −y3(0) y2(0)
y3(0) 0 −y1(0)
−y2(0) y1(0) 0



)
, B(θ) =




cos θ sin θ 0
− sin θ cos θ 0

0 0 1


.

This can also be checked directly by differentiation.
Similar to the previous algorithm it is advantageous to use a representation of

the appearing orthogonal matrices by quaternions. The correspondence between the
orthogonal rotation matrices appearing in (5.32) and (5.33) and their quaternions is,
in accordance with Lemma 5.3, the following:

S(θ)T ↔ cos(θ/2) + i sin(θ/2)
B(θ)T ↔ cos(θ/2) + k sin(θ/2)
A(t) ↔ cos(ϑ/2) + a−1 sin(ϑ/2)

(
iy1(0) + jy2(0) + ky3(0)

)
,

where a =
√

y1(0)2 + y2(0)2 + y3(0)2 and ϑ = at/I2. The matrix multiplica-
tions in the algorithm can therefore be done very efficiently. A Fortran subroutine
QUATER for the “symmetric + rotation splitting” algorithm is available on the
homepage <http://www.unige.ch/∼hairer>.
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VII.5.4 Lie–Poisson Systems

In Sect. VII.5.1 we have seen that the reduction of the equations of motion of the
rigid body leads to the Poisson system (5.10) with a structure matrix whose entries
are linear functions. Here we consider more general Poisson systems

ẏ = B(y)∇H(y), (5.34)

where the structure matrix B(y) depends linearly on y, i.e.,

bij(y) =
n∑

k=1

Ck
ji yk for i, j = 1, . . . , n. (5.35)

Such systems, called Lie–Poisson systems, are closely related to differential equa-
tions on the dual of Lie algebras; see Marsden & Ratiu (1999), Chaps. 13 and 14,
for an in-depth discussion of this theory.

Recall that a Lie algebra is a vector space with a bracket which is anti-symmetric
and satisfies the Jacobi identity (Sect. IV.6). Let E1, . . . , En be a basis of a vector
space, and define a bracket by

[Ei, Ej ] =
n∑

k=1

Ck
ijEk (5.36)

with Ck
ij from (5.35). If the structure matrix B(y) of (5.35) is skew-symmetric and

satisfies (2.10), then this bracket makes the vector space a Lie algebra (the verifica-
tion is left as an exercise). The coefficients Ck

ij are called structure constants of the
Lie algebra. Conversely, if we start from a Lie algebra with bracket given by (5.36),
then the matrix B(y) defined by (5.35) is the structure matrix of a Poisson bracket.

Let g be a Lie algebra with a basis E1, . . . , En, and let g∗ be the dual of the Lie
algebra, i.e., the vector space of all linear forms Y : g → R. The duality is written
as 〈Y,X〉 for Y ∈ g∗ and X ∈ g. We denote by F1, . . . , Fn the dual basis defined
by 〈Fi, Ej〉 = δij , the Kronecker δ.

Theorem 5.5. Let g be a Lie algebra with basis E1, . . . , En satisfying (5.36). To
y = (y1, . . . , yn)T ∈ R

n we associate Y =
∑n

j=1 yjFj ∈ g∗ , and we consider a

Hamiltonian6 H(y) = H(Y ).
Then, the Poisson system ẏ = B(y)∇H(y) with B(y) given by (5.35) is equiv-

alent to the following differential equation on the dual g∗:

〈Ẏ ,X〉 = 〈Y, [H ′(Y ),X]〉 for all X ∈ g, (5.37)

where H ′(Y ) =
∑n

j=1
∂H(y)

∂yj
Ej .

6 We use the same symbol H for the functions H : R
n → R and H : g∗ → R.
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Proof. Differentiating H(y) = H(Y ) with respect to yi gives

∂H(y)
∂yi

= 〈Fi,H
′(Y )〉 and H ′(Y ) =

n∑
j=1

∂H(y)
∂yj

Ej .

Here we have used the identification (g∗)∗ = g, because H ′(Y ) is actually an
element of (g∗)∗. With this formula for H ′(Y ) we are able to compute

〈
Y, [H ′(Y ), Ei]

〉
=

〈
Y,

n∑
j=1

∂H(y)
∂yj

[Ej , Ei]
〉

=
n∑

j=1

n∑
k=1

∂H(y)
∂yj

Ck
ji 〈Y,Ek〉,

where we have used (5.36). Since 〈Ẏ , Ei〉 = ẏi and 〈Y,Ek〉 = yk, this shows that
the differential equation (5.37) is equivalent to

ẏi =
n∑

j=1

( n∑
k=1

Ck
ji yk

)∂H(y)
∂yj

,

which is nothing more than ẏ = B(y)∇H(y) with B(y) from (5.35). 
�
We remark that (5.37) can be reformulated as

Ẏ = ad ∗
H′(Y )Y,

where ad ∗
A is the adjoint of the operator ad A(X) = [A,X].

Equation (5.37) is similar in appearance to the Lie bracket equation L̇ =
[A(L), L] = ad A(L)L of Sect. IV.3.2. When g is the Lie algebra of a matrix Lie
group G, then solutions of that equation are of the form L(t) = Ad U(t)L0 where

Ad UX = UXU−1; (5.38)

see the proof of Lemma IV.3.4. Similarly, for the solution of (5.37) we have the
following.

Theorem 5.6. Consider a matrix Lie group G with Lie algebra g. Then, the solution
Y (t) ∈ g∗ of (5.37) with initial value Y0 ∈ g∗ is given by

〈Y (t),X〉 = 〈Y0, U(t)−1XU(t)〉 for all X ∈ g, (5.39)

where U(t) ∈ G satisfies

U̇ = −H ′(Y (t))U, U(0) = I. (5.40)

Equation (5.39) can be written as

Y (t) = Ad ∗
U(t)−1Y0,

where Ad ∗
U−1 is the adjoint of Ad U−1 . The solution Y (t) of (5.37) thus lies on the

coadjoint orbit
Y (t) ∈ {Ad ∗

U−1Y0 ; U ∈ G}. (5.41)

In coordinates Y =
∑n

j=1 yjFj , we note yj = 〈Y0, U(t)−1EjU(t)〉.
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Proof. Differentiating the ansatz (5.39) for the solution we obtain

〈Ẏ ,X〉 = 〈Y0,−U−1U̇U−1XU + U−1XU̇〉
= 〈Y0, U

−1[X, U̇U−1]U〉 = 〈Y, [X, U̇U−1]〉,

where we have used (5.39) in the first and the last equation. This shows that (5.37)
is satisfied with the choice U̇U−1 = −H ′(Y ). 
�

Example 5.7 (Rigid Body). The Lie group corresponding to the rigid body is
SO(3) with the Lie algebra so(3) of skew-symmetric 3× 3 matrices, with the basis

E1 =




0 0 0
0 0 −1
0 1 0


 , E2 =




0 0 1
0 0 0
−1 0 0


 , E3 =




0 −1 0
1 0 0
0 0 0


 .

If we let x = (x1, x2, x3)T be the coordinates of X ∈ so(3), then we have Xv =
x× v for all v ∈ R

3. Since for U ∈ SO(3),

U−1XUv = U−1(x× Uv) = U−1x× v,

the vector U−1x consists of the coordinates of U−1XU ∈ so(3).
Let y = (y1, y2, y3)T be the coordinates of Y ∈ so(3)∗ with respect to the dual

basis of E1, E2, E3. Since

〈Y,U−1XU〉 =
〈 3∑

j=1

yjFj ,

3∑
i=1

(U−1x)iEi

〉
= yTU−1x = (Uy)Tx,

the coordinates of Ad U−1Y are given by the vector Uy. Therefore, the coordinates
of the coadjoint orbit of Y lie on a sphere of radius ‖y‖. The conservation of the
coadjoint orbit thus reduces here to the preservation of the Casimir C(y) = y2

1 +
y2
2 + y2

3 .

Lie–Poisson integrators seem to be have first been considered by Ge & Marsden
(1988), who extend the construction of symplectic methods by generating functions
to Lie–Poisson systems. Channel & Scovel (1991) propose an implementation of
these methods based on a coordinatization of the group by the exponential map.

McLachlan (1993) proposes integrators based on splitting the Hamiltonian and
illustrates this approach for various examples of Lie-Poisson systems. When ap-
plicable, such splitting integrators yield Poisson integrators that preserve the coad-
joint orbits, since they are composed of exact flows of Lie-Poisson systems.

Engø & Faltinsen (2001) propose to solve numerically the Lie–Poisson system
(5.34) by applying Lie group integrators such as those of Sect. IV.8 to the differential
equation (5.40) with (5.39). This approach keeps the solution on the coadjoint orbit
by construction, but it does not, in general, give a Poisson integrator.
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VII.5.5 Lie–Poisson Reduction

The reduction of the Hamiltonian equations of motion of the free rigid body to
the Euler equations is an instance of a general reduction process from Hamiltonian
systems with symmetry on a Lie group to Lie–Poisson systems, which we now
describe; cf. Marsden & Ratiu (1999), Chap. 13, for a presentation in a more abstract
framework and for an historical account.

Let us assume that the Lie group G is a subgroup of GL(n) given by

G = {Q ; gi(Q) = 0, i = 1, . . . ,m}, (5.42)

and consider a Hamiltonian system on G,

Ṗ = −∇QH(P,Q)−
m∑

i=1

λi∇Qgi(Q), Q̇ = ∇PH(P,Q)

0 = gi(Q), i = 1, . . . ,m,

(5.43)

where P,Q are square matrices, and ∇QH =
(
∂H/∂Qij

)
. This is of the form

discussed in Sect. VII.1.2. In regions where the matrix

(
∂2H(P,Q)

∂P 2

(
∇Qgi(Q),∇Qgj(Q)

))m

i,j=1

is invertible, (5.44)

the Lagrange parameters λi can be expressed in terms of P and Q (cf. formula
(1.13)). Hence, a unique solution exists locally provided the initial values (P0, Q0)
are consistent, i.e., gi(Q0) = 0 and

g′i(Q0)
(
∇PH(P0, Q0)

)
= trace

(
∇Qgi(Q0)T ∇PH(P0, Q0)

)
= 0,

or equivalently, Q0 ∈ G and ∇PH(P0, Q0) ∈ TQ0G.
We now assume that the Hamiltonian H is quadratic in P . As we have seen in

Sect. VII.1.2, the equations (5.43) can be viewed as a differential equation on the
cotangent bundle T ∗G = {(P,Q) ; Q ∈ G, P ∈ T ∗

QG}, where the cotangent space
T ∗

QG is identified with a subspace of matrices such that

P ∈ T ∗
QG if and only if ∇PH(P,Q) ∈ TQG. (5.45)

With this identification, the duality beween T ∗
QG and TQG is given by the matrix

inner product

〈P, V 〉 = trace (PTV ) for P ∈ T ∗
QG, V ∈ TQG.

We call the Hamiltonian left-invariant, if

H(UTP,U−1Q) = H(P,Q) for all U ∈ G. (5.46)
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In this case we have H(P,Q) = H(QTP, I) and by differentiating we obtain
∇PH(P,Q) = Q∇PH(QTP, I). By (5.45) and since TQG = {QX ; X ∈ g}
with the Lie algebra g = TIG (cf. Sect. IV.6), this relation implies

P ∈ T ∗
QG if and only if QTP ∈ T ∗

I G = g∗. (5.47)

Now H(P,Q) depends, for (P,Q) ∈ T ∗G, only on the product Y = QTP ∈ g∗,
and we write7 H(P,Q) = H(Y ) with a function H : g∗ → R.

Left-invariant Hamiltonian systems can be reduced to a Lie–Poisson system of
half the dimension by a process that generalizes the derivation of the Euler equations
for the rigid body.

Theorem 5.8. Consider a Hamiltonian system (5.43) on a matrix Lie group G
with a left-invariant quadratic Hamiltonian H(P,Q) = H(Y ) for Y = QTP . If(
P (t), Q(t)

)
∈ T ∗G is a solution of the system (5.43), then Y (t) = Q(t)TP (t) ∈ g∗

solves the differential equation (5.37).

Proof. It is convenient for the proof (though not necessary, see the lines follow-
ing (2.17)) to extend the Hamiltonian H : g∗ → R to a function of arbi-
trary matrices Y by setting H(Y ) = H(ΠY ), where Π is the projection onto
g∗ given by 〈ΠY,X〉 = (Y,X) for all X ∈ g, with the matrix inner product
(Y,X) = trace (Y TX).

We first compute the derivatives of H(P,Q) = H(Y ) = H(ΠY ) = H(y)
where QTP = Y and, using the notation of Theorem 5.5, ΠY =

∑d
j=1 yjFj .

Since yj = 〈ΠQTP,Ej〉 = (QTP,Ej), it follows from ∇A trace (ATB) = B that

∇PH(P,Q) =
d∑

j=1

∂H(y)
∂yj

∇P yj =
d∑

j=1

∂H(y)
∂yj

∇P trace (PTQEj) = QH ′(Y ),

(5.48)
where H ′(Y ) =

∑d
j=1

∂H(y)
∂yj

Ej ∈ g as in Theorem 5.5. Using the identity yj =
trace (PTQEj) = trace (QTPET

j ) we get in a similar way

∇QH(P,Q) = PH ′(Y )T . (5.49)

Consequently, the differential equations (5.43) become

Ṗ = −PH ′(QTP )T −
m∑

i=1

λi∇Qgi(Q), Q̇ = QH ′(QTP ) . (5.50)

The product rule Ẏ = Q̇TP + QT Ṗ for Y = QTP thus yields

Ẏ = H ′(Y )TY − Y H ′(Y )T −
m∑

i=1

λi Q
T∇Qgi(Q). (5.51)

7 We use again the same letter for different functions. Since they have either one or two
arguments, no confusion should arise.
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For X ∈ g, we now exploit the properties
〈
QT∇Qgi(Q),X

〉
=

〈
∇Qgi(Q), QX

〉
= 0 (because QX ∈ TQG)

〈
[H ′(Y )T , Y ],X

〉
= trace

((
Y TH ′(Y )−H ′(Y )Y T

)
X

)

= trace
(
Y T

(
H ′(Y )X −XH ′(Y )

))
=

〈
Y, [H ′(Y ),X]

〉
.

Since Y (t) ∈ g∗ for all t, this gives the equation (5.37). 
�

Reduced System and Reconstruction. Combining Theorems 5.8 and 5.5, we have
reduced the Hamiltonian system (5.43) to the Lie-Poisson system for y(t) ∈ R

d,

ẏ = B(y)∇H(y), (5.52)

of half the dimension. To recover the full solution (P (t), Q(t)) ∈ T ∗G, we must
solve this system along with

Q̇ = QH ′(Y ) , P = Q−TY (5.53)

where Y =
∑d

j=1 yjFj ∈ g∗.

Poisson Structures. The Poisson bracket on R
d defined by B(y) is still closely

related to the canonical Poisson bracket on R
2n2

. Consider left-invariant real-valued
functions K,L on T ∗G. These can be viewed as functions on T ∗G/G = g∗ ⊂
R

n×n,
K(P,Q) = K(Y ) for Y = QTP.

(As we did previously in this section, we use the same symbol for these functions.)
Via the projection Π : R

n×n → g∗ used in the above proof, we can extend
K(Y ) = K(ΠY ) to arbitrary n × n matrices Y , and via the above relation to a
left-invariant function K(P,Q) on R

n×n ×R
n×n, on which we have the canonical

Poisson bracket

{K,L}can =
n∑

k,l=1

( ∂K

∂Qkl

∂L

∂Pkl
− ∂K

∂Pkl

∂L

∂Qkl

)
.

On the other hand, we can view K as a function on R
d by choosing coordinates

on g∗,

K(y) = K(Y ) for Y =
d∑

j=1

yjFj ∈ g∗.

On R
d we have the Poisson bracket defined by the structure matrix B(y),

{K,L} =
d∑

i,j=1

∂K

∂yi
bij

∂L

∂yj
.
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Lemma 5.9. For left-invariant functions K,L as described above, we have for
QTP = Y =

∑d
j=1 yjFj ∈ g∗

{K,L}(y) =
〈
Y, [L′(Y ),K ′(Y )]

〉
= {K,L}can(P,Q)

where K ′(Y ) =
∑d

i=1
∂K
∂yi

(y)Ei ∈ g.

Proof. The first equality follows from the identity

bij(y) =
〈
Y, [Ej , Ei]

〉
,

which is a direct consequence of the definition (5.35) with (5.36). For the second
equality, the relations (5.48) and (5.49) for K and L yield

{K,L}can(P,Q) = trace
(
K ′(Y )Y TL′(Y )−K ′(Y )TY L′(Y )T

)

= trace
(
K ′(Y )Y TL′(Y )− L′(Y )Y TK ′(Y )

)

= trace
(
Y T [L′(Y ),K ′(Y )]

)
=

〈
Y, [L′(Y ),K ′(Y )]

〉
,

which is the result. 
�

Discrete Lie–Poisson Reduction. Consider a symplectic integrator

(P1, Q1) = Φh(P0, Q0) on T ∗G

for the left-invariant Hamiltonian system (5.43), and suppose that the method pre-
serves the left-invariance: if Φh(P0, Q0) = (P1, Q1), then

Φh(UTP0, U
−1Q0) = (UTP1, U

−1Q1) for all U ∈ G. (5.54)

For example, this is satisfied by the RATTLE algorithm. The method then induces a
one-step map

Y1 = Ψh(Y0) on g∗

by setting Y1 = QT
1 P1 for (P1, Q1) = Φh(P0, Q0) with QT

0 P0 = Y0. This is a
numerical integrator for (5.37), and in the coordinates y = (yj) with respect to the
basis (Fj) of g∗ this gives a map

y1 = ψh(y0) on R
d,

which is a numerical integrator for the Poisson system (5.52).

Example 5.10. For the rigid body, applying the RATTLE algorithm to the con-
strained Hamiltonian system (5.18) yields the integrator for the Euler equations
discussed in Sect. VII.5.3. By the following result this is a Poisson integrator.

Theorem 5.11. If Φh(P,Q) is a symplectic and left-invariant integrator for (5.43),
then its reduction ψh(y) is a Poisson map.
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Proof. We write ψh as the composition

ψh : R
d ξ−→ T ∗G

Φh−→ T ∗G
η−→ R

d

where η = (ηj) is the function with ηj(P,Q) = yj for QTP =
∑d

j=1 yjFj , and ξ
is any right inverse of η, i.e., η ◦ ξ = id. For arbitrary smooth real-valued functions
K,L on R

d we then have for (P,Q) = ξ(y), using Lemma 5.9 in the outer equalities
and the symplecticity of Φh in the middle equality,

{K ◦ ψh, L ◦ ψh}(y) = {K ◦ η ◦ Φh, L ◦ η ◦ Φh}can(P,Q)
= {K ◦ η, L ◦ η}can

(
Φh(P,Q)

)
= {K,L}

(
ψh(y)

)
.

This equation states that ψh is a Poisson map. 
�

A similar reduction in a discrete Lagrangian framework is studied by Marsden,
Pekarsky & Shkoller (1999).

The reduced numerical maps ψh and Ψh have further structure-preserving prop-
erties: they preserve the Casimirs and the co-adjoint orbits. This will be shown in
Sect. IX.5.3 with the help of backward error analysis.

VII.6 Reduced Models of Quantum Dynamics

To incorporate quantum effects in molecular dynamics simulations, computations
are done with models that are intermediate between classical molecular dynam-
ics based on Newton’s equations of motion and full quantum dynamics described
by the N -particle Schrödinger equation. The direct computational treatment of the
latter is not feasible because of its high dimensionality. These intermediate mod-
els are obtained by the Hamiltonian reduction (2.17) from an infinite-dimensional
Hilbert space to an appropriately chosen manifold. In chemical physics, this re-
duction is known as the Dirac–Frenkel time-dependent variational principle. We
illustrate this procedure for the case where the quantum-mechanical wave function
is approximated by a complex Gaussian as proposed by Heller (1975). It turns out
that the resulting ordinary differential equations have a Poisson structure, which
was recently described by Faou & Lubich (2004). Following that paper, we derive
a structure-preserving explicit integrator for Gaussian wavepackets, which tends to
the Störmer–Verlet method in the classical limit.

VII.6.1 Hamiltonian Structure of the Schrödinger Equation

The introduction of wave mechanics stands ... as Schrödinger’s monu-
ment and a worth one. (From Schrödinger’s obituary
in The Times 1961; quoted from http://www-groups.dcs.st-and.ac.uk/ his-
tory/Mathematicians/Schrodinger.html)
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The time-dependent N -body Schrödinger equation reads (see, e.g., Messiah (1999)
and Thaller (2000))

iε
∂ψ

∂t
= Hψ (6.1)

for the wave function ψ = ψ(x, t) depending on the spatial variables x =
(x1, . . . , xN ) with xk ∈ R

d (e.g., with d = 1 or 3 in the partition) and the time
t ∈ R. The squared absolute value |ψ(x, t)|2 represents the joint probability density
for N particles to be at the positions x1, . . . , xN at time t. In (6.1), ε is a (small) pos-
itive number representing the scaled Planck constant and i is the complex imaginary
unit. The Hamiltonian operator H is written

H = T + V

with the kinetic and potential energy operators

T = −
N∑

k=1

ε2

2mk
∆xk

and V = V (x),

where mk > 0 is a particle mass and ∆xk
the Laplacian in the variable xk ∈ R

d,
and where the real-valued potential V acts as a multiplication operator (V φ)(x) =
V (x)φ(x). Under appropriate conditions on V (boundedness of V is sufficient,
but by no means necessary), the operator H is then a self-adjoint operator on
the complex Hilbert space L2(RdN ,C) with domain D(H) = D(T ) = {φ ∈
L2(RdN ,C) ; Tφ ∈ L2(RdN ,C)}; see Sect. V.5.3 of Kato (1980).

We separate the real and imaginary parts of ψ = v + iw ∈ L2(RdN ,C), the
complex Hilbert space of Lebesgue square-integrable functions. The functions v and
w are thus functions in the real Hilbert space L2(RdN ,R). We denote the complex
inner product by 〈·, ·〉 and the real inner product by (·, ·). The L2 norms will be
simply denoted by ‖ · ‖.

As H is a real operator, formula (6.1) can be written

εv̇ = Hw,
εẇ = −Hv,

(6.2)

or equivalently, with the canonical structure matrix

J =
(

0 −1
1 0

)

and the Hamiltonian function (we use the same symbol H as for the operator)

H(v, w) = 1

2
〈ψ,Hψ〉 = 1

2
(v,Hv) + 1

2
(w,Hw)

for ψ = v + iw in the domain of the operator H . This becomes the canonical
Hamiltonian system (

v̇
ẇ

)
= ε−1J−1∇H(v, w).
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Note that the real multiplication with J corresponds to the complex multiplication
with the imaginary unit i. The flow of this system preserves the canonical symplectic
two-form

ω(ξ1, ξ2) = (Jξ1, ξ2), ξ1, ξ2 ∈ L2(RdN ,R)2. (6.3)

VII.6.2 The Dirac–Frenkel Variational Principle
For dealing with atoms involving many electrons the accurate quantum
theory, involving a solution of the wave equation in many-dimensional
space, is far too complicated to be practicable. One must therefore resort
to approximate methods. (P.A.M. Dirac 1930)

Reduced models of the Schrödinger equation are obtained by restricting the equation
to an approximation manifold M via (2.17), viz.,

(εJu̇−∇H(u), ξ) = 0 for all ξ ∈ TuM, (6.4)

or equivalently in complex notation for u = (v, w)T = v + iw,

Re 〈 εiu̇−Hu, ξ 〉 = 0 for all ξ ∈ TuM. (6.5)

Taking the real part can be omitted if the tangent space TuM is complex linear.
Equation (6.5) (usually without the real part) is known as the Dirac–Frenkel time-
dependent variational principle, after Dirac (1930) and Frenkel (1934); see also
McLachlan (1964), Heller (1976), Beck, Jäckle, Worth & Meyer (2000), and ref-
erences therein.

We choose a (local) coordinate map u = χ(y) of M and denote its derivative

XC(y) = V (y) + iW (y) = χ′(y) or in the real setting as X =
(

V
W

)
. Denoting

by XT the adjoint of X with respect to the real inner product (·, ·), we thus obtain

εX(y)TJX(y) ẏ = X(y)T∇uH(χ(y)).

With X∗
C

denoting the adjoint of XC with respect to the complex inner product 〈·, ·〉,
we note X∗

C
XC = (V TV + WTW ) + i(V TW −WTV ) = XTX − iXTJX and

hence
XTJX = −ImX∗

CXC. (6.6)

Lemma 6.1. If TuM is a complex linear space for every u ∈ M, then M is a
symplectic submanifold of L2(RN ,R)2, that is, the symplectic two-form (6.3) is
non-degenerate on TuM for all u ∈M. Expressed in coordinates,

X(y)TJX(y) is invertible for all y.

Proof. We fix u = χ(y) ∈ M and omit the argument y in the following. Since
TuM = Range(XC) is complex linear by assumption, there exists a real linear
mapping L : R

m → R
m such that iXCη = XCLη for all η ∈ R

m. This implies

JX = XL and L2 = −Id

and hence XTJX = XTXL, which is invertible. 
�
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Approximation properties of the Dirac–Frenkel variational principle can be ob-
tained from the interpretation as the orthogonal projection u̇ = P⊥(u) 1

iεHu, which
corresponds to taking the imaginary part in (6.5), as opposed to the symplectic pro-
jection in (6.4) which corresponds to the real part. See Lubich (2005) for a near-
optimality result for approximation on the manifold.

VII.6.3 Gaussian Wavepacket Dynamics

We develop a new approach to semiclassical dynamics which exploits the
fact that extended wavefunctions for heavy particles (or particles in har-
monic potentials) may be decomposed into time-dependent wave pack-
ets, which spread minimally and which execute classical or nearly classi-
cal trajectories. A Gaussian form for the wave packets is assumed and
equations of motion are derived for the parameters characterizing the
Gaussian. (E.J. Heller 1975)

The variational Gaussian wavepacket dynamics of Heller (1976) is obtained by
choosing the manifold M in (6.5) as consisting of complex Gaussians. For ease
of presentation we restrict our attention in the following to the one-particle case
N = 1 (the extension to N > 1 is straightforward; cf. Heller (1976) and Faou &
Lubich (2004)). Here we have

M = {u = χ(y) ∈ L2(Rd,C) : y = (p, q, α, β, γ, δ) ∈ R
2d+4 with β > 0}

(6.7)
with

(
χ(y)

)
(x) = exp

( i

ε

(
(α + iβ) |x− q|2 + p · (x− q) + γ + iδ

))
, (6.8)

where | · | and · stand for the Euclidean norm and inner product on R
d. The pa-

rameters q and p represent the average position and momentum, respectively: for
u = χ(y) with y = (p, q, α, β, γ, δ) and ‖u‖ = 1, a direct calculation shows that

q = 〈u, xu 〉 =
∫

Rd

x |u(x)|2 dx , p = 〈u,−iε∇u 〉.

The parameter β > 0 determines the width of the wavepacket. The tangent space
TuM⊂ L2(Rd,C) at a given point u = χ(y) ∈M is (2d + 4)-dimensional and is
made of the elements of L2(Rd,C) written as

i

ε

(
(A + iB) |x− q|2 + (P − 2(α + iβ)Q) · (x− q)− p ·Q + C + iD

)
u (6.9)

with arbitrary (P,Q,A,B,C,D)T ∈ R
2d+4. We note that TuM is complex linear,

and u ∈ TuM. By choosing ξ = iu in (6.5), this yields (d/dt)‖u‖2 = 2 Re 〈u̇, u〉 =
0 and hence the preservation of the squared L2 norm of u = χ(y), which is given
by
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I(y) = ‖u‖2 =
∫

Rd

|u(x)|2 dx (6.10)

=
∫

Rd

exp
(
−2

ε

(
β|x− q|2 + δ

))
dx = exp

(
−2δ

ε

)(
πε

2β

)d/2

.

The physically reasonable situation is ‖u‖2 = 1, which corresponds to the interpre-
tation of |u(x)|2 as a probability density.

With these preparations we have the following result of Faou & Lubich (2004).

Theorem 6.2. The Hamiltonian reduction of the Schrödinger equation to the Gaussian
wavepacket manifold M of (6.7)-(6.8) yields the Poisson system

ẏ = B(y)∇K(y) (6.11)

where, for y = (p, q, α, β, γ, δ) ∈ R
2d+4 with β > 0, and with 1d denoting the

d-dimensional identity,

B(y) =
1

I(y)




0 −1d 0 0 −p 0
1d 0 0 0 0 0
0 0 0 4β2

εd 0 −β

0 0 − 4β2

εd 0 β 0
pT 0 0 −β 0 d+2

4 ε

0 0 β 0 −d+2
4 ε 0




(6.12)

defines a Poisson structure, and for u = χ(y),

K(y) = 〈u,Hu〉 = KT (y) + KV (y) (6.13)

is the total energy, with kinetic and potential parts

KT (y) = I(y)
(
|p|2
2m

+
εd

2m
α2 + β2

β

)
= 〈u, Tu〉

and

KV (y) =
∫

Rd

V (x) exp
(
− 2

ε

(
β|x− q|2 + δ

))
dx = 〈u, V u〉.

Both K(y) and I(y) are first integrals of the system.

Proof. As in (2.22), the differential equation for y is εX(y)TJX(y)ẏ = 1

2
∇K(y).

We note (6.6) and

XC(y) =
i

ε

(
x− q , −2a(x− q)− p , |x− q|2 , i|x− q|2 , 1 , i

)
u

where a = α + iβ and u = χ(y) in the complex setting. Using the calculus of
Gaussian integrals, we compute
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εXT (y)JX(y) =
1
2
I(y)




0 1d 0 0 0 0
−1d 0 0 dp

2β 0 2p
ε

0 0 0 − εd(d+2)
8β2 0 − d

2β

0 −dpT

2β
εd(d+2)

8β2 0 d
2β 0

0 0 0 − d
2β 0 − 2

ε

0 − 2pT

ε
d
2β 0 2

ε 0




,

and inversion yields the differential equation with B(y) = (2εXT (y)JX(y))−1 as
stated. The system is a Poisson system by Theorem 2.8. 
�

Assuming I(y) = ‖u‖2 = 1, we observe that the differential equations for the
average position and momentum, q and p, read

q̇ = p/m , ṗ = −〈u,∇V u 〉 (6.14)

for u = χ(y) and y = (p, q, α, β, γ, δ). We then note 〈u,∇V u 〉 → ∇V (q) as
ε → 0. The differential equations for q and p thus tend to Newtonian equations of
motion in the classical limit ε → 0 :

q̇ = p/m , ṗ = −∇V (q). (6.15)

It will be useful to consider also scaled variables

ŷ = (p, q, α, β̂, γ, δ̂) ∈ R
2d+4 with β̂ =

β

ε
, δ̂ =

δ

ε
. (6.16)

Here we have
˙̂y = B̂(ŷ)∇K̂(ŷ) (6.17)

where the structure matrix B̂(ŷ) is independent of ε, and where K̂(ŷ) depends reg-
ularly on ε ≥ 0.

VII.6.4 A Splitting Integrator for Gaussian Wavepackets

With the natural splitting H = T + V into kinetic and potential energy, we now
consider the variational splitting integrator (4.7) – (4.8), which here becomes the
following.

1. We define u+
n in M as the solution at time h/2 of the equation for u,

〈 iεu̇− V u, ξ 〉 = 0 for all ξ ∈ TuM (6.18)

with initial value u(0) = un ∈M.
2. We define u−

n+1 as the solution at time h of

〈 iεu̇− Tu, ξ 〉 = 0 for all ξ ∈ TuM (6.19)

with initial value u(0) = u+
n .

3. Then un+1 is the solution at time h/2 of (6.18) with initial value u(0) = u−
n+1.
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By Theorem 6.2, the substeps in the definition of this splitting method written in the
coordinates y = (p, q, α, β, γ, δ) are the exact flows ϕV

h/2 and ϕT
h of the Poisson

systems
ẏ = B(y)∇KV (y) and ẏ = B(y)∇KT (y).

Note that both equations preserve the L2 norm of u = χ(y), which we assume to
be 1 in the following.

Most remarkably, these equations can be solved explicitly. Let us consider first
the equations (6.19). They are written, for a = α + iβ and c = γ + iδ, as

{
q̇ = p/m,

ṗ = 0,

{
ȧ = −2a2/m,

ċ =
(

1
2 |p|2 + iεda

)
/m,

(6.20)

with initial values y0 = (p0, q0, a0, c0) corresponding to u0 = χ(y0). They have the
solution

q(t) = q0 +
t

m
p0, p(t) = p0, a(t) =

a0

1 + 2a0t/m
,

and

c(t) = c0 + t
|p0|2
2m

+
iεd

2
log

(
1 +

2a0t

m

)
.

Let us now consider the equations (6.18). Taking into account the fact that the po-
tential V is real, these equations are written

ṗ = −〈u,∇V u 〉, q̇ = 0,

α̇ = − 1
2d 〈u,∆V u 〉, β̇ = 0,

γ̇ = −〈u, V u 〉+ ε
8β 〈u,∆V u 〉, δ̇ = 0,

(6.21)

with the L2 inner products

〈u,Wu 〉 =
∫

Rd

W (x) exp
(
− 2

ε

(
β|x− q|2 + δ

))
dx (6.22)

for W = V,∇V,∆V . As the L2 inner products in the equations for p, α, γ depend
only on q, β, δ which are constant along this trajectory, these equations can be solved
trivially, requiring only the computation of the inner products at the initial value. We
thus see that the splitting scheme Φh = ϕV

h/2◦ϕT
h ◦ϕV

h/2 can be computed explicitly.
This gives the following algorithm (Faou & Lubich 2004).

Algorithm 6.3 (Gaussian Wavepacket Integrator). A step from time tn to tn+1,
starting from the Gaussian wavepacket un = χ(pn, qn, αn, βn, γn, δn), proceeds as
follows:

1. With 〈W 〉n = 〈un,Wun 〉 given by (6.22) for W = V,∇V,∆V , compute
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pn+1/2 = pn −
h

2
〈∇V 〉n

α+
n = αn −

h

4d
〈∆V 〉n (6.23)

γ+
n = γn +

h ε

16βn
〈∆V 〉n.

2. From the values pn+1/2, a+
n = α+

n + iβn and c+n = γ+
n + iδn compute qn+1,

a−n+1 = α−
n+1 + iβn+1, and c−n+1 = γ−

n+1 + iδn+1 via

qn+1 = qn +
h

m
pn+1/2

a−n+1 = a+
n

/(
1 +

2h
m

a+
n

)
(6.24)

c−n+1 = c+n +
iεd

2
log

(
1 +

2h
m

a+
n

)
.

3. Compute pn+1, αn+1, γn+1 from

pn+1 = pn+1/2 −
h

2
〈∇V 〉n+1

αn+1 = α−
n+1 −

h

4d
〈∆V 〉n+1 (6.25)

γn+1 = γ−
n+1 +

h ε

16βn+1
〈∆V 〉n+1.

Let us collect properties of this algorithm.

Theorem 6.4. The splitting scheme of Algorithm 6.3 is an explicit, symmetric,
second-order numerical method for Gaussian wavepacket dynamics (6.11)–(6.13).
It is a Poisson integrator for the structure matrix (6.12), and it preserves the unit
L2 norm of the wavepackets: ‖un‖ = 1 for all n.

In the limit ε → 0, the position and momentum approximations qn, pn of this
method tend to those obtained by applying the Störmer–Verlet method to the asso-
ciated classical mechanical system (6.15).

The statement for ε → 0 follows directly from the equations for pn+1/2, qn+1,
pn+1 and from noting 〈∇V 〉n → ∇V (qn).

In view of the small parameter ε, the discussion of the order of the method
requires more care. Here it is useful to consider the integrator in the scaled variables
ŷ = (p, q, α, β/ε, γ, δ/ε) of (6.16). Since the differential equation (6.17) contains ε
only as a regular perturbation parameter, after n steps of the splitting integrator we
have the ε-uniform error bound

ŷn − ŷ(tn) = O(h2),

where the constants symbolized by the O-notation are independent of ε and of n and
h with nh ≤ Const. For the approximation of the absolute values of the Gaussian
wavepackets this yields
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∥∥|un|2 − |u(tn)|2
∥∥ = O(h2), (6.26)

but the approximation of the phases is only such that

‖un − u(tn)‖ = O(h2/ε). (6.27)

We refer to Faou & Lubich (2004) for the formulation of the corresponding algo-
rithm for N > 1 particles, for further properties such as the exact conservation
of linear and angular momentum and the long-time near-conservation of the total
energy 〈un,Hun〉, and for numerical experiments.

VII.7 Exercises

1. Prove that the Poisson bracket (2.8) satisfies the Jacobi identity (2.4) for all
functions F,G,H , if and only if it satisfies (2.4) for the coordinate functions
yi, yj , yk.
Hint (F. Engel, in Lie’s Gesammelte Abh. vol. 5, p. 753). If the Jacobi identity is
written as in (3.3), we see that there are no second partial derivatives of F (the
left hand side is a Lie bracket, the right-hand side has no second derivatives of
F anyway). Other permutations show the same result for G and H .

2. For x in an open subset of R
m, let A(x) =

(
aij(x)

)
be an invertible skew-

symmetric m×m-matrix, with

∂aij

∂xk
+

∂aki

∂xj
+

∂ajk

∂xi
= 0 for all i, j, k. (7.1)

(a) Show that B(x) = A(x)−1 satisfies (2.10) and hence defines a Poisson
bracket.
(b) Generalize Theorem 2.8 to Hamiltonian equations (2.18) with the two-form
ωx(ξ1, ξ2) = ξT

1 A(x)ξ2.
Remark. Condition (7.1) says that ω is a closed differential form.

3. Solve the following first order partial differential equation:

3
∂F

∂y1
+ 2

∂F

∂y2
− 5

∂F

∂y3
= 0.

Result. f(2y1 − 3y2, 5y2 + 2y3).
4. Find two solutions of the homogeneous system

3
∂F

∂y1
+

∂F

∂y2
− 2

∂F

∂y3
− 5

∂F

∂y4
= 0, 2

∂F

∂y1
− ∂F

∂y2
− 3

∂F

∂y4
= 0,

such that their gradients are linearly independent.
5. Consider a Poisson system ẏ = B(y)∇H(y) and a change of coordinates

z = ϑ(y). Prove that in the new coordinates the system is of the form
ż = B̃(z)∇K(z), where B̃(z) = ϑ′(y)B(y)ϑ′(y)T (cf. formula (3.12)) and
K(z) = H(y).
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6. Give an elementary proof of Theorem 4.3.
Hint. Define δ(t) := ϕ′

t(y)B(y)ϕ′
t(y)T − B

(
ϕt(y)

)
. Using the variational

equation for (4.1) prove that δ(t) is the solution of a homogeneous linear dif-
ferential equation. Therefore, δ(0) = 0 implies δ(t) = 0 for all t.

7. Let z = ϑ(y) be a transformation taking the Poisson system ẏ = B(y)∇H(y)
to ż = B̃(z)∇K(z). Prove that Φh(y) is a Poisson integrator for B(y) if and
only if Ψh(z) = ϑ ◦ Φh ◦ ϑ−1(z) is a Poisson integrator for B̃(z).

8. Let B be a skew-symmetric but otherwise arbitrary constant matrix, and con-
sider the Poisson system ẏ = B∇H(y). Prove that every symplectic Runge–
Kutta method is a Poisson integrator for such a system.
Hint. Transform B to block-diagonal form.

9. (M.J. Gander 1994). Consider the Lotka–Volterra equation (2.13) with separa-
ble Hamiltonian H(u, v) = K(u) + L(v). Prove that

un+1 = un + hunvnHv(un, vn), vn+1 = vn − hun+1vnHu(un+1, vn)

is a Poisson integrator for this system.
10. Find a change of coordinates that transforms the Lotka–Volterra system (2.14)

into a Hamiltonian system (in canonical form). Following the approach of Ex-
ample 4.11 construct Poisson integrators for this system.

11. Prove that the matrix B(y) of Example 2.7 defines a Poisson bracket, by show-
ing that the bracket is given as Dirac’s bracket (Dirac 1950)

{F,G} = {F̂ , Ĝ} −
∑

i,j{F̂ , ci}γij{cj , Ĝ}. (7.2)

Here F and G are functions of y, F̂ and Ĝ are smooth functions of x satisfying
F̂ (χ(y)) = F (y) and Ĝ(χ(y)) = G(y), ci(x) are the constraint functions
defining the manifold M, and γij are the entries of the inverse of the matrix
({ci, cj}). The Poisson bracket to the left in (7.2) corresponds to B(y) and
those to the right are the canonical brackets evaluated at x = χ(y). Replacing
F̂ (x) by F̂ (x) +

∑
k µk(x)ck(x) with µk(x) such that {F̂ , ck} = 0 on M

eliminates the sum in (7.2) and proves the Jacobi identity for B(y).



Chapter VIII.
Structure-Preserving Implementation

This chapter is devoted to practical aspects of an implementation of geometric inte-
grators. We explain strategies for changing the step size which do not deteriorate the
correct qualitative behaviour of the solution. We study multiple time stepping strate-
gies, the effect of round-off in long-time integrations, and the efficient solution of
nonlinear systems arising in implicit integration schemes.

VIII.1 Dangers of Using Standard Step Size Control
Another possible shortcoming of the method concerns its behavior when
used with a variable step size . . . The integrator completely loses its desir-
able qualities . . . This can be understood at least qualitatively by realizing
that by changing the time step one is in essence continually changing the
nearby Hamiltonian . . . (B. Gladman, M. Duncan & J. Candy 1991)

In the previous chapters we have studied symmetric and symplectic integrators, and
we have seen an enormous progress in long-time integrations of various problems.
Decades ago, a similar enormous progress was the introduction of algorithms with
automatic step size control. Naively, one would expect that the blind combination
of both techniques leads to even better performances. We shall see by a numerical
experiment that this is not the case, a phenomenon observed by Gladman, Duncan
& Candy (1991) and Calvo & Sanz-Serna (1992).

We study the long-time behaviour of symplectic methods combined with the
following standard step size selection strategy (see e.g., Hairer, Nørsett & Wanner
(1993), Sect. II.4). We assume that an expression errn related to the local error is
available for the current step computed with step size hn (usually obtained with an
embedded method). Based on an asymptotic formula errn ≈ Chr

n (for hn → 0) and
on the requirement to get an error close to a user supplied tolerance Tol, we predict
a new step size by

hnew = 0.85 · hn

( Tol
errn

)1/r

, (1.1)

where a safety factor 0.85 is included. We then apply the method with step size
hn+1 = hnew. If for the new step errn+1 ≤ Tol, the step is accepted and the
integration is continued. If errn+1 > Tol, it is rejected and recomputed with the step
size hnew obtained from (1.1) with n + 1 instead of n. Similar step size strategies
are implemented in most codes for solving ordinary differential equations.
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0 ≤ t ≤ 120 2000 ≤ t ≤ 2120

exact solution

4000 ≤ t ≤ 4120

steps 1 to 1 848 steps 30 769 to 32 617

fixed step size, h = 0.065

steps 61 538 to 63 386

steps 1 to 1 831 steps 33 934 to 36 251

standard step size strategy, Tol = 0.01

steps 74 632 to 77 142

Fig. 1.1. Störmer–Verlet scheme applied with fixed step size (middle) or with the standard
step size strategy (below) compared to the exact solution (above); solutions are for the interval
0 ≤ t ≤ 120 (left), for 2000 ≤ t ≤ 2120 (middle), and for 4000 ≤ t ≤ 4120 (right)

Numerical Experiment. We consider the perturbed Kepler problem

q̇1 = p1, ṗ1 = − q1

(q2
1 + q2

2)3/2
− δq1

(q2
1 + q2

2)5/2

q̇2 = p2, ṗ2 = − q2

(q2
1 + q2

2)3/2
− δq2

(q2
1 + q2

2)5/2

(1.2)

(δ = 0.015) with initial values

q1(0) = 1− e, q2(0) = 0, p1(0) = 0, p2(0) =
√

(1 + e)/(1− e)

(eccentricity e = 0.6). As a numerical method we take the Störmer–Verlet scheme
(I.1.17) which is symmetric, symplectic, and of order 2. The fixed step size imple-
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t

Fig. 1.2. Study of the error in the Hamiltonian and of the global error for the Störmer–Verlet
scheme. Fixed step size implementation with h = 10−3, variable step size with Tol = 10−4

mentation is straightforward. For the variable step size strategy we take for errn the
Euclidean norm of the difference between the Störmer–Verlet solution and the sym-
plectic Euler solution (which is available without any further function evaluation).
Since errn = O(h2

n), we take r = 2 in (1.1).
The numerical solution in the (q1, q2)-plane is presented in Fig. 1.1. To make

the long-time behaviour of the two implementations visible, we show the numer-
ical solution on three different parts of the integration interval. We have included
the numbers of steps needed for the integration to reach t = 120, 2120, and 4120,
respectively. We see that the qualitative behaviour of the variable step size imple-
mentation is not correct, although it is more precise on short intervals. Moreover,
the near-preservation of the Hamiltonian is lost (see Fig. 1.2) as is the linear error
growth. Apparently, the error in the Hamiltonian behaves like |a − bt| for the vari-
able step size implementation, and that for the solution like |ct−dt2| (with constants
a, b, c, d depending on Tol ). Due to the relatively large eccentricity of the problem,
the variable step size implementation needs fewer function evaluations for a given
accuracy on a short time interval, but the opposite is true for long-time integrations.

The aim of the next two sections is to present approaches which permit the
use of variable step sizes for symmetric or symplectic methods without losing the
qualitatively correct long-time behaviour.
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VIII.2 Time Transformations

A variable step size implementation produces approximations yn on a (non-equi-
distant) grid {tn}. The same effect can be achieved by performing in advance a
time transformation t ↔ τ and by applying a constant step size implementation
to the transformed system. If the time transformation is given as the solution of a
differential equation, it follows from the chain rule dy

dτ = dy
dt

dt
dτ that the transformed

system is
y′ = σ(y)f(y), t′ = σ(y). (2.1)

Here, prime indicates a derivative with respect to τ , and we use the same letter y for
the solutions y(t) of ẏ = f(y) and y(τ) of (2.1). If σ(y) > 0, the correspondence
t ↔ τ is bijective.

Applying a numerical method with constant step size ε to (2.1) yields approxi-
mations yn ≈ y(τn) = y(tn), where τn = nε and

tn+1 − tn =
∫ (n+1)ε

nε

σ
(
y(τ)

)
dτ ≈ εσ(yn). (2.2)

Approximations to tn are obtained by integrating numerically the differential equa-
tion t′ = σ(y) together with y′ = σ(y)f(y).

In the context of geometric numerical integration, we are interested in time trans-
formations such that the vector field σ(y)f(y) retains geometric features of f(y).

VIII.2.1 Symplectic Integration

For a Hamiltonian system ẏ = f(y) = J−1∇H(y) it is natural to search for step
size functions σ(y) such that (2.1) is again Hamiltonian. For this we have to check
whether the Jacobian of σ(y)∇H(y) is symmetric (cf. Integrability Lemma VI.2.7).
But this is the case only if ∇H(y)∇σ(y)T is symmetric, i.e., ∇H(y) and ∇σ(y)
are collinear, so that d

dtσ
(
y(t)

)
= ∇σ

(
y(t)

)T
J∇H

(
y(t)

)
= 0. Consequently,

σ(y) = Const along solutions of the Hamiltonian system which is what makes this
approach unattractive for a variable step size integration. This disappointing fact has
been observed by Stoffer (1988, 1995) and Skeel & Gear (1992).

The main idea for circumventing this difficulty is the following: suppose we
want to integrate the Hamiltonian system with steps of size h ≈ ε σ(y) , where
σ(y) > 0 is a state-dependent given function and ε > 0 is a small parameter.
Instead of multiplying the vector field f(y) = J−1∇H(y) by σ(y), we consider the
new Hamiltonian

K(y) = σ(y)
(
H(y)−H0

)
, (2.3)

where H0 = H(y0) for a fixed initial value y0. The corresponding Hamiltonian
system is

y′ = σ(y)J−1∇H(y) +
(
H(y)−H0

)
J−1∇σ(y). (2.4)
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Compared to (2.1) we have introduced a perturbation, which vanishes along the
solution of the Hamiltonian system passing through y0, but which makes the system
Hamiltonian.

Time transformations such as in (2.3) are used in classical mechanics for an an-
alytic treatment of Hamiltonian systems (Levi-Civita (1906, 1920), where (2.3) is
called the “Darboux–Sundman transformation”, see Sundman (1912)). Zare & Sze-
behely (1975) consider such time transformations for numerical purposes (without
taking care of symplecticity). Waldvogel & Spirig (1995) apply the transformations
proposed by Levi-Civita to Hill’s lunar problem and solve the transformed equations
by composition methods in order to preserve the symplectic structure. The following
general procedure was proposed independently by Hairer (1997) and Reich (1999).

Algorithm 2.1. Apply an arbitrary symplectic one-step method with constant step
size ε to the Hamiltonian system (2.4), augmented by t′ = σ(y). This yields numer-
ical approximations (yn, tn) with yn ≈ y(tn).

Although this algorithm yields numerical approximations on a non-equidistant
grid, it can be considered as a fixed step size, symplectic method applied to a differ-
ent Hamiltonian system. This interpretation allows one to apply the standard tech-
niques for the study of its long-time behaviour.

A disadvantage of this algorithm is that for separable Hamiltonians H(p, q) =
T (p)+U(q) the transformed Hamiltonian (2.3) is no longer separable. Hence, meth-
ods that are explicit for separable Hamiltonians are not explicit in the implementa-
tion of Algorithm 2.1. The following examples illustrate that this disadvantage can
be partially overcome for the important case of Hamiltonian functions

H(p, q) = 1

2
pTM−1p + U(q), (2.5)

where M is a constant symmetric matrix.

Example 2.2 (Symplectic Euler with p-Independent Step Size Function). For
step size functions σ(q) the symplectic Euler method, applied with constant step
size ε to (2.4), reads

pn+1 = pn − εσ(qn)∇U(qn)− ε
(

1

2
pT

n+1M
−1pn+1 + U(qn)−H0

)
∇σ(qn)

qn+1 = qn + εσ(qn)M−1pn+1

and yields an approximation at tn+1 = tn + εσ(qn) . The first equation is non-
linear (quadratic) in pn+1. Introducing the scalar quantity β := ‖pn+1‖2M :=
pT

n+1M
−1pn+1 , it reduces to the scalar quadratic equation

β =
∥∥∥pn − εσ(qn)∇U(qn)− ε

(
β

2
+ U(qn)−H0

)
∇σ(qn)

∥∥∥
2

M

which can be solved directly. The numerical solution (pn+1, qn+1) is then given
explicitly.
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Choices of Step Size Functions. Sometimes suitable functions σ(p, q) are known
a priori. For example, for the two-body problem one can take σ(p, q) = ‖q‖α, e.g.,
α = 2, or α = 3/2 to preserve the scaling invariance (Budd & Piggott 2003), so
that smaller step sizes are taken when the two bodies are close.

An interesting choice, which does not require any a priori knowledge of the
solution, is σ(y) = ‖f(y)‖−1. The solution of (2.1) then satisfies ‖y′(τ)‖ = 1 (arc-
length parameterization) and we get approximations yn that are nearly equidistant
in the phase space. Such time transformations have been proposed by McLeod &
Sanz-Serna (1982) for graphical reasons and by Huang & Leimkuhler (1997). For a
Hamiltonian system with H(p, q) given by (2.5), it is thus natural to consider

σ(p, q) =
(

1

2
pTM−1p +∇U(q)TM−1∇U(q)

)−1/2

. (2.6)

We have chosen this particular norm, because it leaves the expression (2.6) invariant
with respect to linear coordinate changes q �→ Aq (implying p �→ A−T p). Ex-
ploiting the fact that the Hamiltonian (2.5) is constant along solutions, the step size
function (2.6) can be replaced by the p-independent function

σ(q) =
((

H0 − U(q)
)

+∇U(q)TM−1∇U(q)
)−1/2

. (2.7)

The use of (2.6) and (2.7) gives nearly identical results, but (2.7) is easier to im-
plement. If we are interested in an output that is approximatively equidistant in the
q-space, we can take

σ(q) =
(
H0 − U(q)

)−1/2
. (2.8)

Example 2.3 (Störmer–Verlet Scheme with p-Independent Step Size Function).
For a step size function σ(q) the Störmer–Verlet scheme gives

pn+1/2 = pn −
ε

2
σ(qn)∇U(qn)− ε

2

(
H

(
pn+1/2, qn

)
−H0

)
∇σ(qn)

qn+1 = qn + ε

2

(
σ(qn) + σ(qn+1)

)
M−1pn+1/2 (2.9)

pn+1 = pn+1/2 −
ε

2
σ(qn+1)∇U(qn+1)

− ε

2

(
H

(
pn+1/2, qn+1

)
−H0

)
∇σ(qn+1).

The first equation is essentially the same as that for the symplectic Euler method,
and it can be solved for pn+1/2 as explained in Example 2.2. The second equation
is implicit in qn+1, but it is sufficient to solve the scalar equation

γ = σ
(
qn + ε

2

(
σ(qn) + γ

)
M−1pn+1/2

)
(2.10)

for γ = σ(qn+1). Newton iterations can be efficiently applied, because ∇σ(q) is
available already. The last equation (for pn+1) is explicit. This variable step size
Störmer–Verlet scheme gives approximations at tn, where

tn+1 = tn + ε

2

(
σ(qn) + σ(qn+1)

)
.
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Fig. 2.1. Various step size strategies for the Störmer–Verlet scheme (Example 2.3) applied to
the perturbed Kepler problem (1.2) on the interval [0, 10] (approximately two periods)

In Fig. 2.1 we illustrate how the different step size functions influence the posi-
tion of the output points. We apply the Störmer–Verlet method of Example 2.3 to the
perturbed Kepler problem (1.2) with initial values, perturbation parameter, and ec-
centricity as in Sect. VIII.1. As step size functions we use (2.7), (2.8), and constant
step size σ(q) ≡ 1. For all three choices of σ(q) we have adjusted the parameter ε in
such a way that the maximal error in the Hamiltonian is close to 0.01. The step size
strategy (2.7) is apparently the most efficient one. For this strategy, we observe that
the output points in the q-plane concentrate in regions where the velocity is large,
while the constant step size implementation shows the opposite behaviour.

VIII.2.2 Reversible Integration

For ρ-reversible differential equations ẏ = f(y), i.e., f(ρy) = −ρf(y) for all y, the
time transformed problem (2.1) remains ρ-reversible if

σ(ρy) = σ(y). (2.11)

This condition is not very restrictive and is satisfied by many important time trans-
formations. In particular, (2.11) holds for the arc length parameterization σ(y) =
‖f(y)‖−1 if ρ is orthogonal. Consequently, it makes sense to apply symmetric, re-
versible numerical methods with constant step size ε directly to the system (2.1).

However, similar to the symplectic integration of Sect. VIII.2.1, there is a serious
disadvantage. For separable differential equations (i.e., problems that can be split as
ṗ = f1(q), q̇ = f2(p)) and for non-constant σ(p, q) the transformed system (2.1)
is no longer separable. Hence, methods that are explicit for separable problems are
not necessarily explicit for (2.1).

Example 2.4 (Adaptive Störmer–Verlet Method). We consider a Hamiltonian
system with separable Hamiltonian (2.5), and we apply the Störmer–Verlet scheme
to (2.1). This yields (Huang & Leimkuhler 1997)

pn+1/2 = pn −
ε

2
sn∇U(qn)

qn+1 = qn + ε

2

(
sn + sn+1

)
M−1pn+1/2 (2.12)

pn+1 = pn+1/2 −
ε

2
sn+1∇U(qn+1),
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where sn = σ(pn+1/2, qn) and sn+1 = σ(pn+1/2, qn+1) (notice that the sn+1 of
the current step is not the same as the sn of the subsequent step, if σ(p, q) depends
on p). The values (pn+1, qn+1) are approximations to the solution at tn, where

tn+1 = tn + ε

2

(
sn + sn+1

)
.

For a p-independent step size function s, method (2.12) corresponds to that of Ex-
ample 2.3, where the terms involving∇σ(q) are removed. The implicitness of (2.12)
is comparable to that of the method of Example 2.3. Completely explicit variants of
this method will be discussed in the next section.

We conclude this section with a brief comparison of the variable step size
Störmer–Verlet methods of Examples 2.3 and 2.4. Method (2.12) is easier to im-
plement and more efficient when the step size function σ(p, q) is expensive to eval-
uate. In a few numerical comparisons we observed, however, that the error in the
Hamiltonian and in the solution is in general larger for method (2.12), and that
the method (2.9) becomes competitive when σ(p, q) is p-independent and easy to
evaluate. A similar observation in favour of method (2.9) has been made by Calvo,
López-Marcos & Sanz-Serna (1998).

VIII.3 Structure-Preserving Step Size Control

The disappointing long-time behaviour in Fig. 1.1 of the variable step size imple-
mentation of the Störmer–Verlet scheme is due to lack of reversibility. Indeed, for a
ρ-reversible differential equation the step size hn+1/2 taken for stepping from yn to
yn+1 should be the same as that when stepping from ρyn+1 to ρyn (cf. Fig. V.1.1).
The strategy of Sect. VIII.1, for which the step size depends on information of the
preceding step, cannot guarantee such a property.

VIII.3.1 Proportional, Reversible Controllers

Following a suggestion of Stoffer (1988) we consider step sizes depending only
on information of the present step, i.e., being proportional to some function of the
actual state. This leads to the algorithm

yn+1 = Φhn+1/2(yn), hn+1/2 = ε s(yn, ε), (3.1)

where Φh(y) is a one-step method for ẏ = f(y), and ε is a small parameter. For
theoretical investigations it is useful to consider the mapping

Ψε(y) := Φεs(y,ε)(y). (3.2)

This is a one-step discretization, consistent with y′ = s(y, 0)f(y), and applied with
constant step size ε. Consequently, all results concerning the long-time integration
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with constant steps (e.g., backward error analysis of Chap. IX), and the definitions
of symmetry and reversibility can be extended in a straightforward way.

Symmetry. We call the algorithm (3.1) symmetric, if Ψε(y) is symmetric, i.e.,
Ψε = Ψ−1

−ε . In the case of a symmetric Φh this is equivalent to

s(ŷ,−ε) = s(y, ε) with ŷ = Φεs(y,ε)(y). (3.3)

Reversibility. The algorithm (3.1) is called ρ-reversible if, when applied to a ρ-
reversible differential equation, Ψε(y) is ρ-reversible, i.e., ρ ◦ Ψε = Ψ−1

ε ◦ ρ (cf.
Definition V.1.2). If the method Φh is ρ-reversible then this is equivalent to

s(ρ−1ŷ, ε) = s(y, ε) with ŷ = Φεs(y,ε)(y). (3.4)

Example 3.1. Aiming at step sizes h ≈ εσ(y) (cf. (2.2)), Hut, Makino & McMillan
(1995) propose the use of s(y, ε) = 1

2

(
σ(y)+σ(ŷ)

)
where, as in Sect. VIII.2, σ(y)

is some function that uses an a priori knowledge of the solution of the differential
equation. Notice that, because of ŷ = Φεs(y,ε)(y), the value of s(y, ε) is defined
by an implicit relation. Condition (3.3) is satisfied whenever Φh(y) is symmetric,
and (3.4) is satisfied whenever Φh(y) is ρ-reversible and σ(ρy) = σ(y) holds. For a
proof of these statements one shows that s(ŷ,−ε) and s(y, ε) (resp. s(ρ−1ŷ, ε) and
s(y, ε)) are solution of the same nonlinear equation.

How can we find suitable step size functions s(y, ε) which satisfy all these prop-
erties, and which do not require any a priori knowledge of the solution? In a re-
markable publication, Stoffer (1995) gives the key to the answer of this question.
He simply proposes to choose the step size h in such a way that the local error esti-
mate satisfies err = Tol (in contrast to err ≤ Tol for the standard strategy). Let us
explain this idea in some more detail for Runge–Kutta methods.

Example 3.2 (Symmetric, Variable Step Size Runge–Kutta Methods). For the
numerical solution of ẏ = f(y) we consider Runge–Kutta methods

Yi = yn + h

s∑
j=1

aijf(Yj), yn+1 = yn + h

s∑
i=1

bif(Yi), (3.5)

with coefficients satisfying as+1−i,s+1−j + aij = bj for all i, j. Such methods are
symmetric and reversible (cf. Theorem V.2.3). A common approach for step size
control is to consider an embedded method ŷn+1 = yn + h

∑s
i=1 b̂if(Yi) (which

has the same internal stages Yi) and to take the difference yn+1 − ŷn+1, i.e.,

D(yn, h) = h
s∑

i=1

eif(Yi) (3.6)

with ei = bi−b̂i, as indicator of the local error. For methods where Yi ≈ y(tn+cih)
(e.g., collocation or discontinuous collocation) one usually computes the coeffi-
cients ei from a nontrivial solution of the homogeneous linear system
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s∑
i=1

eic
k−1
i = 0 for k = 1, . . . , s− 1. (3.7)

This yields D(yn, h) = O(hr) with r close to s. According to the suggestion of
Stoffer (1995) we determine the step size hn+1/2 such that

‖D(yn, hn+1/2)‖ = Tol . (3.8)

A Taylor expansion around h = 0 shows that D(y, h) = dr(y)hr +O(hr+1) with
some r ≥ 1. We assume ‖dr(y)‖ �= 0 and we put ε = Tol1/r, so that hn+1/2 from
(3.8) can be expressed by a smooth function s(y, ε) as (3.1).

To satisfy the symmetry relation (3.3) we determine the ei such that

es+1−i = ei for all i or es+1−i = −ei for all i (3.9)

(Hairer & Stoffer 1997). If the Runge–Kutta method is symmetric, this then implies

‖D(yn, h)‖ = ‖D(yn+1,−h)‖ with yn+1 = Φh(yn). (3.10)

This follows from the fact that the internal stage vectors Yi of the step from yn to
yn+1 and the stage vectors Y i of the step from yn+1 to yn (negative step size −h)
are related by Y i = Ys+1−i. The step size determined by (3.8) is thus the same for
both steps and, consequently, condition (3.3) holds.

The reversibility requirement (3.4) is a consequence of

‖D(yn, h)‖ = ‖D(ρ−1yn+1, h)‖ with yn+1 = Φh(yn) (3.11)

which is satisfied for orthogonal mappings ρ (i.e., ρT ρ = I). This is seen as follows:
applying Φh to ρ−1yn+1 gives ρ−1yn, and the internal stages are Y i = ρ−1Ys+1−i.
Hence, we have from (3.9) that D(ρ−1yn+1, h) = ±ρ−1D(yn, h), and (3.11) fol-
lows from the orthogonality of ρ.

A simple special case is the trapezoidal rule

yn+1 = yn +
hn+1/2

2

(
f(yn) + f(yn+1)

)
(3.12)

combined with
D(yn, h) = h

2

(
f(yn+1)− f(yn)

)
.

The scalar nonlinear equation (3.8) for hn+1/2 can be solved in tandem with the
nonlinear system (3.12).

Example 3.3 (Symmetric, Variable Step Size Störmer–Verlet Scheme). The
strategy of Example 3.2 can be extended in a straightforward way to partitioned
Runge–Kutta methods. For example, for the second order symmetric Störmer–Verlet
scheme (I.1.17), applied to the problem q̇ = p, ṗ = −∇U(q) , we can take

D(pn, qn, h) =
h

2

( ∇U(qn+1)−∇U(qn)
h
(
∇U(qn+1) +∇U(qn)

)
)
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Fig. 3.1. Störmer–Verlet scheme applied with the symmetric adaptive step size strategy of
Example 3.3 (Tol = 0.01); the three pictures have the same meaning as in Fig. 1.1

as error indicator. The first component is just the difference of the Störmer–Verlet
solution and the numerical approximation obtained by the symplectic Euler method.
The second component is a symmetrized version of it.

We apply this method with hn+1/2 determined by (3.8) and Tol = 0.01 to the
perturbed Kepler problem (1.2) with initial values as in Fig. 1.1. The result is given
in Fig. 3.1. We identify a correct qualitative behaviour (compared to the wrong be-
haviour for the standard step size strategy in Fig. 1.1). It should be mentioned that
the work for solving the scalar equation (3.8) for hn+1/2 is not negligible, because
the Störmer–Verlet scheme is explicit. Solving this equation iteratively, every itera-
tion requires one force evaluation ∇U(q). An efficient solver for this scalar nonlin-
ear equation should be used.

A Two-Step Proportional Controller. With the aim of obtaining a completely ex-
plicit integrator, Huang & Leimkuhler (1997) propose the use of two-term recur-
rence relations for the step size sequence, see also Holder, Leimkuhler & Reich
(2001). Instead of using a relation between hn+1/2, yn and yn+1 (cf. Example 3.1)
which is necessarily implicit, it is suggested to use a symmetric relation between
hn−1/2, hn+1/2, and yn, which then is explicit. In particular, with the notation
hn+1/2 = εsn+1/2, it is proposed to use the two-term recurrence relation

1
sn+1/2

+
1

sn−1/2
=

2
σ(yn)

, (3.13)

starting with s1/2 = σ(y0). In combination with the Störmer–Verlet method for
separable Hamiltonians, this algorithm is completely explicit, and the authors report
an excellent performance for realistic problems.

A rigorous analysis of the long-time behaviour of this variable step size Störmer–
Verlet method is much more difficult. The results of Chapters IX and XI cannot be
applied, because it is not a one-step mapping yn �→ yn+1. The analysis of Cirilli,
Hairer & Leimkuhler (1999) shows that, similar to weakly stable multistep methods
(Chap. XV), the numerical solution and the step size sequence contain oscillatory
terms. Although these oscillations are usually very small (and hardly visible), it
seems difficult to get rigorous estimates for them.
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VIII.3.2 Integrating, Reversible Controllers

All variable step size approaches of this chapter are based on some time transfor-
mation t ↔ τ given by dt

dτ = σ(y) so that the differential equation, expressed in the
new time variable τ , becomes

y′ =
1
z
f(y), z σ(y) = 1. (3.14)

In Sect. VIII.2 we insert z−1 = σ(y) into the differential equation and apply a nu-
merical method to y′ = σ(y)f(y). In Sect. VIII.3.1 we first discretize the algebraic
relation zσ(y) = 1 expressing zn+1/2 in terms of yn and yn+1, and then apply a
one-step method to the differential equation in (3.14) assuming z = zn+1/2 being
constant.

In the present section we first differentiate the algebraic relation of (3.14) with
respect to τ . This yields by Leibniz’ rule z′σ(y) + z∇σ(y)T y′ = 0 so that

z′ = G(y) with G(y) = − 1
σ(y)

∇σ(y)T f(y). (3.15)

The idea of differentiating the constraint in (3.14) has been raised in Huang &
Leimkuhler (1997), but soon abandoned in favour of the controller (3.13). The sub-
sequent algorithm together with its theoretical justification is elaborated in Hairer
& Söderlind (2004). The idea is to discretize first the differential equation in (3.15)
and then to apply a one-step method to the problem (3.14) with constant z. The
proposed algorithm is thus

zn+1/2 = zn−1/2 + εG(yn)
yn+1 = Φε/zn+1/2

(yn)
(3.16)

with z1/2 = z0 + εG(y0)/2 and z0 = 1/σ(y0). This algorithm is explicit whenever
the underlying one-step method Φh(y) is explicit. It is called integrating controller,
because the step size density is obtained by summing up small quantities.

For a theoretical analysis it is convenient to introduce zn = (zn+1/2+zn−1/2)/2
and to write (3.16) as a one-step method for the augmented system

y′ =
1
z
f(y), z′ = G(y). (3.17)

Notice that I(y, z) = z σ(y) is a first integral of this system.

Algorithm 3.4. Let Φh(y) be a one-step method for ẏ = f(y), y(0) = y0. With
G(y) given by (3.15), z0 = 1/σ(y0), and constant ε, we let

zn+1/2 = zn + εG(yn)/2
yn+1 = Φε/zn+1/2

(yn)
zn+1 = zn+1/2 + εG(yn+1)/2.

(3.18)

The values yn approximate y(tn), where tn+1 = tn + ε/zn+1/2.
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This algorithm has an interesting interpretation as Strang splitting for the solu-
tion of (3.17): it approximates the flow of z′ = G(y) with fixed y over a half-step
ε/2; then applies the method Φε to y′ = f(y)/z with fixed z; finally, it computes a
second half-step of z′ = G(y) with fixed y.

With the notation

Φ̂ε :
(
yn

zn

)
�→

(
yn+1

zn+1

)
and ρ̂ =

(
ρ 0
0 1

)
. (3.19)

the Algorithm 3.4 has the following properties:

• Φ̂ε is symmetric whenever Φh is symmetric;
• Φ̂ε is reversible with respect to ρ̂ whenever Φh is reversible with respect to ρ and

G(ρy) = −G(y) (this is a consequence of σ(ρy) = σ(y)).

These properties imply that standard techniques for constant step size implementa-
tions can be applied to Φ̂ε, and thus yield insight into the variable step size algo-
rithm of this section. It will be shown in Chap. XI that when applied to integrable
reversible systems there is no drift in the action variables and the global error grows
only linearly with time. Moreover, the first integral I(y, z) = z σ(y) of the system
(3.17) is also well preserved (without drift) for such problems.

Example 3.5 (Variable Step Size Störmer–Verlet method). Consider a Hamil-
tonian system with separable Hamiltonian H(p, q) = T (p) + U(q). Using the
Störmer–Verlet method as basic method the above algorithm becomes (starting with
z0 = 1/σ(y0) and z1/2 = z0 + εG(p0, q0)/2)

zn+1/2 = zn−1/2 + εG(pn, qn)

pn+1/2 = pn − ε∇U(qn)/(2zn+1/2)

qn+1 = qn + ε∇T (pn+1/2)/zn+1/2

pn+1 = pn+1/2 − ε∇U(qn+1)/(2zn+1/2).

(3.20)

This method is explicit, symmetric and reversible as long as Gρ = −G, and
computes approximations on a non-equidistant grid {tn} given by tn+1 = tn +
ε/zn+1/2.

Let us apply this method to the perturbed Kepler problem with data and initial
values as in the beginning of this chapter. Further, we select σ(q) = (qT q)α/2 with
α = 3/2, so that the control function (3.15) becomes

G(p, q) = −αpT q/qT q . (3.21)

Figure 3.2 shows the error in the Hamiltonian along the numerical solution as well
as the global error in the solution (fictive step size ε = 0.02). The error in the
Hamiltonian is proportional to ε2 without drift, and the global error grows linearly
with time (in double logarithmic scale a linear growth corresponds to a line with
slope one; such lines are drawn in grey). This is qualitatively the same behaviour as
observed in constant step size implementations of symplectic methods.
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Fig. 3.2. Numerical Hamiltonian and global error as a function of time
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Fig. 3.3. Step sizes of the variable step size Störmer–Verlet method as a function of time, and
the control error znσ(qn) − z0σ(q0) (grey curve)

Figure 3.3 shows the selected step sizes hn+1/2 = ε/zn+1/2 as a function of
time, and the control error znσ(qn) − z0σ(q0) in grey. Since its deviation from the
constant value z0σ(q0) = 1 is small without any drift, the step density remains
close to 1/σ(q). For an explanation of this excellent long-time behaviour we refer
to Sect. XI.3.

VIII.4 Multiple Time Stepping

A completely different approach to variable step sizes will be described in this sec-
tion. We are interested in situations where:

• many solution components of the differential equation vary slowly and only a few
components have fast dynamics; or

• computationally expensive parts of the right-hand side do not contribute much to
the dynamics of the solution.

In the first case it is tempting to use large step sizes for the slow components and
small step sizes for the fast ones. Such integrators, called multirate methods, were
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first formulated by Rice (1960) and Gear & Wells (1984). They were further devel-
oped by Günther & Rentrop (1993) in view of applications in electric circuit simula-
tion, and by Engstler & Lubich (1997) with applications in astrophysics. Symmetric
multirate methods are obtained from the approaches described below and are spe-
cially constructed by Leimkuhler & Reich (2001).

The second case suggests the use of methods that evaluate the expensive part of
the vector field less often than the rest. This approach is called multiple time step-
ping. It was originally proposed for astronomy by Hayli (1967) and has become
very popular in molecular dynamics simulations (Streett, Tildesley & Saville 1978,
Grubmüller, Heller, Windemuth & Schulten 1991, Tuckerman, Berne & Martyna
1992). As noticed by Biesiadecki & Skeel (1993), one approach to such methods is
within the framework of splitting and composition methods, which yields symmet-
ric and symplectic methods. A second family of symmetric multiple time stepping
methods results from the concept of using averaged force evaluations.

VIII.4.1 Fast-Slow Splitting: the Impulse Method

Consider a differential equation

ẏ = f(y), f(y) = f [slow](y) + f [fast](y), (4.1)

where the vector field is split into summands contributing to slow and fast dynam-
ics, respectively, and where f [slow](y) is more expensive to evaluate than f [fast](y).
Multirate methods can often be cast into this framework by collecting in f [slow](y)
those components of f(y) which produce slow dynamics and in f [fast](y) the re-
maining components.

Algorithm 4.1. For a given N ≥ 1 and for the differential equation (4.1) a multiple
time stepping method is obtained from

(
Φ

[slow]
h/2

)∗ ◦ (
Φ

[fast]
h/N

)N ◦ Φ
[slow]
h/2 , (4.2)

where Φ
[slow]
h and Φ

[fast]
h are numerical integrators consistent with ẏ = f [slow](y)

and ẏ = f [fast](y) , respectively.

The method of Algorithm 4.1 is already stated in symmetrized form (Φ∗
h denotes

the adjoint of Φh). It is often called the impulse method, because the slow part f [slow]

of the vector field is used – impulse-like – only at the beginning and at the end of
the step, whereas the many small substeps in between are concerned solely through
integrating the fast system ẏ = f [fast](y).

Lemma 4.2. Let Φ
[slow]
h be an arbitrary method of order 1, and Φ

[fast]
h a symmetric

method of order 2. Then, the multiple time stepping algorithm (4.2) is symmetric
and of order 2.

If f [slow](y) and f [fast](y) are Hamiltonian and if Φ
[slow]
h and Φ

[fast]
h are both

symplectic, then the multiple time stepping method is also symplectic.
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Proof. Due to the interpretation of multiple time stepping as composition methods
the proof of these statements is obvious. 
�

The order statement of Lemma 4.2 is valid for h → 0, but should be taken with
caution if the product of the step size h with a Lipschitz constant of the problem
is not small (see Chap. XIII for a detailed analysis): it is not stated, and is not true
in general for large N , that if h and h/N are the step sizes needed to integrate the
slow and fast system, respectively, with an error bounded by ε, then the error of the
combined scheme is O(ε).

The most important application of multiple time stepping is in Hamiltonian sys-
tems with a separable Hamiltonian

H(p, q) = T (p) + U(q), U(q) = U [slow](q) + U [fast](q). (4.3)

If we let the fast vector field correspond to T (p) + U [fast](q) and the slow vector
field to U [slow](q), and if we apply the Störmer–Verlet method and exact integration,
respectively, Algorithm 4.1 reads

ϕ
[slow]
h/2 ◦

(
ϕ

[fast]
h/2N ◦ ϕT

h/N ◦ ϕ
[fast]
h/2N

)N ◦ ϕ
[slow]
h/2 , (4.4)

where ϕT
t , ϕ

[slow]
t , ϕ

[fast]
t are the exact flows corresponding to the Hamiltonian sys-

tems for T (p), U [slow](q), U [fast](q), respectively. Notice that for N = 1 the method
(4.4) reduces to the Störmer–Verlet scheme applied to the Hamiltonian system with
H(p, q). This is a consequence of the fact that ϕ[fast]

t ◦ ϕ
[slow]
t = ϕU

t is the exact
flow of the Hamiltonian system corresponding to U(q) of (4.3). In the molecular
dynamics literature, the method (4.4) is known as the Verlet-I method (Grubmüller
et al. 1991, who consider the method with little enthusiasm) or r-RESPA method
(Tuckerman et al. 1992, with much more enthusiasm).

Example 4.3. In order to illustrate the effect of multiple time stepping we choose a
‘solar system’ with two planets, i.e., with a Hamiltonian

H(p, q) = 1

2

(pT
0 p0

m0
+

pT
1 p1

m1
+

pT
2 p2

m2

)
− m0m1

‖q0 − q1‖
− m0m2

‖q0 − q2‖
− m1m2

‖q1 − q2‖
,

where m0 = 1,m1 = m2 = 10−2 and initial values q0 = (0, 0), q̇0 = (0, 0),
q1 = (1, 0), q̇1 = (0, 1), q2 = (4, 0), q̇2 = (0, 0.5). With these data, the motion of
the two planets is nearly circular with periods close to 2π and 14π, respectively.

We split the potential as

U [fast](q) = − m0m1

‖q0 − q1‖
, U [slow](q) = − m0m2

‖q0 − q2‖
− m1m2

‖q1 − q2‖
,

and we apply the algorithm of (4.4) with N = 1 (Störmer–Verlet), N = 4, and
N = 8. Since the evaluation of ϕ

[slow]
t is about twice as expensive as ϕ

[fast]
t and

that of ϕT
t is of negligible cost, the computational work of applying (4.4) on a fixed

interval is proportional to
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101 102

10−6

10−3

work

err

N = 1 (Störmer/Verlet)

N = 4

N = 8

Fig. 4.1. Maximal error in the Hamiltonian as a function of computational work

2π
h
· (2 + N)

3
. (4.5)

Our computations have shown that this measure of work corresponds very well to
the actual cpu time.

We have solved this problem with many different step sizes h. Figure 4.1 shows
the maximal error in the Hamiltonian (over the interval [0, 200π]) as a function of
the computational work (4.5). We notice that the value N = 4 yields excellent
results for relatively large as well as small step sizes. It noticeably improves the
performance of the Störmer–Verlet method. If N becomes too large, an irregular
behaviour for large step sizes is observed. Such “artificial resonances” are notorious
for this method and have been discussed by Biesiadecki & Skeel (1993) for a similar
experiment; also see Chap. XIII. For large N we also note a loss of accuracy for
small step sizes. The optimal choice of N (which here is close to 4) depends on the
problem and on the splitting into fast and slow parts, and has to be determined by
experiment.

The multiple time stepping technique can be iteratively extended to problems
with more than two different time scales. The idea is to split the ‘fast’ vector field
of (4.1) into f [fast](y) = f [ff ](y) + f [fs](y), and to replace the method Φ

[fast]
h in

Algorithm 4.1 with a multiple time stepping method. Depending on the problem, a
significant gain in computer time may be achieved in this way.

Many more multiple time stepping methods that extend the above Verlet-I/r-
RESPA/impulse method, have been proposed in the literature, most notably the
mollified impulse method of Garcı́a-Archilla, Sanz-Serna & Skeel (1999); see
Sect. XIII.1.

VIII.4.2 Averaged Forces

A different approach to multiple time stepping arises from the idea of advancing the
step with averaged force evaluations. We describe such a method for the second-
order equation
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ÿ = f(y), f(y) = f [slow](y) + f [fast](y). (4.6)

The exact solution satisfies

y(t + h)− 2y(t) + y(t− h) = h2

∫ 1

−1

(1− |θ|) f
(
y(t + θh)

)
dθ ,

where the integral on the right-hand side represents a weighted average of the force
along the solution, which is now going to be approximated. At t = tn, we replace

f
(
y(tn + θh)

)
≈ f [slow](yn) + f [fast]

(
u(θh)

)

where u(τ) is a solution of the differential equation

ü = f [slow](yn) + f [fast](u) . (4.7)

We then have

h2

∫ 1

−1

(1− |θ|)
(
f [slow](yn) + f [fast]

(
u(θh)

))
dθ = u(h)− 2u(0) + u(−h) .

The velocities are treated similarly, starting from the identity

ẏ(t + h)− ẏ(t− h) = h

∫ 1

−1

f
(
y(t + θh)

)
dθ .

A Symmetric Two-Step Method. For the differential equation (4.7) we assume the
initial values

u(0) = yn, u̇(0) = ẏn . (4.8)

This initial value problem is solved numerically, e.g., by the Störmer–Verlet method
with a smaller step size ±h/N on the interval [−h, h], yielding numerical approxi-
mations uN (±h) and vN (±h) to u(±h) and u̇(±h), respectively. Note that no fur-
ther evaluations of f [slow] are needed for the computation of uN (±h) and vN (±h).
This finally gives the symmetric two-step method (Hochbruck & Lubich 1999a)

yn+1 − 2yn + yn−1 = uN (h)− 2uN (0) + uN (−h)
ẏn+1 − ẏn−1 = vN (h)− vN (−h) .

(4.9)

The starting values y1 and ẏ1 are chosen as uN (h) and vN (h) which correspond to
(4.7) and (4.8) for n = 0.

A Symmetric One-step Method. An explicit one-step method with similar aver-
aged forces is obtained when the initial values for (4.7) are chosen as

u(0) = yn, u̇(0) = 0 . (4.10)

It may appear crude to take zero initial values for the velocity, but we remark that
for linear f [fast] the averaged force (u(h)−2u(0)+u(−h))/h2 does not depend on
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the choice of u̇(0). Moreover the solution then satisfies u(−t) = u(t), so that the
computational cost is halved. We again denote by uN (h) = uN (−h) the numerical
approximation to u(h) obtained with step size ±h/N from a one-step method (e.g.,
from the Störmer–Verlet scheme). Because of (4.10) the averaged forces

Fn = 1

h2

(
uN (h)− 2uN (0) + uN (−h)

)
= 2

h2

(
uN (h)− uN (0)

)

now depend only on yn and not on the velocity ẏn. In trustworthy Verlet manner,
the scheme yn+1 − 2yn + yn−1 = h2Fn can be written as the one-step method

vn+1/2 = vn + h

2
Fn

yn+1 = yn + hvn+1/2

vn+1 = vn+1/2 + h

2
Fn+1 .

(4.11)

The auxiliary variables vn can be interpreted as averaged velocities: we have

vn =
yn+1 − yn−1

2h
≈ y(tn+1)− y(tn−1)

2h
= 1

2

∫ 1

−1

ẏ(tn + θh) dθ .

This average may differ substantially from ẏ(tn) if the solution is highly oscillatory
in [−h, h]. In the experiments of this section it turned out that the choice v0 = ẏ0

and ẏn = vn as velocity approximations gives excellent results.
In a multirate context, symmetric one-step schemes using averaged forces

were studied by Hochbruck & Lubich (1999b), Nettesheim & Reich (1999), and
Leimkuhler & Reich (2001). A closely related approach for problems with multiple
time scales is the heterogeneous multiscale method by E (2003) and Engquist &
Tsai (2005).

Example 4.4. We add a satellite of mass m3 = 10−4 to the three body-problem of
Example 4.3. It moves rapidly around the planet number one. The initial positions
and velocities are q3 = (1.01, 0) and p3 = (0, 0). We split the potential as

U [fast](q) = − m1m3

‖q1 − q3‖
, U [slow](q) = −

∑
i<j

(i,j)�=(1,3)

mimj

‖qi − qj‖
,

and we apply the methods (4.9), (4.11), and the impulse method (4.4). Since the
sum in U [slow] contains 5 terms, the computational work is proportional to

5 + N

6h
for methods (4.11) and (4.4)

6 + 2N
6h

for method (4.9).

For each of the methods we have optimized the number N of small steps. We ob-
tained a flat minimum near N = 40 for (4.9) and (4.4), and a more pronounced
minimum at N = 12 for (4.11). Figure 4.2 shows the errors at t = 10 in the posi-
tions and in the Hamiltonian as a function of the computational work.
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(4.9), N = 40

(4.11), N = 12

(4.4), N = 40

Störmer/Verlet

errors in the Hamiltonian

Fig. 4.2. Errors in position and in the Hamiltonian as a function of the computational work;
the classical Störmer–Verlet method, the impulse method (4.4), and the averaged force meth-
ods (4.11) and (4.9). The errors in the Hamiltonian are indicated by grey lines (same linestyle)

The error in the position is largest for the Störmer–Verlet method and signif-
icantly smallest for the one-step averaged-force method (4.11). The errors in the
velocities are about a factor 100 larger for all methods. They are not included in
the figure. The error in the Hamiltonian is very similar for all methods with the
exception of the two-step averaged-force method (4.9), for which it is much larger.

VIII.5 Reducing Rounding Errors

. . . the idea is to capture the rounding errors and feed them back into the
summation. (N.J. Higham 1993)

All numerical methods for solving ordinary differential equations require the com-
putation of a recursion of the form

yn+1 = yn + δn, (5.1)

where δn, the increment, is usually smaller in magnitude than the approximation yn

to the solution. In this situation the rounding errors caused by the computation of δn

are in general smaller than those due to the addition in (5.1).
A first attempt at reducing the accumulation of rounding errors (in fixed-point

arithmetic for his Runge–Kutta code) was due to Gill (1951). Kahan (1965) and
Möller (1965) both extended this idea to floating point arithmetic. The resulting al-
gorithm is nowadays called ‘compensated summation’, and a particularly nice pre-
sentation and analysis is given by N. Higham (1993). In the following algorithm we
assume that yn is a scalar; vector valued recursions are treated componentwise.
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Algorithm 5.1 (Compensated Summation). Let y0 and {δn}n≥0 be given and
put e = 0. Compute y1, y2, . . . from (5.1) as follows:

for n = 0, 1, 2, . . . do
a = yn

e = e + δn

yn+1 = a + e
e = e + (a− yn+1)

end do

This algorithm can best be understood with the help of Fig. 5.1 (following the
presentation of N. Higham (1993)). We present the mantissas of floating point num-
bers by boxes, for which the horizontal position indicates the exponent (for a large
exponent the box is more to the left). The mantissas of yn and e together represent
the accurate value of yn (notice that in the beginning e = 0). The operations of
Algorithm 5.1 yield yn+1 and a new e, which together represent yn+1 = yn + δn.
No digit of δn is lost in this way. With a standard summation the last digits of δn

(those indicated by δ′′ in Fig. 5.1) would have been missed.

e = e + (a − yn+1) e′ + δ′′ 0

yn+1 = a + e a′′ + δ′a′
e = e + δn e′ + δ′′δ′

δn δ′′δ′
e e′ 0

a = yn a′′a′

Fig. 5.1. Illustration of the technique of “compensated summation”

Numerical Experiment. We study the effect of compensated summation on the
Kepler problem (I.2.2) (written as a first order system) with eccentricity e = 0.6
and initial values as in (I.2.11), so that the period of the elliptic orbit is exactly
2π. As the numerical integrator we take the composition method (V.3.13) of order
8 with the Störmer–Verlet scheme as basic integrator. We compute the numerical
solution with step size h = 2π/500 once with standard update of the increment,
once with compensated summation (both in double precision) and, in order to get a
reference solution, we also perform the whole computation in quadruple precision.
The difference between the double and quadruple precision computations gives us
the rounding errors. Their Euclidean norms as a function of time are displayed in
Fig. 5.2.

We see that throughout the whole integration interval the rounding errors of the
standard implementation are nearly a factor of 100 larger than those of the imple-
mentation with compensated summation. This corresponds to the inverse of the step
size or, more precisely, to the mean quotient between yn and δn in (5.1). In Fig. 5.2
we have also included the pure global error of the method (without rounding errors)
at integral multiples of the period 2π (hence no oscillations are visible). This is
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10−15

10−12

10−9

compensated summation

standard computation

pure global error

Fig. 5.2. Rounding errors and pure global error as a function of time; the parallel grey lines
indicate a growth of O(t3/2)

obtained as the difference of the numerical solution computed with quadruple pre-
cision and the exact solution. We observe a linear growth of the pure global error
(this will be explained in Sect. X.3) and a growth like O(t3/2) due to the rounding
errors. Thus, eventually the rounding errors will surpass the truncation errors, but
this happens for the compensated summation only after some 1000 periods.

Probabilistic Explanation of the Error Growth. Our aim is to explain the growth
rate of rounding errors observed in Fig. 5.2. Denote by εk the vector of rounding
errors produced during the computations in the kth step. Since the derivative of the
flow ϕt(y) describes the propagation of these errors, the accumulated rounding error
at time t = tN (tk = kh) is

ηt =
N∑

k=1

ϕ′
t−tk

(yk)εk. (5.2)

For the Kepler problem and, in fact, for all completely integrable differential equa-
tions (cf. Sect. X.1) the flow and its derivative grow at most linearly with time, i.e.,

∥∥ϕ′
t−tk

(y)
∥∥ ≤ a + b(t− tk) for t ≥ tk. (5.3)

Using εk = O(eps), where eps denotes the roundoff unit of the computer, an appli-
cation of the triangle inequality to (5.2) yields ηt = O(t2eps). From our experiment
of Fig. 5.2 we see that such an estimate is too pessimistic.

For a better understanding of accumulated rounding errors over long time inter-
vals we make use of probability theory. Such an approach has been developed in
the classical book of Henrici (1962). We assume that the components εki of εk are
random variables with mean and variance

E(εki) = 0, Var (εki) = Cki · eps2,

and uniformly bounded Cki ≤ C. For simplicity we assume that all εki are indepen-
dent random variables. Replacing the matrix ϕt−tk

(yk) in (5.2) with ϕt−tk

(
y(tk)

)
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and denoting its entries by wijk, the ith component of the accumulated rounding
error (5.2) becomes

ηti =
N∑

k=1

n∑
j=1

wijkεkj ,

a linear combination of the random variables εkj . Elementary probability theory
thus implies that

E(ηti) = 0 and Var (ηti) =
N∑

k=1

n∑
j=1

w2
ijkVar (εkj).

Inserting the estimate (5.3) for wijk we get

Var (ηti) ≤
N∑

k=1

(
a + b(t− tk)

)2 max
j=1,...,n

Var (εkj) = O
(C

h
t3 eps2

)
.

Consequently, the Euclidean norm of the expected rounding error ηt is

( n∑
i=1

Var (ηti)
)1/2

= O
(√

C

h
t3/2 eps

)
.

This is in excellent agreement with the results displayed in Fig. 5.2.

VIII.6 Implementation of Implicit Methods

Symplectic methods for general Hamiltonian equations are implicit, and so are sym-
metric methods for general reversible systems. Also, when we consider variable step
size extensions as described in Sections VIII.3 and VIII.2, we are led to nonlinear
equations. The efficient numerical solution of such nonlinear equations is the main
difficulty in an implementation of implicit methods. Notice that in the context of
geometric integration there is no need of ad-hoc strategies for step size and order
selection, so that the remaining parts of a computer code are more or less straight-
forward.

In the following we discuss the numerical solution of the nonlinear system de-
fined by an implicit Runge–Kutta method. We have the Gauss methods of Sect. II.1.3
in mind which are symplectic and symmetric. An extension of the ideas to parti-
tioned Runge–Kutta methods and to Nyström methods is obvious. For simplicity of
notation we consider autonomous differential equations ẏ = f(y) , and we write
the nonlinear system of Definition II.1.1 in the form

Zin − h

s∑
j=1

aijf
(
yn + Zjn

)
= 0, i = 1, . . . , s. (6.1)
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The unknown variables are Z1n, . . . , Zsn, and the equivalence of the two formula-
tions is via the relation ki = f

(
yn + Zin

)
. The numerical solution after one step

can be expressed as

yn+1 = yn + h

s∑
i=1

bif
(
yn + Zin

)
. (6.2)

For implicit Runge–Kutta methods the equations (6.1) represent a nonlinear system
that has to be solved iteratively. We discuss the choice of good starting approxima-
tions for Zin as well as different nonlinear equation solvers (fixed-point iteration,
modified Newton methods).

VIII.6.1 Starting Approximations

The most simple approximations to the solution Zin of (6.1) are Z0
in = 0 or

Z0
in = hcif(yn) where ci =

∑s
j=1 aij . They are, however, not very accurate

and we will try to exploit the information of previous steps for improving them.
There are essentially two possibilities: either use only the information of the last
step yn−1 �→ yn (methods (A) and (B) below), or consider a fixed i and use the
interpolation polynomial that passes through Zi,n−l for l = 1, 2, . . . (method (C)).
Let us separately discuss these two approaches.

(A) Use of Continuous Output. Consider the polynomial wn−1(t) of degree s that
interpolates the values (tn−1, yn−1) and (tn−1+cih, Yi,n−1) for i = 1, . . . , s, where
Yi,n−1 = yn−1+Zi,n−1 is the argument in (6.1) of the previous step. For collocation
methods (such as Gauss methods) wn−1(t) is the collocation polynomial, and we
know from Lemma II.1.6 that on compact intervals

wn−1(t)− y(t) = O(hq+1) (6.3)

with q = s, where y(t) denotes the solution of ẏ = f(y) satisfying y(tn−1) = yn−1.
For Runge–Kutta methods that are not collocation methods, (6.3) holds with q de-
fined by the condition C(q) of (II.1.11). Since the solution of ẏ = f(y) passing
through y(tn) = yn is O(hp+1) close to y(t) with p ≥ q, we have wn(t) =
wn−1(t) +O(hq+1) and the computable value

Z0
in = Y 0

in − yn, Y 0
in = wn−1(tn + cih) (6.4)

serves as starting approximation for (6.1) with an error of size O(hq+1). This ap-
proach is standard in variable step size implementations of implicit Runge–Kutta
methods (cf. Sect. IV.8 of Hairer & Wanner (1996)). Since wn−1(t)− yn−1 is a lin-
ear combination of the Zi,n−1 = Yi,n−1 − yn−1, it follows from (6.1) that it is also
a linear combination of hf(Yi,n−1), so that

Y 0
in = yn−1 + h

s∑
j=1

βijf(Yj,n−1). (6.5)
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For a constant step size implementation, the βij depend only on the method coef-
ficients and can be computed in advance as the solution of the linear Vandermonde
type system

s∑
j=1

βijc
k−1
j =

(1 + ci)k

k
, k = 1, . . . , s (6.6)

(see Exercise 2). For collocation methods and for methods with q ≥ s − 1 the
coefficients βij from (6.6) are optimal in the sense that they are the only ones making
(6.5) an sth order approximation to the solution of (6.1). For q < s − 1, more
complicated order conditions have to be considered (Sand 1992).

(B) Starting Algorithms Using Additional Function Evaluations. In particular
for high order methods where s is relatively large, a much more accurate starting
approximation can be constructed with the aid of a few additional function eval-
uations. Such starting algorithms have been investigated by Laburta (1997), who
presents coefficients for the Gauss methods up to order 8 in Laburta (1998).

The idea is to use starting approximations of the form

Y 0
in = yn−1 + h

s∑
j=1

βijf(Yj,n−1) + h

m∑
j=1

νijf(Ys+j,n−1), (6.7)

where Y1,n−1, . . . , Ys,n−1 are the internal stages of the basic implicit Runge–Kutta
method (with coefficients ci, aij , bj), and the additional internal stages are computed
from

Ys+i,n−1 = yn−1 + h
s+i−1∑
j=1

µijf(Yj,n−1).

For a fixed i, we interpret Y 0
in as the result of the explicit Runge–Kutta method with

coefficients of the right tableau of

exact ith stage

c A
1l + c B A

bT aT
i

approximate

c A
µ M1 M2

βT
i νT

i

(6.8)

Here, (M1,M2) = M = (µjk), µj =
∑s+j−1

k=1 µjk, and c, µ, βi, νi are the vectors
composed of cj , µj , βij , νij , respectively. The exact stage values Yin are interpreted
as the result of the Runge–Kutta method with coefficients given in the left tableau
of (6.8). The entries of the vectors 1l, b and ai are 1, bj and aij , respectively, and B
is the matrix whose rows are all equal to bT .

If the order conditions (see Sect. III.1) for the two Runge–Kutta methods of (6.8)
give the same result for all trees with≤ r vertices, we get an approximation of order
r, i.e., Y 0

in − Yin = O(hr+1). For the bushy tree τk = [ , . . . , ] with k vertices
we have
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s∑
j=1

βijc
k−1
j +

m∑
j=1

νijµ
k−1
j =

s∑
j=1

bjc
k−1
j +

s∑
j=1

aij(1 + cj)k−1. (6.9)

Notice that for collocation methods (such as the Gauss methods) the condition C(s)
reduces the right-hand expression of this equation to (1 + ci)k/k for k ≤ s. For
m = 0, these conditions are thus equivalent to (6.6).

For the tree [τk] =
[
[ , . . . , ]

]
with k + 1 vertices we get the condition

s∑
j,l=1

βijajlc
k−1
l +

m∑
j=1

νij

( s∑
l=1

µjlc
k−1
l +

m∑
l=1

µj,s+lµ
k−1
l

)

=
s∑

j,l=1

bjajlc
k−1
l +

s∑
j,l=1

aij

(
blc

k−1
l + ajl(1 + cl)k−1

)
.

(6.10)

We now assume that the Runge–Kutta method corresponding to the right tableau of
(6.8) satisfies condition C(s). This means that the method (c, A, b) is a collocation
method, and that the coefficients µij have to be computed from the linear system

s+i−1∑
j=1

µijc
k−1
j =

µk
i

k
, k = 1, . . . , s. (6.11)

The method corresponding to the left tableau of (6.8) then also satisfies C(s). Con-
sequently, the order conditions are simplified considerably, and it follows from
Sect. III.1 that Y 0

in is an approximation to the exact stage value Yin of order s+1 or
s + 2 if the following conditions hold:

order s + 1 if (6.9) for k = 1, . . . , s + 1;

order s + 2 if (6.9) for k = 1, . . . , s + 2, and (6.10) for k = s + 1.
(6.12)

For an approximation of order s + 1 we put m = 1, we arbitrarily choose
µ1, we compute µ1j from (6.11), and the coefficients βij and νi1 from (6.9) with
k = 1, . . . , s + 1. A reasonable choice for the free parameter is µ1 ∈ [1, 2] (in our
computations we take µ1 = 1.75 for s = 2, 4, and µ1 = 1.8 for s = 6.1

For an approximation of order s + 2 we put m = 3. One of the three additional
function evaluations can be saved if we put µ1 = 0 and µ2 = 1. This implies
Ys+1,n−1 = yn−1 and Ys+2,n−1 = yn, so that the evaluation of f(Ys+1,n−1) is
already available from computations for the preceding step (FSAL technique, “first
same as last”). In our experiments we take µ3 = 1.6 for s = 2, µ3 = 1.65 for
s = 4, and µ3 = 1.75 for s = 6. The coefficients µij , βij , νij are then obtained as
the solution of Vandermonde like linear systems.

