dissertation_work/Dissertation_unzipped/main.bbl

121 lines
5.0 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

\begin{thebibliography}{}
\bibitem[Bass, 2011]{bass_2011}
Bass, R.~F. (2011).
\newblock {\em Brownian Motion}, page 612.
\newblock Cambridge Series in Statistical and Probabilistic Mathematics.
Cambridge University Press.
\bibitem[Beck et~al., 2021a]{Beck_2021}
Beck, C., Gonon, L., Hutzenthaler, M., and Jentzen, A. (2021a).
\newblock On existence and uniqueness properties for solutions of stochastic
fixed point equations.
\newblock {\em Discrete \& Continuous Dynamical Systems - B}, 26(9):4927.
\bibitem[Beck et~al., 2021b]{BHJ21}
Beck, C., Hutzenthaler, M., and Jentzen, A. (2021b).
\newblock On nonlinear {Feynman}{\textendash}{Kac} formulas for viscosity
solutions of semilinear parabolic partial differential equations.
\newblock {\em Stochastics and Dynamics}, 21(08).
\bibitem[Beck et~al., 2021c]{bhj20}
Beck, C., Hutzenthaler, M., and Jentzen, A. (2021c).
\newblock On nonlinear feynmankac formulas for viscosity solutions of
semilinear parabolic partial differential equations.
\newblock {\em Stochastics and Dynamics}, 21(08):2150048.
\bibitem[Crandall et~al., 1992]{crandall_lions}
Crandall, M.~G., Ishii, H., and Lions, P.-L. (1992).
\newblock Users guide to viscosity solutions of second order partial
differential equations.
\newblock {\em Bull. Amer. Math. Soc.}, 27(1):1--67.
\bibitem[Da~Prato and Zabczyk, 2002]{da_prato_zabczyk_2002}
Da~Prato, G. and Zabczyk, J. (2002).
\newblock {\em Second Order Partial Differential Equations in Hilbert Spaces}.
\newblock London Mathematical Society Lecture Note Series. Cambridge University
Press.
\bibitem[Durrett, 2019]{durrett2019probability}
Durrett, R. (2019).
\newblock {\em Probability: Theory and Examples}.
\newblock Cambridge Series in Statistical and Probabilistic Mathematics.
Cambridge University Press.
\bibitem[Golub and Van~Loan, 2013]{golub2013matrix}
Golub, G. and Van~Loan, C. (2013).
\newblock {\em Matrix Computations}.
\newblock Johns Hopkins Studies in the Mathematical Sciences. Johns Hopkins
University Press.
\bibitem[Grohs et~al., 2018]{grohsetal}
Grohs, P., Hornung, F., Jentzen, A., and von Wurstemberger, P. (2018).
\newblock {A proof that artificial neural networks overcome the curse of
dimensionality in the numerical approximation of Black-Scholes partial
differential equations}.
\newblock Papers 1809.02362, arXiv.org.
\bibitem[Grohs et~al., 2023]{grohs2019spacetime}
Grohs, P., Hornung, F., Jentzen, A., and Zimmermann, P. (2023).
\newblock Space-time error estimates for deep neural network approximations for
differential equations.
\newblock {\em Advances in Computational Mathematics}, 49(1):4.
\bibitem[Grohs et~al., 2022]{Grohs_2022}
Grohs, P., Jentzen, A., and Salimova, D. (2022).
\newblock Deep neural network approximations for solutions of {PDEs} based on
monte carlo algorithms.
\newblock {\em Partial Differential Equations and Applications}, 3(4).
\bibitem[Gy{\"o}ngy and Krylov, 1996]{Gyngy1996ExistenceOS}
Gy{\"o}ngy, I. and Krylov, N.~V. (1996).
\newblock Existence of strong solutions for {It\^o}'s stochastic equations via
approximations.
\newblock {\em Probability Theory and Related Fields}, 105:143--158.
\bibitem[Hutzenthaler et~al., 2020a]{hutzenthaler_overcoming_2020}
Hutzenthaler, M., Jentzen, A., Kruse, T., Anh~Nguyen, T., and von
Wurstemberger, P. (2020a).
\newblock Overcoming the curse of dimensionality in the numerical approximation
of semilinear parabolic partial differential equations.
\newblock {\em Proceedings of the Royal Society A: Mathematical, Physical and
Engineering Sciences}, 476(2244):20190630.
\bibitem[Hutzenthaler et~al., 2021]{hutzenthaler_strong_2021}
Hutzenthaler, M., Jentzen, A., Kuckuck, B., and Padgett, J.~L. (2021).
\newblock Strong {$L^p$}-error analysis of nonlinear {Monte} {Carlo}
approximations for high-dimensional semilinear partial differential
equations.
\newblock Technical Report arXiv:2110.08297, arXiv.
\newblock arXiv:2110.08297 [cs, math] type: article.
\bibitem[Hutzenthaler et~al., 2020b]{hjw2020}
Hutzenthaler, M., Jentzen, A., and von Wurstemberger~Wurstemberger (2020b).
\newblock {Overcoming the curse of dimensionality in the approximative pricing
of financial derivatives with default risks}.
\newblock {\em Electronic Journal of Probability}, 25(none):1 -- 73.
\bibitem[It\^o, 1942a]{Ito1942a}
It\^o, K. (1942a).
\newblock Differential equations determining {Markov} processes (original in
{Japanese}).
\newblock {\em Zenkoku Shijo Sugaku Danwakai}, 244(1077):1352--1400.
\bibitem[It\^o, 1942b]{Ito1946}
It\^o, K. (1942b).
\newblock On a stochastic integral equation.
\newblock {\em Proc. Imperial Acad. Tokyo}, 244(1077):1352--1400.
\bibitem[Karatzas and Shreve, 1991]{karatzas1991brownian}
Karatzas, I. and Shreve, S. (1991).
\newblock {\em Brownian Motion and Stochastic Calculus}.
\newblock Graduate Texts in Mathematics (113) (Book 113). Springer New York.
\bibitem[Rio, 2009]{rio_moment_2009}
Rio, E. (2009).
\newblock Moment {Inequalities} for {Sums} of {Dependent} {Random} {Variables}
under {Projective} {Conditions}.
\newblock {\em J Theor Probab}, 22(1):146--163.
\end{thebibliography}