%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% %% %% Preamble of document %% %% %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Sets up the standard "article" document class \documentclass[12pt]{article} % Loads packages % Note that I typically load all packages at once (as below). % Sometimes you must load them in a certain order... \usepackage{amsmath, amsfonts, amssymb, amsthm, enumerate, enumitem, geometry, mleftright, nicefrac, mathtools, xparse, ifthen, tikz, pgfplots, floatrow, multicol, caption, xurl, relsize, bbm } % Set up PGF plots (used for graphing) \pgfplotsset{compat=newest} % Fixes spacing caused by using "\left" or "\right" \mleftright % Sets the margins of the document. % One can do this using plain TeX, but why? \geometry{margin=1in} % Lines 44-47 set up my use of the cleveref package. % This provides a "smarter" cross referencing style \usepackage[colorlinks=true]{hyperref} \usepackage[sort,capitalise]{cleveref} \newcommand{\creflastconjunction}{, and\nobreakspace} \crefname{enumi}{item}{items} % My personal command macros that I use. \newcommand{\R}{\mathbb{R}} \newcommand{\C}{\mathbb{C}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\N}{\mathbb{N}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\dpp}{\text{.}} \newcommand{\dc}{\text{,}} \newcommand{\dd}{{\rm d}} \newcommand{\dx}{\, {\rm d}} \newcommand{\lr}{\ensuremath{\mkern-1.5mu}} \newcommand{\induct}{\dashrightarrow} \newcommand{\with}{\curvearrowleft} \newcommand{\medcup}[1]{{\raisebox{0.25ex}{$\mathsmaller{\ensuremath{\bigcup}}_{#1}$}}} % Creates my paired math delimiters for easy use. \DeclarePairedDelimiter{\pr}{(}{)} \DeclarePairedDelimiter{\br}{[}{]} \DeclarePairedDelimiter{\cu}{\{}{\}} \DeclarePairedDelimiter{\abs}{\lvert}{\rvert} \DeclarePairedDelimiter{\norm}{\lVert}{\rVert} \DeclarePairedDelimiter{\vt}{\langle}{\rangle} \DeclarePairedDelimiter{\floor}{\lfloor}{\rfloor} % Creates desired header and footer for document. % Note that it uses the adaptively created date macro. \setlength{\headheight}{15pt} \usepackage{fancyhdr} \pagestyle{fancy} \fancyhf{} \fancyhead[R]{} \cfoot{} \lfoot{\small{\textsc{Dissemination prohibited. \today}}} \rfoot{\thepage} % Updates equation and figure numbering. \counterwithin{equation}{section} \counterwithin{figure}{section} % Defines theorem-like environments \theoremstyle{definition} \newtheorem{definition}[equation]{Definition} \newtheorem{setting}[equation]{Setting} \newtheorem{theorem}[equation]{Theorem} \newtheorem{lemma}[equation]{Lemma} \newtheorem{problem}[equation]{Problem} \newtheorem{remark}[equation]{Remark} \newtheorem{assumption}[equation]{Assumption} \newtheorem{example}[equation]{Example} \renewcommand{\thetheorem}{\theenumi\arabic{theorem}} %%%%%%%%%%%%%%%%%%%%%%%% %%% Automatic proof headers and endings, local labels %%%%%%%%%%%%%%%%%%%%%%%% \ExplSyntaxOn \NewDocumentEnvironment {athm} {m m} {% \phantomsection \addcontentsline{toc}{subsection}{\texorpdfstring{\cref{#2}}{\ref*{#2}}} \begin{#1}\label{#2}\global\def\loc{#2}% }{% \end{#1}% } \NewDocumentEnvironment{aproof} {} {% \begin{proof}[Proof~of~\cref{\loc}]% }{% \finishproofthus \end{proof}% } \ExplSyntaxOff \newcommand{\eqqref}[1]{\cref{eq:\loc.#1}} \newcommand{\eqlabel}[1]{\label{eq:\loc.#1}} \newcommand{\finishproofthus}{The proof of \cref{\loc} is thus complete.} \NewDocumentEnvironment{asol} {} {% \begin{proof}[Solution~to~\cref{\loc}]% }{% \noindent\finishsolthus \end{proof}% } \newcommand{\finishsolthus}{The solution to \cref{\loc} is thus complete.