For an implementation it is more convenient to work with the quantities Z0
in =

Y 0
in − yn and to write (6.7) in the form

1 Laburta (1997) proposes to consider m = 2, µ1 = 0, µ2 = 1 (apart from the first step
this also needs only one additional function evaluation per step), and to optimize free
parameters by satisfying the order conditions for some trees with one order higher.
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Z0
in = h

s∑
j=1

αijf(Yj,n−1) + h

m∑
j=1

νijf(Ys+j,n−1) (6.13)

with αij = βij − bj .

(C) Equistage Approximation. From the implicit function theorem, applied to the
nonlinear system (6.1), we know that Zin = z(yn, h), where the function z(y, h)
is as smooth as f(y). Furthermore, since on compact intervals the global error of a
one-step method permits an asymptotic expansion in powers of h, we have yn−l =
yN (tn−l, h)+O(hN+1) with yN (t, h) = y(t)+hpep(t)+ . . .+hNeN (t) (the value
of N can be chosen arbitrarily large if f(y) is sufficiently smooth). Consequently,
Zi,n−l is O(hN+1) close to the smooth function z

(
yN (t, h), h

)
at t = tn − lh.

Let ζi(t) be the polynomial of degree k − 1 defined by ζi(tn−l) = Zi,n−l for
l = 1, . . . , k. Then, the value

Z0
in = ζi(tn) (6.14)

yields a O(hk+1) approximation to the solution of (6.1). This interpolation pro-
cedure was first proposed by In’t Hout (1992) for the numerical solution of delay
differential equations. For the iterative solution of the nonlinear Runge–Kutta equa-
tions (6.1), the starting approximation (6.14) is proposed and analyzed by Calvo
(2002).

The implementation of this approach is very simple. Using Newton’s interpola-
tion formula we have

Z0
in = Zi,n−1 +∇Zi,n−1 + . . . +∇k−1Zi,n−1 (6.15)

with backward differences given by ∇Zi,n = Zi,n − Zi,n−1, ∇2Zi,n = ∇Zi,n −
∇Zi,n−1, etc.

Numerical Study of Starting Approximations. We consider the Kepler problem
with eccentricity e = 0.6 and initial values such that the period is 2π. With many
different step sizes h = 2π/N we compute N + 1 steps with the Gauss method
of order p = 2s (p = 4, 8, 12). In the last step we compute the different starting
approximations and their error (

∑s
i=1 ‖Zin − Z0

in‖2)1/2 as a function of the step
size h. The result is plotted in Fig. 6.1. There, the pictures also contain the global
errors after one period. They allow us to localize the values of h, which are of
practical interest.

We observe that the equistage approximation (6.15) also behaves like O(hk+1)
when k + 1 is larger than the order of the integrator. However, due to the increas-
ing error constants, the accuracy is improved only for small step sizes. An opti-
mal k could be estimated by checking the decrease of the backward differences
‖∇jZi,n−1‖. The error of the starting approximation obtained from the continuous
output behaves like O(hs+1) (for the Gauss methods) and, in contrast to the equi-
stage approximation, improves with increasing order. The approximations (6.7) of
order s+ 1 and s+ 2 are a clear improvement. As a conclusion we find that for this
example the equistage approximation (which is free from additional function eval-
uations) is preferable only for s = 2 (order 4). For higher order, the approximation
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Fig. 6.1. Errors of starting approximations for Gauss methods as functions of the step size
h: thick dashed lines for the extrapolated continuous output (6.4) and for the approximations
(6.7) of order s + 1 and s + 2; thin solid lines for the equistage approximation (6.15) with
k = 0, 1, . . . , 7; the thick solid line represents the global error of the method after one period

obtained from (6.7) is significantly more accurate and so it is worthwhile to spend
these two additional function evaluations per step.

VIII.6.2 Fixed-Point Versus Newton Iteration

Finally we investigate the iterative solution of the nonlinear Runge–Kutta system
(6.1). We discuss fixed-point and Newton-like iterations, and we compare their effi-
ciency to the use of composition methods.

Fixed-Point Iteration. This is the most simple and most natural iteration for the
solution of (6.1). With any starting approximation Z0

in from Sect. VIII.6.1 it reads

Zk+1
in = h

s∑
j=1

aijf
(
yn + Zk

jn

)
, i = 1, . . . , s. (6.16)

In the case where the entries of the Jacobian matrix f ′(y) are not excessively large
(nonstiff problems) and that the step size is sufficiently small, this iteration con-
verges for k → ∞ to the solution of (6.1). Usually, the iteration is stopped if a
certain norm of the differences Zk+1

in − Zk
in is sufficiently small. We then use Zk

in

in the update formula (6.2) so that no additional function evaluation is required.
For a numerical study of the convergence of this iteration, we consider the Ke-

pler problem with eccentricity e = 0.6 and initial values as in the preceding experi-
ments (period of the solution is 2π). We apply the Gauss methods of order 4, 8, and
12 with various step sizes. For the integration over one period we show in Table 6.1
the total number of function evaluations, the mean number of required iterations per
step, and the global error at the endpoint of integration. As a stopping criterion for
the fixed-point iteration we check whether the norm of the difference of two succes-
sive approximations is smaller than 10−16 (roundoff unit in double precision). As
a starting approximation Z0

in we use (6.15) with k = 8 for the method of order 4,
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Table 6.1. Statistics of Gauss methods (total number of function evaluations, number of
fixed-point iterations per step, and the global error at the endpoint) for computations of the
Kepler problem over one period with e = 0.6

Fixed-point iteration (general problems)

Gauss h = 2π/25 h = 2π/50 h = 2π/100 h = 2π/200 h = 2π/400

order 4
803
16.1

9.2 · 10−2

1 043
10.4

1.7 · 10−2

1 393
7.0

1.3 · 10−3

1 825
4.6

8.4 · 10−5

2 319
2.9

5.3 · 10−6

order 8
1 021
9.7

1.1 · 10−3

1 455
6.8

6.9 · 10−7

2 091
4.7

3.6 · 10−9

3 007
3.3

1.8 · 10−11

4 183
2.1

6.9 · 10−14

order 12
1 297
8.3

2.7 · 10−6

1 731
5.4

8.0 · 10−11

2 311
3.5

2.7 · 10−14

3 441
2.5

≤ roundoff

5 917
2.1

≤ roundoff

and the approximation (6.7) of order s + 2 for the methods of orders 8 and 12. The
coefficients are those presented after equation (6.12).

Since the starting approximations are more accurate for small h, the number
of necessary iterations decreases drastically. In particular, for the 4th order method
we need about 16 iterations per step for h = 2π/25, but at most 2 iterations when
h ≤ 2π/800. If one is interested in high accuracy computations (e.g., long-time
simulations in astronomy), for which the error over one period is not larger than
10−10, Table 6.1 illustrates that high order methods (p ≥ 12) are most efficient.

Newton-Type Iterations. A standard technique for solving nonlinear equations is
Newton’s method or some modification of it. Writing the nonlinear system (6.1) of
an implicit Runge–Kutta method as F (Z) = 0 with Z = (Z1n, . . . , Zsn)T , the
Newton iteration is

Zk+1 = Zk −M−1F (Zk), (6.17)

where M is some approximation to the Jacobian matrix F ′(Zk). Since the solution
Z of the nonlinear system is O(h) close to zero, it is common to use M = F ′(0)
so that the matrix M is independent of the iteration index k. In our special situation
we get

M = I ⊗ I − hA⊗ J (6.18)

with J = f ′(yn). Here, I denotes the identity matrix of suitable dimension, and A
is the Runge–Kutta matrix.

We repeat the experiment of Table 6.1 with modified Newton iterations instead
of fixed-point iterations. The result is shown in Table 6.2. We have suppressed the
error at the end of the period, because it is the same as in Table 6.1. As expected, the
convergence is faster (i.e., the number of iterations per step is smaller) so that the
total number of function evaluations is reduced. However, we do not see in this table
that we computed at every step the Jacobian f ′(yn) and an LR-decomposition of
the matrix M . Even if we exploit the tensor product structure in (6.18) as explained
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Table 6.2. Statistics of Gauss methods (total number of function evaluations, number of
iterations per step) for computations of the Kepler problem over one period with e = 0.6

Modified Newton iteration (general problems)

Gauss h = 2π/25 h = 2π/50 h = 2π/100 h = 2π/200 h = 2π/400

order 4 383
7.7

511
5.1

765
3.8

1 125
2.8

1 677
2.1

order 8 597
5.5

883
3.9

1 387
3.0

2 307
2.4

3 667
1.8

order 12 763
4.7

1 095
3.3

1 717
2.5

3 003
2.2

5 689
2.0

in Hairer & Wanner (1996, Sect. IV.8), the cpu time is now considerably larger.
Further improvements are possible, if the Jacobian of f and hence also the LR-
decomposition of M is frozen over a couple of steps. But all these efforts can hardly
beat (in cpu time) the straightforward fixed-point iterations. In accordance with the
experience of Sanz-Serna & Calvo (1994, Sect. 5.5) we recommend in general the
use of fixed-point iterations.

Separable Systems and Second Order Differential Equations. Many interesting
differential equations are of the form

η̇ = f(y), ẏ = g(η). (6.19)

For example, the second order differential equation ÿ = f(y) is obtained by putting
g(η) = η. Also Hamiltonian systems with separable Hamiltonian H(p, q) = T (p)+
U(q) are of the form (6.19).

For this particular system the Runge–Kutta equations (6.1) become

ζin − h
s∑

j=1

aijf(yn + Zjn) = 0, Zin − h
s∑

j=1

aijg(ηn + ζjn) = 0.

In this case we can still do better: instead of the standard fixed-point iteration (6.16)
we apply a Gauss-Seidel like iteration

ζk+1
in = h

s∑
j=1

aijf(yn + Zk
jn), Zk+1

in = h

s∑
j=1

aijg(ηn + ζk+1
jn ), (6.20)

which is explicit for separable systems (6.19). Notice that the starting approxima-
tions have to be computed only for ζin. Those for Zin are then obtained by (6.20)
with k + 1 = 0.

For second order differential equations ÿ = f(y), where g(η) = η, this iteration
becomes

Zk+1
in = hciηn + h2

s∑
j=1

âijf(yn + Zk
jn), (6.21)
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Table 6.3. Statistics of iterations (6.20) for Gauss methods (total number of function evalua-
tions, number of iterations per step) for computations of the Kepler problem over one period
with e = 0.6

Fixed-point iteration (separable problems)

Gauss h = 2π/25 h = 2π/50 h = 2π/100 h = 2π/200 h = 2π/400

order 4 437
8.7

603
6.0

857
4.3

1 201
3.0

1 717
2.1

order 8 613
5.6

923
4.1

1 427
3.1

2 339
2.4

3 647
1.8

order 12 781
4.9

1 131
3.4

1 741
2.6

3 027
2.2

5 677
2.0

where ci =
∑s

j=1 aij and âij are the entries of the square A2 of the Runge–Kutta
matrix (any Nyström method could be applied as well). Due to the factor h2 in (6.21)
we expect this iteration to converge about twice as fast as the standard fixed-point
iteration.

The Kepler problem is a second order differential equation, so that the iteration
(6.21) can be applied. In analogy to the previous tables we present in Table 6.3 the
statistics of such an implementation of the Gauss methods. We observe that for rel-
atively large step sizes the number of iterations required per step in nearly halved
(compared to Table 6.1). For high accuracy requirements the number of necessary
iterations is surprisingly small, and the question arises whether such an implemen-
tation can compete with high order explicit composition methods.

Comparison Between Implicit Runge–Kutta and Composition Methods. We
consider second order differential equations ÿ = f(y), so that composition methods
based on the explicit Störmer–Verlet scheme can be applied. We use the coeffi-
cients of method (V.3.14) which has turned out to be excellent in the experiments of
Sect. V.3.2. It is a method of order 8 and uses 17 function evaluations per integration
step.

We compare it with the Gauss methods of order 8 and 12 (i.e., s = 4 and s = 6).
As a starting approximation for the solution of the nonlinear system (6.1) we use
(6.7) with m = 3, µ1 = 0, µ2 = 1, µ3 = 1.75, µij chosen such that (6.11) holds
for k = 1, . . . , s+ i− 1, and βij , νij such that order s+ 2 is obtained. Since we are
concerned with second order differential equations, we apply the iterations (6.20)
until the norm of the difference of two successive approximations is below 10−17.

For both classes of methods we use compensated summation (Algorithm 5.1),
which permits us to reduce rounding errors. For composition methods we apply this
technique for all updates of the basic integrator. For Runge–Kutta methods, we use
it for adding the increment to yn and also for computing the sum

∑s
i=1 biki.

The work–precision diagrams of the comparison are given in Fig. 6.2. The upper
pictures correspond to the Kepler problem with e = 0.6 and an integration over 100
periods; the lower pictures correspond to the outer solar system with data given in
Sect. I.2.4 and an integration over 500 000 earth days. The left pictures show the
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Fig. 6.2. Work–precision diagrams for two problems (Kepler and outer solar system) and
three numerical integrators (composition method with coefficients of method (V.3.14) based
on the explicit Störmer–Verlet scheme and the Gauss methods of orders 8 and 12)

Euclidean norm of the error at the end of the integration interval as a function of
total numbers of function evaluations required for the integration; the pictures to the
right present the same error as a function of the cpu times (with optimizing compiler
on a SunBlade 100 workstation). We can draw the following conclusions from this
experiment:

• the implementation of composition methods based on the Störmer–Verlet scheme
is extremely easy; that of implicit Runge–Kutta methods is slightly more involved
because it requires a stopping criterion for the fixed-point iterations;

• the overhead (total cpu time minus that used for the function evaluations) is much
higher for the implicit Runge–Kutta methods; this is seen from the fact that im-
plicit Runge–Kutta methods require less function evaluations for a given accu-
racy, but often more cpu time;

• among the two Gauss methods, the higher order method is more efficient for all
precisions of practical interest;
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• for very accurate computations (say, in quadruple precision), high order Runge–
Kutta methods are more efficient than composition methods;

• much of the computation in the Runge–Kutta code can be done in parallel (e.g.,
the s function evaluations of a fixed-point iteration); composition methods do not
have this potential;

• implicit Runge–Kutta methods can be applied to general (non-separable) differ-
ential equations, and the cost of the implementation is at most twice as large; if
one is obliged to use an implicit method as the basic method for composition,
many advantages of composition methods are lost.

Both classes of methods (composition and implicit Runge–Kutta) are of interest
in the geometric integration of differential equations. Each one has its advantages
and disadvantages.

Fortran codes of these computations are available on the Internet under the
homepage <http://www.unige.ch/math/folks/hairer>. A Matlab version of these
codes is described in E. & M. Hairer (2003).

VIII.7 Exercises

1. Consider a one-step method applied to a Hamiltonian system. Give a proba-
bilistic proof of the property that the error of the numerical Hamiltonian due to
roundoff grows like O(

√
t eps).

2. Prove that the collocation polynomial can be written as

wn(t) = yn + h

s∑
i=1

βi(t) f(Yin),

where the polynomials βi(t) are a solution of

s∑
j=1

βj(t) ck−1
j =

tk

k
.

3. Apply your favourite code to the Kepler problem and to the outer solar system
with data as in Fig. 6.2. Plot a work-precision diagram.
Remark. Figure 7.1 shows our results obtained with the 8th order Runge–Kutta
code Dop853 (Hairer, Nørsett & Wanner 1993) compared to an 8th order com-
position method. Rounding errors are more pronounced for Dop853, because
compensated summation is not applied. Computations on shorter time inter-
vals and comparisons of required function evaluations would be more in favour
for Dop853. It is also of interest to consider high order Runge–Kutta Nyström
methods.

4. Consider starting approximations

Y 0
in = yn−2 + h

s∑
j=1

β
(2)
ij f(Yj,n−2) + h

s∑
j=1

β
(1)
ij f(Yj,n−1) (7.1)
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Fig. 7.1. Work–precision diagrams for the explicit, variable step size Runge–Kutta code
Dop853 applied to two problems (Kepler and outer solar system). For a comparison, the
results of Fig. 6.2 for the composition method are included

which use the internal stages of two consecutive steps without any additional
function evaluation. What are the conditions such that (7.1) is of order s+1, of
order s + 2?
Compare the efficiency of these formulas with the algorithms (A) and (B) of
Sect. VIII.6.1.

5. Prove that for a second order differential equation ÿ = f(y) (more precisely,
for ẏ = z, ż = f(y)) the application of the s-stage Gauss method gives

yn+1 = yn + hẏn + h2
s∑

i=1

bi(1− ci)f(yn + Zin)

ẏn+1 = ẏn + h
s∑

i=1

bif(yn + Zin),

where Zin is obtained from the iteration (6.21).
Hint. The coefficients of the Gauss methods satisfy

∑
j bjaji = bi(1− ci) for

all i.



Chapter IX.
Backward Error Analysis and Structure
Preservation

One of the greatest virtues of backward analysis . . . is that when it is
the appropriate form of analysis it tends to be very markedly superior
to forward analysis. Invariably in such cases it has remarkable formal
simplicity and gives deep insight into the stability (or lack of it) of the
algorithm. (J.H. Wilkinson, IMA Bulletin 1986)

The origin of backward error analysis dates back to the work of Wilkinson (1960) in
numerical linear algebra. For the study of integration methods for ordinary differen-
tial equations, its importance was seen much later. The present chapter is devoted to
this theory. It is very useful, when the qualitative behaviour of numerical methods
is of interest, and when statements over very long time intervals are needed. The
formal analysis (construction of the modified equation, study of its properties) gives
already a lot of insight into numerical methods. For a rigorous treatment, the modi-
fied equation, which is a formal series in powers of the step size, has to be truncated.
The error, induced by such a truncation, can be made exponentially small, and the
results remain valid on exponentially long time intervals.

IX.1 Modified Differential Equation – Examples

�

�
�

ẏ = f(y)

ϕt(y0)

yn+1 = Φh(yn)

˙̃y = fh(ỹ )

exact

numerical

exact

Consider an ordinary differen-
tial equation

ẏ = f(y),

and a numerical method Φh(y)
which produces the approxi-
mations

y0, y1, y2, . . . .

A forward error analysis consists of the study of the errors y1−ϕh(y0) (local error)
and yn − ϕnh(y0) (global error) in the solution space. The idea of backward error
analysis is to search for a modified differential equation ˙̃y = fh(ỹ ) of the form

˙̃y = f(ỹ ) + hf2(ỹ ) + h2f3(ỹ ) + . . . , (1.1)
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such that yn = ỹ(nh), and in studying the difference of the vector fields f(y) and
fh(y). This then gives much insight into the qualitative behaviour of the numerical
solution and into the global error yn − y(nh) = ỹ(nh) − y(nh). We remark that
the series in (1.1) usually diverges and that one has to truncate it suitably. The effect
of such a truncation will be studied in Sect. IX.7. For the moment we content our-
selves with a formal analysis without taking care of convergence issues. The idea
of interpreting the numerical solution as the exact solution of a modified equation
is common to many numerical analysts (“. . . This is possible since the map is the
solution of some physical Hamiltonian problem which, in some sense, is close to the
original problem”, Ruth (1983), or “. . . the symplectic integrator creates a numeri-
cal Hamiltonian system that is close to the original . . .”, Gladman, Duncan & Candy
1991). A systematic study started with the work of Griffiths & Sanz-Serna (1986),
Feng (1991), Sanz-Serna (1992), Yoshida (1993), Eirola (1993), Fiedler & Scheurle
(1996), and many others.

For the computation of the modified equation (1.1) we put y := ỹ(t) for a fixed t,
and we expand the solution of (1.1) into a Taylor series

ỹ(t + h) = y + h
(
f(y) + hf2(y) + h2f3(y) + . . .

)

+
h2

2!
(
f ′(y) + hf ′

2(y) + . . .
)(

f(y) + hf2(y) + . . .
)

+ . . . .
(1.2)

We assume that the numerical method Φh(y) can be expanded as

Φh(y) = y + hf(y) + h2d2(y) + h3d3(y) + . . . (1.3)

(the coefficient of h is f(y) for consistent methods). The functions dj(y) are known
and are typically composed of f(y) and its derivatives. For the explicit Euler method
we simply have dj(y) = 0 for all j ≥ 2. In order to get ỹ(nh) = yn for all n, we
must have ỹ(t + h) = Φh(y). Comparing like powers of h in the expressions (1.2)
and (1.3) yields recurrence relations for the functions fj(y), namely,

f2(y) = d2(y)− 1

2!
f ′f(y) (1.4)

f3(y) = d3(y)− 1

3!

(
f ′′(f, f)(y) + f ′f ′f(y)

)
− 1

2!

(
f ′f2(y) + f ′

2f(y)
)
.

Example 1.1. Consider the scalar differential equation

ẏ = y2, y(0) = 1 (1.5)

with exact solution y(t) = 1/(1 − t). It has a singularity at t = 1. We apply the
explicit Euler method yn+1 = yn + hf(yn) with step size h = 0.02. The picture in
Fig. 1.1 presents the exact solution (dashed curve) together with the numerical so-
lution (bullets). The above procedure for the computation of the modified equation,
implemented as a Maple program (see Hairer & Lubich 2000) gives
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Fig. 1.1. Solutions of the modified equation for the problem (1.5)

> fcn := y -> yˆ2:
> nn := 6:
> fcoe[1] := fcn(y):
> for n from 2 by 1 to nn do
> modeq := sum(hˆj*fcoe[j+1], j=0..n-2):
> diffy[0] := y:
> for i from 1 by 1 to n do
> diffy[i] := diff(diffy[i-1],y)*modeq:
> od:
> ytilde := sum(hˆk*diffy[k]/k!, k=0..n):
> res := ytilde-y-h*fcn(y):
> tay := convert(series(res,h=0,n+1),polynom):
> fcoe[n] := -coeff(tay,h,n):
> od:
> simplify(sum(hˆj*fcoe[j+1], j=0..nn-1));

Its output is

˙̃y = ỹ 2 − hỹ 3 + h2 3

2
ỹ 4 − h3 8

3
ỹ 5 + h4 31

6
ỹ 6 − h5 157

15
ỹ 7 ± . . . . (1.6)

The above picture also presents the solution of the modified equation, when trun-
cated after 1,2,3, and 4 terms. We observe an excellent agreement of the numerical
solution with the exact solution of the modified equation.

A similar program for the implicit midpoint rule (I.1.7) computes the modified
equation

˙̃y = ỹ 2 + h2 1

4
ỹ 4 + h4 1

8
ỹ 6 + h6 11

192
ỹ 8 + h8 3

128
ỹ 10 ± . . . , (1.7)

and for the classical Runge–Kutta method of order 4 (left tableau of (II.1.8))

˙̃y = ỹ 2 − h4 1

24
ỹ 6 + h6 65

576
ỹ 8 − h7 17

96
ỹ 9 + h8 19

144
ỹ 10 ± . . . . (1.8)

We observe that the perturbation terms in the modified equation are of size
O(hp), where p is the order of the method. This is true in general.
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Theorem 1.2. Suppose that the method yn+1 = Φh(yn) is of order p, i.e.,

Φh(y) = ϕh(y) + hp+1δp+1(y) +O(hp+2),

where ϕt(y) denotes the exact flow of ẏ = f(y), and hp+1δp+1(y) the leading term
of the local truncation error. The modified equation then satisfies

˙̃y = f(ỹ ) + hpfp+1(ỹ ) + hp+1fp+2(ỹ ) + . . . , ỹ(0) = y0 (1.9)

with fp+1(y) = δp+1(y).

Proof. The construction of the functions fj(y) (see the beginning of this section)
shows that fj(y) = 0 for 2 ≤ j ≤ p if and only if Φh(y)− ϕh(y) = O(hp+1). 
�

A first application of the modified equation (1.1) is the existence of an asymp-
totic expansion of the global error. Indeed, by the nonlinear variation of constants
formula, the difference between its solution ỹ(t) and the solution y(t) of ẏ = f(y)
satisfies

ỹ(t)− y(t) = hpep(t) + hp+1ep+1(t) + . . . . (1.10)

Since yn = ỹ(nh) +O(hN ) for the solution of a truncated modified equation, this
proves the existence of an asymptotic expansion in powers of h for the global error
yn − y(nh).

A large part of this chapter studies properties of the modified differential equa-
tion, and the question of the extent to which structures (such as conservation of
invariants, Hamiltonian structure) in the problem ẏ = f(y) can carry over to the
modified equation.

Example 1.3. We next consider the Lotka–Volterra equations

q̇ = q(p− 1), ṗ = p(2− q),

and we apply (a) the explicit Euler method, and (b) the symplectic Euler method,
both with constant step size h = 0.1. The first terms of their modified equations are

(a) q̇ = q(p− 1)− h

2
q(p2 − pq + 1) +O(h2),

ṗ = −p(q − 2)− h

2
p(q2 − pq − 3q + 4) +O(h2),

(b) q̇ = q(p− 1)− h

2
q(p2 + pq − 4p + 1) +O(h2),

ṗ = −p(q − 2) + h

2
p(q2 + pq − 5q + 4) +O(h2).

Figure 1.2 shows the numerical solutions for initial values indicated by a thick dot.
In the pictures to the left they are embedded in the exact flow of the differential
equation, whereas in those to the right they are embedded in the flow of the modi-
fied differential equation, truncated after the h2 terms. As in the first example, we
observe an excellent agreement of the numerical solution with the exact solution of
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Fig. 1.2. Numerical solution compared to the exact and modified flows
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Fig. 1.3. Study of the truncation in the modified equation

the modified equation. For the symplectic Euler method, the solutions of the trun-
cated modified equation are periodic, as is the case for the unperturbed problem
(Exercise 5).

In Fig. 1.3 we present the numerical solution and the exact solution of the mod-
ified equation, once truncated after the h terms (dashed-dotted), and once truncated
after the h2 terms (dotted). The exact solution of the problem is included as a solid
curve. This shows that taking more terms in the modified equation usually improves
the agreement of its solution with the numerical approximation of the method.
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Example 1.4. For a linear differential equation with constant coefficients

ẏ = Ay, y(0) = y0

we consider numerical methods which yield yn+1 = R(hA)yn, where R(z) is the
stability function (VI.4.9) of the method. In this case we get yn = R(hA)ny0, so
that yn = ỹ(nh), where ỹ(t) = R(hA)t/hy0 = exp

(
t
h lnR(hA)

)
y0 is the solution

of the modified differential equation

˙̃y = 1

h
lnR(hA) ỹ = (A + hb2A

2 + h2b3A
3 + . . .) ỹ (1.11)

with suitable constants b2, b3, . . . . Since R(z) = 1+z+O(z2) and ln(1+x) = x−
x2/2+O(x3) both have a positive radius of convergence, the series (1.11) converges
for |h| < h0 with some h0 > 0. We shall see later that this is an exceptional
situation. In general, the modified equation is a formal divergent series.

IX.2 Modified Equations of Symmetric Methods

In this and the following sections we investigate how the structure of the differential
equation and geometric properties of the method are reflected in the modified differ-
ential equation. Here we begin by studying this question for symmetric/reversible
methods.

Consider a numerical method Φh. Recall that its adjoint yn+1 = Φ∗
h(yn) is

defined by the relation yn = Φ−h(yn+1) (see Definition II.1.4).

Theorem 2.1 (Adjoint Methods). Let fj(y) be the coefficient functions of the
modified equation for the method Φh. Then, the coefficient functions f∗

j (y) of the
modified equation for the adjoint method Φ∗

h satisfy

f∗
j (y) = (−1)j+1fj(y). (2.1)

Proof. The solution ỹ(t) of the modified equation for Φ∗
h has to satisfy ỹ(t) =

Φ−h

(
ỹ(t + h)

)
or, equivalently, ỹ(t− h) = Φ−h(y) with y := ỹ(t). We get (2.1) if

we replace h with −h in the formulas (1.1), (1.2) and (1.3). 
�

For symmetric methods we have Φ∗
h = Φh, implying f∗

j (y) = fj(y). We there-
fore get the following corollary to Theorem 2.1.

Theorem 2.2 (Symmetric Methods). The coefficient functions of the modified
equation of a symmetric method satisfy fj(y) = 0 whenever j is even, so that (1.1)
has an expansion in even powers of h. 
�

This theorem explains the h2-expansion in the modified equation (1.7) of the
midpoint rule.

As a consequence of Theorem 2.2, the asymptotic expansion (1.10) of the global
error is also in even powers of h. This property is responsible for the success of h2-
extrapolation methods.
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Consider now a numerical method applied to a ρ-reversible differential equation
as studied in Sect. V.1. Recall from Theorem V.1.5 that a symmetric method is ρ-
reversible under the ρ-compatibility condition (V.1.4), which is satisfied for most
numerical methods.

Theorem 2.3 (Reversible Methods). Consider a ρ-reversible differential equation
ẏ = f(y) and a ρ-reversible numerical method Φh(y). Then, every truncation of the
modified differential equation is again ρ-reversible.

Proof. Let fj(y) be the jth coefficient of the modified equation (1.1) for Φh. The
proof is by induction on j. So assume that for j = 1, . . . , r, the vector field fj(y) is
ρ-reversible, i.e.,

ρ ◦ fj = −fj ◦ ρ.

We show that the same relation holds also for j = r + 1. By assumption, the trun-
cated modified equation

˙̃y = f(ỹ ) + hf2(ỹ ) + . . . + hr−1fr(ỹ )

is ρ-reversible, so that by (V.1.2), it has a ρ-reversible flow ϕr,t(y), that is, ρ◦ϕr,t =
ϕ−1

r,t ◦ ρ. By construction of the modified equation, we have

Φh(y) = ϕr,h(y) + hr+1fr+1(y) +O(hr+2).

Since ϕr,h(y) = y +O(h), this implies

Φ−1
h (y) = ϕ−1

r,h(y)− hr+1fr+1(y) +O(hr+2).

Since both Φh and ϕr,h are ρ-reversible maps, these two relations yield ρ ◦ fr+1 =
−fr+1 ◦ ρ as desired. 
�

IX.3 Modified Equations of Symplectic Methods

We now present one of the most important results of this chapter. We consider a
Hamiltonian system ẏ = J−1∇H(y) with an infinitely differentiable Hamiltonian
H(y), and we show that the modified equation of symplectic methods is also Hamil-
tonian.

IX.3.1 Existence of a Local Modified Hamiltonian

. . . if we neglect convergence questions then one can always find a formal
integral . . . (J. Moser 1968)

Theorem 3.1. If a symplectic method Φh(y) is applied to a Hamiltonian system
with a smooth Hamiltonian H : R

2d → R , then the modified equation (1.1) is
also Hamiltonian. More precisely, there exist smooth functions Hj : R

2d → R for
j = 2, 3, . . ., such that fj(y) = J−1∇Hj(y).
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The following proof by induction, whose ideas can be traced back to Moser
(1968), was given by Benettin & Giorgilli (1994) and Tang (1994). It can be ex-
tended to many other situations. We have already encountered its reversible version
in the proof of Theorem 2.3.

Proof. Assume that fj(y) = J−1∇Hj(y) for j = 1, 2, . . . , r (this is satisfied for
r = 1, because f1(y) = f(y) = J−1∇H(y)). We have to prove the existence of a
Hamiltonian Hr+1(y). The idea is to consider the truncated modified equation

˙̃y = f(ỹ ) + hf2(ỹ ) + . . . + hr−1fr(ỹ ), (3.1)

which is a Hamiltonian system with Hamiltonian H(y)+hH2(y)+. . .+hr−1Hr(y).
Its flow ϕr,t(y0), compared to that of (1.1), satisfies

Φh(y0) = ϕr,h(y0) + hr+1fr+1(y0) +O(hr+2),

and also
Φ′

h(y0) = ϕ′
r,h(y0) + hr+1f ′

r+1(y0) +O(hr+2).

By our assumption on the method and by the induction hypothesis, Φh and ϕr,h

are symplectic transformations. This, together with ϕ′
r,h(y0) = I +O(h), therefore

implies

J = Φ′
h(y0)TJΦ′

h(y0) = J + hr+1
(
f ′

r+1(y0)TJ + Jf ′
r+1(y0)

)
+O(hr+2).

Consequently, the matrix Jf ′
r+1(y) is symmetric and the existence of Hr+1(y) sat-

isfying fr+1(y) = J−1∇Hr+1(y) follows from the Integrability Lemma VI.2.7.
This part of the proof is similar to that of Theorem VI.2.6. 
�

For Hamiltonians H : D → R the statement of the above theorem remains valid
with Hj : D → R on domains D ⊂ R

2d on which the Integrability Lemma VI.2.7
is applicable. This is the case for simply connected domains D, but not in general
(see the discussion after the proof of Lemma VI.2.7).

IX.3.2 Existence of a Global Modified Hamiltonian

By Lemma VI.5.3 every symplectic one-step method Φh : (p, q) �→ (P,Q) can be
locally expressed in terms of a generating function S(P, q, h) as

p = P +
∂S

∂q
(P, q, h), Q = q +

∂S

∂P
(P, q, h). (3.2)

This property allows us to give an independent proof of Theorem 3.1 and in addition
to show that the modified equation is Hamiltonian with H̃(p, q) defined on the same
domain as the generating function. The following result is mentioned in Benettin &
Giorgilli (1994) and in the thesis of Murua (1994), p. 100.
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Theorem 3.2. Assume that the symplectic method Φh has a generating function

S(P, q, h) = hS1(P, q) + h2S2(P, q) + h3S3(P, q) + . . . (3.3)

with smooth Sj(P, q) defined on an open set D. Then, the modified differential equa-
tion is a Hamiltonian system with

H̃(p, q) = H(p, q) + hH2(p, q) + h2H3(p, q) + . . . , (3.4)

where the functions Hj(p, q) are defined and smooth on the whole of D.

Proof. By Theorem VI.5.7, the exact solution (P,Q) =
(
p̃(t), q̃(t)

)
of the Hamil-

tonian system corresponding to H̃(p, q) is given by

p = P +
∂S̃

∂q
(P, q, t), Q = q +

∂S̃

∂P
(P, q, t),

where S̃ is the solution of the Hamilton–Jacobi differential equation

∂S̃

∂t
(P, q, t) = H̃

(
P, q +

∂S̃

∂P
(P, q, t)

)
, S̃(P, q, 0) = 0. (3.5)

Since H̃ depends on the parameter h, this is also the case for S̃. Our aim is to
determine the functions Hj(p, q) such that the solution S̃(P, q, t) of (3.5) coincides
for t = h with (3.3).

We first express S̃(P, q, t) as a series

S̃(P, q, t) = t S̃1(P, q, h) + t2S̃2(P, q, h) + t3S̃3(P, q, h) + . . . ,

insert it into (3.5) and compare powers of t. This allows us to obtain the functions
S̃j(p, q, h) recursively in terms of derivatives of H̃:

S̃1(p, q, h) = H̃(p, q)

2 S̃2(p, q, h) =
(∂H̃

∂q
· ∂S̃1

∂P

)
(p, q, h) (3.6)

3 S̃3(p, q, h) =
(∂H̃

∂q
· ∂S̃2

∂P

)
(p, q, h) +

1
2

(
∂2H̃

∂q2

(∂S̃1

∂P
,
∂S̃1

∂P

))
(p, q, h).

We then write S̃j as a series

S̃j(p, q, h) = S̃j1(p, q) + h S̃j2(p, q) + h2S̃j3(p, q) + . . . ,

insert it and the expansion (3.4) for H̃ into (3.6), and compare powers of h. This
yields S̃1k(p, q) = Hk(p, q) and for j > 1 we see that S̃jk(p, q) is a function of
derivatives of Hl with l < k.
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The requirement S(p, q, h) = S̃(p, q, h) finally shows S1(p, q) = S̃11(p, q),
S2(p, q) = S̃12(p, q) + S̃21(p, q), etc., so that

Sj(p, q) = Hj(p, q) + “function of derivatives of Hk(p, q) with k < j”.

For a given generating function S(P, q, h), this recurrence relation allows us to de-
termine successively the Hj(p, q). We see from these explicit formulas that the func-
tions Hj are defined on the same domain as the Sj . 
�

As a consequence of Theorem 3.2 and Theorems VI.5.4 and VI.5.5 we obtain
the following result.

Theorem 3.3. A symplectic (partitioned) Runge–Kutta method applied to a system
with smooth Hamiltonian H : D → R (with D ⊂ R

2d an arbitrary open set) has a
modified Hamiltonian (3.4) with smooth functions Hj : D → R. 
�

Example 3.4 (Symplectic Euler Method). The symplectic Euler method is noth-
ing other than (3.2) with S(P, q, h) = hH(P, q) . We therefore have (3.3) with
S1(p, q) = H(p, q) and Sj(p, q) = 0 for j > 1. Following the constructive proof of
Theorem 3.2 we obtain

H̃ = H − h

2
HpHq +

h2

12

(
HppH

2
q + HqqH

2
p + 4HpqHqHp

)
+ . . . . (3.7)

as the modified Hamiltonian of the symplectic Euler method. For vector-valued p
and q, the expression HpHq is the scalar product of the vectors Hp and Hq, and
HppH

2
q = Hpp(Hq,Hq) with the second derivative interpreted as a bilinear map-

ping.
As a particular example consider the pendulum problem (I.1.13), which is

Hamiltonian with H(p, q) = p2/2− cos q, and apply the symplectic Euler method.
By (3.7), the modified Hamiltonian is

H̃(p, q) = H(p, q)− h

2
p sin q +

h2

12

(
sin2 q + p2 cos q

)
+ . . . .

This example illustrates that the modified equation corresponding to a separable
Hamiltonian (i.e., H(p, q) = T (p) + U(q)) is in general not separable. Moreover,
it shows that the modified equation of a second order differential equation q̈ =
−∇U(q) (or equivalently, q̇ = p, ṗ = −∇U(q)) is in general not a second order
equation.

In principle, the constructive proof of Theorem 3.2 allows us to explicitly com-
pute the modified equation of every symplectic (partitioned) Runge–Kutta method.
In Sect. IX.9.3 below we shall, however, give explicit formulas for the modified
Hamiltonian in terms of trees. This also yields an alternative proof of Theorem 3.3.
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IX.3.3 Poisson Integrators

Consider a Poisson system, i.e., a differential equation

ẏ = B(y)∇H(y), (3.8)

where the structure matrix B(y) satisfies the conditions of Lemma VII.2.3, and
apply a Poisson integrator (Definition VII.4.6).

Theorem 3.5. If a Poisson integrator Φh(y) is applied to the Poisson system (3.8),
then the modified equation is locally a Poisson system. More precisely, for every
y0 ∈ R

n there exist a neighbourhood U and smooth functions Hj : U → R such
that on U , the modified equation is of the form

˙̃y = B(ỹ)
(
∇H(ỹ) + h∇H2(ỹ) + h2∇H3(ỹ) + . . .

)
. (3.9)

Proof. We use the local change of coordinates (u, c) = χ(y) of the Darboux–Lie
Theorem. By Corollary VII.3.6, this transforms (3.8) to

u̇ = J−1∇uK(u, c), ċ = 0,

where K(u, c) = H(y) and∇u is the gradient with respect to u. The same transfor-
mation takes Φh(y) to χ◦Φh◦χ−1(u, c) =

(
Ψ1

h(u, c), c
)
, where by Lemma VII.4.10

u �→ Ψ1
h(u, c) is a symplectic transformation for every c. By Theorem 3.1, the mod-

ified equation in the (u, c) variables is of the form

˙̃u = J−1∇uK̃(ũ, c̃), ˙̃c = 0

with K̃(u, c) = K(u, c) + hK2(u, c) + h2K3(u, c) + . . . . Transforming back to
the y-variables gives the modified equation (3.9) with Hj(y) = Kj(u, c). 
�

The above result is purely local in that it relies on the local transformation of the
Darboux–Lie Theorem. It can be made more global under additional conditions on
the differential equation.

Theorem 3.6. If H(y) and B(y) are defined and smooth on a simply connected
domain D, and if B(y) is invertible on D, then a Poisson integrator Φh(y) has a
modified equation (3.9) with smooth functions Hj(y) defined on all of D.

Proof. By the construction of Sect. IX.1, the coefficient functions fj(y) of the mod-
ified equation (1.1) are defined and smooth on D. Since B(y) is assumed invertible,
there exist unique smooth functions gj(y) such that fj(y) = B(y)gj(y). It remains
to show that gj(y) = ∇Hj(y) for a function Hj(y) defined on D.

By the local result of Theorem 3.5, we know that for every y0 ∈ D there exist
functions H0

j (y) such that gj(y) = ∇H0
j (y) in a neighbourhood of y0. This implies

that the Jacobian of gj(y) is symmetric on D. The Integrability Lemma VI.2.7 thus
proves the existence of functions Hj(y) defined on all of D such that gj(y) =
∇Hj(y). 
�



348 IX. Backward Error Analysis and Structure Preservation

IX.4 Modified Equations of Splitting Methods

For splitting methods applied to a differential equation

ẏ = f [1](y) + f [2](y), (4.1)

the modified differential equation is obtained directly with the calculus of Lie deriv-
atives and the Baker-Campbell-Hausdorff formula. This approach is due to Yoshida
(1993) who considered the case of separable Hamiltonian systems.

First-Order Splitting. Consider the splitting method

Φh = ϕ
[1]
h ◦ ϕ

[2]
h ,

where ϕ
[i]
h is the time-h flow of ẏ = f [i](y). In terms of the Lie derivatives Di

defined by Dig(y) = g′(y)f [i](y), this method becomes, using Lemma III.5.1,

Φh = exp(hD2) exp(hD1)Id,

and with the BCH formula (III.4.11), (III.4.12) this reads

Φh = exp(hD̃)Id

with

D̃ = D1 +D2 + h

2
[D2,D1]+

h2

12

(
[D2, [D2,D1]]+ [D1, [D1,D2]]

)
+ . . . . (4.2)

It follows that Φh is formally the exact time-h flow of the modified equation

˙̃y = f̃(ỹ) with f̃ = D̃ Id. (4.3)

This gives
f̃(y) = f(y) + hf2(y) + h2f3(y) + . . .

with f = f [1] + f [2] and

f2 = 1

2

(
f [1]′f [2] − f [2]′f [1]

)

f3 = 1

12

(
f [1]′′(f [2], f [2]) + f [1]′f [2]′f [2] − f [2]′′(f [1], f [2])− f [2]′f [1]′f [2]

+f [2]′′(f [1], f [1]) + f [2]′f [1]′f [1] − f [1]′′(f [2], f [1])− f [1]′f [2]′f [1]
)
.

Strang Splitting. For the symmetric splitting

Φ
[S]
h = ϕ

[1]
h/2 ◦ ϕ

[2]
h ◦ ϕ

[1]
h/2

the symmetric BCH formula (III.4.14), (III.4.15) yields
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Φ
[S]
h = exp(h

2
D1) exp(hD2) exp(h

2
D1) Id = exp(hD̃[S]) Id

with

D̃[S] = D1 + D2 + h2
(
− 1

24
[D1, [D1,D2]] + 1

12
[D2, [D2,D1]]

)
+ . . . . (4.4)

Hence, Φ[S]
h is the formally exact flow of the modified equation

˙̃y = f̃ [S](ỹ) with f̃ [S] = D̃[S] Id. (4.5)

This gives
f̃ [S](y) = f(y) + h2f

[S]
3 (y) + h4f

[S]
5 (y) + . . .

with f = f [1] + f [2] and

f
[S]
3 =

(
1

12

(
f [1]′′(f [2], f [2]) + f [1]′f [2]′f [2] − f [2]′′(f [1], f [2])− f [2]′f [1]′f [2]

)

− 1

24

(
f [2]′′(f [1], f [1]) + f [2]′f [1]′f [1] − f [1]′′(f [2], f [1])− f [1]′f [2]′f [1]

))
.

The modified equations for general splitting methods (III.5.13) are obtained in the
same way, using Lemma III.5.5.

Hamiltonian Splittings. Consider a differential equation (4.1) where the vector
fields f [i](y) = J−1∇H [i](y) are Hamiltonian. Lemma VII.3.1 shows that the com-
mutator of the Lie derivatives of two Hamiltonian vector fields is the Lie derivative
of another Hamiltonian vector field which corresponds to the Poisson bracket of the
two Hamiltonians: [DF ,DG] = D{G,F}. This implies in particular that the modi-
fied differential equations (4.3) and (4.5) are again Hamiltonian. For the first-order
splitting, we thus get fj(y) = J−1∇Hj(y), where by (4.2) and (4.3),

H2 = 1

2
{H [1],H [2]}

H3 = 1

12

(
{{H [1],H [2]},H [2]}+ {{H [2],H [1]},H [1]}

)
,

and for the Strang splitting, by (4.4) and (4.5),

H
[S]
3 = − 1

24
{{H [2],H [1]},H [1]}+ 1

12
{{H [1],H [2]},H [2]}.

The explicit expressions from the BCH-formula show that the modified Hamiltonian
is defined on the same open set as the smooth Hamiltonians H [i].

For the splitting H(p, q) = T (p) + U(q) of a separable Hamiltonian, this ap-
proach gives an alternative derivation of the modified equation (3.7) of the sym-
plectic Euler method, and a simple construction of the modified equation of the
Störmer–Verlet method (Yoshida 1993). Here, the formula simplifies to

H̃ [S] = H + h2
(
− 1

24
Uqq(Tp, Tp) + 1

12
Tpp(Uq, Uq)

)
+ . . . . (4.6)
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IX.5 Modified Equations of Methods on Manifolds

We consider the relationship between numerical methods for differential equations
on manifolds and the associated modified differential equations. We give appli-
cations to the study of first integrals, constrained Hamiltonian systems, and Lie–
Poisson integrators.

IX.5.1 Methods on Manifolds and First Integrals

Consider a differential equation on a smooth manifold M,

ẏ = f(y) with f(y) ∈ TyM, (5.1)

with a smooth vector field f(y) defined on M.

Theorem 5.1. Let Φh : M→M be an integrator on the manifold M, with Φh(y)
depending smoothly on (y, h). Then, there exists a modified differential equation
on M,

˙̃y = f(ỹ ) + hf2(ỹ ) + h2f3(ỹ ) + . . . (5.2)

with smooth fj(y) ∈ TyM, such that ϕr,h(y) = Φh(y) +O(hr+1), where ϕr,t(y)
denotes the flow of the truncation of (5.2) after r terms.

For symmetric methods, the expansion (5.2) contains only even powers of h.

Proof. We choose a local parametrization y = χ(z) of the manifold M. In the
coordinates z the differential equation (5.1) reads

ż = F (z) with F (z) defined by χ′(z)F (z) = f(χ(z)),

and the numerical integrator becomes

Ψh(z) = χ−1 ◦ Φh ◦ χ(z).

Since F (z) and Ψh(z) are smooth, the standard backward error analysis on R
n of

Sect. IX.1 yields a modified equation for the integrator Ψh(z),

˙̃z = F (z̃ ) + hF2(z̃ ) + h2F3(z̃ ) + . . . .

Defining
fj(y) = χ′(z)Fj(z) for y = χ(z)

gives the desired vector fields fj(y) on M. It follows from the uniqueness of the
modified equation in the parameter space that fj(y) is independent of the choice of
the local parametrization.

The additional statement on symmetric methods follows from Theorem 2.2, be-
cause Ψh is symmetric if and only if Φh is symmetric. 
�

Under an analyticity assumption, the converse statement also holds.
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Theorem 5.2. Let the integrator Φh : U → R
n (with open U ⊂ R

n) be real
analytic in h, and let M = {y ∈ U ; g(y) = 0} with real analytic g : U → R

m.
If the coefficient functions fj(y) of the modified differential equation (5.2) satisfy
g′(y)fj(y) = 0 for all j and all y ∈ M, then the restriction of Φh to M defines an
integrator on M, i.e., Φh : M→M.

Proof. By the assumption on fj(y), the flow of the truncated modified equation
satisfies g ◦ ϕr,h(y) = 0 for all r ≥ 1 and all y ∈ M. Since ϕr,h(y) = Φh(y) +
O(hr+1), we have g ◦ Φh(y) = O(hr+1) for all r. The analyticity assumptions
therefore imply g ◦ Φh(y) = 0. 
�

Theorems 5.1 and 5.2 apply to many situations treated in Chap. IV.

First Integrals. The following result was obtained by Gonzalez, Higham & Stuart
(1999) and Reich (1999) with different arguments.

Corollary 5.3. Consider a differential equation ẏ = f(y) with a first integral I(y),
i.e., I ′(y)f(y) = 0 for all y. If the numerical method preserves this first integral,
then every truncation of the modified equation has I(y) as a first integral.

Proof. This follows from Theorem 5.1 by considering ẏ = f(y) as a differential
equation on the manifold M = {y ; I(y) = Const}, for which the tangent space is
TyM = {v ; I ′(y)v = 0}. 
�

The following converse of Corollary 5.3 is a direct consequence of Theorem 5.2.

Corollary 5.4. Consider a differential equation ẏ = f(y) with a real-analytic first
integral I(y). If the numerical method Φh(y) is real analytic in h, and if every
truncation of the modified equation has I(y) as a first integral, then the numerical
method preserves I(y) exactly, i.e., I

(
Φh(y)

)
= I(y) for all y. 
�

Projection Methods. Algorithm IV.4.2 defines a smooth mapping on the manifold
if the direction of projection depends smoothly on the position. This is satisfied
by orthogonal projection, but is not fulfilled if switching coordinate projections are
used (as in Example 4.3). The symmetric orthogonal projection method of Algo-
rithm V.4.1 gives a symmetric method on the manifold to which Theorem 5.1 can
be applied.

Methods Based on Local Coordinates. If the parametrization of the manifold em-
ployed in Algorithms IV.5.3 and V.4.5 depends smoothly on the position, then again
Theorem 5.1 applies. This is the case for the tangent space parametrization, but not
for the generalized coordinate partitioning considered in Sect. IV.5.3.

Corollary 5.5 (Lie Group Methods). Consider a differential equation on a matrix
Lie group G,

Ẏ = A(Y )Y,

where A(Y ) is in the associated Lie algebra g. A Lie group integrator Φh : G → G
has the modified equation
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˙̃
Y =

(
A(Ỹ ) + hA2(Ỹ ) + h2A3(Ỹ ) + . . .

)
Ỹ (5.3)

with Aj(Y ) ∈ g for Y ∈ G.

Proof. This is a direct consequence of Theorem 5.1 and (IV.6.3), viz., TY G =
{AY |A ∈ g}. 
�

IX.5.2 Constrained Hamiltonian Systems

In Sect. VII.1 we studied symplectic numerical integrators for constrained Hamil-
tonian systems

q̇ = Hp(p, q)
ṗ = −Hq(p, q)−G(q)Tλ

0 = g(q).
(5.4)

Assuming the regularity condition (VII.1.13), the Lagrange parameter λ = λ(p, q)
is given by (VII.1.12). This system can be interpreted as a differential equation on
the manifold

M =
{
(p, q) | g(q) = 0, G(q)Hp(p, q) = 0

}
, (5.5)

where G(q) = g′(q). The symplectic Euler method (VII.1.19)–(VII.1.20), the RAT-
TLE scheme (VII.1.26), and the Lobatto IIIA-IIIB pair (VII.1.27)–(VII.1.30) were
found to be symplectic integrators Φh on the manifold M.

Theorem 5.6. A symplectic integrator Φh : M → M for the constrained Hamil-
tonian system (5.4) has a modified equation which is locally of the form

˙̃q = H̃p(p̃, q̃)
˙̃p = −H̃q(p̃, q̃)−G(q̃)T λ̃

0 = g(q̃),

(5.6)

where λ̃ = λ̃(p̃, q̃) is given by (VII.1.12) with H replaced by H̃ , and

H̃(p, q) = H(p, q) + hH2(p, q) + h2H3(p, q) + . . . (5.7)

with Hj(p, q) satisfying G(q)∇pHj(p, q) = 0 for (p, q) ∈M and all j.

Proof. As explained in Example VII.2.7, a local parametrization (p, q) = χ(z) of
the manifold M transforms (5.4) to the Poisson system

ż = B(z)∇K(z) (5.8)

with B(z) = (χ′(z)TJχ′(z))−1 and K(z) = H(χ(z)). Lemma VII.4.9 implies
that the numerical method Φh(p, q) on M becomes a Poisson integrator Ψh(z) for
(5.8). By Theorem 3.5, Ψh(z) has the modified equation

˙̃z = B(z̃)
(
∇K(z̃) + h∇K2(z̃) + h2∇K3(z̃) + . . .

)
. (5.9)
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Let π be a smooth projection onto the manifold M, defined on a neighbourhood of
M in R

2d. We then define

Hj(p, q) = Kj

(
χ−1(π(p, q))

)
+ µ(p, q)TG(q)∇pH(p, q)

where we choose µ(p, q) such that

G(q)∇pHj(p, q) = 0 for (p, q) ∈M. (5.10)

This is possible because of the regularity assumption (VII.1.13), and because
G(q)∇pH(p, q) = 0 on M. The condition (5.10) implies that the system (5.6) can
be viewed as a differential equation on the original manifold M. Using the same
parametrization (p, q) = χ(z) as before shows that (5.6) is equivalent to (5.9). 
�

We note that, due to the arbitrary choice of the projection π, the functions
Hj(p, q) of the modified equation are uniquely defined only on M.

Global Modified Hamiltonian. If we restrict our considerations to partitioned
Runge–Kutta methods, it is possible to find Hj(p, q) in (5.7) that are globally de-
fined on M. Such a result is proved by Reich (1996a) and by Hairer & Wanner
(1996) for the constrained symplectic Euler method and the RATTLE algorithm, and
by Hairer (2003) for general symplectic partitioned Runge–Kutta schemes. We fol-
low the approach of the latter publication, but present the result only for the im-
portant special case of the RATTLE algorithm (VII.1.26). The construction of the
Hj(p, q) is done in the following three steps.

Step 1. Symplectic Extension of the Method to a Neighbourhood of the Manifold.
The numerical solution (p1, q1) of (VII.1.26) is well-defined only for initial values
satisfying (p0, q0) ∈M. However, if we replace the condition “g(q1) = 0” by

g(q1) = g(q0) + hG(q0)Hp(p0, q0), (5.11)

and the condition “G(q1)Hp(p1, q1) = 0” by

G(q1)Hp(p1, q1) = G(q0)Hp(p0, q0), (5.12)

then the numerical solution is well-defined for all (p0, q0) in an h-independent open
neighbourhood of M (cf. the existence and uniqueness proof of Sect. VII.1.3). Un-
fortunately, the so-obtained extension of (VII.1.26) is not symplectic.

Inspired by the formula of Lasagni for the generating function of (uncon-
strained) symplectic Runge–Kutta methods (see Sect. VI.5.2), we let

S(p1, q0, h) =
h

2

(
H(p1/2, q0) + H(p1/2, q1) + g(q0)Tλ + g(q1)Tµ

)
(5.13)

− h2

4

(
Hq(p1/2, q1) + G(q1)Tµ

)T(
Hp(p1/2, q0) + Hp(p1/2, q1)

)
,

where p0, p1/2, p1, q0, q1, λ, µ are the values of the above extension. In the defini-
tion (5.13) of the generating function we consider p0, p1/2, q1, λ, µ as functions of
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(p1, q0), what is possible because p1 = p0 + O(h). With the help of S(p, q, h) we
define a new numerical method on a neighbourhood of M by

p0 = p1 + Sq(p1, q0, h), q1 = q0 + Sp(p1, q0, h). (5.14)

This method is symplectic by definition, and it also coincides with the RATTLE

algorithm on the manifoldM. Using the fact that the last expression in (5.13) equals
(p1 − p1/2)T (q1 − q0), this is seen by the same computation as in the proof of
Theorem VI.5.4.

Step 2. Application of the Results of Sect. IX.3.2. The function S(p1, q0, h) of (5.13)
can be expanded into powers of h with coefficients depending on (p1, q0). These
coefficient functions are composed of derivatives of H(p, q) and g(q) and, conse-
quently, they are globally defined. For example, the h-coefficient is

S1(p1, q0) = H(p1, q0) + g(q0)Tλ(p1, q0), (5.15)

where λ(p, q) is the function defined in (VII.1.12).
We are thus exactly in the situation, where we can apply Theorem 3.2. This

proves that the method (5.14) has a modified differential equation with globally
defined modified Hamiltonian

H̃ext(p, q) = H1(p, q) + hH2(p, q) + . . . . (5.16)

In particular, the constructive proof of Theorem 3.2 shows that H1(p, q) = S1(p, q)
with S1(p, q) from (5.15).

Step 3. Backinterpretation for the Method on the Manifold. Since the RATTLE al-
gorithm defines a one-step method on M, it follows from Theorem 5.1 that every
truncation of the modified differential equation

˙̃p = −∇qH̃ext(p̃, q̃), ˙̃q = ∇pH̃ext(p̃, q̃) (5.17)

is a differential equation on the manifold M. Terms of the form g(q)Tµ(p, q) in
H̃ext(p, q), which vanish on M, give rise to −g(q)Tµq(p, q) − G(q)Tµ(p, q) and
g(q)Tµp(p, q) in the vector field of (5.17). On the manifold M, where g(q) =
0, only the expression −G(q)Tµ(p, q) remains. Consequently, we can arbitrarily
remove terms of the form g(q)Tµ(p, q) from the functions Hj(p, q) in (5.16), if
we add a term −G(q)Tλ in the differential equation for p with λ defined by the
relation g(q) = 0. This then gives a problem of the form (5.6) with globally defined
Hj(p, q).

IX.5.3 Lie–Poisson Integrators

As in Sect. VII.5.5 we consider a symplectic integrator

(P1, Q1) = Φh(P0, Q0) on T ∗G
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for the left-invariant Hamiltonian system (VII.5.43) on a matrix Lie group G with a
Hamiltonian H(P,Q) that is quadratic in P . We suppose that the method preserves
the left-invariance (VII.5.54) so that it induces a one-step map

Y1 = Ψh(Y0) on g∗

by setting Y1 = QT
1 P1 for (P1, Q1) = Φh(P0, Q0) with QT

0 P0 = Y0. This is a
numerical integrator for the differential equation (VII.5.37) on g∗, and in the coor-
dinates y = (yj) with respect to the basis (Fj) of g∗ this gives a map

y1 = ψh(y0) on R
d,

which is a numerical integrator for the Lie–Poisson system ẏ = B(y)∇H(y) with
B(y) given by (VII.5.35).

Theorem 5.7. If Φh(P,Q) is a symplectic and left-invariant integrator for (VII.5.43)
which is real analytic in h, then its reduction ψh(y) is a Poisson integrator. More-
over, Ψh(Y ) preserves the coadjoint orbits, i.e., Ψh(Y ) ∈ {Ad ∗

U−1Y ; U ∈ G}.

Proof. (a) In the first step one shows, by the standard induction argument as in the
proof of Theorem 2.3, that the modified equation given by Theorem 5.6,

˙̃
P = −∇QH̃(P̃ , Q̃)−

m∑
i=1

λ̃i∇Qgi(Q̃), ˙̃
Q = ∇P H̃(P̃ , Q̃)

0 = gi(Q̃), i = 1, . . . ,m,

(5.18)

with
H̃(P,Q) = H(P,Q) + hH2(P,Q) + h2H3(P,Q) + . . .

is left-invariant, i.e.,

Hj(UTP,U−1Q) = Hj(P,Q) for all U ∈ G and all j. (5.19)

(b) The Lie–Poisson reduction of Theorem VII.5.8 yields that if
(
P̃ (t), Q̃(t)

)
∈

T ∗G is a solution of the modified system (5.18), then Ỹ (t) = Q̃(t)T P̃ (t) ∈ g∗

solves the differential equation

〈 ˙̃
Y ,X〉 = 〈Ỹ , [H̃ ′(Ỹ ),X]〉 for all X ∈ g. (5.20)

Theorem VII.5.6 shows that its solution lies on a coadjoint orbit. By Theorem VII.5.5,
(5.20) is equivalent to the Poisson system

˙̃y = B(ỹ)∇H̃(ỹ). (5.21)

(c) We know already from Theorem VII.5.11 that ψh(y) is a Poisson map. Since
all truncations of the modified equation (5.21) have the Casimirs as first integrals,
their preservation by ψh follows from Corollary 5.4. Similarly, the preservation of
the coadjoint orbits follows from Theorem 5.2. 
�

In contrast to Theorem 3.5, we here obtain a global modified Hamiltonian in
the modified Poisson system if the method is obtained by the discrete Lie–Poisson
reduction of the RATTLE algorithm; see the preceding subsection.
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IX.6 Modified Equations for Variable Step Sizes

The modified differential equation of a numerical integrator depends on the step
size employed. Therefore, if the step size is changed arbitrarily, a different modified
equation occurs at every step. This is the reason for the poor longtime behaviour
observed in Sect. VIII.1. On the other hand, a satisfactory backward error analysis
is possible for the variable-step approaches of Sects. VIII.2 and VIII.3.

Time Transformations. The adaptive approaches of Sect. VIII.2 amount to apply-
ing a fixed step size method to a transformed differential equation. Hence, the back-
ward error analysis considered so far applies directly and yields modified equations
for the transformed problem. These modified equations are Hamiltonian for Algo-
rithm VIII.2.1 and reversible for method (VIII.2.12).

Proportional, Reversible Step Size Controllers. As in Sect. VIII.3.1 we let the
step size be of the form

hn+1/2 = ε s(yn, ε), (6.1)

where ε is a small accuracy parameter. It is not allowed to use information from
previous steps. The idea is to work with expansions in powers of the fixed parameter
ε instead of the step sizes, and to consider the exact solution of the modified equation
on a variable grid. The following development is given in Hairer & Stoffer (1997).
It extends the results of Sects. IX.1 and IX.2 to variable step sizes.

Theorem 6.1. Let Φh(y) be a smooth one-step method.
a) The variable-step method y �→ Φε s(y,ε)(y) has a modified differential equa-

tion
˙̃y = f(ỹ) + ε f2(ỹ) + ε2f3(ỹ) + . . . , (6.2)

with smooth vector fields fj(y), such that

ϕr,ε s(y,ε)(y) = Φε s(y,ε)(y) +O(εr+1) , (6.3)

where ϕr,t(y) denotes the flow of the truncation of (6.2) after r terms.
b) If the method is symmetric (i.e., Φh(y) = Φ−1

−h(y)) and s(ŷ,−ε) = s(y, ε)
holds with ŷ = Φεs(y,ε)(y), then the expansion (6.2) is in even powers of ε, i.e.,

fj(y) = 0 for even j. (6.4)

c) If the method is ρ-reversible (i.e., ρ◦Φh = Φ−1
h ◦ρ) and s(ρ−1ŷ, ε) = s(y, ε)

holds with ŷ = Φεs(y,ε)(y), then the modified equation (6.2) is ρ-reversible, i.e.,

ρ ◦ fj = −fj ◦ ρ for all j. (6.5)

Proof. a) The modified equation (6.2) is constructed by Taylor expansion of (6.3)
in the same way as (1.1), using ε-expansions instead of h-expansions.

For the proof of the statements (b) and (c) we denote, as we did in Sect. VIII.3,
Ψε(y) = Φεs(y,ε)(y). We then compute the dominant error term in (6.3) and obtain
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Ψε(y) = ϕr,εs(y,ε)(y) + εr+1s(y, ε)fr+1(y) +O(εr+2). (6.6)

With the aim of getting an analogous formula for Ψ−1
ε , we put ŷ = Ψε(y) and use

ϕ−1
r,t (y) = ϕr,−t(y) so that

y = ϕr,−εs(y,ε)

(
ŷ − εr+1s(y, ε)fr+1(y) +O(εr+2)

)
. (6.7)

b) Inserting s(y, ε) = s(ŷ,−ε) into (6.7) and using the facts that y = ŷ +O(ε)
and that the derivative ϕ′

r,t(y) is O(t)-close to the identity, we obtain

Ψ−1
ε (ŷ) = y = ϕr,−εs(ŷ,−ε)(ŷ)− εr+1s(ŷ, 0)fr+1(ŷ) +O(εr+2). (6.8)

By (VIII.3.3) we have Ψε = Ψ−1
−ε . Changing the sign of ε in (6.8), a comparison

with (6.6) proves that fr+1(y) = (−1)rfr+1(y) implying (6.4).
c) With s(y, ε) = s(ρ−1ŷ, ε) formula (6.7) yields

Ψ−1
ε (ŷ) = ϕr,−εs(ρ−1ŷ,ε)(ŷ)− εr+1s(ρ−1ŷ, 0)fr+1(ŷ) +O(εr+2).

By an induction argument on r we assume that ρ ◦ ϕr,t = ϕr,−t ◦ ρ. The ρ-
reversibility of Ψε, i.e., ρ ◦ Ψε = Ψ−1

ε ◦ ρ, thus implies the statement (6.5). 
�

Integrating, Reversible Step Size Controllers. We next study a backward error
analysis for Algorithm VIII.3.4. It is possible to interpret this algorithm as the fixed
step size method Φ̂ε of (VIII.3.19) applied to the augmented system (VIII.3.17) and
to apply the construction of Sect. IX.1. This approach has been taken in Hairer &
Söderlind (2004). In view of an error analysis for reversible integrable systems it
seems to be more convenient to consider the solution of the modified equation on a
variable grid as it is done in Theorem 6.1.

Let us recall Algorithm VIII.3.4. For a given basic integrator Φh(y) and a given

time transformation σ(y) we denote G(y) = −
(
σ(y)

)−1∇σ(y)T f(y) and we com-
pute for a given initial value y0 and with z0 = 1/σ(y0)

zn+1/2 = zn + εG(yn)/2
yn+1 = Φε/zn+1/2

(yn)
zn+1 = zn+1/2 + εG(yn+1)/2.

(6.9)

The values yn approximate y(tn), where tn+1 = tn + ε/zn+1/2. We further use the
notation

Ψε :
( yn

zn

)
�→

( yn+1

zn+1

)
and ρ̂ =

(
ρ 0
0 1

)
. (6.10)

The step size used in this algorithm is

hn+1/2 =
ε

zn+1/2
= εs(yn, zn, ε) with s(y, z, ε) =

1
z + εG(y)/2

. (6.11)

The symmetric definition of the algorithm immediately yields
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s(ŷ, ẑ,−ε) = s(y, z, ε) for (ŷ, ẑ) = Ψε(y, z). (6.12)

For a ρ-reversible differential equation ẏ = f(y) and for σ(y) satisfying σ(ρ−1y) =
σ(y) we have G(ρ−1y) = −G(y). Consequently, the step size function s(y, z, ε) of
(6.11) also satisfies

s(ρ−1ŷ, ẑ,−ε) = s(y, z, ε) for (ŷ, ẑ) = Ψε(y, z). (6.13)

With this preparation we are able to formulate the following result.

Theorem 6.2. Let Φh(y) be a smooth one-step method, σ(y) a smooth time trans-
formation, and s(y, z, ε) the step size function of (6.11).

a) For the method Ψε of (6.10) there exists a modified differential equation

˙̃y = f(ỹ) + ε f2(ỹ, z̃) + ε2f3(ỹ, z̃) + . . .

˙̃z = z̃ G(ỹ) + εG2(ỹ, z̃) + ε2G3(ỹ, z̃) + . . . ,
(6.14)

with smooth vector fields fj(y, z), Gj(y, z), such that

ϕr,ε s(y,z,ε)(y, z) = Ψε(y, z) +O(εr+1) , (6.15)

where ϕr,t(y, z) denotes the flow of the truncation of the system (6.14) after r terms.
b) If the basic method is symmetric (i.e., Φh(y) = Φ−1

−h(y)) then

fj(y) = 0 for even j. (6.16)

c) If the basic method is ρ-reversible (i.e., ρ◦Φh = Φ−1
h ◦ρ) and σ(ρ−1y) = σ(y)

holds, then the modified equation (6.14) is ρ̂-reversible with ρ̂ given by (6.10), i.e.,

ρfj(y, z) = −fj(ρy, z), Gj(y, z) = −G(ρy, z) for all j. (6.17)

Proof. The proof is the same as for Theorem 6.1 and therefore omitted. Notice that
the step size function satisfies (6.12) and (6.13) which are needed in that proof. 
�

If the basic method is of order p then the coefficient functions of (6.14) satisfy
fj(y, z) = 0 for j = 2, . . . , p. We always have G2(y, z) = 0 due to the symmetric
way of choosing zn+1/2 in (6.9). However, G3(y, z) �= 0 in general, even if the
method Φh has an order higher than two.

IX.7 Rigorous Estimates – Local Error
Wherefore it is highly desirable that it be clearly and rigorously shown
why series of this kind, which at first converge very rapidly and then ever
more slowly, and at length diverge more and more, nevertheless give a
sum close to the true one if not too many terms are taken, and to what
degree such a sum can safely be considered as exact.

(a footnote in Gauss’ thesis, 1799)

Up to now we have considered the modified equation (1.1) as a formal series without
taking care of convergence issues. Here,
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• we show that already in very simple situations the modified differential equation
does not converge;

• we give bounds on the coefficient functions fj(y) of the modified equation (1.1),
so that an optimal truncation index can be determined;

• we estimate the difference between the numerical solution y1 = Φh(y0) and the
exact solution ỹ(h) of the truncated modified equation.

These estimates will be the basis for rigorous statements concerning the long-time
behaviour of numerical solutions. The rigorous estimates of the present section have
been given in the articles Benettin & Giorgilli (1994), Hairer & Lubich (1997) and
Reich (1999). We mainly follow the approach of Benettin & Giorgilli, but we also
use ideas of the other two papers.

Example 7.1. We consider the differential equation1 ẏ = f(t), y(0) = 0, and we
apply the trapezoidal rule y1 = h

(
f(0) + f(h)

)
/2. In this case, the numerical

solution has an expansion Φh(t, y) = y + h
(
f(t) + f(t + h)

)
/2 = y + hf(t) +

h2f ′(t)/2 + h3f ′′(t)/4 + . . ., so that the modified equation is necessarily of the
form

˙̃y = f(t) + hb1f
′(t) + h2b2f

′′(t) + h3b3f
′′′(t) + . . . . (7.1)

The real coefficients bk can be computed by putting f(t) = et. The relation
Φh(t, y) = ỹ(t + h) (with initial value ỹ(t) = y) yields after division by et

h

2

(
eh + 1

)
=

(
1 + b1h + b2h

2 + b3h
3 + . . .

)(
eh − 1

)
.

This proves that b1 = 0, and bk = Bk/k!, where Bk are the Bernoulli numbers (see
for example Hairer & Wanner (1997), Sect. II.10). Since these numbers behave like
Bk/k! ≈ Const · (2π)−k for k → ∞, the series (7.1) diverges for all h �= 0, as
soon as the derivatives of f(t) grow like f (k)(t) ≈ k!MR−k. This is typically the
case for analytic functions f(t) with finite poles.

It is interesting to remark that the relation Φh(t, y) = ỹ(t + h) is nothing other
than the Euler-MacLaurin summation formula.

As a particular example we choose the function

f(t) =
5

1 + 25t2
.

Figure 7.1 shows the numerical solution and the exact solution of the modified equa-
tion truncated at different values of N . For h = 0.2, there is an excellent agreement
for N ≤ 12, whereas oscillations begin to appear from N = 14 onwards. For the
halved step size h = 0.1, the oscillations become visible for N twice as large.

1 Observe that after adding the equation ṫ = 1, t(0) = 0, we get for Y = (t, y)T the
autonomous differential equation Ẏ = F (Y ) with F (Y ) = (1, f(t))T . Hence, all results
of this chapter are applicable.
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Fig. 7.1. Numerical solution with the trapezoidal rule compared to the solution of the trun-
cated modified equation for h = 0.2 (upper four pictures), and for h = 0.1 (lower two
pictures)

The main ingredient of a rigorous backward error analysis is an analyticity as-
sumption on the differential equation ẏ = f(y) and on the method. Throughout this
section we assume that f(y) is analytic in a complex neighbourhood of y0 and that

‖f(y)‖ ≤ M for ‖y − y0‖ ≤ 2R (7.2)

i.e., for all y of B2R(y0) := {y ∈ C
d ; ‖y − y0‖ ≤ 2R}. Our strategy is the

following: using (7.2) and Cauchy’s estimates we derive bounds for the coefficient
functions dj(y) of (1.3) on BR(y0) (Sect. IX.7.1), then we estimate the functions
fj(y) of the modified differential equation on BR/2(y0) (Sect. IX.7.2), and finally
we search for a suitable truncation for the formal series (1.1) and we prove the
closeness of the numerical solution to the exact solution of the truncated modified
equation (Sect. IX.7.3).

IX.7.1 Estimation of the Derivatives of the Numerical Solution

If we apply a numerical method to ẏ = f(y) with analytic f(y), the expression
Φh(y) will usually be analytic in a neighbourhood of h = 0 and y ∈ BR(y0).
Consequently, the coefficients dj(y) of the Taylor series expansion

Φh(y) = y + hf(y) + h2d2(y) + h3d3(y) + . . . (7.3)
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are also analytic and the functions dj(y) can be estimated by the use of Cauchy’s
inequalities. Let us demonstrate this for Runge–Kutta methods.

Theorem 7.2. For a Runge–Kutta method (II.1.4) let

µ =
s∑

i=1

|bi|, κ = max
i=1,...,s

s∑
j=1

|aij |. (7.4)

If f(y) is analytic in the complex ball B2R(y0) and satisfies (7.2), then the coeffi-
cient functions dj(y) of (7.3) are analytic in BR(y0) and satisfy

‖dj(y)‖ ≤ µM

(
2κM
R

)j−1

for ‖y − y0‖ ≤ R. (7.5)

Proof. For y ∈ B3R/2(y0) and ‖∆y‖ ≤ 1 the function α(z) = f(y + z∆y) is
analytic for |z| ≤ R/2 and bounded by M . Cauchy’s estimate therefore yields

‖f ′(y)∆y‖ = ‖α′(0)‖ ≤ 2M/R.

Consequently, ‖f ′(y)‖ ≤ 2M/R for y ∈ B3R/2(y0) in the operator norm.
For y ∈ BR(y0), the Runge–Kutta method (II.1.4) requires the solution of the

nonlinear system gi = y + h
∑s

j=1 aijf(gj), which can be solved by fixed point
iteration. If |h|2κM/R ≤ γ < 1, it represents a contraction on the closed set
{(g1, . . . , gs) ; ‖gi − y‖ ≤ R/2} and possesses a unique solution. Consequently,
the method is analytic for |h| ≤ γR/(2κM) and y ∈ BR(y0). This implies that the
functions dj(y) of (7.3) are also analytic. Furthermore, ‖Φh(y) − y‖ ≤ |h|µM for
y ∈ BR(y0) so that, again by Cauchy’s estimate,

‖dj(y)‖ =
1
j!

∥∥∥ dj

dhj

(
Φh(y)− y

)∣∣∣
h=0

∥∥∥ ≤ µM
(2κM

γR

)j−1

for j ≥ 1. The statement is then obtained by considering the limit γ → 1. 
�
Due to the consistency condition

∑s
i=1 bi = 1, methods with positive weights

bi all satisfy µ = 1. The values µ, κ of some classes of Runge–Kutta methods are
given in Table 7.1 (those for the Gauss methods and for the Lobatto IIIA methods
have been checked for s ≤ 9 and s ≤ 5, respectively).

Estimates of the type (7.5), possibly with a different interpretation of M and R,
hold for all one-step methods which are analytic in h and y, e.g., partitioned Runge–
Kutta methods, splitting and composition methods, projection methods, Lie group
methods, . . . .

Table 7.1. The constants µ and κ of formula (7.4)

method µ κ method µ κ

explicit Euler 1 0 implicit Euler 1 1
implicit midpoint 1 1/2 trapezoidal rule 1 1
Gauss methods 1 cs Lobatto IIIA 1 1
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IX.7.2 Estimation of the Coefficients of the Modified Equation

At the beginning of this chapter we gave an explicit formula for the first coefficient
functions of the modified differential equation (see (1.4)). Using the Lie derivative

(Dig)(y) = g′(y)fi(y) (7.6)

(cf. (VI.5.2)) and f1(y) := f(y), these formulas can be written as

f2(y) = d2(y)− 1

2!

(
D1f1

)
(y)

f3(y) = d3(y)− 1

3!
(D2

1f1 )(y)− 1

2!

(
D2f1 + D1f2

)
(y).

We have the following recurrence relation for the general case.

Lemma 7.3. If the numerical method has an expansion of the form (7.3), then the
functions fj(y) of the modified differential equation (1.1) satisfy

fj(y) = dj(y) −
j∑

i=2

1
i!

∑
k1+...+ki=j

(
Dk1 . . . Dki−1fki

)
(y),

where km ≥ 1 for all m. Observe that the right-hand expression only involves fk(y)
with k < j.

Proof. The solution of the modified equation (1.1) with initial value y(t) = y can
be formally written as (cf. (1.2))

ỹ(t + h) = y +
∑
i≥1

hi

i!
Di−1F (y),

where F (y) = f1(y)+hf2(y)+h2f3(y)+ . . . stands for the modified equation, and
hD = hD1 + h2D2 + h3D3 + . . . for the corresponding Lie operator. We expand
the formal sums and obtain

ỹ(t + h) = y +
∑
i≥1

1
i!

∑
k1,...,ki

hk1+...+ki

(
Dk1 . . . Dki−1fki

)
(y), (7.7)

where all km ≥ 1. Comparing like powers of h in (7.3) and (7.7) yields the desired
recurrence relations for the functions fj(y). 
�

To get bounds for ‖fj(y)‖, we have to estimate repeatedly expressions like
‖(Dig)(y)‖. The following variant of Cauchy’s estimate will be extremely useful.

Lemma 7.4. For analytic functions fi(y) and g(y) we have for 0 ≤ σ < ρ the
estimate

‖Dig‖σ ≤ 1
ρ− σ

· ‖fi‖σ · ‖g‖ρ.

Here, ‖g‖ρ := max{‖g(y)‖ ; y ∈ Bρ(y0)} and ‖fi‖σ , ‖Dig‖σ are defined simi-
larly.
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Proof. For a fixed y ∈ Bσ(y0) the function α(z) = g
(
y + zfi(y)

)
is analytic for

‖z‖ ≤ ε := (ρ− σ)/M with M := ‖fi‖σ . Since α′(0) = g′(y)fi(y) = (Dig)(y),
we get from Cauchy’s estimate that

‖(Dig)(y)‖ = ‖α′(0)‖ ≤ 1
ε

sup
|z|≤ε

‖α(z)‖ ≤ M

ρ− σ
· ‖g‖ρ.

This proves the statement. 
�

We are now able to estimate the coefficients fj(y) of the modified differential
equation.

Theorem 7.5. Let f(y) be analytic in B2R(y0), let the Taylor series coefficients of
the numerical method (7.3) be analytic in BR(y0), and assume that (7.2) and (7.5)
are satisfied. Then, we have for the coefficients of the modified differential equation

∥∥fj(y)
∥∥ ≤ ln 2 ηM

(
ηM j

R

)j−1

for ‖y − y0‖ ≤ R/2, (7.8)

where η = 2max
(
κ, µ/(2 ln 2− 1)

)
.

Proof. We fix an index, say J , and we estimate (in the notation of Lemma 7.4)

‖fj‖R−(j−1)δ for j = 1, 2, . . . , J,

where δ = R/(2(J − 1)). This will then lead to the desired estimate for ‖fJ‖R/2.
In the following we abbreviate ‖·‖R−(j−1)δ by ‖·‖j . Using repeatedly Cauchy’s

estimate of Lemma 7.4 we get for k1 + . . . + ki = j that

‖Dk1 . . . Dki−1fki
‖j ≤ 1

δ
‖fk1‖j ‖Dk2 . . . Dki−1fki

‖j−1

≤ . . . ≤ 1
δi−1

‖fk1‖j ‖fk2‖j−1 · . . . · ‖fki
‖j−i+1

≤ 1
δi−1

‖fk1‖k1 ‖fk2‖k2 · . . . · ‖fki
‖ki

.

The last inequality follows from ‖g‖j ≤ ‖g‖l for l ≤ j, which is an immediate
consequence of BR−(j−1)δ(y0) ⊂ BR−(l−1)δ(y0). It therefore follows from Lem-
ma 7.3 that

‖fj‖j ≤ ‖dj‖j +
j∑

i=2

1
i!

∑
k1+...+ki=j

1
δi−1

‖fk1‖k1 ‖fk2‖k2 · . . . · ‖fki
‖ki

.

By induction on j (1 ≤ j ≤ J) we obtain that ‖fj‖j ≤ δβj , where βj is defined by

βj =
µM

δ

(
2κM
R

)j−1

+
j∑

i=2

1
i!

∑
k1+...+ki=j

βk1 βk2 · . . . · βki
. (7.9)
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1/ν

ζ

1 − 2 ln 2

w = − γζ

1 − qζ eb − 1 − 2b = w
w

ln 2

b

Fig. 7.2. Complex functions of the proof of Theorem 7.5 (γ = q = 1)

Observe that βj is defined for all j ≥ 1. We let b(ζ) =
∑

j≥1 βjζ
j be its generating

function and we obtain (by multiplying (7.9) with ζj and summing over j ≥ 1)

b(ζ) =
γζ

1− qζ
+

∑
j≥2

1
j!

b(ζ)j =
γζ

1− qζ
+ eb(ζ) − 1− b(ζ), (7.10)

where we have used the abbreviations γ := µM/δ and q := 2κM/R.
Whenever eb(ζ) �= 2 (i.e., for ζ �= (2b−1)/

(
γ+q(2b−1)

)
with b = ln 2+2kπi )

the implicit function theorem can be applied to (7.10). This implies that b(ζ) is
analytic in a disc with radius 1/ν = (2 ln 2−1)/

(
γ+q(2 ln 2−1)

)
and centre at the

origin. On the disc |ζ| ≤ 1/ν, the solution b(ζ) of (7.10) with b(0) = 0 is bounded
by ln 2. This is seen as follows (Fig. 7.2): with the function w = −γζ/(1 − qζ)
the disc |ζ| ≤ 1/ν is mapped into a disc which, for all possible choices of γ ≥ 0
and q ≥ 0, lies in |w| ≤ 2 ln 2 − 1. The image of this disc under the mapping
b(w) defined by eb − 1− 2b = w and b(0) = 0 is completely contained in the disc
|b| ≤ ln 2. Cauchy’s inequalities therefore imply |βj | ≤ ln 2 · νj , and we get

‖fJ‖R/2 = ‖fJ‖J ≤ δβJ ≤ ln 2 · δ · νJ .

Since ν = q+γ/(2 ln 2−1) ≤ ηMJ/R with η given by η = 2max
(
κ, µ/(2 ln 2−

1)
)

and δν ≤ ηM , this proves the statement for J . 
�

IX.7.3 Choice of N and the Estimation of the Local Error

To get rigorous estimates, we truncate the modified differential equation (1.1), and
we consider

˙̃y = FN (ỹ ), FN (ỹ ) = f(ỹ ) + hf2(ỹ ) + . . . + hN−1fN (ỹ ) (7.11)

0

1

ε−1(εe)−1

(εx)x

with initial value ỹ(0) = y0. It is common in
the theory of asymptotic expansions to truncate
the series at the index where the corresponding
term is minimal. Motivated by the bound (7.8)
and by the fact that (εx)x admits a minimum
for x = (εe)−1 (see the picture to the left with
ε = 0.15), we suppose that the truncation index
N satisfies
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hN ≤ h0 with h0 =
R

eηM
. (7.12)

Under the less restrictive assumption hN ≤ eh0, the estimates (7.2) and (7.8) imply
for ‖y − y0‖ ≤ R/2 that

‖FN (y)‖ ≤ M

(
1 + η ln 2

N∑
j=2

(
ηMjh

R

)j−1)

≤ M

(
1 + η ln 2

N∑
j=2

(
j

N

)j−1)
≤ M

(
1 + 1.65 η

)
.

(7.13)

One can check that the sum in the lower formula of (7.13) is maximal for N = 7
and bounded by 2.38. For a pth order method we obtain under the same assumptions

‖FN (y)− f(y)‖ ≤ cMhp, (7.14)

where c depends only on the method.

Theorem 7.6. Let f(y) be analytic in B2R(y0), let the coefficients dj(y) of the
method (7.3) be analytic in BR(y0), and assume that (7.2) and (7.5) hold. If h ≤
h0/4 with h0 = R/(eηM), then there exists N = N(h) (namely N equal to the
largest integer satisfying hN ≤ h0) such that the difference between the numerical
solution y1 = Φh(y0) and the exact solution ϕ̃N,t(y0) of the truncated modified
equation (7.11) satisfies

‖Φh(y0)− ϕ̃N,h(y0)‖ ≤ hγMe−h0/h,

where γ = e(2 + 1.65η + µ) depends only on the method (we have 5 ≤ η ≤ 5.18
and γ ≤ 31.4 for the methods of Table 7.1).

The quotient L = M/R is an upper bound of the first derivative f ′(y) and can
be interpreted as a Lipschitz constant for f(y). The condition h ≤ h0/4 is therefore
equivalent to hL ≤ Const , where Const depends only on the method. Because of
this condition, Theorem 7.6 requires unreasonably small step sizes for the numerical
solution of stiff differential equations.

Proof of Theorem 7.6. We follow here the elegant proof of Benettin & Giorgilli
(1994). It is based on the fact that Φh(y0) (as a convergent series (7.3)) and ϕ̃N,h(y0)
(as the solution of an analytic differential equation) are both analytic functions of h.
Hence,

g(h) := Φh(y0)− ϕ̃N,h(y0) (7.15)

is analytic in a complex neighbourhood of h = 0. By definition of the functions
fj(y) of the modified equation (1.1), the coefficients of the Taylor series for Φh(y0)
and ϕ̃N,h(y0) are the same up to the hN term, but not further due to the truncation
of the modified equation. Consequently, the function g(h) contains the factor hN+1,
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and the maximum principle for analytic functions, applied to g(h)/hN+1, implies
that

‖g(h)‖ ≤
(
h

ε

)N+1

max
|z|≤ε

‖g(z)‖ for 0 ≤ h ≤ ε, (7.16)

if g(z) is analytic for |z| ≤ ε. We shall show that we can take ε = eh0/N , and we
compute an upper bound for ‖g(z)‖ by estimating separately ‖Φh(y0) − y0‖ and
‖ϕ̃N,h(y0)− y0‖.

The function Φz(y0) is given by the series (7.3) which, due to the bounds of
Theorem 7.2, converges certainly for |z| ≤ R/(4κM), and therefore also for |z| ≤ ε
(because 2κ ≤ η and N ≥ 4, which is a consequence of h0/h ≥ 4). Hence, it is
analytic in |z| ≤ ε. Moreover, we have from Theorem 7.2 that ‖Φz(y0) − y0‖ ≤
|z|M(1 + µ) for |z| ≤ ε.

Because of the bound (7.13) on FN (y), which is valid for y ∈ BR/2(y0) and
for |h| ≤ ε, we have ‖ϕ̃N,z(y0) − y0‖ ≤ |z|M(1 + 1.65η) as long as the solution
ϕ̃N,z(y0) stays in the ball BR/2(y0). Because of εM(1+1.65η) ≤ R/2, which is a
consequence of the definition of ε, of N ≥ 4, and of (1 + 1.65η) ≤ 1.85η (because
for consistent methods µ ≥ 1 holds and therefore also η ≥ 2/(2 ln 2− 1) ≥ 5), this
is the case for all |z| ≤ ε. In particular, the solution ϕ̃N,z(y0) is analytic in |z| ≤ ε.

Inserting ε = eh0/N and the bound on ‖g(z)‖ ≤ ‖Φz(y0)−y0‖+‖ϕ̃N,z(y0)−
y0‖ into (7.16) yields (with C = 2 + 1.65η + µ)

‖g(h)‖ ≤ εMC

(
h

ε

)N+1

≤ hMC

(
h

ε

)N

= hMC

(
hN

eh0

)N

≤ hMCe−N ,

because hN ≤ h0. The statement now follows from the fact that N ≤ h0/h <
N + 1, so that e−N ≤ e · e−h0/h. 
�

A different approach to a rigorous backward error analysis is developed by Moan
(2005). There, the modified differential equation contains an exponentially small
time-dependent perturbation, but its flow reproduces the numerical solution without
error.

IX.8 Long-Time Energy Conservation

In particular, one easily explains in this way why symplectic algorithms
give rise to a good energy conservation, with essentially no accumulation
of errors in time. (G. Benettin & A. Giorgilli 1994)

As a first application of Theorem 7.6 we study the long-time energy conservation of
symplectic numerical schemes applied to Hamiltonian systems ẏ = J−1∇H(y). It
follows from Theorem 3.1 that the corresponding modified differential equation is
also Hamiltonian. After truncation we thus get a modified Hamiltonian

H̃(y) = H(y) + hpHp+1(y) + . . . + hN−1HN (y), (8.1)
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which we assume to be defined on the same open set as the original Hamiltonian H;
see Theorem 3.2 and Sect. IX.4. We also assume that the numerical method satisfies
the analyticity bounds (7.5), so that Theorem 7.6 can be applied. The following
result is given by Benettin & Giorgilli (1994).

Theorem 8.1. Consider a Hamiltonian system with analytic H : D → R (where
D ⊂ R

2d), and apply a symplectic numerical method Φh(y) with step size h. If
the numerical solution stays in the compact set K ⊂ D, then there exist h0 and
N = N(h) (as in Theorem 7.6) such that

H̃(yn) = H̃(y0) +O(e−h0/2h)
H(yn) = H(y0) +O(hp)

over exponentially long time intervals nh ≤ eh0/2h.

Proof. We let ϕ̃N,t(y0) be the flow of the truncated modified equation. Since this
differential equation is Hamiltonian with H̃ of (8.1), H̃

(
ϕ̃N,t(y0)

)
= H̃(y0) holds

for all times t. From Theorem 7.6 we know that ‖yn+1−ϕ̃N,h(yn)‖ ≤ hγMe−h0/h

and, by using a global h-independent Lipschitz constant for H̃ (which exists by
Theorem 7.5), we also get H̃(yn+1) − H̃(ϕ̃N,h(yn)) = O(he−h0/h). From the
identity

H̃(yn)− H̃(y0) =
n∑

j=1

(
H̃(yj)− H̃(yj−1)

)
=

n∑
j=1

(
H̃(yj)− H̃

(
ϕ̃N,h(yj−1)

))

we thus get H̃(yn) − H̃(y0) = O(nhe−h0/h), and the statement on the long-time
conservation of H̃ is an immediate consequence. The statement for the Hamiltonian
H follows from (8.1), because Hp+1(y) + hHp+2(y) + . . . + hN−p−1HN (y) is
uniformly bounded on K independently of h and N . This follows from the proof of
Lemma VI.2.7 and from the estimates of Theorem 7.5. 
�

Example 8.2. Let us check explicitly the assumptions of Theorem 8.1 for the pen-
dulum problem q̇ = p, ṗ = − sin q. The vector field f(p, q) = (p,− sin q)T is also
well-defined for complex p and q, and it is analytic everywhere on C

2. We let K be
a compact subset of {(p, q) ∈ R

2 ; |p| ≤ c}. As a consequence of | sin q| ≤ e|Im q|,
we get the bound

‖f(p, q)‖ ≤
√

c2 + 4R2 + e2R

for ‖(p, q) − (p0, q0)‖ ≤ 2R and (p0, q0) ∈ K. If we choose c ≤ 2, R = 1,
and M = 4, the value h0 of Theorem 7.6 is given by h0 = 1/4eη ≈ 0.018 for
the methods of Table 7.1. For step sizes that are smaller than h0/20, Theorem 8.1
guarantees that the numerical Hamiltonian is well conserved on intervals [0, T ] with
T ≈ e10 ≈ 2 · 104.

The numerical experiment of Fig. 8.1 shows that the estimates for h0 are of-
ten too pessimistic. We have drawn 200 000 steps of the numerical solution of the



368 IX. Backward Error Analysis and Structure Preservation

−3 −2 −1 0 1 2 3

−2

−1

0

1

2

3

h = 0.70h = 0.70

−3 −2 −1 0 1 2 3

−2

−1

0

1

2

3

h = 1.04h = 1.04

−3 −2 −1 0 1 2 3

−2

−1

0

1

2

3

h = 1.465h = 1.465

−3 −2 −1 0 1 2 3

−2

−1

0

1

2

3

h = 1.55h = 1.55

−3 −2 −1 0 1 2 3

−2

−1

0

1

2

3

h = 1.58h = 1.58

−3 −2 −1 0 1 2 3

−2

−1

0

1

2

3

h = 1.62h = 1.62

Fig. 8.1. Numerical solutions of the implicit midpoint rule with large step sizes

implicit midpoint rule for various step sizes h and for initial values (p0, q0) =
(0,−1.5), (p0, q0) = (0,−2.5), (p0, q0) = (1.5,−π), and (p0, q0) = (2.5,−π).
They are compared to the contour lines of the truncated modified Hamiltonian

H̃(p, q) =
p2

2
− cos q +

h2

48

(
cos(2q)− 2p2 cos q

)
.

This shows that for step sizes as large as h ≤ 0.7 the Hamiltonian H̃ is extremely
well conserved. Beyond this value, the dynamics of the numerical method soon
turns into chaotic behaviour (see also Yoshida (1993) and Hairer, Nørsett & Wanner
(1993), page 336).

Theorem 8.1 explains the near conservation of the Hamiltonian with the sym-
plectic Euler method, the implicit midpoint rule and the Störmer–Verlet method as
observed in the numerical experiments of Chap. I: in Fig. I.1.4 for the pendulum
problem, in Fig. I.2.3 for the Kepler problem, and in Fig. I.4.1 for the frozen argon
crystal.

The linear drift of the numerical Hamiltonian for non-symplectic methods can
be explained by a computation similar to that of the proof of Theorem 8.1. From a
Lipschitz condition of the Hamiltonian and from the standard local error estimate,
we obtain H(yn+1) − H(ϕh(yn)) = O(hp+1). Since H(ϕh(yn)) = H(yn), a
summation of these terms leads to

H(yn)−H(y0) = O(thp) for t = nh. (8.2)

This explains the linear growth in the error of the Hamiltonian observed in Fig. I.2.3
and in Fig. I.4.1 for the explicit Euler method.
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IX.9 Modified Equation in Terms of Trees

By Theorem III.1.4 the numerical solution y1 = Φh(y0) of a Runge–Kutta method
can be written as a B-series

Φh(y) = y + hf(y) + h2 a( )(f ′f)(y)

+ h3
(

1

2
a( )f ′′(f, f)(y) + a( )f ′f ′f(y)

)
+ . . . .

(9.1)

For consistent methods, i.e., methods of order at least 1, we always have a( ) = 1,
so that the coefficient of h is equal to f(y). In this section we exploit this special
structure of Φh(y) in order to get practical formulas for the coefficient functions of
the modified differential equation. Using (9.1) instead of (1.3), the equations (1.4)
yield

f2(y) =
(
a( )− 1

2

)
(f ′f)(y)

f3(y) = 1

2

(
a( )− a( ) + 1

6

)
f ′′(f, f)(y)

+
(
a( )− a( ) + 1

3

)
f ′f ′f(y).

(9.2)

Continuing this computation, one is quickly convinced of the general formula

fj(y) =
∑
|τ |=j

b(τ)
σ(τ)

F (τ)(y), (9.3)

so that the modified equation (1.1) becomes

˙̃y =
∑
τ∈T

h|τ |−1

σ(τ)
b(τ)F (τ)(ỹ ) (9.4)

with b( ) = 1, b( ) = a( )− 1
2 , etc. Since the coefficients σ(τ) are known from

Definition III.1.7, all we have to do is to find suitable recursion formulas for the real
coefficients b(τ).

IX.9.1 B-Series of the Modified Equation

Recurrence formulas for the coefficients b(τ) in (9.4) were first given by Hairer
(1994) and by Calvo, Murua & Sanz-Serna (1994). We follow here the approach
of Hairer (1999), which uses the Lie-derivative of B-series and thus simplifies the
construction of the coefficients.

We make use of the notion of ordered trees introduced in Sect. III.1.3. For a
given tree τ we define the set of all splittings as

SP(τ) =
{
θ ∈ OST(τ) ; τ \ θ consists of only one element

}
. (9.5)

Here, OST(τ) = OST
(
ω(τ)

)
is the set of ordered subtrees as defined in (III.1.33).
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Lemma 9.1 (Lie-Derivative of B-series). Let b(τ) (with b(∅) = 0) and c(τ) be
the coefficients of two B-series, and let y(t) be a formal solution of the differen-
tial equation hẏ(t) = B

(
b, y(t)

)
. The Lie derivative of the function B(c, y) with

respect to the vector field B(b, y) is again a B-series

h
d

dt
B
(
c, y(t)

)
= B

(
∂bc, y(t)

)
.

Its coefficients are given by ∂bc(∅) = 0 and for |τ | ≥ 1 by

∂bc(τ) =
∑

θ∈SP(τ)

c(θ) b(τ \ θ). (9.6)

ω = θ ◦γ δθ

δ

γ
......
.....
.....
.....

.........
........................................................................................................................ ..... ..... ..... ..... ..... ..... ..... ..... ..... ..... ..... ..... ..... .....

......
.....
.....
....

......
.........

..........
................................................................................ ..... ..... ..... ..... ..... ..... ..... .....

......
.....
....

Fig. 9.1. Splitting of an ordered tree ω into a subtree θ and {δ} = ω \ θ

Proof. For the proof of this lemma it is convenient to work with ordered trees ω ∈
OT. Since ν(τ) of (III.1.31) denotes the number of possible orderings of a tree
τ ∈ T , a sum

∑
τ∈T ·/· becomes

∑
ω∈OT ν(ω)−1 · /· .

