MLP starting ideas

July 15, 2022

Abstract

Abstract goes here...

Contents

1	Introduction	1
2	Multilevel Picard approximations for the heat equation	1
3	Stochastic solutions to parabolic partial differential equations	2

1 Introduction

Add an appropriate introduction...

$\begin{array}{c} 2 \\ \end{array} \\ \end{array} \\ \end{array}$

Theorem 2.1. Let $T, \kappa, \delta \in (0, \infty)$, $\Theta = \bigcup_{n \in \mathbb{N}} \mathbb{Z}^n$, let $u_d \in C^{1,2}([0, T] \times \mathbb{R}^d, \mathbb{R})$, $d \in \mathbb{N}$, satisfy for all $d \in \mathbb{N}$, $t \in [0, T]$, $x = (x_1, x_2, \ldots, x_d) \in \mathbb{R}^d$ that

 $|u_d(t,x)| \le \kappa d^{\kappa} \left(1 + \sum_{k=1}^d |x_k|\right)^{\kappa} \quad and \quad \left(\frac{\partial}{\partial t} u_d\right)(t,x) = (\Delta_x u_d)(t,x), \quad (2.1)$

let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, let $W^{d,\theta} \colon [0,T] \times \Omega \to \mathbb{R}^d$, $d \in \mathbb{N}$, $\theta \in \Theta$, be independent standard Brownian motions, let $U_m^{d,\theta} \colon [0,T] \times \mathbb{R}^d \times \Omega \to \mathbb{R}$, $d,m \in \mathbb{Z}$, $\theta \in \Theta$, satisfy for all $d,m \in \mathbb{N}$, $\theta \in \Theta$, $t \in [0,T]$, $x \in \mathbb{R}^d$ that

$$U_m^{d,\theta}(t,x) = \frac{1}{m} \left[\sum_{k=1}^m u_d \left(0, x + \sqrt{2} W_t^{d,(\theta,0,-k)} \right) \right].$$

and for every $d, n, m \in \mathbb{N}$ let $\mathfrak{C}_{d,n,m} \in \mathbb{N}$ be the number of function evaluations of $u_d(0, \cdot)$ and the number of realizations of scalar random variables which are used to compute one realization of $U_m^{d,0}(T,0): \Omega \to \mathbb{R}$. Then there exist $c \in \mathbb{R}$ and $n: \mathbb{N} \times (0,1] \to \mathbb{N}$ such that for all $d \in \mathbb{N}, \varepsilon \in (0,1]$ it holds that

$$\left(\mathbb{E}\left[|u_d(T,0) - U^{d,0}_{n(d,\varepsilon)}(T,0)|^2\right]\right)^{1/2} \le \varepsilon \qquad and \qquad \mathfrak{C}_{d,n(d,\varepsilon),n(d,\varepsilon)} \le cd^c \varepsilon^{-(2+\delta)}.$$
(2.2)

3 Stochastic solutions to parabolic partial differential equations

Lemma 3.1. Let $T \in (0, \infty)$, let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, let $u_d \in C^{1,2}([0, T] \times \mathbb{R}^d, \mathbb{R})$, $d \in \mathbb{N}$, satisfy for all $d \in \mathbb{N}$, $t \in [0, T]$, $x \in \mathbb{R}^d$ that

$$\left(\frac{\partial}{\partial t}u_d\right)(t,x) + (\Delta_x u_d)(t,x) = 0, \tag{3.1}$$

let $W^d: [0,T] \times \Omega \to \mathbb{R}^d$, $d \in \mathbb{N}$, be standard Brownian motions, and let $\mathcal{X}^{d,t,x}: [t,T] \times \Omega \to \mathbb{R}^d$, $d \in \mathbb{N}$, $t \in [0,T]$, $x \in \mathbb{R}^d$, be a stochastic process with continuous sample paths satisfying that for all $d \in \mathbb{N}$, $t \in [0,T]$, $s \in [t,T]$, $x \in \mathbb{R}^d$ we have \mathbb{P} -a.s. that

$$\mathcal{X}_{s}^{d,t,x} = x + \int_{t}^{s} \sqrt{2} \, \mathrm{d}W_{r}^{d} = x + \sqrt{2} \, W_{t-s}^{d}.$$
(3.2)

Then for all $d \in \mathbb{N}$, $t \in [0, T]$, $x \in \mathbb{R}^d$ it holds that

$$u_d(t,x) = \mathbb{E}\Big[u_d\big(T, \mathcal{X}_T^{d,t,x}\big)\Big].$$
(3.3)

Proof of Lemma 3.1. The proof of Lemma 3.1 is thus complete.