} %%%%%%%%%%%%%%%%%%%%%%%% %%% Creating blank space with line breaks %%%%%%%%%%%%%%%%%%%%%%%% % Note that the code in lines 145-154 is simply a method to % create blank space that allows for proof environments to % break across pages. This is something that TeX does not % like by default, so this is my effort to bypass this. \newcommand{\linebreaks}[1]{{\mbox{}\par \newcount\foo \foo=#1 \loop \phantom{a} \advance \foo -1 \ifnum \foo>0 \repeat \mbox{}\par}} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% %% %% Beginning of actual text. %% %% %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % \title{Some questions related to Iserles' textbook} % % % \author{Joshua Lee Padgett} % % % \date{\today} % % % \begin{document} % % % \maketitle % % % %\begin{abstract} % %\end{abstract} % % % \tableofcontents % % % \section{Euler's method and beyond} % % % The following questions are meant to help ensure you have a solid \emph{conceptual} understanding of the material from Chapter 1 of Iserles' textbook. % % % % % \bigskip % % % \begin{athm}{setting}{setting1} % Let $T \in (0,\infty)$, $d \in \N = \{1,2,3,\dots\}$, let $\norm{\cdot} \colon \R^d \to [0,\infty)$ be a function which satisfies for all $u,v \in \R^d$, $s \in \R$ that $\norm{u+v} \le \norm{u}+\norm{v}$, $\norm{ su } = \abs{s} \norm{u}$, and $\norm{u} = 0$ if and only if $u = 0$, let $\floor{\cdot}_h \colon [0,T] \to [0,T]$, $h \in (0,\infty)$, be the functions which satisfy for all $h \in (0,\infty)$, $t \in [0,T]$ that $\floor{t}_h = \max\pr[]{ [0,t] \cap \{0,h,2h,\dots\} }$, let $f \colon \R^d \to \R^d$ be a function which satisfies that % \begin{equation} \br*{ \sup_{v \in \R^d} \norm[\big]{ f(v) } } + \br*{ \sup_{v,w\in\R^d, v\neq w} \frac{ \norm{ f(v) - f(w) } }{ \norm{ v-w } } } < \infty \dc \end{equation} % let $y \colon [0,T] \to \R^d$ be a measurable function which satisfies for all $t \in [0,T]$ that % \begin{equation}\label{def:y_prob} y(t) = y(0) + \int_0^t f\pr[\big]{ y(s) } \dx s \dc \end{equation} % and for every $h \in (0,\infty)$ let $Y_{0,h}, Y_{1,h} , \dots , Y_{\floor{T/h},h} \in \R^d$ satisfy for all $n \in \{0,1,\dots,\floor{\nicefrac{T}{h}}-1\}$ that $Y_{0,h} = y(0)$ and % \begin{equation}\label{def:euler} Y_{n+1,h} = Y_{n,h} + h f \pr[\big]{ Y_{n,h} } \dpp \end{equation} % \end{athm} % % % \begin{athm}{problem}{prob1} % Do you understand \cref{setting1} above? % % Do you understand what each individual component means and do you see why each component is necessary to present a well-defined numerical method (i.e., the method in \cref{def:euler})? % \end{athm} % % % \begin{aproof} \linebreaks{10} \noindent \end{aproof} % % % \begin{athm}{definition}{def:converge} % Assume \cref{setting1}. % % We say that \cref{def:euler} is a convergent numerical method for \cref{def:y_prob} if and only if it holds that % \begin{equation} \lim_{h \to 0^+} \br*{ \max_{n \in \{0,1,\dots,\floor{T/h} \} } \norm[\big]{ y(nh) - Y_{n,h} } } = 0 \dpp \end{equation} % \end{athm} % % % \begin{athm}{problem}{prob2} % Do you understand conceptually what the notion of convergence is implying? % Can you see how the topology of the problem would come into play if we were not considering a problem posed in a finite-dimensional space? % \end{athm} % % % \begin{aproof} \linebreaks{10} \noindent \end{aproof} % % % \begin{athm}{lemma}{lem:gronwall} % Let $\alpha \in [0,\infty)$ and let $a_0,a_1,a_2,\ldots \in [0,\infty)$ and $b_0,b_1,b_2,\ldots \in [0,\infty)$ satisfy for all $n \in \N_0 = \N \cup \{0\}$ that % \begin{equation}\label{eq:gron1} a_n \le \alpha + \sum_{k=0}^{n-1} b_k a_k \dpp \end{equation} % Then it holds for all $n \in \N_0$ that % \begin{equation}\label{eq:gron2} a_n \le \alpha \exp\pr*{ \sum_{k=0}^{n-1} b_k } \dpp \end{equation} \end{athm} % % % \begin{aproof} First, we claim that for all $n \in \N_0$ it holds that % \begin{equation}\label{eq:induct_claim} a_n \le \alpha \br*{ \prod_{k=0}^{n-1} \pr[\big]{ 1 + b_k } } \dpp \end{equation} % We now prove \cref{eq:induct_claim} by mathematical induction on $n \in \N_0$. % % For the base case $n=0$, note that \cref{eq:gron1} ensures