For the computation of the Lie derivative of B(c, y) we have to differentiate
the elementary differential F (θ)

(
y(t)

)
with respect to t. Using Leibniz’ rule, this

yields |θ| terms, one for every vertex of θ. Then we insert the series B
(
b, y(t)

)
for

hẏ(t). This means that all the trees δ appearing in B
(
b, y(t)

)
are attached with a

new branch to the distinguished vertex. Written out as formulas, this gives

h
d

dt
B
(
c, y(t)

)
=

∑
θ∈OT∪{∅}

h|θ| c(θ)
ν(θ)σ(θ)

∑
γ

∑
δ∈OT

h|δ| b(δ)
ν(δ)σ(δ)

F (θ ◦γ δ)
(
y(t)

)
,

where
∑

γ is a sum over all vertices of θ, and θ ◦γ δ is the ordered tree obtained
when attaching the root of δ with a new branch to γ (see Fig. 9.1). We choose one of
the n(γ)+1 possibilities of doing this, where n(γ) denotes the number of upwards
leaving branches of θ at the vertex γ. We now collect the terms with equal ordered
tree ω = θ ◦γ δ, and notice that ν(θ)σ(θ) = κ(θ) with κ(θ) given by (III.1.32). This
gives

h
d

dt
B
(
c, y(t)

)
=

∑
ω∈OT

h|ω|
( ∑

θ◦γδ=ω

c(θ) b(δ)
(n(γ) + 1)κ(θ)κ(δ)

)
F (ω)

(
y(t)

)
,

where
∑

θ◦γδ=ω is over all triplets (θ, γ, δ) such that θ◦γ δ = ω. Because of κ(ω) =
κ(θ)κ(δ)(n(γ) + 1), we obtain
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Fig. 9.2. Illustration of the formula (9.6) for an ordered tree with 5 vertices

h
d

dt
B
(
c, y(t)

)
=

∑
ω∈OT

h|ω|

κ(ω)

( ∑
θ◦γδ=ω

c(θ) b(δ)
)
F (ω)

(
y(t)

)

=
∑
τ∈T

h|τ |

σ(τ)

( ∑
θ∈SP(τ)

c(θ) b(τ \ θ)
)
F (τ)

(
y(t)

)
,

which proves the statement. 
�

Let us illustrate this proof and the formula (9.6) with an ordered tree hav-
ing 5 vertices. All possible splittings ω = θ ◦γ δ are given in Fig. 9.2. Notice
that θ may be the empty tree ∅, and that always |δ| ≥ 1. We see that the tree
ω is obtained in several ways: (i) differentiation of F (∅)(y) = y and adding
F (ω)(y) as argument, (ii) differentiation of the factor corresponding to the root
in F (θ)(y) = f ′′(f, f)(y) and adding F ( )(y) = (f ′f)(y), (iii) differentiation
of all f ’s in F (θ)(y) = f ′′′(f, f, f)(y) and adding F ( )(y) = f(y), and finally,
(iv) differentiation of the factor for the root in F (θ)(y) = f ′′(f ′f, f)(y) and adding
F ( )(y) = f(y). This proves that

∂bc( ) = c(∅)b( ) + c( )b( ) + c( )b( ) + 2 c( )b( ).

For the trees up to order 3 the formulas for ∂bc are:

∂bc( ) = c(∅) b( )
∂bc( ) = c(∅) b( ) + c( ) b( )
∂bc( ) = c(∅) b( ) + 2 c( ) b( )

∂bc( ) = c(∅) b( ) + c( ) b( ) + c( ) b( ).

The above lemma permits us to get recursion formulas for the coefficients b(τ) of
the modified differential equation (9.4).

Theorem 9.2. If the method Φh(y) is given by (9.1), the functions fj(y) of the mod-
ified differential equation (1.1) satisfy (9.3), where the real coefficients b(τ) are re-
cursively defined by b(∅) = 0, b( ) = 1 and

b(τ) = a(τ)−
|τ |∑
j=2

1
j!

∂ j−1
b b(τ). (9.7)

Here, ∂ j−1
b is the (j − 1)-th iterate of the Lie-derivative ∂b defined in Lemma 9.1.
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Proof. The right-hand side of the modified equation (9.4) is the B-series B
(
b, ỹ(t)

)
divided by h. It therefore follows from an iterative application of Lemma 9.1 that

hj ỹ (j)(t) = B
(
∂ j−1

b b, ỹ(t)
)
,

so that by Taylor series expansion ỹ(t + h) = y + B
(∑

j≥1
1
j! ∂

j−1
b b, y

)
, where

y := ỹ(t). Since we have to determine the coefficients b(τ) in such a way
that ỹ(t + h) = Φh(y) = B(a, y) , a comparison of the two B-series gives∑

j≥1
1
j! ∂

j−1
b b(τ) = a(τ). This proves the statement, because ∂ 0

b b(τ) = b(τ)

for τ ∈ T , and ∂ j−1
b b(τ) = 0 for j > |τ | (as a consequence of b(∅) = 0). 
�

We present in Table 9.1 the formula (9.7) for trees up to order 3.

Table 9.1. Examples of formula (9.7)

τ = b( ) = a( )

τ = b( ) = a( ) − 1
2

b( )2

τ = b( ) = a( ) − b( )b( ) − 1
3

b( )3

τ = b( ) = a( ) − b( )b( ) − 1
6

b( )3

We next consider the case when a symplectic method is applied to a Hamiltonian
system ẏ = J−1∇H(y). It follows from Theorem 3.1 that the modified equation is
again Hamiltonian. What does this imply for the coefficients of (9.4)?

Theorem 9.3. Suppose that for all Hamiltonians H(y) the modified vector field
(9.4), truncated after an arbitrary power of h, is (locally) Hamiltonian. Then,

b(u ◦ v) + b(v ◦ u) = 0 for all u, v ∈ T. (9.8)

Proof. Let ϕ̃N,t(y0) be the flow of the modified differential equation (9.4), trun-
cated after the hN−1 terms. It is symplectic for all t, and in particular for t = h.
As a consequence of the proof of Theorem 9.2 we obtain that ϕ̃N,h(y0) is a sym-
plectic B-series B

(
aN , y0

)
. The coefficients aN (τ) are given by (9.7), where b(τ)

is replaced with 0 for |τ | > N . For u, v ∈ T with |u|+ |v| = N we therefore have

b(u ◦ v) = aN (u ◦ v)− aN−1(u ◦ v).

Since aN (τ) = aN−1(τ) for |τ | < N , formula (9.8) is an immediate consequence
of Theorem VI.7.6. 
�

Remark 9.4. Let G = {a : T → R | a(∅) = 1} be the Butcher group (see
Sect. III.1.5), and consider the mapping S : G → R defined by

S(a) = a(u ◦ v) + a(v ◦ u)− a(u) · a(v).
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If we denote by e ∈ G the element corresponding to the identity (i.e., e(∅) = 1 and
e(τ) = 0 for |τ | ≥ 1), we have for its derivative

S′(e)b = b(u ◦ v) + b(v ◦ u).

Hence, coefficient mappings b(τ) satisfying (9.8) lie in the tangent space at e(τ) of
the symplectic subgroup of G (i.e., a ∈ G satisfying (VI.7.4)). This is in complete
analogy to the fact that Hamiltonian vector fields can be considered as elements of
the tangent space at the identity of the group of symplectic diffeomorphisms (see
also Exercises 15 and 16).

IX.9.2 Elementary Hamiltonians

If the modified differential equation (9.4) is Hamiltonian, can we find explicit for-
mulas for H̃(y)? Let us start with an easy example, the implicit midpoint rule. Writ-
ten as a B-series (9.1), its coefficients are a(τ) = 21−|τ | (cf. Exercise 8) so that the
first coefficient functions (9.2) of the modified equation satisfy f2(y) = 0 and

f3(y) = 1

24

(
2(f ′f ′f)(y)− f ′′(f, f)(y)

)
. (9.9)

Since f(y) = J−1∇H(y), differentiation of

H3(y) = − 1

24
H ′′(y)

(
J−1∇H(y), J−1∇H(y)

)
(9.10)

shows that f3(y) = J−1∇H3(y), and we have found an explicit expression of the
Hamiltonian corresponding to the vector field f3(y). It is recommended to compute
also f5(y) and to try to find H5(y) such that f5(y) = J−1∇H5(y). Such com-
putations lead to expressions that have been introduced in a different context by
Sanz-Serna & Abia (1991). They call them canonical elementary differentials.

Definition 9.5 (Elementary Hamiltonians). For a given smooth function H :
D → R (with open D ⊂ R

2d) and for τ ∈ T we define the elementary Hamil-
tonian H(τ) : D → R by

H( )(y) = H(y), H(τ)(y) = H(m)(y)
(
F (τ1)(y), . . . , F (τm)(y)

)
(9.11)

for τ = [τ1, . . . , τm]. Here, F (τi)(y) are elementary differentials corresponding to
f(y) = J−1∇H(y).

The expression in (9.10) is nothing else than the elementary Hamiltonian corre-
sponding to the tree . Our aim is to prove that, for symplectic methods applied
to Hamiltonian systems, the coefficient functions (9.3) of the modified differential
equation satisfy fj(y) = J−1∇Hj(y), where Hj(y) is a linear combination of ele-
mentary Hamiltonians.
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Lemma 9.6. Elementary Hamiltonians satisfy

H(u ◦ v)(y) + H(v ◦ u)(y) = 0 for all u, v ∈ T. (9.12)

In particular, we have H(u ◦ u)(y) = 0 for all u ∈ T .

Proof. This follows immediately from the fact that for u = [u1, . . . , um] ∈ T
and for v ∈ T we have H(u ◦ v) = H(m+1)

(
F (u1), . . . , F (um), F (v)

)
=

F (v)T (∇H)(m)
(
F (u1), . . . , F (um)

)
= F (v)TJ F (u), and from the skew-sym-

metry of J . 
�

The trees u ◦ v and v ◦ u have the same graph and differ only in the position
of the root. The relation (9.12) thus motivates the consideration of the (smallest)
equivalence relation on T satisfying

u ◦ v ∼ v ◦ u. (9.13)

We want to select from each equivalence class, not containing a tree of the form
u◦u, exactly one element. This can be done as follows (cf. Chartier, Faou & Murua
2005): we choose a total ordering on the set T that respects the number of vertices,
i.e., u < v whenever |u| < |v|, and we define

T ∗ = { } ∪ {τ | τ cannot be written as τ = u ◦ v with u ≤ v} (9.14)

=
{

. . .
}

(for the second line we assume [ , ] < [[ ]]). Every tree τ ∈ T is either equivalent
to some u ◦ u or to a tree in T ∗. This is a consequence of the fact that as long as
τ = u ◦ v with u < v, it can be changed to v ◦u (what happens only a finite number
of times). Moreover, two trees of T ∗ can never be equivalent.

Lemma 9.7. For a tree τ ∈ T ∗ we have

J−1∇H(τ)(y) = σ(τ)
∑
θ∼τ

(−1)κ(τ,θ)

σ(θ)
F (θ)(y), (9.15)

where κ(τ, θ) is the number of root changes that are necessary to obtain θ from τ .

Proof. We compute J−1∇H(τ)(y). The expression H(τ)(y) consists of |τ | factors
corresponding to the vertices of τ , each of which has to be differentiated by Leibniz’
rule. Differentiation of H(m)(y) (cf. Definition 9.5) and pre-multiplication by the
matrix J−1 yields F (τ)(y). Before differentiating the other factors, we bring the
corresponding vertex down to the root. In view of Lemma 9.6 this only multiplies
H(τ)(y) by (−1)κ(τ,θ), and shows that a differentiation of the corresponding factor
yields F (θ)(y). Since τ ∈ T ∗, the number of possibilities to obtain θ from τ by
exchanging roots is equal to σ(τ)/σ(θ). This factor has to be included. 
�
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IX.9.3 Modified Hamiltonian

We are now in the position to give an explicit formula for the Hamiltonian of the
modified differential equation provided that the numerical method can be written as
a B-series. An extension to partitioned methods will be given in Sect. IX.10.

Theorem 9.8. Consider a numerical method that can be written as a B-series (9.1),
and that is symplectic for every Hamiltonian system ẏ = J−1∇H(y). Its modified
differential equation is then Hamiltonian with

H̃(y) = H1(y) + hH2(y) + h2 H3(y) + . . . ,

where

Hj(y) =
∑

τ∈T∗, |τ |=j

b(τ)
σ(τ)

H(τ)(y), (9.16)

and the coefficients b(τ) are those of Theorem 9.2. Notice that the sum in (9.16) is
only over trees in T ∗ as defined in (9.14).

Proof. We apply the method (9.1) to the Hamiltonian system, so that by Theo-
rem 3.1 the modified differential equation is (locally) Hamiltonian. It therefore fol-
lows from Theorem 9.3 that the coefficients b(τ) of (9.4) satisfy (9.8). This relation
implies b(θ) = (−1)κ(τ,θ)b(τ) whenever θ ∼ τ . Inserted into (9.3), an application
of Lemma 9.7 proves the statement. 
�

Remark 9.9. This theorem gives an explicit formula for the modified Hamiltonian
(for methods expressed as B-series). Since the elementary Hamiltonians H(τ)(y)
depend only on derivatives of H(y), this modified Hamiltonian is globally defined.
For Runge–Kutta methods this provides an alternative approach to the statement of
Theorem 3.2.

For the sake of completeness we give in the following theorem a characterization
of Hamiltonian vector fields of the form (9.4).

Theorem 9.10. The differential equation hẏ = B(b, y) with b(∅) = 0 is Hamil-
tonian for all vector fields f(y) = J−1∇H(y), if and only if

b(u ◦ v) + b(v ◦ u) = 0 for all u, v ∈ T. (9.17)

Proof. The “only if” part follows from Theorem 9.3. The “if” part is a consequence
of the proof of Theorem 9.8. 
�

IX.9.4 First Integrals Close to the Hamiltonian

We have seen in Sect. IX.9.3 that for symplectic methods the modified differential
equation (9.4) based on f(y) = J−1∇H(y) is Hamiltonian with a function of the
form
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H(c, y) =
∑

τ∈T∗

h|τ |−1

σ(τ)
c(τ)H(τ)(y) (9.18)

and coefficients c(τ) = b(τ). In this section we study whether for non-symplectic
methods a function of the form (9.18) can be a first integral of (9.4). This question
has been addressed by Faou, Hairer & Pham (2004), and we closely follow their
presentation.

Lemma 9.11. Let y(t) be a solution of the differential equation (9.4) which can be
written as hẏ(t) = B(b, y(t)). We then have

d

dt
H

(
c, y(t)

)
= H

(
δbc, y(t)

)

where δcb( ) = 0 and, for τ ∈ T ∗ with |τ | > 1,

δbc(τ) =
∑
θ∼τ

(−1)κ(τ,θ) σ(τ)
σ(θ)

∑
ω∈T∗∩SP(θ)

c(ω) b(θ \ ω). (9.19)

The first sum is over all trees θ that are equivalent to τ (see (9.13)), and the second
sum is over all splittings of θ as in Lemma 9.1 (see Table 9.2).

Proof. The proof is nearly the same as that of Lemma 9.1. The first sum in (9.19)
appears, because H(θ)(y) = H(τ)(y) for θ ∼ τ and because the sum in (9.18) is
only over trees in T ∗. 
�

Table 9.2. Formulas for δbc(τ) for trees τ ∈ T ∗ up to order 6

δbc( ) = −2 c( )b( )

δbc( ) = 3 c( )b( ) − 3 c( )b( )

δbc( ) = 4 c( )b( ) − 4 c( )b( )

δbc( ) = c( )b( ) + c( )b( ) + c( )b( ) − 2 c( )b( )

δbc( ) = 2 c( )b( ) − 2 c( )b( )

δbc( ) = 5 c( )b( ) − 5 c( )b( )

δbc( ) = 3 c( )b( ) + c( )b( ) + c( )b( )

−3 c( )b( ) + c( )b( )

δbc( ) = 2 c( )b( ) + c( )b( ) − c( )b( ) + 2 c( )b( )

δbc( ) = 2c( )b( ) − c( )b( ) − c( )b( ) − c( )b( )

−c( )b( ) + 2 c( )b( ) + c( )b( )
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Corollary 9.12. The function H(c, y) of (9.18) is a first integral of the differential
equation (9.4) for every H(y) if and only if

δbc(τ) = 0 for all τ ∈ T ∗. (9.20)

Proof. The sufficiency follows from Lemma 9.11 and the necessity is a consequence
of the independence of the elementary Hamiltonians. To prove their independence
we have to show that the series (9.18) vanishes for all smooth H(y) only if c(τ) = 0
for all τ ∈ T ∗. With the techniques of the proof of Theorem VI.7.4 one can show
that for every tree τ ∈ T ∗ there exists a polynomial Hamiltonian such that the first
component of F (τ)(0) vanishes for all trees except for τ . Differentiating (9.18) and
employing Lemma 9.7 proves that c(τ) = 0. 
�

Solving the System (9.20). We consider a consistent method, i.e., b( ) = 1, and
we search for a first integral H(c, y) close to the Hamiltonian, i.e., c( ) = 1.

|τ | = 3: The condition (9.20) for τ = implies b( ) = 0, which means that
the method has to be of order two.

|τ | = 4: There is only one tree in T ∗ with four vertices. The corresponding
condition can be satisfied by putting c( ) = b( ).

|τ | = 5: The third condition yields b([[[ ]]]) = 0. Letting c( ) be such that
one of the other two conditions holds, we still have to satisfy

b( ) + b( )− 2 b( ) = 0. (9.21)

This condition is satisfied for symplectic methods, for which b(u◦v)+b(v◦u) = 0,
and also for symmetric methods, for which b(τ) = 0 for trees with an even order.

|τ | = 6: There are four conditions for three c(τ) coefficients. Assuming (9.20)
for trees with less than five vertices, these four conditions admit a solution if and
only if

5 b( ) + 5 b( ) + 6 b( ) + 6 b( )− 12 b( ) + 3 b( )

−15 b( )− 3 b( )
(
b( ) + b( )

)
= 0.

(9.22)

This relation is obviously satisfied by every symplectic method. However, as we
shall see soon, there are symmetric methods that do not satisfy (9.22).

For various symmetric methods of order 4 (i.e., b(τ) = 0 for 1 < |τ | < 5) we
compute the coefficients b(τ) of the leading perturbation term in (9.4) and also the
expression (9.22), see Table 9.3. None of the considered methods is symplectic.

Surprisingly, the 3-stage collocation method Lobatto IIIA (see Table II.1.2 for
the coefficients) satisfies the condition (9.22). This implies for every Hamiltonian
system (reversible or not reversible) that the dominating error term in the numerical
Hamiltonian does not have any drift.

The 3-stage Lobatto IIIB method (see Table II.1.4) does not satisfy the condition
(9.22). We therefore expect a drift in the numerical Hamiltonian.
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Table 9.3. Coefficients b(τ) and expression (9.22) for methods of order 4

method (9.22)

Lobatto IIIA
1

120

1

240

1

480
− 1

120
− 1

240

1

720
− 1

360
0

Lobatto IIIB
1

120
− 1

360
− 1

720
− 1

120

1

360

1

720

1

240

1

48

Lemma 9.13. For given b(τ), τ ∈ T satisfying b(∅) = 0, b( ) = 1, and for fixed
c( ), the linear system (9.20) for c(τ), τ ∈ T ∗ has at most one solution.

Proof. We prove by induction on τ ∈ T ∗ that c(τ) is uniquely determined by (9.20).
For this we assume that the ordering on T is such that, within trees of the same
order, it is increasing when the numer of vertices connected to the root decreases,
cf. (9.14).

Let τ = [τ1, . . . , τm, , . . . , ] ∈ T ∗ \ { } with |τj | > 1, and denote by k
the number of ’s in this representation. Since the tree τ ◦ is again in the set T ∗,
condition (9.20) yields

0 = δbc(τ ◦ ) = (k + 1)c(τ)b( )− (k + 1)c( )b(τ) + . . . . (9.23)

For m = 0, no further terms are present and c(τ) is uniquely determined by this
relation. For m > 0, the three dots in (9.23) represent a linear combination of
c(µ)b(ν) with |µ| < |τ | (which, by the induction hypothesis, are already known)
and of c(σ)b( ), where σ ∈ T ∗ is the representant in T ∗ of the equivalence class
for τ ′. We use the notation τ ′ for some tree which is obtained from τ by removing
one of the end vertices of τj and by adding it to the root of τ .

In general we will have τ ′ ∈ T ∗ (so that σ = τ ′), and in this case its number of
end vertices connected to the root is larger than that for τ . Hence, σ < τ , and the
coefficient c(σ) is known by the induction hypothesis.

If τ ′ �∈ T ∗, what is only possible if τ = u ◦ v with |u| = |v| and u > v, we
have τ ′ = u′ ◦ v and u′ < v (notice that u′ = v is not permitted for trees in T ∗).
In this case we have σ = v ◦ u′ ∈ T ∗. Consequently, c(τ) = c(u ◦ v) is expressed
in terms of c(v ◦ u′) and known quantities. Applying the same reasoning to v ◦ u′

and observing that because of u > v the tree v has at least as many end vertices
connected to the root as the tree u, we see that c(v ◦ u′) is expressed in terms of
already determined quantities. 
�

The expression (9.20) is bilinear in b and c. Assuming that hẏ = B(b, y) is
Hamiltonian, the mapping b has the same degree of freedom as c. It is therefore not
astonishing to have the following dual variant of Lemma 9.13.

Lemma 9.14. Let c(τ), τ ∈ T ∗ be given and assume c( ) = 1 and b(∅) = 0. Then,
for fixed b( ), the linear system (9.20) for b(τ), τ ∈ T has at most one solution
satisfying b(u ◦ v) + b(v ◦ u) = 0 for all u, v ∈ T .
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Proof. By assumption on b, the coefficients b(τ), τ ∈ T \ T ∗ are uniquely deter-
mined by those for τ ∈ T ∗. The statement is thus obtained in the same way as
that for Lemma 9.13 with the only difference that expressions c( )b(σ) and not
c(σ)b( ) have to be studied. 
�

Theorem 9.15 (Chartier, Faou & Murua 2005). The only symplectic method (as
B-series) that conserves the Hamiltonian for arbitrary H(y) is the exact flow of the
differential equation.

Proof. If the method conserves exactly the Hamiltonian, we have (9.20) with
c( ) = 1 and c(τ) = 0 for all other trees in T ∗. By the uniqueness statement
of Lemma 9.14 and the symplecticity of the method (Theorem 9.10), we obtain
b(τ) = 0 for |τ | > 1. Consequently, no perturbation is permitted in the modified
differential equation of the method. 
�

A closely related result is given in Ge & Marsden (1988). There, general sym-
plectic methods are considered (not necessarily B-series methods) but a weaker re-
sult is obtained (in fact, they assume that the system does not have other conserved
quantities than H(y), and it is shown that the numerical flow coincides with the
exact flow up to a reparametrization of time).

IX.9.5 Energy Conservation: Examples and Counter-Examples

It is generally believed that symmetric methods applied to reversible Hamiltonian
systems (reversible in the sense that H(−p, q) = H(p, q)) have the same long-
time behaviour as symplectic methods. This is true in many situations of practical
interest, and we shall prove this rigorously in Sect. XI.3 for integrable reversible
systems. There are, however, interesting counter-examples to this general belief.
They are taken from Faou, Hairer & Pham (2004).

Example 9.16. Our first example is a modification of the pendulum equation

H(p, q) = 1

2
p2 − cos q + 1

5
sin(2q), (9.24)

where the additional term sin(2q) destroys the symmetry in q. The Hamiltonian still
satisfies H(−p, q) = H(p, q). We consider initial values p(0) = 2.5, q(0) = 0 with
sufficiently large initial velocity, such that p(t) stays positive for all times and the
symmetry p ↔ −p does not affect the numerical solution. The angle q(t) increases
without limit, but the potential is 2π-periodic so that the solution stays on a closed
curve of the cylinder R× S1.

We apply the 3-stage Lobatto IIIA and IIIB methods to this problem. Figure 9.3
shows the error in the Hamiltonian along the numerical solutions. There is a visible
energy drift of size O(th4) for the Lobatto IIIB method and no drift can be seen on
this scale for the Lobatto IIIA method. To get more insight into its long-time behav-
iour, we apply the method with the same step size to a much longer time interval,
and we plot the error in H(pn, qn)+h4H5(pn, qn), where the first perturbation term
is computed from (9.18) and the linear system (9.20) as
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−.0006

−.0003

.0000

.0003
Lobatto IIIA

Lobatto IIIB

Fig. 9.3. Numerical Hamiltonian of Lobatto methods of order 4 for the perturbed pendulum
(9.24); step size h = 0.2, integration interval [0, 500]

100000 200000 300000 400000
.00000

.00003

.00006 Lobatto IIIA

Fig. 9.4. Error in H(p, q) + h4H5(p, q) along the numerical solution of the 3-stage Lo-
batto IIIA method for the perturbed pendulum (9.24); step size h = 0.2, integration interval
[0, 500 000]

H5(p, q) = 1

960

(
3U (4)(q)p4 − 2U (3)U ′(q)p2 −

(
U ′′(q)p

)2 + U ′′(q)
(
U ′(q)

)2
)

with the potential U(q) = − cos q + 0.2 sin(2q) (see Fig. 9.4). Repeating the same
experiment with halved step size shows that there are oscillations with amplitude
O(h6) and a drift with slope O(h8). Consequently, the error in the Hamiltonian for
the Lobatto IIIA method behaves on this problem like O(h4 + th8).

Without the term sin(2q) in (9.24) all symmetric one-step methods nearly con-
serve the Hamiltonian.

Example 9.17. For polynomial Hamiltonians H(y) of degree at most four, the el-
ementary Hamiltonian corresponding to the tree vanishes identically. There-
fore, the condition (9.20) need not be considered for this tree, and the remaining
three conditions can always be satisfied by the three c(τ) coefficients. This implies
that, for example for the Hénon–Heiles problem

H(p1, p2, q1, q2) = 1

2

(
p2
1 + p2

2

)
+ 1

2

(
q2
1 + q2

2

)
+ q1q

2
2 −

1

3
q3
1 , (9.25)

the leading error term in the numerical Hamiltonian remains bounded by all methods
of order four. Numerical experiments indicate that in this case also higher order error
terms are bounded by symmetric methods such as Lobatto IIIA and IIIB, even if the
initial values are chosen so that the solution is chaotic.

Example 9.18. A concrete mechanical system with two degrees of freedom is de-
scribed by the Hamiltonian
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H(p, q) = 1

2
pT p + ω2

2

(
‖q‖ − 1

)2 + q2 −
1

‖q − a‖ . (9.26)

It is a model of a planar spring pendulum with exterior forces. The spring has a
harmonic potential with frequency ω (Hooke’s law). The exterior forces are gravi-
tation and attraction to a mass point situated at a, which has to be chosen so that no
symmetry in the q-variables is present.

The numerical experiments, reported by Faou, Hairer & Pham (2004), use
ω = 2, a = (−3,−5)T , and initial values for the position q(0) = (0, 1)T (up-
right position), and for the velocity p(0) = (−1,−0.5)T . The pendulum thus turns
around the fixed end of the spring which is at the origin.

As for the problem of Example 9.16 one clearly observes a drift for the 3-stage
Lobatto IIIB method, and the error in the Hamiltonian behaves like O(th4). As
predicted by the theory of the preceding section, the dominant error term for the 3-
stage Lobatto IIIA method is bounded. There is, however, a drift already in the next
term so that the error in the Hamiltonian behaves for this method as O(h4 + th6).

Removing one of the exterior forces (gravitation or attraction to a), the error
in the Hamiltonian remains bounded of size O(h4) without any drift (even not in
higher order terms) for both Lobatto methods.

IX.10 Extension to Partitioned Systems

All results of Sect. IX.9 can be extended to partitioned methods whose discrete flow
can be written as a P-series. This includes important geometric integrators such as
the symplectic Euler method and the Störmer–Verlet scheme. Interestingly, many of
the results have been originally presented and proved for this more general case (see
Hairer (1994)).

IX.10.1 P-Series of the Modified Equation

We consider the partitioned system

ṗ = f(p, q), q̇ = g(p, q), (10.1)

where, in view of an application to Hamiltonian systems, we use (p, q) instead of
(y, z) for the variables. By Theorem III.2.4 all consistent partitioned Runge–Kutta
methods can be written as P-series (cf. Definition III.2.1)

(
p1

q1

)
=

(
p0

q0

)
+ h

(
f
g

)

0

+ h2

(
a( )(fpf) + a( )(fqg)
a( )(gpf) + a( )(gqg)

)

0

+ . . . , (10.2)

where the subscript 0 indicates an evaluation at the initial value (p0, q0). The first
perturbation term of the modified equation (1.1) can therefore be written as
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(
f2(p, q)
g2(p, q)

)
=

((
a( )− 1

2

)
(fpf)(p, q) +

(
a( )− 1

2

)
(fqg)(p, q)(

a( )− 1
2

)
(gpf)(p, q) +

(
a( )− 1

2

)
(gqg)(p, q)

)

and, in general, one finds

(
fj(p, q)
gj(p, q)

)
=

(∑
τ∈TPp,|τ |=j

b(τ)
σ(τ) F (τ)(p, q)

∑
τ∈TPq,|τ |=j

b(τ)
σ(τ) F (τ)(p, q)

)
. (10.3)

Hence, the modified equation (1.1) is of the form
( ˙̃p

˙̃q

)
=




∑
τ∈TPp

h|τ|−1

σ(τ) b(τ)F (τ)(p̃, q̃ )
∑

τ∈TPq

h|τ|−1

σ(τ) b(τ)F (τ)(p̃, q̃ )


 , (10.4)

where b(τ) = 1 for |τ | = 1, b(τ) = a(τ) − 1
2 for |τ | = 2. For |τ | > 2, the

coefficients b(τ) can be obtained recursively from Theorem 10.2 below. The proofs
of the following two results are straightforward extensions of those for Lemma 9.1
and Theorem 9.2, and are therefore omitted.

Lemma 10.1 (Lie-Derivative of P-series). Let b(τ) (with b(∅p) = b(∅q) = 0) and
c(τ) be the coefficients of two P-series, and let

(
p(t), q(t)

)
be a formal solution of

the differential equation h(ṗ(t), q̇(t))T = P
(
b, (p(t), q(t))

)
, i.e., (10.4). The Lie

derivative of the function P
(
c, (p, q)

)
with respect to the vector field P

(
b, (p, q)

)
is

again a P-series

h
d

dt
P
(
c, (p(t), q(t))

)
= P

(
∂bc, (p(t), q(t))

)
.

Its coefficients are given by ∂bc(∅p) = ∂bc(∅q) = 0 , and for |τ | ≥ 1 by

∂bc(τ) =
∑

θ∈SP(τ)

c(θ) b(τ \ θ), (10.5)

where, analogously to (9.5), SP(τ) denotes the set of splittings of τ ∈ TP . 
�
In formula (10.5), ∅p ∈ SP(τ) defines a splitting only if τ ∈ TPp, and

∅q ∈ SP(τ) only if τ ∈ TPq. We therefore have ∂bc( ) = c(∅p)b( ), ∂bc( ) =
c(∅q)b( ), and as examples for trees of order 3

∂bc( ) = c(∅p)b( ) + 2 c( )b( ),
∂bc( ) = c(∅p)b( ) + c( )b( ) + c( )b( ).

Theorem 10.2. If the method (p1, q1) = Φh(p0, q0) can be written as (10.2), the
modified differential equation is given by (10.4), where the real coefficients b(τ) are
recursively defined by b(∅p) = b(∅q) = 0, b(τ) = 1 for |τ | = 1, and

b(τ) = a(τ)−
|τ |∑
j=2

1
j!

∂ j−1
b b(τ) for τ ∈ TP. (10.6)

Here, ∂ j−1
b denotes the iterate of the Lie derivative ∂b defined in Lemma 10.1. 
�
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Example 10.3. The symplectic Euler method

pn+1 = pn + hf(pn+1, qn), qn+1 = qn + hg(pn+1, qn) (10.7)

is a partitioned Runge–Kutta method (a11 = 1, â11 = 0, b1 = b̂1 = 1) and can
therefore be expressed as a P-series (10.2). From Theorem III.2.4 we get its coeffi-
cients:

a(τ) =
{

1 if all vertices (different from the root) are black,

0 otherwise.

From Theorem 10.2 we can compute the coefficients b(τ) of the modified equation
(10.4). They are given in Table 10.1 for the trees with a black root. Since a(τ) does
not depend on the colour of the root of τ , the same holds for the coefficients b(τ).
Hence, we do not include the values of b(τ) for trees with a white root.

Table 10.1. Coefficients b(τ) of the modified equation for symplectic Euler (10.7)

τ

b(τ) 1 1/2 −1/2 1/6 −1/3 1/6 1/3 −1/6 −1/6 1/3

We know from Theorem 3.1 that the modified differential equation (10.4) of a
symplectic method applied to a Hamiltonian system

ṗ = −Hq(p, q), q̇ = Hp(p, q) (10.8)

is again Hamiltonian.

Theorem 10.4. Suppose that for all separable Hamiltonians H(p, q) = T (p) +
U(q) the modified vector field (10.4), truncated after an arbitrary power of h, is
(locally) Hamiltonian. Then, we have

b(u ◦ v) + b(v ◦ u) = 0 u ∈ TPp, v ∈ TPq (10.9)

for trees, where neighbouring vertices have different colours.
If it is (locally) Hamiltonian for all H(p, q), then (10.9) holds for all u ∈ TPp,

v ∈ TPq, and additionally we have

b(τ) is independent of the colour of the root of τ ∈ TP . (10.10)

If it is (locally) Hamiltonian for all H(p, q) = 1
2p

TCp + cT p + U(q) (with
symmetric matrix C), then we have

b( ◦ u) + b(u ◦ ) = 0, b(u ◦◦ v)− b(v ◦◦u) = 0 u, v ∈ TNp (10.11)

(see Sect. VI.7.1 for the definition of TNp and u ◦◦ v).

The proof is the same as for Theorem 9.3 and therefore omitted. 
�
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IX.10.2 Elementary Hamiltonians

We have already seen in Example 3.4 that the modified Hamiltonian of the sym-
plectic Euler method is composed of expressions such as HpHq, Hpp(Hq,Hq),
Hpq(Hq,Hp), etc. These will play the role of elementary Hamiltonians for parti-
tioned methods. In the following definition, the elementary differentials F (τ)(p, q)
correspond to the partitioned system f(p, q) = −Hq(p, q), g(p, q) = Hp(p, q).

Definition 10.5. For a given function H : D → R (with open D ⊂ R
d × R

d) and
for τ ∈ TP we define the elementary Hamiltonian H(τ) : D → R by

H( )(p, q) = H( )(p, q) = H(p, q)

H(τ)(p, q) =
∂m+lH(p, q)

∂mp ∂lq

(
F (u1)(p, q), ..., F (v1)(p, q), . . .

)

where τ = [u1, . . . , um, v1, . . . , vl]p or τ = [u1, . . . , um, v1, . . . , vl]q with trees
ui ∈ TPp and vi ∈ TPq.

Examples of elementary Hamiltonians are

H( ) = H, H( ) = HqHp,

H( ) = Hpp(Hq,Hq), H( ) = −Hpq(Hq,Hp), H( ) = Hqq(Hp,Hp).

We notice that, in contrast to Sect. IX.9.2, non-vanishing elementary Hamiltonians
exist for trees with two vertices.

Lemma 10.6. Elementary Hamiltonians satisfy

H(u ◦ v)(p, q) + H(v ◦ u)(p, q) = 0 for u ∈ TPp and v ∈ TPq, (10.12)

and they do not depend on the colour of the root.

Proof. The independence of the colour of the root is by definition, and formula
(10.12) is proved in the same way as the statement of Lemma 9.6. 
�

The conditions (10.9) and (10.10) define relations between the coefficients b(τ)
of a Hamiltonian vector field (10.4). The previous lemma shows analogous relations
between elementary Hamiltonians. This motivates the consideration of the following
equivalence relation on TP (Hairer 1994).

Definition 10.7. We denote by ∼ the smallest equivalence relation on TP which
satisfies the two properties

• u ∼ v if u and v are identical with the exception of the colour of the root;

• u ◦ v ∼ v ◦ u for u ∈ TPp and v ∈ TPq.
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Fig. 10.1. Groups of equivalent trees of orders up to three

Equivalent trees of orders up to three are grouped together in Fig. 10.1. We can
change the colour of the root, and we can move the root to a neighbouring vertex if
it has the opposite colour.

In the case of separable Hamiltonians, one has to consider only trees for which
neighbouring vertices have different colours. This implies that the first condition of
Definition 10.7 is empty. The second condition means that the root can be moved ar-
bitrarily in the tree without changing the equivalence class. For this special situation,
equivalence classes have been considered already by Abia & Sanz-Serna (1993) and
are named “bicolour (unrooted) trees”.

Similar to (9.14) we select representatives from the equivalence class as follows:
we fix a total ordering on the set TP that (i) respects the number of vertices, and
(ii) is such that no tree is between trees that differ only in the colour of the root. The
ordering of Fig. 10.1 is such a possible choice. We then define

TP ∗ =
{

,
}
∪

{
τ ∈ TP

∣∣∣ τ cannot be written as τ = u ◦ v with u < v,
also not if the colour of the root is changed.

}
.

(10.13)
We further let TP ∗

p = TP ∗ ∩ TPp and TP ∗
q = TP ∗ ∩ TPq.

Lemma 10.8. For a tree τ ∈ TP ∗ we have

−∂H(τ)
∂q

(p, q) = σ(τ)
∑

θ∼τ,θ∈TPp

(−1)κ(τ,θ)

σ(θ)
F (θ)(p, q),

∂H(τ)
∂p

(p, q) = σ(τ)
∑

θ∼τ,θ∈TPq

(−1)κ(τ,θ)

σ(θ)
F (θ)(p, q),

(10.14)

where κ(τ, θ) is the number of root changes that are necessary to obtain θ from τ .

The proof is the same as for Lemma 9.7 and therefore omitted. 
�
We are now able to give the main result of this section.

Theorem 10.9. Consider a numerical method that can be written as a P-series
(10.2), and that is symplectic for every Hamiltonian (10.8). Its modified differen-
tial equation is then Hamiltonian with

H̃(p, q) = H1(p, q) + hH2(p, q) + h2 H3(p, q) + . . . ,

where

Hj(p, q) =
∑

τ∈TP∗
p , |τ |=j

b(τ)
σ(τ)

H(τ)(p, q), (10.15)

and the coefficients b(τ) are those of Theorem 10.2. Notice that Hj(p, q) from
(10.15) is independent of whether we sum over trees in TP ∗

p or TP ∗
q .
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Proof. This is the same as for Theorem 9.8. 
�

If the method (10.2) is known to be symplectic for separable Hamiltonians only,
and if it is applied to H(p, q) = T (p)+U(q), the statement of Theorem 10.9 is still
valid. In this situation H(τ)(p, q) vanishes if a vertex of τ has sons with different
colour (it then contains a factor Hpq... = 0).

Example 10.10. Consider the 2-stage Lobatto IIIA - IIIB pair (cf. Table II.2.1),
which is the natural extension of the Störmer–Verlet scheme to non-separable prob-
lems. We compute the coefficients a(τ) from Theorem III.2.4, and b(τ) from The-
orem 10.2. The result is given in Table 10.2. Notice that a(τ) and b(τ) are both
independent of the colour of the root. Theorem 10.9 then yields

H̃ = H +
h2

24

(
2HppH

2
q −HqqH

2
p + 2HpqHqHp

)
+ . . . (10.16)

for the modified Hamiltonian. Since the method is symmetric, H̃ is in even powers
of h. The next non-vanishing term requires the consideration of trees up to order 5.

Table 10.2. Coefficients a(τ) and b(τ) for the Störmer–Verlet scheme (Table II.2.1)

τ

a(τ) 1 1/2 1/2 1/2 1/4 1/4 1/4 1/4 0 1/4

b(τ) 1 0 0 1/6 −1/12 −1/12 1/12 1/12 −1/6 1/12

Remark 9.9, the characterization of symplectic vector fields (10.4), and the re-
sults of Sect. IX.9.4 can be extended to the case of (partitioned) P-series. We re-
nounce of giving all the details here.

IX.11 Exercises

1. Change the Maple program of Example 1.1 in such a way that the modified
equations for the implicit Euler method, the implicit midpoint rule, or the trape-
zoidal rule are obtained. Observe that for symmetric methods one gets expan-
sions in even powers of h.

2. Write a short Maple program which, for simple methods such as the symplec-
tic Euler method, computes some terms of the modified equation for a two-
dimensional system ṗ = f(p, q), q̇ = g(p, q). Check the modified equations of
Example 1.3.

3. Prove that the modified equation of the Störmer–Verlet scheme (I.1.15) applied
to ÿ = g(y) is a second order differential equation of the form ¨̃y = gh(ỹ, ˙̃y)
with initial values given by ỹ(0) = y0 and ˙̃y(0) such that ỹ(h) = y1 holds.
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Hint. Taylor expansion shows that for a smooth function ỹ(t) satisfying ỹ(t) =
yn we have (

1 + h2

12
D2 + h4

360
D4 + . . .

)
¨̃y(t) = g

(
ỹ(t)

)
,

where D represents differentiation with respect to time.
Warning. In general, we do not have that ˙̃y(tn) = ẏn.

4. Prove that for ρ-reversible differential equations the elementary differentials
satisfy

F (τ)(ρy) = (−1)|τ |ρF (τ)(y).

Use this to give an alternative proof of Theorem 2.3 for the case that the method
is symmetric and can be expressed as a B-series.

5. Find a first integral of the truncated modified equation for the symplectic Euler
method and the Lotka–Volterra problem (Example 1.3).
Hint. With the transformation p = expP , q = expQ you will get a Hamil-
tonian system.
Result. Ĩ(p, q) = I(p, q)− h

(
(p + q)2 − 8p− 10q + 2 ln p + 8 ln q

)
/4.

6. (Field & Nijhoff 2003). Apply the symplectic Euler method to the system with
Hamiltonian H(p, q) = ln(α + p) + ln(β + q). Compute the modified Hamil-
tonian and prove that the series converges for sufficiently small step sizes.
Hint. The method conserves exactly I(p, q) = (α+ p)(β + q). Find linear two-
term recursions for {pn} and {qn}, and use the ideas of Example 1.4. Result.

H̃(p, q) = H(p, q)−
∑
k≥1

hk I(p, q)−k

k(k + 1)
.

7. Compute ∂bc(τ) for the tree τ = [[τ ], τ ] of order 4.
8. For the implicit midpoint rule compute the coefficients a(τ) of the expansion

(9.1), and also a few coefficients b(τ) of the modified equation.
Result. a(τ) = 21−|τ |, b( ) = 1, b( ) = 0, b(τ) = a(τ) − 1/γ(τ) for
|τ | = 3.

9. Check the formulas of Table 9.1.
10. Consider a differential equation ẏ = f(y) with a divergence-free vector field,

and apply a volume-preserving integrator. Show that every truncation of the
modified equation has again a divergence-free vector field.
Hint. Adapt the proof by induction of Theorems 2.3 and 3.1.

11. Consider explicit 2-stage Runge–Kutta methods of order 2, applied to the pen-
dulum problem q̇ = p, ṗ = − sin q. With the help of Exercise 2 compute
f3(p, q) of the modified differential equation. Is there a choice of the free para-
meter c2, such that f3(p, q) is a Hamiltonian vector field?

12. Find at least two linear transformations ρ for which the Kepler problem (I.2.2),
written as a first order system, is ρ-reversible.

13. Consider the Kepler problem (I.2.2), written as a Hamiltonian system (I.1.10).
Find constants M and R such that (7.2) holds for all (p, q) ∈ R

4 satisfying

‖p‖ ≤ 2 and 0.8 ≤ ‖q‖ ≤ 1.2.
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14. (McLachlan & Zanna 2005). Consider the RATTLE method (Algorithm VII.5.1)
applied to the Euler equations (VII.5.10) of the free rigid body, written as
ẏ = f(y). Prove that the modified differential equation is of the form

ẏ = (1 + h2s2(y) + h4s4(y) + . . .) f(y), (11.1)

where the scalar functions sk(y) depend on y only via the Casimir function
C(y) = y2

1 +y2
2 +y2

3 and the Hamiltonian H(y) = 1
2 (y2

1/I1 +y2
2/I2 +y2

3/I3).
Consequently, all sk(y) are constant along solutions of the Euler equations.
Hint. Since C(y) and H(y) are exactly conserved by the numerical method
(see Sect. VII.5.3), the modified equation is a time transformation of the origi-
nal system. The special form of the functions sk(y) follows from the fact that
RATTLE is a Poisson integrator (Theorem VII.5.11) and from a transformation
to canonical form as in Theorem 3.5.

15. (Murua 1999). Let Φh(y) = B(a, y) be given by a B-series and denote with
b(τ) the coefficients of the corresponding modified differential equation, cf.
formula (9.4). Prove that the coefficients of the nth iterate Φn

h(y) = B(an, y)
satisfy

an(τ) = n b(τ) + n2c(τ, n) for τ ∈ T ,

where c(τ, n) is a polynomial of degree |τ | − 2 in n.
Hint. This follows from the Taylor series ỹ(nh) = ỹ(0)+nhỹ′(0)+ . . . for the
solution of the modified differential equation.

16. With the help of Exercise 15, give an alternative proof of Theorem 9.3.
Hint. If B(a, y) is symplectic, also B(an, y) is symplectic and its coefficients
thus satisfy (VI.7.4).

17. (Murua 1997). Find a one-to-one correspondence between the equivalence
classes of TP (corresponding to ∼ of Definition 10.7) and oriented free trees
(i.e., trees without a distinguished vertex (root), but with oriented edges), see
Fig. 11.1.

Fig. 11.1. Oriented free trees up to order four



Chapter X.
Hamiltonian Perturbation Theory and
Symplectic Integrators

Perturbation theory is in fact an outgrowth of the necessity to determine
the orbits with ever greater accuracy. This problem can be solved today,
but in what is for the theoretician a rather disappointing way. With mod-
ern calculating machines, one is now able to compute directly results even
more accurately than those provided by perturbation theory.

(J. Moser 1978)

. . . allows computer prediction of planetary positions far more accurate
(by brute computation) than anything provided by classical perturbation
theory. In a very real sense, one of the most exhalted of human endeavors,
going back to the priests of Babylon and before, has been taken over by
the machine. (S. Sternberg 1969)

In this chapter we study the long-time behaviour of symplectic integrators, combin-
ing backward error analysis and the perturbation theory of integrable Hamiltonian
systems.

approximate
problem

original
problem

modified
problem

approximate
solution

exact
solution

numerical
solution

numerical
method

error anal.
backward

error ?

error ?
perturbation
theory

During the 18th and 19th centuries, scientists struggled for the integration of com-
plicated problems of dynamics, with the main aim of solving them analytically by
“quadrature”. But only few problems could be treated successfully in this way. In
cases where the original problem could not be solved, much effort was put into re-
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placing it by an integrable approximate problem, by using and developing perturba-
tion theory. Thereby, a rich arsenal of very ingenuous theories has been discovered
since the 19th century.

In the 1960s and 1970s, the enormous progress of “calculating machines” and
numerical software allowed many of the original problems to be solved with extreme
accuracy, so that for the first time numerical integration methods superseded analyt-
ical perturbation methods in the computations of celestial mechanics (see the above
citations). Since then, the further increase in computing speed has allowed problems
to be treated on larger and larger time scales, where huge amounts of errors are ac-
cumulated and need to be understood and controlled. In the spirit of backward error
analysis, these numerical errors are interpreted as those of a modified problem, for
the study of which perturbation theory is once again the appropriate tool.

X.1 Completely Integrable Hamiltonian Systems

Integrable Hamiltonian systems were originally of interest because their equations
of motion can be solved analytically. Their interest in the present context lies in the
fact that their flow is simply uniform motion on a Cartesian product of circles and
straight lines in suitable coordinates, and that many physical systems can be viewed
as perturbations of integrable systems.

X.1.1 Local Integration by Quadrature

M. Liouville a fait voir qu’il fallait que toutes les combinaisons (α, β)
des intégrales trouvées fussent nulles. (E. Bour 1855)

One of the great dreams of 18th and 19th century analytical mechanics was to solve
the equations of motion of mechanical systems by “quadrature”, that is, using only
evaluations and inversions of functions and calculating integrals of known functions.
In this spirit, Newton’s (1687) equations of motion of Kepler’s two-body problem
were solved by Joh. Bernoulli (1710) and Newton (1713), see Sect. I.2.2. Euler’s
(1760) solution of the problem of the attraction of a particle by two fixed centres,
and Lagrange’s (1766) study of motion of a particle in a field with one attracting
centre and under an additional constant force were among the important achieve-
ments of the 18th century. The three-body problem, however, resisted all efforts
aiming at an integration by quadrature, and though it continued to do so, this prob-
lem spurred the development of extremely useful mathematical theories of a much
wider scope throughout the 19th century, from Poisson to Poincaré via Hamilton, Ja-
cobi, Liouville, to name but a few of the most eminent mathematicians contributing
to analytical mechanics.

Consider the Hamiltonian system

ṗ = −∂H

∂q
(p, q) , q̇ =

∂H

∂p
(p, q) , (1.1)
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with d degrees of freedom: (p, q) ∈ R
d × R

d. We try to find a symplectic transfor-
mation (p, q) �→ (x, y), such that the system has a more amenable form in the new
coordinates. In particular, this is the case if the Hamiltonian expressed in the new
variables,

H(p, q) = K(x) , (1.2)

does not depend on y. Since ∂K
∂y ≡ 0, the transformed system then becomes (re-

call the conservation of the Hamiltonian form of the differential equations under
symplectic transformations, Theorem VI.2.8)

ẋ = 0 , ẏ = ω(x) , (1.3)

with ω(x) = ∂K
∂x (x). This is readily integrated:

x(t) = x0 , y(t) = y0 + ω(x0)t .

As we recall from Sect. VI.5, a symplectic transformation (p, q) �→ (x, y) can be
constructed via a generating function S(x, q) by the equations

y =
∂S

∂x
(x, q) , p =

∂S

∂q
(x, q) . (1.4)

If (p0, q0) and (x0, y0) are related by (1.4), and if ∂2S/∂x∂q is invertible at (x0, q0),
then the equations (1.4) define a symplectic transformation between neighbourhoods
of (p0, q0) and (x0, y0).

The equation (1.2) together with the second equation of (1.4) give a partial dif-
ferential equation for S, the Hamilton–Jacobi equation

H
(∂S

∂q
(x, q), q

)
= K(x) .

If S(x, q) is a solution of such an equation (for some function K), then (1.3) shows
that xi = Fi(p, q) (i = 1, . . . , d) as given implicitly by the second equation of (1.4),
are first integrals of the Hamiltonian system (1.1). Moreover, these functions Fi are
in involution, which means that their Poisson brackets vanish pairwise:

{Fi, Fj} = 0, i, j = 1, . . . , d .

This is an immediate consequence of the definition {F,G} = ∇FTJ−1∇G of the
Poisson bracket and of the symplecticity of the transformation (the left upper block
of J−1 is 0).

Conversely, it was realized by Bour (1855) and Liouville (1855) that a Hamil-
tonian system having d first integrals in involution can locally be transformed to the
form (1.3) by “quadrature”. This observation is based on the following completion
result and its proof.
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Lemma 1.1 (Liouville Lemma). Let F1, . . . , Fd be smooth real-valued functions,
defined in a neighbourhood of (p0, q0) ∈ R

d × R
d. Suppose that these functions

are in involution (i.e., all Poisson brackets {Fi, Fj} = 0), and that their gradients
are linearly independent at (p0, q0). Then, there exist smooth functions G1, . . . , Gd,
defined on some neighbourhood of (p0, q0), such that

(F1, . . . , Fd, G1, . . . , Gd) : (p, q) �→ (x, y) is a symplectic transformation.

Proof. Let F = (F1, . . . , Fd)T . The linear independence of the gradients ∇Fi im-
plies that there are d columns of the d×2d Jacobian ∂F/∂(p, q) that form an invert-
ible d×d submatrix. After some suitable symplectic transformations (see Exercise 1)
we may assume without loss of generality that Fp = ∂F/∂p is invertible. By the
implicit function theorem, we can then locally solve x = F (p, q) for p:

p = P (x, q) with partial derivatives Px = F−1
p , Pq = −F−1

p Fq .

The condition that the Fi are in involution, reads in matrix notation

FpF
T
q − FqF

T
p = 0 .

Multiplying this equation with F−1
p from the left and with F−T

p from the right, we
obtain

−PT
q + Pq = 0 ,

so that Pq = ∂P/∂q is symmetric. By the Integrability Lemma VI.2.7, P (x, q)
is thus locally the gradient with respect to q of some function S(x, q) (which is
constructed by quadrature). Moreover, ∂2S

∂x∂q = Px = F−1
p is invertible. The equa-

tions (1.4) define a symplectic transformation (p, q) �→ (x, y), and by construction
x = F (p, q). 
�

If, in a Hamiltonian system with d degrees of freedom, we can find d inde-
pendent first integrals in involution H = F1, F2, . . . , Fd, then Lemma 1.1 yields
a symplectic change of coordinates, constructed by quadrature, which transforms
(1.1) locally to (1.2) with K(x1, . . . , xd) = x1.

Example 1.2. Consider the Hamiltonian of motion in a central field,

H = 1
2 (p2

1 + p2
2) + V (r) for r =

√
q2
1 + q2

2 ,

with a potential V (r) that is defined and smooth for r > 0. The Kepler problem
corresponds to the special case V (r) = −1/r, and the perturbed Kepler problem to
V (r) = −1/r − µ/(3r3). Changing to polar coordinates (see Example VI.5.2)

(
q1

q2

)
=

(
r cosϕ
r sinϕ

)
,

(
pr

pϕ

)
=

(
cosϕ sinϕ
−r sinϕ r cosϕ

)(
p1

p2

)
, (1.5)

this becomes
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H(pr, pϕ, r, ϕ) = 1

2

(
p2

r +
p2

ϕ

r2

)
+ V (r) .

The system has the angular momentum L = pϕ as a first integral, since H does
not depend on ϕ. Clearly, {H,L} = 0 everywhere. The gradients of H and L
are linearly independent unless both pr = 0 and p2

ϕ = r3V ′(r). By inserting p2
ϕ =

2r2(H−V (r)) and eliminating r this becomes a condition of the form α(H,L) = 0,
which for the Kepler problem reads explicitly L2(1 + 2HL2) = 0. The conditions
of Lemma 1.1 are thus satisfied on the domain

M = {(pr, pϕ, r, ϕ) ; r > 0, α(H,L) �= 0} .

The equations x1 = H = 1
2 (p2

r + p2
ϕ/r

2) + V (r), x2 = L = pϕ can be solved for

pr = ±
√

2(H − V (r))− L2/r2 , pϕ = L ,

and pr = ∂S/∂r, pϕ = ∂S/∂ϕ with

S(H,L, r, ϕ) = Lϕ±
∫ r

r0

√
2(H − V (ρ))− L2/ρ2 dρ .

The conjugate variables are

y1 =
∂S

∂H
= ±

∫ r

r0

1√
2(H − V (ρ))− L2/ρ2

dρ ,

y2 =
∂S

∂L
= ϕ∓

∫ r

r0

L/ρ2

√
2(H − V (ρ))− L2/ρ2

dρ .

(1.6)

This defines (locally) the transformation (pr, pϕ, r, ϕ) �→ (x1, x2, y1, y2) . In these
variables, the equations of motion read ẋ1 = 0, ẋ2 = 0, ẏ1 = 1, ẏ2 = 0. Over any
time interval where pr(t) does not change sign, solutions therefore satisfy

t1 − t0 = ±
∫ r(t1)

r(t0)

1√
2(H − V (ρ))− L2/ρ2

dρ ,

ϕ(t1)− ϕ(t0) = ±
∫ r(t1)

r(t0)

L/ρ2

√
2(H − V (ρ))− L2/ρ2

dρ .

(1.7)

X.1.2 Completely Integrable Systems

Lemma 1.1 appears as a powerful tool for an explicit solution by quadrature. How-
ever, because of its purely local nature this lemma does not tell us anything about
the dynamics of the system. This was not a concern at Liouville’s time, but the first
rigorous non-integrability results by Poincaré (1892) put a definite end to the hope
of being eventually able to construct explicit analytic solutions of most equations of
motion by quadrature, and shifted the interest to understanding the global, qualita-
tive behaviour of dynamical systems.

Lemma 1.1 can be globalized by a procedure similar to analytic continuation if
the conditions of the following definition are satisfied.
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Definition 1.3. A Hamiltonian system with Hamiltonian H : M → R (M an open
subset of R

d × R
d) is called completely integrable if there exist smooth functions

F1 = H,F2, . . . , Fd : M → R with the following properties:
1) F1, . . . , Fd are in involution (i.e., all {Fi, Fj} = 0) on M .
2) The gradients of F1, . . . , Fd are linearly independent at every point of M .
3) The solution trajectories of the Hamiltonian systems with Hamiltonian Fi (i =

1, . . . , d) exist for all times and remain in M .

Obviously, all the Hamiltonian systems with Hamiltonian Fi (i = 1, . . . , d) are
then completely integrable, and so there will be no mathematical reason to further
distinguish H = F1. We note that condition (1) of Definition 1.3 implies that all Fj

are first integrals of the Hamiltonian system with Hamiltonian Fi, and that the flows
ϕ

[i]
t of these Hamiltonian systems commute: ϕ[i]

t ◦ ϕ
[j]
s = ϕ

[j]
s ◦ ϕ

[i]
t for all i, j and

all t, s ∈ R; see Lemma VII.3.2.
For x = (xi) ∈ R

d we define the level set

Mx = {(p, q) ∈ M ; Fi(p, q) = xi for i = 1, . . . , d}. (1.8)

Theorem 1.4. Suppose that F1, . . . , Fd : M → R satisfy the conditions of Defini-
tion 1.3. Assume that Mx is connected (and non-empty) for all x in a neighbourhood
of x0 ∈ R

d. Then, on some neighbourhood B of x0, there exists a symplectic and
surjective mapping

e : B × R
d →

⋃
x∈B

Mx : (x, y) �→ (p, q) ∈ Mx

that linearizes, for all i = 1, . . . , d, the flow ϕ
[i]
t of the system with Hamiltonian Fi:

if (p, q) = e(x, y), then ϕ
[i]
t (p, q) = e(x, y + tei), (1.9)

where ei = (0, . . . , 1, . . . , 0)T is the ith unit vector of R
d.

Since e is symplectic, e is a local diffeomorphism. Its local inverse is a trans-
formation as constructed in Lemma 1.1. However, (p, q) can have countably many
discretely lying pre-images (x, y), so that e−1 becomes a multi-valued function.
The situation is analogous to that of the complex exponential and logarithm. The
following example illustrates that this analogy is not incidental.

Example 1.5. Consider the harmonic oscillator, i.e., d = 1 and H(p, q) = 1
2 (p2 +

q2). For x = 1
2r

2, we have e(x, y) = (r cos y, r sin y).

Proof of Theorem 1.4. We fix (p0, q0) ∈ Mx0 , and in a neighbourhood U of (p0, q0)
we consider a symplectic transformation

� = (F1, . . . , Fd, G1, . . . , Gd) : (p, q) �→ (x, y)

as constructed in Lemma 1.1. We have �(p0, q0) = (x0, y0) where we may assume
y0 = 0. To every v = (vi) ∈ R

d we associate the Hamiltonian
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Fv = v1F1 + . . . + vdFd

and note that, because of the commutativity of the flows ϕ
[i]
t , the flow of the system

with Hamiltonian Fv equals

ϕtv = ϕ
[1]
tv1

◦ . . . ◦ ϕ
[d]
tvd

.

In the neighbourhood U of (p0, q0), the system with Hamiltonian Fv is transformed
under the symplectic mapping � to

ẋ = 0, ẏ = v .

Hence, the following diagram commutes for (p, q) ∈ U and for sufficiently small tv:

(p, q) −→ ϕtv(p, q)
(�

)�−1

(x, y) −→ (x, y + tv)

(1.10)

We now construct e by extending this diagram to arbitrary tv:

(p, q) −→ ϕy(p, q)
)�−1

(x, 0) ←− (x, y)

(1.11)

That is, we define on B ×R
d (with B a neighbourhood of x0 on which �−1(x, 0) is

defined)
e(x, y) = ϕy

(
�−1(x, 0)

)
.

For (x, y) near some fixed (x̂, ŷ), we have by (1.10) with y − ŷ and ŷ instead of y
and tv that

e(x, y) = ϕŷ

(
�−1(x, y − ŷ)

)
,

which shows that e is symplectic, being locally the composition of symplectic trans-
formations. The property (1.9) is obvious from the definition of e and from the com-
mutativity of the flows ϕ

[i]
t . Since �−1(x, 0) ∈ Mx and Mx is invariant under the

flows ϕ
[i]
t , we have e(x, y) ∈ Mx for all (x, y).

It remains to show that e : {x} × R
d → Mx is surjective for every x near

x0. Let (p̂, q̂) be an arbitrary point on Mx. By assumption, there exists a path on
Mx connecting �−1(x, 0) and (p̂, q̂). Moreover, by (1.10) and by the compactness
of the path, there is a δ > 0 such that, for every (p, q) on this path, the mapping
y �→ ϕy(p, q) is a diffeomorphism between the ball ‖y‖ < δ and a neighbour-
hood of (p, q) on Mx. Therefore, (p̂, q̂) can be reached from �−1(x, 0) by a finite
composition of maps:

(p̂, q̂) = ϕy(m) ◦ . . . ◦ ϕy(1)(�−1(x, 0)) = ϕŷ(�−1(x, 0)) = e(x, ŷ) ,

where ŷ = y(1) + . . . + y(m) once again by the commutativity of the flows ϕ
[i]
t . 
�
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Illustration of the Liouville Transform. We illustrate the above construction at a
simple example, the pendulum (I.1.12) with Hamiltonian H = p2/2 − cos q. The
first coordinate is x = H(p, q), a first integral. The second coordinate y is, following
(1.11), the time t which is necessary to reach the point (p, q) from an initial line,
which we assume at q = 0. Then we have (Fig. 1.1 left) dp dq = dH dt (because

q

p (A)

dq

dp

y=t

x=H (B)

dt
dH

θ

a (C)

dθ

da

Fig. 1.1. Liouville and action-angle coordinate transforms

of dq = Hp dt and dH = Hp dp). We see again that we have area preservation,
because the symplecticity of the flow preserves this property for all times. This
symplectic change of coordinates (p, q) �→ (x, y) is illustrated in Fig. 1.2, which
transforms the problem (A) to a much simpler form (B) with uniform horizontal
movement.
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Fig. 1.2. Liouville and action-angle coordinates illustrated at the pendulum problem

We are not yet completely satisfied, however, because the orbits have periods
g = g(H) which are not all the same. We therefore append a second transform by
putting θ = 2π

g · t (see picture (C) in Fig. 1.1 and Fig. 1.2), which forces all periods
into a Procrustean bed of length 2π. Area preservation da dθ = dH dt now requires
that 2π da = g(H) dH , which is a differential equation between a and H . The new
coordinates (a, θ) are the action-angle variables and we see that they transform the
phase space into D × T

1 where D ⊂ R
1. We again have horizontal movement, but

this time the speed depends on a. The general existence for completely integrable
systems will be proved in Theorem 1.6 below.
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X.1.3 Action-Angle Variables

We show here that, under the hypotheses of Liouville’s theorem, we can
find symplectic coordinates (I, ϕϕ) such that the first integrals F depend
only on I, and ϕϕ are angular coordinates on the torus Mf .

(V.I. Arnold 1989, p. 279)

We are now in the position to prove the main result of this section, which establishes
a symplectic change of coordinates to the so-called action-angle variables, such that
d first integrals of a completely integrable system depend only on the actions, and
the angles are defined globally mod 2π (provided the level sets of the first integrals
are compact). This is known as the Arnold–Liouville theorem; cf. Arnold (1963,
1989), Arnold, Kozlov & Neishtadt (1997; Ch. 4, Sect. 2.1), Jost (1968). Here and
in the following,

T
d = R

d/2πZ
d = {(θ1 mod 2π, . . . , θd mod 2π) ; θi ∈ R}

denotes the standard d-dimensional torus.

Theorem 1.6 (Arnold–Liouville Theorem). Let F1, . . . , Fd : M → R be first
integrals of a completely integrable system as in Definition 1.3. Suppose that the
level sets Mx (see (1.8)) are compact and connected for all x in a neighbourhood
of x0 ∈ R

d. Then, there are neighbourhoods B of x0 and D of 0 in R
d such that

the following holds:
(i) For every x ∈ B, the level set Mx is a d-dimensional torus that is invariant

under the flow of the system with Hamiltonian Fi (i = 1, . . . , d).
(ii) There exists a bijective symplectic transformation

ψ : D × T
d →

⋃
x∈B

Mx ⊂ R
d × R

d : (a, θ) �→ (p, q)

such that (Fi ◦ ψ)(a, θ) depends only on a, i.e.,

Fi(p, q) = fi(a) for (p, q) = ψ(a, θ) (i = 1, . . . , d)

with functions fi : D → R .

The variables (a, θ) = (a1, . . . , ad, θ1 mod 2π, . . . , θd mod 2π) are called
action-angle variables.

Remark 1.7. If the level sets Mx are not compact, then the proof of Theorem 1.6
shows that Mx is diffeomorphic to a Cartesian product of circles and straight lines
T

k × R
d−k for some k < d, and there is a bijective symplectic transformation

(a, θ) �→ (p, q) between D × (Tk × R
d−k) and a neighbourhood

⋃
{Mx : x ∈ B}

of Mx0 such that the first integrals again depend only on a.

Remark 1.8. If the Hamiltonian is real-analytic, then the proof shows that also the
transformation to action-angle variables is real-analytic.
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Proof of Theorem 1.6. (a) We return to Theorem 1.4. For x ∈ B, we consider the
set

Γx = {y ∈ R
d ; e(x, y) = e(x, 0)} .

Since e is locally a diffeomorphism, for every fixed y0 ∈ Γx0 there exists a unique
smooth function η defined on a neighbourhood of x0, such that η(x0) = y0 and
η(x) ∈ Γx for x near x0. In particular, Γx is a discrete subset of R

d. By (1.9),
for y ∈ Γx we have e(x, y + v) = e(x, v) for all v ∈ R

d. Therefore, Γx is a
subgroup of R

d, i.e., with y, v ∈ Γx also y + v ∈ Γx and −y ∈ Γx. It then follows
(see Exercise 4) that Γx is a grid, generated by k ≤ d linearly independent vectors
g1(x), . . . , gk(x) ∈ R

d:

Γx = {m1g1(x) + . . . + mkgk(x) ; mi ∈ Z} .

We extend g1(x), . . . , gk(x) to a basis g1(x), . . . , gd(x) of R
d. Then, e induces a

diffeomorphism

T
k × R

d−k → Mx

(θ1, . . . , θk, τk+1, . . . , τd) �→ e
(
x,

k∑
i=1

θi

2π
gi(x) +

d∑
j=k+1

τjgj(x)
)
.

If Mx is compact, then necessarily k = d and Mx is a torus. The above map then
becomes the bijection

T
d → Mx : θ �→ e

(
x,

d∑
i=1

θi

2π
gi(x)

)
.

(b) Next we show that gi(x) is the gradient of some function Ui(x). For nota-
tional convenience, we omit the subscript i and consider a differentiable function g
with

e(x, g(x)) = e(x, 0) , x ∈ B ,

or equivalently,
� ◦ e(x, g(x)) = (x, 0) , x ∈ B .

Differentiating this relation gives (with I the d-dimensional identity)

A

(
I

g′(x)

)
=

(
I
0

)

where A is the Jacobian matrix of � ◦ e at (x, g(x)). We thus have

(I g′(x)T )ATJA

(
I

g′(x)

)
= (I 0)J

(
I
0

)
= 0 .

Since � ◦ e is a symplectic transformation, we have ATJA = J , and hence the
above equation reduces to
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g′(x)T − g′(x) = 0 .

By the Integrability Lemma VI.2.7, there is a function U such that g(x) = ∇U(x).
We may assume U(x0) = 0.

(c) The result of (b) allows us to extend the bijection of (a) to a symplectic
transformation. For this, we consider the generating function

S(x, θ) =
d∑

i=1

θi

2π
Ui(x) .

With u(x) =
(
U1(x), . . . , Ud(x)

)
, the mixed second derivative of S is

Sxθ(x, θ) =
1
2π

ux(x) =
1
2π

(
g1(x), . . . , gd(x)

)
,

which is invertible because of the linear independence of the gi. The equations

a =
∂S

∂θ
=

1
2π

u(x) , y =
∂S

∂x
=

d∑
i=1

θi

2π
gi(x)

define a bijective symplectic transformation (for some neighbourhood D of 0, and
possibly with a reduced neighbourhood B of x0)

β : D × R
d → B × R

d : (a, θ) �→ (x, y) =
(
f(a),

d∑
i=1

θi

2π
gi(f(a))

)

where x = f(a) is the inverse map of a = 1
2πu(x). We now define

ψ̂ = e ◦ β : D × R
d →

⋃
x∈B

Mx .

By construction, this map is smooth and symplectic, and such that fi(a) = xi =
Fi(p, q) for (p, q) = ψ̂(a, θ). It is surjective by Theorem 1.4. By part (a) of this
proof, it becomes injective when the θi are taken mod 2π, thus yielding a transfor-
mation ψ defined on D × T

d with the stated properties. 
�

X.1.4 Conditionally Periodic Flows

An immediate and important consequence of Theorem 1.6 is the following.

Corollary 1.9. In the situation of Theorem 1.6, consider the completely integrable
system with Hamiltonian H = F1. In the action-angle variables (a, θ), the Hamil-
tonian equations become

ȧi = 0, θ̇i = ωi(a) (i = 1, . . . , d)

with ωi(a) = ∂K/∂ai(a), where K(a) = H(p, q) for (p, q) = ψ(a, θ).
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The flow of a differential system

θ̇ = ω , ω = (ωi) ∈ R
d

on the torus T
d is called conditionally peri-

odic with frequencies ωi. The flow is peri-
odic if there exist integers ki such that for
any two frequencies the relation ωi/ωj =
ki/kj holds. Otherwise, the flow is called
quasi-periodic. In particular, the latter oc-
curs when the frequencies are rationally independent, or non-resonant: the only
integers ki with k1ω1 + . . . + kdωd = 0 are k1 = . . . = kd = 0. For non-
resonant frequencies, it is well known (see Arnold (1989), p. 287) that every tra-
jectory {θ(t) : t ∈ R} is dense on the torus T

d and uniformly distributed.

Example 1.10. We take up again the example of motion in a central field, Exam-
ple 1.2. For given H and L, we now assume that

{r > 0 ; 2(H − V (r))− L2/r2 > 0} = [r0, r1]

is a non-empty interval and the derivatives of 2(H − V (r)) − L2/r2 are non-
vanishing at r0, r1. By (1.7), the motion from r0 to r1 and back again takes a time
T and runs through an angle Φ which are given by

T = 2
∫ r1

r0

1√
2(H − V (ρ))− L2/ρ2

dρ , (1.12)

Φ = 2
∫ r1

r0

L/ρ2

√
2(H − V (ρ))− L2/ρ2

dρ . (1.13)

Note that r0, r1, T , Φ are functions of H and L. The solution is periodic if Φ is
a rational multiple of 2π. This occurs for the Kepler problem, where Φ = 2π and
where T = 2π/(−2H)3/2 (for H < 0) depends only on H; see Exercise I.5.

We now construct action-angle variables and compute the frequencies of the
system. We begin by constructing the mapping e(x, y) as defined by (1.11) for the
variables x = (x1, x2) = (H,L) and y = (y1, y2) of (1.6). For a given (x, y),
we consider (x, 0) and we fix (p, q) with p = (pr, pϕ) and q = (r, ϕ) such that
�(p, q) = (x, 0), e.g., by choosing r = r0, ϕ = 0, pr = 0, pϕ = L. The mapping
e(x, y) is defined by the flow at time t = 1 corresponding to the Hamiltonian

Fy = y1H + y2L = y1

(
1
2 (p2

r + p2
ϕ/r

2) + V (r)
)

+ y2pϕ ,

i.e., by the solution at t = 1 of

ṗr = −y1

p2
ϕ

r3
− y1V

′(r) , ṗϕ = 0

ṙ = y1pr , ϕ̇ = y1
pϕ

r2
+ y2 .

(1.14)
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If we denote the flow of the original system with Hamiltonian H(pr, pϕ, r, ϕ) by
ϕt, then we have

e(x, y) = ϕy1(0, L, r0, 0) + (0, 0, 0, y2)T

with the last component taken modulo 2π. Hence, the values of y satisfying
e(x, y) = e(x, 0) are

y = m1g1(x) + m2g2(x)

with integers m1,m2 and

g1 =
(

T
−Φ

)
, g2 =

(
0
2π

)
.

We know from the proof of Theorem 1.6 that g1 and g2 are the gradients of functions
U1(H,L) and U2(H,L), respectively. Clearly, U2 = 2πL. The expression for U1 is
less explicit. With the construction of the Integrability Lemma VI.2.7, this function
is obtained by quadrature, in a neighbourhood of (H0, L0), as

U1(H,L) =
∫ 1

0

(
(H −H0)T (H0 + s(H −H0), L0 + s(L− L0))−

(L− L0)Φ(H0 + s(H −H0), L0 + s(L− L0))
)
ds .

(For the Kepler problem, T = 2π/(−2H)3/2, Φ = 0 mod 2π, and hence U1 =
2π/

√
−2H .) For the action variables we thus obtain

a1 =
1
2π

U1(H,L) , a2 = L .

The angle variables are given by y = 1
2π (θ1g1 + θ2g2), i.e.,

θ1 = y1
2π
T

, θ2 = y2 + y1
Φ

T
. (1.15)

Writing the total energy H = K(a1, L) if a1 is given by the above formula, we
obtain, by differentiation of the identity 2πa1 = U1(K(a1, L), L),

2π =
∂U1

∂H

∂K

∂a1
, 0 =

∂U1

∂H

∂K

∂a2
+

∂U1

∂L

and hence the frequencies

ω1 =
∂K

∂a1
=

2π
T

, ω2 =
∂K

∂a2
=

Φ

T
. (1.16)
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X.1.5 The Toda Lattice – an Integrable System

Our method is based on the realization that the Toda lattice belongs to
a class of evolution equations which can be studied, and in some cases
solved, by utilization of a certain associated eigenvalue problem.

(H. Flaschka 1974)

Classical examples of integrable systems from mechanics include Kepler’s problem
(Newton 1687/1713, Joh. Bernoulli 1710), the planar motion of a point mass at-
tracted by two fixed centres (Euler 1760), Kepler’s problem in a homogeneous force
field (Lagrange 1766 solved this as the limit of the previous problem when one cen-
tre is at infinity), various spinning tops (Euler 1758b, Lagrange 1788, Kovalevskaya
1889, Goryachev 1899 and Chaplygin 1901), a number of integrable cases of the
motion of a rigid body in a fluid, the motion of point vortices in the plane. We refer
to Arnold, Kozlov & Neishtadt (1997) and Kozlov (1983) for interesting accounts
of these problems and for further references.

Here we consider the celebrated example of the Toda lattice which was the start-
ing point for a huge amount of work on integrable systems in the last few decades,
with fascinating relationships to soliton theory in partial differential equations (most
notably the Korteweg-de Vries equation) and to eigenvalue algorithms of Numerical
Analysis; see Deift (1996) for an account of these developments.

The Toda lattice (or chain) is a system of particles on a line interacting pairwise
with exponential forces. Such systems were studied by Toda (1970) as discrete mod-
els for nonlinear wave propagation. The motion is determined by the Hamiltonian

H(p, q) =
n∑

k=1

(
1

2
p2

k + exp(qk − qk+1)
)
. (1.17)

Two types of boundary conditions have found particular attention in the literature:
(i) periodic boundary conditions: qn+1 = q1;

(ii) put formally qn+1 = +∞, so that the term exp(qn − qn+1) does not appear.
It was found by Hénon, Flaschka and independently Manakov in 1974 that the pe-
riodic Toda system is integrable. Moser (1975) then gave a detailed study of the
non-periodic case (ii).

Flaschka (1974) introduced new variables

ak = − 1
2pk , bk = 1

2 exp
(

1
2 (qk − qk+1)

)
.

(Take bn = 0 in case (ii)). Along a solution (p(t), q(t)) of the Toda system, the
corresponding functions (a(t), b(t)) satisfy the differential equations

ȧk = 2(b2k − b2k−1) , ḃk = bk(ak+1 − ak)

(with an+1 = a1 in case (i), bn = 0 in case (ii)). With the matrices
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L =




a1 b1 bn

b1 a2 b2 0
b2 a3 b3

. . .
. . .

. . .
0 bn−2 an−1 bn−1

bn bn−1 an




,

B = B(L) =




0 b1 −bn

−b1 0 b2 0
−b2 0 b3

. . .
. . .

. . .
0 −bn−2 0 bn−1

bn −bn−1 0




,

the differential equations can be written in the Lax pair form

L̇ = BL− LB . (1.18)

This system has an isospectral flow, that is, along any solution L(t) of (1.18) the
eigenvalues do not depend on t; see Lemma IV.3.4. The eigenvalues λ1, . . . , λn of
L are therefore first integrals of the Toda system. They are independent and turn out
to be in involution, in a neighbourhood of every point where the λi are all differ-
ent; see Exercise 6. Hence, the Toda lattice is a completely integrable system. Its
Hamiltonian can be written as

H =
n∑

k=1

(
2a2

k + 4b2k
)

= 2 traceL2 = 2
n∑

i=1

λ2
i .

We conclude this section with a numerical example for the periodic Toda lattice.
We choose n = 3 and the initial conditions p1 = −1.5, p2 = 1, p3 = 0.5 and
q1 = 1, q2 = 2, q3 = −1. We apply to the system with Hamiltonian (1.17) the
symplectic second-order Störmer–Verlet method and the non-symplectic classical
fourth-order Runge–Kutta method with two different step sizes. The left pictures of
Fig. 1.3 show the numerical approximations to the eigenvalues, and the right pictures
the deviations of the eigenvalues λ1, λ2, λ3 along the numerical solution from their
initial values. Clearly, the eigenvalues are not invariants of the numerical schemes.
However, Fig. 1.3 illustrates that the eigenvalues along the numerical solution re-
main close to their correct values over very long time intervals for the symplectic
method, whereas they drift off for the non-symplectic method.

An explanation of the long-time near-preservation of the first integrals of com-
pletely integrable systems by symplectic methods will be given in the following
sections, using backward error analysis and the perturbation theory for integrable
Hamiltonian systems.
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Fig. 1.3. Numerically obtained eigenvalues (left pictures) and errors in the eigenvalues (right
pictures) for the step sizes h = 0.1 (dotted) and h = 0.05 (solid line)

X.2 Transformations in the Perturbation Theory
for Integrable Systems

Problème général de la Dynamique. Nous sommes donc conduit à nous
proposer le problème suivant: Étudier les équations canoniques

dxi

dt
=

dF

dyi
,

dyi

dt
= − dF

dxi
,

en supposant que la fonction F peut se développer suivant les puissances
d’un paramétre très petit µ de la manière suivante:

F = F0 + µF1 + µ2F2 + . . . ,

en supposant de plus que F0 ne dépend que des x et est indépendant
des y; et que F1, F2, . . . sont des fonctions périodiques de période 2π par
rapport aux y. (H. Poincaré 1892, p. 32f.)

Consider a small perturbation of a completely integrable Hamiltonian. In action-
angle variables (a, θ) on D × T

d (D an open subset of R
d), this takes the form

H(a, θ) = H0(a) + εH1(a, θ) , (2.1)

where ε is a small parameter. We assume that H0 and H1 are real-analytic, and that
the perturbation H1 (which may depend also on ε) is bounded by a constant on a
complex neighbourhood of D × T

d that is independent of ε. No other restriction
shall be imposed on the perturbation.

For the unperturbed system (ε = 0) we have seen that the motion is conditionally
periodic on invariant tori {a = const., θ ∈ T

d}. Perturbation theory aims at an
understanding of the flow of the perturbed system. The basic tools are symplectic
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coordinate transformations which take the system to a form that allows the long-
time behaviour (perpetually, or over time scales large compared to ε−1) of solutions
of the system (certain solutions, or all solutions with initial values in some ball) to be
read off. There are different transformations that provide answers to these problems.
The emphasis in this section will be on the construction of suitable transformations,
not on the technical but equally important aspects of obtaining estimates for them.

The methods in Poincaré’s Méthodes Nouvelles form the now classical part of
perturbation theory, but the theories of Birkhoff, Siegel, Kolmogorov/Arnold/Moser
(KAM) and Nekhoroshev in the 20th century have become “classics” in their own
right.

X.2.1 The Basic Scheme of Classical Perturbation Theory

In the spirit of the preceding section, one might search for a symplectic change of
coordinates (a, θ) �→ (b, ϕ) close to the identity such that the perturbed Hamiltonian
written in the new variables (b, ϕ) depends only on b, or more modestly, depends
only on b up to a remainder term of order O(εN ) with a large N > 1, or to begin
even more modestly, with N = 2. We search for a generating function

S(b, θ) = b · θ + εS1(b, θ)

where · symbolizes the Euclidean product of vectors in R
d and S1 is 2π-periodic

in θ. Naively, we require that the symplectic transformation defined by

a =
∂S

∂θ
(b, θ) , ϕ =

∂S

∂b
(b, θ)

be such that the order-ε term in the expansion of the Hamiltonian in the new vari-
ables, K(b, ϕ) = H(a, θ), K(b, ϕ) = H0(b) + εK1(b, ϕ) + . . . depends only on b.
Since

H(a, θ) = H
(
b+ε

∂S1

∂θ
(b, θ), θ

)
= H0(b)+ε

{
ω(b) · ∂S1

∂θ
(b, θ) + H1(b, θ)

}
+. . .

with the vector of frequencies

ω(b) =
∂H0

∂b
(b) ,

the function S1 must satisfy the partial differential equation

ω(b) · ∂S1

∂θ
(b, θ) + H1(b, θ) = H1(b) (2.2)

for a function H1 that does not depend on θ. Since S1 is required to be 2π-periodic
in θ, the function H1 must equal the average of H1 over the angles:

H1(b) =
1

(2π)d

∫

Td

H1(b, θ) dθ .
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Equation (2.2) is the basic equation of Hamiltonian perturbation theory. From the
Fourier series of S1 and H1,

S1(b, θ) =
∑

k∈ZZd

sk(b) eik·θ , H1(b, θ) =
∑

k∈ZZd

hk(b) eik·θ

we obtain a formal solution of (2.2) by comparing Fourier coefficients: s0(b) is
arbitrary and

sk(b) = − hk(b)
ik · ω(b)

, k �= 0 . (2.3)

At this point, however, we are struck by the problem of small denominators. For any
values of the frequencies ωj(b), the denominator k ·ω(b) = k1ω1(b)+ . . .+kdωd(b)
becomes arbitrarily small for some k = (k1, . . . , kd) ∈ Z

d, and even vanishes if the
frequencies are rationally dependent.

For a perturbation where only finitely many Fourier coefficients hk are non-
zero, the construction above excludes only a finite number of resonant frequencies
(i.e., those with k · ω(b) = 0 for a k ∈ Z

d with hk �= 0) and small neighbour-
hoods around them. For ω(b) outside these neighbourhoods and for ϕ on a complex
neighbourhood of T

d, we obtain for the Hamiltonian in the new variables

K(b, ϕ) = H0(b) + εH1(b) +O(ε2) .

In the general case, we can approximate the perturbation H1 up to O(ε2) by a
trigonometric polynomial. For analytic H1, the Fourier coefficients hk decay expo-
nentially with |k| =

∑
i |ki|, and hence the required degree m of the approximating

trigonometric polynomial grows logarithmically with ε, i.e., m ∼ | log ε|.
As ε → 0, the remainder term is under control only for those frequencies

ω = ω(b) for which the exponentially decaying Fourier coefficients hk of the pertur-
bation decay faster than the denominators ik · ω with growing |k|. This is certainly
the case for frequencies satisfying Siegel’s diophantine condition (or strong non-
resonance condition, as it is sometimes called)

|k · ω| ≥ γ |k|−ν , k ∈ Z
d, k �= 0 (2.4)

for some positive constants γ, ν. (Here again, |k| =
∑

i |ki|). If ν > d−1, the set of
frequencies in a fixed ball that do not satisfy (2.4) has Lebesgue measure bounded
by Const · γ (Exercise 5). Therefore, almost all frequencies satisfy (2.4) for some
γ > 0. However, for any γ and ν, the complementary set is open and dense in R

d.

X.2.2 Lindstedt–Poincaré Series
... pour que la méthode de M. Lindstedt soit applicable, soit sous sa
forme primitive, soit sous celle que je lui ai ensuite donnée, il faut qu’en
première approximation les moyens mouvements ne soient liés par au-
cune relation linéaire à coefficients entiers; ...

Il semble donc permis de conclure que les séries (...) ne convergent pas.
Toutefois le raisonnement qui précède ne suffit pas pour établir ce point
avec une rigueur complète. (H. Poincaré 1893, pp. vi, 103.)
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Fig. 2.1. Henri Poincaré (left), born: 29 April 1854 in Nancy (France), died: 17 July 1912
in Paris; Anders Lindstedt (right), born: 27 June 1854 in Sundborn (Sweden), died: 1939.
Reproduced with permission of Bibl. Math. Univ. Genève

The above construction is extended without any additional difficulty to arbitrary
finite order in ε. The generating function is now sought in the form

S(b, θ) = b · θ + εS1(b, θ) + ε2S2(b, θ) + . . . + εN−1SN−1(b, θ) (2.5)

and, as before, the requirement that the first N terms in the ε-expansion of the
Hamiltonian in the new variables be independent of the angles, leads via a Taylor
expansion of the Hamiltonian to equations of the form (2.2) for S1, . . . , SN−1:

ω(b) · ∂Sj

∂θ
+ Kj(b, θ) = Kj(b) (2.6)

where K1 = H1,

K2 = 1

2

∂2H0

∂a2

(
∂S1

∂θ
,
∂S1

∂θ

)
+

∂H1

∂a
· ∂S1

∂θ
,

and in general, Kj is a sum of terms

1
i!
∂iHk0

∂ai

(
∂Sk1

∂θ
, . . . ,

∂Ski

∂θ

)
with k0 + k1 + . . . + ki = j .

The function Kj denotes again the angular average of Kj . These equations can be
formally solved in the case of rationally independent frequencies. The Hamiltonian
in the new variables is then
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K(b, ϕ) = H0(b)+εK1(b)+ε2K2(b)+. . .+εN−1KN−1(b)+εNRN (b, θ) . (2.7)

The possible convergence of the series for N → ∞ is a delicate issue that was
not resolved conclusively by Poincaré (1893) in his chapter on “Divergence des
séries de M. Lindstedt”. If for some b∗, the series (2.5) together with its partial
derivatives converged as N → ∞, then {b = b∗, ϕ ∈ T

d} would be an invariant
torus of the perturbed Hamiltonian system. However, it was not until Kolmogorov
(1954) that the existence of invariant tori – for diophantine frequencies – was found,
using a different construction. A direct proof of the convergence of the series of
classical perturbation theory for diophantine frequencies was obtained only in 1988
by Eliasson (published in 1996); also see Giorgilli & Locatelli (1997) and references
therein.

Nevertheless, already the truncated series (2.5) leads in a rather simple way to
strong conclusions about the flow over long time scales when it is combined with the
idea of approximating the Hamiltonian by a trigonometric polynomial: the “ultra-
violet cut-off”, an idea briefly addressed by Poincaré (1893), p. 98f., and taken to
its full bearing by Arnold (1963) in his proof of the KAM theorem. We formulate a
lemma for a fixed truncation index N . Here, ωε,N (b) denotes the derivative of the
truncated series (2.7) with respect to b.

Lemma 2.1. Suppose that ω(b∗) satisfies the diophantine condition (2.4). For any
fixed N ≥ 2, there are positive constants ε0, c, C such that the following holds for
ε ≤ ε0: there exists a real-analytic symplectic change of coordinates (a, θ) �→ (b, ϕ)
such that every solution (b(t), ϕ(t)) of the perturbed system in the new coordinates,
starting with ‖b(0)− b∗‖ ≤ c| log ε|−ν−1, satisfies

‖b(t)− b(0)‖ ≤ C t εN for t ≤ ε−N+1 ,

‖ϕ(t)− ωε,N (b(0))t− ϕ(0)‖ ≤ C (t2 + t| log ε|ν+1) εN for t2 ≤ ε−N+1.

Moreover, the transformation is O(ε)-close to the identity: ‖(a, θ) − (b, ϕ)‖ ≤ Cε
holds for (a, θ) and (b, ϕ) related by the above coordinate transform, for ‖b−b∗‖ ≤
c| log ε|−ν−1 and for ϕ in an ε-independent complex neighbourhood of T

d.
The constants ε0, c, C depend on N, d, γ, ν and on bounds of H0 and H1 on a

complex neighbourhood of {b∗} × T
d.

Proof. Using the relations (2.3) and their analogues for (2.6), it is a straightforward
but somewhat tedious exercise to show that at the given particular b∗, the functions
Kj(b∗, ·), Sj(b∗, ·) are all analytic on the same complex neighbourhood of T

d, and
that the remainder term is bounded by

|RN (b∗, θ)| ≤ C = C(N, d, γ, ν)

for all θ in a complex neighbourhood of T
d which is independent of ε. Here, C

depends in addition on the bound of H1 on a complex neighbourhood of {b∗}×T
d,

or what amounts to the same by Cauchy’s estimates, on bounds of the exponential
decay of the Fourier coefficients hk of H1. (In case of doubt, see also Sect. X.4 for
explicit estimates.)



X.2 Transformations in the Perturbation Theory for Integrable Systems 409

Assume first that H1(b, θ) is a trigonometric polynomial in θ of degree m. Then
Kj , Sj are trigonometric polynomials of degree jm. Since |k ·ω(b)| ≥ |k ·ω(b∗)|−
|k|(max ‖ω′‖)‖b− b∗‖, there is a δ > 0 such that

|k · ω(b)| ≥ 1
2γ |k|

−ν for ‖b− b∗‖ ≤ δ, |k| ≤ Nm.

This number δ is proportional to γ(Nm)−ν−1. Consequently, since the construction
involves only the trigonometric polynomials Kj , Sj of degree up to Nm, the above
estimate for the remainder term RN holds also for ‖b − b∗‖ ≤ δ. To approximate
a general analytic H1 by trigonometric polynomials up to O(εN ), we must choose
the degree m proportional to | log εN |. With the choice δ = c (N2| log ε|)−ν−1,
for a sufficiently small c > 0 independent of ε (and N ), the above bound for the
remainder RN (b, θ) is then valid for b in the complex ball ‖b − b∗‖ ≤ 2δ and for
ϕ in a complex neighbourhood of T

d (which depends only on N ). By Cauchy’s
estimates, this implies

∥∥∥∥
∂RN

∂θ
(b, θ)

∥∥∥∥ ≤ C ,

∥∥∥∥
∂RN

∂b
(b, θ)

∥∥∥∥ ≤
C

δ

for ‖b − b∗‖ ≤ δ and θ ∈ T
d. Hence, as long as ‖b(t) − b∗‖ ≤ δ, the Hamiltonian

differential equations are of the form

ḃ = −∂K

∂ϕ
= −εN ∂RN

∂θ

∂θ

∂ϕ
= O(εN ) , ϕ̇ =

∂K

∂b
= ωε,N (b) +O(εN/δ) .

This implies the result. 
�

Hence, the tori {b = b(0), ϕ ∈ T
d} are nearly invariant over a time scale

ε−N+1, and the flow is close to a quasiperiodic flow over times bounded by the
square root of ε−N+1. Lemma 2.1 is just a preliminary to more substantial results
(which hold under appropriate additional conditions): invariant tori carrying a quasi-
periodic flow with diophantine frequencies persist under small Hamiltonian pertur-
bations (Kolmogorov 1954); every solution of the perturbed system remains close,
within a positive power of ε, to some torus over times that are exponentially long in
a negative power of ε (Nekhoroshev 1977); solutions starting close to an invariant
torus with diophantine frequencies stay within twice the initial distance over time
intervals that are exponentially long in a negative power of the distance (Perry &
Wiggins 1994) or even exponentially long in the exponential of the inverse of the
distance (Morbidelli & Giorgilli 1995).

The symplectic transformations of this subsection were constructed using the
mixed-variable generating function S(b, θ). As was pointed out for example by
Benettin, Galgani & Giorgilli (1985), rigorous estimates for the remainder terms
are often obtained in a simpler way using the Lie method, which involves construct-
ing the near-identity symplectic transformation as the time-ε flow of some auxiliary
Hamiltonian system with a suitably defined Hamiltonian χ(b, ϕ). As before, the
condition that the Hamiltonian H(a, θ) = K(b, ϕ) should depend on ϕ only in
higher-order terms, leads to equations of the form (2.2), now for χ instead of S1.
We will use such a construction in the following subsection.
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X.2.3 Kolmogorov’s Iteration

It is easy to grasp the meaning of Theorem 1 for mechanics. It indicates
that an s-parametric family of conditionally periodic motions [...] cannot,
under conditions (3) and (4) [here: (2.4) and (2.9)], disappear as a result
of a small change in the Hamilton function H .

In this note we confine ourselves to the construction of the transforma-
tion. (A.N. Kolmogorov 1954)

For the completely integrable Hamiltonian H0(a), the phase space is foliated into
invariant tori parametrized by a. We now fix one such torus {a = a∗, θ ∈ T

d} with
strongly diophantine frequencies ω = ω(a∗). Without loss of generality, we may as-
sume a∗ = 0. This particular torus is invariant under the flow of every Hamiltonian
H(a, θ) for which the linear terms in the Taylor expansion with respect to a at 0 are
independent of θ:

H(a, θ) = c + ω · a + 1
2a

TM(a, θ)a (2.8)

with c ∈ R, ω ∈ R
d, and a real symmetric d × d-matrix M(a, θ) analytic in its

arguments. Since the Hamiltonian equations are of the form

ȧ = O(‖a‖2) , θ̇ = ω +O(‖a‖) ,

the torus {a = 0, θ ∈ T
d} is invariant and the flow on it is quasi-periodic with

frequencies ω.
Consider now an analytic perturbation of such a Hamiltonian: H(a, θ)+εG(a, θ)

with a small ε. Kolmogorov (1954) found a near-identity symplectic transforma-
tion (a, θ) �→ (ã, θ̃), constructed by an iterative procedure, such that the perturbed
Hamiltonian in the new variables is again of the form (2.8) with the same ω, and
hence has the invariant torus {ã = 0, θ̃ ∈ T

d} carrying a quasi-periodic flow with
the frequencies of the unperturbed system. This holds under the conditions that ω
satisfies the diophantine condition (2.4), and that the angular average

M0 :=
1

(2π)d

∫

Td

M(0, θ) dθ is an invertible matrix. (2.9)

Here we describe the iterative construction of this symplectic transformation. The
proof of convergence of the iteration will be given in Sect. X.5.

We construct a symplectic transformation (a, θ) �→ (b, ϕ) as the time-ε flow of
an auxiliary Hamiltonian of the form

χ(b, ϕ) = ξ · ϕ + χ0(ϕ) +
d∑

i=1

biχi(ϕ) , (2.10)

where ξ ∈ R
d is a constant vector, and χ0, χ1, . . . , χd are 2π-periodic functions.

(Quadratic and higher-order terms in b play no role in the construction and are there-
fore omitted right at the outset.) The old and new coordinates are then related by

a = b + ε
∂χ

∂ϕ
(b, ϕ) +O(ε2) , θ = ϕ− ε

∂χ

∂b
(b, ϕ) +O(ε2) .
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We insert this into

H(a, θ) + εG(a, θ) = c + ω · b + 1
2b

TM(b, ϕ)b

+ ε

{
ω · ∂χ

∂ϕ
(b, ϕ) + bTM(b, ϕ)

∂χ

∂ϕ
(b, ϕ) + G(b, ϕ)

}
+O(ε‖b‖2) +O(ε2) .

We now require that the term in curly brackets be Const +O(‖b‖2). Writing down
the Taylor expansion

G(b, ϕ) = G0(ϕ) +
d∑

i=1

biGi(ϕ) + bTQ(b, ϕ)b (2.11)

and inserting the above ansatz for χ, this condition becomes

ω · ∂χ0

∂ϕ
(ϕ) +

d∑
i=1

bi

(
ω · ∂χi

∂ϕ
(ϕ) + ui(ϕ) + vi(ϕ)

)

+G0(ϕ) +
d∑

i=1

biGi(ϕ) = Const .,

where u = (u1, . . . , ud)T and v = (v1, . . . , vd)T are defined by

u(ϕ) = M(0, ϕ)ξ , (2.12)

v(ϕ) = M(0, ϕ)
∂χ0

∂ϕ
(ϕ) . (2.13)

The condition is fulfilled if

ω · ∂χ0

∂ϕ
(ϕ) + G0(ϕ) = G0 (2.14)

ω · ∂χi

∂ϕ
(ϕ) + ui(ϕ) + vi(ϕ) + Gi(ϕ) = ui + vi + Gi (2.15)

ui + vi + Gi = 0 (i = 1, . . . , d). (2.16)

Here the bars again denote angular averages. Note that equations (2.14), (2.15) are
of the form (2.2). Equation (2.14) determines χ0 and hence v = (v1, . . . , vd)T by
(2.13). Equations (2.16) then give u = (u1, . . . , ud)T . By (2.12), we need

u = M0ξ ,

which determines ξ uniquely because M0 is assumed to be invertible. Equation
(2.12) then yields u = (u1, . . . , ud)T . Finally, (2.15) determines χ1, . . . , χd, and
the construction of χ(b, ϕ) is complete. In the new variables (b, ϕ), the perturbed
Hamiltonian then takes the form

H(a, θ) + εG(a, θ) = ĉ + ω · b + 1
2b

T M̂(b, ϕ)b + ε2Ĝ(b, ϕ) (2.17)
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with unchanged frequencies ω and with M̂(b, ϕ) = M(b, ϕ) + O(ε). The pertur-
bation to the form (2.8) is thus reduced from O(ε) to O(ε2). The iteration of this
procedure turns out to be convergent, see Sect. X.5. This finally yields a symplectic
change of coordinates that transforms the perturbed Hamiltonian to the form (2.8).
The perturbed system thus has an invariant torus carrying a quasi-periodic flow with
frequencies ω – a KAM torus, as it is named after Kolmogorov, Arnold and Moser.

X.2.4 Birkhoff Normalization Near an Invariant Torus

KAM tori are very sticky.
(A.D. Perry & S. Wiggins 1994)

In this subsection we describe a transformation studied by Pöschel (1993) and Perry
& Wiggins (1994) for systems with Hamiltonian in the Kolmogorov form (2.8) in a
neighbourhood of the invariant torus {a = 0, θ ∈ T

d}. This transformation is an
analogue of a transformation of Birkhoff (1927) for Hamiltonian systems near an
elliptic stationary point.