Lemma 3.2. Let $T \in (0, \infty)$, let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, let $\sigma_d \colon \mathbb{R}^d \to \mathbb{R}^{d \times d}$, $d \in \mathbb{N}$, be infinitely often differentiable functions, let $u_d \in C^{1,2}([0,T] \times \mathbb{R}^d, \mathbb{R})$, $d \in \mathbb{N}$, satisfy for all $d \in \mathbb{N}$, $t \in [0,T]$, $x \in \mathbb{R}^d$ that

$$\left(\frac{\partial}{\partial t}u_d\right)(t,x) + \operatorname{Trace}\left(\sigma(x)[\sigma(x)]^*(\operatorname{Hess}_x u_d)(t,x)\right) = 0, \tag{3.4}$$

let $W^d: [0,T] \times \Omega \to \mathbb{R}^d$, $d \in \mathbb{N}$, be standard Brownian motions, and let $\mathcal{X}^{d,t,x}: [t,T] \times \Omega \to \mathbb{R}^d$, $d \in \mathbb{N}$, $t \in [0,T]$, $x \in \mathbb{R}^d$, be a stochastic process with continuous sample paths satisfying that for all $d \in \mathbb{N}$, $t \in [0,T]$, $s \in [t,T]$, $x \in \mathbb{R}^d$ we have \mathbb{P} -a.s. that

$$\mathcal{X}_s^{d,t,x} = x + \int_s^t \sqrt{2}\,\sigma(\mathcal{X}_r^{d,t,x})\,\mathrm{d}W_r^d.$$
(3.5)

Then for all $d \in \mathbb{N}$, $t \in [0, T]$, $x \in \mathbb{R}^d$ it holds that

$$u_d(t,x) = \mathbb{E}\Big[u_d\big(T,\mathcal{X}_T^{d,t,x}\big)\Big].$$
(3.6)

Proof of Lemma 3.2. The proof of Lemma 3.2 is thus complete.

Lemma 3.3. Let $T \in (0, \infty)$, let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, let $\mu_d \in \mathbb{R}^d \to \mathbb{R}^d$, $d \in \mathbb{N}$, be infinitely often differentiable functions, let $u_d \in C^{1,2}([0,T] \times \mathbb{R}^d, \mathbb{R})$, $d \in \mathbb{N}$, satisfy for all $d \in \mathbb{N}$, $t \in [0,T]$, $x \in \mathbb{R}^d$ that

$$\left(\frac{\partial}{\partial t}u_d\right)(t,x) + (\Delta_x u_d)(t,x) + [\mu_d(x)]^*(\nabla_x u_d)(t,x) = 0, \tag{3.7}$$

let $W^d: [0,T] \times \Omega \to \mathbb{R}^d$, $d \in \mathbb{N}$, be standard Brownian motions, and let $\mathcal{X}^{d,t,x}: [t,T] \times \Omega \to \mathbb{R}^d$, $d \in \mathbb{N}$, $t \in [0,T]$, $x \in \mathbb{R}^d$, be a stochastic process with continuous sample paths satisfying that for all $d \in \mathbb{N}$, $t \in [0,T]$, $s \in [t,T]$, $x \in \mathbb{R}^d$ we have \mathbb{P} -a.s. that

$$\mathcal{X}_s^{d,t,x} = x + \int_s^t \mu_d(\mathcal{X}_r^{d,t,x}) \,\mathrm{d}r + \int_s^t \sqrt{2} \,\mathrm{d}W_r^d.$$
(3.8)

Then for all $d \in \mathbb{N}$, $t \in [0, T]$, $x \in \mathbb{R}^d$ it holds that

$$u_d(t,x) = \mathbb{E}\Big[u_d\big(T, \mathcal{X}_T^{d,t,x}\big)\Big].$$
(3.9)

Proof of Lemma 3.3. The proof of Lemma 3.3 is thus complete.

Lemma 3.4. Let $T \in (0, \infty)$, let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, let $\alpha_d \in \mathbb{R}^d \to \mathbb{R}$, $d \in \mathbb{N}$, be infinitely often differentiable functions, let $u_d \in C^{1,2}([0,T] \times \mathbb{R}^d, \mathbb{R})$, $d \in \mathbb{N}$, satisfy for all $d \in \mathbb{N}$, $t \in [0,T]$, $x \in \mathbb{R}^d$ that

$$\left(\frac{\partial}{\partial t}u_d\right)(t,x) + (\Delta_x u_d)(t,x) + \alpha_d(x)u_d(t,x) = 0, \qquad (3.10)$$

let $W^d: [0,T] \times \Omega \to \mathbb{R}^d$, $d \in \mathbb{N}$, be standard Brownian motions, and let $\mathcal{X}^{d,t,x}: [t,T] \times \Omega \to \mathbb{R}^d$, $d \in \mathbb{N}$, $t \in [0,T]$, $x \in \mathbb{R}^d$, be a stochastic process with continuous sample paths satisfying that for all $d \in \mathbb{N}$, $t \in [0,T]$, $s \in [t,T]$, $x \in \mathbb{R}^d$ we have \mathbb{P} -a.s. that

$$\mathcal{X}_s^{d,t,x} = x + \int_s^t \sqrt{2} \,\mathrm{d}W_r^d. \tag{3.11}$$

Then for all $d \in \mathbb{N}$, $t \in [0, T]$, $x \in \mathbb{R}^d$ it holds that

$$u_d(t,x) = \mathbb{E}\Big[\exp\Big(\int_t^T \alpha_d(\mathcal{X}_r^{d,t,x}) \,\mathrm{d}r\Big) u_d\big(T,\mathcal{X}_T^{d,t,x}\big)\Big].$$
(3.12)

Proof of Lemma 3.4. The proof of Lemma 3.4 is thus complete.