that % \begin{equation} a_0 \le \alpha + \sum_{k=0}^{-1} b_k a_k = \alpha + 0 = \alpha \dpp \end{equation} % Combining this and the fact that $\prod_{k=0}^{-1} (1 + b_k) = 1$ establishes \cref{eq:induct_claim} in the base case $n=0$. % For the induction step $\N_0 \ni (n-1) \induct n \in \N$, let $n \in \N$ and assume that for every $m \in \{0,1,\dots,n-1\}$ it holds that % \begin{equation}\label{eq:induct_claim_intermediate} a_m \le \alpha \br*{ \prod_{k=0}^{m-1} \pr[\big]{ 1 + b_k } } \dpp \end{equation} % This and \cref{eq:gron1} assure that % \begin{equation} a_n \le \alpha + \sum_{k=0}^{n-1} b_k a_k \le \alpha + \sum_{k=0}^{n-1} b_k \pr*{ \alpha \br*{ \prod_{j=0}^{k-1} \pr[\big]{ 1 + b_j } } } = \alpha \pr*{ 1 + \sum_{k=0}^{n-1} \br*{ \prod_{j=0}^{k-1} \pr[\big]{ 1 + b_j } } b_k } \dpp \end{equation} % Next, observe that % \begin{equation}\label{eq:gron3} \begin{split} 1 + \sum_{k=0}^{n-1} \br*{ \prod_{j=0}^{k-1} \pr[\big]{ 1 + b_j } } b_k & = 1 + \sum_{k=0}^{n-1} \br*{ \prod_{j=0}^{k-1} \pr[\big]{ 1 + b_j } } \pr[\big]{ (1 + b_k) - 1 } \\ & = 1 + \sum_{k=0}^{n-1} \br*{ \prod_{j=0}^{k} \pr[\big]{ 1 + b_j } - \prod_{j=0}^{k-1} \pr[\big]{ 1 + b_j } } \\ & = 1 + \prod_{j=0}^{n-1} \pr[\big]{ 1 + b_j } - \prod_{j=0}^{-1} \pr[\big]{ 1 + b_j } = \prod_{j=0}^{n-1} \pr[\big]{ 1 + b_j } \dpp \end{split} \end{equation} % Combining this, \cref{eq:gron3}, and mathematical induction establishes \cref{eq:induct_claim}. % Moreover, note that the fact that for all $x \in [0,\infty)$ it holds that $1 + x \le \exp(x)$, the assumption that $b_0,b_1,b_2,\ldots \in [0,\infty)$, and \cref{eq:induct_claim} imply that for all $n \in \N_0$ it holds that % \begin{equation} a_n \le \alpha \br*{ \prod_{k=0}^{n-1} \pr[\big]{ 1 + b_k } } \le \alpha \br*{ \prod_{k=0}^{n-1} \exp(b_k) } \le \alpha \exp\pr*{ \sum_{k=0}^{n-1} b_k } \dpp \end{equation} % This establishes \cref{eq:gron2}. % \end{aproof} % % % \begin{athm}{problem}{prob3} % Assume \cref{setting1}. % Using \cref{lem:gronwall} above, prove that there exists $C \in [0,\infty)$ such that for all $h \in (0,\infty)$ %%%, $n \in \{0,1,\dots,\floor{\nicefrac{T}{h}}\}$ it holds that % \begin{equation}\label{eq:converge} \max_{n \in \{0,1,\dots,\floor{T/h}\} } \norm[\big]{ y(nh) - Y_{n,h} } \le C h \dpp \end{equation} % Explain how proving \cref{eq:converge} holds would relate to the notion of convergence (cf.\ \cref{def:converge}). % \end{athm} % % % \begin{aproof} \linebreaks{20} \noindent \end{aproof} % % % \begin{athm}{problem}{prob4} % Can you present the theta method from the textbook in the rigorous format used in \cref{setting1} above? % \end{athm} % % % \begin{aproof} \linebreaks{15} \noindent \end{aproof} % % % \newcommand{\T}{T_{\text{new}}} \begin{athm}{setting}{setting2} % Let $\T , p \in (0,\infty)$, $d \in \N$, let $\norm{\cdot} \colon \R^d \to [0,\infty)$ be a function which satisfies for all $u,v \in \R^d$, $s \in \R$ that $\norm{u+v} \le \norm{u}+\norm{v}$, $\norm{ su } = \abs{s} \norm{u}$, and $\norm{u} = 0$ if and only if $u = 0$, let $\floor{\cdot}_h \colon [0,\T] \to [0,\T]$, $h \in (0,\infty)$, be the functions which satisfy for all $h \in (0,\infty)$, $t \in [0,\T]$ that $\floor{t}_h = \max\pr[]{ [0,t] \cap \{0,h,2h,\dots\} }$, let $g \colon \R^d \to \R^d$ be a function which satisfies that % \begin{equation} %%%\br*{ \sup_{v \in \R^d} \norm[\big]{ f(v) } } + %%%\br*{ \sup_{v,w\in\R^d, v\neq w} \frac{ \norm{ g(v) - g(w) } }{ \pr[\big]{ 1 + \norm{v}^p + \norm{w}^p }\norm{ v-w } } %%%} < \infty \dc \end{equation} % let $z \colon [0,\T] \to \R^d$ be a measurable function which satisfies for all $t \in [0,\T]$ that % \begin{equation}\label{def:z_prob} z(t) = z(0) + \int_0^t g\pr[\big]{ z(s) } \dx s \dc \end{equation} % and for every $h \in (0,\infty)$ let $Z_{0,h}, Z_{1,h} , \dots , Z_{\floor{\T/h},h} \in \R^d$ satisfy for all $n \in \{0,1,\dots,\allowbreak\floor{\nicefrac{\T}{h}}-1\}$ that $Z_{0,h} = z(0)$ and % \begin{equation}\label{def:euler_new} Z_{n+1,h} = Z_{n,h} + h g \pr[\big]{ Z_{n,h} } \dpp \end{equation} % \end{athm} % % % \begin{athm}{problem}{prob5} % Can we prove a result similar to that in \cref{prob3} under the assumptions outline in \cref{setting2} above? % If not, can we prove a result that is ``similar'' to the result in \cref{prob3}? % What additional assumptions (if any) are needed to prove either of the above results? % \end{athm} % % % \begin{aproof} \linebreaks{25} \noindent \end{aproof} % % % \subsection{An exploration of the linear case} % % % \begin{athm}{definition}{def:mat_exp} % We denote by $ \exp \colon (\medcup{d \in \N} \C^{d\times d}) \to (\medcup{d \in \N} \C^{d\times d})$ the function which satisfies for all $d \in \N$, $A \in \C^{d \times d}$ that % $ \exp(A) = \sum_{k=0}^\infty (\nicefrac{1}{k!}) A^k $. % \end{athm} % % % \begin{athm}{definition}{def:mat_det} % \newcommand{\ppp}{\mathfrak{p}} \newcommand{\nnn}{\mathfrak{N}} % For every $ d \in \N $ let $ \nnn_d = \{1,2,\dots,d\} $, for every $ d \in \N $ let $S_d = \{ (\sigma \colon \nnn_d \to \nnn_d ) \colon \text{$\sigma$ is a bijection} \}$, let $ \ppp \colon (\medcup{d\in\N}S_d) \to \N_0 $ be the function which satisfies for all $ d \in \N $, $ \sigma \in S_d $ that $ \ppp(\sigma) = \sum_{i=1}^d \sum_{j=i+1}^d \mathbbm{1}_{(0,\infty)} (\sigma_i - \sigma_j) $, and let $ \operatorname{sgn} \colon (\medcup{d\in\N}S_d) \to \{-1,1\} $ be the function which satisfies for all $ d \in \N $, $ \sigma \in S_d $ that $ \operatorname{sgn}(\sigma) = (-1)^{\ppp(\sigma)} $. % % Then we denote by $\det \colon (\medcup{d\in\N}\R^{d\times d}) \to \R$ the function which satisfies for all $ d \in \N $, $A = (a_{i,j})_{i,j \in \{1,2,\dots,d\}} \in \R^{d \times d}$ that $ \det(A) = \sum_{\sigma \in S} \br[]{ \operatorname{sgn}(\sigma) \prod_{i=1}^d a_{i,\sigma_i} } $. % \end{athm} % % % \begin{athm}{definition}{def:mat_trace} % We denote by $ \operatorname{tr} \colon (\medcup{d\in\N}\R^{d\times d}) \to \R $ the function which satisfies for all $ d\in \N $, $A = (a_{i,j})_{i,j \in \{1,2,\dots,d\}} \in \R^{d \times d}$ that $ \operatorname{tr}(A) = \sum_{i=1}^d a_{i,i} $. % \end{athm} % % % \begin{athm}{lemma}{lem:mat_exp1} % Let $d \in \N$, $A,B \in \R^{d\times d}$ and let $\norm{\cdot} \colon \R^d \to [0,\infty)$ be a function which satisfies for all $u,v \in \R^d$, $s \in \R$ that $\norm{u+v} \le \norm{u}+\norm{v}$, $\norm{ su } = \abs{s} \norm{u}$, and $\norm{u} = 0$ if and only if $u = 0$. % Then % \begin{enumerate}[label=(\roman*)] % \item it holds that $ \norm{ \exp(A) } \le \exp( \norm{A} ) < \infty$, % \item it holds for all $ s,t \in \R $ that $ \exp( sA + tA ) = \exp(sA) \exp(tA) $, % \item it holds that $ \exp(A) \exp(-A) = \operatorname{id}_{\R^{d\times d}} $, % \item it holds that $ \exp( A + B ) = \exp(A) \exp(B) $ if and only if it holds that $ AB = BA $, and % \item it holds that $ \det(\exp(A)) = \exp(\operatorname{tr}(A)) $ % \end{enumerate} % (cf.\ \cref{def:mat_exp,def:mat_det,def:mat_trace}). % \end{athm} % % % \begin{aproof} \linebreaks{25} \noindent \end{aproof} % % % \begin{athm}{problem}{prob:mat_exp1} % Let $ A \in \R^{2\times 2}$ satisfy % \begin{equation} A = \begin{pmatrix} -1 & 1 \\ -2 & -4 \end{pmatrix} \dpp \end{equation} % \begin{enumerate}[label=(\roman*)] % \item \label{prob:mat_exp1_item1} Show that there exist $D = (d_{i,j})_{i,j\in\{1,2\}} \in \R^{2\times 2}$, $P \in \R^{2\times 2}$ with $ \det(P) \neq 0 $, $ d_{1,2} = d_{2,1} = 0 $, and $ A = PDP^{-1} $ (cf.\ \cref{def:mat_det}). % \item Use the results from \cref{prob:mat_exp1_item1} to show that % \begin{equation} \exp(A) = \begin{pmatrix} 2\exp(-2) - \exp(-3) & \exp(-2) - \exp(-3) \\ 2\exp(-3) - 2\exp(-2) & 2\exp(-3) - \exp(-2) \end{pmatrix} \end{equation} % (cf.