The symplectic change of coordinates (a, θ) �→ (b, ϕ) considered here trans-
forms a Hamiltonian (2.8) with diophantine frequencies ω to the form H(a, θ) =
KN (b) + O(‖b‖N ) for arbitrary N , or more precisely, the Hamiltonian in the new
variables, HN (b, ϕ) = H(a, θ), is of the form

HN (b, ϕ) = ω · b + ZN (b) + RN (b, ϕ) (2.18)

with ZN (b) = O(‖b‖2) and RN (b, ϕ) = O(‖b‖N ). (We have taken the irrelevant
constant term in (2.8) c = 0.) The equations of motion then take the form

ḃ = O(‖b‖N ) , ϕ̇ = ω +O(‖b‖) .

Therefore, in these variables {b = 0, ϕ ∈ T
d} is an invariant torus, and for suffi-

ciently small r,

‖b(0)‖ ≤ r implies ‖b(t)‖ ≤ 2r for t ≤ CN r−N+1 .

A judicious choice of N even yields time intervals that are exponentially long in a
negative power of r on which solutions starting at a distance r stay within twice the
initial distance (Perry & Wiggins 1994). Motion away from the torus can thus be
only very slow.

The normal form (2.18) is constructed iteratively. Each iteration step is very
similar to the procedure in Sect. X.2.1, where now the distance to the torus plays the
role of the small parameter. Consider a Hamiltonian

H(a, θ) = ω · a + Z(a) + R(a, θ)

where Z(a) = O(‖a‖2) and R(a, θ) = O(‖a‖k) for some k ≥ 2 in a com-
plex neighbourhood of {0} × T

d. We construct a symplectic change of coordinates
(a, θ) �→ (b, ϕ) via a generating function b · θ + S(b, θ) as
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a = b +
∂S

∂θ
(b, θ) , ϕ = θ +

∂S

∂b
(b, θ) .

We expand (omitting the arguments (b, θ) in ∂S/∂θ and ∂H/∂a)

H
(
b +

∂S

∂θ
, θ

)
= H(b, θ) +

∂H

∂a
· ∂S
∂θ

+ Q(b, θ)

= ω · b + Z(b) +
{
R(b, θ) +

∂H

∂a
· ∂S
∂θ

}
+ Q(b, θ) ,

where |Q(b, θ)| ≤ Const. ‖∂S/∂θ‖2. Since ∂H/∂b = ω + O(‖b‖), we can make
the expression in curly brackets independent of θ up to O(‖b‖k+1) by determining
S from the equation of the form (2.2):

ω · ∂S
∂θ

(b, θ) + R(b, θ) = R(b) .

For diophantine frequencies ω, we obtain S(b, θ) = O(‖b‖k) on a (reduced) com-
plex neighbourhood of {0}×T

d from the corresponding estimate for R(b, θ). It fol-
lows that the above symplectic transformation with generating function b·θ+S(b, θ)
is well-defined for small ‖b‖, and the Hamiltonian in the new variables, Ĥ(b, ϕ) =
H(a, θ), becomes

Ĥ(b, ϕ) = ω · b + Ẑ(b) + R̂(b, ϕ)

with Ẑ(b) = Z(b) + R(b) and

R̂(b, ϕ) =
(∂H

∂a
(b, θ)− ω

)
· ∂S
∂θ

(b, θ) + Q(b, θ) = O(‖b‖k+1) ,

so that the order in b of the remainder term is augmented by 1. The procedure can
be iterated, but unlike the iteration of the preceding subsection, this iteration is in
general divergent. Nevertheless, a suitable finite termination yields remainder terms
that are exponentially small in a positive power of r for ‖b‖ ≤ r, by arguments
similar to those of Sect. X.4.

X.3 Linear Error Growth and Near-Preservation
of First Integrals

In the remaining part of this chapter we study the long-time behaviour of symplectic
discretizations of integrable and near-integrable Hamiltonian systems. While here
we will be concerned with general symplectic methods, it should be noted that some
integrable problems admit integrable discretizations; see Suris (2003).

In this section we are concerned with the error growth of symplectic numerical
methods and their approximate preservation of first integrals. A preliminary analysis
of linear error growth for the Kepler problem was first given by Calvo & Sanz-Serna
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(1993). Using backward error analysis and KAM theory, Calvo & Hairer (1995a)
then showed linear error growth of symplectic methods applied to integrable sys-
tems when the frequencies at the initial value satisfy a diophantine condition (2.4).
Here we give such a result under milder conditions on the initial values, combining
backward error analysis and Lemma 2.1. We derive also a first result on the long-
time near-preservation of all first integrals, which will be extended to exponentially
long times in Sections X.4.3 and X.5.2 (under stronger assumptions on the starting
values), and perpetually in Sect. X.6 (only for a Cantor set of step sizes).

Figure 3.1 illustrates the linear error growth of the symplectic Störmer–Verlet
method, as opposed to the quadratic error growth for the classical fourth-order
Runge–Kutta method, on the example of the Toda lattice. The same number of func-
tion evaluations was used for both methods.

50 100
.0

.2

.4

.6

.8 global error

Störmer/Verlet, h = 0.02

RK4, h = 0.08

global error

Störmer/Verlet, h = 0.02

RK4, h = 0.08

Fig. 3.1. Euclidean norm of the global error for the Störmer–Verlet scheme (step size h =
0.02) and the classical Runge–Kutta method of order 4 (step size h = 0.08) applied to the
Toda lattice with n = 3 and initial values as in Fig. 1.3

We consider a completely integrable Hamiltonian system (usually not given in
action-angle variables)

ṗ = −∂H

∂q
(p, q) , q̇ =

∂H

∂p
(p, q) (3.1)

and apply to it a symplectic numerical method with step size h, yielding a numerical
solution sequence (pn, qn). We assume that the Hamiltonian is real-analytic and that
the conditions of the Arnold–Liouville theorem, Theorem 1.6, are fulfilled. Consider
the symplectic transformation (p, q) = ψ(a, θ) to action-angle variables. We denote
the inverse transformation as

(a, θ) =
(
I(p, q), Θ(p, q)

)
. (3.2)

We recall that the components I1, . . . , Id of I = (Ii) are first integrals of the system:
I(p(t), q(t)) = I(p0, q0) for all t. In the action-angle variables, the Hamiltonian is
H(a) = H(p, q), and we denote the frequencies

ω(a) =
∂H
∂a

(a) . (3.3)

We consider this in a neighbourhood of some a∗ ∈ R
d.
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Theorem 3.1. Consider applying a symplectic numerical integrator of order p to
the completely integrable Hamiltonian system (3.1). Suppose that ω(a∗) satisfies
the diophantine condition (2.4). Then, there exist positive constants C, c and h0

such that the following holds for all step sizes h ≤ h0: every numerical solution
starting with ‖I(p0, q0)− a∗‖ ≤ c| log h|−ν−1 satisfies

‖(pn, qn)− (p(t), q(t))‖ ≤ C thp

‖I(pn, qn)− I(p0, q0)‖ ≤ C hp
for t = nh ≤ h−p .

The constants h0, c, C depend on d, γ, ν, on bounds of the real-analytic Hamiltonian
H on a complex neighbourhood of the torus {(p, q) ; I(p, q) = a∗}, and on the
numerical method.

Proof. (a) In the action-angle variables (a, θ), the exact flow is given as

a(t) = a(0) , θ(t) = ω(a(0)) t + θ(0) . (3.4)

By Theorem IX.3.1 (and Theorem IX.1.2), the truncated modified equation of the
numerical method is Hamiltonian with1

H̃(p, q) = H(p, q) + hpHp+1(p, q) + . . . + hrHr+1(p, q) .

We choose r = 2p, and we denote by (p̃(t), q̃(t)) the solution of the modified equa-
tions with initial values (p0, q0). In the variables (a, θ), the modified Hamiltonian
becomes H̃(p, q) = H̃(a, θ) with

H̃(a, θ) = H(a) + εGh(a, θ) , (3.5)

where ε = hp and the perturbation function Gh is bounded independently of h on
a complex neighbourhood of {a∗} × T

d. By Lemma 2.1 with ε = hp and N ≥ 3,
there is a symplectic change of coordinates O(hp)-close to the identity, such that
the solution of the modified equation in the new variables (b, ϕ) is of the form

b̃(t) = b̃(0) +O(thpN ) ,

ϕ̃(t) = ωh(̃b(0)) t + ϕ̃(0) +O(thpN−1 + t2hpN )
for t ≤ h−p , (3.6)

with ωh(b) = ω(b) + O(hp). The constants symbolized by the O-notation are in-
dependent of h, of t ≤ h−p and of (̃b(0), ϕ̃(0)) with |̃b(0) − a∗| ≤ c| log h|−ν−1.
Since the transformation between the variables (a, θ) and (b, ϕ) is O(hp) close to
the identity, it follows that the flow of the modified equations in the variables (a, θ)
satisfies
1 We always assume, without further mention, that the modified Hamiltonian is well-defined

on the same open set D as the original Hamiltonian. This is true for arbitrary symplectic
methods if D is simply connected; on general domains it is satisfied for (partitioned)
Runge–Kutta methods and for splitting methods; see Sections IX.3 and IX.4.
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ã(t) = ã(0) +O(hp) ,

θ̃(t) = ω(ã(0)) t + θ̃(0) + teh +O(hp)
for 1 ≤ t ≤ h−p ,

where eh = ωh(̃b(0)) − ω(ã(0)) = O(hp) yields the dominant contribution to the
error. By comparison with (3.4) and since ã(t) = I(p̃(t), q̃(t)), the difference be-
tween the exact solution and the solution of the modified equation therefore satisfies

(p̃(t), q̃(t))− (p(t), q(t)) = O(thp)
I(p̃(t), q̃(t))− I(p0, q0) = O(hp)

for 1 ≤ t ≤ h−p.

The same bounds for t ≤ 1 follow by standard error estimates.
(b) It remains to bound the difference between the solution of the modified

equation and the numerical solution. By construction of the modified equation with
r = 2p and by comparison with (3.6), one step of the method is of the form

bn+1 = bn +O(hr+1) , ϕn+1 = ωh(bn)h + ϕn +O(hr+1).

It follows that for t = nh,

bn = b̃(t) +O(thr) , ϕn = ϕ̃(t) +O(t2hr) .

For t ≤ h−p and r = 2p, we have thr ≤ hp. Hence the difference between the nu-
merical solution and the solution of the modified equations in the original variables
(p, q) is bounded by

(pn, qn)− (p̃(t), q̃(t)) = O(thp)
I(pn, qn)− I(p̃(t), q̃(t)) = O(hp)

for t = nh ≤ h−p .

Together with the bound of part (a) this gives the result. 
�
Remark 3.2. The linear error growth holds also when the symplectic method is
applied to a perturbed integrable system with a perturbation parameter ε bounded
by a positive power of the step size: ε ≤ K hα for some α > 0. The proof of this
generalization is the same as above, except that possibly a larger N is required in
using Lemma 2.1.

Example 3.3 (Linear Error Growth for the Kepler Problem). From Exam-
ple 1.10 we know that for the Kepler problem the frequencies (1.16) do not sat-
isfy the diophantine condition (2.4). Nevertheless we observed a linear error growth
for symplectic methods in the experiments of Fig. I.2.3 (see also Table I.2.1). This
can be explained as follows: in action-angle variables the Hamiltonian of the Ke-
pler problem is H(a1, a2), where a2 = L is the angular momentum. Since the
angular momentum is a quadratic invariant that is exactly conserved by symplec-
tic integrators such as symplectic partitioned Runge–Kutta methods, the modified
Hamiltonian

H̃(a, θ) = H(a1, a2) + εGh(a1, a2, θ1)

does not depend on the angle variable θ2 (see Corollary IX.5.3). As in the proof of
Lemma 2.1 we average out the angle θ1 up to a certain power of ε. Since we are
concerned here with one degree of freedom, the diophantine condition is trivially
satisfied, and we can conclude as in Theorem 3.1.
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X.4 Near-Invariant Tori on Exponentially Long Times

We refine the results for the classical perturbation series of Sect. X.2.2 to yield lo-
cally integrable behaviour, up to exponentially small deviations, over time intervals
that are exponentially long in a power of the small perturbation parameter. We then
combine this result with backward error analysis to show the near-preservation of
invariant tori over exponentially long times in a negative power of the step size for
symplectic integrators. We begin with the necessary technical estimates.

X.4.1 Estimates of Perturbation Series

We will estimate the coefficients of the perturbation series (2.5), which requires a
bound for the solution of (2.6). We use the following notation: for ρ > 0 and with
‖ · ‖ the maximum norm on R

d,

Uρ = {θ ∈ T
d + iRd ; ‖Im θ‖ < ρ}

denotes the complex extension of the d-dimensional torus T
d of width ρ. For a

bounded analytic function F on Uρ, we write

‖F‖ρ = sup
θ∈Uρ

|F (θ)| ,
∥∥∥∂F

∂θ

∥∥∥
ρ

=
d∑

j=1

∥∥∥ ∂F

∂θj

∥∥∥
ρ
.

Following Arnold (1963), we prove the following bounds for the solution of the
basic partial differential equation (2.2) .

Lemma 4.1. Suppose ω ∈ R
d satisfies the diophantine condition (2.4). Let G be a

bounded real-analytic function on Uρ, and let G denote the average of G over T
d.

Then, the equation

ω · ∂F
∂θ

+ G = G

has a unique real-analytic solution F on Uρ with zero average F = 0. For every
positive δ < min(ρ, 1), F is bounded on Uρ−δ by

‖F‖ρ−δ ≤ κ0 δ−α+1‖G‖ρ ,

∥∥∥∥
∂F

∂θ

∥∥∥∥
ρ−δ

≤ κ1 δ−α ‖G‖ρ ,

where α = ν + d + 1 and κ0 = γ−1 8d 2νν!, κ1 = γ−1 8d 2ν+1(ν + 1)!.

Rüssmann (1975, 1976) has shown that the estimates hold with the optimal ex-
ponent α = ν + 1 and with κ0 = 2d+1−ν

√
(2ν)! and κ1 = 2d−ν

√
(2ν + 2)!. This

optimal value of α would yield slightly more favourable estimates in the following,
but here we content ourselves with the simpler result given above.
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Proof of Lemma 4.1. We have the Fourier series, convergent on the complex exten-
sion ‖Im θ‖ < ρ,

G(θ)−G =
∑
k �=0

gk eik·θ , F (θ) =
∑

k

fk eik·θ

with Fourier coefficients f0 = F = 0 and

fk = − gk

ik · ω for k ∈ Z
d, k �= 0 .

By Cauchy’s estimates, |gk| ≤ M e−|k|ρ with M = ‖G − G‖ρ ≤ 2‖G‖ρ and
|k| =

∑
|ki|. It follows with (2.4) that

‖F‖ρ−δ ≤
∑

k

|fk| e|k|(ρ−δ) ≤ M

γ

∑
k

|k|ν e−|k|δ ,

∥∥∥∥
∂F

∂θ

∥∥∥∥
ρ−δ

≤
∑

k

|fk| · |k| e|k|(ρ−δ) ≤ M

γ

∑
k

|k|ν+1 e−|k|δ .

It remains to bound the right-hand sums. We use the inequality xν/ν! ≤ ex with
x = |k|δ/2 to obtain

∑
k

|k|ν e−|k|δ ≤ 2νδ−νν!
∑

k

e−|k|δ/2 .

The last sum is bounded by

∑
k

e−|k|δ/2 =
(
1 + 2

∞∑
j=1

e−jδ/2
)d

=
(

1 + e−δ/2

1− e−δ/2

)d

≤ (8δ−1)d .

Taken together, the above inequalities yield the stated bound for ‖F‖ρ−δ . The bound
for the derivative is obtained in the same way, with ν replaced by ν + 1. 
�

The coefficients of the perturbation series (2.5) are bounded as follows.

Lemma 4.2. Let H0, H1 be real-analytic and bounded by M on the complex r-
neighbourhood Br(b∗) of b∗ ∈ R

d and on Br(b∗) × Uρ , respectively. Suppose
that ω(b∗) = (∂H0/∂a)(b∗) satisfies the diophantine condition (2.4). Then, the
coefficients of the perturbation series (2.5) are bounded by

∥∥∥∥
∂Sj

∂θ
(b∗, ·)

∥∥∥∥
ρ/2

≤ C0(C1j
α)j−1

for all j ≥ 0. Here C0 = 2r, and C1 = 128(κ1M/rρα)2 with α and κ1 of
Lemma 4.1.
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Proof. We recall from Sect. X.2.2 that Sj is determined by (2.6), where K1 = H1

and for j ≥ 2,

Kj =
j∑

i=2

∑
k1+...+ki=j

1
i!
∂iH0

∂ai

(
∂Sk1

∂θ
, . . . ,

∂Ski

∂θ

)

+
j−1∑
i=1

∑
k1+...+ki=j−1

1
i!
∂iH1

∂ai

(
∂Sk1

∂θ
, . . . ,

∂Ski

∂θ

)
.

We fix an index, say J , set δ = ρ/(2J) and abbreviate

‖Kk‖j = ‖Kk(b∗, ·)‖ρ−jδ

and similarly for ∂Sk/∂θ. By (2.6) and Lemma 4.1, we have

∥∥∥∂Sj

∂θ

∥∥∥
j
≤ κ1δ

−α ‖Kj‖j−1 .

We use the Cauchy estimate

∣∣∣ 1
i!
∂iH0

∂ai
(v1, . . . , vi)

∣∣∣ ≤ M

ri
|v1| · . . . · |vi| ,

where | · | denotes the sum norm on C
d, and bound ‖ · ‖j−1 by ‖ · ‖k for k ≤ j − 1.

We thus obtain from the above formula for Kj

‖Kj‖j−1 ≤
j∑

i=2

∑
k1+...+ki=j

M

ri

∥∥∥∂Sk1

∂θ

∥∥∥
k1

· . . . ·
∥∥∥∂Ski

∂θ

∥∥∥
ki

+
j−1∑
i=1

∑
k1+...+ki=j−1

M

ri

∥∥∥∂Sk1

∂θ

∥∥∥
k1

· . . . ·
∥∥∥∂Ski

∂θ

∥∥∥
ki

.

Combining the two bounds yields

1
r

∥∥∥∂Sj

∂θ

∥∥∥
j
≤ βj ,

where, with µ = (M/r)(κ1/δ
α), we have β1 = µ and recursively for j ≥ 2,

βj = µ

j∑
i=2

∑
k1+...+ki=j

βk1 · . . . · βki
+ µ

j−1∑
i=1

∑
k1+...+ki=j−1

βk1 · . . . · βki
.

Multiplying this equation with ζj and summing over j, we see that the generating
function b(ζ) =

∑∞
j=1 βjζ

j is given implicitly by

b(ζ)− µζ = µ

(
1

1− b(ζ)
− 1− b(ζ)

)
+ µζ

(
1

1− b(ζ)
− 1

)
,
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or explicitly, after solving the quadratic equation, by

b(ζ) = 1

2

1
1 + µ

−
√

1
4

( 1
1 + µ

)2

− µ

1 + µ
ζ .

Hence, b(ζ) is analytic on the disc |ζ| < 1/(4µ(1 + µ)), and is there bounded by
1/(2(1 + µ)). For µ ≥ 1, Cauchy’s estimate yields

‖∂Sj/∂θ‖j ≤ rβj ≤ 2r (8µ2)j−1 .

(For the uninteresting case µ ≤ 1 the bound is 2r ·8j−1.) For j = J this almost gives
the stated result upon inserting the definition of µ, but with an exponent 2α instead
of α. This can be reduced to α if in the above proof δ is chosen as δ1 = ρ/4 in the
first step and in the other steps as δj = ρ/(4J). This leads to a more complicated
quadratic equation where now b(ζ) is analytic for |ζ| ≤ (C1J

α)−1. We omit the
details of this refinement of the proof. 
�

For the remainder term in (2.7) we then obtain the following bound.

Lemma 4.3. In the situation of Lemma 4.2, with r ≤ 1 and for C1N
α ≤ 1/(2ε),

‖RN (b∗, ·)‖ρ/2 ≤ 4Mr
(4C1

r
Nα

)N

.

Proof. The remainder term RN in (2.7) is a sum of terms

1
i!
∂iHk0

∂ai
(Qk1 , . . . , Qki

) for k0 + k1 + . . . + ki = N ,

where

Qk =
∂Sk

∂θ
+ ε

∂Sk+1

∂θ
+ . . . + εN−k−1 ∂SN−1

∂θ
.

As long as C1N
α ≤ 1/(2ε), we have, by Lemma 4.2,

‖Qk(b∗, ·)‖ρ/2 ≤
N−1∑
j=k

ε(j−k)C0(C1j
α)j

≤ C0

N−1∑
j=k

2−(j−k)
( j

N

)αj

(C1N
α)k ≤ 2C0 (C1N

α)k .

This implies
∥∥∥∥

1
i!
∂iHk0

∂ai
(Qk1 , . . . , Qki

)(b∗, ·)
∥∥∥∥

ρ/2

≤ M

ri
2C0(C1N

α)N

for k0 + k1 + . . . + ki = N . (This bound is also valid when an argument different
from b∗ appears in the derivatives of H0 and H1, as is needed for the remainder
terms in the Taylor expansion.) Estimating the number of such expressions by

2
N∑

i=1

(
N + i− 1

i

)
≤ 2

2N−1∑
i=0

(
2N − 1

i

)
= 22N

yields the result. 
�
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X.4.2 Near-Invariant Tori of Perturbed Integrable Systems

The following result extends Lemma 2.1 to exponentially long times for sufficiently
small values of the perturbation parameter.

Theorem 4.4. Let H0, H1 be real-analytic on the complex r-neighbourhood Br(b∗)
of b∗ ∈ R

d and on Br(b∗)× Uρ , respectively, with r ≤ 1 and ρ ≤ 1. Suppose that
ω(b∗) = (∂H0/∂a)(b∗) satisfies the diophantine condition (2.4). There are positive
constants ε0, c0, C such that the following holds for every positive β ≤ 1 and for
ε ≤ ε0: there exists a real-analytic symplectic change of coordinates (a, θ) �→ (b, ϕ)
such that every solution (b(t), ϕ(t)) of the perturbed system in the new coordinates,
starting with ‖b(0)− b∗‖ ≤ c0ε

2β , satisfies

‖b(t)− b(0)‖ ≤ Ct exp(−c ε−β/α) for t ≤ exp( 1
2c ε

−β/α) .

Here, α = ν + d + 1 and c = (16C1e/r)−1/α with C1 of Lemma 4.2. Moreover,
the transformation is such that, for (a, θ) and (b, ϕ) related by the above coordinate
transform,

‖a− b‖ ≤ Cε for ‖b− b∗‖ ≤ c0 ε2β , ϕ ∈ Uρ/2 .

The thresholds ε0 and c0 are such that ε2β
0 is inversely proportional to γC2

1 , and c0
is proportional to γC2

1 .

Remark 4.5. Theorem 4.4 is a local result, showing that for b0 near b∗ the tori
{b = b0, ϕ ∈ T

d} are nearly invariant, up to exponentially small deviations, over
exponentially long times. Nekhoroshev (1977, 1979) has shown the global result,
under a “steepness condition” which is in particular satisfied for convex Hamiltoni-
ans, that for sufficiently small ε every solution of the perturbed Hamiltonian system
satisfies, for some positive constants A,B < 1 (proportional to the inverse of the
square of the dimension),

‖a(t)− a(0)‖ ≤ εB for t ≤ exp(ε−A) .

Remark 4.6. The constant C1 in Lemma 4.2 and constants in similar estimates of
Hamiltonian perturbation theory are very large, with the consequence that the results
on the long-time behaviour derived from them are meaningful, in a rigorous sense,
only for extremely small values of the perturbation parameter ε. Nevertheless, apart
from their pure theoretical interest these results are of value as they describe the
behaviour to be expected if one presupposes that the constants obtained from the
worst-case estimations are unduly pessimistic for a given problem, as is typically
the case.

Proof of Theorem 4.4. The proof combines Lemmas 4.2 and 4.3 with the proof of
Lemma 2.1. An appropriate choice of the truncation indices N and m then gives the
exponential estimates.
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As in the proof of Lemma 2.1, we approximate H1(b, θ) by a trigonometric poly-
nomial of order m in θ. The error of this approximation is bounded by O(e−mρ/2)
on Br(b∗) × Uρ/2, which is O(e−N ) for the choice m = 2N/ρ made below. By
the arguments of the proof of Lemma 2.1, the estimates of Lemmas 4.2 and 4.3 (for
γ replaced by γ/2, which increases C1 to 4C1) are then valid in O((jm)−α) and
O((Nm)−α) neighbourhoods of b∗: for a sufficiently small constant c∗ and with
C2 = 16C1/r,

∥∥∥∥
∂Sj

∂θ
(b, θ)

∥∥∥∥ ≤ C0(4C1j
α)j−1 for ‖b− b∗‖ ≤ c∗(jm)−α, θ ∈ Uρ/2 ,

|RN (b, θ)| ≤ 4Mr (C2N
α)N for ‖b− b∗‖ ≤ c∗(Nm)−α, θ ∈ Uρ/2 .

We now consider the symplectic change of variables (a, θ) �→ (b, ϕ) defined by the
generating function S(b, θ). The Hamiltonian equations in the variables (b, ϕ) are
then of the form, for ‖b− b∗‖ ≤ c∗(Nm)−α,

ḃ = −∂K

∂ϕ
(b, ϕ) = −εN ∂RN

∂θ

∂θ

∂ϕ
= O(εN (C2N

α)N )

ϕ̇ =
∂K

∂b
(b, ϕ) = ωε,N (b) +O((Nm)α · εN (C2N

α)N ) .

(4.1)

Choosing m = 2N/ρ and N such that C2N
α = 1/(eεβ) gives

ḃ = O(exp(−cε−β/α))

ϕ̇ = ωε,N (b) +O(ε−2β exp(−cε−β/α))
for ‖b− b∗‖ ≤ c0 ε2β (4.2)

with c = (C2e)−α, which yields the result. 
�

X.4.3 Near-Invariant Tori of Symplectic Integrators

We return to the situation of Sect. X.3 and apply a symplectic numerical method to
the integrable Hamiltonian system (3.1) with (3.2) and (3.3).

Theorem 4.7. Consider applying a symplectic numerical integrator of order p
to the real-analytic completely integrable Hamiltonian system (3.1). Suppose that
ω(a∗) satisfies the diophantine condition (2.4). Then, there exist positive constants
c0, c, C and h0 such that the following holds for all step sizes h ≤ h0 and for
all µ ≤ min(p, α) with α = ν + d + 1: every numerical solution starting with
‖I(p0, q0)− a∗‖ ≤ c0h

2µ satisfies

‖I(pn, qn)− I(p0, q0)‖ ≤ C hp for nh ≤ exp(c h−µ/α) .

The constants h0, c0, c, C depend on d, γ, ν, on bounds of the real-analytic Hamil-
tonian H on a complex neighbourhood of the torus {(p, q) ; I(p, q) = a∗}, and on
the numerical method.
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Proof. The proof is obtained by following the arguments of the proof of Theo-
rem 3.1. Instead of Lemma 2.1, now Theorem 4.4 is applied to the modified Hamil-
tonian system (3.5) with ε = hp. This gives a change of coordinates (a, θ) �→ (b, ϕ)
O(hp)-close to the identity, such that in the new variables, the solution (̃b(t), ϕ̃(t))
of (3.5) satisfies

b̃(t) = b0 +O(exp(−ch−µ/α)) for t ≤ exp(c h−µ/α) .

On the other hand, using the exponentially small bound of Theorem IX.7.6, together
with Theorem 4.4 and the arguments of part (b) of the proof of Theorem 3.1, yields
for the numerical solution in the new variables

bn = b̃(t) +O(exp(−ch−µ/α)) for t = nh ≤ exp(c h−µ/α) .

Together with an − bn = O(hp) this gives the result. 
�

Remark 4.8. When the symplectic method is applied to a perturbed integrable sys-
tem as in Theorem 4.4, then the same argument yields for ‖I(p0, q0)−a∗‖ ≤ c0η

2β

with η = max(ε, hp) and β ≤ 1 the bound

‖I(pn, qn)− I(p0, q0)‖ ≤ C η for t ≤ exp(c η−β/α) .

X.5 Kolmogorov’s Theorem on Invariant Tori

(The proof of this theorem was published in Dokl. Akad. Nauk SSSR 98
(1954), 527–530 [MR 16, 924], but the convergence discussion does not
seem convincing to the reviewer.) This very interesting theorem would
imply that for an analytic canonical system which is close to an integrable
one, all solutions but a set of small measure lie on invariant tori.

(J. Moser 1959)

It was a celebrated discovery by Kolmogorov (1954) that invariant tori carrying a
conditionally periodic flow with diophantine frequencies persist under small pertur-
bations of the Hamiltonian. Together with the extensions and refinements by Arnold
(1963), Moser (1962) and later authors, Kolmogorov’s result forms what is now
known as KAM theory. Here we give a proof of Kolmogorov’s theorem and use
it in studying the long-time behaviour of symplectic numerical methods applied to
perturbed integrable systems.

X.5.1 Kolmogorov’s Theorem

In Sect. X.2.3 we have already given Kolmogorov’s transformation which reduces
the size of a perturbation to a Hamiltonian of the form (2.8) from O(ε) to O(ε2), at
least formally. The iteration of that procedure is convergent and yields the following
result.
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A.N. Kolmogorov 2 V.I. Arnold3 J.K. Moser 4

Theorem 5.1 (Kolmogorov 1954). Consider a real-analytic Hamiltonian H(a, θ),
defined for a in a neighbourhood of 0 ∈ R

d and θ ∈ T
d, for which the linearization

at a∗ = 0 does not depend on the angles:

H(a, θ) = c + ω · a + 1
2a

TM(a, θ)a . (5.1)

Suppose that ω ∈ R
d satisfies the diophantine condition (2.4), viz.,

|k · ω| ≥ γ |k|−ν for k ∈ Z
d, k �= 0, (5.2)

and that the angular average M0 of M(0, ·) is an invertible d× d matrix:

‖M0v‖ ≥ µ‖v‖ for v ∈ R
d, (5.3)

with positive constants γ, ν, µ. Let Hε(a, θ) = H(a, θ) + εG(a, θ) be a real-
analytic perturbation of H(a, θ). Then, there exists ε0 > 0 such that for every ε
with |ε| ≤ ε0, there is an analytic symplectic transformation ψε : (b, ϕ) �→ (a, θ),
O(ε) close to the identity and depending analytically on ε, which puts the perturbed
Hamiltonian back to the form

Hε(a, θ) = cε + ω · b + 1
2b

TMε(b, ϕ)b for (a, θ) = ψε(b, ϕ). (5.4)

The perturbed system therefore has the invariant torus {b = 0, ϕ ∈ T
d} carrying a

quasi-periodic flow with the same frequencies ω as the unperturbed system.
(The threshold ε0 depends on d, ν, γ, µ and on bounds of H and G on a complex
neighbourhood of {0} × T

d.)

2 Andrei Nikolaevich Kolmogorov, born: 25 April 1903 in Tambov (Russia), died: 20 Octo-
ber 1987 in Moscow.

3 Vladimir Igorevich Arnold, born: 12 June 1937 in Odessa (USSR).
4 Jürgen K. Moser, born: 4 July 1928 in Königsberg, now Kaliningrad, died: 17 December

1999 in Zürich (Switzerland).
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Of particular interest is the case when H(a, θ) = H0(a) is independent of θ,
so that we are considering perturbations of an integrable system. In this case, the
theorem shows that all invariant tori with frequencies ω(a) = ∂H0/∂a(a) satisfying
(5.2) and with invertible Hessian ∂2H0/∂a

2(a) persist under small perturbations
and are only slightly deformed.

Kolmogorov (1954) stated the theorem and formulated the iteration of Sec-
tion X.2.3, but did not give the details of the convergence estimates. Arnold (1963)
gave a first complete proof of the theorem for perturbed integrable systems, using a
construction based on the “ultra-violet cutoff” (cf. Lemma 2.1) which yields a single
transformation simultaneously for all frequencies satisfying the diophantine condi-
tion (2.4), in contrast to Kolmogorov’s iteration which yields a different transforma-
tion for every choice of diophantine frequencies. However, Arnold’s transformation
is no longer analytic in the perturbation parameter ε. Moser (1962) showed that the
analyticity of the Hamiltonian can be replaced by differentiability of sufficiently
high order. Full proofs of Kolmogorov’s theorem along his original construction
were published by Thirring (1977) (for a reduced model problem) and by Benettin,
Galgani, Giorgilli & Strelcyn (1984).

As in Remark 4.6, a practical difficulty with Theorem 5.1 is that the theoreti-
cally obtained threshold ε0 is very small. The proof below requires ε0 ≤ δ5α

0 with
α = ν + d + 1 of Lemma 4.1, where δ0 is inversely proportional to ν. This pes-
simistic estimate of the threshold can be somewhat improved by first reducing the
perturbation of an integrable Hamiltonian system via a perturbation series expan-
sion as in the proof of Theorem 4.4 and then applying Kolmogorov’s theorem to the
remainder of the truncated perturbation series.

The proof of Theorem 5.1 uses iteratively the following lemma, which refers
to the transformation constructed in Sect. X.2.3. Similar to Sect. X.4 we use the
notation

‖G‖ρ = sup{|G(a, θ)| ; ‖a‖ < ρ, ‖Im θ‖ < ρ}
for a bounded analytic function G on Wρ := Bρ(0)×Uρ, where again Bρ(0) is the
complex ball of radius ρ around 0 and Uρ is the complex extension of T

d of width ρ.
The same notation is used for vector- and matrix-valued functions, in which case the
underlying norm on C

d or C
d×d is the maximum norm or its induced matrix norm,

respectively.

Lemma 5.2. In the situation of Sect. X.2.3 and under the conditions of Theorem 5.1,
suppose that H and G are real-analytic and bounded on Wρ. Then, there exists δ0 >
0 such that the following bounds hold for Kolmogorov’s transformation whenever
0 < δ ≤ δ0:

if ‖εG‖ρ ≤ δ5α, then ‖ε2Ĝ‖ρ−δ ≤ ( 1
2δ)

5α

and ‖ε∇χ‖ρ−δ ≤ δ3α , ‖M̂ −M‖ρ−δ ≤ δ2α,

where α = ν + d + 1. The threshold δ0 depends only on d, ν, γ, µ and on ‖H‖ρ.
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Proof. We estimate the terms arising in the construction of Kolmogorov’s transfor-
mation of Sect. X.2.3. For brevity we denote ‖ · ‖j = ‖ · ‖ρ−jδ/4 for j = 0, 1, 2, 3, 4.

(a) The transformation (b, ϕ) �→ (a, θ) is constructed such that (a, θ) = y(ε),
where y(t) is the solution of ẏ = J−1∇χ(y) with y(0) = (b, ϕ). Suppose for the
moment that

‖ε∇χ‖3 ≤ 1
4δ . (5.5)

Let (b, ϕ) ∈ Wρ−δ . Then, ‖y(t) − y(0)‖ ≤ 1
4δ for 0 ≤ t ≤ ε, and in particular

‖(a, θ)− (b, ϕ)‖ ≤ 1
4δ. We define

ε2R(b, ϕ) :=
(
a− b + ε

∂χ

∂ϕ
(b, ϕ), θ − ϕ− ε

∂χ

∂b
(b, ϕ)

)

= y(ε)− y(0)− εJ−1∇χ(y(0))

and note
‖R(b, ϕ)‖ ≤ 1

2 max
0≤t≤ε

‖ÿ(t)‖ ≤ 1
2‖J

−1∇2χ J−1∇χ‖3

so that
‖R‖4 ≤ 1

2‖∇
2χ‖3 ‖∇χ‖3 . (5.6)

(b) Tracing the construction of Sect. X.2.3, we find by Taylor expansion of
H(a, θ) that the new matrix is

M̂(b, ϕ) = M(b, ϕ) + εL(b, ϕ)

with

L(b, ϕ) =
d∑

i=1

(
∂M

∂ai

∂χ

∂ϕi
− ∂M

∂θi

∂χ

∂bi

)
(b, ϕ) + P (b, ϕ) + Q(b, ϕ)

where P (b, ϕ) is symmetric with

bTP (b, ϕ)b = bT
(
M(b, ϕ)−M(0, ϕ)

)∂χ
∂ϕ

and where Q(b, ϕ) is given by (2.11). It follows that

‖M̂ −M‖4 ≤ 2ε(‖∇M‖4 ‖∇χ‖4 + ‖∇2G‖4) . (5.7)

From the construction of Ĝ we also find by simple estimates of Taylor remainders

‖Ĝ‖4 ≤ ‖∇H‖3 ‖R‖4 + ‖∇G‖3 ‖∇χ‖4 + ‖∇2H‖3 ‖∇χ‖24 . (5.8)

(c) Using Lemma 4.1 in the equations (2.12)–(2.16) defining χ of (2.10), we
obtain first

‖χ0‖1 ≤ κ0δ
−α+1‖G0‖0 ,

∥∥∥∂χ0

∂ϕ

∥∥∥
1
≤ κ1δ

−α‖G0‖0
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and by a second application of that lemma, for i = 1, . . . , d,

‖χi‖2 ≤ κ0δ
−α+1 (‖u‖1 + ‖v‖1 + ‖Gi‖1)

where, by construction of u and v,

‖v‖1 ≤ ‖M‖1
∥∥∥∂χ0

∂ϕ

∥∥∥
1
, ‖u‖1 ≤ ‖M‖1 µ−1

(
‖v‖1 +

d∑
j=1

‖Gj‖1
)
.

It then follows by Cauchy’s estimates that

‖∇χ‖3 ≤ Cδ−2α ‖G‖0 , ‖∇2χ‖3 ≤ Cδ−2α−1 ‖G‖0 . (5.9)

(d) Combining the estimates (5.6)–(5.9) and using once more Cauchy’s esti-
mates to bound derivatives of H and G yields

‖ε2Ĝ‖ρ−δ ≤ Cδ−4α−1‖εG‖2ρ
‖ε∇χ‖ρ−δ ≤ Cδ−2α‖εG‖ρ

‖M̂ −M‖ρ−δ ≤ Cδ−2α−3‖εG‖ρ .

All this holds under the condition (5.5). By (5.9), this condition is satisfied if
‖εG‖ρ ≤ δ5α and δ ≤ δ0 with a sufficiently small δ0. (Tracing the above constants

shows that δ0 needs to be inversely proportional to κ
1/α
1 , or inversely proportional

to ν.) This yields the stated bounds. 
�

Proof of Theorem 5.1. Kolmogorov’s iteration yields sequences

G(0) = G,G(1), G(2), . . .

M (0) = M,M (1),M (2), . . .

χ(0), χ(1), χ(2), . . . .

By Lemma 5.2 they satisfy, provided that ‖εG‖ρ = δ5α with δ ≤ δ0,

‖ε2j

G(j)‖ρ(j) ≤ (2−jδ)5α (5.10)

‖M (j+1) −M (j)‖ρ(j) ≤ (2−jδ)2α (5.11)

‖ε2j∇χ(j)‖ρ(j) ≤ (2−jδ)3α (5.12)

where ρ(j) = ρ − (1 + 1
2 + . . . + 2−j)δ > 1

2ρ for all j. Note that (5.11) implies
that the inverse of M (j) is bounded by 2µ−1 for all j, so that the iterative use of
Lemma 5.2 is justified. The time-ε2j

flow of χ(j) is a symplectic transformation
σ

(j)
ε , which by (5.12) satisfies

‖σ(j)
ε − id‖ρ/2 ≤ (2−jδ)3α . (5.13)
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The composed transformation

ψ(j)
ε := σ(0)

ε ◦ σ(1)
ε ◦ . . . ◦ σ(j)

ε

is constructed such that

H(ψ(j−1)
ε (b, ϕ)) = c(j) + ω · b + bTM (j)(b, ϕ)b + ε2j

G(j)(b, ϕ) . (5.14)

By (5.13), the sequence ψ
(j)
ε (b, ϕ) converges uniformly on Wρ/2 × (−ε0, ε0) to a

limit ψε(b, ϕ). By Weierstrass’ theorem, ψε(b, ϕ) is analytic in (b, ϕ, ε) (and in any
further parameters on which M and G might possibly depend analytically). Since
ψε depends analytically on ε and ψ0 = id, it follows that ψε is O(ε)-close to the
identity on Wρ/2. By (5.10) and (5.14), the transformed Hamiltonian H ◦ ψε is of
the desired form (5.4). 
�

X.5.2 KAM Tori under Symplectic Discretization

Consider a Hamiltonian system

ṗ = −∂H
∂q

(p, q) , q̇ =
∂H
∂p

(p, q) , (5.15)

for which, in suitable coordinates (a, θ), the Hamiltonian H(p, q) = H(a, θ) +
εG(a, θ) satisfies the conditions of Theorem 5.1. Kolmogorov’s theorem yields a
transformation to variables (b, ϕ) in terms of which

H(p, q) = ω · b + 1
2b

TMε(b, ϕ)b ,

so that the torus Tω = {b = 0, ϕ ∈ T
d} is invariant and the flow on it is quasi-

periodic with frequencies ω.
For a symplectic integrator of order p applied to (5.15), backward analysis gives

a modified Hamiltonian H̃(p, q) which is an O(hp) perturbation of H(p, q):

H̃(p, q) = ω · b + 1
2b

TMε(b, ϕ)b + hpG̃(b, ϕ) . (5.16)

Kolmogorov’s theorem can be applied once more, yielding an invariant torus T̃ω

of the modified Hamiltonian H̃(p, q) which again carries a quasi-periodic flow with
frequencies ω. Combined with the exponentially small estimates of backward analy-
sis for the difference between numerical solutions and the flow of the modified
Hamiltonian system, this gives the following result of Hairer & Lubich (1997).

Theorem 5.3. In the above situation, for a symplectic integrator of order p used
with sufficiently small step size h, there is a modified Hamiltonian H̃ with an in-
variant torus T̃ω carrying a quasi-periodic flow with frequencies ω, O(hp) close
to the invariant torus Tω of the original Hamiltonian H, such that the difference
between any numerical solution (pn, qn) starting on the torus T̃ω and the solution



X.5 Kolmogorov’s Theorem on Invariant Tori 429

(p̃(t), q̃(t)) of the modified Hamiltonian system with the same starting values re-
mains exponentially small in 1/h over exponentially long times:

‖(pn, qn)− (p̃(t), q̃(t))‖ ≤ Ce−κ/h for t = nh ≤ eκ/h .

The constants C and κ are independent of n, h, ε (for h, ε sufficiently small) and of
the initial value (p0, q0) ∈ T̃ω .

Proof. (a) For sufficiently small h, Kolmogorov’s theorem applied to (5.16) yields a
change of coordinates (b, ϕ) �→ (c, ψ), O(hp) close to the identity, which transforms
the modified Hamiltonian to the form

H̃(p, q) = ω · c + 1
2c

TMε,h(c, ψ)c ,

with the invariant torus T̃ω = {c = 0, ψ ∈ T
d}. The corresponding differential

equations read in these coordinates

ċ = u(c, ψ) , ψ̇ = ω + v(c, ψ) (5.17)

where u(c, ψ) = O(‖c‖2) and v(c, ψ) = O(‖c‖), and similarly for the derivatives
∂u/∂c = O(‖c‖), ∂u/∂ψ = O(‖c‖2), and ∂v/∂c = O(1), ∂v/∂ψ = O(‖c‖).
The constants in these O-terms are independent of h and ε. Let (c(t), ψ(t)) and
(ĉ(t), ψ̂(t)) be two solutions of (5.17) such that ‖c(t)‖ ≤ β, ‖ĉ(t)‖ ≤ β (β suffi-
ciently small) for all t under consideration. Then, an argument based on Gronwall’s
lemma shows that their difference is bounded over a time interval 0 ≤ t ≤ 1/β by

‖c(t)− ĉ(t)‖ ≤ C
(
‖c(0)− ĉ(0)‖+ β ‖ψ(0)− ψ̂(0)‖

)

‖ψ(t)− ψ̂(t)‖ ≤ C
(
t ‖c(0)− ĉ(0)‖+ ‖ψ(0)− ψ̂(0)‖

)
,

(5.18)

for some constant C that does not depend on β, h or ε.
(b) In the following we denote y = (p, q) for brevity, and more specifically,

yn denotes the numerical solution starting from any y0 on the torus T̃ω , i.e., the
c-coordinate of y0 vanishes: c0 = 0. We denote by ỹ(t, s, z) the solution of the
modified Hamiltonian system with initial value ỹ(s, s, z) = z, and more briefly
ỹ(t) = ỹ(t, 0, y0) the solution starting from y0. By Theorem IX.7.6, the local error
of backward error analysis at tj = jh is bounded by

‖yj − ỹ(tj , tj−1, yj−1)‖ ≤ δ := Const . h e−3κ/h

for some constant κ, as long as yj remains in a compact subset of the domain of
analyticity of H. We further denote the c-coordinates of yn, ỹ(t) and ỹ(t, tj , yj) by
cn, c̃(t) and c̃(t, tj , yj), respectively. To apply the error propagation estimate (5.18),
we assume that

‖c̃(t, tj , yj)‖ ≤ β for tj ≤ t ≤ 1/β (5.19)

and for all j satisfying tj = jh ≤ 1/β. This assumption will be justified by induc-
tion later, and the value of β will be specified in (5.21) below. By (5.18) we thus
obtain the bound
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‖ỹ(t, tj , yj)− ỹ(t, tj−1, yj−1)‖ ≤ C (1 + (t− tj)) δ for tj ≤ t ≤ 1/β .

Summing up from j = 1 to n gives for tn ≤ t ≤ 1/β (and t > 2)

‖ỹ(t, tn, yn)− ỹ(t)‖ ≤
n∑

j=1

C
(
1 + (t− tj)

)
δ ≤ Ch−1δ (tn + ttn − t2n/2)

< Ch−1δ t2 ≤ Ch−1δ/β2 . (5.20)

We now set
β = (2Ch−1δ)1/3 , (5.21)

so that Ch−1δ/β2 = β/2, and we obtain the desired estimate from (5.20) by putting
t = tn.

(c) We still have to justify the assumption (5.19). This will be done by induction.
For j = 0 nothing needs to be shown, because c̃(t, 0, y0) = c̃(t) ≡ 0 as a conse-
quence of the fact that ỹ(t) stays on the invariant torus T̃ω = {c = 0, ψ ∈ T

d}.
Suppose now that (5.19) holds for j ≤ n. It then follows from (5.20) that

‖c̃(t, tn, yn)‖ < Ch−1δ/β2 = β/2 for tn ≤ t ≤ 1/β

(again because of c̃(t) ≡ 0). Consequently we also have

‖cn+1‖ ≤ ‖cn+1 − c̃(tn+1, tn, yn)‖+ ‖c̃(tn+1, tn, yn)‖ < δ + β/2 ≤ β,

provided that h is sufficiently small so that δ ≤ β/2. By continuity, c̃(t, tn+1, yn+1)
is bounded by β on a non-empty interval [tn+1, Tn+1]. The computation of part (b)
shows that ‖c̃(t, tn+1, yn+1)‖ ≤ β/2 on this interval. Hence, Tn+1 can be increased
until Tn+1 ≥ 1/β. This proves the estimate (5.19) for j = n + 1. 
�

X.6 Invariant Tori of Symplectic Maps

In the preceding section, backward error analysis combined with Kolmogorov’s the-
orem has shown that a symplectic integrator applied to a Hamiltonian system with
KAM tori possesses tori that are near-invariant, up to exponentially small terms,
over exponentially long times in the inverse of the step size. To obtain truly invariant
tori, we need a discrete KAM theorem for perturbations of integrable near-identity
maps depending on a small parameter, the step size. Such a result was recently ob-
tained by Shang (1999, 2000), who gave a discrete Arnold-type construction. Here,
we use instead a discrete-time version of Kolmogorov’s iteration. This establishes
the existence of invariant tori of symplectic integrators applied to integrable Hamil-
tonian systems or to near-integrable systems with KAM tori, for a Cantor set of
non-resonant step sizes.
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X.6.1 A KAM Theorem for Symplectic Near-Identity Maps

We consider a discrete-time analogue of the situation in Sections X.2.3 and X.5.1
and construct the corresponding version of Kolmogorov’s iteration. Consider the
symplectic map σh : (a, θ) �→ (â, θ̂) for a near 0 ∈ R

d, θ ∈ T
d defined by

â = a− h
∂S

∂θ̂
(a, θ̂) , θ̂ = θ + h

∂S

∂a
(a, θ̂) (6.1)

where h is a small parameter (the step size), and S : Br(0) × T
d → R is a real-

analytic generating function. If S(a, θ̂) has the form (cf. (2.8))

S(a, θ̂) = c + ω · a + 1
2a

TM(a, θ̂)a , (6.2)

then the associated symplectic map is of the form

â = a +O(h‖a‖2) , θ̂ = θ + hω +O(h‖a‖) .

Hence, the torus {a = 0, θ ∈ T
d} is invariant, and on it the map σh reduces to

rotation by hω.
Consider now an analytic perturbation of such a generating function: S(a, θ̂) +

εR(a, θ̂) with a small ε. We construct a near-identity symplectic change of coor-
dinates, via an iterative procedure similar to Kolmogorov’s iteration of Sect. X.2.3,
such that the generating function of the perturbed symplectic map in the new vari-
ables is again of the form (6.2) with the same ω, and hence the perturbed map has an
invariant torus on which it is conjugate to rotation by hω. This holds if hω satisfies
the following diophantine condition (cf. (2.4)):

∣∣∣∣
1− e−ik·hω

h

∣∣∣∣ ≥ γ∗ |k|−ν∗
for k ∈ Z

d, k �= 0, (6.3)

for some positive constants γ∗, ν∗; and if the angular average M0 of M(0, ·) is
invertible:

‖M0v‖ ≥ µ∗‖v‖ for v ∈ R
d (6.4)

for a positive constant µ∗. As in Sect. X.2.3, we construct a symplectic transfor-
mation (a, θ) �→ (b, ϕ) as the time-ε flow of an auxiliary Hamiltonian of the form
(2.10), viz.,

χ(b, ϕ) = ξ · ϕ + χ0(ϕ) +
d∑

i=1

biχi(ϕ)

where ξ ∈ R
d is a constant vector, and χ0, χ1, . . . , χd are 2π-periodic functions.

We then consider the map conjugate to the perturbed map (a, θ) �→ (â, θ̂) generated
by S(a, θ̂) + εR(a, θ̂):

(a, θ) −→ (â, θ̂)
) (

(b, ϕ) (̂b, ϕ̂)
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We construct χ in such a way that the above composed symplectic map is generated
by S̃(bϕ̂) + ε2R̃(b, ϕ̂) with S̃ of the form (6.2) and both S̃ and R̃ real-analytic and
bounded independently of ε and of h with (6.3). The map (b, ϕ) �→ (̂b, ϕ̂) is then of
the form

b̂ = b +O(h‖b‖2) +O(hε2) , ϕ̂ = ϕ + hω +O(h‖b‖) +O(hε2) .

As an elementary calculation shows, this holds if χ satisfies for all (b, ϕ̂) with b
near 0, ϕ̂ ∈ T

d

χ(b, ϕ̂)− χ(b, ϕ̂− hω)
h

+ bTM(b, ϕ̂)
∂χ

∂ϕ
(b, ϕ̂− hω) + R(b, ϕ̂) = Ch +O(‖b‖2)

where Ch does not depend on (b, ϕ̂) and ε. Writing down the Taylor expansion

R(b, ϕ̂) = R0(ϕ̂) +
d∑

i=1

biRi(ϕ̂) +O(‖b‖2)

and inserting the above ansatz for χ, this condition becomes fulfilled if, with u(ϕ̂) =
M(0, ϕ̂)ξ and v(ϕ̂) = M(0, ϕ̂)(∂χ0/∂ϕ)(ϕ̂− hω),

χ0(ϕ̂)− χ0(ϕ̂− hω)
h

+ R0(ϕ̂) = R0 (6.5)

χi(ϕ̂)− χi(ϕ̂− hω)
h

+ ui(ϕ̂) + vi(ϕ̂) + Ri(ϕ̂) = ui + vi + Ri (6.6)

ui + vi + Ri = 0 (i = 1, . . . , d) (6.7)

where the bars again denote angular averages. We note

χ0(ϕ̂)− χ0(ϕ̂− hω)
h

=
∑

k

1− e−ik·hω

h
χ0,k eik·ϕ̂ ,

where χ0,k are the Fourier coefficients of χ0. Under the diophantine condition (6.3),
Equation (6.5) is thus solved like (2.14) under condition (2.4). Equations (6.6) are
of the same type. The above system is then solved in the same way as (2.12)–(2.16),
yielding that the perturbed map in the new coordinates, (b, ϕ) �→ (̂b, ϕ̂), is generated
by

S(1)(b, ϕ̂) = c(1) + ω · b + 1
2b

TM (1)(b, ϕ̂)b + ε2R(1)(b, ϕ̂)

with unchanged frequencies ω and with M (1)(b, ϕ̂) = M(b, ϕ̂)+O(ε). The pertur-
bation to the form (6.2) is thus reduced fromO(ε) toO(ε2). By the same arguments
as in the proof of Theorem 5.1 it is shown that the iteration of this procedure con-
verges. This proves the following discrete-time version of Kolmogorov’s theorem.

Theorem 6.1. Consider a real-analytic function S(a, θ̂) of the form (6.2) with (6.4),
defined on a neighbourhood of {0} × T

d. Let |h| < h0 (h0 so small that (6.1) is a
well-defined map) and suppose that hω satisfies (6.3).
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Let Sε(a, θ̂) = S(a, θ) + εR(a, θ̂) be an analytic perturbation of S(a, θ), gen-
erating a symplectic map σh,ε : (a, θ) �→ (â, θ̂) via (6.1) with Sε in place of S.

Then, there exists ε0 > 0 such that for every ε with |ε| < ε0, there is an analytic
symplectic transformation ψh,ε : (b, ϕ) �→ (a, θ), O(ε) close to the identity uni-
formly in h satisfying (6.3) and analytic in ε, such that ψ−1

h,ε ◦ σh,ε ◦ψh,ε : (b, ϕ) �→
(̂b, ϕ̂) is generated, via (6.1), by a function S∗

h,ε(b, ϕ̂) which is again of the form
(6.2), i.e.,

S∗
h,ε(b, ϕ̂) = ch,ε + ω · b + 1

2b
TMh,ε(b, ϕ̂)b .

The perturbed map σh,ε therefore has an invariant torus on which it is conjugate to
rotation by hω.
(The threshold ε0 depends only on d, ν∗, γ∗, µ∗ and on bounds of S and R on a
complex neighbourhood of {0} × T

d.) 
�

X.6.2 Invariant Tori of Symplectic Integrators

As a direct consequence of Theorem 6.1 we obtain the following result on invariant
tori of symplectic integrators applied to KAM systems.

Theorem 6.2. Apply a symplectic integrator of order p to a perturbed integrable
system with a KAM torus Tω which carries a quasi-periodic flow with diophantine
frequencies ω. Then, if the step size h is sufficiently small and satisfies the strong
non-resonance condition (6.3), the numerical method has an invariant torus Tω,h

O(hp)-close to Tω , on which it is conjugate to rotation by hω.

Proof. Theorem 6.1 applies directly, with ε = hp, to the above situation. Here,
the generating function S(a, θ̂) of the time-h flow ϕh of the Hamiltonian system
with the KAM torus Tω is of the form (6.2) in the variables (a, θ) obtained by Kol-
mogorov’s theorem. The matrix M(a, θ̂) in (6.2) then differs from the corresponding
matrix of (2.8) by O(h), so that (5.3) implies (6.4). Finally, the generating function
of the numerical one-step map Φh is an O(hp)-perturbation S(a, θ̂) + hpR(a, θ̂). 
�

X.6.3 Strongly Non-Resonant Step Sizes

Theorem 6.2 leaves us with an interesting question: if ω ∈ R
d is a vector of frequen-

cies that satisfies the diophantine condition (2.4), then which step sizes h satisfy the
non-resonance condition (6.3)? Here we give a lemma in the spirit of results by
Shang (2000). It shows that the probability of picking an h ∈ (0, h0) satisfying
(6.3) tends to 1 as h0 → 0.

Lemma 6.3. Suppose ω ∈ R
d satisfies (2.4), and let h0 > 0. For any choice of

positive γ∗ and ν∗, the set

Z(h0) = {h ∈ (0, h0) ; h does not satisfy (6.3)}
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is open and dense in (0, h0). If γ∗ ≤ γ and ν∗ > ν + d + r with r > 1, then the
Lebesgue measure of Z(h0) is bounded by

measure
(
Z(h0)

)
≤ C

γ∗

γ
hr+1

0

where C depends only on d, ν, ν∗ and ‖ω‖.

Proof. It is clear from the definition that Z(h0) is open and dense in (0, h0). It
remains to prove the estimate of the Lebesgue measure. For every k ∈ Z

d and
|h| ≤ h0, there exists an integer l = l(k, h) such that

|1− e−ik·hω| ≥ 2
π
|k · hω − 2πl| = 2

π
|k · ω| ·

∣∣∣h− 2πl
|k · ω|

∣∣∣ .

For this l we must have, by the triangle inequality,

2π|l| ≤ π + |k|h0 ‖ω‖ ,

so that in case l �= 0
1
|k| ≤

h0 ‖ω‖
2π(|l| − 1

2 )
.

On the other hand, l = 0 yields
∣∣∣∣
1− e−ik·hω

h

∣∣∣∣ ≥
2
π
|k · ω| ≥ 2

π
γ |k|−ν

which implies h /∈ Z(h0). Hence, h can be in Z(h0) only if there exist k ∈ Z
d,

k �= 0 and an integer l �= 0 such that
∣∣∣h− 2πl

|k · ω|

∣∣∣ ≤ π

2
|h|

|k · ω|
γ∗

|k|ν∗ ≤
π

2
|h| |k|

ν

γ

γ∗

|k|ν∗

≤ π

2
γ∗

γ
|k|ν+r−ν∗

(
‖ω‖
2π

1
|l| − 1

2

)r

hr+1
0 .

It follows that

measure
(
Z(h0)

)
≤ 2

∑
k �=0

∑
l �=0

π

2
γ∗

γ
|k|ν+r−ν∗

(
‖ω‖
2π

1
|l| − 1

2

)r

hr+1
0 ,

which yields the stated result. 
�

X.7 Exercises

1. Let R be a d× 2d matrix of rank d. Show that there exists a symplectic 2d× 2d
matrix A such that RA = (P,Q) with an invertible d× d matrix P .
Hint. Consider first the case d = 2 and then reduce the general situation to a
sequence of transformations for that case.
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Fig. 7.1. Numerically obtained eigenvalues (left pictures) and errors in the eigenvalues (right
pictures) for the step sizes h = 0.1 (dotted) and h = 0.05 (solid line)

2. The transformation (x, y) �→ (x, y + d(x, y)) is symplectic if and only if the
partial derivatives of d satisfy dx = dT

x , dy = 0 .
3. In the situation of Lemma 1.1, if (F1, . . . , Fd, G̃1, . . . , G̃d)T is another such

symplectic transformation, then there exists a smooth function W depending
only on x = (x1, . . . , xd) such that, for xj = Fj(p, q),

G̃i(p, q)−Gi(p, q) =
∂W

∂xi
(x) .

Hint. Use the previous exercise.
4. Show that every discrete subgroup of R

d is a grid, generated by k ≤ d linearly
independent vectors.
Solution. See e.g. Arnold (1989), Sect. 10D.

5. Show the following bound of the Lebesgue measure of non-diophantine fre-
quencies (Arnold 1963): for any bounded domain Ω ⊂ R

d,

measure
{
ω ∈ Ω ; ω does not satisfy (2.4) with ν ≥ d

}
≤ C(d,Ω)γ .

Hint. For a fixed k, decompose ω = ω0 + αk/|k| with ω0 · k = 0.
6. Show that the eigenvalues λj of the matrix L of the Toda system are first inte-

grals in involution.
Hint. For Pλ = det(λI − L), show that {Pλ, Pµ} = 0 for all λ, µ.

7. We repeat the experiment of Fig. 1.3 with the Störmer–Verlet scheme, where
we keep the initial values for the q-variables, but change the initial values for
the p-variables to p1 = p2 = p3 = 0. The numerical results, given in Fig. 7.1,
are qualitatively different from those in Fig. 1.3. The errors behave more like
hc(th) rather than h2c(t). We do not understand this behaviour; do you?

8. Show that for a non-symplectic numerical method, there is at worst quadratic
error growth in time when it is applied to an integrable Hamiltonian system.
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9. Consider a numerical integrator of order p (i.e., Φh(y) = ϕh(y) + O(hp+1)),
and assume that

Φ′
h(y)TJ Φ′

h(y) = J +O(hq+1)

with q > p, when the method is applied to a Hamiltonian system. Prove that
under the assumptions of Theorem 3.1 the global error behaves for t = nh like

yn − y(t) = O(thp) +O(t2hq),

and the action variables like

I(yn)− I(y0) = O(hp) +O(thq).

Remark. Methods satisfying the assumptions of this exercise are called pseudo-
symplectic of order (p, q) (Aubry & Chartier 1998). Pseudo-symplectic meth-
ods behave like symplectic methods on time intervals of length O(hp−q).

10. Using the theory of B-series, in particular Theorem VI.7.4, derive the conditions
for the coefficients of a Runge–Kutta method such that it is pseudo-symplectic
of order p(q). Prove that there exist explicit, pseudo-symplectic Runge–Kutta
methods of order (2, 4) with 3 stages.



Chapter XI.
Reversible Perturbation Theory
and Symmetric Integrators

There is a very close similarity between the behaviour of solutions of
reversible systems and that of Hamiltonian ones.

(M.B. Sevryuk 1986, p. 3)

Numerical experiments indicate that symmetric methods applied to integrable and
near-integrable reversible systems share similar properties to symplectic methods
applied to (near-)integrable Hamiltonian systems: linear error growth, long-time
near-conservation of first integrals, existence of invariant tori. The present chap-
ter gives a theoretical explanation of the good long-time behaviour of symmetric
methods. The results and techniques are largely analogous to those of the previous
chapter – the extent of the analogy may indeed be seen as the most surprising feature
of this chapter.

XI.1 Integrable Reversible Systems

We consider a system of differential equations on a domain of R
m × R

n,

u̇ = f(u, v)
v̇ = g(u, v) ,

(1.1)

which is reversible with respect to the involution (u, v) �→ (u,−v): for all (u, v),

f(u,−v) = −f(u, v)
g(u,−v) = g(u, v) .

(1.2)

From Sect. V.1 we recall that the time-t flow ϕt of a reversible system is a reversible
map:

ϕt(u, v) = (û, v̂) implies ϕ−1
t (u,−v) = (û,−v̂) .

A coordinate transform u = µ(x, y), v = ν(x, y) is said to preserve reversibility if
the relations

µ(x,−y) = µ(x, y)
ν(x,−y) = − ν(x, y)

(1.3)

hold for all (x, y). This implies that every reversible system (1.1) written in the new
variables (x, y) is again reversible, and that every reversible map (u, v) �→ (û, v̂)
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expressed in the variables (x, y) again becomes a reversible map (x, y) �→ (x̂, ŷ).
Conversely, (1.3) is necessary for these properties.

For Hamiltonian systems, complete integrability is tied to the existence of a
symplectic transformation to action-angle variables; see Sect. X.1. For reversible
systems, we take the existence of a reversibility-preserving transformation to such
variables as the definition of integrability.

Definition 1.1. The system (1.1) is called an integrable reversible system if, for
every point (u0, v0) ∈ R

m × R
n in the domain of (f, g), there exist a function

ω = (ω1, . . . , ωn) : D → R
n and a diffeomorphism

ψ = (µ, ν) : D × T
n → U ⊂ R

m × R
n : (a, θ) �→ (u, v)

(with D and U open sets in R
m and R

m × R
n, respectively, and (u0, v0) ∈ U ),

which preserves reversibility and transforms the system (1.1) to the form

ȧ = 0

θ̇ = ω(a) .
(1.4)

We speak of a real-analytic integrable reversible system if all the functions appear-
ing in the above definition are real-analytic.

Example 1.2 (Motion in a Central Field). In Examples X.1.2 and X.1.10 we con-
structed action-angle variables via a series of transformations

(
q1, p2

p1, q2

) (X.1.5)
−→

(
r, pϕ

ϕ, pr

) (X.1.6)
−→

(
H,L
y1, y2

) (X.1.15)
−→

(
H,L
θ1, θ2

)
.

It is easily verified that all these transformations preserve reversibility. They trans-
form the reversible system

q̇1 = p1, ṗ2 = −q2V
′(r)/r

q̇2 = p2, ṗ1 = −q1V
′(r)/r

(1.5)

(with r =
√

q2
1 + q2

2) to the form

Ḣ = 0, L̇ = 0

θ̇1 =
2π
T

, θ̇2 =
Φ

T

(1.6)

with T = T (H,L) and Φ = Φ(H,L) given by (X.1.12) and (X.1.13).

As the following result shows, it is not incidental that the above transformations
preserve reversibility.
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Theorem 1.3. In the situation of the Arnold–Liouville theorem, Theorem X.1.6, let
the first integrals F1, . . . , Fd of the completely integrable Hamiltonian system be
such that all Fi are even functions of the second half of the arguments:

Fi(u, v) = Fi(u,−v) (i = 1, . . . , d) . (1.7)

Suppose that ∂F1/∂u, . . . , ∂Fd/∂u are linearly independent everywhere (on⋃
{Mx : x ∈ B}) except possibly on a set that has no interior points. Further,

assume that for every x ∈ B there exists u such that (u, 0) ∈ Mx. Then, the trans-
formation ψ : (a, θ) �→ (u, v) to action-angle variables as given by Theorem X.1.6
preserves reversibility.

Proof. The result follows by tracing the proofs of Lemma X.1.1, Theorem X.1.4
and Theorem X.1.6.

(a) For Fi satisfying (1.7) and at points where the Jacobian matrix ∂F/∂u is
invertible, the construction of the local symplectic transformation � = (F1, . . . , Fd,
G1, . . . , Gd) : (u, v) �→ (x, y) shows that the generating function S(x, v) becomes
odd in v when the integration constant is chosen such that S(x, 0) = 0. By (X.1.4),
this implies that � preserves reversibility. A continuity argument used together with
the essential uniqueness of the transformation � (see Exercise X.3) does away with
the exceptional points where ∂F/∂u is singular.

(b) In Theorem X.1.4, the construction of e(x, y) = ϕy(�−1(x, 0)) =: (u, v) is
such that

e(x,−y) = ϕ−y(�−1(x, 0)) = (u,−v) .

This holds because by assumption the reference point on Mx can be chosen as
�−1(x, 0) = (u0, 0) for some u0, and because ϕ±y is the time ±1 flow of the
Hamiltonian system with Hamiltonian y1F1 + . . . + ydFd. Condition (1.7) implies
that this is a reversible system, which in turn yields that e preserves reversibility as
stated above.

(c) The transformation in the proof of Theorem X.1.6 is of the form a = w(x),
y = W (x)θ (with invertible W (x) = w′(x)) and hence preserves reversibility. 
�
Example 1.4. We now present an example with
one degree of freedom where Theorem 1.3 does
not apply. In fact, all conditions are satisfied
except that for some x there is no u such that
(u, 0) ∈ Mx. We consider the Hamiltonian

H(u, v) = (v2 − 1)2 +
∫ u

0

s(s + 1)4 ds. u

v

Its level sets are shown in the picture to the
right. For energy values such that the level curve
does not intersect the u-axis, Theorem 1.3 does
not apply even though H(u, v) satisfies (1.7).
For these energy values the system is an in-
tegrable Hamiltonian system, but not an inte-
grable reversible system .
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Example 1.5 (Motion in a Central Field, Continued). All the assumptions of
Theorem 1.3 are satisfied for F1 = H , F2 = L = p1q2 − p2q1 if we take the
symplectic coordinates u = (q1, p2) and v = (−p1, q2).

The condition (1.7) is also satisfied with F1 = H , F2 = L2 (L �= 0 as always)
for the choices u = (p1, p2) and v = (q1, q2), or u = (q1, q2) and v = (−p1,−p2).
However, in these situations, Theorem 1.3 cannot be applied, because there does not
exist u such that (u, 0) ∈ Mx.

Example 1.6 (Toda Lattice). Consider the Toda lattice of Sect. X.1.5. The eigen-
values of the matrix L are first integrals in involution. With the symplectic coordi-
nates (u, v) = (q,−p) the Hamiltonian system corresponding to (X.1.17) satisfies
the reversibility conditions (1.2). However, since v1 + . . . + vn is a first integral of
this system, it is not possible to connect (u, v) with (u,−v) on a level set Mx, and
Theorem 1.3 cannot be applied.

Fortunately, as can be seen in Fig. 1.1, the Toda lattice contains many more
symmetries. With periodic boundary conditions it is, for example, ρ-reversible (i.e.,
ρf(y) = −f(ρy), y = (p, q)T , see the discussion in Chap. V) with

ρ =
(

S 0
0 −S

)
S =

(
1

1
1

)
,

where S inverses the components of a vector. To bring the system to the form (1.1)
with a vector field satisfying (1.2), we transform S (and hence ρ) to diagonal form
and collect the variables corresponding to the eigenvalues +1 and −1 in u and v,
respectively (see Exercise 1). This gives the (symplectic) coordinates

uk = 1√
2

(
pk + pn−k+1

)
, un−k+1 = 1√

2

(
qk − qn−k+1

)
,

vk = 1√
2

(
qk + qn−k+1

)
, vn−k+1 = 1√

2

(
pn−k+1 − pk

)
,

(1.8)

for k = 1, . . . , n/2 (if n is even; for odd n = 2� + 1, (1.8) holds for k = 1, . . . , �
and in addition we have u�+1 = p�+1 and v�+1 = q�+1).

In the following we restrict our considerations to the case n = 3, and we show
that all assumptions of Theorem 1.3 are satisfied, so that we have an integrable
reversible system. For n = 3, the new variables are

u1 = 1√
2

(
p1 + p3

)
, u2 = p2, u3 = 1√

2

(
q1 − q3

)
,

v1 = 1√
2

(
q1 + q3

)
, v2 = q2, v3 = 1√

2

(
p3 − p1

)
,

and the expressions ak and bk of Sect. X.1.5 become

a1 = − 1

2
√

2

(
u1 − v3

)
, b1 = 1

2
exp

(
1

2

(
1√
2

(
v1 + u3

)
− v2

))
,

a2 = −1

2
u2, b2 = 1

2
exp

(
1

2

(
v2 −

1√
2

(
v1 − u3

)))
,

a3 = − 1

2
√

2

(
u1 + v3

)
, b3 = 1

2
exp

(
1√
2
u3

)
.
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Fig. 1.1. Three projections of the solution of the Toda lattice equations (n = 3) with initial
values as in Fig. X.1.3

One sees that b21 +b22 and a1b
2
2 +a3b

2
1 are even functions of v, so that all coefficients

of the characteristic polynomial of the matrix L

χ(λ) = −λ3 + (a1 + a2 + a3)λ2 − (a1a2 + a2a3 + a3a1 − b21 − b22 − b23)λ +
(a1a2a3 − a1b

2
2 − a2b

2
3 − a3b

2
1 + 2b1b2b3) .

are even in v. This implies that also the eigenvalues of L are even functions of v, so
that (1.7) is satisfied.

It remains to prove that for fixed x, i.e., for given real eigenvalues of L, the point
(u0, v0) corresponding to p(0), q(0) can be connected with an element of the form
(u, 0) ∈ R

6 without leaving the level set Mx. Equivalently, we have to find such a
path for which the corresponding coefficients of the characteristic polynomial χ(λ)
take given values. For given v(t) this yields a system of three nonlinear equations
for u(t) ∈ R

3. For the eigenvalues corresponding to the initial values p(0), q(0)
used in Fig. X.1.3, we put v(t) = v0t for 1 ≥ t ≥ 0 and we check numerically with
a path-following algorithm that such a connection is possible.

Example 1.7 (Rigid Body Equations on the Unit Sphere). We reconsider an ex-
ample that has accompanied us all the way through Chapters IV, V, and VII.5: the
rigid body equations (IV.1.4), here considered as differential equations on the unit
sphere. We assume I3 < I1, I2 for the inertia, which implies that any solution start-
ing with y3(0) > 0 will have y3(t) > 0 for all t. We consider the equations in the
neighbourhood of such a solution. We can then choose u = y1, v = y2 as coordi-
nates on the upper half-sphere {y2

1 +y2
2 +y2

3 = 1, y3 > 0}. This gives the reversible
system

u̇ = a1v
√

1− u2 − v2

v̇ = a2u
√

1− u2 − v2
(1.9)

with a1 = (I2 − I3)/I2I3 > 0 and a2 = (I3 − I1)/I3I1 < 0, which has H =
u2/I1 + v2/I2 + (1 − u2 − v2)/I3 = a2u

2 − a1v
2 + I−1

3 as an invariant. We
introduce polar coordinates u = r cosϕ, v = r sinϕ and express r as a function of
H and ϕ:
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r =

√
I−1
3 −H

a1 sin2 ϕ− a2 cos2 ϕ
.

This leaves us with differential equations

Ḣ = 0, ϕ̇ = γ(H,ϕ),

where γ is even in ϕ and has no zeros. The time needed to run through an angle ϕ is

τ(H,ϕ) =
∫ ϕ

0

1
γ(H,φ)

dφ , and ω(H) =
2π

τ(H, 2π)

is the frequency. With θ = ω(H)τ(H,ϕ) we then have

Ḣ = 0, θ̇ = ω(H) .

The transformation from (u, v) in the open unit disc (except the origin) to (H, θ) ∈
(0, I−1

3 ) × T is a diffeomorphism that preserves reversibility. This shows that the
rigid body equations (1.9) are an integrable reversible system.

Example 1.8 (Rigid Body Equations in R
3). We now consider the rigid body

equations (IV.1.4) in the ambient space R
3, rather than on the unit sphere. The

system then has the invariants H = y2
1/I1 + y2

2/I2 + y2
3/I3 and K = y2

1 + y2
2 + y2

3 ,
and it is reversible with respect to the partition u = (y1, y3) and v = y2. In the
case I3 < I1, I2 we can again restrict our attention to y3 > 0. We then write
y3 =

√
K − y2

1 − y2
2 and introduce polar coordinates y1 = r cosϕ, y2 = r sinϕ.

As above, we express r as a function of H,K and ϕ (this just requires replacing
I−1
3 with K/I3 in the above formula for r) and we obtain differential equations

Ḣ = 0, K̇ = 0, ϕ̇ = γ(H,K,ϕ)

with γ even in ϕ and without zeros. In the same way as above, this is transformed to

Ḣ = 0, K̇ = 0, θ̇ = ω(H,K) .

The transformation ((y1, y3), y2) �→ ((H,K), θ) preserves reversibility. The rigid
body equations (IV.1.4) are thus an integrable reversible system. Note that this time
the dimensions differ.

XI.2 Transformations in Reversible Perturbation
Theory

We consider perturbations of an integrable reversible system such that the perturbed
system is still reversible. This takes the form
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ȧ = εr(a, θ)

θ̇ = ω(a) + ερ(a, θ)
(2.1)

where ε is a small parameter, and r is an odd function of θ and ρ is an even function
of θ:

r(a,− θ) = − r(a, θ)
ρ(a,− θ) = ρ(a, θ) .

(2.2)

Similar to Sect. X.2 for Hamiltonian perturbation theory, we study coordinate trans-
formations that change (2.1) to reversible systems which – in various ways – look
closer to an integrable system in action-angle variables than (2.1).

XI.2.1 The Basic Scheme of Reversible Perturbation Theory

We look for a transformation between neighbourhoods of {a0} × T
n,

a = b + εs(b, ϕ)
θ = ϕ + εσ(b, ϕ) ,

(2.3)

which preserves reversibility and hence has s even in ϕ and σ odd in ϕ, such that
the transformed system is of the form

ḃ = O(ε2)
ϕ̇ = ω(b) + εµ(b) +O(ε2) .

(2.4)

Inserting (2.3) into (2.1) gives the system
{(

I 0
0 I

)
+ ε

(
∂s/∂b ∂s/∂ϕ
∂σ/∂b ∂σ/∂ϕ

)}(
ḃ
ϕ̇

)
=

(
εr(a, θ)

ω(a) + ερ(a, θ)

)

with (a, θ) from (2.3). Inverting the matrix on the left-hand side and expanding in
powers of ε, it is seen that (2.4) requires that s, σ satisfy the equations

∂s

∂ϕ
(b, ϕ)ω(b) = r(b, ϕ) (2.5)

∂σ

∂ϕ
(b, ϕ)ω(b) = ρ(b, ϕ) + ω′(b) s(b, ϕ)− µ(b) . (2.6)

A necessary condition for the solvability of (2.5) is that the angular average of r
vanishes:

r(b) = 0 , where r(b) =
1

(2π)n

∫

Tn

r(b, ϕ) dϕ . (2.7)

In the Hamiltonian case this condition was satisfied because r was a gradient with
respect to ϕ. Here, in the reversible case, this is satisfied because r is an odd function
of ϕ.
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If (2.7) holds, then (2.5) can be solved by Fourier series expansion in the same
way as we solved (X.2.2), provided that the frequencies ω1(b), . . . , ωn(b) are non-
resonant. Of course, there is again the same problem of small denominators as in the
Hamiltonian case. Equations (2.6) are solved in the same way as (2.5), upon setting

µ(b) = ρ(b) + ω′(b) s(b) . (2.8)

Since r is odd in ϕ, the solution s of (2.5) becomes even in ϕ. It is determined
uniquely only up to a constant: we are still free to choose the angular average s(b).
If ω′(b) has rank n, we may actually choose s(b) such that µ(b) = 0 results from
(2.8). Since the right-hand side of (2.6) is even in ϕ, the solution σ of (2.6) becomes
odd in ϕ if we choose σ(b) = 0.

XI.2.2 Reversible Perturbation Series

The above construction extends to arbitrary finite order in ε. The transformation is
now sought for in the form

a = b + εs1(b, ϕ) + ε2s2(b, ϕ) + . . . + εN−1sN−1(b, ϕ) (2.9)

θ = ϕ + εσ1(b, ϕ) + ε2σ2(b, ϕ) + . . . + εN−1σN−1(b, ϕ) (2.10)

with sj even in ϕ and σj odd in ϕ to preserve reversibility. This transformation is to
be chosen such that the system in the new variables is of the form

ḃ = εNrN (b, ϕ)

ϕ̇ = ωε,N (b) + εNρN (b, ϕ)

with ωε,N (b) = ω(b) + εµ1(b) + . . . + εN−1µN−1(b), and with rN (b, ϕ) odd in ϕ
and ρN (b, ϕ) even in ϕ, and with all these functions bounded independently of ε.

Inserting the transformation into (2.1) and expanding in powers of ε, it is seen
that the functions sj and σj must satisfy equations of the form of (2.5), (2.6):

∂sj

∂ϕ
(b, ϕ)ω(b) = pj(b, ϕ) (2.11)

∂σj

∂ϕ
(b, ϕ)ω(b) = πj(b, ϕ) + ω′(b) sj(b, ϕ)− µj(b) (2.12)

where pj , πj are given by expressions that depend linearly on higher-order deriv-
atives of r, ρ and polynomially on the functions si, σi with i < j and on their
first-order derivatives. Using the rules

(
even odd
odd even

)(
odd
even

)
=

(
odd
even

)

and
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∂ even
∂ϕ

= odd ,
∂ odd
∂ϕ

= even ,

it is found that pj is odd in ϕ and πj is even in ϕ for all j. For non-resonant frequen-
cies ω(b), the equations (2.11), (2.12) can therefore be solved with sj even in ϕ, σj

odd in ϕ. If ω′(b) is invertible, we can obtain µj(b) = 0 for all j.
Beyond these formal calculations, there is the following reversible analogue of

Lemma X.2.1 in the Hamiltonian case. This result is obtained by the same “ultra-
violet cut-off” argument as the earlier result.

Lemma 2.1. Let the right-hand side functions of (2.1) be real-analytic in a neigh-
bourhood of {b∗} × T

n and satisfy (2.2). Suppose that ω(b∗) satisfies the dio-
phantine condition (X.2.4). For any fixed N ≥ 2, there are positive constants
ε0, c, C such that the following holds for ε ≤ ε0: there exists a real-analytic
reversibility-preserving change of coordinates (a, θ) �→ (b, ϕ) such that every so-
lution (b(t), ϕ(t)) of the perturbed system in the new coordinates, starting with
‖b(0)− b∗‖ ≤ c| log ε|−ν−1, satisfies

‖b(t)− b(0)‖ ≤ C t εN for t ≤ ε−N+1 ,

‖ϕ(t)− ωε,N (b(0))t− ϕ(0)‖ ≤ C (t2 + t| log ε|ν+1) εN for t2 ≤ ε−N+1.

Moreover, the transformation is O(ε)-close to the identity: ‖(a, θ) − (b, ϕ)‖ ≤ Cε
holds for (a, θ) and (b, ϕ) related by the above coordinate transform, for ‖b−b∗‖ ≤
c| log ε|−ν−1 and for ϕ in an ε-independent complex neighbourhood of T

n.
The constants ε0, c, C depend on N,n, γ, ν and on bounds of ω, r, ρ on a com-

plex neighbourhood of {b∗} × T
n. 
�

The equations determining the coefficient functions of the perturbation series
are of the form to which Lemma X.4.1 applies. Therefore, that lemma is again the
tool for estimating the terms in the perturbation series, similar to Sect. X.4.1. This
yields a reversible analogue of Theorem X.4.4 showing near-invariance of tori (up
to exponentially small terms in a negative power of ε) over time intervals that are
exponentially large in a negative power of ε, with the same exponents α, β as in
Theorem X.4.4.

XI.2.3 Reversible KAM Theory

For an integrable reversible system, just as for an integrable Hamiltonian system,
the phase space is foliated into invariant tori on which the flow is conditionally
periodic. We fix one such torus {a = a∗, θ ∈ T

n} with diophantine frequencies
ω1, . . . , ωn. For convenience we may assume a∗ = 0 ∈ R

m. This torus is invariant
under the flow of systems of the form ȧ = O(‖a‖2), θ̇ = ω + O(‖a‖), or written
more explicitly,

ȧ = 1
2a

TK(a, θ)a

θ̇ = ω + M(a, θ)a .
(2.13)
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Here, K = [K1, . . . ,Km] where each Ki(a, θ) is a symmetric m × m matrix,
and M(a, θ) is an n × m matrix. The first equation is to be interpreted as ȧi =
1
2a

TKi(a, θ)a for the components i = 1, . . . ,m. Consider now a perturbation of
this system:

ȧ = 1
2a

TK(a, θ)a + εr(a, θ)

θ̇ = ω + M(a, θ)a + ερ(a, θ) .
(2.14)

For the reversible case, i.e., for K and r odd in θ and for M and ρ even in θ,
we construct a sequence of reversibility-preserving transformations in the spirit of
Kolmogorov’s transformation of Sect. X.2.3, which transform (2.14) back to the
form (2.13) in the new variables, showing the persistence of an invariant torus with
frequencies ωi under small reversible perturbations of the system. This holds again
under the diophantine condition (X.2.4) on ω and additionally under the condition
that the angular average M0 of M at a = 0 has rank n. A result of this type –
a reversible KAM theorem – was shown by Moser (1973), Chap. V, in a different
setting. See also Sevryuk (1986) for further results in that direction.

We look for a transformation of the form

a = b + ε
(
s(ϕ) + S(ϕ)b

)

θ = ϕ + εσ(ϕ)
(2.15)

with an m×m matrix S(ϕ). Preserving reversibility requires that s and S are even
functions and σ is odd. Higher-order terms in b play no role and are therefore omitted
from the beginning. We insert this into (2.14) and obtain

ḃ = 1

2
bTK(b, ϕ)b + ε

{
r(0, ϕ)− ∂s

∂ϕ
(ϕ)ω

+
∂r

∂b
(0, ϕ)b− ∂s

∂ϕ
(ϕ)M(0, ϕ)b− ∂

∂ϕ

(
S(ϕ)b

)
ω + s(ϕ)TK(0, ϕ)b

}

+O(ε2) +O(ε‖b‖2)

ϕ̇ = ω + M(b, ϕ)b

+ ε
{
ρ(0, ϕ)− ∂σ

∂ϕ
(ϕ)ω + M(0, ϕ)s(ϕ)

}
+O(ε2) +O(ε‖b‖) .

We require that the terms in curly brackets vanish. This holds if the following equa-
tions are satisfied (the last equation is written component-wise for notational clar-
ity):

∂s

∂ϕ
(ϕ)ω = r(0, ϕ)

∂σ

∂ϕ
(ϕ)ω = ρ(0, ϕ) + M(0, ϕ)s(ϕ) (2.16)

∂Sij

∂ϕ
(ϕ)ω =

∂ri

∂bj
(ϕ)−

∑
k

∂si

∂ϕk
(ϕ)Mkj(0, ϕ) +

∑
k

sk(ϕ)Ki,kj(0, ϕ) .
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Since r is odd in ϕ, the first equation can be solved for s even in ϕ, uniquely up to a
constant, the angular average s. Since the angular average of M is assumed to be of
full rank n, s can be chosen such that the angular average of the right-hand side of
the equation for σ becomes zero. Since the right-hand side is even, the equation can
then be solved uniquely for an odd σ. The equations for S have an odd right-hand
side and can therefore be solved for an even S.

In this way, the perturbation to the form (2.13) is reduced from O(ε) to O(ε2).
By the same arguments as in the Hamiltonian case (see Sect. X.5), the iteration of
this procedure is seen to be convergent. This finally yields a change of coordinates
that preserves reversibility and transforms the perturbed system (2.14) back to the
form (2.13). We summarize this in the following theorem, which is the reversible
analogue of Kolmogorov’s Theorem X.5.1.

Theorem 2.2. Consider a real-analytic reversible system (2.13). Suppose that ω ∈
R

n satisfies the diophantine condition (X.2.4), and that the angular average of
M(0, ·) is an n ×m matrix of rank n. Let (2.14) be a real-analytic reversible per-
turbation of the system (2.13). Then, there exists ε0 > 0 (which depends on the
perturbation functions only through a bound of their norms on a complex neigh-
bourhood of {0} × T

n) such that for every ε with |ε| ≤ ε0, there is a real-analytic
transformation ψε : (b, ϕ) �→ (a, θ), O(ε) close to the identity and depending an-
alytically on ε, which preserves reversibility and puts the perturbed system back to
the form (2.13) in the new variables: ḃ = O(‖b‖2), ϕ̇ = ω+O(‖b‖). The perturbed
system therefore has the invariant torus {b = 0, ϕ ∈ T

n} carrying a quasi-periodic
flow with the same frequencies ω as the unperturbed system. 
�

XI.2.4 Reversible Birkhoff-Type Normalization

We show that, in the situation of diophantine frequencies ω, there is a reversibility-
preserving transformation that takes a reversible system of the form (2.13) to the
form

ḃ = rk(b, ϕ)
ϕ̇ = ω + ζk(b) + ρk(b, ϕ)

with rk, ρk = O(‖b‖k) (2.17)

for arbitrary k ≥ 2, where ζk = ρ1 + . . . + ρk−1 with the bars denoting angular
averages and with ρ1(b, ϕ) = M(b, ϕ)b. This implies again that the invariant torus
is “very sticky”: ‖b(0)‖ ≤ δ implies ‖b(t)‖ ≤ 2δ for t ≤ Ckδ

−k+1. As in the
Hamiltonian case, a suitable choice of k would even yield time intervals exponen-
tially long in a negative power of δ during which solutions stay within twice the
initial distance δ.

The transformation to the normal form (2.17) is constructed recursively. Suppose
that in some variables (a, θ) we have, for some k ≥ 2,

ȧ = rk−1(a, θ)

θ̇ = ω + ζk−1(a) + ρk−1(a, θ)
with rk−1, ρk−1 = O(‖a‖k−1) .
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Note, for k = 2 we have r1 = O(‖a‖2) by (2.13). We search for a transformation

a = b + s(b, ϕ)
θ = ϕ + σ(b, ϕ)

with s, σ = O(‖b‖k−1) ,

(and s = O(‖b‖2) for k = 2) that preserves reversibility, i.e., has s even in ϕ and σ
odd in ϕ, and is such that (2.17) holds. Inserting the transformation into the above
differential equation shows that this is indeed achieved if s, σ solve the following
system of the form (2.5), (2.6):

∂s

∂ϕ
(b, ϕ)ω = rk−1(b, ϕ)

∂σ

∂ϕ
(b, ϕ)ω = ρk−1(b, ϕ) + ζ ′k−1(b) s(b, ϕ)− µk(b) .

Choosing s(b) = 0 leads to µk = ρk−1 and gives (2.17) with ζk = ζk−1 + ρk−1.

XI.3 Linear Error Growth and Near-Preservation
of First Integrals

We now study the error behaviour of reversible methods applied to integrable re-
versible systems. Recall from Theorem V.1.5 that symmetric methods are reversible
under the compatibility condition (V.1.4). We give an analogue of Theorem X.3.1
on the error behaviour of symplectic methods applied to integrable Hamiltonian
systems. We consider an integrable reversible system (1.1) (usually not given in
action-angle variables) and let (u, v) = ψ(a, θ) be the reversibility-preserving trans-
formation to action-angle variables. The inverse transformation is denoted as

(a, θ) = (I(u, v), Θ(u, v)) .

The following is the reversible analogue of Theorem X.3.1.

Theorem 3.1. Consider applying a reversible numerical integrator of order p to the
integrable reversible system (1.1) with real-analytic right-hand side. Suppose that
ω(a∗) satisfies the diophantine condition (X.2.4). Then, there exist positive constants
C, c and h0 such that the following holds for all step sizes h ≤ h0: every numerical
solution starting with ‖I(u0, v0)− a∗‖ ≤ c | log h|−ν−1 satisfies

‖(un, vn)− (u(t), v(t))‖ ≤ C thp

‖I(un, vn)− I(u0, v0)‖ ≤ C hp
for t = nh ≤ h−p. (3.1)

The constants h0, c, C depend on γ, ν of (X.2.4), on the dimensions, on bounds of
the real-analytic functions f, g on a complex neighbourhood of the torus {(u, v) :
I(u, v) = a∗}, and on the numerical method.
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Proof. The proof of Theorem X.3.1 relied on Theorem IX.3.1 and Lemma X.2.1.
Using their reversible analogues Theorem IX.2.3 and Lemma 2.1 with the same
arguments gives the above result for the reversible case. 
�

Remark 3.2. As in the analogous remark for the Hamiltonian case, the error bounds
of Theorem 3.1 also hold when the reversible method is applied to a perturbed in-
tegrable system with a perturbation parameter ε bounded by a positive power of the
step size: ε ≤ Khα for some α > 0.

We consider the Hamiltonian system of Example 1.4 and apply the symmetric
but non-symplectic Lobatto IIIB method with step size h = 0.01. In the left picture
of Fig. 3.1 we choose the initial value (u0, v0) = (0, 1.5) for which the level curve
of the Hamiltonian is symmetric with respect to the u-axis and the system is an inte-
grable reversible system. The good conservation of the Hamiltonian is in agreement
with Theorem 3.1. In the right picture we choose (u0, v0) = (0, 0.3) whose level
curve is the fat line in the picture of Example 1.4 which does not intersect the u-axis.
Since in this situation we do not have an integrable reversible system, Theorem 3.1
cannot be applied and we cannot expect good energy conservation.
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Fig. 3.1. Numerical Hamiltonian of Example 1.4 for two different initial values

For the Toda lattice example, Figures 3.2 and 3.3 illustrate the long-time con-
servation of the first integrals and the linear error growth, respectively, of the Lo-
batto IIIB method.

Theorem 3.1 together with Examples 1.7 and 1.8 also explains the good behav-
iour of symmetric (in fact, reversible) integrators on the rigid body equations which
we observed in Chap. V (Figs. V.4.2 and V.4.6).

Variable Step Sizes: Proportional, Reversible Controllers. As a consequence of
the backward error analysis of Theorem IX.6.1 the statement (3.1) can be extended
straightforwardly to proportional step size controllers as discussed in Sect. VIII.3.1.
Under the assumption of Theorem 3.1 with h and h0 replaced by ε and ε0 one has

‖(un, vn)− (u(tn), v(tn))‖ ≤ C tn εp

‖I(un, vn)− I(u0, v0)‖ ≤ C εp
for tn ≤ ε−p. (3.2)

The grid {tn} is determined by the method and satisfies tn+1 = tn + εs(un, vn, ε).

Variable Step Sizes: Integrating, Reversible Controllers. We apply the backward
error analysis of Theorem IX.6.2. The modified equation (IX.6.14) reduces to
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Fig. 3.2. Numerically obtained eigenvalues (left picture) and errors in the eigenvalues (right
picture) of the 3-stage Lobatto IIIB scheme (step size h = 0.1) applied to the Toda lattice
with the data of Sect. X.1.5
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Fig. 3.3. Euclidean norm of the global error for the 3-stage Lobatto IIIB scheme (step size
h = 0.1) applied to the Toda lattice with n = 3 and initial values as in Fig. 3.2

ẏ = f(y), ż = z G(y) (3.3)

for ε = 0. Since G(y) = −
(
σ(y)

)−1∇σ(y)T f(y) with an analytic step size func-
tion σ(y), the function (y, z) �→ zσ(y) is a first integral of (3.3). Suppose now
that ẏ = f(y) is the integrable reversible system (1.1). This means that there exists
a reversibility preserving diffeomorphism y = ψ(a, θ) transforming the system to
action-angle variables. The diffeomorphism

(
y
z

)
= ψ̂(a,A, θ) =

(
ψ(a, θ)

A
/
σ
(
ψ(a, θ)

)
)

is then also reversibility preserving if σ(u,−v) = σ(u, v), and it transforms (3.3) to

ȧ = 0, Ȧ = 0, θ̇ = ω(a).

If the basic method of the algorithm (IX.6.9) is reversible and if σ(u,−v) = σ(u, v)
holds, the modified equation (IX.6.14) is a reversible perturbation of (3.3). Conse-
quently, Theorem 3.1 yields the statement (3.2) also for integrating step size con-
trollers. Since A := z σ(u, v) is an action variable, we have in addition that

|znσ(un, vn)− z0σ(u0, v0)| ≤ Cε2

for tn ≤ ε−p. Notice that the transformation (2.9) is O(εp)-close to the identity
for the variables a and θ, but only O(ε2)-close for A. This result proves that the
integrating step size controller is as robust as the proportional controller. It also
explains the excellent long-time behaviour observed in Figs. VIII.3.2 and VIII.3.3.
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XI.4 Invariant Tori under Reversible Discretization

In this section we study the question as to how invariant tori of reversible systems
are preserved under discretization of the system by reversible numerical methods.
We give reversible analogues of Theorems X.5.3 and X.6.1.

XI.4.1 Near-Invariant Tori over Exponentially Long Times

We consider a reversible system (1.1) which in suitable coordinates takes the per-
turbed form (2.14). Under the conditions of the reversible KAM theorem, Theo-
rem 2.2, this system has an invariant torus carrying a quasi-periodic flow with fre-
quencies ω for sufficiently small ε. Consider now a reversible numerical integrator
applied to this system. By the same arguments as in Sect. X.5.2, using the reversible
KAM theorem 2.2 in place of Kolmogorov’s Theorem X.5.1, we obtain the fol-
lowing analogue of Theorem X.5.3, which states the existence of a torus such that
numerical solutions starting on this torus remain exponentially close to a quasi-
periodic flow on that torus over exponentially long times in 1/h.

Theorem 4.1. In the above situation, for a reversible numerical method of order p
used with sufficiently small step size h, there is a modified reversible system with an
invariant torus T̃ω carrying a quasi-periodic flow with frequencies ω, O(hp) close
to the invariant torus Tω of the original reversible system, such that the difference
between any numerical solution (un, vn) starting on the torus T̃ω and the solution
(ũ(t), ṽ(t)) of the modified Hamiltonian system with the same starting values re-
mains exponentially small in 1/h over exponentially long times:

‖(un, vn)− (ũ(t), ṽ(t))‖ ≤ Ce−κ/h for t = nh ≤ eκ/h .

The constants C and κ are independent of h, ε (for h, ε sufficiently small) and of the
initial value (u0, v0) ∈ T̃ω. 
�

The case of initial values lying close to, but not on T̃ω, can again be treated by a
reversible analogue of Theorem X.4.7.

XI.4.2 A KAM Theorem for Reversible Near-Identity Maps

To obtain truly invariant tori, we need a discrete analogue of the reversible KAM
theorem, which is derived in this subsection. This result can also be viewed as the
reversible analogue of Theorem X.6.1. It establishes the existence of invariant tori
of reversible integrators, but as in the symplectic case, only for a Cantor set of non-
resonant step sizes.

A map Φ : (a, θ) �→ (â, θ̂) has the invariant torus {a = 0, θ ∈ T
n}, and reduces

on this torus to rotation by hω (h a real parameter and ω ∈ R
n), when it is of the

form (cf. (2.13))
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â = a + 1
2ha

TK(a, θ)a

θ̂ = θ + hω + hM(a, θ)a .
(4.1)

Here, K = [K1, . . . ,Km] where each Ki(a, θ) is a symmetric m ×m matrix, and
M(a, θ) is an n × m matrix. The expression in the first equation is again to be
interpreted as aTKi(a, θ)a for the components i = 1, . . . ,m.

A necessary condition for the above map Φ to be reversible with respect to the
involution (a, θ) �→ (a,− θ) , cf. Definition V.1.2, is seen to be

K(0,− θ) = −K(0, θ − hω)
M(0,− θ) = M(0, θ − hω) .

(4.2)

Consider now a perturbed map

â = a + 1
2ha

TK(a, θ)a + h εr(a, θ)

θ̂ = θ + hω + hM(a, θ)a + h ερ(a, θ)
(4.3)

where r and ρ, which like K and M are assumed real-analytic, might depend ana-
lytically also on h and ε. Reversibility of this map implies, by direct computation,
that in addition to (4.2), the following equations are satisfied up to an error O(hε):

r(0,− θ) = − r(0, θ − hω)
∂r

∂a
(0,− θ) = −∂r

∂a
(0, θ)

ρ(0,− θ) = ρ(0, θ − hω)− hM(0, θ − hω)r(0, θ − hω) .

