dissertation_work/Scratch/Feynman-Kac Scratch.tex

179 lines
5.6 KiB
TeX

\documentclass[11pt]{report}
\usepackage{setspace}
\doublespacing
\usepackage[toc,page]{appendix}
\usepackage[]{amsmath}
\usepackage[]{amsthm}
\usepackage{mathtools}
\numberwithin{equation}{section}
\usepackage[]{amssymb}
\usepackage[margin=1in]{geometry}
\usepackage[]{soul}
\usepackage[]{bbm}
\usepackage[]{cancel}
\usepackage[]{xcolor}
\usepackage[]{enumitem}
\usepackage{mathrsfs}
\usepackage{hyperref}
\usepackage[capitalise]{cleveref}
\usepackage{natbib}
\usepackage{neuralnetwork}
\usepackage{witharrows}
\usepackage{listings}
\usepackage{graphicx}
\DeclareMathAlphabet{\mymathbb}{U}{BOONDOX-ds}{m}{n}
% \usepackage[]{enumerate}
\setlength\parindent{0pt}
\DeclareMathOperator{\Trace}{Trace}
\DeclareMathOperator{\Hess}{Hess}
\DeclareMathOperator{\supp}{supp}
\DeclareMathOperator{\domain}{Domain}
\DeclareMathOperator{\lip}{Lip}
\DeclareMathOperator{\diag}{diag}
\usepackage{tikz-cd}
\DeclareMathOperator{\rect}{Rect}
\DeclareMathOperator{\param}{Param}
\DeclareMathOperator{\inn}{In}
\DeclareMathOperator{\out}{Out}
\DeclareMathOperator{\neu}{NN}
\DeclareMathOperator{\hid}{Hid}
\DeclareMathOperator{\lay}{Lay}
\DeclareMathOperator{\dep}{Dep}
\DeclareMathOperator{\we}{Weight}
\DeclareMathOperator{\bi}{Bias}
\DeclareMathOperator{\aff}{Aff}
\DeclareMathOperator{\act}{Act}
\DeclareMathOperator{\real}{Rlz}
\DeclareMathOperator{\id}{Id}
\DeclareMathOperator{\mult}{Mult}
\DeclareMathOperator{\wid}{Wid}
\DeclareMathOperator{\sm}{Sum}
\DeclareMathOperator{\trn}{Trn}
\DeclareMathOperator{\cpy}{Copy}
\DeclareMathOperator{\ex}{Ex}
\DeclareMathOperator{\lin}{Lin}
\DeclareMathOperator{\relu}{ReLU}
\DeclareMathOperator{\zero}{Zr}
\DeclareMathOperator{\obj}{obj}
\DeclareMathOperator{\dom}{dom}
\DeclareMathOperator{\cod}{cod}
\newcommand{\bbP}{\mathbb{P}}
\newcommand{\E}{\mathbb{E}}
\newcommand{\R}{\mathbb{R}}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\N}{\mathbb{N}}
\newcommand{\p}{\mathfrak{p}}
\newcommand{\mft}{\mathfrak{t}}
\newcommand{\f}{\mathfrak{f}}
\newcommand{\C}{\mathfrak{C}}
\newcommand{\n}{\mathscr{N}}
\newcommand{\lp}{\left(}
\newcommand{\rp}{\right)}
\newcommand{\rb}{\right]}
\newcommand{\lb}{\left[}
\newcommand{\lv}{\left|}
\newcommand{\rv}{\right|}
\newcommand{\la}{\langle}
\newcommand{\ra}{\rangle}
\newcommand{\ve}{\varepsilon}
\newcommand{\les}{\leqslant}
\newcommand{\ges}{\geqslant}
% Input layer neurons'number
\newcommand{\inputnum}{3}
% Hidden layer neurons'number
\newcommand{\hiddennum}{5}
% Output layer neurons'number
\newcommand{\outputnum}{2}
\newtheorem{theorem}{Theorem}[section]
\newtheorem{corollary}{Corollary}[theorem]
\newtheorem{lemma}[theorem]{Lemma}
\newtheorem{definition}[theorem]{Definition}
\newtheorem{remark}[theorem]{Remark}
\newtheorem{claim}[theorem]{Claim}
\title{Reformulation without f}