\ \cref{def:mat_exp}). % \end{enumerate} % \end{athm} % % % \begin{aproof} \linebreaks{25} \noindent \end{aproof} % % % \begin{athm}{problem}{prob:mat_exp2} % Let $ T \in (0,\infty) $, % let $\norm{\cdot} \colon \R^2 \to [0,\infty)$ be the function which satisfies for all $ u = (u_1,u_2) \in \R^2 $ that $\norm{u} = [\abs{u_1}^2 + \abs{u_2}^2]^{\nicefrac{1}{2}}$, % let $\floor{\cdot}_h \colon [0,T] \to [0,T]$, $h \in (0,\infty)$, be the functions which satisfy for all $h \in (0,\infty)$, $t \in [0,T]$ that $\floor{t}_h = \max\pr[]{ [0,t] \cap \{0,h,2h,\dots\} }$, % let $ A \in \R^{2\times 2}$, $ y \in C([0,T],\R^2) $ satisfy for all $ t \in [0,T] $ that %%%$ y(0) = (1,1) \in \R^2 $ %%%and % \begin{equation} A = \begin{pmatrix} -1 & 1 \\ -2 & -4 \end{pmatrix} \qquad \text{and} \qquad y(t) = (1,1)^* + \int_0^t A y(s) \dx s \dc \end{equation} % and for every $h \in (0,\infty)$ let $Y_{0,h}, Y_{1,h} , \dots , Y_{\floor{T/h},h} \in \R^2$ satisfy for all $n \in \{0,1,\dots,\floor{\nicefrac{T}{h}}-1\}$ that $Y_{0,h} = y(0)$ and % \begin{equation} Y_{n+1,h} = Y_{n,h} + h A Y_{n,h} \dpp \end{equation} % \begin{enumerate}[label=(\roman*)] % \item Prove that for all $ t \in [0,T] $ it holds that $ y(t) = \exp(tA)y(0) $ (cf.\ \cref{def:mat_exp}). % \item Prove that for all $h \in (0,\infty)$, $n \in \{0,1,\dots,\floor{\nicefrac{T}{h}}\}$ it holds that % \begin{equation} Y_{n,h} = \pr[\big]{ \operatorname{id}_{\R^{2\times 2}} + hA }^{\!n} y(0) \dpp \end{equation} % \item Prove that for all $ h \in (0,\infty) $ it holds that % \begin{equation} \begin{split} & \norm[\Big]{ \exp(hA)y(0) - \pr[\big]{ \operatorname{id}_{\R^{2\times 2}} + hA } y(0) } = \norm*{ \int_0^h (h-s) A^2 \exp\pr[\big]{ sA } y(0) \dx s } \\ & \qquad \le \frac{h^2}{2} \br*{ \sup_{\mathfrak{h} \in (0,h)} \pr*{ \sup_{v \in \R^2 \backslash \{0\} } \frac{ \norm{ \exp(\mathfrak{h} A) v } }{ \norm{v} } } } \norm[\big]{ A^2 y(0) } \le \sqrt{17} \, h^2 \end{split} \end{equation} % (cf.\ \cref{def:mat_exp}). % \item Prove that for all $h \in (0,\infty)$, $n \in \{0,1,\dots,\floor{\nicefrac{T}{h}}\}$ it holds that % \begin{equation} \begin{split} & y(nh) - Y_{n,h} \\ & \quad = \sum_{k=0}^{n-1} \exp\pr[\big]{ khA } \br[\Big]{ \exp\pr[\big]{ hA } - \pr[\big]{ \operatorname{id}_{\R^{2\times 2}} + hA } } \pr[\big]{ \operatorname{id}_{\R^{2\times 2}} + hA }^{(n-k-1)} y(0) \end{split} \end{equation} % (cf.\ \cref{def:mat_exp}). % \item Prove that % \begin{equation} \sup_{h \in (0,\infty)} \br*{ \max_{ n \in \{0,1,\dots,\floor{\nicefrac{T}{h}}\} } \norm[\big]{ y(nh) - Y_{n,h} } } \le T \exp\pr[\big]{ \nicefrac{9T}{2} } \sqrt{34} \, h \dpp \end{equation} % \end{enumerate} \end{athm} % % % \begin{aproof} \linebreaks{25} \noindent \end{aproof} % % % \section{Multistep methods} % % % \newcommand{\U}{\mathbb{U}} \newcommand{\A}{\mathcal{A}} \newcommand{\D}{\mathcal{D}} \newcommand{\E}{\mathcal{E}} \begin{athm}{setting}{setting_2_1} % Let $T \in (0,\infty)$, $d,s \in \N$, $a_0,a_1,\dots,a_s \in \R$, $b_0,b_1,\dots,b_s \in \R$, let $\norm{\cdot} \colon \R^d \to [0,\infty)$ be a function which satisfies for all $u,v \in \R^d$, $s \in \R$ that $\norm{u+v} \le \norm{u}+\norm{v}$, $\norm{ su } = \abs{s} \norm{u}$, and $\norm{u} = 0$ if and only if $u = 0$, let $\floor{\cdot}_h \colon [0,T] \to [0,T]$, $h \in (0,\infty)$, be the functions which satisfy for all $h \in (0,\infty)$, $t \in [0,T]$ that $\floor{t}_h = \max\pr[]{ [0,t] \cap \{0,h,2h,\dots\} }$, let $\A = \cu[]{ g \colon [0,T] \to \R^d \colon \text{$f$ is analytic in $[0,T]$} }$, for every $h \in (0,\infty)$, $n \in \{0,1,\dots,\floor{\nicefrac{T}{h}}-1\}$, $g \in \A$ let $\D \colon \A \to \A$ and $\E_h \colon \A \to \A$ satisfy % \begin{equation} \pr[\big]{ \D g } \lr (nh) = \pr[\big]{ \tfrac{\dd}{\dd t} g } \lr (nh) \qquad \text{and} \qquad \pr[\big]{ \E_h g } \lr (nh) = g\pr[\big]{ (n+1)h } \dc \end{equation} % let $f \colon \R^d \to \R^d$ be a function which satisfies that % \begin{equation} \br*{ \sup_{v \in \R^d} \norm[\big]{ f(v) } } + \br*{ \sup_{v,w\in\R^d, v\neq w} \frac{ \norm{ f(v) - f(w) } }{ \norm{ v-w } } } < \infty \dc \end{equation} % let $y \colon [0,T] \to \R^d$ be a measurable function which satisfies for all $t \in [0,T]$ that % \begin{equation}\label{eq:ode_multi} y(t) = y(0) + \int_0^t f\pr[\big]{ y(s) } \dx s \dc \end{equation} % and for every $h \in (0,\infty)$ let $Y_{0,h}, Y_{1,h} , \dots , Y_{\floor{T/h},h} \in \R^d$ satisfy for all $n \in \{0,1,\dots,\floor{\nicefrac{T}{h}}-s\}$ that $Y_{0,h} = y(0)$ and % \begin{equation}\label{def:multi} \sum_{m=0}^s a_m Y_{n+m,h} = h \sum_{m=0}^s b_m f \pr[\big]{ Y_{n+m,h} } \dpp \end{equation} % \end{athm} % % % \begin{athm}{definition}{def:order} % Assume \cref{setting_2_1}. % We say that \cref{def:multi} is a numerical method of order $p \in \N_0$ if and only if there exists $C \in (0,\infty)$ such that for all $h \in (0,\infty)$, $n \in \{0,1,\dots,\floor{\nicefrac{T}{h}}\}$ with $h$ sufficiently close to zero it holds that % \begin{equation} \norm[\Big]{ \textstyle \sum_{m=0}^s a_m y\pr[\big]{ (n+m)h } - h \sum_{m=0}^s b_m f\pr[\big]{ y\pr[\big]{ (n+m)h } } } \le C h^{p+1} \dpp \end{equation} % \end{athm} % % % \begin{athm}{lemma}{lemma:multi} % Assume \cref{setting_2_1} and let $p \in \N$. % Then \cref{def:multi} is of order $p$ if and only if there exists $C \in (0,\infty)$ such that for all $z \in \R$ with $z$ sufficiently close to one it holds that % \begin{equation}\label{eq:lemma:multi} \abs[\big]{ \textstyle\sum_{m=0}^s a_m z^m - \ln(z) \sum_{m=0}^s b_m z^m } \le C \abs{ z-1 }^{p+1} \end{equation} % (cf.\ \cref{def:order}). % \end{athm} % % % \begin{aproof} % Throughout this proof let $h \in (0,\infty)$ be sufficiently small, let $\rho \colon \R \to \R$ and $\sigma \colon \R \to \R$ be the functions which satisfy for all $z \in \R$ that % \begin{equation} \rho(z) = \sum_{m=0}^s a_m z^m \qquad \text{and} \qquad \sigma(z) = \sum_{m=0}^s b_m z^m \dc \end{equation} and without loss of generality assume that $y \in \A$. %%% and that its radius of convergence is \emph{at least} $sh$. % Note that Taylor's theorem guarantees that for all $n \in \{0,1,\dots,\floor{\nicefrac{T}{h}}\}$, $k \in \N_0$ it holds that % \begin{equation} \begin{split} \pr[\Big]{ \E_h \pr[\big]{ \tfrac{\dd^k}{\dd t^k} y } } \lr (nh) = \pr[\big]{ \tfrac{\dd^k}{\dd t^k} y } \lr \pr[\big]{ (n+1)h } & = \sum_{j=0}^\infty \frac{h^j}{j!} \pr[\big]{ \tfrac{\dd^{k+j}}{\dd t^{k+j}} y } \lr \pr[]{ nh } \\ & = \sum_{j=0}^\infty \frac{h^j}{j!} \pr[\Big]{ \tfrac{\dd^j}{\dd t^j} \pr[\big]{ \tfrac{\dd^{k}}{\dd t^{k}} y } } \lr \pr[]{ nh } \\ & = \sum_{j=0}^\infty \frac{h^j}{j!} \pr[\Big]{ \D^j \pr[\big]{ \tfrac{\dd^{k}}{\dd t^{k}} y } } \lr \pr[]{ nh } \dpp \end{split} \end{equation} % Combining this and the fact that $\D$ is a bounded linear operator (something we have not shown, but which can be shown) ensures that % \begin{equation}\label{eq:shift_rep} \E_h = \exp\pr[\big]{ h \D } \dpp \end{equation} % Next, observe that \cref{eq:ode_multi} assures that for all $n \in \{0,1,\dots,\floor{\nicefrac{T}{h}}-s\}$ it holds that % \begin{equation} \begin{split} & \sum_{m=0}^s a_m y\pr[\big]{ (n+m)h } - h \sum_{m=0}^s b_m f\pr[\big]{ y( (n+m)h ) } \\ & \quad = \sum_{m=0}^s a_m y\pr[\big]{ (n+m)h } - h \sum_{m=0}^s b_m \pr[\big]{ \tfrac{\dd}{\dd t} y } \lr \pr[\big]{ (n+m)h } \\ & \quad = \sum_{m=0}^s a_m \pr[\big]{ \E_h^m y } \lr (nh) - h \sum_{m=0}^s b_m \pr[\Big]{ \E_h^m \pr[\big]{ \D y } } \lr (nh) \dpp \end{split} \end{equation} % This, the fact that \cref{eq:shift_rep} implies that for all $g \in \A$ it holds that $(\D(\E_h g)) = (\E_h(\D g))$, the fact that $\D$ is a linear operator, and the so-called Borel functional calculus guarantee that for all $n \in \{0,1,\dots,\floor{\nicefrac{T}{h}}-s\}$ it holds that % \begin{equation} \begin{split} & \sum_{m=0}^s a_m y\pr[\big]{ (n+m)h } - h \sum_{m=0}^s b_m f\pr[\big]{ y( (n+m)h ) } \\ & \quad = \sum_{m=0}^s a_m \pr[\big]{ \E_h^m y } \lr (nh) - h \pr*{ \D \sum_{m=0}^s b_m \pr[\big]{ \E_h^m y } } \lr (nh) \\ & \quad = \pr[\Bigg]{ \pr[\bigg]{ \sum_{m=0}^s a_m \E_h^m - h \D \sum_{m=0}^s b_m \E_h^m } y } \lr (nh) = \pr[\Big]{ \pr[\big]{ \rho(\E_h) - h \D \sigma(\E_h) } y } \lr (nh) \dpp \end{split} \end{equation} % This shows that for all $n \in \{0,1,\dots,\floor{\nicefrac{T}{h}}-s\}$ it holds that % \begin{align}\label{eq:2_15} & \abs*{ \sum_{m=0}^s a_m y\pr[\big]{ (n+m)h } - h \sum_{m=0}^s b_m f\pr[\big]{ y( (n+m)h ) } } \\ & \quad = \abs*{ \pr[\Big]{ \pr[\big]{ \rho(\E_h) - h \D \sigma(\E_h) } y } \lr (nh) } \le \br*{ \sup_{g \in \A \backslash \{0\} } \frac{ \abs*{ \pr[\big]{ \pr[]{ \rho(\E_h) - h \D \sigma(\E_h) } g } \lr (nh) } }{ \abs{g(nh)} } } \abs[\big]{ y(nh) } \dpp \nonumber \end{align} % In addition, note that \cref{eq:shift_rep}, the fact that for all $g \in \A$, $t \in [0,T]$ it holds that $\lim_{z\to 0^+} (\E_z g)(t) = g(t)$ (can you see that this is true?), and the implicit function theorem demonstrate that for all $g \in \A$, $t \in [0,T]$ it holds that % \begin{equation} \pr[\big]{ h\D g } \lr (t) = \pr[\big]{ \ln(\E_h) g } \lr (t) = \pr*{ \sum_{k=0}^\infty \frac{(-1)^{k}}{k+1} \pr[\big]{ \E_h - \operatorname{id} }^{k+1} g } \lr (t) \dpp \end{equation} % This and the Borel functional calculus %%%, and the fact that the spectrum of $\E_h$ is contained in the set $[-h,h] \subseteq \R$ (this is something we can prove if we know a little functional analysis) yield that there exists $\gamma_h \subseteq \C$ (with the spectrum of $\E_h$ contained inside of $\gamma_h$---we can discuss this, if desired) such that for all $g \in \A$, $t \in [0,T]$ it holds that % \begin{equation}\label{eq:2_17} \pr[\Big]{ \pr[\big]{ \rho(\E_h) - \ln(\E_h) \sigma(\E_h) } g } \lr (t) = \frac{1}{2\pi i} \int_{\gamma_h} \br[\big]{ \rho(z) - \ln(z) \sigma(z) } \pr[\big]{ (z\operatorname{id} - \E_h)^{-1} g } \lr (t) \dx z \dpp \end{equation} % Combining \cref{eq:2_15,eq:2_17} hence proves \cref{eq:lemma:multi}. % \end{aproof} % % % \section{Runge-Kutta methods} % % % % % % \section{Stiff equations} % % % \begin{athm}{definition}{def:stable} Let $y_\lambda \colon [0,\infty) \to \C$, $\lambda \in \C$, be measurable functions which satisfy for all $\lambda \in \C$, $t \in [0,\infty)$ that % \begin{equation} y_\lambda(t) = 1 + \lambda \int_0^t y(s) \dx s \dc \end{equation} % let $h \in (0,\infty)$, for every $\lambda \in \C$ let $Y_{0,\lambda} , Y_{1,\lambda} , Y_{2,\lambda}, \ldots \in \R$ satisfy $Y_{0,\lambda} = 1$, and assume there exists $p,C \in (0,\infty)$ such that for all $\lambda \in \C$ with $\lambda + \bar{\lambda} \in (-\infty,0)$ it holds that % \begin{equation} \sup_{n \in \N_0} \abs[\big]{ y_\lambda(nh) - Y_{n,\lambda} } \le C h^p \dpp \end{equation} % % Then the set % \begin{equation} \mathcal{D} = \cu[\big]{ h\lambda \in \C \colon \textstyle\lim_{n\to\infty} Y_{n,\lambda} = 0 } \subseteq \C \end{equation} % is the \emph{linear stability domain} of the numerical method $\{Y_{n,\lambda}\}_{(n,\lambda) \in \N_0 \times \C}$. % % Moreover, we say that the numerical method $\{Y_{n,\lambda}\}_{(n,\lambda) \in \N_0 \times \C}$ is A-stable if it holds that % \begin{equation} \cu[\big]{ z \in \C \colon z + \bar{z} \in (-\infty,0) } \subseteq \mathcal{D} \dpp \end{equation} \end{athm} % % % \begin{athm}{problem}{problem_stiff} % Let $T \in (0,\infty)$, $d \in \N$, let $\norm{\cdot} \colon \R^d \to [0,\infty)$ be