(4.4)

Similar to Sect. XI.2.3, we construct a reversibility-preserving near-identity trans-
formation of coordinates (a, θ) �→ (b, ϕ) such that the above map Φh,ε in the new
variables is of the form (4.3) with the perturbation terms reduced from O(ε) to
O(ε2). Similar to Sect. X.6.1, this is possible if hω satisfies the diophantine condi-
tion (X.6.3) and if the angular average M0 of M(0, ·) has rank n.

We look for the transformation in the form (2.15). The functions defining this
transformation must satisfy the following equations, cf. (2.16):

s(ϕ + hω)− s(ϕ)
h

= r(0, ϕ)

σ(ϕ + hω)− σ(ϕ)
h

= ρ(0, ϕ) + M(0, ϕ)s(ϕ)

Sij(ϕ + hω)− Sij(ϕ)
h

=
∂ri

∂bj
(ϕ)−

∑
k

∂si

∂ϕk
(ϕ)Mkj(0, ϕ)

+
∑

k

sk(ϕ)Ki,kj(0, ϕ) .

(4.5)

Under the conditions (X.6.3), (X.6.4) these equations can be solved by Fourier ex-
pansion, in the same way as the analogous equations in Sections X.6.1 and XI.2.3,
and the map in the variables (b, ϕ) becomes of the form
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b̂ = b + 1
2hb

TK(b, ϕ)b +O(hε‖b‖2) +O(hε2)
ϕ̂ = ϕ + hω + hM(b, ϕ)b +O(hε‖b‖) +O(hε2) .

(4.6)

We still need to know that the change of variables (a, θ) �→ (b, ϕ) preserves re-
versibility, i.e., that s and S are even functions of ϕ and σ is an odd function of
ϕ. This is indeed a consequence of (4.2) and (4.4). (We may modify r and ρ such
that (4.4) holds exactly, at the expense of introducing additional O(h2ε2) perturba-
tions in (4.3).) Let us show this property for s. The Fourier coefficients sk of s must
satisfy

eik·hω − 1
h

sk = rk .

Since (4.4) implies r−k = −rke
−ik·hω for all k, it follows that s−k = sk, and hence

s is an even function of ϕ. Similarly it is shown that S is even and σ is odd.
In summary, we have found a transformation O(ε) close to the identity, which

transforms the reversible map (4.3) to a reversible map (4.6), thus reducing the per-
turbation terms from O(ε) to O(ε2). The iteration of this procedure can again be
shown to be convergent. This finally yields a transformation to coordinates in terms
of which the perturbed map is back in the form (2.13). In this way we obtain the fol-
lowing discrete analogue of Theorem 2.2 or reversible analogue of Theorem X.6.1.

Theorem 4.2. Consider a real-analytic reversible map Φh,ε of the form (4.3), de-
fined on a neighbourhood of {0} × T

n, with 0 ∈ R
m. Suppose that hω satisfies the

diophantine condition (X.6.3), and that the angular average of M(0, ·) has rank n.
Then, there exists ε0 > 0 such that for every ε with |ε| < ε0, there is a real-analytic
transformation ψh,ε : (b, ϕ) �→ (a, θ), which preserves reversibility and is O(ε)
close to the identity uniformly in h satisfying (X.6.3) and is analytic in ε, such that
ψ−1

h,ε ◦ Φh,ε ◦ ψh,ε : (b, ϕ) �→ (̂b, ϕ̂) is again of the form (4.1): b̂ = b + O(‖b‖2),
ϕ̂ = ϕ+hω+O(‖b‖). The perturbed map Φh,ε therefore has an invariant torus on
which it is conjugate to rotation by hω. 
�

As in the analogous situation of Sect. X.6.2, Theorem 4.2 applies directly, with
ε = hp, to the situation where a reversible numerical method of order p is used
to discretize an integrable reversible system, or more generally, a reversible sys-
tem with a KAM torus with diophantine frequencies ω. Here (4.1) corresponds to
the time-h flow of the reversible system, and (4.3) represents the numerical map.
This establishes the existence of invariant tori for reversible integrators, in perfect
analogy to the symplectic counterpart Theorem X.6.2.

Concerning condition (X.6.3) we refer back to Sect. X.6.3, where it is shown that
this condition is satisfied for a Cantor set of step sizes h if ω satisfies the diophantine
condition (X.2.4).

XI.5 Exercises

1. This exercise shows that reversibility with respect to the particular involution
(u, v) �→ (u,−v) is not as special as it might seem at first glance.
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(a) If the system ẏ = f(y) is ρ-reversible (i.e., f(ρy) = −ρf(y)), then the
transformed system ż = T−1f(Tz) is σ-reversible with σ = T−1ρT .
(b) Every linear involution (ρ2 = I) is similar to a diagonal matrix with en-
tries ±1.

2. Consider the Toda lattice equations with an arbitrary number n of degrees of
freedom and with periodic boundary conditions.
(a) Find all linear involutions ρ for which the system is ρ-reversible.
(b) Study for which ρ the eigenvalues of the matrix L are even functions of v.
(c) Investigate (numerically) the set of initial values for which all the assump-
tions of Theorem 1.3 are satisfied for some involution ρ.
Hint. Generalize the discussion for n = 3 in the Example 1.6.

3. A reversible system of the form

ȧ = 0
θ̇ = ω(a, θ)

with ω an even function of θ ∈ T
n, also has a foliation of invariant tori. Con-

sider reversible perturbations of such systems like in (2.1) and search for a
reversibility-preserving transformation (2.3) that takes the perturbed system to
the form

ḃ = O(ε2)
ϕ̇ = ω(b, ϕ) + εµ(b, ϕ) +O(ε2)

with µ even in ϕ. Write down the partial differential equations that the transfor-
mation must satisfy and discuss (sufficient) conditions for their solvability.

4. The torus {a = 0, θ ∈ T
n} is invariant and carries a conditionally periodic

flow with frequencies ω for reversible systems of the form ȧ = O(‖a‖), θ̇ =
ω+O(‖a‖), which is more general than (2.13) in the differential equation for a.
Discuss the difficulties that arise in trying to transform a reversible perturbation
of such a system back to this form.

5. Apply an arbitrary (non-symmetric) Runge-Kutta method of even order p = 2k
to an integrable reversible system. Prove that under the assumptions of Theo-
rem 3.1 the global error behaves for t = nh like

yn − y(t) = O(thp) +O(t2hp+1),

and the action variables like

I(yn)− I(y0) = O(hp) +O(thp+1).



Chapter XII.
Dissipatively Perturbed Hamiltonian
and Reversible Systems

Symplectic integrators also show a favourable long-time behaviour when they are
applied to non-Hamiltonian perturbations of Hamiltonian systems. The same is true
for symmetric methods applied to non-reversible perturbations of reversible sys-
tems. In this chapter we study the behaviour of numerical integrators when they are
applied to dissipative perturbations of integrable systems, where only one invariant
torus persists under the perturbation and becomes weakly attractive. The simplest
example of such a system is Van der Pol’s equation with small parameter, which has
a single limit cycle in contrast to the infinitely many periodic orbits of the unper-
turbed harmonic oscillator.

XII.1 Numerical Experiments with Van der Pol’s
Equation

One of the first such methods is the method of Van-der-Pol. [...] It should,
however, be noted that in the formulation given by Van-der-Pol, approxi-
mation was effected by simple intuitive reasonings.

(N.N. Bogoliubov & Y.A. Mitropolski 1961, p. 10f.)

Consider Van der Pol’s equation

ṗ = − q + ε(1− q2)p
q̇ = p

(1.1)

with small positive ε, which is a perturbation of the harmonic oscillator. A symplec-
tic change to polar coordinates p =

√
2a cos θ, q =

√
2a sin θ puts the system into

the form

ȧ = ε 2a cos2 θ(1− 2a sin2 θ)
θ̇ = 1 + ε cos θ sin θ(1− 2a sin2 θ) .

Since the angle θ evolves much faster than a, we may expect that the averaged
system, which replaces the right-hand side functions by their angular averages, gives
a good approximation:
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ȧ = ε a(1− 1
2a)

θ̇ = 1 .

Approximating by the averaged equation is the “method of Van-der-Pol” cited
above, and the belief in the long-time validity of such an approximation is the aver-
aging principle. The averaged differential equation for a has an unstable equilibrium
at zero, and an asymptotically stable equilibrium at a∗ = 2. The averaged system
therefore has the circle {a∗ = 2, θ ∈ R mod 2π} as an attractive limit cycle. This
suggests that the original Van der Pol equation has a nearby limit cycle, which is
indeed the case.

Following the numerical experiment of Hairer & Lubich (1999), we solve the
equation (1.1) with two initial values, (p0, q0) = (0, 1.3) and (p0, q0) = (0, 2.7),
and with three numerical methods: the non-symplectic explicit and implicit Euler
methods, and the symplectic Euler method. All of them have order 1. The numerical
results are displayed in Fig. 1.1. For large step sizes (compared to the perturbation
parameter ε), the non-symplectic methods give a completely wrong numerical so-
lution, whereas that of the symplectic method is qualitatively correct. For smaller
step sizes, the numerical solutions of the non-symplectic methods also show a limit
cycle.

For the moment we explain these observations by “simple intuitive reasonings”,
that is, by the averaging principle and formal backward error analysis. The rigorous
treatment is developed in the course of this chapter in a more general framework of
perturbed integrable systems.

For a differential equation

ẏ = f(y) + εg(y) ,

the numerical solution yn obtained by the explicit Euler method is the (formally)
exact solution of a modified differential equation

˙̃y = f(ỹ) + εg(ỹ)− 1
2hf

′(ỹ)f(ỹ) +O(h2 + εh) .

For the Van der Pol equation in the above coordinates, the averaged modified equa-
tion becomes

˙̃a = hã + εã(1− 1
2 ã) + . . .

which has approximately ã = 2 + 2h/ε as an equilibrium. Hence, the limit cy-
cle of the numerical solution of the explicit Euler method has approximate radius
2
√

1 + h/ε (Fig. 1.1) which is far from the correct value unless h # ε.
The implicit Euler discretization is adjoint to the explicit Euler method. There-

fore, its modified differential equation is as above with h replaced by −h. In this
case, the radius of the limit cycle is approximately 2

√
1− h/ε (for h < ε), which

again agrees very well with the pictures of Fig. 1.1.
For the symplectic Euler method, the modified differential equation for Van der

Pol’s equation is



XII.1 Numerical Experiments with Van der Pol’s Equation 457

−2 −1 1 2

−2

−1

1

2

−2 −1 1 2

−2

−1

1

2

−2 −1 1 2

−2

−1

1

2

−2 −1 1 2

−2

−1

1

2

−2 −1 1 2

−2

−1

1

2

−2 −1 1 2

−2

−1

1

2

−2 −1 1 2

−2

−1

1

2

−2 −1 1 2

−2

−1

1

2

−2 −1 1 2

−2

−1

1

2

implicit Euler, h = 0.15 symplectic Euler, h = 0.15 explicit Euler, h = 0.15

implicit Euler, h = 0.05 symplectic Euler, h = 0.05 explicit Euler, h = 0.05
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Fig. 1.1. Numerical experiments with Van der Pol’s equation (1.1), ε = 0.05

˙̃p = −q̃ + ε(1− q̃2)p̃ + 1
2h p̃ + O(h2 + εh)

˙̃q = p̃− 1
2h q̃ + O(h2 + εh).

Here, the modified differential equation for the unperturbed harmonic oscillator is
Hamiltonian (Theorem IX.3.1), and so all ε-independent terms in the averaged mod-
ified equation vanish: ∫ 2π

0

∂Hj

∂θ
(a, θ) dθ = 0.

Therefore, the radius of the limit cycle is of size 2 + O(h) in accordance with
Fig. 1.1.
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XII.2 Averaging Transformations

Le problème des oscillations non linéaires a actuellement une grande
importance dans les domaines les plus divers de la technique et de la
physique. Parmi les méthodes analytiques d’étude des oscillations non
linéaires, la méthode asymptotique de développement en série par rap-
port à un paramètre petit est particulièrement efficace. Toute une série
de monographies publiées en 1930–1938 par N. Krylov et N. Bogo-
lioubov tant en russe qu’en français ont été consacrées à cette ques-
tion, malheureusement ces ouvrages sont devenus aujourd’hui des raretés
bibliographiques. Par ailleurs les méthodes exposées ont été largement
développées depuis.
(N. Bogolioubov & I. Mitropolski 1962, préface à la traduction française)

In this section we consider rather general perturbations of integrable systems. We
study transformations that eliminate the dependence on the angles in the pertur-
bation functions, up to arbitrary powers of the small perturbation parameter. The
construction and properties of these “averaging ” transformations are obtained by a
slight extension of the arguments in Sections X.2 and XI.2.

XII.2.1 The Basic Scheme of Averaging

As in Sections X.2.1 and XI.2.1, we consider perturbations of an integrable system
written in action-angle variables:

ȧ = ε r(a, θ)

θ̇ = ω(a) + ε ρ(a, θ)
(2.1)

where ε is a small parameter and r, ρ are real-analytic in a neighbourhood of {a∗}×
T

d. Unlike the situation of the previous chapters, we do not impose conditions that
make the angular average

r(a) =
1

(2π)d

∫

Td

r(a, θ) dθ (2.2)

vanish identically. We look for a transformation to new variables (b, ϕ), of the form

a = b + εs(b, ϕ)
θ = ϕ + εσ(b, ϕ) ,

(2.3)

which eliminates the dependence on the angles in the O(ε) terms of (2.1):

ḃ = εm(b) +O(ε2)
ϕ̇ = ω(b) + ε µ(b) +O(ε2) .

(2.4)

This is just a minor modification of the problem in Sect. XI.2.1. The equations that
s and σ must satisfy, differ from (XI.2.5) and (XI.2.6) only in that the right-hand
side r(b, ϕ) of (XI.2.5) is replaced by r(b, ϕ)−m(b), viz.,
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∂s

∂ϕ
(b, ϕ)ω(b) = r(b, ϕ)−m(b) (2.5)

∂σ

∂ϕ
(b, ϕ)ω(b) = ρ(b, ϕ) + ω′(b) s(b, ϕ)− µ(b) . (2.6)

Necessary conditions for solvability are now

m(b) = r(b) , µ(b) = ρ(b) , (2.7)

where the second equation corresponds to the choice s(b) = 0. In other words, the
leading terms in (2.4) are the angular averages of the perturbations in (2.1).

The equations (2.5), (2.6) are solvable for b = b∗ if ω(b∗) satisfies the dio-
phantine condition (X.2.4). The “ultraviolet cutoff” argument of the proof of Lem-
ma X.2.1 then shows that (2.4) holds uniformly as long as the solution remains in
the ball ‖b−b∗‖ ≤ c| log ε|−ν−1, with a sufficiently small constant c. This may hold
over a very long time interval if the equation ḃ = εm(b) has a stable equilibrium in
that ball.

XII.2.2 Perturbation Series

As in Sections X.2.2 and XI.2.2, the above construction extends to arbitrary finite
order in ε. A transformation of the form (XI.2.9), which eliminates the angles in all
terms up to order εN−1, is sought for:

ḃ = εm1(b) + ε2m2(b) + . . . + εN−1mN−1(b) + εNrN (b, ϕ)
ϕ̇ = ω(b) + εµ1(b) + ε2µ2(b) + . . . + εN−1µN−1(b) + εNρN (b, ϕ) .

(2.8)

The equations determining the transformation are a slight modification of (XI.2.11)
and (XI.2.12): on the right-hand side of (XI.2.11), pj(b, ϕ) is replaced by the differ-
ence pj(b, ϕ)−mj(b), with mj(b) = pj(b). We then have the following variant of
Lemmas X.2.1 and XI.2.1.

Lemma 2.1. Let the right-hand side functions of (2.1) be real-analytic in a neigh-
bourhood of {b∗} × T

d. Suppose that ω(b∗) satisfies the diophantine condition
(X.2.4) with exponent ν. For any fixed N ≥ 2, there are positive constants ε0, c, C
such that the following holds for |ε| ≤ ε0: there exists a real-analytic change of
coordinates (a, θ) �→ (b, ϕ) which transforms (2.1) to (2.8) with

‖mj(b)‖ ≤ C/δj−1 , ‖µj(b)‖ ≤ C/δj−1

‖rN (b, ϕ)‖ ≤ C/δN−1 , ‖ρN (b, ϕ)‖ ≤ C/δN−1
for ‖b− b∗‖ ≤ δ ,

where
δ = c| log ε|−ν−1 . (2.9)

Moreover, the transformation is O(ε)-close to the identity: ‖(a, θ) − (b, ϕ)‖ ≤ Cε
holds for (a, θ) and (b, ϕ) related by the above coordinate transform, for ‖b−b∗‖ ≤
δ and for ϕ in an ε-independent complex neighbourhood of T

d.
The constants ε0, c, C depend on N, d, γ, ν and on bounds of ω, r, ρ on a com-

plex neighbourhood of {b∗} × T
d.
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Proof. The proof uses again the ultraviolet cutoff argument of the proof of Lem-
ma X.2.1. This makes all the functions si, σi,mi, µi real-analytic in b for ‖b−b∗‖ ≤
2δ and of ϕ in an ε-independent complex neighbourhood of T

d. The powers of δ in
the denominators of the estimates come from the presence of terms ∂sj/∂b, ∂σj/∂b
in pi(b, ϕ) and πi(b, ϕ) of (XI.2.11) and (XI.2.12) and from Cauchy’s estimates
applied to sj , σj on ‖b− b∗‖ ≤ 2δ. 
�

XII.3 Attractive Invariant Manifolds

Theorems on invariant manifolds for maps have been proved many times
for many different settings. The first results were obtained by Hadamard
(1901) and Perron (1929). [...] Our aim was to derive a global invariant
manifold result with conditions that are easy to verify for the applications
in mind. (K. Nipp & D. Stoffer 1992)

In this section we give results on the existence and properties of attractive invari-
ant manifolds of maps, with a very explicit handling of constants. These results are
due to Kirchgraber, Lasagni, Nipp & Stoffer (1991) and Nipp & Stoffer (1992).
They will allow us to understand the weakly attractive closed curves that we ob-
served in Sect. XII.1. Beyond that particular example, these results are extremely
useful for studying the long-time behaviour of numerical discretizations in a great
variety of applications; see Nipp & Stoffer (1995, 1996) and Lubich (2001) and
references therein, and also Stuart & Humphries (1996) for a related invariant man-
ifold theorem and its use in analyzing the dynamics of numerical integrators for
non-conservative problems.

Consider a map Φ : X × Y → X × Y defined on the Cartesian product of a
Banach space X and a closed bounded subset Y of another Banach space. We write
Φ(x, y) = (x̂, ŷ) with

x̂ = x + f(x, y)
ŷ = g(x, y) .

(3.1)

We assume that f and g are Lipschitz bounded, with Lipschitz constants Lxx, Lxy

and Lyx, Lyy with respect to x, y. If these Lipschitz constants are sufficiently small,
then the map Φ has an attractive invariant manifold. More precisely, there is the fol-
lowing result, stated without proof by Kirchgraber, Lasagni, Nipp & Stoffer (1991)
and proved in a more general setting by Nipp & Stoffer (1992).

Theorem 3.1. In the above situation, if

Lxx + Lyy + 2
√

LxyLyx < 1 , (3.2)

then there exists a function s : X → Y , which is Lipschitz bounded with the constant
λ = 2Lyx/(1− Lxx − Lyy), such that

M = {(x, s(x)) : x ∈ X} is invariant under Φ.
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M attracts orbits of Φ with the attractivity factor ρ = λLxy + Lyy < 1, that is,
‖ŷ − s(x̂)‖ ≤ ρ ‖y − s(x)‖ holds for all (x, y) ∈ X × Y .

Proof. (a) We search for a function s : X → Y such that for (x̂, ŷ) = Φ(x, y), the
relation y = s(x) implies also ŷ = s(x̂). For an arbitrary function σ : X → Y ,
we first study which relation holds between x̂ and ŷ if y = σ(x). To write ŷ as
a function of x̂, we need a bijective correspondence between x and x̂ via the first
equation of (3.1). By the Banach fixed-point theorem, the equation

x̂ = x + f(x, σ(x)) has a unique solution x = uσ(x̂)

for every x̂ ∈ X if x �→ f(x, σ(x)) is a contraction. This is the case if σ has the
Lipschitz constant λ and

Lxx + Lxyλ < 1 . (3.3)

We then obtain ŷ = σ̂(x̂) from the following scheme:

x = uσ(x̂) ←− x̂
(σ

y = σ(x) −→ ŷ = g(x, y)

That is, we set ŷ = σ̂(x̂) = g(uσ(x̂), σ(uσ(x̂))). By construction, (x̂, ŷ) = Φ(x, y).
Under condition (3.3), the function uσ : X → X is Lipschitz bounded by µ =
1/(1− Lxx − Lxyλ). Consequently, the function σ̂ : X → Y is Lipschitz bounded
by (Lyx +Lyyλ)µ. The condition that the transformed function σ̂ is again Lipschitz
bounded by the same λ as σ, therefore reads

Lyx + Lyyλ

1− Lxx − Lxyλ
≤ λ , (3.4)

or equivalently,
Lxyλ

2 − (1− Lxx − Lyy)λ + Lyx ≤ 0 .

Under condition (3.2), there exists a non-empty real interval of values λ satisfying
this quadratic inequality. In particular, (3.4) then holds for

λ =
2Lyx

1− Lxx − Lyy
. (3.5)

(This is close to the smallest possible value of λ if 2
√

LxyLyx # 1− Lxx − Lyy .)
It is easily checked that (3.2) and (3.5) imply (3.3).

Under conditions (3.3) and (3.4), the transformation H : σ �→ σ̂, which is called
a Hadamard graph transform, maps the set of functions

S = {σ : X → Y | σ is Lipschitz bounded by λ}

into itself, i.e.,
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H : S → S : σ �→ σ̂ .

S is a closed subset of C(X,Y ), the Banach space of continuous functions from
X to the bounded closed set Y , equipped with the supremum norm ‖σ‖∞ =
supx∈X ‖σ(x)‖. If H is a contraction, then the Banach fixed-point theorem tells
us that there is a unique function s ∈ S with ŝ = s. By construction, this
means that if (x̂, ŷ) = Φ(x, y) and y = s(x), then also ŷ = s(x̂). The graph
M = {(x, s(x)) : x ∈ X} is then an invariant manifold for the map Φ.

(b) We now show that H is already a contraction under condition (3.2). Let
σ0, σ1 be two arbitrary functions in S, and x̂ ∈ X . With xi = uσi

(x̂),

‖Hσ1(x̂)−Hσ0(x̂)‖ = ‖g(x1, σ1(x1))− g(x0, σ0(x0))‖
≤ ‖g(x1, σ1(x1))− g(x1, σ0(x1))‖+ ‖g(x1, σ0(x1))− g(x0, σ0(x0))‖
≤ Lyy ‖σ1 − σ0‖∞ + (Lyx + Lyyλ) ‖x1 − x0‖ .

By definition, x̂ = xi + f(xi, σi(xi)) for i = 0, 1. Subtracting these two equations
yields similarly

‖x1 − x0‖ ≤ ‖f(x1, σ1(x1))− f(x0, σ0(x0))‖
≤ ‖f(x1, σ1(x1))− f(x1, σ0(x1))‖+ ‖f(x1, σ0(x1))− f(x0, σ0(x0))‖
≤ Lxy ‖σ1 − σ0‖∞ + (Lxx + Lxyλ) ‖x1 − x0‖ .

Hence,

‖x1 − x0‖ ≤
Lxy

1− Lxx − Lxyλ
‖σ1 − σ0‖∞ .

Combining both inequalities and recalling (3.4), we obtain

‖Hσ1 −Hσ0‖∞ ≤ (Lyy + λLxy) ‖σ1 − σ0‖∞ .

Since the inequality
Lyy + λLxy < 1 (3.6)

is satisfied by the λ of (3.5) under condition (3.2), H is indeed a contraction.
(c) It remains to show that the invariant manifold M is attractive. With (x̂, ŷ) =

Φ(x, y), we write

ŷ − s(x̂) = g(x, y)− s(x + f(x, y))

=
(
g(x, y)− g(x, s(x))

)
+

(
s(x + f(x, s(x)))− s(x + f(x, y))

)
.

Here we used the identity

s(x + f(x, s(x))) = ŝ(x + f(x, s(x))) = g(x, s(x)) ,

which holds because ŝ = s and by construction of the Hadamard transform. It
follows that

‖ŷ − s(x̂)‖ ≤ (Lyy + λLxy) ‖y − s(x)‖ ,

which together with (3.6) yields the result. 
�
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Next we study the effect of a perturbation of the map on the invariant manifold.

Theorem 3.2. Consider maps Φ0, Φ1 : X × Y → X × Y both of which satisfy the
conditions of Theorem 3.1 with the same Lipschitz constants Lxx, Lxy, Lyx, Lyy .
Let s0 and s1 be the functions defining the attractive invariant manifolds M0 and
M1, respectively. If the bound

‖Φ1(x, y)− Φ0(x, y)‖ ≤ δ for (x, y) ∈M0

holds in the norm ‖(x, y)‖ = λ ‖x‖+ ‖y‖ on X × Y , then

‖s1(x)− s0(x)‖ ≤ δ

1− ρ
for x ∈ X .

(Here λ and ρ are defined as in Theorem 3.1.)

Proof. The proof is similar to part (b) of the previous proof. Let x̂ ∈ X . For i =
0, 1, we have si(x̂) = gi(xi, si(xi)) with xi defined by the equation x̂ = xi +
fi(xi, si(xi)). We estimate

‖s1(x̂)− s0(x̂)‖ ≤ ‖g1(x1, s1(x1))− g1(x1, s0(x1))‖
+ ‖g1(x1, s0(x1))− g1(x0, s0(x0))‖
+ ‖g1(x0, s0(x0))− g0(x0, s0(x0))‖
≤ Lyy‖s1 − s0‖∞ + (Lyx + Lyyλ) ‖x1 − x0‖
+ ‖g1(x0, s0(x0))− g0(x0, s0(x0))‖

and in the same way

‖x1 − x0‖ ≤ ‖f1(x1, s1(x1))− f1(x1, s0(x1))‖
+ ‖f1(x1, s0(x1))− f1(x0, s0(x0))‖
+ ‖f1(x0, s0(x0))− f0(x0, s0(x0))‖
≤ Lxy‖s1 − s0‖∞ + (Lxx + Lxyλ) ‖x1 − x0‖
+ ‖f1(x0, s0(x0))− f0(x0, s0(x0))‖ .

Inserting the second bound into the first one and using (3.4) and the assumed bound
on Φ1 − Φ0 gives

‖s1 − s0‖∞ ≤ (Lyy + λLxy) ‖s1 − s0‖∞ + δ ,

which implies the result. 
�



464 XII. Dissipatively Perturbed Hamiltonian and Reversible Systems

XII.4 Weakly Attractive Invariant Tori of Perturbed
Integrable Systems

We assume that the perturbation is dissipative such that one torus persists
under the perturbation and gets attractive.

Our analysis is done by the method of averaging. The problem of this sec-
tion is classical, see e.g. Bogoliubov & Mitropolski (1961), Kirchgraber
& Stiefel (1978). (D. Stoffer 1998)

In the example of the Van der Pol equation, we have seen that only one of the peri-
odic orbits of the harmonic oscillator persists under the small nonlinear perturbation
and becomes an attractive limit cycle. More generally, we consider perturbations of
integrable systems

ȧ = ε r(a, θ)

θ̇ = ω(a) + ε ρ(a, θ)
(4.1)

where (locally) just one invariant torus survives the perturbation and attracts nearby
solutions. Using the results of the two previous sections, it will be shown that this
situation occurs if, at some point a∗ where the frequencies ωi(a∗) are diophantine,
the angular average r(a∗) is small and its Jacobian matrix

A = r ′(a∗)

has all eigenvalues with negative real part.
The following theorem is a slight modification of a result of Stoffer (1998). Early

versions of it are much older; see the citations above. The origins of the problem can
be traced back to the work of Van der Pol (1927) and Krylov & Bogoliubov (1934).

Here we assume the following: ω(a∗) satisfies the diophantine condition (X.2.4)
with exponent ν. The perturbation functions r(a, θ) and ρ(a, θ) are real-analytic
on a fixed complex neighbourhood of {a∗} × T

d and bounded independently of ε
(though they may depend on ε). In some norm ‖ · ‖ on R

d and its induced matrix
norm, the bounds

‖r(a∗)‖ ≤ C| log ε|−2(ν+1) (4.2)

‖etA‖ ≤ e−tα for t > 0 (4.3)

hold with some constants C and α > 0.

Theorem 4.1. Under the above conditions, for sufficiently small ε > 0, the system
(4.1) has an invariant torus Tε which attracts anO(| log ε|−ν−1)-neighbourhood of
{a∗} × T

d with an exponential rate proportional to ε.

Proof. The proof combines Lemma 2.1 and Theorem 3.1. For convenience we as-
sume a∗ = 0 in the following. Lemma 2.1 (with N = 3) gives us a change of
coordinates (a, θ) �→ (b, ϕ), O(ε)-close to the identity, such that for ‖b‖ ≤ δ with
δ = c| log ε|−ν−1 of (2.9),
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ḃ = εm1(b) + ε2m2(b) +O(ε3/δ2)
ϕ̇ = ω(b) + εµ1(b) + ε2µ2(b) +O(ε3/δ2) .

(4.4)

Since m1(b) = r(b) = Ab +O(δ2) by (4.2), this system is of the form

ḃ = εAb +O(εδ2)

ϕ̇ = ω(b) +O(ε) .

Similarly, the corresponding variational equation is of the form
(

Ḃ
Φ̇

)
=

(
εA +O(εδ) O(ε3/δ2)

O(1) O(ε3/δ2)

)(
B
Φ

)
.

These relations and condition (4.3) imply that, for sufficiently small ε and for any
fixed τ > 0, the time-τ flow of (4.1) maps the strip D = {(b, ϕ) : ‖b‖ ≤ 1

2δ, ϕ ∈
T

d} into itself, and the following bounds hold for the derivatives of the solution with
respect to the initial values:

∥∥∥∥
∂b(τ)
∂b(0)

∥∥∥∥ ≤ Lbb = e−τεα +O(εδ) ,

∥∥∥∥
∂b(τ)
∂ϕ(0)

∥∥∥∥ ≤ Lbϕ = O(ε3/δ2)
∥∥∥∥
∂ϕ(τ)
∂b(0)

∥∥∥∥ ≤ Lϕb = O(1) ,

∥∥∥∥
∂ϕ(τ)
∂ϕ(0)

− I

∥∥∥∥ ≤ Lϕϕ = O(ε3/δ2) .

(4.5)

Hence, for sufficiently small ε,

Lϕϕ + Lbb + 2
√

LϕbLbϕ ≤ e−τεα/2 < 1 .

Theorem 3.1 (and Exercise 1) used with ϕ, b in the roles of x, y now shows that the
time-τ flow has an attractive invariant torus {(s(ϕ), ϕ) : ϕ ∈ T

d}, where s : T
d →

{‖b‖ ≤ 1
2δ} is Lipschitz bounded by λ = 2Lbϕ/(1 − Lϕϕ − Lbb) = O(ε3/δ2).

This invariant torus attracts orbits of the time-τ flow map in the strip D with the
attractivity factor λLϕb +Lbb ≤ e−τεα/2. As Exercise 2 shows, the torus is actually
invariant for the differential equation (4.1). 
�

XII.5 Weakly Attractive Invariant Tori of Numerical
Integrators

Does the attractive invariant torus of Theorem 4.1 persist under numerical discretiza-
tion of the perturbed integrable system? This question was first studied by Stoffer
(1998) who worked directly with the discrete equations in his analysis. Here we take
up the approach of Hairer & Lubich (1999) where the problem was studied by com-
bining backward error analysis and perturbation theory, similar to what was done in
the two preceding chapters.
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XII.5.1 Modified Equations of Perturbed Differential Equations

Below we need to use backward error analysis for the numerical solution of a per-
turbed differential equation

ẏ = f(y) + εg(y, ε) , y(0) = y0 (5.1)

with real-analytic functions f and g and small parameter ε. We consider applying a
one-step method y1 = Φε

h(y0) of order p ≥ 1 with step size h > 0. The associated
modified differential equations constructed in Chap. IX are then of the form

˙̃y = f̃(ỹ) + εg̃(ỹ, ε) , ỹ(0) = y0 (5.2)

with suitably truncated series

f̃(y) = f(y) + hpfp+1(y) + . . . + hN−1fN (y)
g̃(y, ε) = g(y, ε) + hpgp+1(y, ε) + . . . + hN−1gN (y, ε) , (5.3)

where the functions fj are independent of ε, h,N , whereas the functions gj are
allowed to depend on ε. The following adapts Theorem IX.7.6 to the above situation.

Theorem 5.1. Let f(y) + εg(y, ε) be real-analytic (in y and ε) and bounded by M
for y ∈ B2R(y0) and for all complex ε with |ε| ≤ ε0. Let the coefficients of the
Taylor series (in h) of the numerical method be analytic in BR(y0) with bounds
(IX.7.5) for |ε| ≤ ε0. Then, there exists h0 > 0 (proportional to R/M ), such that
for h ≤ h0/4 and for N = N(h) the largest integer with hN ≤ h0, the difference
between the numerical solution y1 = Φ ε

h(y0) and the exact solution ϕ̃ ε
N,t(y0) of the

truncated modified equation (5.2)-(5.3) satisfies

‖Φε
h(y0)− ϕ̃ε

N,h(y0)‖ ≤ Che−h0/h.

The functions f̃ and g̃ of (5.3) are real-analytic in BR(y0) with

‖f̃(y)− f(y)‖ ≤ Chp , ‖g̃(y, ε)− g(y, ε)‖ ≤ Chp

for y ∈ BR/2(y0) and |ε| ≤ ε0. The constants C are independent of h ≤ h0/4 and
|ε| ≤ ε0.

Proof. The exponentially small estimate for Φ ε
h(y0) − ϕ̃ ε

N,h(y0) is that of Theo-

rem IX.7.6 applied to the differential equation (5.1). The O(hp) bound for f̃(y) −
f(y) is the estimate (IX.7.14) applied to ẏ = f(y). By applying that estimate to
(5.1), a bound of the same type is obtained for (f̃(y) + εg̃(y, ε))− (f(y) + εg(y)),
uniformly for all complex ε in the complex disk |ε| ≤ ε0. For any fixed y ∈
BR/2(y0), the difference

g̃(y, ε)− g(y, ε) =
1
ε

(
[(f̃(y) + εg̃(y, ε))− (f(y) + εg(y, ε))]− [f̃(y)− f(y)]

)

is an analytic function of ε in the complex disk |ε| ≤ ε0, which is bounded byO(hp)
for |ε| = ε0. By the maximum principle, the same bound then holds for |ε| ≤ ε0. 
�
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XII.5.2 Symplectic Methods

We apply a symplectic integrator with step size h to a real-analytic perturbed inte-
grable Hamiltonian system in coordinates (p, q),

ṗ = −∂H

∂q
(p, q) + εk(p, q)

q̇ =
∂H

∂p
(p, q) + ε�(p, q) .

(5.4)

We assume that the unperturbed system (ε = 0) is a completely integrable sys-
tem which satisfies the conditions of the Arnold–Liouville theorem, Theorem X.1.6.
Hence, there exists a transformation to action-angle variables for the

integrable system : (p, q) �→ (a, θ) by Theorem X.1.6.

This change of coordinates transforms the integrable system to the equations ȧ = 0,
θ̇ = ω(a), and it transforms (5.4) to a system (4.1), for which we assume (4.2), (4.3)
and the diophantine condition (X.2.4) with exponent ν for ω(a∗). The following
theorem is a variant of results in Stoffer (1998) and Hairer & Lubich (1999). It
shows that for symplectic methods, the invariant torus persists under a very mild
restriction on the step size. For non-symplectic methods, this would require step
sizes h with hp # ε (see Exercise 5).

Theorem 5.2. Let a symplectic numerical integrator of order p be applied to a per-
turbed integrable Hamiltonian system (5.4) which satisfies the conditions stated
above. Then, there exist ε0 > 0 and c0 > 0 such that, for 0 < ε ≤ ε0 and for
step sizes h > 0 satisfying

hp ≤ c0 | log ε|−κ (5.5)

with κ = max(ν + d + 1, p), the numerical method has an attractive invariant
torus Tε,h. This torus is O(hp) close to the invariant torus Tε of (5.4). It attracts an
O(| log ε|−2κ) neighbourhood with an exponential rate proportional to ε, uniformly
in h.

Remark 5.3. The exponent ν+d+1 comes from Lemma X.4.1. It could be reduced
to ν + 1 by using Rüssmann’s estimates in place of that lemma; cf. the remark after
Lemma X.4.1.

Proof of Theorem 5.2. The proof combines backward error analysis (Theorem
IX.3.1 and Theorem 5.1), perturbation theory (Theorem X.4.4 and Lemma 2.1),
and the invariant manifold theorem (Theorem 3.1).

(a) We begin by considering the symplectic method applied to the integrable
Hamiltonian system (5.4) with ε = 0. This leads us back to the questions of Chap. X.
We use backward error analysis and recall (Theorem IX.3.1) that the modified equa-
tion is again Hamiltonian and an O(hp) perturbation of the integrable system, both
in the (p, q) and the (a, θ) variables. We transform variables for the
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modified equation of the integrable system : (a, θ) �→ (ã, θ̃) by Theorem X.4.4,

with hp in the role of the perturbation parameter. By (X.4.1) with N proportional to
| log ε|, and by condition (5.5) with a sufficiently small c0, the modified equations
in these variables become

˙̃a = O(ε3)
˙̃
θ = ω̃(ã) +O(ε3)

for ‖ã− a∗‖ ≤ c∗| log ε|−2κ ,

with ω̃(ã) = ω(ã) + O(hp) . Moreover, the transformation (a, θ) �→ (ã, θ̃) is
O(hp) close to the identity.

(b) The modified equations of the perturbed system, written in the (ã, θ̃) vari-
ables, become

˙̃a = εr̃(ã, θ̃) +O(ε3)
˙̃
θ = ω̃(ã) + ερ̃(ã, θ̃) +O(ε3)

for ‖ã− a∗‖ ≤ c∗| log ε|−2κ , (5.6)

where r̃(ã, θ̃) = r(ã, θ̃) + O(hp) and ρ̃(ã, θ̃) = ρ(ã, θ̃) + O(hp) by Theorem 5.1.
Consider now these equations with the O(ε3) terms dropped. We change variables
for the

modified equation of the perturbed system : (ã, θ̃) �→ (̃b, ϕ̃) by Lemma 2.1.

(Note Exercise 4 with ω̃(a∗) = ω(a∗) + O(hp) and (5.5).) The system (5.6) is
transformed to the form of (4.4),

˙̃
b = εm̃(̃b) +O(ε3/δ2)
˙̃ϕ = ω̃(̃b) + εµ̃(̃b) +O(ε3/δ2)

(5.7)

with δ = c∗| log ε|−2κ, and where m̃(̃b) = r̃(̃b)+O(ε/δ) = r(̃b)+O(hp)+O(ε/δ),
and also the Jacobian of m̃ at a∗ is close to that of r, so that it satisfies again (4.3),
at least with α replaced by α/2. In the same way as in the proof of Theorem 4.1 and
with the same Lipschitz constants as in (4.5), we now obtain an attractive invariant
torus of the modified equation of the perturbed system. The time-h flow of this
equation is an exponentially small (in 1/h) Lipschitz perturbation of the numerical
one-step map, so that under condition (5.5) it is an O(ε3) perturbation. Therefore,
Theorem 3.1 yields an invariant torus Tε,h of the numerical method.

(c) It remains to bound the distance between the tori Tε,h and Tε. We recall that
Tε was obtained by a transformation of the

perturbed system : (a, θ) �→ (b, ϕ) by Lemma 2.1,

which puts (4.1) into the form (4.4). We thus have the transformations
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(a, θ)
ε
−→ (b, ϕ)

hp

(
(ã, θ̃)

ε
−→ (̃b, ϕ̃)

where the symbols hp and ε indicate that the transformation is O(hp) or O(ε) close
to the identity. By the construction of Lemma 2.1, the composed transformation
(b, ϕ) �→ (̃b, ϕ̃) is O(hp) close to the identity and moreover, the right-hand sides of
(4.4) and (5.7) differ by O(εhp). Theorem 3.2 (with ρ = e−ετα/2) now shows that
the functions sε,h and sε defining Tε,h and Tε, respectively, differ by O(hp). This
yields the desired distance bound. 
�

XII.5.3 Symmetric Methods

A result analogous to the theorem of the previous subsection holds for reversible
methods applied to perturbed reversible systems

u̇ = f(u, v) + εk(u, v)
v̇ = g(u, v) + ε�(u, v)

where the unperturbed system (ε = 0) is a real-analytic integrable reversible system.
If the perturbed system, written in action-angle variables of the unperturbed system,
satisfies the conditions of Theorem 4.1, then a reversible analogue of Theorem 5.2
holds, where the terms “symplectic” and “Hamiltonian” are simply replaced by “re-
versible”. The proof remains the same, working with the reversible analogues of the
results used for the Hamiltonian case.

XII.6 Exercises

1. In the situation of the invariant manifold theorem, Theorem 3.1, suppose in
addition that f and g are α-periodic in x: f(x+α, y) = f(x, y), g(x+α, y) =
g(x, y) for all x ∈ X , y ∈ Y . Show that in this case the function s defining the
invariant manifold is also α-periodic.
Hint. The Hadamard transform maps α-periodic functions to α-periodic func-
tions.

2. Show that if the time-τ flow map Φ = ϕτ of a differential equation has an
attractive invariant manifoldM, and if the flow ϕt maps a domain of attractivity
ofM under Φ into itself for every real t, thenM is also invariant under the flow
ϕt for every real t.
Hint. Write ϕt = Φn ◦ ϕt ◦ Φ−n and use the attractivity of M for n →∞.
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3. Prove that in the situation of Theorem 3.1, iterates (xn+1, yn+1) = Φ(xn, yn)
have the property of asymptotic phase (Nipp & Stoffer 1992): there exists a se-
quence (x̃n, ỹn) of iterates on the invariant manifold, i.e., with (x̃n+1, ỹn+1) =
Φ(x̃n, ỹn) and ỹn = s(x̃n), such that for all n ≥ 0,

‖xn − x̃n‖ ≤ c ‖yn − s(xn)‖
‖yn − ỹn‖ ≤ (1 + λc) ‖yn − s(xn)‖ ,

where c = λ/(1 − λλ∗) with λ = 2Lyx/(1 − Lxx − Lyy) of (3.5) and
λ∗ = 2Lxy/(1 − Lxx − Lyy). Note that ‖yn − s(xn)‖ ≤ ρn‖y0 − s(x0)‖
by Theorem 3.1.
Hint. Consider the sequences (x̃(k)

n , ỹ
(k)
n ) defined by x̃

(k)
k = xk, ỹ(k)

k = s(xk)
and (x̃(k)

n+1, ỹ
(k)
n+1) = Φ(x̃(k)

n , ỹ
(k)
n ) for n = k − 1, . . . , 1, 0. Show that, for

fixed n, the sequence (x(k)
n ) (k ≥ n) is a Cauchy sequence.

4. Show that Lemma 2.1 holds unchanged if the diophantine condition (X.2.4) for
ω(a∗) is weakened to ω(a∗) = ω∗ +O(δ2) with ω∗ satisfying (X.2.4).

5. In the situation of Theorem 5.2, show that every numerical integrator of order p
has an attractive invariant torus if hp # ε. This torus is O(hp/ε) close to the
invariant torus of the continuous system.



Chapter XIII.
Oscillatory Differential Equations
with Constant High Frequencies

This chapter deals with numerical methods for second-order differential equations
with oscillatory solutions. These methods are designed to require a new complete
function evaluation only after a time step over one or many periods of the fastest os-
cillations in the system. Various such methods have been proposed in the literature –
some of them decades ago, some very recently, motivated by problems from mole-
cular dynamics, astrophysics and nonlinear wave equations. For these methods it is
not obvious what implications geometric properties like symplecticity or reversibil-
ity have on the long-time behaviour, e.g., on energy conservation. The backward
error analysis of Chap. IX, which was the backbone of the results of the three pre-
ceding chapters, is no longer applicable when the product of the step size with the
highest frequency is not small, which is the situation of interest here. The “exponen-
tially small” remainder terms are now only O(1)! For differential equations where
the high frequencies of the oscillations remain nearly constant along the solution,
a substitute for the backward error analysis of Chap. IX is given by the modulated
Fourier expansions of the exact and the numerical solutions. Among other proper-
ties, they permit us to understand the numerical long-time conservation of the total
and oscillatory energies (or the failure of conserving energy in certain cases). It turns
out, symmetry of the methods is still essential, but symplecticity plays no role in the
analysis and in the numerical experiments, and new conditions of an apparently
non-geometric nature come into play.

XIII.1 Towards Longer Time Steps in Solving
Oscillatory Equations of Motion

Dynamical systems with multiple time scales pose a major problem in
simulations because the small time steps required for stable integration
of the fast motions lead to large numbers of time steps required for the
observation of slow degrees of freedom and thus to the need to compute
a large number of forces.

(M. Tuckerman, B.J. Berne & G.J. Martyna 1992)

We describe numerical methods that have been proposed for solving highly os-
cillatory second-order differential equations with fewer force evaluations than are
needed by standard integrators like the Störmer–Verlet method. We present the ideas
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underlying the construction of the methods and leave numerical comparisons to
Sect. XIII.2 and the analysis of the methods to Sections XIII.3–XIII.6. We consider
only methods that are symmetric or symplectic. The presentation in this section
follows roughly the chronological order.

XIII.1.1 The Störmer–Verlet Method vs. Multiple Time Scales

Perhaps the most widely used method of integrating the equations of mo-
tion is that initially adopted by Verlet (1967) and attributed to Störmer.

(M.P. Allen & D.J. Tildesley 1987, p. 78)

The Newtonian equations of motion of particle systems (in molecular dynamics,
astrophysics and elsewhere) are second-order differential equations

q̈ = −∇V (q) . (1.1)

To simplify the presentation, we omit the positive definite mass matrix M which
would usually multiply q̈. This entails no loss of generality, since a transformation
q → M1/2q and V (q) → V (M−1/2q) gives the very form (1.1).

The standard numerical integrator of molecular dynamics is the Störmer–Verlet
scheme; see Chap. I. We recall that this method computes the new positions qn+1 at
time tn+1 from

qn+1 − 2qn + qn−1 = h2fn (1.2)

with the force fn = −∇V (qn). Velocity approximations are given by

q̇n =
qn+1 − qn−1

2h
.

In its one-step formulation (see (I.1.17)) the method reads1

pn+1/2 = pn + 1
2hfn

qn+1 = qn + hpn+1/2

pn+1 = pn+1/2 + 1
2hfn+1 .

(1.3)

We recall that this is a symmetric and symplectic method of order 2. For linear
stability, i.e., for bounded error propagation in linearized equations, the step size
must be restricted to

hω < 2

where ω is the largest eigenfrequency (i.e., square root of an eigenvalue) of the
Hessian matrix ∇2V (q) along the numerical solution; see Sect. I.5.1. Good energy
conservation requires an even stronger restriction on the step size. Values of hω ≈ 1

2
are frequently used in molecular dynamics simulations.

The potential V (q) is often a sum of potentials that act on different time scales,

1 We write p when the Hamiltonian structure and symplecticity are an issue, and q̇ otherwise.
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V (q) = W (q) + U(q) with ∇2W (q) positive semi-definite and

‖∇2W (q)‖ $ ‖∇2U(q)‖ .
(1.4)

In this situation, solutions are in general highly oscillatory on the slow time scale
τ ∼ 1/‖∇2U(q)‖1/2.

In particular when the fast forces −∇W (q) are cheaper to evaluate than the
slow forces −∇U(q), it is of interest to devise methods where the required number
of slow-force evaluations is not (or not severely) affected by the presence of the
fast forces which are responsible for the oscillatory behaviour and which restrict
the step size of standard integrators like the Störmer–Verlet scheme. This situation
occurs in molecular dynamics, where W (q) corresponds to short-range molecular
bonds, whereas U(q) includes inter alia long-range electrostatic potentials.

In some approaches to this computational problem, the differential model is
modified: highly oscillatory components are replaced by constraints (Ryckaert, Cic-
cotti & Berendsen 1977), or stochastic and dissipative terms are added to the model
(see Schlick 1999). Such modifications may prove highly successful in some appli-
cations. In the following, however, we restrict our attention to methods which aim
at long time steps directly for the problem (1.1) with (1.4).

Spatial semi-discretizations of nonlinear wave equations, such as the sine-
Gordon equation

utt = uxx − sinu ,

form another important class of equations (1.1) with (1.4). Here W (q) = 1
2q

TAq,
where A is the discretization matrix of the differential operator −∂2/∂x2.

XIII.1.2 Gautschi’s and Deuflhard’s Trigonometric Methods

It is anticipated that trigonometric methods can be applied, with simi-
lar success, also to nonlinear differential equations describing oscillation
phenomena. (W. Gautschi 1961)

The oldest methods allowing the use of long time steps in oscillatory problems con-
cern the particular case of a quadratic potential W (q) = 1

2ω
2qT q with ω $ 1, for

which the equations take the form

q̈ = −ω2q + g(q) . (1.5)

For such equations, Gautschi (1961) proposed a number of methods of multistep
type which are constructed to be exact if the solution is a trigonometric polynomial
in ωt of a prescribed degree. The simplest of these methods (and the only symmetric
one) reads

qn+1 − 2qn + qn−1 = h2 sinc2( 1
2hω) q̈n , (1.6)

where sinc ξ = sin ξ/ξ and q̈n = −ω2qn + gn with gn = g(qn), or equivalently

qn+1 − 2 cos(hω)qn + qn−1 = h2 sinc2( 1
2hω) gn . (1.7)
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The method gives the exact solution for equations (1.5) with g = Const and arbi-
trary ω (see also Hersch (1958) for such a construction principle). This property is
readily verified with the variation-of-constants formula

(
q(t)
q̇(t)

)
=

(
cos tω ω−1 sin tω

−ω sin tω cos tω

)(
q0
q̇0

)
(1.8)

+
∫ t

0

(
ω−1 sin(t− s)ω

cos(t− s)ω

)
g
(
q(s)

)
ds .

This formula also shows that the following scheme for a velocity approximation
becomes exact for g = Const :

q̇n+1 − q̇n−1 = 2h sinc(hω) q̈n . (1.9)

Starting values q1 and q̇1 are also obtained from (1.8) with g(q0) in place of g(q(s)).
Deuflhard (1979) considered h2-extrapolation based on the explicit symmetric

method that is obtained by replacing the integral term in (1.8) by its trapezoidal rule
approximation:
(

qn+1

hq̇n+1

)
=

(
coshω sinchω

−hω sinhω coshω

)(
qn

hq̇n

)
+ h2

2

(
sinc(hω) gn

gn+1 + cos(hω) gn

)
.

(1.10)
Eliminating the velocities yields the two-step formulation

qn+1 − 2 cos(hω)qn + qn−1 = h2 sinc(hω) gn . (1.11)

The velocity approximation is obtained back from

2h sinc(hω) q̇n = qn+1 − qn−1 (1.12)

or alternatively from

q̇n+1 − 2 cos(hω)q̇n + q̇n−1 = h2 gn+1 − gn−1

2h
.

Both Gautschi’s and Deuflhard’s method reduce to the Störmer–Verlet scheme for
ω = 0. Both methods extend in a straightforward way to systems

q̈ = −Aq + g(q) (1.13)

with a symmetric positive semi-definite matrix A, by formally replacing ω by
Ω = A1/2 in the above formulas. The methods then require the computation of
products of entire functions of the matrix h2A with vectors. This can be done by
diagonalizing A, which is efficient for problems of small dimension or in spec-
tral methods for nonlinear wave equations. In high-dimensional problems where
a diagonalization is not feasible, these matrix function times vector products can
be efficiently computed by superlinearly convergent Krylov subspace methods, see
Druskin & Knizhnerman (1995) and Hochbruck & Lubich (1997).

The above methods permit extensions to more general problems (1.1) with (1.4),
but this requires a reinterpretation to which we turn next.
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XIII.1.3 The Impulse Method

Integrators based on r-RESPA [...] have led to considerable speed-up in
the CPU time for large scale simulations of biomacromolecular solutions.
Since r-RESPA is symplectic such integrators are very stable.

(B.J. Berne 1999)

The Störmer–Verlet method (1.3) can be interpreted as approximating the flow ϕH
h

of the system with Hamiltonian H(p, q) = T (p) + V (q) with T (p) = 1
2p

T p by the
symmetric splitting

ϕV
h/2 ◦ ϕT

h ◦ ϕV
h/2 ,

which involves only the flows of the systems with Hamiltonians T (p) and V (q),
which are trivial to compute; see Sect. II.5.

In the situation (1.4) of a potential V = W + U , we may instead use a different
splitting of H = (T + W ) + U and approximate the flow ϕH

h of the system by

ϕU
h/2 ◦ ϕT+W

h ◦ ϕU
h/2 .

This gives a method that was proposed in the context of molecular dynamics by
Grubmüller, Heller, Windemuth & Schulten (1991) (their Verlet-I scheme) and by
Tuckerman, Berne & Martyna (1992) (their r-RESPA scheme). Following the termi-
nology of Garcı́a-Archilla, Sanz-Serna & Skeel (1999) we here refer to this method
as the impulse method:

1. kick: set p+
n = pn − 1

2h∇U(qn)
2. oscillate: solve q̈ = −∇W (q) with initial values (qn, p

+
n )

over a time step h to obtain (qn+1, p
−
n+1)

3. kick: set pn+1 = p−n+1 − 1
2h∇U(qn+1)

(1.14)

Step 2 must in general be computed approximately by a numerical integrator with
a smaller time step, which results in the multiple time stepping method that we
encountered in Sect. VIII.4. If the inner integrator is symplectic and symmetric, as it
would be for the natural choice of the Störmer–Verlet method, then also the overall
method is symplectic – as a composition of symplectic transformations, and it is
symmetric – as a symmetric composition of symmetric steps.

It is interesting to note that the impulse method (with exact solution of step 2)
reduces to Deuflhard’s method in the case of a quadratic potential W (q) = 1

2q
TAq

(Exercise 1).
Though the method does allow larger step sizes than the Störmer–Verlet method

in molecular dynamics simulations, it is not free from numerical difficulties. Biesa-
decki & Skeel (1993) and Garcı́a-Archilla et al. (1999) report and in linear model
problems analyze instabilities and numerical resonance phenomena when the prod-
uct of the step size h with an eigenfrequency ω of ∇2W is near an integral multiple
of π.
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XIII.1.4 The Mollified Impulse Method

We also propose a nontrivial improvement of the impulse method that
we call the mollified impulse method, for which superior stability and
accuracy is demonstrated.

(B.Garcı́a-Archilla, J.M. Sanz-Serna & R.D. Skeel 1999)

Difficulties with the impulse method can be intuitively seen to come from two
sources: the slow force −∇U(q) has an effect only at the ends of a time step, but it
does not enter into the oscillations in between; the slow force is evaluated, somewhat
arbitrarily, at isolated points of the oscillatory solution.

Garcı́a-Archilla et al. (1999) propose to evaluate the slow force at an averaged
value qn = a(qn). They replace the potential U(q) by U(q) = U(a(q)) and hence
the slow force −∇U(q) in the impulse method by the mollified force

−∇U(q) = −a′(q)T∇U(a(q)) . (1.15)

Since this mollified impulse method is the impulse method for a modified potential,
it is again symplectic and symmetric.

There are numerous possibilities to choose the average a(qn), but care should be
taken that it is only a function of the position qn and thus independent of pn, in order
to obtain a symplectic and symmetric method. This precludes taking averages of the
solution of the problem in the oscillation step (Step 2) of the algorithm. Instead, one
solves the auxiliary initial value problem

ẍ = −∇W (x) with x(0) = q, ẋ(0) = 0 (1.16)

together with the variational equation (using the same method and the same step
size)

Ẍ = −∇2W (x(t))X with X(0) = I, Ẋ(0) = 0 (1.17)

and computes the time average over an interval of length ch for some c > 0:

a(q) =
1
ch

∫ ch

0

x(t) dt , a′(q) =
1
ch

∫ ch

0

X(t) dt . (1.18)

Garcı́a-Archilla et al. (1999) found that the choice c = 1 gives the best results.
Weighted averages instead of the simple average used above give no improvement.

Izaguirre, Reich & Skeel (1999) propose to take a(q) as a projection of q to the
manifold ∇W (q) = 0 of rest positions of the fast forces, for situations where all
non-zero eigenfrequencies of ∇2W (q) are much larger than those of ∇2U(q). This
choice is motivated by the fact that solutions oscillate about this manifold.

We now turn to the interesting special case of a quadratic W (q) = 1
2q

TAq with
a symmetric positive semi-definite matrix A. In this case, the above average can be
computed analytically. It becomes

a(q) = φ(hΩ)q
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with Ω = A1/2 and the function φ(ξ) = sinc(cξ). For a(q) defined by the orthogo-
nal projection to Aq = 0 we have φ(0) = 1 and φ(ξ) = 0 for ξ away from 0. With
gn = −φ(hΩ)∇U(φ(hΩ)qn), the mollified impulse method reduces to

p+
n = pn + 1

2hgn

(
qn+1

p−n+1

)
=

(
coshΩ h sinchΩ

−Ω sinhΩ coshΩ

)(
qn

p+
n

)
(1.19)

pn+1 = p−n+1 + 1
2hgn+1 .

This can equivalently be written as (1.10) with the same gn (and Ω in place of ω),
or in the two-step form (1.11) with (1.12).

XIII.1.5 Gautschi’s Method Revisited

We recall that Gautschi’s method (1.7) (with Ω = A1/2 in place of ω) integrates
equations q̈ = −Aq + g(q) exactly in the case of a constant inhomogeneity g(q) =
Const . This property is obviously kept if the argument of g in the algorithm is
modified to

gn = g(φ(hΩ)qn)

similar to the previous subsection. Such Gautschi-type methods were analyzed by
Hochbruck & Lubich (1999a). Functions φ with φ(0) = 1 that vanish at integral
multiples of π give a substantial improvement over the original Gautschi method.
The choice

φ(ξ) = sinc ξ
(
1 + 1

3 sin2 1
2ξ) (1.20)

was found to give particularly good accuracy. The methods are symmetric but not
symplectic.

The following symmetric method for general problems (1.1) with (1.4) was pro-
posed by Hochbruck & Lubich (1999a). The method reduces to Gautschi-type meth-
ods for quadratic W (q) = 1

2q
TAq. Given qn and q̇n, one computes an averaged

value qn = a(qn) and the solution of

ü = −∇W (u)−∇U(qn) with u(0) = qn, u̇(0) = q̇n (1.21)

backwards and forwards on the intervals from 0 to −h and 0 to h. Note that this
requires only one evaluation of the slow force −∇U . Then, qn+1 and q̇n+1 are
computed from

qn+1 − 2qn + qn−1 = u(h)− 2u(0) + u(−h)
q̇n+1 − q̇n−1 = u̇(h)− u̇(−h) .

(1.22)

When the differential equation for u is solved approximately by a symmetric nu-
merical method with smaller time steps, then this becomes a symmetric multiple
time-stepping method. For the interpretation as an averaged-force method and for
the corresponding one-step version, where the initial value for the velocity in (1.21)
is replaced by u̇(0) = 0, we refer back to Sect. VIII.4 (where qn instead of the
average qn = a(qn) was taken as the argument of the slow force −∇U ).
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XIII.1.6 Two-Force Methods

Hairer & Lubich (2000a) compare the analytical solution and the numerical solu-
tions given by the above methods in the Fermi–Pasta–Ulam model of Sect. I.5.1,
using the tool of modulated Fourier expansions (see Sections XIII.3 and XIII.5 be-
low). Their analysis of the slow energy exchange between stiff springs leads them
to propose the following method for equations q̈ = −Aq+g(q), which requires two
evaluations of the slow force per time step: with Ω = A1/2, set

qn+1 − 2 cos(hΩ) qn + qn−1 = h2 sinc(hΩ) g(qn) + h2dn (1.23)

with
dn = sinc2(hΩ) g(qn)− sinc(hΩ) g

(
sinc(hΩ)qn

)
. (1.24)

This method gives the correct slow energy exchange between stiff components in
the model problem and has better energy conservation than the Deuflhard/impulse
method. With the velocity approximation (1.12) the method can equivalently be
written in the one-step forms (1.19) or (1.10). The method extends again to a sym-
metric method for general problems (1.1) with (1.4), giving a correction to the im-
pulse method: let g(q) = −∇U(q) and let a(q) be defined by (1.18) with c = 1. Set
qn = a(qn) and

g(qn) =
2
h2

(
a
(
qn + 1

2h
2g(qn)

)
− a(qn)

)
.

The method then consists of taking

gn = g(qn) + g(qn)− g(qn)

instead of g(qn) = −∇U(qn) in the impulse method (1.14).
A two-force method with interesting properties, for situations where all non-zero

eigenfrequencies of A are much larger than those of∇2U(q), is given by (1.23) with

dn = sinc2( 1
2hΩ) g

(
χ(hΩ)qn

)
− sinc(hΩ) g

(
χ(hΩ)qn

)
, (1.25)

where χ(0) = 1 and χ(ξ) = 0 for ξ away from 0.

XIII.2 A Nonlinear Model Problem and Numerical
Phenomena

To gain insight into the properties of the various numerical methods described in
the previous section, it is helpful to study the methods when they are applied to
suitably chosen, rather simple model problems which show characteristic features
but are still accessible to an analysis. Such an approach has traditionally been very
successful for stiff differential equations (see, e.g., Hairer & Wanner 1996). For the
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present stiff-oscillatory case we investigate the behaviour of the numerical methods
on nonlinear systems

ẍ + Ω2x = g(x) (2.1)

with a smooth gradient nonlinearity g(x) = −∇U(x) and with the square matrix

Ω =
(

0 0
0 ωI

)
, ω $ 1 , (2.2)

with blocks of arbitrary dimension. We consider only solutions whose energy is
bounded independently of ω, so that in particular the initial values satisfy

1
2‖ẋ(0)‖2 + 1

2‖Ωx(0)‖2 ≤ E (2.3)

with E independent of ω.
The Fermi–Pasta–Ulam (FPU) problem of Sect. I.5.1 belongs precisely to this

class, and we will present numerical experiments with this example. In the model
problem (2.1) with (2.2) we clearly impose strong restrictions in that the high fre-
quencies are confined to the linear part and that there is a single, constant high fre-
quency. The extension to several high frequencies will be given in Sect. XIII.9, and
constant-frequency systems with a position-dependent kinetic energy term are con-
sidered in Sect. XIII.10. Oscillatory systems with time- or solution-dependent high
frequencies will be studied, with different techniques and for different numerical
methods, in Chap. XIV.

In any case, satisfactory behaviour of a method on the model problem (2.1) can
be anticipated to be necessary for a successful treatment of more general situations.

XIII.2.1 Time Scales in the Fermi–Pasta–Ulam Problem

The FPU model shows different behaviour on different time scales: almost-harmonic
motion of the stiff springs on the time scale ω−1, motion of the soft springs on the
scale ω0, energy exchange between stiff springs on the time scale ω, and almost-
preservation of the oscillatory energy over intervals that are exponentially long in
ω. This is illustrated in the following.

We consider the FPU problem with three stiff springs with the data of Sect. I.5.1.
The four pictures of Fig. 2.1 show the evolution of the following quantities: the total
energy

H(x, ẋ) = 1
2 ẋ

T ẋ + 1
2x

TΩ2x + U(x) , (2.4)

(or rather H − 0.8 for graphical reasons), which is a conserved quantity; the oscil-
latory energy

I = I1 + I2 + I3 with Ij = 1
2 ẋ2

1,j + 1
2 ω2 x2

1,j , (2.5)

where x1,j is the jth component of the lower half x1 ∈ R
3 of x = (x0, x1)T ∈ R

6,
decomposed according to the blocks of Ω in (2.2). We recall that x1,j represents the
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Fig. 2.1. Different time scales in the Fermi–Pasta–Ulam model (ω = 50)

elongation of the jth stiff spring. Further quantities shown are the kinetic energy of
the mass centre motion and of the relative motion of masses joined by a stiff spring,

T0 = 1
2‖ẋ0‖2 , T1 = 1

2‖ẋ1‖2 .

Time Scale ωω−1. The vibration of the stiff linear springs is nearly harmonic with
almost-period π/ω. This is illustrated by the plot of T1 in the first picture.

Time Scale ωω0. This is the time scale of the motion of the soft nonlinear springs, as
is exemplified by the plot of T0 in the second picture of Fig. 2.1.

Time Scale ωω. A slow energy exchange among the stiff springs takes place on the
scale ω. In the third picture, the initially excited first stiff spring passes energy to
the second one, and then also the third stiff spring begins to vibrate. The picture
also illustrates that the problem is very sensitive to perturbations of the initial data:
the grey curves of each of I1, I2, I3 correspond to initial data where 10−5 has been
added to x0,1(0), ẋ0,1(0) and ẋ1,1(0). The displayed solutions of the first three
pictures have been computed very accurately by an adaptive integrator.

Time Scale ωωN , N ≥ 2. The oscillatory energy I has onlyO(ω−1) deviations from
the initial value over very long time intervals. The fourth picture of Fig. 2.1 shows
the total energy H and the oscillatory energy I as computed by method (1.10)-(1.11)
of Sect. XIII.1.2 with the step size h = 2/ω, which is nearly as large as the length
of the time interval of the first picture. No drift is seen for H or I .
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XIII.2.2 Numerical Methods

The methods described in Sect. XIII.1 all have in common that they reduce to the
Störmer–Verlet method when they are applied to (2.1) with Ω = 0, and they become
exact solvers for the linear homogeneous problem with g(x) ≡ 0. They can be
formulated as one-step or two-step schemes.

Two-Step Formulation. All the methods of Sections XIII.1.2–XIII.1.5, when ap-
plied to the system (2.1), can be written in the two-step form

xn+1 − 2 cos(hΩ)xn + xn−1 = h2Ψg(Φxn) . (2.6)

Here Ψ = ψ(hΩ) and Φ = φ(hΩ), where the filter functions ψ and φ are even,
real-valued functions with ψ(0) = φ(0) = 1. In our numerical experiments we will
consider the following choices of ψ and φ, where again sinc(ξ) = sin ξ/ξ:

(A) ψ(ξ) = sinc2( 1
2ξ) φ(ξ) = 1 Gautschi (1961)

(B) ψ(ξ) = sinc(ξ) φ(ξ) = 1 Deuflhard (1979)
(C) ψ(ξ) = sinc(ξ)φ(ξ) φ(ξ) = sinc(ξ) Garcı́a-Archilla & al. (1999)
(D) ψ(ξ) = sinc2( 1

2ξ) φ(ξ) of (1.20) Hochbruck & Lubich (1999a)
(E) ψ(ξ) = sinc2(ξ) φ(ξ) = 1 Hairer & Lubich (2000a)

One-Step Formulation. The method (2.6) can be written as a symmetric one-step
method of a form that is motivated by the variation-of-constants formula (1.8). This
now also includes a velocity approximation ẋn:

xn+1 = coshΩ xn + Ω−1 sinhΩ ẋn + 1
2h

2Ψ gn (2.7)

ẋn+1 = −Ω sinhΩ xn + coshΩ ẋn + 1
2h

(
Ψ0 gn + Ψ1 gn+1

)
(2.8)

where gn = g(Φxn) and Ψ0 = ψ0(hΩ), Ψ1 = ψ1(hΩ) with even functions ψ0,
ψ1 satisfying ψ0(0) = 1, ψ1(0) = 1. Exchanging n ↔ n + 1 and h ↔ −h in the
method, it is seen that the method is symmetric if and only if

ψ(ξ) = sinc(ξ)ψ1(ξ) , ψ0(ξ) = cos(ξ)ψ1(ξ) . (2.9)

The method is then symplectic if and only if (Exercise 2)

ψ(ξ) = sinc(ξ)φ(ξ) . (2.10)

Two-Step Velocity Schemes. For a symmetric method (2.7)–(2.8) the velocity ap-
proximation can be equivalently obtained from

2h sinc(hω) ẋn = xn+1 − xn−1 (2.11)

(for sin(hω) �= 0) or from

ẋn+1 − 2 cos(hΩ) ẋn + ẋn−1 = 1
2hΨ1(gn+1 − gn−1) . (2.12)

The latter formula gives a symmetric two-step method for arbitrary even functions
ψ1 with ψ1(0) = 1, which do not necessarily satisfy (2.9).
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Multi-Force Methods. The methods of Sect. XIII.1.6 belong to the class of multi-
force methods, which generalize the right-hand side of (2.6) to a linear combination
of such terms:

xn+1 − 2 cos(hΩ)xn + xn−1 = h2
k∑

j=1

Ψj g(Φjxn) (2.13)

with Ψj = ψj(hΩ), Φj = φj(hΩ), where ψj , φj are even functions with

k∑
j=1

ψj(0) = 1 , φj(0) = 1 for j = 1, . . . , k .

In our numerical experiments we include the method

(F ) two-force method (1.23) with (1.24).

XIII.2.3 Accuracy Comparisons

The accuracy of the methods (A)-(E) and the Störmer–Verlet method on a short
time interval is shown in Fig. 2.2, where the errors at t = 1 of the different solution
components in the FPU problem (with ω = 50) are plotted as a function of the
step size h. Here and in all the following numerical experiments, the methods were
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Fig. 2.2. Global error at t = 1 for the different components and for the five methods (A) - (E)
and the Störmer–Verlet method as a function of the step size h
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Fig. 2.3. Global error at the first grid point after t = 1 for the different components as a
function of the step size h. The error for method (A) is drawn in black, for method (B) in
dark grey, and for method (C) in light grey. The vertical lines indicate step sizes for which
hω equals π, 2π, or 3π

implemented in the one-step formulation (2.7)-(2.8) with (2.9). The errors in the
x0-components are nearly identical for all the methods in the stability range of the
Störmer–Verlet method (hω < 2). Differences between the methods are however
visible for larger step sizes. For the other solution components x1, ẋ0, ẋ1 there
are pronounced differences in the error behaviour of the methods. All five methods
(A)-(E) are considerably more accurate than the Störmer–Verlet method. Figure 2.3
shows the errors of methods (A)-(C) for step sizes beyond the stability range of
the Störmer–Verlet method. Methods (A) and (B) lose accuracy when hω is near
integral multiples of π, a phenomenon that does not occur with method (C).

XIII.2.4 Energy Exchange between Stiff Components

Figure 2.4 shows the energy exchange of the six methods (A)-(F) applied to the
Fermi–Pasta–Ulam problem with the same data as in Fig. 2.1. The figures show
again the oscillatory energies I1, I2, I3 of the stiff springs, their sum I = I1+I2+I3
and the total energy H − 0.8 as functions of time on the interval 0 ≤ t ≤ 200. Only
the methods (B), (D) and (F) give a good approximation of the energy exchange
between the stiff springs. It will turn out in Sect. XIII.4.2 that a necessary condition
for a correct approximation of the energy exchange is ψ(hω)φ(hω) = sinc(hω),
which is satisfied for method (B). The two-force method (F) satisfies an analogous
condition for multi-force methods. The good behaviour of method (D) comes from
the fact that here ψ(hω)φ(hω) ≈ 0.95 sinc(hω) for hω = 1.5.
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Fig. 2.4. Energy exchange between stiff springs for methods (A)-(F) (h = 0.03, ω = 50)
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Fig. 2.5. Maximum error of the total energy on the interval [0, 1000] for methods (A) - (F) as
a function of hω (step size h = 0.02)

XIII.2.5 Near-Conservation of Total and Oscillatory Energy

Figure 2.5 shows the maximum error of the total energy H as a function of the scaled
frequency hω (step size h = 0.02). We consider the long time interval [0, 1000]. The
pictures for the different methods show that in general the total energy is well con-
served. Exceptions are near integral multiples of π. Certain methods show a bad
energy conservation close to odd multiples of π, other methods close to even multi-
ples of π. Only method (E) shows a uniformly good behaviour for all frequencies. In
Fig. 2.6 we show in more detail what happens close to such integral multiples of π.
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Fig. 2.6. Zoom (close to π or 2π) of the maximum error of the total energy on the interval
[0, 1000] for three methods as a function of hω (step size h = 0.02)
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Fig. 2.7. Maximum deviation of the oscillatory energy on the interval [0, 1000] for methods
(A) - (F) as a function of hω (step size h = 0.02)

If there is a difficulty close to π, it is typically in an entire neighbourhood. Close to
2π, the picture is different. Method (C) has good energy conservation for values of
hω that are very close to 2π, but there are small intervals to the left and to the right,
where the error in the total energy is large. Unlike the other methods shown, method
(B) has poor energy conservation in rather large intervals around even multiples of
π. Methods (A) and (D) conserve the total energy particularly well, for hω away
from integral multiples of π.

Figure 2.7 shows similar pictures where the total energy H is replaced by the
oscillatory energy I (cf. Sect. XIII.2.1). For the exact solution we have I(t) =
Const + O(ω−1). It is therefore not surprising that this quantity is not well con-
served for small values of ω. For larger values of ω, we observe that the methods
have difficulties in conserving the oscillatory energy when hω is near integral mul-
tiples of π. None of the considered methods conserves both quantities H and I
uniformly for all values of hω.
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XIII.3 Principal Terms of the Modulated Fourier
Expansion

The analytical tool for understanding the above numerical phenomena is provided
by modulated Fourier expansions, which decompose both the exact and the numer-
ical solution into a slowly varying part and into oscillatory components built up
of trigonometric functions multiplied with slowly varying coefficient functions. A
comparison of these expansions will serve as a partial substitute for the backward
error analysis of Chap. IX, which yields results only for hω → 0 and is not applica-
ble to the situation of hω ≥ c > 0 that is of interest here. In this section we derive
the first terms of the modulated Fourier expansion.

XIII.3.1 Decomposition of the Exact Solution

Every solution of the linear equation ẍ+Ω2x = g(t) with Ω of (2.2) can be written
as y(t) + cos(ωt)u(t) + sin(ωt) v(t) + O(ω−N ) (for ω → ∞), where y(t), u(t),
v(t) are truncated asymptotic expansions in powers of ω−1 (see Exercise 4). These
functions have the property that all their derivatives are bounded independently of
the parameter ω $ 1. Here and in the following, a smooth function is understood
to be a function with this property. We may hope to find a similar decomposition
for solutions of the nonlinear problem (2.1). So we look for a smooth real-valued
function y(t) and a smooth complex-valued function z(t) = u(t) + iv(t) such that
the function

x∗(t) = y(t) + eiωtz(t) + e−iωtz(t) (3.1)

gives a small defect when it is inserted into the differential equation (2.1) and has
the given initial values

x∗(0) = x(0) , ẋ∗(0) = ẋ(0) . (3.2)

Under the condition (2.3) the exact solution x(t) has bounded energy, and we
may expect the same of the approximation x∗(t), which would then imply z(t) =
O(ω−1). We therefore insert the ansatz (3.1) into the differential equation (2.1)
and expand the nonlinearity around the smooth part y(t). With the variables y =
(y0, y1), z = (z0, z1) partitioned according to the blocks of Ω, this gives the ex-
pressions

ẍ∗ + Ω2x∗ =
(

ÿ0

ÿ1 + ω2y1

)
+ eiωt

(
−ω2z0 + 2iωż0 + z̈0

2iωż1 + z̈1

)

+ e−iωt

(
−ω2z0 − 2iωż0 + z̈0

−2iωż1 + z̈1

)

and, as long as z(t) = O(ω−1),

g(x∗) = g(y) + g′′(y)(z, z) + eiωtg′(y)z + e−iωtg′(y)z

+ e2iωt 1
2g

′′(y)(z, z) + e−2iωt 1
2g

′′(y)(z, z) +O(ω−3) .
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Equations for the Coefficient Functions. We now compare the coefficients of
1, eiωt, e−iωt and require that the dominant terms in these expressions be equal:

ÿ0 = g0(y) + g′′0 (y)(z, z)
ω2y1 = g1(y)

−ω2z0 = g′0(y)z
2iωż1 = g′1(y)z .

(3.3)

This gives a system of differential equations for y0, z1 and expresses y1, z0 as
functions of y0, z1. We note that y0 evolves on the time scale 1, whereas z1

changes on the slow time scale ω. As long as y0(t) stays in a bounded domain
and z1(t) = O(ω−1), (3.3) implies the bounds

y1(t) = O(ω−2) , z0(t) = O(ω−3) , ż1(t) = O(ω−2) . (3.4)

Initial Values. The initial values y0(0), ẏ0(0) and z1(0) are obtained from condition
(3.2), which gives a system that can be solved by fixed point iteration to yield

y0(0) = x0,0 +O(ω−3) , ẏ0(0) = ẋ0,0 +O(ω−2)
2 Re z1(0) = x0,1 +O(ω−2) , −ω 2 Im z1(0) = ẋ0,1 +O(ω−2) .

(3.5)

Defect. As long as z1(t) = O(ω−1), the above equations show that the defect

d(t) = ẍ∗(t) + Ω2x∗(t)− g
(
x∗(t)

)

is of the form

d(t) = Re

(
ω−2eiωta(t) + ω−2e2iωtb(t) +O(ω−3)

O(ω−2)

)
(3.6)

with smooth functions a, b. Together with (3.3) this also shows that the smooth
O(ω−2)-term g′′(y)(z, z) is the principal term describing the influence of oscilla-
tory solution components on the evolution of smooth components.

Example. To illustrate the approximation of the solution x(t) by x∗(t) of (3.1), we
have solved numerically, with high accuracy, the system (3.3) for the FPU problem
with the data of Sect. I.5.1. In Figure 3.1 we plot the oscillatory energy I = I1 +
I2 + I3 with x replaced by the approximation x∗ in the definition (2.5) of these
quantities. The figure agrees rather well with Figure I.5.2.
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Fig. 3.1. Same experiment as in Fig. I.5.2 for the solution (3.1) of (3.3)
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XIII.3.2 Decomposition of the Numerical Solution

For the numerical method (2.6), which solves linear equations ẍ = −Ω2x exactly,
we look similarly to the above for a function of the form

xh(t) = yh(t) + eiωtzh(t) + e−iωtzh(t) (3.7)

with coefficient functions yh(t), zh(t) which are smooth in the sense that all their
derivatives are bounded independently of h and ω, such that xh(t) gives a small
defect when inserted into the difference scheme (2.6) and has the correct starting
values:

xh(0) = x0 , xh(h) = x1 . (3.8)

Taylor expansion of zh(t± h) at the point t shows, after some calculation,

1
h2

(
xh(t + h)− 2 cos(hΩ)xh(t) + xh(t− h)

)
=

(
δ2
hyh,0(t)

σ2
1ω

2yh,1(t) + δ2
hyh,1(t)

)

+ eiωt

(
−σ2

1ω
2zh,0(t) + σ2 2iωżh,0(t) + cos(hω)z̈h,0(t) + . . .

σ2 2iωżh,1(t) + cos(hω)z̈h,1(t) + . . .

)
(3.9)

+ the complex conjugate of the expression in the previous line,

where yh(t) =
(
yh,0(t), yh,1(t)

)
and zh(t) =

(
zh,0(t), zh,1(t)

)
according to the

partitioning in (2.2),

δ2
hyh(t) =

1
h2

(
yh(t + h)− 2yh(t) + yh(t− h)

)

is the symmetric second-order difference quotient, σk = sinc( 1
2khω), and the dots

stand for higher powers of h multiplied by derivatives of zh,0 or zh,1. Taylor expan-
sion of the nonlinearity now gives

Ψg(Φxh) = Ψg(Φyh) + Ψg′′(Φyh)(Φzh, Φzh)
+ eiωtΨg′(Φyh)Φzh + e−iωtΨg′(Φyh)Φzh + . . .

(3.10)

Modified Equations for the Numerical Coefficient Functions. For the moment
we consider the case where the absolute values of σ1 and σ2 are bounded from
below by a positive constant, so that hω is assumed bounded and bounded away
from a non-zero integral multiple of π. We also assume hω to be bounded away
from zero, which is the computational situation of interest. In this case, the first
term in each line of each bracket in (3.9) can be considered as the dominant one. We
therefore require that the functions yh, zh satisfy

δ2
hyh,0 = g0(Φyh) + g′′0 (Φyh)(Φzh, Φzh)

sinc2( 1
2hω)ω2yh,1 = ψ(hω) g1(Φyh) (3.11)

−sinc2( 1
2hω)ω2zh,0 =

∂g0

∂x0
(Φyh)zh,0 +

∂g0

∂x1
(Φyh)φ(hω)zh,1

sinc(hω) 2iω żh,1 = ψ(hω)
∂g1

∂x0
(Φyh)zh,0 + ψ(hω)

∂g1

∂x1
(Φyh)φ(hω)zh,1 .
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The first equation should be stated more precisely as yh,0 being a solution of a
modified equation for the Störmer–Verlet method (see Exercise IX.3) applied to the
corresponding differential equation:

ÿh,0 =
(

1− h2

12
d2

dt2

)(
g0(Φyh) + g′′0 (Φyh)(Φzh, Φzh)

)
,

where the time derivatives of yh,1, zh that result from applying the chain rule are
replaced by using the expressions in (3.11). As long as yh,0(t) remains in a bounded
domain and zh,1(t) = O(ω−1), we have again bounds of the same type as for the
coefficients of the exact solution:

yh,1(t) = O(ω−2) , zh,0(t) = O(ω−3) , żh,1(t) = O(ω−2) . (3.12)

Initial Values. We next determine the initial values yh,0(0), ẏh,0(0) and zh,1(0)
such that xh(0) and xh(h) coincide with the starting values x0 = x(0) and x1 of
the numerical method. We let x1 be computed from x0 and ẋ0 via the formula (2.7)
with n = 0, and we still assume that σ1 and σ2 are bounded away from zero. Using
(3.11), the condition xh(0) = x0 = (x0,0, x0,1) then becomes

x0,0 = yh,0(0) +O
(
ω−2zh,1(0)

)

x0,1 = zh,1(0) + zh,1(0) +O(ω−2) .
(3.13)

The formula for the first component of (2.7), x1,0−x0,0 = hẋ0,0+ 1
2h

2g0(Φx0), to-
gether with xh,0(h)−xh,0(0) = hẏh,0(0)+ 1

2h
2g0(Φx0)+O(h3)+O(ω−2zh,1(0))

implies that
ẋ0,0 = ẏh,0(0) +O(h2) +O

(
ω−1zh,1(0)

)
. (3.14)

For the second component we have from (2.7)

x1,1 − cos(hω)x0,1 = h sinc(hω)ẋ0,1 + 1
2h

2ψ(hω) g1(Φx0),

and by Taylor expansion and (3.11),

xh,1(h)− cos(hω)xh,1(0) = (1− cos(hω)) yh,1(0) +O(hω−2)
+ i sin(hω)

(
zh,1(0)− zh,1(0)

)
+O(hω−1zh,1(0)),

where we note the relation (1 − cos(hω)) yh,1(0) = 1
2h

2ψ(hω) g1(Φyh(0)) by
(3.11) and a trigonometric identity. After division by h sinchω = ω−1 sinhω the
above formulas yield

ẋ0,1 = iω
(
zh,1(0)− zh,1(0)

)
+O(ω−2) +O

(
ω−1zh,1(0)

)
. (3.15)

The four equations (3.13), (3.14), (3.15) constitute a nonlinear system for the four
quantities y0(0), ẏ0(0), ω

(
zh,1(0) + zh,1(0)

)
, and ω

(
zh,1(0)− zh,1(0)

)
. By fixed-

point iteration and using the bounded-energy assumption (2.3), we get a locally
unique solution for sufficiently small h, with zh,1(0) = O(ω−1) and hence



490 XIII. Oscillatory Differential Equations with Constant High Frequencies

yh,0(0) = x0,0 +O(ω−3) , ẏh,0(0) = ẋ0,0 +O(h2)
2 Re zh,1(0) = x0,1 +O(ω−2) , −ω 2 Im zh,1(0) = ẋ0,1 +O(hω−1) .

(3.16)
Defect. As long as zh,1(t) = O(ω−1), the defect

dh(t) =
1
h2

(
xh(t + h)− 2 cos(hΩ)xh(t) + xh(t− h)

)
− Ψg

(
Φxh(t)

)
(3.17)

is of size O(h2) by (3.9)–(3.10) and the very construction (3.11) of the coeffi-
cient functions. This estimate refers again to the non-resonant case where σ1, σ2

are bounded away from zero and hence hω is bounded away from non-zero integral
multiples of π. The case of hω near a multiple of π requires a special treatment and
will be considered in the next subsection.

XIII.4 Accuracy and Slow Exchange

A comparison of the principal terms of the modulated Fourier expansions of the
numerical and the exact solution gives much insight into the behaviour of the nu-
merical method and the role of the filter functions ψ and φ. From this comparison
we obtain error bounds over finite time intervals, and we discuss the slow energy
exchange between oscillatory components and the slow energy transfer from oscil-
latory to smooth components which take place on the time scale ω.

XIII.4.1 Convergence Properties on Bounded Time Intervals

As a first application of the modulated Fourier expansion we consider error bounds
on bounded time intervals. Second-order convergence estimates for more general
equations ẍ = −Ax + g(x) with symmetric positive semi-definite matrix A, uni-
formly in the (arbitrarily large) eigenfrequencies of A, are given by Garcı́a-Archilla,
Sanz-Serna & Skeel (1999) for the mollified impulse method, by Hochbruck & Lu-
bich (1999a) for Gautschi-type methods, and by Grimm & Hochbruck (2005) for
general methods of the class (2.7)–(2.8) with appropriate filter functions. Those
results were proved with different techniques. The following bounds on the filter
functions ψ and φ are needed for second-order error bounds of method (2.6):

|ψ(hω)| ≤ C1 sinc2( 1
2hω) ,

|φ(hω)| ≤ C2 |sinc( 1
2hω)| ,

|ψ(hω)φ(hω)| ≤ C3 |sinc(hω)| .
(4.1)

Theorem 4.1. Consider the numerical solution of the system (2.1) – (2.3) by method
(2.6) with a step size h ≤ h0 (with a sufficiently small h0 independent of ω) for
which hω ≥ c0 > 0. Let the starting value x1 be given by (2.7) with n = 0 . If the
conditions (4.1) are satisfied, then the error is bounded by
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‖xn − x(nh)‖ ≤ C h2 for nh ≤ T .

If only |ψ(hω)| ≤ C0 |sinc( 1
2hω)| holds instead of (4.1), then the order of con-

vergence reduces to one: ‖xn − x(nh)‖ ≤ C h for nh ≤ T . In both cases, C is
independent of ω, h and n with nh ≤ T and of bounds of solution derivatives, but
depends on T , on E of (2.3), on bounds of derivatives of the nonlinearity g, and on
C1, C2, C3 or C0.

To obtain second-order error bounds uniformly in hω, condition (4.1) requires
a double zero of ψ and a zero of φ at even multiples of π, and a zero of ψ
or φ at odd multiples of π. This is satisfied for the mollified impulse method
with φ(ξ) = sinc(ξ), for which ψ(ξ) = sinc2(ξ). Gautschi-type methods have
ψ(ξ) = sinc2( 1

2ξ), so that the first condition on ψ in (4.1) is trivially satisfied. The
conditions on φ hold, for example, for φ = sinc or for φ of (1.20). The original
Gautschi method has φ = 1, which does not satisfy the second condition of (4.1),
and the Deuflhard/impulse method (ψ = sinc, φ = 1) satisfies only the third condi-
tion of (4.1). These latter methods are not of second order uniformly in hω.

Proof of Theorem 4.1. (a) First we consider the case where hω is bounded away
from integral multiples of π, so that condition (4.1) is not needed. Comparing the
equations (3.3) and (3.11), which determine the modulated Fourier expansion coef-
ficients, shows

yh(t)− y(t) = O(h2) , zh(t)− z(t) = O(h2)

on bounded intervals, and hence

xh(t)− x∗(t) = O(h2) . (4.2)

The variation-of-constants formula (1.8) and a Gronwall-type inequality show that,
on bounded intervals, the error x∗(t)− x(t) is of the same magnitude as the defect:
by (3.6),

x∗(t)− x(t) = O(ω−2) .

The errors en = xn − xh(tn) satisfy

en+1 − 2 cos(hΩ) en + en−1 = bn (4.3)

with bn = h2
(
Ψg(Φxn)−Ψg(Φxh(tn))− dh(tn)

)
. This recurrence relation can be

solved to yield (Exercise 5)

en+1 = −Wn−1e0 + Wne1 +
n∑

j=1

Wn−jbj (4.4)

with

Wn =

(
(n + 1)I 0

0
sin(n + 1)hω

sinhω
I

)
.
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A discrete Gronwall inequality now yields that on bounded intervals, en is of the
same magnitude as the defect dh(t) of (3.17), which is O(h2) by the construction
of (3.11) and by zh,1 = O(ω−1). Hence,

xn − xh(tn) = O(h2) .

Combining these estimates yields the desired second-order error bound.
(b) We now consider the case where ω|sinc(1

2hω)| ≥ c with a sufficiently large
constant c, which depends only on bounds of derivatives of g. This condition means
that hω is outside of an O(h) neighbourhood of integral multiples of 2π. Under
conditions (4.1), the equations (3.11) still give

yh,1(t) = O(ω−2) , zh,0(t) = O(ω−2) , żh,1(t) = O(ω−2) (4.5)

as long as zh,1(t) = O(ω−1). Here the first condition of (4.1) gives the bound of
yh,1, the second one the bound of zh,0, and the third one the bound of żh,1. As
in Sect. XIII.3.2, we determine the initial values yh,0(0), ẏh,0(0) and zh,1(0) such
that xh(0) and xh(h) coincide with the starting values x0 and x1 of the numerical
method. Using once more (4.1), we obtain a system for the initial values similar to
(3.13)–(3.15):

x0,0 = yh,0(0) +O
(
ω−1zh,1(0)

)

x0,1 = zh,1(0) + zh,1(0) +O(ω−2)
ẋ0,0 = ẏh,0(0) +O(h) +O

(
ω−1zh,1(0)

)

ẋ0,1 = iω
(
zh,1(0)− zh,1(0)

)
+O(ω−1) +O

(
zh,1(0)

)
.

(4.6)

With the weaker estimates for zh,0(t) and in (4.6) we still obtain estimates for the
initial values of the type (3.16) with at most one factor ω−1 or h less in the remainder
terms. Condition (2.3) implies again z1(0) = O(ω−1), which ensures that (4.5)
holds for 0 ≤ t ≤ T . The defect is then dh(t) = O(h2), and as in part (a) we get
the second-order error bound.

(c) Now let ω|sinc(1
2hω)| ≤ c, so that hω is O(h) close to a multiple of 2π. In

this case we replace the third equation in (3.11) simply by

zh,0 = 0.

Under condition (4.1) we still obtain the bounds (4.5). The initial values are now
chosen to satisfy

x0,0 = yh,0(0)

x0,1 = zh,1(0) + zh,1(0) + ω−2 ψ(hω)
sinc2( 1

2hω)
g1(Φx0)

ẋ0,0 = ẏh,0(0)

ẋ0,1 = iω
(
zh,1(0)− zh,1(0)

)
.

(4.7)

They are then bounded as in (b) and, by the arguments used in the determination
of the initial values of Sect. XIII.3.2, yield the estimates xh(0) = x0 + O(h3)
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and xh(h) = x1 + O(h3), and again zh,1(t) = O(ω−1). Since (4.1) implies
φ(hω)zh,1 = O(ω−2) in the present situation of |sinc( 1

2hω)| ≤ c ω−1, the de-
fect is still dh(t) = O(h2). The bound (4.2) is also seen to hold. Therefore the
second-order error bound remains valid in this case.

(d) If only |ψ(hω)| ≤ |sinc(1
2hω)| holds, then we replace the third equation in

(3.11) by zh,0 = 0. If ω|sinc( 1
2hω)| ≤ 1, we also set yh,1 = 0. The defect is then

only dh(t) = O(h), which yields the first-order error bound. 
�

For the velocity approximation, we obtain the following for the method (2.12)
or its equivalent formulations.

Theorem 4.2. Under the conditions of Theorem 4.1, consider the velocity approxi-
mation scheme (2.12) with a function ψ1 satisfying ψ1(0) = 1 and

|ψ1(hω)| ≤ C ′
1 |sinc( 1

2hω)| . (4.8)

Let the starting values satisfy ẋ0 = ẋ(0) and ẋ1 = ẋ(h) + h sin(hΩ)a1 + O(h2)
with a1 = O(1). Then, the error in the velocities is bounded by

‖ẋn − ẋ(nh)‖ ≤ C h for nh ≤ T ,

where C is independent of ω, h and n with nh ≤ T and of bounds of solution deriva-
tives, but depends on T , on E of (2.3), on bounds of derivatives of the nonlinearity g,
and on C1, C2, C3 and C ′

1.

Proof. (a) By the variation-of-constants formula (1.8), the exact solution satisfies

ẋ(t + h)− 2 cos(hΩ)ẋ(t) + ẋ(t− h)

=
∫ h

0

cos
(
(h− s)Ω

)(
g
(
x(t + s)

)
− g

(
x(t− s)

))
ds .

With the modulated Fourier expansion, we write the exact solution as

x(t) = y(t) + eiωtz(t) + e−iωtz(t) +O(ω−2)

to obtain

g
(
x(t + s)

)
− g

(
x(t− s)

)

= g′
(
y(t)

)(
2s ẏ(t)− 4 sin(ωs) Im

(
eiωtz(t)

)
+O(s2) +O(ω−2)

)
.

Using the bounds (3.4), abbreviating gi,j = ∂gi/∂xj and omitting the arguments t
and y(t) on the right-hand side, we therefore have

ẋ(t + h)− 2 cos(hΩ)ẋ(t) + ẋ(t− h)

=
(

h2 g0,0 ẏ0 − 2h2 sinc2( 1
2hω)ω g0,1 Im (eiωtz1) +O(h3)

h2 sinc2( 1
2hω) g1,0ẏ0 − 2h2 sinc(hω)ω g1,1 Im (eiωtz1) +O(h3)

)
.
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We now use the discrete variation-of-constants formula (4.4) and partial summation.
For example, the expression

n∑
j=1

sin(n + 1− j)hω
sinhω

1
2h

2sinc2( 1
2hω) g1,0

(
y(jh)

)
ẏ0(jh)

is seen to be O(h) uniformly in hω and for nh ≤ T by partial summation, using
that the function g1,0(y(t))ẏ0(t) has a bounded derivative and that

sin(1
2hω)

sin(hω)

k∑
j=1

sin(jhω) = O(k) .

In this way we obtain

ẋ(nh) = −Wn−1 ẋ(0) + Wn ẋ(h) (4.9)

+
(

h
∑n

j=1(n + 1− j)h g0,0(y(jh)) ẏ0(jh)
0

)
+O(h) .

(b) For the numerical approximation we proceed similarly. Inserting the modulated
Fourier expansion of the numerical solution,

xn = yh(t) + eiωtzh(t) + e−iωtzh(t) +O(h2) for t = nh ≤ T ,

into the numerical scheme, we have with (3.12) or (4.5)

ẋn+1 − 2 cos(hω) ẋn + ẋn−1

= h2

(
g0,0ẏh,0 − 2φ(hω) sinc(hω)ω g0,1 Im (eiωtzh,1) +O(h)

ψ1(hω) g1,0ẏh,0 − 2 (ψ1φ)(hω) sinc(hω)ω g1,1 Im (eiωtzh,1) +O(h)

)

where the functions gi,j are evaluated at Φyh(t) and the argument t = nh is to be
inserted in ẏh,0 and zh,1. Under the condition (4.8) on ψ1, we obtain as in (4.9)

ẋn = −Wn−1 ẋ0 + Wn ẋ1 (4.10)

+
(

h
∑n

j=1(n + 1− j)h g0,0(Φyh(jh)) ẏh,0(jh)
0

)
+O(h) .

Since we know from the estimates (3.12) and from the proof of Theorem 4.1 that
Φyh(t) = y(t)+O(h2) and ẏh(t) = ẏ(t)+O(h2), a comparison of (4.9) and (4.10)
gives the result. 
�

XIII.4.2 Intra-Oscillatory and Oscillatory-Smooth Exchanges

In this subsection we turn to the approximation of slow effects that take place on
the time scale ω. Since solutions may depart from each other exponentially, we
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cannot expect to obtain small point-wise error bounds on such a time scale. Instead,
we take recourse to a kind of formal backward error analysis where we require
that the equations determining the modulated Fourier expansion coefficients for the
numerical method be small perturbations of those for the exact solution. It may be
expected that methods with this property – ceteribus paris – show a better long-time
behaviour, and this is indeed confirmed by the numerical experiments.

In the Fermi–Pasta–Ulam model, the oscillatory energy of the jth stiff spring is

Ij = 1
2 ẋ

2
1,j + 1

2ω
2x2

1,j ,

where x1,j is the jth component of the lower block x1 of x. In terms of the modu-
lated Fourier expansion, this is approximately, up to O(ω−1),

Ij ≈ 1
2

∣∣iωz1,je
iωt − iωz1,je

−iωt
∣∣2 + 1

2ω
2
∣∣z1,je

iωt + z1,je
−iωt

∣∣2 = 2ω2|z1,j |2 .

The energy exchange between stiff springs as shown in Fig. 2.1 is thus caused by
the slow evolution of z1 determined by (3.3). This should be modeled correctly by
the numerical method.

The term g′′0 (y)(z, z) in the differential equation for y0 in (3.3) is the dominant
term by which the oscillations of the stiff springs exert an influence on the smooth
motion. A correct incorporation of this term in the numerical method is desirable.

Upon eliminating y1 and z0 in (3.3), the differential equations for y0 and z1

become, up to O(ω−3) perturbations on the right-hand sides,

ÿ0 = g0(y0, ω
−2g1(y0, 0)) +

∂2g0

∂x2
1

(y0, 0)(z1, z1)

2iω ż1 =
∂g1

∂x1
(y0, 0) z1 .