\author{Shakil Rafi}
\begin{document}
\maketitle
\begin{lemma}
Let $T \in (0,\infty)$, let $\lp \Omega, \mathcal{F}, \mathbb{P}\rp $ be a probability space, let $\alpha_d \in \R^d \rightarrow \R$, $d \in \N$, be infinitely often differentiable functions, let $u_d \in C^{1,2} \lp \lb 0,T \rb \times, \R^d, \R \rp$, $d \in \N$, satisfy for all $d \in \N$, $t \in \lb 0,T\rb$, $x \in \R^d$ that:
\begin{align}
\lp \frac{\partial}{\partial t} u_d \rp \lp t,x \rp + \lp \Delta_x u_d \rp \lp t,x \rp + \alpha_x \lp x \rp u_d \lp t,x \rp = 0
\end{align}
Let $\mathcal{W}^d: \lb 0,T \rb \times \Omega \rightarrow \R^d$, $d \in \N$ be standard Brownian motions, and let $\mathcal{X}^{d,t,x}: \lb t,T\rb \times \Omega \rightarrow \R^d$, $d \in \N$, $t\in \lb 0,T \rb$, $s \in \lb t,T\rb$, $x\in \R^d$ we have $\mathbb{P}$-a.s. that:
\begin{align}
\mathcal{X}^{d,t,x}_s = x+ \int^t_s \sqrt{2} d\mathcal{W}^d_r
\end{align}
Then for all $d \in \N$, $t\in \lb 0,T\rb$, $x\in \R^d$ it holds that:
\begin{align}
u_d\lp t,x \rp + \mathbb{E} \lb \exp \lp \int^T_t \alpha_x \lp \mathcal{X}^{d,t,x}_r \rp dr \rp u_d \lp T, \mathcal{X}^{d,t,x}_T \rp \rb
\end{align}
\end{lemma}
\begin{proof}
Let $T \in [0,\infty)$, and let $\lp \Omega, \mathcal{F}, \mathbb{P} \rp$ be a probability space. For all $d \in \N$, let $V \in C^{1,1} \lp \R^d \times [0,T],\R \rp $ be $V(x,t) = \alpha_d(x)$, let $\sigma_d : \R^d \rightarrow \R^{d\times d}$ be given by $\sigma_d(x) = \diag_d \lp \sqrt{2} \rp$, let $\mu_d: \R^d \rightarrow \R^d$ be given by $\mu_d(x) = \mymathbb{0}_d$, and finally let $f(t,x) = 0$. By Feynman-Kac and substituting the above, the following expression:
\begin{align}\label{0.0.4}
\lp \frac{\partial}{\partial t} u_d \rp \lp t,x \rp + \frac{1}{2}\Trace\lp \sigma(t,x) \lb \sigma(t,x) \rb^* \lp \Hess_x(u_d \rp \lp t,x \rp \rp + \la \mu(t,x), \lp \nabla_x u_d \rp \lp t,x\rp \ra +V(t,x)u_d(t,x) \nonumber\\ +f(t,x) = 0
\end{align}
is rendered:
\begin{align}\label{0.0.5}
\lp \frac{\partial}{\partial t} u_d \rp \lp t,x \rp + \lp \Delta_x u_d \rp \lp t,x\rp + \alpha_d(x)u_d(x) = 0
\end{align}
Note then that Feyman-Kac sates that the solution to (\ref{0.0.4}) can be written as:
\begin{align}
u(t,x) = \E \lb \int^T_t e^{\int^r_t V (\mathcal{X}_t,\tau) d\tau}f(\mathcal{X}_r, r )dr + e^{-\int^T_t V(\mathcal{X}_\tau,\tau)d\tau } u(\mathcal{X}_T,T) \rb
\end{align}
Where $\mathcal{X}$ is an $\lp \Omega, \mathcal{F}, \mathbb{P} \rp$-adapted stochastic process given by:
\begin{align}
\mathcal{X}_t = x + \int^t_s \mu_d \lp \mathcal{X} \rp dr+\int^t_s\sqrt{2}d\mathcal{W}_r^d
\end{align}
Note then that the substitutions then yield that the solution to (\ref{0.0.5}) is given by:
\begin{align}
u(t,x) = \E \lb \exp \lp \int^T_t \alpha_d \lp \mathcal{X} \rp dr \rp u_d \lp T,\mathcal{X}^{d,t,x}_T \rp \rb
\end{align}
\end{proof}
\end{document}