a function which satisfies for all $u,v \in \R^d$, $s \in \R$ that $\norm{u+v} \le \norm{u}+\norm{v}$, $\norm{ su } = \abs{s} \norm{u}$, and $\norm{u} = 0$ if and only if $u = 0$, let $\floor{\cdot}_h \colon [0,T] \to [0,T]$, $h \in (0,\infty)$, be the functions which satisfy for all $h \in (0,\infty)$, $t \in [0,T]$ that $\floor{t}_h = \max\pr[]{ [0,t] \cap \{0,h,2h,\dots\} }$, let $f \in C^1(\R^d,\R^d)$ satisfy % \begin{equation} \br*{ \sup_{v \in \R^d} \norm[\big]{ f(v) } } + \br*{ \sup_{v,w\in\R^d, v\neq w} \frac{ \norm{ f(v) - f(w) } }{ \norm{ v-w } } } < \infty \dc \end{equation} % let $y \colon [0,T] \to \R^d$ be a measurable function which satisfies for all $t \in [0,T]$ that % \begin{equation} y(t) = y(0) + \int_0^t f\pr[\big]{ y(s) } \dx s \dc \end{equation} % and for every $h \in (0,\infty)$ let $Y_{0,h}, Y_{1,h} , \dots , Y_{\floor{T/h},h} \in \R^d$ satisfy for all $n \in \{0,1,\dots,\floor{\nicefrac{T}{h}}-1\}$ that $Y_{0,h} = y(0)$ and % \begin{equation}\label{eq:3_4_theta} Y_{n+1,h} = Y_{n,h} + \tfrac{h}{4} \br[\Big]{ f\pr[\big]{ Y_{n,h} } + 3 f\pr[\big]{ Y_{n+1,h} } } \dpp \end{equation} % % \begin{enumerate}[label=\alph*.] % \item Determine whether or not \cref{eq:3_4_theta} is consistent (cf.\ \cref{def:order}). % % If \cref{eq:3_4_theta} is consistent, determine its order. % % \item Determine whether or not \cref{eq:3_4_theta} is convergent (cf.\ \cref{def:converge}). % % \item Determine whether or not \cref{eq:3_4_theta} is A-stable (cf.\ \cref{def:stable}). % \end{enumerate} \end{athm} % % % \begin{aproof} \linebreaks{25} \noindent \end{aproof} % % % \section{Geometric numerical integration} % % % \section{Error control} % % % \section{Nonlinear algebraic systems} % % % \section{Finite difference schemes} % % % \begin{athm}{problem}{prob:finite_difference} % Let $N \in \N_0$, $\alpha , \beta \in \R$, let $f \in C(\R,\R)$ and $u \in C^4([0,1],\R)$ satisfy for all $ x \in [0,1] $ that $u(0) = \alpha$, $u(1) = \beta$, and % \begin{equation}\label{eq:1d_laplace} \pr[\big]{ \tfrac{\dd^2}{\dd x^2} u } \lr (x) = f(x) \dc \end{equation} % and let $h_0,h_1,\dots,h_N , x_0,x_1,\dots,x_{N+1} \in [0,1]$ satisfy for all $n \in \{0,1,\dots,N\}$ that % \begin{equation}\label{eq:non-uniform_grid} 0 = x_0 < x_1 < x_2 < \ldots < x_N < x_{N+1} = 1 \qquad \text{and} \qquad h_n = x_{n+1} - x_n \dpp \end{equation} % % \begin{enumerate}[label=\alph*.] % \item \label{prob:finite_difference_a} Construct a three-point finite difference scheme for approximating the solution to \cref{eq:1d_laplace} on the non-uniform grid $\{ x_n \}_{n\in\{0,1,\dots,N+1\}} \subseteq [0,1]$ given by \cref{eq:non-uniform_grid}. % % \item Determine the order of the method constructed in \cref{prob:finite_difference_a}~above. % % Determine what additional assumptions are necessary (if any) for guaranteeing this order. % % Compare these results with the case from Section 8.2 of the textbook (i.e., the case when $h_0 = h_1 = \ldots = h_N$). % % \item \label{prob:finite_difference_c} Write the finite difference scheme constructed in \cref{prob:finite_difference_a}~above in the form of a linear system (i.e., as a matrix-vector equation). % % \item Determine whether the linear system obtained in \cref{prob:finite_difference_c}~is always nonsingular. % % If the linear system is not always nonsingular, provide sufficient conditions to guarantee that the linear system is nonsingular. % % \item Implement your finite difference scheme (i.e., the difference equations from \cref{prob:finite_difference_a}\ above or the linear system from \cref{prob:finite_difference_c}~above) in Python. % % Numerically compare the approximate solution with the true solution for some ``test case.'' % % \end{enumerate} \end{athm} % % % \begin{aproof} \linebreaks{30} \noindent \end{aproof} % % % \end{document}