(4.11)

This is to be compared with the analogous equations for the modulated Fourier
expansion of the numerical method, which follow from (3.11):

δ2
hyh,0 = g0(yh,0, γ ω−2g1(yh,0, 0)) + β

∂2g0

∂x2
1

(yh,0, 0)(zh,1, zh,1)

2iω żh,1 = α
∂g1

∂x1
(yh,0, 0) zh,1

(4.12)

with

α =
(ψφ)(hω)
sinc(hω)

, β = φ(hω)2 , γ =
(ψφ)(hω)

sinc2( 1
2hω)

. (4.13)

The differential equation for zh,1 is consistent with that for z1 only if α = 1, i.e.,

ψ(hω)φ(hω) = sinc(hω) . (4.14)

Among all the methods (2.6) considered, only the Deuflhard/impulse method (ψ =
sinc, φ = 1) satisfies this condition. For this method we indeed observe a qual-
itatively correct approximation of the energy exchange between stiff springs in
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Fig. 2.4, but we have also seen that the energy conservation of this method is very
sensitive to near-resonances.

A correct modeling of the slow oscillatory–smooth transfer would in addition
require β = 1 and possibly γ = 1. For general hω the condition γ = 1 is, however,
incompatible with (4.14).

Multi-force methods (2.13) offer a way out of these difficulties. For such meth-
ods, the coefficients of the modulated Fourier expansion satisfy (4.12) with (4.13)
replaced by

α =

∑
j ψj(hω)φj(hω)

sinc(hω)
, β =

∑
j

ψj(0)φj(hω)2 ,

γ =
∑

j

ψj(0)φj(hω)
∑

k ψk(hω)
sinc2( 1

2hω)
. (4.15)

The two-force method (1.23) with (1.25) has α = β = γ = 1 as desired.

XIII.5 Modulated Fourier Expansions

The decomposition of the exact and the numerical solution into modulated exponen-
tials and a remainder, as derived in Sect. XIII.3, was found useful for understanding
several important aspects of the numerical behaviour. Those few terms are, how-
ever, not sufficient for explaining the long-time near-conservation of the total and
the oscillatory energy. The expansion can be made more accurate by adding further
terms e±2iωt, e±3iωt etc. multiplied by slowly varying functions. This leads to an
asymptotic expansion which we call the modulated Fourier expansion. This expan-
sion is constructed in the present section, following Hairer & Lubich (2000a). (In
that paper the modulated Fourier expansion was called the frequency expansion.)

XIII.5.1 Expansion of the Exact Solution

The following theorem extends the construction of Sect. XIII.3.1 to arbitrary order
in ω−1.

Theorem 5.1. Consider a solution x(t) of (2.1) which satisfies the bounded-energy
condition (2.3) and stays in a compact set K for 0 ≤ t ≤ T . Then, the solution
admits an expansion

x(t) = y(t) +
∑

0<|k|<N

eikωtzk(t) + RN (t) (5.1)

for arbitrary N ≥ 2, where the remainder term and its derivative are bounded by

RN (t) = O(ω−N−2) and ṘN (t) = O(ω−N−1) for 0 ≤ t ≤ T . (5.2)
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The real-valued functions y = (y0, y1) and the complex-valued functions zk =
(zk

0 , z
k
1 ) together with all their derivatives (up to arbitrary order M ) are bounded

by
y0 = O(1), z1

0 = O(ω−3), zk = O(ω−k−2)
y1 = O(ω−2), z1

1 = O(ω−1),
(5.3)

for k = 2, . . . , N − 1. Moreover, z−k = zk for all k. These functions are unique
up to terms of size O(ω−N−2). The constants symbolized by the O-notation are
independent of ω and t with 0 ≤ t ≤ T (but they depend on N , T , on E of (2.3), on
bounds of the derivatives of the nonlinearity g(x) on K, and on the maximum order
M of considered derivatives).

Proof. We set
x∗(t) = y(t) +

∑
0<|k|<N

eikωtzk(t) (5.4)

and determine the smooth functions y(t), z(t) = z1(t), and z2(t), . . . , zN−1(t)
such that x∗(t) inserted into the differential equation (2.1) has a small defect, of size
O(ω−N ). To this end we expand g(x∗(t)) around y(t) and compare the coefficients
of eikωt. With the notation g(m)(y)zα = g(m)(y)(zα1 , . . . , zαm) for a multi-index
α = (α1, . . . , αm), there results the following system of differential equations:

(
ÿ0

ω2y1

)
+

(
0
ÿ1

)
= g(y) +

∑
s(α)=0

1
m!

g(m)(y)zα (5.5)

(
−ω2z0

2iωż1

)
+

(
2iωż0 + z̈0

z̈1

)
=

∑
s(α)=1

1
m!

g(m)(y)zα (5.6)

(
−k2ω2zk

0

(1− k2)ω2zk
1

)
+

(
2kiωżk

0 + z̈k
0

2kiωżk
1 + z̈k

1

)
=

∑
s(α)=k

1
m!

g(m)(y)zα . (5.7)

Here the sums range over all m ≥ 1 and all multi-indices α = (α1, . . . , αm) with
integers αj satisfying 0 < |αj | < N , which have a given sum s(α) =

∑m
j=1 αj .

For large ω, the dominating terms in these differential equations are given by the
left-most expressions. However, since the central terms involve higher derivatives,
we are confronted with singular perturbation problems. We are interested in smooth
functions y, z, zk that satisfy the system up to a defect of size O(ω−N ). In the spirit
of Euler’s derivation of the Euler-Maclaurin summation formula (see e.g. Hairer &
Wanner 1997) we remove the disturbing higher derivatives by using iteratively the
differentiated equations (5.5)-(5.7). This leads to a system

ÿ0 = F0(ẏ0, y, z
1, . . . , zN−1, ω−1), ż1 = ω−1F1(ẏ0, y, z

1, . . . , zN−1, ω−1)
z0 = ω−2G0(ẏ0, y, z

1, . . . , zN−1, ω−1), y1 = ω−2G1(ẏ0, y, z
1, . . . , zN−1, ω−1)

zk
0 = ω−2Gk

0 (ẏ0, y, z
1, . . . , zN−1, ω−1), zk

1 = ω−2Gk
1 (ẏ0, y, z

1, . . . , zN−1, ω−1)
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where Fj ,Gj ,Gk
j are formal series in powers of ω−1. Since we get formal algebraic

relations for y1, z0, z
k, we can further eliminate these variables in the functions

Fj ,Gj ,Gk
j . We finally obtain for y1, z1, z

k the algebraic relations

z0 = ω−2
(
G00(y0, ẏ0, z1) + ω−1G01(y0, ẏ0, z1) + . . .

)

y1 = ω−2
(
G10(y0, ẏ0, z1) + ω−1G11(y0, ẏ0, z1) + . . .

)

zk
0 = ω−2

(
Gk

00(y0, ẏ0, z1) + ω−1Gk
01(y0, ẏ0, z1) + . . .

)

zk
1 = ω−2

(
Gk

10(y0, ẏ0, z1) + ω−1Gk
11(y0, ẏ0, z1) + . . .

)
(5.8)

and a system of real second-order differential equations for y0 and complex first-
order differential equations for z1:

ÿ0 = F00(y0, ẏ0, z1) + ω−1F01(y0, ẏ0, z1) + . . .

ż1 = ω−1
(
F10(y0, ẏ0, z1) + ω−1F11(y0, ẏ0, z1) + . . .

)
.

(5.9)

At this point we can forget the above derivation and take it as a motivation for the
ansatz (5.8)-(5.9), which is truncated after the O(ω−N ) terms. We insert this ansatz
and its first and second derivatives into (5.5)-(5.7) and compare powers of ω−1. This
yields recurrence relations for the functions F k

jl, G
k
jl, which in addition show that

these functions together with their derivatives are all bounded on compact sets.
We determine initial values for (5.9) such that the function x∗(t) of (5.4) satisfies

x∗(0) = x0 and ẋ∗(0) = ẋ0. Because of the special ansatz (5.8)-(5.9), this gives a
system which, by fixed-point iteration, yields (locally) unique initial values y0(0),
ẏ0(0), z1(0) satisfying (3.5). The assumption (2.3) implies that z1(0) = O(ω−1). It
further follows from the boundedness of F1l that z1(t) = O(ω−1) for 0 ≤ t ≤ T .
Going back to (5.7), it is seen that the functions Gk

jl contain at least k times the
factor z1. This implies the stated bounds for all other functions.

It remains to estimate the error RN (t) = x(t)− x∗(t). For this we consider the
solution of (5.8)-(5.9) with the above initial values. By construction, these functions
satisfy the system (5.5)-(5.7) up to a defect of O(ω−N ). This gives a defect of size
O(ω−N ) when the function x∗(t) of (5.4) is inserted into (2.1). On a finite time
interval 0 ≤ t ≤ T , this implies RN (t) = O(ω−N ) and ṘN (t) = O(ω−N ). To
obtain the slightly sharper bounds (5.2), we apply the above proof with N replaced
by N + 2 and use the bounds (5.3) for zN and zN+1. 
�

XIII.5.2 Expansion of the Numerical Solution

Does the numerical solution of (2.1) have a modulated Fourier expansion similar
to the analytical solution? This may of course be expected, but in Sect. XIII.3.2
we encountered difficulties in constructing the first terms of the expansion in the
situation of a numerical resonance where hω is close to an integral multiple of π.
We therefore confine the discussion to the non-resonant case. We assume that h and
ω−1 lie in a subregion of the (h, ω−1)-plane of small parameters for which there
exists a positive constant c such that
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| sin(1
2khω)| ≥ c

√
h for k = 1, . . . , N, with N ≥ 2. (5.10)

This condition implies that hω is outside anO(
√
h) neighbourhood of integral mul-

tiples of π. For given h and ω, the condition imposes a restriction on N . In the
following, N is a fixed integer such that (5.10) holds. There is the following numer-
ical analogue of Theorem 5.1.

Theorem 5.2. Consider the numerical solution of the system (2.1) – (2.3) by method
(2.6) with step size h. Let the starting value x1 be given by (2.7) with n = 0 . Assume
hω ≥ c0 > 0, the non-resonance condition (5.10), and the bounds (4.1) for ψ(hω)
and φ(hω). Then, the numerical solution admits an expansion

xn = yh(t) +
∑

0<|k|<N

eikωtzk
h(t) + Rh,N (t) (5.11)

uniformly for 0 ≤ t = nh ≤ T . The remainder term is of the form

Rh,N (t) = t2hN Ψr(t) with r(t) = O
(
φ(hω)N + hm

)
, (5.12)

where m ≥ 0 can be chosen arbitrarily. The coefficient functions together with all
their derivatives (up to some arbitrarily fixed order) are bounded by

yh,0 = O(1), z1
h,0 = O(ω−2), zk

h,0 = O(ω−k),
yh,1 = O(ω−2), z1

h,1 = O(ω−1), zk
h,1 = O(ω−k)

(5.13)

for k = 2, . . . , N − 1. Moreover, z−k
h = zk

h for all k. The constants symbolized by
the O-notation are independent of ω and h with (5.10), but they depend on E, N ,
m, c, and T .

The proof covers the remainder of this subsection. It constructs a function

xh(t) = yh(t) +
∑

0<|k|<N

eikωt zk
h(t) (5.14)

with smooth coefficient functions yh(t) and zk
h(t), which has a small defect when

it is inserted into the numerical scheme (2.6). The following functional calculus is
convenient for determining the coefficient functions.

Functional Calculus. Let f be an entire complex function bounded by |f(ζ)| ≤
C eγ|ζ|. Then,

f(hD)x(t) =
∞∑

k=0

f (k)(0)
k!

hk x(k)(t)

converges for every function x which is analytic in a disk of radius r > γh around t.
If f1 and f2 are two such entire functions, then

f1(hD)f2(hD)x(t) = (f1f2)(hD)x(t)
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whenever both sides exist. We note (hD)kx(t) = hkx(k)(t) for k = 0, 1, 2, . . . and
exp(hD)x(t) = x(t + h).

We next consider the application of such an operator to functions of the form
eiωtz(t). By Leibniz’ rule of calculus we have (hD)keiωtz(t) = eiωt(hD +
ihω)kz(t). After a short calculation this yields

f(hD)eiωtz(t) = eiωtf(hD + ihω)z(t) (5.15)

where f(hD + ihω)z(t) =
∑∞

k=0 f (k)(ihω)/k! · hkz(k)(t).
An N -times continuously differentiable function x is replaced by its Taylor

polynomial of degree N − 1 at t, and f(hD)x(t) is then considered up to O(hN ).

Modified Equations for the Coefficient Functions. The difference operator of the
numerical method becomes in this notation

x(t + h)− 2 coshΩ x(t) + x(t− h) = (ehD − 2 coshΩ + e−hD)x(t).

We factorize this operator as

L(hD) := ehD − 2 coshΩ + e−hD = 2
(
cos(ihD)− coshΩ

)

= 4 sin
(

1
2hΩ + 1

2 ihD
)
sin

(
1
2hΩ − 1

2 ihD
)
.

(5.16)

The function xh(t) of (5.14) should formally (up toO(hN+2)) satisfy the difference
scheme

L(hD)xh(t) = h2Ψg
(
Φxh(t)

)
. (5.17)

We insert the ansatz (5.14), expand the right-hand side into a Taylor series around
Φyh(t), and compare the coefficients of eikωt. This yields the following formal
equations for the functions yh(t) and zk

h(t):

L(hD)yh = h2Ψ
(
g(Φyh) +

∑
s(α)=0

1
m!

g(m)(Φyh)(Φzh)α
)

L(hD + ikhω)zk
h = h2Ψ

∑
s(α)=k

1
m!

g(m)(Φyh)(Φzh)α.
(5.18)

Here, α = (α1, . . . , αm) is a multi-index as in the proof of Theorem 5.1, s(α) =∑m
j=1 αj , and (Φz)α is an abbreviation for the m-tupel (Φzα1 , . . . , Φzαm). To get

smooth functions yh(t) and zk
h(t) which solve (5.18) up to a small defect, we look

at the dominating terms in the Taylor expansions of L(hD) and L(hD + ikhω).
With the abbreviations sk = sin(1

2khω) and ck = cos( 1
2khω) we obtain

L(hD) =
(

0 0
0 4s2

1

)
−

(
1 0
0 1

)
(ihD)2 + . . .

L(hD + ihω) =
(
−4s2

1 0
0 0

)
+ 2s2

(
1 0
0 1

)
(ihD)



XIII.5 Modulated Fourier Expansions 501

− c2

(
1 0
0 1

)
(ihD)2 + . . . (5.19)

L(hD + ikhω) =
(
−4s2

k 0
0 −4sk−1sk+1

)
+ 2s2k

(
1 0
0 1

)
(ihD)

− c2k

(
1 0
0 1

)
(ihD)2 + . . . .

Construction of the Coefficient Functions. Under the non-resonance condition
(5.10), the first non-vanishing coefficients in (5.19) are the dominant ones, and the
derivation of the defining relations for yh and zk

h is the same as for the analytical
solution in Theorem 5.1; see also part (b) of the proof of Theorem 4.1. We insert
(5.19) into (5.18) and we eliminate recursively the higher derivatives. This motivates
the following ansatz for the computation of the functions yh and zk

h:

ÿh,0 = f00(·) +
√
h f01(·) + h f02(·) + . . .

ż1
h,1 =

ψ(hω)h
s2

(
f10(·) +

√
h f11(·) + . . .

)

z1
h,0 =

h2

s2
1

(
g1
00(·) +

√
h g1

01(·) + . . .
)

yh,1 =
ψ(hω)h2

s2
1

(
g10(·) +

√
h g11(·) + . . .

)
(5.20)

zk
h,0 =

h2

s2
k

(
gk
00(·) +

√
h gk

01(·) + . . .
)

zk
h,1 =

ψ(hω)h2

sk+1sk−1

(
gk
10(·) +

√
h gk

11(·) + . . .
)
,

for k = 2, . . . , N − 1, where the functions depend smoothly on the variables
yh,0, ẏh,0, φ(hω)z1

h,1 and on the bounded parameters
√
h/sk, sk, ck, ψ(hω) and

(hω)−1. Inserting this ansatz and its derivatives into (5.18) and comparing powers
of
√
h yields recurrence relations for the functions fk

jl, g
k
jl. The functions gk

jl (for
k ≥ 1) contain at least k times the factor φ(hω)z1

h,1, and f1l contains this factor at
least once. Since the series in (5.20) need not converge, we truncate them after the
hN+m+2 terms.

Initial Values. The conditions xh(0) = x0 and xh(h) = x1 determine the initial
values yh,0(0), ẏh,0(0) and zh,1(0) in the same way as in Sect. XIII.3.2. Condition
(4.1) yields again (4.6), and (2.3) then implies zh,1(0) = O(ω−1).

Defect. It follows from (4.1) that hψ(hω)φ(hω)/s2 = O(ω−1), so that ż1
h,1 =

O(ω−1z1
h,1) by (5.20). This implies z1

h,1(t) = O(ω−1) for t ≤ T . The other esti-
mates (5.13) are directly obtained from (5.20), which indeed yields the following
more refined bounds for the coefficient functions together with their derivatives:
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yh,0 = O(1), yh,1 = O(ω−2)

z1
h,0 = O(ω−3/

√
h), z1

h,1 = O(ω−1), ż1
h,1 = O(ω−2) (5.21)

zk
h,0 = O(hφ(hω)kω−k), zk

h,1 = O(hψ(hω)φ(hω)kω−k).

Consequently, the values xh(nh) inserted into the numerical scheme (2.6) yield a
defect of size O(hN+2):

xh(t + h)− 2 cos(hΩ)xh(t) + xh(t− h) =

= h2 Ψ
(
g(Φxh(t)) +O

(
φ(hω)Nω−N + hN+m

))
.

(5.22)

Standard convergence estimates then show that, on bounded time intervals, xn −
xh(nh) is of sizeO(t2hN ) and actually satisfies the finer estimate (5.12). This com-
pletes the proof of Theorem 5.2. 
�

XIII.5.3 Expansion of the Velocity Approximation

A similar expansion holds also for the velocities. We show this for the scheme (2.11)
or its equivalent one-step formulation (2.8) with (2.9).

Theorem 5.3. Under the assumptions of Theorem 5.2, the velocity approximation
ẋn given by (2.11) has an expansion

ẋn = vh(t) +
∑

0<|k|<N

eikωtwk
h(t) +O(t2hN−1)

uniformly for 0 ≤ t = nh ≤ T , where the real-valued functions vh = (vh,0, vh,1)
and the complex-valued functions wk

h = (wk
h,0, w

k
h,1) together with their derivatives

up to arbitrary order satisfy

vh,0 = ẏh,0 +O(h2), w1
h,0 = O(ω−1), wk

h,0 = O(ω−k)
w1

h,1 = iωz1
h,1 +O(ω−1), vh,1 = O(ω−1), wk

h,1 = O(ω−k)
(5.23)

for k = 2, . . . , N − 1. Moreover, w−k
h = wk

h. The constants symbolized by the
O-notation are independent of ω and h with (5.10), but depend on E, N , c, and T .

Proof. Let uh(t) be defined by the continuous analogue of (2.11),

2h sinc(hΩ)uh(t) = xh(t + h)− xh(t− h). (5.24)

Theorem 5.2 then yields that

ẋn = uh(t) +O(t2hN−1)

for t = nh on bounded time intervals. Here we used that the remainder term in the
lower component of (5.12) is of the form O(ψ(hω)(φ(hω) + h)t2hN ), so that its
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quotient with 2h sinc(hω) becomes O(t2hN−1) by the third of the conditions (4.1)
and by (5.10). The function uh(t) can be written as

uh(t) = vh(t) +
∑

0<|k|<N

eikωtwk
h(t) . (5.25)

We insert the relation (5.14) into −i sin(ihD)xh(t) = h sinc(hΩ)uh(t), which is
equivalent to (5.24), and compare the coefficients of eikωt to obtain

sinc(ihD) ẏh,0 = vh,0

sinc(ihD) ẏh,1 = sinc(hω)vh,1

(ih)−1 sin(ihD − khω) zk
h,0 = wk

h,0

(ih)−1 sin(ihD − khω) zk
h,1 = sinc(hω)wk

h,1

(5.26)

for k = 1, . . . , N − 1. In particular, for w1
h,1 we get

w1
h,1 = iω cos(ihD) z1

h,1 − iω
cos(hω)
sin(hω)

sin(ihD) z1
h,1. (5.27)

With the above equations, the estimates now follow with the bounds (5.21) of the
coefficient functions and their derivatives, using again (4.1). 
�

XIII.6 Almost-Invariants of the Modulated Fourier
Expansions

The system for the coefficients of the modulated Fourier expansion of the exact
solution is shown to have two formal invariants, which are related to the total and the
oscillatory energy. In particular, this explains the near-conservation of the oscillatory
energy over very long times. Analogous almost-invariants are shown to exist also for
the modulated Fourier expansion of the numerical solution. This forms the basis for
results on the long-time energy conservation of numerical methods, which will be
given in Sections XIII.7 and XIII.8.

XIII.6.1 The Hamiltonian of the Modulated Fourier Expansion

The equation (2.1) is a Hamiltonian system with the Hamiltonian

H(x, ẋ) = 1
2 ẋ

T ẋ + 1
2x

TΩ2x + U(x) . (6.1)

In the modulated Fourier expansion of the solution x(t) of (2.1), denote y0(t) =
y(t) and yk(t) = eikωtzk(t) (0 < |k| < N ), and let

y = (y−N+1, . . . , y−1, y0, y1, . . . , yN−1) .
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By (5.5)–(5.7) these functions satisfy

ÿk + Ω2yk = −
∑

s(α)=k

1
m!

U (m+1)(y0) yα +O(ω−N ) . (6.2)

Here, the sum is over all m ≥ 0 and all multi-indices α = (α1, . . . , αm) with
integers αj (0 < |αj | < N ) which have a given sum s(α) =

∑m
j=1 αj , and we

write yα = (yα1 , . . . , yαm). We define

U(y) = U(y0) +
∑

s(α)=0

1
m!

U (m)(y0) yα . (6.3)

From the above it follows that y(t) satisfies the system

ÿk + Ω2yk = −∇y−k U(y) +O(ω−N ) (6.4)

which, neglecting the O(ω−N ) term, is the Hamiltonian system (cf. Exercise 6)

ẏk =
∂H
∂ẏ−k

(y, ẏ), ÿk = − ∂H
∂y−k

(y, ẏ) (6.5)

with
H(y, ẏ) = 1

2

∑
|k|<N

(
(ẏ−k)T ẏk + (y−k)TΩ2yk

)
+ U(y) . (6.6)

Theorem 6.1. Under the assumptions of Theorem 5.1, the Hamiltonian of the mod-
ulated Fourier expansion satisfies

H(y(t), ẏ(t)) = H(y(0), ẏ(0)) +O(ω−N ) (6.7)

H(y(t), ẏ(t)) = H(x(t), ẋ(t)) +O(ω−1) . (6.8)

The constants symbolized by O are independent of ω and t with 0 ≤ t ≤ T , but
depend on E, N and T .

Proof. Multiplying (6.4) with (ẏ−k)T and summing up gives

∑
|k|<N

(ẏ−k)T (ÿk + Ω2yk) = − d

dt
U(y) +O(ω−N ) . (6.9)

Integrating from 0 to t and using y−k = yk then yields (6.7).
By the bounds of Theorem 5.1, we have for 0 ≤ t ≤ T

H(y, ẏ) = 1
2‖ẏ

0
0‖2 + ‖ẏ1

1‖2 + ω2‖y1
1‖2 + U(y0) +O(ω−1). (6.10)

On the other hand, we have from (6.1) and (5.1)

H(x, ẋ) = 1
2‖ẏ

0
0‖2+ 1

2‖ẏ
1
1 + ẏ−1

1 ‖2+ 1
2ω

2‖y1
1 +y−1

1 ‖2+U(y0)+O(ω−1). (6.11)

Using y1
1 = eiωtz1

1 and ẏ1
1 = eiωt(ż1

1 + iωz1
1) together with y−1

1 = y1
1 , it follows

from ż1
1 = O(ω−1) that ẏ1

1 + ẏ−1
1 = iω(y1

1−y−1
1 )+O(ω−1) and ‖ẏ1

1‖ = ω‖y1
1‖+

O(ω−1). Inserted into (6.10) and (6.11), this yields (6.8). 
�
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XIII.6.2 A Formal Invariant Close to the Oscillatory Energy

In addition to the Hamiltonian H(y, ẏ), the system for the coefficients of the mod-
ulated Fourier expansion has another formally conserved quantity. This almost-
invariant depends only on the oscillating part and is given by

I(y, ẏ) = − iω
∑

0<|k|<N

k (y−k)T ẏk. (6.12)

This turns out to be close to the energy of the harmonic oscillator,

I(x, ẋ) = 1
2‖ẋ1‖2 + 1

2ω
2‖x1‖2 . (6.13)

Theorem 6.2. Under the assumptions of Theorem 5.1,

I(y(t), ẏ(t)) = I(y(0), ẏ(0)) +O(ω−N ) (6.14)

I(y(t), ẏ(t)) = I(x(t), ẋ(t)) +O(ω−1) . (6.15)

The constants symbolized by O are independent of ω and t with 0 ≤ t ≤ T , but
depend on E, N and T .

Proof. For the vector

y(λ) =
(
ei(−N+1)λy−N+1, . . . , e−iλy−1, y0, eiλy1, . . . , ei(N−1)λyN−1

)

the definition (6.3) of U shows that U(y(λ)) does not depend on λ. Its derivative
with respect to λ thus yields

0 =
d

dλ
U(y(λ)) =

∑
0<|k|<N

ik eikλ(yk)T ∇k U(y(λ)) ,

and putting λ = 0 we obtain
∑

0<|k|<N

ik (yk)T ∇k U(y) = 0 (6.16)

for all vectors y = (y−N+1, . . . , y−1, y0, y1, . . . , yN−1).
The proof of Theorem 6.2 is now very similar to that of Theorem 6.1. We mul-

tiply the relation (6.4) with −iωk(y−k)T instead of (ẏ−k)T . Summing up yields,
with the use of (6.16),

−iω
∑

0<|k|<N

k (y−k)T
(
ÿk + Ω2yk

)
= O(ω−N ) . (6.17)

The time derivative of I(y, ẏ) of (6.12) equals

d

dt
I(y, ẏ) = − iω

∑
0<|k|<N

k
(
(y−k)T ÿk + (ẏ−k)T ẏk

)
. (6.18)
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In the sums
∑

k k(y−k)TΩ2yk and
∑

k k(ẏ−k)T ẏk, the terms with k and −k can-
cel. Hence, (6.17) and (6.18) together yield

d

dt
I(y, ẏ) = O(ω−N ) ,

which implies (6.14).
With ẏk = eikωt(żk + ikωzk) = ikωyk +O(ω−1), it follows from the bounds

of Theorem 5.1 that
I(y, ẏ) = 2ω2‖y1

1‖2 +O(ω−1).

On the other hand, using the arguments of the proof of Theorem 6.1, we have

I(x, ẋ) = 1
2‖ẏ

1
1 + ẏ−1

1 ‖2 + 1
2ω

2‖y1
1 + y−1

1 ‖2 +O(ω−1) = 2ω2‖y1
1‖2 +O(ω−1).

This proves the second statement of the theorem. 
�

Theorem 6.2 implies that the oscillatory energy is nearly conserved over long
times:

Theorem 6.3. If the solution x(t) of (2.1) stays in a compact set for 0 ≤ t ≤ ωN ,
then

I(x(t), ẋ(t)) = I(x(0), ẋ(0)) +O(ω−1) +O(tω−N ) .

The constants symbolized by O are independent of ω and t with 0 ≤ t ≤ ωN , but
depend on E and N .

Proof. With a fixed T > 0, let yj denote the vector of the modulated Fourier ex-
pansion terms that correspond to starting values (x(jT ), ẋ(jT )). For t = (n + θ)T
with 0 ≤ θ < 1, we have by (6.15)

I(x(t), ẋ(t))− I(x(0), ẋ(0))

= I(yn(θT ), ẏn(θT )) +O(ω−1)− I(y0(0), ẏ0(0)) +O(ω−1)

= I(yn(θT ), ẏn(θT ))− I(yn(0), ẏn(0)) +
n−1∑
j=0

(
I(yj+1(0), ẏj+1(0))− I(yj(0), ẏj(0))

)
+O(ω−1) .

We note
I(yj+1(0), ẏj+1(0))− I(yj(0), ẏj(0)) = O(ω−N ) ,

because, by the quasi-uniqueness of the coefficient functions as stated by Theo-
rem 5.1, we have yj+1(0) = yj(T ) +O(ω−N ) and ẏj+1(0) = ẏj(T ) +O(ω−N ),
and we have the bound (6.14) of Theorem 6.2. The same argument applies to
I(yn(θT ), ẏn(θT ))− I(yn(0), ẏn(0)). This yields the result. 
�



XIII.6 Almost-Invariants of the Modulated Fourier Expansions 507

In a different approach, Benettin, Galgani & Giorgilli (1987) use a sequence
of coordinate transformations from Hamiltonian perturbation theory to show that I
has only small deviations over time intervals which grow exponentially with ω, in
the case of an analytic potential U . By carefully tracing the dependence on N of
the constants in the O(ω−N )-terms, near-conservation of I over exponentially long
time intervals can be shown also within the present framework of modulated Fourier
expansions; see Cohen, Hairer & Lubich (2003).

XIII.6.3 Almost-Invariants of the Numerical Method

We show that the coefficients of the modulated Fourier expansion of the numerical
solution have almost-invariants that are obtained similarly to the above. We denote

yh = (y−N+1
h , . . . , y−1

h , y0
h, y

1
h, . . . , y

N−1
h )

zh = (z−N+1
h , . . . , z−1

h , z0
h, z

1
h, . . . , z

N−1
h )

with y0
h(t) = z0

h(t) = yh(t) and yk
h(t) = eikωtzk

h(t), where yh and zk
h are the

coefficients of the modulated Fourier expansion of Theorem 5.2. Similar to (6.3) we
consider the function

Uh(yh) = U(Φy0
h) +

∑
s(α)=0

1
m!

U (m)(Φy0
h)(Φyh)α , (6.19)

where the sum is again taken over all m ≥ 1 and all multi-indices α = (α1, . . . , αm)
with 0 < |αj | < N for which s(α) =

∑
j αj = 0. It then follows from (5.22),

multiplied with h−2Ψ−1Φ, that the functions yk
h(t) satisfy

Ψ−1Φh−2L(hD) yk
h = −∇−k Uh(yh) +O(hN ) , (6.20)

where L(hD) of (5.16) denotes again the difference operator of the numerical
method. The similarity of these relations to (6.4) allows us to obtain almost-
conserved quantities that are analogues of H and I above.

The First Almost-Invariant. We multiply (6.20) by (ẏ−k
h )T , and as in (6.9) we

obtain ∑
|k|<N

(ẏ−k
h )TΨ−1Φh−2L(hD)yk

h +
d

dt
Uh(yh) = O(hN ) .

Since we know bounds of the coefficient functions zk
h and of their derivatives from

Theorem 5.2, we switch to the quantities zk
h and we get the equivalent relation

∑
|k|<N

(ż−k
h −ikωz−k

h )TΨ−1Φh−2L(hD+ikωh)zk
h+

d

dt
Uh(zh) = O(hN ). (6.21)

We shall show that the left-hand side is the total derivative of an expression that
depends only on zk

h and derivatives thereof. Consider first the term for k = 0. The
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symmetry of the numerical method enters at this very point in the way that the
expression L(hD)y = h2ÿ + c4h

4y(4) + c6h
6y(6) + . . . contains only terms with

derivatives of an even order. Multiplied with ẏT , even-order derivatives of y give a
total derivative:

ẏT y(2l) =
d

dt

(
ẏT y(2l−1) − ÿT y(2l−2) + . . .∓ (y(l−1))T y(l+1) ± 1

2
(y(l))T y(l)

)
.

Thanks to the symmetry of the difference operator L(hD) only expressions of this
type appear in the term for k = 0 in (6.21), with z0

h in the role of y. Similarly, we
get for z = zk

h and z = z−k
h with 0 < |k| < N

Re ż
T
z(2l) = Re

d

dt

(
ż

T
z(2l−1) − . . .∓ (z(l−1))T z(l+1) ± 1

2
(z(l))T z(l)

)

Re zT z(2l+1) = Re
d

dt

(
zT z(2l) − . . .± (z(l−1))T z(l+1) ∓ 1

2
(z(l))T z(l)

)

Im ż
T
z(2l+1) = Im

d

dt

(
ż

T
z(2l) − z̈

T
z(2l−1) + . . .∓ (z(l))T z(l+1)

)

Im zT z(2l+2) = Im
d

dt

(
zT z(2l+1) − ż

T
z(2l) + . . .± (z(l))T z(l+1)

)
.

Using the formulas (5.19) for L(hD + ikhω), it is seen that the term for k in (6.21)
has an asymptotic h-expansion with expressions of the above type as coefficients.
The left-hand side of (6.21) can therefore be written as the time derivative of a
function Ĥh[zh](t) which depends on the values at t of the coefficient function
vector zh and its first N time derivatives. The relation (6.21) thus becomes

d

dt
Ĥh[zh](t) = O(hN ) .

Together with the estimates of Theorem 5.2, this construction of Ĥh yields the fol-
lowing result.

Lemma 6.4. Under the assumptions of Theorem 5.2, the coefficient functions zh =
(z−N+1

h , . . . , z−1
h , yh, z

1
h, . . . , z

N−1
h ) of the modulated Fourier expansion of the nu-

merical solution satisfy

Ĥh[zh](t) = Ĥh[zh](0) + O(thN ) (6.22)

for 0 ≤ t ≤ T . Moreover,

Ĥh[zh](t) = 1
2 ‖ẏh,0(t)‖2 +σ(hω) 2ω2 ‖z1

h,1(t)‖2 +U(Φyh(t))+O(h2), (6.23)

where σ(hω) = sinc(hω)φ(hω)/ψ(hω). 
�
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The Second Almost-Invariant. By the same calculation as in the proof of Theo-
rem 6.2 we obtain for Uh(yh(t)) of (6.19)

0 =
∑

0<|k|<N

ikω (yk
h)T ∇k Uh(yh) .

It then follows from (6.20) that

− iω
∑

0<|k|<N

k(y−k
h )TΨ−1Φh−2L(hD)yk

h = O(hN ) .

Written in the z variables, this becomes

− iω
∑

0<|k|<N

k(z−k
h )TΨ−1Φh−2L(hD + ikωh)zk

h = O(hN ) . (6.24)

As in (6.21), the left-hand expression can be written as the time derivative of a
function Îh[zh](t) which depends on the values at t of the function zh and its first
N derivatives:

d

dt
Îh[zh](t) = O(hN ) .

Together with the estimates of Theorem 5.2 this yields the following result.

Lemma 6.5. Under the assumptions of Theorem 5.2, the coefficient functions zh of
the modulated Fourier expansion of the numerical solution satisfy

Îh[zh](t) = Îh[zh](0) + O(thN ) (6.25)

for 0 ≤ t ≤ T . Moreover,

Îh[zh](t) = σ(hω) 2ω2 ‖z1
h,1(t)‖2 +O(h2) , (6.26)

where again σ(hω) = sinc(hω)φ(hω)/ψ(hω). 
�

Symplectic methods have ψ(ξ) = sinc(ξ)φ(ξ) and hence σ(hω) = 1. To be
able to also treat methods where σ(hω) can be small, we need to sharpen the esti-
mates of Lemma 6.5. Close scrutiny of the equations (5.20) that determine the co-
efficient functions of the modulated Fourier expansion, shows that the O(h2) term
in (6.26) contains a factor φ(hω)2, and that the O(thN ) term in (6.25) can be put in
the form O(tφ(hω)NhN ) +O(thN+m) with an arbitrary integer m ≥ 0; cf. (5.12).
Assume now that

φ is analytic with no real zeros other than integral multiples of π. (6.27)

This condition ensures that |φ(hω)|2 ≥ chm for some m if hω satisfies (5.10).
Under the conditions of Theorem 5.2, in particular, (4.1) and (5.10), the improved
bounds of the remainder terms yield the following estimates for Ih = Îh/σ(hω):
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Ih[zh](t) = Ih[zh](0) + O(thN ) (6.28)

Ih[zh](t) = 2ω2 ‖z1
h,1(t)‖2 +O(h2) . (6.29)

Relationship with the Total and the Oscillatory Energy. The almost-invariants

Ih =
1

σ(hω)
Îh , Hh = Ĥh −

(
1− 1

σ(hω)

)
Îh (6.30)

of the coefficient functions of the modulated Fourier expansion are then close to the
total energy H and the oscillatory energy I along the numerical solution (xn, ẋn):

Theorem 6.6. Under the conditions of Theorems 5.2 and condition (6.27),

Hh[zh](t) = Hh[zh](0) +O(thN ) , Ih[zh](t) = Ih[zh](0) +O(thN )
Hh[zh](t) = H(xn, ẋn) +O(h) , Ih[zh](t) = I(xn, ẋn) +O(h)

holds for 0 ≤ t = nh ≤ T . The constants symbolized by O depend on E, N and T .

Proof. The upper two relations follow directly from (6.22) and (6.28). Theorems 5.2
and 5.3 show

ω xn,1 = ω
(
eiωtz1

h,1(t) + e−iωtz−1
h,1(t)

)
+O(h)

ẋn,1 = iω
(
eiωtz1

h,1(t)− e−iωtz−1
h,1(t)

)
+O(h) .

With the identity ‖v + v‖2 + ‖v − v‖2 = 4‖v‖2, this implies

I(xn, ẋn) = 2ω2 ‖z1
h,1(t)‖2 +O(h) .

A comparison with (6.29) then gives the stated relation between I and Ih. The
relation between H and Hh is proved in the same way, using in addition (6.23). 
�

XIII.7 Long-Time Near-Conservation of Total
and Oscillatory Energy

With the results of the previous section, we can now show that the numerical method
nearly preserves the total energy H and the oscillatory energy I over time intervals
of length CNh−N+1, for any N for which the non-resonance condition (5.10) is
satisfied. Such a result is due to Hairer & Lubich (2000a).
For convenience we restate the assumptions:

• the energy bound (2.3): 1
2‖ẋ(0)‖2 + 1

2‖Ωx(0)‖2 ≤ E ;
• the condition on the numerical solution: the values Φxn stay in a compact

subset of a domain on which the potential U is smooth;
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• the conditions on the filter functions: ψ and φ are even, real-analytic, and have
no real zeros other than integral multiples of π; they satisfy ψ(0) = φ(0) = 1
and (4.1):

|ψ(hω)| ≤ C1 sinc2( 1
2hω) , |φ(hω)| ≤ C2 |sinc( 1

2hω)| ,
|ψ(hω)φ(hω)| ≤ C3 |sinc(hω)| ;

(7.1)

• the condition hω ≥ c0 > 0 ;
• the non-resonance condition (5.10): for some N ≥ 2,

| sin(1
2khω)| ≥ c

√
h for k = 1, . . . , N.

Theorem 7.1. Under the above conditions, the numerical solution of (2.1) obtained
by the method (2.7)–(2.8) with (2.9) satisfies

H(xn, ẋn) = H(x0, ẋ0) +O(h)
I(xn, ẋn) = I(x0, ẋ0) +O(h)

for 0 ≤ nh ≤ h−N+1.

The constants symbolized by O are independent of n, h, ω satisfying the above
conditions, but depend on N and the constants in the conditions.

Proof. The estimates of Theorem 6.6 hold uniformly over bounded intervals. We
now apply those estimates repeatedly on intervals of length h, for modulated Fourier
expansions corresponding to different starting values. As long as (xn, ẋn) satisfies
the bounded-energy condition (2.3) (possibly with a larger constant E), Theorem 5.2
gives a modulated Fourier expansion that corresponds to starting values (xn, ẋn).
We denote the vector of coefficient functions of this expansion by zn(t):

zn = (z−N+1
n , . . . , z−1

n , yn, z
1
n, . . . , z

N−1
n )

(omitting the notational dependence on h for simplicity). Because of the uniqueness,
up toO(hN+1), of the coefficient functions of the modulated Fourier expansion con-
structed by (5.20), the following diagram commutes up to terms of size O(hN+1):

(xn, ẋn) ←→ (zn(0), żn(0))

(
numerical
method

( flow

(zn(h), żn(h))

= (up to O(hN+1))

(xn+1, ẋn+1) ←→ (zn+1(0), żn+1(0))

The construction of the coefficient functions via (5.20) shows that also higher deriv-
atives of zn at h and zn+1 at 0 differ by only O(hN+1). From the above diagram
and Theorem 6.6 we thus obtain
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Hh[zn+1](0) = Hh[zn](h) +O(hN+1)
= Hh[zn](0) +O(hN+1) .

Repeated use of this relation gives

Hh[zn](0) = Hh[z0](0) +O(nhN+1) .

Moreover, by Theorem 6.6 the coefficient functions corresponding to the starting
values (xn, ẋn) and (x0, ẋ0) satisfy

Hh[zn](0) = H(xn, ẋn) +O(h) ,

Hh[z0](0) = H(x0, ẋ0) +O(h) .

So we obtain

H(xn, ẋn)−H(x0, ẋ0) = Hh[zn](0)−Hh[z0](0) +O(h)
= O(nhN+1) +O(h) ,

which gives the desired bound for the deviation of the total energy along the numer-
ical solution. The same argument applies to I(xn, ẋn). 
�

The imposed bounds of ψ and φ become important when hω is close to an
integral multiple of π. Are these conditions also sufficient to guarantee favourable
energy behaviour uniformly in hω, arbitrarily close to multiples of π? Unfortunately
the answer is negative (see Fig. 2.5 to Fig. 2.7). The analysis of method (2.7)–(2.9)
for exact resonances hω = mπ with integer m shows that stronger conditions

|ψ(hω)| ≤ C |sinc(hω)| , |ψ(hω)φ(hω)| ≤ C sinc2(hω) (7.2)

are required. Even this is not sufficient for near-conservation of the total and the
oscillatory energy for hω near a multiple of π. For linear problems

ẍ +
(

0 0
0 ω2

)
x = −Ax

with a two-dimensional symmetric matrix A with a00 > 0, and with initial values
satisfying the bounded-energy condition (2.3), Hairer & Lubich (2000a) show that
the numerical method conserves the total energy up to O(h) uniformly for all times
and for all values of hω, if and only if

ψ(ξ) = sinc2(ξ)φ(ξ) . (7.3)

There is no method (2.7)-(2.8) which approximately preserves the oscillatory energy
I uniformly for all hω in a fixed open interval that contains a multiple of 2π.

In summary, the bad effect of step-size resonances on the energy behaviour of
the method cannot be eliminated, but it can be considerably mitigated by an appro-
priate choice of the filter functions ψ and φ.
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XIII.8 Energy Behaviour of the Störmer–Verlet
Method

The results of Sections XIII.5–XIII.7 provide new insight into the energy behav-
iour of the classical Störmer–Verlet method. We present in this section weakened
versions of results of Hairer & Lubich (2000b).

In applications, the Störmer–Verlet method is typically used with step sizes h for
which the product with the highest frequency ω is in the range of linear stability, but
is bounded away from 0. For example, in spatially discretized wave equations, hω
is known as the CFL number, which is typically kept near 1. Values of hω around 1

2
are often used in molecular dynamics. In contrast, the backward error analysis of
Chap. IX explains the long-time energy behaviour only for hω → 0.

Consider now applying the Störmer–Verlet method to the nonlinear model prob-
lem (2.1)-(2.3),

xn+1 − 2xn + xn−1 = −h2Ω2xn − h2∇U(xn) , (8.1)

with hω < 2 for linear stability. The method is made accessible to the analysis
of Sections XIII.3–XIII.7 by rewriting it as a trigonometric method (2.6) with a
modified frequency:

xn+1 − 2 cos(hΩ̃)xn + xn−1 = −h2∇U(xn) , (8.2)

where

Ω̃ =
(

0 0
0 ω̃I

)
with sin( 1

2hω̃) = 1
2hω . (8.3)

The velocity approximation

ẋn =
xn+1 − xn−1

2h

does not correspond to the velocity approximation (2.11) of the trigonometric
method, but this presents only a minor technical difficulty. We show that the fol-
lowing modified energies are well conserved by the Störmer–Verlet method:

H∗(x, ẋ) = H(x, ẋ) + 1
2γ ‖ẋ1‖2

I∗(x, ẋ) = I(x, ẋ) + 1
2γ ‖ẋ1‖2

with γ =
1

1− 1
4 (hω)2

− 1 . (8.4)

Here H and I are again the total and the oscillatory energy of the system (2.1)
(defined with the original ω, not with ω̃).

Theorem 8.1. Let the Störmer–Verlet method be applied to the problem (2.1)-(2.3)
with a step size h for which 0 < c0 ≤ hω ≤ c1 < 2 and | sin(1

2khω̃)| ≥ c
√
h

for k = 1, . . . , N for some N ≥ 2 and c > 0. Suppose further that the numerical
solution values xn stay in a region on which all derivatives of U are bounded. Then,
the modified energies along the numerical solution satisfy
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H∗(xn, ẋn) = H∗(x0, ẋ0) +O(h)
I∗(xn, ẋn) = I∗(x0, ẋ0) +O(h)

for 0 ≤ nh ≤ h−N+1 . (8.5)

The constants symbolized byO are independent of n, h, ω with the above conditions.

Proof. With the modified velocities x′
n defined by

2h sinc(hΩ̃)x′
n = xn+1 − xn−1

method (8.2) becomes a method (2.6) with (2.11), or equivalently (2.7)-(2.8), with
ω̃ instead of ω and with ψ(ξ) = φ(ξ) = 1.

The condition 0 < c0 ≤ hω ≤ c1 < 2 implies | sin(1
2khω̃)| ≥ c2 > 0 for

k = 1, 2, and hence conditions (7.1) are trivially satisfied with hω̃ instead of hω.
We are thus in the position to apply Theorem 7.1, which yields

H̃(xn, x
′
n) = H̃(x0, x

′
0) +O(h)

Ĩ(xn, x
′
n) = Ĩ(x0, x

′
0) +O(h)

for 0 ≤ nh ≤ h−N+1 , (8.6)

where H̃ and Ĩ are defined in the same way as H and I , but with ω̃ in place of ω.
The components of the Störmer–Verlet velocities ẋn and the modified velocities x′

n

are related by

ẋn,0 = x′
n,0 , ẋn,1 = sinc(hω̃)x′

n,1 =
ω

ω̃

√
1− 1

4h
2ω2 x′

n,1 , (8.7)

so that

Ĩ(xn, x
′
n) = 1

2
‖x′

n,1‖2 + 1

2
ω̃2‖xn,1‖2

= 1

2

ω̃2

ω2

1
1− 1

4h
2ω2

‖ẋn,1‖2 + 1

2

ω̃2

ω2
ω2‖xn,1‖2

=
ω̃2

ω2
I∗(xn, ẋn) .

(8.8)

Similarly,

H∗(xn, ẋn) = 1

2
‖ẋn,0‖2 + U(xn) + I∗(xn, ẋn)

= H̃(xn, x
′
n) +

(
ω2

ω̃2
− 1

)
Ĩ(xn, x

′
n) ,

(8.9)

and hence (8.6) yields the result. 
�

For fixed hω ≥ c0 > 0 and h → 0, the maximum deviation in the energy does
not tend to 0, due to the highly oscillatory term 1

2γ‖ẋ1‖2 in H∗(x, ẋ) and I∗(x, ẋ).
We show, however, that time averages of H and I are nearly preserved over long
time. For an arbitrary fixed T > 0, consider the averages over intervals of length T ,
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Hn =
1
T

h
∑

|jh|≤T/2

H(xn+j , ẋn+j)

In =
1
T

h
∑

|jh|≤T/2

I(xn+j , ẋn+j) .

(8.10)

Theorem 8.2. Under the conditions of Theorem 8.1, the time averages of the total
and the oscillatory energy along the numerical solution satisfy

Hn = H0 +O(h)

In = I0 +O(h)
for 0 ≤ nh ≤ h−N+1 . (8.11)

The constants symbolized byO are independent of n, h, ω with the above conditions.

Proof. We show

Hn = H∗(xn, ẋn)− 1

2

γ

1 + γ
I∗(xn, ẋn) +O(h)

In = I∗(xn, ẋn)− 1

2

γ

1 + γ
I∗(xn, ẋn) +O(h) ,

(8.12)

which implies the result by Theorem 8.1. Consider the modulated Fourier expan-
sions of xn and x′

n for t = nh in a bounded interval. Theorem 5.3 shows that

x′
n,1 = iω̃

(
eiω̃tz1

h,1(t)− e−iω̃tz1
h,1(t)

)
+O(h) , t = nh ,

with z1
h,1(t) from the modulated Fourier expansion of Theorem 5.2 (with ω̃ instead

of ω). With (8.7) it follows that

ẋn,1 = iω
√

1− 1
4h

2ω2
(
eiω̃tz1

h,1(t)− e−iω̃tz1
h,1(t)

)
+O(h) ,

and therefore, recalling the definition of γ,

‖ẋn,1‖2 = ω2 1
1 + γ

(
2 ‖z1

h,1(t)‖2 − 2 Re e2iω̃tz1
h,1(t)

2
)

+O(h) .

Theorems 5.2 and 5.3 yield

2ω̃2‖z1
h,1(t)‖2 = Ĩ(xn, x

′
n) +O(h)

and hence, by (8.8),

2ω2‖z1
h,1(t)‖2 = I∗(xn, ẋn) +O(h) .

A partial summation shows that the time average over the highly oscillatory terms
e2iω̃tω2z1

h,1(t)
2 is O(h). This finally gives

1
T

h
∑

|j|≤T/2

‖ẋj,1‖2 =
1

1 + γ
I∗(xn, ẋn) +O(h) .

Taking the time averages in the expressions of the definition (8.4) of H∗ and I∗ then
yields (8.12). 
�
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Fig. 8.1. Total energies (left) and their predicted averages (right) for the Störmer–Verlet
method and for two different initial values, with ω = 50 and h such that hω = 0.8

Figure 8.1 illustrates the above result. It shows the total energy H for two dif-
ferent initial values on the left, and the averages as predicted by the expression on
the right-hand side of (8.12) on the right picture. The initial values are as in Chap. I
with the exception of x1,1(0) and ẋ1,1(0). We take x1,1(0) =

√
2/ω, ẋ1,1(0) = 0

for one set of initial values and x1,1(0) = 0, ẋ1,1(0) =
√

2 for the other. The total
energies at the initial values are 2.00240032 and 2, respectively.

XIII.9 Systems with Several Constant Frequencies

This section studies the conservation of invariants and almost-invariants along nu-
merical approximations of an extension of (2.1) to systems with the Hamiltonian
function

H(p, q) = 1

2
pTM−1p +

1
2ε2

qTAq + U(q) (9.1)

with a positive definite constant matrix M and a positive semi-definite constant
matrix A. With the Cholesky decomposition M = LLT and the canonical transfor-
mation p̃ = L−1p, q̃ = LT q we obtain a Hamiltonian where the mass matrix is the
identity matrix and A is transformed to Ã = L−1AL−T . Diagonalizing Ã = QΛQT

and transforming to x = QT q̃ then yields a Hamiltonian of the form (we omit the
tilde on Ũ(x) = U(q) and H̃(x, ẋ) = H(p, q))

H(x, ẋ) = 1

2

�∑
j=0

(
‖ẋj‖2 +

λ2
j

ε2
‖xj‖2

)
+ U(x), (9.2)

where x = (x0, x1, . . . , x�) with xj ∈ R
dj , λ0 = 0, and λj > 0 for j ≥ 1 are all

distinct. After rescaling ε we may assume λj ≥ 1 for j = 1, . . . , �.
Following Cohen, Hairer & Lubich (2004) we extend the results of the previous

sections to the multi-frequency case � > 1. Modulated Fourier expansions are again
the basic analytical tool. A new aspect is possible resonance among the λj .
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XIII.9.1 Oscillatory Energies and Resonances

The equations of motion for the Hamiltonian system (9.2) can be written as the
system of second-order differential equations

ẍ = −Ω2x + g(x), (9.3)

where Ω = diag(ωjI) with the frequencies ωj = λj/ε and g(x) = −∇U(x). As
suitable numerical methods we consider again the class of trigonometric integrators
studied in Sect. XIII.2, (2.6) with (2.11), with filter functions ψ and φ.

We are interested in the long-time near-conservation of the total energy H(x, ẋ)
and the oscillatory energies

Ij(x, ẋ) =
1
2

(
‖ẋj‖2 +

λ2
j

ε2
‖xj‖2

)
for j ≥ 1 (9.4)

or suitable linear combinations thereof. Benettin, Galgani & Giorgilli (1989) have
shown that the quantities

Iµ(x, ẋ) =
�∑

j=1

µj

λj
Ij(x, ẋ) (9.5)

are approximately preserved along every bounded solution of the Hamiltonian sys-
tem that has a total energy bounded independently of ε, on exponentially long time
intervals of size O(ec/ε) if the potential U(x) is analytic and µ = (µ1, . . . , µ�) is
orthogonal to the resonance module

M = {k ∈ Z
� : k1λ1 + . . . + k�λ� = 0}, (9.6)

if a diophantine non-resonance condition holds outside M. (Cf. also Sect. XIII.9.4
below.)

Since µ = λ is orthogonal to M, the total oscillatory energy
∑�

j=1 Ij(x, ẋ) of
the system is approximately preserved independently of the resonance module M.
Subtracting this expression from the total energy (1.7), we see that also the smooth
energy

K(x, ẋ) = 1

2
‖ẋ0‖2 + U(x) (9.7)

is approximately preserved. With an ε-independent bound of the total energy H(x, ẋ)
we have xj = O(ε) for j = 1, . . . , �, so that K(x, ẋ) is close to the Hamiltonian
of the reduced system in which all oscillatory degrees of freedom are taken out,
H0(x0, ẋ0) = 1

2‖ẋ0‖2 + U(x0, 0, . . . , 0).

Example 9.1. To illustrate the conservation of the various energies, we consider a
Hamiltonian (1.7) with � = 3, λ = (1,

√
2, 2) and we assume that the dimensions of

xj are all 1 with the exception of that of x1 = (x1,1, x1,2) which is 2. The resonance
module is then M = {(k1, 0, k3) ; k1 + 2k3 = 0}. We take ε−1 = ω = 70, the
potential
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Fig. 9.1. Oscillatory energies of the individual components (the frequencies λjω = λj/ε
are indicated) and the sum I1 + I3 of the oscillatory energies corresponding to the resonant
frequencies ω and 2ω

U(x) = (0.05 + x1,1 + x1,2 + x2 + 2.5x3)4 + 1

8
x2

0 x2
1,1 + 1

2
x2

0, (9.8)

and x(0) = (1, 0.3ε, 0.8ε,−1.1ε, 0.7ε), ẋ(0) = (−0.2, 0.6, 0.7,−0.9, 0.8) as ini-
tial values. We consider Iµ for µ = (1, 0, 2) and µ = (0,

√
2, 0), which are both

orthogonal toM. In Fig. 9.1 we plot the oscillatory energies for the individual com-
ponents of the system. The corresponding frequencies are attached to the curves.
We also plot the sum I1 + I3 of the three oscillatory energies corresponding to the
resonant frequencies 1/ε and 2/ε. We see that I1 + I3 as well as I2 (which are Iµ

for the above two vectors µ ⊥ M) are well conserved over long times up to small
oscillations of size O(ε). There is an energy exchange between the two components
corresponding to the same frequency 1/ε, and on a larger scale an energy exchange
between I1 and I3.

Numerical Experiment. As a first method we take (2.6) with φ(ξ) = 1 and ψ(ξ) =
sinc(ξ), and we apply it with large step sizes so that hω = h/ε takes the values 1, 2,
4, and 8. Figure 9.2 shows the various oscillatory energies which can be compared to
the exact values in Fig. 9.1. For all step sizes, the oscillatory energy corresponding to
the frequency

√
2ω and the sum I1 + I3 are well conserved on long time intervals.

Oscillations in these expressions increase with h. The energy exchange between
resonant frequencies is close to that of the exact solution. We have not plotted the
total energy H(xn, ẋn) nor the smooth energy K(xn, ẋn) of (9.7). Both are well
conserved over long times.

We repeat this experiment with the method where φ(ξ) = 1 and ψ(ξ) =
sinc2(ξ/2) (Fig. 9.3). Only the oscillatory energy corresponding to

√
2ω is approx-

imately conserved over long times. Neither the expression I1 + I3 nor the total
energy (not shown) are conserved. The smooth energy K(xn, ẋn) is, however, well
conserved.

Figure 9.4 shows the corresponding result for the method with φ(ξ) = sinc(ξ)
and ψ(ξ) = sinc(ξ)φ(ξ). The oscillatory energy for

√
2ω and also I1 + I3 are well

conserved. However, the energy exchange between the resonant frequencies is not
correctly reproduced.
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Fig. 9.2. Oscillatory energies as in Fig. 9.1 along the numerical solution of (2.6) with φ(ξ) =
1 and ψ(ξ) = sinc(ξ)
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Fig. 9.3. Oscillatory energies as in Fig. 9.1 along the numerical solution of (2.6) with φ(ξ) =
1 and ψ(ξ) = sinc2(ξ/2)
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Fig. 9.4. Oscillatory energies as in Fig. 9.1 along the numerical solution of (2.6) with φ(ξ) =
sinc(ξ) and ψ(ξ) = sinc(ξ)φ(ξ)

XIII.9.2 Multi-Frequency Modulated Fourier Expansions

The above numerical phenomena can be understood with a multi-frequency version
of the modulated Fourier expansions studied in the previous chapter. We only outline
the derivation and properties, since they are in large parts similar to the single-
frequency case. More details can be found in Cohen, Hairer & Lubich (2004). We
assume conditions that extend those of the previous sections:

• The energy of the initial values is bounded independently of ε,

1

2
‖ẋ(0)‖2 + 1

2
‖Ωx(0)‖2 ≤ E . (9.9)



520 XIII. Oscillatory Differential Equations with Constant High Frequencies

• The numerical solution values Φxn stay in a compact subset of a domain on which
the potential U is smooth.

• We impose a lower bound on the step size: h/ε ≥ c0 > 0.
• We assume the numerical non-resonance condition

∣∣∣ sin
( h

2ε
k · λ

)∣∣∣ ≥ c
√
h for all k ∈ Z

� \M with |k| ≤ N, (9.10)

for some N ≥ 2 and c > 0.
• For the filter functions we assume that for ξj = hλj/ε (j = 1, . . . , �),

|ψ(ξj)| ≤ C1 sinc2( 1
2ξj) ,

|φ(ξj)| ≤ C2 |sinc( 1
2ξj)| ,

|ψ(ξj)| ≤ C3 |sinc(ξj)φ(ξj)| .
(9.11)

The conditions on the filter functions are somewhat stronger than necessary, but they
facilitate the presentation in the following.

For a given vector λ = (λ1, . . . , λ�) and for the resonance module M defined
by (9.6), we let K be a set of representatives of the equivalence classes in Z

�/M
which are chosen such that for each k ∈ K the sum |k| = |k1|+ . . .+ |k�| is minimal
in the equivalence class [k] = k +M, and with k ∈ K, also −k ∈ K. We denote,
for N of (6.3),

N = {k ∈ K : |k| < N}, N ∗ = N \ {(0, . . . , 0)}. (9.12)

The following multi-frequency version of Theorem XIII.5.2 establishes a modulated
Fourier expansion for the numerical solution.

Theorem 9.2. Consider the numerical solution of the system (9.3) by the method
(2.6) with step size h. Under conditions (9.9)–(9.11), the numerical solution admits
an expansion

xn = y(t) +
∑

k∈N∗

eik·ωtzk(t) + Ψ · O(t2hN ) (9.13)

with ω = λ/ε, uniformly for 0 ≤ t = nh ≤ T and ε and h satisfying h/ε ≥ c0 > 0.
The modulation functions together with all their derivatives (up to some arbitrarily
fixed order) are bounded by

y0 = O(1), yj = O(ε2)

z
±〈j〉
j = O(ε), ż

±〈j〉
j = O(ε2)

zk
j = O(hε|k|) for k �= ±〈j〉

(9.14)

for j = 1, . . . , �. Here, 〈j〉 = (0, . . . , 1, . . . , 0) is the jth unit vector. The last es-
timate holds also for zk

0 for all k ∈ N ∗. Moreover, the function y is real-valued
and z−k = zk for all k ∈ N ∗. The constants symbolized by the O-notation are
independent of h, ε and λj with (9.10), but they depend on E, N , c, and T .
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The proof extends that of Theorem XIII.5.2. In terms of the difference operator
of the method, L(hD) = ehD − 2 coshΩ + e−hD, the functions y(t) and zk(t) are
constructed such that, up to terms of size Ψ · O(hN+2),

L(hD)y = h2Ψ
(
g(Φy) +

∑
s(α)∼0

1
m!

g(m)(Φy)(Φz)α
)

L(hD + ihk · ω)zk = h2Ψ
∑

s(α)∼k

1
m!

g(m)(Φy)(Φz)α.

Here, the sums on the right-hand side are over all m ≥ 1 and over multi-indices
α = (α1, . . . , αm) with αj ∈ N ∗, for which the sum s(α) =

∑m
j=1 αj satisfies

the relation s(α) ∼ k, that is, s(α) − k ∈ M. The notation (Φz)α is short for the
m-tuple (Φzα1 , . . . , Φzαm).

A similar expansion to that for xn exists also for the velocity approximation ẋn,
like in Theorem XIII.5.3. As a consequence, the oscillatory energy (9.4) along the
numerical solution takes the form, at t = nh ≤ T ,

Ij(xn, ẋn) = 2ω2
j ‖z

〈j〉
j (t)‖2 +O(ε). (9.15)

With the first terms of the modulated Fourier expansion one proves, as in Theo-
rems XIII.4.1 and XIII.4.2, error bounds over bounded time intervals which are of
second order in the positions and of first order in the velocities:

‖xn − x(tn)‖ ≤ C h2 , ‖ẋn − ẋ(tn)‖ ≤ C h , (9.16)

where C is independent of ε, h and n with nh ≤ T and of bounds of solution
derivatives.

XIII.9.3 Almost-Invariants of the Modulation System

With y0(t) = z0(t) = y(t) and yk(t) = eik·ωtzk(t) for k ∈ N , where y and zk are
the modulation functions of Theorem 9.2, we denote

y = (yk)k∈N , z = (zk)k∈N .

We introduce the extended potential

U(y) = U(Φy0) +
∑

s(α)∼0

1
m!

U (m)(Φy0)(Φy)α , (9.17)

where the sum is again taken over all m ≥ 1 and all multi-indices α = (α1, . . . , αm)
with αj ∈ N ∗ for which s(α) =

∑
j αj ∈M. The functions yk(t) then satisfy

Ψ−1Φh−2L(hD) yk = −∇−k U(y) + Φ · O(hN ), (9.18)
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where ∇−k denotes the gradient with respect to the variable y−k. This system has
almost-invariants that are related to the Hamiltonian H and the oscillatory energies
Iµ with µ ⊥M.

The Energy-Type Almost-Invariant of the Modulation System. We multiply
(9.18) by (ẏ−k)T and sum over k ∈ N to obtain

∑
k∈N

(ẏ−k)TΨ−1Φh−2L(hD)yk +
d

dt
U(y) = O(hN ).

Since we know bounds of the modulation functions zk and of their derivatives from
Theorem 9.2, we rewrite this relation in terms of the quantities zk:

∑
k∈N

(ż−k − ik · ωz−k)TΨ−1Φh−2L(hD + ihk · ω)zk +
d

dt
U(z) = O(hN ).

(9.19)
As in (6.21) we obtain that the left-hand side of (9.19) can be written as the time
derivative of a functionH∗[z](t) which depends on the values at t of the modulation-
function vector z and its first N time derivatives. The relation (9.19) thus becomes

d

dt
H∗[z](t) = O(hN ).

Together with the estimates of Theorem 9.2 this construction of H∗ yields the fol-
lowing multi-frequency extension of Lemma XIII.6.4.

Lemma 9.3. Under the assumptions of Theorem 9.2, the modulation functions z =
(zk)k∈N of the numerical solution satisfy

H∗[z](t) = H∗[z](0) + O(thN ) (9.20)

for 0 ≤ t ≤ T . Moreover, at t = nh we have

H∗[z](t) = H∗(xn, ẋn) +O(h), (9.21)

where, with σ(ξ) = sinc(ξ)φ(ξ)/ψ(ξ) and ξj = hλj/ε,

H∗(x, ẋ) = H(x, ẋ) +
�∑

j=1

(
σ(ξj)− 1

)
Ij(x, ẋ). (9.22)

The Momentum-Type Almost-Invariants of the Modulation System. The equa-
tions (9.18) have further almost-invariants that result from invariance properties of
the extended potential U , similarly as the conservation of angular momentum results
from an invariance of the potential U in a mechanical system by Noether’s theorem.
For µ ∈ R

� and y = (yk)k∈N we set

Sµ(τ)y = (eik·µτyk)k∈N , τ ∈ R
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so that, by the multi-linearity of the derivative, the definition (9.17) yields

U
(
Sµ(τ)y

)
= U(Φy0) +

∑
s(α)∼0

eis(α)·µτ

m!
U (m)(Φy0)(Φy)α . (9.23)

If µ ⊥M, then the relation s(α) ∼ 0 implies s(α)·µ = 0, and hence the expression
(9.23) is independent of τ . It therefore follows that

0 =
d

dτ

∣∣∣
τ=0

U(Sµ(τ)y) =
∑
k∈N

i(k · µ)
(
yk

)T∇kU(y)

for all vectors y = (yk)k∈N . If µ is not orthogonal to M, some terms in the sum of
(9.23) depend on τ . However, for these terms with s(α) ∈ M and s(α) · µ �= 0 we
have |s(α)| ≥ M = min{|k| : 0 �= k ∈M} and if µ ⊥MN , then |s(α)| ≥ N+1.
The bounds (5.13) then yield

∑
k∈N

i(k · µ)
(
yk

)T∇kU(y) =

{
O(εM ) for arbitrary µ

O(εN+1) for µ ⊥MN

(9.24)

for the vector y = y(t) as given by Theorem 9.2. Multiplying the relation (9.18) by
i
ε (−k · µ)

(
y−k

)T
and summing over k ∈ N , we obtain with (9.24) that

− i

ε

∑
k∈N

(k · µ)(y−k)TΨ−1Φh−2L(hD)yk = O(hN ) +O(εM−1).

The O(εM−1) term is not present for µ ⊥ MN . Written in the z variables, this
becomes

− i

ε

∑
k∈N

(k · µ)(z−k)TΨ−1Φh−2L(hD + ihk · ω)zk = O(hN ) +O(εM−1).

(9.25)
As in (9.19), the left-hand expression turns out to be the time derivative of a function
I∗

µ[z](t) which depends on the values at t of the function z and its first N derivatives:

d

dt
I∗

µ[z](t) = O(hN ) +O(εM−1).

Together with Theorem 9.2 this yields the following.

Lemma 9.4. Under the assumptions of Theorem 9.2, the modulation functions z
satisfy

I∗
µ[z](t) = I∗

µ[z](0) + O(thN ) +O(tεM−1) (9.26)

for all µ ∈ R
� and for 0 ≤ t ≤ T . They satisfy

I∗
µ[z](t) = I∗

µ[z](0) + O(thN ) (9.27)
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for µ ⊥MN and 0 ≤ t ≤ T . Moreover, at t = nh,

I∗
µ[z](t) = I∗µ(xn, ẋn) +O(ε), (9.28)

where, again with σ(ξ) = sinc(ξ)φ(ξ)/ψ(ξ),

I∗µ(x, ẋ) =
�∑

j=1

σ(ξj)
µj

λj
Ij(x, ẋ). (9.29)

XIII.9.4 Long-Time Near-Conservation of Total and Oscillatory
Energies

With the proof of Theorem XIII.7.1, the above two lemmas yield the following
results from Cohen, Hairer & Lubich (2004).

Theorem 9.5. Under conditions (9.9)–(9.11), the numerical solution obtained by
method (2.6) with (2.11) satisfies, for H∗ and I∗µ defined by (9.22) and (9.29),

H∗(xn, ẋn) = H∗(x0, ẋ0) +O(h)
I∗µ(xn, ẋn) = I∗µ(x0, ẋ0) +O(h)

for 0 ≤ nh ≤ h−N+1

for µ ∈ R
� with µ ⊥ MN = {k ∈ M : |k| ≤ N}. The constants symbolized by O

are independent of n, h, ε, λj satisfying the above conditions, but depend on N and
the constants in the conditions.

Since µ = λ is always orthogonal to M and to MN , the relation

K(x, ẋ) = H∗(x, ẋ)− I∗λ(x, ẋ)

for the smooth energy (9.7) implies

K(xn, ẋn) = K(x0, ẋ0) +O(h) for 0 ≤ nh ≤ h−N+1. (9.30)

For σ(ξ) = 1 (or equivalently ψ(ξ) = sinc(ξ)φ(ξ)) the modified energies H∗ and
I∗µ are identical to the original energies H and Iµ of (9.2) and (9.5). The condi-
tion ψ(ξ) = sinc(ξ)φ(ξ) is known to be equivalent to the symplecticity of the one-
step method (xn, ẋn) �→ (xn+1, ẋn+1), but its appearance in the above theorem
is caused by a different mechanism which is not in any obvious way related to
symplecticity. Without this condition we still have the following result, which also
considers the long-time near-conservation of the individual oscillatory energies Ij

for j = 1, . . . , �.

Theorem 9.6. Under conditions (9.9)–(9.11), the numerical solution obtained by
method (2.6) with (2.11) satisfies

H(xn, ẋn) = H(x0, ẋ0) +O(h)
Ij(xn, ẋn) = Ij(x0, ẋ0) +O(h)

for 0 ≤ nh ≤ h ·min(ε−M+1, h−N )
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for j = 1, . . . , �, with M = min{|k| : 0 �= k ∈ M}. The constants symbolized by
O are independent of n, h, ε, λj satisfying the above conditions, but depend on N
and the constants in the conditions.

For the non-resonant case M = {0} we have M = ∞ and hence the length of
the interval with energy conservation is only restricted by (9.10). Notice that always
M ≥ 3, and M = 3 only in the case of a 1:2 resonance among the λj . For a 1:3
resonance we have M = 4 and in all other cases M ≥ 5.

Explanation of the Numerical Experiment of Sect. XIII.9.1. All numerical meth-
ods in Figs. 9.2–9.4 satisfy the conditions of Theorems 9.6 and 9.5 for the step sizes
considered.

In Fig. 9.2 we have the (symplectic) method (2.6) with φ(ξ) = 1 and ψ(ξ) =
sinc(ξ), which has σ(ξ) = 1, so that H and H∗, and Iµ and I∗µ coincide. For all
step sizes, the oscillatory energy I2 corresponding to the non-resonant frequency√

2ω and the sum I1 + I3 are well conserved on long time intervals, in accordance
with Theorem 9.5. The individual energies I1 and I3 corresponding to the resonant
frequencies ω = 1/ε and 2/ε are not preserved on the time scale considered here,
cf. Fig. 9.1. In fact, Theorem 9.6 here yields only a time scale O(hε−2).

In Fig. 9.3 we use the method with φ(ξ) = 1 and ψ(ξ) = sinc2(ξ/2), for which
σ(ξ) is not identical to 1, and hence H and H∗, and Iµ and I∗µ do not coincide.
The oscillatory energy I2 = σ−1

2 I∗µ with µ = (0, 1, 0) ⊥ M, which corresponds
to the non-resonant frequency

√
2ω, is approximately conserved over long times.

Since Theorem 9.5 only states that the modified energies are well preserved, it is
not surprising that neither I1 + I3 nor the original total energy H (not shown in the
figure) are conserved. The modified energies H∗ and σ1I1 + σ3I3 (not shown) are
indeed well conserved, and so is the smooth energy K, in agreement with (9.30).

Figure 9.4 shows the result for the (symplectic) method with φ(ξ) = sinc(ξ) and
ψ(ξ) = sinc(ξ)φ(ξ). Since σ(ξ) = 1, the oscillatory energy I2 for

√
2ω and also

I1 + I3 are well conserved, in agreement with Theorem 9.5. However, the energy
exchange between the resonant frequencies is not correctly reproduced. This behav-
iour is not explained by Theorems 9.5 and 9.6, but it corresponds to the analysis
in Sect. XIII.4.2 which, for the single-frequency case, explains the incorrect energy
exchange of methods that do not satisfy ψ(ξ)φ(ξ) = sinc(ξ) (and thus, of all sym-
plectic methods (2.7)–(2.10), with the exception of the above method with φ(ξ) = 1
and ψ(ξ) = sinc(ξ)). That analysis could be extended to the multi-frequency case
considered here.

We remark that the techniques of Sects. XIII.9.2 and XIII.9.3 can also be used
to study the energy error of the Störmer–Verlet method, as in Sect. XIII.8; see The-
orem 5.1 in Cohen, Hairer & Lubich (2004). The modulated Fourier expansion of
the exact solution yields results on the near-preservation of the oscillatory energies
along a bounded exact solution: under the energy bound (9.9) and the non-resonance
condition

|k · λ| ≥ c
√
ε for k ∈ Z

� \M with |k| ≤ N (9.31)

we have (see Theorem 6.1 in Cohen, Hairer & Lubich 2004)
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Iµ

(
x(t), ẋ(t)

)
= Iµ

(
x(0), ẋ(0)

)
+O(ε) for 0 ≤ t ≤ ε−N+1 (9.32)

for µ ∈ R
� with µ ⊥MN = {k ∈M : |k| ≤ N}. We further have

Ij

(
x(t), ẋ(t)

)
= Ij

(
x(0), ẋ(0)

)
+O(ε) for 0 ≤ t ≤ ε·min(ε−M+1, ε−N )

(9.33)
for j = 1, . . . , �, with M = min{|k| : 0 �= k ∈M}.

XIII.10 Systems with Non-Constant Mass Matrix

The high frequencies of the linearized differential equation remain constant up to
small deviations for mechanical systems with a Hamiltonian of the form

H(p, q) = 1

2
pT
0 M0(q)−1p0 + 1

2
pT
1 M−1

1 p1 + 1

2
pTR(q)p +

1
2ε2

qT
1 A1q1 + U(q)

(10.1)
with a symmetric positive definite matrix M0(q), constant symmetric positive defi-
nite matrices M1 and A1, a symmetric matrix R(q) with

R(q0, 0) = 0,

and a potential U(q). All the functions are assumed to depend smoothly on q.
Bounded energy then requires q1 = O(ε), so that pTR(q)p = O(ε), but the deriva-
tive of this term with respect to q1 is O(1).

As in (9.1), we may assume, after an appropriate canonical linear transformation
based on a Cholesky decomposition of the mass matrix and a diagonalization of the
resulting stiffness matrix, that the Hamiltonian is of the form

H(p, q) = 1

2
pT
0 M0(q)−1p0 + 1

2

�∑
j=1

(
‖pj‖2 +

λ2
j

ε2
‖qj‖2

)
+ 1

2
pTR(q)p + U(q)

(10.2)
with distinct, constant λj ≥ 1.

The necessity for such a generalization results from the fact that oscillatory me-
chanical systems with near-constant frequencies in 2 or 3 space dimensions typically
cannot be put in the form (9.1), but in the more general form (10.1) or (10.2).

Example 10.1 (Stiff Spring Pendulum). The motion of a mass point (of mass 1)
hanging on a massless stiff spring (with spring constant 1/ε2) is described in polar
coordinates x1 = r sinϕ, x2 = −r cosϕ by the Lagrangian with kinetic energy

T = 1

2
(ẋ2

1 + ẋ2
2) = 1

2
(ṙ2 + r2ϕ̇2) and potential energy U = 1

2ε2 (r− 1)2− r cosϕ.
With the coordinates q0 = ϕ, q1 = r − 1 and the conjugate momenta pi = ∂T/∂qi

this gives the Hamiltonian

H(p, q) = 1

2

(
(1 + q1)−2p2

0 + p2
1

)
+

1
2ε2

q2
1 − (1 + q1) cos q0,

which is of the form (10.2).
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Numerical methods for systems (10.2) are studied by Cohen (2005). He splits
the small term 1

2p
TR(q)p from the principal terms of the Hamiltonian and proposes

the following method, where

K(p0, q) = 1

2
pT
0 M0(q)−1p0 + U(q).

Algorithm 10.2. 1. A half-step with the symplectic Euler method applied to the
system with Hamiltonian 1

2p
TR(q)p gives

p̂n = pn − h

2
∇q

(
1

2
(p̂n)TR(qn)p̂n

)

q̂n = qn + h

2
R(qn)p̂n.

(10.3)

2. Treating the oscillatory components of the variables p and q with a trigonomet-
ric method (2.7)–(2.8) and the slow components with the Störmer-Verlet scheme
yields (for j = 1, . . . , � and with ωj = λj/ε and ξj = hωj)

p
n+1/2
0 = p̂n

0 −
h

2
∇q0K(pn+1/2

0 , Φq̂n)

q̂n+1
0 = q̂n

0 + h

2

(
∇p0K(pn+1/2

0 , Φq̂n) +∇p0K(pn+1/2
0 , Φq̂n+1)

)

q̂n+1
j = cos(ξj)q̂n

j + ω−1
j sin(ξj)p̂n

j −
h2

2
ψ(ξj)∇qj

K(pn+1/2
0 , Φq̂n)

p̂n+1
j = −ωj sin(ξj)q̂n

j + cos(ξj)p̂n
j −

h

2

(
ψ0(ξj)∇qj

K(pn+1/2
0 , Φq̂n)

+ ψ1(ξj)∇qj
K(pn+1/2

0 , Φq̂n+1)
)
,

p̂n+1
0 = p

n+1/2
0 − h

2
∇q0K(pn+1/2

0 , Φq̂n+1) (10.4)

where Φ = φ(hΩ) with Ω = diag(ωjI).
3. A half-step with the adjoint symplectic Euler method applied to the system with

Hamiltonian 1
2p

TR(q)p gives

pn+1 = p̂n+1 − h

2
∇q

(
1

2
(p̂n+1)TR(qn+1)p̂n+1

)

qn+1 = q̂n+1 + h

2
R(qn+1)p̂n+1.

(10.5)

The filter functions ψ,ψ0, ψ1, φ are again real-valued functions with ψ(0) =
ψ̂(0) = ψ̃(0) = φ(0) = 1 that satisfy (2.9). The method is still symplectic if
and only if (2.10) holds. Note that Step 2. of the algorithm is explicit if M0(q) does
not depend on q0.

Cohen (2004, 2005) studies the modulated Fourier expansion of this method and
shows that the long-time near-conservation of total and oscillatory energies as given
by Theorem 9.6 remains valid also in this more general situation.
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Example 10.3 (Triatomic Molecule). The motion of a near-rigid triatomic mole-
cule is described by a Hamiltonian system with a Hamiltonian (10.2). For simplicity
we fix the position of the central atom. We then have two stiff-spring pendulums
strongly coupled by another spring. With angles and distances as shown in Fig. 10.1,
we use the position coordinates ϕ1, q1 = r1− 1, ϕ2, q2 = r2− 1 with the conjugate
momenta π1, p1, π2, p2, respectively. The Hamiltonian then reads

H(π, p, ϕ, q) = 1

2

(
(1 + q1)−2π2

1 + p2
1 + (1 + q2)−2π2

2 + p2
2

)

+
1

2ε2

(
q2
1 + q2

2 +
α2

2
(ϕ2 − ϕ1)2

)
+ U(ϕ, q) (10.6)

with a spring constant 1
2α

2/ε2 for connecting the two pendulums and an external
potential U . With the canonical change of variables

(
q3

q0

)
=

1√
2

(
−1 1
1 1

)(
ϕ1

ϕ2

)
,

(
π1

π2

)
=

1√
2

(
−1 1
1 1

)(
p3

p0

)
,

the Hamiltonian takes the form (10.2):

H(p, q) = 1

2
(p2

0 + p2
1 + p2

2 + p2
3) + 1

2ε2
(q2

1 + q2
2 + α2q2

3)

+ pTR(q)p + Û(q)
(10.7)

with

pTR(q)p = −1

4

2q2 + q2
2

(1 + q2)2
(p0 − p3)2 −

1

4

2q1 + q2
1

(1 + q1)2
(p0 + p3)2

and Û(q) = U(ϕ1, ϕ2, q1, q2).
For the water molecule the ratio between the frequencies of the bond angle and

the bond lengths is α ≈ 0.2, according to some popular models. In our numerical
experiments, we observed good conservation of all the oscillatory energies and the
total energy. More interesting phenomena occur in a near-resonance situation. We
consider α = 0.49 and ε = 0.01, no exterior potential (U = 0), and initial values
q(0) = (0, ε/2, ε, α/ε) and p(0) = (1.1, 0.2,−0.8, 1.3). In Fig. 10.2 we apply
the method of Algorithm 10.2 with step sizes h = 0.5 ε and h = 2ε and obtain

104◦

ϕ1

ϕ2H
H

O

r1 r2

Fig. 10.1. Water molecule and reference configuration as gray shadow
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Fig. 10.2. Oscillatory energies and total energy for the method of Algorithm 10.2
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Fig. 10.3. Oscillatory energies and total energy for the Störmer–Verlet method

numerical results that agree very well with a solution obtained with very small step
sizes. For comparison we show in Fig. 10.3 the results of the Störmer–Verlet method
with step sizes h = 0.2 ε and h = 0.5 ε, for which the energy exchange is not
correct. For the reason explained in Sect. VI.3, (3.2)–(3.3), both methods are fully
explicit for this problem.

XIII.11 Exercises

1. Show that the impulse method (with exact solution of the fast system) reduces
to Deuflhard’s method in the case of a quadratic potential W (q) = 1

2q
TAq.

2. Show that a method (2.7)–(2.8) satisfying (2.9) is symplectic if and only if

ψ(ξ) = sinc(ξ)φ(ξ) for ξ = hω.

3. The change of coordinates xn = χ(hΩ)zn transforms (2.7)–(2.8) into a
method of identical form with φ, ψ, ψ0, ψ1 replaced by χφ, χ−1ψ, χ−1ψ0,
χ−1ψ1. Prove that, for hω satisfying sinc(hω)φ(hω)/ψ(hω) > 0, it is pos-
sible to find χ(hω) such that the transformed method is symplectic.

4. Prove that for infinitely differentiable functions g(t) the solution of ẍ+ω2x =
g(t) can be written as

x(t) = y(t) + cos(ωt)u(t) + sin(ωt) v(t),
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where y(t), u(t), v(t) are given by asymptotic expansions in powers of ω−1.
Hint. Use the variation-of-constants formula and apply repeated partial integra-
tion.

5. Show that the recurrence relation en+1 − 2 cos(hΩ) en + en−1 = bn has the
solution

en+1 = −Wn−1 e0 + Wn e1 +
n∑

j=1

Wn−j bj

with Wn = sin(hΩ)−1 sin
(
(n + 1)hΩ

)
(or the appropriate limit when

sin(hΩ) is not invertible).
6. Consider a Hamiltonian H(pR, pI , qR, qI) and let

H(p, q) = 2H(pR, pI , qR, qI)

for p = pR + ipI , q = qR + iqI . Prove that in the new variables p, q the
Hamiltonian system becomes

ṗ = −∂H
∂q

(p, q), q̇ =
∂H
∂p

(p, q).

7. Prove the following refinement of Theorem 6.3: along the solution x(t) of (2.1),
the modified oscillatory energy J(x, ẋ) = I(x, ẋ)− xT

1 g1(x) satisfies

J(x(t), ẋ(t)) = J(x(0), ẋ(0)) +O(ω−2) +O(tω−N ) .

8. Define Ĥ(x, ẋ) = H(x, ẋ) − ρxT
1 g1(x), Ĵ(x, ẋ) = J(x, ẋ) − ρxT

1 g1(x) with
J(x, ẋ) of the previous exercise and with

ρ =
ψ(hω)

sinc2( 1
2hω)

− 1.

In the situation of Theorem 7.1, show that

Ĥ(xn, ẋn) = Ĥ(x0, ẋ0) +O(h2)

Ĵ(xn, ẋn) = Ĵ(x0, ẋ0) +O(h2)
for 0 ≤ nh ≤ h−N+1.

Notice that the total energy H(xn, ẋn) and the modified oscillatory energy
J(xn, ẋn) are conserved up to O(h2) if ρ = 0, i.e., if ψ(ξ) = sinc2( 1

2ξ). This
explains the excellent energy conservation of methods (A) and (D) in Figure 2.5
away from resonances.

9. Generalizing the analysis of Sect. XIII.8, study the energy behaviour of the im-
pulse or averaged-force multiple time-stepping method of Sect. VIII.4 with a
fixed number N of Störmer–Verlet substeps per step, when the method is ap-
plied to the model problem with hω bounded away from zero.



Chapter XIV.
Oscillatory Differential Equations
with Varying High Frequencies

New aspects come into play when the high frequencies in an oscillatory system
and their associated eigenspaces do not remain nearly constant, as in the previous
chapter, but change with time or depend on the solution. We begin by studying
linear differential equations with a time-dependent skew-hermitian matrix and then
turn to nonlinear oscillatory mechanical systems with time- or solution-dependent
frequencies. Our analysis uses canonical coordinate transforms that separate slow
and fast motions and relate the fast oscillations to the skew-hermitian linear case. For
the numerical treatment we consider suitably constructed long-time-step methods
(“adiabatic integrators”) and multiple time-stepping methods.

XIV.1 Linear Systems with Time-Dependent
Skew-Hermitian Matrix

We consider first-order linear differential equations with a skew-hermitian matrix
that changes slowly compared to the rapid oscillations in the solution, a problem
that has attracted much attention in quantum mechanics. We present a suitable class
of numerical methods, termed adiabatic integrators, which can take time steps that
are substantially larger than the almost-periods of the oscillations.

XIV.1.1 Adiabatic Transformation and Adiabatic Invariants

It comes from the greek αδιαβατιχoς , “which cannot be crossed”.

... we arrive by analogy to the “adiabatic principle” used in Quantum
and then Classical Mechanics. It is based upon the fact that the harmonic
oscillator (and other simple dynamical systems as it was found later) sub-
mitted to slow variations of its parameters modifies its energy but keeps
its action (energy divided by frequency) constant.

As we can see, the path from the word “adiabatic” used in thermodynam-
ics to the above “adiabatic principle” is tortuous and our greek colleagues
are certainly puzzled by sentences such as “the changes in the adiabatic
invariant due to [...] crossing” which we shall use later.

(J. Henrard 1993)

We consider the linear differential equation
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ẏ(t) =
1
ε
Z(t) y(t), (1.1)

where Z(t) is a real skew-symmetric (or complex skew-hermitian) matrix-valued
function with time derivatives bounded independently of the small parameter ε.
In quantum dynamics such equations arise with Z(t) = −iH(t), where the real
symmetric (or hermitian) matrix H(t) represents the quantum Hamiltonian opera-
tor in a discrete-level Schrödinger equation. We will also encounter real equations
of this type in the treatment of oscillatory classical mechanical systems with time-
dependent frequencies. Solutions oscillate with almost-periods ∼ ε, while the sys-
tem matrix changes on a slower time scale ∼ 1.

Transforming the Problem. We begin by looking for a time-dependent linear
transformation

η(t) = Tε(t)y(t), (1.2)

taking the system to the form

η̇(t) = Sε(t) η(t) with Sε = ṪεT
−1
ε +

1
ε
TεZT−1

ε , (1.3)

which is chosen such that Sε(t) is of smaller norm than the matrix 1
εZ(t) of (1.1).

Remark 1.1. A first idea is to freeze Z(t) ≈ Z∗ over a time step and to choose the
transformation

Tε(t) = exp
(
− t

ε
Z∗

)
yielding Sε(t) =

1
ε

exp
(
− t

ε
Z∗

)(
Z(t)−Z∗

)
exp

( t

ε
Z∗

)
.

This matrix function Sε(t) is highly oscillatory and bounded in norm by O(h/ε)
for |t − t0| ≤ h, if Z∗ = Z(t0 + h/2). Numerical integrators based on this trans-
formation are given by Lawson (1967) and more recently by Hochbruck & Lubich
(1999b), Iserles (2002, 2004), and Degani & Schiff (2003). Reasonable accuracy
still requires step sizes h = O(ε) in general; see also Exercise 3. In the above pa-
pers this transfomation has, however, been put to good use in situations where the
time derivatives of the matrix in the differential equation have much smaller norm
than the matrix itself.

Adiabatic Transformation. In order to obtain a differential equation (1.3) with a
uniformly bounded matrix Sε(t) we diagonalize

Z(t) = U(t) iΛ(t)U(t)∗

with a real diagonal matrix Λ(t) = diag (λj(t)) and a unitary matrix U(t) =
(u1(t), . . . , un(t)) of eigenvectors depending smoothly on t (possibly except where
eigenvalues cross). We define η(t) by the unitary adiabatic transformation

η(t) = exp
(
− i

ε
Φ(t)

)
U(t)∗y(t) with Φ(t) = diag (φj(t)) =

∫ t

0

Λ(s) ds,

(1.4)
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which represents the solution in a rotating frame of eigenvectors. Each component
of η(t) is a coefficient in the eigenbasis representation of y(t) rotated in the com-
plex plane by the negative phase. Such transformations have been in use in quan-
tum mechanics since the work of Born & Fock (1928) on adiabatic invariants in
Schrödinger equations, as discussed in the next paragraph. The transformation (1.4)
yields a differential equation where the ε-independent skew-hermitian matrix

W (t) = U̇(t)∗U(t)

is framed by oscillatory diagonal matrices:

η̇(t) = exp
(
− i

ε
Φ(t)

)
W (t) exp

( i

ε
Φ(t)

)
η(t). (1.5)

Numerical integrators for (1.1) based on the transformation to the differential equa-
tion (1.5) with bounded, though highly oscillatory right-hand side, are given by
Jahnke & Lubich (2003) and Jahnke (2004a); see Sect. XIV.1.2.

Adiabatic Invariants. Possibly after a time-dependent rephasing of the eigenvec-
tors, uk(t) → eiαk(t)uk(t), we can assume that u̇k(t) is orthogonal to uk(t) for
all t. (This is automatically satisfied if U(t) is a real orthogonal matrix, as is the
case for Z(t) = −iH(t) with a real symmetric matrix H(t).) We then have the
matrix W = (wjk) = (u̇∗

juk) with zero diagonal.
After integration of both sides of the differential equation (1.5) from 0 to t,

partial integration of the terms on the right-hand side yields for j �= k (terms for
j = k do not appear since wjj = 0)

∫ t

0

exp
(
− i

ε

(
φj(s)− φk(s)

))
wjk(s) ηk(s) ds

= iε exp
(
− i

ε

(
φj(s)− φk(s)

)) wjk(s) ηk(s)
λj(s)− λk(s)

∣∣∣∣
t

0

(1.6)

− iε

∫ t

0

exp
(
− i

ε

(
φj(s)− φk(s)

)) d

ds

wjk(s) ηk(s)
λj(s)− λk(s)

ds .

At this point, suppose that the eigenvalues λj(t) are, for all t, separated from each
other by a positive distance δ independent of ε:

|λj(t)− λk(t)| ≥ δ for all j �= k. (1.7)

Then the reciprocals of their differences and the coupling matrix W (t) are bounded
independently of ε, as are their derivatives. Together with the boundedness of η̇ as
implied by (1.5), this shows

η(t) = η(0) +O(ε) for t ≤ Const. (1.8)

This result is a version of the quantum-adiabatic theorem of Born & Fock (1928)
which states that the actions |ηj |2 (the energy in the jth state, 〈ηjuj ,Hηjuj〉 =
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λj |ηj |2, divided by the frequency λj) remain approximately constant for times t =
O(1). Such functions I(y, t) that satisfy I(y(t), t) = I(y(0), 0) + O(ε) for t =
O(1) along everyO(1)-bounded solution y(t) of the differential equation, are called
adiabatic invariants.

Super-Adiabatic Transformations. Adiabatic invariants are obtained over longer
time scales by refining the transformation; see Lenard (1959) and Garrido (1964).
Here we show that the transformation matrix Tε of (1.2) can be constructed such
that the matrix Sε in the transformed differential equation (1.3) is of size O(εN ).
Let us make the ansatz of a unitary transformation matrix

T (N)
ε = exp

(
− i

ε
Φ
)

exp(−iΦ1) exp(εX1) . . . exp(−iεN−1ΦN ) exp(εNXN )U∗

with real diagonal matrices Φn(t) and complex skew-hermitian matrices Xn(t). We
find that Sε = 1

εTεZT ∗
ε + ṪεT

∗
ε is O(ε) if and only if X1 and Λ1 := Φ̇1 satisfy

1
ε

(
exp(εX1) iΛ exp(−εX1)− iΛ

)
− iΛ1 + W = O(ε),

or equivalently, if X1 and Λ1 solve the commutator equation

[iΛ,X1] + iΛ1 = W.

This is solved by setting iΛ1 equal to the diagonal of W and determining the off-
diagonal entries x

(1)
jk of X1 from the scalar equations

i(λj − λk)x(1)
jk = wjk, j �= k,

which can be done as long as the eigenvalues are separated. The diagonal of X1 is
set to zero. Since W is skew-hermitian, so is X1. Similarly we obtain for higher
powers of ε the equations

[iΛ,Xn] + iΛn = Wn−1,

where the matrix Wn−1 contains only previously constructed terms up to index n−1
and derivatives up to order n and is skew-hermitian because Sε is skew-hermitian.
In this way we obtain a unitary transformation such that

η(N)(t) = T (N)
ε (t) y(t) satisfies η̇(N) = O(εN ).

We remark that the above construction of T
(N)
ε is analogous to transformations in

Hamiltonian perturbation theory; cf. Sect. X.2.
The differential equation (1.1) thus has adiabatic invariants over times O(ε−N )

for arbitrary N ≥ 1, and in fact even over exponentially long time intervals
t = O(ec/ε) if the functions have a bounded analytic extension to a complex strip,
as is shown by Joye & Pfister (1993) and Nenciu (1993). The leading term in the ex-
ponentially small deviation of |η(N)

j (t)|2 in the optimally truncated super-adiabatic
basis has been rigorously made explicit by Betz & Teufel (2005a, 2005b), proving
a conjecture by Berry (1990).
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Avoided Crossing of Eigenvalues and Non-Adiabatic Transitions. To illustrate
the effects of a violation of the separation condition (1.7), we consider the generic
two-dimensional example studied by Zener (1932), with the matrix

Z(t) = −i

(
t δ
δ −t

)
, (1.9)

which has the eigenvalues ±i
√
t2 + δ2. The minimal distance of the eigenvalues is

2δ at t = 0. For δ = O(
√
ε) the adiabatic invariance (1.8) is no longer valid, and

η can undergo O(1) changes in an O(δ) neighbourhood of t = 0: a non-adiabatic
transition in physical terminology. The changes in the adiabatic invariant due to the
avoided crossing of eigenvalues are illustrated in Fig. 1.1 and can be explained as
follows.

−.4 −.2 .0 .2 .4

.5

1.0

Fig. 1.1. Non-adiabatic transition: |η1(t)|2 and |η2(t)|2 as function of t for ε = 0.01 and
δ = 2−1, 2−3, 2−5, 2−7 (increasing darkness)

Near the avoided crossing, a new time scale τ = t/δ is appropriate. The decom-
position Z(t) = U(t)iΛ(t)U(t)T of the matrix yields

U(t) = Ũ(τ) =
(

cosα(τ) − sinα(τ)
sinα(τ) cosα(τ)

)
,

Λ(t)/δ = Λ̃(τ) =
(
−
√
τ2 + 1 0
0

√
τ2 + 1

)
,

with α(τ) = π
4 −

1
2 arctan(τ). We introduce the rescaled matrices

Φ̃(τ) =
∫ τ

0

Λ̃(σ) dσ = Φ(t)/δ2,

W̃ (τ) =
(

d

dτ
Ũ(τ)T

)
Ũ(τ) =

1
2(τ2 + 1)

(
0 −1
1 0

)
= δ ·W (t).

Note that the entries of W (t) have a sharp peak of height (2δ)−1 at t = 0. The
rescaled function η̃(τ) = η(t) is a solution of the differential equation

d

dτ
η̃(τ) = exp

(
− iδ2

ε
Φ̃(τ)

)
W̃ (τ) exp

(
iδ2

ε
Φ̃(τ)

)
η̃(τ).
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For δ2 ≤ ε and |τ | = |t/δ| ≤ 1, the matrix on the right-hand side is bounded of
norm∼ 1 and has bounded derivatives with respect to τ . The function η̃(τ) therefore
changes its value by an amount of size O(1) in the interval |τ | ≤ 1. We also note
that any numerical integrator using piecewise polynomial approximations of W (t)
and hence of W̃ (τ) must take step sizes ∆τ = h/δ # 1, i.e., h # δ. On the
other hand, the rescaling shows that the number of time steps needed to resolve the
non-adiabatic transition up to a specified accuracy is independent of δ.

XIV.1.2 Adiabatic Integrators

We discuss symmetric long-time-step integrators for the rotating-frame differential
equation (1.5) that describes skew-hermitian systems in adiabatic variables. The
construction follows Jahnke & Lubich (2003) and Jahnke (2004a); see also Lorenz,
Jahnke & Lubich (2005).

First-Order Integrators. We consider the differential equation (1.5) and integrate
both sides from tn to tn+1 = tn + h:

η(tn+1) = η(tn) +
∫ tn+1

tn

exp
(
− i

ε
Φ(s)

)
W (s) exp

( i

ε
Φ(s)

)
η(s) ds , (1.10)

where W (t) is an ε-independent matrix, continuously differentiable in t, and the
real diagonal matrix of phases Φ(t) is given as the integral of Λ(t) = diag (λj(t)).
In the applications, W (t) and Φ(t) are not given explicitly, but need to be computed
using numerical differentiation and integration, respectively. For simplicity, we here
ignore this approximation and consider W , Φ, Λ as given time-dependent functions.

Since η and W have bounded derivatives, the following averaged version of the
implicit midpoint rule has a local error of O(h2) uniformly in ε:1

ηn+1 = ηn +
∫ tn+1

tn

exp
(
− i

ε
Φ(s)

)
W (tn+1/2) exp

( i

ε
Φ(s)

)
ds

1

2
(ηn+1 + ηn).

(1.11)
The problem then remains to compute the oscillatory integral. The integrand can be
rewritten as

E(Φ(s)) •W (tn+1/2),

where • denotes the entrywise product of matrices and

E(Φ) = (ejk) with ejk = exp
(
− i

ε
(φj − φk)

)
.

With a linear phase approximation (of an error O(h2))

Φ(tn+1/2 + θh) ≈ Φ(tn+1/2) + θhΛ(tn+1/2),

1 Because of the oscillatory integrals, the local error is not O(h3) as might at first glance be
expected for a symmetric method.
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the integral is approximated by

hE(Φ(tn+1/2)) • I(tn+1/2) •W (tn+1/2)

where I(t) is the matrix of integrated exponentials with entries (we omit the argu-
ment t)

Ijk =
∫ 1/2

−1/2

exp
(
− iθh

ε
(λj − λk)

)
dθ = sinc

( h

2ε
(λj − λk)

)
.

The error in the integral approximation comes solely from the linear phase approx-
imation and is bounded by O

(
h · h2

ε · ε
h

)
= O(h2) if the λj are separated, because

then the integral Ijk is of sizeO
(

ε
h

)
. We thus obtain the following averaged implicit

midpoint rule with a local error of O(h2) uniformly in ε:

ηn+1 = ηn + h
(
E(Φ(tn+1/2)) • I(tn+1/2) •W (tn+1/2)

)
1

2
(ηn+1 + ηn). (1.12)

An analogue of the explicit midpoint rule is similarly constructed, and from the
Magnus series (IV.7.5) of the solution we obtain the following averaged exponential
midpoint rule, again with an O(h2) local error uniformly in ε:

ηn+1 = exp
(
hE(Φ(tn+1/2)) • I(tn+1/2) •W (tn+1/2)

)
ηn. (1.13)

For skew-hermitian W (t), also the matrix in (1.12) and (1.13) is skew-hermitian,
and hence both of the above integrators preserve the Euclidean norm of η exactly.
We summarize the local error bounds for these methods under conditions that in-
clude the case of an avoided crossing of eigenvalues.

Theorem 1.2 (Local Error). Suppose that for t0 ≤ t ≤ t0 + h and all j, k,

|λj(t)− λk(t)| ≥ δ, |λ̇j(t)| ≤ C0, ‖W (t)‖ ≤ C1

δ
, ‖Ẇ (t)‖ ≤ C2

δ2

with δ > 0. Then, the local error of methods (1.12) and (1.13) is bounded by

‖η1 − η(t0 + h)‖ ≤ C
h2

δ2
‖η0‖.

The constant C is independent of h, ε, δ.

Proof. The result is obtained with the arguments and approximation estimates given
above, taking in addition account of the dependence on δ. 
�

The local error contains smooth, non-oscillatory components which accumulate
to a global error ηn− η(tn) = O(h) on bounded intervals if the eigenvalues remain
well separated. Using that in this case η is constant up to O(ε), this error bound
can be improved to O(min{ε, h}). The integrators thus do not resolve the O(ε)
oscillations in η for large step sizes h ≥ ε, but like in Jahnke & Lubich (2003)
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they can be combined with a (symmetric and scaling-invariant) adaptive step size
strategy such that the methods follow the non-adiabatic transitions through avoided
crossings of eigenvalues with small steps and take large steps elsewhere.

We here consider applying an integrating reversible step size controller as in
Sect. VIII.3.2 with the step size density function

σ(t) =
(
‖W (t)‖2 + α2

)−1/2

for a parameter α that can be interpreted as the ratio of the accuracy parameter
and the maximum admissible step size. Choosing the Frobenius norm ‖W‖ =
(traceWTW )1/2, we then obtain the following version of Algorithm VIII.3.4,
where µ is the accuracy parameter and

G(t) = − σ̇(t)
σ(t)

=
(
‖W (t)‖2 + α2

)−1 trace
(
Ẇ (t)TW (t)

)
.

Set z0 = 1/σ(t0) and, for n ≥ 0,

zn+1/2 = zn +
µ

2
G(tn)

hn+1/2 = µ/zn+1/2

tn+1 = tn + hn+1/2 (1.14)

ηn �→ ηn+1 by (1.12) or (1.13) with step size hn+1/2

zn+1 = zn+1/2 +
µ

2
G(tn+1).

We remark that the schemes (1.12) and (1.13) can be modified such that they use
evaluations at tn and tn+1 instead of tn+1/2 (Exercise 6).

Applying the above algorithm with accuracy parameter µ = 0.01 and α = 0.1
to the problem of Fig. 1.1 with ε = 0.01 and δ = 2−1, 2−3, 2−5, 2−7 yields the step
size sequences shown in Fig. 1.2. In each case the error at the end-point t = 1 was
between 0.5 · 10−3 and 2 · 10−3.

−1.0 −.8 −.6 −.4 −.2 .0 .2 .4 .6 .8 1.0
10−4

10−3

10−2

10−1

Fig. 1.2. Non-adiabatic transition: step sizes as function of t for ε = 0.01 and δ =
2−1, 2−3, 2−5, 2−7 (increasing darkness)

Second-Order Integrators. TheO(ε) oscillations in η are resolved with step sizes
up to h = O(

√
ε) for methods that give O(h2) accuracy uniformly in ε. Such
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methods require a quadratic phase approximation, and one needs further terms ob-
tained from reinserting η(s) under the integral in (1.10) once again by the same
formula, thus yielding terms with iterated integrals (this procedure is known as the
Neumann or Peano or Dyson expansion in different communities, cf. Iserles 2004),
or by including the first commutator in the Magnus expansion (IV.7.5). Symmetric
second-order methods of both types are constructed by Jahnke (2004a).

Care must be taken in computing the arising oscillatory integrals. Iserles (2004)
proposes and analyses Filon quadrature (after Filon, 1928), which is applicable
when the moments, i.e., the integrals over products of oscillatory exponentials
and polynomials, are known analytically. This is not the case, however, for all of
the integrals appearing in the second-order methods. The alternative chosen by
Jahnke (2004a) is to use an expansion technique based on partial integration. The
idea can be illustrated on an integral such as

∫ 1

0

exp
( iαθh

ε

)
· exp

( iβθ2h2

ε

)
dθ

with α �= 0. Partial integration that integrates the first factor and differentiates the
second factor yields a boundary term and again an integral of the same type, but
now with an additional factor O

(
ε
h ·

h2

ε

)
= O(h). Using this technique repeatedly

in the oscillatory integrals appearing in the second-order methods permits to ap-
proximate all of them up to O(h3) as needed. We refer to Jahnke (2004a) for the
precise formulation and error analysis of these second-order methods, which are
complicated to formulate, but do not require substantially more computational work
than the first-order methods described above, and just the same number of matrix
evaluations.

Higher-Order Integrators. Integrators of general order p ≥ 1 are obtained with a
phase approximation by polynomials of degree p and by including all terms of the
Neumann or Magnus expansion for (1.5) with up to p-fold integrals.

XIV.2 Mechanical Systems with Time-Dependent
Frequencies

We study oscillatory mechanical systems with explicitly time-dependent frequen-
cies, where the time-dependent Hamiltonian is

H(p, q, t) = 1

2
pTM(t)−1p +

1
2ε2

qTA(t)q + U(q, t) (2.1)

with a positive definite mass matrix M(t) and a positive semi-definite stiffness ma-
trix A(t) of constant rank whose derivatives are bounded independently of ε. Such
a Hamiltonian describes oscillations in a mechanical system that at the same time
exerts a driven motion on a slower time scale. We consider motions of bounded
energy:
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H(p(t), q(t), t) ≤ Const. (2.2)

We transform (2.1) to a more amenable form by a series of linear time-dependent
canonical coordinate transforms. The transformations turn the equations of motion
into a form that approximately separates the time scales. This makes the problem
more accessible to numerical discretization with large time steps and to the error
analysis of multiple time-stepping methods applied directly to (2.1) in the originally
given coordinates.

XIV.2.1 Canonical Transformation to Adiabatic Variables

By a series of canonical time-dependent linear transformations, which can all be
done numerically with standard linear algebra routines, we now take the Hamil-
tonian system (2.1) to a form from which adiabatic invariants can be read off and
which will serve as the base camp for both the construction and error analysis of
numerical methods.

We introduce the energy E as the conjugate variable to time t and extend the
Hamiltonian to

Ĥ(p,E, q, t) = H(p, q, t) + E. (2.3)

The canonical equations of motion are then (the gradient ∇ refers only to q)

ṗ = − 1
ε2

A(t)q −∇U(q, t)

q̇ = M(t)−1p

along with Ė = −∂H/∂t and ṫ = 1.

Transforming the Mass Matrix into the Identity Matrix. We change variables
such that the mass matrix M(t) in the kinetic energy part is replaced by the identity.
With a smooth factorization

M(t)−1 = C(t)C(t)T , (2.4)

e.g., from a Cholesky decomposition of M(t), we transform to variables (q̃, t̃) by

q = C(t)q̃, t = t̃.

Then, the conjugate momenta are given by (see Example VI.5.2)

(
p̃
Ẽ

)
=

(
C Ċq̃
0 1

)T (
p
E

)
=

(
CT p

q̃T ĊT p + E

)
.

With the transformed matrix Ã = CTAC, the Hamiltonian H̃(p̃, Ẽ, q̃, t̃) =
Ĥ(p,E, q, t) in the new variables then takes the form (we omit all tildes)

H(p,E, q, t) = 1

2
pT p +

1
2ε2

qTA(t)q − qT Ċ(t)TC(t)−T p + U(C(t)q, t) + E.

(2.5)
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Diagonalizing the Stiffness Matrix. We diagonalize the matrix A(t) in (2.5),

A(t) = Q(t)
(

0 0
0 Ω(t)2

)
Q(t)T (2.6)

with the diagonal matrix Ω(t) = diag(ωj(t)) of frequencies and an orthogonal
matrix Q(t), which depends smoothly on t if the frequencies remain separated. The
matrix Q(t) can be obtained as the product

Q(t) = Q0(t)
(

I 0
0 Q∗(t)

)
, (2.7)

where the transformation with Q0(t) takes A(t) to the block-diagonal form

A(t) = Q0(t)
(

0 0
0 A∗(t)

)
Q0(t)T

and Q∗(t) diagonalizes A∗(t). The effect of an avoided crossing of frequencies is
localized to Q∗(t), which then can have large derivatives, whereas those of Q0(t)
remain moderately bounded. The transformation

q = Q(t)q̂, t = t̂

with the conjugate momenta

p̂ = Q(t)T p, Ê = q̂T Q̇(t)T p + E

yields the Hamiltonian in the new variables (p̂, Ê, q̂, t̂) as (we omit all hats)

H = 1

2
pT p +

1
2ε2

qT

(
0 0
0 Ω(t)2

)
q + qTK(t)p + U(C(t)Q(t)q, t) + E (2.8)

with

K =
(

K00 K01

K10 K11

)
= QT Q̇−QT ĊTC−TQ.

We decompose also

p =
(

p0

p1

)
, q =

(
q0

q1

)

according to the blocks in (2.6) and refer to q0 and q1 (p0 and p1) as the slow and
fast positions (slow and fast momenta), respectively. With the energy bound (2.2)
we have

p1 = O(1), q1 = O(ε). (2.9)
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Rescaling Positions and Momenta. We transform

q0 = q̌0, q1 = ε1/2Ω−1/2q̌1, t = ť

with the conjugate momenta

p̌0 = p0, p̌1 = ε1/2Ω−1/2p1, Ě = −1

2
q̌T
1 ε1/2Ω−3/2Ω̇p1 + E.

In the new variables, the Hamiltonian becomes (we omit the hačeks on all variables)

H = 1

2
pT
0 p0 +

1
2ε

pT
1 Ω(t)p1 +

1
2ε

qT
1 Ω(t)q1 (2.10)

+ qT Ǩ(t)p + U(T (t)q, t) + E

with

Ǩ =
(

K00 ε−1/2K01Ω
1/2

ε1/2Ω−1/2K10 Ω−1/2K11Ω
1/2 + 1

2Ω
−1Ω̇

)

T =
(
T0

∣∣ ε1/2T1

)
=

(
T00 ε1/2T01

T10 ε1/2T11

)
= CQ

(
I 0
0 ε1/2Ω−1/2

)
.

Eliminating the Singular Block. We next remove theO(ε−1/2) off-diagonal block
in Ǩ by the canonical transformation

−p1 = −p1 + ε1/2Ω−1/2KT
01q0, q0 = q0, t = t

with the conjugate variables

q1 = q1, p0 = p0 + ε1/2K01Ω
−1/2q1, E = E + ε1/2qT

0

d

dt

(
K01Ω

−1/2
)
q1.

In these coordinates, the Hamiltonian takes the form (we omit all bars)

H = 1

2
pT
0 p0 +

1
2ε

pT
1 Ω(t)p1 +

1
2ε

qT
1 Ω(t)q1 (2.11)

+ qTL(t)p + 1

2
qTS(t)q + U(T (t)q, t) + E

with the lower block-triangular matrix

L =
(

L00 0
ε1/2L10 L11

)

=
(

K00 0
ε1/2Ω−1/2(K10 + KT

01) Ω−1/2K11Ω
1/2 + 1

2Ω
−1Ω̇

)

and the symmetric matrix
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S =
(

S00 ε1/2S01

ε1/2S10 εS11

)
,

where

S00 = −K01K
T
01,

S01 = ST
10 = −K00K01Ω

−1/2

−K01Ω
−1/2(Ω1/2KT

11Ω
−1/2 + 1

2
Ω−1Ω̇)− d

dt

(
K01Ω

−1/2
)
,

S11 = Ω−1/2(−K10K01 −KT
01K

T
10 + KT

01K01)Ω−1/2.

We note that with the energy bound (2.2) we now have

p1 = O(ε1/2), q1 = O(ε1/2). (2.12)

Equations of Motion. The differential equations now take the form

ṗ0 = f0(p, q, t)
q̇0 = p0 + g0(q, t) (2.13)

(
ṗ1

q̇1

)
=

1
ε

(
0 −Ω(t)

Ω(t) 0

)(
p1

q1

)
+

(
f1(p, q, t)
g1(q, t)

)

with the functions bounded uniformly in ε,
(

f0

f1

)
= −L(t)p− S(t)q − T (t)T∇U(T (t)q, t),

(
g0

g1

)
= L(t)T q.

The matrix in the system is diagonalized by a constant unitary matrix: with

Γ =
1√
2

(
I I
−iI iI

)
(2.14)

we have (
0 −Ω(t)

Ω(t) 0

)
= Γ

(
iΩ(t) 0

0 −iΩ(t)

)
Γ ∗. (2.15)

Remark. Action-angle variables p1,j = √
aj cos θj , q1,j = √

aj sin θj for the har-
monic oscillators would now put the Hamiltonian into the form H = 1

εω(t) · a +
G(a, θ, p0, q0, t), which could be studied further using averaging techniques, that is,
using coordinate transforms that reduce the dependence on the angles in the Hamil-
tonian; see Neishtadt (1984) for averaging out up to an exponentially small remain-
der in the case of a single high frequency. The first-order averaging transform might
be done numerically (cf. the formulas in Sect. XII.2), but the higher-order trans-
forms involve increasingly higher derivatives of the functions involved and there-
fore become impractical from the numerical viewpoint. For systems with several
frequencies the averaging transforms require multi-dimensional integrals which are
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expensive to compute. For our numerical purposes we therefore continue differently,
adapting the adiabatic transformation of Sect. XIV.1.1.

The System in Adiabatic Variables. Let the diagonal phase matrix be given as

Φ(t) =
∫ t

t0

Λ(s) ds with Λ(t) =
(

Ω(t) 0
0 −Ω(t)

)
.

Our final transformation follows (1.4) and sets

η = ε−1/2 exp
(
− i

ε
Φ(t)

)
Γ ∗

(
p1

q1

)
. (2.16)

The factor ε−1/2 is chosen for convenience so that (2.12) implies

η = O(1). (2.17)

We remark that up to now all transformations were invariant under rescaling ε → σε
and A(t) → σ2A(t), but here we have chosen to give up this invariance in favour of
(2.17). Note that η is of the form

η = ε−1/2Γ ∗
(

π
ρ

)
=

ε−1/2

√
2

(
π + iρ
π − iρ

)
(2.18)

with real vectors π, ρ satisfying

π + iρ = exp
(
− i

ε

∫ t

t0

Ω(s) ds
)
(p1 + iq1). (2.19)

We denote the inverse transform as
(

p1

q1

)
= ε1/2

(
P1(t)
Q1(t)

)
η with

(
P1(t)
Q1(t)

)
= Γ exp

( i

ε
Φ(t)

)
. (2.20)

Together with e = E+ 1
2ε pT

1 Ω(t)p1+ 1
2ε qT

1 Ω(t)q1 and unaltered p0, q0, t this yields
a canonical transformation (p0, π, e, q0, ρ, t) �→ (p0, p1, E, q0, q1, t). The Hamil-
tonian reads in these variables

H = 1

2
pT
0 p0 + qTL(t)p + 1

2
qTS(t)q + U(T (t)q, t) + e,

where on the right-hand side the components p1, q1 are expressed in terms of η and
π, ρ by (2.20) and (2.18). The equations of motion now become

ṗ0 = f0(p, q, t)
q̇0 = p0 + g0(q, t)

η̇ = ε−1/2 exp
(
− i

ε
Φ(t)

)
Γ ∗

(
f1(p, q, t)
g1(q, t)

)
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with p1, q1 expressed in terms of η by (2.20). Written out, the differential equations
for p0, q0 read

ṗ0 = −L00p0 − S00q0 − TT
0 ∇U(T0q0, t)− εS01Q1η

−TT
0

(
∇U(T0q0 + εT1Q1η, t)−∇U(T0q0, t)

)

q̇0 = p0 + LT
00q0 + εLT

10Q1η. (2.21)

The matrix multiplying η after substituting the expressions f1 and g1 in the differ-
ential equation for η becomes, apart from the oscillatory exponentials,

W = Γ ∗
(
−L11 −εS11

0 LT
11

)
Γ (2.22)

= −1

2

(
L11 − LT

11 L11 + LT
11

L11 + LT
11 L11 − LT

11

)
− iε

2

(
−S11 S11

−S11 S11

)
,

which has a diagonal of size O(ε). The equation for η then reads

η̇ = exp
(
− i

ε
Φ(t)

)
W (t) exp

( i

ε
Φ(t)

)
η

− P ∗
1

(
L10p0 + S10q0 + TT

1 ∇U(T0q0 + εT1Q1η, t)
)
. (2.23)

The matrix multiplying η is bounded independently of ε, but highly oscillatory. Note
that the coordinate transforms leading to (2.21), (2.23) are linear and can be carried
out by standard numerical linear algebra routines.

Adiabatic Invariants. We suppose that the eigenfrequencies ωj(t) remain separated
and bounded away from 0: there are δ > 0 and c > 0 such that for any pair ωj(t)
and ωk(t) with j �= k (j, k = 1, . . . ,m), the lower bounds

|ωj(t)− ωk(t)| ≥ δ, ωj(t) ≥ c (2.24)

hold for all t under consideration. Under condition (2.24) the right-hand side r(t)
in the differential equation for η consists only of oscillatory terms, up to O(ε). (No
smooth terms larger than O(ε) arise because the matrix W has a diagonal of size
O(ε).) It then follows by partial integration that

∫ t

0

r(s) ds = O(ε) for t ≤ Const., (2.25)

and as in (1.6) we then obtain

η(t) = η(0) +O(ε) for t ≤ Const. (2.26)

The functions defined by

Ij = |ηj |2 (j = 1, . . . ,m) (2.27)
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are thus adiabatic invariants:

Ij(t) = Ij(0) +O(ε) for t ≤ Const. (2.28)

Starting from a Hamiltonian system (2.1), where the mass matrix equals the identity
and the stiffness matrix is already diagonal, we find that Ij is the action (energy
divided by frequency)

Ij(t) =
1

ωj(t)

(
1

2
pj(t)2 +

ωj(t)2

2ε2
qj(t)2

)
,

which for a constant frequency ωj becomes a constant multiple of the oscillatory
energy considered in Sect. XIII.9.

The Slow Limit System. As ε → 0, the evolution of the slow variables p0, q0 is
governed by the equations

ṗ0 = −L00(t)p0 − S00(t)q0 − T0(t)T∇U(T0(t)q0, t)
q̇0 = p0 + L00(t)T q0 (2.29)

which is the system with the time-dependent Hamiltonian

H0(p0, q0, t) = 1

2
pT
0 p0 + qT

0 L00(t)p0 + 1

2
qT
0 S00(t)q0 + U(T0(t)q0, t).

We conclude this subsection with a simple illustration of the above procedure.

Example 2.1 (Harmonic oscillator with slowly varying frequency). For the scalar
second-order differential equation

q̈ +
ω(t)2

ε2
q = 0,

where ω(t) is bounded away from 0 and has a derivative bounded independently
of ε, the above transformations simplify considerably. The Hamiltonian in the orig-
inal variables is already of the form

H = 1

2
p2 + 1

2

ω(t)2

ε2
q2,

and hence the first two transformations are not needed at all, and there are no slow
variables p0, q0. The rescaling transformation yields the Hamiltonian (2.10) in the
form

H =
ω(t)
2ε

p̌2 +
ω(t)
2ε

q̌2 + 1

2

ω̇(t)
ω(t)

p̌q̌.

With the adiabatic transformation (2.19) we thus represent the solution as

√
ε

ω(t)
q̇(t) + i

√
ω(t)
ε

q(t) = exp
( i

ε

∫ t

t0

ω(s) ds
)
ζ(t),
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where ζ = π + iρ solves the differential equation

ζ̇(t) = −1
2
ω̇(t)
ω(t)

exp
(
−2i

ε

∫ t

t0

ω(s) ds
)
ζ(t)

and satisfies ζ(t) = ζ(t0)
(
1 +O(ε)

)
for t = O(1). (In the above notation, we have

η = 1√
2
ε−1/2(ζ, ζ)T .) The action

I(t) =
1

ω(t)

(
1

2
q̇(t)2 +

ω(t)2

2ε2
q(t)2

)

is an adiabatic invariant.

XIV.2.2 Adiabatic Integrators

A simple long-time-step integrator for the oscillatory mechanical system with time-
dependent Hamiltonian (2.1) now reads as follows:

– Solve the slow limit system (2.29) for p0, q0, e.g., by the Störmer-Verlet method.
– Keep the adiabatic variable η constant at its initial value.

Under the condition of bounded energy (2.1) and the frequency separation condition
(2.24), the error in η is thenO(ε) over intervals t ≤ Const. by (2.26). The difference
between the solutions of (2.21) and the limit equation (2.29) is bounded by O(ε2)
for t ≤ Const., as can be shown by forming the difference of the equations, inte-
grating, estimating the integral of the extra terms by O(ε2) using (2.26) and partial
integration, and applying the Gronwall inequality. In the original variables p, q of
(2.1) this yields an error O(ε2) in the positions and O(ε) in the momenta.

More refined integrators are needed for two independent reasons:

1. to keep control of η on subintervals where the frequencies are not well separated
and where η may thus deviate from its near-constant value;

2. to obtain higher order of approximation on intervals with separated frequencies.

We simplify the following presentation by assuming that the potential U is quadratic:

U(q, t) = 1

2
qTG(t)q,

with a symmetric matrix G(t) depending smoothly on t. We leave the required modi-
fications for general U to the interested reader. Alternatively, the method with U = 0
can be used in the splitting approach of Sect. XIV.2.3 below.

An adiabatic integrator as described in Sect. XIV.1.2 can be extended to (2.23)
and combined with a symmetric splitting between the weakly coupled systems
(2.21) and (2.23): we begin with a symplectic Euler half-step for p0, q0 (denoting
the time levels by superscripts),



548 XIV. Oscillatory Differential Equations with Varying High Frequencies

p
1/2
0 = p0

0 −
h

2

(
L00p

1/2
0 + (S00 + TT

0 GT0)q0
0

+ ε
(
S01 + TT

0 GT1

)
Q−

1 η0
)

(2.30)

q
1/2
0 = q0

0 + h

2

(
p
1/2
0 + LT

00q
0
0 + εLT

10Q−
1 η0

)
.

Here the matrix functions L00, L10, S00, S01, T0, T1 are evaluated at t1/2 = t0 +
h/2, and Q−

1 is the average of the oscillatory function Q1 of (2.20) over the half-
step,

Q−
1 ≈ 2

h

∫ t1/2

t0

Q1(t) dt,

obtained with a linear approximation of the phase Φ(t) and analytic computation of
the integral. We then make a full step for η with Eq. (2.23) like in (1.12),

η1 = η0 + h
(
E(Φ) • I •W

)
1

2
(η1 + η0)

− hP∗
1

(
L10p

1/2
0 + (S10 + TT

1 GT0)q
1/2
0

)
, (2.31)

where again all matrix functions are evaluated at t1/2, and P1 is the linear-phase
approximation to the average

P1 ≈
1
h

∫ t1

t0

P1(t) dt.

The matrix W is as in (2.22), but with S11 replaced by S11 + TT
1 GT1. The step is

completed by a half-step for p0, q0 with the adjoint symplectic Euler method:

p1
0 = p

1/2
0 − h

2

(
L00p

1/2
0 + (S00 + TT

0 GT0)q1
0

+ ε
(
S01 + TT

0 GT1

)
Q+

1 η1
)

(2.32)

q1
0 = q

1/2
0 + h

2

(
p
1/2
0 + LT

00q
1
0 + εLT

10Q+
1 η1

)
,

where the matrix functions are still evaluated at t1/2, and Q+
1 approximates the

average of Q1 over the second half-step.
We now give local error bounds for this integrator, under conditions that include

the case of an avoided crossing of frequencies.

Theorem 2.2. Suppose that the functions in (2.1) are smooth and the frequencies
satisfy (2.24) with minimal distance δ > 0 for t0 ≤ t ≤ t0 + h, and the orthogo-
nal matrix Q∗(t) of (2.7), which diagonalizes the nonsingular part of the stiffness
matrix, has derivatives bounded by Q̇∗(t) = O(δ−1), Q̈∗(t) = O(δ−2). Assume
further the energy bound (2.2) for the initial values. Then, the local error of method
(2.30)–(2.32) is bounded by
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p1
0 − p0(t0 + h) = O(h3/δ2) +O(εh2/δ2)
q1
0 − q0(t0 + h) = O(h3/δ) +O(εh2/δ2)
η1 − η(t0 + h) = O(h2/δ2).

The constants symbolized by O do not depend on ε, h, and δ.

Proof. (a) Under the given conditions we have

K00 = O(1), K01 = O(1), K10 = O(1), K11 = O(δ−1), and

K̇00 = O(1), K̇01 = O(δ−1), K̇10 = O(δ−1), K̇11 = O(δ−2),

This yields the bounds
L00, L10, S00, S11 = O(1)

and similarly for their derivatives, and

L11, S01, S10 = O(δ−1), L̇11, Ṡ01, Ṡ10 = O(δ−2),

and hence also
W = O(δ−1), Ẇ = O(δ−2).

So we have from the energy bound and the differential equation (2.23) for η,

η = O(1), η̇ = O(δ−1).

From the differential equations (2.21) for p0, q0 we conclude

p̈0 = O(δ−1) +O(εδ−2), q̈0 = O(εδ−1).

(b) To study the local error in η, we integrate (2.23) from t0 to t0+h and compare
with the corresponding term in (2.31):

∫ t0+h

t0

P ∗
1 (t)

(
L10p0 + (S10 + TT

1 GT0)q0

)
(t) dt

− hP∗
1

(
L10(t1/2)p

1/2
0 + (S10 + TT

1 GT0)(t1/2)q
1/2
0

)

= O(h2/δ2),

where we have used the above bounds and the error estimate for the linear phase
approximation in the average of P1(t), cf. Sect. XIV.1.2,

P1 −
1
h

∫ t1

t0

P1(t) dt = O(h/δ).

Combining this estimate with the error bound of the adiabatic midpoint rule for the
homogeneous equation as given in Theorem 1.2 yields the stated error bound for η1.
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(c) The error bound for the components p0, q0 comes about by combining error
bounds for the Störmer–Verlet method (which require the bounds for p̈0, q̈0) and the
estimates

∫ t0+h/2

t0

ε(S01 + TT
0 GT1)Q1η(t) dt− h

2
ε
(
S01 + TT

0 GT1

)
(t1/2)Q−

1 η0

= O(εh2/δ2)

and ∫ t0+h/2

t0

εLT
10Q1η(t) dt− h

2
εL10(t1/2)Q−

1 η0 = O(εh2/δ),

and the same estimates for the second half-step. See also Exercise 7 for a similar
situation. 
�

In the case of well-separated eigenvalues, the global error on bounded time intervals
is thus bounded by O(h2)+O(hε) in p0, q0 for t ≤ Const. and by O(h) in η. In the
original variables p, q of (2.1), this then yields an error

qn − q(tn) = O(h2) +O(hε), pn − p(tn) = O(h) for tn ≤ Const.

With an adaptive step size strategy as in Sect. XIV.1.2, it is again possible to follow
η through non-adiabatic transitions near avoided crossings of eigenvalues.

A higher-order scheme with a global error of O(h2) in η – in the situation
of separated eigenvalues – is obtained by replacing the upper line in (2.31) by a
second-order adiabatic integrator as discussed in Sect. XIV.1.2, leaving the last term
in (2.31) unaltered. In the original variables p, q of (2.1), the error is then O(h2)
both in positions and (fast and slow) momenta. The error is even O(εh2) in the fast
positions q1 of (2.8), which oscillate with an amplitude O(ε). We refer to Lorenz,
Jahnke & Lubich (2005) for the particular case of second-order differential equa-
tions q̈ + ε−2A(t)q = 0 with a positive definite matrix A(t).

XIV.2.3 Error Analysis of the Impulse Method

The transformation to adiabatic variables of Sect. XIV.2.1 also gives new insight
into the error behaviour of multiple time stepping methods such as the impulse or
mollified impulse method discussed in Sections VIII.4 and XIII.1, which do not
use coordinate transforms in the method formulation. These methods are of interest
when the eigendecompositions needed in adiabatic integrators are computationally
more expensive than doing many small steps with the fast subsystem, and when
evaluations of the potential force are so costly that the computational work for the
fast subsystem becomes irrelevant. We consider the splitting

H = H fast + Hslow

of the Hamiltonian (2.3) with
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H fast(p,E, q, t) = 1

2
pTM(t)−1p +

1
2ε2

qTA(t)q + E

Hslow(p,E, q, t) = U(q, t).

The impulse method is given as the composition of the exact flows of the subsystems
(see Sections VIII.4 and XIII.1.3):

Φh = ϕslow
h/2 ◦ ϕfast

h ◦ ϕslow
h/2 ,

where we are interested in taking long time steps h ≥ c ε (with a positive constant c).
The equations of motion of the slow subsystem,

ṗ = −∇U(q, t), q̇ = 0, ṫ = 0,

are solved trivially by

p̂ = p− h

2
∇U(q, t), q̂ = q, t̂ = t.

In contrast, the fast subsystem needs to be integrated approximately, e.g., by many
small substeps with the Störmer–Verlet method in the original variables (p, q) or by
one step of the method (2.30)–(2.32) with G = 0 in adiabatic variables (p0, q0, η).
In the following we ignore the error resulting from this additional approximation
and study the splitting method with exact flows.

The error behaviour of this method can be understood with the help of the trans-
formation to adiabatic variables of Sect. XIV.2.1. The impulse method in the adia-
batic variables p0, q0, η is obtained by splitting the differential equations (2.21) and
(2.23). The fast subsystem is obtained by simply putting U = 0 in these equations,
and the slow subsystem reads

ṗ0 = −TT
0 ∇U(T0q0 + εT1Q1η, t), q̇0 = 0

η̇ = −P ∗
1 T

T
1 ∇U(T0q0 + εT1Q1η, t)

along with ṫ = 0, so that the argument in all the matrices is frozen at the initial time.
Here P1(t) and Q1(t) are again the highly oscillatory matrix functions of (2.20).
Since Q1P

∗
1 = 0 we have Q1η = Const., and therefore, in these variables the flow

ϕslow
h/2 is the mapping given by

p̂0 = p0 −
h

2
TT

0 ∇U(T0q0 + εT1Q1η, t0), q̂0 = q0

η̂ = η − h

2
P ∗

1 T
T
1 ∇U(T0q0 + εT1Q1η, t0), (2.33)

where the matrices T0, T1, P1, Q1 are evaluated at t0. In the impulse method, the
above values are the starting values for a step with ϕfast

h , which is followed by
another application of ϕslow

h/2 .
A disturbing feature in (2.33) is the appearance of the particular value P1(t0) of

the highly oscillatory function instead of the average P1 as in (2.31).
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We now consider the error propagation for η in the case of well-separated fre-
quencies. Recall that the exact solution then satisfies η(t) = η(0) + O(ε) for
t ≤ Const. For ease of presentation we consider a constant step size h.

Lemma 2.3. Assume the energy bound (2.2) for the initial values. If the frequencies
ωj(t) remain separated from each other, then the result after n steps satisfies, for
nh ≤ T ≤ Const.,

ηn = η0 + σn +O(ε), (2.34)

where

‖σn‖ ≤ Cκ with κ = max
0≤nh≤T

max
k

∥∥∥h
n∑

j=0

exp
( i

ε
φk(tj)

)∥∥∥. (2.35)

Proof. We have ηn = ηh(tn), where ηh(t) solves the differential equation with
impulses,

η̇h = exp
(
− i

ε
Φ
)
W exp

( i

ε
Φ
)
ηh + r +

∑
j

∆ηj δj .

Here W (t) is the matrix (2.22) appearing in (2.23), and

r(t) = −P ∗
1 (t)

(
L10(t)p0,h(t) + S01(t)q0,h(t)

)

with p0,h(t), q0,h(t) denoting the piecewise constant functions that take the values
of the numerical solution. Further we have

∆ηj = −hP1(tj)∗ T1(tj)T ∇U
(
T0(tj)q0,j + εT1(tj)Q1(tj)ηj , tj

)
,

the expression on the right-hand side of (2.33), and δj is a Dirac impulse located
at tj . It follows that, for t = nh,

ηn − η0 = ηh(tn)− ηh(0)

=
∫ t

0

exp
(
− i

ε
Φ(s)

)
W (s) exp

( i

ε
Φ(s)

)
ηh(s) ds +

∫ t

0

r(s) ds + σn,

where σn is the trapezoidal sum of the terms on the right-hand side of (2.33):

σn = −h

n∑
j=0

′ P1(tj)∗ T1(tj)T ∇U
(
T0(tj)q0,j + εT1(tj)Q1(tj)ηj , tj

)
. (2.36)

The prime on the sum indicates that the first and last term are taken with the factor 1
2 .

Using partial integration as in (1.6), we obtain

∫ t

0

exp
(
− i

ε
Φ(s)

)
W (s) exp

( i

ε
Φ(s)

)
ηh(s) ds = O(ε),

and by partial integration as in (2.25),
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∫ t

0

r(s) ds = O(ε).

This shows (2.34). A partial summation in (2.36), summing up the oscillatory terms
P1(tj) and differencing the smoother other terms, then yields (2.35). 
�

The size of κ of (2.35) depends on possible resonances between the step size and
the frequencies, yielding κ between O(h) and O(1). For the error of the method we
have the following.

Theorem 2.4. Assume the energy bound (2.2) for the initial values. If the frequen-
cies ωj(t) remain separated from each other, then the error of the impulse method
after n steps with step size h ≥ c ε satisfies

pn − p(tn) = O(κ)
qn − q(tn) = O(h2) +O(εκ).

The constants symbolized by O do not depend on ε, h and n with nh ≤ Const.

Proof. The error of size O(κ) in η immediately implies an error of size O(κ) in the
actions Ij = 1

2 |ηj |2, and an error of O(κ) in the fast momenta p1 and of O(εκ) in
the fast positions q1 of (2.9); recall the transformation (2.16) and the rescaling. In
the slow components p0, q0 the method is a perturbed variant of the Störmer–Verlet
method. The contribution of the perturbations εT1Q1η to the error is of size O(εκ).
This is seen by applying the simple lemma below with y = (p0, q0) and

dn =
(
−hT0(tn)T∇2U(T0(tn)q0,n, tn) εT1(tn)Q1(tn)ηn

0

)
+O(h2ε)

and using partial summation of the dn, summing up the oscillatory terms Q1(tn)
and differencing the other terms. 
�

Lemma 2.5. Let Φh(y) = y+hFh(y) be a one-step method where Fh has Lipschitz
constant L. Consider the method and a perturbation,

yn+1 = Φh(yn) and ỹn+1 = Φh(ỹn) + dn,

with the same starting values ỹ0 = y0. Then, the difference is bounded by

‖ỹn − yn‖ ≤ enhL · max
0≤k≤n−1

∥∥∥
k∑

j=0

dj

∥∥∥ .

Proof. The result follows from

ỹn − yn = h

n−1∑
j=0

(
Fh(ỹn)− Fh(yn)

)
+

n−1∑
j=0

dj

with the discrete Gronwall inequality. 
�
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XIV.2.4 Error Analysis of the Mollified Impulse Method

The problem with possible step-size resonances can be greatly alleviated by the
mollified impulse method (see Sect. XIII.1.4) where the potential U(q, t) is replaced
by a modified potential U(q, t). A good choice is

U(q, t) = U(A(t)q, t) with A(t) = C(t)Q(t)
(

I 0
0 S(t)

)
Q(t)TC(t)−1

(2.37)
with C and Q of (2.4) and (2.6), and

S(t) = sinc
(h

ε
Ω(t)

)
=

1
2h

∫ h

−h

exp
(
± is

ε
Ω(t)

)
ds.

A calculation shows that it replaces (2.33) by

p̂0 = p0 −
h

2
TT

0 ∇U(T0q0 + εT1Q1η, t0), q̂0 = q0

η̂ = η − h

2
P∗

1T
T
1 ∇U(T0q0 + εT1Q1η, t0), (2.38)

with matrix functions evaluated at t0, where P1(t) and Q1(t) are the linear-phase
approximations to the average over the interval [t− h, t + h] of P1 and Q1, respec-
tively,

P1(t) = S(t)P1(t) =
1
2h

∫ t+h

t−h

P1(s) ds +O(h)

Q1(t) = S(t)Q1(t) =
1
2h

∫ t+h

t−h

Q1(s) ds +O(h).

Therefore, (2.34) and (2.36) hold with the highly oscillatory P1(tj) replaced by the
averages P1(tj). Using a partial summation in (2.36) and noting that, for t = nh ≤
Const.,

∥∥∥h
n∑

j=1

P1(tj)
∥∥∥ =

∥∥∥
∫ t

0

P1(s) ds
∥∥∥ +O(h) = O(ε) +O(h),

we obtain an estimate
ηn = η0 +O(h)

instead of the corresponding bound (2.34) with (2.35). This eliminates the bad ef-
fect of step size resonances (large κ) on the propagation in the fast variables over
bounded time intervals t ≤ Const. (though not on longer intervals, as we know from
Chap. XIII). The more harmless effect of step size resonances on the slow variables,
as visible in the term O(εκ) in Theorem 2.4, is likewise reduced to O(εh). We thus
obtain the following improvement over the error bounds in Theorem 2.4.
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Theorem 2.6. Assume the energy bound (2.2) for the initial values. If the frequen-
cies ωj(t) remain separated from each other, then the error of the above mollified
impulse method after n steps with step size h ≥ c ε satisfies

pn − p(tn) = O(h)
qn − q(tn) = O(h2).

The constants symbolized by O do not depend on ε, h and n with nh ≤ Const. 
�

A direct implementation of this method requires just the same matrix decompo-
sitions that are needed for the integrators in adiabatic variables. It is then reasonable
to use one step of the adiabatic integrator of Sect. XIV.2.2 for solving the fast sub-
system over a time step.

An alternative is to compute the averageA(t) by small time steps from the linear
differential equation with the Hamiltonian H fast, as formulated in Sect. XIII.1.4.
The method described here then corresponds to (XIII.1.18) with c = 1.

XIV.3 Mechanical Systems with Solution-Dependent
Frequencies

We2 consider the Hamiltonian

H(p, q) = 1

2
pTM(q)−1p + U(q) +

1
ε2

V (q) (3.1)

with a strong potential ε−2V (q) that penalizes some directions of motion. Analytical
studies of this problem were done by Rubin & Ungar (1957), Takens (1980), and
Bornemann (1998). In an alternative approach to these works, we here describe a
transformation of the problem to adiabatic variables. This gives new insight into the
solution behaviour and can be used as the starting point for the construction of long-
time-step integrators. It also enables us to analyse the error of multiple time-stepping
methods.

XIV.3.1 Constraining Potentials

We consider the Hamiltonian (3.1), where M(q) is a symmetric positive definite
mass matrix depending smoothly on the positions q ∈ R

n, U is a smooth potential,
and the constraining potential is assumed to satisfy the following:

2 This section was written in cooperation with Katina Lorenz (Doctoral Thesis,
Univ. Tübingen, in preparation).
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V

V (q)
The smooth function V : D ⊂ R

n → R at-
tains its minimum value 0 on a d-dimensional
manifold V ⊂ R

n,

V = {q ∈ D | V (q) = minV = 0}. (3.2)

In a neighourhood of V , the potential V
is strongly convex along directions non-
tangential to V , that is, there exists α > 0
such that for q ∈ V , the Hessian ∇2V (q) sat-
isfies

vT∇2V (q)v ≥ α · vTM(q)v (3.3)

for all vectors v in the M(q)-orthogonal complement of the tangent space TqV .
We let m = n−d be the number of independent constraints that locally describe

the manifold V .

Example 3.1 (Chain of Stiff Springs). The position of m + 1 mass points in a
plane, arranged in a chain connected by stiff springs with spring constants α2

i /ε
2, is

determined by the Cartesian coordinates of the first mass point and by m angles ϕi

and the elongations di of the m springs. The constraining potential is

V = 1

2

m∑
i=1

α2
i d2

i ,

and the constraint manifold is described by d1 = . . . = dm = 0 corresponding to
non-elongated springs. The frequencies of the vibrations in such a chain depend on
the angles.

In the above example we have, in the coordinates given by the angles and elon-
gations, a potential V of the form

V (q) = 1

2
qT
1 A(q0)q1 (3.4)

for q = (q0, q1) ∈ R
d × R

m, with a positive definite matrix A(q0). The manifold
of constraints is here simply V = R

d × 0. As the following lemma shows, this is
already the general situation in suitable local coordinates.

Lemma 3.2. Under conditions (3.2)–(3.3), there exists a smooth local change of
coordinates q = χ(y) such that

V (q) = 1

2
yT
1 A(y0)y1 for q = χ(y)

with y = (y0, y1) near 0 in R
d × R

m, where A(y0) is a symmetric positive definite
m×m matrix.
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Proof. In a first step, we choose local coordinates q = ψ(x) with x = (x0, x1) near
0 in R

d × R
m, such that q = ψ(x) ∈ V if and only if x1 = 0. In these coordinates,

denoting V̂ (x) = V (q) for q = ψ(x), we then have

V̂ (x0, 0) = 0, ∇V̂ (x0, 0) = 0

by (3.2), and
A(x0) := ∇2

x1
V̂ (x0, 0) is positive definite

by (3.3). We now change coordinates by the near-identity transformation

y0 = x0, y1 = µ(x)x1

where the real factor µ(x) (near 1 for x1 near 0) is to be chosen such that

1

2
yT
1 A(y0)y1 = V̂ (x0, x1).

Since the right-hand side equals

V̂ (x0, x1)− V̂ (x0, 0)− xT
1∇V̂ (x0, 0) = 1

2
xT

1 A(x0)x1 + r(x)

with r(x) = O(‖x1‖3), the choice

µ(x) =

√
1 +

2r(x)
xT

1 A(x0)x1

does the trick. 
�

We remark that Lemma 3.2 could be obtained as a corollary to the Morse lemma,
for which we refer to Abraham & Marsden (1978) and Crouzeix & Rappaz (1989).

The change to the local coordinates x = (x0, x1) such that V (q) = 0 if and only
if x1 = 0 for q = ψ(x), is not numerically constructive from the mere knowledge
of an expression for the potential V . However, in many situations the manifold V
can be described by constraints g(q) = 0, and x1 = g can then be extended to a full
set of coordinates. The above transformation from x to y can be done numerically.
In the usual way, the transformation q = χ(y) of the position coordinates extends
to a canonical transformation by setting py = χ′(y)T p for the conjugate momenta;
see Example VI.5.2.

Solutions of (3.1) are in general oscillatory with frequencies of size ∼ ε−1.
There exist, however, special solutions having arbitrarily many time derivatives
bounded independently of ε, which for arbitrary N ≥ 1 stay O(εN ) close to a man-
ifold Vε,N that has a distance O(ε) to V . See Lubich (1993), where also implicit
Runge-Kutta methods for the approximation of the smooth solutions are studied. In
this section we are, however, interested in approximating general oscillatory solu-
tions of bounded energy.
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XIV.3.2 Transformation to Adiabatic Variables

We start from a Hamiltonian (3.1) in coordinates (p, q) where the constraining po-
tential is already of the form (3.4) for q = (q0, q1). We note that for a system of
bounded energy, we then have q1 = O(ε).

We now perform a series of canonical transformations that take the Hamiltonian
into a form that is better suited for a direct numerical treatment and for the er-
ror analysis of multiple time-stepping methods. The transformations are similar to
those for the time-dependent case treated in Sect. XIV.2.1, but here they appear in a
permuted order.

Transforming the Stiffness Matrix into the Identity. We write the Cholesky de-
composition of the stiffness matrix as

A(q0) = C(q0)−TC(q0)−1

and change to variables
q0 = q̃0, q1 = C(q̃0)q̃1

along with the conjugate momenta

p̃0 = p0 +
( ∂

∂q̃0
C(q̃0)q̃1

)T

p1, p̃1 = C(q̃0)T p1.

With the transformed mass matrix M̃(q̃) = B(q̃)M(q̃0, C(q̃0)q̃1)B(q̃)T (for the
matrix B(q̃) that transforms p̃ = B(q̃)p) and the potential Ũ(q̃) = U(q̃0, C(q̃0)q̃1),
the Hamiltonian takes the simplified form (we omit all tildes)

H = 1

2
pTM(q)−1p +

1
2ε2

qT
1 q1 + U(q). (3.5)

Eliminating Off-Diagonal Blocks in the Mass Matrix. We write the mass matrix
M(q) as

M =
(

M00 M01

M10 M11

)
.

With G(q0) = −M00(q0, 0)−1M01(q0, 0), we transform

q0 = q0 + G(q0)q1, q1 = q1,

with the conjugate momenta

p0 = p0 +
( ∂

∂q0

G(q0)q1

)T

p0, p1 = p1 + G(q0)
T p0.

This canonical change of variables eliminates M01 and M10 in the transformed mass
matrix M(q0, 0) and keeps the Schur complement on the block diagonal: with the
symmetric positive definite matrices
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M0(q0) = M00(q0, 0), M1(q0) =
(
M11 −M10M

−1
00 M01

)
(q0, 0),

the transformation puts the Hamiltonian into the form (we omit all bars)

H = 1

2
pT
0 M0(q0)−1p0 + 1

2
pT
1 M1(q0)−1p1 +

1
2ε2

qT
1 q1

+ 1

2
pTR(q)p + U(q0 + G(q0)q1, q1) (3.6)

where R is a smooth matrix-valued function satisfying

R(q0, 0) = 0. (3.7)

Diagonalizing the Mass Matrix of the Fast Variables. We diagonalize

M1(q0) = Q(q0)Ω(q0)−2Q(q0)T

with the diagonal matrix Ω(q0) = diag(ωj(q0)) of frequencies and an orthogonal
matrix Q(q0), which depends smoothly on q0 if the frequencies are separated. We
transform

q0 = q̂0, q1 = Q(q̂0)q̂1

with the conjugate momenta

p̂0 = p0 +
( ∂

∂q̂0
Q(q̂0)q̂1

)T

p1, p̂1 = Q(q̂0)T p1.

The matrix

Y (q̂) =
( ∂

∂q̂0
Q(q̂0)q̂1

)T

Q(q̂0)

is of size O(q̂1) but it is this expression which may become large near avoided
crossings of eigenvalues. We consider the associated matrix

X(q̂) =
(

0 X01

X10 X11

)
=

(
0 −M−1

0 Y
−Y TM−1

0 Y TM−1
0 Y

)
. (3.8)

With a matrix R̂(q̂) satisfying (3.7), which is a sum of the appropriately transformed
previous matrix R and the above matrix X , the Hamiltonian in the new variables
(p̂, q̂) becomes (we omit all hats)

H = 1

2
pT
0 M0(q0)−1p0 + 1

2
pT
1 Ω(q0)2p1 +

1
2ε2

qT
1 q1

+ 1

2
pTR(q)p + U(q0 + GQ(q0)q1, Q(q0)q1). (3.9)
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Rescaling Positions and Momenta. We change to rescaled fast variables

q0 = q̌0, q1 = ε1/2Ω(q̌0)1/2q̌1

(note that q1 = O(ε) implies q̌1 = O(ε1/2)) with the conjugate momenta

p̌0 = p0 + ε1/2
( ∂

∂q̌0
Ω(q̌0)1/2q̌1

)T

p1, p̌1 = ε1/2Ω(q̌0)1/2p1.

In the new variables, the Hamiltonian becomes (we omit the hačeks on all variables)

H = 1

2
pT
0 M0(q0)−1p0 +

1
2ε

pT
1 Ω(q0)p1 +

1
2ε

qT
1 Ω(q0)q1

+ 1

2
pTR(q)p + U(T (q0)q), (3.10)

where

T =
(
T0

∣∣ ε1/2T1

)
=

(
I ε1/2GQΩ1/2

0 ε1/2QΩ1/2

)

and R(q) is a symmetric matrix of the form

R(q) =
(

R00(q0, ε
1/2q1) ε−1/2R01(q0, ε

1/2q1)
ε−1/2R10(q0, ε

1/2q1) ε−1R11(q0, ε
1/2q1)

)

with smooth functions Rij satisfying Rij(q0, 0) = 0. Therefore, the expression
1
2 pTR(q)p can be rewritten in the form

1

2
pTR(q)p = ε1/2c(p0, q0)T q1 + pT

1 L(p0, q0)T q1

+ ε−1/2τ(p1, p1, q1; p0, q0) + ρ(p, q), (3.11)

with a vector c, a matrix L, a function τ that is trilinear in p1, p1, q1, and a remainder
of size ρ(p, q) = O(ε2) for p1, q1 = O(ε1/2), whose partial derivatives with respect
to p1, q1 are of size O(ε3/2), and with respect to p0, q0 of size O(ε2).

Equations of Motion. The differential equations now take the form

ṗ0 = −∇q0

(
1

2
pT
0 M0(q0)−1p0 + U(q0, 0)

)

−∇q0

( 1
2ε

pT
1 Ω(q0)p1 +

1
2ε

qT
1 Ω(q0)q1

)
+ f0(p, q)

q̇0 = M0(q0)−1p0 + g0(p, q) (3.12)
(

ṗ1

q̇1

)
=

1
ε

(
0 −Ω(q0)

Ω(q0) 0

)(
p1

q1

)
+

(
f1(p, q)
g1(p, q)

)

with the functions
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(
f0

f1

)
= −∇q

(
1

2
pTR(q)p + U(T (q0)q)− U(q0, 0)

)

(
g0

g1

)
= R(q)p.

We note the magnitudes f0 = O(ε), g0 = O(ε) and f1 = O(ε1/2), g1 = O(ε1/2)
in the case of separated eigenfrequencies, where the diagonalization is smooth with
bounded derivatives. By (3.11) we have (omitting the arguments p0, q0 in c, L, T )

f1 = −ε1/2c− Lp1 + ε−1/2a(p1, p1; p0, q0)− ε1/2TT
1 ∇U(q0, 0) +O(ε3/2)

g1 = LT q1 + ε−1/2b(p1, q1; p0, q0) +O(ε3/2) (3.13)

where the functions a and b are bilinear in their first two arguments.

The System in Adiabatic Variables. We finally leave the canonical framework
and transform to adiabatic variables as in (2.16). Along a solution (p(t), q(t)) of the
system (3.12) we consider the diagonal phase matrix Φ(t) defined by

Φ̇ = Λ(q0) with Λ(q0) =
(

Ω(q0) 0
0 −Ω(q0)

)
.

With the constant unitary matrix Γ of (2.14), which diagonalizes the matrix in
(3.12), we introduce the adiabatic variables

η = ε−1/2 exp
(
− i

ε
Φ
)
Γ ∗

(
p1

q1

)
(3.14)

and denote the inverse transform as(
p1

q1

)
= ε1/2

(
P1

Q1

)
η = ε1/2Γ exp

( i

ε
Φ
)
η. (3.15)

The differential equations (3.12) for p1, q1 then turn into

η̇ = ε−1/2 exp
(
− i

ε
Φ
)
Γ ∗

(
f1

g1

)
= ε−1/2P ∗

1 f1 + ε−1/2Q∗
1g1

with the arguments (p0, ε
1/2P1η, q0, ε

1/2Q1η) in the functions f1, g1. Inserting the
expressions for f1 and g1 from (3.13), we obtain as in (2.22) and (2.23), with

W = −1

2

(
L− LT L + LT

L + LT L− LT

)
, (3.16)

the differential equation

η̇ = exp
(
− i

ε
Φ
)
W (p0, q0) exp

( i

ε
Φ
)
η (3.17)

+ exp
(
− i

ε
Φ
)
Γ ∗

(
a(P1η, P1η; p0, q0)
b(P1η,Q1η; p0, q0)

)
(3.18)

− P ∗
1

(
c(p0, q0) + T1(q0)T∇U(q0, 0)

)
+ r (3.19)

with the remainder r(p0, q0, P1η,Q1η) = O(ε).
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Adiabatic Invariants. For a solution with bounded energy, both p1(t) and q1(t) in
(3.12) are of size O(ε1/2) and hence

η(t) = O(1).

We now integrate both sides of the above differential equation from 0 to t. The
integral of the terms in (3.19) is O(ε), as is seen by partial integration since P ∗

1 (t)
is oscillatory with an O(ε) integral and p0, q0 have bounded derivatives.

We now suppose that the eigenfrequencies ωj(t) := ωj(q0(t)) remain separated
and bounded away from 0: there is a constant δ > 0 such that for any pair ωj(t) and
ωk(t) with j �= k, the lower bounds

|ωj(t)− ωk(t)| ≥ δ, ωj(t) ≥
δ

2
(3.20)

hold for all t under consideration. In this situation, as in Sect. XIV.2.1, the integral
from 0 to t of the term (3.17) is bounded by O(ε), since the matrix W has zero
diagonal.

It remains to study the term (3.18) with the bilinear functions a and b. This
term has only oscillatory components if the following non-resonance condition is
satisfied: for all j, k, l and all combinations of signs,

|ωj(t)± ωk(t)± ωl(t)| ≥ δ (3.21)

with a positive δ independent of ε. In this case, also the integral over the term (3.18)
is of size O(ε), and we obtain

η(t) = η(0) +O(ε) for t ≤ Const. (3.22)

If condition (3.21) is weakened to requiring that for all j, k, l = 1, . . . ,m,

ωj(t)± ωk(t)± ωl(t) has a finite number of at most simple zeros (3.23)

in the considered time interval, then the estimate deteriorates to (see Exercise 1)

η(t) = η(0) +O(ε1/2) for t ≤ Const. (3.24)

The actions
Ij = |ηj |2 (j = 1, . . . ,m) (3.25)

are thus adiabatic invariants:

Ij(t) = Ij(0) +O(ε) for t ≤ Const. (3.26)

in case of (3.22), and up to O(ε1/2) in case of (3.24).
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The Slow System. Since the oscillatory energy equals

1
2ε

pT
1 Ω(q0)p1 +

1
2ε

qT
1 Ω(q0)q1 =

m∑
j=1

Ij ωj(q0),

the differential equations (3.12) for the slow variables p0, q0 become, up to O(ε),

ṗ0 = −∇q0

(
1

2
pT
0 M0(q0)−1p0 + U(q0, 0)

)
−

m∑
j=1

Ij ∇q0ωj(q0)

q̇0 = M0(q0)−1p0. (3.27)

Compared with the constrained system with Hamiltonian 1
2p

TM(q)−1p + U(q) on
the configuration manifold V , the slow motion is thus driven by the additional poten-
tial

∑m
j=1 Ij ωj(q0) depending on the actions Ij . See also Rubin & Ungar (1957),

Takens (1980), and Bornemann (1998) for different derivations and discussions of
the correction potential.

Avoided Crossing of Frequencies and Takens Chaos. If the distance δ of fre-
quencies in (3.20) becomes so small at a point q0(t) that δ2 ≤ ε, then there can
again occur O(1) changes in adiabatic invariants Ij , as in the Zener example of
Sect. XIV.1.1. In the present situation of solution-dependent frequencies, however,
the level to which Ij jumps after the avoided crossing, depends very sensitively on
the slow solution variables q0(t) through the terms exp(± i

εΦ) in (3.17). In turn, the
slow motion of p0, q0 after the avoided crossing depends on the new values of Ij

through (3.27). The effect is that the slow motion depends very sensitively on per-
turbations of the initial values in the case of an avoided crossing; see Takens (1980).
The indeterminacy of the slow motion in the limit ε → 0 is termed Takens chaos by
Bornemann (1998).

XIV.3.3 Integrators in Adiabatic Variables

A long-time-step integrator for the oscillatory mechanical system with Hamiltonian
(3.1) can now be obtained as follows:

Solve the slow system (3.27) in tandem with applying an adiabatic integrator
(see Sect. XIV.1.2) to a simplified equation for the adiabatic variables,

η̇ = exp
(
− i

ε
Φ
)
W exp

( i

ε
Φ
)
η,

where W is given by (3.16) with a simplified matrix L : with v0 = M0(q0)−1p0, let

L(p0, q0) = −Ω(q0)1/2 d

dτ

∣∣∣
τ=0

Q(q0 + τv0)T Q(q0)Ω(q0)−1/2.

This matrix L captures the principal terms, coming from the matrix X01 in (3.8),
which are responsible for a change of the adiabatic invariants due to an avoided
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crossing as long as the frequency separation condition (3.20) holds with a possibly
ε-dependent δ $ ε, e.g., with δ ∼ ε1/2 where O(1) changes occur in the adiabatic
invariants. Because of the Takens chaos, it cannot be expected that such an integrator
yields a good approximation to “the” solution, but the method can approximate
an almost-solution (having a small defect in the differential equations) that passes
through the avoided crossing zone, and it detects the change of adiabatic invariants.
The properties of integrators of this type are currently under investigation (Lorenz
& Lubich 2006).

Further we refer to Jahnke (2003, 2004b) for the construction and analysis of
adiabatic integrators for mixed quantum-classical molecular dynamics, where simi-
larly a nonlinear coupling of slow and fast, oscillatory motions occurs.

XIV.3.4 Analysis of Multiple Time-Stepping Methods

The error behaviour of the impulse and mollified impulse method applied to an os-
cillatory Hamiltonian system (3.1) with well-separated frequencies can be analysed
in the adiabatic variables in the same way as we did in Sections XIV.2.3 and XIV.2.4
for the case of time-dependent frequencies. Analogous formulas and the same con-
clusions hold; essentially we need to replace the argument t by q0 in the appearing
functions. However, their behaviour in the situation of an avoided crossing with
Takens chaos is presently not understood.

XIV.4 Exercises

1. Show that ∫ t

0

exp
( i

ε
φ(s)

)
ds = O(ε1/(m+1))

if λ := φ̇ has finitely many zeros of order at most m in the interval [0, t].
Hint: Use the method of stationary phase; see, e.g., Olver (1974) or van der
Corput (1934).

2. Show that the adiabatic variables η(t) of (1.4) remain approximately constant
also in the following cases of non-separated eigenvalues:
(a) a multiple eigenvalue λj(t) of constant multiplicity m for all t and the
orthogonal basis vj,1(t), . . . , vj,m(t) of the corresponding eigenspace chosen
such that the derivatives v̇j,l(t) are orthogonal to the eigenspace for all t;
(b) a crossing of eigenvalues, λj(t∗) = λk(t∗) with λ̇j(t∗) �= λ̇k(t∗), for which
the eigenvectors are smooth functions of t in a neighbourhood of t∗; see also
Born & Fock (1928) for crossings where λj − λk can have zeros of higher
multiplicity.

3. Let the differential equation (1.1) with smooth skew-hermitian Z(t) be trans-
formed locally over [t0, t0 + h] to z(t) = exp(− t

εZ∗)y(t), so that
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ż =
1
ε

exp(− t

ε
Z∗)

(
Z(t)− Z∗

)
exp(

t

ε
Z∗) z

with Z∗ = Z(t0 + h/2). Consider the averaged midpoint rule

z1 = z0 +
1
ε

∫ h

0

exp(−s

ε
Z∗)

(
Z̃(s)− Z∗

)
exp(

s

ε
Z∗) ds

1

2
(z0 + z1), (4.1)

where Z̃(t) is the quadratic interpolation polynomial through Z(t0), Z∗, Z(t1).
Show that the local error z1 − z(t1) is of size O(h4/ε2), which is O(h2) only
for h = O(ε). Explain why the error bound cannot be improved to O(h2) for
h = O(εα) with α < 1.
Hint: See the proofs of Theorems 2.1(i) and 3.1 in Hochbruck & Lubich
(1999b), cf. also Iserles (2004).

4. In the situation of the previous exercise, let U be a unitary matrix of eigenvec-
tors of Z∗, and let D̃(t) be the diagonal matrix containing the diagonal entries
of U∗(Z̃(t) − Z∗

)
U . Find a modification of the above averaged midpoint rule

by terms that use only D̃(t), such that the local error is O(h2) for h ≤ ε3/4 if
the eigenvalues of Z∗ are all separated by a distance δ independent of ε.

5. Compare the error behaviour of the averaged midpoint rules (1.12) and (4.1)
near the avoided crossing of the eigenvalues in the Zener matrix (1.9).

6. Formulate symmetric modifications of the adiabatic integrators (1.12) and
(1.13) that use function evaluations at the grid points tn and tn+1 instead of
tn+1/2.

7. Consider the differential equation ẏ = f(y) + g(t) with a smooth function
f(y) and a function g(t) = O(1) with ġ(t) = O(δ−1) with respect to a small
parameter δ. For the modified midpoint rule

y1 = y0 + hf
(y0 + y1

2

)
+

∫ t1

t0

g(t) dt,

show that the local error satisfies y1 − y(t1) = O(h3/δ).
8. Write the Hamiltonian system (XIII.9.2) in adiabatic variables and relate this to

the first terms of the modulated Fourier expansion.
9. Compare the impulse method of Sect. XIV.2.3 with the method based on the

splitting

H =
(

1

2
pTM(t)−1p +

1
2ε2

qTA(t)q
)

+
(
U(q, t) + E

)
.

10. Show that Theorem 2.6 remains valid for the choice S(t) = 0 in (2.37). This
corresponds to the projection to the constraint manifold in the mollified impulse
method as proposed by Izaguirre, Reich & Skeel (1999).



Chapter XV.
Dynamics of Multistep Methods

Multistep methods are the basis of important codes for nonstiff differential equa-
tions (Adams methods) and for stiff problems (BDF methods). We study here their
applicability to long-time integrations of Hamiltonian or reversible systems.

This chapter starts with numerical experiments which illustrate that the long-
time behaviour of classical multistep methods is in general disappointing. They ei-
ther behave as non-symplectic and non-symmetric one-step methods, or they ex-
hibit undesired instabilities (parasitic solutions). Certain multistep methods for sec-
ond order equations or partitioned multistep methods, however, have a much better
long-time behaviour. They are promising methods, because in a constant step size
mode they can be easily implemented, and high order can be obtained with one
function evaluation per step. We characterize such methods by studying their under-
lying one-step method, their symplecticity, their conservation properties, as well as
their long-term stability.

XV.1 Numerical Methods and Experiments

We present the numerical methods treated in this chapter, and in numerical experi-
ments we look at their behaviour on Hamiltonian systems.

XV.1.1 Linear Multistep Methods

For first order systems of differential equations ẏ = f(y), linear multistep methods
are defined by the formula

k∑
j=0

αjyn+j = h

k∑
j=0

βjf(yn+j), (1.1)

where αj , βj are real parameters, αk �= 0, and |α0| + |β0| > 0. For an application
of this formula we need a starting procedure which, in addition to an initial value
y(t0) = y0, provides approximations y1, . . . , yk−1 to y(t0+h), . . . , y(t0+(k−1)h).
The approximations yn to y(t0 + nh) for n ≥ k can then be computed recursively
from (1.1). In the case βk = 0 we have an explicit method, otherwise it is implicit
and the numerical solution yn+k has to be computed iteratively.



568 XV. Dynamics of Multistep Methods

Germund Dahlquist1

Since the fundamental work of Dahlquist
(1956) it is common to denote the generating
polynomials of the coefficients by

ρ(ζ) =
k∑

j=0

αjζ
j , σ(ζ) =

k∑
j=0

βjζ
j .

For the classical theory of multistep meth-
ods we refer the reader to Chap. III of Hairer,
Nørsett & Wanner (1993). We just recall
some important definitions.

Order. A multistep method has order r if,
when applied with exact starting values to
the problem ẏ = tq (0 ≤ q ≤ r), it integrates
the problem without error. This is equivalent
to the requirement that

ρ(eh)− hσ(eh) = O(hr+1) for h → 0. (1.2)

Stability. Method (1.1) is stable if, when applied to ẏ = 0, it yields for all
y0, . . . , yk−1 a bounded numerical solution. This is equivalent to the requirement
that the polynomial ρ(ζ) satisfies the root condition, i.e., all roots of ρ(ζ) = 0 sat-
isfy |ζ| ≤ 1, and those on the unit circle are simple roots. The method is called
strictly stable, if all roots are inside the unit circle with the exception of ζ = 1.

Convergence. If a multistep method is stable and of order r ≥ 1, it is convergent
of order r for all sufficiently smooth problems. This means that, assuming starting
approximations with an error bounded by O(hr), the global error satisfies yn −
y(t0 + nh) = O(hr) on compact intervals nh ≤ T .

Symmetry. If the coefficients of a multistep formula (1.1) satisfy

αk−j = −αj , βk−j = βj for all j, (1.3)

then the method is called symmetric. Condition (1.3) implies that for every zero ζ
of ρ(ζ) also its inverse ζ−1 is a zero. Hence, for stable symmetric methods all zeros
of ρ(ζ) are simple and lie on the unit circle.

Example 1.1. We consider the pendulum equation (I.1.13), and we apply the fol-
lowing multistep methods: the 2-step explicit Adams method

yn+2 = yn+1 + h
(

3

2
fn+1 −

1

2
fn

)
, (1.4)

the 2-step backward differentiation formula (BDF)

3

2
yn+2 − 2yn+1 + 1

2
yn = hfn+2, (1.5)

and the (2-step) symmetric explicit midpoint rule
1 Germund Dahlquist, born: 16 January 1925 in Uppsala (Sweden), died: 8 February 2005.
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Adams expl. k = 2Adams expl. k = 2 BDF, k = 2BDF, k = 2 explicit midpointexplicit midpoint

Fig. 1.1. Solutions of the pendulum problem (I.1.13); explicit Adams with step size h =
0.5, initial value (p0, q0) = (0, 0.7); BDF with step size h = 0.5, initial value (p0, q0) =
(0, 0.95); explicit midpoint rule with h = 0.4 and initial value (p0, q0) = (1.1, 0)

yn+2 = yn + 2hfn+1. (1.6)

For all methods we take y1 = y0 + hf0 as the approximation for y(t0 + h). The
results of the first 108 steps are shown in Fig. 1.1. We observe that the first two
methods, as expected, behave similarly as the explicit and implicit Euler method
(the numerical solution spirals either outwards or inwards). This will be rigorously
explained in Sect. XV.2.1 below. However, as might not be expected, the symmetric
method (1.6) does not behave like the implicit midpoint rule (cf. Fig. I.1.4), it shows
undesired increasing oscillations (parasitic solutions).

After this negative experience with classical multistep methods, the obvious
question is: are there multistep methods which have a long-time behaviour that is
comparable to symplectic and/or symmetric one-step methods?

XV.1.2 Multistep Methods for Second Order Equations

Many important Hamiltonian systems are second order differential equations

ÿ = f(y), (1.7)

where the force f is independent of the velocity ẏ. Introducing the new variable
v = ẏ, we obtain the system ẏ = v, v̇ = f(y) of first order equations. If we apply
a multistep method (1.1) with generating polynomials ρ∗(ζ) =

∑k∗

j=0 α∗
j ζ

j and

σ∗(ζ) =
∑k∗

j=0 β∗
j ζ

j to this system, we get

k∗∑
j=0

α∗
jyn+j = h

k∗∑
j=0

β∗
j vn+j ,

k∗∑
j=0

α∗
jvn+j = h

k∗∑
j=0

β∗
j f(yn+j).

An elimination of the v-variables then yields
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k∑
j=0

αjyn+j = h2
k∑

j=0

βjf(yn+j), (1.8)

where k = 2k∗, ρ(ζ) = ρ∗(ζ)2 and σ(ζ) = σ∗(ζ)2. We consider here methods
(1.8) which do not necessarily originate from a multistep method for first order
equations, and we denote the generating polynomials of the coefficients αj and βj

again by ρ(ζ) and σ(ζ). From the classical theory (see Sect. III.10 of Hairer, Nørsett
& Wanner 1993) we recall the following definitions and results.

Order. A method (1.8) has order r if its generating polynomials satisfy

ρ(eh)− h2σ(eh) = O(hr+2) for h → 0. (1.9)

Stability. Method (1.8) is stable if all zeros of the polynomial ρ(ζ) satisfy |ζ| ≤ 1,
and those on the unit circle are at most double zeros. Observe that for methods
originating from (1.1) all zeros are double. The method is called strictly stable, if
all zeros are inside the unit circle with the exception of ζ = 1.

Convergence. If a multistep method (1.8) is stable, of order r ≥ 1 and if the starting
values are accurate enough, the global error satisfies yn − y(t0 + nh) = O(hr) on
compact intervals nh ≤ T .

Symmetry. If the coefficients of (1.8) satisfy

αk−j = αj , βk−j = βj for all j, (1.10)

then the method is symmetric. Again, for every zero ζ of ρ(ζ) the value ζ−1 is also
a zero. Hence, stable symmetric methods have all zeros of ρ(ζ) on the unit circle
and they are at most of multiplicity two.

Dahlquist (1956) noticed that double zeros of ρ(ζ) on the unit circle can lead to
an exponential error growth. Lambert & Watson (1976) analyzed in detail the appli-
cation of (1.8) to the linear test equation ÿ = −ω2y. They found that with symmet-
ric methods for which ρ(ζ) does not have double roots on the unit circle other than
ζ = 1, the numerical solution remains close to a periodic orbit (for sufficiently small
step sizes). For example, the Störmer–Verlet method yn+1 − 2yn + yn−1 = h2fn

satisfies this property for 0 < hω < 2 (see Sect. I.5.2). The study of the long-time
behaviour of symmetric methods (1.8) was then put forward by the article of Quin-
lan & Tremaine (1990), where an excellent performance for simulations of the outer
solar system is reported.

Example 1.2. We consider the Kepler problem (I.2.2) with initial values (I.2.11)
and eccentricity e = 0.2. We apply the following three methods with constant step
size h = 0.01 on the interval of length 2π · 105 (i.e., 105 periods):

(A) yn+4 − 2yn+3 + yn+2 = h2
(

7

6
fn+3 −

5

12
fn+2 + 1

3
fn+1 −

1

12
fn

)

(B) yn+4 − 2yn+2 + yn = h2
(

4

3
fn+3 + 4

3
fn+2 + 4

3
fn+1

)

(C) yn+4 − 2yn+3 + 2yn+2 − 2yn+1 + yn = h2
(

7

6
fn+3 −

1

3
fn+2 + 7

6
fn+1

)
.
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Fig. 1.2. Error in the total energy for the three linear multistep methods of Example 1.2
applied to the Kepler problem with e = 0.2

All three methods are of order r = 4; method (A) is strictly stable, whereas methods
(B) and (C) are symmetric. For method (B) the ρ-polynomial has a double root at
ζ = −1, for method (C) it does not have double roots other than 1. Starting values
y1, y2, and y3 are computed very accurately with a high-order Runge–Kutta method.

The error in the total energy is plotted for all three methods in Fig. 1.2. On
the first 10 periods, all methods behave similarly and no error growth is observed.
Beyond this interval, method (A) shows a linear error growth (as it is the case for
non-symplectic and non-symmetric one-step methods), method (B) has an exponen-
tial error growth, and for method (C) the error remains bounded of size O(h4) on
the whole interval of integration. One of the aims of this chapter is to explain the
excellent long-time behaviour of method (C).

Stabilized Version of (1.8). Due to the double zeros (of modulus one) of the char-
acteristic polynomial of the difference equation

∑
j αjyn+j = 0, we have an un-

desired propagation of rounding errors (especially for long-time integrations). To
overcome this difficulty, we split the characteristic polynomial ρ(ζ) into

ρ(ζ) = ρA(ζ) · ρB(ζ), (1.11)

such that each polynomial

ρA(ζ) =
kA∑
j=0

α
(A)
j ζj , ρB(ζ) =

kB∑
j=0

α
(B)
j ζj

has only simple roots of modulus one. Introducing the new variable hvn :=∑
j α

(A)
j yn+j , the recurrence relation (1.8) becomes equivalent to

kA∑
j=0

α
(A)
j yn+j = hvn,

kB∑
j=0

α
(B)
j vn+j = h

k∑
j=0

βjfn+j . (1.12)

This formula, which for the Störmer–Verlet scheme corresponds to the one-step
formulation (I.1.17), is much better suited for an implementation. If the splitting
is such that ρ′A(1) = 1, the discretization (1.12) is consistent with the first order
partitioned system ẏ = v, v̇ = f(y).
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XV.1.3 Partitioned Multistep Methods

Motivated by the stabilized version (1.12) of multistep methods for second order
equations, let us consider general partitioned systems of differential equations

ẏ = f(y, v), v̇ = g(y, v), (1.13)

where, needless to say, y and v may be vectors. The idea is to apply different multi-
step methods to different components. We thus get

k∑
j=0

α
(A)
j yn+j = h

k∑
j=0

β
(A)
j fn+j ,

k∑
j=0

α
(B)
j vn+j = h

k∑
j=0

β
(B)
j gn+j , (1.14)

where fn = f(yn, vn) and gn = g(yn, vn). We can take the same k for both meth-
ods without loss of generality, if we abandon the assumption |α0|+ |β0| > 0.

Such a method is of order r, if both methods are of order r. It is stable (strictly
stable, symmetric, . . .), if both methods are stable (strictly stable, symmetric, . . .).

Example 1.3. For our next experiment we use the symmetric methods

(A) : yn+3 − yn+2 + yn+1 − yn = h(fn+2 + fn+1)
(B) : vn+3 − vn+1 = 2hgn+2.

(1.15)

Both methods are of order 2, and their ρ-polynomials
ρA(ζ) = (ζ − 1)(ζ2 + 1) and ρB(ζ) = (ζ − 1)(ζ + 1)
do not have common zeros with the exception of ζ = 1.

A B

J S

U
N

P

method (A)

0 < t < 10

J S

method (B) 0 < t < 10

750 < t < 760

J S

U
N

P

method (AB) 0 < t < 10

750 < t < 760

7500 < t < 7510

Fig. 1.3. Three versions of the methods (1.15) applied with step size h = 50 (days) to the
outer solar system. For method (B) only the numerical orbits of Jupiter and Saturn are plotted.
The time intervals are given in units of 10 000 days
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We choose the outer solar system with the data as described in Sect. I.2.4, and
we apply the methods in three versions: (i) as partitioned method (AB), where the
positions are treated by method (A) and the velocities by method (B); (ii) method
(A) is applied to all components; (iii) method (B) is applied to all components.
The numerical results are shown in Fig. 1.3. Whereas the individual methods show
instabilities on rather short time intervals, the partitioned method gives a correct
picture even with a large step size h = 50.

XV.2 The Underlying One-Step Method

Much insight into the long-time behaviour of multistep methods can be gained by
relating their numerical solution to one-step methods. This then allows for an appli-
cation of the considerations of the preceding sections.

XV.2.1 Strictly Stable Multistep methods

It was a surprising result when Kirchgraber (1986) proved that strictly stable multi-
step methods are essentially equivalent to one-step methods. Although this one-step
method is “quite exotic” (Eirola & Nevanlinna 1988), it is the key for a better un-
derstanding of the dynamics of strictly stable methods.

Theorem 2.1 (Kirchgraber 1986). Consider a strictly stable linear multistep
method (1.1) applied with a sufficiently small step size h. Then, there exists a one-
step method Φh such that for starting approximations computed by yj = Φj

h(y0),
j = 1, . . . , k− 1, the numerical solution of (1.1) is identical to that obtained by the
one-step method, i.e., yn+1 = Φh(yn) for all n ≥ 0.

Proof. The idea is to reformulate the multistep method (1.1) in such a way that the
Invariant Manifold Theorem of Sect. XII.3 can be applied. To keep the notation as
simple as possible, let us consider the case k = 3.

We write the method in the form



yn+3

yn+2

yn+1


 =



−a2 −a1 −a0

1 0 0
0 1 0






yn+2

yn+1

yn


 + h




Fh(yn, yn+1, yn+2)
0
0


 (2.1)

with ai = αi/αk, and we transform the appearing matrix A to Jordan canonical
form J = T−1AT . We thus get

Zn+1 =




1 0 0
0 d11 d12

0 d21 d22


Zn + hG(Zn), Zn = T−1




yn+2

yn+1

yn


 . (2.2)

Since the method is strictly stable, 1 is a simple eigenvalue of A, and all other
eigenvalues are less than 1 in modulus. Consequently, the matrix D = (dij) satisfies
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‖D‖ < 1 in a suitable norm. Partitioning Zn = (ξn, ηn)T into its first component
ξn and the rest (collected in ηn), we see that (2.2) is of the form (XII.3.1) with
Lxx, Lxy, Lyx of size O(h), and Lyy = ‖D‖ < 1. Theorem XII.3.1 thus yields the
existence of a function η = s(ξ) such that the manifolds

Nh =
{(

ξ
s(ξ)

)
; ξ ∈ R

d
}

and Mh =
{
T

(
ξ

s(ξ)

)
; ξ ∈ R

d
}

are invariant under the mappings (2.2) and (2.1), respectively. The function s(ξ) is
Lipschitz continuous with constant λ = O(h).

Since the first column of T , which is the eigenvector corresponding to the
eigenvalue 1 of A, is given by (1, 1, 1)T , the last component of T

(
ξ

s(ξ)

)
satisfies

y = ξ+g(ξ) where g(ξ) is Lipschitz continuous with constantO(h). By the Banach
fixed-point theorem this equation has a unique solution ξ = r(y). Consequently, the
manifold Mh can be parametrized in terms of y as

Mh =
{
(Ψh(y), Φh(y), y)T ; y ∈ R

d
}
.

Its invariance under (2.1) implies that



Ψh(ŷ)
Φh(ŷ)

ŷ


 =



−a2 −a1 −a0

1 0 0
0 1 0







Ψh(y)
Φh(y)

y


 + h




Fh(y, Φh(y), Ψh(y))
0
0




and consequently ŷ = Φh(y) and Φh(ŷ) = Ψh(y), so that Ψh(y) = Φ2
h(y). This

holds for all y, and thus proves the statement of the theorem. 
�

Example 2.2. For a scalar linear problem ẏ = λy, the application of a multistep
method yields a difference equation with characteristic polynomial ρ(ζ)− hλσ(ζ).
Denoting its zeros by ζ1(hλ), . . . , ζk(hλ), where ζ1(0) = 1 and |ζj(0)| < 1 for
j ≥ 2, the numerical solution can be written as (assuming distinct ζj(hλ))

yn = c1ζ
n
1 (hλ) + c2ζ

n
2 (hλ) + . . . + ckζ

n
k (hλ).

The coefficients c1, . . . , ck depend on hλ and are determined by the starting ap-
proximations y0, . . . , yk−1. In this situation the underlying one-step method is the
mapping y0 �→ ζ1(hλ)y0. Observe that ζ1(z) is in general not a rational function as
we are used to with Runge–Kutta methods.

Remark 2.3 (Asymptotic Phase). For arbitrary y0, y1, . . . , yk−1 close to the ex-
act solution, there exists y∗0 such that the multistep solution {yn} and the one-step
solution {y∗n}, given by y∗n+1 = Φh(y∗n), approach exponentially fast, i.e.,

‖yn − y∗n‖ ≤ Const · ρn for all n ≥ 0 (2.3)

with some ρ satisfying 0 < ρ < 1 (see Exercise XII.3). This is due to the attractivity
of the invariant manifold Mh. A proof is given in Stoffer (1993), and it is based on
techniques of Nipp & Stoffer (1992). This result explains why strictly stable linear
multistep methods have the same long-time behaviour as one-step methods.
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In the context of “geometric numerical integration” we are mainly interested in
symplectic and/or symmetric methods which, for linear problems, are characterized
by the condition ζ1(−z)ζ1(z) ≡ 1 (see Sect. VI.4.2). This, however, is only possible
for symmetric multistep methods (Exercise 1) which cannot be strictly stable.

XV.2.2 Formal Analysis for Weakly Stable Methods

The proof and the statement of Theorem 2.1 break down as soon as at least one root
of ρ(ζ), different from 1, has modulus one. Moreover, Example 2.2 shows that we
cannot expect a property like (2.3) with ρ < 1. All we can hope for is to find an
underlying one-step method as a formal series in h. Surprisingly, this provides a lot
of insight into the long-time dynamics of weakly stable multistep methods.

Theorem 2.4. Consider a linear multistep method (1.1), and assume that ζ = 1 is
a single root of ρ(ζ) = 0. Then there exists a unique formal expansion

Φh(y) = y + hd1(y) + h2d2(y) + . . . (2.4)

such that
k∑

j=0

αjΦ
j
h(y) = h

k∑
j=0

βjf
(
Φj

h(y)
)
,

where identity is understood in the sense of formal power series in h.
If the multistep method is of order r, then also the underlying one-step method

is of order r, i.e., Φh(y)− ϕh(y) = O(hr+1).

The formal series for Φh(y) is called “step-transition operator” in the Chinese
literature (see e.g., Feng (1995), page 274). We call it “underlying one-step method”.
Notice that this theorem does not require any stability assumption.

Proof. Expanding Φj
h(y) and f

(
Φj

h(y)
)

into powers of h, a comparison of the co-
efficients yields

ρ′(1) d1(y) = σ(1) f(y)

ρ′(1) d2(y) = − ρ′′(1)

2
d′1(y)d1(y) + σ′(1) f ′(y)d1(y)

ρ′(1) dj(y) = . . . ,

(2.5)

where the three dots represent known functions depending on derivatives of f(y)
and on di(y) with i < j. Since ρ′(1) �= 0 by assumption, unique coefficient func-
tions dj(y) are obtained recursively. The statement on the order follows from the
fact that the exact flow ϕh(y) has a defect O(hr+1) in the multistep formula. 
�

The computation of the previous proof shows that the series (2.4) is a B-series.
This follows rigorously from the results of Sect. III.1.4. Whereas the B-series rep-
resentation of Runge–Kutta methods converges for sufficiently small h, this is in
general not the case for (2.4); see the next example.
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Example 2.5. Consider a consistent two-step method

α2yn+2 + α1yn+1 + α0yn = h
(
β2fn+2 + β1fn+1 + β0fn

)
,

and apply it to the simple system ẏ = f(t), ṫ = 1. The y-component of the under-
lying one-step method then takes the form

Φh(t0, y0) = y0 +
∑
j≥1

hj aj f
(j−1)(t0). (2.6)

Putting f(t) = et yields

A(ζ) =
∑
j≥1

aj ζ
j−1 =

β2e
2ζ + β1e

ζ + β0

α2(1 + eζ) + α1
.

for the generating function of the coefficients aj . Since this function has finite poles,
the radius of convergence of A(ζ) is finite. Therefore, the radius of convergence
of the series (2.6) has to be zero as soon as f (j)(t0) behaves like j!µκj (this is
typically the case for analytic functions). Independent of the fact whether the method
is strictly stable or not, the series (2.6) usually does not converge.

Both, Theorem 2.1 and Theorem 2.4, extend in a straightforward manner to
partitioned multistep methods (1.14). To get analogous results for multistep methods
(1.8) for second order differential equations, one has to introduce an approximation
for the velocity v = ẏ. This will be explained in more detail in Sect. XV.3 below.

XV.3 Backward Error Analysis

The backward error analysis for multistep methods (Hairer 1999) is presented in
two steps:

• for “smooth” numerical solutions (obtained by the underlying one-step method);
• for the general case.

The idealized situation of no parasitic terms gives already much insight into conser-
vation properties of the method (see Sect. XV.4). The study of the general case is,
however, necessary for getting estimates for the parasitic solutions (Sect. XV.5), so
that rigorous statements on the long-time behaviour are possible.

XV.3.1 Modified Equation for Smooth Numerical Solutions

The formal backward error analysis of Chap. IX could be directly applied to the un-
derlying one-step method of Sect. XV.2.2. However, due to the non-convergence of
the series for Φh(y), difficulties may arise as soon as rigorous estimates are desired.
We prefer to derive the modified differential equation directly from the multistep
formula and thus avoid the use of the underlying one-step method.
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Theorem 3.1. Consider a linear multistep method (1.1), and assume that ρ(1) = 0
and ρ′(1) = σ(1) �= 0. Then there exist unique h-independent functions fj(y) such
that, for every truncation index N , every solution of

ẏ = f(y) + hf2(y) + h2f3(y) + . . . + hN−1fN (y) (3.1)

satisfies
k∑

j=0

αjy(t + jh) = h

k∑
j=0

βjf
(
y(t + jh)

)
+ O(hN+1). (3.2)

If the multistep method is of order r, then fj(y) = 0 for 2 ≤ j ≤ r. If the method is
symmetric, then fj(y) = 0 for all even j, so that the modified equation (3.1) has an
expansion in even powers of h.

Proof. Using the Lie derivative (Dig)(y) = g′(y)fi(y) (with f1(y) = f(y)) and
D = D1 + hD2 + h2D3 + . . ., the solution of (3.1) with initial value y(t) = y
satisfies y(t+ jh) = ejhDy+O(hN+1) and f(y(t+ jh)) = ejhDf(y)+O(hN+1)
(by Taylor expansion). We thus have

ρ(ehD)y = hσ(ehD)f(y) + O(hN+1). (3.3)

With the expansion xσ(ex)/ρ(ex) = 1 + µ1x + µ2x
2 + . . . this becomes

ẏ = (1 + µ1hD + µ2h
2D2 + . . .)f(y) +O(hN ). (3.4)

A comparison with (3.1) yields f1(y) = f(y), and

fj(y) =
∑
l≥1

µl

∑
j1+...+jl=j−1

(
Dj1 . . . Djl

f
)
(y) (3.5)

for j ≥ 2, which uniquely defines the functions fj(y) in a recursive manner. 
�

Lemma 3.2. If f(y) is analytic and bounded by M in BR(y0), then we have

∥∥fj(y)
∥∥ ≤ µM

(
ηM j

R

)j−1

for ‖y − y0‖ ≤ R/2, (3.6)

where µ and η depend only on the coefficients αj , βj of the multistep method.

Proof. The estimate (3.6) is obtained as in the proof of Theorem IX.7.5. We just
sketch the main idea in the notation used there. With δ = R/(2(J − 1)) we have
‖fj‖j ≤ δbj , where the generating function b(ζ) =

∑
j≥1 bjζ

j of the bj satisfies

b(ζ) =
Mζ

δ

(
1 +

∑
l≥1

|µl| b(ζ)l
)
.

By the implicit function theorem, b(ζ) is analytic and bounded in a disc of radius
cδ/M centred at the origin (c is a positive constant depending only on the coef-
ficients of the multistep method). The estimate (3.6) then follows from Cauchy’s
inequalities as in the proof of Theorem IX.7.5. 
�
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It is remarkable that, although the Taylor series of the underlying one-step
method generally diverges, the coefficient functions of the modified differential
equation satisfy the same estimate as for Runge–Kutta methods. This enables us
to prove an analogue of Theorem IX.7.6 which, for one-step methods, is the main
ingredient for exponentially small error estimates. One can prove that for suitably
chosen N = N(h) and for h ≤ h0/4 with h0 = R/(eηM), the solution of (3.1)
satisfies

∥∥∥
k∑

j=0

αjy(t + jh)− h

k∑
j=0

βjf
(
y(t + jh)

)∥∥∥ ≤ hγMe−h0/h,

where γ depends only on the multistep formula. The proof of this statement is sim-
ilar to that of Theorem IX.7.6. We skip details and refer to Hairer (1999).

For strictly stable multistep methods, Theorem 2.1 together with the Invariant
Manifold Theorem XII.3.2 thus imply that the underlying one-step method is expo-
nentially close to the exact solution of the truncated modified equation. The parasitic
solution terms are rapidly damped out by the property (2.3) of asymptotic phase. The
same conclusions as for one-step methods can therefore be drawn.

For symmetric methods the situation is not so simple. One has to study the par-
asitic solution components to get information on the long-time behaviour of the
numerical solution of (1.1). The basic techniques will be prepared in Sect. XV.3.2.

Partitioned Multistep Methods. The extension of the modified differential equa-
tion to methods (1.14) is straightforward. There exist functions fj(y, v) and gj(y, v)
such that the exact solution of

ẏ = f(y, v) + hf2(y, v) + . . . + hN−1fN (y, v)
v̇ = g(y, v) + hg2(y, v) + . . . + hN−1gN (y, v)

(3.7)

satisfies the multistep formula (1.14) up to a defect of sizeO(hN+1). The coefficient
functions can be computed by comparing (3.7) to

ẏ = (1 + µ
(A)
1 hD + µ

(A)
2 h2D2 + . . .)f(y, v) +O(hN )

v̇ = (1 + µ
(B)
1 hD + µ

(B)
2 h2D2 + . . .)g(y, v) +O(hN ),

(3.8)

where the real numbers µ
(A)
j and µ

(B)
j are given by xσ(A)(ex)/ρ(A)(ex) = 1 +

µ
(A)
1 x + µ

(A)
2 x2 + . . . and by xσ(B)(ex)/ρ(B)(ex) = 1 + µ

(B)
1 x + µ

(B)
2 x2 + . . .,

respectively. The Lie operator is defined by D = D1 + hD2 + h2D3 + . . ., where
(DjΨ)(y, v) = Ψy(y, v)fj(y, v) + Ψz(y, v)gj(y, v), and it corresponds to the time
derivative of solutions of (3.7).

Multistep Methods for Second Order Differential Equations. The method (1.8)
for differential equations ÿ = f(y) can be treated in a similar way. In the absence
of derivative approximations we get a modified differential equation of the second
order
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ÿ = f(y) + hf2(y, ẏ) + . . . + hN−1fN (y, ẏ), (3.9)

where the perturbation terms also depend on ẏ. Its exact solution satisfies the multi-
step relation (1.8) up to a defect of size O(hN+2), if (3.9) is equivalent to

ÿ = (1 + µ1hD + µ2h
2D2 + . . .)f(y) +O(hN ), (3.10)

where x2σ(ex)/ρ(ex) = 1 + µ1x + µ2x
2 + . . ., and the time derivative is

given by the Lie operator D = D1 + hD2 + h2D3 + . . . with (D1Ψ)(y, ẏ) =
Ψy(y, ẏ)ẏ + Ψẏ(y, ẏ)f(y) and (DjΨ)(y, ẏ) = Ψẏ(y, ẏ)fj(y, ẏ) for j ≥ 2. A com-
parison of equal powers of h in (3.9) and (3.10) uniquely defines the coefficient
functions fj(y, ẏ).

If the multistep method (1.8) is complemented with a difference formula for
approximations of the derivative v = ẏ at grid points,

vn =
1
h

l∑
j=−l

δjyn+j , (3.11)

we get an additional modified differential equation

v = (1 + ν1hD + ν2h
2D2 + . . .)ẏ. (3.12)

The coefficients νj are given by x−1δ(ex) = 1 + ν1x + ν2x
2 + . . ., where

δ(ζ) =
∑l

j=−l δjζ
j . For given y, this relation gives a formal one-to-one correspon-

dence between v and ẏ. Consequently, the differential equation (3.10) combined
with (3.12) can be considered as a first order differential system for the variables y
and v.

XV.3.2 Parasitic Modified Equations

In practice, due to the necessity of starting approximations y1, . . . , yk−1, the numer-
ical solution of a multistep method does not lie on a solution of (3.1). For methods,
where initial perturbations are not damped out sufficiently fast (cf. property (2.3)
of asymptotic phase), an additional investigation is therefore needed for the study
of the propagation of perturbations in the starting approximations. Let us start with
two illustrating numerical experiments.

Example 3.3. Consider the explicit, linear 3-step method

yn+3 − yn+2 + yn+1 − yn = h(fn+2 + fn+1), (3.13)

with characteristic polynomial ρ(ζ) = (ζ−1)(ζ2 +1), and apply it to the pendulum
equation (I.1.13). For a better illustration of the propagation of errors we consider
starting approximations y1, y2 that are rather far from the exact solution passing
through y0. The result is shown in Fig. 3.1. We observe that the numerical solution
does not lie on one smooth curve, but on four curves, and every fourth solution
approximation is on the same curve.
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400 steps h = 0.02 4000 steps h = 0.02

Fig. 3.1. Numerical solution of (3.13) applied to the pendulum equation. The initial approx-
imations y0 = (1.9, 0.4), y1 = (1.7, 0.2), y2 = (2.1, 0) are indicated by black bullets; the
solution points y3, y7, y11, . . . in grey

160 steps h = 0.05 600 steps h = 0.05

Fig. 3.2. Numerical solution of the explicit midpoint rule (3.14) applied to the pendulum
equation. The initial approximations y0 = (1.9, 0.4), y1 = (1.7, 0.2) are indicated by black
bullets; the solution points y2, y4, y6, . . . in grey

This example shows an unexpected good long-time behaviour. Although the
starting approximations are far from a smooth solution, the distance of the numeri-
cal approximations to a smooth solution curve does not increase. This is, however,
not the typical situation as can be seen from our next experiment.

Example 3.4. We consider the explicit midpoint rule

yn+2 − yn = 2h fn+1, (3.14)

which has ρ(ζ) = (ζ − 1)(ζ + 1) as characteristic polynomial. This time, the nu-
merical solution (see Fig. 3.2) lies on two smooth curves. In contrast to the previous
example, an unacceptable linear growth of the perturbations can be observed.

To be able to explain this behaviour of the multistep solutions, we complement
the analysis of the modified equation for smooth numerical solutions with so-called
parasitic modified equations. This theory has been developed by Hairer (1999) for
first order differential equations, and extended to second order systems by Hairer &
Lubich (2004).
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Consider a stable, symmetric multistep method (1.1) and denote the zeros of its
characteristic polynomial ρ(ζ) by ζ1 = 1 (principal root) and ζ2, . . . , ζk (parasitic
roots). We then enumerate the set of all finite products,
{
ζ�

}
�∈I =

{
ζ = ζm1

1 · . . . · ζmk

k ; mj ≥ 0
}

=
{
ζ1, . . . , ζk, ζk+1, . . .

}
. (3.15)

It is {1, i,−i,−1} for method (3.13) and {1,−1} for the explicit midpoint rule
(3.14). The set of subscripts I can be finite or infinite. We let I∗ = I \ {1}, and
we denote by I∗

N and IN the finite subsets of elements which, in the representation
(3.15), have

∑
j mj < N .

Motivated by the previous examples and by representations of the asymptotic
expansion of the global error of weakly stable multistep methods (see for example
Sect. III.9 of Hairer, Nørsett & Wanner, 1993), we aim at writing the general solution
yn of the multistep method (1.1) in the form

yn = y(nh) +
∑
�∈I∗

ζn
� z�(nh), (3.16)

where y(t) and z�(t) are smooth functions (with derivatives bounded independently
of h). The following result extends Theorem 3.1.

Theorem 3.5. Consider a stable, consistent, and symmetric multistep method (1.1).
For every truncation index N ≥ 2, there then exist h-independent functions
f�,j(y, z∗) with z∗ = (z�)k

�=2 such that for every solution of

ẏ = f1,1(y, z∗) + hf1,2(y, z∗) + . . . + hN−1f1,N (y, z∗)
ż� = f�,1(y, z∗) + hf�,2(y, z∗) + . . . + hN−1f�,N (y, z∗) for 2 ≤ � ≤ k

z� = hf�,2(y, z∗) + . . . + hNf�,N+1(y, z∗) for � > k (3.17)

z� = 0 for � �∈ IN

with initial values z�(0) = O(h) for 2 ≤ � ≤ k, the function

x(t) = y(t) +
∑
�∈I∗

ζ
t/h
� z�(t) (3.18)

satisfies
k∑

j=0

αjx(t + jh) = h

k∑
j=0

βjf
(
x(t + jh)

)
+ O(hN+1). (3.19)

For z∗ = 0 the differential equation for y is the same as that of Theorem 3.1. The
solutions of (3.17) satisfy z�(t) = zj(t) whenever ζ� = ζj and this relation holds
for the initial values. Moreover, z�(t) = O(hm+1) on bounded time intervals if ζ�

is a product of no fewer than m ≥ 2 roots of ρ(ζ).

Proof. We let z1(t) := y(t) and insert the finite sum (3.18) into (3.19). This yields
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k∑
j=0

αjx(t + jh) =
k∑

j=0

αj

∑
�∈I

ζ
(t+jh)/h
� ejhDz�(t)

=
∑
�∈I

ζ
t/h
�

k∑
j=0

αjζ
j
� e

jhDz�(t) =
∑
�∈I

ζ
t/h
� ρ(ζ�e

hD)z�(t),

where, as usual, D represents differentiation with respect to time. We then expand
f
(
x(t)

)
into a Taylor series around y(t),

f(x(t)) =
∑
m≥0

1
m!

f (m)(y(t))
( ∑

�1∈I∗

ζ
t/h
�1

z�1(t), . . . ,
∑

�m∈I∗

ζ
t/h
�m

z�m
(t)

)

=
∑
�∈I

ζ
t/h
�

∑
m≥0

1
m!

∑
ζ�1 ...ζ�m=ζ�

f (m)(y(t))
(
z�1(t), . . . , z�m

(t)
)
.

This gives, as above,

k∑
j=0

βjf
(
x(t + jh)

)
(3.20)

=
∑
�∈I

ζ
t/h
� σ(ζ�e

hD)
∑
m≥0

1
m!

∑
ζ�1 ...ζ�m=ζ�

f (m)
(
y(t)

)(
z�1(t), . . . , z�m

(t)
)
.

Comparing coefficients of ζt/h
� for � ∈ IN in (3.19) thus yields

ρ(ζ�e
hD)z� = hσ(ζ�e

hD)
∑
m≥0

1
m!

∑
ζ�1 ...ζ�m=ζ�

f (m)(y)
(
z�1 , . . . , z�m

)
(3.21)

(for � = 1 and m = 0 the sum is understood to include the term f(y)). With the
expansion xσ(ζ�e

x)/ρ(ζ�e
x) = µ�,0 + µ�,1x + µ�,2x

2 + . . . for 1 ≤ � ≤ k, where
ζ� is a simple root of ρ(ζ), this equation becomes

ż� =
(
µ�,0 + µ�,1hD + . . .

) ∑
m≥0

1
m!

∑
ζ�1 ...ζ�m=ζ�

f (m)(y)
(
z�1 , . . . , z�m

)
, (3.22)

and with σ(ζ�e
x)/ρ(ζ�e

x) = µ�,0+µ�,1x+µ�,2x
2+. . . for � > k, where ρ(ζ�) �= 0,

z� = h
(
µ�,0 + µ�,1hD + . . .

) ∑
m≥0

1
m!

∑
ζ�1 ...ζ�m=ζ�

f (m)(y)
(
z�1 , . . . , z�m

)
. (3.23)

In the usual way (elimination of the first and higher derivatives by the differential
equations and by the differentiated third relation of (3.17)) this allows us to define
recursively the functions f�,j(y, z∗).

From this construction process it follows that on bounded time intervals we have
z�(t) = O(h) for all � ≥ 2, and z�(t) = O(hm+1) if ζ� is a product of no fewer
than m ≥ 2 roots of ρ(ζ). In (3.20) and in the above construction of the coefficient
functions f�,j(y, z∗) we have neglected terms that contain at least N factors zj . This
gives rise to the O(hN+1) term in (3.19). 
�
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Initial values y(0), z�(0), � = 2, . . . , k, for the system (3.17) are obtained from
the starting approximations y0, . . . , yk−1 via the relation

yj = y(jh) +
∑
�∈I∗

ζj
� z�(jh), j = 0, 1, . . . , k − 1. (3.24)

For h = 0 this represents a linear Vandermonde system for y(0), z�(0). The Im-
plicit Function Theorem thus proves the local existence of a solution of (3.24) for
sufficiently small step sizes h. If yj , j = 2, . . . , k, approximate a solution yex(t) of
ẏ = f(y) with an error O(hs) (with s ≤ r + 1, where r is the order of the method),
then y(0)− yex(0) = O(hs) and z�(0) = O(hs) for � = 2, . . . , k.

The representation (3.16) of the numerical solution and the (principal and para-
sitic) modified equations (3.17) will be the main ingredients for the study of long-
term stability of multistep methods in Sect. XV.5. An extension of the previous the-
orem to partitioned multistep methods is more or less straightforward. We leave the
details as an exercise for the reader.

Multistep Methods for Second Order Differential Equations. A completely
analogous result can be proved for stable, symmetric multistep methods (1.8) ap-
plied to ÿ = f(y). We again denote the zeros of ρ(ζ) by ζ1 = 1 and ζ�, � = 2, . . . , q.
Notice, however, that ζ1 = 1 is always a double zero, and the others can be simple
or double zeros of ρ(ζ), and that q ≤ k. We consider the index sets I, I∗, IN , and
I∗

N as in (3.15).

Theorem 3.6. Consider a stable, consistent, and symmetric multistep method (1.8).
For every truncation index N ≥ 2, there then exist h-independent functions
f�,j(y, ẏ, z∗) (where z∗ denotes the vector collecting as elements z�, ż� if ζ� is a
double root, and z� if ζ� is a simple root of ρ(ζ)) such that for every solution of

ÿ = f1,1(y, ẏ, z∗) + hf1,2(y, ẏ, z∗) + . . . + hN−1f1,N (y, ẏ, z∗) (3.25)

z̈� = f�,1(y, ẏ, z∗) + . . . + hN−1f�,N (y, ẏ, z∗) if ρ(ζ�) = ρ′(ζ�) = 0
ż� = hf�,2(y, ẏ, z∗) + . . . + hNf�,N+1(y, ẏ, z∗) if ρ(ζ�) = 0, ρ′(ζ�) �= 0
z� = h2f�,3(y, ẏ, z∗) + . . . + hN+1f�,N+2(y, ẏ, z∗) if ρ(ζ�) �= 0
z� = 0 for � �∈ IN

with initial values z�(0) = O(h) for 2 ≤ � ≤ q, the function

x(t) = y(t) +
∑
�∈I∗

ζ
t/h
� z�(t) (3.26)

satisfies
k∑

j=0

αjx(t + jh) = h2
k∑

j=0

βjf
(
x(t + jh)

)
+ O(hN+2). (3.27)

For z∗ = 0 the differential equation for y is the same as in (3.9). The solutions of
(3.25) satisfy z�(t) = zj(t) whenever ζ� = ζj and this relation holds for the initial
values. Moreover, z�(t) = O(hm+2) on bounded time intervals if ζ� is a product of
no fewer than m ≥ 2 roots of ρ(ζ).
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Proof. In complete analogy to the proof of Theorem 3.5 we obtain

ρ(ζ�e
hD)z� = h2σ(ζ�e

hD)
∑
m≥0

1
m!

∑
ζ�1 ...ζ�m=ζ�

f (m)(y)
(
z�1 , . . . , z�m

)
(3.28)

which differs from (3.21) only in the factor h2. Depending on whether ζ� is
a double, a simple, or not a zero of ρ(ζ), we expand x2σ(ζ�e

x)/ρ(ζ�e
x) or

xσ(ζ�e
x)/ρ(ζ�e

x) or σ(ζ�e
x)/ρ(ζ�e

x) into a series of powers of x, and we denote
its coefficients by µ�,j . This then yields

z̈� =
(
µ�,0 + µ�,1hD + . . .

) ∑
m≥0

1
m!

∑
ζ�1 ...ζ�m=ζ�

f (m)(y)
(
z�1 , . . . , z�m

)
, (3.29)

if ρ(ζ�) = ρ′(ζ�) = 0, but ρ′′(ζ�) �= 0 (in particular for � = 1 and ζ1 = 1),

ż� = h
(
µ�,0 + µ�,1hD + . . .

) ∑
m≥0

1
m!

∑
ζ�1 ...ζ�m=ζ�

f (m)(y)
(
z�1 , . . . , z�m

)
, (3.30)

if ρ(ζ�) = 0, but ρ′(ζ�) �= 0, and

z� = h2
(
µ�,0 + µ�,1hD + . . .

) ∑
m≥0

1
m!

∑
ζ�1 ...ζ�m=ζ�

f (m)(y)
(
z�1 , . . . , z�m

)
, (3.31)

if ρ(ζ�) �= 0. The rest of the proof is identical to that of Theorem 3.5. 
�

For the system of modified equations (3.25) we need initial values y(0), ẏ(0),
z�(0), ż�(0) if ζ� is a double root of ρ(ζ), and z�(0) if ζ� is a simple root. These
initial values can be obtained from the starting approximations y0, . . . , yk−1 via the
relation (3.24).

Lemma 3.7. Consider a stable, symmetric multistep method (1.8) of order r, and
let the starting approximations y0, . . . , yk−1 satisfy yj − yex(jh) = O(hs) with
2 ≤ s ≤ r + 2. Then there exist (locally) unique initial values for the system (3.25)
such that its solution exactly satisfies (3.24).

These initial values satisfy z�(0) = zj(0) if ζ� = ζj , and

y(0)− yex(0) = O(hs), hẏ(0)− hẏex(0) = O(hs),
z�(0) = O(hs), hż�(0) = O(hs) if ζ� is a double root,

z�(0) = O(hs), if ζ� is a simple root.

(3.32)

Proof. We scale the derivatives by h, and consider y(0), hẏ(0), z�(0) and hz�(0) as
unknowns in the system (3.24), where y(t) and z�(t) are a solution of (3.25). For
h = 0 a linear, confluent Vandermonde system is obtained. Since this is an invertible
matrix, the Implicit Function Theorem proves the statement. 
�
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XV.4 Can Multistep Methods be Symplectic?

Readers might be astonished to find a question mark in the title. The reason is that
we shall present two definitions of symplecticity of multistep methods applied to a
Hamiltonian system

ṗ = −Hq(p, q), q̇ = Hp(p, q). (4.1)

One works in the phase space of the exact flow, the other in a higher dimensional
space. But which one is suitable? We further show that certain multistep methods
can preserve energy over long times, even if they are not symplectic.

XV.4.1 Non-Symplecticity of the Underlying One-Step Method

A conjecture due to Feng Kang. (Y.-F. Tang 1993)

A natural definition of symplecticity consists of the requirement that the underlying
one-step method (Theorem 2.4) be symplectic. This means that the (truncated) mod-
ified equation (3.1) is Hamiltonian. Unfortunately, we have the following negative
result.

Theorem 4.1 (Tang 1993). The underlying one-step method of a consistent linear
multistep method (1.1) cannot be symplectic.

Proof. We show that the first perturbation term in the modified equation (3.1) is in
general not Hamiltonian. From (3.4) we know that fr+1(y) = µr(Dr

1f)(y) which
(omitting the non-zero error constant µr) is given by

∑
τ∈T,|τ |=r+1

α(τ)F (τ)(y) = |τ |!
∑

τ∈T,|τ |=r+1

1
σ(τ)

b(τ)F (τ)(y) (4.2)

with b(τ) = 1/γ(τ) for |τ | = r + 1 (Theorem III.1.3 and (III.1.27)). Suppose
now that (4.2) is Hamiltonian for all separable Hamiltonian vector fields f(y) =
J−1∇H(y). Theorem IX.10.4 then implies

b(u ◦ v) + b(v ◦ u) = 0 for all u, v ∈ T with |u|+ |v| = r + 1 .

This, however, is in contradiction with

1
γ(u ◦ v)

+
1

γ(v ◦ u)
=

1
γ(u)

· 1
γ(v)

,

which is a consequence of Theorem VI.7.6 (because the exact solution is a symplec-
tic transformation and, as a B-series, has coefficients a(τ) = 1/γ(τ)). 
�

A similar negative result holds for a much larger class of integration methods.
For example, it is proved by Hairer & Leone (1998) that, among the class of one-
leg methods (see (4.7) below), only the implicit mid-point rule is symplectic (in the
sense that the underlying one-step method is symplectic).
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Partitioned Linear Multistep Methods. We know at least one symplectic method
of the form (1.14). It is the symplectic Euler method (VI.3.1), which combines the
implicit and the explicit Euler methods. However, we do not have better within the
class of partitioned multistep methods as is shown in the next theorem.

Theorem 4.2. If the underlying one-step method of a consistent, partitioned linear
multistep method (1.14) is symplectic for all separable Hamiltonian systems, then
its order satisfies r ≤ 1.

Proof. Suppose that the order of the method is r ≥ 2. By (3.8), the dominant per-
turbation term in the modified differential equation is µ

(A)
r hr(Dr

1f)(y, z) for the
y-component and µ

(B)
r hr(Dr

1g)(y, z) for the z-component (at least one of the co-
efficients µ

(A)
r and µ

(B)
r is non-zero). This is a P-series with coefficients b(τ) =

µ
(A)
r /γ(τ) if τ ∈ TPp, |τ | = r + 1 and b(τ) = µ

(B)
r /γ(τ) if τ ∈ TPq, |τ | = r + 1.

If the underlying one-step method is symplectic (i.e., the modified differential equa-
tion is locally Hamiltonian), Theorem IX.10.4 implies that

b(u ◦ v) + b(v ◦ u) = 0 for u ∈ TPp, v ∈ TPq, |u|+ |v| = r + 1. (4.3)

Taking for u ∈ TPp the tree with one vertex, and for v ∈ TPq an arbitrary tree with
|v| = r, condition (4.3) gives the first relation of

µ
(A)
r

(r + 1)γ(v)
+

µ
(B)
r r

(r + 1)γ(v)
= 0,

µ
(B)
r

(r + 1)γ(v)
+

µ
(A)
r r

(r + 1)γ(v)
= 0.

Exchanging the colour of the vertices gives the second relation. This contradicts our
assumption r ≥ 2. 
�

If we restrict our considerations to Hamiltonian systems with

H(p, q) = 1

2
pTCp + cT p + U(q), (4.4)

where the kinetic energy is at most quadratic in p, we can find symplectic, parti-
tioned multistep methods of order two. Indeed, the combination of the trapezoidal
rule with the explicit midpoint rule

pn+1− pn = −h

2

(
∇U(qn+1)+∇U(qn)

)
, qn+1− qn−1 = 2h

(
Cpn + c

)
(4.5)

has the Störmer–Verlet method as underlying one-step method. This is seen as fol-
lows: since the Hamiltonian is separable, formula (VI.3.4) yields the first formula
of (4.5). The second relation is a consequence of qn+1 − qn + h(Cpn+1/2 + c) and
pn+1/2 + pn−1/2 = 2pn, and uses the linearity of Hp(p, q).

Also for this special class of Hamiltonian systems we cannot achieve high order
and symplecticity at the same time.

Theorem 4.3. If the underlying one-step method of a consistent, partitioned linear
multistep method (1.14) is symplectic for all Hamiltonian systems with Hamiltonian
of the form (4.4), then its order satisfies r ≤ 2.
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Proof. The beginning is the same as that for Theorem 4.2. We let r ≥ 2 be the order
of the method (A) so that µ(A)

r �= 0. Instead of (4.3) we now have to use

b(u ◦◦ v)− b(v ◦◦u) = 0 for u, v ∈ TNp, |u|+ |v| = r, (4.6)

which also follows from Theorem IX.10.4. Taking for u ∈ TNp the tree with one
vertex, and for v ∈ TNp an arbitrary tree with |v| = r− 1, condition (4.6) gives the
relation

µ
(A)
r (r − 1)

2(r + 1)γ(v)
− µ

(A)
r

r(r + 1)γ(v)
= 0,

which is contradictory for r > 2, because µ
(A)
r �= 0. 
�

Remark 4.4. We believe that the statement of Theorem 4.3 remains true, if we
restrict our consideration to Hamiltonian functions (4.4) with c = 0 and invertible
matrix C. Since multistep methods (1.8) for second order differential equations can
be converted into partitioned multistep methods, this then implies that methods (1.8)
cannot be symplectic unless the order satisfies r ≤ 2.

XV.4.2 Symplecticity in the Higher-Dimensional Phase Space

We present here a second approach for the definition of symplecticity of multistep
methods (more precisely, of one-leg methods). It is much inspired by the G-stability
theory of Dahlquist (1975) for the study of stiff differential equations.

To simplify the nonlinear stability theory of linear multistep methods (1.1),
Dahlquist (1975) introduced the so-called one-leg methods, which are defined by
the relation

k∑
j=0

αjyn+j = hf
( k∑

j=0

βjyn+j

)
, (4.7)

where the normalization σ(1) =
∑

j βj = 1 is assumed. In fact, there is a close
relationship between the numerical solution of (4.7) and (1.1), and their long-time
behaviour is the same (see Sect. V.6 of Hairer & Wanner, 1996). In the following
we consider the super-vectors Yn = (yn+k−1, . . . , yn)T collecting k consecutive
approximations of the solution.

Definition 4.5. Let G be an invertible symmetric matrix of dimension k. A k-step
multistep or one-leg method is called G-symplectic if

Y T
n+1 (G⊗ S)Yn+1 = Y T

n (G⊗ S)Yn, (4.8)

whenever the differential equation ẏ = f(y) has yTSy as invariant (with symmetric
S), i.e., the vector field satisfies yTSf(y) = 0 for all y.

It is of course also possible to express this definition in terms of differential
forms. As a consequence of Lemma VI.4.1 the conservation of quadratic first inte-
grals is equivalent to symplecticity (Bochev & Scovel 1994).

In contrast to the negative results of Sect. XV.4.1, there exist a lot of G-
symplectic methods. We have the following result.
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Theorem 4.6 (Eirola & Sanz-Serna 1992). Every irreducible symmetric one-leg
method (4.7) is G-symplectic for some matrix G.

Proof. We recall that a one-leg method is irreducible if the generating polynomials
ρ(ζ) and σ(ζ) have no common zeros.

Construction of G. The symmetry relation (1.3) implies ρ(1/ζ) = −ζ−kρ(ζ)
and σ(1/ζ) = ζ−kσ(ζ). Consequently, the polynomial ρ(ζ)σ(ω) + ρ(ω)σ(ζ) van-
ishes for ω = 1/ζ, and contains the factor ζω − 1. We then define G by

1

2

(
ρ(ζ)σ(ω) + ρ(ω)σ(ζ)

)
= (ζω − 1)

k∑
i,j=1

gijζ
i−1ωj−1. (4.9)

The matrix G obtained in this way is symmetric.
Regularity of G. Applying the geometric series we get

k∑
i,j=1

gijζ
i−1ωj−1 = −1

2

(
ρ(ζ)σ(ω) + ρ(ω)σ(ζ)

)(
1 + ζω + ζ2ω2 + . . .

)
,

where the identity holds as formal power series. Suppose that the matrix G is not
invertible. Then there exists a vector u = (u0, u1, . . . , uk−1)T such that Gu =
0. We formally replace the appearances of ωj−1 with uj−1 for j ≤ k and with
zero for j > k. This gives an identity of the form 0 = ρ(ζ)a(ζ) + σ(ζ)b(ζ) with
polynomials a(ζ) and b(ζ) of degree at most k− 1, and we get a contradiction with
the irreducibility of the method.

G-Symplecticity. We next replace in (4.9) ζiωj with yT
n+iSyn+j . Together with

(4.7) this yields

h
( k∑

i=0

βiyn+i

)T

Sf
( k∑

i=0

βiyn+i

)
= Y T

n+1(G⊗ S)Yn+1 − Y T
n (G⊗ S)Yn,

where Yn = (yn, . . . , yn+k−1)T . This proves (4.8) for all functions f(y) satisfying
yTSf(y) = 0. 
�

Example 4.7. We consider the explicit midpoint rule (1.6), which is also a one-leg
method, and the 3-step method (3.13). By Theorem 4.6 the one-leg versions are
G-symplectic. Following the constructive proof of this theorem we find

G =
(

0 1
1 0

)
and G =




0 1 1
1 −2 1
1 1 0


 ,

respectively. We apply both methods to two closely related Hamiltonian systems,
namely the pendulum equation with H(p, q) = p2/2− cos q and a perturbed prob-
lem with H(p, q) = p2/2 − cos q(1 − p/6), and we study the preservation of the
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Fig. 4.1. Numerical Hamiltonian H(pn, qn)−H(p0, q0) of the explicit mid-point rule and the
3-step method (3.13), applied with step size h = 0.01 to the pendulum problem (H(p, q) =
p2/2− cos q) and to a perturbed problem (H(p, q) = p2/2− cos q(1−p/6)) on the interval
[0, 1100] (only every 131st step is drawn)

Hamiltonian (see Fig. 4.1). The result is somewhat surprising. The midpoint rule be-
haves well for the perturbed problem, but shows a linear error growth in the Hamil-
tonian for the pendulum problem. On the other side, the weakly stable 3-step method
behaves well for the pendulum equation (which is in agreement with the stable be-
haviour of Fig. 3.1), but has an exponential error growth for the perturbed problem.
Notice that different scales are used in the four pictures.

The above example illustrates that G-symplecticity of a numerical method is
not sufficient for a good long-time behaviour. It is necessary to get under control the
parasitic solution components.

XV.4.3 Modified Hamiltonian of Multistep Methods

After the negative results of Sect. XV.4.1, we are fortunately also able to prove pos-
itive results concerning the near conservation of the Hamiltonian.

Theorem 4.8. For a symmetric, consistent linear multistep method (1.1) of order r
applied to ẏ = J−1∇H(y), there exists a series of the form

H̃(y) = H(y) + hrHr+1(y) + hr+2Hr+3(y) + . . . , (4.10)

which is a formal first integral of the modified equation (3.1) without truncation.
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Proof. With ρ(ex)/(xσ(ex)) = 1 + γrx
r + γr+2x

r+2 + . . . it follows from (3.3)
that the solution of the modified differential equation satisfies

(1 + γrh
rDr + γr+2h

r+2Dr+2 + . . .)ẏ = J−1∇H(y) +O(hN ), (4.11)

where, due to the symmetry of the method, only odd derivatives of y(t) appear. We
multiply both sides with ẏTJ so that the right-hand side becomes the total derivative
d
dtH(y). On the left-hand side we note ẏTJẏ = 0, ẏTJy(3) = d

dt

(
ẏTJÿ

)
and

similarly for higher derivatives

ẏTJy(2m+1) =
d

dt

(
ẏTJy(2m) − ÿTJy(2m−1) + . . .± y(m)TJy(m+1)

)
. (4.12)

We thus obtain a time derivative of an expression in which the appearing derivatives
can be substituted as functions of y via the modified differential equation (3.1).
Altogether this yields

− d

dt

(
hrHr+1(y) + hr+2Hr+3(y) + . . .

)
=

d

dt
H(y) +O(hN ).

which proves the statement. 
�

The statement of the previous theorem is somewhat surprising. The underlying
one-step method, although not symplectic, nearly conserves the Hamiltonian for
general H(y) (not even reversibility is required). This indicates that the condition
(IX.9.20) can be satisfied for all trees also by non-symplectic methods.

For partitioned multistep methods we do not know of a similar result unless if
we restrict our consideration to Hamiltonians of the form (4.4). In this case we are
concerned with multistep methods for second order differential equations.

Theorem 4.9. For a symmetric, consistent linear multistep method (1.8) of order r
applied to ÿ = −∇U(y), there exists a series of the form

H̃(y, ẏ) = 1

2
ẏT ẏ + U(y) + hrHr+1(y, ẏ) + hr+2Hr+3(y, ẏ) + . . . , (4.13)

which is a formal first integral of the modified equation (3.9) without truncation.

Proof. The proof is very similar to that of the previous theorem. We expand
ρ(ex)/(x2σ(ex)) = 1 + γrx

r + γr+2x
r+2 + . . . , and similar to (3.10) we obtain

(1 + γrh
rDr + γr+2h

r+2Dr+2 + . . .)ÿ = −∇U(y) +O(hN ). (4.14)

This time we multiply both sides with ẏT . The right-hand side becomes the total
derivative d

dtU(y), and for the left-hand side we use ẏT ÿ = d
dt (ẏ

T ẏ) and for higher
even-order derivatives

ẏT y(2m) =
d

dt

(
ẏT y(2m−1) − ÿT y(2m−2) + . . .± 1

2
y(m)T y(m)

)
. (4.15)

Integrating and substituting second and higher derivatives of y via the modified
differential equation (3.9) yields the desired formal first integral close to the Hamil-
tonian of the system. 
�
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The formal first integral (4.13) does not depend on how approximations to the
derivative v = ẏ are obtained. If the derivative at grid points is numerically com-
puted with the formula (3.11), then one can use the one-to-one correspondence
(3.12) to express the coefficient functions of the modified differential equation in
terms of y and v.

XV.4.4 Modified Quadratic First Integrals

Symplectic one-step methods exactly preserve quadratic first integrals (Sect. IV.2).
This is not true for the underlying one-step method of symmetric multistep methods.
However, as we shall prove in this section, it nearly preserves such first integrals.

Theorem 4.10. Let Q(y) = yTCy (with a symmetric matrix C) be a first integral
of ẏ = f(y). For a symmetric, consistent linear multistep method (1.1) of order r,
there then exists a series of the form

Q̃(y) = yTCy + hrQr+1(y) + hr+2Qr+3(y) + . . . , (4.16)

which is a formal first integral of the modified equation (3.1) without truncation.

Proof. We multiply (4.11) with yTC und thus obtain

yTC(1 + γrh
rDr + γr+2h

r+2Dr+2 + . . .)ẏ = yTCf(y) +O(hN ).

Since yTCy is a first integral, the term on the right-hand side vanishes. For the terms
on the left-hand side we notice that yTCẏ = 1

2
d
dt (y

TCy) and that

yTCy(2m+1) =
d

dt

(
yTCy(2m) − ẏTCy(2m−1) + . . .± 1

2
y(m)TCy(m)

)
. (4.17)

As in the proofs of Sect. XV.4.3 we now deduce the statement. 
�
A similar result holds for second order differential equations and methods (1.8).

This concerns for example the total angular momentum in N -body systems.

Theorem 4.11. Suppose that ÿ = f(y) has L(y, ẏ) = yTEẏ as first integral, i.e., E
is skew-symmetric and yTEf(y) = 0. For a symmetric, consistent linear multistep
method (1.8) of order r, there then exists a series of the form

L̃(y, ẏ) = yTEẏ + hrLr+1(y, ẏ) + hr+2Lr+3(y, ẏ) + . . . , (4.18)

which is a formal first integral of the modified equation (3.9) without truncation.

Proof. Multiplying (4.14) with yTE gives

yTE(1 + γrh
rDr + γr+2h

r+2Dr+2 + . . .)ÿ = yTEf(y) +O(hN ).

The term at the right vanishes. Since E is a skew-symmetric matrix, we have for the
terms to the left that yTEÿ = d

dty
TEẏ and that

yTEy(2m+2) =
d

dt

(
yTEy(2m+1) − ẏTDy(2m) + . . .± y(m)TEy(m+1)

)
. (4.19)

This yields the statement as in the previous proofs. 
�
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Remark 4.12. Noticing that the underlying one-step method of a symmetric mul-
tistep method can be expressed as a formal B-series (cf. Sect. XV.2.2), it follows
from (4.17) that the modified first integral of Theorem 4.10 is of the form (VI.8.6).
By Theorem VI.8.5 the underlying one-step method is therefore conjugate to a sym-
plectic integrator.

A similar result holds for symmetric methods (1.8) complemented with a sym-
metric derivative approximation (3.11). The variables v and ẏ are related via (3.12)
having an expansion in even powers of h. Substituting ẏ = ẏ(y, v) of this relation
into the modified first integral (4.18), we obtain an expression of the form (VI.8.11).
Here, the elementary differentials correspond to the system ẏ = v, v̇ = f(y) (v has
to be identified with z). Theorem VI.8.8 combined with Theorem 4.11 proves that
the underlying one-step method is conjugate to a symplectic integrator.

XV.5 Long-Term Stability

The results of Sects. XV.4.3 and XV.4.4 imply the near conservation of the total
energy and of the angular momentum in N -body problems for numerical solutions
of the underlying one-step method of multistep methods. This, however, is of no
value as long as the parasitic solutions of the multistep method are not under control.
The present section is devoted to the study of the stability of numerical solutions
over long time intervals.

XV.5.1 Role of Growth Parameters

The analysis of this section is based on the representation

yn = y(nh) +
∑
�∈I∗

ζn
� z�(nh) (5.1)

of the numerical solution of a multistep method (cf. formula (3.16)).

Linear Multistep Methods for First Order Equations. By Theorem 3.5 the par-
asitic components z� (for 2 ≤ � ≤ k) are the solution of a differential equation
which, by (3.22), is of the form

ż� = µ�f
′(y)z� + . . . . (5.2)

This is just the variational equation of ẏ = f(y) scaled by

µ� =
σ(ζ�)

ζ�ρ′(ζ�)
, (5.3)

which is the so-called growth parameter as introduced by Dahlquist (1959) and
motivated there by a linear stability analysis (see Exercise 5).

We shall illustrate at the examples of Sect. XV.3.2 that the study of the truncated
equation (5.2) gives already a lot of insight into the long-time behaviour of multistep
methods.
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50 100 150 200 250

−1

0

1

2
µ = −1

µ = −0.5

Fig. 5.1. First component of the solution of the pendulum equation (grey) together with the
Euclidean norm of the solution v(t) of the scaled variational equation (5.4)

Example 5.1. For the pendulum equation, the truncated equation (5.2) is
(

ẏ1

ẏ2

)
=

(
y2

− sin y1

)
,

(
v̇1

v̇2

)
= µ

(
0 1

− cos y1 0

)(
v1

v2

)
. (5.4)

We fix initial values as y(0) = (1.9, 0.4)T and v(0) = (0.1, 0.1)T . Figure 5.1 shows
the solution component y1(t) in grey, and the Euclidean norm of v(t) as solid black
line, once for µ = −1 and once for µ = 0.5. We notice that the function v(t)
remains small and bounded for µ = −0.5, and that it increases linearly for µ = −1.

This agrees perfectly with the observations of Figs. 3.1 and 3.2, because the
method (3.13) has growth parameter µ� = −0.5 for the roots ζ� = ±i, whereas the
explicit midpoint rule (3.14) has µ� = −1 for ζ� = −1.

The same analysis for partitioned multistep methods allows one to better un-
derstand the behaviour of the different methods in Fig. 1.3. The leading term of the
parasitic modified equations depends on whether ζ� is a root of both polynomials
ρA(ζ) and ρB(ζ), or only of one of them. This is very similar to the situation en-
countered with multistep methods for second order differential equations which we
treat next.

Linear Multistep Methods for Second Order Equations. Theorem 3.6 tells us
that the modified equation for the parasitic components z� depends on the multiplic-
ity of the root ζ�. Consider a stable, symmetric method (1.8) for ÿ = f(y). If ζ� is a
double root of ρ(ζ), formula (3.29) yields

z̈� = µ�f
′(y)z� + . . . , µ� =

2σ(ζ�)
ζ2
� ρ′′(ζ�)

, (5.5)

where we have not written terms containing at least two factors zj . If ζ� is a single
root of ρ(ζ), we get from (3.30) that

ż� = hµ�f
′(y)z� + . . . , µ� =

σ(ζ�)
ζ� ρ′(ζ�)

. (5.6)

There is an enormous difference between the parasitic modified equations corre-
sponding to double or single roots of ρ(ζ). Equation (5.5) is the complete analogue
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of (5.2) and, as before, the long-time behaviour is hardly predictable and strongly
depends on the growth parameter. For single roots, however, we are concerned with
a first order differential equation (5.6) having an additional factor h as bonus. For
the analysis of Sects. XV.5.2 and XV.5.3 it is important to have only single roots.

Definition 5.2. A symmetric multistep method (1.8) for second order differential
equations is called s-stable if, apart from the double root at 1, all zeros of ρ(ζ) are
simple and of modulus one.

The linearized parasitic modified equations give much insight into the long-time
behaviour of multistep methods. To get rigorous estimes over long times, however,
further considerations are necessary. A partial result is given by Cano & Sanz-Serna
(1998) for multistep methods (1.8) applied to equations ÿ = f(y) with periodic
exact solution. There, the first terms of the asymptotic error expansion for the global
error are computed, and their growth as a function of time is studied. We shall follow
the approach of Hairer & Lubich (2004) who exploit the Hamiltonian structure of
second order differential equations.

XV.5.2 Hamiltonian of the Full Modified System

In the remainder of this section we restrict our consideration to s-stable, irreducible
linear multistep methods

k∑
j=0

αjqn+j = −h2
k∑

j=0

βj∇U(qn+j), (5.7)

applied to Hamiltonian systems written as

q̈ = −∇U(q), (5.8)

where U(q) is assumed to be real-analytic in the considered region.
The key to proving long-time error estimates is the observation that much of the

Hamiltonian structure is conserved in the modified equations (3.25). The results and
techniques of this subsection are closely related to those of Sect. XIII.6.3 developed
for numerical methods for oscillatory differential equations.

We let z = (z�)�∈IN
and define U(z) as

U(z) = U(z0) +
∑
m≥1

1
m!

∑
ζ�1 ...ζ�m=1

U (m)(z0)(z�1 , . . . , z�m
), (5.9)

where the second sum is over all indices �1 ∈ I∗
N , . . . , �m ∈ I∗

N with ζ�1 . . . ζ�m
= 1

(using the notation of Sect. XV.3.2). Since the roots of ρ(ζ), different from ζ1 = 1
are complex and appear in pairs (Exercise 3), also the functions z� appear in pairs.
It is convenient to use the notation z−� = zj if ζ� = ζj .

It follows from (3.28) with f(q) = −∇U(q) that every solution of the truncated
modified equation (3.25) satisfies
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ρ(ζ�e
hD)z� = −h2σ(ζ�e

hD)∇z−�
U(z) +O(hN+2) (5.10)

(for all � ∈ I) as long as

y ∈ K, ‖ẏ‖ ≤ M, ‖z�‖ ≤ δ for 1 < � < k, (5.11)

where K is a compact subset of the domain of analyticity of U(q), M > 0 some
bound on the derivative, and 0 < δ = O(h) is a sufficiently small constant (note
that this implies ‖z�‖ ≤ δ for all � ∈ I∗ if h is sufficiently small, cf. the algebraic
relations of (3.25)).

For ease of presentation, we assume for the moment that σ(ζ�) �= 0 for all
� ∈ IN (we know that this holds for 1 ≤ � < k, because the method is irreducible).
We apply the operator σ−1(ζ�e

hD) to both sides of (5.10) and divide by h2:

h−2
( ρ

σ

)
(ζ�e

hD)z� = −∇z−�
U(z) +O(hN ). (5.12)

We then multiply with żT
−�, sum over all � ∈ IN , and thus obtain

h−2
∑

�∈IN

żT
−�

( ρ

σ

)
(ζ�e

hD)z� +
d

dt
U(z) = O(hN ). (5.13)

We now show that also the first expression on the left-hand side is a total derivative
of a function depending on z and its time derivatives. For this we note that
( ρ

σ

)
(ζ�e

ix) =
∑
j≥0

c�,jx
j with real coefficients c�,j = (−1)jc−�,j . (5.14)

This holds because the symmetry of the multistep method yields (ρ/σ)(1/ζ) =
(ρ/σ)(ζ) and hence, for real x, (ρ/σ)(ζ�e

ix) = (ρ/σ)(ζ�eix) = (ρ/σ)(ζ�eix).
With the expansion (5.14) we obtain

( ρ

σ

)
(ζ�e

hD)z� =
N+1∑
j=0

c�,j(−ih)jz
(j)
� +O(hN+2). (5.15)

To study (5.13) we apply the relation (4.12) for the real function y = z1 and for
z� corresponding to ζ� = −1, while for the complex-valued functions z = z�, with
complex conjugate z = z−�, we use

Re ż
T
z(2m) = Re

d

dt

(
ż

T
z(2m−1) − z̈

T
z(2m−2) + . . .± 1

2
(z(m))T z(m)

)

Im ż
T
z(2m+1) = Im

d

dt

(
ż

T
z(2m) − z̈

T
z(2m−1) + . . .∓ (z(m))T z(m+1)

)
.

Together with (5.15) these relations show that the terms

żT
−�

( ρ

σ

)
(ζ�e

hD)z� + żT
�

( ρ

σ

)
(ζ−�e

hD)z−�

=
N+1∑
j=0

c�,j 2 Re
(
(−ih)j ż�

T
z
(j)
�

)
+O(hN+2)
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give a total derivative (up to the remainder term). Hence the left-hand side of (5.13)
can be written as the time derivative of a function which depends on z�, � ∈ IN , and
on their derivatives. Using the modified equation (3.25) we eliminate all z� corre-
sponding to ζ� with ρ(ζ�) �= 0 and their derivatives, the first and higher derivatives
of z� (for 1 < � < k), and the second and higher derivatives of y = z1. We thus get
a function

H(y, ẏ, z∗) = H0(y, ẏ, z∗) + . . . + hN−1HN−1(y, ẏ, z∗) (5.16)

with z∗ = (z�)k−1
�=2 , such that

d

dt
H

(
y(t), ẏ(t), z∗(t)

)
= O(hN ), (5.17)

along solutions of (3.25) that stay in a set defined by (5.11). The function H is
therefore an almost-invariant of the system (3.25).

If, however, σ(ζ) does have a zero ζ�, then we omit the corresponding term from
the sum in (5.13). Hence the term żT

−�∇z−�
U(z) is missing from (d/dt)U(z) and

must therefore be compensated in the remainder term. Since ζ� is a product of no
fewer than two zeros of ρ(ζ), it follows from (3.31) and from µ�,0 = 0 that z� =
O(h3δ2), as long as ‖zj‖ ≤ δ for 1 < j < k. We further have ∇z−�

U(z) = O(δ2),
so that the remainder term in (5.17) is augmented by O(h3δ4).

We summarize the above considerations (Hairer & Lubich 2004) as follows.

Theorem 5.3. Every solution of the truncated modified equation (3.25) satisfies,
with H from (5.16),

H
(
y(t), ẏ(t), z∗(t)

)
= H

(
y(0), ẏ(0), z∗(0)

)
+O(thN ) +O(th3δ4) (5.18)

as long as the solution stays in the set defined by (5.11). Moreover,

H
(
y, ẏ, z∗

)
= H(y, ẏ) +O(hp) +O(hδ2). (5.19)

The closeness to the Hamiltonian H(y, ẏ) = 1
2‖ẏ‖2 + U(y) follows also di-

rectly from the above construction. For z∗ = 0 we have H(y, ẏ, 0) = H̃(y, ẏ),
where H̃ is the modified energy from Theorem 4.9.

We will use Theorem 5.3 in Section XV.6.1 to infer the long-time near-conserva-
tion of the Hamiltonian along numerical solutions. Before that we need to bound the
parasitic components.

XV.5.3 Long-Time Bounds for Parasitic Solution Components

The modified equations have further almost-invariants which are close to the squares
of the norms of the parasitic components that correspond to the roots of ρ(ζ). We
derive them here and use them to show that all parasitic solution components remain
small over very long times. The techniques used in this subsection are similar to
those in Sects. XIII.6 and XIII.7.
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We consider � with 1 < � < k for which ζ� is a simple root of ρ(ζ) and σ(ζ�) �=
0. The dominant term on the left-hand side of (5.12) is −c�,1ih

−1ż�. Since

d

dt
‖z�‖2 = zT

−�ż� + zT
� ż−�, (5.20)

we multiply (5.12) with zT
−� and the corresponding equation for ζ−� with zT

� , and
we form the difference, so that the dominant term on the left-hand side becomes
−c�,1ih

−1 d
dt‖z�‖2 (note c−�,1 = −c�,1). Dividing by −c�,1ih

−1 gives

i

c�,1h

(
zT
−�

ρ

σ
(ζ�e

hD)z� − zT
�

ρ

σ
(ζ−�e

hD)z−�

)

=
ih

c�,1

(
−zT

−�∇z−�
U(z) + zT

� ∇z�
U(z)

)
.

(5.21)

We first estimate the right-hand expression. Since

∇z−�
U(z) = ∇2U(z0)z� +O(δ2),

as long as (5.11) is satisfied, we obtain from the symmetry of the Hessian that the
right-hand side of (5.21) is of size O(hδ3). The dominant O(hδ3) term is present
only if ζ−� can be written as the product of two roots of ρ(ζ) other than 1. If this is
not the case, the expression (5.21) is of size O(hδ4).

Using the expansion (5.15) on the left-hand side of (5.21) and the relations (for
z = z�)

Re zT z(2m+1) = Re
d

dt

(
zT z(2m) − ż

T
z(2m−1) . . .∓ 1

2
(z(m))T z(m)

)

Im zT z(2m+2) = Im
d

dt

(
zT z(2m+1) − ż

T
z(2m) + . . .± (z(m))T z(m+1)

)

we obtain that (5.21) is, up to O(hN ), the total derivative of a function depending
on z and its derivatives.

By construction the dominant term is d
dt‖z�‖2. The following terms have at least

one more power of h and at least one derivative which by (3.25) gives rise to an
additional factor h. Eliminating higher derivatives with the help of (3.25), we arrive
at a function of the form

K�(y, ẏ, z∗) = ‖z�‖2 + h2K�,2(y, ẏ, z∗) + . . . + hN−1K�,N−1(y, ẏ, z∗). (5.22)

As we have seen, its total derivative is of size O(hδ3) or smaller. We summarize
these considerations in the following theorem.

Theorem 5.4. Along every solution of the truncated modified equation (3.25) the
function K�(y, ẏ, z∗) satisfies for 1 < � < k

K�

(
y(t), ẏ(t), z∗(t)

)
= K�

(
y(0), ẏ(0), z∗(0)

)
+O(thN ) +O(thδ3) (5.23)
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as long as the solution stays in the set defined by (5.11). The second error term is
replaced byO(thδ4) if no root of ρ(ζ) other than 1 is the product of two other roots.
Moreover,

K�

(
y, ẏ, z∗

)
= ‖z�‖2 +O(h2δ2). (5.24)

This result allows us to write the numerical solution in a form that is suitable for
deriving long-time error estimates. Let us first collect the necessary assumptions:

(A1) the multistep method (5.7) is symmetric, s-stable, and of order r;
(A2) the potential function U(q) of (5.8) is defined and analytic in an open neigh-

bourhood of a compact set K;
(A3) the starting approximations q0, . . . , qk−1 are such that the initial values for

(3.25) obtained from Lemma 3.7 satisfy y(0) ∈ K, ‖ẏ(0)‖ ≤ M , and
‖z�(0)‖ ≤ δ/2 for 1 < � < k;

(A4) the numerical solution {qn} stays for 0 ≤ nh ≤ T in a compact set K0 which
has a positive distance to the boundary of K.

Theorem 5.5 (Hairer & Lubich 2004). Assume (A1)–(A4). For sufficiently small
h and δ and for a fixed truncation index N (large enough such that hN = O(δ4)),
there exist functions y(t) and z�(t) on an interval of length

T = O((hδ)−1)

such that

• qn = y(nh) +
∑
�∈I∗

ζn
� z�(nh) for 0 ≤ nh ≤ T ;

• on every subinterval [jh, (j + 1)h) the functions y(t), z�(t) are a solution of the
system (3.25);

• the functions y(t), z�(t) have jump discontinuities of size O(hN+2) at the grid
points jh;

• ‖z�(t)‖ ≤ δ for 0 ≤ t ≤ T .

If no root of ρ(ζ) other than 1 is the product of two other roots, all these estimates
are valid on an interval of length T = O((hδ2)−1).

Proof. To define the functions y(t), z�(t) on the interval [jh, (j + 1)h) we consider
the k consecutive numerical solution values qj , qj+1, . . ., qj+k−1. We compute ini-
tial values for (3.25) according to Lemma 3.7, and we let y(t), z�(t) be a solution of
(3.25) on [jh, (j +1)h). Because their defect isO(hN ) andO(hN+1), respectively,
such a construction yields jump discontinuities of size O(hN+2) at the grid points.

It follows from Theorem 5.4 thatK�(y(t), ẏ(t), z∗(t)) remains constant up to an
error of size O(h2δ3) on the interval [jh, (j + 1)h). Taking into account the jump
discontinuities, we find that

K�(y(t), ẏ(t), z∗(t)) ≤ K�(y(0), ẏ(0), z∗(0)) + C1thδ
3 + C2th

N+1 (5.25)

as long as ‖z�(t)‖ ≤ δ. By (5.24) this then implies
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‖z�(t)‖2 ≤ ‖z�(0)‖2 + C1thδ
3 + C2th

N+1 + C3h
2δ2. (5.26)

The assumption ‖z�(t)‖ ≤ δ is certainly satisfied as long as C1thδ ≤ 1/4,
C2th

N+1 ≤ δ2/4 , and C3h
2 ≤ 1/4, so that the right-hand side of (5.26) is

bounded by δ2. This proves not only the estimate for ‖z�(t)‖, but at the same time
it guarantees recursively that the above construction of the functions y(t), z�(t) is
feasible. 
�

Notice that for initial values computed by a sufficiently accurate one-step
method the constant δ can be chosen as small as O(hr+2) where r is the order
of the multistep method (cf. Lemma 3.7). The above estimates are therefore valid
on very long time intervals.

Example 5.6. To illustrate the long-time behaviour of the parasitic terms z� we
consider the pendulum equation q̈ = − sin q, and we apply the symmetric multistep
methods (B) and (C) of Example 1.2. For method (C), the starting values are chosen
far from a smooth solution, so that the propagation of the parasitic terms in the
numerical solution can be better observed. We compute the velocity approximation
by

vn = h

12

(
8(qn+1 − qn−1)− (qn+2 − qn−2)

)
. (5.27)

380 steps h = 0.02 4000 steps h = 0.02

Fig. 5.2. Stable propagation of perturbations in the starting values for method (C) of Example
1.2; initial values are q0 = 1.141 q1 = 1.158, q2 = 1.178, and q3 = 1.206

150 steps h = 0.05 900 steps h = 0.05

Fig. 5.3. Unstable propagation of perturbations in the starting values, for method (B) of Ex-
ample 1.2; initial values are q0 = 1.147 q1 = 1.183, q2 = 1.255, and q3 = 1.286



600 XV. Dynamics of Multistep Methods

Figure 5.2 shows the numerical solution (qn, vn) for n ≥ 2. The values for n =
2, 3, 4, 5 are indicated by larger black bullets. The parasitic roots of method (C) are
±i and both are simple. The numerical solution is therefore of the form

qn = y(nh) + inz1(nh) + (−i)nz1(nh) + (−1)nz2(nh).

One observes in Fig. 5.2 that the functions zj(t) not only remain bounded and small,
but they stay essentially constant over the considered interval. This should be com-
pared to Fig. 3.1, where the parasitic functions zj(t) are bounded, but not constant.

Method (B) has a double parasitic root at −1 and, therefore, is not s-stable.
Its numerical solution behaves like qn = y(nh) + (−1)nz(nh). In Fig. 5.3 every
second approximation is drawn in grey. One sees that the numerical solution stays
on two smooth curves y(t) + z(t) and y(t) − z(t) which, however, do not remain
close to each other.

XV.6 Explanation of the Long-Time Behaviour

The bounds on the parasitic solution components of Sect. XV.5.3 allow us to get rig-
orous statements on the long-time behaviour of multistep methods (5.7) for second
order differential equations. The following results are taken from Hairer & Lubich
(2004). We do not know of similar results for multistep methods (1.1).

XV.6.1 Conservation of Energy and Angular Momentum

The energy conservation is now a direct consequence of Theorems 5.3 and 5.5. We
shall use the representation of qn in terms of functions y(t), z�(t) as in Theorem 5.5.
Taking into account the jump discontinuities of these functions, Theorem 5.3 yields

H(y(t), ẏ(t), z∗(t)) = H(y(0), ẏ(0), z∗(0)) +O(th3δ4) +O(thN+1).

We have δ = O(hr+1) if the starting approximations are computed by a rth order
one-step method. If N is chosen sufficiently large, this together with (5.19) implies

H(y(t), ẏ(t)) = H(y(0), ẏ(0)) +O(hp) for 0 ≤ t ≤ T = O(h−p−2).

If the velocity approximation pn = vn is given by a rth order finite difference
formula (3.11), it follows from Theorem 5.5 that pn = ẏ(nh) + O(hr) provided
the truncation index N is sufficiently large. This proves the following result, and
explains the excellent long-time behaviour of method (C) in Fig. 1.2.

Theorem 6.1 (Total Energy). For a problem q̈ = −∇U(q) with total energy
H(p, q) = 1

2p
T p + U(q) , the numerical solution of an s-stable symmetric mul-

tistep method (5.7) of order r satisfies

H(qn, pn) = H(q0, p0) +O(hr) for nh ≤ h−r−2.

If no root of ρ(ζ) other than 1 is a product of two other roots, the statement holds
on intervals of length O(h−2r−3). 
�
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We assume next that the differential equation q̈ = −∇U(q) has a quadratic
first integral of the form L(q, q̇) = q̇TAq (e.g., the angular momentum in N -body
problems). This means that A is skew-symmetric and ∇U(q)TAq = 0. The last
equation can also be interpreted as the invariance relation U(eτAq) = U(q). This
property implies for U(z), given by (5.9), that U(eτAz) = U(z) (here eτAz =
(eτAz�)�∈I). Along solutions z(t) of the modified equations (5.10) we therefore
have up to terms of size O(hN )

0 =
d

dτ

∣∣∣
τ=0

U(eτAz) =
∑
�∈I

zT
−� A∇z−�

U(z) =
∑
�∈I

h−2zT
−� A

( ρ

σ

)
(ζ�e

hD)z�.

If σ(ζ) has a root ζ�, then the corresponding term is omitted from the last sum, lead-
ing to a remainder term which in the worst case isO(h3δ4), as in Theorem 5.3. Like
in the previous proofs, the last sum is, for skew-symmetric A, the total derivative of
a function

L(y, ẏ, z∗) = L0(y, ẏ, z∗) + . . . + hN−1LN−1(y, ẏ, z∗)

which satisfies (under the same assumptions as in Theorem 5.3)

L
(
y(t), ẏ(t), z∗(t)

)
= L

(
y(0), ẏ(0), z∗(0)

)
+O(th3δ4) +O(thN+1)

and
L
(
y, ẏ, z∗

)
= L(y, ẏ) +O(hp) +O(δ2/h). (6.1)

We therefore obtain the following result.

Theorem 6.2 (Angular Momentum). Let L(q, q̇) = q̇TAq be a first integral of
q̈ = −∇U(q). The numerical solution of an s-stable symmetric multistep method
(5.7) of order r then satisfies

L(qn, pn) = L(q0, p0) +O(hr) for nh ≤ h−r−2.

If no root of ρ(ζ) other than 1 is a product of two other roots, the statement holds
on intervals of length O(h−2r−3). 
�

XV.6.2 Linear Error Growth for Integrable Systems

The differential equation q̈ = −∇U(q) , written as q̇ = v, v̇ = −∇U(q) , is
reversible with respect to the involution v �→ −v. Assume that it is also an integrable
system in the sense of Definition XI.1.1, and denote by a = I(q, v) the action
variables, and by ω(a) the frequences of the system.

By Theorem 5.5, the numerical solution can be written as qn = y(nh) +∑
�∈I∗ ζn

� z�(nh), where (at least locally) y(t) is the solution of a modified dif-
ferential equation (first equation of (3.25))

ÿ = f0,0(y, ẏ, z∗) + hf0,1(y, ẏ, z∗) + . . . + hN−1f0,N−1(y, ẏ, z∗) (6.2)
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which, for z∗ = 0 becomes the reversible modified differential equation (3.9). Since
zj(t) = O(δ) (see Theorem 5.5) and since z∗ appears at least quadratically in (6.2),
this equation is a O(δ2) perturbation of (3.9). We are now in the position to apply
the results of Lemma XI.2.1 and Theorem XI.3.1. The additional (non-reversible)
perturbation of size O(δ2) in the differential equation (6.2) produces an error term
of size O(tδ2) in the action variables and of size O(t2δ2) in the angle variables. If
δ = O(hr+1), these terms are negligible with respect to those already appearing in
Theorem XI.3.1. The errors due to the jump discontinuities (Theorem 5.5) are also
negligible. We have thus proved the following statement.

Theorem 6.3. Consider applying the s-stable symmetric multistep method (5.7) of
order r to an integrable reversible system q̈ = −∇U(q) with real-analytic poten-
tial U . Suppose that ω∗ ∈ R

d satisfies the diophantine condition (X.2.4). Then,
there exist positive constants C, c and h0 such that the following holds for all
step sizes h ≤ h0: every numerical solution (qn, vn) starting with frequencies
ω0 = ω(I(q0, v0)) such that ‖ω0 − ω∗‖ ≤ c| log h|−ν−1, satisfies

‖(qn, vn)− (q(t), v(t))‖ ≤ C thr

‖I(qn, vn)− I(q0, v0)‖ ≤ C hr
for 0 ≤ t = nh ≤ h−r.

The constants h0, c, C depend on d, γ, ν and on bounds of the potential. 
�

XV.7 Practical Considerations

In computations with multistep methods one can observe resonance phenomena, if
relatively large step sizes are used. This and the use of variable step sizes are the
subject of this section.

XV.7.1 Numerical Instabilities and Resonances

Soon after Quinlan and Tremaine’s methods were published, however,
Alar Toomre discovered a disturbing feature of the methods, . . .

(G.D. Quinlan 1999)

It is a simple task to derive multistep methods of high order. Consider, for example,
methods of the form (1.8) for second order differential equations ÿ = f(y). Their
order is determined by the condition (1.9). We choose arbitrarily ρ(ζ) such that
ζ = 1 is a double zero and the stability condition is satisfied. Condition (1.9) then
gives

σ(ζ) = ρ(ζ)/ log2 ζ +O
(
(ζ − 1)r

)
.

Expanding the right-hand expression into a Taylor series at ζ = 1 and truncating
suitably, this yields the corresponding σ polynomial. If we take

ρ(ζ) = (ζ − 1)2(ζ6 + ζ4 + ζ3 + ζ2 + 1), (7.1)
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Table 7.1. Symmetric multistep methods for second order problems; k = 8 and order r = 8

SY8 SY8B SY8C
i αi 12096 βi αi 120960 βi αi 8640 βi

0 1 0 1 0 1 0
1 −2 17671 0 192481 −1 13207
2 2 −23622 0 6582 0 −8934
3 −1 61449 −1/2 816783 0 42873
4 0 −50516 −1 −156812 0 −33812

we get in this way Method SY8 of Table 7.1, a method proposed by Quinlan &
Tremaine (1990) for computations in celestial mechanics. All methods of Table 7.1
are 8-step methods, of order 8, and symmetric, i.e., the relations αi = αk−i and
βi = βk−i are satisfied. Therefore, we present the coefficients only for i ≤ k/2.

These methods give approximations yn to the solution of the differential equa-
tion. If also derivative approximations are needed, we get them by finite differences,
e.g., for the 8th order methods of Table 7.1 we use

ẏn = 1

840h

(
672 (yn+1 − yn−1)− 168 (yn+2 − yn−2)

+ 32 (yn+3 − yn−3)− 3 (yn+4 − yn−4)
)
.

(7.2)

We apply this method to the Kepler problem (I.2.2), once with eccentricity e = 0
and once with e = 0.2, and initial values (I.2.11), such that the period of the exact
solution is 2π. Starting approximations are computed accurately with a high order
Runge–Kutta method. We apply Method SY8 with many different step sizes ranging
from 2π/30 to 2π/95, and we plot in Fig. 7.1 the maximum error of the total energy
as a function of 2π/h (where h denotes the step size). We see that in general the error
decreases with the step size, but there is an extremely large error for h ≈ 2π/60.
For e �= 0, further peaks can be observed at integral multiples of 5 and 6. It is our
aim to understand this behaviour.

Instabilities. We put z = q1 + iq2, so that the Kepler problem becomes

z̈ = ψ(|z|)z, ψ(r) = −r−3,

and we choose initial values such that z(t) = eit is a circular motion (eccentricity
e = 0). The numerical solution of (1.8) is therefore defined by the relation

k∑
j=0

αjzn+j = h2
k∑

j=0

βjψ(|zn+j |)zn+j . (7.3)

Approximating ψ(|zn+j |) with ψ(1) = −ω2, we get a linear recurrence relation
with characteristic polynomial

S(ωh, ζ) = ρ(ζ) + ω2h2σ(ζ).
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method SY8

e = 0

e = 0.2

Fig. 7.1. Maximum error in the total energy during the integration of 2500 orbits of the Kepler
problem as a function of the number of steps per period

The principal roots of S(ωh, ζ) = 0 satisfy ζ1(ωh) ≈ eiωh and ζ2(ωh) ≈ e−iωh,
and we have |ζj(ωh)| = 1 for all j and for sufficiently small h, because the method
is symmetric (Exercise 2). As a consequence of |ζ1(ωh)| = 1, the values ẑn :=
ζ1(ωh)n are not only a solution of the linear recurrence relation, but also of the
nonlinear relation (7.3). Our aim is to study the stability of this numerical solution.
We therefore consider a perturbed solution

zn = ζ1(ωh)n
(
1 + un

)
.

Using |zn| = 1 + 1
2 (un + un) +O(|un|2) and neglecting the quadratic and higher

order terms of |un| in the relation (7.3), we get

k∑
j=0

(αj + ω2h2βj)ζ1(ωh)jun+j =
h2

2
ψ′(1)

k∑
j=0

βjζ1(ωh)j
(
un+j + un+j

)
.

Considering also the complex conjugate of this relation, and eliminating un+j , we
obtain a linear recurrence relation for un with characteristic polynomial

S(ωh, ζ1(ωh)ζ) · S(ωh, ζ1(ωh)−1ζ) +O(h2). (7.4)

For small h, its zeros are close to ζ1(ωh)−1ζj and ζ1(ωh)ζl. If two of these zeros
collapse, the O(h2) terms in (7.4) can produce a root of modulus larger than one,
so that instability occurs. This is the case, if two roots ζj , ζl of ρ(ζ) = 0 satisfy
ζjζ

−1
l ≈ ζ2

1 ≈ e2iωh, or

θj − θl =
4π
N

, (7.5)

where ζj = eiθj and h = 2π/N .
For the Method SY8 of Table 7.1, the spurious zeros of ρ(ζ) have arguments

±4π/5, ±2π/5, and ±2π/6. With θj = 2π/5 and θl = 2π/6, the condition (7.5)
gives N = 60 as a candidate for instability. This explains the experiment of Fig. 7.1
for e = 0. A study of the stability of orbits with eccentricity e �= 0 (see Quinlan
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method (1.15)

method SY8B

e = 0

e = 0.2

e = 0

e = 0.2

Fig. 7.2. Maximum error in the total energy during the integration of 2500 orbits of the Kepler
problem as a function of the number of steps per period

1999) shows that instabilities can also occur when 4π/N is replaced with 2qπ/N
(q = 2, 3, . . .) in the relation (7.5).

To avoid these instabilities as far as possible, Quinlan (1999) constructed sym-
metric multistep methods, where the spurious roots of ρ(ζ) = 0 are well spread
out on the unit circle and far from ζ = 1. As a result he proposes Method SY8B
of Table 7.1. The same experiment as above yields the results of Fig. 7.2. The ρ-
polynomial of Method SY8B is

ρ(ζ) = (ζ − 1)2
(
ζ6 + 2ζ5 + 3ζ4 + 3.5ζ3 + 3ζ2 + 2ζ + 1

)
,

and the θj of the spurious roots are ±2π/2.278, ±2π/3.353, and ±2π/4.678. The
condition (7.5) is satisfied only for N ≤ 23.67, which implies that no instability
occurs for e = 0 in the region of the experiment of Fig. 7.2.

To illustrate the importance of high order methods, we included in Fig. 7.2 the
results of the second order partitioned multistep method (1.15).

XV.7.2 Extension to Variable Step Sizes

Variable step size multistep methods for second order differential equations ÿ =
f(y) are of the form

k∑
j=0

αj(hn, . . . , hn+k−1) yn+j = h2
n+k−1

k∑
j=0

βj(hn, . . . , hn+k−1) f
(
yn+j

)
,

where the coefficients αj and βj are allowed to depend on the step sizes hn, . . .,
hn+k−1, more precisely, on the ratios hn+1/hn, . . . , hn+k−1/hn+k−2. They yield
approximations yn to y(tn) on a variable grid given by tn+1 = tn + hn. Such a
method is of order r (cf. formula (1.9)), if

k∑
j=0

αj(hn, . . . , hn+k−1) y(tn+j) = h2
n+k−1

k∑
j=0

βj(hn, . . . , hn+k−1) ÿ(tn+j)

(7.6)
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for all polynomials y(t) of degree ≤ r + 1. It is stable, if the ρ-polynomial with
coefficients αj(h, . . . , h) (constant step size) satisfies the stability condition of
Sect. XV.1.2 (see Theorem III.5.7 of Hairer, Nørsett & Wanner (1993) and Cano
& Durán (2003a)).

All methods of Sect. XV.7.1 can be extended to symmetric, variable step size
integrators. This has been discovered by Cano & Durán (2003b). For clarity of no-
tation we let α̃j , β̃j (j = 0, . . . , k) be the coefficients of such a fixed step size
method. Cano & Durán propose putting

βj(hn, . . . , hn+k−1) =
hn

hn+k−1
β̃j , (7.7)

and to determine αj(hn, . . . , hn+k−1) such that symmetry and order k − 2 (for
arbitrary step sizes) are achieved. We also suppose (7.7), but we determine the
coefficients αj(hn, . . . , hn+k−1) such that (7.6) holds for all polynomials y(t) of
degree ≤ k. This uniquely determines these coefficients whenever hn > 0, . . .,
hn+k−1 > 0 (Vandermonde type system) and gives the following properties.

Lemma 7.1. For even k, let (α̃j , β̃j) define a symmetric, stable k-step method
(1.8) of order k, and consider the variable step size method given by (7.7) and
αj(hn, . . . , hn+k−1) such that (7.6) holds for all polynomials y satisfying deg y ≤
k. This method extends the fixed step size formula, i.e.,

αj(h, . . . , h) = α̃j , βj(h, . . . , h) = β̃j , (7.8)

it satisfies the symmetry relations

αj(hn, . . . , hn+k−1) = αk−j(hn+k−1, . . . , hn)
h2

n+k−1 βj(hn, . . . , hn+k−1) = h2
n βk−j(hn+k−1, . . . , hn),

(7.9)

and it is of order k − 1 for arbitrary step sizes. Moreover, it behaves like a method
of order k, if hn+1 = hn

(
1 +O(hn)

)
uniformly in n.

Proof. The relation (7.8) for βj follows at once from (7.7), and for αj it is a conse-
quence of the uniqueness of the solution of the linear system for the αj .

The second condition of (7.9) follows directly from (7.7) and from the sym-
metry of the underlying fixed step size method (β̃k−j = β̃j for all j). Inserting
(7.7) into (7.6), replacing y(t) with y(tn+k + tn − t), and reversing the order of
hn, . . . , hn+k−1 yields

k∑
j=0

αj(hn+k−1, . . . , hn) y(tn+k−j) = hnhn+k−1

k∑
j=0

β̃j ÿ(tn+k−j).

Using β̃k−j = β̃j this shows that αk−j(hn+k−1, . . . , hn) satisfies exactly the same
linear system as αj(hn, . . . , hn+k−1), so that also the first relation of (7.9) is veri-
fied.
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By definition, the variable step size method is at least of order k − 1. Under the
assumption hn+1 = hn

(
1 +O(hn)

)
the defect in (7.6) is of the form

hk+1
n D(hn, . . . , hn+k−1) = hk+1

n D(hn, . . . , hn) +O(hk+2
n )

for all sufficiently smooth y(t). Since the constant step size method is of order k,
the expression D(hn, . . . , hn) is of size O(hn), so that we observe convergence of
order k. 
�

The symmetry relation (7.9) has the following interpretation: if the approxi-
mations yn, . . . , yn+k−1 used with step sizes hn, . . . , hn+k−1 yield yn+k, then the
values yn+k, . . . , yn+1 applied with hn+k−1, . . . , hn yield yn as a result (since the
coefficients αj and βj only depend on step size ratios and the multistep formula
only on h2

n+k−1, the same result is obtained with −hn+k−1, . . . ,−hn). This is the
analogue of the definition of symmetry for one-step methods.

For obtaining a good long-time behaviour, the step sizes also have to be chosen
in a symmetric and reversible way (see Sect. VIII.3). One possibility is to take step
sizes

hn+k−1 = ε

2

(
σ(yn+k−1) + σ(yn+k)

)
, (7.10)

where ε > 0, and σ(y) is a given positive monitor function. This condition is an
implicit equation for hn+k−1, because yn+k depends on hn+k−1. It has to be solved
iteratively. Notice, however, that for an explicit multistep formula no further force
evaluations are necessary during this iteration. Such a choice of the step size guar-
antees that whenever hn+k−1 is chosen when stepping from yn, . . . , yn+k−1 with
hn, . . . , hn+k−2 to yn+k, the step size hn is chosen when stepping backwards from
yn+k, . . . , yn+1 with hn+k−1, . . . , hn+1 to yn.

Implementation. For given initial values y0, ẏ0, the starting approximations y1,
. . . , yk−1 should be computed accurately (for example, by a high-order Runge–
Kutta method) with step sizes satisfying (7.10). The solution of the scalar nonlin-
ear equation (7.10) has to be done carefully in order to reduce the overhead of the
method. In our code we use hn+k−1 := h2

n+k−2/hn+k−3 as predictor, and we apply
modified Newton iterations with the derivative approximated by finite differences.

The coefficients αj(hn, . . . , hn+k−1) have to be computed anew in every itera-
tion. We use the basis

pi(t) =
i−1∏
j=0

(t− tn+j), i = 0, . . . , k

for the polynomials of degree ≤ k in (7.6). This leads to a linear triangular system
for α0, . . . , αk. As noticed by Cano & Durán (2003b), the coefficients pi(tj) and
p̈i(tj) can be obtained efficiently from the recurrence relations

p0(t) = 1, pi+1(t) = (t− ti)pi(t)
ṗ0(t) = 0, ṗi+1(t) = (t− ti)ṗi(t) + pi(t)
p̈0(t) = 0, p̈i+1(t) = (t− ti)p̈i(t) + 2ṗi(t).



608 XV. Dynamics of Multistep Methods

40 50 60 70 80 90

10−9

10−6

10−3

steps per period

error in
Hamiltonian
e = 0.2

method SY8

variable steps

fixed step size

Fig. 7.3. Maximum error in the total energy during the integration of 2500 orbits of the Kepler
problem as a function of the number of steps per period

During the iterations for the solution of the nonlinear equation (7.10) only the values
of pi(tn+k) have to be updated.

Numerical Experiment. We repeat the experiment of Fig. 7.1 with the method
SY8, but this time in the variable step size version and with σ(y) = ‖y‖2 as step
size monitor. We have computed 2500 periods of the Kepler problem with eccen-
tricity e = 0.2, and we have plotted in Fig. 7.3 the maximal error in the Hamiltonian
as a function of the number of steps per period (for a comparison we have also
included the result of the fixed step size implementation). Similar to (7.2) we use
approximations ẏn that are the derivative of the interpolation polynomial passing
through yn, yn±1, yn±2, . . . such that the correct order is obtained. The computa-
tion is stopped when the error exceeds 10−2.

As expected, the error is smaller for the variable step size version, and it is seen
that the peaks due to numerical resonances are now much less although they are
not completely removed. For large step sizes, the performance deteriorates, but this
is not a serious problem, because these methods are recommended only for high
accuracy computations.

It should be remarked that the overhead, due to the computation of the coeffi-
cients αj and the solution of the nonlinear equation (7.10), is rather high. Therefore,
the use of variable step sizes is recommended only when force evaluations f(y) are
expensive or when constant step sizes are not appropriate. Cano & Durán (2003b)
report an excellent performance of symmetric, variable step size multistep methods
for computations of the outer solar system.

Despite the resonances and instabilities, then, symmetric methods can
still be a better choice than Störmer methods for long integrations of plan-
etary orbits provided that the user is aware of the dangers.

(G.D. Quinlan 1999)
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XV.8 Multi-Value or General Linear Methods

General linear methods is a class of integration methods that covers Runge–Kutta
as well as multistep methods. It is therefore of interest to study which of the results
on the long-time behaviour can be extended.

So-called multi-value or general linear methods are defined by Yn+1 = Gh(Yn),
where

Yn+1 = DYn + hBf(Un+1)
Un+1 = CYn + hAf(Un+1)

(8.1)

with f(Un+1) =
(
f(u1

n+1), . . . , f(us
n+1)

)T
for Un+1 =

(
u1

n+1, . . . , u
s
n+1

)T
, and

Yn = (y1
n, . . . , y

k
n). We use a sloppy notation in the sense that the matrices D,B, . . .

should be replaced with D⊗ I,B⊗ I, . . . . For a computation, a starting procedure
Sh and a finishing procedure Fh, which extracts the numerical approximation yn

from Yn, have to be added (see Fig. 8.1). We assume the existence of a vector e such
that with 1l = (1, . . . , 1)T

De = e, Ce = 1l (8.2)

holds (preconsistency conditions). The vector Yn is then an approximation to ey(tn)
(more precisely to e⊗ y(tn)).

For Runge–Kutta methods, D = (1) is the one-dimensional identity, B =
(b1, . . . , bs), C = 1l, and A is the usual Runge-Kutta matrix. For multistep methods,
we have Yn = (yn+k−1, . . . , yn)T , and D is the k × k matrix with characteristic
polynomial ρ(ζ) as in (2.1). For a detailed treatment of general linear methods we
refer the reader to Chap. 4 of the monograph of Butcher (1987), and to Chap. III.8
of Hairer, Nørsett & Wanner (1993).

y0 y1 y2

Y0 Y1 Y2Gh Gh

Sh Fh Fh

Fig. 8.1. Illustration of a multi-value method Yn+1 = Gh(Yn) with starting procedure Sh

and finishing procedure Fh

XV.8.1 Underlying One-Step Method and Backward Error
Analysis

In analogy to multistep methods, a method (8.1) is called strictly stable, if all eigen-
values of D are inside the unit circle with the exception of the single eigenvalue
ζ = 1. An extension of Kirchgraber’s result (Theorem 2.1) to strictly stable general
linear methods is given by Stoffer (1993).
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Theorem 8.1. Consider a strictly stable gen-
eral linear method Yn+1 = Gh(Yn), and a
finishing procedure yn = Fh(Yn) = dTYn +
O(h). Assume that (8.2) and dT e = 1 hold.

(i) Then there exist a unique one-step
method Φh(y) and a unique starting proce-
dure Sh(y) such that Gh ◦ Sh = Sh ◦ Φh

and Fh ◦ Sh = Id hold.
y0 y1

Y0 Y1Gh

Sh Sh

Φh

(ii) The manifold Mh = {Sh(y) ; y ∈ R
d} is invariant under Gh, and it is

exponentially attractive.

Proof. Since the method is strictly stable, there exists a matrix T such that

T−1DT =
(

1 0
0 D0

)
with ‖D0‖ < 1,

and Te1 = e (where e1 = (1, 0, . . . , 0)T ). The proof closely follows that of The-
orem 2.1. With the transformation (ξn, ηn)T = Zn = T−1Yn, the general linear
method (8.1) becomes

(
ξn+1

ηn+1

)
=

(
ξn

D0ηn

)
+ hT−1Bf

(
Un+1

)
. (8.3)

with Un+1 = CTZn+hAf(Un+1). As before, Theorem XII.3.1 can be applied and
yields the existence of an attractive manifold Nh = {(ξ, s(ξ)) ; ξ ∈ R

d}, which is
invariant under the mapping (8.3). We now invert the restriction of Fh onto the

manifold Nh. Due to dT e = 1 and Te1 = e, we have for Z = Z(ξ) =
(
ξ, s(ξ)

)T

that
y = Fh

(
TZ(ξ)

)
= dTTZ(ξ) + . . . = ξ + g(ξ), (8.4)

where g(ξ) is Lipschitz continuous with constant O(h). By the Banach fixed-point
theorem the equation (8.4) has a unique solution ξ = r(y). Putting

Sh(y) = TZ
(
r(y)

)
= T

(
r(y)

s
(
r(y)

)
)

,

we have found the unique starting procedure satisfying Fh ◦ Sh = Id and
T−1Sh(y) ∈ Nh. We finally define Φh = Fh◦Gh◦Sh andMh = {TZ ; Z ∈ Nh},
so that all statements of the theorem are verified. 
�

It is our aim to extend the concept of an underlying one-step method to nearly
all (including weakly stable) general linear methods.

Theorem 8.2. Consider a general linear method (8.1), and assume that ζ = 1
is a single eigenvalue of the propagation matrix D. Furthermore, let Gh(Y ) and
Fh(Y ) = dTY + . . . have expansions in powers of h, and assume that (8.2) and
dT e = 1 hold. Then there exist a unique formal one-step method
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Φh(y) = y + hd1(y) + h2d2(y) + . . .

and a unique formal starting procedure

Sh(y) = ey + hS1(y) + h2S2(y) + . . . ,

such that formally Gh ◦ Sh = Sh ◦ Φh and Fh ◦ Sh = Id hold.

Proof. Expanding Sh

(
Φh(y)

)
and Gh

(
Sh(y)

)
into powers of h, a comparison of

the coefficients yields

edj(y) + (I −D)Sj(y) = . . . , (8.5)

where a right-hand side depends on known functions and on di(y), Si(y) with i < j.
Similarly, the condition Fh

(
Sy(y)

)
= y leads to

dTSj(y) = . . . . (8.6)

Due to the fact that ζ = 1 is a single eigenvalue of D, and that dT e �= 0, the system
(8.5)-(8.6) uniquely determines dj(y) and Sj(y). 
�

Backward Error Analysis for Smooth Numerical Solutions. The formal analy-
sis of Chap. IX can be directly applied to the underlying one-step method of The-
orem 8.2. This yields a modified differential equation, but only for the smooth nu-
merical solution (cf. Sect. XV.3.1). Notice that this modified equation depends on
the choice of the finishing procedure Fh.

XV.8.2 Symplecticity and Symmetry

Before giving a precise meaning to the symplecticity and symmetry of general linear
methods, we establish the following lemma.

Lemma 8.3. For a general linear method Yn+1 = Gh(Yn) we consider two differ-
ent finishing procedures yn = Fh(Yn) and ŷn = F̂h(Yn) :

ŷ0
Φ̂h−−−−→ ŷ1

Φ̂h−−−−→ ŷ2
Φ̂h−−−−→ . . .

Ŝh

(
) F̂h

) F̂h

) F̂h

Y0
Gh−−−−→ Y1

Gh−−−−→ Y2
Gh−−−−→ . . .

Sh

)
( Fh

( Fh

( Fh

y0
Φh−−−−→ y1

Φh−−−−→ y2
Φh−−−−→ . . .

The two corresponding one-step methods Φh(y) and Φ̂h(y) (given by Theo-
rem 8.2) are then conjugate to each other, i.e.,

α−1
h ◦ Φh ◦ αh = Φ̂h with αh = Fh ◦ Ŝh. (8.7)
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Proof. The equations involving the underlying one-step methods or the starting pro-
cedures have to be understood in the sense of formal series. By Theorem 8.2 we have
Sh(y) = ey+O(h) and also Ŝh(y) = ey+O(h). It thus follows from Fh◦Sh = Id
that αh(y) is O(h)-close to the identity and therefore invertible. 
�

The transformation αh in the phase space is O(h)-close to the identity. The
relation α−1

h ◦ Φn
h ◦ αh = Φ̂n

h , which is a consequence of (8.7), therefore implies
that the numerical solutions of Φh and Φ̂h remain O(h)-close for all times. This
means that the long-time behaviour of both methods is exactly the same.

Consequently, for a given general linear method Gh, it is sufficient to require
symplecticity or symmetry for one finishing procedure only.

Definition 8.4 (Symplecticity). A general linear method Gh is called symplectic
if there exists a finishing procedure Fh such that the underlying one-step method
Φh of Theorem 8.2 is symplectic, i.e., Φ′

h(y)TJ Φ′
h(y) = J in the sense of formal

series.

The study of symplecticity of linear multistep methods (Sect. XV.4.1) was rather
disappointing. We could not find one linear multistep method whose underlying one-
step method is symplectic. For general linear methods, some necessary conditions
for the symplecticity of the underlying one-step method are known which are hard
to satisfy (Hairer & Leone 1998). For the moment, no symplectic general linear
method (not equivalent to a one-step method) is known, and we conjecture that such
a method does not exist, even in the class of partitioned general linear methods
(treating the p and q variables by different methods).

After the disappointing non-existence conjecture of symplectic multi-value meth-
ods, we turn our attention to symmetric methods. We know from the previous chap-
ters that for reversible Hamiltonian systems, the long time behaviour of symmetric
one-step methods can be as good as that for symplectic methods. There are sev-
eral definitions of symmetric general linear methods in the literature. However, they
are either tailored to very special situations (e.g., Hairer, Nørsett & Wanner 1993),
or they do not allow the proof of results that are expected to hold for symmetric
methods.

Definition 8.5 (Symmetry). A general linear method Gh is called symmetric if
there exists a finishing procedure Fh such that the underlying one-step method Φh

of Theorem 8.2 is symmetric, i.e., Φ−h(y) = Φ−1
h (y) in the sense of formal series.

Example 8.6. Consider the trapezoidal method in the role of Gh and the explicit
Euler method with step size −γh as finishing procedure:

Gh : Yn+1 = Yn + h

2

(
f(Yn) + f(Yn+1)

)

Fh : yn+1 = Yn+1 − γhf(Yn+1)

The corresponding starting procedure and underlying one-step methods are then the
implicit Euler method and the following 2-stage Runge–Kutta method:
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Sh : Yn = yn + γhf(Yn)

Φh : Runge–Kutta method

γ γ

1 + γ 1/2 + γ 1/2

1/2 + γ 1/2− γ

The method Φh is symmetric only for γ = 0, for γ = 1/2, and for γ = −1/2.
This example demonstrates that the symmetry of the underlying one-step method
strongly depends on the finishing procedure.

On the other hand, this example shows that the 2-stage Runge–Kutta method
is symmetric in the sense of Definition 8.5 for all γ (because it is conjugate to the
trapezoidal rule). It is not symmetric according to the definition of Chap. V.

A Useful Criterion for Symmetry. Definition 8.5 is rather impractical for verifying
the symmetry of a given general linear method. We give here algebraic conditions
for the coefficients A,B,C,D of a general linear method (8.1), which are sufficient
for the method to be symmetric. We assume that the finishing procedure yn+1 =
Fh(Yn+1) is given by

yn+1 = D̃Yn+1 + hB̃f(Vn+1), Vn+1 = C̃Yn+1 + hÃf(Vn+1), (8.8)

in complete analogy to method (8.1).

Lemma 8.7 (Adjoint Method). Let Yn+1 = Gh(Yn) be the general linear method
given by A,B,C,D (with invertible D), yn+1 = Fh(Yn+1) the finishing procedure
given by Ã, B̃, C̃, D̃, and denote by Φh its underlying one-step method. Then, the
underlying one-step method of

G∗
h : A∗ = CD−1B −A, B∗ = D−1B, C∗ = CD−1, D∗ = D−1

F ∗
h : Ã∗ = −Ã, B̃∗ = −B̃, C̃∗ = C̃, D̃∗ = D̃

is the adjoint method Φ∗
h = Φ−1

−h of Φh.

Proof. Substituting h ↔ −h and Yn+1 ↔ Yn in (8.1) yields

Un+1 = CYn+1 − hAf(Un+1), Yn = DYn+1 − hBf(Un+1).

Extracting Yn+1 from the second relation and inserting it into the first gives

Un+1 = CD−1Yn + h(CD−1B −A)f(Un+1)
Yn+1 = D−1Yn + hD−1Bf(Un+1),

which is exactly method G∗
h. The same replacements in the finishing procedure

Vn+1 = C̃Yn − hÃf(Vn+1), yn = D̃Yn − hB̃f(Vn+1)

and in the diagram of Theorem 8.2 prove the statement. 
�
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Theorem 8.8. If there exist an invertible matrix Q (satisfying Qe = e with e given
by (8.2)) and a permutation matrix P such that

P−1AP = CD−1B −A, Q−1BP = D−1B,

P−1CQ = CD−1, Q−1DQ = D−1,
(8.9)

then the general linear method (8.1) is symmetric.

Proof. We consider the change of variables Yn = Q Ŷn, Un = P Ûn in the method
(8.1). Since P is a permutation matrix, we have f(PU) = Pf(U), so that the
method becomes

PÛn+1 = CQŶn + hAPf(Ûn+1), QŶn+1 = DQŶn + hBPf(Ûn+1).

The assumption (8.9) implies that this method is the same as the adjoint method
of Lemma 8.7. Taking a finishing procedure Fh in such a way that yn+1 =
Fh(Q Ŷn+1) is identical to the finishing procedure yn+1 = F ∗

h (Ŷn+1) of the ad-
joint method (i.e., B̃ = 0 and D̃ such that D̃Q = D̃), we obtain Φ∗

h = Φh. This
proves the statement. 
�

The sufficient condition of Theorem 8.8 reduces to the known criteria for clas-
sical methods. Let us give some examples:

• For Runge–Kutta methods we have D = (1), B = bT a row vector, and C = 1l.
With Q = (1) and P the permutation matrix that inverts the elements of a vector,
we get

bTP = bT , PAP = 1lbT −A,

which is the same (V.2.4).
• Multistep methods in their form as general linear methods (Sect. XV.8) satisfy the

condition of Theorem 8.8 if

αi = −αk−i, βi = βk−i. (8.10)

One can take for P and Q the permutation matrices (inverting the elements of a
vector) of dimension k + 1 and k, respectively.

XV.8.3 Growth Parameters

For a rigorous study of the long-time behaviour of general linear methods it is not
sufficient to investigate smooth numerical solutions. One has to get bounds on the
parasitic solution components, which are present when one considers the general lin-
ear method without any starting and finishing procedure. This is certainly difficult,
as it is for multistep methods (1.1). We restrict here our analysis to the linearized
parasitic modified equation.

The eigenvalues of the matrix D in (8.1) will play the role of the zeros of ρ(ζ) in
(1.1). We denote them by ζ1 = 1 and ζ2, . . . , ζk, and we assume that they are simple
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and of modulus one. Motivated by the analysis for multistep methods we write the
approximations Yn as

Yn = Y (nh) +
∑
�∈I∗

ζn
� Z�(nh) (8.11)

with smooth functions Y (t) and Z�(t). The index set I∗ has the same meaning as in
Sect. XV.3.2. We insert (8.11) into (8.1) and compare coefficients of ζn

� . This gives
with t = nh

Y (t + h) = DY (t) + hBf
(
CY (t)

)
+O(h2)

ζ�Z�(t + h) = DZ�(t) + hBf ′(CY (t)
)
CZ�(t) +O(h2).

(8.12)

To get an amenable form of the modified equations we write the vectors Y (t), Z�(t)
in the basis of eigenvectors of D, which we denote by w1 = e and w2, . . . , wk:

Y (t) =
k∑

j=1

yj(t)wj , Z�(t) =
k∑

j=1

z�,j(t)wj .

Inserted into (8.12) and expanded into a series of h yields

ẏ1 = f(y1) +O(h),

and algebraic relations of the form yj(t) = O(h) for j ≥ 2. Similarly, we get
algebraic relations for z�,j(t) = O(h) if j �= �, and the function z�(t) := z�,�(t)
satisfies

ż� = µ�f
′(y1)z� +O(h) with µ� = ζ−1

� w∗
jBCwj , (8.13)

where w∗
j is the left eigenvector of D corresponding to the eigenvalue ζ�. This is in

perfect analogy to the computations of Sect. XV.5.1.
This analysis can be extended straightforwardly to partitioned general linear

methods, where different methods are applied to the components y and v of a parti-
tioned differential equation. Unfortunately, we do not know of any results that would
extend those of Sect. XV.6 to general linear methods.

XV.9 Exercises

1. Let ζ1(z) be the principal root of the characteristic equation ρ(ζ)− zσ(ζ) = 0.
Prove that for irreducible multistep methods the condition ζ1(−z)ζ1(z) ≡ 1 (in
a neighbourhood of z = 0) is equivalent to the symmetry of the method.

2. (Lambert & Watson 1976). Prove that stable, symmetric linear multistep meth-
ods (1.8) for second order differential equations, for which the polynomial ρ(ζ)
has only simple zeros (with the exception of ζ = 1), has a non-vanishing inter-
val of periodicity, i.e., the roots ζi(z) of ρ(ζ)− z2σ(ζ) = 0 satisfy |ζi(iy)| = 1
for sufficiently small real y.
Hint. Simple roots cannot leave the unit circle under small perturbations of y.
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3. Consider a symmetric, s-stable multistep method (1.8). If it is irreducible (no
common factors of ρ(ζ) and σ(ζ)), then k is even. Hence ρ(−1) �= 0.

4. Using Theorem XII.3.2, prove that the underlying one-step method of a strictly
stable rth order linear multistep method has order r.

5. (Dahlquist 1959). Consider the linear problem ẏ = λy and apply a symmetric
linear multistep method (1.1) as in Example 2.2. Prove that for t = nh and
h → 0,

ζn
j (λh) ≈ ζn

j eµjλt,

where µj is the growth parameter.
6. Consider a general linear method (8.1). If there exist an invertible symmetric

matrix G and a diagonal matrix Λ such that

M =
(

DTGD −G DTGB − CTΛ
BTGD − ΛC BTGB −ATΛ− ΛA

)
= 0, (9.1)

then the method is G-symplectic.
Hint. Adapt the proof of Burrage & Butcher for B-stability (see Hairer & Wan-
ner (1996), page 358).

7. A Runge–Kutta method can be considered as a general linear method with D =
(1), C = 1l. Prove that the condition (9.1) is equivalent to the symplecticity
condition of Chap. VI.

8. Extend the definition of G-symplecticity to partitioned general linear methods,
and prove that the condition

M =
(

DTGD̂ −G DTGB̂ − CTΛ
BTGD̂ − ΛĈ BTGB̂ −ATΛ− ΛÂ

)
= 0 (9.2)

implies that the method is G-symplectic.
9. Construct general linear methods of order r > 2, for which all growth parame-

ters are positive. Find such methods, which have a smaller degree of implicit-
ness than symmetric one-step methods of the same order.

10. Write a Maple program that checks the coefficients of Table 7.1. After defining
rho:=ρ(z), use the instructions

> sigma := taylor(rho/(log(z)*log(z)),z=1,8);
> factor(expand(convert(sigma,polynom)));

11. Construct partitioned general linear methods which are symmetric, explicit, of
high order, and for which the matrices D and D̂ have distinct eigenvalues (with
the exception of 1). Compared to multistep methods, smaller dimensions of the
matrices D and D̂ are possible.
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Systemes gewöhnlicher Differentialgleichungen, Crelle Journal f.d. reine u. angew. Math.
17 (1837) 97–162; K. Weierstrass, ed., C.G.J. Jacobi’s Gesammelte Werke, vol. 4, pp.
57–127. [VI.5]
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J. Kepler, Astronomia nova αιτιoλoγητ óς seu Physica celestis, traditia commentariis de

motibus stellae Martis, ex observationibus G. V. Tychonis Brahe, Prague 1609. [I.2]
H. Kinoshita, H. Yoshida & H. Nakai, Symplectic integrators and their application to dynam-

ical astronomy, Celest. Mech. & Dynam. Astr. 50 (1991) 59–71. [V.3]
U. Kirchgraber, Multi-step methods are essentially one-step methods, Numer. Math. 48

(1986) 85–90. [XV.2]
U. Kirchgraber, F. Lasagni, K. Nipp & D. Stoffer, On the application of invariant manifold

theory, in particular to numerical analysis, Internat. Ser. Numer. Math. 97, Birkhäuser,
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H. Poincaré, Les Méthodes Nouvelles de la Mécanique Céleste, Tome II, Gauthier-Villars,
Paris, 1893. [VI.1], [X.2]
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tegrating the systems ẍ = −∂U/∂x, Zh. Vychisl. Mat. i Mat. Fiz. 29, 202–211 (in
Russian); same as U.S.S.R. Comput. Maths. Phys. 29 (1989) 138–144. [VI.4]

Y.B. Suris, Hamiltonian methods of Runge–Kutta type and their variational interpretation
(in Russian), Math. Model. 2 (1990) 78–87. [VI.6]

Y.B. Suris, Partitioned Runge–Kutta methods as phase volume preserving integrators, Phys.
Lett. A 220 (1996) 63–69. [VI.9]

Y.B. Suris, Integrable discretizations for lattice systems: local equations of motion and their
Hamiltonian properties, Rev. Math. Phys. 11 (1999) 727–822. [VII.2]



Bibliography 635

Y.B. Suris, The Problem of Integrable Discretization: Hamiltonian Approach, Progress in
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– quadratic 128
Lie midpoint rule 127
Lie operator 261
Lie–Euler method 126
Lie–Poisson reduction 289
Lie–Poisson systems 274, 286
Lie–Trotter splitting 47
Lindstedt–Poincaré series 406
linear error growth 12, 413, 414, 448, 601
linear multistep methods
– weakly stable 575
linear stability 23
Liouville lemma 392
Liouville’s theorem 227
Lobatto IIIA - IIIB pair 102, 192, 210,

247, 352, 386
Lobatto IIIA methods 34, 377
– symmetric 147
Lobatto IIIA–IIIB pair 40
Lobatto IIIB methods 37, 377, 449
– symmetric 147
Lobatto IIIS 235
Lobatto quadrature 247
local coordinates 113
– existence of numerical solution 167
– symmetric methods 166
local error 29
– of composition methods 150, 176
long-time behaviour
– symmetric integrators 437, 455
– symplectic integrators 389, 455

long-time energy conservation 366
Lorenz problem 176
Lotka–Volterra problem 1, 24, 175, 257,

270, 271, 273, 340
low-rank approximation 137
Lyapunov exponents 131

Magnus series 121
manifold of rank k matrices 131
manifolds 109, 114, 239, 267
– symmetric methods 161
– symplectic 258
Marchuk splitting 47
matrix commutator 83
matrix exponential 120
matrix Lie groups 118
mechanical systems 555
– constrained 237, 258
merging product 75
methods based on local coordinates 166
methods on manifolds 97, 350
– symmetric 161
midpoint rule 123
– explicit 569, 580
– implicit 3, 34, 190, 192, 223, 270
– Lie 127
– modified 171
modified differential equation 337
– B-series 369
– constrained Hamiltonian system 352
– first integrals 351
– Lie group methods 351
– Lie–Poisson integrators 354
– methods on manifolds 350
– P-series 381
– perturbed differential equation 466
– Poisson integrators 347
– reversible methods 343
– splitting methods 348
– symmetric methods 342
– symplectic methods 343
– trees 369
– variable steps 356
modified equation
– parasitic 579
modified Hamiltonian 343, 375, 589
– global 344, 353
modified midpoint rule 171
modulated Fourier expansion 496
– exact solution 486, 496
– Hamiltonian 503
– multi-frequency 519
– numerical solution 488, 498
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molecular dynamics 18
mollified impulse method 476, 554
momenta 181
– conjugate 181
– discrete 206
moments of inertia 100
momentum
– angular 9, 98, 100, 101, 173
– linear 98, 173
momentum conservation 600
Moser–Veselov algorithm 281
multi-force methods 478
multi-value methods 609
– symmetric 611
multiple time scales 472, 479
multiple time stepping 316, 475
multirate methods 316
multistep methods 567
– backward error analysis 576
– G-symplectic 587
– partitioned 572
– second order equations 569
– strictly stable 568, 573
– symmetric 568, 570
– symplectic 585
– variable step sizes 605
Munthe-Kaas methods 125

N -body system 13, 98
– energy-momentum methods 173
Newton-type iteration 331
Noether’s theorem 210
non-resonant frequencies 406
non-resonant step size 433, 498, 511
Nyström methods 41, 69, 96, 104
– symplectic 194

O(n), orthogonal group 119
one-leg methods 587
one-step method 8, 29, 187
– underlying 573, 609
optimal control 235
order 29
– of a tree 53, 67
– of symmetric local coordinates 167
– of symmetric projection 162
order conditions
– composition methods 71, 75, 80, 93, 94
– Crouch-Grossman methods 124
– Nyström methods 69
– partitioned RK methods 39, 69
– processing methods 159
– RK methods 29, 51, 56, 58

– splitting methods 80, 92
– symmetric composition 155
– symmetrized 177
ordered subtrees 60
ordered trees 60
oriented area 183
oriented free trees 388
orthogonal matrices 118
orthogonality constraints 131
oscillatory differential equations 21, 471,

531
oscillatory energy 22, 479, 484, 505, 510,

517, 524
outer solar system 8, 13, 112

P-series 68, 214
– symplectic 217, 219
parametrization
– tangent space 117
partial differential equations
– linear 262
partitioned Runge–Kutta methods 38,

102, 148
– diagonally implicit 149
– symmetric 148
– symplectic 193, 208, 231
partitioned systems 3, 66
pendulum 4, 5, 110, 181, 185, 188, 367,

396, 593
– double 233
– spherical 238, 254
– stiff spring 526
perturbation series
– averaging 459
– Hamiltonian 406
– reversible 444
perturbation theory
– dissipative 455
– Hamiltonian 389, 404
– reversible 437
phase space 2
Poincaré cut 16
Poisson
– bracket 255, 257
– flow 261, 265
– integrators 270, 272, 300
– maps 268
– systems 254, 257, 297
Poisson structures 265
– canonical 254
– general 256
polar decomposition 134
polynomial invariants 105
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potential energy 181, 237
precession 12, 26
processing
– of composition methods 158
– order conditions 159
projection
– symplectic 259
projection methods 109, 351
– standard 110
– Stiefel manifolds 133
– symmetric 161
– symmetric non-reversible 166
pseudo-inverse of a matrix 116
pseudo-symplectic methods 436

QR algorithm 108
QR decomposition 134
quadratic invariants 101
– near conservation 225
quadratic Lie groups 128
quantum dynamics 293
quasi-periodic flow 399
quaternions 281

r-RESPA method 318, 475
Radau methods 34
rank k matrix manifold 131
RATTLE 245, 280, 352, 388
resonance
– numerical 482, 485, 602
resonance module 517
reversibility 239, 311
– of symmetric local coordinates 168
– of symmetric projection 163
reversible maps 143, 144
reversible methods 343
reversible perturbation theory 437
– basic scheme 443
– Birkhoff normalization 447
– KAM theory 445
– perturbation series 444
reversible systems 143
– integrable 437
– perturbed integrable 442
reversible vector fields 144
ρ-compatibility condition 145
ρ-reversible 143
– maps 144
– vector field 143
Riccati equation 134
rigid body 99, 163, 274, 280, 288, 441,

449
– Hamiltonian theory 278

Rodrigues formula 141
rooted trees 53
rounding error 322
Runge–Kutta methods 27, 28, 101, 311,

325, 333
– ρ-compatibility 145
– additive 50
– adjoint method 147
– implicit 29
– irreducible 220
– partitioned 38, 148
– symmetric 146
– symplectic 191, 231
Runge–Lenz–Pauli vector 26

s-stable 594
Schrödinger equation 293
– nonlinear 273
semiclassical dynamics 293
separable partitioned systems 231
SHAKE 245
simplifying assumptions 96
sinc function 473, 481
singular value decomposition 133
SL(n), special linear group 119, 130
sl(n), special linear Lie algebra 119
small denominators 406
SO(n), special orthogonal group 119
so(n), skew-symmetric matrices 119
spherical pendulum 238, 254
splitting
– fast-slow 317
– Lie–Trotter 47
– Marchuk 47
– of ordered tree 370
– Strang 47, 230
splitting methods 47, 48, 91, 193, 252,

270, 284, 298, 348
– ρ-compatibility 145
– negative steps 82
– of higher order 82
– order conditions 80
Sp(n), symplectic group 119
sp(n), symplectic Lie algebra 119
stability
– linear 23
– long-term 592
stability function 194
starting approximations 326
– order 327
step size control
– integrating, reversible 314, 357, 449,

538
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– proportional, reversible 310, 313, 356,
449

– standard 303
– structure-preserving 310
step size function 308, 311
Stiefel manifold 131
Störmer–Verlet scheme 7, 9, 39, 48, 189,

270, 318, 349, 386, 472, 586
– as classical limit 300
– as composition method 148
– as Nyström method 41
– as processing method 159
– as splitting method 48
– as variational integrator 208
– energy conservation 368, 513
– linear error growth 414
– symmetry 42, 145
– symplecticity 48, 190
– variable step size 308, 309, 312, 313,

315
Strang splitting 47, 230, 315, 348
structure constants 286
submanifold 109
– symplectic 259
subtrees
– ordered 60
summation
– compensated 323
superconvergence 32, 37, 250
Suzuki’s fractals 45, 46, 153
switching lemma 76
symmetric collocation methods 146, 176
symmetric composition 94
– of first order methods 150
– of symmetric methods 150, 154
symmetric composition methods 149
– of order 6 156
– of order 8 157
– of order 10 158
symmetric Lie group methods 169
symmetric methods 3, 42, 143, 144, 342,

612
– explicit 148
– symmetric composition 154
symmetric methods on manifolds 161
symmetric projection 161
– existence of numerical solution 162
– non-reversible 166
symmetric Runge–Kutta methods 146,

176
symmetric splitting method 177
symmetrized order conditions 177
symmetry 289, 311, 613

– of Gauss methods 147
– of Lobatto 147
– of symmetric local coordinates 168
symmetry coefficient 57, 67, 72
symplectic 183, 196, 241
– B-series 217
– maps 268
– P-series 217
– projection 259
– submanifold 258, 295
symplectic Euler method 4, 48, 189, 193,

230, 242, 270, 340, 346, 349, 383
– as splitting method 48
– energy conservation 368
– variable step size 307
symplectic methods 187, 612
– as variational integrators 207
– based on generating functions 203
– irreducible 222
– Nyström methods 194
– partitioned Runge–Kutta methods 193,

208
– Runge–Kutta methods 191
– variable step size 306
symplectic submanifold 259
symplecticity 244, 585

Takens chaos 563
tangent bundle 239
tangent space 114, 120
– parametrization 117, 134
θ-method 147
– adjoint 148
three-body problem 321, 390
time transformation 306, 356
time-reversible methods 144
Toda flow 109
Toda lattice 402, 414, 440, 449
total differential 186, 196
total energy 9, 18, 21, 98, 479, 484, 510,

524, 600
transformations
– adiabatic 531, 532
– averaging 458
– canonical 186
– reversibility preserving 438
– symplectic 182, 183, 196, 241
trapezoidal rule 28, 194, 223, 312
trees 51, 217, 369
– bi-coloured 66
– equivalence class 384
– ordered 60
– oriented free 388
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– rooted 53
∞-trees 72
trigonometric methods 473
triple jump 44, 46, 153
true anomaly 9
two-body problem 9, 25
two-force methods 478

underlying one-step method 573, 609

Van der Pol’s equation 455
variational integrators 204
variational problem 205, 237
variational splitting 271

vector fields 2
– divergence-free 227
– reversible 143, 144
Verlet method 7, 39, 48, 189, 270, 318,

472, 513
– adaptive 309
Verlet-I method 318, 475
volume preservation 105, 113, 227, 231
volume-preserving integrators 228

weak invariants 109
work-precision diagrams 150, 153, 156,

157, 334, 336, 482, 604, 605, 608
W -transformation 235




